Model-Checks Based on
Least Squares Residual Partial
Sums Processes

Zur Erlangung des akademischen Grades eines

DOKTORS DER NATURWISSENSCHAFTEN

von der Fakultat fur Mathematik der Universitat
Karlsruhe (TH) genehmigte

DISSERTATION

von

Wayan Somayasa, M.Si.

aus Jinengdalem, Buleleng (Indonesien)

Tag der miindlichen Priifung: 18.07.2007

Referent: Prof. Dr. Wolfgang Bischoff
Korreferent: Prof. Dr. Norbert Henze

Karlsruhe 2007



Dedicated to my wife Sutiari, my son David and my father.

To the memories of my mother.



Acknowledgement

I would like to take this opportunity to express my thanks to Prof. Dr. Wolfgang
Bischoff, my thesis advisor, who guided me meticulously through the research work.

I would like to express my special thanks to Prof. Dr. Norbert Henze, the second
reader of this thesis, for the encouraging support and comments during this research.
He was also very understanding and cooperative.

I acknowledge the financial support from the German Academic Fxchange Service
(DAAD), which has awarded me for the period October 2003 - March 2007.

I wish to thank my colleagues in the Institute of Stochastics for providing me with
an excellent and friendly working environment. In particular, I would like to thank
Dr. Bernhard Klar, Dipl.-Math. oec. Volker Baumstark, Dipl.-Math. oec. André
Mundt and Dr. Matthias Heveling for sharing with me their knowledge in statistics
and stochastics.

I would like to thank Apl. Prof. Dr. Rudolf Lohner, the chief of Application and
Software division of the central computing center (RZ) of Karlsruhe university for
providing me the scientific supercomputer for the simulations.

I express my deepest gratitude to my parents, my families in Indonesia, my wife
and my son for their love and patience in guiding me during my stay in Germany.
Without them this work would never have come into existence (literally).

Finally, I thank Hyang Widi Wasa (Almighty God) for all the grace and blessing

that He has showered on me to reach this stage of my academic and personal life.

Karlsruhe, July, 2007



Table of Contents

Acknowledgement i
Table of Contents ii
Introduction 1
1 Linear regression models on [0, 1]? 8
1.1 Definition of the models . . . . . . . . . . . . ... 8
1.2 Parameter estimation . . . . . . . ... 11

2 Gaussian processes on C([0,1]?) and comparison of Riemann-Stieltjes

and Lebesgue-Stieltjes integral 15
2.1 Standard Brownian (2) motion. . . . . ... ... ... 16
2.2 Standard Brownian (2) bridge . . . . . ... ... ... 20
2.3 Invariance principle and the construction
of the standard Brownian (2) motion . . . . .. ... ... ... ... 23
2.4 Comparison of Lebesgue-Stieltjes and
Riemann-Stieltjes integrals on [0, 1% . . . . . . . ... ... ... ... 28
2.4.1 Extension to finite Lebesgue-Stieltjes signed measures . . . . . 30
3 Residual partial sums limit processes 33
3.1 Reproducing kernel Hilbert space of the
standard Brownian (2) motion . . . . . ... ..o 34
3.2 Residual partial sums limit processes . . . . . . . ... .. ... ... A7
3.3 Examples . . . . .. 55
3.4 Extension to an n x m regular lattice on [0,1]% . . . . . ... ... .. 58
4 Tests based on residual partial sums processes 60
4.1 Formulation of the Hypotheses . . . . . . . . .. ... ... ... ... 61

4.2 Kolmogorov type test . . . . . . . ..o 63

i



CONTENTS iii

4.2.1  Approximation of the quantiles of sup( gejo 12 Be(t,8) - - - - . 65
4.3 Kolmogorov-Smirnov type test . . . . . . ... ... 68
4.3.1  Approximation of the quantiles of sup( gco 12 [Be(t,s)] . . .. 69
4.4 Cramér-von Mises type test . . . . . . . .. ... 71
4.4.1 Approximation of the quantiles of f[OJP BE(:)d\* ... ... 72
4.5 Consistency and power of the tests . . . . . . . . ... ... ... .. 74
4.5.1 Test of Kolmogorov type . . . . . . . ... ... ... .. ... 76
4.5.2  Test of Kolmogorov-Smirnow type . . . . . . .. .. ... ... 7
4.5.3 Test of Cramér-von Mises type . . . . . . . .. .. ... ... 78
4.5.4 Approximation of the localized power . . . . . . . . . ... .. 78
4.6 Weighted tests. . . . . . . . . . 83
4.7 Applications . . . . . ... 86
5 Lower and upper bounds for the power of the Kolmogorov type test 90
5.1 Modelling the covariance functionof Be . . . . . . . . . ... ... .. 90
5.1.1 Model for the standard Brownian (2) motion . . . . . . . . .. 91
5.1.2  Model for the standard Brownian (2) bridge . . . .. ... .. 91

5.2  Lower and upper bounds for the boundary
crossing probabilities of By with trend . . . . . . .. ... ... 92

5.3 Lower and upper bounds for the boundary
crossing probabilities of BY with trend . . . . .. ... ... ... .. 97
6 Discussions and conclusions 102
6.1 Open problems and further plans of research . . . . . ... ... ... 102
6.2 Someremarks . . . ... ..o 104
6.3 Conclusions . . . . . . . . . 107
A Functions of bounded variation and the Riemann-Stieltjes integral 108
A.1 Definitions and Terminology . . . . . . . . .. ... ... ... .... 108
A.2 Riemann-Stieltjes integral on [0,1]% . . . . . .. . ... .. ... ... 114
A.3 Proof of Theorem 2.4.4 . . . . . . . .. . ... ... ... ... ..., 117
A.4 Proof of Proposition 2.4.5 . . . .. .. ... 0L 119
B Weak convergence on C([0, 1]?) 121
B.1 Etemadi’s Inequality . . . . .. .. ... .. ... .0 . 121
B.2 Tightness and compactness in C([0,1]%) . . . . ... .. .. ... ... 121
B.3 Proof of Theorem 2.3.4 . . . . . .. .. ... . ... ... ... ..., 125

Symbols 129



CONTENTS

Bibliography

Lebenslauf

v

131

136



Introduction

In mathematical statistics we learn about several statistical models which have many
areas of application such as in Agriculture, Biology, Economic, Environmental science,
Engineering, etc. In this work we specifically put our attention on a linear model
for spatial data. In what follows we present a brief description by an example in
meteorology to give a motivation how linear models (empirical model building) come
into account of statistical methods for spatial data analysis and why we are interested

in this subject.

Figure 1. U.S. Weather Stations. Source: National Climate Data Center.

In order to determine and quantify the functional relationship between geograph-
ical positions and the air temperatures in the USA, an experiment was conducted

that consisted in recording independently air temperatures from m € N, say, weather
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stations installed in several different positions according to Figure 1. We denote
the experimental region of this experiment as D C R?. Suppose that the true un-
known value of the air temperature recorded at a position with cartesian coordinate
(z,y) € D, is given by an unknown function f(z,y). This function may be either
a first order or a second order polynomial or exponential in z and y. It is reason-
able to treat the data obtained from this experiment as a geostatistical data since
the experimental domain D is continuous and fixed, see Schabenberger and Gotway
(2005), p. 7, for the notion of geostatistical data. Since it is clearly impossible to
determine this function analytically (without knowing additional information about
the physical characteristics of these phenomena), we may, based on data, approximate
this function empirically. Let Z(s;) be the air temperature recorded from the station
with geographical position s; € D, ¢ = 1,...,m. We may regard these observations
as a realization of a stochastic process (random field) {Z(z,y) : (z,y) € D} defined
on a probability space (2, F,P), say. Because experimental error is inherent in ex-
periments involving measurement, we can assume that for every point (z,y) € D, the
response variable Z(x,y) can be decomposed as Z(z,y) = f(z,y) + e(x,y), i.e., the
randomness of Z(z,y) is contributed only by the random error £(z,y). Hence, the air
temperature that is actually observed or measured at any particular position s; € D
can be written as Z(s;) = f(s;)+¢(s;). The random error £(s;) represents the random
difference between the observed and the true air temperatures at s;, « = 1,...,m.
Introducing the vectors Z := (Z(s1),...,Z(sm))", © = (f(s1),...,f(swm))", and
E := (g(s1),...,€(s,n)) ", the model may be written as Z = © + E.

We have to give reasonable assumptions to the model, so that further study and
analysis can be conducted. In particular, reasonable assumptions muss be made on
the unknown function f(-) and the random error (+). For example f(-) is sometimes
assumed to be continuous and smooth function on D so that it can be approxi-

mated by a polynomial function of low order. If we assume that there exist functions
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91(); - gp(+) defined on D such that f(s;) = > 7_, B8;g;(si) for some unknown con-
stants (i, ..., 3,, we speak about a linear regression model (in a spatial data analysis
context this model is called universal kriging model). In other word linear regression
(universal kriging) model concerns on the assumption that @ € V for a subspace
V C R™, with V :=[gy,...,8,)], i.e., V is a subspace of R” spanned by the vectors
{g1,...,8,}, where g; := (gi(s1),...,9i(sm))" € R™, i = 1,...,p. Moreover if we
assume that f(s;) = p, for an unknown p € R and i = 1,...,p, the model is called
a constant (ordinary kriging) model, see e.g., Christensen (1991), p. 263. Usually
the random errors (s;), i = 1,...,m, are assumed to be independent and have some
distribution on R, e.g., a normal distribution with mean 0 and unknown finite vari-
ance 0(s;). This means that the variance depends on the coordinate of the point
s; € D. Indeed, this assumption is reasonable for the weather station experiment
above since the air temperatures are recorded from station to station independently,
so that under this assumption we investigate the model Z = © + E, with E(E) =0
and Cov(E) = diag(c*(s1),...,0%(sm)). In many situations it may be unrealistic to
assume that the observations are uncorrelated. For instance, we consider soil carbon
regression model in Schabenberger and Gotway (2005), p. 321-352, for which it is
assumed that Cov(e(s;),e(s;)) = o exp{— ||s; — s;|| /0} for i # j, where o2 € (0, 00)
and # € R are unknown. Thus we get a more complicated model than before. Con-
sequently, we need a more complicated statistical procedure for investigating such a
model.

After fitting the model to the data, a further preliminary statistical analysis ad-
dressed to this model may include model-checks which are intended to check (based
on the data) the adequateness of the model, i.e., whether or not our conjecture con-
cerning validity of the model, e.g., linear regression (universal kriging) model, holds
true. In many applications, e.g., response surface methodology in which one is mostly

interested in polynomial models such a preliminary analysis plays an important role



Introduction 4

before one conducts further analysis such as predicting the future response at ob-
served or unobserved locations or determining the optimum condition of the model,
see e.g., Bisgaard and Ankenman (1996).

In studies concerning model-check or change-point problems for linear regression
models one usually investigates the partial sums of least squares residuals, i.e., the
partial sums of the components of the vector Z — @, where © is the ordinary least
squares estimator of ® which is given by the orthogonal projection of Z onto V.
For example, MacNeill and Jandhyala (1993) and Xie and MacNeill (2004) propose
a change-point method for spatial data based on cumulative sums (CUSUM) of least
squares residuals. In the one-dimensional case MacNeill (1978a, b) proposed a test
based on CUSUM of least squares residuals, and Jandhyala and Minogue (1993)
derived Bayes-type change detection statistics based on partial sums of residuals and
discussed their asymptotic distributions for general regression. Bischoff (1998) and
Bischoff and Miller (2000) proposed an asymptotic test based on CUSUM of least
squares residuals for polynomial regression models with one variable. In this work
we propose a model-check method for the linear model confining the attention on
polynomial regression models with two variables defined on the experimental region

[0,1] x [0,1] by conducting tests of hypothesis.

2e below poverty level, 1990

Figure 2. Percentage below poverty line, 5 US midwestern states, 1990 census.
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In many areas of application the spatial data are often lattice data (regional) data,
i.e., the experimental domain D is fixed (not random) and countable, see e.g., Cressie
(1991), p. 383-384 or Schabenberger and Gotway (2005), p. 8-9, for the notion of lat-
tice data. For example wheat-yield data measured on an agricultural plot, attributes
collected by ZIP code, census tract, remotely sensed data reported by pixels, etc.,
are usually given by lattice data, see for example the data presented in Figure 2.
These data are percentages below poverty level from 5 US midwestern states: Illinois,
Indiana, Michigan, Ohio, and Wisconsin, recorded in a 1990 census. Throughout this
work we consider our experimental domain as an n x n regular lattice on [0, 1] x [0, 1]
in which it is not only fixed and countable, but the points are also equally spaced with
the experimental condition {(¢/n,k/n) : 1 < ¢,k <n}. A further important assump-
tion made throughout this work is that the random errors {e(¢/n,k/n) : 1 < {,k < n}
are independent and identically distributed with unknown distribution having mean
0 and variance 0® > 0. So instead of assuming that the variance of Z(¢/n, k/n) may
depend on ¢/n and k/n, the so-called heteroscedastic linear regression model, we con-
sider the case of a constant variance Var(Z({/n,k/n)) = o2 € (0,00), the so-called
homoscedastic linear regression model. Under these assumptions we are interested in

the following tasks:

e to establish the limiting distribution of the sequence of the residual partial sums

processes associated with the model for large sample size,

e to conduct asymptotic tests (model-checks) based on the residual partial sums
process for detecting whether or not the model is a linear regression (universal

kriging) model.

We now give an outline about the coverage and organization of our work in han-
dling these problems. In Chapter 1 we give the formal definition of the linear re-

gression model with experimental condition an n x n regular lattice on [0, 1] x [0, 1].
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To give a more convenient interpretation and for theoretical advance, we write the
observations in both matrix and vector forms which, by using the vec operator, will
turn out to be shown equivalent. We also study a classical asymptotic estimation
procedure for the variance of the observations, see Arnold (1982), p. 147-148.

Chapter 2 introduces the theoretical background which is essential for future con-
siderations. In this chapter we study Wiener measure, standard Brownian (2) motion
and the standard Brownian (2) bridge on (C([0,1]?), B¢). The characteristics of weak
convergence on metric space such as the continuous mapping theorem and its conse-
quences are also discussed. We also present a basic result from classical integration
theory (Elstrodt 2005, p. 63-65), that provides necessary and sufficient conditions so
that both the Riemann-Stieltjes integral and the Lebesgue-Stieltjes integral coincide.
The extended version of this important result to integration with respect to any func-
tion which has bounded variation on [0, 1] x [0, 1] in the sense of Vitali (Clarkson and
Adams, 1933) and is right continuous on [0,1)? is also investigated. At the end of
this chapter we apply this results to an extended version of the weak convergence in
the sense of Hognés (1977) and Johnson (1985) of a sequence of signed measures.

In Chapter 3 we derive the limit process of the least squares residual partial sums
process for the linear regression models defined in Chapter 1 by generalizing the
approach of Bischoff (1998), Bischoff and Miller (2000), and Bischoff (2002), from
the one-dimensional to a higher-dimensional case. We start this chapter with an
investigation about the properties of the so-called reproducing kernel Hilbert space
(RKHS) of the standard Brownian (2) motion. Our main result is stated in Theorem
3.2.6. We close this chapter with a discussion about examples of the residual partial
sums limit process associated to several regression models and the generalization of
Theorem 3.2.6 to a-regression model with experimental domain being an n xm regular

lattice.
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In Chapter 4 we consider model-checks for spatial data in which we test the
hypothesis that the model is universal kriging but we confine our discussion to poly-
nomial models. For that we propose three test statistics based on residual partial
sums process: a Kolmogorov type statistic, a Kolmogorov-Smirnov type statistic and
a Cramér-von Mises type statistic. For each statistic the asymptotically size a critical
region is approximated by simulation. We shall show that the tests are asymptotically
pointwise consistent. We also investigate the asymptotic power of the tests under lo-
calized alternatives with localizing rate 1/n and conduct Monte Carlo simulations to
approximate the limiting power of the tests for several functions under alternatives so
that the behavior of the three tests can be compared. Generalizations of these three
procedures to weighted tests are also discussed. In order to evaluate the performance
of the proposed tests, we apply them by presenting an example of statistical analysis
for spatial data in which we work with Mercer and Hall’s data, see Section 4.7.

In Chapter 5 we derive lower and upper bounds for the localized power of the
Kolmogorov type test. More exactly, we derive bounds for the boundary crossing
probability P{sup(m)e[m]g (p(t,s) + Be(t,s)) > u(t,s)}, p > 0, for a known trend
¢(+) and boundary u(-). We confine our considerations to the standard Brownian (2)
motion and the standard Brownian (2) bridge.

In Chapter 6 we highlight major mathematical open problems which are encoun-
tered throughout this work. We also make suggestions for modifications and improve-
ment, and we propose topics for future research.

In Appendiz A and Appendix B we present several basic definitions and notations
as well as theorems that are necessary for our work. Several important theorems

discussed in Chapter 2 are proved in Appendix A and Appendix B.



Chapter 1

Linear regression models on [0, 1]°

In this chapter we give a formal definition of the linear regression model defined
on the unit square [0,1]%2. We also present the point estimation procedures for the

parameters of the model.

1.1 Definition of the models

To describe the model in more detail, let [0,1]? := [0,1] x [0,1] C R? be the ex-
perimental domain (region), and let fi,...,f, : [0,1]> — R be known real-valued
regression functions defined on [0, 1]2. We assume that the experiment is performed

under n x n experimental conditions taken from a regular lattice, given by
En={(l/n,k/n): 1<l k<n, neN}cC|0,1]? (1.1.1)

see also Figure 3 below for the geometrical visualization of &,. We give the experi-

mental region [0, 1]? the topology induced by the Euclidean metric

I =yl = V(@1 =90 + (22— 92)?, x = (21, 22),y = (y1,32) € 0,1].
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N N A )

—— —— —
1/n2/n l/n n/n=1
Figure 3. An n x n regular lattice
For convenience we take the observations over &, row wise initializing at the point on

the left-bottom corner, i.e., the point with coordinate (1/n,1/n). Hence we have an

n X n dimensional matrix (array) of corresponding observable response variables

Yii Yo o0 Y
Youn = | Yip Yo -+ Y | €R™,

where the kth row of this matrix represents the observations at the points {(¢/n, k/n) :
1 <¢<n}ofé&,. Let M; := (fi(¢{/n,k/n)),_},_, be an n x n dimensional matrix
generated by assigning the regression function f;(-) to the regular lattice &,, i =

1,...,p. We assume that Y, ., can be decomposed as

Ynxn - Mnxn + Enxna (112>
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for some unknown matrix M,,,, € V,, C R"™", where V,, is a subspace of R"*"
generated by the set {M;y,...,M,}, and E,x, := (5%)2’:&:1 is an n x n dimen-
sional random matriz with components ey, 1 < ¢,k < n, are independent and iden-
tically distributed real-valued random variables defined on a common probability
space (0, F,P), with E(es,) = 0 and Var(ey,) = 02 € (0,00). Furthermore, (1.1.2)
is called the ordinary linear model, see Arnold, 1981, p. 55. We refer the reader
to Muirhead (1982), p. 75-79, for the definition of random matrix. By assumption,
there exists some unknown vector of parameters 3 = (8,...,8,)" € R, such that

M, = Y -, ;M;. Hence, the model can be equivalently represented as
p
Yosn =Y BiM; + Eqpn. (1.1.3)
i=1

In the sequel we interpret all vectors as column vectors unless otherwise stated. For
any A = (aj,...,ax,...,a,) € R"" where a; € R" is the kth column of A, the vec

operator defined on R™" gives A the value vec(A) := (a],...,a],...,a)T € R”,

see Harville (1997), p. 340-343. Furthermore, let X,, := (vec(M;),...,vec(M,)) €
R™*P be the design matriz of the model, i.e., X,, is an n? X p matrix whose (7, j)th
element is given by f;(¢/n,k/n), such that n(k — 1) + ¢ =i, for 1 < k,¢ < n, where
1 <j<p, and 1 <i < n? By using the vec operator, (1.1.3) can be equivalently

expressed in the form
vec(Yown) = X0 + vec(Epnxy), (1.1.4)
with
E(vec(Yoxn)) = X3 and Cov(vee(Yxn)) = 0 L2z, 02 € (0,00).

Here L2, ,2 is the n? x n? identity matrix. Model (1.1.3) and (1.1.4) are called the
coordinate version of the linear model, see Arnold, 1981, p. 55.
It is worth mentioning that for our model we do not assume any specific distri-

bution for the random errors ep, 1 < £,k < n. The only assumption is that these



Chapter 1. Linear regression models on [0, 1]? 11

errors are independent and identically distributed with zero means and finite second

moments and defined on the same probability space (2, F,P).

1.2 Parameter estimation

We furnish the vector space R™" with an inner product (-,)gnx» and the corre-
sponding norm ||:||gaxn, defined as follows. For any A = (ay,...,ay,...,a,), and
B = (by,...,bg,...,b,) € R

p
(A, B)rocn == Y (ag, by)zn = (vec(A),vee(B))y,2 = trace(AB),
k=1

p
2 2 2
znen = (A Ao = Y Jlanllgn = [lvec(A)|[g.e = trace(ATA).
k=1

IA]

Here (-, )gn and ||-||z. are the Euclidean inner product and the associated norm on
the vector space R".

Let pry, and pry. denote the orthogonal projectors onto the subspace V, and
onto the orthogonal complement of V,,, respectively. Since the components of the
random matrix E,,«,, satisfy the Gauss-Markov conditions, then, by the Gauss-Markov
theorem, see e.g., Arnold (1981), p. 75 or Stapleton (1995), p. 88-94, the best linear
unbiased estimator (BLUE) for the unknown matrix M., in (1.1.2) coincides with
the least squares estimator given by M\nxn = prv, Y,xn. The corresponding matrix

of the least squares residuals is given by
R,n = (Wk)Z;h:l = prviYopn = pryviEnsn. (1.2.1)

Equation (1.2.1) will be important for our theoretical purposes.
Let us consider Model (1.1.4), and let prx, and prx. be the orthogonal projectors
onto the column space of X,, and onto the orthogonal complement of the column space

of X,,, respectively. Analogous as before, the least squares estimator of X, is given
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by prx,vec(Y,xn). The corresponding vector of residuals is
r, = prxivec(Yoxn) = prxivec(Eny,) = vec(Ruxn) € R™. (1.2.2)

For our problems it is no restriction to assume rank(X,) = p. Hence, the set of
matrices {My,...,M,} is a basis of V,,. Suppose that {Mj,..., M,} is an orthogonal
basis of V,,, then by the elementary linear algebra, we further get

p

Rnxn = YnXTL - Z <M2/ HMiHR"X” 7Y”><7L>R"><” Ml/ ||M1HRTLX"

=1
p

= Ean - Z <M’L/ HMiHRan 7En><n>]Rn><n M’L/ HMZHRan 5

i=1

r, = vec(Epxn) — Xn(XZXn)*lXZvec(Ynxn)

= vec(Epyn) — X (X X,) X vec(BEpyy).

The least squares estimator of the unknown vector of parameters (3 is obtained by
solving the system of linear equations (XX, )3 = X vec(Y,xn) for 3, which is given

by
B\n = (Bnl: s 7Bnp)T = (XIXn)ilx;rvec(Ynxn)-

By combining (1.1.3) and (1.2.1), we can further write the matrix of least squares

residuals R,,»,, in terms of the components of Bn as follows:
—_~ p ~
Rnxn = Ynxn - Mnxn = Ynxn - ZﬁmMz
i=1

For 1 <1 < n, let e; be a unit vector in R™ whose ith component is 1, while the others
are zero. Then for 1 < k, ¢ < n, the (k, ¢)th component of R, «,, can be computed by
using the equation

p p
roc = €p Youner — > Bnief Mieg = Yoo = Y fi(l/n, k/n) By
i=1

=1
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If the variance o2 is unknown, we use the estimator

o v Yool rrxgvee(Y o) |
" n?—p a n?—p
~vee (Youn) (Lizxnz — X (X X)X, ) vee(Yoxn)
- e , (1.2.3)

which by (1.2.1) and (1.2.2) is equivalent to

o _lrviBasallg _ llprgvec(Bac) 5.
o n®—p - n*—p
vee! (Epxn) (Inzxnz — Xn(XIXn)_lXI) vec(Epxn)
— - _

2

2 is an unbiased estimator for o2 in the sense that E,2(62) = o2

It is clear that o

Furthermore, it can be shown that 62 is a consistent estimator for o2, i.e., 62 converges

in probability to o as n — oo, denoted by 62 L2 . Consequently, as n — oo, we

have
2 p
e - 1. (1.2.4)

We refer the reader to Arnold (1981), p. 147-148, for the preceding results.
Corresponding to the nxn dimensional matrix of the least squares residuals (1.2.1)

we define, for a fixed n € N, the partial sums process {5, (21, 22) : (21, 22) € [0,1]?},

where
[nz2] [nz1] [nz2] [nz1]
Sn(z1,22) := Z Z T + (nz1 — [nz1)) Z Tnz+1,k + (N22 — [n29)) Z 70 [nzo]+1
k=1 ¢=1 k=1 =1

+ (nz1 — [n21])(nze — [nZQ])T[nlel,[an]Hy

which is called the least squares residual partial sums process or the residual partial
sums process, for short. Here [t] := max{n € Z : n < t}, t € R. Our aim is to find

the limit process as n — oo, for the sequence of residual partial sums processes

{Sn(zl,ZQ) . (21,22) c [0, 1]2}7121’
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and use the result for establishing some asymptotic tests which can be applied to

model-checks and change-point problems.



Chapter 2

Gaussian processes on C([0,1]?) and
comparison of Riemann-Stieltjes

and Lebesgue-Stieltjes integral

To establish asymptotic tests based on the residual partial sums processes for check-
ing the regression model or detecting changes in the regression functions defined on
the unit square [0, 1], we need standard Brownian (2) motion with sample paths in
C([0,1]?), i.e., the space of continuous functions on [0, 1]?. The paths of the process
additionally fulfill z(¢,0) = z(0,s) = 0, for ¢,s € [0,1]. Our aim in this chapter is
to define the necessary theoretical background for developing our results described in
Chapter 3, Chapter 4 and Chapter 5. We also observe the constructions of the stan-
dard Brownian (2) motion as a limit process of a sequence of partial sums processes

{21, 22) : (21,22) € [0,1]%},,54, for n — oo, where

[nz2] [nz1] [nz2] [nz1]
En(21, 22) 1= Z Z o + (n21 — [nz1)) Emal+1k + (N22 — [N22)) Z €0,[nze]+1
k=1 (=1 k=1 =1

15
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+(nz1 — [nz])(nzz — [n22]) ey nzater, (21522) € 0, 1]

and €;;, 1 <14,j7 < n are independent and identically random variables having distri-
bution with mean zero and finite variances.
As usual, the metric space C([0, 1]?) is furnished with the uniform topology induced
by the sup-metric
p(h.g) = sup |h(z,y)—g(x,y) |, h,ge€C(0,1]),
(z,y)€[0,1]2
with the corresponding sup-norm

gl == sup |g(z,9)], g €C([0,1]).
(z,y)€[0,1]2

By using analogous arguments as in the space C([0, 1]), the metric space C([0,1]?) is
separable and complete with respect to the topology generated by the sup-metric, see

e.g., Werner (2005), p. 5 and p. 33, or Billingsley (1999), p. 11-12.

2.1 Standard Brownian (2) motion

Starting with the definition of the Wiener measure on the space C([0, 1]?), we now give
the formal definition of the Standard Brownian (2) motion. For a discussion about the
existence of the Wiener measure on C([0, 1]?), see, e.g., Yeh (1960) and Kuelbs (1968)
and the references cited there. For fixed m,n € N, let {t, }o<h<m+1 and {sx }o<k<ni1 be
preassigned points in the interval [0, 1] satisfying 0 = to < t; < -+ <ty < tppy1 = 1,

0=150<5 <:-+ <8y < Spr1 = 1. We define the mapping

C([0,1]*) — R™"

w(-) = (w(ty,51), Wt S0)) "
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Let B™ be the Borel o—algebra of subsets of R™", and let J, s),...(tm,sn) D€ the

,,,,,

collection of subsets of C([0,1]%), defined by

R mny .__ -1 . mn
&7'(151,81) ..... (tmysn) *— ﬂ-(tlysl) (tm75n)(B ) — {Tr(tl»sl) (tm,sn)(B) . B c B }

..........

Furthermore, let

Ze(oagz) =0 U U T(t1,51),0(tmassn)

mneN 0=tg <<ty 4 1=1
0=s9 < <spp1=1

denote the cylindrical o-algebra.

Definition 2.1.1. Wiener measure W is a probability measure defined on the mea-

surable space (C([0,1]?), Z¢(o,)2)) that satisfies the following conditions.
(1) W{w € C([0,1]?) : w5 (w) =0, if t =0 or s =0} =1,

(2) The increments of the stochastic process m = {mus : (t,s) € [0,1]*} are
normally distributed with respect to W, i.e., for every (t1,s1), (t2,52) € [0,1]?,

with t1 < ty and s1 < So, we have

A[tl,tz}x[sl,sz]ﬂ— = Tr(tz,sz) - W(t2781) - 7T(t1,82) + 7T(t1,81) ~ N<07 (t2 - tl)(SQ - 81))7

3) The stochastic process m = {mu.s : (t,s) € [0,1]?} has independent increments
(t,s)

with respect to W, i.e., for any family
{Lj = [tioo, ta] X [s5-1,85] 1<i<m,1<j<q}
of rectangles in [0, 1]* with

0<tp<...<ti 1<t <...<t, <1,

0<s50<... <8551 <8;<...<5,< 1,
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we have
Wiw € C(0, 1) : (Ag,m)(w) < ayj, 1<i<m, 1<j<q)

:HHW{ZU € C([()? 1]2> : (AIijﬂ->(w) < aij}, Q5 c R.

Remark 2.1.2. Let Be be the Borel a-algebra over C([0,1]?), i.e., the smallest o-
algebra containing all open sets with respect to the uniform topology (topology induced
by the sup-metric). Since C([0,1]%) is a separable and complete metric space with re-
spect to this topology, by using the analogous argument as in Billingsley (1999), p. 12,
and Yeh (1972), p. 449-452, we have Z o172y = Be. Hence, Wiener measure just de-
fined can be regarded as a probability measure on the measurable space (C([0,1]%), Be).
The existence of W on (C([0,1]%), Be) was studied intensively by Kuelbs (1968), Park
(1970), and Park (1971).

Remark 2.1.3. Under the condition (1) of Definition 2.1.1, it can be shown that con-
ditions (2) and (3) of Definition 2.1.1 are equivalent to the following one: For d € N
and any (t1,51), . .., (ta, sa) € [0, 1], with respect to W the vector (T, s)s - - - T(tgs0))

has a d-variate normal distribution with mean zero and covariance matrix

[ t181 (tl AN tg)(Sl A\ 82) e (tl N td)(Sl A\ Sd) |
E - (tl A tg)'(Sl A\ 82) tQ'SQ . . (tg A\ td)‘(SQ N Sd) . (211)
i (tl VAN td)(Sl VAN Sd) (tg N td)<82 N Sd) cee tde i

Here x Ay stands for the minimum between x and y.

Definition 2.1.4. A real-valued stochastic process X = {X(t,s) : (t,s) € [0,1]*} is

said to have stationary increments, if and only if for any choice of h > 0,v > 0, and
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any choice of finitely many rectangles

r Z:{Iij = [ti—lati] X [Sj—lasj] 1< < m, 1 S] < q},

v ::{I?j” =[tici+hti+h] X [sjo1+v,s;+v]: 1<i<m,1<j Sq}
such that

0<tg<..<ti1<ti<...<tnp, <1, t,+h<1

0§80<...<Sj_1<8j<...<8q§]., Sq+V§1,

the distributions of (Ar, X, A, X, ..., Ay, X) and (Ape X, Ap X, ..., Ap X) are
identical, denoted by (Ar, X, Ar, X, ... A, X) ~ (A X, Ap X, ..., Apy X).

Definition 2.1.5. Let By = {Bs(t,s) : (t,s) € [0,1]*} be a real-valued stochastic pro-

cess defined on a probability space (2, F,P) induced by the F-Be-measurable mapping

5.1 — €([0,1]?)
w = Ba(w) ().

We say that the stochastic process Bo = {Bs(t,s) : (t,s) € [0,1)%} is a standard
Brownian (2) motion (Wiener process) if and only if the distribution of the random
function By is the Wiener measure on (C([0,1]%),Bc), i.e., Po By' = W, where
Po By '(A) :=P{By € A}, for each A € Be.

Remark 2.1.6. By conditions (2) and (3) of Definition 2.1.1, for any family of
rectangles T, T of [0,1]2, h > 0,v > 0, defined in Definition 2.1.4, the random vec-
tors (Ar,, By, A1, B, ..., Ay, Bs) and (AIHBQ, A%VB% . AI%BZ) have the same

normal distribution

qu(O, diag()\z(Iu), /\2(112), “vey )\Q(Imq)))
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Here and throughout \? stands for Lebesque measure on [0,1]?. Hence, by Definition
2.1.4, {Bay(t,s) : (t,s) € [0,1]*} has stationary and independent increments. More-

over, by Remark 2.1.3, for any rectangles Iy, I, C [0,1]?, with I NIy # 0, we have
COU(AIlBQ, AIZBQ) = )\2(11 N IQ) (212)

Remark 2.1.7. The Karhunen-Loéve expansion of By is given by

=3 VNG Zigty(t,s), (t,s) € [0, 1], (2.1.3)

i=1 j=1

where {Z;; = i,j5 € N} is a sequence of i.i.d. standard normal random variables,
Nij = [(264+1)(25 4+ 1)7? /4] 72, and v;;(t, s) = 2sin[(2i + 1)7t/2] sin[(2) + 1)7s/2], for
i,j € N, see also MacNeill and Jandhyala (1993). Expansion (2.1.3) can be derived
directly from the Karhunen-Loéve expansion of By (the standard Brownian motion on
the unit interval [0,1]) due to Yeh (1973), p. 268-279, by the fact that the covariance

function of By can be expressed as a multiplication of the covariance functions of Bj.

2.2 Standard Brownian (2) bridge

Corresponding to the standard Brownian (2) motion we now define a stochastic pro-

cess called a standard Brownian (2) bridge.

Definition 2.2.1. A real-valued stochastic process BS = {B(t,s) : (t,s) € [0,1]%},

defined on the probability space (Q, F,P), such that
BY(t,5) = By(t,s) —tsBy(1,1), (t,s) € [0,1)?, (2.2.1)

is called a standard Brownian (2) bridge.



Chapter 2. Gaussian process on C([0,1]?) 21

The following are several important properties of the standard Brownian (2) bridge

just defined.
Corollary 2.2.2. (1) P{B3(t,s)= 0, ift =0 or s =0} = 1.
(2) For any (t,s), and (¥',s") € [0,1], we have
Cov(BY(t,s), BY(t',s")) = (tAt)(sAs)—tt'ss. (2.2.2)
(3) For any (t,s) € [0,1]2, BY(t,s) is normally distributed with mean zero and vari-
ance ts(1 — ts).
(4) For any rectangles Iy, Iy C [0,1]?, with Iy # 0 # Iy, we have
Cov(Ar, B, A, BY) = A2(I, N 1) — A2(1)A2(L,). (2.2.3)

Proof. Properties (1), (2), (3) and (4) follow immediately from the properties of the
standard Brownian (2) motion and Equation (2.2.1). As an example let us show

(2.2.3). By (2.2.1) and by the linearity of A, for i = 1,2, we get
AIlBg = AIZ.BQ — Bg(l, ]-)AIL (tS) = AIiBQ — Bg(l, 1))\2(]:1) (224)
Hence, Equation (2.1.2) yields

Cov(Ay, BY, A, BY) = X*(I; N1) — A2 (1) \*(Ly).

As special cases of (2.2.3), if LI, =0, I; #0, i = 1,2, we have
Cov(Ar, BY, A, BY) = —\*(I))\*(1,) # 0. (2.2.5)
IfI, =1, =: 1, I # (), we obtain

Var(ArBY) = M2 (I)[1 — A\*(I)]. (2.2.6)
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Corollary 2.2.3. In contrast to Bs, the standard Brownian (2) bridge BS does not

have independent increments. Like Bs, the process BY has stationary increments.

Proof. The first assertion follows by (2.2.5). To show the second assertion, let I" and
™. h >0, v >0 be the set of rectangles given in Definition 2.1.4. Then from (2.2.5)

and (2.2.6), the random vectors
(AIIIB(2)7 A112Bg, N ’AIqug) and (AI?{BS7 AI?EB;], N ’AI’I}"LﬂVqu)

have the same centered mg-dimensional normal distribution with covariance matrix

- M)A = NT)] =N (T) A (1) =N (L )N (Lng) -
N (L) N (L) A(Tig)[1 = N(Lhp)] — N (Ti2) N (Lng)
| NN (L) = (L) V(L) A (Lg)[L = N (Tng)] |

Thus, according to Definition 2.1.4, the standard Brownian (2) bridge BY is a process

with stationary increments. O]

Corollary 2.2.4. By combining Equation (2.1.3) and (2.2.1), for every (t,s) €

0,1]2, the standard Brownian (2) bridge can be expressed as

DM

i=1 j=1

BY(t, s) i (Wi (t, s) — tsiyi(1,1)), (2.2.7)

where {Z;; : i,j € N} is a sequence of independent and identically distributed standard
normal random variables, N\i; = [(2i + 1)(27 + 1)72/4]72 and ;;(t, s) = 2sin[(2i +

)mt/2]sin[(2] + 1)7s/2], for i,j € N.
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2.3 Invariance principle and the construction
of the standard Brownian (2) motion

In this section we generalize Donsker’s theorem for the metric space C([0, 1]) (Billings-
ley, 1968, p. 68-70 and Billingsley, 1999, p. 90-91) to the metric space C([0,1]?) and
show that standard Brownian (2) motion is a limit process of some sequence of partial

sums processes, see Definition 2.3.1 below.

Definition 2.3.1. For every n € N, let us define a mapping

R™"  — C([0,1]?)

A~ Tu(A)()

such that for (z1,2) € [0, 1%, and A = (an)y{—y € R,

[nz2]

53
R
N,
53
%
i

1 1
To(A)(21,22) = — ag + —(nz1 — [n21]) Z Alnzi)+1,k
n k=1 (=1 n k=1
1 [nz1]
+ E(HZQ — [n2)) Z g fnza)+1
/=1
1
+ 5(”»21 — [nz])(nz2 — [n22])anzy )11 nza) 1 (2.3.1)

where Zi:l 2221 ag, = 0, for 7 =0 ori = 0. In what follows T,, will be called the

partial sums operator.

Remark 2.3.2. By definition, for a fited A € R™™, T,,(A)(-) is a continuous func-
tion on [0, 1)?, whereas for fived (21, 22) € [0,1]?, Tp(-)(21, 22) constitutes a continuous
functional on R"*".

For several values of n, Figure 4 shows the graph of T,,(A)(21, 22), where A € R"*"

is a realization of an n x n dimensional random matriz with independent standard
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normally distributed components. It will be shown in Theorem 2.3.4 that Figure 4

illustrates approximated sample paths of standard Brownian (2) motion.

n=5,a~N(0,1) n=10,a~N(0,1)

. /’/
L% s

PN %)) - ’/‘I‘]‘x&»"‘ A\
NS
LB

2273 %%
SN

Figure 4. A geometrical visualization of T,,(A)(-).

Let Enxn = (€mk)p2i ey € R™" be an n x n dimensional random matrix, with
E(ep) = 0 and Var(ep) = 02 € (0,00), defined on the probability space (€2, F,P). By
using the partial sums operator T,, defined above, we embed the sequence (Enxn)n21

into a sequence of stochastic processes

(T (Enxn) (21, 22) : (21, 22) € [0,1]%} 51, (2.3.2)

where
1 1
Tn(Ean(w))(Zla 22) = ;S[nzl][nzg} (w) + Ewn721,22 (w)v wEe Qa

[nz2] [nz1]

S[nzl][nzz} = Z Z Etk (233)

k=1 (=1
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and
[nz2] [nz1]
77Z)n,z1,22 = (nzl - [nzl]) 6[nzl]—i-lJc + (nZQ - [TLZQ]) Z 5€,[nz2}+1
k=1 =1
+ (nz1 — [n21])(n2e — [n22))E )41, [nzs) +1- (2.3.4)

It is clear that the sequence of stochastic processes (2.3.2) has sample paths (trajec-
tories) in the metric space C([0,1]?). We denote the distribution of the sequence
(Th(Enxn)),s; on the probability space (C([0,1]%),B¢) by (pn)n>1, where p, :=
Po T, (Euxn). Thus, the corresponding sequence of the finite-dimensional distribu-

tions of the sequence of stochastic processes {T,(E,xn)(z1,22) @ (21, 22) € [0,1]2},>1

where for n € N and A € BPY,

fin © T} A)=Po T, (Enxn) 0T, o) . 1.5 (A)

t1,81),--~7(tp75q)( (t1,51),0-)

= P{(Th(Enxn)(t1,51)s - - -, Tu(Bun) (£, 5,)) € A}

Since the random variables e, 1 < £, k < n are independent, the following results

can be directly verified by the definition of T,,.
Corollary 2.3.3. (1) For every (z1,29) and (21, z5) € [0, 1]?, we have
E (Tn(Ean)(Zla 22)) =0,

1 1
Cov <_Tn<En><n)<zla 22)7 _Tn(Ean)(Z,b Zé)) - (Zl A Zi)('zZ A Zé)a asn — oo.
g g

(2) For any (21, 22) € [0,1]?, we have

[n21] [n2] < Va?”(%Tn(Enxanl?ZQ))

[nzl][QnZQ] N (nz; — [nzl])z[nzg]

N (nze — [Zzg])z[nzl] N (nz; — [n21]3;(n22 — n29)?
<=l (2, 1 (2.3.5)

n n n n?
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Hence, Var(2 T, (Eyxn) (21, 22)) — 2122, as n — oo.

(8) By the strong law of large numbers, we have =1y, ., ., = 0, for every (z1,22) €
(0,12, Moreover, by the Lindeberg-Lévy central limit theorem and Slutzky’s

theorem, we have
1 D
Es[nzl][nzg] — N(0, z122), as n — oo.

Hence, for n — oo, we get

1
~T(Bun) (21, 22) = N(0,212), (1, 22) € (0,1,

The following result describes the weak convergence of the sequence of partial
sums processes (2.3.2) to the standard Brownian (2) motion. It generalizes Donsker’s

theorem (invariance principle) in the metric space C([0,1]) to the space C([0, 1]?).

Theorem 2.3.4. (Invariance principle)

Let (Enxn)ps1s Enxn = (Egk)?:{fk:l be a sequence of independent n x n dimensional
random matrices whose components are independent and identically distributed ran-
dom variables with E(gg) = 0 and Var(eg) = 0 € (0,00), defined on the probability

space (0, F,P), 1 <l k<n,n>1. Then %Tn(Ean) P, By asn — 0.

Proof. The proof is given in Appendix B where the result in Billingsley (1999), p.
90-91, is extended to the metric space C([0, 1]?). We refer the reader to Park (1971)

for a different proof of this theorem. m

Remark 2.3.5. By the preceding theorem we can approximate the sample paths of
B, with those of the partial sums process {2 T, (Epxn)(21,22) ¢ (21, 22) € [0,12},51.
Hence, as it was mentioned before, if we put o = 1 in Theorem 2.3.4, then Figure 4

gives approzimations to sample paths of Bs.
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A direct consequence of the continuous mapping theorem (Billingsley, 1968, p.
29-31, and Billingsley, 1999, p. 20-22) and Theorem 2.3.4 is described next. We refer
the reader to Bader (1997), p. 68-76, for the generalization of the following results to

any finite positive measure and any metric space.

Corollary 2.3.6. Let (S,d) be a metric space with metric d, and let Bs be the Borel
o-algebra of S. If the mapping h : (C([0,1]%), Be, W) — (S, Bs) is continuous on
C([0,1]?), then h(: T, (Enxn)) 2, h(Bz) asn — oco. Thus, the sequence of probability
measures (fi, 0 h™"), -, converges weakly to the probability measure Woh™" on (S, Bs),
as n — oo, where W is Wiener measure on (C([0,1]%),Bc). However, the continuity

assumption on h can be weakened as follows. Let Dy, be the set of discontinuity points

of h. If h is Be-Bs- measurable and W(Dy,) = 0, then

g

1
h (_Tn(Ean)) 2, h(B) as n — oo.

Theorem 2.3.7. Let h, h, : (C([0,1]%), Be, W) — (S, Bs), n > 1, be Bc-Bs-measurable
mappings. Let G := {x € C([0,1]?) : I(xp)n>1, Tn —> x, but hy(z,) "= h(z)}. If

G C N with W(N) =0, then hy(1T,(Epxn)) — h(By) as n — oo.

Remark 2.3.8. If we put h,, := h, for the sequence (hy)n>1 in Theorem 2.3.7, then
G = Dy, hence this result reduces to Corollary 2.3.6. If (hy,)n>1 is a sequence such that
hy,(z,,) converges to h(x) whenever (x,,),>1 1s a sequence in C([0,1]*) which converges
to x, then G = 0. Hence, we get hy(2T,(Enxy)) =z h(Bs) as n — oo. We remark
here that Theorem 2.3.7 will take an important role for deriving our results in Chapter

3 and Chapter 4.
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2.4 Comparison of Lebesgue-Stieltjes and
Riemann-Stieltjes integrals on [0, 1]*

In this section we study the comparison between the Lebesgue-Stieltjes and the
Riemann-Stieltjes integrals on [0,1]? defined in Appendix A. We refer the reader
to Elstrodt (2005), p. 120-136, for the notion of the Lebesgue-Stieltjes integral con-
sidered in this section. A necessary and sufficient conditions for the two integrals to

coincide is described in Theorem 2.4.4.

Definition 2.4.1. A function F(-) defined on [0,1]* is said to be right continuous
on the half-open rectangle [0,1)%, if and only if for every (ci,co) € [0,1)% and every
sequence ((Tn,Yn)),>1 S [0,1]7 such that (zn,yn) | (c1,c2), we have F(rn,y,) —
F(c1,c9) as n — oo. Analogously, F(-) is said to be left continuous on the half-open
rectangle (0,1]%, if and only if for every (c1,c2) € (0,1]* and sequence ((Tn, Yn))psy ©
[0, 1)%, with (T, yn) T (c1, c2), we have F(z,,yn) — F(c1,c2) asn — oco. In the sequel
the set of functions F(-) defined on [0,1]* which is right continuous on [0,1)% and

type I non decreasing (see Definition A.1.2) will be denoted by R.(]0,1]?).

Definition 2.4.2. A Lebesgue-Stieltjes measure p on ((0,1]2, B2 N (0,1]?) is said to

be finite, if it satisfies the condition p((0,1] x (0,1]) < oo, see Elstrodt (2005), p. 47.

Remark 2.4.3. Let RY([0,1]?) be the set of all functions ¥(-) € R.([0,1]*) with
P(r,y) = 0, if v = 0 ory = 0. Let M((0,1]%,8% N (0,1]*) be the set of finite
Lebesgue-Stieltjes measures on ((0,1)%,B% N (0,1]?). Then the mapping R2([0,1]?) >
() = py () € M((0,1]2,B2 0 (0, 1)), where

Mw((tlatﬂ X <51782]> = A[tl,tz}x[shsz}w? O S tl S t2 S ]-7 0 S S1 S S92 S ]-7 (241>
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is one to one. The uniqueness of V() € RY([0,1]%) follows from the fact that two

functions 1 (+),a(-) € RY([0,1]%) that satisfy A to]xfs1,521 = Aty ta]x[s1,50) 02, for

0<t; <ty <1, 0< s <y <1, agree, i.e., we have Y1(-) = a(-).

The proof of the following result is given in Appendix A. A one-dimensional version
of this results was observed by Young (1914), and Stroock (1994), p. 81-82. We refer
the reader to Elstrodt (2005), p. 151-153, for the comparison between the Lebesgue-
Stieltjes and the Riemann integral on any p-dimensional compact cube [ay, by] X - - - X

[ap,bp], a; <bi,i:1,...,p,p2 1.

Theorem 2.4.4. Let vy, be a finite Lebesgue-Stieltjes measure on ((0,1]%,B*N (0, 1]?)
that corresponds to a function ¥(-) € R.([0,1]?) according to (2.4.1). Suppose that
©(+) : [0,1]* — R is bounded on [0,1]%. Then o(-) is Riemann-Stieltjes integrable on
0, 1]* with respect to (-), if and only if p(-) is continuous vy a.e. on (0,1]%, where

Uy 18 the completion of the measure vy,. Moreover,

R
| ettomtinds = [ pltsau.s) (2.4.2)
(0,1]2 (0,12

Here and throughout the work, fR denotes the Riemann-Stieltjes integral. We refer

the reader to Elstrodt (2005), p.63-65, for the notion of a complete measure.

Proposition 2.4.5. Let (¢,)n>1 be a sequence of functions which have bounded vari-
ation on [0,1]* in the sense of Vitali, see Definition A.1.5, and let (V (1n; [0,1])),54
be the corresponding sequence of the total variations of (Vn)ns1- If |[¥nll, — 0 and

(V(¢n; [0, 1]2))7121 is bounded, i.e., there exists a positive constant M such that for
B2, V(i [0,12) < M, then [T (t, s)dbalt,s) "= 0, for o) € ([0, 1]2)

Proof. See Appendix A, see also Hognés (1977) and Johnson (1985) for a version of

this result for a function of one variable. O]
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2.4.1 Extension to finite Lebesgue-Stieltjes signed measures

Definition 2.4.6. A signed measure v on ((0,1)%,B% N (0,1]?) is said to be finite
if [v(A)] < oo, for every A € B> N (0,1]* (Elstrodt, 2005, p. 271). In the se-
quel SM((0,1)%) denotes the set of finite Lebesque-Stieltjes signed measures v on
((0,1]2, B2 N (0,1]?). The set of functions which have bounded variation on [0,1]* in
the sense of Vitali and are right continuous on [0,1)* will be denoted by BV'V,([0, 1)?).
It is clear that SM((0,1]?) and BVV,.([0,1]?) are linear spaces.

Remark 2.4.7. If ¢(-) is in BVV.([0,1]?), there exists a signed measure vy €
SM((0,1]%) given by

V¢((t1,t2] X (81782]) = A[tl,tg}x[51,82}¢7 0<t; <ty < 1, 0<s1<s9<1. (243)

Let Vi (v; A) and V_(1; A) be the positive and negative total variations of 1 on a set
A C[0,1]2, see Definition A.1.9 for the notion of positive and negative variation. By

Theorem A.1.11, we further get

vy ((t, to] X (s1,82]) = Vi (s [ta, t2] X [s1, 82]) = Vo (s [tr, 2] X [s1,82]).  (2.4.4)

Moreover, let vy, have Jordan decomposition vy = v — v, and let ||vy|, := v, + v,

be the total variation of vy. Then for every (ti,ta] X (s1,52] € BN (0,1]?

V,;Z((tl,tQ] X (s1,82]) = Vi (¥; [t1, ta] X [s1,52]), (2.4.5)
V;((tl,tg] X (81, 82]) = V_(; [t1, ta] X [s1, 82]), (2.4.6)

vl ((t1,ta] X (s1,82]) = Vi (3 [t1, ta] X [s1,52]) + Vo (5 [t1, b2] X [s1,80]). (2.4.7)

Corollary 2.4.8. Let ¥(-) be in BVV.([0,1]*) and let v, € SM((0,1]?) correspond

to () according to (2.4.3) with the Jordan decomposition vy = v — v, . Suppose
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that ¢(+) : [0,1]> — R is bounded on [0,1)%. Then ¢(-) is Riemann-Sticltjes integrable
on [0,1]* with respect to (-), if () is continuous vy a.e. and vy a.e. on (0,1]?,
where U is the completion of v. Moreover, we have

/ o(t, s)vy(dt,ds) = /R o(t,s)dy(t, s). (2.4.8)
(0,1)2 [0,1]2

Proof. By definition and Theorem A.1.13, we have ¢, (-) := Vi (¢;]0,-] x [0,]) and
Y_(+) == V_(;[0,:] x [0,-]) are type I non decreasing on [0, 1]> and right continuous
on [0, 1)%. Moreover, for every half-open interval A := (1, ts] x (51, 8] in ((0, 1]>NB?),

where 0 <t; <ty < 1and 0 < s; < sy <1, we obtain the following equations:

(2.4.3) (2.4.4)

Az =7 wy(A) =T V(W A) = Vo(4y A) = A gy — Az,

(24.5) . (2.4.6) .

vy (A) =7 Vi(s A) = Aghy, and v (A) T=7 Vo (¥ A) = Ay,

where A is the closure of A. Since ¢(-) is continuous v, a.e. and 7, a.e. on (0,1]%, by

Theorem 2.4.4, ¢(-) is Riemann-Stieltjes integrable with respect to ¢4 (-) and ¥_(-).
Hence, by the linearity of the Lebesgue-Stieltjes and Riemann-Stieltjes integrals, we

further get

The proof is complete. O

Corollary 2.4.9. Let (¢,)n>1 be a sequence of functions in BVV,([0,1]?) such that

the sequence of total variations (V(¢n;[0,1]%)),5, is bounded. Let (vy,),-, be the
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sequence in SM((0,1]%) that corresponds to the sequence (,)n>1 in the sense of

(2.4.3). If |[¥nll . =0, then f(O,l]Q o(t, 8)0y, (dt,ds) == 0, ¢(-) € C([0,1]?).

Proof. Since ¢(-) € C([0, 1]?), then it is continuous 7 a.e. and 7, a.c. on (0, 1]?, for
n > 1. By Corollary 2.4.8, we have [, ¢(t, s)vy, (dt, ds) = f[(?,ﬂ? o(t, 8)d(t, s),

for n > 1. Hence, the result follows by Proposition 2.4.5. O]



Chapter 3

Residual partial sums limit

processes

In this chapter we derive the limit process of the least squares residual partial sums
process for the linear regression models introduced in Chapter 1. Mac Neill and
Jandhyala (1993) and Xie and Mac Neill (2004) showed a functional central limit
theorem for such a residual partial sums process. In this chapter we propose a different
and simpler method for deriving such limit processes by generalizing the approach
due to Bischoff (1998), Bischoff and Miller (2000), and Bischoff (2002), from the one-
dimensional to a higher-dimensional case. As a by-product we obtain the structure
of the limit process: it is the projection of the standard Brownian (2) motion onto
a certain subspace of the reproducing kernel Hilbert space (RKHS) of the standard
Brownian (2) motion.

Firstly we introduce in Section 3.1 the notion of the RKHS of the standard Brow-
nian (2) motion which is also connected directly to the partial sums operator T,,.
Some important properties of this space are also discussed from analytical aspects.

Secondly, by using the notations and the results in Section 3.1, we derive in Section

33
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3.2 (Theorem 3.2.6) the limit process of the sequence of the residual partial sums pro-

cesses. Several examples of the residual partial sums limit process are also discussed.

3.1 Reproducing kernel Hilbert space of the
standard Brownian (2) motion

We furnish the vector space R"*", i.e., the space of n x n dimensional matrices with
the inner product (-, -)gnxn and the norm ||-||g.x» defined in Chapter 1. Let us first
consider the image space of the space R"*™ under the partial sums operator T, defined

in Chapter 2,
T, (R™7)() i= {Ta(A)() | A = (@) oy € R}

We note that T,,(A)(-) € C([0,1]?), for every A € R™ " see Definition 2.3.1. Let us
furnish T,,(R™"*")(-) with the inner product

n n

(Tn(A)(), Ta(B)()) 1, @oxn) = ig (A, B)gnxn = iQ amber,  (3.1.1)

n n
k=1 (=1
for every A, B € R"*". Obviously, by Equation (3.1.1), T,,(R"*")(:) and R™*" are

1somorphic Hilbert spaces.

Definition 3.1.1. (reproducing kernel Hilbert space (RKHS))
For the standard Brownian (2) motion By = {By(t,s) : (t,s) € [0,1]*} let us define a

linear subspace Hgp, given by
Hg = {h:[0,1]> = R: 3h € Ly([0,1]?),
h(z1, 25) = / h(-)dN2, (21, 2) € [0,1°}  (3.1.2)
[O,Zl]X[O,Zz}

We call the subspace Hg the reproducing kernel Hilbert space (RKHS) of By. More-

over, any h € Ly([0,1)2) such that h(z,z) = h dX2, (z1,2) € [0,1]2, is

Jﬂ[O,ZﬂX[O,ZQ]
called a producing function of h € Hg.
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Remark 3.1.2. Let h(-) € Hp with a reproducing function h(-) € Ly([0,1]2). Then
h(-) is absolutely continuous and has bounded variation in the sense of Hardy on

[0,1]2. Furthermore, we have

9?h(-)
O0tds

- B()7 M a.e. on [0,1)%

where 0?h/Otds stands for the second derivative of h(-) with respect to t and s. Let vy,
be the finite Lebesgue-Stieltjes signed measure on ((0,1]% B% N (0,1]?) corresponding

to h(-), given by
Vh((t17t2] X (51752]> = A[thtz}x[shsz}hu 0 S tl < t2 S ]-7 0 S S1 < S92 S ]-

Then vy, is absolutely continuous with respect to Lebesque measure \?, see Cohn
(1993), p. 134-137 and FElstrodt (2005), p. 279-281, for the notion of absolute conti-
nuity of a signed measure. The Radon-Nikodym derivative of vy, with respect to \? is

given by
w5 = h()= hT()=h(), (3.1.3)
where k™ (-) and h™(-) are the positive and the negative parts of h(-).

Let us furnish Hg with the inner product
(hy, B, = /[O } B (t $)hot, )A2(dE ds) = (oo, (3.14)
for every hyi(+), ha(-) € Hg, with
Bz, 22) = / halt, s)N2(dt, ds), (=1, 20) € [0, 1]%,
[0,21]%[0,22]

for some h;(-) € Ly([0,1]?), i = 1,2. Hence, the norm induced by (-, )y, is

h|? ::/
Wiy = [

~

2 ~
h(t, s)‘ N2(dt, ds) = Hh

(3.1.5)

2
Lo
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Moreover, by (3.1.3), we have

(hi,ho)pg = / ha(t, s)ha(t, s)\*(dt, ds)
[0,1]2
_ / ha(t, s) di, (dt. ds)
(0,1]2

R
(248) / ho(t,s) dhn (£, ), (3.1.6)
[

0,1)2
where the last equation follows provided hy(-) is continuous 7, a.e. on (0,1]2.
Proposition 3.1.3. For every A € R"*", T, (A)(:) € Hg. Moreover, for any A and

B in R™", we have
(Tn(A)(), Tn(B)())rp = (A, B)pnxn.

Proof. Let A, B and n be fixed. Let us consider the non-overlapping finite exact
cover I, of [0,1]%, Ty, = {Iy := [(¢ — 1)/n,€/n] x [(k — 1)/n,k/n] : 1 < £,k < n},
see Definition A.1.1 in the appendix for the notion of a non-overlapping finite exact
cover of [0,1]%2. By Definition 2.3.1, the second partial derivative of T, (A)(-) with

respect to both variables exists A? a.s. on [0, 1]?, with

82Tn(A) (Zl, ZQ)
821822

for every (z1,22) in the open rectangle Ay := ((¢ — 1)/n,¢/n) x ((k —1)/n,k/n),

= Nay, (317)

1 < ¢,k <n. We therefore have

/ 82Tn(A)(zl,22)
[0,1]2

2
N (dz,d
(921 822 ( L ZZ)

_ /{w <32Tna(gl(t, s)) (82Tna(gl(t, s)) \2(dt ds)

= > > [ (naw) (naw) N(dt, ds),

k=1 ¢=1 Lok

= > > ai = [Al[fnsn < o0, (3.1.8)

k=1 (=1
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This leads us to the conclusion W € L,([0,1]?). Since % is contin-

uous A? a.s. on [0,1]%, by applying Fubini’s theorem or the fundamental theorem of
calculus for Lebesgue integrals, see Elstrodt (2005), p. 304, for each (21, z2) € [0, 1),

we have

PTLA)05) o
o = Ta(A - 1.
/[0121]><[0,z2] dtos A (dt’ dS) "( )(Zb Z2) (3 9)

We notice that (3.1.9) can also be derived by computing the integral on the left hand

side directly and by recalling (3.1.7), see below.

T, (A)(L,5)
— . A(dtds
/[Ozzl] % [0,22] 3t33 ( )

/ 9?T, (A)(t, s)
(0[] /n)x[0,[nza)/m]  OOS

\2(dt, ds)

0*T,,(A)(t,
+ / TTANS) 3oy g
([nz1]/nnz1 /n] x[0,[nza]/n] otds
0*T,,(A)(t,
+ / TTANS) 3oy g
(0,[nz1]/n] X ([nz2] /n,nzs /n] Otds
9’T,,(A)(t
+/ O7Ta(A)(E,5) ’S))\2(dt, ds)
([nz1]/m,mz1 /n] X ([nz2] /n,nze/n] 8t8$
1 [nz2] [nz1] 1 [nz2] 1 [nz1]
= 2.2 Qg + ﬁ(nzl — [nz1]) ; Qlnz)+1,k T ﬁ(nZQ — [nzs)) ; 4 [nzy)+1

Thus from (3.1.8) and (3.1.9), T,,(A)(-) € Hp with the producing function given by

T (A)()

9mis~ € La([0,1]%). The second assertion can be similarly derived as in establish-

ing (3.1.8), from which we get
(TA(A)() , Tu(B)( Dy = (A, B (3.1.10)

]
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Motivated by the previous results, we investigate the properties of T,(A)(:) €
T, (R"*")(-) C Hg, for A € R™™™ generated by assigning any real-valued function
f(+) to the regular lattice &,, n € N.

Definition 3.1.4. Let f(-) be a real-valued function defined on [0,1]?, and let
F(&n) = (f(t/n, k/n))ii g € RV 2 1,

where &, is the reqular lattice given by (1.1.1). Corresponding to the sequence of
matrices { f(En) }n>1 in R, we define a sequence of functions {hg, (-)}n>1 in Hp as

follows:

0,1 —R
he, (-) : (3.1.11)

(21,22) — 2 Tn(f(En))(21, 22).
Remark 3.1.5. From Equation (3.1.9), we have

1 0T (f(E))(t, 8)
hn 21, %2) = / — n ) )\2 dt,dS ’
' ( 1 2) [0,21]%X[0,22] n otos ( )

for every (z1,29) € [0,1]%. By definition, and by recalling (3.1.7), the second partial

derivative of hg, (-) with respect to both variables exists N\* a.s. on [0,1]?, where

thfn (21, Zg)
821822

for every (z1,22) € Age = (€ —=1)/n,€/n) x (k—=1)/n,k/n), 1 <l k <n.

= f(l/n,k/n), (3.1.12)

For each n > 1 let us define a function gg, (-) on [0,1]* by

96.() =2 > O/ /)Xy mggmy i1y ()

k=1 ¢=1
+ D P/ D ey mmyx 1y ()
/=1

+ LR/ Lyt mp/m ()

k=1

+ f(1, D)L (0) € La([0, 1]%), (3.1.13)
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where 14(+), A C [0,1)%, stands for the indicator function of A. Hence, for each
n > 1, gs,(-) is defined everywhere on [0,1]* and is clearly right continuous in the
sense of Definition 2.4.1 on the half-open rectangle [0,1)?. Furthermore by applying
either Fubini’s theorem or the fundamental theorem of calculus for Lebesque integrals,
we have

) = TEN G = [ N, (311
(21, 29) € [0,1]%. Note that Equation (3.1.14) can also be shown by directly applying

the definition of the integral on the right hand side.

Remark 3.1.6. For n > 1, g¢ () is in BVV([0,1]%), see Definition A.1.5 for the
definition of BVV([0,1]?). Moreover, for ¢ = 0 or 1 and n > 1, the "marginal”
functions g, (c,-) and gz, (-,c) are in BV (]0,1]). To see this, we consider the finite
ezact cover T',, = {[(¢ — 1)/n,¢/n] x [(k — 1)/n,k/n] : 1 < £,k < n}. Note that
T, =TV xTP, where TV = {[(¢=1)/n,¢/n] : 1 < £ < n}, TP = {[(k—1)/n, k/n] :

1 <k <n}. By (51.13) and by Definition A.1.4, it can be shown easily, that

V(9,:[0, 1) < v(f;T),

V(ge, (1,-); [0,1]) < o(f(1,-); TD),
V(ge, (-, 1);[0,1]) < o(f(-,1); T),
V(9r,(0,-);:[0,1]) < o(f(1/n,-); T,
V(ge,(,0):[0,1]) < o(f (-, 1/n);TLY).

Here and throughout V (¢; A) stands for the total variation of ¥(-) on A C [0, 1]%

Consequently, by Definition A.1.6, forn > 1, g, (+) is in BV ([0,1]?).
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Lemma 3.1.7. Let f(-) be any function in Ly([0,1]). Let us define a function
h¢(-) € He as follows:

h(-) : 017 —R (3.1.15)

(21,22) f[o,zl]x[o,ZQ}f(ta s)A2(dt, ds).

If the function f(-) is continuous on [0,1]%, then g, (-) converges uniformly on [0,1]?

0%hy ()

to 021022

= f(+), as n — oc.

Proof. By the hypothesis, given ¢ > 0, there exists a § > 0, such that

sup  |f(t,8") = f(ts)| < e
||(t75)—(t/75')||§5

We consider the non-overlapping finite exact cover T, of [0, 1]? given in Remark 3.1.6,
with ||T,|| = v/2/n. Take ng := [v/2/6]+1. Then ||T,|| < 6 for all n > ng. Let (t,5) €
[0, 1] be arbitrarily fixed, then there exist ¢,k € N, (1 < ¢,k <n), ng < n, such that
either (¢,s) € [({ — 1)/n,€/n) x [(k —1)/n,k/n), or (t,s) € [({ —1)/n,l/n) x {1},
or (t,s) € {1} x [(k —1)/n,k/n), or (t,s) € {(1,1)}. By (3.1.13), in each case
we have |gg, (¢t,s) — f(t,8)] < &, n > ng. Since (t,s) € [0,1]? is arbitrary, we get

¢, (-) — f(-)||o < e, for all n > ny. This completes the proof. O
Corollary 3.1.8. If the function f(-) is continuous on [0,1]?, then

1hg, = Dpllyy, — 0 and [|hg, = Ry, — 0.

Proof. By definition, the producing functions of hg, (-) and hs(-) are given by g, (+)
and f(-), respectively. Thus by (3.1.14), (3.1.15), and Lemma 3.1.7, we get

0< lhe, — hyl?, = [ 19 (4:9) = 509 X )
0,12

IN

/ (sup lge,(5) — F(t 5))2A3(dt, ds),
(0,12 (

t,s)€[0,1]?
= lge, — fII% =3 0.
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Similarly, for any (21, z2) € [0, 1]?, we have

e, (21, 22) = hy (21, 22)| = ‘/ (96,(t, 8) = f(t,5))N*(dt, ds)
[O,Zl]X[O,ZQ]

< / sup e, (t,5) — f(t, 5)| A2(dt, ds),
[0,21]%[0,22] (t,s

)€[0,1]2

n—od

< llge, = fllow — 0.

O

We now extent the preceding results to the regression functions fi(-),..., f,(*)
starting with a definition of subspaces required in establishing the limit processes of

the residual partial sums processes associated to fi(-),..., f,(-) defined on [0, 1]? .

Definition 3.1.9. Suppose that fi(-),..., f,(-) are linearly independent as functions

in Ly([0,1]%). Let us define the following linear subspaces:

(1) W = [fi("),..., fo(+)], i.e., the subspace spanned by the regression functions

{A0), s ()}

(2) Wy :=[hy(5),..., hy, ()], i.e., the subspace of Hp spanned by the set of func-

tions {hg (),..., hy,(-)}, where hy,(-) is given by (8.1.15).

(B) W, = [fi(&n), .., fp(&En)] is a subspace in R™*", where f;(E,) is given in Defi-
nition 3.1.4.

(4) Wop = [he, (), b, (-)], i.e., the subspace of Hp spanned by the set of
functions {hg, ,(-),..., he,,, (1)}, where hg, (-) is defined in (3.1.11).

(5) Low,,, = [98,,(), -+ 95,. ()], d-e., the subspace of Ly([0,1]%) spanned by the

set of functions {gg, ,(*), ..., 9¢,,(-)}, where gg,  (-) is defined in (3.1.13).
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Remark 3.1.10. We furnish the subspaces W and LQWHHB with the inner product
(, )Ly, the subspaces Wy and Wy, with the inner product (-, -)yg, while the sub-
space W, is furnished with the inner product (-, -)gnxn. By definition it can be shown
that {hs(-),...,hy, ()} is a basis of Wy, € Hp. The matrices fi(En),. .., fo(En)

form a basis of W,, C R™" if and only if, the functions hg, ,(-),..., hy

o (+) are

a basis of Wy, C Hp. The latter holds if and only if, {gs, . (-),..., ¢, ()} is a

basis of Low,,,,,- Let us define the matriz J := ({fi, f;)1.)i1 = - Since the de-

n—oo

sign matriz X, := (vec(f1(E,)), - .., vec(fp(E,))) has the property (5X)X,) — J,
component-wise, then det(-5X1X,,) = det(J), where det(-) is the determinant func-
tion. The matriz J is clearly invertible (det(J) # 0), hence there exists an ny € N
such that det(#XZXn) # 0, for n > ng. Hence X,, has full-column rank p for ev-
ery n > ng, which directly implies that the vectors vec(fi1(&€,)),. .. ,vec(fp(En)) are
linearly independent in R™, for n > ng. By the linearity of vec operator, we fur-
ther get that fi(&,), ..., fp(En) are linearly independent in R™™, for every n > ny.
Thus, as stated above, this implies that, for every n > ng, {he,, (),..., he, ()} and
{96,.,()s 596, (1)} are bases of Wy, and Low,,,, - respectively. In the sequel we

always assume that n > nyg.

Remark 3.1.11. Let {f,(),..., f,(-)} be the Gram-Schmidt orthonormal basis of W
associated with the basis {fi(-),..., f,(-)}, and let {hs, ("), ..., ﬁfp()} be the Gram-
Schmidt orthonormal basis of Wy, associated with the basis {hs,(-), ..., hy,(-)}. Then

by (3.1.15) it can be shown that, for every (21, 2s) € [0, 1]

P (21, 2) :/ it )2 (dt,ds), i =1,....p. (3.1.16)
[O,Zl]X[O,ZQ]

Similarly, let {i_l/fl’n('), Ce izfpn()} be the Gram-Schmidt orthonormal basis of W g

corresponding to the basis {hg,, (-),..., he,,(-)}, and let {gg (), .., Ge,..(-)} be the
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Gram-Schmidt orthonormal basis of Low,,, . that corresponds to {gs, (), - - -, 9g,,. ()}

Then by (3.1.14), for every (21, z2) € [0, 1)%, we have

he,, (21, 22) = / Gt, (. s)N*(dt, ds). (3.1.17)
[O,Zl]X[O,ZQ]

Corollary 3.1.12. By definition, the functions gg,,(-), n > 1 are right continuous

on [0,1)%. Moreover, if fi(-) is continuous on [0,1]?, then

=20, i=1,...,p.

o0

Hgfi’” - f’L

The same properties are also satisfied by the corresponding sequences of marginal
functions (gg,, (c,-)), -, and (gg,,(-,c)) -, ¢ = 0,1, i.e., they are right continuous

on the half-open interval [0,1), and we have

Proof. We first consider the case ¢ = 1. Since g, ,(-) Mlog fi(-) as n — oo, then

gfi,n (C? ) - fi(cv )

20 and Hgfi’n(‘,c) - ﬁ(,c)” 0.

. .

H‘||L2 n—oo

gr,,,(-) — fi(+), which, by the continuity of ||-||L2, implies H9f1,n||L2 - ”f1||L2.

Hence, for n — oo, we have

- N gfl,n(') %} fl() . .
Jg (1) = o Ol 700 : fi().

Now let us consider the case 7 = 2. Since g, ,(-) Ilog fi(-) and 9t (+) Ilog fa(+), as
n — 00, then <§fl,n’gf2,n>L2 = <.f1a f2>L2' These yield gf2,n<') - <§f1,nagf2,n>L2§f1,n(')

Mleg F2()=(f1, f2) 0, f1(-) as n — oo. Hence, by applying the same argument as before,

5 5 (Il ~ ~ .
asn — oo, gf2,n<') - <gf1,n7 gf2,n>ngf1,n<') —L2> f2(')_ <f17 f2>L2f1(')' Furthermore? smce

|||, is continuous, we further obtain

1) = (o )i

Hgfzn(') - <gf1,n7gf27n>L2.§fl,n(‘)||L2 m ‘

2
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Thus, by combining these results, we finally get

gf2,n(') - <§f1,nvgf2,n>L2§f1,n(') Ml oo fQ() — <f17 f2>L2JE1<') r

— =: 2(-

) = G220, Ol [R0) = (o i)

gfz,n(') :

2

The assertion for ¢ = 3,...,p can be handled analogously. This proves the first

assertion. The second assertion is a direct consequence of the first assertion. Il

Corollary 3.1.13. Fori=1,...,p, if the regression function f;(-) is continuous on

[0, 1]2, then HiLf”L - ilfz‘

n—oo 7 7 n—oo
=% () and thm - th i}
Hp ’ 0o

Proof. This result follows directly from Corollary 3.1.12. ]

Proposition 3.1.14. Let f;(-) be in BV ([0,1]?), and let ¢ = 0 or 1. Then for
1 =1,...,p, there exist positive real numbers M;, M;. and K., such that for n > 1,
V (G, —Ji [0: 1) < M, V((Ge,—Fi) (e ) [0, 1)) < Mic and V((Gr,,,—fi) (e, -); [0,1]) <
Kie. That is, the sequences (V (g, — fi: [0, 1°))uz1, (V (G, — fi) (¢, )0, 1]))nz1 and
(V((9¢,.. — £)(€,):10,1]))ns1 are bounded uniformly.

Proof. Let us consider first the case 1 = 1. Since gg , = —n by Remark 3.1.6

[E

and by the triangle inequality, for a fixed n > 1, it follows that

Vi, — fil0,17) < W PV 0.1,

V(... — F)(L,:10,1]) < V(fﬁ(glf;jﬁz’ D vim o).
Vi, - P60 < 2 H;DII[O D v 0.1,
Vi, — 70,901 < LY j‘lg/ " }.I);[Oy U Vg0, 95 10,1),

r V(fl(al/n)7[07 1])

V(<§f1,n _fl)('70)3[0=1]) < Hgf H +V<f1('70)3[07 1])




Chapter 3. Residual partial sums limit processes 45

Since fi(-) € BV([0,1]*), by Proposition A.1.7, V(f1(1/n,-);[0,1]) < ||P1]|,, and
V(fi(-,1/n);[0,1]) < [|[W¥y]| ., where ®;(-) and W¥;(-) are the total variation functions
on [0, 1] associated with f;(-), see Appendix A. Since Hgan”L2 converges to || fill,, as
n — 00, the sequences on the right hand side of the preceding inequalities are clearly
bounded from above by positive numbers. Consequently, the sequences on the left

hand side are also bounded from above.

955, ()G, . 985, ) L T8y, ()

We now consider the case i = 2. Since gy, ,(-) = | , then

|gf27n(')_<§f17n7gf2,n>L2§f17n(') ||L2
by the triangle inequality, Remark 3.1.6 and by using the results obtained for ¢ = 1,
we obtain

V(fQ; [07 1]2) }<§fl,n7gf2,n>L2| v(fl; [07 1]2)

*
gf2,n

V(Gt,, — f2;0,1]%) <

g |
L2 L2 1,n L2

+ V(fQ; [07 1]2)7
V(fQ(L '); [Oa 1]) |<§f1,n7 gf?,n>L2{ V(f1<1’ '); [07 1])

* *
ng,n gf2,n

V((98.,, — f2)(1,-);[0,1]) <

Lo

||gf
Lo ‘ Lo 17bM

+ V(f2(17 ); [07 1])7
V(fg(', 1)7 [Oa 1]) |<§f1,n7 gf2,n>L2| V(fl(? 1), [07 1])
‘gg" Lo ’
+ V(fQ('ﬂ 1)3 [O’ 1])>

||(I>2Hoo + |<§f1,n7gf2,n>L2| H(I)luoo

V((3t,,, — f2)(-, 1);[0,1]) < -
gfz,n

ol

+ V(f?(()? '); [07 1])7

V(G = £2)(0,);00,1]) < 7= .
‘ gf2,n Lo ‘ng,n Lo Hgfl,nHL2
~ s \Ij g nvg n \Ij (o) r3
V(G — 203 [0.1]) < 12l +|<f1,* adinl Willoe 010, ),
el ok, Nowl,

where ®5 and U, are total variation functions on [0, 1] associated with fo(+), while

g;‘;,n(.) = gf2,n(.) - <§fl,n7gf2,n>L2gfl,n(.)'
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By Corollary 3.1.12, all sequences on the right hand side of the preceding inequalities
clearly converge to positive real numbers. Hence the sequences on the left hand side

are bounded from above. The assertion for ¢ = 3,...,p can be derived analogously.

]

By Corollary 3.1.12 and Proposition 3.1.14, the conditions of Proposition 2.4.5
are clearly satisfied for 1, (-) = (¢, — f)() as well as for ¢, (c, ) = (e, — e
and Yn(-,¢) = (Gg,,, — f)(,¢), n>1, ¢ =0 and 1. Thus the following version of

Proposition 2.4.5 is straightforward.

Corollary 3.1.15. If the regression functions fi(-),..., f,(-) are continuous and have
bounded variation on [0,1]* in the sense of Hardy (in BV ([0,1]?)), then for u(-) €

C([0,1]%), and ¢ =0 and 1, we have

R
[ ats) e, - F)e.s) = o,

(0,1]?

R rs —
| uters) dan, — Fate.s) =% o,

[0,1]

R re —
/ u(t,c) d(ge,, — fi)(t,c) 0.

[0,1]

Corollary 3.1.16. Suppose the regression functions fi(-),..., f,(-) are continuous
and have bounded variation on [0,1]* in the sense of Hardy. Let (V(gfin—fi))@l’
(V(éfinffi)(c,-))”zl’ and (V(gf,.nffi)(-,c))"zl be the sequence of finite Lebesque-Stieltjes
signed measures that correspond to the sequences ((gg,,, _fi))nZI) ((g8; . — (e, Nn>1,

and ((g,, — F) (- ©))ns1, respectively, ¢ = 0,1. Then for u(-) € C([0,1]?), we have

n—oo

/< u() A7, gy — 0, /(o , 1) W —pye — 0

n—oo

/ u(.’c) dlj@f. i) T 0.
(071] ,n

Proof. The result follows by Corollary 2.4.9 and Corollary 3.1.15. [
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3.2 Residual partial sums limit processes

Having defined the notion of the reproducing kernel Hilbert space for Brownian (2)
motion and the partial sums operator T,,, we now establish the limit processes of the
sequence of the residual partial sums processes {T,,(R,x,)(t,5) : (¢,5) € [0,1]*},>1
for the linear regression model defined on the unit square [0, 1]* starting with Lemma

3.2.1 below.

Lemma 3.2.1. For any A = (awm);,—; € R™™, we have

T (prw, (A)() = (ro,ow.) Tu(A)()) () = (01w, Tu(A)()(), ¥ 0= no,

where T,,(Wy,) = [Tn(fi1(E.))(), .., Tu(fpo(E))(4)], and ng is the natural number
defined in Remark 3.1.10.

Proof. Let n > ngy be arbitrarily fixed. Since an orthogonal projection does not
depend on any specific choice of a basis, without loss of generality we can assume
that {f1(E,), ..., fp(E)} is an orthonormal basis of W,,. By (3.1.10) the orthonormal
basis of W3, that corresponds to this basis is {Ty(f1(&.))(-), .., Tn(fo(E))()}-

Hence, the orthogonal projection of A € R™*" onto W,, with respect to this basis is

p

prw, (A) =Y (A, fi(En))zmen fi(En). (3.2.1)

i=1

Thus, by the linearity of the partial sums operator T,, on R™*" we get

To(prw,(A))() = Ta (Z(A,fi(gn)mﬂxnfi(c‘fn)) ()

= Y A AED e Tl A ED)

=1

@110 D (Ta(A)(), Tulfi(E)) (s Tulfi(E)) ()

=1

= (W, Ta(A)())()-
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]

Definition 3.2.2. Let Hp be the set of all functions in Hy whose associated

BV ([0,1]2)

producing functions are in BV ([0,1]?), i.e.,
HBBV([OJ]Q) = {h(-) € Hp : h(t,s) :/[0 - ]}}(.)d)@, ]}(.) e BV(|0, 1]2>}.
,t]x(0,s

The mapping (-,-) is defined on Hgp 2y X C([0,1]?), by

BV ([0,1
R R

(hyu) = A2 (uh) — / w(t,1)dh(t, 1) + / u(t,0)dh(t,0)
[0,1] [0,1]

— ul,sdﬁl,s RuO,sdﬁO,s
/M< ) >+/M< )i (0, )
—i—/[ u(t, s)dh(t, s). (3.2.2)

0,1]2
Remark 3.2.3. By Remark A.1.8, Theorem A.2.4 and Theorem 1.2.18 in Stroock
(1994), all Riemann-Stieltjes integrals on the right hand side of (3.2.2) exist, hence the

mapping (-,-) is well defined on Hg x C([0,1]?). Since the Riemann-Stieltjes

BV ([0,1]2)

integral (3.2.2) is linear in h(-) as well as in u(-), the mapping (-,-) constitutes a

bilinear mapping on Hg x C([0,1]%). Moreover, by using integration by parts

BV ([0,1]2)

for the Riemann-Stieltjes integral on the closed interval [0,1], see Theorem 1.2.7 in

Stroock (1994), we further get

(hyu) = — A 2(uh) + / ’ h(t,1)du(t, 1) — /[ ! h(t,0)du(t,0)

[0,1] 0,1]

R LA
—1—/[ h(l,s)du(l,s)—/ h(0, s)du(0, s)

0,1] [0,1]

+ /[ u(t, s)dh(t, s). (3.2.3)

0,1]2

Suppose for the moment that h(-) € Hp and u(-) € Hp with the producing

BV ([0,1]2)

functions h(-) € BV ([0,1]2) and a(-), respectively. By using integration by parts for
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the Riemann-Stieltjes integrals on [0,1]? (see Theorem A.2.6), we obtain

R R

h(t,1)du(t, 1) + / h(t,0)du(t, 0)

[0,1]

/[R u(t, s)dh(t,s) = A2 (uh) _/

0,1]2 [0,1]

— ﬁ,sdu , S Rﬁ,sdu , S
/ <1><1>+/ (0, $)du(0, 5)

0,1] [0,1]

R
+ / h(t, s)du(t, s). (3.2.4)
[0,1]2

We note that each of the Riemann-Stieltjes integrals that contribute to the right hand
side of (3.2.4) exist, see also Young (1917a). By combining (3.2.3) and (3.2.4), we
finally obtain

R
/ h(t, s)du(t, s) (4% / h(t,s)i,(dt, ds)
(0,1]2

[0,1]2

/ h(t, $)i(t, s)X2(dt, ds) = (b, uhp, (3.2.5)

provided h is continuous 7, a.e. on (0,1)2. Thus, the inner product (-,-)yy given by

Equation (3.1.4) coincides with the bilinear form (-,-) on Hg x Hg.

BV ([0,1]2

Remark 3.2.4. By combining (3.2.2) and (A.2.1) given in the appendiz, for every

(h,u) € Hp x C([0,1]?), we have

BV ([0,1]2)
[y <l (4 3]+ VARG 1:00,2]) + V(R 0)5[0,1])

FV(R(L 0.0 + V0. [0.1) + V(R 0.17) . (3:2.6)
where V (¢(-); A), A C [0,1)* denotes the total variation of 1 on A.

Let us consider again Remark 3.1.11. The remark suggests that if the regression
function f;(+) is in BV([0,1]?), then the associated Gram-Schmidt orthonormal basis
{hp (), -, ;pr()} of Wy, isin Hp
by ﬁ(), i=1,...,p. Based on this fact, by means of the bilinear mapping (-, -) just

. The producing function of hy,(-) is given

BV ([0,1]2)
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defined, we extend the orthogonal projection of Hp onto Wy, to a "projection” of

C([0,1]%) onto Wy, see Proposition 3.2.5, below.

Proposition 3.2.5. Let the regression function f;(-) be continuous on [0,1]* and be
in BV ([0,1]%). Let Priw,,, + C([0, 1) — Wy, be the mapping defined on C([0,1]?),
such that for each u(-) € C(|0,1)?), and (t,s) € [0,1]%,

p

(s, W0)(ES) = S (g g (8, ), (3.2.7)
i=1
where fori=1,...,p,
~ ~ R ~ R ~
<hfi7 u> = A[O,lP(”fl‘) - / U(t7 1)dfi(t= 1) +/ u<t7 O)dfl(tv 0)
[0,1] [0,1]

R R R ~
—/ u(l,s)dfi(l,s)—k/ u(0, s)df;(0, s)
[

0,1] [0,1]

+ / u(t, s)dfi(t, s).

[0,1]2

Then pr@vHB constitutes a projection of u(-) onto Wyy.

Proof. By Definition 5.15 in Rudin (1991), it suffices to show that PTw,,, is linear and
idempotent, i.e., pr{,VHB o pr{,VHB = pr{,VHB, and surjective. The first two conditions
follow easily from the linearity of (-, -), the orthonormality of {hy,, ..., h £, pin Wy C
Hgp and by the continuity of f;, for ¢ = 1,...,p. The last condition is obvious by
the definition and by inclusion Wy, C C([0,1]?). We notice that in case u(-) € Hg,

préVHB is an orthogonal projection of u(-) onto Wy, with respect to the inner product

<'7 '>HB' ]
Let us define a mapping pr{‘,VnHB : C([0,1]*) — W34, by means of
p ~ ~
(P, ) (£, 8) = > (g, undh,, (t,s), (¢, 5) € 0, 1], (3.2.8)

i=1
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where

R R
<hfi,n7 un> = A[0,1]2 (ungfzn> - / un(tv 1)d§fi,n (t7 1) + / un(tv O)dgfzn (ta 0)
[

0,1] [0,1]

R R
—/ un(l,s)dgfiyn(l,s)—l—/ un (0, s)dgfi,n(o,s)
[

0,1] [0,1]

R
+ / u,(t, s)dgs, ,(t,s).
[

0,1]2
By Remark 3.1.6 and Equation (3.1.17), {ﬁfm(-) ce ibfm(-)} S HB,y o, With the
producing function of ilfn() given by gg, , (-) being in BV([0,1]?). Hence (3.2.8) is
well defined on C([0,1]?). Furthermore, by applying similar argument as in Remark
3.2.3, for any u,(-) € Hg with producing function ,, we have

R
(e, 1) = / Go (1, 8)dun (2, 5) = / e (1, 5)d,

[0,1]2 (0,1]2

- / gfi,n (t’ S)an(tv S))‘Q(dta ds) = <ilfi,n’ un>7‘lB’
[0,1]2

since gg, , (+) is continuous 7,, a.e. on (0, 1]%. Hence, for u,(-) € Hp, we get

p p
* (3.2.8) = (3.2.5) ~ ~
(pTWnHB Un)() = Z<h’fi,n’ UTL)hfzn() = Z<h’fi,n’ UTL)HBhfi,n(')
=1

i=1

= (prwnHBun)(-). (3.2.9)
This leads us to the conclusion that Prw,,,, is a restriction of pr{,VnHB on Hg, i.e.,
pr{,VnHB s = PrW,,,, - We notice that this result will be important in establishing
the limit process of the sequence of the residual partial sums processes, see Theorem

3.2.6 below.

Theorem 3.2.6. (residual partial sums limit processes)
Suppose that fi(-),..., fp(:) are linearly independent. If fi(-), i =1,...,p, is contin-
uous and has bounded variation on [0,1)* in the sense of Hardy, than, as n — oo,

LT (Ruen)() 25 Bal) = (priy,, Ba)(). in C([0, 1)),

g
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where Ry, «p, s the matriz of residuals, and Bs(+) is standard Brownian (2) motion.

Proof. Since R, x,, = Enxn — prw, Enxn, by Lemma 3.2.1, we have

ST Ro)() = S T(Ban) ()~ Talprw, Bas) ()
= Tu(Ba)() — (o ~Ta(Bac) ()()  (3:2.10)

We use the results of the preceding section to show that whenever (u,(-)),>1 is a
sequence in C([0,1]?) such that u,(-) Ml u(+), then (p'r’{‘,vnHBun)(~) Ml (pr{‘NHBu)(-),
as n — oo. By the triangle inequality and by the linearity of the Riemann-Stieltjes

integral, we have

SUD(1,)€(0,1]2 | (PTW, 0, Un) (1 8) = (PP, w) (2, S)‘

p p
= su he. h (t,s) h
el ;< o g ot
p ~ ~ ~ ~
< sup <hfi,n7 un>hfi,n (t> S) - <hfw U’>h‘fi (tv 3)’
(t,s)€l0,1]2 .
p ~ ~ ~ ~ ~ ~
= Sup <hfi,n7 un>hfi,n (t7 5) - <hfi,n’ un>hfz <t7 S) + <hfi,n’ un>hfz <t7 S)

(t,5)€[0,1]2 i1

_<Bfw un>ﬁfz (t> S) + <ilfw un>}~1fz <t7 S) - <iLfi? u>i’/fz (t> S)‘

((711@n — izfl) + ﬁfi, (Uy — u) + u) Hfzfm — Efi

p
2
i=1

(g un — U))

e} o

[e.9]
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We now define sequences (K -(71) Jn>1, (K -(2))n21, and positive numbers K; by putting

v m

Ky = V((3r, = )6 1:00,1) + V(3 — £)(0):00,1])
V((3t,. — F(L):[0.1]) + V((Gr,,, — fi)(0,);10,1]) + V (G, — fi3[0,1]°),

’/ ult, D, ~ £ + ‘/ ult, 0)d(3,, — F)(t,0)
0,1] [0,1]

1,s)d(gs,,, — fi)(1,s 0,s)d(ge,, — fi)(0,s
+/M<><g, f><>+/[m]<><, 70, 5)
R ~
s)d i yS)| s
o] e, — Fate)

f(z' = V(fz(a 1); [07 1]) + V(fz(a O); [07 1])
+ V(fl(la ')? [07 1]) + V(fl((), '); [07 1]) + V(fu [07 1]2)7

fori = 1,...,p. By applying Inequality (A.2.1) to the absolute value of the bilinear

forms involved in the last inequality, we further obtain

SUpP(¢,s)elo,1]2

(D1 ) (1) = (DT 0)(19)|

< 3t (3= 7+ 8 (e =]+ ] )
35 ot ]+ 82) (] <[]
+i§p;||un—uuoo (1 )
+il||uuoo(4 |+ &) ||, =B (3.2.11)

Since K is bounded (see Proposition 3.1.14), K2 =% g (see Corollary 3.1.15)

m

# ) ([ =]+

and K; is bounded (since fi(-) € BV([0,1]?)), i = 1,...,p, then by Corollary 3.1.12,
Corollary 3.1.13 and by the hypothesis, the right hand side of (3.2.11) converges to

zero as n — o0o. Therefore, (pri,vnHB uy,)(+) converges to (pr}",VHB w)(+) uniformly on
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0,1]%, whenever (u,(+))n>1 converges uniformly to u(-) in C([0,1]?). Furthermore,

since 2T, (Epxp) () 2, Bs(+) (see Theorem 2.3.4), by (3.2.10) and Theorem 2.3.7,

for n — oo we have

W > T (Brcn) ()0) = 0~ TaBren) () 2 (priy, Bo) )

This completes the proof. Il

Remark 3.2.7. By Theorem 2.4.4, the sequence (f(@))nzl in (3.2.11) can be replaced

m

by the sequence (Ki(z)')@b given by

+ ‘/ u(l, .)dﬂ(ﬁfi n_fi)(lv‘)‘
(0,1] '

which by Corollary 3.1.16 converges to zero as n — oo, fort=1,....p.

Remark 3.2.8. Unless otherwise stated, we abbreviate the limit process { Ba(t,s) —
(pr{,VHB By)(t,s) : (t,s) € [0,1)*} by Bg, where the index £ stands for the vector of
regression functions £ = (f1(:),..., f,(:))T. The function K¢(-) : [0,1]> x [0,1]> - R
given by Ke((t,s),(t',s")) :== Cov(Bx(t, s), Be(t', 8')), for (t,s),(t,s") € [0,1]* x [0, 1)
is called the covariance function of By. For any (t,s) € [0,1]?, it is obvious that

Bg(t,s) is a zero mean Gaussian process with variance Ke((t,s), (t,s)) > 0.

2 is unknown, we can

Remark 3.2.9. By Slutsky’s theorem, in case the variance o
replace o in (3.2.10) by 6, := /62 given by (1.2.3) without altering the convergence

in distribution in C([0, 1]%).
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3.3 Examples

In this subsection we discuss the limit process of the residual partial sums process
associated with constant, first-order and second-order models. For each considered

model we identify the distribution of Bg(t, s) for each (t,s) € [0, 1]?

Example 3.3.1. As a simple case, we consider a constant model E(Y) = 3, where
B is an unknown parameter. For this model we have f(t,s) =1, (t,s) € [0,1]?, and
Wi, = [hs ()], where hy(t,s) =ts, (t,s) € [0,1]2. Since By(t,s) =0 a.s. ift =0 or

s = 0, the projection of Bs(-) onto Wy is

(pr@vHBBg)(t, s) =ts(hy, By) = tsBy(1,1), (t,5) € [0,1]

sample size=20x20 sample size=40x40

SN
“';"(‘\\\ i

fn’ Hl
\ \‘\

a,‘o‘\\.“\ \.
‘

Figure 5. Approzimation to sample paths of the standard Brownian (2) bridge.

Thus, the residual partial sums limit process is

Be(t,s) = By(t,s) — tsBy(1,1), (t,s) € [0,1]?
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which is the standard Brownian (2) bridge defined in Section 2.2. An example of
sample paths of the standard Brownian (2) bridge can be seen in Figure 5 for which
the paths are approximated by residual partial sums processes %Tn(Rnxn)(t, s) cor-

responding to the constant model.

Example 3.3.2. If the model is a full first-order model (plane), i.e., BE(Y) = [y +
Bit+Bas, (t,s) € [0,1]2, where By, B1 and (B2 are unknown parameters, with regression
functions fi(t,s) =1, fo(t,s) =t, f3(t,s) = s that are clearly continuous on [0, 1]
and linearly independent as functions in Lo([0,1]?). The Gram-Schmidt orthonormal

basis in Wy, associated with this model is

ﬁfl(t,s) = ts,
ilfz(tﬂg) = \/gts(t - 1),

hy(t,s) = V3ts(s — 1), (t,s) € [0,1]%

Let us denote the associated limit process by Bga)(t,s). Since Bs(t,s) = 0 a.s. if
t=0o0rs=0,by (32.7) we get

Beoy(t,s) = BY(t,s) — 3ts(t + s — 2)Bo(1,1)

+6ts(t—1)/ B2(t,1)dt+6ts(s—1)/ B(1, 5)ds,
[0,1] [0,1]

where BY is the standard Brownian (2) bridge. Furthermore, by a little computation

the covariance function K¢ (-,-) of Beay(+) turns out to be
Key((t,8), (1, 8) =(t At)(sNs') —tst's’ +3t's' (' —1)s + 3t's'(s" — 1)t

= 3t's'(t' — 1)ts — 3t's'(s — 1)ts + 3ts(t — 1)s" — 3ts(t — 1)t's’

+ 3ts(s — 1)t — 3ts(s — 1)t's".
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Example 3.3.3. We consider a full second-order model, i.e.,
E(Y) = B0+ tB1 + 802 + t*B11 + tsPra + 5 Pas, (t,5) € [0,1)%,

where By, 081, B2, P11, Ba2, and Pis are unknown parameters. It is clear that the regres-
sion functions fi1(t,s) = 1, fo(t,s) = t, f3(t,s) = s, fi(t,s) =12, f5(t,s) = ts and
fo(t,s) = s* are continuous on [0,1]> and linearly independent in Ly([0,1]%). The

Gram-Schmidt orthonormal basis of Wy, associated with this model is

ﬁfl (t,s) = ts,

hy,(t,s) = V/3ts(t — 1),

hy,(t,s) = V3ts(s — 1),

hy(t,s) = V5(2t3s — 3t%s + ts),
hy,(t,s) = %(1&232 —t?s — ts® + ts),

hy(t,s) = V5(2ts® — 3ts® + ts).

We denote the associated residual partial sums limit process by Bee (t,s). Then, after

simplifying the Riemann-Stieltjes integrals involved, we get

Bf(z)(t, S) = Bf(l)(t, 8)
— (10£%s + t*s*/9 — 136t*s/9 — 136ts*/9 + 10ts> + 91ts/9) Bo(1, 1)
+ (120£3s — 180t%s + 60ts) / By (t, 1)tdt
[0,1]

+ (2t%5*/9 — 60t>s + 808t*s/9 — 2ts*/9 — 268ts/9) / By (t,1)dt
[0,1]

+ (2t%s%/9 — 2t%s/9 + 808ts? /9 — 60ts® — 268ts/9) / Bs(1,5)ds
[0,1]

+ (120ts — 180ts* + 60ts) / Bsy(1,s)sds
(0,1]
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— 4/9(t*s* — t?s — ts* + ts) / Bs(t, s)dtds.
0,12

3.4 Extension to an n x m regular lattice on [0, 1]?

The extension of the preceding results to an n x m regular lattice, denoted by &,
is obvious and can be directly derived. However, it is important to give a little
description how we should work in such a situation. If model (1.1.2) is extended
to the n x m regular lattice, the sample space is R™*", the matrix of observations
is Y,un := (ng);n:’&:l € R™*" which is assumed to satisfy the equation Y,,x, =
M,xn + Emxn, for some My, € Vi, C R™ ™ with Vi, = [f1(Eum), - -+, [p(Enm)],
where E,,, «,, = (5g’k);n:’17:}:1 is an m X n dimensional random matrix with components
that are i.i.d (0,0%), 0* € (0,00), and fi(-),..., fp(-) are the regression functions

defined on [0, 1]%. The matrix of least squares residuals is
Rinxn =prvi, Ymxn = 0rvs, Emsn.
By using the vec operator the model can also be presented in the form
vee(Yomxn) = Xpn 8 + vec(Epyxn),

where the design matrix X,,, := (vec(f1(Eum)), - ., vec(fp(Enm))) is in R™*P. Sup-
pose that (fi(Ewm), - fp(Enm)) C R™™ is a basis matrix of V,,. Then the statistic

o v Yosallzen [P, vee(Y ) [
et nm —p B nm —p
_ vee (Yoxn) Dnnsmn — Xonn (X, Xon ) 72X Yvee(Ymxn) (3.4.1)
nm —p

is a consistent estimator of o2 in the sense that 62 converges in probability to o2,

as n, m — oo simultaneously.
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Let us define a linear operator T, : R™" — (C([0,1]?), such that for every

A = (ap)y 1y and (21, 22) € [0, 1]?,

[mz2] [nz1] [mz2]
Tnm(A) (Zla Z2) = Qor, + (TLZl - [nzl]) Z Alnz]+1,k
k=1 (=1 k=1

[nz1]

+ (mze — [mz,)) Z e [mzo]+1
=1

+ (nz — [”21])(m22 - [mz2])a[nZ1]+1,[m22]+la

where Zi:l 22:1 ag, = 0, for j = 0 or 2 = 0. Analogous to the partial sums operator
T,, defined in Chapter 2, the operator T,,,, embeds the random matrix E,,,, and the
matrix of least squares residuals R, into stochastic processes {T . (Enxn)(t,$) :
(t,s) € [0,1]*} and {Tpm(Rimxn)(t, s) : (t,8) € [0,1]*}, respectively, whose sample
paths are in C([0,1]?). Quite analogous to Theorem 2.3.4, for n,m — oo, we get
LT, (Bpn)(-) —= Ba(+), in C([0,1]%), where By(-) is the standard Brownian (2)

motion. Finally, if the regression functions fi(-),..., f,(-) are continuous and have

Tnm(Rmxn> () i’

Be(+) in C([0,1]?), where Bg(-) is the residual partial sums limit process defined in

bounded variation on [0, 1]?, then for n,m — oo, we have ﬁ

Theorem 3.2.6. Thus the residual partial sums limit processes associated to both

models are the same.



Chapter 4

Tests based on residual partial

SUIIlS Pprocesses

In this chapter we apply the weak convergence theory elaborated in Chapter 3 to
the theory of linear models. In particular we consider model-checks for spatial data.
Based on a set of data from an experiment conducted on the regular lattice &, C [0, 1]?
or more generally on &,,, C [0,1]?, we test the hypothesis that a true but unknown
regression function belongs to a certain subspace generated by finitely many known
regression functions. More exactly, we decide the problem by a test based on the
residual partial sums process associated to the linear regression model formulated in
Chapter 1.

We start this chapter with the formulation of the hypotheses, then define asymp-
totic tests, finally study the asymptotic behavior of these procedures by applying the
results derived in Chapter 3. We shall propose three test statistics which are famil-
iar in nonparametric statistical theory: a Kolmogorov type statistic, a Kolmogorov-
Smirnov type statistic and a Cramér-von Mises type statistic. These will be defined

in Section 4.2, Section 4.3 and Section 4.4, respectively. To construct the asymptotic

60
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critical region of the tests, we calculate the quantiles of the three test statistics by
simulation.

Finally, in Section 4.5 we observe the consistency and the asymptotic power of the
tests by establishing the asymptotic distribution of each statistic under alternatives.
At the end of Section 4.5 we conduct Monte Carlo simulations to approximate the
limiting power of the tests. Throughout this chapter, we use the definitions and

notations introduced in the preceding chapters.

4.1 Formulation of the Hypotheses

We consider the regression model
Y(t,s) = glt,s) +e(t,9), (t,s) € 0,1 (4.1.1)

where ¢ : [0,1]> — R is an unknown real-valued function. We assume that (¢, s) is
a real-valued random variable with mean 0 and variance % € (0,00) and g(-) is in

BVV([0,1]?). We are interested in testing the hypothesis
Hy:g€ Wversus K : g¢ W, (4.1.2)

where W = [fi(+),..., fo(-)] is the linear subspace generated by known regression
functions fi(-),..., fp(-). We assume that the conditions of Theorem 3.2.6 are fulfilled
by the vector of regression functions f = (fi(-),..., f,())", i.e., they are linearly
independent, continuous and have bounded variation in the sense of Hardy on the
closed square [0, 1]2.

Suppose that Y,,x, = (ng)z;ie:l is an n X n dimensional matrix of independent
observations associated with model (4.1.1), taken from the regular lattice &,. By

using matrix notation this may be rewritten as

Yn><n = ann + EnX’m (413)



Chapter 4. Tests based on residual partial sums processes 62

where E, »,, = (5%)2’:&:1 is the matrix of random errors with E(gy) = 0 and
Var(eg) = 0® € (0,00), and Gpxn = (9(¢/n, k/n));} ,—; € R™". Thus based on
these observations, the problem of testing (4.1.2) can be implemented by performing

a test of the hypotheses
Hy: G,xn € W, versus K : G, € W, (4.1.4)

for each n € N, where W,, = [f1(&,,), ..., fo(E,)], see Definition 3.1.9. Firstly, we fix
the asymptotic critical region of the tests by establishing the asymptotic distribution
of each test statistic under Hy. Later, we consider the asymptotic distribution under
K, which is important in determining the power of the tests. For our test problems,
the sample space is (R™" B(R™*"),{P, : ¢ € BVV([0,1]*)}), n € N, where {P, :
g € BVV(]0,1]*)} is a family of unknown probability measures that depend on g(-) €
BVV([0,1]* induced by the matrix of observations Y, which is assumed to be
defined on the probability space (2, F,P). Under the operator T,, the subspace
prwR™™ is isomorphic to T, (prw . R™")(-) € Hp C C([0, 1]*), see (3.1.1).

Definition 4.1.1. Let~, : C([0,1]*) — {0,1}, n > 1, be a sequence of nonrandomized
tests based on residual partial sums processes {Tp(Rpxn)(t,8) : (t,5) € [0, 1)}, for
testing (4.1.2) or (4.1.4). Let a € (0,1) and for any g(-) € BVV([0,1]?), let Ey(-) be

the expectation operator with respect to the probability measure P,.

o We say that (7,)n>1 @s a sequence of pointwise asymptotically level o tests, if

and only if

limsup E;(v,) < a for each g(-) € W.

o The sequence (Vn)n>1 is said to be a sequence of uniformly asymptotically level

« tests, if and only if

lim sup sup E,(v,,) < o
n—oo geEW
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o We say that (v,)n>1 is a sequence of asymptotically size « tests, if and only if

lim sup Ey(v,) = a.
n—00 g W

e The sequence (Vn)n>1 S said to be pointwise consistent in power, if and only if

lim E,(v,) =1 for each g(-) ¢ W.

We refer the reader to Lehmann and Romano (2005), p. 422-423, for these Def-
wnitions. Note that every sequence of asymptotically size « tests is a sequence of

uniformly asymptotically level o tests.

4.2 Kolmogorov type test

A test of Kolmogorov type for testing the hypotheses (4.1.2) or (4.1.4) is defined by
means of the following functional of the residual partial sums process:
1kt
K,¢:= max — ZZTU = max T,(R,xn)/n,k/n).

0<k,t<n m 4— 0<k,(<n
7=0 =0

Here and throughout, r;; := 0 for ¢ = 0 or j = 0, and R,,«,, is the matrix of residuals.
Due to (2.3.1) it is obvious that

K,e= sup T,(Ruxn)(t,s). (4.2.1)
(t,5)€[0,1]2

2

Proposition 4.2.1. Suppose * is known. For a fivred o € (0,1), an asymptotically

size « test for testing (4.1.2) or (4.1.4) based on K, ¢ is given by
reject Ho, if and only if K,¢/0 > ¢1—q,

where ¢, is the (1 — a)-quantile of sup ge(o.1j2 Be(t, 5).-
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Proof. We define a sequence of nonrandomized tests (8,),>1 : C([0,1]*) — {0, 1}, by

1, if K,¢/o>¢,
0, otherwise,

where the constant ¢ is the critical value of the test. Let g(-) € W be fixed . From

the continuity of the supremum function and Theorem 3.2.6 we obtain for ¢ = ¢;_,,

lim E (0,) = lim P{K,¢/0c>¢_n}

n—oo

e (t,s)€[0,1]2 O

1
= lim P{ sup _Tn(er#Yan)@vs) > éla}

2. 1
= lim P{ sup _Tn(pTWf{Ean)(t; S) > 6101}

n—00 (t,s)€[0,1]2 O
= P sup  Bg(t,s) > ¢1_q ¢ = Q. (4.2.3)
(t,5)€[0,1]2
L]

Remark 4.2.2. If 0% is unknown, we can replace it by any consistent estimator. By

Slutsky’s theorem and the preceding result, for n — oo we have

Knyf/\/&%g sup  Bg(t, s),

(t,s)€[0,1]2

where 62 is given by (1.2.2), see also Arnold (1981), p. 142-148.

The problem in realizing the asymptotically size « test formulated above is to
find the (1 — «)-quantile of sup, 50,12 B (t, ) analytically or approximately. In case
the stochastic process Bg(+) is standard Brownian motion with parameter space [0, 1],
it is well known by the reflection principle of the standard Brownian motion that
P{sup,coq B(t) > ¢} = 2P{Z > ¢}, ¢ > 0, where Z is a standard normal random
variable, see also Shorack and Wellner (1986), p. 33-37 and Billingsley (1999), p.
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91-93. For our case, if Bg(-) is the standard Brownian (2) motion B,, Zimmerman
(1972) derived the inequality P {SUP(t,S)e[0,1]2 By(t,s) > ¢} <A P{Z > ¢}. This yields
an upper bound of P{sup; sc(o.1j2 B2(t, s) > ¢} for each preassigned value of ¢, so that

we can use this inequality for checking our simulation results, see below.

4.2.1 Approximation of the quantiles of sup; ¢ 12 Bt(t, 5)

As an alternative solution to the problem described above, we estimate the (1 —
a)-quantile of sup, ;)ep.1)2 Be(t, s) by applying Monte Carlo simulations generated
according to Algorithm 1 below. The simulations are constructed only for several
polynomial models under Hy: null, constant, first order and second order models.
Numerically, the matrix of least squares residuals is computed by the equation
Rixn = Yoxn — > iy Bmfz(é'n), or equivalently vec(R,xn) = vec(Yuxn) — XnﬁAn,
where Bn = (Bnl,...,BnP)T is the solution of the normal equation (X!X,)8 =
X vee(Yyxn) for 3. This system of linear equations can be solved numerically by
applying either Gaussian elimination, Cholesky factorization or QR factorization,
see Gentle (1998), p. 87-112. The statistical software package S-PLUS and R pro-
vide a macro for solving such a normal equation, i.e., by applying the command:

solve(X, X,,, X vec(Y xn)).

Begin Algorithm 1

step 1: Fixn € N.

J)

step 2: Generate M ii.d. pseudo random matrices E%Xﬁ = (5%]-)2’:?4:1, with compo-

nents eg; generated from ii.d. A(0,1) random variables, j = 1,..., M.

step 3: Calculate Bﬁlj) by solving the equation (X} X;)3 = X;Lvec(YgX)ﬁ).

YU -0 B9 fi(En).

step 4: Calculate the matrix of residuals Rffi .
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step §: Calculate the statistic Kffg ‘= MaXg<k/<p Tﬁ(Rgiﬁ)(é/ﬁ, k/n).

step 6: Calculate the simulated (1 — a)-quantiles of sup; g cjo 12 Be(t,s): Sort all M

values of Kff% in ascending order. Let Kg\g:j ) be the j’th smallest observation,

ie., Kg‘fml) <...< ngf:j) < Kg\g:jﬂ) <...< Kg\f:M), the simulated (1 — «)-

n

quantile is

KTELJ";[:M(I_Q))? if M(1—a) €N,
K%:[Mn—aml), otherwise,

where [M(1 — o)) =max{k e N: k < M(1 —a)}.

End Algorithm 1

P{Sup(t,s)e[o,m Bf(ta S) > 51701} =

Models Co.5000 | C0.6500 | Co.7500 | C0.8000 | C0.8500
Zero 0.8648 | 1.1002 | 1.2942 | 1.4129 | 1.5564
Constant 0.8101 | 0.9416 | 1.0452 | 1.1067 | 1.1794
First order 0.7232 | 0.7917 | 0.8470 | 0.8810 | 0.9211
Second order || 0.6392 | 0.6889 | 0.7293 | 0.7540 | 0.7838

Models Co.9000 | €0.9500 | C0.9750 | C0.9900 | €0.9950
Zero 1.7443 | 2.0348 | 2.3001 | 2.6126 | 2.8353
Constant 1.2728 | 1.4152 | 1.5408 | 1.6906 | 1.7965
First order 0.9739 | 1.0570 | 1.1329 | 1.2264 | 1.2930
Second order || 0.8231 | 0.8849 | 0.9413 | 1.0098 | 1.0590

Table 1. The simulated (1 — a)-quantiles of sup; o c(o.1j2 Be(t, 5).

The simulation results obtained by using the statistical software package R 2.0.1

are presented in Table 1, for & = 0.0050, 0.0100, 0.0250, 0.0500, 0.1000, 0.1500, 0.2000,
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0.2500, 0.3600 and 0.5000. For our results we chose sample size n x n = 30 x 30
and the number of replications is M = 10%. It can be seen therein that for each
a, the higher the order of the model is, the smaller the simulated quantile ¢,
is. In case the residual partial sums limit process is standard Brownian (2) motion
By we can use Zimmerman’s inequality for checking our simulation results. As is
shown in Table 2, for each value of ¢;_, associated to the zero model, the simulated
value of P{sup 412 B2(t,8) > ¢1-o} is smaller than the corresponding value of

AP{Z > ¢1_o}, where Z ~ N (0, 1).

Cla 0.8648 | 1.1002 | 1.2942 | 1.4129 | 1.5564

P{sup Ba(t,s) > é_a} || 0.5000 | 0.3500 | 0.2500 | 0.2000 | 0.1500
AP{Z > & o} 0.7743 | 0.5425 | 0.3912 | 0.3154 | 0.2392
Ela 1.7443 | 2.0348 | 2.3001 | 2.6126 | 2.8353

P{sup Ba(t, s) > é_a} || 0.1000 | 0.0500 | 0.0250 | 0.0100 | 0.0050
AP{Z > &_u} 0.1622 | 0.0837 | 0.0429 | 0.0180 | 0.0092

Table 2. Comparison of P{sup, scp1)2 B2(t,5) > ¢1-a} and 4P{Z > ¢, ,}.

Remark 4.2.3. For the reqular lattice &,,, defined in Subsection 3.2.2, the Kol-
mogorov type statistic is defined by the following functional of the residual partial

SUms process:

k l
K, m ! E E
nm,f +— ax T'ij
’ 0<k<m; 0<l<n /NN
SE=I U 7=0 =0

1
= T (R (£, )

1
su Tnm Rm n t7 S), 4.2.4
0<t<1; Io)gsg vnm (Ronscn ) (2, 5) ( )

where T, is the partial sums operator defined in Subsection 3.2.2. Analogous to

Proposition 4.2.1, for a fized o € (0,1) and known o, the asymptotically size o test
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for testing (4.1.2) or (4.1.4) based on the statistic K, ¢ is given by
reject Hy, if and only if Kymg/o > ¢i_a,

where ¢ _q is the (1 — a)-quantile of sup ycpo.2 Be(t, s). If 0 is unknown, it may

be replaced by /72, given by (3.4.1).

4.3 Kolmogorov-Smirnov type test

A Kolmogorov-Smirnov type procedure for testing the hypotheses (4.1.2) or (4.1.4)
is defined by means of the following functional of the residual partial sums process:

L

S

j=0 i=0

1
KS,f:= max —
’ 0<k<n 1

= max | To(Roxn)(¢/n, k/n)|.

0<k,£<n

By analogy with the Kolmogorov statistic, it is obvious that

KSp,s= sup |T,(Ruxn)(t,s)|. (4.3.1)

(t,8)€[0,1]2
Proposition 4.3.1. Let 0% be known. For a fized o € (0,1), an asymptotically size

«a test for testing hypotheses (4.1.2) or (4.1.4) based on the statistic K.S, ¢ is given by
reject Hy, if and only if KS,¢/0 > Gi—a,

where §i o is the (1 —a)-quantile of sup, 4o 12 |Be(t, s)|. If 0* is unknown, then the

test is given by

reject Hy, if and only if KS,¢/\/02 > q1—a,

where 62 is a consistent estimator of 0.
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Proof. We first assume that o2 is known and define a sequence of non randomized

tests (An)n>1 @ C([0,1]%) — {0,1} by

1, if KSn,f/O' Z Q,
)‘n<Tn(Rn><n)(')) = (4-3-2)

0, otherwise,

where ¢ is a constant. Analogous to the Kolmogorov type test, by Theorem 3.2.6 and

the continuous mapping theorem, for g(-) € W, we get for § = §1_a,

lim E;(\,) = lim P{KS,¢/0> ¢i-a}
. 1 -
= lim P sup _Tn(pTWJ-Yan)(ta 5) 2 (1-a
n—oo | (ts)€0,1)2 |0 !
2. 1
2D jim P sup  |=Th(prwiEnxn)(t, 8)| > G1-q
n—=o0 | (t,s)€(0,1)2 | T "
= P< sup |Be(t,s)] > qi-a ¢ = a. (4.3.3)
(t,5)€[0,1]2

Since ¢(-) is arbitrary in W, the test is asymptotically size . By using the same

2

argument as that in the test of Kolmogorov type, in case ¢° is unknown, we can

replace o by the square root of the consistent estimator 62 given by (1.2.2) without

altering (4.3.3). Thus, instead of K5, ¢/c we evaluate K S, ¢/1/52. O

4.3.1 Approximation of the quantiles of sup(, ,)co1p2 | Be(t, s)|

Similar to the Kolmogorov type test, we conduct Monte Carlo simulation to approxi-
mate the (1 — a)-quantiles of sup; 5¢jo1j2 | Be(t, s)| by applying Algorithm 1 with the
only modification that K, ¢ in step 5 and step 6 of Algorithm 1 is replaced by K5, ¢
and the quantity ¢;,_, is replaced by ¢;_,. The simulations are constructed for several
polynomial models under Hy: null, constant, first order and second order model, each

of which is calculated for sample size n x n = 30 x 30 and the number of replication is
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M = 10°. Table 3 presents the simulation results corresponding to the zero, constant,
first order and second order model executed by using the statistical software package
R 2.0.1, for o = 0.0050, 0.0100, 0.0250, 0.0500, 0.1000, 0.1500, 0.2000, 0.2500, 0.3500
and 0.5000.

P{sup; g)eo,1)2 [ Be(t: )| > q1-a} = @

Models Jo.5000 | Go.6s00 | Go.7500 | J0.8000 | G0.8500
Zero 1.2922 | 1.4804 | 1.6421 | 1.7432 | 1.8676
Constant 1.0326 | 1.1352 | 1.2194 | 1.2710 | 1.3330
First order 0.8212 | 0.8845 | 0.9356 | 0.9670 | 1.0040
Second order || 0.7010 | 0.7493 | 0.7885 | 0.8123 | 0.8408

Models do.9000 | Go.9500 | Go.9750 | 90.9900 | G0.9950
Zero 2.0335 | 2.2973 | 2.5370 | 2.8335 | 3.0380
Constant 1.4146 | 1.54036 | 1.6562 | 1.7967 | 1.8958
First order 1.0536 | 1.1306 | 1.2029 | 1.2920 | 1.3527
Second order || 0.9920 | 1.0577 | 1.1050 | 1.0577 | 1.1048

Table 3: The simulated (1 — «) quantiles of sup; 4)cjo.1j2 | Bt (t, 8)|-

Remark 4.3.2. The Kolmogorov-Smirnov type statistic for the residual partial sums
process associated to the linear regression model defined on the regular lattice &, is
koot
s
j=0 i=0

Rmxn)(g/nv k:/m)|

1
KSyms = max
o 0<k<m; 0<(<n \/mm

1
0<kem; 0<e<n vnm [T

1
= sup
0<t<1; 0<s<1 /MM

|Tnm(Rm><n)(t7 S)| . (4.3.4)

For a fized o € (0,1), if o is known, the asymptotically size « test for testing (4.1.2)
or (4.1.4) based on K Sym¢ is given by

reject Hy, if and only if KSpms/0 > Gi-a,
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where §1—q is the (1 — a) quantile of sup, 4012 |Be(t, s)|. If 0* is unknown, we can

replace o by \/62,, given by (3.4.1).

4.4 Cramér-von Mises type test

In this section we present a Cramér-von Mises type procedure for testing hypothesis

(4.1.2) or (4.1.4) based on the residual partial sums processes.

Proposition 4.4.1. Let us consider the following functional of the residual partial

sums processes associated with model (4.1.3),

n n

Chg = %ZZ (Z ' Orij) :% (Tp(Rosn) (€/n, k/n))2.  (4.4.1)

k=0 (=0
Suppose o2 is known. For a fived o € (0,1), the asymptotically size o test for testing

(4.1.2) or (4.1.4) based on C,¢ is given by
reject Hy, if and only if Cpz/0® >t _q,

where t,_, is the (1 — )-quantile off[ B2(t,s)\*(dt,ds). If o? is unknown, then

0,1]2

the test is given by

reject Hy, if and only if Cpg/62 > t1_a,

where 62 is a consistent estimator of 0.

Proof. By definition, we have

Ciop = / (T (Roen)(¢/m, /) N2(dt, dis),
[0,1]2
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where R, «,, is the matrix of least squares residuals. Consider a sequence of nonran-

domized tests (¢,)n>1 : C([0,1]?) — {0, 1}, given by

1, if C,¢/0? > ¢,
0, otherwise,

where t is a constant. By Theorem 3.2.6 and the continuous mapping theorem, for a

fixed o € (0,1) and an arbitrary g(-) € W, we obtain for £ = #;_,

2
)) N*(dt, ds) > ila}
(1.2.1)

1 0k .
=" lim P {/ ( T, (prw . Ensn) (=, )) N (dt,ds) > tla}
el 0,12 \9 n

_ P { /[0 B s } (4.4.3)

S|

S|

Y
n—oo n—o0

1
lim Ey(¢,) = lim P {4) » (;Tn(er#Yan)<

S|

where f[071]2 BZ(t, s)A\*(dt,ds) can be understood as a pathwise Lebesgue or Riemann
integral on [0,1]?. Then the test is asymptotically of size a. The second assertion is

trivial. O

4.4.1 Approximation of the quantiles of f ) d\?

Though its very intensive use in testing problems based on the residual partial sums
process, for instance, MacNeill and Jandhyala (1993) and Xie and MacNeill (2004)
used the statistic f[O’I]Q B3(t,s)A\*(dt,ds) in change-point problems for spatial data,
but exact as well as approximation methods for calculating the quantiles of the lim-
iting statistic have not yet been derived. In this subsection we conduct Monte Carlo
simulations for approximating the (1 — a)-quantiles of this statistic by applying a
similar algorithm as Algorithm 1 with the modification that K, ¢ in step & and step 6
of Algorithm 1 is replaced by C,, ¢ and ¢;_, is replaced by t1_o. The simulations are

constructed for the null, the constant, the first order, and the second order model,
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each of which is calculated for the sample size n x n = 30 x 30 and the number of
replications M = 10%. Table 4 presents our simulation results which are executed by
using software package R 2.0.1, for a = 0.0050, 0.0100, 0.0250, 0.0500, 0.1000, 0.1500,
0.2000, 0.2500, 0.3600 and 0.5000.

IED{f[0,1]2 Bfg(t7 S))‘2(dt7 dS) > {1701} =«

Models tos000 | To.ssoo | forsoo | To.sooo | fosso0
Zero 0.1803 | 0.2521 | 0.3293 | 0.3850 | 0.4590
Constant 0.1156 | 0.1463 | 0.1761 | 0.1966 | 0.2240
First order || 0.0683 | 0.0794 | 0.0890 | 0.0951 | 0.1027
Second order || 0.0450 | 0.0506 | 0.0553 | 0.0582 | 0.0618

Models to9000 | fogs00 | foorso | fo.ve00 | fo.0050
Zero 0.5699 | 0.7694 | 0.9769 | 1.2606 | 1.4802
Constant 0.2643 | 0.3370 | 0.4127 | 0.5160 | 0.5973
First order || 0.1131 | 0.1305 | 0.1477 | 0.1695 | 0.1860
Second order || 0.0668 | 0.0750 | 0.0828 | 0.0928 | 0.1001

Table 4. The approximated (1 — &) quantiles of [, o Bf (¢, s)A*(dt, ds).

Remark 4.4.2. The Cramér-von Mises type statistic for the residual partial sums

process associated to the linear regression model defined on the reqular lattice €y, is
LAY A TR
D D S EL % )
1
n

- % ZZ (ﬁTnm(Rmxn)(é/n, k:/m)) . (4.4.4)

For a fized o € (0,1), if o is known, the asymptotically size « test for testing (4.1.2)

or (4.1.4) based on the statistic Cpy, ¢ is given by

reject Hy, if and only if Cpms/0” > t1_q,
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where t,_, is the (1 — a)-quantile of Joae BE(t, s)A*(dt, ds). If o* is unknown, it can

be replaced by 62, given by (3.4.1).

4.5 Consistency and power of the tests

In this section we investigate the consistency and the asymptotic power under alter-
natives of the sequence of asymptotically size « tests (0,)n>1, (An)n>1 and (¢)n>1
defined in Section 4.2, Section 4.3 and Section 4.4, respectively.

Let us consider a localized version of the linear model (4.1.3) with localizing rate
%, denoted by Y¢, = G + Eyxp, where GIS, = (g(¢/n,k/n)/n);} ,_, see

also Bischoff and Miller (2000), and Bader (2001) for the notion of a localized linear

model on a closed interval. We consider now the problem of testing the hypotheses

Hy: Gle € W, versus K : GI°¢ ¢ W, observing the residual partial sums process
To(prw: Y25, )(-) and the hypothesis Hy : Guxn € W, versus K : Gy ¢ W,

observing the residual partial sums process T, (prw. Ynxn)(+). Since under Hy we
loc

nxn

have the equality pre:Y = prw. Y nxn, Which in turn results the same residual
partial sums limit process, then based on the statistics K, ¢, K.S,¢ and C, ¢, both
testing problems will produce the same asymptotically size a tests. We are interested
in comparing the behavior of the tests under alternatives.

Since the partial sums operator T,, is linear on R™*", then by applying Donsker’s
theorem, for g(-) € BVV,([0,1]?), i.e., the space of functions which have bounded

variation on [0, 1]? in the sense of Vitali and are right continuous on [0,1)?, we get

%TH(GJOc + Epyn) (1) = %hg(-) + Bsy(+), in C([0,1]%), n — oo, (4.5.1)

nxn

where

hg<zla 22) = / g(ta S)AQ(dta dS), (21, 22) € [07 1]27
[U,Zl]X[O,ZQ}
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and Bs(-) is standard Brownian (2) motion. Clearly, 828?5(9-) =g(+), A* a.s. on [0,1]%

and g(-) € BVV,(]0,1]?) C Ly([0,1]*). Hence hy(-) € Hp.

Corollary 4.5.1. Suppose that the regression functions fi(-),..., f,(-) are continu-
ous, have bounded variation in the sense of Hardy on [0,1]* and are linearly inde-

pendent. Consider the localized linear model Y'¢ = Gl¢ + E, ... If the unknown

nxn nxn

regression function g(-) € BVV,([0,1]?), then for n — oo

0,(*) + Be(+), in C([0,1]%), (4.5.2)

nxn

1 oc D
T (prw Y2, () 2

Q|+

where

2a() = hyl) = (priw,, ) ().

B () = Ba(:) = (prw,,, B2) ().

Proof. Without loss of generality we assume ¢ = 1. By the linearity of the partial

sum operator T,, and Lemma 3.2.1, we get

To(prw: Vi) () = Ta(Y3) () = (0w Ta(Y,) () ()

= Tn(foin + Ean)(') - (pTWnHB Tn(Glrfin + Ean)())()
Hence, the assertion follows from (4.5.1) and Theorem 3.2.6. O

By Corollary 4.5.1, under the localized alternative K : Gl & W,,, the limiting

nxn

distribution of Ty, (pryw . Y125 )(+) is a signal-plus-noise model with deterministic signal

©4(+) and the residual partial sums limit process Bg(-) as noise. Such a limit process
for the localized linear regression model on the closed interval [a, b] was studied deeply
in Bischoff and Miller (2000) and Bischoff and et al. (2003a). Hence, the hypotheses
that correspond to (4.1.1) or (4.1.2) are

Hy : py(t,s) <0, (t,5) €[0,1)% vs. K : 3(t,s) € [0,1]%, ¢,(t,s) >0 (4.5.3)
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for a one-sided alternative, and
Hy : py(t,s) =0, (t,5) €[0,1)% vs. K : 3(t,s) € [0,1]%, ¢,(t,s) #0 (4.5.4)

for a two-sided alternative. Moreover, because of Corollary 4.5.1, the limiting distri-
butions of the statistics K, ¢/o, KS,¢/0 and C, ¢/0c? under the localized alternative

exist by the continuous mapping theorem.

4.5.1 Test of Kolmogorov type

2

We consider the hypotheses (4.5.3) and assume for the moment that ¢ is known.

The power functions (Vs (+))n>1 : BVV.([0,1]?) — (0, 1) of the sequence of asymp-

totically size « tests (0,)n>1, are given by
1
Us,(9) = P {_Kn,f > 61a} . g(-) € BVV,([0,1]?), with Gpyp & Wy, n > 1,
o

where ¢;_, is the (1 — a)-quantile of supy<; .« Br(t, s). Hence,

Vs (9) = ]P{ sup (lTn (prw (Grxn + Enxn)) (¢, 3)) > éla}

0<t,s<1 \ O
1 loc 1 61—0&
=P sup (=T, |prw.GX,+ —prwiEn | (t,8) ] >
0<t,s<1 \ O " n " n

n— 00 1
= el Lo 20),

0<t,s<1 O
pointwise on BV'V,([0,1]?). Under the associated one-sided alternative K : 3(t,s) €
0,1]%, @4(t,s) > 0, the last limiting probability is equal to 1. Hence, the test is

asymptotically pointwise consistent in power. Under the localized alternative K :

Gle ¢ W,, g(-) € BVV,([0,1]?), Corollary 4.5.1 yields

nxn

Us,la) = P{ s (2 (rrwa (G + Bu) (1:6)) 2 10

0<t,s<1 \ O

ey p{ sup (1¢g(t,s)+Bf<t,s>> zél_a} =: Us(g), (4.5.5)

0<t,s<1 \ O
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pointwise on BV'V,([0, 1]?). Thus the limiting power function of sequence of asymptot-
ically size ar test (d,)n>1 based on the statistic K, ¢ is given by the boundary crossing

probability

P {El(t, s) €10,1]*: égog(t, s) + Be(t,s) > 61_(1} . (4.5.6)

4.5.2 Test of Kolmogorov-Smirnow type

The sequence of power functions (Uy, (+))n>1 : BVV,([0,1]*) — (0, 1) of the sequence
of asymptotically size a tests (\,),>1 based on the statistic XS, ¢ is given by

1
U, l) = P2 KSue 2 dima s 00) € BYVO, 1), with G € Wo 12 1,

where §1_, is the (1 — a)-quantile of supy<; .« |Be(t, s)|. Under the two-sided alter-
native K : 3(t,s) € [0,1]%, ¢,(t,s) # 0, we get

1

=T, (pTWTJL- (ann + Enxn)) (t7 S)

261a}
o

pointwise on BV V,([0,1]?). Hence, the test is asymptotically pointwise consistent in

Us,(9) = P{ sup

0<t,s<1

1
_909(t7 S)

— IP{ sup
o

0<t,s<1

power.

By analogy with the test of Kolmogorov type, under the localized alternative

K : Gle & W, we obtain
1 ~
Uy, (g9) = P{ sup | =T, (prws (G, + Enxy)) (¢,5)| > Q1—a}
0<t,s<1 |0
n—oo 1 ~
- IP’{ sup |—@g(t,s) + Be(t,s)| > Q1—a} =:U,(9), (4.5.7)
0<t,s<1 | O

pointwise on BVV,(]0,1]?). Thus the limiting power function of (\,),>1 is given by
the boundary crossing probability

]P’{El(t, s) €[0,1)*: ‘%cpg(t, s)+ Bg(t, s)

> qHa} . (4.5.8)
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4.5.3 Test of Cramér-von Mises type
The power functions (U, (+))n>1 : BVVL([0,1]?) — (0,1) of the sequence of asymp-
totically size « tests (¢,)n>1 are given by

1 -
\ijn(g) = P{;Cn,f 2 Zfloz} ) g() S BV‘/C([()? 1]2)7 Wlth ann ¢ Wn> n 2 17

where ;_,, is the (1 — a)-quantile of Jioa2 BE (8, s)A°(dt, ds).

Under the two-sided alternative K : 3(t,s) € [0, 1]%, ¢,(t,s) # 0, we get

\If¢n(g) =P {/[;) " (lTn (pTW#;(Gan + Enxn)) (

o

n—00 1 2
— P / (—gog(t,s)> N (dt,ds) >0 =1,
[071}2 o

pointwise on BV'V,([0, 1]?). Thus the test based on the Cramér-von Mises statistic is
also asymptotically pointwise consistent. Furthermore, by Corollary 4.5.1, the power

function under the localized alternative is

1 kN 3
\Ijlbn(g) =P {/ <_Tn (er,%<quo>in + Enxn)) (_7 _)) )‘2(dta dS) > tl—a}
[0,1)2 non

o

n—00 1 2 ny

=P {/ (—sog(t, s) + By (t, 8)) N*(dt, ds) > tl—a} =: Uy(9g), (4.5.9)
[071]2 g

pointwise on BVV,([0, 1]?).

Remark 4.5.2. In case 02 is unknown, by Slutsky’s theorem, we can replace o by

any consistent estimator, for instance by the estimator 62 given by (1.2.2).

4.5.4 Approximation of the localized power

In this subsection we present Monte Carlo simulations to approximate the localized

power Ws(g), Ux(g) and Wy(g) of the three tests, for g(-) varies in BVV,([0,1]?),
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g(-) € W. By (4.5.5), (4.5.7) and (4.5.9), for any g(-) € BVV,([0,1]?) with g(-) ¢ W
such that 0 < ¢,(t,s), Y(t,s) € [0,1]%, the localized powers of the tests evaluated at
g(-) are in the interval [o, 1).

Let us again consider the regression functions fi(¢,s) = 1, fa(t,s) = ¢ and
f3(t,s) = s, for (t,s) € [0,1)* studied in Example 3.3.2. Suppose that under
Hy we have a first order model, i.e., W = [fi(-), f2(-), f5(-)]. We shall approxi-
mate the localized power of the tests at pg(-), for p varies in (0,00) and a function
g(t,s) == 1—2t+s—2t> ¢ W. Since for (t,s) € [0,1]%, we have hy(t,s) =
ts —t%s + t?s/2 — 2t3s/3 € Hg, then by a little computation we get

@g(tu s) = hy(t, s) — (pT%VHB hg)(tu s)

3

= hy(t,s) — Z(ﬁ',ghgﬁh(t,s)

i=1

= 1Tts/3 — Tt?s/2 — 3ts*/2 — 2t°s/3, (t,s) € [0,1]>.

Clearly, ¢4(-) satisfies the condition specified under the one-sided alternative K :
©y(t,s) > 0 for some (¢,s) € [0,1]2. It also fulfills the condition specified under
the two-sided alternative K : ¢,(t,s) # 0 for some (¢,s) € [0,1]>. We notice that

by Corollary 4.5.1 ¢,(-) is approximated by Tn(er#Gl"c )(+) uniformly on [0, 1%,

nxn

where

n, n

1
Gl = (ate/nii/m)
k=1, (=1

- (%(1—21/n+k/n—2(l/n)2)> ¢ W,

k=1,0=1
for Wy, = [f1(&n), f2(En), f3(En)]-
We now present an algorithm for approximating the localized power of the Kol-
mogorov type test. Algorithms for approximating the localized power of the Kolmogorov-

Smirnov and Cramér-von Mises type tests are completely similar.

Begin Algorithm 2
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step 1: Fix p € (0,00) and 1 € N.

step 2: Generate M i.i.d. pseudo random matrices EY)

7, :
S = (€gkj)k:17€:1, with compo-

nents eg; generated from i.i.d. M(0,1) random variables, j = 1,..., M.

step 3: Generate M i.i.d. matrix of observations YY) = pGlee . + EY)

XN nXn nxXn"

step 4: Calculate Bg) by solving the equation (X! X;)3 = ngec(YgX)ﬁ).

step 5: Calculate the matrix of residuals RY) . .= Y,({X)ﬁ -3, B}Li)fz(é'n)

nXn

step 6: Calculate the statistic Kfl} ‘= MmaXo<k<i Lr Rgfin) (¢/n,k/n).

step 7: Calculate the power Ws(g) ~ 7 Z;‘il 1{K92 > Cla}-

n,

End Algorithm 2

Table 5-Table 7 present the approximated localized power of the three sequences
of asymptotically size « tests computed according to Algorithm 2, executed by using
the software package R 2.0.1, for p = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 and several
values of a.. For all cases we chose the sample size n x n = 30 x 30, and the number
of replications is M = 10%. The graphs of the localized power of the tests versus p
for a = 0.0100, 0.0500, 0.1000, 0.1500, 0.2000 and 0.2500 are given in Figure 6. The
simulation results show that for such a function g(-) € BVV,([0, 1]?) and p, all tests
are powerful in the sense that the localized power of the tests are larger than a. Of
the three type tests, the Kolmogorov type test seems to be the most powerful.

If we consider the simulated power of the Kolmogorov-Smirnov and Cramér-von
Mises type tests for testing against a two-sided alternative, the second test is in
general more powerful than the first one. It happens only for some values of p and «

that the first test is more powerful than the second.
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First-order model Kolmogorov type test

sample, rep. 7 x i = 30 x 30, M = 106, £ % N(0,1)
! 0.3500 | 0.2500 | 0.2000 | 0.1500 | 0.1000 | 0.0500 | 0.0100
Cl_a 0.7917 | 0.8470 | 0.8805 | 0.9211 | 0.9739 | 1.0570 | 1.2264
Wloe(g/2) 0.3553 | 0.2507 | 0.2058 | 0.1548 | 0.1044 | 0.0529 | 0.0110
Wloe(2g/2) 0.3620 | 0.2568 | 0.2117 | 0.1599 | 0.1086 | 0.0555 | 0.0118
Wl (3g/2) 0.3695 | 0.2639 | 0.2181 | 0.1657 | 0.1133 | 0.0586 | 0.0127
Wloc(4g/2) 0.3775 | 0.2714 | 0.2252 | 0.1717 | 0.1183 | 0.0617 | 0.0138
wloe(59/2) 0.3863 | 0.2798 | 0.2330 | 0.1785 | 0.1239 | 0.0653 | 0.0149

(69/2)

0.3955 | 0.2885 | 0.2410 | 0.1856 | 0.1298 | 0.0691 | 0.0162
Wloe(10g/2) 0.4392 | 0.3293 | 0.2794 | 0.2197 | 0.1583 | 0.0881 | 0.0224

Table 5. The approximated localized power of the Kolmogorov type test.

First-order model Kolmogorov-Smirnov type test
sample, rep. i x i =30 x 30, M = 10°, eg; “ N(0,1)
o 0.3500 | 0.2500 | 0.2000 | 0.1500 | 0.1000 | 0.0500 | 0.0100
1—a 0.8845 | 0.9356 | 0.9666 | 1.0040 | 1.0536 | 1.1306 | 1.2916
Wloe(g/2) 0.3500 | 0.2501 | 0.1999 | 0.1503 | 0.0997 | 0.0501 | 0.0099
Whoe(2g/2 0.3507 | 0.2510 | 0.2010 | 0.1514 | 0.1006 | 0.0504 | 0.0102

(29/2)

loo(39/2) 0.3529 | 0.2535 | 0.2031 | 0.1530 | 0.1019 | 0.0514 | 0.0102
xploc(zlg/z) 0.3563 | 0.2564 | 0.2055 | 0.1552 | 0.1035 | 0.0525 | 0.0106

5 (59/2)

5 (69/2)

5g/2 0.3604 | 0.2598 | 0.2089 | 0.1582 | 0.1059 | 0.0539 | 0.0110
g/2 0.3654 | 0.2642 | 0.2129 | 0.1621 | 0.1086 | 0.0556 | 0.0115
\Iffgoc(l()g/2) 0.3940 | 0.2903 | 0.2370 | 0.1828 | 0.1254 | 0.0664 | 0.0149

Table 6. The approximated localized power of the Kolmogorov-Smirnow type test.
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Figure 6. Graphs of Us(pg), Vi(pg) and ¥y (pg). Knf, Cryp and KS, ¢ denote the

power of the Kolmogorov, Kolmogorov-Smirnov and Cramér-von Mises type tests.
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First-order model Cramér-von Mises type test
sample, rep. 7 x i = 30 x 30, M = 106, £ % N(0,1)

! 0.3500 | 0.2500 | 0.2000 | 0.1500 | 0.1000 | 0.0500 | 0.0100

ti—a 0.0794 | 0.0890 | 0.0951 | 0.1027 | 0.1131 | 0.1305 | 0.1695

Wloe(g/2) 0.3548 | 0.2502 | 0.2008 | 0.1485 | 0.1007 | 0.0511 | 0.0099

Wloe(2g/2) 0.3565 | 0.2517 | 0.2024 | 0.1498 | 0.1019 | 0.0519 | 0.0101

Whoe(3g/2) 0.3594 | 0.2546 | 0.2049 | 0.1520 | 0.1036 | 0.0532 | 0.0104

Wloc(4g/2) 0.3635 | 0.2584 | 0.2083 | 0.1550 | 0.1061 | 0.0546 | 0.0109

wloe(59/2) 0.3687 | 0.2631 | 0.2129 | 0.1590 | 0.1093 | 0.0568 | 0.0116
(69/2)

0.3749 | 0.2689 | 0.2183 | 0.1639 | 0.1133 | 0.0595 | 0.0124
Wloe(10g/2) 0.4108 | 0.3029 | 0.2503 | 0.1923 | 0.1370 | 0.0752 | 0.0176

Table 7. The approximated localized power of the Cramér-von Mises type test.

4.6 Weighted tests

In this section we make a generalization to the foregoing tests by introducing a weight
function w(-) : [0,1]* — [0,00), w(-) € C([0,1]?). For a fixed n € N and w(-) €
C([0,1]?), let T, := {Ipp := [({ — 1)/n, €/n] x [(k —1)/n,k/n] : 1 <l k<n} and

walt,s) = (€ —nt)(k — ns)yw((l — 1)/n, (k —1)/n)
+ (nt = (£ = 1))(k — ns)w(l/n, (k= 1)/n)
+ (¢ —=nt)(ns — (k — 1)w(({ —1)/n,k/n)
+(nt — (€ —1))(ns — (k — 1))w(l/n, k/n), V(t,s) € L.

The sequence (wy(-)),>1 has the following characteristics:

e For n — oo wy(-) IHlog w(-) in C([0,1]?).
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e For any n € N, maxocy e<n w(€/n,k/n) = supg<; o<1 Wn(t, s).
e For any n € N|

max w(l/n, k/n)T,(Ruxn)(/n,k/n) = sup w,(t,s)Th(Ruxn)(t,s).

0<kl<n 0<t,s<1

Based on these characteristics of w,(-) and the weak convergence of the sequence

of the residual partial sums processes, the following result can be directly verified.

Proposition 4.6.1. Suppose o?

is known. For a fized o € (0,1), an asymptotically
size o weighted Kolmogorov type test for testing (4.1.2) or (4.1.4), i.e., a test based

on the statistic K, ¢ := maXo<ks<n %w(ﬁ/n, k/n) Z?:o Ef:o Tij 1S
reject Hy, if and only if Ky, £/0 > Cwi-a,

where Cy1—q 18 the (1 — a)-quantile of sup g)ejo 12 w(t, $)Be(t,s). The test is con-
sistent. Moreover, the limiting localized power function of this test is given by the

boundary crossing probability

Uy s(g) = 1@{ sup (w(t, 5) G@g(t, §) + Belt, 3))) > ew,l_a} |

0<t,s<1

for g(-) € BVV.([0,1]?) such that Glo¢

nxn

g W,,. If 0® is unknown, then the test is

gien by

reject Hy, if and only if Ky, /62 > Cui_a-

2

2 4s a consistent estimator of .

Here and throughout &

As an additional information, a nice investigation to the asymptotic of such bound-
ary crossing probability for Bg(-) is a Brownian bridge with parameter space [0, 1] has
been observed in Bischoff and et al. (2003b) in which they gave typical assumptions
for the weight function and the trend.
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Proposition 4.6.2. Suppose o>

is known. For a fized o € (0,1), an asymptotically
size o weighted Kolmogorov-Smirnov type test for testing (4.1.2) or (4.1.4), i.e., a test

based on the statistic KS,,, ¢ := maxo<k<n |z w((/n, k/n) Z?:o S o 7ij|, is given by
reject Hy, if and only if KSy, /0 > Guwi—a;

where Gu,1—o 18 the (1 —a)-quantile of sup geo2 [w(t, 8)Be(t, s)|. The test is consis-
tent. Moreover, the following boundary crossing probability give the limiting localized

power function of this test:

U,a(g) == IP{ sup

0<t,s<1

w(t:5) (Si0(t:9) + Be(t:9))| 2 o

for g(-) € BVV,([0,1]?) such that Gl°¢

loc "¢ W,. In case o® is unknown, the test is

given by
reject Hy, if and only if K Sy, £/62 > Gui—a-

The weighted Cramér-von Mises type test is based on the statistic

Cup = % >N <U1(f/na k/n) ZZ%)

kL
k=0 (=0 ==
N /[0 1)2 (wn €/, /1) T (Ran) (€/ 1, k/n))2 )\2(dt, ds).

Proposition 4.6.3. Suppose 0% is known and w(-) is right continuous on [0,1)2. For

a fived o € (0,1), the asymptotically size o weighted Cramér-von Mises type test for
testing (4.1.2) or (4.1.4) is
reject Ho, if and only if Cu, £/0° > twi_a;

where ty1_o is the (1 — a)-quantile of Jq2 (w(t, 5)Be(t, SN2 A2(dt,ds). If 02 is un-

0,1]2

known, then the test is given by

reject Hy, if and only if Cu, £/62 > twi o
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The test is consistent. The limiting localized power function of this test is given by

the following boundary crossing probability:

Uyu(g) =P {/[0 . (w(t,s) (1/opy(t,s) + Bel(t, 5)))2 M (dt, ds) > fw,l_a} ,

for g(-) € BVV.([0,1]?) such that Gl & W,,.

nxn

Clearly, the tests developed in Section 4.2 - Section 4.5 are only special cases
of weighted tests for the hypothesis introduced in Section 4.1, for which we put
the weight w(t,s) = 1 for every (t,s) € [0,1]%2. The Monte Carlo simulations for
approximating the quantiles and the power of the weighted tests can be carried out
analogously as for the unweighted tests in the foregoing sections. Therefore we omit

such simulations for the weighted tests.

4.7 Applications

Our aim in this subsection is to present an example of the application of the foregoing
asymptotic test theory in spatial data analysis. We consider the wheat-yield data
(Mercer and Hall’s data) presented and discussed in Cressie (1993), p. 454-455, and
Xie and MacNeill (2004). The data are yields of grains (in pounds) observed over a
25 x 20 lattice of plots with 20 rows running east to west and 25 columns of plots
running north to south. The experiment consists of giving the 500 plots the same
treatment (presumably fertilizer, water, etc.), from which we identify the data as a
realization of 500 independent random variables. The exact size of the plots from the
original data seems to be unknown, but as was informed in Cressie (1993), p. 454-455,
we assume that the plots are equally spaced, with the dimension of each plot being
10.82 ft by 8.05 ft.

Figure 7 presents the perspective plot of the data. Other quantities of the data
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such as the median, mean, standard deviation, first and third quartiles are summa-
rized in Table 8. Visually (one can generate with S PLUS or R), the shape of the
histogram of the data is identified as the familiar bell-shaped curve, indicating the

nearly normal distribution of the the 500 wheat yield measurements.

DRSS ZN

(/N XD

LR,
"“5‘2 ),’t“ﬂ' and

5
‘(\6\5\\)\0
o
W
o 5 40 6 99

{\e\ﬁ

@.‘933

VT

20
19

Figure 7. The Perspective plot of Mercer and Hall’s data.

1st Qu. | Med. | Mean | Mode | 3rd Qu. | St.Dev. | Skew. | Kurt.
3.630 | 3.970 | 3.940 | 3.944 | 4.270 0.455 | 0.036 | -0.254

Table 8. Summary of the Mercer and Hall’s data.

Observing Figure 7 we postulate under Hy a full first-order model, i.e., by using

the test statistics K £/0nm, K Snm.t/0nm and Cpmg/62,, we are interested in testing

nm’

the hypotheses

Ho = g() € [f1i(), f2(0), f3()] vs. K2 g() € [A(), f2(), f5());

where fi(t,s) =1, fo(t,s) =t, and f3(t,s) = s, (t,s) € [0,1]?. Actually we perform
weighted tests defined in Section 4.6, with weight function w(t,s) = 1, for (¢,s) €
0, 1]2.
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Since the model variance ¢ is unknown, we use a consistent estimator o2,,. Cal-

culated under Hy, the data give 52, = 0.1898. The following is an algorithm for cal-

culating the approximated p-value of the Kolmogorov type test for observations taken

from &,,,. Algorithm for approximating the p-values of the Kolmogorov-Smirnov and

Cramér-von Mises type tests are completely similar.

step 1:

step 2:

step 3:

step 4:

step 5:

step 0

step 7:

Begin Algorithm 3

()

Generate M i.i.d. pseudo random matrices E; % .,

m, n .
= (€enj) jey gy, With compo-

nents eg,; generated from i.i.d M(0,1) random variables, j = 1,..., M.
Generate M i.i.d. matrix of observations Y

mxXn:

Calculate B(j) by solving the equation

(X;nX3an><3) b= X;nxz,U@C(Y?(v?m)a
where X,,nx3 = (vec(f1(Enxm)), vec( f2(Enxm))s vee( f3(Enxm))) € RMX3,
Calculate the matrix of residuals RY, = YY) — X, .89,

Calculate the Kolmogorov statistic

K9 :=  max = Tuu(RY ) /0, k/m).

- 0<t<n; 0<k<m
Based on the data, calculate the critical value K := Kymt/\/ 02,

Calculate the approximated p-value Py 1= =+ Z]Ail 1{K® > K}.

End Algorithm 3

The critical values and the corresponding approximated p-values of the tests for

such data are presented in Table 9. The simulations were conducted by using the
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software package R 2.0.1 according to Algorithm 3, in which we chose sample size
n x m = 25 x 20 and number of replications is M = 10°. It can be seen that, based
on the statistic K, ¢/0nm, Ho is rejected for o > 0.0002, see also Table 9. Based on
the statistics K Sy, Hy is rejected for a > 0.0001, whereas based on Cy,,, ¢, Hy is

rejected for o > 0.0010. Thus, Hj is rejected for all values of o used in applications.

statistics || critical values | p-values
Komt/0nm 1.5919 0.0002
K Symt/0nm 1.5919 0.0001
Crmg/02,, 0.2283 0.0010

Table 9: The critical and p-values of K, ¢, K Spm s, and Cppf.



Chapter 5

Lower and upper bounds for the

power of the Kolmogorov type test

In this chapter we investigate the localized power of the Kolmogorov type test devel-
oped in Chapter 4. More exactly, we derive bounds for the boundary crossing prob-
ability P{3(t,s) € [0,1)>: pp(t,s) + Be(t,s) > u(t,s)}, for p > 0, a known trend
©() : [0,1]*> — R, and a general known boundary u(-) : [0,1]> — R. We shall con-
sider two cases, i.e., the case in which Bg(-) is the standard Brownian (2) motion
and Bg(-) is the standard Brownian (2) bridge. These will be studied in Section 5.2
and Section 5.3, respectively. In Section 5.1 we study a general method for deriving
the kernel of the residual partial sums limit processes, following an approach due to
Lifshits (1996), p. 88-107. Furthermore, we denote the measure P o Bf_1 defined on

the infinite dimensional measurable space (C([0, 1]%), B¢) by Pk.

5.1 Modelling the covariance function of By

We say that the family {ms : (¢,s) € [0,1]*} C Ly([0,1]?) of functions on [0, 1]* is

a model of the covariance function K¢(-,-) of the residual partial sums limit process

90
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By, if for each (¢, s), (¢',s") € [0, 1]?, we have

Cov(Bg(t,s), Be(t',s")) = K¢((t,5), (t',8") = (mes), Myer,5)) L
= o1l m(t,s) (.73, y)m(t’,s/) (.CE, y)>\2<d1’, dy)7 (511)
0,1]2

see Lifshits (1996), p. 41-51.

5.1.1 Model for the standard Brownian (2) motion
By Definition 2.1.1, the covariance function of the standard Brownian (2) motion is
K:((t,s),(t',s')) = min{t,t'} min{s, s'}, (¢,5),(t,s") €[0, 1]
Let us define the family of functions
{mie) == Loaxios = (t:s) € 0,1} € Lo([0,1]?). (5.1.2)
For any (¢, s), (¢, s") € [0,1]?, we then have
/[01}2 Li0.49x[0,5) ( ¥) Lo, x (0,5 (2 y)N\*(dz, dy) = min{t,t'} min{s, s'}.

Thus the family of indicator functions {1joxo,q : (t,5) € [0,1]*} may be taken as a

model for the covariance function of the standard Brownian (2) motion Bs.

5.1.2 Model for the standard Brownian (2) bridge

The standard Brownian (2) bridge is the residual partial sums limit process associated

with a constant model having covariance function
Ke((t,s),(t',s') = min{t,t'} min{s, s’} — tst's’, (t,s),(t',s") €[0,1]%
Define the family of functions

{m{.s) = Loax0.s — tslpap : (t,5) € (0,17} C Ly((0,1]%). (5.1.3)

t,s
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For any (t,s), (t,s") € [0,1]%, we then get

/[ }2(1[0,t]><[0,s} (z,y) — tslpap(®,y)) (Lowxpo,s (T, y) — t's L (x, y)) N (dz, dy)
0,1

=min{¢, ¢} min{s, s’} — tst's’.

Hence by definition, the family {m{, ,, : (,s) € [0,1]*} may be taken as a model for

the covariance function of the standard Brownian (2) bridge BY.
Definition 5.1.1. (Lifshits (1996), p. 87)

(a) A function h(-) € C([0,1]?) is called an admissible shift for the Gaussian measure
Pk, if the measure P§ defined on (C([0,1]?), Be), given by PR{A} := Pe{A—h},
for every A € Be, is absolutely continuous with respect to Pg. Here the set

{A—h} is defined as {x — h : v € A}.

(b) A function h(-) € C([0,1]?) is said to assign an admissible direction for Pg, if

each vector of the family {c h(-) : ¢ € R} is an admissible shift for Pe.

5.2 Lower and upper bounds for the boundary
crossing probabilities of By with trend

In this section we derive a lower bound for the probability P{3(¢,s) € [0,1]* :
pp(t,s) + Ba(t,s) > ult,s)}, p > 0, where By is standard Brownian (2) motion.
Let us consider the model {mg)s)() : (t,s) € [0,1]%} given by (5.1.2) and the repro-
ducing kernel Hilbert space (RKHS) Hp of Ba(-) defined in Section 3.1. If A(:) € Hp
and £(-) € Ly([0,1)?) such that h(t,s) = <€, mg,)s)>L2, then £(-) = 8;5’:9(;)’ where 8;:9(2
is the almost everywhere existing second derivative of h(-) with respect both variables

on [0, 1]2.
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Proposition 5.2.1. Let Pp, be the distribution of the standard Brownian (2) motion

n (C([0,1]?), Be). For any h(-) € Hp the density of the shifted measure P,

BV ([0,1]2)’

with respect to Pp, s

P R 92t s) 1,
—=(x) = ——= dx(t,s) — = ||h 2.1
e =ew{ [ S0 ) - g, | G20
2 [0,1]
where Hp .0 = {h(-) € Hp : aathés) € BV([0,1]%)}, and |||, is the norm defined

on Hg. See Appendiz A for the definition of BV ([0,1]?).

Proof. We refer the reader to Theorem 3 in Lifshits (1996), p. 88. We notice that
(5.2.1) is a special case of (6) in Lifshits (1996), p. 88. A one-dimensional version of
(5.2.1) is also presented there (see, Formula (13) in Lifshits (1996), p. 107). O

Remark 5.2.2. Fquation (5.2.1) is frequently called the Cameron-Martin-Girsanov
formula for the standard Brownian (2) motion, see also Lifshits (1996), p. 107, and
Bischoff and et al. (2005).

Theorem 5.2.3. Suppose that the boundary u(-) is continuous on [0,1]> and the

trend p(-) € Hp | has a second derivative ¢'(-) := ata ) e BV([0,1]%) which is

BV ([0,1]2
type I non decreasing on [0, 1]%. If the marginal functions ©"(t,1) := 85@;8 ls=1, and
©"(1,8) := BQBﬁg;S)|t:1 are non increasing on [0, 1], then
P{V(t,s) € [0,1]*: pp(t,s) + Ba(t,s) < u(t,s)}
< KP{V(t,s) € [0,1]*: Ba(t,s) <ult,s)}, (5.2.2)

where

R R

b = exp { o (1001 4 [ ale D0 0) 4 [ a1 =g (19)
0,1 0,1

R
I 1
b [ ult ) e.s) = 3 el | o>

[0,1]2
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Proof. By transformation of variable and the Cameron-Martin-Girsanov formula, we

obtain

P{w e Q: po(t,s)+ Ba(w)(t,s) <ult,s), ¥ (t,s) € [0,1]*}

:/Q Hw € Q: pp(t,s) + Ba(w)(t,s) < u(t,s), ¥ (t,s) €[0,1]*}P(dw)
:/C([o - 1{y € C([0,1]%) : y(t,s) < u(t,s), ¥ (t,5) € [0, 1]2}73gf(dy)
:/C([O - 1{y € C(]0, 1]2) s y(t,s) <wult,s), V(ts) €0, 1]2}

R 1
<o [ pe'.5) it ) = 3 el | Pon()

0,1]2

:/Q 1w € Q: By(w)(t,s) <ult,s), V (t,s) €[0,1]*}

R
cosp{ [ pe'0,9) da)(1,5) = 5% ol  Ple)

0,1]2
Since By(t,0) = 0 a.s. for t € [0,1] and By(0,s) = 0 a.s. for s € [0,1], then
Ap 9" Ba(-) = ¢"(1,1)B,(1,1) almost surely. The result follows immediately from
integration by parts and the assumption that ¢"(¢, s) is type I non decreasing on [0, 1>

with —¢"(¢,1) and —¢'"(1, s) are non increasing on the closed interval [0, 1]. O

Corollary 5.2.4. Since the event {3(t,s) € [0,1]* : pp(t, s)+Ba(t, s) > u(t,s)} is the
complement of the event {V(t,s) € [0,1]* : pp(t,s) + Ba(t,s) < u(t,s)}, then under
the conditions of Theorem 5.2.3, we get the following lower bound for the boundary

crossing probability under consideration:
P{3(t,s) € [0,1]*: pp(t,s) + Ba(t,s) > u(t,s)}

> 1—kP{V(t,s) € [0,1)%: Balt,s) < u(t,s)}

= 1 —k* +k"P{3(t,s) € [0,1]>: By(t,s) > u(t,s)},
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where k* is the constant defined above. In particular, if u(t,s) = ti_qo, for (t,s) €
[0, 12, where t1_q is the (1 — a) quantile of supy<, <1 Ba(t, s), we get the lower bound
for the localized power of the asymptotically size o« Kolmogorov type test defined in

Section 4.2. That is, we have

P{ sup (pplts) + Bat9) 2 roa

0<t,s<1

>1—kP{ sup By(t,s) <ti o} =1—-Fki(1—a), p>0, (5.2.3)

0<t,s<1

where
k= exp{p@"(1, D)t1-0 — pAp1¢" (-, Dti—a — pApye" (1, )ti-a
I g 1 2
+ PA[0,1]290 (Vo — §P2 ||¢||HB}.

Remark 5.2.5. The conditions of Theorem 5.2.3 are satisfied for instance by the
function @(t,s) == c(ts)Llpnz € Hp,, .0 for (t,s) €0, 1]? and ¢ € R. In this case

we obtain

P{V(t,s) € [0,1]*: pts+ Bs(t,s) <u(t,s)}

< exp{peu(L,1) — p*|c[* /2} B{Y(t,s) € [0, 1] : Ba(t,s) <ult,s)}.
By Corollary 5.2.4 we further get

P{3(t,s) € [0,1]*: pp(t, s) + Balt, s) > ult, s)}

> 1 —exp{peu(l,1) — p*[e|” /2}P{¥(t,5) € [0, 1] : Ba(t,s) < ul(t,s)}

= exp{peu(l,1) — p*[c]* /2}P{3(t, 5) € [0,1]" : Ba(t, s) = u(t, s)}

+ 1 —exp{pcu(1,1) — p*|c* /2}. (5.2.4)

Putting u(-) = t1_q, the right side of (5.2.3) becomes 1 —exp{pcti_a—p*|c|* /2}(1—a).



Chapter 5. Lower and upper bounds for the power of the Kolmogorov type test 96

Corollary 5.2.6. Under the same conditions on ¢(-) and u(-) as in Theorem 5.2.3,

we have

P{3(t,s) € [0,1*: pp(t,s) + Ba(t,s) < u(t,s)}

> 11— kiP{V(t,s) € [0,1]*: Ba(t,s) < —u(t,s)}, (5.2.5)
where

R R
K = exp {—pw"(l, Du(1,1) + p / —ult, Dd(—g(t, 1)) + p / u(L 8)d(— (1, 5))

[0,1] [0,1]

R 1
vo [ <20~ 3 el |

0,1]2
Proof. Since Bs is a Brownian (2) motion, then —Bs is also a Brownian (2) motion,

and we have

P{3(t,s) € [0,1]*: pp(t,s) + By(t,s) < ult,s)}

=1-P{V(t,s) €[0,1]*: —pp(t,s) + By(t,s) < —u(t,s)}. (5.2.6)

Hence, the result follows by applying the Cameron-Martin-Girsanov formula and

integration by parts. O

Remark 5.2.7. We notice that for the function o(t,s) = c(ts), for (t,s) € [0,1]* and

c € R, we have k} = exp{—pcu(1,1) — p? |C|2 /2}.

Corollary 5.2.8. For p > 0, let

R
Koy, = o' (1,1)Ba(1,1) + p /[ Balt, dl—'(41)
0,1
R

—|—p/ Ba(1, s)d(—¢"(1,5)) +,0/ Ba(t, s)dy"(t, s).

[0,1] [0,1]2
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Then by the Cameron-Martin-Girsanov formula, integration by parts and Jensen’s

inmequality, we get
P{V(t,s) € [0,1]*: pp(t,s) + Ba(t,s) < u(t,s)}
—oxp {307 1ol b [ 109(09) € 0,15 Batt,) < u(t. )} expli Yo
> exp {—%f ||¢||iB} exp {Ep (k5 1{V(t, 5) € 0,1 : Ba(t,s) < ult,5)})}.
Hence, the upper bound of P{3(t,s) € [0,1]*: pp(t,s) + Ba(t,s) > u(t,s)} is
1~ exp {—ng ||¢\|;B} exp {Ep (K3, 1{¥(t, 5) € [0, 1 Bu(t,5) < u(t,)}) }

For the function o(-) defined above, we have k%5, = pcBa(1,1). Hence (5.2.5)

becomes

P{3(t,s) € [0,1)*: pc(ts) + Bay(t,s) < u(t,s)}

> 1 — exp{—pcu(1,1) — p*|¢|* J2YP{V(L, s) € [0,1)? : By(t,s) < —u(t,s)}. (5.2.7)

5.3 Lower and upper bounds for the boundary
crossing probabilities of BY with trend

In this section we consider the boundary crossing probability
P{3(ts) € 0,112 pplt,s) + BY(t,5) > ult.s)}, p> 0,

where BY is the standard Brownian (2) Bridge. By Theorem 4 in Lifshits (1996), p.
90, the kernel of BY can be derived analogously to that of standard Brownian (2)

motion, i.e.,

HBQ = {h() : Ew() < LQ([O’ 1]2)7 h(t’ 3) = <£a m(()t,s)>L27 (t,S) S [07 1]2} J
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where my, (+) € La([0, 1]?) is the model of the covariance function of the standard
Brownian (2) bridge. For £(-) € Ly([0,1]?), let Ex2(¢(+)) be the expectation of £(-)
with respect to A2. Then, H By can be equivalently written by

Hpy = {h() :30(+) € Ly([0,1]?), h(t,s) = / 0(-)dN* — tsEkz(E(-))} .
[0,]%[0,5]
Thus, the typical characteristic of any h(:) € Hpg that distinguishes it from the
elements of Hg is that A(1,1) = 0, or more precisely Hpg = {h(-) € Hp : h(1,1) = 0}.
Analogous to the RKHS Hp, we furnish the kernel Hpy with an inner product

and an associated norm given by

(B, )i,y = <hl,ﬁ2>L and [[bll,, ;:H/}‘

2

)
Lo

where
hltos) = [ (D B(L1) =0, () € La(0, 1), = 1.2
[0,¢] x[0,s]

Then with respect to these inner product and norm, Hpgg is a Hilbert space. Because
of this reason we called Hpy the reproducing kernel Hilbert space of the standard

Brownian (2) bridge.

Proposition 5.3.1. Let HBSBV([O,IP) = {h() € Hpy 8;?8(5') € BV(|0, 1]2)}. For any
h(-) € HB;)BV([O 2y the density of the shifted measure ng with respect to Py is

d,])go R 62h(t, S) 1 ;
dPBg («T) = exp {/{071]2 W dx(t, S) 3 HhHHBg} )

Proof. This result can also be proved similarly to the proof of Proposition 5.2.1. We

also refer the reader to Theorem 3 in Lifshits (1996), p. 88. O

Remark 5.3.2. By the definition of the standard Brownian (2) bridge (see Definition

2.2.1) and the characteristic of a function h(-) € Hpgg, it can be shown that

B 92n(t, s) Oh(-)?
Vargg (/[071}2 595 dx(t, 3)) = ‘

0tds
where Vang(-) is the variance operator with respect to BY.

= ||l

’
BO
Lo 2
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Theorem 5.3.3. Suppose that the boundary u(-) is continuous on [0,1]> and the

) . Sy ; ; no._ 9Pe(ts)
trend () € HBSBV([O,I]Q) is such that the existing second derivative p" = =5 = is
type I non decreasing on [0,1)*. If the marginal functions ¢"(t,1) := %h:l and

" P 82@(t,s) ; ; ;
©"(1,8) := =55 |i=1 are non increasing on the closed interval [0,1], we get

P{V(t,s) € [0,1]*: pp(t,s) + Bi(t,s) <ult,s)}
<m'P{V(t,s) €[0,1]*: BI(t,s) <u(t,s)}, p>0,

where

m* :=exp {pap'(l,l)u(l,l) +p/[0’1]u(t,1)d(—90'(t,1)) +p/ u(l, s)d(—¢"(1,5))

[0,1]
1 1
+p/ u(t, s)d"(t, s) — §P2 ||‘PH3{BO} :
0,12 ’

Proof. The result follows directly from Proposition 5.3.1 and integration by parts. [
Corollary 5.3.4. If u(-) and ¢(+) satisfy the conditions of Theorem 5.3.3, we get
P{3(t,s) € [0,11*: pp(t,s) + B(t,s) > u(t,s)}
> 1—-m*'P{V(t,s) € [0,1): BI(t,s) <ult,s)}
=1—m"+m*P{3(t,s) € [0,1]*: BI(t,s) > u(t,s)}.

Let 19

11—«

is the (1 —a) quantile of supy<; y<; B(t,s). The lower bound for the localized

power of the asymptotically size o Kolmogorov type test is

P{ sup (pp(t,s)+ B3(t,s)) > 1) .}

0<t,s<1

>1-m:P{ sup Bi(t,s) <t }=1-m (1l—a), (5.3.1)
0<t,s<1

where

my, = exp{p" (1, D)H_, — pApo e (4 DBy — pApae'(1, )8,

~ 1
+ pA[O,l]%OIl(')t(l)fa - —PQ ||<P||3{ 0}-
2 B3
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Corollary 5.3.5. Under the same conditions on ¢(-) and u(-) as in Theorem 5.3.3,

we obtain

P{3(t,s) € [0,1]*: pp(t,s) + B(t,s) < u(t,s)}

> 1—miP{V(t,s) € [0,1]*: BY(t,s) < —ul(t,s)}, (5.3.2)
where

= exp {—pw'(l, Du(1,1) + p /[ e (D)

T /[ LR 8) 4 /

1
—u(t, s)dy"(t, s) — =p* 2 }
- (8, 5)d@"(t, 5) = 5" [llly

Corollary 5.3.6. For p > 0, let

S /[ pBY(t, 1)d(— (1, 1)) + /[ PP )1, 5)

+ / pB(t,s)dp"(t,s).

[0,1]2

Then by Proposition 5.3.1, integration by parts and Jensen’s inequality, we get
P{V(t,s) € [0,1]*: pp(t,s) + B3 (L, s) < u(t,s)}
> exp {3 ol f o {Ep,g (gL (09 € 0115 BS(e.0) < ult, o)) |
It follows that
P{3(t,s) € [0,1]* : pp(t,s) + B3(t, s) > ul(t,s)}
< 1= exp {307 ol foxp (B, (310000 9) € 0,112 B(0.0) <t 9)}) )

Remark 5.3.7. We consider the model {m‘(’t7s)(-) = Lox0,5(-) — tsLpa1xo)(+) :
(t,s) € [0,1]?} of the covariance function of the standard Brownian (2) bridge. It can

be easily shown that for every (t,s) € [0,1]%,
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o m, (") is type I non decreasing on [0, 12,
° m‘(’m)(l, -) and m‘(’us)(-, 1) are non increasing on [0, 1].

Furthermore, we define a family {p:s(+) : (t,s) € [0,1]*} of functions on [0,1]* given
by 90,55($,y) = ‘_[[07$]><[07y] 771((315,3)(')d>‘2 - )‘2([07'27] X [an] N [Oat] X [078]) - tSZL’y, fOT
(z,y) € [0,1]%. Since for every (t,s) € [0,1]?, m{, ,,(-) € BV([0,1]*), and

01s(1,1) = / (10,0, (w, v) — ts1po11xjo,1)(w, v)) A*(du, dv) = 0,
[0,1]x[0,1]

then {@s(+) = (t,8) € [0,1]?} C Hpo . Thus the conditions of Theorem 5.53.3

2BV ([0,1]2)

are satisfied by the family {p:(+) : (t,5) € [0,1]%}.



Chapter 6

Discussions and conclusions

By virtue of being a new approach, model-check methods based on the residual partial
sums process applied to spatial data analysis present open problems, both from a pure
mathematical viewpoint as well as from the perspective of applications. Throughout
this work, even under the simplest model, several difficulties and challenging mathe-
matical problems are encountered. Since only few results concerning this subject are
available, we preserve these problems as challenging open problems and directions for
future research.

Throughout the thesis, wherever appropriate, there have been discussions and
suggestions for modification and improvement of the model. Here we highlight only

the major open questions and suggestions addressed throughout this work.

6.1 Open problems and further plans of research

e As mentioned in Section 4.2 and Section 4.3, we face difficulties in deriving
analytical as well as approximation methods for computing the quantiles of

SUPg<t s<1 Br(t, s) and supy<; .1 | Be(t, s)|. In this work we only propose Monte
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carlo simulations to approximate these quantiles. In the case of the standard
Brownian (2) motion, an approximation method has been proposed, see e.g.,
Zimmerman (1972) and Lifshits (1996), p. 139-155. By directly extending this
approach to the standard Brownian (2) bridge or more general processes Bg(+)
it does not seem to be satisfactory since the processes do not have independent
increments. In the one-dimensional case, by applying the Markov property
inherent to the Brownian bridge, Bischoff et al. (2003b) proposed an asymptotic
method for computing such quantiles. Unfortunately, both the Markov property
and the reflection principle are not available for standard Brownian (2) motion
as well as for the standard Brownian (2) bridge, so that the last approach fails.
Further investigation of the properties of By is therefore needed, so that these

challenging mathematical problems can be solved.

e As before, we encounter in Section 4.4, a mathematical difficulty in computing
the quantiles of f[071]2 BZ(-)d)\? analytically as well as approximately. The first
idea is to extend directly either the classical Anderson and Darling’s or Imhof
or Slepian method, see Shorack and Wellner (1986), p. 212, or the Imhof-
Eastwood’s method, see Imhof (1961) and Eastwood (1993). To this end, based
on Mercer’s theorem, we need to derive the principle component decomposition
(Karhunen-Loeve expansion) of By which consists in finding the solution of
a complicated integral equation with a kernel being the covariance function
K¢ (-, ) of Bg. Since this typical mathematical problem appears in many tests of

hypothesis based on Cramér-von Mises statistics, further alternative approaches

should be developed.

e Similar complicated problems are found as we intend to compute analytically or
approximately the power of the asymptotically size a tests: Ws(g), Ws(g) and
U, (g), for g(-) € BV([0,1]?). Here we handle these problems by Monte Carlo
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simulation, however analytical as well as approximation methods are important
for the sake of comparing our results. Following an approach due to Bischoff et
al. (2003b) does not seem to be satisfactory, since the Markov property does
not hold for Bf. To handle this problem we therefore need further development

concerning the properties of Brownian (2) motion and Brownian (2) bridge.

e In our effort to establish upper and lower bounds for the power of the Kolmogorov-
type test (Chapter 5) following the approach due to Lifshits (1996), p. 88-107,
difficulties are encountered in deriving the model of B for the processes associ-
ated with first-order and second-order linear regression models. Consequently,
we can not derive the kernel of the corresponding processes, and in turn the ad-
missible shift can not be defined explicitly. This is mainly due to the structure
of the covariance function K¢(-,-) of such processes as a complicated function
of four variables in [0, 1]? x [0,1]%. Further development of these method for
deriving upper and lower bounds for the power of the Kolmogorov-Smirnov and
Cramér-von Mises type tests is important and presents interesting and chal-

lenging mathematical problems.

6.2 Some remarks

e From the viewpoint of applications, regular lattice (equidistance experimental
design) for spatial data analysis as well as in response surface methodology
is easy to conduct on one hand, but on the other hand, it is clearly cost ex-
pensive. Therefore for the sake of establishing optimal tests based on residual
partial sums processes addressed to the hypotheses formulated in Chapter 4

and efficiency in cost, it is important to further develop functional central limit
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theorems for residual partial sums processes in more general settings incorpo-
rating experimental design theory. Every ezact design (for n x m observations):
{(tniy $mj) €10,1*:i=1,...,n, j=1,...,m} uniquely corresponds to a dis-
crete probability measure P, on [0, 1] N B2, given by

m n

1
Pam = =3 > Plltussn)h

j=1 i=1
where Py )y denotes the Dirac measure in (¢, s). Conversely, given a probability
measure Py on [0, 1]>NB?, we can choose an exact design according to Py: choose
(tniy Smj) == Qo(% — zp) with 2z € |0, %] arbitrarily fixed, 1 <7 <m, 1< j <
n, where @) is the quantile function of Py, see Bischoff (1998) and Bischoff and

Miller (2000). In the case of a regular lattice with m x n observations, we get

1 m n

Lnm =10 Y0 Plepmnimy =nm Ao,
k=1 (=1

n,Mm—00

i.e., Lnm converges weakly to A2 in the sense Eg, (f) = Ex:(f), for
every bounded continuous function f(-) on [0,1]%. Based on this fact, given a

sequence (P )n>1.m>1 of exact designs on [0, 1]2 N B2, under the assumptions

1. P, converges to an exact design Fj in the sense

n,M— 00

sup | Fum(t,s) — Fo(t, s)| 0,

(t,)€[0,1]2
where F),, and Fj are the distribution functions of P,,, and F,, respec-
tively.

2. the regression functions fi(+),..., f,(-) are linearly independent, continu-

ous and have bounded variation on [0, 1]?,

we can derive, by applying the approach due to Bischoff (1998) and Bischoff
and Miller (2000), the limit process of the sequence of the residual partial
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sums processes corresponding to (P )n>1m>1- A similar result as in our ap-
proach in Chater 3 will be obtained in which the limit process does not depend

on the sequence of designs, but it depends only on the regression functions

{A0) - B0}

e In applications, the assumption that Cov(vec(E,x,)) = 02 (L,2xp2) given to
(1.1.4) is sometimes reasonable, but there are certainly many occasions when
it is unrealistic, i.e., the errors must be correlated. In spatial data analysis we
frequently find a situation in which Cov(vec(Ey,x,)) = 023, where o2 € (0, 00)
is unknown and X is a known n? x n? non-singular matrix. An example is
Cov(ew, €ij) = o exp{— ||(tnu, Snv) — (tniy Snj)||}, for 1 < w,v,i,5 < n. Hence,
in the analysis, particulary in performing tests based on residual partial sums
process, the spatial structure inherent in the random errors should be incor-
porated. This problem can be well handled by applying the generalized least
squares method, see e.g., Stapleton (1995), p. 163-165, or Schabenberger and
Gotway (2005), p. 320-321. Coming back to the model described in Chapter
1, let B be a non-singular n? x n?-dimensional matrix such that BB" = X.
We transform the original observation vec(Y,xn) to Zn = B lvec(Y,xn).
Let 0, := B lvec(E,xy,), for i = 1,...,p, let U; := B lvec(M;) and let
U, = (Uy,...,U,) € R¥* Then 1, ~ (0,0%,2,,2) and the general-
1zed least squares residual vector is given by 7, := n, — prun,. We con-
sider again the hypothesis formulated in Chapter 4. Testing the hypotheses
Hy : G,xn € W, versus K : G, x, € W, based on the residual partial sums
process associated with the original model is similar to testing the hypotheses
Hy : B Yvec(Goxn) € U, versus K : B lvec(Gyx,) € U, based on the residual
partial sums process associated with 7),,, whose limiting process can be derived

similarly as that Bg. All test procedures derived in Chapter 4 can be performed
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using the functional of residual partial sums process associated with 7,,.

e A generalization of our approach in Chapter 3 from n xn ton x --- x n regular
—_———
k
lattice and ny X --- X ng regular lattice, where ny,...,n; are not all equal, is
—— —

straightforward. P]‘gor this purpose we only need formula of integration by parts
for Riemann-Stieltjes integral on the k-dimensional unit cube [0, 1]* which is
already available in Young (1917b) or Yeh (1963). Moreover we also need a
k-dimensional version of Theorem 2.4.4. But this can be derived similarly as in

the two-dimensional case.

6.3 Conclusions

This thesis presents an extension of some existing functional central limit theorems
for least squares residual partial sums processes of the linear regression model in one
dimension to higher dimension. A simple and advantageous approach for deriving the
limit process was proposed and proved.

From the asymptotic, theoretical result presented, a test of hypotheses was pro-
posed in Chapter 4 for checking the adequacy of the model. Three types of tests
were proposed: Kolmogorov, Kolmogorov-Smirnov and Cramér-von Mises type tests.
Monte carlo simulations were conducted for approximating the quantiles of the lim-
iting statistics. The simulation results were very satisfactory compared to existing
approaches and results. For the three type tests proposed, the consistency and the
power of the tests were investigated. By conducting Monte Carlo simulations, the
tests were shown to be powerful in the sense that the power is larger then the preas-
signed level of significance. Lower and upper bounds of the limiting power functions

of Kolmogorov type test were also investigated.



Appendix A

Functions of bounded variation

and the Riemann-Stieltjes integral

A.1 Definitions and Terminology

Definition A.1.1. (1) A rectangle in [0,1]? is a subset I of [0,1]? which can be
written as the Cartesian product [ay, as] X [b1,bs], where 0 < a; < as < 1, and

0<b <b <1

(2) IfI is a rectangle, the diameter of 1 is given by

dzam(I) I:\/(CLQ — a1)2 + <b2 — b1>2.
As a convention we put diam(0) = 0.

(3) Let T be a collection of rectangles in [0,1]2. We say that T is a non-overlapping,

finite exact cover of [0,1]? if the following conditions hold:
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1. Different elements of I' have disjoint interiors, i.e, for any 13,1 € T, if

Il N 12 # 0, then I, =1, where 1 denotes the interior of L.

2. T' has only finitely many elements.
8. Urer I=10,1]%
The set of all non-overlapping, finite exact covers of [0, 1]* is denoted by [][0, 1]?.
(4) For every T € [][0, 1%, we define a quantity ||T|| by putting

T := I?eandmm(I)‘
(5) Given a collection of rectangles I', the set Z(I") is defined as follows:

M) :={¢: T [JI|¢@M el VIET)

Ier
(6) Let Ty and Ty be in [][0,1]%. We say that Ty is more refined than T'y and write

Iy < Ty, if for every Iy € 'y there is an Iy € I'y such that Iy C 1.

(7) For every pair Ty and Ty € T][0,1]%, the common refinement of Ty and Ty is

given by
I'yvr, = {Il NI, | I, Fl, I, € FQ}

Definition A.1.2. A real-valued function v defined on [0,1]? is said to be type I non
decreasing on [0, 1)* if for any (z,y) € [0,1]* and any positive real numbers h,u such

that v+ h <1 and y+u < 1, the following condition holds:

1/1(x+h,y+u) —¢($ay+u)—¢($+h»y)+¢($ay) ZO

Likewise, 1 is said to be type I non increasing on [0, 1)% if — is type I non decreasing

on [0, 1]?.
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Definition A.1.3. We say that 1 is type II non decreasing on [0,1)* if for any
(z,y) € [0,1]* and any positive real numbers h,u such that v +h <1 and y+u < 1,

and any c € [0, 1], the following conditions hold:
1P+ ) — 9,0 > 0, and Yley +u) — ble,y) > 0,

Likewise, v is type II non increasing on [0,1]% if —1 is type II non decreasing on

[0, 1]2.

Definition A.1.4. Let T' be a non-overlapping, finite exact cover of [0,1]%, and let
Y be a real-valued function defined on [0,1])%. The variation of 1 over T, denoted by
v(;T), is given by
(1) ==Y Ay,
Ier

where for any rectangle I = [ay, as] X [by,be] € T,

Arp == (ag, by) — (ar, ba) — P(az, br) + (a1, by).

The total variation of 1 over [0,1]?, denoted by V (v;[0,1]%), is given by
V(:[0,1) = gip o(¥;D).
e <[0,1]2
Definition A.1.5. The function ¥ is said to have bounded variation on [0, 1)* in the
sense of Vitali, if there erists a positive real number M such that V(¢;[0,1]*) <
M, see Clarkson and Adams (1933). We denote the class of these functions by
BVV([0,1]%). The definition is analogous to the definition of a function which has

bounded variation in one dimension.
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Definition A.1.6. The function 1 is said to have bounded variation on [0, 1)* in the

sense of Hardy, if the following conditions hold, see Clarkson and Adams (1933):

e There exists a positive real number M such that V (1;[0,1]*) < M.

o There ezist T,y € [0, 1] such that the functions (Z,-) and (-, y) have bounded

variation on [0,1].

As a convention, we denote this class of functions by BV ([0,1]%). It is clear that,
BV (]0,1]?) € BVV([0,1]?).

Proposition A.1.7. Let ® and U be functions on [0,1]%, ®(z) := V(¢(z,-);[0,1])
and ¥ (y) ==V (¥(-,9);[0,1]), =,y € [0,1]. If ¢ has bounded variation on [0,1]? in the
sense of Hardy, then ® and VU have bounded variation on [0,1]. We shall call ® and

U the total variation functions. As a convention, we denote the class of functions

which have bounded variation on [0, 1] by BV ([0, 1]).
Proof. See Theorem 1 in Clarkson and Adams (1933). [

Remark A.1.8. If ¢ € BV([0,1]?), then for arbitrarily fized T and § in [0,1], the
functions ¥ (z,-) and (-, y) defined on [0,1] are in BV ([0,1]). We refer the reader to
Stroock (1994), p. 12-18, for further discussion of the notion of the class BV (]0,1]).

Definition A.1.9. For ¢ in BVV([0,1]?), the positive and negative variations of

associated with T € T][0,1]* are given by

0p (D) =Y (M) and v_(¢;T) := Y (Ar)7,

Ier Iel

where at = max{a,0} and a~ := —min{a,0}. Likewise, the positive and negative

total variations of v in [0,1]* are defined by

Vi [0,17) = gip v (¥iT) and Vo(¢5[0,1%) == gip v (¥3T).

I'e [0,1]2 re <[0,1]2
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Corollary A.1.10. For each (z,y) € [0,1]* and v in BVV([0,1]?) let us consider
a closed rectangle [0,z] x [0,y] C [0,1%. For any Ty, € T1([0,z] % [0,y]) we define
the quantities vy (¢¥;yy), v_(¢¥;Tyy), Vi(¥;[0,2] x [0,y]), and V_(¢;]0,z] x [0,y])

similarly as in Definition A.1.9. Then for any (z,y) € [0,1]?, we have
(1) V+<1/}; [07 513'] X [07 y]) - Vf(dj; [07 iIZ’] X [anD = A[O,x}x[o,y}w
(2) Vi [0,2] x [0,y]) + V(45 [0,2] x [0,y]) = V(43 [0, 2] x [0,9])

Theorem A.1.11. A function ¢ is in BVV([0,1]%) if and only if, there exist 1, and

(A1.1)

o which are type I non decreasing on [0, 1]* such that 1 = 1y — 1s.

Proof. See Theorem 5 in Adams and Clarkson (1934). See also Theorem 1.2.18 and
Exercise 1.2.29 in Stroock (1994) for a version of this result for function of one variable.

To show the necessary condition we put
1/}1(%?/) ::V+(¢; [0717] X [07y]) + 1/2 (¢(07 y) + ¢($, 0) - 1/)(07 0)) )
a2, y) =V ([0, 2] x [0, y]) — 1/2(4(0,y) + (2, 0) —(0,0)) .
m

Theorem A.1.12. A necessary and sufficient condition that ¢ be in BV ([0,1]?) is
that it be expressible as the difference of two functions 11 and vy which are type I1

non decreasing on [0, 1]%.

Proof. See Theorem 6 in Adams and Clarkson (1934). We notice that the necessary

condition can be shown by defining

r(,y) =Vi(; [0, 2] x [0, y]) + Vi (&(+, 0); 0, 2]) + Vi (4(0,-); [0, 9]) + 1/2¢(0,0),
a2, y) =V (5[0, 2] x [0, y]) + Vo ((+, 0); [0, 2]) + V- (4(0,-); [0, ) + 1/2¢(0, 0).

]
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Theorem A.1.13. Let ¢ be in BVV([0,1]?). If ¢ is right continuous on [0,1)* in
the sense of Definition 2.4.1, then 11 and 1o defined in the proof of Theorem A.1.11

are also right continuous on [0,1)?.

Proof. We extend the proof of Theorem 5.5.2 in Douglass (1996) to the higher-
dimensional case. We first show that v, is right continuous on [0,1)% Let ¢ > 0
and (z,y) be arbitrarily fixed in [0,1)? with 0 < z < ¢t and 0 < y < s, for some

(t,s) € [0,1]% Suppose that

s o= {[te—1,te] X [Sp—1,86) : 1 <L <m,1 <k <gq},

O=to<ti< - <tp=1 0=5<s < --<s;,=5,

such that Vi (¢;[0,t] x [0,s]) — vp(;1) < ¢/2, for all T' € []([0,¢] x [0,s]) with
[is < T. Let ((Tn,Yn))n>1 be a sequence in [0,1]? which converges to (z,y) from
above. Then there exists an ny := no(¢) € N and an index (u,v) € {({,k) : 0 < { <
(m—1),0<k<(¢g—1)}such that t, <z <z, <ty and s, <y <y, < 5,41, for
n > ng. Since 1 is right continuous on [0, 1)?, there exists an n{, := n{(e) such that
(@0, yn) = V(. y)| < 13575 for n > ng. For a fixed n > ng := max{ng, ng}, let

us define a finite exact cover I'}; of the interval [0, ¢] x [0, s] by putting
F;s = {[tOJ tl]a ceey [tua ZE], ['Ta xn]v [a;nytu+1]7 SR [tmflvtm]}
X {[SOa 81]7 ey [Su7y]7 [y7yn]7 [ynu SV+1]7 ey [Sq—lv Sq]}'

Thus, I'}, is a refinement of [';;. Moreover, we obtain

e/2 2 Vi (4;[0,1] x [0, ]) — vy (45 %)

= [Va(¥310,4] x [0, s]) = Vi (45 [0, 2] % [0, ]) — (v4-(¥3 T5) — v (45 T%,,,))]
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+ Ve ([0, 2] X [0, ) = Vi (430, 2] x [0,9]) — (04 (4517, ) — v (05 1%,))]
+ [Va(:10,2] x [0,9]) — vy (¢:T%,)]

> Vi (5[0, 20] X [0,9m]) = Vi (5[0, 2] X [0,9]) = (v (45 1%,,,) — v (¥517%,)) 2 0.

It can easily be shown that vy (¢;T7, ) — vy (¢;T7%,) < e/2, for n > ng. Hence, the
last inequality gives the result 0 < V., (¢; [0, z,] % [0, y.]) — Vi ([0, 2] x [0,y]) < &,
for n > ng. This leads us to the conclusion that the function Vi (¢;[0, ] x [0,]) is
right continuous on [0, 1)?. The result follows since the marginal function (0, -) and
¥(+,0) are obviously right continuous on [0,1). The right continuity of 1, on [0, 1)?

can be shown analogously. O]

Theorem A.1.14. Let v be in BV ([0,1]?). If ¢ is right continuous on [0,1)? in the
sense of Definition 2.4.1, then 1y and ¥y defined in the proof of Theorem A.1.12 are

also right continuous on [0, 1)

Proof. As before, we first prove the assertion for ¢ by showing that V. (¢;[0,] x
[0, +]) is right continuous on [0,1)%. But this was already shown in Theorem A.1.13.
We refer the reader to Exercise 1.2.29 in Stroock (1994) for the right continuity of
Vi(1(-,0);]0,-]) and Vi (1(0,-);[0,-]) on [0,1). Hence the proof for ¢, is complete.

The assertion for 15 can be handled similarly. O

A.2 Riemann-Stieltjes integral on [0, 1]?

Definition A.2.1. Let T € [][0,1]%, and let ¢ and ¢ be real-valued functions defined

on [0,1)%. Then the Riemann-Stieltjes sum (abbreviated as RS-sum) of ¢ over T with
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respect to 1 relative to a mapping £ € Z(I') is defined by

RS(p |9, T,8) == p(£1)Ar.

Ier
The function ¢ is said to be Riemann-Stieltjes integrable with respect to 1, or more
simply, 1-RS-integrable on [0,1]%, if there exists a real number A with the property
that for every e > 0 there exists a § > 0 such that for every T € [][0, 1]* with ||T|| < 4,
we have

sup |RS(SD | ¢7F7§) - A| < €
£eE(I)
If such a real number A exists, we call A the RS-integral of ¢ with respect to v, and
denote it by
R
A= [ ol dutt.s)
[0,1]2
Theorem A.2.2. Let @; be 1-RS-integrable on [0,1]%, and let ¢; be any real number,
1=1,...,k. Then Zle cip; is Y-RS- integrable on [0, 1]%, with
/ Zczgoztsd@/)ts ch/ ©i(t, s)d(t, s).
0,1]2 % 0 1]2
Theorem A.2.3. Let ¢ be 1;-RS-integrable on [0,1)%, and let ¢; be any real number,
i=1,...,k. Then ¢ is Zle cipi-RS- integrable on [0, 1]2, with
R k
/ o(t,s) d ZCﬂ/)ltS ZCZ/ o(t, s)di;(t, s).
[0,1]2 i=1 0,1]2

Theorem A.2.4. If v € BVV([0,1)?), every ¢ € C([0,1]?) is -RS-integrable on

0, 1]%. Moreover, we have

< [lello V(®5[0,1]%). (A2.1)

/[ o(t,5)d (2, 5)

0,1]2
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Proof. The existence of the integral f[ORl]Q o(t, s)di(t,s) is due to Young (1917a).
We refer the reader to Clarkson (1932) and Smirnov (1969), p. 56-60. The second

assertion follows directly from the definition of the Riemann-Stieltjes integral. m

Theorem A.2.5. (Integration by parts)
Let ¢ be 1-RS-integrable on [0,1]2, let p(c,-) be 1(c,-)-RS-integrable on [0, 1] and let
(-, ¢) be Y(-, c)-RS-integrable on [0,1], for ¢ = 0 and 1. Then ¢ is ¢-RS-integrable

on [0,1]* and we have

R R R
Y(t,s)do(t,s) = A[o,l]z(¢¢)+/ o(t, s)du(t, 3)+/ (0, 5)d (0, )
[0,1]2 0,12 o
R R R
d - d - d (A2,
+anp(t,0) W(t,0) 4)71]g0(t,1) Wt 1) 4),1]90(1,5) b(1,s). (A.2.2)

Proof. We consult the reader to Young (1917a) for the complete proof this Theorem.
See also Moricz (2006) for Formula (A.2.2) for the case ¢(-) € C([0,1)?) and ¥ €
BV ([0,1]). O

The following three Theorems (Theorem A.2.6, Theorem A.2.7 and Theorem

A.2.8) are two-dimensional versions of the results in Bartle (1976), p.241-243. We

refer the reader to Luxemberg (1971) for consulting the results.

Theorem A.2.6. Let v be non decreasing on [0,1)% and let p,, n > 1 be ¥-RS-
integrable on [0,1]2. If ¢, ey @, then ¢ is 1-RS-integrable on [0,1]* and
R R
| ettsavtes) =t [ ots)du.s)
[0,1]2 e Joap2
Theorem A.2.7. (Bounded convergence theorem)
Let v be non decreasing on [0,1]* and let p,, n > 1 be 1)-RS-integrable on [0, 1]%.

Suppose that there exists an M > 0 such that |p,(x)| < M, forn > 1 and x € [0,1]?.
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If there exists a 1-RS-integrable function ¢ on [0,1]> such that @, "= o point wise,

then

/[ o(t, s)dy(t,s) = lim on(t, s)dy(t, s).

0,1]2 o0 Jo,1]2
Theorem A.2.8. (Monotone convergence theorem)
Let 1) be non decreasing on [0,1]* and let ©, ©,, n > 1 be 1-RS-integrable on [0,1]?

satisfying o1 < @y < -+ < . Suppose that lim,, ., ©, = @ point wise on [0,1]?, then

/[ ot s)di(ts) = Tim | pult, s)du(t, s).

0,1]2 =0 Jlo,1]2

A.3 Proof of Theorem 2.4.4
Proof. Let (T'),)n>1 be the following sequence of partitions of (0, 1]?, where
Lpoi={Luw = ((L—=1)/2",0/2"] x (k—1)/2",k/2"] : 1 <k, <2", n e N},

with [|[T',] = 2 =% 0. Associated with the sequence (I',),>; and the function ¢,

let us define a sequence of step functions (¢, (¢))n>1, (An(®))n>1 ¢ (0,1]> — R, by

putting
2VL 27L
: :: : t lnif ))XIn,ék
1 =1 (b€ Inick
on  on

ha(9) =D D ( sup @t 9)x1, 00

b1 =1 (:8)€ln ek

where ngk is the closure of 1,4, and X1, ,, stands for the indicator function of L,

n;lk

on [0,1]%. Then for n > 1, g,(p) < ¢ < h,(p) everywhere on (0, 1]%. It is clear that

gn(p) and hy,(p) are Borel-measurable and bounded, hence vy-integrable on (0, 1%,
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where v, is the Lebesgue-Stieltjes measure on ((0,1]%, 8% N (0, 1]%) associated with a

Type I non decreasing function ¥ € R.([0,1]?). Moreover,

2”L n

/(0 1]2 ©)dvy, = ZZ inf ot 8))Ain;£kw

1 =1 (t,5)€Ln;0k
2” 27l

/(0 - ho(p)dvy = Z Z( sup  ¢(t,8))Ar, -

1 =1 (6:8)€lnen

Furthermore, g := lim,,_, g»(¢) and h := lim,, ., h, () are clearly Borel-measurable
and bounded, hence vy-integrable on (0, 1]2. Since (|gn(¢)|)n>1 and (|, (¢)])ns1 are
dominated by positive constants, by Lebesque’s dominated convergence theorem and

the Riemann-Stieltjes integrability of ¢ with respect to ¢ on [0, 1], we get

R
/ gdvy :/ o(t, s)di(t, s) :/ hdvy,.
(0,1]2 [0,1]2 (0,1]2

This implies g = h, vy a.e. on (0,1]?, hence g = ¢, v, a.e. on (0,1]%. By Exercise 4.5

in Elstrodt (2005), p. 143, ¢ is vy-integrable on (0, 1]?, and we obtain

R
[ etna= [ gdvi= [ ttsduies).
(0,1]2 (0,1]2 [0,1]2

where 7, is the completion of v,. Furthermore, let D be the set of discontinuity
points of ¢, and let R := U, U2_, U2, 0L, s, where 0L, 4 is the boundary of 1, g.
Then D € RU {g < h}. From the preceding result, we get v,(RU {g < h}) = 0.
Then we have 7,(D) = 0. This leads us to the conclusion that ¢ is continuous 7,
a.e. on (0,1]%

Conversely, suppose that (D) = 0, then g = h, v a.e. on (0,1]*. By Theorem
4.2.c in Elstrodt (2005), we have f(o,l]g gdvy, = f(o,lP hdvy, since g and h are vy-

integrable on (0, 1]2. By the dominated convergence theorem, we obtain

ILm ZZ inf  (t,s)) A, [k = ILm ZZ inf , $)) vy (Lnser)

1 =1 ts)elnék 1 (=1 (t,s) EIMk
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2n 2n

- /(‘071]2 gdl/w - /(‘0’1}2 thﬂ, - nh—{{.lo Z Z( Sup gp(t, S))l/w(In;Zk)

=1 =1 (:5)€ln ek
2m 2n

=lim > > ( sup @(t,))Ar,, 0

1 =1 (:8)€Lnek

Therefore ¢ is Riemann-Stieltjes integrable with respect to 1 on [0, 1]%.

A.4 Proof of Proposition 2.4.5

Proof. Let ¢ € C([0,1]*) and let £ > 0. There exists a § > 0 such that

[p(t1, 51) — p(ta, 52)] < ——
sup pll1,81) — @2, S2)| &S = 7
1(t1,51)—(t2,52) | <5 M+ el
For such a § > 0, there exists a partition I" of [0, 1]?,
[':= {[an xl]a (1’1, 1’2], Y (:Epflatp]} X {[y07y1]7 (ylay2]> ey (ymfla ym]}v

where

O=xo<m<...<mp <z <...<zp=1

O=yvo<mn<...<Ypo1 <Y <...<UYn=1,

Sty v

I'by Agp, 1 <€ <p, 1 <k <m. Note that for 1 </ <p, 1<k <m, we get

n—od

Since ||t ||, — 0, there exists an ng = ng(e) € N such that

[[4n]]

< ° for all n >
o < , for all n > ny.
dmp(M + ||lo|l )
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Let us define a step function g := >7;" >0 (ming ge 4, ©(t,5))Xa,., where Ag,

stands for the closure of Ay, and x4 stands for the indicator function of A C [0, 1]2.

Then || — g, < s and lgllo < llell,- Furthermore, by the definition of g,
we obtain
‘/R dipn(t,5)| < 4mp gl 19l < 4mp el ¢l < ol
[0’1]29(25,8) Un(t,8)| < 4mp gl 19l < 4mp [[@ll [¥nllo < e

Hence, by the triangle inequality and by inequality (A.2.1), we finally get

e llell

< Nl = glloo V(¥ [0, 1]%) +
M + [l

<e, n2>ng.

/[ o(t,5)dibu (2, 5)

0,1]2

n—oo
[l

This leads us to the conclusion f[(]fl]? o(t, s)diy,(t,s) — 0.



Appendix B

Weak convergence on C([0, 1]2)

B.1 Etemadi’s Inequality

Proposition B.1.1. Let (X)) ,_, be an n x m dimensional random matriz whose
components are independent random variables with finite mean. Let for 1 < u < n,

1<v<m, Su: =2y > pey Xek. Then for a € R,

]P’{lr?alx | Suw| > Ba} <3 max P{|Suw| > a}.

1<u<n 1<u<n

Proof. See Theorem 22.5 in Billingsley (1995). O

B.2 Tightness and compactness in C([0,1]?)

Definition B.2.1. Let S be a metric space and Bgs be the Borel o-algebra over §. A
sequence of probability measures { P, }n>1 on a measurable space (S, Bs) is said to be
tight, if and only if ¥n > 0 3 a compact K C S, such that P,(K) > 1—mn, Vn > 1.

Correspondingly, the sequence { X, }n>1 of random elements on (S, Bs) is tight, if and
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only if the sequence of their distributions is tight.

Theorem B.2.2. Let P, and P be probability measures on (C([0,1]?),Bc). If the
finite-dimensional distribution of P, converges weakly to those of P and if P, is tight,

than P, converges weakly to P for n — oo, denoted by P, =, P.
Proof. See Park (1971). O

Definition B.2.3. The modulus of continuity of any x € C([0,1]?) is defined by

W, (6) .= W(z,9) := sup |z(t1, 1) — x(t2, 52)|, 0 € (0,1), (B.2.1)
[[(t1,51) = (t2,52)[|<0

where ||-|| denotes Euclidean norm.

Theorem B.2.4. (Arzela-Ascoli theorem)
A set A C C([0,1)?) is relatively compact ( i.e., its closure is compact), if and only if

(1) sup,eq|x(0,0)] < 0o and (2) lims_gsup,eq Wa(d) = 0.

Theorem B.2.5. Let {P,},>1 be a sequence of probability measures on (C([0,1]?), Be).

The sequence { P, }n>1 is tight, if and only if the following two conditions are fulfilled.

(1) For every n > 0, there exist an a > 0 and an ny € N such that

P {x:|z(0,0)] > a} <n, ¥n > n,.

(2) For every n > 0 and every € > 0, there ezist a § € (0,1) and an ny € N such

that
P {x: W,(0) >e} <n, ¥n > ny. (B.2.2)
The second condition is equivalent to the following one : for every e > 0

(lsim limsup P,{z : W,(§) >} =0.

n—oo
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Proof. Analogous to the proof of Theorem 7.3 in Billingsley (1999). [

Theorem B.2.6. Let X and X,, n > 1 be random functions on (C([0,1]?), Bc)
defined on the probability space (2, F,P). If for any finitely many distinct points
(t1,81), s (tpy Sq) € 10,12, (Xp(t1,81)s -+, Xnltp, S¢)) =0 (X (t1,81), ..., X(tp,54)),
and lims_o limsup,,_, .. P{W (X,,,0) > e} =0,Ve > 0, then X,, =, X.

Proof. First proof :

Let P, and P be the probability measures corresponding to the random functions X,
and X, respectively, n > 1 and 7 be the projection defined in Section 2.1. By the
hypothesis, P, o 7r(_0710) =, Po 7r(_0710) which implies {P, o 7r(_0710)}n21 is tight on (R, B').
Consequently condition (1) in Theorem B.2.5 is satisfied by {P,},>1. In addition,
since the condition lims_¢ limsup,,_, . P{W(X,,d) > e} = 0,Ve > 0 is the same with
condition (2) in Theorem B.2.5, together we have {X,},>1 is tight. The proof is
complete since the finite dimensional distributions of {X,},>1 converges weakly to
that of X.

Second proof :

For u € N, let Ty = {Ipp := [(0 — 1) /u, l/u] x [(k —1)/u,k/u] : 1 <Lk <u}. Let

us define a mapping C([0,1]?) 3 x — M,z € C([0,1]?), given by
(Myx)(t,s) = (£ —ut)(k —us)x(({ —1)/u, (k—1)/u)

+ (ut — (0= 1)) (k —us)x(l/u, (k —1)/u)

+ (0 —ut)(us — (k—1))x((¢ — 1)/u, k/u)

+ (ut — (0 —1))(us — (k. — 1))x(l/u, k/u), Y(t,s) € Ly,

and a mapping C([0,1)?) 3 = — 7r, & € RO mp o= (2(C/u, k/u))i g .
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Obviously, | M,z — x| < Wa(v2/u). Let L, : Ru+Dx+h) — ([0, 1]2), given by

(L,B)(t,s) == (£ —ut)(k —us)bp_1 g—1 + (ut — (£ — 1)) (k — us)bg—1+

(0 —ut)(us — (k —1))bp—1 4 + (ut — (€ — 1)) (us — (k — 1))bg,

for (t,s) € Iy and B = (ber)yg p—o € REFDx@+) - For any B,D € R®F)x sl
we have ||L,B — L,D|| < maxo<; j<y |bij — dij| = ||B — D||g+nx+1), hence Ly, is
continuous on RU+Vx@+1) — Moreover, since M,z = Ly(np,, o x), for any u € N
and any x € C([0,1]?), by the first hypothesis and the continuous mapping theo-
rem, we get M, X, = L,(nr,, o X,,) = Lu(7r,, © X) = M, X. Furthermore, since
M, X — X, <W(X,V2/u) 5 0, we further have M,X =, X, see Theorem 3.1
in Billingsley (1999). Thus, together we get M, X, =, M,X =, X. In addition,
the inequality ||M,X, — X, < W(X,,V2/u) together with the second hypothesis

lead us to the following result

hm limsup P{||M, X, — X, > ¢}

n—oo

< lim limsup P{W (X, vV2/u) > ¢} = 0, Ve > 0.

U—00 5 o0

Thus, the assertion follows by applying Theorem 3.2 in Billingsley (1999). [

Proposition B.2.7. Let {1 := [t—1,ts] X [sk—1,56] : 1 <€ < p, 1 <k < q}, with
O=to<ti <...<t,=1,0=50<s8; <...<58,=1, and minypp,(ty — ty_1) > 0,

Ming <p<q(sk — sk—1) > 8, 6 € (0,1). Then for every x € C([0,1]?), we have

W,(0v2) < 3max sup |x(t,s) — z(ti_1, Sp_1)] - (B.2.3)

1<e<
1<k<z:1 (t s)Eng

For any probability measure P on (C([0,1]%,Bc)) and any € > 0, it holds

{ W, (6V/2) >35} ZZP{ sup |z(t,s) — x(te—1, Sk—1)| >5} (B.2.4)

k=1 /=1 (tSGng
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B.3 Proof of Theorem 2.3.4

Proof. We shall prove this theorem by showing that the sequence {2 T, (Epxn)(+) bn>1

satisfies the sufficient conditions of Theorem B.2.6 : for any choice of distinct points

-1
(tl,Sl) 7777 (tp,sq)’

(t1151)7"'7(

(t1,51)s-- -, (tp, 54) € 10, 1> and any p,q € N, p, o7 tsg) T Wom
ie.,

(%Tn(Ean)(tl,sl), e %Tn(Ean)(tp,sq)) =, (Ba(t1,51), ..., Ba(ty,s4)), (B.3.1)

and for every € > 0,
1
%im limsup P{W (=T, (E,x»),d) > e} = 0. (B.3.2)
- n—o00 o

Consider first a single point (1, s;) € [0,1]%, by (3) of Corollary 2.2.2, we have

1
;Tn(Ean>(t17 51) =n B2(t1> 81)-

Let us consider any two distinct points (21, 22) and (z},25) € [0,1]?, and suppose

firstly that z; < 2}, and 25 < 2. For each vector (ay, as) € R? we get

(07

%Tn(Enxn)(Zla 22)+;2(Tn(Enxn)(Z,17 Zé) - Tn(Enxn)(Zb 22))

=n 1N (0, 2129) + @ (N(0, 2125 — 2129)).

Hence by the Cramér-Wald technique, see Billingsley (1995), p. 382, we have

(LB 21, 22), (T (B (21 20) = Tl (1, 2))

g

=n (N<07 2122)7-/\/(0, Zizé - 2122)).

Furthermore, since

(B (21, 22), - To(Bon) (21 20) = (T (B 21,22,

g

(T (Enxn) (21, 23)

S

- Tn(Enxn)(zlv Z2) + Tn(Enxn)(zla 22)))7
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then by the preceding result, we get

1 1
(;Tn(Ean)<21a 22)7 ;Tn(Enxn)(ZL Zé)) =n (N<Oa le2)7N<Oa lezé))a

where the right side of this result is the distribution of (By(21, 22), Ba(21, 25)).

Now let us consider the case 2] < z; and 2y < 25. Then we get

1 1

(;Tn(Enxn>(zi7 Zé), ETn(Enxn>(Z1> 22))
= (G Ta(Baen) (35 2) =~ To(Ba) (3, 22)) + = Tulen) (3, 2),
(T (B 21 22) = T (B 2, 22)) + - To(Bon) 31, 22)

which by using the analogous argument as before, converges in distribution to the
vector (N(0,2725),N(0, z122)). The other cases can be handled analogously. Thus
the assertion for k = 2 follows. A set of three or more points can be handled in the
same way, this leads us to the conclusion that (B.3.1) is satisfied.

To prove (B.3.2) we apply Proposition B.2.7. From (B.2.4), for any € > 0 we get

28},

whenever mincpp(ty — ti—1) > §, minj (g — sx—1) > 6, 0 € (0,1). For 0 < /£ < p,

P{W(%Tn(Em),éﬁ) > 35}

q p
< IP’{ sup
(

k=1 (=1 t,5)ELek

1 1
;Tn<En><n>(t> S) - ;Tn(Ean)(tﬁ—lv Sk—l)

and 0 < k < g, let us chose t, = my/n, and s, = m} /n, where m, and m;, are integers

that satisfy the condition

O=mo<mi <...<my_1 <my<...<my=n,

O:m6<m'1<...<m2_1<m2<,,'<m;:n.
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Then by the definition of T,,(E,«,)(:), we get

1
P<W —Tn nxn ) > 3 P S’ilig - Sm _m) Z )
{ (U ( ) \/_ 6} Z Z max =1 _q eon

my_1<ig<my

k=1 (=1 m! §’i2§’m/

-1 4

whenever
!

m m,
>§, and — — —=L> 6 forl <l <p,1<k<g,
n n n n

my my—1

where Sy, 1= Z?Zl Zle gij. Since {g;; : 1 <,j < n} are i.i.d, the right side of the

preceding inequality is the same with the following one

¢ p
5 g P max |Siyiy| > €0m
0<iy <(myg—my_1)

k=1 (=1 0<ig<(my—mj_;)
Hence, we have
q p
1
P {W(—Tn(Enxn),aﬂ) > 35} < P s, ) (Sl = 2o
- 0<iy <(my—my_1)
k=1 ¢=1 0<ig<(my—mj_,)

For further simplification we chose m, = ¢m and m) = km’, for some integers m and
m’ that satisfy my — my_1 = m > né and mj, —mj,_, = m' > né, for 0 < ¢ < p
and 0 < k < ¢. Since the indexes p and ¢ must satisfy (p — 1)m < n < pm and
(¢ — 1)m’ < n < pm/, we chose p = [n/m] = 1/§ < 2/6 and q = [n/m'] =
1/6 < 2/6. Moreover, n/m == 1/6 > 1/26 and n/m’' "== 1/§ > 1/26. Hence, for

large n and for every ¢ > 0, we have

1 4 /
P{W(_TH(E"X”>’5\/§) > 35} Sﬁ ]P{ max |Sg| > S covimm m}

o 0<e<m 20
0<k<m/

e2

1612
= P max |See| > AavVmm/

ngzgml

482 Aov/mm!
B ax P{\s@ky 2#} (B.3.3)

— g2 o<e<m
0<k<m/
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where A := £/2§. The last inequality follows by applying Etemadi’s inequality. Thus,

(B.3.2) will follow if we can show that

82 Aovmm!
22 (%%P{wﬂz 3 }
nggm/

lim lim sup

A—00 1m m/—00

which is the same with the condition

N 482 Aon
Jn o 55 e {15 2 25"} <o
0<k<n

By the central limit theorem, if /5 and k), are large enough such that ¢, < ¢ <n and

ky < k <mn, then
Sek

Aon AoV Lk
PS> — > <PL|Sp| > =P
{isu12 25"} < {m_ v } {| 2

For ¢ < /) <n and k < k) < n, we can apply Chebyshev’s inequality to get

A 243
> = < —.
—3) 7 M

Aon 90k 90,k
P > < 22
{‘S€k| = 3 } = \2n2 — A\2p2

243 94ykx }

As aresult, the maximum on the right side of (B.3.3) is dominated by max {Fv Sery

Consequently, we have

Y
Ao me & i SR e

48)\2 A 48 243 90k
lim lim sup —— max IP’{|SM| > %n} < — lim limsupmax{ L} = 0.

This complete the proof of the theorem. n
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