
Shortest-Path Indices:
Establishing a Methodology for Shortest-Path Problems ?

Reinhard Bauer, Daniel Delling, and Dorothea Wagner

Universität Karlsruhe (TH), 76128 Karlsruhe, Germany, {rbauer,delling,wagner}@ira.uka.de

Abstract. During the last years, impressive progress has been achieved in the field of algorithm engineering.
A problem becoming more and more important is that of data dependency: the performance of an algorithm
often highly depends on the input. Yet, for a given input, it is highly non-trivial to select the best solving
strategy.
In this work, we introduce a new methodology for evaluating speed-up techniques for DIJKSTRA’s algorithm:
we examine the shortest-path structure of networks using simple indices in order to predict how well speed-
up techniques perform on specific networks. More precisely, we introduce the ReCo-Index that indicates the
strength of hierarchy of the input. In addition, we present a second index, called shortest-path entropy, taking
into account the mutual importance of consecutive edges. As a third index, the update impact measures the
change of the shortest-paths structure in a network whenever it is altered. For each index, we present an algo-
rithm for computing it efficiently. An experimental evaluation confirms the correlation of indices and speed-up
techniques.

? Partially supported by the Future and Emerging Technologies Unit of EC (IST priority – 6th FP), under contract no. FP6-
021235-2 (project ARRIVAL).

1 Introduction

Algorithm engineering exhibited an impressive surge of interest during the last years, spearheaded by
one of the showpieces of algorithm engineering: computation of shortest paths. In this field, many speed-
up techniques for DIJKSTRA’s algorithm have been developed (see [1] for an overview). Recent re-
search [2, 3] even made the calculation of the distance between two points in road networks of the size
of Europe a matter of microseconds. One problem arising for algorithm engineering in general, and
shortest paths in particular, is the following: Performance of algorithms highly depends on the used
input, e.g. [2, 3] were developed for road networks and use properties of those networks in order to
gain their enormous speed-up. Due to the availability of huge road networks, recent research in short-
est paths solely concentrated on those networks [4]. However, fast algorithms are also needed for other
applications, e.g. timetable information or routing in sensor networks.

In this work, we introduce a new methodology for evaluating speed-up techniques for DIJKSTRA’s
algorithm. More precisely, we introduce the notion of shortest-path indices which predict the perfor-
mance of certain speed-up techniques. The first index, called ReCo-Index, is designed to predict the
performance of hierarchical speed-up techniques while the second, shortest-path entropy, scopes goal
directed approaches. Hierarchical techniques exploit the importance of nodes (or edges) and construct
a routing hierarchy from this information. The key observation for the ReCo-Index is that centrality
measures also assign importance to graph elements. The distribution of centrality reflects the strength of
routing hierarchy in the graph, thus, the ReCo-Index assesses this distribution. However, goal directed
speed-up techniques need not depend heavily on the hierarchical structure of a network. Therefore, we
introduce a second index—called shortest-path entropy—which scopes the intuition of goal-directed ap-
proaches. The index identifies the uncertainty of a given edge in a shortest path about how to continue.
Imagine you drive on a road and approach the next junction. A low entropy indicates that for most tar-
gets in the network you will always take the same road, while a high entropy means that all outgoing
roads target many locations and are thus equally valueable. Moreover, we present how to compute the in-
dices. In case of ReCo, two problems arise. On the one hand, a straight-forward implementation involves
solving APSP and thus is prohibitive for huge datasets. On the other hand, no unbiased approximation
algorithm for reach is known. Our approach is based on branch-and-bound and computes the reach of
a single edge exactly. By computation of the reach values of a random sample of edges, we are able
to approximate ReCo efficiently. An experimental evaluation of the most common speed-up techniques
confirms the correlation of indices and speed-up techniques. More precisely, ALT [5] correlates with
our shortest-path entropy, while Highway Hierarchies [6] and the RE algorithm [7] correlate with our
ReCo-Index.

The same problem of data dependency arises in dynamic scenarios, a field that is currently tackled [8,
9]. In such a scenario, an edge weight may change between two requests. In order to preserve correctness
of speed-up techniques, the preprocessed data has to be updated (at least sometimes) whenever an edge is
altered or the metric of the graph changes. Thus, we introduce a measure called update impact depicting
the impact of the update for shortest-path computation. A high impact indicates that many shortest paths
must be rerouted while a small impact means that the structure of the graph with respect to routing has
hardly changed. In addition, we show how to approximate the update impact very efficiently.

We point out that our approach is applicable to solve the problem of data-dependency in other fields
of algorithm engineering: Generally speaking, we evaluate input data using simple indices in order to
predict how well complex algorithms perform on specific datasets.

1.1 Related Work

To the best of our knowledge, no work has been published on analyzing the shortest-path structure of a
given network. However, centrality measures relying on shortest-path algorithms are used to analyze a

2

network with respect to its communication structure, e.g. in social network analysis. Among the most
prominent are betweenness, reach, and stress centrality. See [10] for an overview.

As already mentioned, recent research on speed-up techniques for DIJKSTRA’s algorithm concen-
trated on road networks. However, additional tests besides road networks have been published in [11,
7]. Solely in [12] systematic experiments on different types of graphs have been evaluated. As a conse-
quence, the authors state that the choice of speed-up technique depends on the input.

1.2 Overview

This paper is organized as follows. Section 3 introduces our two shortest-path indices: the ReCo-Index
and shortest-path entropy. The efficient computation of both indices is located in Section 4. We introduce
our update impact in Section 5, including an algorithm to approximate the index efficiently. In Section 6
we evaluate the introduced indices on different types of networks (road and railway networks, small-
world graphs, and synthetic data) and show that they do correlate with the speed-up achieved by the
most common speed-up techniques on the same networks. Since most techniques have only been tested
on road networks, these experiments are of independent interest. Section 7 concludes our work with a
brief summary and planned future work.

2 Preliminaries

Throughout the whole work we restrict ourselves to directed graphs G = (V,E) with positive length
function len : E →R

+. The single-source shortest-path problem (SSSP) is that of computing the shortest
paths from a given node to all other nodes in the graph. The all-pairs shortest-path problem (APSP) is
that of computing the shortest paths between all nodes in the graph. Fundamental algorithms on these
shortest-path problems can be found in [13]. With σst(u) we denote the number of shortest paths from s
to t containing the node u. Analogously, σst(u,v) denotes the number of shortest s-t-paths containing the
edge (u,v) and σst(u,v,w) denotes the number of shortest s-t-paths containing the edges (u,v),(v,w).
By σ••(. . .) we denote ∑s∈V ∑t∈V σst(. . .). With dist(s, t) we denote the length of a shortest path from s
to t. A shortest-path directed acyclic graph (SP-DAG) D of a graph G is a cycle-free subgraph of G for
which the following property holds: each path in D is a shortest path in G.

A widely-spread centrality measure is betweenness. Let δst(u,v) denote the fraction of shortest paths
between s and t that contain the edge (u,v), i.e. δst(u,v) = σst(u,v)/σst . Then, the betweenness centrality
CB(u,v) of an edge (u,v) is defined to be CB(u,v) = ∑s∈V ∑t∈V δst(u,v).

An edge contraction for a node v of degree 2 consists in contracting the two edges incident to v. Two
graphs G1 and G2 are homeomorphic if they become isomorphic after edge contraction for all nodes
with degree 2.

Let X denote a discrete random variable with finite co-domain {x1,x2, . . . ,xn} for which the probabil-
ity that X equals xi is pi. The (Shannon-)entropy of X is defined to be−∑

n
i=1 pi log(pi). More information

about the Shannon-entropy can be found in [14]. When dealing with measures that are mainly computed
by counting or summarizing another measure, the sample technique (see [10] for an example) can often
be used for approximation. This technique first computes the summarized values only for a small subset
of the actual required values and then estimates the real value out of this sample. When doing so, it is
desireable to get good confidence intervals for the estimated values. In case the estimation is unbiased,
one can easily apply Hoeffdings Inequality [15] to get such an error bound: If X1,X2, . . . ,XK are real
valued independent random variables with ai ≤ xi ≤ bi and expected mean µ = E[∑Xi/K] , then for
ξ > 0

P

{∣∣∣∣∑
K
i=1 Xi

K
−µ

∣∣∣∣≥ ξ

}
≤ 2e−2K2ξ2/∑

K
i=1(bi−ai)2

.

3

3 Shortest-Path Indices

In this section, we pursue two completely new approaches to obtain information about the shortest-path
structure of a graph. The first, the ReCo-Index measures the strength of the hierarchy in a given network.
The second, shortest path entropy tries to measure the mutual importance of consecutive edges.

3.1 The ReCo-Index

Reach. Reach is a centrality measure introduced in [16] that is used in the reach-based pruning speed-up
technique. The version of reach described here corresponds to the one stated in [7]. The notion of reach
derives from the observation that often, when having a long distance shortest path, only at the beginning
and the end of the path ‘local’ edges are used. Intuitively speaking, the reach of an edge is high, if it lies
in the middle of at least one long shortest path.

Given a path Pst from s to t and an edge (u,v) on Pst . The reach of (u,v) with respect to Pst is the
minimum of the length of the two subpaths Psv and Put , i.e

reachPst (u,v) = min{length(Psv), length(Put)} .

The reach of an edge (u,v) is defined to be the maximum over all shortest paths P containing (u,v) of
the reach values of (u,v) with respect to P, i.e.

reach(u,v) = max
P∈SP(u,v)

{reachP(u,v)}

where SP(u,v) denotes the set of all shortest paths containing (u,v).

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.2 0.4 0.6 0.8 1

A

B

line of perfect equality

Lorenz-curve

Fig. 1. Lorenz curve of the set
{1,1,2,6,10}

Lorenz-Curve. One can use the Lorenz-curve to visualize the con-
centration of high centrality measure values on few edges: Given an
(w.l.o.g. ordered) set of positive, real valued variables x1 ≤ x2 ≤ . . .≤
xn, the Lorenz-curve is the piecewise linear function L : [0,1] → [0,1]
connecting the points (ui,vi), where (u0,v0) = (0,0) and ui = i/n,
Si = ∑

i
j=1 xi, vi = Si/Sn for i = 1 to n. Assume that x1 = x2 = . . . = xn.

Then, the graph of the Lorenz-curve L is a line from (0,0) to (1,1),
called the line of perfect equality. See Fig. 1 for an example.

Gini-Coefficient. The Gini-coefficient condenses the information given by the Lorenz-curve to one
single concentration measure: Let A be the area between the line of perfect equality and the Lorenz-
curve and B be the area under the Lorenz-curve. Then the Gini-coefficient is defined to be A/(A + B).
At a glance, the Gini-coefficient is high if a big amount of the total sum of all variables is given by
the sum of few variables. For a sample X , the Gini-coefficient is computed by the formula GX = 1/n ·
(n+1−2∑

n
i=1(n+1− i)xi/(∑n

i=1 xi)). More information on the Gini-coefficient and the Lorenz-curve
can be found in [17].

ReCo-Index. Given a graph G, the Reach-Concentration Index (ReCo-Index) of G is defined to be the
Gini-coefficient of the reach values of all edges on the graph. This index is motivated by the observation
that on road networks, railway systems and many other graph classes, most edges have low reach while
only some high reach edges exist. The distribution of the reach values implies a hierarchy in the graph.
The ReCo-Index measures the strength of that hierarchy by measuring the concentration of the reach
values. Summarizing, the ReCo-Index is high for graphs with a strong hierarchy and low otherwise.

4

3.2 Shortest-Path Entropy

While the ReCo-Index measures the shortest-path importance of an edge (u,v) independently from the
other edges, the shortest-path entropy is an approach to include the mutual importance of consecutive
edges. The basic idea is as follows: We choose uniformly at random one of all possibilities to extend a
given shortest path that ends with the edge (u,v). The entropy of this edge (u,v) measures the uncertainty
about which edges, outgoing from v, will resume the shortest path.

Definition. Let S and T be two independent random variables that choose a node uniformly at random.
For an edge (u,v) let E(u,v) be the random variable whose co-domain is the set of edges outgoing of v
and whose probability to equal a given edge (v,w) is

P{E(u,v) = (v,w)}=
σ••(u,v,w)
σ••(u,v)

.

That isP{E(u,v) = (v,w)}, is the conditional probability that (v,w) is on a shortest path between S and T
if (u,v) is on a shortest path between S and T . Then, the shortest-path entropy H(u,v) of the edge (u,v)
is the entropy of E(u,v):

H(u,v) = ∑
(v,w)∈E

P{E(u,v) = (v,w)} · log
(
P{E(u,v) = (v,w)}

)
The shortest-path entropy of a graph is the average shortest-path entropy of all of its edges. The inter-
pretation of the shortest path entropy is easy: Given a graph with low shortest path entropy. If we extend
a shortest path ending with an edge (u,v) and choose one of all possibilities uniformly at random, (u,v)
is very likely to be succeeded by a specific edge (v,w).

Sophisticated Variants. Another way of measuring the entropy of a graph is to compute the weighted
graph entropy. Here the average over the entropy values of all edges is weighted by their importance
which can be measured by betweenness or reach.

Furthermore we want to propose an additional change in the computation of the shortest-path entropy
(and, for simplicity, think of undirected graphs). When computing σ••(. . .) we only count shortest paths
whose start- and end-nodes that do not have degree 2. Analogously, we forbid these nodes for the random
variables S and T . This change in the definition of entropy has the advantage that homeomorphic graphs
have the same entropy.

This proceeding is motivated by the way input-data for shortest-path algorithms is generated. For
example, when mapping road networks to graphs, it might be interesting to geographically know the
course of the road. Therefore, often long road segments are mapped to many edges covering the course.
The precision of this mapping strongly affects the final graph but all possible resulting graphs are home-
omorphic to each other.

4 Computation of Shortest-Path Indices

We now show how to compute shortest-path entropy and the ReCo-Index exactly. For the latter, we also
describe an approximation algorithm that depends on computing the exact reach values for a given set of
sample edges. To this end, we present a branch-and-bound algorithm that allows to compute the values
for these samples.

5

4.1 ReCo-Index

To compute the ReCo-Index of a graph one has to compute the reach values of the graph and then
compute the Gini-coefficient of these values. The exact computation of reach requires solving the APSP-
problem which is prohibitive for large graphs. In [18] a method is described that partitions the underlying
graph to heuristically speed up the computation of reach values. On the other hand [7] gives a method
that computes upper bounds for reach values, that is fast enough to work on huge road networks. Unfor-
tunately, this approach is not suitable for our scenario as the difference between the computed and the
real values is too big. As the definition of reach is strongly based on maximizing some values it seems
unlikely to find good unbiased estimators for reach centrality. Therefore, if one deals with huge graphs
where the computation of APSP is prohibitive, another strategy must be employed.

We estimate the ReCo-Index by computing the exact ReCo-Index for a given sample of edges. This
approach enables us to work with huge graphs. Unfortunately, just applying the plain definition of reach
yields the same effort to compute the reach of only one edge as to compute the reach of all edges. We
propose another strategy, i.e. a branch-and-bound algorithm that computes the exact reach for a given
edge (u,v) heuristically faster.

The algorithm basically does the same as the straightforward algorithm solving the APSP would do.
Additionally, the algorithm first grows a shortest-path DAG T̃ rooted at v on the graph with the reversed
edge set. It is easy to see that a shortest-path that is responsible for the reach of (u,v) has to start on
the branch T of T̃ that starts with the edge (v,u). Hence, we do not have to consider all shortest paths
that start with a node outside T . Then, like the straightforward approach, shortest-paths trees are grown
on the original graph. However, we detect early which shortest-paths trees cannot be responsible for the
reach of an edge. That way we can stop growing such a shortest-path tree or can even completely avoid
growing the tree. See Alg. 1 for the pseudocode of the algorithm.

Algorithm 1: COMPUTESINGLEEDGEREACH(u,v)
input : graph G = (V,E), edge (u,v), tuning-parameter γ ∈ [0,1]
output: exact reach of the edge (u,v)

T̃ := SP-DAG with root v on reverse edge-set1
T := branch of T̃ that starts with the edge (u,v)2
forall w ∈V do compute height of w in T ; set w to unblocked3
reach(u,v):=04

while there are unblocked nodes in T do5
P:=unblocked subpath of a path (in T) from s to a deepest unblocked node in T6
w:=node in P such that the length of P’s unblocked subpath to w is approx γ · len(P)7

R:=grow SP-tree rooted at w; when settling nodes, always prefer the branch that contains (u,v); stop growing the8
tree if

(α) all descendants of v in R are finished or9
(β) for at least one settled descendant d of v: dist(w,v)≤ dist(u,d)10

reach(u,v) := max{reach(u,v),min{dist(w,v),height(u) in R}}11

if not (β) then12
delete w from T13
delete all nodes from T which are not connected with v in T any more14

if (β) or reach(u,v) has been increased then15
block all nodes d in T with dist(d,v)≤ reach(u,v)16

To obtain an algorithm with relative error bound ε, line 5 has to be replaced by while there exist
unblocked nodes d with dist(u,d) > reach(u,v) · (1 + ε). Note that for updating the heights in T after a
node has been deleted in line 14 we just have to exploit the topological ordering implicitely given by the

6

distances labels in T . Therefore, we can update the height of all nodes on the tree in O(n) runtime. A
proof of correctness is given in Appendix B.

4.2 Shortest-Path Entropy

Here we sketch an algorithm that computes the shortest-path entropy of a given graph in O(n(n logn +
m ·∆)) where n denotes the number of nodes, m the number of edges and ∆ the maximum outgoing
degree over all nodes in the graph. The algorithm is similar to the betweenness algorithm in [19]. Its
pseudocode can be found in Appendix C.

The basic work to compute the shortest-path entropy consists of computing σ••(u,v) for each edge
(u,v) and σ••(u,v,w) for each pair of edges (u,v), (v,w). To compute σ••(u,v) we sum up σs•(u,v) for
each node s. The computation of σs•(u,v) for a single node s is done as follows: It is easy to see that
σs•(u,v) = σsu ∑t∈V σvt · 1{dist(s,u)+len(u,v)+dist(v,t)=dist(s,t)}. Therefore we grow a SP-DAG D rooted at s.
To compute σsu we can exploit the equation σsu = ∑w∈Preds(u) σsw where Preds(u) denotes the set of all
direct predecessors of u in D: When settling a node of D we can compute σsu by summarizing σsx for all
direct predecessors x of u in D

After growing D we can compute σsv• := ∑t∈V σvt ·1{dist(s,v)+dist(v,t)=dist(s,t)} for each node by visiting
the nodes in descending distance from s. We know that σsv• = 0 if v is a leaf. Otherwise we exploit
σsv• = ∑(v,w)∈E 1{dist(s,w)=dist(s,v)+len(v,w)}(1+σsw•) and compute σsv• by summarizing 1+σz• for every
direct successor z of v in D. The computation of σ••(u,v,w) works analogously.

5 Update Impact

Given two graphs GA and GB with the same topology but different length functions lenA, lenB (either
representing completely different profiles or updates of some edges because of traffic jams, etc). We
present a new index for measuring the similarity of these graphs with respect to their shortest-path
structure. Such a measure can be used for benchmarks in dynamic shortest-path scenarios. Furthermore,
one can compute such a measure to check whether it is feasible to compute a dynamic update within
reasonable time.

Definition. For two nodes s and t let ϕst(u,v) = 1 if the edge (u,v) is on a shortest s-t-path in exactly
one of two graphs GA and GB, otherwise ϕst(u,v) = 0. Accordingly, ϕs(u,v) equals 1 if the edge (u,v)
is in the SP-DAG rooted at s in exactly one of both graphs, otherwise ϕs(u,v) = 0. The update impact
UI(lenA, lenB) is the probability that a uniformly at random chosen edge (u,v) is on a shortest s-t-path
on exactly one of the two graphs GA and GB, where s and t are chosen independently and uniformly at
random.

UI(lenA, lenB) =
∑s∈V ∑t∈V ∑(u,v)∈E ϕst(u,v)

|V |2|E|
=

∑s∈V ∑(u,v)∈E ϕs(u,v)
|V ||E|

Estimate Computation. The exact update impact of two graphs can be computed in O(n(n logn+m))
time by growing, for each node, one shortest-path tree w.r.t. lenA and one shortest-paths tree w.r.t. lenB.
Only for updates that are sufficiently different from each other it is reasonable to approximate the update
impact. Given G = (V,E), lenA, lenB and a significance niveau α, the estimation algorithm works as
follows: We iteratively choose a node at random and grow a SP-DAG on (G, lenA) and one on (G, lenB).
At step K we count the number of edges LK that are contained in exactly one of both DAGs. The current
estimate for the update impact is ∑

K
i=1 Li/(|E|K). The relative length of the current confidence interval

is γi :=
√

K · log(2/α)/(2(∑Li)2). We stop if γi is smaller than a pre-chosen value γ.

7

Justification. Now we are going to justify the estimation algorithm. We want to compute UI(lenA, lenB)=
∑s∈V ∑(u,v)∈E ϕs(u,v)/(|V ||E|). With Ls := ∑(u,v) ϕs(u,v)/|E| it follows that UI(lenA, lenB)= ∑s∈V Ls/|V |.
It holds that 0 ≤ Ls ≤ 1 and E[Ls] = ∑Ls/|V | = UI(lenA, lenB). Therefore the value computed by the
approximation algorithm, ∑

K
i=1 Lsi/K is an unbiased estimate for the update impact. To obtain the con-

fidence intervals we apply Hoeffding’s Bound: Let s1, . . . ,sK be independent, randomly chosen nodes.
Then

P

{∣∣∣∣∣ K

∑
i=1

Lsi/K−UI(lenA, lenB)

∣∣∣∣∣≥ ξ

}
≤ 2e−2ξ2K2/K = 2e−2ξ2K .

To obtain a confidence interval with length γ relative to the computed value of I(lenA, lenB) and signifi-
cance niveau α we set γ := ξ ·K/∑

K
i=1 Lsi

P

{∣∣∣∣∑
K
i=1 Lsi/K−UI(lenA, lenB)

∑
K
i=1 Lsi/K

∣∣∣∣≥ γ

}
≤ 2e−2ξ2K = 2e−2γ2(∑Ls)2/K ≤ α

This yields √
K · log(2/α)/(2(∑Lsi)2)≤ γ

and thus the confidence interval computed by the algorithm is verified.

6 Experiments

Here, we present an experimental evaluation of our shortest-path indices from Section 3 and our update
impact from Section 5. In Section 6.1, we use different types of graphs and evaluate the scores achieved
with respect to our indices and show that these scores correlate with certain speed-up techniques. For
showing the applicability of our update impact, we evaluate the impact of changing the metrics of a road
network in Section 6.2. Our implementation is written in C++ solely using the STL. Our experimental
evaluation was done on one core of an AMD Opteron 2218 running SUSE Linux 10.1. The machine is
clocked at 2.6 GHz, has 16 GB of RAM and 2 x 1 MB of L2 cache. The program was compiled with
GCC 4.1, using optimization level 3.

6.1 Shortest-Path Indices

In order to show the correlation of our ReCo-Index with hierarchical techniques on the one hand, and
shortest-path entropy with goal-directed approaches on the other hand, we evaluated a collection of net-
works (European and US road networks, timetable information, internet graphs, citation graphs, and
synthetic data) with different metrics. We here present a summary of the most interesting results. Note
that we also evaluated the Gini-coefficient of the distributions obtained from betweenness values. How-
ever, it turned out that, computing these values for different graphs, the observed variance was too small
to interpret. Therefore, we do not report these results here.

Speed-Up Techniques. Due to the fact that many speed-up techniques exist, we restrict ourselves to
those used most often in literature and which do not require a layout of the input graph. As most speed-
up techniques use bidirectional search, we use bidirectional DIJKSTRA as a reference. We evaluate the
speed-up techniques with respect to settled nodes which denotes the number of nodes taken from the
priority queues.

We use the latest variant of ALT, introduced in [20], with 16 maxCover landmarks as representative
of goal-directed search. It pushes the search towards a target by adding a potential—obtained from the
distances to certain landmarks in the graph—to the priority of each node. As an approach based on edge-
labels, we evaluate Arc-Flags [21]. This approach partitions the graph into cells and attaches a label to

8

each edge. A label contains a flag for each cell indicating whether a shortest path to the corresponding
cell starts with this edge. In our setup, we use 128 cells obtained from METIS [22]. Reach has originally
been introduced as node-label [16]. These labels are used to prune unnecessary nodes during the search.
In [7], reach is redefined as an edge-label and combined with ALT leading to significant speed-ups.
Here, we use Reach (RE) and its combination with ALT (REAL) as described in [7]. Note, that RE can
be interpreted as a hierarchical method that tries to exploit the hierarchy of a given network. As a purely
hierarchical approach, we use Highway Hierarchies (HH) [6]. We use a distance table at a level with
about 1 000 nodes. Note that we tune preprocessing parameters of HH and RE manually.

Inputs. We use two different road networks as inputs. One represents New York. It is taken from the
DIMACS webpage [4], and has 264 346 nodes and 730 100 edges. The second network is a subgraph
of the German road network, provided by PTV AG for scientific use. It has 225 624 nodes and 572 182
edges and shows the city Karlsruhe and surrounding areas. As a further transportation network, we use a
condensed railway graph of Europe (29 578 nodes 86 566 edges), provided by HAFAS. Such a network
is obtained from timetable information by modeling stations as nodes and inserting an edge if at least
one direct connection between two stations exists. Transportation networks have in common, that they
incorporate some kind of hierarchy. Moreover, we evaluate a subgraph of an internet graph based on
router level (54 824 nodes, 591 600 edges), taken from the CAIDA webpage [23]. This graph has small-
world properties. As a second small-world graph, we use a co-authorship graph [24] obtained from
crawling the literature database DBLP [25]. It has 50 004 nodes and 495 052 edges. In addition, we use
synthetic data. The advantage of synthetic data is that we can exactly tune which behavior we want
to evaluate. We use multi-dimensional grids and leave the number of nodes untouched (100 000) but
increase the number of dimensions. As a consequence the number of edges increases and the diameters
decrease with increasing dimension. We use 2, 3, and 4 dimensions.

If applicable, we additionally used different metrics for evaluation. More precisely, we use travel
times, distances, unit lengths, and edge weights picked uniformly at random (in the following denoted
as uniform) as metrics.

Note that we restrict ourselves to mid-size graphs although in the field of shortest path computation
networks with several millions of nodes and edges are commonly used. As we have systematically
evaluated a set of graphs and speed-up techniques, preprocessing of the latter would have taken to much
CPU-time on big networks.

Evaluation. In general, we evaluated the value scored by our indices and the speed-up achieved by the
most important speed-up techniques with respect to settled nodes. Table 1 reports these figures in the
graphs introduced in the last paragraph. Recall that a high ReCo index indicates a strong hierarchy in
the network and thus should predict high speed-ups of RE and HH. On the contrary, low entropy values
should predict high speed-ups for goal-directed approaches like ALT.

Analyzing our shortest-path indices, we clearly observe a correlation between ReCo and RE/HH on
the one hand, and a dependency between entropy and ALT on the other hand. In general, a high ReCo
index yields high speed-ups for RE and HH, while a low entropy correlates with high speed-ups for
ALT.

Examining all three metrics on the Karlsruhe network, both indices predict the lowest speed-ups on
the unit metrics. Indeed, ALT, RE, REAL, and HH achieve the lowest speed-up on the unit metrics.
While ALT favors travel times, hierarchical techniques work better (relatively) on the distance metrics.
Note that the situation changes for absolute values, but as all algorithms are based on bidirectional
DIJKSTRA, we naturally have to compare the speed-up with respect to this reference. The observation
for different metrics on the same graph also holds for New York and the railway graph.

Stunningly, using a small world graph like the router based internet graph as input, we observe
no speed-up (except Arc-Flags) at all. Even worse, the number of settled nodes even increase. This is
predicted by our indices: ReCo scores a very low value of below 0.3, while entropy scores a very high

9

Table 1. Results of performance indices and speed-up techniques on the Karlsruhe road graph using different metrics and
different subgraphs. The figures for our shortest-path indices are based on exact computation. Results for speed-up techniques
are based on 1 000 random queries. Column #settled depicts the number of nodes settled by the algorithm and spd indicates
the speed-up with respect to settled nodes compared to bidirectional DIJKSTRA.

INPUT SP-INDEX SPEED-UP TECHNIQUE

BiDij. ALT Arc-Flags RE REAL HH
type graph metrics ReCo entropy #settled #settled spd #settled spd #settled spd #settled spd #settled spd

time 0.71 0.13 53 229 1 781 29.9 262 203.3 1 667 31.9 380 140.0 401 132.7
road Karlsruhe dist 0.77 0.17 76 280 2 672 28.5 1 018 74.9 1 727 44.2 290 262.7 510 149.6

unit 0.57 0.23 38 873 1 915 20.3 218 178.2 1 388 28.0 364 106.8 530 73.3
time 0.67 0.15 64 422 2 244 28.7 465 138.7 1 532 42.1 235 274.1 483 133.4

road New York dist 0.74 0.16 81 231 2 858 28.4 1 065 76.3 1 620 50.1 270 300.9 563 144.3
unit 0.64 0.18 70 764 2 884 24.5 494 143.3 1 951 36.3 284 249.2 595 118.9
time 0.76 0.15 7 594 346 21.9 49 154.7 298 25.5 75 101.1 85 89.3

railway Europe dist 0.78 0.19 8 443 460 18.4 75 113.0 295 28.6 67 125.2 67 126.0
unit 0.49 0.22 1 192 109 10.9 19 62.7 400 3.0 61 19.5 63 18.9

small router unit 0.16 2.06 147 286 0.5 26 5.7 142 1.0 175 0.8 12 611 0.0
world coAuthors unit 0.28 1.46 137 202 0.7 44 3.1 108 1.3 222 0.6 19 174 0.0

2 dim uniform 0.69 0.15 32 977 1 051 31.4 643 51.3 2 139 15.4 344 95.9 574 57.5
grids 3 dim uniform 0.51 0.24 16 728 799 20.9 718 23.3 9 387 1.8 1 273 13.1 1 077 15.5

4 dim uniform 0.45 0.29 8 331 706 11.8 1 145 7.3 8 689 1.0 1 592 5.2 40 714 0.2

value of above 1. Highway Hierarchies fail on this graph due to their weaker stopping criterion (cf. [6]).
These general small speed-ups originate from the fact that switching from uni- to bidirectional search
already results in a big speed-up (cf. Tab. 3 in Appendix A) which is due to the small diameter and high
connectivity of small-world networks.

For grid graphs, we observe that with increasing number of dimensions, shortest-path computation
gets more and more complicated. This is indicated by our indices and speed-up techniques only achieve
mild speed-ups on 4-dimensional grids while their performance is still pretty good for 2-dimensional
grids.

In general, we observe that the values scored by entropy indicate the speed-up that is achieved by
ALT: A value between 0.13 and 0.15 yield speed-ups of around 30, while values above 0.2 yield speed-
ups of below 20. The same holds for the ReCo-Index and RE/HH. However, other aspects of the graph
are important as well, e.g. the number of landmarks for ALT, parameter settings for RE/HH, and size
of input. Thus, it is clear that a certain index value does not indicate the exact speed-up of a technique.
However, the indices give a strong indication, whether goal-directed or hierarchical methods should be
preferred. Summarizing, the correlation between indices and speed-up techniques is clearly visible.

6.2 Update Impact

For evaluating the update impact index, we use the Karlsruhe road network. The original data contains
13 different types of road categories. By applying different average speeds to each category we obtain
different client profiles. The linear—denoted as travel times in the last section—profile is obtained by
assigning average speeds of 10, 20, . . . , 130 to the 13 categories, slow/fast car and slow/fast truck
represent typical average speeds for these types of vehicles, while distance depicts the real distance,
and unit assigns 1 to each edge. We also evaluate two synthetic metrics: uniform reassigns edge weights
uniformly at random while power law uses a power law distribution for reassignments. The results of
our indices and according speed-up techniques on those metrics not reported in Tab. 1 can be found in
Tab. 4 in Appendix A.

Here, we test how much the routing structure is altered when switching from one metrics to another.
The resulting figures can be found in Tab. 2. We observe small update impacts when switching within
travel times metric (linear, fast and slow car, fast and slow truck). This coincides with the figures from

10

Table 2. Update impact of the Karlsruhe road network applying different metrics.

distance fast car slow car fast truck slow truck unit power law uniform
linear 0.22 0.052 0.045 0.044 0.049 0.29 0.33 0.30
distance 0.22 0.21 0.21 0.20 0.30 0.32 0.31
fast car 0.015 0.052 0.060 0.28 0.33 0.29
slow car 0.042 0.049 0.28 0.33 0.29
fast truck 0.014 0.28 0.32 0.29
slow truck 0.28 0.32 0.30
unit 0.30 0.19
power law 0.30

Tabs. 1 and 4 where all speed-up techniques show similar behavior on all tested travel times metrics.
As expected, changing from slow car to fast car and from slow truck to fast truck hardly changes the
routing structure yielding the smallest scores of our updated impact. The highest scores are achieved by
switching to synthetic metrics. The reason for this is the random reassignment of all edges, while for
other metrics, the 13 original categories are used. Thus, the routing structure is changed very significantly
by such an update.

7 Outlook and Conclusion

In this work we establish a new methodology for evaluating speed-up techniques for DIJKSTRA’s al-
gorithm which can be adapted to overcome the dilemma of data dependency arising in the field of
algorithm engineering in general. By analyzing the shortest-path structure in a network with simple
indices we are able to predict the performance of the most prominent speed-up techniques. More pre-
cisely, we introduce two shortest-path indices, called the ReCo-Index and shortest-path entropy. These
carefully designed measures capture highly relevant aspects of the shortest-path structure in a graph that
are heuristically exploited by speed-up techniques. The feasibility of our theoretical approach is clearly
confirmed by an extensive experimental evaluation with different types of networks: Our indices strongly
correlate with speed-up techniques. More precisely, the two indices predict the performance of speed-up
techniques and thus support the choice of technique for a given input. For dynamic scenarios, we in-
troduce an index—called update impact—indicating how much the shortest-path structure of a network
changes whenever the input is perturbed. This index assesses the feasibility of a dynamic update which
we confirm by an experimental study. Finally, we present novel and efficient algorithms to compute all
three indices.

For shortest-path indices, we see plenty of future work. While our indices predict the performance
of ALT and hierarchical methods very well, they fail for Arc-Flags. Since Arc-Flags heavily rely on
the employed partition, it may be worth focusing on quality measures for graph clusterings [26], e.g.
modularity [27]. Such measures promise to be suitable for predicting the performance of partition based
speed-up techniques. In addition, an index indicating the speed-up when switching from uni- to bidirec-
tional algorithms may be interesting as well. The successfull application of our indices to shortest-path
computation suggests their adaptation to related problems on graphs, e.g. fingerprints, visualizations or
taxonomies. Finally, faster and better approximation algorithms for computing our indices are the next
canonical step.

Summarizing, our indices predict the performance of speed-up techniques for DIJKSTRA’s algorithm
very well. Thus, they are capable of revealing weaknesses and further potential of current or new speed-
up techniques to come.

Acknowledgments. We thank Dominik Schultes for providing the Highway Hierarchies code and his
help on parameter settings, Marco Gaertler and Robert Görke for their valueable input, and Daniel Karch
for implementing Arc-Flags.

11

References

1. Wagner, D., Willhalm, T.: Speed-Up Techniques for Shortest-Path Computations. In: 24th International Symposium on
Theoretical Aspects of Computer Science (STACS). (2007) 23–36

2. Delling, D., Holzer, M., Müller, K., Schulz, F., Wagner, D.: High-Performance Multi-Level Graphs. In: 9th DIMACS
Challenge on Shortest Paths. (2006)

3. Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In Transit to Constant Time Shortest-Path Queries in Road
Networks. In: Algorithm Engineering and Experiments (ALENEX). (2007) 46–59

4. 9th DIMACS Implementation Challenge: Shortest Paths. http://www.dis.uniroma1.it/~challenge9/ (2006)
5. Goldberg, A.V., Harrelson, C.: Computing the shortest path: A∗ meets graph theory. In: 16th ACM-SIAM Symposium on

Discrete Algorithms. (2005) 156–165
6. Sanders, P., Schultes, D.: Engineering highway hierarchies. In: 14th European Symposium on Algorithms (ESA). (2006)

804–816
7. Goldberg, A., Kaplan, H., Werneck, R.: Reach for A*: Efficient Point-to-Point Shortest Path Algorithms. In: Algorithm

Engineering and Experiments (ALENEX). (2006) 129–143
8. Sanders, P., Schultes, D.: Dynamic Highway-Node Routing. In: 6th Workshop on Experimental Algorithms (WEA).

(2007) 66–79
9. Delling, D., Wagner, D.: Landmark-Based Routing in Dynamic Graphs. In: 6th Workshop on Experimental Algorithms

(WEA). (2007) 52–65
10. Brandes, U., Erlebach, T., eds.: Network Analysis: Methodological Foundations. Volume 3418 of Lecture Notes in Com-

puter Science. Springer-Verlag (2005)
11. Wagner, D., Willhalm, T., Zaroliagis, C.: Geometric containers for efficient shortest-path computation. ACM Journal of

Experimental Algorithmics 10 (2005) 1–30
12. Holzer, M., Schulz, F., Willhalm, T.: Combining speed-up techniques for shortest-path computations. In: 3rd Workshop

on Experimental and Efficient Algorithms (WEA). (2004) 269–284
13. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. McGraw-Hill (1990)
14. McEliece, R.J.: The theory of information and coding. 2. ed. edn. Cambridge Univ. Press (2002)
15. Hoeffding, W.: Probability inequalities for sums of bounded random variables. Journal of the American Statistical

Association, Volume 58, pages 13-30 (1963)
16. Gutman, R.J.: Reach-based routing: A new approach to shortest path algorithms optimized for road networks. In: Algo-

rithm Engineering and Experiments (ALENEX), SIAM (2004) 100–111
17. Gini, C.: Measurement of inequality and incomes. the economic journal 31: 124-126 (2001)
18. Goldberg, A.V., Kaplan, H., Werneck, R.: Better Landmarks within Reach. In: 6th Workshop on Experimental Algorithms

(WEA). (2007) 38–51
19. Brandes, U.: A Faster Algorithm for Betweenness Centrality. Journal of Mathematical Sociology 25 (2001) 163–177
20. Goldberg, A.V., Werneck, R.F.: An efficient external memory shortest path algorithm. In: Algorithm Engineering and

Experimentation (ALENEX). (2005) 26–40
21. Hilger, M., Köhler, E., Möhring, R.H., Schilling, H.: Fast Point-to-Point Shortest Path Computation with Arc-Flags. In:

9th DIMACS Challenge on Shortest Paths. (2006)
22. METIS: A family of multilevel partinioning algorithms. http://glaros.dtc.umn.edu/gkhome/views/metis/

(1995)
23. CAIDA: Cooperative Association for Internet Data Analysis. http://www.caida.org/ (2001)
24. An, Y., Janssen, J., Milios, E.E.: Characterizing and mining the citation graph of the computer science literature. Knowl.

Inf. Syst. 6 (2004) 664–678
25. DBLP: DataBase systems and Logic Programming. http://dblp.uni-trier.de/ (2007)
26. Brandes, U., Gaertler, M., Wagner, D.: Experiments on Graph Clustering Algorithms. In: 11th European Symposium on

Algorithms (ESA). (2003) 568–579
27. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Physical Review E 69 (2004)

12

A Further Experiments

Table 3. Results for uni- and bidirectional speed-up techniques using small world graphs as inputs. Type indicates whether uni-
or bidirectional search is used. The figures are based on 1 000 random queries. Query times are reported in milliseconds.

router graph coAuthors graph
algorithm type #settled query[ms] #settled query[ms]

Dijkstra
uni 28,244 29.79 25,293 20.29
bi 147 0.28 137 0.17

ALT
uni 7,247 14.04 6,781 9.90
bi 209 1.31 262 0.91

Arc-Flags
uni 1,917 5.10 4,345 8.55
bi 26 0.09 44 0.11

RE bi 142 0.30 108 0.19

REAL
uni 7,130 16.82 6,804 13.58
bi 175 1.51 222 1.33

HH bi 12,611 226.52 19,174 64.71

Table 4. Results of performance indices and speed-up techniques on the Karlsruhe road graph using different metrics. The
figures for our shortest-path indices are based on exact computation. Results for speed-up techniques are based on 10 000
random queries.

INPUT SP-INDEX SPEED-UP TECHNIQUE

BiDij. ALT Arc-Flags RE REAL HH
metrics ReCo entropy #settled #settled spd #settled spd #settled spd #settled spd #settled spd
fast car 0.71 0.14 44 489 1 670 26.6 254 175.2 1 251 35.6 343 129.9 341 130.5
slow car 0.72 0.14 51 201 2 136 24.0 272 188.0 1 396 36.7 413 123.9 367 139.5
fast truck 0.72 0.14 55 419 2 277 24.3 293 189.4 1 451 38.2 412 144.2 393 141.0
slow truck 0.72 0.14 59 299 2 376 25.0 301 197.1 1 542 38.5 430 138.0 412 143.9
power law 0.69 0.12 54 244 1 752 31.0 409 132.5 1 637 33.1 461 117.8 435 124.7
uniform 0.61 0.16 40 499 1 932 21.0 217 186.4 1 355 29.9 372 108.7 442 91.6

B Correctness of the Reach Sampling Algorithm

In this section, the shortest-paths tree T and the edge (u,v) are defined like in the pseudocode of the algo-
rithm. A shortest path P is called responsible for the reach of an edge (u,v) if reachP(u,v) = reach(u,v).

Lemma 1. A shortest path responsible for the reach of (u,v) has to start at a node on T . Proof: If P is a
shortest path on G containing (u,v) then the subpath of P with end node v is on a shortest-path tree on
the reverse edge set that starts at v and contains (u,v).

Lemma 2. When computing the reach of (u,v) no node x on T has to be considered for which the
distance on T from v is smaller or equal to the currently found lower bound for the reach of (u,v). Proof:
The distance from v to x on T is the actual distance from x to v on G. The length of the suffix of a given
path starting at a node x is dist(x,v) at most, therefore the reach with respect to that path is also dist(x,v)
at most.

Lemma 3. In case (β) all nodes x on T with dist(x,v) ≤ dist(w,v) get blocked. Proof: In that case the
reach of (u,v) is dist(w,v) at least.

13

Lemma 4. The blocking in case (not β) is correct. Proof: That case implies case (α). Let P =(w, . . . ,u,v, . . . ,z)
be a maximal shortest path starting with w and containing (u,v) and P̃ = (x, . . . ,w, . . . ,u,v, . . . ,z,a) be a
shortest path. Then would be (w, . . . ,u,v, . . . ,z,a) also a shortest path starting at w and containing (u,v).
Therefore P would not be maximal. In conclusion we know that the suffix of all shortest paths that con-
tain w in the prefix and on which w is not the start node have length of dist(w,v) at most and we therefore
can omit them.

Theorem 1. The algorithm terminates. Proof: Every node v gets blocked or deleted after it is processed:
In case (not β) is gets directly deleted. In case (β) we apply Lemma 3 and know that it also gets blocked.

Theorem 2. The algorithm is correct. Proof: By definition of reach we know that we can compute
correct reach values by growing a full shortest-paths tree on each node on the graph. With Lemmata 1 to
4 we know that each restriction of the branch-and-bound algorithm will not change the computed reach
value.

C Computation of Shortest-Path Entropy

Algorithm 2: COMPUTESHORTESTPATHENTROPY(G)
input : graph G = (V,E)
output: P{(v,w)|(u,v)} :=P{E(u,v) = (v,w)} like in section 3.2

// forall u,v,w ∈V : initialize σ••(u,v) and σ••(u,v,w) with zero1

forall s ∈V do2

σsv := 0 , v ∈V3

σss := 14

σv• := 0 , v ∈V5

T := grow shortest-path tree rooted at s6

when a node n is settled set σsn := ∑{(w,n)∈E:d(s,w)+len(w,n)=d(n)}σsw7

// d(n) represents the distance from s to n computed by the SP-tree8

// S returns nodes in order of non-increasing distance from s9

while S not empty do10

v := pop S11

forall (v,w) ∈ E do12

if d(v)+ len(v,w) = d(w) then σv• := σv•+σw•+113

forall (u,v) ∈ E do14

σ••(u,v) := σ••(u)+σsu ·σv•15

forall (u,v) ∈ E with d(u)+ len(u,v) = d(v) do16

forall (v,w) ∈ E with d(v)+ len(v,w) = d(w) do17

σ••(u,v,w) := σ••(u,v,w)+σsu ·σw•18

forall (u,v) ∈ E do19

forall (v,w) ∈ E do P{(v,w)|(u,v)} := σ••(u,v,w)/σ••(u,v)20

The asymptotic runtime of the algorithm is O(n(n logn + m ·∆)) where n denotes the number of
nodes, m denotes the number od edges and ∆ denotes the maximum outgoing degree over all nodes on
the graph.

14

