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Abstract

A key element in the seismic imaging sequence is migration, the transformation of the preprocessed
seismic data into a structural image of the subsurface which resembles the distribution of geological
interfaces. Thus, the primary aim of migration is to reverse the effects of wave propagation. So-called
true-amplitude migration schemes additionally appropriately compensate for the dynamic effects of
the wave propagation. This allows to recover reflection amplitudes which can be directly related to the
angle-dependent reflection coefficients at the interfaces. The latter can finally be inverted for physical
properties which characterise the adjacent rock formations.

Migration requires a solution of the elastodynamic wave equation which is usually employed to de-
scribe the wave propagation in the Earth. Various approaches for this task have been proposed. In this
thesis, I consider the Kirchhoff migration which is based on an integral solution of the wave equation.
An additional weighting factor ensures that the migrated output is true-amplitude.

The evident output domain of migration is the depth domain in which the migrated image resembles
the actual geological structures. However, in this domain the solution of the wave equation requires
a model of the velocity distribution in depth. Errors in the estimated model lead to poorly focussed
and mispositioned images and additionally bias the migrated amplitudes. Time migration has been
introduced as an approximate alternative requiring only smooth models of integral velocities. As time
migration shows a strongly reduced sensitivity to model errors, it is well suited for studies on reflection
amplitudes. The time-migrated image is still defined in the time domain, thus requiring a subsequent
time-to-depth conversion for interpretation.

Kirchhoff migration can be realised in terms of a so-called diffraction stack based on Huygens’ prin-
ciple. From a theoretical point of view, such a diffraction stack requires an integration over an infinite
aperture. Of course, this is infeasible due to the always finite acquisition area. Therefore, an optimum
finite aperture has to be defined which guarantees optimal resolution in the image, physically sound
amplitudes, and the highest possible signal-to-noise ratio at the same time. This optimum aperture
corresponds to the minimum aperture given by the size of the first projected Fresnel zone. It is centred
around the stationary point where the migration operator is tangent to the actual reflection event. The
usually employed smooth migration velocity models obtained by means of stacking velocities or by
migration velocity analysis are not sufficient to calculate these properties prior to migration. Thus,
minimum-aperture migration cannot be addressed by conventional migration schemes.

In this thesis, a generalisation of stacking velocity analysis called Common-Reflection-Surface stack
method is utilised to obtain information beyond stacking velocity. Based on a spatial stacking operator,
the Common-Reflection-Surface stack provides a whole set of stacking parameters which characterise
the kinematics of the reflection events. These so-called kinematic wavefield attributes cannot only be
utilised in the migration velocity model building but also to estimate the location of the stationary
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Abstract

point and the size of the projected Fresnel zone. This allows a direct application of (true-amplitude)
minimum-aperture migration.

In this thesis, the theoretical background as well as the practical application of minimum-aperture
Kirchhoff migration in the time domain is discussed for the 2.5D and 3D case. I demonstrate the
potential of the method for synthetic as well as real datasets. The time-domain approach allows an
efficient and stable implementation of the minimum-aperture estimation due to the considered analytic
migration operators. The main observation is an overall improved quality of the migrated images,
reduced imaging artifacts, and a higher signal-to-noise ratio. Amplitudes extracted from the migrated
images show less scattering and better defined AVO/AVA responses compared to the conventional
approach.
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Zusammenfassung

Vorbemerkung: Die vorliegende Dissertation ist bis auf diese Zusammenfassung in englischer Spra-
che geschrieben. Da auch in der deutschen Sprache einige englische Fachausdrücke gebräuchlich sind,
wurde bei diesen Ausdrücken auf eine Übersetzung verzichtet. Sie werden, mit Ausnahme ihrer groß
geschriebenen Abkürzungen, kursiv dargestellt.

Einleitung

Ziel der Geophysik ist es, die Struktur, Zusammensetzung und Dynamik der Erde mittels quantitativer
physikalischer Methoden zu erfassen. In der Explorationsgeophysik werden diese Methoden bei der
Auffindung und Erschließung von Kohlenwasserstoff- und Minerallagerstätten eingesetzt. Das dabei
am häufigsten angewandte Verfahren ist die Reflektionsseismik, bei der künstlich generierte akusti-
sche oder elastische Wellen zur Untersuchung des Untergrundes verwendet werden. Als Quellen die-
nen meist Explosionen oder hydraulisch erzeugte Vibrationen. Die Wellen werden an geologischen
Grenzschichten, d. h. an Unstetigkeitsstellen der elastischen Parameter des Untergrundes, reflektiert,
transmittiert und gestreut. Ein Teil der elastischen Energie kehrt schließlich an die Erdoberfläche
zurück. Dort wird mit Hilfe von sogenannten Geophonen die Bodenbewegung (im Falle von Land-
seismik) bzw. Druckänderung (bei mariner Seismik) als Funktion der Zeit registriert.

Durch die Kombination mehrerer solcher Einzelexperimente mit verschiedenen Quell- und Empfän-
gerpositionen erhält man einen mehrfach überdeckten Datensatz, aus dem mittels reflektionsseismi-
scher Bildgebungsverfahren (seismic imaging) ein strukturelles Abbild des Untergrundes bestimmt
werden kann. Dabei wird meist nur ein Teil des im Allgemeinen beliebig komplexen Wellenfeldes
betrachtet, in der Regel sind dies unkonvertierte primäre Reflektionen. Werden zusätzlich die dynami-
schen Aspekte der Wellenausbreitung bei der Datenverarbeitung berücksichtigt, können über die seis-
mische Amplituden die winkelabhängigen Reflektionskoeffizienten an den Grenzschichten bestimmt
werden. Diese wiederum erlauben Rückschlüsse auf die physikalischen Eigenschaften der Gesteine
an den Grenzschichten.

Strahlentheorie

Die mathematische Beschreibung für die Ausbreitung elastischer Wellen in der Erde liefert die Kon-
tinuumsmechanik in Form der elastodynamischen Wellengleichung, die die räumlichen und zeitli-
chen Änderungen der Partikelverschiebung miteinander verknüpft. Die Lösung seismischer Inver-
sionsprobleme basiert oft auf der Strahlentheorie, welche eine approximative Hochfrequenzlösung
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Zusammenfassung

der Wellengleichung für inhomogene Medien darstellt. Hierbei wird angenommen, dass sich die cha-
rakteristischen Größen des betrachteten Mediums über die Wellenlänge des seismischen Signals nicht
signifikant ändern.

Über einen Reihenansatz ergeben sich zwei fundamentale Gleichungen zur Beschreibung der Kine-
matik und Dynamik ausgewählter Wellentypen: die Eikonal- und die Transportgleichung. Zur Ver-
einfachung wird die Reihenentwicklung meist auf den Term nullter Ordnung beschränkt (zero-order
ray theory), der zur Beschreibung elementarer Wellentypen ausreicht. Die Lösung der Eikonalglei-
chung führt auf das kinematische ray-tracing System, aus dem sich die Strahlen als Charakteristiken
des Wellenfeldes ergeben. Bei bekannter Geschwindigkeitsverteilung kann die Laufzeit eines Signals
dann durch einfache Integration entlang des Strahlwegs bestimmt werden. Die dazugehörige Ampli-
tude ergibt sich durch anschließende Lösung der Transportgleichung entlang des zuvor bestimmten
Strahls. Dabei zeigt sich, dass die Amplitude eng mit dem ray Jacobian und somit der Strahldichte
verknüpft ist.

Die paraxiale Erweiterung der Strahlentheorie approximiert schließlich die Laufzeit entlang von
Strahlen in der unmittelbaren Nähe eines bekannten (Zentral-)Strahls. Eng mit dem zugehörigen par-
axialen ray-tracing System ist das dynamische ray-tracing System verknüpft, mit dessen Hilfe sich
Größen wie der geometrische Ausbreitungsverlust bestimmen lassen.

Common-Reflection-Surface Stapelung

Sogenannte Stapelungsmethoden stellen einen wichtigen Schritt in der seismischen Datenverarbeitung
dar. Hierbei wird die Redundanz der mehrfach überdeckten Daten genutzt, um den kinematischen Ein-
fluss der Messgeometrie aus den Daten zu entfernen. Durch Summation (Stapelung) der so korrigier-
ten Daten simuliert man eine sogenannte zero-offset Sektion, bei der Schuss- und Empfängerposition
koinzident sind. Im Allgemeinen weist diese Sektion ein verbessertes Signal-zu-Rauschen-Verhältnis
im Vergleich zu den mehrfach überdeckten Daten auf und liefert einen ersten Eindruck von der Struk-
tur des Untergrundes.

Konventionelle Stapelungsmethoden beschreiben die Abhängigkeit der Reflektionslaufzeit vom
Quell-Empfänger-Abstand über eine hyperbolische Laufzeitapproximation. Dieser Operator wird in
der Regel über eine sogenannte normal-moveout (NMO) oder stacking Geschwindigkeit parametri-
siert, die sich physikalisch als integrale Geschwindigkeit des Überbaus eines Reflektionspunktes in-
terpretieren lässt. Durch Anpassung der Laufzeitkurven an die tatsächlichen Reflektionsereignisse in
den Daten kann so ein integrales Geschwindigkeitsmodell des Untergrundes gewonnen werden.

Die Common-Reflection-Surface (CRS) Stapelung kann als verallgemeinerte Geschwindigkeitsana-
lyse betrachtet werden, bei der die Reflektionsantwort eines Reflektorsegments approximiert wird.
Dadurch ergeben sich Stapelsektionen mit deutlich erhöhtem Signal-zu-Rauschen-Verhältnis im Ver-
gleich zu konventionellen Methoden. Zusätzlich liefert die Laufzeitapproximation einen ganzen Satz
von Stapelparametern, welche die Kinematik der Reflektionsereignisse charakterisieren. Zwei An-
wendungsmöglichkeiten dieser sogenannten kinematischen Wellenfeldattribute oder CRS Attribute
werden im Rahmen dieser Arbeit diskutiert: die Bestimmung eines Geschwindigkeitsmodells für die
Zeitmigration und die Berechnung optimaler Migrationsaperturen.
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Zusammenfassung

Amplitudenbewahrende Kirchhoff-Migration

Ziel der Migration ist es, ein strukturelles Abbild des Untergrundes zu erstellen, das die Verteilung
geologischer Schichtgrenzen widerspiegelt. Das Hauptaugenmerk liegt dabei auf den kinematischen
Effekten der Wellenpropagation. Durch ihre Kompensation werden Diffraktionsmuster zu den sie ver-
ursachenden Punktstreuern kollabiert, Triplikationen entfaltet sowie die Lage und Neigung der Re-
flektionsereignisse korrigiert. Wenn das Migrationsresultat zusätzlich dynamisch korrekt ist, d. h. die
Amplituden im migrierten Abbild einen physikalisch wohldefinierten Wert erhalten, spricht man von
amplitudenbewahrender Migration. Dazu müssen bei der Migration die dynamischen Aspekte der
Wellenausbreitung, d. h. im Wesentlichen der geometrische Ausbreitungseffekt, kompensiert werden.
In einer weiterführenden Analyse des Amplitudenverhaltens mit Quell-Empfängerabstand bzw. Re-
flektionswinkel (AVO / AVA Analyse) kann dann auf petrophysikalische Eigenschaften des Unter-
grundes geschlossen werden.

Eine mögliche Formulierung der Migration ist die sogenannte Kirchhoff-Migration. Mathematisch
basiert sie auf einer integralen Lösung der Wellengleichung. Eine anschaulichere Betrachtung ergibt
sich aus den Abbildungsbedingungen von Hagedoorn. Dabei wird ausgenutzt, dass die Diffraktions-
laufzeitfläche oder Huygens-Fläche eines Punktes auf dem Reflektor, die anschaulich als sein kine-
matisches Abbild im Zeitbereich aufgefasst werden kann, tangential zur Reflektionsantwort im Zeit-
bereich ist. Gemäß des Huygensschen Prinzips wird in der Kirchhoff-Migration jeder zu migrieren-
de Punkt als Diffraktor aufgefasst, für den bei bekannter Geschwindigkeitsverteilung die zugehörige
Huygens-Fläche bestimmt werden kann. Im eigentlichen Migrationsprozess werden die Amplituden-
werte entlang der Huygens-Fläche in den Messdaten aufsummiert und das Ergebnis dem jeweiligen
Punkt zugewiesen. Nur für Punkte in unmittelbarer Umgebung tatsächlicher Reflektoren ergeben sich
durch die Tangentialität der Operatoren bei der Summation von Null verschiedene Ergebnisse.

Ein migriertes Abbild kann sowohl im Zeit- als auch im Tiefenbereich erstellt werden. Während die
Tiefenmigration keine Einschränkungen bezüglich des Mediums macht, basiert die Zeitmigration auf
der Annahme einer lateral homogenen Geschwindigkeitsverteilung. In diesem Fall kann ein lokal
homogener Überbau angenommen werden, der über eine integrale Geschwindigkeit charakterisiert
wird. Der zugehörige Migrationsoperator kann im einfachsten Fall unter der Annahme gerader Strahl-
wege (straight-ray approximation) vollständig analytisch beschrieben werden. In der Praxis wird die
Anwendung von Zeitmigration auf Medien mit moderaten lateralen Geschwindigkeitsvariationen er-
weitert. Der Vorteil der Zeitmigration gegenüber der Tiefenmigration liegt vor allem in der verein-
fachten Bestimmung des Geschwindigkeitsmodells und der geringeren Sensitivität des Verfahrens
gegenüber fehlerhaften Geschwindigkeitswerten. Auch bei einem ungenau oder fehlerhaft bestimm-
ten Geschwindigkeitsmodell führt Zeitmigration zu einem fokussierten strukturellen Abbild und –
vor allem – unverfälschten Amplituden. Daher finden zeitmigrierte Daten häufig Anwendung bei der
Analyse von Reflektionsamplituden.

Bestimmung der Zeitmigrationsgeschwindigkeiten aus kinematischen Wellenfeldattri-
buten

Der Zeitmigrationsoperator wird üblicherweise für Medien mit lateral homogener Geschwindigkeits-
verteilung über root-mean-square (RMS) Geschwindigkeiten parametrisiert. Für horizontale Reflekto-
ren entsprechen diese den NMO Geschwindigkeiten, da in diesem Fall die Bildlokationen im migrier-
ten und unmigrierten Zeitbereich übereinstimmen. In der Praxis wird die Anwendung von Zeitmigrati-
on auf Medien mit moderater lateraler Geschwindigkeitsvariation erweitert. Die Parametrisierung des
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Zusammenfassung

Operators erfolgt über eine sogenannte Migrationsgeschwindigkeit, die im Apex des Migrationsope-
rators definiert ist und diesen so aufbaut, dass der Operator optimale Anpassung an die Reflektions-
ereignisse in den mehrfach überdeckten Daten aufweist. Physikalisch kann dieser Parameter nicht
mehr als RMS Geschwindigkeit aufgefasst werden, sondern stellt wie die stacking Geschwindigkeit
eine Art best fit Parameter dar. Konventionell werden diese Geschwindigkeiten in einem iterativen
Verfahren aus den Stapelgeschwindigkeiten bestimmt.

Basierend auf den kinematischen Wellenfeldattributen lässt sich ein approximatives Zeitmigrations-
geschwindigkeitsmodell bestimmen, das für moderate Reflektorneigungen und nicht zu große offsets
eine gute Konsistenz mit den mehrfach überdeckten Daten aufweist. Der Vorteil dieses Verfahrens ge-
genüber der konventionellen Bestimmung der Migrationsgeschwindigkeiten liegt vor allem in seiner
Effizienz und weitgehenden Automatisierung. Für die in dieser Dissertation betrachteten Anwendun-
gen weisen die über CRS Attribute bestimmten Geschwindigkeitsmodelle eine gute Konsistenz mit
den mehrfach überdeckten Daten auf, wie an den synthetischen und realen Datenbeispielen gezeigt
wird.

Kirchhoff-Zeitmigration mit minimaler Apertur

Die im Rahmen der Kirchhoff-Migration verwendete Diffraktionsstapelung müsste aus theoretischer
Sicht mit einer unbegrenzten Apertur durchgeführt werden. Dies ist schon wegen des zwangsläufig
begrenzten Messgebiets und der endlichen Aufzeichnungsdauer in der Praxis nicht realisierbar.

Die Qualität des migrierten Abbildes und der Amplituden, aber auch die Effizienz des Migrations-
prozesses, hängen stark von der gewählten Aperturgröße ab. Im Fall einer zu kleinen Apertur ist eine
verfälschte oder unvollständige Darstellung insbesondere steiler Ereignisse zu erwarten. Bei zu großer
Apertur ist andererseits mit verringerter Effizienz und niedrigerem Signal-zu-Rauschen-Verhältnis des
Migrationsergebnisses zu rechnen. Zudem steigt in diesem Fall die Wahrscheinlichkeit für das Auf-
treten bestimmter Migrationsartefakte wie operator aliasing. Antialias Filter, die zur Verminderung
dieser Artefakte eingesetzt werden können, sind im Allgemeinen rechenaufwändig und beeinflussen
die Migrationsamplituden. Das Amplitudenverhalten reagiert erwartungsgemäß sehr sensibel auf die
Aperturgröße, selbst wenn kaum Artefakte in den migrierten Abbildern zu erkennen sind. Daher ist
insbesondere für weiterführende Analysen der Amplituden eine optimale Wahl der finiten Apertur
essentiell.

Die Anwendung der Methode der stationären Phase auf das Migrationsintegral ergibt, dass die er-
wünschten konstruktiven Beiträge zum Migrationsergebnis aus der Umgebung des sogenannten statio-
nären Punktes, d. h. des Tangentialpunktes von Migrationsoperator und Reflektionsantwort, stammen.
Die optimale Apertur um diesen stationären Punkt ist durch die erste projizierte Fresnelzone definiert,
die gerade der minimalen Apertur entspricht, mit der sich physikalisch sinnvolle Amplituden ergeben.

Eine exakte Bestimmung der minimalen Apertur setzt neben einem Migrationsgeschwindigkeitsmo-
dell auch ein strukturelles Modell der Grenzschichten im Untergrund voraus. Diese Information ist in
diesem Stadium der Datenverarbeitung i. d. R. nicht verfügbar. In der konventionellen Migration wird
daher die Apertur um den Apex des Migrationsoperators zentriert; die Apertur muss vom Anwender
abgeschätzt werden und hinreichend groß sein, um steile Ereignisse abbilden zu können.

Mit Hilfe der kinematischen Attribute aus der CRS Stapelung kann die minimale Apertur und deren
Lage für zero offset abgeschätzt werden. Ferner erlauben sie in gewissem Umfang auch eine Extra-
polation des stationären Punktes zu finiten offsets. Alle relevanten Größen werden dabei in zweiter
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Zusammenfassung

Ordnung hinsichtlich der Raumkoordinaten approximiert. Jäger (2005a) verwendete diesen Ansatz
zur Bestimmung minimaler Aperturen in der Tiefenmigration. Die hohe Empfindlichkeit der Tiefen-
migration gegenüber Fehlern im Migrationsgeschwindigkeitsmodell kann allerdings zur fehlerhaften
Abschätzung der Apertur und ihrer Lage, und somit zu verfälschten Ergebnissen führen. Es liegt
daher nahe, den Ansatz in die Zeitmigration zu überführen. Die dort verwendeten integralen Migra-
tionsgeschwindigkeiten und die analytischen Migrationsoperatoren erlauben eine stabile und effiziente
Abschätzung der minimalen Migrationsapertur. Besonders in Hinblick auf die Verwendung der mi-
grierten Amplituden in AVO/AVA Analysen profitiert die Methode vom Übergang in den migrierten
Zeitbereich. Darüber hinaus wird der Ansatz im Rahmen dieser Arbeit auch auf den bisher unbehan-
delten 3D Fall für finite offsets erweitert.

Anwendung

Die zuvor eingeführt Methode zur Kirchhoff-Zeitmigration mit minimalen Aperturen wird im Rahmen
dieser Dissertation sowohl an synthetischen als auch an Realdaten jeweils für zwei- und dreidimen-
sionale Messgeometrien getestet. Dabei werden die kinematischen Wellenfeldattribute sowohl zur
Erstellung der Migrationsgeschwindigkeitsmodelle als auch zur Bestimmung der minimalen Apertur
und ihrer Lage verwendet. Für jeden Datensatz werden zusätzlich Vergleichsresultate mit konventio-
neller Apertur berechnet.

Im Vergleich der jeweiligen Migrationsresultate mit den konventionellen Ergebnissen zeigen sich Ver-
besserungen bezüglich der Bildqualität der migrierten Sektion sowie bezüglich der migrierten Ampli-
tuden. Durch die Beschränkung der Diffraktionsstapelung auf die minimale Apertur kommt es zur ver-
minderten Aufsummierung von Störsignalen und somit zu einem verbesserten Signal-zu-Rauschen-
Verhältnis im Migrationsergebnis. Migrationsartefakte werden gleichzeitig reduziert oder treten, wie
im Fall des operator aliasings, gar nicht auf. Gleichzeitig nimmt die Streuung der migrierten Ampli-
tuden ab und Verfälschungen durch Migrationsartefakte oder Störsignale werden vermieden. Die er-
höhte Qualität und Zuverlässigkeit der Amplituden zeigt sich auch in weiterführenden Auswertungen
wie z. B. der Erstellung eines crossplots mittels einer AVA Analyse, wie an Hand des synthetischen
2D Datensatzes beispielhaft gezeigt wird.

Schlussfolgerungen

Im Rahmen dieser Dissertation wurde die Transformation reflektionsseismischer Daten in ein struk-
turelles Abbild des Untergrundes mittels amplitudenbewahrender Kirchhoff-Migration im Zeitbereich
untersucht. Das Hauptaugenmerk der vorliegenden Arbeit liegt auf der Erstellung eines geeigneten
Geschwindigkeitsmodells und der Bestimmung optimaler Migrationsaperturen. Bei beiden Aspekten
kommen kinematische Wellenfeldattribute zum Einsatz, die mit Hilfe der CRS Stapelung bestimmt
werden können.

Für die untersuchten Datenbeispiele hat die vorgestellte Strategie zur Bestimmung der Migrationsge-
schwindigkeitsmodelle eine hinreichende Approximation der gesuchten Geschwindigkeiten erlaubt.
Verbleibende Inkonsistenzen sind auf die verwendete straight-ray Approximation zurückzuführen.

Die aus den Wellenfeldattributen abgeschätzte minimalen Migrationsapertur führt zu einer Verbesse-
rung des migrierten Abbildes, vor allem aber zu deutlich zuverlässigeren Amplituden. Dabei kommt
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auch die Anwendung der Migration im Zeitbereich zum Tragen. Sie führt zu einer deutlichen Stabili-
sierung der Ergebnisse im Vergleich zur Tiefenmigration.

Das vorgestellte Migrationsverfahren basiert auf der Annahme gerader Strahlwege, die zu einer Ein-
schränkung des Anwendungsbereichs auf einfache Untergrundmodelle führt. Erweiterungen auf eine
allgemeinere Beschreibung des Migrationsoperators sind jedoch generell möglich. Zudem muss bei
der praktischen Anwendung des Verfahrens berücksichtigt werden, dass die Bestimmung der Migra-
tionsapertur jeweils lokal durchgeführt wird und damit direkt von der örtlich und zeitlich variablen
Zuverlässigkeit der Attribute abhängt. Eine sorgfältige Bestimmung und Evaluierung der Wellenfeld-
attribute ist daher unerlässlich.

Zusammenfassend kann die hier vorgestellte Methode der Kirchhoff-Migration mit minimalen Aper-
turen im Zeitbereich als Ergänzung konventioneller Verfahren angesehen werden, insbesonders im
Hinblick auf eine Anwendung auf ausgewählte Zielhorizonte zur weiterführenden Analyse der mi-
grierten Amplituden.
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Chapter 1

Introduction

Geophysics aims at exploring the structure, composition, and dynamics of the Earth using quantitative
physical methods. The investigation of the Earth’s interior is naturally based on indirect measurements
including gravity, reflection and refraction seismics, magnetic, electrical, and electromagnetic tech-
niques. The practical application of these methods in the search for hydrocarbons and mineral deposits
is task of exploration geophysics.

In this chapter, I will describe the reflection seismic method which is the most frequently applied
technique in the context of oil and gas exploration due to its advantages concerning accuracy, reso-
lution, and penetration depths. Here, the propagation and reflection of artificially generated elastic
waves is utilised to gain information about the Earth’s reflectivity. Proper processing of the seismic
data allows to image and characterise the subsurface. In conjunction with geological and borehole
data, this information can be used to map features of interest, e. g., possible locations of hydrocarbon
accumulation.

Within the seismic processing sequence, migration, i. e., the transformation of the recorded data into
an interpretable image of the subsurface, plays an important role. In this thesis, I present a strategy
to incorporate kinematic wavefield attributes obtained by means of the Common-Reflection-Surface
(CRS) stack into 2.5D and 3D Kirchhoff migration in order to enhance the quality of the structural
image and to increase the reliability of the dynamic information.

1.1 Reflection seismics

As already mentioned, the aim of a seismic reflection experiment is to gain information about the
structure and composition of the subsurface. For this purpose, seismic methods utilise artificially gen-
erated elastic or acoustic waves which propagate through the area under investigation. These waves
are reflected at discontinuities along which the elastic parameters of the Earth change abruptly com-
pared to the scale of the dominant wavelength of the source signal. More precisely, only a part of
the energy is reflected while another part is transmitted into the deeper medium. In addition, mode
conversion between compressional and shear waves can occur. The part of the reflected wavefield that
returns to the surface is recorded. Thereby, spatially continuous events are recognised as wavefronts
and referred to as reflection events. Each reflection event is characterised by the lateral emergence
locations and the corresponding traveltimes. In general, the wavefield might get quite complicated
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Chapter 1. Introduction

due to multiple reflections, diffractions, and ground roll, i. e., waves that travel along the Earth’s sur-
face. Although all wave types carry information on the subsurface, we are usually only interested in a
specific subset of the data: unconverted waves that were reflected only once, so-called primary reflec-
tions. From the traveltimes and amplitudes of these events the elastic properties of the rocks as well as
the position, orientation, and curvature of reflectors can be deduced by means of seismic processing.
All other events are considered as noise and are tried to suppress during the data processing.

Basically, reflection seismics can be divided into three main steps which will be briefly summarised
in the following: the acquisition of the seismic data in the field, the seismic data processing, and the
structural and stratigraphical interpretation of the obtained results.

1.1.1 Data acquisition

Seismic reflection data is acquired in various environments and acquisition geometries: on land, in
transition zones, and in marine environments ranging from shallow to ultradeep waters. Seismic
equipment covers a large range that allows to study the subsurface from the near surface down to
several tens of kilometres in depth.

In large-scale land seismics, seismic pulses are usually generated by means of explosives or hydraulic
vibrators installed on large trucks which produce a frequency-modulated sweep with a duration of
several seconds. The reflected wavefield is recorded by geophones as a function of time after excitation
of the seismic energy. The measured quantity is one or three components of the particle displacement,
velocity, or acceleration. In the marine case, the seismic pulse is generated by the sudden release
of highly compressed air into the water. The interconnection of several of these so-called air guns
with certain time delays allows to vary the energy level, directivity, and frequency characteristic of
the pulse. Marine receivers (hydrophones) are based on piezoelectric sensors which are sensitive to
pressure changes.

In commonly applied survey designs, the wavefield generated by one source (often termed shot) is
recorded by a multitude of receivers. Due to the high ambiguity in the seismic inversion problem,
several of these so-called common-shot (CS) experiments with varying shot and receiver positions are
necessary to collect redundant information on the subsurface structure. The obtained multicoverage
dataset consists of one discrete time series for each shot-receiver pair which is usually referred to
as (seismic) trace, while an ensemble of traces with a certain geometry is referred to as gather. The
specific survey design depends on the purpose of the seismic experiment as well as on the complexity
of the subsurface structure and environmental conditions. Especially in 3D land seismics, this often
leads to irregular geometries which have to be taken into account during processing. Information on
seismic survey design can be found in, e. g., Vermeer (2002).

In many seismic processing steps, an appropriate sorting of the recorded multicoverage dataset with
respect to the shot-receiver configuration is necessary. The most frequently used configurations are:

• The common-midpoint (CMP) configuration: a CMP gather is made up of all traces that share
a common midpoint between shot and receiver location.

• The common-offset (CO) configuration: a CO gather contains traces with the same shot-receiver
distance (offset).

• The zero-offset (ZO) configuration: a ZO gather consists of traces with coinciding shot and
receiver location and is, thus, a special case of a CO gather.
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1.1 Reflection seismics

The different configurations are depicted in Figure 1.1. Their use will be explained in the context of
the particular processing steps.

1.1.2 Seismic data processing

The objective of seismic processing is to convert the measured seismic data into an image of the sub-
surface which represents the distribution of geological interfaces. Further analyses which do not only
consider the kinematic part of the data (related to the traveltimes) but also the dynamic information
(related to the amplitudes) additionally allow a characterisation of the elastic properties of the rocks.
However, this requires an appropriate treatment of the amplitudes in the processing sequence.

Seismic data processing usually starts in the field. Here, records from nearby shots and receivers
are combined to enhance the signal-to-noise ratio. In case of land data, static corrections are usu-
ally carried out to correct for topographic elevations and the influence of the weathering layer. The
subsequent main processing sequence strongly depends on the geological objectives and the noise
conditions. The basic stages of such a processing sequence are briefly addressed in the following. A
thorough description of seismic data processing can be found in Yilmaz (2001).

Preprocessing

Before seismic imaging, the raw data has to be preconditioned for the subsequent steps. Usually, this
starts with the conversion of the field tapes to a convenient format and dead or corrupt traces are set
to zero. In the next step, the field geometry, i. e., shot and receiver coordinates etc., is assigned to the
trace headers. By means of filtering, coherent noise or noise outside the considered frequency range
can be reduced. Residual static corrections may be applied for land data to deal with small-scale
near-surface velocity variations. Automatic gain functions, which are often applied in this stage to
compensate for spherical divergence and attenuation losses, should be avoided if amplitudes are to be
used in further analyses.

Deconvolution

The next step in seismic data processing is deconvolution. Deconvolution can be regarded as a kind
of inverse filter that removes the effects on the source pulse. In doing so, the pulse length is shortened
and transformed to zero-phase —ideally to a Dirac impulse— which increases the temporal resolution
of the data. For a mathematical description of the different deconvolution methods see, e. g., Buttkus
(2000) and references therein.

CMP sorting

After initial signal processing, the data is usually sorted from the recorded CS geometry to CMP
gathers. For 2D geometries, the CMP-sorted multicoverage dataset is defined by a midpoint, offset,
and time dimension making up a 3D volume. The 3D case, however, is more complicated: here,
shot and receiver coordinates are given by 2D vectors which leads to a 5D data (hyper-)volume. In
principle, 2D midpoint and offset vectors can be used in analogy to the 2D case. However, there are
processing steps like seismic migration where the reformulation in offset azimuth and Euclidean offset
is more convenient.
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Figure 1.1: Different source and receiver configurations for 2D acquisition. The smaller pictures on
the top and the bottom of the figure show selected rays for the different experiments. Shots are marked
by flash symbols and receivers by triangles. The sketch in the middle depicts the multicoverage
seismic dataset in midpoint m and half-offset h coordinates. Constant-offset traveltime curves are
displayed in black. The part of the data which would be obtained by one of the experiments is indicated
in colour (figure taken from Höcht, 2002).
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Velocity analysis and stacking

For a single horizontal layer with constant velocity, the traveltime curve for one CMP gather con-
stitutes a hyperbola if displayed as function of source-receiver offset. For more general media and
reflector geometries the behaviour of the traveltime curve gets quite complicated. Nevertheless, in
case of gentle dips and moderate lateral velocity variations, a hyperbolic approximation is still ap-
plicable if the maximum considered offset is small1. The actual form of the hyperbola is controlled
by the so-called normal-moveout (NMO) or stacking velocity which can be regarded as an effective
velocity of the medium. For a horizontally stratified medium with constant layer velocities, the NMO
or stacking velocity equals the root-mean-square (RMS) velocity. In principle, the definition of NMO
and stacking velocities slightly differs: while NMO velocities are based on a small-spread traveltime
assuming horizontal layers, stacking velocity are defined for the hyperbola that fits best over the entire
offset range. However, this difference is often ignored in practice.

Velocity analysis tools make use of the hyperbolic approximation to derive a model of the effective ve-
locity distribution of the subsurface. A variety of different approaches exist for the automatic analysis
of the reflection events, e. g., the signal coherence is evaluated along the hyperbolic trajectories de-
fined by a range of feasible velocity values. The coherence maxima are selected and the corresponding
velocities are interpolated along the profile.

The knowledge of the NMO velocity allows to remove the influence of the measurement geometry by a
so-called normal-moveout correction. This procedure corrects for the traveltime difference between a
finite offset and the (hypothetical) zero-offset ray. In this way, the reflection events in the CMP sections
are flattened and can be summed up (stacked) coherently. In case of a homogeneous overburden
the summation of these gathers yields a true ZO section, i. e., a hypothetical section that would be
obtained with coincident shot and receiver locations. For more complex media, a CMP gather contains
data from different reflection points in depth, i. e., it suffers from so-called reflection-point-dispersal
which falsifies the results of the velocity analysis and, to a smaller extent, the stacking result. In
principle, this effect can be compensated by a dip-moveout (DMO) correction which transforms the
CMP gathers to common-reflection-point (CRP) gathers (see Figure 1.2). Unfortunately, this process
is only possible with the knowledge of the true medium velocities. As these velocities are not known
initially, DMO is applied in an approximate manner. The original data is NMO corrected and the
analytic DMO operator for a dipping reflector in a constant velocity medium is applied. A subsequent
inverse NMO with the previously obtained velocities yields a new prestack dataset which, in general,
provides better results in the velocity analysis.

With the stacking process, one ZO trace is obtained for each CMP gather. In this way, not only the
amount of data is significantly reduced compared to the multicoverage dataset, but also the signal-to-
noise ratio is increased by approximately

√
N where N is the number of traces in the CMP gather.

The latter is based on the fact that the uncorrelated noise is less amplified in the stacking process than
the reflected signal. The ZO section gives a first impression of the subsurface structure. However, the
obtained image is inaccurate as the effects of the wave propagation are not completely removed from
the data. For this purpose, an additional processing step is necessary that migrates the reflectors to
their correct dip and spatial location.

1As a rule of thumb, for a considered reflector the source-receiver offset should not exceed the expected depth.
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Figure 1.2: Comparison of (a) a common-midpoint (CMP) and (b) a common-reflection-point (CRP)
experiment. For non-horizontal reflectors or lateral velocity variations, a CMP gather reveals reflec-
tion point dispersal, i. e., the reflection events do not illuminate the same point on the reflector.

Migration

Seismic migration is a wave-equation based process that removes the influence of the reflector over-
burden from the data. In detail, migration alters the location and inclination of reflection events, col-
lapses diffraction patterns that are caused by point scatterers and unfolds triplications. In Figure 1.3,
a ZO section is displayed before (left) and after (right) migration. The extension to true-amplitude
migration supplementary accounts for the dynamic effects related to the seismic amplitudes of the
wave-propagation process. By incorporating proper amplitude handling into the migration scheme,
additional information about geological and physical properties of the subsurface can be extracted
from the migrated image. In order to obtain a physically well-defined value for the amplitudes in the
migrated image, the amplitude change during wave propagation has to be compensated in the migra-
tion process. Under the assumption of weak parameter contrasts at seismic interfaces, the only major
influence on the amplitudes besides the reflection results from geometrical spreading effects. Thus, it
is usually assumed that all other factors affecting seismic amplitudes are either negligible or that they
are already corrected for before migration. Therefore, by compensating for the geometrical spreading
factor, the resulting amplitude of the reconstructed source pulse is proportional to the reflection coef-
ficient. This product, i. e., the source wavelet multiplied with the reflection coefficient, is traditionally
called a true-amplitude signal.

The migrated seismic section can be constructed in the time (time migration) or in the depth domain
(depth migration). In both cases, appropriate velocity information is essential. Whereas time migra-
tion is based on integral velocity information, depth migration requires the true medium velocities.
The difference between both techniques is not only the different domain in which the migrated sec-
tion is constructed: time migration locally assumes a 1D medium and, thus, fails for strong lateral
variations. Although depth seems to be the natural domain for an image of the geological structure,
time migration is frequently applied because the velocity model building is simplified and errors have
less impact on the migration result and, in particular, the amplitudes. Moreover, it allows a direct
comparison with the unmigrated section for interpretation.

Both time and depth migration can either be applied to the full multicoverage dataset (prestack migra-
tion) or the simulated ZO section (poststack migration). In prestack migration, the migration process
is separately carried out for each offset bin2 (or offset-azimuth bin in 3D) where offsets within a cer-

2Alternatively, a parameterisation in terms of common scattering angle is possible, leading to the so-called common-
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Figure 1.3: Comparison of a ZO section before (left) and after (right) time migration. Seismic migra-
tion alters the location and inclination of reflection events (1), collapses diffractions (2) and unfolds
triplications (3).

tain range are combined to guarantee a sufficient number of traces. While poststack migration is faster
and usually provides a clearer image due to the improved S/N-ratio of the input section, it might fail
for complex structures. Moreover, only prestack migration allows to check the quality of the velocity
model as it provides a separate image of the subsurface for each offset panel. This allows to extract
so-called common-image gathers (CIGs) in which traces that belong to a common lateral position
are displayed as a function of offset. If the velocity model is consistent with the input data, all the
common-offset sections are kinematically equivalent. Thus, the events in the CIGs are flat. A positive
moveout, i. e., images of larger offset appear at smaller traveltimes compared to those from shorter
offsets, indicates that the migration velocity was too low and vice versa. Therefore, prestack migrated
gathers allow to extract informations for an update of the velocity model. The range of application for
pre- and poststack migration in the time and depth domain is depicted in Figure 1.4.

Various migration algorithms have been developed which are in general variations of three different
approaches (Sheriff and Geldart, 1982): an integral solution of the wave equation (Kirchhoff or diffrac-
tion stack migration), a solution of the wave equation in the frequency domain (e. g., Stolt or Gazdag
migration), or a finite-difference approach in the time domain. Among those, Kirchhoff migration is
one of the oldest techniques but it is still widely used especially in 3D as it is less compute-intensive
than the other methods and highly parallelisable. Moreover, it allows a target-oriented application,
i. e., the imaging of a selected region in the output space, and can handle irregular geometries. Draw-
backs of the method are mainly related to the Green’s function tables (GFTs) required for migration.
GFTs provide the traveltime information and optional the dynamic properties for the calculation of
the weight function and are usually calculated on the basis of zero-order ray theory which will be
presented in the next chapter. A discussion of advantages and disadvantages of the different methods
and especially Kirchhoff migration can be found in, e. g., Gray (2001) and Robein (2003).

angle migration.
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Figure 1.4: Range of application for pre-and poststack time and depth migration. Time migration is
suitable for small to moderate lateral velocity variations, strong lateral inhomogeneities require depth
migration. Prestack migration has to be carried out if the structure of the subsurface is complex (after
Liner, 1999).

Amplitude analyses

After a true-amplitude migration, the migrated seismic signal becomes a direct measure of the re-
flection coefficient which itself depends on the reflection angle and, thus, on the lithology, porosity,
and fluid content of the rocks at the considered interface. From an analysis of amplitude variation
with offset (AVO) or reflection angle (AVA) conclusions can be drawn on the elastic properties of the
medium and anomalies that might indicate gas or oil accumulation. Most popular hydrocarbon indi-
cators are so-called bright spots (associated with a local increase in amplitude) or dim spots (a local
decrease). Flat spots, i. e., discordant horizontal reflectors, indicate an interface between two fluids
such as gas-oil or gas-water.

1.1.3 Seismic interpretation

Seismic interpretation aims at determining the geological significance of the seismic data. This in-
cludes the structural analysis of the reflector geometry to identify potential reservoirs, and the strati-
graphical analysis that relates reflections to chronostratigraphical units. Input for both techniques are
the migrated sections together with the unmigrated counterparts. In case of time migration, an addi-
tional conversion to depth is necessary; well measurements of the considered target region can be used
for the calibration of the seismic data. The analyses are complemented by seismic modelling, i. e., the
building of synthetic sections based on sonic log data to gain physical insight into the subsurface
parameters.

1.2 Outline of this thesis

In this chapter, a brief introduction into the reflection seismic method was given and the main steps in
a seismic processing workflow were summarised.
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1.3 Notation and abbreviations

Chapter 2 starts with the elastodynamic wave equation as theoretical background of the reflection
seismic method. Based on a high-frequency approximation, the ray method provides a solution to
the isotropic wave equation in terms of two fundamental equations, namely the eikonal and transport
equations. Two extensions of the classical ray theory are presented that find a broad application in
seismic modelling and inversion techniques.

The Common-Reflection-Surface (CRS) stack is introduced in Chapter 3 as a generalised high-density
stacking velocity analysis tool. Based on a second-order traveltime expansion, the CRS method was
originally mainly thought of as alternative to the conventional NMO/DMO/stack sequence for the
simulation of stacked sections. Additionally, the CRS stack provides a set of so-called kinematic
wavefield attributes that carry detailed information on the kinematics of the reflection events. These
attributes will be utilised in the minimum-aperture time migration approach for the derivation of ap-
proximate time migration velocities and the estimation of the optimum migration aperture.

Chapter 4 provides the theoretical background for true-amplitude Kirchhoff migration for 3D and
2.5D media. Starting from the depth migration scheme for arbitrary isotropic models, a general ex-
pression for the Kirchhoff migration integral and the corresponding true-amplitude weight is derived.
Kirchhoff time migration usually assumes a laterally homogeneous subsurface which leads to analytic
expressions for the migration formula as well as for the weight function.

Kirchhoff time migration is usually parameterised in terms of root-mean-square velocities defined at
the apex of the migration operator. This treatment is strictly valid only for 1D media, otherwise, the
required migration velocity constitutes a “best-fit” parameter. In Chapter 5, an approach to derive
approximate time migration velocities from the kinematic wavefield attributes is presented and its
applicability and limitations are discussed.

The image quality as well as the noise level and the reliability of the migration amplitudes in Kirchhoff

migration strongly depend on the selection of the migration aperture. Optimal results are obtained if
the migration aperture is restricted to the smallest possible size which governs the constructively
contributing part of the migration operator. In Chapter 6, a minimum-aperture approach for Kirchhoff

time migration based on the kinematic wavefield attributes is presented. While in the 2.5D case all
required information for the estimation of the optimal aperture for pre- and poststack migration can
directly be obtained from the CRS attributes, additional assumptions on the velocity distribution are
necessary in 3D. However, these restrictions are in accordance with the limitations of time migration.

The minimum-aperture time migration approach is applied to both synthetic and real datasets. The
results for the 2D and 3D data are presented in Chapter 7 and 8, respectively. Conventionally obtained
migration results are provided for comparison. The benefits and limitations of the minimum-aperture
time migration with respect to kinematic and dynamic results are discussed.

Finally, a summary and conclusions are given in Chapter 9.

1.3 Notation and abbreviations

Throughout this thesis, the Einstein summation convention is used, implying summation over repeated
indices. The mathematical syntax is summarised in the following tables:

9
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Scalars, vectors, and matrices

symbol element
scalar a

2D vector a ai (i = 1, 2)
3D vector â ai (i = 1, 2, 3)

symbol element
2×2 matrix A Ai j (i, j = 1, 2)
3×3 matrix Â Ai j (i, j = 1, 2, 3)
4×4 matrix ˆ̂A Ai j (i, j = 1, 2, 3, 4)

Vector and matrix operations

vector operations
· inner product
× cross product

IaTI transpose of a

matrix operations

I ÂT I transpose of Â

I Â-1 I inverse of Â

Vector calculus

The Nabla operator in Cartesian coordinates is denoted by ∇̂ = (∂/∂r1, ∂/∂r2, ∂/∂r3)T, ∆ = ∇̂ · ∇̂

symbolises the Laplace operator.

vector calculus operations

∇̂U gradient of scalar field U
∇̂ · Â divergence of vector field Â
∇̂ × Â curl of vector field Â

Abbreviations

In this thesis, I make use of the following abbreviations that are common in the literature about
reflection seismics:

AVA/AVO : amplitude variation with angle/offset
CIG : common-image gather
CMP : common-midpoint
CO : common-offset
CRP : common-reflection-point
CRS : common-reflection-surface
CS : common-shot
DMO : dip-moveout
NIP/PIP : normal-incidence/paraxial-incidence point
NMO : normal-moveout
RMO : residual-moveout
RMS : root-mean-square
S/N : signal-to-noise
ZO : zero-offset
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Chapter 2

Ray theory

In reflection seismics, the propagation of waves through the Earth is usually described in terms of
continuum mechanics. The most fundamental equation in this context is the elastodynamic wave
equation, a partial differential equation of second order which can, in general, not be solved analyti-
cally for arbitrary complex media. Common approaches rely either on a direct numerical solution of
the wave equation by means of finite-difference schemes or on an approximate asymptotic or itera-
tive solution such as the ray theory or the WKBJ method. Although the approximate methods suffer
from a limited range of validity and applicability, they are commonly utilised in both forward and
inverse seismic problems. Besides their computational efficiency, the asymptotic methods allow to
handle different elementary waves like, e. g., primary reflections and converted waves, independently
which simplifies the interpretation of the results. Both approximate methods break down under certain
conditions, e. g., in focal or shadow regions. Recent extensions like the Gaussian beam method and
the Maslov-Chapman method are able to overcome some of the limitations, thus allowing a broader
applicability of the approximate solutions.

The following chapter focuses on ray theory which provides a high frequency solution to the wave
equation in terms of the so-called ray series. Usually, the description is restricted to the leading term
of this series which is known as zero-order ray theory. Assuming a sufficiently smooth medium, the
ray method provides an approximate solution for both the kinematics and dynamics of the wavefield
in form of the eikonal and transport equations. Paraxial ray tracing, an extension to conventional ray
theory, utilises the quantities of a known ray to approximate rays in its vicinity. The paraxial system
can be further extended to the dynamic ray-tracing system which parameterises whole traveltime fields
and provides dynamic quantities as, e. g., the geometrical spreading factor.

The following derivations are restricted to the theoretical aspects actually needed in the further con-
siderations. A detailed treatment of the ray method can be found in, e. g., Červený (2001), see also
references therein. The presented paraxial ray method mostly follows the lines of Schleicher et al.
(2007).

2.1 Elastodynamic wave equation

The basis of the elastodynamic wave equation is the conservation of momentum. Together with a lin-
ear relationship between stress and strain, i. e., the generalised Hooke’s law, and further linearisations,
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we arrive at a second order partial differential equation. The latter relates the temporal derivatives
to the spatial derivatives of the particle displacement field, thus allowing to compute this field for
given initial and boundary conditions, provided the spatial distribution of the medium parameters is
known. Detailed derivations are given in, e. g., Aki and Richards (1980), Lay and Wallace (1995), and
Chapman (2004).

Anisotropic inhomogeneous case

In the following, the motion of a selected particle within a solid, linear-elastic body is considered.
Using the Lagrangian description of motion in an elastic continuum, its dislocation can be described
with respect to the original location r̂ = (r1, r2, r3) of the particle at a reference time t0. The time-
dependent dislocation vector is thus given by û(r̂, t), the velocity and acceleration of the particle by
∂û/∂t and ∂2û/∂t2, respectively.

The stress condition at any point r̂ in the medium is described by means of the symmetric stress tensor
τ(r̂, t). The diagonal elements of the stress tensor τii represent normal stresses while the off-diagonal
elements τi j, i , j, represent shear stresses. The deformation of the body under stress is specified by
means of the strain tensor e(r̂, t) which is also symmetric.

The spatial variation of the stress tensor τi j can be related to the time variation of the displacement
vector û using the equation of motion:

ρ
∂2u j

∂t2 = f j +
∂τi j

∂ri
. (2.1)

Here, ρ(r̂) denotes the density and f̂ is the density of the external body forces.

Under the assumption of a linear-elastic solid, the spatial derivatives of the stress tensor in equa-
tion (2.1) can be expressed in terms of the displacement vector using the constitutive relation, a gen-
eralisation of Hooke’s law:

τi j = ci jklekl , i, j, k, l = (1, 2, 3) , (2.2)

with

ekl =
1
2

(
∂uk

∂rl
+
∂ul

∂rk

)
. (2.3)

The latter only holds for small deformations which allows to neglect higher-oder terms. The 4th
order tensor c(r̂) in equation (2.2) is usually called stiffness or elastic tensor, its components ci jkl

elastic moduli. Due to the symmetry of the stress and the strain tensor and with the assumption of an
adiabatic deformation process, only 21 of the 81 components of the elastic tensor are independent for
the most general case of an adiabatic, anisotropic medium.

Rewriting ∂τi j/∂ri as

∂τi j

∂ri
=

1
2
∂

∂ri

(
ci jkl

∂uk

∂rl
+ ci jkl

∂ul

∂rk

)
(2.4a)

=
∂

∂ri

(
ci jkl

∂uk

∂rl

)
, (2.4b)

and substituting the result in equation (2.1) yields the elastodynamic wave equation for an inhomoge-
neous anisotropic linear-elastic medium:

ρ
∂2u j

∂t2 −
∂

∂ri

(
ci jkl

∂uk

∂rl

)
= f j . (2.5)
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2.2 Ray theory

Isotropic inhomogeneous case

For isotropic media, the number of independent elastic parameters reduces to the two so-called Lamé
parameters λ = λ(r̂) and µ = µ(r̂). The latter quantifies the resistance to shear stresses and is usually
called shear modulus. The relationship of the Lamé parameters to the elastic tensor is given by

ci jkl = λδi jδkl + µ
(
δikδ jl + δilδ jk

)
, (2.6)

with the Kronecker symbol δi j which equals 1 for i = j and 0 for i , j.

With equation (2.6), the wave equation for inhomogeneous isotropic linear-elastic media can be for-
mulated in vector notation as

ρ
∂2û
∂t2 − (λ + µ)∇̂(∇̂ · û) − µ∆û − ∇̂λ(∇̂ · û) − ∇̂µ × (∇̂ × û) − 2(∇̂µ · ∇̂)û = f̂ . (2.7)

Acoustic case

The elastodynamic wave equation can be further simplified for acoustic media fluids where the shear
modulus equals zero. Expressing the displacement û in terms of pressure p(r̂, t) = −λ∇̂ · û(r̂, t) and
assuming f̂ = 0̂, the acoustic wave equation reads

1
λ

∂2 p
∂t2 − ∇̂ · (

1
ρ
∇̂p) = 0 . (2.8)

In case of a medium with constant density ρ this equation reduces to the well-known form

1
c2

∂2 p
∂t2 − ∆p = 0 . (2.9)

Here, c =
√
λ/ρ denotes the acoustic wave velocity.

2.2 Ray theory

As already mentioned, the elastodynamic wave equation cannot be solved analytically for arbitrary
inhomogeneous media. In the homogeneous case, however, analytic solutions can be found for certain
initial conditions from which some general properties of seismic waves may be derived. The simplest
solution is obtained for time harmonic plane waves, i. e., waves of the type

û(r̂, t) = U e−iω(t−τ(r̂)) , (2.10)

with U being a vectorial constant (or scalar in the acoustic case), and ω the circular frequency. The
eikonal τ(r̂) is a linear homogeneous function of the coordinates ri and describes the traveltime of the
considered wave. Inserting ansatz (2.10) into the appropriate wave equation for the considered med-
ium yields a linear system of homogeneous equations with, in the most general case of an anisotropic
medium, three different non-trivial solutions. These solutions are related to three decoupled plane
waves with, in general, different properties. The three eigenvalues of the linear system describe the
propagation velocities while the corresponding eigenvectors determine the polarisation directions.

13



Chapter 2. Ray theory

In the isotropic case, the system degenerates: two eigenvalues coincide and the polarisation direction
is given by a linear combination of the two corresponding eigenvectors. For the two remaining wave
types, one obtains a well defined relation between the direction of polarisation and the direction of
wave propagation. The so-called P-wave, a compressional wave, is polarised in the direction of wave
propagation. The so-called S-wave with particle displacement in the plane normal to the propagation
direction is, in general, elliptically polarised. However, it is quite common to consider two linearly
polarised wave types which are mutually orthogonal. One exhibits a purely horizontal polarisation (SH
wave), whereas the other also allows a vertical polarisation component (SV wave). The propagation
velocities of the P- and S-waves read vp =

√
(λ + 2µ)/ρ and vs =

√
µ/ρ, respectively. Finally, in

the acoustic case only one type of plane wave is observed: the compressional wave which can be
described by the scalar pressure.

For inhomogeneous media, the strict separation of the wavefield into independent wave types no
longer holds. However, in case of a smooth medium where medium properties do not vary sig-
nificantly over the length scale of the source wavelet, the high-frequency elastic wavefield is still
approximately separable into independent P- and S-wave contributions. The properties of these high-
frequency elementary wave types are locally very similar to those of the homogeneous case. At inter-
faces, i. e., zero-order discontinuities where medium parameters change abruptly, the wave equation
cannot be solved across the boundary. Instead, explicit boundary conditions have to be considered.
These conditions follow from the assumed type of contact at the interface. In a similar way, free
surfaces can be handled.

One commonly applied approach to describe the propagation of high-frequency waves in smooth
media is seismic ray theory: each elementary wave is expressed in terms of a so-called ray series,
a series in inverse powers of ω in the frequency domain. Usually, only the zero-order term of the
series is considered, leading to the so-called zero-order ray theory which is briefly summarised in the
following sections.

2.2.1 Eikonal and transport equation

For simplicity, the ray method is demonstrated for the acoustic case using equation (2.8).

The ray ansatz for the derivation of the approximate high-frequency (HF) solution of the wave equa-
tion is based on a series expansion of the plane wave solution (2.10). For acoustic media, the scalar
ray series reads

p(r̂, t) = e−iω(t−τ(r̂))
∞∑

n=0

(−iω)−n P(n)(r̂), (2.11)

where P(n)(r̂), n = 0, 1, 2... denotes the amplitude coefficients of the ray series. In the zero-order
approximation considered here, only the leading term of equation (2.11) is taken into account, which
is given by

p(r̂, t) = P(r̂) e−iω(t−τ(r̂)) with P = P(0). (2.12)

Inserting this ansatz into equation (2.8) and sorting the terms with respect to the powers of ω yields

− ω2
[(
∇̂τ

)2
−
ρ

λ

]
−

iω
P

[
2∇̂P · ∇̂τ + P∆τ −

P
ρ
∇̂ρ · ∇̂τ

]
+
ρ

P
∇̂ ·

(
1
ρ
∇̂P

)
= 0 , (2.13)

which has to be satisfied for all frequencies. In general, we cannot expect that terms of different
powers of ω cancel each other. Therefore, the terms have to vanish independently.
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2.2 Ray theory

Setting the coefficients with ω2 and ω to zero leads to the well-known eikonal equation

(
∇̂τ

)2
=

1
c2 , (2.14)

and transport equation

2∇̂
(

P
√
ρ

)
· ∇̂τ +

(
P
√
ρ

)
∆τ = 0 , (2.15)

which play a fundamental role in the seismic ray theory. The third condition which follows from
setting the third term in equation (2.13) to zero can, however, not be satisfied explicitly for general
cases. For sufficiently high frequencies, i. e., sufficiently smooth media, it is assumed that this term
can be neglected. In fact, it is possible to evaluate the term once the solutions to the eikonal and
transport equation are known. In this way, a measure for the applicability of the zero-order ray theory
for the specific problem can be obtained.

For isotropic inhomogeneous media, similar derivations can be carried out using a vectorial ray series
ansatz. Then, we obtain eikonal and transport equations for both P- and S-wave which basically
exhibit the same structure as in the acoustic case:(

∇̂τ
)2

=
1
v2 and (2.16)

2∇̂
(√

ρv2 AP/S

)
· ∇̂τ +

√
ρ v2 AP/S ∆τ = 0 , (2.17)

where v denotes the respective velocity for the P- or S-wave and AP/S the corresponding amplitude
coefficient. Here, the amplitude coefficient for the S-wave AS can be expressed as

AS (r̂) = B(r̂) ê1 + C(r̂) ê2 , (2.18)

with B(r̂) and C(r̂) being scalar, complex-valued amplitude functions. In general, the unit vectors ê1
and ê2 are chosen perpendicular to each other and to the slowness vector of the S-wave. In this case,
the components B and C and consequently the corresponding transport equations are coupled.

2.2.2 Solution of the eikonal equation

In the following, we seek a solution to the eikonal equation (2.16) where the symbol v represents
the appropriate velocity for the considered medium and wave type, i. e., c, α, or β. Equation (2.16)
represents a nonlinear partial differential equation of first order in τ which is a special case of the class
of Hamilton-Jacobi equations and can be solved using the method of characteristics. For that purpose,
equation (2.16) is expressed in terms of the slowness vector

p̂ = ∇̂τ , (2.19)

which is perpendicular to the wavefronts described by t = τ. The eikonal equation can then be
expressed by

|p̂|2 =
1
v2 . (2.20)
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Chapter 2. Ray theory

Equation (2.20) can also be formulated as a Hamiltonian, i. e., in the form H(r̂, p̂) = 0. From the
latter, a characteristic system of differential equations of first order can be established, the so-called
kinematic ray-tracing system (for derivation, see, e. g., Bleistein, 1984):

dr̂
du

= ∇̂pH ,
dp̂
du

= − ∇̂H ,
dτ
du

= p̂ · ∇̂pH , (2.21)

where ∇̂p denotes the gradient with respect to the components of p̂ and u being a monotonously
increasing parameter. The solutions of (2.21), i. e., the characteristics, describe space trajectories in
the 6D phase space spanned by r̂ and p̂ along which H(r̂, p̂) = 0 is satisfied. The projection of such
a trajectory into the 3D r̂-space is referred to as ray in seismic literature. The solutions related to r̂
define the characteristic curve as 3D trajectory, while the solutions for p̂ describe the vector change
along the ray. These equations are coupled and have to be solved together. The solution for τ can be
obtained by an additional integration and describes the change of τ along the characteristics.

The actual form of the Hamiltonian depends on the specified problem, a common choice isH(r̂, p̂) =

|p̂| − 1
v and u = s, the arclength, leading to:

dr̂
ds

= vp̂ ,
dp̂
ds

= ∇̂

(
1
v

)
,

dτ
ds

=
1
v
. (2.22)

In order to solve the system for a certain ray, its initial position r̂0 and direction p̂0 have to be specified.
Usually, the kinematic ray tracing system is solved numerically using Runge-Kutta methods.

2.2.3 Solution of the transport equation

With the solution of the eikonal equation, the kinematics along the rays in the medium are known. In
order to solve the transport equation along one of these rays, a whole system of rays, a ray field, has
to be considered that represents the wavefront t = τ(r̂) of the considered wave. A unique description
of each ray within the ray field is obtained by the transition to so-called ray coordinates. A common
choice for the coordinates if a point source is considered are the two take-off angles γ1 and γ2 which
specify the initial slowness of the ray at the source S and a monotonously increasing parameter γ3
along the ray, for instance the arclength s or the traveltime τ (see also Figure 2.1). The ray coordinates
γ1, γ2, and γ3 form a curvilinear system which provides a valid but not necessarily unique description
of each point reached by an arbitrary ray of the field. For these points, the transformation from the ray
coordinates γ̂ to the global Cartesian coordinates r̂ can be expressed by

dr̂ = Q̂(r) dγ̂ , (2.23)

where the elements of the 3 × 3 transformation matrix Q̂(r) are given by Qi j = ∂ri/∂γ j, i, j = 1, 2, 3.
The corresponding Jacobian of transformation, also denoted as ray Jacobian if γ3 = s, reads

J =

∣∣∣∣∣ ∂ (r1, r2, r3)
∂ (γ1, γ2, γ3)

∣∣∣∣∣ =

(
∂r̂
∂γ1
×
∂r̂
∂γ2

)
·
∂r̂
∂γ3

= det Q̂(r) . (2.24)

The ray field is called regular within a region, if the Jacobian is defined and does not vanish at any
point of this region. Otherwise, the ray field is called singular.

For the solution of the transport equation certain properties of the Jacobian J have to be considered.
In principle, all derivations can be carried out for any arbitrarily chosen ray parameter γ3. However,
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x3

γ1

x1

γ2

x2

τ, sunit ray
tangent at S

S

ray Ω
P

Figure 2.1: For a point source S , the ray-coordinates γ̂ are usually specified by means of two take-off

angles γ1 and γ2 at S and a monotonously increasing parameter γ3 which describes the position along
the ray, for instance the traveltime τ or the arclength s.

it is convenient to work with the ray Jacobian, i. e., γ3 = s. Introducing the so-called elementary ray
tube which is defined by a family of rays whose ray coordinates are within the limits of (γ1, γ1 + dγ1)
and (γ2, γ2 + dγ2), the amplitudes of the propagating wave can be directly related to the ray Jacobian
J. Geometrically, J represents the cross-sectional area of the elementary ray tube and is, thus, related
to the density of the wavefield: small J, i. e., a small cross-sectional area, means high density of rays
and, consequently, high amplitudes, whereas high values of J are related to a low ray density and
small amplitudes. Furthermore, geometrical considerations allow to express the factor ∆τ using the
ray Jacobian:

∆τ =
1
J

d
ds

( J
v

)
, (2.25)

where v denotes the general velocity. With the help of expression (2.25), the transport equation can
now be solved along rays in terms of the ray Jacobian.

We start with the acoustic case (2.15). Along the ray, ∇̂τ can be expressed by means of the acoustic
velocity c and the unit tangent vector t̂ as ∇̂τ = t̂/c. With

t̂ · ∇̂
(

P
√
ρ

)
=

d
(
P/
√
ρ
)

ds
, (2.26)

the transport equation reads
d
ds

(
P
√
ρ

)
+

c
2

P
√
ρ

∆τ = 0 . (2.27)

Substituting ∆τ in equation (2.27) by equation (2.25) yields

d
ds

ln

P(s)

√
J(s)

ρ(s)c(s)

 = 0 , (2.28)

which is solved for the amplitude P(s). The final solution reads

P(s) = C(γ1, γ2)
√
ρ(s) c(s)/J(s) , (2.29)
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C(γ1, γ2) being a constant along the ray. The amplitude P(s) can thus be determined from the ampli-
tude P(s0) at some reference point s0 via

P(s) =

√
ρ(s) c(s) J(s0)
ρ(s0) c(s0) J(s)

P(s0) (2.30)

if the ray Jacobian J is known. In this equation, the factor
√

J(s0)/J(s) describes the amplitude loss
caused by geometrical divergence of the propagating wave, the quantity L =

√
J(s) is commonly

referred to as geometrical spreading factor.

In a similar way, the solution of the respective transport equations for elastic P- and S-waves can be
derived. For S-waves, the transport equation is in general coupled, i. e., the amplitude coefficients B
and C in equation (2.18) are not independent. A certain choice for the unit vectors ê1 and ê2, however,
leads to a decoupling of the transport equation which then takes the same form as for the P-wave. In
this case, the general solution for the elastic amplitude can be expressed as

A(s) =

√
ρ(s) v(s) J(s0)
ρ(s0) v(s0) J(s)

A(s0) , (2.31)

where A(s) replaces the amplitude term AP(s) for P-waves or B(s) and C(s) for S-waves and v(s) the
corresponding velocity α or β.

In singular regions, i. e., regions where the Jacobian becomes zero, the description of the amplitudes
by means of equations (2.30) and (2.31) breaks down. Such points are called caustics. In general,
we distinguish between caustics of first order where the cross section of the ray tube shrinks to a line,
and caustics of second order where the cross section is reduced to a point. Mathematically, the first
case corresponds to rank Q̂(r) = 2, the second to rank Q̂(r) = 1. In passing through a singular region,
the wave phase is subject to a phase shift of π/2 in case of a first-order caustic and π for a caustic of
second order.

In order to account for caustics in the computation of seismic amplitudes, the actually continuous
transition of the phase along a ray through a caustic region is approximated in ray theory by a discon-
tinuous phase jump. This can be achieved by incorporating an additional phase term in the definition
of the square-root of J:

√
J = |J|

1
2 e−i π2 κ . (2.32)

Here, the KMAH index κ is increased by one for each caustic of first order passed by the wave
and by two for each caustic of second order (for details see Ziolkowski and Deschamps, 1980). The
geometrical spreading factor thus becomesL = |J|

1
2 e−i π2 κ, or if normalised with respect to the velocity

vS and vG at starting and end point of the ray

L =
1

√
vS vG

|J|
1
2 e−i π2 κ . (2.33)

2.2.4 Physical rays

The seismic ray as solution of the eikonal equation is a purely mathematical concept. For a ray Ω

connecting a source point S and a receiver R via the reflection point MR it can be interpreted as
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S RS R

M
R

x1

x3

reflector

Figure 2.2: Schematic sketch of the Fresnel volume (grey) of a reflected ray S MR R. The intersection
of the Fresnel volume with a reflecting interface defines the interface Fresnel zone (red).

the trajectory along which the high-frequency part of the energy of the seismic wave propagates. In
reality, the wavefield recorded at R is influenced by the velocity distribution and structure in an entire
vicinity of the ray Ω rather than along the exact ray path only. This region which actually affects the
wavefield in R is usually referred to as Fresnel volume, sometimes also called physical ray.

The intersection of the Fresnel volume with a reflecting interface defines the so-called interface Fres-
nel zone which is the natural limit of resolution (see Figure 2.2). Subsurface features smaller than the
Fresnel zone cannot be resolved. Obviously, the interface Fresnel zone is frequency-dependent, waves
with higher frequency provide a higher spatial resolution. For monochromatic signals with period T,
the interface Fresnel zone consists of all points M on the interface for which the following inequality
holds (Červený and Soares, 1992):∣∣∣τ(S ,M,R) − τ(S ,M) − τ(M,R)

∣∣∣ ≤ T/2 . (2.34)

For transient signals, the period T has to be replaced by some measure of the wavelet length τω.
A variety of different definitions can be found in Schleicher and Santos (2001). Strictly speaking,
equation (2.34) defines the size of the first Fresnel zone. The n-th Fresnel zone can simply be obtained
by replacing T/2 with n T/2.

2.3 Dynamic and paraxial ray theory

In the previous section, seismic rays were introduced as characteristics of the HF solution of the
elastodynamic wave equation. The kinematic ray-tracing system (2.21) provides the ray trajectory
while the amplitude along the ray is related to the ray Jacobian J. In principle, J can be calculated by
analysing the elementary ray tube. For that purpose, rays in the close (paraxial) vicinity of the central
ray have to be calculated. An efficient solution to this problem is the use of so-called paraxial and
dynamic ray-tracing methods.
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e
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3 ray Ω

Figure 2.3: The basis vectors e1, e2, and e3 of the ray-centred coordinate system q̂ associated with a
ray Ω. The q3-axis of the system corresponds to a monotonic parameter along the ray, the correspond-
ing basis vector e3 thus equals the unit tangent to the ray in any point.

For that purpose, the medium velocity is assumed to be adequately approximated by a Taylor expan-
sion of second order with expansion point on the central ray. In this case, the kinematic ray tracing
system reduces to the paraxial ray-tracing system which consists of linear differential equations. It
describes, up to second order in traveltime, rays in a paraxial vicinity of the central ray in terms of the
properties of the central ray. The paraxial ray-tracing system can be further extended to the dynamic
ray-tracing system which considers an infinitesimal ray tube around a central ray.

Both, the paraxial and the dynamic ray-tracing systems have the same mathematical form and are
closely related: the dynamic ray-tracing yields the derivatives of the phase space coordinates on the
central ray with respect to the initial ray parameters, whereas the paraxial system approximates the
rays in the vicinity of the central ray.

A particularly convenient representation of the two ray-tracing systems is obtained in ray-centred
coordinates associated with the central ray.

2.3.1 Ray-centred coordinates

The ray-centred coordinate system q̂ is a curvilinear system which is associated with a known ray Ω,
in the following referred to as central ray. The system is defined in such a way that the coordinate q3
corresponds to a monotonic parameter along the ray, usually the arclength s. The other two axes are
situated in the plane perpendicular to the ray and are chosen such that the vectors form an orthogonal
system (see Figure 2.3). The central ray itself is, thus, described by q1 = q2 = 0.

The region of validity of the ray-centred coordinate system depends on the curvature of the central
ray: for a point R̃ in the vicinity of the central ray a unique representation requires that only one plane
perpendicular to the central ray can be constructed which contains R̃. Thus, the region of validity is
broad for slightly curved rays and narrow in case of rays with large curvature. A detailed description
of the ray-centred coordinate system can be found in Popov and Pšenčík (1978).

Note that in contrast to the ray coordinates introduced in context with the solution of the transport
equation, the ray-centred coordinates are only associated with the specified reference ray. The trans-
formation from ray to ray-centred coordinates can be expressed in terms of the transformation matrix
Q̂, Qi j = ∂qi/∂γ j. It reads

dq̂ = Q̂ dγ̂ . (2.35)
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In the same way, the transformation from ray-centred to global Cartesian coordinates x̂ is given by

dx̂ = Ĥ dq̂ , (2.36)

with the transformation matrix Ĥ,Hi j = ∂xi/∂q j.

Using both transformations, the ray Jacobian J can be expressed in ray-centred coordinates by

J = det
(
Ĥ Q̂

)
= det Ĥ det Q̂ . (2.37)

The definition of J simplifies if the arclength s is chosen as the third axis of the ray and ray-centred
coordinate system. Then, the element Q33 of the transformation matrix (2.35) equals one. For points
on the ray, the determinant of Q̂ thus equals the determinant of its upper-left 2 × 2 submatrix Q and
Ĥ is a rotation matrix with det Ĥ = 1. Therefore, the ray Jacobian is entirely determined by the
geometrical behaviour of the ray tube and can be calculated from

J = det Q. (2.38)

2.3.2 Ray tracing systems in ray-centred coordinates

The paraxial ray-tracing system is derived from the eikonal equation (2.16) formulated in ray-centred
coordinates under the assumption that the medium properties in the vicinity of the central ray can
be expressed by a Taylor expansion up to second order in q1 and q2. The resulting system of linear
equations approximates rays in the paraxial vicinity of a known central ray

dqi

ds
= v p(q)

i ,
dp(q)

i

ds
= −

1
v2 q j

∂2v
∂qi∂q j

∣∣∣∣∣∣
q1=q2=0

, i, j = 1, 2 , (2.39)

where p̂(q) symbolises the ray-centred covariant slowness vector. The region of validation of the
paraxial ray-tracing system (2.39) depends on the degree of inhomogeneity of the medium.

The dynamic ray-tracing system provides the first partial derivatives of the coordinates q̂ and p̂(q)

with respect to the initial ray parameters. As ∂/∂γ commutes with d/ds, we immediately obtain from
equation (2.39)

d
ds

(
∂qi

∂γ

)
= v

∂p(q)
i

∂γ
,

d
ds

∂p(q)
i

∂γ

 = −
1
v2

∂q j

∂γ

∂2v
∂qi∂q j

∣∣∣∣∣∣
q1=q2=0

, i, j = 1, 2 . (2.40)

While the paraxial ray-tracing system (2.39) provides approximations of the coordinates q̂ and p̂(q)

along paraxial rays, the dynamic ray-tracing system explicitly determines the partial derivatives
∂qi/∂γ and ∂p(q)

i /∂γ along the central ray.

A considerably simpler form of equation (2.40) is obtained if an elementary ray tube specified by
parameters γ1 and γ2 is considered. The dynamic ray-tracing system then reads

dQ
ds

= vP ,
dP
ds

= −
1
v2 VQ , (2.41)

where V denotes the matrix of second derivatives of v with respect to qi along the central ray, Q
is the upper-left 2 × 2 submatrix of the transformation matrix defined in (2.35) and P is given by
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Pi j = ∂p(q)
i /∂γ j, i, j = 1, 2. The system (2.41) consists of four linear ordinary differential equations of

first order. Its solution for arbitrary initial conditions can be constructed once two linearly independent
solutions are known. Here we shall consider the so-called plane wave solutions Q1 and P1 and the
point source solutions Q2 and P2 which are obtained from the initial conditions Q(S ) = I ,P(S ) = 0
and Q(S ) = 0 ,P(S ) = I, respectively. Here, I and 0 denote the 2 × 2 identity and zero matrix and
S is the source point. Using these two solutions, the fundamental 4 × 4 matrix ˆ̂

Π of the dynamic
ray-tracing system which is usually referred to as ray propagator matrix can be expressed as

ˆ̂
Π(R, S ) =

(
Q1 Q2
P1 P2

)
. (2.42)

Once the ray propagator matrix is known for a specified ray connecting a source point S and a receiver
R, the solution of the dynamic ray-tracing system can be determined for any initial condition by
multiplying ˆ̂

Π with the matrix of the initial conditions. Thus, the general solution to the paraxial ray
tracing system (2.39) can be expressed by(

q(R)
p(q)(R)

)
=

ˆ̂
Π(R, S )

(
q(S )

p(q)(S )

)
. (2.43)

Note that the matrix ˆ̂
Π is symplectic and can be chained along the central ray by simple multiplication.

With the knowledge of ˆ̂
Π, dynamic parameters along the ray can be calculated. An important property

for the handling of dynamic effects in seismic applications is the normalised point source geometrical
spreading L̃ which is given by

L̃ =
1

√
vS vR

|Q2|
1
2 e−i π2 κ . (2.44)

2.3.3 Ray tracing systems in local Cartesian coordinates

An alternative form of expression (2.43) was introduced by Bortfeld (1989). Here, the ray-tracing
system is given in local Cartesian coordinates associated with the surfaces containing the starting and
end points of the paraxial rays. These surfaces, usually referred to as anterior (for the source) and
posterior (in case of the receiver) surface, may be arbitrarily oriented and curved. In the following, a
central ray emanating from a source point S on the anterior surface and reaching the posterior surface
in receiver point R is considered. The two local Cartesian coordinate systems (xS 1, xS 2, xS 3) and
(xR1, xR2, xR3) are centred at the source or receiver point and constructed such that their x1 − x2 plane
is situated within a plane ΣS/R tangent to the considered surface. The x3–axis of the local system is
normal to ΣS/R and oriented such that it forms an acute angle with the slowness vector of the central
ray. The first two components of both systems, (xS 1, xS 2) and (xR1, xR2), define local 2D Cartesian
coordinate systems within the planes ΣS and ΣR, respectively.

The central ray is fully defined by its position vectors x̂S 0 at S and x̂R0 at R and the slowness vectors
p̂S and p̂R. A paraxial ray connecting point S on the anterior and R on the posterior surface is pa-
rameterised by its dislocations x̂S and x̂R measured with respect to S and R and the deviation of its
slowness vectors p̂S and p̂R which are defined at S and R with respect to the slowness vectors of the
central ray.

The three–dimensional quantities x̂S , p̂S , and p̂S describing the central and the paraxial ray can be
depicted in the local system (xS 1, xS 2) by 2–component representations that provide a fully suitable
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Figure 2.4: Construction of the slowness vector projections pS and pS . The initial slowness of the
central ray p̂S is projected along the plane’s normal onto ΣS . The initial slowness of the paraxial ray
p̂S is firstly projected onto the plane ΣS tangent to the anterior surface at S . Thereafter, the resulting
vector pTS is projected onto the plane ΣS .

description of both rays. The 2D vectors xS and pS are obtained by performing a projection of
the vectors x̂S and p̂S along the plane’s normal onto ΣS . To find the 2D representation of p̂S , two
cascaded projections have to be performed. For this purpose, an additional plane ΣS tangent to the
anterior surface at S has to be constructed. The projection of p̂S into the plane ΣS yields pTS , which
is then projected into the plane ΣS resulting in the searched–for vector pS (see Figure 2.4). Knowing
the anterior surface and the velocity vS at the source allows the reconstruction of the 3D quantities
from their 2D projections. The same considerations hold for the quantities at the receivers R and R,
respectively.

The parameters characterising the paraxial ray are its projected displacement vector and the deviation
of its projected slowness vector from the projected slowness vector of the central ray. By means of
the paraxial ray-tracing system (2.43) expressed in local Cartesian coordinates, a linear relationship
can be established which describes how these quantities change as a result of wave propagation in the
vicinity of the central ray (Bortfeld, 1989):(

x(R)
p(R) − p(R)

)
=

ˆ̂T
(

x(S )
p(S ) − p(S )

)
, (2.45)

with the 4 × 4 surface-to-surface propagator matrix ˆ̂T given by

ˆ̂T =

(
A B
C D

)
. (2.46)

The 2 × 2 submatrices A,B,C, and D characterise the central ray and allow to derive dynamic proper-
ties of the wavefield, e. g., geometrical spreading: in analogy to equation (2.44), the normalised point
source geometrical spreading can be written as function of the submatrix B:

L̃ =

√
cos θS cos θR

vS vG
|B|

1
2 e−i π2 κ . (2.47)
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Chapter 2. Ray theory

Here, θS and θR denote the ray take-off and emergence angle of the central ray measured versus the
normal of the considered surface.

A thorough description of the surface-to-surface ray propagator matrix ˆ̂T and its relation to the ray
propagator matrix ˆ̂

Π can be found in Hubral et al. (1992a).

2.3.4 Paraxial traveltimes

From equation (2.46), two relationships describing pS and pR can be established which lead to a
second-order traveltime approximation for the paraxial ray.

Using Hamilton’s equation for two point ray–tracing (see Bortfeld, 1989; Schleicher et al., 1993), the
traveltime difference between the central ray S R and the paraxial ray S R can be expressed as

dτ = τ(S ,R) − τ(S ,R) = p̂R · x̂R − p̂S · x̂S . (2.48)

The sign in equation (2.48) is chosen such that displacing S in ray direction leads to a decrease of the
traveltime, whereas the traveltime is increased if R is shifted in ray direction. As the dot product p̂I ·x̂I ,
I = S ,R vanishes if the vectors are perpendicular (which states that the traveltime derivative vanishes
in vertical direction to the ray), equation (2.48) can be understood as an alternative formulation of
Fermat’s principle.

In order to use the paraxial-ray formalism, the 2D projections of the dislocation and slowness vectors
are required. As shown by Bortfeld (1989), the products of the third components are already of
second order and may therefore be neglected in paraxial approximation. Hence, rewriting Hamilton’s
equation as a function of the 2D projection vectors yields

dτ = pR · xR − pS · xS , (2.49)

where pR and pS can be expressed according to equation (2.46) by

pS = pS + B−1 xR − B−1 A xS , (2.50a)

pR = pR + C xS + D B−1 xR − D B−1 A xS . (2.50b)

Inserting equation (2.50) into equation (2.49) and subsequent integration yields the parabolic approx-
imation of the traveltime along the ray S R:

τpar(xS , xR) = τ0 + pR · xR − pS · xS (2.51)

−xS · B−1 xR +
1
2

xS · B−1 A xS +
1
2

xR · D B−1 xR ,

with τ0 being the traveltime along the central ray. The last step uses the symplecticity property of

the matrix ˆ̂T which states that ˆ̂T ˆ̂T
−1

=
ˆ̂I and ˆ̂T

−1 ˆ̂T =
ˆ̂I, ˆ̂T

−1
being the inverse of ˆ̂T and ˆ̂I the 4 × 4

identity matrix.

The parabolic traveltime approximation can be interpreted as the second-order Taylor expansion of
the exact two-point traveltime between S and R, i. e., equation (2.51) can be expressed in terms of
traveltime derivatives of first and second order with respect to the displacement vectors xS and xR.
In order to connect both representations of the traveltime approximation, the slowness vectors are
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2.3 Dynamic and paraxial ray theory

expressed by means of equation (2.19) and the submatrices of ˆ̂T are related to the Hessian matrices
NR

S , NS
R, and NSR by

NR
S =

(
∂2τ

∂xS i∂xS j

)
i, j=1,2

= B−1A , (2.52a)

NS
R =

(
∂2τ

∂xRi∂xR j

)
i, j=1,2

= DB−1 , (2.52b)

NSR =

(
∂2τ

∂xS i∂xR j

)
i, j=1,2

= B−1 . (2.52c)

Here, the subscript S and R means derivative with respect to shot and receiver coordinate while the
superscript S and R stands for constant shot and receiver coordinate. The relationships (2.52) fol-
low from taking the respective derivative of equation (2.51). Note that the matrices NR

S and NS
R are

symmetric whereas NSR is not.

The resulting parabolic traveltime expansion thus reads

τpar(xS , xR) = τ0 + pR · xR − pS · xS (2.53)

−xS · NSR xR +
1
2

xS · NR
S xS +

1
2

xR · NS
R xR .

Originally, Bortfeld (1989) derived equation (2.51) for models consisting of homogeneous layers
separated by curved interfaces. However, the traveltime approximation is equally valid for laterally
inhomogeneous media (Hubral et al., 1992a). Nevertheless, equation (2.51) remains an approximation
of the true traveltime even for simple media. The frequently used hyperbolic traveltime approximation
is exact for a single horizontal or dipping reflector with homogeneous overburden. It can be obtained
by squaring equation (2.51) and retaining only terms up to second order in xS and xR:

τ2
hyp(xS , xR) = (τ0 + pR · xR − pS · xS )2 (2.54)

+τ0
(
−2xS · B−1 xR + xS · B−1 A xS + xR · D B−1 xR

)
.

Of course, equation (2.54) can also be expressed in terms of traveltime derivatives:

τ2
hyp(xS , xR) = (τ0 + pR · xR − pS · xS )2 (2.55)

+τ0
(
−2xS · NSR xR + xS · NR

S xS + xR · NS
R xR

)
.

For simple layered media, the hyperbolic traveltime formula showed to better describe near-vertical
reflections (Ursin, 1982). However, in general the accuracy of the approximations depends on the
model.

2.3.5 Paraxial approximation of the Fresnel zone

Another property of the seismic wavefield which can be estimated from the surface-to-surface prop-
agator matrix is the interface Fresnel zone introduced in Section 2.2.4. Here, the fact is used that the
propagator matrix of the ray S MR can be decomposed into the surface-to-surface propagator matrices
of the single ray segments: ˆ̂T =

ˆ̂T2(MR) ˆ̂T1(S M). This so-called chain rule is a fundamental property
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of the propagator matrix (for details see Hubral et al., 1992b). In a similar way, the submatrices of the
total-ray propagator matrix ˆ̂T can be expressed in terms of the submatrices of the propagator matrices
for the ray segments.

In order to find an approximation of the Fresnel zone, the traveltimes of the two ray branches (S ,M)
and (M,R) considered in equation (2.34) are calculated by means of paraxial ray tracing. Taking into
account that the same source and receiver point is considered for the central and paraxial ray, one
immediately obtains from equation (2.51)

τ(S ,M) = τ(S ,M) + pM · xM +
1
2

xM · D1 B−1
1 xM , (2.56a)

τ(M,R) = τ(M,R) − pM · xM +
1
2

xM · B−1
2 A2 xM . (2.56b)

Here, the xM and pM denote the 2D representations of the dislocation vector from M to M and the
slowness of the central ray in the local Cartesian coordinate system associated with the interface at M.
The submatrices of ˆ̂T1 and ˆ̂T2 are denoted with the respective subscript. Inserting equations (2.56)
into the definition of the interface Fresnel zone (2.34) yields

|xM ·HFxM | ≤ τω , (2.57)

with the Fresnel zone matrix HF . The latter can be expressed in terms of the submatrices of ˆ̂T1 and
ˆ̂T2 by

HF = D1 B−1
1 + B−1

2 A2 = B−1
2 B B−1

1 . (2.58)

Equation (2.57) defines an ellipse in the plane tangent to the interface at M which approximates the
exact Fresnel zone given by equation (2.34).

Fresnel volumes and zones play an important role in seismic imaging, in particular concerning in-
vestigations on the spatial resolution of seismic methods (Sheriff and Geldart, 1982). For the limited-
aperture Kirchhoff migration introduced in Chapter 6, the projection of the interface Fresnel zone onto
the measurement surface is required as it directly provides the part of the seismic data that actually
contributes to the reflection at MR. The concept of this so-called projected Fresnel zone was intro-
duced by Hubral et al. (1993) for normal rays. Parameterised in terms of the midpoint vector m, the
projected Fresnel zone reads:

|(m −m0) ·HP (m −m0)| ≤ τω , (2.59)

where m0 is the midpoint vector describing the central ray. The projected Fresnel zone matrix HP is
given in paraxial approximation by HP = 4B−1. Similar to the interface Fresnel zone in Section 2.2.4,
equation (2.59) defines an ellipse in the (m1,m2)-plane in the time domain.

An extension of the concept to finite offset rays was given by Schleicher et al. (1997).

2.4 Summary

In this chapter, the elastodynamic wave equation and its simplifications for isotropic and acoustic
media as the most fundamental equations in context of seismic imaging have been presented. By
means of zero-order ray theory, an asymptotic high-frequency solution to the wave equation in terms
of seismic rays has been obtained that is suited to describe wave propagation in smoothly varying
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2.4 Summary

inhomogeneous media. Two fundamental equations, the so-called eikonal equation that provides the
kinematic ray-tracing system and the transport equation, from which the amplitudes can be calculated,
form the basis of seismic ray theory. Two extensions of seismic ray theory, dynamic and paraxial
ray-tracing, have been described which find a broad application in seismic modelling and inversion
problems.
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Chapter 3

Common-Reflection-Surface Stack

Stacking procedures like the frequently applied NMO/DMO/stack sequence form a central part of the
seismic processing workflow. In these processes, the redundancy of the multicoverage field data is
used to determine so-called stacking parameters which allow to correct for the influence of the mea-
surement geometry on the prestack data. The summation of these moveout-corrected traces provides
a simulated ZO section with improved S/N ratio which gives a first impression of the structures in the
subsurface and may enter into a subsequent poststack time or depth migration. Conventional stacking
techniques like, for instance the NMO/DMO/stack sequence, provide only a single stacking parame-
ter. This parameter, called stacking velocity, is interpreted as an integral velocity of the overburden of
the reflection point. Furthermore, the stacking velocities are usually determined for selected locations
and then interpolated to the complete target area.

In recent years, the Common-Reflection-Surface (CRS) stack has been established as a powerful alter-
native to conventional stacking procedures. Based on a second-order traveltime expansion, the CRS
stack can be seen as a generalised high-density stacking velocity analysis tool. This means that, in
contrast to conventional stacking, the CRS stacking operator spatially extends over several CMP gath-
ers and approximates the reflection response of a whole reflector segment. In this way, an increased
number of traces contribute to the stack which leads to an improved S/N ratio in the simulated ZO
section. At the same time, a whole set of stacking parameters, the so-called kinematic wavefield at-
tributes, is obtained for each simulated ZO sample. In this case, no interpolation of these parameters
is required as far as stacking itself is concerned.

Originally, the CRS stack was implemented as highly automated imaging process for the simulation of
ZO sections in 2D (e. g., Hubral et al., 1998; Müller, 1998) and 3D (e. g., Müller, 2003; Bergler, 2004)
from data with low S/N ratio. At this stage, the wavefield attributes were regarded as a pure by-product
of the stacking process despite the additional information they carry. Meanwhile, the focus has shifted
as the attributes find a broad application in subsequent processing steps among which the tomographic
velocity model determination by Duveneck (2004) is the most prominent one. Further applications of
the CRS attributes include Dix-type inversion schemes (Müller, 2005), automatic approximative time
migration without velocity model (Mann et al., 2000), residual static corrections (Koglin and Ewig,
2003), and minimum-aperture migration (Jäger, 2005b). CRS stack, tomographic velocity model
determination, and true-amplitude Kirchhoff migration have been combined to set up a consistent
CRS-based imaging workflow from the prestack data to the depth-migrated image (Hertweck et al.,
2003b).
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Chapter 3. Common-Reflection-Surface Stack

In this chapter, the CRS technique will be shortly reviewed. Special attention is paid to the reliable
determination and preconditioning of the attributes for the subsequent processes.

3.1 The CRS stacking operator

The general idea of the CRS technique is to describe a reflection event in the vicinity of a ZO sample
by means of a second-order traveltime approximation similar to equation (2.53) or (2.55). A partic-
ularly convenient form of the CRS operator is obtained in midpoint m and half-offset h coordinates.
These coordinates do not only provide a simple mathematical (and technical) representation of the op-
erator, but also allow to interpret the stacking parameter geometrically, namely in terms of wavefront
properties.

Using an entire stacking surface rather than a trajectory (in 2D) in the time-midpoint-half-offset space
implies that the considered reflection events are continuous over several neighbouring midpoint gath-
ers. This does not only lead to a stabilisation in the determination of the stacking parameters but also
overcomes the problem that a CMP gather may contain information from more than one reflection
point in depth. In conventional processing, an additional dip-moveout correction is required to trans-
form the CMP gathers to true CRP gathers which provide dip-corrected stacking velocities. The CRS
technique, however, does not require an additional DMO correction. The spatial stacking operator
inherently accounts for the reflection point dispersal, i. e., it can be assumed that at least the main
part of the CRP trajectory belonging to a specific ZO sample lies within the corresponding stacking
surface. In Figure 3.1a), the CRS stacking operator is depicted for a simple 2D model. Figure 3.1b)
shows the deviation of the CRP trajectory from the CMP gather for a non-horizontal reflector.

The subsequent considerations are based on the hyperbolic traveltime representation only since it is
most frequently used in practical applications. Similar results can be derived for the parabolic operator
(see, e. g., Müller, 2003; Bergler, 2004).

3.1.1 Traveltime approximation in midpoint and half-offset coordinates

In the following, a planar measurement surface which coincides with the (x, y)-plane of the general
Cartesian coordinate system is considered. Shots and receivers are both located on the measurement
surface, i. e., the anterior and posterior surfaces coincide. Therefore, each point on the measurement
surface is fully described by a 2D vector. Given a source and a receiver with coordinates rS and rR,
respectively, midpoint and half-offset coordinates are provided by the relations

m =
1
2

(rS + rR) , h =
1
2

(rS − rR) . (3.1)

For displacement vectors like, e. g., xS and xR used in the traveltime approximation (2.55), equa-
tions (3.1) can be extended to midpoint and half-offset displacement vectors ∆m and ∆h:

∆m = m −m0 =
1
2

(xS + xR) , ∆h = h − h0 =
1
2

(xS − xR) , (3.2)

where m0 and h0 refer to the central ray. Solving these relations for xS and xR and inserting them into
equation (2.55) yields the traveltime approximation in midpoint and half-offset coordinates:

τ2
hyp(∆m,∆h) = (τ0 + (pR − pS ) · ∆m + (pR + pS ) · ∆h)2 (3.3)

+τ0
(
∆m ·MH

M∆m + 2 ∆m ·MMH∆h + ∆h ·MM
H ∆h

)
,
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Figure 3.1: CRS stacking operator and CRP trajectory in the time-midpoint-offset volume. The blue
curves in the upper part of the pictures represent reflection traveltime curves for fixed source-receiver
offsets for the dome-like reflector in the lower part. (a) The green lines indicate the CRS stacking
operator for the ZO sample P0 which approximates the reflection response of the red reflector segment
around the Common-Reflection-Point (here set up by means of neighbouring CRP trajectories). (b)
The CRP trajectory (purple) connects all points in the time-midpoint-offset volume which belong to
a common reflection point in depth. For non-horizontal reflectors or inhomogeneous overburden, the
CRP trajectory deviates from the CMP gather.
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with τ0 = τ(m0,h0) and

MH
M =

(
∂2τ

∂∆mi∂∆m j

)
i, j=1,2

= NR
S + NS

R + NSR + NT
SR , (3.4a)

MM
H =

(
∂2τ

∂∆hi∂∆h j

)
i, j=1,2

= NR
S + NS

R − NSR − NT
SR , (3.4b)

MMH =

(
∂2τ

∂∆mi∂∆h j

)
i, j=1,2

= −NR
S + NS

R + NSR − NT
SR . (3.4c)

All derivatives are defined at the surface at (m0,h0). Equation (3.3) defines a finite-offset stacking
operator in midpoint and half-offset coordinates with a total of 14 independent parameters (note that
the matrices MH

M and MM
H are symmetric while MMH is not).

In order to find the corresponding zero-offset stacking operator, we consider normal central rays only,
i. e., rays which are normal to the reflector in the so-called normal-incidence (NIP) point. For these
rays, the up- and down-going ray paths coincide, i. e., h0 = 0 and ∆h = h. Consequently, the following
relations hold for the derivatives with respect to h:

∂τ

∂h

∣∣∣∣∣h=0
= 0 , (3.5a)(

∂2τ

∂∆m∂h

)
=

(
∂2τ

∂h∂∆m

)
= 0 . (3.5b)

Moreover, the slowness at the receiver pR equals −pS , for which we introduce

2pm =
∂τ

∂∆m
= pR − pS . (3.6)

The resulting hyperbolic ZO traveltime approximation then reads

τ2
hyp(∆m,h) = (τ0 + 2pm · ∆m)2 (3.7)

+τ0
(
∆m ·MH

M∆m + h ·MM
H h

)
,

where the number of independent variables has been reduced from 14 to 8.

Equation (3.7) was derived under the assumption of a horizontal measurement surface and coinciding
anterior and posterior surfaces. This, however, is not a general restriction to the CRS approach. Recent
extensions allow to handle smooth as well as rugged top-surface topography and use the kinematic
wavefield attributes for redatuming of the stacked section (see, e. g., Heilmann, 2002; Zhang et al.,
2002). A CRS-based approach for the handling of data with OBS (ocean bottom seismics) and VSP
(vertical seismic profiling) geometries can be found in Boelsen and Mann (2005a) and Boelsen and
Mann (2005b).

3.1.2 Physical interpretation of the stacking parameters

In order to obtain a more descriptive form of the CRS operator (3.7), the traveltime derivatives are
expressed in terms of physical properties of wavefronts related to the incident/emerging wavefield.
The relations derived in the following require an isotropic model and a locally constant near-surface
velocity v0 in the vicinity of the emergence location (m0, 0) of the central ray.
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Figure 3.2: NIP and normal wave experiment for a simple 2D model. (a) The explosion of a point
source in the NIP causes a NIP wave front that propagates along the central ray indicated in blue. At
the emergence location of the central ray, the NIP wave is characterised by the emergence angle α
and the local radius RNIP. (b) An exploding reflector element at NIP gives rise to a normal wave that
arrives at m0 with the emergence direction given by α and the local curvature expressed in terms of
the radius RN of an approximated segment of a circle (after Mann, 2002).

The vector pm defines the horizontal component of the slowness vector of the central ray and, thus,
can be related to its emergence direction via

pm =
1
v0

(
cos φ sinα
sin φ sinα

)
. (3.8)

Here, φ denotes the azimuth of the emerging ray measured versus the x-axis and α its emergence angle
with respect to the surface normal.

The matrices MH
M and MM

H can be related to the wavefront curvatures of two hypothetical waves,
namely the so-called NIP and normal wave, respectively (Hubral, 1983). For this purpose, two exper-
iments are considered which are depicted for a simple 2D model in Figure 3.2.

The first one, the so-called NIP wave experiment, can be carried out by placing a point source in
the NIP of the central ray. The excitated wave propagates along the central ray to the measurement
surface. At the emergence location of the central ray (m0, 0), the propagation direction of the wave
is given by pm and the local curvature of the wavefront can be expressed by means of a 2 × 2 matrix
KNIP. In order to relate this curvature matrix to MM

H , the NIP experiment is extended to a two-way
experiment resulting in identical wavefronts. For this purpose, the wavefront starts at point (m0, 0)
with curvature −KNIP and focuses at the NIP where it is reflected back to the surface. Hubral (1983)
showed that in paraxial approximation the same traveltimes in the CMP gather would be obtained if
the true paraxial reflection points (PIP) of the rays would be placed into the NIP of the central ray
(NIP wave theorem). Thus, the matrix MM

H can be expressed in terms of the curvature of the NIP
wave by

MM
H =

2
v0

HKNIPHT , (3.9)
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where H is the upper left 2 × 2 submatrix of the transformation matrix from the ray-centred Cartesian
to the global Cartesian coordinate system Ĥ defined in equation (2.36).

The second experiment is the so-called normal wave experiment which is equivalent to the exploding
reflector experiment introduced by Loewenthal et al. (1976). Thereby, a whole reflector segment in
the vicinity of the NIP is assumed to be densely covered with point sources. If all these sources are
excitated at the same time, a wave is generated with a local curvature equal to the one of the reflector.
The corresponding rays are normal to the reflector and the associated wave is called normal wave.
The wave emerges at (m0, 0) with the propagation direction given by pm and the wavefront curvature
defined by a 2 × 2 matrix KN. Again, the experiment can be extended to a two-way experiment by
considering a wave starting at (m0, 0) with the curvature equal to −KN which is propagated down
to the reflector and afterwards reflected back to the measurement surface. As only normal rays are
involved in the considerations, the experiment equals a ZO experiment. The curvature matrix KN of
the normal wave can be related to the matrix MH

M via

MH
M =

2
v0

HKNHT , (3.10)

where H again denotes the transformation matrix.

The two angles α and φ together with the six independent elements of the symmetric matrices KNIP
and KN are summarised as kinematic wavefield attributes. In case of an homogeneous overburden,
the attributes can be directly related to properties of the reflector: α and φ correspond to the dip and
orientation of the reflector element at the NIP. The matrix KNIP has only one independent element
KNIP. The radius of the NIP wave RNIP = 1/KNIP at the measurement surface equals the length of the
ZO normal ray. The matrix KN still consists of up to three independent elements. At the measurement
surface, the corresponding curvature matrix equals the sum of the NIP wave radius at the measurement
surface and the local curvature matrix of the reflector at the NIP (propagation law). In arbitrary
media, the relationship between the kinematic wavefield attributes and the reflector properties is more
complex as the attributes are also influenced by the velocity distribution of the reflector’s overburden.

Using equations (3.8), (3.9), and (3.10) the traveltime approximation (3.7) reads:

τ2
hyp(∆m,h) = (τ0 + 2pm · ∆m)2 (3.11)

+
2τ0

v0

(
∆m ·HKNHT∆m + h ·HKNIPHTh

)
,

Equation (3.11) is the final form of the hyperbolic stacking operator used in the CRS approach. Similar
to a conventional stacking velocity analysis, the optimum wavefield attributes for each ZO location
P0 = (m0, t0) are determined automatically by means of coherence analyses in the prestack data.
For that purpose, the stacking parameters are varied independently within reasonable limits and a
coherence value is determined along the operator (3.11) for each parameter set. The attribute set
yielding the highest coherence is used in the actual stack. In 3D, this means solving a global non-
linear optimisation problem for 8 independent parameters which requires large compute resources.
For practical application, the search for the stacking parameters is usually split up into 3 independent
searches in subsets of the prestack data. Details on the search routines can be found in Müller (2003)
and Bergler (2004).

The final results of the 3D CRS stack are entire volumes of the wavefield attributes together with the
coherence and the CRS stacked volume. The coherence value is a measure of how well the operator
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3.1 The CRS stacking operator

for a given attribute sets fit the prestack data and thus determines—under the assumption that the
underlying approximations of the CRS stack are valid—the reliability of the wavefield attributes: the
lower the coherence the less reliable are the attributes, they may even be totally meaningless.

An important issue related to the reliability of the wavefield attributes is the size of the aperture used
in the search routines. For non-second-order reflection events, the coherence analysis yields second-
order stacking parameters and traveltimes that are biased by higher-order contributions. This effect
which is proportional to the size of the search aperture is termed as spread-length bias and is also
well known from conventional stacking analysis (Al-Chalabi, 1973; Hubral and Krey, 1980). The
biased attributes determined in this way do no longer represent second-order but best-fit parameters.
Thus, in a strict sense, they are not suitable for further second-order applications. The impact of the
spread-length bias can be reduced by choosing small search apertures. However, the stable evaluation
of normal and NIP wavefront curvature requires sufficiently large moveout in the data. An approach
to correct for the spread-length bias in the 2D CRS stack has been proposed by Müller (2006). In
practical applications of the CRS stack, the midpoint and offset aperture has to be chosen with care to
find a compromise between these contradicting requests.

3.1.3 The 2D Common-Reflection-Surface stack

In case of a 2D acquisition geometry, the seismic data is recorded along a single line which is usually
defined as the x-axis of the global Cartesian coordinate system. This direction is commonly referred to
as in-plane or inline direction whereas the y-coordinate defines the out-of-plane or crossline direction.
If the properties of the subsurface do not vary in the crossline direction, all rays remain within the
vertical observation plane defined by the acquisition line. This situation is usually referred to as 2.5D
geometry as it considers 3D wave propagation in a model with 2D variations.

In 2.5D, the midpoint and half-offset coordinates reduce to scalars and the traveltime approxima-
tion (3.7) can be expressed in terms of first and second traveltime derivatives by:

τ2
hyp(∆m, h) =

(
τ0 +

∂τ

∂m
∆m

)2

+ τ0

(
1
2
∂2τ

∂m2 ∆m2 +
1
2
∂2τ

∂h2 h2
)
. (3.12)

In the same way as in the 3D case, the traveltime derivatives can be related to physical properties of the
subsurface using equations (3.8), (3.9), and (3.10). Due to the invariance of the model in y-direction,
the azimuth φ equals zero. Thus, relation (3.8) reduces to

1
2
∂τ

∂m
=

sinα
v0

, (3.13)

and second derivatives of the traveltime with respect to the midpoint and offset coordinate are given
by

∂2τ

∂m2 =
2 cosα

v0
KN , (3.14)

and
∂2τ

∂h2 =
2 cosα

v0
KNIP . (3.15)

With equation (3.13), (3.14), and (3.15), the final form of the 2D CRS operator yields

τ2
hyp(∆m, h) =

(
τ0 + 2

sinα
v0

∆m
)2

+
2τ0 cos2 α

v0

(
KN∆m2 + KNIPh2

)
. (3.16)
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Chapter 3. Common-Reflection-Surface Stack

3.2 Preconditioning of the kinematic wavefield attributes

For the application of the kinematic wavefield attributes in subsequent processes, an appropriate pre-
conditioning of the CRS sections or volumes is required. In order to remove outliers and noise in the
attribute sections, Mann and Duveneck (2004) suggested an event-consistent smoothing algorithm for
2D CRS sections which was extended to the 3D case by Klüver and Mann (2005). The same paper
describes an automatic picking strategy based on the coherence values obtained by means of the CRS
stack to extract reliable attributes for further processing steps.

3.2.1 The event-aligned volume

The basis for both the smoothing and picking approach is a small window (or volume in 3D) which
is aligned with the considered reflection event in the ZO stacked section. The necessary tilting of the
window is determined from the local dip information. In order to avoid the mixing of information
from different reflection events, the size of the window should not exceed the wavelet size in temporal
and the size of the first projected Fresnel zone in horizontal direction. In addition, the dip difference
between the central and any other sample is limited by a user-given threshold. Within the smoothing
window, local statistics can be applied to the attributes, coherence values, and amplitudes to determine
reliable properties.

3.2.2 Event-consistent smoothing

In contrast to conventional stacking velocity analysis, the CRS stack is parameterised in terms of
traveltime derivatives which should theoretically remain locally constant over the temporal length of
the wavelet. Furthermore, the attributes are expected to vary smoothly along the reflection event in
lateral direction as long as the paraxial approximation is valid. As the attributes are independently
determined for each ZO sample, this might not always hold and unwanted fluctuation and outliers
might occur which deteriorate subsequent applications of the attributes. Within the event-aligned
window, local statistics can be applied to determine reliable attributes which are then smoothed by
means of a combined median filtering and averaging. Figure 3.3 shows an example of the event-
consistent smoothing for a real dataset. Depicted are an inline and crossline section of the dip volume,
similar results are obtained for the azimuth volume and the elements of the curvature matrices for the
NIP and normal wave. In the last picture in each row, a masked section is displayed which indicates
the samples where the smoothing was actually applied. This, however, strongly depends on the user-
given coherence and dip difference threshold.

3.2.3 Automatic picking

The automatic picking process utilises the coherence and dip information provided by the CRS method
to distinguish reliable attributes from noise. As a sample-by-sample extraction of the attributes only
based on the corresponding coherence value is not stable enough, the automatic picking algorithm
employs a strategy similar to the one in the event-consistent smoothing based on the event-aligned
window. A successful pick requires that a certain percentage of the samples within the window exceed
a specified coherence threshold. In this way, uncorrelated noise which might sporadically show high
coherence values is avoided in the picking strategy.
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3.3 Application of the kinematic wavefield attributes
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Figure 3.3: Event-consistent smoothing of a dip section (upper row: inline section, lower row:
crossline section). Left: original section. Middle: smoothed section. Right: smoothing mask
(smoothed samples are indicated in black).

3.3 Application of the kinematic wavefield attributes

The kinematic wavefield attributes provide information beyond the usually determined stacking ve-
locity which find application in a multitude of scenarios. In the CRS-based limited-aperture migration
introduced in Chapter 6, the following properties will be used

CRP trajectory. Höcht et al. (1999) derived a second-order approximation of the 2D CRP trajectory
in terms of the CRS attributes from geometrical considerations. The projection of the trajectory
onto the midpoint-offset plane reads:

m(h) = m0 + rT

(√
h2/r2

T + 1 − 1
)

with rT =
RNIP

2 sinα
, (3.17)

which reduces to m(h) = m0 for α → 0. The expression (3.17) provides an exact analytical
description of the CRP trajectory in case of a homogeneous overburden where RNIP = τ0v0/2.
The extension to inhomogeneous media is based on the concept of object and image points
(Born and Wolf, 1959). Using a circular approximation of the NIP and normal wavefronts, a
hypothetical reflector segment can be defined in an auxiliary medium with the constant velocity
v0 which would yield the same emergence angle and wavefront curvatures. The event stemming
from the so-defined medium can be directly related to an actual event which allows to establish
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Chapter 3. Common-Reflection-Surface Stack

a relation between the homogeneous and inhomogeneous case. The transfer of the concept
for the homogeneous case to 3D is straightforward and resembles the 2D formula. However,
a generalisation to inhomogeneous media as in the 2D case is not possible as the azimuth-
dependency of the wavefield properties can not be considered in the approximation.

ZO projected Fresnel zone. Expressing equation (2.59) in terms of the 3D CRS attributes yields the
following condition for the size of the ZO projected Fresnel zone:∣∣∣∣(m −m0) ·

[
H(KNIP −KN)HT

]
(m −m0)

∣∣∣∣ ≤ v0τω
2

. (3.18)

The corresponding equation for the 2D case, expressed as half-width WF, reads (Mann, 2002):

WF

2
= |m − m0| =

1
cosα

√
v0 τω

2

∣∣∣∣∣ 1
RN
−

1
RNIP

∣∣∣∣∣ . (3.19)

In the CRS-based limited-aperture migration introduced in Chapter 6, all relevant information for
the determination of the optimum migration aperture will be directly obtained from the kinematic
wavefield attributes.

3.4 Summary

The Common-Reflection-Surface Stack technique addressed in this chapter is a highly automated
imaging process for the simulation of ZO sections. Based on a spatial stacking operator, much more
traces contribute in the stacking process compared to conventional approaches which leads to stacked
sections of improved S/N-ratio. In addition, the CRS method provides a whole set of stacking param-
eters related to first-order and second-order spatial traveltime derivatives. Considering an isotropic
near-surface layer with locally constant near-surface velocity, the stacking parameters can be related
to the kinematic properties of two hypothetical wavefronts, namely the direction and curvature of
the NIP and normal wave. The information provided by these so-called kinematic wavefield or CRS
attributes can be used in a variety of subsequent processing steps.
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Chapter 4

True-amplitude Kirchhoff migration

Seismic migration is routinely applied as part of the processing workflow to transform the prepro-
cessed data into an interpretable structural image of the subsurface. By removing the effects of wave
propagation from the seismic records, the spatial positioning of the reflection events is corrected and
the lateral resolution is increased. For the construction of a structural image, only the kinematic as-
pects of the transformation process are involved as the amplitudes are not considered so far. In order
to provide appropriate input for further amplitude-related analyses, the amplitude change due to geo-
metrical spreading has to be compensated during the migration process. This is achieved by means of
an additional weighting factor which makes the migration output true-amplitude.

In the last years, the relevance of true-amplitude migration has steadily increased because of the
growing significance of AVO/AVA analyses for seismic interpretation. Nowadays, amplitude analyses
are routinely applied in target regions where a preceding prestack migration is inevitable (see, e. g.,
Mosher et al., 1996, and references therein). In particular, prestack time migration provides a conve-
nient tool for this purpose as it shows reduced sensitivity to errors in the velocity model compared to
depth migration and is, thus, more likely to provide undistorted amplitudes. Precise dynamic infor-
mation is essential for AVO/AVA analyses as a meaningful result strongly depends on the quality and
reliability of the input amplitudes.

In this chapter, I will focus on the Kirchhoff migration approach which was first formulated by Schnei-
der (1978) based on the early work of Hagedoorn (1954) on the diffraction-stack method. Common to
all practical approaches of the Kirchhoff type is the use of a diffraction-stack migration scheme where
the optional application of an appropriate weight function provides a true-amplitude output. Based
on a zero-order ray approximation of the primary reflections to be imaged, Schleicher et al. (1993)
proposed a modified approach that allows true-amplitude migration in arbitrary elastic media even if
caustics are present in the wavefield1. The associated weight function, which is obtained from the
approximate evaluation of the stacking integral, is independent of any reflector properties. In order to
provide a general description of Kirchhoff migration and a derivation of the true-amplitude weighting
factor, the Kirchhoff approach is first considered in the depth domain following the lines of Schleicher
et al. (1993). Here, the derivations hold for arbitrary 3D isotropic models with smoothly curved in-
terfaces provided that the smoothness of the model justifies the use of ray-theoretical approximations.
Afterwards, the approximate time domain approach is derived assuming straight rays.

1excluding source, receiver, and image point
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Chapter 4. True-amplitude Kirchhoff migration

4.1 Basics

Like all migration methods, Kirchhoff migration requires the knowledge of the velocity distribution.
Therefore, an appropriate macro-velocity model2 has to be specified in advance. The time migra-
tion velocity model building is further addressed in the next chapter. The subsequent considerations
assume that an appropriate time or depth macro-velocity model is available.

Measurement configuration

In the following, a horizontal, non-free measurement surface ΣM is considered. If data are acquired
at a free surface, the resulting effects have to be removed before migration, e. g., using conversion
coefficients (Červený, 2001). Source-receiver pairs (S ,R) are assumed to be densely distributed on
ΣM. Usually, their positions are specified in a parameterised form: all source-receiver pairs pertaining
to a given measurement configuration are described by a 2D configuration vector ξ = (ξ1, ξ2) that
varies within a planar region A referred to as seismic aperture.

Within A, the position of a seismic trace U(S (ξ),R(ξ)) corresponding to a specific source-receiver
pair is denoted by U(ξ). Thus, every point in the time domain can be described by its coordinates
(ξ1, ξ2, τ) and is denoted as N(ξ, τ). Correspondingly, every point in the depth domain is represented
by its coordinates (r1, r2, r3 = z) with respect to the global Cartesian coordinate system r̂ and is
denoted by M(r, z). Points lying on an actual reflector carry an additional subscript R.

An arbitrary shot or receiver can be expressed within the global coordinate system by means of 2D
coordinate vectors rS or rR, respectively, according to

rS (ξ) = aS + ΓS ξ , (4.1a)

rR(ξ) = aR + ΓR ξ , (4.1b)

where aS and aR are 2D global vectors that depend on the choice of the origin of the coordinate system
which defines ξ. The 2 × 2 matrices ΓS and ΓR account for the chosen measurement configuration.
Most standard configurations can be described by means of constant configuration matrices, e. g., the
common-shot configuration is given by ΓS = 0 and ΓR = I, the common-offset configuration by
ΓS = I and ΓR = I, where 0 and I denote the 2 × 2 zero and identity matrices, respectively. In case
of non-flat measurement surfaces and irregular profiles, rS and rR result from a projection of S or
R onto the plane z = 0. The corresponding configuration matrices have to be determined for each
shot-receiver pair independently.

True-amplitude signal

The seismic data, i. e., the recorded seismic traces, are supposed to consist of primary reflections
U(ξ, τ) that represent the principal component of the reflection events (in case of P-waves, the prin-
cipal component reflection denotes the particle displacement in propagation direction). In order to
correctly account for phase shifts which arise from supercritical reflections or caustics, it is useful to
work with complex (analytical) traces. They are derived from the actual recorded data by taking the

2The term macro-velocity refers to the fact that only smooth large-scale features of the model are required.
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4.2 3D Kirchhoff depth migration

Hilbert transform of each trace and adding it as imaginary part to the respective trace. In zero-order
ray theory the analytic principal component of the particle displacement reads (Červený, 2001)

U(ξ, τ) = U0(ξ) F(τ − τR) = R̄
A

L̃
F(τ − τR) . (4.2)

Here, F(τ) represents the analytic wavelet of a point source which is assumed to be reproducible
(thus there is no dependence on ξ) shifted by the reflection traveltime τR. The ray amplitude U0(ξ)
can be expressed in terms of the following quantities: R̄ denotes the reciprocal (i. e., energy-flux
normalised) plane-wave reflection coefficient, L̃ is the normalised point-source geometrical spreading
and A describes the total transmission loss. Furthermore, the amplitude may be affected by a variety
of other processes, among which are absorption, source-receiver characteristics, and scattering. All of
these effects also enter intoA. A detailed discussion of the factors that may affect seismic amplitudes
can be found in Sheriff (1975).

In view of the fact that the true-amplitude signal should be a direct measure of the angle-dependent
reflection coefficient, i. e.,

UT A(τ) ≡ R̄ F(τ) , (4.3)

in principle, both L̃ andA have to be removed from the primary reflection during migration. Unfortu-
nately, the calculation ofA requires detailed knowledge of the properties of the subsurface. However,
taking into account that for many realistic Earth models A is a slowly varying quantity compared to
L̃ and R̄, this factor may be neglected as we are usually interested in relative rather than absolute am-
plitudes. Therefore, we will assume that primary reflection events can be described sufficiently well
by

U(ξ, τ) = R̄
1
L̃

F(τ − τR) . (4.4)

The true-amplitude migration introduced in the following section aims at removing the geometrical
spreading factor L̃ from the data and yields the relative reflection amplitudes as a function of offset.

4.2 3D Kirchhoff depth migration

Common to all Kirchhoff-type migration schemes is the construction of stacking surfaces—the diffrac-
tion traveltime surface or Huygens surface τD—along which a (weighted) summation is performed.
For a fixed point M(r, z) in the depth domain and varying source-receiver pairs (S (ξ),R(ξ)), the Huy-
gens surface denotes the set of all points N(ξ, τ = τD) in the time domain for which τ equals the sum
of the traveltimes from a source point S (ξ) to M and from M to a receiver point R(ξ), i. e.,

τD(ξ,M) = τ(S (ξ),M) + τ(R(ξ),M) . (4.5)

In a descriptive way, the Huygens surface can be considered as the kinematic image in the time domain
of a point in the depth domain.

An alternative way to perform Kirchhoff migration is to smear out the amplitudes along the corre-
sponding isochrons. For a fixed point N(ξ, τ) in the time domain the isochron is given by all depth
points M for which the diffraction traveltime τD(ξ,M) equals the traveltime τ of N. Thus, the isochron
can be understood as the kinematic image in the depth domain of a point in the time domain.
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Figure 4.1: Hagedoorn’s imaging condition or duality. The Huygens surface τD(ξ,MR) of a reflection
point MR is tangent to the reflection traveltime surface τR(ξ) at point NR in the time domain. In turn,
the isochron ζI(r,NR) is tangent to the reflector ζR(r) at point MR in the depth domain.

Kirchhoff migration is based on the observation that the Huygens surface τD pertaining to an actual
reflection point MR and the reflection traveltime surface τR are tangent in the time domain at point NR.
In the same way, the isochron pertaining to a reflection event NR and the reflector are tangent at MR

in the depth domain (see Figure 4.1). These tangency conditions were first observed by Hagedoorn
(1954)3 and are commonly referred to as Hagedoorn’s imaging condition or dualities.

The main idea of Kirchhoff migration is to treat each point on a sufficiently dense grid4 in the consid-
ered target area as a potential diffraction point in correspondence to Huygen’s principle. The Huygens
surface can be calculated independently for any of these points from the kinematic part of the Green’s
function using the known macro-velocity model. In the migration process, the seismic amplitudes
encountered along the Huygens surface are summed up and the result is assigned to the correspond-
ing depth point. According to Hagedoorn’s imaging condition, the diffraction traveltime surface is
tangent to the primary-reflection traveltime surface for an actual reflection point which leads to a non-
negligible summation results due to constructive interference. Otherwise, the contribution ideally
yields zero.

3Hagedoorn introduced the Huygens surface and the isochron as surface of maximum convexity and concavity. However,
this terminology is not common.

4The discretisation interval depends on the the resolution of the reflection data.
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4.2 3D Kirchhoff depth migration

Mathematically, the true-amplitude diffraction stack can be formulated as (Schleicher et al., 1993)

V(M) = −
1

2π

"
A

dξ1 dξ2 WDS (ξ,M)
∂U(ξ, τ)
∂τ

∣∣∣∣∣∣
τ=τD(ξ,M)

. (4.6)

The individual factors can be described as follows: U(ξ, τ) and V(M) denote the migration input and
output, respectively. Both quantities are chosen complex in order to handle phase shifts. As already
mentioned, U(ξ, τ) is expected to consist of one single primary reflection event. An extension to more
than one event can simply be obtained by superposition as an LTI system is assumed. The correct
recovery of the source pulse is ensured by applying the time derivative on U (Newman, 1975). The
stacking surface is given by the Huygens surface τ = τD(ξ,M) with the configuration vector ξ varying
over the migration aperture A which coincides with the region of integration. From a theoretical point
of view, the migration aperture should be infinite to avoid boundary effects caused by the truncation
of the operator. This, however, does not hold for practical applications. The choice of the optimal
migration aperture is further discussed in Chapter 6. In any case, limiting the migration aperture
requires an appropriate tapering in the summation process. The weight function WDS (ξ,M) which
will be derived in the following ensures that the migration result is true-amplitude.

For the solution of integral (4.6) the corresponding expression in the frequency domain is required. For
this purpose, an artificial time variable t is introduced in order to allow the application of a Fourier
transformation. The value finally assigned to a certain depth point M will then correspond to the
migration output at t = 0, the so-called imaging condition. Recalling equation (4.2) for the primary
reflection event, the time-dependent stack reads

V(M, t) = −
1

2π

"
A

dξ1 dξ2 WDS (ξ,M)
∂U(ξ, t + τD)

∂τ

= −
1

2π

"
A

dξ1 dξ2 WDS (ξ,M)
R̄
L̃

∂F(t + τdif(ξ,M))
∂τ

, (4.7)

where τdif denotes the difference between the diffraction and the reflection traveltime,

τdif = τD − τR . (4.8)

Applying the Fourier transformation yields

V̂(M, ω) = F̂(ω)
−iω
2π

"
A

dξ1 dξ2 WDS (ξ,M)
R̄
L̃

eiωτdif(ξ,M) (4.9)

with V̂(M, ω) and F̂(ω) being the Fourier transforms of V(M, τ) and F(τ), respectively.

The integral (4.9) can now be approximated by means of the Method of Stationary Phase that provides
a solution to an integral of the form

I(ω) =

"
A

dξ f (ξ) eiωτ(ξ) (4.10)

for sufficiently high frequencies ω (for details see, e. g., Bleistein, 1984). This reveals that non-
negligible contributions to V(M) can only stem from so-called stationary points where the gradient
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Figure 4.2: Possible stationary situations. Left: diffraction traveltime curve τD of an actual reflection
point MR. The curve is tangent to the reflection traveltime curve τR at the stationary point ξ∗. Right:
diffraction traveltime curve of a point below MR. Both traveltime surfaces have the same slope at ξ∗.

of the phase function with respect to ξ vanishes, or from the borders of integration. While the first
situation constitutes the actual image, the contributions from the boundaries of A are unwanted and
have to be suppressed by tapering. A description of the different artifacts that arise from boundary
effects as well as strategies to avoid them can be found in Hertweck et al. (2003a).

For the following derivations, we assume that a stationary point ξ∗ defined by

∇ξτdif(ξ,M)
∣∣∣∣∣
ξ=ξ∗

= 0 , (4.11)

exists within the aperture A (see Figure 4.2).

Expanding τdif into a Taylor series with respect to the stationary point yields according to equation
(4.11)

τdif(ξ,M) = τdif(ξ∗,M) +
1
2

(ξ − ξ∗) · Hdif (ξ − ξ∗) , (4.12)

where Hdif denotes the Hessian matrix given by

Hdif =

(
∂2τdif(ξ,M)
∂ξi∂ξ j

) ∣∣∣∣∣∣
ξ=ξ∗

. (4.13)

In the following, I assume that Hdif is non-singular which implies det(Hdif) , 0. Then, the analysis of
equation (4.9) yields the approximate solution

V̂(M, ω) ' F̂(ω)WDS (ξ∗,M)
R̄

L̃
√
|det ( Hdif)|

eiωτdif(ξ∗,M)− iπ
2 (1−Sgn(Hdif)/2) , (4.14)

with Sgn(Hdif) being the signature of Hdif, i. e., the number of positive eigenvalues minus the number
of negative ones. The actual expression for the general weight function is obtained by comparing
equations (4.14) and (4.3): if we choose WDS at the stationary point as

WDS (ξ∗,M) = L̃
√
|det ( Hdif)| e

iπ
2 (1−Sgn(Hdif)/2) , (4.15)
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then the migration output reduces to the spectrum of the true-amplitude wavelet

V̂(M, ω) '
{

R̄ F̂(ω) eiωτdif(ξ∗,M) : ξ∗ ∈ A ,
0 : ξ∗ < A .

(4.16)

Here, the phase shift factor accounts for the traveltime difference between the reflected and the
diffracted wave at ξ∗. Going back to the time domain and inserting the imaging condition t = 0
we obtain the desired migration result

V(M) = V(M, 0) = R̄ F(τdif(ξ∗,M)) . (4.17)

Due to the fact that the source pulse is a function of finite duration τε , the same result holds also for
points M that are vertically dislocated from the specular reflection point MR on the reflector as long
as the corresponding traveltime difference τ = τdif(ξ∗,M) is inside the interval 0 ≤ τ ≤ τε . Thus,
equation (4.17) can be rewritten in the following way:

V(M) '
{

R̄F(τ) = UT A(τ) at points M for which 0 ≤ τ ≤ τε , where τ = τdif(ξ∗,M)
0 else

(4.18)

The weight function as defined in equation (4.15) still depends on properties of the (unknown) reflec-
tor. A more suitable expression for practical application was derived by Schleicher et al. (1993) using
two decomposition theorems. The first one states that the geometrical spreading factor L̃S R along a
reflected ray S MRR can be factorised into contributions from the two ray branches L̃S MR and L̃MRR

and an additional factor L̃F that accounts for the influence of the Fresnel zone at the reflection point
(Hubral et al., 1992a,b)

L̃S R =
L̃S MRL̃MRR

L̃F
. (4.19)

The individual factors can be expressed in the following way neglecting mode-conversion:

LS MR =

√
cos(ϑS ) cos(ϑMR)

vS vMR

∣∣∣det NSMR

∣∣∣ e−i π2 κS , (4.20a)

LMRR =

√
cos(ϑMR) cos(ϑR)

vMRvR
∣∣∣det NMRR

∣∣∣ e−i π2 κR , (4.20b)

LF =
cosαMR

vR

1√∣∣∣det H f
∣∣∣e−i π2 [1−Sgn(H f )/2] , (4.20c)

where vI , I = (S ,MR,R) is the velocity and ϑI , I = (S ,MR,R) the incident or emergence angle at S ,
MR, and R, respectively. The KMAH-indices κS and κR account for caustics along the ray segments
S M and MR and the Fresnel zone matrix HF describes the Fresnel zone in the plane tangent to the
reflector at MR (Hubral et al., 1992b, see also equation (2.57)).

The Fresnel zone matrix H f can now be related to the Hessian matrix Hdif using the following decom-
position formula for Hdif

Hdif =
(
ΓT

S NSMR + ΓT
R NRMR

) (
NS

MR
+ NR

MR

)−1 (
ΓT

S NSMR + ΓT
R NRMR

)T
, (4.21)

where NSMR , NRMR , NS
MR

, and NR
MR

denote the Hessian matrices of the two ray branches S MR and
MRR defined in the same way as NR

S , NS
R, and NSR in equation (2.52). ΓS and ΓR are the configuration
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matrices introduced in equation (4.1). From equation (4.21), the determinant and signature of Hdif
can be expressed as

√
|det Hdif| =

∣∣∣∣det
(
ΓT

S NSMR + ΓT
R NRMR

)∣∣∣∣√∣∣∣∣det
(
H f

)∣∣∣∣ , (4.22a)

Sgn (Hdif) = Sgn
(
H f

)
. (4.22b)

Inserting the decomposition formula (4.19) together with equations (4.22) into equation (4.15) yields
the following expression for the true-amplitude weight:

WDS (ξ∗,MR) =

√
cos(ϑS ) cos(ϑR)

vS vR

∣∣∣∣det
(
ΓT

S NSMR + ΓT
R NRMR

)∣∣∣∣√∣∣∣det NSMR

∣∣∣ √∣∣∣det NRMR

∣∣∣ e−i π2 (κS +κR) . (4.23)

As all quantities in equation (4.23) only depend on the ray segments S MR and MRR rather than
on properties of the reflector, the weight function can be generalised for arbitrary depth points M
irrespective of whether M is an actual reflection point:

WDS (ξ,M) =

√
cos(ϑS ) cos(ϑR)

vS vR

∣∣∣∣det
(
ΓT

S NSM + ΓT
R NRM

)∣∣∣∣
√
|det NSM|

√
|det NRM|

e−i π2 (κS +κR) . (4.24)

The final weight function needs to be determined by means of dynamic ray-tracing. However, if
only the modulus of equation (4.24) and not the phase is considered, all relevant quantities can be
derived from traveltime information only. Gajewski et al. (2002) presented a migration approach that
utilises a generalised moveout formula based on the hyperbolic expansion of the traveltime to interpo-
late coarsely-gridded traveltime tables onto the fine migration grid and simultaneously calculate the
modulus of the true-amplitude weight function.

An alternative expression of the true-amplitude weight was given by Bleistein (1987) in terms of the
Beylkin determinant (Beylkin, 1985a,b) omitting caustics. A variety of other expressions of the true-
amplitude weight exist which only differ in terms of the physical properties used for description. A
comparison can be found in, e. g., Hanitzsch (1997). However, practical applications often utilise an
analytic approximation of equation (4.24). A summary and comparison of common simplifications
can, e. g., be found in Zhang et al. (2000).

4.3 2.5D migration

In the 2.5D case, the migration integral as well as the true-amplitude weight function can be simplified
due to the symmetry of the model (for details see, e. g., Martins et al., 1997; Bleistein et al., 2001). In
the following it is assumed that the subsurface is invariant with respect to the crossline direction given
by ξ2. Considering a 2D in-line acquisition, shot and receiver positions depend only on ξ1. As the
ray connecting S and R remains in-plane, all possible reflections stem from points within the vertical
plane defined by a constant ξ2 = y. Therefore, ξ2 selects the symmetry plane in which both the shot
and receiver pair and the corresponding reflection point MR are located.
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4.3 2.5D migration

In order to derive the 2.5D diffraction stack integral, we consider the corresponding 3D formula (4.6)
where the diffraction stack is carried out over the ξ1-ξ2-plane. As in the 2.5D case the data does not
vary with respect to ξ2, the migration aperture A can be grasped as an infinite strip in this direction and
the integral over ξ2 can be solved analytically. The whole migration integral reduces to an in-plane
stack, i. e., the stack is performed over a 2D data slice instead of a 3D data volume. In a descriptive
way, this means that the stacking surface of the 3D case shrinks to a curve in 2.5D. Thus, the migration
integral can be rewritten as

V(M) =
1

2π

a2∫
a1

dξ1 IDS (ξ1, ξ2,M) , a1 ≤ ξ1 ≤ a2 , (4.25)

with IDS given by

IDS (ξ1, ξ2,M) = −

+∞∫
−∞

dξ2 WDS (ξ1, ξ2,M)
∂U(ξ1, ξ2, τ)

∂τ

∣∣∣∣∣∣
τ=τD(ξ1,ξ2,M)

. (4.26)

Evaluating the integral IDS by means of the Method of Stationary Phase yields

IDS (ξ1, ξ2,M) '
√

2π
∂2τD

∂ξ2
2

∣∣∣∣∣
(ξ1,0,M)

− 1
2

WDS (ξ1, ξ2,M) ∂
1
2
t−U(ξ1, 0, τ)

∣∣∣∣∣
τ=τD(ξ1,0,t)

. (4.27)

The derivative appearing in the 3D case reduces to an anti-causal half-time derivative denoted by

∂
1
2
t− which corresponds to a multiplication with

√
−iω in the frequency domain. An additional factor(

∂2τD/∂ξ
2
2

)− 1
2 occurs which enters into the weight function.

Finally, we obtain the following integral for the 2.5D case:

V(M) =
1
√

2π

a2∫
a1

dξ W2.5D
DS (ξ,M) ∂

1
2
t−U(ξ, τ)

∣∣∣∣
τ=τD(ξ,M)

, (4.28)

where (ξ1, 0) was replaced by ξ. The region of integration is now given by the limits a1 and a2 and
represents an in-plane aperture.

The 2.5D weight function can be obtained from its 3D counterpart

W2.5D = W3D
(

1
σS

+
1
σR

)− 1
2

, (4.29)

where σS and σR denote the out-of-plane spreading factors of he ray segments S M and MR, respec-
tively. Here, the fact was used that 3D point-source geometrical spreading factor L̃ can be decom-
posed in the 2.5D case into an in-plane contribution L̂ equal to the 2D spreading and an out-of-plane
contribution σ according to

L̃ = L̂
√
σ . (4.30)

The out-of-plane spreading is given by the path integral σ =
∫

v(s) ds with s being the arclength along
the ray and v the velocity.

Furthermore, it can be shown that the first and the second derivative of τD with respect to ξ2 yield

∂τD

∂ξ2

∣∣∣∣∣
ξ2=y

= 0 and
∂2τD

∂ξ2
2

∣∣∣∣∣
ξ2=y

=
1
σS

+
1
σR

, (4.31)

which allows to express ∂2τD/ξ
2
2 in terms of the out-of-plane spreading factors.
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Chapter 4. True-amplitude Kirchhoff migration

4.4 Kirchhoff time migration

Time migration is conceived for situations where the subsurface only shows mild to moderate lateral
velocity variations. Under such conditions, the overburden can be considered as locally homogeneous
and may be characterised by an integral velocity. In case of an actual 1D medium, the integral velocity
coincides with the root-mean-square velocity vRMS (Dix, 1955):

v2
RMS =

1
τ0

∫ τ0

0
v2(t)dt . (4.32)

The determination of time migration velocities from stacking velocities and CRS attributes, respec-
tively, is further discussed in Chapter 5.

In correspondence to the above mentioned assumptions, the diffraction traveltime function (4.5) is
approximated using effective parameters of the overburden of the considered subsurface point M(r, z).
In the simplest form, the migration operator reduces to the well-known double-square-root (DSR)
equation which can be evaluated analytically (often termed “straight-ray approach”). For the 3D CO
case, the DSR equation reads

τD(ξ,M) =

√
τ2

vert/4 + (aS 1 + ξ1 − rM1)2 + (aS 2 + ξ2 − rM2)2

vRMS (τvert)2

+

√
τ2

vert/4 + (aR1 + ξ1 − rM1)2 + (aR2 + ξ2 − rM2)2

vRMS (τvert)2 ,

(4.33)

where (rM1, rM2) denote the coordinates of the considered depth point M and shot and receiver loca-
tions are parameterised according to equation (4.1). The parameter τvert is the vertical two-way trav-
eltime. As in practice the DSR equation is applied to common-offset gathers, it is more appropriate to
recast equation (4.33) in midpoint m, offset azimuth γ, and Euclidean offset 2h (see Figure 4.3a)):

τD(m,M) =

√
τ2

vert/4 + (m1 − h cos γ − rM1)2 + (m2 − h sin γ − rM2)2

vRMS (τvert)2

+

√
τ2

vert/4 + (m1 + h cos γ − rM1)2 + (m2 + h sin γ − rM2)2

vRMS (τvert)2 ,

(4.34)

with m = 1
2 (2ξ + aS + aG).

The DSR equation is only exact for a constant velocity medium. The geometrical representation of
the operator which is depicted in Figure 4.3b) resembles a hyperboloid for the ZO case. For CO, the
operator is no longer hyperbolic but pseudo-hyperbolic with flattened apex, which led to the name
Cheops pyramid.

For a constant velocity medium, the true-amplitude weight (4.24) can be entirely expressed in terms
of the traveltimes τS for the ray segment SM and τR for MR and the vertical traveltime τvert (Zhang
et al., 2000)

Wcv
DS (ξ,M) =

τvert vapex

2 v0

(
τS

τR
+
τR

τS

) (
1
τR

+
1
τS

)
. (4.35)

Here, vapex denotes the migration velocity at the apex location and v0 is the near-surface velocity.
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Figure 4.3: a) Sketch of the 3D geometry. The migration operator is usually parameterised in terms
of midpoint coordinates m, Euclidean offset 2h and offset azimuth γ measured with respect to the ξ1−

axis. b) Time migration operator depicted for the 2D situation. The operator is also known as Cheops
pyramid due to its characteristic shape.

More sophisticated time migration approaches utilise complex non-hyperbolic operators in order to
account for ray-bending. Common extensions incorporate higher-order terms in the DSR equation
which allows to handle heterogeneity and/or anisotropy to a certain extent. For a summary of fre-
quently used methods see Robein (2003). However, this usually requires ray-tracing to determine τD
and makes the approaches more expensive.

As the vertical time τvert associated with the actual depth location for a particular migration operator
is not known, the migration output is assigned to the ZO operator apex described by τapex. In case of
prestack migration, the procedure is carried out for each individual offset and angle bin. For laterally
varying media, τapex significantly deviates from τvert which leads to a mispositioning of reflection
events5 and unfocused diffractions.

Despite its limitations, (Kirchhoff) time migration is frequently used in seismic processing as it has
some distinct advantages over depth migration:

• Time migration shows reduced sensitivity to velocity model errors which leads to focused im-
ages even if the used velocity model is insufficiently determined. Moreover, the velocity model
building for time migration is much simpler and can be largely automated.

• Using the straight-ray assumption, the migration operator as well as the corresponding weight
function can be evaluated analytically without the need of ray-tracing. This leads to significant
savings in computational time.

• An AVO/AVA-analysis is usually carried out based on prestack time migration as the migrated
amplitudes are less biased by erroneous velocities.

5Apparent dips on a time image may be even inverted with respect to the true subsurface dips leading to so-called
pull-ups and pull-downs which bias interpretation.
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Chapter 4. True-amplitude Kirchhoff migration

• A direct comparison of the migrated section and the stacking result can be preferable for inter-
pretation.

However, for complex heterogeneous models, time migration strategies fail and depth migration is
inevitable.

4.5 Amplitude analysis

Seismic amplitudes—if properly treated throughout the processing sequence—can be utilised in an
amplitude analysis to infer petrophysical properties of the medium in order to further characterise
reservoir rocks.

Basis for the analysis of amplitude variation with offset (AVO) or incidence angle (AVA) is the ob-
servation that the partitioning of incident energy at a boundary and, correspondingly, the amplitude
of the reflected wave varies as function of incidence angle and medium parameters. The theoretical
framework of AVO/AVA analysis is given by the well-known Zoeppritz equations (Zoeppritz, 1919)
which describe the variation of the reflection coefficient with incident angle considering an incident
plane wave at a plane interface. In amplitude analyses, we are usually interested in the behaviour of
the unconverted P-wave reflection coefficient RPP with incidence angle θ. As the exact solution of the
Zoeppritz equations is complicated and not intuitive, approximations are usually utilised in practical
applications. Most of these expressions are suited for small incidence angles and small variations of
layer parameters (small dip assumption), a situation which is usually encountered in seismic reflection
applications. One widely used approximation was proposed by Shuey (1985) and reads

RPP(θ) ≈ RPP(0) + G sin(θ)2 . (4.36)

Here, RPP(0) represents the normal incidence reflection coefficient. RPP and the second parameter G
are related to the P-velocity vP, S-wave velocity vS and density ρ according to

RPP(0) =
1
2

(
∆vP

〈vP〉
+

∆ρ

〈ρ〉

)
(4.37a)

G =
1
2

∆vP

〈vP〉
− 2

(
〈vS 〉

〈vP〉

)2 (
2

∆vS

〈vS 〉
+

∆ρ

〈ρ〉

)
, (4.37b)

where the Delta indicates the change of the parameter and the brackets 〈 〉 the average of the parame-
ter across the interface. Equation (4.36) establishes a linear relationship between RPP(θ) and sin(θ)2.
Therefore, RPP(0) and G represent the intercept and gradient and may be estimated by linear regres-
sion. A stable linear-regression approach in the presence of noise can be found in Walden (1991).

Equation (4.36) is based on the assumption of plane interfaces. Curved interfaces are expected to
show a lensing effect which has to be compensated beforehand. This is best achieved by a prestack
time or depth migration. If amplitudes are extracted from a CIG, information belonging to a common
subsurface position, i. e., from a true CRP ray path, is obtained. As prestack migration is commonly
carried out in the common offset domain, the extracted amplitudes have to be mapped to the angle
domain first. In recent years, migration algorithms have been developed which perform migration
directly in the angle domain (see, e. g., Xu et al., 2001). These are, however, rather costly in terms of
computational requirements.
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4.6 Summary

A visual representation of the AVO analysis which allows a simple classification of different AVO
behaviours is obtained by plotting the intercept value versus the gradient. Such AVO crossplots are
generated using the amplitudes extracted along a considered horizon or within a time window, where
each AVO curve is represented by a single point. Additional colour-coding of the samples with re-
spect to the traveltime allows to distinguish the horizons in a window-based crossplot. In this way,
differences in AVO responses can be identified and may be related to variations in the lithology and
/ or fluid type. The possibility to detect clear and reliable trends in a crossplot strongly depends on
the quality of the amplitudes and the noise level in the data. Random noise leads to an elliptical dis-
tribution of the samples (often termed “noise ellipse”) as the gradient estimation is quite sensitive to
noise.

A detailed treatment of AVO analysis can be found in Castagna and Backus (1993), see also references
therein.

4.6 Summary

In this chapter, a descriptive explanation of the Kirchhoff migration process was presented based
on the tangency of Huygens surface and reflection event in the time domain. In addition, the true-
amplitude weight function was derived from the approximative evaluation of the migration integral
by means of the Method of Stationary phase. Applied in the stacking process, the weight function
provides migrated amplitudes which are free of geometrical spreading effects and thus become a
direct measure of the angle-dependent reflection coefficient. A subsequent analysis of the amplitude
variation with offset or reflection angle allows to gain information on the elastic properties of the
subsurface.
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Chapter 5

Time migration velocities from kinematic
wavefield attributes

Kirchhoff time migration is usually parameterised in terms of RMS velocities defined at the apex of
the migration operator. For 1D media, the apex location coincides with the stationary point and the
RMS velocity equals the NMO velocity. Although time migration is strictly defined for 1D media,
only, it is still applicable to media showing moderate lateral velocity variations. For these types of
media, the parameterisation in terms of RMS velocities no longer holds. The migration velocities are
defined at the apex time τapex which no longer coincides with the vertical time τvert and the associated
integral velocity is referred to as time migration velocity vc. This velocity is not a physical property
but can rather be interpreted as a “best-fit” parameter that governs the migration operator and fits it
to the reflection events in the data, i. e., it leads to flat image gathers after migration. It no longer
equals the NMO velocity which is attached to the stationary point rather than to the apex location of
the migration operator.

In conventional processing, time migration velocities are usually determined from stacking velocities.
In order to correct for the difference between both velocities, the velocity model is iteratively refined.

An alternative way to determine time migration velocities for the 2D case was suggested by Mann et al.
(2000) and Mann (2002). Based on the fact that the CRS operator allows to estimate an approximate
diffraction response, the kinematic wavefield attributes defined at the stationary point for ZO can be
mapped into the apex of the corresponding diffraction operator and serve as input for the determination
of time migration velocities. Mann et al. (2000) utilised the direct relationship between the CRS
reflection and diffraction operators to migrate a ZO sample by mapping its amplitude to the associated
apex location without the use of an explicit migration velocity model. However, such a point-to-point
mapping does not necessarily yield contiguous images of the reflection events. Therefore, it provides
a first impression of the subsurface’s structure but cannot be considered as a final image.

The same methodology can be used to derive an explicit time migration velocity model. The velocities
obtained in this way parameterise the CRS-based diffraction operator rather than the DSR operator.
Both operators coincide in the poststack case but deviate from each other if large offsets together with
large midpoint displacements are considered. Nevertheless, the CRS-based migration velocity model
provides a good approximation of the required velocities as long as offsets and midpoint displacements
are moderate. This is sufficient in the context of this thesis, as (true-amplitude) time migration is
mainly considered to generate images for further amplitude analysis where far offsets are omitted.
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Figure 5.1: Time migration velocity and CRS operator. The migration velocity vc is defined at the
apex location of the migration operator (mapex, τapex) which significantly deviates from the ZO location
(m0, τ0) where the stacking velocity vst is defined for dipping events. The CRS approach provides an
approximation of the true reflection response (black curve, the approximation is shown in blue) as well
as an approximation of the diffraction response (red curve) which defines the time migration velocity
and the apex location (modified after Mann, 2002).

The following derivations of the time migration velocities from CRS attributes for the 2D case follow
the lines of Mann (2002). A strategy to extend the approach to 3D was presented by Bergler (2004).

5.1 Conventional time migration velocity analysis

The aim of prestack time migration velocity analysis is to obtain a velocity vc attached to the apex of
the time migration operator (mapex, τapex) that provides a migration operator which fits the reflection
events in the prestack data (see Figure 5.1). Usually, stacking velocities are used as input for the
velocity model determination. In principle, both the difference in location and velocity have to be
considered in the migration velocity model building. This can be done explicitly by mapping the
wavefield attributes defined at the stationary point into the apex of the migration operator, or implicitly
by an updating scheme as in conventional approaches.

Conventional time migration velocity analysis is either carried out as an iterative approach based on
residual moveout analysis (RMO) or utilises a scanning routine similar to stacking velocity analysis
(see, e. g., Robein, 2003). The RMO routine usually starts with an initial velocity field which is set
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Figure 5.2: Double-square-root and CRS-based diffraction operator for a 2D homogeneous model.
The operators only coincide in the planes defined by m = 0 and h = 0, otherwise they deviate from
each other.

up using the stacking velocities determined by means of a conventional stacking velocity analysis.
Selected image gathers are constructed using prestack time migration which usually show residual
moveout. Afterwards, an inverse NMO correction is applied using the initial velocities. The gath-
ers then enter into a classical stacking velocity analysis which yields an updated migration velocity
model. As the velocity analysis is usually carried out on a rather coarse grid, the velocities have to be
interpolated on the migration grid. The RMO chain may be iterated to refine the velocity field.

In contrast, the scanning approach tests for a set of velocities or velocity functions at the same time.
The best result is determined on the basis of CIG flatness and interpretative criteria. The approach is
rather compute-intensive as several full prestack time migrations have to be performed. However, it
provides better results compared to the RMO routine if a wide range of different velocities is tested.

5.2 DSR vs. CRS diffraction operator

In order to determine the time-migration velocity values from CRS attributes, the wavefield attributes
for one ZO location P0 have to be mapped into the apex of the corresponding time migration operator
which is also provided by the CRS approach (see Figure 5.1). This diffraction response approximates
the true diffraction response up to second order. However, it only coincides with the DSR operator
for either zero offset or a midpoint displacement equal zero. Otherwise, the DSR and the CRS-based
diffraction operator deviate from each other as can be seen from Figure 5.2. The migration velocity
obtained from the CRS attributes does therefore not coincide with the “best-fit” parameter required to
build up the DSR operator.

The difference between both parameterisations is even more striking in 3D where the CRS diffraction
response is parameterised in terms of a 2×2 matrix. In correspondence to the 3D stacking velocity, the
migration velocity becomes azimuth-dependent for media with lateral variations. The DSR operator,
however, is parameterised in terms of a single velocity. In the poststack case, the DSR operator can
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be calculated using the migration velocity determined for the considered azimuth of the midpoint
displacement. In prestack migration, the velocity matrix in the CRS-based diffraction operator is
related to the azimuth of the midpoint displacement and the offset azimuth. In the DSR operator, these
azimuths are coupled. Therefore, both dependencies cannot be considered at the same time. To allow
consistency with the poststack case, only the azimuth of the midpoint displacement is considered for
the determination of the azimuth-dependent migration velocity. The CRS-based diffraction operator
could in principle be used to consider the azimuth-dependent velocity, but is in general less suited for
prestack migration (which also holds for the 2D case).

Although the migration velocity derived from the wavefield attributes does not exactly provide the
required “best-fit” time migration velocities, the CRS-based velocity model building is attractive as
the obtained migration velocities are defined at their correct locations and provide a good estimate
of the searched-for values. Velocity values are obtained for each (reliable) attribute set which can be
extracted by means of the automatic picking procedure described in Section 3.2. The velocity model
building itself is straight-forward and can be applied in a highly automated manner. In Chapter 7 and
8, the CRS-based time migration velocity model building is applied to both synthetic and real data
examples where the consistency of the velocity models with the prestack data can be examined from
the flatness of the common-image-gathers.

In the subsequent sections, the CRS-based time migration velocity model building is discussed for
the 2D and 3D case. The approach utilises the CRS-based ZO diffraction operator to approximate
the migration velocity together with the associated apex location. The generalisation of the model-
building approach to the CRS-based finite-offset diffraction operator is not consistent with the straight-
ray approach used for time migration and is not considered here.

5.3 2D CRS-based time migration velocity model building

As already mentioned in Chapter 3, the NIP wave is related to a hypothetical point source in depth.
Therefore, it allows to approximate the diffraction response of a hypothetical diffractor located on
the (unknown) reflector segment in depth as it is independent of the reflector’s curvature. For a true
diffractor, the radius of curvature of the normal wave RN = 1/KN and the radius of the NIP wave
RNIP = 1/KNIP coincide. In order to simulate a diffraction response for a reflector with RNIP , RN,
the radius of the normal wave is set to the value of RNIP which is obtained for the corresponding true
reflection event. The resulting diffraction traveltime τD reads

τ2
D(∆m, h) =

(
τ0 + 2

sinα
v0

∆m
)2

+
2τ0 cos2 α

v0 RNIP

(
∆m2 + h2

)
. (5.1)

For h = 0, the approximate diffraction response coincides with the poststack time migration operator
using the straight-ray assumption. Its apex location can be written as (Mann, 2002)

mapex = m0 −
RNIP τ0 v0 sinα

2 RNIP sin2 α + τ0 v0 cos2 α
, (5.2a)

τ2
apex =

τ3
0 v0 cos2 α

2 RNIP sin2 α + τ0 v0 cos2 α
. (5.2b)

Expressing the CRS diffraction response (5.1) for h = 0 in apex coordinates (5.2) immediately yields
the poststack time migration operator parameterised with a migration velocity vc in terms of CRS
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wavefield attributes:

τ2
D(x) = τ2

apex +
4
(
m − mapex

)2

v2
c

with (5.3a)

v2
c =

2 v2
0 RNIP

2 RNIP sin2 α + v0 τ0 cos2 α
. (5.3b)

Each set of (reliable) CRS attributes can be related to a migration velocity value and its corresponding
location in the time domain. For the actual building of a time migration velocity model, the wavefield
attributes are smoothed along the reflection events and then extracted by means of the automated
picking algorithm. The migration velocity vc and the corresponding apex location (mapex, τapex) can
now be calculated and enter into a subsequent infill procedure: the migration velocities are interpolated
and extrapolated using a distance weighted polynomial interpolation. This infill approach guarantees
a smooth interpolation of the velocity values but has no sound physical justification.

An example for the 2D velocity model building taken from the synthetic dataset discussed in Chapter 7
is depicted in Figure 5.3. A significant difference between apex locations and stationary points can
be observed for dipping reflection events, especially at the flanks of the dome-like structure. The
corresponding migration velocities are shifted to lower values with respect to the stacking velocities.

5.4 3D CRS-based time migration velocity model building

Time migration velocities can be obtained from the 3D wavefield attributes in the same way as in the
2D case. For arbitrary 3D media, the stacking velocity as well as the time migration velocity asso-
ciated with the CRS operator are azimuth-dependent1. Under the prerequisite that the dataset under
consideration was acquired with an appropriate azimuth coverage to provide three stable independent
components of the matrix MM

H , a time migration velocity matrix can be determined from which the
velocity for each azimuth γ can be derived. Here, γ denotes the midpoint displacement azimuth as all
considerations are restricted to the poststack case. An extension of the approach to finite offset is pos-
sible. However, then the migration velocity depends on both the azimuth of the midpoint displacement
and the offset azimuth which cannot be considered separately in the DSR operator (4.34).

In case the subsurface does not show a distinct dependence on the azimuth or the survey design is
not appropriate, an adapted strategy can be employed to derive a conventional time migration velocity
model without azimuth dependence from the single element of matrix MM

H .

Setting MH
M := MM

H and h = 0 in equation (3.11) yields the 3D Kirchhoff poststack time migration
operator assuming straight rays:

τ2
D(∆m,h) = (τ0 + 2pm · ∆m)2 +

2τ0

v0

(
∆m ·MM

H ∆m
)
. (5.4)

Its apex location (mapex,h = 0, τapex) can be written as:

τ2
apex =

(
τ0 − 4τ0 pm · M̃M

H pm
)2

+ 4τ3
0 pm · M̃M

H ·M
M
H M̃M

H pm , (5.5a)

mapex = m0 − 2τ0 M̃M
H pm , (5.5b)

1In this thesis, the azimuth-dependency is considered as an effect of inhomogeneity rather than anisotropy.
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Figure 5.3: Determination of migration velocities from CRS attributes for a 2D synthetic dataset.
The red crosses indicate picks and stacking velocities in the unmigrated time domain, the blue
squares picks and time migration velocities in the migrated time domain calculated according to
equations (5.3). The upper figure shows the stationary points vs. migration operator apices; the
lower figure stacking velocities vs. migration velocities. Note the significant shift in location and
velocity for dipping reflection events.
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5.5 Summary

with M̃M
H = (4pm pT

m + τ0MM
H )−1.

Expressing the CRS diffraction response (5.4) in apex coordinates (5.5) provides the poststack time
migration operator parameterised in terms of CRS wavefield attributes:

τ2
D(∆m) = t2

apex + 4
(
m −mapex

)T
V−1

C

(
m −mapex

)
. (5.6)

Here, the symmetric 2 × 2 matrix VC = 4 M̃M
H is related to the azimuth-dependent time migration

velocity vc(γ) defined at the operator apex by

vc(γ) =
(
VC11 cos2 γ + VC12 cos γ sin γ + VC22 sin2 γ

) 1
2 . (5.7)

where VCij denotes the i, jth element of the matrix VC.

Using equation (5.6) together with (5.5) and (5.7) relates the CRS attributes to a location in the time
domain and defines the corresponding time migration velocities for arbitrary azimuth directions, e. g.,
γ = 0◦, 45◦, or 90◦:

vC(0◦) = (VC11)
1
2 , (5.8a)

vC(45◦) =

(
VC12 +

1
2

(VC11 + VC22)
) 1

2

, (5.8b)

vC(90◦) = (VC22)
1
2 . (5.8c)

For the calculation of vC, reliable attributes are extracted from the smoothed 3D attribute volumes
by means of the CRS-based automatic picking. In principle, the kinematic wavefield attributes could
be directly converted to the desired matrix elements. However, an interpolation of the matrix el-
ements is unphysical as the matrix element VC12 does not show a smooth distribution. Therefore,
the attributes are firstly used to derive azimuth-dependent time migration velocities for the azimuths
γ = 0◦, 45◦, and 90◦. Each of these models is then inter- and extrapolated to cover the whole target
area. The velocity models are then transformed back to matrix elements from which the migration
velocity for a specified azimuth can be obtained according to equation (5.7).

5.5 Summary

In this chapter, the derivation of time migration velocities from kinematic wavefield attributes in
the 2D as well as in the 3D case was discussed. In the model building, the temporal and spatial
shift between the stationary point and the apex of the migration operator is considered. In the 3D
case, the approach allows to handle azimuth-dependent migration velocities. However, this aspect
cannot fully be exploited in the DSR operator. Albeit the obtained velocities parameterise the CRS
diffraction response rather than the DSR operator, they provide a good approximation of the searched-
for velocities. The CRS-based model building is efficient and can be highly automated compared to
updating approaches often used for conventional time migration velocity determination.
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Chapter 6

Minimum-aperture Kirchhoff time
migration

The achievable image quality as well as the reliability of the migrated amplitudes in Kirchhoff mi-
gration strongly depend on the selection of the migration aperture. From a theoretical point of view,
the aperture should be limitless for noise-free data to avoid artifacts caused by the abrupt truncation
of the migration operator. In practical implementations, the aperture is always limited by the finite
acquisition area and recording time. Usually, a taper is applied to reduce aperture-related boundary
effects. A further restriction of the aperture can be advantageous with respect to both the efficiency of
the migration process and the quality of the migration result.

The optimal choice of the migration aperture requires additional knowledge of the subsurface and is,
thus, not possible in conventional Kirchhoff migration schemes. In general, a user-defined aperture is
employed which linearly increases with depth or time of the image location. Both a strong underes-
timation and overestimation of the optimal aperture size leads to deteriorated and even meaningless
migration results.

Minimum-aperture migration aims at restricting the aperture to the smallest possible size which still
covers the part of the migration operator constructively contributing in the summation. Jäger (2005a)
employed the CRS attributes in prestack and poststack Kirchhoff depth migration to estimate the size
and location of the minimum migration aperture. His primary goal was to improve the migrated
image by reducing migration artifacts and avoiding operator aliasing. In addition, the efficiency of the
migration process is considerably increased. A drawback of the approach is its sensitivity to velocity
model errors which also directly influences the stability of the minimum aperture determination. This
point is not crucial as long as only kinematic aspects are considered, but is of importance if the
amplitudes are to be used for further processing.

In the time domain approach considered here, the sensitivity to model errors is significantly reduced
and the stability of the approach is increased. Due to the considered straight ray assumption, one
deals with smooth, analytic migration operators with well-defined spatial derivatives and consistent,
analytic true-amplitude weight factors. The focus of the approach lies on improving the quality of the
migrated image and, in particular, of the amplitudes. The efficiency is of minor importance in time
migration as the computational time is already significantly reduced compared to depth migration.
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Figure 6.1: 2D poststack time migration operator with a) conventional aperture centred around its
apex and with b) minimum aperture centred around the stationary point. The respective part of the
operator within the aperture is depicted in red.

6.1 Aperture and amplitudes

As mentioned above, the size of the migration aperture strongly influences the quality and reliability
of the migration amplitudes. Schleicher et al. (1997) showed that optimum amplitude behaviour is
obtained if the migration aperture is restricted to the size of the projected Fresnel zone. The advan-
tages of minimum-aperture migration with respect to the amplitudes are also obvious from Figure 6.1:
in conventional migration the stationary point where the operator is tangent to the event and the pro-
jected Fresnel zone are unknown prior to migration. Thus, the aperture has to be centred around the
operator’s apex; its size is usually user-controlled.

Choosing the aperture too small leads to the loss of steep events in the migration result. If the aperture
does not even fully cover the size of the projected Fresnel zone the amplitudes become meaningless as
can be seen from Figure 6.2 where migrated amplitudes are depicted as a function of the aperture size.
On the other hand, too large an aperture means that a lot of noise off the event and possibly other events
contribute to the diffraction stack and deteriorate the amplitudes. In addition, the risk of operator
aliasing is increased and antialias filters tend to falsify amplitudes: Zhang et al. (2001) showed that
the application of anti-aliasing filters often affects the amplitudes of migrated gathers stronger than the
selection of the migration weight function. In contrast, the minimum-aperture operator avoids these
problems as its location and size fits the constructively contributing part of the reflection event, thus
providing an improved input for a subsequent amplitude-versus-offset (AVO) analysis (Bancroft and
Sun, 2003).

6.2 Minimum-aperture migration

The determination of the minimum migration aperture consists of two tasks: the constitution of the
stationary point that defines the centre for the migration aperture and of the size of the projected
Fresnel zone which controls its horizontal extension. The basic concept which holds for time and
depth migration has been described by Jäger (2005a) for 2.5D prestack and poststack migration as
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Figure 6.2: Effect of the migration aperture on the amplitudes for noise-free data. The projected
Fresnel zone size is approximately 400 m. Apertures smaller than this size lead to meaningless am-
plitudes, the actual behaviour of the amplitudes in this case depends on the wavelet. In this example,
the aperture is always centred around the stationary point.

well as for 3D poststack migration. The approach is reviewed here in a slightly different notation and
the extension to the 3D prestack case is discussed.

6.2.1 Determination of the minimum aperture in 2.5D

Determination of stationary points

In Kirchhoff migration, the main contribution to the diffraction stack stems from the region where
the reflection event is tangent to the migration operator, i. e., the vicinity of the stationary point. The
condition of tangency can be conveniently expressed in terms of local slowness vectors pD and pR
associated with the migration operator and the reflection event, respectively. Wherever in the prestack
time domain these vectors coincide, we encounter a stationary point.

For zero offset, the slowness pR is readily available from the CRS attributes. In the 2D case, it is
sufficient to consider the horizontal slowness pR x:

pR x =
1
v0

sinα . (6.1)

For time migration with straight rays as considered here, the migration operator as well as its spatial
derivatives like pD x are given by analytic expressions which allow an efficient implementation. In
practice, the modulus of the difference between these two horizontal slownesses is calculated and the
location of the minimum is regarded as stationary point P0 for ZO. A minimum slowness difference
threshold is defined to avoid the detection of minima which are not related to actual stationary points.
By applying a further user-defined coherence threshold, the associated coherence values are used to
decide whether the point is reliable.
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Chapter 6. Minimum-aperture Kirchhoff time migration

By means of the approximated CRP trajectory (3.17), the location of the stationary point can be
extrapolated to finite offsets. This provides an offset-dependent and, thus, more accurate reference
for the centre of the migration aperture compared to the conventional approach which ignores the
deviation between CMP and CRP gathers.

Estimation of the size of the projected Fresnel zone

The final information relevant for minimum migration apertures which can be obtained from the
attributes is the size of the projected ZO Fresnel zone given in equation (3.19). In general, the Fresnel
zone size is expected to vary with offset. Unfortunately, this effect is hard to quantify as the velocity
model together with the dip and curvature of the reflector has to be considered. In principle, the
curvature of the normal wave can be utilised to estimate this effect. But due to the inherent instability
in the determination of this parameter, an approximation based on the normal wave curvature would
be rather insecure.

However, forward-calculated examples suggest that for plane interfaces, the widening effect is small
as can be seen from Figure 6.3: for two analytical models with different reflector depths the relative
size of the projected Fresnel zone WF(h)/WF(h = 0) is determined for three different reflector dips. As
long as the the offset does not exceed the reflector depth, the relative widening is smaller than 10%.
For practical applications, the ZO Fresnel zone size determined from the CRS attributes is always
extended by a certain amount to account for the approximative manner of equation (3.19) as it is
crucial not to underestimate the Fresnel zone for true-amplitude processing. In addition, the error in
the approximation of the CRP trajectory has to be accounted for. The user-controlled widening factor
depends on the quality of the CRS attributes and the reflector curvature. It turned out that a widening
between 20% for not too strong reflector curvatures and up to 50% otherwise applied to the ZO
projected Fresnel zone size usually covers all the mentioned effects. For the 2D examples discussed
in Chapter 7, the ZO Fresnel zone was increased by a factor of 20% to 50% but kept constant with
offset, an approximation which appears to be reasonably accurate to obtain reliable amplitudes for the
considered models as can be seen from the comparison with the conventional results.

6.2.2 Determination of the minimum aperture in 3D

Determination of stationary points

The determination of the stationary point for offset zero can be performed analogously to the 2D case
but now using the entire slowness vectors. In 3D, the slowness vector pR associated with a ZO ray
emerging at (m0,h = 0, t0) with azimuth φ and dip α reads

pR(m0, t0) =
1
v0

(cos φ sinα, sin φ sinα, cosα) . (6.2)

In the same way, the slowness vector pD can be defined which is related to the migration operator
τD(m,M) for a depth point M. Evaluating pD for location m0 yields

pD(m0, t0) =

 ∂τD

∂mx

∣∣∣∣∣
m=m0

,
∂τD

∂my

∣∣∣∣∣∣m=m0

,

√
1
v2

0

− p2
D,x − p2

D,y

 . (6.3)
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If the reflection event is tangent to the operator, the vectors pD and pR point in the same direction,
i. e., the inner product between both normalised vectors is one. Thus, the stationary point can be
found by determining the minimum of 1− v2

0 |pD · pR| for all samples encountered along the migration
operator. Similar to the 2D case, a minimum slowness difference and coherence threshold is employed
in practical applications to avoid false results associated with unreliable attributes.

In order to extrapolate the stationary point to finite offset, its offset-dependent displacement has to
be considered. Unfortunately, the CRS-based approximation of the CRP trajectory cannot be fully
generalised to 3D (see Section 3.3). For 1D media and a given offset azimuth γ, all rays pertaining to
a common midpoint are situated in the vertical plane defined by γ. Thus, for a fixed offset azimuth,
only a 3D subset of the 5D data space has to be considered, i. e., the 3D case is reduced to 2D. Thus,
the direction of the dislocation of the stationary point is defined by the offset azimuth. As the wavefield
attributes show no dependency on the offset azimuth for 1D media, the 2D approximation of the CRP
trajectory can be fully employed to evaluate the absolute value of the dislocation.

For media with only small lateral velocity variations, the above considerations still hold approxi-
mately. In order to consider the same concept, the 2D CRP trajectory is estimated using the NIP wave
radius and the dip evaluated in the direction given by the offset azimuth γ. This approach provides
the general direction and approximate size of the dislocation rather than an exact position of the sta-
tionary point for finite offsets. Therefore, the estimated PFZ size for ZO should always be extended
by a certain degree to compensate for the approximation. For general media, no such approximation
in terms of the CRS attributes is available. In this case, the displacement of the stationary point can
only be compensated by a heuristic widening of the aperture with increasing offset to ensure that the
projected Fresnel zone is fully covered. As no dislocation of the stationary point can be considered
here, the widening has to be significantly larger compared to the approach based on the CRP trajec-
tory. With decreasing difference between minimum and conventional aperture, the approach becomes
less attractive. Therefore, an application in the depth domain where arbitrary media are considered
requires a different strategy, e. g., based on slant stacks in the common offset sections.
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∆ξ∆ξ

Figure 6.4: Left: operator aliasing occurs when the migration operator undersamples the wavelet out-
side the tangency region between migration operator and reflection event. In this case, the summation
yields a non-negligible result. Right: no operator aliasing is encountered in regions where the operator
is tangent to the reflection event.

Estimation of the size of the projected Fresnel zone

In 3D, the size of the ZO projected Fresnel zone can be approximated from the curvature matrices
KNIP and KN using formula (3.18). The equation describes an ellipse in the midpoint plane which
is centred at the stationary point ξ∗. The radii of the principal axes and their orientation can be
immediately obtained by transforming the matrix

[
H(KNIP −KN)HT

]
into the principal axes system.

The eccentricity and orientation of the ellipse resembles the azimuth dependency of the subsurface’s
properties. In conventional migration, a circular aperture is usually employed if no further information
is available.

6.3 Migration aperture and operator aliasing

One advantage of minimum-aperture migration is the avoidance of operator aliasing. Unlike data-
driven aliasing caused by improper temporal and spatial sampling of the input data, operator aliasing
is related to the imaging process itself. Operator aliasing occurs when the moveout of the migration
operator between two neighbouring traces exceeds half of the wavelet length. In this case, the operator
undersamples the wavelet and, thus, aliases frequencies (see Figure 6.4). The resulting artifacts can
severely degrade the migrated image.

Operator aliasing emerges in the steeper part of the migration operator as it depends on the operator
dip. A widespread criterion to determine the maximum unaliased frequency fmax for 2D Kirchhoff

migration reads

fmax =
1

2
∣∣∣∣ dτ
dξ

∣∣∣∣ ∆ξ , (6.4)

where dτ/dξ denotes the local dip of the migration operator and ∆ξ the trace spacing. In 3D, fmax
should be determined for the direction diagonal to the ξ1− and ξ2−axis as it better represents higher
frequencies (for details see Abma et al., 1999, and references therein). Equation (6.4) strictly holds
for horizontal reflection events, only. Otherwise, the maximum unaliased frequency depends on the
dip difference between migration operator and reflection event (Baina et al., 2003).
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6.4 Further aspects of minimum-aperture migration

Different approaches exist to handle operator aliasing in conventional Kirchhoff migration. In princi-
ple, restricting the dip of the migration operator avoids the effect but leads to a loss of steeply dipping
events. Other techniques to suppress operator aliasing utilise trace interpolation or low-pass filtering.
Both approaches are computational intensive and anti-alias filter additionally affect the migrated am-
plitudes. A comparison of different methods for operator anti-aliasing in Kirchhoff migration can be
found in Abma et al. (1999).

In minimum-aperture migration amplitudes are only summed up in regions where the migration oper-
ator is tangent to the reflection events. Therefore, the problem of operator aliasing does not arise: the
dip difference between both operators is always close to zero.

6.4 Further aspects of minimum-aperture migration

Reliability of stationary points and PFZ size

In Kirchhoff migration, each point on the output grid is treated independently. In the same way, the
location of the stationary point and the size of the projected Fresnel zone are determined for each
output location independently. Thus, the method strongly relies on the reliability and smoothness of
the kinematic wavefield attributes. A stable determination and appropriate preconditioning of the CRS
attributes is inevitable.

In general, the estimation of dip and azimuth by means of the CRS stack is expected to be rather
stable which, therefore, allows a reliable determination of the stationary point. In contrast, the radius
of the normal wave is usually the most unstable attribute. This may lead to unreasonable values for
the size of the projected Fresnel zone. The effect on the migrated image is usually rather small,
but the amplitudes clearly suffer. If stable attributes for the normal wave are not available, a plane
normal wave approximation can be utilised for the projected Fresnel zone by setting KN := 0 in
equation (3.18). However, this approach may lead to an underestimation of the Fresnel zone size for
strongly curved reflectors. By means of the event-consistent smoothing introduced in Section 3.2,
outliers and unphysical fluctuations which would deteriorate the minimum-aperture migration result
can be removed from the attribute sections.

The number of locations for which a stationary point is found in the minimum-aperture approach is
controlled by the user-given coherence threshold. Ideally, a reliable stationary point can be detected
for each sample on an actual reflection event. In real data applications, this situation is rather unreal-
istic and stationary points are mostly detected on strong reflection events. Decreasing the coherence
threshold increases the number of detected stationary points, but may cause artifacts as unreliable
attributes are considered. In practice, a compromise between coverage and reliability of the station-
ary points has to be found. This point will be further considered in the real data examples shown in
Chapters 7 and 8.

Transition from limited to conventional aperture

In real data applications, the target area cannot be expected to be completely covered with stationary
points. In this case, the conventional aperture can be utilised at all locations where no stationary point
was found to avoid gaps in the migrated image. This proceeding leads to local jumps in the aperture
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size. However, if the conventional aperture is chosen sufficiently large to fully cover the size of the
projected Fresnel zone, the results from the different aperture definitions differ only with regard to the
noise level. Of course, prerequisite is that the location of the stationary point and the projected Fresnel
zone size in the minimum-aperture approach are determined from reliable wavefield attributes.

Ambiguities in the input and output domains

Special situations arise if reflection events intersect each other or become tangent to each other in
the unmigrated stacked domain. The first case is well known as conflicting dip situation, whereas the
second might be termed conflicting curvature situation. In principle, both cases can be handled in CRS
processing by allowing multiple attribute sets for a given ZO location. The main problem is to identify
such locations. Due to the inherent instability of the normal wave curvature, conflicting curvatures
situations can hardly be detected in a reliable way. For conflicting dip situations, the usually very
stable dip parameter allows to identify such locations to a certain extent.

In case of successfully detected conflicting dip situations, the multiple attribute sets can be fully
exploited by the limited-aperture migration approach: the search for the stationary point is simply
performed for all available attribute sets. In general, each attribute set will yield a different stationary
point related to different migration output locations. Although this aspect is not negligible, the explicit
handling of conflicting dip situations in CRS processing is often omitted in practical applications as
the choice of appropriate processing parameters is rather difficult.

In correspondence to the ambiguities in the input domain, we can also encounter ambiguities in the
output domain, i. e., a migration operator with several stationary points. In the extreme case, an
unlimited number of stationary points exists if a diffraction response is considered that coincides with
the migration operator. In principle, similar numerical concepts as in the CRS conflicting dip handling
can be applied in the minimum-aperture migration to identify multiple stationary points. However, this
also immediately implies that the same instability and tendency to introduce artifacts can be expected.
Therefore, the current implementation of the limited-aperture migration only considers one stationary
point per ZO migration operator.

6.5 Summary

In this chapter, a time domain approach for minimum-aperture migration based on the kinematic
wavefield attributes was presented. In order to restrict the migration operator to the region where it
is tangent to the reflection event, the location of the stationary point, its variation with offset, and the
size of the projected Fresnel zone have to be known. While in 2.5D all required information is directly
available from the CRS attributes, the concept cannot be fully generalised to 3D. For media showing
mild to moderate lateral velocity variations as usually considered in time migration, an adapted strat-
egy similar to the 2.5D case can be utilised. However, an extension to more general situations is not
possible in the scope of the CRS-based approach.
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Chapter 7

Minimum-aperture Kirchhoff time
migration: 2D results

As part of this thesis, a true-amplitude Kirchhoff time migration was implemented for minimum-
aperture as well as conventional migration. Both migration algorithms utilise the straight-ray ap-
proximation and the consistent constant velocity weight. In this and the subsequent chapters, the
minimum-aperture migration is tested on 2D and 3D synthetic and real data examples and the results
are compared to the results obtained by migration with conventional user-controlled aperture. Since
the same implementation was used in both migration schemes, the image quality and reliability of
the migration amplitudes provided by the minimum-aperture and the conventional approach can be
directly compared. Both the synthetic and the real datasets resemble typical examples for the applica-
tion of time migration. While in the real data application the main focus is on the image quality, the
synthetic data additionally allows to test the quality of the dynamic results and, thus, the potential of
the minimum-aperture approach for AVO analysis.

7.1 Synthetic data example

The synthetic prestack dataset was generated by means of dynamic ray tracing using the model shown
in Figure 7.1. A marine acquisition geometry was employed with a shot spacing of 20 m and a receiver
spacing of 10 m; the maximum full offset is 2000 m. The target region for the amplitude analysis is
the horizontally layered structure beneath the uppermost dome-like interface. The elastic parameters
are chosen such as to mimic a sequence of gas/oil/water contacts, see Table 7.1.

Intercept and gradient for the contacts were calculated according to the Shuey approximation of the
Zoeppritz equation given in equation (4.36). The primary P-waves were modelled by means of a wave-
front construction method using a zero-phase Ricker wavelet with a dominant frequency of 40 Hz.
The temporal sampling in the dataset is 4 ms. Edge diffractions and transmission losses were not
considered in the modelling. A representative common-offset section of the forward-modelled data
is displayed in Figure 7.2a). Coloured noise with two different S/N ratios was added to the prestack
data.
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Layer vP [m/s] vS [m/s] ρ [kg/m3]
Gas 2500 1575 2180
Oil 2900 1720 2130

Water 3100 1790 2330
Basement 3050 1525 2255

Contact R0 G
Gas/oil 0.103 -0.100

Oil/water 0.038 -0.027
Water/basement -0.024 0.196

Table 7.1: Elastic parameters of the target zone (top): P-wave velocity vP, S-wave velocity vS , and
density ρ. Corresponding AVA parameters (bottom): intercept R0 and gradient G.
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Figure 7.1: a) Interval P-wave velocity model used to generate the synthetic data and b) time migra-
tion velocity model determined from CRS wavefield attributes. Note the different scales.
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Figure 7.2: a) Representative common-offset section (h = 100 m) extracted from the synthetic
prestack data. Modelling artifacts like gaps and jumps in the amplitudes are visible in the lower
part of the seismogram. b) ZO stacked section obtained by means of the CRS stack. The gaps are
partly closed by the stacking process.
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Figure 7.3: Several common-image gathers extracted from the time-migrated prestack data. Maxi-
mum full offset is 2000 m. The horizontal axis denotes the CIG locations.

7.1.1 CRS stack and model building

The CRS stack was applied to the dataset with the lower S/N-ratio to simulate the ZO section (Fig-
ure 7.2b)) which entered into the poststack migration. Due to the applied spatial stacking operator, the
gaps visible in the forward-modelled seismogram are partly closed. In addition, a set of CRS wave-
field attribute sections and the associated coherence section (not displayed) were obtained. For the
further applications in the velocity model building and the minimum-aperture migration, the wave-
field attributes were smoothed using the event-consistent smoothing routine (see Section 3.2).

Based on the coherence values, (reliable) sets of attributes were extracted on the reflection events and
converted to time migration velocities and apex locations (see Figure 5.3 and the corresponding com-
ment for details). The interpolated smooth time-migration velocity model is shown in Figure 7.1b).
The model is kinematically consistent with the data as can be seen from the set of common-image
gathers (CIGs) displayed in Figure 7.3: no residual moveout is visible.

7.1.2 Poststack migration

With the attribute-based migration velocity model, the poststack time migration was performed twice:
on the one hand in a conventional way with user-controlled aperture, on the other hand with the
minimum aperture given by the projected Fresnel zone. The user-given aperture was chosen such that
the steep flanks of the dome-like structure were imaged. In both migration schemes, a cosine-square
taper was applied between the first and the second projected Fresnel zone to avoid artifacts otherwise
caused by the abrupt truncation of the operator. The midpoint displacement of the stationary point
with respect to the apex of the migration operator is displayed in Figure 7.4a). Locations where no
stationary point was detected are masked. The midpoint displacement depends solely on the dip of
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Figure 7.4: a) Horizontal displacement of the stationary points with respect to the operator apex. b)
Size of the projected first ZO Fresnel zone estimated from the CRS attributes. Only locations with
identified stationary points were considered.

the reflection event and reaches its maximum value at the steep flanks of the dome. The associated
size of the projected Fresnel zone is shown in Figure 7.4b). The estimated ZO Fresnel zone size
was increased by 50%. As expected, the size of the projected Fresnel zone increases with increasing
traveltime and increasing curvature of the reflection events, where the latter has to be considered as
signed property with positive sign for events appearing concave when viewed from the acquisition
surface.

The poststack migration results are shown in Figure 7.5. The minimum-aperture migration was only
performed at locations where stationary points were detected. This removes many of the artifacts due
to modelling deficiencies but can, in turn, cause gaps, e. g., in conflicting dip situations or on weak
events where no reliable attributes are available. In practice, the user-given aperture would be used at
all other locations to obtain a fully covered image without gaps.

7.1.3 Prestack migration

In the same way as in the poststack case, two prestack migrations were carried out on the full prestack
datasets. The migrated images obtained for the dataset with the higher noise level are shown in
Figure 7.6. The aperture size was chosen as in the corresponding poststack migration, an offset-
dependent widening of the aperture was not considered. In case of the minimum-aperture migration,
the location of the stationary point was extrapolated to finite offsets using the approximated CRP
trajectory. As in the poststack case, the minimum-aperture migration was only performed for detected
stationary points.

Again, a significant reduction of the artifacts can be observed in the minimum-aperture result (Fig-
ure 7.6 b)) whereas some gaps are introduced in the reflection events where no stationary point could
be detected. These gaps could be closed by applying the user-given aperture at all locations where no
stationary point was found.

Finally, the amplitudes along the migrated reflection events of the target reflectors were extracted for
both prestack migrated datasets. The offsets were mapped to reflection angles θ assuming horizontal
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Figure 7.5: Poststack migration results migrated with (a) conventional user-defined aperture and (b)
CRS-based minimum-aperture. In the latter case, only locations with identified stationary points were
considered. Migration artifacts are strongly reduced in the minimum-aperture result.
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Figure 7.6: Stacks of the time-migrated prestack data with (a) conventional user-defined aperture and
(b) CRS-based minimum-aperture. Again, the migration was only performed for locations where a
stationary point was detected.

74



7.2 Real data example

reflectors with a homogeneous overburden. Reflection angles over 35 ◦ were not considered. Fig-
ure 7.7 shows the AVA curves for one selected common-image gather for both aperture definitions
applied to the data with low noise level. In addition, the minimum-aperture migration was applied to
the same data without noise to obtain reference values. The conventional results basically suffer from
migration artifacts intersecting the target reflection events. In Figure 7.8 the same results are shown
for a higher noise level. Here, we observe far less scattering of the amplitude values in the CRS-based
limited aperture results.

For each target reflection event and noise level, the extracted amplitudes were used to generate
horizon-based AVA crossplots (Figures 7.9 and 7.10) based on a stable linear regression method
(Walden, 1991). Again, the noise-free dataset was utilised to obtain reference values. In general,
the migration results for the noisy data show an elliptic distribution of the points around these ref-
erence values depending on the S/N ratio of the considered reflection event (which decreases from
top to bottom). If migration artifacts or different events contribute to the diffraction stack as, e. g.,
in case of the uppermost target reflector, the overall trend in the AVA curve is biased. In this case, a
wrong trend can be introduced in the crossplot or the linear regression might even totally fail. Due to
the decreased noise-level in the amplitudes, the CRS-based results show less dispersion and give an
overall better estimation of the forward-calculated reference values shown in Table 7.1. The deviation
in the intercept R0 can be explained by the utilised straight ray approximation which enters into the
calculation of the true-amplitude migration weights.

7.2 Real data example

The 2D seismic land dataset used for the case study was acquired by an energy resource company in a
fixed-spread geometry. The seismic line had a total length of about 12 km. The utilised source signal
was a linear upsweep from 12 to 100 Hz of 10 s duration. Shot and receiver spacing are both 50 m and
the temporal sampling interval is 2 ms. Standard preprocessing was applied to the field data including
the setup of the data geometry, trace editing, deconvolution, geometrical spreading correction, field
static correction, and bandpass filtering. As the amplitudes were not preserved during these processes,
the data is not suited to recover reflection amplitudes. Hence, the migrated amplitudes can only be
interpreted in a qualitative way.

7.2.1 CRS stack and model building

The CRS stack was carried out on the preprocessed dataset; conflicting dip situations were not consid-
ered. In an initial step, the three kinematic wavefield attributes were searched for independently. The
obtained attributes were smoothed and used as starting values in a local three-parameter optimisation.
Afterwards, a second event-consistent smoothing was applied to remove remaining outliers and to
precondition the attribute sections for the following steps. The simulated ZO section is displayed in
Figure 7.11. The coherence section together with the smoothed attributes α, RNIP, and KN = 1/RN is
shown in Figure 7.12. Attributes associated with low coherence values are masked out in the sections.

For the determination of the time migration velocity model, the smoothed attributes associated with
the reflection events were extracted and converted to time migration velocities. The interpolated
velocity model is displayed in Figure 7.13a), the pick locations are shown as overlay. No reliable picks
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Figure 7.7: AVA curves for a selected CIG along the target reflection events for the dataset with low
noise level. In particular the uppermost AVA curve suffers from migration artifacts in the conventional
result. The reference values were obtained by CRS-based migration of noise-free data. Only under-
critical reflection angles were considered.

76



7.2 Real data example

 0.07

 0.075

 0.08

 0.085

 0.09

 0.095

 0.1

 0.105

 0.11

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16

A
m

p
lit

u
d
e

sin
2
(θ)

CRS-based PSTM, sn=  0
CRS-based PSTM, sn=50

conventional PSTM, sn=50

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14

A
m

p
lit

u
d
e

sin
2
(θ)

CRS-based PSTM, sn=  0
CRS-based PSTM, sn=50

conventional PSTM, sn=50

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0  0.005  0.01  0.015  0.02  0.025  0.03  0.035  0.04

A
m

p
lit

u
d
e

sin
2
(θ)

CRS-based PSTM, sn=  0
CRS-based PSTM, sn=50

conventional PSTM, sn=50

Figure 7.8: AVA curves for a selected CIG along the target reflection events for the dataset with high
noise level. The amplitude variance in the CRS-based result is far lower compared to the conventional
result. The reference values were obtained by CRS-based migration of noise-free data. Again, the
reflection angles are restricted to under-critical values.
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Figure 7.9: Horizon-based AVA intercept vs. gradient crossplots for the three target reflection events
extracted from the dataset with low noise level. Again, the noise-free result serves as reference. The
forward-calculated counterpart is given in Table 7.1. Note the different scales of the axes chosen to
achieve maximum display resolution.

78



7.2 Real data example

-0.2

-0.15

-0.1

-0.05

 0

 0.09  0.092  0.094  0.096  0.098  0.1  0.102

G
ra

d
ie

n
t

Intercept

CRS-based PSTM, sn=  0
CRS-based PSTM, sn=50

conventional PSTM, sn=50

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.0325  0.033  0.0335  0.034  0.0345  0.035  0.0355  0.036  0.0365  0.037

G
ra

d
ie

n
t

Intercept

CRS-based PSTM, sn=  0
CRS-based PSTM, sn=50

conventional PSTM, sn=50

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

-0.028 -0.026 -0.024 -0.022 -0.02 -0.018

G
ra

d
ie

n
t

Intercept

CRS-based PSTM, sn=  0
CRS-based PSTM, sn=50

conventional PSTM, sn=50

Figure 7.10: Horizon-based AVA intercept vs. gradient crossplots for the three target reflection events
extracted from the dataset with high noise level. The noise-free result provides the reference values.
Again, different scales of the axes were chosen for display.
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Figure 7.11: CRS-stacked ZO section. An automatic gain control was applied to amplify deep events.

could be extracted for traveltimes beyond 2 s. The subsurface shows approximately a 1D velocity
distribution and, thus, is well suited for time migration. Selected common-image gathers are depicted
in Figure 7.13b). The residual moveout in the gathers is most likely related to the utilised straight ray
approximation. Hereby, the ray bending caused by the strong vertical velocity gradient is not taken
into account.

7.2.2 Poststack migration

The minimum-aperture poststack migration was carried out on the ZO stacked section using the
smoothed attribute sections. The target zone has a spatial sampling of 10 m and a temporal sam-
pling of 2 ms. For real data applications, the quality and the reliability of the minimum-aperture result
depend on the choice of an appropriate coherence threshold. In Figure 7.14, close-ups of migrated
ZO sections obtained for three different coherence thresholds are depicted together with the associ-
ated mask sections that indicate locations were stationary points are detected. Decreasing the coher-
ence threshold leads to an increase in the number of detected stationary points. The high coherence
threshold in the uppermost examples only applies to the dominant reflectors, in all other locations the
conventional aperture has to be used to avoid an image without gaps. These regions are characterised
by an increased noise level. Choosing a coherence threshold of 0.01 leads to an almost complete
coverage with stationary points. For this data example, no artifacts caused by unreliable attributes
are visible. Nevertheless, the migrated image shows deteriorated reflection events as the attributes
associated with the very low coherence values could not be smoothed properly. For the poststack and
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Figure 7.12: a) Coherence section and sections of the kinematic wavefield attributes (b) α, (c) RNIP,
and (d) KN = 1/RN. An event-consistent smoothing was applied to the attribute sections to remove
outliers. Unreliable attributes associated with low coherence values are masked out.

prestack migration discussed in the following, the coherence threshold was set to the medium value
of 0.05 which coincides with the threshold utilised in the event-consistent smoothing.

The horizontal displacement of the stationary points with respect to the operator apex for ZO is shown
in Figure 7.15a), the associated half-width of the projected ZO Fresnel zone in Figure 7.15b). Both
attributes are only displayed at locations where stationary points were detected. With the chosen
coherence threshold of 0.05, a stable determination of stationary points and the corresponding pro-
jected Fresnel zone size was possible for almost the whole target zone. At all other locations, the
conventional aperture (described below) was applied. In correspondence to the subsurface structure,
the horizontal displacement increases up to 500 m in the lower part of the dataset where the reflection
events become steeper. The Fresnel zone size, which was enlarged by 20% with respect to the values
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Figure 7.13: a) Smoothed time migration velocity model derived from the wavefield attributes. The
black dots indicate pick locations. b) Selected common-image gathers extracted from the migrated
prestack data. The maximum full offset is 2000 m. The CMP numbers indicate the CIG locations.

determined from the CRS attributes, increases with increasing traveltime up to 800 m. The high val-
ues for the Fresnel zone size determined beyond 1.5 s are related to (fragments of) diffraction events
which, theoretically, have an infinite projected Fresnel zone. In conflicting dip situations, only the
attribute set associated with the stronger event was available and was used in the determination of the
minimum aperture (see, e. g., the reflection event between CMP 300 and 350 which shows positive
horizontal displacement). The migrated section is displayed in Figure 7.16. Here and in the following
migration results, an automatic gain control was applied for display.

A second poststack migration was conducted in a conventional way with a user-controlled aperture
centred around the operator apex (Figure 7.16). The aperture increases linearly from 100 m at 0.3 s to
2000 m at 2.0 s. In both conventional and minimum-aperture migration, the same taper was applied
to avoid artifacts related to the boundary of the migration aperture. The minimum-aperture migra-
tion result shows a better image quality and more contiguous events compared to the conventionally
obtained poststack migration result. The noise level is significantly reduced at all locations where a
stationary point could be detected and faults are better defined. The operator aliasing present in the
shallow part of the conventional migration result is avoided in the minimum-aperture result as the
summation is restricted to the tangency region between migration operator and reflection event. Evi-
dently, the application of an anti-alias filter would clearly improve the conventional result. Note that
the transition between conventional and minimum aperture in Figure 7.16 is only characterised by a
different noise level.

7.2.3 Prestack migration

In Figure 7.17a) and Figure 7.17b), the corresponding prestack migration results are depicted. For
both migration approaches, the aperture was kept constant with offset due to the small curvature of
the reflection events. Whereas the conventional aperture is still centred around the operator apex for
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Figure 7.14: Minimum-aperture results obtained for coherence thresholds of 0.1, 0.05, and 0.01
(top to bottom). Close-ups of the migrated poststack sections are depicted in the left column. The
associated mask sections are shown on the right, detected stationary points are indicated in black.
At all other locations, the conventional migration aperture was employed; these regions are clearly
associated with an increased noise level. Decreasing the coherence threshold leads to an increasing
number of detected stationary points, but may lead to a distorted image when unreliable or fluctuating
attributes are used.
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Figure 7.15: a) Horizontal displacement of the stationary point with respect to the migration operator
apex. b) Half-width of the estimated projected Fresnel zone. Due to the high quality of the CRS
attributes for these data, stationary points and the corresponding Fresnel zone size could be determined
for almost the entire section.

all offsets, the CRS-based approximation of the CRP trajectory is utilised to extrapolate the location
of the stationary point to finite offsets starting from the detected location for ZO.

Compared to the poststack results, more detailed subsurface structures can be observed but also an
increased noise level. The latter is due to the fact that the CRS-stacked section used for the poststack
migration already has a significantly increased signal-to-noise ratio. Nevertheless, the differences
between the conventional and the minimum-aperture migration results show a similar behaviour as in
the poststack case: a better definition of the faults and more distinctive reflection events in many areas
can be seen in the minimum-aperture result. Again, operator aliasing is present in the conventional
result and the migrated image shows a higher overall noise level.

Finally, amplitudes were extracted from both prestack migration results for the strong reflection event
at 1.3 s between CMP nos. 150 and 250. A representative AVO curve is depicted in Figure 7.18. The
fluctuations in the curves are due to the noise level in the input data. However, the summation of noise
outside the tangency region is omitted in the migration process which also reduces the scattering in
the migrated amplitudes.

7.3 Summary

In this chapter, the potential of the 2D minimum-aperture time migration approach was tested on a
synthetic as well as on a real dataset. In both cases, the kinematic wavefield attributes obtained by
means of the CRS stack entered into the derivation of the time migration velocity model and the
determination of the minimum migration aperture. By restricting the migration aperture, operator
aliasing is omitted, migration artifacts are suppressed, and noise outside the tangency region does not
contribute to the summation. Compared to conventional approaches with user-given, apex-centred
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Figure 7.16: Result of the Kirchhoff poststack migration with (a) minimum aperture and (b) conven-
tional aperture which linearly increased with traveltime. In the minimum-aperture result, the shallow
events are no longer obscured by operator aliasing. The image quality in the lower part has improved
and fault locations are better resolved.
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Figure 7.17: Stacked sections obtained from the prestack migration result with (a) minimum aperture
and (b) conventional aperture. Again, the minimum-aperture result shows an improved image quality
and more pronounced faults.
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Figure 7.18: Normalised amplitudes extracted from the conventional (red) and the minimum-aperture
(blue) prestack migration result at CMP no. 200. The amplitudes obtained by the minimum-aperture
migration show a significantly reduced noise level.

migration apertures, the minimum-aperture migration leads to improved migrated sections and yields
more reliable and less scattered amplitudes. Applications of the amplitudes like AVA analysis by
means of crossplots clearly benefit from the reduced variance of the amplitudes.
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Chapter 8

Minimum-aperture Kirchhoff time
migration: 3D results

In this chapter, the minimum-aperture Kirchhoff time migration is applied to a 3D synthetic as well as
a 3D real dataset. As in the 2D case, an additional Kirchhoff migration with user-defined conventional
aperture was carried out for comparison.

In both examples, the prestack dataset used for migration shows an irregular trace distribution. This
leads to a good azimuth coverage for prestack migration, but requires appropriate handling for true-
amplitude migration to avoid acquisition footprint in the migrated image as well as in the amplitudes.
One common method to compensate for irregular trace spacing in 3D is to weight the traces by the
size of the Voronoi cell instead of a constant factor ∆ξ1 ×∆ξ2 (see, e. g., Jäger, 2005b). This approach
holds as long as the size of the Voronoi cells does not vary too strongly. In this case, an interpolation
of the input traces is required.

The second effect related to the acquisition geometry which affects the true-amplitude result is the
required binning with respect to absolute offset and offset azimuth. In the migration code used here, a
constant bin spacing is utilised in both cases. This leads to an over-proportional weighting of the larger
offsets as can be seen from the rose plot generated for the synthetic dataset depicted in Figure 8.2. This
effect superposes and possibly even obscures the AVO effect in the data. By weighting each amplitude
by the number of traces contributing to the summation, the amplitudes can be equalised with respect
to each other. More sophisticated binning routines are based on flexible bin sizes to enforce a constant
number of traces in each bin.

Both the irregular acquisition geometry and the constant bin size bias the true-amplitude result. How-
ever, the handling of both effects in the migration code goes beyond the scope of this thesis. Thus,
at the current stage the amplitudes obtained by means of the 3D migration routines only allow a
qualitative rather than a quantitative interpretation.

8.1 Synthetic data example

To demonstrate the potential of the 3D true-amplitude CRS-based Kirchhoff time migration synthetic
pre- and poststack datasets were generated for the model shown in Figure 8.1. Here and in the follow-
ing figures, an inline and crossline section from the centre of the model are depicted, respectively. The
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Figure 8.1: Inline (left) and crossline (right) section of the original interval velocity model used for
modelling.

inline section was chosen such that the model is almost symmetric with respect to this inline plane
except for the first reflector. This quasi symmetry allows for simple plausibility checks in the follow-
ing. The target region for amplitude analysis is the lower interface of the gas-bearing layer beneath
the dome-like structure.

The prestack dataset used for migration was generated on an irregular grid with an average mid-
point spacing of 40 m. The irregular spacing was mandatory to provide a good azimuth coverage
for prestack migration. The latter is shown in the rose plot in Figure 8.2. This requirement together
with the limitations of the employed modelling tool led to a dataset far larger than originally antici-
pated. Therefore, the dataset had to be thinned out significantly. As the size of the remaining prestack
dataset still exceeds 40 gigabytes, a full 3D processing of the data was not possible. Unfortunately,
these technical restrictions cause aliasing in the migrated images which superimposes the searched-for
AVO responses. In the following, this effect is demonstrated for one section in a selected azimuth bin.

A second prestack dataset with a regular midpoint spacing of 100 m in x- and y- direction was gener-
ated as input for the CRS stack. As the simulated ZO volume is not suitable for poststack migration
due to the large trace spacing, an additional poststack dataset was generated on a 20 × 20 m2 grid.

For all three datasets the primary P-waves were modelled by means of a wavefront construction
method using a zero-phase Ricker wavelet with a dominant frequency of 40 Hz. The temporal sam-
pling rate in the dataset is 4 ms in the poststack and 6 ms in the prestack data. Again, edge diffractions
were not considered in the modelling which leads to gaps in the lower most reflector. Coloured noise
was added to all datasets.

8.1.1 CRS stack and model building

The 3D CRS stack was carried out on the regular prestack dataset to provide the attribute volumes
(not displayed) for the velocity model building and the minimum-aperture migration. The kinematic
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1722

59960

118198

Maximum offset: 2000 m

Figure 8.2: Rose plot showing the number of traces in the offset and azimuth bins for the irregular
prestack dataset. The utilised offset binning was 100 m and the azimuth binning was 30◦.

wavefield attributes dip, azimuth, and normal wave curvature show a significant azimuth-dependency,
whereas the NIP wave emerges with almost spherical wavefronts. This is due to the fact that the NIP
wave experiment does not explicitly depend on the reflectors’ structures but only on their overburden.
For the considered model, the structural variations along the normal rays are small. However, the
varying dip and azimuth of the emerging normal rays lead to an azimuth-dependency of the migration
velocity which is considered in the model building.

The attribute volumes were smoothed in an event-consistent manner. Based on the coherence val-
ues, an automatic picking process was employed to extract reliable attributes for the velocity model
building. By means of these attributes, the time migration velocities for azimuth γ = 0◦, γ = 45◦,
and γ = 90◦ were calculated. In a subsequent infill procedure, these values have been inter- and
extrapolated on the target region by means of a distance-weighted polynomial interpolation. For the
time migration, these models have to be transformed back to the matrix elements using equations (5.8).
From the latter, the migration velocity is determined for each considered azimuth in the time migration
code. The smooth time migration velocity models for azimuth 0 ◦ and 90 ◦ are shown in Figure 8.3,
a similar model was obtained for 45 ◦. The velocity models resemble the azimuth-dependency of the
stacking velocity: due to the symmetry with respect to the inline section, this section shows only small
lateral variations for azimuth 0◦.1 Some representative common-image gathers extracted from the in-
line and crossline volumes are depicted in Figure 8.4. Unfortunately, the CIGs suffer from aliasing,
but the reflection events can still be observed as almost perfectly flat.

1Note that the azimuth-dependent migration velocity appears with interchanged azimuth directions due to the matrix
inverse in equation (5.7).
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Figure 8.3: Time migration velocity models for azimuths a) 0◦ and b) 90◦. Depicted is an inline and
crossline section of the respective velocity model. See main text for details.

8.1.2 Poststack migration

The 3D poststack migration was performed twice, once using the limited aperture approach (Fig-
ure 8.5) and once with the conventional aperture (Figure 8.6) which was chosen wide enough to
image the flanks of the dome. The minimum-aperture migration was only performed at locations
where stationary points were detected. As in 2D, we observe gaps in the reflection events at points
where no reliable attributes were available like in conflicting dip situations, e. g., at the intersection of
the target reflector with the dome. In practice, the user-given aperture is used at all other locations to
obtain a fully covered image without gaps.

In the conventional migration, missing diffraction events and modelling artifacts led to strong migra-
tion artifacts which degrade the result. In the limited aperture migration, the migrated image is clearer
as the migration artifacts are strongly reduced, except in the conflicting dip situations. The dome-like
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Figure 8.4: Common-image gathers extracted every 250 m from the prestack migrated azimuth bin
for a) 0◦ and b) 90◦. The CIGs extracted from the inline and crossline are depicted on the left and
right, respectively. The maximum offset is 2000 m.

structure is not fully imaged in both crossline sections due to the limited acquisition geometry.

The displacement of the stationary point relative to the apex of the migration operator is depicted in
Figure 8.7. The absolute values range up to approximately 1500 m at the steeply dipping flanks of the
dome. The fluctuations of the values are in the order of the CRS grid spacing as the stationary point
is detected using the nearest neighbour in the CRS volumes. Thus, the fluctuations directly reflect the
discrete nature of the CRS results. Due to the model’s quasi symmetry with respect to the inline, I
observe very small y-components of the displacement vector of the stationary point for this line.

Figure 8.8 shows the corresponding size and orientation of the principal axes of the migration aperture.
The projected Fresnel zone size shows a clearly elliptical shape. As the inline section coincides with
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Figure 8.5: Inline (left) and crossline (right) section of the minimum-aperture migration result. The
migration artifacts visible in the conventional result are significantly reduced.
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Figure 8.6: Inline (left) and crossline (right) section of the conventional poststack migration result.
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Figure 8.7: Horizontal displacement of the stationary point with respect to the apex of the migration
operator for the x- (top) and y-direction (bottom), respectively. The left column shows the inline
section while the right column depicts the respective displacements for the crossline section. The
small y-component of the displacement in the inline section is due to the quasi-symmetry of the
model.

the symmetry plane of the model concerning the lower reflectors, the major axis of the minimum
aperture ellipse coincides with one of the model’s axes. Thus, the calculated orientation of almost
constantly 90◦ may serve as a plausibility criterion. In general, the orientation of the major axis varies
laterally as can be seen from the crossline section. As the conventional approach has to account for the
displacement and the Fresnel zone size simultaneously, the migration aperture has to be considerably
increased. This leads to a ratio of about one to four for CRS-based to conventional aperture.

The amplitudes along the target reflector were extracted from both the conventional and the minimum-
aperture results (Figure 8.9). The values for the ZO amplitude are slightly below the theoretical value
of R0 = 0.055. The CRS-based result shows a significantly reduced noise level as the data was only
stacked along the relevant parts of the migration operators.
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Figure 8.8: Principal major (first row) and minor (second row) axes of the elliptical minimum aper-
ture. The third row depicts the orientation of the major axis with respect to x-axis. Displayed are the
respective values for the inline (left) and crossline section (right). The almost constant value of 90◦

for the orientation in the inline section is due to the model’s quasi-symmetry.
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Figure 8.9: Amplitudes extracted from the conventional (red solid line) and CRS-based poststack
migration result (blue dashed line) for the target reflector for the inline (left) and crossline (right)
section. The amplitude variance in the CRS-based result is far lower compared to the conventional
result.

8.1.3 Prestack migration

For the prestack migration I used the same processing parameters as for the poststack case described
above. In addition, the CRP trajectory was used to extrapolate the stationary points to finite offsets.
Furthermore, a linear widening of the aperture size with offset of 20% per 1000 m offset was consid-
ered.

In contrast to the poststack case, technical limitations required a coarser spacing of the modelled
traces. As can be seen in the two representative migrated CO sections in Figure 8.10, strong aliasing
degrades the migrated images. Amplitudes extracted along reflection events in these sections exhibit
a behaviour totally dominated by the aliasing effects. Nevertheless, the amplitudes extracted along
the target reflector (Figure 8.11) exhibit a lower noise level with the CRS-based aperture. As the
migration artifacts vary with offset, I expect a significant footprint of the aliasing in the AVO curves,
too. This can indeed be seen in Figure 8.12: the AVO curves for conventional as well as limited-
aperture migration suffer from strong artifacts which almost totally obscure the different noise levels
achieved with the two different migration schemes.

Modelling studies showed that with the available computing facilities and within the given time frame,
it is not possible to generate synthetic data of reasonable size with sufficient coverage and trace density
for the considered model. Therefore, a meaningful interpretation of the prestack results failed due
to migration artifacts. Anyway, a general reduction of the noise level of the amplitudes could be
achieved.

8.2 Real data example

The real onshore dataset presented in the following was made available within the scope of the project
High resolution images of subsurface CO2 storage sites in time and depth by the CRS methodology
described in Trappe et al. (2005).

This dataset was acquired onshore with an irregular acquisition geometry providing a full azimuth
coverage. Parts of the data expose a footprint of surface topography which has not been removed
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Figure 8.10: Details of the migrated inline CO sections for offset 500 m (left) and 1500 m (right) ex-
tracted from the prestack migrated data obtained with conventional aperture. The images are strongly
contaminated by aliasing effects.
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Figure 8.11: Amplitudes extracted from the conventional (red solid line) and CRS-based prestack
migrated inline sections (blue dashed line) for the target reflector. Shown are the results for offsets
500 m (left) and 1500 m (right). Note the reduced noise level in the CRS-based results.
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Figure 8.12: AVO curves extracted from the conventional (red solid line) and CRS-based prestack
migrated inline sections (blue dashed line) for the target reflector at x = 6500 m.
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Figure 8.13: a) The lateral distribution of midpoints covers a rectangular area which is rotated by
approximately 5.2◦ with respect to the global coordinate system. b) Distribution of absolute offsets as
function of offset azimuth. Every 10th trace is displayed.

in the provided prestack data. The total recording time is 4 s with a temporal sampling rate of 4 ms.
Figure 1.1a) shows the lateral distribution of the source/receiver midpoints. They cover an almost
rectangular area which is rotated by about 5.2◦ with respect to the global coordinate system. The
average distance between the midpoints is 25 m in both x- and y-direction. The red rectangle indicates
the data subset used in the framework of this thesis. This area was selected as it shows only a minor
influence of the topography. Similar as for the synthetic data example, I present the results for a
selected inline and crossline represented by the blue lines in Figure 8.13a).

The distribution of the offset azimuth versus the absolute offset of all traces is visualised in Fig-
ure 8.13b). The maximum absolute offset varies with azimuth between 2700 and 4700 m. A offset
and azimuth binning as performed for the 3D synthetic dataset leads to an insufficient trace coverage:
in the majority of bins the midpoint distribution is highly irregular and often suffers from clustering.
Therefore, an azimuth binning was not considered for migration. Fortunately, the CRS wavefield at-
tributes reveal little azimuth dependency such that the avoidance of azimuth binning is justified for
these data.

8.2.1 CRS stack and model building

As the dataset shows a full azimuth coverage, the CRS stack could be performed with eight parame-
ters. The determination of the kinematic wavefield attributes was split into three independent searches
according to the procedure described in Müller (2003) followed by a local eight-parameter optimi-
sation. Due to limited computer facilities, a small search-aperture in midpoint direction had to be
chosen leading to a decreased stability in the determination of the normal wave curvatures. An event-
consistent smoothing was applied to the attribute volumes.

An inline and crossline section of the simulated ZO volume is shown in Figure 8.14a). The subsurface
structure shows little lateral variations which predestines the data for time migration. Figure 8.14b)
and 8.14c) shows an inline and crossline section of the dip volume and the associated coherence
sections, respectively.

In Figures 8.15a) and b), the stacking velocities for x- and y-direction calculated from the smoothed
wavefield attributes are depicted. The velocities reveal only a minor azimuth-dependency except for
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Figure 8.14: a) Inline (left) and crossline (right) sections of the simulated ZO volume. b) Inline (left)
and crossline (right) sections showing dip and c) associated coherence sections.
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a few locations, e. g., in the crossline section at x = 2.2 km and τ = 3 s. These lateral locations
can be clearly associated with undulations of the top-surface topography which falsify the attributes.
The impact of the topography on the stacking velocity is better resolved in the deeper part of the
sections where the moveout is smaller. For the determination of the time migration velocity model,
the smoothed attributes associated with the reflection events were extracted. Locations showing an
increased azimuth-dependency of the wavefield attributes were omitted. The picked values were con-
verted to time migration velocities and interpolated and extrapolated on the target volume. The ob-
tained time migration velocity model is depicted in Figure 8.15c). The migration velocity model is
consistent with the prestack data as can be seen from the common-image gathers in Figure 8.16.

8.2.2 Poststack migration

The minimum-aperture poststack migration was carried out on the simulated ZO volume. The sta-
bility of the determination of dip and azimuth allowed to choose a low coherence threshold so that
stationary points were found on nearly all visible reflection events. Due to the instability of the de-
termined normal wave curvature, the calculated size of the projected Fresnel zone shows abnormal
variations of the values on the reflectors. Due to the small dips and curvatures of the reflectors, the
projected Fresnel zone size is expected to be nearly constant on a reflector and to slowly increase with
traveltime. Therefore, a plane normal wave (PNW) approximation was utilised in the determination
of the projected Fresnel zone size by setting KN := 0. As the reflectors do not show strong curvatures,
the approximation is supposed to lead to reasonable apertures.

The effect of the smoothing and the PNW approximation on the minimum-aperture migration result
is shown in Figure 8.17. The first row depicts subsets of the minimum-aperture migrated crossline
section obtained with unsmoothed attributes (left), smoothed attributes (middle), and smoothed at-
tributes together with the PNW approximation (right). The second and third row show the corre-
sponding x-component of the displacement of the stationary points and the major principal axis of
the minimum-aperture ellipse. Amplitudes were extracted from all three migration results and are
depicted in Figure 8.18. The unsmoothed attributes lead to outliers and a certain amount of scattering
in the location of the stationary point as well as in the aperture size. This clearly influences the mi-
grated image and in particular the migrated amplitudes (red line in Figure 8.18). Using the smoothed
attributes stabilises the found stationary points and improves the migrated image. The determined
Fresnel zone size shows less scattering due to the smoothing of the NIP wave curvature, but the values
still vary strongly. Although the effect is hardly visible in the migrated image, the amplitudes clearly
suffer. Using the PNW approximation, reasonable values are obtained for the size of the projected
Fresnel zone. Depending on the sign of the curvature of the normal wave, the values are slightly
above or below the average values with the determined normal wave curvature. Therefore, the es-
timated size of the projected Fresnel zone is increased by 50%. Now, the extracted amplitudes are
showing a smooth distribution of the values.

Figures 8.19 and 8.20, the displacement of the stationary points and the size and orientation of the
minimum aperture are displayed for the inline and crossline sections. The horizontal displacement
is generally small due to the small dip of the reflectors. The estimated minimum aperture is almost
circular. The minimum-aperture migrated image is shown in Figure 8.21a). The migration was only
carried out at locations with detected stationary points. A second poststack migration was carried out
with a user-controlled aperture centred around the operator apex. The aperture was chosen to linearly
increase with increasing traveltime from 500 m at 0.5 s to 900 m at 2.9 s in both x- an y-direction. The
same taper was applied in both migrations.
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Figure 8.15: Inline (left) and crossline (right) sections showing the stacking velocity a) in x-direction
and b) in y-direction obtained after event-consistent smoothing of the CRS attributes. c) The time
migration velocity model obtained from the CRS attributes.
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Figure 8.16: Common-image gathers extracted every 500 m from the prestack migrated a) inline and
b) crossline section. The maximum offset is 2500 m.

The comparison between the migrated image obtained with the minimum-aperture approach and con-
ventional migration reveals only small differences. Because of the good signal-to-noise ratio in the
data, both migrations perform well and provide a clear image. Due to the small displacement of the
stationary point from the operator apex, the differences between both migration schemes lies mainly
in the size of the migration aperture. Here, the PNW approximation in the minimum-aperture ap-
proach and the necessary widening of 50% further reduced the difference in aperture size. However,
the minimum-aperture migration avoids the operator aliasing which is present in the shallow part of
the conventional result and reduces migration artifacts. The impact of the minimum aperture is more
evident in the dynamic results: the amplitudes extracted from the minimum-aperture result shows
reduced scattering as can be seen from Figure 8.22.

8.2.3 Prestack migration

In the same way as in the poststack case, two prestack migrations were applied to the full prestack
dataset. The minimum-aperture migration was carried out at all locations where a stationary point
was found in the poststack case. Due to the almost horizontal structure, the displacement of the
stationary point with offset is expected to be negligible. Therefore, the aperture size is only slightly
increased by 10% per 1000 m offset. The aperture size for the conventional migration was chosen as
in the corresponding poststack migration. Both prestack results were scaled by the number of traces
contributing to the summation in the conventional migration to avoid an overweighting of the higher
offsets. The prestack-migrated stacked sections are displayed in Figure 8.23. Again, both migration
schemes perform well on this dataset. The minimum-aperture migration provides a clearer image
showing a reduced noise level and less migration artifacts, especially in the shallower parts. Note
that in practice, the user-given aperture would be used at all locations where no stationary point was
detected to obtain a fully covered image without gaps.

In order to compare the dynamic results, amplitudes were extracted from the minimum-aperture and
conventional migration results for the strong reflection event slightly below 2 s. Representative AVO
curves obtained for the inline and crossline section are depicted in Figure 8.24. Both migration

103



Chapter 8. Minimum-aperture Kirchhoff time migration: 3D results

1.8

2.0

2.2

2.4

T
im

e
 [

s
]

-500

-250

0

250

500

m
id

p
o

in
t 

d
is

p
la

c
e

m
e

n
t 

[m
]

1.8

2.0

2.2

2.4

4 5
Distance [km]

1.8

2.0

2.2

2.4

1.8

2.0

2.2

2.4

4 5
Distance [km]

1.8

2.0

2.2

2.4

0.6

0.8

1.0

1.2

T
im

e
 [

s
]

200

400

600

800

P
F

Z
 [

m
]

0.6

0.8

1.0

1.2

0.6

0.8

1.0

1.2

1.8

2.0

2.2

2.4

T
im

e
 [
s
]

4 5
Distance [km]

Figure 8.17: Effect of smoothing and of the plane normal wave approximation on the minimum-
aperture migration result. The first row depicts subsets of the minimum-aperture crossline section
obtained with unsmoothed attributes (left), smoothed attributes (middle), and smoothed attributes
together with the plane normal wave approximation (right). The second and third row show the corre-
sponding x-component of the displacement of the stationary points and the major axis of the minimum
aperture ellipse. The midpoint displacement sections in the middle and right columns coincide as this
property is not affected by the PNW approximation. Note that the values shown here for the major
axis are already increased by 50%.

schemes provide similar AVO curves. Due to the equalisation of the offset-dependent amplitudes,
these curves no longer resemble a physical AVO behaviour. In addition, the AVO behaviour is further
degraded due to the highly irregular trace distribution leading to strong fluctuations in the amplitudes
which superimpose the effects caused by the different noise levels in the migrated results. Figure 8.25
shows amplitudes extracted from the inline CO section for 2100 m offset. Here, the reduced noise
level of the amplitudes obtained by the minimum-aperture migration is clearly visible.
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mation (purple). See main text for details.
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Figure 8.19: Horizontal displacement of the stationary points with respect to the operator apex in a)
x-direction and b) y-direction. Only locations with detected stationary points are displayed.
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Figure 8.20: a) Principal major and b) minor axes of the elliptical minimum aperture. c) Orientation
of the major axis with respect to x-axis.
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Figure 8.21: Inline (left) and crossline (right) sections of the Kirchhoff poststack migration result
with a) minimum aperture and b) conventional aperture.
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Figure 8.22: Amplitudes extracted from the conventional (red solid line) and CRS-based poststack
migration result (blue dashed line) for the inline (left) and crossline (right) section.
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Figure 8.23: Inline (left) and crossline (right) sections of the Kirchhoff prestack migration result with
a) minimum aperture and b) conventional aperture.
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Figure 8.24: AVO curves extracted from the conventional (red solid line) and CRS-based prestack
migration result (blue dashed line) for the strong reflection event slightly below 2 s.
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Figure 8.25: Amplitudes extracted from a representative CO section for the inline result for the
strong reflection event slightly below 2 s. The conventionally obtained amplitudes are depicted in
red, the CRS-based results in blue. The CRS-based result shows a reduction of the noise level in the
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8.3 Summary

In this chapter, the applicability of the minimum-aperture time migration was evaluated for 3D on
both synthetic and real data. For the real dataset, the concept allowed a stable estimation of the size
and location of the optimum migration aperture for the poststack case and an approximate extension
for finite offsets. As in the 2D case, the minimum-aperture migrated sections showed reduced migra-
tion artifacts and a decreased noise level and the amplitudes are less scattered compared to migration
results with conventional user-defined aperture. For the synthetic data, I successfully applied the
poststack migration scheme with similar improvements as for the real data. However, the prestack
approach did not lead to sound and interpretable results except for a reduced noise level in the ampli-
tudes. This is due to the limited modelling and processing capacities available. Nevertheless, there
is no indication that the presented approach would not lead to the expected improvements if these
technical limitations were overcome.
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Chapter 9

Conclusion

In the scope of this thesis, I have studied the transformation of reflection seismic data into a structural
image of the subsurface. This central step in the seismic imaging workflow is called migration. The
extension to true-amplitude migration additionally compensates for the geometrical spreading effect
during the transformation and, thus, allows to recover reflection amplitudes. Seismic time migration
which is considered here has been introduced as an approximate transformation process based on the
assumption of a laterally homogeneous velocity distribution. With this prerequisite, integral velocities
are assumed to be sufficient to characterise the overburden and the velocity model building is consid-
erably simplified. In practice, the assumption of a 1D medium is never strictly met. Therefore, the
application of time migration is usually extended to media showing mild to moderate lateral velocity
variations. The main advantage of time migration lies in its reduced sensitivity to velocity model er-
rors compared to the depth migration process. This does not only influence the quality of the migrated
image but also has a strong impact on the amplitudes. Thus, seismic amplitude analysis is usually
carried out on time-migrated results because they provide more reliable and less distorted amplitude
information.

Within this thesis, I have focussed on true-amplitude Kirchhoff time migration. A geometrical de-
scription of the migration process in terms of a weighted diffraction stack has been presented and
the derivation of the true-amplitude weight function based on paraxial ray theory has been outlined.
Starting from the general description of Kirchhoff migration in the depth domain, I have derived the
approximate time domain approach based on the straight-ray assumption.

In order to apply migration in the time domain, a model of the integral velocities is required. For media
showing lateral velocity variations, such migration velocities deviate from the stacking velocities and
have to be determined by means of, e. g., migration velocity analysis or scanning routines. In this
thesis, I have considered the derivation of an approximate time migration velocity model from the
kinematic wavefield attributes provided by the Common-Reflection-Surface stack method. The model
derivation considers the temporal and spatial shift between the stationary point and the migration
operator apex and allows for an azimuth-dependency of the migration velocity. However, the latter
cannot be fully exploited in the DSR operator for finite offset.

The main aspect of the thesis is to improve the image quality and in particular the amplitudes in the
time-migrated image by restricting the migration operator to the optimum aperture. This aperture
is centred around the stationary point and its size corresponds to the minimum aperture defined by
the projected first Fresnel zone. For zero offset, both properties can be directly estimated from the
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kinematic wavefield attributes which also allow to extrapolate the stationary point to finite offset.
This strategy cannot be fully extended to 3D for arbitrary media. The 3D common-offset minimum-
aperture migration approach considered here holds for mild to moderate lateral velocity variations
which corresponds to the restrictions for time migration made in this thesis. The proposed application
of the minimum-aperture migration in the time-migrated domain stabilises the approach originally
introduced for depth migration.

I have applied the minimum-aperture approach to synthetic and real datasets. Furthermore, corre-
sponding migration results with conventional aperture definition have been generated. The compari-
son has clearly exhibited improvements in the minimum-aperture migrated image: migration artifacts
have been significantly reduced, operator aliasing has been avoided, and the overall noise level has
been reduced. The focus of the application in the time-migrated domain concerns the quality of the
migrated amplitudes. By restricting the migration operator to the optimum aperture size, the summa-
tion of unwanted noise is avoided and the amplitudes become more reliable and less scattered. As I
have shown for a 2D example, this also has a direct impact on the reliability of AVO/AVA analyses.

The presented minimum-aperture migration approach in the time domain is based on the assump-
tion of straight rays which limits its applicability to models of moderate complexity. The minimum-
aperture concept is not tied to this assumption and might, therefore, be combined with more gen-
eral time migration schemes. Irrespective of the employed scheme, the minimum-aperture approach
strongly depends on the local reliability of the kinematic wavefield attributes. Thus, a diligent deter-
mination and evaluation of these attributes is crucial for practical application. In general, I consider
the CRS-based minimum-aperture time migration as a complement rather than as a substitute for con-
ventional Kirchhoff time migration, in particular if a target-oriented application in the context of a
subsequent AVO/AVA analysis is considered.
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