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Introduction

Stochastic differential equations describe dynamics of systems under random disturbances,
which are universal in physical, biological, engineering, and social sciences. At the be-
ginning they were proposed by physicists and mathematicians to construct trajectories of
diffusion processes, and after further development, these equations have been applied to
many other aspects, such as the famous Black-Scholes-Model in economics. With the fast
infiltration of stochastic differential equations into a large variety of fields in sciences and
technology, books and monographs on this topic have been published, such as Evans [6],
Li [18], Mao [21], and Yeh [46].

A very important impetus of the development of stochastic differential equations is the
study of Brownian motion (Section 1.1). In 1650, the phenomenon of Brownian motion
was mentioned by Leeuwenhoek (1632-1723). Later, in 1827, R. Brown (1773-1858) ob-
served the motion of pollen suspended in water, which is highly irregular and has no
tangent at any point, and furthermore, the motions of two distinct particles seem to be
independent ([6]). Deeper study on this phenomenon reveals that it is not caused by
biological reasons, but the bombardment of the water molecules.

In 1905, the Brownian motion was studied by A. Einstein (1879-1955) by observing mo-
tions of ink particles ([6]): Consider a long, thin tube filled with clear water and inject at
time t = 0 a unit amount of ink into the water at the point x = 0. Suppose that f(x, t)
denotes the amount of ink particles at time t and position x, which reflects the probability
density of Brownian motion of ink particles. It is found that f(x, t) satisfies a diffusion
equation, and its solution indicates that the Brownian motion is a Gaussian process.

Further, it is found that the sample paths of Brownian motions are continuous but nowhere
differentiable, with Markov and martingale property. The equation that describes the ve-
locity of Brownian particles, the Langevin’s equation (equation (1.1.2)) contains the term
of white noise.

Based on the study of stochastic integrals and Itô’s formula, theories of stochastic dif-
ferential equations, such as existence and uniqueness of solutions, properties of solutions,
and methods of solving some kinds of linear equations, etc., have been established (see
e.g. [6] and [21]). In general, however, stochastic differential equations are difficult to
solve, although solutions are ensured to exist under certain conditions. This leads to
the development of numerical integration methods of them, for which there has been an
accelerating interest during the past decades. More and more works are devoted to this
topic, e.g. Higham [13], Klöden [16], Klöden & Platen [17], and Milstein [25].

In [16], a brief overview of numerical methods for stochastic differential equations is
given. The Wagner-Platen expansion plays an important role in the construction of
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stochastic numerical schemes, as the Taylor expansion does in the deterministic cases.
Integrands in the integral expression of solution of a stochastic differential equation are
expanded successively according to the stochastic chain rule, the Itô’s formula, as illus-
trated in (1.2.14)-(1.2.16). Schemes are constructed by discarding remainder terms in the
expansion. Difficulties hereby consist of simulation of higher order derivatives, as well as
multiple stochastic integrals. Suitable treatment of derivatives such as using difference
quotients instead of derivatives in the scheme leads to Runge-Kutta type methods, e.g.
the Platen scheme in Section 1.2.

Different from the concept of consistency and convergence of a numerical method in
deterministic case, they are both defined in strong and weak sense in stochastic context,
according to whether the closeness is valid path-wise or in certain mean sense (see Def-
initions 1.7-1.11). Stochastic numerical stability is defined and introduced in Definition
1.12. In the book of Klöden and Platen ([17]), a systematic presentation about issues
concerning different aspects of numerical integration of stochastic differential equations
is given, including strong and weak approximation. Milstein paid more attention in his
monograph [25] to different techniques of constructing and analyzing a numerical method,
such as analysis of mean-square order, simulation of multiple stochastic integrals, and so
on. An important and concise introduction to algorithms of stochastic numerical simula-
tion, including simulation of Brownian motion etc., is given by Higham [13].

Definition and study of deterministic Hamiltonian systems can be found in Arnold [1]
and Hairer, Lubich & Wanner [12]. Symplectic numerical integration methods that pre-
serve symplecticity of the Hamiltonian systems are developed (Feng [7], [8], Feng, Wu,
Qin & Wang [9], Ruth [39], de Vogelaere [43]). Based on the requirement of preserving
symplectic structure, stochastic Hamiltonian systems are defined (Bismut [2], Milstein,
Repin & Tretyakov [26], [28]), where the drift and diffusion coefficients are product of an
anti-symmetric matrix and the gradient of the Hamiltonians H and Hi (i = 1, 2, . . . , r),
respectively (Definition 3.1). In the same articles ([26], [28]), as well as in [27] and [29],
numerical methods that satisfy the discrete symplectic structure conservation law are con-
structed, whereby symplectic methods for deterministic Hamiltonian systems are adapted
to stochastic context according to the consistency and realizability requirements. This re-
sults in some stochastic symplectic Runge-Kutta type methods (Section 3.2 and Chapter
7).

For deterministic Hamiltonian systems, the generating function theory is important (Feng
et al. [9]), which gives a systematic method of constructing symplectic schemes. Three
kinds of generating functions are deduced to satisfy three Hamilton-Jacobi partial dif-
ferential equations, respectively. Approximations of solutions of the Hamilton-Jacobi
equations are studied, which gives in practice the possibility to the establishment of sym-
plectic schemes (Section 2.3). Another important technique frames symplectic schemes
through variational approach, i.e., the variational integrators. It is based on the Hamil-
ton’s principle, and generates symplectic methods by discrete Lagrangian and Legendre’s
transform (Section 2.2). The well-known partitioned Runge-Kutta methods, Gauss col-
location methods, and Lobatto IIIA-IIIB pairs etc. can be structured by variational
integrators ([12], Marsden & West [24]).

chastic quantization procedure or Nelson’s stochastic mechanics (Nelson [35], [36]). Since
his creative work, there have been attempts to endow Nelson’s stochastic mechanics with

In 1966, Nelson gave a stochastic view of quantum mechanics, which is now called sto-
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a dynamical framework in the Lagrangian formalism (Guerra & Morato [11], Nelson [37],

In each of these works Nelson’s original mechanics is developed as stochastic Newtonian

ism for Nelson’s stochastic mechanics is developed (Zambrini [47]), based on variational
principle. Hamiltonian mechanics for diffusion processes is formulated, which is different

A series of articles applying Lagrangian variational principle to analysis
of quantum mechanics are written (Davies [5], Loffredo & Morato [19]), whereby the sto-
chastic action integral and Lagrangian are treated in certain mean sense.

attempts to develop stochastic generating functions and variational integrators, which
are not studied yet. We start from searching for the stochastic Hamilton’s principle and
the Hamilton-Jacobi theory, since their deterministic parallel is the base for deterministic
generating functions and variational integrators. The theories developed by Nelson et
al. ([35]-[37]) give an important hint. In order to get mean-square methods, we apply
mechanics for nonconservative systems ([1], Frederico & Torres [10], Marsden & Ratiu
[23], Morita & Ohtsuka [34], Recati [38], Tveter [42] ), with the consideration that the

which contain the nonconservative force, and the generalized action integral (4.1.1) which

Based on these and the Hamilton’s principle which states that the
equation (4.1.5) extremizes (4.1.1), we propose the generalized Hamilton’s principle and
action integral with noises. Further, the stochastic variational integrators are established
(Chapter 4). The action integral with noises generates a symplectic mapping, which gives
rise to generating functions of the first, second and third kind through coordinates trans-
formation. The Hamilton-Jacobi partial differential equations with noises are derived,
whereby forms of stochastic partial differential equations give inspirations (Carmona &
Rozovskii [3], Prato & Tubaro [4]). Numerical methods are achieved by an approximation
of solution of the Hamilton-Jacobi equations with noises, which is a truncated series in
powers of the Brownian motion W (t) and time t. The mean-square order of the methods
can be controlled by truncating this series to proper term (Chapter 5 and 6). The Wagner-
Platen expansion in Stratonovich sense, and the Stratonovich chain rule (Theorem 1.4)
are vital for involved calculations. Numerical tests are performed for a linear stochastic
oscillator, Kubo oscillator, a model of synchrotron oscillations, and a system with two
additive noises (Chapter 9). In order to check validity of our theory, we derive generating
functions for some symplectic methods given in literature (Chapter 7). Numerical tests
and contents in Chapter 7 show that, the stochastic variational integrators and generating
functions are two efficient approaches to construct stochastic symplectic methods.

The idea of preserving symplecticity proposed by Feng et al. is later developed to the
theory of structure-preserving algorithms, which aims to construct numerical methods
that can preserve properties of the original systems, and is now a fast developing branch

quantities (the first integrals) of dynamical systems is one of the most important sub-
jects, because such quantities are fundamental characters of dynamical systems described

mechanics, on the model of classical mechanics (see Misawa [32]). Hamiltonian formal-

The deterministic generating function and variational integrator theories stimulate our

Zambrini [47], [48]) and in the Hamiltonian formalism (Misawa [30], Zambrini [47], [48]).

from that of Zambrini and based on the stochastic Hamilton-Jacobi equation (Nelson

(Misawa [31]).
[37]) (see Misawa [30]). Canonical transformations in stochastic mechanics are given

is an integral of the difference of Lagrangian function and the work done by the non-
conservative force.

Mainly, use the Lagrange equations of motion for nonconservative systems (4.1.5)

random force, the white noise, is a certain nonconservative force.

is d
,

,

of numerical analysis. On the other hand, it is well-known that the theory of conserved
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by differential equations. · · · . Moreover, in the field of numerical analysis for determin-
istic dynamical systems described by ordinary differential equations, it is also recognized
that the studies on the numerical preservation of the conserved quantities for dynamical
systems are very important in performing reliable numerical calculations to the systems.
Hence, it seems quite natural to investigate stochastic numerical schemes which leave

The invariance of asymptotic laws of methods for linear stochastic systems (Schurz [40]),

Hamiltonian system (Misawa [33]) are discussed. Compared to the accuracy and stability
analysis of stochastic numerical methods, however, the study on structure preservation
properties of stochastic numerical methods is rare.

A stochastic midpoint rule is proposed, which is symplectic. Its ability of preserving
linear growth property of the second moment of the solution, as well as oscillation prop-
erty of the solution is checked (Hong, Scherer & Wang [14]). Further, some stochastic
predictor-corrector methods for the linear stochastic oscillator (3.1.7)-(3.1.8) are given,
and their structure-preserving properties are studied (Hong, Scherer & Wang [15], see
Section 3.3). In Chapter 5 and 6, we construct some symplectic methods for different
stochastic Hamiltonian systems. Their behaviors in preserving conserved quantities and
properties of original systems are observed through numerical tests in Chapter 9.

Backward error analysis is applied in numerical integration of deterministic ordinary dif-
ferential equations. Instead of the local and global errors, backward error analysis studies
difference between the vector fields of the original system and its modified equation, which
has the discrete points produced by the numerical method as its exact solution points.
Observing the exact flow of the modified equation gives insight into the qualitative prop-
erties of the numerical methods ([12]). Construction of modified equation of a numerical
method is vital for backward error analysis. It is verified that the modified equation of
a symplectic method is a Hamiltonian system, which can be written by using generating
functions of the numerical method ([12]). Inspired by these results, we propose in this dis-
sertation stochastic modified equations for symplectic methods with noises, by applying
their generating functions with noises. We prove that the modified equation of a stochas-
tic symplectic method is a stochastic Hamiltonian system, which can be determined by
generating functions of the method (Chapter 8). Numerical tests show good coincidence
between the trajectories of the numerical methods and their stochastic modified equa-
tions (Chapter 9). This gives help to the study of qualitative and long time behavior of
stochastic symplectic methods.

Contents of this dissertation are organized in the following way:

Chapter 1 is an introduction to stochastic differential equations and an overview of their
numerical approximations. Chapter 2 gives basic knowledge of deterministic Hamiltonian
systems, and the theory of deterministic variational integrators and generating functions.
Definition and properties of stochastic Hamiltonian systems, as well as some results on
numerical integration methods of them are presented in Chapter 3. Chapter 4 gives
representation of stochastic action integral, based on which the Lagrangian formalism
of stochastic Hamiltonian systems is derived, and the stochastic Hamilton’s principle is
obtained. As a result, stochastic variational integrators that create symplectic numerical
integration methods are constructed. On the basis of the stochastic action integral, as

and an energy conservative stochastic difference scheme for a one-dimensional stochastic

the conserved quantities of stochastic systems numerically invariant (see Misawa [33]).

At the beginning of our research, is consider a linear stochastic oscillator (3.1.7)-(3.1.8).
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well as coordinates transformations, three kinds of generating functions containing one
noise for producing stochastic symplectic mappings are given in Chapter 5. Meanwhile,
three kinds of stochastic Hamilton-Jacobi partial differential equations satisfied by the
three kinds of generating functions are derived. An approach to approximate solutions of
the stochastic Hamilton-Jacobi partial differential equations is given. Symplectic numer-
ical methods for some stochastic Hamiltonian systems are constructed on the basis of the
stochastic generating function theory, whereby mean-square order of the methods can be
theoretically sufficiently high. The results in Chapter 5 for systems with one noise are
generalized to that for systems with two noises in Chapter 6, which contain stochastic
Hamilton-Jacobi partial differential equations with two noises, as well as approximations
of their solutions which are generating functions for stochastic symplectic schemes with
two noises. Cases of more noises can be treated similarly. In Chapter 7, generating func-
tions are found for some stochastic symplectic methods given in literature, according to
the stochastic generating function theory in Chapter 5 and 6. A symplectic Runge-Kutta
method for systems with additive noises is generalized to systems with any type of noises,
for which three kinds of generating functions are derived. Chapter 8 contributes to sto-
chastic backward error analysis, where an approach of constructing modified equations for
stochastic symplectic schemes is given, which applies stochastic generating functions. The
obtained modified equations are proved to be stochastic Hamiltonian systems. Modified
equations for some symplectic methods proposed in previous chapters are established.
The numerical methods produced by variational integrators and generating functions for
discretizing a linear stochastic oscillator, the Kubo oscillator, a model of synchrotron
oscillations and a system with two additive noises are tested through numerical experi-
ments. Chapter 9 illustrates the numerical results, which show efficiency of the methods
in simulating the original systems with preservation of some important structures of the
original systems. Good coincidence between trajectories of numerical methods and their
modified equations gives another support to validity of the stochastic generating function
theory proposed in this thesis.
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Chapter 1

Basic

Basic definitions related to stochastic differential equations (SDEs), such as Wiener process,
stochastic integrals, and Itô’s formula are given in this chapter. A brief overview of the
numerical methods for SDEs, especially the Wagner-Platen expansion is made. Concepts
of convergence, consistence, and stability of a numerical method for SDEs are introduced.

1.1 Stochastic Differential Equations

In modern control theory, stochastic differential equations play an important role, because
they can successfully model systems with random perturbations.
Recall that a d-dimensional ordinary differential equation (ODE) system has the following
form

Ẋ(t) = f(X(t), t), X(0) = X0, (1.1.1)

where X is a d-dimensional vector and f : Rd × [0, +∞] 7→ Rd a Rd-valued function.
Stochastic differential equations arise when an ordinary differential equation is forced by
an irregular stochastic process such as Gaussian white noise ξ(t), the name of which comes
from the fact that its average power is uniformly distributed in frequency, which is a char-
acteristic of white light ([17]). For example, Langevin wrote the following equation for the
acceleration of a particle of Brownian motion, resulting from the molecular bombardment
of the particle suspended on a water surface,

Ẋ(t) = aX(t) + bξ(t), (1.1.2)

with a < 0, b > 0, and X(t) being the velocity of the particle. This is the sum of a
retarding frictional force depending on the velocity and the molecular forces represented
by a white noise process ξ(t). −a and b are called drift coefficient and diffusion coefficient
respectively.
A mathematical description of Brownian motion was proposed by Wiener ([6],[17]), there-
fore, Brownian motion is also called standard Wiener process, namely, a Gaussian process
denoted with W (t), t ≥ 0, and characterized by the following properties:

1. W (0) = 0 with probability 1.

2. For any partition 0 = t0 < t1 < t2 < · · · , the increments W (ti+1) − W (ti) and
W (tj+1)−W (tj) are independent for all i 6= j.

Knowledge
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3. E(W (t)) = 0 and V ar(W (t) −W (s)) = t − s for all 0 ≤ s ≤ t, where E and V ar
denote the expectation and variance respectively.

An important character of the standard Wiener process is that its sample paths are
nowhere differential almost surely ([6],[17]). However, the white noises are usually re-
garded as the derivative of standard Wiener process, i.e., ξ(t) = Ẇ (t), which suggests
that the white noise process is an unusual process. In fact, it can not be realized physi-
cally, but can be approximated to any accuracy by conventional stochastic process with
broad banded spectra such as the following process

Xh(t) =
W (t + h)−W (t)

h
, (1.1.3)

where W (t), t ≥ 0 is a standard Wiener process ([17]).
Now write the Langevin’s equation (1.1.2) in the usual form of a stochastic differential
equation

dX(t) = aX(t)dt + bdW (t) (1.1.4)

with regarding ξ(t)dt = dW (t) which is a consequence of the relation between white noise
and standard Wiener process. The equivalent integral form of (1.1.4) is

X(t) = X(0) +

∫ t

0

aX(s)ds +

∫ t

0

bdW (s) (1.1.5)

More general, the drift and diffusion coefficients a and b of a stochastic differential equation
can be functions of X(t) and t. A d-dimensional stochastic differential equation (SDE)
system is usually expressed as

dX(t) = a(X(t), t)dt + b(X(t), t)dW (t), (1.1.6)

where a : Rd × [0, +∞] 7→ Rd is a d-dimensional vector and b : Rd × [0, +∞] 7→ Rd×r

a d × r-matrix. W (t) is a r-dimensional Wiener process, the components of which are
pairwise independent standard Wiener processes.
Componentwise, the SDE system (1.1.6) are also written as

dXi(t) = ai(X(t), t)dt +
r∑

k=1

bik(X(t), t)dWk(t), i = 1, . . . , d, (1.1.7)

or equivalently

Xi(t) = Xi(0) +

∫ t

0

ai(X(s), s)ds +
r∑

k=1

∫ t

0

bik(X(s), s)dWk(s), i = 1, . . . , d. (1.1.8)

(1.1.7) or (1.1.8) is called a stochastic differential equation system with r noises.
Since t 7→ Wk(ω, t) is of infinite variation for almost every ω ∈ Ω, {Ω,A, P} being the
probability space, the stochastic integral

∫ t

0

bik(X(s), s)dWk(s)
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can not be understood as an ordinary integral. It is defined for bik ∈ L2
t as the mean

square limit of the sums ([17])

Sn(ω) =
n−1∑
j=0

bik(X(ξ
(n)
j , ω), ξ

(n)
j )

{
Wk(ω, t

(n)
j+1)−Wk(ω, t

(n)
j )

}
(1.1.9)

with ξ
(n)
j ∈ [t

(n)
j , t

(n)
j+1] for partitions 0 = t

(n)
0 < t

(n)
1 < t

(n)
2 < · · · < t

(n)
n = t for which

δ(n) = max
0≤j≤n−1

(t
(n)
j+1 − t

(n)
j ) → 0 as n →∞. (1.1.10)

L2
t here is the linear space which consists of functions f : Ω× [0, t] 7→ R satisfying

1. f is jointly A× L-measurable;

2.
∫ t

0
E(f(·, s)2)ds < ∞;

3. E(f(·, s)2) < ∞ for each 0 ≤ s ≤ t;

4. f(·, s) is As-measurable for each 0 ≤ s ≤ t,

with L being the σ-algebra of Lebesgue subsets on [0, t]. With the mean-square norm

‖ f ‖2,t:=

(∫ t

0

E(f(·, s)2)ds

)1/2

, (1.1.11)

L2
t is a Banach space, if functions differing on sets of zero measure are identified ([17]).

The mean square limit of the sum Sn(ω) in (1.1.9) depends on the choice of the point ξ
(n)
j

in the interval [t
(n)
j , t

(n)
j+1], which distinguishes a stochastic integral from a classic Riemann

Integral.

For example, if ξ
(n)
j are chosen to be

ξ
(n)
j = (1− λ)t

(n)
j + λt

(n)
j , 0 ≤ λ ≤ 1, (1.1.12)

and denote the resulted integrals with

(λ)

∫ T

0

f(ω, t)dW (ω, t),

for the integrand f(ω, t) = W (ω, t) one has ([6],[17],[21])

(λ)

∫ T

0

W (ω, t)dW (ω, t) =
1

2
W (ω, T )2 + (λ− 1

2
)T, (1.1.13)

the value of which depends on λ.

Arbitrary choice of evaluation points ξ
(n)
j , however, is of little theoretical or practical in-

terest. The most widely used two cases are ξ
(n)
j = t

(n)
j and ξ

(n)
j =

t
(n)
j +t

(n)
j+1

2
, i.e., λ = 0 and

λ = 1
2
, which results in the so-called Itô integral and Stratonovich integral respectively.
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Definition 1.1. For partitions 0 = t
(n)
0 < t

(n)
1 < t

(n)
2 < · · · < t

(n)
n = T on [0, T ], the

Itô integral
∫ T

0
f(ω, t)dW (ω, t) for an integrand f ∈ L2

T is defined as the mean-square
limit of the sums

Sn(ω) =
n−1∑
j=0

f(ω, t
(n)
j )

{
W (ω, t

(n)
j+1)−W (ω, t

(n)
j )

}
. (1.1.14)

The Stratonovich integral
∫ T

0
f(ω, t) ◦ dW (ω, t) is equal to the mean-square limit of the

sums

Sn(ω) =
n−1∑
j=0

f(ω,
t
(n)
j + t

(n+1)
j

2
)
{

W (ω, t
(n+1)
j )−W (ω, t

(n)
j )

}
. (1.1.15)

Here we use the convention of expressing Stratonovich integral with a small circle ◦
before dW . The stochastic differential equation (1.1.6) is said to be of Itô sense, if the
stochastic integrals appearing in its integral form (1.1.8) are Itô integrals. For a stochastic
differential equation in the sense of Stratonovich we write

dX(t) = a(X(t), t)dt + b(X(t), t) ◦ dW (t), (1.1.16)

which means that the stochastic integrals involved are Stratonovich integrals.
From Definition 1.1 of the two kinds of integrals, it is derived by simple calculation that
they are related in an interesting manner ([6]).

Proposition 1.2. ([17],[21],[25]) The d-dimensional stochastic differential equation in
the sense of Stratonovich

dX(t) = a(X(t), t)dt +
r∑

k=1

bk(X(t), t) ◦ dWk(t) (1.1.17)

with a and bk being smooth Rd-valued functions, is equivalent to the d-dimensional Itô
stochastic differential equation

dX(t) =

(
a(X(t), t) +

1

2

r∑

k=1

∂bk

∂x
(X(t), t)bk(X(t), t)

)
dt +

r∑

k=1

bk(X(t), t)dWk(t).

(1.1.18)

Its proof is based on the Taylor expansion of bkl(X(
tj+tj+1

2
),

tj+tj+1

2
) at the point tj in the

sum Sn(ω) defined in (1.1.15) but for function bkl instead of f , l = 1, · · · , d. For details
it is referred to [6].

In stochastic calculus, there is a very important formula which functions as the stochastic
counterpart of the deterministic chain rule for derivative of composite functions. That is
the following Itô’s formula in Theorem 1.3. Similar to the definition of L2

T , we denote

with L1
T the linear space of real-valued functions f(t, ω) satisfying

∫ T

0
E(| f(·, t) |)dt < ∞

and E(| f(·, t) |) < ∞ for each 0 ≤ t ≤ T . In the theorem below we assume that the
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stochastic differential equation is of one dimension.

Theorem 1.3 (Itô’s formula). ([6],[17],[21]) Suppose

dX(t) = a(X(t), t)dt + b(X(t), t)dW (t), (1.1.19)

for a ∈ L1
T and b ∈ L2

T . Assume u : R × [0, T ] 7→ R is continuous and that ∂u
∂t

, ∂u
∂x

, and
∂2u
∂x2 exist and are continuous. Set

U(t) := u(X(t), t).

Then it holds

dU(t) =
∂u

∂t
dt +

∂u

∂x
dX(t) +

1

2

∂2u

∂x2
b2dt

=

(
∂u

∂t
+

∂u

∂x
a +

1

2

∂2u

∂x2
b2

)
dt +

∂u

∂x
bdW (t), (1.1.20)

with equality interpreted in the mean-square sense.

It can be seen that an extra term 1
2

∂2u
∂x2 b

2dt appears, which is not present in the clas-
sic chain rule. In [17], Kloeden and Platen give the following simple explanation for it.
Use the Taylor expansion for u, we have

∆U(t) = u(X(t) + ∆X, t + ∆t)− u(X(t), t)

=

(
∂u

∂t
∆t +

∂u

∂x
∆X

)

+
1

2

(
∂2u

∂t2
(∆t)2 + 2

∂2u

∂t∂x
∆t∆X +

∂2u

∂x2
(∆X)2

)

+ · · · . (1.1.21)

According to the equation (1.1.19), (∆X)2 contains the term (∆W )2, which gives the
term ∆t due to the fact that E(∆W 2) = ∆t. Thus follows the Itô’s formula.

Generalized Itô’s formula with dimension d is derived in the same way, based on Tay-
lor expansion of functions with more independent variables. In the case of r noises, its
derivation is more complicated. Details can be found in [6].

The Itô’s formula (1.1.20) explains why there is an additional term −1
2
T in (1.1.13) for

λ = 0. For λ = 1
2

in (1.1.13), the extra term (λ− 1
2
)T vanishes, i.e., the classic chain rule

holds. This illustrate an important advantage of the choice of λ = 1
2
, i.e., the Stratonovich

integral, as stated in the following theorem. Here we assume that X is d-dimensional vec-
tor, and W is r-dimensional Wiener process. a and b are accordingly defined, as in (1.1.6).

Theorem 1.4 (Stratonovich chain rule). ([6]) Suppose

dX = a(X(t), t)dt + b(X(t), t) ◦ dW (t) (1.1.22)

and u : Rd × [0, T ] 7→ R is continuous. Define

U(t) := u(X(t), t).
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Then

dU(t) =
∂u

∂t
dt +

d∑
i=1

∂u

∂xi

◦ dXi

=

(
∂u

∂t
+

d∑
i=1

∂u

∂xi

ai

)
dt +

d∑
i=1

r∑

k=1

∂u

∂xi

bik ◦ dWk(t). (1.1.23)

Thus the classic chain rule holds for Stratonovich stochastic differentials b(X(t), t)◦dW (t),
which is the major reason for its use. We give a proof for the simple case d = 1 and r = 1,
which applies the relation between Itô and Stratonovich integrals, as well as the Itô’s
formula.

Proof. From dX(t) = a(X(t), t)dt + b(X(t), t) ◦ dW (t), applying formula (1.1.18), it
is obtained that

dX(t) = (a +
1

2

∂b

∂x
b)dt + bdW (t). (1.1.24)

Now use the Itô’s formula (1.1.20), we get

dU(t) = (
∂u

∂t
+

1

2

∂2u

∂x2
b2)dt +

∂u

∂x
dX

= (
∂u

∂t
+

1

2

∂2u

∂x2
b2 +

∂u

∂x
a +

1

2

∂u

∂x

∂b

∂x
b)dt +

∂u

∂x
bdW. (1.1.25)

Proposition 1.2 implies

∂u

∂x
bdW (t) = −1

2

(
∂2u

∂x2
b2 +

∂u

∂x

∂b

∂x
b

)
dt +

∂u

∂x
b ◦ dW (t). (1.1.26)

Substitute (1.1.26) into (1.1.25) we get

dU(t) = (
∂u

∂t
+

∂u

∂x
a)dt +

∂u

∂x
b ◦ dW (t). (1.1.27)

¤

For the Itô SDE system (1.1.6) with 0 ≤ t ≤ T and initial value X(0) = X0 which
is either a constant or a random variable, under Lipschitz and linear growth condition
with respect to x of the drift and diffusion coefficients a(X(t), t) and b(X(t), t), with X0

satisfying E(|X0|2) < ∞ and being independent of the ’future’, W+(0) := σ(W (s)|0 ≤ s)
of the Wiener process after time t = 0, there exists a unique solution X ∈ L2

T of this
system. One of the most important properties of the solutions of stochastic differential
equations is that they are usually Markov processes.

Definition 1.5. ([6]) The d-dimensional stochastic differential equation with r noises

dX(t) = a(X(t), t)dt + b(X(t), t)dW (t)

is linear if the the coefficients a and b have the form

a(x, t) = c(t) + D(t)x,
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for c : [0, T ] 7→ Rd, D : [0, T ] 7→ Rd×d, and

b(x, t) = E(t) + F (t)x

for E : [0, T ] 7→ Rd×r, F : [0, T ] 7→ L(Rd,Rd×r), the space of bounded linear mappings
from Rd to Rd×r.

Definition 1.6. ([6]) A linear SDE is called homogeneous if c ≡ E ≡ 0 for 0 ≤ t ≤ T . It
is called linear in the narrow sense if F ≡ 0.

For the linear equations in narrow sense, if EdW is written as Eξdt with ξ being the
white noise, and regard Eξ as an inhomogeneous term of the ODE

Ẋ(t) = c(t) + D(t)X(t) + E(t)ξ, (1.1.28)

the solution can be found by using the variation of constants method of solving an inho-
mogeneous linear ODE, which is

X(t) = Φ(t)

(
X0 +

∫ t

0

Φ(s)−1(c(s)ds + E(s)dW )

)
, (1.1.29)

where Φ(t) is the fundamental matrix of the ODE system

Φ̇(t) = D(t)Φ, Φ(0) = I. (1.1.30)

However, if F 6= 0, the method of ODE system fails to function due to the extra term in
Itô’s formula.
In fact, it is generally very difficult to find explicitly the solution of a SDE system,
except for some special cases such as the example above, as well as scalar linear equations
([6],[17]). This gives rise to the numerical methods of solving the stochastic differential
equation systems.

1.2 Stochastic Approximation

A brief overview of the main issues concerning the stochastic time discrete approximation
of a SDE is given in this section.
As the first example, we introduce one of the simplest numerical method of approximating
the solution of the scalar Itô stochastic differential equation

dX(t) = a(X(t), t)dt + b(X(t), t)dW (t), X(0) = X0 (1.2.1)

with t ∈ [0, T ], the Euler-Maruyama method

Xn+1 = Xn + a(Xn, tn)∆n + b(Xn, tn)∆Wn, (1.2.2)

for the partition 0 = t0 < t1 < · · · < tN = T of the time interval [0, T ], and ∆n = tn+1−tn,
∆Wn = W (tn+1)−W (tn), for which the initial value of iteration is X0.

In stochastic context, two basic kinds of tasks are connected with the simulation of so-
lutions of SDE, one is simulating the paths of the solutions, the other is approximating
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expectations of functionals of the solution such as its probability distribution and its
moments. Consequently arise two types of criteria of judging the error behavior of the
simulations, namely the strong and weak convergence criteria.

Definition 1.7. ([16],[17]) A general time discrete approximation X̄ with maximum step
size h is called to converge strongly to X if

lim
h→0

E(| X(T )− X̄N |) = 0, (1.2.3)

where X̄N is the value of approximation X̄ at time T = tN .

For comparison of efficiency of different strong numerical approximations, the order of
strong convergence is defined as follows.

Definition 1.8. ([16],[17]) A time discrete approximation X̄ is said to converge strongly
with order γ > 0 at time T, if there exists a constant C > 0 which is independent of h,
and a h0 > 0 such that

E(| X(T )− X̄N |) ≤ Chγ (1.2.4)

for all h ∈ (0, h0).

On can see from the discussion above that, as the diffusion coefficient b vanishes, and
the initial value X0 of the SDE (1.2.1) is a constant, the two definitions 1.7 and 1.8 re-
duce to deterministic convergence criteria for ODE.

The strong convergence requires a closeness of each sample path of the theoretical and
numerical solutions, as indicated by its definition. In many practical situations, however,
it is only required that the probability distributions of X and its numerical approximation
X̄ to be sufficiently close. For this less demanding task of stochastic approximation, the
concept of weak convergence is introduced.

Definition 1.9. ([16],[17]) A time discrete approximation Ȳ with maximum step size
h is said to converge weakly with order β > 0 to X at time T as h → 0, if for each
polynomial g, there exists a constant C > 0 which is independent of h, and a finite h0 > 0
such that

| E(g(X(T ))− E(g(ȲN)) |≤ Chβ (1.2.5)

for each h ∈ (0, h0).

The assignment of g to polynomials is stimulated by the requirement of the practice
of approximating different moments of the solution X, since polynomials involve all pow-
ers needed. In fact, the functional class of g can be even larger ([17]). In case b ≡ 0, X0

being constant, and g(x) ≡ x, the definition above reduces to the deterministic conver-
gence criterion of ODE.

Another strong convergence criterion is the mean-square convergence, which is widely
used in literature on stochastic approximation, such as in Milstein’s monography [25]. It
is defined in similar way as Definition 1.7 and 1.8, but with a little modification.

Definition 1.10 (Mean-Square Convergence Order). A time discrete approxima-
tion X̄ with maximum step size h is said to converge strongly with mean-square order γ
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to X at time T as h → 0, if there exists a constant C > 0 which is independent of h, and
a h0 > 0 such that (

E(X(T )− X̄N)2
) 1

2 ≤ Chγ (1.2.6)

for all h ∈ (0, h0).

It is verified that the Euler-Maruyama method (1.2.2) has mean-square order γ = 1
2

and weak order β = 1, which are quite low. ([16],[17],[25],[28]).

We note that the Euler-Maruyama method (1.2.2) is a natural generalization of the clas-
sic Euler method for ODE to numerical integration of SDE. This generalization is valid,
because the increment functions of the Euler-Maruyama scheme a and b take values at the
left endpoint of the small interval [tn, tn+1], which is consistent with the definition of the
Itô’s integral. Not every classic numerical method can be adapted for solving stochastic
differential equations, because they are usually inconsistent with Itô calculus. The con-
sistency requirement in numerical approximation of SDE coincides in idea with ODE, but
differs in expressions from ODE by involving expectations, since random elements exist.
Moreover, two kinds of consistency are concerned in stochastic context, namely strong
and weak consistency corresponding to strong and weak convergence respectively.

Definition 1.11. ([17]) A discrete time approximation X̄ of the solution X of equa-
tion (1.2.1) corresponding to a time discritization {tn : n = 0, 1, . . .} with maximum step
size h is said to be strongly consistent, if there exists a nonnegative function c = c(h) with

lim
h→0

c(h) = 0 (1.2.7)

such that

E

(∣∣∣∣E
(

X̄n+1 − X̄n

∆n

| Atn

)
− a(X̄n, tn)

∣∣∣∣
2
)
≤ c(h) (1.2.8)

and

E
(

1

∆n

∣∣X̄n+1 − X̄n − E(X̄n+1 − X̄n|Atn)− b(X̄n, tn)∆Wn

∣∣2
)
≤ c(h) (1.2.9)

for all fixed values X̄n = x and n = 0, 1, . . . , where ∆n = tn+1 − tn and ∆Wn =
W (tn+1)−W (tn).

(1.2.8) requires that the increment in the drift part of the approximation converges in
mean-square sense to the drift coefficient a of the SDE, while (1.2.9) expresses that the
increment in diffusion part of the approximation converges to the diffusion coefficient b of
the solution in mean-square sense. Thus it can be seen as a generalization of the consis-
tency condition in ODE, and reduces to that in absence of noise. Moreover, the definition
of strong consistency indicates the path-wise closeness between the approximation and the
solution. In fact, strong consistency implies strong convergence, as the relation between
consistency and convergence in ODE.

Weak consistency is defined similarly but less demanding for the closeness of the dif-
fusion parts of the approximation and solution. We omit the definition here. It is referred
to [17] for more details.
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To obtain higher order methods for SDE, it may be a natural thought to adapt higher
order methods of ODE to SDE. This is, however, often unsuccessful, because the adapted
method may be either inconsistent or unable to improve the order. To illustrate the im-
portance of consistency, we cite an example which is introduced by Kloeden in his article
[16]. The deterministic Heun scheme adapted to Itô SDE (1.2.1) has the form

Xn+1 = Xn +
1

2
[a(Xn, tn) + a(Xn + a(Xn, tn)∆n + b(Xn, tn)∆Wn, tn+1)] ∆n

+
1

2
[b(Xn, tn) + b(Xn + a(Xn, tn)∆n + b(Xn, tn)∆Wn, tn+1)] ∆Wn. (1.2.10)

For the Itô SDE dX(t) = X(t)dW (t) it becomes

Xn+1 = Xn +
1

2
Xn(2 + ∆Wn)∆Wn. (1.2.11)

Thus

E
(

Xn+1 −Xn

∆n

| Xn = x

)
=

x

∆n

(0 +
1

2
∆n) =

1

2
x, (1.2.12)

which should approximate the drift coefficient a(x, t) ≡ 0 but failed. Consequently the
adapted Heun method does not converge to the solution X(t), neither strongly nor weakly.

When an adapted ODE method happens to be consistent with Itô’s calculus, it can not
have higher order of accuracy, because it contains only the increments ∆n and ∆Wn, with
the latter not involving any information of the Wiener process W (t) inside the subinterval
[tn, tn+1], but only information on the nodes of the time partition. In fact, using a theorem
about order of convergence in Milstein’s monograph [25], it is not difficult to verify that
such adapted consistent methods can usually only have strong order 1

2
.

In [44], Wagner and Platen expand the solution X(t+h) of the Itô equation (1.1.6) at the
point (t, x) in powers of h, and in integrals depending on Wk(s) −Wk(t), t ≤ s ≤ t + h,
k = 1, . . . , r. Such integrals provide with more information of W (t) inside the subinterval
of time discretization. This kind of expansion is called the Wagner-Platen expansion,
which is the stochastic counterpart of Taylor expansion of ODE. In case that the diffusion
coefficient b(X(t), t) ≡ 0, it comes down to the deterministic Taylor expansion. Theo-
retically it provides with the possibility of constructing numerical schemes for SDE with
arbitrarily high order of accuracy, as the Taylor expansion does for ODE.

For convenience, we discuss the scalar Itô SDE (1.2.1). In the Itô’s formula (1.1.20),
denote the coefficient of dt with L0u, and that of dW (t) with L1u, i.e., the two operators
L0 and L1 are defined as

L0 =
∂

∂t
+ a

∂

∂x
+

1

2
b2 ∂2

∂x2
, L1 = b

∂

∂x
. (1.2.13)

In the equivalent integral form of SDE (1.2.1)

X(t + h) = X(t) +

∫ t+h

t

a(X(s), s)ds +

∫ t+h

t

b(X(s), s)dW (s), (1.2.14)
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apply Itô’s formula to the functions a(X(s), s) and b(X(s), s) to obtain

X(t + h) = X(t) +

∫ t+h

t

[
a(X(t), t) +

∫ s

t

L0a(X(u), u)du +

∫ s

t

L1a(X(u), u)dW (u)

]
ds

+

∫ t+h

t

[
b(X(t), t) +

∫ s

t

L0b(X(u), u)du +

∫ s

t

L1b(X(u), u)dW (u)

]
dW (s)

= X(t) + a(X(t), t)h + b(X(t), t)(W (t + h)−W (t)) + R1, (1.2.15)

with the remainder

R1 =

∫ t+h

t

∫ s

t

L0a(X(u), u)duds +

∫ t+h

t

∫ s

t

L1a(X(u), u)dW (u)ds

+

∫ t+h

t

∫ s

t

L0b(X(u), u)dudW (s) +

∫ t+h

t

∫ s

t

L1b(X(u), u)

dW (u)dW (s). (1.2.16)

In (1.2.15), eliminate the remainder term R1 and replace t and t + h by tn and tn+1

respectively, we obtain the scheme

Xn+1 = Xn + a(Xn, tn)∆n + b(Xn, tn)∆Wn,

which is the Euler-Maruyama scheme.
Higher order schemes can be achieved by expanding the integrands in the remainder term
at (X(t), t) using Itô’s formula. For example, in the remainder R1, apply Itô’s formula to
the last integrand L1b(X(u), u) in (1.2.16), we get

X(t + h) = X(t) + a(X(t), t)h + b(X(t), t)(W (t + h)−W (h))

+ L1b(X(t), t)

∫ t+h

t

∫ s

t

dW (u)dW (s) + R2, (1.2.17)

with the remainder

R2 =

∫ t+h

t

∫ s

t

L0a(X(u), u)duds +

∫ t+h

t

∫ s

t

L1a(X(u), u)dW (u)ds

+

∫ t+h

t

∫ s

t

L0b(X(u), u)dudW (s) +

∫ t+h

t

∫ s

t

∫ u

t

L0L1b(X(v), v)dvdW (u)dW (s)

+

∫ t+h

t

∫ s

t

∫ u

t

L1L1b(X(v), v)dW (v)dW (u)dW (s). (1.2.18)

Based on (1.2.17), the following scheme is constructed:

Xn+1 = Xn + a(Xn, tn)∆n + b(Xn, Tn)∆Wn

+ L1b(Xn, tn)

∫ tn+1

tn

∫ s

tn

dW (u)dW (s), (1.2.19)

which is called the Milstein scheme, and has strong order 1 and weak order 1 ([16]).
Theoretically, the successive expansions can be performed unlimitedly, which give nu-
merical methods of arbitrary high order. However, with the improvement of order of
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expansion, stochastic integrals appear with more and more multiplicities, which causes
great difficulties in implementation.
The simplest stochastic integral with single multiplicity

∫ tn+1

tn
dW (s) = ∆Wn can be mod-

eled by
√

∆nξ, where ξ ∼ N (0, 1) is a random variable with standard normal distribution,
since ∆Wn ∼ N (0, ∆n). Most digital computers include pseudo-random number genera-
tors which gives the possibility of realization of ξ, and thus the simulation of ∆Wn.
In Milstein’s book [25], modeling of Itô integrals is studied. It is pointed out that the
modeling of multiple Itô integrals can be reduced to that of single integrals. Explicit
techniques of simulation of single integrals such as

∫ tn+1

tn
sdW (s) are analyzed.

Other types of schemes, for example the stochastic Runge-Kutta type methods which
are derivative-free, can be constructed by making some modifications on the Wagner-
Platen expansion. For example, replacing the derivative term L1b(Xn, tn) in the Milstein
scheme (1.2.19) by the forward difference

1√
∆n

[
b(Xn + a(Xn, tn)∆n + b(Xn, tn)

√
∆n)− b(Xn, tn)

]

results in the Platen scheme, which is of Runge-Kutta type and has strong order 1.
By doing modifications, consistency requirement should be paid attention to.

Another feature of an efficient numerical method is its stability. As in the situation
of ODE, stability analysis of numerical methods for SDE is also required. The concept
of stability also means that the error propagation of a scheme is under control, as in
deterministic systems, but is defined with using the probability measure P .

Definition 1.12. ([17]) A time discrete approximation X̄ to the solution X of SDE
(1.1.6) with maximum step size h is stochastically numerically stable, if for any finite
interval [t0, T ] there exists a constant h0 > 0 such that for each ε > 0 and each h ∈ (0, h0)

lim
|X(t0)−X̄0|→0

sup
t0≤t≤T

P (| X(T )− X̄N |≥ ε) = 0, (1.2.20)

where X̄0 is the value of the approximation X̄ at time t0, and X̄N the value of X̄ at time T .

Under the conditions of existence and uniqueness of solution of a SDE system, the ap-
plied Euler-Maruyama method is proved to be numerically stable ([17]). A-stability, test
equations, region of absolute stability, stochastic stiff systems, and so on construct the
stochastic analog of the deterministic analysis of stability. We omit the details here.



Chapter 2

Deterministic Hamiltonian Systems

In this chapter, some basic knowledge about deterministic Hamiltonian systems is stated,
such as the derivation of its formalism from variational principle, Lagrangian formalism of
a mechanical system, Legendre transformation, and its properties such as symplecticity.
Symplectic numerical methods as well as some known results about symplectic integrators,
especially the variational integrators and generating function theory for deterministic
Hamiltonian systems are introduced, which provides with a resource of reference and
comparison for stochastic Hamiltonian systems, and stimulates the study on analogous
numerical integration methods for them, which are topics of following chapters.

2.1 Lagrangian and Hamiltonian Formalism

After Newton’s second law which deals with motion of free mass points, Lagrange devel-
oped a new way to describe the motion of more complicated systems such as rigid bodies.
Denote the position of a mechanical system with d degrees of freedom with q = (q1, . . . , qd)

T .
Suppose T = T (q, q̇) and U = U(q) to be the kinetic and potential energy of the system
respectively. The Lagrangian of the system is defined as

L = T − U. (2.1.1)

Then the position q of the system satisfies the following Lagrange equation

d

dt

(
∂L

∂q̇

)
=

∂L

∂q
(2.1.2)

Through the Legendre transform of introducing the conjugate momentum

p =
∂L

∂q̇

T

, (2.1.3)

and define
H := pT q̇ − L(q, q̇) (2.1.4)

to be the Hamiltonian of the system, Hamilton gave an equivalent expression of the
Lagrange equation (2.1.2), which is symmetric in structure and called the Hamiltonian
formalism of motion.
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Theorem 2.1. ([12]) The Lagrange equation (2.1.2) is equivalent to the Hamiltonian
system

ṗ = −∂H

∂q

T

, (2.1.5)

q̇ =
∂H

∂p

T

. (2.1.6)

Proof. The formulae (2.1.4) and (2.1.3) imply

∂H

∂q
= pT ∂q̇

∂q
− ∂L

∂q
− ∂L

∂q̇

∂q̇

∂q
= −∂L

∂q
,

∂H

∂p
= q̇T + pT ∂q̇

∂p
− ∂L

∂q̇

∂q̇

∂p
= q̇T . (2.1.7)

Thus (2.1.5)-(2.1.6) is equivalent to d
dt

(
∂L
∂q̇

)
= ∂L

∂q
, which is (2.1.2). ¤

In fact, the Lagrange equation of motion (2.1.2) describes in variational problem the
q(t) which extremizes the functional

S(q) =

∫ t1

t0

L(q(t), q̇(t))dt (2.1.8)

among all curves q(t) that connect two given points q(t0) = q0 and q(t1) = q1. The func-
tional S(q) is also called the action integral, and the Lagrange equation (2.1.2) has the
name, the Euler-lagrange equation for the functional S.

Theorem 2.2 (Hamilton’s Principle). ([1],[12]) Lagrange equation of motions (2.1.2)
of mechanical systems extremizes the action integral (2.1.8).

Proof. Considering a variation q(t) + εδq(t) with δq(t0) = δq(t1) = 0, and setting

d

dε
|ε=0 S(q + εδq) = 0 (2.1.9)

leads to ∫ t1

t0

(
∂L

∂q
δq +

∂L

∂q̇
δq̇

)
dt =

∫ t1

t0

(
∂L

∂q
− d

dt

∂L

∂q̇

)
δqdt = 0, (2.1.10)

which implies the Lagrange equation (2.1.2). ¤

The phase flow {p(t), q(t)} of a Hamiltonian system (2.1.5)-(2.1.6) preserves the natural
symplectic structure of the phase space of a mechanical problem, which is the character-
istic property of a Hamiltonian system. To explain it, we first introduce the definition of
a symplectic mapping.

Definition 2.3. ([12]) A differentiable map g : U 7→ R2d (where U ⊂ R2d is an open set)
is called symplectic if the Jacobian matrix g′(p, q) satisfies

g′(p, q)T Jg′(p, q) = J, for all (p, q) ∈ U, (2.1.11)
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where J =

(
0 I
−I 0

)
and I denotes the d-dimensional identity matrix.

Geometrically, this definition describes the invariance of oriented area under the map-

ping g on the manifold {p, q}. The oriented area generated by two vectors ξ =

(
ξp

ξ
q

)

and η =

(
ηp

η
q

)
is the oriented area of the parallelogram generated by them, and is

actually a 2-form ω2(ξ, η) on the manifold {p, q}, defined by

ω2(ξ, η) = ξT Jη. (2.1.12)

Definition 2.3 implies that

ω2(ξ, η) = ω2(g′(p, q)ξ, g′(p, q)η). (2.1.13)

Since a differentiable mapping can be locally approximated by a linear mapping, i.e., its
Jacobian matrix, the equation (2.1.13) is approximately equivalent to

ω2(ξ, η) = ω2(g(ξ), g(η)), (2.1.14)

which gives the geometric significance of a symplectic mapping g.

The phase flow of the Hamiltonian system (2.1.5)-(2.1.6) is a one-parameter group of
transformation of phase space

gt : (p(0), q(0)) 7→ (p(t), q(t)), (2.1.15)

which is the mapping that advances the solution from the initial time to time t, where
p(t), q(t) is the solution of the Hamiltonian system (2.1.5)-(2.1.6).

Theorem 2.4 (Poincaré). ([12]) Let H(p, q) be a twice continuously differentiable func-
tion on U ⊂ R2d. Then, for each fixed t, the flow gt is a symplectic transformation
wherever it is defined.

The proof checks the symplecticity of the mapping gt by applying Definition 2.3, and
can be found in [12].

The symplectic 2-form ω2 on the manifold {p, q} can be expressed as the wedge prod-
uct of the two 1-forms dp and dq, i.e.,

ω2 = dp ∧ dq =
d∑

i=1

dpi ∧ dqi. (2.1.16)

In the sequel, the symplecticity of a mapping g : (p, q) 7→ (p̄, q̄) can also be defined as
preservation of the symplectic structure:

dp̄ ∧ dq̄ = dp ∧ dq. (2.1.17)

In the following, we show the equivalence between this description of symplecticity and
that in Definition 2.3.
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Theorem 2.5. (2.1.17) is equivalent to Definition 2.3.

Proof. Suppose

(
p̄
q̄

)
= g(p, q) =

(
g1(p, q)
g2(p, q)

)
,

where g1 : U 7→ Rd and g2 : U 7→ Rd are d-dimensional functions. Thus (2.1.11) in
Definition 2.3 is equivalent to three conditions

∂g1

∂p

T ∂g2

∂q
− ∂g2

∂p

T ∂g1

∂q
= I, (2.1.18)

∂g1

∂p

T ∂g2

∂p
− ∂g2

∂p

T ∂g1

∂p
= 0, (2.1.19)

∂g1

∂q

T ∂g2

∂q
− ∂g2

∂q

T ∂g1

∂q
= 0, (2.1.20)

where I is d× d identity matrix, and 0 is d× d zero matrix.
On the other hand,

dp̄ ∧ dq̄ =
d∑

i=1

dp̄i ∧ dq̄i =
d∑

i=1

d(g1i
(p, q)) ∧ d(g2i

(p, q))

=
d∑

i=1

∑

k<j

(
∂g1i

∂pk

∂g2i

∂pj

− ∂g1i

∂pj

∂g2i

∂pk

)
dpk ∧ dpj

+
d∑

i=1

∑

k, j

(
∂g1i

∂pk

∂g2i

∂qj

− ∂g1i

∂qj

∂g2i

∂pk

)
dpk ∧ dqj

+
d∑

i=1

∑

k<j

(
∂g1i

∂qk

∂g2i

∂qj

− ∂g1i

∂qj

∂g2i

∂qk

)
dqk ∧ dqj. (2.1.21)

Thus, dp̄ ∧ dq̄ = dp ∧ dq is equivalent to

d∑
i=1

(
∂g1i

∂pk

∂g2i

∂qj

− ∂g1i

∂qj

∂g2i

∂pk

)
=

{
1, k = j
0, k 6= j

, (2.1.22)

d∑
i=1

(
∂g1i

∂pk

∂g2i

∂pj

− ∂g1i

∂pj

∂g2i

∂pk

)
= 0, ∀ k < j, (2.1.23)

d∑
i=1

(
∂g1i

∂qk

∂g2i

∂qj

− ∂g1i

∂qj

∂g2i

∂qk

)
= 0, ∀ k < j. (2.1.24)

(2.1.22), (2.1.23), and (2.1.24) are equivalent to (2.1.18), (2.1.19), and (2.1.20) respec-
tively. Thus follows the assertion. ¤
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In the following we mainly use the characterization (2.1.17) of a symplectic mapping.

Given initial conditions of the Hamiltonian system (2.1.5)-(2.1.6)

p(0) = p0, q(0) = q0, (2.1.25)

another formalism of Theorem 2.4 in terms of characterization (2.1.17) is stated in the
following theorem.

Theorem 2.6. For the Hamiltonian system (2.1.5)-(2.1.6) with initial conditions (2.1.25),
it holds

dp(t) ∧ dq(t) = dp0 ∧ dq0, (2.1.26)

for all t ≥ 0.

Another significant property of a Hamiltonian system is its conservation of the Hamil-
tonian H(p, q).

Theorem 2.7. The Hamiltonian H of the Hamiltonian system (2.1.5)-(2.1.6) with initial
conditions (2.1.25) satisfies

H(p(t), q(t)) = H(p0, q0) (2.1.27)

for all t ≥ 0.

Proof. Consider the relations (2.1.5)-(2.1.6), we have

d

dt
H(p(t), q(t)) =

∂H

∂p
ṗ +

∂H

∂q
q̇

= −∂H

∂p

∂H

∂q

T

+
∂H

∂q

∂H

∂p

T

= 0. (2.1.28)

¤

In mechanical problems, in case that the kinetic energy T = 1
2
q̇T M(q)q̇ is quadratic, where

M(q) is a positive definite matrix, we have by the Legendre transform that p = M(q)q̇.
Thus according to the definition of the Hamiltonian H (2.1.4),

H(p, q) =
1

2
q̇T M(q)q̇ + U(q) = T (q, q̇) + U(q), (2.1.29)

which is the total energy of the mechanical system. Thus the invariance of the Hamiltonian
implies the conservation of the total energy of the system.

2.2 Variational Integrators for Hamiltonian Systems

Since the phase flows of Hamiltonian systems preserves symplectic structure, one wants
to construct numerical integration methods which inherit this property.

Definition 2.8. A numerical method (pn, qn) 7→ (pn+1, qn+1) (n ≥ 1) for numerically in-
tegrating the Hamiltonian system (2.1.5)-(2.1.6) with initial conditions (2.1.25) is called
a symplectic method, if it preserves the symplectic structure, i.e., if

dpn+1 ∧ dqn+1 = dpn ∧ dqn, (2.2.1)
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for all n ≥ 1.

One of the simplest symplectic method for Hamiltonian systems is the symplectic Euler
method:

pn+1 = pn − h
∂H

∂q

T

(pn+1, qn), qn+1 = qn + h
∂H

∂p

T

(pn+1, qn). (2.2.2)

Its symplecticity can be verified in a straightforward way. Differentiating the equations
in (2.2.2) yields

(I + h
∂2H

∂q∂p

T

)dpn+1 = dpn − h
∂2H

∂q2
dqn, (2.2.3)

−h
∂2H

∂p2
dpn+1 + dqn+1 = (I + h

∂2H

∂p∂q

T

)dqn, (2.2.4)

where all the functions are evaluated at (pn+1, qn). Thus, the wedge product of the left
side of the two equations should equal that of the right side, i.e.,

(I + h
∂2H

∂q∂p

T

)dpn+1 ∧ dqn+1 = (I + h
∂2H

∂p∂q
)dpn ∧ dqn, (2.2.5)

which gives
dpn+1 ∧ dqn+1 = dpn ∧ dqn, (2.2.6)

since ∂2H
∂q∂p

T
= ∂2H

∂p∂q
.

An important class of symplectic numerical methods is the symplectic Runge-Kutta meth-
ods, which are widely used and take many special efficient methods into a unified system.
The idea of a Runge-Kutta method is to replace higher order derivatives in a Taylor
expansion by information of the increment function on intermediate points inside each
subinterval of time discretization, by which higher order derivative-free methods are ex-
pected to be obtained. It is usually characterized by its stage s and its coefficients aij, bj

and cj, i, j = 1, . . . , s. For example, for the Hamiltonian system (2.1.5)-(2.1.6), a general
s-stage Runge-Kutta method takes the form

pn+1 = pn − h

s∑
i=1

biH
T
q (Pni,Qni), Pni = pn − h

s∑
j=1

aijH
T
q (Pnj,Qnj), (2.2.7)

qn+1 = qn + h
s∑

i=1

biH
T
p (Pni,Qni), Qni = qn + h

s∑
j=1

aijH
T
p (Pnj,Qnj). (2.2.8)

The following theorem gives the conditions under which a general s-stage Runge-Kutta
method is a symplectic one.

Theorem 2.9. ([12]) If the coefficients of the Runge-Kutta method (2.2.7)-(2.2.8) satisfy

biaij + bjaji = bibj, (2.2.9)

for all i, j = 1, . . . , s, then it is symplectic.
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The proof of the theorem can be found in [12].

In fact, a large variety of symplectic methods, including the symplectic Runge-Kutta
methods, can be constructed by generating functions or variational integrators.

Variational integrators for deterministic systems are based on the Lagrange’s equation
of motion (2.1.2)

∂L

∂q
=

d

dt

∂L

∂q̇

and the action integral (2.1.8)

S(q) =

∫ t1

t0

L(q(t), q̇(t))dt.

Now consider the action integral S as a function of (q0, q1), where q0 = q(t0) and q1 = q(t1).
Find the partial derivatives of S(q0, q1) with respect to q0 and q1:

∂S
∂q0

=

∫ t1

t0

(
∂L

∂q

∂q

∂q0

+
∂L

∂q̇

∂q̇

∂q0

)dt

=
∂L

∂q̇

∂q

∂q0

|t1t0 +

∫ t1

t0

(
∂L

∂q
− d

dt

∂L

∂q̇
)
∂q

∂q0

dt

= −∂L

∂q̇
(q0, q̇(t0))

= −pT
0 (2.2.10)

The last two equalities are consequences of the Lagrange equation (2.1.2) and the Legendre
transform (2.1.3) respectively.
Similarly one gets

∂S
∂q1

= pT
1 . (2.2.11)

As a result it follows that

dS =
∂S
∂q0

dq0 +
∂S
∂q1

dq1 = −pT
0 dq0 + pT

1 dq1. (2.2.12)

Theorem 2.10. ([12]) A mapping g : (p, q) 7→ (P,Q) is symplectic if and only if there
exists locally a function S(p, q) such that

P T dQ− pT dq = dS. (2.2.13)

This mean that P T dQ− pT dq is a total differential.

Remark. The proof of this theorem can be found in [12]. It applies the Definition
2.3 of a symplectic mapping to show that, the Jacobian matrix

(
Pp Pq

Qp Qq

)
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of the mapping (p, q) 7→ (P,Q) defined by (2.2.13) satisfies

(
Pp Pq

Qp Qq

)T

J

(
Pp Pq

Qp Qq

)
= J. (2.2.14)

(2.2.14) is equivalent to the three conditions

P T
p Qp = QT

p Pp, P T
p Qq − I = QT

p Pq, QT
q Pq = P T

q Qq. (2.2.15)

On the other hand, with dQ = Qpdp + Qqdq, and using an integrability lemma in [12],
one knows that the left side of the equation (2.2.13) is integrable if and only if the matrix

(
QT

p Pp QT
p Pq

QT
q Pp − I QT

q Pq

)
+

∑
i

Pi
∂2Qi

∂(p, q)2
(2.2.16)

is symmetric, which is equivalent to the symplectic conditions (2.2.15).
This theorem builds up the basis of the generating function theories, which we discuss
later. S here is called the generating function of the symplectic mapping (p, q) 7→ (P,Q),
which is derived from (2.2.13) as

P =
∂S

∂Q

T

(q, Q), p = −∂S

∂q

T

(q, Q). (2.2.17)

From Theorem 2.10 and (2.2.12) it follows that the mapping (p0, q0) 7→ (p1, q1) generated
by the action integral S via the relation (2.2.12) is a symplectic mapping.
Based on this fact, it is possible to construct symplectic schemes via action integral S by
the relation (2.2.12). Consider qn and qn+1 of a one-step method as the two endpoints of
the variational problem on the small interval [tn, tn+1], where qn and qn+1 are approxima-
tions of q(tn) and q(tn+1) respectively, and write out the action integral on [tn, tn+1] by
applying the definition (2.1.8). Then use the relation (2.2.12) to find pn and pn+1. The
mapping (pn, qn) 7→ (pn+1, qn+1) is thus symplectic owing to Theorem 2.10.
Explicitly, let the discrete Lagrangian be ([12])

Lh(qn, qn+1) ≈
∫ tn+1

tn

L(q(t), q̇(t))dt, (2.2.18)

which plays the role of the ‘local’ action integral. Given qn and qn+1, pn and pn+1 can be
derived through

pn = −∂Lh

∂qn

T

(qn, qn+1), (2.2.19)

pn+1 =
∂Lh

∂qn+1

T

(qn, qn+1) (2.2.20)

according to the relations (2.2.10) and (2.2.11). The equation (2.2.19) is also called the
discrete Legendre transformation ([12]).

It then follows the problem of finding Lh. In fact, Lh can be approximated by applying
different quadrature formulae, such as the trapezoidal or the midpoint rule to (2.2.18).
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In MacKay [20] and Wendlandt & Marsden [45], q̇(t) in (2.2.18) was approximated by
qn+1−qn

tn+1−tn
. It is discovered in [24] that higher order symplectic methods can be created

by proper choice of quadrature formulae for approximating the discrete Lagrangian. For
example, Gaussian quadrature gives the Gauss collocation method, and Lobatto quadra-
ture gives the Lobatto IIIA-IIIB pair ([12],[24]). Particularly, the symplectic partitioned
Runge-Kutta methods can be produced by using a special quadrature formula to (2.2.18)
([12]).

2.3 Generating Functions

The existence of generating functions for symplectic mappings is already shown in the
section above, where the action integral S of the variational problem is a generating func-
tion, and qn and qn+1 are first assumed to be given to find pn and pn+1. Note that this
is only a formal assumption, since pn and qn are actually given. It can be seen as a local
change of coordinates, which requires ∂qn+1

∂pn
to be invertible to ensure that it is well-defined.

Similarly, one can also make other change of coordinates. For example, presuming

(pn+1, qn) or (pn, qn+1) or ( (pn+1+pn)
2

, (qn+1+qn)
2

) to be the coordinates is sometimes more
convenient. There exist analog of Theorem 2.10, namely Theorem 2.11, which describes
generating functions S1, S2, and S3 corresponding to these three cases respectively.

Theorem 2.11. ([12]) Let (p, q) 7→ (P,Q) be a smooth transformation, close to the
identity. It is symplectic if and only if one of the following conditions holds locally:

a) QT dP + pT dq = d(P T q + S1) for some function S1(P, q); (2.3.1)

b) P T dQ + qT dp = d(pT Q− S2) for some function S2(p,Q); (2.3.2)

c) (Q− q)T d(P + p)− (P − p)T d(Q + q) = 2dS3

for some function S3(
(P + p)

2
,
(Q + q)

2
). (2.3.3)

Remark. The proof is based on Theorem 2.10 and given in [12]. In fact, with choosing

S1 = P T (Q− q)− S (2.3.4)

and considering d(P T Q) = P T dQ + QT dP , a) is equivalent to (2.2.13), and thus follows
the assertion of the theorem. The cases b) and c) can be similarly derived for proper
choice of S2 and S3. In particular,

S3 =
(P + p)T (Q− q)

2
− S (2.3.5)

makes (2.3.3) equivalent to (2.2.13).
Comparing the coefficient functions of dP and dq in (2.3.1), we obtain the following scheme

p = P +
∂S1

∂q

T

(P, q), Q = q +
∂S1

∂P

T

(P, q), (2.3.6)

which is called the symplectic one-step method generated by the first kind of generating
function S1(P, q). It is obvious that as S1 = 0, it becomes the identity mapping, which is
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expected, since the initial point of iteration coincides the initial conditions.
For S1(P, q) := hH(P, q) with h being the step size and H the Hamiltonian, (2.3.6) is
just the symplectic Euler method, while the same approach applied to (2.3.2) leads to the
adjoint of the symplectic Euler method.
Analogously, (2.3.3) yields the scheme

P = p− ∂T
2 S3(

(P + p)

2
,
(Q + q)

2
),

Q = q + ∂T
1 S3(

(P + p)

2
,
(Q + q)

2
). (2.3.7)

For S3 = hH, it is the implicit midpoint rule applied to the Hamiltonian system (2.1.5)-
(2.1.6).

As revealed in Theorem 2.10, each symplectic mapping (p, q) 7→ (P,Q) corresponds to
a generating function S according to the rule (2.2.17). Theorem 2.4 asserts that, the
mapping along the flow of a Hamiltonian system (p, q) 7→ (P (t), Q(t)) with p = P (0) and
q = Q(0) is symplectic for any t ≥ 0. Consequently, there should exist a generating func-
tion S(q, Q, t), which generates the exact flow (p, q) 7→ (P (t), Q(t)) of the Hamiltonian
system (2.1.5)-(2.1.6) with initial value (p, q), via

P (t) =
∂S

∂Q

T

(q, Q(t), t), p = −∂S

∂q

T

(q, Q(t), t). (2.3.8)

Starting from this analysis, differentiating the second equation in (2.3.8), it is found that
such S can be a solution of a partial differential equation.

Theorem 2.12. ([12]) If S(q, Q, t) is a smooth solution of

∂S

∂t
+ H(

∂S

∂Q
,Q) = 0, (2.3.9)

and if the matrix ( ∂2S
∂qi∂Qj

) is invertible, the mapping (p, q) 7→ (P (t), Q(t)) defined by (2.3.8)

is the exact flow of the Hamiltonian system (2.1.5)-(2.1.6) with initial value (p,q). Equa-
tion (2.3.9) is called the Hamilton-Jacobi partial differential equation.

The invertibility of the matrix ( ∂2S
∂qi∂Qj

) is required by the implicit function theorem of

ensuring solvability of P (t) and Q(t) from equation (2.3.8), as well as calculations in the
proof of the theorem. For details see [12].

The generating functions S1, S2, and S3 also satisfy corresponding Hamilton-Jacobi par-
tial differential equations, which can be derived from the relation between S and S1

indicated in (2.3.4), and that between S and S3 in (2.3.5).

Theorem 2.13. ([12]) If S1(P, q, t) is a solution of the partial differential equation

∂S1

∂t
(P, q, t) = H(P, q +

∂S1

∂P
(P, q, t)), S1(P, q, 0) = 0, (2.3.10)

then the mapping (p, q) 7→ (P (t), Q(t)) defined by

p = P (t) +
∂S1

∂q

T

(P (t), q, t), Q(t) = q +
∂S1

∂P

T

(P (t), q, t) (2.3.11)
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is the exact flow of the Hamiltonian system (2.1.5)-(2.1.6) with initial value (p, q).

Theorem 2.14. ([12]) Let u = P+p
2

and v = Q+q
2

. Assume that S3(u, v, t) is a solu-
tion of

∂S3

∂t
(u, v, t) = H(u− 1

2

∂S3

∂v
(u, v, t), v +

1

2

∂S3

∂u
(u, v, t)) (2.3.12)

with S3(u, v, 0) = 0. Then the mapping (p, q) 7→ (P (t), Q(t)) defined by

P (t) = p− ∂S3

∂v

T

(u(t), v(t), t), Q(t) = q +
∂S3

∂u

T

(u(t), v(t), t) (2.3.13)

is the exact flow of the Hamiltonian system (2.1.5)-(2.1.6) with initial value (p, q).

Based on the results above, generating functions for symplectic schemes can be found
by solving corresponding Hamilton-Jacobi partial differential equations. Feng Kang et.
al. proposed an approximate solution of the Hamilton-Jacobi equations ([8],[12]). For
example, substituting the assumption

S1(P, q, t) = tG1(P, q) + t2G2(P, q) + t3G3(P, q) + . . . (2.3.14)

into (2.3.10) and comparing like powers of t yields

G1(P, q) = H(P, q),

G2(P, q) =
1

2
(
∂H

∂P

∂H

∂q
)(P, q),

G3(P, q) =
1

6
(
∂2H

∂P 2
(
∂H

∂q
)2 +

∂2H

∂P∂q

∂H

∂P

∂H

∂q
+

∂2H

∂q2
(
∂H

∂P
)2)(P, q), (2.3.15)

and so on. Let
S1 ≈ hG1(P, q) + h2G2(P, q) + . . . + hrGr(P, q), (2.3.16)

then the symplectic numerical scheme generated by it according to (2.3.11) has order r
of convergence, since the error is of order r + 1.

The same approach applied to S3 results in

S3(w, t) = tG1(w) + t3G3(w) + . . . + t2r−1G2r−1(w) + . . . , (2.3.17)

where w = (u, v), and

G1(w) = H(w),

G3(w) =
1

24
∇2H(w)(J−1∇H(w), J−1∇H(w)), (2.3.18)

and so on. Let

S3(w, h) ≈ hG1(w) + h3G3(w) + . . . + h2r−1G2r−1(w), (2.3.19)

The symplectic numerical scheme generated by (2.3.13) has order 2r of convergence.
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Chapter 3

Stochastic Hamiltonian Systems

A stochastic Hamiltonian system is a Hamiltonian system under certain kinds of random
disturbances. Its definition, properties and some known numerical integration methods are
introduced. Examples of stochastic Hamiltonian systems are given. For a linear stochas-
tic oscillator, special numerical schemes are constructed and their abilities of preserving
certain structures of the oscillator system are studied.

3.1 Definitions and Examples

Definition 3.1. ([2],[28],[29]) For the 2d-dimensional stochastic differential equation in
Stratonovich sense

dp = f(t, p, q)dt +
r∑

k=1

σk(t, p, q) ◦ dWk(t), p(t0) = p0, (3.1.1)

dq = g(t, p, q)dt +
r∑

k=1

γk(t, p, q) ◦ dWk(t), q(t0) = q0, (3.1.2)

if there exist functions H(t, p, q) and Hk(t, p, q) (k = 1, . . . , r) such that

f(t, p, q) = −∂H

∂q
(t, p, q)T , σk(t, p, q) = −∂Hk

∂q
(t, p, q)T , (3.1.3)

g(t, p, q) =
∂H

∂p
(t, p, q)T , γk(t, p, q) =

∂Hk

∂p
(t, p, q)T , (3.1.4)

for k = 1, . . . , r, then it is a stochastic Hamiltonian system.

This definition is based on the requirement of preservation of the symplectic structure
dp∧ dq along the phase trajectory of the stochastic system (3.1.1)-(3.1.2). It is proved in
[28] that

Theorem 3.2. ([2],[28],[29]) For the stochastic Hamiltonian system (3.1.1)-(3.1.2) with
conditions (3.1.3)-(3.1.4), it holds

dp(t) ∧ dq(t) = dp0 ∧ dq0 (3.1.5)
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for all t ≥ 0.

The proof mainly applies the formula of change of variables in differential forms. The
demand of the system being in Stratonovich sense simplifies the stochastic differential
calculations, since the Stratonovich equations preserve classic chain rule.

In fact, (3.1.5) is the intrinsic characteristic of a stochastic Hamiltonian system, and
we have the following result.

Theorem 3.3. (3.1.5) is equivalent to

BT JB = J,

where

B :=
∂(p(t), q(t))

∂(p0, q0)
=

(
∂p(t)
∂p0

∂p(t)
∂q0

∂q(t)
∂p0

∂q(t)
∂q0

)
.

Proof. The proof follows the same way as that of Theorem 2.5. ¤

Due to the external stochastic disturbances, the total energy of the stochastic Hamil-
tonian systems may not be preserved. In other words, the Hamiltonian H can vary, which
is different from deterministic Hamiltonian systems.

Definition 3.4. ([6],[17],[21]) The stochastic differential equation (1.1.6) is called a sto-
chastic differential equation with additive noises, if b(X(t), t) = b(t), i.e. b does not
depend on X. Otherwise it is called a stochastic differential equation with multiplicative
noises.

Theorem 3.5. For a stochastic differential equation with additive noises, its Itô form
and Stratonovich form coincide.

Proof. b being independent of X implies that

∂bik

∂x
= 0, i = 1, . . . , d, k = 1, . . . , r.

The relation between Itô and Stratonovich equations given in Proposition 1.2 thus gives
the result of the theorem. ¤

We give in the following several examples of stochastic Hamiltonian systems.

Example 3.1. A linear Stochastic Oscillator
A linear stochastic oscillator with additive noise can be written as

ẍ(t) + x(t) = σẇ(t), (3.1.6)

where σ > 0 is a constant. Introducing y = ẋ, and given initial value, it can be expressed
as the two-dimensional stochastic differential equation

dy(t) = −x(t)dt + σdW (t), y(0) = y0, (3.1.7)

dx(t) = y(t)dt, x(0) = x0. (3.1.8)
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Since (3.1.7)-(3.1.8) is a stochastic system with additive noise, its Itô and Stratonovich
form are identical. We consider it as an equation system in Stratonovich sense.
For

H(y, x) =
1

2
(y2 + x2), H1(y, x) = −σx, (3.1.9)

(3.1.7)-(3.1.8) is a stochastic Hamiltonian system, since

−x = −∂H

∂x
, σ = −∂H1

∂x
, (3.1.10)

y =
∂H

∂y
, 0 =

∂H1

∂y
. (3.1.11)

More general, it is not difficult to see the fact stated in the following proposition.

Proposition 3.6. ([26]) A Hamiltonian system with additive noises is a stochastic Hamil-
tonian system.

Since the noise parts contain neither p nor q, but only functions of t, the correspond-
ing Hk must exist.

Given initial value y(0) = y0 ∈ R, x(0) = x0 ∈ R, it is shown that this system has
the unique solution ([22],[41])

y(t) = −x0 sin t + y0 cos t + σ

∫ t

0

cos(t− s)dW (s), (3.1.12)

x(t) = x0 cos t + y0 sin t + σ

∫ t

0

sin(t− s)dW (s). (3.1.13)

The solution (3.1.12)-(3.1.13) possesses the following two important properties.

Proposition 3.7. (Markus & Weerasinghe [22], Strømmen Melbø & Higham [41]) For
the linear stochastic oscillator (3.1.7)-(3.1.8) with y0 = 0, x0 = 1, the second moment of
the solution satisfies

E(y(t)2 + x(t)2) = 1 + σ2t. (3.1.14)

Proposition 3.8. ([22],[41]) For the linear stochastic oscillator (3.1.7)-(3.1.8) with
y0 = 0, x0 = 1, almost surely, x(t) has infinitely many zeros, all simple, on each half line
[t0,∞) for every t0 ≥ 0.

Proposition 3.7 reveals the linear growth property of the second moment with respect
to time t of the solution. Since H = 1

2
(y2 + x2), we can see that

E(H) =
1

2
(1 + σ2t), (3.1.15)

which implies the linear growth of the Hamiltonian, i.e., the Hamiltonian is not conserved.
Proposition 3.8 indicates the oscillation property of the solution.
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Example 3.2. Kubo Oscillator
The Kubo oscillator has the form

dp = −aqdt− σq ◦ dW (t), p(0) = p0, (3.1.16)

dq = apdt + σp ◦ dW (t), q(0) = q0, (3.1.17)

where a and σ are constants, and W (t) is a one-dimensional standard Wiener process.
Let

H(p, q) =
a

2
(p2 + q2), H1(p, q) =

σ

2
(p2 + q2), (3.1.18)

then we have

−aq = −∂H

∂q
, −σq = −∂H1

∂q
, (3.1.19)

ap =
∂H

∂p
, σp =

∂H1

∂p
, (3.1.20)

which implies that the Kubo oscillator (3.1.16)-(3.1.17) is a stochastic Hamiltonian sys-
tem. Moreover, the quantity p2 + q2 is conservative for this system ([29]), i.e.,

p(t)2 + q(t)2 = p2
0 + q2

0 (3.1.21)

for all t ≥ 0. Thus the Hamiltonian H of the system is conserved, and the phase trajec-
tory of (3.1.16)-(3.1.17) is the circle with center at the origin and radius

√
p2

0 + q2
0.

Example 3.3. A Model for Synchrotron Oscillations of Particles in Storage
Rings
In [29], the following model of synchrotron oscillations of particles in storage rings influ-
enced by external fluctuating electromagnetic fields was considered:

dp = −ω2 sin(q)dt− σ1 cos(q) ◦ dW1 − σ2 sin(q) ◦ dW2, p(0) = p0, (3.1.22)

dq = pdt, q(0) = q0, (3.1.23)

where ω, σ1, and σ2 are constants, and p and q are both of one dimension.
If

H =
1

2
p2 − ω2 cos(q), H1 = σ1 sin(q), H2 = −σ2 cos(q), (3.1.24)

then it follows that

−ω2 sin(q) = −∂H

∂q
, −σ1 cos(q) = −∂H1

∂q
, −σ2 sin(q) = −∂H2

∂q
, (3.1.25)

p =
∂H

∂p
, 0 =

∂H1

∂p
=

∂H2

∂p
, (3.1.26)

which ensures that the model (3.1.22)-(3.1.23) is a stochastic Hamiltonian system with
two noises.

Example 3.4. A System with Two Additive Noises
The following system with two additive noises was studied in [28]:

dq = pdt + σ ◦ dW1(t), q(0) = q0, (3.1.27)

dp = −qdt + γ ◦ dW2(t), p(0) = p0, (3.1.28)
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where p and q are scalar, and σ and γ are constants. Let X =

(
q
p

)
, the exact solution

of the system (3.1.27)-(3.1.28) can be expressed as ([28])

X(tk+1) = FX(tk) + Uk, X(0) = X0, (3.1.29)

where k = 0, 1, . . . , N − 1, 0 = t0 < t1 < . . . < tN = T , tk+1 − tk = h, X0 =

(
q0

p0

)
, and

F =

(
cos(h) sin(h)
− sin(h) cos(h)

)
, (3.1.30)

uk =

(
σ

∫ tk+1

tk
cos(tk+1 − s)dW1(s) + γ

∫ tk+1

tk
sin(tk+1 − s)dW2(s)

−σ
∫ tk+1

tk
sin(tk+1 − s)dW1(s) + γ

∫ tk+1

tk
cos(tk+1 − s)dW2(s)

)
.(3.1.31)

If we denote

H =
1

2
(p2 + q2), H1 = σp, H2 = −γq, (3.1.32)

then it holds

dp = −∂H

∂q
dt− ∂H1

∂q
◦ dW1(t)− ∂H2

∂q
◦ dW2(t), (3.1.33)

dq =
∂H

∂p
dt +

∂H1

∂p
◦ dW1(t) +

∂H2

∂p
◦ dW2(t), (3.1.34)

which implies that the system (3.1.27)-(3.1.28) is a stochastic Hamiltonian system.

3.2 Stochastic Symplectic Integration

As the case for deterministic Hamiltonian system, numerical integration methods that
preserve the symplectic structure of stochastic Hamiltonian systems are expected, the
research of which is at the beginning of development.

Definition 3.9. ([26],[28],[29]) A one step numerical method (pn, qn) 7→ (pn+1, qn+1)
for the stochastic Hamiltonian system (3.1.1)-(3.1.2) is a symplectic method if

dpn+1 ∧ dqn+1 = dpn ∧ dqn (3.2.1)

for all n ≥ 1.

Pioneering work for symplectic integration of stochastic Hamiltonian systems owe to [28]
and [29] by Milstein et. al.. In the two articles, symplectic Runge-Kutta type methods
are proposed for stochastic Hamiltonian systems with additive noises and multiplicative
noises, respectively.
In [28] and its preprint [26], for the Hamiltonian systems with additive noises

dP = f(t, P, Q)dt +
r∑

k=1

σk(t)dW (t), P (t0) = p, (3.2.2)

dQ = g(t, P, Q) +
r∑

k=1

γk(t)dW (t), Q(t0) = q, (3.2.3)
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with the Hamiltonian H satisfying

f = −∂H

∂q

T

, g =
∂H

∂p

T

, (3.2.4)

the following s-stage symplectic Runge-Kutta methods are given.

P = p + h
s∑

i=1

bif(t0 + cih,Pi,Qi) + η,

Pi = p + h

s∑
j=1

aijf(t0 + cjh,Pj,Qj) + ϕi, (3.2.5)

Q = q + h

s∑
i=1

big(t0 + cih,Pi,Qi) + ζ,

Qi = q + h
s∑

j=1

aijg(t0 + cjh,Pj,Qj) + ψi, (3.2.6)

where ϕi, ψi, η, ζ do not depend on p and q, the parameters aij and bi satisfy

biaij + bjaji = bibj, i, j = 1, . . . , s. (3.2.7)

It can be seen that the symplectic conditions of the parameters (3.2.7) coincide with that
of the deterministic Runge-Kutta methods (2.2.9). For ϕi = ψi = η = ζ = 0, (3.2.5)-
(3.2.6) reduce to the deterministic Runge-Kutta method (2.2.7)-(2.2.8).

Theorem 3.10. ([26]) The scheme (3.2.5)-(3.2.6) preserves symplectic structure, i.e.,
dP ∧ dQ = dp ∧ dq under conditions (3.2.7).

Its proof follows from a straightforward calculation on wedge products.

Since symplectic methods are usually implicit, it is necessary to find complete implicit
methods, which are implicit in both drift and diffusion parts for stochastic differential
equations with multiplicative noises. Directly adapted implicit methods are often unap-
plicable. As an example, the following Itô scalar equation was considered in [29]:

dX = σXdW (t), (3.2.8)

the Euler-Maruyama method applied to (3.2.8) has the form

Xn+1 = Xn + σXn∆Wn, (3.2.9)

which is an explicit method. Now change its form to

Xn+1 = Xn + σXn+1∆Wn + σ(Xn −Xn+1)∆Wn = Xn − σ2Xn(∆Wn)2 + σXn+1∆Wn.
(3.2.10)

Modeling (∆Wn)2 by the step size h owing to the fact E(∆W 2
n) = h, it follows from

(3.2.10) the directly adapted implicit method

X̃n+1 = Xn − σ2Xnh + σX̃n+1∆Wn, (3.2.11)
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or equivalently,

X̃n+1 =
Xn(1− σ2h)

1− σ∆Wn

. (3.2.12)

The scheme (3.2.12) is unapplicable because the denominator 1 − σ∆Wn can vanish for
any small h, due to the unboundedness of ∆Wn for any small h. Milstein et. al. proposed
the method of truncating ∆Wn to make it bounded. Model ∆Wn by

√
hζh instead of the

original
√

hξ with ξ ∼ N (0, 1). ζh has the form

ζh =





ξ, |ξ| ≤ Ah,
Ah, ξ > Ah,
−Ah, ξ < −Ah,

(3.2.13)

where Ah > 0 can takes the value
√

2k| ln h| with k ≥ 1 to ensure the mean-square con-
vergence of the method (3.2.12) with order larger than or equal to 1

2
. The proof of this

fact is based on the following two theorems.

Theorem 3.11. ([25]) Suppose the one-step approximation X̄t,x(t + h) to X at time
t + h starting from time t and value x satisfies

| E(Xt,x(t + h)− X̄t,x(t + h)) | ≤ K(1 + |x|2) 1
2 hp1 , (3.2.14)

[
E|Xt,x(t + h)− X̄t,x(t + h)|2]

1
2 ≤ K(1 + |x|2) 1

2 hp2 (3.2.15)

for arbitrary t0 ≤ t ≤ t0 + T − h and some K > 0, and

p2 ≥ 1

2
, p1 ≥ p2 +

1

2
. (3.2.16)

Let {tk} be the partition of the time interval [t0, t0 + T ] with tk+1− tk = h = T
N

. Then for
any N and k = 0, 1, . . . , N it holds:

[E | Xt0,X0(tk)− X̄t0,X0(tk) |2]
1
2 ≤ K(1 + E|X0|2) 1

2 hp2− 1
2 , (3.2.17)

namely, the mean-square order of the method based on the one-step approximation X̄t,x(t+
h) is p = p2 − 1

2
.

For the Euler-Maruyama method (1.2.2), it can be verified that p1 = 2, p2 = 1 in general
cases. For a system with additive noises, it holds p1 = 2 and p2 = 3

2
([26]).

Theorem 3.12. ([25],[26])Let the one-step approximation X̄t,x(t + h) satisfy the con-

ditions of Theorem 3.11. Suppose that the one-step approximation X̃t,x(t + h) satisfies

∣∣∣E
(
X̃t,x(t + h)− X̄t,x(t + h)

)∣∣∣ = O(hp1), (3.2.18)

(
E | X̃t,x(t + h)− X̄t,x(t + h) |2

) 1
2

= O(hp2) (3.2.19)

with the same p1 and p2. Then the method based on the one-step approximation X̃t,x(t+h)
has the same mean-square order of accuracy as that based on X̄t,x(t + h), i.e., its order is
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p = p2 − 1
2
.

Theorem 3.12 is a natural consequence of Theorem 3.11, which can be verified by us-
ing triangular inequality.

Compare the truncated implicit method

X̄n+1 =
Xn(1− σ2h)

1− σζh

√
h

(3.2.20)

with the Euler-Maruyama method (3.2.9), it is obtained that ([29])
∣∣E(X̄n+1 −Xn+1)

∣∣ ≤ O(h2), (3.2.21)
(
E(X̄n+1 −Xn+1)

2
) 1

2 ≤ O(h), (3.2.22)

which means that the method (3.2.20) is of the same mean-square order as the Euler-
Maruyama method (3.2.9), namely with order 1

2
, according to Theorem 3.12. But (3.2.20)

is an implicit method.

With truncation of ∆Wn for building implicit methods, a class of symplectic Runge-
Kutta type schemes was constructed for the general Hamiltonian system (3.1.1)-(3.1.2)
with multiplicative noises, which has the form ([29])

pn+1 = pn + f(tn + βh, αPn+1 + (1− α)pn, (1− α)qn+1 + αqn)h

+ (
1

2
− α)

r∑

k=1

d∑
j=1

(
∂σk

∂pj
σj

k −
∂σk

∂qj
γj

k

)
h +

r∑

k=1

σk · (ζkh)n

√
h, (3.2.23)

qn+1 = qn + g(tn + βh, αPn+1 + (1− α)pn, (1− α)qn+1 + αqn)h

+ (
1

2
− α)

r∑

k=1

d∑
j=1

(
∂γk

∂pj
σj

k −
∂γk

∂qj
γj

k

)
h +

r∑

k=1

γk · (ζkh)n

√
h, (3.2.24)

where σk, γk (k = 1, . . . , r) and their derivatives are calculated at (tn + βh, αpn+1 + (1−
α)pn, (1− α)qn+1 + αqn), and α, β ∈ [0, 1].
For α = β = 1

2
, (3.2.23)-(3.2.24) gives the midpoint rule

pn+1 = pn + f(tn +
h

2
,
pn + pn+1

2
,
qn + qn+1

2
)h

+
r∑

k=1

σk(tn +
h

2
,
pn + pn+1

2
,
qn + qn+1

2
)(ζkh)n

√
h, (3.2.25)

qn+1 = qn + g(tn +
h

2
,
pn + pn+1

2
,
qn + qn+1

2
)h

+
r∑

k=1

γk(tn +
h

2
,
pn + pn+1

2
,
qn + qn+1

2
)(ζkh)n

√
h. (3.2.26)

For stochastic Hamiltonian systems (3.1.1)-(3.1.2) with condition (3.1.3)-(3.1.4), if

Hk(p, q) = Uk(t, q) + Vk(t, p), (3.2.27)
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with k = 1, . . . , r, i.e., if Hk are separable, the methods (3.2.23)-(3.2.24) with α = 1,
β = 0 become

pn+1 = pn + f(tn, pn+1, qn)h

+
h

2

r∑

k=1

d∑
j=1

∂σk

∂qj
(tn, qn) · γj

k(tn, pn+1) +
r∑

k=1

σk(tn, qn)∆nWk, (3.2.28)

qn+1 = qn + g(tn, pn+1, qn)h

− h

2

r∑

k=1

d∑
j=1

∂γk

∂pj
(tn, pn+1) · σj

k(tn, qn) +
r∑

k=1

γk(tn, pn+1)∆nWk, (3.2.29)

where ∆nWk = Wk(tn+1)−Wk(tn) (k = 1, . . . , r). They are not truncated here, because
this method is explicit in stochastic terms, in which case ∆nWk do not appear in denom-
inator.

For the Kubo oscillator (3.1.16)-(3.1.17), it is given in (3.1.18) that

H1(p, q) =
σ

2
(p2 + q2),

which is separable. Applying method (3.2.28)-(3.2.29) to the Kubo oscillator results in

pn+1 = pn − aqnh− σ2

2
pn+1h− σqn∆Wn, (3.2.30)

qn+1 = qn + apn+1h +
σ2

2
qnh + σpn+1∆Wn. (3.2.31)

The midpoint rule (3.2.25)-(3.2.26) gives for the Kubo oscillator the following midpoint
scheme

pn+1 = pn − a
qn + qn+1

2
h− σ

qn + qn+1

2
(ζh)n

√
h, (3.2.32)

qn+1 = qn + a
pn + pn+1

2
h + σ

pn + pn+1

2
(ζh)n

√
h, (3.2.33)

the mean-square order of which is 1 ([29]).
It is shown in [29] that the midpoint rule (3.2.32)-(3.2.33) preserves the circular phase
trajectory of the Kubo oscillator with high accuracy over long time interval, while the
method (3.2.30)-(3.2.31) produces a ring-shape trajectory. The Euler-Maruyama method

pn+1 = pn − aqnh− σ2

2
pnh− σqn∆Wn, (3.2.34)

qn+1 = qn + apnh− σ2

2
qnh + σpn∆Wn, (3.2.35)

which is not symplectic, gives a spiral trajectory. The advantage of symplectic methods
in preserving conservative properties over long time interval is illustrated by this example.
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3.3 A Linear Stochastic Oscillator

For the linear stochastic oscillator (3.1.7)-(3.1.8), some numerical methods are proposed
in [41]. Their abilities of preserving linear growth property (3.1.14) of the second moment
and oscillation property of the solution of the oscillator system on long time interval are
checked. It is found that the forward Euler-Maruyama method

xn+1 = xn + hyn, (3.3.1)

yn+1 = yn − hxn + σ∆Wn, (3.3.2)

where h > 0 is the step size, produces a second moment that increases exponentially with
time, and the backward Euler-Maruyama method

xn+1 = xn + hyn+1, (3.3.3)

yn+1 = yn − hxn+1 + σ∆Wn (3.3.4)

has second moment bounded above for all time. The partitioned Euler-Maruyama method

xn+1 = xn + hyn, (3.3.5)

yn+1 = yn − hxn+1 + σ∆Wn, (3.3.6)

however, gives linear growth for all step sizes less than 2. Moreover, it inherits a precise
analogue of the infinite oscillation property of the solution, which is stated in Proposition
3.8.

It is straightforward to verify that the partitioned Euler-Maruyama method is symplectic
by checking the relation

dxn+1 ∧ dyn+1 = dxn ∧ dyn. (3.3.7)

We apply the midpoint rule to the oscillator to obtain the midpoint scheme

xn+1 = xn + h
yn+1 + yn

2
, (3.3.8)

yn+1 = yn − h
xn+1 + xn

2
+ σ∆Wn, (3.3.9)

which can also be written in the form

(
xn+1

yn+1

)
= A

(
xn

yn

)
+ rn, (3.3.10)

where

A =

(
4−h2

4+h2
4h

4+h2

−4h
4+h2

4−h2

4+h2

)
, rn =

(
2σh
4+h2

4σ
4+h2

)
∆Wn. (3.3.11)

The sympleticity of the scheme is obvious since it is a special case of the midpoint rule
(3.2.25)-(3.2.26). For its ability of preserving the properties of the oscillator system, we
have the following results.
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Theorem 3.13. ([14]) Given initial data x0 = 1, y0 = 0, the numerical solution arising
from (3.3.8)-(3.3.9) satisfies

i) E(x2
n + y2

n) = 1 +
σ2

1 + (h
2
)2

tn, and consequently (3.3.12)

ii) E(x2
n + y2

n) ≤ 1 + σ2tn − σ2

4
tnh

2 +
σ2

16
tnh

4, (3.3.13)

for every h > 0.

Proof. The proof follows directly from the relations (3.3.10)-(3.3.11).

It is shown by numerical tests that the midpoint rule is more stable in preserving the lin-
ear growth property over long time interval than the partitioned Euler-Maruyama method.

Theorem 3.14. ([14]) The numerical solution {xn}n≥0 arising from the midpoint scheme
(3.3.8)-(3.3.9) for the oscillator system (3.1.7)-(3.1.8) with initial values x0 = 1, y0 = 0
will switch signs infinitely many times as n →∞, almost surely.

Proof. The proof of the theorem follows the same way as that of the partitioned Euler-
Maruyama method given in [41], except for some technical details. It can be derived from
the midpoint scheme (3.3.8)-(3.3.9) that

(
xn+1

xn

)
= B

(
xn

xn−1

)
+

(
r̂n

0

)
, (3.3.14)

where

B =

(
2(4−h2)
4+h2 −1

1 0

)
, r̂n =

2σh

4 + h2
(∆Wn + ∆Wn−1). (3.3.15)

Denote Bj =

(
aj bj

cj dj

)
, it follows

xn+1 = bn + an
4− h2

4 + h2
+ an

2σh

4 + h2
∆W0 +

n∑
j=1

an−j r̂j. (3.3.16)

By some algebraic discussion it can be shown that

∣∣∣∣bn + an
4− h2

4 + h2

∣∣∣∣ ≤ K, |aj| ≤ K, |bj| ≤ K (3.3.17)

for some K > 0, j = 0, 1, 2, . . .. Let Sn = an
2σh
4+h2 ∆W0 +

∑n
j=1 an−j r̂j. Then it can be

calculated that Sn ∼ N (0, s2
n) with s2

n →∞ as n →∞.
The law of iterated logarithm indicates that for such a random variable sequence {Sn},
∀ε > 0 and sufficiently large n, Sn will almost surely exceed the bounds−(1−ε)(2s2

n ln ln s2
n)

1
2

and (1− ε)(2s2
n ln ln s2

n)
1
2 infinitely often. (3.3.17) ensures that {xn} behaves in the same

way. ¤
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Superiority of symplectic schemes in preserving structure of the underlying systems on
long time interval than non-symplectic methods is reflected in the simulation of the linear
stochastic oscillator. For general systems, symplectic schemes are usually implicit. In de-
terministic case, predictor-corrector methods are proposed to give explicit schemes with
nearly preservation of symplecticity.
We apply the predictor-corrector methods with equidistant time discretization to the
linear stochastic oscillator (3.1.7)-(3.1.8) to observe the effect of such methods in stochas-
tic case. Denote the predictor-corrector method by P (EC)k, where k indicates that the
corrector is applied k times. We say shortly, e.g., P (EC)k method with partitioned Euler-
Maruyama and midpoint rule, to mean that the first mentioned method is the predictor
and the second one the corrector.
It is derived that P (EC)k method with partitioned Euler-Maruyama and midpoint rule
applied to the linear stochastic oscillator (3.1.7)-(3.1.8) has the form ([15])

(
x

(k)
n+1

y
(k)
n+1

)
=

(
ak bk

ck dk

)(
xn

yn

)
+

(
rk

sk

)
∆Wn, (3.3.18)

where

ak =

{
4−h2

4+h2 (1− a[k]) + a[k] k even,
4−h2

4+h2 (1− b[k]) + (1− h2

2
)b[k] k odd,

(3.3.19)

bk =

{ 4h
4+h2 (1− a[k]) + ha[k] k even,
4h

4+h2 (1− b[k]) + h(1− h2

2
)b[k] k odd,

(3.3.20)

ck =

{ − 4h
4+h2 (1− a[k])− ha[k] k even,

− 4h
4+h2 (1− b[k])− hb[k] k odd,

(3.3.21)

dk =

{
4−h2

4+h2 (1− a[k]) + (1− h2)a[k] k even,
4−h2

4+h2 (1− b[k]) + (1− h2

2
)b[k] k odd,

(3.3.22)

rk =

{
2σh
4+h2 (1− a[k]) k even,
2σh
4+h2 (1− b[k]) + σh

2
b[k] k odd,

(3.3.23)

sk =

{
4h

4+h2 (1− a[k]) + ha[k] k even,
4h

4+h2 (1− b[k]) + hb[k] k odd,
(3.3.24)

with

a[k] = (−1)
k
2 (

h2

4
)

k
2 , b[k] = (−1)

k−1
2 (

h2

4
)

k−1
2 , (3.3.25)

h > 0 is the step size, and the upper index (k) indicates that the value is obtained from
the k-th correction.

Theorem 3.15. ([15]) The P (EC)k method with partitioned Euler-Maruyama and mid-
point rule (3.3.18) preserves symplecticity of the linear oscillator system (3.1.7)-(3.1.8)
to the degree of having error O(kk+4) as k is even, and error O(kk+3) as k is odd.

Proof. See [15]. ¤

As h → 0, or h < 1 and k →∞, the P (EC)k method (3.3.18) tends to preserve symplec-
ticity exactly ([15]).
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Denote tn = n ·h, preservation of linear growth property (3.1.14) by applying the method
(3.3.18) is proved.

Theorem 3.16. ([15]) Given initial data x0 = 1, y0 = 0, the numerical solution arising
from the P (EC)k method with partitioned Euler-Maruyama and midpoint rule (3.3.18)
for the stochastic oscillator (3.1.7)-(3.1.8) satisfies

E((x(k)
n )2 + (y(k)

n )2) = 1 + σ2tn − σ2tn
h2

4 + h2
+ tn ·O(hk+1). (3.3.26)

Proof. The proof follows a direct calculation of E((x
(k)
n )2 + (y

(k)
n )2) basing on the scheme

(3.3.18) and the relations (3.3.19)-(3.3.25). For details see [15]. ¤
Compare (3.3.26) with (3.3.13), it is found that as h → 0 and k > 1, the leading error of
the second moment of the numerical solution arising from the P (EC)k scheme tends to
that from the midpoint rule.

The following theorem states the oscillation property of the numerical solution produced
by the P (EC)k scheme (3.3.18) as k = 4l + 1 and k = 4l + 2 (l ≥ 0).

Theorem 3.17. ([15]) The numerical solution {x(k)
n }n≥0 arising from the P (EC)k method

with partitioned Euler-Maruyama and midpoint rule (3.3.18) for the oscillator system
(3.1.7)-(3.1.8) with x0 = 1, y0 = 0 will switch signs infinitely many times as n → ∞,
almost surely, for k = 4l + 1 and k = 4l + 2 (l ≥ 0).

Proof. See [15]. ¤

Moreover, the mean-square order of convergence is checked for the method (3.3.18).

Theorem 3.18. ([15]) The P (EC)k method with partitioned Euler-Maruyama and mid-
point rule (3.3.18) applied to the oscillator system (3.1.7)-(3.1.8) has mean-square order
1 for all k ≥ 1.

Proof. The proof applies Theorem 3.12 to compare the method (3.3.18) with the Euler-
Maruyama method, the mean-square order of which is known to be 1 for systems with
additive noises. It is referred to [15] for more details.

Similar results about preservation of symplecticity, linear growth property of second mo-
ment, oscillation property of the solution of the oscillator system (3.1.7)-(3.1.8), and
mean-square order of the P (EC)k method with forward Euler-Maruyama and midpoint
rule are also given in [15].
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Chapter 4

Variational Integrators with Noises

Up to now some symplectic numerical schemes have been discussed, most of which are of
Runge-Kutta type and constructed mainly by properly adapting deterministic methods
for stochastic Hamiltonian systems. We construct in this chapter variational integrators
with noises which produce symplectic schemes based on a generalized action integral and
generalized Hamilton’s principle with noises, and can be seen as the stochastic analog of
the deterministic variational integrators introduced in section 2.2.

4.1 Generalized Hamilton’s Principle

The classic Hamilton’s principle stated in Theorem 2.2 asserts that the Lagrange equation
of motion (2.1.2) extremizes the action integral (2.1.8). The form of the action integral
and that of the Lagrange equation in this principle, however, is only valid for conserva-
tive systems. In the presence of nonconservative forces, the formulation must be changed
([38],[42]).

Denote the nonconservative force with F, the generalized action integral in presence of F
is ([34],[38])

S̃ =

∫ t1

t0

(L− A)dt, (4.1.1)

where L is the Lagrangian of the system under consideration, and A is the work done by
the nonconservative force F, and

A = −F · r, (4.1.2)

where r is the position vector with r = r(q, t). Let δ denote a variation, then it holds
([34],[38])

δA = −F · δr = −F · ∂r

∂q
δq, (4.1.3)

since F is independent of q. Consequently, the variation of S̃ is

δS̃ =

∫ t1

t0

(
∂L

∂q
δq +

∂L

∂q̇
δq̇ − δA

)
dt

=

[
∂L

∂q̇
δq

]t1

t0

+

∫ t1

t0

[
− d

dt

(
∂L

∂q̇

)
+

∂L

∂q
+ FT ∂r

∂q

]
δqdt. (4.1.4)



46 CHAPTER 4. VARIATIONAL INTEGRATORS WITH NOISES

Since
δq(t0) = δq(t1) = 0,

it follows

δS̃ = 0

⇔ d

dt

(
∂L

∂q̇

)
=

∂L

∂q
+ FT ∂r

∂q
. (4.1.5)

Equation (4.1.5) is the Lagrange equation of motion of nonconservative systems.

In the equation (4.1.5), the Lagrangian is considered as a function of (q, q̇, t). It is
pointed out in [42] that the Lagrange equations of motion can also be formulated in
the general variable set {p, q, ṗ, q̇, t}, where the position vector r may depend on p and
q, i.e., r = r(p, q, t). This is referred to as the redundancy property of the Lagrange
equations of motion. In this case, the Lagrange equations of motion are

d

dt

(
∂L

∂q̇

)
=

∂L

∂q
+ FT ∂r

∂q
, (4.1.6)

d

dt

(
∂L

∂ṗ

)
=

∂L

∂p
+ FT ∂r

∂p
, (4.1.7)

which may include linearly dependent equations due to the redundancy of the variable
set {p, q, ṗ, q̇, t}.

Based on the formulation (4.1.6)-(4.1.7), as well as a simple variational principle, it is
derived in [42] that the general Hamilton’s equation of motion in presence of nonconser-
vative force F is

ṗ = −∂H

∂q

T

+
∂r

∂q

T

F, (4.1.8)

q̇ =
∂H

∂p

T

− ∂r

∂p

T

F. (4.1.9)

Consider a stochastic Hamiltonian system with one noise

dp = −∂H

∂q

T

dt− ∂H1

∂q

T

◦ dW (t), (4.1.10)

dq =
∂H

∂p

T

dt +
∂H1

∂p

T

◦ dW (t). (4.1.11)

As the Langevin’s equation (1.1.2), we write

dW (t) = ξ(t)dt = Ẇdt (4.1.12)

as explained in section 1.1. Thus the system (4.1.10)-(4.1.11) can be rewritten in the form

ṗ = −∂H

∂q

T

− ∂H1

∂q

T

Ẇ , (4.1.13)

q̇ =
∂H

∂p

T

+
∂H1

∂p

T

Ẇ . (4.1.14)
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In Example 3.1, it is given that the Hamiltonian H for the linear stochastic oscillator
(3.1.7)-(3.1.8) is not conserved, as stated in (3.1.15) that

E(H) =
1

2
(1 + σ2t).

This indicates that a stochastic Hamiltonian system is not a Hamiltonian systems in clas-
sic sense which preserves H, but in certain generalized sense. In other words, it may be
disturbed by certain nonconservative force. Other than classic nonconservative force F
which dissipates energy, this force may also add energy to the system, as shown by the
linear growth of H with time t in (3.1.15). Here we call it a random force. A natural
association for it is the white noise ξ(t), since it is the resource of the random disturbance
of the system. Moreover, it does not depend on position q, which gives the possibility of
its belonging to nonconservative forces.

In fact, compare (4.1.13)-(4.1.14) with (4.1.8)-(4.1.9), we find that the association between
F and Ẇ is reasonable. And so is that between r and −H1. Under these considerations,
stochastic Hamiltonian system is a special kind of nonconservative system, in which Ẇ
functions as the nonconservative force.

Thus, formally, the ‘work’ done by Ẇ should be

Ā = H1Ẇ (4.1.15)

according to (4.1.2). In the sequel, we may form the following action integral based on
(4.1.1) for the stochastic Hamiltonian system (4.1.13)-(4.1.14):

S̄ =

∫ t1

t0

(L− Ā)dt

=

∫ t1

t0

Ldt−
∫ t1

t0

H1 ◦ dW, (4.1.16)

where in the last equation we use again the relation Ẇdt = dW .

For a general system with r noises (3.1.1)-(3.1.4), (4.1.15) need to be modified to

Ā =
r∑

k=1

HkẆk, (4.1.17)

which is the sum of the ‘work’ done by each Ẇk. Consequently,

S̄ =

∫ t1

t0

(L− Ā)dt

=

∫ t1

t0

Ldt−
r∑

k=1

∫ t1

t0

Hk ◦ dWk. (4.1.18)

We call it the generalized action integral with noises.
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According to (4.1.6)-(4.1.7), the Lagrange equations of motion for the stochastic Hamil-
tonian system (4.1.13)-(4.1.14) have the form

d

dt

(
∂L

∂q̇

)
=

∂L

∂q
− ∂H1

∂q
Ẇ , (4.1.19)

d

dt

(
∂L

∂ṗ

)
=

∂L

∂p
− ∂H1

∂p
Ẇ , (4.1.20)

which we call the generalized Lagrange equations of motion with noise.
In case of r noises, these equations are

d

dt

(
∂L

∂q̇

)
=

∂L

∂q
−

r∑

k=1

∂Hk

∂q
Ẇk, (4.1.21)

d

dt

(
∂L

∂ṗ

)
=

∂L

∂p
−

r∑

k=1

∂Hk

∂p
Ẇk, (4.1.22)

Lemma 4.1. If ∫ b

a

n∑
i=1

Fi(t)gi(t)dt = 0

is valid for any function gi(t), and gi(t) (i = 1, . . . , n) are independent to each other, then
it holds Fi(t) = 0 almost everywhere on [a, b] for 1 ≤ i ≤ n.

Proof. We prove by induction on n. As n = 1, we have
∫ b

a
F1(t)g1(t)dt = 0. Since

g1(t) can take any function, we let g1(t) = F1(t). This leads to
∫ b

a

F1(t)
2dt = 0,

which implies that F1(t) = 0 almost everywhere on [a, b] since F1(t)
2 ≥ 0.

Suppose the assertion holds for i ≤ k. As i = k + 1, we have

∫ b

a

k+1∑
i=1

Fi(t)gi(t)dt =

∫ b

a

(
k∑

i=1

Fi(t)gi(t) + Fk+1(t)gk+1(t))dt = 0. (4.1.23)

Let gi(t) = Fi(t) for 1 ≤ i ≤ k and gi+1(t) = Fi+1(t), it follows

∫ b

a

(
k∑

i=1

F 2
i + F 2

k+1)dt = 0. (4.1.24)

If we take gi+1(t) = 2Fi+1(t), it holds

∫ b

a

(
k∑

i=1

F 2
i + 2F 2

k+1)dt = 0. (4.1.25)

(4.1.24)-(4.1.25) implies

k∑
i=1

F 2
i + F 2

k+1 = 0 and
k∑

i=1

F 2
i + 2F 2

k+1 = 0 (4.1.26)
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almost everywhere on [a,b], from which Fk+1(t) = 0 holds almost everywhere on [a,b]. By
relation (4.1.23) and the induction hypothesis, we have Fi(t) = 0 almost everywhere on
[a, b] for 1 ≤ i ≤ k. ¤

Theorem 4.2 (Generalized Hamilton’s Principle with Noises). The generalized
Lagrange equations of motion with noises (4.1.21)-(4.1.22) extremize the generalized ac-
tion integral with noises (4.1.18).

Proof. The variation of S̄ in (4.1.18) is

δS̄ =

∫ t1

t0

(
∂L

∂p
δp +

∂L

∂q
δq +

∂L

∂ṗ
δṗ +

∂L

∂q̇
δq̇

)
dt

−
r∑

k=1

∫ t1

t0

(
∂Hk

∂p
δp +

∂Hk

∂q
δq

)
Ẇkdt

=

[
∂L

∂ṗ
δp

]t1

t0

+

[
∂L

∂q̇
δq

]t1

t0

+

∫ t1

t0

(
∂L

∂p
− d

dt

(
∂L

∂ṗ

)
−

r∑

k=1

∂Hk

∂p
Ẇk

)
δpdt

+

∫ t1

t0

(
∂L

∂q
− d

dt

(
∂L

∂q̇

)
−

r∑

k=1

∂Hk

∂q
Ẇk

)
δqdt. (4.1.27)

Thus, δS̄ = 0 is equivalent to

d

dt

(
∂L

∂q̇

)
=

∂L

∂q
−

r∑

k=1

∂Hk

∂q
Ẇk,

d

dt

(
∂L

∂ṗ

)
=

∂L

∂p
−

r∑

k=1

∂Hk

∂p
Ẇk,

due to δq(t0) = δq(t1) = δp(t0) = δp(t1) = 0 and Lemma 4.1. ¤

Example 4.1. For the linear stochastic oscillator (3.1.7)-(3.1.8), we have

L(y, x, ẏ, ẋ, t) =
1

2
(y2 − x2), (4.1.28)

which is obtained through the relation (2.1.4) between Lagrangian and Hamiltonian, and
the Hamiltonian H = 1

2
(y2 + x2) of the system. Here y and x are counterparts of p and

q in (2.1.4) respectively. We show that the equations (3.1.7)-(3.1.8) of the oscillator are
equivalent to the generalized Lagrange equations of motion with noise (4.1.19)-(4.1.20).
In fact, we regard L(y, x, ẏ, ẋ, t) as coming from a variable transformation on the La-
grangian L(x, ẋ, t), i.e.,

L(y, x, ẏ, ẋ, t) = L(x(y, x, ẏ, ẋ, t), ẋ(y, x, ẏ, ẋ, t), t), (4.1.29)

where
x(y, x, ẏ, ẋ, t) = −ẏ + σẆ , ẋ(y, x, ẏ, ẋ, t) = y. (4.1.30)

Thus the equation (4.1.19) is equivalent to

d

dt

(
∂L

∂y

)
=

∂L

∂x
+ σẆ , (4.1.31)
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since H1 = −σx. Substitute (4.1.28) into (4.1.31), we obtain

ẏ = −x + σẆ , (4.1.32)

which is equivalent to equation (3.1.7).
The equation (4.1.20) is

d

dt

(
∂L

∂ẏ

)
=

∂L

∂y
. (4.1.33)

Note that
∂L

∂ẏ
=

∂L

∂x

∂x

∂ẏ
= −∂L

∂x
, (4.1.34)

which is a consequence of (4.1.30). Substitute (4.1.34) to (4.1.33), we obtain that (4.1.20)
is equivalent to

ẋ = y, (4.1.35)

which is the equation (3.1.8) and the second equation in (4.1.30).

4.2 Variational Integrators with Noises

Based on the formulation of the generalized action integral with noises (4.1.18), and the
generalized lagrange equations of motion with noises (4.1.21)-(4.1.22), variational integra-
tors with noises for creating symplectic schemes for stochastic Hamiltonian systems can
be constructed analogously to the way for deterministic variational integrators.

Consider the generalized action integral S̄ in (4.1.18) as a function of the two endpoints
q0 and q1:

q0 = q(t0), q1 = q(t1),

and find the derivatives of S̄ with respect to q0 and q1.

∂S̄

∂q0

=

∫ t1

t0

(
∂L

∂q

∂q

∂q0

+
∂L

∂q̇

∂q̇

∂q0

+
∂L

∂p

∂p

∂q0

+
∂L

∂ṗ

∂ṗ

∂q0

)
dt

−
r∑

k=1

∫ t1

t0

(
∂Hk

∂q

∂q

∂q0

+
∂Hk

∂p

∂p

∂q0

)
◦ dWk

=

[
∂L

∂q̇

∂q

∂q0

]t1

t0

+

∫ t1

t0

(
∂L

∂q
− d

dt

∂L

∂q̇
−

r∑

k=1

∂Hk

∂q
Ẇk

)
∂q

∂q0

dt

+

[
∂L

∂ṗ

∂p

∂q0

]t1

t0

+

∫ t1

t0

(
∂L

∂p
− d

dt

∂L

∂ṗ
−

r∑

k=1

∂Hk

∂p
Ẇk

)
∂p

∂q0

dt

= −pT
0 , (4.2.1)

where the last equality follows from the equations (4.1.21)-(4.1.22), as well as the relation
p = ∂L

∂q̇
.

In the same way we get
∂S̄

∂q1

= pT
1 . (4.2.2)
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Thus, it holds
dS̄ = −pT

0 dq0 + pT
1 dq1. (4.2.3)

Note that, the differentials are calculated basing on stochastic differentials in Stratonovich
sense. Therefore the classic chain rule is valid.

Theorem 4.3. Suppose that the Lagrangian L and the functions Hk (k = 1, . . . , r)
in the generalized action integral with noises (4.1.18) are sufficiently smooth with respect
to p and q. Then the mapping (p0, q0) 7→ (p1, q1) defined by equation (4.2.3) is symplectic.

Proof. From (4.2.3) it follows that

dp1 ∧ dq1 = d

(
∂S̄

∂q1

)
∧ dq1 =

∂2S̄

∂q1∂q0

dq0 ∧ dq1, (4.2.4)

dp0 ∧ dq0 = d

(
− ∂S̄

∂q0

)
∧ dq0 =

∂2S̄

∂q0∂q1

dq0 ∧ dq1. (4.2.5)

Smoothness of L and Hk in S̄ ensures that ∂2S̄
∂q1∂q0

= ∂2S̄
∂q0∂q1

, which implies

dp1 ∧ dq1 = dp0 ∧ dq0. (4.2.6)

¤

Consider the discretized time interval [tn, tn+1] as the time interval of a variational problem
with noises, the length of which is h for all n ≥ 0, and suppose

q(tn) ≈ qn, q(tn+1) ≈ qn+1. (4.2.7)

Approximate the corresponding action integral with noises on it with L̄h, which is the
analog of the deterministic discrete Lagrangian (2.2.18), and has the form

L̄h(qn, qn+1) ≈
∫ tn+1

tn

Ldt−
r∑

k=1

∫ tn+1

tn

Hk ◦ dWk. (4.2.8)

We call it the discrete Lagrangian with noises. Form the following scheme according to
relations (4.2.1) and (4.2.2):

pn = −∂L̄h

∂x

T

(qn, qn+1), pn+1 =
∂L̄h

∂y

T

(qn, qn+1), (4.2.9)

where pn ≈ p(tn), pn+1 ≈ p(tn+1), and ∂x, ∂y refer to derivatives with respect to the first
and second variable respectively. Follow the same way as the proof of Theorem 4.3, it can
be shown that the mapping (pn, qn) 7→ (pn+1, qn+1) defined by (4.2.9) is symplectic.
L̄h in (4.2.9) can be approximated by numerical integration of the integrals in its defi-
nition (4.2.8), which includes also stochastic integrals, the approximation of which can
follow ways discussed in section 1.2.
The methods discussed above for creating the symplectic mappings (pn, qn) 7→ (pn+1, qn+1)
are called variational integrators with noises.
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Example 4.2. (4.1.28) gives the Lagrangian of the linear stochastic oscillator (3.1.7)-
(3.1.8)

L =
1

2
(y2 − x2) =

1

2
(ẋ2 − x2).

Moreover,
H1 = −σx.

Thus, the discrete Lagrangian with noise is

L̄h ≈
∫ tn+1

tn

Ldt−
∫ tn+1

tn

H1 ◦ dW (t) (4.2.10)

=
1

2

∫ tn+1

tn

(ẋ(t)2 − x(t)2)dt + σ

∫ tn+1

tn

x(t) ◦ dW (t) (4.2.11)

≈ 1

2

[
(xn+1 − xn)2

h2
h−

(
xn+1 + xn

2

)2

h

]
+ σ

xn+1 + xn

2
∆Wn (4.2.12)

= −h

8
(xn+1 + xn)2 +

(xn+1 − xn)2

2h
+

σ

2
(xn+1 + xn)∆Wn, (4.2.13)

where ẋ(t) in (4.2.11) is approximated by xn+1−xn

h
, and midpoint rule has been applied to

the integrals in (4.2.11). Note that such an approximation is consistent with the definition
(1.1.15) of a stochastic integral in Stratonovich sense.
In the sequel, we can construct the following scheme according to (4.2.9):

yn = −∂L̄h

∂xn

(xn, xn+1) =
xn+1 − xn

h
+

h

4
(xn+1 + xn)− σ

2
∆Wn, (4.2.14)

yn+1 =
∂L̄h

∂xn+1

(xn, xn+1) = −h

4
(xn+1 + xn) +

xn+1 − xn

h
+

σ

2
∆Wn, (4.2.15)

which is equivalent to

(
1 + h2

4
0

1− h2

4
−h

)(
xn+1

yn+1

)
=

(
1− h2

4
h

1 + h2

4
0

)(
xn

yn

)
+

(
σh
2

−σh
2

)
∆Wn. (4.2.16)

Thus (
xn+1

yn+1

)
=

(
4−h2

4+h2
4h

4+h2

− 4h
4+h2

4−h2

4+h2

)(
xn

yn

)
+

(
2σh
4+h2

4σ
4+h2

)
∆Wn, (4.2.17)

which is the midpoint rule (3.3.10)-(3.3.11) for the linear stochastic oscillator (3.1.7)-
(3.1.8).



Chapter 5

Generating Functions with One
Noise

The existence of generating functions producing symplectic schemes for stochastic Hamil-
tonian systems is shown by Theorem 4.3, where the generating function is the generalized
action integral with noises S̄, which creates symplectic scheme according to relations
(4.2.1)-(4.2.2). In fact, there are other generating functions which are based on different
coordinates, as in deterministic case. In this chapter, generating functions S̄1, S̄2, and S̄3

are deduced, which are analogs of the deterministic S1, S2, and S3, respectively, and the
Hamilton-Jacobi equations with noise which the generating functions satisfy are derived.
Based on approximation of the solution of the Hamilton-Jacobi equations with noise, sym-
plectic schemes are created by generating functions with noise, and required mean-square
order of convergence of the generated schemes can be achieved in a simple way. The case
of one noise is discussed in this chapter, and cases of two noises are considered in the next
chapter.

5.1 Generating Functions S̄1, S̄2, and S̄3 with Noise

It is asserted in Theorem 4.3 that, the following scheme

p = −∂S̄

∂q

T

, P =
∂S̄

∂Q

T

(5.1.1)

generated by S̄ defines a symplectic mapping (p, q) 7→ (P,Q). We call it a symplectic
scheme.

Now we look for the generating function S̄1(P, q) which is based on coordinates (P, q)
instead of (q, Q). This can be achieved by a series of equivalent transformations on the
relation

dS̄ = −pdq + PdQ, (5.1.2)

which is identical with (5.1.1). We have the following result.

Theorem 5.1. (5.1.2) is equivalent to

QT dP + pT dq = d(P T q + S̄1), (5.1.3)
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where S̄1(P, q) satisfies
S̄1 = P T (Q− q)− S̄. (5.1.4)

Proof. Substituting (5.1.4) into (5.1.3) yields

d(P T q + S̄1) = d(P T Q− S̄) (5.1.5)

= P T dQ + QT dP + pT dq − P T dQ (5.1.6)

= QT dP + pT dq, (5.1.7)

where (5.1.6) is obtained by using the relation (5.1.2), as well as the Stratonovich chain
rule

d(P T Q) = P T dQ + QT dP, (5.1.8)

since the differentials concerned in our discussion are of Stratonovich sense. ¤
Thus, (5.1.3) is an equivalent version of (5.1.2), but with coordinates (P, q). Consequently,
the scheme

p = P +
∂S̄1

∂q

T

(P, q), Q = q +
∂S̄1

∂P

T

(P, q), (5.1.9)

which is generated from (5.1.3) by comparing coefficients of dP and dq on both sides of
the equality sign, is equivalent to (5.1.1), and therefore symplectic. We call S̄1 generating
function with noise of the first kind.

Analogously, for generating functions based on coordinates (p,Q) and (P+p
2

, Q+q
2

), we
have the following results.

Theorem 5.2. (5.1.2) is equivalent to

P T dQ + qT dp = d(pT Q− S̄2), (5.1.10)

where S̄2(p,Q) satisfies
S̄2 = pT (Q− q)− S̄. (5.1.11)

(5.1.10) implies that the symplectic scheme generated by S̄2 is

P = p− ∂S̄2

∂Q

T

(p,Q), q = Q− ∂S̄2

∂p

T

(p,Q). (5.1.12)

Theorem 5.3. (5.1.2) is equivalent to

(Q− q)T d(P + p)− (P − p)T d(Q + q) = 2dS̄3, (5.1.13)

where S̄3(P+p
2

, Q+q
2

) satisfies

S̄3 =
1

2
(P + p)T (Q− q)− S̄. (5.1.14)

According to (5.1.13), The symplectic scheme produced by S̄3 is

P = p− ∂T
2 S̄3(

P + p

2
,
Q + q

2
), (5.1.15)

Q = q + ∂T
1 S̄3(

P + p

2
,
Q + q

2
), (5.1.16)
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where ∂1 and ∂2 refers to partial derivative with respect to u = P+p
2

and v = Q+q
2

respec-
tively.

The proofs of Theorem 5.2 and 5.3 are similar to that of Theorem 5.1, which is estab-
lished by a straightforward calculation with applying the Stratonovich chain rule given in
Theorem 1.4.
We call S̄2 and S̄3 the generating functions with noise of the second and third kind re-
spectively. As S̄ or S̄i (i = 1, 2, 3) equal zero, the mapping (p, q) 7→ (P,Q) created by
them becomes the identity mapping.
It can be seen that the relations between S̄ and the three kinds of generating functions
S̄i (i = 1, 2, 3), as well as the symplectic schemes generated by the generating functions
with noise, have the same forms as that of the deterministic generating functions. This
fact is mainly due to the Stratonovich chain rule, and the equation (5.1.2) for generalized
action integral with noise.

5.2 Hamilton-Jacobi Equations with Noise

S̄(q, Q) generates a symplectic mapping (p, q) 7→ (P,Q) via (5.1.1). Now let P (t), Q(t)
move on the phase trajectory of the stochastic Hamiltonian system (4.1.13)-(4.1.14) start-
ing from the point (p, q). We want to find a generating function with noise, S̄(q, Q(t), t),
depending on t, which generates the phase trajectory ḡt of the stochastic Hamiltonian
system, since it is known that the phase trajectory is a symplectic transformation for any
t ≥ 0. We find that the approach in [12] of deriving S(q, Q(t), t) for deterministic Hamil-
tonian systems can be adapted to that of the stochastic S̄(q, Q(t), t), as given below.
(5.1.1) implies that S̄(q, Q(t), t) should satisfy

P (t) =
∂S̄

∂Q

T

(q, Q(t), t)), p = −∂S̄

∂q

T

(q, Q(t), t)). (5.2.1)

Differentiating the second equation with respect to t gives

0 =
∂2S̄

∂q∂t
(q, Q(t), t) + Q̇(t)T ∂2S̄

∂q∂Q
(q, Q(t), t) (5.2.2)

=
∂2S̄

∂q∂t
(q, Q(t), t) +

∂

∂P
(H(P (t), Q(t)) + H1(P (t), Q(t))Ẇ )

∂

∂q
(
∂S̄

∂Q

T

(q, Q(t), t)) (5.2.3)

=
∂2S̄

∂q∂t
(q, Q(t), t) +

∂

∂P
(H(P (t), Q(t)) + H1(P (t), Q(t))Ẇ )

∂P (t)

∂q
(q, Q(t), t) (5.2.4)

=
∂2S̄

∂q∂t
(q, Q(t), t) +

∂

∂q
(H(P (t), Q(t)) + H1(P (t), Q(t))Ẇ )(q, Q(t), t). (5.2.5)

Thus
∂

∂q
(
∂S̄

∂t
+ H(P (t), Q(t)) + H1(P (t), Q(t))Ẇ ) = 0, (5.2.6)
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where P (t) = ∂S̄
∂Q

T
(q, Q(t), t). In (5.2.3) we have used the relation (4.1.14), and in (5.2.4)

the first equation of (5.2.1).
We have the following result.

Theorem 5.4. If S̄(q, Q(t), t) satisfies the following partial differential equation

∂S̄

∂t
+ H(

∂S̄

∂Q

T

, Q) + H1(
∂S̄

∂Q

T

, Q)Ẇ = 0, (5.2.7)

and the matrix ∂2S̄
∂q∂Q

is invertible almost surely, then the mapping (p, q) 7→ (P (t), Q(t))

defined by (5.2.1) is the phase trajectory of the stochastic Hamiltonian system (4.1.13)-
(4.1.14).

Proof. The invertibility of the matrix ∂2S̄
∂q∂Q

ensures that P (t) and Q(t) are well-defined

by (5.2.1). If S̄ satisfies the equation (5.2.7), then the relation (5.2.6) holds. According
to the calculations from (5.2.3) to (5.2.6), which are equivalent transformations based on
the first equation of (5.2.1), (5.2.3) must equal zero. On the other hand, (5.2.1) yields

(5.2.2). The invertibility of ∂2S̄
∂q∂Q

gives

Q̇(t) =
∂H

∂P

T

(P (t), Q(t)) +
∂H1

∂P

T

(P (t), Q(t))Ẇ , (5.2.8)

which is the second equation of the stochastic Hamiltonian system (4.1.13)-(4.1.14).
Differentiate the first equation of (5.2.1) with respect to t, we obtain

Ṗ (t) =
∂2S̄

∂Q∂t

T

(q, Q(t), t) +
∂2S̄

∂Q2
(q, Q(t), t)Q̇(t). (5.2.9)

On the other hand, differentiating the equation (5.2.7) with respect to Q yields

∂2S̄

∂Q∂t

T

(q, Q(t), t) = − ∂2S̄

∂Q2
(q, Q(t), t)

∂H

∂P

T

(P (t), Q(t))− ∂H

∂Q

T

(P (t), Q(t)) (5.2.10)

− (
∂2S̄

∂Q2
(q, Q(t), t)

∂H1

∂P

T

(P (t), Q(t)) +
∂H1

∂Q

T

(P (t), Q(t)))Ẇ .

(5.2.11)

Substituting (5.2.8) and (5.2.10)-(5.2.11) into (5.2.9) gives

Ṗ (t) = −∂H

∂Q

T

(P (t), Q(t))− ∂H1

∂Q

T

(P (t), Q(t))Ẇ , (5.2.12)

which is the first equation of the stochastic Hamiltonian system (4.1.13)-(4.1.14). ¤

Remark. We call (5.2.7) the Hamilton-Jacobi partial differential equation with noise.
The Stratonovich chain rule plays a vital role to ensure the validity of the derivation.

The relation between S̄ and S̄1 (5.1.4) implies that

S̄1(P, q, t) = P T (Q− q)− S̄(q, Q, t). (5.2.13)
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Differentiating both sides of the equation (5.2.13) with respect to t yields

∂S̄1

∂t
= P T ∂Q

∂t
− ∂S̄

∂t
− ∂S̄

∂Q

∂Q

∂t
= −∂S̄

∂t
, (5.2.14)

where the second equality is due to P = ∂S̄
∂Q

T
. Substitute this relation and (5.2.14) into

(5.2.7), the following theorem is motivated.

Theorem 5.5. If S̄1(P, q, t) satisfies the following partial differential equation

∂S̄1

∂t
= H(P,Q) + H1(P,Q)Ẇ , S̄1(P, q, 0) = 0, (5.2.15)

where Q = q + ∂S̄1

∂P

T
(P, q, t), then the mapping (p, q) 7→ (P (t), Q(t)) defined by (5.1.9) is

the phase trajectory of the stochastic Hamiltonian system (4.1.13)-(4.1.14).

Proof. Differentiating the first equation of (5.1.9) with respect to t gives

(I +
∂2S̄1

∂P∂q
(P, q, t))Ṗ = −∂2S̄1

∂q∂t

T

(P, q, t). (5.2.16)

From (5.2.15),
∂2S̄1

∂q∂t
= (

∂H

∂Q
+

∂H1

∂Q
Ẇ )

∂Q

∂q
. (5.2.17)

Differentiating the second equation with respect to q gives

∂Q

∂q
= I +

∂2S̄1

∂q∂P
. (5.2.18)

Substituting (5.2.18) and (5.2.17) into (5.2.16) yields

(I +
∂2S̄1

∂P∂q
(P, q, t))Ṗ = −(I +

∂2S̄1

∂P∂q
(P, q, t))(

∂H

∂Q

T

(P,Q) +
∂H1

∂Q

T

(P,Q)Ẇ ), (5.2.19)

which results in the first equation of the stochastic Hamiltonian system (4.1.13)-(4.1.14).
Differentiating the second equation of (5.1.9) with respect to t gives

Q̇ =
∂2S̄1

∂P 2
(P, q, t)Ṗ +

∂2S̄1

∂P∂t

T

(P, q, t). (5.2.20)

It follows from (5.2.15) that

∂2S̄1

∂P∂t
=

∂H

∂P
+

∂H1

∂P
Ẇ + (

∂H

∂Q
+

∂H1

∂Q
Ẇ )

∂Q

∂P
. (5.2.21)

The second equation of (5.1.9) yields

∂Q

∂P
=

∂2S̄1

∂P 2
. (5.2.22)
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Substituting (5.2.22), (5.2.21) and (5.2.19) into (5.2.20) gives

Q̇ =
∂H

∂P

T

(P,Q) +
∂H1

∂P

T

(P,Q)Ẇ , (5.2.23)

which is the second equation of the stochastic Hamiltonian system (4.1.13)-(4.1.14). The
initial condition in (5.2.15) ensures that at t = 0, the mapping (p, q) 7→ (P (t), Q(t)) de-
fined by (5.1.9) is the identity mapping. ¤

Denote u = P+p
2

, v = Q+q
2

, the Hamilton-Jacobi partial differential equation with noise
for S̄3(u, v, t) can be derived in the same way.

Theorem 5.6. If S̄3(u, v, t) satisfies the following partial differential equation

∂S̄3

∂t
= H(P,Q) + H1(P,Q)Ẇ , S̄3(u, v, 0) = 0, (5.2.24)

where P = u−1
2

∂S̄3

∂v

T
(u, v, t), Q = v+1

2
∂S̄3

∂u

T
(u, v, t), then the mapping (p, q) 7→ (P (t), Q(t))

defined by (5.1.15)-(5.1.16) is the phase trajectory of the stochastic Hamiltonian system
(4.1.13)-(4.1.14).

Proof. The proof follows from differentiations of (5.1.15)-(5.1.16), as that of the proof
of Theorem 5.5. ¤

5.3 Symplectic Methods Based on S̄1

Since the generating functions with noise satisfy Hamilton-Jacobi partial differential equa-
tions with noise, we expect to approximate the solutions of the Hamilton-Jacobi equations
with noise, in order to obtain approximations of generating functions. Enlightened by the
methods in deterministic case, we assume certain forms of the solutions and substitute
them into the Hamilton-Jacobi equations with noise, and compare coefficients to deter-
mine unknown terms in the assumed forms.

For S̄1(P, q, t) which satisfies the equation (5.2.15), we assume

S̄1(P, q, t) = F1(P, q)W (t) + F2(P, q)

∫ t

0

W (s) ◦ dW (s) + G1(P, q)t (5.3.1)

+ F3(P, q)

∫ t

0

s ◦ dW (s) + G2(P, q)

∫ t

0

W (s)ds (5.3.2)

+ F4(P, q)

∫ t

0

sW (s) ◦ dW (s) + G3(P, q)

∫ t

0

sds (5.3.3)

+ F5(P, q)

∫ t

0

s2 ◦ dW (s) + G4(P, q)

∫ t

0

sW (s)ds (5.3.4)

+ F6(P, q)

∫ t

0

s2W (s) ◦ dW (s) + G5(P, q)

∫ t

0

s2ds (5.3.5)

+ F7(P, q)

∫ t

0

s3 ◦ dW (s) + G6(P, q)

∫ t

0

s2W (s)ds (5.3.6)

+ · · · , (5.3.7)
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by which the initial condition S̄1(P, q, 0) = 0 is satisfied, since W (0) = 0 with probability
1.

Lemma 5.7. ([25]) For a stochastic differential equation system with r noises, suppose

Ii1,...,ij(h) =

∫ t+h

t

dWij(θ)

∫ θ

t

dWij−1
(θ1)

∫ θ1

t

· · ·
∫ θj−2

t

dWi1(θj−1), (5.3.8)

where i1, . . . , ij takes values from the set {0, 1, . . . , r}, and dW0(θk) = dθk. Then it holds

(
E(Ii1,...,ij)

2
) 1

2 = O
(
h
Pj

k=1
2−ık

2

)
, (5.3.9)

where

ık =

{
0, ik = 0,
1, ik 6= 0.

(5.3.10)

In other words, the order of smallness of the integral (5.3.8) is determined by dθ and
dWk(θ), k = 1, . . . , r, where dθ contributes 1 to the order of smallness, and dWk(θ) con-
tributes 1

2
.

For example, the first term in (5.3.1) is of order of smallness 1
2
, and the second and

third terms are of order 1. The two integrals in (5.3.2) are both of order 3
2
. In fact, from

(5.3.2) to (5.3.6), the order of the integrals involved increases 1
2

from each equation to the
next. This is the reason why we construct S̄1 in such a manner.

Now substitute the assumption on S̄1(P, q, t) into the Hamilton-Jacobi equation with
noise (5.2.15). We have

∂S̄1

∂t
=

(
G1 + G2W + G3t + G4tW + G5t

2 + G6t
2W + . . .

)

+
(
F1 + F2W + F3t + F4tW + F5t

2 + F6t
2W + . . .

)
Ẇ . (5.3.11)

Thus

H(P,Q) = G1 + G2W + G3t + G4tW + G5t
2 + G6t

2W + . . . , (5.3.12)

H1(P,Q) = F1 + F2W + F3t + F4tW + F5t
2 + F6t

2W + . . . , (5.3.13)

Denote

a =
∂H

∂p

T

, b =
∂H1

∂p

T

, (5.3.14)

equation (4.1.11) is rewritten as

dq = adt + b ◦ dW. (5.3.15)

Expand H(P,Q) at the point (P, q) progressively according to equation (5.3.15), as the
Wagner-Platen expansion does, but here we deal with Stratonovich integrals instead of
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Itô ones. We have

H(P,Q) = H(P, q) +

∫ t

0

Hq(P, q(s))a(P, q(s))ds +

∫ t

0

Hq(P, q(s))b(P, q(s)) ◦ dW (s)

= H(P, q) + Hq(P, q)a(P, q)t + Hq(P, q)b(P, q)W (t) +

∫ t

0

∫ s

0

[Hqq(P, q(u))

a(P, q(u)) + Hq(P, q(u))aq(P, q(u))] a(P, q(u))duds +

∫ t

0

∫ s

0

[Hqq(P, q(u))

a(P, q(u)) + Hq(P, q(u))aq(P, q(u))] b(P, q(u)) ◦ dW (u)ds

+

∫ t

0

∫ s

0

[Hqq(P, q(u)) b(P, q(u)) + Hq(P, q(u))bq(P, q(u))] a(P, q(u))du

◦dW (s) +

∫ t

0

∫ s

0

[Hqq(P, q(u)) b(P, q(u)) + Hq(P, q(u))bq(P, q(u))]

b(P, q(u)) ◦ dW (u) ◦ dW (s)

= H(P, q) + Hq(P, q)a(P, q)t + Hq(P, q)b(P, q)W (t) + [Hqq(P, q)a(P, q)

+ Hq(P, q)aq(P, q)] a(P, q)
t2

2
+ [Hqq(P, q)a(P, q) + Hq(P, q)aq(P, q)] b(P, q)

∫ t

0

W (s)ds + [Hqq(P, q)b(P, q) + Hq(P, q)bq(P, q)] a(P, q)

∫ t

0

s ◦ dW (s)

+ [Hqq(P, q)b(P, q) + Hq(P, q)bq(P, q)] b(P, q)

∫ t

0

W (s) ◦ dW (s)

+

∫ t

0

∫ s

0

∫ u

0

{[Hqqq(P, q(v))a(P, q(v)) + 2Hqq(P, q(v))aq(P, q(v))

+ Hq(P, q(v))aqq(P, q(v))] a(P, q(v)) + [Hqq(P, q(v))a(P, q(v)) + Hq(P, q(v))

aq(P, q(v))] aq(P, q(v))} a(P, q(v))dvduds +

∫ t

0

∫ s

0

∫ u

0

{[Hqqq(P, q(v))

a(P, q(v)) + 2Hqq(P, q(v))aq(P, q(v)) + Hq(P, q(v))aqq(P, q(v))] a(P, q(v))

+ [Hqq(P, q(v))a(P, q(v)) + Hq(P, q(v))aq(P, q(v))] aq(P, q(v))} b(P, q(v))

◦dW (v)duds +

∫ t

0

∫ s

0

∫ u

0

{[Hqqq(P, q(v))a(P, q(v)) + 2Hqq(P, q(v))

aq(P, q(v)) + Hq(P, q(v))aqq(P, q(v))] b(P, q(v)) + [Hqq(P, q(v))a(P, q(v))

+ Hq(P, q(v))aq(P, q(v))] bq(P, q(v))} a(P, q(v))dv ◦ dW (u)ds

+

∫ t

0

∫ s

0

∫ u

0

{[Hqqq(P, q(v))a(P, q(v)) + 2Hqq(P, q(v))aq(P, q(v))

+ Hq(P, q(v))aqq(P, q(v))] b(P, q(v)) + [Hqq(P, q(v))a(P, q(v))

+ Hq(P, q(v))aq(P, q(v))] bq(P, q(v))} b(P, q(v)) ◦ dW (v) ◦ dW (u)ds

+

∫ t

0

∫ s

0

∫ u

0

{[Hqqq(P, q(v))b(P, q(v)) + 2Hqq(P, q(v))bq(P, q(v))

+ Hq(P, q(v))bqq(P, q(v))] a(P, q(v)) + [Hqq(P, q(v))b(P, q(v))

+ Hq(P, q(v))bq(P, q(v))] aq(P, q(v))} a(P, q(v))dvdu ◦ dW (s)
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+

∫ t

0

∫ s

0

∫ u

0

{[Hqqq(P, q(v))b(P, q(v)) + 2Hqq(P, q(v))bq(P, q(v))

+ Hq(P, q(v))bqq(P, q(v))] a(P, q(v)) + [Hqq(P, q(v))b(P, q(v))

+ Hq(P, q(v))bq(P, q(v))] aq(P, q(v))} b(P, q(v)) ◦ dW (v)du ◦ dW (s)

+

∫ t

0

∫ s

0

∫ u

0

{[Hqqq(P, q(v))b(P, q(v)) + 2Hqq(P, q(v))bq(P, q(v))

+ Hq(P, q(v))bqq(P, q(v))] b(P, q(v)) + [Hqq(P, q(v))b(P, q(v))

+ Hq(P, q(v))bq(P, q(v))] bq(P, q(v))} a(P, q(v))dv ◦ dW (u) ◦ dW (s)

+

∫ t

0

∫ s

0

∫ u

0

{[Hqqq(P, q(v))b(P, q(v)) + 2Hqq(P, q(v))bq(P, q(v))

+ Hq(P, q(v))bqq(P, q(v))] b(P, q(v)) + [Hqq(P, q(v))b(P, q(v))

+ Hq(P, q(v))bq(P, q(v))] bq(P, q(v))} b(P, q(v)) ◦ dW (v) ◦ dW (u) ◦ dW (s)

= · · · . (5.3.16)

Compare the expansion of H(P,Q) with the righthand side of equation (5.3.12), let coef-
ficients of terms with same order of smallness be equal, we obtain

G1 = H, (5.3.17)

G2 = Hqb, (5.3.18)

G3 = Hqa +
1

2
[Hqqb + Hqbq]b, (5.3.19)

G4 = [Hqqa + Hqaq]b + [Hqqb + Hqbq]a + [(Hqqqb + 2Hqqbq + Hqbqq)b

+ (Hqqb + Hqbq)bq]b,
...

where the functions Gi (i = 1, 2, . . .), a, b, H and derivatives of H are evaluated at (P, q).

Expand H1(P,Q) at (P, q) in the same way as H(P,Q), and compare its expansion with
the righthand side of (5.3.13), we find the functions Fi (i = 1, 2, . . .).

F1 = H1, (5.3.20)

F2 = H1qb, (5.3.21)

F3 = H1qa +
1

2
[H1qqb + H1qbq]b, (5.3.22)

F4 = [H1qqa + H1qaq]b + [H1qqb + H1qbq]a + [(H1qqqb + 2H1qqbq + H1qbqq)b

+ (H1qqb + H1qbq)bq]b,

...

Thus, an approximation of S̄1(P, q, t) can be constructed according to (5.3.1)-(5.3.7) by
truncation to certain term. The higher order of smallness the terms involved in the
truncated S̄1 have, the higher order has the resulted numerical method. Explicitly, the
mean-square order of a method is determined in the following way.

Theorem 5.8. ([25]) A method of mean-square order m (m ∈ Z) includes all inte-
grals Ii1,...,ij of order m and below. A method of mean-square order m + 1

2
includes all
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integrals of order m + 1
2

and below, and also a deterministic integral of order m + 1.

Based on this theorem, we can truncate the assumption of S̄1 to a term with proper
order of smallness to obtain required mean-square order of the method.

Example 5.1. For the linear stochastic oscillator (3.1.7)-(3.1.8)

dy = −xdt + σdW, y(0) = y0,

dx = ydt, x(0) = x0,

we have

H =
1

2
(x2 + y2), H1 = −σx,

and a = y, b = 0. We truncate the assumption for S̄1 to the order of smallness 1:

S̄1(P, q, t) ≈ F1W + F2

∫ t

0

W ◦ dW + G1t. (5.3.23)

According to (5.3.17), (5.3.20) and (5.3.21), for the linear stochastic oscillator we have

F1 = −σx, F2 = 0, , G1 =
1

2
(x2 + y2). (5.3.24)

Thus, for step size h,

S̄1(yn+1, xn, h) =
h

2
(x2

n + y2
n+1)− σxn∆Wn. (5.3.25)

The scheme (5.1.9) generated by S̄1 gives

yn = yn+1 +
∂S̄1

∂xn

(yn+1, xn), xn+1 = xn +
∂S̄1

∂yn+1

(yn+1, xn), (5.3.26)

which for (5.3.25) results in

xn+1 = xn + hyn+1, (5.3.27)

yn+1 = yn − hxn + σ∆Wn. (5.3.28)

This is the symplectic Euler-Maruyama method, and is the adjoint method of the parti-
tioned Euler-Maruyama method (3.3.5)-(3.3.6).

Theorem 5.9. The numerical method (5.3.27)-(5.3.28) for the linear stochastic oscilla-
tor (3.1.7)-(3.1.8) is symplectic and of mean-square order 1.

Proof. Its symplecticity can be directly verified by checking dxn+1∧dyn+1 = dxn∧dyn on
the scheme, and its mean-square order 1 is due to Theorem 5.8 and our way of truncation.

To obtain a method of order 3
2
, we need to truncate the assumption of S̄1 to

S̄1(P, q, t) ≈ F1W +F2

∫ t

0

W ◦dW +G1t+F3

∫ t

0

s◦dW +G2

∫ t

0

Wds+G3

∫ t

0

sds. (5.3.29)
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For the linear stochastic oscillator, (5.3.18), (5.3.19), and (5.3.22) give

F3 = −σy, G2 = 0, G3 = xy. (5.3.30)

Thus,

S̄1(yn+1, xn, h) =
h

2
(x2

n + y2
n+1)− σxn∆Wn− σyn+1

∫ h

0

s ◦ dW + yn+1xn

∫ h

0

sds. (5.3.31)

Substitute (5.3.31) to (5.3.26), we obtain the scheme

yn = yn+1 + hxn − σ∆Wn +
h2

2
yn+1, (5.3.32)

xn+1 = xn + hyn+1 − σ

∫ h

0

s ◦ dW +
h2

2
xn, (5.3.33)

which can also be written in the form

(
xn+1

yn+1

)
=

(
4+h4

4+2h2
2h

2+h2

− 2h
2+h2

2
2+h2

)(
xn

yn

)
+

(
−σ

∫ h

0
s ◦ dW + 2hσ

2+h2 ∆Wn
2σ

2+h2 ∆Wn

)
. (5.3.34)

Theorem 5.10. The numerical method (5.3.34) generated by S̄1 in (5.3.31) for the linear
stochastic oscillator (3.1.7)-(3.1.8) is symplectic and of mean-square order 3

2
.

Proof. The mean-square order of convergence is guaranteed by Theorem 5.8 and our
truncation (5.3.29) of S̄1. We check the symplecticity of the scheme.
According to (5.3.34),

dxn+1 ∧ dyn+1 =

(
4 + h4

(2 + h2)2
+

4h2

(2 + h2)2

)
dxn ∧ dyn = dxn ∧ dyn. (5.3.35)

¤

By using the scheme (5.3.34), the term
∫ h

0
s ◦ dW must be properly modeled. It is given

in [25] that,
∫ h

0
Wds is a sum of two independent normally distributed random variables:

∫ h

0

W (s)ds =
1

2
hW (h) +

(∫ h

0

W (s)ds− 1

2
hW (h)

)
, (5.3.36)

where the first term on the righthand side of the equation is N (0, h3

4
) distributed, and

the other is N (0, h3

12
) distributed. Thus we have

∫ h

0

s ◦ dW = hW (h)−
∫ h

0

W (s)ds =
1

2
hW (h)−

(∫ h

0

W (s)ds− 1

2
hW (h)

)

=

√
h3

4
ξ1 −

√
h3

12
ξ2, (5.3.37)

where ξ1 and ξ2 are two independent N (0, 1) distributed random variables, and the first
equality results from the Stratonovich chain rule.
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In [25], explicit modeling of integrals of order 3
2

such as the discussion above is given,
and modeling of integrals of order 2 is also analyzed. Modeling of higher order of inte-
grals is required by construction of higher order methods, and is still at the beginning of
development.

Example 5.2. In this example, we consider the Kubo oscillator (3.1.16)-(3.1.17).
Note that there is a constant a in (3.1.16)-(3.1.17), which is different from our assumption
of function a in (5.3.14). To distinguish them, we denote in this example the function a

and b in (5.3.14) with ã and b̃ respectively.
For the Kubo oscillator,

H =
a

2
(p2 + q2), H1 =

σ

2
(p2 + q2), ã = ap, b̃ = σp. (5.3.38)

According to (5.3.17)-(5.3.19),

G1 =
a

2
(p2 + q2), G2 = aσpq, G3 = a2pq +

1

2
aσ2p2. (5.3.39)

(5.3.20)-(5.3.22) gives

F1 =
σ

2
(p2 + q2), F2 = σ2pq, F3 = aσpq +

1

2
σ3p2. (5.3.40)

We first construct a method of mean-square order 1 by the following truncation of S̄1

S̄1(pn+1, qn, h) = F1∆Wn + F2

∫ h

0

W ◦ dW + G1h

=
σ

2
(p2

n+1 + q2
n)∆Wn +

h

2
σ2pn+1qn +

ah

2
(p2

n+1 + q2
n). (5.3.41)

Substituting (5.3.41) into (5.1.9) gives

pn+1 = pn − ahqn − h

2
σ2pn+1 − σqn∆Wn, (5.3.42)

qn+1 = qn + ahpn+1 +
h

2
σ2qn + σpn+1∆Wn, (5.3.43)

which is a scheme given by Milstein et. al. in [27] and [29]. Here we have reproduced it
via generating function. Note that we have used

∫ h

0

W ◦ dW =
W 2(h)

2
, and E(W 2(h)) = h (5.3.44)

to approximate
∫ h

0
W ◦ dW by h

2
in (5.3.41).
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For a method of mean-square order 3
2
, we need the following truncation of S̄1:

S̄1(pn+1, qn, h) = F1∆Wn + F2

∫ h

0

W ◦ dW + G1h + F3

∫ h

0

s ◦ dW + G2

∫ h

0

Wds

+ G3

∫ h

0

sds

=
σ

2
(p2

n+1 + q2
n)∆Wn +

h

2
σ2pn+1qn +

ah

2
(p2

n+1 + q2
n)

+ (aσpn+1qn +
1

2
σ3p2

n+1)

∫ h

0

s ◦ dW + aσpn+1qn

∫ h

0

Wds

+
h2

2
(a2pn+1qn +

1

2
aσ2p2

n+1). (5.3.45)

Applying (5.1.9) with S̄1 given in (5.3.45) yields

−(ah +
h2

2
aσ2 + σ∆Wn + σ3

∫ h

0

s ◦ dW )pn+1 + qn+1 = (1 +
hσ2

2

+
h2a2

2
+ aσh∆Wn)qn,

(1 +
hσ2

2
+

h2a2

2
+ aσh∆Wn)pn+1 = pn − (ah + σ∆Wn)qn. (5.3.46)

Theorem 5.11. The numerical method (5.3.46) for the Kubo oscillator (3.1.16)-(3.1.17)
is symplectic and of mean-square order 3

2
.

Proof. Since the truncation of S̄1 in (5.3.45) contains all integrals of order of small-
ness less than or equal to 3

2
, and a deterministic integral of order 2 in the assumption of

S̄1 (5.3.1)-(5.3.7), Theorem 5.8 guarantees the mean-square order 3
2

of the method.
Symplecticity of the method (5.3.46) can be verified the same way as that for (5.3.34) in
Theorem 5.10. ¤

By modeling ∆Wn and
∫ h

0
s ◦ dW , we use truncation (3.2.13) of the N (0, 1) distrib-

uted random variables to ensure the realizability of the method, as introduced in section
3.2.

5.4 Symplectic Methods Based on S̄3

Methods based on S̄3 can be similarly constructed as that on S̄1.
Let

S̄3(u, v, t) = F1(u, v)W (t) + F2(u, v)

∫ t

0

W (s) ◦ dW (s) + G1(u, v)t (5.4.1)

+ F3(u, v)

∫ t

0

s ◦ dW (s) + G2(u, v)

∫ t

0

W (s)ds (5.4.2)
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+ F4(u, v)

∫ t

0

sW (s) ◦ dW (s) + G3(u, v)

∫ t

0

sds (5.4.3)

+ F5(u, v)

∫ t

0

s2 ◦ dW (s) + G4(u, v)

∫ t

0

sW (s)ds (5.4.4)

+ F6(u, v)

∫ t

0

s2W (s) ◦ dW (s) + G5(u, v)

∫ t

0

s2ds (5.4.5)

+ F7(u, v)

∫ t

0

s3 ◦ dW (s) + G6(u, v)

∫ t

0

s2W (s)ds (5.4.6)

+ · · · , (5.4.7)

which satisfies the initial condition S̄3(u, v, 0) = 0 of the Hamilton-Jacobi equation with
noise (5.2.24). Then we have

∂S̄3

∂t
=

(
G1 + G2W + G3t + G4tW + G5t

2 + G6t
2W + . . .

)

+
(
F1 + F2W + F3t + F4tW + F5t

2 + F6t
2W + . . .

)
Ẇ , (5.4.8)

where the functions Gi and Fi (i = 1, 2, . . .) are evaluated at (u, v).
Substituting (5.4.8) into (5.2.24) gives

H(P,Q) = G1 + G2W + G3t + G4tW + G5t
2 + G6t

2W + . . . , (5.4.9)

H1(P,Q) = F1 + F2W + F3t + F4tW + F5t
2 + F6t

2W + . . . . (5.4.10)

Rewrite the stochastic Hamiltonian system (4.1.10)-(4.1.11) in the form

dp = a1dt + b1 ◦ dW, dq = a2dt + b2 ◦ dW, (5.4.11)

where

a1 = −∂H

∂q

T

, b1 = −∂H1

∂q

T

, (5.4.12)

a2 =
∂H

∂p

T

, b2 =
∂H1

∂p

T

. (5.4.13)
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Expand H(P,Q) at (u, v) according to (5.4.11), and let t0 = t
2
, we have

H(P,Q) = H(u, v) +

∫ t

t0

Hv(u, v(s))a2(u, v(s))ds +

∫ t

t0

Hv(u, v(s))b2(u, v(s)) ◦ dW (s)

+

∫ t

t0

{
Hu(u(s), v)a1(u(s), v) +

∫ t

t0

[Huv(u(s), v(s))a1(u(s), v(s))

+ Hu(u(s), v(s))a1v(u(s), v(s))]a2(u(s), v(s))ds

+

∫ t

t0

[Huv(u(s), v(s))a1(u(s), v(s))

+ Hu(u(s), v(s))a1v(u(s), v(s))]b2(u(s), v(s)) ◦ dW (s)} ds

+

∫ t

t0

{
Hu(u(s), v)b1(u(s), v) +

∫ t

t0

[Huv(u(s), v(s))b1(u(s), v(s))

+ Hu(u(s), v(s))b1v(u(s), v(s))]a2(u(s), v(s))ds

+

∫ t

t0

[Huv(u(s), v(s))b1(u(s), v(s))

+ Hu(u(s), v(s))b1v(u(s), v(s))]b2(u(s), v(s)) ◦ dW (s)} ◦ dW (s)

= H(u, v) + Hv(u, v)a2(u, v)
h

2
+ Hv(u, v)b2(u, v)

1√
2
W (h)

+ [Hvv(u, v)b2(u, v) + Hvb2v(u, v)]b2(u, v)
h

4

+
h

2
(Hu(u, v)a1(u, v)) + Hu(u, v)b1(u, v)

1√
2
W (h)

+ [Huu(u, v)b1(u, v) + Hu(u, v)b1u(u, v)]b1(u, v)
h

4

+ [Huv(u, v)b1(u, v) + Hu(u, v)b1v(u, v)]b2(u, v)
h

2
+ R, (5.4.14)

where the remainder term R contains all terms of order of smallness larger than or equal
to 3

2
.

Compare the expansion (5.4.14) with the righthand side of equation (5.4.9), let coefficients
of terms with the same order of smallness be equal, we obtain

G1 = H(u, v), (5.4.15)

G2 =
1√
2
(Hvb2 + Hub1), (5.4.16)

G3 =
1

2
[
1

2
(Hvvb2 + Hvb2v)b2 +

1

2
(Huub1 + Hub1u)b1 + (Huvb1 + Hub1v)b2],(5.4.17)

...

Similarly, expanding H1(P,Q) at (u, v) and comparing the expansion with the righthand
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side of equation (5.4.10) gives

F1 = H1(u, v), (5.4.18)

F2 =
1√
2
(H1vb2 + H1ub1) = 0, (5.4.19)

F3 =
1

2
[H1va2 + H1ua1 +

1

2
(H1vvb2 + H1vb2v)b2 +

1

2
(H1uub1 + H1ub1u)b1 + (H1uvb1

+ H1ub1v)b2], (5.4.20)
...

Substitute the functions Gi and Fi (i = 1, 2, . . .) into the assumption of S̄3 in (5.4.1)-
(5.4.7), and then apply the scheme (5.1.15)-(5.1.16), symplectic schemes for the stochastic
Hamiltonian system (4.1.10)-(4.1.11) will be created.

Example 5.3. We construct symplectic methods for the linear stochastic oscillator
(3.1.7)-(3.1.8) via S̄3.
For a method of mean-square order 1, we need the truncation

S̄3(u, v, h) = F1∆Wn + F2

∫ h

0

W ◦ dW + G1h

=
h

2
(u2 + v2)− σv∆Wn. (5.4.21)

Substituting (5.4.21) into (5.1.15)-(5.1.16) yields

xn+1 = xn + h
yn + yn+1

2
, (5.4.22)

yn+1 = yn − h
xn + xn+1

2
+ σ∆Wn, (5.4.23)

which is the midpoint rule (3.3.8)-(3.3.9).

A method of mean-square order 3
2

can be obtained by the following truncation of S̄3:

S̄3(u, v, h) = F1∆Wn + F2

∫ h

0

W ◦ dW + G1h + F3

∫ h

0

s ◦ dW + G2

∫ h

0

Wds

+ G3

∫ h

0

sds

=
h

2
(u2 + v2)− σv∆Wn +

h2σ2

8
− σu

2

∫ h

0

s ◦ dW

+
σu√

2

∫ h

0

Wds. (5.4.24)

According to (5.1.15)-(5.1.16), the symplectic scheme generated by S̄3 is

xn+1 = xn + h
yn + yn+1

2
− σ

2

∫ h

0

s ◦ dW +
σ√
2

∫ h

0

Wds, (5.4.25)

yn+1 = yn − h
xn + xn+1

2
+ σ∆Wn. (5.4.26)
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Denote

m = −σ

2

∫ h

0

s ◦ dW +
σ√
2

∫ h

0

Wds, (5.4.27)

the scheme (5.4.25)-(5.4.26) can also be written as

(
xn+1

yn+1

)
=

(
4−h2

4+h2
4h

4+h2

− 4h
4+h2

4−h2

4+h2

)(
xn

yn

)
+

4

4 + h2

(
m + σh

2
∆Wn

−h
2
m + σ∆Wn

)
. (5.4.28)

Theorem 5.12. The numerical method (5.4.25)-(5.4.26) for the linear stochastic oscil-
lator (3.1.7)-(3.1.8) is symplectic and of mean-square order 3

2
.

Proof. Its proof follows the same way as Theorem 5.10. ¤

The analysis for (5.3.36) and (5.3.37) implies that we can model
∫ h

0
Wds by

∫ h

0

Wds =

√
h3

4
ξ1 +

√
h3

12
ξ2, (5.4.29)

where theN (0, 1) distributed random variables ξ1 and ξ2 are identical with that in (5.3.37).

Example 5.4. Applying S̄3 to the Kubo oscillator (3.1.16)-(3.1.17) can reproduce a
midpoint rule given by Milstein et. al. in [29]. In order to achieve it, let

S̄3(u, v, h) = F1∆Wn + F2

∫ h

0

W ◦ dW + G1h

=
a

2
(u2 + v2)h +

σ

2
(u2 + v2)∆Wn. (5.4.30)

Substituting (5.4.30) into (5.1.15)-(5.1.16) gives the midpoint rule

pn+1 = pn − ah
qn + qn+1

2
− σ

qn + qn+1

2
∆Wn, (5.4.31)

qn+1 = qn + ah
pn + pn+1

2
+ σ

pn + pn+1

2
∆Wn. (5.4.32)

According to our way of truncation on S̄3, this method has mean-square order 1.
A method of mean-square order 3

2
can be constructed by assuming

S̄3(u, v, h) = F1∆Wn + F2

∫ h

0

W ◦ dW + G1h + F3

∫ h

0

s ◦ dW + G2

∫ h

0

Wds

+ G3

∫ h

0

sds

=
a

2
(u2 + v2)h +

σ

2
(u2 + v2)∆Wn +

aσ2h2

8
(v2 − u2)

+
1

4
σ3(v2 − u2)

∫ h

0

s ◦ dW, (5.4.33)
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which gives by applying (5.1.15)-(5.1.16) the scheme

pn+1 = pn − (ah + σ∆Wn +
ah2σ2

4
+

σ3

2

∫ h

0

s ◦ dW )
qn + qn+1

2
, (5.4.34)

qn+1 = qn + (ah + σ∆Wn − ah2σ2

4
− σ3

2

∫ h

0

s ◦ dW )
pn + pn+1

2
. (5.4.35)

Denote

k = ah + σ∆Wn +
ah2σ2

4
+

σ3

2

∫ h

0

s ◦ dW, (5.4.36)

l = ah + σ∆Wn − ah2σ2

4
− σ3

2

∫ h

0

s ◦ dW, (5.4.37)

the scheme (5.4.34)-(5.4.35) can also be written in the form

(
pn+1

qn+1

)
=

(
4−kl
4+kl

−4k
4+kl

4l
4+kl

4−kl
4+kl

)(
pn

qn

)
. (5.4.38)

Theorem 5.13. The numerical method (5.4.34)-(5.4.35) for the Kubo oscillator (3.1.16)-
(3.1.17) is symplectic and of mean-square order 3

2
.

Proof. The construction of S̄3 and Theorem 5.8 implies the mean-square order 3
2
. Sym-

plecticity of the scheme can be shown by checking dpn+1∧dqn+1 = dpn∧dqn as in Theorem
5.10.

¤



Chapter 6

Generating Functions with Two
Noises

In this chapter, generating functions for stochastic Hamiltonian systems with two noises
are discussed. Hamilton-Jacobi partial differential equations with two noises are given,
based on which generating functions with two noises are constructed through perform-
ing Wagner-Platen expansion in the sense of Stratonovich with respect to two noises.
Symplectic schemes are created using the obtained generating functions for a model of
synchrotron oscillations and a system with two additive noises. The methods of dealing
with two noises in this chapter can be naturally generalized to systems with more noises.

6.1 S̄1 with Two Noises

(4.1.18) gives the generalized action integral S̄ with r noises. Results in (4.2.1)-(4.2.3)
and Theorem 4.3 are also valid for systems with r noises. Therefore, for the stochastic
Hamiltonian system with two noises

dp = −∂H

∂q

T

dt− ∂H1

∂q

T

◦ dW1 − ∂H2

∂q

T

◦ dW2, (6.1.1)

dq =
∂H

∂p

T

dt +
∂H1

∂p

T

◦ dW1 +
∂H2

∂p

T

◦ dW2, (6.1.2)

we can obtain the following result about its action integral with noises S̄, which is a
generalization of Theorem 5.4.

Theorem 6.1. If S̄(q, Q(t), t) satisfies the following partial differential equation

∂S̄

∂t
+ H(

∂S̄

∂Q

T

, Q) + H1(
∂S̄

∂Q

T

, Q)Ẇ1 + H2(
∂S̄

∂Q

T

, Q)Ẇ2 = 0, (6.1.3)

and the matrix ∂2S̄
∂q∂Q

is invertible, then the mapping (p, q) 7→ (P (t), Q(t)) defined by (5.2.1)

is the phase trajectory of the stochastic Hamiltonian system (6.1.1)-(6.1.2).

Proof. The proof follows the same way as that of Theorem 5.4, with consideration of
relation (6.1.1)-(6.1.2). ¤
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From the proof of Theorem 5.1, it is clear that the definition of the first kind of gen-
erating function S̄1 in (5.1.4), and the scheme generated by S̄1 (5.1.9) can both be used
in case of more noises. Thus we have the following generalization of Theorem 5.5.

Theorem 6.2. If S̄1(P, q, t) satisfies the following partial differential equation

∂S̄1

∂t
= H(P,Q) + H1(P,Q)Ẇ1 + H2(P,Q)Ẇ2, S̄1(P, q, 0) = 0, (6.1.4)

where Q = q + ∂S̄1

∂P

T
(P, q, t), then the mapping (p, q) 7→ (P (t), Q(t)) defined by (5.1.9) is

the phase trajectory of the stochastic Hamiltonian system (6.1.1)-(6.1.2).

Proof. It can be proved in the same way as Theorem 5.5. ¤

For the solution S̄1(P, q, t) of (6.1.4), we make the following assumption.

S̄1(P, q, t) = F1(P, q)W1(t) + K1(P, q)W2(t) (6.1.5)

+ F2(P, q)

∫ t

0

W1 ◦ dW1 + K2(P, q)

∫ t

0

W2 ◦ dW2

+ G1(P, q)t + F̄2(P, q)

∫ t

0

W2 ◦ dW1 + K̄2(P, q)

∫ t

0

W1 ◦ dW2 (6.1.6)

+ G2(P, q)

∫ t

0

W1ds + Ḡ2(P, q)

∫ t

0

W2ds

+ F̃2(P, q)

∫ t

0

W1W2 ◦ dW1 + K̃2(P, q)

∫ t

0

W1W2 ◦ dW2

+ F3(P, q)

∫ t

0

s ◦ dW1 + K3(P, q)

∫ t

0

s ◦ dW2 (6.1.7)

+ G̃2(P, q)

∫ t

0

W1W2ds + G3(P, q)

∫ t

0

sds

+ F4(P, q)

∫ t

0

sW1 ◦ dW1 + K4(P, q)

∫ t

0

sW2 ◦ dW2

+ F̄4(P, q)

∫ t

0

sW2 ◦ dW1 + K̄4(P, q)

∫ t

0

sW1 ◦ dW2 (6.1.8)

+ · · · , (6.1.9)

where the terms in (6.1.5) are of order of smallness 1
2
, the following terms till (6.1.6) are

of order 1, and the next terms till (6.1.7) are of order 3
2
, and so on.
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Consequently, we have

∂S̄1

∂t
= G1 + G2W1 + Ḡ2W2 + G̃2W1W2 + G3t + G4tW1 + Ḡ4tW2

+ G̃4tW1W2 + G5t
2 + G6t

2W1 + Ḡ6t
2W2 + . . .

+ Ẇ1(F1 + F2W1 + F̄2W2 + F̃2W1W2 + F3t + F4tW1 + F̄4tW2

+ F̃4tW1W2 + F5t
2 + F6t

2W1 + . . .)

+ Ẇ2(K1 + K2W2 + K̄2W1 + K̃2W1W2 + K3t + K4tW2 + K̄4tW1

+ K̃4tW1W2 + K5t
2 + K6t

2W2 + . . .), (6.1.10)

where the functions Gi, Ḡi, G̃i, Fi, F̄i, F̃i, Ki, K̄i, and K̃i (i = 1, 2, . . .) are evaluated at
(P, q).
Compare (6.1.10) with the righthand side of (6.1.4), we have

H(P,Q) = G1 + G2W1 + Ḡ2W2 + G̃2W1W2 + G3t + G4tW1 + Ḡ4tW2

+ G̃4tW1W2 + G5t
2 + G6t

2W1 + Ḡ6t
2W2 + . . . (6.1.11)

H1(P,Q) = F1 + F2W1 + F̄2W2 + F̃2W1W2 + F3t + F4tW1 + F̄4tW2

+ F̃4tW1W2 + F5t
2 + F6t

2W1 + . . . (6.1.12)

H2(P,Q) = K1 + K2W2 + K̄2W1 + K̃2W1W2 + K3t + K4tW2 + K̄4tW1

+ K̃4tW1W2 + K5t
2 + K6t

2W2 + . . . . (6.1.13)

For convenience, rewrite equation (6.1.1)-(6.1.2) in the form

dp = a1dt + b1 ◦ dW1 + b̃1 ◦ dW2, (6.1.14)

dq = a2dt + b2 ◦ dW1 + b̃2 ◦ dW2, (6.1.15)

where

a1 = −∂H

∂q

T

, b1 = −∂H1

∂q

T

, b̃1 = −∂H2

∂q

T

, (6.1.16)

a2 =
∂H

∂p

T

, b2 =
∂H1

∂p

T

, b̃2 =
∂H2

∂p

T

. (6.1.17)
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Expand H(P,Q) at (P, q) progressively based on (6.1.14)-(6.1.15), we have

H(P,Q) = H(P, q) +

∫ t

0

Hq(P, q(s))a2(P, q(s))ds +

∫ t

0

Hq(P, q(s))b2(P, q(s))

◦dW1(s) +

∫ t

0

Hq(P, q(s))b̃2(P, q(s)) ◦ dW2(s)

= H(P, q) +

∫ t

0

{
Hq(P, q)a2(P, q) +

∫ s

0

[Hqq(P, q(u))a2(P, q(u))

+ Hq(P, q(u))a2q(P, q(u))]a2(P, q(u))du +

∫ s

0

[Hqq(P, q(u))a2(P, q(u))

+ Hq(P, q(u))a2q(P, q(u))]b2(P, q(u)) ◦ dW1(u) +

∫ s

0

[Hqq(P, q(u))

a2(P, q(u)) + Hq(P, q(u))a2q(P, q(u))]b̃2(P, q(u)) ◦ dW2(u)
}

ds

+

∫ t

0

{
Hq(P, q)b2(P, q) +

∫ s

0

[Hqq(P, q(u))b2(P, q(u))

+ Hq(P, q(u))b2q(P, q(u))]a2(P, q(u))du +

∫ s

0

[Hqq(P, q(u))b2(P, q(u))

+ Hq(P, q(u))b2q(P, q(u))]b2(P, q(u)) ◦ dW1(u) +

∫ s

0

[Hqq(P, q(u))

b2(P, q(u)) + Hq(P, q(u))b2q(P, q(u))]b̃2(P, q(u)) ◦ dW2(u)
}
◦ dW1(s)

+

∫ t

0

{
Hq(P, q)b̃2(P, q) +

∫ s

0

[Hqq(P, q(u))b̃2(P, q(u))

+ Hq(P, q(u))b̃2q(P, q(u))]a2(P, q(u))du +

∫ s

0

[Hqq(P, q(u))b̃2(P, q(u))

+ Hq(P, q(u))b̃2q(P, q(u))]b2(P, q(u)) ◦ dW1(u) +

∫ s

0

[Hqq(P, q(u))

b̃2(P, q(u)) + Hq(P, q(u))b̃2q(P, q(u))]b̃2(P, q(u)) ◦ dW2(u)
}
◦ dW2(s)

= H(P, q) + Hq(P, q)a2(P, q)t + Hq(P, q)b2(P, q)W1(t) + Hq(P, q)b̃2(P, q)

W2(t) + [Hqq(P, q)b2(P, q) + Hq(P, q)b2q(P, q)]b2(P, q)

∫ t

0

W1(s) ◦ dW1(s)

+ [Hqq(P, q)b2(P, q) + Hq(P, q)b2q(P, q)]b̃2(P, q)

∫ t

0

W2(s) ◦ dW1(s)

+ [Hqq(P, q)b̃2(P, q) + Hq(P, q)b̃2q(P, q)]b2(P, q)

∫ t

0

W1(s) ◦ dW2(s)

+ [Hqq(P, q)b̃2(P, q) + Hq(P, q)b̃2q(P, q)]b̃2(P, q)

∫ t

0

W2(s) ◦ dW2(s)

+ R, (6.1.18)

where the remainder R is of order 3
2

of smallness.
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Compare the expansion (6.1.18) with the righthand side of equation (6.1.11), let coef-
ficients of terms with the same order of smallness be equal, we get

G1 = H(P, q), (6.1.19)

G2 = Hq(P, q)b2(P, q), (6.1.20)

Ḡ2 = Hq(P, q)b̃2(P, q), (6.1.21)

G̃2 = [Hqq(P, q)b2(P, q) + Hq(P, q)b2q(P, q)]b̃2(P, q)

+ [Hqq(P, q)b̃2(P, q) + Hq(P, q)b̃2q(P, q)]b2(P, q), (6.1.22)

G3 = Hq(P, q)a2(P, q) +
1

2
[Hqq(P, q)b2(P, q) + Hq(P, q)b2q(P, q)]b2(P, q)

+
1

2
[Hqq(P, q)b̃2(P, q) + Hq(P, q)b̃2q(P, q)]b̃2(P, q), (6.1.23)

...

The same approach applied to H1(P,Q) gives

F1 = H1(P, q), (6.1.24)

F2 = H1q(P, q)b2(P, q), (6.1.25)

F̄2 = H1q(P, q)b̃2(P, q), (6.1.26)

F̃2 = [H1qq(P, q)b2(P, q) + H1q(P, q)b2q(P, q)]b̃2(P, q)

+ [H1qq(P, q)b̃2(P, q) + H1q(P, q)b̃2q(P, q)]b2(P, q), (6.1.27)

F3 = H1q(P, q)a2(P, q) +
1

2
[H1qq(P, q)b2(P, q) + H1q(P, q)b2q(P, q)]b2(P, q)

+
1

2
[H1qq(P, q)b̃2(P, q) + H1q(P, q)b̃2q(P, q)]b̃2(P, q), (6.1.28)

F4 = (H1qqa2 + H1qa2q)b2 + (H1qqb2 + H1qb2q)a2

+ [(H1qqqb2 + 2H1qqb2q + H1qb2qq)b2 + (H1qqb2 + H1qb2q)b2q ]b2, (6.1.29)

F̄4 = (H1qqa2 + H1qa2q)b̃2 + (H1qq b̃2 + H1q b̃2q)a2

+ [(H1qqq b̃2 + 2H1qq b̃2q + H1q b̃2qq)b̃2 + (H1qq b̃2 + H1q b̃2q)b̃2q ]b̃2, (6.1.30)

...
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Expansion of H2(P,Q) at (P, q) and the equation (6.1.13) yields

K1 = H2(P, q), (6.1.31)

K2 = H2q(P, q)b2(P, q), (6.1.32)

K̄2 = H2q(P, q)b̃2(P, q), (6.1.33)

K̃2 = [H2qq(P, q)b2(P, q) + H2q(P, q)b2q(P, q)]b̃2(P, q)

+ [H2qq(P, q)b̃2(P, q) + H2q(P, q)b̃2q(P, q)]b2(P, q), (6.1.34)

K3 = H2q(P, q)a2(P, q) +
1

2
[H2qq(P, q)b2(P, q) + H2q(P, q)b2q(P, q)]b2(P, q)

+
1

2
[H2qq(P, q)b̃2(P, q) + H2q(P, q)b̃2q(P, q)]b̃2(P, q), (6.1.35)

K4 = (H2qqa2 + H2qa2q)b̃2 + (H2qq b̃2 + H2q b̃2q)a2

+ [(H2qqq b̃2 + 2H2qq b̃2q + H2q b̃2qq)b̃2 + (H2qq b̃2 + H2q b̃2q)b̃2q ]b̃2, (6.1.36)

K̄4 = (H2qqa2 + H2qa2q)b2 + (H2qqb2 + H2qb2q)a2

+ [(H2qqqb2 + 2H2qqb2q + H2qb2qq)b2 + (H2qqb2 + H2qb2q)b2q ]b2, (6.1.37)

...

Example 6.1. As given in Example 3.3, for the model of synchrotron oscillations

dp = −ω2 sin(q)dt− σ1 cos(q) ◦ dW1 − σ2 sin(q) ◦ dW2, p(0) = p0,

dq = pdt, q(0) = q0,

we have

H = −ω2 cos(q) +
p2

2
, H1 = σ1 sin(q), H2 = −σ2 cos(q).

Use the notations in (6.1.14)-(6.1.15), we have for this system

a1 = −ω2 sin(q), b1 = −σ1 cos(q), b̃1 = −σ2 sin(q), (6.1.38)

a2 = p, b2 = b̃2 = 0. (6.1.39)

According to (6.1.19)-(6.1.37), we obtain

G1 = −ω2 cos(q) +
p2

2
, F1 = σ1 sin(q), F2 = F̄2 = 0, (6.1.40)

K1 = −σ2 cos(q), K2 = K̄2 = 0. (6.1.41)

Based on these functions, S̄1 for a method of mean-square order 1 can be constructed
according to the assumption (6.1.5)-(6.1.9), as given below.

S̄1(pn+1, qn, h) = (−ω2 cos(qn) +
p2

n+1

2
)h + σ1 sin(qn)∆nW1 − σ2 cos(qn)∆nW2. (6.1.42)

Substitute (6.1.42) into (5.1.9), we obtain the following scheme,

pn+1 = pn − hω2 sin(qn)− σ1 cos(qn)∆nW1 − σ2 sin(qn)∆nW2, (6.1.43)

qn+1 = qn + hpn+1, (6.1.44)
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which is the adjoint method of a method given by Milstein et. al. in [29].

Theorem 6.3. The method (6.1.43)-(6.1.44) for the stochastic Hamiltonian system
(3.1.22)-(3.1.23) is symplectic and of mean-square order 1.

Proof. From the scheme (6.1.43)-(6.1.44), it follows

dpn+1 ∧ dqn+1 = (1− ω2 cos(qn)h2 + σ1 sin(qn)h∆nW1 − σ2 cos(qn)h∆nW2

+ ω2 cos(qn)h2 − σ1 sin(qn)h∆nW1 + σ2 cos(qn)h∆nW2)dpn ∧ dqn

= dpn ∧ dqn. (6.1.45)

Since our truncation of S̄1 contains all integrals with order of smallness less than or equal
to 1 in the assumption (6.1.5)-(6.1.9), Theorem 5.8 ensures mean-square order 1 of the
method (6.1.43)-(6.1.44). ¤

For a method of mean-square order 3
2
, we need the following functions:

G2 = Ḡ2 = F̃2 = K̃2 = 0, F3 = σ1p cos(q), (6.1.46)

K3 = σ2p sin(q), G3 = ω2p sin(q). (6.1.47)

The corresponding S̄1 is

S̄1(pn+1, qn, h) = (−ω2 cos(qn) +
p2

n+1

2
)h + σ1 sin(qn)∆nW1 − σ2 cos(qn)∆nW2

+ σ1pn+1 cos(qn)

∫ h

0

s ◦ dW1(s) + σ2pn+1 sin(qn)

∫ h

0

s ◦ dW2(s)

+ ω2pn+1 sin(qn)
h2

2
. (6.1.48)

The scheme generated by it according to (5.1.9) is

pn+1 = pn − hω2 sin(qn)− h2

2
ω2pn+1 cos(qn)− σ1 cos(qn)∆nW1

+ σ1pn+1 sin(qn)

∫ h

0

s ◦ dW1(s)− σ2 sin(qn)∆nW2

− σ2pn+1 cos(qn)

∫ h

0

s ◦ dW2(s), (6.1.49)

qn+1 = qn + hpn+1 +
h2

2
ω2 sin(qn) + σ1 cos(qn)

∫ h

0

s ◦ dW1(s)

+ σ2 sin(qn)

∫ h

0

s ◦ dW2(s). (6.1.50)

Theorem 6.4. The method (6.1.49)-(6.1.50) for the stochastic Hamiltonian system
(3.1.22)-(3.1.23) is symplectic and of mean-square order 3

2
.

Proof. dpn+1 ∧ dqn+1 = dpn ∧ dqn can be directly checked on scheme (6.1.49)-(6.1.50).
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The mean-square order 3
2

results from the truncation of S̄1 and Theorem 5.8. ¤

Example 6.2. It is studied in [28] that, for the system with two additive noises (3.1.27)-
(3.1.28)

dp = −qdt + γ ◦ dW2(t), p(0) = p0,

dq = pdt + σ ◦ dW1(t), q(0) = q0,

the symplectic Euler-Maruyama method

pn+1 = pn − hqn + γ∆nW2, (6.1.51)

qn+1 = qn + hpn+1 + σ∆nW1 (6.1.52)

simulates the original system (3.1.27)-(3.1.28) accurately over long time intervals. We
can reproduce this method via generating function S̄1. As indicated by (3.1.32), for the
system (3.1.27)-(3.1.28), we have

H =
1

2
(p2 + q2), H1 = σp, H2 = −γq,

and

F1 = σP, K1 = −γq, F2 = 0, K2 = −σγ,

G1 =
1

2
(P 2 + q2), F̄2 = 0, K̄2 = 0. (6.1.53)

Thus, for a method of mean-square order 1,

S̄1(pn+1, qn, h) = σpn+1∆nW1 − γqn∆nW2 − h

2
σγ +

h

2
(p2

n+1 + q2
n), (6.1.54)

which generates the symplectic Euler-Maruyama scheme (6.1.51)-(6.1.52) via relation
(5.1.9).

Give more terms to the truncated S̄1, i.e., add terms in (6.1.5)-(6.1.9) with coefficients

G2 = σq, Ḡ2 = 0, F̃2 = 0, K̃2 = 0,

F3 = 0, K3 = −γP, G3 = Pq +
σ2

2
(6.1.55)

to S̄1 in (6.1.54), we get

S̄1(pn+1, qn, h) = σpn+1∆nW1 − γqn∆nW2 − h

2
σγ +

h

2
(p2

n+1 + q2
n)

+ σqn

∫ h

0

W1(s)ds− γpn+1

∫ h

0

s ◦ dW2(s) +
h2

2
pn+1qn +

h2

4
σ2,

(6.1.56)

which gives via (5.1.9) the following scheme

pn+1 = pn + γ∆nW2 − σ

∫ h

0

W1(s)ds− qnh− h2

2
pn+1, (6.1.57)

qn+1 = qn + σ∆nW1 − γ

∫ h

0

s ◦ dW2(s) + pn+1h +
h2

2
qn. (6.1.58)
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Theorem 6.5. The numerical method (6.1.57)-(6.1.58) for the stochastic Hamiltonian
system (3.1.27)-(3.1.28) is symplectic and of mean-square order 3

2
.

The proof follows the same way as that of Theorem 6.4.

6.2 S̄3 with Two Noises

The relation between S̄3 and S̄ (5.1.14), as well as the Hamilton-Jacobi partial differential
equation with two noises (6.1.3) motivates the following theorem.

Theorem 6.6. If S̄3(u, v, t) satisfies the following partial differential equation

∂S̄3

∂t
= H(P,Q) + H1(P,Q)Ẇ1 + H2(P,Q)Ẇ2, S̄3(u, v, 0) = 0, (6.2.1)

where P = u−1
2

∂S̄3

∂v

T
(u, v, t), Q = v+1

2
∂S̄3

∂u

T
(u, v, t), then the mapping (p, q) 7→ (P (t), Q(t))

defined by (5.1.15)-(5.1.16) is the phase trajectory of the stochastic Hamiltonian system
(6.1.1)-(6.1.2).

Proof. The proof follows the same way as that of Theorem 5.6, with consideration of
the equations with two noises (6.1.1)-(6.1.2). ¤

Similar to the approach for S̄1, we suppose

S̄3(u, v, t) = F1(u, v)W1(t) + K1(u, v)W2(t) (6.2.2)

+ F2(u, v)

∫ t

0

W1 ◦ dW1 + K2(u, v)

∫ t

0

W2 ◦ dW2

+ G1(u, v)t + F̄2(u, v)

∫ t

0

W2 ◦ dW1 + K̄2(u, v)

∫ t

0

W1 ◦ dW2 (6.2.3)

+ G2(u, v)

∫ t

0

W1ds + Ḡ2(u, v)

∫ t

0

W2ds

+ F̃2(u, v)

∫ t

0

W1W2 ◦ dW1 + K̃2(u, v)

∫ t

0

W1W2 ◦ dW2

+ F3(u, v)

∫ t

0

s ◦ dW1 + K3(u, v)

∫ t

0

s ◦ dW2 (6.2.4)

+ G̃2(u, v)

∫ t

0

W1W2ds + G3(u, v)

∫ t

0

sds

+ F4(u, v)

∫ t

0

sW1 ◦ dW1 + K4(u, v)

∫ t

0

sW2 ◦ dW2

+ F̄4(u, v)

∫ t

0

sW2 ◦ dW1 + K̄4(u, v)

∫ t

0

sW1 ◦ dW2 (6.2.5)

+ · · · . (6.2.6)



80 CHAPTER 6. GENERATING FUNCTIONS WITH TWO NOISES

Thus,

∂S̄3

∂t
= G1 + G2W1 + Ḡ2W2 + G̃2W1W2 + G3t + G4tW1 + Ḡ4tW2

+ G̃4tW1W2 + G5t
2 + G6t

2W1 + Ḡ6t
2W2 + . . .

+ Ẇ1(F1 + F2W1 + F̄2W2 + F̃2W1W2 + F3t + F4tW1 + F̄4tW2

+ F̃4tW1W2 + F5t
2 + F6t

2W1 + . . .)

+ Ẇ2(K1 + K2W2 + K̄2W1 + K̃2W1W2 + K3t + K4tW2 + K̄4tW1

+ K̃4tW1W2 + K5t
2 + K6t

2W2 + . . .), (6.2.7)

where the functions Gi, Ḡi, G̃i, Fi, F̄i, F̃i, Ki, K̄i, and K̃i (i = 1, 2, . . .) are evaluated at
(u, v).
Compare (6.2.7) with the righthand side of (6.2.1), it is obtained that

H(P,Q) = G1 + G2W1 + Ḡ2W2 + G̃2W1W2 + G3t + G4tW1 + Ḡ4tW2

+ G̃4tW1W2 + G5t
2 + G6t

2W1 + Ḡ6t
2W2 + . . . (6.2.8)

H1(P,Q) = F1 + F2W1 + F̄2W2 + F̃2W1W2 + F3t + F4tW1 + F̄4tW2

+ F̃4tW1W2 + F5t
2 + F6t

2W1 + . . . (6.2.9)

H2(P,Q) = K1 + K2W2 + K̄2W1 + K̃2W1W2 + K3t + K4tW2 + K̄4tW1

+ K̃4tW1W2 + K5t
2 + K6t

2W2 + . . . . (6.2.10)

Denote t0 = t
2
, and expand H(P,Q) at (u, v) based on (6.1.14)-(6.1.15), we have

H(P,Q) = H(u, v) +

∫ t

t0

Hq(u, q(s))a2(u, q(s))ds +

∫ t

t0

Hq(u, q(s))b2(u, q(s)) ◦ dW1(s)

+

∫ t

t0

Hq(u, q(s))b̃2(u, q(s)) ◦ dW2(s) +

∫ t

t0

{Hu(p(s), v)a1(p(s), v)

+

∫ t

t0

[Huv(p(s), q(s))a1(p(s), q(s)) + Hu(p(s), q(s))a1v(p(s), q(s))]a2(p(s), q(s))ds

+

∫ t

t0

[Huv(p(s), q(s))a1(p(s), q(s))

+ Hu(p(s), q(s))a1v(p(s), q(s))]b2(p(s), q(s)) ◦ dW1(s)

+

∫ t

t0

[Huv(p(s), q(s))a1(p(s), q(s))

+ Hu(p(s), q(s))a1v(p(s), q(s))]b̃2(p(s), q(s)) ◦ dW2(s)
}

ds
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+

∫ t

t0

{
Hu(p(s), v)b1(p(s), v) +

∫ t

t0

[Huv(p(s), q(s))b1(p(s), q(s))

+ Hu(p(s), q(s))b1v(p(s), q(s))]a2(p(s), q(s))ds +

∫ t

t0

[Huv(p(s), q(s))b1(p(s), q(s))

+ Hu(p(s), q(s))b1v(p(s), q(s))]b2(p(s), q(s)) ◦ dW1(s)

+

∫ t

t0

[Huv(p(s), q(s))b1(p(s), q(s))

+ Hu(p(s), q(s))b1v(p(s), q(s))]b̃2(p(s), q(s)) ◦ dW2(s)
}
◦ dW1(s)

+

∫ t

t0

{
Hu(p(s), v)b̃1(p(s), v) +

∫ t

t0

[Huv(p(s), q(s))b̃1(p(s), q(s))

+ Hu(p(s), q(s))b̃1v(p(s), q(s))]a2(p(s), q(s))ds +

∫ t

t0

[Huv(p(s), q(s))b̃1(p(s), q(s))

+ Hu(p(s), q(s))b̃1v(p(s), q(s))]b2(p(s), q(s)) ◦ dW1(s)

+

∫ t

t0

[Huv(p(s), q(s))b̃1(p(s), q(s))

+ Hu(p(s), q(s))b̃1v(p(s), q(s))]b̃2(p(s), q(s)) ◦ dW2(s)
}
◦ dW2(s)

= H(u, v) +

∫ t

t0

{
Hv(u, v)a2(u, v) +

∫ s

t0

[Hvv(u, q(l))a2(u, q(l))

+ Hv(u, q(l))a2v(u, q(l))]a2(u, q(l))dl +

∫ s

t0

[Hvv(u, q(l))a2(u, q(l))

+ Hv(u, q(l))a2v(u, q(l))]b2(u, q(l)) ◦ dW1(l)

+

∫ s

t0

[Hvv(u, q(l))a2(u, q(l)) + Hv(u, q(l))a2v(u, q(l))]b̃2(u, q(l)) ◦ dW2(l)

}
ds

+

∫ t

t0

{
Hv(u, v)b2(u, v) +

∫ s

t0

[Hvv(u, q(l))b2(u, q(l))

+ Hv(u, q(l))b2v(u, q(l))]a2(u, q(l))dl +

∫ s

t0

[Hvv(u, q(l))b2(u, q(l))

+ Hv(u, q(l))b2v(u, q(l))]b2(u, q(l)) ◦ dW1(l)

+

∫ s

t0

[Hvv(u, q(l))b2(u, q(l)) + Hv(u, q(l))b2v(u, q(l))]b̃2(u, q(l)) ◦ dW2(l)

}
◦ dW1(s)

+

∫ t

t0

{
Hv(u, v)b̃2(u, v) +

∫ s

t0

[Hvv(u, q(l))b̃2(u, q(l))

+ Hv(u, q(l))b̃2v(u, q(l))]a2(u, q(l))dl +

∫ s

t0

[Hvv(u, q(l))b̃2(u, q(l))

+ Hv(u, q(l))b̃2v(u, q(l))]b2(u, q(l)) ◦ dW1(l)

+

∫ s

t0

[Hvv(u, q(l))b̃2(u, q(l)) + Hv(u, q(l))b̃2v(u, q(l))]b̃2(u, q(l)) ◦ dW2(l)

}
◦ dW2(s)
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+

∫ t

t0

{
Hu(u, v)a1(u, v) +

∫ s

t0

[Huu(p(l), v)a1(p(l), v)

+ Hu(p(l), v)a1u(p(l), v)]a1(p(l), v)dl

+

∫ s

t0

[Huu(p(l), v)a1(p(l), v) + Hu(p(l), v)a1u(p(l), v)]b1(p(l), v) ◦ dW1(l)

+

∫ s

t0

[Huu(p(l), v)a1(p(l), v) + Hu(p(l), v)a1u(p(l), v)]b̃1(p(l), v) ◦ dW2(l)

}
ds

+
t

2

∫ t

t0

{[Huv(p(s), v)a1(p(s), v) + Hu(p(s), v)a1v(p(s), v)]a2(p(s), v)

+

∫ s

t0

{[Huvv(p(s), q(l))a1(p(s), q(l)) + 2Huv(p(s), q(l))a1v(p(s), q(l))

+ Hu(p(s), q(l))a1vv(p(s), q(l))]a2(p(s), q(l)) + [Huv(p(s), q(l))a1(p(s), q(l))

+ Hu(p(s), q(l))a1v(p(s), q(l))]a2v(p(s), q(l))} a2(p(s), q(l))dl

+

∫ s

t0

{[Huvv(p(s), q(l))a1(p(s), q(l)) + 2Huv(p(s), q(l))a1v(p(s), q(l))

+ Hu(p(s), q(l))a1vv(p(s), q(l))]a2(p(s), q(l)) + [Huv(p(s), q(l))a1(p(s), q(l))

+ Hu(p(s), q(l))a1v(p(s), q(l))]a2v(p(s), q(l))} b2(p(s), q(l)) ◦ dW1(l)

+

∫ s

t0

{[Huvv(p(s), q(l))a1(p(s), q(l)) + 2Huv(p(s), q(l))a1v(p(s), q(l))

+ Hu(p(s), q(l))a1vv(p(s), q(l))]a2(p(s), q(l)) + [Huv(p(s), q(l))a1(p(s), q(l))

+ Hu(p(s), q(l))a1v(p(s), q(l))]a2v(p(s), q(l))} b̃2(p(s), q(l)) ◦ dW2(l)
}

ds

+
t

2

∫ t

t0

{[Huv(p(s), v)a1(p(s), v) + Hu(p(s), v)a1v(p(s), v)]b2(p(s), v)

+

∫ s

t0

{[Huvv(p(s), q(l))a1(p(s), q(l)) + 2Huv(p(s), q(l))a1v(p(s), q(l))

+ Hu(p(s), q(l))a1vv(p(s), q(l))]b2(p(s), q(l)) + [Huv(p(s), q(l))a1(p(s), q(l))

+ Hu(p(s), q(l))a1v(p(s), q(l))]b2v(p(s), q(l))} a2(p(s), q(l))dl

+

∫ s

t0

{[Huvv(p(s), q(l))a1(p(s), q(l)) + 2Huv(p(s), q(l))a1v(p(s), q(l))

+ Hu(p(s), q(l))a1vv(p(s), q(l))]b2(p(s), q(l)) + [Huv(p(s), q(l))a1(p(s), q(l))

+ Hu(p(s), q(l))a1v(p(s), q(l))]b2v(p(s), q(l))} b2(p(s), q(l)) ◦ dW1(l)

+

∫ s

t0

{[Huvv(p(s), q(l))a1(p(s), q(l)) + 2Huv(p(s), q(l))a1v(p(s), q(l))

+ Hu(p(s), q(l))a1vv(p(s), q(l))]b2(p(s), q(l)) + [Huv(p(s), q(l))a1(p(s), q(l))

+ Hu(p(s), q(l))a1v(p(s), q(l))]b2v(p(s), q(l))} b̃2(p(s), q(l)) ◦ dW2(l)
}
◦ dW1(s)

+
t

2

∫ t

t0

{
[Huv(p(s), v)a1(p(s), v) + Hu(p(s), v)a1v(p(s), v)]b̃2(p(s), v)

+

∫ s

t0

{[Huvv(p(s), q(l))a1(p(s), q(l)) + 2Huv(p(s), q(l))a1v(p(s), q(l))
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+ Hu(p(s), q(l))a1vv(p(s), q(l))]b̃2(p(s), q(l)) + [Huv(p(s), q(l))a1(p(s), q(l))

+ Hu(p(s), q(l))a1v(p(s), q(l))]b̃2v(p(s), q(l))
}

a2(p(s), q(l))dl

+

∫ s

t0

{[Huvv(p(s), q(l))a1(p(s), q(l)) + 2Huv(p(s), q(l))a1v(p(s), q(l))

+ Hu(p(s), q(l))a1vv(p(s), q(l))]b̃2(p(s), q(l)) + [Huv(p(s), q(l))a1(p(s), q(l))

+ Hu(p(s), q(l))a1v(p(s), q(l))]b̃2v(p(s), q(l))
}

b2(p(s), q(l)) ◦ dW1(l)

+

∫ s

t0

{[Huvv(p(s), q(l))a1(p(s), q(l)) + 2Huv(p(s), q(l))a1v(p(s), q(l))

+ Hu(p(s), q(l))a1vv(p(s), q(l))]b̃2(p(s), q(l)) + [Huv(p(s), q(l))a1(p(s), q(l))

+ Hu(p(s), q(l))a1v(p(s), q(l))]b̃2v(p(s), q(l))
}

b̃2(p(s), q(l)) ◦ dW2(l)
}
◦ dW2(s)

+

∫ t

t0

{
Hu(u, v)b1(u, v) +

∫ s

t0

[Huu(p(l), v)b1(p(l), v)

+ Hu(p(l), v)b1u(p(l), v)]a1(p(l), v)dl

+

∫ s

t0

[Huu(p(l), v)b1(p(l), v) + Hu(p(l), v)b1u(p(l), v)]b1(p(l), v) ◦ dW1(l)

+

∫ s

t0

[Huu(p(l), v)b1(p(l), v) + Hu(p(l), v)b1u(p(l), v)]b̃1(p(l), v) ◦ dW2(l)

}
◦ dW1(s)

+
W1(t)√

2

∫ t

t0

{[Huv(p(s), v)b1(p(s), v) + Hu(p(s), v)b1v(p(s), v)]b2(p(s), v)

+

∫ s

t0

{[Huvv(p(s), q(l))b1(p(s), q(l)) + 2Huv(p(s), q(l))b1v(p(s), q(l))

+ Hu(p(s), q(l))b1vv(p(s), q(l))]b2(p(s), q(l)) + [Huv(p(s), q(l))b1(p(s), q(l))

+ Hu(p(s), q(l))b1v(p(s), q(l))]b2v(p(s), q(l))} a2(p(s), q(l))dl

+

∫ s

t0

{[Huvv(p(s), q(l))b1(p(s), q(l)) + 2Huv(p(s), q(l))b1v(p(s), q(l))

+ Hu(p(s), q(l))b1vv(p(s), q(l))]b2(p(s), q(l)) + [Huv(p(s), q(l))b1(p(s), q(l))

+ Hu(p(s), q(l))b1v(p(s), q(l))]b2v(p(s), q(l))} b2(p(s), q(l)) ◦ dW1(l)

+

∫ s

t0

{[Huvv(p(s), q(l))b1(p(s), q(l)) + 2Huv(p(s), q(l))b1v(p(s), q(l))

+ Hu(p(s), q(l))b1vv(p(s), q(l))]b2(p(s), q(l)) + [Huv(p(s), q(l))b1(p(s), q(l))

+ Hu(p(s), q(l))b1v(p(s), q(l))]b2v(p(s), q(l))} b̃2(p(s), q(l)) ◦ dW2(l)
}
◦ dW1(s)

+
W1(t)√

2

∫ t

t0

{
[Huv(p(s), v)b1(p(s), v) + Hu(p(s), v)b1v(p(s), v)]b̃2(p(s), v)

+

∫ s

t0

{[Huvv(p(s), q(l))b1(p(s), q(l)) + 2Huv(p(s), q(l))b1v(p(s), q(l))

+ Hu(p(s), q(l))b1vv(p(s), q(l))]b̃2(p(s), q(l)) + [Huv(p(s), q(l))b1(p(s), q(l))

+ Hu(p(s), q(l))b1v(p(s), q(l))]b̃2v(p(s), q(l))
}

a2(p(s), q(l))dl

+

∫ s

t0

{[Huvv(p(s), q(l))b1(p(s), q(l)) + 2Huv(p(s), q(l))b1v(p(s), q(l))
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+ Hu(p(s), q(l))b1vv(p(s), q(l))]b̃2(p(s), q(l)) + [Huv(p(s), q(l))b1(p(s), q(l))

+ Hu(p(s), q(l))b1v(p(s), q(l))]b̃2v(p(s), q(l))
}

b2(p(s), q(l)) ◦ dW1(l)

+

∫ s

t0

{[Huvv(p(s), q(l))b1(p(s), q(l)) + 2Huv(p(s), q(l))b1v(p(s), q(l))

+ Hu(p(s), q(l))b1vv(p(s), q(l))]b̃2(p(s), q(l)) + [Huv(p(s), q(l))b1(p(s), q(l))

+ Hu(p(s), q(l))b1v(p(s), q(l))]b̃2v(p(s), q(l))
}

b̃2(p(s), q(l)) ◦ dW2(l)
}
◦ dW2(s)

+

∫ t

t0

{
Hu(u, v)b̃1(u, v) +

∫ s

t0

[Huu(p(l), v)b̃1(p(l), v)

+ Hu(p(l), v)b̃1u(p(l), v)]a1(p(l), v)dl

+

∫ s

t0

[Huu(p(l), v)b̃1(p(l), v) + Hu(p(l), v)b̃1u(p(l), v)]b1(p(l), v) ◦ dW1(l)

+

∫ s

t0

[Huu(p(l), v)b̃1(p(l), v) + Hu(p(l), v)b̃1u(p(l), v)]b̃1(p(l), v) ◦ dW2(l)

}
◦ dW2(s)

+
W2(t)√

2

∫ t

t0

{
[Huv(p(s), v)b̃1(p(s), v) + Hu(p(s), v)b̃1v(p(s), v)]b2(p(s), v)

+

∫ s

t0

{
[Huvv(p(s), q(l))b̃1(p(s), q(l)) + 2Huv(p(s), q(l))b̃1v(p(s), q(l))

+ Hu(p(s), q(l))b̃1vv(p(s), q(l))]b2(p(s), q(l)) + [Huv(p(s), q(l))b̃1(p(s), q(l))

+ Hu(p(s), q(l))b̃1v(p(s), q(l))]b2v(p(s), q(l))
}

a2(p(s), q(l))dl

+

∫ s

t0

{
[Huvv(p(s), q(l))b̃1(p(s), q(l)) + 2Huv(p(s), q(l))b̃1v(p(s), q(l))

+ Hu(p(s), q(l))b̃1vv(p(s), q(l))]b2(p(s), q(l)) + [Huv(p(s), q(l))b̃1(p(s), q(l))

+ Hu(p(s), q(l))b̃1v(p(s), q(l))]b2v(p(s), q(l))
}

b2(p(s), q(l)) ◦ dW1(l)

+

∫ s

t0

{
[Huvv(p(s), q(l))b̃1(p(s), q(l)) + 2Huv(p(s), q(l))b̃1v(p(s), q(l))

+ Hu(p(s), q(l))b̃1vv(p(s), q(l))]b2(p(s), q(l)) + [Huv(p(s), q(l))b̃1(p(s), q(l))

+ Hu(p(s), q(l))b̃1v(p(s), q(l))]b2v(p(s), q(l))
}

b̃2(p(s), q(l)) ◦ dW2(l)
}
◦ dW1(s)

+
W2(t)√

2

∫ t

t0

{
[Huv(p(s), v)b̃1(p(s), v) + Hu(p(s), v)b̃1v(p(s), v)]b̃2(p(s), v)

+

∫ s

t0

{
[Huvv(p(s), q(l))b̃1(p(s), q(l)) + 2Huv(p(s), q(l))b̃1v(p(s), q(l))

+ Hu(p(s), q(l))b̃1vv(p(s), q(l))]b̃2(p(s), q(l)) + [Huv(p(s), q(l))b̃1(p(s), q(l))

+ Hu(p(s), q(l))b̃1v(p(s), q(l))]b̃2v(p(s), q(l))
}

a2(p(s), q(l))dl

+

∫ s

t0

{
[Huvv(p(s), q(l))b̃1(p(s), q(l)) + 2Huv(p(s), q(l))b̃1v(p(s), q(l))
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+ Hu(p(s), q(l))b̃1vv(p(s), q(l))]b̃2(p(s), q(l)) + [Huv(p(s), q(l))b̃1(p(s), q(l))

+ Hu(p(s), q(l))b̃1v(p(s), q(l))]b̃2v(p(s), q(l))
}

b2(p(s), q(l)) ◦ dW1(l)

+

∫ s

t0

{
[Huvv(p(s), q(l))b̃1(p(s), q(l)) + 2Huv(p(s), q(l))b̃1v(p(s), q(l))

+ Hu(p(s), q(l))b̃1vv(p(s), q(l))]b̃2(p(s), q(l)) + [Huv(p(s), q(l))b̃1(p(s), q(l))

+ Hu(p(s), q(l))b̃1v(p(s), q(l))]b̃2v(p(s), q(l))
}

b̃2(p(s), q(l)) ◦ dW2(l)
}
◦ dW2(s) + R0

= H + Hva2
t

2
+ Hvb2

W1√
2

+ Hv b̃2
W2√

2
+ Hua1

t

2
+ Hub1

W1√
2

+ (Huub1

+ Hub1u)b1

∫ t

t0

∫ s

t0

◦dW1(l) ◦ dW1(s) + (Huub1 + Hub1u)b̃1

∫ t

t0

∫ s

t0

◦dW2(l) ◦ dW1(s)

+ (Hvv b̃2 + Hv b̃2v)b2

∫ t

t0

∫ s

t0

◦dW1(l) ◦ dW2(s) + (Hvv b̃2 + Hv b̃2v)b̃2

∫ t

t0

∫ s

t0

◦dW2(l)

◦dW2(s)

+ (Hvvb2 + Hvb2v)b2

∫ t

t0

∫ s

t0

◦dW1(l) ◦ dW1(s) + (Hvvb2 + Hvb2v)b̃2

∫ t

t0

∫ s

t0

◦dW2(l)

◦dW1(s)

+ (Huvb1 + Hub1v)b2
W 2

1

2
+ (Huvb1 + Hub1v)b̃2

W1W2

2
+ Hub̃1

W2√
2

+ (Huub̃1 + Hub̃1u)b1

∫ t

t0

∫ s

t0

◦dW1(l) ◦ dW2(s) + (Huub̃1 + Hub̃1u)b̃1

∫ t

t0

∫ s

t0

◦dW2(l)

◦dW2(s)

+ (Huv b̃1 + Hub̃1v)b2
W1W2

2
+ (Huv b̃1 + Hub̃1v)b̃2

W 2
2

2
+ R, (6.2.11)

where R includes terms with order of smallness larger than or equal to 3
2
.

Compare the expansion (6.2.11) with the righthand side of equation (6.2.8), we have

G1 = H, (6.2.12)

G2 =
1√
2
(Hvb2 + Hub1), (6.2.13)

Ḡ2 =
1√
2
(Hv b̃2 + Hub̃1), (6.2.14)

G̃2 =
1

2
[b1(Huub̃1 + Hub̃1u) + b2(Hvv b̃2 + Hv b̃2v + Huv b̃1 + Hub̃1v)

+ b̃1(Huub1 + Hub1u) + b̃2(Hvvb2 + Hvb2v + Huvb1 + Hub1v)], (6.2.15)

G3 =
1

2
[Hva2 + Hua1 + b1(Huub1 + Hub1u) + b2(Hvvb2 + Hvb2v

+ Huvb1 + Hub1v) + b̃1(Huub̃1 + Hub̃1u) + b̃2(Hvv b̃2 + Hv b̃2v + Huv b̃1 + Hub̃1v)],
...
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Similarly, we get

F1 = H1, (6.2.16)

F2 =
1√
2
(H1vb2 + H1ub1), (6.2.17)

F̄2 =
1√
2
(H1v b̃2 + H1u b̃1), (6.2.18)

F̃2 =
1

2
[b1(H1uu b̃1 + H1u b̃1u) + b2(H1vv b̃2 + H1v b̃2v + H1uv b̃1 + H1u b̃1v)

+ b̃1(H1uub1 + H1ub1u) + b̃2(H1vvb2 + H1vb2v + H1uvb1 + H1ub1v)], (6.2.19)

F3 =
1

2
[H1va2 + H1ua1 + b1(H1uub1 + H1ub1u) + b2(H1vvb2 + H1vb2v

+ H1uvb1 + H1ub1v) + b̃1(H1uu b̃1 + H1u b̃1u) + b̃2(H1vv b̃2 + H1v b̃2v + H1uv b̃1 + H1u b̃1v)],
...

and

K1 = H2, (6.2.20)

K2 =
1√
2
(H2vb2 + H2ub1), (6.2.21)

K̄2 =
1√
2
(H2v b̃2 + H2u b̃1), (6.2.22)

K̃2 =
1

2
[b1(H2uu b̃1 + H2u b̃1u) + b2(H2vv b̃2 + H2v b̃2v + H2uv b̃1 + H2u b̃1v)

+ b̃1(H2uub1 + H2ub1u) + b̃2(H2vvb2 + H2vb2v + H2uvb1 + H2ub1v)], (6.2.23)

K3 =
1

2
[H2va2 + H2ua1 + b1(H2uub1 + H2ub1u) + b2(H2vvb2 + H2vb2v

+ H2uvb1 + H2ub1v) + b̃1(H2uu b̃1 + H2u b̃1u) + b̃2(H2vv b̃2 + H2v b̃2v + H2uv b̃1 + H2u b̃1v)],
...

Example 6.3. For the model of synchrotron oscillations (3.1.22)-(3.1.23),

G1(u, v) = −ω2 cos(v) +
u2

2
, F1(u, v) = σ1 sin(v), F2(u, v) = F̄2(u, v) = 0,

(6.2.24)

K1(u, v) = −σ2 cos(v), K2(u, v) = K̄2(u, v) = 0. (6.2.25)

Let the truncation of S̄3 contain terms till order 1 of smallness in the assumption (6.2.2)-
(6.2.6), i.e.,

S̄3(u, v, h) = F1∆nW1 + K1∆nW2 + F2

∫ h

0

W1 ◦ dW1 + K2

∫ h

0

W2 ◦ dW2

+ F̄2

∫ h

0

W2 ◦ dW1 + K̄2

∫ h

0

W1 ◦ dW2

= (−ω2 cos(v) +
u2

2
)h + σ1 sin(v)∆nW1 − σ2 cos(v)∆nW2. (6.2.26)
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Substituting (6.2.26) into (5.1.15)-(5.1.16) results in the scheme

pn+1 = pn − sin(
qn + qn+1

2
)(ω2h + σ2∆nW2)− cos(

qn + qn+1

2
)σ1∆nW1, (6.2.27)

qn+1 = qn + h
pn + pn+1

2
. (6.2.28)

Theorem 6.7. The numerical method (6.2.27)-(6.2.28) for the stochastic Hamiltonian
system (3.1.22)-(3.1.23) is symplectic and of mean-square order 1.

Proof. Apply the implicit function theorem, we can calculate in a straightforward way
that (

∂pn+1

∂pn

∂pn+1

∂qn
∂qn+1

∂pn

∂qn+1

∂qn

)T

J

(
∂pn+1

∂pn

∂pn+1

∂qn
∂qn+1

∂pn

∂qn+1

∂qn

)
= J, (6.2.29)

where J =

(
0 1
−1 0

)
. This proves symplecticity of the method according to Definition

2.3.
The mean-square order 1 follows from our truncation of S̄3. ¤

Example 6.4. In this example, we construct numerical methods for the system with
two additive noises (3.1.27)-(3.1.28) via S̄3(u, v, h).

For (3.1.27)-(3.1.28),

H =
1

2
(u2 + v2), H1 = σu, H2 = −γv,

F1 = σu, K1 = −γv, F2 = 0, K2 = − σγ√
2
,

G1 =
1

2
(u2 + v2), F̄2 =

σγ√
2
, K̄2 = 0. (6.2.30)

Thus, S̄3 for a method of mean-square order 1 has the form

S̄3(u, v, h) = σu∆nW1 − γv∆nW2 − σγ√
2

∫ h

0

W2(s) ◦ dW2(s)

+
1

2
(u2 + v2)h +

σγ√
2

∫ h

0

W2(s) ◦ dW1(s), (6.2.31)

which gives via relation (5.1.15)-(5.1.16) the scheme

pn+1 +
h

2
qn+1 = pn − h

2
qn + γ∆nW2, (6.2.32)

−h

2
pn+1 + qn+1 =

h

2
pn + qn + σ∆nW1. (6.2.33)

Theorem 6.8. The numerical method (6.2.32)-(6.2.33) for the stochastic Hamiltonian
system (3.1.27)-(3.1.28) is symplectic and of mean-square order 1.
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According to (6.2.2)-(6.2.6) and Theorem 5.8, for a method of mean-square order 3
2
,

we need the following functions:

G2 =
σv√

2
, Ḡ2 =

γu√
2
, F̃2 = 0, K̃2 = 0,

F3 = −σv

2
, K3 = −γu

2
, G3 =

σ2 + γ2

2
. (6.2.34)

Thus, a method of mean-square order 3
2

can be generated by

S̄3(u, v, h) = σu∆nW1 − γv∆nW2 − σγ√
2

∫ h

0

W2(s) ◦ dW2(s) +
1

2
(u2 + v2)h

+
σγ√

2

∫ h

0

W2(s) ◦ dW1(s) +
σv√

2

∫ h

0

W1(s)ds +
γu√

2

∫ h

0

∫ h

0

W2(s)ds

− σv

2

∫ h

0

s ◦ dW1 − γu

2

∫ h

0

s ◦ dW2 +
h2

4
(σ2 + γ2) (6.2.35)

via relation (5.1.15)-(5.1.16). The resulted scheme is

pn+1 +
h

2
qn+1 = pn − h

2
qn + γ∆nW2 − σ√

2

∫ h

0

W1(s)ds

+
σ

2

∫ h

0

s ◦ dW1(s), (6.2.36)

−h

2
pn+1 + qn+1 =

h

2
pn + qn + σ∆nW1 +

γ√
2

∫ h

0

W2(s)ds

− γ

2

∫ h

0

s ◦ dW2(s). (6.2.37)

Theorem 6.9. The numerical method (6.2.36)-(6.2.37) for the stochastic Hamiltonian
system (3.1.27)-(3.1.28) is symplectic and of mean-square order 3

2
.

Remark. In the case of two noises, such terms

∫ h

0

Wi ◦ dWj (6.2.38)

may appear in the numerical schemes, as shown in the righthand side of the first equality
of (6.2.26) when F̄2 or K̄2 does not vanish. Numerical simulation of multiple stochastic
integrals is usually difficult, especially as the multiplicity increases. In [25], integrals of the
form (6.2.38) in Itô sense are simulated. We modify the method and make it appropriate
for Stratonovich integrals.
Divide the interval [0, h] into l subintervals with length h

l
. Thus we write

∫ h

0

Wi(s) ◦ dWj(s)
.
=

l∑

k=1

Wi(
sk−1 + sk

2
)(Wj(sk)−Wj(sk−1)) (6.2.39)
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according to the definition of Stratonovich integrals (1.1.15). Since each ∆kWi (k =
1, . . . , l) is N (0, h

l
) distributed, and independent to each other, we can write

Wi(
sk−1 + sk

2
) =

√
h

l

k−1∑
r=1

ξir +

√
h

2l
ξik, (6.2.40)

where ξir (r = 1, . . . , k−1) and ξik are independent N (0, 1) distributed random variables.
The second term on the righthand side of the equality is due to the length h

2l
of the half

interval [sk−1,
sk−1+sk

2
].

Similarly,

Wj(sk)−Wj(sk−1) =

√
h

l
ξjk, (6.2.41)

where ξjk is N (0, 1) distributed and independent to ξir (k, r = 1, . . . , l).
Thus we have

∫ h

0

Wi(s) ◦ dWj(s)
.
=

h

l

l∑

k=1

k−1∑
r=1

ξirξjk +
h√
2l

l∑

k=1

ξikξjk. (6.2.42)
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Chapter 7

Generating Functions for Some
Symplectic Methods

In this chapter, generating functions are derived for some stochastic symplectic methods
proposed in literature (Milstein et al. [27], [28], [29]), and symplectic Runge-Kutta meth-
ods (3.7) in [28] for systems with additive noises are generalized to that for systems with
general noises, for which three kinds of generating functions are also derived.

7.1 A Partitioned Runge-Kutta Method

Consider the partitioned Runge-Kutta method (4.9)-(4.10) in [29]

Pi = p + h
s∑

j=1

αijf(t + cjh,Qj) +
s∑

j=1

m∑
r=1

σr(t + djh,Qj)(λijϕr + µijψr), (7.1.1)

Qi = q + h
s∑

j=1

α̂ijg(Pj), i = 1, . . . , s (7.1.2)

P = p + h
s∑

i=1

βif(t + cih,Qi) +
s∑

i=1

m∑
r=1

σr(t + dih,Qi)(νiϕr + χiψr), (7.1.3)

Q = q + h
s∑

i=1

β̂ig(Pi), (7.1.4)

where ϕr, ψr do not depend on p and q, the parameters αij, α̂ij, βi, β̂i, λij, µij, νi, χi

satisfy the conditions

βiα̂ij + β̂jαji − βiβ̂j = 0, (7.1.5)

νiα̂ij + β̂jλji − νiβ̂j = 0, (7.1.6)

χiα̂ij + β̂jµji − χiβ̂j = 0, (7.1.7)

ci, di are arbitrary parameters, and

f = −Hq, g = Hp, σr = −Hrq , Hrp = 0. (7.1.8)
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Here is the separable case

H(t, p, q) = T (t, p) + U(t, q), f = −Uq, g = Tp, (7.1.9)

Hr(t, p, q) = Ur(t, q), σr = −Urq . (7.1.10)

Theorem 7.1. Under the conditions (7.1.5)-(7.1.7), the partitioned Runge-Kutta method
(7.1.1)-(7.1.4) for a separable Hamiltonian system with (7.1.8)-(7.1.10) can be written as
(5.1.9) with

S̄1(P, q, h) = h
s∑

i=1

(βiU(t + cih,Qi) + β̂iT (t + cih,Pi))

+
s∑

i=1

m∑
r=1

Ur(t + cih,Qi)(νiϕi + χiψi) + F, (7.1.11)

where

F = −h2
∑
ij

βiα̂ijU
T
q (t + cih,Qi)Tp(t + cjh,Pj)

− h
∑
ij

m∑
r=1

UT
rq

(t + cih,Qi)Tp(t + cjh,Pj)(νiα̂ijϕr + χiα̂ijψr). (7.1.12)

Proof. Denote U(t + cih,Qi) = U [i], Uq(t + cih,Qi) = Uq[i], · · · . It follows from (7.1.11)-
(7.1.12) that

∂S̄1

∂P
= h

s∑
i=1

βiUq[i]
T (h

s∑
j=1

α̂ij
∂

∂P
Tp[j])

+ h
s∑

i=1

β̂iTp[i](
∂p

∂P
+ h

s∑
j=1

αij
∂

∂P
(−Uq[j])−

s∑
j=1

m∑
r=1

∂

∂P
Urq [j](λijϕr + µijψr))

+
s∑

i=1

m∑
r=1

Urq(h
s∑

j=1

αij
∂

∂P
Tp[j])(νiϕr + χiψr) +

∂

∂P
F. (7.1.13)

By

∂p

∂P
= I + h

s∑
j=1

βj
∂

∂P
Uq[j] +

s∑
j=1

m∑
r=1

∂

∂P
Urq [j](νjϕr + χjψr), (7.1.14)
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∂S̄1

∂P
= h

s∑
i=1

β̂iTp[i] + h2
∑
ij

βiα̂ijUq[i]
T ∂

∂P
Tp[j]

+ h2
∑
ij

β̂iβjTp[i]
T ∂

∂P
Uq[j]− h2

∑
ij

β̂iαijTp[i]
T ∂

∂P
Uq[j]

+ h
∑
ij

m∑
r=1

Tp[i]
T ∂

∂P
Urq [j][(β̂iνjϕr + β̂iχjψr)− (β̂iλijϕr + β̂iµijψr)]

+ h
∑
ij

m∑
r=1

Urq [i]
T ∂

∂P
Tp[j](νiα̂ijϕr + χiα̂ijψr) +

∂

∂P
F

= h
s∑

i=1

β̂iTp[i] + h2
∑
ij

βiα̂ij
∂

∂P
(Uq[i]

T Tp[j])

+ h
∑
ij

m∑
r=1

∂

∂P
[Urq [i]

T Tp[j](νiα̂ijϕr + χiα̂ijψr)] +
∂

∂P
F, (7.1.15)

therefore,

∂S̄1

∂P
= h

s∑
i=1

β̂iTp[i]. (7.1.16)

In the same way we get

∂S̄1

∂q
= h

s∑
i=1

βiUq[i] +
s∑

i=1

m∑
r=1

Urq [i](νiϕr + χiψr). (7.1.17)

¤

7.2 A Method for Systems with Additive Noises

For the stochastic Hamiltonian system with additive noises

dp = f(t, p, q)dt +
s∑

r=1

σr(t)dWr(t), p(t0) = p, (7.2.1)

dq = g(t, p, q)dt +
s∑

r=1

γr(t)dWr(t), q(t0) = q, (7.2.2)

consider the following relation ([28])

P = p + hf(t0 + βh, αP + (1− α)p, (1− α)Q + αq) +
m∑

r=1

σr(t)∆Wr, (7.2.3)

Q = q + hg(t0 + βh, αP + (1− α)p, (1− α)Q + αq) +
m∑

r=1

γr(t)∆Wr, (7.2.4)
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where α, β ∈ [0, 1], f = −Hq, g = Hp.

Theorem 7.2. The method (7.2.3)-(7.2.4) can be written as (5.1.9) with

S̄1(P, q, h) = hH(t0 + βh, αP + (1− α)p, (1− α)Q + αq)

+
m∑

r=1

(γr(t)P − σr(t)q)∆Wr + F, (7.2.5)

where
F = h2(α− 1)HT

q Hp. (7.2.6)

Proof. From (7.2.5)-(7.2.6) we have

∂S̄1

∂q
= hHT

q (αI + (1− α)(I + h
∂

∂q
Hp)) + hHT

p (1− α)
∂p

∂q
−

m∑
r=1

σr(t)∆Wr +
∂F

∂q

= hHT
q + h2(1− α)HT

q

∂

∂q
Hp + h2(1− α)HT

p

∂

∂p
Hq −

m∑
r=1

σr(t)∆Wr +
∂F

∂q

= hHT
q −

m∑
r=1

σr(t)∆Wr + h2(1− α)
∂

∂q
(HT

q Hp) +
∂F

∂q

= hHT
q −

m∑
r=1

σr(t)∆Wr. (7.2.7)

Similarly, it can be verified that

∂S̄1

∂P
= hHT

p +
m∑

r=1

γr(t)∆Wr. (7.2.8)

¤

7.3 Generating Function for Phase Trajectory of a

SDE

Consider the stochastic Hamiltonian system with two additive noise (3.1.27)-(3.1.28)

dq = pdt + σdW1(t), q(0) = q0,

dp = −qdt + γdW2(t), p(0) = p0.

Let X = (q, p)T , we know from (3.1.29) that the exact solution of the system (3.1.27)-
(3.1.28) can also be written as

X(t + h) = FX(t) + u(t, h), (7.3.1)

where

F =

(
cos h sin h
− sin h cos h

)
, u(t, h) =

(
u1

u2

)
(7.3.2)
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with

u1 = σ

∫ t+h

t

cos(t + h− s)dW1(s) + γ

∫ t+h

t

sin(t + h− s)dW2(s), (7.3.3)

u2 = −σ

∫ t+h

t

sin(t + h− s)dW1(s) + γ

∫ t+h

t

cos(t + h− s)dW2(s). (7.3.4)

Now we write X(t + h) = (Q,P )T , X(t) = (q, p)T , then

Q = q cos h + p sin h + u1, (7.3.5)

P = −q sin h + p cos h + u2. (7.3.6)

Theorem 7.3. The solution of (7.3.5)-(7.3.6) can be written as (5.1.1) with

S̄(q, Q, h) = −pq sin2 h +
1

2
(p2 − q2) sin h cos h + pu2 sin h + qu2 cos h, (7.3.7)

where p =
Q

sin h
− q cot h− u1

sin h
. (7.3.8)

Proof. From (7.3.7)-(7.3.8),

∂S̄

∂Q
=

∂S̄

∂p

∂p

∂Q
= (−q sin2 h + p sin h cos h + u2 sin h)(

1

sin h
)

= −q sin h + p cos h + u2, (7.3.9)

and the first relation (7.3.5) is a direct consequence of (7.3.8). ¤

7.4 Generalization of a Symplectic Runge-Kutta Method

For Hamiltonian system with additive noises (7.2.1)-(7.2.2), the following symplectic
Runge-Kutta method is proposed ([28]), which is also given in section 3.2 with equa-
tion number (3.2.5)-(3.2.6):

Pi = p + h

s∑
j=1

αijf(t0 + cjh,Pj,Qj) + ϕi,

Qi = q + h
s∑

j=1

αijg(t0 + cjh,Pj,Qj) + ψi,

P = p + h
s∑

i=1

βif(t0 + cih,Pi,Qi) + η,

Q = q + h

s∑
i=1

βig(t0 + cih,Pi,Qi) + ζ, (7.4.1)

where ϕi, ψi, η, ζ do not depend on p and q, the parameters αij and βi satisfy the
conditions

βiαij + βjαji − βiβj = 0, i, j = 1, . . . , s, (7.4.2)
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and ci are arbitrary parameters. In fact, stochastic symplectic Runge-Kutta methods can
be generalized to cases of any type of noises. For convenience, we discuss the following
system with one noise, cases of more noises can be treated in the same way:

dp = −Hq(t, p, q)dt− Ĥq(t, p, q) ◦ dW (t), p(t0) = p, (7.4.3)

dq = Hp(t, p, q)dt + Ĥp(t, p, q) ◦ dW (t), q(t0) = q. (7.4.4)

Consider the following method

Pi = p− h
s∑

j=1

αijHq(t0 + cjh,Pj,Qj)−
s∑

j=1

αijĤq(t0 + cjh,Pj,Qj)∆Wj, (7.4.5)

Qi = q + h

s∑
j=1

αijHp(t0 + cjh,Pj,Qj) +
s∑

j=1

αijĤp(t0 + cjh,Pj,Qj)∆Wj, (7.4.6)

P = p− h

s∑
i=1

βiHq(t0 + cih,Pi,Qi)−
s∑

i=1

βiĤq(t0 + cih,Pi,Qi)∆Wi, (7.4.7)

Q = q + h
s∑

i=1

βiHp(t0 + cih,Pi,Qi) +
s∑

i=1

βiĤq(t0 + cih,Pi,Qi)∆Wi, (7.4.8)

with relation (7.4.2).

Theorem 7.4. The method (7.4.5)-(7.4.8) with relation (7.4.2) is symplectic and can
be written as (5.1.9) with

S̄1(P, q, h) = h
s∑

i=1

βiH(t0 + cih,Pi,Qi) +
s∑

i=1

βiĤ(t0 + cih,Pi,Qi)∆Wi + F,

(7.4.9)

where

F = −
(

h2
∑
ij

βiαijH
T
q (t0 + cih,Pi,Qi)Hp(t0 + cjh,Pj,Qj)

+ h
∑
ij

βiαij(Ĥq(t0 + cih,Pi,Qi)Hp(t0 + cjh,Pj,Qj)∆Wi

+ ĤT
p (t0 + cih,Pi,Qi)Hq(t0 + cjh,Pj,Qj)∆Wi)

+
∑
ij

βiαijĤ
T
q (t0 + cih,Pi,Qi)Ĥp(t0 + cjh,Pj,Qj)∆Wi∆Wj

)
. (7.4.10)

Proof. Denote H(t0 + cih,Pi,Qi) = H[i], Hq(t0 + cih,Pi,Qi) = Hqi
, · · · . By straightfor-

ward calculation as in Theorem 7.1 and the relation (7.4.2), one can verify that

∂S̄1

∂q
= h

s∑
i=1

βiHq[i] +
s∑

i=1

βiĤq[i]∆Wi, (7.4.11)

∂S̄1

∂P
= h

s∑
i=1

βiHp[i] +
s∑

i=1

βiĤp[i]∆Wi. (7.4.12)
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Consequently, the method (7.4.5)-(7.4.8) is symplectic by Theorem 5.1. ¤

Similarly, we can verify the following two results.

Theorem 7.5. The method (7.4.5)-(7.4.8) with relation (7.4.2) is equivalent to (5.1.12)
with

S̄2(p,Q, h) = h
s∑

i=1

βiH[i] +
s∑

i=1

βiĤ[i]∆Wi

+
∑
ij

βiαij(h
2Hp[i]

T Hq[j] + hHp[j]
T Ĥq[j]∆Wi

+ hHq[i]
T Ĥp[j]∆Wi + Ĥp[i]Ĥq[j]∆Wi∆Wj). (7.4.13)

Theorem 7.6. The method (7.4.5)-(7.4.8) with relation (7.4.2) is equivalent to (5.1.15)-
(5.1.16) with

S̄3(
1

2
(P + p),

1

2
(Q + q), h) = h

s∑
i=1

βiH[i] +
s∑

i=1

βiĤ[i]∆Wi

+
∑
ij

βiαij

(
h2

2
(Hp[i]

T Hq[j]−Hq[i]
T Hp[j])

+
h

2
((Hp[j]

T Ĥq[j]− Ĥq[i]
T Hp[j])

+ (Hq[i]
T Ĥp[j]− Ĥp[i]

T Hq[j]))∆Wi

+
1

2
(Ĥp[i]

T Ĥq[j]− Ĥq[i]
T Ĥp[j])∆Wi∆Wj

)
.(7.4.14)
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Chapter 8

Backward Error Analysis

Backward error analysis studies qualitative behavior of numerical methods by constructing
modified equations of them. The discrete points of numerical solutions settle on exact
integration curves of the modified equations. In deterministic case, one can use generating
functions of a symplectic method to build its modified equation, which is a Hamiltonian
system ([12]). We construct in this chapter modified equations with noises for stochastic
symplectic methods, by using their generating functions with noises. This gives insight
into the stochastic symplectic methods, and support to the stochastic generating function
theory proposed in previous chapters.

8.1 Deterministic Modified Equations and Generat-

ing Functions

For an ordinary differential equation

ẏ = f(y) (8.1.1)

and a numerical method Φh(y) which gives the discrete solution

y0, y1, y2, · · · ,

a modified equation of the method is of the form

˙̃y = f(ỹ) + hf2(ỹ) + h2f3(ỹ) + . . . (8.1.2)

such that yn = ỹ(nh). The idea of backward analysis is to study the difference between
the two vector fields f(y) and fh(y), instead of the local error y1 − ϕh(y0) and the global
error yn−ϕnh(y0) in the solution space, where ϕt denotes the exact flow of the differential
equation (8.1.1).

The series in (8.1.2) is usually divergent and has to be truncated suitably. Using Taylor
expansion of Φh(y) at y in powers of h, and that of ỹ(t+h) at y based on the assumption
ỹ(t) = y, and comparing like powers of h, the coefficient functions fj(y) in (8.1.2) can be
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determined as

f2(y) = d2(y)− 1

2!
f ′f(y),

f3(y) = d3(y)− 1

3!
(f ′′(f, f)(y) + f ′f ′f(y))− 1

2!
(f ′f2(y) + f ′2f(y)) ,

... (8.1.3)

where dj(y) are coefficient functions in the Taylor expansion of Φh(y)

Φh(y) = y + hf(y) + h2d2(y) + h3d3(y) + . . . . (8.1.4)

Any one-step symplectic method Φh : (p, q) 7→ (P,Q) can be generated by a generating
function S(P, q, h) through the relation

p = P +
∂S

∂q

T

(P, q, h), Q = q +
∂S

∂P

T

(P, q, h). (8.1.5)

It is verified that the modified equation of a symplectic method is a Hamiltonian system,
and the Hamiltonian of the modified equation can be found explicitly, as stated in the
following results.

Theorem 8.1. ([12]) Assume that the symplectic method Φh has a generating function

S(P, q, h) = hS1(P, q) + h2S2(P, q) + h3S3(P, q) + . . . (8.1.6)

with smooth Sj(P, q) defined on an open set D. Then, the modified equation is a Hamil-
tonian system with

H̃(p, q) = H(p, q) + hH2(p, q) + h2H3(p, q) + . . . , (8.1.7)

where the functions Hj(p, q) are defined and smooth on the whole of D.

The proof is based on the fact that the phase flow of a Hamiltonian system can be
generated by a generating function S̃(P, q, t) which satisfies a Hamilton-Jacobi partial
differential equation, and that the generating function S̃(P, q, t) should equal S(P, q, h)
at t = h owing to the definition of a modified equation. It is first assumed that the
modified equation is a Hamiltonian system with (8.1.7), and then to find the functions Hj

according to the two facts stated above. The proof also gives a method of constructing
the modified equation of a symplectic method by applying its generating function.

Since we have developed generating functions for stochastic symplectic methods, it is
natural to raise the question whether we could construct modified equations for sympletic
methods using their generating functions with noises? In the following sections we deal
with this problem.

8.2 Stochastic Modified Equations Based on S̄1

In this section we propose the definition of stochastic modified equations, and give a the-
orem asserting property of modified equations of stochastic symplectic methods, as well
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as their construction via generating function S̄1.

Definition 8.2. Given a stochastic differential equation in Stratonovich sense

dy = f(y)dt + g(y) ◦ dW (8.2.1)

and a numerical method Φh(y), which produces approximations

y0, y1, y2, . . . ,

the stochastic modified equation of the method is a stochastic differential equation of the
form

dỹ = fh(ỹ)dt + gh(ỹ) ◦ dW (8.2.2)

such that yn = ỹ(nh).

For a stochastic symplectic method Φh : (p, q) 7→ (P,Q) generated by S̄1(P, q, h) through
the relation (5.1.9)

p = P +
∂S̄1

∂q

T

(P, q, h), Q = q +
∂S̄1

∂P

T

(P, q, h),

we can prove that its modified equation is a stochastic Hamiltonian system, which can
be determined explicitly, as given in the following theorem and its proof. We first discuss
the case of one noise.

Theorem 8.3. Given a stochastic Hamiltonian system

dy = J−1∇H(y)dt + J−1∇H1(y) ◦ dW (t), (8.2.3)

where y =

(
p
q

)
. Assume that the symplectic method Φh has a generating function

S̄1(P, q, h) = F1(P, q)W (h) + F2(P, q)

∫ h

0

W (s) ◦ dW (s) + G1(P, q)

∫ h

0

ds

+ F3(P, q)

∫ h

0

s ◦ dW (s) + G2(P, q)

∫ h

0

W (s)ds

+ F4(P, q)

∫ h

0

sW (s) ◦ dW (s) + G3(P, q)

∫ h

0

sds + . . . . (8.2.4)

Then, the modified equation of Φh is a stochastic Hamiltonian system

dy = J−1∇H̃(y)dt + J−1∇H̃1(y) ◦ dW (t), (8.2.5)

where

H̃(p, q) = H(p, q) + H2(p, q)W + H3(p, q)h + H4(p, q)hW + H5(p, q)h
2 + . . . ,

(8.2.6)

H̃1(p, q) = H1(p, q) + H̄2(p, q)W + H̄3(p, q)h + H̄4(p, q)hW + H̄5(p, q)h
2 + . . . .

(8.2.7)
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Proof. We first assume that the modified equation is really a stochastic Hamiltonian
system with Hamiltonians in (8.2.6)-(8.2.7). In the following we use the Hamilton-Jacobi
partial differential equation with noise and the definition of stochastic modified equation
to determine the functions Hj(p, q) and H̄j(p, q). If the process can be performed suc-
cessfully, then the assertion is proved. At the same time, we find the expression of the
stochastic modified equation (8.2.5).

According to the Hamilton-Jacobi theory, let S̃1(P, q, t) be the generating function that
generates the phase trajectory {P̃ (t), Q̃(t)} of the stochastic Hamiltonian system (8.2.5)
through the relation

p = P̃ (t) +
∂S̃1

∂q

T

, Q̃(t) = q +
∂S̃1

∂P

T

, (8.2.8)

then by Theorem 5.5, it is sufficient that S̃1(P, q, t) satisfies the Hamilton-Jacobi partial
differential equation with noise

∂S̃1

∂t
= H̃(P, q +

∂S̃1

∂P
) + H̃1(P, q +

∂S̃1

∂P
)Ẇ . (8.2.9)

Suppose

S̃1(P, q, t) = S̃1(P, q, h)W (t) + S̃2(P, q, h)

∫ t

0

W (s) ◦ dW (s) + T̃1(P, q, h)t

+ S̃3(P, q, h)

∫ t

0

s ◦ dW (s) + T̃2(P, q, h)

∫ t

0

W (s)ds

+ S̃4(P, q, h)

∫ t

0

sW (s) ◦ dW (s) + T̃3(P, q, h)

∫ t

0

sds + . . . . (8.2.10)

Then we have

∂S̃1

∂t
= (T̃1 + T̃2W + T̃3t + T̃4tW + T̃5t

2 + . . .)

+ (S̃1 + S̃2W + S̃3t + S̃4tW + S̃5t
2 + . . .)Ẇ , (8.2.11)

where the functions T̃i and S̃i are evaluated at (P, q, h).

Substitute (8.2.11) into (8.2.9), we obtain

H̃(P, q +
∂S̃1

∂P
) = T̃1 + T̃2W + T̃3t + T̃4tW + T̃5t

2 + . . . , (8.2.12)

H̃1(P, q +
∂S̃1

∂P
) = S̃1 + S̃2W + S̃3t + S̃4tW + S̃5t

2 + . . . . (8.2.13)

Expand H̃(P, q + ∂S̃1

∂P
) at (P, q) according to Wagner-Platen expansion in Stratonovich

sense and the relation (8.2.5) with y =

(
p
q

)
, as in (5.3.16), and let coefficients of terms
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of the same order of smallness on both sides of (8.2.12) be equal, we have

T̃1 = H̃,

T̃2 = H̃qH̃1p ,

T̃3 = H̃qH̃p +
1

2
(H̃qqH̃1p + H̃qH̃1pq)H̃1p ,

... (8.2.14)

where T̃i are evaluated at (P, q, h).

The same approach applied to H̃1(P, q + ∂S̃1

∂P
) gives

S̃1 = H̃1,

S̃2 = H̃1qH̃1p ,

S̃3 = H̃1qH̃p +
1

2
(H̃1qqH̃1p + H̃1qH̃1pq)H̃1p ,

... (8.2.15)

with S̃i at (P, q, h).

According to the Definition 8.2 of stochastic modified equation, it should hold that(
P̃ (h)

Q̃(h)

)
=

(
P
Q

)
, which requires

S̃1(P, q, h) = S̄1(P, q, h). (8.2.16)

Substitute (8.2.10) into (8.2.16), we get

S̃1(P, q, h)W (h) + S̃2(P, q, h)

∫ h

0

W (s) ◦ dW (s) + T̃1(P, q, h)h

+ S̃3(P, q, h)

∫ h

0

s ◦ dW (s) + T̃2(P, q, h)

∫ h

0

W (s)ds

+ S̃4(P, q, h)

∫ h

0

sW (s) ◦ dW (s) + T̃3(P, q, h)

∫ h

0

sds + . . .

= F1(P, q)W (h) + F2(P, q)

∫ h

0

W (s) ◦ dW (s) + G1(P, q)

∫ h

0

ds

+ F3(P, q)

∫ h

0

s ◦ dW (s) + G2(P, q)

∫ h

0

W (s)ds

+ F4(P, q)

∫ h

0

sW (s) ◦ dW (s) + G3(P, q)

∫ h

0

sds + . . . . (8.2.17)

Substitute (8.2.14)-(8.2.15) and (8.2.6)-(8.2.7) into the left hand-side of (8.2.17) and let
coefficients of terms of the same order of smallness on both sides of (8.2.17) be equal, we
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obtain

H1 = F1,

H̄2 = F2 −H1qH1p

H = G1

H̄3 = F3 − H̄2qH1p −H1qH̄2p −H1qHp

− 1

2
(H1qqH1p + H1qH1pq)H1p

H2 = G2 −HqH1p

H3 = G3 −HqH̄2p −H2H1p −HqHp − 1

2
(HqqH1p + HqH1pq)H1p

... (8.2.18)

It is obvious that the functions Hi and H̄i can be determined explicitly, owing to which
the stochastic modified equation (8.2.5) is established. ¤

Example 8.1. Consider the linear stochastic oscillator (3.1.7)-(3.1.8)

dy = −xdt + σ ◦ dW, y(0) = y0,

dx = ydt, x(0) = x0,

where

H =
1

2
(x2 + y2), H1 = −σx, (8.2.19)

and the symplectic Euler-Maruyama method (5.3.27)-(5.3.28)

xn+1 = xn + hyn+1

yn+1 = yn − hxn + σ∆Wn,

which is generated by the generating function

S̄1 = F1W (h) + F2

∫ h

0

W ◦ dW + G1h (8.2.20)

with

F1 = −σx, F2 = 0, G1 =
1

2
(x2 + y2). (8.2.21)

According to (8.2.18), we have

H2 = 0, H̄2 = 0, (8.2.22)

H3 = −xy, H̄3 = σy, (8.2.23)

. . . .

Thus we have

H̃ =
1

2
(x2 + y2)− hxy + . . . , H̃1 = −σx + hσy + . . . . (8.2.24)
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After truncation to the second term of H̃ and H̃1, we get the truncated modified equation

dỸ = J−1∇H̃dt + J−1∇H̃1 ◦ dW

≈
(

hy − x
y − hx

)
dt +

(
σ
σh

)
◦ dW, (8.2.25)

where Ỹ =

(
y
x

)
, i.e.

dy = (hy − x)dt + σ ◦ dW, y(0) = y0, (8.2.26)

dx = (y − hx)dt + σh ◦ dW, x(0) = x0. (8.2.27)

In the next chapter, we can see through numerical test that phase trajectory of the numer-
ical solution produced by symplectic Euler-Maruyama method (5.3.27)-(5.3.28) coincides
with that of the truncated modified equation (8.2.26)-(8.2.27) very well. In order to simu-
late the solution of (8.2.26)-(8.2.27), we use its symplectic Euler-Maruyama discretization

yn+1 = yn + h(hyn+1 − xn) + σ∆Wn, (8.2.28)

xn+1 = xn + h(yn+1 − hxn) + σh∆Wn, (8.2.29)

which is equivalent to

(
xn+1

yn+1

)
=

( −h4+3h2−1
h2−1

−h
h2−1

h
h2−1

−1
h2−1

)(
xn

yn

)
+

(
σh3−2σh

h2−1−σ
h2−1

)
∆Wn. (8.2.30)

Example 8.2. For the Kubo oscilltor (3.1.16)-(3.1.17)

dp = −aqdt− σq ◦ dW (t), p(0) = p0,

dq = apdt + σp ◦ dW (t), q(0) = q0,

we have
H =

a

2
(p2 + q2), H1 =

σ

2
(p2 + q2),

and the symplectic method (5.3.46)

−(ah +
h2

2
aσ2 + σ∆Wn + σ3

∫ h

0

s ◦ dW )pn+1 + qn+1 = (1 +
hσ2

2
+

h2a2

2
+ aσh∆Wn)qn,

(1 +
hσ2

2
+

h2a2

2
+ aσh∆Wn)pn+1 = pn − (ah + σ∆Wn)qn,

which is generated by (5.3.45)

S̄1 = F1∆Wn + F2

∫ h

0

W ◦ dW + G1h + F3

∫ h

0

s ◦ dW + G2

∫ h

0

Wds + G3

∫ h

0

sds

through the relation (5.1.9), where

F1 =
σ

2
(p2 + q2), F2 = σ2pq, F3 = aσpq +

1

2
σ3p2, (8.2.31)

G1 =
a

2
(p2 + q2), G2 = aσpq, G3 = a2pq +

1

2
aσ2p2. (8.2.32)
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According to (8.2.6)-(8.2.7),

H̃ =
a

2
(p2 + q2) + . . . , (8.2.33)

H̃1 =
σ

2
(p2 + q2)− h

2
σ3p2q + . . . , (8.2.34)

which after truncation to the given term results in the truncated modified equation

dỸ = J−1∇H̃(Ỹ )dt + J−1∇H̃1(Ỹ ) ◦ dW

≈
( −aq

ap

)
dt +

(
h
2
σ3p2 − σq

σp− hσ3pq

)
◦ dW, (8.2.35)

where Ỹ =

(
p
q

)
. It can also be written in the form

dp = −aqdt + (
h

2
σ3p2 − σq) ◦ dW, p(0) = p0, (8.2.36)

dq = apdt + (σp− hσ3pq) ◦ dW, q(0) = q0. (8.2.37)

In numerical test, we simulate the solution of the modified equation (8.2.36)-(8.2.37) by
its symplectic Euler-Maruyama discretization

pn+1 = pn − ahqn + (
h

2
σ3p2

n+1 − σqn)∆Wn, (8.2.38)

qn+1 = qn + ahpn+1 + (σpn+1 − hσ3pn+1qn)∆Wn, (8.2.39)

which can be realized by fixed point iteration.

8.3 Stochastic Modified Equations Based on S̄3

Construction of stochastic modified equation via generating function S̄3 is given in the
following. The methods and results are similar to that of using generating function S̄1.

Suppose a symplectic method Φh : (p, q) 7→ (P,Q) is generated by S̄3(u, v, h), where
u = P+p

2
, v = Q+q

2
, via the relation (5.1.15)-(5.1.16)

P = p− ∂T
2 S̄3(u, v), Q = q + ∂T

1 S̄3(u, v).

We can prove that the modified equation of the method Φh is a stochastic Hamiltonian
system, phase trajectory of which is generated by a function S̃3(u, v, t) through the rela-
tion (5.1.15)-(5.1.16).

Theorem 8.4. Given a stochastic Hamiltonian system

dy = J−1∇H(y)dt + J−1∇H1(y) ◦ dW (t), (8.3.1)
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where y =

(
p
q

)
. Assume that the symplectic method Φh has a generating function

S̄3(u, v, h) = F1(u, v)W (h) + F2(u, v)

∫ h

0

W (s) ◦ dW (s) + G1(u, v)

∫ h

0

ds

+ F3(u, v)

∫ h

0

s ◦ dW (s) + G2(u, v)

∫ h

0

W (s)ds

+ F4(u, v)

∫ h

0

sW (s) ◦ dW (s) + G3(u, v)

∫ h

0

sds + . . . , (8.3.2)

where u = P+p
2

, v = Q+q
2

. Then, the modified equation of Φh is a stochastic Hamiltonian
system

dy = J−1∇H̃(y)dt + J−1∇H̃1(y) ◦ dW (t), (8.3.3)

where

H̃(p, q) = H(p, q) + H2(p, q)W + H3(p, q)h + H4(p, q)hW + H5(p, q)h
2 + . . . ,

(8.3.4)

H̃1(p, q) = H1(p, q) + H̄2(p, q)W + H̄3(p, q)h + H̄4(p, q)hW + H̄5(p, q)h
2 + . . . .

(8.3.5)

Proof. As in the proof of Theorem 8.3, we first assume that the function S̃3(u, v, t)
generates via relation (5.1.15)-(5.1.16) the phase trajectory {P (t), Q(t)} of the modified
equation, which is a stochastic Hamiltonian system with Hamiltonians H̃ and H̃1 in
(8.3.4)-(8.3.5), and then to find the functions Hi and H̄i. According to Theorem 5.6, it is
sufficient that S̃3 satisfies the following Hamilton-Jacobi equation with noise

∂S̃3

∂t
= H̃(P,Q) + H̃1(P,Q)Ẇ , (8.3.6)

where

P = u− 1

2

∂S̃3

∂v

T

, Q = v +
1

2

∂S̃3

∂u

T

. (8.3.7)

Suppose that

S̃3(u, v, t) = S̃1(u, v, h)W (t) + S̃2(u, v, h)

∫ t

0

W ◦ dW + T̃1(u, v, h)t

+ S̃3(u, v, h)

∫ t

0

s ◦ dW (s) + T̃2(u, v, h)

∫ t

0

W (s)ds

+ S̃4(u, v, h)

∫ t

0

sW (s) ◦ dW (s) + T̃3(u, v, h)

∫ t

0

sds + . . . . (8.3.8)

Thus

∂S̃3

∂t
= (T̃1 + T̃2W + T̃3t + T̃4tW + T̃5t

2 + . . .)

+ (S̃1 + S̃2W + S̃3t + S̃4tW + S̃5t
2 + . . .)Ẇ , (8.3.9)
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where T̃i and S̃i are evaluated at (u, v, h).
Substituting (8.3.9) into (8.3.6) yields

H̃(P,Q) = T̃1 + T̃2W + T̃3t + T̃4tW + T̃5t
2 + . . . , (8.3.10)

H̃1(P,Q) = S̃1 + S̃2W + S̃3t + S̃4tW + S̃5t
2 + . . . . (8.3.11)

Expand H̃(P,Q) at (u, v) according to the formula of Wagner-Platen expansion in Stratonovich
sense and the relation (8.3.3), and let coefficients of terms of the same order of smallness
on both sides of (8.3.10) be equal, we obtain

T̃1 = H̃,

T̃2 =
1√
2
(H̃vH̃1u − H̃uH̃1v),

T̃3 =
1

2
[
1

2
(H̃vvH̃1u + H̃vH̃1uv)H̃1u +

1

2
(H̃uuH̃1v + H̃uH̃1uv)H̃1v

− (H̃uvH̃1v + H̃uH̃1vv)H̃1u ],
... (8.3.12)

The same approach applied to H̃1(P,Q) and the relation (8.3.11) gives

S̃1 = H̃1,

S̃2 =
1√
2
(H̃1vH̃1u − H̃1uH̃1v) = 0,

S̃3 =
1

2
[H̃1vH̃u − H̃1uH̃v +

1

2
(H̃1vvH̃1u + H̃1vH̃1uv)H̃1u +

1

2
(H̃1uuH̃1v + H̃1uH̃1uv)H̃1v

− (H̃1uvH̃1v + H̃1uH̃1vv)H̃1u ],
... (8.3.13)

As (8.2.16) in the proof of Theorem 8.3, the definition of modified equation requires

S̃3(u, v, h) = S̄3(u, v, h). (8.3.14)

(8.3.2), (8.3.8) and (8.3.14) gives

S̃1(u, v, h)W (h) + S̃2(u, v, h)

∫ h

0

W ◦ dW + T̃1(u, v, h)h

+ S̃3(u, v, h)

∫ h

0

s ◦ dW + T̃2(u, v, h)

∫ h

0

Wds

+ S̃4(u, v, h)

∫ h

0

sW ◦ dW + T̃3(u, v, h)

∫ h

0

sds + . . .

= F1(u, v)W (h) + F2(u, v)

∫ h

0

W ◦ dW + G1(u, v)h

+ F3(u, v)

∫ h

0

s ◦ dW + G2(u, v)

∫ h

0

Wds

+ F4(u, v)

∫ h

0

sW ◦ dW + G3(u, v)

∫ h

0

sds + . . . . (8.3.15)
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Substitute (8.3.12), (8.3.13) and (8.3.4)-(8.3.5) into (8.3.15), and let coefficients of terms
of the same order of smallness on both sides of (8.3.15) be equal, we get

H1 = F1,

H̄2 = F2,

H = G1,

H̄3 = F3 − 1

2
[H1vHu −H1uHv +

1

2
(H1vvH1u + H1vH1uv)H1u

+
1

2
(H1uuH1v + H1uH1uv)H1v − (H1uvH1v + H1uH1vv)H1u ],

H2 = G2 − 1√
2
(HvH1u −HuH1v),

H3 = G3 − 1√
2
(HvH̄2u + H2vH1u −HuH̄2v −H2uH1v)−

1

2
[
1

2
(HvvH1u + HvH1uv)H1u

+
1

2
(HuuH1v + HuH1uv)H1v − (HuvH1v + HuH1vv)H1u ],

... (8.3.16)

which ensures existence of (8.3.4)-(8.3.5). ¤

Example 8.3. We study in this example the modified equation of the midpoint rule
(5.4.22)-(5.4.23)

xn+1 = xn + h
yn + yn+1

2
,

yn+1 = yn − h
xn + xn+1

2
+ σ∆Wn

for the linear stochastic oscillator (3.1.7)-(3.1.8)

dy = −xdt + σ ◦ dW, y(0) = y0,

dx = ydt, x(0) = x0,

which has Hamiltonians

H =
1

2
(x2 + y2), H1 = −σx. (8.3.17)

According to Example 5.3, the midpoint rule (5.4.22)-(5.4.23) is generated by

S̄3(u, v, h) = F1∆Wn + F2

∫ h

0

W ◦ dW + G1h, (8.3.18)

where

F1 = −σv, F2 = 0, G1 =
1

2
(u2 + v2). (8.3.19)

Substitute (8.3.17) and (8.3.19) into (8.3.16), we obtain

H1 = −σv, H̄2 = 0, H =
1

2
(u2 + v2),

H2 =
1√
2
σu, H̄3 =

1

2
σu, H3 = −3

4
σ2

. . . . (8.3.20)
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Thus, according to (8.3.4)-(8.3.5), the truncated Hamiltonians are

H̃(y, x) =
1

2
(y2 + x2) +

1√
2
σyW (h)− 3

4
σ2h, (8.3.21)

H̃1(y, x) = −σx +
1

2
σyh. (8.3.22)

Consequently the truncated modified equation is

dY = J−1∇H̃(Y )dt + J−1∇H̃1(Y ) ◦ dW

≈
( −x

y + 1√
2
σW (h)

)
dt +

(
σ

1
2
σh

)
◦ dW, (8.3.23)

which, with Y =

(
y
x

)
, is equivalent to

dy = −xdt + σ ◦ dW, y(0) = y0, (8.3.24)

dx = (y +
σ√
2
W (h))dt +

σ

2
h ◦ dW, x(0) = x0. (8.3.25)

In numerical tests in the next chapter, we simulate the solution of the truncated modified
equation (8.3.24)-(8.3.25) by its midpoint discretization

yn+1 = yn − h
xn + xn+1

2
+ σ∆Wn, (8.3.26)

xn+1 = xn + h
yn + yn+1

2
+

h√
2
σ∆Wn +

1

2
σh∆Wn, (8.3.27)

which can also be written as

(
xn+1

yn+1

)
=

(
4−h2

4+h2
4h

4+h2

−4h
4+h2

4−h2

4+h2

)(
xn

yn

)
+

4

4 + h2

(
( 1√

2
+ 1)σh

σ −
√

2+1
4

σh2

)
∆Wn. (8.3.28)

Example 8.4. Consider the Kubo oscillator (3.1.16)-(3.1.17)

dp = −aqdt− σq ◦ dW (t), p(0) = p0,

dq = apdt + σp ◦ dW (t), q(0) = q0,

which has Hamiltonians

H =
a

2
(p2 + q2), H1 =

σ

2
(p2 + q2), (8.3.29)

and its midpoint discretization (5.4.31)-(5.4.32)

pn+1 = pn − ah
qn + qn+1

2
− σ

qn + qn+1

2
∆Wn,

qn+1 = qn + ah
pn + pn+1

2
+ σ

pn + pn+1

2
∆Wn,
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which is generated by

S̄3(u, v, h) = F1∆Wn + F2

∫ h

0

W ◦ dW + G1h (8.3.30)

with
F1 =

σ

2
(P 2 + q2), F2 = 0, G1 =

a

2
(P 2 + q2). (8.3.31)

(8.3.16), (8.3.29) and (8.3.31) gives

H1 =
σ

2
(p2 + q2), H =

a

2
(p2) + q2, H̄2 = 0,

H2 = 0, H̄3 =
σ3

4
(p2 − q2), H3 =

aσ2

4
(p2 − q2),

. . . . (8.3.32)

(8.3.4)-(8.3.5) and (8.3.32) thus yield

H̃ =
a

2
(p2 + q2) +

h

4
aσ2(p2 − q2) + . . . , (8.3.33)

H̃1 =
σ

2
(p2 + q2) +

hσ3

4
(p2 − q2) + . . . . (8.3.34)

Consequently, the modified equation truncated to the given terms is

dy = J−1∇H̃dt + J−1∇H̃1 ◦ dW (t)

≈
(

haσ2q
2

− aq

ap + haσ2p
2

)
dt +

(
hσ3q

2
− σq

σp + hσ3p
2

)
◦ dW, (8.3.35)

which can also be written as

dp = (
haσ2q

2
− aq)dt + (

hσ3q

2
− σq) ◦ dW, p(0) = p0, (8.3.36)

dq = (ap +
haσ2p

2
)dt + (σp +

hσ3p

2
) ◦ dW, q(0) = q0. (8.3.37)

In the numerical tests in Chapter 9, we simulate the solution of the truncated modified
equation (8.3.36)-(8.3.37) with its midpoint discretization

(
pn+1

qn+1

)
=

1

1− AB

(
1 + AB 2A

2B 1 + AB

)(
pn

qn

)
, (8.3.38)

where

A =
1

2
(C −D), B =

1

2
(C + D) (8.3.39)

with

C =
h2aσ2

2
+

hσ3

2
∆Wn, D = ah + σ∆Wn. (8.3.40)
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8.4 Modified Equations for Methods with Two Noises

In this section we discuss modified equation of symplectic methods for stochastic Hamil-
tonian system with two noises. We mainly use results in Chapter 6. Systems and methods
with more noises can be treated similarly.

Suppose that a symplectic method with two noises Φh : (p, q) 7→ (P,Q) is generated
by S̄1(P, q, h) via the relation (5.1.9)

p = P +
∂S̄1

∂q

T

, Q = q +
∂S̄1

∂P

T

.

We prove in the following that its modified equation is a stochastic Hamiltonian system
with two noises.

Theorem 8.5. Given a stochastic Hamiltonian system with two noises

dy = J−1∇H(y)dt + J−1∇H1(y) ◦ dW1(t) + J−1∇H2(y) ◦ dW2(t), (8.4.1)

where y =

(
p
q

)
. Suppose that a symplectic method Φh has generating function

S̄1(P, q, h) = F1(P, q)W1(h) + K1(P, q)W2(h)

+ F2(P, q)

∫ h

0

W1 ◦ dW1 + K2(P, q)

∫ h

0

W2 ◦ dW2

+ G1(P, q)h + F̄2(P, q)

∫ h

0

W2 ◦ dW1 + K̄2(P, q)

∫ h

0

W1 ◦ dW2

+ G2(P, q)

∫ h

0

W1ds + Ḡ2(P, q)

∫ h

0

W2ds

+ F̃2(P, q)

∫ h

0

W1W2 ◦ dW1 + K̃2(P, q)

∫ h

0

W1W2 ◦ dW2

+ F3(P, q)

∫ h

0

s ◦ dW1 + K3(P, q)

∫ h

0

s ◦ dW2

+ G̃2(P, q)

∫ h

0

W1W2ds + G3(P, q)

∫ h

0

sds

+ . . . . (8.4.2)

Then the modified equation of Φh is a stochastic Hamiltonian system with two noises

dy = J−1∇H̃(y)dt + J−1∇H̃1(y) ◦ dW1(t) + J−1∇H̃2(y) ◦ dW2(t), (8.4.3)

where

H̃(p, q) = H(p, q) + H3(p, q)W1 + H4(p, q)W2 + H5(p, q)W1W2 + H6(p, q)h

+ H7(p, q)hW1 + H8(p, q)hW2 + H9(p, q)hW1W2 + H10(p, q)h
2 + . . .(8.4.4)

H̃1(p, q) = H1(p, q) + H̄2(p, q)W1 + H̄3(p, q)W2 + H̄4(p, q)W1W2 + H̄5(p, q)h

+ H̄6(p, q)hW1 + H̄7(p, q)hW2 + H̄8(p, q)hW1W2 + H̄9(p, q)h
2 + . . .(8.4.5)

H̃2(p, q) = H2(p, q) + Ĥ2(p, q)W2 + Ĥ3(p, q)W1 + Ĥ4(p, q)W1W2 + Ĥ5(p, q)h

+ Ĥ6(p, q)hW2 + Ĥ7(p, q)hW1 + Ĥ8(p, q)hW1W2 + Ĥ9(p, q)h
2 + . . . .(8.4.6)
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Proof. Suppose the phase trajectory of the stochastic Hamiltonian system with two noises
(8.4.3) is generated by the function S̃1(P, q, t) through the relation (5.1.9). According
to Theorem 6.2, it is sufficient that S̃1(P, q, t) satisfies the following Hamilton-Jacobi
equation with two noises

∂S̃1

∂t
= H̃(P,Q) + H̃1(P,Q)Ẇ1 + H̃2(P,Q)Ẇ2, (8.4.7)

where Q = q + ∂S̃1

∂P

T
. Suppose

S̃1(P, q, t) = S̃1(P, q, h)W1(t) + Ũ1(P, q, h)W2(t)

+ S̃2(P, q, h)

∫ t

0

W1 ◦ dW1 + Ũ2(P, q, h)

∫ t

0

W2 ◦ dW2

+ T̃1(P, q, h)t + Ŝ2(P, q, h)

∫ t

0

W2 ◦ dW1 + Û2(P, q, h)

∫ t

0

W1 ◦ dW2

+ T̃2(P, q, h)

∫ t

0

W1ds + T̂2(P, q, h)

∫ t

0

W2ds

+ Š2(P, q, h)

∫ t

0

W1W2 ◦ dW1 + Ǔ2(P, q, h)

∫ t

0

W1W2 ◦ dW2

+ S̃3(P, q, h)

∫ t

0

s ◦ dW1 + U3(P, q, h)

∫ t

0

s ◦ dW2

+ Ť2(P, q, h)

∫ t

0

W1W2ds + T̃3(P, q, h)

∫ t

0

sds

+ . . . . (8.4.8)

Thus

∂S̃1

∂t
= T̃1 + T̃2W1 + T̂2W2 + Ť2W1W2 + T̃3t + T̃4tW1 + T̂4tW2

+ Ť4tW1W2 + T̃5t
2 + . . .

+ Ẇ1(S̃1 + S̃2W1 + Ŝ2W2 + Š2W1W2 + S̃3t + S̃4tW1 + Ŝ4tW2

+ Š4tW1W2 + S̃5t
2 + . . .)

+ Ẇ2(Ũ1 + Ũ2W2 + Û2W1 + Ǔ2W1W2 + Ũ3t + Ũ4tW2 + Û4tW1

+ Ǔ4tW1W2 + Ũ5t
2 + . . .), (8.4.9)

where the functions T̃i, T̂i, Ťi, S̃i, Ŝi, Ši, Ũi, Ûi and Ǔi are evaluated at (P, q, h).
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As a consequence of (8.4.7) and (8.4.9), we have

H̃(P,Q) = T̃1 + T̃2W1 + T̂2W2 + Ť2W1W2 + T̃3t

+ T̃4tW1 + T̂4tW2 + Ť4tW1W2 + T̃5t
2 + . . . , (8.4.10)

H̃1(P,Q) = S̃1 + S̃2W1 + Ŝ2W2 + Š2W1W2 + S̃3t

+ S̃4tW1 + Ŝ4tW2 + Š4tW1W2 + S̃5t
2 + . . . , (8.4.11)

H̃2(P,Q) = Ũ1 + Ũ2W2 + Û2W1 + Ǔ2W1W2 + Ũ3t

+ Ũ4tW2 + Û4tW1 + Ǔ4tW1W2 + Ũ5t
2 + . . . . (8.4.12)

Expand H̃(P,Q) at (P, q) according to the formula of Wagner-Platen expansion in Stratonovich
sense and the relation (8.4.3), and then let coefficients of terms of the same order of small-
ness on both sides of (8.4.10) be equal, we obtain

T̃1 = H̃,

T̃2 = H̃qH̃1p ,

T̂2 = H̃qH̃2p ,

Ť2 = (H̃qqH̃1p + H̃qH̃1pq)H̃2p + (H̃qqH̃2p + H̃qH̃2pq)H̃1p ,

T̃3 = H̃qH̃p +
1

2
(H̃qqH̃1p + H̃qH̃1pq)H̃1p +

1

2
(H̃qqH̃2p + H̃qH̃2pq)H̃2p ,

... (8.4.13)

The same approach applied to (8.4.11) and (8.4.12) gives

S̃1 = H̃1,

S̃2 = H̃1qH̃1p ,

Ŝ2 = H̃1qH̃2p ,

Š2 = (H̃1qqH̃1p + H̃1qH̃1pq)H̃2p + (H̃1qqH̃2p + H̃1qH̃2pq)H̃1p ,

S̃3 = H̃1qH̃p +
1

2
(H̃1qqH̃1p + H̃1qH̃1pq)H̃1p +

1

2
(H̃1qqH̃2p + H̃1qH̃2pq)H̃2p ,

... (8.4.14)

and

Ũ1 = H̃2,

Ũ2 = H̃2qH̃1p ,

Û2 = H̃2qH̃2p ,

Ǔ2 = (H̃2qqH̃1p + H̃2qH̃1pq)H̃2p + (H̃2qqH̃2p + H̃2qH̃2pq)H̃1p ,

Ũ3 = H̃2qH̃p +
1

2
(H̃2qqH̃1p + H̃2qH̃1pq)H̃1p +

1

2
(H̃2qqH̃2p + H̃2qH̃2pq)H̃2p ,

... (8.4.15)

respectively. As in the proof of Theorem 8.3, substitute (8.4.4)-(8.4.6) and (8.4.13)-
(8.4.15) into the relation

S̃1(P, q, h) = S̄1(P, q, h) (8.4.16)
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with the two functions in this equation given in (8.4.8) and (8.4.2) respectively, and let
coefficients of corresponding terms on both sides of (8.4.16) be equal, we get

H1 = F1,

H2 = K1,

H̄2 = F2 −H1qH1p ,

Ĥ2 = K2 −H2qH1p ,

H = G1,

H̄3 = F̄2 −H1qH2p ,

Ĥ3 = K̄2 −H2qH2p ,

H3 = G2 −HqH1p ,

H4 = Ḡ2 −HqH2p ,

H̄4 = F̃2 − H̄3qH1p −H1qH̄3p − H̄2qH2p −H1qĤ3p

− (H1qqH1p + H1qH1pq)H2p − (H1qqH2p + H1qH2pq)H1p ,

Ĥ4 = K̃2 −H2qH̄2p − Ĥ3qH1p − Ĥ2qH2p −H2qĤ2p

− (H2qqH1p + H2qH1pq)H2p − (H2qqH2p + H2qH2pq)H1p ,

H̄5 = F3 − H̄2qH1p −H1qH̄2p − H̄3qH2p − Ĥ2pH1q −H1qHp

− 1

2
(H1qqH1p + H1qH1pq)H1p −

1

2
(H1qqH2p + H1qH2pq)H2p

Ĥ5 = K3 − Ĥ2qH1p − H̄3pH2q − Ĥ3qH2p − Ĥ3pH2q −H2qHp

− 1

2
(H2qqH1p + H2qH1pq)H1p −

1

2
(H2qqH2p + H2qH2pq)H2p ,

H5 = G̃2 −H4qH1p − H̄3pHq −H3qH2p − Ĥ3pHq

− (HqqH1p + HqH1pq)H2p − (HqqH2p + HqH2pq)H1p ,

H6 = G3 −H3qH1p − H̄2pHq −H4qH2p − Ĥ2pHq −HqHp

− 1

2
(HqqH1p + HqH1pq)H1p −

1

2
(HqqH2p + HqH2pq)H2p ,

..., (8.4.17)

from which the Hamiltonians H̃, H̃1 and H̃2 in (8.4.4)-(8.4.6) are determined explicitly. ¤

Example 8.5. For the model of synchrotron oscillation (3.1.22)-(3.1.23)

dp = −ω2sin(q)dt− σ1cos(q) ◦ dW1 − σ2sin(q) ◦ dW2, p(0) = p0,

dq = pdt, q(0) = q0,

we have

H = −ω2cos(q) +
p2

2
, H1 = σ1sin(q), H2 = −σ2cos(q). (8.4.18)

Now consider the symplectic method (6.1.43)-(6.1.44)

pn+1 = pn − hω2sin(qn)− σ1 cos(qn)∆nW1 − σ2sin(qn)∆nW2,

qn+1 = qn + hpn+1,
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which is generated by

S̄1(P, q, h) = F1W1(h) + K1W2(h) + F2

∫ h

0

W1 ◦ dW1 + K2

∫ h

0

W2 ◦ dW2

+ G1h + F̄2

∫ h

0

W2 ◦ dW1 + K̄2

∫ h

0

W1 ◦ dW2 (8.4.19)

via relation (5.1.9), where

G1 = −ω2cos(q) +
p2

2
, F1 = σ1sin(q), F2 = F̄2 = 0, (8.4.20)

K1 = −σ2 cos(q), K2 = K̄2 = 0. (8.4.21)

Substitute (8.4.18) and (8.4.20)-(8.4.21) into (8.4.17), we obtain

H1 = σ1sin(q), H2 = −σ2 cos(q), H̄2 = 0,

Ĥ2 = 0, H = −ω2 cos(q) +
p2

2
, H̄3 = 0,

Ĥ3 = 0, H3 = 0, H4 = 0,

H̄4 = 0, Ĥ4 = 0, H̄5 = −σ1p cos(q),

Ĥ5 = −σ2psin(q), H5 = 0, H6 = −pω2sin(q),

. . . . (8.4.22)

Thus

H̃ = −ω2 cos(q) +
p2

2
− hω2psin(q) + . . . , (8.4.23)

H̃1 = σ1sin(q)− hσ1p cos(q) + . . . , (8.4.24)

H̃2 = −σ2 cos(q)− hσ2psin(q) + . . . , (8.4.25)

and the truncated modified equation is

dy = J−1∇H̃(y)dt + J−1∇H̃1(y) ◦ dW1(t) + J−1∇H̃2(y) ◦ dW2(t)

≈
(

hω2p cos(q)− ω2sin(q)
p− hω2sin(q)

)
dt +

( −(σ1 cos(q) + hσ1psin(q))
−hσ1 cos(q)

)
◦ dW1

+

(
hσ2p cos(q)− σ2sin(q)

−hσ2sin(q)

)
◦ dW2, (8.4.26)

which is also written as

dp = (hω2p cos(q)− ω2sin(q))dt− (σ1 cos(q) + hσ1psin(q)) ◦ dW1

+ (hσ2p cos(q)− σ2sin(q)) ◦ dW2, p(0) = p0,

(8.4.27)

dq = (p− hω2sin(q))dt− hσ1 cos(q) ◦ dW1 − hσ2sin(q) ◦ dW2, q(0) = q0.

(8.4.28)
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In numerical tests in Chapter 9, we simulate the solution of (8.4.27)-(8.4.28) by its sym-
plectic Euler-Maruyama discretization

pn+1 = pn + h2ω2pn+1 cos(qn)− hω2sin(qn)− (σ1 cos(qn) + hσ1pn+1sin(qn))∆nW1

+ (hσ2pn+1 cos(qn)− σ2sin(qn))∆nW2, (8.4.29)

qn+1 = qn + hpn+1 − h2ω2sin(qn)− hσ1 cos(qn)∆nW1 − hσ2sin(qn)∆nW2. (8.4.30)

We realize it by fixed point iteration.

We can also use generating function S̄3(u, v, h) with two noises to construct modified
equation of a symplectic method with two noises. Assume that the symplectic method
Φh : (p, q) 7→ (P,Q) is generated by S̄3(u, v, h) via relation (5.1.15)-(5.1.16)

P = p− ∂T
2 S̄3(u, v), Q = q + ∂T

1 S̄3(u, v),

where u = P+p
2

, v = Q+q
2

. Then we can find as in Theorem 8.5 the modified equation of
Φh, which is a stochastic Hamiltonian system, by using S̄3(u, v, h).

Theorem 8.6. Given a stochastic Hamiltonian system with two noises (8.4.1)

dy = J−1∇H(y)dt + J−1∇H1(y) ◦ dW1(t) + J−1∇H2(y) ◦ dW2(t),

where y =

(
p
q

)
. Suppose that a symplectic method Φh has generating function

S̄3(u, v, h) = F1(u, v)W1(h) + K1(u, v)W2(h)

+ F2(u, v)

∫ h

0

W1 ◦ dW1 + K2(u, v)

∫ h

0

W2 ◦ dW2

+ G1(u, v)h + F̄2(u, v)

∫ h

0

W2 ◦ dW1 + K̄2(u, v)

∫ h

0

W1 ◦ dW2

+ G2(u, v)

∫ h

0

W1ds + Ḡ2(u, v)

∫ h

0

W2ds

+ F̃2(u, v)

∫ h

0

W1W2 ◦ dW1 + K̃2(u, v)

∫ h

0

W1W2 ◦ dW2

+ F3(u, v)

∫ h

0

s ◦ dW1 + K3(u, v)

∫ h

0

s ◦ dW2

+ G̃2(u, v)

∫ h

0

W1W2ds + G3(u, v)

∫ h

0

sds

+ . . . . (8.4.31)

Then the modified equation of Φh is a stochastic Hamiltonian system with two noises

dy = J−1∇H̃(y)dt + J−1∇H̃1(y) ◦ dW1(t) + J−1∇H̃2(y) ◦ dW2(t), (8.4.32)
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where

H̃(p, q) = H(p, q) + H3(p, q)W1 + H4(p, q)W2 + H5(p, q)W1W2 + H6(p, q)h

+ H7(p, q)hW1 + H8(p, q)hW2 + H9(p, q)hW1W2 + H10(p, q)h
2 + . . . ,

(8.4.33)

H̃1(p, q) = H1(p, q) + H̄2(p, q)W1 + H̄3(p, q)W2 + H̄4(p, q)W1W2 + H̄5(p, q)h

+ H̄6(p, q)hW1 + H̄7(p, q)hW2 + H̄8(p, q)hW1W2 + H̄9(p, q)h
2 + . . . ,

(8.4.34)

H̃2(p, q) = H2(p, q) + Ĥ2(p, q)W2 + Ĥ3(p, q)W1 + Ĥ4(p, q)W1W2 + Ĥ5(p, q)h

+ Ĥ6(p, q)hW2 + Ĥ7(p, q)hW1 + Ĥ8(p, q)hW1W2 + Ĥ9(p, q)h
2 + . . . .

(8.4.35)

Proof. Suppose that the phase trajectory of the stochastic Hamiltonian system (8.4.32) is
generated by the function S̃3(u, v, t) via relation (5.1.15)-(5.1.16). Thus according to The-
orem 6.6, it is sufficient that S̃3(u, v, t) satisfies the following Hamilton-Jacobi equation
with two noises:

∂S̃3

∂t
= H̃(P,Q) + H̃1(P,Q)Ẇ1 + H̃2(P,Q)Ẇ2, S̃3(u, v, 0) = 0, (8.4.36)

where P = u− 1
2

∂S̃3

∂v

T
, Q = v + 1

2
∂S̃3

∂u

T
. In order to solve the equation (8.4.36), let

S̃3(u, v, t) = S̃1(u, v, h)W1(t) + Ũ1(u, v, h)W2(t)

+ S̃2(u, v, h)

∫ t

0

W1 ◦ dW1 + Ũ2(u, v, h)

∫ t

0

W2 ◦ dW2

+ T̃1(u, v, h)t + Ŝ2(u, v, h)

∫ t

0

W2 ◦ dW1 + Û2(u, v, h)

∫ t

0

W1 ◦ dW2

+ T̃2(u, v, h)

∫ t

0

W1ds + T̂2(u, v, h)

∫ t

0

W2ds

+ Š2(u, v, h)

∫ t

0

W1W2 ◦ dW1 + Ǔ2(u, v, h)

∫ t

0

W1W2 ◦ dW2

+ S̃3(u, v, h)

∫ t

0

s ◦ dW1 + U3(u, v, h)

∫ t

0

s ◦ dW2

+ Ť2(u, v, h)

∫ t

0

W1W2ds + T̃3(u, v, h)

∫ t

0

sds

+ . . . . (8.4.37)
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Thus

∂S̃3

∂t
= T̃1 + T̃2W1 + T̂2W2 + Ť2W1W2 + T̃3t + T̃4tW1 + T̂4tW2

+ Ť4tW1W2 + T̃5t
2 + . . .

+ Ẇ1(S̃1 + S̃2W1 + Ŝ2W2 + Š2W1W2 + S̃3t + S̃4tW1 + Ŝ4tW2

+ Š4tW1W2 + S̃5t
2 + . . .)

+ Ẇ2(Ũ1 + Ũ2W2 + Û2W1 + Ǔ2W1W2 + Ũ3t + Ũ4tW2 + Û4tW1

+ Ǔ4tW1W2 + Ũ5t
2 + . . .), (8.4.38)

where the functions T̃i, T̂i, Ťi, S̃i, Ŝi, Ši, Ũi, Ûi and Ǔi are evaluated at (u, v, h).

(8.4.36) and (8.4.38) implies

H̃(P,Q) = T̃1 + T̃2W1 + T̂2W2 + Ť2W1W2 + T̃3t

+ T̃4tW1 + T̂4tW2 + Ť4tW1W2 + T̃5t
2 + . . . , (8.4.39)

H̃1(P,Q) = S̃1 + S̃2W1 + Ŝ2W2 + Š2W1W2 + S̃3t

+ S̃4tW1 + Ŝ4tW2 + Š4tW1W2 + S̃5t
2 + . . . , (8.4.40)

H̃2(P,Q) = Ũ1 + Ũ2W2 + Û2W1 + Ǔ2W1W2 + Ũ3t

+ Ũ4tW2 + Û4tW1 + Ǔ4tW1W2 + Ũ5t
2 + . . . . (8.4.41)

Expand H̃(P,Q) at (u, v) according to the formula of Wagner-Platen expansion in Stratonovich
sense and the relation (8.4.32), and then let coefficients of terms of the same order of
smallness on both sides of (8.4.39) be equal, we obtain

T̃1 = H̃,

T̃2 =
1√
2
(H̃vH̃1u − H̃uH̃1v),

T̂2 =
1√
2
(H̃vH̃2u − H̃uH̃2v),

Ť2 =
1

2
[H̃1v(H̃uuH̃2v + H̃uH̃2uv) + H̃1u(H̃vvH̃2u + H̃vH̃2uv − H̃uvH̃2v − H̃uH̃2vv)

+ H̃2v(H̃uuH̃1v + H̃uH̃1uv) + H̃1u(H̃vvH̃1u + H̃vH̃1uv − H̃uvH̃1v − H̃uH̃1vv)],

T̃3 =
1

2
[H̃vH̃1u − H̃uH̃1v + H̃1v(H̃uuH̃1v + H̃uH̃1uv) + H̃1u(H̃vvH̃1u + H̃vH̃1uv

− H̃uvH̃1v − H̃uH̃1vv) + H̃2v(H̃uuH̃2v + H̃uH̃2uv)

+ H̃2u(H̃vvH̃2u + H̃vH̃2uv − H̃uvH̃2v − H̃uH̃2vv)],

. . . . (8.4.42)
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The same approach applied to H̃1(P,Q) and H̃2(P,Q) gives

S̃1 = H̃1,

S̃2 =
1√
2
(H̃1vH̃1u − H̃1uH̃1v) = 0,

Ŝ2 =
1√
2
(H̃1vH̃2u − H̃1uH̃2v),

Š2 =
1

2
[H̃1v(H̃1uuH̃2v + H̃1uH̃2uv) + H̃1u(H̃1vvH̃2u + H̃1vH̃2uv − H̃1uvH̃2v − H̃1uH̃2vv)

+ H̃2v(H̃1uuH̃1v + H̃1uH̃1uv) + H̃1u(H̃1vvH̃1u + H̃1vH̃1uv − H̃1uvH̃1v − H̃1uH̃1vv)],

S̃3 =
1

2
[H̃1vH̃1u − H̃1uH̃1v + H̃1v(H̃1uuH̃1v + H̃1uH̃1uv) + H̃1u(H̃1vvH̃1u + H̃1vH̃1uv

− H̃1uvH̃1v − H̃1uH̃1vv) + H̃2v(H̃1uuH̃2v + H̃1uH̃2uv)

+ H̃2u(H̃1vvH̃2u + H̃1vH̃2uv − H̃1uvH̃2v − H̃1uH̃2vv)],

. . . , (8.4.43)

and

Ũ1 = H̃2,

Ũ2 =
1√
2
(H̃2vH̃1u − H̃2uH̃1v),

Û2 =
1√
2
(H̃2vH̃2u − H̃2uH̃2v) = 0,

Ǔ2 =
1

2
[H̃1v(H̃2uuH̃2v + H̃2uH̃2uv) + H̃1u(H̃2vvH̃2u + H̃2vH̃2uv − H̃2uvH̃2v − H̃2uH̃2vv)

+ H̃2v(H̃2uuH̃1v + H̃2uH̃1uv) + H̃1u(H̃2vvH̃1u + H̃2vH̃1uv − H̃2uvH̃1v − H̃2uH̃1vv)],

Ũ3 =
1

2
[H̃2vH̃1u − H̃2uH̃1v + H̃1v(H̃2uuH̃1v + H̃2uH̃1uv) + H̃1u(H̃2vvH̃1u + H̃2vH̃1uv

− H̃2uvH̃1v − H̃2uH̃1vv) + H̃2v(H̃2uuH̃2v + H̃2uH̃2uv)

+ H̃2u(H̃2vvH̃2u + H̃2−vH̃2uv − H̃2uvH̃2v − H̃2uH̃2vv)],

. . . , (8.4.44)

respectively.

Substitute (8.4.42)-(8.4.44) and (8.4.33)-(8.4.35) into the relation

S̃3(u, v, h) = S̄3(u, v, h),
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and compares coefficients of terms with the same order of smallness on both sides of the
equation, we obtain

H1 = F1,

H2 = K1,

H̄2 = F2,

Ĥ2 = K2 − 1√
2
(H̃2vH̃1u − H̃2uH̃1v),

H = G1,

H̄3 = F̄2 − 1√
2
(H̃1vH̃2u − H̃1uH̃2v),

Ĥ3 = K̄2,

H3 = G2 − 1√
2
(H̃vH̃1u − H̃uH̃1v),

H4 = Ḡ2 − 1√
2
(H̃vH̃2u − H̃uH̃2v),

..., (8.4.45)

from which the Hamiltonians in (8.4.33)-(8.4.35) are determined explicitly. ¤

Example 8.6. For the system with two additive noises (3.1.27)-(3.1.28)

dp = −qdt + γ ◦ dW2(t), p(0) = p0,

dq = pdt + σ ◦ dW1(t), q(0) = q0,

we have

H =
1

2
(p2 + q2), H1 = σp, H2 = −γq.

Its symplectic discretization (6.2.32)-(6.2.33)

pn+1 +
h

2
qn+1 = pn − h

2
qn + γ∆nW2,

−h

2
pn+1 + qn+1 =

h

2
pn + qn + σ∆nW1

is generated by

S̄3(u, v, h) = F1W1 + K1W2 + K2

∫ h

0

W2 ◦ dW2 + G1h + F̄2

∫ h

0

W2 ◦ dW1,

where

F1 = σu, K1 = −γv, F2 = 0, K2 = − 1√
2
σγ,

G1 =
1

2
(u2 + v2), F̄2 =

1√
2
σγ, K̄2 = 0.
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Thus, according to (8.4.45), we have

H1 = σu, H2 = −γv, H̄2 = 0, Ĥ2 = 0,

H =
1

2
(u2 + v2), H̄3 = 0, Ĥ3 = 0,

H3 = − 1√
2
σv, H4 = − 1√

2
γu, . . . . (8.4.46)

Consequently, we get the following truncated Hamiltonians

H̃(u, v, h) ≈ 1

2
(u2 + v2)− 1√

2
σvW1(h)− 1√

2
γuW2(h), (8.4.47)

H̃1(u, v, h) ≈ σu, (8.4.48)

H̃2(u, v, h) ≈ −γv, (8.4.49)

which implies that the truncated modified equation is

dy = J−1∇H̃(y)dt + J−1∇H̃1(y) ◦ dW1 + J−1∇H̃2(y) ◦ dW2

≈
(

σ√
2
W1(h)− q

p− γ√
2
W2(h)

)
dt +

(
0
σ

)
◦ dW1 +

(
γ
0

)
◦ dW2. (8.4.50)

With initial value (p0, q0), (8.4.50) can also be written as

dp = (
σ√
2
W1(h)− q)dt + γ ◦ dW2, p(0) = p0, (8.4.51)

dq = (p− γ√
2
W2(h))dt + σ ◦ dW1, q(0) = q0. (8.4.52)

We simulate the modified equation (8.4.51)-(8.4.52) in Chapter 9 by its midpoint dis-
cretization

pn+1 +
h

2
qn+1 = pn − h

2
qn +

h√
2
σ∆nW1 + γ∆nW2, (8.4.53)

−h

2
pn+1 + qn+1 =

h

2
Pn + qn − h√

2
γ∆nW2 + σ∆nW1. (8.4.54)



Chapter 9

Numerical Tests

In this chapter, numerical tests are performed on the schemes produced in the previous
chapters via variational integrators and generating functions, in order to observe their
effect of simulating stochastic Hamiltonian systems. As test systems the linear stochastic
oscillator (3.1.7)-(3.1.8), the Kubo oscillator (3.1.16)-(3.1.17), the model of synchrotron
oscillations (3.1.22)-(3.1.23), and the system with two additive noises (3.1.27)-(3.1.28) are
considered. Numerical tests are also performed to compare sample trajectories of some
stochastic symplectic methods and their modified equations constructed via generating
functions.

9.1 A Linear Stochastic Oscillator

For convenience, we write the equation of the linear stochastic oscillator (3.1.7)-(3.1.8)
once again.

dy = −xdt + σdW, y(0) = 0, (9.1.1)

dx = ydt, x(0) = 1. (9.1.2)

The scheme (5.3.27)-(5.3.28) generated by S̄1(P, q, t)

xn+1 = xn + hyn+1,

yn+1 = yn − hxn + σ∆Wn,

is the symplectic Euler-Maruyama method and of mean-square order of convergence 1.
We check by numerical tests its ability of preserving the linear growth property of the
second moment (3.1.14) and the oscillation property of the oscillator given in Proposition
3.8.
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Figure 1.1: Linear growth of second moment. Figure 1.2: Oscillation property of x.
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Figure 1.3: Linear growth of second moment. Figure 1.4: Oscillation property of x.

Figure 1.1 shows linear growth of second moment of the numerical solution arising from
scheme (5.3.27)-(5.3.28), where we take σ = 1, t ∈ [0, 5000], and step size h = 0.2. The
second moment E(x2

n + y2
n) of the numerical solution is approximated by taking sample

average of 500 sample trajectories produced by the numerical scheme. The reference line
(dashed) has slope 1.
In Figure 1.2, the solid curve simulates the solution x given in (3.1.13) with x0 = 1 and
σ = 0.1. The step size in simulating the integral in solution (3.1.13) is ∆s = 0.001. The
dotted curve is numerical x created by scheme (5.3.27)-(5.3.28), where the step size is
h = 0.1, and t ∈ [0, 100].
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Consider the scheme (5.3.32)-(5.3.33) with mean-square order 3
2

produced by S̄1

yn = yn+1 + hxn − σ∆Wn +
h2

2
yn+1,

xn+1 = xn + hyn+1 − σ

∫ h

0

s ◦ dW +
h2

2
xn.

The linear growth property of the second moment of the numerical solution given by the
scheme (5.3.32)-(5.3.33) is illustrated in Figure 1.3, and its oscillation property in Figure
1.4. The solid curve in Figure 1.3 and the dotted one in Figure 1.4 are from the numerical
solution, as in Figure 1.1 and 1.2. The data for Figure 1.3 and 1.4 are the same as that
for Figure 1.1 and 1.2 respectively.

The scheme (5.4.22)-(5.4.23) is the midpoint rule

xn+1 = xn + h
yn + yn+1

2
,

yn+1 = yn − h
xn + xn+1

2
+ σ∆Wn,

which is generated by S̄3, and also by the variational integrator as given in Example 4.2.
This method is of mean-square order 1 according to the construction of S̄3.
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Figure 1.5: Linear growth of second moment. Figure 1.6: Oscillation property of x.

Data and settings for Figure 1.5 and 1.6 are the same as that for Figure 1.3 and 1.4
respectively.

Scheme (5.4.25)-(5.4.26)

xn+1 = xn + h
yn + yn+1

2
− σ

2

∫ h

0

s ◦ dW +
σ√
2

∫ h

0

Wds,

yn+1 = yn − h
xn + xn+1

2
+ σ∆Wn.
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is produced by S̄3 with mean-square order 3
2
.

0 1000 2000 3000 4000 5000
0

1000

2000

3000

4000

5000

6000

t

s
a

m
p

le
 a

v
e

ra
g

e
 o

f 
x

n2
+

y
n2

mean s3test32

 

 
sample average
reference line

0 20 40 60 80 100
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

t

x

s332 linear

 

 
solution
midpoint32

Figure 1.7: Linear growth of second moment. Figure 1.8: Oscillation property of x.

Data and settings for Figure 1.7 and 1.8 are the same as that for Figure 1.5 and 1.6
respectively.

9.2 Kubo Oscillator

For the Kubo oscillator (3.1.16)-(3.1.17) with given initial values

dp = −aqdt− σq ◦ dW (t), p(0) = 1,

dq = apdt + σp ◦ dW (t), q(0) = 0,

S̄1 generates the scheme (5.3.42)-(5.3.43)

pn+1 = pn − ahqn − h

2
σ2pn+1 − σqn∆Wn,

qn+1 = qn + ahpn+1 +
h

2
σ2qn + σpn+1∆Wn,

which is of mean-square order 1, and also given by Milstein et. al. in [29].
A method of mean-square order 3

2
generated by S̄1 is scheme (5.3.46)

−(ah +
h2

2
aσ2 + σ∆Wn + σ3

∫ h

0

s ◦ dW )pn+1 + qn+1 = (1 +
hσ2

2
+

h2a2

2
+ aσh∆Wn)qn,

(1 +
hσ2

2
+

h2a2

2
+ aσh∆Wn)pn+1 = pn − (ah + σ∆Wn)qn.

As indicated by (3.1.21), the phase trajectory of Kubo oscillator is a circle centered at

the origin and with radius
√

p2
0 + q2

0, which is 1 in our discussion here. Figure 2.1 and
2.2 below show the phase trajectories of the numerical solutions arising from scheme
(5.3.42)-(5.3.43) and (5.3.46) respectively.
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Figure 2.1: Phase trajectory of (5.3.42)-(5.3.43).
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Figure 2.2: Phase trajectory of (5.3.46).

It is clear that the method of mean-square order 3
2

simulates phase trajectory better than
that of order 1. We take a = 2, σ = 0.3, t ∈ [0, 200], and step size h = 0.02 in the two
tests above, where ∆Wn in the schemes are truncated according to (3.2.13) with k = 2.

Applying generating function S̄3 to the Kubo oscillator, we obtain scheme (5.4.31)-(5.4.32)

pn+1 = pn − ah
qn + qn+1

2
− σ

qn + qn+1

2
∆Wn,

qn+1 = qn + ah
pn + pn+1

2
+ σ

pn + pn+1

2
∆Wn,
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which is also given by Milstein et. al. in [29], and of mean-square order 1.
A method of mean-square order 3

2
produced by S̄3 is scheme (5.4.34)-(5.4.35)

pn+1 = pn − (ah + σ∆Wn +
ah2σ2

4
+

σ3

2

∫ h

0

s ◦ dW )
qn + qn+1

2
,

qn+1 = qn + (ah + σ∆Wn − ah2σ2

4
− σ3

2

∫ h

0

s ◦ dW )
pn + pn+1

2
.

The phase trajectories arising from (5.4.31)-(5.4.32) and (5.4.34)-(5.4.35) are shown in
Figure 2.3 and 2.4 respectively.
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Figure 2.3: Phase trajectory of (5.4.31)-(5.4.32).
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Figure 2.4: Phase trajectory of (5.4.34)-(5.4.35).
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Both of the two schemes reproduce phase trajectory of the Kubo oscillator with high
accuracy. The advantage of applying S̄3 instead of S̄1 to the simulation of Kubo oscillator
is clear.

9.3 A Model of Synchrotron Oscillations

For the model of synchrotron oscillations (3.1.22)-(3.1.23)

dp = −ω2 sin(q)dt− σ1 cos(q) ◦ dW1 − σ2 sin(q) ◦ dW2,

dq = pdt,

Milstein et. al. proposed in [29] the symplectic scheme

pn+1 = pn − hω2 sin(qn+1)− σ1 cos(qn+1)∆nW1 − σ2 sin(qn+1)∆nW2, (9.3.1)

qn+1 = qn + hpn, (9.3.2)

which is of mean-square order 1. It is also shown that this scheme simulates the sample
trajectory of the model with high accuracy. In the following tests, we use the sample
trajectory created by it as reference.
Applying S̄1, we have constructed scheme (6.1.43)-(6.1.44)

pn+1 = pn − hω2 sin(qn)− σ1 cos(qn)∆nW1 − σ2 sin(qn)∆nW2,

qn+1 = qn + hpn+1,

which is the adjoint method of (9.3.1)-(9.3.2), and of mean-square order 1.
The scheme (6.1.49)-(6.1.50)

pn+1 = pn − hω2 sin(qn)− h2

2
ω2pn+1 cos(qn)− σ1 cos(qn)∆nW1

+ σ1pn+1 sin(qn)

∫ h

0

s ◦ dW1(s)− σ2 sin(qn)∆nW2

− σ2pn+1 cos(qn)

∫ h

0

s ◦ dW2(s),

qn+1 = qn + hpn+1 +
h2

2
ω2 sin(qn) + σ1 cos(qn)

∫ h

0

s ◦ dW1(s)

+ σ2 sin(qn)

∫ h

0

s ◦ dW2(s)

generated by S̄1 is of mean-square order 3
2
. Figure 3.1 and 3.2 below illustrate comparison

between sample trajectory of the approximated solution and that of numerical solution
created by method (6.1.43)-(6.1.44) and (6.1.49)-(6.1.50) respectively.
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Figure 3.1: Sample trajectory of Figure 3.2: Sample trajectory of
(6.1.43)-(6.1.44). (6.1.49)-(6.1.50).
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Figure 3.3: Sample trajectory of (6.2.27)-(6.2.28).

Solid curves in Figure 3.1 and 3.2 are sample trajectories created by method (6.1.43)-
(6.1.44) and (6.1.49)-(6.1.50), dash-dotted ones are produced by (9.3.1)-(9.3.2) as refer-
ence. They coincide visually in both figures above. We take σ1 = 0.2, σ2 = 0.1, ω = 2,
t ∈ [0, 100] and step size h = 0.02. ∆Wn is truncated according to (3.2.13) with k = 2.

S̄3 generates the scheme (6.2.27)-(6.2.28)

pn+1 = pn − sin(
qn + qn+1

2
)(ω2h + σ2∆nW2)− cos(

qn + qn+1

2
)σ1∆nW1,

qn+1 = qn + h
pn + pn+1

2



9.4. A SYSTEM WITH TWO ADDITIVE NOISES 131

for the model system, which is of mean-square order 1. A sample trajectory produced by
it is shown in Figure 3.3. Data and settings for Figure 3.3 coincide with those for Figure
3.1 and 3.2. Note that the scheme (6.2.27)-(6.2.28) is implicit. Substituting (6.2.28) into
(6.2.27), we then applied fixed point iteration to solving pn+1, the convergence of which
requires

h <
4

|c1|+ |c2| , (9.3.3)

where

c1 = hω2 + σ2∆nW2, c2 = σ1∆nW1. (9.3.4)

Thus we make truncation on ∆nW1 and ∆nW2, and to check whether (9.3.3) is satisfied.
If not, let |c1|+ |c2| = 4

nh
, where n is times of fixed point iteration.

9.4 A System with Two Additive Noises

For the system with two additive noises (3.1.27)-(3.1.28)

dp = −qdt + γ ◦ dW2(t), p(0) = 0,

dq = pdt + σ ◦ dW1(t), q(0) = 0,

we have constructed generating function S̄1, which is given in (6.1.54) and generates via
relation (5.1.9) the symplectic Euler-Maruyama method (6.1.51)-(6.1.52)

pn+1 = pn − hqn + γ∆nW2,

qn+1 = qn + hpn+1 + σ∆nW1.

This method is of mean-square order 1. Figure 4.1 illustrates the oscillation of the nu-
merical q produced by (6.1.51)-(6.1.52) and the exact q given by (3.1.29).
The method of mean-square order 3

2
, i.e., the scheme (6.1.57)-(6.1.58)

pn+1 = pn + γ∆nW2 − σ

∫ h

0

W1(s)ds− qnh− h2

2
pn+1,

qn+1 = qn + σ∆nW1 − γ

∫ h

0

s ◦ dW2(s) + pn+1h +
h2

2
qn

is generated by the function S̄1 in (6.1.56). Figure 4.2 shows oscillation of numerical q
produced by (6.1.57)-(6.1.58), and exact q by solution formula (3.1.29).
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Figure 4.1: Sample trajectory of Figure 4.2: Sample trajectory of
(6.1.51)-(6.1.52). (6.1.57)-(6.1.58).

In Figures 4.1 and 4.2, exact q are presented by solid line, and numerical ones by dash-
dotted line. They coincide visually in both figures. Data for the two tests are γ = 1,
σ = 0, t ∈ [0, 200], and the step size is h = 0.02.

The generating function S̄3 in (6.2.31) generates via relation (5.1.15)-(5.1.16) the nu-
merical scheme (6.2.32)-(6.2.33)

pn+1 +
h

2
qn+1 = pn − h

2
qn + γ∆nW2,

−h

2
pn+1 + qn+1 =

h

2
pn + qn + σ∆nW1,

which is of mean-square order 1. Figure 4.3 compares behavior of q created by the
numerical method (6.2.32)-(6.2.33) and the exact solution formula (3.1.29).
A method of mean-square order 3

2
is given in (6.2.36)-(6.2.37)

pn+1 +
h

2
qn+1 = pn − h

2
qn + γ∆nW2 − σ√

2

∫ h

0

W1(s)ds +
σ

2

∫ h

0

s ◦ dW1(s),

−h

2
pn+1 + qn+1 =

h

2
pn + qn + σ∆nW1 +

γ√
2

∫ h

0

W2(s)ds− γ

2

∫ h

0

s ◦ dW2(s),

which is generated by the generating function S̄3 in (6.2.35). We show in Figure 4.4 the
oscillation of the numerical q produced by (6.2.36)-(6.2.37) and that of the exact q given
by (3.1.29).
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Figure 4.3: Sample trajectory of Figure 4.4: Sample trajectory of
(6.2.32)-(6.2.33). (6.2.36)-(6.2.37).

In Figures 4.3 and 4.4, the solid curves are the exact q, and the dash-dotted curves the
numerical one. We see no difference between them in both figures, which shows good
behavior of the numerical solutions produced by (6.2.32)-(6.2.33) and (6.2.36)-(6.2.37).
Data for creating the two figures are same with that for Figures 4.1 and 4.2.

9.5 Modified Equations

Modified equations can be constructed by applying generating function of a symplectic
method, which is studied in Chapter 8. We illustrate through numerical tests the tra-
jectories of numerical solutions and their modified equations constructed by generating
functions.

Example 9.1. Consider the linear stochastic oscillator (3.1.7)-(3.1.8)

dy = −xdt + σ ◦ dW (t), y(0) = y0,

dx = ydt, x(0) = x0.

For the symplectic Euler-Maruyama method (5.3.27)-(5.3.28)

xn+1 = xn + hyn+1,

yn+1 = yn − hxn + σ∆Wn,

Example 8.1 gives its modified equation (8.2.26)-(8.2.27)

dy = (hy − x)dt + σ ◦ dW (t), y(0) = y0,

dx = (y − hx)dt + σh ◦ dW (t), x(0) = x0,

which is obtained through using generating function S̄1 in (8.2.20) with (8.2.21) for the
method (5.3.27)-(5.3.28). In order to simulate the solution of the modified equation, we
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use its symplectic Euler-Maruyama discretization (8.2.30)
(

xn+1

yn+1

)
=

( −h4+3h2−1
h2−1

−h
h2−1

h
h2−1

−1
h2−1

)(
xn

yn

)
+

(
σh3−2σh

h2−1−σ
h2−1

)
∆Wn.

Figure 5.1 shows oscillation of x of the exact solution, the method (5.3.27)-(5.3.28), and
the modified equation (8.2.26)-(8.2.27), which are presented with solid, dashed, and bro-
ken curves respectively.
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Fig. 5.1: Sample trajectories of exact solution Fig. 5.2: Sample trajectories of exact solution
of (3.1.7)-(3.1.8), method (5.3.27)-(5.3.28) of (3.1.7)-(3.1.8), method (5.4.22)-(5.4.23)

and its modified equation (8.2.26)-(8.2.27). and its modified equation (8.3.24)-(8.3.25).

We can see from Figure 5.1 that the sample trajectory of the method (5.3.27)-(5.3.28) co-
incides visually with the approximated sample trajectory of its modified equation (8.2.26)-
(8.2.27).

S̄3 in (8.3.18) with (8.3.19) generates via relation (5.1.15)-(5.1.16) the midpoint rule
(5.4.22)-(5.4.23)

xn+1 = xn + h
yn + yn+1

2
,

yn+1 = yn − h
xn + xn+1

2
+ σ∆Wn

for the linear stochastic oscillator (3.1.7)-(3.1.8). The truncated modified equation of the
method (5.4.22)-(5.4.23) is constructed by applying S̄3 in (8.3.18) with (8.3.19), which is
given in (8.3.24)-(8.3.25)

dy = −xdt + σ ◦ dW,

dx = (y +
σ√
2
W (h))dt +

σ

2
h ◦ dW,

sample trajectory of which is simulated by its midpoint discretization (8.3.26)-(8.3.27).
Figure 5.2 compares oscillation of x of exact solution, numerical method (5.4.22)-(5.4.23),
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and its truncated modified equation (8.3.24)-(8.3.25), which are presented with solid,
dashed, and broken curves respectively. Trajectory of the method coincides with that of
its modified equation. Data for creating Figures 5.1 and 5.2 are x0 = 1, y0 = 0, σ = 0.1,
t ∈ [0, 100], and the step size is h = 0.1.

Example 9.2. For the Kubo oscillator (3.1.16)-(3.1.17)

dp = −aqdt− σq ◦ dW (t), p(0) = p0,

dq = apdt + σp ◦ dW (t), q(0) = q0,

S̄1 in (5.3.45) generates via relation (5.1.9) the symplectic scheme (5.3.46)

−(ah +
h2

2
aσ2 + σ∆Wn + σ3

∫ h

0

s ◦ dW )pn+1 + qn+1 = (1 +
hσ2

2
+

h2a2

2
+ aσh∆Wn)qn,

(1 +
hσ2

2
+

h2a2

2
+ aσh∆Wn)pn+1 = pn − (ah + σ∆Wn)qn,

which is of mean-square order 3
2
. Its truncated modified equation is deduced based on S̄1,

and given in (8.2.36)-(8.2.37)

dp = −aqdt + (
h

2
σ3p2 − σq) ◦ dW, p(0) = p0,

dq = apdt + (σp− hσ3pq) ◦ dW, q(0) = q0.

Figure 5.3 contributes to comparison between sample trajectory of the numerical method
(5.3.46) and its truncated modified equation (8.2.36)-(8.2.37), where we use the symplec-
tic Euler-Maruyama discretization (8.2.38)-(8.2.39) to simulate the sample trajectory of
(8.2.36)-(8.2.37). Fixed point iteration is performed in realizing (8.2.38)-(8.2.39). Dashed
and solid curves represent trajectory of method and its modified equation respectively. It
is found that the sample trajectories coincide very well.
Figures 5.4 and 5.5 are approximated phase trajectories of the method (5.3.46) and its
modified equation (8.2.36)-(8.2.37), respectively. Data for Figures 5.3-5.5 are p0 = 1,
q0 = 0, a = 2, σ = 0.3, t ∈ [0, 100], and the step size is h = 0.01. Number of iterations
in each step in realizing (8.2.38)-(8.2.39) is n = 100, and ∆Wn is truncated according to
(3.2.13) with k = 2.
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Figure 5.3: Sample trajectories of method (5.3.46) and its modified equation (8.2.36)-(8.2.37).
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Figure 5.4: Phase trajectory of method (5.3.46).
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Figure 5.5: Phase trajectory of modified equation (8.2.26)-(8.2.27).

S̄3 in (8.3.30) with (8.3.31) generates via relation (5.1.15)-(5.1.16) the midpoint rule
(5.4.31)-(5.4.32)

pn+1 = pn − ah
qn + qn+1

2
− σ

qn + qn+1

2
∆Wn,

qn+1 = qn + ah
pn + pn+1

2
+ σ

pn + pn+1

2
∆Wn

for the Kubo oscillator (3.1.16)-(3.1.17). Its truncated modified equation is (8.3.36)-
(8.3.37)

dp = (
haσ2q

2
− aq)dt + (

hσ3q

2
− σq) ◦ dW, p(0) = p0,

dq = (ap +
haσ2p

2
)dt + (σp +

hσ3p

2
) ◦ dW, q(0) = q0,



9.5. MODIFIED EQUATIONS 137

which we use midpoint discretization (8.3.38) to simulate. Figure 5.6 gives a sample
trajectory of method (5.4.31)-(5.4.32) (solid), and its modified equation (8.3.36)-(8.3.37)
(dashed).
Figures 5.7 and 5.8 are phase trajectories of the method (5.4.31)-(5.4.32) and its modified
equation (8.3.36)-(8.3.37), respectively. The two seem to have little difference. Data for
Figure 5.6 are p0 = 1, q0 = 0, a = 2, σ = 0.3, t ∈ [0, 100], and the step size is h = 0.1.
Truncation of ∆Wn is the same with that for creating Figures 5.3-5.5. For Figures 5.7
and 5.8, we choose t ∈ [0, 200], and the other data are the same with that for Figure 5.6.
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Fig. 5.6: Sample trajectories of method (5.4.31)-(5.4.32) and its modified equation (8.3.36)-(8.3.37).
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Figure 5.7: Phase trajectory of method (5.4.31)-(5.4.32).
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Figure 5.8: Phase trajectory of modified equation (8.3.36)-(8.3.37).

Example 9.3. The method with two noises (6.1.43)-(6.1.44)

pn+1 = pn − hω2sin(qn)− σ1 cos(qn)∆nW1 − σ2sin(qn)∆nW2,

qn+1 = qn + hpn+1

is a symplectic discretization of the model of synchrotron oscillations (3.1.22)-(3.1.23)

dp = −ω2sin(q)dt− σ1 cos(q) ◦ dW1 − σ2sin(q) ◦ dW2,

dq = pdt.

S̄1 in (6.1.42) generates via relation (5.1.9) the numerical scheme (6.1.43)-(6.1.44). It is
derived in Chapter 8 that the truncated modified equation of method (6.1.43)-(6.1.44) is
(8.4.27)-(8.4.28)

dp = (hω2p cos(q)− ω2sin(q))dt− (σ1 cos(q) + hσ1psin(q)) ◦ dW1

+ (hσ2p cos(q)− σ2sin(q)) ◦ dW2, p(0) = p0,

dq = (p− hω2sin(q))dt− hσ1 cos(q) ◦ dW1 − hσ2sin(q) ◦ dW2, q(0) = q0.

Figure 5.9 shows sample trajectories of method (6.1.43)-(6.1.44) (dashed) and its modified
equation (8.4.27)-(8.4.28) (solid) which is simulated by its symplectic Euler-Maruyama
discretization (8.4.29)-(8.4.30). We use fixed point iteration to realize (8.4.29)-(8.4.30).
Data for Figure 5.9 is p0 = 1, q0 = 0, σ1 = 0.2, σ2 = 0.1, ω = 2, t ∈ [0, 100], and the
step size is h = 0.05. Number of iterations in each step in realizing (8.4.29)-(8.4.30) is
n = 100, and ∆Wn is truncated according to (3.2.13) with k = 2.
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Fig. 5.9: Sample trajectories of method Fig. 5.10: Sample trajectories of exact
(6.1.43)-(6.1.44) and its modified solution (3.1.29), method (6.2.32)-(6.2.33)
equation (8.4.27)-(8.4.28). and its modified equation (8.4.51)-(8.4.52).

Example 9.4. For the system with two additive noises (3.1.27)-(3.1.28)

dq = pdt + σ ◦ dW1(t), q(0) = q0,

dp = −qdt + γ ◦ dW2(t), p(0) = p0,

generating function S̄3 in (6.2.31) generates via relation (5.1.15)-(5.1.16) the numerical
scheme (6.2.32)-(6.2.33)

pn+1 +
h

2
qn+1 = pn − h

2
qn + γ∆nW2,

−h

2
pn+1 + qn+1 =

h

2
pn + qn + σ∆nW1.

Its truncated modified equation is derived as (8.4.51)-(8.4.52)

dp = (
σ√
2
W1(h)− q)dt + γ ◦ dW2, p(0) = p0,

dq = (p− γ√
2
W2(h))dt + σ ◦ dW1, q(0) = q0.

We use its midpoint discretization (8.4.53)-(8.4.54) to simulate (8.4.51)-(8.4.52). In Figure
5.10, sample trajectories of the exact solution (3.1.29) (solid), method (6.2.32)-(6.2.33)
(dashed) and its modified equation (8.4.51)-(8.4.52) (broken) are sketched for comparison.
They coincide visually. Data for Figure 5.10 are p0 = q0 = 0, σ = 0, γ = 1, t ∈ [0, 200],
and the step size is h = 0.02.

Conclusion. Through numerical tests on schemes produced by variational integrator
and generating functions, we find that these schemes are efficient and provide numerical
solutions preserving symplecticity, as well as other structures of underlying stochastic
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Hamiltonian systems. Sample trajectories of methods and their stochastic modified equa-
tions coincide well, which shows rationality of the construction of stochastic modified
equations via generating functions. All these give support to our theories of stochastic
variational integrators and generating functions.
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