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Introduction

In mathematical statistics we learn about several statistical models which have many

areas of application such as in Agriculture, Biology, Economic, Environmental science,

Engineering, etc. In this work we specifically put our attention on a linear model

for spatial data. In what follows we present a brief description by an example in

meteorology to give a motivation how linear models (empirical model building) come

into account of statistical methods for spatial data analysis and why we are interested

in this subject.

Figure 1. U.S. Weather Stations. Source: National Climate Data Center.

In order to determine and quantify the functional relationship between geograph-

ical positions and the air temperatures in the USA, an experiment was conducted

that consisted in recording independently air temperatures from m ∈ N, say, weather

1



Introduction 2

stations installed in several different positions according to Figure 1. We denote

the experimental region of this experiment as D ⊂ R2. Suppose that the true un-

known value of the air temperature recorded at a position with cartesian coordinate

(x, y) ∈ D, is given by an unknown function f(x, y). This function may be either

a first order or a second order polynomial or exponential in x and y. It is reason-

able to treat the data obtained from this experiment as a geostatistical data since

the experimental domain D is continuous and fixed, see Schabenberger and Gotway

(2005), p. 7, for the notion of geostatistical data. Since it is clearly impossible to

determine this function analytically (without knowing additional information about

the physical characteristics of these phenomena), we may, based on data, approximate

this function empirically. Let Z(si) be the air temperature recorded from the station

with geographical position si ∈ D, i = 1, . . . , m. We may regard these observations

as a realization of a stochastic process (random field) {Z(x, y) : (x, y) ∈ D} defined

on a probability space (Ω,F ,P), say. Because experimental error is inherent in ex-

periments involving measurement, we can assume that for every point (x, y) ∈ D, the

response variable Z(x, y) can be decomposed as Z(x, y) = f(x, y) + ε(x, y), i.e., the

randomness of Z(x, y) is contributed only by the random error ε(x, y). Hence, the air

temperature that is actually observed or measured at any particular position si ∈ D

can be written as Z(si) = f(si)+ε(si). The random error ε(si) represents the random

difference between the observed and the true air temperatures at si, i = 1, . . . , m.

Introducing the vectors Z := (Z(s1), . . . , Z(sm))>, Θ := (f(s1), . . . , f(sm))>, and

E := (ε(s1), . . . , ε(sm))>, the model may be written as Z = Θ + E.

We have to give reasonable assumptions to the model, so that further study and

analysis can be conducted. In particular, reasonable assumptions muss be made on

the unknown function f(·) and the random error ε(·). For example f(·) is sometimes

assumed to be continuous and smooth function on D so that it can be approxi-

mated by a polynomial function of low order. If we assume that there exist functions
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g1(·), . . . gp(·) defined on D such that f(si) =
∑p

j=1 βjgj(si) for some unknown con-

stants β1, . . . , βp, we speak about a linear regression model (in a spatial data analysis

context this model is called universal kriging model). In other word linear regression

(universal kriging) model concerns on the assumption that Θ ∈ V for a subspace

V ⊂ Rm, with V := [g1, . . . ,gp], i.e., V is a subspace of Rm spanned by the vectors

{g1, . . . ,gp}, where gi := (gi(s1), . . . , gi(sm))> ∈ Rm, i = 1, . . . , p. Moreover if we

assume that f(si) = µ, for an unknown µ ∈ R and i = 1, . . . , p, the model is called

a constant (ordinary kriging) model, see e.g., Christensen (1991), p. 263. Usually

the random errors ε(si), i = 1, . . . , m, are assumed to be independent and have some

distribution on R, e.g., a normal distribution with mean 0 and unknown finite vari-

ance σ2(si). This means that the variance depends on the coordinate of the point

si ∈ D. Indeed, this assumption is reasonable for the weather station experiment

above since the air temperatures are recorded from station to station independently,

so that under this assumption we investigate the model Z = Θ + E, with E(E) = 0

and Cov(E) = diag(σ2(s1), . . . , σ
2(sm)). In many situations it may be unrealistic to

assume that the observations are uncorrelated. For instance, we consider soil carbon

regression model in Schabenberger and Gotway (2005), p. 321-352, for which it is

assumed that Cov(ε(si), ε(sj)) = σ2 exp{−‖si − sj‖ /θ} for i 6= j, where σ2 ∈ (0,∞)

and θ ∈ R are unknown. Thus we get a more complicated model than before. Con-

sequently, we need a more complicated statistical procedure for investigating such a

model.

After fitting the model to the data, a further preliminary statistical analysis ad-

dressed to this model may include model-checks which are intended to check (based

on the data) the adequateness of the model, i.e., whether or not our conjecture con-

cerning validity of the model, e.g., linear regression (universal kriging) model, holds

true. In many applications, e.g., response surface methodology in which one is mostly

interested in polynomial models such a preliminary analysis plays an important role
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before one conducts further analysis such as predicting the future response at ob-

served or unobserved locations or determining the optimum condition of the model,

see e.g., Bisgaard and Ankenman (1996).

In studies concerning model-check or change-point problems for linear regression

models one usually investigates the partial sums of least squares residuals, i.e., the

partial sums of the components of the vector Z − Θ̂, where Θ̂ is the ordinary least

squares estimator of Θ which is given by the orthogonal projection of Z onto V.

For example, MacNeill and Jandhyala (1993) and Xie and MacNeill (2004) propose

a change-point method for spatial data based on cumulative sums (CUSUM) of least

squares residuals. In the one-dimensional case MacNeill (1978a, b) proposed a test

based on CUSUM of least squares residuals, and Jandhyala and Minogue (1993)

derived Bayes-type change detection statistics based on partial sums of residuals and

discussed their asymptotic distributions for general regression. Bischoff (1998) and

Bischoff and Miller (2000) proposed an asymptotic test based on CUSUM of least

squares residuals for polynomial regression models with one variable. In this work

we propose a model-check method for the linear model confining the attention on

polynomial regression models with two variables defined on the experimental region

[0, 1]× [0, 1] by conducting tests of hypothesis.

Figure 2. Percentage below poverty line, 5 US midwestern states, 1990 census.
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In many areas of application the spatial data are often lattice data (regional) data,

i.e., the experimental domain D is fixed (not random) and countable, see e.g., Cressie

(1991), p. 383-384 or Schabenberger and Gotway (2005), p. 8-9, for the notion of lat-

tice data. For example wheat-yield data measured on an agricultural plot, attributes

collected by ZIP code, census tract, remotely sensed data reported by pixels, etc.,

are usually given by lattice data, see for example the data presented in Figure 2.

These data are percentages below poverty level from 5 US midwestern states: Illinois,

Indiana, Michigan, Ohio, and Wisconsin, recorded in a 1990 census. Throughout this

work we consider our experimental domain as an n×n regular lattice on [0, 1]× [0, 1]

in which it is not only fixed and countable, but the points are also equally spaced with

the experimental condition {(`/n, k/n) : 1 ≤ `, k ≤ n}. A further important assump-

tion made throughout this work is that the random errors {ε(`/n, k/n) : 1 ≤ `, k ≤ n}
are independent and identically distributed with unknown distribution having mean

0 and variance σ2 > 0. So instead of assuming that the variance of Z(`/n, k/n) may

depend on `/n and k/n, the so-called heteroscedastic linear regression model, we con-

sider the case of a constant variance V ar(Z(`/n, k/n)) = σ2 ∈ (0,∞), the so-called

homoscedastic linear regression model. Under these assumptions we are interested in

the following tasks:

• to establish the limiting distribution of the sequence of the residual partial sums

processes associated with the model for large sample size,

• to conduct asymptotic tests (model-checks) based on the residual partial sums

process for detecting whether or not the model is a linear regression (universal

kriging) model.

We now give an outline about the coverage and organization of our work in han-

dling these problems. In Chapter 1 we give the formal definition of the linear re-

gression model with experimental condition an n× n regular lattice on [0, 1]× [0, 1].
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To give a more convenient interpretation and for theoretical advance, we write the

observations in both matrix and vector forms which, by using the vec operator, will

turn out to be shown equivalent. We also study a classical asymptotic estimation

procedure for the variance of the observations, see Arnold (1982), p. 147-148.

Chapter 2 introduces the theoretical background which is essential for future con-

siderations. In this chapter we study Wiener measure, standard Brownian (2) motion

and the standard Brownian (2) bridge on (C([0, 1]2),BC). The characteristics of weak

convergence on metric space such as the continuous mapping theorem and its conse-

quences are also discussed. We also present a basic result from classical integration

theory (Elstrodt 2005, p. 63-65), that provides necessary and sufficient conditions so

that both the Riemann-Stieltjes integral and the Lebesgue-Stieltjes integral coincide.

The extended version of this important result to integration with respect to any func-

tion which has bounded variation on [0, 1]× [0, 1] in the sense of Vitali (Clarkson and

Adams, 1933) and is right continuous on [0, 1)2 is also investigated. At the end of

this chapter we apply this results to an extended version of the weak convergence in

the sense of Högnäs (1977) and Johnson (1985) of a sequence of signed measures.

In Chapter 3 we derive the limit process of the least squares residual partial sums

process for the linear regression models defined in Chapter 1 by generalizing the

approach of Bischoff (1998), Bischoff and Miller (2000), and Bischoff (2002), from

the one-dimensional to a higher-dimensional case. We start this chapter with an

investigation about the properties of the so-called reproducing kernel Hilbert space

(RKHS) of the standard Brownian (2) motion. Our main result is stated in Theorem

3.2.6. We close this chapter with a discussion about examples of the residual partial

sums limit process associated to several regression models and the generalization of

Theorem 3.2.6 to a-regression model with experimental domain being an n×m regular

lattice.
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In Chapter 4 we consider model-checks for spatial data in which we test the

hypothesis that the model is universal kriging but we confine our discussion to poly-

nomial models. For that we propose three test statistics based on residual partial

sums process: a Kolmogorov type statistic, a Kolmogorov -Smirnov type statistic and

a Cramér-von Mises type statistic. For each statistic the asymptotically size α critical

region is approximated by simulation. We shall show that the tests are asymptotically

pointwise consistent. We also investigate the asymptotic power of the tests under lo-

calized alternatives with localizing rate 1/n and conduct Monte Carlo simulations to

approximate the limiting power of the tests for several functions under alternatives so

that the behavior of the three tests can be compared. Generalizations of these three

procedures to weighted tests are also discussed. In order to evaluate the performance

of the proposed tests, we apply them by presenting an example of statistical analysis

for spatial data in which we work with Mercer and Hall’s data, see Section 4.7.

In Chapter 5 we derive lower and upper bounds for the localized power of the

Kolmogorov type test. More exactly, we derive bounds for the boundary crossing

probability P
{
sup(t,s)∈[0,1]2 (ρϕ(t, s) + Bf (t, s)) ≥ u(t, s)

}
, ρ > 0, for a known trend

ϕ(·) and boundary u(·). We confine our considerations to the standard Brownian (2)

motion and the standard Brownian (2) bridge.

In Chapter 6 we highlight major mathematical open problems which are encoun-

tered throughout this work. We also make suggestions for modifications and improve-

ment, and we propose topics for future research.

In Appendix A and Appendix B we present several basic definitions and notations

as well as theorems that are necessary for our work. Several important theorems

discussed in Chapter 2 are proved in Appendix A and Appendix B.



Chapter 1

Linear regression models on [0, 1]2

In this chapter we give a formal definition of the linear regression model defined

on the unit square [0, 1]2. We also present the point estimation procedures for the

parameters of the model.

1.1 Definition of the models

To describe the model in more detail, let [0, 1]2 := [0, 1] × [0, 1] ⊂ R2 be the ex-

perimental domain (region), and let f1, . . . , fp : [0, 1]2 → R be known real-valued

regression functions defined on [0, 1]2. We assume that the experiment is performed

under n× n experimental conditions taken from a regular lattice, given by

En := {(`/n, k/n) : 1 ≤ `, k ≤ n, n ∈ N} ⊂ [0, 1]2, (1.1.1)

see also Figure 3 below for the geometrical visualization of En. We give the experi-

mental region [0, 1]2 the topology induced by the Euclidean metric

‖x− y‖ :=
√

(x1 − y1)2 + (x2 − y2)2, x := (x1, x2),y := (y1, y2) ∈ [0, 1]2.

8
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-

6

r(`/n, k/n)

1/n2/n `/n n/n = 1

1/n
2/n

k/n

n/n = 1

q q q q q q q q q q q q q q q
q q q q q q q q q q q q q q q
q q q q q q q q q q q q q q q
q q q q q q q q q q q q q q q
q q q q q q q q q q q q q q q
q q q q q q q q q q q q q q q
q q q q q q q q q q q q q q q
q q q q q q q q q q q q q q q
q q q q q q q q q q q q q q q
q q q q q q q q q q q q q q q
q q q q q q q q q q q q q q q

Figure 3. An n× n regular lattice

For convenience we take the observations over En row wise initializing at the point on

the left-bottom corner, i.e., the point with coordinate (1/n, 1/n). Hence we have an

n× n dimensional matrix (array) of corresponding observable response variables

Yn×n :=




Y11 Y21 · · · Yn1

...
... · · · ...

Y1k Y2k · · · Ynk

...
... · · · ...

Y1n Y2n · · · Ynn




∈ Rn×n,

where the kth row of this matrix represents the observations at the points {(`/n, k/n) :

1 ≤ ` ≤ n} of En. Let Mi := (fi(`/n, k/n))n, n
k=1,`=1 be an n × n dimensional matrix

generated by assigning the regression function fi(·) to the regular lattice En, i =

1, . . . , p. We assume that Yn×n can be decomposed as

Yn×n = Mn×n + En×n, (1.1.2)
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for some unknown matrix Mn×n ∈ Vn ⊂ Rn×n, where Vn is a subspace of Rn×n

generated by the set {M1, . . . ,Mp}, and En×n := (ε`k)
n, n
`=1,k=1 is an n × n dimen-

sional random matrix with components ε`k, 1 ≤ `, k ≤ n, are independent and iden-

tically distributed real-valued random variables defined on a common probability

space (Ω,F ,P), with E(ε`k) = 0 and V ar(ε`k) = σ2 ∈ (0,∞). Furthermore, (1.1.2)

is called the ordinary linear model, see Arnold, 1981, p. 55. We refer the reader

to Muirhead (1982), p. 75-79, for the definition of random matrix. By assumption,

there exists some unknown vector of parameters β = (β1, . . . , βp)
> ∈ Rp, such that

Mn×n =
∑p

i=1 βiMi. Hence, the model can be equivalently represented as

Yn×n =

p∑
i=1

βiMi + En×n. (1.1.3)

In the sequel we interpret all vectors as column vectors unless otherwise stated. For

any A = (a1, . . . , ak, . . . , an) ∈ Rn×n, where ak ∈ Rn is the kth column of A, the vec

operator defined on Rn×n gives A the value vec(A) := (a>1 , . . . , a>k , . . . , a>n )> ∈ Rn2
,

see Harville (1997), p. 340-343. Furthermore, let Xn := (vec(M1), . . . , vec(Mp)) ∈
Rn2×p be the design matrix of the model, i.e., Xn is an n2 × p matrix whose (i, j)th

element is given by fj(`/n, k/n), such that n(k − 1) + ` = i, for 1 ≤ k, ` ≤ n, where

1 ≤ j ≤ p, and 1 ≤ i ≤ n2. By using the vec operator, (1.1.3) can be equivalently

expressed in the form

vec(Yn×n) = Xnβ + vec(En×n), (1.1.4)

with

E(vec(Yn×n)) = Xnβ and Cov(vec(Yn×n)) = σ2In2×n2 , σ2 ∈ (0,∞).

Here In2×n2 is the n2 × n2 identity matrix. Model (1.1.3) and (1.1.4) are called the

coordinate version of the linear model, see Arnold, 1981, p. 55.

It is worth mentioning that for our model we do not assume any specific distri-

bution for the random errors ε`k, 1 ≤ `, k ≤ n. The only assumption is that these
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errors are independent and identically distributed with zero means and finite second

moments and defined on the same probability space (Ω,F ,P).

1.2 Parameter estimation

We furnish the vector space Rn×n with an inner product 〈·, ·〉Rn×n and the corre-

sponding norm ‖·‖Rn×n , defined as follows. For any A = (a1, . . . , ak, . . . , an), and

B = (b1, . . . ,bk, . . . ,bn) ∈ Rn×n,

〈A,B〉Rn×n :=

p∑

k=1

〈ak,bk〉Rn = 〈vec(A), vec(B)〉Rn2 = trace(A>B),

‖A‖2
Rn×n := 〈A,A〉Rn×n =

p∑

k=1

‖ak‖2
Rn = ‖vec(A)‖2

Rn2 = trace(A>A).

Here 〈·, ·〉Rn and ‖·‖Rn are the Euclidean inner product and the associated norm on

the vector space Rn.

Let prVn and prV⊥
n

denote the orthogonal projectors onto the subspace Vn and

onto the orthogonal complement of Vn, respectively. Since the components of the

random matrix En×n satisfy the Gauss-Markov conditions, then, by the Gauss-Markov

theorem, see e.g., Arnold (1981), p. 75 or Stapleton (1995), p. 88-94, the best linear

unbiased estimator (BLUE) for the unknown matrix Mn×n in (1.1.2) coincides with

the least squares estimator given by M̂n×n := prVnYn×n. The corresponding matrix

of the least squares residuals is given by

Rn×n := (r`k)
n, n
k=1,`=1 := prV⊥

n
Yn×n = prV⊥

n
En×n. (1.2.1)

Equation (1.2.1) will be important for our theoretical purposes.

Let us consider Model (1.1.4), and let prXn and prX⊥
n

be the orthogonal projectors

onto the column space of Xn and onto the orthogonal complement of the column space

of Xn, respectively. Analogous as before, the least squares estimator of Xnβ is given
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by prXnvec(Yn×n). The corresponding vector of residuals is

rn := prX⊥
n
vec(Yn×n) = prX⊥n vec(En×n) = vec(Rn×n) ∈ Rn2

. (1.2.2)

For our problems it is no restriction to assume rank(Xn) = p. Hence, the set of

matrices {M1, . . . ,Mp} is a basis of Vn. Suppose that {M1, . . . ,Mp} is an orthogonal

basis of Vn, then by the elementary linear algebra, we further get

Rn×n = Yn×n −
p∑

i=1

〈Mi/ ‖Mi‖Rn×n ,Yn×n〉Rn×n Mi/ ‖Mi‖Rn×n

= En×n −
p∑

i=1

〈Mi/ ‖Mi‖Rn×n ,En×n〉Rn×n Mi/ ‖Mi‖Rn×n ,

rn = vec(En×n)−Xn(X>
n Xn)−1X>

n vec(Yn×n)

= vec(En×n)−Xn(X>
n Xn)−1X>

n vec(En×n).

The least squares estimator of the unknown vector of parameters β is obtained by

solving the system of linear equations (X>
n Xn)β = X>

n vec(Yn×n) for β, which is given

by

β̂n := (β̂n1, . . . , β̂np)
> = (X>

n Xn)−1X>
n vec(Yn×n).

By combining (1.1.3) and (1.2.1), we can further write the matrix of least squares

residuals Rn×n in terms of the components of β̂n as follows:

Rn×n = Yn×n − M̂n×n = Yn×n −
p∑

i=1

β̂niMi.

For 1 ≤ i ≤ n, let ei be a unit vector in Rn whose ith component is 1, while the others

are zero. Then for 1 ≤ k, ` ≤ n, the (k, `)th component of Rn×n can be computed by

using the equation

r`k = e>k Yn×ne` −
p∑

i=1

β̂nie
>
k Mie` = Y`k −

p∑
i=1

fi(`/n, k/n)β̂ni.
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If the variance σ2 is unknown, we use the estimator

σ̂2
n :=

∥∥prV⊥
n
Yn×n

∥∥2

Rn×n

n2 − p
=

∥∥prX⊥
n
vec(Yn×n)

∥∥2

Rn2

n2 − p

=
vec>(Yn×n)

(
In2×n2 −Xn(X>

n Xn)−1X>
n

)
vec(Yn×n)

n2 − p
, (1.2.3)

which by (1.2.1) and (1.2.2) is equivalent to

σ̂2
n =

∥∥prV⊥
n
En×n

∥∥2

Rn×n

n2 − p
=

∥∥prX⊥
n
vec(En×n)

∥∥2

Rn2

n2 − p

=
vec>(En×n)

(
In2×n2 −Xn(X>

n Xn)−1X>
n

)
vec(En×n)

n2 − p
.

It is clear that σ̂2
n is an unbiased estimator for σ2 in the sense that Eσ2(σ̂2

n) = σ2.

Furthermore, it can be shown that σ̂2
n is a consistent estimator for σ2, i.e., σ̂2

n converges

in probability to σ2 as n → ∞, denoted by σ̂2
n

P−→ σ2. Consequently, as n → ∞, we

have

σ̂2
n

σ2

P−→ 1. (1.2.4)

We refer the reader to Arnold (1981), p. 147-148, for the preceding results.

Corresponding to the n×n dimensional matrix of the least squares residuals (1.2.1)

we define, for a fixed n ∈ N, the partial sums process {Sn(z1, z2) : (z1, z2) ∈ [0, 1]2},
where

Sn(z1, z2) :=

[nz2]∑

k=1

[nz1]∑

`=1

r`k + (nz1 − [nz1])

[nz2]∑

k=1

r[nz1]+1,k + (nz2 − [nz2])

[nz1]∑

`=1

r`,[nz2]+1

+ (nz1 − [nz1])(nz2 − [nz2])r[nz1]+1,[nz2]+1,

which is called the least squares residual partial sums process or the residual partial

sums process, for short. Here [t] := max{n ∈ Z : n ≤ t}, t ∈ R. Our aim is to find

the limit process as n →∞, for the sequence of residual partial sums processes

{Sn(z1, z2) : (z1, z2) ∈ [0, 1]2}n≥1,
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and use the result for establishing some asymptotic tests which can be applied to

model-checks and change-point problems.



Chapter 2

Gaussian processes on C([0, 1]2) and

comparison of Riemann-Stieltjes

and Lebesgue-Stieltjes integral

To establish asymptotic tests based on the residual partial sums processes for check-

ing the regression model or detecting changes in the regression functions defined on

the unit square [0, 1]2, we need standard Brownian (2) motion with sample paths in

C([0, 1]2), i.e., the space of continuous functions on [0, 1]2. The paths of the process

additionally fulfill x(t, 0) = x(0, s) = 0, for t, s ∈ [0, 1]. Our aim in this chapter is

to define the necessary theoretical background for developing our results described in

Chapter 3, Chapter 4 and Chapter 5. We also observe the constructions of the stan-

dard Brownian (2) motion as a limit process of a sequence of partial sums processes

{En(z1, z2) : (z1, z2) ∈ [0, 1]2}n≥1, for n →∞, where

En(z1, z2) :=

[nz2]∑

k=1

[nz1]∑

`=1

ε`k + (nz1 − [nz1])

[nz2]∑

k=1

ε[nz1]+1,k + (nz2 − [nz2])

[nz1]∑

`=1

ε`,[nz2]+1

15
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+(nz1 − [nz1])(nz2 − [nz2])ε[nz1]+1,[nz2]+1, (z1, z2) ∈ [0, 1]2,

and εij, 1 ≤ i, j ≤ n are independent and identically random variables having distri-

bution with mean zero and finite variances.

As usual, the metric space C([0, 1]2) is furnished with the uniform topology induced

by the sup-metric

ρ(h, g) := sup
(x,y)∈[0,1]2

| h(x, y)− g(x, y) |, h, g ∈ C([0, 1]2),

with the corresponding sup-norm

‖g‖∞ := sup
(x,y)∈[0,1]2

|g(x, y)| , g ∈ C([0, 1]2).

By using analogous arguments as in the space C([0, 1]), the metric space C([0, 1]2) is

separable and complete with respect to the topology generated by the sup-metric, see

e.g., Werner (2005), p. 5 and p. 33, or Billingsley (1999), p. 11-12.

2.1 Standard Brownian (2) motion

Starting with the definition of the Wiener measure on the space C([0, 1]2), we now give

the formal definition of the Standard Brownian (2) motion. For a discussion about the

existence of the Wiener measure on C([0, 1]2), see, e.g., Yeh (1960) and Kuelbs (1968)

and the references cited there. For fixed m,n ∈ N, let {th}0≤h≤m+1 and {sk}0≤k≤n+1 be

preassigned points in the interval [0, 1] satisfying 0 = t0 < t1 < · · · < tm < tm+1 = 1,

0 = s0 < s1 < · · · < sn < sn+1 = 1. We define the mapping

π(t1,s1),...,(tm,sn) :





C([0, 1]2) → Rmn

w(·) 7→ (w(t1, s1), . . . , w(tm, sn))>.
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Let Bmn be the Borel σ−algebra of subsets of Rmn, and let J(t1,s1),...,(tm,sn) be the

collection of subsets of C([0, 1]2), defined by

J(t1,s1),...,(tm,sn) := π−1
(t1,s1),...,(tm,sn)(Bmn) := {π−1

(t1,s1),...,(tm,sn)(B) : B ∈ Bmn}.

Furthermore, let

ZC([0,1]2) := σ




⋃

m,n∈N

⋃
0=t0<···<tm+1=1

0=s0<···<sn+1=1

J(t1,s1),...,(tm,sn)




denote the cylindrical σ-algebra.

Definition 2.1.1. Wiener measure W is a probability measure defined on the mea-

surable space (C([0, 1]2),ZC([0,1]2)) that satisfies the following conditions.

(1) W{w ∈ C([0, 1]2) : π(t,s)(w) = 0, if t = 0 or s = 0} = 1,

(2) The increments of the stochastic process π := {π(t,s) : (t, s) ∈ [0, 1]2} are

normally distributed with respect to W, i.e., for every (t1, s1), (t2, s2) ∈ [0, 1]2,

with t1 < t2 and s1 < s2, we have

∆[t1,t2]×[s1,s2]π := π(t2,s2) − π(t2,s1) − π(t1,s2) + π(t1,s1) ∼ N (0, (t2 − t1)(s2 − s1)),

(3) The stochastic process π = {π(t,s) : (t, s) ∈ [0, 1]2} has independent increments

with respect to W, i.e., for any family

{Iij := [ti−1, ti]× [sj−1, sj] : 1 ≤ i ≤ m, 1 ≤ j ≤ q}

of rectangles in [0, 1]2 with

0 ≤ t0 < . . . < ti−1 < ti < . . . < tm ≤ 1,

0 ≤ s0 < . . . < sj−1 < sj < . . . < sq ≤ 1,
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we have

W{w ∈ C([0, 1]2) : (∆Iij
π)(w) ≤ αij, 1 ≤ i ≤ m, 1 ≤ j ≤ q}

=
m∏

i=1

q∏
j=1

W{w ∈ C([0, 1]2) : (∆Iij
π)(w) ≤ αij}, αij ∈ R.

Remark 2.1.2. Let BC be the Borel σ-algebra over C([0, 1]2), i.e., the smallest σ-

algebra containing all open sets with respect to the uniform topology (topology induced

by the sup-metric). Since C([0, 1]2) is a separable and complete metric space with re-

spect to this topology, by using the analogous argument as in Billingsley (1999), p. 12,

and Yeh (1972), p. 449-452, we have ZC([0,1]2) = BC. Hence, Wiener measure just de-

fined can be regarded as a probability measure on the measurable space (C([0, 1]2),BC).
The existence of W on (C([0, 1]2),BC) was studied intensively by Kuelbs (1968), Park

(1970), and Park (1971).

Remark 2.1.3. Under the condition (1) of Definition 2.1.1, it can be shown that con-

ditions (2) and (3) of Definition 2.1.1 are equivalent to the following one: For d ∈ N
and any (t1, s1), . . . , (td, sd) ∈ [0, 1]2, with respect toW the vector (π(t1,s1), . . . , π(td,sd))

>

has a d-variate normal distribution with mean zero and covariance matrix

Σ :=




t1s1 (t1 ∧ t2)(s1 ∧ s2) · · · (t1 ∧ td)(s1 ∧ sd)

(t1 ∧ t2)(s1 ∧ s2) t2s2 · · · (t2 ∧ td)(s2 ∧ sd)

...
...

...
...

(t1 ∧ td)(s1 ∧ sd) (t2 ∧ td)(s2 ∧ sd) · · · tdsd




. (2.1.1)

Here x ∧ y stands for the minimum between x and y.

Definition 2.1.4. A real-valued stochastic process X := {X(t, s) : (t, s) ∈ [0, 1]2} is

said to have stationary increments, if and only if for any choice of h ≥ 0, ν ≥ 0, and
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any choice of finitely many rectangles

Γ := {Iij := [ti−1, ti]× [sj−1, sj] : 1 ≤ i ≤ m, 1 ≤ j ≤ q} ,

Γhν :=
{
Ihν
ij := [ti−1 + h, ti + h]× [sj−1 + ν, sj + ν] : 1 ≤ i ≤ m, 1 ≤ j ≤ q

}

such that

0 ≤ t0 < . . . < ti−1 < ti < . . . < tm ≤ 1, tm + h ≤ 1

0 ≤ s0 < . . . < sj−1 < sj < . . . < sq ≤ 1, sq + ν ≤ 1,

the distributions of (∆I11X, ∆I12X, . . . , ∆ImqX) and (∆Ihν
11

X, ∆Ihν
12

X, . . . , ∆Ihν
mq

X) are

identical, denoted by (∆I11X, ∆I12X, . . . , ∆ImqX) ∼ (∆Ihν
11

X, ∆Ihν
12

X, . . . , ∆Ihν
mq

X).

Definition 2.1.5. Let B2 = {B2(t, s) : (t, s) ∈ [0, 1]2} be a real-valued stochastic pro-

cess defined on a probability space (Ω,F ,P) induced by the F-BC-measurable mapping

B2 :





Ω → C([0, 1]2)

ω 7→ B2(ω)(·).

We say that the stochastic process B2 = {B2(t, s) : (t, s) ∈ [0, 1]2} is a standard

Brownian (2) motion (Wiener process) if and only if the distribution of the random

function B2 is the Wiener measure on (C([0, 1]2),BC), i.e., P ◦ B−1
2 = W, where

P ◦B−1
2 (A) := P{B2 ∈ A}, for each A ∈ BC.

Remark 2.1.6. By conditions (2) and (3) of Definition 2.1.1, for any family of

rectangles Γ, Γhν of [0, 1]2, h ≥ 0, ν ≥ 0, defined in Definition 2.1.4, the random vec-

tors (∆I11B2, ∆I12B2, . . . , ∆ImqB2) and (∆Ihν
11

B2, ∆Ihν
12

B2, . . . , ∆Ihν
mq

B2) have the same

normal distribution

Nmq(0, diag(λ2(I11), λ
2(I12), . . . , λ

2(Imq))).
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Here and throughout λ2 stands for Lebesgue measure on [0, 1]2. Hence, by Definition

2.1.4, {B2(t, s) : (t, s) ∈ [0, 1]2} has stationary and independent increments. More-

over, by Remark 2.1.3, for any rectangles I1, I2 ⊆ [0, 1]2, with I1 ∩ I2 6= ∅, we have

Cov(∆I1B2, ∆I2B2) = λ2(I1 ∩ I2). (2.1.2)

Remark 2.1.7. The Karhunen-Loève expansion of B2 is given by

B2(t, s) =
∞∑
i=1

∞∑
j=1

√
λij Zijψij(t, s), (t, s) ∈ [0, 1]2, (2.1.3)

where {Zij : i, j ∈ N} is a sequence of i.i.d. standard normal random variables,

λij = [(2i + 1)(2j + 1)π2/4]−2, and ψij(t, s) = 2 sin[(2i + 1)πt/2] sin[(2j + 1)πs/2], for

i, j ∈ N, see also MacNeill and Jandhyala (1993). Expansion (2.1.3) can be derived

directly from the Karhunen-Loève expansion of B1 (the standard Brownian motion on

the unit interval [0, 1]) due to Yeh (1973), p. 268-279, by the fact that the covariance

function of B2 can be expressed as a multiplication of the covariance functions of B1.

2.2 Standard Brownian (2) bridge

Corresponding to the standard Brownian (2) motion we now define a stochastic pro-

cess called a standard Brownian (2) bridge.

Definition 2.2.1. A real-valued stochastic process B0
2 = {B0

2(t, s) : (t, s) ∈ [0, 1]2},
defined on the probability space (Ω,F ,P), such that

B0
2(t, s) = B2(t, s)− tsB2(1, 1), (t, s) ∈ [0, 1]2, (2.2.1)

is called a standard Brownian (2) bridge.
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The following are several important properties of the standard Brownian (2) bridge

just defined.

Corollary 2.2.2. (1) P{B0
2(t, s) = 0, if t = 0 or s = 0} = 1.

(2) For any (t, s), and (t′, s′) ∈ [0, 1]2, we have

Cov(B0
2(t, s), B

0
2(t

′, s′)) = (t ∧ t′)(s ∧ s′)− tt′ss′. (2.2.2)

(3) For any (t, s) ∈ [0, 1]2, B0
2(t, s) is normally distributed with mean zero and vari-

ance ts(1− ts).

(4) For any rectangles I1, I2 ⊆ [0, 1]2, with I1 6= ∅ 6= I2, we have

Cov(∆I1B
0
2 , ∆I2B

0
2) = λ2(I1 ∩ I2)− λ2(I1)λ

2(I2). (2.2.3)

Proof. Properties (1), (2), (3) and (4) follow immediately from the properties of the

standard Brownian (2) motion and Equation (2.2.1). As an example let us show

(2.2.3). By (2.2.1) and by the linearity of ∆, for i = 1, 2, we get

∆Ii
B0

2 = ∆Ii
B2 −B2(1, 1)∆Ii

(ts) = ∆Ii
B2 −B2(1, 1)λ2(Ii). (2.2.4)

Hence, Equation (2.1.2) yields

Cov(∆I1B
0
2 , ∆I2B

0
2) = λ2(I1 ∩ I2)− λ2(I1)λ

2(I2).

As special cases of (2.2.3), if I1 ∩ I2 = ∅, Ii 6= ∅, i = 1, 2, we have

Cov(∆I1B
0
2 , ∆I2B

0
2) = −λ2(I1)λ

2(I2) 6= 0. (2.2.5)

If I1 = I2 =: I, I 6= ∅, we obtain

V ar(∆IB
0
2) = λ2(I)[1− λ2(I)]. (2.2.6)
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Corollary 2.2.3. In contrast to B2, the standard Brownian (2) bridge B0
2 does not

have independent increments. Like B2, the process B0
2 has stationary increments.

Proof. The first assertion follows by (2.2.5). To show the second assertion, let Γ and

Γhν , h > 0, ν > 0 be the set of rectangles given in Definition 2.1.4. Then from (2.2.5)

and (2.2.6), the random vectors

(∆I11B
0
2 , ∆I12B

0
2 , . . . , ∆ImqB

0
2) and (∆Ihν

11
B0

2 , ∆Ihν
12

B0
2 , . . . , ∆Ihν

mq
B0

2)

have the same centered mq-dimensional normal distribution with covariance matrix




λ2(I11)[1− λ2(I11)] −λ2(I11)λ
2(I12) · · · −λ2(I11)λ

2(Imq)

−λ2(I12)λ
2(I11) λ2(I12)[1− λ2(I12)] · · · −λ2(I12)λ

2(Imq)

...
...

...
...

−λ2(Imq)λ
2(I11) −λ2(Imq)λ

2(I12) · · · λ2(Imq)[1− λ2(Imq)]




.

Thus, according to Definition 2.1.4, the standard Brownian (2) bridge B0
2 is a process

with stationary increments.

Corollary 2.2.4. By combining Equation (2.1.3) and (2.2.1), for every (t, s) ∈
[0, 1]2, the standard Brownian (2) bridge can be expressed as

B0
2(t, s) =

∞∑
i=1

∞∑
j=1

√
λij Zij (ψij(t, s)− tsψij(1, 1)) , (2.2.7)

where {Zij : i, j ∈ N} is a sequence of independent and identically distributed standard

normal random variables, λij = [(2i + 1)(2j + 1)π2/4]−2 and ψij(t, s) = 2 sin[(2i +

1)πt/2] sin[(2j + 1)πs/2], for i, j ∈ N.
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2.3 Invariance principle and the construction

of the standard Brownian (2) motion

In this section we generalize Donsker’s theorem for the metric space C([0, 1]) (Billings-

ley, 1968, p. 68-70 and Billingsley, 1999, p. 90-91) to the metric space C([0, 1]2) and

show that standard Brownian (2) motion is a limit process of some sequence of partial

sums processes, see Definition 2.3.1 below.

Definition 2.3.1. For every n ∈ N, let us define a mapping

Tn :





Rn×n → C([0, 1]2)

A 7→ Tn(A)(·)

such that for (z1, z2) ∈ [0, 1]2, and A := (a`k)
n, n
`=1,k=1 ∈ Rn×n,

Tn(A)(z1, z2) =
1

n

[nz2]∑

k=1

[nz1]∑

`=1

a`k +
1

n
(nz1 − [nz1])

[nz2]∑

k=1

a[nz1]+1,k

+
1

n
(nz2 − [nz2])

[nz1]∑

`=1

a`,[nz2]+1

+
1

n
(nz1 − [nz1])(nz2 − [nz2])a[nz1]+1,[nz2]+1, (2.3.1)

where
∑j

k=1

∑i
`=1 a`k = 0, for j = 0 or i = 0. In what follows Tn will be called the

partial sums operator.

Remark 2.3.2. By definition, for a fixed A ∈ Rn×n, Tn(A)(·) is a continuous func-

tion on [0, 1]2, whereas for fixed (z1, z2) ∈ [0, 1]2, Tn(·)(z1, z2) constitutes a continuous

functional on Rn×n.

For several values of n, Figure 4 shows the graph of Tn(A)(z1, z2), where A ∈ Rn×n

is a realization of an n × n dimensional random matrix with independent standard
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normally distributed components. It will be shown in Theorem 2.3.4 that Figure 4

illustrates approximated sample paths of standard Brownian (2) motion.
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Figure 4. A geometrical visualization of Tn(A)(·).

Let En×n := (ε`k)
n, n
`=1,k=1 ∈ Rn×n be an n × n dimensional random matrix, with

E(ε`k) = 0 and V ar(ε`k) = σ2 ∈ (0,∞), defined on the probability space (Ω,F ,P). By

using the partial sums operator Tn defined above, we embed the sequence (En×n)n≥1

into a sequence of stochastic processes

{Tn(En×n)(z1, z2) : (z1, z2) ∈ [0, 1]2}n≥1, (2.3.2)

where

Tn(En×n(ω))(z1, z2) =
1

n
S[nz1][nz2](ω) +

1

n
ψn,z1,z2(ω), ω ∈ Ω,

S[nz1][nz2] :=

[nz2]∑

k=1

[nz1]∑

`=1

ε`k (2.3.3)
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and

ψn,z1,z2 := (nz1 − [nz1])

[nz2]∑

k=1

ε[nz1]+1,k + (nz2 − [nz2])

[nz1]∑

`=1

ε`,[nz2]+1

+ (nz1 − [nz1])(nz2 − [nz2])ε[nz1]+1,[nz2]+1. (2.3.4)

It is clear that the sequence of stochastic processes (2.3.2) has sample paths (trajec-

tories) in the metric space C([0, 1]2). We denote the distribution of the sequence

(Tn(En×n))n≥1 on the probability space (C([0, 1]2),BC) by (µn)n≥1, where µn :=

P ◦T−1
n (En×n). Thus, the corresponding sequence of the finite-dimensional distribu-

tions of the sequence of stochastic processes {Tn(En×n)(z1, z2) : (z1, z2) ∈ [0, 1]2}n≥1

are
(
µn ◦ π−1

(t1,s1),...,(tp,sq)

)
n≥1

, 0 < t1 < · · · < tp ≤ 1, 0 < s1 < · · · < sq ≤ 1, p, q ∈ N,

where for n ∈ N and A ∈ Bpq,

µn ◦ π−1
(t1,s1),...,(tp,sq)(A) = P ◦T−1

n (En×n) ◦ π−1
(t1,s1),...,(tp,sq)(A)

= P{(Tn(En×n)(t1, s1), . . . ,Tn(En×n)(tp, sq)) ∈ A}.

Since the random variables ε`k, 1 ≤ `, k ≤ n are independent, the following results

can be directly verified by the definition of Tn.

Corollary 2.3.3. (1) For every (z1, z2) and (z′1, z
′
2) ∈ [0, 1]2, we have

E (Tn(En×n)(z1, z2)) = 0,

Cov

(
1

σ
Tn(En×n)(z1, z2),

1

σ
Tn(En×n)(z′1, z

′
2)

)
→ (z1 ∧ z′1)(z2 ∧ z′2), as n →∞.

(2) For any (z1, z2) ∈ [0, 1]2, we have

[nz1]

n

[nz2]

n
≤ V ar(

1

σ
Tn(En×n)(z1, z2))

=
[nz1][nz2]

n2
+

(nz1 − [nz1])
2[nz2]

n2

+
(nz2 − [nz2])

2[nz1]

n2
+

(nz1 − [nz1])
2(nz2 − nz2)

2

n2

≤ [nz1]

n

[nz2]

n
+

2

n
+

1

n2
. (2.3.5)
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Hence, V ar( 1
σ
Tn(En×n)(z1, z2)) → z1z2, as n →∞.

(3) By the strong law of large numbers, we have 1
nσ

ψn,z1,z2

a.s−→ 0, for every (z1, z2) ∈
[0, 1]2. Moreover, by the Lindeberg-Lévy central limit theorem and Slutzky’s

theorem, we have

1

nσ
S[nz1][nz2]

D−→ N (0, z1z2), as n →∞.

Hence, for n →∞, we get

1

σ
Tn(En×n)(z1, z2)

D−→ N (0, z1z2), (z1, z2) ∈ [0, 1]2.

The following result describes the weak convergence of the sequence of partial

sums processes (2.3.2) to the standard Brownian (2) motion. It generalizes Donsker’s

theorem (invariance principle) in the metric space C([0, 1]) to the space C([0, 1]2).

Theorem 2.3.4. (Invariance principle)

Let (En×n)n≥1, En×n := (ε`k)
n, n
`=1,k=1 be a sequence of independent n × n dimensional

random matrices whose components are independent and identically distributed ran-

dom variables with E(ε`k) = 0 and V ar(ε`k) = σ2 ∈ (0,∞), defined on the probability

space (Ω,F ,P), 1 ≤ `, k ≤ n, n ≥ 1. Then 1
σ
Tn(En×n)

D−→ B2 as n →∞.

Proof. The proof is given in Appendix B where the result in Billingsley (1999), p.

90-91, is extended to the metric space C([0, 1]2). We refer the reader to Park (1971)

for a different proof of this theorem.

Remark 2.3.5. By the preceding theorem we can approximate the sample paths of

B2 with those of the partial sums process { 1
σ
Tn(En×n)(z1, z2) : (z1, z2) ∈ [0, 1]2}n≥1.

Hence, as it was mentioned before, if we put σ = 1 in Theorem 2.3.4, then Figure 4

gives approximations to sample paths of B2.
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A direct consequence of the continuous mapping theorem (Billingsley, 1968, p.

29-31, and Billingsley, 1999, p. 20-22) and Theorem 2.3.4 is described next. We refer

the reader to Bader (1997), p. 68-76, for the generalization of the following results to

any finite positive measure and any metric space.

Corollary 2.3.6. Let (S, d) be a metric space with metric d, and let BS be the Borel

σ-algebra of S. If the mapping h : (C([0, 1]2),BC,W) → (S,BS) is continuous on

C([0, 1]2), then h( 1
σ
Tn(En×n))

D−→ h(B2) as n →∞. Thus, the sequence of probability

measures (µn ◦ h−1)n≥1 converges weakly to the probability measureW◦h−1 on (S,BS),
as n → ∞, where W is Wiener measure on (C([0, 1]2),BC). However, the continuity

assumption on h can be weakened as follows. Let Dh be the set of discontinuity points

of h. If h is BC-BS- measurable and W(Dh) = 0, then

h

(
1

σ
Tn(En×n)

)
D−→ h(B2) as n →∞.

Theorem 2.3.7. Let h, hn : (C([0, 1]2),BC,W) → (S,BS), n ≥ 1, be BC-BS-measurable

mappings. Let G := {x ∈ C([0, 1]2) : ∃(xn)n≥1, xn
n→∞−→ x, but hn(xn)

n→∞9 h(x)}. If

G ⊆ N with W(N) = 0, then hn( 1
σ
Tn(En×n))

D−→ h(B2) as n →∞.

Remark 2.3.8. If we put hn := h, for the sequence (hn)n≥1 in Theorem 2.3.7, then

G = Dh, hence this result reduces to Corollary 2.3.6. If (hn)n≥1 is a sequence such that

hn(xn) converges to h(x) whenever (xn)n≥1 is a sequence in C([0, 1]2) which converges

to x, then G = ∅. Hence, we get hn( 1
σ
Tn(En×n))

D−→ h(B2) as n → ∞. We remark

here that Theorem 2.3.7 will take an important role for deriving our results in Chapter

3 and Chapter 4.
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2.4 Comparison of Lebesgue-Stieltjes and

Riemann-Stieltjes integrals on [0, 1]2

In this section we study the comparison between the Lebesgue-Stieltjes and the

Riemann-Stieltjes integrals on [0, 1]2 defined in Appendix A. We refer the reader

to Elstrodt (2005), p. 120-136, for the notion of the Lebesgue-Stieltjes integral con-

sidered in this section. A necessary and sufficient conditions for the two integrals to

coincide is described in Theorem 2.4.4.

Definition 2.4.1. A function F (·) defined on [0, 1]2 is said to be right continuous

on the half-open rectangle [0, 1)2, if and only if for every (c1, c2) ∈ [0, 1)2 and every

sequence ((xn, yn))n≥1 ⊆ [0, 1]2 such that (xn, yn) ↓ (c1, c2), we have F (xn, yn) →
F (c1, c2) as n →∞. Analogously, F (·) is said to be left continuous on the half-open

rectangle (0, 1]2, if and only if for every (c1, c2) ∈ (0, 1]2 and sequence ((xn, yn))n≥1 ⊆
[0, 1]2, with (xn, yn) ↑ (c1, c2), we have F (xn, yn) → F (c1, c2) as n →∞. In the sequel

the set of functions F (·) defined on [0, 1]2 which is right continuous on [0, 1)2 and

type I non decreasing (see Definition A.1.2) will be denoted by Rc([0, 1]2).

Definition 2.4.2. A Lebesgue-Stieltjes measure µ on ((0, 1]2,B2 ∩ (0, 1]2) is said to

be finite, if it satisfies the condition µ((0, 1]× (0, 1]) < ∞, see Elstrodt (2005), p. 47.

Remark 2.4.3. Let R0
c([0, 1]2) be the set of all functions ψ(·) ∈ Rc([0, 1]2) with

ψ(x, y) = 0, if x = 0 or y = 0. Let M((0, 1]2,B2 ∩ (0, 1]2) be the set of finite

Lebesgue-Stieltjes measures on ((0, 1]2,B2 ∩ (0, 1]2). Then the mapping R0
c([0, 1]2) 3

ψ(·) 7→ µψ(·) ∈M((0, 1]2,B2 ∩ (0, 1]2), where

µψ((t1, t2]× (s1, s2]) := ∆[t1,t2]×[s1,s2]ψ, 0 ≤ t1 ≤ t2 ≤ 1, 0 ≤ s1 ≤ s2 ≤ 1, (2.4.1)
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is one to one. The uniqueness of ψ(·) ∈ R0
c([0, 1]2) follows from the fact that two

functions ψ1(·), ψ2(·) ∈ R0
c([0, 1]2) that satisfy ∆[t1,t2]×[s1,s2]ψ1 = ∆[t1,t2]×[s1,s2]ψ2, for

0 ≤ t1 ≤ t2 ≤ 1, 0 ≤ s1 ≤ s2 ≤ 1, agree, i.e., we have ψ1(·) = ψ2(·).

The proof of the following result is given in Appendix A. A one-dimensional version

of this results was observed by Young (1914), and Stroock (1994), p. 81-82. We refer

the reader to Elstrodt (2005), p. 151-153, for the comparison between the Lebesgue-

Stieltjes and the Riemann integral on any p-dimensional compact cube [a1, b1]×· · ·×
[ap, bp], ai < bi, i = 1, . . . , p, p ≥ 1.

Theorem 2.4.4. Let νψ be a finite Lebesgue-Stieltjes measure on ((0, 1]2,B2∩ (0, 1]2)

that corresponds to a function ψ(·) ∈ Rc([0, 1]2) according to (2.4.1). Suppose that

ϕ(·) : [0, 1]2 → R is bounded on [0, 1]2. Then ϕ(·) is Riemann-Stieltjes integrable on

[0, 1]2 with respect to ψ(·), if and only if ϕ(·) is continuous ν̄ψ a.e. on (0, 1]2, where

ν̄ψ is the completion of the measure νψ. Moreover,

∫

(0,1]2
ϕ(t, s)ν̄ψ(dt, ds) =

∫ R

[0,1]2
ϕ(t, s)dψ(t, s). (2.4.2)

Here and throughout the work,
∫ R

denotes the Riemann-Stieltjes integral. We refer

the reader to Elstrodt (2005), p.63-65, for the notion of a complete measure.

Proposition 2.4.5. Let (ψn)n≥1 be a sequence of functions which have bounded vari-

ation on [0, 1]2 in the sense of Vitali, see Definition A.1.5, and let (V (ψn; [0, 1]2))n≥1

be the corresponding sequence of the total variations of (ψn)n≥1. If ‖ψn‖∞
n→∞−→ 0 and

(V (ψn; [0, 1]2))n≥1 is bounded, i.e., there exists a positive constant M such that for

n ≥ 1, V (ψn; [0, 1]2) ≤ M , then
∫ R

[0,1]2
ϕ(t, s)dψn(t, s)

n→∞−→ 0, for ϕ(·) ∈ C([0, 1]2).

Proof. See Appendix A, see also Högnäs (1977) and Johnson (1985) for a version of

this result for a function of one variable.
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2.4.1 Extension to finite Lebesgue-Stieltjes signed measures

Definition 2.4.6. A signed measure ν on ((0, 1]2,B2 ∩ (0, 1]2) is said to be finite

if |ν(A)| < ∞, for every A ∈ B2 ∩ (0, 1]2 (Elstrodt, 2005, p. 271). In the se-

quel SM((0, 1]2) denotes the set of finite Lebesgue-Stieltjes signed measures ν on

((0, 1]2,B2 ∩ (0, 1]2). The set of functions which have bounded variation on [0, 1]2 in

the sense of Vitali and are right continuous on [0, 1)2 will be denoted by BV Vc([0, 1]2).

It is clear that SM((0, 1]2) and BV Vc([0, 1]2) are linear spaces.

Remark 2.4.7. If ψ(·) is in BV Vc([0, 1]2), there exists a signed measure νψ ∈
SM((0, 1]2) given by

νψ((t1, t2]× (s1, s2]) := ∆[t1,t2]×[s1,s2]ψ, 0 ≤ t1 < t2 ≤ 1, 0 ≤ s1 < s2 ≤ 1. (2.4.3)

Let V+(ψ; A) and V−(ψ; A) be the positive and negative total variations of ψ on a set

A ⊆ [0, 1]2, see Definition A.1.9 for the notion of positive and negative variation. By

Theorem A.1.11, we further get

νψ((t1, t2]× (s1, s2]) = V+(ψ; [t1, t2]× [s1, s2])− V−(ψ; [t1, t2]× [s1, s2]). (2.4.4)

Moreover, let νψ have Jordan decomposition νψ = ν+
ψ − ν−ψ , and let ‖νψ‖ν := ν+

ψ + ν−ψ

be the total variation of νψ. Then for every (t1, t2]× (s1, s2] ∈ B2 ∩ (0, 1]2

ν+
ψ ((t1, t2]× (s1, s2]) = V+(ψ; [t1, t2]× [s1, s2]), (2.4.5)

ν−ψ ((t1, t2]× (s1, s2]) = V−(ψ; [t1, t2]× [s1, s2]), (2.4.6)

‖νψ‖ν ((t1, t2]× (s1, s2]) = V+(ψ; [t1, t2]× [s1, s2]) + V−(ψ; [t1, t2]× [s1, s2]). (2.4.7)

Corollary 2.4.8. Let ψ(·) be in BV Vc([0, 1]2) and let νψ ∈ SM((0, 1]2) correspond

to ψ(·) according to (2.4.3) with the Jordan decomposition νψ = ν+
ψ − ν−ψ . Suppose
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that ϕ(·) : [0, 1]2 → R is bounded on [0, 1]2. Then ϕ(·) is Riemann-Stieltjes integrable

on [0, 1]2 with respect to ψ(·), if ϕ(·) is continuous ν̄+
ψ a.e. and ν̄−ψ a.e. on (0, 1]2,

where ν̄ is the completion of ν. Moreover, we have

∫

(0,1]2
ϕ(t, s)ν̄ψ(dt, ds) =

∫ R

[0,1]2
ϕ(t, s)dψ(t, s). (2.4.8)

Proof. By definition and Theorem A.1.13, we have ψ+(·) := V+(ψ; [0, ·] × [0, ·]) and

ψ−(·) := V−(ψ; [0, ·]× [0, ·]) are type I non decreasing on [0, 1]2 and right continuous

on [0, 1)2. Moreover, for every half-open interval A := (t1, t2]×(s1, s2] in ((0, 1]2∩B2),

where 0 ≤ t1 < t2 ≤ 1 and 0 ≤ s1 < s2 ≤ 1, we obtain the following equations:

∆Āψ
(2.4.3)
= νψ(A)

(2.4.4)
= V+(ψ; Ā)− V−(ψ; Ā) = ∆Āψ+ −∆Āψ−,

ν+
ψ (A)

(2.4.5)
= V+(ψ; Ā) = ∆Āψ+, and ν−ψ (A)

(2.4.6)
= V−(ψ; Ā) = ∆Āψ−,

where Ā is the closure of A. Since ϕ(·) is continuous ν̄+
ψ a.e. and ν̄−ψ a.e. on (0, 1]2, by

Theorem 2.4.4, ϕ(·) is Riemann-Stieltjes integrable with respect to ψ+(·) and ψ−(·).
Hence, by the linearity of the Lebesgue-Stieltjes and Riemann-Stieltjes integrals, we

further get

∫

(0,1]2
ϕ(t, s)ν̄ψ(dt, ds) =

∫

(0,1]2
ϕ(t, s)ν̄+

ψ (dt, ds)−
∫

(0,1]2
ϕ(t, s)ν̄−ψ (dt, ds)

=

∫ R

[0,1]2
ϕ(t, s)dψ+(t, s)−

∫ R

[0,1]2
ϕ(t, s)dψ−(t, s)

=

∫ R

[0,1]2
ϕ(t, s)dψ(t, s).

The proof is complete.

Corollary 2.4.9. Let (ψn)n≥1 be a sequence of functions in BV Vc([0, 1]2) such that

the sequence of total variations (V (ψn; [0, 1]2))n≥1 is bounded. Let (νψn)n≥1 be the
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sequence in SM((0, 1]2) that corresponds to the sequence (ψn)n≥1 in the sense of

(2.4.3). If ‖ψn‖∞
n→∞−→ 0, then

∫
(0,1]2

ϕ(t, s)ν̄ψn(dt, ds)
n→∞−→ 0, ϕ(·) ∈ C([0, 1]2).

Proof. Since ϕ(·) ∈ C([0, 1]2), then it is continuous ν̄+
ψn

a.e. and ν̄−ψn
a.e. on (0, 1]2, for

n ≥ 1. By Corollary 2.4.8, we have
∫

(0,1]2
ϕ(t, s)ν̄ψn(dt, ds) =

∫ R

[0,1]2
ϕ(t, s)dψn(t, s),

for n ≥ 1. Hence, the result follows by Proposition 2.4.5.



Chapter 3

Residual partial sums limit

processes

In this chapter we derive the limit process of the least squares residual partial sums

process for the linear regression models introduced in Chapter 1. Mac Neill and

Jandhyala (1993) and Xie and Mac Neill (2004) showed a functional central limit

theorem for such a residual partial sums process. In this chapter we propose a different

and simpler method for deriving such limit processes by generalizing the approach

due to Bischoff (1998), Bischoff and Miller (2000), and Bischoff (2002), from the one-

dimensional to a higher-dimensional case. As a by-product we obtain the structure

of the limit process: it is the projection of the standard Brownian (2) motion onto

a certain subspace of the reproducing kernel Hilbert space (RKHS) of the standard

Brownian (2) motion.

Firstly we introduce in Section 3.1 the notion of the RKHS of the standard Brow-

nian (2) motion which is also connected directly to the partial sums operator Tn.

Some important properties of this space are also discussed from analytical aspects.

Secondly, by using the notations and the results in Section 3.1, we derive in Section

33
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3.2 (Theorem 3.2.6) the limit process of the sequence of the residual partial sums pro-

cesses. Several examples of the residual partial sums limit process are also discussed.

3.1 Reproducing kernel Hilbert space of the

standard Brownian (2) motion

We furnish the vector space Rn×n, i.e., the space of n× n dimensional matrices with

the inner product 〈·, ·〉Rn×n and the norm ‖·‖Rn×n defined in Chapter 1. Let us first

consider the image space of the space Rn×n under the partial sums operator Tn defined

in Chapter 2,

Tn(Rn×n)(·) :=
{
Tn(A)(·) | A := (a`k)

n, n
`=1, k=1 ∈ Rn×n

}
.

We note that Tn(A)(·) ∈ C([0, 1]2), for every A ∈ Rn×n, see Definition 2.3.1. Let us

furnish Tn(Rn×n)(·) with the inner product

〈Tn(A)(·),Tn(B)(·)〉Tn(Rn×n) :=
1

n2
〈A,B〉Rn×n =

1

n2

n∑

k=1

n∑

`=1

a`kb`k, (3.1.1)

for every A, B ∈ Rn×n. Obviously, by Equation (3.1.1), Tn(Rn×n)(·) and Rn×n are

isomorphic Hilbert spaces.

Definition 3.1.1. (reproducing kernel Hilbert space (RKHS))

For the standard Brownian (2) motion B2 = {B2(t, s) : (t, s) ∈ [0, 1]2} let us define a

linear subspace HB, given by

HB := {h : [0, 1]2 → R : ∃ĥ ∈ L2([0, 1]2),

h(z1, z2) =

∫

[0,z1]×[0,z2]

ĥ(·)dλ2, (z1, z2) ∈ [0, 1]2} (3.1.2)

We call the subspace HB the reproducing kernel Hilbert space (RKHS) of B2. More-

over, any ĥ ∈ L2([0, 1]2) such that h(z1, z2) =
∫

[0,z1]×[0,z2]
ĥ dλ2, (z1, z2) ∈ [0, 1]2, is

called a producing function of h ∈ HB.
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Remark 3.1.2. Let h(·) ∈ HB with a reproducing function ĥ(·) ∈ L2([0, 1]2). Then

h(·) is absolutely continuous and has bounded variation in the sense of Hardy on

[0, 1]2. Furthermore, we have

∂2h(·)
∂t∂s

= ĥ(·), λ2 a.e. on [0, 1]2,

where ∂2h/∂t∂s stands for the second derivative of h(·) with respect to t and s. Let νh

be the finite Lebesgue-Stieltjes signed measure on ((0, 1]2,B2 ∩ (0, 1]2) corresponding

to h(·), given by

νh((t1, t2]× (s1, s2]) := ∆[t1,t2]×[s1,s2]h, 0 ≤ t1 < t2 ≤ 1, 0 ≤ s1 < s2 ≤ 1.

Then νh is absolutely continuous with respect to Lebesgue measure λ2, see Cohn

(1993), p. 134-137 and Elstrodt (2005), p. 279-281, for the notion of absolute conti-

nuity of a signed measure. The Radon-Nikodym derivative of νh with respect to λ2 is

given by

dνh

dλ2
= ĥ(·) = ĥ+(·)− ĥ−(·), (3.1.3)

where ĥ+(·) and ĥ−(·) are the positive and the negative parts of ĥ(·).

Let us furnish HB with the inner product

〈h1, h2〉HB
:=

∫

[0,1]2
ĥ1(t, s)ĥ2(t, s)λ

2(dt, ds) = 〈ĥ1, ĥ2〉L2 , (3.1.4)

for every h1(·), h2(·) ∈ HB, with

hi(z1, z2) =

∫

[0,z1]×[0,z2]

ĥi(t, s)λ
2(dt, ds), (z1, z2) ∈ [0, 1]2,

for some ĥi(·) ∈ L2([0, 1]2), i = 1, 2. Hence, the norm induced by 〈·, ·〉HB
is

‖h‖2
HB

:=

∫

[0,1]2

∣∣∣ĥ(t, s)
∣∣∣
2

λ2(dt, ds) =
∥∥∥ĥ

∥∥∥
2

L2

. (3.1.5)
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Moreover, by (3.1.3), we have

〈h1, h2〉HB
=

∫

[0,1]2
ĥ1(t, s)ĥ2(t, s)λ

2(dt, ds)

=

∫

(0,1]2
ĥ2(t, s) dν̄h1(dt, ds)

(2.4.8)
=

∫ R

[0,1]2
ĥ2(t, s) dh1(t, s), (3.1.6)

where the last equation follows provided ĥ2(·) is continuous ν̄h1 a.e. on (0, 1]2.

Proposition 3.1.3. For every A ∈ Rn×n, Tn(A)(·) ∈ HB. Moreover, for any A and

B in Rn×n, we have

〈Tn(A)(·),Tn(B)(·)〉HB
= 〈A,B〉Rn×n .

Proof. Let A, B and n be fixed. Let us consider the non-overlapping finite exact

cover Γn of [0, 1]2, Γn = {I`k := [(` − 1)/n, `/n] × [(k − 1)/n, k/n] : 1 ≤ `, k ≤ n},
see Definition A.1.1 in the appendix for the notion of a non-overlapping finite exact

cover of [0, 1]2. By Definition 2.3.1, the second partial derivative of Tn(A)(·) with

respect to both variables exists λ2 a.s. on [0, 1]2, with

∂2Tn(A)(z1, z2)

∂z1∂z2

= na`k, (3.1.7)

for every (z1, z2) in the open rectangle ∆`k := ((` − 1)/n, `/n) × ((k − 1)/n, k/n),

1 ≤ `, k ≤ n. We therefore have
∫

[0,1]2

∣∣∣∣
∂2Tn(A)(z1, z2)

∂z1∂z2

∣∣∣∣
2

λ2(dz1, dz2)

=

∫

[0,1]2

(
∂2Tn(A)(t, s)

∂t∂s

)(
∂2Tn(A)(t, s)

∂t∂s

)
λ2(dt, ds),

=
n∑

k=1

n∑

`=1

∫

I`k

(na`k) (na`k) λ2(dt, ds),

=
n∑

k=1

n∑

`=1

a2
`k = ‖A‖2

Rn×n < ∞. (3.1.8)
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This leads us to the conclusion ∂2Tn(A)(z1,z2)
∂z1∂z2

∈ L2([0, 1]2). Since ∂2Tn(A)(·)
∂t∂s

is contin-

uous λ2 a.s. on [0, 1]2, by applying Fubini’s theorem or the fundamental theorem of

calculus for Lebesgue integrals, see Elstrodt (2005), p. 304, for each (z1, z2) ∈ [0, 1]2,

we have
∫

[0,z1]×[0,z2]

∂2Tn(A)(t, s)

∂t∂s
λ2(dt, ds) = Tn(A)(z1, z2). (3.1.9)

We notice that (3.1.9) can also be derived by computing the integral on the left hand

side directly and by recalling (3.1.7), see below.
∫

[0,z1]×[0,z2]

∂2Tn(A)(t, s)

∂t∂s
λ2(dt, ds)

=

∫

[0,[nz1]/n]×[0,[nz2]/n]

∂2Tn(A)(t, s)

∂t∂s
λ2(dt, ds)

+

∫

([nz1]/n,nz1/n]×[0,[nz2]/n]

∂2Tn(A)(t, s)

∂t∂s
λ2(dt, ds)

+

∫

[0,[nz1]/n]×([nz2]/n,nz2/n]

∂2Tn(A)(t, s)

∂t∂s
λ2(dt, ds)

+

∫

([nz1]/n,nz1/n]×([nz2]/n,nz2/n]

∂2Tn(A)(t, s)

∂t∂s
λ2(dt, ds)

=
1

n

[nz2]∑

k=1

[nz1]∑

`=1

a`k +
1

n
(nz1 − [nz1])

[nz2]∑

k=1

a[nz1]+1,k +
1

n
(nz2 − [nz2])

[nz1]∑

`=1

a`,[nz2]+1

+
1

n
(nz1 − [nz1])(nz2)− [nz2] a[nz1]+1,[nz2]+1

= Tn(A)(z1, z2).

Thus from (3.1.8) and (3.1.9), Tn(A)(·) ∈ HB with the producing function given by

∂2Tn(A)(·)
∂z1∂z2

∈ L2([0, 1]2). The second assertion can be similarly derived as in establish-

ing (3.1.8), from which we get

〈Tn(A)(·) ,Tn(B)(·)〉HB
= 〈A,B〉Rn×n . (3.1.10)
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Motivated by the previous results, we investigate the properties of Tn(A)(·) ∈
Tn(Rn×n)(·) ⊆ HB, for A ∈ Rn×n generated by assigning any real-valued function

f(·) to the regular lattice En, n ∈ N.

Definition 3.1.4. Let f(·) be a real-valued function defined on [0, 1]2, and let

f(En) := (f(`/n, k/n))n, n
k=1,`=1 ∈ Rn×n, n ≥ 1,

where En is the regular lattice given by (1.1.1). Corresponding to the sequence of

matrices {f(En)}n≥1 in Rn×n, we define a sequence of functions {hfn(·)}n≥1 in HB as

follows:

hfn(·) :





[0, 1]2 → R

(z1, z2) 7→ 1
n
Tn(f(En))(z1, z2).

(3.1.11)

Remark 3.1.5. From Equation (3.1.9), we have

hfn(z1, z2) =

∫

[0,z1]×[0,z2]

1

n

∂2Tn(f(En))(t, s)

∂t∂s
λ2(dt, ds),

for every (z1, z2) ∈ [0, 1]2. By definition, and by recalling (3.1.7), the second partial

derivative of hfn(·) with respect to both variables exists λ2 a.s. on [0, 1]2, where

∂2hfn(z1, z2)

∂z1∂z2

= f(`/n, k/n), (3.1.12)

for every (z1, z2) ∈ ∆`k = ((`− 1)/n, `/n)× ((k − 1)/n, k/n), 1 ≤ `, k ≤ n.

For each n ≥ 1 let us define a function gfn(·) on [0, 1]2 by

gfn(·) :=
n∑

k=1

n∑

`=1

f(`/n, k/n)1[(`−1)/n,`/n)×[(k−1)/n,k/n)(·)

+
n∑

`=1

f(`/n, 1)1[(`−1)/n,`/n)×{1}(·)

+
n∑

k=1

f(1, k/n)1{1}×[(k−1)/n,k/n)(·)

+ f(1, 1)1{(1,1)}(·) ∈ L2([0, 1]2), (3.1.13)
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where 1A(·), A ⊆ [0, 1]2, stands for the indicator function of A. Hence, for each

n ≥ 1, gfn(·) is defined everywhere on [0, 1]2 and is clearly right continuous in the

sense of Definition 2.4.1 on the half-open rectangle [0, 1)2. Furthermore by applying

either Fubini’s theorem or the fundamental theorem of calculus for Lebesgue integrals,

we have

hfn(z1, z2) =
1

n
Tn(f(En))(z1, z2) =

∫

[0,z1]×[0,z2]

gfn(t, s)λ2(dt, ds), (3.1.14)

(z1, z2) ∈ [0, 1]2. Note that Equation (3.1.14) can also be shown by directly applying

the definition of the integral on the right hand side.

Remark 3.1.6. For n ≥ 1, gfn(·) is in BV V ([0, 1]2), see Definition A.1.5 for the

definition of BV V ([0, 1]2). Moreover, for c = 0 or 1 and n ≥ 1, the ”marginal”

functions gfn(c, ·) and gfn(·, c) are in BV ([0, 1]). To see this, we consider the finite

exact cover Γn = {[(` − 1)/n, `/n] × [(k − 1)/n, k/n] : 1 ≤ `, k ≤ n}. Note that

Γn = Γ
(1)
n ×Γ

(2)
n , where Γ

(1)
n := {[(`−1)/n, `/n] : 1 ≤ ` ≤ n}, Γ

(2)
n := {[(k−1)/n, k/n] :

1 ≤ k ≤ n}. By (3.1.13) and by Definition A.1.4, it can be shown easily, that

V (gfn ; [0, 1]2) ≤ v(f ; Γn),

V (gfn(1, ·); [0, 1]) ≤ v(f(1, ·); Γ(2)
n ),

V (gfn(·, 1); [0, 1]) ≤ v(f(·, 1); Γ(1)
n ),

V (gfn(0, ·); [0, 1]) ≤ v(f(1/n, ·); Γ(2)
n ),

V (gfn(·, 0); [0, 1]) ≤ v(f(·, 1/n); Γ(1)
n ).

Here and throughout V (ψ; A) stands for the total variation of ψ(·) on A ⊂ [0, 1]2.

Consequently, by Definition A.1.6, for n ≥ 1, gfn(·) is in BV ([0, 1]2).



Chapter 3. Residual partial sums limit processes 40

Lemma 3.1.7. Let f(·) be any function in L2([0, 1]2). Let us define a function

hf (·) ∈ HB as follows:

hf (·) :





[0, 1]2 → R

(z1, z2) 7→ ∫
[0,z1]×[0,z2]

f(t, s)λ2(dt, ds).
(3.1.15)

If the function f(·) is continuous on [0, 1]2, then gfn(·) converges uniformly on [0, 1]2

to
∂2hf (·)
∂z1∂z2

= f(·), as n →∞.

Proof. By the hypothesis, given ε > 0, there exists a δ > 0, such that

sup
‖(t,s)−(t′,s′)‖≤δ

|f(t′, s′)− f(t, s)| ≤ ε.

We consider the non-overlapping finite exact cover Γn of [0, 1]2 given in Remark 3.1.6,

with ‖Γn‖ =
√

2/n. Take n0 := [
√

2/δ]+1. Then ‖Γn‖ ≤ δ for all n ≥ n0. Let (t, s) ∈
[0, 1]2 be arbitrarily fixed, then there exist `, k ∈ N, (1 ≤ `, k ≤ n), n0 ≤ n, such that

either (t, s) ∈ [(` − 1)/n, `/n) × [(k − 1)/n, k/n), or (t, s) ∈ [(` − 1)/n, `/n) × {1},
or (t, s) ∈ {1} × [(k − 1)/n, k/n), or (t, s) ∈ {(1, 1)}. By (3.1.13), in each case

we have |gfn(t, s)− f(t, s)| ≤ ε, n ≥ n0. Since (t, s) ∈ [0, 1]2 is arbitrary, we get

‖gfn(·)− f(·)‖∞ ≤ ε, for all n ≥ n0. This completes the proof.

Corollary 3.1.8. If the function f(·) is continuous on [0, 1]2, then

‖hfn − hf‖HB

n→∞−→ 0 and ‖hfn − hf‖∞
n→∞−→ 0.

Proof. By definition, the producing functions of hfn(·) and hf (·) are given by gfn(·)
and f(·), respectively. Thus by (3.1.14), (3.1.15), and Lemma 3.1.7, we get

0 ≤ ‖hfn − hf‖2
HB

=

∫

[0,1]2
|gfn(t, s)− f(t, s)|2 λ2(dt, ds)

≤
∫

[0,1]2
( sup
(t,s)∈[0,1]2

|gfn(t, s)− f(t, s)|)2λ2(dt, ds),

= ‖gfn − f‖2
∞

n→∞−→ 0.
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Similarly, for any (z1, z2) ∈ [0, 1]2, we have

|hfn(z1, z2)− hf (z1, z2)| =
∣∣∣∣
∫

[0,z1]×[0,z2]

(gfn(t, s)− f(t, s))λ2(dt, ds)

∣∣∣∣

≤
∫

[0,z1]×[0,z2]

sup
(t,s)∈[0,1]2

|gfn(t, s)− f(t, s)|λ2(dt, ds),

≤ ‖gfn − f‖∞
n→∞−→ 0.

We now extent the preceding results to the regression functions f1(·), . . . , fp(·)
starting with a definition of subspaces required in establishing the limit processes of

the residual partial sums processes associated to f1(·), . . . , fp(·) defined on [0, 1]2 .

Definition 3.1.9. Suppose that f1(·), . . . , fp(·) are linearly independent as functions

in L2([0, 1]2). Let us define the following linear subspaces:

(1) W := [f1(·), . . . , fp(·)], i.e., the subspace spanned by the regression functions

{f1(·), . . . , fp(·)}.

(2) WHB
:= [hf1(·), . . . , hfp(·)], i.e., the subspace of HB spanned by the set of func-

tions {hf1(·), . . . , hfp(·)}, where hfi
(·) is given by (3.1.15).

(3) Wn := [f1(En), . . . , fp(En)] is a subspace in Rn×n, where fi(En) is given in Defi-

nition 3.1.4.

(4) WnHB
:= [hf1,n(·), . . . , hfp,n(·)], i.e., the subspace of HB spanned by the set of

functions {hf1,n(·), . . . , hfp,n(·)}, where hfi,n(·) is defined in (3.1.11).

(5) L2WnHB
:= [gf1,n(·), . . . , gfp,n(·)], i.e., the subspace of L2([0, 1]2) spanned by the

set of functions {gf1,n(·), . . . , gfp,n(·)}, where gfi,n(·) is defined in (3.1.13).
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Remark 3.1.10. We furnish the subspaces W and L2WnHB
with the inner product

〈·, ·〉L2, the subspaces WHB
and WnHB

with the inner product 〈·, ·〉HB
, while the sub-

space Wn is furnished with the inner product 〈·, ·〉Rn×n. By definition it can be shown

that {hf1(·), . . . , hfp(·)} is a basis of WHB
⊆ HB. The matrices f1(En), . . . , fp(En)

form a basis of Wn ⊆ Rn×n, if and only if, the functions hf1,n(·), . . . , hfp,n(·) are

a basis of WnHB
⊆ HB. The latter holds if and only if, {gf1,n(·), . . . , gfp,n(·)} is a

basis of L2WnHB
. Let us define the matrix J := (〈fi, fj〉L2)

p, p
i=1,j=1. Since the de-

sign matrix Xn := (vec(f1(En)), . . . , vec(fp(En))) has the property ( 1
n2X

>
n Xn)

n→∞−→ J,

component-wise, then det( 1
n2X

>
n Xn)

n→∞−→ det(J), where det(·) is the determinant func-

tion. The matrix J is clearly invertible (det(J) 6= 0), hence there exists an n0 ∈ N
such that det( 1

n2X
>
n Xn) 6= 0, for n ≥ n0. Hence Xn has full-column rank p for ev-

ery n ≥ n0, which directly implies that the vectors vec(f1(En)), . . . , vec(fp(En)) are

linearly independent in Rn2
, for n ≥ n0. By the linearity of vec operator, we fur-

ther get that f1(En), . . . , fp(En) are linearly independent in Rn×n, for every n ≥ n0.

Thus, as stated above, this implies that, for every n ≥ n0, {hf1,n(·), . . . , hfp,n(·)} and

{gf1,n(·), . . . , gfp,n(·)} are bases of WnHB
and L2WnHB

, respectively. In the sequel we

always assume that n ≥ n0.

Remark 3.1.11. Let {f̃1(·), . . . , f̃p(·)} be the Gram-Schmidt orthonormal basis of W

associated with the basis {f1(·), . . . , fp(·)}, and let {h̃f1(·), . . . , h̃fp(·)} be the Gram-

Schmidt orthonormal basis of WHB
associated with the basis {hf1(·), . . . , hfp(·)}. Then

by (3.1.15) it can be shown that, for every (z1, z2) ∈ [0, 1]2

h̃fi
(z1, z2) =

∫

[0,z1]×[0,z2]

f̃i(t, s)λ
2(dt, ds), i = 1, . . . , p. (3.1.16)

Similarly, let {h̃f1,n(·), . . . , h̃fp,n(·)} be the Gram-Schmidt orthonormal basis of WnHB

corresponding to the basis {hf1,n(·), . . . , hfp,n(·)}, and let {g̃f1,n(·), . . . , g̃fp,n(·)} be the
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Gram-Schmidt orthonormal basis of L2WnHB
that corresponds to {gf1,n(·), . . . , gfp,n(·)}.

Then by (3.1.14), for every (z1, z2) ∈ [0, 1]2, we have

h̃fi,n(z1, z2) =

∫

[0,z1]×[0,z2]

g̃fi,n(t, s)λ2(dt, ds). (3.1.17)

Corollary 3.1.12. By definition, the functions g̃fi,n(·), n ≥ 1 are right continuous

on [0, 1)2. Moreover, if fi(·) is continuous on [0, 1]2, then

∥∥∥g̃fi,n − f̃i

∥∥∥
∞

n→∞−→ 0, i = 1, . . . , p.

The same properties are also satisfied by the corresponding sequences of marginal

functions
(
g̃fi,n(c, ·))

n≥1
and

(
g̃fi,n(·, c))

n≥1
, c = 0, 1, i.e., they are right continuous

on the half-open interval [0, 1), and we have

∥∥∥g̃fi,n(c, ·)− f̃i(c, ·)
∥∥∥
∞

n→∞−→ 0 and
∥∥∥g̃fi,n(·, c)− f̃i(·, c)

∥∥∥
∞

n→∞−→ 0.

Proof. We first consider the case i = 1. Since gf1,n(·) ‖·‖∞−→ f1(·) as n → ∞, then

gf1,n(·) ‖·‖L2−→ f1(·), which, by the continuity of ‖·‖L2
, implies

∥∥gf1,n

∥∥
L2

n→∞−→ ‖f1‖L2
.

Hence, for n →∞, we have

g̃f1,n(·) :=
gf1,n(·)∥∥gf1,n(·)

∥∥
L2

‖·‖∞−→ f1(·)
‖f1(·)‖L2

=: f̃1(·).

Now let us consider the case i = 2. Since g̃f1,n(·) ‖·‖∞−→ f̃1(·) and gf2,n(·) ‖·‖∞−→ f2(·), as

n → ∞, then 〈g̃f1,n , gf2,n〉L2

n→∞−→ 〈f̃1, f2〉L2 . These yield gf2,n(·) − 〈g̃f1,n , gf2,n〉L2 g̃f1,n(·)
‖·‖∞−→ f2(·)−〈f̃1, f2〉L2 f̃1(·) as n →∞. Hence, by applying the same argument as before,

as n →∞, gf2,n(·)−〈g̃f1,n , gf2,n〉L2 g̃f1,n(·) ‖·‖L2−→ f2(·)−〈f̃1, f2〉L2 f̃1(·). Furthermore, since

‖·‖L2
is continuous, we further obtain

∥∥gf2,n(·)− 〈g̃f1,n , gf2,n〉L2 g̃f1,n(·)
∥∥

L2

n→∞−→
∥∥∥f2(·)− 〈f̃1, f2〉L2 f̃1(·)

∥∥∥
L2

.
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Thus, by combining these results, we finally get

g̃f2,n(·) :=
gf2,n(·)− 〈g̃f1,n , gf2,n〉L2 g̃f1,n(·)∥∥gf2,n(·)− 〈g̃f1,n , gf2,n〉L2 g̃f1,n(·)

∥∥
L2

‖·‖∞−→ f2(·)− 〈f̃1, f2〉L2 f̃1(·)∥∥∥f2(·)− 〈f̃1, f2〉L2 f̃1(·)
∥∥∥

L2

=: f̃2(·).

The assertion for i = 3, . . . , p can be handled analogously. This proves the first

assertion. The second assertion is a direct consequence of the first assertion.

Corollary 3.1.13. For i = 1, . . . , p, if the regression function fi(·) is continuous on

[0, 1]2, then
∥∥∥h̃fi,n − h̃fi

∥∥∥
HB

n→∞−→ 0 and
∥∥∥h̃fi,n − h̃fi

∥∥∥
∞

n→∞−→ 0.

Proof. This result follows directly from Corollary 3.1.12.

Proposition 3.1.14. Let fi(·) be in BV ([0, 1]2), and let c = 0 or 1. Then for

i = 1, . . . , p, there exist positive real numbers Mi, Mic and Kic, such that for n ≥ 1,

V (g̃fi,n−f̃i; [0, 1]2) ≤ Mi, V ((g̃fi,n−f̃i)(c, ·); [0, 1]) ≤ Mic and V ((g̃fi,n−f̃i)(c, ·); [0, 1]) ≤
Kic. That is, the sequences (V (g̃fi,n− f̃i; [0, 1]2))n≥1, (V ((g̃fi,n− f̃i)(c, ·); [0, 1]))n≥1 and

(V ((g̃fi,n − f̃i)(c, ·); [0, 1]))n≥1 are bounded uniformly.

Proof. Let us consider first the case i = 1. Since g̃f1,n =
gf1,n

‖gf1,n‖L2

, by Remark 3.1.6

and by the triangle inequality, for a fixed n ≥ 1, it follows that

V (g̃f1,n − f̃1; [0, 1]2) ≤ V (f1; [0, 1]2)∥∥gf1,n

∥∥
L2

+ V (f̃1; [0, 1]2),

V ((g̃f1,n − f̃1)(1, ·); [0, 1]) ≤ V (f1(1, ·); [0, 1])∥∥gf1,n

∥∥
L2

+ V (f̃1(1, ·); [0, 1]),

V ((g̃f1,n − f̃1)(·, 1); [0, 1]) ≤ V (f1(·, 1); [0, 1])∥∥gf1,n

∥∥
L2

+ V (f̃1(·, 1); [0, 1]),

V ((g̃f1,n − f̃1)(0, ·); [0, 1]) ≤ V (f1(1/n, ·); [0, 1])∥∥gf1,n

∥∥
L2

+ V (f̃1(0, ·); [0, 1]),

V ((g̃f1,n − f̃1)(·, 0); [0, 1]) ≤ V (f1(·, 1/n); [0, 1])∥∥gf1,n

∥∥
L2

+ V (f̃1(·, 0); [0, 1]).
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Since f1(·) ∈ BV ([0, 1]2), by Proposition A.1.7, V (f1(1/n, ·); [0, 1]) ≤ ‖Φ1‖∞ and

V (f1(·, 1/n); [0, 1]) ≤ ‖Ψ1‖∞, where Φ1(·) and Ψ1(·) are the total variation functions

on [0, 1] associated with f1(·), see Appendix A. Since
∥∥gf1,n

∥∥
L2

converges to ‖f1‖L2
as

n →∞, the sequences on the right hand side of the preceding inequalities are clearly

bounded from above by positive numbers. Consequently, the sequences on the left

hand side are also bounded from above.

We now consider the case i = 2. Since g̃f2,n(·) =
gf2,n

(·)−〈g̃f1,n
,gf2,n

〉L2
g̃f1,n

(·)
‖gf2,n

(·)−〈g̃f1,n
,gf2,n

〉L2
g̃f1,n

(·)‖
L2

, then

by the triangle inequality, Remark 3.1.6 and by using the results obtained for i = 1,

we obtain

V (g̃f2,n − f̃2; [0, 1]2) ≤ V (f2; [0, 1]2)∥∥∥g∗f2,n

∥∥∥
L2

+

∣∣〈g̃f1,n , gf2,n〉L2

∣∣ V (f1; [0, 1]2)∥∥∥g∗f2,n

∥∥∥
L2

∥∥gf1,n

∥∥
L2

+ V (f̃2; [0, 1]2),

V ((g̃f2,n − f̃2)(1, ·); [0, 1]) ≤ V (f2(1, ·); [0, 1])∥∥∥g∗f2,n

∥∥∥
L2

+

∣∣〈g̃f1,n , gf2,n〉L2

∣∣ V (f1(1, ·); [0, 1])∥∥∥g∗f2,n

∥∥∥
L2

∥∥gf1,n

∥∥
L2

+ V (f̃2(1, ·); [0, 1]),

V ((g̃f2,n − f̃2)(·, 1); [0, 1]) ≤ V (f2(·, 1); [0, 1])∥∥∥g∗f2,n

∥∥∥
L2

+

∣∣〈g̃f1,n , gf2,n〉L2

∣∣ V (f1(·, 1); [0, 1])∥∥∥g∗f2,n

∥∥∥
L2

∥∥gf1,n

∥∥
L2

+ V (f̃2(·, 1); [0, 1]),

V ((g̃f2,n − f̃2)(0, ·); [0, 1]) ≤ ‖Φ2‖∞∥∥∥g∗f2,n

∥∥∥
L2

+

∣∣〈g̃f1,n , gf2,n〉L2

∣∣ ‖Φ1‖∞∥∥∥g∗f2,n

∥∥∥
L2

∥∥gf1,n

∥∥
L2

+ V (f̃2(0, ·); [0, 1]),

V ((g̃f2,n − f̃2)(·, 0); [0, 1]) ≤ ‖Ψ2‖∞∥∥∥g∗f2,n

∥∥∥
L2

+

∣∣〈g̃f1,n , gf2,n〉L2

∣∣ ‖Ψ1‖∞∥∥∥g∗f2,n

∥∥∥
L2

∥∥gf1,n

∥∥
L2

+ V (f̃2(·, 0); [0, 1]),

where Φ2 and Ψ2 are total variation functions on [0, 1] associated with f2(·), while

g∗f2,n
(·) := gf2,n(·)− 〈g̃f1,n , gf2,n〉L2 g̃f1,n(·).
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By Corollary 3.1.12, all sequences on the right hand side of the preceding inequalities

clearly converge to positive real numbers. Hence the sequences on the left hand side

are bounded from above. The assertion for i = 3, . . . , p can be derived analogously.

By Corollary 3.1.12 and Proposition 3.1.14, the conditions of Proposition 2.4.5

are clearly satisfied for ψn(·) = (g̃fi,n − f̃i)(·) as well as for ψn(c, ·) = (g̃fi,n − f̃i)(c, ·)
and ψn(·, c) = (g̃fi,n − f̃i)(·, c), n ≥ 1, c = 0 and 1. Thus the following version of

Proposition 2.4.5 is straightforward.

Corollary 3.1.15. If the regression functions f1(·), . . . , fp(·) are continuous and have

bounded variation on [0, 1]2 in the sense of Hardy (in BV ([0, 1]2)), then for u(·) ∈
C([0, 1]2), and c = 0 and 1, we have

∫ R

[0,1]2
u(t, s) d(g̃fi,n − f̃i)(t, s)

n→∞−→ 0,

∫ R

[0,1]

u(c, s) d(g̃fi,n − f̃i)(c, s)
n→∞−→ 0,

∫ R

[0,1]

u(t, c) d(g̃fi,n − f̃i)(t, c)
n→∞−→ 0.

Corollary 3.1.16. Suppose the regression functions f1(·), . . . , fp(·) are continuous

and have bounded variation on [0, 1]2 in the sense of Hardy. Let (ν(g̃fi,n−f̃i)
)n≥1,

(ν(g̃fi,n−f̃i)(c,·))n≥1, and (ν(g̃fi,n−f̃i)(·,c))n≥1 be the sequence of finite Lebesgue-Stieltjes

signed measures that correspond to the sequences ((g̃fi,n− f̃i))n≥1, ((g̃fi,n− f̃i)(c, ·))n≥1,

and ((g̃fi,n − f̃i)(·, c))n≥1, respectively, c = 0, 1. Then for u(·) ∈ C([0, 1]2), we have
∫

(0,1]2
u(·) dν̄(g̃fi,n−f̃i)

n→∞−→ 0,

∫

(0,1]

u(c, ·) dν̄(g̃fi,n−f̃i)(c,·)
n→∞−→ 0,

∫

(0,1]

u(·, c) dν̄(g̃fi,n−f̃i)(·,c)
n→∞−→ 0.

Proof. The result follows by Corollary 2.4.9 and Corollary 3.1.15.
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3.2 Residual partial sums limit processes

Having defined the notion of the reproducing kernel Hilbert space for Brownian (2)

motion and the partial sums operator Tn, we now establish the limit processes of the

sequence of the residual partial sums processes {Tn(Rn×n)(t, s) : (t, s) ∈ [0, 1]2}n≥1

for the linear regression model defined on the unit square [0, 1]2 starting with Lemma

3.2.1 below.

Lemma 3.2.1. For any A = (a`k)
n, n
`=1,k=1 ∈ Rn×n, we have

Tn(prWn(A))(·) = (prTn(Wn)Tn(A)(·))(·) = (prWnHB
Tn(A)(·))(·), ∀ n ≥ n0,

where Tn(Wn) := [Tn(f1(En))(·), . . . ,Tn(fp(En))(·)], and n0 is the natural number

defined in Remark 3.1.10.

Proof. Let n ≥ n0 be arbitrarily fixed. Since an orthogonal projection does not

depend on any specific choice of a basis, without loss of generality we can assume

that {f1(En), . . . , fp(En)} is an orthonormal basis of Wn. By (3.1.10) the orthonormal

basis of WnHB
that corresponds to this basis is {Tn(f1(En))(·), . . . ,Tn(fp(En))(·)}.

Hence, the orthogonal projection of A ∈ Rn×n onto Wn with respect to this basis is

prWn(A) =

p∑
i=1

〈A, fi(En)〉Rn×nfi(En). (3.2.1)

Thus, by the linearity of the partial sums operator Tn on Rn×n, we get

Tn(prWn(A))(·) = Tn

(
p∑

i=1

〈A, fi(En)〉Rn×nfi(En)

)
(·)

=

p∑
i=1

〈A, fi(En)〉Rn×nTn(fi(En))(·)

(3.1.10)
=

p∑
i=1

〈Tn(A)(·),Tn(fi(En))(·)〉HB
Tn(fi(En))(·)

= (prWnHB
Tn(A)(·))(·).
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Definition 3.2.2. Let HBBV ([0,1]2)
be the set of all functions in HB whose associated

producing functions are in BV ([0, 1]2), i.e.,

HBBV ([0,1]2)
:= {h(·) ∈ HB : h(t, s) =

∫

[0,t]×[0,s]

ĥ(·)dλ2, ĥ(·) ∈ BV ([0, 1]2)}.

The mapping 〈·, ·〉 is defined on HBBV ([0,1]2)
× C([0, 1]2), by

〈h, u〉 := ∆[0,1]2(uĥ)−
∫ R

[0,1]

u(t, 1)dĥ(t, 1) +

∫ R

[0,1]

u(t, 0)dĥ(t, 0)

−
∫ R

[0,1]

u(1, s)dĥ(1, s) +

∫ R

[0,1]

u(0, s)dĥ(0, s)

+

∫ R

[0,1]2
u(t, s)dĥ(t, s). (3.2.2)

Remark 3.2.3. By Remark A.1.8, Theorem A.2.4 and Theorem 1.2.18 in Stroock

(1994), all Riemann-Stieltjes integrals on the right hand side of (3.2.2) exist, hence the

mapping 〈·, ·〉 is well defined on HBBV ([0,1]2)
× C([0, 1]2). Since the Riemann-Stieltjes

integral (3.2.2) is linear in ĥ(·) as well as in u(·), the mapping 〈·, ·〉 constitutes a

bilinear mapping on HBBV ([0,1]2)
× C([0, 1]2). Moreover, by using integration by parts

for the Riemann-Stieltjes integral on the closed interval [0, 1], see Theorem 1.2.7 in

Stroock (1994), we further get

〈h, u〉 = −∆[0,1]2(uĥ) +

∫ R

[0,1]

ĥ(t, 1)du(t, 1)−
∫ R

[0,1]

ĥ(t, 0)du(t, 0)

+

∫ R

[0,1]

ĥ(1, s)du(1, s)−
∫ R

[0,1]

ĥ(0, s)du(0, s)

+

∫ R

[0,1]2
u(t, s)dĥ(t, s). (3.2.3)

Suppose for the moment that h(·) ∈ HBBV ([0,1]2)
and u(·) ∈ HB with the producing

functions ĥ(·) ∈ BV ([0, 1]2) and û(·), respectively. By using integration by parts for
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the Riemann-Stieltjes integrals on [0, 1]2 (see Theorem A.2.6), we obtain

∫ R

[0,1]2
u(t, s)dĥ(t, s) = ∆[0,1]2(uĥ)−

∫ R

[0,1]

ĥ(t, 1)du(t, 1) +

∫ R

[0,1]

ĥ(t, 0)du(t, 0)

−
∫ R

[0,1]

ĥ(1, s)du(1, s) +

∫ R

[0,1]

ĥ(0, s)du(0, s)

+

∫ R

[0,1]2
ĥ(t, s)du(t, s). (3.2.4)

We note that each of the Riemann-Stieltjes integrals that contribute to the right hand

side of (3.2.4) exist, see also Young (1917a). By combining (3.2.3) and (3.2.4), we

finally obtain

〈h, u〉 =

∫ R

[0,1]2
ĥ(t, s)du(t, s)

(2.4.8)
=

∫

(0,1]2
ĥ(t, s)ν̄u(dt, ds)

(3.1.3)
=

∫

[0,1]2
ĥ(t, s)û(t, s)λ2(dt, ds) = 〈h, u〉HB

, (3.2.5)

provided ĥ is continuous ν̄u a.e. on (0, 1]2. Thus, the inner product 〈·, ·〉HB
given by

Equation (3.1.4) coincides with the bilinear form 〈·, ·〉 on HBBV ([0,1]2)
×HB.

Remark 3.2.4. By combining (3.2.2) and (A.2.1) given in the appendix, for every

(h, u) ∈ HBBV ([0,1]2)
× C([0, 1]2), we have

|〈h, u〉| ≤ ‖u‖∞
(
4
∥∥∥ĥ

∥∥∥
∞

+ V (ĥ(·, 1); [0, 1]) + V (ĥ(·, 0); [0, 1])

+V (ĥ(1, ·); [0, 1]) + V (ĥ(0, ·); [0, 1]) + V (ĥ; [0, 1]2)
)

, (3.2.6)

where V (ψ(·); A), A ⊆ [0, 1]2 denotes the total variation of ψ on A.

Let us consider again Remark 3.1.11. The remark suggests that if the regression

function fi(·) is in BV ([0, 1]2), then the associated Gram-Schmidt orthonormal basis

{h̃f1(·), . . . , h̃fp(·)} of WHB
is in HBBV ([0,1]2)

. The producing function of h̃fi
(·) is given

by f̃i(·), i = 1, . . . , p. Based on this fact, by means of the bilinear mapping 〈·, ·〉 just
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defined, we extend the orthogonal projection of HB onto WHB
to a ”projection” of

C([0, 1]2) onto WHB
, see Proposition 3.2.5, below.

Proposition 3.2.5. Let the regression function fi(·) be continuous on [0, 1]2 and be

in BV ([0, 1]2). Let pr∗WHB
: C([0, 1]2) → WHB

be the mapping defined on C([0, 1]2),

such that for each u(·) ∈ C([0, 1]2), and (t, s) ∈ [0, 1]2,

(pr∗WHB
u)(t, s) :=

p∑
i=1

〈h̃fi
, u〉h̃fi

(t, s), (3.2.7)

where for i = 1, . . . , p,

〈h̃fi
, u〉 = ∆[0,1]2(uf̃i)−

∫ R

[0,1]

u(t, 1)df̃i(t, 1) +

∫ R

[0,1]

u(t, 0)df̃i(t, 0)

−
∫ R

[0,1]

u(1, s)df̃i(1, s) +

∫ R

[0,1]

u(0, s)df̃i(0, s)

+

∫ R

[0,1]2
u(t, s)df̃i(t, s).

Then pr∗WHB
constitutes a projection of u(·) onto WHB

.

Proof. By Definition 5.15 in Rudin (1991), it suffices to show that pr∗WHB
is linear and

idempotent, i.e., pr∗WHB
◦ pr∗WHB

= pr∗WHB
, and surjective. The first two conditions

follow easily from the linearity of 〈·, ·〉, the orthonormality of {h̃f1 , . . . , h̃fp} in WHB
⊂

HB and by the continuity of f̃i, for i = 1, . . . , p. The last condition is obvious by

the definition and by inclusion WHB
⊆ C([0, 1]2). We notice that in case u(·) ∈ HB,

pr∗WHB
is an orthogonal projection of u(·) onto WHB

with respect to the inner product

〈·, ·〉HB
.

Let us define a mapping pr∗WnHB
: C([0, 1]2) → WnHB

by means of

(pr∗WnHB
un)(t, s) :=

p∑
i=1

〈h̃fi,n , un〉h̃fi,n(t, s), (t, s) ∈ [0, 1]2, (3.2.8)
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where

〈h̃fi,n , un〉 = ∆[0,1]2(ung̃fi,n)−
∫ R

[0,1]

un(t, 1)dg̃fi,n(t, 1) +

∫ R

[0,1]

un(t, 0)dg̃fi,n(t, 0)

−
∫ R

[0,1]

un(1, s)dg̃fi,n(1, s) +

∫ R

[0,1]

un(0, s)dg̃fi,n(0, s)

+

∫ R

[0,1]2
un(t, s)dg̃fi,n(t, s).

By Remark 3.1.6 and Equation (3.1.17), {h̃f1,n(·) . . . , h̃fp,n(·)} ⊆ HBBV ([0,1]2)
with the

producing function of h̃fi,n(·) given by g̃fi,n(·) being in BV ([0, 1]2). Hence (3.2.8) is

well defined on C([0, 1]2). Furthermore, by applying similar argument as in Remark

3.2.3, for any un(·) ∈ HB with producing function ûn, we have

〈h̃fi,n , un〉 =

∫ R

[0,1]2
g̃fi,n(t, s)dun(t, s) =

∫

(0,1]2
g̃fi,n(t, s)dν̄un

=

∫

[0,1]2
g̃fi,n(t, s)ûn(t, s)λ2(dt, ds) = 〈h̃fi,n , un〉HB

,

since g̃fi,n(·) is continuous ν̄un a.e. on (0, 1]2. Hence, for un(·) ∈ HB, we get

(pr∗WnHB
un)(·) (3.2.8)

=

p∑
i=1

〈h̃fi,n , un〉h̃fi,n(·) (3.2.5)
=

p∑
i=1

〈h̃fi,n , un〉HB
h̃fi,n(·)

= (prWnHB
un)(·). (3.2.9)

This leads us to the conclusion that prWnHB
is a restriction of pr∗WnHB

on HB, i.e.,

pr∗WnHB
|HB

= prWnHB
. We notice that this result will be important in establishing

the limit process of the sequence of the residual partial sums processes, see Theorem

3.2.6 below.

Theorem 3.2.6. (residual partial sums limit processes)

Suppose that f1(·), . . . , fp(·) are linearly independent. If fi(·), i = 1, . . . , p, is contin-

uous and has bounded variation on [0, 1]2 in the sense of Hardy, than, as n →∞,

1

σ
Tn(Rn×n)(·) D−→ B2(·)− (pr∗WHB

B2)(·), in C([0, 1]2),
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where Rn×n is the matrix of residuals, and B2(·) is standard Brownian (2) motion.

Proof. Since Rn×n = En×n − prWnEn×n, by Lemma 3.2.1, we have

1

σ
Tn(Rn×n)(·) =

1

σ
Tn(En×n)(·)− 1

σ
Tn(prWnEn×n)(·)

=
1

σ
Tn(En×n)(·)− (prWnHB

1

σ
Tn(En×n)(·))(·) (3.2.10)

We use the results of the preceding section to show that whenever (un(·))n≥1 is a

sequence in C([0, 1]2) such that un(·) ‖·‖∞−→ u(·), then (pr∗WnHB
un)(·) ‖·‖∞−→ (pr∗WHB

u)(·),
as n → ∞. By the triangle inequality and by the linearity of the Riemann-Stieltjes

integral, we have

sup(t,s)∈[0,1]2

∣∣∣(pr∗WnHB
un)(t, s)− (pr∗WHB

u)(t, s)
∣∣∣

= sup
(t,s)∈[0,1]2

∣∣∣∣∣
p∑

i=1

〈h̃fi,n , un〉h̃fi,n(t, s)−
p∑

i=1

〈h̃fi
, u〉h̃fi

(t, s)

∣∣∣∣∣

≤ sup
(t,s)∈[0,1]2

p∑
i=1

∣∣∣〈h̃fi,n , un〉h̃fi,n(t, s)− 〈h̃fi
, u〉h̃fi

(t, s)
∣∣∣

= sup
(t,s)∈[0,1]2

p∑
i=1

∣∣∣〈h̃fi,n , un〉h̃fi,n(t, s)− 〈h̃fi,n , un〉h̃fi
(t, s) + 〈h̃fi,n , un〉h̃fi

(t, s)

−〈h̃fi
, un〉h̃fi

(t, s) + 〈h̃fi
, un〉h̃fi

(t, s)− 〈h̃fi
, u〉h̃fi

(t, s)
∣∣∣

≤
p∑

i=1

∣∣∣〈(h̃fi,n − h̃fi
) + h̃fi

, (un − u) + u〉
∣∣∣
∥∥∥h̃fi,n − h̃fi

∥∥∥
∞

+

p∑
i=1

∣∣∣〈h̃fi,n − h̃fi
, (un − u) + u〉

∣∣∣
∥∥∥h̃fi

∥∥∥
∞

+

p∑
i=1

∣∣∣〈h̃fi
, un − u〉

∣∣∣
∥∥∥h̃fi

∥∥∥
∞

≤
p∑

i=1

∣∣∣〈h̃fi,n − h̃fi
, un − u〉

∣∣∣
(∥∥∥h̃fi,n − h̃fi

∥∥∥
∞

+
∥∥∥h̃fi

∥∥∥
∞

)

+

p∑
i=1

∣∣∣〈h̃fi,n − h̃fi
, u〉

∣∣∣
(∥∥∥h̃fi,n − h̃fi

∥∥∥
∞

+
∥∥∥h̃fi

∥∥∥
∞

)

+

p∑
i=1

∣∣∣〈h̃fi
, un − u〉

∣∣∣
(∥∥∥h̃fi,n − h̃fi

∥∥∥
∞

+
∥∥∥h̃fi

∥∥∥
∞

)
+

p∑
i=1

∣∣∣〈h̃fi
, u〉

∣∣∣
∥∥∥h̃fi,n − h̃fi

∥∥∥
∞

.
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We now define sequences (K̃
(1)
in )n≥1, (K̃

(2)
in )n≥1, and positive numbers K̃i by putting

K̃
(1)
in := V ((g̃fi,n − f̃i)(·, 1); [0, 1]) + V ((g̃fi,n − f̃i)(·, 0); [0, 1])

+ V ((g̃fi,n − f̃i)(1, ·); [0, 1]) + V ((g̃fi,n − f̃i)(0, ·); [0, 1]) + V (g̃fi,n − f̃i; [0, 1]2),

K̃
(2)
in :=

∣∣∣∣
∫ R

[0,1]

u(t, 1)d(g̃fi,n − f̃i)(t, 1)

∣∣∣∣ +

∣∣∣∣
∫ R

[0,1]

u(t, 0)d(g̃fi,n − f̃i)(t, 0)

∣∣∣∣

+

∣∣∣∣
∫ R

[0,1]

u(1, s)d(g̃fi,n − f̃i)(1, s)

∣∣∣∣ +

∣∣∣∣
∫ R

[0,1]

u(0, s)d(g̃fi,n − f̃i)(0, s)

∣∣∣∣

+

∣∣∣∣
∫ R

[0,1]2
u(t, s)d(g̃fi,n − f̃i)(t, s)

∣∣∣∣ ,

K̃i := V (f̃i(·, 1); [0, 1]) + V (f̃i(·, 0); [0, 1])

+ V (f̃i(1, ·); [0, 1]) + V (f̃i(0, ·); [0, 1]) + V (f̃i; [0, 1]2),

for i = 1, . . . , p. By applying Inequality (A.2.1) to the absolute value of the bilinear

forms involved in the last inequality, we further obtain

sup(t,s)∈[0,1]2

∣∣∣(pr∗WnHB
un)(t, s)− (pr∗WHB

u)(t, s)
∣∣∣

≤
p∑

i=1

‖un − u‖∞
(
4
∥∥∥g̃fi,n − f̃i

∥∥∥
∞

+ K̃
(1)
in

)(∥∥∥h̃fi,n − h̃fi

∥∥∥
∞

+
∥∥∥h̃fi

∥∥∥
∞

)

+

p∑
i=1

(
4 ‖u‖∞

∥∥∥g̃fi,n − f̃i

∥∥∥
∞

+ K̃
(2)
in

) (∥∥∥h̃fi,n − h̃fi

∥∥∥
∞

+
∥∥∥h̃fi

∥∥∥
∞

)

+

p∑
i=1

‖un − u‖∞
(
4
∥∥∥f̃i

∥∥∥
∞

+ K̃i

)(∥∥∥h̃fi,n − h̃fi

∥∥∥
∞

+
∥∥∥h̃fi

∥∥∥
∞

)

+

p∑
i=1

‖u‖∞
(
4
∥∥∥f̃i

∥∥∥
∞

+ K̃i

) ∥∥∥h̃fi,n − h̃fi

∥∥∥
∞

. (3.2.11)

Since K̃
(1)
in is bounded (see Proposition 3.1.14), K̃

(2)
in

n→∞−→ 0 (see Corollary 3.1.15)

and K̃i is bounded (since f̃i(·) ∈ BV ([0, 1]2)), i = 1, . . . , p, then by Corollary 3.1.12,

Corollary 3.1.13 and by the hypothesis, the right hand side of (3.2.11) converges to

zero as n → ∞. Therefore, (pr∗WnHB
un)(·) converges to (pr∗WHB

u)(·) uniformly on
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[0, 1]2, whenever (un(·))n≥1 converges uniformly to u(·) in C([0, 1]2). Furthermore,

since 1
σ
Tn(En×n)(·) D−→ B2(·) (see Theorem 2.3.4), by (3.2.10) and Theorem 2.3.7,

for n →∞ we have

(prWnHB

1

σ
Tn(En×n)(·))(·) = (pr∗WnHB

1

σ
Tn(En×n)(·))(·) D−→ (pr∗WHB

B2)(·).

This completes the proof.

Remark 3.2.7. By Theorem 2.4.4, the sequence (K̃
(2)
in )n≥1 in (3.2.11) can be replaced

by the sequence (K̃
(2)′
in )n≥1, given by

K̃
(2)′
in :=

∣∣∣∣
∫

(0,1]2
u(·)dν̄(g̃fi,n−f̃i)

∣∣∣∣ +

∣∣∣∣
∫

(0,1]

u(1, ·)dν̄(g̃fi,n−f̃i)(1,·)

∣∣∣∣

+

∣∣∣∣
∫

(0,1]

u(·, 1)dν̄(g̃fi,n−f̃i)
(·, 1)

∣∣∣∣ +

∣∣∣∣
∫

(0,1]

u(0, ·)dν̄(g̃fi,n−f̃i)
(0, ·)

∣∣∣∣

+

∣∣∣∣
∫

(0,1]

u(·, 0)dν̄(g̃fi,n−f̃i)
(·, 0)

∣∣∣∣ ,

which by Corollary 3.1.16 converges to zero as n →∞, for i = 1, . . . , p.

Remark 3.2.8. Unless otherwise stated, we abbreviate the limit process {B2(t, s) −
(pr∗WHB

B2)(t, s) : (t, s) ∈ [0, 1]2} by Bf , where the index f stands for the vector of

regression functions f = (f1(·), . . . , fp(·))>. The function Kf (·) : [0, 1]2 × [0, 1]2 → R

given by Kf ((t, s), (t
′, s′)) := Cov(Bf (t, s), Bf (t

′, s′)), for (t, s), (t′, s′) ∈ [0, 1]2× [0, 1]2

is called the covariance function of Bf . For any (t, s) ∈ [0, 1]2, it is obvious that

Bf (t, s) is a zero mean Gaussian process with variance Kf ((t, s), (t, s)) > 0.

Remark 3.2.9. By Slutsky’s theorem, in case the variance σ2 is unknown, we can

replace σ in (3.2.10) by σ̂n :=
√

σ̂2
n given by (1.2.3) without altering the convergence

in distribution in C([0, 1]2).



Chapter 3. Residual partial sums limit processes 55

3.3 Examples

In this subsection we discuss the limit process of the residual partial sums process

associated with constant, first-order and second-order models. For each considered

model we identify the distribution of Bf (t, s) for each (t, s) ∈ [0, 1]2.

Example 3.3.1. As a simple case, we consider a constant model E(Y ) = β, where

β is an unknown parameter. For this model we have f(t, s) = 1, (t, s) ∈ [0, 1]2, and

WHB
= [h̃f (·)], where h̃f (t, s) = ts, (t, s) ∈ [0, 1]2. Since B2(t, s) = 0 a.s. if t = 0 or

s = 0, the projection of B2(·) onto WHB
is

(pr∗WHB
B2)(t, s) = ts〈h̃f , B2〉 = tsB2(1, 1), (t, s) ∈ [0, 1]2.
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Figure 5. Approximation to sample paths of the standard Brownian (2) bridge.

Thus, the residual partial sums limit process is

Bf (t, s) = B2(t, s)− tsB2(1, 1), (t, s) ∈ [0, 1]2,
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which is the standard Brownian (2) bridge defined in Section 2.2. An example of

sample paths of the standard Brownian (2) bridge can be seen in Figure 5 for which

the paths are approximated by residual partial sums processes 1
σ
Tn(Rn×n)(t, s) cor-

responding to the constant model.

Example 3.3.2. If the model is a full first-order model (plane), i.e., E(Y ) = β0 +

β1t+β2s, (t, s) ∈ [0, 1]2, where β0, β1 and β2 are unknown parameters, with regression

functions f1(t, s) = 1, f2(t, s) = t, f3(t, s) = s that are clearly continuous on [0, 1]2

and linearly independent as functions in L2([0, 1]2). The Gram-Schmidt orthonormal

basis in WHB
associated with this model is

h̃f1(t, s) = ts,

h̃f2(t, s) =
√

3ts(t− 1),

h̃f3(t, s) =
√

3ts(s− 1), (t, s) ∈ [0, 1]2.

Let us denote the associated limit process by Bf (1)(t, s). Since B2(t, s) = 0 a.s. if

t = 0 or s = 0, by (3.2.7) we get

Bf (1)(t, s) = B0
2(t, s)− 3ts(t + s− 2)B2(1, 1)

+ 6ts(t− 1)

∫

[0,1]

B2(t, 1)dt + 6ts(s− 1)

∫

[0,1]

B2(1, s)ds,

where B0
2 is the standard Brownian (2) bridge. Furthermore, by a little computation

the covariance function Kf (1)(·, ·) of Bf (1)(·) turns out to be

Kf (1)((t, s), (t
′, s′)) =(t ∧ t′)(s ∧ s′)− tst′s′ + 3t′s′(t′ − 1)s + 3t′s′(s′ − 1)t

− 3t′s′(t′ − 1)ts− 3t′s′(s′ − 1)ts + 3ts(t− 1)s′ − 3ts(t− 1)t′s′

+ 3ts(s− 1)t′ − 3ts(s− 1)t′s′.
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Example 3.3.3. We consider a full second-order model, i.e.,

E(Y ) = β0 + tβ1 + sβ2 + t2β11 + tsβ12 + s2β22, (t, s) ∈ [0, 1]2,

where β0, β1, β2, β11, β22, and β12 are unknown parameters. It is clear that the regres-

sion functions f1(t, s) = 1, f2(t, s) = t, f3(t, s) = s, f4(t, s) = t2, f5(t, s) = ts and

f6(t, s) = s2 are continuous on [0, 1]2 and linearly independent in L2([0, 1]2). The

Gram-Schmidt orthonormal basis of WHB
associated with this model is

h̃f1(t, s) = ts,

h̃f2(t, s) =
√

3ts(t− 1),

h̃f3(t, s) =
√

3ts(s− 1),

h̃f4(t, s) =
√

5(2t3s− 3t2s + ts),

h̃f5(t, s) =
1

3
(t2s2 − t2s− ts2 + ts),

h̃f6(t, s) =
√

5(2ts3 − 3ts2 + ts).

We denote the associated residual partial sums limit process by Bf (2)(t, s). Then, after

simplifying the Riemann-Stieltjes integrals involved, we get

Bf (2)(t, s) = Bf (1)(t, s)

− (10t3s + t2s2/9− 136t2s/9− 136ts2/9 + 10ts3 + 91ts/9)B2(1, 1)

+ (120t3s− 180t2s + 60ts)

∫

[0,1]

B2(t, 1)tdt

+ (2t2s2/9− 60t3s + 808t2s/9− 2ts2/9− 268ts/9)

∫

[0,1]

B2(t, 1)dt

+ (2t2s2/9− 2t2s/9 + 808ts2/9− 60ts3 − 268ts/9)

∫

[0,1]

B2(1, s)ds

+ (120ts3 − 180ts2 + 60ts)

∫

[0,1]

B2(1, s)sds
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− 4/9(t2s2 − t2s− ts2 + ts)

∫

[0,1]2
B2(t, s)dtds.

3.4 Extension to an n×m regular lattice on [0, 1]2

The extension of the preceding results to an n ×m regular lattice, denoted by Enm

is obvious and can be directly derived. However, it is important to give a little

description how we should work in such a situation. If model (1.1.2) is extended

to the n × m regular lattice, the sample space is Rm×n, the matrix of observations

is Ym×n := (Y`k)
m, n
k=1,`=1 ∈ Rm×n, which is assumed to satisfy the equation Ym×n =

Mm×n + Em×n, for some Mm×n ∈ Vmn ⊂ Rm×n, with Vmn = [f1(Enm), . . . , fp(Enm)],

where Em×n = (ε`,k)
m, n
k=1,`=1 is an m×n dimensional random matrix with components

that are i.i.d (0, σ2), σ2 ∈ (0,∞), and f1(·), . . . , fp(·) are the regression functions

defined on [0, 1]2. The matrix of least squares residuals is

Rm×n = prV⊥
mn

Ym×n = prV⊥
mn

Em×n.

By using the vec operator the model can also be presented in the form

vec(Ym×n) = Xmnβ + vec(Em×n),

where the design matrix Xmn := (vec(f1(Enm)), . . . , vec(fp(Enm))) is in Rnm×p. Sup-

pose that (f1(Enm), . . . , fp(Enm)) ⊂ Rm×n is a basis matrix of Vmn. Then the statistic

σ̂2
nm :=

∥∥prV⊥
mn

Ym×n

∥∥2

Rm×n

nm− p
=

∥∥prX⊥
mn

vec(Ym×n)
∥∥2

Rnm

nm− p

=
vec>(Ym×n)(Imn×mn −Xmn(X>

mnXmn)−1X>
mn)vec(Ym×n)

nm− p
(3.4.1)

is a consistent estimator of σ2 in the sense that σ̂2
nm converges in probability to σ2,

as n,m →∞ simultaneously.
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Let us define a linear operator Tnm : Rm×n → C([0, 1]2), such that for every

A := (a`k)
n, m
`=1,k=1 and (z1, z2) ∈ [0, 1]2,

Tnm(A)(z1, z2) =

[mz2]∑

k=1

[nz1]∑

`=1

a`k + (nz1 − [nz1])

[mz2]∑

k=1

a[nz1]+1,k

+ (mz2 − [mz2])

[nz1]∑

`=1

a`,[mz2]+1

+ (nz1 − [nz1])(mz2 − [mz2])a[nz1]+1,[mz2]+1,

where
∑j

k=1

∑i
`=1 a`k = 0, for j = 0 or i = 0. Analogous to the partial sums operator

Tn defined in Chapter 2, the operator Tnm embeds the random matrix Em×n and the

matrix of least squares residuals Rm×n into stochastic processes {Tnm(Em×n)(t, s) :

(t, s) ∈ [0, 1]2} and {Tnm(Rm×n)(t, s) : (t, s) ∈ [0, 1]2}, respectively, whose sample

paths are in C([0, 1]2). Quite analogous to Theorem 2.3.4, for n,m → ∞, we get

1
σ
√

nm
Tnm(Em×n)(·) D−→ B2(·), in C([0, 1]2), where B2(·) is the standard Brownian (2)

motion. Finally, if the regression functions f1(·), . . . , fp(·) are continuous and have

bounded variation on [0, 1]2, then for n,m → ∞, we have 1
σ
√

nm
Tnm(Rm×n)(·) D−→

Bf (·) in C([0, 1]2), where Bf (·) is the residual partial sums limit process defined in

Theorem 3.2.6. Thus the residual partial sums limit processes associated to both

models are the same.



Chapter 4

Tests based on residual partial

sums processes

In this chapter we apply the weak convergence theory elaborated in Chapter 3 to

the theory of linear models. In particular we consider model-checks for spatial data.

Based on a set of data from an experiment conducted on the regular lattice En ⊆ [0, 1]2

or more generally on Enm ⊆ [0, 1]2, we test the hypothesis that a true but unknown

regression function belongs to a certain subspace generated by finitely many known

regression functions. More exactly, we decide the problem by a test based on the

residual partial sums process associated to the linear regression model formulated in

Chapter 1.

We start this chapter with the formulation of the hypotheses, then define asymp-

totic tests, finally study the asymptotic behavior of these procedures by applying the

results derived in Chapter 3. We shall propose three test statistics which are famil-

iar in nonparametric statistical theory: a Kolmogorov type statistic, a Kolmogorov -

Smirnov type statistic and a Cramér-von Mises type statistic. These will be defined

in Section 4.2, Section 4.3 and Section 4.4, respectively. To construct the asymptotic

60
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critical region of the tests, we calculate the quantiles of the three test statistics by

simulation.

Finally, in Section 4.5 we observe the consistency and the asymptotic power of the

tests by establishing the asymptotic distribution of each statistic under alternatives.

At the end of Section 4.5 we conduct Monte Carlo simulations to approximate the

limiting power of the tests. Throughout this chapter, we use the definitions and

notations introduced in the preceding chapters.

4.1 Formulation of the Hypotheses

We consider the regression model

Y (t, s) = g(t, s) + ε(t, s), (t, s) ∈ [0, 1]2, (4.1.1)

where g : [0, 1]2 → R is an unknown real-valued function. We assume that ε(t, s) is

a real-valued random variable with mean 0 and variance σ2 ∈ (0,∞) and g(·) is in

BV V ([0, 1]2). We are interested in testing the hypothesis

H0 : g ∈ W versus K : g /∈ W, (4.1.2)

where W = [f1(·), . . . , fp(·)] is the linear subspace generated by known regression

functions f1(·), . . . , fp(·). We assume that the conditions of Theorem 3.2.6 are fulfilled

by the vector of regression functions f = (f1(·), . . . , fp(·))>, i.e., they are linearly

independent, continuous and have bounded variation in the sense of Hardy on the

closed square [0, 1]2.

Suppose that Yn×n = (Y`k)
n, n
k=1,`=1 is an n× n dimensional matrix of independent

observations associated with model (4.1.1), taken from the regular lattice En. By

using matrix notation this may be rewritten as

Yn×n = Gn×n + En×n, (4.1.3)
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where En×n = (ε`k)
n, n
k=1,`=1 is the matrix of random errors with E(ε`k) = 0 and

V ar(ε`k) = σ2 ∈ (0,∞), and Gn×n := (g(`/n, k/n))n, n
k=1,`=1 ∈ Rn×n. Thus based on

these observations, the problem of testing (4.1.2) can be implemented by performing

a test of the hypotheses

H0 : Gn×n ∈ Wn versus K : Gn×n 6∈ Wn, (4.1.4)

for each n ∈ N, where Wn = [f1(En), . . . , fp(En)], see Definition 3.1.9. Firstly, we fix

the asymptotic critical region of the tests by establishing the asymptotic distribution

of each test statistic under H0. Later, we consider the asymptotic distribution under

K, which is important in determining the power of the tests. For our test problems,

the sample space is (Rn×n,B(Rn×n), {Pg : g ∈ BV V ([0, 1]2)}), n ∈ N, where {Pg :

g ∈ BV V ([0, 1]2)} is a family of unknown probability measures that depend on g(·) ∈
BV V ([0, 1]2 induced by the matrix of observations Yn×n which is assumed to be

defined on the probability space (Ω,F ,P). Under the operator Tn, the subspace

prW⊥
n
Rn×n is isomorphic to Tn(prW⊥

n
Rn×n)(·) ⊆ HB ⊆ C([0, 1]2), see (3.1.1).

Definition 4.1.1. Let γn : C([0, 1]2) → {0, 1}, n ≥ 1, be a sequence of nonrandomized

tests based on residual partial sums processes {Tn(Rn×n)(t, s) : (t, s) ∈ [0, 1]2}n≥1 for

testing (4.1.2) or (4.1.4). Let α ∈ (0, 1) and for any g(·) ∈ BV V ([0, 1]2), let Eg(·) be

the expectation operator with respect to the probability measure Pg.

• We say that (γn)n≥1 is a sequence of pointwise asymptotically level α tests, if

and only if

lim sup
n→∞

Eg(γn) ≤ α for each g(·) ∈ W.

• The sequence (γn)n≥1 is said to be a sequence of uniformly asymptotically level

α tests, if and only if

lim sup
n→∞

sup
g∈W

Eg(γn) ≤ α.
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• We say that (γn)n≥1 is a sequence of asymptotically size α tests, if and only if

lim
n→∞

sup
g∈W

Eg(γn) = α.

• The sequence (γn)n≥1 is said to be pointwise consistent in power, if and only if

lim
n→∞

Eg(γn) = 1 for each g(·) 6∈ W.

We refer the reader to Lehmann and Romano (2005), p. 422-423, for these Def-

initions. Note that every sequence of asymptotically size α tests is a sequence of

uniformly asymptotically level α tests.

4.2 Kolmogorov type test

A test of Kolmogorov type for testing the hypotheses (4.1.2) or (4.1.4) is defined by

means of the following functional of the residual partial sums process:

Kn,f := max
0≤k,`≤n

1

n

k∑
j=0

∑̀
i=0

rij = max
0≤k,`≤n

Tn(Rn×n)(`/n, k/n).

Here and throughout, rij := 0 for i = 0 or j = 0, and Rn×n is the matrix of residuals.

Due to (2.3.1) it is obvious that

Kn,f = sup
(t,s)∈[0,1]2

Tn(Rn×n)(t, s). (4.2.1)

Proposition 4.2.1. Suppose σ2 is known. For a fixed α ∈ (0, 1), an asymptotically

size α test for testing (4.1.2) or (4.1.4) based on Kn,f is given by

reject H0, if and only if Kn,f/σ ≥ c̃1−α,

where c̃1−α is the (1− α)-quantile of sup(t,s)∈[0,1]2 Bf (t, s).
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Proof. We define a sequence of nonrandomized tests (δn)n≥1 : C([0, 1]2) −→ {0, 1}, by

δn(Tn(Rn×n)(·)) :=





1, if Kn,f/σ ≥ c̃,

0, otherwise,
(4.2.2)

where the constant c̃ is the critical value of the test. Let g(·) ∈ W be fixed . From

the continuity of the supremum function and Theorem 3.2.6 we obtain for c̃ = c̃1−α

lim
n→∞

Eg(δn) = lim
n→∞

P {Kn,f/σ ≥ c̃1−α}

= lim
n→∞

P

{
sup

(t,s)∈[0,1]2

1

σ
Tn(prW⊥

n
Yn×n)(t, s) ≥ c̃1−α

}

(1.2.1)
= lim

n→∞
P

{
sup

(t,s)∈[0,1]2

1

σ
Tn(prW⊥

n
En×n)(t, s) ≥ c̃1−α

}

= P

{
sup

(t,s)∈[0,1]2
Bf (t, s) ≥ c̃1−α

}
= α. (4.2.3)

Remark 4.2.2. If σ2 is unknown, we can replace it by any consistent estimator. By

Slutsky’s theorem and the preceding result, for n →∞ we have

Kn,f/
√

σ̂2
n

D−→ sup
(t,s)∈[0,1]2

Bf (t, s),

where σ̂2
n is given by (1.2.2), see also Arnold (1981), p. 142-148.

The problem in realizing the asymptotically size α test formulated above is to

find the (1−α)-quantile of sup(t,s)∈[0,1]2 Bf (t, s) analytically or approximately. In case

the stochastic process Bf (·) is standard Brownian motion with parameter space [0, 1],

it is well known by the reflection principle of the standard Brownian motion that

P{supt∈[0,1] B(t) ≥ c̃} = 2P{Z > c̃}, c̃ > 0, where Z is a standard normal random

variable, see also Shorack and Wellner (1986), p. 33-37 and Billingsley (1999), p.
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91-93. For our case, if Bf (·) is the standard Brownian (2) motion B2, Zimmerman

(1972) derived the inequality P
{
sup(t,s)∈[0,1]2 B2(t, s) ≥ c̃

} ≤ 4 P{Z ≥ c̃}. This yields

an upper bound of P{sup(t,s)∈[0,1]2 B2(t, s) ≥ c̃} for each preassigned value of c̃, so that

we can use this inequality for checking our simulation results, see below.

4.2.1 Approximation of the quantiles of sup(t,s)∈[0,1]2 Bf(t, s)

As an alternative solution to the problem described above, we estimate the (1 −
α)-quantile of sup(t,s)∈[0,1]2 Bf (t, s) by applying Monte Carlo simulations generated

according to Algorithm 1 below. The simulations are constructed only for several

polynomial models under H0: null, constant, first order and second order models.

Numerically, the matrix of least squares residuals is computed by the equation

Rn×n = Yn×n −
∑p

i=1 β̂nifi(En), or equivalently vec(Rn×n) = vec(Yn×n) − Xnβ̂n,

where β̂n := (β̂n1, . . . , β̂np)
> is the solution of the normal equation (X>

n Xn)β =

X>
n vec(Yn×n) for β. This system of linear equations can be solved numerically by

applying either Gaussian elimination, Cholesky factorization or QR factorization,

see Gentle (1998), p. 87-112. The statistical software package S-PLUS and R pro-

vide a macro for solving such a normal equation, i.e., by applying the command:

solve(X>
n Xn,X>

n vec(Yn×n)).

Begin Algorithm 1

step 1 : Fix ñ ∈ N.

step 2 : Generate M i.i.d. pseudo random matrices E
(j)
ñ×ñ := (ε`kj)

ñ, ñ
k=1,`=1, with compo-

nents ε`kj generated from i.i.d. N (0, 1) random variables, j = 1, . . . , M .

step 3 : Calculate β̂
(j)
ñ by solving the equation (X>

ñ Xñ)β = X>
ñ vec(Y

(j)
ñ×ñ).

step 4 : Calculate the matrix of residuals R
(j)
ñ×ñ := Y

(j)
ñ×ñ −

∑p
i=1 β̂

(j)
ñi fi(En).
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step 5 : Calculate the statistic K
(j)
ñ,f := max0≤k,`≤ñ Tñ(R

(j)
ñ×ñ)(`/ñ, k/ñ).

step 6 : Calculate the simulated (1 − α)-quantiles of sup(t,s)∈[0,1]2 Bf (t, s): Sort all M

values of K
(j)
ñ,f in ascending order. Let K

(M :j)
ñ,f be the j’th smallest observation,

i.e., K
(M :1)
ñ,f ≤ . . . ≤ K

(M :j)
ñ,f ≤ K

(M :j+1)
ñ,f ≤ . . . ≤ K

(M :M)
ñ,f , the simulated (1− α)-

quantile is

c̃1−α =





K
(M :M(1−α))
ñ,f , if M(1− α) ∈ N,

K
(M :[M(1−α)]+1)
ñ,f , otherwise,

where [M(1− α)] = max{k ∈ N : k ≤ M(1− α)}.

End Algorithm 1

P{sup(t,s)∈[0,1]2 Bf (t, s) ≥ c̃1−α} = α

Models c̃0.5000 c̃0.6500 c̃0.7500 c̃0.8000 c̃0.8500

Zero 0.8648 1.1002 1.2942 1.4129 1.5564

Constant 0.8101 0.9416 1.0452 1.1067 1.1794

First order 0.7232 0.7917 0.8470 0.8810 0.9211

Second order 0.6392 0.6889 0.7293 0.7540 0.7838

Models c̃0.9000 c̃0.9500 c̃0.9750 c̃0.9900 c̃0.9950

Zero 1.7443 2.0348 2.3001 2.6126 2.8353

Constant 1.2728 1.4152 1.5408 1.6906 1.7965

First order 0.9739 1.0570 1.1329 1.2264 1.2930

Second order 0.8231 0.8849 0.9413 1.0098 1.0590

Table 1. The simulated (1− α)-quantiles of sup(t,s)∈[0,1]2 Bf (t, s).

The simulation results obtained by using the statistical software package R 2.0.1

are presented in Table 1, for α = 0.0050, 0.0100, 0.0250, 0.0500, 0.1000, 0.1500, 0.2000,
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0.2500, 0.3600 and 0.5000. For our results we chose sample size ñ × ñ = 30 × 30

and the number of replications is M = 106. It can be seen therein that for each

α, the higher the order of the model is, the smaller the simulated quantile c̃1−α

is. In case the residual partial sums limit process is standard Brownian (2) motion

B2 we can use Zimmerman’s inequality for checking our simulation results. As is

shown in Table 2, for each value of c̃1−α associated to the zero model, the simulated

value of P{sup(t,s)∈[0,1]2 B2(t, s) ≥ c̃1−α} is smaller than the corresponding value of

4P{Z ≥ c̃1−α}, where Z ∼ N (0, 1).

c̃1−α 0.8648 1.1002 1.2942 1.4129 1.5564

P{sup B2(t, s) ≥ c̃1−α} 0.5000 0.3500 0.2500 0.2000 0.1500

4P{Z ≥ c̃1−α} 0.7743 0.5425 0.3912 0.3154 0.2392

c̃1−α 1.7443 2.0348 2.3001 2.6126 2.8353

P{sup B2(t, s) ≥ c̃1−α} 0.1000 0.0500 0.0250 0.0100 0.0050

4P{Z ≥ c̃1−α} 0.1622 0.0837 0.0429 0.0180 0.0092

Table 2. Comparison of P{sup(t,s)∈[0,1]2 B2(t, s) ≥ c̃1−α} and 4P{Z ≥ c̃1−α}.

Remark 4.2.3. For the regular lattice Enm defined in Subsection 3.2.2, the Kol-

mogorov type statistic is defined by the following functional of the residual partial

sums process:

Knm,f := max
0≤k≤m; 0≤`≤n

1√
nm

k∑
j=0

∑̀
i=0

rij

= max
0≤k≤m; 0≤`≤n

1√
nm

Tnm(Rm×n)(`/n, k/m)

= sup
0≤t≤1; 0≤s≤1

1√
nm

Tnm(Rm×n)(t, s), (4.2.4)

where Tnm is the partial sums operator defined in Subsection 3.2.2. Analogous to

Proposition 4.2.1, for a fixed α ∈ (0, 1) and known σ, the asymptotically size α test
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for testing (4.1.2) or (4.1.4) based on the statistic Knm,f is given by

reject H0, if and only if Knm,f/σ ≥ c̃1−α,

where c̃1−α is the (1 − α)-quantile of sup(t,s)∈[0,1]2 Bf (t, s). If σ2 is unknown, it may

be replaced by
√

σ̂2
nm given by (3.4.1).

4.3 Kolmogorov-Smirnov type test

A Kolmogorov-Smirnov type procedure for testing the hypotheses (4.1.2) or (4.1.4)

is defined by means of the following functional of the residual partial sums process:

KSn,f := max
0≤k,`≤n

1

n

∣∣∣∣∣
k∑

j=0

∑̀
i=0

rij

∣∣∣∣∣ = max
0≤k,`≤n

|Tn(Rn×n)(`/n, k/n)| .

By analogy with the Kolmogorov statistic, it is obvious that

KSn,f = sup
(t,s)∈[0,1]2

|Tn(Rn×n)(t, s)| . (4.3.1)

Proposition 4.3.1. Let σ2 be known. For a fixed α ∈ (0, 1), an asymptotically size

α test for testing hypotheses (4.1.2) or (4.1.4) based on the statistic KSn,f is given by

reject H0, if and only if KSn,f/σ ≥ q̃1−α,

where q̃1−α is the (1−α)-quantile of sup(t,s)∈[0,1]2 |Bf (t, s)|. If σ2 is unknown, then the

test is given by

reject H0, if and only if KSn,f/
√

σ̂2
n ≥ q̃1−α,

where σ̂2
n is a consistent estimator of σ2.
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Proof. We first assume that σ2 is known and define a sequence of non randomized

tests (λn)n≥1 : C([0, 1]2) −→ {0, 1} by

λn(Tn(Rn×n)(·)) :=





1, if KSn,f/σ ≥ q̃,

0, otherwise,
(4.3.2)

where q̃ is a constant. Analogous to the Kolmogorov type test, by Theorem 3.2.6 and

the continuous mapping theorem, for g(·) ∈ W, we get for q̃ = q̃1−α,

lim
n→∞

Eg(λn) = lim
n→∞

P{KSn,f/σ ≥ q̃1−α}

= lim
n→∞

P

{
sup

(t,s)∈[0,1]2

∣∣∣∣
1

σ
Tn(prW⊥

n
Yn×n)(t, s)

∣∣∣∣ ≥ q̃1−α

}

(1.2.1)
= lim

n→∞
P

{
sup

(t,s)∈[0,1]2

∣∣∣∣
1

σ
Tn(prW⊥

n
En×n)(t, s)

∣∣∣∣ ≥ q̃1−α

}

= P

{
sup

(t,s)∈[0,1]2
|Bf (t, s)| ≥ q̃1−α

}
= α. (4.3.3)

Since g(·) is arbitrary in W, the test is asymptotically size α. By using the same

argument as that in the test of Kolmogorov type, in case σ2 is unknown, we can

replace σ by the square root of the consistent estimator σ̂2
n given by (1.2.2) without

altering (4.3.3). Thus, instead of KSn,f/σ we evaluate KSn,f/
√

σ̂2
n.

4.3.1 Approximation of the quantiles of sup(t,s)∈[0,1]2 |Bf(t, s)|
Similar to the Kolmogorov type test, we conduct Monte Carlo simulation to approxi-

mate the (1−α)-quantiles of sup(t,s)∈[0,1]2 |Bf (t, s)| by applying Algorithm 1 with the

only modification that Kn,f in step 5 and step 6 of Algorithm 1 is replaced by KSn,f

and the quantity c̃1−α is replaced by q̃1−α. The simulations are constructed for several

polynomial models under H0: null, constant, first order and second order model, each

of which is calculated for sample size ñ× ñ = 30×30 and the number of replication is
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M = 106. Table 3 presents the simulation results corresponding to the zero, constant,

first order and second order model executed by using the statistical software package

R 2.0.1, for α = 0.0050, 0.0100, 0.0250, 0.0500, 0.1000, 0.1500, 0.2000, 0.2500, 0.3500

and 0.5000.

P{sup(t,s)∈[0,1]2 |Bf (t, s)| ≥ q̃1−α} = α

Models q̃0.5000 q̃0.6500 q̃0.7500 q̃0.8000 q̃0.8500

Zero 1.2922 1.4804 1.6421 1.7432 1.8676

Constant 1.0326 1.1352 1.2194 1.2710 1.3330

First order 0.8212 0.8845 0.9356 0.9670 1.0040

Second order 0.7010 0.7493 0.7885 0.8123 0.8408

Models q̃0.9000 q̃0.9500 q̃0.9750 q̃0.9900 q̃0.9950

Zero 2.0335 2.2973 2.5370 2.8335 3.0380

Constant 1.4146 1.54036 1.6562 1.7967 1.8958

First order 1.0536 1.1306 1.2029 1.2920 1.3527

Second order 0.9920 1.0577 1.1050 1.0577 1.1048

Table 3: The simulated (1− α) quantiles of sup(t,s)∈[0,1]2 |Bf (t, s)|.

Remark 4.3.2. The Kolmogorov-Smirnov type statistic for the residual partial sums

process associated to the linear regression model defined on the regular lattice Enm is

KSnm,f := max
0≤k≤m; 0≤`≤n

1√
nm

∣∣∣∣∣
k∑

j=0

∑̀
i=0

rij

∣∣∣∣∣

= max
0≤k≤m; 0≤`≤n

1√
nm

|Tnm(Rm×n)(`/n, k/m)|

= sup
0≤t≤1; 0≤s≤1

1√
nm

|Tnm(Rm×n)(t, s)| . (4.3.4)

For a fixed α ∈ (0, 1), if σ is known, the asymptotically size α test for testing (4.1.2)

or (4.1.4) based on KSnm,f is given by

reject H0, if and only if KSnm,f/σ ≥ q̃1−α,
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where q̃1−α is the (1− α) quantile of sup(t,s)∈[0,1]2 |Bf (t, s)|. If σ2 is unknown, we can

replace σ by
√

σ̂2
nm given by (3.4.1).

4.4 Cramér-von Mises type test

In this section we present a Cramér-von Mises type procedure for testing hypothesis

(4.1.2) or (4.1.4) based on the residual partial sums processes.

Proposition 4.4.1. Let us consider the following functional of the residual partial

sums processes associated with model (4.1.3),

Cn,f :=
1

n4

n∑

k=0

n∑

`=0

(
k∑

j=0

∑̀
i=0

rij

)2

=
1

n2

n∑

k=0

n∑

`=0

(Tn(Rn×n)(`/n, k/n))2. (4.4.1)

Suppose σ2 is known. For a fixed α ∈ (0, 1), the asymptotically size α test for testing

(4.1.2) or (4.1.4) based on Cn,f is given by

reject H0, if and only if Cn,f/σ
2 ≥ t̃1−α,

where t̃1−α is the (1 − α)-quantile of
∫
[0,1]2

B2
f (t, s)λ

2(dt, ds). If σ2 is unknown, then

the test is given by

reject H0, if and only if Cn,f/σ̂
2
n ≥ t̃1−α,

where σ̂2
n is a consistent estimator of σ2.

Proof. By definition, we have

Cn,f =

∫

[0,1]2
(Tn(Rn×n)(`/n, k/n))2 λ2(dt, ds),
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where Rn×n is the matrix of least squares residuals. Consider a sequence of nonran-

domized tests (ψn)n≥1 : C([0, 1]2) −→ {0, 1}, given by

ψn(Tn(Rn×n)(·)) :=





1, if Cn,f/σ
2 ≥ t̃,

0, otherwise,
(4.4.2)

where t̃ is a constant. By Theorem 3.2.6 and the continuous mapping theorem, for a

fixed α ∈ (0, 1) and an arbitrary g(·) ∈ W, we obtain for t̃ = t̃1−α

lim
n→∞

Eg(ψn) = lim
n→∞

P

{∫

[0,1]2

(
1

σ
Tn(prW⊥

n
Yn×n)(

`

n
,
k

n
)

)2

λ2(dt, ds) ≥ t̃1−α

}

(1.2.1)
= lim

n→∞
P

{∫

[0,1]2

(
1

σ
Tn(prW⊥

n
En×n)(

`

n
,
k

n
)

)2

λ2(dt, ds) ≥ t̃1−α

}

= P
{∫

[0,1]2
B2

f (t, s)λ
2(dt, ds) ≥ t̃1−α

}
= α, (4.4.3)

where
∫

[0,1]2
B2

f (t, s)λ
2(dt, ds) can be understood as a pathwise Lebesgue or Riemann

integral on [0, 1]2. Then the test is asymptotically of size α. The second assertion is

trivial.

4.4.1 Approximation of the quantiles of
∫

[0,1]2 B2
f (·) dλ2

Though its very intensive use in testing problems based on the residual partial sums

process, for instance, MacNeill and Jandhyala (1993) and Xie and MacNeill (2004)

used the statistic
∫
[0,1]2

B2
f (t, s)λ

2(dt, ds) in change-point problems for spatial data,

but exact as well as approximation methods for calculating the quantiles of the lim-

iting statistic have not yet been derived. In this subsection we conduct Monte Carlo

simulations for approximating the (1 − α)-quantiles of this statistic by applying a

similar algorithm as Algorithm 1 with the modification that Kn,f in step 5 and step 6

of Algorithm 1 is replaced by Cn,f and c̃1−α is replaced by t̃1−α. The simulations are

constructed for the null, the constant, the first order, and the second order model,
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each of which is calculated for the sample size ñ × ñ = 30 × 30 and the number of

replications M = 106. Table 4 presents our simulation results which are executed by

using software package R 2.0.1, for α = 0.0050, 0.0100, 0.0250, 0.0500, 0.1000, 0.1500,

0.2000, 0.2500, 0.3600 and 0.5000.

P{∫
[0,1]2

B2
f (t, s)λ

2(dt, ds) ≥ t̃1−α} = α

Models t̃0.5000 t̃0.6500 t̃0.7500 t̃0.8000 t̃0.8500

Zero 0.1803 0.2521 0.3293 0.3850 0.4590

Constant 0.1156 0.1463 0.1761 0.1966 0.2240

First order 0.0683 0.0794 0.0890 0.0951 0.1027

Second order 0.0450 0.0506 0.0553 0.0582 0.0618

Models t̃0.9000 t̃0.9500 t̃0.9750 t̃0.9900 t̃0.9950

Zero 0.5699 0.7694 0.9769 1.2606 1.4802

Constant 0.2643 0.3370 0.4127 0.5160 0.5973

First order 0.1131 0.1305 0.1477 0.1695 0.1860

Second order 0.0668 0.0750 0.0828 0.0928 0.1001

Table 4. The approximated (1− α) quantiles of
∫
[0,1]2

B2
f (t, s)λ

2(dt, ds).

Remark 4.4.2. The Cramér-von Mises type statistic for the residual partial sums

process associated to the linear regression model defined on the regular lattice Enm is

Cnm,f :=
1

nm

m∑

k=0

n∑

`=0

(
1√
nm

k∑
j=0

∑̀
i=0

rij

)2

=
1

nm

m∑

k=0

n∑

`=0

(
1√
nm

Tnm(Rm×n)(`/n, k/m)

)2

. (4.4.4)

For a fixed α ∈ (0, 1), if σ is known, the asymptotically size α test for testing (4.1.2)

or (4.1.4) based on the statistic Cnm,f is given by

reject H0, if and only if Cnm,f/σ
2 ≥ t̃1−α,
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where t̃1−α is the (1−α)-quantile of
∫

[0,1]2
B2

f (t, s)λ
2(dt, ds). If σ2 is unknown, it can

be replaced by σ̂2
nm given by (3.4.1).

4.5 Consistency and power of the tests

In this section we investigate the consistency and the asymptotic power under alter-

natives of the sequence of asymptotically size α tests (δn)n≥1, (λn)n≥1 and (ψn)n≥1

defined in Section 4.2, Section 4.3 and Section 4.4, respectively.

Let us consider a localized version of the linear model (4.1.3) with localizing rate

1
n
, denoted by Yloc

n×n = Gloc
n×n + En×n, where Gloc

n×n := (g(`/n, k/n)/n)n, n
k=1,`=1, see

also Bischoff and Miller (2000), and Bader (2001) for the notion of a localized linear

model on a closed interval. We consider now the problem of testing the hypotheses

H0 : Gloc
n×n ∈ Wn versus K : Gloc

n×n /∈ Wn observing the residual partial sums process

Tn(prW⊥
n
Yloc

n×n)(·) and the hypothesis H0 : Gn×n ∈ Wn versus K : Gn×n /∈ Wn

observing the residual partial sums process Tn(prW⊥
n
Yn×n)(·). Since under H0 we

have the equality prW⊥
n
Yloc

n×n = prW⊥
n
Yn×n, which in turn results the same residual

partial sums limit process, then based on the statistics Kn,f , KSn,f and Cn,f , both

testing problems will produce the same asymptotically size α tests. We are interested

in comparing the behavior of the tests under alternatives.

Since the partial sums operator Tn is linear on Rn×n, then by applying Donsker’s

theorem, for g(·) ∈ BV Vc([0, 1]2), i.e., the space of functions which have bounded

variation on [0, 1]2 in the sense of Vitali and are right continuous on [0, 1)2, we get

1

σ
Tn(Gloc

n×n + En×n)(·) D−→ 1

σ
hg(·) + B2(·), in C([0, 1]2), n →∞, (4.5.1)

where

hg(z1, z2) :=

∫

[0,z1]×[0,z2]

g(t, s)λ2(dt, ds), (z1, z2) ∈ [0, 1]2,
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and B2(·) is standard Brownian (2) motion. Clearly, ∂2hg(·)
∂t∂s

= g(·), λ2 a.s. on [0, 1]2,

and g(·) ∈ BV Vc([0, 1]2) ⊂ L2([0, 1]2). Hence hg(·) ∈ HB.

Corollary 4.5.1. Suppose that the regression functions f1(·), . . . , fp(·) are continu-

ous, have bounded variation in the sense of Hardy on [0, 1]2 and are linearly inde-

pendent. Consider the localized linear model Yloc
n×n = Gloc

n×n + En×n. If the unknown

regression function g(·) ∈ BV Vc([0, 1]2), then for n →∞
1

σ
Tn(prW⊥

n
Yloc

n×n)(·) D−→ 1

σ
ϕg(·) + Bf (·), in C([0, 1]2), (4.5.2)

where

ϕg(·) := hg(·)− (pr∗WHB
hg)(·),

Bf (·) = B2(·)− (pr∗WHB
B2)(·).

Proof. Without loss of generality we assume σ = 1. By the linearity of the partial

sum operator Tn and Lemma 3.2.1, we get

Tn(prW⊥
n
Yloc

n×n)(·) = Tn(Yloc
n×n)(·)− (prWnHB

Tn(Yloc
n×n)(·))(·)

= Tn(Gloc
n×n + En×n)(·)− (prWnHB

Tn(Gloc
n×n + En×n)(·))(·).

Hence, the assertion follows from (4.5.1) and Theorem 3.2.6.

By Corollary 4.5.1, under the localized alternative K : Gloc
n×n 6∈ Wn, the limiting

distribution of Tn(prW⊥
n
Yloc

n×n)(·) is a signal-plus-noise model with deterministic signal

ϕg(·) and the residual partial sums limit process Bf (·) as noise. Such a limit process

for the localized linear regression model on the closed interval [a, b] was studied deeply

in Bischoff and Miller (2000) and Bischoff and et al. (2003a). Hence, the hypotheses

that correspond to (4.1.1) or (4.1.2) are

H0 : ϕg(t, s) ≤ 0, (t, s) ∈ [0, 1]2 vs. K : ∃(t, s) ∈ [0, 1]2, ϕg(t, s) > 0 (4.5.3)
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for a one-sided alternative, and

H0 : ϕg(t, s) = 0, (t, s) ∈ [0, 1]2 vs. K : ∃(t, s) ∈ [0, 1]2, ϕg(t, s) 6= 0 (4.5.4)

for a two-sided alternative. Moreover, because of Corollary 4.5.1, the limiting distri-

butions of the statistics Kn,f/σ, KSn,f/σ and Cn,f/σ
2 under the localized alternative

exist by the continuous mapping theorem.

4.5.1 Test of Kolmogorov type

We consider the hypotheses (4.5.3) and assume for the moment that σ2 is known.

The power functions (Ψδn(·))n≥1 : BV Vc([0, 1]2) −→ (0, 1) of the sequence of asymp-

totically size α tests (δn)n≥1, are given by

Ψδn(g) := P
{

1

σ
Kn,f ≥ c̃1−α

}
, g(·) ∈ BV Vc([0, 1]2), with Gn×n 6∈ Wn, n ≥ 1,

where c̃1−α is the (1− α)-quantile of sup0≤t,s≤1 Bf (t, s). Hence,

Ψδn(g) = P
{

sup
0≤t,s≤1

(
1

σ
Tn

(
prW⊥

n
(Gn×n + En×n)

)
(t, s)

)
≥ c̃1−α

}

= P
{

sup
0≤t,s≤1

(
1

σ
Tn

(
prW⊥

n
Gloc

n×n +
1

n
prW⊥

n
En×n

)
(t, s)

)
≥ c̃1−α

n

}

n→∞−→ P
{

sup
0≤t,s≤1

1

σ
ϕg(t, s) ≥ 0

}
,

pointwise on BV Vc([0, 1]2). Under the associated one-sided alternative K : ∃(t, s) ∈
[0, 1]2, ϕg(t, s) > 0, the last limiting probability is equal to 1. Hence, the test is

asymptotically pointwise consistent in power. Under the localized alternative K :

Gloc
n×n 6∈ Wn, g(·) ∈ BV Vc([0, 1]2), Corollary 4.5.1 yields

Ψδn(g) = P
{

sup
0≤t,s≤1

(
1

σ
Tn

(
prW⊥

n
(Gloc

n×n + En×n)
)
(t, s)

)
≥ c̃1−α

}

n→∞−→ P
{

sup
0≤t,s≤1

(
1

σ
ϕg(t, s) + Bf (t, s)

)
≥ c̃1−α

}
=: Ψδ(g), (4.5.5)
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pointwise on BV Vc([0, 1]2). Thus the limiting power function of sequence of asymptot-

ically size α test (δn)n≥1 based on the statistic Kn,f is given by the boundary crossing

probability

P
{
∃(t, s) ∈ [0, 1]2 :

1

σ
ϕg(t, s) + Bf (t, s) ≥ c̃1−α

}
. (4.5.6)

4.5.2 Test of Kolmogorov-Smirnow type

The sequence of power functions (Ψλn(·))n≥1 : BV Vc([0, 1]2) −→ (0, 1) of the sequence

of asymptotically size α tests (λn)n≥1 based on the statistic KSn,f is given by

Ψλn(g) := P
{

1

σ
KSn,f ≥ q̃1−α

}
, g(·) ∈ BV Vc([0, 1]2), with Gn×n 6∈ Wn, n ≥ 1,

where q̃1−α is the (1 − α)-quantile of sup0≤t,s≤1 |Bf (t, s)|. Under the two-sided alter-

native K : ∃(t, s) ∈ [0, 1]2, ϕg(t, s) 6= 0, we get

Ψδn(g) = P
{

sup
0≤t,s≤1

∣∣∣∣
1

σ
Tn

(
prW⊥

n
(Gn×n + En×n)

)
(t, s)

∣∣∣∣ ≥ q̃1−α

}

n→∞−→ P
{

sup
0≤t,s≤1

∣∣∣∣
1

σ
ϕg(t, s)

∣∣∣∣ ≥ 0

}
= 1,

pointwise on BV Vc([0, 1]2). Hence, the test is asymptotically pointwise consistent in

power.

By analogy with the test of Kolmogorov type, under the localized alternative

K : Gloc
n×n 6∈ Wn, we obtain

Ψλn(g) = P
{

sup
0≤t,s≤1

∣∣∣∣
1

σ
Tn

(
prW⊥

n
(Gloc

n×n + En×n)
)
(t, s)

∣∣∣∣ ≥ q̃1−α

}

n→∞−→ P
{

sup
0≤t,s≤1

∣∣∣∣
1

σ
ϕg(t, s) + Bf (t, s)

∣∣∣∣ ≥ q̃1−α

}
=: Ψλ(g), (4.5.7)

pointwise on BV Vc([0, 1]2). Thus the limiting power function of (λn)n≥1 is given by

the boundary crossing probability

P
{
∃(t, s) ∈ [0, 1]2 :

∣∣∣∣
1

σ
ϕg(t, s) + Bf (t, s)

∣∣∣∣ ≥ q̃1−α

}
. (4.5.8)
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4.5.3 Test of Cramér-von Mises type

The power functions (Ψψn(·))n≥1 : BV Vc([0, 1]2) −→ (0, 1) of the sequence of asymp-

totically size α tests (ψn)n≥1 are given by

Ψψn(g) := P
{

1

σ2
Cn,f ≥ t̃1−α

}
, g(·) ∈ BV Vc([0, 1]2), with Gn×n 6∈ Wn, n ≥ 1,

where t̃1−α is the (1− α)-quantile of
∫
[0,1]2

B2
f (t, s)λ

2(dt, ds).

Under the two-sided alternative K : ∃(t, s) ∈ [0, 1]2, ϕg(t, s) 6= 0, we get

Ψψn(g) = P

{∫

[0,1]2

(
1

σ
Tn

(
prW⊥

n
(Gn×n + En×n)

)
(
`

n
,
k

n
)

)2

λ2(dt, ds) ≥ t̃1−α

}

n→∞−→ P

{∫

[0,1]2

(
1

σ
ϕg(t, s)

)2

λ2(dt, ds) ≥ 0

}
= 1,

pointwise on BV Vc([0, 1]2). Thus the test based on the Cramér-von Mises statistic is

also asymptotically pointwise consistent. Furthermore, by Corollary 4.5.1, the power

function under the localized alternative is

Ψψn(g) = P

{∫

[0,1]2

(
1

σ
Tn

(
prW⊥

n
(Gloc

n×n + En×n)
)
(
`

n
,
k

n
)

)2

λ2(dt, ds) ≥ t̃1−α

}

n→∞−→ P

{∫

[0,1]2

(
1

σ
ϕg(t, s) + Bf (t, s)

)2

λ2(dt, ds) ≥ t̃1−α

}
=: Ψψ(g), (4.5.9)

pointwise on BV Vc([0, 1]2).

Remark 4.5.2. In case σ2 is unknown, by Slutsky’s theorem, we can replace σ2 by

any consistent estimator, for instance by the estimator σ̂2
n given by (1.2.2).

4.5.4 Approximation of the localized power

In this subsection we present Monte Carlo simulations to approximate the localized

power Ψδ(g), Ψλ(g) and Ψψ(g) of the three tests, for g(·) varies in BV Vc([0, 1]2),
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g(·) 6∈ W. By (4.5.5), (4.5.7) and (4.5.9), for any g(·) ∈ BV Vc([0, 1]2) with g(·) 6∈ W

such that 0 ≤ ϕg(t, s), ∀(t, s) ∈ [0, 1]2, the localized powers of the tests evaluated at

g(·) are in the interval [α, 1).

Let us again consider the regression functions f1(t, s) = 1, f2(t, s) = t and

f3(t, s) = s, for (t, s) ∈ [0, 1]2 studied in Example 3.3.2. Suppose that under

H0 we have a first order model, i.e., W = [f1(·), f2(·), f3(·)]. We shall approxi-

mate the localized power of the tests at ρg(·), for ρ varies in (0,∞) and a function

g(t, s) := 1 − 2t + s − 2t2 6∈ W. Since for (t, s) ∈ [0, 1]2, we have hg(t, s) =

ts− t2s + t2s/2− 2t3s/3 ∈ HB, then by a little computation we get

ϕg(t, s) = hg(t, s)− (pr∗WHB
hg)(t, s)

= hg(t, s)−
3∑

i=1

〈f̃i, g〉L2h̃fi
(t, s)

= 17ts/3− 7t2s/2− 3ts2/2− 2t3s/3, (t, s) ∈ [0, 1]2.

Clearly, ϕg(·) satisfies the condition specified under the one-sided alternative K :

ϕg(t, s) > 0 for some (t, s) ∈ [0, 1]2. It also fulfills the condition specified under

the two-sided alternative K : ϕg(t, s) 6= 0 for some (t, s) ∈ [0, 1]2. We notice that

by Corollary 4.5.1 ϕg(·) is approximated by Tn(prW⊥
n
Gloc

n×n)(·) uniformly on [0, 1]2,

where

Gloc
n×n =

(
1

n
g(`/n, k/n)

)n, n

k=1, `=1

=

(
1

n
(1− 2l/n + k/n− 2(l/n)2)

)n, n

k=1,`=1

6∈ Wn,

for Wn = [f1(En), f2(En), f3(En)].

We now present an algorithm for approximating the localized power of the Kol-

mogorov type test. Algorithms for approximating the localized power of the Kolmogorov-

Smirnov and Cramér-von Mises type tests are completely similar.

Begin Algorithm 2
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step 1 : Fix ρ ∈ (0,∞) and ñ ∈ N.

step 2 : Generate M i.i.d. pseudo random matrices E
(j)
ñ×ñ := (ε`kj)

ñ, ñ
k=1,`=1, with compo-

nents ε`kj generated from i.i.d. N (0, 1) random variables, j = 1, . . . , M .

step 3 : Generate M i.i.d. matrix of observations Y
(j)
ñ×ñ := ρGloc

ñ×ñ + E
(j)
ñ×ñ.

step 4 : Calculate β̂
(j)
ñ by solving the equation (X>

ñ Xñ)β = X>
ñ vec(Y

(j)
ñ×ñ).

step 5 : Calculate the matrix of residuals R
(j)
ñ×ñ := Y

(j)
ñ×ñ −

∑p
i=1 β̂

(j)
ñi fi(En).

step 6 : Calculate the statistic K
(j)
ñ,f := max0≤k,`≤ñ Tñ

(
R

(j)
ñ×ñ

)
(`/ñ, k/ñ).

step 7 : Calculate the power Ψδ(g) ≈ 1
M

∑M
j=1 1{K(j)

ñ,f ≥ c̃1−α}.

End Algorithm 2

Table 5-Table 7 present the approximated localized power of the three sequences

of asymptotically size α tests computed according to Algorithm 2, executed by using

the software package R 2.0.1, for ρ = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 and several

values of α. For all cases we chose the sample size ñ× ñ = 30× 30, and the number

of replications is M = 106. The graphs of the localized power of the tests versus ρ

for α = 0.0100, 0.0500, 0.1000, 0.1500, 0.2000 and 0.2500 are given in Figure 6. The

simulation results show that for such a function g(·) ∈ BV Vc([0, 1]2) and ρ, all tests

are powerful in the sense that the localized power of the tests are larger than α. Of

the three type tests, the Kolmogorov type test seems to be the most powerful.

If we consider the simulated power of the Kolmogorov-Smirnov and Cramér-von

Mises type tests for testing against a two-sided alternative, the second test is in

general more powerful than the first one. It happens only for some values of ρ and α

that the first test is more powerful than the second.
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First-order model Kolmogorov type test

sample, rep. ñ× ñ = 30× 30, M = 106, ε`kj
iid∼ N (0, 1)

α 0.3500 0.2500 0.2000 0.1500 0.1000 0.0500 0.0100

c̃1−α 0.7917 0.8470 0.8805 0.9211 0.9739 1.0570 1.2264

Ψloc
δ (g/2) 0.3553 0.2507 0.2058 0.1548 0.1044 0.0529 0.0110

Ψloc
δ (2g/2) 0.3620 0.2568 0.2117 0.1599 0.1086 0.0555 0.0118

Ψloc
δ (3g/2) 0.3695 0.2639 0.2181 0.1657 0.1133 0.0586 0.0127

Ψloc
δ (4g/2) 0.3775 0.2714 0.2252 0.1717 0.1183 0.0617 0.0138

Ψloc
δ (5g/2) 0.3863 0.2798 0.2330 0.1785 0.1239 0.0653 0.0149

Ψloc
δ (6g/2) 0.3955 0.2885 0.2410 0.1856 0.1298 0.0691 0.0162

Ψloc
δ (10g/2) 0.4392 0.3293 0.2794 0.2197 0.1583 0.0881 0.0224

Table 5. The approximated localized power of the Kolmogorov type test.

First-order model Kolmogorov-Smirnov type test

sample, rep. ñ× ñ = 30× 30, M = 106, ε`kj
iid∼ N (0, 1)

α 0.3500 0.2500 0.2000 0.1500 0.1000 0.0500 0.0100

q̃1−α 0.8845 0.9356 0.9666 1.0040 1.0536 1.1306 1.2916

Ψloc
δ (g/2) 0.3500 0.2501 0.1999 0.1503 0.0997 0.0501 0.0099

Ψloc
λ (2g/2) 0.3507 0.2510 0.2010 0.1514 0.1006 0.0504 0.0102

Ψloc
δ (3g/2) 0.3529 0.2535 0.2031 0.1530 0.1019 0.0514 0.0102

Ψloc
δ (4g/2) 0.3563 0.2564 0.2055 0.1552 0.1035 0.0525 0.0106

Ψloc
δ (5g/2) 0.3604 0.2598 0.2089 0.1582 0.1059 0.0539 0.0110

Ψloc
δ (6g/2) 0.3654 0.2642 0.2129 0.1621 0.1086 0.0556 0.0115

Ψloc
δ (10g/2) 0.3940 0.2903 0.2370 0.1828 0.1254 0.0664 0.0149

Table 6. The approximated localized power of the Kolmogorov-Smirnow type test.
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Figure 6. Graphs of Ψδ(ρg), Ψλ(ρg) and Ψψ(ρg). Knf , Crnf and KSnf denote the

power of the Kolmogorov, Kolmogorov-Smirnov and Cramér-von Mises type tests.
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First-order model Cramér-von Mises type test

sample, rep. ñ× ñ = 30× 30, M = 106, ε`kj
iid∼ N (0, 1)

α 0.3500 0.2500 0.2000 0.1500 0.1000 0.0500 0.0100

t̃1−α 0.0794 0.0890 0.0951 0.1027 0.1131 0.1305 0.1695

Ψloc
δ (g/2) 0.3548 0.2502 0.2008 0.1485 0.1007 0.0511 0.0099

Ψloc
ψ (2g/2) 0.3565 0.2517 0.2024 0.1498 0.1019 0.0519 0.0101

Ψloc
δ (3g/2) 0.3594 0.2546 0.2049 0.1520 0.1036 0.0532 0.0104

Ψloc
δ (4g/2) 0.3635 0.2584 0.2083 0.1550 0.1061 0.0546 0.0109

Ψloc
δ (5g/2) 0.3687 0.2631 0.2129 0.1590 0.1093 0.0568 0.0116

Ψloc
δ (6g/2) 0.3749 0.2689 0.2183 0.1639 0.1133 0.0595 0.0124

Ψloc
δ (10g/2) 0.4108 0.3029 0.2503 0.1923 0.1370 0.0752 0.0176

Table 7. The approximated localized power of the Cramér-von Mises type test.

4.6 Weighted tests

In this section we make a generalization to the foregoing tests by introducing a weight

function w(·) : [0, 1]2 → [0,∞), w(·) ∈ C([0, 1]2). For a fixed n ∈ N and w(·) ∈
C([0, 1]2), let Γn := {I`k := [(`− 1)/n, `/n]× [(k − 1)/n, k/n] : 1 ≤ `, k ≤ n} and

wn(t, s) := (`− nt)(k − ns)w((`− 1)/n, (k − 1)/n)

+ (nt− (`− 1))(k − ns)w(`/n, (k − 1)/n)

+ (`− nt)(ns− (k − 1))w((`− 1)/n, k/n)

+ (nt− (`− 1))(ns− (k − 1))w(`/n, k/n), ∀(t, s) ∈ I`k.

The sequence (wn(·))n≥1 has the following characteristics:

• For n →∞ wn(·) ‖·‖∞−→ w(·) in C([0, 1]2).
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• For any n ∈ N, max0≤k,`≤n w(`/n, k/n) = sup0≤t,s≤1 wn(t, s).

• For any n ∈ N,

max
0≤k,`≤n

w(`/n, k/n)Tn(Rn×n)(`/n, k/n) = sup
0≤t,s≤1

wn(t, s)Tn(Rn×n)(t, s).

Based on these characteristics of wn(·) and the weak convergence of the sequence

of the residual partial sums processes, the following result can be directly verified.

Proposition 4.6.1. Suppose σ2 is known. For a fixed α ∈ (0, 1), an asymptotically

size α weighted Kolmogorov type test for testing (4.1.2) or (4.1.4), i.e., a test based

on the statistic Kwn,f := max0≤k,`≤n
1
n
w(`/n, k/n)

∑k
j=0

∑`
i=0 rij is

reject H0, if and only if Kwn,f/σ ≥ c̃w,1−α,

where c̃w,1−α is the (1 − α)-quantile of sup(t,s)∈[0,1]2 w(t, s)Bf (t, s). The test is con-

sistent. Moreover, the limiting localized power function of this test is given by the

boundary crossing probability

Ψw,δ(g) := P
{

sup
0≤t,s≤1

(
w(t, s)

(
1

σ
ϕg(t, s) + Bf (t, s)

))
≥ c̃w,1−α

}
,

for g(·) ∈ BV Vc([0, 1]2) such that Gloc
n×n 6∈ Wn. If σ2 is unknown, then the test is

given by

reject H0, if and only if Kwn,f/σ̂
2
n ≥ c̃w,1−α.

Here and throughout σ̂2
n is a consistent estimator of σ2.

As an additional information, a nice investigation to the asymptotic of such bound-

ary crossing probability for Bf (·) is a Brownian bridge with parameter space [0, 1] has

been observed in Bischoff and et al. (2003b) in which they gave typical assumptions

for the weight function and the trend.
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Proposition 4.6.2. Suppose σ2 is known. For a fixed α ∈ (0, 1), an asymptotically

size α weighted Kolmogorov-Smirnov type test for testing (4.1.2) or (4.1.4), i.e., a test

based on the statistic KSwn,f := max0≤k,`≤n

∣∣∣ 1
n
w(`/n, k/n)

∑k
j=0

∑`
i=0 rij

∣∣∣, is given by

reject H0, if and only if KSwn,f/σ ≥ q̃w,1−α,

where q̃w,1−α is the (1−α)-quantile of sup(t,s)∈[0,1]2 |w(t, s)Bf (t, s)|. The test is consis-

tent. Moreover, the following boundary crossing probability give the limiting localized

power function of this test:

Ψw,λ(g) := P
{

sup
0≤t,s≤1

∣∣∣∣w(t, s)

(
1

σ
ϕg(t, s) + Bf (t, s)

)∣∣∣∣ ≥ q̃w,1−α

}
,

for g(·) ∈ BV Vc([0, 1]2) such that Gloc
n×n 6∈ Wn. In case σ2 is unknown, the test is

given by

reject H0, if and only if KSwn,f/σ̂
2
n ≥ q̃w,1−α.

The weighted Cramér-von Mises type test is based on the statistic

Cwn,f :=
1

n4

n∑

k=0

n∑

`=0

(
w(`/n, k/n)

k∑
j=0

∑̀
i=0

rij

)2

=

∫

[0,1]2
(wn(`/n, k/n)Tn(Rn×n)(`/n, k/n))2 λ2(dt, ds).

Proposition 4.6.3. Suppose σ2 is known and w(·) is right continuous on [0, 1)2. For

a fixed α ∈ (0, 1), the asymptotically size α weighted Cramér-von Mises type test for

testing (4.1.2) or (4.1.4) is

reject H0, if and only if Cwn,f/σ
2 ≥ t̃w,1−α,

where t̃w,1−α is the (1 − α)-quantile of
∫

[0,1]2
(w(t, s)Bf (t, s))

2 λ2(dt, ds). If σ2 is un-

known, then the test is given by

reject H0, if and only if Cwn,f/σ̂
2
n ≥ t̃w,1−α.
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The test is consistent. The limiting localized power function of this test is given by

the following boundary crossing probability:

Ψw,ψ(g) := P
{∫

[0,1]2
(w(t, s) (1/σϕg(t, s) + Bf (t, s)))

2 λ2(dt, ds) ≥ t̃w,1−α

}
,

for g(·) ∈ BV Vc([0, 1]2) such that Gloc
n×n 6∈ Wn.

Clearly, the tests developed in Section 4.2 - Section 4.5 are only special cases

of weighted tests for the hypothesis introduced in Section 4.1, for which we put

the weight w(t, s) = 1 for every (t, s) ∈ [0, 1]2. The Monte Carlo simulations for

approximating the quantiles and the power of the weighted tests can be carried out

analogously as for the unweighted tests in the foregoing sections. Therefore we omit

such simulations for the weighted tests.

4.7 Applications

Our aim in this subsection is to present an example of the application of the foregoing

asymptotic test theory in spatial data analysis. We consider the wheat-yield data

(Mercer and Hall’s data) presented and discussed in Cressie (1993), p. 454-455, and

Xie and MacNeill (2004). The data are yields of grains (in pounds) observed over a

25 × 20 lattice of plots with 20 rows running east to west and 25 columns of plots

running north to south. The experiment consists of giving the 500 plots the same

treatment (presumably fertilizer, water, etc.), from which we identify the data as a

realization of 500 independent random variables. The exact size of the plots from the

original data seems to be unknown, but as was informed in Cressie (1993), p. 454-455,

we assume that the plots are equally spaced, with the dimension of each plot being

10.82 ft by 8.05 ft.

Figure 7 presents the perspective plot of the data. Other quantities of the data



Chapter 4. Tests based on residual partial sums processes 87

such as the median, mean, standard deviation, first and third quartiles are summa-

rized in Table 8. Visually (one can generate with S PLUS or R), the shape of the

histogram of the data is identified as the familiar bell-shaped curve, indicating the

nearly normal distribution of the the 500 wheat yield measurements.
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Figure 7. The Perspective plot of Mercer and Hall’s data.

1st Qu. Med. Mean Mode 3rd Qu. St.Dev. Skew. Kurt.

3.630 3.970 3.940 3.944 4.270 0.455 0.036 -0.254

Table 8. Summary of the Mercer and Hall’s data.

Observing Figure 7 we postulate under H0 a full first-order model, i.e., by using

the test statistics Knm,f/σ̂nm, KSnm,f/σ̂nm and Cnm,f/σ̂
2
nm, we are interested in testing

the hypotheses

H0 : g(·) ∈ [f1(·), f2(·), f3(·)] vs. K : g(·) 6∈ [f1(·), f2(·), f3(·)],

where f1(t, s) = 1, f2(t, s) = t, and f3(t, s) = s, (t, s) ∈ [0, 1]2. Actually we perform

weighted tests defined in Section 4.6, with weight function w(t, s) = 1, for (t, s) ∈
[0, 1]2.
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Since the model variance σ2 is unknown, we use a consistent estimator σ̂2
nm. Cal-

culated under H0, the data give σ̂2
nm = 0.1898. The following is an algorithm for cal-

culating the approximated p-value of the Kolmogorov type test for observations taken

from Enm. Algorithm for approximating the p-values of the Kolmogorov-Smirnov and

Cramér-von Mises type tests are completely similar.

Begin Algorithm 3

step 1 : Generate M i.i.d. pseudo random matrices E
(j)
m×n = (ε`kj)

m, n
k=1,`=1, with compo-

nents ε`kj generated from i.i.d N (0, 1) random variables, j = 1, . . . ,M .

step 2 : Generate M i.i.d. matrix of observations Y
(j)
m×n.

step 3 : Calculate β̂(j) by solving the equation

(
X>

mn×3Xmn×3

)
β = X>

mn×3vec(Y
(j)
m×n),

where Xmn×3 = (vec(f1(En×m)), vec(f2(En×m)), vec(f3(En×m))) ∈ Rmn×3.

step 4 : Calculate the matrix of residuals R
(j)
m×n := Y

(j)
m×n −Xmn×3β̂

(j).

step 5 : Calculate the Kolmogorov statistic

K(j) := max
0≤`≤n; 0≤k≤m

Tnm(R
(j)
m×n)(`/n, k/m).

step 6 : Based on the data, calculate the critical value K̂ := Kn,m,f/
√

σ̂2
nm.

step 7 : Calculate the approximated p-value p̂K := 1
M

∑M
j=1 1{K(j) ≥ K̂}.

End Algorithm 3

The critical values and the corresponding approximated p-values of the tests for

such data are presented in Table 9. The simulations were conducted by using the
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software package R 2.0.1 according to Algorithm 3, in which we chose sample size

n×m = 25× 20 and number of replications is M = 106. It can be seen that, based

on the statistic Knm,f/σ̂nm, H0 is rejected for α ≥ 0.0002, see also Table 9. Based on

the statistics KSnm,f , H0 is rejected for α ≥ 0.0001, whereas based on Cnm,f , H0 is

rejected for α ≥ 0.0010. Thus, H0 is rejected for all values of α used in applications.

statistics critical values p-values

Knm,f/σ̂nm 1.5919 0.0002

KSnm,f/σ̂nm 1.5919 0.0001

Cnm,f/σ̂
2
nm 0.2283 0.0010

Table 9: The critical and p-values of Knm,f , KSnm,f , and Cnm,f .



Chapter 5

Lower and upper bounds for the

power of the Kolmogorov type test

In this chapter we investigate the localized power of the Kolmogorov type test devel-

oped in Chapter 4. More exactly, we derive bounds for the boundary crossing prob-

ability P {∃(t, s) ∈ [0, 1]2 : ρϕ(t, s) + Bf (t, s) ≥ u(t, s)}, for ρ > 0, a known trend

ϕ(·) : [0, 1]2 → R, and a general known boundary u(·) : [0, 1]2 → R. We shall con-

sider two cases, i.e., the case in which Bf (·) is the standard Brownian (2) motion

and Bf (·) is the standard Brownian (2) bridge. These will be studied in Section 5.2

and Section 5.3, respectively. In Section 5.1 we study a general method for deriving

the kernel of the residual partial sums limit processes, following an approach due to

Lifshits (1996), p. 88-107. Furthermore, we denote the measure P ◦ B−1
f defined on

the infinite dimensional measurable space (C([0, 1]2),BC) by Pf .

5.1 Modelling the covariance function of Bf

We say that the family {m(t,s) : (t, s) ∈ [0, 1]2} ⊆ L2([0, 1]2) of functions on [0, 1]2 is

a model of the covariance function Kf (·, ·) of the residual partial sums limit process

90
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Bf , if for each (t, s), (t′, s′) ∈ [0, 1]2, we have

Cov(Bf (t, s), Bf (t
′, s′)) := Kf ((t, s), (t

′, s′)) = 〈m(t,s),m(t′,s′)〉L2

:=

∫

[0,1]2
m(t,s)(x, y)m(t′,s′)(x, y)λ2(dx, dy), (5.1.1)

see Lifshits (1996), p. 41-51.

5.1.1 Model for the standard Brownian (2) motion

By Definition 2.1.1, the covariance function of the standard Brownian (2) motion is

Kf ((t, s), (t
′, s′)) = min{t, t′}min{s, s′}, (t, s), (t′, s′) ∈ [0, 1]2.

Let us define the family of functions

{m(2)
(t,s) := 1[0,t]×[0,s] : (t, s) ∈ [0, 1]2} ⊆ L2([0, 1]2). (5.1.2)

For any (t, s), (t′, s′) ∈ [0, 1]2, we then have
∫

[0,1]2
1[0,t]×[0,s](x, y)1[0,t′]×[0,s′](x, y)λ2(dx, dy) = min{t, t′}min{s, s′}.

Thus the family of indicator functions {1[0,t]×[0,s] : (t, s) ∈ [0, 1]2} may be taken as a

model for the covariance function of the standard Brownian (2) motion B2.

5.1.2 Model for the standard Brownian (2) bridge

The standard Brownian (2) bridge is the residual partial sums limit process associated

with a constant model having covariance function

Kf ((t, s), (t
′, s′)) = min{t, t′}min{s, s′} − tst′s′, (t, s), (t′, s′) ∈ [0, 1]2.

Define the family of functions

{m◦
(t,s) := 1[0,t]×[0,s] − ts1[0,1]2 : (t, s) ∈ [0, 1]2} ⊆ L2([0, 1]2). (5.1.3)
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For any (t, s), (t′, s′) ∈ [0, 1]2, we then get

∫

[0,1]2
(1[0,t]×[0,s](x, y)− ts1[0,1]2(x, y))(1[0,t′]×[0,s′](x, y)− t′s′1[0,1]2(x, y))λ2(dx, dy)

= min{t, t′}min{s, s′} − tst′s′.

Hence by definition, the family {m◦
(t,s) : (t, s) ∈ [0, 1]2} may be taken as a model for

the covariance function of the standard Brownian (2) bridge B0
2 .

Definition 5.1.1. (Lifshits (1996), p. 87)

(a) A function h(·) ∈ C([0, 1]2) is called an admissible shift for the Gaussian measure

Pf , if the measure Ph
f defined on (C([0, 1]2),BC), given by Ph

f {A} := Pf{A−h},
for every A ∈ BC, is absolutely continuous with respect to Pf . Here the set

{A− h} is defined as {x− h : x ∈ A}.

(b) A function h(·) ∈ C([0, 1]2) is said to assign an admissible direction for Pf , if

each vector of the family {c h(·) : c ∈ R} is an admissible shift for Pf .

5.2 Lower and upper bounds for the boundary

crossing probabilities of B2 with trend

In this section we derive a lower bound for the probability P{∃(t, s) ∈ [0, 1]2 :

ρϕ(t, s) + B2(t, s) ≥ u(t, s)}, ρ > 0, where B2 is standard Brownian (2) motion.

Let us consider the model {m(2)
(t,s)(·) : (t, s) ∈ [0, 1]2} given by (5.1.2) and the repro-

ducing kernel Hilbert space (RKHS) HB of B2(·) defined in Section 3.1. If h(·) ∈ HB

and `(·) ∈ L2([0, 1]2) such that h(t, s) =
〈
`,m

(2)
(t,s)

〉
L2

, then `(·) = ∂2h(·)
∂t∂s

, where ∂2h(·)
∂t∂s

is the almost everywhere existing second derivative of h(·) with respect both variables

on [0, 1]2.
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Proposition 5.2.1. Let PB2 be the distribution of the standard Brownian (2) motion

on (C([0, 1]2),BC). For any h(·) ∈ HBBV ([0,1]2)
, the density of the shifted measure Ph

B2

with respect to PB2 is

dPh
B2

dPB2

(x) = exp

{∫ R

[0,1]2

∂2h(t, s)

∂t∂s
dx(t, s)− 1

2
‖h‖2

HB

}
, (5.2.1)

where HBBV ([0,1]2)
= {h(·) ∈ HB : ∂2h(·)

∂t∂s
∈ BV ([0, 1]2)}, and ‖·‖HB

is the norm defined

on HB. See Appendix A for the definition of BV ([0, 1]2).

Proof. We refer the reader to Theorem 3 in Lifshits (1996), p. 88. We notice that

(5.2.1) is a special case of (6) in Lifshits (1996), p. 88. A one-dimensional version of

(5.2.1) is also presented there (see, Formula (13) in Lifshits (1996), p. 107).

Remark 5.2.2. Equation (5.2.1) is frequently called the Cameron-Martin-Girsanov

formula for the standard Brownian (2) motion, see also Lifshits (1996), p. 107, and

Bischoff and et al. (2005).

Theorem 5.2.3. Suppose that the boundary u(·) is continuous on [0, 1]2 and the

trend ϕ(·) ∈ HBBV ([0,1]2)
has a second derivative ϕq(·) := ∂2ϕ(·)

∂t∂s
∈ BV ([0, 1]2) which is

type I non decreasing on [0, 1]2. If the marginal functions ϕq(t, 1) := ∂2ϕ(t,s)
∂t∂s

|s=1, and

ϕq(1, s) := ∂2ϕ(t,s)
∂t∂s

|t=1 are non increasing on [0, 1], then

P
{∀(t, s) ∈ [0, 1]2 : ρϕ(t, s) + B2(t, s) < u(t, s)

}

≤ k∗P
{∀(t, s) ∈ [0, 1]2 : B2(t, s) < u(t, s)

}
, (5.2.2)

where

k∗ := exp

{
ρϕq(1, 1)u(1, 1) + ρ

∫ R

[0,1]

u(t, 1)d(−ϕq(t, 1)) + ρ

∫ R

[0,1]

u(1, s)d(−ϕq(1, s))

+ρ

∫ R

[0,1]2
u(t, s)dϕq(t, s)− 1

2
ρ2 ‖ϕ‖2

HB

}
, ρ > 0.
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Proof. By transformation of variable and the Cameron-Martin-Girsanov formula, we

obtain

P
{
ω ∈ Ω : ρϕ(t, s) + B2(ω)(t, s) < u(t, s), ∀ (t, s) ∈ [0, 1]2

}

=

∫

Ω

1{ω ∈ Ω : ρϕ(t, s) + B2(ω)(t, s) < u(t, s), ∀ (t, s) ∈ [0, 1]2}P(dω)

=

∫

C([0,1]2)

1{y ∈ C([0, 1]2) : y(t, s) < u(t, s), ∀ (t, s) ∈ [0, 1]2}Pρϕ
B2

(dy)

=

∫

C([0,1]2)

1{y ∈ C([0, 1]2) : y(t, s) < u(t, s), ∀ (t, s) ∈ [0, 1]2}

× exp

{∫ R

[0,1]2
ρϕq(t, s) dy(t, s)− 1

2
‖ρϕ‖2

HB

}
PB2(dy)

=

∫

Ω

1{ω ∈ Ω : B2(ω)(t, s) < u(t, s), ∀ (t, s) ∈ [0, 1]2}

× exp

{∫ R

[0,1]2
ρϕq(t, s) dB2(ω)(t, s)− 1

2
ρ2 ‖ϕ‖2

HB

}
P(dω).

Since B2(t, 0) = 0 a.s. for t ∈ [0, 1] and B2(0, s) = 0 a.s. for s ∈ [0, 1], then

∆[0,1]2ϕ
qB2(·) = ϕq(1, 1)B2(1, 1) almost surely. The result follows immediately from

integration by parts and the assumption that ϕq(t, s) is type I non decreasing on [0, 1]2

with −ϕq(t, 1) and −ϕq(1, s) are non increasing on the closed interval [0, 1].

Corollary 5.2.4. Since the event {∃(t, s) ∈ [0, 1]2 : ρϕ(t, s)+B2(t, s) ≥ u(t, s)} is the

complement of the event {∀(t, s) ∈ [0, 1]2 : ρϕ(t, s) + B2(t, s) < u(t, s)}, then under

the conditions of Theorem 5.2.3, we get the following lower bound for the boundary

crossing probability under consideration:

P{∃(t, s) ∈ [0, 1]2 : ρϕ(t, s) + B2(t, s) ≥ u(t, s)}

≥ 1− k∗P{∀(t, s) ∈ [0, 1]2 : B2(t, s) < u(t, s)}

= 1− k∗ + k∗P{∃(t, s) ∈ [0, 1]2 : B2(t, s) ≥ u(t, s)},
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where k∗ is the constant defined above. In particular, if u(t, s) = t̃1−α, for (t, s) ∈
[0, 1]2, where t̃1−α is the (1−α) quantile of sup0≤t,s≤1 B2(t, s), we get the lower bound

for the localized power of the asymptotically size α Kolmogorov type test defined in

Section 4.2. That is, we have

P
{

sup
0≤t,s≤1

(ρϕ(t, s) + B2(t, s)) ≥ t̃1−α

}

≥ 1− k∗αP{ sup
0≤t,s≤1

B2(t, s) < t̃1−α} = 1− k∗α(1− α), ρ > 0, (5.2.3)

where

k∗α := exp{ρϕq(1, 1)t̃1−α − ρ∆[0,1]ϕ
q(·, 1)t̃1−α − ρ∆[0,1]ϕ

q(1, ·)t̃1−α

+ ρ∆[0,1]2ϕ
q(·)t̃1−α − 1

2
ρ2 ‖ϕ‖2

HB
}.

Remark 5.2.5. The conditions of Theorem 5.2.3 are satisfied for instance by the

function ϕ(t, s) := c(ts)1[0,1]2 ∈ HBBV ([0,1]2)
, for (t, s) ∈ [0, 1]2 and c ∈ R. In this case

we obtain

P
{∀(t, s) ∈ [0, 1]2 : ρts + B2(t, s) < u(t, s)

}

≤ exp{ρcu(1, 1)− ρ2 |c|2 /2} P{∀(t, s) ∈ [0, 1]2 : B2(t, s) < u(t, s)
}

.

By Corollary 5.2.4 we further get

P{∃(t, s) ∈ [0, 1]2 : ρϕ(t, s) + B2(t, s) ≥ u(t, s)}

≥ 1− exp{ρcu(1, 1)− ρ2 |c|2 /2}P{∀(t, s) ∈ [0, 1]2 : B2(t, s) < u(t, s)}

= exp{ρcu(1, 1)− ρ2 |c|2 /2}P{∃(t, s) ∈ [0, 1]2 : B2(t, s) ≥ u(t, s)}

+ 1− exp{ρcu(1, 1)− ρ2 |c|2 /2}. (5.2.4)

Putting u(·) = t̃1−α, the right side of (5.2.3) becomes 1−exp{ρct̃1−α−ρ2 |c|2 /2}(1−α).
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Corollary 5.2.6. Under the same conditions on ϕ(·) and u(·) as in Theorem 5.2.3,

we have

P{∃(t, s) ∈ [0, 1]2 : ρϕ(t, s) + B2(t, s) ≤ u(t, s)}

≥ 1− k∗1P{∀(t, s) ∈ [0, 1]2 : B2(t, s) < −u(t, s)}, (5.2.5)

where

k∗1 := exp

{
−ρϕq(1, 1)u(1, 1) + ρ

∫ R

[0,1]

−u(t, 1)d(−ϕq(t, 1)) + ρ

∫ R

[0,1]

−u(1, s)d(−ϕq(1, s))

+ρ

∫ R

[0,1]2
−u(t, s)dϕq(t, s)− 1

2
ρ2 ‖ϕ‖2

HB

}
.

Proof. Since B2 is a Brownian (2) motion, then −B2 is also a Brownian (2) motion,

and we have

P{∃(t, s) ∈ [0, 1]2 : ρϕ(t, s) + B2(t, s) ≤ u(t, s)}

= 1− P{∀(t, s) ∈ [0, 1]2 : −ρϕ(t, s) + B2(t, s) < −u(t, s)}. (5.2.6)

Hence, the result follows by applying the Cameron-Martin-Girsanov formula and

integration by parts.

Remark 5.2.7. We notice that for the function ϕ(t, s) = c(ts), for (t, s) ∈ [0, 1]2 and

c ∈ R, we have k∗1 = exp{−ρcu(1, 1)− ρ2 |c|2 /2}.

Corollary 5.2.8. For ρ > 0, let

k∗ρB2
:= ρϕq(1, 1)B2(1, 1) + ρ

∫ R

[0,1]

B2(t, 1)d(−ϕq(t, 1))

+ ρ

∫ R

[0,1]

B2(1, s)d(−ϕq(1, s)) + ρ

∫ R

[0,1]2
B2(t, s)dϕq(t, s).
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Then by the Cameron-Martin-Girsanov formula, integration by parts and Jensen’s

inequality, we get

P
{∀(t, s) ∈ [0, 1]2 : ρϕ(t, s) + B2(t, s) < u(t, s)

}

= exp

{
−1

2
ρ2 ‖ϕ‖2

HB

} ∫

Ω

1{∀(t, s) ∈ [0, 1]2 : B2(t, s) < u(t, s)} exp{k∗ρB2
}dP

≥ exp

{
−1

2
ρ2 ‖ϕ‖2

HB

}
exp

{
EP

(
k∗ρB2

1{∀(t, s) ∈ [0, 1]2 : B2(t, s) < u(t, s)})} .

Hence, the upper bound of P {∃(t, s) ∈ [0, 1]2 : ρϕ(t, s) + B2(t, s) ≥ u(t, s)} is

1− exp

{
−1

2
ρ2 ‖ϕ‖2

HB

}
exp

{
EP

(
k∗ρB2

1{∀(t, s) ∈ [0, 1]2 : B2(t, s) < u(t, s)})} .

For the function ϕ(·) defined above, we have k∗ρB2
= ρcB2(1, 1). Hence (5.2.5)

becomes

P{∃(t, s) ∈ [0, 1]2 : ρc(ts) + B2(t, s) ≤ u(t, s)}
≥ 1− exp{−ρcu(1, 1)− ρ2 |c|2 /2}P{∀(t, s) ∈ [0, 1]2 : B2(t, s) < −u(t, s)}. (5.2.7)

5.3 Lower and upper bounds for the boundary

crossing probabilities of B0
2 with trend

In this section we consider the boundary crossing probability

P{∃(t, s) ∈ [0, 1]2 : ρϕ(t, s) + B0
2(t, s) ≥ u(t, s)}, ρ > 0,

where B0
2 is the standard Brownian (2) Bridge. By Theorem 4 in Lifshits (1996), p.

90, the kernel of B0
2 can be derived analogously to that of standard Brownian (2)

motion, i.e.,

HB0
2

:=
{
h(·) : ∃`(·) ∈ L2([0, 1]2), h(t, s) = 〈`,m◦

(t,s)〉L2 , (t, s) ∈ [0, 1]2
}

,
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where m◦
(t,s)(·) ∈ L2([0, 1]2) is the model of the covariance function of the standard

Brownian (2) bridge. For `(·) ∈ L2([0, 1]2), let Eλ2(`(·)) be the expectation of `(·)
with respect to λ2. Then, HB0

2
can be equivalently written by

HB0
2

=

{
h(·) : ∃`(·) ∈ L2([0, 1]2), h(t, s) =

∫

[0,t]×[0,s]

`(·)dλ2 − tsEλ2(`(·))
}

.

Thus, the typical characteristic of any h(·) ∈ HB0
2

that distinguishes it from the

elements ofHB is that h(1, 1) = 0, or more preciselyHB0
2

= {h(·) ∈ HB : h(1, 1) = 0}.
Analogous to the RKHS HB, we furnish the kernel HB0

2
with an inner product

and an associated norm given by

〈h1, h2〉H
B0

2

:=
〈
ĥ1, ĥ2

〉
L2

, and ‖h‖H
B0

2

:=
∥∥∥ĥ

∥∥∥
L2

,

where

hi(t, s) =

∫

[0,t]×[0,s]

ĥi(·)dλ2, hi(1, 1) = 0, ĥi(·) ∈ L2([0, 1]2), i = 1, 2.

Then with respect to these inner product and norm, HB0
2

is a Hilbert space. Because

of this reason we called HB0
2

the reproducing kernel Hilbert space of the standard

Brownian (2) bridge.

Proposition 5.3.1. Let HB0
2BV ([0,1]2)

:=
{

h(·) ∈ HB0
2

: ∂2h(·)
∂t∂s

∈ BV ([0, 1]2)
}
. For any

h(·) ∈ HB0
2BV ([0,1]2)

, the density of the shifted measure Ph
B0

2
with respect to PB0

2
is

dPh
B0

2

dPB0
2

(x) = exp

{∫ R

[0,1]2

∂2h(t, s)

∂t∂s
dx(t, s)− 1

2
‖h‖2

H
B0

2

}
.

Proof. This result can also be proved similarly to the proof of Proposition 5.2.1. We

also refer the reader to Theorem 3 in Lifshits (1996), p. 88.

Remark 5.3.2. By the definition of the standard Brownian (2) bridge (see Definition

2.2.1) and the characteristic of a function h(·) ∈ HB0
2
, it can be shown that

V arB0
2

(∫ R

[0,1]2

∂2h(t, s)

∂t∂s
dx(t, s)

)
=

∥∥∥∥
∂2h(·)
∂t∂s

∥∥∥∥
2

L2

= ‖h‖2
H

B0
2

,

where V arB0
2
(·) is the variance operator with respect to B0

2 .
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Theorem 5.3.3. Suppose that the boundary u(·) is continuous on [0, 1]2 and the

trend ϕ(·) ∈ HB0
2BV ([0,1]2)

is such that the existing second derivative ϕq := ∂2ϕ(t,s)
∂t∂s

is

type I non decreasing on [0, 1]2. If the marginal functions ϕq(t, 1) := ∂2ϕ(t,s)
∂t∂s

|s=1 and

ϕq(1, s) := ∂2ϕ(t,s)
∂t∂s

|t=1 are non increasing on the closed interval [0, 1], we get

P
{∀(t, s) ∈ [0, 1]2 : ρϕ(t, s) + B0

2(t, s) < u(t, s)
}

≤ m∗P
{∀(t, s) ∈ [0, 1]2 : B0

2(t, s) < u(t, s)
}

, ρ > 0,

where

m∗ := exp

{
ρϕq(1, 1)u(1, 1) + ρ

∫

[0,1]

u(t, 1)d(−ϕq(t, 1)) + ρ

∫

[0,1]

u(1, s)d(−ϕq(1, s))

+ρ

∫

[0,1]2
u(t, s)dϕq(t, s)− 1

2
ρ2 ‖ϕ‖2

H
B0

2

}
.

Proof. The result follows directly from Proposition 5.3.1 and integration by parts.

Corollary 5.3.4. If u(·) and ϕ(·) satisfy the conditions of Theorem 5.3.3, we get

P{∃(t, s) ∈ [0, 1]2 : ρϕ(t, s) + B0
2(t, s) ≥ u(t, s)}

≥ 1−m∗P{∀(t, s) ∈ [0, 1]2 : B0
2(t, s) < u(t, s)}

= 1−m∗ + m∗P{∃(t, s) ∈ [0, 1]2 : B0
2(t, s) ≥ u(t, s)}.

Let t̃01−α is the (1−α) quantile of sup0≤t,s≤1 B0
2(t, s). The lower bound for the localized

power of the asymptotically size α Kolmogorov type test is

P{ sup
0≤t,s≤1

(
ρϕ(t, s) + B0

2(t, s)
) ≥ t̃01−α}

≥ 1−m∗
αP{ sup

0≤t,s≤1
B0

2(t, s) < t̃01−α} = 1−m∗
α(1− α), (5.3.1)

where

m∗
α := exp{ρϕq(1, 1)t̃01−α − ρ∆[0,1]ϕ

q(·, 1)t̃01−α − ρ∆[0,1]ϕ
q(1, ·)t̃01−α

+ ρ∆[0,1]2ϕ
q(·)t̃01−α −

1

2
ρ2 ‖ϕ‖2

H
B0

2

}.
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Corollary 5.3.5. Under the same conditions on ϕ(·) and u(·) as in Theorem 5.3.3,

we obtain

P{∃(t, s) ∈ [0, 1]2 : ρϕ(t, s) + B0
2(t, s) ≤ u(t, s)}

≥ 1−m∗
1P{∀(t, s) ∈ [0, 1]2 : B0

2(t, s) < −u(t, s)}, (5.3.2)

where

m∗
1 := exp

{
−ρϕq(1, 1)u(1, 1) + ρ

∫

[0,1]

−u(t, 1)d(−ϕq(t, 1))

+ρ

∫

[0,1]

−u(1, s)d(−ϕq(1, s)) + ρ

∫

[0,1]2
−u(t, s)dϕq(t, s)− 1

2
ρ2 ‖ϕ‖2

H
B0

2

}
.

Corollary 5.3.6. For ρ > 0, let

m∗
ρB0

2
:=

∫ R

[0,1]

ρB0
2(t, 1)d(−ϕq(t, 1)) +

∫ R

[0,1]

ρB0
2(1, s)d(−ϕq(1, s))

+

∫ R

[0,1]2
ρB0

2(t, s)dϕq(t, s).

Then by Proposition 5.3.1, integration by parts and Jensen’s inequality, we get

P
{∀(t, s) ∈ [0, 1]2 : ρϕ(t, s) + B0

2(t, s) < u(t, s)
}

≥ exp

{
−1

2
ρ2 ‖ϕ‖2

B0
2

}
exp

{
EP

B0
2

(
m∗

ρB0
2
1{∀(t, s) ∈ [0, 1]2 : B0

2(t, s) < u(t, s)}
)}

.

It follows that

P
{∃(t, s) ∈ [0, 1]2 : ρϕ(t, s) + B0

2(t, s) ≥ u(t, s)
}

≤ 1− exp

{
−1

2
ρ2 ‖ϕ‖2

B0
2

}
exp

{
EP

B0
2

(
m∗

ρB0
2
1{∀(t, s) ∈ [0, 1]2 : B0

2(t, s) < u(t, s)}
)}

.

Remark 5.3.7. We consider the model {m◦
(t,s)(·) := 1[0,t]×[0,s](·) − ts1[0,1]×[0,1](·) :

(t, s) ∈ [0, 1]2} of the covariance function of the standard Brownian (2) bridge. It can

be easily shown that for every (t, s) ∈ [0, 1]2,
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• m◦
(t,s)(·) is type I non decreasing on [0, 1]2,

• m◦
(t,s)(1, ·) and m◦

(t,s)(·, 1) are non increasing on [0, 1].

Furthermore, we define a family {ϕts(·) : (t, s) ∈ [0, 1]2} of functions on [0, 1]2 given

by ϕts(x, y) :=
∫

[0,x]×[0,y]
m◦

(t,s)(·)dλ2 = λ2([0, x] × [0, y] ∩ [0, t] × [0, s]) − tsxy, for

(x, y) ∈ [0, 1]2. Since for every (t, s) ∈ [0, 1]2, m◦
(t,s)(·) ∈ BV ([0, 1]2), and

ϕts(1, 1) =

∫

[0,1]×[0,1]

(
1[0,t]×[0,s](u, ν)− ts1[0,1]×[0,1](u, ν)

)
λ2(du, dν) = 0,

then {ϕts(·) : (t, s) ∈ [0, 1]2} ⊂ HB0
2BV ([0,1]2)

. Thus the conditions of Theorem 5.3.3

are satisfied by the family {ϕts(·) : (t, s) ∈ [0, 1]2}.



Chapter 6

Discussions and conclusions

By virtue of being a new approach, model-check methods based on the residual partial

sums process applied to spatial data analysis present open problems, both from a pure

mathematical viewpoint as well as from the perspective of applications. Throughout

this work, even under the simplest model, several difficulties and challenging mathe-

matical problems are encountered. Since only few results concerning this subject are

available, we preserve these problems as challenging open problems and directions for

future research.

Throughout the thesis, wherever appropriate, there have been discussions and

suggestions for modification and improvement of the model. Here we highlight only

the major open questions and suggestions addressed throughout this work.

6.1 Open problems and further plans of research

• As mentioned in Section 4.2 and Section 4.3, we face difficulties in deriving

analytical as well as approximation methods for computing the quantiles of

sup0≤t,s≤1 Bf (t, s) and sup0≤t,s≤1 |Bf (t, s)|. In this work we only propose Monte

102
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carlo simulations to approximate these quantiles. In the case of the standard

Brownian (2) motion, an approximation method has been proposed, see e.g.,

Zimmerman (1972) and Lifshits (1996), p. 139-155. By directly extending this

approach to the standard Brownian (2) bridge or more general processes Bf (·)
it does not seem to be satisfactory since the processes do not have independent

increments. In the one-dimensional case, by applying the Markov property

inherent to the Brownian bridge, Bischoff et al. (2003b) proposed an asymptotic

method for computing such quantiles. Unfortunately, both the Markov property

and the reflection principle are not available for standard Brownian (2) motion

as well as for the standard Brownian (2) bridge, so that the last approach fails.

Further investigation of the properties of Bf is therefore needed, so that these

challenging mathematical problems can be solved.

• As before, we encounter in Section 4.4, a mathematical difficulty in computing

the quantiles of
∫
[0,1]2

B2
f (·)dλ2 analytically as well as approximately. The first

idea is to extend directly either the classical Anderson and Darling’s or Imhof

or Slepian method, see Shorack and Wellner (1986), p. 212, or the Imhof-

Eastwood’s method, see Imhof (1961) and Eastwood (1993). To this end, based

on Mercer’s theorem, we need to derive the principle component decomposition

(Karhunen-Loève expansion) of Bf which consists in finding the solution of

a complicated integral equation with a kernel being the covariance function

Kf (·, ·) of Bf . Since this typical mathematical problem appears in many tests of

hypothesis based on Cramér-von Mises statistics, further alternative approaches

should be developed.

• Similar complicated problems are found as we intend to compute analytically or

approximately the power of the asymptotically size α tests: Ψδ(g), Ψδ(g) and

Ψψ(g), for g(·) ∈ BV ([0, 1]2). Here we handle these problems by Monte Carlo



Chapter 6. Discussions and conclusions 104

simulation, however analytical as well as approximation methods are important

for the sake of comparing our results. Following an approach due to Bischoff et

al. (2003b) does not seem to be satisfactory, since the Markov property does

not hold for Bf . To handle this problem we therefore need further development

concerning the properties of Brownian (2) motion and Brownian (2) bridge.

• In our effort to establish upper and lower bounds for the power of the Kolmogorov-

type test (Chapter 5) following the approach due to Lifshits (1996), p. 88-107,

difficulties are encountered in deriving the model of Bf for the processes associ-

ated with first-order and second-order linear regression models. Consequently,

we can not derive the kernel of the corresponding processes, and in turn the ad-

missible shift can not be defined explicitly. This is mainly due to the structure

of the covariance function Kf (·, ·) of such processes as a complicated function

of four variables in [0, 1]2 × [0, 1]2. Further development of these method for

deriving upper and lower bounds for the power of the Kolmogorov-Smirnov and

Cramér-von Mises type tests is important and presents interesting and chal-

lenging mathematical problems.

6.2 Some remarks

• From the viewpoint of applications, regular lattice (equidistance experimental

design) for spatial data analysis as well as in response surface methodology

is easy to conduct on one hand, but on the other hand, it is clearly cost ex-

pensive. Therefore for the sake of establishing optimal tests based on residual

partial sums processes addressed to the hypotheses formulated in Chapter 4

and efficiency in cost, it is important to further develop functional central limit
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theorems for residual partial sums processes in more general settings incorpo-

rating experimental design theory. Every exact design (for n×m observations):

{(tni, smj) ∈ [0, 1]2 : i = 1, . . . , n, j = 1, . . . ,m} uniquely corresponds to a dis-

crete probability measure Pnm on [0, 1]2 ∩ B2, given by

Pnm :=
1

nm

m∑
j=1

n∑
i=1

P{(tni,smj)},

where P{(t,s)} denotes the Dirac measure in (t, s). Conversely, given a probability

measure P0 on [0, 1]2∩B2, we can choose an exact design according to P0: choose

(tni, smj) := Q0(
ij

nm
− z0) with z0 ∈ [0, 1

nm
] arbitrarily fixed, 1 ≤ i ≤ m, 1 ≤ j ≤

n, where Q0 is the quantile function of P0, see Bischoff (1998) and Bischoff and

Miller (2000). In the case of a regular lattice with m× n observations, we get

Lnm :=
1

nm

m∑

k=1

n∑

`=1

P{(`/n,k/m)} ⇒n,m λ[0,1]2 ,

i.e., Lnm converges weakly to λ[0,1]2 in the sense ELnm(f)
n,m→∞−→ Eλ2(f), for

every bounded continuous function f(·) on [0, 1]2. Based on this fact, given a

sequence (Pnm)n≥1,m≥1 of exact designs on [0, 1]2 ∩ B2, under the assumptions

1. Pnm converges to an exact design P0 in the sense

sup
(t,s)∈[0,1]2

|Fnm(t, s)− F0(t, s)| n,m→∞−→ 0,

where Fnm and F0 are the distribution functions of Pnm and P0, respec-

tively.

2. the regression functions f1(·), . . . , fp(·) are linearly independent, continu-

ous and have bounded variation on [0, 1]2,

we can derive, by applying the approach due to Bischoff (1998) and Bischoff

and Miller (2000), the limit process of the sequence of the residual partial
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sums processes corresponding to (Pnm)n≥1,m≥1. A similar result as in our ap-

proach in Chater 3 will be obtained in which the limit process does not depend

on the sequence of designs, but it depends only on the regression functions

{f1(·), . . . , fp(·)}.

• In applications, the assumption that Cov(vec(En×n)) = σ2 (In2×n2) given to

(1.1.4) is sometimes reasonable, but there are certainly many occasions when

it is unrealistic, i.e., the errors must be correlated. In spatial data analysis we

frequently find a situation in which Cov(vec(En×n)) = σ2Σ, where σ2 ∈ (0,∞)

is unknown and Σ is a known n2 × n2 non-singular matrix. An example is

Cov(εuv, εij) = σ2 exp{−‖(tnu, snv)− (tni, snj)‖}, for 1 ≤ u, v, i, j ≤ n. Hence,

in the analysis, particulary in performing tests based on residual partial sums

process, the spatial structure inherent in the random errors should be incor-

porated. This problem can be well handled by applying the generalized least

squares method, see e.g., Stapleton (1995), p. 163-165, or Schabenberger and

Gotway (2005), p. 320-321. Coming back to the model described in Chapter

1, let B be a non-singular n2 × n2-dimensional matrix such that BB> = Σ.

We transform the original observation vec(Yn×n) to Zn := B−1vec(Yn×n).

Let ηn := B−1vec(En×n), for i = 1, . . . , p, let Ui := B−1vec(Mi) and let

Un := (U1, . . . ,Up) ∈ Rn2×n2
. Then ηn ∼ (O, σ2In2×n2) and the general-

ized least squares residual vector is given by η̂n := ηn − prUηn. We con-

sider again the hypothesis formulated in Chapter 4. Testing the hypotheses

H0 : Gn×n ∈ Wn versus K : Gn×n 6∈ Wn based on the residual partial sums

process associated with the original model is similar to testing the hypotheses

H0 : B−1vec(Gn×n) ∈ Un versus K : B−1vec(Gn×n) 6∈ Un based on the residual

partial sums process associated with η̂n, whose limiting process can be derived

similarly as that Bf . All test procedures derived in Chapter 4 can be performed
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using the functional of residual partial sums process associated with η̂n.

• A generalization of our approach in Chapter 3 from n×n to n× · · · × n︸ ︷︷ ︸
k

regular

lattice and n1 × · · · × nk︸ ︷︷ ︸
k

regular lattice, where n1, . . . , nk are not all equal, is

straightforward. For this purpose we only need formula of integration by parts

for Riemann-Stieltjes integral on the k-dimensional unit cube [0, 1]k which is

already available in Young (1917b) or Yeh (1963). Moreover we also need a

k-dimensional version of Theorem 2.4.4. But this can be derived similarly as in

the two-dimensional case.

6.3 Conclusions

This thesis presents an extension of some existing functional central limit theorems

for least squares residual partial sums processes of the linear regression model in one

dimension to higher dimension. A simple and advantageous approach for deriving the

limit process was proposed and proved.

From the asymptotic, theoretical result presented, a test of hypotheses was pro-

posed in Chapter 4 for checking the adequacy of the model. Three types of tests

were proposed: Kolmogorov, Kolmogorov-Smirnov and Cramér-von Mises type tests.

Monte carlo simulations were conducted for approximating the quantiles of the lim-

iting statistics. The simulation results were very satisfactory compared to existing

approaches and results. For the three type tests proposed, the consistency and the

power of the tests were investigated. By conducting Monte Carlo simulations, the

tests were shown to be powerful in the sense that the power is larger then the preas-

signed level of significance. Lower and upper bounds of the limiting power functions

of Kolmogorov type test were also investigated.



Appendix A

Functions of bounded variation

and the Riemann-Stieltjes integral

A.1 Definitions and Terminology

Definition A.1.1. (1) A rectangle in [0, 1]2 is a subset I of [0, 1]2 which can be

written as the Cartesian product [a1, a2] × [b1, b2], where 0 ≤ a1 ≤ a2 ≤ 1, and

0 ≤ b1 ≤ b2 ≤ 1.

(2) If I is a rectangle, the diameter of I is given by

diam(I) :=
√

(a2 − a1)2 + (b2 − b1)2.

As a convention we put diam(∅) = 0.

(3) Let Γ be a collection of rectangles in [0, 1]2. We say that Γ is a non-overlapping,

finite exact cover of [0, 1]2 if the following conditions hold:
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1. Different elements of Γ have disjoint interiors, i.e, for any I1, I2 ∈ Γ, if

İ1 ∩ İ2 6= ∅, then I1 = I2, where İ denotes the interior of I.

2. Γ has only finitely many elements.

3.
⋃

I∈Γ I = [0, 1]2.

The set of all non-overlapping, finite exact covers of [0, 1]2 is denoted by
∏

[0, 1]2.

(4) For every Γ ∈ ∏
[0, 1]2, we define a quantity ‖Γ‖ by putting

‖Γ‖ := max
I∈Γ

diam(I).

(5) Given a collection of rectangles Γ, the set Ξ(Γ) is defined as follows:

Ξ(Γ) := {ξ : Γ 7→
⋃
I∈Γ

I | ξ(I) ∈ I, ∀ I ∈ Γ}.

(6) Let Γ1 and Γ2 be in
∏

[0, 1]2. We say that Γ2 is more refined than Γ1 and write

Γ1 ≤ Γ2, if for every I2 ∈ Γ2 there is an I1 ∈ Γ1 such that I2 ⊆ I1.

(7) For every pair Γ1 and Γ2 ∈
∏

[0, 1]2, the common refinement of Γ1 and Γ2 is

given by

Γ1 ∨ Γ2 := {I1 ∩ I2 | I1 ∈ Γ1, I2 ∈ Γ2}.

Definition A.1.2. A real-valued function ψ defined on [0, 1]2 is said to be type I non

decreasing on [0, 1]2 if for any (x, y) ∈ [0, 1]2 and any positive real numbers h, u such

that x + h ≤ 1 and y + u ≤ 1, the following condition holds:

ψ(x + h, y + u)− ψ(x, y + u)− ψ(x + h, y) + ψ(x, y) ≥ 0.

Likewise, ψ is said to be type I non increasing on [0, 1]2 if −ψ is type I non decreasing

on [0, 1]2.
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Definition A.1.3. We say that ψ is type II non decreasing on [0, 1]2 if for any

(x, y) ∈ [0, 1]2 and any positive real numbers h, u such that x + h ≤ 1 and y + u ≤ 1,

and any c ∈ [0, 1], the following conditions hold:

1. ψ(x + h, c)− ψ(x, c) ≥ 0, and ψ(c, y + u)− ψ(c, y) ≥ 0,

2. ψ(x + h, y + u)− ψ(x, y + u)− ψ(x + h, y) + ψ(x, y) ≥ 0.

Likewise, ψ is type II non increasing on [0, 1]2 if −ψ is type II non decreasing on

[0, 1]2.

Definition A.1.4. Let Γ be a non-overlapping, finite exact cover of [0, 1]2, and let

ψ be a real-valued function defined on [0, 1]2. The variation of ψ over Γ, denoted by

v(ψ; Γ), is given by

v(ψ; Γ) :=
∑
I∈Γ

|∆Iψ| ,

where for any rectangle I = [a1, a2]× [b1, b2] ∈ Γ,

∆Iψ := ψ(a2, b2)− ψ(a1, b2)− ψ(a2, b1) + ψ(a1, b1).

The total variation of ψ over [0, 1]2, denoted by V (ψ; [0, 1]2), is given by

V (ψ; [0, 1]2) := sup
Γ∈Q[0,1]2

v(ψ; Γ).

Definition A.1.5. The function ψ is said to have bounded variation on [0, 1]2 in the

sense of Vitali, if there exists a positive real number M such that V (ψ; [0, 1]2) ≤
M , see Clarkson and Adams (1933). We denote the class of these functions by

BV V ([0, 1]2). The definition is analogous to the definition of a function which has

bounded variation in one dimension.
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Definition A.1.6. The function ψ is said to have bounded variation on [0, 1]2 in the

sense of Hardy, if the following conditions hold, see Clarkson and Adams (1933):

• There exists a positive real number M such that V (ψ; [0, 1]2) ≤ M .

• There exist x̄, ȳ ∈ [0, 1] such that the functions ψ(x̄, ·) and ψ(·, ȳ) have bounded

variation on [0, 1].

As a convention, we denote this class of functions by BV ([0, 1]2). It is clear that,

BV ([0, 1]2) ⊆ BV V ([0, 1]2).

Proposition A.1.7. Let Φ and Ψ be functions on [0, 1]2, Φ(x) := V (ψ(x, ·); [0, 1])

and Ψ(y) := V (ψ(·, y); [0, 1]), x, y ∈ [0, 1]. If ψ has bounded variation on [0, 1]2 in the

sense of Hardy, then Φ and Ψ have bounded variation on [0, 1]. We shall call Φ and

Ψ the total variation functions. As a convention, we denote the class of functions

which have bounded variation on [0, 1] by BV ([0, 1]).

Proof. See Theorem 1 in Clarkson and Adams (1933).

Remark A.1.8. If ψ ∈ BV ([0, 1]2), then for arbitrarily fixed x̄ and ȳ in [0, 1], the

functions ψ(x̄, ·) and ψ(·, ȳ) defined on [0, 1] are in BV ([0, 1]). We refer the reader to

Stroock (1994), p. 12-18, for further discussion of the notion of the class BV ([0, 1]).

Definition A.1.9. For ψ in BV V ([0, 1]2), the positive and negative variations of ψ

associated with Γ ∈ ∏
[0, 1]2 are given by

v+(ψ; Γ) :=
∑
I∈Γ

(∆Iψ)+ and v−(ψ; Γ) :=
∑
I∈Γ

(∆Iψ)−,

where α+ := max{α, 0} and α− := −min{α, 0}. Likewise, the positive and negative

total variations of ψ in [0, 1]2 are defined by

V+(ψ; [0, 1]2) := sup
Γ∈Q[0,1]2

v+(ψ; Γ) and V−(ψ; [0, 1]2) := sup
Γ∈Q[0,1]2

v−(ψ; Γ).
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Corollary A.1.10. For each (x, y) ∈ [0, 1]2 and ψ in BV V ([0, 1]2) let us consider

a closed rectangle [0, x] × [0, y] ⊂ [0, 1]2. For any Γxy ∈
∏

([0, x] × [0, y]) we define

the quantities v+(ψ; Γxy), v−(ψ; Γxy), V+(ψ; [0, x] × [0, y]), and V−(ψ; [0, x] × [0, y])

similarly as in Definition A.1.9. Then for any (x, y) ∈ [0, 1]2, we have

(1) V+(ψ; [0, x]× [0, y])− V−(ψ; [0, x]× [0, y]) = ∆[0,x]×[0,y]ψ

(2) V+(ψ; [0, x]× [0, y]) + V−(ψ; [0, x]× [0, y]) = V (ψ; [0, x]× [0, y])





(A.1.1)

Theorem A.1.11. A function ψ is in BV V ([0, 1]2) if and only if, there exist ψ1 and

ψ2 which are type I non decreasing on [0, 1]2 such that ψ = ψ1 − ψ2.

Proof. See Theorem 5 in Adams and Clarkson (1934). See also Theorem 1.2.18 and

Exercise 1.2.29 in Stroock (1994) for a version of this result for function of one variable.

To show the necessary condition we put

ψ1(x, y) :=V+(ψ; [0, x]× [0, y]) + 1/2 (ψ(0, y) + ψ(x, 0)− ψ(0, 0)) ,

ψ2(x, y) :=V−(ψ; [0, x]× [0, y])− 1/2 (ψ(0, y) + ψ(x, 0)− ψ(0, 0)) .

Theorem A.1.12. A necessary and sufficient condition that ψ be in BV ([0, 1]2) is

that it be expressible as the difference of two functions ψ1 and ψ2 which are type II

non decreasing on [0, 1]2.

Proof. See Theorem 6 in Adams and Clarkson (1934). We notice that the necessary

condition can be shown by defining

ψ1(x, y) :=V+(ψ; [0, x]× [0, y]) + V+(ψ(·, 0); [0, x]) + V+(ψ(0, ·); [0, y]) + 1/2ψ(0, 0),

ψ2(x, y) :=V−(ψ; [0, x]× [0, y]) + V−(ψ(·, 0); [0, x]) + V−(ψ(0, ·); [0, y]) + 1/2ψ(0, 0).
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Theorem A.1.13. Let ψ be in BV V ([0, 1]2). If ψ is right continuous on [0, 1)2 in

the sense of Definition 2.4.1, then ψ1 and ψ2 defined in the proof of Theorem A.1.11

are also right continuous on [0, 1)2.

Proof. We extend the proof of Theorem 5.5.2 in Douglass (1996) to the higher-

dimensional case. We first show that ψ1 is right continuous on [0, 1)2. Let ε > 0

and (x, y) be arbitrarily fixed in [0, 1)2 with 0 ≤ x < t and 0 ≤ y < s, for some

(t, s) ∈ [0, 1]2. Suppose that

Γts := {[t`−1, t`]× [sk−1, sk] : 1 ≤ ` ≤ m, 1 ≤ k ≤ q},

0 = t0 < t1 < · · · < tm = t, 0 = s0 < s1 < · · · < sq = s,

such that V+(ψ; [0, t] × [0, s]) − v+(ψ; Γ) ≤ ε/2, for all Γ ∈ ∏
([0, t] × [0, s]) with

Γts ≤ Γ. Let ((xn, yn))n≥1 be a sequence in [0, 1]2 which converges to (x, y) from

above. Then there exists an n0 := n0(ε) ∈ N and an index (u, ν) ∈ {(`, k) : 0 ≤ ` ≤
(m− 1), 0 ≤ k ≤ (q − 1)} such that tu ≤ x ≤ xn ≤ tu+1 and sν ≤ y ≤ yn ≤ sν+1, for

n ≥ n0. Since ψ is right continuous on [0, 1)2, there exists an n′0 := n′0(ε) such that

|ψ(xn, yn)− ψ(x, y)| ≤ ε
4(ν+u+3)

, for n ≥ n′0. For a fixed n ≥ n′′0 := max{n0, n
′
0}, let

us define a finite exact cover Γ′ts of the interval [0, t]× [0, s] by putting

Γ′ts := {[t0, t1], . . . , [tu, x], [x, xn], [xn, tu+1], . . . , [tm−1, tm]}

× {[s0, s1], . . . , [sν , y], [y, yn], [yn, sν+1], . . . , [sq−1, sq]}.

Thus, Γ′ts is a refinement of Γts. Moreover, we obtain

ε/2 ≥ V+(ψ; [0, t]× [0, s])− v+(ψ; Γ′ts)

=
[
V+(ψ; [0, t]× [0, s])− V+(ψ; [0, xn]× [0, yn])− (v+(ψ; Γ′ts)− v+(ψ; Γ′xnyn

))
]
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+
[
V+(ψ; [0, xn]× [0, yn])− V+(ψ; [0, x]× [0, y])− (v+(ψ; Γ′xnyn

)− v+(ψ; Γ′xy))
]

+
[
V+(ψ; [0, x]× [0, y])− v+(ψ; Γ′xy)

]

≥ V+(ψ; [0, xn]× [0, yn])− V+(ψ; [0, x]× [0, y])− (v+(ψ; Γ′xnyn
)− v+(ψ; Γ′xy)) ≥ 0.

It can easily be shown that v+(ψ; Γ′xnyn
) − v+(ψ; Γ′xy) ≤ ε/2, for n ≥ n′′0. Hence, the

last inequality gives the result 0 ≤ V+(ψ; [0, xn] × [0, yn]) − V+(ψ; [0, x] × [0, y]) ≤ ε,

for n ≥ n′′0. This leads us to the conclusion that the function V+(ψ; [0, ·] × [0, ·]) is

right continuous on [0, 1)2. The result follows since the marginal function ψ(0, ·) and

ψ(·, 0) are obviously right continuous on [0, 1). The right continuity of ψ2 on [0, 1)2

can be shown analogously.

Theorem A.1.14. Let ψ be in BV ([0, 1]2). If ψ is right continuous on [0, 1)2 in the

sense of Definition 2.4.1, then ψ1 and ψ2 defined in the proof of Theorem A.1.12 are

also right continuous on [0, 1)2.

Proof. As before, we first prove the assertion for ψ1 by showing that V+(ψ; [0, ·] ×
[0, ·]) is right continuous on [0, 1)2. But this was already shown in Theorem A.1.13.

We refer the reader to Exercise 1.2.29 in Stroock (1994) for the right continuity of

V+(ψ(·, 0); [0, ·]) and V+(ψ(0, ·); [0, ·]) on [0, 1). Hence the proof for ψ1 is complete.

The assertion for ψ2 can be handled similarly.

A.2 Riemann-Stieltjes integral on [0, 1]2

Definition A.2.1. Let Γ ∈ ∏
[0, 1]2, and let ϕ and ψ be real-valued functions defined

on [0, 1]2. Then the Riemann-Stieltjes sum (abbreviated as RS-sum) of ϕ over Γ with
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respect to ψ relative to a mapping ξ ∈ Ξ(Γ) is defined by

RS(ϕ | ψ, Γ, ξ) :=
∑
I∈Γ

ϕ(ξ(I))∆Iψ.

The function ϕ is said to be Riemann-Stieltjes integrable with respect to ψ, or more

simply, ψ-RS-integrable on [0, 1]2, if there exists a real number A with the property

that for every ε > 0 there exists a δ > 0 such that for every Γ ∈ ∏
[0, 1]2 with ‖Γ‖ ≤ δ,

we have

sup
ξ∈Ξ(Γ)

|RS(ϕ | ψ, Γ, ξ)− A| ≤ ε.

If such a real number A exists, we call A the RS-integral of ϕ with respect to ψ, and

denote it by

A =

∫ R

[0,1]2
ϕ(t, s) dψ(t, s).

Theorem A.2.2. Let ϕi be ψ-RS-integrable on [0, 1]2, and let ci be any real number,

i = 1, . . . , k. Then
∑k

i=1 ciϕi is ψ-RS- integrable on [0, 1]2, with

∫ R

[0,1]2

k∑
i=1

ciϕi(t, s)dψ(t, s) =
k∑

i=1

ci

∫ R

[0,1]2
ϕi(t, s)dψ(t, s).

Theorem A.2.3. Let ϕ be ψi-RS-integrable on [0, 1]2, and let ci be any real number,

i = 1, . . . , k. Then ϕ is
∑k

i=1 ciψi-RS- integrable on [0, 1]2, with

∫ R

[0,1]2
ϕ(t, s) d

(
k∑

i=1

ciψi(t, s)

)
=

k∑
i=1

ci

∫ R

[0,1]2
ϕ(t, s)dψi(t, s).

Theorem A.2.4. If ψ ∈ BV V ([0, 1]2), every ϕ ∈ C([0, 1]2) is ψ-RS-integrable on

[0, 1]2. Moreover, we have

∣∣∣∣
∫ R

[0,1]2
ϕ(t, s)dψ(t, s)

∣∣∣∣ ≤ ‖ϕ‖∞ V (ψ; [0, 1]2). (A.2.1)
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Proof. The existence of the integral
∫ R

[0,1]2
ϕ(t, s)dψ(t, s) is due to Young (1917a).

We refer the reader to Clarkson (1932) and Smirnov (1969), p. 56-60. The second

assertion follows directly from the definition of the Riemann-Stieltjes integral.

Theorem A.2.5. (Integration by parts)

Let ϕ be ψ-RS-integrable on [0, 1]2, let ϕ(c, ·) be ψ(c, ·)-RS-integrable on [0, 1] and let

ϕ(·, c) be ψ(·, c)-RS-integrable on [0, 1], for c = 0 and 1. Then ψ is ϕ-RS-integrable

on [0, 1]2 and we have

∫ R

[0,1]2
ψ(t, s)dϕ(t, s) = ∆[0,1]2(ϕψ) +

∫ R

[0,1]2
ϕ(t, s)dψ(t, s) +

∫ R

[0,1]

ϕ(0, s)dψ(0, s)

+

∫ R

[0,1]

ϕ(t, 0)dψ(t, 0)−
∫ R

[0,1]

ϕ(t, 1)dψ(t, 1)−
∫ R

[0,1]

ϕ(1, s)dψ(1, s). (A.2.2)

Proof. We consult the reader to Young (1917a) for the complete proof this Theorem.

See also Móricz (2006) for Formula (A.2.2) for the case ϕ(·) ∈ C([0, 1]2) and ψ ∈
BV ([0, 1]2).

The following three Theorems (Theorem A.2.6, Theorem A.2.7 and Theorem

A.2.8) are two-dimensional versions of the results in Bartle (1976), p.241-243. We

refer the reader to Luxemberg (1971) for consulting the results.

Theorem A.2.6. Let ψ be non decreasing on [0, 1]2 and let ϕn, n ≥ 1 be ψ-RS-

integrable on [0, 1]2. If ϕn

‖·‖∞−→ ϕ, then ϕ is ψ-RS-integrable on [0, 1]2 and

∫ R

[0,1]2
ϕ(t, s)dψ(t, s) = lim

n→∞

∫ R

[0,1]2
ϕn(t, s)dψ(t, s).

Theorem A.2.7. (Bounded convergence theorem)

Let ψ be non decreasing on [0, 1]2 and let ϕn, n ≥ 1 be ψ-RS-integrable on [0, 1]2.

Suppose that there exists an M > 0 such that |ϕn(x)| ≤ M , for n ≥ 1 and x ∈ [0, 1]2.
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If there exists a ψ-RS-integrable function ϕ on [0, 1]2 such that ϕn
n→∞−→ ϕ point wise,

then

∫ R

[0,1]2
ϕ(t, s)dψ(t, s) = lim

n→∞

∫ R

[0,1]2
ϕn(t, s)dψ(t, s).

Theorem A.2.8. (Monotone convergence theorem)

Let ψ be non decreasing on [0, 1]2 and let ϕ, ϕn, n ≥ 1 be ψ-RS-integrable on [0, 1]2

satisfying ϕ1 ≤ ϕ2 ≤ · · · ≤ ϕ. Suppose that limn→∞ ϕn = ϕ point wise on [0, 1]2, then

∫ R

[0,1]2
ϕ(t, s)dψ(t, s) = lim

n→∞

∫ R

[0,1]2
ϕn(t, s)dψ(t, s).

A.3 Proof of Theorem 2.4.4

Proof. Let (Γn)n≥1 be the following sequence of partitions of (0, 1]2, where

Γn := {In;`k := ((`− 1)/2n, `/2n]× ((k − 1)/2n, k/2n] : 1 ≤ k, ` ≤ 2n, n ∈ N} ,

with ‖Γn‖ =
√

2
2n

n→∞−→ 0. Associated with the sequence (Γn)n≥1 and the function ϕ,

let us define a sequence of step functions (gn(ϕ))n≥1, (hn(ϕ))n≥1 : (0, 1]2 → R, by

putting

gn(ϕ) :=
2n∑

k=1

2n∑

`=1

( inf
(t,s)∈Īn;`k

ϕ(t, s))χIn;`k

hn(ϕ) :=
2n∑

k=1

2n∑

`=1

( sup
(t,s)∈Īn;`k

ϕ(t, s))χIn;`k
,

where Īn;`k is the closure of In;`k, and χIn;`k
stands for the indicator function of In;`k

on [0, 1]2. Then for n ≥ 1, gn(ϕ) ≤ ϕ ≤ hn(ϕ) everywhere on (0, 1]2. It is clear that

gn(ϕ) and hn(ϕ) are Borel-measurable and bounded, hence νψ-integrable on (0, 1]2,



Appendix A. Function of bounded variation and the Riemann-Stieltjes integral 118

where νψ is the Lebesgue-Stieltjes measure on ((0, 1]2,B2 ∩ (0, 1]2) associated with a

Type I non decreasing function ψ ∈ Rc([0, 1]2). Moreover,

∫

(0,1]2
gn(ϕ)dνψ =

2n∑

k=1

2n∑

`=1

( inf
(t,s)∈Īn;`k

ϕ(t, s))∆Īn;`k
ψ

∫

(0,1]2
hn(ϕ)dνψ =

2n∑

k=1

2n∑

`=1

( sup
(t,s)∈Īn;`k

ϕ(t, s))∆Īn;`k
ψ.

Furthermore, g := limn→∞ gn(ϕ) and h := limn→∞ hn(ϕ) are clearly Borel-measurable

and bounded, hence νψ-integrable on (0, 1]2. Since (|gn(ϕ)|)n≥1 and (|hn(ϕ)|)n≥1 are

dominated by positive constants, by Lebesgue’s dominated convergence theorem and

the Riemann-Stieltjes integrability of ϕ with respect to ψ on [0, 1]2, we get

∫

(0,1]2
gdνψ =

∫ R

[0,1]2
ϕ(t, s)dψ(t, s) =

∫

(0,1]2
hdνψ.

This implies g = h, νψ a.e. on (0, 1]2, hence g = ϕ, νψ a.e. on (0, 1]2. By Exercise 4.5

in Elstrodt (2005), p. 143, ϕ is ν̄ψ-integrable on (0, 1]2, and we obtain

∫

(0,1]2
ϕdν̄ψ =

∫

(0,1]2
gdνψ =

∫ R

[0,1]2
ϕ(t, s)dψ(t, s),

where ν̄ψ is the completion of νψ. Furthermore, let D be the set of discontinuity

points of ϕ, and let R := ∪∞n=1 ∪2n

k=1 ∪2n

`=1∂In,`k, where ∂In,`k is the boundary of In,`k.

Then D ⊂ R ∪ {g < h}. From the preceding result, we get νψ(R ∪ {g < h}) = 0.

Then we have ν̄ψ(D) = 0. This leads us to the conclusion that ϕ is continuous ν̄ψ

a.e. on (0, 1]2.

Conversely, suppose that ν̄ψ(D) = 0, then g = h, νψ a.e. on (0, 1]2. By Theorem

4.2.c in Elstrodt (2005), we have
∫
(0,1]2

gdνψ =
∫

(0,1]2
hdνψ, since g and h are νψ-

integrable on (0, 1]2. By the dominated convergence theorem, we obtain

lim
n→∞

2n∑

k=1

2n∑

`=1

( inf
(t,s)∈Īn;`k

ϕ(t, s))∆Īn;`k
ψ = lim

n→∞

2n∑

k=1

2n∑

`=1

( inf
(t,s)∈Īn;`k

ϕ(t, s))νψ(In;`k)
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=

∫

(0,1]2
gdνψ =

∫

(0,1]2
hdνψ = lim

n→∞

2n∑

k=1

2n∑

`=1

( sup
(t,s)∈Īn;`k

ϕ(t, s))νψ(In;`k)

= lim
n→∞

2n∑

k=1

2n∑

`=1

( sup
(t,s)∈Īn;`k

ϕ(t, s))∆Īn;`k
ψ.

Therefore ϕ is Riemann-Stieltjes integrable with respect to ψ on [0, 1]2.

A.4 Proof of Proposition 2.4.5

Proof. Let ϕ ∈ C([0, 1]2) and let ε > 0. There exists a δ > 0 such that

sup
‖(t1,s1)−(t2,s2)‖≤δ

|ϕ(t1, s1)− ϕ(t2, s2)| ≤ ε

M + ‖ϕ‖∞
.

For such a δ > 0, there exists a partition Γ of [0, 1]2,

Γ := {[x0, x1], (x1, x2], . . . , (xp−1, tp]} × {[y0, y1], (y1, y2], . . . , (ym−1, ym]},

where

0 = x0 < x1 < . . . < x`−1 < x` < . . . < xp = 1

0 = y0 < y1 < . . . < yk−1 < yk < . . . < ym = 1,

such that max1≤`≤p,1≤k≤m ‖(x`−1, yk−1)− (x`, yk)‖ ≤ δ. Let us denote the elements of

Γ by A`k, 1 ≤ ` ≤ p, 1 ≤ k ≤ m. Note that for 1 ≤ ` ≤ p, 1 ≤ k ≤ m, we get

|∆I`k
ψn| ≤ 4 ‖ψn‖∞ , n ≥ 1.

Since ‖ψn‖∞
n→∞−→ 0, there exists an n0 = n0(ε) ∈ N such that

‖ψn‖∞ ≤ ε

4mp(M + ‖ϕ‖∞)
, for all n ≥ n0.



Appendix A. Function of bounded variation and the Riemann-Stieltjes integral 120

Let us define a step function g :=
∑m

k=1

∑p
`=1(min(t,s)∈Ā`k

ϕ(t, s))χA`k
, where Ā`k

stands for the closure of A`k and χA stands for the indicator function of A ⊆ [0, 1]2.

Then ‖ϕ− g‖∞ ≤ ε
M+‖ϕ‖∞ , and ‖g‖∞ ≤ ‖ϕ‖∞. Furthermore, by the definition of g,

we obtain

∣∣∣∣
∫ R

[0,1]2
g(t, s)dψn(t, s)

∣∣∣∣ ≤ 4mp ‖g‖∞ ‖ψn‖∞ ≤ 4mp ‖ϕ‖∞ ‖ψn‖∞ ≤ ε ‖ϕ‖∞
M + ‖ϕ‖∞

.

Hence, by the triangle inequality and by inequality (A.2.1), we finally get

∣∣∣∣
∫ R

[0,1]2
ϕ(t, s)dψn(t, s)

∣∣∣∣ ≤ ‖ϕ− g‖∞ V (ψn; [0, 1]2) +
ε ‖ϕ‖∞

M + ‖ϕ‖∞
≤ ε, n ≥ n0.

This leads us to the conclusion
∫ R

[0,1]2
ϕ(t, s)dψn(t, s)

n→∞−→ 0.
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Weak convergence on C([0, 1]2)

B.1 Etemadi’s Inequality

Proposition B.1.1. Let (X`k)
n,m
`=1,k=1 be an n×m dimensional random matrix whose

components are independent random variables with finite mean. Let for 1 ≤ u ≤ n,

1 ≤ v ≤ m, Suv :=
∑u

`=1

∑v
k=1 X`k. Then for α ∈ R,

P

{
max
1≤v≤m
1≤u≤n

|Suv| ≥ 3α

}
≤ 3 max

1≤v≤m
1≤u≤n

P {|Suv| ≥ α} .

Proof. See Theorem 22.5 in Billingsley (1995).

B.2 Tightness and compactness in C([0, 1]2)

Definition B.2.1. Let S be a metric space and BS be the Borel σ-algebra over S. A

sequence of probability measures {Pn}n≥1 on a measurable space (S,BS) is said to be

tight, if and only if ∀η > 0 ∃ a compact K ⊂ S, such that Pn(K) > 1 − η, ∀n ≥ 1.

Correspondingly, the sequence {Xn}n≥1 of random elements on (S,BS) is tight, if and

121
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only if the sequence of their distributions is tight.

Theorem B.2.2. Let Pn and P be probability measures on (C([0, 1]2),BC). If the

finite-dimensional distribution of Pn converges weakly to those of P and if Pn is tight,

than Pn converges weakly to P for n →∞, denoted by Pn ⇒n P .

Proof. See Park (1971).

Definition B.2.3. The modulus of continuity of any x ∈ C([0, 1]2) is defined by

Wx(δ) := W (x, δ) := sup
‖(t1,s1)−(t2,s2)‖≤δ

|x(t1, s1)− x(t2, s2)| , δ ∈ (0, 1), (B.2.1)

where ‖·‖ denotes Euclidean norm.

Theorem B.2.4. (Arzelà-Ascoli theorem)

A set A ⊆ C([0, 1]2) is relatively compact ( i.e., its closure is compact), if and only if

(1) supx∈A |x(0, 0)| < ∞ and (2) limδ→0 supx∈A Wx(δ) = 0.

Theorem B.2.5. Let {Pn}n≥1 be a sequence of probability measures on (C([0, 1]2),BC).
The sequence {Pn}n≥1 is tight, if and only if the following two conditions are fulfilled.

(1) For every η > 0, there exist an a > 0 and an n0 ∈ N such that

Pn{x : |x(0, 0)| > a} ≤ η, ∀n ≥ n0.

(2) For every η > 0 and every ε > 0, there exist a δ ∈ (0, 1) and an n0 ∈ N such

that

Pn{x : Wx(δ) > ε} ≤ η, ∀n ≥ n0. (B.2.2)

The second condition is equivalent to the following one : for every ε > 0

lim
δ→0

lim sup
n→∞

Pn{x : Wx(δ) > ε} = 0.
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Proof. Analogous to the proof of Theorem 7.3 in Billingsley (1999).

Theorem B.2.6. Let X and Xn, n ≥ 1 be random functions on (C([0, 1]2),BC)
defined on the probability space (Ω,F ,P). If for any finitely many distinct points

(t1, s1), . . . , (tp, sq) ∈ [0, 1]2, (Xn(t1, s1), . . . , Xn(tp, sq)) ⇒n (X(t1, s1), . . . , X(tp, sq)),

and limδ→0 lim supn→∞ P{W (Xn, δ) ≥ ε} = 0,∀ε > 0, then Xn ⇒n X.

Proof. First proof :

Let Pn and P be the probability measures corresponding to the random functions Xn

and X, respectively, n ≥ 1 and π be the projection defined in Section 2.1. By the

hypothesis, Pn ◦ π−1
(0,0) ⇒n P ◦ π−1

(0,0) which implies {Pn ◦ π−1
(0,0)}n≥1 is tight on (R,B1).

Consequently condition (1) in Theorem B.2.5 is satisfied by {Pn}n≥1. In addition,

since the condition limδ→0 lim supn→∞ P{W (Xn, δ) ≥ ε} = 0,∀ε > 0 is the same with

condition (2) in Theorem B.2.5, together we have {Xn}n≥1 is tight. The proof is

complete since the finite dimensional distributions of {Xn}n≥1 converges weakly to

that of X.

Second proof :

For u ∈ N, let Γuu := {I`k := [(`− 1)/u, `/u]× [(k − 1)/u, k/u] : 1 ≤ `, k ≤ u}. Let

us define a mapping C([0, 1]2) 3 x → Mux ∈ C([0, 1]2), given by

(Mux)(t, s) := (`− ut)(k − us)x((`− 1)/u, (k − 1)/u)

+ (ut− (`− 1))(k − us)x(`/u, (k − 1)/u)

+ (`− ut)(us− (k − 1))x((`− 1)/u, k/u)

+ (ut− (`− 1))(us− (k − 1))x(`/u, k/u), ∀(t, s) ∈ I`k,

and a mapping C([0, 1]2) 3 x → πΓuux ∈ R(u+1)×(u+1), πΓuux := (x(`/u, k/u))u, u
k=0,`=0.
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Obviously, ‖Mux− x‖∞ ≤ Wx(
√

2/u). Let Lu : R(u+1)×(u+1) → C([0, 1]2), given by

(LuB)(t, s) := (`− ut)(k − us)b`−1,k−1 + (ut− (`− 1))(k − us)b`,k−1+

(`− ut)(us− (k − 1))b`−1,k + (ut− (`− 1))(us− (k − 1))b`k,

for (t, s) ∈ I`k and B = (b`k)
u, u
`=0,k=0 ∈ R(u+1)×(u+1). For any B,D ∈ R(u+1)×(u+1),

we have ‖LuB− LuD‖∞ ≤ max0≤i,j≤u |bij − dij| =: ‖B −D‖R(u+1)×(u+1) , hence Lu is

continuous on R(u+1)×(u+1). Moreover, since Mux = Lu(πΓuu ◦ x), for any u ∈ N

and any x ∈ C([0, 1]2), by the first hypothesis and the continuous mapping theo-

rem, we get MuXn = Lu(πΓuu ◦ Xn) ⇒n Lu(πΓuu ◦ X) = MuX. Furthermore, since

‖MuX −X‖∞ ≤ W (X,
√

2/u)
u→∞−→ 0, we further have MuX ⇒u X, see Theorem 3.1

in Billingsley (1999). Thus, together we get MuXn ⇒n MuX ⇒u X. In addition,

the inequality ‖MuXn −Xn‖∞ ≤ W (Xn,
√

2/u) together with the second hypothesis

lead us to the following result

lim
u→∞

lim sup
n→∞

P{‖MuXn −Xn‖∞ ≥ ε}

≤ lim
u→∞

lim sup
n→∞

P{W (Xn,
√

2/u) ≥ ε} = 0, ∀ε > 0.

Thus, the assertion follows by applying Theorem 3.2 in Billingsley (1999).

Proposition B.2.7. Let {I`k := [t`−1, t`] × [sk−1, sk] : 1 ≤ ` ≤ p, 1 ≤ k ≤ q}, with

0 = t0 < t1 < . . . < tp = 1, 0 = s0 < s1 < . . . < sq = 1, and min1<`<p(t` − t`−1) ≥ δ,

min1<k<q(sk − sk−1) ≥ δ, δ ∈ (0, 1). Then for every x ∈ C([0, 1]2), we have

Wx(δ
√

2) ≤ 3 max
1≤`≤p
1≤k≤q

sup
(t,s)∈I`k

|x(t, s)− x(t`−1, sk−1)| . (B.2.3)

For any probability measure P on (C([0, 1]2,BC)) and any ε > 0, it holds

P
{

Wx(δ
√

2) ≥ 3ε
}
≤

q∑

k=1

p∑

`=1

P

{
sup

(t,s)∈I`k

|x(t, s)− x(t`−1, sk−1)| ≥ ε

}
. (B.2.4)
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B.3 Proof of Theorem 2.3.4

Proof. We shall prove this theorem by showing that the sequence { 1
σ
Tn(En×n)(·)}n≥1

satisfies the sufficient conditions of Theorem B.2.6 : for any choice of distinct points

(t1, s1), . . . , (tp, sq) ∈ [0, 1]2 and any p, q ∈ N, µn◦π−1
(t1,s1),...,(tp,sq) ⇒n W◦π−1

(t1,s1),...,(tp,sq),

i.e.,

(
1

σ
Tn(En×n)(t1, s1), . . . ,

1

σ
Tn(En×n)(tp, sq)) ⇒n (B2(t1, s1), . . . , B2(tp, sq)), (B.3.1)

and for every ε > 0,

lim
δ→0

lim sup
n→∞

P{W (
1

σ
Tn(En×n), δ) ≥ ε} = 0. (B.3.2)

Consider first a single point (t1, s1) ∈ [0, 1]2, by (3) of Corollary 2.2.2, we have

1

σ
Tn(En×n)(t1, s1) ⇒n B2(t1, s1).

Let us consider any two distinct points (z1, z2) and (z′1, z
′
2) ∈ [0, 1]2, and suppose

firstly that z1 < z′1, and z2 < z′2. For each vector (α1, α2) ∈ R2, we get

α1

σ
Tn(En×n)(z1, z2)+

α2

σ
(Tn(En×n)(z′1, z

′
2)−Tn(En×n)(z1, z2))

⇒n α1N (0, z1z2) + α2(N (0, z′1z
′
2 − z1z2)).

Hence by the Cramér-Wald technique, see Billingsley (1995), p. 382, we have

(
1

σ
Tn(En×n)(z1, z2),

1

σ
(Tn(En×n)(z′1, z

′
2)−Tn(En×n)(z1, z2)))

⇒n (N (0, z1z2),N (0, z′1z
′
2 − z1z2)).

Furthermore, since

(
1

σ
Tn(En×n)(z1, z2),

1

σ
Tn(En×n)(z′1, z

′
2)) = (

1

σ
Tn(En×n)(z1, z2),

1

σ
(Tn(En×n)(z′1, z

′
2)

−Tn(En×n)(z1, z2) + Tn(En×n)(z1, z2))),
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then by the preceding result, we get

(
1

σ
Tn(En×n)(z1, z2),

1

σ
Tn(En×n)(z′1, z

′
2)) ⇒n (N (0, z1z2),N (0, z′1z

′
2)),

where the right side of this result is the distribution of (B2(z1, z2), B2(z
′
1, z

′
2)).

Now let us consider the case z′1 < z1 and z2 < z′2. Then we get

(
1

σ
Tn(En×n)(z′1, z

′
2),

1

σ
Tn(En×n)(z1, z2))

= ((
1

σ
Tn(En×n)(z′1, z

′
2)−

1

σ
Tn(En×n)(z′1, z2)) +

1

σ
Tn(εn)(z′1, z2),

(
1

σ
Tn(En×n)(z1, z2)− 1

σ
Tn(En×n)(z′1, z2)) +

1

σ
Tn(En×n)(z′1, z2))

which by using the analogous argument as before, converges in distribution to the

vector (N (0, z′1z
′
2),N (0, z1z2)). The other cases can be handled analogously. Thus

the assertion for k = 2 follows. A set of three or more points can be handled in the

same way, this leads us to the conclusion that (B.3.1) is satisfied.

To prove (B.3.2) we apply Proposition B.2.7. From (B.2.4), for any ε > 0 we get

P
{

W (
1

σ
Tn(En×n), δ

√
2) ≥ 3ε

}

≤
q∑

k=1

p∑

`=1

P

{
sup

(t,s)∈I`k

∣∣∣∣
1

σ
Tn(En×n)(t, s)− 1

σ
Tn(En×n)(t`−1, sk−1)

∣∣∣∣ ≥ ε

}
,

whenever min1<`<p(t` − t`−1) ≥ δ, min1<k<q(sk − sk−1) ≥ δ, δ ∈ (0, 1). For 0 ≤ ` ≤ p,

and 0 ≤ k ≤ q, let us chose t` = m`/n, and sk = m′
k/n, where m` and m′

k are integers

that satisfy the condition

0 = m0 < m1 < . . . < m`−1 < m` < . . . < mp = n,

0 = m′
0 < m′

1 < . . . < m′
`−1 < m′

` < . . . < m′
q = n.
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Then by the definition of Tn(En×n)(·), we get

P
{

W (
1

σ
Tn(En×n), δ

√
2) ≥ 3ε

}
≤

q∑

k=1

p∑

`=1

P



 max

m`−1≤i1≤m`
m′

`−1
≤i2≤m′

`

∣∣∣Si1i2 − Sm`−1m′
k−1

∣∣∣ ≥ εσn



 ,

whenever

m`

n
− m`−1

n
≥ δ, and

m′
`

n
− m′

`−1

n
≥ δ, for 1 < ` < p, 1 < k < q,

where S`k :=
∑k

j=1

∑`
i=1 εij. Since {εij : 1 ≤ i, j ≤ n} are i.i.d, the right side of the

preceding inequality is the same with the following one

q∑

k=1

p∑

`=1

P





max
0≤i1≤(m`−m`−1)

0≤i2≤(m′
`
−m′

`−1
)

|Si1i2| ≥ εσn





.

Hence, we have

P
{

W (
1

σ
Tn(En×n), δ

√
2) ≥ 3ε

}
≤

q∑

k=1

p∑

`=1

P





max
0≤i1≤(m`−m`−1)

0≤i2≤(m′
`
−m′

`−1
)

|Si1i2| ≥ εσn





.

For further simplification we chose m` = `m and m′
k = km′, for some integers m and

m′ that satisfy m` − m`−1 = m ≥ nδ and m′
k − m′

k−1 = m′ ≥ nδ, for 0 ≤ ` < p

and 0 ≤ k < q. Since the indexes p and q must satisfy (p − 1)m < n ≤ pm and

(q − 1)m′ < n ≤ pm′, we chose p = dn/me n→∞−→ 1/δ < 2/δ and q = dn/m′e n→∞−→
1/δ < 2/δ. Moreover, n/m

n→∞−→ 1/δ > 1/2δ and n/m′ n→∞−→ 1/δ > 1/2δ. Hence, for

large n and for every ε > 0, we have

P
{

W (
1

σ
Tn(En×n), δ

√
2) ≥ 3ε

}
≤ 4

δ2
P

{
max
0≤`≤m
0≤k≤m′

|S`k| ≥ εσ
√

mm′

2δ

}

=
16λ2

ε2
P

{
max
0≤`≤m
0≤k≤m′

|S`k| ≥ λσ
√

mm′

}

≤48λ2

ε2
max
0≤`≤m
0≤k≤m′

P

{
|S`k| ≥ λσ

√
mm′

3

}
(B.3.3)
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where λ := ε/2δ. The last inequality follows by applying Etemadi’s inequality. Thus,

(B.3.2) will follow if we can show that

lim
λ→∞

lim sup
m,m′→∞

48λ2

ε2
max
0≤`≤m
0≤k≤m′

P

{
|S`k| ≥ λσ

√
mm′

3

}
= 0,

which is the same with the condition

lim
λ→∞

lim sup
n→∞

48λ2

ε2
max
0≤`≤n
0≤k≤n

P
{
|S`k| ≥ λσn

3

}
= 0.

By the central limit theorem, if `λ and kλ are large enough such that `λ ≤ ` ≤ n and

kλ ≤ k ≤ n, then

P
{
|S`k| ≥ λσn

3

}
≤ P

{
|S`k| ≥ λσ

√
`k

3

}
= P

{∣∣∣∣
S`k

σ
√

`k

∣∣∣∣ ≥
λ

3

}
≤ 243

λ4
.

For ` ≤ `λ ≤ n and k ≤ kλ ≤ n, we can apply Chebyshev’s inequality to get

P
{
|S`k| ≥ λσn

3

}
≤ 9`k

λ2n2
≤ 9`λkλ

λ2n2
.

As a result, the maximum on the right side of (B.3.3) is dominated by max
{

243
λ4 , 9`λkλ

λ2n2

}
.

Consequently, we have

lim
λ→∞

lim sup
n→∞

48λ2

ε2
max
0≤`≤n
0≤k≤n

P
{
|S`k| ≥ λσn

3

}
≤ 48

ε2
lim

λ→∞
lim sup

n→∞
max

{
243

λ2
,
9`λkλ

n2

}
= 0.

This complete the proof of the theorem.
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İ . . . . . . . . . . . . . . . . . . . . . . 109

∨ . . . . . . . . . . . . . . . . . . . . . .109

RS(ϕ | ψ, Γ, ξ) . . . . . . . . . . . . . .115

ξ(Γ) . . . . . . . . . . . . . . . . . . . . 109

⇒n . . . . . . . . . . . . . . . . . . . . .122

Wx(·) . . . . . . . . . . . . . . . . . . . .123

Lu . . . . . . . . . . . . . . . . . . . . . 124

Mu . . . . . . . . . . . . . . . . . . . . .124



Bibliography

[1] Adams, C,R. and Clarkson, J.A. (1934). Properties of function f(x, y) of

bounded variation. Transactions of the American Mathematical Society, 36, no.

4, 711-730.

[2] Arnold, S.F. (1981). The Theory of Linear Models and Multivarite Analysis.

John Wiley & Sons, Inc., New York, Chichester, Brisbane, Toronto.

[3] Bader, G. (1997). Konvergenzarten endlicher Borelmaße basierend auf

schwacher Konvergenz (Diplomarbeit). Fakultät für Mathematik der Univer-

sität Karlsruhe.

[4] Bader, G. (2001). Asymptotik von Regressionsmodellen (Dissertation). Fakultät

für Mathematik der Universität Karlsruhe.

[5] Bartle, R.G. (1976). The Elements of Real Analysis (2nd. edition). John Wiley

& Sons, Inc., New York, London, Sydney, Toronto.

[6] Billingsley, P. (1968). Convergence of Probability Measures. John Wiley & Sons,

Inc., New York, Chichester, Weinheim, Brisbane, Singapore, Toronto.

[7] Billingsley, P. (1995). Probability and Measure (third edition). John Wiley &

Sons, Inc., New York, Chichester, Weinheim, Brisbane, Singapore, Toronto.

[8] Billingsley, P. (1999). Convergence of Probability Measures (2nd. edition). John

Wiley & Sons, Inc., New York, Chichester, Weinheim, Brisbane, Singapore,

Toronto.

131



Bibliography 132

[9] Bischoff, W. (1998). A functional central limit theorem for regression models.

Ann. Stat. 26, no. 4, 1398-1410.

[10] Bischoff, W. and Miller, F. (2000). Asymptotically optimal tests and optimal

designs for testing the mean in regression models with applications to change-

point problems. Ann. Inst. Statist. Math. 52, 658-679.

[11] Bischoff, W. (2002). The structure of residual partial sums limit processes of

linear regression models. Theory of Stochastic Processes. 2(24), no. 1-2, 23-28.
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[37] Móricz, F. (2006). Pointwise behavior of double Fourier series of functions of

bounded variation. Monatsh. Math. 148, 51-59.

[38] Muirhead, R.J. (1982). Aspect of Multivariate Statistical Theory. John Wiley &

Sons, New York, Chichester, Brisbane, Toronto, Singapore.

[39] Xie, L. and MacNeill, I.B. (2004). Spatial residual processes and boundary de-

tection (Preprint). Department of Statistics and Actuarial Sciences, University

of Western Ontario, Canada.

[40] Park, W.J. (1970). A multi-parameter gaussian process. The Ann. of Math.

Stat., 41, no. 5, 1582-1595.

[41] Park, W.J. (1971). Weak convergence of probability measures on the function

space C([0, 1]2. J. of Multivariate Analysis, 1, 433-444.

[42] Rudin, W. (1991). Functional Analysis (2nd. edition). McGraw-Hill, Inc., New

York.

[43] Schabenberger, O., Gotway, C.A. (2005). Statistical Methods for Spatial Data

Analysis. Chapman & Hall/CRC, Boca-Raton, London, New York.



Bibliography 135

[44] Shorack, G.R., Wellner, J.A. (1986). Empirical Processes with Applications to

Statistics. John Wiley & Sons Inc., New York, Chichester, Brisbane, Toronto,

Singapore.

[45] Smirnov, W.I. (1969). Lehrgang der höheren Mathematik (teil V). Veb.

Deutscher Verlag der Wissenschaften, Berlin.

[46] Stapleton, J. H. (1995). Linear Statistical Models. John Wiley & Sons Inc., New

York, Chichester, Brisbane, Toronto, Singapore.

[47] Stroock, D.W. (1994). A Concise Introduction to the Theory of Integration (2nd.
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