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Zusammenfassung

Das anomale magnetische Moment des Myons aµ (definiert als aµ = (gµ − 2)/2)

ist eine der am besten gemessenen Größen der Teilchenphysik. Es liefert somit einen

sehr präzisen Test des Standardmodells. Eine Diskrepanz zwischen der theoretischen

Vorhersage und der direkten Messung könnte einen Hinweis auf mögliche Beiträge

neuer Physik geben. Die aktuellste Messung für aµ wurde vom Brookhaven-Experiment

durchgeführt, bei der eine extreme Präzision von 0.7 Millionstel erreicht wurde. Theoretische

Berechnungen von mehreren Autoren erreichen eine ähnliche Präzision, die zentralen Werte

weichen jedoch um bis zu drei Standardabweichungen vom experimentellen Wert ab. Die

theoretischen Vorhersagen sind durch den hadronischen Beitrag zu aµ limitiert, welcher

nicht durch Störungs-QCD berechnet werden kann. Der hadronische Beitrag zum anomalen

magnetischen Moment, ahadr
µ , kann über ein Dispersionsintegral mit dem hadronischen

Wirkungsquerschnitt verknüpft werden:

ahadr
µ =

1

4π3

∫ ∞

4m2
π

σe+e−→hadr(s)K(s) ds (1)

wobei das Integral über die quadrierte invariante Masse s des hadronischen Systems

ausgeführt wird; der Kernel K(s) ist eine monotone Funktion, die sich wie 1/s verhält.

Niederenergetische hadronische Wirkungsquerschnitte sind deshalb in ahadr
µ stark gewichtet,

und speziell der Kanal e+e− → π+π− ist für ungefähr 70% des vollen Integrals für

ahadr
µ verantwortlich. Ein alternativer Ansatz mit Spektralfunktionen von hadronischen τ -

Zerfällen (auf Isospin-verletzende Effekte hin korrigiert), die mit Hilfe des Theorems vom

Erhaltenen Vektorstrom (CVC) mit σ(e+e− → hadrons) verknüpft werde können, verringert

die Diskrepanz mit der direkten Messung von aµ. Der Grund für diese Inkonsistenz

beim Vergleich von auf e+e− und τ -Daten basierender Vorhersagen ist unverstanden.

Um die Natur dieser Differenz zu klären werden präzisere experimentelle Messungen des

hadronischen Wirkungsquerschnitts benötigt, speziell bei niedrigen Energien.

KLOE hat in der Vergangenheit die Methode des radiative return erfolgreich zur Messung

des hadronischen Wirkungsquerschnitts σ(e+e− → π+π−) in einer Analyse von ∼
140pb−1 von im Jahre 2001 genommenen Daten angewendet. Vom Elektron oder Positron

abgestrahlte Photonen im Anfangszustand (Initial State Radiation, ISR) verringern die

nominelle Energie des Speicherrings (1.02 GeV beim KLOE Experiment), und ermöglichen
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dadurch einen radiative return zum %- oder ω-Meson. Mit einem einzigen Datensatz ist

es so möglich, den hadronischen Wirkungsquerschnitt als Funktion der Energie des zwei-

Pion-Systems von der zwei-Pion-Schwelle bis zur Speicherringsenergie zu untersuchen.

Der radiative Wirkungsquerschnitt und der π+π−-Wirkungsquerschnitt können über die

Abstrahlfunktion H verknüpft werden:

sπ
dσ(e+e− → π+π−γ)

dsπ
= H(sπ) · σ(e+e− → π+π−) (2)

wobei sπ für die quadrierte invariante Masse der Pionen im Endzustand steht.

Beiträge von Photonen, die von einem der beiden Pionen im Endzustand abgestrahlt werden

(Final State Radiation, FSR), stellen einen Untergrund dar und sind vom Signalprozess nicht

unterscheidbar. Betrachtet man Photonen unter kleinen Polarwinkeln (small angle analysis,

Kleinwinkelanalyse) um die Endzustandsstrahlung zu verringern, so ist die Messung auf

den Bereich der quadrierten Energie von 0.35 < M 2
ππ < 0.95 GeV2 beschränkt, da der

Bereich unterhalb 0.35 GeV2 aus kinematischen Gründen bei diesen Akzeptanzschnitten

verboten ist. Das erzielte Resultat bestätigt die beobachtete Diskrepanz zwischen e+e−-

und τ -Spektralfunktionen.

Dieselbe Methode wurde nun in einer zweiten Analyse angewendet, bei der 240pb−1

von im Jahr 2002 genommenen Daten untersucht wurden, unter Betrachtung einer

komplementären Akzeptanzregion, in der das ISR-Photon unter großen Polarwinkeln

nachgewiesen wird. Diese neue Analyse soll in der vorliegenden Dissertation dargestellt

werden. Die drei Hauptquellen von reduziblem Untergrund (e+e−γ, µ+µ−γ und π+π−π0

Ereignisse) werden mit Hilfe von kinematischen Variablen ausgesondert und die verbleibende

Kontamination aufgrund der MonteCarlo-Voraussage abgezogen. Vergleiche zwischen Daten

und MonteCarlo in mehreren Variablen untermauern die Richtigkeit des Untergrundabzugs:

Im Bereich 0.5 − 0.8 GeV2 ist der damit verbundene systematische Fehler < 0.3%.

Die Effizienzen der Analyseschnitte wurden in den meisten Fällen mit Hilfe von

Kontrolldatensätzen gemessen, wo dies nicht der Fall ist, wurden sie mit MonteCarlo

ermittelt. Aufgrund der immer höheren Präzision dieser Art von Messungen wurde spezielle

Sorgfalt in der Ermittlung des systematischen Fehlers für jede Effizienz angewendet. Die

zur Untergrundsunterdrückung verwendeten Analyseschnitte wurden so gewählt, dass der

systematische Fehler minimal blieb. Unter Vernachässigung des Fehlers für den Abzug des

irreduziblem Untergrunds wird der komplette systematische Fehler am %-Peak zu 0.6%

abgeschätzt, sehr viel geringer als in der Kleinwinkelanalyse.

Der irreduzible Untergrund

besteht aus drei Quellen: Die Ereignisse mit Endzustandsstrahlung in erster Ordnung, deren

Beitrag mit Hilfe des MonteCarlo-Generators PHOKHARA im Modell der skalaren QED

abgeschätzt wird; der resonante Zerfall φ → %±π∓ → π+π−γ, dessen Wirkungsquerschnitt

zwar schlecht bekannt ist, der aber oberhalb von 0.5 GeV2 vernachlässigbar ist; und

schließlich der Beitrag von Skalarmesonen im Strahlungszerfall des φ in f0(980) + γ. Der
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Hauptbeitrag zum Fehler der Messung des Pion-Formfaktors kommt derzeit vom Beitrag

der Skalarmesonen. Die Natur dieser Teilchen ist immer noch umstritten, und es existieren

mehrere Modelle zur Beschreibung ihrer Dynamik. Die Vorhersagen dieser Modelle wurden

mit Hilfe der forward-backward Asymmetrie mit den Daten verglichen. Diese Variable

entsteht durch die Interferenz zwischen der Anfangszustandsabstrahlung, wobei sich die

Pionen in einem ungeraden Zustand bezüglich der Ladungskonjugation befinden, und der

Endzustandsabstrahlung und dem Strahlungszerfall des φ, bei denen sich die Pionen in

einem geraden Zustand bezüglich der Ladungskonjugation befinden. Diese Interferenz ist

für die Verzerrung der Polarwinkelverteilungen von π+ und π− verantwortlich. Da in

der Großwinkelanalyse eine große Anzahle an Ereignissen mit Endzustandsabstrahlung

vorhanden ist, und da die forward-backward Asymmetrie sehr sensitiv auf die Präsenz

von Skalarmesonen ist, wurde diese Variable in der vorliegenden Arbeit benutzt, um diese

Teilchen zu untersuchen. Aus dem Vergleich der Daten mit der MonteCarlo-Vorhersage

verschiedener Modelle konnte ein Modell ausgewählt werden, welches am besten zu den

Daten passt. Mit Hilfe weiterer Vergleiche zwischen dem ausgewählten Modell und den

Daten konnten die im Modell auftretenden Parameter des f0(980) angepasst werden. Diese

Methode erlaubt nicht nur, den Beitrag skalarer Mesonen von den Daten abzuziehen,

sie ist auch sehr vielversprechend wenn es darum geht, weitere Informationen über

diese Teilchen zu erhalten. Ein neuer MonteCarlo-Generator (EVA), welcher sowohl den

Beitrag von Skalarmesonen als auch des direkten Zerfalls φ → %±π∓ enthält, wurde vor

kurzer Zeit veröffentlicht. Die Paramter der Skalarmesonen wurden in EVA noch nicht

angepasst. Momentan wird der Vergleich zwischen den Vorhersagen von PHOKHARA

und EVA benützt, um eine Abschätzung für den systematischen Fehler auf die durch die

Skalarmesonen erzeugte Korrektur zu erhalten. Dies ist der dominierende systematische

Fehler auf die Messung des Pion-Formfaktors zwischen 0.5 und 0.85 GeV2. Der in der

Großwinkelanalyse erhaltene Pion-Formfaktor wurde mit den publizierten Werten aus

der Kleinwinkelanalyse verglichen. Beide sind innerhalb der systematischen Fehler in

Übereinstimmung.

In naher Zukunft wird der systematische Fehler für die Skalarmesonen durch die

Anpassungsprozedur mit dem neuen EVA-Generator stark verringert werden. Diese

Methode wird eine sehr viel bessere Abschätzung des von den Skalarmesonen erzeugten

Untergrunds zur Folge haben. Das Ausmaßdes Einflusses der Skalarmesonen bei

niedrigen Massen wurde erst während der Durchführung der Analyse deutlich. Bei der

erzielten Präzision der Großwinkelanalyse ist der große systematische Fehler auf den

Skalarmesonbeitrag nicht akzeptabel. Mit dem Zweck, Daten ohne einen Beitrag von

Skalarmesonen zu erhalten, wurden am KLOE-Experiment im Jahr 2006 ∼ 225 pb
−1

bei
√
s = 1000 MeV genommen, also 20 MeV unterhalb der Masse des φ-Mesons.

Der Beitrag der skalaren Mesonen ist außerhalb der φ-Resonanz stark unterdrückt,

und damit wird dieser irreduzible Untergrund nahezu zu Null. Auch der Beitrag von

π+π−π0 Ereignissen is stark vermindert, was ein Überprüfen der Behandlung dieses
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Untergrunds in der Großwinkelanalyse erlaubt. Auf diese Art und Weise ist es zum

ersten Mal möglich, die Gültigkeit des Models der skalaren QED für die Amplitude der

Endzustandsabstrahlung über einen großen Energiebereich zu überprüfen. Dieser Test wird

auf die forward-backward Asymmetrie zurückgreifen. Derzeit wird der Test noch untersucht.

Er wurde in der vorliegenden Analyse zur Abschätzung des systematischen Fehlers der

Endzustandsabstrahlung verwendet.
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Summary

The anomalous magnetic moment aµ, defined as (gµ − 2)/2, is one of the most precisely

measured quantities in particle physics, providing an extremely precise test of the

Standard Model. A possible discrepancy between the theoretical predictions and the

direct measurement could give a hint for possible new physics contribution. The most

recent measurement of aµ was performed by the Brookhaven experiment in 2004, where an

extreme precision of 0.7 part per million has been reached. Theoretical evaluations from

several authors have a similar precision but their central values deviate up to three standard

deviations with respect to the experimental value. The theoretical predictions are limited

by the hadronic contribution to aµ which cannot be computed by perturbative QCD. The

hadronic contribution to the anomalous magnetic moment, ahadr
µ , can be related to the

hadronic cross section via a dispersion integral:

ahadr
µ =

1

4π3

∫ ∞

4m2
π

σe+e→hadr(s)K(s)ds

where the integral is carried out over the invariant mass squared of the hadronic system

s; the kernel K(s) is a monotonous function behaving like 1/s. Low energy hadronic

cross sections are therefore strongly enhanced in ahadr
µ and in particular the channel

e+e− → π+π− is responsible for about 70% of the total integral to ahadr
µ . If the alternative

approach of using the spectral function of hadronic τ -decays (corrected for isospin violation

effects) is performed, which can be related to σ(e+e− → hadrons) via the conserved vector

current theorem, the discrepancy with the direct measurement becomes smaller. The reason

for the inconsistency in the comparison of predictions based on e+e−- and τ -data is not

understood. In order to clarify the nature of this difference more precise experimental

measurements of the hadronic cross section are needed, especially at low energies.

KLOE has in the past successfully used the radiative return method to measure the hadronic

cross section σ(e+e− → π+π−) in an analysis of ∼140 pb−1 of data collected in 2001. Initial

State Radiation (ISR) photons emitted by the electron or by the positron lower the nominal

energy of the collider (1.02 GeV at the KLOE experiment), allowing a radiative return to

the ρ and to the ω mesons. With one single data set it is possible to investigate the hadronic

cross section from the 2π theshold to the energy of the collider as a function of the two-

pions system energy. The radiative cross section and the π+π− cross section can be related
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through the radiator function H:

sπ
dσ(e+e− → π+π−γ)

dsπ
= H(sπ) · σ(e+e− → π+π−)

being sπ the squared invariant mass of the pions in the final state.

Contributions from photons radiated by one of the two pions in the final state (Final State

Radiaton) are a background for the measurement and cannot be distinguished from the

signal. Looking at small photon polar angles (small angle analysis), in order to reduce

the Final State Radiation contribution, the measurement is limited to the energy squared

range 0.35<M 2
ππ<0.95 GeV2, being the threshold kinematically forbidden in this acceptance

configuration. The obtained result confirms the observed discrepancy between e+e−- and

τ -spectral functions.

The same method has now been applied to a second analysis, where 240 pb−1 of data

collected in 2002 have been analysed, looking at the complementary acceptance region

(large angle analysis), in which the ISR photon is tagged at large polar angles. This new

analysis is the subject of the present thesis. The three main sources of reducible background

(e+e−γ, µ+µ−γ and π+π−π0 events) are rejected by means of kinematical variables and the

residual contamination is subtracted according to the MonteCarlo prediction. Comparisons

data-MonteCarlo on several variables assure that the background subtraction is correct: in

the range 0.5÷0.85 GeV2 the associated systematic error is <0.3%.

The efficiencies due to the analysis cuts have been measured from data control sample

in most cases, otherwise they are taken from MonteCarlo. Since the incresing precision

in this kind of measurements, particular care has been taken in the evaluation of the

systematic error associated to each efficiency. The analysis cuts dedicated to the background

suppression have been tuned in order to keep as low as possible the systematic errors.

Neglecting the error of the subtraction of the irreducible background, the total systematic

error on the ρ-peak is estimated to be 0.6%, considerably smaller than in the small angle

analysis.

The irreducible background consists of three sources: the Final State Radiaton-Leading

Order events, whose contribution is taken into account by the MonteCarlo generator

PHOKHARA using the scalar QED model, the resonant decay φ → ρ±π∓ → π+π−γ for

which the cross section is poorly known, but which is negligible above 0.5 GeV2, and finally

the scalar meson contribution from the φ radiative decay into f0(980). The dominant error of

the pion form factor measurement at present comes from the scalar meson contribution. The

nature of these particles is still controversial and several models describing their dynamics

are available. The predictions of these models have been compared with the data by means

of the forward-backward asymmetry. This variable arises from the interference between

the Initial State Radiaton, with π+π− in on odd charge conjugate state, and the Final

State Radiaton and radiative φ decay with π+π−, in an even charge conjugate state, and

it is responsible of a distortion of the polar angular distribution of the π+ and the π−.
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Given the abundance of Final State Radiation contribution in the large angle region and

the sensitivity of the forward-backward asymmetry to the presence of the scalar mesons,

this variable has been widely used in this work to study these particles. Comparing the

data with the MonteCarlo prediction using different models for the scalar mesons, we have

been able to choose one model that fits better our data. By further comparisons between

the chosen model and the data, we have tuned the parameters of the f0(980) entering the

model. This procedure does not allow only to subtract the scalar mesons contribution from

the data sample; it is actually a promising method to extract further information on these

particles. A new MonteCarlo generator (EVA) taking into account both the scalar meson

contribution and the direct decay φ→ ρ±π∓ has been recently released. The parameters of

the scalar mesons have not been tuned yet in EVA. At the moment we use the comparison

between the PHOKHARA and EVA predictions to have an estimate of the systematic error

on the scalar mesons correction. This systematic error is the dominant one in the pion

form factor that we have extracted between 0.5 and 0.85 GeV2. The pion form factor

measured with the large angle analysis has been compared with the published one (small

angle analysis), and considering the systematic errors of the two, we conclude that they are

in agreement.

In the near future, the systematic error on the scalar mesons will be reduced by repeating

the tuning procedure on the new EVA generator. This method will allow a much improved

determination of the background from scalar mesons.

During the developlent of this work, the issue of the scalar meson contribution at low masses

has become clear. Given the high precision achieved in the measurement at large angle, the

big systematic error coming from the scalar meson contribution is not acceptable. With

the purpose to have a sample free from the scalar meson contribution, KLOE has collected

in 2006 ∼225 pb−1 at
√
s=1000 MeV, i.e. 20 MeV lower than the φ mass. The scalar

mesons contribution is strongly suppressed in the off-peak data, reducing this irridducible

background almost to zero. Also the contamination from π+π−π0 events is drastically

reduced, allowing to cross check the treatment of this background in the large angle analysis.

Like this it will be possible to perform for the first time dedicated tests on the validity of

the scalar QED model for the description of the Final State Radiation amplitude over a

wide range energy. For this test the forward-backward asymmetry will be used. This test

is under study at the moment and has been already used in the present analysis for the

estimate of the systematic error of the final state radiation subtraction.
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Introduction

Developed in the years between 1970 and 1973, the Standard Model has been up to now a

very successful model in the description of the elementary particles and of their interactions.

Apart from the Higgs Boson, all the particles predicted have been experimentally discovered

and all the precision tests on the Standard Model have confirmed the theoretical predictions.

An extremely precise test involves the anomalous magnetic moment of the muon aµ.

By comparing the experimental value with the theoretical prediction including all the

relevant radiative corrections, a possible discrepancy could give a hint of new physics.

The interaction of the muon with particles beyond the Standard Model is characterized

by the coupling factor (mµ/Λ)2, where Λ is the energy scale of the process. Even if the

contribution from new physics to aµ might be very small, the high precision of the Standard

Model prediction as well as the one of the direct measurement might eventually allow to

resolve a contribution from new physics.

The most precise measurement of aµ comes from the E821 experiment performed in

Brookhaven, resulting in the present world average value of

aµ = (11659203 ± 8) × 10−10 (3)

Theoretical evaluations by several authors are affected by similar uncertainties, but their

central values deviate up to three standard deviations with respect to the experimental

one. The precision of the mentioned theoretical evaluations within the Standard Model is

dominated by the limited knowledge of the hadronic contribution of the muon anomaly. It

can be related to the hadronic cross section via the dispersion relation

ahadr
µ =

1

4π3

∫ ∞

4m2
π

σe+e→hadr(s)K(s)ds (4)

where the integral is carried out over the invariant mass squared of the hadronic system

and the kernel K(s) is a monotonous function behaving like 1/s. Low energy cross sections

contribute therefore strongly to ahadr
µ . Since perturbative QCD cannot be used below ∼2

GeV, one has to use experimentally measured cross sections in the dispersion integral for

low energies. Below 1 GeV the channel e+e− → π+π− is responsible for about 70% of

the total ahadr
µ . An alternative input to the dispersion integral is the spectral function of

1
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hadronic τ decay data, corrected for isospin violating effects. A considerable discrepancy

appears when comparing e+e−- and τ -data. If the latter are used in the evaluation of

ahadr
µ , the theoretical value of aµ shows a small deviation (∼ 0.7 σ) from the experimental

measurement.

In order to clarify the nature of this difference in the theoretical evaluations, and to claim

an eventual hint of new physics, more precise experimental data on hadronic cross sections,

especially at low energies, are needed. The KLOE experiment in a recent publication, has

for the first time used the radiative return method to measure the hadronic cross section

σ(e+e− → π+π−) at the φ-factory DAΦNE. The Initial State Radiation (ISR) lowers the

center-of-mass energy of the collider (
√
s=1.02 GeV) and allows to investigate the hadronic

cross section from the 2mπ threshold up to the collision energy of the machine. The full

energy range below 1 GeV is thus available in one single experiment, without performing

an energy scan.

In the above mentioned already published analysis, KLOE has performed a measurement of

the pion form factor looking for π+π−γ events with the ISR photon emitted at small polar

angles. A new and complementary measurement is presented here, in which the photon

is detected at large polar angles. This measurement has different experimental issues,

first of all concerning the background contamination. It allows to explore the threshold

region (down to 2mπ) which is kinematically forbidden in the small photon polar angle

configuration. The big amount of final state radiation, if from one side represents an issue

of the analysis, from the other allows to make tests of scalar QED, by comparing the

distribution of variables in data and in MonteCarlo which enhance eventual discrepancies

from the model. The measurement of the threshold results limited by the presence of the

scalar mesons, whose existence is well established, but whose properties are still poorly

known. Nevertheless the measurement of the pion form factor around the ρ-peak is an

important check of the previous KLOE result.

In chapter 1 the theoretical background and the present status of aµ is given, and after the

description of the KLOE detector in chapter 2, a brief remind of the small photon angle

analysis together with the motivation for the present work is given in chapter 3. Chapter

4 is dedicated to the description of the signal selection, to the background subtraction to

arrive at the mass spectrum which will be used as input for obtaining the pion form factor

in chapter 6. The efficiency for each single step of the analysis and the evaluation of the

systematic error for the several cuts are outlined in chapter 5. Finally chapter 7 provides

an outlook to possible and necessary improvements of the measurement.



Chapter 1

The hadronic cross section and the
Standard Model

Given the increasing precision of the modern particle physics experiments, a precise

knowledge of the theory and of the input parameters is more and more necessary. The

anomalous magnetic moment of the muon aµ = (gµ − 2)/2, as the running of the

electromagnetic coupling constant αem(s), is very sensitive to radiative corrections, and

the precise determination of these latter is limited by the uncertainty of the photon vacuum

polarization from the five lightest quarks relevant for αEM . At low energies perturbative

QCD fails in calculating such corrections; however an alternative approach has been

worked out, which puts in relation the photon vacuum polarization with the cross sections

e+e− → γ∗ → qq̄ → hadrons (optical theorem). For this reason precise measurements of

hadronic cross sections are extremely useful to improve the standard model prediction on

both aµ and αem(s).

1.1 The dispersion integral

The precision of the theoretical prediction for cross sections from e+e− annihilation to lepton

pairs is limited by first order loop effects from hadronic vacuum polarization. Fig 1.1(a)

shows how the presence of hadronic vacuum polarization in the photon propagator affects

the cross setion for a process like e+e− → µ+µ−. The effect depends on the energy

squared of the virtual photon connecting the initial with the final state. Together with

the corresponding graph from leptonic vacuum polarization, this can be expressed by an

energy-dependent coupling costant αem(s) (§ 1.4). In a similar way, the hadronic vacuum

polarization modifies the interaction of a muon with an external ~B-field, as can be seen in

fig. 1.1(b). All the charged particles-antiparticles e+e−, µ+µ−, τ+τ−, uū, dd̄,.., contribute to

the process, but the basic interest here is in the quark loops, the lepton ones being calculable

in QED. The low energy contributions of light quarks to the vacuum polarization cannot be

3
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reliably predicted by perturbative QCD. However, unitarity and analyticity allow to relate

it to the hadronic cross section e+e− → hadrons.

(a)

γ

γ

µ

γ

µ

hadrons

(b)

Figure 1.1: (a) Hadronic vacuum polarization modifying the electromagnetic coupling constant aem

in the process e+e− → µ+µ− (a) and in the anomalous magnetic moment of the muon aµ (b).

The inclusion of the vacuum polarization into the photon propagator results in a modified

photon propagator:
−igµν

q2
→ −igµν

q2
1

1 + e2Πγ(q2)
(1.1)

where the Πγ(q2) is the photon vacuum polarization amplitude containing the leptonic as

well as the hadronic part. Let us concentrate only on the hadronic part. The unitarity of

hadrons γ
i

γi=  ΣIm
γ γ

Figure 1.2: The optical theorem relating the hadronic vacuum polarization to the cross section γ∗ →
hadrons. The vertical line represents the hadronic intermediate state.

the scattering matrix leads to the optical theorem, according to which the imaginary part of

the photon vacuum polarization amplitude can be written as the sum over all possible final

states generated from the photon, as outlined in fig. 1.2. The photon vacuum polarization

amplitude Πγ(q2) reads:

=(Πγ(q2)) =
q2

e2
σ(e+e− → γ∗ → hadrons) (1.2)



CHAPTER 1. THE HADRONIC CROSS SECTION 5

where γ∗ is the virtual photon connecting the initial and the final state.

In terms of the cross section ratio R(s) = σ(e+e−→γ∗→hadrons)
σ(e+e−→µ+µ−)

, it can be expressed as

=(Πγ(q2)) =
1

12π
R(s) (1.3)

taking into account that σ(e+e− → µ+µ−) = 4πα2/3s2.

The analyticity of the photon propagator implies the dispersion relation:

=(Πγ(q2)) −=(Πγ(0)) =
q2

π

∫ ∞

0
ds

=Πγ(s)

s(s− q2 − iε)
(1.4)

Eqs.1.3 and 1.4 are the basis for any non-perturbative calculation of hadronic vacuum

polarization in terms of the measured quantity σ(e+e− → hadrons).

1.2 Measurement of the R ratio

As pointed out in the previous section, the ratio R is the experimental input which enters

in the evaluation of aµ. In fig. 1.3(a) a set of values of R in the energy range between the

threshold 2mπ and 10 GeV from different experiments is presented. Low energy hadronic

cross sections have been measured up to recently by experiments running at e+e− colliders

(OLYA [1], TOF [2], ND [3], CMD [4], CMD-2 [5][6], SND [7][8], DM1 [9], DM2 [10],

KLOE [11]). At low masses, where the reaction e+e− → π+π− is dominant, presently three

precision sets of data are available: two of them from CMD-2 and SND, both running at

the VEPP-2M collider in Novosibirsk and claiming a systematic error respectively of 0.6

% ([5],[6]) and of 1.3% for
√

(s) >420 MeV and 3.2% for
√

(s) <420 MeV ([7],[8]), the

third one from KLOE, running at the DAΦNE collider at Frascati whose measurement has

a systematic error of 1.3% ([11]). In the region close to the threshold (
√
s ∼ 2mπ) the data

from SND are the most recent, with a relatively large error. Clearly this region requires more

experimental precision. The CMD-2 experiment has provided also precise measurement of

important cross section channels such as σ(e+e− → π+π−π0) [13], σ(e+e− → π+π−π0π0)

[14] and σ(e+e− → π+π−π+π−)[14]. An upgrade of the experiment is in progress and will

be able to provide more accurate results in the energy range 0.4÷2 GeV, thanks to the 10

times bigger statistics it is expected to collect.

An improvement of the knowledge of the hadronic cross section above 1 GeV comes also

from the BABAR experiment (running at the B-factory PEP-II at an energy of
√
s = 10.6

GeV). This collaboration has already published results [15] [16] of several analysis with three

and four hadrons as final state (e+e− → π+π−π0, π+π−π+π−,K+K−π+π−,K+K−K+K−)

with the systematic accuracy of of 5% in the mass region 1-2 GeV and lager errors between 2

and 4.5 GeV. They have obtained results [17] also in the six hadrons channels, i.e. e+e− →
3(π+π−), 2(π+π−π0), 2(π+π−K+K−), improving largely the existing measurements.

To complement the cross section data from e+e−-collider experiments, precise measurement
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Cosme et al.
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Figure 1.3: (a) Comparison of R measurements (from [12]). (b) The pion form factor as measured
by the experiments NA7, TOF, OLYA, CMD and CMD-2. The last precise measurements of
σ(e+e− → π+π−) do not contribute to this plot.

of τ lepton decays can be used, as suggested in [18]. Assuming the charged vector current

is conserved (CVC), the isovector part of the cross section for e+e− into hadrons can be

derived from τ -decay spectra by an isospin rotation, as illustrated in fig. 1.4, where the

decay τ− → ντπ
−π0 is related to the reaction e+e− → π+π− , forming the two pions a

vector in the isospin space. In τ decay processes the only interaction involved is the weak

Figure 1.4: The decay τ− → π−π0ντ (a) can be seen as the isospin rotation of the isovector part of
the process e+e− → π+π− (b), provided that CVC holds.
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interaction, therefore any effects from vacuum polarization are excluded. What is really

related to the e+e− → π+π− cross section is the τ spectral function vπ−π0(s) that can

be extracted directly from the corresponding invariant mass spectra of the final state (i.e.

π−π0 in fig. 1.4), through the relation:

vπ−π0(s) =
m2

τ

6|Vud|2SEW

B(τ− → ντπ
−π0)

B(τ− → ντe−ν̄e)

1

Nπ−π0

dNπ−π0

ds

[

(

1 − s

m2
τ

)2(

1 − 2s

m2
τ

)

]−1

(1.5)

where |Vud| is the CKM weak mixing matrix element and SEW accounts for electroweak

radiative corrections. The cross section σ(e+e− → π+π−) can be calculated from vπ−π0(s)

via the relation

σI=1
π+π− =

4πα2

s
vπ−π0 (1.6)

These equation holds only in the limit of exact isospin invariance; breaking of isospin due

to electromagnetic effects and up-down quark mass splitting have to be taken into account

properly. This is done in [19] for the most relevant ππ channel; once the τ spectral function

is corrected for the isospin breaking effects, it can be compared directly to the corresponding

hadronic cross sections measured in e+e− annihilation, as it is done in fig. 1.5 for the π+π−

channel. Although the latest CMD-2 data are basically consistent with τ data for the

energy region below 850 MeV (0.72 GeV2 in the plot), there is a clear discrepancy for larger

energies. The most recent e+e− data from KLOE confirms the discrepancy with the τ data.

Among the possible origins of this discrepancy, one may think of inconsistencies in the

e+e− data, or in the τ data, or in the isospin-breaking correction applied to the τ spectral

function. Possible additional isospin breaking effects were recently discussed [20] giving rise

-0.3
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-0.1

0

0.1

0.2

0.3

0.2 0.4 0.6 0.8 1 1.2

KLOE
CMD-2
CMD
OLYA
DM1

τ Average
preliminary

s   (GeV2)

(|F
π|2 [e

e]
 –

 |F
π|2 [τ

])
 / |F

π|2 [τ
]

Figure 1.5: Relative comparison of the π+π− spectral function from e+e− data and isospin breaking
corrected τ data. The band shows the uncertainty in the τ spectral function.



CHAPTER 1. THE HADRONIC CROSS SECTION 8

to possible mass and width differences between the neutral and charged ρ-meson.

1.3 The anomalous magnetic moment of the muon

The magnetic moment of a lepton l (l = e, µ, τ) ~µl is related to the spin ~sl of the particle

through the relation:

~µl = gl
eh̄

2mc
~sl (1.7)

In 1.7 the gyromagnetic factor gl appears: in the Dirac theory it is predicted to be exactly

two for point-like particles of spin 1/2. However due to quantum corrections gl is slightly

different from two; we remind that its deviation is expressed by the quantity al = (gl−2)/2,

the lepton anomaly.

The anomalous magnetic moment of the electron has been measured for the first time by

Crane et.al in 1953 [21], confirming the theoretical prediction made by Schwinger in 1948

[22]. The agreement between the two results has been one of the first confirmations of

the validity of QED. In the Standard Model the magnetic anomaly of a lepton has three

contributions, each of them representing the nature of the interaction where the radiative

corrections come from:

aSM
l = aQED

l + aweak
l + ahadr

l (1.8)

In the case of the electron, the contribution to the anomalous magnetic moment from

hadronic and weak loops is negligible, due to the m2
l -dependence of these effects. This

makes ae a unique test of QED, allowing also for an extremely precise determination of

the fine structure constant α [23]. On the contrary, for the muon the weak and hadronic

loops (as well as possible contribution due to new physics)) are enhanced by the factor

(mµ/me)
2 ∼ (200)2; therefore the measurement of aµ is a high precision test not only for

the QED, but more generally for the Standard Model. The same argument could be applied

to the τ , but its short lifetime (of the order of 10−13 s) makes precision measurement of aτ

impossile.

1.3.1 Direct measurement of aµ

The angular frequency of a particle of mass m, charge e and momentum p in a uniform

magnetic field B (called cyclotron frequency) is

ωC =
eB

m
(1.9)

while the spin precession is:

ωs = g
eB

2m
(1.10)

where the proportionality with the gyromagnetic factor g comes from the relation between

the spin and the magnetic moment.
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This suggests the possibility of a direct measurement of the g − 2. For high momenta, eqs.

1.9 and 1.10 become:

ωC =
eB

γm
and ωs =

eB

γm
+ a

eB

m
(1.11)

and the difference between the two is:

ωa = ωC − ωs = a
eB

m
= aγωC (1.12)

which means for example that for instance for a = 0.1 the spin rotates with respect to the

momentum by 1/10 turn by turn.

The experiments which have measured aµ, the two oldest carried out from 1961 until 1970’s

at CERN, and the most recent one whose result was published by BNL in 2004, use pions

(obtained from protons on a target) decaying in muons. Forward decay muons are higly

polarized (therefore the direction of their spin is known). The muons are accumulated in

a storage ring, where they decay into electrons (µ± → e±νeντ ). The crucial point with

this kind of experiments is that, given the V-A nature of the weak interaction, the favorite

direction of the electron momentum is opposite to the direction of the spin of the muon.

This means that if one measures the direction of the electron momentum, one knows (on

the average) the direction of the muon spins. This correlation is enhanced if one cuts on the

minimum energy of the detected electron. At BNL the last measurement of the negative

muon anomalous magnetic moment ([24]) has been performed by counting the number of

decay electrons above an energy threshold as a function of time, which is modulated with

the frequency ωa of eq. 1.12:

N(t) = N0(E)e−t/γτ [1 +A(E)sin(ωat+ φa(E))] (1.13)

where the normalization N0, the asymmetry A and the phase φa vary with the energy E.

An electrical quadrupole field is applied for vertical focusing purpose; the presence of such

a field modifies eq. 1.12 and ~ωa becomes:

~ωa =
e

mc

[

aµ
~B −

(

aµ − 1

γ2 − 1

)

~β × ~E

]

(1.14)

The dependence of ~ωa on the electric field is removed by storing muons with the ’magic’

γ = 29.3, corresponding to muons of momentum p = 3.09 GeV. In fig. 1.6 the time spectrum

for positrons with energy above 2 GeV is shown. Each line refers to a period of 100 µs. The

value of ωa is extracted from a fit of the curves shown and is used, together with a very

precise measurement of the magnetic field B, to determine aµ according to:

aµ =
mµ

e

ωa

B
(1.15)
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Figure 1.6: Time spectrum for positrons with energy above 2 GeV collected from January to March
2000 at BNL. Data points are shown in red, error bars in blue.

The four measurements performed at BNL are shown in fig. 1.7 together with the previous

values obtained at CERN. The present world average is:

aµ = (11659208 ± 6) × 10−10 (1.16)

1.3.2 Theoretical evaluation of aµ

The QED contribution to aµ is defined as the contribution arising from the diagrams

containing only leptons and photons. It can be expressed in the general form:

aQED
µ = A1 +A2(mµ/me) +A2(mµ/mτ ) +A3(mµ/me,mµ/mτ ) (1.17)

whereme,mµ andmτ are the masses of the three leptons. The term A1 (correponding to the

Schwinger term) is mass independent, while A2 and A3 are functions of the mass ratios. The

functions Ai(i = 1, 2, 3) can be expanded as a power series in α/π and computed order by

order. The two- ([25]-[29]) and three-loops ([30]-[33]) contributions are known analytically,

while most of the four-loop contributions (made up of more than 1000 diagrams) are known

only numerically. The five-loops contribution is almost unknown; just a couple of estimates

exists whose uncertainties dominate the error of the total QED prediction. Efforts to

improve the knowledge of these terms are currently being pursued.
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Figure 1.7: Results for aµ+ and aµ− from CERN and E821.

The most recent value of the QED contribution to aµ is [34]

aQED
µ = (116584718.5 ± 0.1 ± 0.4) × 10−11 (1.18)

The electroweak contribution to the anomalous magnetic moment of the muon is suppressed

by a factor (mµ/mW )2 with respect to the QED effects. The one loop part was computed in

1972 by several authors and it is known analytically while the two-loops part is computed

in [35] and [36]: the three give together a value of

aEW
µ = (154 ± 2 ± 1) × 10−11 (1.19)

where the first error is due to hadronic loop uncertainties in the two loop corrections and

the second one accounts for the unknown Higgs mass (the mass range between 114 and

250 GeV has been assumed in this evaluation), the current top mass uncertainty and the

neglected three-loops effects.

While the QED and the electroweak part of aµ can be calculated precisely, the theoretical

error of aµ is dominated by the hadronic contribution ahadr
µ . The leading order part of

ahadr
µ , depicted in fig. 1.1(b) can be written as the following dispersion integral:

ahadr
µ =

1

4π3

∫ ∞

4m2
π

ds σhadr(s)K(s) =
(αµ

3π

)2
∫ ∞

4m2
π

ds
R(s)K̂(s)

s2
(1.20)

It is thus the precision of R(s) which determines the uncertainty of ahadr
µ . Above energies

of some GeV, R(s) can be calculated in the perturbative QCD frame, but at low energies
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one can only rely on experimental data. The kernel function K̂(s) is given from

K̂(s) =
(αmµ

3π

)2
{

x2

2
(2 − x2) +

(1 + x2)(1 + x)2

x2

[

ln(1 + x) − x+
x2

2

]

+
1 + x

1 − x
x2ln(x)

}

(1.21)

where x = (1− βµ)/(1 + βµ) and βµ =
√

1 − 4m2
µ/s (the function K(s) is calculated in [37]

and [38]). The K̂(s) function has a 1/s behavior, increasing monotonically from 0.63 at

Figure 1.8: Fractions of the total contributions and (errors)2 for ahadr
µ coming from various energy

intervals. The plot is taken from [39].

the two pion threshold, up to 1 at ∞. The cross-section has also an intrinsic 1/s behavior,

enhancing hence the low energy region in the integral. About 67% of the contribution to

ahadr
µ comes from the region 4m2

π < s < m2
φ (see fig. 1.8). Therefore a precise measurement of

the cross section e+e− → π+π− , dominated by the ρ resonance, is crucial in the evaluation

of ahadr
µ . We will come back again to this topic at the end of this paragraph.

For the complete computation of aµ the higher order hadronic contributions aHHO
µ have

to be included. They are usually divided into two terms, aHHO
µ (vp) containing all the

additional fermionic loops or photonic correction to the vacuum polarization diagram of

fig. 1.1(b), and aHHO
µ (lbl) due to the light-by-light diagram of fig. 1.9. The latest value for

aHHO
µ (vp) is [40]

aHHO
µ (vp) = (−97.9 ± 0.9exp ± 0.3rad) × 10−11 (1.22)

The light-by-light term cannot be expressed in terms of experimental quantities and its

evaluation has to rely purely on theoretical considerations; its value has changed sign three

times in the last decades. Its updated estimate is [41]

aLBL
µ = (136 ± 25)10−11 (1.23)

The total values for aµ, according to different evaluations, are reported in tab1.1. The value

in [42] uses also the measurement of KLOE. The discrepancies between the experimental
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References aHLO
µ × 1011 σ

e+e− data

Davier[43] 11659180.5 ± 4.4had ± 3.5LBL ± 0.2QED+EW

Hagiwara et al.[44] 11659180.4 ± 5.1 2.7
Hagiwara et al.[40] 11659183.6 ± 6.9 2.7
Ezhela et al.[45] 11659190.8 ± 9.2 1.6
Jegerlehner[46][47] 11659186.0 ± 9.0 2.0
Davier[48] 11659187.5 ± 7.6 2.1
de Trocóniz & Yndurain[49] 11659185.6 ± 5.5 2.7
Höcker[42] 11659184.6 ± 6.9 2.6

τ data

Davier[48] 11659202.2 ± 6.3 0.7
de Trocóniz & Yndurain[49] 11659193.9 ± 5.4 1.7

Table 1.1: Standard Model prediction for aµ. The several predictions differ each other for the leading-
order hadronic contributions. For each ahadr

µ , the difference between the experimental values and the
theoretical prediction in terms of standard deviations is reported as well. In the evaluation reported
in the first row all the most recent results from e+e− sector are included.

measurement and the theoretical prediction spans the range of values from 1.6 to 2.7σ

in the e+e−- data sector, becoming smaller if considering only τ - data based evaluations.

The difference between the two groups prevents them to be combined in a single Standard

Model Prediction. When leaving out the theoretical τ - data based predictions (as has

been proposed in the last years) it remains to be understood wheter the discrepancy

between the e+e−- data based computation and the experimental value is due to a new

physic contribution or probably due to a systematic effect not completely understood up to

now. Therefore it is highly desirable that the cross section measurements are checked by

independent experiments.

Let us come back now to the dispersion integral and to the data sets presently available.

In the evaluation of the dispersion integral the bare cross section has to be used and the

higher order hadronic corrections are addressed separately. In order to obtain the bare cross

section from the measured one, one has to perform several radiative corrections, taking into

Figure 1.9: Hadronic light-by-light contribution to aµ.
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References ahadr
µ in 10−10 units

Jegerlehner[50] 692.10 ± 5.64
Davier[43] 690.8 ± 3.9 ± 1.9rad ± 0.7QCD

Hagiwara et al.[40] 692.4 ± 5.9exp ± 2.4rad

Ezhela et al.[45] 699.6 ± 8.5exp ± 1.9rad ± 2.0proc

Jegerlehner[46][47] 694.8 ± 8.6
Davier[48] 696.3 ± 6.2exp ± 3.6rad

de Trocóniz & Yndurain[49] 694.4 ± 4.8exp ± 1.0rad

Höcker[42] 693.4 ± 5.3exp ± 3.5rad

Table 1.2: Recent evaluations of the leading-order hadronic contribution to aµ based on e+e− data.
All the estimates contains the new results (after the ri-analysis) of CMD-2, while the the first and
last one contains the measurement from KLOE.

References ahadr
µ in 10−10 units

Davier[48] 711.0 ± 50exp ± 8rad ± 28SU(2)

de Trocóniz & Yndurain[49] 702.7 ± 47exp ± 10rad

Table 1.3: Recent evaluations of the leading-order hadronic contribution to aµ based on τ data.

account also the initial state radiative corrections, described by pure QED. Moreover the

measured cross section contains the effect of the photon vacuum polarization, and it has

to be undressed with respect to that. Finally the computation of the final state radiation

effects (namely the effect of photons emitted in the final state from one of the hadrons)

is also necessary, and here a certain model-dependence enters. The problem with data

from old experiments is to understand if, and in the case how, all these corrections have

applied. The latest published results from CMD-2, SND and KLOE are both corrected for

the above mentioned effects. Table 1.2 reports some recent evaluations of the leading-

order hadronic contribution to aµ based on e+e− data. The last entry of the table contains

also the result that KLOE has obtained for the cross section e+e− → π+π− [11]. Before

the KLOE measurement was published the low mass region relied completely on the result

of one single experiment, i.e. the CMD-2 experiment. The reported evaluations are well

in agreement with each other; the theoretical uncertainty has been improved with respect

to the past thanks to the new measurements; the quoted uncertainties are mainly due to

experimental errors, besides missing radiative corrections and the error coming from the

integration procedure. The evaluations presented in tab. 1.2 have to be compared with the

two recent computation of aHLO
µ based on τ data and are shown in tab. 1.3.

The most recent results in the π+π− channel of the e+e− experiments are compared in

fig. 1.10(a) by plotting the CMD-2 and SND data points relative to the interpolated KLOE

data points. Sixty points between 0.35 and 0.95 GeV2 of the KLOE spectrum have been

interpolated; the obtained curve is then compared with SND (in red) [8] and with the results

CMD-2 obtained analyzing the data collected in 1995 (in green) [6] and the ones collected
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Figure 1.10: (a) Comparison among the band obtained with an interpolation of 60 KLOE points
in the energy range 0.35 - 0.95 GeV2 and the CMD-2 and the SND data points (b) Comparison
among the different spectral functions obtained both from e+e− and in τ data, among which the
new preliminary data from SND [51]

in 1998 (in blue) [52]. In this plot the light gray band indicates the statistical error of

the KLOE spectrum and the dark gray stands for the systematic one. For the other two

experiments only the statistical errors are considered. Some disagreement between KLOE

and CMD2/SND is observed.

Nevertheless, even if not in a perfect agreement with each other, all the e+e−-data sets

show the same trend when compared with the τ spectral function, as shown in fig. 1.10(b)

(this plot does not included the last result of CMD-2, of the data collected in 1998). In this

plot the e+e−-experiment points are plotted relative to the ALEPH measurement, coming

from τ -data. The yellow band indicates the error of ALEPH measurement. It is evident

that the e+e− experiment see large deviation to τ -data in all the spectrum

There has been recently a new preliminary result from the Belle collaboration in the τ -

sector: they have obtained the pion form factor from the τ decay τ → π−π0ν [53]: the

comparison of their result with the pion form factor measured by CLEO and ALEPH is

shown in fig. 1.11(a). The new Belle result is systematically lower than the previous two,

going into the direction of the e+e− experiments, as shown in fig. 1.11(b). This is the

same plot like fig. 1.10(b) including the preliminary measurement of Belle. Besides the

general need of having more data on hadronic cross section, the region below the ρ mass

especially requires more precision. Indeed it gives a large contribution to aµ (around 13%

for
√
s < 0.61 GeV) and it is still poorly known. New possibilities for measuring hadronic

cross sections are offered by the radiative return, which has been used for the first time
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Figure 1.11: (a) Comparison of the pion form factor squared |Fπ(s)|2 measured by Belle to that
measured by CLEO and ALEPH (from [53]). (b) As in 1.10(b) with the addition of the preliminary
result from Belle (plot from [51]).

by KLOE in its measurement of σ(e+e− → π+π−) as will be discussed in more details in

chapter 3.

1.4 The running of α

The fine structure constant α is a fundamental input parameter of the electroweak Standard

Model. Vacuum polarization by virtual pairs tend to screen partially the electrical charge,

modifying the value of the bare charge e. The charge screening effects determine a

redefinition of the classical charge e2. This constant must be replaced by a running charge

depending on the energy scale s as:

e2 → e2(s) =
e2Z

1 +
∏′

γ(s)
(1.24)

where Z is a renormalization factor fixed by the condition that e2(s) equals the classical

charge in the limit q2 → 0 and
∏′

γ(s) is the photon vacuum polarization amplitude. The

electrical charge e is less screened at low momentum transfer (s → 0), while the strength

of the interaction grows with the energy. This is the reason why the value for the coupling

constant at m2
Z is significantly larger than the one in the limit at s ∼ 0. Exactly as for

the muon anomalous magnetic moment, it is the limited knowledge of the hadronic vacuum

polarization that dominates the uncertainty for α(m2
Z). The running of α is usually written

as:

αem(s) =
αem(0)

1 − ∆α(s)
(1.25)
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where ∆α is composed of different contributions:

∆α(s) = ∆αlep(s) + ∆αhadr(s) + ∆αtop(s) (1.26)

The leptonic contribution is directly calculated and it is known up to three-loops [54] at

s = mZ and equal to

∆αlep(m2
Z) = 314.98 × 10−4 (1.27)

The contribution from the top quark is very small [55]:

∆αtop(m2
Z) = −0.7 × 10−4 (1.28)

As for the hadronic contribution to the muon magnetic moment, the hadronic contribution

to ∆αhadr(s) can be expressed via a dispersion integral:

∆αhadr(s) =
−e2s
12π2

<
∫ ∞

4m2
π

ds
′ R(s

′

)

s′ − s− iε
(1.29)

and again R is an experimental input for the low mass region. Assuming pQCD to be

applicable above some energy Ecut, eq. 1.29 can be written as:

∆αhadr(s) =
−e2s
12π2

(

<
∫ Ecut

4m2
π

ds
′ R(s

′

)

s′ − s− iε
+ <

∫ ∞

Ecut

ds
′ R(s

′

)

s′ − s− iε

)

(1.30)

Different theoretical approaches have been used to evaluate ∆αhadr(s): they differ for the

choice of Ecut in the dispersion integral or in the way the different data sets are combined.

Some authors assume the validity of pQCD already above 1.8-2.5 GeV ([56],[55],[57],[58]),

others prefer to use experimental data up to 12 GeV, most of all in the resonance region

([58], [59]). All these different evaluations are in a reasonable agreement with each other

(see fig. 1.12).

Also the τ spectral function have been used for the evaluation: the difference between e+e−-

and τ -data based approach has been calculated in [48] and yields:

∆α(e+e−) − ∆α(τ) = (−2.37 ± 0.62) × 10−4 (1.31)

which is bigger than the uncertainties of the mean value of α.

In order to obtain more precise estimates for α more accurate measurements of hadronic

cross section are needed. Fig. 1.13 shows the relative contribution of different energy region

to the magnitude and uncertainty of ∆αhadr(M2
Z). In the standard approach, using the R-

ratio as experimental input up to 12 GeV, the largest contribution to ∆αhadr comes from the

1-2 GeV and 2-5 GeV energy region. However, if pQCD is used already for
√
s >1.8 GeV,

a precise measurement of the hadronic cross section below 1 GeV plays a more important

role in the reduction of the uncertainty of ∆α.
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Figure 1.12: Recent evaluations of αhadr (lower scale) with the corresponding value of α(M 2
Z)−1 at

the Z boson mass shown in the upper scale [40].
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Figure 1.13: Fractions of the total contributions (on the left) and (errors)2 (on the right) to
∆αhadr(M2

Z) coming from different energy intervals. The plot is taken from [50]

1.5 The pion form factor

The form factor describes the interaction between a photon and the observable hadrons.

For the two pion final state Fπ(s) parametrizes the coupling between the photon and the qq̄

pair hadronizing into a resonant state that subsequently decays into two pions. It contains

thus all the parameters of the corresponding resonance and can be directly related to the
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cross section σ(e+e− → π+π−) via the relation:

σe+e−→π+π−(s) =
πα2

3s
β3|Fπ(s)|2 (1.32)

with s the center-of-mass energy squared, mπ the charged pion mass and βπ =
√

1 − 4m2
π/s

the pion velocity in the center-of-mass frame.

In the form factor all possible effects which are represented in the blob of fig. 1.1(a)

are included. Therefore its measurement can be used to determine all the properties

of the underlying hadrons, where the reaction proceeds to. Particularly interesting are

the parameters for isospin violating effects, like the ρ − ω interference, which creates an

observable effect in the data spectrum at s = m2
ω. Several theoretical parametrizations for

the pion form form factor exist. The CMD-2 collaboration in the fit to their experimental

pion factor uses a parametrization for ρ(770)- and ρ(1450)-mesons due to Gounaris and

Sakurai [60]. A different parametrization is given by Kühn and Santamaria [61] and is the

one used in the PHOKHARA Monte-Carlo generator ([62], [63], [64]), which is the reference

e+e− → π+π−γ events generator used by KLOE.



Chapter 2

The KLOE experiment

The KLOE experiment has collected data from 2000 up to march 2006 at the e+e− collider

DAΦNE at Frascati (Italy). In the present chapter both the DAΦNE machine and the

KLOE detector are described.

2.1 The DAΦNE accelerator

The DAΦNE 1 φ-factory is an e+e− collider running at a fixed center-of-mass energy with

high luminosity. Operating at a center-of-mass energy of the φ-meson (mφ=1019.44 MeV),

DAΦNE is optimally suited for kaons physics, due to the fact that the φ decay fraction into

kaons (neutral and charged) is 83%. The physics program of KLOE covers the measurement

of all kinds of kaon braching ratios (but also the study of radiative φ decays and of the

continuum below 1 GeV), while the DEAR (DAΦNE Exotic Atoms Research) experiment

investigates kaonic hydrogen which is produced stopping K− in a gaseous hydrogen target.

Finally FINUDA (FIsica NUcleare a DAΦNE) studies hypernuclei which are produced

stopping a low energeticK− in a thin target via the reactionK−+n→ Λ+π−. Additionally

DAΦNE is a laboratory for synchrotron light due to the high electron currents which are

stored in one of its two rings.

In fig. 2.1 the layout of the DAΦNE complex is shown. In the ∼60 m long linear accelerator

the electrons are accelerated up to 250 MeV and focused to a spot of 1 mm radius. They

collide with a removable target made of tungsten to produce positrons. They are separated

from the electrons by means of magnetic dipoles and then accelerated up to 550 MeV. In

the electron mode the converter is removed from the beam and the electrons are accelerated

up to a maximum energy of 800 MeV. The particles from the LINAC are injected into the

accumulator ring, which has a circumference of 32.6 m. Here the particles are decelerated

to 510 MeV and the beam characteristics, as energy spread and acceptance, are improved.

1Double Annular φ-factory for Nice Experiments

20
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Figure 2.1: The DaΦNE φ factory in Frascati.

The accumulator contains only one particle type (electrons or positrons) at a time. After

the bunch has reached the desired number of particles, it is injected into one of the two

main rings. This can be done while the beams are circulating without interrupting the

data taking process (topping up). The main rings have a circumference of 97.7 m and are

coplanar to each other. At the two Interactions Points (IP) beam-beam interactions are

strongly reduced by focusing the beams (low-beta technique). The presence of two different

rings forces the beams to meet at a crossing angle of ∼25 mrad; as a consequence the φ

mesons are produced with a small momentum component in the horizontal plane towards

the ring center, px ∼ 13 MeV. The double annular structure minimizes the beam-beam

interactions and allows to achieve a high luminosity by increasing the number of bunches

circulating in the collider, while the number of particles in the single bunch is limited by

intra-beam interactions. The maximum number of storable bunches is 120, corresponding

to an inter-bunch time of ∼2.7 ns. Furthermore, since the dumping due to the synchrotron

radiation is too small, the emission of synchrotron radiation is doubled by the use of 8

conventional electromagnets (wigglers).

The two interaction points are completely surrounded by detectors. The KLOE experiment

occupies permanently one of the two interaction regions (IR). The DEAR experiment has

taken data in 2002 at the second IR, before the insertion of the FINUDA detector during

the shutdown of 2003. Since commissioning in 1999, the collider has undergone major

modifications in order to improve its performances. About 99% of its original magnets have
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Beam energy [MeV] 510

Trajectory length [m] 97.69

RF frequency [MHz] 368.26

Bunch spacing [ns] 2.7

Particles/bunch [1010] 8.9

Maximum design luminosity [cm−2s−1] 5.3 ×1032

Table 2.1: Some of the DAΦNE parameters in 2002.

been exchanged, the beta-parameters have been further reduced to increase the luminosity

and allows ∼ 100 bunch collisions, new interaction regions have been installed during the

shutdown of 2003. A brief summary of the design parameters of the collider is listed in

table 2.1

2.2 The KLOE detector

The KLOE detector 2 is a general-purpose detector permanently installed in one of the two

interaction regions of DAΦNE. The detector has been optimized do detect all charged and

neutral decays of KS and KL mesons. It consists essentially of a cylindrical drift chamber

to detect charged particles and an electromagnetic calorimeter allowing to detect photons

down to 10 MeV, which surrounds the drift chamber almost hermetically (see fig. 2.2).

Both the drift chamber and the calorimeter are placed in a superconducting coil providing

a longitudinal magnetic field of 0.52 T.

2K LOng Experiment
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Figure 2.2: Section of the KLOE detector.
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2.2.1 The drift chamber

The design of the KLOE drift chamber has been driven by the event topology of the KL

decay. At the energies of DAΦNE the mean decay length of a KL is 3.43 m and the angles

with respect to the z-axis are distributed as sin2(θ); to detect them the chamber has to

have a high and uniform reconstruction efficiency over a large volume, in order to deal with

the long decay path of KL and the isotropic distribution of its decay products. The shape

of the chamber is a 3.3 m long cylinder with 25 cm of inner radius and 2 m of external one

[65]. The requirements of three-dimensional track reconstruction led to drift cells almost

squared arranged in coaxial layers. All the wires belonging to the same layer are parallel

to each other and have the same stereo angle with the line parallel to the z-axis, passing

through the end plate of the chamber where the wire is connected, see fig. 2.3(a). The

stereo angles alternate from one layer to the next, and their magnitudes vary from ± 60 to

± 150 mrad. These values assure a good resolution of the measurement of the z-coordinate:

being σz = σrφ/tan(ε) and with an average rφ resolution of 200 µm, the z resolution is

about 2 mm over the whole chamber volume. The ratio between field and sense wires is 3:1.

Field wires are also disposed in concentric layers following the stereo angles of the sense

wires layer above them. Since the track density is much higher at small radii due to the

relatively small momenta of charged particles produced in the φ decays and since vertexing

of KS → π+π− is required, the innermost layers have cells of smaller size (see fig. 2.3(b)),

being the dimensions 2×2 and 3×3 cm2 respectively. Simulation studies have shown that

ε

αz
x

y Rp

0R
L

(a) (b)

Figure 2.3: (a) Sketch of the stereo angles of the cells. (b) Drift cells configuration at z=0; a portion
of the chamber at the boundary between small cells in the inner layers and large cells in the outer
cells is shown. Full dots indicate the sense wires while the circles indicate the fields wires.

good efficiency and spatial resolution are achieved with a helium-based gas mixture (which

minimizes multiple scattering), with a gain of ∼105, together with gold-plated tungsten 25
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µm thick sense wires and silver-plated aluminum 80 µm thick field wires at a voltage of

1800-2000 V. The number of layers is 58, of which 12 consist of small cells and 46 of big

ones. The number of drift cells increase by ∆N=6 from one layer to the next, with a total

number of 12585 drift cells, corresponding to about 52000 wires (field plus sense).

The gas which fills the chamber is a 90% helium, 10% isobutane mixture. The helium is the

active element and thanks to its low atomic mass reduces the effect of multiple scattering

and regeneration. The isobutane absorbs UV photons produced in recombination processes

(in order to avoid the production of discarge in the chamber). The mixture has a radiation

length Xo '1300 m; taking into account also the presence of the wires, the average radiation

length in the whole chamber volume is about 900 m.

Since the number of cells is a multiple of six for each layer, connections to the wires are

grouped by six. The bulk of ionization in the chamber is due to beam background and

decreases with radius. For this reason the number of sense wires connected to one high

voltage line increases with the radius. The preamplifier outputs are sent to an amplifier-

discriminator-shaping circuit (ADS). This circuit provides a discriminated signal for the

TDC (for drift time measurement) and the ADC (for dE/dx measurements), plus a further

signal sent to the trigger module.

The momentum resolution for electrons with 510 MeV energy and polar angles 50◦ < θ <

130◦ is σp ' 1.3 MeV (relative resolution σp/p=2.5×10−3, as shown in fig. 2.4).
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Figure 2.4: Momentum resolution σp/p as a function of the polar angle θ for Bhabha events.

2.2.2 The electromagnetic calorimeter

The flight path of a KL particle before decaying into π0 is obtained from the measurements

of the time of arrival of the two photons (from the π0 decay) in the calorimeter. Neutral

kaons from φ-decays travel with a velocity β ∼1/5: in order to determine the KL flight
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path with a precision of ∼0.6 cm, a precision of 100 ps in the time measurement is needed.

Hence, special KLOE needs are very good time resolution, full solid angle coverage and

as few amount of material in front of the calorimeter as possible. The energy resolution

requirements are not particularly stringent, ∼5% at the maximum energy of 1000 MeV.

A lead-scintillating fiber sampling calorimeter has been designed to fulfill these requests

[66]. Scintillating fibers offer several advantages, in particular they provide good light

transmission over the whole distance, up to ∼4.3 m. The barrel has an almost cylindrical

shape, consisting of 24 modules 4.3 m long, 23 cm thick with a trapezoidal cross section.

Two endcaps, made of 32 vertical volumes 0.7 to 3.9 m long and 23 cm thick, close the

cylinder. Their cross section is rectangular, of variable width. Thanks to the large overlap

of barrel and endcaps, the calorimeter has no inactive gap at the interface of the three

components. The central endcap modules are vertically divided into two halves to allow the

passage of the beam-pipe.

All modules are made of 200 grooved, 0.5 mm thick lead foils alternating with 200 layers

of 1 mm diameter scintillating fibers, glued together (see fig. 2.5). The ratio, by volume,

lead:fiber:glue is 42:48:10; the total thickness of the calorimeter is 23 cm, corresponding

to 15 radiation lengths, in order to contain the whole electromagnetic avalanche. The

read-out at both sides of each module is connected via light pipes of plexiglas to photo-

multipliers. The whole calorimeter is split in five planes in depth, the last one being thicker

than the other four. In the transverse direction each plane is subdivided into cells 4.4

cm wide. The set made of five cells lined up, one for each transverse plane, is named

a column. The photomultipliers work in a magnetic field of 0.56 T; the outer parts of

the endcaps have been designed to minimize the transverse component of the field acting

on the photomultipliers axis. The residual of such a component is < 0.4 kG. Since the

time resolution depends also on the efficiency of the light collection, this quantity has been

maximized, up to a value of ∼80-90%. The signal coming out from the photomultipliers

passes through a preamplifier, before being split into three different circuits: a first part

goes to the trigger, the other two parts to the ADC’s and the TDC’s respectively. The

energy deposit in each cell is obtained by the charge measured at each side of the modules

by the ADC’s. The time of arrival of a particle is derived from the time intervals measured

at each side of the modules by the TDC’s. The difference between the arrival time at the

two ends of the fiber allows to reconstruct the coordinate along the fiber. The resolution

of the longitudinal z coordinate is σz ∼ 9 mm /
√

E(GeV ). The energy resolution and the

linearity of the calorimeter are determined using radiative Bhabha events, whose photons

cover a wide energy and angular range. With the information coming from the drift chamber

one obtains the photon direction and the photon energy Eγ with good accuracy. What is

required is the matching of the photon direction obtained from Bhabha events and from

the position in the cell of the calorimeter determined from the time-of-light. For each 10

MeV energy interval in Eγ , the distribution Ecl − Eγ is fitted with a gaussian to find its

central value. The plot of fig. 2.6(a) shows the results of this procedure for the whole
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Figure 2.5: Fiber-lead sampling structure of the KLOE calorimeter.

energy range Eγ : the linearity is better than 1% for Eγ >75 MeV. Deviations of the order

of 4-5% are observed at low energies, mainly due to the loss of parts of the shower in the

cluster reconstruction. The energy resolution, dominated by sampling fluctuations, can

be parametrized as 5.7%/
√

E(GeV ) (see fig. 2.6(b)). The photon detection efficiency is

(a) (b)

Figure 2.6: Calorimeter linearity (a) and resolution (b) for photons as a function of the photon
energy Eγ . The resolution is parametrized with 5.7%/

√

E(GeV ).

defined as the number of detected clusters divided by the number of produced photons. It

has been measured with different samples: here we report the result obtained with radiative

Bhabha events (where e± direction and energy are measured with the drift chamber), with

the decays φ→ π+π−π0 and KL → π+π−π0 (where energy and direction of one of the two

photons from the π0 is deduced from the tracking information and the energy and direction

of the other photon) (see fig. 2.7(a)). The results obtained with the different channels are

in reasonable agreement with each other, and for energies larger than 100 MeV a constant

value of more than 98% is observed.

The time resolution is given in fig. 2.7(b) for photons from different radiative φ decays.

Good agreement among the different measurements is observed down to 100 MeV. The

curve in the plot gives the resolution of the calorimeter: σt = 54 ps/
√

E(GeV ) ⊕ 140 ps.
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2.2.3 The trigger system

The KLOE trigger system has to discriminate among events from φ decays and Bhabha

events, cosmic rays and machine background. The time between bunch crossings at DAΦNE

is 2.7 ns; this is too short to generate a trigger. That is the reason why the KLOE trigger

operates in a continuous mode. The signal from the trigger is synchronized afterward to

the bunch crossing time. At the full design luminosity, a total rate (physical events plus

background) of ∼90 kHz is produced, ∼5 kHz coming from φ production, ∼80 kHz from

Bhabha and machine background rates with about 40 kHz from each and the remaining ∼5

kHz from cosmic rays. The Data Acquisition (DAQ) can handle a total rate up to ∼10 kHz.

The trigger must provide good background rejection in order not to overload the DAQ,

without losing efficiency of the physical events. Both calorimeter and drift chamber can be
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Figure 2.7: (a) Calorimeter efficiency for different φ decays and (b) time resolution for φ radiative
decays, both as a function of Eγ .

used to generate the trigger [67], since the combined information of the two devices allows

to distinguish several processes. Also the topology of the different reactions is crucial in the

separation. For example, low angle Bhabha events are concentrated in the two endcaps of

the calorimeter as well as the machine background. Both produce a low multiplicity in the

drift chamber, in contrast to the φ-decay events. Cosmic rays behave differently from the

these two background sources: ∼85% of them deposit their energy in the barrel, and their

multiplicity in the chamber is similar to the one of physical events.

The trigger is based on the local energy deposit in the calorimeter and multiplicity

information from the drift chamber. It works in two levels (see fig. 2.8). An early trigger

with fast timing (to start the front-end electronic read-out) is generated which uses as

much information as possible from the chamber. After the arrival of this first level trigger,
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additional information is collected from the drift chamber and used, together with the

clorimetric information, to constrain the former and start the DAQ. The calorimeter triggers

if the local energy deposits are larger than a programmable threshold. Two thresholds are

fixed for each calorimeter signal, the first at low energy ∼50 MeV, in order to trigger on

low energy particles from φ decays, and the second one at high energy ∼350 MeV, in order

to identify Bhabha events. These latter are rejected or accepted as downscaled sample to

be used for the calorimeter calibrations. The signals from the wires of the chamber, after

being preamplified, are sent to a TDC and the trigger signal is formed with a width of 250

ns. The first level trigger can be summarized as follows:

φ trigger: (2 Low-Energy-Threshold hits with barrel-barrel, barrel-endcaps or endcaps-

endcaps topology) or (15 drift chamber hits within 250 ns)

Bhabha veto: 2 calorimeter signal lower than the high threshold with barrel-barrel or

endcaps-endcaps topology.

The level 1 trigger T1 sets a 2 µs long signal, which vetoes the other first level trigger and

allows signal formation from the drift chamber cells.

Before being passed to the front-end electronics of the calorimeter, the first level trigger is

synchronized with the DAΦNE radio-frequency. Therefore the calorimeter TDCs measure

the time with respect to a bunch crossing coming n periods after the collision which has

originated the event, where n is then determined at offline reconstruction level.

hits in the Barrel
One of the level 1

D.C. within ~1µs
100 more hits in

Drift
Chamber 
TDC

Cosmic veto

T2
DAQ

 

2 hits on the fifth plane
(no activity in the inner 
part of the Drift Chamber)

Dafne 
clock

Calorimeter 
TDC and ADC

T1nv

T1

2 hits > Phi Th

15 hits in the Drift
Chamber within 250 ns

2 hits > Bhabha Th

Synchronisation

Bhabha veto

Phi trigger

Figure 2.8: KLOE trigger logic.

At the end of the dead time (2 µs) the trigger system asks for the confirmation of the

level 1 decision. In the second level two conditions similar to the ones of the first level are

requested, but the thresholds now are chosen to be equal to the energy average released

in a cell by a minimum ionizing particle MIP (40÷50 MeV). Once two sectors are above

threshold, the cosmic ray bit is activated and the event is flagged as cosmic. The cosmic flag

requires two energy releases above threshold on the outermost plane of the calorimeter in
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barrel-barrel or barrel-endcap configuration. The level trigger T2 produces the stop signal

for the chamber TDC’s and starts the data acquisition. It can be summarized as follows:

φ trigger: (at least 1 calorimeter hit in the barrel or 3 in the same endcap) or (40 drift

chamber hits detected during 850 ns after T1)

cosmic flag: 2 hits on the external plane of the calorimeter with barrel-barrel or barrel-

endcap topology.

To avoid the rejection of µ+µ−(γ) (and π+π−γ) events, which arrive easily at the outer

planes of the calorimeter, a third level trigger T3 has been developed. Each event flagged

by T2, will pass the T3 filter before being written on tape or rejected. The T3 filter performs

a fast preliminary pattern recognition looking for tracks coming from the interaction point.

If it finds no tracks from the IP, the event is rejected. The insertion of the T3 filter from

beginning of the year 2002 was very important for the measurement of the π+π−γ channel,

reported in this thesis, since it increased significally the efficiency of signal events with

respect the 2001.

EMC trigger

For the trigger purpose the whole granularity of the calorimeter is not needed and the

5000 readout channels are grouped in ∼200 summed signals. The barrel is divided into

three groups of 47 trigger channels, named normal, overlap and cosmic series. Each sector

in the normal and overlap series is made of 5×6 columns (see fig. 2.9), while the cosmic

series (used for the cosmic flag) consists only of the cells of the fifth plane of the calorimeter.

In total there are 48×3 sectors. The geometry of the trigger sectors in the endcaps is more

complicated, and, like for barrel, it consists of the normal and overlap series. Since the

multiplicity is higher in the forward region, mostly due to background, the two series are

segmented in groups of 4 columns in the zone close to the beam pipe, and 5 or 6 elsewhere.

The signals from the cells forming a column are summed up, followed by the sums of the six

columns of a given trigger sector. The analog signal of each trigger sector is performed at

both sides (labeled A and B in the following) and it is compared to a high and a low threshold

which are fixed during the DAQ initialization. The four logical signals T low
A , T high

A , T low
B and

T high
B generate the signal T for each sector according to the logical equation: T = (T low

A

and T low
B ) and (T high

A or T high
B ). This two-threshold scheme is applied in order to obtain as

much as possible uniform response as a function of the coordinate along the fibers of the

energy deposit, minimizing thus the effect of the light attenuation along the fibers.

2.3 Data reconstruction and event classification

KLOE started its data taking for physics events in 2000. Between the year 2000 up to 2006

(with a long interruption in 2003) an integrated luminosity of 2.5 fb−1 has been collected

and the data taking has been definitely stopped in March 2006. In the last three months
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Figure 2.9: Trigger sector in the barrel. The two series, the normal ans the overlap are shown.

of data taking the center-of-mass energy of DAΦNE was reduced to
√
s=1000 MeV (off-

resonance) in order to allow a background-free measurement of t he hadronic cross section

via radiative return.

2.3.1 Data reconstruction

The data acquisition system (see [68]) handles about 23000 front end channels from the

drift chamber, the calorimeter and the trigger. It can manage a readout of 10 MB/s. For

the typical peak luminosity of 2002 (5×1031 cm−2s−1), the trigger rate was 1.6 kHz and

the average event size 2.7 kB, leading to a data acquisition of 4.3 MB/s. This latter was

handled by only three out of seven on-line nodes.

The on-line server writes raw data in 1-GB files. Data taking is divided into runs of

approximately the same integrated luminosity (200 pb−1 in 2002) and the run number

associates uniquely machine parameters, calibration constants (see §2.3.2 and 2.3.3) and all

the relevant quantities of the detector related to the specific run. Raw data are kept on

disk until calibration and reconstruction are completed. The reconstruction process starts

immediately after the completion of the calibration jobs for the run. Each of the 20 jobs,

which is divided into the raw data file corresponding to a single run, are processed in parallel

by a separate reconstruction job. The reconstruction program consists in several modules

performing the following task:

• loading the drift chamber and the calorimeter calibration constants;

• calorimeter clusters reconstruction and determination of the time of flight and of the

energy deposition;

• determination of the current bunch crossing;

• rejection of the machine background and cosmic ray events;

• track fitting of the charged particles;

• vertex reconstruction for the charged particles;
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• association of the drift chamber tracks with the calorimeter clusters for charged

particles hitting the calorimeter;

• event classification and streaming into one of the physical stream.

Machine background and cosmic rays events are filtered out before the tracking procedure,

which is the most CPU-intensive reconstruction task. The filter algorithm (FILFO) is based

only on information from the calorimeter. The last step of the reconstruction procedure

is the classification of events on the basis of topological information into different streams.

Five streams are defined, containing Bhabha scattering events, φ decays into charged kaons,

φ decays into neutral kaons, φ → π+π−π0 and radiative φ decays, and for each of them

a different file is created. Apart from the Bhabha stream, a further reduction is done for

each stream, keeping only the information needed for the physical analysis. The resulting

set of data-summary tapes (DSTs) is six times smaller in size than the corresponding

reconstruction output files and can be kept on disk for an easy access.

2.3.2 Clustering

A cell is defined as the smallest ’part’ of calorimeter seen by two photomultipliers at its

ends. The photomultiplier outputs are preamplified and sent with a delay of 220 ns (the

time necessary to the trigger do decide whether to start the acquisition or not) to ADC’s

and to the TDC’s. Let’s label the two ends of a cell as A and B: for each cell two time signals

tA,B and two amplitude signals SA,B are recorded from the corresponding photomultiplier

outputs. The position of the energy release along the fiber direction is obtained from the

time difference tA− tB. If TA,B are the counts in the TDC’s, the time at the ends of the cell

will be tA,B = cA,B ×TA,B , where cA,B (in ns/counts) are the TDC’s calibration constants.

The particle time arrival t and the position along the fiber direction is (the zero is taken at

the fiber center):

t (ns) =
tA + tB

2
− tA0 + tB0

2
− L

2v
− tG0 (2.1)

s (cm) =
v

2
(tA − tB − tA0 + tB0 ) (2.2)

with L and v the cell length (in cm) and the light velocity (in cm/s) in the fiber, tA,B
0 are

overall time offset and tG0 is the event global time offset. The two coordinates orthogonal

to the fiber direction are given by the center of the cells according to the measured

geometry. The constants cA and cB of every TDC channels (4880) have been measured

in some preliminary test (as well as the length L of the cells), before the installation of

the experiment. They provide the conversion from TDC counts to ns (average value is 53

ps/counts).

The need to measure the global time of the event tG0 comes from the fact that the time

spread of the event (which can reach 30÷40 ns for KSKL events) is bigger than the time
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interval between two consecutive bunch crossing. The DAΦNE machine clock has a period

TRF of 2.7 ns and the time between one bunch crossing and the next is n×2.7 ns, with n

depending on the bunch filling in the machine. The event reconstruction has to find the true

bunch crossing for each event, then it is subtracted event by event. This procedure takes

into account several effects: the time of flight of the particles, the delay between trigger and

calorimeter due to electronics and cables and the fact that the trigger signal is synchronized

with the DAΦNE radio frequency. In order to determine tG0 a calibration of the delay and of

TRF is performed using γγ events, which provide the easiest time signature. The expected

time of such a sample is given by R/c, where R is calculated assuming a neutral particle

coming from the interaction point and c is the light speed. From the residual difference from

the measured time t and expected time of flight R/c, the delay due to cables and electronics

and the synchronization RF are simultaneously measured. The time between peaks in fig.

2.10 is the inter-bunch and it is a multiple of RF period. The delay is obtained by selecting

one peak; any peak is in principle equivalent as a reference time. The energy signal E on
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Figure 2.10: t-R/c distribution for γγ events before any corrections.

each side of the cell is obtained from the counts S in the ADC’s:

EA,B (MeV ) =
SA,B − SA,B

0

SM
× κE (2.3)

where SA,B
0 are the zero offsets of the amplitude scale, SM is the signal for a minimum

ionizing particle crossing the calorimeter center and κE is the energy scale factor (in

MeV/counts). The energy zero off-sets SA,B
0 are obtained from cosmic ray runs without

circulating beam, i.e. with very low occupancy of the detector. In the SM factor, the

response of the photomultipliers, the fiber light yield and the electronic gain is considered.

Cosmic rays are used to measure also this quantity: during a typical cosmic ray run (18

hours of data taking), ∼1000 events per cell are collected. The mean values of the gaussian

used to fit the amplitude spectra are by definition the SM (for each cell) which enter in
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eq. 2.3. Finally, in order to be independent from the position, a correction factor AA,B(s),

due to the attenuation along the fiber length, is applied, and the energy of the cell becomes:

E (MeV ) = (EA ·AA + EB ·AB)/2 (2.4)
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Figure 2.11: (a) Definition of the variables used in the s − t relations classification. (b) Spatial
resolution as a function of drift distance over all big cells for a single φ̃ value.

The first step in the event reconstruction is the processing of the calorimeter information.

Once the cells have been reconstructed, the clustering algorithm merges together groups of

adjacent cells. A cell becomes part of the cluster if times and amplitudes are available from

both sides of the fiber. If one of these four information is missing (incomplete cell), the cell

belonging to the barrel is recovered on the basis of the difference ∆φ between its azimuth

and that of the closest cluster. Incomplete cells are assigned to a cluster if |∆φ| < 3◦.

An analogous procedure is repeated in the two endcaps using the z-coordinate. The cluster

energy Ecl is simply the sum of the energies of the cells making the cluster, while the cluster

positions and time (xcl, ycl, zcl and tcl) are computed as energy-weighted averages of the cell

variables.

2.3.3 Tracking

Due to the large cell dimensions and to the variation of the electric field along the wires,

the drift velocity is not saturated. These effects produce space-time (s-t in the following)

relations dependent upon the spatial coordinates of the cell and on the incidence direction of

the track in the cell. The s-t relation has been parametrised according to the two variables

β and φ̃ defined in fig. 2.11(a). Six cells with β varying between 65◦ and 125◦ are chosen as

reference cells. In each of these cells the φ̃ angle is divided into 36 intervals of 10◦. Since only
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the upper part of the cell is deformed by the stereo geometry, in 20 bins of φ̃ corresponding

to the lower part, the s-t relation is the same for all the six reference cells. This results in

a total of 16×6+20=116 parametrisation (to be doubled once one considers both small and

big cells). In the single cell, the drift distance is related to the drift time in terms of a 5th

order Chebychev polynomial tdrift = P (Ck
i , d), where tdrift is the measured time, d is the

impact parameter and the 6×232 coefficients Ck
i (k=1,...,232 and i=1,...,t) account for the

cell type, track orientation and cell shape, as described above. An automatic calibration

procedure checks the validity of the current s-t relations at the beginning of each run and

calculate new Ck
i using cosmic ray events, if necessary. For more details see [68].

The event reconstruction in the drift chamber starts with the Pattern Recognition. It

searches for candidate tracks, firstly in the xy plane, then looks for the projection in the

z plane. Due to the stereo setting of the wires, a track in the chamber is seen as two

distinct curves. In each stereo views, hits close in the space are associated to form a chain,

on the basis of their curvature, and the left-right ambiguity is solved requiring the single-

view candidate track to have a minimum of four hits in at least two layers. At this stage

the magnetic field is assumed to be homogeneous, multiple scattering and energy loss are

not treated, and rough s-t relations are used. The track fitting minimises iteratively a χ2

function based on the comparison between the measured (as obtained by the s-t relations)

and expected (from the fit) drift distance for each hit (see fig. 2.11(b)). The drift distance

is corrected using more accurate s-t relations which depend on the track parameters and

all the effects neglected in the pattern recognition (local variation of the magnetic filed,

multiple scattering and energy loss) are now taken into account. After a first iteration,

dedicated procedures recover missed hits or wrongly assigned by the pattern recognition,

merge splitted tracks and split kinked tracks. The tracks from the fitting procedures are

then used to look for primary and secondary vertices. In order to reduce the number of

combinations, the tracks are firstly extrapolated in the x − y plane and primary vertices

are searched for using tracks whose impact parameter is smaller that 10% than their radius

of curvature. The remaining tracks are then connected with secondary vertices. For tracks

crossing the beam-pipe or the walls of the chamber, the momentum is corrected for energy

loss and multiple scattering.The minimization of a χ2 function based on the distance of

the closest approach between tracks is used to assign the two tracks to a vertex. For a

vertex inside the beam-pipe the spatial resolution is about 2 mm. For each track pair, a

χ2 function is evaluated from the distances of closest approach between tracks. For more

details on the vertex fitting procedure see [69].



Chapter 3

Motivation for the Large angle analysis

A first measurement of the hadronic cross section σ(e+e− → π+π−) has been performed

using data collected by the KLOE detector in 2001. A complementary analysis with the

data collected in 2002 in a different phase space is presented in this thesis.

In the present chapter a short description of the already published analysis is given, together

with the motivations for the second analysis, as well as the main differences between the

two of them.

3.1 The radiative return method

The standard way for measuring the hadronic cross section is to perform an energy scan, in

which the collision energy of the machine is changed and the desired measurement is done

point-by-point. The DAΦNE collider has been designed as a meson-factory operating at

the φ mass (1019.4 MeV), and the variation of the center-of-mass was not foreseen. As an

alternative, the idea has been worked out to obtain σ(e+e− → hadrons) using the radiative

process e+e− → hadrons+γ, where the photon is radiated by the initial electron or positron

(see fig. 3.1(a)), lowering the center-of-mass of the hadronic system [70]. The cross section

σ(e+e− → π+π−γ) is thus measured as a function of the two pion invariant mass squared

sπ in the allowed energy range, from the threshold 4m2
π to m2

φ. The possibility to measure

the hadronic cross section using the radiative return method relies on the assumption that

the radiative photon does not interfere with the final state process. In this case the initial

state e+e−γ and the hadron production factorize and the cross section σ(e+e− → π+π−)

can be expressed as a function of the differential cross section σ(e+e− → π+π−γ)/dsπ:

sπ
dσ(e+e− → π+π−γ)

dsπ
= H(sπ) · σ(e+e− → π+π−) (3.1)

where an accuracy better than 1% is necessary for the radiator function H(sπ). Under the

condition of factorization and only one photon radiated, sπ equals the hadronic invariant

35



CHAPTER 3. MOTIVATION FOR THE LARGE ANGLE ANALYSIS 36

−

e+

ISR
γ

π

e

+

π−

(a)

FSRγ

−

e+
π

e

+

π−

(b)

Figure 3.1: Leading order contribution to ISR (a) and to FSR (b) process.

mass and the following relation holds:

sπ = Q2
π+π− = m2

φ − 2Eγ (3.2)

For the evaluation of H(sπ) the MonteCarlo generator PHOKHARA ([71][62][63]) has been

used. It includes hard, soft and virtual radiative corrections to the process e+e− → π+π−γ

at next-to-leading order and also final state radiation from the pions described according

the scalar QED (i.e. treating pions as point-like particles).

eq.̃refeq:masterformula is not valid anymore if the radiated photon couples to the pion as

shown in fig. 3.1(b). A wrong energy value would be in this case associated to the two-pion

system, since the π+π− pair is produced at
√
s = mφ and the energy is then reduced by

Final State Radiation (FSR). Therefore this kind of process represents a background for

the analysis and it needs to be reduced as much as possible.

The systematic errors for a measurement with the radiative return method are different

compared with the ones from an energy scan measurement, making this method

complementary to the energy scan. In the case of the radiative return the normalization

parameters (as luminosity, energy of the machine) have to be determined only once and

are the same for each point of the spectrum, while for an energy scan they have to be

measured for each energy point separately. Moreover the radiative return method does not

need dedicated machine time, it can be performed in parallel with the standard physics

program. On the other hand the FSR contribution has to be well suppressed, if possible, or

precisely understood otherwise, in order to be subtracted from the data. Precise theoretical

calculations of the radiator function H are necessary as well, since the uncertainty of this

quantity enters directly the error of the π+π− cross section.
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Finally the cross section e+e− → π+π−γ is suppressed by a factor α/π with respect to the

cross section e+e− → π+π−; therefore a larger integrated luminosity is necessary to reach

the same level of accuracy. This is not a problem at a modern meson-factory, all working

at high luminosity.

3.2 The small angle analysis

As mentioned above, the FSR events are simulated in PHOKHARA according to the

model of scalar QED (sQED); the model dependence makes it unavoidable to reduce this

contribution as much as possible. Final state radiation cannot be distinguished from ISR

experimentally, but can be significantly reduced by choosing appropriate angular cuts. In

the 2001 data analysis [11] cuts have been applied to select photons in the forward-backward

region, i.e. being these emitted preferentially along the beam direction to enhance the ISR

contribution. The preferred emission direction of the photons both from ISR and FSR are

displayed in fig. 3.2(a) and in fig. 3.2(b) where the distribution of the cosine of the minimum

angle between the photon and one of the two pions in the two pion rest frame is plotted,

for the case of ISR and FSR respectively. The ISR photons tend to be emitted in the

orthogonal direction of the pions (cos(θγπ) peaked at 0); the pions go preferentially toward

the central plane of the detector. This means that γISR tend to be emitted along the beam

pipe. The opposite occurs for γFSR, whose angle with respect the pions is peaked at zero.

γFSR tend to follow the same direction of the pions, which they have been emitted from,

namely at large polar angles. Detecting pions at large polar angles and photons at small

polar angles, corresponds then to minimize the relative amount of FSR.

The explicit detection of the photon is not required, thus the measurement is performed

without photon tagging. If the event consists of two pions and only one photon, the

polar angle of the photon equals the angle of the missing momentum of the event:

θγ = 180o − θmiss, where the missing momentum is ~pmiss = ~pπ+ + ~pπ− . We have requested

θmiss <15o or θmiss >165o, while the pions are detected with 50o < θπ <130o . This phase

space excludes the very low Mππ region, i.e. M2
ππ <0.3 GeV2, because at small Mππ (high

photon energy) the di-pion system recoiling against the small angle photon results in one

or both pions to be emitted at small angles, and thus the event is not accepted.

In the following with small angle we mean the following cuts:

• 50o < θπ± < 130o

• 15o < θγ or θγ > 165o

In order to reject the huge Bhabha events contamination (whose cross section is >500 nb

to be compared with ∼9 nb for the cross section of π+π−γ events within the small angle

acceptance) a particle ID method based on a likelihood estimator is used. It uses the

following information:
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Figure 3.2: Distribution of the minimum angle between the photon and one of the two pions, in the
pion rest frame, for ISR (a) and FSR photons (b).

• the total energy of the cluster and the maximum energy release among the five planes

of the calorimeter;

• the energy release in the first and in the last fired calorimeter plane;

• the difference (t − L/c), with t the time of the cluster, l the track length from the

interaction point to the centroid of the cluster, c the speed of light.

Each of the just mentioned variables allows to define two probability densities, by fitting

the corresponding distributions. Two absolute likelihood estimators are defined as:

a L({xi}) =
∏

i

fπ
i (xi)

a L({xi}) =
∏

i

fe
i (xi) (3.3)

where xi (i = 1, .., 5) are the variables listed above and {fπ
i (xi)},{f e

i (xi)} are the set of fit

function for the control samples of the pion and of the electron tracks respectively.

The two functions a Le and a Lπ express the probability for the particle to be a pion or an

electron.

Details about the particle ID estimator can be found in [72] and [73].

The background from φ→ π+π−π0 is strongly reduced by the acceptance cut. The residual

of this kind of process and muon pair events from e+e− → µ+µ−γ are rejected by a cut

on the kinematical variable called trackmass, mtrk. This latter is obtained by imposing the

4-momentum conservation on events made by two charged particles with the same mass
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and one photon, via the relation

(mφ −
√

|~p+|2 +mtrk −
√

|~p−|2 +mtrk)
2 − |~p+ + ~p−|2 = 0 (3.4)

For e+e− → x+x−γ events, the value of mtrk peaks at mπ, mµ for x = π, µ, as shown in

fig. 3.3(a).
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Figure 3.3: (a) Trackmass distribution for µ+µ−γ , π+π−π0 and π+π−γ, after requiring ID as pion
for at least one of the two tracks. The particle ID does not effect the µ+µ−γ region. (b) Distribution
of e+e− → π+π−γ in bins of 0.01 GeV2 after applying the acceptance and the selection cuts of the
small angle analysis.

The selection has been applied to the 141 pb−1 data sample collected in 2001 [11], obtaining

the distribution of events presented in fig. 3.3(b). Due to the high momentum resolution

of the drift chamber, the ρ − ω interference is clearly visible, even before any unfolding

procedure. The kinematic suppression of the threshold region is evident as well. In order to

obtain the differential cross section σ(e+e− → π+π−γ) from the spectrum of fig. 3.3(b) one

has to subtract the residual background from the sample, to normalize it to the integrated

luminosity and finally to correct it for the selection efficiency and the acceptance, according

to:
dσππγ

dMππ
=

∆NObs − ∆NBkg

∆Mππ
· 1
∫

L · 1

εSelεAcc
(3.5)

3.2.1 Residual background subtraction

For the evaluation of the remaining e+e−γ and µ+µ−γ events the trackmass distributions

in slices of Mππ for signal and background have been fitted. From the fitted normalization

parameters, one obtains the amount of the single background channel.
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Figure 3.4: (a) Trackmass distribution in one slice of Mππ for data (points), µ+µ−γ MonteCarlo
simulation (dashed line), π+π−γ MonteCarlo simulation (hatched area) and the sum of the two
MonteCarlo distributions (solid line) after the fitting procedure to estimate the µ+µ−γ contribution.
(b) Missing mass distribution in one slice of Mππ for data (points), π+π−π0 MonteCarlo simulation
(dashed line), π+π−γ MonteCarlo simulation (hatched area) and the sum of the two MonteCarlo
distributions (solid line) after the fit procedure to estimate the π+π−π0 contribution.

For Bhabha events a control sample of ∼120 pb−1 has been selected according to the analysis

selection cuts, however requesting 93 MeV< mtrk <138 MeV, leaving out the π+π−γ peak.

Additionally it is required for the same sample that one and only one track is recognised as a

pion by the particle ID, in order to increase the sensitivity to Bhabha events. By fitting the

trackmass distribution obtained from this data sample with the ones from e+e−γ, µ+µ−γ

and π+π−γ MonteCarlo, one obtains the absolute e+e−γ contamination. Subtracting the

Bhabha contribution from the data sample, one remains with the hypothesis that within

the restriction 93 MeV< mtrk <138 MeV, the only background comes from muons. By

fitting again the trackmass distribution of data (selected with the same selection cuts used

for the previous control sample, with the only difference that now at least one particle has

to be identified as a pion by the particle ID) with µ+µ−γ MonteCarlo ones, gives us the

absolute µ+µ−γ contamination.

The amount of π+π−π0 events is obtained with the same procedure, but fitting the missing

mass, defined as mmiss = |Pφ − Pπ+ − Pπ− |2, where Pπ± are the 4-momentum for the

charged particles and Pφ is the one due to the boost. The variable mmiss peaks at mπ0

for the three pion final state, differently to the trackmass which has not a peaked structure
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for these kind of events (not being made of two charged particles and one photon). The fit

has been performed in slices of Mππ in the interval 70 < mmiss < 160 MeV, superimposing

data distributions with π+π−π0 and π+π−γ MonteCarlo, since the µ+µ−γ contribution

is negligible in this region. The fig. 3.4(a) and fig. 3.4(b) show two examples of the fit

procedure, for muons and π+π−π0 respectively. The shapes of the trackmass and of the
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Figure 3.5: Fraction of e+e−γ (a), µ+µ−γ (b) and π+π−π0 (c) background as a function of the
invariant mass squared of the two pions.

missing mass are well reproduced by MonteCarlo, therefore the errors from the fit procedure

have been taken as the systematic error for the background evaluation. In fig. 3.5 the fraction

of e+e−γ, µ+µ−γ and π+π−π0 background as a function of the invariant mass squared of

the pions is shown. The total background contamination is smaller then 2% above 0.5 GeV2

and grows up to 10% at low masses.

3.2.2 Extraction of the pion form factor

A big effort has been spent to evaluate the radiative corrections. In the selected sample

both leading-order (FSR-LO) and next-to-leading-order final state radiation (FSR-NLO) are

present. In the first case a single photon is emitted by one of the two pions in the final state,

as in fig. 3.1(b), and the invariant mass of the virtual photon is not lowered with respect to

the center-of-mass energy of the machine. Since the goal of the measurement is to determine

the cross section below mφ, this process has to be considered as background, due to the fact

that these events originate from a value ofMππ out of the range under study. The acceptance

and the trackmass cut reduce the FSR-LO contribution; the residual contamination is

estimated from MonteCarlo (PHOKHARA) and subtracted from the spectrum.

Different is the case for FSR-NLO, in which a photon in the initial state and one in the

final state are simultaneously emitted, lowering the invariant mass of the intermediate

virtual photon. Events of this kind have to be included in the cross section to be put in the

dispersion integral. However, as in the case of FSR-LO, the energy of the hadronic system is
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lower than the momentum transfer, and this effect has to be corrected for in the differential

cross section. An unshifting function which corrects for the difference between
dσππγ

dMππ
and

dσππγ
ds∗γ

(where s∗γ is the invariant mass of the virtual photon) has been built from a special

version of PHOKHARA, in which ISR- and FSR-photons can be distinguished. Using

eq.̃refeq:masterformula one passes from the event spectrum of fig. 3.3(b) to the differential

cross section dσππγ/M
2
ππ as a function of M2

ππ.

Applying the efficiencies and acceptance corrections, the unshifting function and finally

dividing by the radiator function, one obtains the physical cross section.

The efficiencies of the cuts entering the event selection and their systematic error are

evaluated individually. Except for the trackmass cut and for the acceptance, all the other

have been studied directly from data control samples. The combined total efficiency is

almost flat and around 60%. In tab. 3.1 the systematics errors associated to the individual

efficiencyies are reported. A detailed description of the evaluation of each of them can be

found in [74].

Acceptance 0.3 %
Trigger 0.3 %
Reconstruction Filter 0.6 %
Tracking 0.3 %
Vertex 0.3 %
Particle ID 0.1 %
Trackmass 0.2 %
Background subtraction 0.3 %
Unfolding 0.2 %

Total experimental systematics 0.9 %

Table 3.1: List of experimental systematic errors in the small angle analysis.

The radiator function is obtained from PHOKHARA as dσππγ(Fπ = 1)/dM2
ππ, i.e. the

NLO cross section for e+e− → π+π−γ with initial state radiation only. The extracted cross

section σ(e+e− → π+π−) is presented in fig. 3.6(a) as a function of the invariant mass of

the intermediate photon sγ∗ : it covers the full angular range in θπ and θmiss and includes

final state radiation and vacuum polarization (dressed cross section).

The cross section to be put into the dispersion integral has to be corrected for the vacuum

polarization of the intermediate photon [59]. This correction is applied to arrive at the pion

form factor, and the final state radiation is removed as well. The obtained pion form factor

is shown in the plot of fig. 3.6(b)

The cross section σ(π+π−γFSR), including FSR contribution and corrected for the vacuum

polarization, has been used to evaluate the contribution to aµ from the π+π− channel in

the energy range 0.35< M 2
ππ <0.95 GeV2.
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Figure 3.6: (a) Dressed hadronic cross section σ(e+e− → π+π−).(b) Pion form factor.

The resulting value is:

aππ
µ (0.35 − 0.95) = (388.7 ± 0.8stat ± 3.5syst ± 3.5th) × 10−10 (3.6)

The statistical error of the measurement is negligible and the error from theory 1 is as big as

the experimental one. Thus, an improvement of the determination of aππ
µ requires not only

a better evaluation of the experimental systematic effects, but also a better knowledge of

the theoretical inputs that enter the analysis. For a more detailed discussion on this topic,

we refer to the last chapter of this thesis.

3.3 Large angle analysis: the fiducial volume

Besides the analysis presented above, KLOE has performed a complementary determination

of the cross section e+e− → π+π−γ in a different angular region. This is the main subject

of the present thesis. Moving from small to large photon polar angles, also the threshold

region 4m2
π < M2

ππ < 0.35 GeV2 becomes accessible, which was kinematically suppressed at

small photon angles. This is shown in fig. 3.7(a), where the spectrum from a MonteCarlo

simulation both for θmiss < 15o(> 165o) and 50o < θmiss < 130o is presented. While the

spectrum towards low Mππ decreases rapidly for θmiss < 15o(> 165o), at large photon polar

angles it extends down to the 2π threshold. It is important to underline that this region

is measured by only a few experiments and with a precision much worse than the ρ-peak

1The total theoretical error comes from different sources: the error claimed for the BABAYAGA generator
used in the luminosity measurement, the error of the radiator function, the error of the FSR subtraction
and finally the error of the vacuum polarization correction.
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region. An improvement is of importance since below M 2
ππ <0.5 GeV2 the channel π+π−

adds ∼ 60 · 10−10 to the value of aµ.

The most precise and most recent measurement at threshold is from the SND collaboration

[8], which has covered the mass range down to Mππ =390 MeV with a systematic error of

3.4% for Mππ <420 MeV and 1.3% for Mππ >420 MeV.

While at large photon angle also the background from e+e−γ and µ+µ−γ events is reduced
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Figure 3.7: (a) MonteCarlo spectra of the number of π+π−γ events for different angular cuts.
Both plots correspond to an integrated luminosity of ∼800 pb−1 (b) Event distribution after the
acceptance cut, 50o < θπ,γ <130o for MonteCarlo samples of π+π−γ and π+π−π0, normalized to
the integrated luminosity of the 2002 data (∼240 pb−1).

by the requirement for the photon to be between 50o and 130o (see fig. 3.8 where the photon

polar angle distribution is shown for µ+µ−γ and Bhabha events), this is not the case for

the channel φ → π+π−π0, since the direction of the π0 is preferably at central values. It

populates heavily the region at low Mππ , as shown in fig. 3.7(b), where the mass spectrum is

plotted for the acceptance region 50o < θπ,γ <130o for two Monte-Carlo samples of π+π−γ

and π+π−π0. As one can see, the signal-to-background ratio is very low for low Mππ values,

illustrating the need for further dedicated cuts. Crucial in this analysis is the detection of

the photon (tagged analysis), which was not possible in the small angle analysis. At large

photon polar angles the presence of a π0 can be established by the two decay photons and

building their invariant mass (see §4.2.1 and §4.2.3). A set of cuts constructed by closing

the kinematics, allows to suppress almost completely the π+π−π0 background (see §4.2).
However the cuts applied do not help to reduce the irreducible one, having this latter exactly

the same signature as the signal. There are three sources of irreducible background at large

photon angle:

• the resonant φ decay: φ→ ρπ → π+π−γ;
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Figure 3.8: Photon polar angle distribution for µ+µ−γ events in (a) and radiative Bhabha events
in (b). Both distributions are obtained from MonteCarlo, PHOKHARA for the muons and NLO-
Babayaga for Bhabha events [75].

• Leading-Order Final State Radiation (FSR-LO) where a photon is emitted by one of

the pions;

• the radiative φ decay to π+π−γ through a scalar meson: φ→ (f0(980)+ f0(600))γ →
π+π−γ.

A sketch of the three physical processes is given in fig. 3.9.
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Figure 3.9: The three sources of irreducible background at large photon angle: in (a) Leading-Order
Final State Radiation where a photon is emitted from one of the two pions in the final state, in (b)
the decay φ → ρπ → π+π−γ and in (c) the radiative φ decay to π+π−γ through a scalar meson:
φ→ (f0(980) + f0(600))γ → π+π−γ

Another complication arises from the fact that one needs to know not only the contribution

of each individual channel, but also the interference effects.

The first of the three processes listed above is neglected in the analysis. In fact in ref.[64]
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the contribution of φ → ρπ → π+π−γ is not considered, since KLOE has found it to

be negligible in the φ → π0π0γ analysis [76]. The branching ratio BR(ρ± → π±γ) and

BR(ρ0 → π0γ) are comparable, hence the same conclusion applies to π+π−γ final state.

MonteCarlo simulations support this ansatz for M 2
ππ >0.5 GeV2.

The other two processes, the radiative decay φ→ Sγ where S is a scalar meson (f0(980) or

f0(600)) with mass below 1 GeV decaying into π+π− and the e+e− → π+π−γFSR (FSR-LO)

background are the subjects of §3.3.1 and §3.3.2 respectively.

3.3.1 The scalar mesons contribution

The scalar mesons in this region are the well established f0(980) and the more controversial

f0(600), called also σ. The radiative decay proceeds with a photon angular distribution

f(θ) ∼ (1 + cos2(θ)) so that its effect is more relevant in the large angle (LA) region

rather than in the small angle (SA) one (
∫

SA f(θ)dΩ/
∫

LA f(θ)dΩ ∼ 0.08). The prediction

of the amount of these events is not straightforward, since the properties of these scalar

are not completely known, but also because the amplitude of this process gives rise to an

interference pattern with FSR that cannot be simply removed by subtraction.

KLOE has recently analyzed the π+π−γ final state at large photon polar angle (45o <

θπ,γ < 135o) in the 2001-2002 data sample (∼350 pb−1) to evaluate the properties of the

scalar mesons. The analysis is described in [77]. Parametrizing the f0(980) with the so

called kaon loop amplitude ([78]), one can reproduce well the data shape between 400 and

1000 MeV(see fig. 3.10). In the kaon loop model the φ couples to the scalar through a loop

of charged kaons. The formalism allows to include more than one scalar meson. For each

scalar meson there are three free fit parameters: the mass and the two couplings to K+K−

and to π+π−. For the scalar meson f0(980), the kaon-loop amplitude reduces to:

AKL = g(m2)eiδ(m) gf0K+K−gf0π+π−

(s−m2)Df0
(m)

(3.7)

where s is the invariant mass of the center-of-mass energy, gf0K+K− and gf0π+π− are the

two couplings parameters, g(m2) is the kaon-loop function ([78]), δ(m) is the phase relative

to ππ scattering and Df0
is the f0 inverse propagator. The coupling parameters are found

by fitting the π+π− invariant mass distribution. The interference between the scalar meson

amplitude and the final state radiation amplitude turns out to be destructive. The f0(980)

signal appears as a bump at around 980 MeV in the π+π− invariant mass Mππ spectrum

of fig. 3.10.

The decay φ → f0(980)γ features a specific E3
γ behaviour, which leads to the observation

that the mass spectrum is not only concentrated around its mass, but it extends down to

the 2π threshold. Several models have been proposed to parametrize the dynamics of the

decay φ→ (f0(980)+f0(600))γ → π+π−γ and its interference with the non-resonant signal

e+e− → π+π−γ. The change in the shape of the spectrum with the model is sizeable and
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Figure 3.10: Mππ spectrum: the bump around 980 MeV shows evidence for the signal φ → f0γ →
π+π−γ. The upper and the lower curves are fits to the data, assuming the φ decays into f0γ through
a charged kaon loop, and the background parametrization, respectively. The lower plot shows an
enlarged view of the f0 signal.

within the same model the value of the phase can enhance or not the contribution of the

scalar mesons at low masses. A more detailed study of the scalar mesons contribution will

be presented in §6.2.2.

3.3.2 Final State Radiation correction

The fraction of π+π−γFSR in the spectrum at large photon angles is shown in fig. 3.11

after acceptance cuts, both in leading and next-to-leading order. The contamination of

these events in the large photon angle region can arrive up to 30% (if counted together

LO and NLO events) depending on the energy on the second photon (we remind that

the acceptance cuts requires that one photon has to have an energy above 50 MeV).

Unavoidably, the input for the FSR analysis and Monte-Carlo simulations will be model

dependent: in PHOKHARA the model of scalar QED is used, where the pions are treated
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Figure 3.11: Fraction of leading (full points in black) and of next-to-leading order FSR at large
photon angles, as a function of M 2

ππ. The FSR-NLO contribution is estimated requiring for the
second photon an energy above 5 MeV in one case (blue triangles) and above 10 MeV (red triangles)
in the other case.

as point-like particles and the total FSR amplitude is multiplied by the pion form factor.

While this assumption is generally plausible for relatively soft photons (corresponding to

high value of Mππ ), it might fail for lower values of the invariant mass of the hadronic

system. In this case a possible extension of FSR beyond sQED has been considered in [79].

The impossibility of a model-independent estimate of the background π+π−γFSR makes

it necessary to test the validity of the model used. This is possible in the large photon

angle region, because, there is a large amount of FSR. A consequence of the interference

between ISR and FSR are the forward-backward and the charge asymmetry of the pion

tracks. From the comparison between data and MonteCarlo, an upper limit on the validity

of the model can be established, at least in the region where the irreducible background is

negligible. In such a test, the presence of the scalar mesons cannot be neglected, having a

big contribution, which varies according to the model used to parametrize them (see §3.4)
The sQED model-dependence enters the analysis also in the estimate of the FSR-NLO

contribution. These events cannot be distinguished from the signal, but since the cuts

to reject the π+π−π0 events are built by closing the kinematics under the hypothesis of

being π+π−γ events, unavoidably a fraction of signal events is cut out. Therefore the mass

spectrum must be corrected for this effect. The only way to evaluate the correction is to

rely on Monte-Carlo.

In the presence of FSR-NLO we have also to take into account that the invariant mass

of the two pions system is different from the momentum transfer of the virtual photon

(Mπ+π− < sγ∗), being the quantity at which the cross section has to be determined in order

to be put into the (g− 2)µ integral. This difference (cured by the unshifting function in the
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small angle analysis) is taken into account according the MonteCarlo prediction, and the

mass spectrum will be corrected for it.

3.4 The forward-backward asymmetry as a test of sQED

The forward-backward asymmetry for a π+ (π−) is defined as:

AFB(Mππ) =
Mππ(θπ± > 90o) −Mππ(θπ± < 90o)

Mππ(θπ± > 90o) +Mππ(θπ± < 90o)
) (3.8)

It arises from the interference between ISR (π+π−γ representing an odd charge conjugation

state) and FSR and radiative φ decays, with π+π− in an even charge conjugation state.

The large photon angle region, given the big amount of FSR, is particularly suitable for the

study of this variable. The interest in the asymmetry is twofold. As mentioned above it

plays an important role in testing the model used to simulate FSR in MonteCarlo. On the

other hand, the asymmetry allows powerful tests of models describing radiative φ decays via

scalar mesons. The asymmetry is very sensitive to the models which describe the reaction

φ → Sγ → π+π−γ and within the models to the relative phase between sQED and the

direct φ decay amplitudes, as is shown in fig. 3.12. In this plot two different models are

used to simulate the radiative φ decay: the ’no structure’ model and the K+K− model

(see [64] and references there). The models includes both f0(980) and f0(600) intermediate

states in the radiative chain φ→ (f0(980)+f0(600)+γ) → π+π−γ. Big effects are predicted

according to the model.
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Figure 3.12: Forward-backward asymmetry for different radiative φ decay models compared with
the asymmetry calculated within the sQED (no scalar mesons). αφ is the phase between the sQED
amplitude and the radiative φ decay amplitude. The plot is taken from [64].

An issue in studying the asymmetry is to disentangle the various contributions which act
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simultaneously. If one takes into account that at low masses except for the effects of the

two scalar mesons with their relative phases, some extensions of sQED are predicted ([79]),

and that we have assumed that the contribution of φ → ρπ → π+π−γ is negligible, one

understands that the number of parameters which play a role becomes quite big (see §6).



Chapter 4

The signal selection

In this chapter a detailed description of the selection of the data sample is presented. The

full statistics of 240 pb−1 collected in the year 2002 is analyzed. The contamination of

π+π−π0 events and muon pairs is studied by means of a comparison between data and

MonteCarlo and dedicated kinematical cuts have been worked out in order to reject it.

Differently from the irreducible background the tail of π+π−π0 and µ+µ−γ events which

enter the data sample after the whole selection are subtracted according to the MonteCarlo

prediction. The data spectrum is obtained at the end of the chapter.

4.1 Selection of the sample

The event selection is based on the presence of two charged tracks with opposite curvature,

forming a vertex close to the interaction point, and one photon detected in the barrel of the

electromagnetic calorimeter. A particle ID method together with further kinematical cuts

allows for an almost background free sample of π+π−γ events.

The selection requirements are:

• the event has to satisfy the calorimeter trigger, i.e. at least two trigger sectors should

have been fired within the barrel;

• the event has to pass the offline reconstruction filter: it identifies background events

after the calorimeter cluster reconstruction has been finished and before the event

enters the CPU-intensive pattern recognition and track- and vertex fitting algorithms.

The filter acts on cosmic rays, machine background and Bhabha events at small polar

angles (Bhabha events with electrons and positrons emitted at large polar angles are

retained for measuring the integrated luminosity);

• there has to be one vertex connected to two charged tracks of opposite curvature. The

vertex has to be located within a cylinder of |zvtx| <7 cm and radius |x2
vtx + y2

vtx| <8

51
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cm in the transverse plane;

• both tracks have to fulfill the following requirements:

– a radius ρFH <50 cm of the first hit in the transverse plane of the drift chamber;

– a point of closest approach (PCA) of the track fit extrapolation to the beam line

ρPCA =
√

x2
PCA + y2

PCA <8 cm or zPCA <12 cm. The cut on the position of the

PCA is applied to clean the sample from machine background;

– a transverse momentum |~pT | >160 MeV or pz >90 MeV in order to reject tracks

spiralizing in the drift chamber;

• a cut in the plane ∆Emiss vs. Mtrk is applied, being ∆Emiss =
√

E2
miss − |~P 2

miss|,
with Emiss =

√
s−
√

|~pπ+ |2 +m2
π± −

√

|~pπ− |2 +m2
π± and |~Pmiss|2 = |~pφ−~pπ+ −~pπ− |2.

The requirements on the two variables are: (−220) < ∆Emiss < 120 MeV and

80 < Mtrk < 400 MeV. This cut prevents that the major part of π+π−π0 events

enter our data sample, rejecting more than 90% of them.

The events satisfying the requirements above, are requested to have both pions and at keast

one photon at large angles (50o < θγ,π < 130o). Moreover the photon is required to have

an energy above 50 MeV and we explicitly require also that M 2
ππ <0.85 GeV2 (given the

presence of two or more photon events, there is not a 1:1 relation between the energy of the

tagging photon and the invariant mass of the pions in the final state). This last request is

necessary in order to exclude as much as possible the contribution from the scalar meson

f0(980), which is very prominent in the high mass region (see fig. 3.10).

In the following we will call large angle the acceptance cuts:

• 50o < θπ± < 130o

• 50o < θγ < 130o

• at least one photon with Eγ >50 MeV

• M2
ππ <0.85 GeV2.

4.2 Background rejection

Three are the major sources of the reducible background of the analysis and for each of

them specific kinematic cuts have been worked out in order to get rid of them.

Before entering into the details of each cut, we show the logic of the analysis in the flux

diagram of fig. 4.1. The single cuts are applied in the same order as shown in the diagram.

In the rest of this paragraph each single cut will be explained in detail.

Radiative Bhabha events e+e− → e+e−γ are cut by the same particle identification

algorithm as used in the small angle analysis (§3.2), which distinguishes between pions
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Figure 4.1: Flux diagram showing the logic of the analysis.

and electrons. The probability of the single track to be identified as a pion varies between

97% and 99% depending on the track momentum and on its polar angle (there is actually

a drop for low momentum and at polar angles between 50o and 60o due to tracks that

spiralize in the drift chamber). The event kinematics at large angle is such that requiring

that only one track is recognised as a pion (as it was used in the small angle analysis) the

contamination of Bhabha events varies between 1% at threshold and 7% at high masses.

Viceversa asking that both tracks are identified as pions the efficiency for the full event

decreases by some percent depending on the M 2
ππ (see §5.2) but this assures the complete

rejection of Bhabha events from the data sample. Details of the particle ID estimation can

be found in [72] and [73].

The main difficulty in obtaining a clean sample of π+π−γ is to remove the huge π+π−π0

contamination, which is concentrated especially at low Mππ where the signal is statistically

poorer (see fig. 3.7(b)). While the π+π−π0 events need to be cut with a high efficiency, we

have to keep a high efficiency for signal events for M 2
ππ <0.4 GeV2. A kinematic fit has been

developed for this purpose, and two further kinematic cuts act on the events surviving the

fit. All these cuts are highly efficient in rejecting π+π−π0 , without affecting significantly

the signal. They are described in detail in the next paragraphs, in the same order as they

are applied in the selection procedure.
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4.2.1 Kinematic fit

The kinematic fit has been worked out based on the π+π−π0 hypothesis, with the aim to

reject events using the χ2
πππ of the fit. The fit has as inputs the curvature, the cotangent of

the polar angle θ and the azimuthal angle φ of the two tracks and the three components of the

momentum of the two photons. In case of more than two photons, the fit is repeated for each

couple, and the minimum value of χ2
πππ is chosen. Only a fraction of the data sample enters

the fit procedure which requires to photons to be present; LO-π+π−γ events which have

not suffered from reconstruction effects (i.e. cluster splitting producing a second photon)

are excluded a priori from the fit. It is important to keep under control the inefficiency of

the fit on NLO-π+π−γ(γ) events, which populates mainly the low mass spectrum region.

The twelve input quantities are constrained by 4-momentum conservation and by the fact

that the invariant mass of the two photons has to give the π0 mass, in total five constraints.

The covariance matrix of the twelve inputs is also passed to the fit.

The fit uses the least-squares method, according to which, given N experimental points of

a physical quantity, exists a theoretical model that predicts its value by some functional

dependence. Let be η the vector of the 12 variables, for which we have the measurements

y, with the errors constrained in the covariance matrix V (y) and f the equations of the

constraints. According to the least-squares principle the best estimates of the unknown η

are the ones for which hold simultaneously:

χ2(η) = (y − η)TV −1(y)(y − η) = minimum

f(η) = 0 (4.1)

Since the 12 input quantities are related to each other, a set of 5 Lagrange multipliers λ are

added and eq. 4.1 becomes:

χ2(η) = (y − η)TV −1(y)(y − η) + 2λT f(η) = minimum (4.2)

We have now 12+5 unknowns. The problem is solved equating to zero the partial derivatives

of χ2 with respect to all the unknowns:

∇η(χ
2) = −2V −1(y − η) + 2F T

η λ = 0 (12 equations)

∇λ(χ2) = 2f(η) = 0 (5 equations) (4.3)

where the matrix Fη (of dimension 5×12) is (Fη)ki = ∂fk

∂ηi
. The solutions of eq. 4.3 is found

iteratively: it is possible to show [80] that, if at the ν-th iteration the approximate solution

is given by the values ην , λν at the next step the values will be:

λν+1 = S−1
[

fν + F ν
η (y − ην

]

ην+1 = y − V F T
η λ

ν+1 (4.4)
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Figure 4.2: (a) χ2
πππ distribution for π+π−π0 and π+π−γ MonteCarlo events normalized to the

integrated luminosity of the data sample. (b) χ2
πππ distribution for the data sample.

where S = F ν
η V (F T

η )ν . The iteration stops if for each of the 12 variables the difference

between their values at the ν-th step and the ν-th+1 is smaller than 10−4, or in our fit

procedure after 20 iterations . At each step the constraints and their derivatives are re-

calculated according to the new values of the variables ηi, in order to be minimized together

with χ2, and their variation weighted with the covariance matrix is taken into account in

the estimate of the final values of ηi.

A pre-selection is applied to the events before entering the fit: we reject events which are out

from the acceptance region 40o < θπ,γ <140o and without at least one photon with energy

above 40 MeV. In 4.2(a) the distribution of χ2
πππ is shown for two MonteCarlo samples

of π+π−π0 and π+π−γ events, both normalized to the integrated luminosity of the data

sample. The fit distinguishes clearly between the signal and the π+π−π0 background, given

also the fact that only about 20% of the signal enters the fit, which is performed only in the

presence of two (or more) photons. In 4.2(b) the distribution of χ2
πππ for data is presented:

at this stage of the analysis, the data sample is still dominated by π+π−π0 events, therefore

the shape of the distribution at low values of χ2
πππ is very similar to the one from π+π−π0

(fig. 4.2(a)).

The effect of the fit can clearly be visualized by looking at the resolution of the variables

which enter in the minimization of the χ2
πππ. In fig. 4.3 the resolution of the curvature of

the π+ and of the photon energy are shown. For the curvature of the track the fit does not

have a big effect, since the experimental errors in the detection of charged tracks are very

small (see §2.2) and the fit therefore cannot change so much these quantities. The only

effect is to center the resolution around the zero (see 4.3(a)).

Completely different is the effect on the photon quantities as shown in fig. 4.3(b), where
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Figure 4.3: Resolution of the curvature of the charged track (a) and of the photon energy (b) before
(vertical blue filling) and after (red horizontal filling) the fit. The two distributions refer to a π+π−π0

MonteCarlo sample.

the photon resolution before (vertical blue filling) and after (red horizontal filling) the fit is

compared. The experimental error on the momentum of the photon is relatively big (∼20

MeV uncertainty for a photon of 100 MeV) and the fit can change significantly the inputs

from the photon in order to satisfy its constrains (closure of the kinematics). The resolution

after the fit is not only much more narrow, but it is also centered around the zero, while

before the fit it results shifted of some MeV due to some EmC miscalibration.

About 40% of π+π−π0 events are cut by rejecting events with a value of χ2
πππ <200. The

signal is almost unaffected by this cut, ecxept at low M 2
ππ, where a maximum inefficiency

of less than 2% is observed (see fig. 4.4(a)). The almost negligible loss of signal due to the

cut justifies the chosen value of χ2
πππ. A study has been performed moving sistematically

the cut on χ2
πππ up to 500: the inefficiency of π+π−γ events increases up to 6-7% while

the rejection of π+π−π0 background reaches 80%. We believe that the cut at 200 is a good

compromise between the rejection power and the small inefficiency of the signal. Infact it

allows to have an almost negligible signal iniefficiency, while it rejects a substantial part

of 3 pions events. The surviving π+π−π0 backgrond events will be rejected by two further

kinematical cuts described in the following.

The small inefficiency of the signal events is explained by the fact that at low masses the

emitted photon has high energies (higher than the π0 mass), and the momentum distribution

of the two pions from the signal can simulate pretty well the momentum distribution

observed in the π+π−π0 channel, as shown in fig. 4.4(b). The momentum distribution

of the π+ from a π+π−γ and from a π+π−π0 MonteCarlo simulations is plotted here at

low M2
ππ . The shape of the two distributions is quite similar in this mass spectrum region,

while is becomes completely different at higher values of M 2
ππ .



CHAPTER 4. THE SIGNAL SELECTION 57

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

1.002

0.3 0.4 0.5 0.6 0.7 0.8

π+π−γ MC

 M2
 ππ ( GeV2)

ε(
χ2 ππ

π)

(a)

P(π+) (MeV)

0.3 < M2 
ππ
 < 0.4  GeV2

π+π-γ - MC

π+π-π0 - MC

0

0.005

0.01

0.015

0.02

0.025

100 150 200 250 300 350 400 450 500

(b)

Figure 4.4: (a) Inefficiency of the cut on χ2
πππ at 200 for a MonteCarlo sample of π+π−γ. (b)

Momentum distribution of the positive pion for π+π−π0 (open blue squares) and π+π−γ (full red
circles) events, both from MonteCarlo simulations, in the mass range 0.3< M 2

ππ < 0.4 GeV2.

4.2.2 Trackmass

In order to remove the background from the µ+µ−γ channel and from the surviving π+π−π0

events, the kinematical variable trackmass defined in eq. 3.4 has been used. In the plane

M2
ππ vs. mtrk of fig. 4.5(a) several populations are recognisable: around mtrk = mµ the

µ+µ−γ events are concentrated mainly at high and at very low M 2
ππ. Around mtrk = mπ the

signal is clearly visible, with an increasing number of events around the ρ mass, due to the

radiative return. The upper left part of the plane appears empty because of the cut on the

plane ∆Emiss vs. mtrk introduced in §4.1. From this region a residual fraction of π+π−π0

background survives our cut, which corresponds to the curve superimposed in fig. 4.5(a).

Similarly, in the lower part of the plane, a tail from the µ+µ−γ channel contaminates our

selected sample. In fig. 4.5(b) the same scatter plot of the data sample is shown: the

three contributions, signal plus π+π−π0 and µ+µ−γ events, are clearly recognisable in the

sample and the curves again describe the cut. The efficiency of the trackmass for muons

is M2
ππ-dependent, varying from a rejection of ∼80% at high M 2

ππ up to more than 90% at

threshold; in addition it removes also further ∼45% of π+π−π0 events, that have survived

the χ2
πππ cut. For the signal the only effect is to lose a few percent of the sample around

M2
ππ=0.3 GeV2. This effect is visible in fig. 4.6, where the inefficiency of the cut evaluated

by MonteCarlo is shown.
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Figure 4.5: (a) Event distribution in the plane M 2
ππ vs. mtrk at large angle for signal (in red)

and π+π−π0 (in green), µ+µ−γ (in blue) background from MonteCarlo, after having required the
particle ID. The three channels are normalized to the data luminosity. The line shows the cut used
to select the signal. (b) The same as in (a) for data.

4.2.3 The Ω angle

Even after the cuts described above, at low M 2
ππ the contamination with π+π−π0 events

in the data sample is still ∼40%. In order to reduce it further, a dedicated cut has been

worked out. It uses the angle Ω between the missing momentum and the momentum of the

detected photon:

Ω = acos

(

~pmiss · ~pγ

|~pmiss||~pγ |

)

(4.5)

The Ω distribution peaks at zero for the signal, and it is off-zero for multi-photon events.

Therefore it is a very powerful tool to separate signal from π+π−π0 events, as can be seen

in fig. 4.7(a). Here the Ω-angle distribution is plotted for a MonteCarlo sample of π+π−γ

(in red) and of π+π−π0 events (in yellow). The distribution is obviously broadened for the

π+π−π0 background, being quite narrow for the signal. It should be emphasized that the

width of the signal peak of fig. 4.7(a) is not only due to resolution effects but principally

due to NLO signal events. At high values of Mππ this effect becomes larger, due to a bigger

impact of the NLO-ISR-photons. To take into account this broadening, a M 2
ππ-dependent

cut has been applied in the plane M 2
ππ vs. Ω. The cut has been fixed such as to reject as

much π+π−π0 events at low M2
ππ as possible (where at this stage of the analysis they are

concentrated) with the minimum loss of the signal. The actual cut is shown in the scatter

plot of fig. 4.7(b): in black the π+π−π0 population is displayed, and in red the signal one.

Is is possible to see the radiative tail of the signal, distinguishable by the large value of the
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Figure 4.6: Efficiency of the cut on trackmass as a function of M 2
ππ evaluated from a π+π−γ

MonteCarlo sample.

Ω-angle. In principle, it would be possible to cut harder at low M 2
ππ without loosing much

of the signal, but in order to avoid large systematic errors due to this cut, we prefer to keep

as much as possible of the signal. For more details we refer to §5.3.3.
The cut results in a rejection of more than 90% of the π+π−π0 events which survived

the previous cuts, with a loss of only a few percent of the signal at the threshold up to a

maximum of ∼10% at high Mππ. In fig. 4.8 the efficiency of this cut on a MonteCarlo sample

of π+π−γ events is displayed: the drop of the efficiency is due to the already mentioned

two-photons events (black points). Using a π+π−γ MonteCarlo sample (red full circles)

which simulates one-photon π+π−γ events (ISR-LO and FSR-LO), the efficiency of the cut

is almost flat from 0.5 GeV2 up to the end of the spectrum. If we include NLO-events in the

simulation, the efficiency goes down by a few percent. The reason is that the Ω-angle is built

by closing the kinematics under the hypothesis of one photon only. Double photon events

have a relative high probability to be rejected, first of all at high M 2
ππ where NLO-ISR are

quite abundant. Moreover part of the NLO-events at low masses are cut by the trackmass

cut, which is more rigid at low M 2
ππ (and is applied one step earlier), making the relative

concentration of NLO events larger at high M 2
ππ .

4.3 Estimate of the residual background

The amount of the residual background at the end of the selection procedure is estimated

in a first stage from MonteCarlo normalizing the samples to the integrated luminosity of

data. In a second stage we will check the validity of the simulation in a detailed comparison
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Figure 4.7: (a) Ω distribution inclusive in Mππ for π+π−γ (in red) and π+π−π0 events (in yellow),
both from MonteCarlo. (b) Event distribution in the plane Ω vs. M 2

ππ. Red is for π+π−γ and black
for π+π−π0 events (from MonteCarlo). The line represents the cut applied.

data-MonteCarlo for some selected variables and corrections -if needed- will be applied. We

anticipate here the results of such checks, i.e. that the MonteCarlo for the µ+µ−γ events

describes quite precisely the data (§4.3.2), while the simulation of the π+π−π0 events needs

to be rescaled in order to give a good prediction (§4.3.1).
For both channels µ+µ−γ and π+π−π0 the pollution in the final data sample is evaluated

looking at the number of MonteCarlo events which survive the chain of the selection cuts.

The contamination from π+π−π0 events is maximum at low masses, with a percentage of

13-14% at M2
ππ =0.25 GeV2 down to the per-mil level at higher masses, while the muon

pairs contamination arrives at up to 10% at low and high masses. The two contaminations

are shown in fig. 4.9 where the relative amount of π+π−π0 and µ+µ−γ after the whole

selection are plotted respectively.

An overall check of the background subtraction can be done looking at the trackmass

distribution for data and MonteCarlo at the end of the selection and comparing the two.

This variable is particularly suitable for this kind of controls, since the signal and the several

background channels are differently distributed. More significant is the comparison if done

in slices of M2
ππ in such a way to take into account the different populations of background

in the different M2
ππ regions. Some examples are shown in fig. 4.10, for different slices of

M2
ππ. Both the muon-peak and the π+π−π0 tail (above the π mass) are well reproduced by

MonteCarlo.



CHAPTER 4. THE SIGNAL SELECTION 61

π+π−γ - NLO Monte-Carlo

π+π−γ - LO Monte-Carlo

0.8

0.825

0.85

0.875

0.9

0.925

0.95

0.975

1

1.025

1.05

0.3 0.4 0.5 0.6 0.7 0.8

PSfrag replacements

M2
ππ [GeV2]

εΩ
)

Figure 4.8: Efficiency of the Ω-angle cut evaluated for two different π+π−γ MonteCarlo samples. In
full black points a FSR-NLO MonteCarlo production is used while in full red circles the efficiency is
evaluated with FSR-LO MonteCarlo production.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.3 0.4 0.5 0.6 0.7 0.8

Residual π+π−π0

contamination

PSfrag replacements

M2
ππ [GeV2]

(a)

0

0.02

0.04

0.06

0.08

0.1

0.3 0.4 0.5 0.6 0.7 0.8

Residual µ+µ−γ
contamination

PSfrag replacements

M2
ππ [GeV2]

(b)

Figure 4.9: Contamination in the final data sample of π+π−π0 (a) and of µ+µ−γ (b) background
at the end of the selection.
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Figure 4.10: Trackmass distribution in slices of M 2
ππ for data and MonteCarlo (signal and residual

background). Both background and signal MonteCarlo are normalized to the integrated luminosity
of data.

4.3.1 π+π−π0 contamination

As anticipated in the introduction the π+π−π0 MonteCarlo sample needs to be rescaled. For

estimating the scale factor, in a first step we select a sample of data dominated by π+π−π0

events, and in a second stage we rescale our π+π−π0 MonteCarlo in order to reproduce the

data.

The region of trackmass above the π-peak is populated by the tail of π+π−γ events (NLO-

events where the emission of the second photon tends to shift the value of the trackmass

towards the right with respect to mπ±) and in bigger amount by π+π−π0 events. In

fig. 4.11(a) the trackmass distribution from mπ± up to ∼160 MeV is shown for π+π−γ data

and MonteCarlo normalized to the luminosity of data (for a bin of M 2
ππ). It is evident that

in the region Mtrk >150 MeV there is an excess to events of data due to π+π−π0 events,

which becomes dominant above 155 MeV. The fact that the Mtrk distribution decreases

rapidly at ∼160 MeV is due to the the ∆Emiss cut, a variable which is highly correlated

with Mtrk.

Under the assumption that the excess in data in the region 150< Mtrk <160 MeV is due

to π+π−π0 events only, subtracting the π+π−γ events from the data sample we should

remain with the π+π−π0 contamination still present in the data. We can check then the

prediction of the π+π−π0 MonteCarlo by comparing the Mtrk distribution in the range

150÷165 MeV with data. The comparison is shown for two different bins on M 2
ππ in the

two lower plots of fig. 4.11(a). The black full points represent the data spectrum after the

π+π−γ subtraction and in blue (triangles) the MonteCarlo prediction for π+π−π0 events

normalized to the luminosity of data. In both the examples shown here, we observe that the
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Figure 4.11: (a) Comparison between data (full black points) and π+π−γ MonteCarlo (open red
circles) in the trackmass distribution between 130 and 165 MeV. (b) Trackmass distribution above
130 MeV for data subtracted from π+π−γ events (full black points) compared with the π+π−π0

MonteCarlo without the rescaling (pink triangles, ’B.R.’) and after the rescaling (blue triangles,
’A.R.’).

π+π−π0 MonteCarlo prediction underestimates the amount of these events which populate

the final data sample. In order to have a realistic estimate from MonteCarlo, we rescale this

latter to reproduce the data points of fig. 4.11(b). The rescaled MonteCarlo is shown in

pink triangles, which are in a reasonable agreement with data. The scale factor is evaluated

for each bin of M2
ππ: it is almost flat in M2

ππ (with the exception of one bin) and is equal

to about 60%. The values for each bin of M 2
ππ are listed in the tab. 4.1. In this procedure

all the selection cuts are applied except the mtrk cut. Part of the events which have been

used in the estimate of the scale factors are cut by the mtrk cut (fig. 4.5). The procedure is

then based on the assumption that the tail of π+π−π0 events which enters the final sample

behaves as the sub-sample used for evaluating the scale factor.

In order to evaluate the systematic error associated to the π+π−π0 subtraction we have again

used the sub-sample in the plane Mtrk >150 MeV and M 2
ππ < 0.45 GeV2. By comparing

the Ω-Angle distribution obtained from data (subtracted the tail of the π+π−γ events) and

from the π+π−π0 scaled-MonteCarlo 1 we find a limit in the MonteCarlo description. The

comparison (shown in fig. 4.12) is done at the end of the analysis cuts, included the cut on

the Ω-Angle. This explains the drop at 4o of the distribution which is not sharp because

the Ω-cut is M2
ππ-dependent. In the lower plot of fig. 4.12 the ratio between data and

MonteCarlo is shown. Even if statistically limited the agreement is good. The ratio has

1The Ω-Angle distribution here refers to events with M 2
ππ < 0.45 GeV2: the scale factor to correct the

π+π−π0 MonteCarlo is the average of the scale factors for the single bins (tab. 4.1) up to 0.45 GeV2
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M2
ππ [GeV2] Scale Factor

0.085÷0.2 1.65
0.2÷0.25 1.4
0.25÷0.3 1.6
0.3÷0.35 1.6
0.35÷0.4 1.65
0.4÷0.45 1.7
0.45÷0.5 1.6
0.5÷0.55 1.6

Table 4.1: Scale factor applied to the π+π−π0 MonteCarlo for different bins of M 2
ππ.

been fitted with a straight line and the result of the fit (2%) multiplied by the contamination

of the π+π−π0 events in the data sample (fig. 4.9(a)), gives the systematic error associated

to the π+π−π0 background subtraction. The biggest π+π−π0contamination is ∼15% at

low M2
ππ where an error of 0.3% on this background channel is estimated. The π+π−π0

background decreases up to become negligible on the ρ-peak. Tab. 4.2 reports the systematic

error associated to the π+π−π0 subtraction.

M2
ππ range [GeV2] π+π−π0 contamination Systematic error

0.25÷0.3 15% 0.3%
0.3÷0.35 10% 0.2%
0.35÷0.4 7% 0.1%
0.4÷0.45 5% 0.1%
0.45÷0.5 3% 0.06%
0.5÷0.55 2% 0.04%
0.55÷0.6 <1% <0.02%

Table 4.2: For the different M 2
ππ intervals (first column) the contamination of π+π−π0 events in the

data sample (second column) is listed together with the its systematic error (third column).

4.3.2 µ+µ−γ contamination

For the evaluation of the muon pairs background a similar work has been done. As in the

case of π+π−π0 background, firstly we have selected a sample of µ+µ−γ events from data,

then we have compared it with the MonteCarlo simulation.

Being the trackmass peaked at mµ for µ+µ−γ and at mπ for π+π−γ, it allows to separate

µ+µ−γ from π+π−γ events in the data (neglecting the tails of the two which overlap each

other). Running the full analysis requiringMtrk <120 MeV, we can select a sample of µ+µ−γ

from the data sample. After subtracting the tail of π+π−γ events, we have compared the

M2
µµ spectrum with the one from MonteCarlo (both µ+µ−γ and π+π−γ MonteCarlo are

normalized to the integrated luminosity of the data). In the upper plot of fig. 4.13(a) we see
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Figure 4.12: Ω-angle distiution for data and MonteCarlo selected with M 2
ππ <0.45 GeV2 and

mtrk >150 MeV in the upper plot and their ratio in the lower plot.

the comparison of M 2
µµ between data and MonteCarlo in the region Mtrk <120 MeV and

in the lower one is the ratio between the two. The agreement data-MonteCarlo is excellent

up to 0.55 GeV2, while we observe discrepancies of up to 5% at higher masses. Such a

discrepancy might be due to some differencies in efficiencies between data and the µ+µ−γ

MonteCarlo simulation.

In order to give a systematic uncertainty of the subtraction of this background, we have

looked again at the trackmass distribution (from 80 to 120 MeV) in the different slices ofM 2
ππ

and for each of them we have counted the number of events in data and in MonteCarlo. The

relative difference in the i-th bin multiplied by the µ+µ−γ contamination in the particular

bin gives the systematic error (in that bin of M 2
ππ ):

εµµγ
i (M2

ππ) =
NData

i −NMC
i

NData
i

× Fi(µµγ) (4.6)

where NData
i and NMC

i are the number of events in the µ-peak for data and MonteCarlo in

the i-th bin and Fi(µµγ) is the contamination of µ+µ−γ events in the data sample.

In fig. 4.13(b) some examples of the trackmass distribution for data and MonteCarlo are

presented. As for the mass spectrum, the tail of π+π−γ according to MonteCarlo prediction,

has been subtracted. These plots confirm the result shown in fig. 4.13(a), i.e. looking at

the trackmass distribution a good agreement is observed at low masses while a difference

of few percent is present at high masses.

For each bin of M2
ππ the relative difference observed in the muon peak between data and

MonteCarlo is listed in tab. 4.3, together with the µ+µ−γ contamination in the data

sample at the end of the selection and the resulting systematic errors. The estimate of the

systematic error of the muons subtraction is the product of the total contamination times

the difference data-MonteCarlo. In this procedure there is implicitly the assumption made
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Figure 4.13: (a) Mass spectrum distribution at large angle for µ+µ−γ MonteCarlo (open red squares)
compared with one from data (full black points) for Mtrk <120 MeV (upper plot) and their ratio
(lower plot). (b) Trackmass distribution for µ+µ−γ MonteCarlo (open red squares) and for data
(full black points) for Mtrk <120 MeV in different slices of M 2

ππ . Both in (a) and in (b) the residual
π+π−γ events have been subtracted from the data sample.

M2
ππ range (GeV2) Difference data-MC µ+µ−γ contamination Systematic error

0.25÷0.3 0.6% 6.0% 4×10−4

0.3÷0.35 1.0% 5.0% 5×10−4

0.35÷0.4 1.3% 4.0% 5×10−4

0.4÷0.45 0.3% 3.0% 9×10−5

0.45÷0.5 0.2% 2.0% 4×10−5

0.5÷0.55 2.0% 1.5% 3×10−4

0.55÷0.6 1.0% 1.3% 1×10−4

0.6÷0.65 1.0% 1.8% 2×10−4

0.65÷0.7 1.3% 3.0% 4×10−4

0.7÷0.75 5.0% 5.0% 3×10−3

0.75÷0.8 5.0% 7.0% 4×10−3

0.8÷0.85 5.0% 8.0% 4×10−3

Table 4.3: For different M2
ππ intervals the systematic error on the µ+µ−γ events subtraction (third

column) is obtained as the relative difference between data and MonteCarlo estimated on the µ+µ−γ
peak of the trackmass (first column) multiplied by the muon contamination (second column).

that in the tail of the muon distribution the same difference between data and MonteCarlo

is present as for mtrk <120 MeV. In order to check the validity of this assumption we

have selected a different sample of data, by applying all the analysis cut with the only

difference in the mtrk cut. Instead of requiring the standard mtrk cut (the curves of

fig. 4.5) we have selected events with trackmass between 115 and 130 MeV. This sub-

sample is populated both by muon pairs and by π+π−γ events with roughly the same
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Figure 4.14: Comparison of the trackmass distribution between data and MonteCarlo for events
with 115 < Mtrk < 130MeV. The data (full black points) have been subtracted from π+π−γ and
π+π−π0 (according to MonteCarlo). The ratio between data and MonteCarlo is shown in the lower
plot.

weight and a big part of it passes our selection. By subtracting the π+π−γ events according

to the MonteCarlo prescription and the small tail of π+π−π0 events, we remain with a

sample of µ+µ−γ events selected by data, that can be compared directly with the µ+µ−γ

MonteCarlo. Such a comparison is shown in fig. 4.14: the full black points represent

the data subtracted of π+π−γ and π+π−π0 events and the open red circles stand for the

µ+µ−γ MonteCarlo. The lower plot, showing the ratio between data and MonteCarlo of the

trackmass distribution, confirms the difference of few percent observed in the complementary

sub-sample (Mtrk <120 MeV, lower plot of fig. 4.14).

4.4 Large angle spectrum

Applying the selection of §4.1 and §4.2 to the 242.7 pb−1 of data collected during the year

2002, the distribution of π+π−γ events shown in fig. 4.15 is obtained. The background events

surviving the analysis cuts (see description above), are subtracted from the data sample.

The background rejection (first of all of the π+π−π0 channel) is performed using both drift

chamber and calorimeter information. The trackmass cut (built only with information from

the drift chamber), which cleans the data sample in the small angle analysis, has to be

supplemented in the large angle. It is the tagging of the photons, namely the use of the

calorimeter information, which allows to perform the kinematic fit and to cut on the Ω

angle, and consequently to remove the π+π−π0 contamination from the data.

This argument obviously does not apply to the irreducible background, which is still included
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in the spectrum of fig. 4.15. The distribution shows the event yield after the application

of the acceptance cuts (50o < θπ,γ < 130o). The ρ peak and the ρ − ω interference are

clearly visible, even without any unfolding for experimental effects, demonstrating the high

momentum resolution of the KLOE drift chamber.

It is also clearly visible that the spectrum reaches the threshold 2π. We have illustrated in

§3.3.2 and §3.4 which are the issues for a precise measurement down to the 2mπ threshold.

Several effects act simultaneously in this region, which are very difficult to disentangle. This

effects are more easily understandable using the data that KLOE has collected in 2006 at

center-of-mass energy
√
s < mφ (off-peak data, see §7.2). The scalar contribution is very

much suppressed in this sample as well as the π+π−π0 contamination (reduced to more

than 90%). With this data it will be easier to explore the threshold region, and it is very

likely that a more precise measurement can be performed.

The large angle analysis on-peak, as described above, allows however to repeat the pion

form factor measurement in the same energy range covered by the small angle analysis,

namely in ρ-peak region. Additional data in this region are needed, given the discrepancy

between the e+e−- and the τ -data and the not perfect agreement among the different e+e−

experiments.

During the development of this work the theoretical knowledge of the scalar mesons has

improved considerably. The data sample presented here becomes indeed important to check

models which have been developed for these processes. A work in this direction has been

already started and it will be described in §6.2.2.1. We limit ourselves in the context of this

thesis to the mass region where the contribution of the scalar mesons is small, i.e. in the

mass range 0.5÷0.85 GeV2. The experimental work, such as the study of the efficiencies,

evaluations of the systematic errors, have been performed in the wider region 0.25÷0.85

GeV2.
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Figure 4.15: π+π−γ event yield as a function of M 2
ππ in bins of 0.01 GeV2 in the fiducial volume and

after the selection cuts and the subtraction of the reducible background. The integrated luminosity
of the data sample is L = 242.7 pb−1.



Chapter 5

Evaluation of efficiencies and associated
systematics errors

In the present chapter the evaluation of the total analysis efficiency is presented. The aim

is to correct the mass distribution for the signal efficiency of each individual cut applied in

the analysis and for potential losses during the event reconstruction, such as tracking and

EmC clustering.

The strategy is to use an effective global efficiency taken from MonteCarlo and in case of

differences between data and the simulation, we correct for such a difference. In the effective

global efficiency we take into account several effects:

• the loss of signal events due to the selection cuts;

• the correction for the geometrical acceptance;

• the efficiency for the FSR-NLO events;

• the correction for the shifting due to FSR-NLO events;

• the rejection of the FSR-LO events;

• the correction for reconstruction effects.

This strategy is possible thanks to the a special version of the PHOKHARA (Ω version)

event generator, in which is possible to recognise whether a photon is from an ISR- or

from an FSR-process. We remind the reader of the presence of two kinds of Final State

Radiation: FSR-LO where a single photon is emitted in the final state and FSR-NLO where

simultaneously a photon in the initial state and another one in the final state are radiated.

The first process represents a background, with sγ∗ = m2
φ not lowering the center-of-mass

energy of the hadronic system. The second kind of events contributes to the signal, because

the invariant mass of the intermediate photon is lowered with respect to the center of mass

energy. Therefore we need to evaluate the inefficiency of the analysis cuts for these events

70
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and to correct for it. The loss of this kind of events is shown in fig. 5.1(a). In this plot

the spectrum for NLO-events is plotted, after the acceptance (red points) and after the

whole selection cuts (open blue circles). The difference between the two distributions (that

reaches up to 20%) is due to the cuts to reject the background.

In both cases of FSR (-LO and -NLO) the experimental quantity that we measure M 2
ππ

is shifted with respect to the transfer momentum of the virtual photon (M 2
ππ 6= sγ∗), and

the shift is related to the energy of the photon in the final state. Since in the Ω version of

PHOKHARA we know whether the photons come from the initial or the final state, we can

build directly the quantity sγ∗ and evaluate the ratio between the M 2
ππ distribution and the

one in the variable sγ∗ . This is done in the lower plot of fig. 5.1(b): we observe that the

effect is relatively large, due to the big amount of NLO events at large angles.

Correcting for such a shift we automatically cut out the FSR-LO events. In fact if one looks

at the spectrum as a function of sγ∗ rather than of M 2
ππ after the correction, the FSR-LO

events are peaked at m2
φ, which is beyond the region of our interest (M 2

ππ <0.85 GeV2).

The correction for the reconstruction effects are also taken from MonteCarlo. The event

generator PHOKHARA-Ω has been inserted into the KLOE detector simulation. For each

event we have both the true information and the reconstructed ones for pions and photons.

Technically the effective global efficiency has been obtained according to the formula:

ε(i) =
dN rec(i)/dM2

ππ[50o < θγ,π± < 130o, end of analysis]

dN true(i)/dsγ∗ [0o < θγ,π± < 180o]
(5.1)

for the i-th bin.

The result of this procedure is shown in the upper plot of fig. 5.1(b), where the effective

global efficiency is plotted as a function of M 2
ππ.

For each single analysis cut k we have compared the efficiency from data and MonteCarlo;

in case they are the same, no correction is needed, because the correction for that specific

step k is automatically included in the effective total efficiency. If a difference is found at

step k, we have to correct the effective global efficiency from MonteCarlo with the ratio

data over MonteCarlo of the efficiency of the step k. In this way we correct for the effects

which are not so precisely reproduced by MonteCarlo.

In the next paragraphs the evaluation of the individual efficiencies will be described, while

the rest of the chapter is dedicated to the evaluation of the systematic errors of the several

cuts applied.

In the following when we will refer to standard analysis, we mean the full set of cuts described

in the previous chapter, i.e. as shown in the flux diagram of fig. 4.1.

5.1 The evaluation of the efficiencies

In the next paragraphs we will present the evaluation of the trigger, of the tracking and of

the vertex efficiency. For the tracking we use a control sample of π+π−π0 events while the
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Figure 5.1: (a) Spectrum distribution for FSR-NLO events (only) after the acceptance cuts (full red
points) and after all the analysis cuts (open blue points). (b) Upper plot: effective global efficiency

for π+π−γ events; lower plot: radiative correction due to to the shift from M 2
ππ to sγ∗ . All three

plots are evaluated from MonteCarlo (PHOKHARA-Ω).

trigger and the vertex efficiency are evaluated directly on a π+π−γ sample. In all the three

cases however a set of cuts will be applied in order to clean the sample as much as possible.

These cuts are chosen in a way not to introduce any bias in the selected sample, and in case

some small ones are introduced their effect is taken into account in their systematic error.

As mentioned above an effective global efficiency by MonteCarlo will be used to obtain the

final spectrum. For all three cases we compare the efficiency evaluated by MonteCarlo with

the one obtained by data and we correct the effective global efficiency accordingly.

5.1.1 The trigger efficiency

During the data acquisition of the sample that has been used in the present analysis, only

the calorimeter trigger was used. As said in 2.2.3 an event to be acquired has to fire at

least two trigger sectors. They have to be located either both in the barrel, or in the two

endcaps or one in the barrel and the other in one of the endcaps.

We use directly π+π−γ events for the evaluation of the trigger efficiency with both pions

and photons at large polar angles and at least one photon with an energy above 40 MeV.

The events have to pass all the standard analysis cuts, to obtain a clean sample of π+π−γ.

Since the events are detected at large angles the two endcaps are not involved. We have

checked that selecting events with the polar angles of the tracks in the range 50o-130o,
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the fraction of events that fire clusters in the endcaps due to the track bending is on the

sub-per-mil level.

The strategy for the evaluation of the trigger efficiency of the entire event, is in a first step

to estimate the trigger efficiency of a single particle. Once evaluated the single particle

trigger efficiency, we can combine them to obtain the efficiency for the entire event.

Trigger 
Sector−1

Trigger 
Sector−2

−

γ

+π

π

Figure 5.2: Sketch of the method for the evaluation of the trigger efficiency: a π− and a γ are shown
triggering the event, giving us the possibility to look for the trigger sector fired from the π+.

The final state is made out of three particles, π+, π− and γ; we use two of them in order

to obtain an unbiased sample for the third. For example, to evaluate the efficiency for the

π+, we look at a sample in which the event has been triggered by the π− and the γ. In

this sub-sample we check whether one or more trigger sectors are fired by the π+. A sketch

is presented in fig. 5.2, where a π− and a γ have fired one trigger sector respectively. The

event is therefore triggered by them, and we can look in an unbiased way at the sector

triggered by the π+. The procedure is repeated using a MonteCarlo sample, in order to

look for differences with respect to data. The study has been done with ∼40 pb−1 of 2002

data and ∼50 pb−1 of MonteCarlo. The probability that one single particle fires at least one

trigger sector (under the condition that the other two have triggered the event) is presented,

both for data and MonteCarlo in fig. 5.3. We obtain an overall good agreement between

the two samples, being the data efficiencies in some cases even higher that MonteCarlo.

The different trigger response for π+ and π− is due to their different interaction in the

electromagnetic calorimeter.

The same comparison has been done in bins of the tracks polar angle: the result is presented

in fig. 5.4(a) for the π+ and in fig. 5.4(b) for the γ. Again a good agreement between data

and MonteCarlo is found. From data we obtain an efficiency for the π+ above 96% for

P (π+) >270 MeV. Only in the very first bin, for 50o < θπ+ < 60o (and the complementary

slice on the other side of the detector), the efficiency has a drop down to 80% for low

momenta (P (π+) <250 MeV). This is due to the bending by the magnetic field of low

momentum charged particles towards the intersection barrel-endcaps , a less efficient region.
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Figure 5.3: Probability that a third single particle π+, π− and γ has fired at least one trigger sector,
if the other two have triggered the event, both from data (close blue circles) and MonteCarlo (open
red triangles).

For the photon this study confirms that the trigger efficiency is always above 99%, in each

angular region.

In order to obtain the trigger event efficiency, we combine the single particle efficiencies of

fig. 5.3. For the charged particles this probability is never below 96% for momenta bigger

than 270 MeV, while for the photon it is above 99% in almost the whole range. We can

conclude as a very conservative estimate that the individual probabilities for π+, π− and γ

are above 95%. Applying binomial statistics, we find that the probability that two out of

three particles with probabilities bigger than 95% each, fail is below 0.1%. This estimate is

even conservative, since for each of the three particles the trigger probability is higher than

95% in most of the range. Only for very low energy photons and low momenta pions the

individual probabilities are lower, but the dynamics of the event makes this combination

extremely unlikely. From a MonteCarlo simulation we have estimated that the probability

to have simultaneously both pions with P (π±) <250 MeV and the photon with E(γ) <200

MeV is at the sub-per-mil level, i.e. negligible.

We can conclude that the trigger inefficiency for π+π−γ events at large polar photon angle

is below 10−3. No correction on the final spectrum for the trigger is therefore required. The

negligible inefficiency of the trigger selection on the data is due to the use of a third level

of trigger (see §2.2.3), which was absent in 2001. This recovers almost all the signal events

lost due to the cosmic ray veto.

5.1.2 The tracking efficiency

As for the trigger efficiency, the strategy is to evaluate firstly the single track efficiencies,

and to combine them in a second step to get the tracking efficiency for the whole event.



CHAPTER 5. EFFICIENCIES AND SYSTEMATICS ERRORS 75

0.7

0.8

0.9

1

200 250 300 350 400 450 500

0.9
0.925

0.95
0.975

1

200 250 300 350 400 450 500

0.9
0.925

0.95
0.975

1

200 250 300 350 400 450 500

P(π+) (MeV)

MC
Data50o(120o) <θ(π+)< 60(130o)

P(π+) (MeV)

MC
Data60o(110o) <θ(π+)< 70o(120o)

P(π+) (MeV)

MC
Data70o(100o) <θ(π+)< 80o(110o)

P(π+) (MeV)

MC
Data80o(90o) <θ(π+)< 90o(100o)

0.9
0.925

0.95
0.975

1

200 250 300 350 400 450 500

(a)

0.9
0.925

0.95
0.975

1

50 100 150 200 250 300 350 400 450 500

0.9
0.925

0.95
0.975

1

50 100 150 200 250 300 350 400 450 500

0.9
0.925

0.95
0.975

1

50 100 150 200 250 300 350 400 450 500

E(γ) (MeV)

MC
Data50o(120o) <θ(γ)< 60(130o)

E(γ) (MeV)

MC
Data60o(110o) <θ(γ)< 70(120o)

E(γ) (MeV)

MC
Data70o(100o) <θ(γ)< 80(110o)

E(γ) (MeV)

MC
Data80o(90o) <θ(γ)< 90(100o)

0.9
0.925

0.95
0.975

1

50 100 150 200 250 300 350 400 450 500

(b)

Figure 5.4: Probability that the π+ (a) and the γ (b) fires at least one trigger sector. The probability
is shown both for data (closed blue circles) and MonteCarlo (open red triangles).

For the evaluation of the single track efficiency, a control sample of π+π−π0 has been

selected, in which only one track is required. Then we look for the presence of a second

track, the so-called test track. The first part of the present paragraph describes the selection

of the control sample, in the second one we derive the tracking efficiency using such a sample.

The kinematic fit described in §4.2.1 is used for the π+π−π0 selection. It is applied on a

sample of data sample of ∼2 pb−1 (the cross section of the decay φ → π+π−π0 is 480

nb). This sample is composed by runs taken in different periods of 2002, in order to take

into account eventual variations of the run conditions. Since we explicitly require only

one track (called tagging track in the following), we compute the missing momentum as an

input for the kinematic fit using the momentum of the tagging track and the momenta of

the two photons from the π0 decay. The sketch of fig. 5.5 represents the topology of the

events that we want to select. The fit is performed only if both the tagging track and the

missing momentum have a polar angle between 40o and 140o, while the two photons are

required to be detected either in the barrel or in the endcaps of the calorimeter (between

21o and 159o); only events with χ2
πππ <5 are accepted in order to have a very clean sample

of π+π−π0 events. Since this efficiency is used to correct the final spectrum, exactly the

same cuts which are asked for in the standard analysis have to be applied also here. The

set of these cuts is listed below:

• ρFH >50 cm in order not to accept tracks originating far away from the interaction

point;

• ρPCA <8 cm and |zPCA| <12 cm: a sizable fraction of tracks which have been split
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during the tracking algorithm have the Point of Closest Approach (PCA) outside this

cylinder. The real length is short in such a case and for this reason the procedure of

extrapolation works less precisely;

• association of the tagging track with the calorimeter clusters, since this request in the

standard analysis is done at the level of the particle ID;

• |pz| >90 MeV or pT >160 MeV, as in the standard analysis to reject low momenta

tracks which spiralize within the drift chamber.

In the standard analysis the cut on |pz| >90 MeV and pT >160 MeV is applied to both

tracks. For the tracking efficiency evaluation we also apply it to the missing momentum,

which is supposed to have the same momentum as the test track, if this latter exists.

Demanding the cuts mentioned above is not enough to clean completely the sample from

background.

π0

associated 
cluster

<50cmρ
FH

<8cmρ
PCA

|Z      |PCA <12cm

Missing
Momentum

Θmiss >50
0

2 prompt neutral clusters

from

Tagging track

Figure 5.5: Scheme of the selection of the data sample used to evaluate the tracking efficiency.

We then apply two further cuts in order to arrive at a background-free sample of π+π−π0

events. These cuts must be chosen not to introduce a bias to the tracking efficiency. In the

following such cuts are listed:

• the maximum difference between the invariant mass of the two photons before the fit

and the mass of the π0 has to be 12 MeV: |Minv(γγ) −mπ0 < |12 MeV. The reason

for this cut is that the 3π-fit works in this case with only one track, instead of two,

and the errors on the missing momentum are less rigid than the ones for the detected

track. Therefore in some cases the fit can converge and give a good value of χ2
πππ even

if the event is not a clear π+π−π0. The events cut out by this request (few percent of

the sample) have one of the two photon at low energy. The error on the z component

of the photon momentum is energy dependent (∼ 1/E) and the lower is the energy,

the worse is its determination;
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• cut in the plane EEmC/|~p| vs.β: a part of the events with a good χ2
πππ are radiative

Bhabha events. The likelihood particle ID which is used in the standard analysis

cannot be used, since it requires the existence of a vertex, implying therefore the

presence of two tracks. The cross section of Bhabha is so high that the probability

that some of these events survive the full chain of cuts is non zero. In order to reject

them we profit from the fact that β and the ratio EEmC/|~p| (with EEmC the energy of

the most energetic cluster associated to the track and |~p| the momentum of the track

measured by the drift chamber) are peaked at 1 for an electron, while it is smaller

and broader for a pion. In fig. 5.6 the distribution of events in the plane EEmC |~p|/ vs.

β is shown, after the cuts described above: one can see that for the data the region

with β >0.9 and EEmC/|~p| around 1 is populated even having applied a very tight

cut in χ2
πππ. These events are rejected by the cut whose shape is also shown.
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Figure 5.6: Distribution of the event in the plane EEmC/|~p| vs. β for the tagging track, for data
(upper plot) and π+π−π0 MonteCarlo (lower plot). The shape of the cut applied on the data sample
is also shown.

At the end of this selection, the data sample is very clean, as can be seen in fig. 5.7(a),

where the momentum and the angle of the tagging track is plotted and compared to the

simulation, as well as the missing momentum and the missing angle. The comparison data-

MonteCarlo shows good agreement between the two samples.

The next step is to look for the test track in the selected sample. In the case the test track

exists, we expect that it has a momentum close to the missing momentum, unless further

effects, e.g. pion decay, hadronic interaction in the drift chamber walls, play a role. We

have checked for this effect, by plotting the difference between the momentum (the angle)

of the test track and the missing momentum (missing angle). Fig. 5.7(b) shows that the

two differences are well peaked around zero, both for data and MonteCarlo, and that the

agreement data-MonteCarlo is excellent, even in the tails.
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Figure 5.7: (a) Comparison data-MonteCarlo of the momentum and of the polar angle of the tagging

track and the missing momentum. The two samples are compared after the whole set of cuts
described in the text. (b) Difference, if the test track exists, between the momentum (angle in the
lower plot) of the test track and missing momentum (angle). Data and MonteCarlo are superimposed.

The test track, if existing, has to satisfy the same requests that it has to fulfill in the standard

analysis:

• ρFH >50 cm, ρPCA <8 cm, |z|PCA <12 cm;

• opposite curvature with respect to the one of the tagging track;

• 50o < θtest < 130o.

The tracking efficiency has been evaluated as a function of the missing momentum and

in slices of the polar angle and compared with MonteCarlo. In fig. 5.8(a) the result is

presented. The efficiency is higher than 95% in the whole range of momentum and for each

bin of polar angle and the agreement data-MonteCarlo is at the per-mil level. For each slice

of the polar angle the double ratio of the efficiency from data and MonteCarlo has been

built: one sees from fig. 5.8(b) that there is no dependance on the polar angle. By fitting the

ratios with a straight line one observes that the agreement between data and MonteCarlo

is good, varying between 0.3% and 0.5%. In fig. 5.8(b) the results of the fits and the values

of χ2 are reported for each slice. The total single track efficiency as a function of missing

momentum and missing angle are presented in 5.9(a), inclusively in P (miss) (upper plot)

and in θ(miss) (lower plot). The lower plot confirms the result obtained in the study in

the different angular region: the efficiency as a function of θmiss is flat both for data and

MonteCarlo, and so is their ratio. The efficiency as a function of P (miss) varies between
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Figure 5.8: Single track efficiency as a function of the missing momentum in slices of the polar angle
for data (full blue circles) and MonteCarlo (red open triangles). (b) Ratio data-MonteCarlo of the
curves in (a). For each angular range a fit with a straight line has been performed and the result of
the fit as well as the value of the χ2 of the fit are reported.

97% at low momenta up to 99% at high momenta; however, MonteCarlo follows pretty well

the behaviour of the data, as their ratio shows in fig. 5.9(b) in which a flat behaviour with

a difference of 0.4% is observed.

We have performed a detailed study on the nature of the inefficient events. The main causes

for the inefficiency are the splitting of the tracks and the pion decay within the beam pipe.

In the first case the track is split close to the beam pipe fulfilling the request ρFH <50 cm,

but the mother track is so short that the procedure of extrapolation to the point of closest

approach gives a poor result. Therefore these tracks are cut from the requests of the PCA

for the test track. In the second case, the pions decay within the beam pipe π± → µ±νµ.

These are part of the events in the tail of fig. 5.7(a) and fig. 5.7(b), being the momenta of

muons lower than the missing momentum, as well as its polar angle is different from the

missing angle. The track from the muon does not point into the direction of the interaction

point and even if it is close to it, it does not fulfill the cuts on ρPCA and/or on |z|PCA.

The momentum distribution of a pion from φ→ π+π−π0 events ends at ∼450 MeV, due to

the kinematics of the decay , while it reaches ∼550 MeV for the reaction e+e− → π+π−γ

(see fig. 5.10). In the small angle analysis in order to cover the high momenta region, a

sample of e+e− → π+π− has been selected, and the efficiency obtained from such a sample

has been evaluated by a comparison data-MonteCarlo. Since it is a two-body decay the

energy of the emerging π± is fixed at Mφ/2 and consequently the momentum of the two

will be equal to 490.2 MeV, allowing to determine the single tracking efficiency up to 490
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Figure 5.9: (a) Single track efficiency as a function of the missing momentum integrated over the
polar angles for data (full blue circles) and MonteCarlo (red open triangles). (b) Ratio data-
MonteCarlo of the curves in (a). A fit with a straight line has been performed and the result
of the fit as well as the value of its χ2 are reported.

MeV. The update of the small angle analysis (see §7) with the 2002 data uses the same

method. In both cases the single track efficiency in the last bin (at 490 MeV) has the same

average value as in the whole momentum range. This has been checked with different slices

of the polar angle also. The single particle efficiency that we have evaluated in the large

angle analysis between 200 and 450 MeV, is in perfect agreement with the one obtained in

the small angle analysis (with 2002 data), we have no reason to suppose that the ratio of

the efficiency data-MonteCarlo has a drop or a rise for momenta above 450 MeV. Therefore

we prolong the fit of fig. 5.9(a) up to 500 MeV, covering the whole momentum range of

interest.

We need the correction expressed as a function of M 2
ππ; since no dependence of the difference

data-MonteCarlo on momentum and polar angles has been found, we can apply a global

correction of 0.4% in the M 2
ππ spectrum.

In order to evaluate the systematic error for the tracking efficiency, we shift systematically

each selection cut, independently from the others. For each fixed set of cuts, the tracking

efficiency is evaluated both for data and MonteCarlo and their ratio is computed as

Rε(trk) =
εData(trk)

εMC(trk)
(5.2)

and fitted with a straight line. In fig. 5.11(a) and fig. 5.11(b), the values of the fits are

plotted as a function of the variable the value of which has been moved. The other variables
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Figure 5.10: Pion momentum distribution for π+π−π0, π+π− and signal events.

are not changed. Moving the cut on Minv(γγ) we see no effect in the difference data-

MonteCarlo, while we observe a decrease of ∼0.2% when we shift the cut of χ2
πππ toward

higher values. This is due to the fact that a tighter cut on χ2
πππ cleans the control sample

from background, which enters when we start widening the cut. We have also studied the

ratio data-MonteCarlo directly for the test track using other variables and we see small

variations of the tracking efficiency. Moving systematically around the values |zPCA|=12

cm we see a total variation of ∼0.2%; the same variation of ∼0.2% is observed moving the

cut of ρPCA, while the effect is only ∼0.1% for the shift of ρFH . Since |zPCA| and ρPCA

are correlated, being two coordinates of the same point, we take into account the error of

0.2% only once, summing it up in quadrature with the other two contributions giving a

total systematic error of 0.3%.

5.1.3 Vertex efficiency

As for the two previous efficiencies, the ones for trigger and for tracking, also for the vertex

we evaluate the efficiency for data and MonteCarlo and we correct the data spectrum for

the difference between the two.

The vertex efficiency has been evaluated using directly π+π−γ events. For each event we

look for two candidate tracks, i.e. tracks whose origin is close to the IP. More precisely

the candidate tracks have to have a point of closest approach (PCA) of the track fit

extrapolation within the cylinder around the IP defined by ρPCA =
√

x2
PCA + y2

PCA <8

cm and |zPCA| <12 cm. The radius ρFH of the first hit in the transverse plane of the drift

chamber has to be ρFH <50 cm. Each candidate track has to be associated to one (or

more) EmC cluster. The requests for the two candidate tracks are shown in fig. 5.12. The

association of the two tracks to the calorimeter cluster is present also in the analysis, being
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Figure 5.11: Values of the fit of the ratio Rε(trk) for different values of the selection cuts. In (a)
the cut on the χ2

πππ and the one on the invariant mass of the two photons have been systematically
shifted; in (b) the position of the point of closest approach and the one in the transverse plane of
the first hit have been moved.

one of the requirements of the particle ID (for the pions-electrons separation). As in the
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<8cmρ
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<50cmρ
FH

<50cmρ
FH

associated 
cluster

2 Candidate Tracks

Figure 5.12: Sketch of the request for the candidate tracks, used to evaluate the vertex efficiency.

tracking efficiency evaluation, we cannot use the particle ID, since it requires a vertex. The

same cut in the plane EEmC/|~p| vs.β for the π− e separation described in §5.1.2 is applied,

as shown in fig. 5.13(a) and fig. 5.13(b). In the data distribution Bhabha events are clearly

distinguishable in the concentration of events centered at β ∼ 1 and EEmC/|~p| ∼ 1.
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Figure 5.13: Distribution of events in the plane E/|~p| vs. β for candidate tracks, for data in (a) and
MonteCarlo π+π−γ simulation in (b). The cut to remove Bhabha events is also shown as.

The whole standard analysis (except the vertex requirement and the χ2
πππ) is repeated to

remove the background from the sample. We ask for two tracks (with the usual request on

pT and |Pz|) without requiring that the two have formed a vertex. The trackmass variable

is built with two tracks (no need of a vertex) and the same for the Ω angle. There is

however a difference in the use of Ω with respect to the standard analysis: in order to

remove completely the background from π+π−π0 contamination, we apply a very rigid cut

here (Ω < 1o).

The procedure is applied both to data and MonteCarlo: the fig. 5.14(a) shows the

comparison between them for the mass spectrum. The agreement between the two spectra

indicates that the procedure provides a clean sample of π+π−γ events. We determine the

vertex efficiency by looking if two candidate tracks are connected by one vertex within the

cylinder ρvtx =
√

x2
vtx + y2

vtx < 8 cm |zvtx| <12 cm. The events found to have one vertex

in the cylinder, are normalized to the sample of events having at least two candidate tracks

(the sample used for the spectrum of fig. 5.14(a)). In this way we obtain the probability

that we find in the event a vertex. This probability is plotted in fig. 5.14(b) (upper plot)

both for data (in blue) and MonteCarlo (in red). For both samples it is higher than 99%;

in the lower plot the ratio of the two Rε(vtx) = εdata
vtx /ε

MC
vtx is reported. It is flat in M 2

ππ and

by fitting the ratio Rε(vtx) with a straight line, we obtain a difference data-MonteCarlo of

0.3%. This difference is the value we have to correct the final mass spectrum for.

The systematic error on the vertex efficiency is evaluated by shifting systematically the

single cuts (ρPCA, |zPCA| and Ω) independently from each other, and by looking at the

variation of the ratio of the efficiency Rε(vtx). We take as a systematic error the difference
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Figure 5.14: (a) Mass distribution for data (in blue) and MonteCarlo (in red) for the π+π−γ sample
used for looking at a vertex. (b) Probability to find a vertex in a sample of π+π−γ at large polar
angles evaluated both with data and with MonteCarlo (upper plot). The ratio R = εdata

vtx /εMC
vtx is

plotted in the lower plot.

between the minimum and the maximum value obtained for Rε(vtx), which has an average

value of 0.2%.

5.2 Further efficiency evaluations

5.2.1 Offline reconstruction filter efficiency

An offline filter identifies and rejects background events after the calorimeter reconstruction

in order to save CPU time since the rejected events do not pass through the time-

consuming track fitting and pattern recognition algorithms. Events recognized by the filter

as background are saved with a downscaled factor of 1/64 in a separated data stream. The

efficiency of the filter, evaluated using such a sample, is shown in fig. 5.15(a); the inefficiency

on the signal is 0.3% on the whole range of interest. Details of the offline filter can be found

in [81]. We would like to stress that the filter has undergone major modifications from the

version used in the small angle analysis (2001 data) to the actual one. The new version,

used in the present analysis, is less sensistive to the run condition of the machine. This

improvement, together with the better quality of 2002 data with respect the sample collected

in 2001, makes the systematic error on the filter less than 0.1%, while it was the dominant

one (0.6%) in the small angle analysis (see tab. 3.1).
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5.2.2 Particle ID efficiency

The particle ID, which does the π − e separation, is very efficient for pions. This has been

evaluated with data control samples of π+π−π0 and π+π−γ events. Using one track as the

tagging track and testing the other with respect to the particle ID, an efficiency for one

single (pion) track being identified as a pion is > 98% [72]. The single track efficiency is

evaluated as a function of pπ and θπ. The kinematics of the event simulated by MonteCarlo

is used to combine the single track efficiencies in order to evaluate the efficiency for the

full event as a function of M 2
ππ. Since in the analysis the selection criteria are such that

both charged particles have to be identified as pions, the inefficiency on the signal is not

negligible, mainly in the low mass region. In fig. 5.15(b) both the intrinsic particle ID

inefficiency is shown (in open black circles) and the one obtained by including the track-to-

cluster association efficiency (full red points). The big drop below 0.6 GeV2 is due to the

fact that the momentum distribution of large angle events decreases below 150 MeV and

at this value the probability that a particle is associated to a calorimeter cluster is ∼90%.

Since we ask in the selection that the two charged tracks are associated with the calorimeter

clusters, the final spectrum is corrected for the red curve. The systematic error associated

to the particle ID is 0.3% in our range of interest.

5.2.3 Calorimeter efficiency for photons

The photon efficiency was measured in [82] for a sample of π+π−π0 events, selected from

data by asking for events with two opposite charged tracks from the IP, having the missing

mass around the mass of π0. One of the two photons is selected as the tagging photon, with

the expected energy and time. The efficiency is evaluated by counting the events with a

photon matching the cone around the expected direction. Photon counting is performed

in bins of the polar angle and of the expected energy. As in the cases of the tracking and

the vertex efficiency, what is relevant for our purposes is the ratio between the efficiency

observed in data and in MonteCarlo. Such a ratio has a drop of some per-cent for low energy

photons (i.e. at high M 2
ππ), which starts above 0.9 GeV2. Our region of interest ends at

0.85 GeV2 (corresponding to a photon energy of 920 MeV). This means that we cover fully

the range where we do not need any correction for the photon detection efficiency, which is

well described by the MonteCarlo simulation.

5.3 Systematic errors evaluation

As mentioned at the beginning of the chapter, all efficiencies for the cuts applied to reject

background are evaluated by MonteCarlo. They are automatically included in the effective

global efficiency. Here we look for systematic differences between data and MonteCarlo for

each individual analysis cut. If found we take such differencies as the systematic error for

that specific cut. In the following sections, the procedure for each single cut is described.
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Figure 5.15: (a) Efficiency of the offline filter reconstruction for π+π−γ events. (b) Efficiency of the
particle ID for π+π−γ events at large angles, if both tracks are identified as pions. Open circles are
obtained combining the single track selection efficiency of the particle ID only, full circles include
also the track-to-cluster efficiency. The plot is taken from [73].

There is however a common strategy which applies to each cut studied, which can be

summarized as follows:

• to shift systematically one single cut with respect its nominal value, i.e. the value

fixed in the analysis, leaving unchanged all the others;

• to run the full selection on data, π+π−γ, µ+µ−γ and π+π−π0 MonteCarlo;

• to subtract the residual µ+µ−γ and π+π−π0 background from the data sample and

build the ratio between data and π+π−γ MonteCarlo;

• to normalize such a ratio to the ratio between data and MonteCarlo obtained if one

applies the standard selection (all the cuts fixed at their nominal value):

Rcut(M
2
ππ) =

N(data)/N(MC)|shifted cut

N(data)/N(MC)|nominal cuts
(M2

ππ) (5.3)

The double ratio Rcut(M
2
ππ), which is generally flat, is fitted with a straight line. The

variation of the values of the fits, as a function of the shifts of the cut under study, gives us

the systematic error on that specific cut.
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Figure 5.16: (a) Shift of the cut on χ2
πππ in the procedure to evaluate the systematic error introduced

by this cut. The black line shows the nominal cut at 200, the two red lines the two extremes of
the variation and the blue one intermediate step. (b) Upper plot: example of Rχ2

πππ
for χ2

πππ=300.
Lower plot: effects of the shift of the cut on χ2

πππ on Rχ2
πππ

.

5.3.1 Cut on χ2
πππ

Particular attention has been paid to find a compromise between the rejection power of the

cut on χ2
πππ and the inefficiency on the signal (see §4.2.1). The reason is the difficulty to

evaluate possible systematic errors of this cut on the data sample. We remind the reader

that fixing the cut on χ2
πππ at 200, the inefficiency (evaluated from MonteCarlo) of the

signal is at most 1% (see fig. 4.4(a)).

In order to estimate the systematic error introduced by this cut, we have evaluated the

double ratio Rχ2
πππ

moving the cut on χ2
πππ between 100 and 600, in steps of 100. In

fig. 5.16(a) the shifting of the cut is shown: the nominal cut at 200 (black line) is

superimposed to the χ2
πππ of a π+π−π0 MonteCarlo. The double ratio Rχ2

πππ
is evaluated

between the two red lines (χ2
πππ=100 and 600 respectively) in 6 steps, one example of which

is given by the blue line (χ2
πππ=300) One example of the double ratio Rχ2

πππ
is shown in

the upper plot of fig. 5.16(b); namely the ratio data-MonteCarlo for χ2
πππ >300 normalized

to the reference one (χ2
πππ=200). Rχ2

πππ
is completely flat above 0.4 GeV2; below some

discrepancies appear, hardly recognisable due to the poor statistics. In order to evaluate

such an effect, we have fitted with a straight line corresponding to the several shifts on χ2
πππ

shown in fig. 5.16(a). The values of the fits are presented in the lower plot of fig. 5.16(b) as

a function of the cut on χ2
πππ. Since an effect smaller than 0.2% is observed, we estimate

that the cut on χ2
πππ introduces a systematic error of 0.2%.
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5.3.2 Cut on trackmass

The study of the systematic error of the trackmass cut is divided into three parts:

1. comparison between data and MonteCarlo of the trackmass distribution;

2. study of the resolution of the trackmass variable;

3. evaluation of the systematic error introduced by the trackmass cut.

The comparison between data and MonteCarlo of the trackmass distribution (point 1 in the

list above) shows a very good agreement between the two. The plot (shown in fig. 5.17(a)) is

obtained by running the full selection (except the trackmass cut) on data and MonteCarlo,

subtracting the residual background from the data sample and by looking at the trackmass

distribution. We observe some deviations only in the tails of the distribution, probably due

to the limited description of the background by MonteCarlo. In the two next points we will

quantify the effect that this small discrepancy has in the M 2
ππ spectrum.

A study of the resolution of the trackmass variable (point 2) has been performed with the

aim of defining the range of variation of the mtrk cut in the evaluation of the systematic

error. For each event of the MonteCarlo simulation we have looked at the difference between

the true value of the trackmass and the reconstructed one. The distribution of this difference

has been fitted with two gaussians, with the purpose to understand whether the variable

has some not-gaussian tail. The fit is shown in fig. 5.17(b). From the fit we see that only

less than 3% of the events requires a broader gaussian (with σ=13.3 MeV). All the rest is

well described by a single core gaussian distribution centred at zero with a σ of 3.5 MeV.

Given the small fraction of events which needs a second gaussian, we neglect them assuming

that the shape of fig. 5.17(b) is well described by a single gaussian, whose σ represents the

resolution of the trackmass variable.

We remind that the cut in mtrk (fig. 4.5) consists of

(i) a M2
ππdependent curve which cleans from π+π−π0 background that we will refer to as

f(mtrk,M
2
ππ) in the following;

(ii) a fixed cut mtrk >120 MeV to reject µ+µ−γ events.

The possible effects from the two requests (i) and (ii) have been studied separately.

The procedure for estimating the systematic error for case (i) is shown in fig. 5.18(a): the

curve f(mtrk,M
2
ππ) (the one used in the selection of events is shown in black) is moved

in steps of 1 MeV up to the maximum value of ±4 MeV, corresponding to sim1σ of the

trackmass resolution. Two intermediate curves (corresponding to ±1 MeV with respect

the nominal black curve) are shown in blue in the zoom of the same figure. The double

ratio Rmtrk
is evaluated for each step. One example of Rmtrk

is given in the upper plot of

fig. 5.18(b) where the effect on the maximum variation in the trackmass (f(mtrk,M
2
ππ + 1σ

corresponding to the upper red curve of fig. 5.18(a)) cut is shown. In order to quantify the
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Figure 5.17: (a) Trackmass distribution for data (black points) and MonteCarlo (red line). All the
analysis cuts are applied and from data the background is subtracted. The distribution is shown
both in linear (upper plot) and logarithmic scale (lower plot). (b) Resolution on the mtrk variable.
The fit with two gaussian distributions is superimposed, and the parameters of the fit are shown.

small deviation from the one that we observe, each double ratio Rmtrk
is then fitted with

a straight line. The results of the these fits are shown in the lower plot of fig. 5.18(b) as a

function of the shifted cut in trackmass. From this plot we associate a systematic error of

±0.2% to the trackmass cut of case (i).

Now we describe the systematic error evaluation for case (ii). The agreement between data

and MonteCarlo at ∼120 MeV is not as good as it is on the π-peak (fig. 5.17(a)). Looking

closely in the region between 116 and 124 MeV (i.e. about ±1σ around the cut) we find some

discrepancies between data and MonteCarlo up to 5%. However this region contributes to

less than 1% to the full sample; the systematic error therefore introduced by the cut is

neglibible (5 × 10−4).

We conclude then that the only contribution to the systematic error on the trackmass cut

comes from the curve in the upper part of the plane mtrk vs. M2
ππ and it is equal to 0.2%.

5.3.3 Cut on the Ω angle

As done for the trackmass cut, before evaluating the systematic error of the Ω-angle cut, we

look at the comparison between data and MonteCarlo of the distribution, which is shown in

fig. 5.19. All the analysis cuts have been applied except the Ω-cut and from data the residual

background has been subtracted from data. The agreement is not excellent on the peak

while the tail of the distribution (where the residual π+π−π0 are concentrated) is nicely
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Figure 5.18: (a) Systematic shift of the trackmass cut to evaluate the systematic error of the
trackmass cut. The black line represents the nominal cut, the two red the maximun variation
of the mtrk cut and blue lines two intermediate steps. (b) Upper plot: example of one double ratio
Rmtrk

. Lower plot: results of the fits of Rmtrk
.

reproduced from MonteCarlo. All the checks done in order to explain such a discrepancy

have excluded that it is due to background. Therefore we have concluded that the observed

difference is due to some systematic tracking effect not fully understood. This argument

justifies the choice of the Ω cut shown by the curve of fig. 4.7(b). A tighter could have

been possible in principle, with a higher rejection power for π+π−π0 events, but our choice

minimizes the systematic effect introduced by the cut. In order to estimate the systematic

error we have shifted the cut in Ω by half a degree as shown in the red curves of fig. 5.20(a).

In the same plot the black curve indicates the cut on the Ω-angle applied in the analysis

and in the insert the blue curves are two examples of the intermediate 1o steps. For each

step the double ratio RΩ has been evaluated: from fig. 5.20(b), where two examples of RΩ

are shown, we see that there is no visible effect above 0.4 GeV2. Even at low energies where

there could be a systematic effect (hardly distinguishable from statistical fluctuation) the

error is small: let us consider a 2% variation of the double ratio RΩ between 0.25 and 0.4

GeV2. The maximum inefficiency in this interval is 4% (see fig. 4.8), for a systematic error

smaller than 0.1%. We conclude then that the systematic error introduced by the Ω-cut is

<0.1% in the whole mass range.

5.3.4 Acceptance

As always in the cross section measurements the geoetrical acceptance efficiency is taken

from MonteCarlo.
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Figure 5.19: Ω-angle distribution for data (black points) and MonteCarlo (red line). The distribution
is shown in linear (upper plot) and logarithmic scale (lower plot).
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Figure 5.20: (a) Systematic shift of the Ω to evaluate the systematic error of the Ω-angle cut. The
black line represents the nominal cut, the two red the maximun variation of the Ω cut and blue lines
two intermediate steps.(b) RΩ for the maximum and the minimum variations of Ω.
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Figure 5.21: Comparison between data (full points) and MonteCarlo (open squares) of the average
of pions polar angle and its ratio (a) and of the photon polar angle and its ratio (b).

The interference between FSR (up to 20% in this angular region) and ISR events gives rise

to an asymmetry in the distribution on the pion polar angle (see §3.4 for more details).

This asymmetry vanishes if symmetric cuts on the pion polar angle are applied, as it is the

case in this analysis.

As for the previous cuts, the study of the acceptance is performed in two steps:

1. comparison between data and MonteCarlo of the polar angle of the pions and of the

photon;

2. evaluation of the systematic error introduced by the acceptance cuts.

The comparison mentioned in point 1 is shown in fig. 5.21, for the average of the polar

angles of the two tracks and for the photon. In this plot the residual background has been

subtracted from the data and the two samples, data and MonteCarlo, are normalized to the

same number of events. In the case of the pions some small discrepancies are observed, but

they become much bigger for the polar angle of the photon. The possible explanations that

we have tested do not seem to be responsible for such a discrepancy. We describe them in

the following list:

• as mentioned in §1.5 the π+π−γ MonteCarlo simulation depends on the

parametrization of the pion form factor. In fig. 5.22 the pion and the photon polar

angle computed from two different MonteCarlo generations are compared; in one of

the two the pion form factor was parametrized according to Kühn-Santamaria [61]

(full black points), in the other according to Gounari-Sakurai [60] (open triangles).
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Figure 5.22: Comparison of the polar angle of the pions and of the photon for two different
parametrization of the pion form factor.

The excellent agreement between the distributions excludes that the parametrization

of the pion form factor can explain the differences observed in fig. 5.21;

• the background from µ+µ−γ and π+π−π0 events is well under control and from

checks done in different regions of M 2
ππ and using several cuts on trackmass (to

allow different percentage of background in the data sample), we exclude that the

background contamination (at least the reducible) is the reason for the discrepancy

data-MonteCarlo;

• we have observed that cutting tighter in the Ω-angle the discrepancies between data

and MonteCarlo increases at high M 2
ππ. Since the cut on the Ω-angle is the one that

affect mostly the efficiency for NLO-events (see fig. 4.8), one possible explanation is

the limited description of MonteCarlo of the NLO-events.

In the next step (point 2 of the list at the beginning of the paragraph) we try to quantify

the effect of the observed discrepancies in the mass spectrum.

For this purpose we have evaluated the double ratio Rθπ
and Rθγ

, defined as

Rθπ ,θγ
=

N(data)/N(MC)| shifted θπ, θγ

N(data)/N(MC)| nominal θπ, θγ
(5.4)

In order to understand how much to enlarge and restrict cuts in θπ± and θγ a study on

the resolution of the two variables θπ± and θγ has been done. The two angles are treated

separately.

1. Effect of the cut on θπ on the M2
ππ spectrum:

the resolution of θπ is shown in fig. 5.23(a). It has been fitted with three gaussians:
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Figure 5.23: (a) Resolution of the variable θπ fitted with three gaussians. (b) Upper plot: double
ratio Rθπ

evaluated with the request 48o < θπ < 122o. All the other cuts are as in the standard

selection. (b) Systematic error of the cut on θπ.

since the third gaussian is necessary only for less than 1% of the events, we restrict

ourselves to two gaussian only. The core gaussian (∼90% of the events) has a σ of 0.16

MeV, the second, necessary to describe the remaing 10% of the events has a σ of 0.33

MeV. We take for the resolution of the variable θπ the sum of the two gaussians with

σ =0.5 MeV. In order to quantify the effect of this cut on the mass spectrum we have

looked at the double ratio Rθπ
where all the standard cuts of the analysis are applied

(χ2
πππ, Mtrk, Ω) and moving the cut on θπ between 48o and 52o (corresponding to 132o

and 128o on the other side) in steps of 0.5o (for a total shift of 4 times the resolution).

One example of double ratio Rθπ
is shown in the upper plot of fig. 5.23(b). For each

steps of θπ we have fitted Rθπ
with a straight line. The result of the fits is shown in

the lower plot of fig. 5.23(b). The variation that we observe is 0.3%.

2. Effect of the cut on θγ on the M2
ππ spectrum :

exactly the same approach as above has been followed. The resolution on θγ

(fig. 5.24(a)) is well described if we fit it with three gaussians. Let us neglect the

∼5% of the events which need a third gaussian: under this assumption the resolution

on θγ is given by the sum of the standard deviations of the remaining two gaussians,

with σ = 1.6o.

We have then evaluated the double ratio Rθγ
enlarging and restricting the cut on θγ

of 5o, i.e. 3 times the resolution on this variables, in steps of 1o (from 45o to 55o on

one side and from 125o and 135o on the other). One example of the ratio Rθγ
is given
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Figure 5.24: (a) Resolution of the variable θγ fitted with three gaussians. (b) Upper plot: double
ratio Rθγ

evaluated requiring 55o < θγ < 125o and leaving all the other cuts as in the standard

selection. Lower plot: systematic error on the cut on θγ .

in the upper plot of fig. 5.24(b). As usual the double ratios Rθγ
have been fitted with

straight lines, as shown in the lower plot of fig. 5.24(b), where the results of the fit as

a function of the θγ is plotted. From this plot we conclude that the systematic error

introduced by the cut on θγ is 0.1%.

Given a 0.3% systematic error introduced by the cut on θγ and a 0.1% from the cut on θγ ,

we conclude that the total systematic error on the acceptance is 0.3%.



Chapter 6

Extraction of the pion form factor

In this chapter we will derive the pion form factor in the interval 0.5÷0.85 GeV2, related

to the hadronic cross section via the formula:

σ(e+e− → π+π−) =
πα2

3s
β3

π|Fπ|2 (6.1)

where the cross section σ(e+e− → π+π−) for 0o < θπ,γ < 180o is obtained from the

experimental M2
ππ distribution shown in fig. 4.15 using the formula:

dσππ

dsπ
=

∆Nobs −Nbkg

∆M2
ππ

· 1

εtot∆ε
· 1
∫

L dt
·H(sπ) (6.2)

εtot indicates the effective global efficiency and with ∆ε the difference between the efficiency

from MonteCarlo and data, both evaluated in §5.
The measurement of the integrated luminosity, which enters explicitly in eq. 6.2, is briefly

presented.

Finally we will discuss the background subtraction due to irreducible backgroun from the

scalar mesons; using the forward-backward and the charge asymmetry we will select the

model among the available ones which fits best to data and we will subtract the background

from scalar mesons. A preliminary estimate of the systematic error of the subtraction of

the scalar mesons is presented.

6.1 Luminosity measurement

The integrated luminosity is measured with the KLOE detector looking at Bhabha events

at large polar angles, 55o < θ <125o (Very Large Angle Bhabha,VLAB). At the DAΦNE

energy the cross section for such events is ∼430 nb, big enough to make the statistical error

negligible. The residual background, δbkg, is subtracted from the sample and the number

of Bhabha candidates NBHA is normalized to the effective Bhabha cross section evaluated

96
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Figure 6.1: Comparison between data and Monte-Carlo simulation for θe+,e− (a) and track
momentum (b) for Bhabha events.

from Monte-Carlo, according to:

∫

L dt =
NBHA

σMC
BHA

(1 − δbkg) (6.3)

The cross section is obtained from the Monte-Carlo generator BABAYAGA [83], which

simulates QED processes with the parton-shower approach. The result has been compared

with the one obtained from BHAGENF ([84], [85]), a generator to full order α. The authors

of both generators declare a precision of 0.5% and comparisons between the two show an

agreement at the 0.2% level.

An excellent agreement between data and Monte-Carlo is shown for the θe+,e− and |~pe+,e− |
distributions in fig. 6.1(a) and 6.1(b). The background from µ+µ− and π+π− is well below

1% and has been subtracted. The polar angle values are based on calorimeter clusters

fired by charged particles with an energy above 400 MeV. The efficiencies for trigger, drift

chamber and clustering have been evaluated from Monte-Carlo to be >99% confirmed by

data. A run-by-run correction has been applied to account for the fluctuations of the

center-of-mass energy of the machine and for the EmC calibration. The total experimental

error has been evaluated to be 0.3%; taking into account the theoretical error from the

Monte-Carlo generator equal to 0.5%, the total systematic error assigned to the luminosity

measurement is δL = 0.5%th ⊕ 0.3%exp = 0.6%.

A different measurement has been performed using e+e− → γγ events; an agreement within

0.2% was found. More details on the luminosity measurement can been found in [86].
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6.2 The contribution of the irreducible background

The background channels with the same final state as the signal have been introduced

already in §3.3. We remind that the three processes which we call irreducible background

are:

• Leading-Order Final State Radiation (FSR-LO) where a photon is emitted by one of

the pions;

• the resonant φ decay: φ→ ρπ → π+π−γ;

• the radiative φ decay to π+π−γ through a scalar meson: φ→ (f0(980)+ f0(600))γ →
π+π−γ.

Of the three channels the FSR-LO contribution has been already taken into account by

means of the unshifting from M 2
ππ to M2

γ∗ in the effective global efficiency (§5). In the next

two sections we will explore the remaining two.

6.2.1 The decay φ→ ρπ → π+π−γ

In order to check whether events from background channels different from e+e−γ, µ+µ−γ

and π+π−π0 events end up in the final data sample, we have used a MonteCarlo production

which simulates all the resonant physical processes occurring at our energy. We have run

the full selection procedure on this sample and looked at the MonteCarlo information of

the events that survive. As expected some events from the decay φ→ ρπ± → π+π−γ pass

the selection. The spectrum of this events is shown in fig. 6.2(a), superimposed on the

data spectrum, while in 6.2(b) its contamination in the data sample is presented. The ρπ

contribution reaches the level of 10% at 0.3 GeV2, but it is negligible above 0.5 GeV2. Even

if simulated by MonteCarlo, the subtraction of this background is quite a delicate point.

The simulation assumes a certain model and the interference with the FSR events is not

considered. Very recently a new version of the MonteCarlo code EVA has been released

[79], including the ρπ channel and its interference with FSR. This code will be used in the

next future to further study the ρπ background §7.1).

6.2.2 The scalar mesons and the asymmetries

In orded to quantify the effects of the scalar mesons in the data sample we have used the

last version of the PHOKHARA event generator (version 5.1). In this version three different

models for radiative φ-decays into scalar mesons are implemented:

• the kaon-loop inclusive of the f0(980) described in §3.3.1 used for fitting the KLOE

data [77]. We will call this model as KL-f0(980);

• a kaon-loop-like model taking into account both the f0(980) and f0(600) [87], which

will be called KL-f0(980) + f0(600) in the following;
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Figure 6.2: (a) ρπ spectrum from MonteCarlo (open red squared) superimposed to the data spectrum
(black points) after the full selection. (b) Contamination of the ρπ process in the data sample.

• the so-called ’no structure’ model, which accounts both for f0(980) and f0(600) [88].

We will refer to this last model as ’NS’.

The description of two models KL-f0(980)+f0(600) and NS can be found in [64] and in the

references there. In [64] a fit to π0π0 invariant mass obtained from the analysis φ→ π0π0γ

at KLOE [76] and SND [89] is performed using both these two models and the results of

the fits are reported. Our tests on the KL-f0(980) + f0(600) and NS models are performed

with the parameters found there.

The study of the scalar mesons is divided into two parts:

1. choice of the model among the three mentioned above;

2. tuning of the parameters of the model (couplings of the f0(980)) within this model.

Before starting the procedure just described, we show in fig. 6.3 the scalar mesons

contribution at large polar angle as estimated from the models introduced above. The

four predictions give results completely different one from the other. The blue and the

green curve refer to the same model. What changes is the phase α between the amplitude

of the process φ → f0(980) + f0(600) → π+π−γ and the one of the non-resonant FSR

events. The effect of such a phase becomes even more evident in the forward-backward

asymmetry.



CHAPTER 6. EXTRACTION OF THE PION FORM FACTOR 100

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

0.3 0.4 0.5 0.6 0.7 0.8

ππγ (ISR+FSR+f0(980)+f0(600)), [KL-f0(980)+f0(600)]

ππγ (ISR+FSR+f0(980)+f0(600)), [NS, α=90o]

ππγ (ISR+FSR+f0(980)+f0(600)), [NS, α=0o]

ππγ (ISR+FSR+f0(980)), [KL-f0(980)]

PSfrag replacements

M2
ππ [GeV2]

d
σ
(I

S
R

+
F

S
R

+
f
0
)

d
M

2 π
π

/
d
σ
(I

S
R

+
F

S
R

)
d
M

2 π
π

Figure 6.3: Scalar mesons contribution according to different models. In the text α if the phase
related to the interference between the amplitude of the resonant process and the amplitude of the
FSR events.

6.2.2.1 Choice of the model for the scalar mesons

In this paragraph we will select the model for the scalar mesons which later we will use

as part of the correction for the pion form factor. Two variables, the forward-backward

asymmetry and the charge asymmetry, are very powerful in enhancing the differences

among the various models. By comparing the data with the different models in the two

asymmetries, some models are automatically excluded.

In this part of the study, for the KL-f0(980) we will use the parameters obtained in [77].

Looking at the forward-backward asymmetry (fig. 6.4), already two over the four cases

considered are excluded. The data (full black points) present a clear bump around the

f(980) mass and below the ρ-peak there is a rise. The discrepancy with pure (ISR+FSR)

MonteCarlo prediction (green asterisks) is huge either at low and high masses. In the low

mass region the different models for the scalar mesons tested here also present different

behaviors: two of them (empty magenta and full pink squares) tend to follow the same

shape of (ISR+FSR) prediction, being then very far from the data. The same two present

at high masses a bump in a different position with respect to data. We remain then with

only two models to be tested, i.e. the ones corresponding to the red and the blue triangles

of fig. 6.4. For choosing between these two we introduce the charge asymmetry defined as:

Acharge(θπ) =
N(π+) −N(π−)

N(π+) +N(π−)
(θπ). (6.4)
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Figure 6.4: Forward-backward asymmetry evaluated from data (full black points) and compared to
several MonteCarlo predictions.

The charge asymmetry is not independent from the forward-backward asymmetry, but it

can be used in a complementary way. We have looked at it in bins of M 2
ππ, comparing the

data and the two remaining models of scalar mesons. In fig. 6.5 such a comparison is shown

in two M2
ππ bins, at high and at low masses. The KL-f0(980) (the red triangles) is clearly

favoured with respect to the NS model (blue triangles). To be more quantitative a χ2 has

been evaluated according to the formula:

χ2 =
AsyData −AsyMC

√

σ2(Data) + σ2(MC)
(6.5)

The values of the χ2 for the two models for all the M 2
ππ bins are shown in fig. 6.5. Except

in one single bin, the χ2 for the KL-f0(980) model is always smaller than for NS model.

We exclude therefore the NS model and in the following the KL-f0(980) model will be our

reference model for the scalar mesons.

6.2.2.2 Tuning of the parameters

In the KL-f0(980) model, three parameters enter for the f0(980) (we remind that it does

not include the f0(600)): the f0(980) mass and the two couplings gf0KK and gf0ππ. The

strategy is to change systematically the two couplings and to compare for each set the

forward-backward asymmetry between data and MonteCarlo.

Since at low M2
ππ the statistics of data is limited, we have firstly averaged the forward-

backward asymmetry measured with the π+ and the π−. In order to enhance as much as
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Figure 6.5: Right: charge asymmetry
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ππ. Left: χ2

data-KL-f0(980) and data-NS.

possible the effect of the f0(980) we have enlarged the mass spectrum up to 1 GeV2 (in the

analysis it arrives up to 0.85 GeV2). The averaged forward-backward asymmetry from data

is then compared with the averaged one from MonteCarlo. In order to make the comparison

quantitative we have built the quantity:

χ2 =
∑

bin

AData −AMC

√

σ2(AData) + σ2(AMC)
(6.6)

where A is the value of the forward-backward asymmetry for each bin and σ(A) is its error.

The value of the χ2 is evaluated in the full range M 2
ππ (4m2

π ÷ 1 GeV2). In fig. 6.6(a) some

examples of the charge asymmetry of good χ2 values are shown. The behavior at high M 2
ππ

is nicely reproduced by MonteCarlo, while even with the couplings that give the best χ2

some discrepancies are visible a low masses. The values of χ2 are around 100 for these cases

(the number of degree of freedom is 34). Some examples of bad χ2 are shown in fig. 6.6(b):

the value of χ2 is big for these cases either because of a relatively small discrepancy at high

M2
ππ (gf0KK=4.14 and gf0ππ=3.85 in the plot) or of a strong disagreement between 0.2 and

0.5 GeV2 (gf0KK=4.39 and gf0ππ=3.85 in the plot). The value of χ2 has been evaluated

over a wide range of couplings, to find a plateau of minima. In tab. 6.1 the values of χ2

are shown for the tested couplings. The plateau is reached for values of χ2 around 100

and values of couplings g(f0KK) = 4.39 and g(f0ππ) = 3.6. With this procedure we have

tuned the parameters of the model describing the f0(980) directly on our data. One set

of couplings which falls in the plateau of minima are fixed in order to have a reference

MonteCarlo for the description of the f0(980). We have taken as reference g(f0KK) = 4.39

and g(f0ππ) = 3.6.
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Figure 6.6: Comparison of the forward-backward asymmetry between data and MonteCarlo with
different couples of couplings for the f0(980). Some examples of good agreement are shown in (a)
while in (b) couples of couplings which give bad results of χ2 can be seen.

Some tests have been performed to check the procedure:

• in the KL-f0(980) model the pion form factor parametrization enters. We have checked

varying the parameters within the Kühn-Santamaria parametrization that it does not

affect the χ2 minimization procedure;

• in §6.2.1 we have seen that the low M 2
ππ region is contaminated by the presence of

the direct decay φ → ρπ → π+π−γ up to some percent. If this process has an effect

on the forward-backward asymmetry, the plateau of minima could be biased by the

presence of this background. Since the spectrum of φ → ρπ → π+π−γ becomes

negligible above ∼0.5 GeV2, we have repeated the full χ2 minimization procedure at

high masses (M2
ππ >0.75 GeV2). We find the plateau of minima in the same position.

Very recently a new version of the EVA MonteCarlo has been released [79]. This generator

includes the scalar mesons contribution according to a more sophisticated kaon loop model,

with respect the one inserted in PHOKHARA, and the Vector Meson Dominance for the

φ → ρπ → π+π−γ. The interference effects are simulated also. The parameters for the

f0(980) and the f0(600) are those coming from the analysis e+ e− → π0π0γ performed by

KLOE [90]. More details concerning the new version of EVA can be found in §7.1.
A very preliminary comparison between the scalar mesons contribution predicted by EVA

and by PHOKHARA is shown in fig. 6.7. The difference at the moment is huge below 0.5

GeV2 but we are confident that the two predictions can become closer when the procedure

of tuning of the parameters of the scalar mesons will also be applied to EVA. Our strategy
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g(f0KK) → 2.89 3.39 3.89 4.14 4.39 4.64 4.89 5.39 5.89 6.39 6.89

g(f0ππ) ↓
2.6 175 214 234 297 324 383

3.1 150 129 120 134 131 149 190 219 213 277

3.35 102 86 108

3.6 156 89 105 98 107 138 171 184 230

3.85 98 95 134

4.1 134 104 114 126 112 140 171 221

4.6 183 129 150 271

5.1 129 150 271

5.6 231 188

Table 6.1: Value of χ2 for each couples of couplings tested.
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Figure 6.7: Contribution of f0(980) at large angle predicted by PHOKHARA (full red points)
compared with the contribution of f0(980) + f0(600) + ρπ predicted by EVA (black line).
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is to use both the generator, PHOKHARA and EVA, to give an estimate of the systematic

error of the subtraction of the scalar mesons.

For the time being we take as the systematic error for the scalar mesons subtraction the

difference between the prediction of the two generators, i.e. the difference between the two

curves of fig. 6.7.

6.3 The pion form factor

The quantities which enter in eq. 6.1 to evaluate the pion form factor have all already been

presented in §4 and §5. What remains is the correction for the vacuum polarization effects

in the photon propagator.

The cross section which appears in the dispersion integral (eq. 6.1) is the bare cross section 1;

therefore we have to apply a correction according to

σbare(s) = σdressed(s)

(

α(0)

α(s)

)2

= σdressed(s)/δ(s) (6.7)

The hadronic contribution ∆αhadr(s) of eq. 1.29 has been evaluated using existing

measurements of σ(e+e− → hadrons) (which do not yet contain the KLOE measurement).

The correction factor δ(s) ([91]) is shown in fig. 6.8(a).

In fig. 6.8(b) the radiator function H(M 2
ππ) (eq. 6.2) is presented. It is evaluated by

PHOKHARA for the full phase space (0o < θγ,π < 180o), being applied to the spectrum

after the acceptance correction.

Before presenting the pion form factor we summarize in tab. 6.2 the systematic errors for

the various efficiency corrections that enter in the final result. The evaluation of each of

them has been discussed in §5. The table anticipates also the estimate of the systematic

error on the FSR events, which will be presented in §6.4 and it does not contain the one

of the scalar mesons. Some systematic errors are not flat in M 2
ππ; we have chosen three

reference points to give the total systematic error, one on the ρ-peak and the other two at

low and high M2
ππ respectively.

In fig. 6.9 the pion form factor, as evaluated within this work using large angle photon

events, between 0.5 and 0.85 GeV2 is shown. The red band represents the systematic error

of the scalar mesons correction. The published KLOE result obtained with the 2001 sample

is superimposed (blue points). The small errors bars for the 2001 points are due to the fact

that only the statistical error is considered. In fig. 6.10 the ratio between the two pion form

factors is shown. The error bars represents only the statical errors; for the 2002 sample also

the statistical error on the global effective efficieny has been considere, not being negligible.

1The dressed cross section σhad(s), as all the measured quantities, is proportional to the square of the
effective running fine structure constant α(s). The bare one is indeed proportional to the square of the
classical fine structure constant α determined at zero momentum transfer.
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Figure 6.8: (a) Correction factor taking into account vacuum polarization effects in the photon
propagator: σbare(s) = σdressed(s)/δ(s). (b) Radiator function (from PHOKHARA)

Flat in M2
ππ 0.4 GeV2 0.6 GeV2 0.85 GeV2

Tracking 0.2%

Vertex 0.2%

Particle ID 0.3%

Acceptance 0.3%

µ+µ−γ and π+π−π0 subtraction 0.2% <0.1% 0.3%

Kinematic fit 0.2%

Trackmass cut 0.2%

Ω-Angle cut 0.1%

FSR correction 0.4% 0.2% ∼1%

Trigger 0.1%

Filfo 0.1%

Total 0.8% 0.6% 1.2%

Table 6.2: List of the systematic errors for the cuts of the selection of the large angle analysis. The
systematic error of the subtraction of the scalar mesons background is not reported.
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The systematic error on the scalar meson model in shown in the zoom. Considering the

systematic errors of the published result we conclude that in this energy range the two

measurements are compatible.

In order to check the procedure for the extraction of the pion form factor we have worked

out two ways to obtain it. In one case, that we call inclusive approach, the FSR is kept in

the sample and the correction for those events is in the effective global efficiency introduced

at the beginning of §5. The standalone version of PHOKHARA is used for the estimate

of the scalar mesons contribution. The starting point in both the approaches is the data

spectrum dN/dM2
ππ after the reducible background subtraction. The inclusive procedure to

extract the pion form factor is described step by step in the following list:

• the data spectrum at this level contains still the scalar mesons and the FSR

contributions. We correct it for the effective global efficiency:

ε(i) =
dN rec(i)/dM2

ππ[50o < θγ,π± < 130o, end of analysis]

dN true(i)/dsγ∗ [0o < θγ,π± < 180o]
(6.8)

which accounts for the FSR-NLO efficiency;

• correction for the difference data-MonteCarlo ε(data)/ε(MonteCarlo) for those cuts

which need (tracking and vertex efficiencies)

• normalization to the integrated luminosity, division by the radiator function H and

correction for the vacuum polarization

• correction for the f0(980) contribution by PHOKHARA (standalone version)

according to the red points of fig. 6.7

• subtraction of the FSR contribution according to [92].

In the exclusive approach the correction for FSR and the scalar mesons is applied at the

beginning. This approach is possible since the version of PHOKHARA including the scalar

mesons has been implemented in the KLOE detector simulation. Therefore it is possible to

simulate all the analysis cuts on a MonteCarlo sample including FSR and scalar mesons.

Starting again from the data spectrum dN/dM 2
ππ after the reducible background subtraction,

the steps for the exclusive approach are:

• correction for FSR and the scalar mesons by means of

εFSR+f0(980) =
dσMC

ISR+FSR+f0
/dM2

ππ

dσMC
ISR/dM

2
ππ

(6.9)

This correction is applied at the end of all the analysis cuts. After the correction we

remain with a sample made of ISR events only. Corrections for the efficiencies of the

analysis cuts are not applied yet;
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Figure 6.9: Pion form factor from 0.5 to 0.85 GeV2 obtained at large angle (red band) compared
with the one obtained al small angle with 2001 data. The red band represents the systematic error
introduced by the subtraction of the scalar mesons.
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Figure 6.10: Ratio between the two measurements of the pion form factor shown in fig. 6.9. The
error bars represent only the statistical error. In the 2002 sample the statistical error from the
effective global efficiency has been also considered. In the zoom the systematic error from the model
describing the scalar meson contribution is shown.

• correction for a effective global efficiency evaluated on a pure ISR MonteCarlo sample

εISR
global =

dNMC
ISR/dM

2
ππ|after all cuts

NMC
ISR/dM

2
ππ|without all cuts

(6.10)
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This correction takes into accounts the efficiencies for the analysis cuts and the

reconstruction effects.

• correction for the difference data-MonteCarlo ε(data)/ε(MonteCarlo) for those cuts

which need (tracking and vertex efficiencies)

• normalization to the integrated luminosity, division by the radiator function H and

correction for the vacuum polarization
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Figure 6.11: Ratio between the pion form factor obtained with the exclusive approach and the one
obtained with the inclusive approach.

The pion form factor obtained with the two procedures has been finally compared: from

fig. 6.11 we see that the ratio is compatible with 1. Only above 0.75 GeV2 a small

trend can be recognised. This is the region where the scalar mesons contribution is

increasing; therefore the small difference is probably due to the different treatments of this

background. In the inclusive approach this contribution is estimated from the standalone

version, therefore the experimental efficiencies (which can have an effect on NLO events) are

not considered. In the other case also the reconstruction effects are simulated and all the

chain of cuts is applied also. Given this difference in the two treatments, we can conclude

that the two approaches give the same result.

Finally the cross section e+e− → π+π− as a function of the invariant mass of the

intermediate photon is presented in fig. 6.12. The error band corresponds to the systematic

error of subtraction of the scalar mesons as in the plot for the pion form factor. Differently

from the pion form factor, the cross section is inclusive with respect to the final state

radiation and is not corrected for the vacuum polarization (dressed cross section).
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Figure 6.12: Cross section e+e− → π+π−.

6.4 Systematic error of the FSR events

At the beginning of 2006 KLOE has collected a data sample at the center-of-mass energy

of 1 GeV. Since it has been collected off-resonance, in this sample the contribution of scalar

mesons is strongly suppressed (see §7.2 for more details). In §6.2.2 the forward-backward

asymmetry has been introduced as a powerful instrument to study the models describing

the scalar mesons. It allows explcitely to test the sQED model for the description of FSR,

as shown in §3.4.
We remind that the forward-backward asymmetry arises from the interference of FSR and

ISR events. Testing the forward-backward asymmetry corresponds then to test directly the

description of FSR, which is simulated according to sQED in PHOKHARA. In fig. 6.13(a)

the forward-backward asymmetry obtained from the 2002 and the 2006 samples is shown.

The big effect of the scalar meson visible in the 2002 data both at high and at low masses

disappears in the 2006 sample.

The forward-backward asymmetry obtained with the 2006 sample is compared fig. 6.13(b)

with a pure ISR+FSR MonteCarlo: an overall agreement is found. An average difference

of 5% is found when we fit the ratio between the curves with a straight line. In fig. 3.11 the

amount of FSR (LO and NLO) at large photon polar angles is shown. The flat difference of

5% multiplied by the total contribution of FSR events gives us the systematic uncertainty

of the correction for this process. The error is not flat in M 2
ππ; on the ρ-peak it is 0.2%, as

shown in tab. 6.2.
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Figure 6.13: (a) Forward-backward asymmetry for 2002 data (full black points) and 2006 data (open
red circles). (b) Forward-backward asymmetry for 2006 data (open red circles) and MonteCarlo (blue
triangles).



Chapter 7

Conclusion and possible improvements of
the measurement

The radiative return method has been used to analyse in the large angle region ∼240 pb−1

collected by KLOE in 2002. The background from radiative Bhabha events, muon pairs

and π+π−π0 events is subtracted according to the MonteCarlo prediction. The systematic

error associated to the background subtraction is in the energy squared range 0.5÷0.85

GeV2 below 0.3%. The efficiencies of the analysis selection have been evaluated from

data control sample in some cases, from MonteCarlo otherwise. For each analysis cut

the associated systematic error has been estimated, for a total sistematic error on the

ρ-peak of 0.6% if we neglect the contribution from the irredubile background. In order

to take into account the scalar meson contribution, several models describing the decay

φ → (f0(980) + f0(600))γ → π+π−γ have been tested and the one that best fits the data

has been chosen. By means of comparison between data and MonteCarlo of the forward-

backward asymmetry the parameters which enter the model for the f0(980) have been

tuned. Finally the pion form factor, which has been extracted in the energy squared range

0.5÷0.85 GeV2, has been corrected for the scalar meson contribution. The pion form factor

has been compared with the published one (small angle analysis) and the two, considered the

systematic error of both the measurements, are found to be compatible. Some improvements

of the measurement are foreseen, mostly to reduce the systematic error associated to the

subraction of the scalar meson contribution, as will be discussed.

Moreover in 2006 KLOE has collected a data sample off-peak at
√
s=1000 MeV, 20 MeV

below the φ mass. We discuss the potential of this sample on the hadronic cross section

measurement.

Finally, the update of the small angle analysis with 2002 data is forthcoming, and the

motivation for it is given briefly.

112
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7.1 Improvement of the large angle analysis

During the development of the analysis at large photon polar angles, the issue of irreducible

background from scalar mesons has become more and more evident. But in the meantime

also the potential of this sample has been understood to study the nature of these scalars

in our data set.

The already published KLOE analysis of the decay φ → f0(980)γ → π+π−γ [77] has been

done in the following way:

1. performing a fit of the mass spectrum with (ISR+FSR+f0(980)+direct decay φ →
ρπ), obtaining the mass and the coupling of the f0(980) from the fit;

2. checking the parameters of the fit looking at the forward-backward asymmetry.

At present more is known on the scalar mesons and a new contribution by KLOE on their

dynamics and their parameters is possible. Our plan is to continue the work started in

§6.2.2 whose strategy is the opposite with respect to the one of [77] and described above,

i.e.:

1. fixing the scalar mesons parameters by comparing the forward-backward asymmetry

obtained from data and MonteCarlo

2. using the parameters obtained in step 1, looking at the mass spectrum.

This work has already been done with PHOKHARA and some conclusions about the several

models describing the scalar mesons and implemented there have already been drawn in

§6.2.2. The next step will be to apply the same procedure to the EVA generator. EVA

includes several contributions:

• Initial + Final State Radiation;

• scalar meson contribution f0(980) and f0(600) described according to a more

sophisticated version of the kaon loop model with respect to the one inserted in

PHOKHARA and used to fit the KLOE data φ → f0(980)γ → π+π−γ (see ref.[79]

and references there);

• φ→ ρ±π∓ → π+π−γ according to the Vector Meson Dominance;

• extension of sQED for FSR events (Resonance Perturbation Theory).

The last point of this list can become of some importance when the threshold region will

be actually explored, with the off-peak data (see §7.2).
In fig. 7.1(a) the total cross section for different contributions, as obtained from EVA, is

shown, normalized to the cross section for ISR only. The large angle cuts are applied

(50o < θπ,γ < 130o). The lower plot is a zoom at the threshold (M 2
ππ < 0.35 GeV2). In
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Figure 7.1: (a) Ratio between the total cross section and the ISR cross section as a function of M 2
ππ

for different models of FSR. (b) Forward-backward asymmetry evaluated for the same models of
FSR as in (a).

fig. 7.1(b) the forward-backward asymmetry is plotted for the same three cases, i.e.

ISR+FSR, called sQED in the plot (blue crosses)

ISR+FSR+scalar mesons, called sQED+Φ in the plot (green triangles)

ISR+FSR+scalar mesons+direct ρπ, called sQED+Φ+RPT in the plot (red full points)

Within the used kaon-loop model, the peak in the cross section at about 1 GeV2 corresponds

to intermediate scalar meson states. The latter is responsible also for the bump at high

masses of the forward-backward asymmetry, without indeed explaining the rise that we

observe in the data below the ρ-peak. This rise can be attribute to the presence of ρπ,

which seems to have a big effect on the forward-backward asymmetry (in the direction of

the data), without giving indeed a big contribution to the cross section. We underline that

these results are obtained with the scalar mesons parameters obtained from the analysis

of the neutral channel e+e− → π0π0γ. A tuning of the parameters is in progress and the

results shown presently could change in the future. The clarification in the scalar mesons

sector will allow us also to

1. improve the systematic error on the irreducible background, that at present is the

dominant one of the present analysis;

2. look at the region below the ρ-peak, where we have limited the analysis presented in

this thesis.

It is important to underline that from an experimental point of view (selection of the sample,

study of the efficiencies, evaluation of the systematic errors) the present work covers a region
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wider than 0.5-0.85 GeV2, which is the range in which we have evaluated the pion form

factor. Only the scalar mesons subtraction remains an open point.

7.2 Off-peak data

The hadronic cross section measurement does not require the machine to run at
√
s = mφ.

As pointed out in the previous chapters, at large angles the major background contribution

comes from φ→ π+π−π0 and the biggest uncertainty on the measurement from the radiative

decay φ→ (f0(980) + f0(600)) + γ.

Since the background from π+π−π0 proceeds via the φ resonance and the width of the φ

resonance is small (4.26 MeV), the cross section φ → π+π−π0 drops rapidly if one lowers

the center-of-mass energy of the collider away from mφ. Fig. 7.2 shows a preliminary

measurement of the φ→ ρπ → π+π−π0 cross section made by KLOE. As can be seen from

Figure 7.2: Preliminary measurement of the cross section e+e− → φ → ρπ. The data points were
obtained with the KLOE detector from an energy scan around mφ performed in 2001.

the plot, the cross section for this process drops by ca. 90% when reducing the center-of-

mass energy of DAφNE by 10 MeV, while a reduction by 20 MeV to a collision energy of 1

GeV leaves us with only 5% of the π+π−π0 background.

A measurement of the π+π−γ cross section with data taken at 1.0 GeV, allows to check the

treatment of the π+π−π0 background in the large angles analysis performed with on-peak

data. A measurement at 1 GeV is desirable if one considers that the π+π−π0 cross section

is one order of magnitude bigger than the cross section of π+π−γ in the large angle region

(fig. 3.7(b)).

The poor knowledge of the contribution of the scalar mesons translates in an uncertainty of

the π+π−γ measurement in the large angle region. The uncertainty becomes unacceptable

if one wants to explore the threshold region, down to 2mπ mass.

Aso an energy scan around the φ mass turns out to be very useful for the study of the scalar

mesons. On December 2005 a luminosity of ∼10 pb−1 has been collected in four different



CHAPTER 7. OUTLOOK 116

350

375

400

425

450

475

500

525

550

575

600

1016 1017 1018 1019 1020 1021 1022 1023
W (MeV)

σ(
90

0-
10

00
 M

eV
) 

(e
vt

s/
pb

-1
)

(a)

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

400 600 800 1000

m(MeV)
si

g(
f0

+b
ck

)/
si

g(
bc

k)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

400 600 800 1000

red = 980 MeV

green = 1000 MeV

m(MeV)

∆a
sy

m

(b)

Figure 7.3: (a) Center of mass energy dependence of the cross section for events in the range
900÷1000 MeV. The blue points are the on-peak data, the red points are the two off-peak samples.
The curve is the prediction based on the kaon loop amplitude. (b) Effect of the scalar amplitude
on the event spectrum (left plot) and on the charge asymmetry (right plot) as a function of the
invariant mass ππ at 1000 MeV (green points) and at 980 MeV (red points).

points. The kaon loop (§6) amplitude contains explicitly the dependence on the center-of-

mass energy
√
s. It is possible to evaluate the scalar contribution off-peak by extrapolating

the amplitude found by fitting the on-peak data. In the extrapolation the three parameters

are held fixed and the interference sign is taken as negative, as turned out in the fit of the

KLOE data described in [77]. Fig. 7.3(a) shows the comparison between the off-peak data

from 2002 scan and the extrapolated curve.

At 1.0 GeV the effect of scalar mesons is still visible, both in the mass spectrum and in

the charge asymmetry. By running the event generator EVA where the scalar amplitude

is added to ISR and FSR amplitudes, we get the prediction (shown in fig. 7.3(b)) for the

scalar amplitude at the center of mass energy of DAΦNE of 1000 MeV and 980 MeV. As

can be seen, a residual scalar contribution is still present, but strongly reduced with respect

to the data collected at mφ.

Between December 2005 and March 2006, DAΦNE has run at
√
s = 1000 MeV and KLOE

has collected ∼225 pb−1. These data are under study at present. Some preliminary checks

have been already done. The two main advantages of having data at 1000 MeV are already

visible in fig. 7.4. The trackmass distribution for 2002 (on peak) and for 2006 data (off

peak) is shown. The plot refers to an identical selection at large photon polar angle. The

disappearing of the second peak in 2006 data demonstrates the big reduction of π+π−π0

events.

The comparison of the forward-backward asymmetry has been already shown in §6.4
(fig. 6.13(a)). In the 2002 sample the presence of the scalar mesons is responsible for the

rise of the curve towards low values of M 2
ππ . The 2006 sample, almost free from the scalar
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Figure 7.4: (a) Trackmass distribution for 2002 data on-peak (blue full points) and for 2006 data
off-peak (empty red squares). It is evident the reduced contamination from π+π−π0 events in the
off-peak sample.

mesons contribution, follows the behavior of the π+π−γ ISR+FSR prediction (fig. 6.13(b)).

The use of a sample free from the scalar mesons at large angles will allow us to fix some

parameters in the low mass region, testing for example possible extensions of sQED, that,

according to [79], can play a role at low M 2
ππ. Once having measured the π+π−γ cross

section down to the threshold with the off-peak data (without the issues of the irreducible

background of scalar mesons and the resonant decay to ρ±π∓) one will be able to use again

the 2002 data to investigate the properties of scalar mesons.

7.3 Measuring the ratio R(s) in the small angle analysis

An alternative approach to our standard analysis is to normalize the π+π−γ cross section

with µ+µ−γ events, i.e. measuring directly the ratio R(s) to be put into the dispersion

integral (eq. 1.20).

The advantage of this approach is that in the ratio the normalization to the luminosity,

the division by the radiator function as well as the correction for the vacuum polarization

disappear. If one excludes the contribution of these effects to the total theoretical error in

the small angle analysis, one passes from a theoretical error of 0.9% to one of 0.3%. The

collected statistics is sufficient to perform this measurement but a complete understanding

of the efficiency for the µ+µ−γ events is necessary. In fact in the present analysis the muon

pairs are a background and suppressed by the cut on trackmass and the obtained precision

for the µ+µ−γ identification is lower than what is needed for a measurement of the ratio

R(s).

An analysis in which the R-ratio is measured, using ISR-photons at small polar angles and

using 2002 data, is presently in progress. The trackmass is used to separate pions and
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Figure 7.5: (a) Trackmass distribution for 0.8 < M 2
ππ < 0.82 GeV2. In full black points data are

shown, in open red and blue ones are for MonteCarlo simulations, respectively π+π−γ and µ+µ−γ
events. The events falling into the region between the two black lines do not enter in the analysis,
since here the tails of the π+π−γ and of µ+µ−γ distribution overlap each other. (b) Comparison
between data and MonteCarlo of the cross section µ+µ−γ.

muons: in fig. 7.5(a) the trackmass distribution for 0.8 < M 2
ππ < 0.82 GeV2 is shown. The

black data points are data, the red and the blue ones refer to two MonteCarlo simulations,

for π+π−γ and µ+µ−γ respectively. The trackmass region between 115 and 130 MeV is

excluded, because here the tails of the two classes of events overlap each other and it becomes

difficult to distinguish them with high accuracy. The muon data sample will be useful also

to check the radiator function. The strategy in this case is to select a clean data sample of

muons and compare the cross section µ+µ−γ with the one obtained from the simulation.

The PHOKHARA generator uses the same ISR corrections for pions and muons. Since the

radiator function regards only the initial state of the process, making a comparison between

data and MonteCarlo of the µ+µ−γ cross section means to test the simulation of the radiator

function which is used to extract the pion form factor. A preliminary comparison between

data and MonteCarlo of the muon cross section is shown is fig. 7.5(b). An agreement better

than 1% is obtained.

Finally we mention that a new version of the BABAYAGA generator for e+e− → e+e−

events is now available [75] . An error of 0.5% was claimed for the previous version,

which was used in the measurement of the integrated luninosity. For this new version

the uncertainty could be reduced to 0.1%. Since in the measurement of the integrated

luminosity the systematic error coming from theory is larger than the experimental one

(see §6.1), we expcet to overall improve the precision on this measurement.



Conclusion

KLOE has successfully used the radiative return method to measure the hadronic cross

section σ(e+e− → π+π−) in an analysis of ∼140 pb−1 of data collected in 2001.

Looking at small photon polar angle (small angle analysis), in order to reduce the

background contamination, the KLOE measurement is limited to the energy squared range

0.35<M2
ππ<0.95 GeV2, being the threshold kinematically forbidden in this acceptance

configuration. The obtained result confirms the observed discrepancy between e+e−- and

τ -spectral function.

The same method has been applied to a second analysis, where 240 pb−1 of data collected

in 2002 have been analysed, looking at the complementary acceptance region (large angle

analysis). The three main sources of backgrounds (Bhabha, µ+µ−γ and π+π−π0 events)

are rejected by means of kinematical variables and the residual contamination is subtracted

according to the MonteCarlo prediction. A comparisons data-MonteCarlo on several

variables assure that the background subtraction is solid: in the range 0.5÷0.85 GeV2

the associated systematic error is <0.3%.

The efficiencies due to the analysis cuts have been measured from data control sample in

most cases, otherwise they are taken from MonteCarlo. The systematic errors for each

efficiency have been evaluated as well. Neglecting the error of the subtraction of the

irreducible background, the total systematic error on the ρ-peak is estimated to be 0.6%,

considerably smaller than in the small angle analysis.

The irreducible background consists of three sources: the Final State Radiaton-Leading

Order events, whose contribution is taken into account by PHOKHARA using the sQED

model, the resonant decay φ → ρ±π∓ → π+π−γ whose cross section is poorly known,

but which is negligible above 0.5 GeV2, and finally the scalar meson contribution from

the φ radiative decay into f0(980) and f0(600). The dominant error of the pion form

factor measurement at present comes from the scalar mesons contribution. The nature of

these particles is still quite controversial and several models describing their dynamics are

available. The forward-backward and the charge asymmetry, given their sensitivity to the

presence of the scalar mesons, have been widely used to study these particles. Comparing the

data with the MonteCarlo prediction using different models for the scalar mesons, we have

been able to choose one model that fits better our data. By further comparisons between

the chosen model and the data, we have tuned the parameters of the f0(980) entering the

model. This procedure has not to be meant only as a method to subtract as much precisely

as possible the scalar mesons contribution from the data sample; it is actually a method

to extract information on these particles. A new MonteCarlo generator (EVA) taking into

account both the scalar meson contribution and the direct decay φ → ρ±π∓ has been

recently released. The parameters of the scalar mesons have not been tuned yet in EVA.



At the moment we use the comparison between the PHOKHARA and EVA predictions to

have a preliminary estimate of the systematic error on the scalar mesons correction. This

systematic error is the dominant one in the pion form factor that we have extracted between

0.5 and 0.85 GeV2.

The pion form factor measured with the large angle analysis has been compared with the

published one (small angle analysis), and considering the systematic errors of the two, we

conclude that they are compatible.

In the near future, the systematic error on the scalar mesons will be reduced by repeating

the tuning procedure on the new EVA generator. We are confident that this method will

allow a much improved determination of the background from scalar mesons.

The ultimate precision on the measurement of the pion form factor will come from the

analysis of the data that has been collected in 2006, in which a sample of ∼225 pb−1 has

been taken at
√
s=1000 MeV, i.e. 20 MeV lower than the φ mass. The contamination

from π+π−π0 events is drastically reduced, allowing to cross check the treatment of this

background in the large angle analysis. Moreover the scalar mesons contribution is strongly

suppressed in the off-peak data, reducing this important background almost to zero. Like

this it will be possible to perform for the first time tests on the validity of the scalar QED

model for the description of the FSR amplitude. For this test the forward-bacward and the

charge asymmetry will be used. This test is under study at the moment and has been used

already in the present analysis for the estimate of the systematic error of the final state

radiation subtraction.

I
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