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Introduction

Regularity properties of solutions of stochastic differential equations have been studied
by many authors ([33, 13, 15, 8, 9, 11, 6]). However, with the exception of [33], who
works in Lp-spaces with p ≥ 2 and [4], who considers spaces of Martingale-type 2, most
of the optimal regularity results so far were obtained in Hilbert spaces.

In this work we consider equations of the form{
dU(t) = AU(t)dt+BdWH(t) , t ∈ [0, T ]

U0 = ξ, ξ F0-measurable
(1)

where
(
A,D(A)

)
is the generator of a C0-semigroup on a general separable Banach

space E, B a bounded linear operator from a separable real Hilbert space H into E and
WH(t) : H → L2(Ω) a cylindrical Wiener process with Cameron Martin space H.

In particular this setting includes stochastic partial differential equation driven by space-
time white noise:

∂u

∂t
(t, x) = Lu(t, x) +

∂w

∂t
(t, x), x ∈ [0, 1], t ∈ [0, T ],

u(0, x) = 0, x ∈ [0, 1],

u(t, 0) = u(t, 1) = 0, t ∈ [0, T ],

(2)

where L is a uniformly elliptic operator of the form

Lf(x) = a(x)f ′′(x) + b(x)f ′(x) + c(x)f(x), x ∈ [0, 1],

with coefficients a ∈ Cε[0, 1] for some ε > 0 and b, c ∈ L∞[0, 1]. We will especially study
the effect of additional properties of E,A and B on the regularity of the paths of the
solution of (1).

In particular we are aiming at extending the optimal regularity results known in Hilbert
spaces to the Banach space setting (precise statements are given below). To this end we
often assume

• A to be the generator of an analytic semigroup or of a C0-group, in order to exploit
the smoothing effects of an analytic semigroup.
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• B to be in γ(H,E), the space of γ-radonifying operators from H into E, which
take the place of Hilbert Schmidt operators in the Hilbert space case and ensure
the existence of Gaussian measures on E.

• Occasionally we assume that E has finite cotype which means geometrically that
E does not contain ln∞’s uniformly for all dimensions n.

This work is based on the theory of stochastic integration in Banach spaces due to [45].
Even though the problem of stochastic integration in Banach spaces was studied by
many authors (see e.g. [5, 8, 19, 18, 48]) this new approach however allows direct links
to deep results of functional analysis and operator theory (see [30, 58, 34]). For instance
it is well known that the very satisfactory results in Hilbert spaces are due to the Itô
isometry. The approach in [45] now provides for the first time an analogon using the
γ-norm of the integrand. The isometry then reads as follows (compare Section 2.1):

E
∥∥∥∥∫ T

0

Φ(t)dWH(t)

∥∥∥∥2

= ‖IΦ‖2
γ. (3)

where IΦ is a integral operator connected with the integrand Φ. This isometry allows
us to apply results of operator theory for analyzing stochastic integrability by studying
the space of operators with finite γ-norm.

This also enables us to transfer Hilbert space results to the Banach space setting as done
in Theorem 3.2.7 or Theorem 4.2.1 and to develop a self contained theory of stochastic
differential equations. We illustrate this theory by discussing examples as the one quoted
above. The work is organized as follows:

The first chapter collects some concepts from Banach space valued integration, proba-
bility theory, the notion of radonifying operators and the H∞-functional calculus. Fur-
thermore we will develop the principle of γ-boundedness as an analogon to the well
known R-boundedness (for references see the individual sections).

Chapter two outlines the concept of stochastic integration and solutions of (1) due to
[45].

In chapter three we show existence and regularity of solutions of (1). The main result
of this chapter is Theorem 3.3.1:
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Assume A to be the generator of an analytic semigroup and B to be a γ-radonifying
operator. Furthermore, without loss of generality, we can assume that A has a negative
growth bound. We show how time regularity interacts with space regularity: consider
the ‘space regularity’-parameter η ≥ 0 and the ‘time regularity’-parameter θ ≥ 0. If the
two parameters then satisfy η + θ < 1

2
, we have

1. The random variables U(t) take values in D((−A)η) almost surely and we have

E‖U(t)− U(s)‖2
D((−A)η) ≤ C|t− s|2θ‖B‖2

γ(H,E) ∀t, s ∈ [0, T ],

with a constant C independent of B;

2. The process U has a version with paths in Cθ
(
[0, T ];D((−A)η)

)
.

In Section 3.3.2 this result will be carried forward to the setting where B is allowed to
be unbounded. These results allow us to analyze example 2 above.

As we will see in Theorem 3.3.1 in general we can only expect solutions in D((−A)η),

η < 1
2
, but not in D((−A)

1
2 ). In Hilbert spaces this was observed in [15, Theorem 5.14].

However, in chapter four we use geometrical properties of E and the H∞-calculus of
the operator −A to show precisely when maximal regularity, i.e. solutions with paths in
D((−A)

1
2 ), is possible.

Let E have finite cotype and assume that −A admits γ-bounded H∞-calculus of angle
0 < ωγ

∞(−A) < π
2
. Then the solution U of problem (SCP) has maximal regularity in the

sense that for all t ∈ [0, T ] we have U(t) ∈ D((−A)
1
2 ) almost surely and

E‖(−A)
1
2U(t)‖2 ≤ C‖B‖2

γ(H,E) (4)

for a suitable constant C independent of T > 0, t ∈ [0, T ], and B ∈ γ(H,E).

Also a characterization of the bounded H∞-calculus is given in Theorem 4.2.4. As
the following characterization (see Theorem 4.2.4) shows, the boundedness or the H∞-
calculus is essentially a necessary condition for maximal regularity.

Let both E and E∗ have finite cotype, and let −A be a sectorial operator in E of angle
0 < ω(−A) < π

2
. Then −A admits a bounded H∞-calculus if and only if

dU(t) = AU(t) dt+ x dWH(t), t ≥ 0,

U(0) = 0,

and

dŨ(t) = A�Ũ(t) dt+ x� dWH(t), t ≥ 0,

Ũ(0) = 0,
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have maximal regularity for all x ∈ E and x� ∈ E� := D(A∗), respectively.

In chapter five we assume A to be the generator of a C0-group S. We give a characteri-
zation of the existence of solutions of (1) in terms of the boundedness of the H∞-calculus.
If E and E∗ have finite cotype we show in Theorem 5.3.1 that the following are equiva-
lent:

(a) The equations

dU(t) = AU(t) dt+ x dWH(t), t ≥ 0,

U(0) = 0,

and

dŨ(t) = A�Ũ(t) dt+ x� dWH(t), t ≥ 0,

Ũ(0) = 0,

admit a weak solution in E resp. E� for all x ∈ E resp. for all x� ∈ E�.

(b) A has a H∞-calculus on each strip

Sω = {λ ∈ C : |Reλ| < ω}, ω > ω0(A).

In this chapter we also consider continuity of solutions and a detailed example for nonex-
istence for a certain class of stochastic differential equations (see Section 5.2).

Results of this work are also published in [20, 21].
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1. Preliminaries

1.1. Notations

Throughout this work E denotes in general a real separable Banach space with norm ‖·‖.
If F is another Banach space, L(E,F ) denotes the space of bounded linear operators
from E into F . In the case that E = F we simply write L(E). By E∗ we denote the
dual space of E, i.e. E∗ = L(E,R), and we write formally 〈·, ·〉 for the duality. The dual
of an operator B we denote by B∗.

For a closed and linear operator A defined on a subspace D(A) ⊂ E we write (A,D(A))
or simple A. If (A,D(A)) is densely defined, i.e. D(A) is dense in E the adjoint operator
(A∗,D(A∗)) is a linear operator from D(A∗) into E∗ where D(A∗) consists of all elements
x∗ ∈ E∗ for which there is a y∗ ∈ E∗ such that

〈x∗, Ax〉 = 〈y∗, x〉 .

We then set A∗x∗ := y∗.

The resolvent set ρ(A) ofA is defined as the set of all λ ∈ C for which (λI−A) is invertible
and therefore defines a bijection from D(A) onto E. The set {(λI −A)−1 : λ ∈ ρ(A)} is
referred to as resolvent of A. We mostly write R(λ,A) instead of (λI − A)−1.

The complement σ(A) := C \ ρ(A) is called the spectrum of A. The spectral bound s(A)
is defined as sup{λ ∈ σ(A)}.

1.2. Bochner and Pettis integration

In this section we will recall two possibilities of vector valued integration in Banach
spaces.

At first we describe briefly the extension of Lebesgue integration to vector-valued func-
tions (see e.g. [23]).

Let (Σ,S, µ) be a σ-finite measure space and E a Banach space. Consider functions
f : Σ → E of the form

f(s) =
n∑

i=1

xi1Si
(s)

9



1. Preliminaries

where xi ∈ E, Si ∈ S, i = 1, . . . , n (n ∈ N). Those functions are called step functions .
Here and in the following the characteristic functional 1S of a subset S ∈ Σ is defined
as

1S(s) =

{
1 if s ∈ S,
0 else

.

A general function f : Σ → E is called strongly measurable, if there exists a sequence
(fn)n∈N of step functions with

lim
n→∞

fn(s) = f(s)

µ-almost everywhere.

A function f : Σ → E is called weakly measurable if the function 〈f, x∗〉(·) := 〈f(·), x∗〉
is measurable for all x∗ ∈ E∗.

The famous Pettis measurability theorem (see [23, Theorem 2]) proves that a function
f : Σ → E is strongly measurable if and only if

1. the function f is weakly measurable,

2. f is almost surely separable-valued, i.e. there exists a N ⊂ S with µ(N) = 0 such
that f(Σ \N) is contained in a separable subspace of E.

The integral of a step function f =
∑n

i=1 xi1Si
is defined by∫

Σ

fdµ :=
n∑

i=1

xiµ(Si).

A function f : Σ → E is called Bochner integrable, if there exists a sequence of step
functions (fn)n∈N with

lim
n→∞

∫
Σ

‖fn − f‖dµ = 0.

In this case the limit ∫
Σ

fdµ := lim
n→∞

∫
Σ

fndµ

exists and defines the Bochner integral of f .

A strongly measurable function is Bochner integrable if and only if
∫

Σ
‖f‖dµ is finite.

For the integral
∫

Σ
f1Sdµ we will also write

∫
S
fdµ, S ∈ Σ.

The Bochner integral shares many properties of the Lebesgue integral. Of importance
is the estimate ∥∥∥∥∫

Σ

fdµ

∥∥∥∥ ≤ ∫
Σ

‖f‖dµ .

Also the following theorem will be frequently used.
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1.2. Bochner and Pettis integration

Theorem 1.2.1 Let E,F be Banach spaces and A : E ⊃ D(A) → F a closed linear
operator. Further let f : Σ → D(A) be Bochner integrable. If A ◦ f : Σ → F is Bochner
integrable then ∫

Σ

f(s)dµ(s) ∈ D(A) and

A

∫
Σ

f(s)dµ(s) =

∫
Σ

A ◦ f(s)dµ(s) .

The second concept of vector valued integration is called the Pettis integration (see
[50, 55, 23]), which is a kind of weak definition of the integral.This intrinsic definition is
closely related to the definition of stochastic integration given later on. It gains impor-
tance by the coherences to Bochner integration and certain measurability conditions.

A function f : Σ → E is called Pettis integrable, if it is weakly measurable and if for all
subsets A ∈ S there exists an element FA ∈ E such that for all x∗ ∈ E∗ we have

〈FA, x
∗〉 =

∫
A

〈f, x∗〉dµ .

In this situation we write

FA =

∫
A

fdµ .

In the context of Pettis integration we will be interested in ‘weak’
properties of f . Let 1 ≤ p ≤ ∞. A function f : Σ → E is called weakly Lp if it is
weakly measurable and the function 〈f, x∗〉 belongs to Lp(Σ) for all x∗ ∈ E∗.

In the literature ([55, Chapter II.3], [23]) there are given many sufficient conditions for
a function f : Σ → E to be Pettis integrable. From [45, Preliminaris] we adopt the
following list:

• If f is Bochner integrable then it is also Pettis integrable and the integrals coincide.

• If f is strongly measurable and weakly Lp for some p > 1, then f is also Pettis
integrable. If E is a separable Banach space then by the Pettis measurability
Theorem one can replace the strong measurability by the weak measurability of f .

• Pettis integrability can be characterized by properties of the Banach space E. We
have the equivalence of the following statements ([55, Proposition II.3.4]):

1. E does not contain a subspace isomorphic to c0.

11



1. Preliminaries

2. For an arbitrary finite measurable space (Σ,S, µ), each strongly measurable
function f : Σ → E which is weakly L1 is Pettis integrable.

• ([50, Theorem 3.4]) Let f : Σ → E be Pettis integrable and weakly Lp, 1 ≤ p ≤ ∞
and let q satisfy 1

p
+ 1

q
= 1. Then for g ∈ Lq the function gf is Pettis integrable

and defines a bounded operator If : Lq(Σ) → E by

Ifg :=

∫
Σ

gfdµ

where the integral on the right hand side is a Pettis integral.

1.3. Elements from probability theory

In this section we will give an excerpt from probability theory which fits in our setting.
The several parts can be found in various books on probability (cf. [1, 55, 29, 40]).

In the following let E be a real locally convex vector space and E∗ its topological dual.
Let B(E) be the Borel σ-algebra, i.e. B(E) = σ{B ⊂ E : B open } and

(
Ω,F ,P

)
a

probability space. I denotes an interval of the real line R.

An E-valued random element is a F -B(E)-measurable mapping from Ω into E. The
space of all those random elements will be denoted by L0(Ω, E). Suppose now that E is
a Banach space. For p > 0 let Lp(Ω, E) be the subspace of all X ∈ L0(Ω, E) for which∫

Ω

‖X(ω)‖pdP(ω) <∞

holds true. Elements of Lp(Ω, E) are called p-integrable or, in case p = 1 just integrable.

Identifying random elements which are almost surely equal, Lp(Ω, E) becomes a Banach
space for p ≥ 1 respectively a Hilbert space if p = 2.

1.3.1. Filtrations

Let
(
Ω,F ,P

)
be a complete probability space. A family of increasing sub-σ-algebras

{Ft : t ≥ 0} of F : Fs ⊂ Ft ⊂ F , 0 ≤ s < t < ∞ is called a filtration. A filtration is
called a standard filtration if

1. F0 contains all sets N ∈ F with P{N} = 0, and

2. Ft =
⋂
s>t

Fs for all t ≥ 0.

12



1.3. Elements from probability theory

1.3.2. Processes

A family X = {X(t)}t∈I of E-valued random variables X(t) defined on Ω is called a
stochastic process . If X(t) is Ft measurable, for any t ∈ I, then the process is called
adapted .

X can be viewed as a mapping from I ×Ω into E. If we fix an ω ∈ Ω, then the function
X(·, ω) is called a path or a trajectory of X.

A stochastic process Y is called a version or a modification of X if

P{ω ∈ Ω : X(t, ω) 6= Y (t, ω)} = 0 for all t ∈ I.

1.3.3. Gaussian measures

Let µ be a Borel measure on E. For x∗ ∈ E∗ consider the mapping fx∗ : E → R : x 7→
〈x, x∗〉. For all x∗ ∈ E∗ the image measure under the mapping fx∗ will be denoted by
〈µ, x∗〉 := µ ◦ f−1

x∗ .

A Gaussian measure on E is a measure whose image measure 〈µ, x∗〉 under each func-
tional x∗ ∈ E∗ is a Gaussian measure on R.

1.3.4. Cylindrical measures and cylindrical processes

In this section we introduce a further σ-algebra. If Γ ⊂ E∗, then the smallest σ-algebra
on E with respect to which all elements x∗ ∈ Γ are measurable will be denoted by
C̃(E,Γ) or simply by C̃(E) if Γ = E∗. In order to introduce cylindrical measures we will
recall the notion of cylinders.

Let {x∗1, . . . , x∗n} ⊂ E∗, B ∈ B(Rn) and n ∈ N. A set of the form

Cx∗1,...,x∗n,B = {x ∈ E : (〈x, x∗1〉, . . . , 〈x, x∗n〉) ∈ B}

is called a cylinder.

The set of all such cylinders forms an algebra C(E) on E but in general not a σ-algebra.
The σ-algebra σ(C(E)) coincides with the σ-algebra C̃(E). In polish spaces and so
in all separable Banach spaces the σ-algebra C̃(E) coincides with B(E) (see e.g. [55,
Proposition 1.4]).

Set functions C(E) → R+ which are σ-additive on all σ-algebras C̃(E,∆), where ∆ is a
finite subset of E∗ are called cylindrical measures. The set of all such functions will be
denoted by M(E).
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1. Preliminaries

A cylindrical process is defined as a family of linear operators (Xt)t∈[0,T ] from E∗ into
the space L0(Ω) of real valued random variables, i.e. for all x∗ ∈ E∗ and all t ∈ [0, T ],
Xt(x

∗) is a real valued random variable.

Now (Xt)t∈[0,T ] defines the family (νt)t∈[0,T ] of cylindrical measures on C(E) by

νt

(
Cx∗1,...,x∗n,B

)
= P {(Xt(x

∗
1), . . . Xt(x

∗
n)) ∈ B} .

The standard cylindrical Gaussian measure

A finitely additive set function ν on C(E) is called a cylindrical Gaussian measure, if
for all x∗ ∈ E∗ the measure 〈ν, x∗〉 defined by 〈ν, x∗〉(B) = ν(Cx∗,B), B ∈ σ(R) is a
Gaussian measure on R.

A cylindrical Gaussian measure as well as a Gaussian measure µ is uniquely determined
by the corresponding characteristic functional:

µ̂(x∗) =

∫
E

exp(i〈x, x∗〉)dµ(x)

= exp

(
iM(x∗)− 1

2
〈Qx∗, x∗〉

)
, x∗ ∈ E∗

where

M(x∗) =

∫
E

fx∗dµ, Q(x∗) =

∫
E

f 2
x∗dµ−M2(x∗), x∗ ∈ E∗.

Here M : E∗ → R is a linear functional and Q ∈ L(E∗, E) is a positive symmetric
operator, where by a positive and symmetric operator Q ∈ L(E∗, E) we understand an
operator for which 〈Qx∗, x∗〉 ≥ 0 and 〈Qx∗, y∗〉 = 〈Qy∗, x∗〉 for all x∗, y∗ ∈ E∗ holds
true.

If M≡ 0 we call the µ a centered (cylindrical) Gaussian measure.

If µ happens to be a Gaussian measure in the sense of 1.3.3 above then M is called the
mean and Q the (Gaussian) covariance operator.

Later on we will discuss under which conditions such an operator Q is indeed the co-
variance of a Gaussian measure µ.

The cylindrical Wiener Process

Now we consider the case that E = H is a real separable Hilbert space with scalar
product denoted by [·, ·]. As usual we will identify H∗ with H by the Riesz representation

14



1.3. Elements from probability theory

theorem. Set ∆ = {h1, . . . , hn} where h1, . . . , hn, n ∈ N, are orthonormal in H. We
define a mapping g∆ : H → Rn by g 7→ ([g, h1], . . . , [g, hn]).

A cylindrical measure on H is called a standard cylindrical Gaussian measure and will
be denoted by γH if g∆(γH) := γH ◦ g−1

∆ is a standard Gaussian measure on Rn, i.e. a
N (0, I) distributed Gaussian measure. Here I denotes the n-dimensional unit matrix.

Let (hn)n∈N be an orthonormal basis in H and (βn(t))t∈R a sequence of independent
Brownian motions on a certain probability space (Ω,F ,P). We assume that (Ft) is a
standard filtration with the properties (PF)

1. The Brownian motions (βn(t))t∈R, n ∈ N, are adapted, and

2. Fs and (βn(t)− βn(s)), n ∈ N are independent for 0 ≤ s < t.

Consider now for a fixed T > 0 the following family of operators

{WH(t)}t∈[0,T ] : H → L2(P), h 7→
∞∑

n=1

βn(t)[h, hn].

One can easily verify that the series on the right hand side converges in L2(P) and that
these operators are linear and bounded.

This process is called the cylindrical Brownian motion with Cameron-Martin-space H or
shortly the cylindrical Wiener Process and has the following characterizing properties:

1. For all h ∈ H, {WH(t)h}t∈[0,T ] is real-valued {Ft}-adapted Brownian motion;

2. For all s, t ∈ [0, T ] and g, h ∈ H we have

E
(
WH(s)g ·WH(t)h

)
= (s ∧ t)[g, h]H .

In the following we will shortly call WH Ft-adapted.

Remark 1.3.1 If we denote the corresponding family of cylindrical measures on H by
{γH

t }t≥0 then γH
1 equals the standard cylindrical Gaussian measure γH on H.

1.3.5. The Reproducing kernel Hilbert space

We have seen in Section 1.3.4 that we can define a cylindrical centered Gaussian measure
µ on a separable Banach space E by a positive and symmetric operator Q ∈ L(E∗, E).
The aim of this section is to find a Hilbert space (HQ, [·, ·]Q) continuously embedded in
E by an embedding iQ : H → E such that µ is just the image cylindrical measure of

15



1. Preliminaries

the standard cylindrical Gaussian measure γHQ (see [2, 15]). The presentation of this
subject follows [42, 43]. See also the references therein.

We define a scalar product on the range of Q, denoted by Ran(Q), by

[Qx∗, Qy∗]Q := 〈Qx∗, y∗〉 .

One can easily check that this defines indeed a scalar product. It is well defined since
if either Qx∗ = 0 or Qy∗ = 0 then surely [Qx∗, Q∗

y]Q = 0 because of the symmetry of
Q. The positivity results from the positivity of Q. To check that [·, ·] is definite assume
that [Qx∗, Qx∗]Q := 〈Qx∗, x∗〉 = 0, then by the Cauchy-Schwarz inequality we have for
all y∗ ∈ E∗

|〈Qx∗, y∗〉| ≤ 〈Qx∗, x∗〉
1
2 〈Qy∗, y∗〉

1
2 = 0.

Therefore, Qx∗ = 0.

Now we complete Ran(Q) with respect to [·, ·]Q. The resulting Hilbert space HQ is called
the reproducing kernel Hilbert space (briefly RKHS ). In the next step we will show that
the natural inclusion i : Ran(Q) → E extends to a bounded and actually injective
mapping iQ : HQ → E.

First we consider the mapping Q : E∗ → Ran(Q) ↪→ HQ with respect to the norm ‖ · ‖Q

induced by [·, ·]Q. This mapping is bounded since for all x∗ ∈ E∗

‖Qx∗‖2
Q = 〈Qx∗, x∗〉 ≤ ‖Q‖‖x∗‖2.

Next we compute for y∗ ∈ E∗

〈Qx∗, y∗〉 ≤ ‖Qx∗‖Q‖Qy∗‖Q ≤ ‖Qx∗‖Q‖Q‖L(E∗,HQ)‖y∗‖.

By taking the supremum over all y∗ ∈ E∗ with ‖y∗‖ ≤ 1 we obtain

‖Qx∗‖E ≤ ‖Q‖L(E∗,HQ)‖Qx∗‖Q

which shows that the inclusion Ran(Q) ↪→ E is bounded with respect to the scalar
product [·, ·]Q and admits a continuous extension to a mapping iQ : HQ → E.

Set hx∗ := Qx∗ for x∗ ∈ E∗. Then we have the identity

iQhx∗ = Qx∗

and we proceed by computing for all y∗ ∈ E∗

[hx∗ , hy∗ ] = 〈Qx∗, y∗〉 = 〈iQhx∗ , y
∗〉 = [hx∗ , i

∗
Qy

∗].

Since the elements hx∗ , x
∗ ∈ E∗, span a dense subset of HQ we have the identity

hy∗ = i∗Qy
∗
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and thus
Qy∗ = iQ(hy∗) = iQ(i∗Qy

∗)

which shows that Q = iQ ◦ i∗Q.

Finally assume that for an element g ∈ HQ we have iQg = 0. Then for all y∗ ∈ E∗

[g, hy∗ ]Q = [g, i∗Qy
∗] = 〈iQg, y∗〉 = 0.

Again due to density we find g = 0 which means that iQ is injective.

From the Hahn-Banach Theorem it follows that if E is separable, then E∗ is separable
in the weak* topology. Since i∗Q is weak*-to-weakly continuous it follows that HQ is
weakly separable, and hence as a Hilbert space also separable.

In the following we will work rarely with the RKHS but with arbitrary real separable
Hilbert spaces. The justification follows from the following proposition. There it is
stated that the RKHS enjoys a certain minimality property relative to the factorization
iQ ◦ i∗Q of Q.

Proposition 1.3.2 Let Q ∈ L(E∗, E) be positive and symmetric. Let H be a real separa-
ble Hilbert space and T ∈ L(H,E) an operator with the property T ◦T ∗ = Q. Then there
exists a unique linear bounded operator P : H → HQ such that the following diagram
commutes.

H
T−−−→ E

P

y yI

HQ −−−→
iQ

E

In particular, identifying iQ(HQ) with HQ, we have HQ = Ran(T ) as a subset of E.

Proof. Let H0 = (KerT )⊥ = Ran(T ∗) and π0 the orthogonal projection from H onto
H0. Now we define an operator P0 : Ran(T ∗) → HQ by P0(T

∗x∗) := i∗Qx
∗. This operator

extends to an isometry from H0 to HQ since by T ◦ T ∗ = Q we have

‖T ∗x∗‖2
H0

= 〈Qx∗, x∗〉 = ‖i∗Qx∗‖2
Q.

Now we define P := P0 ◦ π0. To see that T = iQ ◦ P consider an arbitrary h ∈ H. Since
H = H0⊕KerT we may write h = T ∗x∗+g for suitable x∗ ∈ E∗, g ∈ KerT and compute

T (h) = T (T ∗x∗ + g) = TT ∗x∗ = iQi
∗
Qx

∗ = iQP0(T
∗x∗) = iQP (h)

which shows T = iQ ◦ P .

For the uniqueness consider a further operator P̃ with T = iQ ◦ P̃ . Then iQ(P̃ −P ) = 0
and therefore P̃ − P = 0 by the injectivity of iQ.
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1.4. Randonifying operators

If we deal with a cylindrical measure the question arises if we can therefrom obtain a
regular measure on a possibly other space. Can we characterize those mappings which
map cylindrical measures into ”normal” ones? The results below are taken from [55,
Chapter IV.5].

Let for the moment E be a locally convex topological vector space and E∗ its topological
dual. Further let µ be a cylindrical measure on C(E). One says then µ admits a Radon
extension, if there exists a Radon measure µ̃ which equals µ on C(E).

We recall that a Radon measure µ on E is a finite Borel measure with the additional
property

µ(B) = sup{µ(K) : K ⊂ B,K compact}

for each B ∈ B(E). In other words: for every B ∈ B(E) and every ε > 0 there exists a
compact set Kε ⊂ B, such that

µ(B \Kε) < ε. (∗)

A measure is called tight if (∗) holds for B = E. Under a uniformly tight family of
measures M we understand a family of radon measures for which (∗) holds for every
µ ∈M .

If E is a separable Banach space (or more general a Polish space) then µ admits a Radon
extension if and only if µ is σ-additive on C(E). This follows because in this case we
have C̃(E) = B(E) ([55, Theorem1.2]) and further because in those spaces we have that
every Borel measure is in fact a Radon measure (see e.g. [24, Satz VIII.1.5.]).

Let E,F be both locally convex topological vector spaces. A linear and continuous
mapping T : E → F is called radonifying for µ, if the image cylindrical measure T (µ)
admits a Radon extension on F .

In the following let H be a separable Hilbert space with with ONB (hn)n∈N and E a
separable Banach space. By γH we denote again the standard cylindrical Gaussian mea-
sure. A radonifying operator T : H → E will be called γ-radonifying if the cylindrical
image measure of γH extends to a σ-additive measure on E. This is the main setting in
this work and we will also write radonifying instead of γ-radonifying.

The next proposition ties up to considerations in (1.3.4). It is proved in [55, Chapter
III and Proposition VI.3.3.].

Proposition 1.4.1 Let E be a locally convex topological vector space and H be a real
Hilbert space. Let T ∈ L(H,E). The cylindrical image measure µ := T (γH) is a
centered cylindrical Gaussian measure on E whose characteristic functional is given by
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1.4. Randonifying operators

µ̂(x∗) =

∫
E

exp(i〈x, x∗〉)dµ(x)

= exp

(
−1

2
〈(T ◦ T ∗)x∗, x∗〉

)
, x∗ ∈ E∗.

The operator T ◦ T ∗ is positive and symmetric and determines a centered cylindrical
Gaussian measure. The next proposition (see [43, 2.4 Proposition]) answers the question
when such an operator is indeed a Gaussian covariance.

Proposition 1.4.2 Let E be a separable real Banach space and H a separable real Hilbert
space. Let (γn)n∈N be a sequence of independent standard Gaussian variables on a prob-
ability space (Ω,F ,P). For T ∈ L(H,E) the following assertions are equivalent:

1. T ◦ T ∗ is the covariance of a Gaussian measure µ on E.

2. There exists an orthonormal basis (hn)n∈N of H such that the Gaussian series
∞∑

n=1

γnThn converges in L2(Ω, E).

In this situation we have that for every orthonormal basis (hn)n∈N and every p ∈ [1,∞)
the series converges unconditionally in Lp(Ω, E) and almost surely and we have∫

E

‖x‖pdµ(x) = E

∥∥∥∥∥
∞∑

n=1

γnThn

∥∥∥∥∥
p

Thus a bounded operator T ∈ L(H,E) is γ-radonifying if it satisfies the equivalent
conditions of the last theorem. For such an operator we define the γ-norm ‖T‖γ(H;E) by

‖T‖γ(H;E) :=

(∫
E

‖x‖2dµ(x)

) 1
2

=

E

∥∥∥∥∥
∞∑

n=1

γnThn

∥∥∥∥∥
2
 1

2

.

If it is clear from the context which spaces E and H are meant we shall also write ‖ · ‖γ

instead of ‖ · ‖γ(H;E). It is easy to see that ‖ · ‖γ defines indeed a norm. The space
of all operators satisfying the equivalent conditions in the last theorem forms a linear
subspace of L(H,E) and will be denoted by γ(H,E). Moreover it is known (see [48,
Lemma 32]) that γ(H,E) endowed with the norm ‖ · ‖γ is a real Banach space.

The operator T is said to be almost summing if the partial sums
∑N

n=1 γnThn are uni-
formly bounded in L2(Ω;E). Every γ-radonifying operator is almost summing and we
have

‖T‖2
γ(H,E) = sup

N≥1
E
∥∥∥ N∑

n=1

γn Thn

∥∥∥2

. (1.1)
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1. Preliminaries

If E does not contain a closed subspace isomorphic to c0, then a celebrated theorem of
Hoffmann-Jorgensen and Kwapień [36, Theorem 9.29] implies that every almost summing
operator from H to E is γ-radonifying. For more information we refer to [3, 36, 48, 55].

For Gaussian measures we have the following useful domination result.

Proposition 1.4.3 Let R ∈ L(E∗, E) be the covariance of a Gaussian measure ν and
let Q ⊂ L(E∗, E) be a family of positive symmetric operators. If for every x∗ ∈ E∗ and
every Q ∈ Q the estimate

〈Qx∗, x∗〉 ≤ 〈Rx∗, x∗〉

holds true, then every Q ∈ Q is a covariance of a Gaussian measure µQ. Further the
family MQ = {µQ} is uniformly tight and for all p ≥ 1 and all µQ ∈MQ we have∫

E

‖x‖pdµQ(x) ≤
∫

E

‖x‖pdν(x).

For the proof of the first part of the proposition and the tightness assertion see [3,
3.3.1. Theorem ] and the proof thereafter. The last part is shown in [3, 3.3.7. Corollary].

γ-radonifying operators share an ideal property which turns out to be very important
in our framework.

Proposition 1.4.4 Consider T ∈ γ(H,E), S ∈ L(H1, H) and U ∈ L(E,E1), where
H1, H are Hilbert spaces end E,E1 are Banach spaces. Then the composition U ◦ T ◦ S
is again γ-radonifying and we obtain the norm estimate

‖U ◦ T ◦ S‖γ(H1,E1) ≤ ‖S‖‖T‖γ(H,E)‖U‖.

Proof. One can easily see that U ◦ T is γ-radonifying and we have

‖U ◦ T‖γ(H;E1) ≤ ‖U‖‖T‖γ(H,E).

Hence it suffices to show that T ◦ S ∈ γ(H1, E) with

‖T ◦ S‖γ(H1,E) ≤ ‖T‖γ(H,E)‖S‖. (1.2)

To show this let R := T ◦ T ∗ and Q = T ◦ S ◦ S∗ ◦ T ∗. Then,

〈Qx∗, x∗〉 = ‖S∗ ◦ T ∗x∗‖2
H1
≤ ‖S‖2‖T ∗x∗‖2

H = ‖S‖2〈Rx∗, x∗〉.

Now, an easy rescaling argument together with Proposition 1.4.3 show that Q is a
Gaussian covariance and (1.2) holds true.
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1.4. Randonifying operators

If E is itself a Hilbert space it is much easier to decide whether T ∈ L(H,E) is γ-
radonifying. By writing out the respective norms one can see that in the Hilbert space
case T is γ-radonifying if and only if T is a Hilbert-Schmidt operator. We have

‖T‖γ = ‖T‖HS

where ‖ · ‖HS is the Hilbert-Schmidt norm defined by

‖T‖2
HS :=

∞∑
n=1

‖Thn‖2,

where (hn)n∈N is again an arbitrary orthonormal base in H.

Definition 1.4.5 Let (S,Σ, ν) be a finite measure space. We call ϕ : S → E weakly Lp

if the function 〈ϕ, x∗〉 is measurable and belongs to Lp(S) for all x∗ ∈ E∗.

We say that a function Φ : (0, T ) → L(H,E) is H-weakly L2 if for all x∗ ∈ E∗ the map
t 7→ Φ∗(t)x∗ is strongly measurable and satisfies∫ T

0

‖Φ∗(t)x∗‖2
H dt <∞ .

Let Φ : (0, T ) → L(H,E) be H-weakly L2. We say that Φ represents an operator
T ∈ L(L2(0, T ;H), E) if

Tf =

∫ T

0

Φ(t)f(t) dt, f ∈ L2(0, T ;H), (1.3)

where the integral exist as an Pettis integral in E. In this situation we sometimes write
T = IΦ. Note that this operator is the adjoint of the operator x∗ 7→ Φ∗(·)x∗ from E∗ into
L2(0, T ;H). We denote by γ(0, T ;H,E) the vector space of all functions Φ : (0, T ) →
L(H,E) which represent a γ-radonifying operator IΦ ∈ L(L2(0, T ;H), E). For such a
function we define

‖Φ‖γ(0,T ;H,E) := ‖IΦ‖γ(L2(0,T ;H),E).

It is easy to see that for all Φ ∈ γ(0, T ;H,E) the reflected function t 7→ Φ(T − t)
belongs to γ(0, T ;H,E) with equal norm. Moreover, for all t ∈ (0, T ) the restriction
Φ|(0,t) belongs to γ(0, t;H,E), and an easy application of Kahane’s contraction principle
gives ∥∥Φ|(0,t)

∥∥
γ(0,t;H,E)

≤ ‖Φ‖γ(0,T ;H,E). (1.4)

The following simple lemma will be useful.

Lemma 1.4.6 If g ∈ L2(0, T ) and B ∈ γ(H,E), then the function gB : t 7→ g(t)B
belongs to γ(0, T ;H,E) and we have

‖gB‖γ(0,T ;H,E) = ‖g‖L2(0,T )‖B‖γ(H,E).
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1. Preliminaries

Proof. Let (fn) and (hm) be orthonormal bases for L2(0, T ) and H, respectively, and
note that (fn ⊗ hm) is an orthonormal basis for L2(0, T ;H). Let (γmn) be a doubly
indexed Gaussian sequence and define

ξm :=
∑

n

γmn

∫ T

0

fn(t)g(t) dt.

The sum defining each ξm converges in L2(Ω) and is N(0, ‖g‖2) distributed, and the
resulting i.i.d. sequence (ξm) is Gaussian.

Define S : L2(0, T ;H) → E by

Sf :=

∫ T

0

g(t)Bf(t) dt, f ∈ L2(0, T ;H).

Then gB represents S and we have

‖S‖2
γ(L2(0,T ;H),E) = E

∥∥∥∑
m

∑
n

γmn

∫ T

0

fn(t)g(t)Bhm dt
∥∥∥2

= E
∥∥∥∑

m

ξmBhm

∥∥∥2

= ‖g‖2 ‖B‖2
γ(H,E).

Remark 1.4.7 Observe that SS∗ = ‖g‖2
L2(0,T )BB

∗. Since by assumption BB∗ is a
Gaussian covariance operator, the same is true for SS∗ and the result follows.

For H = R the above definitions simplify by canonically identifying L(R, E) with E.
Accordingly, a function ϕ : (0, T ) → E which is weakly-L2 is said to represent an
operator T ∈ L(L2(0, T ), E) if

〈Tf, x∗〉 =

∫ T

0

〈ϕ(t), x∗〉f(t) dt, f ∈ L2(0, T ), x∗ ∈ E∗,

and we write ϕ ∈ γ(0, T ;E) if the operator T = Iϕ is γ-radonifying. As before we define
‖ϕ‖γ(0,T ;E) := ‖Iϕ‖γ(L2(0,T ),E).

1.5. Boundedness with respect to random sequences

In the recent time there is a growing interest in the so called R-boundedness (see e.g.
[58, 30]). In the context of this work we need the related notion of γ-boundedness which
is very similar to R-boundedness and many results can be shown in the same manner
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1.5. Boundedness with respect to random sequences

as in [58, Chapter 2]. To include all cases we formulate the results in an even more
general way. In the following we will introduce a generalized definition of boundedness
with respect to certain random sequences and see that many of the results known from
the R-boundedness hold also in the general case.

Definition 1.5.1 Let (ξn) be any sequence of symmetric real valued random variables
not necessarily independent with finite second moments, i.e. for all n ∈ N exists a
constant Cn with E‖ξn‖2 < Cn. A set τ ⊂ B(X, Y ) is called bounded with respect to
(ξn) (or shorter (ξn)-bounded if there is a constant C ∈ R such that for all T1, . . . , Tm ∈ τ
and x1, . . . , xm ∈ X(

E
∥∥∥ m∑

n=1

ξnTnxn

∥∥∥2

Y

)1/2

≤ C
(

E
∥∥∥ m∑

n=1

ξnxn

∥∥∥2

X

)1/2

. (1.5)

The smallest constant C, for which (1.5) holds is denoted by Ξ(τ).

Examples 1.5.2 a) If (ξn) = (rn) is a sequence of independent Rade macher random
variables (i.e. P(rn = 1) = P(rn = −1) = 1/2) and (1.5) holds for τ ⊂ B(X, Y ) we say
that τ is R-bounded and denote its bound by R(τ).

b)If (ξn) = (γn) is a sequence of real-valued independent N (0, 1)-distributed Gaussian
random variables we say accordingly γ-bounded with bound Γ(τ).

Lemma 1.5.3 Let τ ⊂ B(X, Y ) be a (ξn)-bounded collection with bound C. Then the
closure τ in the strong operator topology is also (ξn)-bounded, with the same (ξn)-bound.

Proof. Let m ∈ N be fixed and choose T1, . . . , Tm ∈ τ . Then for every Tn n = 1, . . . ,m
and every x ∈ X there exist operators Tn,k ∈ τ, k ∈ N and such that

‖(Tn − Tn,k)x‖Y → 0 as k →∞ for all n = 1, . . . ,m.

Hence we have for certain constants Cn, n = 1, . . . ,m,∥∥ m∑
n=1

ξnTnxn

∥∥
L2(Ω;Y )

≤
∥∥ m∑

n=1

ξn(Tn − Tn,k)xn

∥∥
L2(Ω;Y )

+
∥∥ m∑

n=1

ξnTn,kxn

∥∥
L2(Ω;Y )

≤
m∑

n=1

Cn‖(Tn − Tn,k)xn‖Y + C
∥∥ m∑

n=1

ξnxn

∥∥
L2(Ω;X)

.

Since the first term goes to zero as k tends to infinity, the result follows.

Lemma 1.5.4 Let G be an index set and let Tn(s) ∈ B(X,Y ) for n ∈ N and s ∈ G.
Assume that

T (s) =
∞∑

n=1

Tn(s), s ∈ G
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converges in the strong operator topology of B(X, Y ) for all s ∈ G. Then

Ξ({T (s) : s ∈ G}) ≤
∞∑

n=1

Ξ({Tn(s) : s ∈ G}).

The proof proceeds like the proof of [58, 2.4. Lemma].

With these lemmata we can prove the following useful proposition:

Proposition 1.5.5 Let J ⊂ R be an interval and t ∈ J → M(t) ∈ B(X, Y ) have an
integrable derivative. Then {M(t) : t ∈ J} is (ξn)-bounded. And its bound can be
estimated by

Ξ({M(t) : t ∈ J}) ≤ ‖M(a)‖+

∫ b

a

‖M ′(s)‖ds.

Proof. We proceed as in the proof of [58, 2.5. Proposition].

If J = [a, b), a < b ≤ ∞, and σ = {t0, t1, . . . , t} is a partition of J , we set

Mσ(t) = M(a) +
n∑

j=1

1[tj−1,b)(t)

∫ tj

tj−1

M ′(s)ds.

Now by observing that for τ = {T}, T ∈ B(X, Y ), we have Ξ(τ) = ‖T‖ and Lemma
1.5.4 we have

Ξ({Mσ(t) : t ∈ J}) ≤ ‖M(a)‖+
n∑

j=1

Ξ({Nj(t), t ∈ J})

where Nj(t) := 1[tj−1,b)(t)Aj with Aj :=
∫ tj

tj−1
M ′(s)ds.

Fix j ≤ n. For m ∈ N choose s1, . . . , sm ∈ [a, b) and x1, . . . , xm ∈ X. Set Ij := {i =
1, . . . ,m : 1[tj−1,b)(si) 6= 0}. Now we can estimate the (ξn)-bound of {Nj(t), t ∈ [a, b)}

E
∥∥∥ m∑

i=1

ξiNj(si)xi

∥∥∥2

= E
∥∥∥∑

i∈I

ξiAjxi

∥∥∥2

≤ ‖Aj‖2 E
∥∥∥∑

i∈I

ξixi

∥∥∥2

≤ ‖Aj‖2 E
∥∥∥ m∑

i=1

ξixi

∥∥∥2

.

The last inequality followed from a version of the Kahane contraction principle (see [36,
Lemma 4.6]).

24



1.6. The H∞-calculus

With this estimate we obtain

Ξ({Mσ(t) : t ∈ J}) ≤ ‖M(a)‖+
n∑

j=1

∥∥∥∫ tj

tj−1

M ′(s)ds
∥∥∥

≤ ‖M(a)‖+

∫ b

a

‖M ′(s)‖ds.

Since t 7→M(t) is continuous in the uniform operator topology, we can choose a sequence
of partitions σn, n ∈ N with Mσn(t) → M(t) as n → ∞ for t ∈ J . Proposition 1.5.3
yields now that {M(t) : t ∈ J} is (ξn)-bounded. The case where J is an arbitrary
interval can be deduced from the preceding results.

As an application of this proposition we state the following

Lemma 1.5.6 If A generates an analytic C0-semigroup S on E, then for all k ∈ N, ε > 0
the family Tk,ε := {tk+εAkS(t), t ∈ (0, T )} is R-bounded.

Proof. By the previous lemma it suffices to check that for all k ∈ N, the function t 7→
tk+εAkS(t) has an integrable derivative on (0, T ), and this follows from the boundedness
of ‖tkAkS(t)‖.

The following multiplier result is a straightforward generalization of a result in [30],
where it is formulated for the case H = R.

We call an operator-valued function M : (0, T ) → L(E) strongly measurable if M :
(0, T ) → E, Mx(t) := M(t)x, is strongly measurable for all x ∈ E.

Lemma 1.5.7 If M : (0, T ) → L(E) is strongly measurable and {M(t) : t ∈ (0, T )} is
γ-bounded with bound Γ, then for all Φ ∈ γ(0, T ;H,E) the function M(·)Φ(·) belongs to
γ(0, T ;H,E) and

‖M(·)Φ(·)‖γ(0,T ;H,E) ≤ Γ‖Φ(·)‖γ(0,T ;H,E).

1.6. The H∞-calculus

For the analysis of stochastic differential equations of the form{
dU(t) = AU(t)dt+BdWH(t) , t ∈ [0, T ]

U0 = 0
(1.6)

we need the functional analytic calculus of A. In this equation
(
A,D(A)

)
denotes the

generator of a C0-semigroup on a separable Banach space E, B a bounded linear operator
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1. Preliminaries

from a separable real Hilbert space H into E and WH(t) : H → L2(Ω) a cylindrical
Wiener process with Cameron Martin space H.

In order to obtain solutions and to study their regularity we will be amongst others
interested in spectral properties of the operator A. In this chapter we will encounter
further properties of A such as: A is the generator of an analytic semigroup or A
has a bounded H∞-calculus (see below). To define this properties we need additional
definitions.

1.6.1. Sectorial operators

In this subsection we deal with operators whose spectrum is contained in a certain subset
of C, called a sector. For those operators we can define an operator calculus which leads
to the definition of fractional powers. The latter will enable us to define interpolation
and extrapolation spaces of the Banach space E with respect to the operator A.

The subset of the complex plane Σσ = {z ∈ C \ {0} : −σ < arg z < σ}, σ ∈ (0, π) is
called a sector.

Definition 1.6.1 A closed linear operator is called sectorial of type σ if its spectrum
is contained in the closure of the sector Σσ for a σ ∈ (0, π) and additionally for each
θ ∈ (σ, π) there exists a constant Mθ such that the resolvent estimate

‖λR(λ,A)‖ ≤Mθ for all λ 6∈ Σθ (1.7)

holds true.

Notation 1.6.2 By ω(A) we denote the infimum of all such σ.

We use the notation S(E) for the class of those sectorial operators on E that are densely
defined, injective and have dense range and the notation Sσ(E) to classify those operators
in S(E) which are of type σ. In [34, 15 Appendix] it is shown that by switching to a
suitable subspace of E the properties of A ∈ S(E):

1. A is densely defined,

2. A has dense range,

3. A is injective,

hold naturally. We remark that the property of injectivity even in E itself follows from
the other two (see [12]).

Now we will recall two examples of sectorial operators.
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1.6. The H∞-calculus

C0-Semigroups

As an example of sectorial operators of type σ ≤ π
2

can serve - under appropriate
conditions as explained below - the the negative generator −A of a C0-semigroup T.

Because the notion of semigroups is central in this work we will give a short outline.
The detailed theory can be found amongst many others in [25] or [49].

A family T := (T (t))t≥0 of operators T (t) ∈ L(E), t ≥ 0, is called a semigroup of
bounded linear operators or briefly a semigroup if

(S1) T (0) = I,

(S2) T (t+ s) = T (t)T (s) for every t, s ≥ 0,

where I denotes the identity operator on E.

A semigroup T is a uniformly continuous semigroup if limt↓0 ‖T (t)−I‖ = 0. A semigroup
T is a C0-semigroup if it is strongly continuous, i.e.

lim
t↓0

T (t)x = x for every x ∈ E,

which implies that it has continuous orbits t 7→ Ttx.

The linear operator A defined by

D(A) =

{
x ∈ E : lim

t↓0

T (t)x− x

t
exists

}
and

Ax = lim
t↓0

T (t)x− x

t

is the infinitesimal generator (or briefly the generator) of the semigroup T. D(A) is the
domain of A.

For every C0-semigroup T there exist constants ω ∈ R and M ≥ 1 such that

‖T (t)‖ ≤Meωt. (1.8)

The infimum of all ω ∈ R for which there exists a constant M = M(ω) ≥ 1 such that
‖T (t)‖ ≤Meωt is called the growth bound of T. It will be denoted by ω0 = ω0(T).

If ω0 = 0 T is called uniformly bounded. If ω0 ≤ 0 and M = 1 T is called a C0-semigroup
of contractions.

For C0-semigroups we have the following characterization due to Hille and Yosida (con-
traction case), Feller, Miyadera and Phillips (general case) (see [25, 3.8 Generation
Theorem]).
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1. Preliminaries

Proposition 1.6.3 A linear operator A is the generator of a C0-semigroup T satisfying
‖T (t)‖ ≤Meωt, if and only if

1. A is closed and densely defined,

2. for every λ ∈ C with Reλ > ω one has λ ∈ ρ(A) and

‖R(λ,A)n‖ ≤ M

(Reλ− ω)n
for all n ∈ N.

From this Proposition it follows directly, that −A is sectorial of type σ ≤ π
2

if ω0 ≤ 0.

Sometimes it is useful to consider the C0-semigroup S = (S(t)) = (eβtT (αt)), β ∈
C, α > 0. If β = −ω0 or β < −ω0 then S will have growth bound equal or less than zero.
Moreover S has generator B = αA+ βI with domain D(B) = D(A), σ(B) = ασ(A) + β
and R(λ,B) = 1

α
R(λ− β

α
, A) for λ ∈ ρ(B).

We will call S the (α, β)-rescaled semigroup. In our context we will work with the case
β < −ω0, α = 1. The (1, β)-rescaled semigroup with β < −ω0 we will therefore call
briefly the rescaled semigroup. The precise value of β will thereby play no role and is
hence suppressed in this notation.

Analytic semigroups

(see [49, 25, 34].) The class of analytic semigroups is a certain subclass to the class S(E)
of sectorial operators as we will see below.

Let (A,D(A)) be a closed and densely defined operator in E. furthermore let A have its
spectrum outside a sector Σσ = {λ ∈ C : −σ < arg λ < σ} \ {0} where σ ∈ (π

2
, π). The

resolvent R(λ,A) of A satisfies the estimate

‖λR(λ,A)‖ ≤Mσ′ , λ ∈ Σσ′ ,

for σ′ < σ.

For an A with those properties we can define a family of bounded linear operators by
the contour integral

T (z) :=
1

2πi

∫
Γ

eλzR(λ,A)dλ, z ∈ Σσ−π
2
,

where Γ = ∂(Σθ \ {λ ∈ C : |λ| ≤ ε}) for some θ ∈ (π
2
, σ) and ε > 0. For z, z1, z2 ∈ Σσ−π

2

we then have the following properties:

d

dz
T (z) = AT (z),

T (z1)T (z2) = T (z1 + z2).

‖T (z)‖ is bounded in Σδ for every δ < σ − π
2
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1.6. The H∞-calculus

Set T (0) = I then the family T = (T (z))z∈Σσ−π
2
∪{0} is analytic and has the semigroup

property. We will call T a bounded analytic semigroup. We also have that (T (s))s∈R+

defines a C0-semigroup.

The resolvent R(λ,A) can be recovered from T by

R(λ,A) =

∫ ∞

0

e−λtT (t)dt, Reλ > 0.

A detailed description of the convergence of the contour integral and the whole theory
can be found in many books (see e.g. in[25, Chapter II.4]).

The next theorem (see [25, 4.6 Theorem]) presents the connection between analytic
semigroups and sectorial operators. It also gives estimates which will turn out to be
very useful.

Theorem 1.6.4 For a closed and densely defined operator A on a Banach space E the
following are equivalent:

1. For some δ > 0, A generates a bounded analytic semigroup (T (z))z∈Σδ∪{0}.

2. −A is sectorial of type σ < π
2
.

1.6.2. Construction of the H∞-calculus

In this subsection we will roughly outline the H∞-functional-calculus. A functional
calculus in general is an algebra homeomorphism Φ from an algebra F of functions
f : Λ → C, Λ ⊂ C, into the space L(E).

Such a map is called a bounded functional calculus with respect to a norm ‖ · ‖F on F if
there is a constant C > 0 with

‖Φ(f)‖L(E) ≤ C‖f‖F for all f ∈ F . (1.9)

The aim of such a calculus is that we can first calculate with functions in F which is
often more intuitive and then transfer the results to L(E) due to (1.9).

Consider now the class Sω of injective sectorial operators of type ω which have dense
range. For σ ∈ (ω, π) let H(Σσ) denote the algebra of holomorphic functions defined on
Σσ and H∞(Σσ) the subalgebra of H(Σσ) consisting of all bounded functions. For the
construction of the functional calculus we further need the class H∞

0 (Σσ) which is itself
a subalgebra of H∞(Σσ) consisting of those functions which satisfy an estimate

|f(λ)| ≤ C
|λ|ε

(1 + |λ|2)ε
, λ ∈ Σσ,
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for some C, ε > 0.

Characteristic for these functions is that z 7→ f(z)
z

is integrable in zero and infinity along
the contour Γ of a sector Σσ′ , i.e. Γ = ∂Σσ′ , ω < σ′ < σ. Since on Γ for A ∈ Sω(E) we
have the growth estimate (1.7) , we can define a bounded operator f(A) on E by the
contour integral

f(A) :=
1

2πi

∫
Γ

f(λ)R(λ,A)dλ, f ∈ H∞
0 (Σσ).

One can show that this map is independent of σ′ and defines an algebra homeomorphism
from H∞

0 (Σσ) into L(E) (see [34, Section II.9], [26]). So far H∞
0 (Σσ) is to limited too

satisfy our needs.

In order to extend the functional calculus from H∞
0 (Σσ) to H∞(Σσ) we can make use of

regularizing functions. Consider A ∈ Sω(E) and f ∈ H∞(Σσ). A regularizing function
ϕ is an element of H∞

0 (Σσ) such that ϕ(A) is injective and ϕf ∈ H∞
0 (Σσ). Then we can

define the extended functional calculus in a natural way by

f(A) := ϕ(A)−1(ϕf)(A)

D(f(A)) = {x ∈ E : (ϕf)(A)x ∈ D(ϕ−1(A))}.

For the extension to the class H∞(Σσ) one could choose as regularizing function the
function ψ = z(1 + z)−2. To extend the calculus to the class of polynomially bounded
functions we can use suitable powers ψα of ψ (see [27], [34]).

We have the following properties of the H∞-calculus: for the functions f0(z) = 1,
f1(z) = z we have f0(A) = IdE and f1(A) = A. Furthermore for rλ(z) = (λ − z)−1 we
obtain rλ(A) = R(λ,A).

We also can define fractional powers Aα of A, α ∈ C via the functional calculus.

The next definition characterizes an important regularity property of A which will play
an important role in analyzing regularity of the stochastic differential equations treated
in this work (see [34, 9.10 Definition, 9.11 Remark]).

Definition 1.6.5 We say an operator A ∈ Sω(E) has a bounded H∞(Σσ)-functional-
calculus, 0 ≤ ω < σ ≤ π, if there exists a constant C > 0 such that for all f ∈ H∞(Σσ),
we have f(A) ∈ L(E) and

‖f(A)‖ ≤ C‖f‖H∞(Σσ) (1.10)

where ‖ · ‖ denotes the supremum norm on Σσ.

Remark 1.6.6 To assure (1.10) in the definition above it suffices to have the estimate
for all f in the smaller class H∞

0 (Σσ).

Notation 1.6.7 By ω∞ = ω∞(A) we denote the infimum over all σ with 0 ≤ ω < σ ≤ π
for which (1.10) holds. For the norm ‖ · ‖H∞(Σσ) we will also write ‖ · ‖∞.
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1.6. The H∞-calculus

The γ-bounded H∞-calculus

In Chapter 4 we will encounter an assumption on the generator A which is stronger than
the bounded H∞(Σσ) calculus.

For a general operator A ∈ Sω(E) we consider the following. If A admits not only a
bounded H∞(Σσ) calculus but the set

{f(A) : ‖f‖H∞(Σσ) ≤ 1} (1.11)

is γ-bounded, we say that A has a γ-bounded H∞(Σσ)-calculus. We say that A admits a
γ-bounded H∞-calculus if it admits a γ-bounded H∞(Σσ)-calculus for some 0 < σ < π.
Analogously to the case in 1.6.7 we have the following.

Notation 1.6.8 By ωγ
∞ = ωγ

∞(A) we denote the infimum over all σ with 0 ≤ ω < σ ≤ π
for which (1.10) holds and the we have that the set in (1.11) is γ-bounded.

For more details we refer to [17, 31, 30, 34].

On a Hilbert space E, negative generators of C0-contraction semigroups, as well as
negative generators given by closed sectorial forms, admit a γ-bounded H∞-calculus.
It is also known that a large class of elliptic partial differential operators on regular
bounded domains in Rd admit a γ-bounded H∞-calculus (see [17, 34]).

The following lemma will be used in the Section 4.2. See [21] and [16, Lemma 3.1] for a
related result. We use the notation Bl∞ for the closed unit ball of l∞.

Lemma 1.6.9 Assume that −A admits a γ-bounded H∞-calculus of angle 0 < ω∞(−A) <
π. Fix a function f ∈ H∞

0 (Σσ), where ω < σ < π. Then the family

F =
{ N∑

n=1

anf(−2−nsA) : N ≥ 1, s > 0, a ∈ Bl∞

}
is γ-bounded, with γ-bound depending only on A and σ.

Proof. For N ≥ 1, s > 0, and a ∈ Bl∞ fixed, define fN,s,a : Σσ → C by

fN,s,a(λ) :=
N∑

n=1

anf(2−nsλ).

Since f ∈ H∞
ε (Σσ) for some ε > 0,

|fN,s,a(λ)| ≤
N∑

n=1

( 2−ns|λ|
1 + (2−ns|λ|)2

)ε

=: MN(s|λ|).

It is elementary to check that supr>0,n≥1Mn(r) < ∞, and therefore the family
{
fN,s,a :

N ≥ 1, s > 0, a ∈ Bl∞
}

is uniformly bounded in H∞(Σσ). The result now follows from
the fact that −A admits a γ-bounded H∞(Σσ)-calculus.
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2. Stochastic Pettis integration and
the stochastic Cauchy problem

2.1. Construction of stochastic Integrals in Banach
spaces

The notion of stochastic Pettis integrability as developed in [45, 46, 47] is the main tool
in our considerations. We recall the definitions:

Let (S,Σ, ν) be a finite measure space. Recall (see 1.4.5) that ϕ : S → E is weakly Lp

if the function 〈ϕ, x∗〉 is measurable and belongs to Lp(S) for all x∗ ∈ E∗. A function
Φ : (0, T ) → L(H,E) is H-weakly L2 if for all x∗ ∈ E∗ the map t 7→ Φ∗(t)x∗ is strongly
measurable and satisfies ∫ T

0

‖Φ∗(t)x∗‖2
H dt <∞ .

Let β = {β(t)}t∈[0,T ] be a standard Brownian motion over a probability space (Ω,F ,P),
adapted to some given standard filtration {Ft}t∈[0,T ] which fulfills an independence con-
dition as in (PF) 2 on page 15.

A function ϕ : (0, T ) → E is called stochastically Pettis integrable with respect to β
if it is weakly L2 and for all measurable A ⊆ (0, T ) there exists a random variable
YA ∈ L2(Ω;E) such that for all x∗ ∈ E∗ we have

〈YA, x
∗〉 =

∫ T

0

1A(t)〈ϕ(t), x∗〉 dβ(t) (2.1)

almost surely. In this situation we write

YA =

∫
A

ϕ(t) dβ(t) .
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We call a function Φ : (0, T ) → L(H,E) stochastically Pettis integrable with respect to
WH (compare 1.3.4) if it is H-weakly L2 and for all measurable A ⊆ (0, T ) there exists
a random variable YA ∈ L2(Ω;E) such that for all x∗ ∈ E∗ we have

〈YA, x
∗〉 =

∫ T

0

1A(t)Φ∗(t)x∗dWH(t)

almost surely. In this situation we write

YA =

∫
A

Φ(t) dWH(t) .

One can also expand YA in a series as follows: Fix an orthonormal basis (hn)∞n=1 for H.
Upon identifying L (R, E) with E in the canonical way, for each n ≥ 1, the E-valued
function Φ(·)hn is stochastically integrable with respect to the cylindrical R-Wiener
process (i.e., real Brownian motion) WH(·)hn and we have the coordinate expansion [45,
Theorem 4.2]

YA =
∞∑

n=1

∫ T

0

1A(t)Φ(t)hn dWH(t)hn, (2.2)

where the series converges unconditionally in L2(Ω;E).

The following theorem from [45, Theorem 4.2] characterizes stochastic integrability in
different manners. From section 1.4 we recall the definition of IΦ ∈ L(L2(0, T ;H), E):

〈IΦf, x∗〉 :=

∫ T

0

[Φ∗(t)x∗, f(t)]H dt, f ∈ L2(0, T ;H), x∗ ∈ E∗, (2.3)

where Φ : (0, T ) → L(H,E) is H-weakly L2. Further we defined there

‖Φ‖γ(0,T ;H,E) := ‖IΦ‖γ(L2(0,T ;H),E).

Theorem 2.1.1 For an H-weakly L2 function Φ : (0, T ) → L(H,E) the following asser-
tions are equivalent:

1. Φ is stochastically integrable with respect to WH .

2. There exists an E-valued random variable Y and a weak*-sequentially dense linear
subspace F of E∗ such that for all x∗ ∈ F we have

〈Y, x∗〉 =

∫ T

0

Φ∗(t)x∗dWH(t) almost surely.
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2. Stochastic Pettis integration and the SCP

3. IΦ maps L2(0, T ;H) into E and IΦ ∈ L(L2(0, T ;H), E) is γ-radonifying.

4. There exists a Gaussian measure µ on E with covariance operator Q and a weak*-
sequentially dense linear subspace F of E∗ such that for all x∗ ∈ F we have∫ T

0

‖Φ∗(t)x∗‖2
Hdt = 〈Qx∗, x∗〉.

If these equivalent conditions hold, then in (2) and (4) we may take F = E∗.

The measure µ is the distribution of
∫ T

0
Φ(t)dWH(t) and we have the isometry

E
∥∥∥∥∫ T

0

Φ(t)dWH(t)

∥∥∥∥2

= ‖IΦ‖2
γ. (2.4)

2.2. The stochastic Cauchy problem SCP

Let
(
Ω,F ,P

)
be a probability space.By the stochastic Cauchy problem we mean differ-

ential equations of the form{
dU(t) = AU(t)dt+BdWH(t) , t ∈ [0, T ]

U0 = u0, u0 F0-measurable
(2.5)

where
(
A,D(A)

)
is the generator of a C0-semigroup S = S(t) on a separable Banach

space E, B a bounded linear operator from a separable real Hilbert space H into E
and WH(t) : H → L2(Ω) a cylindrical Wiener process with Cameron Martin space
H adapted to some given standard filtration {Ft}t∈[0,T ] which fulfills the independence
condition in (PF) 2 on page 15.

Definition 2.2.1 An E-valued process Uu0 : [0, T ]× Ω → E is called a weak solution if
for all x∗ ∈ D(A∗) the following two conditions are satisfied:

1. Almost surely, the paths t 7→ Uu0(t) are integrable, where we use the notation
Uu0(t) instead of Uu0(t, ω).

2. for all t ∈ [0, T ] we have almost surely

〈Uu0(t), x
∗〉 = 〈u0, x

∗〉+

∫ t

0

〈Uu0(s), A
∗x∗〉 ds+WH(t)B∗x∗ (2.6)

In the sequel we will specify necessary and sufficient conditions for the existence of a
unique weak solution.
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2.3. The existence of solutions for the stochastic
Cauchy problem

The existence of a weak solution of the stochastic Cauchy problem is closely related to
finiteness of the γ-norm of a certain operator. This and other equivalences are contained
in the following result from [45] and will play an important role.

Theorem 2.3.1 The following assertions are equivalent:

1. The problem (2.5) has a weak solution {Uu0(t)}t∈[0,T ];

2. The operator R ∈ L(E∗, E) defined by

Rx∗ :=

∫ T

0

S(t)BB∗S∗(t)x∗ dt, x∗ ∈ E∗,

is a Gaussian covariance operator;

3. The operator

V f :=

∫ T

0

S(t)Bf(t) dt

is γ-radonifying from L2
(
(0, T );H

)
into E.

4. the function s 7→ S(T − s)B is in γ(0, T ;H,E)

In this situation, the function t 7→ S(t)B is stochastically Pettis integrable on (0, T ) with
respect to WH and for all t ∈ [0, T ] we have

Uu0(t) = S(t)u0 +

∫ t

0

S(t− s)B dWH(s) (2.7)

almost surely. In particular, up to a modification the problem (2.5) has a unique weak
solution. For all p ∈ [1,∞) the paths t 7→ Uu0(t) belong to Lp((0, T );E) almost surely,
the process {Uu0(t)}t∈[0,T ] is continuous in p-th moment.

Remark 2.3.2 Uu0(·) is a weak solution corresponding to the problem (2.5) with initial
value u0 if and only if Uu0(·) − S(·)u0 is a weak solution corresponding to the problem
(2.5) with initial value 0. Hence we will assume without loss of generality that u0 = 0.
We will use the notation U(·) instead of U0(·). If we want to stress the dependence on
ω ∈ Ω we will also write at full length U(·, ω).
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2. Stochastic Pettis integration and the SCP

Henceforth we will thus consider the problem{
dU(t) = AU(t)dt+BdWH(t) , t ∈ [0, T ]

U0 = 0
(SCP)

and write SCP instead of the ‘stochastic Cauchy problem’.

So far we considered the SCP on finite intervals [0, T ]. That this is in fact no restriction
is the content of the following Lemma. We will give the short proof (see [45, Corollary
7.2.],[15]).

Lemma 2.3.3 The following assertions are equivalent.

1. The problem (SCP) has a weak solution {U(t)}t∈[0,T ] for some T > 0.

2. The problem (SCP) has a weak solution {U(t)}t∈[0,T ] for all T > 0.

Proof. The proof makes use of Proposition 1.4.3, the domination result of Gaussian
covariances. Assume that the problem (SCP) has a weak solution for some T > 0. We
denote by RT ∈ L(E∗.E) the covariance operator as defined in Theorem 2.3.1 (2). Let

now an arbitrary T̃ > 0 be given. To show that the problem (SCP) has a weak solution

on [0, T̃ ] we have to show that RT̃ ∈ L(E∗, E) as in 2.3.1 (2)is a Gaussian covariance.

Chose an N ∈ N such that T̃ /N ≤ T . We have the identity

RT̃ =
N−1∑
n=0

S(nT̃/N)RT̃ /NS
∗(nT̃/N).

Since RT is a Gaussian covariance, so is RT̃ /N (compare (1.4)). Denote by µ the

Gaussian measure with covariance RT̃ /N . Then the image measures µn := S(nT̃/N)µ,

n = 0, ..., N − 1 have covariances S(nT̃/N)RT̃ /NS
∗(nT̃/N) and their convolution µ =

µ0 ∗ µ1 ∗ . . . ∗ µN−1 has covariance has covariance RT̃ .
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3.1. Existence and regularity of the solution of the SCP

As we have seen in the previous chapter the solution U : [0, T ] × Ω → E of the SCP is
a predictable E-valued process. After having assured existence we will study properties
of the solution. In this context we examine for a fixed ω ∈ Ω the time regularity of the
paths t 7→ U(t, ω) =: U(t), i.e. whether they are continuous or Hölder continuous. For
t ∈ [0, T ] it is also interesting to determine the space regularity, i.e. whether the random
variables U(t, ·) lie in certain fractional domain spaces. This leads to the next section.

3.1.1. Sobolev towers

In many cases we can prove existence or regularity of solutions of the SCP not in E but
in some interpolation or extrapolation spaces. We will outline the theory of two different
kinds of such ‘towers’ and also treat the connection between them.

1. We will give the definition of the ‘Hölder-Sobolev tower’ or just ‘H-Sobolev tower’
where a strong Hölder-continuity in 0 of the semigroup S is assumed.

2. If A is the generator of a C0-semigroup we have seen in Section 1.6 that −A is a
sectorial operator and we can construct fractional powers. The related domains
then can be used to construct the so called ‘Sobolev tower’.

Since we will only give the main definitions we recommend the detailed description of
Sobolev towers given in [25].

In what follows we will assume that the given C0-semigroup S = (S(t)) has negative
growth bound ω0 < 0. This can be obtained by the rescaling procedure (see subsection
1.6.1). This is no loss of generality because for β0, β1 < −ω0 the norms ‖ · ‖0

α with
‖x‖0

α := ‖(β0 − A)αx‖ and ‖ · ‖1
α with ‖x‖1

α := ‖(β1 − A)αx‖ (with α ∈ Z in the first
case and α ∈ R in the second case) are in fact equivalent. The spaces Xα and Eα that
we will construct depend thus on the generator A but are independent of the chosen β
(c.f. [25, Chapter II.5], [34, Lemma 15.22]).

37



3. Properties of solutions of the SCP

For the first case we start by defining for k ∈ Z

‖x‖k :=


‖Akx‖, x ∈ D(Ak), k > 0
‖x‖, x ∈ E, k = 0
‖Akx‖, x ∈ E, k < 0

(3.1)

With these norms we obtain a scale of Banach spaces

Ek :=


(
D(Ak), ‖ · ‖k

)
, k > 0(

E, ‖ · ‖
)
, k = 0(

E, ‖ · ‖k

)∼
, k < 0.

Each Ek is densely embedded in Ek+1 and for k ∈ Z we can easily restrict or extend the
semigroup

(
S(t)

)
and the generator A to Ek by

Sk(t) :=

{
S(t)|Ek

, k ≥ 0
continuous extension of S(t) to Ek, k < 0

(3.2)

and

Ak :=


the part of A in Ek k ≥ 0,
unique continuous extension of the isometry
A : E1 → E to an isometry from Ek+1 onto Ek, k < 0,

(3.3)

where we have D(Ak) = {x ∈ Ek : Ax ∈ Ek} = Ek+1, k ∈ Z, and the part of A in Ek,
k ≥ 0 is defined by Akx := Ak for x ∈ D(Ak).

For α ∈ R we can define a scale of Banach spaces by the following.

Definition 3.1.1 Let
(
S(t)

)
be a C0-semigroup on a Banach space E and let α ∈ R.

Write α = k + γ, k ∈ Z, γ ∈ [0, 1). The space

Xα :=

{
x ∈ Ek : lim

t↓0

∥∥∥∥ 1

tγ
(Sk(t)x− x)

∥∥∥∥
k

= 0

}
equipped with the norm

‖x‖α := sup
t>0

∥∥∥∥ 1

tγ
(Sk(t)x− x)

∥∥∥∥
k

is called the abstract Hölderspace of order α (for γ = 0 we just obtain Ek).
(
Xα

)
α∈R will

be called H-Sobolev tower .

In case (2) the definition is even simpler.
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3.1. Existence and regularity of the solution

Definition 3.1.2 Let
(
S(t)

)
be a C0-semigroup with generator A. Then for α ∈ R we

define

Eα :=

{ (
D((−A)α), ‖ · ‖α

)
, α ≥ 0(

E, ‖ · ‖α

)∼
, α < 0 ,

where analogous to (3.1)

‖x‖α :=

{
‖(−A)αx‖, x ∈ D((−A)α), α ≥ 0
‖(−A)αx‖, x ∈ E, α < 0 .

The family
(
Eα

)
α∈R will be called Sobolev tower .

Notation 3.1.3 Each Xα (respective Eα) is densely embedded in Xβ (respective Eβ) for
α > β. The embedding Xα ↪→ Xβ (resp. Eα ↪→ Eβ) is denoted by iα,β and if α = 0 just
iβ. For a semigroup

(
S(t)

)
with generator A on E we define

(
Sα(t)

)
and Aα analogously

to (3.2) and (3.3).

We state here an important proposition (see [25, 5.35 Proposition]) which we will use
frequently and often without further mentioning.

Proposition 3.1.4 Let α, β ∈ (0, 1) satisfy α+β 6= 1. Then the iterated abstract Hölder
space (Xα)β coincides with the abstract Hölderspace Xα+β.

The relation between the two families of spaces is given by the next proposition (compare
[25, 5.33 Proposition]).

Proposition 3.1.5 Let α, β ∈ (0, 1) such that α > β.

Then Xα ↪→ Eβ ↪→ Xβ.

3.1.2. The stochastic Fubini theorem

This theorem is proved in full generality in [15, Chapter 4.6]. For the sake of completeness
we add here a version which fits better in our setting. With B(0, T ) we mean the Borel
σ-field over the interval (0, T ).

Theorem 3.1.6 Let ϕ be a B(0, T ) ⊗ B(0, T )-measurable function with values in H.
Assume that ϕ(s, ·) ∈ L2((0, T );H) for almost all s ∈ (0, T ) and that∫ T

0

‖ϕ(s, ·)‖L2((0,T );H)ds <∞ . (3.4)

Then

39



3. Properties of solutions of the SCP

1. the L2(Ω)-valued function

s 7→
∫ T

0

ϕ(s, t)dWH(t)

is Bochner integrable;

2. For almost all t ∈ (0, T ) the function s 7→ ϕ(s, t) belongs to L1((0, T );H), and the
H-valued function

t 7→
∫ T

0

ϕ(s, t)ds

is square Bochner integrable;

3. We have ∫ T

0

(∫ T

0

ϕ(s, t)dWH(t)

)
ds =

∫ T

0

(∫ T

0

ϕ(s, t) ds

)
dWH(t)

as elements of L2(Ω).

For the proof we will need the following proposition.

Proposition 3.1.7 Let ϕ ∈ B(0, T )⊗B(0, T ) be given such that (3.4) is fulfilled. Then
there exists a sequence (ϕn) of functions from (0, 1)× (0, 1) into H of the form

ϕn(s, t) =
Nn∑
j=1

Mn∑
k=1

1(sn
j−1,sn

j )×(tnk−1,tnk )(s, t) · hn
jk (3.5)

where the (sn
j−1, s

n
j ), j = 1 . . . Nn, and the (tnk−1, t

n
k), k = 1 . . .Mn, are disjoint subinter-

vals of (0, T ) and hn
jk are elements of H such that

lim
n→∞

∫ T

0

‖ϕ(s, ·)− ϕn(s, ·)‖L2((0,T );H)ds = 0 . (3.6)

Proof. Assumption (3.4) allows us to view ϕ as an element of L1((0, T );L2((0, T );H)).
Therefore there exists a sequence of step functions (ψn) with ψn(s, ·) =

∑Nn

j=1 1(tnj−1,tnj )(s)·
gn

j (·), where gn
j ∈ L2((0, T ), H) such that

lim
n→∞

∫ T

0

‖ϕ(s, ·)− ψn(s, ·)‖L2((0,T );H)ds = 0 .
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3.1. Existence and regularity of the solution

Furthermore there exists for all n ∈ N and j = 1 . . . Nn a sequence of step functions
(fn,j

m ) with fn,j
m =

∑Mm

k=1 1(tnk−1,tnk ) · hm
n,j,k such that

lim
m→∞

‖gn
j − fn,j

m ‖L2((0,T );H) = 0 .

Consider now the double indexed sequence

ϕn,m :=
Nn∑
j=1

1(tnj−1,tnj ) · fn,j
m

=
Nn∑
j=1

Mm∑
k=1

1(tnj−1,tnj )×(tmk−1,tmk ) · hm
n,j,k .

For l ≥ 1 choose nl with
∫ T

0
‖ϕ(s, ·)− ψnl

(s, ·)‖L2ds ≤ 1
l

and ml with ‖gnl
j − fnl,j

ml
‖ ≤ 1

lT

for all j = 1, . . . , Nnl
.

Then ∫ T

0

‖ϕ(s, ·)− ϕnl,ml
(s, ·)‖ds

≤
∫ T

0

‖ϕ(s, ·)− ψnl
‖ds+ ‖ψnl

(s, ·)− ϕnl,ml
(s, ·)‖ds

≤ 2

l
.

The sequence (ϕl) := (ϕnl,ml
) fulfills (3.6).

Proof of theorem 3.1.6: First we show that the function s 7→
∫ T

0
ϕ(s, t)dWH(t) is strongly

measurable. Let (ϕn) be a sequence of step functions of the form (3.5) such that (3.6)
holds. For all s ∈ (0, T ) the function fn(s) := ϕn(s, ·) belongs to L2((0, T );H). Then we
may assume, after passing to a pointwise a.e. convergent subsequence, that for almost
all s ∈ (0, T ) we have

f(s) := ϕ(s, ·) = lim
n→∞

fn(s) in L2((0, T );H) .

It follows that for almost all s ∈ (0, T ) we have by the Itô isometry∫ T

0

ϕ(s, t)dWH(t) = lim
n→∞

∫ T

0

(
fn(s)

)
(t)dWH(t) in L2(Ω) .
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3. Properties of solutions of the SCP

But ∫ T

0

(fn(s))(t)dWH(t) =
Nn∑
j=1

Mn∑
k=1

1sn
j−1,sn

j
(s) ·

(
WH(tnk)−WH(tnk−1)

)
hn

j,k

which shows that the L2(Ω)-valued function s 7→
∫ T

0
(fn(s))(t)dWH(t) is a step function.

We have shown that s 7→
∫ T

0
ϕ(s, t)dWH(t) is a.e. the limit of a sequence of L2(Ω)-

valued step functions. It follows that this function is strongly measurable. Its Bochner
integrability now follows from the Itô isometry since∫ T

0

∥∥∥∥∫ T

0

ϕ(s, t)dWH(t)

∥∥∥∥
L2(Ω)

ds =

∫ T

0

‖f(s)‖L2((0,T );H)ds <∞ .

Now we prove (2). In the proof of proposition 3.5 we have seen that ϕ can be viewed as

an element of L1((0, T );L2((0, T );H)). Hence
∫ T

0
f(s)ds is also in L2((0, T );H). Since

L1((0, T );L2((0, T );H)) can be embedded in L1((0, T );L1((0, T );H)) where the latter
is isomorphic to L1((0, T ) × (0, T )) we can use Fubinis Theorem in L1((0, T ) × (0, T ))

to obtain that for almost all t
(∫ T

0
f(s)ds

)
(t) =

∫ T

0
ϕ(s, t)ds . Thus we showed that

t 7→
∫ T

0
ϕ(s, t)ds belongs to L2((0, T );H).

To prove (3) we first note that this assertion holds for any step function ϕ of the form

ϕ =
N∑

j=1

M∑
k=1

1(sj−1,sj)×(tk−1,tk) · hjk . (3.7)

Indeed, by direct computation both expressions in (3) are seen to be equal to

N∑
j=1

M∑
k=1

(
tk − tk−1

)(
WH(sj)−WH(sj−1)

)
hjk.

Now let ϕ be an arbitrary function fulfilling the assumptions of theorem 3.1.6 and let
(ϕn) be a sequence of step functions with limn→∞ ϕn = ϕ in L1((0, T ) ; L2((0, T );H)).
Without loss of generality we may assume that each ϕn is of the form (3.5).

The Itô isometry now leads to the following estimates:

∥∥∥∥∫ T

0

(∫ T

0

ϕn(s, t)− ϕ(s, t)ds

)
dWH(t)

∥∥∥∥
L2(Ω)

=

∥∥∥∥∫ T

0

(ϕn(s, ·)− ϕ(s, ·))ds
∥∥∥∥

L2((0,T );H)

≤
∫ T

0

‖ϕn(s, ·)− ϕ(s, ·)‖L2((0,T );H)ds
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3.2. Regularizing properties of B and S

and

∥∥∥∥∫ T

0

(∫ T

0

(ϕn(s, t)− ϕ(s, t))dWH(t)

)
ds

∥∥∥∥
L2(Ω)

≤
∫ T

0

∥∥∥∥∫ T

0

(ϕ(s, t)− ϕn(s, t))dWH(t)

∥∥∥∥
L2(Ω)

ds

=

∫ T

0

‖ϕ(s, ·)− ϕn(s, ·)‖L2((0,T );H)ds .

Combining everything we obtain∫ T

0

(∫ T

0

ϕ(s, t) dWH(s)

)
dt = lim

n→∞

∫ T

0

(∫ T

0

ϕn(s, t) dWH(s)

)
dt

= lim
n→∞

∫ T

0

(∫ T

0

ϕn(s, t) dt

)
dWH(s)

=

∫ T

0

(∫ T

0

ϕ(s, t) dt

)
dWH(s),

the convergence being in the sense of L2(Ω).

3.2. Regularizing properties of B and S

In this section we examine how regularity of the operator B or of the semigroup S leads
to existence and regularity of the solution of the problem{

dU(t) = AU(t) +BdWH(t)
U(0) = 0

(SCP)

or of related stochastic differential equations that we will define next.

If nothing else is stated we still assume S to be a C0-semigroup in E and B ∈ L(H,E).

• Case 1: α < 0. Let Xα be the α th extrapolated space of the H-Sobolev tower(
Xα

)
and denote by iα the natural inclusion.

An Xα-valued solution of the stochastic Cauchy problem SCP (or an α-extended
solution) is a weak solution of the related problem{

dV (t) = AαV (t) +BαdWH(t)
V (0) = 0

(SCPα−)
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3. Properties of solutions of the SCP

where Aα is the generator of {Sα(t)}, the extended semigroup on Xα (see 3.1.1)
and Bα := iα ◦ B. Surely, every weak solution of (SCP) is also a weak solution of
(SCPα−). The converse holds also under appropriate conditions (see Proposition
3.2.1 below).

• Case 2: α ≥ 0. Let Xα be the α th space of the H-Sobolev tower. Assume
that RanB ⊆ Xα. Then an Xα-valued Solution of the (SCP) (or an α-restricted
solution)is a solution of the related problem{

dV (t) = AαV (t) +BdWH(t)
V (0) = 0

(SCPα+)

Weak solutions of (SCPα−) we may consider as ‘generalized’ solutions of (SCPα+) since
they take values in a larger space Xα, α < 0, solutions of (SCPα+) are considered to be
more ‘regular’ than the solutions of (SCP).

The following proposition gives an answer to the question when a weak solution in a
separable Banach space F gives a weak solution in the separable Banach space E, pro-
vided there is a continuous and dense embedding j : E ↪→ F (compare [21, Proposition
4.3]).

Proposition 3.2.1 Let an E-valued process U be given such that the F -valued process
UF = j ◦ U is a weak solution of{

dŨ(t) = AF Ũ(t) dt+BF dWH(t) t ∈ [0, T ],

Ũ(0) = 0.
, (3.8)

where AF is the generator of the semigroup on F extending S(t) and BF := j ◦B.

Then U is a weak solution of (SCP).

Proof. From the definition of weak solutions it follows for x∗ = j∗y∗ with y∗ ∈ F ∗:

〈U(t), x∗〉 = 〈UF (t), y∗〉 =

∫ t

0

B∗
FS

∗
F (t− s)y∗dWH(s)

=

∫ t

0

B∗S∗(t− s)x∗dWH(s)

Form the injectivity of j we derive by using the Hahn-Banach-Theorem (see [53, 3.5
Theorem]) that j∗(F ∗) lies weak∗-dense in E∗. Theorem 2.1.1 now proves that s 7→ S(t−
s)B is stochastically Pettis integrable for all t ∈ [0, T ] and U(t) =

∫ t

0
S(t− s)BdWH(s)

almost everywhere. Since Theorem 2.3.1(3) follows directly from Theorem 2.1.1(3) we
obtain that U is a solution of (SCP)
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3.2. Regularizing properties of B and S

We will also need the following result where Xα corresponds to E in the preceding
proposition and E corresponds to F .

Corollary 3.2.2 Consider the solution U = U(t) of (SCP). Assume that for all t ∈ [0, T ]
U(t) ∈ Xα almost surely for α > 0. Then U is an α-restricted solution.

For the abstract Hölderspaces (Xα) we have the following results concerning the stochas-
tic convolution V (t) =

∫ t

0
S(t− s)BWH(s)ds.

Lemma 3.2.3 Let {S(t)} be a C0-semigroup and let B : H → E be γ-radonifying. Set
V (t) :=

∫ t

0
S(t− s)BWH(s)ds.

Then for 0 < α < 1
2
, almost all ω ∈ Ω and all t ∈ [0, T ] we have

V (t) ∈ Xα .

where Xα denotes the abstract Hölder space (see definition 3.1.1).

Before starting the proof for β ∈ (0, 1) we define cβ([0, T ];E) as the space of all contin-
uous functions f : [0, T ] → E for which

lim
δ↓0

sup
|t−s|≤δ

‖f(t)− f(s)‖
|t− s|β

= 0. (3.9)

Endowed with the norm

‖f‖cβ([0,T ];E) := ‖f‖+ sup
t6=s

‖f(t)− f(s)‖
|t− s|β

(3.10)

this space is a separable Banach space. For E = R we simply write cβ[0, T ] and denote
cβ0 [0, T ] = {f ∈ cβ[0, T ] : f(0) = f(T ) = 0}.

Furthermore we will write Cβ([0, T ];E) for the space of all continuous functions f :
[0, T ] → E for which

sup
t,s∈[0,T ], t6=s

‖f(t)− f(s)‖
|t− s|β

<∞. (3.11)

With the same norm as in (3.10) it becomes again a Banach space. For E = R we write
analoguesly Cβ[0, T ].

Proof. Note that for almost all ω ∈ Ω, BWH(·, ω) ∈ cα([0, T ];E) for all α with 0 < α <
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3. Properties of solutions of the SCP

1
2
. Fix such an ω and set f(t) := BWH(t, ω). For a fixed t ∈ [0, T ] we compute:

1

uα

(
S(u)V (t)− V (t)

)
=

1

uα

∫ t

0

S(u+ t− r)f(r)dr − 1

uα

∫ t

0

S(t− r)f(r)dr

=
1

uα

∫ t−u

−u

S(t− r)f(r + u)dr − 1

uα

∫ t

0

S(t− r)f(r)dr

=
1

uα

(∫ 0

−u

S(t− r)f(r + u)dr −
∫ t

t−u

S(t− r)f(r)dr

)
︸ ︷︷ ︸

=: A(t, u)

+
1

uα

∫ t−u

0

S(t− r)[f(r + u)− f(r)]dr︸ ︷︷ ︸
=: B(t, u)

Now it is immediate that ‖B(t, u)‖ tends to 0 if u tends to 0. Furthermore we obtain

A(u, t) = u1−β

(
1

u

∫ 0

−u

S(t− r)f(r + u)dr︸ ︷︷ ︸
−→ S(t)f(0)︸ ︷︷ ︸

=0

− 1

u

∫ t

t−u

S(t− r)f(r)dr︸ ︷︷ ︸
−→ f(t)

)

which also tends to 0 if u tends to 0. Altogether we obtain

lim
u↓0

∥∥∥ 1

uα

(
S(u)V (t)− V (t)

)∥∥∥ = 0

and therefore

∫ t

0

S(t− s)BWH(s)ds ∈ Xα almost surely for all t ∈ [0, T ].

Corollary 3.2.4 Assume B is γ-radonifying from H into Xβ, β ∈ R. Then for V (t)
defined as in Lemma 3.2.3 we obtain almost surely for all t ∈ [0, T ]

V (t) ∈ Xα+β

where again 0 < α < 1
2
.

Proof. In a first step assume α + β 6= 1. If we apply Lemma 3.2.3 to X̃ := Xβ then

V (t) ∈ X̃α = (Xβ)α = Xβ+α (see Proposition 3.1.4). If α + β = 1 choose α̃ with
α < α̃ < 1

2
. Now, V (t) ∈ Xβ+α̃ ⊂ Xβ+α.
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3.2. Regularizing properties of B and S

Proposition 3.2.5 Let {S(t)} be a C0-semigroup and let B : H → Xβ, 0 < β ≤ 1, be

γ-radonifying. Again let the process {V (t)} be defined by V (t) =
∫ t

0
S(t− s)BdWH(s).

Then for 0 < α < 1
2

the process Y defined by

Y (t) = iα+β−1BWH(t) + Aα+β−1

∫ t

0

Sβ(t− s)BWH(s)ds

is an Xα+β−1-valued weak solution of (SCP).

Proof. We first state that both components of Y (t) exist in the space Xα+β−1: Since
β > α+β−1 it follows that BWH(t) exists as an element of Xα+β−1. Since by Corollary

3.2.4
∫ t

0
S(t− s)BWH(s)ds ∈ Xα+β almost surely and

‖A−1

∫ t

0

S(t− s)BWH(s)ds‖α+β−1 = ‖
∫ t

0

S(t− s)BWH(s)ds‖α+β

this holds also for A−1

∫ t

0
S(t− s)BWH(s)ds.

To show that Y is indeed a weak solution we first show that it is an Xβ−1-valued solution.
We compute for x∗ ∈ D(Aβ−1)∫ t

0

〈iα+β−1BWH(u) + Aα+β−1

(∫ u

0

Sβ(u− s)BWH(s)ds

)
, A∗α+β−1x

∗〉du

=

∫ t

0

〈iβ−1BWH(u) +

(∫ u

0

Aβ−1Sβ(u− s)BWH(s)ds

)
, A∗β−1x

∗〉du

=

∫ t

0

∫ u

0

B∗i∗β−1S
∗
β(u− s)A∗β−1x

∗dWH(s)du (3.12)

=

∫ t

0

∫ t

s

B∗i∗β−1S
∗
β(u− s)A∗β−1x

∗du dWH(s) (3.13)

=

∫ t

0

B∗i∗β−1S
∗
β(t− s)x∗ −B∗i∗β−1x

∗dWH(s)

= 〈x∗,
∫ t

0

Sβ−1(t− s)iβ−1BdWH(s)− iβ−1BWH(t)〉

where equation (3.12) follows by the Itô formula and (3.13) by the Fubini theorem. Now,
the claim follows by Proposition 3.2.2.

We close this considerations by stating two results, which give sufficient conditions for
existence and continuity of the solution.
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3. Properties of solutions of the SCP

Corollary 3.2.6 Let B be γ-radonifying from H into Xβ for some β > 1
2
. Then there

exists a solution of SCP.

The next result generalizes [15, Theorem 5.9]. The following result was also shown in [41,
Theorem 2.2] with a different approach using mainly covariance functions and a further
assumption on the growth of S. Our approach does not need further assumptions on S
and seems to be more directly by considering the paths of the weak solution.

Theorem 3.2.7 Let 0 < α < 1
2
. Assume that Φ(t) := t−αS(t)B : H → E is stochasti-

cally Pettis integrable. Then (SCP) has a weak solution which has a continuous modifi-
cation.

Proof. The proof follows the proof of [15, Theorem 5.9].

For u ≤ s ≤ t, 0 < α < 1 the following identity holds true:∫ t

u

(t− s)α−1(s− u)−αds =
π

sin πα
.

For 0 < α < 1/2 and almost all ω ∈ Ω we can therefore write for the weak solution:∫ t

0

S(t− u)BdWH(u)

=
sin πα

π

∫ t

0

S(t− u)

∫ t

u

(t− s)α−1(s− u)−αdsBdWH(u)

=
sin πα

π

∫ t

0

∫ t

u

S(t− s)(t− s)α−1S(s− u)(s− u)−αB︸ ︷︷ ︸
=:Ψα,t(u,s)

dsdWH(u)

=
sin πα

π

∫ t

0

S(t− s)(t− s)α−1

[ ∫ s

0

S(s− u)(s− u)−αBdWH(u)

]
ds.

The last equation followed from the stochastic Fubini theorem (see theorem 3.1.6) and
the assumptions over the integrability since for each x∗ ∈ E∗〈∫ t

0

(∫ t

u

Ψα,t(u, s)ds

)
dWH(u) , x∗

〉
=

∫ t

0

∫ t

u

Ψα,t(u, s)
∗dsx∗dWH(u)

=

∫ t

0

∫ s

0

Ψα,t(u, s)
∗x∗dWH(u)ds =

∫ t

0

〈∫ s

0

Ψα,t(u, s)dWH(u) , x∗
〉
ds (3.14)

=

〈∫ t

0

∫ s

0

Ψα,t(u, s)dWH(u)ds , x∗
〉

where (3.14) follows since ψα(u, s) := Ψα,t(u, s)
∗x∗ fulfills the assumptions of theorem

3.1.6.
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3.2. Regularizing properties of B and S

Now we claim that

U(t) =
sin πα

π

∫ t

0

S(t− s)(t− s)α−1Y (s)ds with

Y (s) =

∫ s

0

S(s− u)(s− u)−αBdWH(u)

is continuous for almost all ω ∈ Ω (which implies that U(t) is the required continuous
modification).

To see this choose p ∈ (1,∞) with p < 1
1−α

. Then ϕ(t) := S(t)tα−1 is integrable on R+.

Choose q with 1
p

+ 1
q

= 1. Let y ∈ Lq([0, T ], E) and set

z(t) :=
sin πα

π

∫ t

o

S(t− s)(t− s)α−1y(s)ds.

Then the Hölder inequality yields for a certain C only depending on α, p, T

sup
t∈[0,T ]

‖z(t)‖q ≤ C

∫ T

o

‖y(s)‖qds.

So the linear mapping from Lq([0, T ], E) to L∞([0, T ]), y 7→ ϕ ∗ y, is bounded. Since
z(·) is continuous if y(·) is continuous and since C([0, T ], E) is dense in Lq([0, T ], E) we
obtain that z(·) is continuous if y(·) ∈ Lq([0, T ], E).

To apply this to the paths y(·) = Y (·, ω) for a fixed ω, note, that Y (t), t ∈ [0, T ], is by
assumption a Gaussian variable with E‖Y (t)‖q ≤ C1 for a certain constant C1 > 0 (see
e.g. [36, Corollary 3.2]).

Therefore we get by the Fubini theorem:

E
∫ T

0

‖Y (t, ·)‖qdt ≤ CT

thus Y (t, ·) ∈ Lq([0, T ], E) almost surely which yields the claimed continuity.

In the case where A generates an analytic semigroup we get existence and continuity of
the weak solution (compare [21, Proposition 3.2], [15, Chapter 5]).

Theorem 3.2.8 Consider (SCP) where B is γ-radonifying and A generates an analytic
semigroup.

Then there exists a weak solution which has a continuous modification.
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3. Properties of solutions of the SCP

Proof. We claim that Y (t) = BWH(t) + A
t∫

0

S(t − s)BWH(s)ds, t ∈ [0, T ] defines a

weak solution. To see this we compute for x∗ ∈ D(A∗)

∫ t

0

〈Y (u), A∗x∗〉du

=

∫ t

0

〈BWH(u) + A

∫ u

0

S(u− s)BWH(s)ds, A∗x∗〉du

=

∫ t

0

〈∫ u

0

S(u− s)BdWH(s), A∗x∗
〉
du (3.15)

=

∫ t

0

∫ u

0

B∗S∗(u− s)A∗x∗dWH(s)du

=

∫ t

0

∫ t

s

B∗S∗(t− s)A∗x∗dudWH(s) (3.16)

=

∫ t

0

(B∗S∗(t− s)x∗ −B∗x∗)dWH(s)

=〈
∫ t

0

S(t− s)BdWH(s), x∗〉 −WH(t)B∗x∗ ,

which means that {Y (t)} is a weak solution. Equation (3.15) follows by the Iô formula
and (3.16) by the Fubini theorem.

For the existence of a continuous modification we remark that the paths of the stochastic
convolution t 7→ V (t, ω) =

∫ t

0
S(t − s)BWH(s, ω)ds belongs to C([0, T ],D(A)) almost

surely ([Theorem 5.3.5][37]). This proves that Y (t) = BWH(t) +A
t∫

0

S(t− s)BWH(s)ds

is almost surely continuous.

3.3. Space-time regularity in the analytic case

From now on we assume the generator A to be analytic with negative growth bound.
The latter we can do without loss of generality (see the explanations of the beginning
of Section 3.1.1). Having assured the existence of weak solutions in the last section
(Theorem 3.2.8) we proceed with investigating their regularity in space and time by
carefully exploiting the smoothing effect of the resolvent. This smoothing property we
can use:

• to obtain space regularity for the solution U = U(t) as
E‖U(t)‖2

θ <∞ for some θ ∈ R, see Definition 3.1.2,
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3.3. Space-time regularity in the analytic case

• to obtain time regularity for U(t), i.e. E‖U(t)− U(s)‖ ≤ C|t− s|β for a constant
C, all t, s ∈ [0, T ] and some β > 0 or

• to make (−A)−δB a γ-radonifying operator, i.e. even if B : H → E is not γ-
radonifying it may be so into the ‘larger space’ E−δ, δ > 0.

Results of this section emanate from a joint work with Jan van Neerven and Lutz Weis
(see [21]).

3.3.1. Space regularity versus time regularity in case of
γ-radonifying B

The next theorem describes an interplay between the first two points. It shows how a
gain in space regularity must be bought by a loss of time regularity and vice versa. The
theorem generalizes regularity results for the analytic case due to Da Prato and Zabczyk
[15, Section 5.4] (for Hilbert spaces E) and Brzeźniak [5] (for martingale type 2 spaces
E).

Theorem 3.3.1 Assume that A is the generator of an analytic C0-semigroup S on E.
Let B ∈ γ(H,E), and let U be the weak solution of problem (SCP). Let η ≥ 0 and θ ≥ 0
satisfy η + θ < 1

2
.

1. The random variables U(t) take values in Eη almost surely and we have

E‖U(t)− U(s)‖2
Eη
≤ C|t− s|2θ‖B‖2

γ(H,E) ∀t, s ∈ [0, T ],

with a constant C independent of B;

2. The process U has a modification with paths in Cθ([0, T ];Eη).

Proof. We will use the notation ‘.’ for estimates involving constants which do not
depend on B.

Without loss of generality we assume that θ > 0. Also without loss of generality we
assume A to have negative growth bound. If this assumption is not fulfilled then the
multiplication of S(t) with e−βt for β > ω0 and the resulting required estimates in the
proof would obstruct the view on the main ideas of the proof.

In order to bring out the ideas of the proof we begin with a formal computation. Put

R(t) := (−A)ηS(t), t > 0.
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3. Properties of solutions of the SCP

Then, (
E‖U(t+ h)− U(t)‖2

Eη

) 1
2

=
(

E
∥∥(−A)η[U(t+ h)− U(t)]

∥∥2) 1
2

=
(

E
∥∥∥∫ t+h

0

R(t+ h− s)B dWH(s)−
∫ t

0

R(t− s)B dWH(s)
∥∥∥2) 1

2

≤
(

E
∥∥∥∫ t+h

t

R(t+ h− s)B dWH(s)
∥∥∥2) 1

2

+
(

E
∥∥∥∫ t

0

R(t+ h− s)B −R(t− s)B dWH(s)
∥∥∥2) 1

2

= ‖R(·)B‖γ(0,h;H,E) + ‖R(·+ h)B −R(·)B‖γ(0,t;H,E)

≤ ‖R(·)B‖γ(0,h;H,E) + ‖R(·+ h)B −R(·)B‖γ(0,T ;H,E).

where the final estimate follows from (1.4).

If we can show that R(·)B ∈ γ(0, T ;H,E), then R(·)B is stochastically integrable with
respect to WH by (2.4) and the above computation can be justified by noting that (−A)η

is an isomorphism from Eη onto E. Assertion (1) will follow if we can show that for
small h, say for h ∈ (0, 1), we have∥∥R(·)B

∥∥
γ(0,h;H,E)

. hθ‖B‖γ(H,E)

and ∥∥R(·+ h)B −R(·)B
∥∥

γ(0,T ;H,E)
. hθ‖B‖γ(H,E).

We prove these estimates in two steps.

Step 1 – Fix an arbitrary α ∈ [η + θ, 1
2
) and h ∈ (0, 1). We first check that the two

families
Th := {sαR(s) : s ∈ (0, h)}

and
T h := {sα[R(s+ h)−R(s)] : s ∈ (0, T )}

are γ-bounded, and that for small h their γ-bounds satisfy

γ(Th) . hθ (3.17)

and
γ(T h) . hθ. (3.18)

To prove (3.17) we apply Proposition 1.5.5 to the function Ψ(s) := sαR(s) and check
that its derivative

Ψ′(s) = sαAR(s) + αsα−1R(s) (3.19)
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3.3. Space-time regularity in the analytic case

is integrable on (0, h). Using the analyticity of S we have

‖AR(s)‖ ≤ ‖AR(s)‖+ r‖R(s)‖ . s−(1+η) + s−η . s−(1+η)

and we can estimate the first term in (3.19) by∫ h

0

sα‖AR(s)‖ ds .
∫ h

0

sα−(1+η) ds ≤
∫ h

0

sθ−1 ds . hθ,

where we used that α− η ≥ θ. Similarly, for the second term in (3.19) we have∫ h

0

sα−1‖R(s)‖ ds .
∫ h

0

s(α−1)−η ds . hθ.

Together with the estimate

‖hαR(h)‖ . hα−η ≤ hθ

we see that (3.17) follows from Lemma 1.5.5.

To prove (3.18) we apply Lemma 1.5.5 to the function Ψ(s) := sα[R(s+ h)−R(s)] and
check that its derivative

Ψ′(s) = sαA[R(s+ h)−R(s)] + αsα−1[R(s+ h)−R(s)] (3.20)

is integrable on (0, T ). For the first term in (3.20) we have∫ T

0

sα
∥∥A[R(s+ h)−R(s)]

∥∥ ds =

∫ T

0

sα
∥∥∥∫ s+h

s

A2R(u) du
∥∥∥ ds

.
∫ T

0

sα
(∫ s+h

s

u−2−η du
)
ds

. hα−η

∫ ∞

0

σα
[
(σ + 1)−1−η − σ−1−η

]
dσ︸ ︷︷ ︸

<∞

. hθ.

Similarly, for the second term in (3.20) we have∫ T

0

sα−1‖R(s+ h)−R(s)‖ ds .
∫ T

0

sα−1
(∫ s+h

s

u−1−η du
)
ds

. hα−η

∫ ∞

0

σα−1
[
(σ + 1)−η − σ−η

]
dσ︸ ︷︷ ︸

<∞

. hθ.
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3. Properties of solutions of the SCP

Finally,

Tα‖R(T + h)−R(T )‖ . Tα

∫ T+h

T

‖AR(s)‖ ds

. Tα

∫ T+h

T

s−1−η ds

. Tα
[
(T + h)−η − T−η

]
. hα−η

(
sup
t∈R+

tα
[
(t+ 1)−η − t−η

])
︸ ︷︷ ︸

<∞

. hθ.

Combination of these estimates gives (3.18).

Step 2 – We combine Step 1 with Lemma 1.5.7. Recalling that α < 1
2
, with Lemma 1.4.6

we obtain, with τ−α(t) := t−α,

‖R(·)B‖γ(0,h;H,E) . hθ‖τ−αB‖γ(0,h;H,E) ≤ hθ‖τ−α‖L2(0,T )‖B‖γ(H,E)

and
‖R(·+ h)B −R(·)B‖γ(0,T ;H,E)

. hθ‖τ−αB‖γ(0,T ;H,E) ≤ hθ‖τ−α‖L2(0,T )‖B‖γ(H,E).

This concludes the proof of (1).

To prove (2) we apply (1) with exponents θ′ and η, where θ′ > θ is such that we still
have θ′ + η < 1

2
. By the Kahane-Khinchine inequalities we have, for any q ≥ 1,(

E‖U(t)− U(s)‖q
Eη

) 1
q

.
(

E‖U(t)− U(s)‖2
Eη

) 1
2

. |t− s|θ′‖B‖γ(H,E).

The Kolmogorov-Chentsov continuity theorem now shows that U has a modification Ũ
which is Hölder continuous, for any exponent less than (θ′q−1)/q. Since q can be chosen
arbitrarily large, it follows that the paths of Ũ belong to Cθ([0, T ];Eη) almost surely.

Remark 3.3.2 The theorem remains true if the fractional domain spaces Eθ are replaced
by (real or complex) interpolation spaces and more generally, by spaces E(θ) satisfying
inclusions (E,D(A))θ,1 ↪→ E(θ) ↪→ (E,D(A))θ,∞.

3.3.2. Regularity if B is unbounded

Now we will discuss the third point of page 50. In Theorem 3.3.1 we assumed B : H → E
to be γ-radonifying. In certain interesting applications this assumption is not satisfied
or even worse, the operator may be unbounded (see section 3.4). This situation arises
for instance when a stochastic partial differential equation driven by white noise is
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3.3. Space-time regularity in the analytic case

formulated as an abstract stochastic evolution in a state space E. Typically, E = E(O)
will be a space of functions one some domain O in Rd. The precise choice of E(O) is
suggested by the interpretation of the equation and the expected space regularity of its
solutions. The natural choice for the Hilbert space H used to model the white noise is
then L2(O), with B : L2(O) → E(O) being the identity operator. However L2(O) may
not embed into E(O), and if it does, the embedding may fail to be γ-radonifying.

A way out of this difficulty is to interpret the equation in a suitably chosen Banach space
F . Firstly, E∩F should be dense in both E and F and contain the range of B (we think
of E and F as being continuously embedded in some ambient locally convex topological
vector space) and the part of A in E ∩ F should extend uniquely to a generator AF of
an analytic C0-semigroup on F . Secondly, B should extend to a γ-radonifying operator
BF from H into F . The idea is now to apply Theorem 3.3.1 in F to the problem{

dU(t) = AFU(t) dt+BF dWH(t) t ∈ [0, T ],

U(0) = 0.
(3.21)

This will show that this solution will have its paths in Cθ([0, T ];Fη) with θ, η ≥ 0 and
θ + η < 1

2
and if Fη embeds continuously into E the solutions take values in E and are

Hölder continuous in time of exponent θ.

We proceed with a simple illustration of this ideas. A more elaborate example will be
worked out in the next section.

Example 3.3.3 (Simultaneously diagonalizable case). Let A be a diagonal operator on
E = lp, 1 ≤ p < ∞, with real eigenvalues −λn satisfying λn ≥ c for some c > 0. Fix
α ∈ (0, 1) and define F as the space of all real sequences (xn)n≥1 such that (λ−α

n xn) ∈ lp.
Endowed with the norm ‖(xn)‖F = ‖(λ−α

n xn)‖lp , the space F is a Banach space, and
we have E ↪→ F with a continuous and dense embedding. Let (bn) be a sequence of
nonnegative real numbers. The diagonal operator B : (yn) 7→ (bnyn) defines an element
of γ(l2, F ) if and only B−α : (yn) 7→ (λ−α

n bnyn) defines an element of γ(l2, lp). By
standard square function estimates the latter happens if and only if

∑
n λ

−αp
n bpn < ∞.

For the special case bn = 1 (the white noise case), it follows that B defines an element
of γ(l2, F ) if and only (λ−α

n ) ∈ lp. Note that this condition depends on both α and p
and is likely to be fulfilled if α and/or p are large enough. Also note that for η > α we
have Fη ↪→ E = lp with continuous inclusion.

In order to discuss the Problem (3.21) we must adapt section 2.2 and section 2.3 to the
setting where B is unbounded. We can do this under the condition that (−A)−δB :
D(B) → E extends to a bounded operator from H into E for some δ ∈ (0, 1/2).

First we allow B in the formulation of the (SCP){
dU(t) = AU(t) +BdWH(t)
U(0) = 0

(3.22)
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3. Properties of solutions of the SCP

to be unbounded and generalize the Definition 2.2.1 in a natural way:

Assume D(A∗) ⊂ D(B∗). A predictable E-valued process {U(t)}t∈[0,T ] is called a weak
solution if for all x∗ ∈ D(A∗) the following two conditions are satisfied:

1. Almost surely, the paths t→ 〈U(t, u0), A
∗x∗〉 are integrable;

2. for all t ∈ [0, T ] we have almost surely

〈U(t, u0), x
∗〉 = 〈u0, x

∗〉+

∫ t

0

〈U(s, u0), A
∗x∗〉 ds+WH(t)B∗x∗ (3.23)

Under the condition that (−A)−δB extends to a bounded operator for some δ ∈ (0, 1/2)
a generalization of Theorem 2.3.1 can be obtained. From [56, Proposition 4.7] we derive
the following

Proposition 3.3.4 Assume that A is the generator of an analytic semigroup. For an
E-valued process U the following assertions are equivalent:

1. The problem (3.22) has a weak solution U .

2. For all t ∈ [0, T ] the operator S(t)B : D(B) → E has a continuous extension
to a bounded operator H → E and for all t ∈ [0, T ] the L(H,E) valued process
s 7→ S(t− s)B is stochastically Pettis integrable on (0, t) and

U(t) =

∫ t

0

S(t− s)BdWH(s)

almost surely.

3. The function s 7→ S(T − s)B is in γ(0, T ;H,E)

Up to a modification the problem (3.22) has a unique weak solution. For all p ∈ [1,∞)
the paths t 7→ U(t, u0) belong to Lp((0, T );E) almost surely, the process {U(t, u0)}t∈[0,T ]

is continuous in p-th moment.

In Proposition 3.2.1 we saw how for a bounded B a solution of (3.21) gives a weak
solution of the original problem in E. In the case where B is unbounded this happens
as well under appropriate conditions.

Proposition 3.3.5 Let B : D(B) → E be a possibly unbounded linear operator. Let
j : E ↪→ F be a continuous and dense embedding and A be the part in E of an operator
AF in F which generates an analytic semigroup in F .
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3.3. Space-time regularity in the analytic case

Assume that there is a constant C and a δ ∈ (0, 1/2) such that for all h ∈ D(B),

‖(−A)−δBh‖ ≤ C‖h‖. (3.24)

Suppose an E-valued process U is given.

If the F -valued process jU is a weak solution the problem (3.21), then U is a weak
solution of (3.22).

Proof. The proof proceeds like the proof of Proposition 3.2.1.

Henceforth we will identify (−A)−δB : D(B) → E with its continuous extension and de-
note it with (−A)−δB : H → E. To apply Theorem 2.1.1 it is left to show that the func-
tion t 7→ S(t)B is H-weakly L2. This follows easily since in the case where A generates
an analytic semigroup we have S(t) : E → D(A) for all t > 0 and ‖(−A)εS(t)‖ ≤ Ct−ε

for a constant C and all ε > 0 ([37, Proposition 2.1.1]). Let x∗ ∈ E∗. For a certain
constant C we obtain the estimate

‖B∗S∗(t)x∗‖ ≤ ‖S(t)B‖‖x∗‖ = ‖S(t)(−A)δ(−A)−δB‖‖x∗‖
≤ ‖(−A)δS(t)‖‖(−A)−δB‖‖x∗‖ ≤ Ct−δ‖x∗‖

which lies in L2(0, T ) if δ < 1/2.

Now we can formulate an important corollary concerning the third point of the in-
troductory remarks of page 50. Note that if (−A)δB ∈ γ(H,E) then equivalently
B ∈ γ(H,E−δ).

Theorem 3.3.6 Assume that A is the generator of an analytic C0-semigroup S on E,
let B ∈ γ(H,E−δ) and let U be the weak solution of problem (3.21) with F := E−δ. Let
η ≥ 0 and θ ≥ 0 satisfy η + θ < 1

2
. Then the following assertions hold:

1. The random variables U(t) take values in Eη−δ almost surely and we have

E‖U(t)− U(s)‖2
Eη−δ

≤ C|t− s|2θ‖B‖2
γ(H,E−δ) ∀t, s ∈ [0, T ],

with a constant C independent of B;

2. The process U has a modification with paths in Cθ([0, T ];Eη−δ).

57



3. Properties of solutions of the SCP

3.4. An example

We consider the following stochastic partial differential equation driven by space-time
white noise ∂w

∂t
(t, x) (also called spatio-temporal white noise, for introduction see [57,

Chapter 1]): 
∂u

∂t
(t, x) = Lu(t, x) +

∂w

∂t
(t, x), x ∈ [0, 1], t ∈ [0, T ],

u(0, x) = 0, x ∈ [0, 1],

u(t, 0) = u(t, 1) = 0, t ∈ [0, T ],

(3.25)

where L is a uniformly elliptic operator of the form

Lf(x) = a(x)f ′′(x) + b(x)f ′(x) + c(x)f(x), x ∈ [0, 1],

with coefficients a(x) > 0, x ∈ [0, 1], a ∈ Cε[0, 1]

for some ε > 0 and b, c ∈ L∞[0, 1].

(3.26)

In what follows we let H = L2(0, 1) and E = Lp(0, 1), where the exponent p is to be
chosen later on. The realization of L in E will be henceforth denoted by A.

In the following we will examine regularity of the weak solution of (3.25) by exploiting
the results of the previous sections. It will turn out that it suffices to exploit properties
of the case A = ∆. In the case of Laplacian with Dirichlet boundary conditions we
know the ONB of eigenvectors which will allow us to compute a certain γ-norm. For an
arbitrary A satisfying (3.26) we have not only D(A) = D(∆) = W 2,p(0, 1) ∩W 1,p

0 (0, 1)
as shown e.g. in [37, Section 3.1.1] but also the equality of the fractional domain spaces
D((−A)α) = D((−∆)α):

In [34, 13.13 Theorem] and in [16] it is shown that under Hölder assumption on the top-
order coefficient of A there exists a ν ≥ 0 such that r−A admits a bounded H∞-calculus
for all r > ν and hence lies in the class of BIP of operators with bounded imaginary
powers, i.e. for fixed r > ν, (r − A)is ∈ L(E) for each s ∈ R and there is a constant
C > 0 such that ‖(r − A)is‖ ≤ C for |s| ≤ 1.

In the case of −A ∈ BIP we have (see [17, 2.5. Theorem] and the references therein) that
D((−A)α) = [E,D(A)]α, α ∈ (0, 1) where on the right hand side [E,D(A)]α denotes the
complex interpolation space of order α (for a detailed introduction of those spaces see
[38, Chapter 2]). Since D(A) = D(∆) this means immediately D((−A)α) = D((−∆)α),
α ∈ (0, 1) which we will need in our considerations.

Back to the example:

In a first step we formulate the problem (3.25) as an abstract stochastic evolution equa-
tion in E of the form {

dU(t) = AU(t) dt+ I dWH(t), t ≥ 0,

U(0) = 0,
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where WH is an H-cylindrical Brownian motion. Here we encounter the problem de-
scribed in the previous section, namely that the identity operator I is unbounded as
an operator from H into E. In order to overcome this problem we shall interpret the
problem in a suitable extrapolation space of E.

We fix δ > 1
4

and some r > 0 sufficient large such that r − A is invertible and lies in
BIP. Let E−δ denote the extrapolation space of order δ associated with A, i.e., E−δ is
the completion of E with respect to the norm ‖x‖−δ := ‖(r − A)−δx‖. Since r − A is
invertible, (r − A)δ acts as an isomorphism from E onto E−δ. We will show next that
the identity operator I on H extends to a bounded embedding from H into E−δ which
is γ-radonifying.

Let ∆H and AH denote the realizations in H of ∆ and A with Dirichlet boundary
conditions, respectively. As shown e.g. in [37, Section 3.1.1] we have

H1 := D(AH) = H2,2 ∩H1,2
0 = D(∆H) =: H∆

1

with equivalent norms. Similarly,

E1 := D(A) = H2,p ∩H1,p
0 = D(∆) =: E∆

1

with equivalent norms.

The considerations at the beginning of this section mean

E∆
1−δ := D

(
(−∆)1−δ

)
= (E,E∆

1 )1−δ = (E,E1)1−δ = D
(
(r − A)1−δ

)
=: E1−δ

with equivalent norms.

The functions hn(x) :=
√

2 sin(nπx), n ≥ 1, form an orthonormal basis of eigenfunctions
for ∆H with eigenvalues −λn, where λn = (nπ)2. If we endow H∆

1 with the equivalent
Hilbert norm ‖f‖H∆

1
:= ‖∆Hf‖H , the functions λ−1

n hn form an orthonormal basis for

H∆
1 and we have

E
∥∥∥∑

n≥1

γnλ
−1
n hn

∥∥∥2

E∆
1−δ

= E
∥∥∥∑

n≥1

γnλ
−1
n (−∆)1−δhn

∥∥∥2

E

= E
∥∥∥∑

n≥1

γn(nπ)−2δhn

∥∥∥2

E

(∗)
.
∑
n≥1

(nπ)−4δ,

(3.27)

where (∗) follows from a standard square function estimate together with the fact that
‖hn‖E ≤

√
2. The right hand side of (3.27) is finite since we took δ > 1

4
.
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3. Properties of solutions of the SCP

It follows from (3.27) that the identity operator on D(∆H) extends to a continuous
embedding from D(∆H) into E∆

1−δ which is γ-radonifying. Denoting by E−δ the extrap-
olation space of order δ of E associated with A− r, we obtain a commutative diagram

H
↪→−−−→ E−δ

(r − AH)−1
y x(r − A)

H1 E1−δ

'
y x'
H∆

1
↪→−−−→ E∆

1−δ

The inclusion H∆
1 ↪→ E∆

1−δ being γ-radonifying, the ideal property of γ-radonifying
operators implies that the resulting embedding from H into E∆

−δ in the top line of the
diagram is γ-radonifying; this operator is an extension of the identity operator on H.
We shall denote this embedding by I−δ.

We are now in a position to apply Theorem 3.3.1. Fix arbitrary real numbers α, β, θ
satisfying 0 ≤ 2α + β < 1

2
, 1

4
< δ < θ, α + θ < 1

2
, and β < 2θ − 2δ. Put η := θ − δ.

Since the extrapolated operator A−δ generates an analytic C0-semigroup in E−δ we may
apply Theorem 3.3.1 in the space E−δ to obtain a weak solution U of the problem{

dU(t) = A−δU(t) dt+ I−δ dWH(t) , t ∈ [0, T ],

U(0) = 0,

with paths in the space Cα
(
[0, T ]; (E−δ)θ

)
= Cα

(
[0, T ];Eη

)
. Noting that β < 2η we

choose p so large that β + 1
p
< 2η. We have

Eη = E∆
η = H2η,p

0 = {f ∈ H2η,p : f(0) = f(1) = 0}

with equivalent norms [54, Chapter 4]. By the Sobolev embedding theorem,

H2η,p ↪→ cβ[0, 1]

with continuous inclusion. Putting things together we obtain a continuous inclusion

Eη ↪→ cβ0 [0, 1].

In particular it follows that U takes values in E. Almost surely, the trajectories of U
belong to Cα([0, T ]; cβ0 [0, 1]). In particular, the trajectories of U belong to L1(0, T ;E)
almost surely. In view of Proposition 3.2.1 and the discussion following it, we have
proved the following theorem.

Theorem 3.4.1 Let α and β be real numbers satisfying 0 ≤ 2α + β < 1
2
. Under the

above assumptions on L, the problem (3.25) admits a weak solution in Lp(0, 1) for all
1 ≤ p <∞, and this solution has paths in Cα([0, T ]; cβ0 [0, 1]).
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3.4. An example

This theorem improves the result of [8, Section 6], where for A = ∆ and 0 ≤ β < 1
2

only a solution with paths in C([0, T ]; cβ0 [0, 1]) was obtained. Note that the ranges of
the admissible Hölder exponents are independent of the operator A.

It follows from the theorem that for all 0 ≤ α < 1
4

and 0 ≤ β < 1
2

we have a solu-
tion in Cα([0, T ];C[0, 1]) ∩ C([0, T ];Cβ[0, 1]). Taking 0 ≤ α = β < 1

4
and recalling

that Cα([0, T ];C[0, 1]) ∩ C([0, T ];Cα[0, 1]) = Cα([0, T ] × [0, 1]), we obtain a solution
in Cα([0, T ] × [0, 1]) for all 0 ≤ α < 1

4
. For A = ∆ the existence of a solution in

Cα([0, T ]× [0, 1]) for 0 ≤ α < 1
4

was proved by Da Prato and Zabczyk by very different
methods, see [14] and [15, Theorem 5.20]. This result was improved by Brzeźniak [5],
who obtained Theorem 3.4.1 for L = ∆ and noted without proof the possible extension
to a more general class of second order elliptic operators.

The method presented here applies to general uniformly elliptic operators A. In par-
ticular it extends beyond the selfadjoint case. Also, it can be extended to operators of
order 2m on domains in higher dimensions.

Related equations have been studied by many authors and with different methods; see
for example [10, 15] and the references given there.
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4. Maximal Regularity

4.1. Property (α) and other geometrical assumptions on
the Banach space

Let (rm)∞m=1, (r′n)∞n=1 and (r′′mn)∞m,n=1 be mutually independent Rademacher sequences.
Then we may assume that these sequences are living in different probability spaces
(Ω,F ,P), (Ω′,F ′,P′) and (Ω′′,F ′′,P′′) and that their common distribution is just the
product probability measure P⊗P′⊗P′′ on

(
Ω×Ω′×Ω′′, F⊗F⊗F

)
. The expectations

relative to P, P′ and P′′ respectively will be denoted by E, E′ and E′′ respectively.
The same assumption we will make, if (γm)∞m=1, (γ′n)∞n=1 and (γ′′mn)∞m,n=1 are mutually
independent Gaussian sequences.

In the following we often want to compare Gaussian and Rademacher sums or even
replace one with the other. It is a well-known fact that in Banach spaces one can estimate
Rademacher sums against Gaussian sums. Under a certain geometric assumption on the
Banach space E one also obtain the converse estimate and thus the equivalence of the
sums, see below. The required assumption is called the finite cotype of E.

A Banach space E is said to have cotype q, q ∈ [2,∞), if there exists a constant C > 0
such that for all sequences (xn)m

n=1, m ∈ N, in E, the inequality

(
m∑

n=1

‖xn‖q

)1/q

≤ C

E

∥∥∥∥∥
m∑

n=1

rnxn

∥∥∥∥∥
2
1/2

holds true.

Now we can formulate the following proposition. Its proof can be found amongst others
in [22, Proposition 12.11 and Theorem 12.27]

Proposition 4.1.1 For all finite sequences (xn)N
n=1 in E we have

E

∥∥∥∥∥
N∑

n=1

rnxn

∥∥∥∥∥
2

≤ 1

2
π E

∥∥∥∥∥
N∑

n=1

γnxn

∥∥∥∥∥
2

62



4.1. Property (α) and other geometrical assumptions

If E has finite cotype q, there exists a constant Cq such that for all sequences (xn)N
n=1 in

E we have

E

∥∥∥∥∥
N∑

n=1

γnxn

∥∥∥∥∥
2

≤ Cq E

∥∥∥∥∥
N∑

n=1

rnxn

∥∥∥∥∥
2

(4.1)

Now we want to introduce a further geometric assumption on the Banach space E which
is central in this work. It will allow us important regularity results of solutions of the
stochastic Cauchy problem.

A Banach space E is said to have property (α) if there exists a constant C, depending
only on E, such that

E E′
∥∥∥∥∥

M∑
m=1

N∑
n=1

εmnrmr
′
nxmn

∥∥∥∥∥
2

≤ C2 E E′
∥∥∥∥∥

M∑
m=1

N∑
n=1

rmr
′
nxmn

∥∥∥∥∥
2

for all choices εmn ∈ {−1, 1} and xmn ∈ E (m = 1, . . . ,M, n = 1, . . . , N). The least of
all such constants is called the property (α) constant of E and will be denoted by Cα.

Pisier first introduced this geometrical assumption on E in [51]. Examples of spaces
with property (α) are Hilbert spaces, Lp spaces with 1 < p <∞ or the space L1/H1.

The following considerations show why this geometrical assumption gains such impor-
tance. If we examine the finiteness of the γ-norm ‖ · ‖γ(L2(0,T ;H),E) we come across

expressions of doubly indexed sums like
∑N

m,n=1 γ
′′
mnxmn, xmn ∈ E, m,n = 1, . . . , N ,

N ∈ N. For technical reasons we would like to estimate E′′
∥∥∥∑N

m,n=1 γ
′′
mnxmn

∥∥∥2

≤

E E′
∥∥∥∑N

m,n=1 γmγ
′
nxmn

∥∥∥2

. This does not hold in general but it does hold if E has

property (α) as shown in the proposition below. In its formulation and in the rest
of this work we will use the following notational convention:

Notation 4.1.2 We use the notationX ∼ Y to express the fact that there exist constants
0 < c ≤ C < ∞, depending only on the Banach space E, such that cX ≤ Y ≤ CX.
Similarly we use the notation X . Y to express that there exists a constant 0 < C <∞,
such that X ≤ CY .

As stated in the next Lemma, finite cotype of a Banach space E is a weaker assumption
then property (α).

Proposition 4.1.3 If E has property (α), then E has finite cotype.

Proof. Recall that for 1 ≤ p ≤ ∞, n ∈ N, lnp denotes Rn equipped with the norm∣∣∣∑n
j=1 |aj|p

∣∣∣1/p

or maxj≤n |aj| if p = ∞ for any a = (a1, . . . , an) ∈ Rn. For ε > 0 we say
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4. Maximal Regularity

a Banach space E contains a subspace which is (1 + ε) isomorphic to lnp if there exists
x1, . . . , xn ∈ E such that for all a = (a1, . . . , an) ∈ Rn we have(

n∑
j=1

|aj|p
)1/p

≤

∥∥∥∥∥
n∑

j=1

ajxj

∥∥∥∥∥ ≤ (1 + ε)

(
n∑

j=1

|aj|p
)1/p

(4.2)

or (4.2) where
(∑n

j=1 |aj|p
)1/p

is replaced by maxj≤n |aj| if p = ∞.

E is said to contain lnp ’s uniformly if it contains subspaces (1 + ε)-isomorphic to lnp for
all n and all ε > 0.

Suppose E does not have finite cotype. By the Maurey-Pisier Theorem ([39],[22]) E
contains l∞n uniformly. Pisier showed in [51, Remark 2.2] that in the case that E contains
l∞n uniformly E fails to have property (α).

Proposition 4.1.4 For a Banach space E, the following assertions are equivalent:

1. E has property (α);

2. For all N ≥ 1 and all sequences (xmn)N
m,n=1 in E we have

E′′
∥∥∥∥∥

N∑
m,n=1

r′′mnxmn

∥∥∥∥∥
2

∼ E E′
∥∥∥∥∥

N∑
m,n=1

rmr
′
nxmn

∥∥∥∥∥
2

.

In this situation for all N ≥ 1 and all sequences (xmn)N
m,n=1 in E we have

E′′
∥∥∥∥∥

N∑
m,n=1

γ′′mnxmn

∥∥∥∥∥
2

∼ E E′
∥∥∥∥∥

N∑
m,n=1

γmγ
′
nxmn

∥∥∥∥∥
2

.

Proof. From the above propositions we know that a Banach space E with property (α)
automatically has finite cotype and hence Rademacher and Gaussian sums are equiv-
alent. Thus the last assertion follows easily from the equivalence of (1) and (2). The
equivalence of (1) and (2) is shown in [34, 4.11 Lemma].

Recall the definitions of Section 1.6.2. We have the following Lemma shown in [30,
6.6. Corollary]

Lemma 4.1.5 Let A ∈ Sω(E). If E has Pisier’s property (α), then A admits a bounded
H∞-calculus if and only if A admits a γ-bounded H∞-calculus and one has ω∞(A) =
ωγ
∞(A).
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4.2. Maximal regularity in Banach spaces with finite cotype

Remark 4.1.6 As one will see later in the proofs we will only use the estimate

E′′
∥∥∥∥∥

N∑
m,n=1

γ′′mnxmn

∥∥∥∥∥
2

. E E′
∥∥∥∥∥

N∑
m,n=1

γmγ
′
nxmn

∥∥∥∥∥
2

(4.3)

even though property (α) provides the equivalence of both sides. This weaker geometrical
assumption on the Banach space is also denoted with property (α+) (see [44, 21]).

Examples of Banach spaces with property (α+) are all Hilbert spaces, all Banach lattices
with finite cotype (in particular the Lp-spaces for p ∈ [1,∞)) and the Schatten classes
Sp for p ∈ [1, 2]. Banach spaces with property (α+) have finite cotype; in particular such
spaces cannot contain an isomorphic copy of c0. We refer to [45] and there references
cited there for more information.

4.2. Maximal regularity in Banach spaces with finite
cotype

In this section we will sharpen Theorem 3.3.1 in the case where −A admits a γ-bounded
H∞-calculus. Under this assumption we will prove maximal regularity in the sense
of Theorem 4.2.1 of the weak solution. Our approach requires finite cotype of the
underlying Banach space.

The main result of this section, which generalizes e.g. [15, Proposition A.19], reads as
follows.

Theorem 4.2.1 Let E have finite cotype and assume that −A admits γ-bounded H∞-
calculus of angle 0 < ωγ

∞(−A) < π
2
. Then the solution U of problem (SCP) has maximal

regularity in the sense that for all t ∈ [0, T ] we have U(t) ∈ D((−A)
1
2 ) almost surely and

E‖(−A)
1
2U(t)‖2 ≤ C‖B‖2

γ(H,E) (4.4)

for a suitable constant C independent of T > 0, t ∈ [0, T ], and B ∈ γ(H,E). Moreover,

(−A)
1
2U is continuous in all moments, i.e., for all 1 ≤ p <∞ we have

lim
s→t

E‖(−A)
1
2 (U(t)− U(s))‖p = 0,

Finally, the paths of (−A)
1
2U belong to L2(0, T ;E) almost surely.

Proof. Following [30] we consider the function ψ(λ) := λ
1
2 e−λ. We shall prove the theo-

rem for a fixed time interval [0, T ] with a constant C independent of T . Fix an arbitrary
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4. Maximal Regularity

0 < t ≤ T . Our starting point is the following identity, valid for t ∈ [2−kT, 2−k+1T ):

ψ(tλ) = ψ(2−kTλ) +

∫ tλ

2−kTλ

ψ′(s) ds

= ψ(2−kTλ) +

∫ 2

1

1[2−ksT,2−k+1T )(t) 2−ksTλψ′(2−ksTλ)
ds

s
.

In order to simplify notations a little bit, throughout the rest of the proof we take T = 1.
It is easy to check that the constant C in (4.4) can be chosen independently of T .

By the H∞-calculus we have ψ(−tA) = (−tA)
1
2S(t). Substituting this in the above

identity over k, summing over k = 1, . . . , N , and writing ϕ(λ) := λψ′(λ), for t ∈ [2−N , 1)
this gives

ψ(−tA) =
N∑

k=1

1[2−k,2−k+1)(t)ψ(−2−kA)

+

∫ 2

1

N∑
k=1

1[2−ks,2−k+1)(t)ϕ(−2−ksA)
ds

s
.

Hence, ∥∥∥1[2−N ,1)(−A)
1
2S(·)B

∥∥∥
γ(0,1;H,E)

=
∥∥1[2−N ,1)[ψ(−(·)A)]B

∥∥
γ(0,1; dt

t
;H,E)

≤
∥∥∥ N∑

k=1

1[2−k,2−k+1)ψ(−2−kA)B
∥∥∥
γ(0,1; dt

t
;H,E)

+

∫ 2

1

∥∥∥ N∑
k=1

1[2−ks,2−k+1)ϕ(−2−ksA)B
∥∥∥
γ(0,1; dt

t
;H,E)

ds

s
.

Note that the sequence (1[2−k,2−k+1))
N
k=1 is an orthogonal system in L2(0, 1; dt

t
) with

‖1[2−k,2−k+1)‖2
2 = ln 2. If gn is an orthonormal basis L2(0, 1; dt

t
) containing 1

ln 2
(1[2−n,2−n+1))

N
n=1,

(hj)j≥1 is an orthonormal basis of H and (rjk)j,k≥1 is a doubly indexed Rademacher se-
quence on some probability space (Ω,F ,P), using (4.1) we can estimate∥∥∥ N∑

k=1

1[2−k,2−k+1) ⊗ ψ(−2−kA)B
∥∥∥2

γ(0,1; dt
t

;H,E)

= E
∥∥∥∑

j≥1

N∑
n=1

N∑
k=1

γjn

∫ T

0

√
ln 2

1[2−k,2−k+1)(t)√
ln 2

gn ψ(−2−kA)Bhj
dt

t

∥∥∥2

= ln 2 · E
∥∥∥∑

j≥1

N∑
k=1

γjkψ(−2−kA)Bhj

∥∥∥2

. E
∥∥∥∑

j≥1

N∑
k=1

rjkψ(−2−kA)Bhj

∥∥∥2

.
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4.2. Maximal regularity in Banach spaces with finite cotype

Let (r′j)j≥1 be a Rademacher sequence independent of (rjk)j,k≥1. Using the same ran-
domization argument as in the proof of Proposition 4.1.4, we estimate

E
∥∥∥∑

j≥1

N∑
k=1

rjkψ(−2−kA)Bhj

∥∥∥2

= E′ E
∥∥∥∑

j≥1

r′j

( N∑
k=1

rjkψ(−2−kA)
)
Bhj

∥∥∥2

≤ γ(Ψ)2 E′
∥∥∥∑

j≥1

r′jBhj

∥∥∥2

. γ(Ψ)2‖B‖2
γ(H,E).

Here γ(Ψ) is the γ-bound of the family

Ψ =
{ N∑

k=1

rjk(ω)ψ(−2−kA) : N ≥ 1, j ≥ 1, ω ∈ Ω
}
,

which is finite by Lemma 1.6.9 since we have ψ ∈ H∞(Σσ) for all σ ∈ (ωγ
∞(−A), π

2
).

It follows that the function
∑

k≥1 1[2−k,2−k+1)ψ(−2−kA)B defines an almost summing

operator from L2(0, 1; dt
t
, H) to E (compare Section 1.4). Since E has finite cotype and

therefore does not contain a copy of c0, this operator is γ-radonifying and by (1.1) we
have ∥∥∥∑

k≥1

1[2−k,2−k+1)ψ(−2−kA)B
∥∥∥

γ(0,1; dt
t

;H,E)
. γ(Ψ)‖B‖γ(H,E).

Likewise, using that for s ∈ [1, 2) the sequence (1[2−ks,2−k+1))
N
k=1 is an orthogonal system

in L2(0, 1; dt
t
) with ‖1[2−ks,2−k+1)‖2

2 = ln(2/s),

∫ 2

1

∥∥∥ N∑
k=1

1[2−ks,2−k+1)ϕ(−2−ksA)B
∥∥∥

γ(0,1; dt
t

;H,E)

ds

s

.
∫ 2

1

(
ln(2/s) · E

∥∥∥ N∑
k=1

∑
j≥1

rjkϕ(−2−ksA)Bhj

∥∥∥2) 1
2 ds

s

≤ γ(Φ)

∫ 2

1

ln(2/s) ·
(

E′
∥∥∥∑

j≥1

r′jBhj

∥∥∥2) 1
2 ds

s
. γ(Φ)‖B‖γ(H,E).

Here γ(Φ) is the γ-bound of the family

Φ =
{ N∑

k=1

rjk(ω)ϕ(−2−ksA) : N ≥ 1, j ≥ 1, s ∈ [1, 2], ω ∈ Ω
}
,

67



4. Maximal Regularity

which is finite since ϕ ∈ H∞
1
2

(Σσ). Letting N →∞ as before, with monotone convergence

it follows that∫ 2

1

∥∥∥∑
k≥1

ϕ(−2−ksA)B1[2−ks,2−k+1)(·)
∥∥∥

γ(0,1; dt
t

;H)E)

ds

s
. γ(Φ)2‖B‖2

γ(H,E).

As N →∞ we also obtain that (−A)
1
2S(·)B ∈ γ(0, 1;H,E) and

‖(−A)
1
2S(·)B‖γ(0,1;H,E) = lim

N→∞
‖(−A)

1
2S(·)B1[2−N ,1)‖γ(0,1;H,E).

Putting things together we obtain that

‖(−A)
1
2S(·)B‖γ(0,1;H,E) ≤ C‖B‖γ(H,E)

with a constant C independent of B. Therefore, for all t ∈ [0, 1] the function (−A)
1
2S(t−

·)B is H-stochastically integrable, and (4.4) follows from

E‖(−A)
1
2U(t)‖2 = ‖(−A)

1
2S(t− ·)B‖2

γ(0,t;H,E)

≤ ‖(−A)
1
2S(·)B‖2

γ(0,1;H,E) ≤ C‖B‖γ(H,E).

This proves (4.4). By Fubini’s theorem, (4.4) implies that

E
∫ T

0

‖(−A)
1
2U(t)‖2 dt ≤ TC‖B‖2

γ(H,E).

Hence the paths of (−A)
1
2U belong to L2(0, T ;E) almost surely. Finally the continuity

in all moments follows from [45, Theorem 6.5].

Remark 4.2.2 The theorem remains true if only ν−A admits a γ-bounded H∞-calculus
for some ν > 0. To see this we apply the theorem with −A replaced by ν −A to obtain
maximal regularity of the solution of the problem{

dU(t) = (A− ν)U(t) dt+B dWH(t) , t ∈ [0, T ],

U(0) = 0.

We obtain that (ν −A)
1
2Sν(·)B ∈ γ(0, T ;H,E), where Sν(t) = e−νtS(t). By a standard

comparison argument this implies (ν − A)
1
2S(·)B ∈ γ(0, T ;H,E) as well, with similar

estimates.

As is well known, the deterministic Cauchy problem y′ = Ay + f , with −A sectorial of
angle 0 < ω(−A) < π

2
, has maximal Lp-regularity if and only if the set {tR(it, A) : t ∈

R\{0}} is R-bounded (see [58]). The following result shows that in the stochastic setting,
the strictly stronger assumption that −A admits a bounded H∞-calculus is necessary for
maximal regularity and actually characterizes it in the case H = R (which corresponds
to rank one Brownian motions). In particular this shows that in Lp-spaces there are
examples of analytic generators which have maximal regularity for the deterministic
Cauchy problem but not always for the stochastic one.
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4.3. Maximal Regularity in Banach spaces with property (α)

Remark 4.2.3 In the special case where H = R, Lemma 1.6.9 is not needed and Theo-
rem 4.2.1 remains valid under the weaker assumption that −A admits a bounded H∞-
calculus.

We use the notation E� for the closed subspace of all x∗ ∈ E∗ such that limt↓0 ‖S∗(t)x∗−
x∗‖ = 0. As is well known (see [25, 2.6 Definition]) we have E� = D(A∗). The part of
A∗ in E� is denoted by A�; it is the generator of the restriction of S∗ to E�.

Theorem 4.2.4 Let both E and E∗ have finite cotype, and let −A be a sectorial operator
in E of angle 0 < ω(−A) < π

2
. Then −A admits a bounded H∞-calculus if and only if

dU(t) = AU(t) dt+ x dWH(t), t ≥ 0,

U(0) = 0,

and

dŨ(t) = A�Ũ(t) dt+ x� dWH(t), t ≥ 0,

Ũ(0) = 0,

have maximal regularity in the sense of Theorem 4.2.1 for all x ∈ E and x� ∈ E�,
respectively.

Proof. The ‘only if’ part is contained in the previous theorem and the remark 4.2.3, since
−A admits a bounded H∞-calculus if and only if −A� admits a bounded H∞-calculus
[17, 34].

For the ‘if’ part, for all t ∈ [0, T ] we have

‖(−A)
1
2S(·)x‖2

γ(0,t;E) = ‖(−A)
1
2S(t− ·)x‖2

γ(0,t;E) = E‖(−A)
1
2U(t)‖2 ≤ C‖x‖2

with a constant C independent of t, T , and x. Likewise,

‖(−A�)
1
2S�(·)x�‖2

γ(0,t;E�) ≤ C‖x�‖2
γ(H,E�).

By Proposition A.0.5, these two estimates imply that −A admits a bounded H∞-
calculus.

4.3. Maximal Regularity in Banach spaces with
property(α)

We have in seen that Proposition 4.1.3 that property (α) is a stronger assumption on
the Banach space E than the finite cotype. In this Section we will show that similar
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4. Maximal Regularity

maximal regularity as in the last section can be obtained under weaker assumptions on
the generator A. The theorems in this settings can be proven with different methods
which seem to be less technical as e.g. the proof of Theorem 4.2.1. However, deep results
of [30] are used again.

The following proposition is a generalization of a special case [44, Theorem 6.2].

Proposition 4.3.1 Let F be a real Banach space with property (α). Let B ∈ γ(H,E)
and let Ψ be a mapping from (0, T ) into L (E,F ) such that for all x ∈ E the F -valued
function t 7→ Ψ(t)x belongs to γ(0, T ;F ). Then t 7→ Ψ(t)B belongs to γ(0, T ;H,F ) and
there is a constant c, only depending on Ψ and F , such that

‖Ψ(·)B‖γ(0,T ;H,F ) ≤ c‖B‖γ(H,E).

Proof. As an easy consequence of the closed graph theorem there exists a constant C,
only depending on Ψ, such that

‖Ψ(·)x‖γ(0,T ;F ) ≤ C‖x‖, ∀x ∈ E. (4.5)

Note that since F does not contain a copy of c0, the scalarly integrable function t 7→
f(t)Ψ(t)Bh is Pettis integrable for all f ∈ L2(0, T ) and h ∈ H [23, Theorem II.3.7].

Let (fm)m≥1 be an orthonormal basis for L2(0, T ) and let (hn)n≥1 be an orthonormal basis
for H. Then (fm ⊗ hn)m,n≥1 is a doubly indexed orthonormal basis for L2(0, T ;H). Let
(γ′m)m≥1 and (γ′′n)n≥1 be mutually independent Gaussian sequences, and let (γmn)m,n≥1

be a doubly indexed Gaussian sequence. Then by (4.3) and (4.5),

‖IΨ(·)B‖2
γ(L2(0,T ;H),F )

= E
∥∥∥ ∑

m,n≥1

γmn

∫ T

0

fm(s)Ψ(s)Bhn ds
∥∥∥2

≤ c2+ E′ E′′
∥∥∥∑

m≥1

∑
n≥1

γ′mγ
′′
n

∫ T

0

fm(s)Ψ(s)Bhn ds
∥∥∥2

= c2+ E′′ E′
∥∥∥∑

m≥1

γ′m

∫ T

0

fm(s)Ψ(s)
[∑

n≥1

γ′′nBhn

]
ds
∥∥∥2

≤ c2+C
2 E′′

∥∥∥∑
n≥1

γ′′nBhn

∥∥∥2

= c2+C
2‖B‖2

γ(0,T ;E)

where c+ is the constant in (4.3).

The following result leads to an analogon to Theorem 4.2.1.
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4.3. Maximal Regularity in Banach spaces with property (α)

Theorem 4.3.2 Assume that B is γ-radonifying and let E have property (α). If −A is
a sectorial operator of angle 0 < ω < π

2
such that for all x ∈ E we have

(−A)
1
2S(·)x ∈ γ(0, T ;E), (4.6)

then the solution U of problem (2.5) has maximal regularity on the interval [0, T ] in the

sense that for all t ∈ [0, T ], U(t) ∈ D((−A)
1
2 ) almost surely and

E‖U(t)‖2

D((−A)
1
2 )
≤ C‖B‖2

γ(H,E) (4.7)

for a suitable constant C, independent of B and T . Moreover,

E
∫ T

0

∥∥(−A)
1
2U(t)

∥∥2
dt ≤ TC‖B‖2

γ(H,E). (4.8)

In particular, the paths of U belong to L2(0, T ;D((−A)
1
2 )), almost surely. Finally, U is

continuous in all moments in D((−A)
1
2 ), i.e., for all 1 ≤ p <∞ we have

lim
s→t

E‖U(t)− U(s)‖p

D((−A)
1
2 )

= 0.

Proof. Since (−A)
1
2 acts as an isomorphism from D((−A)

1
2 ) onto E, condition (4.6)

implies that for all for all x ∈ E we have S(·)x ∈ γ(0, T ;D((−A)
1
2 )). Also, since E

has property (α), D((−A)
1
2 ) has property (α) as well and Proposition 4.3.1 shows that

S(·)B belongs to γ(0, T ;H,D((−A)
1
2 )) and

‖S(·)B‖2

γ(0,t;H,D((−A)
1
2 ))
≤ C‖B‖γ(H,E)

with a constant C which is independent of B and T . It follows that S(t − ·)B is H-

stochastically integrable in D((−A)
1
2 ), and (4.7) follows from

E‖U(t)‖2

D((−A)
1
2 )

= ‖S(t− ·)B‖2

γ(0,t;H,D((−A)
1
2 ))

≤ ‖S(·)B‖2

γ(0,T ;H,D((−A)
1
2 ))
≤ C‖B‖γ(H,E).

The estimate (4.8) follows from this by Fubini’s theorem. Finally the continuity in all
moments follows from [45, Theorem 6.5].

Under the assumption of property (α) a boundedH∞-calculus of the operator−A implies
a γ-bounded H∞-calculus (compare Lemma 4.1.5). Since (4.6) follows if −A admits a
bounded H∞-calculus (see [30]) we obtain the following Theorem as a corollary to the
previous result:

Theorem 4.3.3 Let B be γ-radonifying and E have property (α). If A is the generator
of an analytic semigroup with the property that −A has a bounded H∞-calculus, then
the solution of the problem (2.5) has maximal regularity in the sense of Theorem 4.3.2.
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4. Maximal Regularity

4.4. An example

Let O be a bounded open domain in Rd with C2 boundary. Consider the problem
du(t, x) = Lu(t, x) dt+

∞∑
k=1

gk(x) dwk(t), x ∈ O, t ∈ [0, T ],

u(0, x) = 0, x ∈ O,
u(t, x) = 0, x ∈ ∂O, t ∈ [0, T ],

(4.9)

where L is a second order uniformly elliptic operator of the form

Lf(x) =
d∑

i,j=1

aij(x)
∂2f

∂xi∂xj

(x) +
d∑

i=1

bi(x)
∂f

∂xi

(x) + c(x)f(x), x ∈ O,

with coefficients aij = aji ∈ Cε(O) for some ε > 0 and bi, c ∈ L∞(O) with c ≤ 0. We
assume that the sequence g = (gk)k≥1 belongs to Lp(O; l2) for some fixed 1 < p <∞, and
that w = (wk)k≥1 is a sequence of independent standard Brownian motions. A related,
time-dependent version of this equation on the full space Rd has been considered by
Krylov [33, Chapter 5.4].

Here we will show that (4.9) has a unique solution in Lp(O), with paths belonging to
Cβ([0, T ];Lp(O)) ∩ L2(0, T ;H1,p

0 (O)) for 0 ≤ β < 1
2
.

Let 1 < p < ∞ and take E = Lp(O). In E we consider the realization A of L with
Dirichlet boundary conditions, i.e., D(A) = H2,p(O) ∩H1,p

0 (O). Let (ek)k≥1 denote the
standard unit basis of l2, and define B ∈ L(l2, Lp(O)) by Bh :=

∑
k≥1[h, ek]l2gk for

h ∈ l2. We can rewrite (4.9) as a linear stochastic Cauchy problem of the form{
dU(t) = AU(t)dt+B dWl2(t), t ∈ [0, T ],

U(0) = 0,
(4.10)

with Hl2 an l2-cylindrical Brownian motion. The operator B is γ-radonifying since by
the Fubini theorem and the Kahane-Khintchine inequalities,

E
∥∥∥∑

k≥1

γk Bek

∥∥2

Lp .p E
∥∥∥∑

k≥1

γk Bek

∥∥p

Lp = E
∥∥∥∑

k≥1

γk gk

∥∥p

Lp

=

∫
O

E
∣∣∣∑

k≥1

γk gk(x)
∣∣∣p dx .

∫
O

(∑
k≥1

|gk(x)|2
) p

2
dx,

which is finite by the assumption on g. It was shown in [16] that ν − A admits a
bounded H∞-calculus for ν > 0 sufficiently large. This calculus is γ-bounded since
Lp(O) has property (α). It follows that the assumptions of Theorems 3.3.1 and 4.2.1
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4.4. An example

(with A replaced by A − ν) are satisfied. Since A is invertible we have D((−A)
1
2 ) =

D((ν −A)
1
2 ) = H1,p

0 (O) with equivalent norms (see [16, 52, 54]). By Theorem 4.2.1 and
the remark following it we obtain a unique solution U of (4.10) with paths belonging to
Cβ([0, T ];Lp(O)) ∩ L2(0, T ;H1,p

0 (O)) for 0 ≤ β < 1
2
.
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5. Regularity in case that A generates
a C0-group

5.1. Path regularity of the solution

A family of bounded linear operators S = (S(t))t∈R on a Banach space E is called a
C0-group of bounded operators or briefly a C0-group if

1. S(0) = IdE,

2. S(t+ s) = S(t)S(s) for all s, t ∈ R,

3. limt→0 S(t)x = x for x ∈ E.

The linear operator A defined by

D(A) =

{
x ∈ E : lim

t→0

S(t)x− x

t
exists

}
and

Ax = lim
t→

S(t)x− x

t

is the infinitesimal generator (or briefly the generator) of the group S. D(A) is the
domain of A.

Since for every t ∈ R we have that S(t) is invertible with S(t)−1 = S(−t), we will be
able to show in Theorem 5.1.2 that solutions of SCP are continuous. We will make use
of the following Lemma.

Lemma 5.1.1 Let H be separable and let WH be the cylindrical Wiener process with
respect to a filtration {F(t)}t∈[0,T ] fulfilling (PF) of page 15. Let further Φ : (0, T ) →
L(H,E) be stochastically integrable with respect WH . Then the E-valued process Y = Yt

given by

Yt :=

∫ t

0

Φ(s) dWH(s), t ∈ [0, T ],

is a martingale with respect to {F(t)}t∈[0,T ] which has a modification with continuous
trajectories.
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5.1. Path regularity of the solution

Proof. The martingale property is evident.

In the following we use an argument from [45]. To prove the existence of a continuous
modification we fix an orthonormal basis (fm)∞m=1 in L2(0, T ) and an orthonormal basis
(hn)∞n=1 in H.

By expanding [hn,Φ
∗(·)x∗]H with respect to the basis (fm)∞m=1 writing βn(s) := WH(s)hn

and using the coordinate expansion (2.2), for all x∗ ∈ E∗ and t ∈ [0, T ] we have

〈Yt, x
∗〉 =

∞∑
n=1

∫ t

0

〈Φ(s)hn, x
∗〉 dβn(s)

=
∞∑

n=1

∫ t

0

[hn,Φ
∗(s)x∗]H dβn(s)

=
∞∑

n=1

∫ t

0

∞∑
m=1

fm(s)

∫ T

0

fm(u)[hn,Φ
∗(u)x∗]Hdu dβn(s)

=
∞∑

n,m=1

∫ T

0

fm(u)[hn,Φ
∗(u)x∗]H du

∫ t

0

fm(s) dβn(s)

=
∞∑

n,m=1

∫ T

0

fm(u)〈Φ(u)hn, x
∗〉 du

∫ t

0

fm(s) dβn(s)

with convergence in L2(Ω); this convergence is unconditional since (hπ(n))n≥1 is an or-
thonormal basis for every permutation π of the positive integers. The Itô-Nisio theorem
[35, Theorem 2.1.1 (i)⇔(v) and Theorem 2.2.1] now implies that

Yt =
∞∑

n,m=1

∫ T

0

fm(s)Φ(s)hn ds

∫ t

0

fm(s) dWH(s)hn

unconditionally in L2(Ω;E).

For N ≥ 1 we put

Y
(N)
T :=

N∑
m,n=1

∫ T

0

fm(s)Φ(s)hn ds

∫ T

0

fm(s) dWH(s)hn,

For all t ∈ [0, T ],

Y
(N)
t := E(Y (N)|Ft) =

N∑
m,n=1

∫ T

0

fm(s)Φ(s)hn ds

∫ t

0

fm(s) dWH(s)hn.

In particular, for each N ≥ 1 the process Y (N) : t 7→ Y
(N)
t has a version with continuous

trajectories.
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5. Regularity in case that A generates a C0-group

We claim that for each t ∈ [0, T ] we have limN→∞ Y
(N)
t = Yt in L2(Ω;E).

Let M = (Mt)t∈[0,T ] be an E-valued square integrable continuous martingale. From
Doob’s inequality (see [32, 3.8 Theorem], [15, Theorem 3.8]) we obtain(

E sup
0≤t≤T

‖Mt‖2
E

)
≤ 4 sup

0≤t≤T

(
E‖Mt‖2

E

)
= 4
(

E‖MT‖2
E

)
(5.1)

and [15, Proposition 3.9] shows that the space M2
T (E) of all E-valued square integrable

continuous martingales M = (Mt)t∈[0,T ] endowed with the norm

‖M‖M2
T (E) :=

(
E sup

0≤t≤T
‖Mt‖2

E

) 1
2

is a Banach space. An application of the Lemma of Borel-Cantelli as in the proof of
[15, Proposition 3.9] shows that the sequence (Y (N))∞N=1 is Cauchy in M2

T (E). Let
Y (∞) ∈M2

T (E) denote its limit. Then for all t ∈ [0, T ] we have

Y ∞
t = lim

N→∞
Y

(N)
t =

∫ t

0

Φ(s) dWH(s) = Yt

in L2(Ω, E), and therefore Y
(∞)
t = Yt almost surely. Thus, Y (∞) is a continuous modifi-

cation of Y .

The next theorem states that the solution of the SCP is necessarily continuous if A is a
generator of a C0-group. The poof of it follows easily by the trivial observation that the
group property implies that for all 0 ≤ t ≤ T we have∫ t

0

S(t− s)BdWH(s) = S(t− T )

∫ t

0

S(T − s)BdWH(s) (5.2)

which means that the integrand does not depend on t. By Lemma 5.1.1, the right hand
side has a continuous modification on [0, T ].

Theorem 5.1.2 Let A be the generator of a C0-group {S(t)}t≥0 on a real Banach space
E. Furthermore let {WH(t)}t≥0 be a cylindrical H-Wiener process, where H is a sep-
arable real Hilbert space, and let B : H → E be a bounded operator. If {U(t)}t≥0 is a
weak solution of the stochastic Cauchy problem SCP{

dU(t) = AU(t) dt+B dWH(t), t ≥ 0,

U(0) = 0,
(5.3)

then {U(t)}t≥0 has a modification with continuous trajectories.
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5.2. Nonexistence of solutions - an example

Proof. Fix T ≥ 0. Following Lemma 2.3.3 it is sufficient to show that the process
{U(t)}t∈[0,T ] has a continuous modification.

We know from [8, 45] that if a weak solution {U(t)}t≥0 exists then it is unique and the
L(H,E)-valued function s 7→ S(t − s)B is stochastically integrable on (0, t) for every
t ≥ 0. {U(t)}t≥0 is given by

U(t) =

∫ t

0

S(t− s)B dWH(s)

= S(t− T )

∫ t

0

S(T − s)B dWH(s), t ∈ [0, T ].

By Lemma 5.1.1, the right hand side has a continuous modification on [0, T ].

In the next section we combine this result with a result of Brzeźniak, Peszat and Zabczyk
([7]) on nonexistence of solutions for a certain class of stochastic differential equations.

5.2. Nonexistence of solutions - an example

The results of this section emanate from a joint work with Jan van Neerven (see [20]).

So far we met various conditions on A or E under which we obtained continuity of
the solutions of the SCP. The following section grew out of an attempt to examine
the situation for certain special cases, where the semigroup generated by A possesses
minimal smoothing properties. To explain the main idea, let CP denote the Banach
space of periodic continuous functions f : R → R with period 1.

In a recent paper [7], Brzeźniak, Peszat, and Zabczyk showed that for ‘most’ functions
f ∈ CP , the stochastic convolution with a standard real-valued Brownian motion β =
{βt}t≥0,

t 7→ (f ∗ β)t =

∫ t

0

f(t− s) dβs,

fails to have a modification with bounded trajectories and thus also fails to have a
modification with continuous trajectories. In fact the authors showed that the set of all
f ∈ CP for which such a modification exists is of the first category in CP . The main
ingredient is a deep regularity result for random trigonometric series [28, Theorem 8.1].

This seems to suggest an approach toward a negative solution of the continuous mod-
ification problem for a class of stochastic equations in CP . To see why, let A = d/dθ
denote the generator of the left translation group S = {S(t)}t≥0 in CP (compare [25,
4.14 Definition]) and consider the problem{

dU(t) = AU(t) dt+ f dβt, t ≥ 0,

U(0) = 0,
(5.4)
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5. Regularity in case that A generates a C0-group

where f ∈ CP is a given function. If this problem has a weak solution {Uf (t)}t≥0 in CP

(in the sense of Definition 2.2.1), then for all t ≥ 0 we have

〈Uf (t), δ0〉 =

∫ t

0

〈S(t− s)f, δ0〉 dβs =

∫ t

0

f(t− s) dβs

almost surely, where δ0 denotes the Dirac measure at 0.

By the Brzeźniak-Peszat-Zabczyk result, the right hand side fails to have a continuous
modification for all functions f outside a set of first category in CP . Interestingly,
however, from Theorem 5.1.2 it follows that precisely for these f the above problem
fails to have a weak solution. This is the content of the Theorem below. It shows that
problem (5.4) actually provides an example of nonexistence and, at the same time, some
evidence for a positive solution to the continuous modification problem.

Theorem 5.2.1 For a given function f ∈ CP , the problem (5.4) has a weak solution if
and only if the convolution process f ∗β has a modification with continuous trajectories,
and in this situation the weak solution has a modification with continuous trajectories.

Proof. Suppose E is a real Banach space and let x ∈ E be a fixed nonzero element.
Let H denote the one-dimensional subspace spanned by x, endowed with the norm
‖cx‖H := |c|. If β = {βt}t∈[0,T ] is a standard real-valued Brownian motion, then

(WHcx)(t) := cβt, c ∈ R

defines a cylindrical H-Wiener process.

Using this construction we see that (5.4) is a special case of (5.3) if we take H = span{x}
and WH

t (cx) = cβt, and define Bf : H → CP by Bf (cx) := cf . By Theorem 5.1.2 and
the observations above, (5.4) fails to have a weak solution whenever the convolution of
f with β fails to have a continuous modification.

Let us now assume that, conversely, the convolution process f ∗ β has a continuous
modification. Then the convolution process t 7→ (f ∗ β̃)t has a continuous modification
as well, where β̃t := β1+t − β1. Indeed, this may be deduced from [29, Lemma 3.24]
or from a general comparison result for Gaussian processes [36, Theorem 12.16]. Now
define, for θ ≥ 0,

Xf (θ) :=

∫ 1+θ

0

f(1 + θ − s) dβs −
∫ θ

0

f(θ − s) dβ̃s, (5.5)

where on the right hand side we take the continuous modifications, and notice that

Xf (θ) =

∫ 1

0

f(θ − s) dβs
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5.3. A characterization of H∞-calculus

almost surely. Hence by the Pettis measurability theorem and the stochastic Fubini
theorem, (5.5) defines a centered CP -valued Gaussian random variable Xf , and for any
finite Borel measure µ ∈ (CP )∗ the variance of 〈Xf , µ〉 is given by

E〈Xf , µ〉2 = E
(∫ 1

0

∫ 1

0

f(θ − s) dβs dµ(θ)
)2

= E
(∫ 1

0

∫ 1

0

f(θ − s) dµ(θ) dβs

)2

=

∫ 1

0

(∫ 1

0

f(θ − s) dµ(θ)
)2

ds

= 〈Qfµ, µ〉.

Here, the operator Qf ∈ L(C∗P , CP ) is defined by

Qfµ :=

∫ 1

0

S(t)BfB
∗
fS

∗(t)µ dt.

The existence of a global weak solution Uf now follows from Lemma 2.3.3, cf. also [8,
Theorem 5.3]

Remark 5.2.2 The solution Uf is now given by

Uf (t) =

∫ t

0

S(t− s)BfdWH(s) =

∫ t

0

f(t+ θ − s) dβs

almost surely.

Remark 5.2.3 We have seen in Theorem 5.1.2 that the existence of a weak solution
U to problem (5.3) implies the existence of a continuous modification of U whenever
A is the generator of a C0-group. Another situation where this is known to happen is
the case where A generates an analytic C0-semigroup on E; see Theorem 3.2.8 and [8,
Proposition 4.3, Theorem 6.1] as well as [15, Lemma 5.13].

5.3. A characterization of H∞-calculus

In Chapter 4 we developed a characterization of bounded H∞-calculus. There we used
maximal regularity of solutions of suitable SCP’s (compare Theorem 4.2.4). In the case
that A generates a C0-group we can exploit results of [30] (see Appendix A) to obtain a
characterization of bounded H∞-calculus by the very existence of such weak solutions.

Theorem 5.3.1 Let E and E∗ have finite cotype. For a generator A of a C0-group S
the following are equivalent.
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5. Regularity in case that A generates a C0-group

(a) The equations

dU(t) = AU(t) dt+ x dWH(t), t ≥ 0,

U(0) = 0,

and

dŨ(t) = A�Ũ(t) dt+ x� dWH(t), t ≥ 0,

Ũ(0) = 0,

admit a weak solution in E resp. E� for all x ∈ E resp. for all x� ∈ E�.

(b) A has a H∞-calculus on each strip Sω = {λ ∈ C : |Reλ| < ω}, ω > ω0(A).

Proof. In the following we will prefer notations such as ‖s 7→ S(s)x‖2
γ instead of

‖S(·)x‖2
γ.

(a) ⇒ (b): With the operators B : R → E, t 7→ xt, x ∈ D(A) and B̃ : R → E�, t 7→ x�t,
x� ∈ E�, we obtain for the solution U(t) =

∫ t

0
S(t− s)Bdβs =

∫ t

0
S(t− s)xdβs,

E‖U(t)‖2 = ‖s 7→ S(s)x‖2
γ([0,t],E) <∞.

If we consider the rescaled semigroup T (t) := e−ωtS(t), t ≥ 0, ω > ω0(A) we obtain (see
[47, Proposition 4.5])

‖t 7→ e−ωtS(t)x‖γ([0,∞),E) <∞ .

Analogous considerations in the dual case with x� ∈ E� show

‖t 7→ e−ωtS∗(t)x�‖γ([0,∞),E∗) <∞ .

We claim that there exists a constant K ≥ 0 such that

‖t 7→ e−ωtS(t)x‖γ([0,∞),E) < K‖x‖ (5.6)

and

‖t 7→ e−ωtS∗(t)x�‖γ([0,∞),E∗) < K‖x�‖ . (5.7)

This is an easy application of the Closed Graph Theorem: Let (fn) be an ONB of
L2(0, T ). Assume that for a sequence (xi), with xi → x in E, i ∈ N we have T (·)xj →
Φ(·) in γ(0,∞;E) for Φ ∈ γ(0,∞;E).
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5.3. A characterization of H∞-calculus

Then by Fatou’s Lemma,

E

∥∥∥∥∥
N∑

n=1

γn

∫ ∞

0

fn(t)T (t)x dt

∥∥∥∥∥
2

= E

 lim
j→∞

∥∥∥∥∥
N∑

n=1

γn

∫ ∞

0

fn(t)T (t)xj dt

∥∥∥∥∥
2


≤ lim inf
j→∞

E

∥∥∥∥∥
N∑

n=1

γn

∫ ∞

0

fn(t)T (t)xj dt

∥∥∥∥∥
2

≤ lim inf
j→∞

‖T (·)xj‖2
γ

= ‖Φ(·)‖γ .

Taking the supremum over N ≥ 1, we obtain that T (·)x ∈ γ(0,∞;E) and T (·)x = Φ(·)x.
Now, by the Closed Graph Theorem we obtain the desired estimate (5.6) and (5.7) by
analogous arguments. Having obtained the two estimates (5.6) and (5.7) we can apply
A.0.4 to infer the desired H∞-calculus of A.

(b) ⇒ (a): Since A generates a C0-group, A is of γ- and R-strip type as shown in Lemma
A.0.3. Further, since E has finite cotype we can apply Theorem A.0.4. This theorem
states that in the present situation H∞-calculus of A on the strips S = {λ ∈ C : |Reλ| <
ω}, ω > ω0(A) is equivalent to the estimates

‖e−ωtS(t)x‖γ([0,∞),E) ≤ C‖x‖, x ∈ D(A)

‖e−ωtS∗(t)x∗‖γ([0,∞),E∗) ≤ C‖x∗‖, x∗ ∈ D(A∗) .

This is equivalent to the existence of weak solutions U(t) and Ũ(t) on arbitrary intervals
[0, T ], T ≥ 0.
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A. Square function estimates - results
of [30]

The ideas, concepts and results of [30] are fundamental throughout wide parts of this
work. The following results are explicitly used in the previous chapters.

The following lemma could be interpreted as a Fatou lemma for the space γ(H,E).

Lemma A.0.2 Suppose (uν) is an uniformly bounded net in L(H,E) such that lim
ν
uν = u

in the strong operator topology. Then

‖u‖γ ≤ lim inf
ν

‖uν‖γ.

In connection with square function estimates we consider operators of strip type A on
a Banach space E such that {R(λ,A) : |Reλ| > a} is not only bounded, but even γ–
bounded (R–bounded). Such operators are called operators of γ-strip type (of R-strip
type) and wγ(A) (or wR(A)) is the infimum over all a for which the above γ–boundedness
(R–boundedness) condition holds.

Lemma A.0.3 If A generates a C0–group S = (S(t)), then A is of γ– (and R–) strip
type with ωγ(A), ωR(A) ≤ ω0(S).

Theorem A.0.4 Let A be of γ–strip type operator on a Banach space E with finite
cotype. Then the following conditions are equivalent

a) A generates a C0–group S = (S(t)) such that for one (all) a > ω(−A) there is a
constant C with

‖e−atS(t)x‖γ(R+,E) ≤ C‖x‖, x ∈ D(A)

‖e−atS(t)∗x∗‖γ(R+,X∗) ≤ C‖x∗‖, x∗ ∈ D(A∗).

b) For one (all) a with |a| > wγ(A) there is a constant C, such that

‖R(a+ i·, A)x‖γ(R,E) ≤ C‖x‖, x ∈ D(A)

‖R(a+ i·, A)∗x∗‖γ(R,E∗) ≤ C‖x∗‖, x∗ ∈ D(A∗).
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c) For one (all) a with |a| > wγ(A) there is a constant C such that for x ∈ D(A)

1

C
‖x‖ ≤ ‖R(a+ i·, A)x‖γ(R+,E) ≤ C‖x‖.

d) A has a H∞(S(b))–calculus for one (all) b > wγ(A).

Furthermore we have wγ(A) = ω0(S) = wH∞(A).

Proposition A.0.5 Let −A be a sectorial operator in E of angle 0 < ω(−A) < π
2
.

1. The operator −A admits a bounded H∞-calculus if and only if for all x ∈ E and
x� ∈ E� we have (−A)

1
2S(·)x ∈ γ(R+;E) and (−A�)

1
2S�(·)x� ∈ γ(R+;E�).

2. Suppose 0 ∈ %(A) and T > 0 is arbitrary and fixed.

Then −A admits a bounded H∞-calculus if and only if for all x ∈ E and x� ∈ E�

we have (−A)
1
2S(·)x ∈ γ(0, T ;E) and (−A�)

1
2S�(·)x� ∈ γ(0, T ;E�).
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[13] G. Da Prato, S. Kwapień, and J. Zabczyk. Regularity of solutions of linear stochastic
equations in Hilbert spaces. Stochastics, 23(1):1–23, 1987.

[14] G. Da Prato and J. Zabczyk. Nonexplosion, boundedness, and ergodicity for
stochastic semilinear equations. J. Differential Equations, 98(1):181–195, 1992.

[15] G. Da Prato and J. Zabczyk. Stochastic equations in infinite dimensions, volume 44
of Encyclopedia of Mathematics and its Applications. Cambridge University Press,
Cambridge, 1992.

[16] R. Denk, G. Dore, M. Hieber, J. Prüss, and A. Venni. New thoughts on old results
of R. T. Seeley. Math. Ann., 328(4):545–583, 2004.

[17] R. Denk, M. Hieber, and J. Prüss. R-boundedness, Fourier multipliers and prob-
lems of elliptic and parabolic type. Mem. Amer. Math. Soc., 166(788):viii+114,
2003.

[18] E. Dettweiler. Stochastic integration of Banach space valued functions. Stochastic
space-time models and limit theorems, Math. Appl., D. Reidel Publ. Co. 19, 53-59
(1985), 1985.

[19] E. Dettweiler. Stochastic integration relative to Brownian motion on a general
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et propriétés géométriques des espaces de Banach. Studia Math., 58(1):45–90, 1976.

[40] M. Métivier. Semimartingales, volume 2 of de Gruyter Studies in Mathematics.
Walter de Gruyter & Co., Berlin, 1982.
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