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Tunable coupling of qubits: nonadiabatic corrections
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Abstract. – We analyze the coupling of qubits mediated by a tunable and fast element
beyond the adiabatic approximation. The nonadiabatic corrections are important and even
dominant in parts of the relevant parameter range. As an example, we consider the tunable
capacitive coupling between two charge qubits mediated by a gated Josephson junction, as
suggested by Averin and Bruder. The nonadiabatic, inductive contribution persists when the
capacitive coupling is tuned to zero. On the other hand, the total coupling can be turned off
(in the rotating wave approximation) if the qubits are operated at symmetry points.

Introduction. – Most approaches to quantum computation rely on tunable interactions
between pairs of qubits. These should be turned off for independent single-qubit manipulations
and to reduce crosstalk of qubits during readout, and they should be turned on selectively in a
controlled way in order to perform two-qubit logic gates. In principle, refocussing techniques,
known from NMR, can be used to suppress the effect of fixed (uncontrolled) couplings, but
they require considerable overhead and precision of the pulses. Thus tunable setups, which
allow minimizing the residual couplings, are desired. At this stage, most experiments with
Josephson qubits [1–6] have been performed with direct and fixed couplings. But various
schemes with tunable couplings have been proposed [7–20]. Some of them gain their tun-
ability from ac-driving [19,20], but the majority relies on additional circuit elements, such as
switchable Josephson junctions, inductors, LC circuits (cavities), or further qubits. One can
distinguish two operation principles: For “resonant” couplers [9, 10, 15] the coupling element,
typically an oscillator, is tuned into resonance with one or both qubits. Alternatively one can
use “adiabatic” couplers [7,8,11–14,16–18], where the coupling element has a much higher ex-
citation energy than the qubits and remains in its ground state while mediating the coupling.
In the following we will concentrate on these adiabatic coupling schemes.

Some early proposals [7, 8] made use of a fixed coupler, but gained tunability by using
SQUID-type qubits with flux-controlled Josephson energies. They suffer from the difficulty
that the coupling can be switched off only if one succeeds in fabricating identical junctions. The
alternative approaches, proposed more recently, employ a tunable coupler which – ideally – can
be tuned to cancel fixed existing couplings [11,14,18]. In addition, by modulating the coupling
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constant around such “zero” points one can tune two qubits with different energy splittings
into resonance, while keeping both at their symmetry points where decoherence effects are
minimized [17, 18]. In this Letter we will show that nonadiabatic corrections are important
around such “zero” coupling points. For example, we find that a gated Josephson junction
produces, in addition to a tunable capacitive coupling, an inductive one, which dominates
when the capacitive interaction is switched off. The importance of inductive corrections in
the charging regime of Josephson junctions has recently been pointed out also by Zorin [21].
Certain nonadiabatic corrections were also noted in ref. [18].

Below, we first present a general theory of tunable adiabatic coupling. As specific example
we analyze the setup with tunable capacitive coupling proposed by Averin and Bruder [11]
and demonstrate the importance of inductive corrections in different regimes. When the
charging energy of the coupling junction dominates over the Josephson energy, EC ≫ EJ,
the inductive coupling is weak, but is important when the capacitive interaction is tuned to
zero. In the opposite limit, EJ ≫ EC , the inductive coupling always dominates over the weak
capacitive interaction, and we recover earlier results for inductively coupled charge qubits [22].
In the present discussion we concentrate on charge qubits, but our general formulation and
conclusions apply equally to other types of qubits and couplers.

General theory. – We consider a system of two qubits coupled via an adiabatic coupler
and described by the Hamiltonian

H = H0 + V = Hqubits + Hcoupler(γ) + V . (1)

The coupler is controlled by a parameter γ. We assume an interaction of the form V = λAB,
where λ is the coupling constant, A an observable of the coupler, and B an arbitrary function
of observables of both qubits. In general Hqubits includes a direct and fixed coupling between
qubits. In the following we consider the situation, where this fixed coupling is (nearly) canceled
by tuning the coupler appropriately.

The coupler Hamiltonian can be brought into diagonal form, Hcoupler =
∑∞

m=0 Em |m〉 〈m|,
where both the eigenstates |m〉 and energies Em depend on γ. The small parameter govern-
ing the adiabatic approximation is |Hqubits|/(E1 −E0), where |Hqubits| denotes the maximum
energy difference between the eigenstates of Hqubits. To proceed we integrate out the cou-
pler and derive an effective Hamiltonian in the subspace of slow degrees of freedom of the
qubits. The effective interaction Veff is found by projecting the full time-evolution operator
S(t, 0) = T exp [− i

∫ t

0 VI(t
′)dt′/~] (in the interaction representation) onto the ground state of

the coupler, Seff(t, 0) ≡ 〈0|S(t, 0) |0〉, and defining

Seff(t, 0) = T exp [ − i

~

∫ t

0

Veff,I(t
′)dt′] . (2)

We assume the interaction to be weak, such that λ〈A〉〈B〉/(E1 − E0) ≪ 1, for all matrix
elements of A and B. Expanding the evolution operator Seff(t, 0) up to second order we find

Seff ≈ 1 − iλ

~

∫ t

0

〈0 |AI(t
′)| 0〉BI(t

′)dt′

+

(

iλ

~

)2 ∫ t

0

∫ t1

0

〈0 |AI(t1)AI(t2)| 0〉BI(t1)BI(t2) dt1 dt2 . (3)

The first order contribution to Veff,I is thus given (in the Schrödinger representation) by

V
(1)
eff = λ 〈0 |A| 0〉B . (4)
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To find the second order contribution we insert the unity,
∑

m |m〉 〈m|, in the last term of
eq. (3) between the two coupler operators. The part with m = 0 is the second order, reducible

term in the expansion of T exp [ − i
∫ t

0 V
(1)
eff,I(t

′)dt′/~]. The terms with m 6= 0 give rise to a

new contribution Ṽ
(2)
eff,I to the effective interaction Hamiltonian, defined by

∫ t

0

Ṽ
(2)
eff,I(t

′) dt′ = −i
λ2

~

∞
∑

m=1

|〈0 |A|m〉|2 · Im , (5)

where Im ≡
∫ t

0

∫ t1
0 BI(t1)BI(t2) ei(E0−Em)(t1−t2)/~ dt1 dt2. Introducing τ = t1 − t2 and T =

(t1 + t2)/2 we rewrite the integral as

Im =

∫ t

0

dT

∫ F (T )

0

dτ BI(T + τ/2)BI(T − τ/2) e−iωm0τ , (6)

where ωm0 = (Em − E0)/~ and F (T ) = 2 min(T, t − T ). Because of the assumed separation
of time scales, BI varies slowly on the time scale ω−1

m0, and can be expanded,

Im ≈
∫ t

0

dT

∫ F (T )

0

dτ e−iωm0τ

·
[

BI(T ) +
τ

2
ḂI(T ) +

τ2

8
B̈I(T ) + ...

] [

BI(T ) − τ

2
ḂI(T ) +

τ2

8
B̈I(T ) + ...

]

. (7)

For T ≫ ω−1
m0 we can set F (T ) → ∞. Substituting the resulting Im into eq. (5) we find the

second-order contribution to the effective Hamiltonian (in the Schrödinger picture)

Ṽ
(2)
eff = −λ2

~

∞
∑

m=1

|〈0 |A|m〉|2




B2

ωm0
+

i[B, Ḃ]

2ω2
m0

+

[

2Ḃ2 − {B, B̈}
]

4ω3
m0

+ ...



 . (8)

Note that the time derivatives in the Schrödinger picture should be understood as commuta-
tors, e.g., Ḃ = i[Hqubits, B]/~.

The effective Hamiltonian so far is H̃eff ≈ Hqubits + V
(1)
eff + Ṽ

(2)
eff . To simplify the last

term of Ṽ
(2)
eff an “integration by parts” can be performed which adds a full time derivative to

Ṽ
(2)
eff . This is achieved by a unitary transformation Heff = UH̃effU−1, where U = exp [iQ] and

Q =
∑

m≥1
λ2

4~2ω3

m0

|〈0 |A|m〉|2 {B, Ḃ} . This yields V
(2)
eff = Ṽ

(2)
eff + i[Q, Hqubits], i.e.

V
(2)
eff = −λ2

~

∞
∑

m=1

|〈0 |A|m〉|2 ·
[

B2

ωm0
+

i[B, Ḃ]

2ω2
m0

+
Ḃ2

ω3
m0

+ ...

]

. (9)

The full effective Hamiltonian thus reads

Heff = Hqubits + V
(1)
eff + V

(2)
eff + O(λ3) . (10)

Together with eqs. (4) and (9) it constitutes our main result. The tunable part of the coupling,
eq. (9), depends via |m(γ)〉 and ωm0(γ) on the parameter γ. For time-independent qubit
operators BI we recover the results of the Born-Oppenheimer approximation. Indeed, eqs. (4)
and (9) (with Ḃ = 0) can be obtained by expanding the ground-state energy E0(B) of the
coupler and the interaction term λAB in λ. In general BI(T ) depends on time, and we
obtain nonadiabatic corrections. In the considered limit, they are smaller than the adiabatic
contributions, however, they still dominate the total qubit coupling, if the tunable adiabatic
part in eq. (9) (approximately) cancels further direct coupling terms in Hqubits. Below we
analyze the nonadiabatic corrections for specific systems.
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Fig. 1 – Tunable capacitive coupler proposed in ref. [11]. We slightly modified the system by in-
troducing the gate capacitor at the coupler. This influences the expressions for the gate charges
but does not change the form of the Hamiltonian. The effective qubit Josephson energies can be
tuned using control fluxes in the SQUID loops. To simplify expressions, we assume the SQUIDs
to be symmetric. Then EJk = 2E0

Jk cos(πΦxk/Φ0) and CJk = 2C0
Jk, where E0

Jk is the Josephson
energy of one of the SQUID’s junctions and C0

Jk is its capacitance. The charging energies are given
by EC = 2e2/(CΣ −

∑

k
C2

mk/CΣk) and ECk = 2e2/CΣk, where CΣ = CJ + Cg + Cm1 + Cm2 and
CΣk = CJk + Cgk + Cmk.

Tunable capacitive coupling. – The system shown in fig. 1, which is similar to the one
proposed in ref. [11], provides an example of tunable capacitive coupling. It is described
by the Hamiltonian H = EC [n − ng − q(n1, n2)]

2 − EJ cosφ +
∑

k=1,2 Hk with single-qubit

Hamiltonians Hk = ECk(nk − ngk)2 − EJk cosφk. Here φ and φk are the phase differences
across the coupling junction and of the qubits, respectively. The (dimensionless) gate charges
of the qubits only depend on the applied gate voltages, ngk = CgkVgk/2e. But the gate charge
of the middle junction consists of ng = CgVg/2e plus the gate charge induced by the two
qubits, q(n1, n2) = −∑k(Cmk/CΣk)(nk − ngk).

In order to connect to eq. (1) we rewrite the Hamiltonian of the system in the form

Hqubits =
∑

k=1,2

Hk + ECq2 + 2ECngq ,

Hcoupler = EC(n − ng)
2 − EJ cosφ ,

V = −2EC n q . (11)

Thus we have A = n, B = q(n1, n2), γ = ng, and λ = −2EC , and the small parameter of the
perturbation theory is ckEC/(~ωm0) with the small constants ck ≡ −Cmk/CΣk entering the
operator q(n1, n2). Proceeding as outlined above we find the effective qubit Hamiltonian

Heff =
∑

k=1,2

Hk − 2EC 〈0 |n − ng| 0〉 q −
∞
∑

m=1

2E2
C

~ω2
m0

|〈0 |n|m〉|2 · i[q, q̇]

+ECq2

(

1 −
∞
∑

m=1

4EC

~ωm0
|〈0 |n|m〉|2

)

− q̇2
∞
∑

m=1

4E2
C

~ω3
m0

|〈0 |n|m〉|2 , (12)

where q̇ = −
∑

j
EJj

~
cj sinφj and [q, q̇] = i

∑

j c2
j

EJj

~
cosφj . By separating the single-qubit and

coupling terms we arrive at Heff =
∑

k=1,2 H ′
k +Hint. The single-qubit terms H ′

k = Hk + δHk

acquire a small correction, δHk = O(ck), while the interaction has two contributions,

Hint = λc(ng)n1n2 + λi(ng) sin φ1 sin φ2 , (13)



Carsten Hutter, Alexander Shnirman, Yuriy Makhlin, and Gerd Schön: Tunable coupling ...5

with

λc(ng) = 2EC

(

1 −
∞
∑

m=1

4EC

~ωm0
|〈0 |n|m〉|2

)

c1c2 ,

λi(ng) = −
(

∞
∑

m=1

8E2
C

~3ω3
m0

|〈0 |n|m〉|2
)

c1c2EJ1EJ2 . (14)

The first term (λc) corresponds to a tunable capacitive coupling, while the second one (λi),
which arises due to the nonadiabatic corrections, corresponds to an inductive interaction,
coupling the operators of current flowing into/out of the qubit islands. This inductive coupling
is weak due to a small factor EJ1EJ2/(~ωm0)

2. Yet, as we show below, it dominates, when
the capacitive interaction vanishes or is small.

Coupling junction in the charge regime, EC ≫ EJ. – In this limit, working close to the
degeneracy point ng = 1/2, we can approximate the coupler by a two-level system with the
two charge states |n = 1〉,|n = 0〉 as basis. The coupler Hamiltonian then reads

Hcoupler = −1

2
EC(2ng − 1)σz − 1

2
EJσx = −1

2
~ω10ρz. (15)

In the second, diagonal form we used ~ω10 =
√

E2
J + E2

C(2ng − 1)2 , sin η = EJ/(~ω10),
and σz = cos η ρz − sin η ρx. Expressing the non-vanishing matrix element in eq. (14) as
〈0 |n| 1〉 = − 1

2 sin η we obtain the coupling constants

λc(ng) = 2EC

(

1 − EC

EJ
sin3 η

)

c1c2 , λi(ng) = −2E2
C

E3
J

sin5 η c1c2EJ1EJ2 . (16)

When the capacitive interaction is switched off, at sin3 η(ng0) = EJ/EC , the inductive coupling
persists

λi(ng0) = −2c1c2(EC/EJ)
1/3(EJ1EJ2/EJ) . (17)

Assuming that the ratio EC/EJ is not extremely large, and using EJ > EJk (which is required
in the charge regime to fulfill the adiabaticity condition), we find |λi(ng0)| . c1c2EJk. Further
away from the limit EC ≫ EJ, i.e. for EC & EJ , the coupling constants can still be calculated
numerically using eq. (14). An example for EC/EJ = 2 is shown in figs. 2a) and b).

Coupling junction in the phase regime, EC ≪ EJ. – In this limit the phase of the coupler
φ remains small, 〈φ2〉 ≪ 2π. Then we can expand EJ cosφ ≈ EJ − EJφ

2/2, and the coupler
Hamiltonian

Hcoupler ≃ EC(n − ng)
2 + EJφ

2/2 , (18)

reduces to that of a shifted harmonic oscillator. Making use of n−ng = i(a†−a)
√

~ω10/(4EC)
with ω10 = 1

~

√
2EJEC , we evaluate λc and λi from eq. (14). It turns out, that in the

considered limit and approximation the capacitive part of the interaction vanishes while the
inductive coupling constant, λi(ng) = −c1c2(EJ1EJ2/EJ), is independent of ng. A more
precise analysis of the Hamiltonian of the coupler yields an exponentially weak ng-dependent
capacitive interaction [11], but the inductive coupling still dominates. In this limit the setup
reduces to that considered in ref. [22], with the Josephson junction of the coupler playing
the role of the inductance of the LC circuit with L = Φ2

0/(4π2EJ). Results for the regime
EC . EJ are illustrated in fig. 2 c).
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Fig. 2 – Coupling constants λc(ng) and λi(ng) in units of c1c2EC obtained from eq. (14). a) EC =
2EJ, EJ1 = EJ2 = 0.2EJ. b) A closer look at the vicinity of the “zero” point. c) EC = 0.5EJ,
EJ1 = EJ2 = 0.2EJ. For other values of EJ1 and EJ2 the inductive coupling constant can be obtained
by simple scaling (see eq. (14)).

Switching off the coupling at the symmetry point. – Eq. (14) or eq. (16) show that
the coupling cannot be switched off completely. Yet, in certain situations, at least in the
rotating wave approximation (RWA), the most important part of the coupling can be switched
off. As an example we consider two qubits (k = 1, 2) in the charging regime with Hk =
− 1

2Bzkσzk − 1
2Bxkσxk. Ignoring renormalization effects we have Bzk = ECk(2ngk − 1)σzk

and Bxk = EJk; renormalization effects introduce a gate charge dependence due to voltage
crosstalk, Bzk = Bzk(ng1, ng2, ng). The effective interaction Hamiltonian can be written as

Hint =
λc(ng)

4
σz1σz2 +

λi(ng)

4
σy1σy2 . (19)

Diagonalization of Hk leads to Hk = − 1
2∆Ekρzk with ∆Ek =

√

B2
xk + B2

zk, and σzk =
cos ηkρzk − sin ηkρxk with sin ηk = Bxk/∆Ek. The interaction Hamiltonian then reads

Hint =
λc(ng)

4
(cos η1ρz1 − sin η1ρx1)(cos η2ρz2 − sin η2ρx2) +

λi(ng)

4
ρy1ρy2 . (20)

If we assume the qubits to have equal or similar energy splittings, ∆E1 ≈ ∆E2, the most
important (RWA) part of the interaction is

Hint,RWA =
λc(ng)

4
cos η1 cos η2ρz1ρz2 +

[

λc(ng)

4
sin η1 sin η2 +

λi(ng)

4

]

[ρ+1ρ−2 + ρ−1ρ+2] .

(21)
This interaction term can be switched off completely only at the symmetry point of at least
one of the qubits, i.e., when cos η1 = 0 or cos η2 = 0 , by choosing ng such that the second term
vanishes. This means, the capacitive coupling constant has to be tuned to a value opposite in
sign but of the same order as the inductive coupling constant (instead of zero, as one might
have guessed intuitively). The cancelation is in general not possible for EJ ≫ EC , when λc(ng)
is exponentially small. We further note that at the double symmetry point cos η1 = cos η2 = 0
the decoupling is stable in linear order with respect to fluctuations of ηk.

Summary and discussion. – We have analyzed the tunable coupling of qubits mediated
by a fast coupling element and evaluated the lowest-order nonadiabatic corrections beyond
the Born-Oppenheimer approximation. When the adiabatic coupling is tuned to cancel an
additional fixed coupling these nonadiabatic contributions become relevant and can even dom-
inate.
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As an example we investigated the capacitive tunable coupler proposed by Averin and
Bruder, and found that it works only in the regime EC > EJ. While the total coupling can
never be switched off completely, this is possible (in RWA) for the most important part of the
coupling at the degeneracy point of both qubits. In the opposite limit EJ ≫ EC we recovered
results of an earlier coupling scheme [22]. Here the capacitive coupling (nearly) vanishes, while
the inductive one dominates. It can not be tuned by the coupler, unless one further modifies
the design, e.g. in the way as suggested in ref. [7].

One strategy to keep the nonadiabatic terms weak is to design a coupler with small adi-
abaticity parameter |Hqubits|/(E1 − E0), i.e. the maximum energy difference between the
eigenstates of Hqubits should be much smaller than the minimum excitation energy of the cou-
pler. Another strategy is, to develop designs where [B, Hqubits] = 0 and the Born-Oppenheimer
approximation becomes exact and, hence, no nonadiabatic corrections appear. Such designs
have been proposed [8, 13], with tunability achieved via the control of circulating currents in
SQUID loops. However, the coupling can be switched off only if the system is fabricated with
identical Josephson junctions in the SQUID loops of the qubits, which is difficult to realize
experimentally.
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