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Shot noise in transport through “double quantum dots”
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Motivated by activities of several experimental groups we investigate electron transport through
two coherent, strongly coupled quantum dots (“double quantum dots”), taking into account both
intra- and inter-dot Coulomb interactions. The shot noise in this system is very sensitive to the in-
ternal electronic level structure of the coupled dot system and its specific coupling to the electrodes.
Accordingly a comparison between experiments and our predictions should allow for a characteriza-
tion of the relevant parameters. We discuss in detail the effect of asymmetries, either asymmetries
in the couplings to the electrodes or a detuning of the quantum dot levels out of resonance with each
other. In the Coulomb blockade region super-Poissonian noise appears even for symmetric systems.
For bias voltages above the sequential tunneling threshold super-Poissonian noise and regions of
negative differential conductance develop if the symmetry is broken sufficiently strongly.

PACS numbers: 73.63.-b, 73.23.Hk, 72.70.4+m

I. INTRODUCTION

While early studies of electron transport through
mesoscopic systems such as quantum dots or molecu-
lar systems concentrated on the current!2, more re-
cent activities, both experimental®45:8 and theoreti-
cal 7:8:9:10.11,12,13,14,15.16.17.18 "y clyde the analysis of shot
noise. The latter provides additional insight into the
quantum transport propertiest? and allows a more de-
tailed characterization of the quantum transport device.

For ‘local’ systems, such as single (multilevel) quantum
dots, above the sequential tunneling threshold the shot
noise power S is typically sub-Poissonian, implying that
the Fano factor F' = S/2el, where I is the mean current,
is less than unity. If the level couplings are asymmet-
ric, e.g. in the presence of magnetically polarized elec-
trodes, the noise can become super-Poissonian. In this
case the Fano factor takes values larger than unity22.
Very recently it was found that enhanced noise can also
be found in symmetric systems inside the Coulomb block-
ade region where the current is much suppressedi?14:20,
On the other hand, for 'non-local’ systems, such as seri-
ally coupled quantum dots, due to their complex internal
level structure, super-Poissonian noise can develop even
in fully symmetric situations and above the sequential
tunneling threshold!®. These 'non-local’ systems exhibit
a pronounced and sensitive dependence of their transport
characteristics on internal parameters and couplings.

In this article we study sequential transport in a sys-
tem of two strongly coupled quantum dots. Specifically,
we consider a double quantum dot (DQD) in series in
which the left dot is coupled weakly to left electrode and
similarly the right dot to the right electrode, while the
two dots are coupled strongly via electron tunneling, and
they also interact electrostatically via the Coulomb in-
teraction (see Section [). Our results (in Section [T
address two distinct issues:

(i) In Section [MIAl we study the shot noise of the

symmetrically coupled DQD in the Coulomb blockade
regime, generalizing the work of Ref. 2(0. Co-tunneling
processes are assumed to be weak, hence transport is due
only to thermally activated processes. We find that in the
Coulomb blockade regime the relation between two en-
ergy scales, the sequential tunneling energy e,., and the
difference of the first excitation energy and the ground
state (which is also the inelastic cotunneling energy) €co,
determines the occurrence or absence of super-Poissonian
noise. This part of our analysis is valid generally for
weakly coupled system in the Coulomb blockade regime,
for any value of the gate voltage, as it depends only on
generic properties of the internal electronic structure of
the interacting dot system.

(ii) Above the sequential tunneling threshold, for the
weakly coupled DQD super-Poissonian noise can only ap-
pear if the left < right symmetry is broken. For a non-
local system like the DQD this symmetry breaking can
be achieved in two qualitative different ways: (a) The
symmetry of the electrode-dot couplings is broken, while
the DQD is unchanged, see Section Here, the step
positions in the current and noise characteristics are not
influenced by the asymmetry. But for sufficient asym-
metry in the coupling negative differential conductance
(NDC) appears, i.e. the current decreases with increas-
ing bias, while at even stronger asymmetry additionally
super-Poissonian noise appears. (b) The symmetry of the
electrode-dot couplings is preserved, while the symmetry
of the DQD-Hamiltonian is broken by detuning the dot
level energies, see Section [T Here, the step positions
in the current and noise characteristics differ for different
degrees of detuning. The DQD eigenfunctions become
spatially non-uniform which breaks the parity symmetry
of the effective coupling of the various eigenstates to the
electrodes. This, in turn, leads again to NDC and even-
tually with further detuning to super-Poissonian noise.

As such asymmetries are easily detected in an experi-
ment, we can learn more about the underlying asymme-
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tries of the couplings, electronic structure and also the
total spin of the states participating in transport. In
the available measurements setups on DQDs of various
groups21:22:23:24 metallic finger gates allow for controlled
manipulation of the relevant parameters, e.g the elec-
trostatic potential of the individual dots as well as the
inter-dot and dot-electrode couplings. While it might be
difficult to unambiguously distinguish the two cases of
symmetry breaking, our predictions should still be ver-
ifiable in shot noise measurements in available systems.
We also comment and compare our results to related the-
oretical work®1112 on similar systems in Section
We conclude with a summary in Section [Vl

II. MODEL AND TECHNIQUE

We consider two coupled quantum dots, each with a
sufficiently large level spacing such that we can restrict
ourselves to one spin-degenerate level per dot. Including
electron hopping between the dots as well as intra-dot
and inter-dot (nearest neighbor) Coulomb interactions
we arrive at the Hamiltonian H = ﬁL + ﬁR + ﬁDQD +
I’:’TJ_, + ﬁT,R with

‘H’I‘ = Zekaralgrakara ﬂT,r = Z(tralzgrcia + h.C.),

ko iko
HDQD = Z €iNjg — tZ(cJ{Uczg + h.c.)
0 o
+U2nmnu + Unnznlan2a/7 (1)
4 oo’

where 7 = 1,2 denote the dot levels and r = L, R. Here,
H;, and Hr model the non-interacting electrons with
density of states p. = >, 0(w — €ror) in the left and

right electrode (aLw, akor are the Fermi operators for the
states in the electrodes). The chemical potentials (Fermi
energy) of the electrodes ur,ur in equilibrium set the
zero point of the energy scale. The term fIDQD describes
the coupled dots with on-site energy ¢; and inter-dot hop-
ping t. czg,cig are Fermi operators for the molecular
levels, and n;, = c;fgcw is the number operator. The
strength of the intra-dot and inter-dot Coulomb repul-
sion is given by U and U, respectively. The parameters
U and U,, can be related to the charging energies of
the dots and the various capacitances when comparing
to experimental setups as described e.g. in Ref.[2. Other
electron interaction terms could be considered by much
more elaborate models, as done in Ref. 26 for compu-
tation of the I — V' characteristics. For the effects on
the shot noise that we wish to study, the simpler model
above suffices. The terms Hr 1, and Ht g describes tun-
neling between the leads and the corresponding adjacent
dot. The respective coupling strength is characterized by
the intrinsic line width I, = 27|t,|?p., where t,. are the
tunneling matrix elements.

We are interested in transport through the DQD, in
particular in the current I and the (zero-frequency) cur-

rent noise S. They are related to the current operator I =
(In = 1)/2, with I, = ~i(e/m) Sy, (1], ci0 — huc.)

being the current operator for electrons tunneling into
lead r, by I = (I) and

§— / a1 ()51 (0) + 51(0)01 (1)) @)

where 61(t) = I(t) — (I).

We compute transport via a master equation for the
diagonal elements of the reduced density matrix of the
DQD system. This approach has been discussed in de-
tail in Ref. 13. For completeness, here we summarize
the most salient aspects of this approach. The reduced
density matrix is expressed in the eigenstate basis of
the dot Hamiltonian Hpgp, EqIl For the N = 2 dot
system there exist 4V = 16 eigenstates y of the form
X = >4 Cs|s), where |s) denotes a basis state of the form
[n11n1 napng)) and the ¢y are the corresponding coeffi-
cients. The analytic form of the eigenstates and eigen-
values of our Hamiltonian can be found in Ref. 271. We
calculate the transition rates W between the eigenstates
via perturbation theory (in this case via the Fermi golden
rule) in the electrode-DQD couplings I'". The bold face
indicates matrix notation related to the eigenstate labels
Xx- In the stationary situation (no explicit time depen-
dence of the bias) the density matrix becomes time inde-
pendent and we can find the average occupation of the
eigenstates, i.e. stationary probabilities p5t by the solu-
tion of the master rate equation

> Wywpy =0. (3)

X

under the condition that ZX p;t = 1. For the calculation
of the current I and current noise S, we use the dia-
grammatic technique on the Keldysh contour developed
in Ref. 28 which was expanded for the description of the
noise in Ref. [13. In first order perturbation theory, the
current and shot noise are given by:

e )
I = —2heTW1pbt 4)
e?
S = —heT(WHpSt—l-WIPWIpSt). (5)

The vector e is given by e, = 1 for all x. The objects
WI (W) denote the Laplace transform of the transi-
tion rates (in the time domain) between eigenstates x
with one (two) current vertex(ices) due to I, replacing a
tunneling vertex due to Hr 1, or Ht r. The ”propagator”
P can be found from the Dyson equation. In first order
perturbation theory it is obtained from the equation

P=WQ, (6)



where W is identical to the transition rates matrix W de-
fined above but with one row (arbitrarily chosen) xo be-
ing replaced with (T, ....,T") and Q.+ = (p§ — ox'x)(1 —
dy/xo), see Ref. [12 for the full details.

We point out that expression Eq. H consists of two
terms. The first term, denoted by S;.. is due to W1,
i.e. the noise diagrams with two current vertices in a
single irreducible block. The second term, denoted by
Sred, is due to reducible noise diagrams, i.e. diagrams
with a ”propagator” P between the two current vertices
of Eq. @ at different times. It therefore accounts for the
electronic structure and the correlations of the system.
It is mostly the second term S...4 that is responsible for
the interesting correlation physics and super-Poissonian
noise, as we will see below.

III. RESULTS

In the following we discuss current and shot noise for
systems described by a Hamiltonian of the type of Eq. ()
in first order perturbation theory in the tunnel couplings
T',.. In the first part of the discussion special emphasis is
put on examining the behavior of the Fano factor (Noise)
in the Coulomb blockade region. The second part will be
devoted to the discussion of asymmetry effects induced
to the double dot system by asymmetric coupling to the
leads or detuned level energies, respectively. In the case
of symmetric couplings we choose I', = I'r = 2.5ueV
defining a total line width of I' = I', + I'r = b5ueV.
(We choose this explicit energy scale as we are varying
a number of different energy parameters in the follow-
ing.) Our perturbation expansion is valid for tempera-
tures much larger than the tunnel couplings. Through-
out this paper, we choose kg7 = 10I' which translates
to T' = 50ueV ~ 0.6K. The dot system is characterized
by the level energies ¢;, the intra-dot "Hubbard’ repul-
sion U, and the nearest neighbor charge repulsion U,,,,.
If not stated otherwise the level energies are chosen to be
resonant, €] = ez = €.

A current is driven by an applied bias voltage V,, =
u1, — pr. We assume the voltages to drop symmetrically
and, since the dot-electrode coupling is weak compared
to the dot-dot coupling, entirely at the electrode-dot tun-
nel junctions. This implies that the level energies of the
dots are independent of the applied voltage. Effects such
as level detuning due to asymmetric or incomplete volt-
age drops and or applied gate voltages could easily be
included. We do not consider these effects here, as they
add unnecessary complexity to the results presented be-
low. We include only a single level per dot (plus interac-
tions), assuming that the level spacing within each dot is
larger than all other energy scales.

To proceed we diagonalize the dot Hamiltonian Hpgp
including the interaction terms. The resulting eigenstates
can be organized according to the two quantum numbers:
total charge —ge (with ¢ an integer, ¢ € 0,1,2,3,4) and
total spin (singlets, doublets and triplets for our DQD

model 2731, As the onsite energies ¢; are decreased to
lower, negative values (experimentally achieved by a gate
voltage applied to both dots) the ground state charge
shifts from ¢ = 0 to increasing values ¢ = 1, ¢ = 2. ...
While previous work®4! has focused mostly on the zero
charge (¢ = 0) ground state we study the more interesting
case (see below) with a “half filled” ground state (¢ = 2),
where the low-bias transport sensitively depends on the
spatial and spin structure of the eigenstates in the various
charge sectors.

For the sequential transport in quantum dot systems
at low bias two energy scales are relevant: (1) The ”se-
quential energy gap” €seq, denotes the energy difference
between the ground state with charge —ge and the first
excited states with the charge —(¢ + 1)e (‘anion ground
state’) or with charge —(q¢ — 1)e (‘kation ground state’),
depending on which one is smaller. The sequential tun-
neling threshold, i.e. the bias above which the current is
no longer suppressed due to Coulomb blockade, is reached
at V = 2¢4¢4/€ for symmetric bias. (2) The energy gap
between the ground state with charge —ge and the first
excited state with the same charge, denoted in the fol-
lowing by €.,. The energy €., is also known as the ‘ver-
tical’ gap, and is related to the HOMO-LUMO gap in
molecular systems. It would be the energy scale relevant
for inelastic co-tunneling processes. Note, however, that
co-tunneling processes, which are of second order in I'.,
are not included in this work. If one would start with
a ground state of zero charge (¢ = 0) the energy scale
€co would not exist within our model, due to the restric-
tion to single level dots. As we consider the case of a
half filled ground state we avoid such an artefact. Also
note that recent experiments on double quantum dot
systems with applications for quantum computing23:24:25
work with ground states of non-zero charge.

A. Symmetrically coupled quantum dots

We begin with a system of two dots in series and en-
ergy parameters such that the DQD is half filled in the
ground state (no bias applied). In the right panel of
Figlll part of the energy excitation spectrum resulting
from the diagonalization of the Hamiltonian is displayed.
The ground state G is a singlet state (total spin 0) and
charge —2e (¢ = 2). Tt is delocalized over the two dots
(a combination of the four two electron singlet basis vec-
tors |s)) with an eigenvalue F¢ dependent on all param-
eters of Hpop, Eq = 2¢ +1/2(U + Uy, — A), where2?
A = \/16t2 + (U — U,,)?. The first excited state is the
bonding state B with ¢ = 1. It is a doublet with to-
tal spin 1/2, eigenvalue e — ¢, and is also delocalized
over both dots. Therefore, the energy scale €, is given
€seq = B — Eq. The second excited state is a triplet
(total spin 1) with ¢ = 2. In the triplet state one elec-
tron each is ”fixed” to one dot. Therefore, its eigenvalue
is independent of the inter-dot hopping ¢ and the on-site
repulsion U. the energy scale €., is therefore given by




€co = E1 — Eg. The rest of the spectrum is not shown,
since for the following discussion we will refer to a bias
regime for which other states are not yet important. The
higher excited states are responsible for the step features
above V, ~ 5mV . Note that in the artificial limit U — oo
the energy scale €., vanishes. In this case, the triplet and
singlet states would be degenerate and some of the effects
described below would disappear.
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FIG. 1: Left panel: Current I and shot noise S vs. bias
voltage for a double dot system with kT = 0.05, t = 2,
U =10, Upn = 5 and € = —5.5 resulting in a doubly occupied
ground state (¢ = 2e), all units in meV. The noise S is sub-
Poissonian for all bias voltages. This is always the case if
the first vertical excitation energy is larger than twice the
sequential tunneling threshold, €.o > 2€seq, see the sketch in
the right panel. Current and noise curves are normalized to
Io = (e/R)2T" and Sy = (e?/h)2T, respectively. Right panel:
sketch of the low energy spectrum. The nature of the states
G,T and B is discussed in the text.

Figlll shows the typical behavior for a fully symmetric
system with €., > 2€44 : both current and noise rise
monotonically in steps, while the Fano factor will fall
between values of 1 (Poissonian noise) and 1/2 (symmet-
ric double barrier noise) for the large bias region, i.e. a
bias voltage larger than all excitation energies. In gen-
eral, the Fano factor will not fall with a monotonous
dependence on the bias. This non-monotonicity is due
to the second term in the noise expression Eq. B as-
sociated with the propagator P, which can give positive
and negative contributions (it is negative in the entire
Coulomb blockade region and becomes positive only on
the first plateau). In the Coulomb blockade current and
noise are both (equally) exponentially suppressed result-
ing in a Fano factor of Poissonian value. At small bias,
eV, < kpT, the noise is dominated by thermal noise, de-
scribed by the well known hyperbolic cotangent behavior
which leads to a divergence of the Fano factori?:32,

If we now lower the onsite energy € we energetically fa-
vor states with larger charge and thus increase the energy
€seq as compared to the situation as shown in the right
panel of Figlll while preserving the energy €.,. Thereby,
we can realize a situation in which €y < €co < 2€4eq,
see Figll Above the sequential threshold the current
and noise curve look very similar to the situation in Fig.
M with the expected small shifts in the step positions.

However, in the Coulomb blockade region the Fano fac-
tor behaves differently to before. After the region of
thermal noise accompanied with divergent Fano factor,
a Poissonian value of F' = 1 is reached. For higher bias
and close to (but still below) the sequential tunneling
threshold a peak like feature (actually a short plateau)
appears in the Fano factor. This is caused by a rela-
tive enhancement of the noise, visible in Figs. B and H
by the apparent shift of the noise curve to lower bias in
the left panel. The increase of the Fano factor is due
to the second term in the noise expression Syeq (Eq. H),
see the FigBl (note the semi-logarithmic scale). The first
part of the noise S;.. provides the finite thermal noise
around zero bias. It then grows with bias with the same
exponential behavior as the current and contributes a
Poissonian term 2el to the shot noise. In contrast, the
(now positive) second part Sy..q becomes only appreciable
for a bias Vi, > (€co — €seq)/€ and renders the shot noise
super-Poissonian above this bias. This noise enhance-
ment is due to the possible thermal occupation and sub-
sequent sequential depletion of excited states that lead
to small cascades of tunneling events interrupted by long
(Coulomb) blockages. The alternation of these processes
with different time scales results in a noisy current. Con-
sequently, the Fano factor is larger than unity, indicating
super-Poissonian noise. This effect was recently discussed
in some detail by Belzig and co-workerst®20 for systems
restricted to a singly occupied ground state. At a bias
higher than the sequential threshold the noise recovers
sub-Poissonian behavior.
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FIG. 2: Left panel: Current I and shot noise S vs. voltage for
a double dot system with kg7 = 0.05, t =2, U = 12, Uppn =
4meV and e = —5.3.Super-Poissonian noise (Fano factor F' >
1) develops in the Coulomb blockade regime. Right panel: low
energy spectrum, where now €seq < €co < 2€seq-

For the same parameters as above but with further
lowered onsite energy ¢ = —6.3 we obtain a situation
where €., < €54. The current, noise and Fano factor
for such a situation are depicted in Fig. Bl For a bias
larger than the sequential tunneling threshold the curves
show again generic behavior as displayed in Fig. [ and
Figll However, in the Coulomb blockade regime and
after divergent thermal noise behavior we directly ob-
tain a super-Poissonian Fano factor F' ~ 2.8 in form of
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FIG. 3: Enlarged low bias region of FigPl 2el, S,cq and S;r
are plotted semi-logarithmically. The first part of the noise
Sirr grows with bias as the current, providing a Poissonian
noise contribution. The second part of the noise S;.q becomes
appreciable for V' > 2(€co — €seq)/e and causes the total noise
enhancement.

a plateau and do not recover a Poissonian value in the
entire Coulomb blockade regime at all. In this case, Syeq
gives a large contribution that behaves with the same ex-
ponential behavior as the current rather than dropping
faster than the current at low bias, as in Fig. Bl). Thus
the noise is enhanced in the entire Coulomb blockade
regime. The term S;,, again provides the thermal noise
at very low bias and a contribution of 2el below the bias
Vb > (€seq —€co)/e. Above this bias, there is a redistribu-
tion between S;. (losing) and Sy..q (winning), however,
the sum of the two terms grows exactly like the current,
leading to a constant (super-Poissonian) Fano factor.
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FIG. 4: Left panel: Current I and shot noise S vs. voltage for
a double dot system with kg7 = 0.05,t =2, U =12, U, = 4
and € = —6.3. Super-Poissonian noise develops in the entire
Coulomb blockade region. Right panel: the corresponding low
energy spectrum, where €co < €seq-

Summarizing the above discussion we can distinguish
three possible situations in the Coulomb blockade region:
i) For €.o > 2€4¢4 the sequential processes start at a bias
before the excited states come into play, and the noise is
Poissonian, i.e. F' = 1 once the thermal noise becomes
negligible. This is the case for Fig. [l as sequential trans-
port via the ground state G and the “bonding state” B
takes place before the triplet state T can be reached from
the bonding state B.

ii) For €5eq < €co < 2€5¢q there is super-Poissonian noise
F > 1 in the bias range 2(eco — €seq)/€ < Voo < 2€5¢q4/€;
see Fig. @l This is due to the transport scenario discussed
above, as for a bias in this range a thermally excited sys-
tem can for a time do sequential transport through the
excited states, before recovering to the ground state.

iil) For €co < €s¢q we have F' > 1 for the entire Coulomb
blockade region. For a bias 2(€seq —€co)/€ < Vb < 2€5eq4/€
the situation is the same as in scenario ii). Below this
bias range the physical picture due to Refl2( needs to be
modified, as sequential transport is ”blocked” (thermally
activated) even out of the first excited state for V, <
2(€seq — €co)/e. Nevertheless, the Fano factor actually
remains constant as the bias drops below 2(€eseq — €co)/€,
see Fig. @

However, as was pointed out in Ref. [14, the super-
Poissonian noise behavior due to sequential tunneling
processes in the Coulomb blockade regime is easily mod-
ified by co-tunneling processes. As elastic co-tunneling
provides a Poissonian process are often much larger cur-
rent (in the Coulomb blockade region) than the exponen-
tially small sequential current, adding all contributions
gives a Fano factor of nearly unity deep in the block-
ade region. Inelastic co-tunneling processes, on the other
hand, can provide a “true” super-Poissonian noise around
a bias €., /e above which the inelastic processes com-
pete with the Poissonian elastic co-tunneling processes.
Therefore, if co-tunneling processes dominate sequential
processes (typically for ratios above I'/T ~ 107314) there
is either no super-Poissonian noise, if €;, > 2654 as in
scenario i), or, there is super-Poissonian noise starting
around a bias of €., /e, similar to scenario ii). The exper-
imental distinction of scenarios ii) and iii) can therefore
be difficult: although the Fano factor looks different in
pure sequential transport, if co-tunneling processes play
a role, scenarios ii) and iii) will display qualitatively sim-
ilar Fano factor behavior.

B. Asymmetric dot-electrode couplings

We now turn to the discussion of transport above
the sequential tunneling threshold, i.e. in the bias re-
gion where electrons can tunnel sequentially through the
DQD because they have sufficient energy to overcome
the Coulomb blockade. For the symmetric situations
as discussed above, the current and the noise increase
monotonically in steps, where the step positions are de-
termined by the many-body excitations of the DQD. For
our DQD system, the noise in a symmetric transport sit-
uation remains sub-Poissonian (Fano factor F' < 1) at all
bias above the sequential tunneling threshold.

This is changed in situations with asymmetric cou-
plings, e.g. when the coupling to the left electrode is
suppressed relative to the coupling to the right electrode,
I',/Tr < 1. As all energy parameters are chosen to be
the same as in the situation displayed in Fig. [ the ground
state is again a two electron state with €., > 2€4¢,. Hence



for the following discussion one should refer to the quali-
tative energy spectrum shown in the right panel of Fig. [l
In FigHthe upper graph depicts the Fano factor and the
lower graph the absolute value of the current for vari-
ous asymmetry ratios I', /T'r (the current is negative for
negative bias). In the symmetric case, represented by the
solid line, the Fano factor as well as absolute current and
the noise (that is not depicted here) show a fully sym-
metric behavior under the reverse of the bias voltage.
The first plateau is reached when the transition from the
doubly occupied ground state G (¢ = 2e¢) to the low-
est single occupied state, the bonding state B, (¢ = 1e)
becomes allowed at the sequential tunneling threshold
(Vi = 2€seq/€)). At these plateaus the current, noise
and Fano factor are functions of the coupling constants
T', only. At negative bias on the first plateau, the Fano
factor is given by

AT? +T%

= (7)
(2T +T'r)?

This gives a value of g at the first plateau for symmetric

coupling. For positive bias voltage one needs to exchange

T't, with 'y, respectively. This result can be related to

previous work by some of us32.
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FIG. 5: Current I (absolute value) and Fano factor S vs.
voltage for asymmetric coupling in a double dot system with
kT = 0.05, t = 2, U = 10 and Unn = 5, € = —5H.5.
For strong asymmetry negative differential conductance and
super-Poissonian noise appear only for negative bias volt-
ages. Note that due to the asymmetry the total line width
I' =Tt +I'r and the current are reduced relative to the sym-
metric case.

For the curves with I'r,/T'r # 1 there is a clear asym-
metry in current and Fano factor. The first plateau value
of the Fano factor is increased for positive bias and (for
smaller asymmetry) decreased for negative bias accord-
ing to the above expression for the Fano factor. Further

suppression of the left coupling leads to a region of neg-
ative differential conductance (NDC) and eventually a
super-Poissonian Fano factor on the second plateau at
negative bias (see dash-dotted curve for I'r,/Tg = 0.1).
The reason for the current suppression and asymmetric
behavior is the interplay of the asymmetric couplings and
the internal electronic structure. The occupation of the
states participating in transport at the plateaus is highly
sensitive to the asymmetric couplings.

Let us consider the first plateaus (positive and nega-
tive bias) of the current in the case I't,/Tg = 0.1. For
negative bias, in contrast to the symmetric case where
the ground state G and the bonding state B are equally
occupied, we have now a higher probability to be in the
state G than in the state B. This is due to the fact that it
is “easy” to populate the DQD from the right but “dif-
ficult” to depopulate the DQD in direction of the left
electrode because of the suppressed coupling. As a con-
sequence the system is occupied by two electrons most
of the time. The reverse holds for positive bias, where
the dot is most often occupied by one electron and con-
sequently the probability to be in the state B on the first
plateau is higher than to be in the ground state G.

To obtain the current I we need to consider the rel-
evant current rates W' in addition to the probabilities
of the various states. On the first plateaus, the rele-
vant current rates Wé_)BU from ground state to bonding
state(s) (with given spin o) at negative bias are equal in
magnitude to the reverse rates WéUHG at positive bias
(independent of the spin o of B,). Solving the mas-
ter equation, as a result of the coupling asymmetry the
probability pg to be in state G on the first plateau at
negative bias is however larger (almost twice) than the
occupation pp, for states B, on the first plateau at pos-
itive bias. The combination of the same relevant current
rate but different occupations leads to a higher (absolute)
value of the current on the first plateau at negative bias
than on the corresponding plateau at positive bias. To be
concrete, if we consider the currents on the left interface
of the DQD we have at negative bias a current with ab-
solute value |2W{,_ 5 pc| which is almost twice as large
(for T, /Tr = 0.1) than the current W{_  2pp, going
through the left interface at positive bias. Here, the fac-
tors of two originate from the spin summation over the
bonding state doublet.

On the first plateau the Fano factor is monotonically
increasing for positive bias with decreasing I'y,/T'r un-
til it would reach the Poissonian value F' — 1 for very
large asymmetry, resembling the noise of an effective sin-
gle barrier. For negative bias on the first plateau, the
Fano factor (given by Eq. [) is not monotonic: it first
decreases until it reaches F' = 1/2 for I'y,/T'g = 0.5, then
it increases until it also would reach the Poissonian value
for large asymmetry. This non-monotonic behavior re-
flects the interplay of asymmetry and different spin mul-
tiplicity of the relevant states G and B.

At the second plateau the transition from the bonding
state B to the first excited triplet state T (¢ = 2) becomes



possible and thus provides a second current channel. The
stationary probabilities are redistributed in the following
way: For negative bias, the states G and each of the three
triplet states T,,,m € —1,0, 1 have approximately equal
occupation (within 10 percent). As a consequence of the
threefold spin multiplicity of the triplet the probability
of the ground state decreases to less than one third of
its value on the first plateau. The bonding state B also
loses some of its (already small) probability to the com-
peting triplet states. The tunneling processes from the
triplet state(s) T to the bonding state(s) B contribute
an additional current via the current rates Wi 5 (per
triplet state and spin of B). However, even when sum-
ming over all the triplet contributions the resulting cur-
rent is too small to compensate the loss from the pro-
cesses involving the ground state. Therefore a region of
negative differential conductance (NDC) appears as soon
as the triplet states play a role in transport for negative
bias (at the considered coupling asymmetry). The NDC
is accompanied by a (relatively) enhanced noise because
the competing processes involving the ground state and
the triplets have sufficiently unequal rates Wé_}B and
Wi 5 to form ’slow’ and ’fast’ transport channels. This
competition leads to the super-Poissonian Fano factor as
depicted in Fig. B

For positive bias on the second plateau the situation
is quite different. Here, the DQD remains mostly in the
bonding state B, i.e. there is no major loss of occupa-
tion for the bonding state (about 10 percent). Again
the current leaving the dot consists of two additive con-
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FIG. 6: Current I (absolute value) and Fano factor S vs. volt-
age for various values of level detuning €12 but with symmetric
couplings to the leads and other energy parameters equal to
the situation depicted in Figlll Stronger detuning €12 leads
to NDC and eventually super-Poissonian noise. In contrast to
FigHl the bias (energy) positions of current and noise features
are changed due to the modified dot Hamiltonian.

tributions. In addition to the ground state contribution
already present on the first plateau, the transitions be-
tween bonding to the triplet states add a large contribu-
tion and thus the current increases stepwise to a second,
higher plateau.

The above illustrates that although for one bias di-
rection (here positive) the current and shot noise show
generic behavior (and the Fano factor is always sub-
Poissonian), the situation can be quite different for the
reverse bias. As such asymmetries are easily verified in
an experiment, we can learn much about the underlying
asymmetries of the couplings and the spin multiplicities
of the states participating in transport. Note that the
NDC and super-Poissonian noise would completely dis-
appear if we would take the onsite Coulomb repulsion
U — oco. Due to a finite U the singlet ground state can
benefit from ’local singlets’, i.e. states with two elec-
trons of opposite spin on the same dot, whereas there
is no equivalent for triplet states. Therefore, the singlet
ground state has a lower energy and different transitions
rates as compared to the triplet states, both of which are
necessary conditions for the NDC and super-Poissonian
noise in the considered single-level model.

C. Detuned level energies

The discussion above serves as a basis to qualitatively
understand transport in the more complicated situation
when the symmetry of the DQD Hamiltonian itself is bro-
ken, rather than merely its coupling to the electrodes. In
the following, we detune the level energies €; — €5 = €12
and also vary the inter-dot hopping ¢ while the other
parameters of the dot system remain the same and the
couplings remain symmetric, I';, = I'g. For an experi-
ment, this implies a gate electrode for each dot that can
be controlled separately. Similar to above in Fig. B if
roughly |e; — €2]| = |e12| > [¢|, NDC and super-Poissonian
noise can be realized at some bias.

In Fig. Bl we show current and Fano factor for differ-
ent level detuning €12. The black solid line corresponds
to symmetric couplings and resonant levels € = €5, It
is the same as depicted in Fighl If we start detuning
the levels, i.e. €12 # 0 we change our excitation ener-
gies and the states become more localized on the dot
with lower energy (here the right dot). Consequently,
we find the current and Fano factor plateaus at differ-
ent (energy) positions as before, with different length of
the plateaus. Note that the current on the first plateau
only weakly changed for all €15 considered here. This is
due to the fact that despite of the changed Hamiltonian,
the tunneling rates from ground state to bonding state
as well as the occupations of these states are almost the
same. The occupations on the first plateau are also only
weakly dependent on the sign of the bias, quite different
to the situation with asymmetric couplings considered
above. Only with an even stronger level detuning would
the current be significantly changed on the first plateau.



However, the considered detuning of levels still leads to
NDC and eventually to a super-Poissonian Fano factor,
e.g. for €19 = 4) at negative bias. The effect of triplet
states on the second plateau is qualitatively the same
as in the scenario with asymmetric coupling discussed
above. For positive bias the current remains monotonic
and the Fano factor sub-Poissonian. In agreement with
previous results® the maximum current at very large bias
(not shown) decreases with increased detuning although
the total coupling I' remains unchanged.
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FIG. 7: Current I (absolute value) and Fano factor S vs.
voltage for various “hopping” parameters ¢t and a level detun-
ing of €12 = 0.2, symmetric coupling to the leads and oth-
erwise same parameters as in the situation depicted in Fig.
M Reduced hopping causes a smaller total current although
super-Poissonian noise and NDC develop similarly as in Figldl

Instead of further increasing the level detuning one
can also achieve ”localization” of states by decreasing
the inter-dot hopping ¢. Let us consider again the sym-
metrically coupled system (I'r, = T'r) at a fixed detuning
of €15 = 2 for various values of the inter-dot hopping ¢
(see Figll). The solid line corresponds again to the case,
in which €19 = 2 and ¢t = 2, as was also depicted in
Figll(dashed line). As expected, the plateaus of the cur-
rent are again asymmetric since we have detuned level
energies. If we now decrease t, the bonding state and
the ground state will be separated by only a very small
energy (as Up, = 5 and (€3 + €2)/2 = 5.5) and thus
the Coulomb blockade almost disappears. For positive
bias both current and Fano factor (noise) behave gener-
ically. The first plateau for negative bias is again due
to tunneling processes involving the states B and G. At
the second plateau the triplet T starts participating in
the transport and is strongly occupied, resulting in NDC
and super-Poissonian noise as discussed above. At even
more negative bias there exists a second region of NDC
(for the cases ¢ = 1 and ¢ = 0.5). This is where the

anti-bonding state (not depicted in the spectrum in the
right panel of Fig. M) is also contributing to the trans-
port. The maximum current at large bias (not shown)
depends on the inter-dot hopping 2 if the dot levels are
out of resonance.

From Fig. Bl and Fig. [Mone can conclude that a higher
degree of localization of the states participating in trans-
port, achieved either by a strong detuning of level ener-
gies or a decrease in the inter-dot hopping, favors trans-
port features such as NDC and makes the current more
and more noisy, leading eventually to super-Poissonian
noise. Reducing the hopping (at fixed detuning) there-
fore has a similar effect on transport as a larger detuning
at fixed hopping. However, as the DQD spectrum dif-
fers non-linearly between different parameter sets with
identical ratio €12/t the resulting transport curves can
not be scaled, but depend explicitly on the value of each
parameter.

D. Comparison with related theoretical work

For reference we show in Fig. B the current and Fano
factor for a fully symmetric system, i.e. equal couplings
to left and right and resonant level energies but for dif-
ferent values of the inter-dot hopping ¢. As expected
all curves behave symmetric under the reverse of bias.
Similar to Fig. [ for smaller hopping ¢ the sequential
tunneling threshold, determined by the energy distance
of the states G and B, becomes very small for the cho-
sen parameters and thus the Coulomb blockade almost
disappears. Since there is no asymmetry in the system,
not in the couplings, nor in the energy levels, we do not
expect and do not find regions of NDC and/or super-
Poissonian noise. This is specific to this DQD system,
in which there are only interfacial dots and thus there is
always a finite probability for the electrons to depopu-
late the dot structure. In contrast, in chains of three and
more quantum dots we do find super-Poissonian noise
even for a fully symmetric system*®, if the ratio U, /t
is sufficiently large. In these more complex systems the
enhancement of the noise is due to a combination of the
non-local many-body wave functions and the states with
higher total spin (3/2).

Note that although the current (Fano factor) does very
much depend on the value of the hopping ¢ for the low
bias regime depicted in Fig. R the maximum current at
very large bias (not shown) is actually independent of
the hopping ¢. This is due to our neglect of off-diagonal
matrix elements of the reduced density matrix. Such
off-diagonal elements have been included in the work of
Ref. |§ by Ellatari and Gurvitz. They have studied the
shot noise through two coupled quantum dots via a quan-
tum rate equation, i.e. a master equation involving also
the off-diagonal elements of the reduced density matrix.
The effect of off-diagonal elements on transport are neg-
ligible for the weak coupling situation we consider, but
become increasingly important, if the coupling I' becomes
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FIG. 8: Current I (absolute value) and Fano factor S vs. volt-
age for different values of “hopping” ¢ without level detuning
(e12 = 0) for symmetric couplings and same parameters as in
the situation depicted in Fig. [l Note that current and Fano
factor are both symmetric under the reverse of bias voltage,
since there is no source of asymmetry.

comparable to the intrinsic energy scales of the dot sys-
tem, such as the hopping energy t. Naturally, a straight
perturbative approach as ours does not make sense for
such large I" (at least not to first order in I'), so our re-
sults apply to the explicit case of weak coupling, such
that T' is the smallest energy scale. The approach of
Ref. I§, introduced in detail in Ref. 134, is not explicitly
restricted to a small I'. Under certain assumptions and
restrictions the contributions from all the lead states can
be ”integrated out” and a quantum rate equation (still
linear in I") for the relevant parts of the reduced density
matrix is obtained. After solving the quantum rate equa-
tion, the current and the shot noise can be computed.

However, it is important to note that the approach
of Ref. 8)34 imposes severe restrictions on the transport
situations it can treat. The applied bias has to be very
large, such that all states (or excitations) of the dots
that are considered for transport lie well in between the
Fermi levels (chemical potentials) of the electrodes. On
the other hand, the states not considered for transport
should be very far away from the chemical potentials of
the leads. Figuratively speaking, the approach of Ref. &
applies to the center of a very long (in principle, infinitely
long) plateau of the I-V characteristics. Such plateaus
are not realized for the situations we considered, with
the exception of the last plateau, when the bias is much
larger than all excitations (or energies) of the dot system.
In Ref. |§ the large bias regime for a spinless version of
our Hamiltonian (implying also U = oo0) and the cases
U, = 0 as well as U,,,, = oo were considered. For U,,,, =

0 we have a non-interacting system of spinless fermions,
whereas for U, = oo only states with at most a single
(spinless) electron on the dot system are relevant. The
results of Ref. [§ for current and shot noise for I'/t << 1
approach our results (not shown), as it should be. If I'/¢
is not negligibly small, corrections to our results become
noticeable that reduce the current and the shot noise,
but also the Fano factor. If I' >> ¢ the system turns into
an effective single barrier system, so that the current is
o t?/T" and the noise becomes Poissonian, F — 1.

Recently, two groupst+2 claimed to have extended the

approach of Ref. ] to the arbitrary bias regime. The re-
sults of Ref. [12 for the current on single dot systems are
in perfect agreement with earlier work by ust2. This is
expected, as there are no possible ”coherence effects” in
a single level system, if spin is conserved in tunneling.
Whereas Ref. [12 does not discuss interacting double dot
systems (or shot noise) Ref. [L1l also considers the spinless
version of our DQD Hamiltonian. They discuss both cur-
rent and shot noise through a double dot system with res-
onant levels € and an infinitely large intra-dot repulsion
U, starting from an empty dot system as a ground state.
Therefore, they can only consider two possible regimes
with finite current. i) For a bias 2¢ < eV}, < 2(e + Upp),
they consider to have at most one electron on the dou-
ble dot system. In this case they recover the result of
Ref. § for the case U,, = oo. ii) For bias larger than
all excitation energies (eVy, > 2(e + Upyp)) they recover
the non-interacting result of Ref. 8. In contrast, in our
approach there are two additional possible transport sit-
uation that arise from the fact that there are two eigen-
states in a singly occupied double dot system, namely
the bonding (B) and the anti-bonding (A) state that dif-
fer by the energy 2t. Therefore, in general there will
be two steps corresponding to excitations of the bonding
state (e —t) and the anti-bonding state (e +t) out of the
ground state (e = 0) and another two steps corresponding
to the excitation energies to the doubly occupied state at
e+ Uy, —t and €+ U,, +t. Hence, the current and noise
characteristics for the double dot system with U — oo
should show four steps, unless broadening effects due to
temperature or the line width I' are so large that they
smear out the steps. In Ref. [L1, Fig. 6, there are only
two steps which are broadened by temperature only (via
the Fermi functions). Therefore, at best it corresponds
to a situation for which ¢t < I" << kgT), i.e. a situation
in which the system resembles more an effective single
barrier system at high temperature.

The ”concatenation” of two results by Ref. [L1 that
are derived under the assumption of effectively infinite
bias in Ref. |8 also leads to the peculiar effect that the
current exhibits NDC behavior for a ratio of I'/t > 2.
While it is possible that a fully spatially symmetric
system can display NDC, in our weak coupling theory
(T << t) of the DQD system NDC can only occur
with broken symmetry such as detuned level energies,
asymmetric couplings etc. as discussed in this paper.23
The NDC effect in Ref. [L1l occurs in a parameter regime



where our theory clearly does not apply. It would be
interesting to see whether other approaches like the
ones based on equation of motion methods27:38 can
confirm or disprove the NDC effect displayed in Fig. 6
of Ref. [L1. Very recent work of Ref. 37 includes level
renormalization terms left out by Ref. [8]11 that modify
the current characteristics qualitatively in the regime
I' >> t. This shows that the inclusion of off-diagonal
elements of the density matrix is a rather delicate matter.

IV. SUMMARY

In summary we have discussed transport through a
double quantum dot (DQD) system with both intra- and
inter-dot Coulomb interactions in the sequential trans-
port picture, as currently studied by several experimen-
tal groups. We found that the behavior of the shot noise
in the Coulomb blockade is directly related to the un-
derlying low energy spectrum of the DQD system char-
acterized by two intrinsic energy scales, the sequential
tunneling energy e, and the first vertical excitation
energy out of the ground state, €¢,,. For a symmetric
system in the Coulomb blockade we distinguished be-
tween three scenarios: i) For a first vertical excitation
energy that is smaller than twice the sequential tun-
neling energy €co > 2€s¢, the Fano factor (noise) is al-
ways sub-Poissonian, i.e. F < 1, as sequential pro-
cesses start before excited states come into play. ii) If
€seq < €co < 2€5¢4 thermally activated sequential trans-
port leads to super-Poissonian Fano factors in the bias
range 2(€co — €seq)/€ < V < 2€5¢q/e. iii) For the case
€co < €seq the Fano factor remains super-Poissonian in
the entire Coulomb blockade regime. Our findings are
valid for arbitrary ground state charges and also apply
to larger systems with more than two coupled dots, as
they depend only on the above mentioned generic energy
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scales of the interacting dot system.

Additionally, we discussed the effect of asymmetries
in the system realized by either asymmetric couplings to
the electrodes or by detuning the quantum dot levels out
of resonance with each other. In the case of asymmet-
ric dot-electrode couplings we obtained an asymmetric
current voltage characteristics as has been observed in
experiments before. For very strong asymmetry negative
differential conductance and eventually super-Poissonian
noise with Fano factors F' > 1 develop. These features
develop at the same energy positions, i.e. at the same
bias voltage for any asymmetry ratio I'r, /T'g since the
DQD spectrum remains unchanged. In contrast detun-
ing the dot levels out of resonance also leads to NDC
and super-Poissonian noise for sufficiently strong asym-
metry, but now at voltages that depend on the strength of
the asymmetry as the DQD spectrum is changed. These
features only appear for one bias direction, V' < 0 or
V > 0, depending on which coupling T, (r=right,left) is
suppressed or which quantum dot has a lower level en-
ergy. Furthermore, we found that at a fixed detuning €12
the current is reduced with decreasing inter-dot hopping
t. The latter results in a stronger localization of states
on individual dots similar to the case of strongly detuned
quantum dots. Therefore a weaker inter-dot hopping and
a stronger detuning at fixed inter-dot hopping cause sim-
ilar transport characteristics.

To conclude, we have shown that transport proper-
ties of double quantum dots, in particular the shot noise,
show a strong sensitivity on the internal electronic struc-
ture and the coupling strengths to the electrodes. This
sensitivity should allow for a detailed characterization of
these energy scales in a given experiment.
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