
An Update Algorithm for Restricted Random
Walk Clusters

zur Erlangung des akademischen Grades
eines Doktors der Wirtschaftswissenschaften

(Dr. rer. pol.)

von der Fakulẗat für
Wirtschaftswissenschaften

der Universiẗat Fridericiana zu Karlsruhe

genehmigte

D I S S E R T A T I O N

von

Dipl.-Inform.Wirt. Markus Franke

Tag der m̈undlichen Pr̈ufung: 28.02.2007
Referent: Prof. Dr. Andreas Geyer-Schulz
Korreferent: Prof. Dr. Karl-Heinz Waldmann

Karlsruhe: 24.01.2007

Contents

1 Motivation 1
1.1 Definitions . 2

2 Related Work 11
2.1 Stochastic Processes . 12

2.1.1 Random Walks . 12
2.1.2 The Restricted Random Walk Used for Clustering 13
2.1.3 Other Concepts of “Restricted Random Walks” 14
2.1.4 Markov Chains . 15

2.2 Random Graphs . 18
2.3 Cluster Algorithms . 20

2.3.1 k-Means Clustering . 23
2.3.2 Single Pass Clustering 24
2.3.3 Hierarchical Agglomerative Clustering 25

2.4 Dynamic Clustering . 25
2.4.1 Integration of New Objects into an Existing Clustering . . 26
2.4.2 Handling Changing Similarities 45
2.4.3 Mobile Scenarios . 49

2.5 Randomized Algorithms . 52
2.5.1 Randomizedk-Clustering 53
2.5.2 Evolutionary Clustering 54
2.5.3 Clustering with Simulated Annealing 55
2.5.4 Random Walk Circuit Clustering 58
2.5.5 Randomized Generation of Hierarchical Clusters in Ad

Hoc Networks . 59
2.5.6 High-Speed Noun Clustering by Hash Functions 59

2.6 Random Walk Theory and Markov Processes for Clustering 60
2.6.1 Clustering by Markovian Relaxation 60
2.6.2 Text classification with Random Walks 62
2.6.3 Clustering by Flow Simulation 62
2.6.4 Separation by Neighborhood Similarity and Circular Escape 63

i

ii CONTENTS

2.7 Summary . 64

3 Restricted Random Walk Clustering 65
3.1 RRW Clustering . 65

3.1.1 The Walks . 66
3.1.2 Cluster Construction Methods 71

3.2 Properties of the Method . 77
3.2.1 Complexity . 78
3.2.2 Asymptotic Behavior of the Walk Process 81

3.3 Excursus: Applications . 87
3.3.1 Library Usage histories 87
3.3.2 Indexing Library Corpora 88
3.3.3 Giving Recommendations 91

3.4 Summary . 97

4 Updating Restricted Random Walk Clusters 99
4.1 The Basic Update Cases . 100

4.1.1 New Paths . 101
4.1.2 Illegal Successors . 109
4.1.3 New Paths and Illegal Successors 113
4.1.4 New Nodes . 113
4.1.5 Deletion of Nodes . 113

4.2 Concurrent Updates of the Similarity Matrix 113
4.3 Complexity of the Update Procedure 114

4.3.1 New Successors . 115
4.3.2 Illegal Successors . 115
4.3.3 Cluster Construction . 115
4.3.4 Simulation . 116

4.4 Evaluation . 117

5 Conclusion and Outlook 119

A A Sample Raw Basket 121

B The Deep South Raw Data 125

Chapter 1

Motivation

Being able to quickly evaluate newly arriving data or information is a crucial
capability in today’s economy. But this evaluation may be difficult, especially if
the new data cannot be interpreted in an isolated way but rather is added to a data
base where it may lead to the update of preexisting records orthe creation of new
ones. An excellent example of such a situation is a purchase data base maintained
by a retailer: In regular intervals, new purchases are integrated into the data base
which, in turn, may influence the marketing and product portfolio decisions made
by the retailer.

In a static scenario, cluster algorithms are used among other methods to reduce
the complexity of such a data set and to identify for instancegroups of customers
with similar purchase histories. For large data sets, the execution of a cluster algo-
rithm may take considerable time and computing resources [Vie97]. These time
and resource requirements may be acceptable for static information, when the data
set only needs to be clustered once. But what if the data is updated frequently? In
most cases, a reclustering of the whole data set will be both impractical as well
as not economical, especially for small updates. Since in this case large parts of
the data set are not changed by the update, valuable time is lost while the cluster
algorithm recomputes clusters that were not affected by theupdate.

This problem constitutes the motivation for this thesis. Inearlier contribu-
tions [Fra03, FGS04, FGS05, FT05], the restricted random walk (RRW) cluster
algorithm developed by Schöll and Schöll-Paschinger [SP02] was evaluated in the
context of a large data set of library purchase histories andfound to work well for
that data set in static scenarios, both in terms of the quality of the clusters and of
the computation time required. The challenge for this work is the integration of
new data into the cluster structure with minimal computational effort. As a fur-
ther condition, the cluster quality should remain the same whether the new data is
integrated using the update algorithm or by reclustering the complete data set.

New data in this context can mean one of three different things:

1

2 CHAPTER 1

1. New objects may enter the data set, along with informationabout their sim-
ilarity or distance to other, existing objects.

2. An object may change its similarity or distance to other objects, either by
physically moving to another location or by changing its characteristics that
determine its similarity to other objects.

3. An object may be removed from the set.

We will see that, contrary to other methods reviewed in chapter 2, the update
procedure proposed here is able to handle all three cases within reasonable com-
putational time while maintaining the cluster quality.

This thesis is structured as follows: In the remainder of thefirst chapter, terms
used in this work are defined. Chapter 2 contains an overview of the current state
of research in the area of stochastic processes and cluster algorithms. In chapter
3 the RRW clustering method is introduced as a Markov chain ona similarity
or distance graph. In addition, the chapter contains applications for which the
algorithm has been successfully used as well as some considerations about the
algorithm’s complexity and the asymptotic behavior of the walk process.

The core of this thesis, the update algorithm, is developed in chapter 4 to-
gether with a proof of its correctness and a comparison with the algorithm classes
introduced in chapter 2. Chapter 5 concludes the thesis withan outlook.

1.1 Definitions

A very fitting definition for cluster analysis has been given by Kaufman and
Rousseeuw [KR90]: “Cluster analysis is the art of finding groups in data.” Al-
though this view on cluster analysis may seem informal, the informality is justi-
fied. There exists – to the practitioner’s regret – no “best” cluster algorithm that
copes with all applications on all data sets equally well. Rather, it depends on
the characteristics of the data set as well as on the requirements of the concrete
application at hand what a good cluster is and, consequently, a plethora of criteria
[HK01, HBV02b, HBV02a, PL02, War63, Wat81] has been proposed to measure
the quality of different cluster algorithms.

As we are not able to give a global exact definition, let us at least consider a
sort of least common denominator. A cluster, according to the Oxford Advanced
Learner’s Dictionary [Cow89, p. 215], is a

1 number of things of the same kind growing closely together:a clus-
ter of berries, flowers, curls◦ ivy growing in thick clusters.2 number
of people, animals or things grouped closely together:a cluster of

CHAPTER 1 3

Figure 1.1: Cluster shapes: (a) elongated, (b) compact, (c)ring, (d) sickle

houses, spectators, bees, islands, diamonds, stars◦ a consonant clus-
ter, egstr in strong.

In the context of this work, the following definition (modified from [Fra03]) is
used:

Definition 1.1.1 (cluster) A cluster is a set of objects that are either (a) similar
to each other or (b) close – in the sense of some metric – to eachother. Espe-
cially objects in one cluster should be more similar to each other (intra-cluster
homogeneity) than to objects in any other cluster (inter-cluster heterogeneity).

In this context, the intra-cluster criterion can be based for example on diam-
eter, radius (cf. page 25), variance (cf. page 53), or the sumof squared errors,
i.e. the variance multiplied by the number of elements in thecluster. The actual
quality of a clustering can consequently be given as a function of this criterion.

However, the definition does not make any assumptions concerning the actual
shape of a cluster. In the literature (e.g. [KR90]) the shapes depicted in Fig. 1.1
are often considered as standard cases. Depending on the shape of the clusters,
the performance of different cluster algorithms – in terms of the chosen quality
criterion – may vary considerably. For instance, there are algorithms likek-means
clustering that are especially fit to detect spherical objects like the ones in case

4 CHAPTER 1

(b), and that thus cannot cope well with elongated clusters like case (a) in Fig. 1.1.
Others, like single linkage clustering, have the problem ofbridging: If, between
two clusters, there exists a “bridge” of outliers, the two clusters may be connected
via this weak link, though it does not accurately reflect the natural grouping.

In addition to a cluster, a clustering is defined as follows:

Definition 1.1.2 (clustering) A clustering is the result of the execution of a clus-
ter algorithm on an object setX. It describes the assignment of objects to clusters.
X, the set of objects to be clustered, is said to be covered by the clusteringC con-
sisting of clustersCi iff

X =
⋃

Ci∈C

Ci (1.1)

Furthermore, a clustering created by a cluster algorithm can either be disjunc-
tive or not and it can be hierarchical or partitional:

Definition 1.1.3 (disjunctive clusters) We call a set of clusters disjunctive if
each object belongs to exactly one cluster, i.e. if the clusters do not overlap. In
this case, the following property holds:

∀Ci, Cj ∈ C : Ci ∩ Cj = ∅ (1.2)

If a cluster algorithm produces disjunctive clusters for every object set, it is also
called disjunctive.

Definition 1.1.4 (partitional clustering) A partitional cluster algorithm gener-
ates a clustering containingk disjunctive clusters; the resulting clustering is also
called ak-partitioning.k is usually fixed in advance.

Definition 1.1.5 (hierarchical clustering) A hierarchical cluster algorithm pro-
duces a hierarchy of clusters that can be represented by a dendrogram as given
by definition 1.1.7. The hierarchy includes clusters at different aggregation lev-
els, with an all-encompassing cluster, often called root cluster at the top. At the
bottom of the dendrogram, each object is contained in its owncluster. Hierar-
chical cluster algorithms may work bottom-up (agglomeratively) by successively
merging clusters or top-down (divisively) by iteratively splitting up clusters.

It is clear that the clustering at each level of a hierarchical clustering is a par-
tition of the data set if the clusters are disjunctive. For agglomerative hierarchi-
cal cluster algorithms, the building blocks to agglomerateare so-called singleton
clusters:

CHAPTER 1 5

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6 7 8

Figure 1.2: A dendrogram

Definition 1.1.6 (singleton cluster)A singleton or singleton cluster is a cluster
consisting of exactly one object.

Definition 1.1.7 (dendrogram) A dendrogram is the graphical tree representa-
tion of the hierarchy of clusters produced by a disjunctive hierarchical cluster
algorithm at different levels. Normally, the root cluster representing the entire
object set is located at its top, the singleton clusters at the bottom, as can be seen
in Fig. 1.2. The horizontal lines represent the joins when ascending in the tree
– respectively the splits when descending – that occur when changing between
levels of the clustering.

Up to now, we have been talking about similarity (or distance) as an abstract
concept. In order to develop a formal definition, let us introduce two different
concepts for the representation of the objects and their relation: The vector and
the graph model.

The vector model constitutes the most natural case of some metric space, for
instance a vector space with a given norm. The objects are represented as vectors,
with each vector element or dimension corresponding to a specific feature of the
object. These features can either be binary, nominal (qualitative) or quantitative.
An object set in the vector model is given by a two-mode matrix; a two-mode ma-
trix represents the objects as rows and the features as columns. Thus, the objects

6 CHAPTER 1

may also be seen as row vectors. It is then possible to define a distance measure
on this representation.

Definition 1.1.8 (distance)A distance measure on an object setX is a relation
d : X ×X → IR with the properties (1.3) to (1.6) that assigns a distanced(u, v)
to each pairu, v of objects inX.

d(u, v) ≥ 0 (1.3)

d(u, u) = 0 (1.4)

d(u, v) = d(v, u) (1.5)

d(u, v) ≤ d(u, w) + d(w, v) (1.6)

Eq. (1.3) asserts that the distance is non-negative. The distance of an object to
itself is zero (Eq. (1.4)), as well as to all other objects occupying the same point
in space. Furthermore, the distance is symmetric (Eq. (1.5)) and complies to the
triangle inequality (Eq. (1.6)).

Examples for distance functions are the Euclidean distanced(u, v) =
√
∑k

i=1(|ui − vi|2) or the city-block metricd(u, v) =
∑k

i=1 |ui − vi|, both given
here fork dimensions. They belong to the family ofLq or Minkowski distances
whose members have the form

dq(u, v) = q

√
√
√
√

k∑

i=1

(|ui − vi|q) (1.7)

for k dimensions. For linearly dependent features, the Mahalanobis distance
[Mah36]

d(u, v) = (u− v)Σ−1(u− v)T (1.8)

should be used whereΣ−1 is the inverse of the covariance matrix and(u− v)T is
the transpose of(u− v). It has the advantage of being invariant to scale transfor-
mations and translations of the raw data.

The second model for object representation is the graph model where objects
are not represented by their absolute position in a metric space, but rather using a
one-mode matrix that contains the strength of their relations to the other objects,
either as dissimilarity or as similarity.

Definition 1.1.9 (dissimilarity) A dissimilarity measure on an object setX is a
relation with the properties (1.3) to (1.5) that assigns a dissimilarity to each pair
of objects inX. It does not necessarily comply to (1.6), i.e. the triangle inequality
may be violated.

CHAPTER 1 7

Definition 1.1.10 (similarity) A similarity measure on an object setX is a rela-
tion s : X ×X → IR with the properties (1.9) to (1.11) that assigns a similarity
to each pair of objects inX.

0 ≤ s(u, v) ≤ 1 (1.9)

s(u, u) = 1 (1.10)

s(u, v) = s(v, u) (1.11)

Similarities are usually – but not necessarily – normed to the interval[0, 1]
(Eq. 1.9). The self-similarity is set to one respectively the highest possible value
(Eq. 1.10) – normally, cluster algorithms do not use this value. The similarity
relation is symmetric (Eq. 1.11). The case of directed graphs with asymmetric
similarities is not considered in this thesis.

In the context of information retrieval, the cosine measureis often used to
obtain similarities between objects represented as vectors in a metric space, each
vector containing in its components the features of the object it represents.

Definition 1.1.11 (cosine similarity) The cosine similarity between two objects
u and v represented as vectors in ak-dimensional vector space is given as the
cosine of the angle between their vectors

cos(Θ(u, v)) =
|u · v|

||u|| · ||v||
(1.12)

Here,|u · v| =
∑k

i=1 uivi is given as the scalar product ofu andv, and for the

length or norm||u|| =
√
∑k

i=1 u
2
i of u the Euclidean vector norm is used.

Finally, another useful group of tools for modelling input data sets should be
introduced: graphs [Die05, Jun99].

Definition 1.1.12 (graph) A graphG = (V,E, ω) is defined by the set of its ver-
ticesV , the setE ⊆ V × V of edges and the matrixω = (ωij)|V |×|V | containing
the edge weights between the pairs of nodesi and j. Graphs can be undirected
or directed: In an undirected graph, if nodeA has an edge leading to nodeB, B
is considered to also be connected toA. This is not necessarily true for directed
graphs.

If the edge weights represent the pairwise similarities between the respective
nodes, the graph is also called a similarity graph. Graphs may contain cycles in
the form(i1, i2, . . . , ik) with ik = i1; il ∈ V ∀1 ≤ l ≤ k; il 6= im ∀1 ≤ l,m <

k ∧ l 6= m, andk > 2, i.e. sequences that end at their start node and contain no
repeated nodes with the exception of the start/end node. A special case of a graph
is a tree:

8 CHAPTER 1

Table 1.1: Raw data for the example graph
A B C D E F G

A – 5 6 1 – – –
B 5 - 4 – – 2 2
C 6 4 – – – – 7
D 1 – – – – 1 –
E – – – – – – 6
F – 2 – 1 – – –
G – 2 7 – 6 – –

Definition 1.1.13 A tree is a cycle-free graph (undirected or directed).

The reason why graphs are often used in the context of clusteranalysis is
that they offer an intuitive approach to the exploration of agiven data set and a
standardized format as well as a tool box for its analysis. When considering a
graph in its graphical representation like the one in Fig. 1.3, it is often possible to
gain a first idea of what “natural” clusters should look like by identifying densely
populated regions (where a metric exists that allows such statements) or regions
with high similarities. Furthermore, the graph representation is optimal for data
sets where only a similarity or dissimilarity measure is available; the objects in
such a data set can be mapped to the vertices, and the (dis)similarity measure is
reflected by the edge weights. For instance, the data set usedfor the construction

Figure 1.3: Section of an example similarity graph

CHAPTER 1 9

of the example graph in Fig. 1.3 is given in Tab. 1.1, where theentries in the cells
represent the pairwise similarities between two nodes or objects. If there is no
entry, the similarity is not defined explicitly and can be assumed to be minimal –
usually zero; as a consequence, the respective nodes are notconnected by an edge.

In our example, the groupABC can be interpreted as a cluster since all its
members are connected with relatively high similarities. Equally, there is an im-
portant relation between nodesC, G, andE due to the high similarities between
them. For instance,CG andGE might form a cluster. If we assume transitivity
of relations – for instance in social networks, where the graph either is incomplete
due to observation errors or may develop new edges over time –the three nodes
CGE might also form a cluster. In that case, the high similarity betweenC and
G on the one hand andG andE on the other allow to deduce a “considerable”
similarity betweenC andE; as a consequence, the three nodes form a cluster.
We will see later on, in the third chapter, that the RRW algorithm also finds such
transitive relations.

10 CHAPTER 1

Chapter 2

Related Work

This chapter will provide an overview of the literature thatis relevant in the con-
text of this thesis.

An important concept for the restricted random walk clusteralgorithm is that
of a stochastic process. Therefore, section 2.1 contains anintroduction to stochas-
tic processes, with an emphasis on Markov chains, a specific and well-known
class of stochastic processes. The restricted random walk as defined by Schöll
and Schöll-Paschinger [SSP03] is introduced, and its definition is delineated from
other restricted random walk concepts found in the literature.

In addition to Markov chains, random graphs are another interesting construct
with close ties to the subject of random walks. Section 2.2 gives a short introduc-
tion into the subject.

The remainder of the chapter will review cluster algorithmswith an emphasis
on two areas: “dynamic” clustering and randomized algorithms. In the context of
this thesis, the term dynamic clustering will encompass those cluster algorithms
that are fit to cope with data that is – in one sense or another – dynamic. More
precisely, this includes data sets whose object set may varyin size, as well as data
sets with changing distances, dissimilarities or similarities.

As an introduction into the subject of clustering, section 2.3 starts with a short
survey of cluster algorithms, before section 2.4 presents the different approaches
that can be summarized under the label of dynamic clustering. These approaches
are divided into three subclasses. The most established algorithm class is the one
in section 2.4.1 that deals with growing data sets and data streams. The description
of truly dynamic algorithms that are able to work on data setsin which similarities
or distances can change follows in section 2.4.2. A special subclass of such dy-
namic problems can be found in section 2.4.3: mobile scenarios, where clustering
based on visibility criteria is used to e.g. optimize routing in wireless networks.

The following two sections are dedicated to the stochastic aspects of cluster-
ing: Section 2.5, after giving a short introduction to random algorithms, presents

11

12 CHAPTER 2

a number of probabilistic algorithms for clustering, whereas section 2.6 discusses
approaches that are deterministic, but based on ideas from random walk theory.

It should be noted here that this thesis uses the original variable names pro-
posed by the authors of the literature reviewed. While this facilitates a later com-
prehension of the original work, it also implies that the scope of the variable def-
initions in the sections 2.3 to 2.5 is always limited to the respective section or
paragraph.

2.1 Stochastic Processes

According to Ferschl [Fer70], a stochastic process in general is a mathematical
model for randomized experiments over a probability space that consists of a se-
quence of observations or states. This sequence is represented by a succession
{Xt, t ∈ T} of states that are visited by the process at timest. T is called the
parameter space of the process and represents the time. In the case of the discrete
state spaceT = IN0, transitions between the states may occur at given intervals;
the process is then called discrete. In other cases likeT = IR, the process may
change its states at any point in time; it is called continuous. The set containing
the possible states, i.e. the possible values of theXt, is denoted byS and called
the state space. It may either be finite or infinite. We will deal here only with
discrete processes with a finite state space.

A concrete realization of such a process may be written asX =
(x0, x1, x2, . . .), where eachxk can be interpreted as a realization of a random
variableXk. The process itself is defined by the parametersS, x0, andP , where
S is the aforementioned set of states,x0 is the initial state of the process, andP
denotes the transition probabilities, i.e. the probabilities of entering a certain state
xk after the process has been in the statesx0, . . . , xk−1.

2.1.1 Random Walks

The term random walk was first introduced in a contribution tothe Nature maga-
zine in 1905 by Pearson titled “The problem of the random walk” [Pea05]:

Can any of your readers refer me to a work wherein I should find
a solution of the following problem[...]. A man starts from apoint O
and walksl yards in a straight line; he then turns through any angle
whatever and walks anotherl yards in a second straight line. He re-
peats this processn times. I require the probability that after thesen
stretches he is at a distance betweenr andr + δr from his starting
point, O.

CHAPTER 2 13

The problem is one of considerable interest [...]

Given that last sentence it is not surprising that Pearson’squestion was not the
first mention of this problem and that it was answered by Lord Rayleigh in the
same magazine shortly after [LR05]. Rayleigh cited the solution he had found in
1880 for the analysis of a large number of harmonic vibrations [LR80]. Over the
last century, there has indeed been a considerable interestin the problem of the
random walk. Bachélier [Bac00] had considered a similar question in his analysis
of speculation, investigating for instance the probability that the price of a bond
reaches a certain limit at a given time or the expectation value for the first time the
price exceeds a predetermined level. Instances from the same problem class were
also discussed by Markov [Mar12] who, among others, presented the solution to
the ruin problem in a two-player game that will serve as example in the following
section.

There are different formulations of random walks. The basicformulation as
given by Cox and Miller [CM65] is that of a particle (the walker) in a multidi-
mensional space. IfX0 is the (random) vector denoting its initial position and the
walker’s displacement in thel-th step is denoted byrl, its position aftern steps is
Xn = X0 +

∑n
k=1 rk. Therk are independently (and in many cases identically)

distributed random variables with densitypk(rk). If the rk – and with them, the
Xn – are defined on a discrete set, the resulting process is called a lattice walk as
introduced by Polya [Pol21].

Furthermore, if the process is defined in continuous time andthe time interval
between two consecutive steps approaches zero, the resulting process converges
to a Brownian motion [BN70].

Random walks have received considerable interest as predicted by Pearson
because they can be used to model, analyze, and predict the behavior of many
systems where random events play a role. Examples include insurance problems
with ruin models or games [Spi01] as will be exemplified in section 2.1.4.

2.1.2 The Restricted Random Walk Used for Clustering

In order to give a first idea of the random process underlying the RRW clustering
algorithm, this section will introduce the restricted random walk process as pro-
posed by Schöll and Schöll-Paschinger [SP02, Sch02, SSP03]. In chapter 3, these
ideas are presented in much deeper detail, and the use of restricted random walks
for clustering purposes is described.

Consider a walk process in a metric space that is populated with objectsi
belonging to some finite setX. Let the process start at some objecti0. It picks
a successor objecti1 from a uniform distribution over all other objects inX. For
the second step, a restriction is introduced: The next object has to be closer toi1

14 CHAPTER 2

thani0 is. If d(i, j) is the distance relation associated with the metric space, this
means that the restriction

d(ik, j) > d(ik, ik−1) (2.1)

has to be fulfilled for allk ≥ 1. If there is no object that satisfies the restriction
in Eq. (2.1), the walk ends. It follows from the constructionthat such a walk must
be finite on a finite object set.

This formulation of the restricted random walk is the one that is used in this
thesis. As can be expected, the term restricted random walk has not been used
exclusively by Schöll and Schöll-Paschinger for their algorithm. Literature men-
tions other types of restricted random walks. In order to provide a delineation to
these concepts, the next section includes other definitionsfor restricted random
walks; these will not be used again in this thesis.

2.1.3 Other Concepts of “Restricted Random Walks”

Many publications, for instance [BN70, WK99, Yan05], use the label restricted
random walks for self-avoiding walks on graphs that are random walks with a
different kind of restriction: Instead of requiring an increasing similarity between
successive nodes as does the RRW method discussed here, a restricted random
walk in the sense of these publications is a walk that may not return to a node it
has already visited. This restriction applies either for the lastk steps or for the
whole walk. Formally, a restricted random walk in the sense of this definition
has the form(i0, . . . , in|il 6= ih∀l 6= h ∧ 0 ≤ l, h ≤ n) (strict formulation)
respectively(i0, . . . , in|il 6= ih∀l 6= h ∧ |l − h| ≤ k ∧ 0 ≤ l, h ≤ n) (lastk nodes
forbidden). The choice of a successor among the admissible nodes usually follows
a uniform distribution. The advantage of this formulation is that the process has
the stochastic exploration capabilities of a random walk, but is forced to visit
and explore unknown nodes instead of reiterating over already known ones. As
a consequence, the probability is high that a restricted random walk in this sense
explores larger portions of a graph than its non-restrictedcounterpart. On the
other hand, if the thresholdk is not well chosen, the random walk might become
trapped in an isolated region of the graph that is only connected to the rest by a
node already visited by the process. The use of such restricted random walks for
the exploration of graphs has for instance been discussed byYang [Yan05].

Engelberg [Eng65] has scrutinized specific walks of lengtha+ b. These walks
are designed to move along thex-axis; their movement along they-axis is a ran-
dom choice between -1 and 1. The walker – called particle – starts at(0, 0), and
its vertical movement in thek-th step is given by a random variableξk ∈ {−1, 1}.
The position after thek-th step is thus(k,

∑k

i=1 ξi). The restriction that is imposed

CHAPTER 2 15

on the walks in this case is that the number of positive movements is exactlya,
and that of negative ones is exactlyb. For these, Engelberg developed the proba-
bility distributions for the number of zeros, i.e. visits tothex-axis and the number
of crossings of the walk, i.e. the number of times the processactually crosses the
x-axis.

Gray [Gra68] has generalized these findings to the distribution of the number
of visits and crossings at an arbitraryy-level.

2.1.4 Markov Chains

Markov chains are generally considered well-behaved and well-investigated
stochastic processes. As will be shown in section 3.1.1, restricted random walks
can be modeled as Markov chains in discrete time, thereby allowing access to
the complete toolbox offered by Markov theory. A comprehensive overview of
these tools can be found e.g. in the books by Ferschl [Fer70] or, in a more general
context, Karr [Kar93].

A stochastic processX = (x0, x1, x2, . . .) is called a Markov chain if it is
compatible with the Markov condition that the choice of the successor state only
depends on the current state, i.e.

P (Xk = j|X0 = x0, . . . , Xk−1 = xk−1) = P (Xk = j|Xk−1 = xk−1)

∀k ∈ IN, j ∈ S (2.2)

A Markov chain is called homogeneous ifP (Xk = j|Xk−1 = xk−1) is indepen-
dent of the parameterk, in other words, if

P (Xk = j|Xk−1 = xk−1) = P (Xl = j|Xl−1 = xl−1) ∀k, l ∈ IN, j ∈ S (2.3)

In that case, the transition probabilities are denoted as a stochastic matrixP ∈
IRS×S. For the rest of the thesis, it will be assumed that the Markovchains under
consideration are homogeneous. This is justified since updates never occur during
a walk, but always between executions of the algorithm; consequently, the Markov
chain constructed in each execution of the algorithm is homogeneous.

A typical example of a Markov chain is a dice game: A person with an initial
endowmentn0 < X0 < n1 throws a dice and obtains one monetary unit (MU) if
the number on the dice is greater than 3 and loses one MU if it isless or equal 3.
Each round’s payoff is a variableYk ∈ {−1, 1} and the state variable in this case
is the person’s wealthXk = X0 +

∑k
l=0 Yl = Xk−1 + Yk. ObviouslyXk only

depends on the last state and the result of the dice throw.
There are several conceivable state spaces for this game:ZZ , IN0, or sets formed

by an interval[n0, n1] with n1 − n0 ∈ IN . In the first case, the player is granted
unlimited credit and the game may go on infinitely. If, in contrast, credit is not

16 CHAPTER 2

granted (S = IN0), the game will end at some point with the ruin of the player
whenXk = 0. Finally, if the state space is limited on both sides due to the player
quitting when an endowment ofn1 is reached (S = {n0, n0 + 1, . . . , n1 − 1, n1}),
the transition probabilities are given by

P (Xk = j) =







1
2

if j ∈ {xk−1 − 1, xk−1 + 1} andn0 < xk−1 < n1

1 if xk−1 ∈ {n0, n1} andj = xk−1

0 else
(2.4)

In this formulation, the statesn0 andn1 are absorbing states, i.e. once the process
enters one of these states, it cannot leave it anymore. For the player in the ex-
ample entering the staten0 represents his ruin. Often, for instance for insurance
companies, the probabilities connected to the ruin are of interest. LetJ be a set
of absorbing states.TJ denotes the first time the process enters one of the states
contained inJ ; the probability thatTJ is finite, i.e. in our case, that the ruin occurs
in finite time when the player starts in statei can be calculated as the solution of
the equation system

Pi(TJ < ∞) =
∑

k∈J

pik +
∑

k 6∈J

pikPk(TJ <∞) (2.5)

with 0 ≤ Pi(TJ < ∞) ≤ 1. For the following computations,n0 = 0 andn1 = 5
shall be assumed.

The probability of the ruin of our player in finite time is computed by setting
up the equation system above forJ = {0} that is given here withPi as abbreviated
notation ofPi(TJ < ∞). The right hand side contains the probability of directly
entering the absorbing staten0. It follows from the definition of the process.

P0 = 1
P1 − 1

2
P2 = 1

2

− 1
2
P1 + P2 − 1

2
P3 = 0

− 1
2
P2 + P3 − 1

2
P4 = 0

− 1
2
P3 + P4 − 1

2
P5 = 0
P5 = 0

Solving the equation system, we see that for instance the probability of ruin is
0.4 if the player starts with an initial endowment ofX0 = 3. The probabilities of
reaching the staten1 instead are calculated analogously.

Additionally, if the process reaches an absorbing state almost surely, i.e. with
probability 1, in finite time, it might be interesting to compute the time that the
process takes on average to terminate. IfJ is once again the set of absorbing
states, the expected number of stepsEi(TJ) the process takes fromX0 = i before

CHAPTER 2 17

entering an absorbing state is the solution of the equation system

Ei(TJ) = 1 +
∑

k 6∈J

pikEk(TJ)

with Ei(TJ) ≥ 0 ∀i.
If the state space of the game is not limited, the process is a random walk on a

one-dimensional lattice where the stateXn is defined asXn = Xn−1 + Yn and

P (Yn = l) =

{
1
2

if l ∈ {−1, 1}
0 else

(2.6)

Using the one-step transition probability matrixP , it is possible to calculate
the probability distribution after a given number of steps.First, let the row vector
πt ∈ [0, 1]|S| represent the probability distribution of the states at time t. The
distribution fort+ 1 is obtained by multiplication

πt+1 = πtP (2.7)

and by recursion, we get
πt+l = πtP

l (2.8)

A special case occurs if, starting from a timet0, the distribution does no longer
change from step to step:

Definition 2.1.1 (stationary distribution) If πt = πt+1 = π for all t ≥ t0, the
distributionπ of the Markov chain is called stationary or “steady state”.

A Markov chain is bipartite if its state spaceS can be split into two subgroups
S1, S2 such thatS1 ∪ S2 = S andpij = 0 ∀i ∈ S1, j ∈ S1, ∨ i ∈ S2, j ∈ S2, i.e. if
there are no transitions between two members of the same subgroup. As Lovasz
[Lov96] has shown, all non-bipartite Markov chains have a stationary distribution.
Bipartite chains, on the other hand, cannot have a stationary distribution because
with each step, the transition probabilities change radically, depending on which
part of the state space the current state belongs to.

Another important notion is that of (ir)reducibility.

Definition 2.1.2 (irreducible Markov chain) A Markov chain is said to be irre-
ducible if each of its states can be reached from each other state, i.e. if no part
of the state space can get separated from the rest during the running time of the
process.

18 CHAPTER 2

2.2 Random Graphs

Closely related to random walks on graphs is the subject of random graphs that
goes back to Erdös and Renyi [ER57, ER60]. In a random graph,the vertices are
predetermined; their edges, on the contrary, are created bya stochastic process.

For instance, consider a party where guests walk randomly through the room
and engage in dialogs for a limited time with the first person they meet and that
currently is not having a conversation. Clearly, the nodes of the graphs are the
persons participating in the party. Furthermore, for each dialog that is established,
we add an edge between the two persons having this conversation if it does not yet
exist. If the party were to go on infinitely [Ada82], the graphwould be connected
after a while, after a longer time, it will finally be a clique,i.e. a graph where every
node is directly connected to each other node. The growth of the graph follows a
stochastic process and the realization of a concrete configuration of the graph is
the realization of a random graph.

Two formulations have been developed for the formation of such a graph.
Bollobas [Bol01] introduced the concept of theGn,p random graph. Formally, the
graph consists ofn vertices. For each of the

(
n

2

)
possible edges, imagine a coin

being tossed that with probabilityp lands heads up and thus leads to the edge
being added. With probability1 − p the edge is not added to the graph. Each

graph thus created is one of2(n

2) possible realizations of theGn,p graph.

Asymptotically, this is equivalent to theGn,N formulation of a random graph
where a set ofN edges is chosen from all

(
n

2

)
possible edges under the restriction

that every possible graph withN edges andn nodes has the same probability of
being created. Alternatively, aGn,N graph [ER57] can be created by iteratively
adding edges from a uniform distribution over all possible edges not yet assigned
untilN edges are present. The equivalence ofGn,p andGn,N for very large graphs
follows whenp andN are chosen such that

(
n

2

)
p = N since the first is the expected

number of edges in theGn,p graph and the latter is the fixed number of edges in
theGn,N graph.

With a growing number of edges a phase change behavior with respect to
different properties of the graph like connectedness is observable. A phase change
is marked by the rather abrupt transition from one state to the other. For the
analysis of this effect on random graphs, it is useful to introduce the graph family
Gn,p(n) [Spe01], where the probability of an edge being added is expressed as a
function of the number of nodes. It can then be shown that for many properties
of the graph, a threshold functiont(n) for p(n) exists such that, in the asymptotic
view, if p(n) ≪ t(n), the property almost surely does not apply to the graph, while
for p(n) ≫ t(n), it almost surely holds. Tab. 2.1 lists some of these properties
along with their respective threshold function.

CHAPTER 2 19

Table 2.1: Threshold functionst(n) for graph properties
Threshold Property of the Graph

n−2 The graph has edges
n− 3

2 The graph has nodes with a degree of at least two
n−1− 1

k The graph contains trees withk + 1 vertices
n−1 The graph contains triangles and cycles
lnn
n

The graph is connected

n− 2

k−1 The graph has complete subgraphs withk nodes (k ≥ 3)

n− 1

2 ln
1

2 n Each pair of the graph’s nodes has a common neighbor

Let us consider the property of being connected a bit further. If p(n) = lnn
n

,

the expected number of edges is
(

n

2

)
lnn
n

= (n−1) ln n

2
≈ 1

2
n lnn. According to

Erdös and Renyi [ER57], the probability of a graph with1
2
n log n+ cn edges and

n vertices being connected is

lim
n→∞

P (Gn,[1
2
n log n+cn]is connected) = e−e−2c

(2.9)

By varyingc, we obtain the function plotted in Fig. 2.1. The phase changeis

 0

 0.2

 0.4

 0.6

 0.8

 1

-20 -15 -10 -5 0 5 10 15 20

p(
co

nn
ec

te
d)

c

p(connected)

Figure 2.1: The probability of connectedness forGn,[1
2
n log n+cn] as a function of c

[Fra03]

20 CHAPTER 2

visible in the interval[−1, 3], where the probability of the graph being connected
goes up from practically zero to nearly one.

Random walks may also be considered as generators for such anincrementally
growing graph, if for each edge in the similarity graph visited by the walk, an edge
is added to the random graph between the appropriate place ifit does not already
exist. The difference, however, is the order in which the nodes and edges are
visited: The order of the edges visited by the random walk is not as free as for the
normal random graph since it depends on the underlying structure. Furthermore,
using only one walk process, the graph always consists of exactly one component
and many singletons. This can be overcome by using several walk processes,
possibly with restrictions as introduced in chapter 3.

In that case, as stated in [Fra03], the most interesting moment for clustering
purposes is when substructures in the graph start forming, but before the graph is
connected. In this case, the substructures give information on the clusters present
as will be detailed later when dealing with restricted random walks in chapter 3.

2.3 Cluster Algorithms

This section gives a short overview of the related literature on cluster algorithms
in general and presents three algorithms,k-means, single pass, and hierarchical
agglomerative clustering, in more detail since these will be used in the following
section on dynamic clustering. The era of classification andclustering on comput-
ers began in 1957 with Sneath’s seminal paper [Sne57] on the use of computers
in taxonomy. It would be beyond the scope of this thesis to give an overview of
the complete area of cluster algorithms. A more in-depth review can be found
in [Fra03]. The book by Bock [Boc74] offers a very good introduction to the
general ideas and principles of clustering and still is one of the standards in this
field. Another good introduction is contained in the first chapters of the book by
Kaufman and Rousseeuw [KR90], followed by the rather specific presentation of
some cluster algorithms. Both Sokal [Sok77] and Duran and Odell [DO74] offer
a broad review of cluster methods. For the practical application of clustering al-
gorithms the paper by Dubes and Jain [DJ76] can be recommended. The works
of Augustson and Minker [AM70], and Matula [Mat77] are focused especially
on graph theoretic clustering methods. There have been attempts at defining gen-
eral frameworks, for instance by Lance and Williams for hierarchical bottom-up
cluster methods [LW67a, LW67b]. Jain et al. [JMF99] give a general overview
over the subject of clustering, including such topics as fuzzy clustering [Bez81],
clustering with artificial networks, and evolutionary clustering [GD03].

In general, the following requirements for a “good” clustering are considered
in the literature [Fra03]:

CHAPTER 2 21

• Stability: According to Godehardt and Jaworski [GJ02], thestability cri-
terion comprises three aspects: First, the addition of new objects should
not have a significant influence on the clustering, and the method must dis-
play insensitivity against reordering of the data as well asrobustness against
outliers. The first two aspects are especially important in the context of up-
dateable cluster algorithms: The first is the discussion of plasticity versus
stability of the clustering, i.e. the question of how strongly a clustering is
adapted when new objects arrive. The second is even more critical for the
quality of the clusters, as will be discussed in the following sections: Often,
it is not possible for stream or incremental algorithms to order the data in a
way that would create a good cluster quality. While not a specific problem
of dynamic clustering, the question of how to treat outliersis also impor-
tant since single outliers can change the cluster shape considerably when
included in a cluster. It must thus be decided whether to discard outliers,
keep them as singleton clusters or include them in the existing clusters.

• Comprehensibility: The resulting clustering must be comprehensible in the
sense that the user must have the possibility to understand the steps that the
algorithm has taken toward the solution. This is complemented by the next
criterion,

• “Natural” clusters: Obviously, the clusters produced by analgorithm should
be intuitive and compatible to the structure that is inherent in the data set. In
an attempt to grasp the concept of natural clusters in terms of an objective
quality measure, there has been a plethora of formal criteria for the quality
of clusters, for instance by Halkidi et al. [HBV02b, HBV02a], Hagen and
Kahng [HK92] or Pantel and Lin [PL02]. Halkidi et al. give a very good
survey both of external criteria, when it is possible to compare the cluster-
ing with some a priori classification, and of relative measures, where two
algorithms are compared. An example for the first type of measure is the
Jaccard measure [Jac08] that computes the fraction of correctly classified
object pairs over the number of pairs that are assigned to thesame cluster
either by the clustering, the original classification, or byboth. A member of
the relative class of criteria is the Dunn family of indices

Dnc
= min

i=1,...,nc

{

min
j=i+1,...,nc

{
d(ci, cj)

maxk=1,...,nc
diam(ck)

}}

(2.10)

with nc the number of clusters,d(ci, cj) = minx∈ci,y∈cj
d(x, y) the dissim-

ilarity between the clustersci andcj , anddiam(ck) = maxx,y∈ck
d(x, y).

Hagen and Kahng have proposed the degree/separation measure that is de-
scribed in section 2.5.4. The objective functions used in the algorithms by

22 CHAPTER 2

Fisher [Fis58], Ward [War63], and others also represent an implicit quality
criterion. Fisher, for instance uses the weighted quadratic distance or sum
of squares from the cluster centroid

D =
K∑

i=1

wi(ai − āi)
2 (2.11)

whereK is the number of objects,wi is the weight of objecti, ai is some
numerical measure assigned toi – for instance the position in a metric space
– and āi is the arithmetic mean of the numerical measures of all objects
assigned to the same cluster asi. It is then of course desirable to minimize
this measure. However, in spite of all these attempts, it should be noted that
the naturalness criterion is still hard to grasp formally.

• Efficiency: It is clear that even clusters of high quality areuseless if their
computation takes too much time, i.e. if the results are not available when
they are needed. Consequently, the computational complexity of an algo-
rithm should always be borne in mind, especially for large data sets. Many
solutions that were proposed are NP-hard and as such hardly fit for real ap-
plications. But sometimes approximations can be found, forinstance by a
more efficient randomized algorithm as discussed in section2.5.

• Shape independence: Optimally, a cluster algorithm shouldbe able to iden-
tify clusters independently of their shape and relative size. However, as
Jain et al. [JMF99] note, there is no universally applicablecluster algo-
rithm. Rather, as mentioned in section 1.1, there exist algorithms that are
specialized for clusters with certain shapes. For instance, k-means cluster
algorithms are especially fit for the detection of spherical, compact clusters,
whereas single linkage will reliably identify elongated clusters, but with a
strong tendency towards bridging.

• Optionally, support for dynamic data sets as defined in the introduction: In
addition to the above criteria, a dynamic algorithm should be able to cope ef-
ficiently with data sets of changing size, containing objects that may change
their pairwise similarity over time. Especially, it is not deemed efficient to
simply recompute the clustering using the whole data set. This requirement
will be elaborated in section 2.4 for the evaluation of existing methods and
will be the benchmark for the development of the algorithm discussed in
this thesis.

Cluster algorithms can be classified according to various criteria that Good
[Goo77] quite eloquently described in his “botryology of botryology”. The term

CHAPTER 2 23

botryology – that never really caught on – is derived from theGreek wordβoτρυs
that designates something that resembles a cluster of grapes. The more widely
used criteria from his list, supplemented with those listedby Sneath and Sokal
[SS73] are:

• disjunctive versus overlapping

• qualitative versus quantitative

• agglomerative versus divisive

• hierarchical versus nonhierarchical (partitional)

• local versus global criteria

• direct versus iterative solutions

In addition, the criteria

• deterministic versus stochastic (cf. section 2.5)

• hard versus fuzzy [Bez81]

should be mentioned.
The algorithm that is at the center of this thesis is either disjunctive or overlap-

ping, depending on which cluster construction method is used, it is quantitative,
hierarchical, uses local criteria, is direct, stochastic and hard. Due to the formula-
tion of the process, it cannot be assigned the label agglomerative or divisive.

Before considering dynamic clustering in detail, let us review some static al-
gorithms that will be referenced later in this thesis.

2.3.1 k-Means Clustering

k-means ork-medoids clustering is a simple iterative cluster algorithm developed
by MacQueen [Mac67]. It finds clusters in a vector space for a predefined number
k of cluster centers by iteratively adjusting the cluster centers and the association
of the objects with these centers. Letµ1, . . . , µk represent the cluster centers. In
the case ofk-means, they are computed as the average value of its cluster’s mem-
bers, fork-medoids, theµi are assigned the cluster member closest to this average.
Usually, the algorithm is initialized with random vectors for theµi. In each itera-
tion, first each of the objects is assigned to the cluster center it has the minimum
distance to. Then the cluster centers are recalculated for the next iteration. The
algorithm stops either after a predefined number of iterations or when the set of
cluster centers does no longer change significantly.

24 CHAPTER 2

An interesting preprocessing step for thek-means algorithm has been devel-
oped by Lin et al. [LVKG04]. It addresses two known problems for the algorithm:
First, the running time of thek-means algorithm depends on the dimensionality
of the input data, which constitutes a problem for time-series inputs. Second, the
method being a hillclimbing algorithm, it may get stuck in local optima, depend-
ing on the initial distribution of the cluster centers.

Both issues can be alleviated by reducing the dimensionality of the input data
set by using e.g. a Haar transformation; the authors claim that any multi-resolution
decomposition such as discrete Fourier transformations isapplicable, too. The
idea behind a Haar transformation is to iteratively calculate the average of two ad-
jacent data points at the next higher resolution; the Haar0 coefficient is the global
average. The transformation is lossless and thus completely reversible.

In order to avoid local minima, the first clustering is started on a low-resolution
level. At this level, the probability of finding a local optimum is less pronounced
than with high-resolution data. In further steps, the last solution obtained at a
lower level is used as input for data of higher and higher resolution levels, using
more and more Haar coefficients, until finally the original input data has been
restored and is used for the clustering. The authors show that the running time
in practice is lower than for the normalk-means algorithm and that the average
quality is higher.

2.3.2 Single Pass Clustering

The term single pass clustering is applied for a class of clustering algorithms that
cannot use random access on the data set but instead must compute cluster as-
signments as each object is introduced. One variant of this paradigm has been
introduced by Deichsel [Dei78]. As each object is considered for clustering, it is
either assigned to one of the existing clusters if its distance to one of the cluster
members is below a predefined threshold, else it forms its owncluster.

The advantage of the single pass class of algorithms is theirlinear computa-
tional complexity. On the other hand, the quality of the resulting clusters is not
optimal since every object can only be considered once, and before knowledge
of the layout for the rest of the data set is present. Suboptimal decisions that
were made at an early stage cannot be reverted. Furthermore,the results of such
an algorithm depend on the order in which the objects to be clustered arrive. If,
for example, the first objects are just outside each others’ cluster radius, they are
assigned to different clusters, even if later data points lying between these initial
objects suggest that there should be one large cluster in theregion instead of many
small ones.

CHAPTER 2 25

2.3.3 Hierarchical Agglomerative Clustering

The term Hierarchical Agglomerative Clustering (HAC) [War63] describes a gen-
eral framework for obtaining a hierarchy of clusters as is often the requirement in
information retrieval. The general idea is to start with a set of singleton clusters
that form the leaves of the dendrogram. In each step of the algorithm, the two
clusters that are closest to each other with respect to the metric used are merged,
until there is only one cluster left: The root node of the dendrogram.

Usually, the metric is one of the following: Smallest distance between mem-
ber objects of the clusters in question (single linkage), average distance (average
linkage) or largest distance (complete linkage), diameter(largest intra-cluster dis-
tance of the merged cluster) or radius (the size of the sphereenclosing the cluster)
of the clusters.

2.4 Dynamic Clustering

After the general overview of the last section, this sectionpresents the approaches
proposed for clustering dynamic data. The designation dynamic data can mean
two things: First, it may be the size of the object set that increases or decreases
over time as new members join or old members leave the set. Second, the mem-
bers themselves may change their relation, i.e. distance orsimilarity, to other
members, thus necessitating an adaptation of the cluster structure. A problem
that occurs in this context is that of the stability/plasticity dilemma [DHS01]. On
the one hand, the clustering should be able to integrate new objects as accurately
as possible in the cluster structure: The clustering shouldbe plastic. On the other
hand, such a good integration may entail considerable changes in the cluster struc-
ture due to the insertion of single objects which means that the clusters are not
stable. The conflict between plasticity and stability should be kept in mind when
examining the algorithms reviewed here.

All algorithms compiled here can cope with at least one of thescenarios de-
scribed above, where the insertion of nodes seems to be by farthe most common
problem – at least judging from the respective number of publications. Optimally,
a cluster update algorithm should be able to cope with insertions, deletions, and
changing similarities while maintaining the quality that would result from a re-
newed execution of the algorithm on the updated data set.

Another field of research where the problem of dynamic data sets is often en-
countered is the domain of data mining. Solutions were for instance proposed
by Wang [Wan97] who used dynamic suffix trees to detect recurring patterns
in sequential data (strings), given minimal values for support and confidence, or
Parthasarathy et al. [PZOD99] who used the relations between subsequences and

26 CHAPTER 2

sequences in data streams to quickly detect frequent sequences. These two algo-
rithms will not be detailed further here since they rather belong to the domain of
association mining than to clustering.

Section 2.4.1 contains an overview of algorithms that can handle growing and,
in some cases, shrinking data sets. It starts with an overview of this algorithm
class before presenting the different approaches published in this field. The sec-
tion ends with an evaluation of the algorithms’ capabilities in the context of dy-
namic data sets in the broader sense. The next section, 2.4.2, presents algorithms
that are also capable of integrating changing similarities, for instance for the pur-
pose of access pattern optimization in object-oriented data bases, followed by a
summarizing evaluation. Finally, section 2.4.3 gives an overview about a domain
of research that is currently quite active: mobile, wireless and ad-hoc networks.
This class of algorithms naturally faces both dynamic object set sizes and moving
objects; the methods are often used for finding optimal routes for the network. The
important difference that discriminates algorithms for mobile scenarios from the
ones described in section 2.4.2 is that they usually only have a binary similarity or
distance measure (two nodes can directly reach each other ornot). Furthermore,
given that the execution environment for the algorithm is usually a mobile device
with limited battery power, limited computational resources and limited commu-
nication bandwidth, the clustering algorithms have to makecompromises between
quality and resource usage, as will be discussed in the summary of section 2.4.3.

2.4.1 Integration of New Objects into an Existing Clustering

The typical application scenario in this problem class is the sequential appearance
of objects for example in data streams. Clusters have to be constructed before the
object set is complete. Application examples include environment detection for
autonomous agents [MMR96] and especially stream clustering [Bar02].

In general, these algorithms are not capable of dealing withchanging similar-
ities or distances, but if the algorithm also supports the removal of objects, it is
possible to integrate this scenario. For instance, if objects move with respect to
each other, the moved objects can be first removed from the data set and reinserted
at their new position. Whether this is efficient or produces clusters of the desired
quality is a different question.

Cover-Coefficient-Based Incremental Clustering Methodology

One of the first publications in the area of dynamic clustering is the article of Can
and Ozkarahan [CO87]. They stipulate the following requirements for dynamic
clustering in an information retrieval environment that overlap with the general
requirements for clusters given in section 2.3:

CHAPTER 2 27

1. Stability: The appearance of new objects should not lead to substantial
changes in the cluster structure. Equally, small errors in the determination
of similarities e.g. from a textual description should not affect the clustering.

2. Order independence: The order in which the objects are presented to the
algorithm should not have an influence on the cluster structure.

3. Well-definedness: The algorithm should either produce a single classifica-
tion, i.e. clustering, or a small set of compatible classifications when clus-
tering a given data set.

4. Uniformity of distribution of the documents in the clusters.

5. Efficiency: The addition – and possibly removal – of objects should be
efficient and practical

6. Optimality for retrieval: The resulting clustering should allow an efficient
and effective retrieval procedure.

The algorithm developed by Can et al. [CO87, CO89, CD90, Can93, CFSF95] was
motivated by a typical information retrieval (IR) problem:Givenm documents
described byn terms, find groups of similar documents. The input data is given as
a feature matrixDm×n where the entrydij is either a binary variable that denotes
whether documenti is described by termj, or it contains the weight of termj in
documenti. In the following, binary entries will be assumed. The reciprocal of
the sum of thei-th row ofD is denoted byαi, the reciprocal of the sum of itsk-th
column byβk.

The cover coefficient matrixCm×m describes for every document how well it
is described by each other document. Its elements are calculated as

cij = αi

n∑

k=1

βkdikdjk (2.12)

cij denotes how welli is covered byj. Due to the formulation of thecij , the
row sums ofC are equal to one. In addition to the coverage by other documents,
the uniqueness or decoupling coefficientδi = cii represents the self-coverage of
documenti. The lowerδi, the morei is coupled with other documents. The
coupling coefficient of a documenti is the row sum of the off-diagonal entries
ψi = 1 − δi. The coupling coefficient [sic] for the whole data baseδ =

∑m

i=1
δi

m

is a good criterion for the appropriate number of clusters – note that despite the
name, the coefficient has nothing to do with correlations or linear interactions.

28 CHAPTER 2

The authors suggest to generatenc = δm clusters. For each document, the
cluster seed power

pi = δiψi

n∑

j=1

dij (2.13)

determines its fitness to be a cluster center or seed. Thenc documents with the
highest cluster seed power are selected as cluster seeds forthe initial clustering.
The other documents are then assigned to the cluster seed that covers them best
according tocij.

For the cluster maintenance, the following algorithm is used. Df is the set of
documents that have to be (re)clustered:

1. Compute thepi for all documents

2. Determine the cluster seeds of the new data set

3. If an old cluster seed is no longer a seed, add the documentsfrom its cluster
toDf

4. If a non-seed becomes a seed, add all documents from the same cluster to
Df

5. Assign the members ofDf to the new cluster seeds as above

The overall complexity of this approach is given asO(3t + m logm) +
O(ncm(|Df | − ncr)xd) wheret is the number of non-zero entries in the feature
matrix D, ncm is the number of cluster centers in the updated data set,ncr the
number of seeds in the set of documents to be (re)clustered and xd is the average
number of terms per document. The algorithm is designed for growing data sets,
but could also be used when objects are removed. The quality of the clusters is
maintained during the updates at the cost of a relatively high complexity.

Dynamic Clustering for Time Incremental Data

Another early work in the domain of incremental clustering is the article by
Chaudhuri [Cha94] who systematically listed the possible actions upon arrival
of new objects:

1. Absorption: A new objectp is “sufficiently” close to an existing cluster in
order to be considered as member. Distance in this case is defined in the
sense of single linkage, i.e. as the minimum distance between p and one of
the members of the respective cluster. LetCi be the nearest cluster top.
Chaudhuri suggests that the distance of the objectp to the closest cluster

CHAPTER 2 29

memberq0 ∈ Ci should approximately correspond to the average distance
of q0 to itsm closest neighbors inCi wherem is a predefined constant.

2. Merging of clusters: If, during the steps described for case 1, two clusters
Ci andCj have reduced their distance, the two are merged. The distance
betweenCi andCj is defined here as the minimum distance between one
pointp ∈ Ci and another pointq ∈ Cj:

d(Ci, Cj) = min
p∈Ci,q∈Cj

d(p, q) (2.14)

This case can only occur if at least one of the clusters has grown due to the
absorption of one or several new objects and thus decreased its distance to
some of the other clusters. The clusters are merged if their characteristics in
the vicinity ofp andq correspond. As a measure for the correspondence, the
share of closest neighbors ofp that come fromCj and vice versa is used.
If it is close to 1

2
, Chaudhuri takes this as an indicator that the clusters’

characteristics correspond.

3. New cluster formation: For the decision whether leftoverobjects from step 1
should form a new cluster or be considered as outliers, Chaudhuri proposes
the use of a minimum spanning tree that is constructed over the set of objects
not assigned to a cluster. For these objects, the average distanced0 to their
nearest neighbor in one of the existing clusters is computed, and all edges
with an associated distance greater thanαd0, α > 1 are discarded in order
to obtain a threshold graph. Those subtrees with more thanm0 nodes form
the new clusters,m0 being a predefined threshold

4. Outliers: All objects not associated with a cluster in oneof the preceding
steps are considered as outliers

5. Split of clusters: At regular intervals, all clusters that have grown due to
absorption or merging are considered for a split. First, thelocal densities are
calculated for each object. Ifµl andµh are, respectively, the minimum and
maximum local densities, all objects with a density less thanµl+β(µh−µl)
are discarded, whereβ is a given constant. Then, a minimum spanning tree
is constructed. If the maximum distance associated with an edge is much
higher than the average distance, clusters should be split at the edge with
the highest weight, but only if its removal generates two subtrees with a
“reasonable” number of nodes – unfortunately, the paper does not detail the
question what a reasonable number of objects is for a cluster.

As can be seen, the actions here are triggered by criteria that are formulated in a
vague way and must be concretized in order to be operationally usable.

30 CHAPTER 2

Incremental Conceptual Clustering

Algorithms from the field of incremental conceptual clustering [Fis87, GLF89,
Nev95] are among the earliest methods capable of integrating new objects. The
methods are motivated by human learning processes vis-à-vis a set of yet un-
known objects that are presented sequentially. In the general case, the knowledge
of the structure inherent in the data set is represented by a decision tree where
every node represents one or several criteria according to which the objects in its
sub-hierarchies can be classified. While the static algorithms separate between a
learning phase for the construction of the tree and the actual classification task, the
incremental algorithms surveyed by Gennari et al. [GLF89] integrate both func-
tions: Each object that is presented to the algorithm may influence the structure
of the tree.

Gennari et al. [GLF89] propose to use an incremental hill climbing learning
algorithm in order to cope with the dynamics of the object setand to reduce the
memory requirements. In this case, the landscape the hill climber must cross is
the space of all concept hierarchies, the altitude or quality of a single solution
being determined according to the fit between the data presented so far and the
hierarchy. Contrarily to static hill climbing methods, thehill climber in the context
of incremental conceptual clustering is confronted with a changing “landscape”
in every step. As a consequence, the algorithms may be order-dependent as the
authors note in their survey.

Influence of Instance Ordering on the Clustering Quality

For most incremental algorithms, the order in which new objects arrive is crucial
(cf. [GLF89]). Some of them deal with this problem by reorganizing the clusters
with either local or global strategies. While local strategies are cheap to imple-
ment, it cannot be guaranteed that they correctly reflect global changes in the data.
Global strategies, on the other hand, do not have this problem, but they are usually
computationally much more complex than their local counterparts.

For algorithms without these reorganization facilities, it has been shown
[FXZ92] that the best cluster results are achieved when the first objects presented
to the algorithm are as dissimilar as possible, thus definingthe regions in which
objects can be found. In this case, the initial clusters can be expected to cover a
large part of these regions. If, on the contrary, very similar objects are encoun-
tered at the beginning, the initial cluster centers are positioned close to each other.
As a consequence, they must be repositioned when remote objects are presented
to the algorithm. This increases the probability of the algorithm sticking to local
optima.

Roure and Talavera [RT98] have therefore suggested the “not-yet” strategy for

CHAPTER 2 31

various clustering algorithms, where each insertion is evaluated in terms of the
algorithm’s cluster quality criterion. If the expected utility, i.e. the confidence of
adding the new object, is above a given threshold, it is inserted, else it is stored
in a buffer to be inserted later on. The idea has a certain similarity to simulated
annealing (cf. section 2.5.3) and has been shown by the authors to considerably
reduce the influence of a bad instance ordering.

A similar principle has been proposed as the leader algorithm [Har75]: Given
a vigilance parameterθ, each new object is either placed in a cluster if it lies
within a radius ofθ around its cluster center or it starts its own cluster if it is
too remote from all existing clusters. Prehn and Sommer [PS06] calculate this
vigilance parameter by iteratively clustering the object set with decreasingθ until
the classification error falls below a predefined threshold.Clearly, the lower the
vigilance parameter, the better the fit, but the lower the generalization capabilities
of the clustering. The algorithm allows for ellipsoidal clusters, has a reduced
sensitivity to instance ordering problems and runs in linear time of the number of
clusters, but can only handle insertions.

Incremental Clustering and Dynamic Information Retrieval

In the context of information retrieval, Charikar et al. [CCFM97] have analyzed
the extension of hierarchical agglomerative clustering tothe dynamic case. Their
goal is to maintain a predefined number of clusters with minimal diameter where
the diameter of a cluster is defined as the maximum inter-object distance in the
cluster. As a quality measure, the authors suggest the performance ratio that uses
the optimal – i.e. static – clustering as a benchmark. The performance ratio is
defined as the ratio of the maximum cluster diameter over all update sequences to
the maximal cluster diameter of the optimal clustering.

Additionally, the dual problem of maintaining a fixed cluster diameter with
a minimal number of clusters is discussed. The authors studythree algorithms:
a greedy algorithm with two alternative selection criteria, the doubling and the
clique algorithm. The greedy algorithms work by merging either the clusters
whose centers are closest (center-greedy) or those that minimize the diameter of
the merged cluster (diameter-greedy). The two latter algorithms encompass sev-
eral phasesi that each consist of two stages: The first stage serves to shrink the
initial number ofk + 1 clusters by merging, while new elements are added in
the second stage. In the case of the doubling algorithm, the nearest clusters are
merged in such a way that the radius, i.e. the maximum distance of each cluster
memberp from the cluster centercj , maxp∈Cj

d(cj, p) does not exceedαdi, where
α is a predefined constant anddi denotes a lower bound on the optimal cluster di-
ameter (OPT) for the phase. Furthermore, the distance between two clusters must
bed(cj, cl) ≥ di anddi ≤ OPT. In the second phase, the new objects are inserted

32 CHAPTER 2

into a cluster if it is possible without increasing the diameter of the cluster and
given the respective restrictions for the cluster diameters. If this is not possible, a
cluster is added that contains the new objects as only members. The second phase
runs until the number of clusters exceedsk. The authors show that the perfor-
mance ratio of the algorithm is 8. In other words, the clusterdiameter for the most
disadvantageous update sequence is smaller than eight times the diameter of the
clusters in an optimal clustering of the same data set.

The clique algorithm works in a similar manner. In stage one,initially the
following conditions hold: The radius of each cluster is at most2di, its diameter
at most3di, di ≤ OPT. In the merging stage, a threshold graphG of the cluster
centers is constructed with threshold2di. The cliques inG are then considered as
new clusters. New objects are either added to existing clusters when the resulting
cluster has a diameter of no more than2di, or they establish a new cluster. A
new merging phase begins when the number of clusters exceedsk + 1. Although
the performance ratio of the clique algorithm is 6 and thus better than that of
the doubling algorithm, the problem is that computing cliques is NP-hard and
therefore not really practicable for dynamic clustering.

Both variants can only handle insertions. In addition, the results of the update
procedure are not equivalent to those of the original algorithm.

The greedy and the doubling algorithm have for instance beenused in the
clustering of user profiles for web agents by Somlo and Howe [SH01]. They
showed that for this application, the doubling algorithm was superior to the greedy
algorithm.

BIRCH

The algorithm BIRCH [ZRL96] has been primarily developed byZhang et al. as
a memory-saving algorithm with several passes, but can alsobe used as single
pass variant; in that case, the quality obtained with several passes is of course not
attainable. The goal of the algorithm is to reduce large datasets by representing
densely populated (“crowded”) areas of a metric space as clusters that should fit
into a single memory page and by discarding outliers.

The cluster concept relies on six concepts: centroid, radius, and diameter of
a cluster, the clustering feature (CF), a distance measure,and the CF tree. For a
cluster consisting ofN elementsX1, . . . , XN , the centroid is given by

X0 =

∑N
i=1Xi

N
(2.15)

The radius is defined as

R =

(∑N

i=1(Xi −X0)
2

N

)1

2

(2.16)

CHAPTER 2 33

and the diameter as

D =

(∑N

i=1

∑N

j=1(Xi −Xj)
2

N(N − 1)

) 1

2

(2.17)

In order to compute these characteristics of a cluster, the clustering feature CF
stores for every cluster the tuple(N,

∑N

i=1Xi,
∑N

i=1X
2
i) that is sufficient to cal-

culate centroid, radius and diameter. Different measures are applicable for the
inter-cluster distance, for instance the Euclidean or Manhattan/city-block distance
(definition 1.1.8). Finally, a CF tree is a height-balanced tree whose dimensions
are guided by the following parameters: The branching factor B determines the
maximum number of child entries in a non-leaf node, the parameterL the maxi-
mum number of entries in a leaf node and the threshold factorT is the upper limit
for either the diameter or radius of the cluster composed of the elements in one en-
try of a leaf node. IfX = {X1, . . . , XN} is the set of all objects to be clustered, an
entryXc ⊆ X of a leaf node thus has the formXc = {Xc1, . . . , Xck

|R(Xc) ≤ T}
or Xc = {Xc1, . . . , Xck

|D(Xc) ≤ T}, respectively. A non-leaf node consists of
the clustering features of its child nodes or subclusters and pointers to the chil-
dren. Each entry of a leaf node contains several objects thatform a subcluster
with maximum diameter or radiusT ; this is called the threshold condition. Zhang
et al. do not give further information on the height balance of the tree.

A new element is inserted into a CF tree by descending the tree, always choos-
ing the entry that is closest to the new object until a leaf node is reached. The new
element is inserted into the leaf’s closest entry, if the growing cluster still satisfies
the threshold condition. Otherwise, a new leaf entry is created for the new ele-
ment. If this is not possible because the leaf already hasL entries, the leaf node is
split. Finally, the CF information on the path from the modified leaf or leaves to
the tree root is updated.

The BIRCH algorithm consists of four phases, of which the first is most in-
teresting here, because it generates a clustering while scanning the data only once
(first pass). Phase two optionally reduces the size of the tree, phases three and
four serve to improve an existing clustering, but need a further scan of the data
set, which is why they cannot be used sensibly on stream or dynamic data.

Phase one builds the CF tree while scanning the data set. Zhang et al. claim
that at any point in time during the CF tree construction, thetree represents a good
clustering of the data processed so far. As a consequence, the algorithm is able,
using only the first phase, to work on dynamically growing data sets.

The static algorithm was evaluated against the CLARANS cluster algorithm
[KR90] which it outperformed both with respect to the cluster quality and the run
time. The dynamic version copes only with new objects and hasan inferior quality
compared to the static one which would necessitate a reclustering.

34 CHAPTER 2

Star Clusters

In contrast to algorithms that demand the number of clustersto be fixed a priori,
the method developed by Aslam et al. [APR97, APR98, APR99] isclaimed to find
a “natural” number of clusters. As a result, the authors state that this procedure
guarantees – contrarily to algorithms with a fixed number of clusters – a lower
bound on the similarities inside a cluster. Similarity in this case is defined as the
cosine measure (cf. definition 1.1.11). The algorithm is inspired by clique clusters,
but since their computation is NP-hard, the authors insteademploy dense areas of
the graph with a star-like structure as clusters.

A high intra-cluster similarity is achieved by thresholding the similarity graph
G = (V,E, w), i.e. by removing all edges with a weight lower than a predefined
thresholdσ. While the thresholding is sufficient to guarantee minimum similarity
between cluster members for clique clusters, this is not automatically the case
for star-shaped clusters. For two cluster satellites – i.e.non-cluster centers – the
expected similarity iscosα1 +cosα2 +cos θ sinα1 sinα2 whereα1 andα2 are the
respective angles between the satellites and the center andθ is the dihedral angle
between the planes respectively formed by the center and oneof the satellites.

The algorithm in its static version is a greedy cover algorithm for finding star
graphs as follows:

1. SetGσ = (V,Eσ), Eσ = {e ∈ E|w(e) ≥ σ}

2. Set the status of all vertices inGσ to unmarked

3. Calculate the degree of all vertices

4. While unmarked nodes exist:

(a) Let the unmarked node with the highest degree be a new starcluster
center.

(b) Add all adjacent nodes as satellites and mark the satellites and the
cluster center

5. Represent each cluster by the object that is designated asits center

The resulting clustering is not unique since it depends on the order in which the
objects arrive in the sorted list used for the loop. Per construction, it fulfills the
correctness criterion stipulated by the authors: No two cluster centers are adjacent
and each object has at least one adjacent cluster center.

The dynamic, online version of the algorithm is one of the fewthat explicitly
treat the removal of objects. When inserting an object, the following cases may
occur:

CHAPTER 2 35

• If no star centers are adjacent to the new node, it becomes a star center itself.

• If at least one of the adjacent star centers has a higher degree than the new
node, it is assigned to the respective cluster or clusters.

• If all adjacent star centers have a lower degree than the new node, their clus-
ters are disbanded and all nodes not belonging to a cluster are reclustered.

• If the insertion causes a satellite to obtain a higher degreethan its star center,
the respective cluster is disbanded and all nodes not belonging to a cluster
are reclustered.

Equally, the removal of a node may cause the following situations:

• If the node is a satellite, it is removed.

• If the node is a cluster center, the cluster is removed and thenodes not
assigned to a cluster are reclustered.

• If the removal causes a star center to obtain a lower degree than one of its
satellites, the members of this star must be reclustered.

The authors give a complexity ofO(n2 log2 n) for the insertion ofn nodes into an
(initially empty) graph and for the removal ofn nodes from an (n-vertex) graph.

Incremental Gravitational Clustering

The general idea of clustering using analogies to gravity has been proposed
by Wright [Wri77], Kundu [Kun99], and Gomez et al. [GDN03]. Chen et
al. [CHO02, CHO05] propose the GRACE algorithm for clustering that is based
on a model for the movement of water drops in a space craft. Thetwo influencing
factors for a water drop in this environment are gravitational forces and friction
generated by contact with the air molecules. The velocity ofa particlej is given
as

vj =

√

||
∑

node ni
Fgi

||

Cr

(2.18)

whereCr is the air resistance andFgi
is the forcei experiences from all other

particles. In the case of two particlesi andj its amount is given as

||Fgi
|| = Cg

(mass ofni)(mass ofnj)

distancek(ni, nj)
(2.19)

36 CHAPTER 2

with k=2 “in the physical world” andCg a “coefficient” [sic]. A further interpre-
tation of the two terms is not given. The mass of a cluster is defined as the number
of objects it contains.

Using these forces, the positions of all particles are iteratively updated. When
two drops meet, i.e. when their centers’ distance is smallerthan the sum of their
radii, they merge and continue together. The result is a cluster hierarchy formed
over the course of the algorithm’s execution. A cluster at a given level is charac-
terized by a sphere around its centroid; the radius of the sphere is the maximum
distance between the centroid and the cluster members. Obviously the spheres
may overlap, even if the resulting clusters are disjunctivein terms of the objects
they contain.

Based on the GRACE algorithm, the authors have developed theGRIN algo-
rithm. The idea is to use the GRACE algorithm to obtain an initial clustering for a
randomly selected subset of constant size and to assign the remaining original ob-
jects as well as new objects to these clusters. If the resulting clusters, once again
described by their centroid and radius, have a sufficient number of members, they
are tested for spherical shape: The distribution of their members isχ2-tested for
uniformity. Clusters too small to be sensibly tested are assumed to be spheri-
cal. These clusters together with the clusters that pass thetest for their shape are
considered for the next stage. All clusters that

1. are of spherical shape,

2. have – if any – only spherical descendants, and

3. have a parent that does not fulfill the two above conditions

are inserted as so-called leaf clusters into a tentative dendrogram. Their subtrees
are flattened, i.e. all elements that belong to the subtree are attached as direct chil-
dren of the leaf cluster. Optionally, outliers can be removed and the dendrogram
can be rebuilt in their absence. This step is especially recommended if the outliers
have a strong influence on the clustering.

With the dendrogram completed, the remaining data points aswell as the ones
arriving at a later point of time can be integrated. If a new datum falls into the
sphere of a cluster, it is integrated. If it falls into the spheres of several clusters,
the cluster exerting the highest gravitational force, determined from the cluster’s
weight and distance, is selected to receive the object. If the new element lies
outside every cluster, the algorithm attempts to enlarge the cluster exercising the
highest gravitational force on the new element such that it contains the new el-
ement and still passes the test for its spherical shape. In later versions of the
algorithm, a step has been added that checks each time a new element is added
to a cluster whether the cluster in question should be split in light of the latest

CHAPTER 2 37

addition. Finally, if none of the above steps succeeds, the new object is put into
the tentative outlier buffer.

When a threshold on the number of objects in the tentative outlier buffer is
reached, the object set has to be reclustered using GRACE as described above
using the old leaf clusters and the contents of the tentativeoutlier buffer as input
objects.

The time complexity for the first, static phase isO(n2) for n objects and con-
stant if the dendrogram is constructed using a fixed-size sample. The update phase
has a complexity ofO(n) if the dendrogram cannot grow infinitely and ofO(n2)
if it does. The authors show that the results are superior to the BIRCH [ZRL96]
algorithm for the data sets chosen in the paper. The algorithm only handles inser-
tions, and the requirement of regular reclusterings is partof its design.

Incremental DBSCAN

Ester et al. [EKS+98] have proposed an incremental version of the DBSCAN
(Density-Based Spacial Clustering of Applications with Noise [SEKX98]) algo-
rithm in a data warehouse context, supporting both insertions and deletions. The
general idea is to define clusters as regions with high local density. An objectp
is said to be directly density-reachable by another objectq with respect to a given
parameterEps if p lies within a radius ofEps of q and the circleNEps(q) with this
radiusEps contains at leastMinpts other objects. Density-reachability is given if
there is a chain of directly density-reachable objects fromq to p. Finally, p andq
are density-connected if there exists an intermediary object o such thatp andq are
both density-reachable fromo. For a cluster, the following two conditions hold
for clusters with at leastMinpts members:

• The clusters are maximal, i.e. withp, all objects density-reachable fromp
are also in a cluster, and

• The cluster is connected, i.e. all objects inside a cluster are density-
connected.

Clusters are initially constructed by iterating over all nodes, recursively retrieving
the Eps-neighborhoods and thus identifying density-connected regions as clus-
ters. Cluster members are either core objects if theirEps-neighborhood contains
at leastMinpts other objects, or border objects otherwise. Non-cluster members,
i.e. objects not density-reachable from a core object and having a sparseEps-
neighborhood are classified as outliers or noise. The algorithm works iteratively
by considering yet unclassified objects and either constructing a cluster around
them if they are core objects or designating them as noise if their density is not

38 CHAPTER 2

sufficient. Note that objects categorized as noise may laterbecome border objects
if they are density-reachable from a core object.

Due to the fact that cluster construction is density-based,the consequences of
an update are locally contained inside a circle with radius2Eps around the inserted
or deleted objectp. Therefore the set of affected objects is given as the objects
in NEps(p) together with any objectq in the2Eps-neighborhood that is density-
reachable from an object inNEps(p), since the insertion or deletion may have
established or destroyed a chain of density-reachable objects, thus affecting the
density-connectedness ofq. For these, the clustering must be updated accordingly.

In the case of an insertion, new density-connections may be established, but
none will be lost. The set of concerned objects in this case contains all objects
that have the core property after the insertion and are in theEps-neighborhood of
those objects that have acquired the core property due to theupdate. The cases
distinguishable are thus

• Noise: The set of concerned nodes is empty,p is an outlier.

• Creation of a new cluster: Through the insertion ofp some previous noise
objects have become core objects that solicit the creation of a new cluster
also includingp.

• Absorption: All concerned objects are core objects contained in one preex-
isting cluster;p is added to that cluster.

• Merge: The concerned objects are core objects from at least two different
clusters, in this case, the clusters are merged, andp is included in the united
cluster.

For the deletion, those objects have to be taken into accountthat are still core
objects after the deletion, but have in theirEps-neighborhood at least one object
that has lost the core property due to the update. Here the possible actions include:

• Removal: If no further objects are affected by the deletion,it is sufficient to
deletep from the object set.

• Reduction: If all concerned objects are directly density-reachable from each
other, the cluster is preserved.

• Split: If the objects are not directly density-reachable and they are not
density-connected by other objects from the same cluster, the cluster must
be split in such a way that the cluster conditions given aboveare met again.

CHAPTER 2 39

The algorithm can cope with insertions and deletions. Furthermore, as the authors
have shown, the advantage of this incremental formulation of DBSCAN is that it
produces the same results as the static version executed on the changed object set.
Thus, there is no degradation over time that would make an eventual complete
reclustering necessary.

An extension of (incremental) DBSCAN, (inc)OPTICS has beenpresented
by Kriegel et al. [KKG03]. The algorithm uses the density-based principles of
DBSCAN, but produces a hierarchical clustering.

Document Cluster Trees

In the context of web page classification Wong and Fu [WF00] have established
the document cluster (DC) tree as a representation for web page clusters that can
easily be updated. Borrowing concepts from theB+ algorithm [YM98], it also
supports the deletion of nodes. Each node in the tree represents either a document,
a set of documents or a cluster. In the latter case, the entry is composed of at most
B children containing the subclusters whereB is a predefined value, the so-called
branching factor.

When inserting a new web document, it is passed down the tree starting from
the root node. In each step, the child it has the highest similarity to is selected as
long as the similarity is above a given threshold. When no such child exists at a
given step, the element is inserted as a new child in the current node. If in one of
these cases the node created by this procedure has more thanB children, it is split
by choosing the pair of child nodes with the lowest pairwise similarity and using
them as seeds for the newly created clusters.

Clustering with Cluster Similarity Histograms

Hammouda and Kamel [HK03] have proposed the similarity histogram-based
overlapping clustering (SHC) algorithm that is claimed to guarantee a high de-
gree of coherency for each cluster at all times. A cluster similarity histogram for
a cluster is defined as having a numberB of binshi that correspond to intervals
[sli, sui) with sli andsui the lower and upper limit of binhi. Each bin is assigned
the number of pairwise similarities inside the cluster thatfall inside the respective
interval. The idea in incremental cluster maintenance is tokeep the distribution
represented by the histogram as skewed to the right as possible when adding new
objects. Given a similarity thresholdST , the skewness is measured using the his-
togram ratio

HRC =

∑B

i=T hi
∑B

j=1 hj

40 CHAPTER 2

whereT is the number of the bin that is associated with the similarity threshold
ST . A new object is either accepted when its addition to a cluster increases the
histogram ratio or at least does not decrease it by more than agivenǫ > 0 that is
fixed in advance. Also, the histogram ratio is bounded by a lower threshold such
that successive degradation by new objects cannot result intoo low a ratio.

For the insertion of a new object, the SHC and ratio for all clusters are com-
puted before and after an imaginary insertion. If the updated ratio for a cluster is
better or if it is not worse byǫ and above the threshold, the object is inserted. If an
object cannot be assigned to one of the existing clusters, itforms its own cluster.
The complexity for the insertion isO(n2). A disadvantage of this algorithm is that
the clusters depend on the order of the newly arriving objects. The authors try to
mitigate this effect by introducing a reassignment strategy: For each document,
the improvement in theHR is saved that would result from its removal from the
cluster. When a new object arrives and is inserted in a cluster, those nodes are
candidates for removal whose deletion from the cluster would result in a higher
HR than the current one. If one of them can be inserted into another cluster in
such a way that theHR of that cluster is also improved, the respective node is
reassigned.

Unfortunately, the authors do not detail the question of howto obtain an initial
clustering. It is thus not clear whether the incremental algorithm is used start-
ing from the first object or whether another method is employed to initialize the
clusters.

The authors have tested the method on two small data sets containing web
documents and have found the performance of the algorithm superior to HAC,
single-pass andk-nearest neighbors.

Incremental Hierarchical Clustering

Ribert et al. [REL99], motivated by the high memory requirements for the clus-
tering of large data sets with more than 10,000 objects, propose an incremental
hierarchical clustering method both for dynamic data basesand for handling large
data sets. The memory requirements are effectively reducedby starting with a
small subset and iteratively adding the remaining objects to the clustering. They
build upon the algorithmic framework for the Lance-Williams family of hierarchi-
cal cluster algorithms [LW67a] that encompasses single linkage, complete linkage
and average linkage clustering. In their paper, the authorsconsider average link-
age as underlying algorithm.

For the insertion, first the place in the dendrogram has to be found where the
new element should be introduced. This is achieved via computing the regions of
influence (ROI) for the clusters, i.e. the sphere around the cluster center that has
a radius inferior to the distance to the closest cluster. Thus, if the new element

CHAPTER 2 41

is in the ROI for a cluster, a new node is inserted above the cluster in question
that merges the new element with the cluster. Afterwards, subtrees may have to
be moved inside the dendrogram due to the fact that their distances may have
changed. The search for these changes is propagated from thenew position of
the element upward to the root cluster. Two scenarios are possible: Two subtrees
are closer than they were before the update – this is not possible for complete
linkage – or they are further removed – this is not possible when using single
linkage. The algorithm has only been evaluated in terms of its purported goal, the
reduction of the memory requirement of the algorithm. The resulting reduction
is indeed visible, the authors claim that the incremental version can handle seven
times more elements for a given memory size than the conventional algorithm.
The algorithm does not support deletions.

Another idea for incremental hierarchical clustering has been developed by
Widyantoro et al. [WIY02]. It is based on cluster densities that are defined as the
average distance of the cluster members to their respectivenearest neighbors in
the same cluster. The requirements for a cluster hierarchy are homogeneity and
monotonicity. The first means that intra-cluster densitiesshould be homogeneous.
The second implies that the density of a child cluster is always higher than that of
its parents. In this way a new element is inserted into the cluster tree where it least
disrupts the two criteria, either by appending the new object to the child list of a
node already present in the tree if the density lies in a predefined interval or by
opening an intermediate cluster if the density lies betweenthe intervals of parent
and child cluster.

Only insertions are possible into the cluster tree. For the algorithm, the in-
put ordering is not important. The authors have compared their algorithm with
Fisher’s COBWEB [Fis87] algorithm. Both algorithms show comparable perfor-
mance if the ordering of the elements is random. If, contrarily, the ordering is bad,
accuracy remains constant for the algorithm discussed, while it drops considerably
for COBWEB.

Clustering Data Streams

Due to the large growth of storage capacities over the last decade, more and more
data are available as data streams, i.e. as ever-growing data sets. Given the fact that
in the extremal case, no data is ever discarded, it is quite a challenge to efficiently
keep clusters derived from these data sets up to date. A general list of requirements
for algorithms that cluster data arriving as streams has been given by Barbará
[Bar02]. In general, when dealing with streams, it is assumed that the data that has
arrived up to the current point in time is already included inthe clustering. New
data must be integrated with as little cost as possible. Therefore, the following
criteria should be met by the algorithm:

42 CHAPTER 2

1. Compactness of representation: Since the computation ofthe new clusters
has to be efficient, the algorithm must offer a compact representation of
each cluster. This is due to restrictions naturally imposedby the memory
size of the computer. Furthermore, the list of cluster representations should
optimally have a constant size; even a linear growth of the clusters’ repre-
sentation list is considered intolerable.

2. Fast incremental processing of new data points: In most cases, comparing
a new point to all points in each cluster is not feasible. Thusthe func-
tion should use the compact representation of the clusters.Furthermore, it
should display a “good performance” in deciding about the membership of
the new objects in the respective clusters.

3. Clear and fast identification of outliers: When trends in the data stream
change, one of the signs is a higher number of outliers that cannot be fitted
into the existing cluster model. In that case, the algorithmshould be able
to mark those outliers and to decide when to start a reclustering of the data
set as stated by Barbará and Chen [BC01]. Depending on the application at
hand, this can mean that either the whole data set is reclustered, or that a
clustering containing only the newly arrived data is computed.

In general, the data cannot be accessed using random access –either because
the data set is too large to fit into the main memory or because the original data
stream is never stored on a disk, but is used to compute the clusters and discarded
afterwards. Thus, in addition to the usual criteria for cluster algorithms like com-
putational complexity and quality of the results, it is important to know how many
linear passes a stream cluster algorithm needs to compute the clusters. Of course,
if the data is never stored on a hard disk, only one pass is possible.

O’Callaghan et al. [OMM+02, GMM+03] have developed ak-median based
stream clustering algorithm. It produces at mostk clusters and relies on two
criteria: The first is to minimize the sum of squared distances inside the cluster.
Since, in terms of this criterion, singleton clusters are optimal if k is not fixed in
advance, it is linearly combined with a second criterion, a cost function for the
number of cluster centers to avoid the formation of too many clusters. The data
is assumed to arrive in chunks that each can be clustered in main memory using
ak-median variant. The cluster centers found for each chunk are added to the set
of all cluster centers found in any prior iteration and are weighted with the size of
their associated cluster in order to be clustered themselves. The algorithm cannot
handle deletions and is dependent on the order in which the objects are presented.

The approach is enhanced in [COP03] where not only the current data chunk
is used for k-median clustering, but also the result from previous iterations of the
algorithm.

CHAPTER 2 43

Gupta and Grossman [GG04] present GenIc, another single-pass algorithm
that is inspired by the principles of evolutionary algorithms (cf. section 2.5.2) and
only supports insertions. The population consists of the cluster centersci. As
each data chunk arrives, the fitness of the cluster centers included in the current
generation is measured as their ability to attract a new object p in this chunk. The
successful cluster centers in this process are moved according to

ci =
(wici + p)

wi + 1

wherewi is the number of objects currently attached toci. The termci appears in
both sides of the equation in the original paper, although, on the right hand side it
is assumed to represent the cluster center before the update, and after the update
on the left hand side. At the end of each data chunk, the survival of each center
is decided at random in accordance to its fitness. Centers that do not survive
the selection are replaced by random points. In an evaluation conducted by the
authors, the GenIc algorithm performance surpassed that ofwindowedk-means
and was at least equivalent in terms of quality to the standard k-means algorithm
on a synthetic data set.

A similar idea from the area of conceptual clustering was developed earlier
by Rowland and Vesonder [RV87]. If a cluster center and a new object are very
similar, the cluster center is replaced by a generalizationof itself such that it is
also able to represent the new object.

Aggarwal et al. [AHWY03] criticize that often single-pass algorithms are used
for clustering data streams that ignore temporal trends. Instead, analyzing a long
time span, historical data may prevail over current trends,which means that the
most recent evolution in the stream is not registered by the user. As a remedy, the
authors propose a two-phase approach incorporated in the CluStream algorithm
that consists of an online and an offline component. The online component sum-
marizes the cluster structure in so-called micro clusters that contain a condensed
representation of the clusters at given times; the granularity of these clusters de-
creases with the age of the clusters. The offline component builds upon these
micro-clusters to offer different time frames for the analysis of the data stream
by combining clusters inside the time frame requested by theuser. Since it can
operate on the summaries provided by the online component, the authors claim
that it can execute its computations efficiently. An evaluation against the BIRCH
[ZRL96] and the stream algorithm from [OMM+02] showed both faster execution
times and higher cluster accuracy for the CluStream algorithm.

Zhong [Zho05] uses the ideas behind Aggarwal’s framework inorder to cluster
text streams with a stream variant of the sphericalk-means algorithm and com-
bines it with principles from machine learning. The algorithm does not only assign
new documents to clusters using their cosine similarity (Eq. (1.12)) to the center

44 CHAPTER 2

of the respective clusters. Following the winner-takes allprinciple [AKCM90]
the center of the cluster in question is updated using a decreasing learning rate.
This approach has some similarities to the online clustering presented by Duda et
al. [DHS01] or simulated annealing (cf. section 2.5.3). In order to improve the
running time of the algorithm, Zhong proposes to only samplea part of the ob-
jects for the learning of the cluster centers, especially atthe beginning. The data
is, as is the case with many previously shown algorithms, read in chunks, allowing
a better adaption of the clusters by repeatedly visiting thenewly arrived objects.
The results on the data sets employed are superior to both thesphericalk-means
and the CLUTO algorithm [Kar, Kar03] that the author considers state of the art.

Other approaches also deal with noisy data streams, either by using an artificial
immune system [NUCG03] or by density-based clustering [NUCG03, CEQZ06],
but will not be detailed here.

All stream algorithms presented here only handle insertions and are dependent
on the order of input.

Summary

There is quite a lot of literature on the subject of growing data sets. Of the 45 doc-
uments presented in this section, two are from the seventies, five from the eighties,
and 17 from the nineties, where the subject of dynamic clustering really started
to develop. The dynamics of this domain are also reflected in the fact that nearly
half of the contributions in this section have been written after 2000. The meth-
ods reviewed here were motivated by a wide range of applications, from machine
learning over information retrieval to the handling of datathat arrives as stream
instead of the usual static data sets. A problem that is frequently encountered
is that of the sequence of the objects. Quite a few algorithmsproduce different
results when the objects are presented in a different order.Because this contra-
dicts the stability requirement for clusters, strategies for reordering data have been
proposed in order to mitigate these effects, or criteria have been developed to de-
termine the point at which a reclustering is necessary.

The removal of objects is explicitly supported only by threealgorithms, star
clusters [APR97, APR98, APR99], document trees [WF00], andincremental DB-
SCAN [EKS+98].

For the scenario that was outlined in the motivation, these algorithms are not
satisfying since

1. changing similarities are not directly supported – although it is possible to
handle these by removing and subsequently adding the objects in question,

2. the results of most update algorithms differ from those given by the original
algorithm, and a reclustering may be necessary after some time,

CHAPTER 2 45

3. the input order of the objects should not play a role for theresults produced
by the algorithm.

2.4.2 Handling Changing Similarities

There is actually quite little literature on the subject of objects that can change
their pairwise similarities. There are some approaches based on incremen-
tal k-means ork-medoids clustering (e.g. [CKT06]), and the data base lit-
erature provides some further examples for this kind of dynamic clustering
[MK94, BS96, DG96, DFR+01]. Finally, the mobile/wireless/ad hoc scenarios
described in the next section, 2.4.3, offer some distributed dynamic cluster algo-
rithms, but their quality is in most cases limited in favor ofan easy computation
and low communication overhead.

Incremental k-Means

An approach labeled “Evolutionary Clustering” has been putforward by
Chakrabarti et al. [CKT06] – this is not to be confused with evolutionary or ge-
netic algorithms as discussed in section 2.5.2. Rather, evolutionary in this context
means that the clusters evolve over time as new data arrives.The objective is to
find a balance between a reliable stability of the results over time and a truthful
representation of the data at the current time.

Consequently, the quality of a clusteringCt at timet with respect to a matrix
Mt containing similarities or distances depends on the snapshot quality sq(Ct,Mt)
and the history cost hc(Ct−1, Ct), i.e. the distance to the clustering att − 1 as a
weighted function, leading to the total quality of a clustering sequence of

T∑

t=1

sq(Ct,Mt) − cp
T∑

t=1

hc(Ct−1, Ct) (2.20)

where cp is the user-supplied weight for the history costs.
The method can be applied to different cluster algorithms, for instancek-

means: At each step, the clustering is initialized using theclusters from the last
time step – this is the basic incrementalk-means clustering – and the usual itera-
tions are executed. The snapshot quality is then given by

sq(C,M) =
∑

x∈U

(1 − min
c∈C

||c− x||) (2.21)

whereC is the set of cluster centroids andU is the set of objects to be clustered;
both objects and centroids are represented as vectors. The same norm|| · || must

46 CHAPTER 2

be used for both thek-means and the update part of the algorithm. Equally, the
history costs between two clusteringsC andC ′ are defined by

hc(C,C ′) = min
f :[k]→[k]

||ci − c′f(i)|| (2.22)

with f : [k] → [k] being a function that maps the cluster centroids ofC to those
of C ′. The authors stress that the determination of cp is important as it has a
strong influence on the trade-off between stability in form of small history costs
and plasticity in form of the snapshot quality. Due to the complete reclustering
at each step, all kinds of changes are supported, but at high computational costs.
The quality of the clusters is mainly determined by the underlying algorithm.

Object Data Bases and Clustering

With the advent of object-oriented data bases (OODB) came the demand for on-
line cluster techniques that support the specifics of this type of data base. In the
context of OODBs, clusters are sought that contain data often accessed together
and that fit into a given amount of main or secondary memory in order to optimize
access times. In an object-oriented data base, the data structure constituting an
object may be stored in different locations due to the fact that these parts of the
object are inherited or belong to another object referencedby the one currently un-
der consideration. This leads to the requirement to supportnot only set-oriented
operations, but also materialization and navigational access based ones: The ma-
terialization access takes place when an object is recalledand its parts must be
localized and read from secondary storage. The navigational access is caused
by the recursive retrieval of the object’s complex components. A general review
of dynamic clustering algorithms for object-oriented databases can be found in
the contributions by Darmont et al. [DFR+01, DG96]. Although simple greedy
algorithms like for instance CACTIS [HK89] do not perform well, the results dis-
cussed in [DFR+01] show that it is not always the most complex algorithm that
gives the best results in dynamic scenarios either. In this case, it is the DRO algo-
rithm (Detection & Reclustering of Objects) that is claimedboth to be relatively
simple to implement and to return clusters of high quality.

The DRO algorithm uses statistics on objects as well as on pages. A page in
this context is theunit of transfer between disk and memory. For each objectj,
its access frequencyAFj , i.e. the number of times it has been accessed, is stored
as well as a binary attribute indicating whether it has been accessed at all. For
a page, the number of times the page has been loaded – the load number – is
recorded as well as the usage rate, i.e. the ratio of active data stored on the page
to its total capacity. When an object is accessed, its accessfrequency is increased,
the usage flag is set to true and the usage rate of the corresponding page or pages

CHAPTER 2 47

is recomputed. When a page is loaded from disc, its load number is increased.
In the case of object removal, the respective statistics aredeleted. If an object is
moved to another page during the clustering, its statisticsare reset. The actual
clustering is divided in four steps:

1. Determination of objects to be reclustered: If there exists more than one
page that has been loaded more often than a given thresholdMinLT , but
has a usage rate lower than the thresholdMinUR, the objects in these pages
are scheduled for reclustering. This criterion aims at removing inactive ob-
jects from frequently accessed pages. If the relation between pages to be
clustered and the overall number of pages used is sufficiently high, the next
step is executed.

2. Clustering Setup: The input for this stage is the list of objects to be clus-
tered, sorted in descending order of access frequency, as found by the pre-
vious stage. In the first phase of this stage, the references of each ob-
ject i are evaluated up to a predefined depthMaxD and the corresponding
linked objectsj are inserted into a list of references sorted in descending
order according to their access frequency, but only if theirdissimilarity rate
|AFi−AFj |

max(AFi,AFj)
to the starting object is below the thresholdMaxDR. The list

determines the order in which the objects are arranged on disk, in other
words, the cluster for the objecti. The lists are concatenated into a single
list in the second phase, and in the third phase, the resemblance rate is com-
puted as the fraction of objects in the proposed cluster thatare not moved
with respect to the current situation to the total number of objects in the
respective cluster.

3. Physical Object Clustering: If the resemblance rate is below the threshold
MaxRR, the objects are moved on disk according to the assembled list from
stage 2. Furthermore, space no longer used by moved or deleted objects is
released.

4. Statistics Update: If the user has specified this, all usage statistics are
deleted. Otherwise, only the statistics for pages concerned by the object
moves are deleted.

The authors show that DRO is computationally less expensiveand yields better
results on an OCB data base [DPS98] with 100,000 objects and 50 classes than
the more complicated DSTC [BS96] algorithm.

Another interesting work has been published by McIver and King [MK94]
who have presented an online clustering algorithm that takes into account the

48 CHAPTER 2

OODB specific requirements when calculating object dependencies for recluster-
ing. Two access patterns are considered for this purpose: references – when an
object is recalled directly – and co-references – when an object is recalled due
to its being referenced by another object that is currently being retrieved. Two
measures are derived from these access patterns: Theheatof an object is the fre-
quency it has been recalled with in the past, i.e. the number of times it has been
accessed. Thetensionof an object pair denotes the likelihood that the pair is ac-
cessed together. Speaking graph-theoretically, the heat has an interpretation as
weight on the nodes, i.e. objects, while the tension denotesthe edge weights.

When using greedy algorithms [BKKG88, HK89], the objects are clustered as
follows: First, the object with the highest access frequency is chosen. Afterwards,
depending on the algorithm, either a depth-first or a breadth-first structure is im-
posed on the nodes connected to this object, and objects are stored on the same
page until the page is filled, at which point the object with the highest heat that
has not yet been assigned is chosen as seed for the next page.

Both breadth- and depth-first traversal have their advantages, in accordance to
the access patterns. McIver and King integrate both approaches into their algo-
rithm and use the one better suited for the respective object. To this end, the algo-
rithm must be able to make the distinction between set-oriented and navigational
access statistics, so the heat measure is split toset-heatandnavigational-heat.
Accordingly, either a breadth-first or depth-first traversal is used on each node,
depending on which access pattern has prevailed in the past.

For the reclustering, the task is split and distributed overthree components:
A statistics collector that keeps track of accesses, a cluster analyzer, and a reor-
ganizer that is responsible for actually moving the objectsaccording to the plan
developed by the analyzer. The advantage of this architecture is that the first two
do not require data base locks as their data structures reside in memory and that
even when the cluster analyzer has run, the reorganizer onlyis triggered if the
utility of doing so is above a certain threshold.

Although the process of reclustering is computationally expensive, the system
shows that an intelligent architecture can compensate for such disadvantages by
using offline computations that enable the component actually accessing the data
structure to achieve a fast online reorganization. All three required operations are
supported, but the cluster quality may be suboptimal for thegreedy approach.

Summary

Obviously, the case of changing similarities is much less common in (central-
ized) applications than that of growing data sets. The first proposed algorithm,
incrementalk-means displays the well-known problems of its static counterpart:
It is optimized for the detection of compact, spherical clusters, and the number of

CHAPTER 2 49

clusters must be fixed in advance, which is especially critical with dynamic data
sets.

Clustering in OODBs, on the other hand, has the disadvantagethat the term
cluster has a very particular interpretation in this context. It is used for describing
the unit of data that fits into one page of external memory or can be transfered in
one move from the external storage to the main memory.

As a summary, it must be stated that both method families are only of limited
use in our scenario.

2.4.3 Mobile Scenarios

In the context of mobile, dynamic wireless, and/or ad hoc networks an important
question is that of routing data between nodes that are not directly connected. For
this purpose, information about the network structure is required. In contrast to
conventional networks, there might not even exist designated routers; as a con-
sequence, the routing tables of each participating node tend to be larger than in
the conventional setting. As a countermeasure, the complexity of the network
can be reduced by clustering the nodes and for example representing densely con-
nected regions by their respective cluster centers. The cluster algorithms must
work quickly and with as little communication overhead as possible; as we will
see in this section, it is often considered more important that the clustering be sta-
ble than accurate. This last point implies that complete reclusterings of the data
set are not desirable – even if the cluster structure could beimproved – as long as
the operation on the suboptimal structure is expected to impose smaller costs than
the reclustering and the ensuing communication. All algorithms support the three
required operations.

Krishna et al. [KVCP97] present an approach for clustering in mobile sce-
narios based on overlapping clusters in a cluster-connected graph. The graph
G = (V,E) is constructed over the set of mobile nodesV . E contains an edge for
each pair of nodes that are connected. This presupposes thatlinks are symmetric,
which is not always the case, for instance when devices with different transmit and
receive characteristics are used. The authors definek-clusters as clusters whose
members can reach each other using at mostk steps ork − 1 intermediate nodes.
In order to obtain a clustering, overlapping 1-clusters, i.e. cliques inG are sought.
If these clusters cover the whole graph and – in the case of a connected graph –
each node in the graph can be reached from any other by a set of edges each of
which only connect nodes in the same cluster, the graph is cluster-connected.

There are four basic cases that can take place in the network:

1. A node is switched on: In this case, the node asks its neighbors for their
cluster tables and calculates a new set of 1-clusters that includes it in or-

50 CHAPTER 2

der to ensure the reachability of the remaining graph. The authors show
that at least one new cluster is thus formed. In order to avoidredundancy
and, consequently, communication overhead, clusters thatcan be removed
without disrupting cluster-connectedness are removed. This new set is then
propagated.

2. A node is switched off: The neighboring nodes expand theirclusters by
searching for and including further nodes into the clusters. In this step, too,
it is possible that new clusters are formed and/or old ones are removed.

3. A node connects to a new neighbor: This case can be reduced to case 1.

4. A node disconnects from one of its neighbors: This case canbe reduced to
case 2.

It is important to note that a rule must exist to decide which node executes the
expansion of the clusters, but this problem can easily be solved for example by
designating the node with the lowest or highest ID. Such a designation based on
the ID has the advantage that it is easy to calculate and has low communication
overhead. On the other hand, the authors note that due to their formulation of
the cluster construction process, the cliques found by the joining nodes are not
necessarily maximal.

Quite a few solutions rely on a hierarchical clustering of the mobile network,
where usually so-called clusterheads coordinate the membership inside their re-
spective clusters based on local visibility or connectedness. The role of the clus-
terhead is not fixed a priori but is assumed by members selected for instance by
ID or connectivity. A general framework for clustering algorithms on the basis of
this principle for different application classes can be found in the paper by Richa
et al. [ROS01].

A rather simple cluster model serving for the coordination of resources and
traffic inside cells or clusters has been put forward by Gerlaand Tsai [GT95].
Their approach uses local clusterheads that coordinate theallocation in their re-
spective cluster that is part of a wireless network. Two possible methods for find-
ing a clusterhead are presented: First, the node with the lowest ID could be made
clusterhead. Each node broadcasts its ID. If a node does not receive a lower ID
than its own, it is a clusterhead. Gateways between clustersare in this case nodes
that are connected to more than one clusterhead. The other possible scheme for
obtaining a clusterhead is to locally elect that node among aset of nodes not yet
connected to a clusterhead that has the highest connectivity – an approach that has
similarities to the star clusters proposed by Aslam et al. [APR98] in section 2.4.1.
Using a simulation, the authors show that the first approach provides a higher sta-
bility of the cluster structure. The support for cluster mobility is only sketched

CHAPTER 2 51

and, according to the authors, follows from the cluster construction. The problem
this approach entails, namely high load for the clusterheadand thus the existence
of a possible bottleneck in the cluster, has motivated Lin and Gerla [LG97] to
develop a more distributed structure. However, the actual determination of the
cluster assignment by lowest ID from [GT95] is used. Clusters are defined by
locality: There must exist a path with a length of no more thantwo hops between
each pair of nodes in the cluster. If this constraint is no longer fulfilled due to
the movement of a node, the node with the highest connectivity together with its
neighbors is kept in the cluster. Nodes outside the cluster must determine a new
cluster they can join.

Gao et al. [GGH+01, GGH+03] use the highest ID to identify a clusterhead.
They model the mobile network using kinetic data structures[AABV99, FPT81],
enclosing each node in ad-dimensional cube. If two cubes start or stop over-
lapping, the appropriate procedures for inclusion or exclusion are executed anal-
ogously to the other approaches in this section. The authorswere able to show
that their algorithm delivers aO(1) approximation of the optimal discrete center
problem that consists of finding a minimal set of nodes – the mobile centers – in
such way that all nodes in the network are visible from at least one of the mobile
centers.

A similar clustering algorithm has also been presented by Basagni [Bas99]
based on the connectivity of the nodes as represented by the edge weights. He also
treats the four basic network events listed above, additionally, if a node receives
the clusterhead announcement from another node, a check is executed whether to
join this new cluster or not.

Many protocols in the domain of mobile/ad hoc routing are reactive and only
use the static information available during an important event like the removal of a
cluster member. McDonald and Znati [MZ99, MZ02] have developed a more dy-
namic approach. Their approach includes an on demand, reactive routing strategy
for inter-cluster routing and a probabilistic proactive intra-cluster routing compo-
nent that takes into account the mobility of nodes. This separation is sensible since
the intra-cluster mobility is usually much higher than the inter-cluster mobility,
thus justifying the higher overhead of proactive routing. The clusters are marked
by the mutual(α, t)-availability of all their members ((α, t)-clusters). Two nodes
are said to be(α, t)-available if the probability is at leastα that there exists a path
between them aftert units of time have elapsed, given that a path exists at the
current time. This probability is estimated using a random-walk model for the
movement of each node. In addition to reacting to the usual events in a mobile
network as given above, each node uses anα timer that keeps track of the re-
maining life time of an(α, t)-cluster. When this time has elapsed, the node starts
a proactive discovery to verify whether the(α, t)-availability of all other cluster
members is still guaranteed. If this is not the case, the nodeleaves the cluster and

52 CHAPTER 2

attempts to join another one.
Another approach by Har-Peled [HP04] might also be applicable in a mobile

scenario if the movement is known a priori. The idea is to generate clusterings not
only for the current time, but also for the future, given the predicted movement of
the points. In the same vein, the algorithm by Li et al. [LHY04] maintains micro-
clusters with a given cluster feature (analogously to BIRCH[ZRL96]) for sets of
linearly moving objects.

Summary

The algorithms reviewed in this section deal with moving objects in the widest
sense. One cluster of research is that of mobile/ad hoc networks, where the main
objective is to facilitate communication between mobile devices by organizing the
routing in accordance with the – constantly changing – topology of the network.
Usually, the nodes that can easily reach each other are organized in clusters and
designated nodes maintain the connection to other clusters.

The first problem when applying this class of algorithms to our scenario is
that they use a crude binary “distance” measure – a node can reach another node
directly – that cannot be easily generalized to more differentiated distance mea-
sures. The second general problem is that their focus does not lie – as we have
seen – on a high quality of the resulting clusters but rather on low overhead and
a fast reaction to topology changes, in most of the cases using heuristics. Taken
together, the algorithms in this section are not sensibly applicable for our scenario
where high-quality clusters based on differentiated similarities are required.

2.5 Randomized Algorithms

In the most general formulation given by Motwani and Raghavan, a randomized
algorithm isan algorithm that makes random choices during execution[MR00].
Randomized algorithms are often used in cases where deterministic algorithms
are too slow, i.e. have too high a computational complexity to solve a given prob-
lem in acceptable time. Furthermore, Motwani and Raghavan argue that random-
ized algorithms are often easier to describe and implement than their deterministic
counterparts.

Two kinds of randomized algorithms exist: Las Vegas and Monte Carlo. The
former class of algorithm always returns the correct solution, but its execution
time varies depending on the characteristics of the data setand the random choices
made by the algorithm. A Las Vegas algorithm is called efficient if its expected
running time is bounded by a polynomial depending on the input size.

CHAPTER 2 53

Monte Carlo algorithms, on the other hand, have a fixed running time, but
may produce wrong or suboptimal results with a certain (small) probability. This
may be acceptable for several reasons. First, if the problemcannot be solved in
acceptable time by a deterministic algorithm, it is preferable to have a suboptimal
solution instead of none. Second, the error probability canbe made arbitrarily
small by repeated executions of the Monte Carlo algorithm. And finally, Motwani
and Raghavan show that any Monte Carlo algorithm can be transformed into a Las
Vegas algorithm if it is possible to efficiently check the solution for correctness. In
that case, it is sufficient to repeatedly execute the Monte Carlo algorithm until the
result is correct. Efficiency for the Monte Carlo algorithm implies that its running
time is polynomially bounded by the input size for the worst case.

2.5.1 Randomizedk-Clustering

Inaba et al. [IKI94] consider thek-clustering problem with a stochastic sampling
component. Thek-clustering problem is defined as the problem of finding a par-
tition of the data set intok nonempty sets that is optimal with respect to a given
intra- and an inter-cluster criterion. In this case, the variance of the cluster mem-
bers is used as intra-cluster criterion; the finalk-clustering is obtained by recur-
sively constructing 2-clusterings of the object set. As motivation, the authors
mention the color quantization problem where colored pixels on a graphic display
must be clustered according to their colors in order to be displayed using a given
number of colors. A common problem at the time was to transform thousands of
colors represented in the three-dimensional RGB space to the 256 colors of the
VGA palette. A property of this problem is that the clusters are linearly separable
[WWP88], i.e. two clusters located in their respective space can be separated by a
hyperplane.

Using the centroid

x̄(S) =
1

|S|

∑

xi∈S

xi (2.23)

for the clusterS containing pointsxi, the variance is given as the average squared
distance between the cluster members and its centroid

Var(S) =
1

|S|

∑

xi∈S

||xi − x̄(S)||2 (2.24)

where|| · || is a vector norm. Based on this, a parametrized variance

Varα(S) = |S|αVar(S) (2.25)

with parameterα ∈ IN0 is defined. The authors claim that for higher values of
α the cluster size becomes more homogeneous. The overall quality of the clus-
tering is obtained by summing the variances Varα(S) of the clusters. Assuming

54 CHAPTER 2

that the number of clustersk is a constant, the problem is polynomially bounded,
but nonetheless computationally quite expensive. Withk not fixed, the problem
becomes NP-complete.

The approach chosen by Inaba et al. is to estimate the variances by stochasti-
cally samplingm points of a cluster into a setT . For this set, all linearly separable
2-clusterings(T1, T2) are calculated along with their centroidst1 and t2. Since
these 2-clusterings may not be optimal in terms of variance,the objects are reas-
signed to the two centroids by using the perpendicular bisector of the line segment
betweent1 andt2. This hyperplane generates another 2-clustering(S1, S2) with
minimal variance given the centroidst1 andt2. For all these clusterings, the vari-
ances are computed and the clustering with the minimal sum ofvariances is kept.
The authors show that it is admissible to use the sample sets to estimate clusters
for the original sets since the expected values are identical.

In a later publication [IIK96] the authors show the application of the random-
ized algorithm to obtain initial clusterings for thek-means algorithm as well as
some simulation results for varying sample sizes. The simulations indicate that
small sample sizes are sufficient for obtaining good resultsthat in most cases ex-
ceed those of the algorithm by Wan et al. [WWP88], especiallyif the separating
hyperplane is not perpendicular to one of the axes.

A similar idea has been brought forward by Sabharwal and Sen [SS05]. In-
stead of fixing both centroids, they fix only one point as approximate centroid and
use a set of lines passing through this point. The lines coveronly a predefined
angle. The idea is to project the other points on each of theselines and to find the
centroid of the second cluster that minimizes the cost of theclustering by random
sampling.

2.5.2 Evolutionary Clustering

Gorunescu and Dumitrescu [GD03] present an approach to clustering that relies
on evolutionary principles [Hol75]. Based on the ideas of incremental clustering
presented in section 2.4.1, they define the evolutionary operators as follows:

• Each population member is a possible clustering. Its chromosome contains
a gene for each object to be clustered, the gene containing the index number
of the cluster the object is associated with. Zero means thatthis object is
not (yet) assigned. For the initial population, the algorithm stochastically
selects one gene in each chromosome and sets it to one, the other genes
have zero values. As a consequence, the members of the population most
probably cover a large area of the object set because the initial clusters are
evenly distributed among the objects.

CHAPTER 2 55

• The performance of a chromosome is evaluated by summing the pair-wise
distances of the members of each cluster, where the distancebetween two
objects is a weighted Euclidean distance measure. This value is divided by
the number of clusters in order to prevent singleton clusters.

• The recombination is done by a one-point crossover operatorthat may either
split or merge clusters. The crossover operator cuts each parent’s gene string
in two parts – both at the same place – and concatenates the first part of the
first parent’s gene string with the second part of the other and vice versa. Of
the two parents and two children, the two fittest specimens are kept in the
following selection phase.

• Two mutation operators are employed: The first splits clusters by assigning
an object to a new cluster if it is not alone in its old cluster.The other one
moves an object from one cluster to the other.

• In order to maintain the incremental nature of the algorithm, an incremental
operator is used that assigns an object whose correspondinggene has the
value zero to either a new or an existing cluster.

• The algorithm stops when no progress is made over the last iterations.

The authors offer a small evaluation on a fictional weather data set. The clusters
that the authors deem relevant are found in nine cases out of ten.

Furthermore, the algorithm by Gupta and Grossman [GG04] introduced in
section 2.4.1 is an evolutionary algorithm for incrementalor stream data.

2.5.3 Clustering with Simulated Annealing

Simulated annealing [KGV83] is an optimization technique that mimics the be-
havior of cooling matter from a heated state where its molecules can freely move
to a frozen or solid state where the structure is fixed. It is based on the Metropo-
lis Monte Carlo algorithm developed by Metropolis et al. [MRR+53] where this
process was first modeled using a computer.

The principle is that of a relaxed hillclimbing algorithm: An initial solution
is iteratively altered by exchanging or permuting some of its components. These
new solutions are then evaluated. If such a solution is better than the previous one,
it is accepted as input for the next iteration. If it is not better, the probability of its
being accepted depends on the current temperature and the cost difference to the
current solution. The general formula for the acceptance probability is

p(accept) = e
−D

KbTm (2.26)

56 CHAPTER 2

whereD is the cost difference,Tm is the current temperature andKb is the Boltz-
mann constant. For models where the temperature variable does not correspond
to any real temperature, the acceptance probability can be simplified to

p(accept) = e
−D
Tm (2.27)

The temperature-dependent acceptance rate allows the algorithm to easily over-
come local minima at the beginning. Towards the end, the global exploration by
the algorithm becomes more and more local, because only smaller and smaller
deteriorations of the current solution have a sufficiently high probability to escape
a local minimum.

The general schema of a simulated annealing algorithm has been given by
Mitra et al. [MRSV86]:

X := j0
m := 0
while (termination criterion not met)
begin

while (inner loop criterion not met)
begin
j :=GENERATE(X)
if (ACCEPT(D, Tm))

THENX := j

end
Tm+1=UPDATE (Tm)
m = m+ 1

end

GENERATE creates a new solution, ACCEPT decides whether thesolu-
tion, having a cost difference ofD, should be accepted at temperatureTm.
UPDATE is responsible for lowering the temperature according to the annealing
schedule.

The inner loop, where the temperature is kept constant can also be interpreted
as a general Markov chain. It usually ends when a predefined number of moves
has been executed. The outer loop normally terminates at a given temperature –
the frozen state – or when no change in the objective functioncould be observed
in the last rounds. For the annealing scheduleTm+1 = 0.9Tm it has been shown
that the optimal solution is found when the number of inner loop iterations at
each temperature level is infinite [MRSV86]. A more general assertion for the
minimization problem has been given by Hajek [Haj88]: He defines cups as the
(reachable) neighborhood of local minima; the depth of a cupis given as the
difference of the maximal value outside the cup and the localminimum inside. If

CHAPTER 2 57

the annealing scheduleTk = c
log(k+1)

is used, wherec is a constant greater or equal
to the depth of the deepest cup, the probability of finding theglobal minimum is
1.

In 1990, Bell et al. [BMSM90] presented different approaches for clustering
objects in (relational) data bases in such a way as to minimize access time for pre-
defined queries. They distinguished two layers for the data organisation: Tuples
are organized in pages, and these in turn are grouped in cylinders. Access times
for objects on the same page are minimal while access for objects on different
cylinders is slowest. Their first approach, having run timeO(n) according to the
authors borrows concepts from single linkage clustering and shall not be detailed
here.

The initial configuration for the simulated annealing algorithm assigns each
data tuple to its own page. The initial temperature is set in away as to accept
almost all negative changes. The GENERATE function selectsa tuple and a page
to which this tuple should be moved. ACCEPT follows the general scheme given
above, UPDATE is given asTm+1 = 0.9Tm. For the inner loop criterion, a thresh-
old for the number of changes as well as for the number of changes per tuple is
used. If the latter threshold is met, the number of failuresF is increased. IfF = 3
or Tm = 0.01, the outer loop terminates.

The results show that the algorithm performs better than theother algorithms
known at that time if there is a high connectivity between elements from different
relations (high fanout).

Hua et al. [HLL94] have considered the problem of using simulated annealing
on large data sets where the similarity graph cannot be fittedinto the main mem-
ory of a computer. Due to the stochastic nature of the algorithm, conventional
buffer replacement strategies have a very low performance and may result in page
thrashing, thus reducing throughput to that of the disk subsystem.

For this reason, the authors propose a decomposition of the similarity graph in
order to sequentially cluster parts of the graph.T0 is set in such a way that 95%
of all negative changes are accepted, UPDATE is againTm+1 = 0.9Tm, the inner
loop terminates afterβn iterations, withβ ∈ [5, 8] and the outer loop terminates
when the temperature drops to 0.001 and the cost function is unchanged over
two iterations. The difference to [BMSM90] is that the algorithm starts withv
randomly chosen subgraphs. Of these,k are considered simultaneously. In each
step of the algorithm, either a node-perturbing move – swapping the association of
two nodes to their respective subgraph – or a buffer-perturbing move – exchanging
thek subgraphs byk other randomly chosen ones – is executed according to the
externally given probability parameterc for the buffer-perturbing move.

As a result, the number of disk I/Os could be drastically reduced, especially if
the size of the buffer is small in relation to the total data base size.

58 CHAPTER 2

2.5.4 Random Walk Circuit Clustering

Motivated by the growing complexity in the field of integrated circuit (IC) de-
sign, Cong et al. [CHK91, HK92] have studied the usability ofrandom walks for
the partitioning of circuit graphs. Each IC can be represented as a netlist graph,
where the nodes symbolize the components and the edges mirror their electrical
contacts. In order to minimize run time and resistance, and thus heat generation,
it is imperative for the design of an IC to group closely collaborating groups of
elements in direct neighborhood on the die. Traditionally,top-down partitioning
is employed for the task of grouping the elements on an IC. Unfortunately, these
techniques are usually NP-complete and therefore demand more and more com-
putational power with growing IC size. In order to reduce complexity, the authors
propose the use of a cluster algorithm as a preprocessing step. They present a
method that consists of finding clusters by identifying cycles in a random walk
on the IC’s graph representation. These clusters can then bereplaced by single
nodes that inherit all edges of their cluster members and that are used as input for
a traditional top-down partitioning.

As a first step, the authors develop what they call a “proper clustering metric”,
the degree/separation (DS) metric. The degree of a cluster is the average number
of nodes that are incident to a member node of that cluster andhave at least two
neighbors in the cluster. The separation is defined as the average length of the
shortest paths between all pairs of cluster members. The authors claim that the
DS measure is a robust measure for cluster quality.

In order to detect clusters, a random walk is executed on the netlist graph
until all nodes have been visited at least once. This is called the cover time and
is defined as the maximum expected length of a walk that visitsall nodes over
all possible starting nodes. According to Kahn et al. [KLNS89], the cover time is
betweenO(n2) andO(n3), depending on the graph’s properties like form, average
degree etc. During the running time, cycles begin to emerge in the walk. A cycle
in this context is defined as a node sequence of the form{vp, . . . , vq} with vp = vq

andvj 6= vi, i, j ∈ {p, . . . , q − 1}. The authors state that the members of such a
cycle form a cluster, since per construction the set of objects contained in the cycle
is as tightly coupled as possible: If there were a cycle containing less, more tightly
connected elements, it would be found by the random walk withhigh probability.

After a sufficient number of steps has been taken by the walk, the longest cycle
C(vj) is computed for each node. The binary relationva ⊲⊳ vb is defined to be true
if va ∈ C(vb) andvb ∈ C(va). Clusters are generated using the transitive closure
of the⊲⊳ relation.

In a later paper [HK92], the authors enhance the method by introducing the
sameness of nodes. The sameness of nodeu to nodev is calculated according to
the similarity of the cycles starting from them.

CHAPTER 2 59

In tests, the algorithm performed better than the conventional algorithms used
for this domain; this was especially evident when the algorithm was used for gen-
erating an input clustering for the Fiduccia-Mattheyses heuristics [FM82], an al-
gorithm that is frequently used for top-down partitioning of ICs.

2.5.5 Randomized Generation of Hierarchical Clusters in Ad
Hoc Networks

A two-stage model using first a randomized, then a deterministic algorithm for
the construction of star-shaped clusters in wireless networks, each consisting of
a master and several slaves has been developed by Ramachandran [RKSA00].
In the first phase, a repeated Bernoulli trial is executed by each node, typically
with a small probabilityp of success. If the node succeeds in at least one of
these trials, it is marked as a master-designate, else it is aslave-designate. By
collecting responses from slave-designates, the master-designate may become a
master. One of the masters is elected – either after reachinga timeout or after
receiving a sufficient number of responses from other clusters – as super-master
that deterministically corrects possible errors in the star cluster structure.

2.5.6 High-Speed Noun Clustering by Hash Functions

Ravichandran et al. [RPH05] have presented a randomized algorithm to quickly
compute the cosine similarity [Sal88] (cf. Eq. (1.12)) of objects in the domain of
Natural Language Processing (NLP). Withn objects in ak-dimensional feature
space, the running time for the deterministic computation of the cosine similar-
ity matrix isO(n2k). The algorithm detailed here is interesting as a preparatory
step for cluster algorithms using similarity measures rather than feature vectors as
input.

The first aspect of the authors’ solution is to use Locality Sensitive Hash (LSH)
functions [Cha02]. Contrarily to conventional cryptographic hash functions where
small differences between the string or binary representation of an object should
entail large differences in the hash value, the LSH achievesquite the opposite:
Similar objects have a high probability of obtaining the same hash value.

First d additional random vectors{r1, . . . , rd} with k dimensions and of unit
length are generated;d should be considerably smaller thank. The hash function

hr(u) =

{
1 if r · u ≥ 0
0 if r · u < 0

(2.28)

using the vector scalar product is applied to thed vectors for each vectoru that
represents an object. The probability that the random hyperplane generated by

60 CHAPTER 2

r separates two vectorsu andv is proportional to the angleΘ between the two
vectors; for the proof refer to Goemanns and Williamson [GW95]:

P (hr(u) = hr(v)) = 1 −
Θ(u, v)

π
(2.29)

In other words, the cosines of the two vectors can be written as

cos(u, v) = cos((1 − P (hr(u) = hr(v)))π) (2.30)

By samplingd vectors, whered is highly domain dependent, an estimator for the
cosine similarity is obtained. Furthermore,

P (hr(u) = hr(v)) = 1 −
H(u, v)

d
(2.31)

withH(u, v) the Hamming distance or the number of differing bits betweenu and
v. Thus, an algorithm is able to find all pairs with a cosine larger than a given
threshold value by repeatedly permuting and sorting the bitstreams or signatures
ū = {hr1

(u), . . . , hrd
(u)} and checking each object’s closest neighbors for their

Hamming distance. Unfortunately, Ravichandran et al. do not give any informa-
tion about the convergence of the procedure, their only claim is that the number
of “random vectors is highly domain dependent”.

The algorithm is likely to find similar pairs in at least one ofthe permutations,
since a high similarity between two objects implies a low Hamming distance be-
tween the bit stream representations and thus a high probability that the two are
within distanceB in at least one random permutation. Using a parameterB = 100
and a data set of 6GB (TREC9 and TREC2002), an accuracy of morethan 80%
for the top 10 lists could be achieved using 1000 permutations of the bit stream
representations.

2.6 Random Walk Theory and Markov Processes
for Clustering

The approaches presented in this section profit from the theory behind random
walks and especially Markov processes. They are however notrandomized, but
deterministic and rely in general on some sort of transformation of the transition
matrix.

2.6.1 Clustering by Markovian Relaxation

The algorithm developed by Tishby and Slonim [TS01] is basedon deriving a
Markov process from the distance matrix of an object set and afterwards relaxing
this process.

CHAPTER 2 61

In order to transform the distance matrix into the transition matrix of a Markov
process, the objects are interpreted as the states of the chain. Since distances along
a path in a graph are additive, but probabilities are multiplicative, the transition
probabilities are constructed by exponentiating the distances:

p(xi(t+ 1)|xj(t)) ∝ e−λd(xi,xj) (2.32)

whereλ is a scaling factor in order to normalize the probabilities.The result of
this transformation is the stochastic matrixP .

p(xi(t)|xj(0)) = P t
ij (2.33)

denotes the probability of visiting statexi at time t after starting in statexj at
t = 0. As t → ∞, p(xi(t)|xj(0)) approaches the stationary distributionπ. By
increasing the parametert the influence of the starting point on the probability
distribution of the current state is relaxed, hence the nameMarkovian relaxation.
In other words: For large values oft the information about the starting point
is gradually lost. This information loss is measured and used as a criterion for
suitable clusterings. The proposed information measure isthe mutual information

I(X, Y) =
∑

x∈X,y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
=

∑

x∈X,y∈Y

p(x)p(y|x) log
p(y|x)

p(y)

(2.34)
between two random variables: In this case, the starting stateX0 and the current
stateXt are used. Thus, as an information measure for the Markovian relaxation
at timet, we obtain

I(t) = I(X0, Xt) =
∑

j

pj

∑

i

P t
i,j log

P t
i,j

pt
i

(2.35)

with pj the prior probability ofj andpt
i =

∑

j p
t
i,jpj the unconditional proba-

bility of visiting statei at timet. Note that the second sum in Eq. (2.35) is the
Kulback-Leibler divergence, a measure for the similarity of distributions [CT91].
The dissimilarity approaches zero ast → ∞. Analyzing the first derivative of
I(t), regions in the parameter space can be isolated where littlevariation is ob-
served, i.e. where the transition matrix fort andt+ 1 is nearly unchanged. In that
case, objects with very similar rows inP t form a cluster.

A similar approach was also presented by Szummer and Jaakkola [SJ01] for
labeling big sets of points using few labeled examples. Instead of including all
distances in the computation of the transition matrix, theyonly included theK
nearest neighbors of each object.

Another stochastic approach to clustering by Gdalyahu et al. [GWW99] is
based on transforming the similarity matrix of the object graph and subsequently

62 CHAPTER 2

thresholding it. The components of the thresholded graph are then interpreted as
clusters.

For the transformation of the similarity matrix, the authors user-way cuts. An
r-way cut is a partitioning of the graph intor disjoint parts; the capacity of the cut
is the sum of the edge weights that connect members of different parts. Contrary
to min-cut algorithms [WL93] not only the minimal cut, but all possible cuts are
considered for this transformation. Each cut is assigned anoccurrence probability
that decreases with increasing capacity of the cut. For eachlevel r, i.e. number
of clusters, the probabilitypr

ij is computed that the nodesi andj are in the same
partition in an arbitraryr-cut. Unfortunately, the complexity of calculating all
cuts is rather high, but as Karger and Stein have shown [KS96], the cut probability
decays fast with rising capacity such that thepr

ij can be bounded using only low-
capacity cuts. As a consequence, it is sufficient to generatea polynomially sized
sample of cuts that are generated according to their probabilities and to estimate
thepr

ij based on the sample.
The authors show that the method is capable to cleanly separate three inter-

twined spiral clusters in the presence of noise and avoids the bridging effect that
could be expected by clustering the data set using single linkage clustering.

2.6.2 Text classification with Random Walks

Xu et al. [XYZ06] propose to use absorption probabilities ofrandom walks to
classify texts. They assume a small set of labeled samples from which the labels of
the unlabeled data are derived. For this purpose, the similarity matrixW = (wij)
is once again transformed to transition probabilities of the stochastic process

pij =
wij

∑

j wij

(2.36)

for the unlabeled data. The labeled objects, on the contrary, are represented by
absorbing states of the Markov chain, i.e.pii = 1. The correct label for an unla-
beled samplej can then be found by identifying that absorbing state that has the
highest probability for absorbing a walk starting atj.

The authors also present an approach for including new data into the classifi-
cation. However, in the context of this work, this algorithmis not applicable since
it is based on the assumption that there can be no transitionsfrom the old to the
new data, i.e. the arrival of new data does not disturb the oldclassification.

2.6.3 Clustering by Flow Simulation

Van Dongen [vD00a, vD00b, vD00c] has proposed a method called graph clus-
tering by flow simulation or Markov Cluster algorithm (MCL) that is especially

CHAPTER 2 63

suited for sparse graphs. Interpreting the pairwise similarities between nodes as
a flow, the general idea is to reinforce the flow inside the clusters and to weaken
flow between clusters by alternately applying expansion andinflation operators
to a stochastic matrix of transition probabilities, until the inter-cluster flow disap-
pears or, in van Dongen’s words, “dries up”.

When considering random walks on a graph, the author states that a walk of
lengthk started from a node inside a densely connected region, i.e. acluster, has
a high probability of ending in the same region, at least for small values ofk. The
expansion and inflation operators serve to amplify this effect.

The input graph is used for the construction of a flow matrix for the underlying
process by row-wise normalization of the entries in the graph’s similarity matrix.
The first operator, expansion, is thek-th power of the flow matrix that, as seen in
section 2.1.4, returns the probability of ak-step transition between two nodes of
the graph. In this way, it enables the node to potentially discover new neighbors
that are only indirectly connected to it. Asymptotically, the k-th power of the
transition matrix returns the stationary distribution; itis thus important to choose
the correct parameterk. The expansion serves to identify links inside the cluster.
However, the distinction between edges inside the clustersand those between two
clusters is not very pronounced after this step.

Therefore, the inflation operator is introduced as the Hadamard-Schur prod-
uct of the flow matrix with itself. The Hadamard-Schur product for two matrices,
A ◦ B has the entries[A ◦ B]ij = aijbij . In order to restore the stochastic nature
of the matrix, the result of this computation is afterward multiplied with a diag-
onal matrix using standard matrix multiplication. In sum, the Hadamard-Schur
operator serves to enhance the distinction between intra- and inter-cluster edges
by strengthening the former and weakening the latter.

Although the method has a considerable complexity – it converges quadrati-
cally in the number of matrix multiplications– the author claims that it has been
used with success on large data sets incorporating different cluster shapes.

2.6.4 Separation by Neighborhood Similarity and Circular Es-
cape

The idea of modifying object similarities in order to sharpen the distinction be-
tween inter- and intra-cluster edges has also been pursued by Harel and Koren
[HK01]. The algorithm expects a graphG = (V,E, ω) as input. The authors claim
that by iteratively applying one of the two separation operators detailed below, it
is possible to let the similarity matrix converge to a binarymatrix where intra-
cluster edges are weighted with ones and inter-cluster edges, the so-called sepa-
rators, receive zero weights. The first of the separation operators is the separation

64 CHAPTER 2

by neighborhood similarity based on the same idea as van Dongen’s expansion
operator. For this measure, the vectorP k

visit(i) denotes the probability distribution
of a random walk starting at nodei after k steps, i.e. thej-th component is the
probability of visiting nodej in this step. Moreover,P≤k

visit(v) =
∑k

i=1 P
i
visit(v)

aggregates the probabilities for all steps up tok. The role ofk is to select the
degree of locality: Fork = 1 only the one-step distribution over the node’s
neighbors is consulted, whereas fork → ∞, P k

visit converges to the station-
ary distribution that, as we have seen in section 2.1.4, doesnot depend on the
starting node. As a result, the method produces a graphNS(G) with weights
ωs(u, v) = simk(P≤k

visit(v), P
≤k
visit(u)) wheresimk is some measure for the simi-

larity of vectors.
Separation by circular escape is based on contemplating theprobabilities

Pescape(v, u) that denote the probability that a random walk starting atv first
visits u before returning tov. The resulting graphCE(G) uses the weights
w(u, v) = Pescape(u)(v, u)Pescape(u, v). Both separations can be computed in
Θ(|E|) for similarity graphs of bounded degree.

For the clustering, it is either possible to use the new graphNS(G) orCE(G)
as input graph for another cluster algorithm, or to directlycluster based on the
matrix of weights. To this end, the authors introduce a threshold value that sep-
arates inter- and intra-cluster edges. Clusters can then befound by identifying
connected subgraphs in the graph containing only the intra-cluster edges. Us-
ing different synthetic data sets for evaluation, the authors show that the method
performs well in separating clusters, even if they overlap.

2.7 Summary

This chapter has built the foundation for the main part of thethesis, both by in-
troducing basic concepts like random processes and randomized algorithms and
by reviewing the state of the art in dynamic clustering. As the discussion in the
respective sections has shown, no algorithms exists that are able to fulfill the re-
quirements for our scenario. Either, the algorithms cannotcope with changing
similarities like the methods in section 2.4.1, have differing cluster concepts like
the OODB and mobile approaches, or produce clusters of suboptimal quality due
to computational or bandwidth restrictions.

This lack of suited algorithms has lead to the development ofthe restricted
random walk update algorithm that is at the core of this thesis.

Chapter 3

Restricted Random Walk Clustering

Since – according to the literature overview of the last chapter - no existing algo-
rithm fulfills all the requirements stipulated in chapter 1 for cluster updates, a new
cluster update approach will be presented here that is basedon restricted random
walk (RRW) clustering. The presentation and discussion of the update algorithm
in chapter 4 is preceded by the introduction of the basic RRW cluster algorithm
in this chapter. The algorithm is composed of two stages, thewalk and the clus-
ter construction stage; these will be presented in the first section. In the second
section some of the method’s properties are discussed; the chapter ends with an
overview of the applications RRW clustering has been employed for together with
the evaluations that have been performed in that context.

3.1 RRW Clustering

In this section, we will consider a specific kind of random walk, the restricted
random walk as defined by Schöll and Schöll-Paschinger [SP02, Sch02, SSP03]
and see how it can be used to construct clusters of different characteristics. The
basic idea is to first execute random walks on the data set suchthat with growing
length of the walk only more and more similar objects are selected. The cluster
construction relies on the assumption that pairs of objectsoccurring at late stages
of one of these walks have a higher tendency to belong to the same cluster than
the pairs that occur only at the walks’ beginning where random influences still
dominate structure information.

Following the categories given in the introduction in chapter 1, the algorithm
is a hierarchical, stochastic, and randomized algorithm that works both on dissim-
ilarities and similarities either in metric spaces or on graphs. Depending on the
cluster construction method, it produces disjunctive or overlapping clusters.

65

66 CHAPTER 3

3.1.1 The Walks

The algorithm received its name from the restriction on the choice of successor
states during the walks that enables them to detect clusters. If we consider an
object set with pairwise distances between the objects, a walk starts at its starting
nodei0 and then, with each transition or step taken, traverses smaller and smaller
distances. Fig. 3.1 (adapted from [Sch02]) demonstrates this principle for a walk
starting at nodei0: With each step, the circles containing possible successors
become smaller and smaller until, fori5, the circle is so small that it only contains
the current nodei5 because the walk has arrived ati5 via its nearest neighbor,i4.

Transferred to a similarity graphG = (V,E, ω) with V the set of objects,
E containing an edge for each pair of objects with a positive similarity, andωij

the pairwise similarity between two nodesi and j, this means that if the walk
arrives at nodej via the edge(i, j), only neighbors ofj are considered that are
more similar to it thani. This leads to higher and higher similarities between
consecutive nodes. Finally, the walk ends when there are no more edges present
that satisfy the RRW restriction.

Two alternative formulations of the walks exist. Let us start by considering
the original one by Schöll and Schöll-Paschinger in whichthe walk process is a
reducible, finite second order Markov chain. In order to facilitate the analysis

Figure 3.1: Converging circles during a restricted random walk with length five,
starting ati0

CHAPTER 3 67

of the process, an alternative but asymptotically equivalent formulation as irre-
ducible infinite first-order Markov chain was developed in [Fra03] that we will
discuss afterwards. Another possible way to obtain Markov chains for the process
is outlined in [Sch02].

In the original formulation, the objects to be clustered arecontained in a set
X and a pairwise distance measured(i, j) exists for all pairs(i, j) of objects in
X. The alternative formulation operates on a graph representation where the set of
objects and their similarities are given as a (finite) similarity graphG = (V,E, ω).
Note that the original approach was formulated for distances, the alternative one
on similarities. This, however, is merely a formality sincedistances and similari-
ties can easily be transformed into each other (cf. e.g. [KR90]). As an alternative,
the comparison operators> and< can be interchanged in order to make the al-
gorithm run on the respective measure. Note though that there might be special
cases like a zero similarity that translates to an infinite distance.

Consider first the original formulation of the walk process by Schöll and
Schöll-Paschinger. Each walk starts at an arbitrary nodei0. In order to cover the
whole object set, Schöll and Schöll-Paschinger suggested to start a fixed number
of walks from each node.

The first successor,i1, is chosen among all objects in the setX, and the dis-
tance between the two objects is recorded as the step widths1 = d(i0, i1) for the
first step. For each following step the restriction is introduced that the distance
between the current and the next node must be smaller than theone between the
current node and its predecessor. Formally, if the step width is

sm = d(im−1, im) (3.1)

in them-th step, this is achieved by selecting them + 1st node from a uniform
distribution over the members of

Tm = {j ∈ X|d(im, j) < sm}\{im} (3.2)

The selection is repeated untilTm is empty, i.e. until no admissible successor
exists.im is excluded since repeated visits to the same node in consecutive steps
are of little use for the detection of clusters.

In this formulation of the method, the states of the stochastic process are de-
fined as the objects inX and transitions take place according to the pairwise dis-
tances. This has the disadvantage that the transitions of the stochastic process
depend on the two last steps; as a consequence the Markov condition for a first
order Markov chain is violated.

In order to obtain such a chain, let us consider a slightly differing formulation
of the process: The walks are defined on the edges of the graph,consequently
a single walk has the form(e0, e1, . . . , ek) = ((i0i1), (i1, i2), . . . , (ik, ik+1)). As

68 CHAPTER 3

we will see below, the two formulations are equivalent in terms of the probability
distribution of the walk realizations.

Another problem is the choice of the first node. Although iterating through
all nodes and starting the same number of walks from each of them guarantees a
complete coverage of the object set, it may not be optimal since it does not take
into account local particularities like the degree of a nodeor more generally the
density of a graph region. For the following formulation, this selection process is
given by a stochastic selection of the first node of the start edgee0 from a uniform
distribution overV .

Walks in the original formulation are finite. In order to obtain an infinite,
irreducible chain, imagine the single walks being concatenated. As a delimiter
between two walks we introduce the start/end stateΩ that represents the transition
between two consecutive walks and is also the initial state of the Markov chain.
From there, a first edgee0 = (i0, i1) is chosen from the set of all edges with a
probability of

P (e0|Ω) = P ((i0, i1)|Ω) =
1

|V | deg(i0)
(3.3)

with deg(i0) the degree of nodei0. From the point of view of the probability dis-
tribution over all nodes and edges, this is equivalent to theoriginal formulation:
|V |, the first part of the denominator represents the choice froma uniform distri-
bution over all nodes; deg(i0), the second part, stands for the uniformly distributed
choice among the links starting fromi0.

For the choice of successor edges, the set of all admissible successors of an
edgeem = (im, im+1) is defined as:

Tem
= T(im,im+1) = {(im+1, j) ∈ E|ωim+1,j > ωim,im+1

} (3.4)

i.e. all edges incident to the target node of the current edgeand having a higher
weight than the current edge are considered as possible successors. The actual
successor is determined by randomly selecting one member ofTem

using a uni-
form distribution. The walk stops whenTem

is empty. In that case, the Markov
chain enters once again the stateΩ and another walk is started.

As a consequence, the process is now given as a irreducible, infinite first-order
Markov chain: It is irreducible since

1. Each state – i.e. edge – can be reached fromΩ. This is guaranteed since
there is a positive transition probability fromΩ to every state as given by
Eq. (3.3).

2. Ω, in turn, can be reached from each state. Were this not the case, infinite
restricted random walks would be possible which, by construction, cannot

CHAPTER 3 69

happen on a finite graph. Due to the finiteness ofG and the strictly increas-
ing similarity in each step, every walk must reach an edge that has a higher
associated similarity than all of its neighbors, and thus the stateΩ is entered.

As a consequence, each state can be reached from each other state, which means
that the process is irreducible; furthermore, it is clearlyinfinite by construction.

The two formulations are equivalent for the purposes of clustering: The newly
introduced transition stateΩ is ignored when constructing the clusters, as will be
seen in the next section. The selection probabilities of thefirst edge are modeled in
such a way as to be equivalent to the behavior of Schöll and Schöll-Paschinger’s
algorithm for the case of a uniform choice of the first node from the set of all
nodes. For the other case, where a constant number of walks isstarted from each
node, the selection process for the transition fromΩ must be redefined accord-
ingly.

Finally, it should be noted that starting a fixed number of walks from each
node and choosing the first node from a uniform distribution leads to the same
expectation for the distribution of the walks in the asymptotic view, i.e. for an
infinite number of walks. The order in which the walks are executed may vary,
but we can expect that every node is chosen the same number of times as starting
node when using the uniform distribution, i.e. the same number of times it would
have been used when starting a fixed number of walks. Since therest of the walks
is defined identically and since the order in which the walks are executed is not
considered for the cluster construction, the resulting clusters are expected to be
identical.

For an example of the walk process, consider the section of anexample graph
shown in Fig. 3.2 – the dashed lines symbolize its connections to the remainder
of the graph; they will be ignored for the example. The transition matrix for this
graph section is given in Tab. 3.1.

Let us now consider an exemplary realization of the Markov process on this
graph. The process starts in stateΩ. From there, let us say thatDF is chosen as
e0. The probability for this event is1

7∗2
= 1

14
sinceV has seven elements, and

selectingD as i0, the algorithm has the choice between its two neighbors. We
obtainTe0

= {FB}, thus the choice ofe1 = FB is clear. Arriving atB via
the edge with weight2, the edgeBG is excluded due to its weight being to low.
Consequently,Te1

= {BA,BC}. Each of them has a probability of1
2

of being
chosen, let us say that the process picksBC. FromTe2

= {CA,CG}, CG might
be chosen as successor. At that point,Te3

= ∅ and the process returns toΩ to
continue, say, with the walksEGC, BGE, ACG, BCA, CBACG, GBCA, and
DACG.

70 CHAPTER 3

Table 3.1: transition matrix for the graph in Fig. 3.2

Ω AB AC AD BA BC BF BG CA CB CG DA DF EG FB FD GB GC GE

Ω

AB

AC

AD

BA

BC

BF

BG

CA

CB

CG

DA

DF

EG

FB

FD

GB

GC

GE





































0 1
21

1
21

1
21

1
28

1
28

1
28

1
28

1
21

1
21

1
21

1
14

1
14

1
7

1
14

1
14

1
21

1
21

1
21

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1

2
0 1

2
0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2
1
2

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1

2
1
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1

2
1
2

0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1

2
1
2

0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0





































Figure 3.2: Section of an example similarity graph

CHAPTER 3 71

3.1.2 Cluster Construction Methods

In the walk stage described in the last section, restricted random walks were used
in order to explore the structure of the similarity graph. Ina second stage, it is now
necessary to make use of the information thus collected to construct clusters. The
basic idea as sketched in the introduction to this chapter isthat the later in a walk
a pair of nodes occurs, the higher is their tendency to belongto the same cluster.
In the following sections two cluster construction methodsare introduced that
implement this principle: component clusters and walk context clusters. These
approaches return substantially different clusters: While the first produces very
large, disjunctive clusters, the clusters resulting from the walk context are much
smaller and overlapping. The question which one is better always depends on the
application’s requirements.

In both cases, the actual outcome is a hierarchy of clusters.In the case of
disjunctive clusters, this hierarchy can be represented bya dendrogram like the
one in Fig. 1.2. As discussed in the first chapter, a partitional clustering is obtained
from the hierarchy by applying an horizontal cut through thedendrogram at a
given cutoff level. The applications section contains a discussion of how to set
this level.

Component Clusters

The original method for cluster construction put forward bySchöll and Schöll-
Paschinger [SP02] is that of component clusters. A series ofgraphsGk = (V,Ek)
is constructed for all applicable levelsk such thatEk contains an edge between
two nodes iff they have formed thek-th step of any walk. It follows that the
connections inGk are the more meaningful the higherk is. From this series, a
second series of graphs

Hk = ∪∞
l=kGl (3.5)

is derived that contains edges for all node pairs occurring at level k or above in
any walk. Clusters are then defined as components, i.e. connected subgraphs of
Hk.

Returning to our example with the walksDFBCG, EGC, BGE, ACG,
BCA, CBACG, GBCA, andDACG we obtain the components shown in
Tab. 3.2.

As can be seen, the cluster hierarchy is captured well in thisexample. At the
lower levels two and three the weakly connected nodes (firstD, thenE andF)
are separated from the central cluster. Finally, on the highest level, the “central”
pairCG is correctly found.

Schöll and Schöll-Paschinger have evaluated RRW clustering against single
linkage (SL) and complete linkage (CL) in [SSP03]. Their first evaluation data set

72 CHAPTER 3

contains compact and elongated, overlapping clusters. Both CL and RRW outper-
form SL in this case, since the latter algorithm cannot discern overlapping clusters
or clusters connected by bridges very well. The difference between CL and RRW
in this case was visible in the treatment of outliers that were included into the
clusters by the CL algorithm, but not by RRW. The second data set contains a ring
shaped cluster that encloses a spherical one. Here, RRW is able to identify the two
clusters correctly. SL and CL discovered four subgroups in the enclosing cluster
and began merging them with the inner cluster. When the distance between the
two clusters was increased, at least SL could find the correctclustering.

In spite of these promising results, there is still potential for improvements, es-
pecially in the application context given by e.g. library data. For example, the step
level concept used here lacks some granularity: The nodesE andF are removed
at the same level in spite of the strongly differing similarities of the edges link-
ing them to the central cluster. A further disadvantage of the component clusters
turned out to be their size: The clusters for the library dataset described in section
3.3 proved to be very large – sometimes hundreds of thousand of documents; the
average cluster size was 27,000. Although Schöll and Schöll-Paschinger state that
the bridging effect, i.e. the unwanted merging of small clusters into one large clus-
ter, is noticeably smaller than with single linkage clustering, it could nonetheless
be observed very clearly [Fra03]. Obviously, the usabilityof component clusters
for applications on large data sets that require small clusters is limited.

Furthermore, there are applications like the library data set where disjunctive
clusters might not be the optimal choice. In such data sets “bridges” may link
document groups belonging to different subject groups. As an example, consider
a bookB on statistics for psychologists. This is a bridge between the groups
“psychology” and “statistics”; these groups shall be disjunctive for the sake of
argument. In addition, let us assume that the shares of psychological and statistical
contents in the bookB are equal. A disjunctive clustering has four possibilitiesof
coping with this situation:

• TreatB as an outlier and keep the clusters for the two subjects separate.
This does not optimally reflect the contents of the book and its connections
to both subject groups.

Table 3.2: Component clusters for the example
level clusters

1 {A,B,C,D,E, F,G}
2 {A,B,C,E, F,G}, {D}
3 {A,B,C,G}, {D}, {E}, {F}
4 {A}, {B}, {C,G}, {D}, {E}, {F}

CHAPTER 3 73

• Link B to both groups, thus constructing one big cluster. This has the disad-
vantage that two different matters – psychology and statistics – are joined.

• AssignB to one of the groups. SinceB is assumed to be positioned “in
the middle” between the two subject clusters, the choice of the cluster is an
arbitrary decision that generates a considerable error.

A non-disjunctive clustering, on the other hand, could treat B as follows:

• B’s cluster contains some – though not necessarily all – documents from
both groups.

• The cluster for a document about “psychology” includesB, but no docu-
ment from the “statistics” group, and vice versa.

This reflects the actual situation much better which motivated the development of
walk context clusters.

Walk Context Clusters

The main reason for the large size of the component clusters are bridge elements
like the exemplary book on statistics for psychologists mentioned above. It is
sufficient to have one walk cross this bridge to join the two otherwise disjunctive
clusters. In other words, one strong, but possibly random edge that is not repre-
sentative for the cluster is sufficient to link two clusters that should not be linked.
Furthermore, the additional question remains how to treat these bridge elements
in a semantically sensible way as discussed above.

The idea of walk context clusters is thus to only use the context of the walks
in which the objects appear directly. In order to generate the cluster for an object,
all walks are considered that contain that object in a step with a level higher than
the desired cutoff level. The cluster is then given by all objects also occurring in
these walks at a level higher than the cutoff.

The walk context clusters are small and have a high precision, as we will see
in the results section (3.3).

This is due to the fact that bridge elements have but a limitedinfluence on
the cluster construction: First, the probability of selecting a way across the bridge
element is usually less than one, i.e. the bridge is not necessarily included in the
cluster. Second, even if the random process decides to include a bridge element
in one of the walks, the bridge element does not completely link the two other-
wise independent clusters. Only the elements that are reachable from the bridge
connection are eligible to be included in the cluster, and even this takes place only
with a limited probability.

74 CHAPTER 3

A second aspect in the construction of an alternative cluster construction
method is the fact that, when dealing with graphs with locally varying density,
the length of the walks also differs considerably. Rememberthe basic idea of
cluster construction: The later in a walk a pair of nodes is visited, the higher is the
tendency of those nodes to belong to the same cluster. In addition, the precision
and significance of the clusters depends on the length of the walks contributing to
them as we will see below. Component clusters only take into account the absolute
position of a pair of nodes in its walk. This assumption is unproblematic as long
as the data set under scrutiny is relatively homogeneous in terms of the number
of objects that can be reached from each node, the density or number of incident
nodes. This is for instance the case for the geometric interpretation of an object
set with a pairwise distance function that is defined sensibly (i.e. 0 < dij < ∞)
for all pairs of nodes.

If, on the other hand, the data set is represented as a graph with similarities
as edge weights, and if the density, i.e. the number of incident edges for different
nodes, varies, considerably different walk lengths may be the consequence. Thus
walks in denser parts tend to be longer than their counterparts in sparser areas of
the graph even though the similarity of their last node pairsmay be comparably
high. When clusters with high precision are sought, this leads to a systematic
underrepresentation of the sparsely populated areas, where there is no possibility
for the development of long walks. As a result, pairs with high similarity do
not show up as clusters if they belong to a region with a low density. This is
counterintuitive, since for clustering, the number of neighbors should not play an
important role, only their association – in terms of similarity or distance – to each
other.

Furthermore RRW clustering has a local view on the data set aswill be seen
in section 3.2.2, and the applications described in section3.3 need this local per-
spective rather than a global one. This problem is not attacked by the component
clusters since it did not occur in Schöll and Schöll-Paschinger’s setting. But for
data sets with varying local densities a relative measure for the position of node
pairs may give more intuitive results than an absolute one.

The first and most obvious remedy for this problem is the relative level defined
as

l =
step number
walk length

(3.6)

While this measure levels out the differences in the walk lengths, it does so
in too thorough a way. Although the relative position of a node pair is more
important than the absolute one, the total walk length conveys information about
the quality of the information contained in the whole walk asmentioned above:
The longer a walk, the higher is the resolution of the level measure. For example,
l will give equal importance to the last – and only – step of a one-step walk and

CHAPTER 3 75

to the last step of a ten-step walk. While the first relies on a stochastic choice
between the neighbors ofi0, the latter quite reliably designates two members of
the same cluster. A further advantage of longer walks is their better resolution:
The more steps a walk has, the more levels are available in theresulting entries
of the dendrogram. This is why two further level measures were devised that
represent a compromise between absolute and relative position in the walk:

l+ =
step number

walk length+1
(3.7)

l− =
step number− 1

walk length
(3.8)

As the walk length approaches infinity, both only strive asymptotically to one
for the last, i.e. most meaningful step of a walk. The differences betweenl+ and
l− can mainly be seen in the first part of walks and for short walks, wherel+

punishes short walks less severely thanl−. As can be seen from Figs. 3.3 and 3.4,
the difference becomes negligible for longer walks:

lim
length→∞

l+ − l− = lim
length→∞

step
length+ 1

−
step− 1

length

= lim
length→∞

step· length− (length· step+ step− length− 1)

length(length+ 1)

= lim
length→∞

length− step+ 1
length(length+ 1)

= lim
length→∞

(
1

length+1
+

1 − step
length(length+ 1)

)

= 0

For practical purposes, both measures are practically equivalent [FGS05] in terms
of the quality of the resulting clusters.

For the example containing the walksDFBCG, EGC, BGE, ACG, BCA,
CBACG, GBCA, andDACG and using thel+ measure, we obtain the clusters
shown in Tab. 3.3. Since the clusters are no longer disjunctive, the clusters for all
nodes at levels0.2, 0.5, and0.8 are listed.

As can be seen, the high-level clusters only contain the highest-ranked link
between nodesC andG. Lowering the level, the central component{A,B,C,G}
is detected; additionally, due to their strong link,E is added to the cluster forG,
but not forA,B, orC since it is not well connected to these latter nodes.D andF
remain singletons at this level since their incident edges only bear relatively small
weights.

76 CHAPTER 3

 1

 10

 100 1

 10

 100

 0

 0.2

 0.4

 0.6

 0.8

 1

level measure

l+

l-
l

walk length

step number

level measure

Figure 3.3: Behavior ofl, l+, and l− for walk lengths 5, 20 and 100 and the
respective step number

 1

 10

 100 1

 10

 100

 0

 0.2

 0.4

 0.6

 0.8

 1

level measure

l+

l-
l

walk length

step number

level measure

Figure 3.4: Behavior ofl, l+, andl− for different combinations of walk length and
step number

CHAPTER 3 77

Table 3.3: Walk context clusters for the example (Fig. 3.2)
l+ A B C D

0.2 {B,C,D,G} {A,C,D,E, F,G} {A,B,D,E, F,G} {A,B,C, F,G}
0.5 {B,C,G} {A,C,G} {A,B,G} {}
0.8 {} {} {G} {}

l+ E F G

0.2 {B,C,G} {B,C,D,G} {A,B,C,D,E, F}
0.5 {G} {} {A,B,C,E}
0.8 {} {} {C}

3.2 Properties of the Method

As we have seen, the original formulation of the method by Schöll and Schöll-
Paschinger [SP02] as a stochastic process on thenodesof the similarity graph
leads to a finite, reducible, second-order Markov chain. With a finite number of
nodes and a similarity that increases in each step, the end ofa walk is definitely
reached in finite time. Furthermore, the chain is reducible since, after starting a
walk, it becomes soon impossible to reach all other nodes of the graph – in most
cases, this happens with the selection of the first node, but in rare cases also later,
but only if the graph is connected and it is possible to reach the start node again via
a cycle. Finally, the chain is of second order because the probability distribution
over possible successors depends not only on the current node, but also on its
predecessor.

In contrast, the alternativestep-based model presented in the last section leads
to a Markov chain with the following properties: It is of firstorder since the next
step only depends on the last step. Due to the concatenation of the walks using a
transition stateΩ the chain is infinite and, as all states can be reached fromΩ per
construction, it is also irreducible.

There are however two problems with this approach: First, the state space’s
size is the square of the original model’s state space size, and the process has an
even sparser transition matrix than the latter, which enlarges computational re-
quirements for the analysis of the algorithm – but note that the time complexity of
the actual algorithm is of course not affected. Second, as shown above, the model
converges only asymptotically against the method presented, since the implemen-
tation incorporates a deterministic choice of the walk’s starting point whereas in
the probability model analyzed here it is stochastic. However, given the large
number of walks, this is not of real concern here.

78 CHAPTER 3

3.2.1 Complexity

One aspect that the applications presented in section 3.3 have in common is that
they operate on a quite large data set. In this context, the computational complex-
ity of RRW clustering is of considerable interest.

Let us first consider the walks themselves. For an object set of size n,
Schöll and Schöll-Paschinger have shown that the expected length of one walk
isO(logn), especially the logarithm with base two (log2) seems to be a good es-
timator. This is valid for every object set where the number of neighbors depends
onn, like, for example, the original case where every pair of objects has a finite
distance associated with it. However, there are cases imaginable where the size of
the neighborhood does not depend onn but is rather bounded by a constantc. For
an example, think of the network formed by connecting each person of a given
group with his or herc best friends.

Theorem 3.2.1 If the size of the neighborhood of every node can be limited bya
constantc, the expected length of all walks isO(log c) = O(1).

This will be shown here for the case where the distributions of the neighbor
similarities in each node are identical, for instance, are all exponential. The proof
shows that the expected size of the successor set is halved ineach step. If this
is the case, the repeated halving of the set’s size leads to a classical divide-and-
conquer scenario that has a complexity ofO(log c). We denote the number of
nodes incident to them-th node in the walk asnm. Thenm are assumed to in-
dependent identically distributed random variables. Obviously,nm ≤ c, and we
defineµn as the expected valueE(nm).

For the proof, imagine that for the sake of picking a successor, the neighbors
of the current node are sorted in ascending order and numbered according to their
similarity1, . . . , nm. Picking one of thenm neighbors is then identical to choosing
its index or position number in the list of neighbors, i.e. drawing a random variable
i from the uniform distribution over the set[1, nm].

We can expect that the higher part of the ordered neighbor setcontains an
average ofO(c

2m−1) elements that have a higher similarity than the one used in
the current step. Working with this set with sizeO(c

2m−1), we once again obtain
the successor by picking from a uniform distribution over[1, O(c

2m)], halving in
each step the expected size of the successor set. This is a typical structure found
for instance in divide-and-conquer algorithms, leading toa runtime ofO(log c).
The argumentation remains valid even if there are ties between neighbors. In this
case, the size of the successor set is further reduced which is compatible with the
expectation to find at mostO(c

2k) admissible successors in thek-th step.
The proof is achieved via induction: The induction starts byestablishing the

setTe0
from the neighbors of nodei1. Thus we obtain

CHAPTER 3 79

E(E(|Te0
|)) =E

(
n0∑

i=1

n1

n0
(i− 1)p(e0 = i)

)

(3.9)

To obtain the expected value of|Te0
|, we sum over all possible choices for the

successor of the initial node times the probability that this choice is realized. If
n0 andn1 were equal, the number of nodes admissible after the choicei would be
i− 1. Since this is not the case, but since the distributions are equal, we calculate
the quantile i

n0
in which the choice lies and then transform it to match the number

n1 of neighbors for the next node. We substitutep(e0 = i) with the concrete
probability 1

n0
for the event that one of the initial node’s neighbors is chosen:

= E

(
n0∑

i=1

n1

n0
(i− 1)

1

n0

)

Substitutingi to start from 0 gives:

= E

(
n0−1∑

i=0

n1

n0

i
1

n0

)

We can transform the sum
∑
i to n0(n0−1)

2
:

= E

(
n1

n2
0

n0(n0 − 1)

2

)

Reducing the term byn0 leads to

= E

(
n1(n0 − 1)

2n0

)

Simplifying gives:

= E

(
n0n1 − n1

2n0

)

Using the linearity of the expectation, we get

= E
(n1

2

)

−E

(
n1

2n0

)

Finally, substituting the expected values gives us

=
µn − 1

2

80 CHAPTER 3

which proves the induction start. Consequently, we can expect that the size of the
first step’s successor set is on averageO(µn

2
). Thus, given that all nodes have the

same distribution over their neighbors – though not necessarily the same number
of them – this means that the expected set size is halved as we expect the node
chosen in the first step to lie in the middle of this distribution. In the induction step
m, of the originalnm−1 neighbors, we expectO(nm−1

2m−1) to be admissible successor
candidates for the step. Consequently, the expected size ofthe successor set after
the stepm is

E(E(|Tm|)) =E






nm−1

2m−1
∑

i=1

nm

nm−1

(i− 1)
1

nm−1

2m−1




 (3.10)

Once again, we have the (adapted) number of legal successorsfor every possible
i times the probability for thisi which is given by a uniform distribution over the
nm−1

2m−1 legal successors we expect to have in them-th step. The first term in the
sum can be extracted in a fashion analogous to the one used in the induction start,
equally we obtainnm−1

2m−1 (nm−1

2m−1 − 1) for the sum
∑
i:

= E

(
nm

nm−1
nm−1

2m−1

nm−1

2m−1 (nm−1

2m−1 − 1)

2

)

nm−1

2m−1 cancels, leaving

= E

(
nm(nm−1

2m−1 − 1)

2nm−1

)

expanding the term by2m−1 gives

= E

(
nm2m−1(nm−1

2m−1 − 1)

2mnm−1

)

distributing the contents of the inner parentheses, we obtain

= E

(
nmnm−1 − nm2m−1

2mnm−1

)

and finally, splitting and reducing the fraction,

= E

(
nm

2m
−

nm

2nm−1

)

which, substituting the expectations, gives

=
µn

2m
−

1

2

CHAPTER 3 81

In other words, the set size from stepm − 1 to stepm has halved, which gives
us the desired divide-and-conquer situation from which follows a complexity of
O(log c) for c ≥ nm for all objectsm.

If we start, as proposed by Schöll and Schöll-Paschinger,a constant number
of walks per node, this leads to a total complexity ofO(n logn) for the case of
neighborhoods only limited by the total object set size andO(n) for object sets
with constant-bounded neighborhood sizes.

The computational complexity of the different cluster construction methods
differs. Component clusters have a complexity ofO(n3) for the naı̈ve approach
in the worst case. Using the fact that the cluster construction basically consists of
the detection of components in a graph, the complexity can bereduced toO(n +
n2) = O(n2): As Tarjan [Tar72] has shown, finding connected components has
a complexity ofO(n + |Ek|) where|Ek| is the number of edges in the graphHk.
Furthermore|Ek| = O(n2), which results in the complexity given above.

In order to derive the complexity of the walk context clusters, a storage of
the walks using an efficient hash table is assumed, such that each element can be
retrieved in constant time. Every walk among thenl walks started – wherel is
the number of walks departing from each of the nodes – has an expected length of
orderO(logn) as seen above, leading to a total expectation ofO(n logn) for the
number of entries generated by all walks. Furthermore, the average number of vis-
its to each of then nodes isO(logn). Analogously, for a bounded neighborhood
size, the number of visits isO(1). This implies that the number of walks in which
the node in question is included isO(logn), each of them containingO(logn)
entries on the average. In total,O(log2 n) entries must be retrieved for the cluster
construction of one node, orO(n log2 n) for all clusters. In the case of bounded
neighborhood sizes, these numbers reduce toO(1) andO(n), respectively.

3.2.2 Asymptotic Behavior of the Walk Process

In this section, the asymptotic behavior of the random walk process underlying the
cluster algorithm will be scrutinized [FGS07a]: What behavior does this process
display as the number of walks approaches infinity? In that case, every possible
path along the nodes of the similarity graph is taken almost surely, i.e. with prob-
ability one. In the following, we assume that every admissible combination of
nodes that forms a walk occurs at least once in the infinite process.

The objective of this analysis is to be able to characterize the behavior of the
walk process in the asymptotic view, which will finally allowto analyze the prop-
erties of the clusters at different “levels” of randomness.On the one side of the
scale, where the number of walks approaches zero, the stochastic influence is very
strong. The results between consecutive clusterings on thesame data set may vary
considerably if just one walk is executed. Clearly, this scenario strongly violates

82 CHAPTER 3

the stability requirement for cluster algorithms stipulated in section 2.3. On the
other hand, there are two arguments against too high a numberof walks: One of
them is operational, since the time needed for the executionof the algorithm in-
creases linearly with the number of walks. The other one is conceptual: It may
be desirable to include certain nodes into a given cluster only with a probability
that is smaller than one. In order to do so, it is useful to knowthe characteristics
of the process for different numbers of walks including infinity. A sub-aspect in
these deliberations is also the knowledge of the point at which behavior changes
between “useless random”, “useful random” and quasi-deterministic. In the fol-
lowing, the latter case is considered as a starting point, while the other two remain
as further research topics.

As a first step the convergence of the occurrence probabilityto 1 will be
shown:

Theorem 3.2.2 If the underlying restricted random walk process is grantedan
unlimited number of walks, the probability of a walk occurring at least once is 1.

For the proof, we need the probability that a specific walk is taken. As a side
remark, it can be assumed that the walks take place on a finite object set. For a
walkw = (e0, . . . , ek), the probability for its first edge isP (e0|Ω) = 1

|V |deg(i0)
>

0 as given by Eq. (3.3) on page 68. For every following edge, theprobability
is P (em|em−1) = 1

|Tem−1
|
> 0, whereTem−1

is given by Eq. (3.4). In total, the

probability for the walkw is

P (w) =
1

|V |deg(i0)

k∏

m=1

1

|Tem−1
|
> 0

Therefore, the probability thatw is not taken when only executing one walk is
0 ≤ 1 − P (w) < 1 and thus the probability that it is not taken duringn walks is
(1 − P (w))n. As n goes to infinity, we obtainlimn→∞(1 − P (w))n = 0 for the
probability of no occurrence and can conclude that the probability of the inverse
event, i.e.w occurring at least once is1 − 0 = 1 which proves the claim.

To analyze the process – that, as we have seen in section 3.1.1, is a Markov
chain – for an infinite number of walks, consider a directed, unweighted graphG′

constructed in the following way: All states of the Markov Chain (i.e. all pairs
of nodes connected by an edge in the original similarity graph G = (V,E, ω))
constitute the set of nodesV ′. There is an arrow from nodeB to nodeC in G′ iff
C is an admissible successor state ofB in the original process. For the purpose of
this analysis, the stateΩ is split into two nodes of the graph,A (capital alpha) and
Ω. All nodes ofG′ can be reached from the starting nodeA and all nodes without

CHAPTER 3 83

successor have an arrow pointing to the nodeΩ. Formally, this graphG′ is defined
as

G′ = (V ′, E ′) (3.11)

with
V ′ = E ∪ {A,Ω} (3.12)

and

E ′ = {((i, j), (j, k)) ∈ E × E|ωjk > ωij}

∪{A} × E

∪{(i, j) ∈ E| 6 ∃(j, k) ∈ E : ωjk > ωij} × {Ω} (3.13)

It is on this graph that the asymptotic behavior of the restricted random walk
process is studied using a combination of shortest and longest path algorithms.
For the latter it is important to note thatG′ is cycle-free, such that a finite longest
path can always be found. A path is defined in this context as follows:

Definition 3.2.1 (path) A path onG′ is the succession of states (that may be edges
of another graph) of a Markov chain or a part thereof.

For the basic idea, consider Fig. 3.5 and remember the level definitions from
3.1.2. The following considerations hold for all of the level measures introduced
in section 3.1.2. The characteristics of the clustering depend on the position of the
node pairs, and, in the case of walk context clusters, on their combination inside
the walks. For any nodeB, the walks visiting it can be split in two parts, the one
before crossingB, and the one afterwards. The position of a node is computed
using a separate analysis for the first part of the walk and thesecond one. Leta be

Figure 3.5: Different paths meeting and separating at nodeB ∈ V ′

84 CHAPTER 3

the length of the longest path leading fromA toB ando the length of the shortest
walk fromB to Ω. The resulting level in the case of thel+measure is

l+ =
a

a+ o
=

1

1 + o
a

It is clear that for any of the measuresl, l+ andl−, the level is maximal wheno is
minimal anda is maximal for the given node ofG′.

For the asymptotic case, the following algorithm is used fordetermining the
cluster level of every node inG′, i.e. the maximum level at which the objects
contained in the node are still assigned to the same cluster.The graph is cycle-
free, since per construction, due to the strictly increasing similarities on the edges,
a nodeB in G′ cannot be visited more than once per walk. As a consequence,
Dijkstra’s algorithm [Dij59] can be used both for calculating the longest and the
shortest paths for any node inG′.

For the computation of thea, the following algorithm is used, withPB the set
of predecessors ofB:

F = {A}
aA = 0
While (F 6= E ∪ {A,Ω}):
Select stateB with B 6∈ F andPB ⊆ F
aB = maxC∈PB

{aC} + 1
F = F ∪ {B}

End

o is computed in an analogous fashion, withSB the set of successors of
B:

F = {Ω}
oΩ = 0
While (F 6= E ∪ {A,Ω}):
Select stateB with B 6∈ F andSB ⊆ F
oB = minC∈SB

{oC} + 1
F = F ∪ {B}

End

With these maximum levels computed, it is possible to characterize the be-
havior of the walk process. A first example is shown here; for the future, a
theoretical analysis of the cluster construction process is planned. The result
resembles that of a single linkage clustering, however, theclusters are not
identical on all levels of the cluster hierarchy.

For this example, the Deep South data set from [DGG48] is used. The data

CHAPTER 3 85

Table 3.4: The similarity matrix derived from the Deep Southdata set by Davis et
al. [DGG48]

ID
s

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

-
6

7
6

3
4

3
3

3
2

2
2

2
2

1
2

1
1

2
6

-
6

6
3

4
4

2
3

2
1

1
2

2
2

1
0

0
3

7
6

-
6

4
4

4
3

4
3

2
2

3
3

2
2

1
1

4
6

6
6

-
4

4
4

2
3

2
1

1
2

2
2

1
0

0
5

3
3

4
4

-
2

2
0

2
1

0
0

1
1

1
0

0
0

6
4

4
4

4
2

-
3

2
2

1
1

1
1

1
1

1
0

0
7

3
4

4
4

2
3

-
2

3
2

1
1

2
2

2
1

0
0

8
3

2
3

2
0

2
2

-
2

2
2

2
2

2
1

2
1

1
9

3
3

4
3

2
2

3
2

-
3

2
2

3
2

2
2

1
1

1
0

2
2

3
2

1
1

2
2

3
-

3
3

4
3

3
2

1
1

1
1

2
1

2
1

0
1

1
2

2
3

-
4

4
3

3
2

1
1

1
2

2
1

2
1

0
1

1
2

2
3

4
-

6
5

3
2

1
1

1
3

2
2

3
2

1
1

2
2

3
4

4
6

-
6

4
2

1
1

1
4

2
2

3
2

1
1

2
2

2
3

3
5

6
-

4
1

2
2

1
5

1
2

2
2

1
1

2
1

2
3

3
3

4
4

-
1

1
1

1
6

2
1

2
1

0
1

1
2

2
2

2
2

2
1

1
-

1
1

1
7

1
0

1
0

0
0

0
1

1
1

1
1

1
2

1
1

-
2

1
8

1
0

1
0

0
0

0
1

1
1

1
1

1
2

1
1

2
-

86 CHAPTER 3

describe the attendance of 18 women to 14 social events and iscontained in ap-
pendix B. It is often considered in sociology since there is no unique, indisputable
assignment of women to groups as for instance Freeman’s meta-study has shown
[Fre03].

1
3
2
4
5
6
7
9
8

10
11
12
13
14
15
16
17
18

Figure 3.6: The dendrogram for the Deep South data set with single linkage clus-
tering

1
3
2
4
5
6
7
9
8

10
11
12
13
14
15
16
17
18

Figure 3.7: The dendrogram for the Deep South data set using RRW clustering
and thel+ measure

It is used here to give a first impression of the typical differences between sin-
gle linkage clusters and the asymptotic behavior of RRW clusters. The similarity

CHAPTER 3 87

between two women as given by Tab. 3.4 is coded as the number ofevents they
have taken part in together. The data set was clustered usingboth single link-
age clustering and restricted random walk clustering with the component cluster
method and thel+ level measure; the resulting dendrograms are given in Figs.3.6
and 3.7. The first impression is that the clusterings have a high similarity, however,
there also exist interesting differences.

The first of these effects is due to the limited horizon of the RRW method.
Consider the pairs 2/4 and 12/13 in both dendrograms. As can be seen, the pairs
are merged on the same level by the SL method: Since they have the same simi-
larity, the global comparison operator of the SL method schedules both pairs for a
merge on the same level. RRW, on the other hand, lacks this global view – which
incidentally contributes to the smaller run time – and thus decides on the basis of
local similarity densities. In our example, the different densities result in a max-
imal walk length of five for the pair 2/4 and six for 12/13. In a sense, the RRW
algorithm offers an additional level of differentiation. As shall be seen in section
3.3.3, this is an important feature if the data set is sparse.

On the other hand, there are pairs with different similarities in the data set that
are merged at the same level by the RRW method, for instance the pairs 1/3 and
12/13. This effect is due to the fact that the similarity structure around those pairs
is similar, though on different levels. This property of theRRW method is useful
in applications where it is more important to detect local maxima than global ones.

3.3 Excursus: Applications

The clustering method presented in this chapter is applicable to every object set
with members that have a similarity or distance relation. However, due to its
relatively low computational complexity (cf. section 3.2.1) it is especially with
large data sets that the algorithm shows its strengths. Thisis why the algorithm
was originally chosen for the analysis of library usage histories as presented in the
following section where it was used for the purpose of indexing library corpora
and the generation of recommendations.

3.3.1 Library Usage histories

When the following studies were conducted in spring 2005, the online public ac-
cess catalog (OPAC) at the university library in Karlsruhe,Germany, had usage
histories on 1.8 million documents out of which about 800,000 have been visited
often enough to include them in the clustering. The average degree of a node in
this data set is about 39; this implies that the data set comprises nearly 36 million
weighted edges. Let us start with the description of the dataset before detailing

88 CHAPTER 3

the two applications, (semi-) automated indexing and recommendation genera-
tion, for which RRW clustering was used in this domain.

The usage histories are generated by users of the library OPAC browsing de-
tail web pages of documents. Each visit is counted as an occurrence of that doc-
ument. All documents viewed by the same user in one session are considered
as cross-occurrences. These cross-occurrences between documents are summed
up and stored in raw baskets like the one shown in appendix A. It contains the
identifier for a document (the last line) plus all other documents, along with their
cross-occurrence frequencies. The preprocessing that is necessary to extract these
sessions from the web server logs is described e.g. in [GSHNT03] and will not be
detailed here.

Since raw baskets stored in files represent a performance bottleneck when
working with an object set of this size, the data is transferred to a data base,
preserving all information from the baskets.

In order to obtain a transition matrix, the similarity between two objects is
defined as their number of cross-occurrences. This measure has all characteristics
of a similarity measure as given by definition 1.1.10 except the limitation to the
interval[0, 1].

It is important to note that this similarity measure is not based on any kind of
content analysis of the full texts or even the titles. This differentiates the approach
from many others used in information retrieval [CPS98, LH03, Seb02, SFFE01,
Yan99]. A full text analysis is simply not possible in a conventional or hybrid
library, since some or all of the texts are not available in a digital format that would
allow their fast analysis. Instead, the method presented here relies completely on
the behavior of users following their own interests. This has several advantages.
First, the data can be gathered automatically, without intervention of the user.
This means that there is no need to set incentives for users tocooperate with the
system. Second, systems based on implicit user “cooperation” are less prone to
problems concerning incentives like manipulations or freeriding as discussed by
Geyer-Schulz et al. [GSHJ01] or Nichols [Nic97].

Finally, the analysis of transaction data has a tradition inmarketing and is
used to predict repeat buying behavior [Ehr88] or cross-selling potentials. In the
latter case, results show that there is a high correlation between cross-occurrences
and complementarity of products. As Samuelson [Sam38, Sam48] states, choice
behavior reveals the users’ preferences.

3.3.2 Indexing Library Corpora

This application was motivated by the situation of the catalogues of the univer-
sity’s library at Karlsruhe as well as of many other libraries in Germany. As
a random sample drawn from the catalogue showed [FGS04], about 30% of the

CHAPTER 3 89

documents were not indexed with any keywords. Since manual indexing is a time-
consuming and therefore expensive activity, there is little chance that these parts
of the corpus will ever be indexed by hand. The problem is thusthat parts of the
collection cannot be found when using an index search. This is a problem for
many libraries today, independent of the nature of their content.

While solutions have been proposed for digital libraries based on an analysis
of the full text or an abstract [Yan99, Seb02, SFFE01], this is not a viable solution
for libraries like the one at Karlsruhe that for the most partcontains conventional
documents like books and journals in paper form. The solution should be usable
for libraries independent of the representation of their content.

As a possible solution, the use of restricted random walk clustering for au-
tomated or semi-automated indexing on the basis of usage histories was investi-
gated. The idea is that if the clusters obtained in this way contain similar docu-
ments, then there should be a high similarity in the keywordsof the cluster mem-
bers, too. Consequently, for a document without manually assigned keywords
it is reasonable to consult the distribution of the keywordsassigned to the other
members of its cluster.

As a first step, restricted random walks are executed on the document set based
on the raw baskets containing the usage histories. After performing all walks, the
cluster for each document without keywords is constructed,and the occurrence
frequencies of the keywords assigned to documents in the respective cluster are
counted. Obviously, the higher the fraction or number of documents sharing a
keyword in a cluster, the higher is the probability that thiskeyword also fits for
the document without index terms that is the center of the cluster.

Formally, the relevance of a keywordk for a documenti can be defined in
several ways. Iffl(k, i) is the number of timesk occurs ini’s cluster at levell,
andtl(i) is the size ofi’s cluster at levell, the following measures for significance
are conceivable: First, the absolute frequency of term occurrence

sigabs
l (k, i) = fl(k, i) (3.14)

second, its relative frequency

sigrel
l (k, i) =

fl(k, i)

tl(i)
(3.15)

or an adjusted measure,

sigadj

l (k, i) =
fl(k, i) − 1

tl(i)
(3.16)

The theoretic drawbacks of the first two measures are obvious. The absolute
frequency does not take into account the total number of documents in the cluster.

90 CHAPTER 3

Consequently, the event “10 documents out of 100 have keyword k” will be rated
higher than “9 out of 9 documents have keywordk” while intuitively, the second
is more meaningful. The relative measure is blind in anotherway in that it does
not consider the absolute number of documents supporting a keyword. So, no
matter if the cluster consists of one or 10 documents the measure will yield the
same result although the first may solely be based on a single document that has
wrongly been assigned to the cluster.

Thus, in analogy to thel− measure from section 3.1.2, the adjusted measure
was introduced that accounts for both important factors, cluster size and relative
support for a keyword inside the cluster. For large cluster sizes, it converges to
one.

The indexing was tested on two different classification schemes both in use
at the library. The first one is based on the SWD Sachgruppen indexing scheme
published by the Deutsche Bibliothek [Kun03]. It is a numerical, hierarchical
classification with four levels. Due to the already mentioned sparse manual clas-
sification, only the two highest levels were used.

For the SWD Sachgruppen, in addition to a manual evaluation [FGS04], we
conducted an automated evaluation for 15,000 documents that already had man-
ually assigned keywords – of course without making use of thekeywords in the
recommendation generation process. The cutoff level of theclusters was set to
0.5; sigadj

l was used as significance measure with a significance threshold of 0.27.
The evaluation measure was the precision of the keywords

prec=
number of correctly assigned keywords

total number of assigned keywords

where the correctness of a keyword was judged according to whether the keyword
had also been manually assigned to the document in question.With the parameters
given, it was possible to obtain a precision of 77% while generating keywords for
66.8% of the documents. This seems to be an acceptable compromise for the
ever-recurring problem of information retrieval: Precision versus recall.

A further evaluation was undertaken on the keywords from thesecond classi-
fication scheme in use. In this case, real keywords like “differential equations” are
assigned to the documents. Reference librarians were askedto judge the quality
of the keywords that the algorithm generated for 212 documents atl+ = 0. At that
level, nearly 4,000 keywords were generated – keep in mind that a level of zero
is the most imprecise level, but also the one with the highestrecall. Of these, 365
were classified as correct for their respective document. This data base of evalu-
ation results allowed a more thorough evaluation of the necessary parameters of
level, significance measure and significance cutoff. In addition to the three sig-
nificance measures in [FGS04], more were developed that use for their definition
the termsj ∈ C ′

0(i, k) for the documents ini’s cluster at level 0 that also have the

CHAPTER 3 91

keywordk andl+max(i, j) for the maximum level at whichj is still in i’s cluster.
The measures tested were:

sigA(k, i) =
1

t0(i)

∑

j∈C′

0
(i,k)

l+max(i, j) (3.17)

sigA+(k, i) =
1

t0(i) + 1

∑

j∈C′

0
(i,k)

l+max(i, j) (3.18)

sigB(k, i) =
1

f0(k, i)

∑

j∈C′

0
(i,k)

l+max(i, j) (3.19)

sigB+(k, i) =
1

f0(k, i) + 1

∑

j∈C′

0
(i,k)

l+max(i, j) (3.20)

sigC(k, i) =
f0(k, i)

t0(i)

∑

j∈C′

0
(i,k)

l+max(i, j) (3.21)

sigC+(k, i) =
f0(k, i)

t0(i) + 1

∑

j∈C′

0
(i,k)

l+max(i, j) (3.22)

sigD(k, i) =
∑

j∈C′

0
(i,k)

l+max(i, j) (3.23)

sigE(k, i) = f0(k, i)
∑

j∈C′

0
(i,k)

l+max(i, j) (3.24)

sigE−(k, i) = (f0(k, i) − 1)
∑

j∈C′

0
(i,k)

l+max(i, j) (3.25)

sigC+ proved to generate the best results; they are plotted in Fig.3.8. As can be
seen, a precision of 100% is feasible, but only for a small share, about one per
cent of the documents. On the other hand, when all keywords are admitted at the
lowest level, precision drops to 10%.

3.3.3 Giving Recommendations

Recommender systems – like the well-known example at amazon.com or the rec-
ommender in operation at the university’s library at Karlsruhe – offer added value
for both sides in a (possible) transaction. The customer is offered a possibility
to further explore complementary or substitutive productswhile the vendor can

92 CHAPTER 3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

ke
yw

or
d

pr
ec

is
io

n

number of keywords

precision sigC+

Figure 3.8: Precision versus number of generated keywords (data from [FGS07b])

expect an increase in sales by directing the customer’s attention towards com-
plementary products. In a non-profit setting like at the university’s library, qual-
ity of service and thus user satisfaction can be enhanced. Besides the obvious
recommendation for complementary books, it is also conceivable to recommend
available substitutes for books that are currently not available.

A general review of recommender systems can be found in the works of
Adomavicius and Tuzhilin [AT05], Gaul et al. [GGSHST02], Resnick and Var-
ian [RV97] or Schafer et al. [SKR01]. All implicit recommender systems rely
on Samuelson’s thesis that observed behavior reveals user preferences [Sam38,
Sam48]. Besides the relatively simple system used at amazon.com that consists of
recommending all items with a (relative or absolute) cross-occurrence frequency
above a given threshold, there are more sophisticated methods like the one used
at the university’s library at Karlsruhe [GSNT03] that profit from the evaluation
of the underlying distribution of the cross-occurrences [Ehr88] to distinguish be-
tween random and meaningful cross-occurrences in a more robust way. The dif-
ference between the two is that random cross-occurrences are created by inde-
pendent purchase processes, whereas dependent processes generate meaningful
cross-occurrences that can be identified by the framework bytesting for outliers.

The use of clustering in order to improve the quality of a recommender sys-
tem has been proposed in the past. A general review of alternative techniques

CHAPTER 3 93

for collaborative filtering applications has been given by Griffith and O’Riordan
[GO02]. One of the first publications to apply clustering forrecommendation gen-
eration was written by Borchers et al. [BLKR98] stating thata clustering of the
users leads to both increased quality and increased scalability by reducing the user
data set’s size. Sarwar et al. [SKKR02] analyzed the scalability of recommender
systems and concluded that clustering users leads to more scalable recommender
systems for large user groups. Finally, most recommender systems’ matrices are
sparse, especially if the system is new or if a new user is to beintroduced. Kohrs
and Merialdo [KM99] have especially focused on ways to efficiently deal with
such matrices.

Getting back to our input data, the observable behavior is driven by the two
relations we are searching for: On the one hand, objects in the baskets may be
complementary as users search for literature complementing their current selec-
tion. On the other hand, substitutes are contained in the data set, because users
have browsed all possible literature for a subject before settling on the document
best suited for the purpose – or on one of the available ones, if the best book is
currently on loan. Thus, by exploiting the usage histories,the recommender is
able to offer documents that are related in one of these two ways.

Thus, given the quality of the clusters exhibited at earlierapplications, it is
possible to use RRW clustering for the purpose of recommendation generation
[FGS05, FGSN06, FGS07b]. As argued above, once the clustersare generated,
there is not much left to do in order to obtain recommendations, since the cluster
members for a given cluster center are already either complements or substitutes.
The fact that RRW clustering with the walk context method returns nondisjunctive
clusters is an added bonus in this case since as discussed in section 3.1.2, it is
e.g. favorable to include psychology and statistics books in the recommendation
list of an introductory course in statistics for psychologists, but it is not desirable
to include the same psychology books in the cluster for one ofthe statistics books.

Furthermore, the question of setting the “correct” cutoff levell is solved very
elegantly in this context by setting the initial level to an intermediate value and
leaving the decision about adjustments to the user since he or she is the only one
to know the requirements of the current session. If a broaderoverview is sought,
a low levell can be requested, returning large, but less precise clusters. If, on the
other hand, only documents narrowly related to the current one are of interest, this
can be achieved with a high value ofl.

A prototypical interface exists for displaying the recommendations. Screen
shots in analogy to [FGS07b] are given in Figs. 3.9 to 3.11 forthe books by Kauf-
man and Rousseeuw [KR90] as well as by Bock [Boc74]. The top ofthe web
page contains the slider that allows the user to adjust the level to the needs of the
current search.

94 CHAPTER 3

Figure 3.9: Recommendations for Bock [Boc74], high precision

Figure 3.10: Recommendations for Kaufman and Rousseeuw [KR90], high pre-
cision

In addition to the above evaluations, two more were conducted for the recom-
mendations. The first one relies on the SWD Sachgruppen classification scheme
as benchmark; documents are judged to be correctly in the same cluster if they
share at least one keyword. This is a rough criterion for the fitness of the clusters
for recommendation purposes; the resulting precision of the clusters for a data set
of 40,000 documents is given in Fig. 3.12. Here, it becomes clear that the simple
level measure is not suited for the generation of recommendations. Even the most
restrictive level only provides a precision of little more than 50% while already
including 39,045 documents.l+ andl−, on the other hand, give quite similar re-
sults, with maybe a small advantage forl+. The highest precision reachable on
this data set is 95.5% usingl+. An additional manual test with 30 documents was
undertaken; the authors evaluated the top five recommendations for each docu-

CHAPTER 3 95

Figure 3.11: Recommendations for Kaufman and Rousseeuw, low precision

ment. The precision on this data set is 78,7%.
In the context of [FGS07b], a comparison with other cluster methods was

attempted. There were, however, some difficulties: First, the library data set
does not offer vector data, but only similarities. As a consequence, centroid-
or medoid-based algorithms likek-means are not applicable to the data. Further-
more, as mentioned in the introduction to the data set, it is large with 0.8 million
active objects and 36 million edges which requires efficientalgorithms with a
time complexity of no more thanO(n logn). But even then, the most simple clus-
ter algorithm – single linkage (SL) – would have taken too long for a significant
evaluation. Fortunately, as Gower and Ross [GR69] have shown, all information
necessary for SL is contained in the minimum spanning tree ofthe graph. Thus,
in order to find the cluster for a given document at a given level it is sufficient to
find the component containing that document in the thresholdgraph for the level
which considerably speeds up the cluster construction. Equally, for the complete
linkage cluster algorithm, only documents incident to the cluster seed document
must be taken into account since only these have a positive similarity with the
seed.

When constructing the clusters for the two books by Bock and Kaufman and
Rousseeuw it became already clear that both SL and CL displaysome serious
problems in this setting that RRW does not have. First, the fact that the book by

96 CHAPTER 3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

pr
ec

is
io

n

number of documents with recommendations

precision using l
precision using l+

precision using l-

Figure 3.12: Trade-off between recall and precision (data from [FGS07b])

Kaufman and Rousseeuw [KR90] has only four documents out of 50 with cross-
occurrence frequencies higher than one, the highest frequency being four, poses a
problem for the SL algorithm. Even if the cluster construction is restricted to this
highest level, thus only including one of the original neighbors of the book, SL
produces a cluster containing more than 250,000 documents.Apart from a cluster
of this size being unsuitable for recommendation purposes,the connections of the
cluster members are at least questionable given the scant connectivity between
seed document and cluster.

CL, on the other hand, does not offer as many levels of differentiation as does
RRW. Instead of seven levels, the CL clusters are only differentiated into four
groups, which directly follows from the similarity distribution of the neighbors.
Additionally, the first three levels only comprised four documents, the rest entered
the cluster structure at level one.

For Bock’s book [Boc74], the results are less grim. Here, thehighest similar-
ity with a neighbor is 19. As a consequence, there is less chaining at the highest
level, the SL cluster contains the books by Hartigan, Steinhausen, Mirkin, Bacher,
and Gaul also included in the RRW recommendations (cf. Fig. 3.9). The differ-
entiation problem for CL remains, however: There are nine CLlevels, and 94 out
of 125 documents are only contained in the clusters for the lowest level, while the
RRW clusters have 25 different levels.

CHAPTER 3 97

As a result, it must be stated that both SL and CL are less suited for the gen-
eration of recommendations than the RRW method, especiallyif the similarity
distribution is narrow. On the other hand, it must be admitted that no attempts
were undertaken to boost the SL/CL performance by e.g. normalizing the similar-
ities, so there might still exist potential for improvements.

3.4 Summary

This chapter has introduced the RRW clustering method alongwith a short discus-
sion of some properties like complexity or asymptotic behavior. The applications
to which the algorithm has been put have been presented, and the evaluations were
given that were performed in the context of these applications.

It has been shown that the RRW method is well able to cope with large data
sets like the purchase history data set at the university’s library in Karlsruhe. The
evaluations of the cluster quality are promising as they show a good quality of the
clusters detected by the algorithm. This allows us to consider the RRW algorithm
as basis for a dynamic cluster algorithm that will be presented in the next chapter.

98 CHAPTER 3

Chapter 4

Updating Restricted Random Walk
Clusters

As the literature review in chapter 2 has shown, dynamic clustering – in the widest
sense of the term – has received quite some attention during the last decade. This
is due to the fact that more and more large data sets are maintained that are not
static but grow and change over time. A good example for this phenomenon is the
OPAC usage data set discussed in section 3.3: A living OPAC implies changes in
the similarity matrix. New documents are added, and old onesmay be removed
due to the growth and management of the corpus. As the overview in chapter 2
has shown, the case of growing, and, within limits, shrinking data sets is often
considered in the literature. On the other hand there seem tobe no algorithms
actually capable of dealing in an acceptable way with “mobile” objects, i.e. ob-
jects that change their respective distance or similarity dynamically. But this is
the even more important case in our scenario when clusteringlibrary usage data:
Users browse the collection, creating new market baskets that in turn increase
the similarity between the documents visited. Furthermoreuser behavior changes
over time.

It follows that our task is to efficiently keep the clusters upto date in the face
of insertions and deletions of objects as well as of changingsimilarities. Clearly,
re-executing all walks in order to reflect these changes is not a feasible solution
given the running time of the algorithm and the size of the data set. Likewise, it
is not a sensible solution given the characteristics of the RRW cluster algorithm
as discussed in section 3.2.2. The local perspective of the algorithm implies that
changes in the similarity matrix have only local effects on the clusters. In addition,
the number of changes per update is relatively small compared to the overall size
of the document set, which would even allow the update process to have a slightly
higher complexity in terms of the number of objects involvedand to still perform
better than a complete reclustering. In turn, the quality ofthe updated clusters

99

100 CHAPTER 4

should not deteriorate compared to the original clusteringso that a reclustering
never becomes necessary.

A further point in favor of an update is the fact that not everychange in the
matrix has repercussions on the clusters: The changes can bebasically reduced
to two cases that will be elaborated in the next section: Walks present in the data
base may become invalid and have to be removed or new possibilities for walks
may be discovered and have to be taken into account. From these considerations,
methods will be derived to deal with the basic cases

• insertion of an object,

• removal of an object, and

• update of the similarity between two objects.

4.1 The Basic Update Cases

Before detailing the update algorithm, let us discuss the relevant changes in the
similarity matrix and their consequences. For the sake of clarity of the proofs, let
us assume for now that the changes are processed separately:As soon as a change
occurs, the respective actions are carried out before the next update is integrated
into the similarity matrix. Section 4.2 contains a short discussion of the extension
for several concurrent updates.

In addition to the setTij , the set of admissible successors of edge(i, j) from
the static scenario in section 3.1.1, we will need the setT ′

ij that represents the set
of admissible successor for the edge(i, j) just as given above, butafter the update
of the similarity matrix, whereasTij in this context describes the set used in the
original settingbeforethe update. The termpath is used in this chapter according
to definition 3.2.1, especially in the sense of walk fragments.

For an illustration of the basic cases, consider the graph inFig. 4.1 where
ωBF = ωFB = k is a variable weight – or more specifically, similarity – thatis
subsequently changed by updates of the similarity matrix inorder to demonstrate
the possible changes to the similarity graph.

Let us say that, in the original data, the valuek between nodesB andF equals
two. In this case, walks can cross the linkFB and continue to eitherC orA, but
a traversal fromB to F is only possible ifB is the start node of a walk. Now
consider the following updates:

1. If, in a first update, the weight increases tok = 3, paths that contain the
sequenceGBF and thus were not feasible before the update become viable.
In other words, for walks coming from nodeG to nodeB, there is another

CHAPTER 4 101

Figure 4.1: Section of a similarity graph

possible edge to choose in addition toBC andBA. The handling of events
of this type will be discussed in section 4.1.1.

2. A subsequent update setsk = 4. Consequently, all walks containing the
sequenceFBC become invalid sinceωBC > ωFB is no longer true. The
procedure for handling this class of cases is developed in section 4.1.2.

As mentioned in the introduction to this chapter, not every change in the similarity
matrix automatically implies a change in the walks. If, for example, the similarity
betweenC andE changed from 2 to 3, the set of possible walks would remain
unaffected by the change, since we only use an ordinal scale for the similarities in
order to calculate the transition probabilities.

The insertion of new nodes as well as the removal of existing nodes can be
reduced to the cases given above as will be detailed in sections 4.1.4 and 4.1.5.

4.1.1 New Paths

Let us now consider the necessary actions for reacting to case (1) given above. If
new possibilities for paths emerge, the algorithm must find all walks that, given the
updated similarity matrix, might have included the edge with the increased weight
because they include one of its admissible predecessors. Inour example, these
are all walks containing the edgeGB. Before the update, a possible successor

102 CHAPTER 4

for GB was chosen with equal probability fromTGB = {BC,BA}, i.e. each of
theses edges was chosen with a probability of1

|TGB |
= 1

2
. If the initial weight on

BF had been greater two,TGB would have included the three edgesBA, BC,
andBF . Consequently,BF would have had a probability of1

3
of being chosen,

just asBC andBA would have had in that case. It follows that, in order to
mimic the output of the original algorithm on the new data set, probability mass
must be redistributed fromBA andBC toBF such that each of them is expected
to occur in 1

3
of the walks coming fromGB. To effectuate this redistribution,

the update algorithm considers all walks that cross the edgeGB. If BF is an
admissible successor, it means that some walks formerly proceeding fromGB
to eitherBA or BC should be truncated at this point and continued as normal
restricted random walks, but usingBF as successor forGB. For each of the
walks under consideration, the decision whether to rerun itstarting fromBF is
made based on the probability of

P (no change) =
|TGB|

|T
′

GB|
(4.1)

that this walk is preserved. If it is not preserved, the entries for this walk in
the walk data base are truncated afterGB, and the new edgeBF is inserted.
Afterwards, a restricted random walk is executed as if it hadjust visitedBF ,
i.e. it continues with the correct step number derived from the walk’s first part and
chooses a successor from the setT ′

BF .
Taken altogether, the algorithm assigns a total probability of

1

|TGB|

|TGB|

|T ′
GB|

=
1

|T ′
GB|

(4.2)

of being included in a walk afterGB to each successor that was already admissible
before the update. This is just the probability that this successor would have been
assigned had the situation during the initial execution of the walks corresponded
to T ′

GB instead ofTGB.
With a probability of

P (change) = 1 −
|TGB|

|T ′
GB|

=
|T ′

GB| − |TGB|

|T ′
GB|

(4.3)

we discard the rest of this walk and restart it from the node inquestion, choosing
the successor among the|T ′

GB|−|TGB| new possible nodes with equal probability.
Thus, each of these nodes has a total probability of

|TGB|
︸ ︷︷ ︸

number of old successors

∗
1

|TGB|
︸ ︷︷ ︸

P of being chosen fromTGB

∗
|T ′

GB| − |TGB|

|T ′
GB|

︸ ︷︷ ︸

P of change

∗
1

|T ′
GB| − |TGB|

︸ ︷︷ ︸

P of being chosen fromT ′

GB

=
1

|T ′
GB|

(4.4)

CHAPTER 4 103

of being picked, which, once again, corresponds to the correct probability when
executing the original algorithm on the updated data set.

Formally, the algorithm for new paths over an edgee is as follows:

For all e′ ∈ E with e ∈ T ′
e′ ande 6∈ Te′:

For alle′′ with e′′ ∈ Te′ :
For all walks(. . . , e′, e′′, . . .):
With probability1 − |Te′ |

|T ′

e′
|
:

truncate the walk, starting frome′′

inserte at the end of the walk
continue the walk by picking a successor fromT ′

e

follow the original algorithm for the rest of the walk
End

End
End

End

Returning to the example on page 70 with the walksDFBCG, EGC, BGE,
ACG, BCA, CBACG, GBCA, andDACG, we state that the walkGBCA
contains the edgeGB for which a new successor is available. As argued above,
the setT ′

GB = {BA,BC,BF} now contains the edgeBF that was not part of
TGB. According to the algorithm, there is a random choice between maintaining
the walk in its present form with probability2

3
= |TGB |

|T ′

GB
|

and truncating it in favor

of the new path with probability1
3
. Let us assume that the walk is truncated: The

remainder of the walk,GB, is continued usingBF . SinceT ′
BF = ∅, the walk ends

here. This does not change the clustering for the component cluster method since
both pairs,BC andBA, from the truncated walk are contained in other walks in
equivalent or higher positions and the new pairBF was already present at level
two before the update. In contrast, the objectsA andB no longer belong to each
others’ clusters at level 0.5 when using the walk context method (cf. page 77). In
return, due to the modified walk,B andF occur now in each others’ cluster at
level 0.5.

The important advantage of the update procedure given here is that it produces
the same results, speaking in terms of probability distributions over the states or
edges, as the renewed execution of all restricted random walks on the updated
similarity matrix.

Theorem 4.1.1 The update algorithm produces the same probability distribution
for the clusters as a reclustering of the updated data using the original algorithm.

To prove this, let us compute the occurrence probabilities of the successor

104 CHAPTER 4

states – first the preexisting, then the newly added ones – andcompare them to
the frequency distribution of the states using the originalprocess. For this proof,
the following notations will be used:m is the number of walks arriving over
the predecessor edge in question,n = |Tij| is the number of possible successors
before andn′ = |T ′

ij| the number of possible successors after the update.N(e) is
the number of walks choosing edgee as successor before the update,N ′(e) marks
the same number after the update of the walks. As can easily beseen,N(e) is
binomially distributed with aB(m, 1

n
) distribution before the update due to the

construction of the walks: It is the result of a repeated Bernoulli trial, a choice
between the edge in question – which has a probability of1

n
of being chosen – and

the othern − 1 edges that share a total probability of1 − 1
n

= n−1
n

. The choice
is repeatedm times, once for every walk arriving via the predecessor edge. The
probability mass functions of the binomial distribution are denoted byP (·) and
P ′(·) respectively.

Theorem 4.1.2 The frequency distribution of each member ofT ′
ij , i.e. after the

appearance of new walks isB(m, 1
n′

).

The proof is split into two parts. First, the correctness of the distribution for
members ofTij is shown, then the proof is made for the new edges, i.e. the mem-
bers ofT ′

ij\Tij .
To this end, consider a successore that was admissible before the change. The

number of walks crossing it isB(B(m, 1
n
), n

n′
)-distributed: The probability ofk

walks containinge in this place after the update is composed of the probability
that e was choseni times (i ≥ k) in the original process – this is theB(m, 1

n
)

part – and that out of thesei walks,k were not changed – this is where the term
n
n′

comes from, since this is the probability of the walk not being truncated. The
number of walks being preserved is thusB(N(e), n

n′
)-distributed.

The probability fork walks visitinge after the update is

P (N ′(e) = k) =
m∑

i=k

P (N(e) = i)
︸ ︷︷ ︸

i walks before update

(n

n′

)k
(
n′ − n

n′

)i−k (
i

k

)

︸ ︷︷ ︸

i − k walks redistributed

consisting of the probability fori visits in the original walks and the binomial
probability thatk out of these are preserved. Since the original distributionof the
visits isB(m, 1

n
), we obtain

=

m∑

i=k

(
1

n

)i(
n− 1

n

)m−i(
m

i

)(n

n′

)k
(
n′ − n

n′

)i−k (
i

k

)

CHAPTER 4 105

writing out the two binomial coefficients and taking together the factorn in vari-
ous numerators and denominators leads directly to

=
m∑

i=k

(
1

n

)m−k

(n− 1)m−i m!

(m− i)!i!

(
1

n′

)k (
n′ − n

n′

)i−k
i!

(i− k)!k!

The factors
(

1
n

)m−k
and

(
1
n′

)k
are extracted from the sum, equallym! andk! from

the two binomial coefficients;i! cancels. Furthermore, the fraction is expanded
by (m− k)!.

=

(
1

n

)m−k (
1

n′

)k
m!

(m− k)!k!

m∑

i=k

(n− 1)m−i (m− k)!

(m− i)!(i− k)!

(
n′ − n

n′

)i−k

By transforming the sum’s counter variable to start counting from 0, we obtain

=

(
1

n

)m−k (
1

n′

)k
m!

(m− k)!k!

m−k∑

i=0

(n− 1)m−k−i (m− k)!

(m− k − i)!(i)!

(
n′ − n

n′

)i

The first three terms remain unchanged. The sum is the binomial representation

of
(
(n− 1) + (n′−n

n′
)
)m−k

, its first part is expanded byn′ in order to obtain a
common denominator:

=

(
1

n

)m−k (
1

n′

)k
m!

(m− k)!k!

(
nn′ − n′ + n′ − n

n′

)m−k

The two middlen′ in the last term cancel, leaving
(

nn′−n
n′

)m−k
. By extracting

the factornm−k from this term, the first term is canceled. The third term is the
binomial coefficient which in total leads to

=

(
1

n′

)k (
n′ − 1

n′

)m−k (
m

k

)

�

which is exactly the probability of aB(m, 1
n′

)-distributed variable having valuek,
thus proving the claim. This is true for any positive number of new successors.

The second part of the proof concerns the newly arrived successors. It uses
the distribution of the number of visits to the preexisting successors given above.
In order to give one proof for any numberl = n′ − n of new successors, let
us consider the total number of walks that use one of these newpaths. Since
the distribution of the number of walks is per construction identical on all new
paths, this should lead to thel-time convolution of aB(m, 1

n′
) distribution. The

following idea is used to compute the probability that thel new successors receive

106 CHAPTER 4

k walks: If the total number of walks departing from the predecessor edge ism
and all new paths together should receivek walks, the old paths must be visited
by a total ofm− k walks. These are distributed over the preexisting paths in such
a way that the successor edgee1 ∈ Tij obtains between zero andm−k walks with
the probability distributionB(m, 1

n′
) as shown in the last proof, the successor edge

e2 ∈ Tij between zero andm−k−N ′(e1) and so on. Then-th existing successor
is visited by as many walks as are necessary in order to obtaina sum ofm− k, in
other wordsm− k −

∑n−1
j=1 N

′(ej).
Thus we obtain as probability for the event ofk walks selecting one of the new

successors:

P ′(

n′

∑

j=n+1

N ′(ej) = k)

=
m−k∑

i1=0

m−k−i1∑

i2=0

. . .

m−k−
Pn−2

j=1
ij

∑

in−1=0

P ′(N ′(e1) = i1)
︸ ︷︷ ︸

e1 hasi1 walks

Πn−1
j=2P

′(N ′(ej) = ij|N
′(e1) = i1, . . . , N

′(ej−1) = ij−1)
︸ ︷︷ ︸

ej hasij walks, giveni1, . . . , ij−1

P ′(N ′(en) = m− k −
n−1∑

j=1

ij |N
′(e1) = i1, . . . , N

′(en−1) = in−1)

︸ ︷︷ ︸

en receives the necessary walks to completem − k

In order for thel new successors to obtaink walks, then old successors should
together receivem − k walks. The first of the old successors may obtain any
number between 0 andm− k, the second one between 0 and what the first left of
them−k walks and so on, until the last old successor is visited by as many walks
as necessary to reach a sum ofm − k. The number of walks for old successors
follows a binomial distribution as we have seen in the last proof. The conditional
probabilities here simply mean thatm−k, the number of possible walks is reduced
by the walks already assigned to one of the prior old successors. Writing these
out, we obtain

CHAPTER 4 107

=

m−k∑

i1=0

. . .

m−k−
Pn−2

j=1
ij

∑

in−1=0

(
1

n′

)i1
(
n′ − 1

n′

)m−i1
(
m

i1

)

(
1

n′ − 1

)i2
(
n′ − 2

n′ − 1

)m−i1−i2
(
m− i1
i2

)

. . .

(
1

n′ − n + 2

)in−1
(
n′ − n + 1

n′ − n + 2

)m−
Pn−1

j=1
ij
(
m−

∑n−2
j=1 ij

in−1

)

(
1

n′ − n + 1

)m−k−
Pn−1

j=1
ij
(

n′ − n

n′ − n+ 1

)m−
Pn−1

j=1
ij−m+k+

Pn−1
j=1

ij

(

m−
∑n−1

j=1 ij

m− k −
∑n−1

j=1 ij

)

The first line contains the term for the first, the second for the second old succes-
sor. The second successor, giveni1 visits toe1, has aB(m− i1,

1
n′−1

) distribution.
This continues till then − 1st one in the third line. The probability for then-th
old successor absorbing the rest of them− k walks is given in the last two lines.
This expression can be simplified: The numerators from the second term in each
line cancels the denominator of the first two terms of the following line. Equally,
a part of the denominator from the binomial coefficient cancels the numerator of
the coefficient in the next line – in the first line, for instance, this ism − i1 from
the term m!

(m−i1)!i1!
. What remains is the denominator

(
1
n′

)m
from the first term, the

numerator(n′ − n)k from the last term, them! from the first binomial coefficient
and the producti1! . . . in−1!k!(m − k −

∑n−1
j=1 ij)! remaining from the binomial

coefficients’ denominators.

=

(
1

n′

)m

(n′ − n)k

m−k∑

i1=0

. . .

m−k−
Pn−2

j=1
ij

∑

in−1=0

m!

i1! . . . in−1!k!(m− k −
∑n−1

j=1 ij)!

We expand by(m − k −
∑n−2

j=1 ij)!, extract m!
k!

, isolate the last sum and insert

the factor1in−11m−k−
Pn−1

j=1
ij in order to obtain a binomial representation of(1 +

1)m−k−
Pn−2

j=1
ij = 2m−k−

Pn−2
j=1

ij :

=

(
1

n′

)m

(n′ − n)km!

k!

m−k∑

i1=0

. . .

m−k−
Pn−3

j=1
ij

∑

in−1=0

1

i1! . . . in−2!(m− k −
∑n−2

j=1 ij)!

m−k−
Pn−2

j=1
ij

∑

in−1=0

1in−11m−k−
Pn−1

j=1
ij

(m− k −
∑n−2

j=1 ij)!

in−1!(m− k −
∑n−1

j=1 ij)!

108 CHAPTER 4

We add another factor 1 in order to obtain the binomial representation of
3m−k−

Pn−3
j=1

ij :

=

(
1

n′

)m

(n′ − n)km!

k!

m−k∑

i1=0

. . .

m−k−
Pn−3

j=1
ij

∑

in−1=0

1

i1! . . . in−2!(m− k −
∑n−2

j=1 ij)!
2m−k−

Pn−2
j=1

ij1in−2

We continue calculating the binomial representation of(2+1), (3+1), . . . , (n−2)
to the respective power, until we obtain

=

(
1

n′

)m

(n′ − n)k m!

k!(m− k)!

m−k∑

i1=0

(m− k)!

i1!(m− k − i1)!
(n− 1)m−k−i11i1

Once again, the sum is the binomial representation of them − k-th power of
((n− 1) + 1) = n.

=

(
1

n′

)m

(n′ − n)k m!

k!(m− k)!
nm−k

By substitutingn by n′ − l, we obtainlk for the second and(n′ − l)m−k for the
fourth term. Finally, we split the factor

(
1
n′

)m
and distribute it over the second and

fourth term in order to obtain

=

(
l

n′

)k (
n′ − l

n′

)m−k (
m

k

)

�

which proves the assumption for the sum of the number of walksvisiting any one
of the new successors.

The last line gives the probability for the sum ofl identicallyB(m, 1
n′

) dis-
tributed variables having valuek. Since the number of walks at the new succes-
sors is indeed identically distributed, it follows that thenumber of walks visiting
each of them isB(m, 1

n′
) distributed.

This concludes the proof for case (1): The frequency distributions – for noth-
ing else is given byP ′(N ′(e) = k) – for preexisting and for new successors are
identical for both the updated walks and for the original walks when executed on
the updated similarity matrix. The update does not affect any other probabilities;
thus the two processes are equivalent.

CHAPTER 4 109

4.1.2 Illegal Successors

Case (2), on the other hand, describes the scenario where a successor edge be-
comes illegal after the update. As a consequence, all walks crossing that edge
have to be modified since a transition to this edge is no longerpossible. For every
walk concerned, the part of the walk beginning with that edgemust be deleted
from the walk data base and a new (partial) walk has to be started departing from
the predecessor state in the same manner as in the initial walk. In other words, a
successor is chosen with equal probability from the remaining |T ′

ij| edges.
Formally, this implies the following algorithm for an illegal successore:

For all walks(. . . , e′, e, . . .) :
Truncate the walk, starting frome
Pick e′′ from a uniform distribution overT ′

e′

Inserte′′ at the end of the walk
Continue the walk by picking a successor fromT ′

e′′

Follow the original algorithm for the rest of the walk
End

In our example (cf. page 70), the walk data base contains the walksDFBCG,
EGC, BGE, ACG, BCA, CBACG, GBF , andDACG after the first update.
Due to the second update, the walkDFBCG is now invalid and must be re-
considered. After the first two stepsDFB, we have the new set of successors
T ′

FB = {BA}, which finally leads to the walkDFBACG. For the component
cluster method (cf. page 72), we have a new level 5 after the update that contains
the cluster{C,G} and the other objects as singletons. Furthermore, the nodeA

joins the cluster{C,G} at level 4. The final clustering is given in Tab. 4.1.
When considering the walk context clusters, the nodesA andB are once again

part of each others’ cluster at level 0.5 after the second update. On the other hand,
D is removed from the clusters forB andF and vice versa at level 0.2 since the
first step of the walkDFBACG has only a levell+ = 1

6
, andF andA are added

to each other’s cluster at level 0.2 as can be seen in Tab. 4.2.

Table 4.1: Component clusters for the example after the second update
level clusters

1 {A,B,C,D,E, F,G}
2 {A,B,C,E, F,G}, {D}
3 {A,B,C,G}, {D}, {E}, {F}
4 {A,C,G}, {B}, {D}, {E}, {F}
5 {A}, {B}, {C,G}, {D}, {E}, {F}

110 CHAPTER 4

Table 4.2: Walk context clusters for the example after the second update
l+ A B C D

0.2 {B,C,D,F, G} {A,C,E, F,G} {A,B,D,E, F,G} {A,C,G}
0.5 {B, C,G} {A, C,G, F} {A,B,G} {}
0.8 {} {} {G} {}

l+ E F G

0.2 {B,C,G} {A, B, C,G} {A,B,C,D,E, F}
0.5 {G} {B} {A,B,C,E}
0.8 {} {} {C}

Of course, the update procedure for illegal successors alsoproduces the same
result as the original algorithm on the updated data set.

Theorem 4.1.3 The frequency distribution of each member ofT ′
ij , i.e. after paths

have become illegal isB(m, 1
n′

).

For the proof that this method yields the same distribution as if the walks had
been executed from scratch again, consider the case wheren′ = n − l, i.e. l
paths are no longer possible. Without loss of generality, let e1, . . . , el be the edges
that are no longer inT ′

ij . The respective number of walks choosing one of these
edges as a successor for the updated edge is given asN(e1), . . . , N(el). After
the update, the distribution of the number of walks selecting a certain successor
e ∈ T ′

ij should follow aB(m, 1
n′

) distribution, i.e. the probability ofk walks out
of m selecting a given successor statee as successor for the updated edge among
then′ admissible ones should be

P (N ′(e) = k) = (
1

n′
)k(

n′ − 1

n′
)m−k(

m

k
)

The probability distribution of the number of walks using successore after the up-
date is the number of walks that crossed that edge before the update plus the num-
ber of walks that are added by the update. The first is established by theB(m, 1

n
)

distribution for the original process. The latter is computed from thel-time con-
volution of theB(m, 1

n
) distribution for the now illegal successors combined with

the probability that their walks are redistributed to the given successore.
The first term gives the probability of the successor in question already having

h walks. The second term gives the probability thati walks contain one of the
l now illegal successors and thatk − h out of these are attributed to the path in
question.

CHAPTER 4 111

P ′(N(e) = k)

=

k∑

h=0

P (N(e) = h)
︸ ︷︷ ︸

h walks one before update

m−h∑

i=k−h

P (

l∑

j=1

N(ej) = i|N(e) = h)

︸ ︷︷ ︸

i walks to be deleted
(

1

n′

)k−h(
n′ − 1

n′

)i−k+h(
i

k − h

)

︸ ︷︷ ︸

k − h deleted walks redistributed toe

The first probability is, as discussed, a binomial distribution withm realizations.
The second probability is thel-time convolution of binomial distributions, and
denotes the probability that, givenh walks visitinge, i of the remainingm − h

walks are candidates for redistribution. Inserting the concrete probabilities leads
to

=
k∑

h=0

(
1

n

)h(
n− 1

n

)m−h(
m

h

)

m−h∑

i=k−h

(
l

n− 1

)i(
n− l − 1

n− 1

)m−h−i(
m− h

i

)

(
1

n′

)k−h(
n′ − 1

n′

)i−k+h(
i

k − h

)

Writing out the binomial coefficients and summarizing factors in each line gives
us

=

(
1

n

)m

m!

k∑

h=0

(n− 1)m−h 1

(m− h)!h!

(
1

n− 1

)m−h m−h∑

i=k−h

li(n− l − 1)m−h−i (m− h)!

i!(m− h− i)!
(

1

n′

)i

(n′ − 1)i−k+h i!

(k − h)!(k − h− i)!

(
1

n−1

)m−h
, (m− h)!, andi! cancel.n− l can be rewritten asn′, which allows us

to simplify (n− l − 1)m−h−i(n′ − 1)i−k+h to (n′ − 1)m−k.

=

(
1

n

)m

m!(n′ − 1)m−k

k∑

h=0

1

(k − h)!h!

m−h∑

i=k−h

(
l

n′

)i
1

(k − h− i)!(m− h− i)!

112 CHAPTER 4

We substitute the counter variablei to start counting from zero, expand by
(m − k)!, and extract(l

n′
)k−h from the last sum. Furthermore, we multiply with

1m−k−i = 1:

=

(
1

n

)m
m!

(m− k)!
(n′ − 1)m−k

k∑

h=0

1

(k − h)!h!

(
l

n′

)k−h

m−k∑

i=0

1m−k−i

(
l

n′

)i
(m− k)!

i!(m− k − i)!

With this, we obtain the last sum as binomial representationof
(
1 + l

n′

)m−k
:

=

(
1

n

)m
m!

(m− k)!
(n′ − 1)m−k

k∑

h=0

1

(k − h)!h!

(
l

n′

)k−h(

1 +
l

n′

)m−k

Unifying the denominator and rewritingn = n′ + l leads to:

=

(
1

n′ + l

)m
m!

(m− k)!
(n′ − 1)m−k

k∑

h=0

1

(k − h)!h!

(
l

n′

)k−h(
n′ + l

n′

)m−k

We summarize the terms containingn′ + l andn′, multiply by1h = 1, and expand
by k! to obtain the binomial representation of(1 + l

n′
)k:

=

(
1

n′ + l

)k (
n′ − 1

n′

)m−k
m!

(m− k)!k!

k∑

h=0

k!

(k − h)!h!

(
l

n′

)k−h

1h

Rewriting the binomial coefficients and unifying the denominators in the last term
gives:

=

(
1

n + l

)k (
n′ − 1

n′

)m−k (
m

k

)(
n′ + l

n′

)k

which is then simplified to

=

(
1

n′

)k (
n′ − 1

n′

)m−k (
m

k

)

�

The resulting distribution is once more aB(m, 1
n′

) distribution which proves
the equivalence of the transition probabilities and thus the equivalence of the two
processes for case (2).

CHAPTER 4 113

4.1.3 New Paths and Illegal Successors

Up to now, we have considered the two cases and separately. But it may happen
that at a node, both one or more new paths are opened while someexisting paths
become invalid due to changes on just one of the edges – we willtreat the case of
multiple edge updates below, in section 4.2. However, a walkcan never be affected
by both cases at once: If, in our example,k is incremented from two to four, the
sequenceGBF becomes possible and the sequenceFBC is now illegal. As can
be seen the edgeBF is part of both paths, but the paths traverse it in different
directions. Since per construction, an edge cannot be crossed twice in the same
walk due to the strictly increasing similarity restriction, the two sequences cannot
be part of the same walk. This is equivalent to the assertion in Fig. 3.5 thatG′

is cycle-free. Consequently, the two events do not influenceeach other and thus
can be treated sequentially, i.e. by pretending that they happened one after the
other. As the updates do not deteriorate the cluster quality, the order of new paths
emerging and illegal successors being removed is not important for the outcome.

4.1.4 New Nodes

The introduction of a new node into the graph triggers two actions: First, the
appropriate number of walks starting from the new node must be executed using
the original algorithm, and second, the walks containing the new node’s neighbors
must be scrutinized whether the appearance of the new edges has opened new
possible paths as described in case (1) above. The first action is straightforward
and does not differ from the initial walks described in section 3.1.1, and the second
one can be reduced to case (1).

Evidently, the insertion of new nodes does not invalidate any old walks.

4.1.5 Deletion of Nodes

The deletion of the node is the inverse of the case of new nodes: First, all walks
starting from the deleted node must be removed from the walk data base. After-
wards, the walks visiting the node in question must be prunedat its first occurrence
and restarted from there as described for case (2).

The removal of a node does not cause the formation of new paths.

4.2 Concurrent Updates of the Similarity Matrix

Up to this point, we have treated the updates as separate events that each triggered
its own update process. For updates arriving in batches, twopossible paths of

114 CHAPTER 4

action are conceivable. The first one is to only consider one update at a time,
and to use the update procedure outlined above. This is certainly the most simple
implementation of a batch update, yet it is well suited for batches where only few
interdependencies between the changes inside the batch exist, i.e. if few walks
are affected by more than one change. Furthermore, this update method is cheap
to implement as it does not require additional data structures to account for the
current state of the walk update process.

Alternatively, it is possible to supplement each entry in the similarity matrix
with a delta field that contains the difference between the old and the new simi-
larity assigned to this entry if there is a difference, or zero else. In that case, the
update algorithm first fills the delta fields according to all updates in the batch. It
then considers all object pairs affected by an update, taking the appropriate steps
for each of them, but making the choices for successors basedon theupdatedma-
trix. These walks are marked as updated along with the place where the truncation
took place. If, in a later stage of the batch processing, the algorithm encounters
such a walk in a step that is located after the truncation, thewalk is excluded from
the redistribution process of old walks to new paths since inits (re-)creation, the
correct probabilities have already been used. The case of deleting the new walk
because of a change after the truncation is not relevant heresince per construction
the updated walk would not have chosen a successor that has become illegal due
to the update.

Obviously, the problem with this approach is the large overhead for the sim-
ilarity matrix updates and for marking new walks. This makesthe method only
practicable for cases where a considerable number of updates with a high amount
of interdependencies has to be carried out.

4.3 Complexity of the Update Procedure

Given the procedure for updating RRW clusters, it is of course very interesting
to know the computational complexity of these updates. Let us consider the two
basic cases of new paths and illegal successors. To this end,the following defini-
tions shall be introduced: Let̄d be the average degree of a node in the similarity
graphG. It follows thatG has d̄n

2
edges. Furthermore, we can state that each

walk has a length ofO(logn) as seen in section 3.2.1. In total, this means that, by
startingk walks at each of then nodes a total ofO(nk log n) steps is executed. In
other word, every node is visited on the average byO(k log n) walks, each edge
byO(2k log n

d̄
) walks. It is important to note that not every change in the rawbas-

kets triggers an update, thus the complexity for updates will be in practice lower
than theO(k log2 n

d̄
) derived here.

CHAPTER 4 115

4.3.1 New Successors

When a new successor becomes admissible, an average ofO(k log n) walks must
be considered out of whichO(2k log n

d̄
) walks must be chosen, truncated and par-

tially recomputed using the newly arrived successor. Sincea walk has a length
of O(logn) and can be expected to be cut in half at this step, deleting it involves
O(1

2
log n) steps. If the walk data can be accessed in linear time e.g. using a hash

table this leads to a total complexity ofO(k log2 n

d̄
) for the deletion of all walk parts.

The same complexity applies to the insertion of the new walk fragments of aver-
age lengthO(1

2
logn), thus the overall complexity for a new successor becoming

possible isO(k log2 n

d̄
).

4.3.2 Illegal Successors

The argumentation is comparable to the case above, only thatthe choice process
selects a place to continue the truncated walks rather than the walks to be trun-
cated and deletion and insertion are executed in other locations. Thus the overall
complexity for dealing with an illegal successor is equallyO(k log2 n

d̄
). In total,

this implies a slightly increased complexity for the walk stage of the clustering
process. However, keeping in mind the relation between the object set with about
0.8 million active documents in the case of the OPAC data set and weekly updates
of a few thousand documents, the update procedure still is largely favorable.

4.3.3 Cluster Construction

The complexity of the updates of the actual clusters dependson the cluster con-
struction method chosen.

For walk context clusters, the clusters can be computed online when needed
with complexity ofO(log2 n) as proved in section 3.2.1. It is thus not necessary
to explicitly update the clusters since the requests following the update will auto-
matically access the up-to-date data base.

For component clusters, each edge newly included in the database must be
scrutinized whether it connects two formerly unconnected clusters at any level.
This is achieved in linear time to the number of available levels, since it suffices
to check for each level whether the two nodes incident to the edge are in the same
cluster. If this is the case, no action is needed; otherwise,the two clusters must be
merged.

If, on the other hand, an edge is no longer included in the database because of
the update at a given number of levels, the algorithm must search for alternative
paths in theHk graph introduced in section 3.1.2. If such a path is found, the clus-
ter is still connected at that level, otherwise, the two components, each containing

116 CHAPTER 4

one of the nodes incident to the edge in question, form two separate clusters from
that point on. By using a simple depth-first search, a complexity of O(nd̄) is pos-
sible which is consistent with the complexity given in section 3.2.1, although here
n is a rather coarse upper bound on the size of the cluster containing the deleted
edge.

4.3.4 Simulation

In order to determine the real-world performance of the update procedure, a sim-
ulation was executed on an AMD Athlon64 X2 4200+ machine using the library
data set described in section 3.3.1. This machine can handleabout 2 walks per
second when executing the original, non-incremental implementation on this data
set. A set of 5000 updated edges was created by randomly selecting edges from
the data base and increasing their similarity weight by an integer that is randomly
picked from a uniform distribution over the interval [1,10].

The simulation shows that the current implementation of theupdate algorithm
is able to handle about 0.5 updates per second. It follows that, on a data set com-
prisingn nodes and having characteristics comparable to the librarydata set, both
methods take about the same time for the computation of an up-to-date clustering
if the number of updates equalsn

4
. If the number is smaller, then the update algo-

rithm is faster; if it is larger, the original algorithm should be used to recluster the
whole data set.

In practice, the additional possibility of real-time updates should be kept in
mind. Of course, a real-time update is only possible when using the update algo-
rithm: On a site with moderate traffic, it is possible to integrate changes occurring
during operation online. This is a strong advantage compared to the original algo-
rithm, where changes can only be computed offline and thus with a considerable
delay. On the other hand, the more frequently the updates areintegrated, the less
the system can profit from aggregating several subsequent increases in the weight
of the same edge or edges, which leads to a total increase of the computation time
needed. As a result, the update frequency should be fixed individually based on
the following factors:

• real-time requirements for the clusters that follow from the application at
hand,

• the computational resources, and

• the update frequency of the similarity matrix.

CHAPTER 4 117

4.4 Evaluation

The requirements that the update process for the restrictedrandom walk cluster
algorithm has to fulfill were outlined at the beginning of this chapter: To effi-
ciently incorporate deletions, insertions and changes in the similarity matrix into
the existing cluster structure while maintaining the probability distribution of the
original algorithm such that it never becomes necessary to recluster the data, in-
dependent of the number of updates.

We have seen that the update procedure has a time complexity of O(lk log2 n

d̄
)

for l significant changes in the similarity matrix which allows anefficient handling
of the update process. Equally, a reclustering is not necessary since the probability
distributions of the updated walks – and thus also those of the updated clusters –
are exactly the same as the ones that could be obtained by reclustering the changed
data set using the original cluster algorithm.

This constitutes a considerable advance in comparison withthe methods pre-
sented in chapter 2. First, many of the algorithms are only capable of adding new
objects, e.g. gravitational clustering [CHO02] or similarity histogram clustering
[HK03]. Some algorithms like incremental OPTICS [KKG03] orstar clusters
[APR97] are also capable of deleting objects, which would – normally under con-
siderable computational expense – also allow the integration of changes in the
similarity matrix by removing and reinserting the respective objects. Addition-
ally, the clusters produced by these algorithms are often dependent on the order in
which the object are presented. This effect does not occur with RRW clustering.

The algorithms from the data base domain, on the other hand, can often cope
with changes, but define clusters rather awkwardly as groupsof objects that are re-
lated – in most cases, in terms of their usage pattern – and fit in one memory page.
Furthermore, many of these algorithms are greedy and thus order-dependent, and
some approaches only offer criteria for determining the point in time when a com-
plete reclustering is necessary [MK94].

Finally, the domain of mobile, wireless, and/or ad-hoc networks seems to be a
promising application area for dynamic cluster algorithms, but the solutions pro-
posed in this field often enough sacrifice cluster quality forlow communication
overhead and low computational costs. Additionally, clusters are often simply de-
fined as the area around a node that is directly reachable via the wireless network
without taking into account the spatial density distribution of the nodes inside the
network [KVCP97].

To sum it up: Literature research did not reveal a single update algorithm that
fulfills all of the requirements stipulated here. Each one ofthe algorithms cited
above lacks at least one feature from the requirements list,whereas the algorithm
developed in this thesis is capable of performing updates ofthe cluster structure
while fulfilling all of the above requisites.

118 CHAPTER 4

Chapter 5

Conclusion and Outlook

This thesis has presented a solution for the problem of keeping clusters up to date
facing constantly changing data sets, both in size and internal structure. After lay-
ing some foundations for general clustering and for stochastic processes, existing
solutions for the handling of dynamic data sets were reviewed. A large part only
deals with growing and possibly shrinking data sets, thus ignoring the fact that
objects inside the data set may change their respective positions. On the other
hand, solutions for mobile, wireless ad hoc scenarios take changing distances into
account. Unfortunately, the solutions discussed focus their attention rather on
heuristics that allow clusters to be maintained with minimal computational and
communicational effort, but at the cost of the clusters’ quality. In the domain of
data bases, algorithms were found that deal with the required kinds of changes,
but that are also too restrained by the application, namely to organize the objects
on a secondary storage, thus using a fixed cluster size.

Therefore, the restricted random walk algorithm presentedin chapter 3 that
has been successfully used in different scenarios was extended in such a way as to
integrate the aforementioned changes with a minimum of computational complex-
ity. Furthermore, it has been shown that the clusterings produced by the update
algorithm have the same probability distribution as those generated by the origi-
nal algorithm on the data set incorporating the changes. Thecomputational cost
of the update algorithm allows to efficiently compute these changes.

For the future, there remain further interesting research questions in the con-
text of RRW clustering. The first complex is the question of the algorithm’s be-
havior subject to differing numbers of walks. As was discussed in section 3.2.2,
the number of walks started at each node has an important influence on the char-
acteristics, especially the stability of the clusters. Forcomponent clusters and an
infinite number of walks, an analysis technique has been sketched in this thesis
that now must be extended both to walk context clusters and tofinite numbers of
walks. The final goal is to be able to give a number of walks in order to obtain

119

120 CHAPTER 5

a desired property of the clusters – for instance a given stability with a minimum
number of walks.

Furthermore, the walk process in itself should be more thoroughly scrutinized;
for example, the question of the exact connection between random graphs and
restricted random walks is yet unanswered.

Some applications do not have a symmetric similarity matrix. For these, it
would be challenging to integrate directional aspects intothe algorithm and to
find an interpretation for the resulting clusters.

Another open question concerns the use of restricted randomwalks for the
detection of bridge elements that do not belong to clusters but lie between sev-
eral clusters. The characteristics of such bridge elementshave been described in
section 3.1.2.

In the application area, further scenarios for the deployment of the algorithm
are in preparation. A promising use for RRW clustering mightbe in the domain of
collaborative search: Search terms are clustered based on past queries, and when
one of these terms is entered in an ongoing search, the systemis able to recom-
mend terms that complement the given one. These recommendations can serve
both to broaden or to narrow down the search, depending on theexact construc-
tion of the similarity matrix.

Appendix A

A Sample Raw Basket

10029087§BLB OPAC :={1}
10218646§BLB OPAC :={2}
1048708§BLB OPAC :={1}
10754692§UBKA OPAC :={4}
10823891§UBKA OPAC :={4}
1126473§BLB OPAC :={1}
1191048§BLB OPAC :={3}
1195261§BLB OPAC :={1}
1199273§BLB OPAC :={1}
1255566§BLB OPAC :={1}
1383380§BLB OPAC :={1}
15442§BLB OPAC :={1}
158515§BLB OPAC :={1}
1586739§BLB OPAC :={1}
1613121§BLB OPAC :={12}
1613121§UBKA OPAC :={4}
1721232§BLB OPAC :={1}
1808764§BLB OPAC :={1}
1878727§BLB OPAC :={2}
1878749§BLB OPAC :={1}
1917029§BLB OPAC :={1}
1921827§BLB OPAC :={1}
193480§BLB OPAC :={1}
1984206§BLB OPAC :={3}
2079804§BLB OPAC :={1}
2093415§BLB OPAC :={1}
2172028§BLB OPAC :={1}
2303507§BLB OPAC :={5}

121

122 APPENDIX A

2361281§BLB OPAC :={1}
2541879§BLB OPAC :={1}
2582950§BLB OPAC :={1}
2582958§BLB OPAC :={1}
2582963§BLB OPAC :={1}
2600767§BLB OPAC :={1}
2710947§BLB OPAC :={1}
2711858§BLB OPAC :={1}
2743760§BLB OPAC :={1}
283203§BLB OPAC :={1}
2967256§BLB OPAC :={1}
3070551§BLB OPAC :={1}
321630§BLB OPAC :={1}
3483081§BLB OPAC :={1}
348801§BLB OPAC :={1}
3533485§BLB OPAC :={1}
388487§BLB OPAC :={1}
3984289§BLB OPAC :={1}
4008295§BLB OPAC :={3}
4038156§BLB OPAC :={1}
405013§BLB OPAC :={1}
4065003§BLB OPAC :={1}
4383274§BLB OPAC :={1}
450036§BLB OPAC :={1}
4720977§BLB OPAC :={1}
4748244§BLB OPAC :={12}
4763375§BLB OPAC :={1}
4910341§BLB OPAC :={1}
4942781§BLB OPAC :={1}
5006968§BLB OPAC :={1}
523894§BLB OPAC :={1}
5294064§BLB OPAC :={1}
5349248§BLB OPAC :={1}
5385116§BLB OPAC :={1}
5615297§BLB OPAC :={1}
5706587§BLB OPAC :={1}
573865§BLB OPAC :={5}
573865§UBKA OPAC :={4}
6086536§BLB OPAC :={1}
6113137§BLB OPAC :={1}
6113147§BLB OPAC :={1}

APPENDIX A 123

6138003§BLB OPAC :={1}
6174272§BLB OPAC :={2}
619188§BLB OPAC :={1}
627927§BLB OPAC :={1}
633383§BLB OPAC :={1}
6344176§BLB OPAC :={1}
6364441§BLB OPAC :={1}
650759§BLB OPAC :={1}
6517614§UBKA OPAC :={4}
6573434§BLB OPAC :={4}
6624916§BLB OPAC :={4}
6774232§BLB OPAC :={3}
7062354§BLB OPAC :={1}
7457661§BLB OPAC :={1}
7588657§BLB OPAC :={7}
768799§BLB OPAC :={1}
7691438§BLB OPAC :={1}
7816891§BLB OPAC :={1}
7816930§BLB OPAC :={1}
786247§BLB OPAC :={1}
792405§BLB OPAC :={1}
8010581§BLB OPAC :={1}
8150443§BLB OPAC :={2}
8466829§BLB OPAC :={1}
8545961§BLB OPAC :={1}
861110§BLB OPAC :={1}
8833645§BLB OPAC :={1}
8875811§BLB OPAC :={1}
8948020§BLB OPAC :={1}
9034741§BLB OPAC :={4}
9034776§BLB OPAC :={3}
909767§BLB OPAC :={1}
9198669§BLB OPAC :={1}
9733275§UBKA OPAC :={4}
9803654§BLB OPAC :={1}
9831246§BLB OPAC :={1}
9961261§BLB OPAC :={4}
ID := {9034706§BLB OPAC}

124 APPENDIX A

Appendix B

The Deep South Raw Data

Table B.1: The original Deep South data set by Davis et al. [DGG48]

ids 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 x x x x x x - x x - - - - -
2 x x x - x x x x - - - - - -
3 - x x x x x x x x - - - - -
4 x - x x x x x x - - - - - -
5 - - x x x - x - - - - - - -
6 - - x - x - - x - - - - - -
7 - - - - x x x x - - - - - -
8 - - - - - x - x x - - - - -
9 - - - - x - x x x - - - - -

10 - - - - - - x x x - - x - -
11 - - - - - - - x x x - x - -
12 - - - - - - - x x x - x x x
13 - - - - - - x x x x - x x x
14 - - - - - x x - x x x x x x
15 - - - - - - x x - x x x - -
16 - - - - - - - x x - - - - -
17 - - - - - - - - x - x - - -
18 - - - - - - - - x - x - - -

125

126 APPENDIX B

List of Figures

1.1 Cluster shapes: (a) elongated, (b) compact, (c) ring, (d) sickle . . . 3
1.2 A dendrogram . 5
1.3 Section of an example similarity graph8

2.1 The probability of connectedness forGn,[1
2
n log n+cn] as a function

of c [Fra03] . 19

3.1 Converging circles during a restricted random walk withlength
five, starting ati0 . 66

3.2 Section of an example similarity graph70
3.3 Behavior ofl, l+, andl− for walk lengths 5, 20 and 100 and the

respective step number . 76
3.4 Behavior ofl, l+, andl− for different combinations of walk length

and step number . 76
3.5 Different paths meeting and separating at nodeB ∈ V ′ 83
3.6 The dendrogram for the Deep South data set with single linkage

clustering . 86
3.7 The dendrogram for the Deep South data set using RRW cluster-

ing and thel+ measure . 86
3.8 Precision versus number of generated keywords (data from

[FGS07b]) . 92
3.9 Recommendations for Bock [Boc74], high precision 94
3.10 Recommendations for Kaufman and Rousseeuw [KR90], high

precision . 94
3.11 Recommendations for Kaufman and Rousseeuw, low precision . . 95
3.12 Trade-off between recall and precision (data from [FGS07b]) . . . 96

4.1 Section of a similarity graph . 101

127

128 List of Figures

List of Tables

1.1 Raw data for the example graph 8

2.1 Threshold functionst(n) for graph properties 19

3.1 transition matrix for the graph in Fig. 3.2 70
3.2 Component clusters for the example 72
3.3 Walk context clusters for the example (Fig. 3.2) 77
3.4 The similarity matrix derived from the Deep South data set by

Davis et al. [DGG48] . 85

4.1 Component clusters for the example after the second update . . . 109
4.2 Walk context clusters for the example after the second update . . . 110

B.1 The original Deep South data set by Davis et al. [DGG48] 125

129

Index

Lq distance, 6
k-cluster, 49

Absorbing state, 16
Algorithm

Randomized, 52
Average linkage, 25

Bridging, 4, 72
Brownian motion, 13

City-block metric, 6
Clique, 18
Cluster, 3

Component, 71
Diameter, 25, 31
Disjunctive, 4
Natural, 21
Radius, 25, 31
Root, 4
Shapes, 3
Star, 34, 59
Walk Context, 73

Cluster seed power, 28
Clusterheads , 50
Clustering, 4

k−means, 23
Incremental, 45
Randomized, 53

Agglomerative, 4
Conceptual, 30
Divisive, 4
Dynamic, 11
Evolutionary, 54

Gravitational, 35
Hierarchical, 4, 25
Partitional, 4
RRW, 65
Simulated annealing, 55
Single pass, 24

CLUTO, 44
COBWEB, 41
Complete linking, 25
Component cluster, 71
Comprehensibility, 21
Conceptual clustering, 30
Coupling coefficient, 27
Cutoff level, 71

Data streams, 41
DBSCAN, 37
Decoupling coefficient, 27
Dendrogram, 5
Directed graph, 7
Dissimilarity measure, 6
Distance

Lq, 6
Euclidean, 6
Hamming, 60
Mahalanobis, 6
Minkowski, 6

Distance measure, 6
Document cluster tree, 39
DRO algorithm, 46
Dynamic clustering, 11

Edge, 7
Efficiency, 22

130

Index 131

Euclidean distance, 6
Evolutionary clustering, 54

Fanout, 57

GRACE, 35
Graph, 7

Cluster-connected, 49
Random, 18

Graph model, 5, 6
Gravitational clustering, 35
GRIN, 36

HAC, 25
Hamming distance, 60
History cost, 45

Illegal Successor, 109
Indexing, 88
Instance ordering , 30

Kulback-Liebler divergence, 61

Las Vegas, 52
Lattice walk, 13
Locality Sensitive Hash, 59

Mahalanobis distance, 6
Markov chain, 15

Bipartite, 17
Homogeneous, 15
Irreducible, 17

Markovian relaxation, 60
Minkowski distance, 6
Monte Carlo, 52

New Path, 101

Page, 46
Path, 83

New, 101
Performance ratio, 31
Phase change, 18

Random graph, 18
Random walk, 12
Randomized algorithm, 52
Recommender system, 91
Relaxation

Markovian, 60
Restricted random walk, 65
Root cluster, 4

Sameness, 58
Shape independence, 22
Similarity

Cosine, 7
Similarity histogram, 39
Similarity measure, 7
Simulated annealing, 55
Single linkage, 25
Singleton, 5
Snapshot quality, 45
Stability, 21
Star Cluster, 34, 59
State

Absorbing , 16
Stationary distribution, 17
Steady state distribution, 17
Successor

Illegal, 109

Transition probabilities, 12
Transition state, 68
Tree, 8

Document Cluster, 39

Undirected graph, 7

Vector model, 5
Vertex, 7

Walk
Lattice, 13
Random, 12
Restricted random, 65

132 Index

Self-avoiding, 14
Walk context cluster, 73

Bibliography

[AABV99] Pankaj K. Agarwal, Lars Arge, Gerth Stølting Brodal, and Jef-
frey Scott Vitter. I/O-efficient dynamic point location in mono-
tone planar subdivisions. In Robert E. Tarjan and Tandy Warnow,
editors,SODA ’99: Proceedings of the Tenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 11–20, Philadelphia,
1999. SIAM.

[Ada82] Douglas Adams.Life, the Universe and Everything. Pan Books,
London, 1982.

[AHWY03] Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and Philip S.
Yu. A framework for clustering evolving data streams. In Jo-
hann Christoph Freytag, Peter C. Lockemann, Serge Abiteboul,
Michael J. Carey, Patricia G. Selinger, and Andreas Heuer, edi-
tors,VLDB 2003, Proceedings of 29th International Conference on
Very Large Data Bases, pages 81–92, San Francisco, 2003. Mor-
gan Kaufmann.

[AKCM90] Stanley C. Ahalt, Ashok K. Krishnamurthy, PrakoonChen, and
Douglas E. Melton. Competitive learning algorithms for vector
quantization.Neural Networks, 3(3):277 – 290, 1990.

[AM70] J. Gary Augustson and Jack Minker. An analysis of somegraph
theoretical cluster techniques.Journal of the ACM, 17(4):571 –
588, 1970.

[APR97] Javed Aslam, Katya Pelekhov, and Daniela Rus. Computing dense
clusters on-line for information organization. TechnicalReport
PCS-TR97–324, Department of Computer Science, Dartmouth,
1997.

[APR98] Javed Aslam, Katya Pelekhov, and Daniela Rus. Static and dy-
namic information organization with star clusters. In Georges

133

134 Bibliography

Gardarin, James C. French, Niki Pissinou, Kia Makki, and Luc
Bouganim, editors,Proceedings of the 1998 ACM CIKM Interna-
tional Conference on Information and Knowledge Management,
pages 208 – 217, New York, 1998. ACM Press.

[APR99] Javed Aslam, Katya Pelekhov, and Daniela Rus. A practical clus-
tering algorithm for static and dynamic information organization.
In Robert E. Tarjan and Tandy Warnow, editors,SODA ’99: Pro-
ceedings of the Tenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 51 – 60, Philadelphia, 1999. SIAM.

[AT05] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next
generation of recommender systems: A survey of the state-of-the-
art and possible extensions.IEEE Transactions on Knowledge and
Data Engineering, 17(6):734–749, 2005.

[Bac00] Louis Bachelier. Théorie de la spéculation.Annales Scientifiques
de l’École Normale Suṕerieure, Śerie 3, 17:21–86, 1900.

[Bar02] Daniel Barbará. Requirements for clustering datastreams.
SIGKDD Explorations Newsletter, 3(2):23 – 27, 2002.

[Bas99] Stefano Basagni. Distributed clustering for ad hocnetworks. In
Proceedings of the Fourth International Symposium on Parallel
Architectures, Algorithms, and Networks (ISPAN ’99), pages 310–
315, Piscataway, 1999. IEEE Press.

[BC01] Daniel Barbará and Ping Chen. Tracking clusters in evolving data
sets. In Ingrid Russell and John F. Kolen, editors,Proceedings
of the Fourteenth International Florida Artificial Intelligence Re-
search Society Conference, pages 239–243, Menlo Park, 2001.
AAAI Press.

[Bez81] James C. Bezdek.Pattern Recognition with Fuzzy Objective Func-
tion Algorithms. Plenum Press, New York, 1981.

[BKKG88] Jay Banerjee, Won Kim, Sung-Jo Kim, and Jorge F. Garza. Clus-
tering a DAG for CAD databases.IEEE Transactions on Software
Engineering, 14(11):1684–1699, 1988.

[BLKR98] Al Borchers, Dave Leppik, Joseph Konstan, and JohnRiedl. Parti-
tioning in recommender systems. Technical Report 98–023, Uni-
versity of Minnesota, Minneapolis, 1998.

Bibliography 135

[BMSM90] David A. Bell, F. J. McErlean, P. M. Stewart, and Sally I. Mc-
Clean. Application of simulated annealing to clustering tuples in
databases.Journal of the American Society for Information Sci-
ence: JASIS, 41(2):98–110, 1990.

[BN70] Michael N. Barber and Barry W. Ninham.Random and Restricted
Walks: Theory and Applications. Gordon and Breach, New York,
1970.

[Boc74] Hans Hermann Bock. Automatische Klassifikation. Vanden-
hoeck&Ruprecht, Göttingen, 1974.

[Bol01] Bela Bollobas. Random Graphs. Cambridge University Press,
Cambridge, 2nd edition, 2001.

[BS96] Frédérique Bullat and Michel Schneider. Dynamic clustering in
object databases exploiting effective use of relationships between
objects. In Pierre Cointe, editor,ECCOP’96 – Object-Oriented
Programming, 10th European Conference, pages 344–365, Hei-
delberg, 1996. Springer.

[Can93] Fazli Can. Incremental clustering for dynamic information pro-
cessing.ACM Transactions on Information Systems, 11(2):143 –
164, 1993.

[CCFM97] Moses Charikar, Chandra Chekuri, Tomás Feder, and Rajeev Mot-
wani. Incremental clustering and dynamic information retrieval.
In F. Tom Leighton and Peter Shor, editors,STOC ’97: Proceed-
ings of the Twenty-Ninth Annual ACM Symposium on Theory of
Computing, pages 626–635, New York, 1997. ACM Press.

[CD90] Fazli Can and Nicklas D. II Drochak. Incremental clustering for
dynamic document databases. InProceedings of the 1990 Sym-
posium on Applied Computing, pages 61–67, Washington, 1990.
IEEE Computer Society.

[CEQZ06] Feng Cao, Martin Ester, Weining Qian, and Aoying Zhou. Density-
based clustering over an evolving data stream with noise. InPro-
ceedings of the 2006 SIAM Conference on Data Mining, pages
326–337, Philadelphia, 2006. SIAM.

[CFSF95] Fazli Can, Edward A. Fox, Cory D. Snavely, and Robert K. France.
Incremental clustering for very large document databases:Initial
MARIAN experience. Information Sciences – Informatics and

136 Bibliography

Computer Science: An International Journal, 84(1–2):101 – 114,
1995.

[Cha94] Bidyut Baran Chaudhuri. Dynamic clustering for time incremental
data.Pattern Recognition Letters, 15(1):27–34, 1994.

[Cha02] Moses Charikar. Similarity estimation techniquesfrom rounding
algorithms. InSTOC ’02: Proceedings of the thirty-fourth Annual
ACM Symposium on Theory of Computing, pages 380–388, New
York, 2002. ACM Press.

[CHK91] Jason Cong, Lars Hagen, and Andrew B. Kahng. Random walks
for circuit clustering. InProceedings of the Fourth Annual ASIC
Conference and Exhibit, pages 14.2.1–14.2.4, Washington, 1991.
IEEE Computer Society.

[CHO02] Chien-Yu Chen, Shien-Ching Hwang, and Yen-Jen Oyang. An in-
cremental hierarchical data clustering algorithm based ongravity
theory. In M.S. Chen, P.S. Yu, and B. Liu, editors,Advances in
Knowledge Discovery and Data Mining: 6th Pacific-Asia Confer-
ence, PAKDD 2002, pages 237–250, Heidelberg, 2002. Springer.

[CHO05] Chien-Yu Chen, Shien-Ching Hwang, and Yen-Jen Oyang. A
statistics-based approach to control the quality of subclusters
in incremental gravitational clustering. Pattern Recognition,
38(12):2256–2269, 2005.

[CKT06] Deepayan Chakrabarti, Ravi Kumar, and Andrew Tomkins. Evo-
lutionary clustering. InProceedings of the 2006 ACM SIGKDD,
New York, 2006. ACM Press.

[CM65] David R. Cox and H. D. Miller. The Theory of Stochastic Pro-
cesses. Chapman & Hall, London, 1965.

[CO87] Fazli Can and Esen A. Ozkarahan. A dynamic cluster maintenance
system for information retrieval. In C. T. Yu and C. J. Van Rijs-
bergen, editors,SIGIR ’87: Proceedings of the 10th Annual Inter-
national ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 123 – 131, New York, 1987. ACM
Press.

[CO89] Fazli Can and Esen A. Ozkarahan. Dynamic cluster maintenance.
Information Processing and Management, 25(3):275 – 291, 1989.

Bibliography 137

[COP03] Moses Charikar, Liadan O’Callaghan, and Rina Panigrahy. Better
streaming algorithms for clustering problems. In LawrenceL. Lar-
more and Michel X. Goemans, editors,STOC ’03: Proceedings of
the Thirty-Fifth Annual ACM Symposium on Theory of computing,
pages 30–39, New York, 2003. ACM Press.

[Cow89] Anthony Cowie, editor.Oxford Advanced Learner’s Dictionary.
Oxford University Press, Oxford, 4th edition, 1989.

[CPS98] Yi-Ming Chung, William M. Pottenger, and Bruce R. Schatz. Au-
tomatic subject indexing using an associative neural network. In
Proceedings of the 3rd ACM International Conference on Digital
Libraries, pages 59–68, New York, 1998. ACM Press.

[CT91] Thomas M. Cover and Joy A. Thomas.Elements of Information
Theory. John Wiley & Sons, New York, 1st edition, 1991.

[Dei78] Guntram Deichsel. Random Walk Clustering in großen
Datenbesẗanden. PhD thesis, Universität Stuttgart, Stuttgart, 1978.

[DFR+01] Jérôme Darmont, Christophe Fromantin, Stephane Régnier,
Le Gruenwald, and Michel Schneider. Dynamic clustering
in object-oriented databases: An advocacy for simplicity.In
Klaus R. Dittrich, Giovanna Guerrini, Isabella Merlo, Marta Oliva,
and Elena Rodrı́guez, editors,Objects and Databases, Interna-
tional Symposium, Proceedings, pages 71–85, Heidelberg, 2001.
Springer.

[DG96] Jérôme Darmont and Le Gruenwald. A comparison study of
object-oriented database clustering techniques.Information Sci-
ences, 94(1–4):55 – 86, 1996.

[DGG48] Allison Davis, Burleigh B. Gardner, and Mary R. Gardner. Deep
South. A Social Anthropological Study of Caste and Class. Uni-
versity of Chicago Press, Chicago, 1948.

[DHS01] Richard O. Duda, Peter E. Hart, and David G. Stork.Pattern Clas-
sification. Wiley-Interscience, New York, 2nd edition, 2001.

[Die05] Reinhard Diestel.Graph Theory. Springer, Heidelberg, 3rd edi-
tion, 2005.

[Dij59] Edsger W. Dijkstra. A note on two problems in connexion with
graphs.Numerische Mathematik, 1:269–271, 1959.

138 Bibliography

[DJ76] Richard Dubes and Anil K. Jain. Clustering techniques: The user’s
dilemma.Pattern Recognition, 8(4):247–260, 1976.

[DO74] Benjamin S. Duran and Patrick L. Odell.Cluster Analysis – A
Survey. Springer, Heidelberg, 1974.

[DPS98] Jérôme Darmont, Bertrand Petit, and Michel Schneider. OCB: A
generic benchmark to evaluate the performances of object-oriented
database systems. In Hans-Jörg Schek, Fèlix Saltor, Isidro Ramos,
and Gustavo Alonso, editors,Advances in Database Technology
– EDBT’98, 6th International Conference on Extending Database
Technology, pages 326–340, Heidelberg, 1998. Springer.

[Ehr88] Andrew S.C. Ehrenberg.Repeat-Buying: Facts, Theory and Ap-
plications. Charles Griffin & Company Ltd, London, 2nd edition,
1988.

[EKS+98] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Michael Wimmer,
and Xiaowei Xu. Incremental clustering for mining in a data ware-
housing environment. InVLDB ’98: Proceedings of the 24rd In-
ternational Conference on Very Large Data Bases, pages 323–333,
San Francisco, 1998. Morgan Kaufmann.

[Eng65] Ora Engelberg. On some problems concerning a restricted random
walk. Journal of Applied Probability, 2(2):396–404, 1965.

[ER57] Paul Erdös and Alfred Renyi. On random graphs I.Publicationes
Mathematicae, 6:290–297, 1957.

[ER60] Paul Erdös and Alfred Renyi. On the evolution of random graphs.
Publications of the Hungarian Academy of Sciences, 5(1):17–61,
1960.

[Fer70] Franz Ferschl.Markovketten. Springer, Heidelberg, 1970.

[FGS04] Markus Franke and Andreas Geyer-Schulz. AutomatedIndex-
ing with Restricted Random Walks on Large Document Sets. In
Rachel Heery and Liz Lyon, editors,Research and Advanced Tech-
nology for Digital Libraries – 8th European Conference, ECDL
2004, pages 232–243, Heidelberg, 2004. Springer.

[FGS05] Markus Franke and Andreas Geyer-Schulz. Using Restricted Ran-
dom Walks for Library Recommendations. In Gulden Uchyigit,
editor,Web Personalization, Recommender Systems and Intelligent
User Interfaces, pages 107–115, Setúbal, 2005. INSTICC Press.

Bibliography 139

[FGS07a] Markus Franke and Andreas Geyer-Schulz. A Method for Ana-
lyzing the Asymptotic Behavior of the Walk Process in Restricted
Random Walk Cluster Algorithm. InAdvances in Data Analysis.
Proceedings of the 30th Annual Conference of the German Classi-
fication Society (GfKl), pages 51–58, Heidelberg, 2007. Springer.

[FGS07b] Markus Franke and Andreas Geyer-Schulz. Using restricted ran-
dom walks for library recommendations and knowledge space ex-
ploration. International Journal of Pattern Recognition and Artifi-
cial Intelligence, 21(2):355 – 373, 2007.

[FGSN06] Markus Franke, Andreas Geyer-Schulz, and AndreasNeumann.
Building recommendations from random walks on library opacus-
age data. In Sergio Zani, Andrea Cerioli, Marco Riani, and Maur-
izio Vichi, editors,Data Analysis, Classification and the Forward
Search. Proceedings of the CLADAG 2005, pages 235 – 246, Hei-
delberg, 2006. Springer.

[Fis58] Walter D. Fisher. On grouping for maximum homogeneity. Jour-
nal of the American Statistical Association, 53(284):789–798,
1958.

[Fis87] Douglas H. Fisher. Knowledge acquisition via incremental con-
ceptual clustering.Machine Learning, 2:139–172, 1987.

[FM82] Charles M. Fiduccia and Robert M. Mattheyses. A linear-time
heuristic for improving network partitions. InDAC ’82: Proceed-
ings of the 19th Conference on Design Automation, pages 175–
181, Piscataway, 1982. IEEE Press.

[FPT81] Robert J. Fowler, Mike Paterson, and Steven L. Tanimoto. Optimal
packing and covering in the plane are NP-complete.Information
Processing Letters, 12(3):133–137, 1981.

[Fra03] Markus Franke. Clustering of very large document sets using ran-
dom walks. Master’s thesis, Universität Karlsruhe (TH), Karls-
ruhe, 2003.

[Fre03] Linton C. Freeman. Finding social groups: A meta-analysis of
the southern women data. In Kathleen Carley, Philippa Pattison,
and Ronald Breiger, editors,Dynamic Social Network Modeling
and Analysis: Workshop Summary and Papers, Washington, 2003.
National Research Council, National Academies Press.

140 Bibliography

[FT05] Markus Franke and Anke Thede. Clustering of Large Document
Sets with Restricted Random Walks on Usage Histories. In Claus
Weihs and Wolfgang Gaul, editors,Classification – the Ubiqui-
tous Challenge: Proceedings of the 28th Annual Conference of the
German Classification Society (GfKl), pages 402–409, Heidelberg,
2005. Springer.

[FXZ92] Douglas H. Fisher, Ling Xu, and Nazih Zard. Orderingeffects in
clustering. In Derek H. Sleeman and Peter Edwards, editors,Pro-
ceedings of the Ninth International Workshop on Machine Learn-
ing (ML 1992), pages 162–168, San Francisco, 1992. Morgan
Kaufmann.

[GD03] Ruxandra Gorunescu and Dan Dumitrescu. Evolutionary cluster-
ing using an incremental technique.Informatica, 98(2):25–33,
2003.

[GDN03] Jonathan Gomez, Dipankar Dasgupta, and Olfa Nasraoui. A new
gravitational clustering algorithm. In Daniel Barbará and Chan-
drika Kamath, editors,Proceedings of the Third SIAM Interna-
tional Conference on Data Mining, Philadelphia, 2003. SIAM.

[GG04] Chetan Gupta and Robert L. Grossman. GenIc: A single-pass gen-
eralized incremental algorithm for clustering. In MichaelW. Berry,
Umeshwar Dayal, Chandrika Kamath, and David B. Skillicorn,ed-
itors,Proceedings of the Fourth SIAM International Conference on
Data Mining, Philadelphia, 2004. SIAM.

[GGH+01] Jie Gao, Leonidas Guibas, John Hershberger, Li Zhang, and
An Zhu. Discrete mobile centers. InSCG ’01: Proceedings of
the Seventeenth Annual Symposium on Computational Geometry,
pages 188–196, New York, 2001. ACM Press.

[GGH+03] Jie Gao, Leonidas J. Guibas, John Hershberger, Li Zhang,and
An Zhu. Discrete mobile centers.Discrete and Computational
Geometry, 30(1):45–65, 2003.

[GGSHST02] Wolfgang Gaul, Andreas Geyer-Schulz, Michael Hahsler, and
Lars Schmidt-Thieme. eMarketing mittels Recommendersyste-
men.Marketing ZFP, 24:47 – 55, 2002.

[GJ02] Erhard Godehardt and Jerzy Jaworski. Two Models of Random
Intersection Graphs for Classification. In Otto Opitz and Man-
fred Schwaiger, editors,Exploratory Data Analysis in Empirical

Bibliography 141

Research. Proceedings of the 25th Annual Conference of the Ger-
man Classification Society (GfKl), pages 67–81, Heidelberg, 2002.
Springer.

[GLF89] John H. Gennari, Pat Langley, and Douglas H. Fisher.Models
of incremental concept formation.Artificial Intelligence, 40(1–
3):11–61, 1989.

[GMM+03] Sudipto Guha, Adam Meyerson, Nina Mishra, Rajeev Motwani,
and Liadan O’Callaghan. Clustering data streams: Theory and
practice.IEEE Transactions on Knowledge and Data Engineering,
15(3):515–528, 2003.

[GO02] Josephine Griffith and Colm O’Riordan. Non-traditional collab-
orative filtering techniques. Technical Report NUIG-IT-121002,
National University of Ireland, Galway, 2002.

[Goo77] Irving J. Good. The botryology of botryology. In John VanRyzin,
editor,Classification and Clustering: Proceedings of an Advanced
Seminar Conducted by the Mathematics Research Center, the Uni-
versity of Wisconsin at Madison, pages 73–94, New York, 1977.
Academic Press.

[GR69] John C. Gower and Gavin J. S. Ross. Minimum spanning trees and
single linkage cluster analysis.Applied Statistics, 18(1):54–64,
1969.

[Gra68] Augustine H. Gray, Jr. Level touchings in a restricted random walk.
SIAM Journal on Applied Mathematics, 16(6):1123–1129, 1968.

[GSHJ01] Andreas Geyer-Schulz, Michael Hahsler, and Maximillian Jahn.
Educational and scientific recommender systems: Designingthe
information channels of the virtual university.International Jour-
nal of Engineering Education, 17(2):153 – 163, 2001.

[GSHNT03] Andreas Geyer-Schulz, Michael Hahsler, AndreasNeumann, and
Anke Thede. Recommenderdienste für wissenschaftliche Bib-
liotheken und Bibliotheksverbünde. In Andreas Geyer-Schulz
and Alfred Taudes, editors,Informationswirtschaft: Ein Sektor
mit Zukunft, pages 43 – 57. Gesellschaft für Informatik, Köllen
Druck+Verlag GmbH, Bonn, 2003.

142 Bibliography

[GSNT03] Andreas Geyer-Schulz, Andreas Neumann, and Anke Thede. An
architecture for behavior-based library recommender systems – in-
tegration and first experiences.Information Technology and Li-
braries, 22(4), 2003.

[GT95] Mario Gerla and Jack Tzu-Chieh Tsai. Multicluster, mobile, mul-
timedia radio network.Journal of Wireless Networks, 1(3):255 –
265, 1995.

[GW95] Michel X. Goemans and David P. Williamson. Improved approxi-
mation algorithms for maximum cut and satisfiability problems us-
ing semidefinite programming.Journal of the ACM, 42(6):1115–
1145, 1995.

[GWW99] Yoram Gdalyahu, Daphna Weinshall, and Michael Werman. A ran-
domized algorithm for pairwise clustering. In Michael J. Kearns,
Sara A. Solla, and David A. Cohn, editors,Advances in Neural
Information Processing Systems 11, NIPS Conference, pages 424–
430, Cambridge, 1999. The MIT Press.

[Haj88] Bruce Hajek. Cooling schedules for optimal annealing. Mathe-
matics of Operation Research, 13(2):311 – 329, 1988.

[Har75] John A. Hartigan.Clustering Algorithms. John Wiley and Sons,
New York, 1975.

[HBV02a] Maria Halkidi, Yannis Batistakis, and Michalis Vazirgiannis. Clus-
ter validity methods: Part I.ACM SIGMOD Record, 31(2):40–45,
2002.

[HBV02b] Maria Halkidi, Yannis Batistakis, and Michalis Vazirgiannis. Clus-
ter validity methods: Part II.ACM SIGMOD Record, 31(3):19–27,
2002.

[HK89] Scott E. Hudson and Roger King. Cactis: A self-adaptive, concur-
rent implementation of an object-oriented database management
system.ACM Transactions on Database Systems, 14(3):291 – 321,
1989.

[HK92] Lars Hagen and Andrew B. Kahng. A new approach to effec-
tive circuit clustering. InIEEE/ACM International Conference on
Computer-Aided Design, pages 422–427, Santa Clara, 1992. ACM
and IEEE Computer Society.

Bibliography 143

[HK01] David Harel and Yehuda Koren. On clustering using random
walks. In Ramesh Hariharan, Madhavan Mukund, and V. Vinay,
editors,FST TCS 2001: Foundations of Software Technology and
Theoretical Computer Science, pages 18–41, Heidelberg, 2001.
Springer.

[HK03] Khaled M. Hammouda and Mohamed S. Kamel. Incremental
document clustering using cluster similarity histograms.In 2003
IEEE/WIC International Conference on Web Intelligence, (WI
2003), pages 597–601, Washington, 2003. IEEE Computer Soci-
ety.

[HLL94] Kien A. Hua, Sheau-Dong Lang, and Wen K. Lee. A
decomposition-based simulated annealing technique for data clus-
tering. InProceedings of the Thirteenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, pages
117–128, New York, 1994. ACM Press.

[Hol75] John H. Holland. Adaptation in Natural and Artificial Systems.
The University of Michigan Press, Ann Arbor, 1975.

[HP04] Sariel Har-Peled. Clustering motion.Discrete & Computational
Geometry, 31(4):545–565, 2004.

[IIK96] Mary Inaba, Hiroshi Imai, and Naoki Katoh. Experimental results
of randomized clustering algorithm. InProceedings of the Twelfth
Annual Symposium on Computational Geometry, pages 1–2, New
York, 1996. ACM Press.

[IKI94] Mary Inaba, Naoki Katoh, and Hiroshi Imai. Applications of
weighted Voronoi diagrams and randomization to variance-based
k-clustering (extended abstract). InSCG ’94: Proceedings of the
Tenth Annual Symposium on Computational Geometry, pages 332
– 339, New York, 1994. ACM Press.

[Jac08] Paul Jaccard. Nouvelles recherches sur la distribution florale.Bul-
letin de la Societe Vaudoise des Sciences Naturelles, 44(163):223–
270, 1908.

[JMF99] Anil K. Jain, M. Narasimha Murty, and Patrick J. Flynn. Data
clustering: A review.ACM Computing Surveys, 31(3):264 – 323,
1999.

144 Bibliography

[Jun99] Dieter Jungnickel.Graphs, Networks and Algorithms. Springer
Verlag, Heidelberg, 1999.

[Kar] George Karypis. CLUTO – a clustering toolkit. URL:
http://glaros.dtc.umn.edu/gkhome/views/cluto. (02.08.2006).

[Kar93] Alan F. Karr.Probability. Springer, Heidelberg, 1993.

[Kar03] George Karypis. Cluto: A clustering toolkit. Technical report,
University of Minnesota, Minneapolis, 2003.

[KGV83] Scott Kirkpatrick, Charles D. Jr. Gelatt, and MarioP. Vecchi. Op-
timization by simulated annealing.Science, 220(4598):671–680,
1983.

[KKG03] Hans-Peter Kriegel, Peer Kröger, and Irina Gotlibovich. Incre-
mental OPTICS: Efficient computation of updates in a hierarchical
cluster ordering. InProceedings of the 5th International Confer-
ence on Data Warehousing and Knowledge Discovery, pages 244–
233, Heidelberg, 2003. Springer.

[KLNS89] Jeff D. Kahn, Nathan Linial, Noam Nisan, and Michael E. Saks.
On the cover time of random walks on graphs.Journal of Theoret-
ical Probability, 2(1):121–128, 1989.

[KM99] Arnd Kohrs and Bernard Merialdo. Clustering for collaborative fil-
tering applications. InComputational Intelligence for Modelling,
Control & Automation 1999, pages 199–204, Amsterdam, 1999.
IOS Press.

[KR90] Leonard Kaufman and Peter J. Rousseeuw.Finding Groups in
Data: An Introduction to Cluster Analysis. John Wiley & Sons,
New York, 1990.

[KS96] David R. Karger and Clifford Stein. A new approach to the mini-
mum cut problem.Journal of the ACM, 43(4):601 – 640, 1996.

[Kun99] Sukhamay Kundu. Gravitational clustering: A new approach based
on the spatial distribution of the points.Pattern Recognition,
32(7):1149–1160, 1999.

[Kun03] Martin Kunz et al. SWD Sachgruppen. Technical report, Die
Deutsche Bibliothek, 2003.

Bibliography 145

[KVCP97] Prasad Krishna, Nitin H. Vaidya, Mainak Chatterjee, and Dhiraj K.
Pradhan. A cluster-based approach for routing in dynamic net-
works. SIGCOMM Computer Communication Review, 27(2):49 –
64, 1997.

[LG97] Chunhung Richard Lin and Mario Gerla. Adaptive clustering for
mobile wireless networks.IEEE Journal on Selected Areas in
Communications, 15(7):1265–1275, 1997.

[LH03] Boris Lauser and Andreas Hotho. Automatic multi-label subject
indexing in a multilingual environment. In Traugott Koch and In-
geborg Torvik Solvberg, editors,Research and Advanced Technol-
ogy for Digital Libraries: Proceedings of the ECDL 2003, pages
140–151, Heidelberg, 2003. Springer.

[LHY04] Yifan Li, Jiawei Han, and Jiong Yang. Clustering moving objects.
In Proceedings of the Tenth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pages 617–622,
New York, 2004. ACM Press.

[Lov96] László Lovász. Random walks on graphs: A survey.In Dezsö Mik-
los, editor,Combinatorics, Paul Erd̈os is Eighty, volume 2, pages
353–397, Budapest, 1996. Janos Bolyai Mathematical Society.

[LR80] John William Strutt Lord Rayleigh. On the resultant of a large
number of vibrations of the same pitch and of arbitrary phase.
Philosophical Magazine, 10:73–80, 1880.

[LR05] John William Strutt Lord Rayleigh. The problem of therandom
walk. Nature, 72(1866):318, 1905.

[LVKG04] Jessica Lin, Michail Vlachos, Eamonn J. Keogh, andDimitrios
Gunopulos. Iterative incremental clustering of time series. In Elisa
Bertino, Stavros Christodoulakis, Dimitris Plexousakis,Vassilis
Christophides, Manolis Koubarakis, Klemens Böhm, and Elena
Ferrari, editors,Advances in Database Technology – EDBT 2004,
9th International Conference on Extending Database Technology,
Proceedings, pages 106–122, Heidelberg, 2004. Springer.

[LW67a] Godfrey N. Lance and William Thomas Williams. A general
theory of classificatory sorting strategies. I. Hierarchical systems.
Computer Journal, 9(4):373–380, 1967.

146 Bibliography

[LW67b] Godfrey N. Lance and William Thomas Williams. A general
theory of classificatory sorting strategies. II. Clustering systems.
Computer Journal, 10(3):271–277, 1967.

[Mac67] James B. MacQueen. Some methods for classification and analysis
of multivariate observations. In L. M. Le Cam and J. Neyman, ed-
itors,Proceedings of the Fifth Berkeley Symposium on Mathemati-
cal Statistics and Probability, volume 1, pages 281–297, Berkeley,
1967. University of California Press.

[Mah36] Prasanta Chandra Mahalanobis. On the generalised distance in
statistics. InProceedings of the National Institute of Science of
India, volume 12, pages 49–55, Calcutta, 1936.

[Mar12] Andrei A. Markoff. Wahrscheinlichkeitsrechnung. B.G. Teubner,
Leipzig, 2nd edition, 1912.

[Mat77] David W. Matula. Graph theoretic techniques for cluster analysis
algorithms. In John VanRyzin, editor,Classification and Cluster-
ing: Proceedings of an Advanced Seminar Conducted by the Math-
ematics Research Center, the University of Wisconsin at Madison,
pages 95–129, New York, 1977. Academic Press.

[MK94] William J. McIver Jr. and Roger King. Self-adaptive,on-line
reclustering of complex object data. In Richard T. Snodgrass and
Marianne Winslett, editors,Proceedings of the 1994 ACM SIG-
MOD International Conference on Management of Data, pages
407–418, New York, 1994. ACM Press.

[MMR96] Dario Maio, Davide Maltoni, and Stefano Rizzi. Dynamic cluster-
ing of maps in autonomous agents.IEEE Transactions on Pattern
Analysis and Machine Intelligence, 18(11):1080–1091, 1996.

[MR00] Rajeev Motwani and Prabhakar Raghavan.Randomized Algo-
rithms. Cambridge University Press, Cambridge, 2nd edition,
2000.

[MRR+53] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosen-
bluth, Augusta H. Teller, and Edward Teller. Equation of state
calculations for fast computing machines.Journal of Chemical
Physics, 21(6):1087–1092, 1953.

Bibliography 147

[MRSV86] Debasis Mitra, Fabio Romeo, and Alberto Sangiovanni-
Vincentelli. Convergence and finite-time behavior of simulated
annealing.Advances in Applied Probability, 18(3):747–771, 1986.

[MZ99] A. Bruce McDonald and Taieb Znati. A mobility-based framework
for adaptive clustering in wireless adhoc networks.IEEE Journal
on Selected Areas in Communications, 17(8):1466–1487, 1999.

[MZ02] A. Bruce McDonald and Taieb F. Znati. Design and simulation of
a distributed dynamic clustering algorithm for multimode routing
in wireless ad hoc networks.Simulation, 78(7):408–422, 2002.

[Nev95] Arthur J. Nevins. A Branch and Bound Incremental Conceptual
Clusterer.Machine Learning, 18(1):5 – 22, 1995.

[Nic97] David M. Nichols. Implicit rating and filtering. InFifth DELOS
Workshop: Filtering and Collaborative Filtering, pages 28–33, Le
Chesnay, 1997. ERCIM.

[NUCG03] Olfa Nasraoui, Cesar Cardona Uribe, Carlos Rojas Coronel, and
Fabio A. González. TECNO-STREAMS: Tracking evolving clus-
ters in noisy data streams with a scalable immune system learning
model. InProceedings of the 3rd IEEE International Conference
on Data Mining (ICDM 2003), pages 235–242, Washington, 2003.
IEEE Computer Society.

[OMM+02] Liadan O’Callaghan, Nina Mishra, Adam Meyerson, Sudipto
Guha, and Rajeev Motwani. Streaming-data algorithms for high-
quality clustering. InProceedings of the 18th International Con-
ference on Data Engineering, pages 685–694, Piscataway, 2002.
IEEE Press.

[Pea05] Karl Pearson. The problem of the random walk.Nature,
72(1865):294, 1905.

[PL02] Patrick Pantel and Dekang Lin. Document clustering with commit-
tees. In Järvelin and Kalervo, editors,Proceedings of the 25th An-
nual International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, pages 199 – 206, New York,
2002. ACM Press.

[Pol21] Georg Polya.̈Uber eine Aufgabe der Wahrscheinlichkeitsrechnung
betreffend die Irrfahrt im Straßennetz.Mathematische Annalen,
84:149–160, 1921.

148 Bibliography

[PS06] Harald Prehn and Gerald Sommer. An adaptive classification al-
gorithm using robust incremental clustering. In18th International
Conference on Pattern Recognition, ICPR 2006, pages 896–899,
Washington, 2006. IEEE Computer Society.

[PZOD99] Srinivasan Parthasarathy, Mohammed Javeed Zaki,Mitsunori Ogi-
hara, and Sandhya Dwarkadas. Incremental and interactive se-
quence mining. InProceedings of the 1999 ACM CIKM Inter-
national Conference on Information and Knowledge Management,
pages 251–258, New York, 1999. ACM Press.

[REL99] Arnaud Ribert, Abdel Ennaji, and Yves Lecourtier. An incremental
hierarchical clustering. InConf́erence Internationale IAPR-VI’99,
Vision Interface, pages 586–591, 1999.

[RKSA00] Lakshmi Ramachandran, Manika Kapoor, Abhinanda Sarkar, and
Alok Aggarwal. Clustering algorithms for wireless ad hoc net-
works. InProceedings of the 4th International Workshop on Dis-
crete Algorithms and Methods for Mobile Computing and Commu-
nications (DIAL-M 2000), pages 54–63, New York, 2000. ACM
Press.

[ROS01] Andréa W. Richa, Katia Obraczka, and Arunhaba Sen.
Application-oriented self-organizing hierarchical clustering in dy-
namic networks: A position paper. InProceedings of 1st ACM
Workshop on Principles of Mobile Computing (POMC), pages 57–
65, New York, 2001. ACM Press.

[RPH05] Deepak Ravichandran, Patrick Pantel, and Eduard Hovy. Random-
ized algorithms and NLP: Using locality sensitive hash function
for high speed noun clustering. InProceedings of the 43rd Annual
Meeting of the Association for Computational Linguistics (ACL),
pages 622–629, Morristown, 2005. Association for Computational
Linguistics.

[RT98] Joseph Roure and Luis Talavera. Robust incremental clustering
with bad instance orderings: A new strategy. In Helder Coelho,
editor, Progress in Artificial Intelligence – IBERAMIA ’98, Sixth
Ibero-American Conference on AI, pages 136–147, Heidelberg,
1998. Springer.

[RV87] James R. Rowland and Gregg T. Vesonder. Incremental conceptual
clustering from existing databases. In Pat Davis and Vicki McClin-

Bibliography 149

tock, editors,Proceedings of the 15th ACM Annual Conference on
Computer Science, pages 80–87, New York, 1987. ACM Press.

[RV97] Paul Resnick and Hal R. Varian. Recommender Systems.Commu-
nications of the ACM, 40(3):56 – 58, 1997.

[Sal88] Gerald Salton, editor.Automatic Text Processing. Addison-Wesley
Longman Publishing Co., Inc., Boston, 1988.

[Sam38] Paul A. Samuelson. A note on the pure theory of consumer’s be-
haviour.Economica, 5(17):61–71, 1938.

[Sam48] Paul A. Samuelson. Consumption theory in terms of revealed pref-
erence.Economica, 15(60):243–253, 1948.

[Sch02] Joachim Schöll.Clusteranalyse mit Zufallswegen. PhD thesis, TU
Wien, Wien, 2002.

[Seb02] Fabrizio Sebastiani. Machine learning in automated text catego-
rization. ACM Computing Surveys, 34(1):1–47, 2002.

[SEKX98] Jörg Sander, Martin Ester, Hans-Peter Kriegel, and Xiaowei Xu.
Density-based clustering in spatial databases: The algorithm
GDBSCAN and its applications.Data Mining and Knowledge Dis-
covery, 2(2):169–194, 1998.

[SFFE01] Giovanni Semeraro, Stefano Ferilli, Nicola Fanizzi, and Floriana
Esposito. Document classification and interpretation through the
inference of logic-based models. In Panos Constantopoulosand
Ingeborg T. Sølvberg, editors,Proceedings of the 5th European
Conference on Research and Advanced Technology for DigitalLi-
braries, ECDL 2001, pages 59–70, Heidelberg, 2001. Springer.

[SH01] Gabriel L. Somlo and Adele E. Howe. Incremental clustering
for profile maintenance in information gathering web agents. In
Elisabeth André, Sandip Sen, Claude Frasson, and Jörg P. Müller,
editors,Proceedings of the Fifth International Conference on Au-
tonomous Agents, pages 262–269, New York, 2001. ACM Press.

[SJ01] Martin Szummer and Tommi Jaakkola. Partially labeled classifica-
tion with markov random walks. In Thomas G. Dietterich, Suzanna
Becker, and Zoubin Ghahramani, editors,Advances in Neural In-
formation Processing Systems 14, NIPS 2001, pages 945–952,
Cambridge, 2001. MIT Press.

150 Bibliography

[SKKR02] Badrul M. Sarwar, George Karypis, Joseph Konstan,and John
Riedl. Recommender systems for large-scale e-commerce: Scal-
able neighborhood formation using clustering. InProceedings of
the Fifth International Conference on Computer and Information
Technology, Bangladesh, 2002.

[SKR01] J. Ben Schafer, Joseph A. Konstan, and John Riedl. E-commerce
recommendation applications.Data Mining and Knowledge Dis-
covery, 5(1/2):115–153, 2001.

[Sne57] Peter H.A. Sneath. The application of computers to taxonomy.The
journal of general microbiology, 17:201–226, 1957.

[Sok77] Robert R. Sokal. Clustering and classification: Background and
current directions. In John VanRyzin, editor,Classification and
Clustering: Proceedings of an Advanced Seminar Conducted by
the Mathematics Research Center, the University of Wisconsin at
Madison, pages 1–15, New York, 1977. Academic Press.

[SP02] Joachim Schöll and Elisabeth Paschinger. Cluster Analysis
with Restricted Random Walks. In Krzysztof Jajuga, Andrzej
Sokolowski, and Hans-Hermann Bock, editors,Classification,
Clustering, and Data Analysis. Proceedings of the 8th Conference
of the International Federation of Classification Societies (IFCS-
2002), pages 113–120, Heidelberg, 2002. Springer.

[Spe01] Joel H. Spencer.The Strange Logic of Random Graphs. Springer,
Heidelberg, 2001.

[Spi01] Frank Spitzer.Principles of Random Walk. Springer, Heidelberg,
2nd edition, 2001.

[SS73] Peter H. A. Sneath and Robert R. Sokal.Numerical Taxonomy:
The Principles and Practice of Numerical Classification. Freeman,
San Francisco, 1973.

[SS05] Yogish Sabharwal and Sandeep Sen. A linear time algorithm for
approximate 2-means clustering.Computational Geometry: The-
ory and Applications, 32(2):159 – 172, 2005.

[SSP03] Joachim Schöll and Elisabeth Schöll-Paschinger. Classification by
restricted random walks.Pattern Recognition, 36(6):1279–1290,
2003.

Bibliography 151

[Tar72] Robert Endre Tarjan. Depth-first search and linear graph algo-
rithms. SIAM Journal on Computing, 1(2):146–160, 1972.

[TS01] Naftali Tishby and Noam Slonim. Data clustering by markovian
relaxation and the information bottleneck method. In Todd K.
Leen, Thomas G. Dietterich, and Volker Tresp, editors,Advances
in Neural Information Processing Systems 13, NIPS 2000, pages
640–646, Cambridge, 2001. MIT Press.

[vD00a] Stijn van Dongen. A Cluster Algorithm for Graphs. Technical
report, Centrum voor Wiskunde en Informatica, Amsterdam, 2000.

[vD00b] Stijn van Dongen.Graph Clustering by Flow Simulation. PhD
thesis, University of Utrecht, Utrecht, 2000.

[vD00c] Stijn van Dongen. Performance criteria for graph clustering and
markov cluster experiments. Technical report, National Research
Institute for Mathematics and Computer Science in the Nether-
lands, Amsterdam, 2000.

[Vie97] Johannes Viegener.Inkrementelle, dom̈anenunabḧangige The-
sauruserstellung in dokumentbasierten Informationssystemen
durch Kombination von Konstruktionsverfahren. infix, Sankt Au-
gustin, 1997.

[Wan97] Ke Wang. Discovering patterns from large and dynamic sequential
data. Journal of Intelligent Information Systems, 9(1):33 – 56,
1997.

[War63] Joe H. Ward. Hierarchical grouping to optimize an objec-
tive function. Journal of the American Statistical Association,
58(301):236–244, 1963.

[Wat81] Satosi Watanabe. Pattern recognition as a quest forminimum en-
tropy. Pattern Recognition, 13(5):381–387, 1981.

[WF00] Wai-chiu Wong and Ada Wai-chee Fu. Incremental document clus-
tering for web page classification. InProceedings of the Interna-
tional Conference on Information Society in the 21st Century, Pis-
cataway, 2000. IEEE Press.

[WIY02] Dwi H. Widyantoro, Thomas R. Ioerger, and John Yen. An incre-
mental approach to building a cluster hierarchy. InProceedings of
the 2002 IEEE International Conference on Data Mining, pages
705–708, Piscataway, 2002. IEEE Press.

152 Bibliography

[WK99] Fa-Yueh Wu and Hervé Kunz. Restricted random walks on a graph.
Annals of Combinatorics, 3:475–481, 1999.

[WL93] Zhenyu Wu and Richard M. Leahy. An optimal graph theoretic ap-
proach to data clustering: Theory and its application to image seg-
mentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 15(11):1101 – 1113, 1993.

[Wri77] William E. Wright. Gravitational clustering.Pattern Recognition,
9:151–166, 1977.

[WWP88] Shijie J. Wan, S. K. Michael Wong, and Przemyslaw
Prusinkiewicz. An algorithm for multidimensional data cluster-
ing. ACM Transaction on Mathematical Software, 14(2):153 –
162, 1988.

[XYZ06] Yunpeng Xu, Xing Yi, and Changshui Zhang. A random walks
method for text classification. InProceedings of the 2006 SIAM
Conference on Data Mining, pages 338–345, Philadelphia, 2006.
SIAM.

[Yan99] Yiming Yang. An evaluation of statistical approaches to text cate-
gorization.Information Retrieval, 1(1):69–90, 1999.

[Yan05] Shi-Jie Yang. Exploring complex networks by walking on them.
Physical Review E, 71(016107):1–5, 2005.

[YM98] Clement T. Yu and Weiyi Meng.Principles of Database Query
Processing for Advanced Applications. Morgan Kaufmann, San
Francisco, 1998.

[Zho05] Shi Zhong. Efficient streaming text clustering.Neural Networks,
18(5–6):790 – 798, 2005.

[ZRL96] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. BIRCH: An
efficient data clustering method for very large databases. In H. V.
Jagadish and Inderpal Singh Mumick, editors,Proceedings of the
ACM SIGMOD International Conference on Management of Data,
pages 103–114, New York, 1996. ACM Press.

