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Abstract

The Mondex Case study is still the most substantial contribution to the Grand
Challenge repository. It has been the target of a number of formal verifica-
tion efforts. Those efforts concentrated on correctness proofs for refinement
steps of the specification in various specification formalisms using different ver-
ification tools. Here, the results of full functional verification of a JavaCard
implementation of the case study is reported. The functional behavior of the
application as well as the security properties to be proven were formalized in
JML and verified using the KeY tool, a verification tool for deductive veri-
fying JavaCard code. The implementation developed followed, as closely as
possible, the concrete layer of the case study’s original Z specification. The
result demonstrates that, with an appropriate specification language and veri-
fication tool, it is possible to bridge the gap between specification and imple-
mentation ensuring a fully verified result. The complete material—source code,
proofs and binaries of the verification system as well this report—is available at
http://www.key-project.org/case studies/mondex.html.

key words: Formal Methods, Specification, Program Verification, Deductive
Verification, Design by Contract, JavaCard, JML, KeY Tool
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Chapter 1

Introduction

As computer systems pervade society ever more deeply, ever higher demands
will be made on their design, maintenance, and certification as greater reliance
is placed on the delivery of their services. This will be particularly true for high
integrity systems, where failure can cause loss of life, environmental harm, or sig-
nificant financial loss. Rigorous processes are already in use in industrial sectors
where certification is required for their software, for instance, avionics. However,
the demand for more robust systems is beginning to be felt in other sectors as
well. The further development of a theoretical basis and methodology for sys-
tem design to ensure dependable and safe operation is an objective (2007.3.3)
for Embedded Systems Design in the Seventh Research Framework Program
(FP7 — http://cordis.europa.eu/fp7/home en.html). Another example is
the European Commission’s Intelligent Car Initiative (i2010) which is intended
to promote the use of new technologies in order to make cars safer, cleaner, and
more efficient (http://europa.eu/scadplus/leg/en/lvb/l31103.htm). The
only way to reach the desired level of reliability is to use better tools, which
leverage advanced analysis technology to statically verify critical aspects of sys-
tem behavior.

Formal methods are a prime candidate for fulfilling these demands. The term
formal methods is used to describe a wide variety of different techniques address-
ing different needs at different stages of system development. Formal methods
are aimed at enhancing the quality of systems and, in Software Engineering
specifically, they include specification, verification, and testing techniques used
to enhance the quality of software development. Formal specifications tech-
niques introduce a precise and unambiguous description of system properties,
useful in eliminating misunderstandings and for further verification of the sys-
tem. Formal analysis techniques can be used to verify that a system satisfies
its specification, or to systematically seek for cases where it fails to do so. Al-
though, software testing is perhaps the most frequently used quality assurance
method, it is insufficient to provide the required level of assurance in complex
systems. Instead of trying to provide a comprehensive check of a system, test-
ing focuses on sampling the executions, according to some coverage criteria, and
comparing the actual behavior with the behavior that is expected according to
the specification. Formal methods can be used to examine all possible execution
paths.

Formal methods can be used in almost every stage of a software development.
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The earlier in the process an error is caught, the less repercussions it has had,
and the cheaper is to fix it. Errors and inconsistencies in the specification itself
are often the most costly to fix. Formal methods can even help to improve the
quality of the system specification.

Unfortunately, the tractability of formal methods tends to diminish with
the size of the object to be checked. It is still a common belief that a real
application can not be verified formally, leaving formal verification to the scope
of academic examples. However, there has been a tremendous improvement in
formal methods technology and in the power of the hardware they run on.

At the same time, more powerful microprocessors has meant that substan-
tially more functionality in devices are performed in software, resulting in more
life-critical decisions being dependent on software. Ensuring that software runs
correctly is becoming critical to the success of industries that make use of em-
bedded systems. Only formal methods offer a solution to the problem of ensur-
ing the correctness of complex software systems. This realization is the prime
motivation for The Verified Software Grand Challenge.

1.1 The Grand Challenge1

The Verified Software Grand Challenge is an ambitious, international, long-
term research program for achieving a substantial and useful body of code that
has been formally verified to the highest standards of rigor and accuracy. It
is the sixth of a series of Grand Challenges in Computing (GC6), launched by
the UK Computing Research Committee (http://www.ukcrc.org.uk/grand
challenges/index.cfm). The program has three objectives.

• Establish a unified theory of program construction and analysis.

• Build a comprehensive and integrated suite of tools that support verifica-
tion activities.

• Collect a repository of formal specifications and verified code: the Verified
Software Repository, VSR or VSR-net (http://vsr.sourceforge.net/).

The challenge’s long term goal is to ensure that science and practice con-
verge and, in fifteen years, to have a well developed theory, a comprehensive and
powerful suite of tools, and a compelling body of experimental evidence demon-
strating that reliable software can be engineered cost-effectively using formal
verification techniques.

1.2 The Mondex Case Study

The Mondex case study is the first technical work in the scope of the Grand
Challenge. It was a one year project, started in January 2006, intended to
demonstrate how different research groups can collaborate and populate the
Repository. Thus far, five groups have present results.

1This and the next section are adapted from the IEEE Computer Society’s article First
Steps in the Verified Software Grand Challenge[20].
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Mondex is an electronic purse hosted on a smart card developed about ten
years ago. A consortium led by NatWest, a United Kingdom bank, devel-
oped the software following the high-assurance Information Technology Security
(ITSec—www.itsec.gov.uk) Level E6 standard. The application is completely
distributed: each purse must ensure the security of all its transactions locally
without any central control.

Electronic purse software is a security critical application. To ensure the
correctness as required by the ITSec Level E6 standard, formal methods were
used during its development process. The original application protocol was
specified using Z notation and all proofs were performed by hand.

A commercially sanitized version of the Mondex documentation is publicly
available[19]. It contains the Z specification of the security properties, an ab-
stract specification, an intermediate and a concrete level design, and the hand-
written correctness proofs of security and conformance of each design level. This
version is hereafter called the “original” description of the case study. The chal-
lenge in this initial case study was to investigate the degree of automation that
can be achieved for correctness proofs.

1.3 Related Work

Several groups have already verified the Mondex case study working with dif-
ferent formalisms:

• Massachusetts Institute of Technology (MIT) with the Alloy specifications
verified with Alloy Analyzer model finder,

• Escher Technologies using Perfect Developer,

• United Nations University (Macao) and Technical University of Denmark
with RSL specifications verified with PVS theorem prover,

• University of York using the original Z specification verified with Z/Eves
theorem prover, and

• University of Augsburg using abstract state machines verified with KIV.

Some groups could use the original specification, or its translation to some
similar specification language, while other groups adapted the original Z spec-
ification to another formalism. In general, the experience was successful. The
proofs, after tuning the specifications or the tool, could be performed mostly
automatically. The time consumed to finish the task was also surprising: some
groups claimed that the work could be performed within one or two months.
More information can be found at the VSR web page.

In addition, the results of a similar case study refining an abstract security
protocol description down to a concrete implementation in JavaCard, can be
found in the paper Implementing a Formally Verifiable Security Protocol in
JavaCard [10].

Even though the one year challenge for verifying the Mondex case study is
over, there are still many research groups interested in it. Some of the reasons
for this are easy to see. The case study is a critical application, subject to
ITSec level E6, the highest specified by the UK ITSec certification body. It is
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intrinsically small, since it has to run on a smart card, and is therefore suitable
for use as a formal verification benchmark. In addition, it is complex enough,
and therefore representative, to test and evaluate the capabilities of a verification
tool. More importantly, there are still properties not yet verified by any of the
published approaches.

1.4 The Goal

Up until now, Mondex verification approaches have concentrated on the spec-
ification and its refinement. Apparently. there are also ongoing attempts to
automatically generate code for this case study (Escher Technologies) or ver-
ifying code (University of Augsburg) but no results have been published thus
far.

The work presented here aims to demonstrate that deductive formal veri-
fication can not only validate a given specification but also the correctness of
its concrete implementation in JavaCard. In end effect, it will be shown that
with an appropriate specification language and verification tool, it is possible
to bridge the gap between specification and implementation ensuring a fully
verified result.
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Chapter 2

Methodology

The case study described here demonstrates that the verification of the func-
tional behavior of a real JavaCard application can be done using the KeY
tool. For its successful completion, many steps were performed. The original Z
specification was reformulated in JML, a modeling language tailored for Java
applications that supports the Design-by-contract paradigm. Then using this
specification, high level properties were verified. Since the application is to be
hosted by a smart card, the specification was implemented in the Java vari-
ant JavaCard. Finally, the functional correctness of the implementation was
proven using the KeY tool.

2.1 Design by Contract

Design by contract (DBC) is at the heart of the methodology used. Similar con-
cepts have been around since the 1960s, but the actual name was introduced by
Bertrand Meyer [14] in the early nineties. Since then it has gain wide acceptance
in software engineering.

DBC defines associations between software components as formal agreements
between “clients” and “suppliers” that are defined in terms of rights and obliga-
tions, or “contracts” (using a conceptual metaphor to a legal contract). Follow-
ing this paradigm, a software designer creates a precise functional specification
of an application by defining a contract for each module. The execution of a
program can then be seen as an interaction between the modules as bound by
their contracts.

The contract of an operation is essentially expressed in terms of a precon-
dition and a postcondition. A client (i.e. a software module that uses the
operation) must ensure the requirements stated by the precondition when call-
ing the operation. In return, the operation guarantees delivering a result which
corresponds to the constraints of the postcondition. As preconditions and post-
conditions are usually expressed in some logical notation, this issue can be
restated more precisely: a client must ensure, when calling an operation, to be
in a state that satisfies that operation’s precondition for which the operation
guarantees to return in a state which implies its postcondition.

Further elements of an operation’s contract may include special assertions in
case of error or exception, properties concerning side effects, or accounts for its
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complexity measure and memory consumption. In addition to its operations’
contracts, the contract of a module (such as a class) may specify invariants
and history constraints. Invariants express conditions that must “always” hold
during execution; whereas, history constraints describe how values change. An
example of an invariant would be the assertion that a numerical variable’s value
is not negative. A history constraint could express that its value increases
monotonically.

The exact definition of the set of states that must satisfy an invariant or his-
tory constraints varies in different DBC languages and tools. By “must always
hold,” one could understand that an invariant should hold in all systems states,
which might be far too strong to fulfill. This is called strong invariant in the
book Verification of Object-Oriented Software, The Key Approach[3] (hereafter
referred to as “the KeY book”). One could also understand invariants as only
holding in all visible states of a system, i.e., before and after the execution of
each non private method in the class.

Just like other specifications, contracts represent an abstract view of a soft-
ware system, leaving details of the implementation hidden. The notion of a
contract implies an easy means of “blame assignment.” A precondition viola-
tion indicates that the client did not fulfill its part of the contract and is therefore
erroneous. In turn, a violation of a postcondition must be the supplier’s fault,
i.e. a defect in the implementation of the corresponding operation. An accurate
monitoring of a program’s contracts during execution can thus greatly facilitate
error detection. DBC is repeatedly mention in the OOTiA1 Handbook as the
suggested methodology for object oriented software construction.

2.2 The Java Modeling Language2

The Java Modeling Language (JML) is designed as a DBC style specification
language for Java. The development of JML is a cooperative effort of several
researchers, coordinated by Gary T. Leavens’ group at Iowa State University.
The group also distributes a set of tools for using JML, including a syntax
checker and a JML-enabled Java compiler [4].

JML’s basic use is the formal specification of the behavior of Java program
modules (i.e., classes and interfaces). JML is currently limited to sequential
specification. The coupling to Java enables JML to precisely reflect the se-
mantics of Java, making it a specification language particularly close to the
implementation. The main benefits in using JML are the precise, unambiguous
specification of the behavior of Java program modules and documentation of
Java code, as well as the ease of providing tool support.

JML provides a means of specifying both the interface and the behavior of
Java modules. The interface of the method is the information needed to use it
from other modules. It includes the name of the method, its modifiers (including
its visibility and whether it is final) its number of arguments, its return type,
what exceptions it may throw, and so on. The behavior of a method describes

1Object Oriented Technology in Aviation, a collection of recommended coding techniques
and certification practices, initiated by US Federal Aviation Administration (FAA) and Na-
tional Aeronautics and Space Administration (NASA), created to address issues regarding
the use of object-oriented technologies in avionics and to prepare the next version of the
requirements specification (RTCA/DO-178C, planned to be released in 2008).

2This section was adapted from the JML reference manual[12].
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a set of state transformations that it can perform. A behavior of a method is
specified by describing

• a set of states in which calling the method is define,

• a set of locations that the method is allowed to assign to (and hence
change), and

• the relations between the calling state and the state in which it either
returns normally, throws an exception, or for which it might not return to
the caller.

The states for which the method is defined are formally described by a logical
assertion, called the method’s precondition. The allowed relationships between
these states and the states that may result from normal return are formally
described by another logical assertion called the method’s normal postcondition.
Similarly the relationships between these pre-states and the states that may
result from throwing an exception are described by the method’s exceptional
postcondition.

In JML, one has the possibility of specifying that a method will not throw an
exception, that it may throw an exception, or that it must throw an exception.
In addition, class invariants and history constraints can also be specified in
JML. Invariants are predicates that must hold in every visible state of an object.
Each method in a class must preserve the class’s invariants, i.e., the invariants
should hold before and after its execution. Private methods or constructors
can be excluded from the need to preserve invariants by declaring them as
helper methods. History constraints, or constraints for short, are related to
invariants. But whereas invariants are predicates that should hold in all visible
states, history constraints are relationships that should hold for the combination
of each visible state and any visible state that occurs later in the program’s
execution. History constraints can therefore be used to constrain the way that
values change over time.

2.3 Deductive Program Verification[11]

Deductive Program Verification is a formal method for statically proving the
correctness of a program with respect to the specification of its requirements.
This technique is best suited for verifying functional properties of a system,
i.e., determining whether the values computed by the system agree with its
functional specification or not. Attempts to extend this technique for verifying
temporal properties for arbitrary models, i.e., to include infinite state models,
are still at the level of academic research projects.

In order to statically analyze a program, a deductive program verifier sym-
bolically executes it, faithfully reflecting the semantics of the programming lan-
guage. Mathematical logic and automated theorem proving techniques are used
for this process. The correctness of a program p is defined by means of logical
formulas φ and ψ that express constraints on the pre-state and the post-state
of p. A formula φ→ 〈p〉ψ is valid if for every state s satisfying precondition φ a
run of the program p starting in s terminates, and in the terminating state the
postcondition ψ holds. This formula is similar to a Hoare Triple {φ}p{ψ} intro-
duced by C.A.R. Hoare in 1969 [9] with the difference that in the former formula
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φ and ψ might contain programs while Hoare triples can only be expressed in
terms of pure first-order logic. Thus, Hoare logic is usually not sufficient to
express φ and ψ for real world computer programs—a special program logic is
necessary, such as Java Dynamic Logic (JavaDL)[2] an instance of dynamic
logic[8] used in the KeY project (http://key-project.org/).

The KeY tool[1], or simply KeY, is a deductive program verification tool
jointly developed at Karlsruhe University (Karlsruhe, Germany), Chalmers Uni-
versity (Gothenburg, Sweden) and the University of Koblenz (Koblenz, Ger-
many) in the context of the KeY project. The aim of the project is to integrate
formal software specification and verification into the industrial software engi-
neering processes. The tool uses deductive verification of an annotated Java
code in order to statically prove its correctness with regards to its specifications.
As any analysis tool, KeY requires the properties to be analyzed to be formally
specified. In KeY, functional properties specification has a form of a contract
as described in the design by contract paradigm.

The main component of the KeY tool is the KeY prover, a semiautomatic
prover with a comfortable graphical user interface. Special care has been taken
to make user interaction, when it is necessary, as easy as possible, e.g., through
flexible selection of proof strategies, the possibility to save and reload (partial)
proofs, to rerun proofs on changed proof obligations, built in decision procedures
for integers, drag and drop interaction, and a clearly laid out display of the proof.
KeY is the only verification system that keeps the source code visible and as
an integral part of the proof effort. (Other systems translate program code
into some higher-order logic representation.) JML (or OCL[6]) specifications
are automatically translated into proof obligations in JavaDL. The JavaDL
calculus covers 100% of JavaCard, version 2.1, and it is continually being
extended in order to support full sequential Java features (it actually supports
most of them).

2.4 Java Card Technology3

JavaCard technology adapts the Java platform for use on smart cards and
other devices whose environments are highly specialized, and whose memory
and processing constraints are typically more severe than those of J2ME devices.
A smart card is a plastic card that contains an embedded integrated circuit. A
smart card resembles a credit card. When used as a SIM (Subscriber Identity
Module) card, the plastic card is small—just big enough to fit inside a cellphone.
Smart cards are highly secure by design, and tampering with one results in the
destruction of the information it contains. Smart card technology is an indus-
try standard defined and controlled by the Joint Technical Committee 1 (JTC1)
of the International Standards Organization (ISO) and the International Elec-
tronic Committee (IEC). The series of international standards ISO/IEC 7816
defines various aspects of a smart card, including physical characteristics, phys-
ical contacts, electronic signals and transmission protocols, commands, security
architecture, application identifiers, and common data elements.

A smart card does not contain a battery, and become active only when con-
nected to a card reader. When connected, after performing a reset sequence,

3This section was adapted from the article An Introduction to Java Card Technology -
Part 1 [16].
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Figure 2.1: Architecture of a Java Card Application

the card remains passive, waiting to receive a command request from a exter-
nal (host) application. Sun Microsystems defined a set of specifications for a
subset of Java technology (with additional features) to create applications for
smart cards—JavaCard applets. A device that supports these specifications
is referred to as a JavaCard platform. On a JavaCard platform, multiple
applications from different vendors can coexist securely. A complete JavaCard
application consists of a back-end application and systems, a host (off-card)
application, an interface device (card reader), and the on-card applet, user cre-
dentials, and supporting software. This architecture is shown in figure 2.1.

Back end applications provide services that support in-card Java applets.
The host application resides on a desktop or a terminal such as a PC, an elec-
tronic payment terminal, a cellphone, or a security subsystem. The host appli-
cation handles communication among the user, the Java Card applet, and the
provider’s back end application. The Card Acceptance Device (CAD) is the
interface device that sits between the host application and the Java Card de-
vice. A CAD provides power to the card, as well as electrical or radiofrequency
communication with it. A CAD may be a card reader attached to a desktop
computer using a serial port, or it may be integrated into a terminal such as
an electronic payment terminal at a restaurant or a gas station. The interface
device forwards commands from the host application to the card, and forwards
responses from the card to the host application. The JavaCard platform is a
multiple application environment. As figure 2.1 illustrates, one or more JavaC-
ard applets may reside on the card, along with supporting software—the card’s
operating system and the Java Card Runtime Environment (JCRE).

The message-passing model is the basis for all JavaCard communications.
At its center is the Application Protocol Data Unit (APDU), a logical data
packet that is exchanged between the CAD and the Java Card Framework.
The JavaCard Framework receives and forwards to the appropriate applet any
incoming command APDU sent by the CAD. The applet processes the command
APDU, and returns a response APDU. The APDUs conform to the international
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standards ISO/IEC 7816-3 and 7816-4.
The structure of a command APDU is controlled by the value of its first

byte and in most cases is structured as shown in figure 2.2. A command APDU
has a required header and an optional body, composed of the following.

• CLA (1 byte)—This required field identifies an application-specific class of
instructions. Valid CLA values are defined in the ISO 7816-4 specification.

• INS (1 byte)—This required field indicates a specific instruction within
the instruction class identified by the CLA field. The ISO 7816-4 standard
specifies the basic instructions.

• P1 (1 byte)—This required field defines instruction parameter 1.

• P2 (1 byte)—This required field defines instruction parameter 2.

• Lc (1 byte)—This optional field is the number of bytes in the data field
of the command.

• Data field (variable, Lc number of bytes)—This optional field holds the
command data.

• Le (1 byte)—This optional field specifies the maximum number of bytes
in the data field of the expected response.

The format of a response APDU is shown in figure 2.3. As with a command
APDU, a response APDU has optional and required fields. The values of the
status words are defined in the ISO 7816-4 specification.

• Data field (variable length, determined by Le in the command APDU)—
This optional field contains the data returned by the applet.

• SW1 (1 byte)—This required field is the status word 1.

• SW2 (1 byte)—This required field is the status word 2.

A JavaCard applet extends the Applet API and must implement the in-
stall(), select(), process(), and deselect() methods. Each applet on a card is
uniquely identified by an Application ID. The applet life cycle begins when the
applet is downloaded onto the card and the JCRE invokes the applet’s static
Applet.install() method, and the applet registers itself with the JCRE by in-
voking Applet.register(). Once the applet is installed and registered, it is in
the unselected state, available for selection and APDU processing. While in
the unselected state, the applet is inactive. An applet gets selected for APDU
processing when the host application asks the JCRE to select a specific applet
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in the card (by instructing the card reader to send a SELECT APDU or MAN-
AGE CHANNEL APDU ). To notify the applet that a host application has
selected it, the JCRE calls its select() method; the applet typically performs
appropriate initialization in preparation for APDU processing. Once selection
is done, the JCRE passes incoming APDU commands to the applet for process-
ing by invoking its process() method. The JCRE catches any exceptions the
applet fails to catch. Applet deselection occurs when the host application tells
the JCRE to select another applet. The JCRE notifies the active applet that it
has been deselected by calling its deselect() method, which typically performs
any necessary cleanup and returns the applet to the inactive, unselected state.
A card applet behaves as a server and is passive. After a card is powered up,
each applet remains inactive until be selected. The applet is active only when
an APDU has been dispatched to it. Since Java Card specification 2.2.1, it is
possible for multiple applets to be selected at the same time (i.e. cards have
so called logical channels). Still only one applet is really active at a time, i.e.,
there is no concurrency among applets in the same card.

JavaCard distinguishes data stored in EEPROM and RAM, persistent and
transient data respectively. Because power to a smart card can suddenly be
interrupted, for instance, when the card is withdrawn from the CAD (also known
as card tear) or when a mechanical or electrical failure occurs on the card,
JavaCard provides a notion of transaction to ensure safe update of persistent
objects. All operations executed between the beginning and end (or abort) of
a transaction is guaranteed to be atomic. If a program error or a power reset
occurs, the transaction mechanism will ensure that the state (values of fields)
before the transaction is restored. When power is reapplied to the card after a
power loss, the JCRE ensures that the transactions in progress when power was
lost are aborted, and that all applet instances that were active when power was
lost become implicitly deselected among other things.

A complete documentation, examples, and articles about the JavaCard
technology can be found at the Sun MicroSystems’ web page (http://www.
sun.com/).
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Chapter 3

The Mondex Purse

In its original description, the Mondex applications consists of a number of
electronic purses that carry financial value, each hosted on a smart card. The
purses interact with each other via communication devices to exchange value.
Each purse has to ensure the security of all its transactions without recourse to
a central controller.

In the original specification, three models were defined: an abstract, an in-
termediate, and a concrete model. The proofs were performed as refinements
from one model to the next. Only the concrete model is relevant for this case
study. Its behavior is defined as a non-atomic transaction protocol based on
message exchange through an insecure communication media, called ether. In
the protocol definition, security issues are considered: a purse can be discon-
nected at any time (card tear) and the ether is faulty. Thus a message can be
lost by the ether, can be replayed several times, and can be read by any other
purse. A message irrelevant to the protocol must be ignored. The relevant mes-
sages are assumed to be protected and unforgeable (they might be for instance
encrypted, but this issue is not addressed in the specification). The protocol
has to ensure that messages will be handled correctly and that the card keeps
a valid state even being suddenly disconnected (i.e., the application must be
tear-safe).

3.1 The Protocol Definition

The protocol is defined in five steps of message exchange. It is shown in figure
3.11. At the beginning, two purses receive a start message from an unmodeled
central authority. One purse is called the fromPurse, i.e. the purse that will
send value, and the other is called the toPurse, i.e. the purse that will receive
value. After that, messages are exchanged between the two purses to perform
the transaction. The communication between the purses is done through the
ether: a purse sends a message to the ether and a the other purse receives a
message from the ether.

At the end of each step performed, the purse’s status is updated and all
control is done accordingly to the actual status. The status might have the

1This figure was adapted from the technical report Mondex, an electronic purse: specifi-
cation and refinement checks with the Alloy model-finding method[17].
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Figure 3.1: The Original Protocol Definition

following values:

• eaTo—expecting any to;

• eafrom—expecting any from;

• epr—expecting request;

• epv—expecting value; and

• epa—expecting acknowledge.

The operation to be performed by a purse depends on the message received.

• StartFrom—the fromPurse receives a “startFrom” message indicating
the beginning of a transaction. This message contains the transaction
counter part details, i.e., the data identifying the toPurse, and the trans-
action value. The purse increases its next transaction number field.

• StartTo—the toPurse receives a “startTo” message indicating the begin-
ning of a transaction. This message contains the transaction counter part
details, i.e., the data identifying the FromPurse, and the transaction value.
The purse increases its next transaction number field and sends a “req”
message.

• Req—the fromPurse receives a “req” message. It decreases its own bal-
ance by the transaction value and send a “val” message.

• Val—the toPurse receives a “val” message. It increases its own balance
by the transaction value and send a “ack” message.

• Ack— the fromPurse receives a “ack” message.
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At any time, the transaction can be interrupted. Money therefore can be
lost in case it was already sent by the fromPurse (i.e. already decreased from its
balance) and not received by the toPurse (i.e., not yet increased in its balance).
The region in the protocol where money might be lost is shown highlighted
with dashed lines in the figure 3.1. Since a purse can not know the status of its
counter part, in order to prevent money lost, a purse in either status “Epv” or
“Epa” logs the transaction details (called PayDetails). Nevertheless, money is
considered lost only when both purses log the same transaction. The decision
whether money is lost or not is considered to be done by an external entity.
The logged transactions of each purse are transferred to an archive (a secure
store of log records) and can then be compared. Thus, three extra operations
are necessary to perform the protocol underlying control. These operations are
not part of the protocol. Their scope is the current purse and therefore they do
not refer to any counter part purse and do not cause any change in the purse’s
status or balance.

• Abort—for bringing an interrupted purse back to a valid initial state. It
checks whether a transaction has to be logged and sets the purse’s status
to the initial “eato” or “eafrom.”

• readExLog—for copying the logged transactions (the Exceptional Log)
to the archive.

• clearExLog—for deleting the logged transactions from the purse’s ex-
ceptional log. To enable this operation, the purse has to receive a valid
clear code (an injective function generated from a set of logs stored in the
archive provided by an external source).

The Mondex case study has been adapted from a larger, deployed banking
application.

In order to produce a case study of a size appropriate for public
presentation, much of the real functionality has had to be removed.
. . . This omitted functionality, whilst important from a business per-
spective, is peripheral to central security requirements.[19]

For instance in the case study definition, nothing is mentioned about pin control
or message encryption. However, although the purse defined for this case study
is simpler than the full application, the removed functionality did not make the
application less complex, only made it smaller.

The simplified purse has the following fields:

• balance—the purse’s current balance;

• exLog—exceptional log for recording problematic transactions;

• name—the purse’s identifier, unique among other purses;

• nextSeqNo—a transaction sequence number to be used for the next
transaction (the combination of purse name and sequence number uniquely
identify a transaction);

• status—indicating the purse’s position in the current. transaction; and
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• pdAuth—the payment details (PayDetails) of the current transaction.
Payment details are defined as follows: the transfer details, i.e. the “from”
and “to” purses names and value, and the sequence numbers of the trans-
action in the “from” and the “to” purses. Thus, a purse can only take
part in at most one transaction: the one stored in this field.

3.2 The Security Properties

Security properties are properties of a system related to its behavior with re-
spect to abrupt termination or data properties preservation (like consistency or
confidentiality). In the original Mondex Purse certification report,[15] fifteen
Security Enforcing Functions(SEF) are listed (chapter II, Specific Functional-
ity). Five of these SEFs are part of the case study under the name Security
properties. The discarded SEF are related to issues excluded from the case
study such as currency, transfer permission, migration level, etc. The primary
goal of this case study is to demonstrate that it is possible to prove that these
properties are preserved by the implementation.

Security Property 1 (SP1): No value creation —no value may be created
in the system. The sum of the balances of all purses does not increase.

Security Property 2.1 (SP2.1): All value accounted —all values must be
accounted in the system. The sum of the balances and lost components
of all purses does not change. A lost component is the transaction value
when the transaction is logged by both purses.

Security Property 2.2 (SP2.2): Exception Logging —if a purse aborts a
transfer at a point where value could be lost, then the purse logs the
details.

Security Property 3 (SP3): Authentic purses —a transfer can only oc-
cur between authentic purses.

Security Property 4 (SP4): Sufficient Funds —a transfer can occur only
if there are sufficient funds in the from purse.
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Chapter 4

The Implementation

When implementing the Mondex application, the intention was to follow as
much as possible the original Z specification. The implementation was re-
stricted to the functionality mentioned in the specification. There are, thus,
basic functionality missing in this implementation. For instance, when starting
the transaction, each purse receives the counter part details with the “start”
message. There are certainly some previous steps in the protocol where the
host application requests the purse’s details and checks the counter part purse’s
authenticity (accepting a purse or not for taking part in a transaction with that
purse). However, since it is not mentioned in the definition how these steps are
performed, they were not included in the implementation. In addition, some de-
tails had to be changed or specialized in order to fulfill implementation specific
requirements. The code is presented in the appendix B.

The code was implemented in JavaCard following the explanation provided
by Sun Microsystems in its Wallet example (included in the JavaCard develop-
ment kit). The intention was also to keep the implementation as close as possible
to a real purse application in order to preserve its complexity. Therefore, the
application behavior was modeled following the JavaCard architecture. For
instance, the APDU components, such as CLA, INS, SW, follow the ISO7816
standard, as recommended for a real application. On the other hand, some
components of a real application not modeled in the case study, like pin code
control and Application Identifier among others, were also omitted from the
implementation.

4.1 A JavaCard Application

The class ConpurseJC (from Concrete Purse, as defined in the Z specifica-
tion, implemented in JavaCard) implements the Mondex application. As any
JavaCard implementation, it presents the following characteristics:

• the class ConpurseJC extends the abstract class Applet part of the JavaC-
ard API;

• it implements practically all functionality (there is only one extra class,
PayDetails (from payment details), to describe a transaction), not using
any interface or inheritance;
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• the only exceptions thrown by the ConpurseJC class’s methods is the
ISOException (no uncaught exception has to be caught by the JCRE);

• it does not create any object after its initialization (since most JavaCard
implementations do not have garbage collector);

• it uses the transaction mechanism to ensure atomicity of the most critical
operations.

In addition, all fields in this implementation had to be persistent, in order
to present the expected behavior.

The implementation also preserves the security properties mentioned in the
KeY book, in the chapter describing The Demoney Case Study, another elec-
tronic purse application analyzed with KeY (the specification of this properties
can also be found in the technical report Security Properties and Java Card
Specificities To Be Studied in the SecSafe Project [13]) .

• Only ISOExceptions are allowed at top level to avoid leaking the informa-
tion about error conditions inside the applet. This property was formally
proved to hold.

• All transactions are Well Formed: no transaction is started before aborting
or committing a previous one; no transactions is aborted or committed
without have being started; and no open transaction is left for the JCRE
to close. This property was not proven but due to the code size, one can
easily be convinced that it holds.

• All updates are atomic: all updates relevant for preserving the invariants
are performed within a transaction mechanism, resulting in a tear safe
implementation. The strong preservation of the invariants was proved
using the KeY throughout configuration option.

• There is no unwanted overflow: integer operations should not overflow.
The absence of overflow for all operations performed by the application
was proved, using the KeY Arithmetic semantics prohibiting overflow
configuration option.

4.2 Deviations from the Original Specification

Ideally one would be able to implement a software from its specification without
having to adapt or extend any definition. For that, however, one has to be aware
of this and specify an application focusing on its implementation. That was not
the case when specifying the Mondex case study but even then, very few extra
definitions had to be done when implementing it.

• A purse may not take part in a transaction when its exceptional log is full.
This check is performed by the “StartFrom” and “StartTo” operations
and, when full, an exception “Log Full” is sent and the starting command
is rejected. Not allowing a purse to start a transaction is sufficient to
prevent it from taking part in a transaction at all. The only way to avoid
this exception is by clearing the exceptional log via the “clear ex log”
operation.
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• The value of a transfer has to be greater than zero. This change simplifies
specifying whether a purse had already booked a value or not (when the
value is zero, \old(value) is equal to value, resulting in considerably more
complex specification).

• As already done by other groups, the purse’s statuses before a transaction
are both equal to “Idle.” No differentiation between the purses statuses
was considered necessary at this point of the protocol.

• The fromPurse’s status and the toPurse’s status at the end of a successful
transaction are equal to “Endf” and “Endt” respectively. This change
was necessary in order to differentiate the statuses after and before a
transaction. The protocol annotated with the new statuses is shown in
figure 4.1.

• The Abort operation is called by the select() method. For this case study,
it was assumed that the application is selected before starting a new
transaction. In this way, the system guarantees that any necessary log
is done before the purse takes part in another transaction. The log opera-
tion can not be called at the beginning of the start from operation or the
start to operation, as in the original definition, in order to guarantee that
this operation can be executed only once within a transaction and that a
purse’s status does not become Idle (again) within the same transaction1.

In the original specification, nothing is said about size and limits of the fields.
Thus, the size of the fields and the limit of their values had to be defined as
well:

• balance, name, and next sequence number were defined as short (0 —
32,767),

1Considering that the start from operation is called when the purse’s status is equal to
“Epa.” According to this implementation, the received APDU is considered to be old and
simply ignored. However, if the abort method is called instead, due to the purse’s “Epa”
status, the actual transaction would be logged, the purse’s status would be set to “Idle,” and
the same transaction would be reinitiated.
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• status and the exception log pointer as byte (0 — 127), and

• the exceptional log was defined as an array of the type PayDetails having
a limited size of a tenth of the APDU buffer size2

Another implementation decision concerns the methods’ behavior in face
of erroneous APDUs: any APDU whose information does not match with the
expected is considered faulty and is simply ignored. Thus, when a method
receives a command APDU that requires a different status than the actual
purse’s status, or that the transaction details do not match with the expected,
the command APDU is simply ignored and the method’s execution is terminated
(and no field is updated). Therefore, any duplicated APDU, is considered faulty
and ignored by the application. In this way, the protocol prevents any erroneous
behavior that could be caused by a failure in the message passing mechanism.

In addition, since the implementation was done in JavaCard, its architec-
ture had to be taken into account. In a typical JavaCard application as shown
in figure 2.1, there is an applet running in the card and, in the card reader, a host
application controlling the card’s applet execution. The applet only communi-
cates with the host application (through the JCRE) via the APDUs (command
and response). Therefore in fact, it is not possible for an applet running in
a card to send a message directly to another applet running in another card.
Hence, the message exchange happens between the two host applications (or
one, if it controls both cards).

The case study, however, implements only the card part of the application,
assuming that there is a host application communicating with the card applet
that knows the Mondex application and behaves as follows.

• It is assumed that whenever a “fromPurse” host application starts a trans-
action (by sending a command APDU containing the instruction code
equal to “StartFrom”) there exists a counter part (to) purse’s host appli-
cation that also starts a transaction of its purse (by sending a command
APDU containing the instruction code equal to “StartTo”), and vice verse.

• The host application of a purse interprets and reacts correctly to the
messages received from host application communicating with the counter
part purse, sending command APDUs to its own purse when required.
More specifically,

– when the host application receives a “Req” message, it sends a com-
mand APDU with the instruction byte equal to “Req;”

– when the host application receives a “Val” message it sends a com-
mand APDU with the instruction byte equal to “Val;” and

– when the host application receives a “Ack” message, it sends a com-
mand APDU with the instruction byte equal to “Ack.”

• The host application of a purse understands and reacts correctly to the
response APDUs received from its own purse, sending a message to the
counter part purse host application when required. More specifically,

2Since each PayDetails element requires 10 bytes to be copied to the APDU buffer, the
size of the exceptional log array should not exceed a tenth of the APDU buffer size.
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• when the host application receives a response APDU indicating the suc-
cessful end of the “startTo” operation, it sends a “Req” message;

• when the host application receives a response APDU indicating the suc-
cessful end of the “req” operation, it sends a “Val” message; and

• when the host application receives a response APDU indicating the suc-
cessful end of the “val” operation, it sends a “Ack” message.
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Chapter 5

The Specification

The desired behavior of the Mondex application was specified using JML. In
JML, the specification is included in the Java code as special comments. The
written contracts and invariants were specified considering only the properties to
be verified in this case study. Thus, there might be cases were the specification
could have been more detailed.

5.1 Class Invariants and Constraints

Class invariants were used mainly to establish properties of the purse’s fields
and the relationship among them.

/*@ invariant

1 @ (exLog != null) && (exLog.length > 0) &&

@ (exLog.length < (APDU.BUFFER_LENGTH / 10)) &&

2 @ (logIdx >= 0) && (logIdx <= exLog.length) &&

3 @ (balance >= 0) && (balance <= ShortMaxValue) &&

4 @ (nextSeq >= 0) && (nextSeq <= ShortMaxValue) &&

5 @ (status >= 0) && (status <= 5) &&

6 @ (transaction != null) && (transaction.value > 0) &&

7 @ ((status == Epr) ==> (transaction.value <= balance)) &&

8 @ ((status == Epv) ==> (transaction.value <=

@ (ShortMaxValue - balance))) &&

9 @ (\forall byte i; i>=0 && i<exLog.length; exLog[i] != null);

@*/

The meaning of this invariant can be understood most easily stepwise.

1. The exceptional log array is not null and its length is bigger than zero and
smaller than a tenth of the APDU.buffer’s size. This limit is necessary
because each PayDetails object stored in the exceptional log array uses
ten bytes when copied to the APDU.buffer in the readExLog operation.

2. The pointer for the next free position in the exLog array, logIdx, is bigger
than or equal to zero and smaller than or equal to the exLog array length.

3. The balance is bigger than or equal to zero and smaller than or equal to
the maximum value that a short variable can hold (32,767).
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4. The next transaction sequence number is bigger than or equal to zero and
smaller than or equal to the maximum value that a short variable can
hold.

5. The status is bigger than or equal to zero and smaller than or equal to
five (Idle = 0, Epr = 1, Epv = 2, Epa = 3, Endf = 4, Endt = 5).

6. The transaction is not null and that its value is bigger than zero.

7. When a purse’s status is equal “Epr” (thus, a fromPurse) the transaction
value is smaller than or equal to the balance. Therefore the purse has
sufficient funds to perform the transfer.

8. When a purse’s status is equal “Epv” (thus, a toPurse), the transaction
value is smaller than or equal to the difference between the maximum
value that a short variable can hold and the balance. Therefore, a purse
can add the transaction value in its balance without causing overflow.

9. No position in the exceptional log is null.

History constraints, or constraints, in JML usually express relations between
the old and actual value of a field. The old value is the value a field has before
the method’s execution and is expressed with the construct “\old.” On the
other hand, the actual value is the value of a field after the method’s execution.
For this case study, only two constraints were defined.

/*@ constraint

@ ((\old(balance) != balance) ==>

@ ((\old(balance) - balance) == bookedValue()));

@*/

This constraint states that whenever the purse’s balance is updated, the
value added or subtracted is equal to the value booked (defined in the section
Ensuring the Security Properties5.3).

/*@ public constraint

@ ((\old(logIdx) != logIdx) ==> (status == Idle);

@*/

This constraint states that whenever the purse’s exception log pointer is
updated, the purse’s status is equal to “Idle” after this operation. This invariant
helps ensuring that a transaction can not be logged more than once (because a
transaction can not be logged when the purse’s status is equal to “Idle”).

5.2 The Application Methods Contracts

A method contract is written to specify the expected behavior of a method. It
is usually specified by means of its preconditions (which must be true for the
method to exhibit the specified behavior), its postconditions (which must be
true after the method’s execution), what fields are updated within the method’s
body, and the exceptions that the method might throw. In JML, a method
behavior can be specified as normal, exceptional, or just behavior. One uses
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normal behavior to specify the behavior of a method when it certainly termi-
nates normally without throwing any exception; exceptional behavior to specify
the behavior when it certainly terminates by throwing an exception; and sim-
ply behavior to specify the behavior of a method presents when it terminates
normally or exceptionally. In this case, the exceptions that the method might
throw can also be specified. This, in practice, is the most common way to spec-
ify a method’s behavior (at least in JavaCard) because many exceptions are
thrown under conditions that are hard or impossible to express (for example,
I/O exceptions). For instance, in this case study, practically all methods per-
form operations that might thrown an exception under a condition that can
not be predetermined when the method is called (like the APDU’s method set-
IncomingAndreceive that throws an APDUException for I/O error). Thus, the
simplebehavior case was used to specify almost all contracts.

5.2.1 The Process Method

This method receives the APDU dispatched by the JCRE, checks the APDU
header (to ensure that the APDU belongs to this application) and calls the
correct operation to process the APDU (indicated by the APDU instruction
byte). Its contract is the longest in the case study and one of the most interesting
contracts of the case study.

This contract specifies the purse’s behavior when processing APDU com-
mands. It ensures that no transaction is logged during its execution (expressed
via the update of the exception log pointer); that whenever the purse’s status
is not updated by an operation, its balance and sequence number for the next
transaction fields are also not updated, ensuring that these fields can only be
updated by protocol operations; and finally, that whenever the purse’s status
is updated, the purse’s behaves according to the defined protocol (expressed in
terms of the allowed updates in the purse’s fields).

With this contract, since the defined protocol to be followed by each purse1

can be derived from the called methods behavior, it is ensured that the de-
fined protocol is correctly specified by the methods contracts. As a reminder,
“\old(status)” refers to the status that the purse had before a method’s execu-
tion, and “status” refers to the status presented by the purse after a method’s
execution.

/* @ public behavior

1 @ requires apdu != null;

2 @ assignable logIdx, balance, status, nextSeq, transaction.fromName,

@ transaction.toName, transaction.fromSeq, transaction.toSeq,

@ transaction.value,apdu._buffer[0..((logIdx*10) - 1)];

3 @ ensures

4 @ ((\old(logIdx) != logIdx) ==>

@ ((logIdx == 0) && (status == Idle) && (\old(status) == Idle))) &&

5 @ ((\old(status) == status) ==>

@ (\old(balance) == balance) && (\old(nextSeq) == nextSeq)) &&

6 @ ((\old(status) != status) ==> (

7 @ (\old(apdu._buffer[ISO7816.OFFSET_INS]) == apdu._buffer[ISO7816.OFFSET_INS]) &&

8 @ ((\old(status) == Idle) ==>

@ ((((status == Epr)&&(apdu._buffer[ISO7816.OFFSET_INS] == StartFrom)) ||

1Without the relationship between the purse’s statuses established by the message passing
between the purses.
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@ ((status == Epv)&&(apdu._buffer[ISO7816.OFFSET_INS] == StartTo))) &&

@ (\old(balance) == balance))) &&

9 @ ((\old(status) == Epr) ==> ((status == Epa) &&

@ (apdu._buffer[ISO7816.OFFSET_INS] == Req) && (\old(balance) > balance))) &&

10 @ ((\old(status) == Epv) ==> ((status == Endt) &&

@ (apdu._buffer[ISO7816.OFFSET_INS] == Val) && (\old(balance) < balance))) &&

11 @ ((\old(status) == Epa) ==> ((status == Endf) &&

@ (apdu._buffer[ISO7816.OFFSET_INS] == Ack) && (\old(balance) == balance))) &&

12 @ (status != Idle) &&

13 @ ((status == Epr) ==> (\old(status) == Idle)) &&

14 @ ((status == Epv) ==> (\old(status) == Idle)) &&

15 @ ((status == Epa) ==> (\old(status) == Epr)) &&

16 @ ((status == Endf) ==> (\old(status) == Epa)) &&

17 @ ((status == Endt) ==> (\old(status) == Epv)) &&

18 @ ((\old(balance) > balance) ==> ((status == Epa) &&

@ ((balance - \old(balance)) == -transaction.value))) &&

19 @ ((\old(balance) < balance) ==> ((status == Endt) &&

@ ((balance - \old(balance)) == transaction.value))) &&

20 @ ((\old(balance) == balance) ==> ((status == Idle) || (status == Epr) ||

@ (status == Epv) || (status == Endf))) &&

21 @ (((status == Epr) || (status == Epv)) ==>

@ ((nextSeq == (\old(nextSeq) + 1)) ||

@ ((nextSeq == 0) && (\old(nextSeq) >= ShortMaxValue)))) &&

22 @ (!((status == Epr) || (status == Epv)) ==>

@ ((\old(nextSeq) == nextSeq) &&

@ (\old(transaction.fromName) == transaction.fromName) &&

@ (\old(transaction.toName) == transaction.toName) &&

@ (\old(transaction.fromSeq) == transaction.fromSeq) &&

@ (\old(transaction.toSeq) == transaction.toSeq) &&

@ (\old(transaction.value) == transaction.value)))));

23 @ signals_only ISOException;

24 @ signals (ISOException e) (\old(balance) == balance) &&

@ (\old(status) == status) && (\old(logIdx) == logIdx) &&

@ (\old(nextSeq) == nextSeq);

@*/

public void process(APDU apdu)

1. In JML, a requires clause specifies a precondition of method. For this
method the only requirement is that the received APDU is not null.

2. In JML, an assignable clause gives a frame axiom for a specification. It
says that, from the client’s point of view, only the locations named, and
locations in the data groups associated with these locations, can be as-
signed to during the execution of the method. Since the process method is
the caller of all other methods, any purse’s field (excluding the exceptional
log array) and the APDU buffer can be updated during its execution.

3. In JML, an ensures clause specifies a normal postcondition, i.e., a prop-
erty that is guaranteed to hold at the end of the method (or constructor)
invocation in the case that this method (or constructor) invocation re-
turns without throwing an exception. In this specification, the method
postcondition is stated from the number four to fourteenth. The meaning
of each formula is described in the sequence.

4. If the exceptional log pointer logIdx is updated, then its new value is
zero and the old and actual values of the purse’s status are equal to zero.
This means that, the exceptional log pointer withing the process method
can only be updated by the clearExLog operation (and not by logging a
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transaction, which is only done by the “abort if necessary” method, which
is not called by the process method).

5. Whenever the purse’s status is not updated, neither the balance nor the
transaction sequence fields is. This means that the operations that are not
part of the protocol (abort, readExLog, and clearExLog) do not change
the purse’s balance and sequence fields.

6. The next set of postconditions (7 to 22) must hold whenever the purse’s
status is updated. They describe a purse’s local behavior when taking
part in a transaction (according to the protocol).

7. The APDU’s instruction byte remains unchanged.

8. A purse’s status of “Idle” is updated either to “Epr,” when the APDU’s
instruction byte is equal to “StartFrom,” or to “Epv,” when the APDU’s
instruction byte is equal to “StartTo.” In both cases the purse’s balance
remains unchanged. (This happens when executing the “startFrom” or
“startTo” operation.)

9. A purse’s status of “Epr” is updated to “Epa” when the the APDU’s
instruction byte is equal to “Req.” In this case, the purse’s balance is
decreased. (This happens when executing the “req” operation.)

10. A purse’s status equal to “Epv” is updated to “Endt” when the APDU’s
instruction byte is equal to “Val.” In this case, the purse’s balance is
increased. (This happens when executing the “val” operation.)

11. A purse’s status equal to “Epa” is updated to “Endf” when the APDU’s
instruction byte is equal to “Ack.” In this case, purse’s balance is not
updated. (This happens when executing the “ack” operation.)

12. After starting a transaction, the purse’s status is not equal to “Idle.”

13. If the purse’s status is equal to “Epr,” the previous status was equal to
“Idle.”

14. If the purse’s status is equal to “Epv,” the previous status was equal to
“Idle.”

15. If the purse’s status is equal to “Epa,” the previous status was equal to
“Epr.”

16. If the purse’s status is equal to “Endf,” the previous status was equal to
“Epa.”

17. If the purse’s status is equal to “Endt,” the previous status was equal to
“Epv.”

18. If the purse’s value is decreased, then the purse’s status is equal to “Epa”
(the purse’s balance is only decreased by the “req” operation) and the
decreased value is equal to minus the transaction’s value.

19. If the purse’s value is increased, then the purse’s status is equal to “Endt”
(the purse’s balance is only increased by the “val” operation) and the
increased value is equal to the transaction’s value.
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20. If the purse’s balance is not updated, then the purse’s status are not equal
to “Epa” or “Endt.”

21. If the purse’s status is equal to “Epr” or to “Epv,” then the transaction
sequence number was updated (increased by one or to 0, in case that the
increased value would cause an overflow in the nextSeq field).

22. If the purse’s status is equal to neither “Epr” nor “Epv,” then the transac-
tion sequence number and the transaction details are not updated. This
means that the these fields are only updated by the “startFrom” and
“startTo” operations.

23. In JML, a signals only clause is an abbreviation for a signals-clause that
specifies what exceptions may be thrown by a method, and thus, implic-
itly, what exceptions may not be thrown. Here, it states that only an
ISOException is thrown by the “process” method (considered a good se-
curity property of a JavaCard applet, according to the section 14.5.2
Security Properties (of JavaCard applets) of the KeY book).

24. In JML, a signals clause specifies the exceptional or abnormal postcondi-
tion, i.e., the property that is guaranteed to hold at the end of a method
(or constructor) invocation when the method (or constructor) invocation
terminates abruptly by throwing a given exception. Here, it is stated that
whenever an ISOException is thrown (the only that might occur), the
purse’s balance, status, logIdx, and nextSeq fields preserves their original
values (i.e. are not updated).

5.2.2 The start from operation Method

The start from operation method is called to initiate a transaction in the “from”
purse. Its behavior is defined as follows.

• The purse’s exception log can not be full, in order to be able to store the
actual transaction if necessary.

• The purse’s status has to be equal to “Idle,” i.e. the purse can not be
taking part on any other transaction.

• The counter part details have to be consistent (method readCounterPart-
Details): the counter part purse’s name has to be different from the name
of this purse and bigger than zero; and the counter part purse’s sequence
number for this transaction has to be bigger than or equal to zero.

• The value of the transaction has to be less than or equal to the purse’s
balance.

• The purse atomically increases the sequence number for the next trans-
action and sets the status to “Epr.” If the sequence number can not be
increased without causing an overflow, it is reset to zero.

These behavior is ensured by the method’s postcondition, except the trans-
action value limit, which is already stated as a class invariant and thus has to
be preserved by this method.

28



/*@ public behavior

1 @ requires apdu != null;

2 @ assignable transaction.fromName, transaction.toName,

@ transaction.fromSeq, transaction.toSeq, transaction.value,

@ nextSeq, status;

3 @ ensures

4 @ (\old(status)==Idle) && (status==Epr) && (logIdx < exLog.length) &&

5 @ ((nextSeq == \old(nextSeq) + 1) ||

@ ((nextSeq == 0) && (\old(nextSeq) >= ShortMaxValue))) &&

6 @ (transaction.fromSeq == \old(nextSeq)) &&

7 @ (transaction.fromName == name) && (transaction.toName != name) &&

8 @ (transaction.toName > 0) && (transaction.toSeq >= 0);

@ signals_only ISOException;

@ signals (ISOException e)

9 @ (\old(status) == status) && (\old(nextSeq) == nextSeq);

@*/

private void start_from_operation(APDU apdu) throws ISOException

1. The method only requires reception of a non null APDU as parameter.

2. It updates the actual transaction fields, and the purse’s nextSeq and status
fields.

3. The postconditions are stated from four to seven.

4. The status before the method’s execution was equal to “Idle” and became
“Epr.” The exceptional log pointer is smaller than the exceptional log’s
length (and therefore the actual transaction can be logged if necessary.
The method checks whether this is true before accepting the transaction
and throws an ISOException indicating that the exceptional log if full
and therefore the purse can not participate in any transaction before its
exceptional log be cleared).

5. The next sequence number field, nextSeq, is increased by one or, in the
case that its values has reached the maximum value it can store, is set to
zero.

6. The sequence number for this purse in this transaction is equal to the
purse’s sequence number before the method execution.

7. This purse is the “from” purse, and the “from” and “to” purses of the
transaction are not the same purse (they have different names).

8. The counter part purse’s name is bigger than zero and the counter part
purse’s sequence number for this transaction bigger than or equal to zero;

9. If an exception is thrown, the transaction is not initiated: the purse’s
status and sequence number remain unaltered.

5.2.3 The start to operation Method

The start to operation method is called to initiate a transaction in the “to”
purse. Its behavior is the same as the previous method with two differences.
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• The value of the transaction may not cause an overflow when added to
the purse’s balance.

• The purse’s status is set to “Epv” (instead of “Epr”).

As before, the limit for the transaction value is not stated in the method’s
contract because it is part of the class invariant and has to be preserved by this
method.

/*@ public behavior

1 @ requires apdu != null;

2 @ assignable transaction.fromName, transaction.toName,

@ transaction.fromSeq, transaction.toSeq, transaction.value,

@ nextSeq, status;

3 @ ensures

4 @ (\old(status)==Idle) && (status==Epv) && (logIdx < exLog.length) &&

5 @ ((nextSeq == \old(nextSeq) + 1) ||

@ ((nextSeq == 0) && (\old(nextSeq) >= ShortMaxValue))) &&

6 @ (transaction.toSeq == \old(nextSeq)) &&

7 @ (transaction.toName == name) && (transaction.fromName != name) &&

8 @ (transaction.fromName > 0) && (transaction.fromSeq >= 0);

@ signals_only ISOException;

@ signals (ISOException e)

9 @ (\old(status) == status) && (\old(nextSeq) == nextSeq;

@*/

private void start_to_operation(APDU apdu) throws ISOException

1. The method only requires reception of a non null APDU as parameter.

2. It updates the actual transaction fields, and the purse’s nextSeq and status
fields.

3. The postcondition are stated from four to seven.

4. The status before the method’s execution was equal to “Idle” and became
“Epv.” The exceptional log pointer is smaller than the exceptional log’s
length (and therefore the actual transaction can be logged if necessary.
The method checks whether this is true before accepting the transaction
and throws an ISOException indicating that the exceptional log if full
and therefore the purse can not participate in any transaction before its
exceptional log be cleared).

5. The next sequence number field, nextSeq, is increased by one or, in the
case that its values has reached the maximum value it can store, is set to
zero.

6. The sequence number for this purse in this transaction is equal to the
purse’s sequence number before the method execution.

7. This purse is the “to” purse, and the “from” and “to” purses of the trans-
action are not the same purse (they have different names).

8. The counter part purse’s name is bigger than zero and the counter part
purse’s sequence number for this transaction bigger than or equal to zero;

9. If an exception is thrown, the transaction is not initiated: the purse’s
status and sequence number remain unaltered.
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5.2.4 The req operation Method

The req operation method implements the process that happens in the “from”
purse when receiving a REQ message from the “to” purse.

• The purse’s status has to be equal to “Epr.”

• The transaction details sent with the APDU (counter part purse’s name
and sequence number, and transaction value) must match with the purse’s
ongoing transaction (method checkTransaction).

• The transaction’s value is decreased from the purse’s balance and its status
is set to “Epa” atomically.

/*@ public behavior

1 @ requires apdu != null;

2 @ assignable balance, status;

@ ensures

3 @ (balance == \old(balance) - transaction.value) &&

@ (\old(status) == Epr) && (status == Epa);

@ signals_only ISOException;

@ signals (ISOException e)

4 @ ((balance == \old(balance)) && (status == \old(status)));

@*/

private void req_operation(APDU apdu) throws ISOException

1. The method only requires reception of a non null APDU as parameter.

2. It updates the purse’s balance and status.

3. As postcondition, the actual balance is equal to its value before the method’s
execution minus the transaction value, and the status before the method’s
execution was equal to “Epr” and became “Epa.”

4. If an exception is thrown, the purse’s balance and status field remain
unaltered.

5.2.5 The val operation Method

The val operation method implements the process that happens in the “to”
purse when receiving a VAL message from the “from” purse.

• The purse’s status has to be equal to “Epv.”

• The transaction details sent with the APDU (counter part purse’s name
and sequence number, and transaction value) must match with the purse’s
ongoing transaction (method checkTransaction).

• The transaction’s value is increased in the purse’s balance and its status
is set to “Endt” atomically.

/*@ public behavior

1 @ requires apdu != null;

2 @ assignable balance, status;

@ ensures
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3 @ (balance == \old(balance) + transaction.value) &&

@ (\old(status) == Epv) && (status == Endt);

@ signals_only ISOException;

@ signals (ISOException e)

4 @ ((balance == \old(balance)) && (status == \old(status)));

@*/

private void val_operation(APDU apdu) throws ISOException

1. The method only requires reception of a non null APDU as parameter.

2. It updates the purse’s balance and status.

3. As postcondition, the actual balance is equal to its value before the method’s
execution plus the transaction value, and the status before the method’s
execution was equal to “Epv” and became “Endt.”

4. If an exception is thrown, the purse’s balance and status field remain
unaltered.

5.2.6 The ack operation Method

The ack operation method implements the process which happens in the “from”
purse when receiving a ACK message from the “to” purse.

• The purse’s status has to be equal to “Epa.”

• The transaction details sent with the APDU (counter part purse’s name
and sequence number, and transaction value) must match with the purse’s
ongoing transaction (method checkTransaction).

• The purse’s status is set to “Endf.”

/*@ public behavior

1 @ requires apdu != null;

2 @ assignable status;

@ ensures

3 @ (\old(status) == Epa) && (status == Endf);

@ signals_only ISOException;

4 @ signals (ISOException e) (status == \old(status));

@*/

private void ack_operation(APDU apdu) throws ISOException

1. The method only requires reception of a non null APDU as parameter.

2. It only updates the purse’s status.

3. As postcondition, the status before the method’s execution was equal to
“Epa” and became “Endf.”

4. If an exception is thrown, the purse’s status field remains unaltered.
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5.2.7 The read ex log operation Method

The read ex operation method is responsible for sending the purse’s exceptional
log to the archive. It can be called at any time, even during a transaction.

• The APDU’s LC byte equal zero indicates that the number of transactions
logged must be sent via the status word SW RETURN VALUE2. Here,
this mechanism is required since the host application can not, a priory,
determine the size of the expected data in the response APDU.

• When not zero, the APDU’s LC byte must be the necessary size to store
all logged transactions.

• The logged transactions (from the beginning of the exception log until the
position immediately before the log’s pointer) are copied to the APDU’s
buffer and send to the host application through a response APDU.

/*@ public behavior

1 @ requires apdu != null;

2 @ assignable apdu._buffer[0..((logIdx*10) - 1)];

3 @ ensures true;

@ signals_only ISOException;

4 @ signals (ISOException e) true;

@*/

private void read_ex_log_operation(APDU apdu) throws ISOException

1. The method only requires reception of a non null APDU as parameter.

2. It updates the APDU’s buffer, from its first position (0) until its ((logIdx∗
10)− 1)th position.

3. No postcondition is defined.

4. No postcondition is defined for the case when an exception is thrown.

In addition in order to very more easily this method, the loop that iterates
on the exceptional log was also specified.

1 /*@ loop_invariant (logIdx >= i) && (i >= 0);

2 @ assignable i, buffer[0..(((logIdx - 1) * 10) -1)];

3 @ decreases (logIdx - i);

4 @*/

while (i < logIdx)

1. A loop invariant is in practice a formula that describes the loop’s behavior
and must be true before, during and after the loop’s execution. When
proving with KeY, it is the only information that can be seen from outside
the loop’s body. Therefore, it has to be as complex as needed by the
method’s post condition. In this case, since the method’s postcondition is
trivial, the implicit loop bound defined in the the paper Provably Correct
Loops Bounds for Realtime Java Programs ([11]) is sufficient. The implicit
bound is defined as follows.

2An easy way to send a small value to the host application is to embed it in a status word
and send it in an exception. This mechanism is explained in the paper Javacard and Opencard
Framework: a Tutorial [7].
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For the case where the decrease clause contains only one loop
dependent variable (a variable declared in the assignable clause
of the loop), the implicit loop invariant seems to be sufficient
for proving the method termination. The implicit loop bound
describes the decrease clause definition and states that the de-
creases term is always positive and in every loop iteration less
than the evaluation of the decreases term with the loop variable
instantiated to its initial value.

In this case, the implicit loop bound is expressed by the formula (logIdx−
i) >= 0 and (logIdx − 0) >= (logIdx − i) which after simplification
becomes (logIdx >= i) and (i >= 0).

2. The assignable clause of a loop is not part of the JML. It is an extension
used by the KeY tool in order to simplify a loop verification. It contains
the locations that might be assigned during the loop’s execution.

3. The decreases term is the variant part of the loop specification. It specifies
an expression that must not be less than 0 when the loop is executing,
and must decrease by at least one (1) on each iteration of the loop (as
stated in the last item).

5.2.8 The clear ex log operation Method

The clear ex log operation method is responsible for clearing the purse’s excep-
tional log.

• The purse’s status must be equal to “Idle.”

• The received code must match the image calculated for the exceptional
log (see image method).

• Since the relevant logged transactions are stored before the log’s pointer
(see method’s read ex log operation), for clearing the log it is sufficient to
move its pointer to its initial position.

/*@ public behavior

1 @ requires apdu != null;

2 @ assignable logIdx;

3 @ ensures (logIdx == 0) && (status == Idle);

@ signals_only ISOException;

4 @ signals (ISOException e) (logIdx == \old(logIdx));

@*/

private void clear_ex_log_operation(APDU apdu) throws ISOException

1. The method only requires reception of a non null APDU as parameter.

2. It only updates the purse’s exceptional log pointer logIdx.

3. After the method’s execution, the purse’s logIdx field is equal to zero
and the status is equal to “Idle” (and since the status is not modified
by this method, its value before the method’s execution is the same, i.e.
(\old(status) == Idle) is also true).

4. If an exception is thrown, the purse’s logIdx field remains unaltered.
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5.2.9 The abort if necessary method

The abort if necessary method is called by the select method to ensure that
the previous transaction, if interrupted, will be logged, and that the status of a
purse is set to “Idle” at each time an applet is selected (consequently, for this
case study, at the beginning of each transaction.

First, the method checks whether or not the previous transaction needs to
be logged. This is the case when the purse’s actual status is equal to “Epv”
or “Epa.” In this case, the previous transaction (still in the purse’s persistent
transaction field) has to be logged. Before logging the transaction, the method
checks whether or not the exception log can store a new transaction or not. If
not3, an exception is thrown and the method’s execution is terminated. Other-
wise, the transaction is copied to the exception log at the log’s pointer position,
and the log’s pointer is increased.

At the end, the purse’s status is set to “Idle.” The purse is then ready for a
new transaction.

/*@ public behavior

1 @ requires true;

2 @ assignable exLog[\old(logIdx)], logIdx, status;

3 @ ensures

4 @ (status == Idle) &&

5 @ (((\old(status) == Epv) || (\old(status) == Epa)) ==>

@ ((\old(logIdx) < exLog.length) && (logIdx == (\old(logIdx) + 1)) &&

@ (exLog[\old(logIdx)] == transaction))) &&

6 @ (((\old(status) != Epv) && (\old(status) != Epa)) ==>

@ ((logIdx == \old(logIdx)) && (\old(exLog[logIdx]) == exLog[logIdx])));

@ signals_only ISOException;

7 @ signals (ISOException e)

@ (\old(logIdx) == logIdx) &&(\old(status) == status);

@*/

private void abort_if_necessary() throws ISOException

1. There is no precondition defined for this method.

2. During the method’s execution, the position pointed by the exceptional
log pointer logIdx at the beginning of the method and logIdx itself might
be assigned, and the purse’s status is certainly assigned.

3. The method’s postcondition is stated on lines four to six of the specifica-
tion above.

4. The purse’s status is equal to “Idle.”
3Considering that (i)a transaction to be logged has to have been initiated, (ii)the exception

log my not be full at the beginning of a transaction (because there is an explicit test at the
beginning of the “StartFrom” and “startTo” operations), and (iii)the exception log is not
updated by any operation between the beginning of a transaction and its logging, then one
could guarantee that the exception log is not full whenever a transaction has to be logged.
However, this property can not be easily stated using JML. One could think about including
the statement (logIdx ¡ exLog.length) in the process method’s postcondition and prove that
it is true from the beginning to the end of a transaction. But it still would need to be stated
that the abort transaction happens after that, and this can not be done using JML since the
abort operation is performed out of the process method’s scope.
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5. If the purse’s status at the beginning of the method’s execution is equal
to “Epv” or to “Epa” then (i) the exceptional log pointer logIdx at the
beginning of the method’s execution points to a position smaller than the
length of this log (and the transaction can be logged without causing an
overflow), (ii) the logIdx is incremented by one, and (iii) the value of the
transaction field is copied to the exceptional log at the position pointed
by logIdx at the beginning of the method’s execution.

6. If the purse’s status at the beginning of the method’s execution is neither
equal to “Epv” nor to “Epa” then neither logIdx nor the position of the
exceptional log pointed by it are updated.

7. If an exception is thrown, the exception log pointer and the status remain
unaltered. The exceptional log is not listed here because it might be
updated in the case where the exception was caused by a transaction
error. However, since the exceptional log pointer remains unaltered, this
update has side effect in the application (because the updated position
will be reused by the next logged transaction).

5.2.10 The image Method

The image method models a method that calculates the clear code for the
exceptional log. Since it is not described in the original definition, it could
not be fully implemented. Its contract was used in the verification of the
clear ex log operation method behavior, and its body in the clear ex log operation
method strong invariants preservation proof.

1 /*@ public normal_behavior

2 @ requires true;

3 @ assignable \nothing;

4 @ ensures true;

@*/

private short image();

1. In JML, normal behavior means that the behavior specified terminates
normally without throwing any exception. A normal behavior specifica-
tion case is just syntactic sugar for a behavior specification case with an
implicit signals clause “signals (java.lang.Exception) false;.”

2. No precondition is defined.

3. No field is updated by this method.

4. No postcondition is defined.

5.3 Ensuring the Security Properties

The contracts presented in the last section establish the expected behavior of
each single method of the application. Nothing is said about the general Secu-
rity Properties to be demonstrated. These properties are especially difficult to
express because
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• they are general to the application, therefore they do not belong to any
particular method (described in subsection Expressing General Proper-
ties);

• they result from the protocol execution, hence, a sequence of steps, and
this is particularly hard to express in JML (described in subsection Ex-
pressing Sequence of Events);

• SP1 and aSP2 (see section 3.2) are stated on the basis of all possible
purses, while the the transaction protocol is defined for two purses (de-
scribed in subsection The World of Purses);

• for their specification it is necessary to reference the interaction of the
local purse with another purse, an object of same class being specified
(described in subsection Referencing the Counter Part Purse); and

• it is not well defined “when” they should hold (described in subsection
Specifying when the Properties Hold).

5.3.1 Expressing General Properties

To solve this problem one has to take into account that the security proper-
ties defined for the case study can be derived by the class invariants (plus the
relationship between the statuses of the two purses during a transaction, as ex-
plained in the section 5.3.4). In KeY, the implication of these properties by the
invariants could be stated as a Java DL formula. However, for this case study,
the intention was to fully specify the application using JML, and therefore a
solution to establish these properties had to be found.

The solution was to define a (dummy) method (showProperties) without a
body whose only purpose was to enable writing the security properties as its
postcondition. By proving the correctness of this contract, one ensures that, as
long as the class invariants and the method’s precondition are true, the security
properties are also true.

5.3.2 Expressing Sequence of Events

The second problem is related with a more problematic issue to solve: causality,
not easily expressible in JML 4. The solution adopted here uses the JML history
constraints mechanism. Even though it is not a full solution for expressing
causality, one can express one change of state (the old and the actual) and
therefore one can express one step of the protocol with it.

Since the successor state is a transitive function, it was possible to express
in JML that the application implements the defined protocol for each purse:
it was expressed as a post condition of the process method’s (responsible for
calling all the other methods). In this way, one can prove that the application
implements the protocol to be followed by each purse correctly.

4There is work being done in this direction such as the JML extension proposed in
the paper Specifying and checking method call sequences of Java programs[5] and the
tool called JAG, a JML annotation generator for verifying temporal properties on Java
classes(http://lifc.univ-fcomte.fr/̃jag/). However, this work was not considered in this case
study.)
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Nevertheless, this does not completely solve the causal problem: one must
establish that a purse having a status “Endf” already performed the val oper-
ation and hence already decreased the transaction value from its balance. One
can easily see by the protocol definition that this is true. One can also see that
following the specified “status” and “old status” in the process method’s post-
condition, this is certainly true. But one can not express something like “this
happened in method A and, since method B is executed after method A ...” in
JML. The solution adopted in this case study was to include helper methods
to determine this information based on the purse’s status. For this case, the
method bookedValue was defined (see section 5.4).

5.3.3 The World of Purses

The third point brings the problem of how to express a property suppose to be
hold by all objects of a class in the class definition, i.e., how to reference the
effect of any transaction on all existent purses. In the case study’s definition, the
security properties SP1 and SP2 are establish for the world of purses, i.e., for all
existent (authentic) purses. This brings immediately the idea of modeling the
world of purses, which would make the specification more complicated. However,
the approach used in the case study defines that

• a purse’s name uniquely identifies a purse,

• a transaction number and name uniquely identifies a transaction,

• a transaction can happen only between two purses (guaranteed by the
transaction details shared by both purses), and

• a purse can only take part in one transaction at the time.

In addition for this case study, the assumption was made that (according to the
case study definition)

• the change in the sum of all individual purse’s balance, intended to be
verified is the change resulting from the transactions specified in the case
study (not from a purse in isolation, or from some other possible transac-
tion);

• all transactions present the same behavior (defined by the protocol to be
verified);

• each transaction happens in isolation, and therefore its contribution to the
change on the world of purse’s balance, if any, is independent from any
other transaction, and

• therefore the contribution of each transaction to the change of the world of
purse’s balance is equal to the change happened in the sum of the balance
of the two purses in the transaction.

Therefore one can deduce that, by demonstrating that one transaction preserves
the security properties related to changes on the world of purse’s balance, one
demonstrates that all transaction do as well. This deduction is assumed true in
this case study5 and therefore the security properties SP1 and SP2 are demon-
strated to be hold by a transaction.

5There is ongoing work in the KeY group to prove this deduction.
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5.3.4 Referencing the Counter Part Purse

Referencing the other purse is a non trivial issue. The implementation and the
specification, as already stated, refer to the local purse. However, in order to
specify the security properties SP1 and SP2 one has to express the interaction
of the local purse with another purse, an object of the same class.

Hence, one has first to decide how to refer to the other purse. For this case
study for referencing the counter part purse, the following assertion was done:
either a purse is not taking part of any transaction (thus its status is equal to
“Idle”) or it is taking part in a transaction (therefore there does exist a counter
part purse taking part of the same transaction). This was stated in JML as
follows.

@ (status != Idle) ==>

@ (\exists ConPurseJC x;

@ x!= null && x.transaction == transaction && x.name != name;

In addition, one has to be aware of the other purse when writing the spec-
ification in order to make it sufficient to express the properties of both purses
without being too verbose. This issue had to be carefully taken into account,
for instance, when deciding how the protocol to be followed by a purse should
be specified. If it has to be available to prove the security properties, it has
to be expressed as a general class information, in this case as class constraints.
Since this is not the case, it was expressed as a process method’s postcondition.
However, the specification of the relationship between the purse’s statuses while
performing the transaction is necessary for proving the security properties (be-
cause when considering the end of a transaction in one purse, it is necessary to
know what are the possible status presented by the counter part purse). This
relationship could have been expressed as a class invariant but, since it is not
necessary for any other proof, it was stated as a precondition of the method
showProperties. Considering “x” the counter part purse, this relationship was
expressed in JML as follows.

1 @ ((status == Endf) ==> (x.status == Endt)) &&

2 @ ((status == Endt) ==> ((x.status == Epa) || (x.status == Endf))) &&

3 @ ((status == Epa) ==> ((x.status == Epv) || (x.status == Endt))) &&

4 @ ((status == Epv) ==> ((x.status == Idle) || (x.status == Epr) ||

@ (x.status == Epa))) &&

5 @ ((status == Epr) ==> ((x.status == Idle) || (x.status == Epv)))

This specification can be read as whenever the purse’s status is equal to
“Endf,” the counter part purse’s status has to be equal to “Endt;” and whenever
the purse’s status is equal to “Endt,” the counter part purse’s status has to
be equal to “Epa” or “Endf;” and so on. These assumptions are not explicitly
proven in this case study but they can be easily verified by the protocol definition
in figure 4.1 and derived from the knowledge of the message passing protocol,
as explained below.

1. When the purse’s status is equal to “Endf,” its previous status was equal
to “Epa” (proven in the process method’s postcondition). Considering its
previous status, the purse received from the host application a command
APDU containing the instruction byte equal to “Ack” (proven in the pro-
cess method’s postcondition). Since the host application sent this APDU,
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it certainly received an “Ack” message from the counter part purse host
application (according to the assumed behavior of the host application and
considering the assumption that a message can not be forged). Since the
counter part purse host application sent the “Ack” message, it received
from its purse (the counter part purse) a response APDU indicating the
successful end of the “Val” operation (according to the assumption on the
host application behavior). Therefore, since the counter part purse exe-
cuted the “Val” operation, its own status is equal to “Endt” (proven in
the val operation method’s contract).

2. When the purse’s status is equal to “Endt,” its previous status was equal
to “Epv” (proven in the process method’s postcondition). Considering its
previous status, the purse received from the host application a command
APDU containing the instruction byte equal to “Val” (proven in the pro-
cess method’s postcondition). Since the host application sent this APDU,
it certainly received an “Val” message from the counter part purse host
application (according to the assumed behavior of the host application
and considering the assumption that a message can not be forged). Since
the counter part purse host application sent a “Val” message, it received
from its purse a response APDU indicating the successful end of the “Req”
operation (according to the assumption on the host application behavior).
Therefore, since the counter part purse executed the “Req” operation,
its own status is equal to “Epa” (proven in the val operation method’s
contract).

In addition, when the purse status is equal to “Endt” it successfully per-
formed the “val operation” method (one already knows that the purse re-
ceived a command APDU containing the instruction byte equal to “Val.”
By code inspection, one can ensure that this operation is performed when
the purse receives this APDU. Finally, the purse’s final status is proven in
the “val operation” method’s contract). Thus a response APDU indicat-
ing the successful end of this operation was sent to the host application,
and therefore an “Ack” message was sent to the counter part purse’s host
application. Thus, it is possible, if the counter part purse had already
received and processed this message, that the counter part purse’s status
is not “Epa” anymore rather “Endf.”

3. When the purse’s status is equal to “Epa,” its previous status was equal
to “Epr” (proven in the process method’s postcondition). Considering its
previous status, the purse received from the host application a command
APDU containing the instruction byte equal to “Req” (proven in the pro-
cess method’s postcondition). Since the host application sent this APDU,
it certainly received an “Req” message from the counter part purse host
application (according to the assumed behavior of the host application and
considering the assumption that a message can not be forged). Since the
counter part purse host application sent a “Req” message, it received from
its purse a response APDU indicating the successful end of the “StartTo”
operation (according to the assumption on the host application behavior).
Therefore, since the counter part purse executed the “StartTo” opera-
tion, its own status is equal to “Epv” (proven in the Start to operation
method’s contract).
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In addition, if the purse status is equal to “Epa” it successfully performed
the “req operation” method (one already knows that the purse has re-
ceived a command APDU containing the instruction byte equal to “Req.”
By code inspection, one can ensure that this operation is performed when
the purse receives this APDU. Finally, the purse’s final status is proven in
the “req operation” method’s contract). Thus a response APDU indicat-
ing the successful end of this operation was sent to the host application,
and therefore an “Val” message was sent to the counter part purse’s host
application. Thus, it is possible, if the counter part purse had already
received and processed this message, that the counter part purse’s status
is not “Epv” anymore rather “Endt.”

4. When the purse’s status is equal to “Epv,” its previous status was equal to
“Idle” (proven in the process method’s postcondition). Considering its sta-
tuses, the purse received from the host application a command APDU with
the instruction byte equal to “StartTo” (proven in the process method’s
postcondition). Considering that it is the beginning of a new transac-
tion, one can assume that the counter part purse’s host application sent
a command APDU containing a instruction code equal to “StartFrom”
to its purse (according to the assumed behavior of the host application).
Since the counter part purse’s host application sent this APDU, either
the counter part purse already processed it or not. If not, its status is
still equal to “Idle;” and if it has processed, the “start from operation”
method was executed (one already knows that the purse has received the
a command APDU with the instruction byte equal to “StartFrom.” By
code inspection, one can ensure that this operation is performed when the
purse receives this APDU) an thus the counter part purse’s status is equal
to “Epr.”

In addition, since the purse status is equal to “Epv” it successfully per-
formed the “start to operation” method (one already knows that the purse
received a command APDU with the instruction byte equal to “StartTo.”
By code inspection, one can ensure that this operation is performed when
the purse receives this APDU. Finally, the purse’s final status is proven
in the “start to operation” method’s contract). Thus a response APDU
indicating the successful end of this operation was sent to the host ap-
plication, and therefore an “Req” message was sent to the counter part
purse’s host application. Thus, it is possible, if the counter part purse had
already received and processed this message, that the counter part purse’s
status is not “Epr” anymore rather “Epa.”

5. When the purse’s status is equal to “Epr,” its previous status was equal
to “Idle” (proven in the process method’s postcondition). Considering its
statuses, the purse received from the host application a command APDU
with the instruction byte equal to “StartFrom” (proven in the process
method’s postcondition). Considering that it is the beginning of a new
transaction, one can assume that the counter part purse’s host application
sent a command APDU containing a instruction code equal to “StartTo”
to its purse (according to the assumed behavior of the host application).
Since the counter part purse’s host application sent this APDU, either the
counter part purse already processed it or not. If not, its status is still
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equal to “Idle;” and if it has processed, the “start to operation” method
was executed (one already knows that the purse has received a command
APDU with the instruction byte equal to “StartTo.” By code inspection,
one can ensure that this operation is performed when the purse receives
this APDU) an thus the counter part purse’s status is equal to “Epv.”

5.3.5 Specifying when the Properties Hold

Finally, the last point to consider is specifying when the security properties
should hold. They are properties of the protocol and therefore should be pre-
served by the transaction execution. In principle, all security properties stated
for this case study, except one, hold at all times during the transaction’s execu-
tion (like strong invariant).

There is however, a problem defining when the Security Property 2.1 All
value accounted should hold. There is a time during a normal execution of a
transaction that the property does not hold: when the fromPurse already sent
the value message (and subtracted the transaction value from its balance) but
the toPurse did not yet receive it (and therefore did not yet add this value
to its own balance). At this point, the sum of the world of purse’s balance is
smaller than at the beginning of the transaction. This problem is naturally
solved within the protocol: either the toPurse receives the message and adds
the value in its own balance, or it does not receive the message, because the
transaction was interrupted ,and the transaction is logged when the purse is
reinitialized (in this case the fromPurse’s transaction is also logged when it is
reinitialized, and the lost element ensures that the property holds).

Certainly, the moment when the property does not hold has to be taken into
account when formalizing the property. Perhaps the proposal for enabling a full
protocol specification in JML, presented in the paper Specifying and checking
method call sequences of Java programs[5]6, or something in a similar direction
would solve this problem. However in this case study, a solution is proposed
using standard JML.

The solution proposed here is to ensure that the property holds at the be-
ginning and at the end of the transaction, i.e. assuming that the property holds
before a transaction execution, the property holds when this execution is over.
Considering the implementation, a transaction is processed from its beginning
until its end (normal or interrupted). Then, sometime after, when the appli-
cation is selected again, the abort if necessary method is executed in order to
initialize a card (performing any necessary clean-up operation to ensure that the
card is in a “Idle” state ready to perform any further action). In this operation
depending on the purse’s status, it is possible to know whether the previous
transaction had to be logged or not. The security property holds when the
last step referred to a transaction happens: after they have been logged or not,
depending on the purse’s status, at the initialization step.

There is another problem as well: the initialization step is local to a purse and
is performed by each purse at different times. Nevertheless, one can determine
that the security properties concerning a transaction “t” between two purses
“p1” and “p2” hold when “p1” and “p2” have been initialize after executing
the transaction “t.”

6This proposal was not considered in this case study and this is the reason for the doubt
whether it is a solution or not.
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For that, the purse’s statuses referred in the showProperties method’s post-
condition (for calculating the lost component) are the status that a purse had
when initialization was performed (at the beginning of the abort if necessary
method). One might find this definition confusing because, since the initializa-
tion happens at different time, a purse might be taking part in another transac-
tion when the properties are verified. In fact, this does not make any difference
because the properties are based on the status a purse had at initialization time
(and not currently).

There is however another practically equivalent time during the transaction’s
execution when the security properties hold: at the end of a transaction’s exe-
cution, where the end of a transaction’s execution here means the point in the
protocol where the transaction’s execution terminates (normally or abruptly),
i.e. when the last APDU referred to this transaction was received and pro-
cessed and no further message referring to this transaction is sent to any of
the purses. Thus, the purse’s statuses referred in the showProperties method’s
postcondition (for calculating the lost component) are the last status reached
by a purse within this transaction’s execution. For instance, if a purse’s sta-
tus at the end of a transaction is equal to “Epa,” it means that this purse
stopped processing this transaction when its status was equal “Epa” (i.e., the
transaction was abruptly terminated). If the purse’s status is equal to “Endt,”
it means that the transaction was executed until the end of the protocol and
then its execution was normally terminated. The problem with this definition
is that the transaction is effectively terminated (and logged if necessary) only
when the card is reinitialized. Nevertheless, one can consider that if at the end
of a transaction’s execution, the purse’s status is equal to “Epv” or “Epa” the
transaction value “will certainly” be logged (guaranteed by the abort operation
method’s contract) and therefore can assume that the security properties hold
at this point.

There is no decision here about what is the best definition. Any one can be
used as an interpretation of the purse’s statuses mentioned in the showProperties
method’s postcondition for calculating the lost component.

5.4 Auxiliary Methods

In order to make clearer the security properties specification two extra functions
were defined. In principle, they could have been implemented as JML model
methods but since the translation of model methods into Java DL is not fully
implemented in KeY, they were declared as Java methods. In addition, they
have to be side-effect-free methods (in JML stated trough the modifier “pure”)
in order to be used within an specification.

The bookedValue method determines the value already booked in the purse’s
balance in the actual transaction. It is determined based on the purse’s status
(according to the defined protocol), thus (i) if the (from) purse’s status is equal
to “Epa” or “Endf,” the transaction value was certainly already decreased from
the fromPurse’s balance, so minus this value is the booked value; (ii) if the (to)
purse’s status is “Endt,” the transaction value was certainly already increased
from the fromPurse’s balance, so this value is the booked value; otherwise no
value was already booked in the purse’s balance. The steps in the protocol were
the transaction value has already been booked have to be explicitly defined
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because in JML the behavior specification is restricted to a method, and one
can not refer to an event which happened before a method’s execution (which is
the case of the method ack operation where one can not state in its contract that
the value had been already booked in the purse’s balance). The value returned
by this method is ensured by the class constraints that establishes that whenever
the purse’s balance changes, the booked value is equal to the difference of the
purse’s actual balance and the previous balance.

5.5 Expressing the Security Properties

The showProperties method’s specification is described in the sequence.

/* @ public behavior

1 @ requires

@ (status != Idle) ==>

@ (\exists ConPurseJC x;

@ x!= null && x.transaction == transaction && x.name != name;

@ ((status == Endf) ==> (x.status == Endt)) &&

@ ((status == Endt) ==> ((x.status == Epa) || (x.status == Endf))) &&

@ ((status == Epa) ==> ((x.status == Epv) || (x.status == Endt))) &&

@ ((status == Epv) ==> ((x.status == Idle) || (x.status == Epr) ||

@ (x.status == Epa))) &&

@ ((status == Epr) ==> ((x.status == Idle) || (x.status == Epv))));

@ assignable \nothing;

2 @ ensures

3 @ ((status == Idle) ||

4 @ (\exists ConPurseJC x;

5 @ x!= null && x.transaction == transaction && x.name != name;

6 @ ((bookedValue() > 0) ==> (x.bookedValue() < 0)) &&

7 @ ((x.bookedValue() > 0) ==> (bookedValue() < 0)) &&

8 @ (bookedValue() + x.bookedValue() +

@ ((((status == Epa) || (status == Epv)) &&

@ ((x.status == Epa) || (x.status == Epv))) ? transaction.value : 0)

@ == 0)));

@*/

void showProperties(){}

1. The relationship between the purses statuses is established as precondi-
tion as already explained in the section 5.3.4. The precondition can be
considered as follows. Considering that “if the purse’s status is not Idle
then it is taking part in transaction with another purse behaving as defined
by this relationship” is true, then the postcondition is also true.

2. The postcondition is stated from the item three to eight:

(a) A purse’s status is equal to “Idle” (and therefore it is not part of any
ongoing transaction), or

(b) there exists another purse (the counter part purse),

(c) which is not null, its stored current transaction is the same as this
purse’s stored current transaction, and its not the same purse as this
(its name is different from this purse); and
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(d) whenever the booked value of this purse is bigger than zero, the
booked value of the counter part purse is smaller than zero; and

(e) whenever the booked value of the counter part purse is bigger than
zero, the booked value of this purse is smaller than zero; and

(f) the actual transaction does not change the sum of the purse’s bal-
ances: the sum of the booked value of each purse and the lost7 is zero,
and therefore this transaction can not alter the sum of the purse’s
balances.

5.6 Checking the Invariants Consistency

/*@ public behavior

@ requires true;

@ ensures false;

@*/

void checkConsistency () {}

The (dummy) method checkConsisteny8 can be used for checking the class
invariants for consistency. Its specification is obviously wrong, but it can be
proven if the class invariants are inconsistent.

5.7 Equivalency Among Specifications

The specification presented in this chapter represents one way of specifying the
application’s behavior. Although they were correct and sufficient to ensure the
desired security properties for this application, the application could have been
specified in a very different way. Different invariants and contracts could have
been written. In addition, there are equivalent ways of writing the same speci-
fication. For instance, the contract of the ack operation shown in the sequence

/*@ public behavior

@ requires apdu != null;

@ assignable status;

@ ensures (\old(status) == Epa) && (status == Endf);

@ signals_only ISOException;

@ signals (ISOException e) (status == \old(status));

@*/

is equivalent to the contract shown in the sequence.

/*@ public behavior

@ requires (apdu != null) && (status == Epa);

@ assignable status;

@ ensures (status == Endf);

@ signals_only ISOException;

@ signals (ISOException e) (status == \old(status));

7The lost is defined as follows: if both purses logged the transaction (when their statuses
are either equal to “Epa” or “Epv”) then the lost is equal to the transaction value, otherwise
it is zero.

8Method provided by Erik Poll.
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@ also

@ public behavior

@ requires (apdu != null) && (status != Epa);

@ ensures false;

@ assignable \nothing;

@ signals_only ISOException;

@ signals (ISOException e) true;

@*/

With this second form, it is easier to identify that an exception is certainly
thrown when the method is called with a status other than “Epa” and that, even
when the status equal to “Epa” an exception might be thrown by the method.
On the other hand, the other form of the contract is more compact and easier
to prove using the KeY tool (because it has only one behavior specification).
However, one should take care when simplifying or compacting a specification:
many times it is preferable to have a longer an clearer specification than a more
compact and harder to understand one.
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Chapter 6

The Verification

In this case study, some properties could be proven before practically any of the
implementation was written. The verification of the method showProperties for
instance, is independent of any other method, since the properties can be derived
from the invariants defined for the application. Thus, the only implementation
necessary to prove the security properties is the method showProperties itself,
which has no body. It should be highlighted that these properties rely on the
class invariants, and that these class invariants have to be preserved1 by the
application methods, and therefore one should not incorrectly deduce that the
security properties are totally independent from the application.

In addition, when symbolically executing a method call during a proof in
KeY, it is possible to use the method contract instead of its implementation.
For that, one has to ensure that the method’s precondition are true in order to
continue the proof using the method’s postcondition. This feature enables one to
validate a system specification before having implemented the full application,
reinforcing that for some applications (deductive) verifications is best done top-
down, as stated in the paper A Case Study of Specification and Verification using
JML in an Avionics Application ([18]). In this case study, the correctness of
the process method’s contract can be proven using the called methods contracts.
Thus, one can ensure that the called methods’ contracts correctly represent
the defined protocol before implementing the methods. However, one should
be aware that this verification does not prove the correctness of the contracts
themselves (which would not make sense), rather it validates the specification,
showing that it “fits together” (i.e. that the specified contracts and invariants
are sufficient, and not contradictory, for the performed proofs). By validating
a specification, one shows that the specification correctly represents the desired
system definition, that it is the right specification, as it guarantees the desired
security properties.

On the other hand, some properties could only be verified after implementing
all methods. For each method, its functional behavior was verified (i.e. it was
proven that the method correctly implement is contract), and that it preserves
the class invariant. These verification tasks were performed separately and, for
each method, the KeY tool was configured differently in order to distribute
the verification effort, resulting in a manageable and still complete verification

1In this case study, the methods “strongly” preserve the invariants.
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process.
The proofs for this case study can be performed mostly automatically follow-

ing the KeY’s embedded proof strategy. Only quantifiers had to be instantiated
by the user. However, the tool’s strategy did not always performs its job in most
efficiently and the proofs might quickly become too long (and even too heavy
for the system to handle). Therefore, the proof was often performed in a kind
of mixed way: some initial steps were performed interactively in order to “lead”
the tool to a good path, and the rest of the proof was performed automatically.

6.1 The KeY Options Configuration

In KeY, one can configure some of the checks performed during the proof2. For
this case study, the relevant options to be configured are listed below.

• transactions tells the tool whether the code uses the JavaCard transac-
tion mechanism or not.

• transactionsAbort tells the tool whether the code uses the JavaCard abort
transaction command or not. When “on” the tool deals with the JavaCard
transactions assuming “full” transactions semantics, i.e. account for a
possible abort. When “off” the tool assumes that the program does not have
an explicit (or an implicit) “ abort transaction,” which simplifies the proof.
However, the problem is that there can also be implicit aborts, especially
when one has (i) badly written program that does not close the transaction
at all, or (ii) one use the while invariant rule inside a transaction. In
any case, if one uses “abortOff” the proof is much simpler, but if an abort
happens to occur (explicit or implicit) the proof can not be closed, i.e.,
with the abortOff the calculus is simply incomplete.3

• throughout makes the throughout rules available for a proof. It has to be
“on” for proving invariant preservation using the strong invariant seman-
tics4.

• intRules tells the tool the semantics to be used for Java integer arithmetic.
The “Java semantics” corresponds exactly to the semantics defined in the
Java language specification. In particular, this means that arithmetical
operations may cause over-/underflow. The “Arithmetic semantics ignor-
ing overflow” treats the primitive finite Java types as if they had the same
semantics as mathematical integers with infinite range. The “Arithmetic
semantics prohibiting overflow” is the same as the last but having the
same finite range of the Java types. The result of arithmetical operations
is not allowed to exceed the range of the Java type as defined in the lan-
guage specification, i.e. one has to prove that this result does not cause
an over-/underflow.

2This is done through the Option bottom followed by Taclets Options Default.
3Explanation provided by Dr. Wojciech Mostowsky.
4When using the strong invariant semantics for proving invariant preservation with KeY,

after each single assignment performed during the proof, the system has to prove that the
invariants are preserved. This semantics is usually not available for the JML front end, and
therefore the strong invariants POs had to be adapted in order to be used for this case study.
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• nullPointerPolicy tells the tool whether null pointer checks should be done
during the proof or not.

In addition, when selecting a method to prove for the generated Proof Obli-
gation (PO), one can select which invariants should be included and what kind
of PO should be generated. For this case study, the proofs were performed in-
cluding all invariants in the PO (i.e. the ConpurseJC class invariants and the
invariants from the imported classes). Two different kinds of PO were used for
this case study.

• Behavior generates the PO to verify the functional correctness of a method
according to its contract. The generated PO has the form

{all invariants}, {preconditions} → 〈method〉{postconditions}

• Class specification generates the PO to verify the invariants preservation
by a method. The generated PO has the form

{all invariants}, {preconditions} → 〈method〉{class invariant}

6.2 Verifying Invariants Consistency

For verifying the consistency of the invariants defined for this case study, the
method checkConsistency was used. For that, the method’s behavior PO was
verified. Since the method has no body, the options presented in the last sec-
tion were all set to “off” (no transaction, no abort, no throughout, arithmetic
semantics ignoring overflow, and no null pointer check). All invariants were
used for this verification. As one would expect, this PO could not be proven,
ensuring thus that the invariants are consistent.

6.3 Verifying Behavior

The verification of the showProperties and process methods’ behavior (imple-
mentation independent) was performed using the behavior PO. The options
presented in the last section were all set to “off” (no transaction, no abort, no
throughout, arithmetic semantics ignoring overflow, and no null pointer check)
since these options refer to code verification and either are not relevant for the
showProperties methods, or they were configured “on” on each method called
by the process method and therefore the checks do not need to be performed
repeatedly.

The behavior of the implementation dependent methods, however, was ver-
ified differently. The Taclets Options Default were configured as follows: trans-
action on, transactionsAbort abortOn, throughout “off,” intRules “Arithmetic
semantics prohibiting overflow,” and nullPointerPolicy “nullCheck.”

6.4 Verifying Invariant Preservation

The class invariant and constraint preservation verification was also performed
in two different way: using the strong invariant semantics for the methods that
update relevant fields (occurring in the invariants) and (ii) using normal visible
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Method Nodes Branches Time (min)

Implementation Independent

process 4,731 54 10

showProperties 6,565 50 10

Implementation Dependent

startFrom 3,818 102 5

startTo 3,975 105 5

req 3,482 95 5

val 3,525 91 5

ack 2,370 69 5

clear ex log 1,352 37 5

read ex log 28,292 490 35

abort if necessary 2,427 57 5

Table 6.1: Methods’ Behavior Verification

state semantics for the methods that do not update any relevant field (i.e. the
ones that trivially preserve the invariants).

The invariant preservation of the method process was not proven because up
to the point of its execution were the other methods are called none of the fields
that occur in the invariants is updated, and each called methods was proven to
strongly preserve the invariants. In addition, the invariants preservation by the
method read ex log was proven using the visible state semantics because it does
not update any relevant field (see its assignable clause).

The invariant preservation for all the other methods was proven using the
strong invariant semantics. The verification using this semantics can easily be-
come a heavy task to perform: after each assignment performed in the code
symbolic execution, an invariant preservation check is included in the PO, mak-
ing the proof very long, and sometimes requiring too much memory or time to
be performed. In order to avoid this problem for this verification, the KeY tool
had the following configuration.

• Due to the size of the PO generated during the proofs, the PO gener-
ated by KeY was slightly changed. Originally, KeY requires that all
invariants included in the left side of a PO’s arrow are preserved by the
method (including the imported API invariants and the automatically
generated inReachableState invariant). For this case study, however, only
the application invariants (from the class ConPurseJC) are proven to be
preserved5.

• Since KeY ignores the throughout configuration when using the JML
front-end6, the generated PO was adapted for this case study, handling
strong invariants even though JML was used to specify the code.

• In order to decrease the verification effort and considering that the ab-
sence of overflow and null pointers was already proven in the methods’

5In fact, it is not clear that a method should preserve all invariants from the imported
classes.

6In JML only the visible state semantics is defined.
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Method Nodes Branches Time (min)

Visible State

read ex log 7,001 83 20

Strong Invariant

startFrom 19,084 44 10

startTo 19,015 40 10

req 23,165 64 15

val 18,689 51 15

ack 14,199 32 10

clear ex log 7,588 18 5

abort if necessary 8,761 33 5

Table 6.2: Invariant Preservation Verification

behavior verification, these extra checks were not included in this PO (in-
tRules: “Arithmetic semantics ignoring overflow,” and nullPointerPolicy :
“noNullCheck”).

6.5 Verification Results

The details of the performed verification can be seen in tables 6.1 and 6.2. The
number of nodes and branches refer to the proof tree, and the time to the time
a proof can be reproduced from scratch. Related to the verification performed
in this case study, some points should be highlighted.

• The time for performing the proofs—it took a considerable amount of time
to specify and code correctly, but after that the proofs can be reproduced
in a quite short order. Of course knowing the application helps driving the
proof process, and redoing a proof seems to always be easier then proving
something for the first time. The amount of user interaction was also quite
minimal, being restricted mostly to quantifiers instantiation and defining
the scope for the proof to proceed automatically.

• The methods’ behavior—proving the correctness of each method’s im-
plementation according to its contract, shows that by just receiving an
APDU the methods correctly implement their specification (the only pre-
condition for the methods is that the APDU received as a parameter may
not be null). Any erroneous APDU is ignored, i.e. the method terminates
without changing its state. Thus, a method can receive any number of
erroneous APDU without affecting its state. In addition, an APDU to be
accepted needs to match with the purse’s status. Therefore, when process-
ing any protocol APDU (excluding the exception log related operations)
the purse changes its status, no protocol APDU can be processed twice,
because the second time it no longer matches with the purse’s status. An
APDU sent more than once for reading the exception log is not a problem
because none of the purse’s fields is updated. An APDU for clearing the
exception log sent more than once is also not a problem because from the
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second time that it would be processed, the clear code would no longer
match with the already cleared exception log.

• The advantage of proving invariant and constraint preservation using strong
invariants semantics—proving that the application methods strongly pre-
serve the invariants means that the application is tear-safe according to
its invariants (see next item). It is interesting to observe that the tear-
safe property can only be fully verified at implementation level because it
can check low level failures not visible in the method’s contract. For in-
stance, consider the same implementation of the abort if necessary method
presented in the appendix B without the begin and commit transaction
commands.

private void abort_if_necessary() throws ISOException

{

if (!((status == Epv) || (status == Epa)))

status = Idle;

else if (logIdx >= exLog.length)

ISOException.throwIt(SW_LOG_FULL);

else

{

exLog[logIdx] = transaction;

logIdx++;

------------------------------------------------------

status = Idle;

}

}

It implements its contract correctly and preserves the class invariant and
constraints using the visible state semantics. However it is not tear-safe: if
the method’s execution is interrupted at the point marked by the dashed
line, the class constraint

((\old(logIdx) != logIdx) ==> (status == Idle))

is not preserved. In this situation, when the purse is again selected, ac-
cording to its status (certainly still equal to “Epv” or “Epa”) the same
transaction is logged again. In this case, making the exception log pointer
and the status be updated atomically solves this problem. In addition,
verifying the strong preservation of invariants for a method might help
identifying missing transactions in the method’s body.

• The tear-safe property scope—the tear-safe property is related to the de-
fined invariants. Like a method, which is not correct by itself but rather
according to its specification, an implementation is not tear-safe in general,
but according to the invariants and constraints proved to be preserved. For
instance, if the constraint on the exception log pointer was not specified,
the proof of invariants and constraints preservation for the code presented
previously using strong invariants would succeed and the code would be
considered tear-safe! This example also shows how important an invariant
definition that covers the security aspects of an application is.
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• The protocol definition derivation—it is interesting to observe that the
defined protocol to be followed by each purse (the sequence of statuses)
did not have to be establish as constraints on the purses statuses. Its defi-
nition could be derived from the method’s contract definition (see process
method’s definition). This offers an extra check on the correctness of the
method’s contract specification (the protocol derivation ensures that the
methods’ specification respects the protocol definition).

6.6 The Security Properties

Up until now, it was shown that the protocol is correctly implemented, that each
method correctly implements its contract, that the invariants are preserved at
any time of the application execution, that no message can be repeatedly pro-
cessed, etc. It is time to show that the implementation also respects the security
properties stated in the section 3.2. As explained above, these properties can
be specialized to one single transaction because the result is equivalent to eval-
uating all possible transactions happening between all pairs of purses existing
in the world of purses (see subsection 5.3.3).

6.6.1 Security Property 1: No Value Creation

No value may be created in the system. The sum of all purse’s
balance does not increase.

To prove this property, it is sufficient to show that (i) the transaction value
is the same for both purses, thus the value added in a purse’s balance is the
same as the value decreased in the counter part purse’s balance; (ii) whenever
the purse’s balance is updated, the bookedValue() function correctly represents
the value increased or decreased in the balance; and (iii) whenever a purse’s
bookedValue() is positive, the counter part purse’s bookedValue() is negative,
i.e. whenever a purse has added a value in its balance, the counter part purse
has already decreased it from its own balance. The proof of these lemmas is
shown in the sequence.

• Lemma i : the transaction value is received by both purses with the “Start-
From” and the “StartTo” messages at the beginning of the transaction.
This value is by definition the same and it is not updated in the applica-
tion.

• Lemma ii : the transaction’s value booked in each purse’s balance is defined
by the method bookedValue(). It is guaranteed by the class constraint

((\old(balance) != balance) ==>

((\old(balance) - balance) == bookedValue()));

that whenever the purse’s balance is updated, this function correctly rep-
resents the value increased or decreased in the balance.

• Lemma iii : by definition of the bookedValue() method, when a purse’s
status is equal to “Idle,” its booked value is equal to zero (see section 5.4),
and therefore no value was possibly created. Otherwise, the showProper-
ties method’s postcondition ensures that whenever a purse’s booked value
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is bigger than zero, the counter part purse’s booked value is smaller than
zero, and since the modulo value of both booked values is the same their
sum is zero. Finally, since the booked values correctly represents the value
updated in the purse’s balance, the sum of these balances is also zero and
no value was possibly created during this transaction execution.

Since this proof relies on a constraint strongly preserved by all application
methods, and the showProperties method’s precondition assumed to be valid at
any time, it is ensured that this property holds during the whole transaction
execution.

6.6.2 Security Property 2.1: All value accounted

All values must be accounted in the system. The sum of all purse’s
balance and lost components does not change. A lost component is
the transaction value when the transaction is logged by both purses.

Considering initial and final the balances presented by the purses at the
beginning and at the end7 of a transaction respectively, this property can be
stated as

fromPurse′s initial balance + toPurse′s initial balance =

fromPurse′s final balance + toPurse′s final balance + lost

and that, according to a class constraint, whenever the purse’s balance is up-
dated, the value updated is equal to the purse’s value logged, i.e.

purse′s final balance− purse′s initial balance = purse′s bookedV alue()

This property can be stated as

fromPurse′s bookedV alue() + toPurse′s bookedV alue() + lost = 0

depending still on the definition of the lost component. The lost component can
be represented by the JML formula

((fromPurseLogs && toPurseLogs) ? transaction.value : 0)

and considering “fromPurseLogs” and “toPurseLogs” two statements indicating
that a purse logs a transaction when its execution terminates while the purse’s
status is equal to “Epa” or “Epv,” which can be stated as

((status == Epa) || (status == Epv))

the formula becomes as stated in the showProperties method’s postcondition
(adapting the different way of referencing the purses)

(bookedValue() + x.bookedValue() +

((((status == Epa) || (status == Epv)) &&

((x.status == Epa) || (x.status == Epv))) ? transaction.value : 0)

== 0)

7As defined in subsection 5.3.5.
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This formula is based on the different ends that the transaction’ execution
might have: either (i) it terminates normally in both purses, and the lost com-
ponent and the sum of the purse’s balance update are zero, thus holding the
property; or (ii) it terminates normally only in one purse, and the lost com-
ponent is zero and the sum of the purse’s balance has to be zero in order to
hold the property; or (iii) it terminates abruptly on both purses, and the lost
component might be different than zero, and the sum of the lost component and
the purse’s balance updates must be zero in order to hold the property.

During the proof of the showProperties method, this formula is analyzed
considering any possible combination of booked values and lost, for any possible
combination of the purses statuses. This should be sufficient to explain how
the preservation of this property is verified. However, since it is not a trivial
formula, it correctness is demonstrated below.

Case 1: Both Purses terminate Normally —in this case the “from” and
“to” purses statuses are “Endf” and “Endt” respectively. Then, the value
booked by each purse is equal to minus the transaction’s value and equal to
the transaction’s value respectively (according to the definition of booked-
Value, section 5.4).

Since none of the purse’s statuses is equal to “Epa” or “Epv,” this trans-
action is not logged by any of the purse’s and therefore the lost component
is equal to zero. Finally, the property to hold becomes

(−transaction′s value) + transaction′s value + 0 = 0

which is trivially true.

Case 2: Only One Purse terminates Normally —in this case, since only
one purse terminates the transaction’s execution abruptly, and therefore
only one purse might log the transaction, the lost value is certainly zero.
Thus it remains to be demonstrated that the sum of the purse’s booked
value is equal to zero.

Case 2.1: The fromPurse terminates normally —in this case, the
fromPurse’s status is equal to “Endf” and its booked value is equal
to minus the transaction’s value. According to the protocol and the
explanation given in the subsection 5.3.4, the counter part purse’s
status can only be equal to “Endt,” and its booked value is thus
equal to the transaction’s value. The property to hold also becomes

(−transaction′s value) + transaction′s value + 0 = 0

Case 2.2: The toPurse terminates normally —in this case, the toP-
urse’s status is equal to “Endt” and its booked value is equal to the
transaction’s value. According to the protocol and the explanation
given in the subsection 5.3.4, the counter part purse’s status can be
equal to “Epa” or “Endf,” and in any case its booked value is equal
to minus the transaction’s value. The property to hold once more
becomes

(−transaction′s value) + transaction′s value + 0 = 0
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Case 3: Both Purses terminate Abruptly —in this case, any possible com-
bination of the purse’s statuses has to be verified.

Case 3.1: The fromPurse terminates in Idle —the transaction did
not even start for the from purse, thus its booked value is equal to
zero and the transaction is not logged. The toPurse’s status is equal
to “Idle” or “Epv” and in any case its booked value is equal to zero
and the transaction is not logged. The formula to hold becomes
0 + 0 + 0 = 0.

Case 3.2: The fromPurse terminates in Epr —no value was booked
and the transaction is not logged. The counter part purse’s status
is equal to “Idle” or “Epv.” If “Idle,” no value was booked and
the transaction is not logged. If “Epv,” its booked value is equal to
zero and the transaction is logged but, since only one purse logs the
transaction the lost component is equal to zero. The formula to hold
becomes 0 + 0 + 0 = 0.

Case 3.3: The fromPurse terminates in Epa —its booked value is
equal to minus the transaction’s value, and it logs the transaction.
The counter part purse’s status is equal to “Epv” (it can not be
“Endt” because the counter part purse terminates abruptly). Its
booked value is zero and it logs the transaction and, since both purses
logged the transaction, the lost component is equal to the transac-
tion’s value. The formula to hold becomes

(−transaction′s value) + 0 + transaction′s value = 0

6.6.3 Security Property 2.2: Exception Logging

If a purse aborts a transfer at a point where value could be lost, then
the purse logs the details.

As stated in the original definition, and shown in figure 3.1, money can
only be lost either when the fromPurse aborts a transaction while its status
is equal to “Epa” or when the toPurse aborts a transaction while its status is
equal to “Epv.” In both cases the transaction is logged when performing the
abort it necessary method during the initialization procedure.

This property is ensured by the abort it necessary method’s postcondition.

6.6.4 Security Property 3: Authentic Purses

A transfer can only occur between authentic purses.

As stated before (chapter 4, “There certainly exists some previous steps in
the protocol where the host application requests the purse’s details and checks
the counter part purse’s authenticity (accepting or not to take part in a trans-
action with that purse).” Thus, it is assumed that both purses taking part in a
transaction are authentic. In addition, considering that

• the transaction’s counter part purse id is received by the purse at the
beginning of the transaction (startFrom or startTo operations),
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• the transaction’s counter part purse is not changed by any other operation
until the end of the transaction (see the method’s assignable clause), and

• the transaction details sent with the APDU is tested before each of the
transaction operations (“req,” “val,” and “ack”) by calling the checkSame-
Transaction method,

One can ensure this property holds during the transaction’s execution.

6.6.5 Security Property 4: Sufficient Funds

A transfer can occur only if there are sufficient funds in the from
purse.

This property is ensured to hold by the class invariant

(status == Epr) ==> (transaction.value <= balance)

which states that whenever the purse’s status is “Epv” (which can only happen
in the fromPurse) the transaction’s value is smaller than or equal to the purse’s
balance.

The fromPurse’s balance is checked when starting the transaction (by the
readCounterPartDetails method, called by the “startFrom” and “startTo” op-
eration). If the fromPurse’s balance is smaller than the transaction value, an
error “Insufficient Funds” is sent to the host application and the transaction is
not started.

Finally, since the property is stated as an invariant, it is strongly preserved
by all methods in the application.

In addition, in the same way that the fromPurse’s balance is checked to
ensure that it has sufficient funds to take part in the transaction, the toPurse
balance is checked to ensure that its balance can receive the transaction’s value
(i.e. to ensure that the transaction’s value can be added in its balance without
causing an overflow). This property is not defined in the case study. It is ensured
by the class invariant

(status == Epv) ==> (transaction.value <= (ShortMaxValue - balance))

which is also strongly preserved by all methods in the application.
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Chapter 7

Conclusion

This case study demonstrates that deductive formal verification can be used to
verify the consistency of the given specification, to validate it, and proof the
correctness of its JavaCard implementation, bridging the gap between spec-
ification and implementation and ensuring a fully verified result. This goal
was achieved by fully specifying, implementing, and verifying the Mondex case
study. Although this result can not yet be extended to all kind of application,
the case study certainly represents the complexity encountered in not only in
JavaCard but also many other real applications.

The work described herein was developed in a bit less than four months:
one month for learning Z (basics), the purse’s definition, and JavaCard; two
months specifying, developing, and verifying; and three weeks writing this re-
port. Previous knowledge consisted of the Java programing language, JML,
and the use of the KeY tool. Writing a JavaCard application for the first time
takes time because there are many details to be taken into account. However,
the intention in this case study was to produce a representative implementation
that could be used for verification purposes and not a finished product1 The
largest amount of time was spent with the specification, writing and adjust-
ing it rather than verifying. In (approximated) numbers, the case study can
be summarized as follows: 63 pages of relevant Z specification were taken into
account, and 327 lines of JavaCard code and 185 lines of JML specification
were written.

Correctly and completely specifying an application, in the sense of being
sufficient to ensure the desired properties, is usually a difficult task. It is the
core of any verification effort: besides describing how the application should
behave, it describes what has to, or can be, verified. Therefore, it is natural to
spend a significant amount of time of a software development project specifying
it. This case study demonstrates that deductive software verification can be also
be used to validate and verify the consistency of a specification. The KeY tool
can be used to verify the security properties even before a full implementation
is available. This verification ensures that the methods’ contracts correctly
represented the protocol before implementing any of the methods, which helps
save implementation time. Finally, after implementing the methods, the only

1The code is in fact not complete. There are details about application identification,
protocol, and channels, that were not implemented. In addition, it was not tested in a card
simulation environment, like the one in the Sun MicroSystems’ JavaCard development kit.
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work left is to verify that each method correctly implements its contract and
that it preserves the application invariants.

A general methodology could be formulated in three steps.

1. First, one specifies the application (invariants, constraints and methods
contracts) and the general properties to be verified. The consistency of the
invariants can thus be check. In this step, using the case study as an exam-
ple, the purse can be fully specified in JML. In addition, the consistency
of the invariants can be checked using the method checkConsistency.

2. Then, one would validate the specification previously developed. This step
usually implies several steps of verifying and correcting the specification.
Again, considering this case study, in the second step, the methods show-
Properties and process can be developed and verified, before developing
methods body of the other methods (the operations).

• Proving the showProperties one can ensure that the specification
guarantees the security properties of the application.

• In KeY having only the the process method body, one can prove
its behavior by using the method’s contracts instead of their bodies.
Proving the process method’s behavior, and the invariants preserva-
tion, one ensures that

– the method’s contracts correctly represents the expected behav-
ior, and

– the invariants are preserved by the whole application.

3. Finally, after validating and ensuring the consistency of the specification,
one would implement the methods and use the methods’ contracts to verify
the implementation. Considering this case study, in the third step, the
body of the remaining methods (the operations) can be developed and it
correctness verified against their respective contracts (already developed
in the step one).

The time spent for this case study would certainly have been smaller had
this methodology been followed rather than the usual way of implementing,
specifying, and then verifying. Therefore, this methodology is a significant
result of this case study. There are, however, limitations on its usage. In this
case study, verification was performed using KeY, and this tool has its own
limitations. It actually can fully verify JavaCard code. The group is working
on extending KeY to full Java, which is advancing well but still faces some
theoretical issues, such as the verification of floating point numbers. Thus, only
for JavaCard implementations can this methodology be fully used with KeY.

In short, not only can deductive verification with JML be used for proving
the correctness of an implementation of a specification, but using constraints,
the consistency of a protocol specification can be shown as well.

The complete material—source code, proofs and binaries of the verification
system as well this report—is available at http://www.key-project.org/case
studies/mondex.html.
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Normale Supérieure, Paris, France, September 2006.

[18] P. Schmitt, I. Tonin, C. Wonnemann, E. Jenn, S. Leriche, and J. J. Hunt.
A case study of specification and verification using JML in an avionics
application. In JTRES ’06: Proceedings of the 4th international workshop
on Java technologies for real-time and embedded systems, pages 107–116,
New York, NY, USA, 2006. ACM Press.

[19] S. Stepney, D. Cooper, and J. Woodcock. An eletronic purse — specifica-
tion, refinement, and proof. Technical report, Oxford University Computing
Laboratory, Programing Research Group, July 2000.

[20] J. Woodcock. First steps in the verified software grand challenge. In IEEE
Computer Society, pages 57–64. October 2006.

62



Appendix A

The Mondex Application
APDU

Start From Operation

Command APDU

Cla Ins P1 P2 Lc Data

(0) 0xB0 (1) 1 (2) Purse’s name (4) 6 (5) Cpd Name (7) Cpd Seq (9) Value

Response APDU

Status Word Meaning of Status Word

0x6740 Log Full

0x6200 Ignored – Status 6= Idle

ISO7816.SW WRONG LENGTH LC wrong Length

0x6400 Transaction Error

0x6700 Invalid counter part details

0x6710 Invalid value

0x6730 Insufficient funds

0x6760 APDU Error

0x9000 Successful processing

Table A.1: Start From Purse Operation APDU
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Start To Operation

Command APDU

Cla Ins P1 P2 Lc Data

(0) 0xB0 (1) 2 (2) Purse’s name (4) 6 (5) Cpd Name (7) Cpd Seq (9) Value

Response APDU

Status Word Meaning of Status Word

0x6740 Log Full

0x6200 Ignored – Status 6= Idle

ISO7816.SW WRONG LENGTH LC wrong Length

0x6400 Transaction Error

0x6700 Invalid counter part details

0x6710 Invalid value

0x6720 Value Overflow

0x6760 APDU Error

0x9000 Successful processing

Table A.2: Start To Purse Operation APDU

Req Operation

Command APDU

Cla Ins P1 P2 Lc Data

(0) 0xB0 (1) 3 (2) Purse’s name (4) 6 (5) Cpd Name (7) Cpd Seq (9) Value

Response APDU

Status Word Meaning of Status Word

0x6200 Ignored – Status 6= Epr or wrong Cpd

ISO7816.SW WRONG LENGTH LC wrong Length

0x6400 Transaction Error

0x6760 APDU Error

0x9000 Successful processing

Table A.3: Request Receipt (REQ) Operation APDU

Val Operation

Command APDU

Cla Ins P1 P2 Lc Data

(0) 0xB0 (1) 4 (2) Purse’s name (4) 6 (5) Cpd Name (7) Cpd Seq (9) Value

Response APDU

Status Word Meaning of Status Word

0x6200 Ignored – Status 6= Epv or wrong Cpd

ISO7816.SW WRONG LENGTH LC wrong Length

0x6400 Transaction Error

0x6760 APDU Error

0x9000 Successful processing

Table A.4: Value Receipt (VAL) Operation APDU

Ack Operation

Command APDU

Cla Ins P1 P2 Lc Data

(0) 0xB0 (1) 5 (2) Purse’s name (4) 6 (5) Cpd Name (7) Cpd Seq (9) Value

Response APDU

Status Word Meaning of Status Word

0x6200 Ignored – Status 6= Epa or wrong Cpd

ISO7816.SW WRONG LENGTH LC wrong Length

0x6760 APDU Error

0x9000 Successful processing

Table A.5: Acknowledge Receipt (ACK) Operation APDU
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ReadExLog Operation

Command APDU

Cla Ins P1 P2 Le

(0) 0xB0 (1) 8 (2) Purse’s name (4) 0 or (Log length * 10)

Response APDU

Data (0 - (le - 1))

1st logged transaction 2nd . . .

(0)fromName (2)toName (4)value (6)fromSeq (8)toSeq (10) . . .

Status Word Meaning of Status Word

0x63XX XX is the Log length

ISO7816.SW WRONG LENGTH LC wrong Length

0x6760 APDU Error

0x9000 Successful processing

Table A.6: Read Exception Log (ReadExLog) Operation APDU

ClearExLog Operation

Command APDU

Cla Ins P1 P2 Lc Data

(0) 0xB0 (1) 9 (2) Purse’s name (4) 2 (5) Clear code

Response APDU

Status Word Meaning of Status Word

0x6200 Ignored – Status 6= Idle

ISO7816.SW WRONG LENGTH LC wrong Length

0x6750 Invalid clear code

0x6760 APDU Error

0x9000 Successful processing

Table A.7: Clear Exception Log (ClearExLog) Operation APDU

65



Appendix B

The Mondex JavaCard
Code

JAVA + JML

/**********************************************************

* The Mondex Case Study - The KeY Approach

* Purse main class

* author: Dr. Isabel Tonin (tonin@ira.uka.de)

* Universitaet Karlsruhe - Institut fuer Theoretische Informatik

* http://key-project.org/

*/

import javacard.framework.APDU;

import javacard.framework.APDUException;

import javacard.framework.Applet;

import javacard.framework.ISO7816;

import javacard.framework.ISOException;

import javacard.framework.Util;

import javacard.framework.TransactionException;

import javacard.framework.JCSystem;

public class ConPurseJC extends Applet

{

/**********************************************************

* Class Invariants

*/

/*@ public invariant
@ (exLog != null) && (exLog.length > 0) &&

@ (exLog.length < (APDU.BUFFER_LENGTH / 10)) &&

@ (logIdx >= 0) && (logIdx <= exLog.length) &&

@ (balance >= 0) && (balance <= ShortMaxValue) &&

@ (nextSeq >= 0) && (nextSeq <= ShortMaxValue) &&

@ (status >= 0) && (status <= 5) &&

@ (transaction != null) && (transaction.value > 0) &&

@ ((status == Epr) ==> (transaction.value <= balance)) &&

@ ((status == Epv) ==> (transaction.value <= (ShortMaxValue - balance))) &&

@ (\forall byte i; i>=0 && i<exLog.length; exLog[i] != null);
@*/

/*@ public constraint
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@ ((\old(balance) != balance) ==>

@ ((balance - \old(balance)) == bookedValue()));

@*/

/*@ public constraint
@ ((\old(logIdx) != logIdx) ==> (status == Idle));

@*/

/**********************************************************

* Method for checking the consistency of the invariants

*/

/*@ public behavior
@ requires true;
@ ensures false;
@*/

void checkConsistency () {}

/**********************************************************

* Method for showing the Security Properties

*/

/*@ public behavior
@ requires
@ (status != Idle) ==>

@ (\exists ConPurseJC x; x!= null && x.transaction == transaction && x.name != name;

@ ((status == Endf) ==> (x.status == Endt)) &&

@ ((status == Endt) ==> ((x.status == Epa) || (x.status == Endf))) &&

@ ((status == Epa) ==> ((x.status == Epv) || (x.status == Endt))) &&

@ ((status == Epv) ==> ((x.status == Idle) || (x.status == Epr) ||

@ (x.status == Epa))) &&

@ ((status == Epr) ==> ((x.status == Idle) || (x.status == Epv))));

@ assignable \nothing;
@ ensures
@ ((status == Idle) ||

@ (\exists ConPurseJC x; x!= null && x.transaction == transaction && x.name != name;

@ ((bookedValue() > 0) ==> (x.bookedValue() < 0)) &&

@ ((x.bookedValue() > 0) ==> (bookedValue() < 0)) &&

@ (bookedValue() + x.bookedValue() +

@ ((((status == Epa) || (status == Epv)) &&

@ ((x.status == Epa) || (x.status == Epv))) ? transaction.value : 0)

@ == 0)));

@*/

public void showProperties(){}

/*@ pure @*/ private short bookedValue()

{

if ((status == Epa) || (status == Endf))

return (short)-transaction.value;
else if (status == Endt)

return transaction.value;

else return 0;

}

/**********************************************************

* The Application

**********************************************************/

/**********************************************************

* Constants declaration

*/
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// CLA byte in the command APDU header

private final static byte Mondex_CLA = (byte)0xB0;
// INS byte in the command APDU header

// Z spec value transfer operations

private final static byte StartFrom = 1;

private final static byte StartTo = 2;

private final static byte Req = 3;

private final static byte Val = 4;

private final static byte Ack = 5;

// Z spec exception logging operations

private final static byte ReadExLog = 8;

private final static byte ClearExLog = 9;

// Z spec Wallet status

private final static byte Idle = 0; //originally Expecting Any To/From

private final static byte Epr = 1; //Expecting Request

private final static byte Epv = 2; //Expecting Value

private final static byte Epa = 3; //Expecting Acknowledge

// Extra status (replaces final eaTo and eaFrom from the Z spec)

private final static byte Endf = 4; //Transaction From ended successfully

private final static byte Endt = 5; //Transaction To ended successfully

/**********************************************************

* SW1 and SW2 for Response APDU Command (as defined in ISO7816-4)

* (not specified in the Z specification)

*/

// Process Completed

private final static short SW_RETURN_VALUE = 0x6100;

private final static short SW_IGNORED = 0x6200;

// Process Interrupted - execution error

private final static short SW_TRANSACTION_ERROR = 0x6400;

// Process Interrupted - checking error

private final static short SW_INVALID_CPD = 0x6700;

private final static short SW_INVALID_VALUE = 0x6710;

private final static short SW_VALUE_OVERFLOW = 0x6720;

private final static short SW_INSUFFICIENT_FUNDS = 0x6730;

private final static short SW_LOG_FULL = 0x6740;

private final static short SW_INVALID_CLEAR_CODE = 0x6750;

private final static short SW_APDU_ERROR = 0x6760;

/**********************************************************

* Implementation Specific Constants declaration

*/

// maximum value that a variable can hold

private final static byte ByteMaxValue = 127;

private final static short ShortMaxValue = 32767;

// models any short value (necessary for implementing the image method)

private static short aShort;

/**********************************************************

* Fields declaration (according to the Z specification)

*/

private short balance;
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private PayDetails [] exLog;

private short name;

private short nextSeq;

private byte status;

private byte logIdx;

// actual transaction details

private PayDetails transaction;

/**********************************************************

* Methods inherited from Applet

* (required by the JCRE - Javacard Runtime Environment)

*/

// Constructor: an instance of class ConPurseJC is instantiated by its

// install method. The applet registers itself with the JCRE by calling

// the register method, which is defined in class Applet.

private ConPurseJC ()

{

name = 0;

nextSeq = 0;

balance = 0;

status = Idle;

// exLog length must be smaller than or equal to the 1/10 APDU buffer length

exLog = new PayDetails[25];

transaction = new PayDetails();

register();

}

// This method is invoked by the JCRE to create an applet instance and to

// register the instance with the JCRE. The installation parameters are

// supplied in the byte array parameter, and must be in a format defined

// by the applet. They are used to initialize the applet instance.

// For this case study there is no initialization parameter.

public static void install(byte[] bArray)

{

new ConPurseJC();

}

// This method is called by the JCRE to indicate that this applet has been

// selected. It performs the initialization required to process the

// subsequent APDU messages. The applet can decline to be selected, for

// instance, if the pin is blocked. In this case study, it does not

// perform any initialization and always accept the selection.

// For the case study the abort operation is performed in order put the

// card in a Idle state ready to start a new transaction, logging the old

// transaction if necessary.

public boolean select()

{

abort_if_necessary();

return true;
}

// This method is called by the JCRE to inform the applet that it should

// perform any clean-up and bookkeeping tasks before the applet is

// deselected.

// For the case study not clean-up operation was defined.

public void deselect()

{

}

/*@ public behavior
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@ requires apdu != null;
@ assignable logIdx, balance, status, nextSeq, transaction.fromName,

@ transaction.toName, transaction.fromSeq, transaction.toSeq,

@ transaction.value,apdu._buffer[0..((logIdx*10) - 1)];

@ ensures
@ ((\old(logIdx) != logIdx) ==>

@ ((logIdx == 0) && (status == Idle) && (\old(status) == Idle))) &&

@ ((\old(status) == status) ==>

@ (\old(balance) == balance) && (\old(nextSeq) == nextSeq)) &&

@

@ ((\old(status) != status) ==> (

@ (\old(apdu._buffer[ISO7816.OFFSET_INS]) == apdu._buffer[ISO7816.OFFSET_INS]) &&

@

@ ((\old(status) == Idle) ==>

@ ((((status == Epr)&&(apdu._buffer[ISO7816.OFFSET_INS] == StartFrom)) ||

@ ((status == Epv)&&(apdu._buffer[ISO7816.OFFSET_INS] == StartTo))) &&

@ (\old(balance) == balance))) &&

@ ((\old(status) == Epr) ==> ((status == Epa) &&

@ (apdu._buffer[ISO7816.OFFSET_INS] == Req) && (\old(balance) > balance))) &&

@ ((\old(status) == Epv) ==> ((status == Endt) &&

@ (apdu._buffer[ISO7816.OFFSET_INS] == Val) && (\old(balance) < balance))) &&

@ ((\old(status) == Epa) ==> ((status == Endf) &&

@ (apdu._buffer[ISO7816.OFFSET_INS] == Ack) && (\old(balance) == balance))) &&

@

@ (status != Idle) &&

@ ((status == Epr) ==> (\old(status) == Idle)) &&

@ ((status == Epv) ==> (\old(status) == Idle)) &&

@ ((status == Epa) ==> (\old(status) == Epr)) &&

@ ((status == Endf) ==> (\old(status) == Epa)) &&

@ ((status == Endt) ==> (\old(status) == Epv)) &&

@

@ ((\old(balance) > balance) ==> ((status == Epa) &&

@ ((balance - \old(balance)) == -transaction.value))) &&

@ ((\old(balance) < balance) ==> ((status == Endt) &&

@ ((balance - \old(balance)) == transaction.value))) &&

@ ((\old(balance) == balance) ==> ((status == Idle) || (status == Epr) ||

@ (status == Epv) || (status == Endf))) &&

@

@ (((status == Epr) || (status == Epv)) ==>

@ ((nextSeq == (\old(nextSeq) + 1)) ||

@ ((nextSeq == 0) && (\old(nextSeq) >= ShortMaxValue)))) &&

@ (!((status == Epr) || (status == Epv)) ==>

@ ((\old(nextSeq) == nextSeq) &&

@ (\old(transaction.fromName) == transaction.fromName) &&

@ (\old(transaction.toName) == transaction.toName) &&

@ (\old(transaction.fromSeq) == transaction.fromSeq) &&

@ (\old(transaction.toSeq) == transaction.toSeq) &&

@ (\old(transaction.value) == transaction.value)))));

@ signals_only ISOException;

@ signals (ISOException e) (\old(balance) == balance) &&

@ (\old(status) == status) && (\old(logIdx) == logIdx) &&

@ (\old(nextSeq) == nextSeq);

@*/

public void process(APDU apdu)

{

// After the applet is successfully selected, the JCRE dispatches incoming

// APDUs to the process method. At this point, only the first 5 bytes

// [CLA, INS, P1, P2, LC] are available in the APDU buffer.

byte[] buffer = apdu.getBuffer();

// The JCRE also passes the SELECT APDU commands to the applet

// (which is ignored)

if ((buffer[ISO7816.OFFSET_CLA] == 0) &&
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(buffer[ISO7816.OFFSET_INS] == (short)(0xA4)) )

ISOException.throwIt(SW_IGNORED);

// Check CLA

if (buffer[ISO7816.OFFSET_CLA] != Mondex_CLA)

ISOException.throwIt (ISO7816.SW_CLA_NOT_SUPPORTED);

// Ignores message not sent to this purse

if (Util.getShort(buffer, ISO7816.OFFSET_P1) != name)

ISOException.throwIt(SW_IGNORED);

// Calls the method indicated by the INS byte

switch (buffer[ISO7816.OFFSET_INS])

{

case StartFrom: start_from_operation(apdu); break;
case StartTo: start_to_operation(apdu); break;
case Req: req_operation(apdu); break;
case Val: val_operation(apdu); break;
case Ack: ack_operation(apdu); break;
case ReadExLog: read_ex_log_operation(apdu); break;
case ClearExLog: clear_ex_log_operation(apdu); break;
default: ISOException.throwIt(ISO7816.SW_INS_NOT_SUPPORTED);

}

}

/**********************************************************

* Application Specific Methods

*/

/*@ public behavior
@ requires true;
@ assignable exLog[\old(logIdx)], logIdx, status;

@ ensures
@ (status == Idle) &&

@ (((\old(status) == Epv) || (\old(status) == Epa)) ==>

@ ((\old(logIdx) < exLog.length) && (logIdx == (\old(logIdx) + 1)) &&

@ (exLog[\old(logIdx)] == transaction))) &&

@ (((\old(status) != Epv) && (\old(status) != Epa)) ==>

@ ((logIdx == \old(logIdx)) && (\old(exLog[logIdx]) == exLog[logIdx])));

@ signals_only ISOException;

@ signals (ISOException e)

@ (\old(logIdx) == logIdx) && (\old(status) == status);

@*/

private void abort_if_necessary() throws ISOException

{

if (!((status == Epv) || (status == Epa)))

status = Idle;

else if (logIdx >= exLog.length)

ISOException.throwIt(SW_LOG_FULL);

else
{

try
{

exLog[logIdx] = transaction;

JCSystem.beginTransaction();

logIdx++;

status = Idle;

JCSystem.commitTransaction();

}

catch (TransactionException e)

{

ISOException.throwIt(SW_TRANSACTION_ERROR);

}

}

}
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/*@ public behavior
@ requires apdu != null;
@ assignable status, transaction.fromName, transaction.toName,

@ transaction.fromSeq, transaction.toSeq, transaction.value, nextSeq;

@ ensures
@ (\old(status) == Idle) && (status == Epr) && (logIdx < exLog.length) &&

@ ((nextSeq == \old(nextSeq) + 1) ||

@ ((nextSeq == 0) && (\old(nextSeq) >= ShortMaxValue))) &&

@ (transaction.fromSeq == \old(nextSeq)) &&

@ (transaction.fromName == name) && (transaction.toName != name) &&

@ (transaction.toName > 0) && (transaction.toSeq >= 0);

@ signals_only ISOException;

@ signals (ISOException e)

@ (\old(status) == status) && (\old(nextSeq) == nextSeq);

@*/

private void start_from_operation(APDU apdu) throws ISOException

{

if (logIdx >= exLog.length) ISOException.throwIt(SW_LOG_FULL);

if (status == Idle)

{

readCounterPartDetails(apdu, StartFrom);

try
{

JCSystem.beginTransaction();

if (nextSeq < ShortMaxValue)

nextSeq = (short) (nextSeq + 1);

else nextSeq = 0;

status = Epr;

JCSystem.commitTransaction();

}

catch (TransactionException e)

{

ISOException.throwIt(SW_TRANSACTION_ERROR);

}

}

else ISOException.throwIt(SW_IGNORED);

}

/*@ public behavior
@ requires apdu != null;
@ assignable status, transaction.fromName, transaction.toName,

@ transaction.fromSeq, transaction.toSeq, transaction.value, nextSeq;

@ ensures
@ (\old(status) == Idle) && (status == Epv) && (logIdx < exLog.length) &&

@ ((nextSeq == \old(nextSeq) + 1) ||

@ ((nextSeq == 0) && \old(nextSeq) >= ShortMaxValue)) &&

@ (transaction.toSeq == \old(nextSeq)) &&

@ (transaction.toName == name) && (transaction.fromName != name) &&

@ (transaction.fromName > 0) && (transaction.fromSeq >= 0);

@ signals_only ISOException;

@ signals (ISOException e)

@ (\old(status) == status) && (\old(nextSeq) == nextSeq);

@*/

private void start_to_operation(APDU apdu) throws ISOException

{

if (logIdx >= exLog.length) ISOException.throwIt(SW_LOG_FULL);

if (status == Idle)

{

readCounterPartDetails(apdu, StartTo);

try
{
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JCSystem.beginTransaction();

if (nextSeq < ShortMaxValue)

nextSeq = (short) (nextSeq + 1);

else nextSeq = 0;

status = Epv;

JCSystem.commitTransaction();

}

catch (TransactionException e)

{

ISOException.throwIt(SW_TRANSACTION_ERROR);

}

}

else ISOException.throwIt(SW_IGNORED);

}

/*@ public behavior
@ requires apdu != null;
@ assignable balance, status;

@ ensures
@ (balance == \old(balance)-transaction.value) &&

@ (\old(status) == Epr) && (status == Epa);

@ signals_only ISOException;

@ signals (ISOException e)

@ ((balance == \old(balance)) && (status == \old(status)));
@*/

private void req_operation(APDU apdu) throws ISOException

{

if (status == Epr)

{

checkSameTransaction(apdu);

try
{

JCSystem.beginTransaction();

balance = (short)(balance - transaction.value);

status = Epa;

JCSystem.commitTransaction();

}

catch (TransactionException e)

{

ISOException.throwIt(SW_TRANSACTION_ERROR);

}

}

else ISOException.throwIt(SW_IGNORED);

}

/*@ public behavior
@ requires apdu != null;
@ assignable balance, status;

@ ensures
@ ((balance == \old(balance)+transaction.value) &&

@ (\old(status) == Epv) && (status == Endt));

@ signals_only ISOException;

@ signals (ISOException e)

@ ((balance == \old(balance)) && (status == \old(status)));
@*/

private void val_operation(APDU apdu) throws ISOException

{

if (status == Epv) {

checkSameTransaction(apdu);

try
{

JCSystem.beginTransaction();
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balance = (short)(balance + transaction.value);

status = Endt;

JCSystem.commitTransaction();

}

catch (TransactionException e)

{

ISOException.throwIt(SW_TRANSACTION_ERROR);

}

}

else ISOException.throwIt(SW_IGNORED);

}

/*@ public behavior
@ requires apdu != null;
@ assignable status;

@ ensures (\old(status) == Epa) && (status == Endf);

@ signals_only ISOException;

@ signals (ISOException e) (status == \old(status));
@*/

private void ack_operation(APDU apdu) throws ISOException

{

if (status == Epa)

{

checkSameTransaction(apdu);

status = Endf;

}

else ISOException.throwIt(SW_IGNORED);

}

// /*@ loop_invariant i <= logIdx && i >= 0;

/*@ public behavior
@ requires apdu != null;
@ assignable apdu._buffer[0..((logIdx*10) - 1)];

@ ensures true;
@ signals_only ISOException;

@ signals (ISOException e) true;
@*/

private void read_ex_log_operation(APDU apdu) throws ISOException

{

byte[] buffer = apdu.getBuffer();

if (buffer[ISO7816.OFFSET_LC] == 0)

ISOException.throwIt((short)(SW_RETURN_VALUE + logIdx));

if (buffer[ISO7816.OFFSET_LC] != (logIdx * 10))

ISOException.throwIt(ISO7816.SW_WRONG_LENGTH);

byte i = 0;

/*@ loop_invariant (logIdx >= i) && (i >= 0);

@ assignable i, buffer[0..(((logIdx - 1) * 10) -1)];

@ decreases (logIdx - i);

@*/

while (i < logIdx)

{

Util.setShort(buffer, (short)(i*10), exLog[i].fromName);

Util.setShort(buffer, (short)(i*10+2), exLog[i].toName);

Util.setShort(buffer, (short)(i*10+4), exLog[i].value);

Util.setShort(buffer, (short)(i*10+6), exLog[i].fromSeq);

Util.setShort(buffer, (short)(i*10+8), exLog[i].toSeq);

i++;

}

try
{

apdu.setOutgoingAndSend((short)0, (short)exLog.length);
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}

catch (APDUException e)

{

ISOException.throwIt(SW_APDU_ERROR);

}

}

/*@ public behavior
@ requires apdu != null;
@ assignable logIdx;

@ ensures (logIdx == 0) && (status == Idle);

@ signals_only ISOException;

@ signals (ISOException e) (logIdx == \old(logIdx));
@*/

private void clear_ex_log_operation(APDU apdu) throws ISOException

{

if (status == Idle)

{

try
{

if (apdu.setIncomingAndReceive() != 2)

ISOException.throwIt(ISO7816.SW_WRONG_LENGTH);

byte[] buffer = apdu.getBuffer();

if (image() != Util.getShort(buffer, (short) 5))

ISOException.throwIt(SW_INVALID_CLEAR_CODE);

logIdx = 0;

}

catch (APDUException e)

{

ISOException.throwIt(SW_APDU_ERROR);

}

}

else ISOException.throwIt(SW_IGNORED);

}

/*@ public normal_behavior
@ requires true;
@ assignable \nothing;
@ ensures true;
@*/

private short image()

{

return aShort;

}

private void readCounterPartDetails(APDU apdu, byte ins)

throws ISOException

{

try
{

if (apdu.setIncomingAndReceive() != 6)

ISOException.throwIt(ISO7816.SW_WRONG_LENGTH);

byte[] buffer = apdu.getBuffer();

short cpdName = Util.getShort(buffer, (short) 5);

short cpdSeq = Util.getShort(buffer, (short) 7);

short value = Util.getShort(buffer, (short) 9);

if ((cpdName == name) || !(cpdName > 0) || (cpdSeq < 0))

ISOException.throwIt(SW_INVALID_CPD);

if (value <= 0) ISOException.throwIt(SW_INVALID_VALUE);

if (ins == StartFrom)

if (value > balance)
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ISOException.throwIt(SW_INSUFFICIENT_FUNDS);

else
{

transaction.fromName = name;

transaction.toName = cpdName;

transaction.fromSeq = nextSeq;

transaction.toSeq = cpdSeq;

transaction.value = value;

}

if (ins == StartTo)

if (value > (short) (ShortMaxValue - balance))

ISOException.throwIt(SW_VALUE_OVERFLOW);

else
{

transaction.fromName = cpdName;

transaction.toName = name;

transaction.fromSeq = cpdSeq;

transaction.toSeq = nextSeq;

transaction.value = value;

}

}

catch (APDUException e)

{

ISOException.throwIt(SW_APDU_ERROR);

}

}

private void checkSameTransaction(APDU apdu) throws ISOException

{

if ((status != Epr) && (status != Epa) && (status != Epv))

ISOException.throwIt(SW_IGNORED);

try
{

if (apdu.setIncomingAndReceive() != 6)

ISOException.throwIt(ISO7816.SW_WRONG_LENGTH);

}

catch (APDUException e)

{

ISOException.throwIt(SW_APDU_ERROR);

}

byte[] buffer = apdu.getBuffer();

short cpdName = Util.getShort(buffer,(short)5);
short cpdSeq = Util.getShort(buffer,(short)7);
short value = Util.getShort(buffer,(short)9);
if ((value != transaction.value) ||

(((status == Epr) || (status == Epa)) &&

((transaction.toName != cpdName) ||

(transaction.toSeq != cpdSeq))) ||

((status == Epv) && ((transaction.fromName != cpdName) ||

(transaction.fromSeq != cpdSeq))))

ISOException.throwIt(SW_IGNORED);

}

}

/**********************************************************

* The Mondex Case Study - The KeY Approach

* Payment Details class

* author: Dr. Isabel Tonin (tonin@ira.uka.de)

* Universitaet Karlsruhe - Institut fuer Theoretische Informatik

* http://key-project.org/

*/
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public class PayDetails

{

/* Z spec TransferDetails fields */

short fromName = 0;

short toName = 0;

short value = 0;

/* Z spec PayDetails extra fields */

short fromSeq = 0;

short toSeq = 0;

protected PayDetails () {}

public boolean equals(PayDetails x)

{

return (x.fromName == fromName &&

x.toName == toName &&

x.value == value &&

x.fromSeq == fromSeq &&

x.toSeq == toSeq);

}

}

JAVA + JML
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