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Kurzfassung (Abstract in German)

Die analytische und experimentelle Forschung zur Stabilitit von Schalentragwerken
befasst sich hinsichtlich Beanspruchung und Beanspruchbarkeit gréftenteils mit den
elementaren Grundfillen. Die auf diesem Stand der Technik basierenden Normen bieten
fiir viele reale Bauwerke keine Losungsansitze oder flihren durch grobe Abschétzungen
zu einer deutlichen Uberbemessung der Konstruktion. Beispiele hierfiir sind kombinier-
te Spundwiénde, wie sie im Hafenbau eingesetzt werden. Bei diesen Systemen werden
langs- oder spiralgeschweif3te Rohre mit Langen um 30 m als pfahlartige, vorwiegend
horizontal belastete Primirelemente verwendet. Aufgrund der groBen Tiefginge der
neuen Generation von Schiffen sind kombinierte Spundwénde bis 40 m Hohe in Pla-
nung. Fiir diese Bauwerke, deren Tragsicherheit bisher auf der Basis der Biegespannun-
gen (d.h. FlieBen durch die axialen Manteldruckspannungen) nachgewiesen wurde, wird
mit Einfiihrung des Eurocodes ein Beulsicherheitsnachweis erforderlich, obwohl bis
jetzt kein Fall bekannt ist, bei dem eine solche Konstruktion beulte. Da das Verhiltnis
von Radius zu Wanddicke bei den Rohren kleiner als 50 ist, wurde diese Versagensform
bisher kaum in Erwédgung gezogen. Der zusitzlich geforderte Beulsicherheitsnachweis
fiihrt mit den verfiigbaren Regeln zu 10 % - 20 % grofleren Wanddicken der Rohrpféh-
le.

Da die Lastabtragungsmechanismen einer kombinierten Spundwand, wie in der Arbeit
gezeigt, denen eines horizontal belasteten Einzelpfahls dhneln, wird das System aus
Griinden der besseren Betrachtungsweise und Effizienz dementsprechend vereinfacht.
Die Belastungen und die Interaktionen zwischen umgebendem Boden und Bauwerk
fiihren zu komplizierten Randbedingungen und nicht-linearen Spannungsverteilungen,
fiir die es derzeit keine Bemessungsregeln fiir den Beulsicherheitsnachweis gibt. Diese
,realen Randbedingungen® umfassen den Einfluss des Bodens, der Lastabtragung und
der Imperfektionssensibilitit auf die Beulsicherheit sowie verdnderliche Druckvertei-
lungen in Langs- und Umfangsrichtung. In der Arbeit wird auf die Problematik und die
Unzulidnglichkeiten beim Beulsicherheitsnachweis solcher Strukturen hingewiesen. In
diesem Zusammenhang werden einzelne Aspekte des Beulversagens erdrtert und an-
hand numerischer Berechnungen und experimenteller Untersuchungen diskutiert:

e Randbedingungen und Belastungen: In Vergleichsberechnungen wird dargelegt,
dass die Beullast der Rohrpfihle mal3gebend durch die AuBendruckverteilung
bestimmt wird. In diesem Zusammenhang werden Ansdtze flir die Ermittlung
der idecllen Beullasten entwickelt, um den verdnderlichen Auflendruck in
Langs- und Umfangsrichtung zu beriicksichtigen. Als weiterer Aspekt wird der
Reduktionsfaktor fiir die theoretische Beullast unter Aulendruck zur Beriick-
sichtigung von Imperfektionen diskutiert, der nach géngigen Bemessungsregeln
unabhingig von der Geometrie ist. Basierend auf numerischen und experimen-
tellen Untersuchungen fiir lange Kreiszylinderschalen wird ein neuer Bemes-



sungsvorschlag zur Ermittlung des Reduktionsfaktors gemacht. Die Beriicksich-
tigung von groBeren Reduktionsfaktoren fiir lingere Kreiszylinder fiihrt zu ei-
nem signifikanten Anstieg des kritischen Bemessungsbeuldrucks.

e Bettung: Im ersten Schritt werden unterschiedliche Boden- und Boden-
Bauwerk-Interaktionsmodelle analysiert und anhand numerischer Berechungen
diskutiert. Zum Vergleich werden verschiedene Belastungsversuche an Modell-
rohrpféhlen durchgefiihrt. Fiir die weiteren Untersuchungen werden Bodemodel-
le gewéhlt, die flir den weiteren Verlauf effizient sind, aber ebenso alle erforder-
lichen Parameter beriicksichtigen. Es wird gezeigt, dass flir die Steigerung der
Beullast eines Zylinders unter Axiallast im Gegensatz zu Zylindern unter Au-
Bendruck sehr grofe Bettungen erforderlich sind. Die Dickwandigkeit der unter-
suchten Zylinder bestdrkt dieses Verhalten. Zur Bestimmung der horizontalen
Bettungssteifigkeit von Sand bei kleinen Dehnungen wurden Versuche durchge-
fiihrt (Bender Tests). Basierend auf weiteren Versuchsergebnissen aus Modell-
versuchen an Rohrpfihlen und numerischen Berechnungen werden Vorschlige
zur Beriicksichtigung des unterstiitzenden Effekts des Bodens auf die Beullast
aufgefiihrt. Hierbei wird die Bettung des Zylinders in radialer, tangentialer und
axialer Richtung beriicksichtigt.

e Geometrische Imperfektionen: Der Einfluss geometrischer Imperfektionen auf
eine Kreiszylinderschale, die im Boden eingebettet ist, kann von dem einer un-
gebetteten Schale abweichen. Daher werden die radialen Formabweichungen
und die Aufstandsimperfektionen betrachtet, um den Einfluss der Imperfektio-
nen auf den Abminderungsfaktor im Beulsicherheitsnachweis festzulegen. Nu-
merische Untersuchungen zeigen, dass die geometrischen Imperfektionen bei ei-
ner Druckbeanspruchung in Meridianrichtung der Rohrpfdhle von kombinierten
Spundwénden von geringer Bedeutung sind.

Die aktuellen Bemessungsregelwerke zum Schalenbeulen bieten fiir viele reale Bau-
werke keine Losungsansétze oder fithren durch grobe Abschétzungen zu einer deutli-
chen Uberbemessung der Konstruktion. Daher wurden fiir den Fall von kombinierten
Spundwénden detaillierte Untersuchungen durchgefiihrt. Aus den interpretierten Ergeb-
nissen der vorhergehenden Teilgebiete werden schlieBlich Bemessungsvorschlige ent-
wickelt, um die bestehenden Beulsicherheitsnachweise um problemspezifischere Ansét-
ze zu erweitern.



Abstract

Shells have been thoroughly studied over the last century resulting in a sophisticated
compendium of standards on shell structures: in the first place the European Standard
on Shell Design, providing the designer and the analyst with a comprehensive and very
general tool to assess all types of shell structures. The design rules have been kept so
general that they may result in extremely conservative constructions, since several spe-
cial influences are not taken into account. An example is a large thin-walled tube used
in harbour constructions. The latter tubes are commonly employed as parts of combi-
walls or as piles. Large diameter steel pile pipes are manufactured by longitudinally or
spirally welding a hot-rolled steel strip of thickness 10 mm to 24 mm. The usual length
of the piles ranges from 20 m to 30 m with a diameter of 900 mm — 2400 mm. Increas-
ing drafts of ships even demand for new harbour constructions with longer tubes meas-
uring up to 40 m. The assessment of these tubes is mainly based on stress design regard-
ing the stresses from bending moments of the pile. Due to experimental experience with
cylinders of a slenderness radius over thickness of about 50 the problem of shell buck-
ling has been disregarded so far. The design procedure will change with the introduction
of the Eurocodes, as for most harbour constructions a buckling assessment will become
necessary resulting in a 10 % - 20 % larger wall thickness. For a design according to the
common shell buckling rules several extremely conservative assumptions have to be
made. Although, many years of practice revealed no bad experience with respect to
buckling. The reason for the positive difference in the carrying behaviour between tubu-
lar piles and the laboratory shells arises from the complexity of the problem far beyond
the basic rules of the codes.

Since the load transfer mechanisms of a combiwall are similar to those of a horizontally
loaded pile as shown in the work, the system is simplified due to efficiency, accord-
ingly. This work describes the design procedure for tubular piles and points out the con-
servative assumptions in the assessment of the investigated problem. In the next step
these conservative assumptions are discussed in order to provide suggestions and com-
ments for enhancing design rules for tubular piles regarding shell buckling. The discus-
sion is based on “real boundary conditions” governing the carrying behaviour of the
investigated structure with respect to shell buckling: Influence of the soil, the load trans-
fer mechanisms, and the imperfection sensitivity on the buckling behaviour, and the
varying pressure distributions in longitudinal and circumferential direction. The follow-
ing aspects of the buckling failure are discussed based on numerical and experimental
investigations:

e Boundary conditions and loading: Comparing analyses reveal the significant in-
fluence of the external pressure distribution on the carrying capacity of tubular
piles. In this context approaches for evaluating the ideal buckling loads are de-
veloped for considering the influence of a pressure distribution varying in cir-



circumferential and longitudinal direction. Further, the reduction factor for the
theoretical buckling pressure taking imperfections into account is investigated in
detail. As in current codes the latter factor is independent of the geometry of the
shell, this aspect is enhanced by introducing a new design concept for obtaining
a reduction factor depending on the length. The proposal is based on numerical
and experimental evidence. The consideration of a larger reduction factor for
long cylinders, significantly increases the critical buckling load for externally
pressurized cylinders.

o Foundation: In a first step different soil and soil-structure interaction models are
analysed and discussed based on numerical calculations. For comparison differ-
ent loading experiments are executed with a reduced scale test set-up for tubular
piles. In the following investigations, soil models are chosen which are efficient
in use but also take all necessary parameters into account. It is shown that for an
increase of the buckling load of a cylinder subjected to axial load, a far larger
stiffness of the surrounding material is necessary in comparison to an externally
pressurized cylinder. The rather large wall thicknesses of the cylinders empha-
size this behaviour. In order to obtain the horizontal modulus of subgrade reac-
tion for sand subjected to small strains laboratory experiments are performed
(Bender Tests). Based on additional test results from the reduced scale tests and
numerical analyses different proposals are given for considering the supporting
effect of the soil. In this context the supporting effect in radial, circumferential,
and axial direction is discussed separately.

e Geometrical imperfections: The aspect of geometrical imperfections is investi-
gated with the aim to determine the influence of radial shape deformations and
uneven supports on the buckling load of cylinders. For this study the special
problem of combiwalls is set aside and the problem is studied for the general
case of a loaded cylindrical shell. The intention is to obtain a better founded
knowledge of the buckling load reductions arising from uneven supports, as it is
assumed that this aspect does not play a decisive role for combiwalls due to the
surrounding soil. Numerical investigations show that geometrical imperfections
do not influence the carrying capacity of tubular piles in combiwalls subjected to
axial loads considerably.

Current design rules for shell buckling provide no solutions for many real constructions
or result in a significant underestimation of the carrying capacity by proposing rough
approximations. Thus, for the case of combiwalls improved assessment rules based on
the different aspects influencing the carrying behaviour in a different way are derived
and given as design proposals for improving and extending the existing design codes on
shell buckling.
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1 Introduction

1.1 General

Mega ships of the new generation (e.g. ocean liners, freighters or tank ships) require
large depths for manoeuvring due to their enormous draughts. Existing ports rarely
provide these depths, leading to several planned harbour constructions. If made of steel,
such harbour structures are commonly constructed using combiwalls consisting of large
diameter and very long tubular piles as primary elements connected to sheeting as
secondary elements (Fig. 1.1 and Fig. 1.2). The tubular piles are manufactured from hot
rolled coils (=10 —24 mm) by welding (helically or longitudinally) in a diameter D
range of 900 — 2400 mm. Steel grades with yield stresses between 350 N/mm’ and
480 N/mm? (API X70) are commonly used. The usual length of the piles ranges from 20
to 30 m. In the future, for the deeper quay walls, lengths up to 40 m can be provided.

Until now these tubes have been designed in Europe using mainly a verification of the
bending stresses (yielding in the extreme fibre). So far no failure of a structure occurred
due to buckling of such a tubular pile. Shell buckling was hardly ever taken into account
because the geometrical slenderness (D/f) was smaller than 100.

1.2 Problem

The assessment procedure will change with the introduction of the Eurocodes. The
design of retaining walls and piling will be governed by Eurocode 3, part 5: Piling
(EN 1993-5) for the resistance of steel members and by Eurocode 7, part 1 (EN 1997-1)
for the geotechnical side. For the determination of the design resistance of tubular
members, EN 1993-5 refers to Eurocode 3, part 1-1 (EN 1993-1-1). From table 5.2 it
transpires that tubes with a slenderness D/t of

D/t>90s>  with &=.[235/7, and f, [N/mm?] (L.1)

are class 4 members and have to be verified against shell buckling according to
Eurocode 3, part 1-6 (EN 1993-1-6). The criterion leads e.g. to the following limiting
D/t-values for the various steel grades: f, =355 N/mm’> = D/t = 59.6 and
fy =480 N/mm’ = D/t = 44.1. Thus, all tubes used until now in standard combiwall
projects appear to be class 4 members requiring a shell buckling verification. This
verification leads to tubular piles, which are 10 % - 20 % heavier than the piles used
today. The reasons for this conservative design are:

e The design rules given in EN 1993-1-6 do not take into account the stiffening
effect of the soil located both inside (plug effect) and outside (embedded part of
the retaining wall or pile) of the driven tube;
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Fig. 1.2: Cross-section of an example combiwall
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e The rules have been established mainly for extremely slender shells (about
D/t>300) where shell buckling is prevailing, whereas the tubes used for
combiwalls are more subjected to plastic bending at failure.

e The circumferential pressure due to soil and water is not constant along the
perimeter (and the length) of the tube. Taking the maximum value for the
verification leads again to conservative results.

e Also the approach of superposing the maximum values of the different stress
components seems quite conservative for the specific stressing of tubular piles.



1.3 Outline of the study 3

e On the other side it is important to be aware that the boundary conditions
considered in EN 1993-1-6 do not cover the boundary conditions prevailing in
piling.

Furthermore, inconsistencies emerge in the definition of limit imperfections for the
definition of quality classes between the product standard EN 10219 and the relevant
design standard EN 1993-1-6. The introduction of forces resulting from earth and water
pressure via infill sheeting is specific to combiwalls and has to be considered.

1.3 Outline of the study

The objective of this study is to establish the scientific basis for dedicated design rules
of large diameter piles taking into account shell buckling. This section outlines the
necessary steps in order to derive a proposal for new buckling design rules for the
complex cases considered.

The problem involves the interaction of two major fields of constructional engineering,
namely geotechnical engineering regarding earth pressures, soil properties, etc., and
structural engineering regarding shell buckling. Both fields shall be briefly introduced
covering mechanical fundamentals such as the stability of shells and the Finite Element
Method (FEM), an essential tool in the investigations. This introduction shall then be
followed by an overview of the state-of-the-art regarding shell buckling, soil models
and approaches to soil-structure interactions for establishing a fundamental basis for the
investigation. This design problem can be illustrated in a typical combiwall structure
calculation according to common practical design codes. The differences between the
current approach and the changes evolving with the implementation of the Eurocode
shall be highlighted for detailed follow-up studies. In the next steps several issues,
which are believed to significantly influence the problem, are planned to be investigated
more in detail.

Since the load transfer mechanisms of a constructed combiwall are similar to that of a
laterally loaded pile, it is intended to simplify it respectively for convenience and
efficiency. Based on the theoretical fundamentals and the state-of-the-art summary of
soil models, different soil models and soil-structure interaction models can be analysed
and compared in numerical studies. Purpose is to define a model for the subsequent
studies that is as simple as possible but sufficiently detailed to include all necessary
parameters. Experimental tests using reduced scale models and additional back-
calculations are going to be necessary to verify the predictions from this model.

Because the effect of geometrical imperfections may be different for a shell structure
embedded in soil, this aspect has to be studied with special attention being paid to the
influence of radial and/or uneven boundary imperfections in combination with axial
stresses. A less detrimental effect of imperfections can lead to smaller reduction factors
in the buckling assessment.
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The next issue is the aspect that the buckling rules in the design procedure do not
consider any stiffening effect of the soil located both inside and outside of the tubular
pile. Because the surrounding soil may increase the carrying capacity of cylinders,
axially loaded and/or externally pressurised cylindrical shells in interaction with soil
this aspect shall be investigated by numerical means. Experiments measuring the
modulus (bender element tests) of sand can serve for a further validation. The intention
is to adapt the results for obtaining larger buckling strengths of cylindrical shells with
supporting boundary conditions.

Another issue making the tubular pile embedded in soil different from standard shell
buckling problems is the complex load transfer mechanism. Investigations over the
entire pile length and locally at the points of the maximum moment regarding these load
transfer aspects can serve to justify the application to current design codes on shell
buckling. Further, the effect of non-uniform stress distributions has to be discussed
based on the results from the planned reduced scale tests.

Since it is believed that in the assessment the most unfavourable influence on the
buckling strength of the tubular piles arises from the external pressure, the influence of
non-uniform external pressure in circumferential and meridional direction on the shell’s
resistance and on the load case with respect to the Eurocode shall be investigated
numerically. Additionally, experiments are planned for evaluating the buckling
behaviour of very long shells for covering such exceptional cases.

Finally, a proposal for improved buckling design rules for special cases such as tubular
piles in combiwalls can be developed based on the results of the previous numerical and
experimental investigations. The changes need to be highlighted in a comparison
between the old and the proposed new design calculation.
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2.1 Stability of shells

A shell is defined as a curved surface structure and can be commonly found in nature as
well as in classical architecture. The characteristic of using membrane stresses instead
of bending stresses for transferring imposed loads makes shells more economical in
comparison to e.g. plates stiff structures for transmission of loads. As a consequence of
the load transfer mechanism in shells, these structures may be constructed with very
small wall thickness. Shell structures appear as single curved shells (e.g. tanks, silos,
columns, chimneys) or more complex as double curved shells (e.g. roofs, vehicles,
water towers). Shells can be very thin-walled and are often subjected to compressive
stresses making them susceptible to buckling. These structures may have difficulties
coping with local loads since they induce local bending moments which have to be
taken up by the far smaller bending resistance. Generally, structural members subjected
to loads are prone to failure due to buckling if a small disturbance or infinitesimal load
increment forces the structure to change from a stable equilibrium to a neutral or
unstable equilibrium.

The classical cases as the conical shell and especially the cylindrical shell have been the
topic of numerous research projects in the 20" century. Intensive research in the field of
aerospace (e.g. rockets) had a positive impact on shell buckling research with new
findings to be used in constructional engineering. Beginning of the 20™ century first
analytical solutions were derived and later supported by test results. From the second
half of the 20™ century numerical analyses developed, providing nowadays an
indispensable tool besides theoretical and experimental approaches for the investigation
of shell stability. The large discrepancies found, especially for axially loaded cylindrical
shells, between the results of theoretical and experimental predictions pushed
researchers to investigate the influence of imperfections and to base the design on
experimental results.

The aspect of stability is briefly discussed in the following. A shell subjected to a
sufficiently small load is in a stable elastic equilibrium (see v. Mises, 1923). If this base
state of the shell is disturbed by imposing an infinitesimal displacement or incremental
load, additional external forces are needed to cope with the correlated stresses and
strains evolving from the disturbance. In case such external forces appear, the system
remains in a stable equilibrium. If the disturbance does not lead to additional
disturbance forces, a critical load is reached (neutral equilibrium). Further loading of the
system results in an unstable equilibrium related to changes of the initial position of the
shell in order to find an adjacent path of equilibrium.
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Fig. 2.1: Load-displacement curves for an axially loaded cylindrical shell (static loading)

Fig. 2.1 depicts some possible load-displacement paths for axially loaded cylindrical
shells made of linear elastic material. The abscissa shows the vertical displacement and
the ordinate shows the dimensionless load factor A. The dimensionless load factor A
corresponds to the applied load normalized over the theoretical carrying capacity, e.g.
for a buckling problem the theoretical buckling stress. Beginning of the 20" century
Lorenz (1908) and Thimoshenko (1910) developed approximations for the bifurcation
load of a perfect shell. Fliigge (1932) derived solutions for the buckling equations
(classical linear shell buckling theory).

Real shell structures may fail significantly below the theoretical buckling load of a shell
(horizontal dotted line in Fig. 2.1) due to unavoidable shape deviations for real
constructions. The understanding of the imperfection sensitivity is based on the
pioneering work by Koiter (1945). The stability problem may be governed by a
symmetric (stable or unstable) or asymmetric buckling point. Fig. 2.2 shows a load-
displacement curve according to Fig. 2.1 (left) and the evaluation of the imperfection
sensitivity for the different stability cases (right). For the unstable cases a high
imperfection sensitivity can be identified, i.e. a small change of the imperfection
amplitude Ae results in a drastic reduction of the load factor A. The response of the
asymmetric buckling point follows a parabolic curve and the function A for the stable-
symmetric case follows locally the so-called “two-thirds” law according to Koiter
(1945), i.e. A is a function of &*”. Therefore, the stable-symmetric case shows lower
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imperfection sensitivity than the asymmetric case as e.g. seen for an imposed
imperfection & (Fig. 2.2).

A

theroetical load-
displacement path

asymmetric
— — - stable-symmetric
unstable-symmetric

\J

0 v 0“9‘1“%

Fig. 2.2: Influence of imperfection amplitude &— imperfection sensitivity

Since the axially loaded and the externally pressurized cylinder are problems with
asymmetric bifurcations, the problems can be defined as extremely imperfection
sensitive. The carrying capacity of a thin-walled membrane shell under compression is
either limited by a buckling failure (sudden change of the shape) in form of bifurcation
or a limit point buckling (snap-through). For limit point buckling the load-deflection
path reaches a zero slope or continuously differentiable maximum (dA/dv =0). The
failure mode is also referred to as snap-through failure because there is no bifurcation of
the equilibrium path but for continued loading the structure may ‘“snap” to a new
equilibrium position at a different point of the load-deflection path. In case of
bifurcation buckling the structure jumps to an adjacent equilibrium path which
intersects with the current load-deflection curve or equilibrium path. At the bifurcation
point the structure is not continuously differentiable (dA/dv # 0). For real structures, i.e.
as soon as geometrical and structural imperfections are considered, the two failure
modes are close together and difficult to distinguish. Bifurcation buckling is rather
theoretical, since in practical design mostly snap-trough occurs or the problem turns out
as a simple stress based problem (monotonically increasing load-deflection path).

2.2 Fundamentals of continuum mechanics

2.2.1 General

In this chapter some basic equations of continuum mechanics are stated because they
are needed for the derivation of the finite element method (FEM). For more details the
reader is referred to the work by J. and H. Altenbach (1994), Olivella and de Saracibar
(2000) and Parisch (2003). Solid continua are defined as bodies with abstract
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hypothetical continuous material properties. The material point Py is an arbitrary point
in the body in which the entire material behaviour can be represented, i.e. the material
point serves as reference for all state variables. The continuum model is defined by
using the three formulations: displacement-strain relationship, strain-stress-relationship
and equilibrium of the continuum.

2.2.2  Description of movement (displacement-strain relationship)

The description of the movement in space is needed for the description of a body.
Kinematics include on the one hand the rigid body motion defined as the pure change of
position (new position P;) and thus without influencing the stresses in the body, and on
the other hand the distortion of the body directly influencing the stress state. Therefore,
a description with independent objective state variables is postulated. The current
geometrical position of a body is here named as configuration (,C and ;C (Fig. 2.3).

X, X

Fig. 2.3: Configurations in continuum mechanics

Based on the Cartesian coordinate system in Fig. 2.3 the position of the point P can be
given using Lagrange coordinates (material coordinates) X or Euler coordinates (spatial
coordinates) x

X=X'e,+X’e,+X e, =X'e, (2.2)
xlee, +x2e2 +x3e3 =x'e, (2.3)

The Lagrange description is mainly used in solid continuum mechanics since a specific
property (e.g. density) of a point is looked at over the course of time. The Euler
formulation describes the change of property at a fixed position in space over the course
of time and thus is commonly used in the field of fluid mechanics.

The Lagrange description of motion as a non-linear transformation is written as

x =x(Xt) (2.4)
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The spatial displacement field u of the present position and the reference for > 0 is
u(x,t)=x-X(x,1) (2.5)

For inverting the unique transformation for any point in time the Jacobian
determinant J, which can be described with the deformation gradient F has to exist

o
det(é) = det(F)=J >0 (2.6)

The deformation gradient F contains information on the relative movement over the
course of time 7 for all material points and can be written as

==+ 2.7)

Based on the deformation gradient F the symmetrical Green-Lagrangian strain tensor E
can be defined as

Ezé(FT-F—I) (2.8)

For a deformation gradient F equal to I, the Green-Lagrangian strain tensor E becomes
zero. As postulated no strains appear for pure rigid body motion (F = I). Assuming the
hypothesis of small or infinitesimal deformations the Green-Lagrangian strain tensor E
becomes the strain tensor for small deformations & The correlation between
displacements and deformations and strains for continuum mechanics is essential for
back-calculating strains from displacements. For the correlation between strains and
stresses further equations are needed, namely a material law or constitutive relationship.

2.2.3  Constitutive equations (strain-stress relationship)

Besides the geometrical description some postulates or conservative equations have to
be fulfilled in continuum mechanics independent of the size of displacements or
deformations. The postulates include the conservation equations of mass, momentum
and angular momentum and the two fundamental theorems on thermodynamics
(conservation of energy and entropy). For determining all unknowns, further equations
describing the material properties are needed: the constitutive equations. For many
cases the equations can be reduced to the thermo-mechanical constitutive equation
relating stresses to strains and the conservation equations of mass and momentum. The
strain-stress relationship for a linear elastic isotropic material (Hook’s law) can be
derived for small strains ¢ as

o :ﬂ—ETr(s

(L+ p)(1-24)

with the Young’s modulus £ and the Poisson ratio .

E
)1+m8 (2.9)
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2.2.4  Equations of equilibrium

Given a body subjected to external loads and displacements, a formulation for the
resultant stresses, strains and displacements is needed for which the equilibrium is
maintained. Derived from the conservation equation of momentum (Cauchy equation)
the equilibrium of a continuum can be expressed as boundary value problem by

2

v-a+pb:paaT§‘ VxeV (2.10)

with the density p and the mass forces b and the equation for the equilibrium for the
stress boundary conditions (Neumann boundary conditions) valid over the surface 7

c-n—t =0 Vxel, (2.11)

in which ¢ represents the surface loads and n the normal unit vector. For the equations
the displacement boundary conditions (Dirichlet boundary conditions) have to be
fulfilled over the surface 7,

u=u  Vxel (2.12)
1.e. all admissible displacements are defined with u'. The equations (2.10) to (2.12) are
called the strong formulation of equilibrium for the boundary value problem because all
equations are defined for each surface and volume element. The solution of this
boundary value problem by using numerical approximations is the concept of the finite
element method.

2.3 Finite element method

2.3.1 General

The modelling of structures in this work is performed by using the well-known
commercially available program ABAQUS (Hibitt, Karlsson & Sorensen, 1998) which
uses the finite element method (FEM). The program consists of the three moduli pre-
processor, solver and post-processor. For pre- and post-processing the modulus
ABAQUS/CAE is applied as a simple and consistent interface for working on the
modelling and displaying results calculated by ABAQUS.

2.3.2 FEM formulation

For most engineering cases the boundary value problem as described by equation (2.10)
to (2.12) has no closed form or analytical solutions. Thus, assumptions and
approximations are made in order to obtain solutions. By dividing the object continuum
into discrete elements the FEM provides a tool for solving the problem by numerical
means. There are several methods tackling the problem (Galerkin method, calculus of
variations, principle of virtual work). In this approach the Galerkin method is applied
based on the equilibrium in equation (2.10). The functional G(x,7) is formulated for
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equation (2.10) using a so-called trial function 7 which fulfils the boundary conditions
from equation (2.11) and (2.12). The method is based on the assumption that the
equilibrium is satisfied averaged over the integral, and thus the functional is set equal
Zero:

g(x,q):zJ‘{V-a+p(b—%ﬂ-qu+ '[[O'-n—t*]-qu:O (2.13)

vV I

Redrafting the equation (2.13) by applying the Gauss theorem and using

* az
b =b—§§‘ (2.14)

it can be written as the so-called weak formulation of equilibrium (Galerkin equation):

j[a:Vn]dV=jpb* -ndV + It* -ndl”
vV

v I

(2.15)

The weak formulation of equilibrium can also be obtained by applying the principle of
virtual work. As a consequence the values of the functional can be interpreted as work
or energy, i.e. the internal virtual work is equal to the external virtual work. The
principle has to be understood as an approximation for the differential equation (2.10)
since no real energy conversion occurs. The canonical form of the Galerkin equation or
the principle of virtual work can therefore be written by replacing the arbitrary trial
function 7 with the virtual field of displacement du.

[lo:Voulav =[pb"-oudv+ [t oudr

U v JANS va J

5/‘41.”[ = 5ﬂext (2 . 1 7)

(2.16)

Based on the canonical form of the Galerkin equation (2.16) the stiffness matrix is
introduced in the next step. Further redrafting with deriving the virtual work and
discretizing the weak formulation of equilibrium (2.15) for both sides separately a
general algebraic set of nonlinear equations can be written for the complete system:

od" -(Kd)=od" -F,,, (2.18)

with the global stiffness matrix K, the global node displacements d, the virtual global
node displacements od, and the energetically equivalent global node vector Fjyug
incorporating external loads. For the case that the global stiffness matrix K does not
depend on the displacements (linear case) the unique solution for the unknown nodal
degrees of freedom is:

d=K'F,, (2.19)

For the solution of the linear matrix system different direct and indirect algorithms can
be used, e.g. GauB}, Jacobi, GauB3-Seidel. A point of stability occurs if the global node
vector Fj,,; disappears and a homogenous set of equations remains. The nontrivial
solution of this system leads to the points of stability.
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In this work different types of analyses are performed. Static analyses are used for
investigating linear load-displacements and general preliminary calculations. For the
stability investigations two different methods are used. On the one hand the problem
can be approached using a linear eigenvalue analyses resulting in eigenvalues and
eigenmodes for the investigated case. On the other hand path algorithms can be used for
performing a non-linear load-displacement analysis. In the latter case imperfections are
needed for perfect systems in order to initiate a failure.

2.3.3 Eigenvalue analysis

Eigenvalue analyses can yield good results for stiff systems responding fairly linearly
up to the point of stability (see Fig. 2.1). Still, this method can provide valuable findings
regarding the shape of failure for other problem. The load rendering the value zero for
the determinant of the stiffness matrix can be derived from:

Kd =0 (2.20)
Expanding the equation into a Taylor-series up to a linear form leads to

(Ko + Ay K )¢1 =0 (2.21)

where K is the material and initial stiffness matrix in which preloads may be included,
and K, is the differential stiffness matrix arising from the incremental load increase.
The corresponding eigenvalues and buckling eigenmodes are defined by Agy; and ¢.
The critical buckling load P, is the sum of the initial load Py and the product of the
load increment Q; and the eigenvalue Azy ;.

P.,=FK+ /IEV,I' 0, (2.22)

Since the bifurcation analysis is a linear procedure no geometrical or material non-
linearity can be taken into account. Still, this procedure can be used for investigating
problems with geometrical and material non-linear response. For this type the analysis
is split into two steps. In the first step a preload is applied to the structure bringing it
close to the point of buckling and taking geometrical and material non-linearity into
account where required. The magnitude of the preload needs to be determined by trial
and error. Subsequently, in the second step a linear eigenvalue analysis is performed
based on the non-linear base state calculated in the first step. For a pre-buckling state
close to the critical point of stability, this so-called non-linear bifurcation analysis yields
good results. For all eigenvalue analyses in this work non-linear bifurcation analyses are
performed.

2.3.4 Non-linear load-displacement analysis

The non-linear equations arising for discrete systems from equation (2.19), cannot be
solved explicitly and require special solver algorithms. The non-linearity demands the
application of iterative solver algorithms consisting of an iteration method for obtaining
equilibrium and an equation solver. Generally, a path-following algorithm is split into
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discrete load increments and an iteration method integrated in each load increment.
ABAQUS does not use the standard solver (Newton) but the more elaborate solver by
Wemper (1971) and Riks (1972). In contrast to the Newton method, the so-called arc-
length method includes the load level. It has the advantage that it can smoothly follow
any path of equilibrium including passing points of stability. Another important aspect
is that the load increments are not fixed but are automatically adjusted to the path of
equilibrium and the rate of convergence. ABAQUS uses a modified Riks method based
on Crisfield (1981), Ramm (1981) and Powell and Simons (1981). In ABAQUS the arc
length Al (Fig. 2.4) is an automated parameter which can be regulated by a minimum
and maximum arc length.

L
Poad) A 7°

equilibrium path

4% >
u (displacement)

Fig. 2.4: Arc length method by Wemper and Riks for one load increment

Fig. 2.4 depicts the iteration procedure within a load increment schematically. Starting
from the point Sy an orthogonal solution path is defined by the initial tangent stiffness
K, and the restricted arc length Al. Along the solution path the individual points of
solution Z; of the increments can be found. The next point of solution is obtained by
applying the newly determined tangent stiffness K; (equivalent to the Newton-Raphson
method) to the new found starting point S;. The relating loads are defined by the
implemented load increment control and do not remain constant in contrast to the
standard algorithm. The iteration process is continued until a specified convergence
error is satisfied. In this context the starting points coincide with the starting points
according to the criteria of convergence. More detailed information on the
implementation of the method in ABAQUS can be found in Hibitt, Karlsson and
Sorensen (1998).
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2.3.5 Contact modelling

This section deals with a brief overview of the contact modelling available in ABAQUS
and used in this work. More details can be found in the appropriate literature (e.g.
Belytschko et al., 2003).

Two methods are available for applying interface modelling: surfaces or contact
elements. Most problems (here e.g. soil-structure) can be modelled using surface-to-
surface contact. But discrete contact elements such as gap elements (here e.g. imperfect
shell boundaries) may in some cases be a more flexible method of modelling contact. In
ABAQUS the surface based contact can use one of the three approaches: finite-, small-
or infinitesimal-sliding formulation. For the investigated cases finite-sliding is assumed
allowing the contact surfaces to arbitrarily separate, slide, and rotate. The other two
formulations may be numerically less extensive but only allow restricted relative
movement or rotation of the contact pair. The kinematics are defined using a pressure-
overclosure for which currently two methods of constraint enforcement can be used in
ABAQUS: the classical Lagrange multiplier method or the augmented Lagrangian
method. The classical Lagrange multiplier method of constraint enforcement does not
allow any penetration of the surfaces. The augmented Lagrangian method uses the
penalty method during each iteration. Iterations continue until convergence of the
solution is obtained with the penalty method. The penalty method applies an additional
stiffness (penalty value) for enforcing the contact constraints. In the mechanical contact
simulation the interaction between the contacting bodies is defined by assigning a
contact property model to the contact interaction in which e.g. normal and tangential
behaviour can be defined with friction and damping.

2.3.6  Finite elements in geotechnical problems

In this section some special aspects are raised which appear in numerical analyses while
tackling geotechnical problems.

The discussed partial differential equations are of the type elliptical partial differential
equations often described using the calculus of variations. In contrast to the elliptical
partial differential equations appearing for steady state problems (standard
constructional analyses), parabolic partial differential equations may appear in certain
fields of geotechnical engineering. The latter equations appear for problems similar to
steady state problems but only for transient considerations. Parabolic problems may
arise in geotechnical engineering but will not be discussed in this work since all
analyses are performed considering steady state conditions.

The derivation of the equations in the previous sections was mainly based on
considering a conventional structural material (e.g. linear isotropic material). Steel
properties exhibit a mostly linear response up to yielding and can be classified in the
latter category whereas soil can hardly be included in this group. Soil and in this context
especially sand is a material that changes its properties by rearrangement of particles
that may interact through mainly frictional mechanisms. The far more complex material
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behaviour of soil demands a numerically more elaborate model. From the numerical
standpoint the implementation of a constitutive model comprises the integration of the
material state at an integration point over a time increment during a non-linear analysis.
In the finite element analyses it is assumed that the material behaviour is completely
defined by each material point (integration point). For the investigated cases only
implicit calculations are performed and therefore the derivation of a precise material
stiffness matrix is important for determining the Jacobian of the non-linear equilibrium
equations. The deformation gradient F from the analyses is passed to the constitutive
routines. Based on the state variables a material contribution to the Jacobian is
calculated. For complex soil models the material may be defined as an incremental
model and therefore implicit analyses require integration within the subroutine. Thus,
besides geometrical equilibrium iterations as discussed in the previous section
additional solvers are needed within the routines to perform material iterations. This
additional algorithm has to be called at every integration point and leads to a significant
increase in computing time. In ABAQUS a possibility of programming a subroutine is
given in order to implement any mechanical constitutive model. More common material
models are included in the existing library. As a consequence of the complex material
models, geotechnical problems need to be tackled using three-dimensional modelling in
order to cover the reaction of the soil accurately.

A further concern specific to geotechnical problems in finite element analyses is the
initial stress state. Problems involving soil need an initial stress state arising e.g. from
self weight to be imposed before performing an analysis. Generally, in the first step of
the analysis a geostatic step with applied gravity loads is performed in order to obtain an
equilibrium for the system and to produce ideally no displacements. However, for many
problems it may be very difficult to obtain an exact solution because of an unknown
initial stress state, and therefore the geotechnical step may not find equilibrium.

In this context the importance of the loading history needs to be emphasized as it
influences the response of the soil. Mostly, it is very difficult to obtain information
regarding the loading history, and even if available the problem of considering it in the
analyses remains.

In defining or working on elaborate soil models several aspects need to be taken care of
and are very specific to these models. Here, some aspects are mentioned for
completeness. Besides the influence of the stresses on the response (incremental model,
initial stress state), another complexity in dealing with soil models is the dependency of
the soil’s stiffness on the stresses. Here, the term stiffness of the soil or the modulus of
the soil is used for describing the non-linear relationship between stresses and strains.
Similarly, the resistance of the soil is highly stress sensitive. The aspects of stiffness and
resistance may be sufficient for describing most material used in civil engineering. In
contrast to these models, soil models essentially need to take the volumetric behaviour
into account, too. At this, point especially the dilatancy of granular materials is pointed
out, i.e. a change in volume due to shearing. Embedding these behaviours in finite
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element analyses are important for reproducing reliable finite element analyses in the
field of geotechnical engineering.



3 State-of-the-art

3.1 General

The summary of previous investigations is composed of the investigations on the
stability of cylindrical shells, material models for soil and approaches for modelling the
soil-structure interaction. These three aspects shall be combined and verified in order to
use state-of-the-art research in all three parts for developing an interdisciplinary solution
for the entire problem.

Contemporary methods allow the modelling and numerical investigation of soil in
combination with the buckling phenomena. Empirical findings can be used for
validating the results and for leading to more efficient modelling.

3.2 Stability of loaded cylindrical shells

3.2.1 Axially loaded imperfect cylindrical shells

Stability problems of thin-walled cylindrical shells made of elastic and elastic-plastic
materials have been dealt with by various researchers with analytical, numerical, and
experimental investigations. The major interest has always been the axially loaded
cylindrical shell. Within these studies the shells were investigated by assuming classical
boundary conditions which can also be found in the design codes for shells. This section
outlines previous investigations in the field of shell buckling, focussed on axially loaded
cylindrical shells and the interaction problem between soil/bulk material and shells as
studied particularly for the case of silo structures. For classical boundary conditions
shell buckling has been thoroughly studied for nearly a century (see e.g. Schmidt,
1991), and the most important developments are summarized in the following for the
sake of completeness. Still, for special circumstances or boundary conditions as studied
here, there are few literature references available.

Beginning of the 20" century Lorenz (1908) and Thimoshenko (1910) were the first to
study the problem of shell stability and developed the linear shell theory. Since a shell is
the perfect structure for transferring loads as membrane forces, it became interesting for
the construction and aerospace industry. Studies found large discrepancies between the
analytically derived carrying capacities and the data gained from experiments. These
differences could be traced back to geometrical imperfections (manufacturing,
construction, joints, etc.), structural imperfections (residual stresses from welding, non-
homogeneous material properties, material defects, etc.), and imperfections in the
boundary conditions (loading, displacements, foundation, etc.). Thereby, imperfections
were commonly related to deviations in modelling. In contrast to the practical design, it
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is of no importance in research whether the deviations are unknown variables, or known
variables neglected for simplifying the model.

The study by Rotter and Teng (1988) describes several effects influencing the stability
of shells. The field of imperfections was emphasized because their influence on the
carrying capacity of an axially loaded shell can be detrimental. The investigation was
limited to the coverage of structural and geometrical imperfections with an analytical
and numerical model. As a result they defined different radial geometrical shape
imperfections arising from circumferential welds on cylindrical shells to be used for
numerical analyses.

Most researches for axially loaded cylindrical shells are based on classical boundary
conditions. In reality imperfect edges lead to a non-uniform load introduction. This
effect may be just as detrimental to the carrying capacity of cylindrical structures as
radial geometrical imperfections of the shell. The influence of uneven supports was
revealed relatively late (Saal et al., 1979). Saal et al. (1979) performed tests with
internally pressurized cylindrical steel shells. The specimens for the experiments were
precisely and very carefully manufactured, and the buckling loads were compared to
predictions given in codes and guidelines.

Knebel (1997) confirmed by numerical means that uneven edges of cylindrical shells
(imperfect boundary conditions) lead to similar reductions of the carrying capacity as
radial deviations of the geometry (geometric imperfections).

Uneven load introduction and the effect of non-uniform stress distributions of axial
membrane stresses were investigated by Bijlaard and Gallagher (1959). The problem of
uneven supports and the problem of a non-uniform axial stress distribution are similar
but different as shown by the previously mentioned researches. They highlighted that
uneven supports cannot be represented by a derived non-uniform axial stress
distribution.

3.2.2 Loaded cylindrical shells in interaction with another medium

The first investigations dealing with the buckling phenomena of shells in combination
with another medium were performed in the field of aerospace research, as this problem
appeared for rockets filled with solid fuel. Federhofer (1937 and 1954) derived
analytical solutions based on the general theory by Fliigge (1932) for axially loaded
cylindrical shells with an elastic core. In the 1950s, aerospace engineers Seide (1962)
and Yao (1962) investigated cylindrical shells with elastic cores by proposing more
elaborate analytical solutions based on more complex approaches. Their work was
accessible to the public not until the 1960s as their findings were classified confidential.
Further analytical work in the field of aerospace include studies by Zak and Bollard
(1962) who took additional circumferential loads into account, and Zak and Willimas
(1962) who worked with a viscoelastic core. Kempner (1954) and Almroth and Brush
(1963) analysed the post-buckling behaviour of axially loaded cylindrical shells with an



3.2 Stability of loaded cylindrical shells 19

elastic core. The derived post-buckling minima were suggested to be used as lower
bounds for calculating the carrying capacity, i.e. as actual buckling load.

Esslinger and Pieper (1979), Rotter et al. (e.g. 1988, 1989), and Knoédel and Schulz
(1988) performed experimental and numerical investigations concerning the stability of
silo structures. Esslinger and Pieper (1979) highlighted the increase in carrying capacity
for a granular filling (sand) in contrast to the more fluid-like filling with cement. Rotter
et al. published several test results showing that for cylinders filled with granular
material far larger buckling than for equivalent hydrostatically loaded cylinders can be
obtained. It was shown that the actual buckling loads may exceed the theoretical
buckling loads. The tests by Knddel and Schulz (1988) and their investigation on the
rotationally symmetrical case with a linear elastic support of the silo wall due to the
bulk cargo provided the basis for design proposal by Knddel (1994) for the assessment
of axially loaded silos filled with granular material. He investigated the stability of
cylindrical steel shells for a range of 7/¢ between 250 and 1000. Knodel (1994) validated
his numerical analyses with additional experiments using cylindrical shells of 1.2 m
diameter filled with sand. The interaction between soil and structure was modelled
using modified Winkler springs with a tri-linear material model. The study revealed a
significant increase of the carrying capacity due to the presence of the soil on the inside
(supporting effect and internal pressure).

Schweizerhof and Ramm (1987) investigated the influence of follower forces, i.e. the
direction of the load rotates with the rotation of the surface, on the carrying capacity of
hydrostatically loaded shells. In their work the influence of displacement dependent
loads was thoroughly investigated. The paper also covered comparisons with design
codes regarding wind loads. Rotter and Zhang (1989) investigated the rotationally
symmetrical case with a linear elastic support of the silo wall due to the bulk cargo, and
provided the theoretical basis for subsequent numerical and experimental studies. Zhang
and Ansourian (1991 and 1992) performed experiments with axially loaded, very small,
scaled-down silo models filled with different granular materials. Their numerical
comparisons have to be interpreted carefully as no measurements of the imperfections
were performed. Generally, very large increases of the buckling load due to the
presence of granular fillings were obtained. Formulas for relating the internal pressure
to the bulk storage stiffness were proposed. A different form of soil-structure interaction
was investigated by Wunderlich et al. (1994), who performed research in the field of
tank structures subjected to loadings arising from earthquakes. In this context the
buckling loads are mostly characterized by the foundation which was described using a
linear elastic — perfectly plastic material law for the soil. Further, they introduced
models for considering the unevenness of boundary conditions in numerical analyses.

Knebel and Schweizerhof (1995) generalized the problem to a not rotationally
symmetric case, and showed the necessity of non-linear approaches for the interaction
between bulk cargo and shells structure, but also stressed the lack of information
available in this matter.
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Ummenhofer’s (1997) research was based on the work by Knddel (1994), and dealt
with the imperfections in thin-walled steel silos subjected to the loads arsing from bulk
cargo. He performed experimental and numerical investigations on the influence of
elastic foundations. Ummenhofer (1997) proposed a mechanical model for evaluating
the carrying capacity by especially taking the imperfection sensitivity of axially loaded
cylinders into account.

Schweizerhof et al. (1998) summarized his work from (1987) and (1995), extended the
study and pointed out that with transient analyses reliable predictions can be obtained
for the post-buckling area. The topic of a bulk cargo — structure interaction was not
further detailed in this work.

3.3 Material models for soil

A major goal of research in soil mechanics has always been the search for a
sophisticated material law, which would represent all relevant material properties and a
realistic soil behaviour. Nowadays engineers in the field of geotechnical engineering are
able to construct detailed models of the soil by means of finite element programs using
solid and also infinite elements. The computational power allows the user to work with
complex three-dimensional problems involving the modelling of the soil. For the latter
step, the user needs an implemented material model as mentioned in the introductory
sentence. Material laws with complex descriptions for modelling the soil only evolved
slowly. The associated formulation for taking the volume change of soil subjected to
shear into account influences the normal stresses significantly. This aspect was
implemented relatively late. Collapse modes with plasticity models (e.g. Mohr-
Coulomb or Drucker-Prager) or soil specific characteristics as dilation or flow rules
were investigated in soil mechanics. In Cambridge in the 60s for example the Cam Clay
theory was developed based on the elastoplastic theory (see e.g. Atkinson, 1993). More
recent models consider for example objective strain rates or stress- and density
dependent material behaviour.

Common material models based on continuum mechanics include the hyperelasticity,
the hypoelasticity, the plastic theory, the endochrone theory, the hyperplasticity, and the
hypoplasticity. The main models key features are listed in an overview in Fig. 3.5.

A material is defined as Cauchy-elastic if the deformations are independent of the
loading history, and if this is valid for any coordinate system (materially objective). A
special form is the hyperelasticity for which the material is assigned minimum one
potential (here strain energy function) and thus is defined as conservative. The
hyperelasticity is as it’s name reveals based on a “too high” elasticity and combines it
with a reversibility and a constancy of entropy. Materials still exhibiting elastic
behaviour for very high strains can be well described using the hyperelasticity. Such a
material for example is an elastomer. Other examples include formulations for clay (e.g.
Niemunis and Cudny, 1998).
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In contrast to the hyperelastic material, the stresses for the hypoelasticity are path
dependent, i.e. a correlation between the current and the reference configuration is
needed. The theory introduced by Truesdell (1955) can model unlimited yielding, as its
name implies a “too small” elasticity. In the field of tunnelling often the Duncan-Chang
and the Schad material models are used which are both based on the hypoelastic
material model.

In the basic form of the plastic theory frequently used for soil problems, the body is
described with a scleronomic material model consisting of elastic and plastic
components. Plastic deformations are non-reversible, i.e. non-conservative, and energy
dissipation takes place. For soil modelling non-associated flow rules (plastic yielding is
not associated with the yield surface) are necessary for describing the behaviour
correctly.

The hyperplasticity arises from the potential functions in analogy to the hyperelasticity
and was coined by Houlsby and Puzrin (2000). The mutual dependency of e.g. strain
and stress on the deformation rate is termed incrementally non-linear. The direction of
the plastic lengthening rate only depends on the current stress state, meaning that the
conventional plastic strain is substituted by a continuous field of an infinite number of
plastic strain components, each with a separate yield surface. This model has proven to
be appropriate for modelling multi-loading sequences or cyclic loads, as for example for
offshore wind turbines in Byrne and Houlsby (2003).

In reality the direction of the lengthening rate depends on the strain rate. This fact led to
the introduction of the Aypoplasticity. Based on the theory of Truesdell (1955) a new
formulation was derived in Grenoble (Darve and Chambon, 1974 and 1979) and
Karlsruhe (Gudehus, 1979; Kolymbas, 1988) which covers the elastic and the plastic
behaviour within one equation. Over the years the theory was extended by various
researchers (e.g. Wu, 1992; von Wolffersdorff, 1996). The material model was for
example implemented in the finite element program ABAQUS (e.g. Roddeman, 1997,
Fellin, 2000). The model of hypoplasticity is suitable for non-cohesive soils, and
describes these soils as highly non-linear and anelastic by taking amongst others the
distinct change of volume under shear deformation into account. The recent
development in the field of hypoplasticity allows a relatively simple modelling of the
soil in comparison to the previous approaches, and thus the implementation in standard
finite element programs. Due to reasons of efficiency, in the research that does not
explicitly deal with soil mechanics no or only in individual cases more complex soil
models as described in this section are applied.

More constitutive models which are here not further discussed but included for
completeness are for example the viscoplasticity as a time and rate dependent plasticity,
the endochrone theory (see Valanis, 1971; Bazant, 1978), or the stress vertex-theory
(see Rudnicki and Rice, 1975).
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Fig. 3.5: Overview of the main soil models and constitutive laws
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34 Approaches for modelling the soil-structure interaction (SSI)

The simple and well-known method for modelling soil subjected to loads is the
hypothesis using discrete springs. The Winkler foundation (Fig. 3.6) is a system
consisting of discrete uncoupled springs deforming under loads. A different physical
interpretation describes the parameter for the vertical spring stiffness as volume weight
of a liquid and that way defines the buoyancy. Fig. 3.6 depicts the deformed soil if
modelled with Winkler springs. The problem with this model is how to deduce the
spring stiffness from the soil characteristics. Another critical item can be clearly seen in
Fig. 3.6: the uncoupled system leads to very unrealistic soil displacements.

load
soil

Fig. 3.6: Settlement for foundation using uncoupled springs (Winkler)

load

Fig. 3.7: Settlement for foundation using coupled springs (Pasternak, 1954) or continuum

Describing the soil as a coupled system in the interaction surface and hence not
uncoupled at discrete points results in a different model (Fig. 3.7). Various multi-
parameter models were developed (e.g. Rhines, 1965: spring — plate — shear layer —
spring) which lead to practical results for special cases (see Horvath, 2002).
Nevertheless, the major deficiency of these models is that the required input is not a
measurable soil parameter but depends on size and form of the structure. Formulae for
such input parameters were given by Askegaard (1961), Fuchs (1969), Kolymbas
(1988), Ehlers (1979), Rotter and Zhang (1989), and Rombach (1991). Knédel (1995)
compared the values for the coefficient of subgrade reaction given by several
researchers for a specific range, and revealed a difference of a factor 40 for a reference
case using different approaches. Burland et al. (1977) gave a summary in a state-of-the-
art report concerning the soil-structure interaction. His report was mainly focussed on
rafts and footings. Van Langen (1991) studied the soil-structure interaction by
numerical means and programmed a special 10-node interface element for the use with
the finite element program PLAXIS with a constitutive equation relating the stresses to
slip and compression. Horvath (1984, 1988, and 2002) compared SSI models with
examples from foundation engineering regarding realistic behaviour. Horvath (2002)
stated an improvement of the results for the sequence Winkler model, multi-parameter-
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model, and elastic continuum with numerous comparisons. He pointed out that the
accuracy of the Winkler hypothesis is directly related to how well the spring coefficient
for the assumed coefficient of subgrade reaction matches the actual.

Parallel to the modelling of the soil with multi-parameter models, research was done on
describing the soil as a linear elastic and homogenous continuum for overcoming the
problem of unrealistic settlement given by the Winkler spring model (e.g. Reissner,
1958 and 1967; Vlasov and Leontev, 1960).
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4.1 General

In harbour construction large tubes are used in conjunction with retaining wall
structures (combiwalls) as primary elements. So far the assessment of these tubes was
performed using stress design according to beam theory independent on the steel grade.
Due to the geometrical slenderness of D/t smaller than 100, the special load carrying
behaviour of shells regarding stress distributions and instability (buckling) were not
taken into consideration in this context. Gresnigt (1986) extended the Dutch assessment
by taking the additional influence of the secondary loads into account, which are
introduced into the tubes via the intermediate sheetings. The present assessment in
Europe uses stress design based on the yield stress of the tube’s material. With the
institution of the Eurocode EN 1993-1-1 the design procedure changes as the steel grade
plays a role in the calculation of the geometrical slenderness. The high yield stresses of
the steels used for tubular piles in harbour constructions cause the tubes to be
categorised as thin-walled structures (class 4 cross-section). Therefore, the tubular piles
have to be assessed versus shell buckling according to EN 1993-1-6.

In the following section the design procedure for a reference case is calculated
according to different codes. Special attention is paid to the assumptions for boundary
and loading conditions, highlighting the importance of problem specific design rules. In
the next step these conservative assumptions shall be discussed and investigated in
order to provide suggestions and comments for enhancing design rules for tubular piles
regarding shell buckling.

4.2 Formulation of the problem

Fig. 4.1 and Fig. 4.2 depict a combiwall structure as commonly installed in harbour
constructions subjected to working loads. Based on this standard reference case, with
the system and loads shown in Fig. 4.1 and Fig. 4.2, the deformations and the resultant
forces can be obtained. The crane load of = 1200 kN/m and the spacing of the tubular
piles of 3.12 m results in an axial force of 3750 kN for each tubular pile. The loads
acting on the structure are obtained with the program RIDO. The program RIDO is a
finite element program for calculating sheet pile walls applying an elasto-plastic
approach and taking the individual working stages of the construction into account. The
follow-up, more detailed numerical studies performed in this paper use the general
purpose, finite element package ABAQUS. In the investigations a Young’s modulus of
210 000 N/mm?” and a Poisson ratio of 0.3 is applied for steel.
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The standard approach (Eurocode EN 1993-5) for the transfer of loads in the assessment
for combiwalls assumes that the primary elements (tubular pile) bear the earth pressures
and the secondary elements (Z-shaped sheetings) bear the water pressure. This approach
is based on the assumption that an arch transferring the loads to the primary elements
forms within the soil.

F,=1200 kN/m l p =60 kKN/m?
Y VvV VvV v
concrete deck
] < -3.00 m
- h
concrete plug <7 -6.00 m anchor
F,=2350 kN/m
<7 -8.00 m
@, =30°
5=15°
kg =30 MN/m?* (constant)
y=19 kN/m?
y'=11 kN/m?3
anchor stiffness = 100 MN/m?
<7 -21.00m
piletip | || | <-30.00m

Fig. 4.1: Combiwall with loads

cross section

X65 (API)

J_\_m_/ﬁ lock joined
5 by welding

AZ26 / S355GP

B B=3120 mm

5
A

Fig. 4.2: Cross-section of the combiwall system
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The displacements and the distribution of the bending moment and the shear forces
were calculated with RIDO and are shown in Fig. 4.3. The calculation assumes a
constant coefficient of subgrade reaction over the entire length of the system.
Additionally, comparing analyses were performed with the finite element program
SPW2004 (Verruijt, 1995) which also calculates the deformations and the force
resultants using an elastoplastic approach. In contrast to the analysis with RIDO,
SPW2004 applies a varying coefficient of subgrade reaction depending on the depth.
The results and further details for the analyses with SPW2004 can be found in Annex A:
Retaining wall calculation.

horizontal displacement [mm] bending moment [kNm] and shear force [kN]
-200 -150 -100 -50 0 50 -20000 -10000 0 10000
0 ‘ ‘ w P 0 ‘ ‘ \ 7 w
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Fig. 4.3: Displacements and distribution of bending moment and shear forces for tubular pile

In Fig. 4.3 the relevant cross sections can be identified: the point of application for the
anchor at z=-6 m, and the position of the maximum bending moment at z=-17.5 m.
Tab. 4.1 summarizes the resultant forces for the corresponding cross sections.

In Tab. 4.2 the geometrical data and the yield stress for the tubular pile are given. The
tube is made of steel X65 (API). The yield stress for this type of steel is defined as
445 N/mm® for ¢ < 16 mm. But for the required thickness of 18 mm it is chosen to be
Jyk=430 N/mm? as a conservative approach.
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Tab. 4.1: Summary of the resultant forces

position anchor (-6 m) max. moment (-17.5 m)
bending moment [kNm] 10670 14460

axial force [kN] 3750 3750

anchor force [kN] 7330 -

shear force [kKN] 4025/3310 -

max. displacement [mm)] - 170

Tab. 4.2: Data for tubular pile

D[mm]| ¢[mm] | A[mm?] |[=1L[mm*| S,[mm’] |f[N/mm?]

tubular pile | 1800 18 1.018-10° | 4.123-10" | 1.944-10 430

4.3 Classical design

The stress resultants given in Tab. 4.1 are sufficient for performing the classical design.
The assessment is based on stress design at the appropriate positions. The axial and
shear stresses are calculated according to (4.1) and (4.2).

— N M)’
O, —ZJFI—'Z 4.1)
y
V,-S,
T =
I (4.2)

The calculations in Tab. 4.3 reveal that the verifications according to (4.1) and (4.2)
satisfy the elastic assessment. The verification of the equivalent stress is abandoned
since the maximum axial and shear stress appear at different positions.

Tab. 4.3: Stress design

position anchor (-6 m) max. moment (-17.5 m)
oy acc. to (4.1) [N/mmz] 37 +233=270 37+316=353
7 acc. to (4.2) [N/mm?] 53 0
o 270 o 353
i i - * =——=0.69 ~ =——=0.90
verification el.-el. oo 391 o 391
T 53
. . ) —=—"=0.23 -
verification el.-el. T 226

fulfilled fulfilled
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4.4 Classical design with secondary effect

Gresnigt (1986) investigated buried pipelines in areas of settlement and considered the
effect of ovalization (Brazier, 1927) in his study. His results were regarded in annex G.2
of Eurocode ENV 1993-5:1998 to be applied for combiwall structures. A secondary
effect in ovalising the tubular piles arises, when the primary elements are additionally
loaded by the secondary elements (sheetings). This influence is approximated in annex
G.2 of ENV 1993-5:1998 by using a reduced cross section for the tubular piles.

The secondary elements are taken into account for transferring the water pressure. The
resultant forces wy, w, and m acting on the sheet pile wall are shown in Fig. 4.4, and are
evaluated using the depicted simplified model in combination with a structural analysis
program. The forces are transferred from the sheetings to the tubular piles by locks
which are commonly welded to the outside of the tubes. The resultant forces which are

passed on to the tubular piles for the investigated case are summarized in Fig. 4.5 and
Tab. 4.4.

Fig. 4.4: Resultant forces and bending moment distribution for secondary elements

Tab. 4.4: Secondary resultant forces

position anchor (-6 m) max. moment (-17.5 m)
wy, [kN/m] 14.2 23.6
w; [kN/m] 18.9 315
m [KNm/m] 2.6 4.4
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Fig. 4.5: Secondary resultant forces w,, w. and m from sheetings

Fig. 4.6 depicts the influence of the secondary resultant forces on the primary elements.
The force w, leads to an ovalization of the tube and thus to a reduced bearing capacity
versus bending moments. These forces at the locks result in a bending of the tubular
pile’s cross-section.

&
y
l«p

}\

plate bending

Fig. 4.6: Bending of the tubular pile — circumferential and axial bending according to ENV 1993-
5:1998 annex G
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The ENV 1993-5:1998 states formulae for calculating the reduced plastic resultant
forces for the design procedure whose application is shown in the following example.
For the ovalization e and the radius of curvature a according to Fig. 4.6 it can be
written:

3

e=0.0684w,~— but e<0.Ir (4.3)
El
a= r
|3 (4.4)
r

The stiffness for shell bending of the tube is calculated as:

3

!
EI=E-— 4.5
T (4.5)

With the radius of curvature a according to Fig. 4.6 the critical strain & for which
buckling occurs can be evaluated as

t 1 t
for —>— use £=0.25—-0.0025 4.6
a 60 a (4.6)
t 1 t
for —<— use e=0.10— 4.
a 60 a 4.7)

The original formulae for calculating the critical strain & given in ENV 1993-5:1998 and
ENV 1993-5:2002 (Stage 32) are incorrect. The formulae (4.6) and (4.7) give the
correct version according to Gresnigt (1986).

For the angle @ for which the axial stresses reach their maximum, ENV 1993-5:1998
states:

O=r/2 for s<g, (4.8)
sin@=1/u, for &>, (4.9)
with
p & . E
e T T 6 T 4.10
g, / (4.10)

The effective local design plastic moment of resistance for the shell m,y is distributed
uniformly over the cross section according to ENV 1993-5:1998:

m,; =0.160m+0.125w, - r (4.11)

The effective local design plastic moment of resistance for the shell m, is needed for
the interaction factor g,
o 2

=t 4.12
gmt 6 3 ( )
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with

me
P N i (4.13)
M, ra

The local design plastic moment of resistance for the shell m,; zs 1s defined as:

L Sy

m, rg =1

4.14
4 Yo ( )

According to ENV 1993-5:1998 the reduction factor f, which takes the ovalization into
account is:

2e
-1-==
and the reduction factor £ which takes the deformation capacity into account is:
B,=0.75 for e<g, (4.16)
B,=0.625+0.125u  for &, <e<3¢ 4.17)
B,=1.0 for 3¢ <e (4.18)

With the reduction factors f, and f, and the interaction factor g the reduced moment of
resistance M, .4 zrqs according to ENV 1993-5:1998 can be calculated:

1

0
—(.— +cos ng,»m By By M ra (4.19)

M =
red ,Rd 2 sin 0

with the design plastic moment of resistance M), z; of the circular cross-section:

/
M, = 4p* 22 (4.20)
Y mo
The design plastic resistance to normal force N, zs of the circular cross-section is
reduced in order to take the local bending of the shell into account by the interaction

factor g as:

J
Njpg =2 11> 4.21)
Y mo
to
Noira = 8 "N pira (4.22)

The verification of the resultant forces of the tube can be performed with the following
moment-axial force interaction criterion:

1.7
Mred,Rd Nred,Rd
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Tab. 4.5:  Assessment of the example according to ENV 1993-5:1998
parameter | eq. anchor (-6 m) max. moment (-17.5 m) dimension
EI (4.5) 1.0206-10° Nmm
e (4.3) 6.94 < 90 11.53 <90 mm
a (4.4) 921.3 936.0 mm
t/a 0.0195 > 0.0167 0.0192 > 0.0167 -
& (4.6) 2,38 2,31 %o
U (4.10) 1162 >1 1.128 >1 -
0 (4.8) 1.036 1.090 rad
My (4.11) 2.01 3.36 kNm/m
My R (4.14) 31.67 kNm/m
¢ (4.13) 1.94 1.91 -
g (4.12) 0.990 0.985 -
Be (4.15) 0.995 0.991 -
yi? (4.16) 0.770 0.766 -
My ra (4.20) 2.280-10" kNm
Meira | (4.19) 1.482-10" 1.442-10" kNm
Nyira (4.21) 3.979-10* kN
Nyed ra (4.22) 3.939.10* 3.919-10* kN
verif. (4.23) 0.72+0.095'7=0.75 1.00+0.096'7=1.02 -
=11

fulfilled not fulfilled -

verif. (4.23) 0.65+0.086'"=0.67 0.91+0.087""=0.93 -
=10
Sfulfilled Sfulfilled -

In Tab. 4.5 the example case is calculated step-by-step regarding the equations (4.3) to
(4.23). Annex G.2 of ENV 1993-5:1998 states that a water level difference of more than
4 m should be regarded when evaluating the interaction factor g. In this context a
modified formula is given for calculating the interaction factor g. Since the influence for
the investigated case is minor (deviation << 1 %o), a modification of g is set aside.
Further, in the design half of the outer diameter D is used as the mid-radius r as
approximation (influence for the reference case = 1 %o). The verification is performed
using a partial safety factor for the resistance y, of 1.1 for the limit state design as a
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conservative approach. Additionally, the verification is performed using a partial safety
factor for the resistance y, of 1.0, since the specifications differ between versions of the
Eurocode draft (EN 1993-5).

The verification taking the additional influence of the secondary forces and therefore
the ovalization of the tubular pile into account is fulfilled for the investigated problem.
Only, the verification applying a partial safety factor for the resistance 3, of 1.1 and not
considering the supporting effect of the soil is not fulfilled by 2 % for the design
method according to ENV 1993-5:1998. Similar procedures which are and have been
applied in different European countries may lead to slightly different results.

4.5 Design according to EN 1993-1-6

4.5.1 General

The required verifications change if the entire Eurocode concept is considered.
Following EN 1993-1-1 members are grouped into different cross-section classes. This
classification into four classes is made according to Table 5.2 in prEN 1993-1-1:2002-
02. For tubular sections the value of D/t = 90&° is the limit for Class 4 cross-sections.
Hence, most tubes used for harbour constructions end up as Class 4 cross-sections:

Class 4 valid for D/t>90¢*  with &=,/235/f, (4.24)

For the investigated case this means that the tubular pile in our example is clearly
grouped into Class 4:

235
D/t =100>90¢” :90-5249.2 (4.25)

As the cross-section cannot be grouped into Class 1 to 3, the Eurocode prEN 1993-1-
1:2002-02 refers to EN 1993-1-6, which signifies an additional assessment against shell
buckling according to the latter part of the Eurocode (EN 1993-1-6). Generally, an
assessment with limit state buckling design of tubular piles according to the Eurocode
involves the consideration of the following stress components:

e axial membrane stresses from axial forces and bending moments with limit state
buckling design against axial compression

e shear stresses from transverse forces with limit state buckling design against
shear

e circumferential stresses from external pressure with limit state buckling design
against circumferential compression

The first part of the design procedure which includes the effect of ovalization according
to ENV 1993-5:1998 has already been preformed in the previous section, and the
bearing capacity verifications are fulfilled.
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As already noted in ENV 1993-5:1998 the tubular piles of combiwalls are not exempt
from a buckling assessment. In a more recent version of the EN 1993-5 (prEN 1993-
5:2004-07) a different approach is suggested which eliminates several inconsistency of
the previous versions. Since the several parts of the Eurocode are still being drafted, two
recent concepts (ENV 1993-5:2002 (Stage 32) and prEN 1993-5:2004-07) will be
introduced for better understanding.

4.5.2 Concept according to ENV 1993-5:2002 (Stage 32)

The concept given in ENV 1993-5:2002 (Stage 32) is based on the approach explained
in the previous sections. As the member is grouped into Class 4, design against buckling

according to EN 1993-1-6 is required. The verification procedure is performed
according to ENV 1993-1-6:2002-05.

The secondary effect from the resultant forces introduced via the connection to the
sheetings has to be considered and results in an increased radius. In the design
procedure the radius increased by the ovalization a (= 936 mm) is used instead of the
initial radius of the geometry » (= 900 mm). The calculation of the resistances of the
cross-section (Tab. 4.6) is based on the original geometry as an approximation. The
stresses are calculated according to ENV 1993-1-6:2002-05 by applying membrane
theory. As an approximation for evaluating the circumferential stresses only the
pressure arising from the difference of the water loads is applied as uniform external
pressure. The assumed uniform loading conditions for oy, oy and 7 are a conservative
simplification. The stresses are calculated as:

o =N M 4.26

Y 2wt mrtt (4.26)
Ap-r

o, = pt (4.27)

r=_ 4.28

" (4.28)

Therefore, for a difference of the water loads of 3 m and 5 m the design stresses are
summarized in Tab. 4.6.

Tab. 4.6: Design stresses

position anchor (-6 m) max. moment (-17.5 m)
o acc. to (4.26) [N/mm?] 37+233=270 37+316=353
oy acc. to (4.27) [N/mm?] 2 3

o acc. to (4.28) [N/mm?] 80 0

The design buckling stresses needed for the buckling limit state design are calculated
with the following formulae:
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Ox.Rd :O-x,Rk/yM’ O9,Rd :O-H,Rk/j/M’ Tra = Tri/Vu (4.29)
Ovre =X Joor Core=Xo For Tre =2 ‘fyk/\/g (4.30)

The buckling reduction factors y can be calculated as a function of the relative
slenderness of the shell 4 :

y=1 for A< 10 (4.31)
A-70 ) - - -
y=1-p == for  Ao<A<Aa, (4.32)
Ap =20
a _

Ap= |7 (4.34)

The elastic imperfection reduction factor o, which depends on the fabrication quality,
the plastic range factor £, and the interaction exponent 7 describing the shape of the
buckling curves can be found in annex D of ENV 1993-1-6:2002-05.

The relative slenderness of the shell for the different loadings can be determined using
the following formulae:

ZX = fyk/o-x,Rc’ Z& = fyk/o-Q,Rc ’ ZT = nyk/[TRc \/gj (435)

The critical buckling stresses are evaluated considering the appropriate loading case as
described in annex D of ENV 1993-1-6:2002-05.

The dimensionless length parameter @ characterises the length of the shell segment:

by (4.36)

For the example case the simplified assumption is made that the reference length is
defined from pile tip to the position of the anchor. The boundary conditions for the
cylinder embedded in soil cannot be described with the specified boundary conditions
BC 1 (clamped) to BC 3 (free) from EN 1993-1-6 as the possibilities for displacements
and rotations may not be defined explicitly. As a very conservative approximation the
boundary conditions BC 2-BC 2 (pinned) are chosen. Further as a conservative
approach, the boundaries restrain meridional displacements. The verification against
circumferential stresses is performed using the boundary conditions BC 1-BC 3
(clamped-free) given that for these conditions the factor Cyreaches a minimum.

ENV 1993-1-6:2002-05 states limits for the classification of shells into fabrication
tolerance quality classes (A to C). For diameters larger than 1.25 m the limit for the
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worst quality class is a maximum out-of-roundness parameter U, (=4D/D) of 0.015 and
a maximum dimple tolerance parameter Uy which is evaluated with measuring gauges
0of 0.016. In Tab. 4.7 the requirements for Class C according to ENV 1993-1-6:2002-05
are compared with the minimum requirements according to the standard for the
production of helically welded tubes EN 10219-2 which are often installed in harbour
constructions.

Tab. 4.7: Comparison of the quality requirements for a tube D = 1800 mm

parameter EN 1993-1-6 (Class C) EN 10219-2:1997 (min.)
out-of-roundness <0015 <0.020
parameter U,

maximum dimple <0016 ]

tolerance parameter U

deviation of outer L 10

diameter D } =1V mm
allowable excess weld - +4.8 mm

The comparison reveals that tubes manufactured following EN 10219-2 do not fulfil the
minimum requirements of Class C from ENV 1993-1-6:2002-05 regarding out-of-
roundness. The tubular piles used in combiwalls of harbour constructions are mainly
covered by EN 10219-2. In the following the tubes are classified as Class C cross-
sections according to ENV 1993-1-6:2002-05 for simplification.

The following three tables summarize the parameters for limit state buckling design.
Tab. 4.8 lists the parameters for the design against axial compression with a partial
safety factor y, of 1.1. For the calculation of the critical buckling stress, the factor C; in
ENV 1993-1-6:2002-05, which takes the failure with extensive buckles and thus the
transition to column buckling into account, is assumed to have a value of 0.6 for the
reference length. This simplified assumption is a conservative approximation for the
design of the investigated case.
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Tab. 4.8: Parameters for limit state buckling design against axial compression

parameter eq. axial compression dimension
(4.36) as ®=185>0.5r/t =26 = long cylinder -
Cxp Table D.1 (EC) 1 -
C, :1+£{1—2a)£}=—0.22 but >0.6
Cy Annex D (EC) C, r -
= 0.6
t
Ox.Re Annex D (EC) O p =0.605-E-C, i =1466 N/mm?
A (4.35) Ax =4/430/1466 = 0.54 ]
0 Annex D (EC) 16 (Class C) -
1 |r
Awy Annex D (EC) Aw, = 5\/; 1=8.11 -
0.62
a, = =0.386 B
Ol Annex D (EC) X 14191 (AWk /t)1‘44
factors | Annex D (EC) A0=020, B=0.60, 7=1.00 ]
A (4.34) A =4/0.386/(1—0.6) = 0.98 }
0.54-0.2)
& 4.32 =1-0.6) —— | =0.74 -
x (432) & ( 0.98 - 0.2)
0.74-430
Ox,Rd (4.29), (4.30) Oopa = 11 =289 N/mm?

In Tab. 4.9 the parameters needed for the limit state buckling design against
circumferential compression with a partial safety factor j5, of 1.1 are summarized.
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Tab. 4.9: Parameters for limit state buckling design against circumferential compression

parameter eq. circumferential compression dimension

(4.36) as ®=185>1.63r/t =85 = long cylinder -
Co Annex D (EC) 0.6 -
2 4

O4Re Annex D (EC) | Opr = E(éj {0-275 + 203(%?] } =21 N/mm?
Ao (4.35) Ao =1[430/21 =4.47 )

Qg Annex D (EC) 0.5 (Class C) -
factors | Annex D (EC) Ao =040, S=0.60, n=1.00 -

Aoy (4.34) Ao =4/0.5/(1-0.6) =1.12 _

2o (4.33) 2o =0.5/4.47> =0.025 ;
O0Rd (4.29), (4.30) Cpra = w =10 N/mm?>

Similarly in Tab. 4.10 the parameters for the cylinder subjected to shear are calculated
for a partial safety factor 7, of 1.1.

Tab. 4.10: Parameters for limit state buckling design against shear

parameter eq. shear dimension
10<w=185<8.7r/t =452
(4.36) : . -
= medium length cylinder
C, Annex D (EC) 1 -
1 ¢
TRe Annex D (EC) Tp =0.75E-C, ﬁ; =223 N/mm?
e (4.35) 7. =+/430/(223-43) = 1.06 -
a Annex D (EC) 0.5 (Class C) -
factors | Annex D (EC) A0 =040, S=0.60, n=1.00 ;
Ao (4.34) Ay =4J0.5/(1-0.6)=1.12 -
1.06-0.4'
. 433 =1-0.6| ————— | =0.45 ;
« (4.33) & (1.12—0.4}
0.45-430
TRd (4.29), (4.30) = =102 N/mm?

T - @
M43




40 4 Common practical design of combiwalls

With the calculated buckling resistances from Tab. 4.8 to Tab. 4.10 the buckling
strength verification can be carried out:

Tab. 4.11: Buckling strength verifications

position anchor (-6 m) max. moment (-17.5 m)

o, 270 o, 353
axial compression o =389 0.93<1 o YT 1.22>1
circumferential Oy _ 2 _ 020<1 oy _3 _ 033<1
compression Og,ra O¢,ra

T, 80

L =—=0.78<1
shear . 102 0

1.25 1.25 2
interaction ( I j %{ e j + (Ti] <1
O rd O ra Tra

verification 0.91+0.13+0.61=1.65>1 1.28+0.25+0=1.53>1

The buckling strength verifications cannot be fulfilled following this method. Another
local buckling strength verification at the position of the maximum circumferential
compression stresses is performed. Fig. 4.8 depicts the pressure distribution on the
primary elements according to the definition from Fig. 4.7.

earth pressure water pressure internal pressure

222222222222 2222222222227

DE2* pEgszz*‘B/D

NG N

Pe1=pEi+B/D

PEI* AAAAAAAAAAAAAAAAALAAAAALAAAA

Fig. 4.7: Pressure distribution on combiwall from soil and water

The verification of the circumferential compression stresses is performed for a depth of
29 m. In Tab. 4.12 the relevant pressures are summarized. The pressures are always
defined as positive as depicted in Fig. 4.7.
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Tab. 4.12: Pressures at the depth z = —29 m according to Fig. 4.7

pressures In front of tube (index 1) behind tube (index 2)
carth pressure pg [kKN/m’] 733 203

water pressure py [kN/m’] 210 260

total pressure pg+w [kN/mz] 943 463
averaged total pressure p,, [kKN/m’] 703

internal pressure p;,, [kN/mz] 160 (with Ky)

The internal pressure p;,, is calculated in this design with the earth pressure coefficient
at rest Ky. This assumption does not include a possible plugging effect, and covers the
stiffening influence of soil inside the tube as a conservative approach.

pressures on tube wall [kN/m?]
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Fig. 4.8: Pressure distribution on tube as a function of the depth based on the conventions from Fig. 4.7

In Tab. 4.13 the relevant circumferential compression stresses are calculated and
compared with the buckling resistances from Tab. 4.9. The comparison is based on a
conservative estimation as the maximum circumferential compression stresses only
appear at one position along the tube while the design buckling stress oygrs from
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ENV 1993-1-6:2002-05 is valid for a 24 m (pile tip to anchor) long cylinder subjected
to a uniform pressure distribution. Again, the assumption of this reference length and
the assumed boundary conditions are very conservative estimates.

Tab. 4.13: Circumferential stresses and verifications for the depth z = -29 m with Tab. 4.12

pressure circumferential stress og [N/mm’]

. p,r 703-0.9
with averaged total pressure p,, Oy = ; = T =35
with averaged total pressure p, o = (pm —pim)-r _ (703—160)~O.9 _ 97
less internal pressure pj, o t 18
from water pressure difference o = Apy -r _50-0.9 _ 3
Apw = pwa- pwn ’ t 18
with averaged earth pressure o =P T 0.5-(733+203)-0.9 3
DPmE = (PE1TPE/2 / t 18
averaged earth pressure p,z less o = (me —p,.m)-r _ (468—160)-0.9 15
internal pressure p;, ¢ t 18
with max. total pressure pgi+mi o = (pE1+W1 —pi,,,)-r _ (943—160)-0.9 19
less internal pressure p;,, ¢ t 18
design buckling stress oyrq Oprs =10

It can be seen from Tab. 4.13 that even for the assumption of an averaged earth pressure
pme, @ maximum water pressure difference Apy of 5 m, and considering a internal
pressure based on the earth pressure at rest with K, (15 N/mm? + 3 N/mm?” = 18 N/mm?)
the design buckling stress oyrs 1s exceeded (18 /10 = 1.80). For the other assumption
the verification is even more unfavourable.

The implementation of this concept would lead to a very uneconomic design of the
structure. The methods discussed in the previous sections lead to more slender
structures and have been applied in the past successfully without any known collapses.
Thus, it is the aim of this study to improve and to extend the existing methods in order
to establish a more precise and adequate design procedure. This includes the more
accurate consideration of the soil in the analyses.

4.5.3 Concept according to prEN 1993-5:2004-07

As a result of the difficulties shown, the concept in ENV 1993-5:2002 (Stage 32) was
revised in prEN 1993-5:2004-07. In the latter version of the Eurocode (prEN 1993-
5:2004-07) an adapted design was proposed considering the shell buckling problem of
Class 4 cross-sections as used for combiwall constructions.

A new note states that the influence of shear buckling in areas of load introductions can
be disregarded if theses areas are stiffened sufficiently by stiffeners or concrete fillings.
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As a consequence the shear component from the verification at the anchor (z = -6 m)
can be neglected. Moreover, the shear component does not have to be taken into
account within the interaction verification. The factor C, is set equal to 1 without
performing the calculation from ENV 1993-1-6:2002-05. According to ENV 1993-1-
6:2002-05 the boundary conditions of case 3 in Table D-3 or D-4 from ENV 1993-1-
6:2002-05 shall be used for circumferential compression stresses. This corresponds to
BC2-BC2. Additionally, the tubes can be assumed to be of the fabrication tolerance
quality class B.

The main steps of the new design procedure are summarized in Tab. 4.14. The
evaluation of the ovalization remains unchanged in prEN 1993-5:2004-07. Hence, the
assessments are performed using the previously calculated radius of curvature a
(= 936 mm) instead of the original radius r.

Tab. 4.14: New parameters for limit state buckling design against axial compression

parameter eq. axial compression dimension
C prEN 1993- i ]
i 5:2004-07
t
OxRe Annex D (EC) Oope =0.605-E-C, = 2443 N/mm?
Ax (4.35) A =4[430/2443 = 0.42 )
0 Annex D (EC) 25 (Klasse B) -
1
Awy Annex D (EC) Aw, =§\/§-z =5.19 mm
0.62
a, = =0.470 B
O Annex D (EC) T 11191 (Awk/t)l'M
Ay (4.34) Ay =+/0,470/(1-0.6) = 1.08 -
0.42-0.2Y
v 4.32 =1-0.6 — | =0.85 -
x (432) & (1.08—0.2)
0,85-430 5
Ox R (4.29), (4.30) Oy == =332 N/mm
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Tab. 4.15: New parameters for limit state buckling design against circumferential compression

parameter eq. circumferential compression dimension
prEN 1993-
Co 5:2004-07 and 1 -
Annex D (EC)
¢\’ c,r)

O Re Annex D (EC) Opre = E(;) {0-275 + 2-03[30?] } =22 N/mm?
Ao (4.35) Ao =+/430/22 = 4.39 ]
Qg Annex D (EC) 0.65 (Class B) -
factors | Annex D (EC) Aoo =040, B=0.60, 7n=1.00 -
A (4.34) Ao =4/0.65/(1-0.6) =1.27 -
20 (4.33) 2, =0.65/4.39* =0.034 ;

0.034-430 5
Gara (4.29), (4.30) Opp =~ =13 N/mm

The new buckling strength verifications are calculated as:

Tab. 4.16: Buckling strength verifications

position anchor (-6 m) max. moment (-17.5 m)
o, 270 o, 353
axial compression . ~ 337 0.81<1 o . ~ 337 1.06>1
circumferential %9 _ 2 —015<1 Oy _ 3 —023<1
compression Oora 13 O¢,ra
1.25 1.25
interaction ( I ] + [ e ] <1
Oy rd Oy ra
verification 0.77+0.09 =0.86 <1 1.07+0.16 =1.23>1

It can be seen from Tab. 4.16 that the verification is fulfilled for the position of the
anchor for the new calculation. Still, the verification is not fulfilled for the position of
the maximum moment. Again the buckling verification cannot be made for the
investigated case. In prEN 1993-5:2004-07 it is noted that non-uniform pressure
distributions shall be approximated by uniform pressure distributions based on the

maximum existing pressure. This assumption again makes the design in the previous
section much worse.
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The verification for the secondary loads introduced via locks from the sheetings is

changed in prEN 1993-5:2004-07. This modification shall not be investigated further at
this point.



5 Discussion of the design procedures

5.1 General

The application of the standards of shell buckling on the problem of combiwalls as
performed in the previous section revealed several inadequacies in the assessment. The
design rules have been kept so general that they may result in extremely conservative
constructions, since several special influences are not taken into account.

In the following aspects of the design procedure for tubular piles are presented and
conservative assumptions in the assessment of the investigated problem are pointed out.
In the next step these conservative assumptions are discussed in order to provide
suggestions and comments for enhancing design rules for tubular piles regarding shell
buckling. These extracted problems are investigated separately in the following
chapters. Arising from the previous assessment, the studies are based on several aspects
governing the carrying behaviour of the investigated structure with respect to shell
buckling and the global non-linear load displacement characteristic:

e simplifying the model: comparison between combiwall and single pile,

e study of the modelling of the soil and the soil-structure interaction,

e geometrical imperfections, i.e. not all shape imperfections may be relevant for
the tubular piles,

e the influence of the surrounding soil on the buckling behaviour and load,

e global load transfer behaviour of a tubular pile,

e the choice of boundary conditions and loads to properly represent the real
conditions (external pressure).

The aim is to provide a contribution to improved assessment rules for the given case
based on the different aspects influencing the carrying behaviour in a different way.

5.2 Comparison between combiwall and single pile

In this first chapter a general comparison is made between a combiwall and a single pile
regarding the load transfer mechanisms. It is the aim to relate the complex combiwall
problem to the problem of a single pile in order use this simplified model for further
studies.
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5.3 Modelling of the soil

This chapter deals with the modelling of the soil since its behaviour needs to the defined
for the subsequent chapters. The complex problem of modelling soil is tackled for the
investigated case providing a concept to be used for simple and more detailed numerical
analyses.

5.4 Geometrical imperfections

The aspect of geometrical imperfections is investigated with the aim to determine the
influence of radial shape deformations and uneven supports on the buckling load of
cylinders. For this study the special problem of combiwalls is set aside and the problem
is studied for the general case of a loaded cylindrical shell. The intention is to obtain a
better founded knowledge of the buckling load reductions arising from uneven supports,
as it is assumed that this aspect does not play a decisive role for combiwalls due to the
surrounding soil.

5.5 Influence of soil on buckling behaviour

As seen in the design procedure the applied design codes do not provide any possibility
to take a stabilizing influence of the surrounding soil on the buckling load into account.
In order to evaluate the influence of the soil a set of numerical studies is performed
investigating the buckling behaviour of a cylinder embedded in sand and subjected to
axial loading or external pressure. The investigation is based on the soil models defined
in the chapter dealing with the modelling of the soil.

5.6 Global load transfer behaviour

As seen in the design procedure, the understanding of the load transfer behaviour of the
entire system is important. Thus, the load transfer from the tubular piles into the soil is
investigated more in detail. Here it is emphasized on studying the stresses and
deformations arising in the piles with respect to continuing experimental tests and the
uniformness of the stress distribution. The latter case is of importance, as a non-uniform
stress distribution may detrimentally influence the buckling behaviour of a shell.

5.7 Boundary conditions and loads — external pressure

The design procedure highlights several conservative assumptions which have to be
made for assessing of the structure against the different stress components. These
aspects influence especially the limit state buckling design against circumferential
compression. Hence, for the case of external pressure the aspects of non-uniform
loading, boundary conditions and buckling behaviour are investigated in detail.



6 Comparison between combiwall and single pile

6.1 Overview

Since the construction of a combiwall is fairly complicated including primary elements
(e.g. tubular piles) and sheetings as secondary elements between the piles connected
with locks, it is intended to simplify the system to the problem of a loaded single pile
for investigation. Based on a model more versatile and easier to handle, several studies
can be performed allowing to obtain important information. Subsequently, the findings
can be transferred back to the problem of the combiwall structures and extended by
more construction-specific analyses. Here, it is indispensable that the results from the
chosen system can be used for the current study and vice versa. This chapter deals with
a simple comparison of load transfer mechanisms and thus stress distributions arising in
combiwall structures and single piles by numerical analyses. In this context the external
pressure distribution on the tubular pile of a combiwall after excavation is compared
with the external pressure distribution on a laterally loaded pile. Here, it is emphasized
that only the shape of the pressure distributions is investigated and compared. Due to
the fact that only plane strain models are used, the real spatial load transfer mechanisms
cannot be captured. Thus, the chosen load magnitudes for the two cases do not coincide
as they are chosen based on different approaches. The essential question to be discussed
is whether a similar pressure distribution evolves for both cases if subjected to their
specific loading.

The idea of this comparison was initiated by first studies on combiwalls performed at
the University of Louvain (UCL) and described in Holeyman et al. (2007). The
presented results in this chapter are based on a close co-operation with these two
researchers.

6.2 Analyses and comparisons

First, a plane strain model of a combiwall is investigated representing a horizontal cross
section trough the construction. The geometry is chosen according to the reference case
used in common practical design calculations (Fig. 6.1).
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Fig. 6.1: Cross-section of the combiwall system

The investigation is based on the assumption that the sheetings serve to transfer the
earth pressure acting on them to the connected tubular piles by membrane stresses only.
Thus, the sheeting is substituted by a truss with no bending stiffness in the numerical
model. Although the connection is executed by a lock joining the components together,
the numerical model uses a hinge at this position. In order to obtain the equivalent axial
rigidity or in-plane stiffness £4 of the sheeting a two-dimensional structural analysis
program is used. The calculation according to Fig. 6.2 results in an equivalent in-plane
stiffness £4 of 371 N/mm or 371 kN/m.

[P B \
[

with
E =210 000 N/mm?

equivalent in-plane stiffness

> EA=F

sheet

1 /4l

Fsheet
4 VAN A
Al 1=1320

/ [mm]
Fig. 6.2: Model for calculating the equivalent in-plane stiffness

Fig. 6.3 depicts the model used for the analysis of the combiwall. By applying
symmetry conditions along the edges and at the tubular pile and the sheeting, the
combiwall can be reduced to the depicted model. Neither the sheeting nor the tube are
restrained in the direction y. The extent of the model (soil 1) perpendicular to the
combiwall is chosen sufficiently large (total length 3.9 m) to prevent a noticeable
influence of the applied boundary conditions.
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Fig. 6.3: Left: model for calculating the equivalent in-plane stiffness (plane strain). Right: displacement
contour plot for hypoplasticity where dark shaded areas indicate large displacements

The initial stress conditions in the soil evolving from self-weight are simulated by
imposing in-plane stress conditions of o3 = 0 =-100 kPa and out-of-plane stress
conditions of o3 =-200 kPa as first assumption. These parameters reflect the geostatic
stress conditions for an undisturbed soil with a density of 16 kN/m® corresponding to
poorly graded sand at a depth of 12.5 m with an earth pressure coefficient at rest of
Ko=0.5. For the tube and the sheeting made of steel a Young’s modulus
E =210 000 N/mm” and a Poisson ratio x= 0.3 is assumed. For the contact surfaces
between soil and sheeting/tubular pile an interface friction coefficient tand= 0.3 is
introduced by working with a Coulomb friction law. A hard contact formulation
allowing the surfaces to separate is applied. The sand is modelled by using two different
soil models: linear elasticity with Mohr-Coulomb plasticity, and hypoplasticity. The
parameters of the soil models used in this first comparison are taken from chapter 7, in
which a set of consistent soil data is derived. No absolute values are necessary at this
stage.

In the first step of the analysis, only the initial geostatic stress state is imposed on the
soil (soil I to soil 3). In the following step the excavation is simulated by removing the
soil (elements) in front of the combiwall (soil 3). During the removal step the forces of
soil 3 on the combiwall are gradually ramped down to zero. Simultaneously, in order to
establish equilibrium, reaction forces are required. For a thin walled circular cross
section the shear stress distribution 7 can be assumed to be constant and uniform. Thus,
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the component of the shear stresses 7, acting in the direction y according to Fig. 6.3
generating a state of equilibrium with the geostatic stress state can easily be calculated.
The distribution of the shear stresses 7, is depicted in Fig. 6.3. The function of the shear
flow 7, in the direction y can be defined as 7, = 7, - t with the wall thickness ¢ of the
tubular pile. The integration of these stresses over the path s (Fig. 6.3) results in the
correlating shear force H ,mp. All values depend on the unit thickness of the model. In
the analysis, first the shear force H.,mp; 1S chosen, and then the corresponding shear flow
T, is calculated. The shear flow 7, is applied as a line load per unit thickness along the
circumference of the tubular pile. The magnitude of H,,,» cannot be identified easily
because the spatial stress state is not taken into account. Since, in this step only the
shape of the pressure distribution is to be compared, the shear force H.,ms is calculated
by deriving the gradient (113 kN/m?/ 15m = 7.5 kN/m’) of the resultant pressure (pyes =
pei+wi - pei+wi) for the section -5 m <z <-20 m from Fig. 4.8 as an approximation. By
relating the gradient to the system width B (Fig. 6.1) and a segment of 1 m, the shear
force per unit thickness is calculated to be H.omp = 23.4 kKN/m. A displacement contour
plot for the hypoplastic model is depicted in Fig. 6.3.
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Fig. 6.4: Two-dimensional plane strain model for laterally loaded pile; displacement contour plot for
hypoplasticity where dark shaded areas indicate large displacements

In the next step similarly to the combiwall model, a two-dimensional plane strain model
is built for analysing a laterally loaded pile (Fig. 6.4). The model consists of a tubular
pile installed in an undisturbed circular region of soil. The outer boundaries are
modelled with infinite elements in order to reduce the boundary effect. Again, the
geostatic stress state is o7 = 0» = 0.503 =-100 kPa and the soil and contact properties
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applied follow the previous model. In the loading step the tube section is loaded in-
plane with a transverse or shear force H,;. = 1000 kN/m. As a first approach, the load is
chosen in the order of magnitude according to the shear force distribution of the
calculated reference case from Fig. 4.3. The shear force H,. is not to be compared to
the shear force H.mp directly as two different loading systems are considered. For
loading the shear force H is decomposed into shear stresses 7, as described for the
combiwall case. The chosen magnitude of the shear force H,;. is not too important as in
the following a variation of parameters will be discussed.
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Fig. 6.5: Normalised pressure distributions for combiwall with 6; = 6, = 0.503; = -100 kPa
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Fig. 6.6: Normalised pressure distributions for laterally loaded pile with 6; = 6, = 0.563 = -100 kPa
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Fig. 6.5 and Fig. 6.6 show the normalised pressure distributions along the path s as
depicted in Fig. 6.3 for the combiwall. Additionally, in the upper right corner of both
diagrams the normalised pressure distributions are plotted with respect to a quarter
cylinder. The path s is defined accordingly for the laterally loaded pile. Here, the
straight line spanning from the centre of the tubular pile to the point s = 0 coincides with
the loading direction. In all cases the initially constant pressure distribution over the
circumference of the tubular piles changes to a non-linear pressure distribution with
decreasing pressure values for s tending towards 1. Further, a pressure peak can be
identified in all analyses in the region 0.2 <s < 0.6. For both systems, combiwall and
laterally loaded pile, the pressure distributions obtained for the Mohr-Coulomb model
exhibit larger gradients and higher maxima along the path s. In all analyses yielding of
the soil occurred near the tubular pile. The arising forces in the locks are very small: the
axial force Fpe in the sheeting (Fig. 6.2) reaches values about 0.1H,, for the
calculated cases, and the component perpendicular to the latter force is negligible small
(= 0).
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Fig. 6.7: Normalised pressure distributions for laterally loaded pile with varying parameters

Still, the non-linear behaviour is much more distinct in Fig. 6.5 in comparison to Fig.
6.6. Thus, several additional numerical studies were performed with changing
parameters in order to investigate whether the described findings can be assumed to be
generally valid, and whether the results of the two cases exhibit better agreement for
different loadings and initial stress states. In the following the corresponding parameters
are briefly discussed. The imposed friction coefficient of tano = 0.3 was varied between
0 and 0.5. The parametric study showed that for tand > 0.3 the pressure maximum
moves towards s = 1, since the influence of circumferential shear stresses along the
tubular pile increases. For very small friction coefficients, the pressure maximum
appears close to the position s = 1, too. This occurs due to the load introduction with a
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shear stress distribution as given in Fig. 6.3 in which large stresses are concentrated
around s = 1. In the investigated range, analyses using the Mohr-Coulomb model and
tano = 0.28 yielded the distributions with a maximum closest to s =0. The imposed
initial geostatic stress state is based on a rough first assumption. Numerical analyses for
both cases and for different initial stresses were performed. In case of the combiwall the
geostatic stress state obviously influences the absolute values of the pressure
distribution. Nevertheless, the normalised pressure distribution remains nearly
unchanged. Two parameters have noticeable influences on the shape of the pressure
distribution obtained from the analyses of the laterally loaded pile as shown in Fig. 6.7:
the initial stress state and the applied in-plane load H,.. Larger initial stresses and
similarly a smaller in-plane load result in more uniform pressure distributions, i.e. more
constant pressure distributions. For small initial stresses and/or large in-plane loads
yielding prevails leading to very large deformations and failure of the soil. Generally,
the pressure distribution is more sensitive to changes for the Mohr-Coulomb model in
comparison to the hypoplastic model. Based on the parametric study it can be
summarized that the general behaviour as depicted in Fig. 6.5 and Fig. 6.6 remains, if
the parameters are varied as described above. Here, no specific ranges are given, as
different combinations of initial stress state and applied load may result in a failure of
the soil. Only the general shape of the pressure distributions are compared for proving
the connection between both problems, since the derivation of consistent input
parameters for the investigated plane strain models cannot be performed. Still, very
similar pressure distributions can be found for the case using the Mohr-Coulomb model
from Fig. 6.5 and the Mohr-Coulomb model with /. = 750 kN/m from Fig. 6.7.

6.3 Conclusions

The first important result found in the comparing study is the fact that the external
pressure distribution evolving due to the excavation process differs from segment-wise
constant pressure distribution estimated in the reference case calculation (chapter 4).
Depending on the implemented soil model and the boundary and initial conditions, the
appearing pressure distributions may be highly non-linear.

The non-linearity of the loading of tubular piles used in combiwalls takes place because
of an arching effect evolves in the soil. The results are based on the assumption that
nearly cohesionless sand (¢ = 0.2 kN/m?) is located around the combiwall. Fig. 6.8
depicts the principal stresses near the combiwall after the excavation process.

It can be seen that the area in contact with the sheeting is nearly stress free. At the
position s = 0.6 large principal stresses appear perpendicular to the surface of the
tubular pile. The stresses can be identified in Fig. 6.5. The sand between the tubular
piles forms an arch with supports on the tubular piles. This arching effect transfers the
load arising from relieving the geostatic stress state by means of compressive stresses to
the primary elements. The general behaviour of the load transfer mechanism for the
model using Mohr-Coulomb is similar except for a slightly different shape of the arch.
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This finding validates the assumption made for the earth pressure that the intermediate
sheetings mainly transfer axial loads and only very small shear or transverse forces and
that the pressure may be assumed to act only on the tubular piles.
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Fig. 6.8: Principal stresses in soil 1 before (left) and after (after) the excavation process for hypoplastic
soil model

For the performed analyses the ovalization effect occurring for the tubular pile is
slightly different. In the case of the combiwall the tensile forces Fje., transferred via the
sheeting into the tubular pile result in an ovalization of the structure. Nevertheless, as
seen in Fig. 6.8 an arching effect with compressive stresses takes place between the
primary elements. This aspect counteracts the tensile forces from the sheetings resulting
in a reduced ovalization effect for the investigated cases. Here, only small changes of
radii were found for the unloaded and loaded tubular pile (<1 %). For the laterally
loaded pile the ovalization (<10 %) is much more pronounced as the loads are
significantly larger. In this context the applied friction coefficient influences the
ovalization directly, as it defines the location of the pressure maximum. A pressure
concentration (maximum) close to s = 0 leads to an arching effect rather increasing the
ovalization instead of preventing it. Nevertheless, in this comparison the ovalization due
to bending (Brazier, 1927) is not taken into account as the spatial load transfer
mechanisms need to be considered.

The presented results (Fig. 6.5 to Fig. 6.7) from the two different systems coincide
fairly well and lead to the conclusion that the problem of the combiwall can be analysed
by using the system of a laterally loaded pile. This system shall be used in numerical
and experimental studies providing information regarding stress distributions and load
transfer mechanisms. The obtained findings can then be re-transferred back to the
problem of the combiwalls.
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7.1 General

The behaviour of soil can be modelled using different methods. In constructional
engineering often the simplified description of soil with springs is applied. This type of
modelling may be sufficient for various problems, but is only able to reflect a small part
of soil behaviour. Thus, in geotechnical engineering more complex models have been
developed representing the soil as a continuum. In practical use such elaborate methods
have not been used much in the analyses and assessment of the soil-structure interaction
(SSI).

The description of soil in its simplest form with springs evolved historically due to the
possibility of the calculating tools. Meanwhile, powerful computers allow to combine
and analyse complex soil behaviour with non-linear reactions of structures. In this
section several approaches are introduced more in detail regarding their possibilities and
efficiency. The aspect of modelling the soil with springs is highlighted more in detail as
it is a widely applied concept. In this context, especially attention is paid to the
horizontal stiffness of soil loaded by a circular structure (vertical pile) as it is directly
related to the problem of the combiwalls.

In the second step three different types of analyses are performed. First, a block of soil
is loaded with a plate (settlement problem) for illustrating the general differences
between the models. In the next investigation a settlement problem is analysed based on
experiments by Schlegel (1985). Here, the material parameters are taken from previous
investigations. The last and most complex comparison deals with a horizontally loaded
pile embedded in sand based on experiments (Holeyman et al., 2006). For this case a set
of consistent soil data is derived. Although there is no single solution for modelling the
soil and the soil-structure interaction for all problems, it is the aim to choose a method
for further investigations. Still, the choice of a convenient modelling technique may
remain problem dependent. In this context the procedure is divided into two steps: First,
a reference analysis of the laterally loaded pile with about 70 % of the failure load is
performed involving different material models. The results provide the basis for refining
the numerical and experimental concepts. In the second step, the refined model is
analysed for a load region far smaller than in the first step (about 10 % of the ultimate
load). Here, the strains should be small (elastic) and recoverable. This comparison then
is used for discussing the material models.
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7.2 Soil models

7.2.1 General Winkler foundation

The first and the simplest concept for describing soil in the field of SSI is the
mechanical model with one parameter. This initially purely mathematical method is
nowadays known as the Winkler hypothesis (Winkler, 1876). In this approach the soil is
modelled using one-dimensional, discrete, and uncoupled springs whose displacements
w at each point only depend on the applied load p and the spring stiffness ks.

Pl )= ky(x,y)- wlx, ) (7.1)

The one-parameter model (7.1) which can be modelled using springs is mostly applied
with a linear elastic formulation, and acts perpendicular to the surface of action. For real
structures local deformations directly influence the deformation behaviour of the
surrounding soil. As for the discrete, uncoupled springs only the portion of soil directly
loaded is activated for transferring the forces and displacements, no realistic settlement
will form. For the design it is intended to specify constant and problem related values
for the spring stiffness ks, although the spring stiffness is not a soil parameter. As a
consequence there is a lot of data to be found in literature regarding the spring stiffness
based on empirical and numerical approaches. The problem in this field of research is
the fact that geotechnically seen the model is incorrect, and therefore the retrieval of
adequate values for the spring stiffness ks does not make any sense. The deficiencies of
the Winkler hypothesis for the assessment of settlements as already demonstrated by
e.g. Terzaghi (1955), were also indicated in more recent studies by Horvath (1993) and
Liao (1995). The Winkler concept was amongst others formulated as a pseudo-coupled
system (Bowles, 1988). This method again does not explicitly couple the vertical
springs for transferring the shear forces, but simulates this behaviour by using springs
with different stiffness ks(x,y).

7.2.2  Coefficient of subgrade reaction

7.2.2.1 Definition

Many more detailed concepts are based on springs but more evolved by e.g. introducing
non-linear load-displacement relations. Thus, in the following the concept is called
subgrade reaction method with the coefficient of subgrade reaction ks which shall
include foundations similar to the linear Winkler foundation. The most important factor
while applying the method using springs is the definition of the magnitude of the
coefficient of subgrade reaction ks. Concerning the value of the coefficient of subgrade
reaction extensive studies have been performed in the last century. Within this study
two questions are of major interest which are discussed in the following: what is the
magnitude of the coefficient of subgrade reaction to be used in analyses and how do we
take into account that e.g. a pile embedded in soil interacts spatially with the
surrounding soil?
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7.2.2.2 Definition of the Young’s modulus of soil

In the field of geotechnical engineering an elastic material is described with the
Young’s modulus of elasticity which can be determined for example from oedometer
consolidation tests as tangent or secant modulus. Since, for soil the deformations are no
linear function of the stresses (Fig. 7.1) this approach is only valid to a certain extent.
The stiffness depends on the range of stress and on the history of loading and therefore
may vary significantly as the case arises. For better representation the compressibility
index C. is used sometimes which corresponds to the reciprocal value of the relatively
constant gradient of the compression curve in a half-logarithmic compression diagram
under initial loading.
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Fig. 7.1: Evaluation of the oedometer modulus E,., from oedometer consolidation test (tangent
modulus)

In a first very rough approximation a linear dependence between stresses and strains can
be assumed for non-cohesive soils. Often, the inaccuracies from determining the
stiffness are larger than those arising from the linearisation. This simplified approach
allows to perform analyses by applying a constant elastic modulus or compressibility
index. It is very difficult to estimate the stiffness for an overconsolidated soil with a
loading history which can easily reach a multiple of the value obtained for initial
loading under the same vertical stresses.

The differences between the material parameters E, Ej, ESO, and E,.; which are all
expressed in fII* [forcellength®] are highlighted in the following. In this work the
Young’s modulus for soil used for general continuum analyses and investigations is
defined as E.

The so-called soil modulus E; is used for 1-D considerations involving piles. It can be
interpreted as the ratio between the lateral soil reaction p [f//] and the deflection of the
pile y [/] and may be formulated as function of the depth z. According to Terzaghi’s
recommendations (1955) it can be written as

E =ks-D (7.1)

where D is the diameter of the pile. In the following mainly the coefficient of subgrade
reaction kg is used instead of the soil modulus E;.
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The Young’s modulus E*° is defined as the secant gradient at 50 % of the maximum
deviatoric stress from triaxial tests (deviatoric loading) as shown in Fig. 7.2.
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Fig. 7.2: Evaluation of the Young’s modulus E°’ at 50 % of the maximum deviatoric stress from triaxial
tests

It can bee seen that the evaluation of the strength parameters for elastic analyses is very
sensitive and leaves a wide field of interpretation since their magnitude is highly
dependent on the stress level in the soil. Often the approach of applying E = E*® is used
for geotechnical investigation. In this work this method is adopted in accordance with
Holeyman (2006).

The oedometer modulus E,.; can be derived from oedometer tests according to
E DIN 18135:1999-06 as:

Ao’
Epi == (1+e) (7.1)
The oedometer modulus is defined as secant from the pressure-void ratio-curve of an
oedometric compression and interpreted as the gradient of the curve in a specific stress
interval. The choice of the corresponding stress interval significantly influences the
estimate of the oedometer modulus E,.;. Since the oedometer modulus E,.; obtained
considering lateral displacement restraint differs from the Young’s modulus E>°
referring to a deviatoric loading and thus more or less isotropic loading, these
parameters are related to each other by the Poisson ratio x for the elastic region as
follows:

_ (-p)E®
“(1-2p)1+ p)

The dependence of the oedometer modulus on the vertical pressure can be taken into
account according to Ohde (1951):

(7.2)

Eoed zo-k 'V'(O-Vj (73)

Oy
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where oy is a reference stress (= 100 kN/mz), oy the effective vertical stress, v the factor
of consolidation and w the exponent of deformation. As a first, very rough
approximation for the effective vertical stress o, the overburden pressure arising from
self-weight for an elastic and isotropic half space is used. It is calculated as the product
of the unit weight y of the soil and the depth z.

7.2.2.3 Coefficient of subgrade reaction for piles

The soil-structure interaction is applied by imposing a foundation to the surface defined
by the coefficient of subgrade reaction. The coefficient of subgrade reaction kg
[forcellength’] defines what load or force results in the corresponding displacement for
a specific area.

(2) (b) (©)

Fig. 7.3: Deformation mechanisms for soil structure interactions - after Pyke and Baikae (1984)

Many studies have dealt with the evaluation of the coefficient of subgrade reaction, but
they focussed mainly on the analyses of retaining structures such as diaphragm or sheet
pile walls. In this context Schmitt (1995), Dhouib (1995) or Monnet (1994) proposed
approaches which are widely used in practical applications. Still, these results cannot be
extrapolated easily to the problem of the vertical pile, as the case of piles is more
complex due to the spatial stress distribution within the soil (Fig. 7.3).

Since the case of the laterally loaded pile is a special case concerning the evaluation of
the coefficient of subgrade reaction ks, different researchers have worked on this
problem. Terzaghi (1955) was one of the first who discussed different methods for
obtaining ks. Based on the theory of elasticity he recommended to link this parameter of
the soil inversely proportional to the width or the diameter D of the pile. According on
this recommendation the basic and most general form of the relation can be written as
follows:

ks =C- (74)

O |

with C being a coefficient which shall take several aspects such as the shape into
account. Still, for more precise analyses based on the theory of elasticity and the
subgrade reaction method the results for ks and £ have to be adapted regarding the
deformation behaviour. From the assumption that the displacements further away than
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three times the diameter of the pile do not influence the behaviour anymore, Terzaghi
(1955) suggested the value 0.74 for C.

Broms (1964) investigated the lateral resistance of piles in cohesive soils based on the
results from Vesic (1961) who studied an infinite horizontal beam on an elastic
foundation. For different cohesive soils and piles with different stiffnesses Broms
(1964) proposed values for C between 0.48 and 0.9. Besides, for example Baguelin et al
(1978), Skempton (1951) and Davisson (1970) proposed different values for the
coefficient of subgrade reaction especially for cohesive soils which shall not be further
investigated in this study. Poulos and Davis (1980) summarized several aspects in their
book.

Poulos (1971) proposed a more general solution by again comparing elastic continuum
solutions for loaded plates with the Winkler hypothesis. Based on this approach and the
assumption of an elastic half space he suggested a value of C'=0.82 for equation (7.4).
As the surrounding soil is neglected by his approach, it was considered by Pyke and
Beikae (1984) to just double the coefficient C in order to take the soil of the half space
on the back side of the pile into account, too.

Scott (1980, 1981) performed in co-operation with J.P. Bardet centrifuge tests and
compared his results with the findings of Reese et al (1974) who proposed detailed and
complicated approaches to calculate curves for the load-deflection behaviour of piles in
sand. Therefore, Scott suggested to use a bi-linear load-displacement behaviour with an
initial stiffness corresponding to a value of C=1 for equation (7.4). The suggested
value is based on results by Baguelin et al (1977) which come from theoretical studies
of a rigid cylinder which is moved horizontally in an elastic continuum. These
approaches are very sensitive to the applied boundary conditions, as the distance of the
pile from the support significantly influences the load-displacement behaviour and thus
the coefficient of subgrade reaction. Scott proposed to use the subgrade reaction
evolving from evaluating Bardet’s solution for boundaries at the distance of 50 times
the pile radius.

The solution proposed by Baguelin et al (1977) uses a two-dimensional plane strain
system with a rigid cylinder which is displaced laterally. The load applied to the pile
causes a uniform translation of the corresponding circular boundary, i.e. perfect
adhesion between soil and pile. Baguelin et al (1977) solved the problem analytically by
deriving the stresses from a single Airy function. The maximum radial displacements ug
of the pile per unit thickness can be calculated as follows:

—LH_’U _ M z_rozut_Rz_(4ﬂ_1)rozut_R2
_87rE1—,u|:(3 4"’)1'1( j P2 +R* (3-4u)r’ +R?

out

(7.5)

uR
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By relating the applied load P to the radial displacements uy the coefficient of subgrade
reaction kg can be calculated as a function of the Poisson ratio x and the outside
boundary r,,. Fig. 7.4 shows the coefficient C calculated for different Poisson ratios
and outer boundaries by applying the analytical solution and numerical analyses. It can
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be seen that the coefficient of subgrade reaction is relatively constant up to a Poisson
ratio of around 0.35, but then increases significantly especially for small distances to the
outer boundary. Furthermore, Scott’s proposed coefficient of C=1 for r,,=50R is
confirmed by Baguelin’s solution. Fig. 7.4 emphasizes that the problem is very sensitive
to the distance to the outer boundary. Equation (7.5) makes clear that for this solution C
tends to zero as r,,, tends towards infinity.
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Fig. 7.4: Coefficient C as a function of the Poisson ratio u for different outer boundaries according to
Baguelin et al (1977)

Pyke and Beikae (1984) investigated the problem of a laterally loaded pile idealizing it
as an infinitely long rigid cylinder moving horizontally in an elastic medium. Based on
real behaviour they allowed the cylinder to separate from the soil, and hence modelled
in comparison to e.g. Baguelin et al (1977) a soil that is not capable of transferring
tension at the back side of the pile (Fig. 7.3). Pyke and Beikae (1984) solution
procedure uses Muskhelsihvili’s presentation of stress in terms of potential functions.
Cauchy’s integral is applied to formulate the problem so that the outer boundary of the
elastic medium is at infinity. By solving the equations (cfr. Beikae, 1982) and relating
them to the displacements Pyke and Beikae (1984) proposed the values 2.3, 2.0, and 1.8
for the coefficient C for Poisson ratio equal to 0, 0.33, and 0.5, respectively. They
suggested to use C = 2 for practical purposes and noted that the assumption of about 10-
to 20-pile radii for the choice of the outer boundary is more consistent with popular
conceptions of the radius of influence for laterally loaded piles. These influence radii
lead according to Baguelin et al (1977) for a Poisson ratio equal to 0.3 to a value for the
coefficient C of 1.9 for 10-pile radii and 1.4 for 20-pile radii.

German practical applications are commonly calculated with a coefficient C = 1. This
simple approach which is valid for a straightforward pile calculation is based on
experience in this field since the seventies and was also stated by Franke (1992). This
elementary equation was implemented in the outdated German DIN 4014 and
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DIN EN 1536 which partially substitutes DIN 4014. Concerning the simplified
assessment general information is also given in DIN 1054. The range of application for
equation (7.4) is limited in DIN 1054:2005-01 to a maximum horizontal displacement
that is defined as the smaller value of either 2 cm or 0.03 D. For diameters larger than
1 m the diameters should be set to D = 1 m in equation (7.4). This approach is restricted
to practical cases where the soil is not close to a collapse. The limitation of the value for
the diameter to 1 m can also be found in DGGT (1998) and is based on work by
Schmidt (1986).

Terzaghi (1955) also proposed a more general approach using a coefficient of subgrade
reaction as a function of the depth. The value of ks depends on the so-called constant of
lateral subgrade reaction ny,.

z

ks =n, 5 (76)

The values for n; are empirical coefficients depending on the density of the sand and
given by Terzaghi (1955) for loose (2.2 MN/m’), medium (6.6 MN/m"), and dense sand
(18 MN/m’). Other approaches for evaluating the coefficient of subgrade reaction
involving depth-dependent values as for example stated by Gabr et al (1997), use the
following equation:

kg =m,z% o) (7.7)

Where my, is the ratio between the coefficient of subgrade reaction and the depth below
ground surface and wg the empirical power index equal to or greater than zero
describing the distribution of k5. The constant ¢ 'is set to 1 m for maintaining the correct
dimensions. Several researchers have proposed values to be used in equation (7.7) for
different situations. In order to name two sets of parameters as examples the values
suggested by Gabr et al (1997) include: wg = 0.5 and m;, = 34 MN/m" (dense sand), and
wc =1 and m;, =20 MN/m* (medium sand).

Habibagahi and Langer (1984) proposed another solution for a modulus dependent on
the depth that also is a function of the deflection. The following equation was evaluated
for a friction angle ¢ of 30° and for the initial stiffness and is calculated for the
corresponding overburden stress o;:

o z
kg =—"—|5+,/—
§ 2.5mm( D] (7.8)

As an example case the value for the coefficient of subgrade reaction is analysed for a
specific type of pile embedded in homogeneous sand. The equations are calculated for a
specific weight of = 15.25 kN/m’ and a pile with a diameter D of 1 m. Other values
such as the factor of consolidation v and the exponent w for (7.3) are taken from
Schneider (1998) and Smoltczyk (2004). The recommendations of the Arbeitsausschuss
Ufereinfassungen (EAU, 1990) suggest constant values for Young’s modulus £ to be
used in common analyses. The values given for sand range from 20 MN/m’ to
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150 MN/m®. For the different approaches using a constant coefficient of subgrade
reaction in equation (7.4), a range for the coefficient of subgrade reaction is shown in
Fig. 7.5. The range is chosen from C=0.5 to C=2.3 as lower and upper boundary,
respectively.

coefficient of subgrade reaction kg [MN/m’]

300 400 500 600
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Fig. 7.5: Coefficient of subgrade reaction ks as a function of the depth for different sands with
y=15.25 kN/m’

For a pile length of 10 m and a diameter of 1 m for example the coefficient of subgrade
reaction reaches according to Fig. 7.5 values between 10 MN/m® to 345 MN/m’. It can
be seen that the specifications for the coefficient of subgrade reaction vary significantly
and hence the calculated results. This aspect emphasizes the sensitivity of the analyses
to the chosen set of parameters. For the example case of the combiwall (chapter 4) with
a length of 30 m and a maximum bending moment in a depth of around 10 m, values of
10 MN/m’ to 100 MN/m® can be assumed for the coefficient of subgrade reaction kg as
a first approximation based on conservative assumptions.

7.2.2.4 Approach to evaluate the coefficient of subgrade reaction for piles

Based on the previous proposals another solution is derived for a rigid disc loaded
horizontally in an elastic medium imposing plane strain conditions. The aim is to verify
the presented relations between Young’s modulus and the coefficient of subgrade
reaction. In the next step the analytical solutions are compared with numerical analyses.

The problem of a cylindrical pin and a plate containing a circular hole of the same or
almost the same size has been studied intensively in the field of mechanical engineering
by analytical means. Persson (1964) was the first one to study the problem for design
purposes, as the well-known Hertz formulation (cfr. e.g. Johnson, 1985) of the problem
only deals with idealized half-planes. Fig. 7.6 illustrates the problem with the
corresponding explanation of the notations.
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Fig. 7.6: Pin loaded horizontally in elastic medium with resulting pressure distribution

Lin et al (1997) and Hou and Hills (2001) continued the work from Persson (1964) and
emphasized the influence of non-conforming holes. Lin et al (1997) and Hou and Hills
(2001) both gave a good overview on the work performed by Persson (1964). The
formulae given by Persson (1964) are for the case of plane stress, but can be used for
the plane strain problem by simply replacing E with E =E/(1-4/), and u with
1 = u/(1-). Based on the type of loading the Airy stress function is used for describing
the stress conditions which gives rise to presenting the stresses in terms of potential
functions. More details can be found in publications by Persson (1964), Lin et al (1997),
and Hou and Hills (2001). Relating the stress functions with the compatibility of the
displaced shape of the deformed bodies over the arc of contact and using infinite
boundary conditions, yields the following relation with Bp representing a variable
according to Persson (1964):

B 2(1+npp)—/1 2n 7E,, AR

b
dy
B = 12 §24 ) _

P 1+n, 1+npprQ(y’1+y2 Pli+n,) (7.9)

where 4R is the distance of radii for non-conforming pin-hole connections, and:

v=1g? (7.10)
2
[04

b=@5 (7.11)

The approach is derived for two elastic bodies in contact. The relationship between the
pin and the plate is expressed by the ratio n,, and the value 4,,:
pin

npp = and ﬂ“pp = l_ﬂpm _n(l_luplate) (712)

plate

The normalized pressure distribution g(y) used in equation (7.9), which satisfies the
condition of deformation at all points of the surface in contact is defined as:

q(y)=RpTW (7.13)
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and can be written according to Perrson (1964) as:
PN 1 Vb 11 44(b? — 37
q(y)= NIRRT bﬂm 5 Jz - (7.14)
Vb +1 1+y b’ 1+6° ) b 41—\ b -y

Further, the semi-angle of contact, &, can be related to the variable Bp considering
equation (7.11):

g _20' 420 -1 s
Pl (7.15)

Just as in the case of an embedded steel pile in sand where the ratio n,, tends to infinite
(= 7000), this problem is investigated by assuming the pile to be rigid. As a
consequence, the Poisson ratio for the pin is set equal zero. For these parameters the
formulae given by Perrson (1964) are evaluated, and the following equation can be
written as plane strain formulation by substituting the appropriate values and equation
(7.9) with (7.15):

2b* +2b° -1 . d
- = [aly)—= (7.16)

=3-4' -2
p2(1+52) # 2 1+ y?

The last expression from equation (7.9) including AR and E,;, tends to zero for large
ratios n,, and thus does not appear in (7.16). Therefore, equation (7.16) is also valid for
conforming pin-hole connections (4R = 0) which is assumed for the investigated case
and/or for E,;,=0. Since, a closed solution for the problem cannot be given the
evaluation of equation (7.14) in combination with (7.16) is performed by iteration in
order to obtain the semi-angle of contact, a.
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—_ T~ numerical solution
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2 044
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Fig. 7.7: Comparison of the normalized pressure distribution q(@) for u = 0.3 and plot of the radial
stress distribution from numerical analyses

For comparison finite element analyses for the discussed problem are performed, using
a two-dimensional plane strain model with linear finite elements modelling the region
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around the pile, and with the infinite elements modelling the far-field region. Fig. 7.7
depicts the pressure distribution along the contact surface for the numerical and the
analytical solution for a Poisson ratio of 0.3. The small picture shows the radial stress
distribution from the numerical analysis. The deviations between the semi-angle of
contact calculated by numerical and analytical means for Poisson ratios are small and
reach a maximum of 2.3 % in the range of 0.3 to 0.4.

While converged solutions for the pressure distribution around the circumference can be
found at the edge of the hole, no closed solution is available for the displacements. As
the loading is not self-equilibrating, the far-field displacements have the form u = In(r)
and therefore imply that the displacement approaches infinity as » tends to infinity.
Hence by using this approach, no unique solution can be found for numerical analyses
even when using infinite elements and also no unique value for the coefficient of
subgrade reaction. Another approach using a plane strain model of a plate with a rigid
disc with contact is investigated with fixed boundaries. The contact between the rigid
pile and the elastic continuum is modelled just as in the case described before with the
augmented Lagrangian method. Similar to Fig. 7.4, Fig. 7.8 shows the coefficient C
calculated for different Poisson ratios # and outer boundaries for no soil-pile adhesion.
As seen in Fig. 7.8 the coefficient of subgrade reaction decreases for a Poisson ratio of
for example 0.3 between 35 % and 50 % in comparison to the approach using a soil-pile
interaction that is capable of transferring tension (complete adhesion). This significant
difference of the coefficient C between the solution of Baguelin et al. (1977) and the
finite element analyses using “hard” contact evidently arises due to the fact that in
contrast to the “adhesion solution” which may overestimate the carrying behaviour
considerably for a SSI no tension forces can be transferred at the unloaded side. This
effect is clear since for the case of a contact modelling a gap evolves between pin and
plate. The choice of a larger radius of influence (= outside boundary r,,) for the
laterally loaded pile does not affect the coefficient of subgrade reaction as much as for
the case of the complete soil-pile adhesion.

The curves plotted in Fig. 7.9 are evaluated applying regression equations as a function
of the outer radius r,,. In order to obtain comparable functions to the functions derived
by Baguelin et al. (1977) for complete adhesion, the regression analyses are performed
based on a logarithmic approach and as a function of an arbitrary radius 30R (Fig. 7.9).
The values for a Poisson ratio of 0.495 deviate considerably due to numerical reasons
associated with using the latter Poisson ratio. For the two other Poisson ratios depicted a
perfect match can be found with logarithmic regression lines.
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Fig. 7.9: Logarithmic regression analyses for obtaining the coefficient C as a function of the outer
radius v, for no soil-pile adhesion

A value of 1 for the coefficient C for the coefficient of subgrade reaction for a common
Poisson ratio of 0.3 for sand can be extracted from the analyses assuming an influenced
area of about 10- to 20-pile radii from the centre of the pile. The values C for relating
the Young’s modulus soil to the coefficient of subgrade reaction proposed by different
researchers and approaches are summarized in Tab. 7.1.

The comparison reveals equations for the analytical functions for the coefficient C
given by Baguelin et al. (1977) with soil-pile adhesion and the calculated numerical
functions without soil-pile adhesion differing mainly by an additional term. Applying
friction to the interface zone would lead to coefficients between the two extreme cases.



7.2 Soil models 69

Comparing the calculated results to the values proposed by different researchers, similar
values for the coefficient C appear as the lower bound. Hence, as a conservative
approach at this stage it is suggested to use C = 1, which corresponds to ks = E/D for the
coefficient of subgrade reaction kg

Tab. 7.1: Different approaches for relating the Young’s modulus soil E to the coefficient of subgrade

reaction kg

c-pks

£ C [
approach
Terzaghi (1955) 0.74
Broms (1964) 0.48 to 0.90
Poulos (1971) 0.82
Scott (1980, 1981) 1.00
Pyke and Beikae (1984) 2.30, 2.00, 1.80 for =0, 0.33, 0.495

Baguelin et al. (1977)

1

for ©=0.33
0.808 + 0.265[n o
30R

for r,,;=30R = 1.24

1

for =0.495

0.573+0.239 I
30R

for 7, = 30R = 1.75

rigid pin in hole with no soil-pile
adhesion (Fig. 7.9)

1

for £=0.30

1.340 + 0.275 In 2
30R

forr,,;=30R = 0.75

1

for £=0.40
1,290+ 0.274 n 2
30R

for 744, =30R = 0.78

1

for ©=10.495
1.011+0.259n o
30R

for 744, =30R = 1.00
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7.2.3  Multi-parameter models

The deficiency of the simple Winkler model not being capable of taking shear forces
into account, can be adjusted by using a multi-parameter model comprising of two or
more types of physical components in contrast to the Winkler foundation. Thereby, the
modelling of the SSI becomes significantly more complicated. Besides the problem of
defining the values for each parameter, e.g. the spring stiffness, the multi-parameter
model gives rise to the question of the correlation of the different deformation
components.

The most important characteristic of these models is the additional component acting
parallel to the contacting surface. This component can be either introduced using further
horizontal or diagonal springs, or an incompressible “shear layer” defined as a linear
elastic layer only resisting vertical shear forces (Pasternak model, 1954). The multi-
parameter models can be described by extending equation (7.1):

p(x.y)-c, V' p(x.y)+c, V'p(x,y)=

=c, wx,y)-c, Vwx,p)+c, Viwl(x,y) (7.17)

The constant coefficients c,; and c,; depend on the chosen model, and arise from the
different mechanical elements used in the model: e.g. spring stiffness £, stiffness of the
shear layer g, or flexural plate stiffness D,. As an example for the multi-parameter
models a concept proposed by Ummenhofer (1997) is used (Fig. 7.10). Shear forces can
be transferred using this model.

surface
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Fig. 7.10: Side view of the applied multi-parameter model

As seen for the subgrade reaction model, the derivation of appropriate parameters may
be very difficult. Again, this aspect becomes more complicated when using multi-
parameter models.

7.2.4 Elastic continuum

A self-evident solution for representing the soil appears to be modelling it as a three-
dimensional elastic continuum. The contact between the continuum and the structure
and be modelled using specific contact formulations or even connector elements with a
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defined stiffness. The interaction can be implemented to act only at pressure (no
adhesion) or on tension as well (adhesion). Therefore, the interaction can be defined in a
way that a gap can evolve between soil and structure. For the elastic formulation of the
continuum only the Young’s modulus and the Poisson’s ratio of the soil are needed. A
far better modelling of the soil is possible by taking non-linear soil behaviour as
plasticity, e.g. Mohr-Coulomb, or dilation into account. The Mohr-Coulomb plasticity is
a common failure criterion used in geotechnical engineering. It is defined as a linear
relationship between normal stresses o and shear stresses 7 at failure:

T=c—otan@ (7.18)

in which c¢ is the cohesion of the material and ¢ the friction angle of the material. If not
specified differently a smooth flow potential (hyperbola) described by the dilation angle
vis applied in combination with a non-associated flow rule and no hardening. With this
more detailed analysis the spatial load transfer mechanisms that cannot be covered by a
two-dimensional continuum can be investigated and additionally further soil properties
can be taken into account.

For the case of a vertically embedded pile this approach can be first analysed modelling
a pile entirely connected to an elastic continuum. The homogenous linear elastic
assumption allows analytical solutions using Mindlin’s closed form solutions for the
soil displacement due to a point load embedded in a semi-infinite medium (Poulos,
1971).

7.2.5 Hypoplastic continuum

A three dimensional modelling of soil as introduced for the elastic continuum allows the
user to incorporate complex material models. Since the hypoplasticity is one of the most
elaborate and sophisticated soil models used in geotechnical investigations, it is
considered in this evaluation of the soil models. For this study the formulation by v.
Wolffersdorf (1996) who extended the base formulation by the void ratio. Further, the
model includes additional stress functions in comparison to the formulation by
Kolymbas (1988). Fellin and Ostermann (2002) linked the hypoplastic formulation to
the finite element program ABAQUS with a subroutine written in FORTAN.

In the following the base equations for the hypoplasticity are summarized, and the
relevant parameters are explained. More details can e.g. be found in Fellin (2000) or
Fellin and Kolymbas (2002). The main concept of the hypoplasticity is that it is an
entirely non-linear material model and not divided into a linear part and a plastic part
found for most other material models. The base equation can be written as:

;-szfé

coraT) pll

[FD +a%60r(6-D )+ fraF (6 +6')

o

with the tensor of the deformation rate D, the Jaumann stress tensor & , and
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6__ o

(o) (7.20)
.
0=6—§I (7.21)

and the factor a, which takes account of the critical friction angle ¢. on the material
behaviour:

_3(3-sing,)

2\2sing, (7.22)
The scalar stress function Fiis defined by ¢'and Lode angle 6;:
F =\/1tan2/(+ 2—tan” x tank (7.23)
8 2+\/_tan1(cos(30 ) 2\/_
where:
tanx =3|'| (7.24)
cos(30, ) =—J6 (700 ) (7.25)

r(é"-6 )"

The following scalar functions f3, f., and f; in equation (7.19) incorporate the average
density and the void ratio e; at minimum density, e; at maximum density, and e, for the
critical state:

s s
jotf ] 2] [ - e ” 726
n\ € € hs €0~ €0

B
f.= (e_j (7.27)
e
f { —_— j (7.28)
€. —¢€4

Thus, for this formulation of the hypoplasticity eight material parameters (¢., &, n, e,
eco, eqn, a, ) are needed. These eight parameters are described briefly. Further details
can be found e.g. in the publications of Herle (1997), v. Wolffersdorf (1996) or
Bohrnsen (2002).

1. Critical friction angle @.

The determination of the critical friction angle can be carried out by piling the
cohesionless material. The angle appearing for the cone produced by pouring the
material through a hopper is defined a critical friction angle
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2. Granular stiffness hy

The granular stiffness is directly related to the compressibility of the material.
The more the material can be compressed the smaller is the granular stiffness. It
is derived from the pressure-void ratio curve from an oedometric compression
test (Fig. 7.11). With the compression index C. (gradient of the compression
curve) for different pressures p, the granular stiffness can be calculated:

S |~

h, =3p, [gj (7.29)

c

void ratio e
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[
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Fig. 7.11: Oedometric compression curve

The granular stiffness depends on the exponent n which again depends on the
active pressure. Since the granular stiffness is no material constant, the pressure
range for the oedometric compression test should be chosen according the
expected reaction for the investigated system.

3. Exponent n

Similar to the granular stiffness, the exponent n is not a constant but a function
of the applied pressure. Thus, this value has to be chosen from an oedometric
compression test, and then again for a pressure range similar to the real
conditions. Based on two values from the compression curve (Fig. 7.10) the
exponent n can be calculated:

e -C P
n=in| L=/ In £52
[ez 'CCIJ/ (PSIJ (7.30)

4. Void ratio e;p at minimum density

The void ratio e;p at minimum density is derived from the maximum void ratio
emax at minimum density, which can be determined by experiments: e;p~ 1,15€4x
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for sand. The void ratio e;p at minimum density is defined for a grain pressure of
zero which cannot be reached in the gravitation field of the earth.

5. Critical void ratio e

The critical void ratio e,y for a grain pressure of zero corresponds approximatly
the maximum void ratio e, at minimum density as proven by experiments.

6. Void ratio eqg9 at maximum density

Void ratio ez at maximum density can approximately be equated with the
minimum void ratio e,;, which can be obtained easily with experiments using a
vibrating table.

7. Exponent o

The exponent « takes the influence of the density on the friction angle into
account. The value for « can be determined knowing the critical friction angle
@., the peak friction angle ¢, and the relative void ratio . from diagrams given
by Herle (1997).

8. Exponent

The exponent finfluences the stress rate for increasing density of the material.
For most cases £ can be set equal to 1 as suggested by Herle (1997).

7.3 Comparison of different soil models for a loaded block

For the comparison of some SSIM a reference case is chosen arbitrarily for illustrating
the general behaviour for different models. It is chosen to investigate a simple
settlement problem. A system of the size 30 m x 30 m x 10 m is loaded with a rigid
plate (10 m x 10 m) in the centre. The vertical boundaries of the model are constrained
in order to obtain a closed system. The stiffness of the top layer between springs and
rigid plate which is included in the model for clarity is negligible. For the qualitative
investigation of the model the vertical, axial springs are implemented with an arbitrary
reference stiffness of 1 kN/m, and the plate is loaded so that the each spring is subjected
to an axial force of 1kN. Fig. 7.12 depicts the deformed system subjected to the
specified load. The plate displaces vertically 1 m, and does not influence the
surrounding soil as no transfer of shear forces is possible.

With extra diagonal springs (multi-parameter model) the shear stiffness of the soil can
be defined as separate parameter, and a coupled system can be assembled. For the case
of a spring stiffness of zero for the diagonal springs, the system responds as the model
for the Winkler hypothesis. The reference case is modelled with additional diagonal
springs with a spring stiffness of k=1 kN/m for taking irregular axial displacements
into account. It is clear from Fig. 7.12 that this more detailed approach results in a
different settlement behaviour in comparison to the Winkler hypothesis. For the
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investigated case the maximum settlement reduces by 5 %. Still, it has to be stated that
the value for the diagonal spring stiffness was chosen arbitrarily.
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Fig. 7.12: Comparison of the shape of settlement for different soil models

For an elastic continuum the deformed body of the reference case is depicted in Fig.
7.13. A Young’s modulus of 50 N/mm” and a Poisson’s ratio of 0.3 were assumed for
the soil. In this comparison no extensive study for harmonising the parameters of the
different models was performed. The deformed structure of the reference case of the
introduced hypoplastic material model does not differ much from the deformed body
depicted in Fig. 7.13. The eight material parameters as listed in Tab. 7.2 were chosen
according to Fellin and Ostermann (2002).
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Fig. 7.13: Deformed system for foundation model using an elastic or hypoplastic continuum

The realistic settlement of the soil can be seen in the contour plot of the vertical
displacements. Fig. 7.12 depicts the settlement for the different soil models as a mid
section trough the symmetry plane of the model. This schematic comparison is made in
order to compare the shape of the settlement and not the maximum displacements. The
latter comparison can only be performed by adjusting the relevant soil parameters for all
models which was not done for the discussed case but for the following comparisons.
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Tab. 7.2: Parameters for the hypoplastic material model according to Fellin and Ostermann (2002)

@ [°]

hs [kPa]

n

€io

€co €40 (04 ﬂ

30

1.9-10%

0.45

1.19

0.80 0.40 0.15 1.0

It can be seen that the deformations for the continua are similar while the shape of the
settlement using springs is different. This simple comparison already shows that the
approaches with springs can lead to unsatisfactory results concerning the deformation
behaviour, if the settlement needs to be investigated. Nevertheless, for an non-rigid
body entirely in contact with soil this aspect may not be important.

7.4 Comparison of different soil models for a strip footing

The following section deals with a more detailed comparison for different soil models
for investigating the efficiency and the applicability of different soil models. Findings
from experiments are compared with numerical analyses using an elastic and
hypoplastic material model.
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Fig. 7.14: Test set-up according to Schlegel (1985)

Schlegel (1985) performed studies with a strip footing within his work in order to derive
an improved subgrade reaction model for settlement problems. The tests were
performed in a cylindrical tube made of reinforced concrete with a diameter of 2 m and
a height of 1 m. In the tests the sand was transported with a suction device and pluviated
into the reinforced concrete tube. An aluminium beam or strip of the dimensions
59 mm x 38 mm and the length of 1025 mm is placed with the flat side downwards on
top of the sand filled tube. From tensile tests the Young’s modulus for the aluminium
beam is evaluated with 75700 N/mm® and the Poisson ratio with 0.312. After
positioning the aluminium beam on the sand it was loaded by one or three concentrated
loads. The vertical displacements and the strains arising in the aluminium beam were
measured. In this study one test is selected for comparison with a single concentrated
load F = 0.866 kN set in the centre of the beam. The test set-up is depicted in Fig. 7.14.
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A similar experiment by Schlegel (1985) was used for verification purposes by Fiedler
(2002) who worked on settlement problems of reinforced concrete foundations. The
model was chosen in accordance with the investigations performed by Fiedler (2002)
who had refined his finite element mesh in order to obtain a converged mesh. By
applying symmetric boundary conditions it is possible to use only a quarter of the entire
system for reducing computational costs. The finite element model with a relatively
coarse mesh can be seen in Fig. 7.15. With submodelling techniques it is possible to
build up an additional smaller model only including the direct vicinity around the
aluminium beam, and to pass the displacements obtained from the global analysis on to
the submodel. This procedure allows to reduce the computational costs and leads to a
better convergence. The soil is modelled using three-dimensional, isoparametric, and
quadratic solid elements. The beam is modelled using 8-node shell elements. The
interaction between the parts is performed by coupling the two bodies with rigid
connectors in vertical direction without constraining (smooth boundary) the movement
parallel to the contacting surfaces. This simplified interaction approach is chosen as the
vertical displacements are relatively small and the horizontal displacements are
negligible, and it leads to fast convergence and effective computing times.

Tab. 7.3: Parameters for the hypoplastic material model according to Fiedler (2002)

@De [o] hs [kPa] n €io €co €do o ﬂ

30 5.8:10° 0.28 0.53 0.84 1.00 0.13 1.05

In the work of Schlegel (1985) no details are given regarding the initial conditions of
the soil. For modelling a system using the hypoplastic material model the initial
conditions play a significant role, as the stresses directly influence the rate dependent
law and therefore the soil’s reaction is by far stiffer if subjected to high pressure.
Because the stresses at the surface are zero, and the implemented rate dependent law
cannot cope with zero stresses due to numerical reasons, a small capillary cohesion is
introduced for the top layer similar to Fiedler (2002). The material parameters are
adopted from Fiedler (2002) who derived them by evaluating experiments from Bauer
(1992) and Wu (1992) for ,,Karlsruher sand*“ (Tab. 7.3). Moreover, Fiedler (2002) sets
the following details for the re-calculation of the experiments:

Tab. 7.4: Parameters from experiment

dry density of sand density of aluminium | coefficient of earth pressure at rest
ya [KN/m’] Yar [KN/m’] Ky
17.15 27.00 0.28

The selection of the load magnitude and the type of loading was made from the
consideration that a failure of the soil must not occur. For higher loads stress
concentrations (localisations) appeared close to the edge of the aluminium beam as it
can be seen from the maximum strains depicted in Fig. 7.16. The high shear stresses
result in an abort of the analysis as shear slips develop. Such a failure mechanism
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depends on the chosen mesh, since some shear slips can only evolve if the discretisation
permits. So-called regulating measures (non-local formulation, Cosserat continuum,
internal length) can be used in order to improve the situation. Given that the failure of
the soil is a problem which is not dealt with in this study, no further regulating measures
are considered.

Fig. 7.15: Contour plot of the vertical displacements (scaled by factor of 30), dark areas = large
displacements

Fig. 7.15 shows the vertical displacements in a contour plot with the deformations
scaled by a factor of 30. The realistic shape of the settlement and the transfer of the
loads through the soil can be clearly seen. In Fig. 7.16 the Mises stresses are depicted
for the loaded system. Directly below the aluminium beam stress concentrations arise.

Fig. 7.16: Contour plot of the Misses stresses (left) and maximum strains (right); dark areas = high
stresses and strains
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The vertical displacements of the aluminium beam are plotted along the symmetry plane
in Fig. 7.17. Fig. 7.18 shows the bending moment distribution of the beam when
completely loaded.
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Fig. 7.17: Vertical displacements of the aluminium beam
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Fig. 7.18: Bending moments in aluminium beam

For comparison another analysis using a linear elastic material law for the continuum
was performed. This simplified approach is based on a Young’s modulus which can be
determined by evaluation of the compression curve of an oedometric compression test.
The magnitude of the Young’s modulus is highly dependent on the chosen stress
interval and the choice whether the tangent or secant modulus is used. As the stresses or
applied pressure of the real system can only be assumed for most cases, the results can
only deliver rough approximations. Based on the data given by Fiedler (2002) the
Young’s modulus is set to 7968 kPa. The results from the numerical analyses are plotted
in Fig. 7.17 and Fig. 7.18. More details on evaluating an appropriate Young’s modulus
are given for the next comparison.

Additionally, the simple approach is modelling the soil and the SSI by linear springs is
applied. Independent on the test set-up the model consists of the beam and
perpendicular springs with a defined linear spring stiffness. The spring stiffness is
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approximated by using coefficients of subgrade reaction ks given in general design
handbooks. In Schneider (1998) the values given for the coefficient of subgrade reaction
ks range between 40 MN/m® and 80 MN/m’ for sand in general. Thus, the numerical
analyses are based on these limit values. The following comparison deals with a more
detailed derivation of consistent soil data. The results are shown in Fig. 7.17 and Fig.
7.18.

It can be seen in Fig. 7.17 that the deflections of the beam differ significantly for the
different approaches. The vertical displacements for the hypoplastic model are three
times as large as the displacements from the test. The displacements for the elastic
continuum reach around half the magnitude of the test results. The analyses with the
spring model deliver good agreement with the test results. The calculated results can be
interpreted as close envelope curves for the test results. The findings for the deflection
of the beam have to be handled with care, especially for the hypoplasticity, as the initial
conditions significantly influence the initial stiffness and thus the settlement of the
beam. Further deviations may arise due to the fact that several material parameters had
to be assumed since no more details were available.

The bending moments in the beam agree well for the test and the numerical analysis
using the hypoplastic material model. Still, the good agreement should not be overrated,
but has to be interpreted carefully considering the assumed conditions. The results from
the numerical analysis using the elastic continuum lead to maximum bending moments
in the centre of the beam around 25 % lower than for the other two cases. The results
from the spring model lead to bending moment distributions between the other two
cases, and thus to a fairly good agreement with the test results.

The results for the hypoplastic material model show that good agreement can be found
for the bending moments but at the same time very large discrepancies appear for the
displacements. For the application of the incremental model the input of precise initial
conditions and material parameters for the soil is indispensable. Nevertheless, the task
of determining the correct parameters remains. The differences in the settlement can be
explained with inaccurate assumptions for the initial pressure conditions of the soil. For
higher initial stresses, the soil behaves far stiffer resulting in lower displacements but
only small changes of the bending moment in the beam. The issue of obtaining precise
data on the initial stress state of the soil is highly difficult, making this approach hard to
handle.

The aim in this study is to investigate cases concerning the SSI. For the problem of a
buckling cylinder in contact with soil, the stiffness and thus the displacements play a
decisive role. Nevertheless, the stresses arising in the shell as a result are very
important. The comparison did not reveal satisfying findings for either of the soil
models, especially as the material properties were harmonised applying simple
techniques. Still, problems as localisations in form of shear slips can be neglected
because the soil failure for the type of investigated structures, as e.g. combiwalls, is not
of interest. The computational costs and the computing power necessary for complex
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structures in combination with the hypoplastic material model is still immense and
cannot be compared with the elastic material model. Here, these computing times
differed by the factor of about 10. In this context the computing time for the spring
model is incomparably small, since the soil itself is not modelled. With the very simple
approach surprisingly good agreement was found.

7.5 Comparison of different soil models for a laterally loaded pile

7.5.1 General

The last example deals with a detailed analysis of a laterally loaded pile, with partial
reference to Holeyman et al. (2006). In contrast to the two settlement problems
discussed previously, this example involves horizontal instead of vertical contact with
the soil. For the comparing case, models with non-linear springs are used. The general
spring or subgrade reaction model is modified by limiting the pressure. Further, a more
complex model of the p-y curves is introduced in the following before deriving the
consistent soil data and performing the comparing analyses.

7.5.2  Subgrade reaction method

The subgrade reaction method applies the coefficient of subgrade reaction as an
uncoupled spring that uniformly acts as soil-pile interaction. In an assessment the
bearable horizontal stress or pressure of the soil can be limited by the passive earth
pressure (section 10.4.2 in DIN 1054:2005-01). The applied subgrade reaction method
is based on the proposed values by Terzaghi (1955) for medium sand (1, = 6.6 MN/m”)
and equation (7.6). In the investigated cases this restriction of the horizontal stresses is
taken into account by using the passive earth pressure or the earth resistance of the
spatial case according to E DIN 4085:2002-12. Due to the mobilization of the
surrounding soil the earth resistance e,, increases. This effect is considered by
introducing the representative length / fg’ [length] instead of the actual width or length /

of a retaining structure for which it is implemented proportionally. In the discussed case
the geometry of the pile is defined by the diameter D and the embedded length / and
therefore the representative length is defined as the representative diameter ng’

[length] arising from self-weight and ij [length] arising from cohesion. In accordance
with E DIN 4085:2002-12 they can be specified as:

DY =0.55(1+2tanp)VD-1  for D<03! (7.31)
Df;:D+0-6'l'm”¢ for D>0.3/ (7.32)

and

DY =1.1(1+0.75tanp)yD-1  for D<0.3/ (7.33)
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DY =05[D+09(1+tang)-h] for D>031 (7.34)

The passive earth resistance e,, [kN/m] can be calculated as the sum of e,z and e,
without external loads as a function of the depth z according to E DIN 4085:2002-12 as
follows:

Cpon = Cpgn T Cpei (7.35)

with
Cpun =72 K Dy (7.36)
€y =C K, D,/ (7.37)

The values for Kz, and K., can be obtained from tables in E DIN 4085:2002-12 for
different angles of wall friction ¢ and the angle of internal friction ¢.

The passive earth resistances from E DIN 4085:2002-12 are only valid for the general
spatial case, i.e. a long wall, and thus not directly applicable to piles. Nevertheless, as a
conservative approach for the pile the application of the 2D case from
E DIN 4085:2002-12 may suffice. Besler (1998) summarized different models for earth
resistances in his work. In his work he describes for example the models by Streck and
Weillenbach for the application of spatial earth pressures acting on small pressure areas
which are implemented in different pile programs (e.g. GGU-LATPILE) for calculating
laterally loaded piles. As here only a brief insight is to be given for the subgrade
reaction method for more details it is referred to e.g. Besler (1998).

7.5.3  The p-y curves

A more elaborate procedure which is based on the concept of the coefficient of
subgrade reaction is the method using so-called p-y curves. The lateral pile behaviour is
described by the following governing equation originally presented by Hetenyi (1946):
d*y
E I +p=0 (7.38)

PPdZ4

in which E,, is the flexural stiffness of the pile. McClelland and Focht (1956) initially
extended the subgrade reaction approach using the finite difference technique to account
for non-linear soil reaction versus deflection relationships. In the first version of the
method an empirical relationship between the stress-strain curves from triaxial
compression tests and the real load-deflection behaviour of piles was implemented.

Based on field load tests, Reese et al. (1974) derived empirical p-y curves for sands.
Their p-y curves are based on linear and parabolic functions defined for segments. The
parameters for each function are given by the effective angle of internal friction ¢ ' and
the initial stiffness E, [f/I*] expressed as k;z.
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Tab. 7.5: Initial stiffness k; for sand (after Reese et al., 1974)

relative density loose <35 % medium dense > 65 %

ki [IMN/m?] 6.8 24.4 61

The more detailed approach given by Reese et al. (1974) uses simplified spatial failure
models for the soil. The concept proposed by Reese et al. (1974), which at the
beginning only included sand, states characteristic curves for the mobilized resistance of
the surrounding soil p [force/length] per length unit Al (Fig. 7.19) for a corresponding
horizontal displacement y [length]. In this procedure the pile is divided into discrete
segments that are supported at their intersections by non-linear springs. Additionally,
the stiffness of the non-linear springs changes as a function of the depth z.
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Fig. 7.19: Concept of the p-y curves for an embedded pile

The p-y curves introduced by Reese et al. (1974) are based on linear and parabolic
functions defined in sections. The parameters for each function are given by the angle of
internal friction ¢ and the initial stiffness &; [force/length®]. With the angle of internal
friction the geometrical coefficients o und fg, the earth pressure coefficient at rest Ky
and the active earth pressure coefficient K, for the investigated case can be calculated:

a;=¢/2 (7.39)
Bs=45+¢/2 (7.40)
K, =1-sing (7.41)

K, =tn*(45-9¢/2) (7.42)
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The coefficients ag and fs correspond to the failure mechanism near the soil surface
where the self-weight of the wedge of soil represents the soil resistance. The soil
resistance p; close to the surface is defined as the difference between the passive earth
pressure according to Coulomb and the active earth pressure according to Rankine:

K,z tangsin fg + tan fi (D +z tan B, tana, )
, G G
po(2)=y'z| tan( B, —p)cosa,  tan( B, —¢) (7.43)
+K, z tan B, (tanpsin B, —tana, )~ K ,D

Based on the Mohr-Coulomb theory and a plastic failure of cubic elements the soil
resistance p,, for the deeper regions can be calculated:

p.u(2)=Dy'z|K, (tan® B, ~1)+ K, tanptan’ ] (7.44)

The minimum of p,, and ps, is adopted and defined as p,(z) in the following. With these
coefficients, the initial stiffness k; [force/length’], and an empirical correction factor 4,
the p-y curves according to Reese et al. (1974) can be established. Details on the
evaluation of the curve segments are for example given in Reese et al. (1974), Reese
and Van Impe (2001), and Wiemann et al. (2004). The concept of the p-y curves is
implemented in the guidelines of the American Petroleum Institute (API)
,Recommended Practice for Planning, Designing and Constructing Fixed Offshore
Platforms — Working Stress Design (RP 2A-LRFD und —-WSD)“ (2000) and is
illustrated in Fig. 7.19. Further, the model of the p-y curves is introduced into the
Norwegian guideline ,,Det Norske Veritas® (2004), the standard procedures of the
Germanischer Lloyd (1999), and the draft for the ISO/DIS 19902:2004 ,,Petroleum and
Natural Gas Industries — Fixed Steel Offshore Structures* (2004).

For the design procedure the concept was simplified. Thus, in more recent guidelines
such as for example the ,,Det Norske Veritas® (2004) the p-y curves for sand are
described with continuous hyperbolic tangent functions:

k, z

p2)= () p, <z>mnh(m yj (745

where the empirical correction factor A(z), which augments the soil resistance in the
region close to the surface, is linearised for the means of assessment:

Az)= 3—0.8% >0.9 (7.46)

The limitation of the maximum lateral stresses in the soil for static loads by the soil
resistance p,(z) [force/length] from equation (7.43) and (7.44) is given in a simpler
manner for all cases alike based on the parameters Ky = 0.4 (loose sand) and o= ¢ /2 as
follows:

y 2 '
|z Ci+y'zCyd
(\2Z)=min 7.47
pu(2) { 2 Cud (7.47)
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The coefficients C;, C,, and C; can be taken from the diagram in Fig. 7.20 for the
corresponding effective angle of friction. The value for the initial stiffness &;
[force/length’] can also be taken from Fig. 7.20 according to ISO/DIS 19902:2004 or
from a similar diagram as given in ,,Det Norske Veritas® (2004). For a more detailed
description of the procedure see Reese and Van Impe (2001), and Wiemann et al.
(2002).
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Fig. 7.20: Coefficients C;, C,, and Cs, and initial stiffness k; for sand below water table as a function of @'
according to ISO/DIS 19902:2004

For completeness it is mentioned that several more researchers have worked on
producing elaborate p-y curves for different soils. For example Bransby (1999)
proposed a power law for the p-y curves and performed finite element and finite
difference calculations with two- and three-dimensional models. Other suggested p-y
curves are based on empirical curve fitting or full-scale tests or centrifuge model tests
(cfr. Barton et al., 1983; Yan and Byrne, 1992; Dyson and Randolph, 1997).

7.5.4  Reference case and modelling

As for a reference case the different models for the soil and the interaction between soil
and structure are calculated and the deformations are compared. Similar comparisons

for the field of offshore wind energy structures were performed i.e. by Wiemann et al.
(2004), Dahlhoff et al. (2003), and Grabe et al. (2005).

A 3 m long tube with an external diameter of D =200 mm and the thickness # =2 mm
which is vertically embedded in dry sand is chosen as reference case (Fig. 7.21). The
choice of geometry and system is made in accordance with the experimental part of the
investigations. Details on the test set-up are given in Charue et al. (2007). The modelled
tube is positioned vertically in a cylindrical casing and subsequently embedded in dry
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sand. Based on the previous findings it is chosen to use a casing with a diameter of 6 m
corresponding to an influenced area of 30-pile radii from the centre of the pile as a
numerical model for the comparing analyses in order to obtain more realistic
comparisons between the different approaches. Initial conditions are imposed for the
investigation consisting of a self-equilibrating geostatic stress field with a weightless
pile and an earth pressure coefficient K, at rest calculated according to (7.41).
Subsequently the pile head is loaded incrementally with a horizontal load of 10 kN
corresponding to a factor of safety of approximately 1.4 (Holeyman et al., 2006) and
taking non-linear geometric effects into account. In this study only the vertical
displacement at the top of the pile is restrained allowing it to move in the lateral
direction and to rotate freely. No boundary conditions are applied to the foot of the pile.
Although, the chosen boundary conditions may not represent a real situation it can
provide a first basis for comparing the soil models. It has to be emphasized that due to
the lack of a constraint at the bottom of the pile, large lateral forces may evolve in the
sand. The boundary conditions are depicted in Fig. 7.21. The model assumes that the
soil below the pile tip has no influence on the pile behaviour.
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Fig. 7.21: Cross-section of the reference case with applied boundary conditions

“Brusselian Sand” is used for the study which was thoroughly investigated by Vanden
Berghe (2001) with numerical and experimental means. The physical characteristics of
the sand are summarized in Tab. 7.6. According to the ASTM Standard D-2487, the
sand 1is classified as poorly graded (SP). In the analyses the sand is assumed to be
installed with an initial void ratio of 0.7 at a weight of y = 15.25 kN/m? (D, =76 %).

Tab. 7.6: Physical parameters of the “Brusselian Sand”

dSO Cu YVmin YVmax ¥s €max €min
[mm] [[1 | [kNm’] | [kN/m’] | [RN/m°] | [-] [-]

0.18 2.2 11.98 17.00 25.97 1.18 0.52
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For the 1-D analyses the tube and the soil is modelled with a FE-program ABAQUS by
using linear beam elements in combination with linear and non-linear connector
elements. For comparison analyses using the commercial program LPILE are
performed.

For the 3-D approaches the modelling of the tube and the soil is performed with linear
isoparametric elements. The tube is modelled using continuum shells in order to keep a
shell formulation for the structure but at the same time allowing smoother contact
surfaces. An important issue for simulating pile behaviour is the modelling of the area
close to the contact zone between soil and pile. For laterally loaded piles, this zone is
subjected to frictional behaviour with a possible separation due to lateral displacement,
removing all stress transfer between soil and pile (no adhesion). Ignoring these factors
can lead to a significant overestimation of the interaction forces between pile and soil.
The contact is defined using a surface-to-surface contact with assigned node pairs. For
the investigated case surface based contact is applied by using augmented Lagrange
formulation, allowing separation after contact. In case of a material model that takes
account of dilation, it has to be stressed that due to the distortions in the contact area the
volume changes and hence the Coulomb friction law may only conditionally be valid
(cfr. Wernick, 1978). Nevertheless, based on the suggested values of Khulaway (1991)
for smooth steel piles, an angle of wall friction 0= 0.5¢ is introduced by working with a
Coulomb friction law. The friction is taken account of for the 3-D analyses since the p-y
approaches are based on empirical findings and therefore friction effects are
incorporated. The hypoplasticity formulation implemented by Niibel and Niemunis
(1999) as a FORTRAN routine in ABAQUS was used for the analyses.

7.5.5 Deriving a set of consistent soil data

In order to provide an indispensable basis for comparison a set of consistent soil data is
derived for the investigated “Brusselian” sand. Parameters were first derived using
experimental data from previous laboratory investigations (triaxial and oedometer tests)
performed by Vanden Berghe (2001). Annex C deals with his experimental and
numerical results for triaxial and oedometric compression tests which are compared and
validated with numerical element tests applying hypoplasticity. Tab. 7.7 summarizes the
consistent soil data for the investigated material models defining the soil parameters that
are used for the corresponding approach. Additionally, further comments are given in
the following concerning the different analyses, the modelling procedures, and the
derivation of the corresponding soil parameters.

From a series of triaxial tests by Vanden Berghe (2001), the angle of friction ¢'and the
cohesion ¢’ can be derived using Mohr’s circles. The parameters can be evaluated with
33° and 0 kPa, respectively (Fig. 7.22).
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Fig. 7.22: Mohr’s Circle from drained and undrained monotonic triaxial tests for “Brusselian” sand with
e = 0.7 (from Vanden Berghe, 2001)

For the p-y method according to Reese et al. (1974) with the program LPILE the
coefficients based on the angle of friction ¢'are acquired with equation (7.39) to (7.44).
The (initial) stiffness k; can be derived as a function of ¢’ or as a function of the relative
density of the sand. According to the recommendations in the API (1994) the sand is
assumed to be in the state of medium density and thus the stiffness k; is chosen
according to Tab. 7.5. Further values are taken from diagrams (cfr. Reese and Van
Impe, 2001).

As stated in Holeyman et al. (2006), it should be pointed out that the stiffness k;
represents an initial stiffness for the p-y procedure while it corresponds to a secant
stiffness under working load conditions for the Terzaghi (subgrade reaction method)
procedure.

For the subgrade reaction method (SRM) with the program ABAQUS a routine in Visual
Basic was programmed for implementing the beam model into ABAQUS, and in order
to perform flexible parametric studies. For all applied subgrade reaction methods the
horizontal stresses are limited to the passive earth resistance (7.35). The coefficient of
subgrade reaction is applied in such a way that the integration of it over the pile length
marks independent from the type of variation the same value. This approach is chosen
in order to establish a mutual reference value. Still, the chosen method is not based on a
research or reference but on a simple approach for referencing the values. After
Terzaghi (1955) and (7.4) with C =1 and equation (7.6) considering a medium sand the
distributions of the coefficient of subgrade reaction are defined by the following values:
K const = 66 MN/MY, kg i pite ip = 132 MN/m® and kg para pite rip = 99 MN/m’.,
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Tab. 7.7: Material properties for the , Brusselian Sand“ and the different models based on Vanden

Berghe (2001)
jaa]
—
model E ABAQUS ABAQUS
program 1D-model 3D-model
*
2 2
- ~
(@)} N
Z — | B
2 | g |3 o
Q /‘:l\ ] - E >
approach v = 5 v 2 & £
£ 2 =| 2] 3 ET 3| 3| 2
s 8| 8| 5| 5|58 2] ¢ 2
St E| | S |ZE 5| 5| &
=
S| 8| £ & &|&e S| 2| &
parameter dim. used = yes - = 1o
p=0'[°] 33 + + + + + + - + +
3 17.6 - - - - - + - - -
k; [MN/m’]
24.4 + - - - + - - - -
n, [MN/m’] 6.6 - provided the basis - - - - -
y=y'[kN/m’] [ 1525 | + + + + + + + + +
A_s’ Bs ['] (Z) +* - - - - - - - -
Cl: CZ) C3 [-] (¢) = - - - - +# - - -
5 2.14 - - - - - - + - -
E [MN/m-]
4.40 - - - - - - - + -
u[-] 0.35 - - - - - - + + -
v[°] 6 - - - - - - - + -
I[°] 16.5 - + + + - - + + +
¢ [kN/m*] 0.2 - + + + = - - +* |+’
eao [-] 0.52 - - - - - - - - +
e [-] 0.88 - - - - - - - - +
ei [-] 121 - - - - - - - - +
eo [-] 0.70 - - - - - - - - +
n[-] 0.35 - - - - - - - - +
al-] 0.3 - - - - - - - - +
L] | - |- T+
hy [MN/m*] | 200 - - - - - - - - +

SRM = subgrade reaction method

* = improves convergence

* = from diagrams acc. to Reese und Van Impe (2001)
** = with approximation of the diagrams by Reese und Van Impe (2001) with linear functions

#H

* = after Fig. 7.20
z = depth below surface

= the integration of E (z) results in the same value for the constant SRM approach
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For the p-y method according to Reese et al. (1974) with the program ABAQUS another
routine was programmed in Visual Basic in order to link a parametric input with the
program ABAQUS. Based on the specification of the angle of friction, the
corresponding coefficients are calculated with equations (7.39) to (7.44). The
parameters according to Fig. 7.20 are defined by linear functions in segments in order to
obtain input data for the routine that is easier to handle. The stiffness k; is chosen
according to Tab. 7.5.

For the p-y method using hyperbolic function with the program ABAQUS a conflict
arises when evaluating the coefficients. The simplified curves for the coefficients Cj,
C,, and C; according to Fig. 7.20 are given for an earth pressure coefficient at rest of
Ky =0.4 (loose sand). In contrast the calculation of the earth pressure coefficient at rest
after (7.41) results for ¢ = 33° in a slightly higher value of K, = 0.46 (7.44). The (initial)
stiffness £; is taken from Fig. 7.20.

For the approaches elasticity, Mohr-Coulomb, and hypoplasticity with the program
ABAQUS using a 3-D model three-dimensional solid continuum elements are used. For
the analyses using the Mohr-Coulomb theory and the hypoplasticity a small capillary
cohesion ¢ of 0.2kN/m® is applied. This cohesion is specified because in the
hypoplastic material law divisions by the trace of the stress tensor appear, and a division
by zero must not take place (i.e. pressure = 0). Further, a small cohesion is needed for
the Mohr-Coulomb theory in order to prevent numerical problems arising from tensile
stresses.

For the homogeneous elastic model, the strategy adopted by Holeyman et al. (2006)
comprising of evaluating a constant Young’s modulus E from Terzaghi’s empirical
recommendations for the soil modulus E; or the coefficient of subgrade reaction ks is
applied. As shown before, the coefficient of subgrade reaction with equation (7.6)
considering a medium sand can be defined as a linear function with a maximum at the
tip (z =2 m) of Ky jin,pite ip = 132 MN/m?® and 0 MN/m’ at ground level. In a preliminary
study an equivalent and constant coefficient of subgrade reaction kg for the case of a
homogeneous medium is calculated for the application in the purely elastic model. The
same lateral deflection of 3.8 cm for the pile head, obtained from the numerical analysis
using a linear distribution of the coefficient of subgrade reaction including a limiting
passive earth pressure, can be calculated for a constant modulus of 13.5 MN/m’ of
subgrade reaction without taking limiting passive earth pressure into account. The
significance of the layers near the surface ground increases as the limiting earth pressure
is neglected.
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Fig. 7.23: Evaluation of the angle of dilation v and the Poisson ratio i from hypoplastic analyses of a
drained triaxial compression test with o,y = 10 kPa

In the next step, the Young’s modulus E is back-calculated applying a relationship
between the coefficient of subgrade reaction and the Young’s modulus based on a 2-D
plane strain system with a rigid cylinder displaced laterally in an homogenous elastic
medium as summarized in Tab. 7.1. Deriving the formulas given by Baguelin et al.
(1977) for the case of r,,, = 30R and = 0.35 leads to C = 1.26 (elastic-a). Interpolating
the values given in Tab. 7.1 for a rigid pin in hole with no soil-pile adhesion linearly
results in C = 0.76 (elastic-b). Considering a constant modulus of 13.5 MN/m’ leads to
a Young’s modulus E of 2.14 MN/m? for elastic-a and E = 3.55 MN/m” for elastic-b.

The Poisson ratio for the elastic and elasto-plastic analyses is derived from comparing
numerical hypoplastic analyses since no experimental data for low confining pressures
are available. The Poisson ratio is evaluated from the gradient of the first part of the
volumetric deformation - axial deformation curve from a drained triaxial test (Annex C)
with an initial mean pressure of 10 kPa as depicted in Fig. 7.23. The choice of the stress
interval is explained in the following details on the Mohr-Coulomb approach. A linear
regression line is calculated for the first section leading to a Poisson ratio x= 0.35. The
variation of the Poisson ratio with different stress levels (confining pressures) is rather
small; e.g. for an initial mean pressure of 50 kPa instead of 10 kPa the Poisson ratio
increases by about 2 %.

The elasto-plastic model is based on a materially linear behaviour before plastic flow,
for which a function defines the yield surface (Mohr—Coulomb). Since the material
model consists of a plastic behaviour the corresponding elastic behaviour needs to be
defined differently in order to allow a comparison with the latter case. The common
approach of defining the elasticity as the Young’s modulus £ at 50 % of the failure
load from triaxial tests is adopted. The evaluation is performed according to Holeyman
et al. (2006). Mostly, the displacements of a laterally loaded pile is governed by the soil
layers near the ground level where only small confining pressures appear. A first
investigation of the stress distribution for the investigated case subjected to self-weight
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(geostatic loading) reveals a mean or confining pressure o;, increasing linearly over the
depth from 0 kPa to 20 kPa at the tip of the pile (z =2 m) with

1
o, = E(Gl +0,+ 0'3) (7.48)

and the principal stresses o;. From preliminary analyses with different material models
it can be seen that the mean stresses rise up to 100 kPa in a depth of about 0.6 m on one
side and up to 120 kPa at the foot of the pile on the other side (Fig. 7.24).

mean pressure o, [kPa]
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Fig. 7.24: Mean pressure distribution in the soil next to the pile along two different paths as a function of
the depth z; evaluation for the M-C model at a load of 10 kN

Because the laboratory tests performed by Vanden Berghe (2001) do not cover
confining pressures of about 100 kPa sufficiently, it is chosen to evaluate the Young’s
modulus by performing a regression analysis for the experimental data. The estimation
of a stress dependent power function for the secant Young’s modulus E*° of the sand
can be written as:

O-ref

ESO = Eref[ Gm J (7.49)

with E,.r= 22 MPa, o, = 100 kPa, and m = 0.7. The regression line for the experiments
is plotted in Fig. 7.25 in comparison with hypoplastic results as a function of the initial
mean pressure O,0. The choice of a representative stress interval significantly
influences the secant Young’s modulus E°’. As an approximation and based on
Holeyman et al. (2006), it is chosen to adopt E = E*° = 4.4 MPa for the reference case
related to an average initial mean pressure of 10 kPa. Similarly the pressure-void ratio-
curve of oedometric compression tests performed with ABAQUS using the material
data for the hypoplastic model can be used for deriving the Young’s modulus. From the
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oedometer modulus E,.; which is interpreted as the gradient of the curve in a specific
stress interval the Young’s modulus can be calculated according to equation (7.2).
Calculating the oedometer modulus E,.; with E° = 4.4 MPa and equation (7.2) leads to
E..a= 7 MPa. Nevertheless, the evaluation of the gradient from the tests by Vanden
Berghe (2001) and the numerical element tests (Fig. D.3) yield an oedometer modulus
E.ca= 2 MPa to 4 MPa at an initial mean pressure of 10 kPa. These differences arise
due to the fact that the derived power approximation (Fig. 7.25) is based on a large
scatter of test data without sufficient information for small initial mean pressure o;,.
Further, the calculation of the gradient from an oedometer tests is highly influenced by
the choice of the interpreted stress interval. Still, these differences highlight the
sensitivity and difficulty of obtained well-founded soil parameters.

60 - O triaxial data (Vanden Berghe, 2001), ¢,= 0.7 o
—— power approximations (Eq. 7.49)
1 hypoplastic model used 0
— a
§ 40 1 o)
S i
O O
20 ] o _~ -
| P
' Gm, 0 [Mpa]
0 : T T T T
0 0.1 0.2 0.3 0.4

Fig. 7.25: Evaluation of Young’s modulus at 50 % of the failure load from triaxial tests as a function of
the initial mean pressure (from Holeyman et al., 2006)

The evaluation of the angle of dilation for the numerical analyses using an elastic
material model with Mohr-Coulomb theory is based on the results from the hypoplastic
material model. In a study the angle of dilation for the elasto-plastic model is varied in
simulations of the drained triaxial compression test (Annex C). The investigation uses
the hypoplastic model as described in Tab. 7.7 with an initial void ratio ey = 0.7
corresponding to a density of y =15.25 kN/m’. Since the aim is to obtain a set of
consistent soil data, the analyses using the Mohr-Coulomb model is based on the
Young’s modulus £ = 4.4 Mpa and the Poisson ratio v=0.35 as derived before.

The comparison of the change of volume reveals that an angle of dilation v of 6° can be
used as approximation. The angle of dilation is derived applying the formula given in
Fig. 7.23 for the gradient of the second part of the diagram which is obtained by a
regression analysis. A further set of analyses was performed, demonstrating the validity
of the angle of dilation for different initial confining pressures (= mean pressures) as
depicted in Fig. 7.26. Nevertheless, the dilation angle varies with the stress level and
therefore with the initial mean pressure. The angle of dilation v = 6° seems acceptable
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for the investigated range. Still, evaluating the numerical triaxial compression tests for a
confining pressure of 50 kPa leads to an angle of dilation v of about 5°.
6

de,,, [%] hypoplasticity with o, ;=10 kPa
hypoplasticity with o,, ;= 50 kPa
elastic, M-C with o , = 10 kPa
—o— elastic, M-C with o, , = 50 kPa

e 10 15 20 25 30

axial strain ¢, [%]

Fig. 7.26: Comparison between the hypoplastic and the elastic material model using Mohr-Coulomb
theory for an angle of dilation v =6° for different initial mean pressures

Tab. 7.8: Derivation of the material properties for the ,, Brusselian Sand* for the different models

84
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For deriving a consistent set of material data different approaches were used. Tab. 7.8
summarizes the approaches and the methods of derivation. The parameters for the 1-D
analyses were entirely taken from empirical relationships for cohesionless sand and
combined with a limit pressure taking partially cohesion and friction into account. The
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parameters for the purely elastic analysis for the 3-D model are based on empirical
findings combined with an additional analytical correlation (elastic-a) for the Young’s
modulus. While the parameters for the hypoplastic analysis are entirely derived from
experimental tests, the values needed for the elasto-plastic approach are evaluated from
laboratory tests and additional comparing numerical analyses with the hypoplastic
model. For both, the purely elastic and the elasto-plastic approach, the Poisson ratio is
predicted by studying the hypoplastic numerical analyses of the laboratory tests.

7.5.6 Calculations and Results

The 3-D continuum analyses are based on a geostatic step equilibrating the initial stress
conditions from self-weight of the soil with an earth pressure coefficient K, at rest of
0.46 (= 1-sing"). Holeyman et al. (2006) confirm the validity of the 3-D model with an
analytical solution based on Mindlin’s closed form solution considering the evaluated
Young’s modulus. They come to the conclusion that the correspondence is sufficient to
validate the finite element model.

horizontal displacement u or y [m]

-0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.12
-1.0

ground level (GL)
0.0
N
E depth z
N
0.5
1D LPILE p-y Reese
L0 O 1D SRM constant
' A 1D SRM linear
1D SRM parabolic | 2
----- 1D p-y Reese %)
e 1D p-y API 3

1.5

3D Mohr- Coulomb
—>*— 3D elastic

— 3D hypoplastic

2.0
Fig. 7.27: Deflections for the reference case for different soil approaches for “Brusselian Sand”
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The deflections of the pile as a result of the different analyses are compared in Fig. 7.27
and Fig. 7.28. By far larger deformations with around twice the deflection at the pile
head in comparison to most of the other approaches appear for the hypoplasticity.
Although, the soil was slightly stiffer than in the approaches with smaller deflections
because a capillary cohesion was added for numerical reasons, such large deflections
take place. Comparing analyses with a soil featuring an even smaller capillary cohesion
of 0.1 kN/m” lead to an increase of the displacements of the pile head of some
percentages. A more detailed investigation of this phenomenon is set aside at this stage.
The soft behaviour of the soil modelled with hypoplasticity can be observed around the
pile tip. In contrast to the other approaches, which exhibit deformations that die out at
half of the pile length, the movement of the pile tip for the hypoplastic model is not
zero, i.e. the bending moment reaches the pile tip. Similar results with an even softer
behaviour can be found for the elasto-plastic approach applying the Mohr-Coulomb
criterion. It can be seen that the calibration procedure based on laboratory tests seems to
lead to softer results than those issued from the more empirical procedure.

10 Y\ » - —

]
:_Zi 6 1D LPILE p-y Reese
Eé —o— 1D SRM constant |
< —4&— 1D SRM linear
4] —— 1D SRM parabolic | 3
————— 1D p-y Reese 9,:)
e - 1D p-y API i%
2] 3D Mohr- Coulomb
—>— 3D elastic
— 3D hypoplastic
0 20 40 60 80 100 120

horizontal displacement u or y [mm]

Fig. 7.28: Pile head deflection comparison for the reference case for different soil approaches for
“Brusselian Sand”

The displacements given by the p-y method after Reese et al. (1974) correspond well
with the results from the analyses with LPILE and ABAQUS with a difference of the
maximum deflection of 5 %. The calculations for the p-y method as e.g. described in
ISO/DIS 19902:2004 lead to smaller deflections than for the p-y method according to
Reese et al. (1974) with LPILE (8 %) and ABAQUS (12 %). The smaller deflections
arise from the higher earth resistance given by the hyperbolic functions for small
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displacements — especially for the area close to the surface. Fig. 7.29 illustrates two

example p-y curves for different sections.

140
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Fig. 7.29: p-y curves for two sections and different approaches

The analyses for the different approaches using the subgrade reaction method deliver
very similar deflections. The results from the SRMs differ only slightly due to the fact
that the limitation of the horizontal stresses is defined identically for the SRMs.

The elastic results correlate with the SRM analysis using the API method up to a depth
of about 1 m. In deeper region the deflections deviate resulting in more than 3 times

larger deflections for the elastic analysis at the pile tip. The significance of an

implemented plasticity can be easily identified when comparing the results for the 3-D
elastic analyses with £=2.15 MPa and the 3-D elasto-plastic model with nearly twice
the stiffness of £ = 4.4 MPa. The differences in deflection emphasize the influence of a
plastic zone. In Holeyman et al. (2006) the two failure mechanisms, i.e. the wedge
failure and the plastic flow failure as proposed by Reese et al. (1974), are identified in

the elasto-plastic analysis (Fig. 7.30).

Fig. 7.30: Plastic region at lateral loading of 10 kN for the elasto-plastic model (from Holeyman et

al., 2006)
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Fig. 7.30 depicts the failure wedge near ground level with a failure angle of 50° and 20°
in the passive and the active region. The wedge corresponds fairly well to the
predictions by the Rankine theory (passive: fo=m4+@'/2=61°, active: pfo=m/4-
¢'72=28°). Reese et al. (1974) proposed a shift between the two failure types at a depth
of 0.7 m. In the elasto-plastic analysis this transition can be found at a depth of about
1.3 m.

Further analyses with the 3-D purely elastic model were performed in order to compare
the results to 1-D analyses. The calculation for the material model elastic-b with
E =3.55 kN/m” leads to a maximum deflection of 3.12 cm which is nearly 30 % smaller
than for elastic-a with E = 2.14 kN/m?. The analysis for elastic-b represents the stiffest
material in the investigation resulting in the smallest deflections. The 3-D analysis of a
pile completely connected to the soil and by applying the material model elastic-a leads
to a maximum deflection of 2.8 cm which differs significantly from the predictions
obtained using the SRM with discrete linear springs (3.8 cm). Since, the Young’s
modulus is derived from this approach it would be obvious to assume similar results.
The large difference between the two predictions can be traced back to the fact that on
the one hand side the secondary effects (non-linear geometrical calculation) are covered
in the 3-D analyses and not completely included in the 1-D analyses. On the other hand
the friction parameter activates the soil’s resistance in the vertical direction, and thus
decreases the lateral deflections. Comparing calculations show that if vertical springs of
half the stiffness of the horizontal springs are added to the 1-D model similar
deflections can be obtained. This aspect stresses the importance of a 3-D approach in
order to cover all relevant parameters.

Fig. 7.31 depicts the deformed system and Fig. 7.32 the void ratio distribution e for the
hypoplastic case at maximum load. In the area close to the surface a decrease of the
void ratio can be identified clearly. The size of the wedge shaped failure zone agrees
quite well with the empirical predictions given by Reese et al. (1974).

Fig. 7.31: Deformed system at maximum load for the hypoplastic model — scaled with the factor 5
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Fig. 7.32: Void ratio distribution ey in the soil at maximum load

The comparison reveals the small stiffness of the soil and therefore the small bending
resistance for the approach using the hypoplasticity. Similar findings where stated
amongst others by Wiemann et al. (2004). Other researchers as Kim et al. (2004) found
large discrepancies in their results applying different approaches of p-y curves. For the
investigated cases the deflections for the elasto-plastic analysis are similar to those
obtained for the hypoplastic approach.

For a better understanding of the load-deformation behaviour of the piles p-y curves are
derived for some of the investigated approaches. For the 3-D approaches the curves are
evaluated by integrating the contact shear and normal stresses over the circumference of
the pile. The results are plotted in Fig. 7.33 for different depths up to the horizontal load
of 10 kN. The constant initial stiffness for the constant SRM for the different depths can
be clearly identified. For the linear SRM the initial stiffness is smaller at small depths
while at the tip of the pile it is higher than for the latter case. A similar behaviour can be
found for the elasto-plastic and the hypoplastic behaviour. Whereas the stiffness for the
3-D analysis with the elasto-plastic model is constant in the elastic region, the
hypoplastic model covers the aspect of an increasing stiffness with increasing depths.
The limit pressures for the 1-D analyses can be seen in the diagrams. Comparing
calculations show that the results for a 1-D analysis with constant stiffness and no limit
pressure are very similar to the proposed values for the investigated case with limit
pressure. This effect is balanced as for small and for large depths the carrying behaviour
is overestimated resulting in the similar deflection. The softer behaviour of the elasto-
plastic model in comparison to the hypoplastic approach which mainly occurs in the top
layers can be seen in Fig. 7.33. It can be seen that mainly the initial stiffness governs the
global deflection behaviour rather than the lateral limit pressure.
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Fig. 7.33: Derived p-y curves at different depths and approaches

As the comparison shows good correspondence between the results from the p-y
methods, which have been confirmed by a lot of practical experience, and the results
from the elastic model for the spatial investigation and the SRMs (group-a), the
conclusion can be drawn that the quality of the results from the latter model appears to
be fairly good for the investigated case. The findings show a good correspondence
between the 3-D analysis using a simple elasto-plastic model and a more elaborated
hypoplastic model (group-b) regarding the deflection of the pile and the activated lateral
resistance. This match is related to the determination of the relevant soil parameters as
summarized in Tab. 7.8. The soil parameters of group-a are mainly derived from
empirical observations, and the parameters for group-b are chiefly obtained from
laboratory tests. Both groups involve a determination of some parameters from
comparing numerical analyses. Still, their influence on the load carrying behaviour is
rather small in comparison to e.g. the evaluated stiffness. From the good agreement of
the results within a group the conclusion can be drawn that the adopted calibration
procedures seem acceptable. Although, the comparison is limited to the reference case
some considerations regarding the differences between the groups are discussed. The
values obtained by Vanden Berghe (2001) in laboratory tests used for the analyses of
group-b are based on experiments with significantly higher confining pressures than
appearing in the reduced scale test (reference case). Since the elasto-plastic parameters
are the result of an extrapolation, e.g. the secant Young’s modulus estimation for the
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elasto-plastic model may be inaccurate. Similarly, smaller secant stiffnesses of the
system were found e.g. amongst others by Wiemann et al. (2004) for small confining
pressures using the hypoplastic model. For the hypoplasticity the imposed initial void
ratio has a major influence on the stiffness of the soil. Such an initial void ratio ey of
0.55 instead of 0.7 leads to a maximum deflection at the pile head of 3.9 cm instead of
10.3 cm, i.e. a decrease of more than 60 % of the lateral displacement highlighting the
importance of the installation effect. Still, the deflection of the pile is only scaled and a
lateral displacement at the pile tip remains. Presumably, the large displacements for the
approach applying the hypoplasticity arise from neglecting the loading history and
therefore the missing “memory” of the imposed material law. Fig. 7.34 depicts the
compression curves from numerical oedometric simulations for hypoplasticity and the
Mohr-Coulomb model using the data given in Tab. 7.7. Details are given in Annex C. It
can be clearly seen that the hypoplastic material law is completely non-linear from the
beginning. For the Mohr-Coulomb model a stiffness is derived which is valid for the
complete analysis. It can be seen that the definition of the stiffness or the Young’s
modulus Es for the soil considerably depends on the chosen stress range. For small
stress the soil reacts very soft if modelled with the hypoplasticity which can be seen by
deriving the Young’s modulus Es from Fig. 7.34. The stiffness and therefore the
reaction of the soil then again differs between the two models considerably for very
large axial stresses. Because of the anelastic behaviour of soil which is implemented in
the hypoplastic model, a re-loaded soil reacts by far stiffer than a soil under first
loading. Since a completely undisturbed soil which has not been loaded is rather
improbable to encounter, the simple material models tend to cover general, load history
independent problems. For the investigated case and the deflections given in Fig. 7.27.
this means that the pile modelled in combination with the hypoplastic soil model may
react too soft in comparison to the other models because the load history is neither
known nor taken into account.

Generally, for medium to dense sands the hypoplasticity may exhibit very soft
behaviour for cyclic loading as the hypoplasticity was not able to cope with the change
of direction; this aspect was taken care of by introducing the intergranular strain in
current hypoplastic formulations. This formulation (4 to 5 more parameters) for
intergranular strain is not included in the applied routine since no cyclic loading is
investigated. The parameter evaluation performed by Vanden Berghe (2001) is made
according to Gudehus/Bauer (1996); newer approaches by e.g. Cudmani (2001) or Herle
and Gudehus (1999) revealed significant differences for material properties evaluated
by using more recent approaches. Newer approaches try to adjust the parameters using a
set of parameters and a regression line and additionally use high pressure oedometers
for obtaining material data. More recent sets of material data for hypoplastic models
mostly tend to differ as follows: larger » and £ and smaller « and #s.

A further influencing aspect is the dimension of the problem. Whereas the 1-D
approaches are mainly derived from full-scale laterally loaded tests with high mean
pressures, the reference case uses a confined region with small mean pressure evolving.
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The results emphasize the importance of an experimental validation for evaluating the
numerical results. The findings emphasize the importance of the designer’s experience
demand for test observations in order to calibrate the approaches.

axial stress o, [kPa]

1.0
00— — — 3000
NS NSC 1000 2000
—y N
Q | ~
<>] -2.0 ~a -
& T~
g ] 0 ~o
<= -4.01 o ~
) | By ~ o
Q o ~
g O <
5 | — hypoplasticit RN
— hypo
S 6.0 ypop y N
| ——~Mohr-Coulomb S
0 experimental data from Vanden Berghe (2001) N
-8.0

Fig. 7.34: Comparison of compression curves from numerical and experimental results

Beside the soil parameters, the interface parameters affect the pile response. In the
study, a linear frictional behavior with a wall friction angle 6= 0.5¢' was applied.
Additional numerical analyses with the elasto-plastic model lead to a decrease of about
10 % of the lateral displacement for an interface friction of 0.8¢"to 0.5¢".

In the following procedure four cases A to D with representative deflections are chosen,
and their corresponding moment distributions along the pile are shown in Fig. 7.35. The
correlation between the representative cases and the models can be found in Fig. 7.35.
The maximum horizontal displacements increase in the order A to D. The maximum
moments appear in the region 30 cm <z <75 cm. The largest difference between the
maximum bending moments is found for case B and C with a moment about 25 %
higher for C than for B. These two cases also exhibit the largest difference for the
position of the bending moment, even though their pile head deflection is very similar.
The deflection curves indicate the softness of case B in contrast to case C near the pile
tip, which is related to the maximum bending moment closer to the ground level. While
for the cases A to C the bending moment at the pile tip has mostly died out, the case D
still exhibits a small bending moment at the pile tip. Due to the non-linear geometrical
analyses for the spatial model in the cases A to D the cross-section of the tube deforms.
Therefore, the evaluation of the bending moment distribution is performed as a simple
approximation based on the axial membrane stresses less the axial force components.

Due to the model and the application of no constraints at the pile foot (Fig. 7.21), very
large lateral forces arise in the soil close to the pile foot as seen in the mean pressure
distribution (Fig. 7.24). These large counteractive forces lead to an opposite bending
moment and thus the significant change of curvature of the pile.



7.6 Discussion of the soil-structure interaction models

103

bending moment M [kNm]

0 2 4 6 8

10 12 14 16

-1.0

-0.5

ground level (GL)

0.5 A
\\
//‘
1.0 1
1.5 - T —— A (1D SRM parabolic)
- —>%— B (3D elastic)
J R L C (1D p-y Reese)
’ — D (3D hypoplastic)
2.0

A

Fig. 7.35: Bending moment distribution for the reference case for applying different soil approaches for

“Brusselian Sand”

7.6 Discussion of the soil-structure interaction models

Based on the results from the previous sections and general comparisons and
considering the advantages and the disadvantages this section deals with a summary and
discussion of the soil-structure interaction model (SSIM) including the soil and the
contact. Tab. 7.9 gives an overview of the investigated models and their advantages and
disadvantages. It is the aim to define a soil model to be used in further analyses

involving soil.
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Tab. 7.9: Overview of the investigated SSIMs
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The modelling using discrete springs resulted in fairly good results in comparison with
test results. The concept of discrete springs is technically seen simple, the application
may lead to extensive work for modelling when working with multi-parameter models.
Nevertheless, due to computing time and the obtained results it may be a very efficient
tool for obtaining information on the general behaviour of structures in contact with
soil. The single parameter needed for input can be easily varied. Additionally, more
complex behaviour can be regarded by imposing a non-linear load-displacement
relationship for the spring. Also the aspect of separation can be dealt with via the non-
linear load-displacement relationship or special gap elements. Spring elements remain a
powerful tool for preliminary studies or parametric studies.

For more detailed geometrical and material non-linear analyses involving localizations
or spatial soil reaction or failure, the use of complex models with a complete modelling
of the soil itself in combination with a formulation taking account of the contact
interaction is indispensable. The most advanced and sophisticated soil model
investigated here is doubtlessly the hypoplasticity. Still, the studies have revealed that
already various implemented formulations of the hypoplasticity exist for which the
results may differ. For medium to dense sands the hypoplasticity may exhibit very soft
behaviour for cyclic loading as the hypoplasticity is not able to cope with the change of
direction; this aspect was taken care of by introducing the intergranular strain. This
formulation for intergranular strain is not included in this investigation as no cyclic
loading is investigated. Still, for the investigated cases applying hypoplasticity the
analyses revealed in contrast to the other approaches generally a very soft behaviour of
the material model.

The comparison shows that the major difficulty of the material law is that all parameters
need to be defined and validated, and slight deviations of the parameters can lead to
considerably different results. Another problem encountered while using the hypoplastic
law is the very soft soil reaction, e.g. close to the surface for the study of laterally
loaded piles. As the linear elasticity is the simplest method of introducing a material
model for a continuum it is as expected not capable of describing the behaviour of sand
precisely. First rough approximations for the SSI problems subjected to minor loads can
be estimated concerning load transfer or global behaviour, but the model cannot be used
for obtaining absolute values. Since, the reaction of the soil is non-linear from the small
loads on and converges to a limit reaction this soil model is not sufficient for thorough
studies. Therefore, something in-between as an elastic continuum which takes certain
indispensable soil properties into account and remains simple and handy, appears to be
an efficient soil model. As emphasized it is important to take a failure mechanism or
limiting load carrying behaviour into account. The elastic continuum in combination
with the Mohr-Coulomb theory may lead to good results but still involving only
relatively simple and coherent soil parameters. Nevertheless, the correct choice of
parameters and initial conditions is very important. The intention is to chose a SSIM
which is able to represent the important aspects of the problem, remaining practicable
and applicable outside the field of detailed research in soil mechanics.
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As a consequence it is chosen to use the simple but efficient spring model for further
investigations. Due to the possibility of varying one parameter significant preliminary
studies can be performed. For the use in linear bifurcation analyses linear spring models
can give information about the soil’s influence quickly. In this context the spring’s
stiffness or the coefficient of subgrade reaction can be defined within a defined
parameter range depending on the soil, and thus lead to important results. In the
buckling analyses the detailed soil behaviour may not be of interest. Still, the model
using a continuum with an elastic material law in combination with the Mohr-Coulomb
theory and a non-adhesive contact formulation shall be used for follow-up analyses
including non-linear material and geometrical aspects. In these analyses special
attention can be paid to imperfections and contact behaviour.

7.7 Verification of the models

7.7.1 Results from reduced-scale tests

In this section some results and evaluated results of the reduced-scale tests are
presented. Details regarding the test set-up, the execution, the specimens, and the testing
program are given in the Annexes B and C. The evaluation of the measured strains is
performed by imposing a Young’s modulus £ = 190 000 N/mm®. The value is based on
tensile tests performed with coupons extracted from the test tube. The tensile tests with
coupons extracted in longitudinal and circumferential direction of the test tube revealed
the consistency of the Young’s modulus (Annex B):

E=E =E|| ~E.=E, (7.50)

The value was verified by comparing it to measurements performed during axial
loading tests. From the imposed load at the load cell and the measurements at the first
strain gauges outside the soil, the proposed value was validated. The measured strains
are then processed based on the equation found in the numerical studies from section
10:

_E
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o

X

€0 (7.51)
for obtaining the meridional or longitudinal membrane stress o as an approximation
based on the measured longitudinal strain &, on the outside of the tube. Subsequently,
for example the bending moment can be obtained by not taking ovalization effects into
account which are negligible present for small loads for the laterally loaded pile.

The results from the test tube presented here are part of a test series performed at the
laboratories of the University of Louvain (UCL) and refer to the first tested tube with
less instrumentation than the second tested tube. More details can be found in Charue et
al. (2007). While experiments with the first test tube were aiming for delivering first
insights to the testing and the evaluation procedure with small loads and displacements,
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the experiments with the second test tube provide more detailed information on strain
measurements for different cases. Still, eventually the tests with the first test tube may
provide even more reliable results as the experiments are not as much disturbed by the
acquiring system (strain gauges, wires, inclinometers) as in the case of the heavily
instrumented second test tube. Only results from the first test tube are discussed.

7.7.2  Back-calculation and comparison

For comparing the results of the experimental investigation a finite element model is
built according to the test set-up. The system and the applied boundary conditions is
depicted in Fig. 7.36. The geometry and the system is similar to the previously
investigated case depicted in Fig. 7.21. The outer diameter of the casing is based on the
evaluation of the relative error of stresses in the soil as a function of the bin radius as
described in Charue et al. (2007). Thus, the ratio of Dcasing/Dou: Was chosen to be about
8.5 corresponding to a relative error <1 %. The chosen diameter Dcysine = 6 m that was
used in first modelling studies (chapter 7.5.4) was based on the evaluation of the
displacements or the coefficient C according to Fig. 7.8. Since the displacements of the
pile are very sensitive to the outer boundary, the conservative assumption of
Dysing = 30D, was used in chapter 7.5.4. Based on refinements (Charue et al., 2007)
and on the limitations in the test set up, the stated the geometry as shown in Fig. 7.21
was chosen. More details on the real test set-up are given in Charue et al. (2007) and
Annex D.
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Fig. 7.36: Cross-section of the reference case with applied boundary conditions

The pile tip is not constrained. Surface contact formulations allowing separation are
applied to the surface of the pile with the surrounding soil and the pile end cross section
sitting on the soil below the pile. An initial stress state is imposed based on earth
pressure coefficient K at rest applying formula (7.41). In the first step (geostatic
equilibrium step) the self-weight of the pile (y=78 kN/m®) and the soil are applied.
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Since the tubular pile is not restraint vertically, it settles slightly resulting in large local
stresses in the soil around the tip. The material properties are applied according to Tab.
7.7 and the previous analyses. In order to control the system more easily and to improve
the contact convergence at initial loading the load is defined by a horizontal
displacement of the pile head. The pile head is not constrained rotationally. For the 1D-
model the pile is modelled as in the previous calculations from section 7.5 since the soil
below the pile cannot be reflected in the analyses.
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Fig. 7.37: Pile head deflection comparison for different methods and the experimental test result

For the tests the maximum applied load was taken for comparison; i.e. here the
corresponding displacement of 2 mm was the parameter which was introduced into the
numerical analyses. The corresponding force for numerically achieving the
displacement is called NRF (= numerical reaction force) in the following as in the
numerical analyses the boundary at the pile head was moved in the load step. In Fig.
7.37 the load-displacement plots are depicted for the different models up to a maximum
displacement of 2 mm. Additionally, a horizontal line is added indicating the
displacements at a load NRF = 800 N corresponding to the maximum applied load in the
experiment. Already for the small displacement of 2 mm the predicted reaction forces
vary significantly between the different approaches. The 1D approach using a linear
SRM results in an overestimation compared to the test of the reaction force by about
100 %. The other models seem to provide fairly good approximations. Generally, the
models exhibit a quite linear relationship for the small loading. Nevertheless, the test
results emphasize the nonlinearity of the response as seen in Fig. 7.37. Only the 3D
approaches (Mohr-Coulomb and hypoplasticity) appear to be able to capture the non-
linear behaviour for small displacements. Nevertheless, generally the Mohr-Coulomb
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does not provide satisfying fits. Similar to the results from the previous analyses (Fig.
7.27), where the analyses with the 3D approaches revealed relatively soft response, this
aspect seems to be less distinct in this case. Still, as it can be seen from Fig. 7.37 due to
the nonlinearity of the response for the 3D approaches the differences between the 1D
and 3D models increases with increasing loads or enforced displacements beyond
u=2mm. The latter issue leads for larger loads (> 1600 kN) to the largest
displacements occurring for the 3D models, which can be presumed from Fig. 7.37 and
is confirmed in Fig. 7.27.
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Fig. 7.38: Comparison of bending moments for different methods and the experimental test result at a
displacement of 2 mm

For the investigated range the models provide mostly an inaccurate prediction for load-
displacement behaviour. Further, it has to be pointed out that the deviations appear to
increase for larger displacements considering the curves from Fig. 7.37.

In the first calculation from section 7.5.6 (Holeyman et al., 2006) an ultimate load
(14 kN) was estimated based on limit equilibrium calculations according to Broms
(1964). Consequently, the applied load (10 kN), corresponds to a factor of safety of 1.4,
1.e. the system is loaded to 1/1.4 = 70 % of the ultimate load. This value was chosen for
emphasizing that the pile is not loaded close to the failure. Still, it provides a better
understanding when discussing the different soil models applied. The first analyses had
the purpose of establishing first model concepts which were to be refined in the second
step. Here, the second set of analyses is performed for comparing the results with the
experimental data. The data compared is related to a load <1.6 kN, and thus
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corresponds roughly (different model) to a factor of safety of 14/1.6 = 9. Still, this value
indicates that the behaviour should be fairly elastic (small strains). Nevertheless, the test
results from Fig. 7.37 indicate a fairly non-linear behaviour for these small loads.

The corresponding bending moments are evaluated for the investigated models and
compared with the derived bending moment from the test. The results for a
displacement of 2 mm can be seen in Fig. 7.38. The scatter of the bending moments can
be explained due to the different forces applied to the pile head at the displacement of
2 mm (Fig. 7.37). Still, the position of the maximum moment is well predicted by most
of the models except for the linear SRM model and the Mohr-Coulomb model.

In order to compare the bending moments better for specific loads it is chosen to depict
the bending moments for NRF = 800 N as seen in Fig. 7.39. Again the largest deviations
can be found for the linear SRM model and the Mohr-Coulomb model. The other
models provide very close correlation with the test results. Both, the amplitude and the
position of the maximum moment, are well predicted by the other models. Nevertheless,
discrepancies can be found between the model predictions and the test result at ground
level. Here, the results should coincide since these values are calculated without the
influence of the soil. The differences probably occur due to friction. effects in the
loading devices (pulley). Although the predicted bending moments agree well, the
related displacement of the pile tip may differ significantly as seen at for e.g.
NRF = 800 N indicated by the horizontal grey line in Fig. 7.37.
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Fig. 7.39: Comparison of bending moments for different methods and the experimental test result at a
lateral load of 800 N
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Although the results for the most complex of the applied models, the hypoplastic
approach, predicts fairly good predictions the model might be prone to large deviations
due to sensitivity of parameters. This issue is brought forward as the input is based on
numerous values which are partly difficult to obtain. Thus, a sensitivity study for the
given case is performed varying specific parameters by + 10 % (Tab. 7.10).

Tab. 7.10: Parameters and comparison for sensitivity study for hypoplasticity

nv con vi10 % nv vi10 %

n° @ [°] hs[kPa] n e €c €q Yij ANRF*
0 33 2.0-10°  0.35 1.21 0.88 0.52 0.3 1.1 0%

1 - 15070° 0385 - - - - - -4.6 %
2 - 27510° 0315 - - - - - +4.5 %
3 - - - 1.331 - - - - -4.8 %
4 - - - 1.089 - - - - +5.0 %
5 - - - - - - 0.33 1.21 -3.6 %
6 - - - - - - 0.27 0.99 +3.6 %
7 - 1.50-10° 0.385 1.331 - - 0.33 1.21 -14.0 %
8 - 2.75-10° 0315 1.089 - - 0.27 099 +122%
9 reference case parameters (n°0) and initial stress state +10 % 23%
10 reference case parameters (n°0) and initial stress state -10 % +4.0 %

nv = not varied v = varied con = consequence of variation *=foru=2mm

Herle (1997) performed a sensitivity study for soil parameters implemented in the
hypoplastic model. Nevertheless, his study is limited to soil element tests as e.g. triaxial
compression tests. Therefore, the given case is investigated by varying parameters
except for for ¢, eq, and e, since they can be derived from experiments with small
errors (Herle, 1997). For all cases the model is analysed by displacing the pile head by
2 mm and extracting the corresponding lateral or reaction force NRF. Based on the
reference case (n°0) the deviation ANRF of the reaction force NRF is considered and
compared in Tab. 7.10.

Varying the parameters by = 10 % influences NRF by about £ 5 % as seen for cases n°1
to n°6. Thus, the model regarding theses parameters is quite insensitive to changes for
small loads. The combination of variations (n°7 and n°8) results in a reduction or
increase of the NRF similar to the product of the individual influences. Further, two
additional numerical analyses (n°9 and n°10) were performed for investigating the
effect of the initial stress state. Here, the imposed geostatic stress state was adopted by
+ 10 %. Again, the influence on the reaction force remains small. Generally, it can be
seen that for these small loads and displacements, which also occur in buckling failures
the hypoplastic model appears to be fairly insensitive to parameter changes.
Nevertheless, due to the non-linearity of the soil model this aspect may change
significantly for larger forces or deformations close to failure. The latter issue was
emphasized by some example analyses involving larger displacements. As this study is
limited to small deformations this aspect is not further investigated in this work.
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7.7.3  Discussion and conclusions

The comparison revealed that most models provided acceptable predictions regarding
the bending moments in the pile for a specific load. Nevertheless, the predicted
deformations and displacements need to be interpreted carefully. This issue is well
known from other numerical studies involving soil. The applicability of the well-known
and widely used concept of the p-y curves is confirmed as the predictions from the
numerical analyses correlate well with the experimental results. Nevertheless, the
complex hypoplastic model also provides good agreement with the test results. As a
consequence it is concluded that for calculating and assessing tubular pile structures an
analysis with the concept of the p-y curves is adequate with respect to the design of the
carrying capacity. The simplicity of the model makes it more valuable for applications
in contrast to the complex hypoplastic model. Coefficients of subgrade reaction
approaches (SRMs) which take a variation of stiffness into account provide sufficiently
reliable predictions, too. Nevertheless, the 3D analysis with the elastic-plastic model
and the constant SRM approximation differ from the other predictions and the test
results. It can be stated that based on the investigated cases design calculations can be
based on the simple soil models. Still, the applied programs should have the possibility
of taking a varying stiffness as a function of the depth or stress state into account. The
results regarding absolute values for the displacements should be used with great care.
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8.1 General

The classical buckling load can be derived for axially loaded, geometrically perfect and
linear elastic cylindrical shell structures using the linear buckling theory:

o= 0.605-E-£ (8.1)
with the Young’s modulus £, the shell thickness ¢, the radius » and for a Poisson ratio
of 0.3. Since the theoretical buckling stress oyz. cannot be reached for real structures,
reduction factors are introduced for the design procedure. In the assessment against
axial compression the reduction factor y, (prEN 1993-1-6:2002-05) covers the influence
of geometrical imperfections (radial deviations and uneven supports) and structural
imperfections (e.g. residual stresses). In the following the notation ¢ is used for the
linear geometric imperfection factor for axially loaded cylinders and y, is the global
axial compression reduction factor.

The buckling curve proposed in DIN 18800-4 for the coefficient x» (herein the
reduction factor) incorporating the slenderness of the cylinder was derived empirically.
The curve is based on more than 1200 experiments with axially loaded cylinders
conducted between end of 1920 and end of 1990 and published by several researchers.
Schmidt (1991) depicted the results from the experiments and the proposed reduction
curves from DIN 18800-4 in one diagram. It can be seen that the experimental results
scatter significantly.

The best known and most investigated parameter for the detrimental reduction of the
carrying capacity in comparison to the classical buckling load is the radial deviation of
the shell wall from the ideal shape. Besides this influence, there are further non-
negligible effects on the carrying capacity of an axially loaded cylinder. For example,
residual stresses introduced due to welding may increase or decrease the buckling load
by 30 % (Hiibner et al., 2003). Further aspects significantly influencing the carrying
capacity of axially loaded cylinders are non-uniformly distributed axial loads along the
edges or uneven supports. These effects have been investigated far less in research.

Saal et al. (1979) investigated thin-walled axially loaded cylinders with internal
pressure in experiments. For three of the investigated cylinders, very non-uniform
longitudinal strain distributions were measured. These non-uniform longitudinal strain
distributions were ascribed to imperfect support, i.e. uneven edges of the cylinders. To
prevent the obvious detrimental influence of the unevenness of the supports, the Araldit
D used for joining the boundaries was enhanced with silica dust in the following
experiments.
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From these experiments it is obvious that the phenomenon of imperfect supports was
only discovered in the 70s and 80s, and thus had only been regarded to a minor degree
in the reduction factors given in the design codes which are based on the numerous
tests. Hence, the known values for the linear reduction factors ¢, as introduced in
Eurocode (prEN 1993-1-6:2002-05) comprise imperfections of the shell’s geometry and
non-uniform load introductions or uneven supports.

In the first step the buckling reduction factor is briefly discussed, in order to obtain an
insight to the possible amount of improvement for the reduction factor in the
dimensions of combiwalls. Based on the estimate, it is emphasized in the following that
the influence of uneven supports is highly detrimental to the buckling behaviour of shell
structures, even for small deviations of the supports. The non-uniform stress distribution
arising from uneven supports only fades out slowly over the length of the cylinder.
Since for combiwalls very long tubes are used (up to 40 m), the disturbed stress
distributions disappear over the length of the piles.

8.2 Buckling reduction factor

Since the part of the reduction factor due to the load reduction from uneven supports is
assumed to be negligible for combiwalls, its influence is estimated. In order to evaluate
this, the design procedure according to prEN 1993-1-6:2002-05 is examined for
different fabrication quality tolerance classes. Fig. 8.1 and Fig. 8.2 summarize the
buckling reduction factor y, for elastic-plastic effects for different cases as a function of
the characteristic imperfection amplitude 4wy normalized by the thickness z. In Fig. 8.1
the results for a yield stress of 235 N/mm” are depicted, while in Fig. 8.2 the reduction
factors are given for a yield stress of 430 N/mm®. These values cover the limits for
common harbour constructions. The buckling reduction factor y, is evaluated according
to prEN 1993-1-6:2002-05 as described in chapter 4. The values are given for 7/¢ ratios
of 30, 50, and 100. The example calculated in chapter 4 corresponds to an 7/ ratio of 50
and f, =430 N/mm’. The other two cases represent rough limits for possible tubular
constructions. All cylinders except for 7/t=30 and f, =235 N/mm” are classified as
Class 4 cylinders according to prEN 1993-1-1:1992 and thus have to be assessed against
shell buckling according to prEN 1993-1-6:2002-05.

As described previously a quality Class B in prEN 1993-1-6:2002-05 can be assumed
for the design of piles in combiwalls (prEN 1993-5:1998). The increase of the reduction
factor y, from the quality Class B to a perfect cylinder (4w, =0) is 2.5 % for the
reference case from chapter 4. This increase is related to an increase of the elastic
reduction factor a, of 25 % for the same range. While the imperfection amplitude
significantly affects the elastic reduction factor, the change of the elastic-plastic
reduction factor is very small. The maximum theoretical increase of the reduction factor
X decreases for smaller yield stresses; here for f, = 235 N/mm” only 1 %. This relation
can also be identified for other /¢ ratios. A largest theoretical increase of the reduction
factor y, of about 9 % for 7/t = 100 and f, = 430 N/mm® is still rather small.
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Thus, it can be seen that for the investigated dimensions and material properties the
influence of geometrical imperfections is rather small. The comparison with a perfect
cylinder according to prEN 1993-1-6:2002-05 shows that a more detailed analysis of the
geometrical imperfections regarding uneven supports can only lead to a small gain with
respect to the carrying capacity. Nevertheless, the investigation of this aspect is further
discussed in this work as it is an important factor influencing the carrying behaviour.
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8.3 Geometrically imperfect boundary conditions

Knebel (1997) performed preliminary studies within the framework of his research
which tackled the problem of uneven supports using a quarter cylinder. The geometry is
based on the cylinders investigated in the research co-operation SFB219. Knebel points
out that a model involving a detailed contact formulation with interacting elements
should be preferred to an approach using varying nodal loads. In the following the
problem of uneven supports is investigated further based on the findings from Knebel.

—> displacement
restrained

—>> rotation
restrained

Fig. 8.3: Boundary conditions for segment from cylinder

The boundary conditions for this investigation are depicted in Fig. 8.3. First, according
to the cylinders from SFB219 a 45° segment of a cylinder with radius » = 625 mm and
wall thickness = 0.625 mm is investigated. A Young’s modulus of E = 205 000 N/mm®
and a Poisson ratio of ¢£=0.3 are used in the analyses. The imposed geometrically
imperfect boundary condition is a centrally positioned cosine function over an area of
15° (Fig. 8.4). Due to the symmetry of the system the gap appears eight times over the
entire circumference of the cylinder. The bottom edge of the cylinder is restrained in
radial and circumferential direction. The gap is modelled using interaction elements of
different lengths, i.e. with different distances to the supports, acting only if subjected to
axial compression and allowing the structure to elevate under tension. The implemented
contact formulation is the augmented Lagrange contact formulation with the default
settings concerning the penalty factor from ABAQUS. Besides this method ABAQUS
Standard only provides the classical Lagrange multiplier method which can be used in
combination with a ,,soft” or ,hard“ formulation. Penalty contact enforcement is not
supported in ABAQUS Standard but in ABAQUS Explicit. The advantage for the
augmented Lagrange contact formulation is that the magnitude of the penalty factor has
no influence on the result as shown by Knebel (1997). The calculations are performed
as non-linear load-displacement analyses using the Riks formulation.
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Fig. 8.4: Distribution of the geometrically imperfect boundary conditions over the circumference

In Fig. 8.5 the axial membrane stresses at the edge of the cylinder are depicted for the
imperfection amplitudes g=0.1 mm and 0.01 mm for the maximum load, which is
55 % and 86 % of the classical buckling load for a perfect cylinder.
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Fig. 8.5: Axial membrane stress distribution for maximum load at cylinder edge

It can be seen that the stresses at the edge of the cylinder differ considerably due to the
non-uniform load introduction arising from the uneven supports. For the larger gap very
high stress peaks arise in the area of the gap’s ends. For smaller gaps which close before
failure, the maximum axial membrane stresses do not appear at the edge of the cylinder
but a little bit away from the edge. The maximum axial and circumferential membrane
stresses appear in the area of the buckles forming inwards as it can be seen in Fig. 8.6.
For both cases the buckles evolving from the uneven supports lead to a rapid increase of
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the bending moments in the shell and thus large radial deformations. This effect leads to
the failure of the structure.

Fig. 8.6 shows the axial stress distribution for the cylinder segment as a contour plot and
the deformed geometry at maximum load for an imperfection amplitude of g = 0.1 mm.
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Fig. 8.6: Axial stresses and deformations scaled with a factor of 40 at maximum load for g = 0.1 mm
and a = 15°

In the following investigation a cylinder with, a radius of 900 mm and a height of 1000
mm is chosen as a cylinder with typical diameter for combiwalls. Because the influence
of the different imperfections is more noticeable for high /¢ ratios, in the first approach
the thickness ¢ of the cylinder is chosen as a tenth of the real thickness in order to
emphasize the influence of radial imperfections and uneven supports. This results in an
r/t ratio of 500. According to the previous case an uneven support in the shape of a
cosine function is introduced, and an eigenmode affine radial imperfection is
superposed. The results are summarized in Tab. 8.1 corresponding to the reference ratio
of the imperfection Aw;/¢. The value Aw; stands for the amplitudes of radial deviations
or uneven supports (gaps). For the investigation a 60° segment with symmetric
boundary conditions was chosen in order to be able to reflect all relevant failure modes.

These investigations reveal similar detrimental influences of both imperfection types on
the load carrying capacity of the cylinder (Fig. 8.7 and Tab. 8.1). With regard to Aw/¢
the decrease of the buckling load is smaller for the unevenness of the supports and it
approaches a constant value at much smaller imperfections than with the radial
imperfections. Thus, the radial imperfections are dominant and govern the behaviour of
the cylindrical shell if both imperfection types are present.
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Tab. 8.1: Comparison of the influence of the different imperfection types (r/t = 500)

o/cu [%] geometrically imperfect boundary conditions
6x cosine 15°
Awy/t
0 0.1 0.5 1.0 1.5
perfect 0 100 64.6 59.9 58.0 57.6
eigenmode affine | (.1 59.9 55.1 50.1 49.1 48.9
perfect (1. EM)
o j 0.5 32.7 324 31.9 31.7 31.6
- j
— j 1.0 29.9 29.8 29.7 29.2 29.2
——7 | 15| 261 26.0 25.6 25.5 25.5
eigenmode affine | (.1 60.5 56.0 51.1 50.4 50.2
perfect (2. EM)
:; 0.5 36.1 35.6 353 35.0 34.9
— | 10 31.0 30.7 30.5 30.5 30.5
)
— g 1.5 26.1 26.5 26.5 26.5 26.5

geometrically imperfect 0-8
boundary Aw;/t [-]
(gap)

8 radial imperfection

Awi/t[-]

Fig. 8.7: Comparison of the influence of the different imperfection types - radial imperfections with first
eigenmode (v/t = 500)

Tab. 8.2 lists the results for the case that the uneven boundary conditions stretch over
the entire circumference as a cosine function. It can be seen that the influence of the
uneven boundary conditions increases significantly by the higher reduction of the
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buckling strength. Similar to the behaviour found in the previous cases for
geometrically imperfect boundary conditions, it can be seen that the decrease of the
carrying capacity saturates with increasing imperfection amplitude and converges to a
constant value. (Tab. 8.1). The behaviour of the buckling strength tending to a limit
value cannot be found for the radial imperfections.

For the investigated case of uneven support over the entire circumference of the shell,
small radial imperfections lead to a slight increase of the buckling strength. The cause
for the enhanced buckling strength is the fact that the eigenmode affine radial
imperfection mainly comprises of ring-shaped buckles which act similarly to stiffeners
against a failure due to the uneven supports. Cylinders with only geometrically
imperfect boundary conditions tend to buckle with a failure mode, which consists of
circumferential buckles similar to the cosine shape of the uneven supports (Fig. 8.6).
Hence, both failure modes may oppose each other in some areas and lead to a beneficial
instead of detrimental effect. This phenomenon is highly dependent on the imposed
imperfections and thus also on the 7/ ratio.

Tab. 8.2: Comparison of the influence of the different imperfection types (r/t = 500)

o/ [%] geometrically imperfect boundary conditions
24x cosine 15° (entire circumference)
Awy/t
0 0.1 0.5 1.0 1.5
perfect 0 100 50.9 37.0 36.2 35.0
eigenmode affine | (.1 59.9 54.8 48.7 48.5 48.3
perfect (1. EM)
0.5 32.7 32.7 32.7 32.7 32.7
- 1.0 29.9 30.2 29.4 29.4 29.4
: Z
—— 1.5 26.1 27.9 27.9 27.9 27.9

Similar to the radial imperfections, the influence of uneven supports is minor for small
r/t ratios. As an example some results are listed in Tab. 8.3. For an /¢ ratio of 50,
corresponding to the tubular piles used for combiwalls, the first buckling eigenmode
under axial load consists of checkerboard-like buckles. In contrast to the previous
cylinder the sole influence of uneven supports is very small. Whilst for example for a
boundary imperfection amplitude of Aw;/#=1.0 the reduction of the load carrying
capacity for a cylinder with an /¢ ratio of 500 drops by nearly 65 %, the load carrying
capacity for an r/t ratio of 50 decreases only by about 4 %. The varying reductions of
the buckling load arise from the different buckling eigenmodes of the thin-walled and
thick-walled shell and the associated buckling half-wave lengths in comparison to the
imposed imperfections. As a consequence, the main focus shall be on the relative
influence of the two interaction imperfection types.
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The effect of uneven supports becomes more important for the case of combined
imperfections. For the thin-walled cylinder with radial imperfections of the amplitude
Awy/t = 1.0 additional imperfect boundary conditions result in a slight decrease of the
carrying capacity (2 %). The same case for the thick-walled cylinder leads to a
reduction of 15 %.

Tab. 8.3: Comparison of the influence of the different imperfection types (r/t = 50)

o/ [%] geometrically imperfect boundary conditions
24x cosine 15° (entire circumference)
Awy/t
0 0.1 0.5 1.0 1.5

perfect 0 100 98.1 90.2

eigenmode affine | (.1
perfect (1. EM)

s | 05

1.0 77.5 72.4 67.3
1.5

The analyses from the first studies reveal the high dependency of the carrying capacity
on the imperfection type and amplitude. The influence of uneven supports increases
considerably for slender shells, but has a larger impact for thick-walled shells subjected
to combined imperfections. The preliminary investigations emphasize that the influence
of the imperfection types varies strongly, and depends on parameters such as dimension,
imperfection pattern, amplitude, symmetry of the imperfections, and combination of
different imperfection types.

For small 7/¢ ratios the elastic buckling load will not be reached since the base material
yields prior to buckling. The classical buckling load for the last investigated case can be
calculated for a standard steel (£ =210 000 N/mmz) with (8.1) as oy = 2451 N/mm?. A
common constructional steel e.g. S235 yields at o;, = 240 N/mm’ which is about a tenth
of the classical buckling stress. Therefore, the previous case is investigated taking an
elastic-perfectly plastic material behaviour into account. A yield stress o, of
240 N/mm?” is used in combination with the J, flow theory. The input is based on a true
stress — true (logarithmic) strain relationship. In v some results for geometrically and
materially non-linear analyses are summarized. The calculated resistances R are
compared with the plastic reference resistance R, from a geometrically linear and
materially non-linear analysis. The plastic reference resistance R, corresponds to an
axial membrane stress of 240 N/mm?” in comparison to the classical buckling stress of
2451 N/mm” (= 9.4 % of the classical buckling stress).
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Tab. 8.4: Comparison of the influence of the different imperfection types (r/t = 50) with plasticity

R/R, [%] geometrically imperfect boundary conditions
24x cosine 15° (entire circumference)
Awy/t
0 0.1 0.5 1.0 1.5
perfect 0 100 94.7 88.4 83.0 81.6
eigenmode affine | (.1 100 95.7 89.0 84.0 81.9
perfect (1. EM)
s | 05 85.1 83.0 76.6 72.3 71.8
1.0 67.0 63.8 57.7 56.4 54.7
! 1.5 57.4 55.3 49.8 48.9 46.9

For a cylinder with imperfect boundary conditions the plastic failure initiates in the area
of the supports as stress peaks evolve due to the uneven supports and the restriction of
deformation arising from the supports. If a large radial imperfection pattern is imposed
on the cylinder high bending stresses appear in the pre-deformed structure around the
buckles leading to the failure of the system. For very small radial imperfections in
combination with uneven supports the study reveals a small increase of the carrying
capacity, which appears due to the fact that the small radial imperfections relief the bi-
axial stress condition.

The overall behaviour if including the effect of plasticity for the investigated case is
similar to the elastic analyses as shown in Tab. 8.3. In contrast to the elastic analyses the
decrease of the carrying capacity does not saturate as quickly with increasing
imperfection amplitude and no specific limit value can be obtained. For example still
considerable decreases in carrying capacity can be found for increasing imperfections of
uneven supports at an amplitude between Aw;/t = 1.0 and Aw/f = 1.5.

8.4 Bending moment and geometrically imperfect boundary
conditions

Early studies by Fliigge (1932, 1960) presented theoretical values of critical buckling
stress for cylinders subjected to bending. Fliigge proposed for an investigated reference
cylinder prone to pure bending and based on theoretical considerations a maximum
buckling stress 30 % higher than the compressive buckling stress according to (8.1).
These findings were referred to by different authors without pointing out that the factor
of 1.3 is only based on calculations for a particular radius-thickness ratio
(1/12:7/*=10®), for a particular longitudinal buckling half-wavelength-radius ratio
(mmr/l = 1) and a Poisson ratio of 1/6.
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Based on the results from Seide and Weingarten (1961) design rules were proposed by
the NASA by Peterson et al. (1968) which uses identical theoretical critical buckling
stresses for bending and compression in combination with a correlation factor y which is
higher for pure bending. This is because the failure may be triggered by any
imperfection for the axially loaded cylinder while for the cylinder subjected to bending
the buckling generally initiates in the area of maximum compressive stresses. Later
studies revealed that for real structures the pre-buckling cross-sectional ovalization has
a significant influence on the buckling moment reducing it far below the latter
predictions (see e.g. Karamanos, 2002).

In the following it is investigated whether geometrically imperfect boundary conditions
affect the buckling behaviour of a cylinder with bending moment differently from an
axially loaded cylinder. A cylinder according to the previous section is used. For a
height of 1000 mm and an 7/¢ ratio of 50 the radius is defined as » =900 mm. The
numerical analyses are based on a cylinder segment of 180° making use of the
symmetry in order to investigate the cylinder subjected to a bending moment. Boundary
conditions were applied according to Fig. 8.3. The uneven support was modelled using
a cosine-shaped imperfection with an amplitude of Aw;/¢ = 1.0. The cosine waves were
imposed such that the position of &, coincides with the maximum gap spacing.
Comparing analyses revealed that the influence of the position of the cosine function is
rather small. The number of cosine waves in the figures refers to the entire
circumference.

12

oL _]|
o emmmmmmemmmmmTTIemms —= linear elastic buckling stress
081 non-linear buckling analyses
o with uneven supports
b\b — — 24 cosine waves
~, 0.6 18 cosine waves
©~ e 12 cosine waves
5 o N s o d —6— 9 cosine waves
0.4 ] —%— 6 cosine waves
N cosine waves
0.2 .
L,
0.0 . . . . . . . .
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

percentage of axial membrane stresses from bending moment o, ,, / o, [-]

Fig. 8.8: Influence of different uneven supports with Aw/t = 1.0 subjected to combined loading — cosine
waves over the entire circumference

Since the contact modelling for the bottom edge of the cylinder can only transfer
compression loads, initially an axial load has to be applied to the cylinder. The axial
load must generate at least 50 % of the compressive axial membrane stresses in order to
prevent the cylinder from uplifting. Based on this approach the axial membrane stresses
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from axial loading are superposed with the axial membrane stresses arising from the
applied bending moment. The buckling stresses normalized over the classical buckling
stress (8.1) are depicted in Fig. 8.8 for different patterns of geometrically imperfect
boundary conditions for the same imperfection amplitude. The normalized buckling
stress is shown as function of the percentage of the axial membrane stresses arising
from the bending moment. The value of 90.2 % from Tab. 8.3 for a cylinder with only
24 cosine waves (Awy/t = 1.0) as uneven support can be found in Fig. 8.8 for a cylinder
with oy \/ 0 = 0.

For the linear elastic, perfect case an increasing bending moment results in an
increasing critical buckling load. For a cylinder subjected to a bending moment the
classical buckling stress for solely axially loaded cylinders according to (8.1) is
exceeded by 5 % for the investigated case. This effect is relatively constant for the
different imperfection patterns. The influence of the different imperfection patterns on
the load carrying capacity is significant. Whereas for the investigated case a large
number of imperfections (24 cosine waves along the entire circumference) only lead to
a reduction of the buckling load of around 15 %, an imperfection pattern with a small
number of imperfections (e.g. 6 cosine waves along the entire circumference) results in
a decrease of the buckling load of 70 %. The imperfection sensitivity can be explained
by how much the imperfection pattern and the buckling eigenmode are alike. The axial
buckling half-wave length for a medium length cylinder with axial membrane stresses
buckling in a checkerboard-like pattern can be calculated as follows (see e.g. Teng and
Rotter, 2004):

V4
Y —
1 W (8.2)

For the reference cylinder the axial buckling half-wave length is around 440 mm which
is similar to the length of cosine half-wave for the pattern including 6 cosine waves
along the entire circumference (470 mm). The large decrease of the carrying capacity is
confirmed in the buckling modes depicted in Fig. 8.8. The results emphasize that the
small reduction of carrying capacity for thick-walled cylinders from the previous
section is based on the chosen imperfection pattern and not the thickness of the shell.

In Fig. 8.10 the normalized buckling stresses are depicted for different patterns of
geometrically imperfect boundary conditions for the imperfection type “block™. It can
be clearly seen in contrast to the results from Fig. 8.8 that the carrying capacity is
considerably higher for the imperfection type “block”. Still, a significant decrease of
carrying capacity remains for imperfection lengths in the order of the axial buckling
half-wave length as revealed in the previous case. In Fig. 8.11 results for all three
imperfection types from Fig. 8.9 are shown in one diagram for the most detrimental
case of 6 imperfection units (6 cosine waves, 6 trapeziums, 6 blocks). It can be
concluded that the smaller the area which is in direct contact with the lower support
(imperfection amplitude = 0) is, the lower is the carrying capacity of the cylinder. The
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most detrimental case of the investigated types is the geometrically imperfect boundary
condition modelled as cosine wave over the entire circumference.
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Fig. 8.9: Distribution of uneven supports for 6 cosine waves, 6 trapeziums, 6 blocks

For comparison the same problem is investigated in combination with other
imperfection patterns. Fig. 8.9 shows three different imperfection patterns for uneven
supports, namely cosine waves, trapeziums, and blocks. The depicted case refers to
three units of the corresponding uneven support type over half of the circumference.
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Fig. 8.10: Influence of different uneven supports with Awy/t = 1.0 subjected to combined loading — blocks
over the entire circumference

In the investigated case of an 7/f ratio of 50 and standard constructional steel the
material of the cylinder will start yield before buckling elastically. Thus, the problem is
investigated taking an elastic-perfectly plastic material behaviour as described in the
previous section into account. The yield stress o is set to 240 N/mm’ and the J, flow
theory is assumed. Since the cosine wave shaped imperfection over the entire
circumference delivered the smallest carrying capacity the case from Fig. 8.8 is re-
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calculated taking plasticity into account. In Fig. 8.12 the results for different uneven
support types subjected to combined loading and considering plasticity are summarized.
The plotted results for an imperfection shape of 3 cosine waves cover with type (b) the
case of a distribution of uneven supports according to Fig. 8.9 and with type (a) the case
from Fig. 8.9 shifted by 30°. The ordinate displays the ratio of the calculated carrying

capacity R and the plastic reference resistance R, from a geometrically linear and
materially non-linear analysis.
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Fig. 8.11: Comparison of different uneven support types with Awy/t = 1.0 subjected to combined loading
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Fig. 8.12: Comparison of different uneven support types with Awy/t = 1.0 subjected to combined loading

considering plasticity

In the region around the local supports (imperfection amplitude zero) quickly a bi-axial
stress state with large stresses evolves resulting in plastic deformations. The local stress
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concentrations lead to plastic bulges forming in these regions analogue to plastic
“elephant foot” buckling (Fig. 8.12). Similar to the elastic analyses but to a more
significant extent an increase of the carrying capacity can be found for larger moments.
A smaller number of supports of 6 cosine waves instead of 12 cosine waves evidently
leads to higher stress concentrations and a reduced carrying capacity. The difference in
carrying capacity is not as distinct as found for the elastic calculations. Also the
influence of the shape of the imperfection pattern is rather small as seen in Fig. 8.12.
Since the failure is initiated due to plastification in the area of the supports, the
influence of the shape of the supports seems negligible. Comparing the results for the
cosine waves type (a) and (b) reveal that the effect of the position of the cosine function
may influence the carrying capacity to a minor extent.

8.5 Summary and conclusions

The investigation of the geometrical imperfections due to uneven supports revealed
several important issues. The findings can be grouped into three essential points:

In a first step, the current rules in design codes for geometrical imperfections were
discussed. A detailed evaluation with respect to the reduction factor y, (prEN 1993-1-
6:2002-05) for the geometrical and material range commonly used for tubular piles in
combiwalls highlighted a rather small theoretical increase for perfect structures. This
aspect is depicted in Fig. 8.1 and Fig. 8.2 where it can be seen that changing from Class
C to Class A or even to a perfect structure only leads to a fairly small improvement for
design purposes.

In the next step, the influence of geometrical imperfections due to uneven supports on
the elastic reduction factor a, or o/o, was investigated. Generally, the presence of
uneven supports significantly influences the load carrying behaviour of a shell subjected
to axial membrane stresses (Tab. 8.1 and Tab. 8.2). The shape, the amplitude, and the
length of imperfections highly affect the buckling load making it very difficult to derive
simple design proposals. For rather thick-walled cylinders, uneven supports affect the
carrying capacity, but their impact decreases, when radial shape imperfections are
present (Tab. 8.3). Analyses with combined loading (bending moment and axial load)
proved that a purely axial loading can be applied as conservative approximation.

In the last step, the connection to the design rules discussed in the first part was made
by performing material elasto-plastic analyses with different geometrical imperfections
regarding R/R,; or similarly the reduction factor y.. Considering yielding does not
particularly change the tendencies, but stresses a decreasing parameter sensitivity for
uneven supports (Tab. 8.4). Fig. 8.1 provides a reduction factor y, of about 0.92 for
r/t =50 and a radial imperfection amplitude Aw/t = 0.07(+/£)*> = 0.5. This value more
or less similar in value and concept to R/R, =0.85 from Tab. 8.4 without uneven
supports. The comparison between Tab. 8.3 and Tab. 8.4 shows the lack of considering
uneven supports in design rules, but at the same time highlights the small theoretical
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gain of carrying capacity for combiwall geometries due to an application of reduced
radial shape imperfections.

As the influence of plasticity appears to be small, a potential design proposal would
involve a factor for increasing the linear reduction factor a,. If the influence of uneven
supports on the buckling load is assumed roughly with 10 % based on conservative
considerations (Tab. 8.3), the increase of the design buckling stress would only be 1 %
or 2 % for common dimensions in an assessment according to chapter 4.
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9.1 Overview

EN 1993-1-6 does not comment on a possible supporting effect of soil. For obtaining a
better insight to the possible supporting influence of soil in contact with a buckling
cylinder a simple finite element model is used for investigating the effect of the
presence of soil. In the simplest case for modelling a foundation, it comprises of linear
Winkler springs reacting to both tension and pressure, i.e. an adhesive foundation. In
chapter 7 different coefficients of subgrade reaction ks for sand based on diverse
derivations and references are summarized. For a maximum bending moment in a depth
of around 10 m for combiwalls of a length of 30 m, values of 10 MN/m® to 100 MN/m’
can be assumed for the coefficient of subgrade reaction ks based on conservative
assumptions. In references also values of 500 MN/m® can be found for the coefficient of
subgrade reaction ks at these depths. Different hypotheses assume e.g. linear or
parabolic increase of the subgrade reaction as a function of the depth reaching a
maximum at a certain depth. In a first conservative approach, if not stated otherwise, the
coefficient of subgrade reaction kg is set constant over the depth. For the steel cylinders
a Young’s modulus of 210 000 N/mm? and a Poisson ratio of zz= 0.3 are imposed in the
numerical analyses.

In the following section an axially loaded and an externally pressurized cylinder are
investigated with the influence of a foundation on the buckling behaviour. These two
load conditions are the relevant cases appearing in the buckling assessment for tubular
piles of combiwalls.

9.2 Axially loaded cylindrical shell

The possible supporting effect of soil against a buckling failure was investigated
numerically using a small cylindrical shell with a height or length of 500 mm. Since the
model of the preliminary investigations is based on the real dimensions of combiwall
constructions the #/¢ ratio is fixed accordingly to 50. The real dimensions are scaled
down by a factor of around 10 leading to a choice for the tube diameter D of 200 mm
and a wall thickness # of 2 mm. These dimensions were chosen in correspondence with
possible reduced scale laboratory tests. The axially loaded cylinder is modelled with
two different segments. The upper and the lower part of the tube are designed with a
thicker wall thickness (¢, =5 mm) for forcing a controlled failure to initiate in the
middle section. The reinforced section of the cylinder shaded in dark grey in Fig. 9.1 is
modelled with a height of 100 mm. The investigated section in the middle has a height
of 300 mm and a wall thickness of # =2 mm.
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Fig. 9.1: Elastic buckling mode for axially loaded cylinder with radial foundation

The linear elastic buckling analysis using the finite element program ABAQUS for the
axially loaded steel cylinder without foundation leads to an ideal buckling stress of
2541 N/mm?” and the chessboard-like buckling pattern restricted to the middle section as
shown in Fig. 9.1.
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Fig. 9.2: Increase of buckling stress for different coefficient of subgrade reaction kg

This value correlates with the result for the classical buckling load according to
equation (8.1) without the term with the square root. In the next step foundation is
applied in radial direction to the inside of the cylinder simulating a filling of soil. The
foundation consists of linear Winkler springs reacting to both tension and pressure, i.e.
an adhesive foundation. In the preliminary investigations this simple model is chosen to
obtain first impressions on the supporting effect for further studies. For the investigated
range for the coefficient of subgrade reaction the increase of the classical buckling load
appear to be very small as e.g. depicted for ks=25MN/m’ in Fig. 9.2. The linear
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bifurcation analysis using the approach of linear Winkler springs for the soil results in a
nearly identical buckling load and buckling mode as found for the cylinder without
foundation.

Based on the defined range between 10 MN/m® to 100 MN/m® and additionally by
varying the 7/t ratio the increase of the classical buckling load is investigated for the
short reduced scale cylinder analogously to Fig. 9.2. It was discovered that for small r/¢
ratios even for very high coefficient of subgrade reaction of 500 MN/m’ only a very
small increase of the classical buckling load was found. For the defined range up to
ks= 100 MN/m’ the increase of the bifurcation load remains below 1 %. In contrast, for
an r/t ratio of 1000 the bifurcation load increases by more than 2 %. Federhofer (1937
and 1954) derived based on the theory by Fliigge (1932) the analytical solution for an
axially loaded, elastically embedded cylinder without transfer of shear forces. The
solution is based on the assumption of small deformation and can be brought down to a
factor S increasing the classical buckling load for axisymmetric failure. For the case of
1= 0.3 for the cylinder it can be written as:

2
kg-r

E-t

o =0, f=0605E-L. 1+ ©.1)
r

Fig. 9.3 compares the results for two different /¢ ratios from the analytical solution for

the axisymmetric case with the corresponding three-dimensional finite element

calculations.
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Fig. 9.3: Comparison between the analytical solution according to Federhofer and numerical analyses
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For an 7/t ratio of 200 the buckling mode turns to a rotation-symmetric mode (ring
buckles) from small coefficients of subgrade reaction on. For an #/¢ ratio of 50 this type
of buckling mode occurs apart from a coefficient of subgrade reaction of around
2500 MN/m’. For lower values the chessboard-like failure mode prevails which is not
covered by the equation (9.1). Still, due to the fact that the bifurcation points are
clustered in a small region for the axially loaded cylinder the analytical solution by
Federhofer agrees well with the numerical results.

For the 7/t ratio of 50 and small coefficients of subgrade reaction (< 500 MN/m’) which
is the relevant range for the investigation of the SSI the buckling loads drops below the
classical buckling load according to Donnell because this approximation does not
include the influence of reducing circumferential buckles for long cylinders. According
to EN 1993-1-6 a cylinder is defined as “long” for the following expression:

/ r
e 0.5 ” 9.2)

For the reference case this value is not reached but closely approached. The so-called
garland curves by Fliigge (1932) which include the effect of length, show that the length
effect takes place for the investigated reference case for an 7/¢ ratio of 50. In Fig. 9.3 it
can be seen that the influence of the elastic foundation without shear transfer on the
buckling load of a medium length cylinder in the range of realistic coefficients of
subgrade reaction is very small. The supporting effect of soil increases for larger r/t
ratios, but does not reach design relevant magnitudes until an /¢ ratio of about 1000.
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Fig. 9.4: Buckling stress for different lengths and for an elastic foundation

In the next step the influence of length is investigated. Based on the reduced scale
model and a coefficient of subgrade reaction ks=25 MN/m’ the length of the middle
section is varied. By increasing the dimensionless length parameter @ the ideal buckling
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load reduces as depicted in Fig. 9.4. This effect is directly associated with the reduction
of the number of circumferential buckling waves m. For very long cylinders the number
of circumferential buckling waves m drops to 1. The numerical analyses verify this
effect included in the shell theory by Fliigge (1932). Moreover, it can be seen that the
supporting effect of the soil increases for longer cylinders considerably (Fig. 9.4). For a
dimensionless length parameter @ of 170, corresponding to a length of 2400 mm in the
model and thus roughly related to the reference case scaled down by the factor of 10, an
increase of the linear buckling load of 3.5 % can be found.

For the investigated 7/t ratios and the investigated and commonly applied steels for
combiwalls the buckling stress considering imperfections is never reached. For
example, the yield stress for the steel S355 or S460 lies significantly below the buckling
stress calculated with a fairly small knock down factor of 0.2 to 0.3 based on large
imperfections. Thus, the failure of such axially loaded tubes is governed by their plastic
carrying capacity. In Fig. 9.5 the deformed plot of an axially loaded, perfect tube with
an 7/t ratio of 50 at maximum load is depicted. For the analysis a steel S355 with a yield
stress of 360 N/mm’® and a linear elastic behaviour in combination with a minor
hardening was implemented.

Fig. 9.5: Deformed tube axially loaded at maximum load with and without elastic foundation

For the deformed tube plastic buckles can be found in the transition to the stiffened
segment (,,Elephant’s foot buckling”). Fig. 9.6 depicts the load-displacement curves for
perfect axially loaded tubes from geometrical and material non-linear finite element
calculations. The ordinate indicates the elastic knock down factor « defined as the ratio
of the load carrying capacity and the classical buckling load. Again it can be seen that
the influence of the elastic foundation on the forming of the plastic buckles is small, and
no significant increase of the carrying capacity can be found. The effect of the elastic
foundation becomes distinguishable along the load branch after reaching the load
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carrying capacity. For investigating the influence of soil on an imperfect cylinder, the
same calculations were performed using a cylinder with two different imperfection
shapes. Type A uses an imperfection shape that is affine to the first elastic buckling
mode of the perfect cylinder (Fig. 9.1). For type B the deformed cylinder at the plastic
carrying capacity is imposed as imperfection (Fig. 9.5). Both imperfection shapes are
scaled with a maximum imperfection amplitude of w/t = 1.
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Fig. 9.6: Load-displacement curves for axially loaded cylinder for different foundations and
imperfections

In contrast to the perfect cylinder it can be seen that the load-displacement curve
changes, and the foundation for high coefficients of subgrade reaction gains influence
for the imperfection type A. This effect is related to the fact that the plastic buckling is
related to a different buckling pattern than the perfect cylinder. In Tab. 9.1 the increase
of the carrying capacity of the imperfect cylinder is summarized considering
geometrical and material non-linear behaviour. Similar to the case of elastic bifurcation
loads the increase of the carrying capacity is fairly small for a coefficient of subgrade
reaction ks of 25 MN/m’. Even for a larger coefficient of subgrade reaction the increase
of the load carrying capacity remains small. The analyses were performed using a
consistent imperfection amplitude of w/¢t = 1.

In further studies the possible influence of load transfer mechanism parallel to the shell
surface is investigated. Such load transfer mechanisms may arise for an axially loaded
shell due to friction and the mobilisation of shear forces in the soil. This effect may be
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modelled by using more complex spring models. For the preliminary investigation
additional springs parallel to the surface are applied with similar coefficients of
subgrade reaction to the perpendicular foundation. The increase of the bifurcation load
is negligible. A further increase of the carrying capacity does not evolve since the test
cylinder is too short for the friction forces to develop and to support the cylinder in
transferring the axial loads. The influence of tangential springs will be discussed more
in detail in the subsequent sections.

Tab. 9.1: Increase of carrying capacity considering a foundation

case foundation kg increase of carrying capacity
perfect 0 MN/m’ -
25 MN/m’ +0.0 %
500 MN/m’ +0.2 %
imperfect type A 0 MN/m’ -
25 MN/m’ +0.3 %
500 MN/m’ +4.9%
imperfect type B 0 MN/m’ -
25 MN/m’ +0.0 %
500 MN/m’ +0.6 %

9.3 Cylindrical shell subjected to external pressure

9.3.1 Radial foundation

A section of the tube with a length of 3250 mm is modelled for investigating the
supporting effect of the soil. The diameter of the cylinder is 1800 mm and the wall
thickness is 18 mm. The preliminary investigation with a 180° segment of the tube
applies an elastic foundation on the in- and outside of the cylinder which refers to e.g. a
formation of a plug in the region of the pile tip. Thus, a one-sided foundation with linear
elastic spring acting identically under tension and compression are modelled based on
Winkler springs on the inside of the cylinder. The length of the cylinder for the study
was chosen based on the dimensionless length parameter @ in order that the cylinder is
classified as medium-length cylinder (EN 1993-1-6) and hence both effects, the bending
effect for long cylinders and the direct effect of the boundary conditions, can be
neglected (see (9.3)). The pile tip shall be investigated as local buckling problem for a
cylinder subjected to external pressure.

203a)=L=25.531.63§=81.5 9.3)

rt
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The loading is applied as constant external pressure ¢. In a first step the system is
investigated with two different sets of boundary conditions. In case 1 both edges are
clamped and in case 2 only the top edge is clamped and the bottom edge is free
following the real boundary situation. The linear buckling eigenmodes for the cylinder
without foundation is depicted in Fig. 9.7. The circumferential critical buckling stress
ogre can be calculated according to EN 1993-1-6 as follows:
0, =092.£52L 9.4)
o r

The factor Cypis defined from the boundary conditions in EN 1993-1-6 with 1.5 for case
1 and 0.6 for case 2. The analytical buckling loads from (9.4) are compared and
confirmed with the numerically calculated linear elastic buckling loads by applying
formula (9.5) which relates the critical pressure ¢ to the circumferential stress.

Oy=¢9 ? (9.5)
In Fig. 9.7 the critical action, i.e. the critical pressure g, is shown for the cases 1 and 2
as a function of the coefficient of subgrade reaction ks. The action ¢ is normalized with
the correspondent critical pressure g..; for a cylinder without foundation according to
(9.4) and (9.5).
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Fig. 9.7: Influence of a linear foundation on the buckling load for a medium-length cylinder subjected to
external pressure

The carrying capacity of the cylinder increases significantly due to the supporting effect
on the in- and outside. In case 2 and considering linear elasticity an increase of the
carrying capacity by the factor of more than 10 can be seen for a coefficient of subgrade
reaction of 500 MN/m’. The absolute increase of the carrying capacity is considerably
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larger for case 2 than for case 1. The buckling modes change for larger coefficients of
subgrade reaction to a failure mode involving higher order buckling waves. These
results serve to illustrate the influence of a foundation on the buckling behaviour of a
cylinder subjected to external in comparison to an axially loaded cylinder.
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Fig. 9.8: Influence of foundation on the carrying capacity of a cylinder subjected to constant and
linearly varying external pressure

In a second study the length of the cylindrical shell segment was changed, and the
influence of a foundation on an external pressure distributed as a linear function of the
depth was investigated. The results for the cylinder which is freely supported on one
side and with the maximum external pressure at the same side are depicted in Fig. 9.8.
In this context the bending of the cylinder is not considered because an external
pressure constant over the circumference is applied. The circumferential critical
buckling stress oyr. decreases for longer cylinders as it can be seen from equation (9.3)
and (9.4). The findings show that the longer the cylinder is, the more an imposed
foundation and a varying external pressure effect the critical buckling stress. The
influence is smaller for a cylinder subjected to an external pressure distributed as a
linear function of the depth than for a cylinder subjected to constant external pressure.
The impact of the foundation for e.g. a coefficient of subgrade reaction of 25 MN/m® for
a short cylinder (i.e. here between 3250 mm and 9750 mm) on the carrying capacity is
large (ratio g/q. = 2.2 and 6.2). Nevertheless, a further increase of the ratio for much
longer cylinders (around 24 000 mm) is small (ratio g/q..; between 6.2 to 7.4) as seen in
Fig. 9.9. The absolute increase of the carrying capacity decreases for linear instead of
constant external pressure (Fig. 9.9).
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Fig. 9.9: Influence of foundation (ks = 25 MN/m’) on the carrying capacity of a cylinder subjected to
constant and linearly varying external pressure for different lengths

9.3.2  Tangential foundation

The previous study did not include slip or stick friction between the shell and the soil.
The effect of circumferential and/or meridional friction may influence the buckling
behaviour additionally and is discussed in this section.

The buckling pattern of a cylindrical shell subjected to external pressure involves a
number of buckling waves over the circumference which mainly govern the buckling
case except for the applied boundary conditions. The buckling problem of an axially
loaded column simply supported on both sides with infinite axial rigidity results in a
buckling eigenmode with a single wave, in which all points move normal to the initial
configuration (Fig. 9.10, left).

/

|

|
1

Fig. 9.10: Buckling eigenmodes for a column(left) and a ring (quarter, right) with shifted nodal position
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For this case no axial movement of the points along the column appears and thus
springs arranged along the axis of the column do not influence the buckling load. A ring
subjected to external pressure also fails due to column buckling. Nevertheless, for this
mode the points do not move purely radially but also in circumferential direction (Fig.
9.10, right). Hence, for the buckling ring, a circumferential foundation or applying a
frictional behaviour should lead to an increase of the buckling load.

In order to investigate the influence, the same cylinder from the previous chapter is used
(case 1 from Fig. 9.7). At each node a connector element is attached radially acting on
both, tension and compression with the same elastic spring stiffness. Additionally, two
further springs are applied in the tangential plane (surface of the shell) for representing
a foundation or friction in meridional and circumferential direction. This modelling
represents only a rough approximation since the circumferential forces arsing from
friction are a function of the normal force acting on the surface. Since in the first steps
only linear bifurcation analyses are performed no non-linear stiffness or
contact/separation can be used. In Fig. 9.11 some results for additional tangential
springs are depicted. Based on a coefficient of subgrade reaction kg acting normal to the
shell surface (ks = k,) circumferential and meridional springs with the stiffness &, are
added. The buckling load increase is evaluated with respect to the buckling load of the
corresponding case without additional springs on the shell surface.

6.0
sol —A— ky=k, =10 MN/m’
R ky=k, =50 MN/m’
—— ky=k,=100 MN/m’
4.0/
3
< 3.0
S
2.0
A
1.0k : ‘ | |
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ratio of subgrade reaction moduli k/k, [%]

Fig. 9.11: Influence of additional tangential springs on the carrying capacity of a cylinder subjected to
constant external pressure

A significant increase of the buckling load can be found for the depicted range. Already
for ratio of subgrade reaction of 10 %, the buckling pressure rises by 20 % to 90 % for
the investigated range. The number of buckling waves over the circumference tends to
increase for larger tangential spring stiffnesses. It can be shown that the influence of the
meridional springs is by far smaller than the influence of the circumferential springs.
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This finding is quite understandable as the curvature of the single buckle evolving in
meridional direction is smaller than the curvature of the large number of buckling waves
appearing in circumferential direction.

The present approach is only valid for the stick friction which can be modelled as a
spring. As stated the slip friction needs to be coupled with the normal force acting on
the shell surface. Nevertheless, the first analyses give an impression of the beneficial
influence of considering friction. In the following the static coefficient of friction is set
equal to the kinetic coefficient of friction and hereafter only called coefficient of
friction.

Tejchman (1989) investigated the interaction between the grains of sand and structures
in detail. His main aspect was the development of an interaction surface to be used in a
hypoplastic model. In this context Tejchman (2001) then established a polar
hypoplasticity, i.e. he extended the hypoplasticity by including polar terms (Cosserat
terms), allowing to consider the rotation of grains. For these cases Tejchman (1997)
derived a concept for boundary conditions (interaction surface) along structures
depending on the relationship between roughness of the surface and grain size.
Nevertheless, although possibilities allow to take these complex conditions in analyses
into account, the applied procedure shall be kept easy to apply. Tejchman (1989)
performed various experiments for obtaining information on the relationship between
the ratio of the shear stresses 7 in the interaction zone and the pressure/perpendicular
stress o, (= friction coefficient ) depending on the displacements.

T
Hpie = G—” (9.6)
The experiments revealed that the friction coefficient 4. increases before reaching an
asymptotic value 4, which depends on the roughness. For rough surfaces a peak (local
maximum) may evolve before reaching the asymptotic value. The latter equation can be
rewritten and expressed as follows:

= O-n/ufric =0, tano (97)

where 7 are the shear stresses, o; are the normal stresses on the surface, and o
corresponds to the angle of wall friction. In the experiments using a simple shear
apparatus no significant influence on g4, was found for different densities. The
asymptotic values can be estimated from diagrams in Tejchman (1989) roughly as
Lim = 0.2, 0.5, and 0.8 for smooth, rough, and very rough surfaces respectively. Thus,
we take as a first conservative approximation for smooth sand the values
iic = tim = 0.2. The wall friction g between steel and sand given literature (e.g.
Bowles, 1992; Broms, 1981; ISO/DIS 19902:2004) scatters significantly
(0.15 < w4 < 0.7) depending on the state of the soil. Khulaway (1991) states a value of
i = tan(0.5¢) for smooth steel piles fitting well into the previously stated range for
common friction angles (for ¢ = 33°, 1. = 0.30) for sand.
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The aspect of the meridional coefficient of subgrade reaction %, could be assumed to
be identical to the previous case (both tangential behaviour)and thus 4;,, = ;. = &, shall
be used in this work. Here, the ISO/DIS 19902:2004 is used as a basis for further
considerations. In ISO/DIS 19902:2004 a method is described which is commonly used
in the design of pile foundation and is based on tests. It is mentioned that more elaborate
methods may lead to better approximations — but as a disadvantage, the more complex
approaches demand for additional in-situ and laboratory tests. Therefore, the following
considerations are based on the formulas given in ISO/DIS 19902:2004. For pipe piles
in cohesionless soil the following equation is given for the skin friction f:

fy=t=0,tand =Ko, tano (9.8)

Dimensionless coefficients K of lateral earth pressure (ratio of horizontal/normal
effective stress o; over the vertical effective stress ;) of 0.7 to 0.8 are suggested for
open-ended piles in compression with the lower value referring to loose or medium
dense sand. The value o, is the effective overburden stress at the considered position
and o 'is the friction angle between the soil and the pile wall (between 20° and 35° for
sand according to ISO/DIS 19902:2004). The values for the skin friction f range from
65 kPa to 115 kPa for sand depending on the soil’s density.

The relationship between mobilized soil-pile shear transfer and local pile displacement
at any depth is described using a #,4-z, curve, in which z, is the local pile displacement
and 7,4 1s the mobilized soil-pile adhesion (in stress units). For cohesionless soil the
relationship is defined as a bi-linear function, starting at the origin and having a change
of gradient to zero at z, = 2.5 mm for #,s = tuamax = fs- Thus, the gradient and therefore
the meridional coefficient of subgrade reaction k; ,, is defined as:

e S,

2 —400m™ o, tan S (9.9)

z, 2.5mm

k

t,m

According to ISO/DIS 19902:2004 the meridional coefficient of subgrade reaction ;,,
can be evaluated as a function of the depth z, e.g. for a sand with y=15.25 kN/m’ and

o,=Ko,=Kyz (9.10)

as

1.52<k,, <3.4z withz[m]and k,,, [MN/m’] (9.11)

t,m —
depending on the density of the sand.

As described, the skin friction f or the maximum mobilized soil-pile adhesion 7,4 can
be evaluated more specially for the investigated case with formula (9.9), if results of in-
situ tests are available. Nevertheless, the prediction of #,4,,c remains uncertain. In the
investigated case it is intended to simplify the matter as much as possible in order to
provide an estimate of the magnitude of the skin friction and the supporting effect of the
soil. Thus, here only two of these approaches are briefly introduced: the CUR-method
(2001) and the method by Jardine and Chow (1996). Some more recent methods have
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been proposed by e.g. Kolk et al. (2005) or White (2005). For both approaches
measurements from CPT tests are required.

The method developed by the CUR — Centre for Civil Engineering Research and Codes
(2001) proposes the following formulas for deriving the skin friction fy:

0.05 —-0.90 h
fy = qCO.OS( % J {LJ for —— >4 9.12)
' Drey Ry Ry
and
0.05 h -0.90 h h
fy = qCO.OS( % J ( J [ J for —— <4 (9.13)
Drey Ry ARy Ry

with the cone resistance g. obtained from cone penetration tests (CPT), a reference
pressure p,.r= 100 kN/m?, the effective pile radius R.p, and the height & above the pile
tip. The effective pile radius R,y 1s calculated with the outer pile diameter D, and the
inner pile diameter D;:

2
Di
R, =0.5D, 1{3} (9.14)

o

Jardine and Chow (1996) and Jardine et al. (1998) from the Imperial College London
proposed a definition of the skin friction for open-ended piles as follows:

0.13 0.38
1y = 0.029%[ Uvj [L] +2G% tan s (9.15)

Prys JD;-D;

where G is the shear modulus of the soil, and 4 is the radial dilation of the sand at the
pile-soil interface, which can be approximated by 2:10” m (Jardine and Chow, 1996).

The shear modulus G can be calculated as
G=qc[0.0203+0.0012577—1.216~10‘6772]_1 (9.16)
with

q.
n=— (9.17)
pref‘o-v
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94 Evaluation of test results

94.1 Reduced scale tests

9.4.1.1 Predicted coefficients of subgrade reaction

The reduced scale tests as described in Annex C involve axial and torsional loading.
Purpose is to obtain results for friction relationships, which can be used in further
numerical approaches.

Based on the formula by Terzaghi (1955) given in section 7 the coefficient of subgrade
reaction k; can be calculated for loose sand as follows:
MN =z

Thus, for an embedded length of 2.3 m and an outer diameter of the tube of 203 mm the
coefficient of subgrade reaction becomes k; = k, = 25 MN/m?® at the bottom of the pile
The meridional coefficient of subgrade reaction %, according to ISO/DIS 19902:2004
is calculated with equation (9.11) to be 3.5 MN/m? < kim <7.8 MN/m? at the pile tip, i.e.
about k, =6 MN/m? as average value.

K im [MN/m?]
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Fig. 9.12: Results of different approaches for obtaining the meridional coefficient of subgrade reaction
kt,m

In addition to these empirical predictions from literature, the meridional coefficient of
subgrade reaction is evaluated by applying the approaches by CUR (2001) and Jardine
and Chow (1996) as described with the formulae (9.12) to (9.15). These semi-empirical
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equations require the input of cone resistance ¢, obtained from CPTs. For the reduced
scale tests according to Annex C four different CPTs were performed. Here, the results
of the measurements from the CPT2 at zero confinement and the CPT4, which was
performed at a confinement of o,=30kPa and o,*=6.7 kPa, are used. The fixed
vertical confinement is named o, * , while the radial confinement, which is varied in the
experiments is named o;. The results for applying the latter equations are depicted in
Fig. 9.12. Additionally, the results from the evaluation according to ISO/DIS
19902:2004 are given as a function of the depth in the diagram.

CUR (2001) and Jardine and Chow (1996) yield extremely large coefficients of
subgrade reaction close to the tip of the pile. For CPT4 locally values of
kim > 50 MN/m”® are reached (outside the scale of the diagram). These local effects are
disregarded for a conservative estimate and since a global relationship is sought. Thus,
based on a conservative extrapolation from the values at small depths and disregarding
the local peaks we find roughly a range of 2 MN/m’ < k,,, < 10 MN/m’ (grey shaded
area in Fig. 9.12) at the pile tip. The average value of k,=6 MN/m’ and the range
3.5 MN/m® < k;,, < 7.8 MN/m’ calculated with equation (9.11) according to ISO/DIS
19902:2004 fit fairly well.

9.4.1.2 Axial loading

From the measurements of the strain gauges positioned over the test tube, the
transferred load trough the pile can be plotted as a function of the pile top displacement.
An example for an axial test without additional confinement is plotted in Fig. 9.13. This
test is called test TD-A1-0 with TD for (dummy) test, -A1 for axial test no. 1, and -0
indicating no additional confinement.
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Fig. 9.13: Transferred load trough the pile as a function of the pile top displacement for axial loading for
the strain gauges SG - test TD-A1-0 with positioning of the SG (from Charue and Holeyman,
2007)
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In order to separate the effect of shaft or skin friction from the influence of the tip
resistance the differences are evaluated between strain gauges SG 02/06 and SG 05
close to the tip of the pile. Hence, the (tangential) meridional coefficient of subgrade
reaction k;,, can be derived from the axial loading tests by relating the difference of the
transferred load between the section to the outer area of the shaft section. The distance
between two cross-sections, which are defined by two strain gauges, is named AL. The
normal force ANy, that is in equilibrium with the shear stress integrated over the outer
segment area of the pile can be calculated as:

ANseg = EAAgseg = EA(SSG,u - gSG,l) (919)

where Ag, is the strain difference between the strain at the upper strain gauges and the
strain at the lower strain gauge. Since for first studies the buckling loads are analysed by
performing linear buckling calculations the initial stiffness of the spring contributing to
the buckling load is of interest. Therefore, the stiffness is evaluated for the first linear
section from Fig. 9.13 (up to about 0.113 mm). The cross-section of the pile is defined
as area 4. The coefficient of subgrade reaction £, ,, is as follows:

AN
ko= g (9.20)
" AL-7D-0.113mm

Based on this procedure the results for test TD-A1-0 are plotted in Fig. 9.14. This test
was performed without additional confinement. Averaging the coefficients of subgrade
reaction over the length results in &, = 9.1 MN/m?>. The expected increase of stiffness
as a function of the depth cannot be found (Fig. 9.14), but rather a trend of a decreasing
coefficient of subgrade reaction can be seen for larger depths.
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Fig. 9.14: Evaluated meridional coefficient of subgrade reaction k;,, — test TD-A1-0 (from Charue and
Holeyman, 2007)

The evaluation of the other tests with axial loads revealed similar results. For the five
tests performed with additional radial confining pressures o; between 0 kPa and 30 kPa
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and an additional vertical confining pressure o,*=6.7 kPa, values of 3.1 MN/m’
<kym <79.5 MN/m’ can be derived, if radial confining pressures are present. Because
the confining pressures are rather small and no distinct trend was discovered for the
different confining pressures, the results for the meridional coefficient of subgrade
reaction k,,, are given as a range. The averages of each test are k;,=9.1 MN/m’,
37.1 MN/m®, 35.6 MN/m’, 33.1 MN/m’, and 22.0 MN/m’ for o, =0kPa, 20 kPa,
20 kPa, 30 kPa, and 30 kPa, respectively. The values are summarized in Fig. 9.15.
Generally, the results are larger than the rough approximation of k,,, = 6 MN/m’® with
reference to the interpretation as given above. This emphasizes the conservativeness of
the latter approximation. For the case of zero confinement the values agree well.
Obviously, the tests with additional confinement yield larger coefficients of subgrade
reaction. For this case the normal stress o is not calculated with equation (9.10) but
with
o,=Ko, +o, (9.21)

where o, is the radial and o, is the vertical stress component. As the coefficient of
subgrade reaction from ISO/DIS 19902:2004 increases linearly with greater depths, the
coefficient of subgrade reaction &, for given confining pressures o, can then be
estimated roughly with

k, =400m™ -o, tanS = 400m™" -(Kyz + o, )tan & (9.22)
according to (9.9).
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Fig. 9.15: Comparison of the evaluated meridional coefficients of subgrade reaction k, ,, from tests and
the range defined with equation (9.22) for loose to dense sand

In Fig. 9.15 the results from the tests are compared to the approach defined in equation
(9.22). The given range refers the assumption of loose or dense sand as described in
section 9.3.2. The values calculated with equation (9.22) provide a conservative lower
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boundary for the values derived from the experiments. Here, it has to be mentioned that
equation (9.22) considers a zero gradient for a displacement greater than 2.5 mm. The
experimental results are limited to displacements smaller than 2 mm. The evaluation of
the test data is performed for a displacement of 0.113 mm in order to obtain the initial
stiffness. Thus, the corresponding displacements according to equation (9.22) take far
larger displacements into account than found in the experiments. Still, the results for
2 mm found in the experiments could be extrapolate to 2.5 mm since the stiffness
appear to tend to zero (Fig. 9.13).

9.4.1.3 Torsional loading

The tangential friction defined as the opposing forces arising in the torsional loading are
evaluated in a first simple approximation by using the torque — rotation relationship for
the entire pile.

torque M 7 [KNm]
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Fig. 9.16: Torque as a function of the top rotation for the entire pile with additional radial confinment
o, = 20 kPa — test TD-T2-20 (from Charue and Holeyman, 2007)

Assuming a uniform distribution of the shear stresses over the circumference and
embedded length a stiffness can be derived according to Fig. 9.16 and then be related to
the embedded shaft section. This step is performed for all seven torque loadings for
obtaining a spring stiffness (tangential and circumferential coefficient of subgrade
reaction k;.) with respect to small rotations similarly to the case of small displacements
as seen for the axial loading.
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Since the functions torque — top rotation for the seven torque tests are rather non-linear
the evaluation of the stiffness may only provide a rough approximation for the
circumferential coefficient of subgrade reaction k.. The values are calculated as
— aM T

7D 3Lemb tan Drot

te (9.23)
with the torque moment Mr, the embedded length L., and the top rotation ¢,,,. Using
the maximum applied torque, values 15 MN/m’ <k, < 74 MN/m’ with a mean value of
35 MN/m® are evaluated. The values correspond to a maximum displacement of
0.09 mm. For the first test larger displacements were introduced. Nevertheless, the
evaluation was limited to the latter maximum displacements. Again, no distinct increase
of the stiffness was found for the tests involving additional confinement pressure (o;
between 0 kPa and 30 kPa). The predicted circumferential coefficients of subgrade
reaction k,. = ki, = 6 MN/m’ (ISO/DIS 19902:2004) is smaller than the derived values.
It has to be mentioned that the predicted value already represents a conservative
approximation for the investigated cases, since the additional confining pressure is not
considered. As seen in Fig. 9.15, a confining pressure of 30kPa leads to
k..~ 13 MN/m’. These facts indicate that the predicted values may be an applicable and
conservative approximation for taking circumferential friction into account.

94.2 Bender element tests

Besides the tests with tubular piles, small scale laboratory tests on the behaviour of the
investigated cohesionless sand were performed. From research performed in the field of
earthquakes it is known that sand may behave fairly stiff for small strains. This issue
was investigated by executing so-called Bender element tests. With these laboratory
tests incorporating the shear wave theory the stiffness of soil can be derived for
different confining pressures. The experiments were planned and conducted by and at
the laboratories of the University of Louvain (UCL).

The bender element test applies the concept of transmitting an impulse through a soil
sample from a transmitter to a receiver. In this procedure the imposed signal can be
compared to the received signal for deriving the initial shear and compression modulus
from the shear wave velocity. The tests were performed in the laboratories of the UCL.
More details on the test set-up and the evaluation of the soil parameters are given in
Charue and Holeyman (2007). For the bender test saturated Brusselian Sand was used.
In the following the results of two different tests are discussed. The material properties
are summarized in Tab. 9.2. Here, it needs to be stated that the relative density for the
bender tests does not correspond to the relative density of the sand used in the reduced
scale tests.
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Tab. 9.2: Soil sample characteristics
parameter test 1 test 2
sample size length L [mm] 78.7 80.1
sample size diameter D [mm] 38.2 38.5
porosity [%] 39.3 39.9
water content [%] 24.3 24.9
soil density saturated s, [kg/m?] 20.09 19.19
soil density dry y; [kg/m?] 16.16 16.00
relative density D, [%] >90
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Fig. 9.17: Young’s modulus E as a function of the effective confinement pressure o’;

It is intended to provide a relationship for the coefficient of subgrade reaction k; similar
to equation (9.18) proposed by Terzaghi (1955). For further steps it is useful to provide
ks as a function of the depth z. Thus, the relationship between the Young’s modulus £
and the confining pressure o3 from Fig. 9.17 adapted by applying

kg == (9.24)

based on Tab. 7.1 and assuming earth pressure at rest with
0'3:;/-2-K0:;/-z-(1—sin(p) (9.25)
and ¢ =33°, and thus
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O,
7/(1 —sin (p)

z= (9.26)
For these assumptions Fig. 9.17 is re-drawn based on an assumed density of
y=15.25kN/m’, a non-saturated situation, and D = 1800 mm (Fig. 9.18). The tested
configuration used saturated sand under different conditions. Although the latter
assumptions are only a rough approximation, it may provide a basis for discussions and
further comparisons.
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Fig. 9.18: Coefficient of subgrade reaction ks for D = 1800 mm as a function of the depth z

The results from the two tests are evaluated by fitting regression curves to the test
results (dashed lines in Fig. 9.18). Although, the dimensionless approach of using a
power function is not a convenient method for defining the relationship between the
coefficient of subgrade reaction ks and the depth z, this type is applied due to
coefficients of determination R” close to 1. Based on these results an arbitrary and
conservative lower boundary was defined as indicated by a continuous line in Fig. 9.18:

kg =40z  with z in [m] and ks in [MN/m"] (9.27)

The soil sample characteristics for the two different tests given in Tab. 9.2 appear to be
very similar. Nevertheless, the evaluated results for the coefficient of subgrade reaction
ks at e.g. a depth z =30 m differ by a factor of 1.6 between the two tests. Due to these
large discrepancies the results need to be considered with great care and should only
provide a basis for discussions and not a design proposal. Further, the applicability of
equation (9.27) is limited to the investigated sand only. Still, a comparison for e.g. a
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depth z=30m and D =1800 mm between equation (9.27) and the approach by
Terzaghi (1955) from equation (9.18) reveals a coefficient of subgrade reaction ks
which is nearly 5 times larger for the calculation based on the bender element tests.

9.5 Re-calculation for axially loaded cylindrical shell

As a conservative first approach the evaluation according to Terzaghi (1955) for the
coefficient of subgrade reaction ks for loose sand is applied:

MN z
kn :kS :22?5 (928)

The latter expression may provide a conservative approximation for obtaining the
critical buckling load. The experimental investigations with Bender element tests
provided larger values for calculating the coefficient of subgrade reaction.

Based on the previous findings the approach given in ISO/DIS 19902:2004 is used for
further analyses. It was found that the predictions provide a conservative approximation
for the tangential stiffness due to the surrounding soil. A further advantage is the
applicability of the concept by simple means and without needing additional in-situ
testing. Thus, for both, the meridional and circumferential coefficient of subgrade
reaction the following equation is used:

k, =k, =k, .=400m™" -Kyztan 5 (9.29)

t,m

with 0.7 <K <0.8 (loose or medium dense/dense) and 20° <6< 35° according to
ISO/DIS 19902:2004).

In the subsequent numerical analyses two approaches are used:
(a) a conservative approximation according to equation (9.28) and (9.29) and
(b) an approximation based on the evaluated Bender element tests.

For approximation (a) loose sand is considered resulting in K= 0.7 and 6= 20°. The
applied values are summarized in Tab. 9.3 for an assumed density y=15.25 kN/m".
Similarly, the values can be derived for medium dense sand (Tab. 9.4). Since the
equation given in Tab. 9.3 for (a) depends on the radius of the cylinder, a ratio »/¢f = 50
with 7 = 900 mm similar to the dimensions used for tubular piles is chosen. The ends of
the investigated cylinder are clamped in the global mechanical model, i.e. resulting in
bending moments at the ends, but allowing the shell to rotate along the circumference at
the boundaries (meridional rotation not restrained), i.e. BC If from EN 1993-1-6.
According to EN 1993-1-6 the reduction factor is not affected by the boundary
conditions for long cylinders as the reduction factor C, is limited to 0.6. Further this
aspect may be disregarded as according to prEN 1993-5:2004-07 a value of C, = 1.0 is
to be used in the design procedure. Hence, the latter boundary conditions are used for
the general investigation.
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Tab. 9.3: Summary of applied coefficients of subgrade reaction — loose sand

appr. ky, k;
MN
(a) 1.2 7 zZ
m MN
1.5 —4 *Z
(b) 40- 2% {—A’fy} "

Tab. 9.4: Summary of applied coefficients of subgrade reaction — medium dense sand

appr. k, k
MN
(a) 3.6—4 -z
m
2.4 M]:[ -z
(b) 40-z%% {—A’fﬂ "

Nevertheless, in the numerical analyses for axially loaded cylinders the possible
supporting effect of meridional springs is disregarded as its influence on the general
load transfer mechanisms is too large. The meridional springs serve directly as support
over the shell and thus may significantly relief the cylinder and enhance the carrying
capacity. This issue may be complex as the buckling capacity increases with increasing
lengths. In order to make the investigation more general, the meridional springs are only
applied for investigating the external pressure loading as a conservative approximation.
In the following the assumption is applied that the linear distribution of the spring
stiffness according to Tab. 9.3 can be adapted to a uniform distribution of springs over
the length. Since the distribution is linear, the mean value corresponds to half of the
maximum amplitude as calculated with Tab. 9.3. This conservative approximation was
validated with linear buckling analyses involving calculations with uniformly embedded
cylinders (k, and 0.5k,) and springs applied with stiffnesses increasing with depth or
length up to k,. The numerical analyses predicted smaller buckling loads for the cases
“uniform 0.5k,” and “linear” in comparison to the case “uniform %,” independent of .
The differences between the cases “uniform 0.5k,” and “linear” were negligible
emphasizing the applicability of the approximation. The purpose of this approach is to
provide a general set of data from which factors for increasing the buckling strength can
be derived. The approach “uniform 0.5k,” provides a conservative approximation for
the power function from equation (9.27) given for approach (b). The calculated increase
of the buckling stress with respect to the classical buckling stress is given in Fig. 9.19
for approach (a) and (b) according to Tab. 9.3. The previous findings that the supporting
effect increases for increasing lengths is confirmed. Additionally, it can be seen that the
beneficial influence of the surrounding soil reaches considerable levels for the
investigated large diameters and long cylinders. The increase of the buckling stress
evolves fairly smoothly with increasing lengths for case (a). Nevertheless, for approach
(b) the springs seem to provide nearly no beneficial influence for / <3 m. For longer
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cylinders the buckling stress abruptly increases. This change in behaviour can be
explained as for the given geometry the buckling mode turns from a rotation-symmetric
mode (ring buckles) to a chessboard-like failure mode at this length. As a consequence,
the tangential foundation explained in section 9.3.2 does not influence the carrying
capacity for /<3 m. These springs are only activated for longer cylinders and then
contribute to the stiffness of the system.
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Fig. 9.19: Increase of axial buckling stress for different lengths I for type (a) and (b) with Tab. 9.3
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Fig. 9.20: Increase of buckling stress as a function of the dimensionless value 0.5k,I/E for r/t = 40 and
r/t = 50 with varying radii [mm] — axial load
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In the following a parametric study based on a 180° segment of a cylinder for evaluating
the influence of surrounding soil based on the equations (9.28) and (9.29) is performed.
This approach uses the conservative assumption of loose sand in order to provide
results, which can be adapted to denser sand types. For obtaining more general
information on the supporting effect of the sand, linear buckling analyses considering
both radial and circumferential springs, are performed for different radii and 7/t ratios.
Some results are depicted as a function of the dimensionless value 0.5k,/E in Fig. 9.20.
The results highlight similar results for the two different for the different /¢ ratios. In
spite of the fact that deviations appear for large values of 0.5k,//E, the evaluation of a
factor for interpreting the influence of a foundation is based on the #/¢ ratio of 40 and
should be valid for 7/t >40. The latter aspect is taken into account in the process of
deriving design proposals. Further, it can be seen that the buckling stress increases for
smaller radii since equation (9.28) involves the diameter D of the tubular pile. Again
this aspect needs to be considered when deriving a proposal for a design procedure.

A dimensionless parameter f has been derived from the results of the numerical analyses
for providing a basis for design proposals. It is defined as:

[ k 0.25
f:—[ " J (9.30)

D n h,loose

with the constant 7,5 Of lateral subgrade reaction for loose sand defined by Terzaghi
(1955) as 2.2 MN/m’. The latter parameter is chosen based on a comparison of different
results. Since the evaluation shall involve a general approach with larger coefficients of
subgrade reaction than the approach for loose sand by Terzaghi (1955), additional
numerical analyses are performed applying n; = 6.6 MN/m’ (medium dense sand) for
formula (9.28) instead of n;, =2.2 MN/m’. The results are depicted in Fig. 9.21 as a
function of the dimensionless parameter f. The idea is to define a linear approximation
between the different parameters and the increase of the buckling load as seen in Fig.
9.21 as a conservative estimation. It can be seen that for larger fthe beneficial influence
of the surrounding soil increases. Nevertheless, a linear function is suggested as a
conservative approximation for the factor S, ;.. It is derived empirically from Fig. 9.21
with a safety margin regarding the calculated results as follows:

0.25
B sand =1+(0.oo9f—0.08)=o.92+0.oo9i[ Ky J (9.31)

n h,loose

Similarly, to equation (9.1) the critical buckling load can be calculated as

0.25
o =0y Prsua =0.605-E- L. o.92+0.00451[ z ] (9.32)

r r nh,loose

The given procedure is limited to the investigated cases: s> 1, #/t>40, and
r>450 mm. The equation given in (9.32) takes into account radial and circumferential



9.5 Re-calculation for axially loaded cylindrical shell 155

support from the surrounding soil. Further, the above considerations of replacing the
“linear” distribution of k&, with uniform 0.5%,” are included. Thus, in the application the
maximum amplitude of k, needs to be introduced in (9.32).

25 4 r =450 ©
| —— r=900 » n,=22MN/m?
r=1200 X
20 7 X r=450
1 O r=900 - n,=6.6 MN/m’ o
2 15 r=1200 o
~ . . X
o | approximation X
&
B 10 |
5 .
0 T T
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Fig. 9.21: Increase of buckling stress as a function of the dimensionless parameter f for r/t = 40 with
varying radii [mm] — axial load

The investigated cases are limited to the fact that the entire cylinder is surrounded by
sand or soil. Nevertheless, in real constructions of harbour walls, the tubular piles are
only partly in contact with soil as the other side is exposed to the sea. Depending on the
height of the wall a part is completely embedded in soil (pile footing/tip). The previous
approach may provide non-conservative predictions for a tubular pile which is only
partly embedded in sand. A set of additional numerical analyses in which only half of
the circumference had springs attached to it (“half-embedded”) showed that the increase
of the buckling stress for the “half-embedded” case is larger than 50 % of the
completely embedded case. This finding leads to the rough but conservative proposal
for deriving a factor fiunq.0.5 for the “half-embedded” case:

0.25
B sand 05 =1+0.5(0.009 f —0.08) = 0.96 + 0.0045i( ky ] (9.33)

ny, Joose

Some results of the numerical studies are depicted in Fig. 9.22 along with the
approximation from equation (9.33).

Further, an additional set of numerical studies was performed for validating the
assumptions of the proposed approximations for large coefficients of subgrade reaction.
In this context a coefficient of subgrade reaction ks = 500 MN/m’ is chosen as arbitrary
large value, which is imposed independent of the investigated length. It can be seen that
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for large coefficients of subgrade reaction the conservativeness of the approximation is
maintained.

50 | r=900; kg= 500 MN/m® fixed
| X r=450 n,= 2.2+6.6 MN/m?
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40 -
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Fig. 9.22: Increase of buckling stress as a function of the dimensionless parameter f additional validating
analyses with varying radii [mm] — axial load

Based on the preliminary studies it can be assumed that the behaviour may be non-
linear with a decreasing gradient (equation (9.1) and Fig. 9.3). Nevertheless, comparing
studies with large coefficients of subgrade reaction, from which some results are given
in Fig. 9.22, reveal even an increasing gradient. Extremely large coefficients of
subgrade reaction or very long tubular piles (exceeding the investigated range of up to
30m) are not commenly used in constructions and then would need further
investigations.

9.6 Back-calculation for cylindrical shell subjected to external
pressure

According to the approach given in the previous section, the influence of the
surrounding soil is investigated for external pressure. Again, the evaluation from
equations (9.28) according to Terzaghi (1955) is applied for the radial foundation. The
tangential spring foundation is now extended by adding meridional springs to the
circumferential springs. The stiffness of these springs is calculated as given in equation
(9.29). The investigated system is a cylindrical shell which is entirely restrained at one
end, i.e. corresponding to BC Ir from EN 1993-1-6, while the other end is free. The
investigated geometry is based on the previous numerical investigations for the axially
loaded cylinder. For simplification the conservative approximation of replacing
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approaches by non-uniformly embedded cylinders (increasing stiffness with depth) with
a uniformly embedded cylinder introduced in chapter 9.5 is adopted. Consistently, it is
proposed to apply the average value of the linearly distributed springs.

The following parametric study uses a 180° segment of a cylinder subjected to uniform
external pressure for executing linear bifurcation analyses. The results for two different
r/t ratios are depicted as a function of the dimensionless value 0.5k,//E in Fig. 9.23. It
can be seen that for larger r/t ratios, the supporting effect of the soil increases
considerably based on the applied approach. Thus, in accordance with the study on the
axially loaded cylinders, an approximation is derived by implementing the 7/ ratio of 40
as a lower boundary. The results can then be applied as a conservative approach for
larger 7/t ratios. The differences between the different /¢ ratios is much more distinct
for the case of external pressure in comparison to the axially loaded cylinder.
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Fig. 9.23: Increase of buckling stress as a function of the dimensionless value 0.5k,I/E for r/t = 40 and
r/t = 50 with varying radii [mm] — external pressure

The results of the different numerical analyses (7, = 2.2 MN/m’ and n; = 6.6 MN/m”)
are plotted in Fig. 9.24 over the dimensionless parameter f as given in equation (9.30).
Since the relationship of buckling stress and parameter f is more non-linear in contrast
to the axial load case for the investigated range it is suggested to used a square function
for approximating the supporting behaviour of the surrounding sand as a function of the
parameter f. A very conservative lower boundary curve is depicted in Fig. 9.24. The
latter proposal underestimates the supporting influence of the soil for larger #/t ratios
and coefficients of subgrade reaction. Still, this conservative approach is discussed as it
is simple to apply and independent on several parameters. Further, it can be seen that
the application of the factor defined by the conservative lower boundary curve already
results in an enormous increase of the buckling stress.
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Fig. 9.24: Increase of buckling stress as a function of the dimensionless parameter f for r/t = 40 with
varying radii [mm] — external pressure

Since it is not necessary to take account of the very large theoretical increase of
buckling strength regarding practical constructions the approach with the latter
boundary curve is applied as approximation and named Sgsuna:

0.25
ﬂﬁsand :1+(03 f_40)1+03\/i£ kn ] -4.0 (934)
' D nh,loose
is only set to be valid for 7/t > 40, r > 450 mm, and &, > 2.2 MN/m* I/D. If the approach
by Terzahi (1955) is applied, the introduced value £, refers to the maximum amplitude
of k, at the pile tip. According to equation (9.33) an equation for the “half-embedded”
case is proposed:

0.25
Bowndos =1+0.5(0.3 f4.0)=1+0.15\/i[ k, j _40  (935)

ny Joose

Again, the proposal is validated with additional numerical buckling analyses with a
cylinder with only half of the circumference embedded in sand. As shown in Fig. 9.25,
the proposed equation (9.35) provides a conservative approximation for the calculated
results. Here it is emphasized that the given formulas are limited to &, > 2.2 MN/m>- //D
for the externally pressurized cylinder. Equation (9.34) and (9.35) may provide a non-
conservative prediction for softer soils. Here, the beneficial influence of the surrounding
soil should not be taken into account.
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Fig. 9.25: Increase of buckling stress as a function of the dimensionless parameter f additional validating

analyses with varying radii [mm] — external pressure
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10.1

10.1.1 Model

Global load transfer behaviour

Load transfer mechanisms of the bending moment over the pile
length

For the investigation of the load transfer mechanisms of a partially embedded vertical
pile (uniform sand) simple modelling approaches with springs are available (e.g. SRM).
Initial analyses are performed with such a simple model in order to obtain more
information on the load transfer mechanisms for a pile subjected to horizontal loads or

moments.

In the preliminary investigation an 11 m long steel tube is chosen which is embedded
vertically 10 m in sand and cantilevers 1 m out of the soils for a better load introduction.
The cross-section is chosen in accordance with the primary elements of combiwalls
from real constructions (see chapters 1 and 4). The diameter of the tubes is 1800 mm
with a wall thickness of 18 mm. In Fig. 10.1 the investigated case is sketched. The data
for the pile is summarized in Tab. 10.1.

lateral load H O x “
—> I'm
° =1
RN TN
load z
introduction
sand
ks = const.
£=18 mm —» embedded
length /
>
1800 mm
Fig. 10.1: System for the preliminary investigation
Tab. 10.1:  Data for the analyses
I=1 Jya
2 vy 1z 3 y
D [mm] ¢t [mm] A [mm~] [mm] Sy [mm] [N/mm’] H [kN]
Tube 1800 18 1,018-10° [4,123-10'° | 1,944-10" | 420/y 20
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10.1.2 Analytical solutions

The complex three-dimensional problem of a vertically embedded, laterally loaded tube
without filling can be simplified and investigated as a two-dimensional problem. For an
approximation using a constant linear elastic foundation for the laterally loaded pile a
closed solution can be found for the differential equation. Applying a constant
coefficient of subgrade reaction ks [MN/m’] in combination with the limitation of the
width or diameter of the pile to D = 1 m the modulus of subgrade reaction & [MN/m?’]
for the two-dimensional case can be calculated as:

k=kg-D (10.1)
For a tube according to Fig. 10.1 the following differential equation can be written:
d*x
El—=-k-x 10.2
dz* (10.2)

The elastic length L is introduced as a constant

E-1
L =4/4.
D, (10.3)
and the normalized length ¢;:
z
=7 (10.4)
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Fig. 10.2: Axial compressive membrane stresses for a laterally loaded tube (H = 20 kN; [ = 20 m;
ks = 100 MN/m’)
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For perfectly slender piles with /D > 3 the bending moments can be calculated with a
small error (<4 %) according to the following simplified solution given by
Kolymbas (1989):

M=H-L-e* -sin(c) (10.5)
with the maximum bending moment
M =0.3224-H-L (10.6)
in the depth
z=n-L/4 (10.7)

The solution is only valid for a solely laterally loaded pile with a hinge at the pile head.
Fig. 10.2 shows the results from the numerical three-dimensional analyses from
section 10.1.3 and the analytical solution for the beam with elastic springs. More details
and further examples can be found for example in Poulos and Davis (1980) or
Kolymbas (1989).

10.1.3 Numerical analyses

The preliminary investigations are performed using a three-dimensional tube as a
symmetric half of the tube in the finite element analysis with the imposition of
symmetry conditions along the two meridional edges and a constant foundation over the
outer surface. The analyses are executed as geometrical and material non-linear analyses
with a lateral load at the pile head, which is introduced with a hinge. In order to prevent
local stress concentrations and for reasons of a smoother load introduction a 1 m
segment of the tube which extends over the surface is joined to a rigid body.

S, Mses
Md, (fraction = 0.0)

(Ave. COrit.: 75%

S, Mses
Md, (fraction = 0.0)
(Ave. COrit.: 75%

Fig. 10.3: v. Mises stresses for a short tube completely embedded with ks = 10 MN/m’ (left) and
ks =100 MN/m’ (right)
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Fig. 10.3 depicts the v. Mises stresses for the deformed shape of the pile with a
foundation of 10 and 100 MN/m’ and a horizontal load at the pile head of 100 kN. For
the case a coefficient of subgrade reaction of 10 MN/m’ the pile moves nearly as a rigid
body without any significant component from bending deflection. The load introduction
at the top gives rise to high shear stresses and thus also to high v. Mises stresses at the
side of the tube. Additionally, due to the bending moment high compressive stresses
appear about at half-length of the tube, and it is clear that the forces reach the tip of the
pile as it displaces laterally and non-negligible v. Mises stresses are still present. In
contrast to the latter case, the tube considerably deflects for a coefficient of subgrade
reaction of ks= 100 MN/m’. Because of the increased stiffness of the soil the stresses
are re-distributed and the value of the maximum v. Mises stresses in the compression
zone by far smaller than in the case of the softer soil. The bending moment is
transferred to the soil at a smaller depth, and thus only a portion of the load reaches the
pile tip. The lateral displacement of the pile tip is marginal.

S, Mses
Md, (fraction = 0.0)
(Ave. Crit.: 75%

+3.102e+00
! +2. 844e+00

S, Mses
Md, (fraction = 0.0)
(Ave. Crit.: 75%

+4.030e+00
! +3. 695e+00
+3. e

Fig. 10.4: v. Mises stresses for a long tube completely embedded with ks = 10 MN/m® (left) and
ks =100 MN/m’ (right)

A pile which is embedded twice the length with ks= 10 MN/m® over 20 m (Fig. 10.4)
does not exhibit a rigid body movement as seen in the previous case but deflects. For
the long pile in combination with the stiffer coefficient of subgrade reaction the stresses
seem to have faded out about half the way to the pile tip.

In Fig. 10.5 normalized deflections for laterally loaded short and long piles are depicted.
For increasing lengths and an increasing coefficient of subgrade reaction ks the shape of
the deflection changes and the load does not reach the tip of the pile. For a length of
20 m and a coefficient of subgrade reaction ks of 100 MN/m® nearly lateral movements
take place at the tip of the pile (Fig. 10.5). Such “long” piles can therefore be assumed
to be infinitely long. More details on defining piles according to their bending
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behaviour and on the criterion for rigid or flexible behaviour according to different
researchers can be found summarized e.g. in Kulhawy and Chen (1995).

The cases “short” and “long” piles can be defined based on the elastic length Ly. The
elastic length Ly according to Tieze (1970) for a constant coefficient of subgrade
reaction is defined by the stiffness of the pile E7, the coefficient of subgrade reaction of
the soil kg, and the diameter of the pile D:

=421 10.8
A\ Dk (10.8)

The elastic length L, defined in equation (10.8) differs from the elastic length L defined
in equation (10.3) by the factor V2. In Fig. 10.6 the lateral displacements u at the pile
tip normalized by the maximum lateral displacement u,,,, (pile head) are shown as a
function of different embedded pile lengths /. The pile lengths / taken from the surface
of the soil are normalized by the elastic length Ly from equation (10.8).
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Fig. 10.5: Normalized deflections for laterally loaded piles

It can bee seen that for an embedded length / larger than four times the elastic length Ly
the lateral displacements of the pile tip u is smaller than 5 % of the lateral displacement
of the pile head (area shaded grey in Fig. 10.6). For longer piles the displacement drops
below 1 % of the maximum displacement.
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The tubes used as primary elements in combiwall constructions may have lengths of
around 30 m. For a coefficient of subgrade reaction of 10 MN/m® and 100 MN/m’ for
non-cohesive soils such as sands and the assumption of a constant coefficient of
subgrade reaction over the length, the ratio of //Ly can be evaluated as 6.4 and 11.4 in a

first rough approximation. Both values can be found within the grey shaded area of Fig.
10.6.

Generally, the area of the load introduction or the boundaries is very critical for the
buckling behaviour of loaded cylinders as it is very sensitive to imperfections. For the
investigated tubular piles of combiwalls the influence of the area of the pile tip is rather
small as the transferred loads are very small in this area for a pile subjected to lateral
loads or moments. A possible unevenness of the support at the pile tip is therefore not as
detrimental as for purely axially loaded cylinders. Still, the design of the tubular pile is
based on the assessment in the area of the maximum bending moment and thus in
combination with roughly the entire axial load, but adopting an approach which uses an
assumption of global imperfections for all influencing factors seems rather conservative.
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Fig. 10.6: Normalized lateral displacement u at the pile toe as a function of the elastic length L,

The previous solutions apply for so-called global fabrication tolerance classes which are
assigned to the cylinder based on all different imperfection forms. Hence, possible
unevenness at the boundaries is automatically taken into account when assessing the
tube in the area of the maximum bending moment and as a consequence the carrying
capacity is underestimated. In the area of the pile toe where unevenness of the support
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could influence the carrying capacity or the buckling resistance plugging may occur.
Plugging takes place if the soil is prevented on purpose or not on purpose from entering
the pile and leads to a load carrying behaviour similar to a close-ended pile. As the
resistance of the end-bearing is increased by the plug resistance the influence of
imperfections is even reduced. Therefore, the influence of imperfections on the buckling
behaviour has to be investigated locally in two different segments and cannot be
generalized for the entire tubular pile.

In a comparison considering the length effect, the results from the previous
investigation regarding the horizontal deflection of a pile are studied. The different
applied SRMs (constant, linear, parabolic) including a limiting passive earth pressure
lead to similar maximum horizontal deflections for the investigated reference case. The
validity of this aspect is further investigated regarding an additional length of piles.
Hence, the comparison from 10.1.1 for a 3 m pile embedded 2 m in sand is extended by
keeping the system and only increasing the total length of the pile and by the same
amount the embedded length of the pile.

horizontal displacement u or y [m]
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Fig. 10.7: Deflections for two different pile lengths using different SRMs
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In Fig. 10.7 the results for a pile embedded 4 m and 2 m in sand are depicted. The
elastic length Ly according to (10.8) for the reference pile is 890 mm, leading to a
normalized pile length for the 2 m and 4 m pile of 2.4 L, and 4.8 Ly, respectively. Thus,
the 4 m pile can be classified as short pile and the 4 m pile as long pile according to
their deflection behaviour and Fig. 10.6. For the short pile the differences between the
different SRMs are marginal (+5 %) but for the long pile the differences in the
maximum lateral deflection reaches a factor of 1.45 for the linear SRM in comparison to
the constant SRM. For longer piles the system reacts stiffer independently on the SRM,
leading to a fixed support at the pile tip. Therefore, the lateral behaviour is mainly
governed by the stiffness of the upper soil layers, resulting is the largest deflections for
the linear SRM and the smallest deflections for the constant SRM. For the shorter piles
this aspect does not evolve since all layers still influence the deformation behaviour
leading to a balancing of the upper and lower soil layers.

10.2 Load transfer in the area of the maximum bending moment

10.2.1 Modelling

For the investigation of the load transfer in the area of the maximum bending moment a
different model is used. As the effect of an ovalization or flattening of the cross-section
of the tube (Brazier-effect, 1927) and the influence of a pressure distribution varying
over the circumference has to be taken into account, a more elaborated finite element
model is used. The soil itself is represented by a three-dimensional continuum and the
contact between soil and structure is modelled using an interaction solely active in
compression allowing the contacting surfaces to separate under tension.

soil (elastic continuum)
Eg= 50 N/mm’
v=0.3

tube

D =200 mm; =2 mm
E =210 000 N/mm’
v=03

plane of symmetry

2000 mm

Fig. 10.8: System for investigation
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A vertically fixed steel tube 3 m of length entirely embedded in sand is investigated. For
the first set of loading conditions the tube is empty on the inside. As the analyses are
chosen to be modelled according to the experimental investigations, the geometry is
based on the preliminary drafts for the experimental set-up. For the numerical analyses
the tube’s outer diameter of 200 mm, a thickness of 2 mm, and a length of 3000 mm are
modelled using bilinear continuum shell elements. Fig. 10.8 illustrates the system and
the basic material properties of both the soil and the tube. At the bottom the tube is
restrained vertically. The cylinder of soil is constrained vertically at the bottom and
radially on the outside while symmetrical boundary conditions are applied to the
longitudinal edges. The lateral load H =20 kN is introduced at the pile tip without
preventing the tip to rotate. The numerical analysis takes account of large deformations.

The soil is modelled simplified as a purely elastic continuum with a Young’s modulus
of 50 N/mm® and a Poisson ratio of 0.3, which is not really sufficient for describing real
soil behaviour. Furthermore, the model neglects the self-weight of the soil, which would
lead to an interacting, initial pressure distribution on the outside of the tube. The
analyses are performed with an elastic continuum as no absolute figures for stresses and
displacements are of interest but the general behaviour. Moreover, in this context a soil
with a rather high stiffness is used for obtaining information on the ovalization in the
area of the maximum bending moment and the corresponding pressure and stress
distributions, since these phenomena are more distinct for a stiffer soil. In this segment
the focus is set on the longitudinal stress distribution and any deviations over the
circumference and thus the load transfer. These results shall give information about the
buckling resistance with respect to design codes.

10.2.2 Unfilled tube

First the system as shown in Fig. 10.8 is investigated as unfilled tube. Fig. 10.9 shows
the deformed unfilled tube as exploded view. It is clear that the tube deflects and
exhibits a flattening of the cross-section in the area of the maximum bending moment.
In contrast to the analysis using an elastic foundation for modelling the soil (Fig. 10.2)
the tube does not exhibit a symmetric stress distribution with reference to the centre
line. The varying membrane stresses arise due to the fact that the interaction between
soil and structure cannot transfer tension, and geometrical non-linearities have been
taken into account in the analyses. The axial membrane stresses in the tube are depicted
in Fig. 10.10 for the outer fibres on the tension and compression side. Additionally, the
analytical solution for the beam on an elastic foundation according to section 10.1.1 is
plotted as a reference in Fig. 10.10. For this comparison the relationship between the
Young’s modulus Es of the soil and the coefficient of subgrade reaction ks is taken
according to equation (7.4) with a coefficient C=1. For a Young’s modulus Es of
50 N/mm? and a diameter D of 200 mm the coefficient of subgrade reaction ks can be
calculated as 252 MN/m’.
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ky=C-— (10.9)

It can be seen that the analyses with no adhesion between the contacting surfaces gives
rise to slightly higher stresses for the compression side than given by the analytical
solution. Moreover, it is clear that the assumption of C =1 for equation (7.4) seems to
give close agreement with more elaborate numerical analyses.
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Fig. 10.10: Axial membrane stress distribution over the length of the unfilled tube for H = 20 kN

The deformations of the cross-section are compared in the sections of the maximum
stresses for compression and tension (section A and B from Fig. 10.10). The largest
deformations arise in section A (Fig. 10.11). The cross-section is flattened, and on the
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tension side (negative x-axis) an inward curvature is formed. On the tension side a gap
evolves between the to interacting surfaces. The cross-section in section B does not
deform as much as in section A, but deforms similarly regarding the shape.

e ndeformed tube

section A 100

section B

-100

[mm]

Fig. 10.11: Deformed cross-sections at section A and B for the unfilled tube (scaled with factor 100) for
H=20kN

10.2.3 Filled tube

In the second step the tube is filled with sand. Similar to the previous case the sand on
the inside of the tube is modelled as continuum with a non-adhesion surface-to-surface
contact. Fig. 10.12 depicts a deformed plot of the filled tube as exploded view. The
deflection of the filled tube is similar to the unfilled tube.

|

Fig. 10.12: Deformed filled tube at a load of 20 kN (scaled with factor 100) as exploded view
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The maximum lateral displacement to be found at the pile head reduces due to the
increased stiffness arising through the filling of the tube by around 2 %. In comparison
with the previous case it can be seen that the flattening of the tube in the area of the
maximum bending moment is not as significant for the filled tube as for the unfilled
tube. In Fig. 10.13 the axial membrane stresses for the outer fibres of the tube are
plotted over the length. Comparing Fig. 10.13 with Fig. 10.10 it is clear that the stresses
are shifted to the tension side. As a consequence the maximum compressive stresses
reduce by 6 % and the maximum tensile stresses increase by around 7 %.
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Fig. 10.13: Axial membrane stress distribution over the length of the filled tube for H = 20 kN
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Fig. 10.14: Deformed cross-sections at section A and B for the filled tube (scaled with factor 100) for

H=20kN
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Due to the filling of the tube the structure behaves more like a compound-structure
which results in a smaller distance between the stress maxima and a balancing of the
membrane stresses. The section of the maximum tensile stress converges to the section
of the maximum compressive stress, as for the case of the beam on an elastic foundation
the sections coincide. Because of the sand on the inside of the tube the structure is
stiffer and the deformations decrease significantly (Fig. 10.11 and Fig. 10.14). Still, the
shape of the deformation in form of ovalization remains the same.

10.2.4 Longitudinal bending stresses

The analysis of a uniformly loaded tube on an elastic foundation calculated according to
beam theory and not taking large displacements into account leads for the elastic case to
a linear stress distribution over the cross-section. In Fig. 10.15 the axial membrane
stress distributions for sections A and B of the filled and unfilled tube are plotted in
comparison to the analytical solution for the beam theory. The numerical analyses take
account of large displacements by performing geometrically non-linear analyses.
Especially for the case of the unfilled tube the ovalization gives rise to non-linear axial
stress distributions over the cross-section. Whereas the axial stresses in the compression
zone of the tube seem to remain more or less linear, the stress distribution in the tension
zone deviate notably from a linear distribution. v. Karman (1889 and 1910) already
showed early that due to flattening of the cross-section of bent tubes loaded with
bending moments the maximum stresses do not appear at the outermost fibre.
Comparatively, the results can be used for straight tubes, for which the equilibrium is
set up for the deformed system.
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120
axial membrane stress [N/mm?]

-70 70 -70 -30 30 70
220 1 N\

section A

section B N
-60 1 N\

il X il N
A \\\
-100 - A -100 - A

Fig. 10.15: Axial membrane stress distribution over the cross-section
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The ovalization as depicted in Fig. 10.11 and Fig. 10.14 results in flattened parts
especially in the tension zone of the tube. For the unfilled tube in section A the
deformation of the cross-section lead to a re-distribution of the stresses from the outside
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towards the centre line (Fig. 10.15) and to maximum tensile stresses which appear not at
the outermost fibre. The by far smaller deformations in the compression zone cause
nearly no change in the linear stress distribution.
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Fig. 10.16: Axial strain distribution over the cross-section on the in- and outside for section A

In view of the local deformations of the shell the forces are not only transferred by
membrane stresses but also partially by bending in the plane of the shell. The stress
component from the in-plane bending is of major importance for the experimental
investigation because the measurement of the stresses is performed by strain gauges
which are to be attached to the outside of the tube. Thus, the strains from the numerical
analyses are additionally compared for the outermost fibre of the shell elements. Fig.
10.16 shows the axial or longitudinal strains on the in- and outside of the tube for
section A. The strain distributions on the in- and outside of the filled tube are
comparable and similar in shape to the axial membrane stresses according to Fig. 10.15.
The strains on the in- and outside of the filled tube deviate by less than 2 % from each
other.

t
MK\ N ) M
-
C
C .
t = tension

¢ = compression

Fig. 10.17: Secondary effects from longitudinal bending. a) radial resultant F in longitudinal section;
b) ovalization with secondary in-plane bending over cross-section
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For the compression zone of the unfilled tube the strains on the in- and outside of the
tube differ by up to 5 % in the area of the maximum strain. It is clear that the higher
strains on the outside of the tube cannot only come from the larger distance to the centre
line of gravity (effect about 2 %) but also must be caused by another effect. Further
away from the centre line of gravity the strain distribution inverts and the maximum
tensile strain appear on the inside of the tube. In the area of large forces on the tension
side of the unfilled tube the loading results in a change of curvature of the deformed
cross-section. Due to this change the position of the maximum stress changes between
in- and outside of the tube. In the areas with smaller strains, the strains between in- and
outside differ only slightly (around 2 %). For the deformed shape the longitudinal
bending gives rise to a force F directed inwards (Fig. 10.17a). The forces F compress
and flatten the tube, and lead to the ovalization of the structure.

Furthermore, as the geometry changes the moment of inertia of the cross section is
reduced and therefore the stresses increase. Still, this effect is in comparison of minor
importance. Based on these effects the higher strains on the outside of the unfilled tube
according to Fig. 10.16 can be explained.

10.2.5 Circumferential bending stresses

The flattening of the tube causes circumferential in-plane bending stresses which
according to their position on the in- or outside result in tensile or compressive
circumferential stresses (Fig. 10.17b). Again, the influence of the circumferential strain
distribution on the outside of the tube is of interest as in the experiment these
components are measured with strain gauges.
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Fig. 10.18: Circumferential strain distribution over the cross-section on the in- and outside for section A

In Fig. 10.18 the circumferential strain distribution over the cross-section on the in- and
outside for section A is shown. The circumferential strains for the unfilled tube exceed
the maximum strains for the filled tube by 85 %. The circumferential strains correspond
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to the deformed cross-sections (Fig. 10.11 and Fig. 10.14). The compression-tension-
compression pattern for the outer fibre of the tube as shown in the sketch in Fig. 10.17b
can be easily identified in Fig. 10.18. The maximum strains evolve at the sides of the
tube. Likewise, on the tension side for the case of the unfilled tube large strain
components appear due to the additional change in curvature in the cross-section at
z=-100 mm. Evidently, based on the relatively symmetric strain distribution regarding
the ordinate on the in- and outside, it can be concluded that only small circumferential
membrane stresses are present. The maximum circumferential strains reach in the
investigated case up to 50 % of the axial strains in section A.

These results are important for the strain measurement in the experiments. Generally, in
an experimental test set-up strains are measured in different directions using strain
gauges which are then evaluated according to stress components of interest. The
membrane stresses of the tube are the relevant component for further studies. Due to the
geometry of the object it will not be possible to measure stresses on the inside of the
tube. This fact poses the question to what extent the measurement of the strains is
influenced by the secondary in-plane bending around the circumference. A strain
measurement on the outside of the tube at the maximum bending moment in
longitudinal and circumferential direction can deliver the strains &, and &.,.

Based on the assumption of a homogenous isotropic body and applying the Hook’s law
with a constant Young’s modulus and a constant Poisson ratio the axial stress on the
outside of the tube can be calculated with the following equation:

E
O-x,() = —IUZ (gl,o +/’l.gc,0) (1010)

The equation (10.10) is valid for the assumption of a plane stress condition which is
acceptable for the investigated case as the stresses in direction of the thickness of the
tube wall is negligible. The equation (10.10) can be written identically for the centre or
middle of the tube wall, i.e. for the membrane stresses:

o, = £ (5 TH-E ) 10.11
Tyl IR R (10.11)

The circumferential strains &., in the centre of the tube wall are negligible as
deformation is prevented geometrically and the effect of the secondary bending only
influences the surfaces of the tube. As the curvature x; in the longitudinal direction is
very small it can be assumed that the component of the longitudinal strains & pending
arising from global bending is zero. This conclusion is drawn according to the
assumptions made for the extended technical bending theory (Schardt, 1989) which set
the shear strains y;, and the strains in the circumferential direction &, to zero. Based on
this approximation it can be stated that:

gl,o zgl,m (1012)

and the equation (10.11) can be written as:
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In Fig. 10.19 the axial membrane stresses for section A are plotted evaluated according
to equation (10.13).
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Fig. 10.19: Longitudinal bending stress distribution over the cross-section on the outside and the axial
membrane stress for section A calculated from strains according to (10.13)

Reading the longitudinal strain &, and the circumferential strain &, at section A for the
outside of the tube from the numerical analyses allows to calculated the axial stresses
Oy, at the outside according to equation (10.10). Fig. 10.19 depicts the results from the
calculation corresponding to the stresses from the numerical analyses as shown in Fig.
10.16. The results differ in the area of the maximum compression by about 10 % and in
the area of the maximum tension by about 30 % from the axial membrane stress o;. The
intention is to obtain a good approximation for the axial membrane stresses oy with the
measured strains g, and &.,. The approach given in equation (10.13) leads to a good
approximation with a constant deviation of around 10 %.

10.2.6 Effect of friction

For the investigation to what extent additional friction forces arising between soil and
structure may influence the load transfer behaviour of the lateral load, the studied cases
of the filled and unfilled laterally loaded pile are further investigated. Generally, the
friction forces are of major interest when investigating axially loaded piles as the
external forces have to be transferred to the soil by the shaft.

Simplified the static coefficient of friction is set equal to the kinetic coefficient of
friction and hereafter only called coefficient of friction. As indication for the coefficient
of friction 4. the tangent of the angle of wall friction o for steel piles is used.
Established values for the angle of wall friction ¢ of sand in interaction with steel vary
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between 10° and 25° (e.g. Bowles, 1992; Broms, 1981) depending on the consistency of
the sand. As rough estimate a static and kinetic coefficient of friction x=0.3
(corresponds to o =16.7°) is chosen independent of the contact pressure and the
relative displacements.
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Fig. 10.20: Axial membrane stress distribution over the cross-section including friction

Applying a friction to the shaft of the tube decreases the maximum lateral displacements
for both the filled and unfilled tube by around 11 %. The possibility of transferring parts
of the loads through shear forces results in a more compound-structure-like behaviour,
i.e. an increase of stiffness for the tube. Fig. 10.20 depicts the axial membrane stresses
arising from longitudinal bending for the section A of the filled and unfilled tube with
and without considering a coefficient of friction. Including friction in this example leads
to a reduction of the maximum axial membrane stresses by about 15 % for both cases.
The stress distributions tend towards a linear stress distribution. The circumferential
bending stresses decrease while considering a coefficient of friction for both
investigated cases by 11 %. Evidently, parts of the lateral force and the resulting
moment are transferred to the soil by shear stresses and hence lead to a reduction of the
stress components in the tube. As the reduction of the stresses does not differ between
the unfilled and the filled tube, it can be concluded that the sand core within the filled
tube does not contribute any considerable stress reduction when taking friction into
account.



11  Boundary conditions and loads - external
pressure

11.1 General

The design procedure (chapter 4) highlighted several conservative assumptions which
have to be made for assessing of the structure against the different stress components.
These aspects influence especially the limit state buckling design against
circumferential compression.

In the example calculation the circumferential compressive stresses for the buckling
verification of the tubes subjected to external pressure were calculated and compared
with the circumferential buckling resistance oyrs according to EN 1993-1-6 in chapter
4. Based on EN 1993-1-6 a local buckling verification was performed at the position of
the maximum circumferential compressive membrane stresses. Fig. 11.1 depicts the
simplified pressure distribution along the circumference for the region of the tubular
pile tip.
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Fig. 11.1: Pressure distribution on combiwall from water and soil

The calculated circumferential compressive stresses exceed the circumferential buckling
resistance oygrg significantly (factor 3.0, chapter 4). The assessment procedure was
based on the following simplified assumptions:

J choice of the shell’s length of 24 m (pile tip to anchor) for evaluating the
circumferential buckling resistance oyrs

o boundary conditions BC1-BC3 (clamped - free) according to EN 1993-1-6
for evaluating the circumferential buckling resistance oyrs

o maximum value of the non-uniform external pressure distribution assumed
constant in longitudinal direction
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o maximum value of the non-uniform external pressure distribution constant
in circumferential direction

This approach for the combiwall example is defined as reference or initial case in the
following. From these approximations a very conservative design arises, since in reality
the circumferential compressive stresses only occur at one position along the length of
the tube. In the calculation for the circumferential buckling resistance oygs according to
EN 1993-1-6 a constant external pressure along the entire length of shell was imposed.
In this section, based on simplified assumptions and conditions in real structures the
resistance and the loading, are studied and compared on the basis of the reference case.

11.2 Investigation of the shell’s resistance for external pressure

In the stress based buckling verification according to EN 1993-1-6 neither varying
external pressure distributions in longitudinal nor in circumferential direction are
covered sufficiently for the investigated problem. In Fig. 11.1 and Fig. 11.2 the varying
pressure distribution on the tube wall is shown for the longitudinal and the
circumferential direction. In EN 1993-5 for the assessment against circumferential
buckling it is annotated that in case of a non-uniform pressure distribution over the
circumference the circumferential stresses should be calculated based on a constant
pressure distribution using the maximum appearing pressure. EN 1993-1-6 allows to
user to calculate an equivalent constant pressure for cylinders subjected to non-uniform
pressure distributions from wind loading. Nevertheless, this approach cannot be
transferred to the investigated case due to the significantly different shape of pressure
distribution, e.g. wind loading involves suction. Thus, for a cylinder subjected to a
constant pressure on half of the cross-section and unloaded on the other half of the
cross-section, the assessment should be performed assuming a constant pressure
distribution over the entire cross-section. The boundary conditions and the influence of
length appearing in reality can hardly be adapted to the cases given in Eurocode
EN 1993-1-6.

The critical circumferential buckling stress is calculated for the reference case from
chapter 4. Based on this value an investigation of the influence of boundary conditions
and varying external pressure distribution on the carrying behaviour of the tubular piles
is performed. The aim is to obtain differentiated results for the carrying behaviour of
tubular piles by applying more detailed modelling of the system (boundary conditions
and loading). The procedure is based on the evaluation of the critical circumferential
buckling stress in order to limit the complexity and to facilitate the interpretation of the
findings.

The pressure distributions according to Fig. 11.2 are the reactions calculated from an
elasto-plastic analysis with the program RIDO taking all loadings into account (Annex
B). The modelling in ABAQUS was performed by using half of the tube (cross section)
over the entire length of 30 m. Symmetric boundary conditions are imposed to the
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longitudinal edges. Additionally, at the top edge of the tube all three translational

degrees of freedom are constraint. At the depth of the anchor the nodes are coupled in
order to maintain the shape of the cross-section and supported by a spring modelling the

anchor stiffness. The anchor stiffness is chosen in the magnitude of the input for the
analyses performed with RIDO. The tubular pile is loaded applying the non-uniform
pressure distribution in longitudinal and circumferential direction as shown in Fig. 11.1

and Fig. 11.2. The loading not only results in circumferential compressive stresses but
also bending moments leading to axial stresses. Nevertheless, this stress component is
not relevant for the buckling failure in the investigated case and thus is neglected in the
following considerations.

The loading depicted in Fig. 11.2 corresponds to a load factor LF of 1. The loading by
the non-uniform pressure distribution and the stiffness of the anchor from the RIDO
calculations had to be adapted slightly for the three-dimensional ABAQUS analyses in
order to obtain equilibrium with equivalent displacements and force resultants. A
Young’s modulus of 210 000 N/mm? and a Poisson ratio of 0.3 is used for the analyses.
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Fig. 11.2: Pressure distributions on tube as a function of the depth according to Fig. 11.1 with
Pm = (PE1+witPE2w2)/2
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Fig. 11.3 shows the first buckling eigenform from a linear bifurcation analysis for the
non-uniform loading. The evaluation of the linear elastic buckling load results in a load
factor LF of 0.85 and a buckling mode with a very small number of circumferential
buckles. The maximum circumferential membrane compressive stresses in the tube wall
can be calculated with a geometrical linear follow-up calculation imposing the linear
buckling load calculated before as loading. The analysis reveals that for a load factor LF
of 0.85 the maximum circumferential compressive membrane stresses appear in the
region of the pile tip. The maximum arising compressive membrane stress of 40 N/mm?®
is used as correspondent circumferential critical buckling stress oyg. according to
EN 1993-1-6. This more detailed modelling of the loading situation and the boundary
conditions leads to an increase of the circumferential critical buckling stress from
21 N/mm’ to 40 N/mm’. Based on this circumferential critical buckling stress oyg. the
circumferential buckling resistance oyg, is calculated in Tab. 11.1 following EN 1993-
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Fig. 11.3: Buckling mode for the reference tube subjected to non-uniform external pressure

The calculation according to Eurocode EN 1993-1-6 and the simplified assumptions for
loading and boundary conditions (reference or initial case) using the circumferential
critical buckling stress of 21 N/mm? results in a circumferential buckling resistance of
10 N/mm? for fabrication tolerance quality class C which is around 45 % smaller than
the circumferential buckling resistance evaluated in Tab. 11.1 (see chapter 4). The
circumferential buckling resistance increases for the investigated case from 18 N/mm®
to 24 N/mm? and for the simplified case from 10 N/mm? to 13 N/mm? if a fabrication
tolerance quality class of B is assumed instead of C. Since fabrication tolerance quality
class of B is proposed in EN 1993-5 to be used for tubular piles, it is applied in the
following if not stated differently.
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Tab. 11.1: Parameters for limit state buckling design against circumferential compression

parameter eq. circumferential compression dimension
O9Re FE analysis 40 N/mm’
Ao (4.35) Ao =4/430/40 =3.26 _

Qg Annex D (EC) 0.5 (Class C) -
factors Annex D (EC) oo = 0.40, =060, 7n=1.00 -

Ao (4.34) Ao =4/0.5/(1-0.6)=1.12 _

20 (4.33) 7, =0.5/3.26% =0.047 i
Gara (4.29), (4.30) Cori = —0'0417 i430 =18 N/mm?

11.3 Investigation of the loading for external pressure

In Tab. 11.2 the relevant circumferential compressive stresses are calculated applying

o,=4q ” (11.1)
for different approximations for the loading. It can be seen that the design buckling
stress ogrs Of 13 N/mm® (Class B) calculated in chapter 4 based on simplified
assumptions is exceeded considerably. Even, the buckling stress oygs of 24 N/mm?®
(Class B) from the more detailed analysis from section 11.2 is surpassed.

Tab. 11.2: Circumferential stresses and verifications for the depth z = -29 m

pressure circumferential stress oy [N/mm’]

. p,r 703-0.9
with averaged total pressure p,, o,y = T T 18 35
with averaged total pressure p,, o = (pm ~Dint )-r _ (703—160)-0.9 _ 97
less internal pressure p;,, ¢ t 18
from water pressure difference o = Apy, -r _ 50-0.9 _3
Apw = pwa- pmi ’ t 18
with averaged earth pressure o o P 0.5-(733 + 203)-0.9 _
Pme = (PEITPE)/2 / t 18
averaged earth pressure p,z less o = (me ~DPim ) r_ (468—160)- 0.9 _15
internal pressure py, ¢ t 18
with max. total pressure pg;+ o = (pEHWl ~Din )-r _ (943 —160)-0.9 _139
less internal pressure p;,, ¢ t 18
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In order to use the circumferential membrane stresses arising in real constructions for
the assessment, elaborate non-linear numerical analyses which take all relevant
influences (e.g. sequence of constructing the combiwall) into account are required. In
the following a simplified approximation is used.

For the example a numerical stress analysis in ABAQUS with a model according to
section 11.2 is performed as a first approximation. For the internal pressure, only the
component arising from water pressure difference is applied. The water level in the tube
is put to the level of the free water level which is 5 m below the ground-water level (see
Fig. 4.1). The internal pressure acts opposite to the earth pressure applied to the tube
according to Fig. 11.2. Since the influence of second order theory without considering
axial forces is marginal (few percentages), a more detailed stress determination is
disregarded in this first comparison and the equilibrium is evaluated for the undeformed
system. The maximum circumferential stress from the linear stress analysis considering
internal pressure can be calculated for the investigated case with 34 N/mm” in the
region of the pile tip. The analysis results in an about 15 % smaller circumferential
compressive stress than the value given in Tab. 11.2 for the approach with the
maximum total pressure pgi+w less the internal pressure p;, and applying equation
(11.1) with 39 N/mm®. Nevertheless, the stress of 34 N/mm® for the reference case
based on the more detailed investigation exceeds the circumferential buckling resistance
of 24 N/mm” by nearly 70 %.

11.4 Summary and comparison of previous analyses

In Tab. 11.3 the results of the previous analyses are summarized. In the last column the
reciprocal of the utilization factor is given for the different assessments.

Tab. 11.3: Summary and comparison

loading carrying capacity utilization
39 N/mm’
initial configuration ,...sion (11.1) with max. pressure 13 N/mm? 1/3.0=0.33

less internal pressure from water

according EN 1993-1-6 for

N detailed the tube up to anchor
m(.)re etaile 1/2.6=0.38
loading 34 N/mm’
three-dimensional FE analysis for 24 N/mm?>
+ more detailed ven loadi
i given loading 1/1.4=0.71

with critical buckling stress from FE

analysis — evaluated acc. EN 1993-1-6

carrying capacity

For the initial configuration or the reference case the carrying capacity is exceeded by
the factor of 3.0. The evaluation of stresses in the shell by performing numerical
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analyses and considering the non-uniform pressure distribution over the length and
circumference improves the situation. Still, the carrying capacity of the tubular pile is
exceeded by 160 %. A significant drop can be found if the carrying capacity or the
buckling resistance oygrs is derived by investigating the entire model numerically
instead of using the simplified approaches of the reference or initial case. As a
consequence the carrying capacity is only exceeded by 40 %. It can be seen that by a
more differentiated analysis of the actions and the boundary conditions, on the one side
the loading can be decreased and on the other side the carrying capacity can be
increased. The beneficial influence of the surrounding soil is not taken into account in
the comparison and is discussed in a different section.

11.5 Defining an equivalent loading case

11.5.1 General

The loading of the tubular pile regarding the external pressure distribution is neither
constant in the circumferential nor in the meridional direction. In order to calculate the
carrying capacity for limit state buckling design against circumferential compression
according to EN 1993-1-6, an equivalent pressure distribution needs to be assumed. The
simplest approach is to take into account the meridional stresses arising from bending
and to additionally replace the non-uniform pressure distribution with a constant
pressure over the circumference and length applying the maximum pressure amplitude.
Since this approach is assumed to yield highly conservative results, a numerical
parametric study based on common dimensions of tubular piles is performed. First, the
influence of the pressure distribution over the circumference is analysed, followed by a
study with reference to the non-uniform external pressure over the length.

11.5.2 Non-uniform external pressure over circumference

For the investigation of the influence of non-uniform external pressure over the
circumference it is important to define a system for which the influence of the
circumferential stresses and the merdional stresses can be separated clearly. Since many
patterns of external pressures yield a resultant force which then needs a counterpart in
terms of shear forces resulting in bending and hence in merdional stresses, modelling an
entire cylindrical shell may not be convenient. Investigating a cylinder will always bring
up the problem of longitudinal stresses. Nevertheless, analysing a reduced system as
e.g. a pressurized ring does not allow to take account of all relevant failure modes as
certain buckling eigenmodes are enforced.

Thus, for the investigation of the influence of non-uniform external pressure over the
circumference cylinders based on two different systems as depicted in Fig. 11.4 are
used. For type A one end is entirely restrained, i.e. it corresponding to BC 1r from
EN 1993-1-6. The ends of the tubular pile from type B are clamped in the global
mechnical model, i.e. resulting in bending moments at the ends, but allowing the shell
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to rotate along the circumference at the boundaries (meridional rotation not restrained),
i.e. BC 1f from EN 1993-1-6.

global mechnical system global mechnical system - type B

\ \
L locally clamped (BC 1r) L \ locally no rotation restraint
y clamp (BC 1)
» external pressure p < external pressure p
~ ~
< <
B | B0 N
= =
= 2
€ [
] < locally no rotation restraint

~ &\\\\\& (BC 1f)

Fig. 11.4: Investigated mechanical systems for non-uniform external pressure over circumference

A parametric study is performed for cylinders according to type A and B of various
lengths and for the 7/t ratios 40, 50, 60, and 75 comparing the linear buckling loads for
the cylinders loaded as shown in Fig. 11.4 (“half-pressure”) and with a constant external
pressure (“full-pressure”). The results are depicted in Fig. 11.5 and Fig. 11.6 as a
function of the length parameter @ and the ratio of the linear buckling pressure pi0.5
for “half-pressure” over the linear buckling pressure p.,i.1.0 for “full-pressure”. In order

to cover all possible buckling modes the complete cylinders are modelled. The standard
two-waves buckling mode is depicted in Fig. 11.5.

1.6
—— r/t=40
S 14 —— /t=50
3 r/t =60
\Q.‘q limit long cylinders —— r/t=175
S
N
12 @:
1.0 ‘ ‘
20 60 100 140

length parameter @

Fig. 11.5: Ratios of buckling pressures for “half-pressure’ over “full-pressure” for different lengths and
system A

A ratio peicos/Perisio> 1.0 means that “full-pressure” is more detrimental for the
cylinder than “half-pressure”. For all investigated cases this aspect is fulfilled. The
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numerical analyses show that for short to medium length cylinders (< 1.63Cyr/t with
Cy=0.6 for type A and Cyp=1.5 for type B) according to the definition given in
EN 1993-1-6 the ratio oscillates. The results for long cylinders (> 1.63Cyr/f) can be
separated from the results of the shorter cylinders as seen in Fig. 11.5 and Fig. 11.6.

1.6
S 14
S} limit long cylinders
s
)
1.2 1 / —— /t=40
—— r/t=50
1 r/t=60
—— r/t=175
1.0 T T T T T
10 50 90 130 170 210

length parameter @

Fig. 11.6: Ratios of buckling pressures for “half-pressure’ over “full-pressure” for different lengths and
system B

For a better understanding of the oscillating aspect from Fig. 11.5 and Fig. 11.6 the
numerator and the denominator from the numerical analyses (ordinate) in Fig. 11.5
(system A) are plotted separately in Fig. 11.7 for »/t = 60. Here, the data for ‘“half-
pressure” corresponds to p.i.0.5 and the data for “full-pressure” corresponds to pir 1.0.

Derir - r/t = 60 - "half pressure" / )/ /
Er[tj | ort=60- "full pressure" ‘\ // // //
I\r \ vy / /
\ [ / /
\ \ / / /
1.0 \ y / /
\ N 4 /
\ P / /
\ / o/ /
\ / \n y;
\\ P Ve \/ /
.......... G-h...uz‘&&,zrh g ...
0.5 - m=4 - S 5 & C,-0.92
m=3 _
m=2
. buckling IBG
of aring »\ 7
0.0 —— —
0.1 1.0 10.0

Fig. 11.7: Buckling pressures for “half-pressure” over “full-pressure” for different lengths and system A
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Additionally, Fig. 11.7 includes the results of the analytical solutions for externally
pressurized cylindrical shells with circumferential buckling waves m = 2, 3, and 4. The
knuckling pressures tend towards the results for buckling of a ring (analytical solution).
The horizontal line at Cy-0.92 indicates the buckling pressure for medium length
cylindrical shells. The analytical solutions and similar figures can be found in e.g.
Beuth-Kommentare (1998). It can be seen that the numerical results for “full-pressure”
coincide as expected with the analytical solutions. In this context the analytical
solutions need to be minimized with respect to the buckling pressure. A similar
behaviour can be found for the “half-pressure” case; again, the oscillations occur due to
changes in the buckling mode (circumferential buckling waves). Nevertheless, as this
effect is not as distinct for the “half-pressure” case, the ratio is governed by the “full-
pressure” case resulting in the observed oscillations found in Fig. 11.5 and Fig. 11.6.
For system B and for other #/¢ ratios the effect remains the same.

A constant function at 1.30 for type A and 1.28 for type B as derived from the results is
added in the figures indicating the boundary between buckling ratios for long cylinders
(right of the intersection point of 7/t ratio curve and the constant function) and shorter
cylinders (left of the intersection point of 7/t ratio curve and the constant function). The
study revealed coinciding buckling ratios for the different 7/¢ ratios for each system type
leading to constant functions. Results are not depicted for all length parameters as seen
in Fig. 11.5, e.g. not for »/t =40 and @ > 85. For these cases the buckling failure does
not occur at the free end (type A) or at midspan (type B) from external pressure but at
the clamped ends of the tubular piles due to axial compression in combination with
external pressure. Obviously, the influence of the axial membrane stresses from bending
increases for long cylinders since the moment increases by the power of two,
respectively. This aspect can be observed as the buckling load starts to decrease for very
long cylinders. Nevertheless, the preformed analyses only provide results for
circumferential and meridional stresses interacting.

The intention is to replace the non-uniform external pressure distribution over the
circumference having maximum amplitude p by an equivalent constant pressure of
amplitude p* without neglecting the axial membrane stresses arising from bending. The
aspect of the decreasing buckling ratio for long cylinders can be disregarded because
this effect is based on the bending moment, which is to be considered separately in the
assessment procedure. The results for short cylinders tend to oscillate due to the
influence of the boundary conditions. For these cases the definition of an equivalent
pressure may be difficult. Thus, and because the major field of interest are long
cylinders, the following considerations are limited to the case of long cylinder with:

©>1.63 Cg? (11.2)

The investigated cases type A and B refer to external pressure buckling factors Cy= 0.6
and 1.5, respectively. All investigated long cylinders yielded buckling ratios of about
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1.3 as seen in the figures. Thus, it appears appropriate as a first approximation to define
an equivalent pressure p* independent of the boundary conditions with

1
*=C, - p=—
P L P 1'3P (11.3)
for cylinders with »/¢t <75 fulfilling (11.2). The value C; is defined as equivalent

pressure correction factor.

This proposed equivalent pressure represents a conservative approximation and is
limited by the investigated range. Nevertheless, comparing analyses with larger 7/¢
ratios lead to similar results.

1.6
. X
o
& 14
S
B i f\ limit long cylinders
S
1.2 Q//
—— /t=50
X r/t =50, hydrostatic pressure
10 T T T
20 60 100 140

length parameter @

Fig. 11.8: Ratios of buckling pressures for “half-pressure” over “‘full- pressure” for different lengths and
system A for linear (hydrostatic) pressure loading

The following sections will attempt to elaborate the simple formula (11.3) by giving
more detailed factors for the equivalent pressure with reference to boundary conditions
and 7/t ratios. It needs to be emphasized that if a “half-pressure” is replaced by a “full-
pressure”, the moment arising due to the resultant force still needs to be regarded. Thus,
in the subsequent design procedure an interaction check is needed. In Fig. 11.8 some
comparing analyses are depicted in order to validate the previous assumptions. Here, the
load is not applied constantly over the length but linearly increasing towards the free
end (hydrostatic = linear pressure). The results show that for non-uniform pressures
over the length the situation may even be better.

It can be seen from the previous study that the equivalent buckling pressure is nearly
constant for the investigated /¢ ratios if the limit for long cylinders is considered. Thus,
the approach of applying the results of analyses based on a cylinder referring to the limit
case (long cylinder) generally to cylinders subjected to non-uniform external pressure
(over circumference) can be adopted as conservative approach. Although, the previous
analyses revealed less conservative findings, the limit case (according to (11.2)) is
chosen as it is assumed that the influence of longitudinal stresses is rather small. Hence,
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in the next numerical study a cylinder is subjected to different external pressure
patterns. The patterns are defined by a load angle ¢y,,, referring to the segment which is
loaded by a constant pressure, i.e. the load shown in Fig. 11.5 corresponds to
Proaa = 180°. It is the aim to provide equivalent pressures as in (11.3) for different cases.
For this approach the equivalent pressure correction factor Cy, is defined as:
C, = Lo (11.4)
Perit, gload

In Fig. 11.9 the results for the limit case (long cylinder) are depicted. The reciprocal
value of the equivalent pressure correction factor 1/Cy is given as a function of the load
angle ¢j,,q for the system type A and B as defined in Fig. 11.4. It can be seen that the
analyses for system type B yield slightly more conservative results (up to 4 %) in
comparison to type A. This aspect is based on the fact that for system B the section
where the buckling initiates (mid-span) is subjected to longitudinal stresses arsing from
bending. Theses stresses are rather small for type A at the free end.

A
2.0
1 A system A
1 —system B
@ 1 A
T 15 - N
] A
] A
10 T T T T AN
90 150 210 270 330

load angle @ [°]

Fig. 11.9: reciprocal value of equivalent load correction factor C; for system A and B as a function of the
load angle Q.4

Nevertheless, the analyses provide similar results and thus it is proposed to apply the
equivalent pressure correction factor C; of system B as defined in Fig. 11.9 for
obtaining an equivalent pressure p* independent on the boundary conditions:

p*=C,-p (11.5)

and as a function of the loaded segment, i.e. dependent on @j,,s. Although this approach
also involves the influence of longitudinal stresses it is expected to provide a
conservative but still adequate approximation for general application. Since the analyses
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were only limited to 7/t <100 and ¢, > 90° the application of Fig. 11.9 shall be
limited to these values and to cylinders fulfilling (11.2). For practical application it may
be convenient to adopt the curve given in Fig. 11.9 by a function. Based on a regression
analyses for the results of system B with a regression coefficient of R*=0.995, a
conservative approximation is derived with an additional safety factor of 1.05:

Dioad
C, =0.33/p =44 | +1
L "(3600) (11.6)

The approximated curve is depicted in Fig. 11.10 with some results from the numerical
analyses.

1.0 7
W
A
0.8
i A
© A
A
4 A
0.6 n! A system A
O system B
Q —— approximation
0.4 —
0.25 0.5 0.75 1
@ load/360° [-]
Fig 11.10: Equivalent load correction factor C; according to approximation from (11.6)

The results need to be adopted to a more general case. In this context it is of interest to
obtain information on the equivalent pressure correction factor C; if segments are
loaded with different amplitude pressures as seen e.g. in Fig. 11.1 with pg;+and pgr+. In
the following it is assumed that the “loaded segment” (¢p.s) 1s subjected to the
maximum external pressure amplitude py.. (e.g. in Fig. 11.1 pya = pe2+) while the
remaining circumference (360°-¢,.4) 1S subjected to the external pressure amplitude
Pmin- Then, the load fraction ratio ayis defined as:

— pmin

11.7
pmax ( )

ar
Hence, the results depicted in Fig. 11.9 and Fig. 11.10 refer to ay= 0. The corresponding
linear buckling are calculated for different load fraction ratios and the system A and B,
and some results are depicted in Fig. 11.11.
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Fig. 11.11: Equivalent load correction factor Cy for system A and B as a function of the load angle @,qq
and for different load fraction ratios ay

Again, the results for different 7/¢ ratios smaller than 100 almost coincide and thus the
findings can be interpreted independent on the 7/¢ ratio. As the equivalent pressure
correction factor C; is similar for the boundary cases A and B but revealing slightly
larger values for system B, the evaluation is based on the system B. According to the
interpretation performed for formula (11.6) regression analyses are executed for the
different load fraction ratios a.. For all ratios a logarithmic approximation was applied.
Since for consistency the derived equations need to yield C; =1 for “full pressure”, the
only varying parameter is the factor multiplying the logarithmic function; e.g. 0.33 in
formula (11.6). In order to establish a general equation similar to formula (11.6),
regression analyses are performed for the different load fraction ratios ar with an
additional safety factor of 1.05. The factors from the analyses are then adopted again in
a regression analyses with a polynomial approximation as seen in Fig. 11.11. Finally,
the general formula for the equivalent pressure correction factor C; valid for all
boundary conditions, 7/t < 100, ar< 1, and @,.¢ > 90° can be written as:

2 Pioa
Cy :[—0.165(af +a, —2)1;{%}1 (11.8)

or

C, =1-0.165(a> +a, - 2)1{%) (11.9)
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Fig. 11.12: Evaluation of the scaling factor for different load fraction ratios ay

11.5.3 Non-uniform external pressure over length

The previous analyses lead to the assumption that an external pressure constant in
circumferential and longitudinal direction is more detrimental to the buckling strength
than an external pressure distribution which is non-uniform. The following investigation
of the non-uniformity in longitudinal direction assumes uniformity over the
circumference as this aspect of variability was dealt with in the previous section. It is
intended to obtain an equivalent dimensionless length parameter w* for a cylinder
subjected to external pressure non-uniform over the length to be used for obtaining a
corresponding critical circumferential buckling stress.

global mechnical system - constant global mechnical system - linear
— Ax\ locally clamped (BC 1r) — & \ locally clamped (BC 1r)

—» | l«— external pressure p external pressure p

5 = < =

< <

] S : u

8 8
4’ 47

V4 0 p 0

Fig. 11.13: Investigated mechanical systems for external pressure non-uniform over length

The first numerical study is based on a tubular pile clamped at one end subjected to
external pressure of the type “constant” or “linear” with the same maximum amplitude
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po as depicted in Fig. 11.13. At the clamped end all displacements and rotations are
constraint, i.e. corresponding to BC Ir from EN 1993-1-6. The most conservative
approach would be to replace the linear system by the constant system without
introducing changes. For comparison both systems are investigated in detail. Linear
bifurcation analyses are performed with for different 7/¢ ratios and lengths.
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length parameter for linear case

Fig. 11.14: Relationship between the length parameter for the “linear” system and the corresponding
equivalent length parameter for a “constant” system

Based on the buckling loads the length parameters are interpreted. Here, for the “linear”
(pressure) system with a certain length parameter @ the corresponding “constant”
(pressure) system with the same buckling pressure and the equivalent length parameter
o* 1s derived. The evaluated results are depicted in Fig. 11.14; e.g. for #/t =50 the
buckling pressure for a “linear” system with @ = 200 is equal to the buckling pressure
for a “constant” system with @* = 85. Fig. 11.14 shows that the results for small length
parameters oscillate and seem to follow smoother pattern for increasing length
parameters. All results are below the dotted grey line, i.e. @* < @ for all calculated
cases. Thus, for all analyses the approach of replacing the “linear” system by the
“constant” system (@* = @) would yield conservative results.

Based on the previous findings it is chosen to approach the problem of an equivalent
length by a defining mechanical model from which the corresponding values can be
adopted. In this context the buckling eigenmode is investigated in more detail. Since
only long cylinders according to EN 1993-1-6 are dealt with, the number of
circumferential buckling waves m =2. In the longitudinal direction, half a buckling
wave evolves for the system depicted in Fig. 11.13. In order to define a mechanically
based dependency between ‘“constant” and “linear” pressure the buckling waves in
longitudinal direction are compared. The idea is to find a buckling eigenmode for a
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“constant” pressure which corresponds to the buckling mode of a “linear” pressure. This
step is performed in Fig. 11.15 for 7/t = 50 and some length parameters. The eigenforms
of some example cases (“linear” system) are shown as a function of the length L with
the deflections normalized with respect to the maximum deflection. Shifted eigenforms
of “constant” systems are superposed in the figure which match the deflections of the
“linear” systems well. This matching is performed by hand. It can be seen that the
equivalent “constant” system yield good correlations with the “linear” systems.
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Fig. 11.15: Matching “constant” systems to “linear” systems based on the eigenmodes for r/t = 50

The previous procedure is performed for different /¢ ratios and different lengths. The
results are evaluated and summarized in Fig. 11.16 with the corresponding results for
the buckling loads as depicted in Fig. 11.14.
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Fig. 11.16: Relationship of length parameter for “linear” system and corresponding equivalent length
parameter for “constant” system for @ > @y, With results from eigenmode approximations

The results from Fig. 11.16 emphasize the large safety margin present when applying
the eigenmode approximation. A possible solution for adopting closer agreement with
the results could be to use a scaled-down “constant” eigenmode for matching in Fig.
11.15; i.e. the matching is performed with scaled-down deflections u,; adopted e.g.:

uy =+ 15)09 (11.10)

instead of using u.

For the pressure distribution (“linear””) the mean pressure value is half the pressure
amplitude for the “constant” system. This relationship is defined as the load factor b:

(11.11)
pol

which is 0.5 for the latter case. The most detrimental load case with 5 = 0.5 is a constant
pressure “block” extending over half of the length as depicted in Fig. 11.17 as the
buckling initiates in the middle. The results are shown as already depicted in Fig. 11.16
for the “linear” case for the “block™ load in Fig. 11.17. Again, the approximation with
the eigenmode adoption serves as a reliable method for obtaining conservative results
for an equivalent length parameter.
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Fig. 11.17: Relationship of length parameter for “block” system and corresponding equivalent length
parameter for “constant” system for @ > @, With results from eigenmode approximations

This procedure can be applied for numerous pressure distribution types and load factors
b. For theses systems individual relationship curves can be derived and plotted. Here,
only the two latter cases are re-sketched in Fig. 11.18 and Fig. 11.19 in order to provide
a clearer figure for practical application.
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Fig. 11.18: Derived relationship of length parameter for “linear” system and corresponding equivalent
length parameter for “constant” system for @ > @jpng With b = 0.5
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Fig. 11.19: Derived relationship of length parameter for “block” system and corresponding equivalent
length parameter for “constant” system for @ > @jpne With b = 0.5

11.6 Evaluation of the elastic buckling reduction factor

11.6.1 Definition and origin

From the previous analyses different ideal buckling loads were obtained for a cylinder
subjected to external pressure. For example a more detailed modelling of the loading
situation and the boundary conditions leads to a circumferential critical buckling stress
of 40 N/mmz, which is used as circumferential critical buckling stress oygr. from
EN 1993-1-6. Based on this value the circumferential buckling resistance oggras is
derived by applying the buckling reduction factor y,. The calculation of yy depends on
slenderness of the shell A, which is defined as:
Fo = | Lo (11.12)

O-H,Rc

with a common yield stress f,; between 235 N/mm’> and 430 N/mm? and a
circumferential critical buckling resistance ogrs between 13 N/mm? and 24 N/mm? as
seen in the different analyses (Tab. 11.3), the slenderness of the shell Ao ranges from
3.1 to 5.8. The plastic limit relative slenderness Agp is:

Ag = (11.13)
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where the parameter ay is between 0.5 and 0.75 depending on the quality class of the
shell and S is 0.6. This leads to a plastic limit relative slenderness A4 ranging from

1.12 to 1.37. Since the slenderness of the shell A4 is larger than the plastic limit relative
slenderness A4, for all extreme values, which applies for the investigated range of 7/t
ratios, the buckling reduction factor is yy linearly dependent on the circumferential
elastic imperfection factor ay:

_%
Ao ==y (11.14)
Ao
1.e. the circumferential critical buckling stress oygr. is directly reduced by the
circumferential elastic imperfection factor ap depending on the imperfection class in
order to obtain the circumferential design or characteristic buckling resistance (ogrx or
o] Rd)-
_Oori O g re

= =a 11.15
Vo o Vm (11.15)
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The circumferential elastic imperfection factors oy proposed in EN 1993-1-6 result in a
reduction from 0.50 to 0.75 depending on the fabrication quality class.

The reduction factor ay also appears in the predecessors of the Eurocode. The first
general code which commented on the buckling assessment of shells based on buckling
rules from different specific codes (e.g. DIN 15018 for cranes) was an amendment to
DIN 4114 in 1973 (“Ergénzungserla3 zu DIN 4114”). The code only contained vague
and very conservative comments on the buckling assessment due to the lack of
experience. As a consequence several buckling investigations were performed. In the
first place the pioneering work by Esslinger (1975, 1977) needs to be mentioned.
Esslinger performed experimental and numerical analyses of cylinders subjected to
different loads. Her investigations regarding the postbuckling behaviour of shells
formed amongst others the basis for the following design codes. From experiments with
Mpylar-cylinders loaded with hydrostatic pressure, Esslinger (1969) derived that the ratio
of the characteristic buckling load (= postbuckling minimum) and the theoretical
buckling load lies between 0.60 and 0.70, independent on the length of the cylinder.
Esslinger (1971, 1976) fixes the reduction factor to 0.65 for isotropic cylinders.

Based on the newly obtained knowledge a German guideline appeared: the DASt-
Richtlinie 013 (1980). The new buckling assessment procedure described by
Bornscheuer (1981) is based on the numerous experimental investigations (mainly by
Esslinger and e.g. summarized by Schulz, 1981) and uses the a-concept, i.e. a reduction
factor with a purely empirical relationship between ideal buckling load and buckling
resistance. The proposed elastic imperfection reduction factor oy for cylinders subjected
to external pressure is assumed to be 0.70 for all shells. The reduction factor varies
significantly between different guidelines. In the British Standard BS 5500 (1997) and
the ECCS-Recommendations (1988) a factor of 0.50 is proposed. A far higher reduction
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factor of 0.80 can be found in the ASME-Code according to the Beuth-Kommentare
(1998). The differences arise as all values were fixed empirically based on experiments
and some numerical analyses. The experimental results differ due to the influence of
boundary conditions and the interaction with axial loading (external pressure on top of
cylinder). In DIN 18800-4 (1990) a value of 0.65 is used on the basis of the
investigations by Esslinger (cfr above) and by Stracke (1987), as e.g. described by
Bornscheuer (1985). Finally, in prEN 1993-1-6:2002-05 three reduction factors 0.75,
0.65, and 0.50 are given depending on the fabrication quality class A, B, and C of the
shell, respectively, as stated above.

11.6.2 Influence of length on buckling load and imperfection sensitivity

First, two different load cases have to be identified. Since, for the execution of tests a
loading with a hydrostatic pressure to the entire cylinder which is sealed with a top and
bottom plate is by far easier than applying external pressure to the shell surface only,
this case was mostly used for testing. When evaluating test results this aspect needs to
be taken care of as the loading type influences the carrying capacity. The hydrostatic
load case obviously results in a smaller carrying capacity because the cylinder is
subjected to an additional axial loading due to the pressure on the top and bottom plate.

100 7
| T
g

pressure on shell surface ==

hydrostatic pressure

1 10 100 1000

Fig. 11.20: Buckling mode for the reference tube subjected to non-uniform external pressure

Batdorf (1947) derived analytical solutions for the two cases based on linear shell
theory. Both solutions for the critical buckling loads are depicted in Fig. 11.20 for
increasing length parameters. Here, op= oggr.iin corresponds to the linear critical
buckling stress. It can be seen that for length parameters L*/(rf) greater than 16 the
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differences between the solution drops below 20 %. For longer tubes the difference
disappears. This phenomenon can be explained with the fact that the axial buckling load
is independent of the length while the circumferential buckling load depends on the
boundary conditions. Thus, the pressure on the top and bottom of the cylinder is far
more detrimental to the carrying behaviour for shorter cylinders. Further, the
diminishing influence of the axial membrane stress for increasing length parameters
L*/(rf) for a cylinder subjected to hydrostatic loading can be explained as for these cases
the circumferential compressive stress for inducing buckling is by far smaller than the
axial compressive stress for inducing buckling. Nevertheless, the relationship between
axial and circumferential stress is defined for hydrostatic pressure due to the loading
with o; = 0y/2. The reference case representing a common combiwall structure with
=900 mm and ¢ = 18 mm already reaches the described difference of 20 % for a length
of 500 mm. If the choice of the shell’s length is 24 m (pile tip to anchor), the parameter
for the abscissa according to Fig. 11.20 can be evaluated with 31000. Thus, it can be
seen that the aspect of the loading type is negligible.

Budiansky and Amazigo (1968) investigated the post-buckling behaviour of externally
pressurized cylinders analytically and compared the results to experimental data. They
proposed a relationship for the influence of an initial radial imperfection with the
amplitude Aw on the buckling load as follows:

O g,rk awY
agz—’zl'i'b(Tj (1116)

O-H,Rc,lin

in which oyg..;i» corresponds to the linear critical buckling stress oy from Fig. 11.20 for
a cylinder without imperfections and to the critical buckling stress oyg. from (11.15) as
well, and b is the coefficient defining the influence of the imperfection as a function of
the length parameter L*/(rf). They noted that for a length parameter L*/(rf) > 1000 and
reasonably small radial imperfections in relation to the shell thickness the classical
critical buckling stress oyr.iin for a perfect cylinder ought to be a reliable approximation
for the buckling stress of a real structure, i.e. b = 0 and thus oy ~ 1. Nevertheless, they
emphasized the detrimental effect of imperfections on the buckling load for length
parameters in the region 1 < L*(rf) < 10. As described earlier the common combiwall
structures tend to fall into the category of very long cylinders (L*/(rf) > 1000) and thus
the reduction of the buckling load arising from imperfections seems very small.

In Fig. 11.21 the equations by Batdorf (1947) are compared to the results from
experiments performed by Dow (1965) and Windenburg and Trilling (1934) for
hydrostatic pressure. Dow (1965) did not comment on the presence of imperfections,
while Windenburg and Trilling (1934) measured the maximum out-of-roundness or
eccentricity Aw/t for the specimens lying between 0.06 and 0.73. The #/t ratio for
cylinders investigated by Dow (1965) was between 70 and 270, and between 260 and
420 in Windenburg and Trilling (1934), respectively. Cleaver (1956) investigated the
buckling behaviour of a set of very small and thick-walled steel cylinders. Nevertheless,
some results for cylinders with #/f=351 are added in Fig. 11.21. The comparison
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depicted in Fig. 11.21 reveals that experimental buckling stresses smaller than the
analytical values are obtained for small length parameters L*/(rf). For an increasing
length parameter L*/(rf) the experimental values approach the theoretical values and
correlate well. In the region of very long tubes the experimental values exceed the
theoretical values by up to 40 %. This aspect maybe can be explained as the measured
buckling stresses are related to the maximum bearable load while the theoretical
buckling stress is defined as the stress where buckling initiates. Nevertheless, the
comparison emphasizes the small influence of imperfections on long cylinders.

1.4 e o
O
Gﬁ,exp | O O
GH,Rc,lin 8@ O@O o
O
1.0 X o0 o
8 X X
o O ©
o
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0.6 1 O O o
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] O Windenberg and Trilling (1934)
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Fig. 11.21: Comparison of analytical and experimental results for hydrostatically pressurized cylinders

Pfliiger (1966) investigated the buckling behaviour of cylinders with external pressure
only on the shell surface analytically and with experiments. Similar to Budiansky and
Amazigo (1968) he based his investigations on the equations by Donnell (e.g. Dierks,
1965) which are only valid for an //r < 10. For longer tubes and thus involving lower
numbers of buckling waves, the application of the equations by Donnell may lead to
overestimations by up to 33 % as described by Kollar and Dulacska (1975).
Nevertheless, the results by Pfliiger (1966) can be used if they are based on a correctly
obtained buckling stress for long cylinders. Based on an imperfection amplitude of
Aw=1r/200 he derived the following function for the reduction factor @y for an
imperfect cylinder:

O
a, :ﬂ:%;

_— = (11.17)
e 344" NooLs
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For a cylinder with »/¢ = 50 (reference case) the chosen imperfection amplitude can be
written as Aw/t =0.25, and the reduction factor ay=0.97 for L =24 m (pile tip to
anchor), =18 mm, and =900 mm. Similar to the results from Budiansky and
Amazigo (1968) it can bee seen that the influence of imperfections seems to be small
for the investigated case. Pfliiger (1966) compared his proposed solution with test
results from Cleaver (1956) involving elastic buckling loads with 1.8 < 7*/(Lf) < 17 and
his own test results with 125 < 7*/(Lf) < 1600 leading to satisfactory correlations. Still, it
has to be mentioned that the specimens investigated by Cleaver (1956) were very small,
1.e. with a maximum radius of about 30 mm. Here, it is also of interest to refer to the
work by Schneider and Brede (2005) who proposed to use a single longitudinal dent
instead of eigenform affine shape imperfections. They investigated externally
pressurized cylinders by numerical means and found out that for different boundary
conditions and large imperfection amplitudes the reduction factors as given in prEN
1993-1-6:2002-05 cannot be reached. It is emphasized that shells are currently assessed
with highly conservative reduction factors. Further, the research revealed an
significantly decreasing effect of geometric imperfections on the buckling load for
increasing lengths of cylinders, i.e. slender cylindrical shells.

Additionally, a numerical study is performed. Based on a 90° segment of a cylinder, the
imperfection sensitivity of an externally pressurized shell is investigated for different
length parameters L*/(rf). In order to obtain information on the influence of
imperfections on the buckling load a fixed imperfection is imposed to the shell
independent of the length of the cylinder. The geometry and the boundary conditions
are depicted in Fig. 11.22. The shell segment (quarter cylinder) is clamped along both
circumferential boundaries. The upper boundary is allowed to move in direction 3
(vertically) freely. An inward dimple or bulge with the amplitude Aw/t = 1.0 is modelled
in the centre of the shell segment. The extent of the bulge is chosen according to the
gauge length /, given in prEN 1993-1-6:2002-05 for the dimple tolerances.

1, =4rt (11.18)
if meridional compressive stresses are present and
Lo =23(2r " but iy, < (11.19)

if circumferential compressive stresses are present. Evaluating (11.18) for a constant
radius » =900 mm and a constant thickness 7= 18 mm results in the gauge length
lge 500 mm. It is intended to investigate the influence of a length-independent
imperfection on the buckling load of cylinders with varying lengths. As the gauge
length I, from (11.19) is 820 mm for L = 1000 mm and increases with increasing shell
lengths, and the imperfection size shall be fixed, the extent of the bulge b, x 4, is set to
500 mm x 500 mm (bulge A) based on the axial gauge length /,,.
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Fig. 11.22: Geometry and boundary conditions for the numerical study with bulge

For the shape of the bulge a complete cosine wave is used in both directions. The
position and the dimension of the bulge are kept for all lengths. Due to the symmetry of
the system the cylinder posses four bulges in total. A Young’s modulus of
210 000 N/mm? and a Poisson ratio of 0.3 is used for the analyses. In a first step the
circumferential buckling stresses oyp.s are obtained for perfect cylinders. Buckling
modes involving even and uneven numbers of buckling waves were taken account of by
varying the boundary conditions along the longitudinal edges (symmetric and
asymmetric).
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Fig. 11.23: Comparison of numerical results for different imperfection patterns
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The projected buckling modes (quarter cylinder) of three linear bifurcation analyses are
depicted in Fig. 11.23. In Fig. 11.23 the perfect buckling stresses oy.,r are compared to
the imperfect buckling stresses oyin, obtained from non-linear load-displacement
analyses as a function of the length parameter L*/(rf). Fig. 11.23 includes results for a
narrower (bulge B) and a wider bulge (bulge C).

For cylinders with large imperfections no snap trough occurs for the cylinders
investigated in the study. The load deflection curves increase continuously and the
equilibrium does not become instable. For these cylinders the carrying capacity is not
limited by failure due to buckling but by excessive displacements. Similar results were
found for large initial imperfections by e.g. Thielemann and Esslinger (1967).

No significant influence of the initial imperfection can be seen in Fig. 11.23. The results
for the different imperfection shapes do not differ much. Since the critical number of
buckling waves over the circumference changes with the length, the carrying capacity of
the cylinders is differently influenced by the initial bulge. In some cases the extension
and the position of the bulge may amplify the critical buckling wave pattern and in other
cases they may force the cylinder to fail in a different buckling pattern, and thus
increase the carrying capacity. Generally, the non-linear analyses with the imperfect
cylinders yield similar results to the linear bifurcation analyses. A slight tendency of
increasing buckling stresses appears for increasing lengths as no reductions (ratio < 1.0)
occur for longer cylinders.

In order to investigate the influence of a fixed imperfection on the carrying capacity of a
cylinder subjected to a non-uniform external pressure distribution, the loading from the
previous example is changed. The non-uniform external pressure distribution is chosen
according to the results obtained from chapter 6. In the example the pressure is
distributed in the shape of a cosine function. Two different types are used: cosine
function with and without inflexion point. The load is applied symmetrically
maintaining the system in equilibrium (Fig. 11.24).

Py(x) = (x/r)’

Fig. 11.24: Non-uniform loadings p; and p; of the quarter cylinder applying a cosine distribution
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Fig. 11.25: Comparison of numerical results for different imperfection patterns with non-uniform
pressure

In Fig. 11.25 the results for the different non-uniform loadings are depicted for dent A
(500 mm x 500 mm) as a function of the length parameter L*/(r). The ordinate gives the
ratio of the carrying capacity (external pressure p) obtained from a geometrical non-
linear load displacement analysis for an imperfect shell (pazimp) Over the carrying
capacity for a perfect shell (paz, pes). In case of the non-uniform pressure distribution the
maximum ordinates of the pressure distributions, i.e. perfect and imperfect, are
compared. For the non-uniform loading it is chosen to use the latter ratio as the carrying
behaviour is highly influenced by the non-uniformness of the pressure distribution in
combination with an analyses calculating the equilibrium of the system based on the
deformed structure.

Additionally, Fig. 11.25 depicts the ratio of the geometrical non-linear buckling
pressure for an imperfect cylinder subjected to non-uniform pressure (nu) over the
geometrical non-linear buckling pressure for an imperfect cylinder subjected to uniform
pressure (u) as shown in Fig. 11.23. As expected the analyses for the uniform pressure
yield lower buckling pressures for length parameters L*/(rf) < 3500. Long cylinders with
L*/(rt) > 3500 fail with buckling modes involving only 3 or 2 buckling waves (Fig.
11.23). Thus, shape and size of the buckling waves correlate with the applied pressure
distribution, resulting in a detrimental influence for these cases. Here, smaller carrying
capacities are found for the non-uniform than for the uniform pressure distribution
based on the same maximum amplitude.

Similar to the analyses with uniform pressure, the influence of the imposed bulge is
fairly small. Again, a slight increase of the pressure ratio can be seen for increasing
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length parameters L*/(rf). The findings emphasize the small influence of an arbitrary
imperfection on the buckling load for long and very long cylinders in contrast to the
known large imperfection sensitivity for short cylinders. The results for the different
non-uniform loadings do not differ much. No results are given for the longest
investigated cylinder in contrast to Fig. 11.23 as no snap trough occurred in the analyses
but the limit load is defined by the plastic limit load.

11.6.3 Structural imperfections

The reduction factors for external pressure found in design codes take into account the
influence of geometrical imperfections as discussed in section 11.6.2, and the influence
of structural imperfections. Besides inconsistencies of material properties the latter
aspect covers as the major issue incorporated residual stresses in the steel shells. These
residual stresses may appear due to the plate rolling procedure needed for constructing
cylindrical shells and the process used for joining the curved plates or panels. Even the
manufacturing of seamless tubes induces a residual stress state. The presence of residual
stresses may decrease the buckling load of the shells as stated by Hiibner (2006).

In order to investigate the influence of residual stresses on the carrying capacity of
externally pressurized cylinders a numerical parametric study is performed. Based on
the study by Schneider and Brede (2005) a cylinder with » = 2000 mm, »/t = 400, and a
slenderness ratio /#/r = 3.0 is chosen. The steel is assumed to be elastic-perfectly plastic
with an elastic modulus E=210000 N/mm’, a yield stress f, =240 N/mm’ and a
Poisson’s ratio = 0.3. Warping-free boundary conditions BC1r-BClr according to
prEN 1993-1-6:2002-05 are imposed. It is assumed that the cylinder is manufactured by
bending two plates and subsequently joining the straight edges by welding. Here, two
different types of residual stress states are investigated: residual stresses from (a) the
bending process and (b) from the welding process. In this step no additional geometric
imperfections are taken into account. Nevertheless, an additional static step resulting in
deformations is needed in the numerical analyses in order to obtain equilibrium after
imposing the initial stress state. Only a 90° segment of the cylinder is modelled by
taking advantage of symmetry conditions.

First, residual stresses (a) from the bending process are investigated. Research is mostly
performed in the area of rectangular hollow-sections which are manufactured from
circular tubes. Here, the rolling process induces additional residual stresses.
Nevertheless, as even the rolling process of the plate from which cylindrical steel shells
are constructed lead to residual stresses, it can be seen that the residual stress
distribution arising from the manufacturing of a steel tube or cylindrical steel shell
depends a lot on the process and the geometry — even without considering the joining.
Thus, in this investigation it is intended to assume reasonable but simple stress
distributions in order to study the influence of residual stresses on the buckling
behaviour. Therefore, the residual stress distribution is derived by considering the
gradual plastification of the cross section subjected to a bending moment. Since the



207

radius 7 is defined, the corresponding curvature of the bent plate must be equal to the
plastic (residual) curvature x,; remaining after the elastic unloading of the plate
subjected to the bending moment:

1
K= (11.20)

The derivation of the moment-curvature relationship for a rectangular cross-section
given in equation (11.21) in shown in Fig. 11.26 can be found in Petersen (1997) in
detail.

Koo M (11.21)
1.5M,,

With the arbitrary curvature x, the elastic curvature x,;, the arbitrary moment M, and the
elastic limit moment M,;. The normalized length 7, can be calculated with:

n, =—=* (11.22)
M
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Fig. 11.26: Moment-curvature curve for rectangular cross-section

For calculating the corresponding moment ratio x the intersection of the linear elastic
unloading and the moment-curvature curve needs to be calculated as seen in Fig. 11.26.

Thus, the residual stress distributions can be calculated based on the previous equations
for the example case with bending and unloading. Consequently, this approach results
in tensile stresses at the inside and compressive stresses at the outside of the curved
plate. The calculated residual stress distributions for further application are summarized
in Fig. 11.27. Additionally, the hypothetical case 400* is defined using the geometry of
r/t=400 but the theoretical residual stress distribution corresponding to full
plastification and unloading.
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Fig. 11.27: Residual stress distributions for different r/t ratios with f, = 240 N/mm’

In the following step, the buckling analysis is performed. It consists of three steps. In
the first step a linear bifurcation analysis (LA) is performed providing the critical
buckling pressure p..r4. In the second step, the eigenform extracted from this analysis is
used as geometrical imperfection with an amplitude of Aw/t. Additionally, the residual
stress distribution is introduced requiring a static equilibrium calculation. In the last step
(geometrical and material non-linear), the cylindrical shell is loaded with external
pressure for obtaining the buckling pressure pgunia-
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Fig. 11.28: Influence of circumferential bending residual stresses (a) on buckling load of an externally
pressurized cylinder for different v/t ratios and imperfection amplitudes Aw/t with h/r = 3.0

In Fig. 11.28 the results of several numerical analyses are summarized for different
imperfection amplitudes and the additional #/¢ ratio 800. For large imperfection
amplitudes the problem changes from a buckling problem to a stress problem; as e.g.
described by Schneider and Brede (2005), too. It can be seen that the applied stress
distribution leads to a negligible reduction of the buckling load for all investigated
cases. For »/t = 800 and Aw/t = 2.0 the analysis considering residual stresses leads to a
buckling load 0.3 % smaller than without residual stresses. Even for the limit case 400*
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the reduction of the buckling pressure is smaller than 1 % for Aw/t = 1.75, since the
residual stresses at the outer fibres remain far below the yield stress. Based on the
performed analyses it can be assumed that the influence of circumferential residual
stresses may play a noticeable role for thin-walled cylindrical shells with large
imperfections and large residual stress amplitudes. Nevertheless, it appears that even for
these cases the influence of the residual stresses on the buckling pressure is very small.

To investigate the influence of residual stresses (b) due to joining/welding two different
approaches are used. The studied case consists of a 90° segment of the cylindrical shell
with one weld along one of the straight longitudinal edges. Thus, considering the
symmetry conditions, the investigated cylinder comprises two half-shells joined by two
longitudinal welds. In the approach type A the block strain approach described in
Hiibner et al. (2006) is applied. Here, an area extending 4¢ to each side of the weld
centre is subjected to a shrinkage strain representing the effect of the welding process.
The arising deformations and residual stresses are then used in the next step of the
analysis as geometrical and structural imperfections. The amplitude of the geometrical
imperfection can be defined by controlling the magnitude of the imposed strain. In this
context only two different strain amplitudes are calculated. The comparison of the
buckling pressure for the analyses (#/t = 400) with and without residual stresses can be
found in Fig. 11.29.
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Fig. 11.29: Influence of welding residual stresses (b) on buckling load of an externally pressurized
cylinder for v/t = 400 and different imperfection amplitudes Aw/t with h/r = 3.0

For the investigated cases a minor increase of the buckling load can be found if residual
stresses are taken into account. The analyses found in Hiibner et al. (2005) indicated a
considerable beneficial influence of the residual stresses in the buckling analyses. In the
latter research it was pointed out that residual stresses may sometimes lead to an
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increase of the buckling load. Nevertheless, for the cases from Fig. 11.29 the influence
appear to be insignificant. Here, it needs to be mentioned that both geometries and the
imposed weld patterns differ and thus affect the buckling behaviour. Further, the studies
show how large the influence of the geometrical imperfections in combination with the
geometry of the cylindrical shell is. A second set of calculations is based on the
approach type B. Here, the geometrical imperfections are chosen as eigenform affine
and the structural imperfections are induced by imposing a stress field on the cylindrical
shell. The stress state is chosen according to the proposal by different researchers
(Hiibner et al., 2006). Since, in this context no detailed study of residual stresses is to be
performed, a simple distribution is chosen: longitudinal tensile stresses extending 4¢ to
each side of the weld centre with an amplitude o=f,; for equilibrium compressive
longitudinal stresses at both sides in the area 4¢ to 20¢ from the weld centre with
o= 0.25f, are imposed. In the first step of the numerical analyses a static step without
loads is introduced for obtaining equilibrium for the initial stress state. Again, no
significant reduction or increase of the buckling load can be found if residual stresses
are taken into account (Fig. 11.29).

In this study the influence of residual stresses has been briefly investigated and
discussed for an example case found in Schneider and Brede (2005). The specimens
used in experimental investigations are prone to geometrical and structural
imperfections. Generally, the main focus in interpreting the results and deriving
reduction factors for design is applied to the geometrical imperfections. It can be seen
from the latter study and the investigations by Hiibner et al. (2006) that the presence of
residual stresses may reduce the carrying capacity of cylindrical steel shells: particularly
for thin-walled cylinders and for residual stresses induced due to rolling/forming of
plates. Nevertheless, it appears that for standard cases and external pressure the effect
on the buckling pressure is rather small. Still, the aspect of residual stresses requires
more detailed research for different loadings. Current considerations of residual stresses
found in design codes may be not sufficiently detailed for these cases; e.g. the reduction
factor o, from EN 1993-1-6 includes an additional safety factor y=0.75 originating
from the ECCS-Recommendations (1998) and explained by Rotter (1998) for covering
non-geometric imperfections as irregular loading, boundary imperfections, and
structural imperfections. The influence of residual stresses on externally pressurized
cylinders appears to be negligible for the geometry range of tubular piles used in
combiwalls. Already the change from 7/t = 800 to 7/t = 400 reduces the small influence
of the residual stresses nearly to zero as seen in Fig. 11.28 for the investigated stress
amplitudes. Thus, it is assumed that the effect of residual stresses for common tubular
pile structures (#/t = 50) does not play a significant role.

11.6.4 Limit case - buckling of a ring

The buckling mode of the entire system (Fig. 11.3) and the previous analyses give rise
to the question whether the buckling failure of the system is more the buckling of a
circular ring than the buckling of a shell with external pressure. Hence, some comparing
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analyses and investigations are performed. The comparison is based on the given
geometry of the reference case with the increased radius by ovalization a (= 936 mm).
For a circular ring subjected to a uniform pressure p an analytical solution (cfr. Young,
1989, or Pfliiger, 1964) is available reflecting the failure due to column buckling:
3EI
q=—7 (11.23)

r

where [ is the moment of inertia for the ring’s cross section per unit of length. The
analytical solution from (11.23) is valid for a load remaining normal to the surface. This
loading type appears for the investigated case. For loads which maintain their direction
the factor 3 in equation (11.23) is replaced by the factor 4. In Tab. 11.4 the results for
the circumferential critical buckling stress oyg. for different shell lengths and loadings
are summarized for 7/t = 936/18.

Tab. 11.4: Comparison of circumferential critical buckling stress ogg.

pressure in direction B
No. method fength Oter B comment
axial circumferential [m] [N/mm']
1 analytical
19.3 u=0
2 FEM
ring
3 analytical
constant 21.2 considering (1-2%)
4 FEM
5 EN 1993-1-6 o0 21.3 =0
6 21.8
24
7 linear constant 24.5
BC pinned-free
8 constant FEM 21.7
50
9 linear constant 23.2
10 varies (real) 24+ 6 40.0 complex BC

The comparison shows the influence of the Poisson ratio of 0.3 for the cases 1 to 4
which does not affect the 1D problem but takes place for shells. Deriving the critical
buckling stress according to EN 1993-1-6 for an infinite cylinder results in nearly the
same value. For uniform pressure on the reference case (24 m) the ideal buckling stress
differs only slightly from the previous cases. This aspect confirms that the shell
buckling behaviour of the reference case is rather a column buckling problem of a
circular ring than a shell buckling problem. The influence of a pressure distribution
depending linearly on the depth seems rather small and decreases for longer cylinders.
The application of the more detailed boundary conditions and a pressure distribution
depending on depth and circumferential position, results in a significant increase of the
buckling load. This emphasizes the importance of considering the variation of the
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external pressure over the circumference. The buckling eigenform may slightly differ
between the complex case and the ring subjected to external pressure. For the complex
situation inflexion points arise resulting in a symmetric two-wave mode (shaped as an
“8”) as depicted in Fig. 11.3. For the ring the inflexion points may not be as distinct as
for the latter case, i.e. it may rather appear to be an ellipse shaped buckling mode.

Since the failure mode of the externally pressurized ring or shell is similar to the column
buckling problem, the design procedure is compared to the assessment of a compressed
member prone to failure due to buckling according to the German code for
constructional steelworks DIN 18800-2. In this context the assessment for an arch truss
following section 6 (centric compression) in DIN 18800-2 is used. The general check is
performed as:

N
=1 11.24
KN old ( )
with the axial resultant N in the compressed member, the reduction factor x according to
the European buckling curves, and the design plastic resistance N,;4 to normal forces.
For determining the reduction factor x the equivalent slenderness parameter Ax needs
to be evaluated:

— N
Ak = NL”’ (11.25)
Ki
The formula can be re-drafted as:
- f d’ A f
ﬂ/ = e = Y
‘ \/Gcr,d ’ A Gcr (1 126)

for =y =1.0 and the critical buckling stress o, Based on (11.23) the critical
buckling stress o, of an externally pressurized ring can be writing as:

2

E (¢
o, = - 11.27
() i

considering the Poisson ratio. As the first factor is fix for steel constructions (£ and ) a
range can be determined for o regarding common combiwall structures. The
equivalent slenderness parameter Ax is calculated for different r/¢ ratios and materials
according to (11.26) and (11.27) in Tab. 11.5.
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Tab. 11.5: Equivalent slenderness parameter I K for different r/t ratios and materials

Ak
40 50 70 100
material v/t
S235, f, = 240 N/mm’ (2.58) 3.22 4.51 6.45
S355, f, = 360 N/mm’ 3.16 3.95 5.53 7.90
S460, f, = 460 N/mm’ 3.57 4.46 6.25 8.93

Except for the combination S235 and 7/¢ = 40 the equivalent slenderness parameter Ak
is greater than 3.0, and buckling in the completely elastic region. For Ax >3.0 the
simplified equation for obtaining the reduction factor x according to DIN 18800-2 is:

1
K==—7p=
/1Ki/1K +0£j (11.28)

with parameter o depending on the applied buckling curve “a”, “b”, “c”, or “d” with
0.21, 0.34, 0.49, or 0.76, respectively. The denomination « for the buckling curve
parameter from DIN 18800-2 is misleading as it does not correspond to the elastic
imperfection factor o from prEN 1993-1-6. For the limit case (complete utilization) in
(11.24) and introducing (11.25) and (11.26) the axial force resistance can be written as:

1
N‘H% N (11.29)
Ak

The first term (fraction) represents the linear elastic reduction factor regarding the ideal
linear elastic buckling load Nk; which is named &opmn in the following. Thus, this value
directly corresponds to the circumferential elastic imperfection factor ay for the
externally pressurized shell from (11.15). The section of the ring can be identified as
solid rectangular cross-section, and hence be classified to the buckling curve “c”.
Evaluating the linear elastic reduction factor @ oum, according to (11.29) for the values
given in Tab. 11.5 results in a range from 0.87 to 0.95. For an increasing equivalent

slenderness parameter the factor & ,um» reaches the limit value of 1.0, i.e. no reduction.

The results give rise to the question, why in the design of the externally pressurized
shells an additional elastic imperfection factor of about 0.6 (0.5 to 0.75 according to
EN 1993-1-6) has to be taken into account while such a large reduction factor does not
need to be applied to the system if it is assessed as a ring buckling problem, e.g as
shown here between 0.87 and 0.95. For the analysed cases a design as a column may
reach a resistance nearly twice as large as for applying the shell buckling design
procedure. This aspect leads to the question which method is correct for the assessment
of the given cases.
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11.6.5 Discussion

In Tab. 11.6 the reduction factors ay for the reference case are summarized. The large
reductions given in prEN 1993-1-6 are mainly based on the evaluation of the post-
buckling loads (post-buckling minimum) as described earlier. In comparison, the
mentioned authors from Tab. 11.6 only calculated the initial post-buckling behaviour
with the equations by Donnell. Additionally, the post-buckling minimum is given
according to Budiansky and Amazigo (1968) by applying the relationship given by
Koiter (1963)

A o

t (11.30)

for the stated value of b.=-0.025. It can be seen that the reduction factors given in
EN 1993-1-6 reduce the carrying capacity by far more than all other stated values. Here,
of course the initial post-buckling values yield a higher buckling load than considering
the post-buckling minimum.

Tab. 11.6: Reduction factors ayfor the reference case

approach Aw/t g system
EN 1993-1-6 Qual. A <0.17 0.75*
Qual. B <0.28 0.65* |r=900 mm, »/t=50,/=24m
Qual. C <0.45 0.50*
DIN 18800-2 (ring Geonmn = Qo) 1/(200¢) 0.87 S235, » =900 mm, »/t = 50
=157 1 095 |S460, =900 mm, /¢ =100
Budiansky and Amazigo (1968) 0.10 1.00 5
L7/(rt)=1048 = b =-0.025
0.50 0.99
0.17 0.85%* )
ERET 8
0.45 0.74%*
Pfliiger (1966) 0.88 |=900 mm, /t=50,/=1m
02 0.97 |r=900 mm, r/t =50, /=24 m

* = post-buckling minimum

The table confirms the detrimental influence of the reduction factors given in EN 1993-
1-6 for the characterized imperfection amplitudes. Based on the similarity to the case of
a buckling ring and the rather small imperfection sensitivity due to the length of the
investigated cylinder, it could be proposed to apply smaller reduction factors for long
cylinders, e.g. in the assessment of tubular piles in combiwalls.
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Fig. 11.30 depicts experimental results and different proposals for calculating a
reduction factor. The equation (11.17) by Pfliiger (1966) is given for two different #/¢
ratios as the reduction factor depends on the latter parameter. The equation (11.16)
proposed by Budiansky and Amazigo (1968) is calculated for two different imperfection
amplitudes. Additionally, a proposal is made for calculating an adopted reduction factor
ag according to EN 1993-1-6 for long cylinders for which the influence of
imperfections decreases and simultaneously the buckling strength increases. Since the
three quality classes given for externally pressurized cylindrical shells in EN 1993-1-6
only depend on the imperfections and not on the geometry, the calculation applying the
corresponding reduction factors may yield very conservative results for long cylinders,
i.e. as applied to tubular piles in combiwalls of harbour structures. Thus, it is proposed
to implement an adopted reduction factor ay instead of ay for cylinders with
L*/(rf) = & > 100:

. 1
a& = a& + (aculumn - aﬁ{l _L?j fOf a)z > 100 (1 131)
w
with
X otimn = ! for %/f—g >1.57
1+0257° [ £ (11.32)
"N Jy

based on a Poisson ratio ¢ = 0.3.

tests X #/t=262+421; E=2.00-10° N/mmz;fy =200 N/mm?

12 1 O rlt=74+254; E=1.93-105+2.21-10° N/mmz;]; =186+303 N/mm?
%)) (@] 8 @]
O-H,exp o
O
G&,Rc,lin X 8 @)

1.0

X x X

>K>K X
0.8
X O
O
O  — ..
o 8 - Pfliiger (1966), r/t =50
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Fig. 11.30: Analytical and experimental results for hydrostatically pressurized cylinders and different
proposals for the reduction factor
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Equation (11.32) can be confirmed with the example cases calculated in Tab. 11.6. As
examples in Fig. 11.30 the curves for cylinders made of constructional steel S235
classified regarding their quality class as A and C with #/¢ = 50 are shown. The curves
are chosen according to the test results depicted in Fig. 11.21. For increasing length
parameters L*/(rf) the curves converge asymptotically to the reduction factor for column
or ring buckling as seen in equation (11.31) and Fig. 11.30 and given in equation
(11.32).

11.6.6 Experimental verification

Experiments were planned and performed at the Universitit Karlsruhe to provide a basis
for verifying the proposed approach of more beneficial reduction factors from section
11.6.5.

vertical/longitudinal restraint

S
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=
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Fig. 11.31: Concept of external pressure tests

The concept of the experiments is to investigate cylindrical shells with very large length
parameters L/(rf) subjected to external pressure. The reduction factor for the very long
cylinders are to be evaluated and compared to the reduction factors found in design
codes. Due to practical and economical reasons it is very difficult to execute tests with
length parameters L*/(rf) corresponding to real tubular piles. Thus, a test set-up was
developed simulating infinitely long cylinders subjected to uniform external pressure.
This is realized by taking a segment of the infinitely long cylinder and applying
symmetry boundary conditions at the circumferential edges: vertical/longitudinal
displacement restraint only, and free meridional rotation and radial displacement (Fig.
11.31).
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pressure measuring
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water water
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high temperature insulation (Armaflex)
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Fig. 11.32: Vertical section through center of test set-up for external pressure tests (cylindrical system)
and photograph of test set-up

In Fig. 11.32 the test set-up is depicted as vertical section through the center. The
photograph on the right in Fig. 11.32 shows the test set-up. The specimen is positioned
in the center of a cylindrical steel casing with a steel lid at the top and bottom. The lids
are connected with bolts to the casing. During the test, the space between specimen and
casing is filled with water. The water is brought in by means of a pump (max. 6 bar)
through an inlet in the lid resulting in a uniform pressure on the specimen. The water
pressure is constantly measured by an electronic pressure measuring device attached to
the top lid. The maximum applied pressure amplitude is recorded in the data acquisition
system. The contact between specimen and lids is manufactured with special care, since
it is important to allow the edges of the cylindrical shell to move freely in radial
direction. In order to provide these conditions, two layers of a high temperature
insulation (Armaflex©) is glued to the shell edges and the lids. The insulation is soft,
compressible, and has negligible shear stiffness. Thus, no radial constraint is provided at
the point of buckling failure. During the loading step, this aspect can be disregarded
because the external pressure is applied uniformly and simultaneously leading to a state
of self-equilibrium. Additionally, the layers of Armaflex© are joined with a contact
adhesive in order to prevent penetrating water and consequently a pressure reduction.
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Tab. 11.7: Measurements and test results

out-of-roundness U, [%]

. D -D quality class according to | experimental buckling
Specimen U = Zmax  Zmin EN 1993-1-6 pressure p.,, [bar]
' D

nom

tube 0.44/0.44/0.79/0.54/0.64 -

S1 0.54/0.44/0.39 4.45
S2 0.49/0.39/0.29 4.85
S3 0.39/0.35/0.39 <1.4% = Class A 4.81
S4 0.64/0.59/0.99 4.39
L1 0.44/0.49/0.44 4.49
L2 0.54/0.39/0.44 4.35

The testing is executed by increasing the pressure slowly using a pressure regulator
between pump and inlet until failure of the specimen. Two different geometries were
tested: H =300 mm (4 short specimens: S1 to S4) and H =600 mm (2 specimens: L1
and L2). The specimens were segments cut from the tube used for preliminary
investigations (section Annex B.1). The geometry, description of geometrical
imperfections and the measured material properties are given in Annex B. The
investigation of the geometrical imperfections (out-of-roundness) revealed very small
imperfections resulting in a classification of quality class A according to EN 1993-1-6.
Nevertheless, for the six specimens the shape deviations were re-measured. The
geometrical imperfections are summarized in Tab. 11.7. For each specimen several
measurements were performed determining the out-of-roundness U, at different cross-
sections. The maximum U, is written in bold. This indicates that all tested specimens are
quality class A cylinders according to EN 1993-1-6. The maximum water pressures (=
buckling pressure p.y,) in the tests are given in Tab. 11.7. The failure occurred suddenly
resulting in a leakage of water with a pressure drop to zero. The failure mode for the
externally pressurized cylinders was consistently an elliptical cylindrical two-wave
shape (Fig. 11.33). This type of failure proves that there was no radial restraint of the
upper and lower edges of the cylinder. The latter aspect validates the test set-up by
justifying the assumption of a segment taken from an infinite cylinder (Fig. 11.31).
Thus, the experimental buckling pressures p.., are evaluated with respect to the
theoretical buckling pressure py., from EN 1993-1-6 for an infinite cylinder

3 4 3
DPineo :Lag = E(LJ {0.275+(&£j }‘”—*“’)O.HSE(% (11.33)
r r w t r

Here, the theoretical buckling pressure pu., is (a) based on the Young’s modulus £
extracted from material property testing (Annex B: 190 000 N/mm?), and (b) the
common value of E=210000 N/mm® used for constructional steel in most design



219

codes. The buckling pressure calculated with equation (11.33) yields the same results as
equation (11.23) considering the Poisson ratio x= 0.3.

W o

o

Fig. 11.33: Buckling mode of specimen S1 after unloading

The evaluated results are summarized in Tab. 11.8. Generally, all reduction factors are
close to 1.0, indicating no significant deviation of the buckling pressure from the
theoretical buckling pressure due to geometrical or structural imperfections. Further, no
large differences can be found between the two different test lengths.

Tab. 11.8: Evaluated test results

experimental | theoretical buckling pressure reduction factor peyy/ Puieo [-]
specimen | buckling pressure (a) E= 190 GPa|(b) £ = 210 GPa
Deyy [bar] Picoa [bar] | Pineos [bar] measured design code
S1 4.45 1.08 0.98
S2 4.85 1.18 1.07
S3 4.81 1.17 1.06
S4 4.39 4.12 4.55 1.07 0.96
L1 4.49 1.09 0.99
L2 4.35 1.06 0.96
mean 4.56 1.11 1.00

In Fig. 11.34 experimental results found in publications are compared with the newly
obtained reduction factors from Tab. 11.5. The results from the current buckling tests
are positioned beyond the maximum length parameters L*/(f) in order to emphasize that
the tested cylinders correspond to infinitely long cylinders. Independently of the fact
whether (a) the measured Young’s modulus or (b) the Young’s modulus from design
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codes is used for defining the theoretical reference buckling pressure, the experiments
yield reduction factors aparound 1.0. The experimental results validate the assumptions
given in section 11.6.5 for defining a larger reduction factor for long cylindrical shells.
An assessment based on EN 1993-1-6 would require a reduction factor of 0.75 (Class
A), while the present investigation in agreement with the tests from previous researches
for length parameters larger than 600 that there is no reduction factor necessary.
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Fig. 11.34: Experimental test results for externally pressurized cylinders for the reduction factor
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12.1 General

In this work aspects influencing the carrying capacity of large tubular piles as used in
combiwalls have been discussed and investigated. In this context the global problem
was seperated into several issues as explained in chapter 4 based on common practical
approaches introduced in chapter 4. In the following the diverse influences are reviewed
and summarised in new design proposals for the application in construction codes. The
proposed changes are then applied to the example case from chapter 4 in order to
emphasize the positive effect of using the improved design considerations.

The different aspects discussed in this work are summarized according to the
corresponding chapters.

12.2  Applicability

In chapter 6 a comparison between combiwalls and single piles was performed. Based
on the results from the numerical analyses and considerations regarding the load
transfer mechanisms it was concluded that the results from the subsequent studies on
single piles are applicable to the problem of combiwalls.

Further, the studies from chapter 7 involving the investigation of the soil and the soil
structures interaction provided a basis for the successive numerical analyses applying
different soil concepts. Here, it was important to evaluate the soil models and to define
the models appropriate for further considerations.

The latter analyses served as a basis for the next steps and confirm the applicability of
the various models. Additionally, the investigation of the soil and the soil structures
interaction gives the engineer a deeper insight into the application of different models.
Again it needs to be emphasized that the use of detailed soil models (e.g. hypoplasticity)
requires great expertise in this area and a large amount of field data in order to provide
an acceptable basis for design calculations. Further, the constructing engineer is advised
to perform sensitivity studies regarding a scatter of parameters for attaining information
on different possibilities. Nevertheless, it is proposed to use standard and common
applications (e.g. RIDO) for calculating the resultant forces. The proposed design
procedure comes into play after the latter step by giving possibilities for introducing
more adjusted parameters for design. Studying the entire structure by numerical means
involves complex models and necesitates considerable information on the boundary
conditions and material data. The presented approach desists from this approach by
providing the engineer a convenient and easy-to-apply tool.
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12.3 Geometrical imperfections

In chapter 8 the different influences of radial shape imperfections and uneven
boundaries have been studied. Generally, it can be seen that for the common range of 7/¢
ratios used for combiwalls the influence of geometrical imperfections is rather small.
The intention of the study was to separate the reduction of the carrying capacity arising
from radial shape imperfections and uneven boundaries. It can be seen that for thicker
shells, i.e. smaller #/¢ ratios the influence of uneven boundaries increases. For the case
of tubular piles as used in combiwalls the latter influence may be neglected since no
direct contact with the substructure is given which may introduce non-uniform
meridional stresses. Yielding does not change the behaviour considerably. For a
combined loading of an axial load and a bending moment the influence of uneven
boundaries increases.

As described in chapter 8 it may be proposed to apply a factor to increase the linear
reduction factor o, and/or the reduction factor y, for small #/¢ ratios. The numerical
analyses are limited due to the complexity of the influencing parameters regarding the
geometrical imperfections. Here, a factor of 1.1 may be established for the linear
reduction factor o,. From the numerical analyses involving plasticity an increase of the
reduction factor y, can be derived. Since the effect of this increase of the linear
reduction factor ¢ is rather marginal (a factor of 1.01 or 1.02 for the design buckling
stress in a common range of 7/¢ ratios for tubular piles), no additional and more detailed
studies were performed. As a consequence it is suggested to neglect the beneficial
influence of not considering the imperfection of uneven supports for large tubular piles
as a conservative approach due to the marginal effect. Nevertheless, it is emphasized
that this aspect has considerable influence when investigating thinner shells (larger 7/¢
ratios) as e.g. used for tank or silo structures.

12.4 Influence of soil on buckling behaviour

12.4.1 Meridional critical buckling stress

In chapter 9 factors for increasing the buckling load due to a foundation effect of the
surrounding soil are derived. The evaluation is semi-empirical and based on several
numerical and experimental studies. For obtaining a general practical formula in a first
approach, the investigation uses a conservative approximation. The values for the
applied coefficient of subgrade reaction are based on the proposed values by Therzaghi
(1955) and the approaches given in ISO/DIS 19902:2004.

The critical buckling load o g.* considering the beneficial influence of surrounding
sand can be calculated as:

O x Re *= ﬂx,sand "0 x Re (12 1)

with
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0.25
ﬂx,sand =0.92+ 000451( kS ] (122)

r nh,loose

with 1y, 1p05e = 2.2 MN/m? and for DPrsana > 1, ¥/t > 40, and r > 450 mm. As a conservative
approximation it is proposed to calculate kg according to Terzaghi (1955) for loose sand
with:

MN z
kg :2.2?'5 (12.3)

For the latter case equation (12.2) can be redrafted as:

l 1.25
B g = 0.92+ 0.009(5) (12.4)

which is valid if the embedded length / corresponds to the depth z. For the “half-
embedded” case the factor S s.nq0.5 can be calculated as:

0.25
k
ﬂx,sand,O.S = 096 + 000231[ s J (125)

ryn h,loose

Again, it is emphasized that the influence of the supporting soil is rather small for
typical dimensions of tubular piles used in combiwalls. Although the increase of the
theoretical buckling stress may appear significant for large coefficients of subgrade
reaction, this influence decreases during the assessment procedure as it can be seen in
the recalculation of the reference case.

12.4.2 Circumferential critical buckling stress

In accordance with section 12.4.1 factors for increasing the circumferential critical
buckling stress are given in chapter 9. Again, the values are based on Terzaghi (1955)
and the ISO/DIS 19902:2004.

The critical buckling load oyr.* considering the beneficial influence of surrounding
sand can be calculated as:

O-H,Rc* = ﬁ@,sand "0 Re (126)
with
0.25
1 kg
By sana =140.3|— ~4.0 (12.7)
M h joose

for #/t>40, r>450mm, njeese=2.2 MN/m’, and ks>2.2 MN/m>I/D. A first
conservative approximation can be made with equation (9.28). for the “half-embedded”
case the factor Sysanao.5 1S:
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0.25
ﬂ&,sand,O.Szl-i_O'lS L[ kS j -4.0 (128)

n h,loose

considering the previous conditions. It is pointed out that the latter approximation may
be very conservative for most cases. Nevertheless, even larger factors fgs.ue Will not
influence the design of practical constructions.

12.5 Global load transfer behaviour

In chapter 10 the investigation of the load transfer behaviour of the entire system is
described. In the analyses the uniformness of the stress distribution and the ovalization
was studied in detail by numerical and experimental means. The main interest was to
obtain information on the latter aspects in order to validate the applied approaches in the
design of such structures. The investigation revealed that the stress distribution over the
circumference remains fairly smooth, i.e. without any significant stress peaks. Still, it
needs to be mentioned that for some cases rather non-uniform stress distributions may
arise (e.g. Fig. 6.5 or Fig. 6.6). Nevertheless, based on the results it is assumed that the
results are compatible with given buckling design approaches. Considerable stress
changes or noticeable ovalizations would influence the carrying behaviour detrimentally
and raise the question whether the standard design rules can be adopted to the case of
tubular piles. Another aspect regarding the uniformness of stress arises along with the
investigations summarized in section 12.3. The smoothness of the stress distributions as
verified in numerical and experimental analyses would emphasize the possibility of
increasing the linear reduction factor ¢, used in the design procedure. Nevertheless, as
stated in section 12.3 it was decided to desist from proposing to implement a factor with
respect to the geometrical imperfections, and thus this aspect is not considered in the
design proposal.

12.6 External pressure

12.6.1 Overview

The first presented numerical analyses and designs based on a more detailed evaluation
of the shell’s resistance and the loading for external pressure revealed a large beneficial
influence for the more precise considerations. Hence, a more complex and work-
intensive approach for the designing engineer may be the possibility to analyse the
system regarding the circumferential stresses by elaborate numerical analyses.

The subsequent studies were then performed for defined simple tools and parameters for
the design procedure to be used for external pressure. In this context the non-uniform
pressure was investigated with respect to the circumference and the length. Another set
of analyses and an addtional series of experiments dealt with a discussion of the
buckling reduction factor.
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12.6.2 Non-uniform external pressure over circumference

In section 11.5.1 different cases for boundary conditions and 7/t ratios were studied for
deriving an equivalent load correction factor C; to be used independently of the
boundary conditions and the 7/¢ ratio. Based on a regression analysis it is proposed to
calculate an equivalent pressure p* as a function of the loaded segment @jyq:

p*=Cy-p (12.9)

with

C, :1—0.165(a§- +a, —2)ln Pload (12.10)
‘ 360°
where the load fraction ratio ay is defined as the ratio of two different segment-wise
constant pressures pqx and DPmin'

— pmin

a -
/
p max

(12.11)
for r/t <100, ar< 1, and @y,aq > 90°, which then can be used as a constant pressure over
the circumference in the next steps of the design procedure.

12.6.3 Non-uniform external pressure over length

The studies in section 11.5.3 revealed a beneficial influence on the linear buckling load
for a cylinder subjected to external, non-uniform pressure over the length in comparison
to a cylinder subjected to a constant external pressure based on the maximum
amplitude. Thus, equivalent dimensionless length parameters @* were obtained for
cylinders subjected to external pressure non-uniform over the length to be used for
obtaining a corresponding critical circumferential buckling stress.

Based on numerous numerical analyses and an interpretation considering the buckling
lengths for the different systems, the evaluation can be applied to numerous pressure
distribution types and load factors b:

(12.12)

For these systems equivalent length diagrams can be derived. Fig. 12.1 depicts the
relationships for an example system to be applied in the design procedure of an
externally pressurized cylinder.
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equivalent length parameter
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0 ‘ ‘
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length parameter for linear case

Fig. 12.1: Derived relationship of length parameter for “linear” system and corresponding equivalent
length parameter for “constant” system for @ > @jpng With b = 0.5

For the subsequent steps the length / is then replaced by the equivalent length /*:
I*=aw*rt (12.13)

12.6.4 Evaluation of the elastic buckling reduction factor

In section 11.6 the aspect of the elastic buckling reduction factor is discussed in detail.
Based on an extensive literature study on experiments performed with externally
pressurized cylinders and comparisons with design codes it was revealed that the elastic
buckling reduction factor given in EN 1993-1-6 may lead to very conservative results
for the buckling loads of long thick-walled cylinders. Additional numerical studies with
perfect and imperfect cylinders emphasized this issue. Further, the similar behaviour of
a long externally pressurized cylinder and a ring subjected to external pressure resulted
in the assumption that the design concept should be similar. However, design codes do
not allow the engineer to apply the same safety considerations for shells as for columns.

Based on the investigation it is proposed to implement a modified reduction factor oy
instead of oy for cylinders with Pl(rt) = & > 600:
600

0(; =0, + (acolumn —Qy {1 - _2J for a)z > 600 (12 14)
0]

with

1

A column = for 1 Q >1.57
E \VE (12.15)
Iy

1+0.257°
r
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based on a Poisson ratio #=0.3 in the design of externally pressurized cylinder in
EN 1993-1-6. In contrast to section 11.6 the range of application is changed from
@ >100 to @ > 600 for the design proposal as mentioned in section 11.6. This step is
made in order to limit the application of the increased reduction factors to slender and
long non-standard constructions. The limit is chosen according to the results from the
experimental investigation as given in in section 11.6.6.

12.7 Recalculating the standard reference case

In the following the design procedure for the example reference case from chapter 4 is
recalculated applying the proposed design results described in the previous sections.
The calculation is performed in brief since the procedure is explained in detail in
chapter 4. The changes in comparison to chapter 4 are highlighted by shading the
corresponding lines in grey. The assessment is based on ENV 1993-1-6:2002-05 and
prEN 1993-5:2004-07. In Tab. 12.1 the design stresses are summarized:

Tab. 12.1: Design stresses

position anchor (-6 m) max. moment (-17.5 m)
o [N/mm?] 37 +233=270 37 +316 =353
oy [N/mm?] 2 3

Teo [N/mmz] 80 0

The reference length is defined from pile tip to the position of the anchor. The factor C,
is set equal to 1 without performing the calculation from ENV 1993-1-6:2002-05.
According to prEN 1993-5:2004-07 the boundary conditions of case 3 in Table D-3 or
D-4 from ENV 1993-1-6:2002-05 shall be used for circumferential compression
stresses. This corresponds to BC2-BC2. In Fig. 12.2 and Tab. 12.2 the external pressure
distributions and approximated distributions for the assessment procedure are depicted
based on the amplitudes at a depth of —29 m. The stresses for the assessment are
calculated in Tab. 12.3.

Tab. 12.2: Pressures at the depth z = —29 m according to Fig. 12.2

pressures In front of tube (index 1) behind tube (index 2)
earth pressure py [KN/m’] 733 203

water pressure py [kN/m’] 210 260

total pressure pg+w [kN/mz] 943 463
averaged total pressure p,, [kN/m’] 703

internal pressure py, [kN/mz] 160 (with Ky)
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Fig. 12.2: Pressure distribution on tube as a function of the depth and approximated distribution (grey)

Tab. 12.3: Recalculation — circumferential stresses for limit state buckling design against circumferential

compression at z = -29m
parameter eq. circumferential compression dimension
ar ) 463-160 _ ) 54 )
943 -160

Dload - 180 °

C (12.10) 1-0.165(0.392 +0.39 - 2)1n 0.5 = 0.83 ]

p* . p*=0.83-(943 -160) = 650 KN/m>

*+Ap,, )-r (650+50)-0.9
ol _ ng(p tpW) :( T ) =35 N/mmZ

The following tables summarize the parameters for limit state buckling design. The
coefficient of subgrade reaction is given for the calculated problem with

ks =30 MN/m’.
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Tab. 12.4: Recalculation - parameters for limit state buckling design against axial compression

parameter eq. axial compression dimension
rit - 52 -
! - 24 m
0.25
Bt os =0.96+ 0.0023A(ﬂj
ﬂx,sand,0.5 (125) 0.936\ 2.2 -
=1.07
Cy - 1 )
t
O_x,Rc (12.1) UX,RC = 0605 . E . Cx '; . le,sand,O.S = 2614 N/mm2
A - A =4/430/2614 = 0.41 ]
0 - 25 (Klasse B) -
A Aw ! \/? t=5.19
- =6 =0 mm

Wi k Q ;
a - a, = 0.62 — = 0.470 )

x 1+1.91- (4w, /t)"
A - A =+/0.470/(1-0.6) =1.08 ;

1
0.41-0.2

f - =1-0.6 ————| =0.86 -

“ A (1.08 — o.2j
0.86-430

Ox.Rd - OxRd = EEREE =336 N/mm?
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Tab. 12.5: Recalculation - parameters for limit state buckling design against circumferential compression

parameter eq. circumferential compression dimension
r/t - 52 -
I - 24 m
w - 185 -
w* Fig. 12.1 108 -
I (12.13) I* =108+/0.936-0.018 =14 m
0.25
14 ( 30
=140.15,—| —| -4.0
ﬂ@,sand,().5 (935) IBg’mnd’O'S \/18 (22) -
=1.50
Coy - 1 -
2 4
t CQ r
Opp =El—]]0.275+2.03 —£—
Core _ 0.Rc (7") |: (a) * t) ]ﬂ&,sand N/mm2
=45

Ao - Ao =+/430/45 =3.09 ;

(12.15) r 5355157 ok -

t\VE
(12.14) o’ =11664 > 600 ok -
a 090
Olcolumn (12.15) column 1, 0257 7 .
2.35
(7] - 0.65 (Class B) -
ap (12.14) a, =0.65+(0.9—O.65)(1— 1600802j =0.89 -
factors - Aoo = 0.40, £ =060, 7n=100 -
Agp _ Ao =+/0.89/(1-0.6) =1.49 ;
2o - 7, =0.89/3.09% =0.093 )
0.093-430

OGRd - Cora =11 36 N/mm?

The buckling strength verifications based on the proposed design procedures are

calculated as:
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Tab. 12.6: Buckling strength verifications at anchor level and maximum moment

position anchor (-6 m) max. moment (-17.5 m)
axial % 279 _os0<1 (0.81<1)| T =33 10551 (1.06>1)
compression O,ra 336 Ovra 33
circumferential | %0 _ 2 _g06<1 @0.15<1) | -2 =3 _008<1 (0.23<1)
compression O ra O¢,ra
1.25 1.25

. . O-x 0-9
interaction + <1

O rd O ra
verification 0.76+0.03=0.79<1 (0.86 <1) 1.06+0.04=1.10>1 (-)

Tab. 12.7: Buckling strength verifications at maximum external pressure

position maximum external pressure (-6 m)
axial % 3T _oai<1 .11 <1)
compression O.ra 336
circumferential Oy _ 35 ~0.97<1 (3.00>1)
compression O9,ra
1.25 1.25

interaction [ o J +[ %o J <l

O ra O9,ra
verification 0.06+0.96=1.02=1 (-)

It can be seen Tab. 12.6 and Tab. 12.7 that the verifications are fulfilled mostly. Only
the verification at the position of the maximum moment is exceeded by 10 %. This is
due to the aspect that the meridional stresses dominate the assessment for this position.
Regarding the axial stresses the derived beneficial influence is limited to the
surrounding soil which then again is fairly small for axially loaded cylinders. The
values from the reference case calculation without considering the new design proposals
are given in brackets. Still, the assessment according to Tab. 12.6 has improved in
contrast to the common practical design calculations from chapter 4 by 10 % to 20 %.
The influence of the proposed design rules has an obvious influence on the buckling
strength verifications involving external pressure (Tab. 12.7). Here, the design buckling
stress was exceeded significantly in the design procedure from chapter 4. For the
approach considering the design proposals the verification is fulfilled (Tab. 12.7). Here
it needs to be emphasized that in the assessment very conservative assumption were
made since the supporting influence of the soil was imposed only to half of the
circumference for the entire tubular pile.
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Annex A: Retaining wall calculation

Al General

For the calculation of the deformations and especially the resultant forces of a
combiwall different investigations are performed in this research project. For the design
of a reference case the resultant forces required for the assessment according to different
design codes were calculated by means of finite element programs.

In geotechnical engineering various methods are used for analysing structures. The
applied finite element programs are based in the beam theory considering elasto-plastic
foundations. The evaluation of the resultant forces is performed with the finite element
program RIDO. In Annex A the concept of the program is described briefly. Further, a
comparison based on the reference case from chapter 4 between the results from RIDO
and another finite element program for calculating retaining walls (SPW2004) is
performed.

A.2  Analysis with RIDO

The finite element program RIDO (2004) was programmed by Fages in 1974 and
improved over the years. The finite element program calculates the elasto-plastic
equilibrium for retaining walls and piles subjected to loads. Besides the geometry of the
problem the data given in Tab. A.l is needed as input for calculating the reference case
of the combiwall.

Tab. A.1: Input data for RIDO

, anchor stiffness
@ [°] ST | ksIMNM'] | yIRNm] |y kN’] | RO Ig]
30 15 30 19 11 100

The analyses of the resultant forces and the soil reaction is performed by a calculation
of equilibrium from the different installation steps of the combiwall. The approaches of
Rankine, Boussinesq and Jaki are implemented in the program for evaluating the active
and passive earth pressure coefficients and the earth pressure coefficients at rest, which
are needed as limits for the plastic deformation. The elastic deformations are defined by
a constant coefficient of subgrade reaction which is distributed uniformly along the
combiwall for simplification.
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A.3  Analysis with SPW2004

The finite element program SPW2004 by Verruijt (2004) is programmed in Turbo
Pascal available as shareware is based on the concept of a beam supported by Winkler
springs. The reaction of the soil on both sides of the beam consists of each of two parts.
Subjected to loads the soil behaves linear and deforms proportionally to the load. The
deformations are limited by the active and the passive earth pressure as a lower and
upper boundary, respectively. The elasto-plastic reaction of a cohesionless soil is
depicted in Fig. A.1. This spring model is only valid for deformations in positive
direction (here to the right). For deformations in the opposite direction an accordingly
modified model is used.

reaction R,
>
|
|
/|
|
Ky, |
Kf)o-,v ,/l |
’ : Ko,
Py
|
4 |
< i :
K0, : |
|
e =
¢ ;| horizontal displacement v,
|

Av, !

Fig. A.1: Elasto-plastic reaction for a cohesionless soil

For calculating the combiwall from the reference case the input data listed in Tab. A.2
are used besides the geometry of the system.

Tab. A.2: Input data for SPW2004

K, [] Ky [-] Ko [-] y[KN/m’] | 7[kN/m’] | Av;[mm]

0.291 4.810 0.500 19 11 20

The gradient of the soil reaction from Fig. A.1 is defined as the spring stiffness. In
contrast to RIDO in which this value is constant, the soil stiffness changes in SPW2004
dependent on the effective stresses. In this approach the length Av; is kept constant and
thus the stiffness increases with the depth. The input parameters were adjusted to the
input data for RIDO as far as possible.

A.4  Comparison RIDO - SPW2004

In Fig. A.2 and Fig. A.3 the results from the calculations with RIDO and SPW2004 for
the reference case are compared. Diagrams for the horizontal displacements, the
bending moment and shear force distributions, and the resulting pressure distribution on
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the tube wall are included. Since SPW2004 cannot differ the pressure on the two sides
of the wall, the difference between both sides is compared.

horizontal displacement [mm] bending moment [kNm]
-200 4150 -100 -50 0 50 -20000 -10000 0 10000
0 : : : o ; : ; 0
—5— RIDO 7 i

—— SPW2004 /
5
-10 ﬁ/
-15

-20

depth z [m]

-25

B

-30
Fig. A.2: Displacements and bending moment distribution for the tubular piles

The results for the bending moment distribution exhibit slight deviations in the area of
the maximum moment. The displacement at the position of the maximum moment is
60 % larger in the calculation from RIDO than in the analysis from SPW2004. The pile
tip moves a little bit to the left if calculated with RIDO. In contrast the calculation with
SPW2004 reveals a slight displacement to the right. This difference takes place due to
the different pressure distributions at the pile tip as seen in Fig. A.3. The bending
moment and shear force distributions are very similar. The pressure distributions differ
in the area of the pile tip and the anchor point.
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shear force [kN] pressures on tube wall [kN/m?]
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Fig. A.3: Shear force and pressures on tube wall distribution for the tubular piles



Annex B: Measurement of the specimens

B.1 Preliminary investigation of specimens made of non-alloyed steel

B.1.1 General

For the specimens required for the reduced scale tests preliminary investigations were
performed with a tube made of non-alloyed constructional steel detailed in the
following:

. longitudinally welded tube without heat treatment
J mild steel

. material: non-alloyed constructional steel S235

. plane ends

. tolerances according to DIN 1626

) dimensions in mm: 203 x 2 x 3000 (outer diameter D,,,, x wall thickness x
length)

. supplier: Frank + Warnecke Industriebedarf GmbH Braunschweig

The data was compared and verified with the inspection certificate 3.1.B for the coil
used for manufacturing the tubes. The steel plates running off the coil are continuously
rolled to a tube (Fig. B.7). The next step in the production line is the joining of the
plate’s edges by a longitudinal weld (induction welding, HF) as shown in Fig. B.9.
After welding the plates the tube is cut by a saw into the desired lengths.

Geometrical measurement
Measurement of the geometry according to Fig. B.1:

. thickness measurement at both edges (section 0 and 6) at four positions
each by means of a micrometer gauge

. measurement of the diameter D in section 1 to 5 at six different positions
by means of a calliper gauge

The results of the measurement are summarized in Tab. B.1 and Tab. B.2. The
tolerances are chosen according to DIN 1615, DIN 18800-4, and EN 1993-1-6.
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Annex B: measurements of the specimens
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. . 203. Yo 2037 w2036
45
203.3+ I 2(;3' 203.1
203,8 S [ A e
204.2 203.8 204.1 204.0 203.7 204.7
204.0
section 4 section § nominal diameter
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Fig. B.1: Measurement of the geometry of the cylinder made of non-alloyed steel

The roundness R from DIN 1615 equal to the out-of-roundness U, from EN 1993-1-6 is

defined as:

R=U

The out-of-roundness U from DIN 18800-4 is defined as:

U=2

_ Dmax _Dmin

Dnom (Bl)
Dmax - min
D _+D (B.2)

max

min
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The outer diameter D, the roundness R, and the wall thickness ¢ satisfy the tolerances
given in DIN 1615. The minimum requirements for the roundness U, from EN 1993-1-6
for Class A are satisfied. Further, the out-of-roundness requirement for U from
DIN 18800-4 is satisfied.

In Fig. B.2 and Fig. B.3 the cylinder is depicted.

Tab. B.1: Deviations from nominal values — outer diameter D

nominal outer diameter D,,,, = 203 mm roundness R
or out-of: out-of-
. average max. — roundness U
section dla[mnf rtne]rD diameter deviation. roundf)less [%]
[mm] [mm] U [%]
1 203.8 0.8
203.8 0.8
204.0 1.0
<
204.2 1.2 0 2
= =
203.8 0.8 - o
= ]
203.3 203.8 0.3 A 0.44 3 - 0.44
2 203.5 0.5 g .
= S =z b
204.0 1.0 5 2 £ S
5 o @ 2
204.1 1.1 S Z g %
< M an
203.7 0.7 3 2 £ Z
204.0 1.0 Rz £ g -
5 2 9 ©
203.2 203.8 0.2 z 0.44 s = 0.44 G
3 203.8 0.8 E soe Z
204.7 1.7 = 2 S
N = ° N
203.7 0.7 + g ° S
5 L S p
203.6 0.6 5 z O %
g - & =]
204.7 1.7 S L2 S
S So9 =
203.1 203.9 0.1 2 0.79 2 5 0.78 S
e & § 2
4 203.5 0.5 S £ 3 S
=l =) N B
203.5 0.5 = 3 = 3
8 = 's =
203.7 0.7 § ‘E, g :
204.2 1.2 o g = £
e o g =
203.8 0.8 S s Z S
o s E g
203.1 203.6 0.1 = 0.54 E é 0.54
5 203.3 0.3 g g
203.5 0.5 g =
o] o=
204.0 1.0 = é
204.4 1.4
204.1 1.1
203.1 203.7 0.1 0.64 0.64
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Annex B: measurements of the specimens

Tab. B.2: Deviations from nominal values — wall thickness t according to DIN 1615

nominal wall thickness #,,,, = 2 mm

section wall thickness ¢ average max. deviation.
[mm] thickness [mm] [mm]
0 2.05 0.05
2.09 0.09
maximum
2.07 0.07 allowable
2.07 2.07 0.07 deviati
eviation
6 2.11 0.11 +0.30 mm
-0.25 mm
2.07 0.07 satisfied
2.05 0.05
2.02 2.06 0.02

Fig. B.2: Tube made of non-alloyed constructional steel

Fig. B.3: Tube made of non-alloyd constructionltel — detail weld
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B.1.2  Material properties

The base material of the cylinder was investigated with four tensile tests (extraction
points shown in Fig. B.4) and a hardness test according to Vickers (HV10) over the
weld area.

The results of the tensile tests are depicted as stress-strain curves in Fig. B.5. The initial
measuring length L, was chosen with 50 mm. The test coupons were small non-
proportional coupons according to DIN EN 10002. It can be seen that the stress-strain
curves for the tensile tests B 1, B 2, and B 3 hardly differ, and up to a stress level of
180 N/mm?” the coupons exhibit a linear material behaviour. Due to the strain hardening
in the heat affected zone of the weld the tensile test W results in an higher tensile
strength and a lower ultimate strain. The Young’s modulus of the coupon W lies within
the stray area of the other tensile tests (Fig. B.5). The Young’s modulus was evaluated
based on the hysteresis loop.

The investigation of the Vickers hardness in the area of the weld reveals that the strain
hardening only spans over a minor region around the weld (Fig. B.6).
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Fig. B.4: Extraction points of the coupons
&
= —
£ —~
Z,
o
w)
wn
]
g Eg, =167 900 N/mm?
17 E,, =182 500 N/mm?
Ey = 166 600 N/mm?
E, = 173 000 N/mm?
40 0 0.5 1.0 1.5 2.0

strain € [%]

Fig. B.5: Stress-strain curves for the tensile tests for the base material
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Fig. B.6: Vickers hardness distribution across the weld

B.2  Investigation of test tube for the reduced scale tests

B.2.1 General

For the reduced scale tests it was chosen to take a tube of the type investigated in the
previous section in preliminary tests. The tubes were ordered for the experiments and
measured more thoroughly. For completeness the specifications are repeated:

. longitudinally welded tube without heat treatment
J mild steel

. material: non-alloyed constructional steel S235

. plane ends

. tolerances according to DIN 1626

) dimensions in mm: 203 x 2 x 3000 (outer diameter D,,,, x wall thickness x
length)

. supplier: Frank + Warnecke Industriebedarf GmbH Braunschweig

The data was compared and verified with the inspection certificate 3.1.B for the coil
used for manufacturing the tubes. The steel plates running off the coil are continuously
rolled to a tube (Fig. B.7). The next step in the production line is the joining of the
plate’s edges by a longitudinal weld (induction welding, HF) as shown in Fig. B.9.
After welding the plates the tube is cut by a saw into the desired lengths.
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Fig. B.9: Welding of the tube
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B.2.2 Geometrical measurement
Measurement of the geometry as follows:

. thickness measurement over the entire length of the tube by means of an
ultrasonic measuring device (USIP 12) in combination with wall thickness
measuring module DTM12 and a straight beam probe of the company
Krautkrdmer; calibration and verification with micrometer gauge

. measurement of the test tube with the high-end 3D-digitization system
optoTOP-L300-HE425/30

o resolution <0.015 mm
o accuracy of measurement, local < 0.04 mm, global < 0.1 mm
o measuring grid approx. 0.3 mm

o 1image diagonal approx. 425 mm: measurement with approx. 120 fields
of view

o contour dependent thinning out of measuring points: chord error 5 pm -
10 pum, grid distance approx. 2.5 mm - 5 mm

o topometry; miniaturised projection technique (MPT)
o combination of GrayCode- and Phaseshift-methods

o Pass-Points-Matching, Pass-Points are calibrated photogrammetrically
and the fields of view positioned automatically using the
photogrammetric metrology system DPA-PRO

Fig. B.10 depicts the used ultrasonic measuring device. The results are summarized in
Tab. B.3. The thickness is about 1.5 % larger than the nominal value. In Fig. B.11 and
Fig. B.12 the test tube is shown during the scanning process. During the scanning
process the weld was positioned at the bottom.

Fig. B.10: Ultrasonic measuring device USIP 12 with DTM12
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Fig. B.12: Scanning process

Tab. B.3: Deviations from nominal values — wall thickness t according to DIN 1615

nominal wall thickness ¢,,,, = 2 mm

. average standard max. deviation
section measurements . L.
thickness [mm] | deviation [mm] [mm]
weld 10 2.03 0.02 +0.08 maximum allowable
+0.05 deviation + 0.30 mm
rest 60 2.03 0.01

-0.02

- 0.25 mm satisfied
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The results of the scanning are depicted in the following. The data set of spatial
coordinates from the measurement included more than 1°000°000 measuring points
along the test tube. The data set was imported in Autocad with a macro programmed in
Visual Basic.

. iso 1

legend

< -02-0.10.0 0.1 02 03 04 0.5 06 0.7 08 09 >

-Ar +4r [mm] -

Fig. B.13: Isometries of scanned test tube with radial deviations relative to the best-fit-cylinder

The alignment of the measured data was performed by first evaluating all measured
points with the best-fit-cylinder solution. This implies a re-positioning of the points
based on the nominal cylinder in order to obtain the minimum sum of radial deviations.
From the data a vector is defined as the longitudinal axis of the best-fit-cylinder with
which a plane is constructed using an arbitrary point on the shell. The other planes are
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chosen respectively. A macro was programmed for bringing out the deviations between
the measured radius and the nominal radius in terms of colour as shown in two
isometries in Fig. B.13 and in two views in Fig. B.14. The deviations are based on a
global coordinate system which is set according to the position of the tube during the
scanning process.

The weld position can be identified clearly in iso 2 from Fig. B.13 and in view 2 from
Fig. B.14 as the turquoise area stretching along the tube’s length.
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Fig. B.14: Views of scanned test tube with radial deviations relative to the best-fit-cylinder



259

legend

< -02 -0.1 0.0 0.1 02 03 04 05 06 0.7 08 09 >

Ar [mm]

Fig. B.15: Unrolled shell of scanned test tube with radial deviations scaled by factor 100 relative to the
best-fit-cylinder

Fig. B.15 depicts the unrolled shell of scanned test tube. The radial deviations Ar are
scaled with a factor of 100.

Additionally, the test tube was investigated concerning the out-of-roundness. The
relevant diameters were taken from evaluating the measuring points for specific cross-
sections. The data was interpreted at seven different cross-sections: x = 50 mm,
500 mm, 1000 mm, 1500 mm, 2000 mm, 2500 mm, and 2950 mm. The results of the
corresponding calculations of the out-of-roundness parameters according to (B.1) and
(B.2) are summarized in Fig. B.16 to Fig. B.22 of the cross-section. As a reference a
circle with the nominal outer diameter is added for every cross-section independently in
the figures. In contrast to the reference used in Fig. B.13 and Fig. B.14 the reference
diameter is positioned as centric as possible because the emphasis is on the minimum
and maximum diameter and not the radii (best-fit-cross-section). The measuring points
were evaluated covering an area of + 1 mm away from the relevant cross section.

In all cross-sections the weld is positioned on the right hand side, and it can be clearly
identified due to the welding-induced shrinkage deformations. For all investigated
cross-sections the out-of-roundness and roundness requirements are easily satisfied, and
the test tube can be classified as Class A tube according to the fabrication quality
tolerance class from EN 1993-1-6.
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position:
x =50 mm

evaluated area:
Ax=41mm

deformations scaled with
factor:
50.0

weld position:
a=0°

max. D:
203.90 mm

min. D:
203.25 mm

out-of-roundness U_and

roundness R:

0.32%<1.4% (Class A) ./
<20%

out-of-roundness U:

032%<2.0% ./

position:
x =500 mm

evaluated area:
Ax=+1mm

deformations scaled with
factor:
50.0

weld position:
a=0°

max. D:
204.03 mm

min. D:
203.30 mm

out-of-roundness U_and

roundness R:

0.36 %< 1.4 % (Class A) ./
<20%

out-of-roundness U:
0.36%<2.0% ./

Fig. B.17: Fabrication tolerance — out of roundness at x = 500 mm



261

position:
x = 1000 mm

evaluated area:
Ax=+1mm

deformations scaled with
factor:
50.0

weld position:
a=0°

max. D:
204.00 mm

min. D:
203.32 mm

out-of-roundness U, and

roundness R:

0.33%<1.4% (Class A) ./
<20%

out-of-roundness U:

033%<2.0% ./

z
~ - = ~ ~
/ g . b A
AN
4 \
{ \
/ \
// \
/ \
| \
angle o \1 y
N -
l\ min. D X ;
\\ /
\ /
\ max. D //
\ . >
N /
N /
N - -
N - _ _

position:
x=1500 mm

evaluated area:
Ax =1 mm

deformations scaled with
factor:
50.0

weld position:
a=0°

max. D:
204.00 mm

min. D:
203.35 mm

out-of-roundness U,_and

roundness R:

0.32%<1.4% (Class A) ./
<20%

out-of-roundness U:
032%<2.0% ./

Fig. B.19: Fabrication tolerance — out of roundness at x = 1500 mm
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position:
x =2000 mm

evaluated area:
Ax =41 mm

deformations scaled with
factor:
50.0

weld position:
a=0°

max. D:
204.00 mm

min. D:
203.35 mm

out-of-roundness U, and

roundness R:

0.32%<1.4 % (Class A) ./
<20%

out-of-roundness U:

032%<2.0% /

position:
x=2500 mm

evaluated area:
Ax =1 mm

deformations scaled with
factor:
50.0

weld position:
a=0°

max. D:
204.03 mm

min. D:
203.33 mm

out-of-roundness U_and

roundness R:

0.34 %< 1.4 % (Class A) ./
<20%

out-of-roundness U:
034 %<2.0% /

Fig. B.21: Fabrication tolerance — out of roundness at x = 2500 mm
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position:
-7 T == x=2950 mm

evaluated area:
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Fig. B.22: Fabrication tolerance — out of roundness at x = 2950 mm

B.2.3  Material properties

The base material of the cylinder was investigated with seven tensile tests (extraction
points shown in Fig. B.23). Four coupons were extracted in longitudinal direction of the
tube (W and L 1 to L 3) and three coupons were extracted in circumferential direction
(C 1 to C 3). The extracted circumferential strips were straightened carefully in several
steps using a rolling machine. Afterwards the strips were elongated in a testing machine
by around 1 % in order to equalise local plastic deformations introduced due to the
flattening process. Subsequently the tensile coupons C 1 to C 3 were manufactured from
the strips.

The results of the tensile tests are depicted as stress-strain curves in Fig. B.24. The
initial measuring length L, for W and L 1 to L 3 was chosen with 80 mm. The test
coupons were small non-proportional coupons according to DIN EN 10002. For the
circumferential coupons a larger initial measuring length was picked in order to obtain
reliable values for the Young’s modulus (Ly = 160 mm).

In Fig. B.24 it can be seen that the stress-strain curves for the tensile tests L 1 to L 3
hardly differ, and up to a stress level of nearly 250 N/mm? the coupons exhibit a linear
material behaviour. Due to the strain hardening in the heat affected zone of the weld the
tensile test W results in a higher tensile strength and a lower ultimate strain. Similar to
the case of longitudinal coupons the circumferential coupons exhibit comparable results
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Annex B: measurements of the specimens

(Fig. B.25). Tab. B.4 summarizes the yield strength and the ultimate strength for the
investigated tensile tests.

AN

203 mm

[
—

M~ |

weld

k_’_/_/

300 mm

\Wiﬂed shell

1. four non-proportional coupons
according to DIN EN 10002 with
L,=80mm(W,L1toL3)

2. three horizontal stripes for
manufacturing coupons (C 1 to C 3)

300 mm

weld

approx. 637 mm

Fig. B.23: Extraction points of the coupons

Tab. B.4: Material properties from tensile tests

coupon yield strength R,y [N/mm?] ultimate strength R,, [N/mm?]
L1 312 387
L2 304 384
L3 301 382
W 383 435
Cl1 314 380
C2 R,02=1289 375
C3 313 378

Tab. B.5: Evaluation of the Young’s modulus for the test tube

Young’s modulus £

coupon Young’s moduli [N/mm?] average Young’s modulus £ [N/mm?]
L1 190 000
L2 178 000
L3 186 000
W 204 500
Cl1 189 100
C2 191 500
C3 192 000 190 000




265

400

300

200

stress o[N/mm?]

100

strain & [%]

Fig. B.24: Stress-strain curves for the tensile tests for the base material — longitudinal coupons
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Fig. B.25: Stress-strain curves for the tensile tests for the base material — circumferential coupons

The difference in the transition between the elastic and the plastic region of coupon C 2
in comparison to C 1 and C 3 arises because the latter two strips were cold-formed more
intensively. This phenomena can be seen in Fig. B.26 in which a representative
longitudinal stress-strain curve is compared to the cases C 2 and C 3. The curve for C 2
is in a similar way non-linear as the curve for L 2, while the coupon C 3 exhibits a
linear elastic-perfectly plastic behaviour. The Young’s moduli for the circumferential
tests do not differ much because a very large initial measuring length was chosen. The
stress-strain curves for the circumferential and the longitudinal coupons agree well as
seen in Fig. B.26.

The tensile tests for the longitudinal and for the circumferential coupons reveal close
agreement concerning the Young’s modulus. The results confirm the isotropy in the
longitudinal and circumferential direction:
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E=E =E~E.=E, (B.3)

For the use in numerical calculations and the interpretation of experimental results the
Young’s modulus is evaluated statistically in Tab. B.5.

400
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() t t t
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strain £ [%]

Fig. B.26: Comparison of stress-strain curves for the tensile tests for the base material — two
circumferential coupons and one longitudinal coupon



Annex C: Reduced scale tests

C.1 General

For better understanding of the load transfer mechanisms and the soil-structure
interaction reduced scale experiments where performed within this project.
Additionally, in-situ tests on constructions sites were executed in order to generate
experimental results reflecting the tubular piles both installation and loading conditions.
A scale reduction from real structures of about 10 was necessary to keep the costs of the
experimental program reasonable, while allowing the tests to be conducted under a
range of typical soil characters and densities. The set of loading tests was performed at
the laboratories of the University of Louvain (UCL) with whom close co-operation was
maintained throughout the project. The tests were performed under the supervision of
the UCL, and planned closely together with the Universitit Karlsruhe. Comments are
given on the results from the in-situ tests but are not investigated further at this stage as
the laboratory tests are validated with follow-up numerical analyses.

The reduced-scale tests form a basis for interpreting results from numerical analyses
and serve as verification for different models. In the following the reduced—scale tests
are briefly introduced with information on tests set-up and execution. More information
can be found in Charue and Holeyman (2007) and Charue et al. (2007).

C.2 Test and measuring program for the laboratory tests

The tests performed at the laboratories at the UCL are made in order to provide an
experimental basis to consolidate the numerical models and to establish a basis for the
proposed design methods. As the experimental test set-up was mostly planned and
detailed by the UCL it is referred to Charue and Holeyman (2007) where more details
on the planning and the design using preliminary analyses can be found. The general
set-up of the tests is a steel tube which is vertically embedded in soil which is confined
by a cylindrical test bin and subjected to different elemental loading conditions.

The test program of the laboratory tests consisted of different experiments using 2
tubes. In a first set of tests a (dummy) tube (dt) was used. The second series used a more
heavily equipped test tube. In this work it is only dealt with the first test series. As the
tests were very time and cost consuming and therefore only a small number of tests
were possible it was indispensable to assure the test set-up worked smoothly. Although
the applied loads were quite small the sequence of the tests was rather important as the
previous test could have an influence on the following test. Thus, the choice for the
order of the experiments was made as summarized roughly in Tab. C.1.
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Before the experiments the geometry of the test tube was investigated very accurately
by scanning the tube digitally and interpreting the results. The main focus was set on the
deviations of the actual geometry from the nominal geometry. The findings were
compared with the tolerances given in codes (DIN 1626). Additionally, a segment was
cut off before the experiments from the test tube for detailed material property testing.
Details on these investigations can be found in Annex B.

Tab. C.1: Test identifiers and sequence

order test identifier | filled/unfilled tube
1 dt-uf-T
2 dt-uf-L unfilled “dummy” tube
3 dt-uf-A

Before installation the tubes were instrumented with strain gauges. The test tube was
instrumented with 8 simple gauges at 7 different levels (Fig. C.1).
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Fig. C.1: Strain gauges (SG) positioning and description for the instrumented layers

The measurement of all strain gauges was performed continuously during the loading of
the piles. Moreover, the load and the pile displacements were measured with the
monitored hydraulic system of the jacks. The acquisition system connected to the
transducers coming from the pile was directly connected to a computer and was built
custom made by the UCL.
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C.3 Elements for the laboratory tests

C.3.1 Tubes

In the progress of planning the experiments, tubes made of non-alloyed and of stainless
steel were taken into consideration. In a first set of studies it was chosen to use tubes
made of non-alloyed steel with the main reason of maintaining an elastic response of the
structure for at least small loads. Further details on the mechanical measurment of the
imperfections and material property tests are given in Annex B.

The chosen tube type made of non-alloyed constructional steel is fabricated by rolling
steel plates and welding them together with a single longitudinal weld (Fig. C.2). More
details concerning its manufacturing are given in Annex B. The test tube had a length of
3300 mm, an outer diameter of 203 mm, and a wall thickness of 2 mm.

T"

Fig. C.2: Test tube and digital scan

First, a 30 cm segment was cut off for detailed material property testing, and the
remaining 3 m were scanned digitally in order to record the geometry with all
imperfections are precisely as possible (Fig. C.2). The measurement was performed at
the company Breuckmann GmbH using newest 3D-metrology techniques with a high
resolution digitisation system. The method applied uses a MPT projection unit for
obtaining more than 1 million measuring points. The measuring was executed by
aligning 120 one-by-one views by pass-point-matching to one set of coordinates. The
data from the measuring was evaluated and depicted regarding the deviations from the
nominal geometrical values. Fig. C.3 shows an example of the interpreted results from
the measurement. Additionally, the wall thickness of the test tube was measured at
numerous points by ultrasonic measuring devices. The largest deviations in thickness
were —0.02 mm and +0.08 mm from the nominal wall thickness of 2 mm. More
information regarding the applied measurements and the results from the thickness
measurement and the digital scanning of the tube can be found in Annex B.
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Fig. C.3: Examples for evaluating the data (radial deviations relative to the best-fit-cylinder; Fabrication
tolerance — out of roundness)

The tubes were supposed to be made of non-alloyed constructional steel S235 according
to the order and the delivery receipt. The material properties were evaluated from
several tensile tests in longitudinal and circumferential direction according to
DIN EN 100002-1:2001. The results were compared with the data given in the
inspection document 3.1.B following DIN EN 10204:2004. Details on the material
property tests are given in Annex B. The longitudinal and circumferential tensile tests
showed close agreement regarding the Young’s modulus. The results confirm the
isotropy in the longitudinal and circumferential direction:

E=E =E~E.=E, (C.1)

An average Young’s modulus of 190°000 N/mm? was evaluated.

C.3.2 Soil

The type of soil used in the experiments is the so-called “Brusselian Sand” which was
acquired from a local quarry near the UCL with a grain size curve according to Fig. C.4.
It was chosen to use the “Brusselian Sand” for the tests as it has been studied explicitly
in several scientific researches (e.g. Vanden Berghe, 2001). Identification tests
(granulometry, water content, soil density) for the sand were performed in laboratories
of the UCL. Before applying the loads a cone penetration test (CPT) was performed in
order to check on the soil resistance as a function of the depth below the surface. Details
can be found in Charue and Holeyman (2007) and Charue et al., 2007.

The installation of the sand was of considerable importance as it controls the relative
density of the sand and therefore also the stiffness of the soil. The installation of the
sand was performed by using the time-consuming and complex method of pluviating
the sand into the bin while taking significant factors such as raining height of the soil or
time schedule into account. The installation process was worked out at the UCL
(Charue and Holeyman, 2007, and Charue et al., 2007).



271

- — 100
Sieve passing [%][
....p wll ]... =1}
{eo-o7ew | 80
C]m-3 - 0,658% | 1 70
G- 0,62% -
S 0E1% [=]u]
——12 - 0,58%
15 - 0,58% 50
........ 40
30
20
i 10
1 Sieve dameter [mm]l N
10,000 1.000 0.010

Fig. C.4: Grain size curve for different water contents of “Brusselian Sand” from Charue and Holeyman
(2007)

C.4 Set-up and execution of laboratory tests

C.4.1 General experimental set-up

The general set-up of the tests is a steel tube which is vertically embedded in soil and
subjected to different elemental loading conditions.

Fig. C.5: Outer confinement for the sand from Charue and Holeyman (2007)

The test bin in which the tube is installed in and which acts as confinement is a
cylindrical steel structure of 3 m height, 1.7 m of diameter, and 16 mm of thickness
(Fig. C.5).
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Fig. C.6: Lateral confinement by fire hose from Charue and Holeyman (2007)
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Fig. C.7: First draft of the load introduction device (LID) and final LID

As soil is a material whose behaviour is strongly influenced by its initial and disturbed
conditions, the dimensions of the cylinder are important, and for the test set-up they
encompass the influence of the radial supports as studied in preliminary tests. The
reaction of the soil and therefore the stiffness is highly dependent on the confinement of
the soil. Thus, it was chosen to include water filled fire hoses between soil and test bin,
which allowed to control the pre-stressing of the soil and as a consequence the stiffness
of the soil (Fig. C.6). In this step the top needs to be loaded simultaneously in order to
prevent an uplift of the soil and the tube and to establish a uniform stress state.
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The installation of the sand needs to be executed well-controlled by pluviation as the
relative density of the sand depends on several parameters (raining height, flow,
homogeneity of the raining, shutter porosity, diameter of the shutter, characterisation of
the sand, etc.). Intensive studies including numerous raining experiments were
performed in order to defined all relevant parameters. More details are e.g. given in
Charue and Holeyman (2007).

For the load introduction a pile cap is developed which allows to introduce all loads to
the tube with stress distribution as smooth as possible (Fig. C.7). Thus, the load
introdution device (LID) is glued to the tube with a fast-setting epoxy resine adhesive
with hardener HW 2951 (Araldit® AW 2101).

Since the soil’s characteristics change due to the application of lateral confinement by
the water hoses, electrical CPT (Cone Penetrometer Test) are performed in the test bin
between the subsequent tests.

C.4.2 Axial loading

The loading is performed by an automatically controlled system (hydraulic system of
the laboratory allowing the control of the load, the rate of loading, and the duration of
the applied load). The load is applied by a hydraulic jack supported by a stiff loading
frame constructed around the test bin.

The aim of the axial load tests is to obtain a relationship between vertical displacement
and the evolving opposing force, i.e. a load-displacement relationship for the entire pile.
With this information a set of vertical springs can be positioned in numerical analyses
representing the meridional shaft friction. A more detailed interpretation shall provide
information on the shaft friction at different depths integrated over specific lengths
(segments). With this information different spring stiffnesses can be applied in a
numerical study. Further, the meridional stress distributions were looked at for a
discussion on the uniformity of the stress distribution at different depths.

C.4.3 Torsional loading

The force is applied to the tube by means of dead weights at two sides diametrically
opposed. The plates are connected to the pile cap by means of wires and pulleys. The
wires are attached to the pile cap such as both loading directions are parallel and
opposite to each other. The loading is performed by putting weights at both ends is
simultaneously in order to apply a pure torque on the test tube.

The aim is to obtain a relationship between rotation and the evolving opposing force,
i.e. a load-rotation relationship for the entire pile. With this information a set of
horizontal springs could be positioned in numerical analyses representing the
circumferential shaft friction. Calculating with a lever equivalent to the shell’s radius, a
number of circumferential springs can be applied. A more detailed interpretation shall
provide information on the shaft friction at different depths integrated over specific
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lengths (segments). Then, different spring stiffnesses can be applied in a numerical
study.

C.4.4 Lateral loading

The loading is performed similar to he latter case except that it is performed on one side
at a time only. Additionally, the wire is attached centrically to the LID. Two diametrical
wires are connected allowing a complete cycling lateral loading.

Firstly, results regarding the deformed shape and the stress and bending moment
distribution are valuable since these can be used to verify the predicted results from the
preliminary numerical study. In the next step the results needed again to compare the
follow-up back-calculations. Secondly, the results shall be used to interpret the
uniformity of the stress distribution. Here, it is important to have the stress distributions
over the circumference at different cross-sections and over the lengths at different
positions. Thirdly, the results shall be used for a back interpretation of the proposed soil
models. In this context p-y relationships have to be derived for comparison.

C.5 Testing

Numerous different tests were performed with the test tube in order to obtain more
information on the acquiring system. The interpreted results form an important basis for
the follow-up and back-calculations. All different loading types were tested. Further, the
radial confinement was varied. The summary of all experiments can be found in Charue
and Holeyman (2007). Some results are given at the corresponding sections.
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D.1 General

For comparison and for the validation of the material data and the hypoplastic approach
the results from experimental and numerical investigations by Vanden Berghe (2001)
are compared with element tests performed using the hypoplasticity model implemented
into ABAQUS by Fellin and Ostermann (2002). In this context the results of two
monotonic drained and undrained triaxial tests are compared.

The hypoplastic parameters were derived by Vanden Berghe (2001) according to the
calibration by Bauer (1996) and Herle (2000) with the following tests:

o 2 triaxial compression tests

° 1 triaxial extension test

o 1 oedometric compression

o (1 isotropic oedometric compression)

Mostly, the isotropic oedometric compression is used for deriving the parameter S.
Vanden Berghe (2001) instead uses the oedometric compression. The evaluation of the
experiments lead to the following parameters for hypoplasticity which are used for the
numerical analyses with ABAQUS:

Tab. D.1: Parameters for hypoplasticity according Vanden Berghe (2001) for ,, Brusselian Sand*

o [°] hs [kPa] n e €. e a p

33 2.0-10° 0.35 0.52 0.88 1.21 0.3 1.1

D.2 Drained triaxial compression

For the triaxial compression a cylindrical specimen is deformed vertically while
subjected to a constant external side pressure o, = o3 (Fig. D.1). For the drained case
the pore water can pass off freely.

The drained triaxial compression test no. 4 according to the indication of Vanden
Berghe (2001) is performed under the following conditions:

o geometry: height # =200 mm and radius » = 50 mm
° initial void ratio in the test and for ABAQUS ey, 4 = 0.674
° initial void ratio in simulation by Vanden Berghe e s = 0.674

) initial side pressue o3 y4 = 400 kPa
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Fig. D.1: Comparison of the numerical results and the findings of test no. 4 by Vanden Berghe (2001)
with ,, Brusselian Sand* for drained triaxial compression

D.3 Undrained triaxial compression

For the triaxial compression a cylindrical specimen is deformed vertically while
subjected to a constant external side pressure o, = o3 (Fig. D.2). For the undrained case
the pore water cannot dissipate and as consequence the volume does not change. Using
the rate of volume strain a ratio of the vertical and the horizontal strains which are
needed for the numerical analyses can be derived as u/u, = -2h/r.

The undrained triaxial compression tests no. 8 and 9 according to the indication of
Vanden Berghe (2001) are performed under the following conditions:

. geometry: height # =200 mm and radius » = 50 mm

) initial void ratio in the test and for ABAQUS e¢p3 = 0.686 and
€0,V9:0.718

° initial void ratio in simulation by Vanden Berghe ¢ s = 0.700

) initial side pressure oy ys = 03,9 =200 kPa
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Fig. D.2: Comparison of the numerical results and the findings of test no. 8 and 9 by Vanden Berghe
(2001) with ,, Brusselian Sand* for undrained triaxial compression

D.4 Oedometric compression

For the oedometric compression a cylindrical specimen is deformed vertically while
radial displacements are constrained (Fig. D.3).

The oedometric compression is performed under the following conditions:
J geometry: height # =20 mm and radius » = 31.5 mm
° initial void ratio in the test and for ABAQUS ¢ = 0.760
o initial void ratio in simulation by Vanden Berghe ¢ s, = 0,760

) initial pressure o7 = 1 kPa and o, = K, - 1 kPa with K, = 0.4
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Fig. D.3: Comparison of the numerical results and the findings of test by Vanden Berghe (2001) with
,, Brusselian Sand* for oedometric compression



Annex E: Specific modelling conditions for analyses

E.1 General

In order to provide a more detailed insight to the specific modelling conditions used in
numerical analyses, the following tables give an overview with respect to geometry,
loading, material laws, etc. for different studies. The tables are referred to in the

corresponding figure captions.

E.2 Tables

Tab. E.1: Summary of parameters for Fig. 9.19

o, = 0.605-E-t/r

axially loaded cylindrical shell — linear bifurcation/eigenvalue analyses with soil -

data | parameter value comments
K 0.7 3
loose sand - n;, = 2.2 MN/m
o 20°
y 15.25 kN/m’ -
3 Lk 1.2 MN/m* - 1/
4
(@) - II?'C 1.5 MN(; m_ - ol linear springs for tension and
]2’” 12 MN/a - 4] compression; uniformly distributed vs. z
n . * /2 .
(b) kt 40 . (1/21)0.45 [MN/I’I]4] al’ld Clrcumference
ki m 0
& § it 0m ; 019 m 2D shell elements; boundary conditions:
R — BC1{/ BCIf from EN 1993-1-6
r 900 mm

Tab. E.2: Summary of parameters for Fig. 9.20

o = 0.605-E-t/r

axially loaded cylindrical shell — linear bifurcation/eigenvalue analyses with soil -

data | parameter value comments
K 0.7 3
S 200 loose sand - n, = 2.2 MN/m
- y 15.25 kN/m’ -
S
@ k, 2.2 MN/m’ - I/D linear springs for tension and
k, 1.5 MN/m” - %] compression; uniformly distributed vs. z
X = ; 0 and circumference
tm
% e rit 0 rz 0_ ?3 m 2D shell elements; boundary conditions:
Y
80 2 BC11{/ BC1f from EN 1993-1-6
S+ [450 mm, 900 mm, 1200 mm om
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Tab. E.3: Summary of parameters for Fig. 9.21

axially loaded cylindrical shell — linear bifurcation/eigenvalue analyses with soil -
o, = 0.605-E-t/r

data | parameter value comments
y 15.25 kN/m’
K 0.7
2‘ "= o 20° loose sand - n;, = 2.2 MN/m’ and dense
I E k, 2.2 MN/m* - 4l/D sand - 1, = 6.6 MN/m’
= | ke 1.5 MN/m" - %4/
3 ki 0
K 0.8 linear springs for tension and
O - 5 350 compression; uniformly distributed vs. z
s & .
I Z 3 6.6 MN/m’ - %//D and circumference
= koo 2.4 MN/m" - 14l
ki 0
% e rit 0 n; 0_ gg m 2D shell elements; boundary conditions:
Y
2 BC1{/ BC1f from EN 1993-1-6
* S+ 450 mm, 900 mm, 1200 mm om

Tab. E.4: Summary of parameters for Fig. 9.22

axially loaded cylindrical shell — linear bifurcation/eigenvalue analyses with soil -
o = 0.605-E-t/r

linear springs for tension and compression; uniformly distributed vs. z and only around half of
the circumference (50 %) - boundary conditions: BC1{/ BCI1f from EN 1993-1-6

data | parameter value comments
- y 15.25 kN/m’ ;
2 500 MN/m’
kie=kim 0
K 0.7
5 20° riEl 40 1.6m 2
k, 2.2 MN/m’ - ¥1/D 5m 8.5
ki 1.5 MN/m* - %l ro| 450 8.75m 17.1
% Kim 0
K 0.8 o a0 ! /
S 350 1.6 m 2.7
ek 6.6 MN/m’ - 141/D 5m 11.2
S| ke 2.4 MN/m* - 4/ ro| 450 8.75m 22.6
S kim 0
g K 0.7 rit 40
= 5 20°
S|k, 2.2 MN/m’ - %I/D 10m 8.5
. 1.5 MN/m® - 14/ r | 900 19m 19
Ko 0
© K 0.8 ! /
5 350 rEl 40 10 m 11.2
ky 6.6 MN/m’ - 141/D 17.5m 22.6
k. 2.4 MN/m* - 14l r 900 19 m 25.0
Kim 0
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Tab. E.5: Summary of parameters for Fig. 9.23

cylindrical shell subjected to external pressure — linear bifurcation/eigenvalue analyses with

soil — 0, =0.92-E- Cy/- t /v
data | parameter value comments
I; 3070 loose sand - 1, = 2.2 MN/m’
- y 15.25 kN/m’ -
2 ko 2.2 MN/m’ - 1/D linear springs for tension and
4 compression; uniformly distributed vs. z
ki 1.5 MN/m" - 41 :
i 15 MN/mE - 41 and circumference
t.m . /2
L L it 0 12 0_ ?(5) m 2D shell elements; boundary conditions:
S 2 rr 150 000 o 1200 | BC1/BC3 from EN 1993-1-6 (C, = 0.6)

Tab. E.6: Summary of parameters for Fig. 9.24

cylindrical shell subjected to external pressure — linear bifurcation/eigenvalue analyses with

soil — o, = 0.92-FE- Cy/w- t /v
data | parameter value comments
y 15.25 kN/m’
K 0.7
2 = o 20° loose sand - n, = 2.2 MN/m’ and dense
= ky 2.2 MN/m’ - 1/D sand - n; = 6.6 MN/m’
2| [ he 1.5 MN/m* - ¥4l
S| um 1.5 MN/m* - %4/
K 0.8 linear springs for tension and
O - 5 350 compression; uniformly distributed vs. z
< £ :
I Z ki 6.6 MN/m’ - Y4//D and circumference
g2 ki 2.4 MN/m" - %1
Kim 2.4 MN/m* - 14l
/ Om=+25m
g rit 40, 50
2 250 900 2 1200 2D shell elements; boundary conditions:
Iy z mth, 77 mm, MM BC11/BC3 from EN 1993-1-6 (C,= 0.6)
g r/t 40, 50
r 450 mm, 900 mm, 1200 mm
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Tab. E.7: Summary of parameters for Fig. 9.25

cylindrical shell subjected to external pressure — linear bifurcation/eigenvalue analyses with
soil — o, =0.92-FE- Cy/w- t /¥

linear springs for tension and compression; uniformly distributed vs. z and only around half of
the circumference (50 %)
boundary conditions: BC1{/BCI1f from EN 1993-1-6

data | parameter value comments
7 15.25 kN/m’ -
K 0.7 vt | a0 1.6 m 2
5 20° 5m 8.5
k, 2.2 MN/m’ - WI/D 8.75m 17.1
9.5m 19
X Kim 1.5 MN/m* - 1/ 1 15.5m ; 35.1
K 0.8
- o 35° 5m 11.2
E k, 6.6 MN/m’ - 4l/D 8.75m 22.6
9.5 25
S| k. 2.4 MN/m* - 141 ro| 450 m
b 13m 37.1
< 4 .
S|k 2.4 MN/m* - 141
g K 0'70 rit 40 32m 2.1
k5 221\/{1\12/03 YlID 10m 83
n . m - /2
o, 1.5 MN/m" - VAl r | 900 17.5m 17.2
S Fim 1.5 MN/m* - %41 19m 19
K 0.8 ! /
3'50 it 40 1.6 m 2.7
0 - 10 m 11.2
k, 6.6 MN/m’ - 141/D s .
k. 2.4 MN/m* - 1l r | 900 o o oo
Kom 2.4 MN/m* - 141 m '

Tab. E.8: Summary of parameters for Fig. 11.5

cylindrical shell subjected to external pressure — linear bifurcation/eigenvalue analyses —
Oyl = 0.92-F- C,g/a) t/r

data | parameter value | comments

buckling pressure for “half-pressure”, i.e. with external pressure applied

Perino 5 to only 50 % of the circumference
_ buckling pressure for “full-pressure”, i.e. with external pressure applied
Perit.0 to 100 % of the circumference
[ l.5Sm=+15m ..
» 40, 50, 60, 75 2D shell elements; boundary conditions:

BC11/BC3 from EN 1993-1-6 (C,= 0.6)

r 900 mm
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Tab. E.9: Summary of pa

rameters for Fig. 11.6

cylindrical shell subjected to external pressure — linear bifurcation/eigenvalue analyses —
o, =0.92-E- Cy/w t /v

data | parameter value | comments

buckling pressure for “half-pressure”, i.e. with external pressure applied

Pericos to only 50 % of the circumference
buckling pressure for “full-pressure”, i.e. with external pressure applied

Perin 0 to 100 % of the circumference
/ 2.0m+30m oD shell el bound dic
shell elements; boundary conditions:
rht 40,50, 60, 75 BC1{/ BC1f from EN 1993-1-6 (Cy=1.5)
r 900 mm

Tab. E.10: Summary of parameters for Fig. 11.8

cylindrical shell subjec
0.=0.92-FE- Cy/a» t /1

ted to external pressure — linear bifurcation/eigenvalue analyses —

data | parameter value | comments
£ . Do buckling pressure for “half-pressure”, i.e. with uniform external
& = erit0-s pressure applied to only 50 % of the circumference
= % ' buckling pressure for “full-pressure”, i.e. with uniform external pressure
= Perino applied to 100 % of the circumference
= buckling pressure for “half-pressure”, i.e. with linear/hydrostatic
§ & Perinos external pressure applied to only 50 % of the circumference
= % buckling pressure for “full-pressure”, i.e. with linear/hydrostatic
= Perino external pressure applied to 100 % of the circumference
/ 1.8m=+14.4m N
ot 50 2D shell elements; boundary conditions:
BC11/BC3 from EN 1993-1-6 (Cy= 0.6)
r 900 mm






