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All-optical signal processing devices are likely to be used in future communi-
cation networks. Of particular interest are all-optical flip-flops, logic gates, and 
wavelength converters using semiconductors. These devices might find appli-
cations in optical packet header processors, for optical signal monitoring or for 
signal regeneration.
This book discusses a new and generic scheme for all-optical signal proces-
sing. The basic configuration comprises an asymmetric resonator within an 
active or passive nonlinear medium. It is shown that such a device enables 
all-optical flip-flop operation and all-optical switching. In addition, a novel opti-
cal isolator concept not based on magnetic materials is introduced.
A simple model is established to describe the transmission and reflection beha-
viour of a resonator having structural asymmetries. It is predicted that any 
nonlinear resonator without inversion symmetry will exhibit “optical diode”-like 
nonreciprocal transmission. Further it is shown that resonator asymmetries 
reduce the switching threshold for bistable operation. The model is also appli-
cable to photonic crystal based resonators.
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Zusammenfassung — Abstract 
Nichtlineare resonante Komponenten zur voll-optischen Signalverarbeitung 
 

Diese Dissertationsschrift untersucht resonante nichtlineare Strukturen, die sich zur voll-
optischen Signalverarbeitung in optischen Nachrichtensystemen eignen. Eine herausragende 
Eigenschaft dieser Strukturen ist ihre bistabiles Transmissionsverhalten, so daß sie als opti-
sche Flip-Flops genutzt werden können. Bisher waren bistabile Komponenten in ihrer Ver-
wendung eingeschränkt durch die kleinen nichtlinearen Koeffizienten der meistgenutzten op-
tischen Materialien (vor allem Glasfasern) Die Schaltschwelle konnte nur mit sehr hohen op-
tischen Leistungen überschritten werden, was eine gerätetechnisch einfache und wirtschaftlich 
günstige Umsetzung bisher verhinderte. 

In der vorliegenden Arbeit werden neue, komplexer strukturierte Entwürfe von optischen 
Komponenten vorgestellt, die bei niedrigeren optischen Leistungen schalten. Dies gelingt 
durch den Einsatz von modifizierten Gittern räumlich veränderlicher Bandlücke, durch Gitter 
mit räumlichem Chirp der Gitterperiode und durch die Einführung einer Gitter-Asymmetrie. 
Die vorgelegten Daten basieren auf den Materialien InP and Silizium (speziell Silizium auf 
einem niedrigerbrechenden Substratglas, Si auf SiO2, SOI).  

Weiter werden aktive und passive periodische Wellenleiterstrukturen untersucht und eine ge-
neralisierte Theorie zu ihrer Beschreibung entwickelt, die nicht-reziproke Transmission und 
Reflexion einschließt. Insbesondere ergibt sich, daß allgemeine nichtlineare Resonatoren ohne 
Inversionssymmetrie sich nicht-reziprok nach Art einer „optischen Diode“ verhalten und da-
mit als integrierbare optische Richtungsleitungen („Isolatoren“) einsetzbar sind. 

Diese verallgemeinerte Beschreibung läßt sich auf eine Vielfalt von Nichtlinearitäten anwen-
den, z. B. auf Nichtlinearitäten in Kerr-Medien, Halbleiterverstärkern (semiconductor optical 
amplifiers, SOA), Materialien mit Zwei-Photonen-Absorption (two-photon absorption, TPA), 
Metamaterialien mit negativen Brechzahlen, auf sättigbare Absorber sowie auf Stoffe mit 
Kombinationen der genannten nichtlinearen Effekte. Weiter sind Resonatoren beschreibbar, 
die durch Defekte in photonischen Kristallen erzeugt werden. Erstmalig in dieser Arbeit wird 
eine SOA-basierte periodische Struktur mit verteilter Rückkoplung (distributed feedback, 
DFB) auf ihr Schaltverhalten hin untersucht.  

SOI-Wellenleiter können mit CMOS-Prozessen hergestellt werden und sind daher besonders 
attraktiv. Die hohe Feldkonzentration im stark führenden Wellenleiter erzeugt hohe Feldstär-
ken bei mäßigen Eingangsleistungen und bewirkt dadurch besonders große nichtlineare 
Wechselwirkungen, was zur voll-optischen Signalverarbeitung vorteilhaft genutzt werden 
kann. Allerdings beschränkt die in Silizium früh einsetzende Zwei-Photonen-Absorption die 
zulässigen optischen Eingangsleistungen. Hier wird ein Entwurf vorgestellt, der diesen Nach-
teil in einen Vorteil verkehrt: Ein durch Zwei-Photonen-Absorption nichtlinear-
verlustbehafteter Resonator ohne Inversionsymmetrie kann in seiner Reflektivität geschaltet 
werden, wobei ein großes Extinktionsverhältnis erreicht wird. 
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Schließlich wird eine neuartige Anordung für ein voll-optisches Flip-Flop beschrieben, wobei 
Haltestrahl und SET-Signal in gleicher Richtung propagieren, während Haltestrahl und RE-
SET-Signal gegenläufig sind.. Bei dieser Anordnung ist ein ko-propagierender „negativer“ 
RESET-Lichtimpuls nicht erforderlich. 
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Abstract 
 

Nonlinear resonant structures are studied to explore their optical signal-processing capability 
and seek to advance their application to optical communication networks. 

Bistability is observed in nonlinear resonant structures which can be utilized to realize an all-
optical flip-flop. However, owing to the very small value of the nonlinear coefficient in most 
optical materials (including silica fibers), the power required to observe bistability (the 
switching threshold) is very high. Unless the power requirement can be somehow reduced, 
these devices will remain unsuitable for commercial applications. New designs based on 
stopband tapered, chirped gratings with asymmetrically placed phase shift regions were pro-
posed. This reduces the switching threshold for bistable switching operations. High index-
contrast waveguide structures with sidewall corrugations based on InP and silicon on insulator 
(SOI) are proposed for device realization. 

We have studied active and passive waveguide-based periodic structures and developed the 
general theory describing the nonreciprocal transmission and reflection behaviour of a resona-
tor having structural asymmetries. It predicts that any resonator structure lacking inversion 
symmetry will exhibit “optical diode” like non-reciprocal transmission property. This general-
ised description is applicable to a wide variety of nonlinearities, e.g. Kerr-type, semiconductor 
optical amplifier (SOA), two-photon absorption (TPA). This formulation can be extended to 
negative-index material, saturable absorbers or combined nonlinear effects. 

This simplified formulation can be used in predicting non-reciprocity and is also applicable to 
photonic crystal based resonators. The non reciprocal behaviour is explored for potential ap-
plication as non-magnetic isolator. We predict the nonreciprocal property of SOA based peri-
odic structure for the first time. 

Silicon has attracted a great deal of attention for optoelectronic applications due to its poten-
tial for forming inexpensive, monolithic integrated optical components. The strong optical 
confinement offered by SOI waveguides enhances nonlinear optical interactions, such as Ra-
man and Kerr effect, in a chip-scale device. This opens numerous possibilities in using silicon 
as a material for all-optical signal processing. However, this functionality is impaired by TPA, 
which can severely degrade the performance of a device. Here we propose a scheme combin-
ing the advantages of a high extinction ratio inherent in a Fabry-perot resonator with the fast 
TPA nonlinearity readily available in silicon. By optically tuning the reflectivity of a silicon-
based asymmetric Fabry-Perot resonator through TPA inside the cavity, we switch between 
an impedance-matched condition with low reflectivity, and a high-reflectivity state. This leads 
to a high extinction ratio larger than 20 dB for the reflected signal. 

Further, we propose a new scheme for waveguide Bragg grating based all-optical flip-flop 
operation where the holding beam and the SET signals are co-propagating inside the device, 
while the RESET signals are counter-propagating inside the device. In this scheme the so 
called negative RESET pulse is not needed. 
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Chapter  1    Introduction and outline 

1 Introduction and outline 

With the growth of data traffic in telecommunication networks, the demands of photonic 
transmission systems are subjected to permanent rise. Photonics networks are useful in trans-
ferring information efficiently through high capacity optical fibers. However, till date most of 
the signal processing including amplification, retiming, multiplexing and demultiplexing as 
well as routing is done in the electrical domain. This requires optical-electrical-optical (OEO) 
conversions in intermediate nodes of the network. With the growing need for high speed data 
transfer this may lead to a speed bottleneck. 

All-optical compact signal processing devices are thus a growing need in the present commu-
nications industry. Of particular interest are all-optical flip-flops, logic gates, and wavelength 
converters using compact semiconductor devices. These devices can be used for optical signal 
regeneration, for optical signal monitoring, and for optical packet header processing.  

All-optical packet or burst switched networks are promising solutions for situations which 
require high data-rates. In such networks all the signal processing can be done in the optical 
domain bypassing OEO conversions. One of the main requirements of such packet or burst-
switched network is processing of optical labels or optical headers in the optical domain. All-
optical flip-flops are thus extremely useful in such networks. An optical flip-flop is a device 
which can temporarily store the input/output information, and processes it with other control 
signals, all in the optical domain. These types of devices are essentially a bistable device with 
two stable states of operations. The state of such a device can be changed with an optical con-
trol signal. 

In an all-optical fiber transmission line several connectorized optical components are present, 
and various backscattered signals are generated from the end faces of these components. This 
scattered light can enter the source and destabilize it, thereby creating unwanted feedback. 
Optical feedback degrades the signal-to-noise ratio and consequently the bit-error probability 
(usually called bit error “rate” BER), thus resulting in poor transmission performance. Isola-
tors are thus indispensable devices for eliminating these backscattering. Isolators with com-
pact size which can be integrated on a chip are of high demand. 

1.1 Motivation 

Bistability in a nonlinear device with a feedback is first proposed by Gibbs  [22]. Later Winful 
et. al.  [75] has predicted a bistable state of operation in a nonlinear Bragg grating exploiting 
the Kerr effect. This opens a wide possibility of all-optical signal processing. However the 
power requirements to observe bistability were too high, due to a low value of nonlinear coef-
ficient. Previous studies, which have focused on nonlinear periodic structures, considered 
Kerr-type nonlinearities, where the intensity dependence of the refractive index shifts the 
stopband to lower frequencies and leads to a dispersive bistability. Owing to the very small 
value of the nonlinear coefficient in most optical materials, the power required to observe any 
detectable shift in the stopband (the switching threshold) is very high. A few remedies have 
been proposed that use materials with higher nonlinearities such as semiconductors, or exploit 
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a resonant field enhancement to increase the nonlinear effects, thereby lowering the threshold 
power, but also the extinction ratio. 

Here we report about an alternative design which exhibits low switching power, shows an 
isolator-like functionality, and can be integrated on a chip with other optical components. The 
design is based on a stopband-tapered waveguide Bragg grating (ST-WBG), where the stop-
band width is linearly changed along the length of the grating. Further, we describe all-optical 
switching properties in a stopband tapered distributed feedback (ST-DFB) SOA. Here, the 
gain saturation is accompanied by a nonlinear change of refractive index, in which the carrier-
induced nonlinearity is ~107

 higher than with usual Kerr-based nonlinearities. 

The nonreciprocity or direction-dependent transmission property or “optical diode”-like be-
haviour in a nonlinear periodic structure was first proposed by Scalora and Dowling  [62], 
 [63]. They used thin film based multilayered quasi-periodic structures with varying thickness 
or nonlinearity. Afterwards many researchers have proposed nonreciprocal behaviours in 
nonlinear resonator structures, but in all these publications the general description of the ori-
gin of such behaviour was lacking. Moreover, in all the cases only Kerr-type of nonlinearities 
was explored.  

Here we summarize the possible limitations of using nonlinear resonator based all-optical 
signal processing: 

 Low bandwidth  

 Speed limited by material properties (for active device). 

 Moderately fast, switching time generally limited by the resonator response time 

However, there are some possible advantages also which should be considered: 

 Low power requirement (for active devices). 

 Possible amplification. 

 Wavelengths compatible to present-day’s photonics network. 

 Compact size and integratability 

 Resonance enhancement of nonlinear effects. 

In this thesis we explore the nonlinear resonator structures and seek to enhance their perform-
ance by suitable design. We discuss possible methods for reducing the threshold switching 
power for bistable flip-flop operations. Further, we explore nonreciprocal phenomena, and 
utilize them to construct an isolator. 
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1.2 Achievements of the present work 

 Extensive numerical study of nonlinear periodic structure using coupled mode theory 
and FDTD. The active and passive type of nonlinearity is explored in the same frame-
work. Generalized couple mode theory is introduced, and comparative studies have 
been made for different types of nonlinearities. 

 

 New designs based on gratings which are stopband tapered, chirped or having asym-
metrically placed phase shift are proposed. This reduces the switching threshold for 
bistable switching operations. High index contrast waveguide structure with sidewall 
corrugations based on InP and SOI are proposed for device realization. We also pro-
pose a high extinction ratio switching operation based on an asymmetric Fabry-Perot 
resonator exploiting two-photon absorption. 

 

 A general theory of nonreciprocal transmission and reflection for a resonator structure 
is introduced. It predicts that any resonator structure lacking inversion symmetry ex-
hibit “optical diode” like non-reciprocal transmission. This theory is applicable to a 
wide variety of nonlinearities like Kerr, SOA, TPA, carrier-plasma effects. The formu-
lation can be extended to negative-index material, saturable absorbers or combined 
nonlinear effects. This simple formulation can be used in predicting non-reciprocal 
properties. It is applicable to photonic crystal based resonators and can be also ex-
tended to ring resonators. For the first time, the nonreciprocity of an SOA-DFB is pre-
dicted. A direction dependent FWM efficiency is predicted for the first time. The 
FWM performance is compared with results of ring resonator experiments. 

 

 A specific all-optical switching scheme utilizing a Bragg grating is proposed for the 
first time. This scheme realizing an all-optical flip-flop by combining a holding beam 
and a SET signals co-propagating inside the device, while the RESET signal is 
counter-propagating to the holding beam. In this setup the so called negative RESET 
pulse is not needed. 

 

1.3 Outline 

In Chapter 2 we introduce the theoretical foundation of the thesis. A brief introduction to the 
coupled mode theory is given. In this chapter a generalized coupled mode equation 
(GNLCME) is introduced which helps in describing the active and passive periodic structures 
in the same framework. 

In Chapter 3 we introduce the different analytical and numerical techniques to solve the 
GNLCME. For passive Kerr-type media we discuss the analytical solution using elliptic func-
tions. The time dependent solution of GNCME is also discussed and the results are compared 
with the analytic solution in the steady state. A general description of bistable behaviour is 
given and a comparative study is done between Kerr-type and carrier induced nonlinearities. 
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Chapter  1    Introduction and outline 
 

A new scheme of all-optical flip-flop operation utilizing a counter-propagating SET and RE-
SET signal are discussed along with their potential advantages. 

In Chapter 4 we discuss the nonreciprocal devices and propose a simplified model of an 
asymmetric Fabry-Perot resonator (AFPR) to understand and predict the direction dependent 
non-reciprocal transmission behaviour. We discuss the general principle which leads to this 
novel behaviour and discuss the general condition to observe such effects. We have discussed 
different types of asymmetrical structures including stopband-tapered waveguide Bragg grat-

ings in active and passive media, as well as Bragg gratings with an asymmetrically placed /4 

phase shift in the context of passive devices. The effect of chirp and a spatial variation of the 
current density on this nonreciprocal behaviour are discussed. 

In Chapter 5 we propose a possible geometrical variation of the resonator structures leading to 
a lowering of the switching threshold. We discuss different types of resonator structures each 
in context with different types of nonlinearities. 

In Chapter 6 we report on the finite-difference in time-domain (FDTD) simulation of high 
index-contrast waveguide Bragg gratings with sidewall corrugation. The nonreciprocal behav-
iour and lowering of switching threshold as predicted in Chapter 4 and 5 are verified with an 
extensive numerical study. 

In Chapter 7 we report on wavelength conversion using four-wave mixing (FWM) in a Kerr-
type waveguide Bragg grating. We discuss the effect of stopband tapering on the FWM con-
version efficiency. We also discuss about a high extinction ratio switching operation in an 
AFPR using TPA. 
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Chapter  2    Theoretical foundation 

2 Theoretical foundation 

2.1 Maxwell’s equations 

The propagation of optical fields in periodic structure is governed by Maxwell’s equations. In 
SI-units these equations are given by 

 curl ,
B

E
t


 




 (2.1) 

 curl ,
D

H J
t


 


 
 (2.2) 

 div ,D 


 (2.3) 

 div 0,B 


 (2.4) 

where  and  are the electric and magnetic field vectors, respectively.  is the electric 

displacement and 

E


H


D


B


 is the magnetic induction. In the absence of free charges, as is common 

for optical materials, the current density J


 and the charge density  are both zero. With the 

electric polarization


, the magnetizationP M


, the permittivity  0 of free space, and the mag-

netic permeability  0 of free space we define the constitutive relations: 

 0

0

,

.

B H M

D E P





 

 

  
    (2.5) 

Since typical optical materials are non-magnetic, we assume 0M 


 and thus B


 is propor-

tional to . We assume the medium to be invariant with respect to time shifts, and that the 

polarization  does not depend on the magnetic field. It can be shown that  can be written 

as a Volterra series 

H


P


P


 [61] with influence function tensors1  m  [7], 

  (2.6) 

       
       
         

1
0 1 1 1

2
0 1 2 1 2 1 2

3
0 1 2 3 1 2 3

, ,

, , ,

, , , , ,

.

P r t t t E r t dt

t t t t E r t E r t dt dt

t t t t t t E r t E r t E r t dt dt dt

 

 

 













 

  

   




 
  

   

   
     


1 2 3

Further, we assume that the material under consideration is isotropic. With this assumption 

we can write the polarization 


 as the sum of the linear P LP


and nonlinear polarization  as NLP


      L NL, , , ,P r t P r t P r t 
    

 (2.7) 

  (2.8)        1
L 0 1 1,P r t t t E r t dt 




 

   
1, ,

                                                 
1 

 m  is a tensor of rank m + 1, with m = 1, 2, … .  
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  (2.9) 

         
         

2
NL 0 1 2 1 2 1 2

3
0 1 2 3 1 2 3

, , , ,

, , , , ,

.

P r t t t t t E r t E r t dt dt

t t t t t t E r t E r t E r t dt dt dt

 

 









  

   



 
  

     
     


1 2 3

We assume that the nonlinear part  is sufficiently small and can be treated as a small per-

turbation of the linear part , i.e., 

NLP


LP


    NL L,P r t P r t, .
    (2.10) 

Both  and  are assumed to be quasi-monochromatic with equal optical centre 

angular frequency  0. We define the susceptibility tensors 

 ,E t r
    ,P t r

 

 m  as the Fourier transform of 

the influence function tensors. If the operating frequency is far away from any material reso-
nances, the influence function tensor can be approximated by a product of delta functions2: 

  (2.11)       1 2, 1
, ..., .

m
m m

m
j

t t     


 
  j

This assumption is valid as long as the pulse width is greater than 100 fs  [4]. With this instan-
taneous response of the susceptibility, the polarization in the time domain becomes 

 
     

            1 2 32 3
0

, , ,

, : , ,

L NLP r t P r t P r t

E r t E r t E r t   

 

    

  

.

  

          
 (2.12) 

For isotropic materials however the tensors become diagonal and can be reduced to scalar 
functions  [4]. Depending on the symmetry class of the material, some of the higher order sus-
ceptibilities can be further simplified or they even vanish for certain symmetries. For an oper-
ating frequency far away from any material resonances, the intrinsic dispersion of the material 
is also assumed to be small compared to the dispersion induced by the periodic structures3. 
Therefore, we neglect any time- or frequency-dependence in the susceptibilities. It should be 
noted, that the dispersion and the absorption of a material are related by the Kramers-Kronig 
relations  [30]. So in the frequency region of interest we assume for passive media a small loss 
and a nearly constant refractive index. This will not be true outside this region. For active 

materials, we allow a gain which influences the refractive index via the Henry-factor H (see 

Section  2.3.2 on page 15).  

We proceed by inserting Eq. (2.12) into Eq. (2.5) yielding 

      0, , NLD r t r E r t P 
 

,
    (2.13) 

where the linear dielectric function  r  is given by 

                                                 
2 This approximation leads to constant susceptibility tensor in the frequency range of interest  [4]. 
3 It can be shown that the grating induced dispersion is a few orders of magnitude higher than the material dis-
persion  [5]. 
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    11r .  
     (2.14) 

Note that periodic structure can be described as a composite system, so all the susceptibilities 

and therefore the dielectric function   are assumed to depend on the coordinate . The linear 

refractive index  can be related to the dielectric function by 

r


n
 2n 

   . 

By taking the curl of Eq. (2.1) and combining it with equation (2.7) and (2.13), one can elimi-

nate B


 and  in favour of  and D


E


P


 to obtain the nonlinear wave equation in a weakly in-
homogeneous medium4  

 
  2 2

NL
02 2 2

curl curl ,
r E P

E
c t t


 

 
 

 
 (2.15) 

where c2 = 1/ ( 0  0) is the velocity of light in vacuum. We consider Cartesian coordinate sys-

tem. Further, we consider a linearly polarized light propagating along the zaxis. So by choos-

ing the polarization parallel to the xaxis, we only have to consider one component of the 

electric field vector ˆx xE E e


. From equation (2.12) it is obvious that the same applies for the 

polarization. In the following we consider only the scalar quantities. We drop the x-subscripts 
both for the fields and susceptibility5 and the vector wave equation (2.15) simplifies to the 
scalar wave equation, 

 
  2 2

2 NL
02 2 2

.
r E P

E
c t t


 

  
 


 (2.16) 

The above equation gives the general description of plane waves in a nonlinear medium with 
spatial varying dielectric constant. In the following sections we will consider different linear 

and nonlinear periodic structures which are characterized by  r 
.  

2.2 Linear coupled mode theory 

To obtain the wave equation for a weakly varying periodic structure it is more convenient to 

work in the Fourier domain  [4] assuming a time dependence of exp(i t). So we write the 

wave equation (2.16) in the Fourier domain neglecting any nonlinear polarization PNL, 

  
2

2
02

, 0,E r E k
c

.
c

     
   (2.17) 

The quantities and E  are the Fourier transforms of the electric field E and the dielectric 

function . The quantity k0 represents the vacuum propagation constant. 

For a linear waveguide (i.e., for a medium which is homogeneous along z) the solution of the 
above equation (2.17) would take the form, 

              , , exp i exp i .f bE r F x y A z A z        
   

                                                

 (2.18) 

 
4 In a weakly homogenous medium we assume grad (ln  )  0. 
5 In an isotropic material the susceptibility tensor is diagonal and the diagonal terms of (1) and (3) can be written 

as xx and xxxx respectively. We drop the subscript of the susceptibility in the scalar approximation. 

7 



Chapter  2    Theoretical foundation 
 

Here F(x, y) denotes the transverse field distribution6. The above solution describes two inde-

pendent waves with propagation constant propagation constant  at angular frequency , 

moving in opposite directions. Here we have denoted the constant field amplitude fA  for the 

forward and  for the backward propagating wave, respectively. bA

 

Figure  2-1 : Schematic diagram showing the variation of the refractive index as a function of 

position z inside the grating of length L 

1 

R
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We consider only 1D periodic structures (e.g. fiber Bragg gratings (FBG) or semiconductor 
distributed feedback structures (DFB)) where the dielectric constant is assumed to be periodic 
along the z-direction. Further, we assume the media are lossless. We model the dielectric con-
stant of a grating as described in Ref.  [4],  [5]. In such a periodic structure the dielectric con-

stant can be written in terms of a spatial Fourier series with period  as  

   0

0

i2
ˆ ˆ exp .m

m
m

mz
z

  





    
 

  (2.19) 

Here 0̂ ˆ, m   are the spatial Fourier components of  (z). We assume that the dominant effect 

results from the first order spatial Fourier coefficients 1̂  . Further as we have neglected any 

absorption, i.e.,  (z) in our case is real and we can use *
1 1̂̂    to write 

    1

2
ˆ 2 cos

z
z

        
.  (2.20) 

Here  1  denotes the real part of 1 . For small values of  1  (i.e., for a small refractive 

index variation, (nG)2 <<1) we write the expression for the real effective refractive index 

n =  / k0 of the grating as  

   0 G

2
cos .

z
n z n n

     



                                                

 (2.21) 

The schematic variation of the refractive index as a function of z inside the grating of length L 
is shown in Figure  2-1. 

 
6 We normalize the unit such that the quantity F(x, y) is dimensionless. 
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Now, if  n G is zero, the general solution of the wave equation (2.17) in the linear case is writ-

ten as in Eq. (2.18). 

If the index modulation  n G is small, the solution of the wave equation can be still written in 

the same form as Eq. (2.18), but the amplitudes fA  and  become weakly dependent on z 

and . So we make the ansatz 

bA

 [5], 

            , , , exp i , exp if B bE r F x y A z z A z z      
   .B  (2.22) 

Here the quantity B = / is the Bragg wave number for the first-order grating (see Eq. 

(2.21)). The Bragg condition can be written as 

 0 .B B

n

c

  


 (2.23) 

Furthermore we assume that the amplitudes (or to be more precise, the envelopes) ,f bA  vary 

slowly in space. With the vacuum propagation constant k 0 we assume 

 
2

,
02

2 , .f bA A
k

z

 


 
 f b

z
 (2.24) 

This method is known as the slowly varying envelope approximation (SVEA)  [1]. Using 
SVEA, and keeping only the nearly phase-matched terms, and neglecting all spatial second 
derivatives, we obtain the following set of coupled differential equations 

 
 

 

i ,

i .

f
f b

b
b f

A
A A

z

A
A A

z

  

  


   



   



 

  
 (2.25) 

The real quantity  , called the detuning coefficient, is a measure of the detuning from the 

Bragg angular wavenumber and is defined as  

      0
B .

n

c B           (2.26) 

It can be seen from the above equations, that the forward and backward propagating modes 

are no longer independent but are coupled together via the coupling term , which is know as 

a coupling coefficient and is given by 

 B G G

B

.
2

n n

c

 


 
   (2.27) 

To obtain the coupled mode equations (CME) in the time domain, we assume that the total 

field in the time domain can be written as  

              0, , , exp i , exp i exp i + c.cf B b BE r t F x y A z t z A z t z i       


. . (2.28) 

Here “c.c.” denotes the complex conjugate. We can expand the propagation constant  in a 

Taylor series about  0, 
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     

 

2
2

0 02

0

d 1 d

d 2 d
1

,
gv

       
 

  

     

  


 (2.29) 

and retain the leading-order terms to obtain the coupled mode equations in the time domain as 

 

1
i 0

1
i 0

f f
b

g

b b
f

g

A A
A

z v t

A A
A

z v t





  
       
  

       

,

.

 (2.30) 

We define vg = d /d  as the group velocity  

2.2.1 CW solution in linear case 

In this section, we discuss the CW solutions of Eq. (2.25). We consider the following trial 
solution  

 
     
     

1 2

1 2

exp i exp i ,

exp i exp i ,

f

b

A z A qz A qz

A z B qz B qz

  

  



  (2.31) 

where q needs to be determined from the boundary conditions. The quantities A1, A2, B1 and 
B2 are constants. The trial solution is a true solution of Eq. (2.25) only if the following four 
relations are valid: 

 
   
   

1 1 1 1

1 2 2

, ,

, .

q A B q B A

q B A q A B

   

   

    

     2

2

 (2.32) 

These equations are satisfied for nonzero values of the constants A1, A2, B1 and B2 if the pos-
sible values of q obey the dispersion relation (see Figure  2-2) 

 2 2 .q     (2.33) 

The above expression gives the dispersion relation of the grating in a 1D infinitely long struc-

ture. The stopband is defined by  ≤  (see Figure  2-2). A signal at any frequency lying in 

the stopband is unable to propagate inside the structure, thus the structure is “opaque” to the 
incoming signal. In other words, the propagation constant of the field inside the stopband is 
imaginary leading to the decay of the incoming radiation along the direction of propagation. 

For   , waves can propagate, and the grating is “transparent”. In Figure  2-2 the dotted 

lines represents the situation for free photons; they can be obtained by inserting  = 0 in Eq. 

(2.33). 
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Figure  2-2 : Dispersion relation of a linear periodic structure, Eq. (2.33). The solid line represents 

the band diagram of a period structure of infinite length. The dotted line represents the dispersion 

relation for the free photon. The region  ≤  defines the stopband. 

2

1
q

 
    
 

 

2

1
q

 
    
 

For a grating of finite length the situation changes but still maintains the same qualitative be-
haviour. In such a structure of length L one can calculate  [13] the reflectivity R and the trans-
missivity T utilizing Eq. (2.33), 

 

 
 

 
   

 
 

 

2 2

2 2

0 i sin
,

0 cos i sin

exp i
.

0 cos i sin

b

f

f

f

E qL
R

E q qL qL

E L q L
T

E q qL qL







 



 









 (2.34) 

The reflectivity and the transmissivity for the structures characterized by a grating constant 

 

Figure  2-3 : Reflection and transmission spectra for two values of L. The solid (red) curve is for 

L = 5, while the dashed (blue) curve is for L = 2. (a) Transmissivity. (b) Reflectivity. (c) Trans-

mission phase. (d) Reflection phase. 

 

L = 2 

L = 25 
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of L = 3 (blue dotted line) and L = 5 (red solid line) are plotted in Figure  2-3. We can see 

from the plots that as the grating constant L increases the transmissivity and the reflectivity 

curves become steeper near the transmission resonance (i.e., at T = 1 or R = 0). Moreover the 
peak reflectivity of the periodic structure at the Bragg frequency (the corresponding detuning 

coefficient is  = 0) approaches 100 % (as observed in a truly periodic structure). Specifically 

for L > 3 the reflectivity at Bragg resonance is above 99 %. The maximum reflectivity oc-

curs at the centre of the stopband ( = 0) and can be calculated using (2.34) as  

    2
max 0 tanh .R R    L

                                                

 (2.35) 

 

2.3 Nonlinear coupled mode equations (NLCME)  

The coupled mode theory (CMT) described in the previous sections can be easily extended to 
include nonlinearities. We start from the full nonlinear wave equation (2.16) with the nonlin-
ear polarization given by Eq. (2.12). In the following two subsections we present the deriva-
tion of the nonlinear coupled mode equations. Here we consider two different kinds of 
nonlinearities, i.e., Kerr-type nonlinearities, and carrier induced nonlinearity. 

For a material with odd inversion symmetry, the second order susceptibility coefficient χ 
(2) 

must vanish. This type of symmetry is observed for an isotropic material as well as for a large 
number of common crystals like Si and Ge. As SiO2 is a symmetric molecule, the same sym-
metry is observed for glass fibers. So for the device based on this kind of materials the leading 
nonlinear term is χ 

(3). This effect is also known as Kerr effect. In such materials the nonlinear 
effect is virtually instantaneous.  

We can have another class of nonlinearity due to injection of external charge carriers. With 
the injection of the external carrier the refractive index of the material changes and from the 
Kramers-Kronig relation it influences the imaginary part of the refractive index, which can be 

simply modelled introducing the Henry or alpha-factor H  [25]. This kind of nonlinearity is 

generally observed in semiconductor optical amplifiers. The injection of carriers induces a 
large change in the refractive index; hence a periodic structure made up of active7 elements 
will have higher nonlinearities, ~ 107 times higher in comparison to the Kerr-type material 
based passive optical devices  [50]. However, the carrier induced nonlinearity is limited by the 
bottle-neck of carrier relaxation. So we always have a trade-off between the higher nonlinear-
ity and speed limitations.  

2.3.1 NLCME for passive Kerr-type of devices 

In this section we derive the nonlinear coupled mode equation for Kerr-type nonlinear peri-
odic structures. We assume that the influence of the change of the nonlinear refractive index 
is sufficiently small in comparison to the background refractive index. This approximation 
leads to treat the nonlinear contribution as a perturbation; hence similar to the procedure de-

 
7 Active elements are defined as materials which show gain or absorption due to charge carrier injection. 
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scribed in Section  2.2 we start with the linear solution of the CME and introduce nonlinearity 
as a perturbation. So with the similar argument we can say, if the carrier frequency is suffi-
ciently far away from any material resonances, the susceptibility does not vary strongly with 
frequency. For this range, the waveguiding can be described by an effective index, which we 
assume to be frequency independent. This means the material dispersion is neglected, an as-
sumption which is justified provided the propagation length is sufficiently short, which is the 
case for all our devices. We only consider the leading order nonlinear term χ 

(3). With these 
assumptions, the nonlinear polarization (2.12) simplifies to 

      3 3
NL 0,P z t E z t  , ,  (2.36) 

The effective refractive index n in this case can be written as a function of the direction of 
propagation z, and of the magnitude of the electric field intensity I: 

    0 G 2

2
cos .In z n n z z n I

      
 (2.37) 

In the above equation the first term on the right-hand side is the linear refractive index. The 
second term gives the periodic variation of the refractive index in the direction of propaga-

tion, where we have considered only the dominant spatial component with period . The last 

term in equation (2.37) gives the contribution from the material nonlinearity, with nonlinear 
coefficient n2

I. The quantity n2
I is a measure of the nonlinear coefficient n2, expressed in units 

of intensity  [37] and can be explicitly written as  

  30
2

3
.

4
I Z

n
n

     (2.38) 

Here the quantity Z0 is the vacuum wave impedance. 

We do the same analysis as done for the linear case, i.e., we neglect any polarisation effects, 
and denote the slowly varying envelopes of the forward and backward travelling waves as Af 

and Ab, respectively. In the following, the carrier angular frequency is  0, k0 = n0 0/c is the 

propagation constant, kB = / is the Bragg wavenumber corresponding to the Bragg wave-

length B = 2n0 , and c is the speed of light in vacuum. The electric field inside the grating 

can be written as: 

 
         

 0

, , exp i , exp i

exp i   .

n f B b BE z t C A z t z A z t z

t

 



    
 

 (2.39) 

The normalization constant Cn is chosen such that A f, b2 gives the intensity of the forward and 

backward waves in units of W/cm2.  

Inserting the coupled mode ansatz (2.39) into equation (2.30) and neglecting all the terms not 
matched in phase, assuming weak nonlinearities, applying SVEA, and only keeping the lead-
ing order terms, we are finally left with 
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 
 

2 2

22

1
i i i 2

1
i i i 2

f f ,

.

f b f b
g

b b
b f b f

g

A A
f

b

A A A A
z v t

A A

A

A A A A A
z v t

 

 

 
      
 

 
      
 

 (2.40) 

Here vg is the group velocity, and the nonlinear coupling coefficient  is defined as: 

 22
.

I

B

n


   (2.41) 

The nonlinear terms with a factor “2” in front are the cross-phase modulation terms, while the 
other nonlinear terms are called self-phase modulation terms. While the above derivation of 
the coupled mode equations was more of an approximate approach, rigorous methods do exist 
and can be found in  [29]. Coupled mode theory can also be extended to deep gratings, where 

the assumption n G << n 0 no longer holds  [29]. The NLCME are useful in describing the re-

sponse of a finite-length structure, while avoiding the difficulties involved in solving the full-
vectorial wave equations. In general, the coupled mode equations must be solved numerically. 
Figure  2-4 shows the power dependent transmission curve of a periodic structure. With in-
crease in power the transmission curve move (see red curve Figure  2-4) to the lower fre-
quency side (or lower value of the detuning coefficient). It is observed that the transmission 
curve is mostly influenced near the transmission resonance.  

The nonlinear coefficient  (unit cm/W) can be related to the nonlinear coefficient  (unit 

1/(cm W)) defined with respect to the effective area of Aeff   [4] as 

 eff .A   (2.42) 

Here the effective area is defined as  [4] 

 

 

 

2
2

eff
4

, d d

.

, d d

F x y x y

A

F x y x y

 

 
 

 

 
 
 
 

 
 (2.43) 

Here F(x, y) is the transverse field distribution. The above definition is valid for a weakly 
guiding medium; for a high index contrast waveguide this definition should be modified to 
include the more accurate calculations  [36]. 
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Figure  2-4 : Power dependent transmission curve for a Kerr type nonlinear periodic structure. The 

solid (blue) line shows the transmission curve in the linear case, while the dotted (red) line shows 

the non-linear transmission curve. 

Non-linear 

Linear 

2.3.1.1 Scaling relations in nonlinear coupled mode equation 

The NLCME (2.40) remains unchanged if we choose any arbitrary scale factor of a1 and a2 
such that the following relations are valid  [68] 

 

1 1
1 1

2 1
2 , ,

2

, , ,

, .f b f b

z t
a a z t

a a

a
a A A

a

      

   





,

 (2.44) 

So if a simulation is performed with a certain value of L and L the same results can be ap-

plied to different structures using proper scale factors a1 and a2. 

2.3.2 NLCME for carrier induced nonlinearity 

In an active material like with a semiconductor optical amplifier (SOA) another type of 
nonlinearity is observed. Due to injection of carriers in a semiconductor this type of material 
offers gain to the incoming optical signal. In this section we derive the nonlinear coupled 
mode theory for carrier induced nonlinearity. 

We consider the equation (2.25) and (2.26), where the angular wavenumber  = nk0 contains 

contributions particular to active semiconductor media. In particular, the refractive index in 
SOAs is dependent on the carrier density N. To make this apparent, we express the effective 
refractive index n = nb + na by a background part nb and a contribution from the SOA active 

region na. Both the real na and imaginary na parts of na = na + i na depend on the carrier 

density. The Henry-factor H represents the ratio of the change in the real part of the refrac-

tive index na to a given change in the imaginary part na  is expressed as  [25]: 

 02a
H

a

n n
k

n g
 ,a 

  
 

 (2.45) 
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where we have introduced the power gain g = 2k0 na. Expanding the gain 

g = (d g/dN) [N  N0] and the refractive index n = n0 + (d n/dN) [N  N0] as linear functions of 

the carrier density N, evaluated at transparency N = N0, the factor becomes in the small 

signal case 

 
0

0

d d
2

d dH

N N

n N
k

g N




  .  (2.46) 

In the following we assume that H does not depend on the carrier density N0; this common 

approximation greatly simplifies the theoretical analysis of bistability  [2], but possibly hides 
actual behaviour since the carrier density can take on a range of values between transparency 
and lasing threshold during bistable switching. In any medium, the real and imaginary parts 
are coupled, and the strength of this coupling can be calculated using the Kramers-Kronig 
relations. In active semiconductors, this coupling is very strong; the gain saturation is accom-
panied by significant changes in the refractive index. In all the simulation results presented 

here we assume a constant factor. Though for ultra-fast nonlinearities in SOAs the as-

sumption of constant factor does not hold strictly  [74], we still assume it to be constant 

for simplicity. 

Changes in the refractive index with carrier density are most often attributed to a carrier-
induced shift of the gain spectrum, and gain compression. A change in carrier density also 
affects the refractive index through free-carrier absorption  [28], but this effect is usually 
dominated by the gain contribution. The refractive index also depends on temperature, but we 

operate at speeds (> 10 MHz) where sluggish temperature effects average out. We define  b 

as the background modal wavenumber, the wavenumber  for DFB SOAs can be written us-

ing the factor as 

   inti 1 i i
2 2b H

g
,

       (2.47) 

We can expand the background wavenumber b in a Taylor series about  0, and high-order 

terms are neglected since they produce little change for pulses passing through the small 

length (~ 300 µm) of the SOA. We can do the similar analysis as in section  2.2 and write the 

coupled mode equation in the time domain as, 

 

 

 

NL

NL

1
i i

1
i i

f f ,

,

f f b
g

b b
b b f

g

A A
A A

z v t

A A
A A

z v t

 

 

 
   
 

 
   
 

 (2.48) 

where, 

      NL NL inti 1 i i
2 2f b H

g
.

         (2.49) 

The detuning parameter can be defined similarly to (2.26) as 
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2 2 2

,b b
b B

B

n n n    
  

     


 (2.50) 

The gain term g in the time domain is evaluated at the optical-signal frequency  0, 

    conf mat conf 0, , , , , , ,.g x y z t g a N x y z t N        (2.51) 

We define conf as the optical confinement factor, and N0 is the transparency carrier density; 

a = dg/dN is the differential gain. 

2.3.2.1 Carrier density rate equation 

The carrier density N is the density of electron-hole pairs, and is based on the assumption of 
charge neutrality between the conduction-band electrons and valence-band holes  [6]. For time 
scales longer than the intraband relaxation time ( ~ 0.05 ps), the dynamics of the carrier den-
sity in both SOAs and semiconductor lasers has been modelled by a rate equation  [6] 

  0

d
.

d
cN J N a

N N I
t ed  
   


  (2.52) 

The right-hand side consists of various mechanisms that create or eliminate electron-hole 
pairs. The first term represents electrical injection of carriers, where Jc is the injected current 
density and e is the electric elementary charge. The second term accounts for spontaneous and 

non-radiative recombination mechanisms, where  is the carrier recombination lifetime. Al-

though this lifetime is dependent on the carrier density (through spontaneous emission and 
Auger recombination) we neglect this dependence to simplify our analysis  [46]. The final 
term accounts for stimulated recombination of electron-hole pairs by the optical signal, where 

 is the reduced Planck’s constant, and I is the optical intensity average over a few optical 

periods 2/. 



The spatial dependence of the intensity I along the propagation direction z is expressed by the 

total power at z,  2 2

f bA A   , the confinement factor conf and the active cross-sectional 

area Wd, namely 

  2 2conf ,f bI A A
Wd


   (2.53) 

where N is now understood to be averaged over  the transverse dimension, and the optical 

confinement factor conf and the mode cross section  are given in terms of the transverse 

field distribution F(x, y) by 

 

 

 

2

conf

0 0

2

, ,

, .

W d

dxdy F x y

dxdy F x y




 

 

 



 

 
 (2.54) 
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As the carrier density enters the coupled mode equations through the modal gain g, it is con-
venient to write the gain rate equation using (2.52) and (2.51) averaged over the active cross-
section as 

 0

d
1

d

g
g P

t
    .g    (2.55) 

The small-signal value of the gain is  0g conf 0 1caN J   , and 0cJ  es the cur-

rent density normalized to its value required to achieve transparency. The normalized optical 

power 

cJ edN  giv

P  is given by 

 
   2 2

sat
sat sat conf

,
f b

f b
A z A z P P Wd

P
P P

 


     



,P

a
  (2.56) 

where Pf =  |Af|
2 and Pb =  |Ab|

2 are the optical powers of the individual field envelopes, and 

Psat defines the saturation power. The gain rate equation (2.55) also provides the information 

about the phase change experienced by the signal via the H-factor. 

2.3.2.2 Small-signal steady-state solution for active waveguide grating 

The NLCME’s (2.48) for carrier induced nonlinearity can be simplified to a great extent for 
the small-signal case (i.e., for P << Psat) and for input signals that vary much slower than the 

inverse of the carrier lifetime , such that the steady-state is achieved. So in the steady-state, 

the small-signal approximation of the governing equation can be written from (2.48) and 
(2.55) as  

  0 1g g P  ,  (2.57) 

  NLd
i i

d
f ,f f

A
A A

z
   b  (2.58) 

  NLd
i i

d
b

b b f

A
A A

z
    .  (2.59) 

For sufficiently low power we can even write g  g0. With this simplification the gain de-

pendent detuning  NL
,f b  becomes a constant quantity independent of the input field intensities. 

So we can use the same analysis as used in Section  2.2.1 and the equations can be solved ex-
actly. Figure  2-5 shows the typical transmission curve obtained from the solution of the above 
equations for the parameters as described in  0. For g0 = 0, the solution exactly matches the 
solution for a passive linear device, which proves the validity of our formulation. 

18 



Chapter  2    Theoretical foundation 

 

Figure  2-5 : Small-signal transmission curve for an active DFB structure for different values of 

the length normalized gain g0L. 

 

2.4  Generalized coupled mode theory and the gain rate equation 

The similarity in the governing equation for two different types of nonlinearities as consid-
ered in previous sections leads us to formulate a general coupled mode equation, which can be 
used in describing the features of both type of nonlinearity in the same framework. We intro-

duce a forward  NL
f and backward nonlinear coupling coefficient as  NL

b  and write the gen-

eralized coupled mode equations and gain rate equations as  [16]: 
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b  (2.60) 

We define  
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(2.61) 

int is a linear loss term8. The equations above are useful in explaining the general features of 

nonlinearity in a periodic structure. We will be discussing these similarities in the subsequent 

chapters. Thus  NL
, 00, 0f b g    describes a linear periodic structure with no gain or loss. It is 

                                                 
8 The loss term has been phenomenologically added to account for loss mechanisms such as free-carrier absorp-
tion and scattering. 
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important to note that the nonlinear coupling coefficients  NL
,f b  contribute to the so-called 

self-coupling coefficient. So we can define an effective self-coupling coefficient eff , f  for the 

forward and eff ,b for the backward propagating waves as  

 
 
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NL
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NL
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,

.

f f

b bf
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  

 

 

b
 (2.62) 

These self-coupling coefficients are dependent on the input power as can be seen from Eq. 
(2.61). For a given average power in an active device these effective self coupling coefficients 
are same. With an increase in power (lower gain) the detuning coefficient shifts to a lower 
value (compare Figure  2-5).  

For a Kerr-type nonlinear medium this change is more complicated. The magnitude of the 
self-coupling is different for the forward and the backward propagating wave, as can be seen 
from the following equations 
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 (2.63) 

We can write the difference and mean value of the forward and the backward effective self-
coupling coefficient using (2.42)  
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f b f b
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  2 2

eff .T f bF A A A   (2.65) 
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 (2.66) 

  2 2

G eff .f bP A A A   (2.67) 

Here we have introduced the local transmitted flux (FT ) and the local power (PG) inside the 
grating. For some qualitative analysis we can see that for Kerr type nonlinearity the shift in 
the bandgap (related to the shift in the effective detuning coefficient) is different for forward 
and backward propagating waves. For materials with positive nonlinearity, i.e., 

, the relation 2 0 (In  0)
eff , eff ,b f   is valid for a positive-valued transmitted flux 

(FT > 0). The mean value of the effective self-coupling coefficients is found to increase with 
the power inside the grating (PG). 
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Nonlinear dispersion curve for Kerr-type gratings: To do some qualitative analysis in the CW 
limit we drop the time derivatives and we assume  

    exp i , exp i ,f f b bA u qz A u q  z  (2.68) 

where uf and ub are assumed to be constant along the grating length  [5]. Substituting (2.68) in 
(2.60) and defining u = ub /uf we get 
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

 (2.69) 

The above equations describe the nonlinear dispersion curves. In terms of the forward and the 
backward effective-self-coupling coefficients it can be similarly written as 

    2 2 0.f b f b
eff eff eff effq q           (2.70) 

We can see that for the linear case ( = 0) the effective self coupling coefficients are identical 

and the above set of equations reduces to expression (2.33) in the linear case. 

Figure  2-6 shows the different qualitative dispersion curves for different power levels for lin-
ear and nonlinear cases. The solid blue curve represents the dispersion diagram for linear case 
(e.g. see Figure  2-2), the blue dotted curves and the red curves are the nonlinear dispersion 
curves for low power and high power respectively. It can be seen from the curves that with an 
increase in power the dispersion curve shifts towards the lower frequency side and above 

some critical power level 2cP     [5] a loop is formed in the upper branch of the dispersion 

curve which gives the onset of the bistability. But it is to be noted that the critical power level 
calculated from (2.69) is not very accurate, due to the oversimplified approximation used in 
(2.68), nevertheless this analysis gives a qualitative understanding of the physics of nonlinear 
Kerr type periodic structures. 
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Figure  2-6 : Nonlinear effect on dispersion diagram of Kerr type nonlinear periodic structures for 

the linear case ( = 0) (see solid blue curves), and two nonlinear cases (  0) (see the dotted blue 

lines and the solid red lines). 

 

2.5 Summary 
In this chapter we have derived the nonlinear coupled mode equations describing nonlinear 
periodic structures starting from Maxwell’s equations. We have used the following assump-
tions in deriving those equations which are summarized as follows: 

 We have assumed a weakly homogeneous material. 

 The material dispersion is neglected in comparison to the grating-induced dispersion.  

 A weak nonlinearity is assumed so that it can be treated as a perturbation. 

 In the active medium the H factor is assumed to be constant 

As a new result we have introduced a generalised nonlinear coupled mode equation which is 
useful in describing the active and the passive periodic structure in the same framework. We 
will compare the effect from active and passive periodic structures in subsequent chapters. 
We have also introduced the effective self-coupling coefficients which have its usefulness 
when comparing with the linear model. This also helps in numerical simulation of the active 
and passive periodic structure using similar numerical techniques. The effective self coupling 
coefficient can be used in explaining the nonlinear change in the transmission. The different 
value of forward and backward effective self coupling coefficient for passive nonlinear struc-
ture leads to different qualitative behaviour of the bistable range of operations in comparison 
with the active device.  
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3 Analysis of uniform periodic structures 
In this chapter we discuss the steady-state and time dependent behaviour of uniform periodic 
structures. We discuss the physical process leading to bistable behaviour in the presence of 
nonlinearity. Different types of nonlinearity are discussed in the framework of a generalized 
couple mode theory [Section  2.4].  

3.1 Optical bistability: steady state analysis 

3.1.1 Introduction 

A system is said to be optically bistable if it has two stable output states for the same value of 
the input over some range of input values. The schematic representation of the input-output 
characteristic of a bistable system is shown by the blue line in Figure  3-1. The quantity ‘X ’ 
represent the input value (e.g. input intensity, wavelength, biasing current for an optical sys-
tem) and ‘Y ’ stands for the output value (e.g. transmitted intensity, reflected intensity, group-
delay). It is evident from the figure that for any input value X0, between Xup and Xdown, the 
system has two possible stable states Ylow and Yhigh. The unstable state of the system is shown 
by the blue dotted line in Figure  3-1. If the input quantity X is increased gradually from low to 
high value it follows the lower branch (region I in Figure  3-1) of the blue curve in Figure  3-1 
till it reaches the value of Xup. If the input quantity is further increased the output jumps to the 
upper branch (region II in Figure  3-1) and continue to follows the upper branch. On the other 
hand if the quantity X is initially at high value (> Xup), and we reduce it gradually it follows 
the upper branch of the blue curve till it reaches the value of Xdown and then folds back to the 
lower branch (see the down-arrow in Figure  3-1). So depending upon its history the system  

 

Figure  3-1 : Typical hysteresis curve with the different region of interest 

X down X up 

II 

I 
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preferentially stays either in the high (Yhigh) or in the low (Ylow) output state if the quantity X 
lies between Xup and Xdown. The extinction ratio for such a bistable structure can be defined as  

 
0

high

low

ER .
X

Y

Y
  (3.1) 

We describe this steady-state transfer function as a “hysteresis curve” until otherwise speci-
fied. This unique feature of bistability is of utmost importance in designing devices like all-
optical flip-flops  [16]  [18]  [26]  [48]  [49]  [56] and logic gates. They have potential application 
in the area of optical regeneration, decision circuits and in optical packet header processing. 
Bistability is observed in nonlinear systems with a feedback mechanism  [22]. The periodic 
structures considered in the previous chapters have an inherent feedback mechanism through 
Bragg reflection. In the following sections we analyze the steady state response of such 
nonlinear periodic structures. We discuss the physics of different types of optical bistability 
for different types of nonlinearity (2.60).  

3.1.2 Physical process of bistability in Kerr type nonlinear medium 

As discussed in Section  2.3.1 the refractive index at each point in the grating is modified by 
the field intensity I through the nonlinear refractive index coefficient n2

I,  

    0

2
cos .I

Gn z n n z z n I
      

2  (3.2) 

The intensity dependence of refractive index leads to the variation of the band edges and for 

some specific values of the signal detuning parameter ( ) the output intensity is bistable with 

respect to the input intensity.  

 

Figure  3-2 : Schematic diagram showing the stopband (shaded grey region) as a function of posi-

tion z inside the grating of length L. The solid lines (blue) depict the band edges for the grating. 

The dashed red line depicts the detuning parameter corresponding to the CW signal 

We consider an input signal with a frequency lying in the stop-band of the linear grating (i.e. 

for  < ). A schematic transmission curve near the transmission resonance is shown in 

Figure  3-3 (similar to the transmission curve in Figure  2-3 and Figure  2-4). Here we use a 
schematic approach to explain the bistable behaviour of the system. In the low intensity limit, 
the incoming wave intensity does not appreciably alter the refractive index of the medium, 
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and decays exponentially along the propagation direction. In a finite grating structure the ex-
ponential tail reaches the back of the grating, leading to nonzero but low transmission. So the 
amount of energy stored in the grating is quite small. With the increase in input intensity, the 
nonlinear contribution increases and the transmission resonance is shifted to the lower fre-
quency side (or to lower value of the detuning coefficient, see Figure  3-3). So the penetration 
depth increases resulting in an increase of the transmission coefficient. Signals at different 
detuning coefficients experience different transmissivity, and thus have different penetration 
depth inside the grating. So in the presence of nonlinearity different parts of the transmission 
curve are influenced differently leading to a considerable change in the slope of the transmis-
sion curve near the transmission maximum. This trend continues as the input intensity is fur-
ther increased until the up-switching threshold is reached, where the transmission resonance 
frequency nearly equals the signal frequency, and the slope of the curve becomes very steep. 
As a result, the internal optical intensity is increased even more via resonant field enhance-
ment, taking advantage of the steep slope. This leads to a positive feedback for the internal 
power which in turn moves the transmission resonance to lower frequencies than the signal 
frequency. This results in a jump in the transmitted intensity as shown at Xup in Figure  3-1.  

The reverse process occurs at the down-switching threshold. A gradual reduction of the input 
intensity shifts the transmission resonance to the higher frequency side (or higher value of the 
detuning coefficient) and the transmission resonance frequency returns back towards the sig-
nal frequency. A subsequent lowering of the incident intensity moves the transmission 
maxima to higher frequencies than the signal frequency, and hence the internal energy de-
creases and the system return to the low transmission state. So the bistable switching in a 
nonlinear periodic structure occurs via a positive feedback involving the intensity dependent 
refractive index, transmission, and the energy stored in the grating.  

 

Figure  3-3 : (a) Power dependent bend in the transmission curve as calculated from NLCME 

(same as in Figure  2-4) (b) Schematic variation of the transmissivity of the grating with different 

input intensities. The arrow indicates the direction of increasing input intensity from 

black → red → blue. The dotted green line depicts the detuning coefficient corresponding to the 

input signal. The slope of the curve also changes significantly with increasing input intensity. For 

the results from a detailed calculation see Figure  2-4 

(b) 

Non-linear 

Linear (a) 
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3.1.2.1 Elliptic function formalism for Kerr-type nonlinearity 

We calculate the steady-state intensity distribution along the NL-WBG using the methods as 
described by Winful et al.  [75]. This method exactly solves the steady-state NLCME in terms 
of elliptic functions and allows us to write a compact expression relating the input and the 
output intensity. If we consider the equilibrium state, where the intensity distribution inside 
the grating is stationary, the time dependent part of the NLCME (2.40) can be dropped and we 
can simplify those equations, 
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 (3.3) 

We separate the amplitude and the phase part of the forward and the backward field envelopes 

by Af = A+ exp(i +) and Ab = A– exp(i ). Substituting these expressions in Eq. (3.3) and 

equating the real and the imaginary part the following set of equations is obtained, 

  d
sin ,

d

A
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z
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   2d
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d
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z
A

  
             (3.7) 

Here the quantity  is defined as 2 z       . From the above set of equations we can 

find the following conserved quantities, 

    2 2
eff ,TF A A z A z      (3.8) 

          2 2
eff 2 cos 2 3 .G A A z A z z A z A z            (3.9) 

The quantity FT  is the transmitted flux as in Section  2.4 on page 19. The first conserved quan-
tity can be obtained in a rather simple way combining equation (3.4) and (3.5). The conserva-
tion of the transmitted flux FT in a lossless medium in the steady-state can also be predicted 
from Poynting's theorem  [30]. The second conserved quantity can not be understood intui-

tively. The two conserved quantities together with equation (3.4)(3.7) thus describe the 

nonlinear system. We further assume a non-reflective boundary condition at the interface 
at , i.e., z L

   0.A L   (3.10) 

With this assumption the transmitted flux can be written as 
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The above expression leads to a simplification of the conserved quantity G, 

 2 .TG F  (3.12) 

If we replace  using Eq. (3.4) then we can write,  
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 (3.13) 

We introduce a reference power by 2 2
eff 0 2 eff 04 (3 ) 8 (3c )A A n n L A n L    , and define the 

normalized flux for the forward wave as     2

cJ z A z A    , the normalized transmitted flux 

as 2
T T cF F A 
  . So Eq. (3.13) can be written in a normalized form as, 
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 (3.14) 

The above differential equation is the reduced form of the NLCME in steady-state. The inte-
gration of Eq. (3.14) is a standard elliptic problem whose solution depends on the parame-

ters . The solution, , TL L F   9 can be written in terms of the roots J i for i = 1, 2, 3, 4 of the 

polynomial P(J) on the right hand side of equation (3.14) as, 
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 (3.15) 

with the abbreviations 
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 (3.16) 

In general we can write, 

    f , , , TJ z L L L F    .

                                                

 (3.17) 

 
9 For more general description of elliptic function, see Byrd and Friedman [8] 
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The above function relates the input intensity in terms of the output intensity and thus gives 
the transfer function of a nonlinear periodic structure. In strict mathematical sense it is possi-
ble to invert the above equation to write the output as a function of input, but we avoid such a 
complicated method and rather calculate the input intensity for a given output intensity. This 
does not represent the actual physical situation, but is useful in calculating the hysteresis 
curves and analyzing the results. 

We consider a structure with L = 5 as the normalized coupling coefficient. In Figure  3-4 (a), 

we plot the relation given by Eq. (3.15), relating the input and output intensity, for a normal-

ized detuning parameter 0L = 4.75.  

We can do a similar analysis and calculate the reflectivity of the structure. The reflectivity of 
the structure also shows bistable behaviour as expected but the shape of the curve is different 
from the previous case. We plot the reflectivity of the same structure in Figure  3-4(b), for the 

same normalized detuning parameter 0L = 4.75 as before.  

 

Figure  3-4 : S-curves for L = 5,  0L = 4.75, L = 0.1 cm2/GW showing the dependence of (a) 

transmissivity, and (b) reflectivity on input intensity. 

Input intensity(L) Input intensity(L) 

(b) (a) 

3.1.3 Active device 

In this section we discuss the steady state analysis for a uniform periodic structure with a car-
rier-induced nonlinearity. For this class of nonlinearity we also observe optical bistability 
similar to that observed for Kerr-type nonlinearity. As discussed before carrier induced 
nonlinearity is ~107 higher than that in a Kerr-type medium. So we expect a much lower 
switching power for bistability than for a Kerr-type medium. 

3.1.3.1 Transfer matrix method (TMM) 

For steady state analysis we drop the time dependent terms both in the coupled mode equation 
and the gain rate equations and rewrite the GNLCME as in Eq. (2.60). We divide the grating 
length into M subsections. To obtain a unique solution, we reverse the direction of calcula-
tion. The fields at the input facet is calculated by inverted transfer matrices starting from the 
output facet  [47], 
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The quantity gm gives the gain in the mth section. The coefficients of the matrix T  can be 

found in see Appendix  B.1. Since these coefficients depend on the input fields we use an it-
erative approach (see Appendix  B.1) to find the stable solutions. To summarize the methods 
we use the following flow-diagram Figure  3-5 to calculate the steady state response.  

 

Figure  3-5 : Flowchart for calculation of the field distribution using TMM for active device. 
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3.2 Optical bistability: Time dependent analysis 

The steady state solution of the GNLCME in the previous sections give a good understanding 
of the bistable device operations, but this analysis relies on CW input signals. Here we ex-
plore the temporal dynamics and pulse propagation through the nonlinear waveguide Bragg 
grating (WBG). Time dependent simulation gives a rich variety of phenomena which cannot 
be observed from the steady state solutions. 

 

Figure  3-6 : Schematic waveguide Bragg grating. 

3.2.1 CW signal propagation in a Kerr-type medium 

We numerically study the time dependent solution of the nonlinear coupled mode equations 
using an implicit finite-difference scheme (see Appendix  B.3). In the schematic waveguide 
Bragg grating as in Figure  3-6, a continuous wave is incident from the left end of the WBG, 
i.e., at z = 0. The boundary conditions are 
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 (3.19) 

In our calculations the input signal is not applied instantly to avoid numerically generated 
shock  [61]. Rather, we gradually increase the transition from A0(0) = 0 to A0(2Tr) = A0 using a 
smooth transition function given by a 9th order polynomial. All time units are expressed in 
terms of the transit time Tr = L/vg of the signal through the device, and all the intensities are 

expressed in units of (L) 
1. In all the results that follow, we use a uniform grating with 

L = 5, L = 0.1 cm2/GW as described in  [38] [67] [69] for a silica based fiber. We have used 

the detuning coefficient 0L = 4.75 unless otherwise specified. The detuning coefficient is 

chosen such that the device is in a low transmitting state (18 dB) in the linear case (see red 

dashed line in Figure  3-7). The grating’s transmission resonance at the detuning coefficient of 

 L = 5.9 is marked by a dashed green line. These results can also be used to describe devices 

with different nonlinearities and other material parameters with suitable scaling relations (see 
Section  2.3.1.1 on page 15). The hysteresis curve calculated from the steady-state solution for 
the same set of parameters is given shown before in Figure  3-4. 

The refractive index at each point in the grating is modified by the field intensity through the 
nonlinear refractive index, which leads to a variation of the band edges. We will refer to the 
modified (detuned) band edges as the local band edges in the following. Different regions of 
the bistable curve can be understood by considering the dynamic behaviour of these local 
band edges within the grating. 
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Figure  3-7 : Linear transmission curve showing the operating frequency (normalized detuning 

coefficient) and the transmission resonance. 

In Figure  3-8(a) and (b) we plot the time dependent changes of the transmissivity and reflec-
tivity of the WBG for different intensities of the input CW signal. As discussed in Section 
 3.1.2 in the low intensity limit, an incoming signal does not appreciably alter the position of 
the local band edges, and decays exponentially (see red curve in Figure  3-9(a)) if its fre-

quency lies within the stopband ( < ). In a finite grating structure the exponential tail 

reaches the back of the grating, leading to non-zero but low transmission. In this region the 
influence of the material nonlinearity on the transmission is very small. To quantify this we 

start at an arbitrarily chosen low normalized intensity of A0
2

 L = 0.1. From our numerical 

simulation we found that for A0
2

 L = 0.1 the output settles down at a state of low transmis-

sion after an initial jump (see red curve in Figure  3-8). The transient behaviour for the linear 
case is plotted by the dashed black line in Figure  3-8. At low intensity levels the linear and the 
nonlinear curves are almost indistinguishable.  

  

Figure  3-8 : Time dependent (a) transmissivity and (b) reflectivity curve for a normalized detun-

ing coefficient of  0L = 4.75, L = 0.1 cm2/GW. In both the curves the dashed black line repre-

sents the results for the linear case; the red curves represents the results of the nonlinear case with 

normalized input intensity of A0
2L = 0.1; the blue curve represents the results of the nonlinear 

case with normalized input intensity of A0
2L = 0.256. The time is expressed in units of the transit 

time Tr of the signal through the device. 

(b) (a) 
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With the increase in input intensity, the local band edges are shifted to a lower frequency and 
so the penetration depth of the signal into the stopband increases, leading to an increase in the 
transmission coefficient.  

For an input intensity above the up-switching threshold (e.g. A0
2

 L = 0.256), the nonlinear 

contribution dominates and a peak in intensity develops near the front of the grating, due to a 
large local shift of the stopband. In the time domain, this peak in intensity moves towards the 
centre of the structure and shows a relaxation-oscillatory behaviour before finally stabilizing 
around the centre of the grating, as seen in Figure  3-9(b). The transmissivity and reflectivity 
also shows similar relaxation-oscillatory behaviour before stabilizing at a constant value (see 
the blue curve Figure  3-8). The amount of energy stored in the grating in this case is signifi-
cantly larger than that stored in the low-transmission case. The steady-state intensity distribu-
tion for such case is shown in Figure  3-9 (a). 

 

 

Figure  3-9 : (a) Steady-state power distribution inside the grating; the red and the blue curves are 

for a normalized detuning coefficient of  0L = 4.75, L = 0.1 cm2/GW with normalized input 

intensity of A0
2L = 0.1, and A0

2L = 0.256 respectively. (b) Temporal and spatial variation of 

intensity inside grating for a normalized input intensity A0
2L = 0.256. (c) Temporal and spatial 

variation of flux density inside the grating for a normalized input intensity A0
2L = 0.256. The 

time is expressed in units of the transit time Tr of the signal through the device. 
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It can be shown from the NLCME (2.40) that the following relation is valid 
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.
gT

P vF

z t


 

 
 (3.20) 

The quantity FT is the transmitted flux, and the quantity PG is the local power inside the grat-
ing as defined before as in Section  2.4 on page 19. The above equation can be interpreted as a 
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continuity equation. The term on the left hand side represents the transmitted flux, while the 
expression on the right hand side represents the rate of decrease of energy inside the grating. 
As the system evolves in time there is a dynamic exchange of energy between the material 
and the field leading to a relaxation oscillatory behaviour of the output. In the steady state the 
time derivative on the right hand side becomes zero leading to constant flux inside the grating. 
In our numerical simulation we consider the system to be in a state of dynamic equilibrium 
when the transmitted flux becomes constant. The temporal dynamics of the transmitted flux 

for normalized input intensity of A0
2

 L = 0.256 is shown in Figure  3-9 (c). We observe a re-

laxation-oscillatory behaviour which finally settles down to a constant flux distribution inside 
the grating. 

As the input intensity is increased (e.g. A0
2

 L = 0.484), the local upper-band edge continues 

to shift to lower frequencies, and even more power is coupled to the grating. The increased 
power in the grating is then released in terms of a pulsating output as can be seen from Figure 
 3-10 (a). A strong relaxation oscillation is observed in this case. For as increased input power 

of A0
2

 L = 0.676 the output becomes nearly periodic and we can observe strong pulsating 

behaviour due to modulation instability. The pulsation frequency depends upon the input in-

tensity and the detuning coefficient 0L associated with the input CW signal frequency (see 

the blue and the red curve in Figure  3-10(a) and (b)). The energy distribution inside the grat-
ing varies faster than in the low power cases (compare Figure  3-9(b) and Figure  3-10 (c). 

  

 

Figure  3-10 : Time dependent transmissivity showing pulsating behaviour for a normalized input 

power of (a) A0
2L = 0.484; (b) A0

2L = 0.676. In both cases the red and blue curves are for a 

normalized detuning coefficient of  0L = 4.75 and  0L = 4.85 respectively. (c) Temporal and 

spatial variation of intensity inside grating for a normalized detuning coefficient of  0L = 4.75. 

The time is expressed in units of the transit time Tr of the signal through the device. 
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3.2.2 Pulse propagation in a Kerr-type grating 

We now extend our study from CW signals to pulses of finite duration. We choose the same 

parameters of the grating as before with L = 5, L = 0.1 cm2/GW, and a normalized detuning 

coefficient 0L = 4.75, corresponding to the central frequency of the pulse. Due to finite 

bandwidth of the signal pulse the different frequency components of the signal experience 
different transmission slopes as can be seen from Figure  3-7. We plot the temporal dynamics 

of different Gaussian pulses with normalized peak intensity A0
2 = 0.4 / (L), and with differ-

ent FWHM, in Figure  3-11. The black curves represent the intensity of the input Gaussian 
pulse while the blue curve represents the transmitted (reflected) pulses in the left (middle) 

column. All intensities are normalized to A0
2

 L = 0.4. The corresponding transverse variation 

of the intensity distribution inside the grating for different values of pulse FWHM are de-
picted the right column of Figure  3-11.  

For a very narrow temporal pulse the spectrum is large in comparison to the grating stopband, 
and thus for such a pulse the grating acts as a nonlinear filter. For a pulse with FWHM of Tr 
the input pulse is mostly reflected and the pulse shape is distorted due to nonlinear filtering. 
The peak of the transmitted pulse is delayed as can be seen from Figure  3-11(a-I). As the 

temporal pulse width is increased to 20Tr (33Tr) the spectrum becomes narrower and the 

effect of the bandgap becomes increasingly important. With the increase in temporal pulse 
width thus the signal resembles more and more the behaviour of a CW signal (compare with 
Figure  3-8 and Figure  3-11 (II) & (III)) and it shows strong relaxation oscillation in transmis-
sion (see Figure  3-11(a-II) – (a-III)) and reflection (see Figure  3-11(a-II) – (a-III)). A sharp 
switching threshold is also observed from Figure  3-11 (b-II) – (b-III). The corresponding dy-
namics of the intensity distribution inside the grating is depicted in Figure  3-11 (c-II) – (c-
IIII). 

We now inject a very long temporal pulse (FWHM of 103Tr), which essentially behaves as a 

quasi-CW signal with respect to the grating’s transmission spectrum. The corresponding 
transmitted and the reflected signal are plotted in Figure  3-11 (a-IV) and (b-IV), respectively. 

We observe that above a certain normalized input power of A0
2

 L = 0.256 the device jumps 

to a high transmitting state (see the green dashed line in Figure  3-11(a-IV) and (b-IV)). This is 
comparable to the up-switching threshold obtained from the CW calculation (see blue curve 
in Figure  3-8(a)). The device stays in the high transmitting state even after the power is re-

duced below A0
2

 L = 0.256. The device finally switches to the low transmitting state around 

A0
2

 L = 0.1, which corresponds to the down-switching threshold (see the red dot line in 

Figure  3-11 (a-IV) and (b-IV)). This shows that the system has a memory and the term hys-
teresis used previously is justified here. We see that in the high transmitting state certain 
amount of energy is stored inside the grating, and the power distribution resembles the power 
distribution inside a linear grating at transmission resonance. From the time dependent calcu-
lation we can extract the information about the hysteresis curve as shown in Figure  3-12. A 
transmissivity of one is obtained near the down-switching threshold. 
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Figure  3-11 : Propagation of Gaussian input pulse in a nonlinear waveguide Bragg grating with L = 5, 

L = 0.1 cm2/GW for a normalized detuning coefficient  0L = 4.75 corresponding to the carrier fre-

quency of the pulse. The black lines show the input Gaussian signal. The blue lines in the left and the 

middle column show the transmitted and reflected intensities, respectively. The column on the right 

shows the corresponding temporal and spatial intensity variation inside the grating. Different rows repre-

sent different pulse FWHM (I) FWHM = Tr; (II) FWHM = 20Tr; (III) FWHM = 33Tr.; 

(IV) FWHM = 103Tr. In (I) the pulse is spectrally much wider with respect to the grating’s stopband; 

hence the grating acts as a nonlinear filter. As the spectra of the input signal become narrower from top to 

bottom the signal more and more resembles a CW like behaviour; moreover the average power of the 

pulse increases from top to bottom. Increase in the average power induces a large nonlinear shift of the 

bandgap of the grating and hence the input field penetrates deeper into the structure. The horizontal green 

dashed line in (IV) represents the up-switching threshold 0.256/(L) of the device. The green (red) dot 

represents the up (down)-switching threshold. The time is expressed in units of the signal’s transit time Tr 

of the signal through the device. 
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Moreover by increasing the pulse width the average power of the pulse is also increased. In-
creasing the average power of the pulse in turn induces a large change in the bandgap due to 
nonlinear effects and hence the field penetrates deeper inside the grating structure. 

3.2.3 Bistability and comparison with quasi-steady state calculation 

To test the accuracy of our time dependent model we made a comparative study with the ac-
curate steady-state calculation using elliptic functions. In our calculations a long Gaussian 

pulse of FWHM of 103Tr (same as in Figure  3-11(IV)) is launched. For such a long pulse the 

signal behaves essentially as a CW signal. From the transmission signal it is possible to calcu-
late the bistable curve of such a device for that detuning coefficient. The result of this calcula-
tion is depicted by the black curve in Figure  3-11. Earlier we have calculated the bistable 
curve for the same device for the same operating condition from the steady-state analytic cal-
culation (see Figure  3-4(a)). The bistable curve calculated from the steady-state analytic cal-
culation is again plotted (see the green dashed line) in Figure  3-11. The bistable curves calcu-
lated from two different method show excellent agreement as can be seen from Figure  3-11. 
The discrepancy near the up-switching threshold occurs due to the strong relaxation oscilla-
tory behaviour observed when the device changes from the low to the high transmitting state. 
If we use a pulse with longer duration, this deviation reduces. This agreement validates our 
numerical simulation of NLCME. 

 

Figure  3-12 : Input-output bistable curve with L = 5,  0L = 4.75, L = 0.1 cm2/GW. The green 

dashed line shows results from the calculation in steady-state while the black solid line shows the 

results from the time dependent calculation, which shows a transient at the up-switching threshold. 

Input intensity(L) 

3.2.4 Flip-flop operation for a passive device 

The bistability of the output power with respect to the input power of a nonlinear waveguide 
Bragg grating can be utilised for an all-optical flip-flop (AOFF). Figure  3-13 shows a sche-
matic operation of such an all-optical flip-flop. We consider a CW holding beam with certain 
input power near the centre of the bistable region (see the solid line in Figure  3-13). At this 
operating point the device has two possible output states defined by Pon and Poff. By modulat-
ing the holding signal we can switch the state of the device from low to high state and vice 
versa. Instead of modulating the input CW signal directly it is also possible to perform an 
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AOFF operation by injecting a positive10 (or negative) SET (or RESET) control pulse with 
same central frequency as of the CW signal.  

 

Figure  3-13 : Schematic flip-flop operation by modulating input signal. 

 

 

Figure  3-14 : Schematic flip-flop operation with co-propagating SET and counter propagating 

RESET signal. 

Here we propose a new scheme for AOFF operation where the SET and the RESET signals 
are injected from the front (i.e., at z = 0) and back (i.e., at z = L) of the grating. Thus in this 
scheme the holding beam and the SET signals are co-propagating inside the device, while the 
RESET signal is counter-propagating with the holding beam (see Figure  3-14). In this scheme 
the so called negative RESET pulse is not needed.  

We consider a case in which a CW holding beam with normalized intensity A0
2
 L = 0.196 

and detuning coefficient 0L = 4.75 is injected from the left of the AOFF device. Now we 

inject a sequence of input pulses (see Figure  3-16(a)) from the left side, co-propagating with 
the holding beam. From the right side we inject a sequence of input pulses (see Figure  3-16 
(b)), counter-propagating with the CW holding beam. The co-propagating signal applied from 

                                                 
10 The positive and negative are referred relative to the CW input power.  
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the left side is used for the ‘SET’ operation, i.e., to change the transmission of the device from 
low to high. The counter-propagating signal applied at the right side is used for the ‘RESET’ 
operation, i.e., to change the transmission of the device from high to low. We consider the 

SET and the RESET pulse as a Gaussian pulse of peak intensity Amax
2

 L = 0.36 and FWHM  

To understand the working principle of this scheme we look the field distribution inside the 
grating in the high transmitting state (similar to Figure  3-9 ) in Figure  3-15.(a) The green ar-
row indicate local minimum near the front end of the grating (i.e., at z = 0). If we inject a RE-
SET pulse from the forward direction it in turn moves this minimum towards the center of the 
grating. We now consider a counter-propagating RESET signal which is injected from the 
back of the grating. With this injection the local minima moves towards the front of the grat-
ing and if the input power is sufficient enough it pushes the minima out of the grating leading 
to a transition to the low transmitting state. We depict the schematic of the temporal and spa-
tial distribution of intensity inside the grating in Figure  3-15(b) the horizontal arrow indicates 
the temporal location of counter-propagating RESET pulse. We see this counter-propagating 
pulse sweeps away the energy stored in the grating towards the front end. This type of RESET 
operation is only possible with a counter-propagating signal.  

 

 

Figure  3-15 : (a) schematic intensity distribution inside the grating in the high transmitting state. 

The green arrow indicates the location of local minimum. (b) The temporal and spatial dynamics 

of the intensity distribution inside the grating during the RESET operation the magenta arrow 

indicates the time at which the RESET signal enters the device  

(a) 
(b) 
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Figure  3-16 : AOFF operation with co-propagating SET and counter propagating RESET signals. 

SET and RESET signals are Gaussian pulses of peak intensity Amax2 L = 0.36, FWHM of 15Tr 

and pulse repetition rate of 75Tr. All signals (SET, RESET, and CW) are at the same frequency 

(the corresponding detuning coefficient is  0L = 4.75). (a) SET signal. (b) RESET signal. (c) 

Transmitted signal. (d) Reflected signal. The transmission (or reflection) state of the device 

changes from low to high (or from high to low) in presence of SET signal. The reverse happens in 

presence of a RESET signal. (e) Temporal and spatial variation of intensity distribution inside 

grating. In presence of the SET signal the device moves from the low to the high transmission 

state, having more energy stored in the grating. In presence of the RESET signal the device moves 

from the high to the low transmission state, having less energy stored in the grating. The time is 

expressed in units of the transit time Tr of the signal through the device. 
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of 15Tr and pulse repetition rate of 75Tr. All signals (SET, RESET, and CW) are at the 

same frequency (the corresponding detuning coefficient is 0L = 4.75). Figure  3-16 (c) shows 

the transmission, while Figure  3-16 (d) shows the reflection of the AOFF. It can be seen that 
the device stays in its high (low) transmission state even after the SET (RESET) pulse dura-

tion. The transition from the low to the high transmission state has 5.5Tr switching time and 

around 25Tr of ringing time. The transition from the high to the low transmission state has 

6.6Tr switching time with almost zero ringing time. Figure  3-16 (e) shows the corresponding 

dynamics of the power distribution inside the grating. In presence of the SET signal the de-
vice moves from the low to the high transmission state, having more energy stored in the grat-
ing. In presence of the RESET signal the device moves from the high to the low transmission 
state, having less energy stored in the grating. 

To get some actual device parameters and to estimate the actual power and time scale for such 

an operation we consider an InP based device with L = 5, L = 600 µm. The power for the 

CW signal is calculated to be 85 mW and the peak power of the SET/RESET signals are 
15 mW, and the transition time for up-switching (down-switching) is 36 ps (42 ps). The 
power levels are still high for realistic device applications. The high switching power can 
however be reduced using highly nonlinear materials or by proper designing the geometry of 
the device. In chapter  5 we will discuss a possible method to reduce the threshold switching 
power. 

3.2.5 Flip-flop operation for an active device 

In this section we discuss the flip-flop operation in a semiconductor optical amplifier based 
distributed feedback (SOA-DFB) structure. We use the so-called transfer matrix method 
(TMM) (see Appendix  B.1) as discussed by  [47]. This method relies on an iterative solution 
of GNLCME, Eq. (2.60), using transfer matrices. 

As introduced before flip-flop operation of a bistable device can be done by modulating a 
holding beam (signal) power (see Figure  3-13). We consider AOFF operation in SOA-DFB 

using signals at same wavelength for the following device parameters: L = 300 µm, L = 3, 

g0L = 1.2. All the signals (CW holding beam and the SET/RESET signal are at identical nor-

malized detuning coefficient of 0L = 6.76. The CW holding beam power is 20 µW. Super 

Gaussian (of order two) SET/RESET signal pulses with FWHM of 2 ns are used. The corre-
sponding input and output powers are plotted in Figure  3-16 (a) and (b) respectively. Compar-
ing with the passive structure (as in the previous section) we see that by using an active me-
dium the switching power is substantially reduced. However the switching operation is rather 
slow and is limited by the carrier lifetime of the material. 
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Figure  3-17 : AOFF operation in SOA-DFB using signals at same wavelength for the f device 

parameters L = 300 µm, L = 3, g0L = 1.2. All the signals (CW holding beam and the SET/RESET 

signal) have an identical normalized detuning coefficient of  0L = 6.76. The CW holding beam 

power is 20 µW. Super Gaussian of order two SET/RESET signal pulses with FWHM of 2 ns are 

used. (a) The deviation from the mean holding beam power is 10 µW. (b) Temporal dynamics of 

the output power. 

 

Figure  3-18 : AOFF operation in SOA-DFB using signals at different wavelength for L = 300 µm, 

L = 3, g0L = 1.2. The CW holding beam power is 0.1 mW. Super Gaussian of order two SET 

(RESET) signal pulses with FWHM of 2 ns are used with peak power of 0.1 mw (1 mW). The 

detuning coefficient 0L = 1 (0L = 7.9) is used for the SET (RESET) signals, while for the CW 

signal the detuning coefficient is 0L = 6.56  

(b) (a) 

We now consider an AOFF operation using signals of different wavelengths as discussed by 
in Ref.  [48]. The working principle of such operation can be understood in a simplified way. 
The input signal is located inside the band gap of the structure close to the band edge. The 

SET and the RESET signal is situated far from the stop band at detuning coefficients 0L = 1 

(0L = 7.9) and hence are unaffected by the grating. The power of the holding beam is kept 

constant at 0.1 mW. The corresponding output is plotted in Figure  3-18. From the calculation 
we obtain that a smaller value of SET power is needed in comparison to the RESET power. 
The red dotted line shows the temporal dynamics SET signal while the blue dotted line shows 
the temporal dynamics of the RESET signal. The resultant output is plotted by a black line. 
By this process a larger dynamic range of the control signal can be chosen. 
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Figure  3-19 : Temporal dynamics of the low-to-high switching operation for the for L = 300 µm, 

L = 3, g0L = 1.2. with SET peak power of 1.2 mW. The dynamic shows that the output is latched 

to an intermediate state during the duration of the pulse and switches to the high transmitting state. 

To see the effect of the actual field dynamics we consider a multi-section time dependent 
model. We consider a super Gaussian pulse of order two with FWHM of 2 ns and plot the 
evolution of the transmitted and the reflected power in presence of the SET pulse in Figure 
 3-19. We observe that with the rising edge of the SET pulse both the transmitted and reflected 
power increases, and saturates at a power level (Pledge) and are latched there till the duration of 
SET pulse. With the decreasing edge of the pulse the transmitted and the reflected power start 
increasing again and saturate at the high transmitting state even after the Set pulse is gone. It 
was observed by Maywar et al.  [48] (but no physical explanation was given), that the ledge 
height decreases linearly with the SET power. To explain the phenomena we plot the hystere-
sis curve of the input signal in presence or absence of a constant SET power. The green curve 
in Figure  3-20 shows the bistable curve for the input holding beam. In presence of the SET 
power it is found that the bistable curve moves to lower power and the effective transmission 
at the operating holding beam power is reduced. Near the holding beam input power the black 
curve is almost linear and it moves almost linearly to the right with increasing SET power. So 
the ledge power should decrease near-linearly with the SET power. 
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Figure  3-20 : Steady state bistable curves for L = 300 µm, L = 3, g0L = 1.2. with SET peak 

power of 1.2 mW. with peak SET power of 1.2 mW. The green (black) curve is the bistable curve 

in absence (presence) of the SET pulse. 

3.3 Summary 

In this chapter we have described the steady state response of a nonlinear periodic structure. 
We have introduced the elliptic function formalism which gives an exact solution of the 
GNLCME for Kerr-type media. From the steady state solution we found that the output power 
shows bistable behaviour with respect to the input power. These types of device show a mem-
ory effect and a hysteresis, which have potential application for constructing all-optical flip-
flop and switches. Further we solve the nonlinear coupled mode equation numerically to study 
the temporal dynamics. The results from our time-dependent calculation are verified with the 
analytical solutions as obtained in the steady state. The operation principle of the all-optical 
flip-flop is described in this chapter for passive and active waveguide gratings. 

As a new result we have introduced a scheme of a co-propagating SET and a counter-
propagating REST signal with respect to the CW holding beam. This scheme gives more 
freedom to operation of all-optical flip-flops. In this scheme the so called negative RESET 
pulse is not needed. We have also described the near linear decrease of ledge height in flip-
flop operation with signals of different frequencies. 
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4 Novel isolator design 

In an all-optical fiber transmission several connectorized optical components are present, and 
various backscattered signals are generated from the end faces of these components. This 
scattered light can enter the source and destabilize it creating unwanted feedback. Optical 
feedback degrades the signal-to-noise ratio and consequently the bit-error probability (usually 
called bit error “rate” BER), thus resulting in poor transmission performance. Isolators are 
thus indispensable devices for eliminating these backscattering. Ideally, an isolator would 
pass all light in one direction and block all light in the reverse direction. The common isola-
tors explore the Faraday rotation in which the plane of polarization of a laser beam is rotated 
by 45° as it passes through a high Verdet constant11 material, positioned in an axial magnetic 
field produced by permanent magnets. This rotation is additive for reflections passing back 
through the isolator giving 90° difference between the input and reflected polarization states 
at the input to the isolator. An input polarizer will therefore reject the back reflections.  

High-speed and large-capacity optical fiber transmission systems are expanding, as a result of 
the development of optical amplifiers. But this leads to more backwards reflected power, 
hence the demand for optical isolators is also increasing. Demand is also expected to increase, 
as LAN and other subscriber optical fiber networks expand. It is therefore imperative that 
isolators and other optical components be further improved to achieve higher performance, 
compact size, and high integration density. The conventional isolators show extremely high 
isolation ratio but in general can not be integrated in a chip. So isolators which can be mono-
lithically integrated in a chip with other optical components are of high interest. Recently re-
searchers showed integrated AlGaInAs/InP waveguide isolators  [57] with 11.4 dB isolation 
ratio utilizing the magneto-optic Kerr effect. Though it is a promising candidate, it poses 
problems in fabricating permanent magnetic material with other components in an optical 
chip. In view of this we propose an alternative approach exploiting the axially asymmetries in 
non-magnetic nonlinear periodic structures, and hence explore an “optical diode”-like func-
tionality for active and passive devices in the following. 

4.1 General theory leading to nonreciprocal behaviour 

In this section we describe the general theory of a nonreciprocal device based on a simplified 
model of an asymmetric Fabry–Perot resonator (AFPR) with a nonlinear medium in the cav-
ity (see Figure  4-1). We assume that front and back mirror of an AFPR are linear, and have a 
constant reflectivity12 R1 and R2, respectively. For convenience we define the following pa-

                                                 
11 The Verdet constant is an optical constant that describes the strength of the Faraday effect for a particular 
material 
12 This simplified assumption does not strictly hold in the case of dielectric mirrors but this gives a reasonably 
good approximation for broad band mirrors considered here. Such mirrors are also influenced by nonlinearity but 
these effects are negligible near the Bragg wavelength of the mirrors as can also be seen from Figure  2-4. How-
ever, a more rigorous approach  [21] can be used in defining the reflectivities of the mirrors. In this case the cav-
ity length should be modified to include the effective penetration depth of the fields in mirrors  [28]. We ne-
glected these effects to keep a simple modelling approach in explaining the nonreciprocal phenomena. 
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rameters: L is the cavity length; 0 is the operating wavelength;  g is the total gain (or loss) 

coefficient, which is expressed as a sum of the linear absorption coefficient int and the 

nonlinear gain (or absorption) coefficient gL; is half of the cavity’s round-trip phase 

change, which is expressed as a sum of resonant phase res (corresponding to resonant wave-

length res), linear phase (corresponding to operating wavelength 0), nonlinear phase con-

tributions  NL; neff is the effective index of the waveguide, Reff is the effective reflectivity, and 

Leff is the effective length for nonlinear interaction.. The average power13 in the cavity is de-
fined as Pavg. With these definitions the reflectivity R, transmissivity T, and the power en-
hancement PE in the cavity of an AFPR are given by  
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where the quantities H, E, F, and  are defined as 
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Figure  4-1 : Schematic diagram showing a nonlinear periodic structure. The green and the red 

arrow indicates the left-to-right and right-to-left direction of propagation. . 

  

The transfer characteristic of an AFPR can be calculated from Eq. (4.1) and (4.2). The trans-

mission shows a resonance at  = res = m, were m is any integer. The quantity   is the phase 

detuning with respect to the phase res at resonance, i.e., it measures the frequency detuning 

from resonance res in absence of nonlinearity. The quantity F is related to the cavity finesse 

                                                 
13 For a detailed derivation of the average power in the cavity see ref.  [28]. 
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  (the cavity finesse is defined as the ratio of the resonance full width at half maximum to 
the free spectral range) as  
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The nonlinear contribution in the gain (or loss) term gNL and phase  NL are assumed to depend 

on the cavity power PAvg. We first discuss the linear case by neglecting any power depend-
ence of the gain (or loss) and phase. In the linear lossless (g = 0) case it can be seen from Eq. 

(4.1)  (4.5) that the transmissivity at resonance is T = 1 in the symmetric case (i.e., if 

R1 = R2), while it is T < 1 for an asymmetric case (i.e., if R1  R2). The resonance in both cases 

is at  =  res = m.  

  

Figure  4-2 : Variation of power enhancement (PE) in the cavity as a function of phase detuning . 

Linear lossless case, int L = 0, for different values of R1 = 0.99 (red), 0.85 (blue), 0.32 (magenta), 

with R2= 0.99. (a) LTR & (b) RTL propagations. 

(a) (b) 
LTR R2 = 99% RTL 

Linear lossless cavity: We first look at the effect of different mirror reflectivities on the linear 
transmission characteristics. We assume that the same input power is injected into the AFPR 
in left-to-right (LTR) direction (see the green arrow in Figure  4-1) or in right-to-left (RTL) 
direction (see the green arrow in Figure  4-1). Changing the launching direction of the input 

signal can be simply modelled by swapping the quantities R1 and R2 in Eq. (4.1)  (4.5). The 

calculated power enhancement in the cavity PE for the linear, lossless case, and for different 
combinations of R1 and R2 are plotted in Figure  4-2. Some observations can be made from the 

plots. (i) As the resonator becomes asymmetric (R1  R2) the PE at resonance decreases (see 

the PE at   in Figure  4-2. (ii) Interestingly the average power coupled to the cavity14 is 

different even if the same input power is injected from the LTR direction or from the RTL 
direction. The origin of this different average power in the cavity can be understood with the 

help of equation (4.3) and the quantity M therein. In the asymmetric case (i.e., R1  R2), inter-

                                                 
14 PE is a measure of the average power coupled to the cavity. 
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changing R1 and R2 leads to different values of M for different direction of propagations, lead-
ing to different average powers inside the cavity. Owing to the asymmetry of the structure, if 
the incoming signal sees a highly reflecting mirror first, most of the power is reflected, while 
in the reverse direction the same signal sees a low-reflecting mirror and can couple more 
power to the cavity. For a dielectric mirror the input field decays exponentially along the inci-
dent direction according to its associated penetration depth  [80]. Mirrors with different reflec-
tivities have different penetration depths, and the effective cavity length changes if the direc-
tion of incidence is reversed. However, the reflectivity and the transmissivity of the AFPR in 
this case are identical for LTR and RTL direction of propagation 

Linear lossy cavity: In the linear case with a lossy cavity the situation becomes different but it 
retains similar features, as can be seen from Figure  4-3. Here also the PE in the cavity is dif-
ferent for LTR and RTL propagating cases. The PE decreases with the increasing loss in the 
cavity. It is interesting to note that the reflectivity of the device is different for different  

  

Figure  4-3 : Variation of power enhancement (PE) in the cavity as a function of phase detuning . 

Linear case with linear loss coefficient, int L = 0.3, for different values of R1 = 0.99 (red), 

0.85 (blue), 0.32 (magenta), with R2= 0.99. (a) LTR & (b) RTL propagations. 

(a) 
LTR R2 = 99% RTL 

(b) 

 

R2 = 99% LTR RTL 
(a) (b) 

Figure  4-4 : Variation of reflectivity R of AFPR as a function of phase detuning . Linear case 

with linear loss coefficient, int L = 0.3, for different values of R1 = 0.99 (red), 0.85 (blue), 

0.32 (magenta), with R2= 0.99. (a) LTR & (b) RTL propagations. 

directions of propagation in this case (see (a) & (b)). This type of direction dependent reflec-
tivity is also predicted by others  [12]. So for identical incident powers the reflected power is 
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different in presence of loss if the device is asymmetric. However, the transmitted power is 
identical for LTR and RTL propagations. 

Non-linear lossless cavity: Now we focus on the case in which the material in the cavity is 
made out of nonlinear material. In such a case the refractive index and gain (or loss) of the 
material in the cavity is no longer constant but is dependent on the cavity power. As the aver-
age power in the cavity PAvg is different for different directions of propagation in the asym-

metric case (i.e., R1  R2), the nonlinearly induced change in the material properties (i.e., ei-

ther gain or phase or both, depending on the type of nonlinearity used) is different. This leads 
to a nonreciprocal transmission with respect to the direction of propagation. 

In view of the discussions in the previous paragraphs we can generalize the nonreciprocal 

phenomena. For any nonlinear resonator if any material or structural property (z)15 satisfies 

(z)  (z) then the inversion symmetry is broken and the average power coupled to the 

resonator is different for different direction of propagations. In presence of nonlinearity this 
leads to a nonreciprocal transmission with respect to the direction of propagation. 

This type of “optical diode”-like behaviour is also observed in different nonlinear resonator 
structure  [15] [16] [18] [20] [32] [41] [43] [45] [53] [62] [63] [73]. All of these apparently different 
structures have inherent violation of the inversion symmetry. This simple model of a nonlinear 
AFPR can describe these different observations in a same framework.  

Though we have used a linear resonator characteristics in explaining the non-reciprocal phe-
nomena, our arguments are valid even for the nonlinear cases. In the following sections we 
explore some detailed calculations on some specific type of nonlinearities. We have consid-
ered the following type of nonlinear media in the cavity:  

(i) Kerr-type material 

(ii) Semiconductor optical amplifier (SOA). 

We choose for our simulation a silicon-on-insulator (SOI) waveguide structure for the passive 
devices and InP based structure for active devices. The mirrors of the AFPR are realized by 
two distributed Bragg reflectors (DBR), with a sidewall corrugation  [18] (see Figure  4-5). We 
note that these dielectric mirrors show some wavelength dependence both in phase and ampli-
tude, but this dependence can be neglected near the sharp resonance of the AFPR considered 
here16. For lower values of reflectivities (~32%) we can use the Si-air interface at the 
waveguide end as cavity mirrors. Though we have chosen some particular material systems in 
our explanation, these results are also applicable to different material systems with suitable 
scaling relations. 

                                                 
15 The material property can be reflectivity or more generally a z dependent property of the coupling coefficient 

, the periodicity of the grating , biasing current density Jc for active devices, or the nonlinear coefficient  of 

the mirrors forming the resonator. 
16 See footnote [10] on page 45. 
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Figure  4-5 : Schematic waveguide structure with two sidewall corrugated DBR mirrors forming 

an asymmetric Fabry-Perot resonator. 

DBR 1 

DBR 2 

cavity  

RTL 

LTR 

4.1.1 Kerr-type nonlinear medium in the cavity 

In this section we explore the effect of Kerr-type nonlinear material in the cavity of AFPR. As 
discussed in Section  2.3.1 the refractive index of a Kerr-type material is modified with the 
intensity of the light. Here we considered the nonlinear contribution in phase due to self-phase 

modulation (SPM) and relate it to the nonlinear coefficient  according to the following ex-

pression  [5] 

 
 

NL Avg

Avg ref ref, with  1

P L

P P P L .

 





 
 (4.7) 

Here PAvg is the average power in the cavity (see Eq. (4.3)), which depends on the input 
power Pin. 

We consider a silicon-on-insulator (SOI) waveguide structure as shown in Figure  4-5. The 

nonlinear coefficient of such a material is  = 3.5 cm1W1  [36]. The waveguide has a width 

of 430 nm and a height of 220 nm. This type of high index-contrast waveguide structures 
shows high field confinement, leading to lowering the Aeff to a small value  [36]. The lower 
value of Aeff is favourable for enhancing the nonlinear effects. For this structure we consider 
Aeff = 0.05 µm2. By choosing different corrugation depths and lengths of the DBR section it is 
possible to engineer a suitable reflectivity of the mirrors. In all the results which follow the 

power is expressed in units of a reference power Pref = (L)1, which gives a scale factor and 

we can use the same results for different materials by changing this scale factor. The reference 
power Pref can be interpreted as the average cavity power PAvg required to introduce a nonlin-
ear phase shift of 1 rad. 
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The set of equations (4.1) to (4.5) can be solved numerically but here we discuss a graphical 
solution which helps in understanding the nonlinear behaviour of the AFPR. The nonlinear 

phase shift NL is dependent on the cavity power as expressed by Eq. (4.7). This expression 

together with Eq. (4.3) and (4.5) allows us to calculate the dependency of the average power 
in the cavity PAvg on a given input power PIn of the signal. We neglect any loss (i.e., g = 0), so 
that the coefficient M and F as in Eq. (4.4) are constant. The right hand side of equation (4.3) 
can be written as a function of the cavity power. It is plotted in dB scale in Figure  4-6 for two 

different values of the phase detuning  from the resonance phase res, namely  = 0 (see the 

red curve in Figure  4-6 (a)),  = 0.3 (see the blue curve in Figure  4-6 (b)) respectively. 

These curves are similar to the AFPR cavity PE spectrum (see Figure  4-2) considering the 
fact that the quantity in the x-axis represents the nonlinear phase term proportional to the av-
erage power PAvg through Eq. (4.7).  

The left hand side of (4.3) is a straight line (see black lines in Figure  4-6 (a), (b)) with its 
slope depending upon 1/PIn. However, we note that in the semi-logarithmic scale the straight 
line is distorted, which is necessary to get a large dynamic range. The intersection of this 
“straight line” with the cavity PE spectrum (see the filled and void circles in Figure  4-6) gives 
the solution of Eq. (4.3).  

  

Figure  4-6 : Graphical solution of equation (4.3) for a AFPR with R1 = 0.85, R2 = 0.95, 

L = 100 µm,  = 3.5 cm1W1
 in the lossless case intL = 0 for (a)  = 0 and (b)  = 0.3 The 

black dotted line is for the power corresponding to down-switching threshold, dashed line for the 

up-switching threshold, while the solid line corresponding to the power in the bistable region. 

Pref = (L) 1 

PIn=Pdown 

PIn=Pup 

Now we consider different values of the input powers PIn. At low input power both curves 
intersect at one point only leading to a single real solution of Eq. (4.3). As the input power is 
increased the slope of PAvg/PIn changes, and eventually the curves intersects the cavity PE 
spectrum at two points (see the filled circles at the intersection of black dotted line and blue 
curve in Figure  4-6(b)). In that case we have two solutions of Eq. (4.3). The corresponding 
input power gives the down-switching threshold. If we further keep on increasing the power 
the “straight line” intersects the cavity spectrum at three points17 (see the intersection of solid 
black line and blue curve in Figure  4-6 (b)), two of which give the two stable solution of the 
said equation, while the other gives as unstable solution. If we still keep on increasing the 
input power, the curves again intersect at two points (see the void circles at the intersection of 
                                                 
17 In general it can be multivalued but here we discuss only the first bistable region.  
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black dashed line and blue curve in Figure  4-6 (b)). The corresponding input power gives the 
down-switching threshold. Beyond this point we get again a single valued solution even if the 
input power is increased. So by changing the input power we can trace out an S-shape hys-
teresis curve.  

Some physical insight can be gained from this graphical solution. In the bistable region the 
cavity has two stable states: a) low cavity power for an off-resonance condition, and b) high 
cavity power for an on-resonance condition. At any temporal instance the device can be either 
in the state “on-resonance” or in the state of “off-resonance” as also described in Section 
 3.1.1. For different values of the phase detuning, the resonance peak of the cavity PE spec-
trum (see the blue curve in Figure  4-6 (b)) changes both in location and height. This leads to a 
change in the value of the switching thresholds. Also we can see that for certain critical values 

of the phase detuning  the solution of (4.3) is always single valued, whatever the input power 

may be. This is a common phenomenon is nonlinear resonators and is discussed by  [66] [77]. 

“AFPR” with inversion symmetry: We now specialize to the symmetric case of equal mirror 
reflectivity R1 = R2. We choose R1 = R2 = 0.99, 0.95, 0.90 and 0.75 respectively. In Figure  4-7 
we plot the dependence of the output power on the input power of the structures for LTR (see 
Figure  4-7 (a)), and for RTL (see Figure  4-7 (b)) propagating signals, with loss coefficient 

int = 1 dB/cm. We choose an operating point at a relative phase detuning of   = 0.1 . From 

these figures we cannot distinguish between the LTR or RTL propagating cases. This justifies 
our explanation of reciprocal transmission also in the case of a nonlinear resonator having 
inversion symmetry. 

  

Figure  4-7 : The variation of the output power with respect to the input power of an AFPR with 

L = 100 µm,  = 3.5 cm1W1, and R1 = R2 = 0.99 (red), 0.95 (blue), 0.90 (magenta) and 0.75 

(green), int = 1 dB/cm,  = 0.1 for (a) LTR and (b) RTL propagating signals. Pref = (L) 1. 

(b) LTR RTL (a) 

To generalise this we calculate the up-switching and down-switching thresholds for each 

value of the operating point PIn, and for two different linear loss coefficient (int = 0, 

int = 1 dB/cm), and both operation directions and plot in the Figure  4-8(B) and (b) for 

R1 = R2 = 0.99 and R1 = R2 = 0.95, respectively. The shaded region represents the bistable 
region bounded by the up-switching and the down-switching threshold. From this filled 
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curves we see that bistability is observed only below certain value of the phase detuning  
18. 

As mentioned before this feature is common to Kerr-based nonlinear resonators. 

 

Figure  4-8 : Variation of the input power and detuning (corresponding to the offset from fre-

quency resonance), specifying a bistable (shaded) region which is bounded by the up- and down-

switching thresholds for different reflectivity combinations, and for different linear loss coeffi-

cients. The left column shows the lossless case, int = 0 for (A) R1 = R2 = 0.99; 

(a) R1 = R2 = 0.95. The right column represents the lossy case with linear loss coefficient 

int = 1 dB/cm (B) R1 = R2 = 0.99; (b) R1 = R2 = 0.95. In all the curves the following device pa-

rameters are valid L = 100 µm,  = 3.5 cm1W1, the reference power is Pref = (L) 1.  
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AFPR without inversion symmetry: Now we consider structures in which the inversion sym-

metry is broken, i.e., in the case of R1  R2. We calculate the input-output characteristics for 

different reflectivity combinations, and for LTR and RTL propagation. We plot the up-

switching and the down-switching threshold for different values of   for the LTR and RTL 

direction of propagations of an AFPR in Figure  4-9. We observe that the transmission curves 
for LTR and RTL propagation deviate from each other as the asymmetry19 increases. Further 
we can see that for certain range of the input power and operating range the down-switching 
threshold of the RTL curve is higher than the up-switching threshold of the LTR curve. In the 
region in-between them the LTR path is always higher transmitting while the RTL path is 
always lower transmitting. In this region the device essentially work as an all-optical diode, 
which transmits the signal in the forward direction while attenuates the signal in the backward 
directions.  

                                                 
18 This can be seen as the point the up and the down switching threshold converge to a single point. 
19 We consider the structure to be more asymmetric if the value of R1 and R2 deviates stronger. 
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Figure  4-9 : Variation of the input power and detuning  (corresponding to the offset from fre-

quency resonance), specifying a bistable (shaded) region which is bounded by the up- and down-

switching thresholds. Lossy case, with loss coefficient int = 1 dB/cm, L = 100 µm, 

 = 3.5 cm1W1. The reference power is Pref = (L) 1. for (A) R1 = 0.99, R2 = 0.95; (B) R1 = 0.99, 

R2 = 0.90; (a) R1 = 0.95, R2 = 0.90; (b) R1 = 0.95, R2 = 0.85. The LTR and RTL propagating cases 

are depicted by green and red shaded areas, respectively. The marked regions show the isolation 

region.  
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In Figure  4-10 the RHS of (4.3) has been depicted for three different phase detuning parame-

ter  (i.e., for threes different frequency offsets from the resonance of the linear resonator). 

Again, the LHS of (4.3) has been depicted for an input power of PIn = Pref (see black dotted 
line in Figure  4-10). As can be seen by the different intersection points, the power enhance-
ment PE, the transmissivity T, and the reflectivity R are different for various input frequencies 

(phase detuning ). Similarly, LTR and RTL operation are different with respect to PE, R, and 

T. 

In Figure  4-11 the dependence of output power PTrans on the input power PIn is to be seen for 
various values of RTL and LTR operation. The up-switching and the down-switching thresh-
olds (as schematically marked in Figure  3-1 on page 23) are seen to be different for LTR and 
RTL operations, indicating a nonreciprocal transmissivity.  

We plot similar cases in Figure  4-12 considering linear loss int = 1 dB/cm  [28]. We found 

that with an increase in loss the peak of the cavity resonance decreases, which is accompanied 
by an increase of the down-switching threshold. This narrows the hysteresis. The separation 
of the LTR and RTL curves increases correspondingly (see Figure  4-13). However, the ex-
tinction ratio as defined by (3.1) of the each of the hysteresis curves decreases with the in-
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crease of loss. The up-switching threshold does not change significantly. So for a real device 
with non-zero but moderate loss, the non-reciprocal behaviour is enhanced. 

 

Figure  4-10 : Graphical solution of NL-AFPR for a specific input power of Pin = Pref (black dotted 

line) in absence of linear loss, int = 0 with R1 = 0.85, R2 = 0.95, L = 100 µm,  = 3.5 cm1W1 for 

three different phase detuning,  = 0 (red), 0.15 (blue), 0.3 (magenta). (a) LTR and (b) RTL 

propagating cases.  

int = 0 

 int = 0 

.  

Figure  4-11 : Bistable curves of a NL-AFPR in absence of linear loss, int = 0 with R1 = 0.85, 

R2 = 0.95, L = 100 µm,  = 3.5 cm1W1 for three different phase detuning,  = 0 (red), 0.15 

(blue), 0.3 (magenta). (a) LTR and (b) RTL propagating cases. The black dotted line correspond 

to a certain input power of Pin = Pref 

We plot the hysteresis curves for LTR and RTL propagating signals for a phase detuning 

 = 0.15 in Figure  4-14. The marked region shows the isolation region where the device 

shows high forward transmission (LTR) and low backward (RTL) transmissions. In this re-
gion the device works as an isolator. The maximum isolation ratio in this case is 6 and is rela-
tively low, but we can increase this ratio with a proper choice of nonlinear material and cav-
ity. 
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Figure  4-12 : Graphical solution of NL-AFPR for a specific input power of Pin = Pref (black dotted 

line) in presence of linear loss, int = 1 dB/cm with R1 = 0.85, R2 = 0.95, L = 100 µm, 

 = 3.5 cm1W1 for three different phase detuning,  = 0 (red), 0.15 (blue), 0.3 (magenta). (a) 

LTR and (b) RTL propagating cases. 

  

Figure  4-13 : Bistable curves of a NL-AFPR in presence of linear loss, int = 1dB/cm with 

R1 = 0.85, R2 = 0.95, L = 100 µm,  = 3.5 cm1W1 for three different phase detuning,  = 0 (red), 

0.15 (blue), 0.3 (magenta). (a) LTR and (b) RTL propagating cases. The black dotted line 

correspond to a certain input power of Pin = Pref . 

 

Figure  4-14 : Isolator behaviour for phase detuning  = 0.15 with parameter as on Figure  4-13. 

if the device is operated at input power lying inside the rectangular box, then for RTL operation 

the transmissivity T is low, and is high for LTR operation. 
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Effect of two photon absorption (TPA): In certain semiconductor materials two-photon ab-
sorption (TPA)  [36] contributes significantly to losses. TPA loss can be written similar to 
equation (4.7) as 

 TPA .NL Avgg P   (4.8) 

For silicon-based structures which we consider here we use  TPA ~ 1.58 cm-1W-1  [36]. We 

consider now the influence of TPA in the bistable characteristic of the AFPR. To find the 
relative effect of TPA it is instructive to define a figure of merit  [36] for TPA as 

 2
TPA TPA

2 T

FOM .
2 FOM

In 
  

 
PA

 (4.9) 

For silicon-based devices the FOMTPA varies from 0.35 to 1.56 as has been reported by  [36]. 
We use FOMTPA = 0.35 and discuss the same structures as before to see the effect of TPA on 
the isolation behaviour. 

 Neglecting the effect of TPA 

  

RTL 

P
In

 /
 P

re
f (

d
B

) 

LTR 

RTL 

P
In

 /
 P

re
f (

d
B

) 

LTR 

int = 0 int = 1 dB/cm (B) 
(A) 

 Including the effect of TPA 

  

Figure  4-15 : Influence of TPA on the transmission properties of a NL-AFPR. Variation of the 

input power and detuning  (corresponding to the offset from frequency resonance), specifying a 

bistable (shaded) region which is bounded by the up- and down-switching thresholds. with 

R1 = 0.85, R2 = 0.95, L = 100 µm. The red and green shaded region represents the bistable region 

for RTL and LTR propagating signals. TPA is neglected in (A) and (B) while in (a), and (b) TPA 

is included. The left column is for the lossless (linear) case, int = 0 dB/cm, while the right column 

is for linear loss of int = 1 dB/cm. Pref = (L)1 

LTR P
In

 /
 P

re
f (

d
B

) 

RTL 

LTR P
In

 /
 P

re
f (

d
B

) 

RTL 
(b) (a) 

57 



Chapter  4    Novel isolator design 
 

In Figure  4-15 we plot the variation of the input power and phase detuning, specifying a bi-
stable (shaded) region which is bounded by the up- and down-switching thresholds for differ-
ent linear loss. The upper boundary of the green (red) shaded area gives the up-switching 
threshold, while the lower boundary represents the down switching threshold, both for LTR, 
and RTL operations. The marked in-between regions in Figure  4-15 specify the region where 
LTR and RTL operation leads to a different transmissivity. We observe that in presence of 
loss the isolation region increases (compare Figure  4-15(A) with Figure  4-15(B)). We found 
that with stronger TPA in comparison to Kerr-effect, i.e., low value of FOMTPA the input 
power range showing isolation increases (compare Figure  4-15(A) and (a)). However the iso-
lation ratio is found to decrease.  

Simplified expressions for a cavity with large finesse : For a resonator with a large finesse 

the expressions 


(4.1) to (4.5) can be simplified near resonance assuming sin2   2, 

res = m . So we can write 

  21 sin 1F 2.F     (4.10) 

All the expressions (4.1) to (4.5) can thus be written in simplified form as  
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The expressions for reflectivity and transmissivity can be further simplified for the lossless 

case by eliminating   with res +  +NL, NL = L PAvg from Eq. (4.5), This results in a cubic 

equation in PTrans, 
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A so-called characteristic power is defined by 

 
 0 .
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L M F
  (4.15) 

The above expression (4.13) for the transmissivity resembles the expression described by Sol-
jačic´ et al.  [66]. We can see that we can associate different characteristic power for different 
directions of propagation because from Eq. (4.4) the quantity M is different for LTR and RTL 

propagations (i.e. by swapping R1 and R2). Hence this device with R1  R2 will show non-

reciprocal transmission/reflection behaviour if nonlinearity is present.  
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4.1.2 SOA type nonlinear medium in the cavity 

In this section we consider the SOA as a nonlinear medium in the cavity of an AFPR. Similar 
to the analysis in section  2.4  we can write the gain and the nonlinear phase in the cavity as 

 conf 0
NL

Avg sat

,
1+

g
g

P P


  (4.16) 
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Comparing with equations (4.7) and (4.8) we see that that the nonlinear contribution to the 
gain and phase depends differently on the power in the cavity. So we expect different influ-
ence on the input-output characteristics of the AFPR in comparison to the Kerr + TPA type 
nonlinear devices. Like before we define the scaling factor for power as Psat and all the results 
shown are in the normalized in units of Pref = Psat.  

We first consider the NLAFP with the cavity length of L = 300 µm, R1 = 0.85 and R2 = 0.95. 

Further we use conf = 0.25, alpha-factor H = 5, linear loss int = 50 cm-1. The gain is chosen 

to be 95% of the lasing threshold of the resonator. In Figure  4-16(a) we plot the variation of 

the input power and detuning  (corresponding to the offset from frequency resonance), speci-

fying a bistable (shaded) region which is bounded by the up- and down-switching thresholds 
of an NL-AFPR for LTR and RTL propagations. For this set of parameter values the shaded 

regions almost overlap for all values of the detuning  considered. However, for lower value 

of detuning we have a small separation between. The isolation ratio in this region is plotted in 
Figure  4-16(b). Here we found the maximum isolation ratio to be ~ 6.5. 

To see the influence of alpha factor H, we consider a low value of H = 1 keeping rest of the 

parameters same as before for LTR and RTL propagations are plotted in of Figure  4-16(c). 
For this case we found a large separation of the hysteresis curves showing a large isolation 
range. The corresponding maximum isolation ratio variation is plotted in Figure  4-16(d). The 
maximum isolation ratio is ~ 6 in this case but the isolation ratio variation with the detuning 
shows near flat top variation.  

To see the effect of the mirror reflectivity we now reduce the reflectivity of the front mirror 

R1 = 0.32. Here we consider the alpha-factor to be H = 5. The variation of the up- and down- 

switching threshold is for LTR and RTL propagations are depicted in Figure  4-16(e). Reduc-
ing the mirror reflectivity increases the asymmetry. So the hysteresis curves separates more 
from each other in comparison with Figure  4-16(a). The isolation ratio is found to be higher 
(~ 8) in comparison to the previous two cases. 
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Figure  4-16 :  Nonreciprocal behaviour of a SOA-based AFPR. The left column show the varia-

tion of the input power and detuning  (corresponding to the offset from frequency resonance), 

specifying a bistable (shaded) region which is bounded by the up- and down-switching thresholds 

of an NL-AFPR with SOA in the cavity. The right column show the corresponding variation of 

maximum isolation ratio with detuning . 

.  

(a) (b) 

R1 = 0.85, R2 = 0.95 RTL 
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LTR 
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4.1.3 Comparison of different types of nonlinearity 

In the previous two sections we have discussed the effect of two different types of nonlinear 
media in the cavity. Here in this section we want to make a comparative study of these two 
types of nonlinearities with devices having same length. First, we assume an InP SOA gain 

variation and amplitude-phase coupling via the Henry-factor H, but disregard other sources 

of nonlinearities. Second, we assume for a passive semiconductor that loss depends on TPA, 
and have a Kerr-type phase nonlinearity. The following parameters are used for actual power 
calculations:  

  (4.18) 

-1
conf 0

-1 4 2 -1
2 2

TPA sat

0.35, 300 µm, 150 cm , 1.54 µm,

5, 0.8 cmGW , 0.45 10 cm GW ,

FOM 0.35, 10 mW.

I
H

L g

n

P



  

    

   
 

In Figure  4-17(a) we plot the dependence of the nonlinear gain coefficient on the cavity 
power. Here we have assumed that the linear loss is zero. As expected the gain coefficient gNL 
decreases monotonously and approaching zero as shown by the red curve. The TPA-induced 

loss increases linearly with the cavity power. The variation of the nonlinear phase change NL 

in the cavity is also plotted in Figure  4-17(b) for a similar case. In the power range considered 
here the influence of the Kerr-effect induced phase change is relatively weak in comparison to 
the SOA type nonlinear medium. Comparing the different effects from Figure  4-17 we can 
conclude that the SOA-type nonlinearity is useful in designing a low power bistable device. 
The change of gain and phase are both strongly influenced by a small variation of the cavity 
power. Thus the input power required to observe switching operation can be further lowered 
by a suitable choice of resonator structures which can efficiently couple more power into the 
cavity. For a resonator of quality factor Q and volume V it can be shown that the switching 
power scales with (Q/V)  [77]. So a high-Q resonator with highly confined fields should be 
preferred. Photonic crystal based resonators can offer some of the best available solutions.  

 

(b) (a) 

Figure  4-17 : Influence of different types of nonlinearity on (a) the nonlinear gain/loss and (b) the nonlinear 
phase shift for different values of cavity power. 
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4.2 Asymmetric periodic structures 

In this section we discuss about the nonreciprocal phenomena of some complex structures. 
We focus the structurally variation properties of a periodic structures in which the inversion 
symmetry is broken in which case they behave in a nonreciprocal way.  

 

 

Figure  4-18 :  Different type of asymmetries in grating structures. (a) Stopband tapered; (b) 

Chirped; (c) Asymmetrically placed phase shifted structure. 

(c) 

(b) (a) 

In a periodic structure there are many possibilities to introduce asymmetry like a tapered peri-
odic structure (see Figure  4-18 (a)), chirp periodic structure (see Figure  4-18 (b)), or an 
asymmetrically placed phase shift (see Figure  4-18(c)). It is also possible to vary the nonlin-
ear coefficient along the length  [52],  [15], or to combine them. 

4.3 Stopband tapered waveguide Bragg grating  [16] [43] [44] 

 We consider a grating design of length L, where the effective refractive index n(z) changes 

both with z according to n(z) = n0 + nG(z) cos[(2 z /(z)) + (z)] (see Figure  4-18)  [42]. 

The grating amplitude nG(z) is varied linearly along z. From (2.27) we find that in this case 

the coupling coefficient  decreases linearly along the direction of propagation (see Figure 

 4-1). This leads to a linear decrease of the stopband along the direction of propagation, while 
the centre of the stopband remains constant at the Bragg wavelength. We define the tapering 

coefficient  for a grating of length L by the following expression: The coupling coefficient 

 is assumed to vary linearly as a function of z according to 

62 



Chapter  4    Novel isolator design 

    0 1 .
z

z
L

       
 (4.19) 

 

 

Figure  4-19 : (a) Stopband-tapered waveguide Bragg grating (ST-WBG) of length L. Schematic 

stopband dependence on z with band edges for uniform grating (–  –  –), and for ST-WBG (upper 

and lower boundaries of shaded region), and detuning parameter 0 of CW input signal (——). (b) 

Schematic ST-WBG with varying sidewall corrugations. 

Gratings for which  < 0 holds we refer to as negatively tapered (see the shaded region in 

Figure  4-19), while those for  > 0 holds are positively tapered. The case  = 0 gives the 

uniform WBG with no tapering (see the region between the dashed lines in Figure  4-19). Here 
we consider only negative tapering.  

4.3.1 Numerical simulations of an active structure  [43] 

We numerically study the steady state solutions of the generalized nonlinear coupled mode 
equations (2.60) and (2.61). For steady state calculation we have used transfer matrix method 
(TMM) (see Appendix  B.1 and  B.2). In this section we discuss the effect of stopband tapering 
in an active waveguide grating.  

We consider an InP-based WBG with n0 = 3.4, an effective cross section area 0.36 µm2, a 

length L = 300 µm, and a Bragg wavelength B = 1.55 µm (kB = 2 n0 /B =  /, 

 = 228 nm). We use g0 L = 1.2, and an alpha-factor  = 5. The stopband tapering introduces 

an asymmetry in the structures, and to explore the nonreciprocal behaviour we numerically 

evaluate (2.60) and (2.61) together with the equation (4.19) for different values of . We 

plot the variation of the up- and down-switching threshold as a function of the detuning coef-

ficient in Figure  4-20 for the LTR and RTL propagating cases, for (a)  = 0 %; (b) 

 = 10 %; (c)  = 20 %; (d)  = 30 %. As the asymmetry increases the curves for 

LTR and RTL propagations separates from each other, and for relatively high asymmetry of 

 = 30 % the two curves are completely separated showing a distinct region showing non 

reciprocity. The hysteresis curves for two directions and for a detuning coefficient of  0 L = 5 

in plotted in Figure  4-21. The isolation region is marked by shaded filled areas. The RTL in-
put power is found to be 2.7 mW, the output power is 6.8 mW according to Figure  4-20, while 
the same input power of 2.7 mW for LTR operation leads to an output power of 0.62 mW 
with an associated isolation ratio of 11.  
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Figure  4-20 :  Variation of the switching up and down switching thresholds for (a) = 0 %; (b) 

 = 10 %; (c)  = 20 %; (d)  = 30 %. The red and the green curves are for the LTR and 

RTL propagating cases respectively. 

 = 30 %  = 20 % 

 = 10 %  = 0 % 

(d) (c) 

(b) (a) 

 

 

Figure  4-21 : Nonreciprocal behaviour for an active device with  = 15 % and  0L = 4.75 

4.3.2 Numerical simulations of passive structure  [16] 

Also in the passive case we find that with an increase of the negative tapering coefficient the 
hysteresis curves move away from each other as can be seen from Figure  4-20. Here we have 

considered a similar structure as in the active case with  L = 5, and 0 L = 4.75. We have 

used  = 15 %. We numerically study both the steady state and the time dependent solu-

tions of the generalized nonlinear coupled mode Eq. (2.60). For the steady state calculation 
we used GTMM (see Appendix  B.2) and for the time-dependent solutions we used implicit 
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finite difference scheme (see Appendix  B.4). From the numerical simulations we found for 
the RTL propagation input power of is found 130 mW. The output power is 120 mW accord-
ing to Figure  4-22, while the same input power of 130 mW for LTR operation leads to an out-
put power of 15 mW with an associated isolation ratio of 8. 

 

Figure  4-22 : Nonreciprocal behaviour for an passive device with  = 15 % and  0L = 4.75 

To get a better understanding of passive ST-WBG we solve the time dependent equations for 
CW input power of 110 mW which is in the isolation region just above the up-switching 
threshold of the bistable curve for RTL propagations. We apply a CW signal with smooth 
transition (see the black curve in Figure  4-23(c)). For RTL propagating case the device goes 
to the high transmitting state (see the green curve in Figure  4-23 (c)), while for LTR propaga-
tion is in the low transmitting state. The field distribution for the LTR and RTL propagating 
cases is also plotted in Figure  4-23 (a) and (b) respectively. It is to be seen that for RTL 
propagations the power inside the grating is substantially high, in comparison to the LTR 
propagating case. 
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Figure  4-23 : Nonreciprocal behaviour for a passive device with  = 15 % and  0L = 4.75 

showing nonreciprocal transmission behaviour. (a) and (b) shows the temporal and spatial varia-
tion of intensity inside grating for a the LTR and RTL propagating cases. (c) Temporal dynamics 
of the transmitted power for LTR and RTL propagations. 

 

(c) 

(b) (a) 

Figure  4-24 displays the impulse response of the passive grating with the same detuning 

0 L = 4.75 as before (within the stopband near its upper edge at z = 0) and for an input peak 

power of 170 mW, either for LTR or RTL operation. The average input power of 85 mW is 
close to the RTL up-switching threshold in Figure  4-24. For RTL propagation the transmitted 
impulse is larger (and more compressed because of the high dispersion near the band edge) 
than for the LTR direction (where the carrier frequency is farther away from the band edge 
and dispersion is lower). For spectrally broader impulses, a careful optimization of the grating 
and its operation point are required. 

ST-WBG structures essentially are asymmetric structures and all the explanations in section 
 4.1 qualitatively hold for grating structures. Here we try to give an alternative picture more 

relevant to periodic structures. We consider the schematic dependencies at 0 = T
RTL in 

Figure  4-26. For low input powers the effective local-average index nla  nG decreases line-

arly along the tapered grating (linear nG). Its spatial average navg over the total grating length 

is given by the lowest horizontal dashed line (T), where T denotes the associated transmis-

sion resonance frequency (lower-left inset). For larger input powers, nla  nG + n2|E|2 in-

creases and shows a hump, upper-most solid line. navg increases (T
RTL), and the transmission 

resonance is down-shifted from T to T
RTL (lower-left inset). The resonant field intensity is 

shown in the upper-right inset (). For LTR operation, the field still “sees” a stopband due to 

the band edge shift and therefore decays exponentially, Figure  4-26 upper-right inset (). 

The average refractive index navg and the transmission resonance still “sees” a stopband due to 
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the band edge shift and therefore decays exponentially, Figure  4-26 upper-right inset (). 

The average refractive index navg and the transmission resonance T
LTR (lower-left inset) do 

not deviate so strongly from T as for RTL operation, so for the same 0 the LTR transmis-

sion is less than for the RTL case. 

 

 

Figure  4-24 : Impulse responses showing nonreciprocal behaviour for a passive device with 

 = 15 % and  0L = 4.75. 

  

                                  

Figure  4-25 :  Impulse responses showing nonreciprocal behaviour for the same parameters con-

sidered in the Figure  4-24. 
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The threshold power can further reduced by highly confined structure of SOI. Also from the 
scaling relation of coupled mode equations (see Section  2.3.1.1 on page 15) we can see that 
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by increasing the length of the device reduces the threshold switching power, but it increases 
the response time of the device. The isolation ratio and bandwidth can be further enhanced by 
introducing chirp in conjugation with tapering. We will discuss the effect of chirp and other 
type of asymmetry in the subsequent sections. In chapter  6 we will show some rigorous nu-
merical calculation based 2D nonlinear FDTD simulation. More complicated variation of the 
stopband can be also included to optimize the isolation ratio and bandwidth of the nonrecipro-
cal device.   
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Figure  4-26 : Schematic of locally-averaged refractive index as a function of z, CW frequency 

0 = T
RTL. Low power (—, Linear nG), nonlinear RTL (—) and LTR operation (—).  Hori-

zontal dashed lines for spatial average navg over total grating length labelled with respective 

transmission resonance frequencies T (–  – ), T
LTR (–  – ), T

RTL ( –  – ).  Lower-left inset: 

Power transmission near upper band edge. Top right inset: Intensity for RTL () and LTR () 

operation. 

4.4 Effect of chirp and other asymmetries in an active device 

In this section we consider the effect of chirp and a tapered current density in an active de-

vice. Here we introduce C as a chirp coefficient for a linear variation of the periodicity (see 

Figure  4-18(b)) along the direction of propagation according to the following expression, 

    0 1 .
z

z C
L

      
 (4.20) 

Similarly a biased current density of an SOA can also be tapered linearly along the direction 

of propagation with the help of current taper coefficient J  [76], 

    0 1 .c c

z
J z J J

L
     

 (4.21) 

For the set of parameters  = +30 %, C = 30 % and J = 0 %,  0L = 5.5, g0L = 1.2. we 

found a large separation between LTR and RTL propagations. The maximum isolation ratio in 
this case is 22 from Figure  4-27. In Figure  4-27 the LTR case is represented by the green 
curve and the RTL case is represented by the red curve.  
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We calculate the hysteresis curve for different combinations of , J and C in Figure  4-28. 

From Figure  4-28 (a) and (b) we observe that by changing C from +20 % to +30 % the isola-

tion region increases but the range of 0L to observe bistability reduces. The negative tapering 

coefficient and positive chirp coefficient together increases the isolation region (Figure  4-28 
(c)) and isolation ratio. The positive current tapering increases the bandwidth but reduces the 
isolation region (Figure  4-28 (d)).   

 

Figure  4-27 : Nonreciprocal behaviour for an active device with  = +30 %, C = 30 % and 

J = 0 %,  0L = 5.5, g0L = 1.2 

   

  

Figure  4-28 : Variation of the up and down switching threshold for an active device with (a) 

 = 10 %, C = +20 % and J = 0 %. (b)  = 10 %, C = +30 % and J = 0 %. (c) 

 = 30 %, C = +30 % and J = 0 %. (d)  = 10 %, C = +20 % and J = 10 %, g0L = 1.2. 

(c) 

(b) 

(d) 

(a) 
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4.5 Asymmetrically phase shifted structure  [45] 

In this section we present an asymmetry placed /4 phase shift as another non-reciprocal 

Kerr-type nonlinear periodic structure (see Figure  4-29) on the basis of an exact solution of 
the nonlinear coupled mode equations in the steady state. We have discussed the method of 

GTMM in Appendix  B.2. For a /4 phase shifted structure the expressions can be simplified 

and can be written in terms of analytic expressions. We note that this kind of structure is simi-
lar to the AFPR discussed in Section  4.1. The phase shift can be introduced by a point defect 
or by an extended region bounded by two DBR regions.  

 

Figure  4-29 : Schematic of periodic structure with a /4 phase-shift at location z = L1 

4.5.1 Exact solution of NLCME 

We re-write the NLCME for Kerr type of nonlinear Bragg gratings with unit step phase-shift 

 introduced in the grating  [52], 
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 (4.22) 

The above nonlinear coupled mode equations (NLCME) describe the field distribution in a 
nonlinear periodic structure. They are a powerful tool in analyzing the response of finite-
length uniform or complicated structures, while avoiding the difficulties involved in solving 
the fully-vectorial wave equations. In general, the coupled mode equations must be solved 
numerically. In certain limits it is possible to find an analytic solution. Here we use the so 
called generalized transfer matrix method as described by Radic et al.  [60], were the steady 
state solutions are obtained in terms of the elliptic function formalism  [59] [60] [75]. We con-

sider the phase-shifted structure (Figure  4-29), having uniform periodic regions (0  z  L1 

and L1  z   L) with the length of each section given by L1 = x L and L2 = (1  x) L. The 

quantity x = 0.5 describes the situation of a symmetrically placed phase shift. 

To solve the equations we start with a given value of transmitted field at the output and calcu-
late the corresponding input field. We treat each uniform section denoted by m = 1, 2 sepa-
rately and enforce proper boundary conditions at z = L1. By separating the amplitude and the 

phase factor of both the forward and backward propagating waves A f, b = A  exp(i ), it is 

possible to find two conserved quantities for each section. We introduce a critical intensity 
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Ac
2 = 4n0/3n2L, and define the normalized forward flux as J(z) = [A+(z)/Ac]

2. The conserved 

quantities can thus be written in normalized form, 
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 (4.23) 

The conserved quantity ,T mF  can be readily identified as the transmitted flux in each section. 

The conservation of the transmitted flux is justified for a medium without any loss or gain. It 
can be further shown that the transmitted flux is conserved throughout the structures. So we 

drop the index ‘m’ in the ,T mF  and write ,1 ,2T TF F FT  . In the present study we consider 

only /4 phase-shifted structures, i.e., in our case we use the change of  as . Using the con-

served quantities we write the equation describing the forward intensity inside each of the 
uniform grating sections as 

          
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The forward flux can be obtained by integrating the above equation in each section, 
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The integral on the left hand side is a standard elliptic integral  [8] whose solution depends on 

the parameters  L,  L, Gm, and on the integration limits J(z) and TF . The solution can be 

written in terms of the roots of the 4th-order polynomial Pm (J). We consider the most fre-
quently encountered case in which all the roots Ji 

m (i = 1, 2, 3, 4) of the polynomial Pm(J) are 

real, and J1 
m  J(z)  FT  J2 

m > J3 
m > J4 

m is valid. Since we are interested in the input-output 

characteristics of the structure, we start with a given value of transmitted intensity I 
(2) = FT 

and calculate the intensity at the section boundary denoted by I 
(1) = J(L1). Enforcing proper 

boundary conditions at z = L1 and using a similar method as above, the input intensity 
I 

(0) = J(0) can be calculated. Thus we write the expression for the input intensity in each sec-
tion boundary in compact notation as  
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(4.26) 
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Here, sn(u 
(m); g 

(m)) is a Jacobian elliptic function, sine modulus, defined by the argument 

sin   
(m) and the modulus g 

(m), and F( 
(m), k 

(m)) is the incomplete elliptic integral of first kind. 

The above expressions can be greatly simplified for the special case  L = 0, 
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So we can calculate the input-output characteristics of the structure for  L = 0 using the ana-

lytic expression given in Eq. (4.28). For L  0, equations (4.26) should be used. With this 

formulation it is also possible to calculate the fields inside the grating structure.  

4.5.2 Non-reciprocal behaviour  

We now consider the case in which the same incident signal is propagating either from left-to-
right (LTR) or from right-to-left (RTL). It is interesting to note that in an asymmetric struc-

ture with L1  0.5L, and if the same input power is injected from LTR or from RTL direction, 

the transmitted powers are different (see Figure  4-30). This effect can be physically under-
stood by looking at the penetration depth of the input field, which is different if the light is 
incident from different directions. Different penetration depths result in different nonlinear 
shifts in the resonance frequencies, which in turn lead to a non-reciprocal behaviour. Different 
signal propagation directions, LTR or RTL can be easily implemented using L1 = x L and 

L1 = (1  x) L, respectively. It is evident that for a symmetrically placed phase shift with 

x = 0.5 and for a given value of TF  the solution of I 
(1) and subsequently I 

(0) are the same for 

RTL and LTR propagation. For x  0.5 the value of I 
(1) and subsequently I 

(0) is different for 

LTR or RTL propagation as can be seen in Figure  4-30 shows the variation of the transmissiv-

ity with respect to the normalized input power for a structure with L = 4 and a signal detun-

ing coefficient of 0 L = 0. The solid line and the broken lines represent structures with 

L1 = 0.5 L and L1 = 0.4 L, respectively. Figure  4-30 (c) displays the bistable transmission 
curves for LTR (– · –) and RTL (–  –) operation. We use Pref = 1.3 W as a reference power for 

an InP based structure with L = 600 µm and operating wavelengths near  = 1.55 µm. The 

shaded region in Figure  4-30 (c) shows the isolation regime, in which the device is in the high 
transmission state for an LTR propagating signal, while it is in the low transmission state for 
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an RTL propagating signal. It is to be also observed that for 0 L = 0 the effect is reversed, i.e., 

RTL transmission is always higher than the LTR transmission as can be seen from Fig. 1b. 
This non-reciprocal effect can be utilized for optical isolation.  

 

Figure  4-30 : (a) Variation of the transmissivity with normalized input power for L = 4 and 

0L = 0, and for symmetric (solid line) and asymmetric /4 phase-shifted structures (broken lines). 

(b) Bistable curves for the same structure with 0L = 0.70. Reference power Pref = 1.3 W. 

(b) (a) 

 

Figure  4-31 : Transmission curve for a /4 phase-shifted structure at location z = L1 for different values of input power 

showing a direction dependent bending of the transmission curve. (a) Variation of the transmissivity with normalized 

detuning for L = 4 with PIn/Pref = 0.01,  and (b) with PIn/Pref = 0.04. The solid blue line represents the transmissivity of the 

structure in the linear case. Reference power Pref = 1.3 W. 

(b) (a) 

. 

From Figure  4-30(b) we find a maximum isolation ratio of 3 and 7, respectively. This isola-
tion ratio is less in comparison to standard Faraday-effect based isolators, but it is possible to 
improve this extinction ratio by optimizing different axial asymmetries (e.g. bandgap taper, 
chirp, and phase-shift). 

The dependence of the refractive index on the input power leads to a power dependent change 
in the shape of the transmission curve as can be seen from Figure  4-31. Here we plot the 
transmission curve for LTR (– · –) and RTL (–  –) operation for two different values of input 
powers, namely (a) PIn/Pref  = 0.01, and (b) PIn/Pref  = 0.04. The solid line represents the 
transmission curve for the linear case. It is observed that with increasing input power the 
resonant frequency shifts more towards the lower frequency side. Above a certain threshold 
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power, the transmission curve becomes bistable. The shift in the resonance frequency for LTR 
operation is more pronounced than the one for RTL operation.  

From the above results it is evident that due to a nonlinear shift in the resonance frequency 
bistability is observed in the input-output power characteristic and in the transmission curve. 
For a phase-shifted structure the bandwidth is usually small due to the high Q-factor at reso-
nance.  

4.6 Summary 

In this chapter we have introduced a general theory of nonreciprocal transmission in a nonlin-
ear periodic structure. In presence of nonlinearity any resonator structure lacking inversion 
symmetry shows a non-reciprocal behaviour. The general description of the theory enables us 
in designing a device which shows a isolation or “optical diode” like phenomena. We have 
studied this phenomena for asymmetric Fabry-Perot resonator, stopband tapered Bragg grat-
ing, asymmetrically phase shifted isolator phaseThis theory is applicable to wide variety of 
nonlinearity like Kerr, SOA, TPA, carrier-plasma effects, thermal nonlinearity. This formula-
tion can be extended to negative index material, saturable absorber or all combined nonlinear 
effects. This simplified formulation is applicable to photonic crystal based resonator and can 
be also extended to ring resonators. 
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5 Lowering of switching threshold  

Compact all-optical switches and logic gates are of high interest in view of their applications 
in future packet-switched networks. A leading candidate for such devices are resonator struc-
tures based on nonlinear materials [72]  [33], which shows bistable behaviour  [61] with regard 
to the intensity of the input beam. In this device switching between the low and high trans-
mission states can be achieved within a very small length scale, which allows a compact de-
sign. However, owing to the very small value of the nonlinear coefficient in most optical ma-
terials (including silica fibers), the power required to observe any detectable shift in the stop-
band (the switching threshold) is very high  [5]. Unless the power requirement can be some-
how reduced, these devices will remain unsuitable for commercial applications.  

To overcome this difficulty a few remedies have been proposed  [51] [59] [38] [47], that either 
use materials with higher nonlinearities or some sort of field enhancement to increase the 
nonlinear effects. In particular it was observed  [51] [59] [38] that the threshold power can be 

reduced substantially by using a /4 shifted grating, where a defect is created in the grating’s 

interior. This opens a narrow transmission band within the stopband. Owing to the reduced 
group velocity for this transmission band, the interaction time increases and nonlinear effects 
are more pronounced, leading to a reduction of the threshold switching power. However, the 
price paid for this improvement is a lowering of the extinction ratio for this design. 

Here we propose an alternative approach based on asymmetry in the resonator structures as 
discussed in the previous chapter. This design significantly reduces the switching power, 
while retaining a serviceable extinction ratio over a wide range of parameters. In this section 
we discuss the possibility of lowering switching threshold by a proper geometric design. 

5.1 Passive stopband tapered waveguide Bragg grating  [43] [16] 

The stopband tapered waveguide Bragg grating (STWBG) (see Figure  5-1) is introduced in 
section  0. Here we focus on the issues of lowering the switching threshold for bistable opera-
tion. We first consider the passive structure as considered in Section  4.3.2. Here we use the 
same parameters as discussed in Section  3.2.1. As discussed before the refractive index at 
each point in the grating is modified by the field intensity through the nonlinear refractive 
index, which leads to the variation of the band edges. For non-zero tapering there is an addi-
tional modification of the local band edges that comes from the changing grating amplitude 
(see Figure  5-4 and Figure  5-5). Different regions of the bistable curve can be understood by 
considering the dynamic behaviour of these local band edges within the grating. We will re-
view the bistable switching phenomena again here with comparison to the uniform grating to 
explain the physics of lowering the switching threshold.  

In the low intensity limit, an incoming wave does not appreciably alter the position of the lo-
cal band edges, and decays exponentially (see Figure  5-4(a)) if its frequency lies within the 

stopband ( < ). In a finite grating structure the exponential tail reaches the back of the grat-

ing, leading to non-zero but low transmission. For negative tapering the stopband is wider at 
the front of the grating than at the back of the structure (see the dashed curves in Figure  5-1 
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with reference to the dotted CW line), and a larger negative tapering coefficient  leads to a 

proportional increase of the “transparent” region (see Figure  5-1) near the back of the struc-
ture for the CW signal. For relatively high magnitudes of the negative tapering coefficient 

 the CW wave can propagate outside the stopband near the rear of the structure even for 

low intensities. This leads to generally higher transmissions, in the low-intensity case, for 
negatively tapered gratings, as can be seen in Figure  5-2. 

 

Figure  5-1 : Schematic diagram showing the variation of the stopband as a function of position z 

inside the grating of length L. The dashed lines give the band edges for a uniform grating. The 

lines bounding the shaded region show the stopgap variation for a ST-WBG. The solid line gives 

the detuning parameter of the CW input signal. The marked regions show the so called “opaque” 

and “transparent” regions of the grating, corresponding to the CW signal. 

   

 

Figure  5-2 : Bistable curves for different tapering coefficients. 

With the increase in input intensity, the local band edges are shifted to a lower frequency (see 
Figure  5-4), and so the penetration depth of the signal into the stopband increases, leading to 
an increase in the transmission coefficient. Near the up-switching threshold, where the fre-
quency of the local upper-band edge at the rear of the grating equals the frequency corre-
sponding to the detuning parameter of the CW signal, and the wave is able to propagate out-
side the gap over the entire length of the grating. With an increase in the tapering magnitude, 
the size of the transparent region at the rear of the grating is increased proportionally, and so 
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the up-switching threshold is reached at a lower intensity. The result is a near-linear decrease 
in the up-switching threshold with respect to tapering magnitude, as observed in Figure  5-3. 
This effect is more prominent if the detuning is chosen close to the upper-band edge. 

 

Figure  5-3 : The threshold switching power for the ST-FBG, which decreases linearly with the 

negative tapering coefficient for detuning coefficients 0L = 4.75 and 0L = 4.6. 

If the input intensity is then reduced the system does not directly return to the low intensity 
state. We observe that the high field intensity creates a local “barrier” (see Figure  5-5(b), (c)) 
near the front end of the structure. With a gradual decrease of the input intensity, it is ob-
served that the local barrier is lowered and the output intensity decreases. At the down-
switching threshold this barrier disappears, and the system switches back to the low transmit-
ting state. Because the barrier occurs at the front of the grating where the influence of the ta-
pering is small, its height and extension are not significantly affected by the tapering, and so 
the down-switching threshold is close to that of the uniform grating. 

To estimate the required intensity levels for bistable operation we consider a standard single 
mode fiber of effective area Aeff = 50 µm2 at a wavelength of 1.55 µm. The up-switching 

threshold intensity for a grating with  = 5 cm-1, L = 1 cm is found to be 2.6 GW/cm2 (corre-

sponding to a power level of 1.28 kW). The tapered design ( = 10%) can reduce the 

threshold intensity to 1.7 GW/cm2 (corresponding to a power level of 0.8 kW). This power 
level is still too high for actual device application. The power levels can be reduced in a 

highly nonlinear fiber where the effective nonlinearity  = 0 n2
I/(cAeff) is of the order of 103 

larger (1360 W-1km-1)  [70] than in a standard silica based fiber ( W-1km-1). Photonic 

crystal fibers with higher nonlinearity ( W-1km-1)  [52] could also be used to reduce the 

threshold switching power. Semiconductor DFB structures having higher nonlinear coeffi-
cients could also be employed. For example, in InP the nonlinear coefficient is ~104 times 
larger than in silica  [23], and the effective area for a pedestal waveguide is in the order of 
0.4 µm2. A linearly tapered Bragg grating structure in InP will operate at a switching power 
level of the order of ~106 lower (i.e. in the order of a few tens of mW) than in a silica-based 
device. For this power level the two-photon absorption in InP is still quite low (~0.01 cm-1) 
 [23]and can be neglected in comparison to the loss in a real device. 
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Figure  5-4 : Low transmission state: a) Energy density inside the grating for different tapering 

coefficients,  = 0%  (  ) and  = 10% (). The energy density is normalised to the peak 

value. (b) Upper-band edge of the stopgap for the uniform grating, with  = 0%. The solid line 

gives the upper-band edge for n2
I = 0, the dashed line shows the local band edge. c) upper band 

edge for the ST-WBG, with   = 10%. The horizontal dotted line shows the detuning 0L. 

   

 

Figure  5-5 : High transmission state: a) Energy density inside the grating for different tapering 

coefficients,  = 0% () and  = 10% (). The energy density is normalised to the peak 

value.  (b) Upper-band edge of the stopgap for the uniform grating, with  = 0%. The solid line 

gives the upper-band edge for n2
I = 0, the dashed line shows the local band edge. c) upper band 

edge for the ST-WBG, with  = 10%. The horizontal dotted line shows the detuning 0L. 

Using gratings of longer length increases the interaction time and is another option for the 
reduction of switching power. The switching time is also increased with increase in the 
length. In SOI based structure the high field confinement enhances the nonlinearity 
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( = 3.5 W-1cm-1 [36]) is reported. But the TPA can degrade the switching threshold signifi-

cantly in SOI based devices. 

5.2 Active Stopband tapered waveguide Bragg grating  [43] 

For active device we solve the steady state NLCME with the same parameter as given in sec-

tion  3.1.3.1. We use the normalized coupling coefficient (0)L = 3, the normalized gain coef-

ficient g0L = 1.2, the normalized internal loss αintL = 0, and the linewidth enhancement factor 
αH = 5. Figure  5-6 shows the bistable behaviour of the ST-DFB-SOA over a range of tapering 

coefficients . By comparison with the uniform DFB-SOA (given by the curve  = 0% in 

Figure  5-6) it is observed that tapering decreases the up-switching threshold significantly. The 

down-switching threshold also decreases with increasing , however the variation is rela-

tively small. It is also observed that the extinction ratio remains high over a large range of 
tapering coefficients. We plot the variation of the up-switching threshold and down- switch-
ing threshold with the detuning coefficient in Figure  5-7. We see that for all values of detun-
ing the switching threshold is reduced with high magnitudes of the negative tapering coeffi-

cient .  

 

Figure  5-6 : S-curves of ST-DFB SOA for different tapering coefficients ∆κ, where the normal-

ized gain coefficient g0L = 1.2, the normalized internal loss αintL = 0, and the normalized detuning 

coefficient δ0L = 6.5. 
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Figure  5-7 : Variation of the up and down switching threshold with the detuning coefficient for 

the same parameters consider in Figure  5-6 

5.3 Asymmetrically phase shifted structure  [45] 

The asymmetrically phase shifted structure (See  4.5 for details) also reduce the switching 
threshold. We plot for different the Transmission bistable curve for different location of 
asymmetric phase shift in Figure  5-8. In this type of device the increasing asymmetry reduces 
the switching threshold accompanied by strong reduction of extinction ratio.  

 

Figure  5-8 : S-curve of asymmetrically phase shifted structure for different value of L1 for RTL 
propagation. 

5.4 Asymmetric Fabry-Perot resonator 

To explain the effect in terms of the simplified model of asymmetric Fabry-Perot resonator as 
in section  4.1. We look in the graphical solution for the symmetric case of R1 = R2 and for the 

asymmetric case of R1  R2 in Figure  5-9. The red line represents the symmetric case, while 

the blue and green line represents the case R1 > R2 and R1 < R2 respectively. The black dotted 
line shows the case Pavg = Pin. We see that for R1 > R2 the up switching threshold is much 
lower than symmetric case. The asymmetrically phase shifted structure also show the similar 
behaviour. 
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Figure  5-9 : Graphical solution of NL-AFPR with L = 100 µm, int = 0 dB/cm. The red line repre-

sents the case of R1 = 0.95, R2 = 0.95. The blue line represents the case of R1 = 0.95, R2 = 0.32. The 

green line represents the case of R1 = 0.32, R2 = 0.95. The black dotted line corresponding to 

PIn = PAvg. TPA is neglected. 

 

 

5.5 Summary 

In this chapter we have introduced different type of asymmetries in the resonator structures. 
We found in all cases the up-switching threshold is reduced in comparison to the symmetric 
structure. In phase shifted structure and AFPR we can observe strong reduction of the extinc-
tion ratio. For ST-WBG we found that with the increase in negative tapering coefficient the 
extinction ratio remain high for a large range of parameters. Other structural variation like 
chirp and current density taper also reduce the switching threshold. With proper optimization 
with all this asymmetry it is be possible to reduce the switching threshold further. We could 
also use an all optical limiter  [64] after this bistable device to increase the extinction ratio.  
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6 Nonlinear FDTD simulation 

6.1 Introduction20 

Compact and integrated optical devices are of particular importance for the realization of 
faster and more affordable communication technologies. Among various optical devices, all-
optical switches and logic gates are the key components for the ultra-fast optical signal proc-
essing  [73] [44] [16]. It is well known that these functionalities are realized by optical bistabil-
ity in periodic nonlinear media  [10] [68] [67] [63] [15] and its asymmetric variations  [32]. How-
ever, previous literature address one-dimensional (1D) simple structures having weak pertur-
bation and those analyzed by either a transfer-matrix method or coupled mode equations.  

Some authors apply the pseudo-spectral time domain method to a 1D left-handed multilayer 
system  [15]. Others apply the nonlinear finite-difference time-domain (FDTD) method to a 
1D weakly modulated multilayer structure  [40], and also to asymmetrically arranged photonic 
crystal defects in a slab waveguide  [41]. However, the light intensity required for the nonlin-
ear switching operation is nevertheless found still orders of magnitude higher than are in real 
with widely available experimental setups. Recently, very low switching-threshold operation 
has been achieved in photonic crystal bistable nano-cavities by employing two-photon ab-
sorption (TPA) in Si  [54]. A disadvantage of TPA is that the switching speed is much slower 
than that of the nonlinearity of electronic origin  [67]. It would therefore be desirable to clarify 
possible conditions with which minimum switching power is achieved for particular realistic 
device structures and materials while retaining a sufficient speed of operation.  

Here we investigate numerically an optical Schmitt trigger  [64] operation in a longitudinally 
asymmetric WBG. These WBGs have also the property of non-reciprocal transmission where 
the switching threshold in one direction is lower than that in the other direction. The analyzed 
WBG has a structure that can be actually fabricated by employing an optical planar circuit 
technology based on a InGaAsP/InP system with strong nonlinearity  [17]  [35]. The sidewall 
modulation of this structure is strong, and the coupled mode equations may not be directly 
applied due to the strong coupling between the forward and the backward waves  [44]  [67]. 
Therefore, analysis has been performed fully numerically with the nonlinear finite-difference 
time-domain (FDTD) method that inherently deals with the necessary coupling and guiding 
effects of the WBGs; the code has been developed by the authors, and it runs effectively on 
parallel cluster computers  [17]. Some authors have addressed an instability issue in nonlinear 
periodic structures  [67] [15] [32]. In this respect we have investigated the field inside the grat-
ing using either the simple optical Kerr nonlinearity and damped Lorentz dispersion  [17]  [35], 
or the soft-core Coulomb potential as a stable numerical model of the saturable nonlinear 
mechanism of bound electrons  [34]. The behaviour of the chaotic states in the nonlinear WBG 
is discussed qualitatively. 

                                                 
20 The numerical simulation discussed in this chapter has been performed by the first author of   [19]. However 
the design of such waveguide and the idea was proposed by the author of this thesis. 
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6.1.1 Asymmetric waveguide Bragg grating 

The asymmetric WBG has been modelled such that the stopband of the grating has a nearly 
linear profile along the waveguide. The grating is realized by a sidewall periodic perturbation 
of a dielectric waveguide whose top view and cross section are shown in Figure  6-1(a) and 
(b), respectively. The sidewall modulation is expressed by a function of distance z as 

     2
sin ,

2 2
gWW

x z g z L
 z         

 (4.29) 

where Λ is the period of the grating chosen to be Λ = 0.241 μm for this paper, and L0 is the 
total length of the grating. The averaged width of the waveguide was chosen to be W = 0.4 μm 
such that it supports only the dominant propagation mode at the operating frequency. The 
maximum amplitude of the sidewall modulation is determined by Wg/2. The nearly linear 
variation of the band edge frequency is described by a 3rd-order polynomial in terms of the 
normalized distance z´= z/L0 as g(z´) = a(z´)3 + b(z´)2 + c(z´) + d, whose coefficients have 
been found by fitting the polynomial to some FDTD results of stopbands for uniform 
waveguide gratings as shown in Figure  6-2; they are chosen to be a = −0.4856, b = −0.0009, c 
= 0, and d = 1, and the resulting profile of the upper band-edge frequency for Wg = 0.1 μm is 
shown in Figure  6-1 (c). With this profile the sidewall modulation amplitude varies nonline-
arly from Wg/2 at the left-hand-side of the waveguide to Wg/4 at the right-hand-side of the 
waveguide. 

For the numerical model, the actual variation of the band-gap frequency is approximated by a 
stair-cased finite-difference discretization. Due to the restriction of the computational re-
source, the cell sizes have been chosen to be Δx = 0.025 μm and Δz = Λ/10 = 0.0241 μm. Note 
that Δx is comparable to the side wall modulation, and it may appear too coarse to resolve the 
depth of the modulation. However, Δz is sufficiently small to resolve the periodic variation of 
the grating. We have therefore checked in preliminary analyses that the present cell size can 
resolve the side-wall modulation sufficiently for the purpose to realize the nearly linear pro-
file of the band edge frequency. 

We define the direction of light transmission as follows: when a light is transmitted from left 
to right (LTR), it goes through a waveguide having a negatively varying stopband (the stop-
band width is decreasing). In contrast, when light is transmitted from right to left (RTL), it 
goes through a waveguide having a positively varying stopband (the stopband width is in-
creasing). We emphasize that the sidewall modulation chosen in this paper is much stronger 
than that in previous literature in order to reduce the length of the WBG and the required inci-
dent light power for switching. 

The waveguide has a three-dimensional (3D) pedestal waveguide structure as in Figure  6-1, 
which consists of InP (refractive index n = 3.17 at wavelength λ = 1.55 μm) for the upper and 
the lower cladding, InGaAsP (n = 3.42 at the same wavelength) for the core, and surrounding 
air. For the numerical representation, the structure is approximated by a dielectric slab of 
n = 3.34 to be analyzed by a 2D FDTD method. The polarization of the incident light is quasi-
TM where the dominant electric field component is perpendicular to the substrate. We employ 
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the same fabrication and design procedures used in  [61]  [44]. The third-order nonlinear sus-
ceptibility for InGaAsP core has been confirmed to be χ0

(3) = 3.8×10−18 m2/V2 by our exten-
sive numerical and experimental investigations  [17]  [35]. 

 

 

Figure  6-1 : Schematic configuration of the waveguide Bragg grating having an asymmetric stop-

band; (a) the top view, and (b) the cross section of the waveguide. In the analysis the structure is 

approximated by a slab waveguide having an effective refractive index of the stacked structure. 

The ports for signal detection are located at a half hight of the InGaAsP core and at (x, z) = (0,0) 

and (0, L0). (c) An example of the upper band-edge frequency variation realized by the third-order 

polynomial g(z´) for Wg = 0.1 μm 

6.1.2 FDTD analysis of WBG 

We apply Yee’s FDTD algorithm to Maxwell’s equations  [78] including the constitutive 
equation of isotropic media with Kerr nonlinearity and typical chromatic dispersion properties 
through the auxiliary differential equation (ADE) technique  [19] [71]. The optical Kerr 
nonlinearity is modelled with an instantaneous response, and TPA is not taken into considera-
tion. When the incident light power is reduced to the level of 100 mW or less, this is consid-
ered to be an appropriate approximation. The relation between the field E and the light power 
P has been derived by numerically evaluating the effective area of the waveguide 
Aeff = 0.53 µm2, thus we obtain P = Aeff |E|2/(2Z0), where Z0 = 377 Ω is the intrinsic wave im-
pedance of vacuum.  
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For the asymmetric WBG of Wg = 0.1 μm and Wg = 0.2 μm, the transmission spectra for weak 
incidence have been analyzed as shown in Figure  6-3. It is seen in this figure that each spec-
trum is the combined one of those found in Figure  6-2 for uniform gratings; due to the asym-
metric variation of the grating modulation, the total transmission is also asymmetric with re-
spect to frequency. In the previous 1D model e.g. in  [44], both the upper and the lower band 
edges are changed while the stopband centre remains unchanged. In contrast, for the present 
waveguide model the stopband centre is chirped as well as that the upper band-edge changes 
largely. The operating frequency is generally chosen to be slightly lower than the upper band 
edge frequency. 

 

Figure  6-2 : Transmission spectra for the 100Λ-long waveguide Bragg gratings of uniform ampli-

tudes of sidewall modulation. Wg in legend is in μm. 
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Figure  6-3 : Comparison of the calculated transmission spectra for 200-Λ-long asymmetric grat-

ings with the maximum modulation Wg = 0.1 m and Wg = 0.20 m. The upper frequency band 

edges are 208.20 THz for Wg = 0.1 m, and 214.08 THz for Wg = 0.20 m 

We first chose the operating frequency at 207.9 THz (or free space wavelength 
λ0 = 1.442 µm) for the case of Wg = 0.1 μm, i.e. the frequency difference from the upper band 
edge was Δf = 0.3 THz, and launched a sinusoidal wave from either the left-hand-side or the 
right-hand side port of the asymmetric WBG. The incident light power is gradually increased, 
followed by a flat region such that the field in the grating establishes a stationary state. This 
staircase-like input is repeatedly cumulated until the incident light becomes strong enough to 
cause switching, and then the incident power is reduced in a similar manner until it vanishes. 
This allows the detection of the switch-on and -off thresholds of the WBG. The incident and 
the output time signals are plotted in Figure  6-4 for the WBG of L0 = 235 Λ; due to the rapidly 
oscillating sinusoidal carrier, only the envelopes of the incident and the output signals for the 
RTL and the LTR configurations are visible in the figure. It is observed that the switching 
threshold is lower for the RTL configuration than for the LTR configuration; the switch-on 
threshold of the electric field is Eth 

(on) = 2.6×107 V/m (equivalent light power 
Pth 

(on) = 480 mW) for RTL, while it is Eth 
(on) = 3.7×107 V/m (Pth 

(on) = 950 mW) for LTR. The 
switch-off threshold field is Eth 

(off) = 1.8×107 V/m (Pth 
(off) = 240 mW) for RTL, while it is 

Eth 
(off) = 2.6×107 V/m (Pth 

(off) = 490 mW) for LTR. Either of the two transmission plots show 
the Schmitt trigger operation, i.e. the switch turns on at a certain incident power, holding the 
on-state until the input passes through a lower threshold power  [64]. Note also that the transi-
tion time for switching is 2 to 3 ps. Overshoot and bouncing are seen afterwards, and the sig-
nal settling time is approximately 10 ps. The right vertical axis of Figure  6-4 shows the 
change in normalized permittivity by the optical Kerr nonlinearity, and this is convenient 
when the switching threshold is compared to other results. For this case the change in normal-
ized permittivity for the switch-on threshold is 2.2×10−4, which is much smaller than those 
used in literature, e.g.  [10]. 
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Figure  6-4 : Switching for the LTR and RTL configuration of a 235Λ-long waveguide with Wg = 

0.1 μm at 207.9 THz operating frequency (Δf = 0.3 THz). Maximum incident field value is 5.25 × 

107 V/m at 100 ps. Right vertical axis shows the normalized permittivity change by the nonlinear-

ity. 

The origin of the non-reciprocity and the stability is described qualitatively in  [73] [32]; as in 
these references, the behaviour of the field inside the grating is reasonably considered in view 
of energy diffusion. Due to the monotonic change of the band-edge frequency, for the LTR 
(negative) configuration, the light power injected into the grating diffuses gradually in the 
forward direction, which leads to a large power required for switching. In contrast for the 
RTL (positive) configuration, the incident light power can be built up within the grating since 
the light energy diffuses in the backward direction being blocked by the increasing potential 
barrier of the grating, which leads to a relatively smaller power required for RTL switching 
than for LTR switching. 

In Figure  6-5 we show the snapshots of the electric field for the RTL configuration with 
L0 = 200 Λ, Wg = 0.1 μm at the operating frequency 207.85 THz for (a) an off-state and (b) an 
on-state. Similar fields are observed for the case of the LTR configuration. From these figures 
it is found that the fields have a few peaks, which indicates that the mode of resonance in the 
grating is of higher-order. Due to both the strong grating modulation and the structural asym-
metry and despite that the incident light power has been gradually increased, the fundamental 
mode is not generated but the higher-order mode takes over. It has been found in our results 
that the off-state fields are significantly different between the RTL and the LTR (not shown) 
configurations. For the RTL configuration the field penetrates into the waveguide, while for 
the LTR configuration the field is blocked at the entrance to the waveguide. When the 
waveguide grating switches on, the field distributions become similar for the RTL and the 
LTR configurations.  
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Figure  6-5 : Electric field for 200 Λ-long RTL configuration (positive variation) with Wg = 0.1 μm 

at 207.85 THz operating frequency. (a) Off-state at 90 ps, and (b) on-state at 130 ps. 

The relation between the length of the waveguide grating and the switching threshold for the 
RTL configuration is plotted in Figure  6-6 with different operating frequencies 
fop = 207.85 THz, 207.9 THz and 207.95 THz for Wg = 0.1 μm, and fop = 214.03 THz for 
Wg = 0.2 μm as discussed later. The switching threshold no longer exhibits a linear depend-
ence on the grating length when the grating is longer than approximately 210 Λ. This behav-
iour of the threshold value is considered to be due to the strong modulation of the grating. 
This tendency applies also to other cases of different Wg. The minimum threshold is obtained 
at length around 220 Λ to 230 Λ regardless of Wg. The WBGs longer than 235 Λ are found 
unstable, causing a modulation-like field to grow rapidly, which is to be discussed in a later 
section. We have noted that for the minimum threshold condition at a length around 220 Λ to 
230 Λ, the incident light and the light reflected from the grating become out of phase, and 
subsequently, the total field at the input port (right-hand-side port) becomes very small. Con-
trary, for shorter grating lengths the total field at the input port is observed significantly large 
(not shown). The total field near the input port will obviously affects the switching behaviour. 
Therefore, the phase difference between the incident and the reflected lights, which is deter-
mined by the total length of the asymmetric grating, could be the main reason for the fact that 
the threshold is not linearly dependent on the grating length.  

Next we further increase the sidewall modulation to Wg = 0.20 μm while maintaining the lon-
gitudinal profile of the modulation, i.e. the modulation amplitude Wg/2 of the grating varies 
according to the same polynomial, namely from 0.10 μm to 0.05 μm along the waveguide. 
The transmission spectra for the 200 Λ-long asymmetric grating is compared with that of 
Wg = 0.1 μm in Figure  6-3. The operating frequency for the nonlinear switching analysis was 
then chosen to be 214.03 THz, closer to the band edge (214.08 THz) than that of the previous 
case because the transmission spectrum is much steeper at the band edge, which allows the 
same level of extinction ratio for the nonlinear switching operation. 
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Figure  6-6 :  Switch-on threshold electric field and power versus the length of the waveguide 

grating for the RTL (positive) configuration with Wg = 0.1 μm and 0.2 μm. The error bars are the 

uncertainty due to the step increment of the incident field variation. 

The results for the switching behaviour are shown in Figure  6-7. In this result the switching 
threshold has been reduced to Eth 

(on) = 1.05×107 V/m (equivalent light power 
Pth 

(on) = 77 mW) for the RTL configuration, and to Eth 
(on) = 1.6×107 V/m (equivalent light 

power Pth 
(on) = 170 mW) for the LTR configuration. In this case the switch-off threshold is 

not clearly visible, but it exists at around Eth 
(off) = 0.35×107 V/m (equivalent light power 

Pth 
(on) = 480 mW) both RTL and LTR. The time evolution exhibits larger fluctuations than 

that of the previous case in Figure  6-4 because the operating frequency is closer to the band 
edge and therefore the extinction ratio is worse than that in Figure  6-4. The change in normal-
ized permittivity for the switch-on threshold is 3.6×10−5. Note that the transmission spectrum 
for Wg = 0.20 μm has a very steep transition and a large dip near the band edge, in comparison 
to those for Wg = 0.10 μm. However, we observe that the stability of the switching operation 
is not largely affected by the dip. The steep transition reduces the switch-on power signifi-
cantly. If the switch turns on, the bandgap shifts to the lower frequency side, and the device 
can maintain the on-state like an electronic Schmitt trigger, irrespective of the fine structure of 
the transmission curve near the band edge. 
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Figure  6-7 :  Switching for the LTR and RTL configuration of a 220Λ-long waveguide with 

Wg = 0.20 μm at 214.03 THz operating frequency (Δf = 0.05 THz). Maximum incident field is 

2.6×107 V/m at 75 ps. Minimum switch-on threshold is Eth 
(on) = 1.05×107 V/m (equivalent light 

power Pth 
(on) = 77 mW) for RTL. 

As expected, the stronger modulation allows the reduction of the switching threshold signifi-
cantly. With the incident laser power of 77 mW, the experimental observation of the switch-
ing operation in this device seems to be feasible. One may consider an alternate candidate for 
the nonlinear media, which would exist in a class of organic polymers; polydiacetylene 9-
BCMU has a nonlinear susceptibility χ0 

(3) = 1.4×10−16 m2/V2  [73]. This value is approxi-
mately 36 times larger than that of InGaAsP (Q1.35) investigated in this paper, and allows to 
reduce the required incident light power strongly, namely down to approximately 2 mW, 
which would enable an actual functional device having a very low threshold. 

6.1.3 Stable state of nonlinear WBG 

We have investigated the dynamic stability of a uniform WBG for comparison with the previ-
ous asymmetric WBGs. We observed a stable state for L = 200 Λ, Wg = 0.15 μm, uniform 
WBG at operating frequency 209.40 THz. The upper band-edge frequency of this structure is 
209.55 THz. The time evolution of the field is shown in Figure  6-8. In this case switching 
occurred at 40 ps with the incident threshold field Eth 

(on) = 1.6×107 V/m (equivalent light 
power Pth 

(on) = 170 mW). For the time period between 40 ps and 50 ps, a relatively sharp 
pulse is observed. Further analyses showed that when the incident field is stronger the pulse 
becomes higher and narrower, leading to a number of soliton-like pulses generated and trans-
mitted (not shown). After 50 ps, the incident power reduces gradually, and thereby the grat-
ing’s inner field switches to a stable state, which is retained until the incident light almost 
vanishes at time 100 ps. The corresponding field distributions are shown in Figure  6-9(a) for 
an off-state at 20 ps, and in (b) for an on-state at 60 ps. These field distributions indicate that 
the field is of a longitudinal fundamental mode, because only a single envelope peak is ob-
served for the on-state, which is similar to those observed in previous literature for 1D solu-
tion  [40] [68]  [44]. Note that the field in Figure  6-9(b) for the on-state is much larger than that 
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in (a) for the off-state. It is also interesting to note in Figure  6-8 that the on-state lasts for 
some picoseconds even after the incident light vanishes. This is a clear evidence of the fact 
that a large amount of energy is stored in the grating during the on-state, and once the incident 
light goes down across the switch-off threshold, the stored energy starts diffusing out of the 
grating. This diffusion process would take some picoseconds in this case. In addition, the 
switch-off threshold for this operation condition is significantly lower, which has extended 
the on-state duration even after the incident light has turned off. In general, for certain values 
of field amplitude and single-step rise-time of the input-field staircase, it is possible that the 
system prefers to stay in the transmitting on-state by exciting gap solitons and by radiating the 
excess energy as a train of pulses ( [40] Figure 3). Such a gap soliton may be observed at time 
60 ps in Figure  6-8, where the field distribution resembles that of a soliton, Figure  6-9(b). 
This stable gap soliton decays relatively slowly, even if the input pulse falls below the switch-
off threshold. 

6.1.4 Pulsative state of nonlinear WBG 

Interestingly, for the same analysis conditions as the previous taper configuration of 
Wg = 0.2 μm except that the grating modulation is uniform, the stable switching is not ob-
served clearly even when a relatively high-power incident light is launched. Instead, a pulsa-
tive state is suddenly observed as shown in Figure  6-10. By comparison with the results for 
the asymmetric WBG in Figure  6-7, it is found that the asymmetric grating has an effect of 
stabilizing the switch-on state. Similar stability characteristics have been investigated by Jia 
et. al. for a weakly-modulated taper nonlinear Erbium-doped fiber Bragg grating  [32]. Ac-
cording to their results, stability of Bragg grating structures is significantly affected by the 
taper configuration of the grating, and it is indeed not straightforwardly predictable. In our 
WBG structure the grating modulation is much stronger, and thereby the stability range is 
even more reduced. Without the gradual change of the electric field modulation, the transition 
between the stable and the pulsative states is so sudden that the stable distribution of the field 
is hardly retained in the WBG structure. This explanation is consistent with the transmission 
spectrum (Figure  6-3) that has a very steep transition and a large dip at higher-frequency side 
of the first peak near the upper band edge. It is therefore anticipated that the switching prop-
erty would be improved by a careful design of the grating configuration. 
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Figure  6-8 : An example of the stable switching state for a uniformly modulated WBG of 200 Λ 

in length, Wg = 0.15 μm at operating frequency 209.40 THz (Δf = 0.15 THz). The maximum field 

is 1.75×107 V/m. Switch-on occurs at Eth 
(on) = 1.6×107 V/m (equivalent light power 

Pth 
(on) = 170mW) 

  

 

Figure  6-9 : Stable state electric field for 200 Λ-long uniform grating. Wg = 0.15 μm, 

209.40 THz, 1.75×107 V/m. (a) Off-state at 20 ps, and (b) on-state at 60 ps 

6.1.5 Chaotic state of nonlinear WBG 

It was found that when the waveguide was longer than a certain length the nonlinear analysis 
tends to diverge at a relatively small incident field, resulting in a modulation-like behaviour, 
and finally resulting in a chaotic state. The similar phenomena have also been reported else-
where  [67] [15]. In the discussion of the stability characteristics of Bragg gratings by Jia et.al. 
 [32], it is shown that the modulation instability occurs in nonlinear Bragg gratings due to the 
interplay between group velocity dispersion (GVD) and nonlinear effects. This mechanism is 
close to that of the optical soliton propagation and self-focusing phenomena as it has been de- 
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Figure  6-10 : An example of the pulsative time signal for a uniformly modulated WBG of 220 Λ 

in length, Wg = 0.2 μm at operating frequency 214.03 THz (Δf = 0.05 THz). The maximum inci-

dent field is 5.25×107 V/m. Transition to the pulsative state occurs at incident field 

E = 3.2×107 V/m (equivalent light power P = 720 mW). 

monstrated numerically using the same FDTD algorithm  [19]. Due to even stronger disper-
sion in a Bragg grating at a frequency close to its band edge, the onset of modulation instabil-
ity occurs at a lower power level for Bragg gratings in comparison to solitons in an ordinary 
waveguide. The chaotic behaviour following the self-focusing of a light beam has been inves-
tigated using a softcore Coulomb potential (SCP) model of bound electrons  [34]. We show 
here that the SCP is applicable to nonlinear Bragg gratings for the investigation of the dy-
namic chaotic behaviour of the grating field. 

The SCP model can avoid the singularity of an instantaneous nonlinearity by employing a 
saturation mechanism near the core of a Coulomb potential; the binding force of an atom is 
derived from the so-called soft-core Coulomb potential  [34] 

  
2

2 2
0

.
q

U x
r x

 


 (4.30) 

where x is the displacement from equilibrium for a bound particle having an electric charge q, 
and r 0 is an equilibrium radius. These parameters can be determined from desired nonlinear 
properties such as linear susceptibility, third-order nonlinear susceptibility, and a characteris-
tic resonance frequency of the charged particle. In its differential equation of electron motion 
it has a term for the Lorentz dispersion and a term for the 3rd-order nonlinearity, which can be 
efficiently implemented in the FDTD algorithm through the ADE formalism  [19]. We will 
report the detailed analysis in a forthcoming paper.  

In Figure  6-11 we show the time evolution of the field detected at the input port V1 and at the 
output port V2, for a uniformly modulated WBG of 300 Λ in length; (a) is for the instantane-
ous Kerr nonlinearity and the Lorentz dispersion with a damping factor δp = 1.0×1014 rad/s, 
and (b) for the SCP model with a damping factor δp = 1.0×1013 rad/s. From these results one 
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Figure  6-11 : (a) Optical Kerr model for fop = 206.5 THz (Δf = 0.2 THz), with Lorentz dispersion 

with the damping factor δp = 1.0×1014 rad/s. Calculation stopped at 5 ps. (b) SCP model for fop = 

200.3 THz (Δf = 0.2 THz), with the damping factor δp = 1.0×1013 rad/s. Calculation still contin-

ues after 10 ps  

can see that the SCP model allows the observation of the chaotic behaviour, at least qualita-
tively, by virtue of the saturating nature of the model, while in (a) even with a larger damping 
factor the calculation stops due to a convergence problem of the nonlinear algorithm. Our 
extensive study shows that when the damping factor is increased for the Lorentz dispersion 
model, the modulation-like field builds up like the result in (a) at a slightly later time, and it 
results in the same convergence problem of the nonlinear algorithm. Figure  6-11 Time signals 
that exhibit the modulation-like instability. For uniform WBGs of L0 = 300 Λ. The incident 
light is a smoothly excited sinusoid with the maximum field 5.25×107 V/m. 

6.2 Summary 

We have demonstrated numerically non-reciprocal transmission and Schmitt trigger operation 
in asymmetric WBGs with strong sidewall modulation. The asymmetric WBG structure ex-
hibits a stable switching region at the incident light power as small as 77 mW for the RTL 
configuration (positively varying stopband) and 170 mW for the LTR configuration (nega-
tively varying stopband). This threshold power is in a level experimentally accessible in an 
actual functional device. We have also demonstrated the analysis of stable, pulsative, and 
chaotic states of the nonlinear WBG structure with the FDTD method. In particular, it is 
found that asymmetricity of WBGs allows a stable switching operation compared to uni-
formly modulated WBGs. The modulation-like instability is qualitatively investigated by us-
ing a numerically stable nonlinear algorithm based on the soft-core Coulomb potential model. 
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7 Signal processing in periodic structures 

In all the preceding chapters we have explored the resonant structures focusing mainly on the 
all-optical bistable switching or direction dependent isolator behaviours. In this chapter we 
discuss about two other signal processing applications relevant to optical networks. First, we 
discuss about degenerate four-wave mixing (FWM) effects in a STWBG (see Section  0 on 
page 62 for description of STWBG) structures and also give some comparison with ring reso-
nator. Next, we will discuss about a possible high extinction ratio optical switching applica-
tion in an asymmetric Fabry-Perot waveguide resonator (AFPR) exploiting TPA effects. 

7.1 Four-wave-mixing in ST-WBG 

In degenerate FWM  [4], the nonlinear interaction of two waves at frequency ωs (“signal”) and 
ωp (“pump”) leads to a phase-sensitive, fully transparent generation of a converted wave at 

frequency ωc = 2ωp  ωs. The ratio of incoming signal and outgoing converted power, nor-

malized by the pump power squared, is the normalized conversion efficiency ηFWM / Pp
2. It 

can be improved by exploiting the field enhancement in resonant structures.  

We use the NLCME equations to model such structures (see Section 4.3 on page 62 for de-

scription of STWBG). It comprises a passive WBG with a Bragg wavelength B = 1.5767 µm 

( = 232 nm). A pump at p = 1.558 µm (p L = 48.8, CW power  Pp = 21 mW) and a Gaus-

sian “1101” signal pulse with a FWHM of 50 ps and repetition rate 250 ps at s = 1.5746 µm 

(s L= 5.4, close to the transmission resonance for the nonlinear case, peak power 

Ps = 14 mW) are injected, Figure  7-1a (left axis). Due to the low signal group velocity at the 

linear-case band edge  L = 5.59 ( = 1.5745 µm) at z = 0, the nonlinear interaction is high 

and an enhanced FWM is observed. For  = 15% and LTR propagation, we find a con-

verted wave at c = 1.5417 µm (c L = 92.3, peak power Pc = 5 µW), Figure  7-1a (right axis), 

corresponding to a conversion efficiency of ηFWM = 34.5 dB; for RTL operation we have 

ηFWM = 44 dB, and without tapering it is η FWM = 38 dB. 

The reason for these differences lies in the differing phase matching and field enhancement 

conditions. For RTL operation and stopband tapering, the signal s = T
RTL is closest to the 

upper band edge (transmission resonance T
RTL), Figure  7-1b (lower-left inset, left-most 

transmission curve). It deviates strongest from the phase velocities of pump and converted 
wave, which propagate nearly unaffected from the grating’s dispersion. For LTR operation 

the signal frequency s is farther away from the band edge because of the tapering, therefore 

it is less influenced by dispersion, but becomes still resonantly enhanced, so the efficiency is 

larger. For an untapered grating ( = 0 %) the resonant enhancement is less, Figure  7-1b 

(lower-left inset, right-most transmission curve), but the phase matching is good, so ηFWM 
takes on an intermediate value. 
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Figure  7–1a : FWM in an InP-based tapered and untapered (LTR propagation) WBG. High-power “1101” 

signal pulses (left axis ), converted pulses (right axis ) 
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Figure  7-1b : Schematic of locally-averaged refractive index as a function of z, CW frequency 

0 = T
RTL. Low power (—, Linear nG), nonlinear RTL (—) and LTR operation (—).  Hori-

zontal dashed lines for spatial average navg over total grating length labelled with respective 

transmission resonance frequencies T (–  – ), TLTR (–  – ), T
RTL ( –  – ).  Lower-left inset: 

Power transmission near upper band edge. Top right inset: Intensity for RTL () and LTR () 

operation. 

Here we have utilized Bragg grating based resonator structures. However for resonant field 
enhancement a micro ring resonator can also be used  [16]. The normalized FWM efficiency 

as obtained from the experimentally measured value as reported  [16]. is  ηFWM / Pp
2= 1.2 W 2 

in the case of ring resonators. This is comparable with the Bragg grating’s normalized effi-

ciency of 0.77 W 2.  

It is interesting to note that — contrary to the situation for the ring resonator below — once 
the signal is tuned to the band edge, the converted-wave frequency may be adjusted quite 
freely by changing the pump frequency. 
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7.2 High extinction ratio switching using two-photon absorption 

in a silicon waveguide resonator 

Silicon has attracted a great deal of attention for optoelectronic applications due to its poten-
tial for forming inexpensive, monolithic integrated optical components. The strong optical 
confinement offered by silicon on insulator (SOI) waveguides enhances nonlinear optical in-
teractions, such as Raman and Kerr effect, in a chip-scale device  [31]. This opens numerous 
possibilities in using silicon as a material for all-optical signal processing. However, this 
functionality is impaired by two-photon absorption (TPA), which can severely degrade the 
performance of a device  [39]. Recently, TPA-induced ultrafast switching was demonstrated in 
SOI wire waveguides  [55] resulting in a relatively low extinction ratio of about 11 dB. On the 
other side, high extinction ratio switching has been shown in an asymmetric Fabry-Perot 
resonator (AFPR) with a relatively slow saturable absorber inside the cavity  [58]. In this pa-
per we combine the advantages of a high extinction ratio inherent in an AFPR with the fast 
TPA nonlinearity readily available in silicon. By optically tuning the reflectivity of a silicon-
based AFPR through TPA inside the cavity, we switch between an impedance-matched condi-
tion with low reflectivity, and a high-reflectivity state. This leads to a high extinction ratio 
larger than 20 dB for the reflected signal. We describe the steady-state behaviour with a sim-
ple model and comment on possible limitations of the switching speed. 

As described before an asymmetric Fabry-Perot resonator can be modelled by Eq. (4.1)  

(4.5), together with Eq. (4.8). For better readability we repeat some of those equations once 
again here 
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where quantities E, F, M, and  are defined as before (see Eq. (4.1)  (4.5))  
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As before we use the same parameters for the silicon-based structures considered here we use 

  3.5 cm-1W-1,  TPA  1.58 cm-1W-1  [36] at  = 1.54µm.  

The round-trip phase and the attenuation in the cavity depend on the average power in the 
cavity through Eq. (3). With increasing input power more energy is coupled into the cavity. 
The high cavity power introduces a nonlinear phase shift via the Kerr effect and moves the 
resonance to a larger wavelength. Simultaneously, the loss of the cavity increases via TPA. 
From Eq. (4.31) we see that the reflectivity of the AFPR becomes minimum if its input im-
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pedance is matched, i.e., if R1 = R2 exp(2lossL) holds. So by changing the input power large 

changes of the AFPR reflectivity are induced; this can be used to construct a switch. In the 
scheme depicted in Figure 7-2 the strong power of the pump signal modulates the cavity reso-
nance condition for the probe signal, and the information of the pump can be transferred to 
the probe. In general, pump and probe wavelengths are chosen to be different, and the absorp-
tion is tuned by cross-absorption modulation  [55]. Here, for simplicity, we only discuss the 
case of identical pump and probe wavelength. In all the results which follow we normalize the 

power by the reference power Pref. The quantity  is the phase detuning with respect to the 

phase at resonance, i.e., it measures the frequency detuning from resonance. 

 

Figure  7-2 : Scheme of switching operation using reflective AFPR 

We solve the set of Eq. (4.31) – (4.32) to characterize the steady state behavior of an AFPR. 
We consider the following set of parameters: R1 = 32% (50%), R2 = 99% (85%) with 
L = 1 000 µm and a linear loss of 1 dB/cm. In Figure  7-3(a) we plot the typical variation of the 

frequency dependent reflectivity R() with different input powers. The solid blue curve in 

Figure  7-3(a) shows R() for R1 = 32%, R2 = 99% in the linear case, while the red (dashed) 

and green (dot-dashed) curves are for an input power of PIn = 0.1 Pref and PIn = 0.26 Pref, re-
spectively. Due to the Kerr nonlinearity the reflectivity spectrum shifts to the higher wave-

length side (negative value of ). It shows a power dependent tuning of R() which can be 

exploited for a nonlinear filter. With increasing input power the minimum reflectivity ap-
proaches zero (see green dash-dotted curve in Figure  7-3(a)). In Figure  7-3 (b) (Figure  7-3(e)) 
we plot the variation of the reflectivity in dB for different input powers and for different phase 
detuning of the AFPR having R1 = 32% (50%), R2 = 99 %(85 %). For certain values of the 
phase detuning the reflectivity falls below 20 dB, e.g., for a phase detuning of 

0.1950.25 the reflectivity is below 20 dB when an input power of 0.31 Pref (0.45 Pref) 

is applied; the associated variation of the reflectivity with the input power is shown in Figure 
 7-3(d) by a blue (red dashed) curve. The average power inside the cavity is plotted on a dB 
scale in Figure  7-3(c) (Figure  7-3(f)). 
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Figure  7-3 : Effect of including TPA on reflectivity of AFPR for different parameters.  (a) Dependence of 

the reflectivity or R1 = 32%, R1 = 99%. (b) & (e) Dependence of reflectivity on the input power and for 

the phase detuning in an AFPR with R1 = 32%, R1 = 99% and R1 = 50%, R1 = 85% respectively; (c) & (f) 

Dependence of Pavg in the cavity for the parameters used in (b) & (e). (d) Dependence of reflectivity R on 

power for R1 = 32%, R1 = 99%. 

 

Figure  7-4 : Effect of neglecting TPA on reflectivity of AFPR for different parameters. Dependence of 

reflectivity on input power, and on phase detuning in an AFPR with (a) R1 = 32%, R2 = 99%; 

(b) R1 = 50%, R2 = 85%. 

If the reflectivity of the back mirror R2 is reduced to 85 % and the front mirror reflectivity R1 
is increased to 50 %, it is found that the power required to attain low reflectivity is reduced 

(see Figure  7-3(e) and (f)). The effective reflectivity eff 1 2R R R  is increased in this case, 

which leads to a larger power enhancement inside the cavity. The bandwidth in is reduced as 
would be expected for a cavity with large finesse. The power requirements for high extinction 
ratio switching can be further reduced by choosing a material with lower FOMTPA. 

TPA  neglected : It is to be noted that in absence of TPA the device shows a bistable state of 
operation for certain values of the input power and phase detuning as can be seen from Figure 

 7-4 for, say, PIn = 0.5 Pref at  = –0.4 . TPA degrades the performance of bistable operation 

such that bistability is not observed in presence of TPA for the cavity parameters and the 
power range considered here.  

Switching speed :  Though TPA is an ultrafast process, the speed of the device is limited to 
the photon lifetime in the cavity, and to the relaxation time of the generated free carriers. The 
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photon lifetime in the cavity can be reduced using a low-Q cavity, but then in turn the cavity 
power enhancement is reduced. So there exits a tradeoff between the photon lifetime and the 
switching power. The relaxation time of free carriers can be minimized by a proper design of 
the waveguide geometry  [55]. Further, if free carriers are extracted from the cavity by form-
ing a pin junction in the transverse direction of the waveguide, the recovery time of the device 
can be lowered  [31].  

We note that the present study is limited by the steady-state assumption, and so the switching 
dynamics can not be calculated. Proper optimizations of a device with suitable switching 
power, switching time and reasonable bandwidth are currently being investigated using a dy-
namical model. 

7.3 Summary 

In this chapter we have discuss about degenerate FWM effects in a stopband tapered 
waveguide Bragg grating (STWBG) structure. As a new result we have observed that the 
FWM efficiency can be different for an asymmetric waveguide based resonator structure. Fur-
ther we have proposed a high extinction ratio switch, using two-photon absorption in an opti-
cally switched asymmetric Fabry-Perot waveguide resonator. To achieve the high extinction 
ratio we combine the advantages of a high extinction ratio inherent in an AFPR with the fast 
TPA nonlinearity readily available in silicon.  
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Appendix A: List of parameters used for SOA-DFB simulation 
 

Appendix A: List of parameters used for SOA-DFB 
simulation 

 
Physical Quantity  Symbol  Value 

Device length L 300 µm 

Active-region width W 2 µm 

Active-region depth d 0.15 µm 

Differential gain A 610-16 cm2 

Transparency carrier density N0 0.41018 cm-3 

Carrier lifetime  0.2 ns 

Saturation power  Psat  10 mW 

Confinement factor conf 0.32 

modal refractive index n 3.4 

Mode cross section  10 µm2 

 

109 





Appendix B: Numerical methods 
 

Appendix B: Numerical methods 
In spite of the complexity of NLCME, a large set of analytic solution exists  [1]  [10] for cer-
tain special cases. But in general it is solved numerically. As with any numerical algorithm 
for solving nonlinear partial differential equations, the method must be tested for its stability 
and numerical accuracy. In this Appendix we discuss different numerical methods used to 
solve the NLCME’s. We compare different methods with their relative accuracy and numeri-
cal efficiency.  

B.1 Transfer matrix method 
The most popular method used to simulate the steady state behaviour of a 1D complex struc-
ture with axially varying parameters is the transfer matrix method (TMM). For linear case this 
method gives the exact numerical solution of the PDE’s. In this section we first discuss a gen-
eral method for solving coupled differential equations with constant coefficients and extent it 
to multi-sections to include grating non-uniformity. Later we will discuss about the extension 
of this analysis to the nonlinear case, i.e., in the case the coefficients are no longer constant 
but depends weakly upon the input fields. 

The pair of couple mode equations (2.40) comprises 2 × 2 system of homogeneous differen-
tial equations, we write in the general form as 
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In the above equation  f, b represents the self coupling coefficients for the forward and back-

ward coupling waves respectively, while  f, b represents the cross coupling coefficients. For 

the time being we assume these coefficients to be constant, representing a linear system. The 
standard technique to solve this type of coupled differential equations is eigenvector decom-
position  [83]. Applying this technique, the solution of the differential equation can be written 
as 
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Here 1,2  are the eigenvalues of matrix M with eigenvectors 1,2v , which can be explicitly 

written as  
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The matrix comprises the column vectors of the eigenvectors are written as 
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We apply proper boundary conditions at the input and output of a grating of length L and with 
this we can write the solutions as 
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 2 2 .m eq     (B.7) 

In the above equation matrix T represents the transfer matrix of the whole grating structure. If 
we divide the grating length into m smaller subsections, we can define a transfer matrix of 
each section in the similar way. The transmission or reflection characteristics can then be ob-
tained by multiplying matrices of individual sections in the following way 
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Different grating non-uniformities can be introduced by choosing proper grating parameters 
in different sections. So in principle any complex structure (e.g. taper, chirp, discrete phase 
shift) can be simulated using a stair-case approach. Here we assume that these parameters 
remain constant over the grating subsections. A discrete phase shift can be introduced in-
between any of these subsections by introducing a simple phase-shift matrix as  
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Since we assume that no wave is incident from the back of the grating we use the backward 
calculation method, i.e., we specify the output and calculate the corresponding input by mul-
tiplying the inverse of individual transfer matrices in the following way 
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So we can calculate the transmissivity and the reflectivity of the above structure by the fol-
lowing expressions 

 
2 2

21

22 22

1
Transmissivity , Reflectivity .

T

T T
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It is to be noted that these section length can not be chosen arbitrarily small. The section 
length is limited by the validity of slowly varying envelope approximations, which can be 
quantitatively written as 

 .mL   (B.12) 

Here Lm is the length of the mth section, and  is the propagation constant in the grating. The 

expressions (B.6) simplifies to the standard liner problem as given by Erdogan et al.  [13]  

The above method is strictly valid for constant coefficients. In case of nonlinearity this coeffi-
cients are no longer constant but depends on the input fields, as can be seen from section 2.4. 
But this rather simple calculation method can also be applied for calculating the transmission 
characteristics of nonlinear structures  [73]. We start with a constant distribution of power in 
the grating structure, i.e., we assume that all the coefficients of the transfer matrix in each 
section are constant. Then we calculate the field distribution of the entire structure. Then we 
update the coefficients (e.g. gain for active devices and effective detuning parameters for the 
forward and the backward waves) with the calculated average power in each section. We con-
tinue these steps until the power distribution inside the entire grating does not change any 
more. This type of iterative solution can be used to solve the GNLCME’s in the steady state. 
Figure B-3 shows a flowchart for numerical solution using TMM. 

 

B.2 Generalized transfer matrix method 
The exact solution of the NLCME is useful in calculating the steady-state response of the 
structure. But the simplicity in the formulation rules out the possibilities to design non-
uniform structures or structures with axially varying parameters. This limits the applicability 
of the present formulation to a wide class of complex periodic structures. However this prob-
lem can be solved by extending this method with by so-called generalized transfer matrix 
method (GTMM)  [60]. This analysis is a powerful tool in simulating a complex grating struc-
ture, in the framework of coupled mode theory. 

In GTMM a non-uniform structure is modelled as a set of M strictly periodic, uniform seg-
ments, as shown in Figure B-1. The field distribution in each section can be calculated ana-
lytically provided the boundary condition at one of its interface is given. We then can relate 
the field in one section to its neighbouring section with proper boundary conditions similar to 
the transfer matrix method (TMM) as described in Appendix  B.1. We divide the entire struc-
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ture of length L is into M segments, each of length Lm. The coupled mode formalism in each 
uniform section of length Lm is valid as long as the following condition  

 2mL ,m   (B.13) 

is satisfied, i.e., as long as the section length is kept much longer than the period of the grating 
in that section.  

 

Figure B-1 : Schematic GTMM 

Now we focus only on the mth uniform section, which have the following set of constant pa-

rameters (m, m, m, m, Lm). It can be shown that for a given intensity distribution for 

z ≥ zm+1, the field distribution within the neighbouring section (i.e., within zm ≥ z ≥ zm+1) can 
be calculated exactly. So we can start with the transmitted intensity distribution at the end of 

the structure and repeat the procedure (M  1) times to get the intensity distribution at the be-

ginning of the structure. In each section the exact solution can be obtained using the elliptic 
function formalism, as described in the previous section. 

We follow the same procedure as used for a uniform structure and rewrite the equations (3.4) 

 (3.7) in the normalized form as 
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All the quantities are normalized to the dimensionless form using the reference intensity A c 
2 

as, 
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The two conserved quantities (3.8) and (3.9) can be similarly written as, 
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    , ,cos 2 ,m m T m m m m T mG J J F J F J         
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 , .T mF J I   (B.20) 

We use 2
c

2I A A  and    2m mz z z m        . We define m = m +1  m as 

the phase difference between two adjacent sections and m as the average nonlinearity in the 

mth section. It can be further shown that, the continuity of the flux at the boundary between 
two sections, leads to a conservation of the transmitted flux over the entire structure, i.e., 

  (B.21) ,1 ,2 , , .T T T m T MF F F F F          T

We denote this conserved flux as . The above equation is a direct consequence of the equa-

tion of continuity, which states that for a loss/gain-less medium the transmitted flux in the 

steady state must be conserved. Finally we eliminate m from equation 

TF

(B.19) and (B.14) ar-

rive at the equation governing the forward flux in segment m as 
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The above equation can be solved in terms of standard elliptic integrals as described in previ-

ous section. For a given transmitted flux  at the end of the structure and for given parame-

ters (e.g. , , ) the right hand side of equation 

TF

(B.22) can be represented by a polynomial of 

degree 4. For a piecewise uniform section assumption this polynomial has unique roots, and 
the solution of the above equation can be writing in the explicit form in terms of these roots. 
Here we discuss the most frequently encountered case in which all the roots Ji 

m (i = 1, 2, 3, 4) 

of the polynomial Pm(J) are real, and J1 
m  J(z)  ,T mF   J2 

m > J3 
m > J4 

m is valid. This as-

sumption can again be justified by the qualitative analysis of motion of a particle in the quar-

tic potential in which only J1 
m  J(z)   J2 

m is real assessable solution. 

We assume again a non-reflecting boundary condition, which allows us to calculate the con-
served quantity G M in the last section similar to (3.12). This defines the polynomial, hence the 
roots of the P M (J). With the knowledge of the solution in this section we can relate the phase 

 to the next section through the following relation  
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We can include a discrete phase shift also at the segment interface by 

    1 1 1 .m m m m mz z       (B.24) 

In the similar way we can apply the same procedure successively to get the field distribution 
of the entire structure. Figure B-2 shows the flowchart of the method described here.  
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Figure B-2 : Flowchart for calculation of the field distribution using GTMM for passive device. 

For each section we can integrate the equation (B.22) and get the similar result like21 in SEc-
tion  3.1.2.1 
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Here u  is given by the following expression 22 
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This completes the solution of NLCME with axial variation of grating parameters. In the sub-
sequent sections we will use GTMM for calculating the steady state response of axially vary-
ing passive nonlinear grating structures. 

 

                                                 
21 Here we again consider the frequently encountered case that all real roots of the polynomial Pi(J) are real. For 
a more general description see Byrd and Freidman  [8] 
22 The inverse of elliptic function is multivalued; here we choose the proper branch. 
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Figure B-3 : Flowchart for numerical solution using TMM. 

B.3 Finite difference method 
 In this section we describe the numerical method used to solve the NLCME’s using the finite 
difference (FD) method. In all the cases follows we use the following type of boundary condi-
tions 
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  (B.27) 

Here we describe a general case in which two signals are injected from the forward Ain, f and 

from the backward Ain, b direction,  hold
,f bA z  gives the initial field distribution inside the grat-

ing. So for a non-reflecting boundary conditions we have Ain, b = 0. We write the NLCME’s in 
the following form  
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Here we have introduced the two functions F and G. These quantities are general function of 
position and time and are expressed in terms of the local forward and backward propagating 
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waves. Before looking at any actual numerical method, we first discretize the equations and 
limit their computational domain. For a device of length L we discretize our z-axis between 

z = 0 and z = L with grid size of z = L/Nz, were Nz + 1 is the spatial grid points. Similarly we 

discretize the t-axis between t = 0 and t = Tmax with grid size of z = L/Nt, were Nt + 1 is the 

temporal grid points. The grid size z, t is to be chosen carefully for each problem. The right 

choice of the discrete steps z and t is crucial for the numerical calculation  [70]. If the steps 

are too large, the errors of the simulation will grow quickly and the result will be worthless 
whereas if they are too small, we waste computational resources and the calculations become 
too slow and introduce artefacts from numerical dispersion. It should be noted, that the grid 
points do not necessarily have to be equidistant for all methods, but in our case it makes the 

implementation much easier. Also the spatial discretization z cannot be chosen very small 

which is limited by the validity of the SVEA used in this thesis. Next we have to go from the 
continuous functions Af, b(z, t) to their discrete counterparts  

    , ,, , , 0,... ; 0,... .f b f b zA z t A m z n t m N n N     t  (B.29) 

The discretization is shown schematically in Figure B-4. All the other structural parameters 

like , ,  can also be discritized in a similar fashion. In Figure B-4 the green dots represent 

the initial distribution at t = 0. The blue and the red dots represent the front and the back of 
the grating. We discretize the first equation in (B.28) using Euler forward difference in time 
and backward differences in space. While the second equation in (B.28) using forward differ-
ences in time and forward difference in space. So we can write in our computation domain, 
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 (B.30) 

To calculate the fields in the next time step at certain grid point the knowledge of the 
neighbouring points are needed. This type of discretization is justified as the in we have 
mixed boundary conditions, i.e., the forward field boundary conditions are defined at the front 
of the structure while the backward field boundary conditions are defined at the back of the 
grating. 

This method gives the solution of the NLCME but is limited by the accuracy of first order 
method. So to get a reasonable accuracy we need to use smaller grid size leading to larger 
usage of computational resources. To overcome these difficulties higher order method should 
be tried which is discussed in the next section.  
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Figure B-4 : Finite difference method 

B.4 Implicit Runge-Kutta method 
The accuracy of the Euler method is rather low. To overcome these difficulties de Sterke et al. 
 [69] suggested an implicit 4th-order Runge-Kutta method based on the collocation 
scheme.Here, we will only give a brief overview how the algorithm works and how it can 
implemented. For a more detailed description and the mathematical background please refer 
to  [69] (particularly appendix A). A first step towards a more efficient integration method is 
to transform the partial differential equations into ordinary differential equations. This can be 
done by the simple coordinate transformation of which transforms the PDE’s along its charac-
teristics, 
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In terms of the transformed co-ordinates the NLCME can be written as  
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So we can see that this transformation reduces the PDE into ODE. It is to be noted that the co-
ordinates are no longer independent but are coupled via (B.32). Each of this equation can be 
integrated by using higher-order efficient methods and by combining the results suitably in 
the grid points. The numerical procedure described by de Sterke et al. utilizes the collocation 
method and writes the implicit equation in the computation domain as 
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Here it is assumed that the general form of the ODE is 
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.f x y

x
  (B.34) 

Here ‘y’ represents either Af or Ab in the transformed coordinate. The coefficients are listed in 
Table B1. An iterative method is used to solve the implicit equation (B.33). It is important to 
note that near the boundary this implicit equation cannot be applied in those point Euler 
method is used (see Figure B-5).  So starting from an initial estimate the solution can be im-
proved using iterative approach. 

 

Table B1 : Values of the coefficients used in integration and extrapolation procedure. 

 a21 = 5/24 a22 = 1/3 a23 = 1/24 

a21 = 1/6 a32 = 2/3 a33 = 1/6 

b21 = 3/8 b22 = 0 b23 = 9/8 

b21 = 4/3 b32 = 8/3 b21 = 10/3 
 

 

This method can also be used to extrapolate using the collocation method to get a good esti-
mate for the next integration step using the following expressions. 
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 (B.35)  

The coefficients are listed in Table B1. The schematic procedure can be see from the follow-

ing Figure B-9 

 

Figure B-5 : Implicit Runge-Kutta method. 
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B.5 Summary 
In this Appendix we have discussed different numerical methods which can be used to solve 
the time dependent or steady state GNCLME. For steady state calculation TMM is best suited. 
For slowly time varying cases also TMM can be applied using iterative approach. For time 
dependent simulation the implicit Runge-Kutta method is more efficient than the simplified 
Euler method. The implicit method saves the computation resources and is more accurate. But 
in this procedure the temporal and spatial discretization can not be chosen independently 
which may pose limitation to the method. In this thesis we have used the implicit Runge-
Kutta method for calculating the temporal dynamics of nonlinear periodic structures until oth-
erwise specified. 
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All-optical signal processing devices are likely to be used in future communi-
cation networks. Of particular interest are all-optical flip-flops, logic gates, and 
wavelength converters using semiconductors. These devices might find appli-
cations in optical packet header processors, for optical signal monitoring or for 
signal regeneration.
This book discusses a new and generic scheme for all-optical signal proces-
sing. The basic configuration comprises an asymmetric resonator within an 
active or passive nonlinear medium. It is shown that such a device enables 
all-optical flip-flop operation and all-optical switching. In addition, a novel opti-
cal isolator concept not based on magnetic materials is introduced.
A simple model is established to describe the transmission and reflection beha-
viour of a resonator having structural asymmetries. It is predicted that any 
nonlinear resonator without inversion symmetry will exhibit “optical diode”-like 
nonreciprocal transmission. Further it is shown that resonator asymmetries 
reduce the switching threshold for bistable operation. The model is also appli-
cable to photonic crystal based resonators.
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