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3Département de Physique, Université de Fribourg, CH-1700 Fribourg, Switzerland

We study the tunneling current through a mesoscopic two-terminal ring with spin-orbit coupling,
which is threaded by a magnetic flux. The electron-electron interaction in the ring is described
in terms of a Tomonaga-Luttinger model which also allows us to account for a capacitive coupling
between the ring and the gate electrode. In the regime of weak tunneling, we describe how, at
temperatures lower than the mean level spacing, the peak positions of the conductance depend on
magnetic flux, spin-orbit coupling strength, gate voltage, charging energy, and interaction parame-
ters (charge and spin velocity and stiffness).

PACS numbers: 73.23.Ad, 71.70.Ej

I. INTRODUCTION

Mesoscopic rings represent an important tool for ex-
perimental and theoretical studies of various phenomena
which take place on a submicrometer scale. The ring
geometry allows one to probe many interesting theoreti-
cal predictions. One of the most exciting phenomena is
the generation of geometric phases which are manifested
in the interference patterns of wave packets propagat-
ing in the ring. Along with the well-known Aharonov-
Bohm (AB) effect1 which takes place for both spinless
and spinful particles, the generation of a spin-dependent
phase is also possible. This effect, sometimes called the
Aharonov-Casher (AC) effect2, may occur in the trans-
port of electrons when they are subject to sufficiently
strong spin-orbit (SO) coupling. The recent fabrica-
tion of HgTe rings3 made it possible to directly ob-
serve the AC phase. In earlier experiments with other
compounds4,5,6 the signatures of this effect have been
also detected.

In order to probe the AC phase it is necessary to have a
tool for manipulating the strength of the spin-orbit cou-
pling. This is provided by the gate-voltage dependence7

of the Rashba SO coupling8, which serves as a basis for
a construction of a spin field-effect transistor9. Chang-
ing the magnetotransport properties of the ring in this
way, the experimentalists are now able to study the AC
effect3,4.

Usually the current through a mesoscopic noninter-
acting ballistic ring is described theoretically by means
of the Landauer-Büttiker scattering matrix theory10.
Geometric phases arising due to both magnetic flux
and SO coupling can be naturally incorporated in this
formalism11,12,13,14,15. Effects of electron-electron inter-
action and charging energy are not taken into account in
such a consideration. However, they might be important,
for example, in small quasi-one-dimensional (quasi-1D)
rings or in arrays of such rings fabricated in very recent
experiments4,5,6.

In the present paper we calculate the linear tunneling

conductance of the quasi-1D two-terminal ballistic ring
with Rashba SO coupling threaded by a magnetic flux.
The setup is schematically shown in Fig. 1. The spec-
trum of electrons in the ring is SO-split into two sub-
bands. We will assume electron densities at which only
the lowest radial band is occupied. The electron-electron
interaction inside the ring is modeled by the parameters
of the Tomonaga-Luttinger liquid (TLL), the leads being
noninteracting. Assuming a weak tunneling between the
leads and the ring, we compute the leading term of the
Kubo conductance perturbatively expanded in a series
of tunneling elements. We mostly follow the approach of
Ref. 16 where a similar problem for spinless fermions was
considered. We also make use of the bosonization in or-
der to calculate the required TLL correlation functions.
However, instead of the Matsubara formalism, we apply
the Keldysh real-time approach to this quasiequilibrium
problem (cf. Ref. 17). Such a combination of the Keldysh
technique and bosonization appears more efficient for a
derivation of asymptotic results at temperatures lower
than the mean level spacing of the ring’s spectrum.

After Ref. 18 it is known that an electron-electron
interaction strongly renormalizes the height of tunneling
barriers between the leads and TLL, and therefore at T =
0 electron transport is suppressed. At finite temperatures
T 6= 0 the linear conductance vanishes as a power law
of T , while the effective width of a conductance peak
grows with T → 0. In order to ensure the validity of the
weak-tunneling approximation, in our studies we assume
a temperature range where the renormalized tunneling

rates are smaller than the temperature, Γ̃l,r ≪ T . On
the other hand, finite-size effects remain important at
T ≪ ω0, the single-particle level spacing near the Fermi
level.

In the temperature regime Γ̃l,r ≪ T ≪ ω0 the linear
conductance is represented by a sequence of resonance
peaks when plotted as a function of gate voltage and/or
magnetic flux. In our paper we focus on the problem of
how the distribution of the conductance peaks depends
on the external parameters (magnetic flux, SO coupling,
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FIG. 1: The ring threaded by a magnetic flux Φ is weakly
coupled to the leads through the tunneling barriers tl and tr

and capacitively coupled to the gate electrode (Vg).

gate voltage, charging energy) as well as on the parame-
ters of the Tomonaga-Luttinger interaction. The pertur-
bative expansion of the linear conductance in tunneling
elements is known to break down in the resonance posi-
tions. Finding the poles of the leading term we can es-
tablish where the conductance peaks are centered. Thus,
the study of electron transport in the TLL ring provides
an effective tool of spectroscopy of its many-body states.
Conceptually this is analogous to the study of the tun-
neling conductance between the two parallel quantum
wires19 which has been realized experimentally20. We
note that a description of a shape of a particular peak is,
however, a different problem which is usually tackled in
a somewhat different manner (cf., e.g., Refs. 21,22,23),
and it will not be addressed in the present context.

In our paper we extensively discuss the importance of
the so-called Klein factors and zero modes (topological
excitations) of the bosonized Hamiltonian24 for the de-
scription of distribution of conductance peaks. An ac-
curate account of the Klein factors is necessary due to
the presence of spin-orbit coupling in the system. The
zero-mode sector of TLL decouples from its “continuous”
(bosonic) sector and contains the whole dependence on
external parameters16,25. The latter appear in the topo-
logical sector after imposing boundary conditions. We
elaborate on the procedure of averaging the conductance
over zero modes in the presence of spin-orbit coupling and
obtain analytically asymptotic results for the peak posi-
tions at temperatures lower than the mean level spacing.
We also reexamine the case of spinless fermions reproduc-
ing the result of Ref. 16 and discuss it in further detail.

It is worthwhile to note that the relevance of the topo-
logical modes for a description of mesoscopic phenomena
in the TLL rings has been already appreciated in various
contexts, including studies of persistent26 and Josephson
currents25 and the study of the AB phase in chiral Lut-
tinger liquids27. The structure of the topological sector in
the presence of SO coupling has been recently discussed
as well in applications to persistent28,29 and Josephson30

currents.
The paper is organized as follows. In Sec. II we briefly

outline the construction of the spectrum of the ring with
SO coupling. In Sec. III we summarize the results emerg-
ing from an application of the Landauer-Büttiker formal-
ism to this system. They will be further used as a refer-
ence in the noninteracting limit. In Sec. IV we present a
derivation of the Kubo formula in the real-time approach.
Briefly reviewing the bosonization formalism in Sec. V,
we derive an expression for the dc conductance to be av-
eraged over zero modes. The procedure of averaging is
performed in Sec. VI. We discuss the interplay of the
externally tuned and interaction parameters in the dis-
tribution of the conductance peaks, especially focusing
on the modification of the Coulomb blockade due to SO
coupling.

II. MESOSCOPIC RINGS WITH RASHBA

COUPLING: DISPERSION RELATIONS

The two-dimensional electron gas with Rashba spin-
orbit coupling is described by the Hamiltonian

H =
1

2m∗ (p2
x + p2

y) + αR(σxpy − σypx) + V (r), (1)

where r =
√
x2 + y2. The magnetic field B is intro-

duced in the kinetic momentum p → p + e
cA via the

gauge potential A = B
2 (−y, x, 0). The radial potential

V (r) confining an electron to the ring geometry can be
modeled, for example, either by singular isotropic har-
monic oscillator or by concentric hard walls29. For these
or any other types of the radial confinement the result-
ing quasi-one-dimensional spectrum εnσ(k) is labeled by
the radial band index n = 0, 1, . . ., by the angular mo-
mentum ~k = . . . ,−~, 0, ~, . . ., and by the subband index
(chirality) σ = ±. From now on we will put ~ = 1.

If the effective ring’s width is much smaller than the
ring’s radius, we can neglect the hybridization between
the radial bands. We also assume electron densities at

L− L+ R+−k−k R−k k

Φk

0 0 0 0

2kRε

FIG. 2: The lowest radial band of the quasi-1D mesoscopic
ring SO-split into two subbands.
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which only the lowest radial band (n = 0) is occupied.
Thus, we effectively consider the strictly one-dimensional
spectrum (see Fig. 2) which has a parabolic shape and is
SO-split into two subbands29:

εσ(k) ≡ ε0σ(k) =
2π2

m∗L2
(k − kΦ − σkR)2. (2)

Here L is the ring’s perimeter, kΦ = Φ/Φ0 is a number
of flux quanta Φ0 threading the ring, and the parameter

kR =

√
1

4
+

(
αRm∗L

2π

)2

− 1

2
(3)

depends on the Rashba coupling αR.
Linearizing the spectrum (2) near the Fermi energy, we

obtain the four branches

εησ(k) = ω0(k − k0
ησ) ≡ ω0(k − ηkF − kΦ − σkR), (4)

specified by η = ± (or η = R,L) and σ = ±. The Fermi

angular velocity ω0 =
(

2π
L

)2 kF

m∗
defines the level spacing

of the spectrum (4), and kF is the Fermi angular momen-
tum in absence of a magnetic field and SO coupling.

III. CONDUCTANCE OF THE MESOSCOPIC

RING: NONINTERACTING ELECTRONS

Let us consider the conductance of the ring attached
to the semi-infinite leads (Fig. 1). For noninteracting
electrons it can be easily found in the framework of the
scattering matrix theory10.

It is instructive to consider first the case of spinless
fermions with the two linearization points k0

R/L. One

finds that in the zero-temperature limit and for the angle
π between the junctions to the leads the dc conductance
reads10

G(kF , kΦ) =
e2

2π

16ǫlǫr sin2 kFπ cos2 kΦπ

[−2αlαr + (1 + γlγr) cos 2πkF − 2βlβr cos 2πkΦ]2 + (1 − γlγr)2 sin2 2πkF

, (5)

where ǫl/r, γl/r = −√
1 − 2ǫl/r, αl/r = − 1

2 (1 + γl/r),

and βl/r = 1
2 (1 − γl/r) are the phenomenological pa-

rameters describing scattering in a T-shaped (left l or
right r) junction. The number of flux quanta is given by
kΦ = 1

2 (k0
R − k0

L), while the quantity kF = 1
2 (k0

R + k0
L)

corresponds to the Fermi momentum at zero flux. It can
be replaced by kF → N0 + ∆µ

ω0
, where ∆µ is a difference

between the chemical potential of the leads and the Fermi
energy of the ring, and the integer N0 is related to the
number 2N0 +1 of electrons in the ring at ∆µ = 0. Since
the expression (5) is periodic in kF , the integer part of kF

can be discarded. Thus, the conductance (5) actually de-

pends on the fractional part of ∆µ
ω0

. For future references

we introduce the parameter kµ = ∆µ
ω0

− 1
2 .

In the weak-tunneling limit ǫl/r ≪ 1 the conductance
(5) approximately equals

G ≈ e2

2π

4ǫlǫr sin2 kFπ cos2 kΦπ

(cos 2πkF − cos 2πkΦ)2 + 1
4 (ǫl + ǫr)2 sin2 2πkF

.

(6)
As a function kµ and kΦ, it represents a sequence of Breit-
Wigner resonances. The conductance peaks occur when
the resonance condition cos 2πkF = cos 2πkΦ is fulfilled
— i.e., at the values of the parameters

kF + kΦ = nR, kF − kΦ = nL, (7)

where nR and nL are arbitrary integers. We note that
in the weak-tunneling limit the resonance condition (7)
remains valid for arbitrary angle xl − xr between the

junctions, while the shape of Breit-Wigner resonances is
quite sensitive to the value of xl − xr.

It has been demonstrated in Ref. 12 that for electrons
with nonzero SO coupling and negligible Zeeman split-
ting the conductance of the mesoscopic ring is given by
the sum of the two contributions: G(kF , kΦ + kR) and
G(kF , kΦ − kR). In other words, the net effect of the SO
coupling for noninteracting electrons is the generation of
the different effective flux values for the different chan-

2kR

Φk

kµ

0.5−0.5
−0.5

0.5

0

0

FIG. 3: Splitting of the conductance peaks (solid lines) due
to SO coupling. The dashed lines correspond to kR = 0.
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nels. Therefore, the pattern of the conductance maxima
at kR 6= 0 is determined by the resonance conditions

kF + (kΦ ± kR) = nR±, kF − (kΦ ± kR) = nL±, (8)

where nR± and nL± are arbitrary integers. Recalling
that effectively kµ = kF − 1

2 , we show in Fig. 3 how the
arrangement of the conductance peaks is modified by SO
coupling.

IV. KUBO FORMULA

In order to take into account effects of the electron-
electron interaction on the distribution of conductance
peaks, we discuss in this section the Kubo formula for
the linear conductance. Although this expression is very
standard, we rederive it using the Keldysh formalism. In
doing this, we pursue two objectives. First, we would
like to have better control of the approximations used
(similar to those made in Ref. 16). Second, we would
like to deduce an expression for the conductance in a real-
time representation. Its advantage for the ring geometry
will be discussed in the next section where the calculation
of time-dependent finite-size TLL correlation functions is
concerned.

In the second-quantized formulation the mesoscopic
ring attached to the leads is described by the Hamilto-
nian

H = Hl +Hr +Hc +HT . (9)

The left/right lead is described by a Fermi-liquid Hamil-

tonian Hl/r =
∫
dxc†l/r(x)

(
p2

2m∗
− µ

)
cl/r(x), and the

tunneling term is HT =
∑

l,r[tl/rc
†
l/r(xl/r)ψ(xl/r)+H.c.].

Here cl/r and ψ are the field operators in the leads and
in the ring, respectively.

The Hamiltonian of the central part (ring) Hc[ψ
†, ψ]

can have any interaction term in addition to the kinetic
term. In our consideration we will model the electron-
electron interaction in the ring by the Tomonaga-
Luttinger liquid which includes only forward-scattering
processes (“density-density”-type interaction). In the
framework of this model it is also possible to take into
account the charging effects. They originate from a ca-
pacitive coupling of the ring to the gate electrode and are
described by the Hamiltonian Ec(N̂ring − 1

eCgVg)
2, with

the charging energy Ec = e2/2Cg. Here Cg is the gate ca-

pacitance and N̂ring is the number operator of electrons
in the ring.

The linear response of the system to an applied time-
dependent bias voltage is described by the Kubo formula
for the ac conductance31:

G(Ω) = − 1

Ω

∫ t

−∞
dt′e−iΩ(t′−t)〈[Îl(t), Îr(t′)]〉, (10)

where Îl/r(t) = ie[tl/rĉ
†
l/r(xl/r , t)ψ̂(xl/r , t) − H.c.] is a

current operator in the left/right junction written in the
Heisenberg representation.

In the weak-tunneling limit the expression (10) can be
expanded in a series of HT . We make use of the real-
time Keldysh diagrammatic technique, and for t > t′ we
replace 〈[Îl(t), Îr(t′)]〉 by

〈TtÎl(t)Îr(t
′)〉 − 〈T̃tÎl(t)Îr(t

′)〉 ≡ 2iIm〈TtÎl(t)Îr(t
′)〉.
(11)

When expressed on the Keldysh contour, it reads

〈TtÎl(t), Îr(t
′)〉 = 〈T̃te

i
∫ t
−∞

HT (t′′)dt′′Il(t)Tte
−i

∫ t
−∞

HT (t′′)dt′′ T̃te
i
∫ t′′

−∞
HT (t′′)dt′′Ir(t

′)Tte
−i

∫ t′

−∞
HT (t′′)dt′′〉, (12)

where the operators without carets refer to the interac-
tion (HT ) representation.

Expanding (11) to the second order in HT , we obtain

∫ t

−∞
dt1

∫ t′

−∞
dt′1〈[[Il(t), HT (t1)], [HT (t′1), Ir(t

′)]]〉

−
∫ t

−∞
dt1

∫ t1

−∞
dt2〈[[[Il(t), HT (t1)], HT (t2)], Ir(t

′)]〉

−
∫ t′

−∞
dt′1

∫ t′1

−∞
dt′2〈[Il(t), [HT (t′2), [HT (t′1), Ir(t

′)]]]〉.

The next step is to perform averaging over the leads’
states. While doing this, we meet the following combina-
tions: (a) (GR

l − GA
l )(GR

r − GA
r ), (b) GK

l (GR
r − GA

r ),

(c) (GR
l − GA

l )GK
r , and (d) GK

l G
K
r . Here GR,A

l/r and

GK
l/r are the momentum-averaged retarded, advanced,

and Keldysh functions of the leads in the real-time rep-
resentation

(GR −GA)l/r(t) = −i〈{cl/r(t), c
†
l/r(0)}〉 = −2πiδ(t)

νl/r

Vl/r
,

GK
l/r(t) = −i〈[cl/r(t), c

†
l/r(0)]〉 = − 2π

β sinh(πt/β)

νl/r

Vl/r
,

and νl/r is the density of states in the left/right lead at
the Fermi level.

One can straightforwardly prove that the combinations
(a) and (b) vanish identically. The combination (c) gives
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the following contribution to the conductance:

G(c)(Ω) = e2ΓlΓrL
2

∫ 0

−∞

∫ 0

−∞
dt1dt2

e−iΩt1(1 − e−iΩt2)

2iΩβ sinh[πt2/β]

×Re〈{[[ψl(0), ψ†
l (0)], ψr(t1)], ψ

†
r(t1 + t2)}〉, (13)

where Γl/r = 2πνl/r|tl/r|2/(Vl/rL) and Vl/r is the volume
of the left/right lead.

From Eq. (13) we derive an expression for the dc con-
ductance (Ω = 0) at zero temperature

G(c) =
e2

2π
ΓlΓrL

2

∫ 0

−∞

∫ 0

−∞
dt1dt2

× Re〈{[[ψl(0), ψ†
l (0)], ψr(t1)], ψ

†
r(t1 + t2)}〉.(14)

Using the operator identities

{[C,A], B} + {[C,B], A} = [C, {A,B}], (15)

{C, {A,B}} − {A, {C,B}} = [[C,A], B], (16)

we rewrite Eq. (14),

G(c) =
e2

4π
ΓlΓrL

2

∫ 0

−∞

∫ 0

−∞
dt1dt2

×
{

Re〈{[[ψl(0), ψ†
l (0)], ψr(t1)], ψ

†
r(t2)}〉

+Re〈[[ψl(0), ψ†
l (0)], {ψr(t1), ψ

†
r(t2)}]〉

}
,(17)

and further express

〈{[[ψl(0), ψ†
l (0)], ψr(t1)], ψ

†
r(t2)}〉

= 〈{{ψl(0), ψ†
r(t2)}, {ψr(t1), ψ

†
l (0)}}〉

+ 〈[[ψ†
r(t2), {ψ†

l (0), ψr(t1)}], ψl(0)]〉
− 〈{{ψ†

l (0), {ψl(0), ψr(t1)}}, ψ†
r(t2)}〉. (18)

It is obvious that in the noninteracting limit the only

term 〈{{ψl(0), ψ†
r(t2)}, {ψr(t1), ψ

†
l (0)}}〉 survives, since

the other terms vanish due to the fermionic commuta-
tion relations. We approximate the dc conductance in
the interacting case by this dominant contribution

G ≈ e2

4π
ΓlΓrL

2

∫ 0

−∞

∫ 0

−∞
dt1dt2

× Re〈{{ψl(0), ψ†
r(t2)}, {ψr(t1), ψ

†
l (0)}}〉. (19)

Splitting the four-particle correlator, one can recover the
formula G ≈ (e2/2π)ΓlΓrL

2|GR(ω = 0, xl − xr)|2 from
Ref. 16, where GR(ω = 0, xl − xr) is a zero-frequency
retarded Green’s function for interacting electrons in the
ring. This approximation physically means that one scat-
tering event is completed before another takes place. In
general, the TLL correlation functions of any order can
be calculated within the bosonization approach, and this
approximation can be relaxed.

The combination (d) with GK
l G

K
r also gives a finite

contribution to the conductance, which, however, van-
ishes in the noninteracting limit as well. Therefore, we
will neglect it on the same ground as we have just ne-
glected the subdominant terms in Eqs. (17) and (18).

V. BOSONIZATION

A. Spinless case

In order to compute the four-particle correlator (19),
we will make use of the bosonization technique24.

Let us consider for simplicity the spinless case. We
introduce the shorthand notations for the fermionic fields
ψl ≡ ψ(xl) and ψr ≡ ψ(xr), where xl and xr are the
angle coordinates of the left and right junctions. In the
following we assume that xl = 0 and xr = π.

In the bosonization the fields ψl/r are represented as a
sum of the right- (η = +, or R) and left- (η = −, or L)
moving components,

ψl/r = ψl/r,R +ψl/r,L = Fl/r,Rψ
b
l/r,R +Fl/r,Lψ

b
l/r,L, (20)

and each of ψl/r,η consists of a topological part Fl/r,η

and a bosonic part ψb
l/r,η commuting with each other:

[F, ψb] = 0.
The bosonic part is given by

ψb
η(x) =

1√
Lα̃

e−i
√

2πφη(x), (21)

φη(x) = i

∞∑

k=1

e−
1
2
α̃k

√
2πk

(
eiηkxbηk − e−iηkxb†ηk

)
,

where α̃ = 2πα
L is a small dimensionless cutoff parameter

and the operators bηk, b†ηk satisfy the bosonic commuta-

tion relation [bηk, b
†
η′k′ ] = δηη′δkk′ .

The topological part is important for the finite-size
TLL with periodic boundary conditions. It includes
Klein factors Fη, zero-mode operators Nη, and the lin-
earization points k0

η (see Fig. 2 assuming kR = 0):

Fl/r,η = Fηe
iη(Nη−k0

η)xl/r . (22)

The zero-mode operators Nη = N †
η take integer values,

and the following relations are satisfied24:

[Fη, Nη′ ] = Fηδηη′ , (23)

{Fη, F
†
η′} = 2δηη′ , (24)

{Fη, Fη′} = {F †
η , F

†
η′} = 0 for η 6= η′. (25)

The bosonized TLL Hamiltonian HTLL ≡ Hc = Hb +
H0 consists of a “continuous” (bosonic) Hb part and a
topologicalH0 part which are decoupled from each other.
Therefore, the factorization of ψl/r,η into Fl/r,η and ψb

l/r,η

takes place at any time instant:

ψl/r(t) = Fl/r,R(t)ψb
l/r,R(t) + Fl/r,L(t)ψb

l/r,L(t), (26)

where the time evolutions of ψb
l/r,η(t) and Fl/r,η(t) are

governed byHb andH0, respectively. By the same reason
the statistical averagings in both bosonic and topological
sectors are independent of each other.
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The bosonic part of the TLL Hamiltonian is given by

Hb =
2πv

L

∑

a=1,2

∞∑

k=1

kd†akdak, (27)

where v is the so-called charge velocity (the renormaliza-
tion of the Fermi velocity v0 ≡ Lω0

2π ). The operators dak,

d†ak (a = 1, 2) are obtained from bηk, b†ηk by the canonical

transformation (A1). The latter depends on the interac-
tion parameter γ = 1

2 ( 1
K +K), where K is the so-called

charge stiffness. For repulsive interactions K < 1, while
in the noninteracting limit K = γ = 1 and v = v0.

The topological part of the TLL Hamiltonian is

H0 =
∑

η

(
a0Ñ

2
η + a1ÑηÑ−η

)
, (28)

where a0,1 = ω0

4 (ν̃ ± λ) and

ν̃ = ν +
4Ec

ω0
, ν =

v

Kv0
, λ =

vK

v0
. (29)

The topological numbers Ñη = Nη − kη are shifted by
kη = k0

η + δkµ, where

δkµ =
4Ec(

1
eCgVg − 2N0) + 2∆µ− ω0

2ν̃ω0
(30)

redefines the linearization points k0
η in order to include

the dependence on ∆µ and the gate voltage Vg. In the
basis N = NR +NL, J = NR −NL, the Hamiltonian H0

acquires the diagonal form

H0 =
ω0

4
[ν̃Ñ2 + λJ̃2], (31)

where Ñ = N − 2kµ, J̃ = J − 2kΦ, and kµ = N0 + δkµ.
One can observe that the whole dependence on ∆µ, Vg,
and Φ is included in the topological sector.

Using the commutation relations (23) we find the time
evolution of the Klein factors

Fη(t) = eiH0tFηe
−iH0t = Fηe

−itPη+ita0 , (32)

where

Pη = 2a0Ñη + 2a1Ñ−η =
ω0

2
[ν̃Ñ ± λJ̃ ]. (33)

The details of the time evolution of the bosonic fields
are presented in Appendix A. In fact, they are not very
important for our purpose. We will only exploit the fact
that the average of the bosonic fields,

gb(t; γ) = 〈ψb
lR(t)ψb†

rR(0)〉 ≡ 〈ψb
lL(t)ψb†

rL(0)〉, (34)

is a periodic function of time which can be expanded in
a Fourier series

gb(t; γ) =

∞∑

p=0

gp(γ)e
−ipωt, (35)

with frequency ω = 2πv
L and real-valued coefficients

gp(γ). Note that the summation in Eq. (35) is performed
only over non-negative integers.

The real-time periodicity of gb(t; γ) is inherited from
the spatial periodic boundary conditions. The occurrence
of the Fourier series (35) allows us to perform all time
integrals explicitly. The analysis of the remaining series
is a much simpler task.

Let us make yet another approximation in the spirit of
Ref. 16. In particular, we split the four-particle bosonic
correlator in (19), neglecting the anomalous averages

(e.g., 〈ψbψb〉), the left-right mixing (e.g., 〈ψb
Lψ

b†
R 〉), and

the vertex corrections (averages of operators at the same
spatial point, e.g., 〈ψb

rψ
b†
r 〉) in the bosonic (continuous)

sector. At the same time, we do not split the topological
part of the four-particle correlator (unlike has been done
in Ref. 16) and perform a single averaging of the whole
over zero modes.

Implementing this procedure, we obtain

〈ψl(0)ψ†
r(t2)ψr(t1)ψ

†
l (0)〉 ≈ gb∗(t2)g

b(t1) (36)

×
∑

η1,η2

〈
Fl,η2

(0)F †
r,η2

(t2)Fr,η1
(t1)F

†
l,η1

(0)
〉

z.m.
.

where 〈· · · 〉z.m. implies averaging over zero modes to be
discussed later. Collecting all contributions, we find

G ≈ e2

2π
ΓlΓrL

2
∞∑

p1,p2=0

gp1
(γ)gp2

(γ)

∫ 0

−∞

∫ 0

−∞
dt1dt2

×
∑

η=±
Re

〈(
eit1(ωp1+a0+Pη) − e−it1(ωp1+a0−Pη)

)

×
(
e−it2(ωp2+a0+Pη) − eit2(ωp2+a0−Pη)

)
(37)

+ ei(Nη+N−η)π
(
eiηt1(ωp1+a0+Pη) − e−iηt1(ωp1+a0−Pη)

)

×
(
e−iηt2(ωp2+a0+P−η) − eiηt2(ωp2+a0−P−η)

)〉

z.m.
.

Introducing

A±
η =

∞∑

p=0

gp(γ)

ωp+ a0 ± Pη
(38)

and Aη = A+
η +A−

η , we can cast Eq. (37) into the form

G ≈ e2

2π
ΓlΓrL

2
〈
A2

R +A2
L (39)

+ 2ARAL cos(ÑR + ÑL + 2δkµ)π
〉

z.m.
.

We remark that the alteration of the angle xl−xr between
the junctions would only modify the Fourier coefficients
gp(γ) in Eq. (38) as well as the relative phase of the
interference term ∼ ARAL in Eq. (39). Meanwhile, the
poles of A±

η in Eq. (38) are not sensitive to the value of
xl − xr.

In order to treat further the expression (39) we need
to establish an efficient procedure of averaging over zero
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modes. But first we are going to discuss the modification
of the conductance (39) caused by the presence of spin
degrees of freedom and by spin-orbit coupling.

B. Spinful case

Performing a similar bosonization procedure in the
spinful case, we obtain the following expression for the
dc conductance

G ≈ e2

2π
ΓlΓrL

2
∑

σ=±

〈
A2

Rσ +A2
Lσ (40)

+ 2ARσALσ cos(ÑRσ + ÑLσ + 2δkµ)π
〉

z.m.
.

The zero-mode operators Nησ with integer eigenvalues

are shifted to Ñησ = Nησ − kησ by kησ = k0
ησ + δkµ,

where

δkµ =
4Ec(

1
eCgVg − 4N0) + 2∆µ− ω0

2ν̃cω0
. (41)

The integer N0 = 1
4

∑
η,σ k

0
ησ is related to the number

4N0 + 2 of electrons in the ring when the parameters

kΦ =
1

4

∑

σ

(kRσ − kLσ), (42)

kB,R =
1

4

∑

σ

σ(kRσ ± kLσ) (43)

equal zero. The parameter kB vanishes in the absence of
a Zeeman interaction. The parameter

kµ =
1

4

∑

η,σ

kησ = N0 + δkµ (44)

contains the dependence on ∆µ and Vg.
Like in the spinless case, it is convenient to introduce

ν̃c = νc +
8Ec

ω0
, νc,s =

vc,s

Kc,sv0
, λc,s =

vc,sKc,s

v0
, (45)

and ωc,s =
2πvc,s

L , and γc,s = 1
2 ( 1

Kc,s
+Kc,s), which are

expressed through the charge and spin velocities vc 6= vs,
the charge and spin stiffnessesKc 6= Ks, and the charging
energy Ec.

In Eq. (40) the rates Γl and Γr remain the same as
in the spinless case, since we assume that the density of
states in the leads is spin independent and equals νl/r for
each spin component. The spin dependence appears in
the functions Aησ = A+

ησ +A−
ησ,

A±
ησ =

∞∑

pc,ps=0

gpc(
1
2γc)gps(

1
2γs)

ωcpc + ωsps + ā0 ± Pησ
, (46)

Pησ = 2ā0Ñησ + 2ā1Ñ−η,σ

+ 2ā2Ñη,−σ + 2ā3Ñ−η,−σ. (47)

The coefficients ā0,1 = ω0

8 (ν̃c ± λc + νs ± λs) and ā2,3 =
ω0

8 (ν̃c±λc−νs∓λs) are the components of the quadratic
form of the zero-mode Hamiltonian

H0 =
∑

η,σ

(
ā0Ñ

2
ησ + ā1ÑησÑ−η,σ

+ ā2ÑησÑη,−σ + ā3ÑησÑ−η,−σ

)
. (48)

In the basis

Nc,s = (NR+ +NL+) + σ(NR− +NL−), (49)

Jc,s = (NR+ −NL+) + σ(NR− −NL−), (50)

the Hamiltonian (48) becomes diagonal:

H0 =
ω0

8

[
ν̃cÑ

2
c + λcJ̃

2
c + νsÑ

2
s + λsJ̃

2
s

]
(51)

and

Pησ =
ω0

4

[(
ν̃cÑc + ηλcJ̃c

)
+ σ

(
νsÑs + ηλsJ̃s

)]
, (52)

where Ñc,s = Nc,s − 4kµ,B and J̃c,s = Jc,s − 4kΦ,R.
In Eq. (40) the two components σ = ± seem to be

independent of each other. However, this is not the case,
and they are, in fact, entangled due to the nontrivial
procedure of averaging over zero modes.

VI. AVERAGING OVER ZERO MODES

A. Spinless case

The typical expression to be averaged over zero modes
before the time integration has the form [cf. Eq. (37)]

〈eib1Ñ+ib2 J̃〉z.m. =
Tr(eib1Ñ+ib2J̃e−βH0)

Tr(e−βH0)
, (53)

where b1,2 depend linearly on the time arguments t1,2.
The trace operation is understood as a summation over
all possible integer values of NL and NR. In the basis
(N, J) we have to sum over either both even (2m, 2n) or
both odd (2m+ 1, 2n+ 1) eigenvalues. Thus,

Tr
(
e−βH0

)
=

∞∑

m,n=−∞
e−βω0[ν̃(m−kµ)2+λ(n−kΦ)2]

+
∞∑

m,n=−∞
e−βω0[ν̃(m+ 1

2
−kµ)2+λ(n+ 1

2
−kΦ)2]

=
π

βω0

√
ν̃λ

[
θ3

(
πkµ, e

− π2

βω0ν̃

)
θ3

(
πkΦ, e

− π2

βω0λ

)

+θ4

(
πkµ, e

− π2

βω0ν̃

)
θ4

(
πkΦ, e

− π2

βω0λ

)]
, (54)

where θ3,4 are the Jacobian theta functions. Some prop-
erties of these functions are reviewed in Appendix B.
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The numerator in Eq. (53) can be equivalently rewrit-
ten in the form

Tr
(
eib1Ñ+ib2J̃e−βH0

)
= Tr

(
e−βH′

0

)
· e

− 1
βω0

(
b2
1
ν̃ +

b2
2

λ

)

,

(55)
where H ′

0 is obtained from H0 by replacing

kµ → k′µ = kµ +
ib1
βω0ν̃

, (56)

kΦ → k′Φ = kΦ +
ib2
βω0λ

. (57)

At low temperatures β−1 ≪ ω0, Ec, the last exponential
factor in Eq. (55) can be discarded. Using Eq. (B5) we
derive the following expression:

〈eib1Ñ+ib2J̃ 〉z.m. ≈ p1(kµ, kΦ)e2ib1f(kµ)+2ib2f(kΦ)

+p2(kµ, kΦ)e2ib1f(kµ+1/2)+2ib2f(kΦ+1/2). (58)

The “sawtooth” function

f(x) =

∞∑

n=1

(−1)n

πn
sin 2πnx (59)

has the period 1 and equals f(x) = −x for x ∈ (− 1
2 ,

1
2 )

and f(± 1
2 ) = 0. The functions p1,2(kµ, kΦ) are deter-

mined by

p1(kµ, kΦ) =
1

1 +
θ4(πkµ,e−π2/βω0ν̃)θ4(πkΦ,e−π2/βω0λ)
θ3(πkµ,e−π2/βω0ν̃)θ3(πkΦ,e−π2/βω0λ)

≈ 1

1 + eβω0[ν̃g2(kµ)+λg2(kΦ)]
, (60)

and p2(kµ, kΦ) = p1(kµ + 1
2 , kΦ + 1

2 ). One can observe
that p1 + p2 = 1. The function g2(x) is introduced in
(B9).

Let us consider the limit of zero temperature, or
β → ∞. The expression (58) becomes exact in this
limit. Since b1 and b2 are linear in time, we can per-
form easily all time integrations. Thus, the averaging
over zero modes effectively results in replacing Ñ →
2f(kµ + 1

2δµ1(2)) and J̃ → 2f(kΦ + 1
2δΦ1(2)), where

δµ1 = δΦ1 = 0 and δµ2 = δΦ2 = 1, which assumes further
summation over the different topological realizations (1
and 2) of the ground state with the weight factors p1 and
p2. For β−1 ≪ ω0 the latter approximately equal

p1(kµ, kΦ) = Θ(−ν̃g2(kµ) − λg2(kΦ)), (61)

p2(kµ, kΦ) = Θ(ν̃g2(kµ) + λg2(kΦ)), (62)

and play the role of projectors which divide the elemen-
tary cell (kΦ, kµ) ∈ [− 1

2 ,
1
2 ]×[− 1

2 ,
1
2 ] into two areas (topo-

logical sectors).
Let us analyze such a partition of the elementary cell

and consider the (upper right) quadrant defined by 0 <
kµ < 1

2 and 0 < kΦ < 1
2 . The function g2(x) = x − 1/4

Φk

kµ

0.5−0.5
−0.5

0.5

0

0

∆c

FIG. 4: Shift of the conductance peaks (solid lines) due to
the charging energy. The dashed lines correspond to the non-
interacting case (∆c = 0).

for 0 < x < 1/2, and therefore the border between the
areas of p1 and p2 is given by the equation

ν̃kµ + λkΦ =
ν̃ + λ

4
. (63)

For repulsive interactions and, moreover, in the presence
of Ec 6= 0 the relation ν̃/λ > 1 is fulfilled.

We can establish the borders between the topological
sectors p1 and p2 in the other quadrants by mirroring Eq.
(63) with respect to the kµ axis, kΦ axis, or both. Thus,
we obtain that the area of the projector p1 is the inner
part of the elementary cell bounded by the hexagon (see
Fig. 4). Respectively, the outer part is the area of p2.

Let us now analyze the conductance in the upper right
quadrant. In the inner part p1 only the zero harmonic
(p = 0) of A+

R becomes divergent near the border line
(63). In the outer part p2 the zero harmonic (p = 0) of
A−

R is divergent near the border line (63). From both
sides of the latter the conductance behaves like

G ∝ 1
[
ν̃kµ + λkΦ − ν̃+λ

4

]2 . (64)

This is an expected result as well as the fact that the pole
of the conductance (condition for the resonant tunneling
of an electron) matches with a transition p1 → p2 from
one topological sector to another.

In order to identify the positions of the conductance
peaks, it appears sufficient to consider just the zero har-
monics p = 0 of the functions A±

η , because the higher
ones (p ≥ 1) do not have any poles at all.

It is instructive to derive the conductance in the non-
interacting limit ν̃ = λ = 1. Using the identity

π

sinπx
=

∞∑

p=−∞

(−1)p

p+ x
, (65)
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one can show that

G =
e2

2π

ΓlΓr

ω2
0

[
π

sin(∆µ
ω0

+ kΦ)π
+

π

sin(∆µ
ω0

− kΦ)π

]2

.

(66)
This result can be recovered in the scattering matrix ap-
proach, if the width of the Breit-Wigner resonance in (6)
is neglected. The expression (66) suggests that the reso-
nant condition can be satisfied at any kµ by tuning the
magnetic flux kΦ.

As was discussed in Ref. 16, the main qualitative fea-
ture imposed by an electron-electron interaction and/or
charging energy is the opening of a window at certain
values of kµ inside which the resonant condition is never
met. This situation is shown in Fig. 4, and the corre-
sponding gap value equals ∆c = 1

2 (1 − λ
ν̃ ).

B. Spinful case

In order to implement an averaging similar to (53) in
the spinful cases, it is necessary to calculate first the par-
tition function Tr(e−βH0). The trace operation is now un-
derstood as a summation over all integer values of NR+,
NL+, NR−, and NL−. However, in this basis the Hamil-
tonian (48) is not diagonal, and we have to use the ba-
sis (49),(50) instead. The summation rules for the latter
have been formulated, for instance, in Refs. 25,28,29. Ap-
plying them, one can find that the partition function is
proportional to

16∑

i=1

[
θ3

(
πkµi, e

− π2

2βω0ν̃c

)
θ3

(
πkΦi, e

− π2

2βω0λc

)

× θ3

(
πkBi, e

− π2

2βω0νs

)
θ3

(
πkRi, e

− π2

2βω0λs

)]
, (67)

where kXi = kX+ 1
4δXi (X = µ,Φ, B,R) and the summa-

tion is performed over 16 topological sectors. The latter
are specified by δXi given in the table

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
δµi 0 2 2 0 2 2 0 0 1 3 3 1 3 3 1 1
δΦi 0 2 2 0 0 0 2 2 1 3 3 1 1 1 3 3
δBi 0 2 0 2 2 0 2 0 1 3 1 3 3 1 3 1
δRi 0 2 0 2 0 2 0 2 1 3 1 3 1 3 1 3

One can define 16 functions (i = 1, . . . , 16)

pi(kX) = p1(kXi), (68)

where p1(kX) equals to

1

1 +
∑16

j=2
θ3(πkµj)
θ3(πkµ)

θ3(πkΦj)
θ3(πkΦ)

θ3(πkBj)
θ3(πkB)

θ3(πkRj)
θ3(πkR)

≈ 1

1 +
∑16

j=2 e
2βω0Bj(kX)

, (69)

and the functions Bj(kX) are introduced in Appendix B.

The functions (68) satisfy the identity

16∑

i=1

pi(kX) = 1. (70)

At low temperatures β−1 ≪ ω0 we have an approximate
relation

p1(kX) =
16∏

j=2

Θ(−Bj(kX)), (71)

and the functions pi(kX) become the projectors which
divide the elementary cell kX ∈ [− 1

2 ,
1
2 ]× · · ·× [− 1

2 ,
1
2 ] in

the four-dimensional parameter space into 16 topological
sectors.

We can now formulate the rule which prescribes how
to evaluate the average over zero modes in (40): it is
necessary to replace

Ñc → 4f(kµi), J̃c → 4f(kΦi), (72)

Ñs → 4f(kBi), J̃s → 4f(kRi), (73)

and to sum over i = 1, . . . , 16 topological realizations of
the ground state with the weight functions pi(kX).

Once this procedure is implemented, it becomes suffi-
cient to consider just the zero harmonics (pc = ps = 0) of
the functions A±

ησ, Eq. (46), for establishing the positions
of the conductance maxima. In this respect there exists
a full analogy with the spinless case, and we refer to the
corresponding discussion in the previous subsection.

In the framework of the developed formalism it is pos-
sible to study the influence of the TLL interaction on
the distribution of the conductance peaks in the pres-
ence of magnetic flux and SO coupling. The charging
effects are also naturally incorporated, and the charging
energy Ec plays a role similar to that of the TLL param-
eter νc. They are both combined into ν̃c [see Eq. (45)],
and therefore the effects produced by each of them are
analogous. Let us then fix νc = 1 and vary Ec. In Fig. 5
we show the elementary cells of the conductance con-
tour plot in the (kΦ, kµ) plane for kR = 0.1 and different
values of the charging energy. The TLL parameters are
νc,s = λc,s = 1. One can see how the separate effects of
SO coupling and charging energy (shown in Figs. 3 and
4, respectively) merge together.

In experiments the usual tuning parameters are Φ and
Vg. The parameter Vg appears in the theoretical model
through both kR and kµ. The Rashba coupling constant
depends on an applied gate voltage7, which is modeled

by αR = α0
R − π

m∗Lκvg, where vg =
eVg

ω0
and κ > 0

is a dimensionless coefficient. The degeneracy point in
gate voltage at which the Rashba coupling αR vanishes

is defined by v0
g ≡ vg(αR = 0) =

m∗Lα0
R

κπ . Introducing the

departure from the degeneracy point ∆vg = vg − v0
g , we

then express

kR(∆vg) =
1

2

[√
1 + κ2(∆vg)2 − 1

]
(74)
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FIG. 5: Conductance peaks for kR = 0.1 and different values
of the charging energy 8Ec/ω0 = 0.0 (upper left), 0.5 (up-
per right), 1.0 (bottom left), 3.0 (bottom right). The TLL
parameters are νc,s = λc,s = 1.

and

kµ(∆vg) =
∆vg + v′

1 + 8Ec/ω0
. (75)

Here v′ = v0
g + ∆µ

ω0
+N0 − 1

2 determines the shift of the

whole pattern; we may put at will v′ = 0.
In Fig. 6 we demonstrate the influence of the charging

effects in (kΦ,∆vg) plane. The values of Ec and νc,s,
λc,s are the same as in Fig. 5. We observe that upon
enhancement of the charging energy the gap opens near
∆vg = 0. Due to the presence of the gate-dependent SO
coupling, the pattern of conductance maxima is more
complicated than that discussed in Ref. 16.

VII. DISCUSSION AND CONCLUSION

In this work we have studied the tunneling conductance
of a mesoscopic one-dimensional ring attached to two
Fermi reservoirs. The interaction inside the ring is de-
scribed by the Tomonaga-Lutinger liquid. The bosoniza-
tion approach which is usually adopted for the study of
such model allows us to include the flux and gate-voltage
dependence as well as the influence of SO coupling. It
is remarkable that all these externally tuned parameters
appear in the topological sector of the bosonized theory.
Therefore, the accurate treatment of zero modes is re-
quired in order to describe the mesoscopic phenomena at
low temperatures β−1 ≪ ω0.

Using the Keldysh formalism we have performed the
calculation of a linear conductance in the limit of weak

FIG. 6: Conductance peaks for κ = 1 and different values
of the charging energy 8Ec/ω0 = 0.0 (upper left), 0.5 (upper
right), 1.0 (bottom left), 3.0 (bottom right).

tunneling between the leads and the ring. The real-time
approach allows one to obtain asymptotic results for the
distribution of the conductance peaks in the low temper-
ature limit. Although the perturbative expansion of the
conductance in the tunneling strength is not very well
suited for a description of a shape of conductance peaks,
it is nevertheless quite efficient for establishing their po-
sitions. The topological origin of the peaks’ distribution
alludes to its robustness upon small modifications of the
model.

We have studied the patterns of the conductance max-
ima at nonzero spin-orbit coupling as a function of mag-
netic flux and gate voltage. The Tomonaga-Luttinger
interaction and the charging energy have been seen to
contribute in analogous way. In rings of reduced size
the account of charging effects might appear more exper-
imentally motivated, and therefore we concentrated on
their study. In particular, we have made a theoretical
prediction for the distribution of the conductance peaks
in the presence of both the charging energy and the spin-
orbit coupling. We observed an interesting interplay be-
tween both effects. The SO coupling lifts the degeneracy
of the conduction peaks, and the charging energy opens
a gap centered at the remaining points of the degeneracy
in question. The value of this gap is proportional to the
charging energy. When the latter becomes very large, the
Rashba effect is less pronounced. The pattern of the con-
ductance peaks then approaches the form of hexagonal
honeycombs which is typical to spinless fermions.

In conclusion, we have described the interplay between
Coulomb blockade and Aharonov-Bohm and Aharonov-
Casher effects for the different values of the charging en-
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ergy, magnetic flux, and spin-orbit coupling, as is mani-
fested in the contour plots of the tunneling conductance.
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APPENDIX A: CORRELATION FUNCTIONS OF

THE TOMONAGA-LUTTINGER MODEL

Let us consider for simplicity the spinless case. The
canonical transformation which solves the two-channel
TLL model is

(
d1k

d†2k

)
=

(
u+ u−
u− u+

) (
bRk

b†Lk

)
, (A1)

where u± =
√

(γ ± 1)/2.
The explicit form of the time evolution of the bosonized

fields reads

ψb
η(x, t) =

1√
Lα̃

e−i
√

2πφη(x,t), (A2)

φη(x, t) = i
∞∑

k=1

e−
1
2
α̃k

√
2πk

× [uηD1k(x− ωt) − u−ηD2k(x+ ωt)] , (A3)

where

D1k = eikxd1k − e−ikxd†1k, (A4)

D2k = eikxd†2k − e−ikxd2k. (A5)

Let us consider the correlation function

〈ψb
η(x, t)ψb†

η 〉 = e−π〈(φη(x,t)−φη)2〉+π[φη(x,t),φη]

= e−u2
+(πD(ηx−ωt)−iχ(ηx−ωt))

× e−u2
−

(πD(ηx+ωt)+iχ(ηx+ωt)), (A6)

where

D(x) =
1

π

∞∑

k=1

1 − cos kx

k

(
2

eβωk − 1
+ e−α̃k

)
,(A7)

χ(x) =

∞∑

k=1

sin kx

k
e−α̃k =

1

2i
ln

1 − e−ix−α̃

1 − eix−α̃
(A8)

are the periodic functions of x. Obviously, the function
(A6) is also periodic in real time, and therefore it can be
expanded in a Fourier series with the frequency ω.

In the zero-temperature limit β → ∞ the temperature-
dependent part of D(x) can be discarded, and we obtain

D(x) = − 1

2π
ln

(1 − e−α̃)2

(1 − e−ix−α̃)(1 − eix−α̃)
. (A9)

Hence, the correlation function (A6) is equal to

(
1 − e−α̃

1 − ei(ηx−ωt+iα̃)

)u2
+

(
1 − e−α̃

1 − e−i(ηx+ωt−iα̃)

)u2
−

. (A10)

For x = π we have

〈ψb
η(π, t)ψb†

η 〉 =
1

Lα̃

(
1 − e−α̃

1 + e−iωt−α̃

)γ

. (A11)

Its Fourier expansion (35) is equivalent to the Taylor ex-
pansion of the analytic function (1 + z)−γ for |z| < 1.
Therefore the expansion (35) contains only non-negative
Fourier harmonics (p ≥ 0) with the coefficients

gp(γ) =
(−1)pΓ(p+ γ)

Γ(γ)Γ(p+ 1)

(1 − e−α̃)γ

Lα̃
e−pα̃

≈ (−1)pΓ(p+ γ)

Γ(γ)Γ(p+ 1)

α̃γ−1

L
. (A12)

Computation of a correlation function in the spinful
case is analogous. A new feature arising in this case is
the double time periodicity of correlation functions with
frequencies ωc and ωs, which are in general incommensu-
rate.

APPENDIX B: JACOBIAN Θ FUNCTIONS

The Jacobian function θ3 is defined by

θ3(z, q) = 1 + 2

∞∑

n=1

qn2

cos 2nz, (B1)

and the Jacobian function θ4 can be expressed as

θ4(z, q) = θ3

(
z +

π

2
, q

)
. (B2)

Both functions are periodic under the shift z → z + π.
Making a Poisson summation, one can prove that

∞∑

k=−∞
e−a(k+z)2 =

√
π

a
θ3

(
πz, e−π2/a

)
. (B3)

Using the expression for the ratio of two θ3 functions,

ln
θ3(z1 + z2, q)

θ3(z1 − z2, q)
= 4

∞∑

n=1

(−1)n

n

qn

1 − q2n
sin 2nz1 sin 2nz2,

(B4)
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one can establish that

lim
β→∞

θ3

(
π(x + ib

βω0λ), e
− π2

2βω0λ

)

θ3

(
πx, e−

π2

2βω0λ

) = e4ibf(x), (B5)

where f(x) is a sawtooth function introduced in (59), as
well as that

lim
β→∞

θ3

(
π(x+ m1

4 ), e−
π2

2βω0λ

)

θ3

(
π(x+ m2

4 ), e−
π2

2βω0λ

) ≈ e2βω0λgm1m2
(x), (B6)

where m1,m2 = 0, 1, 2, 3 and

gm1m2
(x) =

∞∑

n=1

(−1)n

π2n2

×
[
cos

πn

2
(4x+m2) − cos

πn

2
(4x+m1)

]
. (B7)

In the Fourier series (B7) one can recognize the func-
tions

g1(x) ≡ g10(x) = −g01(x) (B8)

=

∣∣∣∣
{

1

2
+ x

}
− 3

4

∣∣∣∣ +
1

2

{
1

2
+ x

}
− 9

16
,

g2(x) ≡ g20(x) = −g02(x) (B9)

= −
∣∣∣∣{x} −

1

2

∣∣∣∣ +
1

4
,

g3(x) ≡ g30(x) = −g03(x) (B10)

=

∣∣∣∣
{

1

2
− x

}
− 3

4

∣∣∣∣ +
1

2

{
1

2
− x

}
− 9

16
,

where {x} ≡ (xmod 1) is a fractional part of x. The
function {x} has a period 1 and possesses a property
{−x} = 1 − {x}. One can notice that g3(x) = g1(−x).

The other functions gm1m2
are also expressed in terms

of g1, g2, g3:

g12(x) = −g21(x) = g3(x− 1/2), (B11)

g32(x) = −g23(x) = g1(x+ 1/2), (B12)

g31(x) = −g13(x) = g2(x+ 1/4). (B13)
We also define the following functions:

B2 = ν̃cg2(kµ) + λcg2(kΦ) + νsg2(kB) + λsg2(kR),

B3 = ν̃cg2(kµ) + λcg2(kΦ),

B4 = νsg2(kB) + λsg2(kR),

B5 = ν̃cg2(kµ) + νsg2(kB),

B6 = ν̃cg2(kµ) + λsg2(kR),

B7 = λcg2(kΦ) + νsg2(kB),

B8 = λcg2(kΦ) + λsg2(kR),

B9 = ν̃cg1(kµ) + λcg1(kΦ) + νsg1(kB) + λsg1(kR),

B10 = ν̃cg3(kµ) + λcg3(kΦ) + νsg3(kB) + λsg3(kR),

B11 = ν̃cg3(kµ) + λcg3(kΦ) + νsg1(kB) + λsg1(kR),

B12 = ν̃cg1(kµ) + λcg1(kΦ) + νsg3(kB) + λsg3(kR),

B13 = ν̃cg3(kµ) + λcg1(kΦ) + νsg3(kB) + λsg1(kR),

B14 = ν̃cg3(kµ) + λcg1(kΦ) + νsg1(kB) + λsg3(kR),

B15 = ν̃cg1(kµ) + λcg3(kΦ) + νsg3(kB) + λsg1(kR),

B16 = ν̃cg1(kµ) + λcg3(kΦ) + νsg1(kB) + λsg3(kR).
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