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In order to fully characterize the noise associated witltteda transport, with its severe consequences
for solid-state quantum information systems, the theorfubbfcounting statistics has been developed. It
accounts for correlation effects associated with the sttesi and effects of entanglement, but it remains
a non-trivial task to account for interaction effects. Iisthrticle we present two examples: we describe
electron transport through quantum dots with strong chargffects beyond perturbation theory in the
tunneling, and we analyze current fluctuations in a diffesiteracting conductor.
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1 Introduction

Solid-state quantum information systems based on eldéctspin or charge degrees of freedom offer a
number of intrinsic advantages and drawbacks. Among thadoare the fast operation times, the possi-
bility to scale the systems to large size, and the relatige ¢éa integrate them into electronic control and
read-out circuits. Probably the most serious disadvantage fact that, in general, solid state devices
suffer strongly from noise due to internal and external degiof freedom as well as material-specific fluc-
tuations. They lead to relaxation and decoherence progessance, one of the major tasks in the field is
the understanding and control of noise and decoherenckislarticle we will concentrate on the analysis
of fluctuations which arise due to the discrete nature of thet®n charge. They lead to what is denoted
asshot noise. Its analysis reveals information about electron coriefetand entanglemernt [1].

In many circumstances the fluctuations are Gaussian digtdland fully characterized by their power
spectrum. In order to get further information in the genesale, e.g. about correlations and entanglement,
the theory offull counting statistics (FCS) [2] of electrons has been developed. It concentraigh®
probability distribution for the number of electrons tréarsed through the conductor during a given period
of time. It yields not only the variance, but all higher mortseof the charge transfer as well, and thus also
contains information about rare large fluctuations.

The FCS hasiits historical roots in quantum optics, wheredl@ting statistics of photons has been used
to characterize the coherence of photon souides [3]. Phatetected by the photo-counter are correlated
in time, reflecting the Bose statistics of the particles imed. For electronic currents the Fermi statistics
is the relevant one, but the first attempts to derive the FC8eaaftrons[[4] revealed some fundamental
interpretation problems, related to subtleties of the twrarmeasurement process. We are interested in
the probability that the outcome of a measurement of thegehiary. According to text-book definitions
of projective measurement this quantity can be expresséd|byy — Q)|n), whereQ is the operator for
the transmitted charge, ahg) denotes the quantum state. It is tempting to relate thefgeesl charge to
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the current operatot) = f(f” j(7)dr. However, in quantum transport problems one has to paytatten

to the fact that the electric curreptr) is an operator, which, in general, does not commute at diiier
times. This property led to severe interpretation probleritisin the original work. They were resolved
in the later work of Levitov and Lesovik][2], which invokesgdicitly an extra degree of freedom, namely
the detector degree of freedom. The paradigm of projecteasurement is then applied to this detector
degree of freedom.

In the meantime the theory of FCS in mesoscopic transportbasloped into a mature field; some
achievement are summarized in Rels.[I1, 5]. However, themxgntal analysis of the FCS remains a
challenge. First measurements of the third cumulant ofgghrtansfer through a tunnel junction have been
reported in Refs[]@.]7] and, very recently, the FCS of a sendactor quantum dot (QD) has been inves-
tigated by a real-time detection of single-electron tumgelia a quantum point contac¢ti [8]. Furthermore,
threshold type of measurements of the FCS using an arrayesfadamped Josephson junctions has been
elaborated theoretically in Refl[9].

In this paper we will review our recent results on the FCS tdriacting electrons in a QD and low-
dimensional diffusive conductors. The QDs are basic ctugsits of most solid-state quantum information
systems. For example, superconducting single Coopebpaés [10] and, similarly, a double-dot system
formed in a semiconductor 2DEG J11] have been shown to opematharge qubits. A metallic QD or
single-electron transistor (SET) can serve as an eleceét®mio measure the quantum states of a charge
qubit [1Z]. Since all these devices are based on the chargeurements, a thorough understanding of the
fluctuating properties of charge becomes crucial for pregyne this field.

Recently further links became apparent between the FC®ctireh transport and the field of solid-state
quantum information processing. One of these is relateteaise of electron entangled states for these
purposes. Most of the work on entanglement has been pertbimmeptical systems with photons 113],
cavity QED systems [14] and ion trafpss [15]. By now severaaglieave been put forward how to generate,
manipulate and detect electronic entangled states [1&irris out that in solid state systems entanglement
is rather common, the nontrivial task remaining its conéimdl detection. For mesoscopic conductors, the
prototype scheme of such detection was discussed in R€f. [LAas been shown that the presence of
spatially separated pairs of entangled electrons, crdatesbmeentangler, can be revealed by using a
beam splitter and by measuring the correlations of the ntfiectuations in the leads. If the electrons are
injected in an entangled state, bunching and anti-bunalfitige cross-correlations of current fluctuations
should be found, depending on whether the state is a spitesiagtriplet. In Ref. [18] the FCS of
entangled electrons has been analyzed in detail. The FGShdsmot only on the scattering properties of
the conductor but also on the correlations among the elestiat compose the incident beam. In Refl [19]
the Clauser-Horne inequality test for the FCS in the meltivtinal structures has been proposed in order
to detect the entanglement in the source flux of electrons.

A second link is the intrinsic relation between FCS and detguroperties of a quantum point contact.
QPCs were suggested as charge detectors in[Réf. [20] andbanestudied experimentally in Ref. [21].
Recently they have been used as detectors for the state wfuspalot qubits[2i2, 23, 24]. The operating
principle of the QPC detector relies on the dependence oéldatron currenf through the QPC on the
state of the two-level system. In Ref.[25] the detector prtips of the QPC have been calculated beyond
linear-response for arbitrary energy-dependent traesgsrand coupling. This is the case of interest since
for maximum detector sensitivity typical measurementsdare in the regime of high QPC transparency,
D ~ 1/2, and for coupling that is not weak[22]. It was found that bith back-action dephasing rdte

and the measurement rdfé are determined by the electron FCS.

A further motivation to study FCS arises from the need to ustded the effect of interaction on elec-
tron transport in disordered low-dimensional conduct@risorder enhancement of Coulomb interaction,
together with quantum coherence effects strongly influ¢heeransport properties of these systems. The
FCS analysis of this long-standing problem provides a degysight into the question. Typically the
Coulomb interaction leads to a suppression of the condoetaimesoscopic samples at low temperatures
and bias voltages. It has been demonstreted[2€, 27, 28jhtbattrength of this suppression in various
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types of mesoscopic conductors is related to their noispeties. Frequently we find the simple rule:
the higher the shot noise the stronger is the Coulomb sugipresf the conductance. The reason is that
both shot noise and Coulomb corrections to the transporéotiare manifestations of the discreet nature
of the electric charge. Beyond that, it was shown that the@uvl correction to the shot noise scales with
the third moment of the current in the absence of interast|@€]. Furthermore, it was demonstrated by
renormalization group studies of the FCS of short coherentlactors[[30] and of quantum dofs[31] in
the presence of Coulomb interaction that the interactionection to then—th moment of the current is
determined by: + 1-th moment evaluated in the absence of interaction. Futheeloping these ideas
we show in the present paper that Coulomb interaction magtanbally enhance the probability of large
current fluctuations in low dimensions, leading to the apgeee of long correlated ‘trains’ in the trans-
ferred charge. This effect is most pronounced when the sysiee matches the dephasing length due to
Coulomb interaction. Such coincidence is not accidentdicames from the presence of the soft diffusive
modes in the system which strongly renormalize the bareaot®n.

The structure of this article is as follows: In the next setive introduce some basic definitions and
concepts of the FCS in mesoscopic transport. We discussatlaeigm of quantum measurement by using
a spin 1/2 as galvanometer and consider some simple iltivetaxamples. In the main part we concen-
trate on our own contributions to the field, discussing ttfeat$ of Coulomb interaction onto the shot
noise and FCS in interacting quantum dot systems (Sectiandjn low-dimensional diffusive interacting
conductors (Section 4).

2 Concepts of FCS

We start this section by introducing some definitions andegarformulae of the FCS approach to meso-
scopic transport. The central quantity is the probabilistribution, P, (IV), for N electrons to be trans-
ferred through the conductor during a time interal The detection time, is assumed to be much larger
than the inverse current frequengy/, which ensures that on averalye>- 1. This probability distribution
P,,(N) is related to the cumulant generating function (CGF)y), via a discrete Fourier transform

—+o0
e T = N Py (N)e'Nx. 1)
N=—oc0

The auxiliary variabley is usually called “counting field”. From the CGF one readibtains the “cumu-
lants” (irreducible moments)

k0"

Cio= {((N")) = (i) 57

FOO!, - )

The first four of the irreducible moments, defined by

Ci = N=) NP,(N), Co=(N-N)? Cs3=(N-N),
N

Cy = (N-N)*-3C2 3)

denote the mean, variance, asymmetry (“skewness”) andsisi'sharpness”), respectively. They charac-
terize the peak position, width of the distribution andertdetails of the shape of the distributify (IV),
as illustrated in FidJ1.

In order to provide a quantum mechanical definition of the @&&lectrons we will follow the approach
proposed by Levitov and Lesovikl[2]. The key step is to ineltite measurement device in the description.
As agedanken scheme a spin/2 system is used as a galvanometer for the charge detectias.sqin
is placed near the conductor and coupled magnetically teldaric current. Let the electron system be
described by the HamiltoniagH (q, p). We further assume that the spiyi2 generates a vector potential
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P(N)

Fig. 1 The distribution of the number of transmitted electrdvis The mearC';, the varianceC, the skewnesg’s
and the kurtosi€”, characterize the peak position, the width, the asymmetdythe sharpness of the distribution,
respectively.

a(r) of the forma(r) = {1 xV f(r). Here the functiory (r) smoothly interpolates between 0 and 1 in the

vicinity of the cross-section at which the current is meadyandy is an arbitrary coupling constant so
far. It will be shown below that it plays a role of “countinglfie. If one further restricts the coupling
of the current to the:-component of the spin then the total Hamiltonian of the eystakes the form
Hy = H(q,p — ad,).

In the semiclassical approximation, when the variatioWg{r) on the scale of the Fermi wave length
Ar IS weak, it is possible to linearize the electron spectruenatrgies near the Fermi surface. Thus one

arrives at the Hamiltoniaft,, = H(q,p) + Hing, Where

. 1 A “+o0 5 . X .
Hint = —— 0, d’r a(r)j(r) = 5 0.1s. 4)

€ oo

Herej(r) is the current density anfy = [ d3r j(r) V f(r) the total current across a surfage On the
quasi-classical level Ed](4) shows that a spin linearlyptedito the measured currehy(t) will precess
with a rate proportional to the current. If the coupling isnted on at timg = 0 and switched off at,
the precession angte = x fot“ Is(t)dt/e of the spin around the-axis is proportional to the transferred
charge through the conductor. In this way the spin-1/2 timwsanalog galvanometer.

To proceed with the fully quantum mechanical descriptidnuke consider the evolution of the spin
density matrixps(t). We assume that initially the density matrix of the wholetsys factorizesp =
pe ® ps(0), with p. being the initial density matrix of electrons. Then the tiewlution of 5(¢) is given
by

p(t) = Tr. (e_m(,tﬁ eimt) 7 (5)

whereTr, denotes the trace over electron states. Since, by coristrutiie evolution operatormvt is
diagonal in the basis df,, the spin density matrix takes the form

A _ p11(0) Z(x)p11(0) _ —iMt iR
psitn = 2 000 EN | 2w =g e, ©

where the Hamiltoniaf{, = H(q,p) — 21 Is acts on the electron degrees of freedom only. It becomes
e

clear now that the non-diagonal elements of the densityix(@) contain the information about the distri-
bution of precession angles of the spin during titmeTo make it explicit we use the transformation rule
of the spind /2 density matrix corresponding to a rotation around4keis by the anglé,

) A eieA
Ro(p) = efz-’;;“ ﬁﬁ” . (7)
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Fig. 2 Keldysh contoulC, used for evaluation of the cumulant generating functioBFg.

One now can identifyZ () with the CGF introduced in Eq)(1), i.e one sétéy) = e~7 ), and the spin
density matrixps(to) can be represented as a superposition of the form

—+o0

ps(to) = Y Pi(N)Ro=n(p), 8)

N=—oc0

whereP;, (V) has a meaning of the probability to observe the precessiangdéd = N x. For a classical

spin a precession angle= y corresponds to a current pulse carrying an elementaryretechargeg =
to

Is(t)dt. Using the correspondence principle we conclude that thatity P, (V) can be interpreted

ag the probability of transfer the multiple charlye. This consideration suggest the useffy) as the
microscopical quantum mechanical definition for the CGF.

Using a cyclic permutation under the trade., in Eq. [B) one can represest(x) in the form of the
Keldysh partition function

Z(x)=e T = <TK exp{—i /C dtHX(t)}>. (9)

Here the time integration is performed along the KeldyshaorC, as shown in Fidl]2, anfi, denotes the
time ordering operator along the path The averagé...) is performed with the non-equilibrium electron
density matrixp.. The interaction part of the Hamiltonid, (¢) readsH;n:(t) = o x(t)Is, where the
“counting field” x(t*) = £ is asymmetric on the upper and lower branches of the Keldgstoar.

The definition[®) for the CGF can be generalized to obtairffuliérequency dependence of the current
correlators of arbitrary ordef [82]. Consider a mesoscapitductor as shown in Fifl 3 coupled to two
leads such that lead 1 is grounded while lead 2 is biased withgeV/ (¢). We assume that the currefit)
is measured in the lead 2. This set-up is described by theagiten Hamiltoniar,.(t) = ¢ (t)I(t)/e
with the phases™® () = fioo eV(r)dr £ %x(t) defined on the lower/upper branches of the cont@ur
and Eq.[[®) yields the generating functio@lo™ (¢), ¢~ (¢)] of the current fluctuations in the lead 2. In
analogy with the definitior{{2) the higher-order derivasiwé the functional yield the-point irreducible
correlation function of currents

n w0 o
e"Cp(ty, ... tn) = (—ie) () X

For illustration we consider a@hmic resistor with resistance? at temperaturé’. Its CGF is quadratic
in T (t) and reads

) In Z[p* (), ¢~ (1)]| (10)

x=0"

flRQ

FR[90+(t)a(p 2 R

/ dtl/ dtQOL tl — t2 (tl)(p(tg) (11)

whereRq = 2r1i/e? is the quantum resistance and

T2
at) = ——g——r. (12)
2 sinh®(7tT)
If the timest; » lie on different branches of the contour C the kernél) is regularized by the shift into
the complex plang;t — ¢ + i0; otherwise it is understood as principal value. The quéadfatm of 7
reflects the Gaussian nature of current fluctuations in ani©tesistor with its well-known properties.
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R g%
1 2
gv

Fig. 3 \oltage biased mesoscopic conductor of resistaice

The simplest example of a CGF for non-Gaussian processesvuglpd by atunnel junction. In this
case one ha§133]

Frlpt (@), ()] = —47r§—3/cdt1 /Cdtg afty — ty)sin® [M} ) (13)

whereRT is a tunnel resistance. For a constant applied voltdgand stationary "counting field} the
corresponding CGF reduces to

1 eV

Fr(eV,x) = —to [Ty (X —1)+T_ (e7*—1)], Ti= ie2RT T (14)

This result represents the CGF of a bidirectional Poissopiacess with rateB corresponding to un-
correlated tunneling processes of the charge through ticgigun. At zero temperature and positive bias
voltage the second term of E.{14) disappears. Then, peirfigrthe inverse Fourier transformation we
obtain a simple Poisson distribution, corresponding tauredated charge transfer

™ g , NNe-N
P(N) = / % exp(Fr(eV,x) = iNx) = —7—, N =tls. (15)

-
As a further important example we consideguantum point contact (QPC), shown in Fidld4. It can

be used as a quantum detector for the state of a quantum dgealpabit. Its operating principle is based

on the property that - due to the electrostatic coupling betwthe dot and the QPC - the scattering matrix

*

Sj = < :7 :Z; ) and thereby the currettof the QPC depend on the staé of the qubit. For a given
i Ty

realization$ of the scattering matrix the FCS has been calculated by deital. [Z], with the result
d S/ .
F00 = to [ 5o det [1+ (87 (<0800 - 1)) (16)
™

. * ,—ix/2
T tje

whereS(y) = ( 1 eix/?

. ,andf = diag(fr, fr) is the diagonal density matrix of the leads.
The explicit evaluation of qule) yields

F) = —to / S [+ (L~ F)D(EX 1)+ frll — fr)D(e ~1)] | (7)

where D = |t|? is a transmission coefficient. The physical interpretatibthis result is that electrons
can be transmitted either forward or backward with protiédslpr. ;, = fr.(1 — fr)D andprr =
fr(1 — f1)D, respectively, with the occupation factors accountingffierPauli principle.

Recently, it has been realized that the quantum detectpepties of the QPC are intrinsically related
to its FCS [[Z5]. The two basic quantities to be consideredtaeneasurement-induced dephasing time
of the qubit, and the time needed for the acquisition of imfation about the qubit's state. Keeping in
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li>

Fig. 4 The principal scheme of the qubits readout using the quamaimt contact (QPC). Due to electrostatic
coupling the currenf driven by the external voltage is controlled by the statg) of the qubit.

mind thegedanken spin-1,/2 measurement scheme for charge detection, described iretfierting of this
section, we realize that in the quantum measurement progesQPC the role ofedanken galvanometer
is played by the qubit (or more generally by a many-levelayst Then the analog of EQ(6) describes
the dephasing raté of the qubit’s density matrix(¢) due to its interaction with the electron current in the

QPC,pji(t) = pjx(0) <eiﬁkte—iﬁjt> ~ p;(0)e~Txt, Here the average is taken over a stationary state of
the QPC an(ﬁj andH, are electron Hamiltonians describing the propagationedtedbns with scattering
matrices§j andSy. In the long-time limitt > h/eV, the decay is exponential with rate

T = —/;—;mdet [1+f(5*,j§j - 1)] . (18)

The analogy with the expressidn]16) is striking. For a gablibw temperaturel’ < eV, one obtaing[25]

eV N N
I = ot In [t1t5 + 73] (19)

The second aspect of the measurement by the QPC is the ratfoirhation acquisition. The infor-

mation about the statg) of the qubit is encoded in the probability distributi@éj) (N) for N electrons
to be transferred via the QPC, given that the qubit is in thie$f). The mean value of this distribution,

N;, and its width, /(ANJZ> grow like t and¢!/2. This time dependence implies that only after a certain
time, which we denote as the measurement tim&s, the two peaks, corresponding to different stajes
and|k) emerge from a broadened distribution. Quantitatively tinie can be defined by considering the

. ) 1/2
statistical overlap of two distributions/;,.(t) = >~y {Pt('”(N)P,EJ)(N)} . Forlong timest > h/eV,

the decay should be exponentiad,; (t) oc exp{—Wjxt}, With W, = 1/Tmeas being the measurement
rate. As it was shown in Rel_[25] it can be expressed in teritiseoCGF as

Wik = 5o min [F5() + Fi(~x)] (20)
0

In the case of quantum-limited detection the rdtés, andI';; coincide, while generallyV;, < I'j,
meaning that dephasing occurs faster than the information @ne can show that a QPC can be operated
as quantum limited detector with the rates

eV
Ljr = Wir = —5=1n (D;Di)'/? + (Rij)l/Q} - (21)

whereR;;,y = 1 — Dj, are reflection coefficients.
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(a) ﬁ ﬁ (b)
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Fig. 5 (a) The equivalent circuit of a metallic quantum dot. (b) Twulomb oscillations.

The FCS of tunnel junction and quantum point contact repitetbe two simplest generic examples with
non-Gaussian current fluctuations. In both cases the sfféeiectron-electron interaction were neglected.
This is justified provided the conductance of the systemisawosmall,G > €2 /27h, and the length (size)
of the system does not exceed the inelastic mean free pattouAiting for interaction effects on the FCS
is no trivial task. This is the case, in particular, when &lats have an internal dynamics within the
conductor, so that in the derivation &%) the internal degrees of freedom have to be integrated owd. Tw
examples of these calculations are considered in the follpsections. In Section 3 we discuss the effects
of Coulomb interaction onto the shot noise and FCS in intargguantum dot systems, and in Section 4
we address the statistic of current fluctuations in the laweshsional diffusive interacting conductors.

3 Full Counting Statistics in interacting Quantum Dots

In this section we review the FCS of a single electron traosi{$SET), which is shown schematically in
Fig.[ (a). It consists of a QD with strong local Coulomb iaigion, which is coupled via two tunnel
junctions (left and right) with tunneling resistanc®gs and Rr and low capacitanceSy, andCg to two
electrodes (source and drain). Itis further coupled céipaty via C to a gate electrode which allows - by
an applied gate voltage which determines the ‘gate ch&pge= C V¢ - to control the number of elec-
trons inside the QD. In the systems of interest the total citgraceCs, = C1,+Cr +Cq is low and, hence,
the single-electron charging enerly: = 2 /2Cs; typically in the range of 1K or above. K- exceeds the
temperature and applied source-drain bias voltgdé, the electron transfer through the QD is suppressed
(“Coulomb blockade™). However, the Coulomb barrier canlmeed by the gate charge. For example, the
energy difference between the charge zero state and theitinee excess electron in the QD depends
on Qg asAy = Ec(1 — 2Q¢/e). The voltage drops across the tunnel junctionsare k.eV, where
KL/R = iCR/L(CLJrCR)—l and the subscript r stands for either L or R junction. If thesléages satisfy
the conditionur < Ag < pr, electrons can tunnel sequentially through the island. Téshanism leads
to the typical oscillating behavior of the conductance asxfion of the gate charge illustrated in Hify. 5 (b).

The first steps toward a theory of FCS in quantum dots with @aicof Coulomb interaction has been
performed in Ref.[[34] where the FCS of charge pumping in ithé bf high transmission of the contacts
was considered. Further progress was made by one of therawthd Nazarovi [35], who derived the
FCS in the frame of a Master equation. This approach is valithé weak tunneling regime, where the
parametely = Rq/Rr, i.e., the ratio between the quantum resistafegand the effective (parallel)
resistanceR;' = R;' + Ry', is much smaller than unity; < 1. Applied to a quantum dot in the
vicinity of the first conductance peak, the CGF is found tdedifrom a simple Poissonian distribution.
Rather it reads

FO(y) = or Y2

4pil'1
2 ’ 2

r
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Herel’ = 'y, + I'ir + I'ur + I'ri, and the rates of electron tunneling into/out of the islamdugh the
junction r are given by Fermi’s golden rule,

1 Ao — pir
e2R, et(Bo—me)/T _ 1~

1—‘lrI/Ir ==+ (23)

For special cases the CGF can be simplified: (i) Close to ttesiiold of the Coulomb blockade regime,
e.g., forA ~ py,, and low temperaturég < |eV| the tunneling process through junction L becomes the
bottleneck sincé&'r,; o< (ur, — Ag) is much smaller thah'ig. In this case the CGF reduces to a Poissonian
form,

FU 49Ty (eX —1). (24)

(ii) For a symmetric SETR;, = Rg andCr, = CR, at the conductance peaky = 0, one finds forT’ = 0
andeV >0

FO = 2N (eX/? -1), eN/to=V/2(R. + Rg). (25)

The extra factoi /2 in the exponent leads to a sub-Poissonian value of the Fatar fae., ratio between
dc power spectrum and average currsipt/2e(I) ~ 1/2, indicating that tunneling processes through the
two junctions are correlated. The distribution functiorthiis case become3(N) =33 . _, Pp(NL) -
Pp(NR) 0N, (n,+Ng) /2, Where the distributions oV, and Nr transmitted electrons through the L and
R junctions have a Poissonian forR(N) = N Ve~V /N!. Both are constrained as indicated by the
Kroneckers.

The Master equation approach captures the basic physibe sfriong Coulomb correlations inside the
QD, but it neglects non-Markovian effects, which becomeantgnt for strongly conducting QDs, i.e.,
if the dimensionless conductangés no longer small. This includes quantum fluctuations ofdharge
due to co-tunneling, i.e., simultaneous tunneling of twectbns through two junctions. This process
dominates in the Coulomb blockade regime, i.e. far away fileenconductance peaks. Recently Braggio
et al. [36] considered these effects in second order perturb#teory ing in extension of the theory [35]
using well established real-time diagrammatic techniBéd38].

The CGF of a quantum dot in the limit of very strong tunnelipgs> 1, has also been consideredi[31]. In
this limit the Coulomb blockade almost disappears. Its waakursor is caused by quantum fluctuations of
the phase, which is the variable canonically conjugatebeddland charge. The small negative correction
to the conductance is logarithmi¢:a g — 21n(Q2/T"), whereQ=1/(RrCYy) is the inverseRC time [39].

Several further articles dealt with different setups. Iri.[f€0] bosonization techniques were used to
find the FCS of an open quantum dot coupled to reservoirs lgyesithannel point contacts in the presence
of a strong in-plane magnetic field. Similarly, the CGF foe tpeneralized two-channel Kondo model,
which models a QD in the Kondo regime, has been derived [41bolth cases the authors succeeded to
fully account for Coulomb correlations, but the resultslanited to a very special, exactly solvable case.
Despite this work the understanding of the effects of quarftuctuations on the FCS of interacting QDs is
far from complete. In what follows we evaluate CGF for theimegof intermediate strength conductance.

3.1 FCS OF A SET FOR INTERMEDIATE STRENGTH CONDUCTANCE

Here we consider a quantum dot single-electron transisttite intermediate strength tunneling regime,
where (introducing for convenience a new dimensionlesslieotance parametes), = g/(27)% < 1. We
assume that the invergeC time is still smaller than the characteristic charging ggef? < E¢, which
ensures that the charge-state levels are well resolvebevitinity of the conductance peak, precisely for
|Aol/Ec < 1, it is sufficient to restrict the attention to only two chagates of the quantum dot with
charges differing by. The Hamiltonian can then be mapped onto the ‘multi-chaaniotropic Kondo
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model’ [42]. Introducing a spin-1/2 operatér which acts on the charge states, we have

N P Ag . P .
H= " Y cwal,amn + 7002 + 30 3 (Tl amndy + He). (26)
r=L,R,I kn r=L,R kk'n
Heredikn creates an electron with wave vectoand channel index (including spin) in the left or right

electrode orisland (r=L,R,l). The tunneling matrix elenssh are assumed to be independent@ndn.

The junction conductances ar¢R, = 2we? Ny |T|? p1pr, With Ne, being the number of channels apd
the electron DOS. We assume that energy and spin relaxaties are fast so that electrons are distributed
according to a Fermi distribution functiof{w) = 1/[exp(w/T") + 1] both in the island and in the leads.

In the intermediate conductance regime the main consequéice quantum fluctuations of the charge
is the renormalization of system parameters, specificdllthe charging energy and the conductance.
A perturbative two-loop renormalization group analysis M, > 1 predicts a renormalization of the
conductanceyy — zpa, and of the charging energyg — 2040, to depend logarithmically on the low
energy cut-offA = max{T, Ao} [42]

1
~ 1+ 2a0In(Ec/A)’

Such a conductance renormalization has been confirmed leyiments[[4B], where the observed height
of the conductance peaks has been suppressetiag’.

The logarithmic renormalization is typical for Kondo prebi, in which one encounters logarithmic
divergencesin perturbation theory. Likewise, a pertuviedteatment of quantum fluctuations in a quantum
dot leads to logarithmic divergences. Handling these dimeces remains a nontrivial task, especially in
non-equilibrium transport problem. Schoeller and Scli®i] have formulated a real-time diagrammatic
approach to this problem. Summing up a certain class of teforider diagrams, they managed to remove
the divergences and recover the renormalization fatidr @#thermore, they derived non-linear current-
voltage characteristics including low-bias Kondo anoemlRecently the second cumulant of the current,
i.e. the noise, has been evaluated in lowlest [44] and secniet-perturbation theori [45]. However, apart
from the second-order analysis by Braggi@l. [36], the FCS of a quantum dot in the moderate tunneling
regime has not been yet analyzed, in particular in situatigmere the finite-order perturbation theory fails
and infinite order diagrams need to be included. Motivatethhy;, we addressed this problem in REf.I[46],
where the FCS of a SET has been evaluated with the use of Miajéeamion representation [47,148]49].
This formulation enabled us to apply Wick’s theorem and eguently the standard Schwinger-Keldysh
approachl]50, 51, 52]. Since practical calculations ateeratechnical, we will first summarize our main
results, and postpone the sketch of the derivation to[S8c. 3.

In the intermediate strength tunneling regime we obtaihedGF in the following form[46]

(27)

20

Flx) ~ ;—ST dwnfl + TF(w) flw){1 = fr@)} (X 1) + TF(w) frl@){1 ~ fulw)}(e"™*~1)], (28)

wheref(w) = flw—u,) is the Fermi distribution function for electrons in the lead his result looks simi-
lar to the Levitov-Lesovik formula for noninteracting systs [2], but the effective transmission probability
T*(w) accounts for the strong quantum fluctuations of the chargégd),

L R
TF() = (27)2 2020 (w — pr)(w — pr) (LT Y TR 29
) = (2m) |w— A — Zr:L,R YE(w)? «© 2T 0 2T (29)

R/ \ _ r W= Ec\ 2T . . W — [y

Y w) = o {2Rez/1 (z 5T ) 21 (—27TT) B imog(w — py) coth 57 (30)
wherey is the digamma function. For a symmetric SET7at 0 and|w| < eV, the self-energy becomes

D —LR YE(w) ~ agIn(2E¢/eV)w — i'/2. From the real-part of this expression one reproduces the
logarithmic renormalizatior {27), and thus in this senseaas®ounted for leading logarithms. The imagi-
nary part describes the effect of finite life-time of the afestate of the quantum dot in non-equilibrium
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Fig. 6 (&) The zero-temperature current distributior®t= 0.2 E¢ for various values of\q ( Ry, = Rr andCr, =
CRr). (b) Plot of P at Ao = 0 for various values of the conductance versus the curremalared toV/2(Ry, + Rr);
inset: the same distribution normalized to the averagesoti(f ).

situations. We also reproduce the average current predigt&choeller and Schon [37]. Furthermore, the
second order expansionin, F() + F2) with

FOx) = 0a, {ReZE(A0) FI ()} +F(x),  F©OUx) = to{vT (e =1)+y (e"X—=1)}, (31)

is consistent with the result of Ref_[36]. The first term ie #xpression fofs(?) (y), describes the renor-
malization [Z¥) in lowest order perturbation theory. Coti@ns of this type for the current were derived
earlier in Ref.[[3B]. The cotunneling correction to the CGFE’t, describes a bidirectional Poissonian
process governed by the cotunneling rates

. (v ) — i) 1
7 =2mog ag /dw (ei(w—HL)/T - 1)(1- e:F(w—uR)/T)Re (w4130 — Ag)2’

This term dominates in the Coulomb blockade regifde)( > |eV/2| for a symmetric SET) and is con-
sistent with the FCS theory of quasiparticle tunneling ia phesence of many-body interactidnl[54].

3.2 NON-MARKOVIAN EFFECTS: RENORMALIZATION AND FINITE
LIFETIME BROADENING OF CHARGE STATES

We present now some results. Figlle 6(a) shows the curfest ¢ N/t() distribution for a symmetric
SET and for several values of the Coulomb energy barkigr The conductance is chosen to be very
small. As we sweep\, from the center of the conductance peady,/eV = 0, to the threshold of the
Coulomb blockade regiméy,/eV = 0.5, the CGF gradually changes from the correlated PoissoBE&)n (
to the uncorrelated on€fR4). Simultaneously the curresttidiition widens. With further increase of
Ag one enters into the Coulomb blockade regime, where the CGiethity crosses over t¢°* and the
non-Markovian co-tunneling processes becomes dominant.

As the conductance increases, quantum fluctuations arsmestha We find that foe I’ < A, [A =
max(|z0Aol, 27T, [€V|/2)], the simple expression for CGF, (), still holds provided the parameters are
properly renormalizedyy — zpag, Ao — 2pAg. The effect of this renormalization is illustrated in
Fig.[@(b), where the current distribution fdy, = 0 is plotted. Since, decreases with increasing, the
mean value of the current, i.e. the position of the peak inctireent distribution, shifts to lower values.
The renormalization effect can be absorbed if we re-plostrae data with the current (horizontal axis)
normalized by the average currdi} rather than by//2(Ry, + Rr) [inset of Fig[®(b)]. However, even
after this procedure the three curves do not completelapsé# to a single one. The remaining differences
can be attributed to the non-Markovian effect of the broattgof the charge states due to their finite life
time, which is described by the imaginary part of the selérgy, Eq.[3D). We observe the following trend:
the probability for current much larger than the averageeds suppressed and the current distribution
shrinks with increasingy.

Copyright line will be provided by the publisher



14 D. A. Bagrets, Y. Utsumi, D. S. Golubev, and G. Schon: Ballinting Statistics of Interacting Electrons

’a0=10'42\‘

eV/Ec=0.1 | i
10

Cs (2% (Ri+Rp) /Vty)

(a7 G 9,7) O

C;/C,
/70

Ao/eV

Fig. 7 Panels (a-1) and (b-1) are the skewness and the kurtosi§ at0.1F¢ and 0 K for various conductance.
Panels (a-2) and (b-2) are those normalized by the averdge. va

Let us discuss the lifetime broadening effect quantitifivét moderately large voltages) > Tk =
Ece™1/22 /21, and atT" = 0 the real part of the self-energy{30) is negligible ang_; p 2F(w) ~
—imapeV . Then the CGF af\o =0 reads

F(x) = f(l)(x) — 4Qa0(eix—1) + 2(j7r2a3 (ei3X/2—eiX/2) + O(ag). (32)

It is evident from this formula that the higher order cumtisaare suppressed with increasimg due to

lifetime broadening.

Figured¥(a-1) and (b-1) show the skewn€ssand the kurtosi€’; as a function ofAy. A double-peak
structure growing with increasing conductance is observedjeneral, we found that higher cumulants
of the current depend on the gate charge in a complicated nadylepend strongly on the conductance.
E.g., the kurtosis even changes its sign for large values ofor the generalized ‘Fano factors’ defined
asC3/C; andCs/C4 [Figs.[B(a-2) and (b-2)], we observe a suppression witheiasinga

3.3 KELDYSH ACTION AND CGF IN MAJORANA REPRESENTATION

In this section, we sketch our calculationsi[46] 53]. Sindgniw the Schwinger-Keldysh approach the
calculation of CGF igormally equivalent to the calculation of the partition functifh @)the closed time-
pathC (Fig.[d), we can apply the standard field theory methods. RhentHamiltonian[(26) we obtain the
path-integral representation of the Keldysh partitionction (@) following the standard procedure. Tracing
out the electron degrees of freedom, we obtain the effekildysh action, which is the sum of two parts:
the charging parf.;, and the tunneling on§, — S=S.,+S5;. They read

Sch:/ dt{c*(i0y —Ao)c + %¢3t¢}7 Sy =— Z /dtdt’ (1) p(t) ap(t, 1) (' )e(t') + O(TH).
c r=L,RVC
Herec(t) and¢(t) are Grassmann fields which correspond to Dirac fermionicaipes¢ and Majorana
fermionic operators, respectively. The latter operators are defined by thewdtig relations:s, = et
andé. = 2¢fé — 1. The actionS; is equivalent to the tunneling actido13), defined earlier.

A particle-hole Green'’s functiomy,, describing the tunneling of an electron between an eldeteelL ,R
and the island, is expressed in the Keldysh space2as2amatrix,

- _ 0 adw) . (w—)E? 0 -1
Grlw) = ( ofi(w) af (W) )— ‘momh 2cothw—;1&>’ (33)

r
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where o} = Rk / (47* R,) is the dimensionless junction conductance. Here we haragiated a Lorentzian
cutoff function to regularize the UV divergence. The terrighier thar’* describe thelastic cotunneling
process. They can be neglected in the limit of fixedbut large number of channeld;, > 1. In this
caseT; scales asx 1/1/N, and thus the terms Tr4 give only small correctionsc 1/N.,. In order to
derive the CGF, we introduce the counting figlthy means of the following rotation in the Keldysh space,

&) (w)=exp(ik;xT1/2)0 (w) exp(—ik,XT1/2). (34)

Herer is the Pauli matrix. The CGF takes the following form

F)=—In / Dl ¢, 8] expli S, (35)

whereS(x) is the effective action containing the rotated particléel®reen’s function{34). Tracing out
the ¢ fields, we obtain a term of fourth order ifin the action, which means that the path integration
cannot be performed exactly. Therefore we proceed in afetive expansion i, and resum a certain
class of diagrams. Namely we take into account the contabstfrom free Majorana Green'’s function
and Dirac Green’s function with the bubble insertions fodrbg particle-hole Green'§ (B4) function and
free Majorana Green'’s function.

4 FCS and Coulomb interaction in diffusive conductors

In this section we consider the FCS of low-dimensional giffe conductors, such as quasi-one-dimensional
disordered wires and two-dimensional disordered filmsastlheen appreciated more than two decades ago
that the interplay of interaction and phase coherencetsfiiethese systems may drastically affect its trans-
port properties[[55, 56]. Initially, the conductance wasamobject of study, but more recently the trend
moved toward the study of essentially non-equilibrium pireana, like the quantum shot noise.

We consider short diffusive wires and films (with diffusioanstantD) where the Thouless energy
Etw, = D/L? is large compared to the applied voltaggs, > eV. In these systems the Fano factor, i.e.
the ratio between shot noise and curréht: 2|e| I F, takes the valué” = 1/3 [67,I58]. The condition for
short conductors can be equivalently rewrittenrgs< 1/eV, whererp = L?/D is a typical diffusion
time of electron through the system. Such short conducters@herent and effectively zero-dimensional
so that all effects of Coulomb interaction come from the mdéelectromagnetic environment. It has
been shown recently that the environment modifies the cdadoe, noise[14€6, 29] and generally the
FCS [30[31].

Much less is known about the role of Coulomb interaction ahi® FCS in the quasi- 1D and 2D
diffusive systems, whenp > 1/eV. Under this condition the inelastic electron-electrorttseang inside
the conductor is important. This subject has recently etitchthe attention in Refl_[58, B0,161], where
the so-called “hot electron” regime , was discussed. It findd byrp > 7z, with 7z being the energy
relaxation time due to Coulomb interaction, and at the séme tp < 7e_pn, With 7., being the
electron-phonon relaxation time. These two conditiondyntigat the size of the conductor is larger than
the energy relaxation length due to electron-electromaat#on, but the energy relaxation from the electron
subsystem to phonons is negligible. In this situation tleetebn distribution function relaxes to the local
Fermi distribution with a position dependent electron tenagure along the conductor. This changes the
Fano factorF from 1/3 to v/3/4 [62], an effect that was confirmed experimentallyl[58].

The microscopic theory [63] of electron-electron intei@ein low-dimensional disordered conductors
predicts, however, in addition tg: a further time scale, the dephasing timgSee Table I). Both times are
energy dependent and in the limit of good conductots G/G¢ > 1, which we wish to consider, differ
parametrically from each otherf < 7). Itis usually believed[64] that classical phenomena deed
by the Boltzmann equation are governed only by the energxatibn timerg, while the decoherence
time 74 affects essentially quantum-mechanical phenomena. $ieceCS is a classical quantity, in the
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Table 1 The electron scattering times for low-dimensional (1D abj @iffusive conductorsfg = max{T, eV'}. At
T <7, V), wegetr =14(V).

d 1/7g 1/74 1/7%, TZT(;l(V)
1 (B/D)'Pvit (B?/Dv})' (eV/T)'? 7' (V)
2 Elg (E/g)lng _ In(eV/T) 7' (V)

sense that it is proportional to the number of conductingiokés, one might naively expect that it crosses
over between the coherent and the “hot electron” regime esdalerp ~ 7.

As we show below the timeg is indeed responsible for a smooth crossover between trereotand
the “hot electron” limits if one is interested in the shotswiand the 8 cumulant of charge. However,
this is not the case for the higher order cumulants of chaayester in the shot noise limilV > T.
Moreover, in this limit the smooth crossover in the FCS dag®rist. The Coulomb interaction drastically
enhances the probability of current fluctuations for shortductorsl /eV <« 7p < 75. We coined for
this range of parameters the term “incoherent cold elestrfiib]. In what follows we will show that the
tail of the current distribution for such electrons is exeotial, P(I) ~ exp(—v|I|to/e). The fluctuations
are strongest for low temperaturd3,< Ety,, and they reach the maximum on the scale ~ 74(V).

In this casey ~ g~1/2 for 1D wire andy ~ (Ing/g)'/? for 2D film. The FCS of this type can be
understood as the statistics of a photocurrent which isrgéeeb by electron-hole pairs excited by classical
low-frequency fluctuations of the electromagnetic field.isltemarkable that the time scale of optimal
current fluctuations transforms to the scalgT'), known as a decoherence time in the theory of weak
localization [63], provided one identified” with T". Therefore, in strongly non-equilibrium situation the
time 7, rather tharrg governs the crossover in the FCS between the coherent affubthedectron” limits.

4.1 MODEL AND EFFECTIVE ACTION.

We consider a quasi-one-dimensional (1D) diffusive wiréeofgth . and a quasi- two-dimensional (2D)
film of size L x L, with density of states, per spin, diffusion coefficienb and large dimensionless con-
ductancey = 47y DL?>~? > 1. They are attached to two reservoirs with negligible exdeimpedance
which are kept at voltagesV/2. The current flows along the direction and we concentrate on the
incoherent regimanax{eV, T} > Ery.

To evaluate the CGF we have used the Keldysh technique anidgadihe low-energy field theory of
the diffusive transpori[66] which leads to the action

Sx, Q,A] = /ddrTr [%M (VQ—i[A, Q])2 —2md(atQ)}—87:€2 /dt/ d%(A%-Ag) .
(36)

Here A = diag(A,(t,r), Ax(t,r)) is the2 x 2 matrix in Keldysh space, wher&, , stand for fluctu-
ating vector potentials in the conductor. We assumedhdtA = 0, thus neglecting relativistic effects.
The matrix@(r, t1,t2) accounts for diffusive motion of electrons and obeys theis#assical constraint
Q(r) o Q(r) = 6(t; — t2). Boundary conditions are imposed on the figldn the left (L) and right (R)
resenvoirsl[67]Q| _ . = GrandQ| _, = Gr(x) = eX/2GLe~X7/2. HereGy y are the Keldysh
Green’s functions in the leads.

With the action[(36) the CGF should be evaluated as a patbraitever all possible realizations; »
and Q. In general this is a complicated task. However, in the liiy < 1 the problem simplifies.
We employ the parameterizatiéh = ¢!V Ge="W, WG + GW = 0. Here the fieldV’ accounts for the
rapid fluctuations of) with typical frequenciess ~ eV and momenta ~ +/eV/D, while G(e,r) is the
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slow stationary Usadel Green'’s function varying in spacehenscale~ L. As a first step we integrate
out the fieldV in the Gaussian approximation to obtain the non-Iineaoaci’l(X, G, A) of the screened
electromagnetic fluctuations in the media. We keep only ratadterms inS, what is equivalent to the
random phase approximation (RPA). As second step one cagraté out the photon field and reduce
the problem to an effective aC“cﬁLﬂ‘[X, G]. Then the saddle point approximatiaifi.s |y, G]/6G = 0
yields the kinetic equation fcﬁl(e r). This program is very similar to that pursued in RELI[66].

In the universal limit of a short screening radius; = (4we’v3)'/2 > /eV/D, we get the following
result

R R 2 d d —
Sl €] = fore ¢ [t [ 2 [weuw] '+ [ St [RURLE] o)

whereD,, is a2 x 2 matrix operator in Keldysh space corresponding to the reprilibrium diffuson
propagator,

. . -1
DP(r,q) = [Dq2 T{lﬁ + (i/4) /deTr (Wo‘vﬁ — 70‘G5+w/2(r)75G€,w/2(r))]

with 40 = 1, ~' = #3. The first term inS.¢ is due to the diffusive motion of free electrons, while the
second describes the real inelastic electron-electrdisicois with energy transfes < max{eV,T}.

Minimizing the actionS.¢ under the constrair(ﬁ(e, r)?2 = 1 one obtains a non-linear matrix kinetic
equation forG(e, r). It has a structure of the stationary Usadel equation

DV (Gg(r)vée (r)) - [ie (), Ge (r)] (38)

with the extra matrix collision integrdl, in the r.h.s
dwd®q o o A A o
L) = o Z / o @) [ Gt + 4 Crlen) (39)

This kinetic equation should be supplemented by th#ependent boundary conditions at the interfaces
with the leads, as described after Hg(36). Since we con#igeFCS at low frequencie§) < Erty,
there is no time-dependent term in our kinetic equationlainid that of the usual time-dependent Usadel
equation. In this limit the collision integrd[{B9) guareas the current conservatiatiyv j = 0, where

jo< [deTr (i—gée(r)véi(r)). The resulting CGFF (), can be found by evaluating the actignl(37) and

solving the kinetic equatio&.(x,r). In the absence of the field our matrix kinetic equation reduces to
the standard kinetic equation with a singular kethigly) oc w %/2~2 in the collision integral[63, 64.66].

To derive the action{37) we have used a local approximatien,we neglected gradient corrections
proportional to(VG* ~ 1/L) <« VW. In this way we incorporate only classical effects of intdi@n
into the FCS. The gradient terms would be responsible fontyuma corrections to the CGF, coming from
frequenciesv > max{T,eV}. They are small in the parametefg and are beyond the scope of this
article.

So far our consideration was rather general. In the follgwire restrict the analysis to the most inter-
esting shot-noise limikV > T'. Then the further particular solution of kinetic equatitmorsgly depends
on the relative magnitude of the diffusion timg compared to the voltage dependent energy relaxation
time 7z (V). In the range of sufficiently high voltages, so that > 7x(V), the system is driven into the
“hot electron” regime. In this limit the electron distrilom function of electrons has the from of a local
Fermi distribution with position dependent temperatii(e) set by the applied voltage’” and differing
from the temperatur@ in the leads. For smaller voltages, so th&V <« 7p < 75 (V), the electrons are
described by a strongly non-equilibrium two step distiidmtfunction, which results from the weighted
average of the Fermi distribution functions in the left aigtht leads. We thus call this situation the regime
of “cold electrons”. The behavior of the FCS is essentiaiffedent in these two regimes and we consider
them separately in the following subsections.
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4.2 “COLD ELECTRON"REGIME.
The cold electron regime is defined by relatiB, > 1/75. Under this condition the collision term in
the kinetic equation is small, and one can obtain the Grdanistion perturbatively around the coherent
solution obeying the Usadel equati&h, ( G0(2)V.G2(z)) = 0. Here0 < z < 1 is a dimensionless

coordinate along the current direction. This solution was in Ref.[[68] and af’ <« eV can be written
as

G2(x:2) = Ly(2)G1(e, x) + Ry (2)Gr(e) (40)
L ( ) - sinh(l — Z) 9)( R ( ) - sinhz@x 9 . 1 ( + \/Tl)
AT T inne, 0 T T Time, 0 T T Ve

whereu = 2¢X — 1 for energie$) < € < eV andu = 1 otherwise. In first order inp /75 the CGF can be

found by substituting>° in the action[[3l7). The main contribution comes from frequiesil’ < w < eV’.
After some algebra we obtain

F(X) = —(to 9/87) / de62() + Foan(X). (1)

Here the first term is the CGF of non-interacting electrons, &1 (x) is the correction due to electron-
electron interaction. It reads

1 eV
toL? dwd? N, 2T (y, 2
o - S ] e (- 3]
0 w*
(x,2) = —4Ly(2)Ry(2)e™ {1 Ly(2)=Ry(2) = [eLx(2) + (1 = 2) Ry (2)] (e ~1) }

whereN,, = (eV/|w| — 1), andw* = max{ETy,T}. The Thouless energy appears in the low frequency
cut-off w* due to finite-size effects whil& takes into account the smearing of a step in the Fermi distrib
tion. We also note two important properties of the funcfify, z), namely (i)I1(iv, z) > 0 for imaginary
x =iy and (i) (x, 2) = —P2(2)x? + O(x?) aty < 1 whereP,(z) = %zQ(l —22)(1—2z+2%) > 0.

To estimate the range of validity of the resdlf]l(42) we substia zero order distribution function
fole) = (1 —2)fr(e—eV/2) + zfr(e+ eV/2) into the collision integralfr(¢) being equilibrium Fermi
distribution. Then one estimates th& arder correction to be

9 eV (2—d)/2
5fny(ex) ~ LD | <—V> 43)

TE(V) Joo w \w

if ex =|eteV/2| <« eV andey > max{Ery,T}. By virtue of Pauli’'s principle this correction may not
exceed unityy f;) < 1, which is true only for > ¢*, where the scale” is given by

(1) ~ (eV)?/g* Ern , forD =1
V)= { eVexp{—gErn/eV}, forD=2. (44)

This result shows that a simple perturbation theory is vatiwvidede* < max{FEry,T}. Resolving this
inequality we obtain the condition, < 7*, where the time scale* is presented in Table 1. Thé'Jorder
perturbation theory breaks down for higher voltages, when> 7*. In this situation we can still obtain
the result up to a factor of order of unity from E.X42) if weewss cut-offo* ~ ¢*.

The result[[4lL E42) with cut-off* = max{Ery,, T, ¢*} enables us to evaluate all irreducible cumulants
Cr = —(—i)* (0% /Ox*)F(x) of a number of electrons transfered. There is no correctidhe current on
the classical level. The interaction correction to the @@iad the 3 cumulant is small in the parameter
7p/7r and dominated by inelastic collisions with the energy tf@ns ~ eV. On the contrary, the
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Fig. 8 Sketch of the voltage dependence of the even cumulants ohirge transfef's,, for n > 2 for a 1D diffusive
wire (left panel) and a 2D diffusive film (right panel). Therees 1,2,3,4 correspond to temperatufes, ~ T <
Ty < T3 < Ty

leading contribution to the higher order cumulants is du€dallomb interaction and it is dominated by
quasi-elastic collisions with low energy transfers < w < eV. Up to a numerical constant the result is

(V)

eV \d/2 /el k—1—d/2
Ozk,2k+10<7( ) (—*)

- , fork >2 45
o (45)

w

where(N) >> 1 is the average number of electrons transfered@he- max{Ery,, T, €*}.

The voltage dependence of th&' cumulant withn, > 4 at different temperatures is sketched in Eig. 8.
Eq. (4%) shows that the + 1st cumulant of the charge transfer is parametrically enbdrersus théth
one by the large factarV/w* > 1. It also follows from Eq.[[45) that the higher cumulants gneith
increasing voltage foEr, > 1/7* and decay folET, < 1/7*, where the new time scale’ (eV, T) is
parametrically smaller thang, 7 < 7. (See Table I). The current fluctuations are stronge®t K
E1y ~ 1/74,(V). In this case their maximum occursét/Ery, ~ g for 1D and ateV/Ery, ~ g/In g for
2D. To clarify the physical origin of this strong amplificari of the current fluctuations we present below
a heuristic interpretation of the resuli142) by relatintpithe phenomenon of photo-assisted shot noise.

Photo-assisted shot noise has been theoretically prddigteesovik and Levito\[[69]. They considered
the mesoscopic scatterer with a single transmission cthdnhbiased by the AC voltage () = Vg sin(£2t)
(See Fig[B). This voltage leads to an oscillating phage = ffoo eV(r)dr = &g cosOt across the
conductor with amplitud®@g, = eV /ALQ. It has been shown in Ref.[69] that such a phase modulation
results in a zero-frequency non-transport shot noise dtrestexcitation of electron-hole pairs in the leads.
At low temperatures]’ < hdg, the noise is

82 =
Sow=0)=5=T(A-T) Y [nQJ3(P0) (46)

whereP, = J2(®q) is the probability to excite an electron-hole pair with thesarption ofn photons,
andJ, (z) are Bessel functions. In the limit of weak phase oscillatidn, < 1, the noise is quadratic in
the amplitudeSy; = GohQT (1 — T)®3,.

The physical origin of the interaction correction to the Fi@iliffusive conductors has very much
in common with the generation of photo-assisted shot ndtsgloiting the path integral formulation of
guantum mechanics one can represent an interacting elguwblem by a picture where a given electron is
moving in a fluctuating electromagnetic fiedd, »(r, t) created by all other electrons (with indices- 1,2
referring to a forward and a backward time evolution opejatSince the main effect of the interaction
comes from low-frequency fields with < eV, the classical parh = (A;+A2)/2is of main importance.
The field A4 ., leads to the excitation of electron-hole pairs, which, Eimio photo-assisted shot-noise,
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Fig. 9 Diagrammatic representation of interaction correctianthe shot noise an@’y. Shaded blocks correspond
to the imaginary part of diffuson, denoted®g(t), and thick solid lines correspond to the screened propagétbe
electromagnetic fluctuatiort$(t). Each vertex;, brings time derivativé,, .

produce corrections to the FCS of the form

gL20-d) 2

w ~ .
AF(x,A) = > dlrwTl(x, 2) Aqy WAL, e (B a)r
T e <D|q1+q2|2/4>2+w2/ rtlfe e oA, e

(47)

Up to second order ig? the polarization operatﬂ(x, z) agrees witHI(y, z) in Eq. (42). It is important
that this correction is proportional to the total conductof the system. Thus it may become comparable
with the non-interacting result for the CGF when the magtétef phase fluctuation across the sample
becomes of the oder of unity.

In diffusive system with large conductange> 1 the fluctuation ofA, ., are screened and can be
considered as Gaussian with an Ohmic spectl{m) = (|A4..|?) = N.,/(vDw), whereN,, = eV/|w|
is a non-equilibrium distribution function of electromagic modes. Thus in order to obtain the interaction
contribution to the CGF, the correctidni47) has to be exptated and averaged over these fluctuations.
Such considerations give exactly the redull (42) with ppddion operator calculated to accuragy.

It is also instructive to consider the physical picture obfmhassisted current fluctuations in the time
domain. To illustrate the main idea we compare the intevaaorrections to the shot noiég and the 4
cumulantCy for a 1D wire. In the time representation they read

1
ACy, = / Py(z) dzZ/DQl(qu — 1) By, (t2 — t1)dt 1 dts (48)
0
q
1 ~ ~
AC4 = 6/ PQQ(Z) dZZ/Dilfl (q, tl - tQ)D2/54 (q7t4 — t3)823 (t3 — t1)8£2 (tg — t4)dt1 .. .dt4
0
q
where
T duw N, et ~ eV dw 1 '
t) = _—v d D(g,t) = —I — et 49
B(t) /1/5* * oo 0 " (¢:1) /0 T m<Dq2—iw)e (49)

The corresponding Feynman diagrams are shown irffFig. 9. dinelation time of the diffuson propagator
15q(t) is short, given by, ~ 1/eV, while the photon propagatdi(¢) is strongly non-local in time with
long correlation time- ~ 1/¢* > 7y. Therefore the time integral iAC, is dominated by the short range
|t1 — ta| ~ 7 only, and the correction to shot noise is small. In contrakgn evaluating the correction
to ACy both short,|t; — t2| ~ |t3 — t4] ~ 7v, and long time intervaldf; — 3| ~ |ta — t4] ~ 1/€*,
are essential. The same structure holds for higher cunau@nt., which are expressed by one-loop
diagrams withn diffusons andh propagators of the electromagnetic field. We thus see thateecsion of
the long-time electromagnetic field correlations into therent of electron hole pairs is the reason for an

enhancement of higher order cumulants in diffusive wirasfdms.

Copyright line will be provided by the publisher



pop header will be provided by the publisher 21

0.0

0

-0.5

-1.0

Ln(P) e/<I>t

-1.5

Fig. 10 The log of probability to measure the big non-equilibriuntrent fluctuationsdl > T). Curve (1),
coherent regime; curve (2), incoherent “cold electronimag v = 0.2; curve (3), “hot electron” regime.

With the resultsl{41,42) we can also explore the currentalsdity distribution

P = [ Eexp{-000} 900 = ~F(0) +ilTn/e)x (50

—T

In the long-time limit, Ito/e > 1, this integral can be evaluated within the stationary pregg@oxi-
mation. For this analysis it is important that the actiBfy) has two branch points;, = +iv, where
v ~ (w*/eV)/? <« 1. The pointstivy give two threshold currentd* = (e/t0)8S/8X\X:ﬂV, which
read(I* — (I))/{I) = +~/3.

Provided the fluctuations are small; < I < I, the saddle point* of the functionQ(x) lies on
the imaginary axis and satisfies the conditigh| < . Thus with exponentially accuracy the probability
distribution become®(I) ~ exp{—Q(x*)}. Due to the smallness of the parametgy 7z we found that
P(I) deviates only slightly from the probabilit}, (1) of current fluctuations in the non-interacting limit.
For larger current fluctuationg, < I~ or I > IT, the potentiak)(x) does not have a saddle point any
more, and one should use the cont@lyrof a zero phanmQ(X)\XeCOZ 0 for the asymptotic analysis
of the integralP(I). This contour is pinned by the branch pojnt= +iv, which yieldsexponential tails
in the current probability distribution

P(I) = exp{—F(£7) F vIto/e} . (51)

The results for the probability distribution are displayiadFig. [I0. The Coulomb interaction does not
change the Gaussian fluctuations, but strongly affectsdite @f P(7). They describe long correlated
“trains” in the transfered charge, in agreement with ourjanes discussion on the enhancement of higher
order cumulants,, >o(p1)-

One can also relate the statistiEs](42) to the photocoustatigstics studied by Kindermarmnal. [[70].
In that work the FCS of incoherent radiation, which is pagbedugh a highly transmitting barrier with
transmission coefficierlf < 1, was studied. It was shown that a highly degenerate (orict¥$source
of radiation with bosonic occupation numbgy >> 1 produces long exponential tails in the photocounting
distribution, P(n) o< exp(—n/f,). The tails of the distributio{$1) are of the same bosontama The
classical electromagnetic field, ., with w < eV and large occupation numbaf, = eV/|w| can excite
electron-hole pairs with probabilitp = w?/((Dqg?)? + w?). This probability plays the role similar to
the transmission coefficiefff. It is enhanced due to the diffusive motion of electrons aardlme of order
of unity. The polarization operatdi(y, z) describes the efficiency of the conversion of electromagnet
radiation into a current of electron-hole pairs.
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4.3 "HOT ELECTRON” REGIME.

In the “hot electron” regimeE, < 1/7g, describing the regime of high applied voltages or long gmou
samples, the collision term in the kinetic equatibnl (38) dmtes. Thus the saddle point solution of the
action [3¥) should make the collision integral vanish. Tal finis solution we note the that collision term
in the action is invariant under the gauge transformatiotr) = ¢ X<® G (r)eX<®), HereK, (r) =
373[v(r) + B(r)(e — ¢(r))] and~, 8 and¢ are arbitrary functions in space. In particular, this letms
the conservation of the current densitity j = 0, and of the energy flowlivjz = 0, wherejg

(2m)~! [edeTr (i—gée(r)vée(r)). It is well known that the physical Green functi@i(e, r) with a

local Fermi distributionf, (r) = [e(¢=¢())/T() 1 1]~ makes the collision term in conventional kinetic
equations vanish. Its gauge transfo(ﬁg(r), does the same for the generalized kinetic equaliidn (38).

The four unknown functions, ~, T and 8 can be found from the extremum of the simplified action
Shot Which is obtained by substitutir@e (r) into the diffusive part of the actiof.¢. For the rest of this
discussion we restrict ourselves to a 1D wire, since for theg@ometry shown in Fig.1, all results are
identical to 1D. We write the action in the forf., = (27) 'got fol dzShot (z), where the spatial density
Shot (2) reads

2 2
Shor(2) = ~T(Vy = V9)” + (Vy = BV6)Vo — T (V) + T (VT?)V (52)

HereT'(z) and¢(z) have a meaning of a local temperature and chemical potewtigle 5(z) and~(z)
are their quantum conjugate counterparts. The acfioh (&&)t& be minimized subject to the boundary
conditionsp(2)|,_, ,= £eV/2,T(2)|,_, ,= T, i7(0) = x andy(1) = 5(0) = 5(1) = 0.

The actionSy,. possesses 4 integrals of motion. They are the physicalmtufre= 9.5,0t/90V~, the
“quantum” currentM = 9Shot/I0V ¢, the energy currenfy = Jo — %T3V6 + %(VTQ), and the
spatial density of the actiofi,.(z). Performing the Legendre transform ,we can reduce the tatthet
boundary value problem for two functiofifz) and3(z). Since it appears not to be possible to obtain an
analytic solution of these equations f or non-vanishingve solved them numerically. The results for the
probability distributionP () are shown in Fid_10. As in the previous section it can be etefliusing the
saddle point approximation. We can see from Eig. 10 that thbability of positive current fluctuations,
AT > 0, is enhanced in the “hot electron” limit as compared to theecent regime, while the probability
of negative fluctuations)I < 0, is affected to a lesser extent. The actiod (52) is equitatetihe actions
of Refs. [60[611] under the appropriate change of varialfidsrther increase of the voltage or the sample
size will eventually bring the system into the macroscopgime,L > L._,,. The conductor in this case
displays only Nyquist noisé& = 4kgT/R, while higher order cumulants vanish and the probability of
current fluctuations becomes Gaussl|an [61].

5 Summary

To summarize, we have studied the full current statistic@SJof charge transfer in two important ex-
amples of the mesoscopic conductors taking into accoungffieets of Coulomb interaction. First, we
derived the FCS for a single-electron transistor with Cobidlockade effects in the vicinity of a conduc-
tance peak. Quantum fluctuations of the charge are takeadetmunt by a summation of a certain subclass
of diagrams, which corresponds to the leading logarithmppreximation. In lowest order in the tunneling
strength our results reproduce the ‘orthodox’ theory, &l second order they account for renormaliza-
tion and cotunneling effects. We have shown that in noni#xjiuim situations quantum fluctuations of the
charge induce lifetime broadening for the charge statelseténtral island. An important consequence is
the reduction of the probability for currents much largertithe average value.

We further investigated the effect of Coulomb interactioricothe FCS in one- and two-dimensional
diffusive conductors. We have found that Coulomb intemac#ssentially enhances the probability of rare
current fluctuations for short conductois,eV < 7p < 7g, With 7p and g being the diffusion and
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energy relaxation times. The fluctuations are strongesivatémperatures]” < 1/7p, and they reach
the maximum when the sample size matches the voltage depedeghasing length due to Coulomb
interaction. We have shown that tails of the probabilityritisition of the transfered charge are exponential
and they arise from the correlated fluctuations of the ctioEalectron-hole pairs which are excited by the
classical low-frequency fluctuations of the electromaigrfedld in the media.
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