
Algorithmic Aspects of
Triangle-Based Network

Analysis

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

der Fakultät für Informatik
der Universität Fridericiana zu Karlsruhe (TH)

genehmigte

Dissertation
von

Thomas Schank
aus Offenburg

Tag der mündlichen Prüfung: 14. Februar 2007

Erste Gutachterin: Frau Prof. Dr. Dorothea Wagner

Zweiter Gutachter: Herr Prof. Dr. Ulrik Brandes

2

Ausgabe August 20, 2007

Contents

1 Introduction 5

2 Preliminaries 11

2.1 Notation and Mathematical Foundation 11

2.2 Graphs . 12

2.3 Algorithms . 17

2.4 Core Structure . 18

3 Algorithms for Listing and Counting all Triangles in a Graph 21

3.1 Algorithms . 23

3.1.1 Basic Algorithms . 23

3.1.2 Algorithm node-iterator and Related Algorithms 26

3.1.3 Algorithm edge-iterator and Derived Algorithms . . . 29

3.1.4 Overview of the Algorithms 36

3.2 Experimental Results . 36

4 Algorithms for Counting and Listing Triangles in Special
Graph Classes 49

4.1 Graphs with Bounded Core Numbers 50

4.2 Comparability Graphs . 51

4.3 Chordal Graphs . 53

4.4 Distance Hereditary Graphs 56

3

4 CONTENTS

5 Applications of Triangle Listing in Network Analysis 73

5.1 Short Cycle Connectivity . 74

5.2 Small Clique Connectivity . 77

5.3 Neighborhood Density . 79

5.3.1 Edge Weighted Neighborhood Density 80

5.4 Clustering Coefficient and Transitivity 85

6 A Graph Generator with Adjustable Clustering Coefficient
and Increasing Cores 93

6.1 A Linear Preferential Attachment Generator 95

6.2 The Holme-Kim Generator 96

6.3 The New-Generator . 100

6.3.1 Clustering Coefficient 101

6.3.2 Core Structure . 103

7 Approximating Clustering Coefficient, Transitivity and Neigh-
borhood Densities 109

7.1 Approximating the Clustering Coefficient by Sampling Nodes 113

7.2 Approximating the Clustering Coefficient by Sampling Wedges 115

7.2.1 Approximating the Weighted Clustering Coefficient . . 116

7.2.2 Approximating the Clustering Coefficient 118

7.3 Approximating the Neighborhood Densities 119

8 Conclusion 123

Acknowledgments 125

Summary in German Language 126

Bibliography 129

Index 136

Chapter 1

Introduction

A network consists of nodes and edges between those nodes. Figure 1.1(a)
depicts a network with 6 nodes and 11 edges. Many relations in our daily life
can be modeled as networks. For example, a social network of people can be
created by linking any two of them if they share a friendship relation. There
are networks based on communication, e.g. one can construct a network of
radio controlled sensors and put a link between two of them if they are close
enough to receive and send information via radio waves. A network can be
constructed merely from information. Let us consider the set of all existing
web pages as nodes. Two of them are related if either of the two references
the other. This example shows that networks can be quite huge.

Describing properties of a network is one aspect of network analysis. A
network index for example maps the network to a number. The structure of
the network or at least a particular aspect of it should be reflected by the
associated number.

(a) network (b) neighborhood of x (c) triangle

Figure 1.1: Examples of networks.

5

6 CHAPTER 1. INTRODUCTION

The number of nodes and the number of edges can serve as very simple
network indices. From those an additional index can be determined. The
ratio between the number of existing edges and the number of maximally
possible edges, which can be determined from the number of nodes, is called
the density of the network. For example the density for the network shown
in Figure 1.1(a) is 11/15 .

All nodes that share a link with the node x are the neighbors of x. Fig-
ure 1.1(b) shows the induced graph of the neighbors of x. This leads to the
definition of the neighborhood density, an index of the node x. Its value
is 6/10 and it is the density of the graph depicted in Figure 1.1(b). The
neighborhood density is more commonly known as the clustering coefficient
of a node. This term was coined by Watts and Strogatz [1998]. The authors
also defined the clustering coefficient of a graph, which is the average over
all neighborhood densities of the nodes. The latter has become an extremely
popular network index. The question arises how the neighborhood densi-
ties for all nodes of a network can be determined. The network induced by
the neighborhood can be constructed and the number of edges and nodes
in those networks can be counted. However, this approach is not the most
efficient solution to the problem. We note that the number of neighbors can
be determined easily. To calculate the neighborhood density it thus remains
to compute the number of edges between those neighbors. In Figure 1.1(c)
the edges between the neighbors of x are drawn with dashed lines. Addition-
ally, a certain structure of the nodes a, b, and x is drawn in red color. This
structure is called a triangle. Clearly, each edge between neighbors of x forms
such a triangle with x, and each triangle containing the node x also contains
exactly one edge between two neighbors of x. Therefore, the neighborhood
density can be computed efficiently if the number of triangles of a node can
be computed efficiently.

Let us consider another important issue in network analysis. The central
problem in routing is to find “good” paths for traversal from one node to
another node. There are two routes from x to y drawn with dashed lines
in Figure 1.2(a). A package sent via the southern route uses seven edges
and a package sent via the northern route only six edges. But what does
happen if a link fails? Figure 1.2(b) depicts such situations. If an edge in the
northern route fails the package has to be sent back to x and from there via
the southern route to y. This can be quite a long route in the end. However,
if an edge in the southern route fails the package can take a detour that is
at most one edge longer. A closer look reveals that this is guaranteed by
a triangular structure of the southern nodes. Batagelj and Zaveršnik [2003]
discuss such kinds of triangular connectivity.

7

(a) northern and southern route.

(b) the routes under failure of edges.

Figure 1.2: Routes in a network.

Both of the two described problems in network analysis are related to the
triangular structure of the network. We discuss these and similar applications
in Chapter 5.

The key to handle such problems efficiently can be traced back to the algo-
rithmic problem of finding and listing all triangles in the network. A triangle
listing algorithm outputs all triangles of a graph. Consequently it cannot
perform less operations than the number of triangles in the graph. A count-
ing algorithm attributes each node of a graph with the associated number
of triangles. There are two basic algorithms for triangle listing. Both are
asymptotically equivalent in running time which can be coarsely bounded
by the number of nodes times the number of edges. Itai and Rodeh [1978]
introduced the first listing algorithm with improved running time bounded
by the product of the number of edges and the square root of the latter.
The achieved bound is sharp with respect to the number of edges. Chiba
and Nishizeki [1985] give an improved bound that replaces the square root of
the edges by the arboricity of the graph in the running time. With respect
to triangle counting Alon et al. [1997] introduced the first algorithm that
beats the bound given by Itai and Rodeh. All these publications discuss the
counting or listing of triangles as a special case of small cliques and more
commonly of short cycles. Chiba and Nishizeki extended their work also to

8 CHAPTER 1. INTRODUCTION

the listing of small subgraphs of other structure than cycles or cliques. This
direction has been continued until very recently [Sundaram and Skiena, 1995;
Kloks et al., 2000; Vassilevska et al., 2006]. However, triangle listing has not
been considered with respect to practical applications. The work of Batagelj
and Mrvar [2001] is the only one falling roughly into this category. Based
on one of the two folklore algorithms all subgraphs up to tree nodes are
counted. The feasibility of their approach is shown in one practical example.
However, there still remains a gap in the running time of their approach and
those algorithms that have an optimal running time with respect to the size
of the graph. We discuss this topic in in Chapter 3, in which we consider
primarily triangle listing algorithms with optimal running time with respect
to the size of the graph. In Chapter 4 we investigate triangle listing and
triangle counting algorithms for certain graph classes, i.e. for graphs that
have certain properties.

The consideration of huge networks [Kumar et al., 2000; Abello et al., 2002;
Eubank et al., 2004] requires algorithms that have at most linear or preferably
sub-linear running time. In many cases it suffices to compute an approximate
answer to the problem. This is likely to be accepted if the approximation can
be computed much faster than the exact solution. As mentioned above the
clustering coefficient is an average value, namely that of the neighborhood
densities of the nodes. In such a setup sampling techniques are a common
approach. Eubank et al. [2004] use such a method of sampling nodes to ap-
proximate the clustering coefficient of a graph. However, the neighborhood
density of a node itself can be expressed as an average value. The question
arises if this property can be exploited to approximate the clustering coef-
ficient more directly and consequently more efficiently. We discuss this in
Chapter 7.

The creation of random networks is important to understand existing net-
works and to test algorithms. The model of Erdős and Rényi [1959] is prob-
ably one of the best known. At that time other models were studied as
well [Gilbert, 1959; Austin et al., 1959]. These models are not equivalent
but very similar and for most applications the difference does not matter. A
resulting graph of any of these models shares the property that its degree dis-
tribution does not show a high variation. This differs from findings in many
real world networks [Faloutsos et al., 1999; Chen et al., 2001]. The linear
preferential attachment graph generator considered in [Barabási and Albert,
1999; Albert et al., 1999] does generate random graphs with that property.
Subsequently, it was adapted in various ways to fulfill other properties, too.
Holme and Kim [2002] for example propose a method that is very close to
preferential attachment, but it also considers the triangular structure. It is

9

supposed to achieve a high clustering coefficient of the generated network.
The approach in [Li et al., 2004] changes an existing graph such that the
resulting clustering coefficient is higher whilst preserving the degree distri-
bution. We discuss an alternative method that is also based on preferential
attachment in Chapter 6.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

2.1 Notation and Mathematical Foundation

Symbols and Notation

We use lower case characters to denote numbers and functions to numbers.
These might be Roman or Greek letters or other variations we think are
suitable, e.g. n, ρ, π, $ etc. We might use f(x), fx or even simply f inter-
changeably, whenever the argument is clear from the context. We will use
capital characters to denote sets and objects that are not simple numbers or
functions to numbers, e.g. G, Π, Υ, ∆, etc.

We try to keep this rules throughout this work. However, if it does not
seem convenient or some other notation is wildly used in literature we will
follow the common usage. An example for this is the O-notation in the next
section. In general we allow ourselves to abuse notation to a more mnemonic
appearance if the meaning is clear from context and it is very unlikely that
misunderstandings will happen. In rare cases we may not even give a formal
definition of those notations, again only if their meaning is clear from context.

Numbers and Asymptotic Growth

We denote positive integer numbers including zero with N and the real num-
bers with R.

To capture the asymptotic behavior of polynomials, Landau’s so called O-
notation has become common practice. Let f and g be functions f, g : N→
N. Then f is in O(g), or equivalently g is in Ω(f), if there exist two numbers

11

12 CHAPTER 2. PRELIMINARIES

n0 ∈ N and c ∈ R such that f(n) ≤ c · g(n) for all n ≥ n0. Informally we say
that f grows at most as fast as g. To describe equivalent asymptotic growth
we define Θ(g) as O(g) ∩ Ω(g). Finally, if there exists a number n0 ∈ N for
any c ∈ R>0 such that f(n) ≤ c · g(n), we say that f is in o(g) for all n > n0

or equivalently g is in ω(f).

Probability

A pair (Ω, P) with Ω a finite set and P a mapping from P(Ω) all subsets
of Ω to R is a finite probability space if P [Ω] = 1, P [A] ≥ 0 for A ⊂ Ω,
and P [A ∪B] = P [A] + P [B] for A ∩ B = ∅. The mapping P is called the
probability measure on Ω. The set Ω is called the sample space and a subset
A of Ω is called an event .

An arbitrary mapping X : Ω → R is called a random variable and we can
define shorthand

P [X ≤ x] = P [{ω ∈ Ω : X(ω) ≤ x}]

for example. The distribution or density p of a random variable X is the
probability measure p : X(Ω) ⊂ R→ [0, 1] for which

p(x) = P [X = x] = P [{ω ∈ Ω : X(ω) = x}] .

The expectation of a random variable X with its distribution p is defined as

E [X] =
∑

x∈X(Ω)

x · p(x).

The variance of a random variable is

var [X] = E
[
X2
]
− (E [X])2,

and the standard deviation is the square root of the variance

σ(X) =
√

var [X].

2.2 Graphs

A graph (network) consists of a set of vertices (nodes) V and a set of edges E.
An edge connects two nodes. We denote the size of V with n, and the size of
E with m. In an undirected graph G = (V, E) the set of edges is conveniently

2.2. GRAPHS 13

regarded as a set of two-element subsets of the nodes E ⊂ {{u, w} ⊂ V }.
Two nodes u and v are adjacent if they are connected by an edge {u, v} ∈ E.
The edge {u, v} is incident to the nodes u and v.

For a directed graph or digraph D = (V, A) we preferably use the the name
arcs for the elements connecting vertices. The set of arcs A is conveniently
regarded as a subset of the crossproduct of vertices A ⊂ V × V . In the
following, the properties are mainly defined for undirected graphs. However,
in most cases they will have a natural extension to directed graphs. The
natural mapping from a directed graph D = (V, A) to an undirected graph
G = (V, E) is to connect two vertices in G whenever there exists an arc in
either direction in A. Then G is called the underlying undirected graph of
the digraph D.

A graph without looping edges, i.e. {u, u} /∈ E for all nodes u, is called
simple. If not otherwise noted, we restrict all graphs to be simple. Note that

m ≤
(

n

2

)
=

n(n− 1)

2
(2.1)

holds for a simple undirected graph G; written in asymptotic notation m ∈
O(n2). A graph is complete if equality holds in Equation 2.1. Such a graph
with m =

(
n
2

)
edges is also called an n-clique. The ratio

ρ(G) =
m(
n
2

) (2.2)

is called the density of a graph and a series of graphs is called dense if m is
in Ω(n2).

Degree and Neighborhood

The neighborhood Γ(v) of a vertex v is the set of all nodes adjacent to v

Γ(v) = {u ∈ V : {u, v} ∈ E}.

The neighborhood of a subset S of V is defined as

Γ(S) = {v ∈ V ⊂ S : ∃s ∈ S : ∃{s, v} ∈ E}.

The degree d(v) of a node v is defined as the number of incident edges or the
size of its neighborhood

d(v) = |Γ(v)| .

14 CHAPTER 2. PRELIMINARIES

The maximal degree of G is defined by

dmax(G) = max{d(v) : v ∈ V }.

When summing up the degrees of all nodes, each edge is accounted twice,
once for each of its endpoints. The corresponding equation∑

v∈V

d(v) = 2m (2.3)

is known as the Handshake Lemma.

In a digraph D = (V, A) we distinguish between in-degree

din(v) = |{u ∈ V : ∃(u, v) ∈ A}|

and out-degree
dout(v) = |{w ∈ V : ∃(v, w) ∈ A}|.

The degree of a vertex in a directed graph is the degree of the vertex in the
underlying undirected graph.

Subgraphs

The subsets V ′ ∈ V and E ′ ∈ E define a subgraph G′ = (V ′, E ′) of G =
(V, E), if every incident vertex of an edge in E ′ is in V ′. The node in-
duced subgraph G[V ′] of V ′ ⊂ V is defined by G[V ′] = (V ′, E ′) where
E ′ = {{u, w} ∈ E : u, w ∈ V ′}. The edge induced subgraph G[E ′] is de-
fined by G[E ′] = (V ′, E ′) where V ′ contains all of the endpoints of the edges
in E ′ and no more vertices. We allow us to use the short and mnemonic
notation of G \ v for G[V \ {v}] and likewise G \ e for G[E \ {e}].
For a graph G = (V, E) and P(G) the set of all subgraphs of G we define
V : P(G) → V and E : P(G) 7→ E such that V(G′) = V ′ and E(G′) = E ′ for
G′ = (V ′, E ′) in P(G).

Paths, Cycles, Connectedness and Distance

A sequence v1, e1, v2, e2, . . . , en−1, vn is called a path P from v1 to vn in G if
for all i : ei = {vi, vi+1} ∈ E. The number of edges of a path is the length of
the path. A path is simple if ei 6= ej for i 6= j.

We call a path a cycle C if v1 = vn. An edge {vi, vj} is a chord of a cycle if
it is not an edge in the cycle: {vi, vj} 6= ek for all edges ek of the cycle. A
chordless cycle is a hole.

2.2. GRAPHS 15

A graph is connected if there exists a path between any two pair of nodes in
G. If not otherwise noted, we require a graph to be connected from now on.
This implies m ∈ Ω(n) which allows us to write shorthand O(m) instead of
O(n + m).

The distance dist(u, w) of two nodes u and w is the length of a shortest path
between the nodes.

Trees

A graph is called a tree T if it is cycle free and connected. A tree has exactly
m = n−1 edges. A node of degree one is called a leaf . A tree T is a spanning
tree of a graph G if T is a subgraph of G and V(T) = V(G).

Rooted Trees. Let us declare some node r ∈ V(T) the root of T . For some
edge {u, w} let us assume that u is closer to the root than w, i.e. dist(u, r) =
dist(w, r) − 1. Then u is the predecessor of w (with respect to the root r).
Likewise, w is a successor of w. Note, that every node except the root r has
exactly one predecessor.

Tree Orders. The subtree for a node v with respect to a root r is the
induced subgraph of all nodes w, for which v lies on the path from w to r.
A numbering of the nodes (v1, . . . , v2) is in preorder if any node v appears
directly before all other nodes of v’s subtree. Likewise a numbering is in
postorder if for all nodes v all nodes of its subtree appear directly before v.

Neighborhood Density, Clustering Coefficient and Tran-
sitivity

We briefly introduce the clustering coefficient and the transitivity here. Sec-
tion 5.4 on page 85 has a more in-depth exploration along with extended
bibliographical remarks.

Triangles and Wedges. A triangle ∆uvw (or less specific simply ∆) of G is
a complete subgraph of three distinct nodes u, v, and w: V(∆uvw) = {u, v, w}
and E(∆uvw) = {{u, v}, {v, w}, {w, u}}. Motivated by this, the number of
triangles of node v is defined as the number of edges between neighbors

δ(v) = |E(G[Γ(v)])| . (2.4)

16 CHAPTER 2. PRELIMINARIES

Since each triangle contains three nodes (hence if we sum over all nodes each
triangle is counted three times) the following definition is intuitive

δ(G) =
1

3

∑
v∈V

δ(v). (2.5)

For an n-clique δ =
(

n
3

)
holds, and we get we get δ(G) ∈ O(n3) for a graph

in general. In terms of m this yields

δ(G) ∈ O
(
m3/2

)
. (2.6)

Note that a simple cycle of length three would have been a structurally
equivalent definition of a triangle. As a consequence, triangles occasionally
appear in literature as small complete subgraphs or short cycles.

A wedge Υuvw of G is a subgraph of three distinctive nodes u, v, and w:
V(Υuvw) = {u, v, w} and two edges E(Υuvw) = {{u, v}, {v, w}}. Unlike a
triangle, a wedge has a structurally distinguished center node v. The number
of wedges of a node v with d(v) ≥ 2 is then defined as

τ(v) =

(
d(v)

2

)
, (2.7)

and summing the wedges of all nodes defines the number of wedges of the
graph

τ(G) =
∑
v∈V

τ(v). (2.8)

A wedge can also be seen as a path of length two. This alternative definition is
rather common in literature. If we consider an n-clique Kn we get 3 δ(Kn) =
τ(Kn), and in general the following inequality

3 δ(G) ≤ τ(G) (2.9)

holds for a graph G.

Neighborhood Density. The neighborhood density of a vertex v is the
density of the subgraph induced by the neighbors of v. It can be equivalently
expressed by the quotient of triangles and wedges of v

%(v) = ρ(G[Γ(v)]) =
δ(v)

τ(v)
. (2.10)

Note that we require d(v) ≥ 2 as in Equation 2.7. The neighborhood density
is also known as the clustering coefficient of the node [Watts and Strogatz,
1998].

2.3. ALGORITHMS 17

Clustering Coefficient. The clustering coefficient [Watts and Strogatz,
1998] c (G) of a graph G with d(v) ≥ 2 for all vertices is the average neigh-
borhood density of all nodes in G

c (G) =
1

|V |
∑
v∈V

%(v). (2.11)

Transitivity. The transitivity [Newman et al., 2002] of a graph G is
defined as

t(G) =
3 δ(G)

τ(G)
. (2.12)

As well as the clustering coefficient, it involves wedges and triangles and its
value ranges between zero and one by Equation 2.9.

2.3 Algorithms

An algorithm is a procedure that computes the desired output from any
allowed input instance in a finite number of steps . The running time of an
algorithm assigns the number of computational steps to any input. Formally
the running time TA of algorithm A is a mapping from the set of all allowed
input instances Π to the natural numbers, TA : Π→ N.

In the context of this work the input is a graph G = (V, E) in most cases.
To compare the running times we combine equivalent input elements into a
collection, e.g. the set Gn,m of all graphs with n nodes and m edges. The
worst case running time of an algorithm A is then the maximum running
time over all elements in such a collection. For the case of Gn,m graphs the
definition reads

T ′
A(Gn,m) = max{TA(G) : G ∈ Gn,m}.

In many cases the only sensible general approach to compare running times
is the worst case running time. Therefore, we will use the term running time,
respectively the symbol T , in the meaning of worst case running time from
now on.

We say that an algorithm has linear running time, if its running time is in
O(i + o) where i is the size of the input and o is the size of the output. We
follow common usage in giving a statement like “algorithm A can be imple-
mented with a running time in O(n)” in the shorthand form of “algorithm A
has O(n) running time”.

18 CHAPTER 2. PRELIMINARIES

2.4 Core Structure

The concept of cores was introduced in [Seidman, 1983]. The k-core Ck of a
graph G is the largest node induced subgraph with minimum degree of k for
each node

Ck(G) = G[{v : dCk
(v) ≥ k}]. (2.13)

We use dG′(v) for the degree of v in the subgraph G′. The core number κ(v)
of a node v is the maximum k of all cores it belongs to

κ(v) = max{k : v ∈ V(Ck(G))}, (2.14)

and the core number κ(G) of a graph is the maximum core number of all of
its nodes

κ(G) = max
v∈V
{κ(v)}. (2.15)

The nodes with maximum core number induce the main core or simply the
core of a graph.

The degeneracy of a graph is the largest over all minimum degrees of all
subgraphs, see for example [Bollobás, 2004]. It can be easily shown that
the degeneracy is equal to the core number κ of a graph. Also related is
the arboricity , the minimum number of disjoint forrest to cover all edges of
a graph, which is asymptotically growing linear in the core number κ.

Besides giving an interesting decomposition of the graph in its own interest,
the k-core is used in many other graph related problems. Computing the
core is one of the applied heuristics to find cliques in a graph, as a k-clique
is necessarily contained in the k − 1-core. An example is given in [Batagelj
and Zaveršnik, 2002]. The core concept can also be used to thin out graphs
to their most interesting part, this is applied for example in [Gaertler and
Patrignani, 2004].

The recursive definition in Equation 2.13 is quite compact. However, it is not
directly suitable for computing the k-core. An alternative and constructive
characterization of the k-core is to remove iteratively all nodes with degree
less then k until only nodes with degree k or larger remain.

A straight-forward implementation of this idea leads to a non-linear time
algorithm for computing the k-core of a graph. However, with some modi-
fications it is possible to achieve a linear time algorithm. We give a rough
description in the following. Algorithm 2.1 computes the k-core of a graph
G. First each node v is added to the set indexed by the degree of v (line 1).
Then all nodes in the sets Li with i < k are removed from G (line 2). In

2.4. CORE STRUCTURE 19

course of removing a node v, the sets Li of all its neighbors are updated
(line 3). To achieve running time in O(m) the data structures have to be
carefully chosen and some details must be considered. Since this is not our
focus the interested reader might want to consult [Batagelj and Zaveršnik,
2002].

Algorithm 2.1: k-core

Input: Graph G = (V, E), k ∈ N
Output: k-core of Graph G
Data: L0, . . . , Ldmax initially empty sets of nodes
forall v ∈ V do1

append v → Ld(v);

while ∃i < k : Li 6= ∅ do2

v ← pop Lmin{i:Li 6=∅};
forall u ∈ Γ(v) do3

remove u← Ld(u);
append u→ Ld(u)−1;

remove v from G;

Corollary 1 (folklore, [Batagelj and Zaveršnik, 2002]) The k-core of a graph
can be computed in linear time.

We note that Algorithm 2.1 can be easily modified such that all the cores
from 0 to κ(G) are computed in one single run whilst maintaining running
time in O(m); e.g. by enclosing line 2 in a loop from 0 to κ(G).

Chapter Notes

In this chapter we introduced the most important concepts and required def-
initions in a very compact manner. For a more in-depth exploration many
textbooks are available. Diestel [2000] and Bollobás [1998] give an introduc-
tion to graph theory. Algorithms are treated by Cormen, Leiserson, Rivest,
and Stein [2001]. Ross [2003] gives an introduction to probability which is
discussed in context of algorithms by Motwani and Raghavan [1995].

20 CHAPTER 2. PRELIMINARIES

Chapter 3

Algorithms for Listing and
Counting all Triangles in a
Graph

Chapter Introduction

This chapter is devoted to algorithms for listing all triangles of a graph effi-
ciently. The problem of triangle finding, counting and listing has been studied
before mainly from a theoretical point of view. The two basic algorithms are
attributed to the folklore. They both achieve running time in O(dmax ·m).
Itai and Rodeh [1978] introduced the first algorithm with running time in
O
(
m3/2

)
. With respect of the number of edges the bound achieved by Itai’s

and Rodeh’s algorithm cannot be further improved for triangle listing algo-
rithms. However, Chiba and Nishizeki [1985] can bound the running time of
their algorithm in O(a ·m), in which a is the arboricity of the graph. They
also show that a ≤

√
m.

The Ω
(
m3/2

)
running time bound for listing algorithms does not hold for

counting algorithms. In this context Alon, Yuster, and Zwick [1997] give
a counting algorithm with running time only dependent on m that indeed
beats this bound. This is achieved with fast matrix multiplication. Triangle
counting or listing can be seen as a special case of counting or listing either
short cycles or small cliques. All the mentioned publications extend in one
or both of this fields.

All of the above publications do not consider any practical evaluation of the
presented algorithms. Batagelj and Mrvar [2001] give an extension of one

21

22 CHAPTER 3. TRIANGLE LISTING ALGORITHMS

of the folklore algorithms to count triads (all directed subgraphs with up
to three nodes). This is also the only work we are aware of that contains
practical results. They show, that an implementation of their algorithms
achieves very fast execution times. However, the algorithm they used has a
running time in ω

(
m3/2

)
.

Contribution and Related Work. Our goal is to close the gap between
algorithms that are known to perform very good in practice, but do not
achieve the theoretic best running times, and those algorithms that do so.
We focus on the optimal bound given by the number of edges in O

(
m3/2

)
.

Based on the known folklore algorithms we develop new triangle listing al-
gorithms that achieve optimal running time with respect to the input size
m. Our experimental work shows that one of the new algorithms which we
call “forward” performs best with respect to execution time. This algorithm
essentially uses the same basic operation as the algorithm of Batagelj and
Mrvar [2001]. But it also uses some further techniques that guarantee a run-
ning time in O

(
m3/2

)
. Our experiments show that it performs much better

for graphs with unbounded maximal degree.

The essence of our contribution was published in [Schank and Wagner, 2005b]
and there exists also an extended technical report [Schank and Wagner,
2005c].

All the introduced listing algorithms can be implemented with linear space
consumption. However, they can differ with respect to a constant factor.
In a follow up work to [Schank and Wagner, 2005b], Latapy [2006] focuses
mainly on memory consumption. Most notably he gives an improvement of
our algorithm forward that he calls compact-forward .

Organization. This chapter is organized as follows. We introduce some
basic concepts and notations directly following this section. In Section 3.1
we will first introduce some well known algorithms for listing and counting
triangles followed by new variations of those. We will also prove that most of
these new variations have good asymptotic running time bounds. The most
promising candidates are evaluated in Section 3.2. We do this by experiments
of the execution time on generated and real world graphs. We close this
chapter with a conclusion.

3.1. ALGORITHMS 23

Preliminaries

Recall that a triangle ∆uvw of a graph G = (V, E) is a three node subgraph
with V(∆) = {u, v, w} ⊂ V and E(∆) = {{u, v}, {v, w}, {w, u}} ⊂ E. We
use the symbol δ(G) to denote the number of triangles in graph G. Note that
an n-clique has exactly

(
n
3

)
triangles and asymptotically δclique ∈ Θ(n3). In

dependency to m we have accordingly δclique ∈ Θ
(
m3/2

)
and by concentrating

as many edges as possible into a clique we get the following lemma.

Lemma 1 There exists a series of graphs Gm such that

δ(Gm) ∈ Θ
(
m3/2

)
.

We call an algorithm a triangle counting algorithm if it outputs the number
of triangles δ(v) for each node v and a triangle listing algorithm if it outputs
the three participating nodes of each triangle. As a listing algorithm requires
at least one operation per triangle we get the following by Lemma 1.

Corollary 2 A triangle listing algorithm has an asymptotic lower bound run-
ning time in Ω(n3) in terms of n and in Ω

(
m3/2

)
in terms of m.

Note that one could further distinguish between counting the triangles for the
whole graph and counting the triangles for all of the nodes. However, there
is no complexity difference in running time known up to date and actually
all known algorithms for counting the triangles of the whole graph do this
by counting them for all nodes first. For this reason we do not distinguish
between these two cases.

3.1 Algorithms

We will list some algorithms for listing and counting triangles in the following.

3.1.1 Basic Algorithms

Algorithm “try-all”

A very simple algorithm with a running time in Θ(n3) is to check for edges
between nodes of every three element subset of V .

24 CHAPTER 3. TRIANGLE LISTING ALGORITHMS

Algorithm “matrix-multiplication”

If A is the adjacency matrix of graph G, then the diagonal elements of A3

contain two times the number of triangles of the corresponding node. This
immediately leads to a counting algorithm with running time Θ(n3). How-
ever, it can also be implemented with fast matrix multiplication to run in
Θ(nγ) time, where γ is the matrix multiplication exponent . It is known that
γ ≤ 2.376 [Coppersmith and Winograd, 1990].

Corollary 3 (folklore) All triangles of an undirected graph can be counted
in O(nγ) time.

Algorithm “tree-lister”

Itai and Rodeh [1978] presented the fist algorithm that finds a triangle if it
exists in time in O

(
m3/2

)
. Their original algorithm stops after finding the first

triangle. However, it can be easily extended to list all triangles of a graph
without additional cost in asymptotic running time. We call the triangle
listing variant “tree-lister”. The pseudo code is shown in Algorithm 3.1.

Algorithm 3.1: Triangle Lister “tree-lister”

Input: graph G = (V, E)
Output: all triangles of G
while E 6= ∅ do

T ← Spanning Tree of G;
for {v, w} ∈ E \ E(T) do

if {pred(v), w} ∈ E then1

output Triangle {pred(v), v, w};
else if {v, pred(w)} ∈ E then2

output Triangle {pred(w), v, w};

E ← E \ E(T)3

Theorem 1 All triangles of an undirected graph can be listed in O
(
m3/2

)
time.

We will reproduce a proof for the above theorem with the following two
Lemmas.

Lemma 2 Algorithm tree-lister outputs all triangles of a graph and no more.
Each triangle is listed once and only once.

3.1. ALGORITHMS 25

Proof: Clearly Algorithm 3.1 outputs only triangles. It remains to be
shown that each triangle is listed exactly once.

As a tree T is cycle free, each triangle has at least one edge in E \ E(T).
Assume first, that all the edges of an arbitrary triangle are contained in
E \ E(T), then the triangle is preserved after line 3. Since E is empty in the
end, for any triangle there exists an iteration step where an edge is in E\E(T)
and at least one edge is in E(T). Clearly after this iteration the triangle is
destroyed. It remains to be shown that the triangle is listed exactly once
during this iteration.

Now, let ∆ with V(∆) = {u, v, w} be the triangle destroyed in the cur-
rent iteration. Without loss of generality, let {v, w} be in E \ E(T). Then,
pred(v) = u (the triangle is listed in line 1) or pred(w) = u (the triangle
is listed in line 2, if not already listed in line 1) must be true, otherwise T
would not be a valid spanning tree or none of the edges would be in T , a
contradiction to the assumption. �

Lemma 3 Algorithm tree-lister can be implemented to run in O
(
m3/2

)
time.

Proof: First note that with appropriate data structures the steps inside
the outer loop can be performed in O(m) time. We have to show that the
outer loop is executed at most c ·

√
m times, for some constant c.

In each loop at least the root node of each computed tree is split from the
graph and so the number of connected components γ increases in each itera-
tion at least by one. We consider the costs while there are less (respectively
more) than n−

√
m components.

We first consider the costs until there are at most n −
√

m components.
Note, that in each iteration n−γ edges are removed. Hence, at least n−γ ≥
n− (n−

√
m) =

√
m edges are removed in each step. After

√
m such steps

m edges would be removed and consequently there cannot be more than
√

m
steps.

Now, we consider the case for γ ≥ n−
√

m. The largest component has node
size less than n− γ ≤

√
m. As already mentioned, in each iteration at least

one node is split from each component, and hence, after at most
√

m steps,
we are left with only disconnected nodes. �

We have seen the first existing m-optimal algorithm for triangle listing. How-
ever, it is not a good candidate for an implementation. Let us mention the

26 CHAPTER 3. TRIANGLE LISTING ALGORITHMS

iterative construction of spanning trees and the tests for existence of edges
with respect to the execution time. Moreover the dynamic modification of the
graph imposes comparatively high costs either in respect of execution time
or memory usage. This will become clear when we will have a closer look on
the experiments carried out on the algorithms which will be introduced in
the following sections.

3.1.2 Algorithm node-iterator and Related Algorithms

Algorithm “node-iterator”

Algorithm node-iterator iterates over all nodes and tests for each pair of
neighbors if they are connected by an edge. Line 1 ensures that each triangle
is listed only once. In practice the required order “<” can be easily gained
e.g. from array position or pointer addresses.

Algorithm 3.2: Triangle Lister “node-iterator”

Input: graph G = (V, E), arbitrary order < of the nodes
Output: all triangles of G
for v ∈ V do

for all pairs of Neighbors {u, w} of v do
if {u, w} ∈ G then

if u < v < w then1

output triangle {u, v, w} ;

The asymptotic running time is given by the expression∑
v∈V

(
d(v)

2

)
(3.1)

and therefore bounded by O(d2
max · n).

Corollary 4 (folklore) The algorithm node-iterator can be implemented to
run in O(d2

max · n) time.

Algorithm “ayz” and “listing-ayz”

The counting algorithm due to Alon, Yuster, and Zwick [1997] combines the
techniques of the algorithms node-iterator and matrix-multiplication.

3.1. ALGORITHMS 27

Theorem 2 ([Alon et al., 1997]) All triangles of an undirected graph can be
counted in time in O

(
m2γ/(γ+1)

)
⊂ O(m1.41).

Informally the algorithm splits the node set into low degree vertices Vlow =
{v ∈ V : d(v) ≤ β} and high degree vertices Vhigh = V \ Vlow where
β = mγ−1/γ+1 and γ is the matrix multiplication exponent. The standard
method node-iterator is performed on the low degree nodes and (fast) matrix
multiplication on the induced subgraph of Vhigh, see Algorithm 3.3 for details.
The running time is in O

(
m2γ/(γ+1)

)
.

Algorithm 3.3: Triangle Counter “ayz”

Input: Graph G = (V, E); matrix multiplication parameter γ
Output: number of triangles δ(v) for each node
β ←− m(γ−1)/(γ+1);1

for v ∈ V do2

δ(v)← 0;
if d(v) ≤ β then

Vlow ← Vlow ∪ {v};
else

Vhigh ← Vhigh ∪ {v};

for v ∈ Vlow do3

for all pairs of Neibours {u, w} of v do
if edge between u and w exists then4

if u, w ∈ Vlow then5

for v ∈ {v, u, w} do
δ(v)← δ(v) + 1/3;

else if u, w ∈ Vhigh then6

for v ∈ {v, u, w} do
δ(v)← δ(v) + 1;

else7

for v ∈ {v, u, w} do
δ(v)← δ(v) + 1/2;

A ← adjacency matrix of node induced subgraph of Vhigh;8

M ← A3;9

for v ∈ Vhigh do10

δ(v)← δ(v) + M(i, i)/2 where i is index of v;11

28 CHAPTER 3. TRIANGLE LISTING ALGORITHMS

We will give an extended version of the proof from [Alon et al., 1997] for
Theorem 2.

Proof: The correctness of the algorithm can be easily seen by checking
the case distinction for different types of triangles consisting of exactly three
(line 5), two (line 7), one (line 6) or zero (line 11) low degree nodes.

To prove the time complexity we first note that the lines 1, 2, 8, and 10 can
be clearly implemented to run in linear time. We proof that loop beginning

at line 3 is in time in O
(
m2γ/(γ+1)

)
, that is O

(∑
v∈Vlow

(
d(v)
2

))
⊂ O

(
m2γ/(γ+1)

)
.

Note that with a hashed edge set the test of line 4 can be implemented to
run in constant time. The following tests in line 5, 6 and 7 can be clearly
performed in constant time. The claim follows from

∑
v∈Vlow

(
d(v)
2

)
∈ O(mβ).

Now, we proof that line 9 is in time in O
(
m2γ/(γ+1)

)
. We have to show that

O
(
nγ

high

)
⊂ O

(
m2γ/(γ+1)

)
, which follows from nhigh ≤ 2m/β. �

We can derive a listing algorithm listing-ayz with a running time in O
(
m3/2

)
by using node-iterator also for the induced subgraph of Vhigh, in this case
β =
√

m.

Corollary 5 Algorithm listing-ayz has a running time in O
(
m3/2

)
.

Note that β is only bounded asymptotically to achieve the running times in
the lemmas above. Latapy [2006] shows that it behaves well for a range of
values. However, an optimal value still depends on the graph structure. We
use β =

√
m when we compare the algorithms experimentally in Section 3.2.

Algorithm node-iterator-core

The algorithm node-iterator-core listed in Algorithm 3.4 takes iteratively a
node v with currently lowest degree, proceeds with it as in algorithm node-
iterator , and then removes node v.

Note that an order of nodes that would give a node with currently minimal
degree, as required by the algorithm, can be computed in the same fashion as
the core numbers, see Section 2.4. Consequently, line 1 does not impose more
than an additional linear time cost during the execution of the algorithm.

We recall further from Section 2.4 that the k-core of a graph is the largest
node induced subgraph with minimum degree at least k. The core number
κ(v) of a node v is the maximum k of all cores it belongs to. The core number

3.1. ALGORITHMS 29

Algorithm 3.4: Triangle Lister “node-iterator-core”

Input: Graph G = (V, E)
Output: all triangles of G
while V 6= ∅ do

v ← node with currently minimal degree;1

for all pairs of Neighbors {u, w} of v do
if {u, w} ∈ G then

output triangle {u, v, w} ;

remove v from G;

of a graph κG is the maximal core number of all of its nodes. Hence, the
current degree of the node v from line 1 is less or equal than κ(v), and the
running time is bounded by

∑
v∈V

(
κ(v)

2

)
. (3.2)

Analogously to algorithm node-iterator, we can bound the running time by
O(κ2

G · n). Note that after removing all nodes v with κ(v) ≤
√

m the remain-
ing graph is a subgraph of the node induced subgraph Vhigh of listing-ayz.
Hence, this algorithm is an improvement to listing-ayz and the running time
is in O

(
m3/2

)
, too.

3.1.3 Algorithm edge-iterator and Derived Algorithms

Algorithm “edge-iterator”

The algorithm edge-iterator iterates over all edges and compares the neigh-
borhood of the two incident nodes. For an edge {u, w} the nodes {u, v, w}
induce a triangle if and only if node v is present in both neighborhoods Γ(u)
and Γ(w). It is possible to compare two neighborhoods Γ(u) and Γ(w) in
O(d(u) + d(w)) time if those neighborhoods are stored as sorted adjacency ar-
rays. The sorting can be achieved in linear time∗ or in O

(∑
v∈V d(v) log d(v)

)
⊂ O(m log n) time with standard sorting methods which has been used in
our implementation. We will see in the experimental section how this pre-
processing influences the overall execution time.

∗e.g. by proceeding in a similar manner as in Algorithm 3.6

30 CHAPTER 3. TRIANGLE LISTING ALGORITHMS

We display algorithm edge-iterator in Algorithm 3.5. Note that the listing
is not presented in the shortest and most compact way. We list it as given
to keep the differences minimal to an algorithm that will be introduced later
(Algorithm 3.7 on page 35). The sorted array representation guarantees that
the function “nextNeighborIndex” can be performed in constant time. Line 2
ensures that each triangle is listed only once.

Algorithm 3.5: Triangle Lister “edge-iterator”

Input: graph G, array of vertices (v1, . . . , vn) in arbitrary order,
adjacencies arrays sorted in the same order as the array of
vertices

Output: all triangles
Functions:

firstNeighborIndex(vi) =

{
min{ν : vν ∈ Γ(vi)} if exists

n else

nextNeighborIndex(vi, j) =

{
min{ν : vν ∈ Γ(vi), ν > j} if exists

n else

for vi = (v1, . . . , vn) do
forall vl ∈ Γ(vi) do

j ← firstNeighborIndex(vi);
k ← firstNeighborIndex(vl);
while j < n and k < n do1

if j < k then
j ← nextneighborindex(vi, j);

else if k < j then
k ← nextNeighborIndex(vl, k)

else
if i < k < l then2

output triangle{vk, vi, vl};
j ← nextNeighborIndex(vi, j);
k ← nextNeighborIndex(vl, k);

For now we will disregard the preprocessing in the running time, which can
then be expressed with ∑

{u,w}∈E

d(u) + d(w). (3.3)

As with the previous algorithms we can give some less accurate bounds for
the running time which are: O(dmax ·m) ⊂ O(n ·m).

3.1. ALGORITHMS 31

Corollary 6 (folklore, [Batagelj and Mrvar, 2001]) Algorithm 3.5 lists ex-
actly the triangles of a graph. It can be implemented to run in O(dmax ·m)
time.

Comparing O(dmax ·m) with O(d2
max · n) of node-iterator suggests that edge-

iterator is an improvement to node-iterator . However, this is not true. Con-
sider the following amortized analysis: We split the costs d(u) + d(w) for
an edge {u, w} in d(u) and d(w) units and assign d(u) to node u and d(w)
to node w. In the outer loop each node v is passed d(v) times. Hence, the
running time captured by Equation 3.3 can be equivalently expressed with∑

v∈V

d(v)2. (3.4)

Corollary 7 Disregarding preprocessing, algorithm edge-iterator has the same
asymptotic time complexity as algorithm node-iterator.

The algorithm edge-iterator is equivalent to an algorithm introduced by
Batagelj and Mrvar [2001]. It has been implemented within the software
package Pajek [Batagelj and Mrvar, 1998].

Algorithm “edge-iterator-hashed”

This algorithm is based on edge-iterator. If we use a hashed container for the
neighborhoods, we can ask for every node of the smaller container whether it
is present in the larger container in O(1) time. This leads to a running time
asymptotically growing with∑

{u,w}∈E

min{d(u), d(w)}. (3.5)

It has been shown in [Chiba and Nishizeki, 1985] that the expression of
Equation 3.5 is in O

(
m3/2

)
.

Algorithm “forward”

This is a refinement of algorithm edge-iterator. Instead of comparing the full
neighborhood of two adjacent nodes, a subset A of those is compared. See
Algorithm 3.6 for the pseudo code and Figure 3.1 for an example.

As suggested by Figure 3.1 the algorithm is conveniently regarded on the
directed graph induced by the order of the nodes. The size of the data

32 CHAPTER 3. TRIANGLE LISTING ALGORITHMS

Algorithm 3.6: Triangle Lister “forward”

Input: graph G, array of vertices (v1, . . . , vn) in order of in increasing
degrees

Output: all triangles
Data: initially empty array of nodes for each node v: A(v);
for vi = (v1, . . . , vn) do

for vl ∈ Γ(vi) do
if i < l then

foreach v ∈ A(vi) ∩ A(vl) do1

output triangle {v, vi, vl} ;

append vi → A(vl)

structure A(v) is then bounded by the in-degree of node v. Node also that
all arrays A are sorted with respect of the input order of the nodes during the
whole execution. Hence, the computation of the set of the common nodes of
A(vi) and A(vl) in line 1 can be performed in |A(vi)| + |A(vl)| steps. The
running time for an arbitrary order is then bounded by the expression∑

{u,w}∈E

din(u) + din(w). (3.6)

As a “heuristic” to minimize Equation 3.6, the nodes are considered in non
increasing order of their degrees, which implies a preprocessing in O(n log n).
This order suffices to achieve the desired O

(
m3/2

)
bound.

Lemma 4 Algorithm forward lists all triangles of a graph and no more.
Each triangle is listed once and only once.

Proof: Let ∆uvw be a triangle and without loss of generality u < v < w
with respect to the used order of the nodes. Then, there exists a time step
t1 when vi = u and vl = v during the execution of Algorithm 3.6 when u
is appended to A(v), because of u < v. Likewise, there exist time steps t2
(respectively t3) when vi = u and vl = w (resp. vi = v and vl = w). The
time steps t1 and t2 happen before time step t3, again because u < v < w.
Consequently the node u is in both arrays A(v) and A(w) at time step t3
and the triangle is listed. Thus, we have shown, that all triangles are listed.

Clearly nothing else but triangles are listed. Since the ordering u < v < w
induces exactly one time step when the listing happens, each triangle is listed

3.1. ALGORITHMS 33

edge A(b) A(c) A(d) A(e) triangles
1 (a, b) a
2 (a, c) a a
3 (a, d) a a a
4 (a, e) a a a a

5 (b, c) a, b a a a {a, b, c}
6 (b, d) a, b a a, b a

7 (d, e) a, b a a, b a, d {a, d, e}

1

2

3

4

5

6

7
a b c d e

Figure 3.1: An example for algorithm forward .

once and only once. �

Lemma 5 Algorithm forward can be implemented to have a running time
in O

(
m3/2

)
.

Proof: We actually show that Equation 3.6 is in O
(
m3/2

)
for the chosen

order based on non increasing degrees. We can bound the expression of
Equation 3.6 by O(max{din} ·m), similar as in the case of algorithm edge-
iterator . Now, we show that din(v) ∈ O(

√
m) for all nodes v ∈ V .

Assume that there exists a node v with d(v) >
√

m, otherwise din(v) ≤
√

m
for all nodes is trivially true. Now, consider the vertices v1, . . . , vn where
without loss of generality d(v1) ≥ . . . ≥ d(vn) holds, i.e. in the nodes are in
order of non increasing degrees. Let k be the index where d(vk) >

√
m but

d(vk+1) ≤
√

m. Clearly, din(vi) ≤
√

m holds for i > k.

It remains to be shown that din(vi) ∈ O(
√

m) for i ≤ k. First note that
k
√

m ≤
∑

i≤k d(vi). Moreover the Handshake Lemma gives
∑

i≤k d(vi) ≤∑
i≤n d(vi) = 2m. It follows that k ≤ 2

√
m and we can conclude that

din(vi) ≤ 2
√

m for i ≤ k, too. �

Let us remark that Chiba and Nishizeki [1985] did also use the order of nodes
sorted by non increasing degree to list a all triangles in a graph. However,

34 CHAPTER 3. TRIANGLE LISTING ALGORITHMS

their approach does work differently. It specifically requires dynamic graph
modifications. The authors mention the usage of doubly linked lists, which
we already mentioned to be too memory consuming.

Algorithm “forward-hashed”

We can combine the methods of forward with edge-iterator-hashed . The
upcoming experiments will show if this manifests in an improved execution
time.

∑
{u,w}∈E

min{din(u), din(w)}. (3.7)

Algorithm “compact-forward”

Very recently Latapy [2006] proposed an improvement to forward. The basic
idea is to use iterators to compare the subsets of adjacencies, as it is done in
edge-iterator . To this end, the adjacencies must be sorted and the comparison
must be stopped once a certain index is reached. We give Latapy’s algorithm,
adopted to our notation, in Algorithm 3.7.

Note that there are only three small differences of Algorithm 3.7 compared to
Algorithm 3.5. First algorithm compact-forward uses an ordering with non
increasing degree as algorithm forward . Second the while-loop of line 1 now
stops at index i instead of n. Third the test in line 2 of Algorithm 3.5 can
be omitted.

Further note that stopping at index l in line 1 corresponds to comparing only
the neighborhood with nodes which are before node vi in the given order.
This is exactly what algorithm forward does.

Corollary 8 ([Latapy, 2006]) Algorithm 3.7 (compact-forward) lists all tri-
angles of a graph. It can be implemented to run in time in O

(
m3/2

)
.

Algorithm forward and compact-forward are very similar and have the same
asymptotic worst case bounds in running time and space consumption. How-
ever, algorithm compact-forward does not require the additional arrays A.
According to [Latapy, 2006] it is therefore more time and space efficient in
practice.

3.1. ALGORITHMS 35

Algorithm 3.7: Triangle Lister “compact-forward”

Input: graph G, array of vertices (v1, . . . , vn) in order of non
increasing degrees, adjacencies arrays sorted in the same order
as the array of vertices

Output: all triangles
Functions:

firstNeighborIndex(vi) =

{
min{ν : vν ∈ Γ(vi)} if exists

n else

nextNeighborIndex(vi, j) =

{
min{ν : vν ∈ Γ(vi), ν > j} if exists

n else

for vi = (v1, . . . , vn) do
forall v` ∈ Γ(vi), ` < i do

j ← firstNeighborIndex(vi);
k ← firstNeighborIndex(v`);
while j < ` and k < ` do1

if j < k then
j ← nextNeighborIndex(vi, j);

else if k < j then
k ← nextNeighborIndex(v`, k);

else
output triangle{vk, vi, v`};
j ← nextNeighborIndex(vi, j);
k ← nextNeighborIndex(v`, k);

36 CHAPTER 3. TRIANGLE LISTING ALGORITHMS

3.1.4 Overview of the Algorithms

Figure 3.2 shows an overview of the presented algorithms with their guaran-
teed running time. The interesting listing algorithms will be experimentally
compared in the next section.

listing-ayz

node-iterator

matrix-multiplication

edge-iterator

forward

core

ayz using fast

matrix-

multiplication

listing algorithms

fast matrix-

multiplication

try-all

counting algorithms

forward-hashed

hashed

O
(
n3

)

O(dmax ·m)

O
(
m3/2

)

O
(
n3

)

O (nγ)

O
(
m

2γ
γ+1

)
(compact)

Figure 3.2: Overview of the algorithms.

3.2 Experimental Results

Notes to the Implementation and Experiments

The algorithms were implemented in C++ using the Standard Template Li-
brary and compiled with the gnu g++ compiler version 3.4 with Options “-g
-O2”. The experiments were carried out on a 64-bit machine with two AMD
Opteron processors clocked at 2.20GHz. The implemented algorithms only
used one of the processors and were terminated if they used more than 6GB of
memory. The execution times of the implemented algorithms were measured
in seconds using the getrusage function.

The graphs are represented using node pointers of std::vector type for
the nodes and their adjacency data structure. The algorithms node-iterator ,

3.2. EXPERIMENTAL RESULTS 37

listing-ayz and node-iterator-core use hashing for testing edge existence in
constant time. The hash function combines two random numbers of size
size t with XOR, one for each node. The gnu cxx::hash map was used as
a hash container. Creating the random bits is not contained in the execution
time of the experiments, whereas filling the container is included. We also
compare the performance between a hashed container and a balanced binary
tree in Section 19.

Let us note that a straight forward implementation of algorithm node-iterator-
core requires doubly linked adjacency lists, due to the dynamic modification
of the graph. Such data structures turned out to be too space consuming to
be competitive. However, in the case of this algorithm we were able to use
an equivalent static implementation instead.

The algorithm edge-iterator requires to find common nodes in two adja-
cency data structures. For that purpose the used std::vector containers
are sorted in a preprocessing step using the std::sort function. The sorting
is included in the execution time of the algorithms. The generation of the
node order for forward is also included in the execution time.

The implemented algorithms are evaluated on several networks originating
from real world as well as on generated graphs. The algorithms are tested in
two ways. On the one hand we list the execution time of the algorithms. On
the other hand we give the number of triangle operations, which in essence
captures the asymptotic running time of the algorithm without preprocessing.
The kind of operation considered as a triangle operation differs for the various
algorithms but in all cases it represents the number of triangle tests, e.g. for
the algorithm node-iterator the number of triangle operations is equal to∑

v∈V

(
d(v)
2

)
and for the edge-iterator equal to

∑
v∈V d(v)2.

Experiments on Real World Networks

We will evaluate the introduced algorithms of Section 3.1 on three net-
works: a road network (Section 3.2), a movie actor collaboration network
(Section 3.2) and one generated from hyper links of an Internet sub domain
(Section 3.2).

Road Network Germany

This network is based on the roads in Germany. Hence, it is very sparse, al-
most planar, has very low average and maximum degree, and in consequence,

38 CHAPTER 3. TRIANGLE LISTING ALGORITHMS

a very low deviation from the average degree, see Figure 3.3(a). The standard
deviation from the average degree is an interesting measure. The square of
it bounds how much improvement is possible for the more refined algorithms
compared to the two standard algorithms node-iterator and edge-iterator .

The performance of the algorithms is listed in Figure 3.3(b) and Figure 3.3(c).
As expected algorithm edge-iterator has the highest asymptotic effort in the
number of triangle operations. However, in terms of execution time it outper-
forms all the other algorithms. The two algorithms edge-iterator-hashed and
forward-hashed , which use hashed data structures for every node, perform
badly.

Movie Actor Network 2004

This graph is constructed from The Internet Movie Database of the year
2004. Each node represents an actor. Two actors share a link if and only if
they ever played together in a movie. The properties and results are shown
in Figure 3.4.

This network has a more interesting structure compared to the network of
Section 3.2. The degree distribution is somewhat skewed with a std. de-
viation of 183 from the average degree, see Figure 3.4(a). The algorithms
node-iterator-core and forward-hashed are very efficient with respect to the
number of triangle operations, Figure 3.4(c). As in Section 3.2 the algorithm
listing-ayz is no improvement to algorithm node-iterator , since

√
m = 5252

is higher than the maximum degree. Again edge-iterator performs relatively
well in execution time, see Figure 3.4(b), considering highest number of trian-
gle operations, see Figure 3.4(c). The implementation of algorithm forward
performs best in execution time.

Notre Dame WWW

In this Network each node represents a web page within the nd.edu domain.
An edge between two web pages exists if one of them was linking the other.
Properties and results are shown in Figure 3.5.

Compared to the road network of Section 3.2 and even to the collaboration
network of Section 3.2 the difference between maximal degree to the average
degree is more pronounced and there is a very sharp bend in the degrees of
the nodes visible, see Figure 3.5(a). From this property one expects, that the
more refined algorithms can reduce the number of operations comparatively

3.2. EXPERIMENTAL RESULTS 39

nodes 4799875
edges 5947001
dmax 7
dmin 1
davr 2.5

d stddeviation 0.90
core number 3

wedges 10752498
triangles 172699

transitivity 0.048
clustering coefficient 0.050 1

 2

 3

 4

 5

 6

 7

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06 4.5e+06 5e+06

no
de

 d
eg

re
e

node index

degree

(a) properties and degrees

algorithm seconds
1 node-iterator 13.73
2 listing-ayz 13.95
3 node-iterator-core 11.99
4 edge-iterator 4.27
5 edge-iterator-hashed 55.47
6 forward 9.03
7 forward-hashed 43.97

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5 6 7 8

(b) execution times

algorithm operations
1 node-iterator 10752498
2 listing-ayz 10752498
3 node-iterator-core 1244194
4 edge-iterator 33398998
5 edge-iterator-hashed 14476855
6 forward 1786531
7 forward-hashed 1426197

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 0 1 2 3 4 5 6 7 8

(c) triangle operations

Figure 3.3: Road Network Germany

40 CHAPTER 3. TRIANGLE LISTING ALGORITHMS

nodes 667609
edges 27581275
dmax 4605
dmin 1
davr 82.6

d stddeviation 183.18
core number 1005

wedges 13452269555
triangles 1176613576

transitivity 0.262
clustering coefficient 0.796 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 100000 200000 300000 400000 500000 600000 700000

no
de

 d
eg

re
e

node index

degree

(a) properties and degrees

algorithm seconds
1 node-iterator 4649.05
2 listing-ayz 5285.50
3 node-iterator-core 610.61
4 edge-iterator 174.04
5 edge-iterator-hashed 1377.73
6 forward 64.48
7 forward-hashed 504.26

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1 2 3 4 5 6 7 8

(b) execution times

algorithm operations
1 node-iterator 13452269555
2 listing-ayz 13452269555
3 node-iterator-core 1725685526
4 edge-iterator 26959701660
5 edge-iterator-hashed 7460874664
6 forward 5423623560
7 forward-hashed 1745104092

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 0 1 2 3 4 5 6 7 8

(c) triangle operations

Figure 3.4: Movie Actor Network 2004

3.2. EXPERIMENTAL RESULTS 41

nodes 325729
edges 1090108
dmax 10721
dmin 1
davr 6.7

d stddeviation 42.82
core number 155

wedges 304881174
triangles 8910005

transitivity 0.088
clustering coefficient 0.466 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 50000 100000 150000 200000 250000 300000 350000

no
de

 d
eg

re
e

node index

degree

(a) properties and degrees

algorithm seconds
1 node-iterator 69.00
2 listing-ayz 18.58
3 node-iterator-core 2.47
4 edge-iterator 3.12
5 edge-iterator-hashed 6.11
6 forward 0.53
7 forward-hashed 3.49

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 3 4 5 6 7 8

(b) execution times

algorithm operations
1 node-iterator 304881174
2 listing-ayz 83374735
3 node-iterator-core 9664634
4 edge-iterator 611942564
5 edge-iterator-hashed 31373326
6 forward 18742108
7 forward-hashed 9473218

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 7e+08

 0 1 2 3 4 5 6 7 8

(c) triangle operations

Figure 3.5: Notre Dame WWW

42 CHAPTER 3. TRIANGLE LISTING ALGORITHMS

well, this is confirmed in Figure 3.5(c). However, algorithm forward again
performs best in execution time, see Figure 3.5(b).

Experiments on Generated Graphs

The networks used in Section 3.2 give an indication on the performance
difference of the various algorithms. To get a clearer picture, we investigate
how the algorithms perform on a series of random graphs with increasing size.
In Section 3.2 we evaluate on standard random graphs. This is then amended
in Section 19 with a modified graph model that has a more interesting degree
distribution.

Generated Gn,m Graphs Figure 3.6 shows the results on generated
graphs where m edges are inserted randomly between n nodes. We do not
allow loops or multiple links in our Gn,m graphs. Note that the term Gn,m

graph is usually associated with the model of Erdős and Rényi [Erdős and
Rényi, 1959], in which the set of non isomorphic graphs with n nodes and
m edges is considered. Our generator is also related to the Gn,p model of
Gilbert [Gilbert, 1959]. We differ from the latter in generating exactly m
edges, which are inserted uniformly at random between the

(
n
2

)
possible

endpoints, whereas Gilberts model generates graphs with an expected num-
ber of

(
n
2

)
p edges. Nevertheless we stick to the symbol Gn,m since n and m

are our input parameters.

We consider graphs in which the relation of the parameters n and m is chosen
such that the average degree equals 50. Figure 3.6(a) shows the number of
triangle operations versus the number of edges. Since Gn,m graphs are very
unlikely to have high degree nodes, algorithm listing-ayz and node-iterator
perform equally well with respect to the number of triangle operations. The
algorithms node-iterator-core and forward-hashed most efficiently limit the
number of triangle operations. They are very close to the optimum, i.e. the
number of triangles.

Figure 3.6(b) shows the execution time in seconds versus the number of edges.
Again the algorithm edge-iterator performs best together with forward . Both
algorithms are very simple and do not use complicated data structures. In
contrast, the use of hashing slows down the execution time of the correspond-
ing algorithms. The plots of the algorithms using hashing show some notable
pikes which are caused by automatic rehashing of the container.

3.2. EXPERIMENTAL RESULTS 43

 0

 1e+09

 2e+09

 3e+09

 4e+09

 5e+09

 6e+09

 7e+09

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07 9e+07 1e+08

edge-iterator
listing-ayz

node-iterator
edge-iterator-hashed

forward
node-iterator-core

forward-hashed
triangles

(a) triangle operations vs number of edges

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07 9e+07 1e+08

listing-ayz
node-iterator

edge-iterator-hashed
node-iterator-core

forward-hashed
forward

edge-iterator

(b) execution times in seconds vs number of edges

Figure 3.6: Generated Gn,m graphs.

44 CHAPTER 3. TRIANGLE LISTING ALGORITHMS

Generated Graphs with High Degree Nodes The Gn,m graphs like in
Section 3.2 tend to have no high degree nodes and to have a very low deviation
from the average degree in general. However, many real world networks
show a different behavior, see Section 3.2 and Section 3.2 for an example.
The famous power law distributions in the degree found in many networks
[Faloutsos et al., 1999] actually hint that skewed degree distributions are very
common.

We use a very simple modification of the Gn,m model to achieve high degree
nodes. As in Section 3.2 we first generate a prime graph Gn,m which we
extend to a graph Gn,m,h. For each node 1 ≤ i ≤ h we add links to randomly
selected nodes until the degree of the i-th node is n

2
h−i
h

. The parameter h is
set to h =

√
n for the results shown in Figure 3.7.

Now, the number of triangle operations is obviously not linear in the graph
size, see Figure 3.7(a). Again the algorithms node-iterator-core and forward-
hashed perform best in limiting the asymptotic effort. However, they are
only in second and third place in the execution time. Algorithm forward
performs clearly best.

Remarks on the Experiments

Before discussing the results we complement the experiments by comparing
Hashing versus Balanced Tree data structures for storing edges, see Sec-
tion 19. We also consider the statistical variation of the execution times in
Section 19.

Hashing versus Balanced Trees

We investigate the performance between hashed containers and balanced tree
containers for storing the edges. The template from gnu cxx::hash map

was used for the hashed container. We store two pointers from the incident
nodes of an edge. The hashing function combines two random bit fields of
size size t (one for each node) with the XOR operation. The tree container is
based on the template std::set, which is an implementation of a red-black
tree. An edge is coded with the lexicographic order of the two addresses of
the incident node pointers.

The results are shown in the Figure 3.8. We can observe that the hashed
data structure outperforms the balanced tree structure. This justifies the
chosen hashing function and the use of a hashed container in general for the
purpose of testing edge existence.

3.2. EXPERIMENTAL RESULTS 45

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07 9e+07

edge-iterator
node-iterator

edge-iterator-hashed
forward

listing-ayz
node-iterator-core

forward-hashed
triangles

(a) triangle operations vs number of edges

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07 9e+07

node-iterator
edge-iterator

edge-iterator-hashed
listing-ayz

node-iterator-core
forward-hashed

forward

(b) execution times in seconds vs number of edges

Figure 3.7: Generated graphs with high degree nodes.

46 CHAPTER 3. TRIANGLE LISTING ALGORITHMS

 0

 1000

 2000

 3000

 4000

 5000

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07

node-iterator TREE
node-iterator HASH

listing-ayz TREE
node-iterator-core TREE

listing-ayz HASH
node-iterator-core HASH

Figure 3.8: Hashing versus balanced trees: Execution time in seconds (y-axis)
depending on the number of edges (x-axis).

Statistical Experiments of the Execution Times

The algorithms show some unsteady behavior in the experiments for the ex-
ecution times. The obvious pikes for the algorithms using a hashed container
for the edges are caused by rehashing of the container. But there are other
influences like the variations in the structure of the generated graph or other
processes running on the same machine. To investigate these influences we
generated for each algorithm 100 graphs. The sizes of the graphs are chosen
such that the average execution time is not far from 60 seconds.

The results are shown in the Table 3.1. The variation of the execution
times behaves well. As expected it is lower when the algorithm runs on
the same graph (Table 3.0(a)) compared to test it on 100 different graphs
(Table 3.0(b)).

Chapter Conclusion

The two known standard algorithms node-iterator and edge-iterator are asymp-
totically equivalent (Lemma 7). However, the algorithm edge-iterator can be
implemented with much lower overhead (Figure 3.6(b)). It works very well
for graphs with degrees that do not differ much from the average degree
(Figure 3.3, Figure 3.6).

3.2. EXPERIMENTAL RESULTS 47

(a) 100 graphs: one execution for each graph (time/sec)

min mean max std. deviation
node-iterator 58.83 66.94 83.18 6.15
listing-ayz 59.46 64.79 80.86 4.78

node-iterator-core 58.85 66.36 80.57 5.36
edge-iterator 59.72 60.62 61.18 4.06

edge-iterator-hashed 58.68 60.59 68.13 1.93
forward 56.11 60.08 67.49 3.18

forward-hashed 58.76 62.23 67.75 2.71

(b) 100 executions on one single graph (time/sec)

min mean max std. deviation
node-iterator 59.48 61.92 76.96 2.80
listing-ayz 62.72 69.15 81.39 5.33

node-iterator-core 58.98 66.12 79.99 5.07
edge-iterator 59.78 60.60 61.22 0.25

edge-iterator-hashed 59.95 66.08 72.88 2.71
forward 57.74 61.15 64.31 1.66

forward-hashed 59.18 64.05 69.23 2.81

Table 3.1: Statistical evaluation of the execution times.

If the degree distribution is skewed, refined algorithms are required. The
algorithms node-iterator-core and forward-hashed are most efficient in reduc-
ing the number of triangle operations (Figure 3.4(c), 3.5(c), 3.6(a), 3.7(a)).
However, they require advanced data structures which result in high overhead
(Figure 3.3(b), 3.4(b), 3.6(b), 3.7(b)). The algorithm forward experimentally
shows to be a good compromise. Its execution time is close to the one of algo-
rithm edge-iterator for networks with low deviation from the average degree
(Figure 3.4(b), 3.6(b)). However, it clearly performs best for graphs with
notably skewed degree distributions (Figure 3.5(b), 3.7(b)). In general, algo-
rithm forward achieves the best execution times. Altogether, we have shown
that listing and counting triangles can be performed in reasonable time even
for huge graphs.

We have shifted the future focus rather on memory consumption by the given
fast algorithm. As a first step in this direction algorithm forward has been
improved, mainly with respect of lower memory consumption, to algorithm
compact-forward in [Latapy, 2006]. However, both algorithms require al-
ready only linear space and consequently the next step might be in limiting

48 CHAPTER 3. TRIANGLE LISTING ALGORITHMS

the usage of central memory. Since triangles can not be listed by stream-
ing algorithms with reasonable models [Bar-Yosseff et al., 2002] further ap-
proaches could be based on memory hierarchy methods. A survey on this
matter is [Meyer et al., 2003]. Indeed, in the meanwhile an apdoption of the
algorithm forward has been implemented into the secondary memory library
STXXL [Dementiev et al., 2005].

Chapter 4

Algorithms for Counting and
Listing Triangles in Special
Graph Classes

Chapter Introduction

In this chapter we will give efficient algorithms for listing and counting trian-
gles for certain graph classes. We strive to achieve running time in O(m + δ),
where δ is the number of triangles in the graph for listing triangles. In the
case of counting triangles for each node we aim to achieve running time in
O(m). One could regard such running times as optimal with respect to the
parameters m respectively δ.

However, it is possible to beat such optimal running times, for example if
we know that we have a complete graph. While this case certainly is patho-
logical and uninteresting, we will give an example in which we achieve O(n)
running time for counting by using a certain encoding of the graph. Note that
we purposely do not handle properties relying on solution methods that in-
volve high constants in any implementation of the algorithms. We have seen
that there are very efficient general algorithms in Chapter 3. This renders
algorithms with high constants disadvantageous to use.

Contribution and Related Work. As far as we know efficient triangle
listing algorithms have not been considered for special graph classes. There
exist work for triangle counting that considers other parameters such as de-
generacy or arboricity, see [Chiba and Nishizeki, 1985; Alon et al., 1997] for

49

50 CHAPTER 4. GRAPH CLASSES

example. For some parts triangle counting has been considered previously,
albeit by other methods. In these cases we will give a reference to the relevant
work.

Organization. We consider graphs with bounded core number in Sec-
tion 4.1. Planar graphs and graphs constructed by preferential attachment
belong to this class. Section 4.2 treats comparability graphs and Section 4.3
chordal graphs. In Section 4.4 distance hereditary graphs are discussed.

Before we start let us agree on the following. We will use a sentence like
“Algorithm xyz lists all triangles.” in the meaning that algorithm xyz lists
all triangles, each triangle is listed exactly once, and nothing else but tri-
angles are listed by the algorithm. This convention makes many upcoming
statements compact and easy to read.

4.1 Graphs with Bounded Core Numbers

We introduced the core concept in Section 2.4 on page 18. And in Sec-
tion 3.1.2 we have seen that there exists a listing algorithm with running
time O(κ2 · n) where κ is the core number of the graph. See node-iterator-
core listed in Algorithm 3.4 on page 29. If κ is bounded by a constant we get
a running time in O(m) and we list a few graph classes which benefit from a
bounded core number in the following.

Planar Graphs

A planar graph is characterized by the property that it can be embedded in
the plane such that no two edges intersect except in the incident node. A
linear time algorithm for finding a triangle in a planar graph was given by
Itai and Rodeh [1978], see also page 24 in Section 3.1.1. It can be extended
to counting and listing all triangles without additional costs with respect to
asymptotic running time.

Theorem 3 All triangles of a planar graph can be listed in linear time.

Our approach is slightly simpler than the algorithm in [Itai and Rodeh, 1978].
We use the fact that each planar graph has at least one node with degree
five or less. Clearly, a planar graph remains planar when parts of it are
removed. Hence, the core number of any planar graph is also 5 or less.

4.2. COMPARABILITY GRAPHS 51

(a) transitive triangle (b) cyclic triangle

Figure 4.1: Directed triangle orientations.

Preferential Attachment Graphs

The so called preferential attachment graphs are generated graphs where in
every iteration a node v and µ new edges, each connecting v to some existing
node, are added. See Section 6.1 on page 95 for more details. We point out
that the last added node v has degree µ and consequently the core number
is bounded by the parameter µ.

Theorem 4 All triangles of generated preferential attachment graphs can be
listed in linear time for fixed parameters µ.

4.2 Comparability Graphs

An undirected graph that has an acyclic transitive orientation is called a
comparability graph. A digraph D = (V, A) is transitive oriented if (u, v),
(v, w) ∈ A implies the existence of (u, w) ∈ A, see Figure 4.1(a). We will
show Theorem 5 in this section.

Theorem 5 All triangles of a comparability graph can be listed in O(m + δ)
time and counted in O(m) time.

Golumbic [1977] gave an algorithm to compute a transitive orientation of a
comparability graph in time in O(dmax ·m). The first linear time algorithm
was given much later by McConnell and Spinrad [1997].

A Triangle Listing Algorithm for Comparability Graphs

The required existence of the arc (u, w) in Figure 4.1(a) leads to a simple
algorithm for listing triangles. For every node v one simply outputs all pairs
consisting of one adjacent incoming with one adjacent outgoing node. Here,

52 CHAPTER 4. GRAPH CLASSES

incoming respectively outgoing refers to the edge by which the node is con-
nected to v. This is idea is realized in Algorithm 4.1.

Algorithm 4.1: Triangle Lister for Comparability Graphs

Input: comparability graph D = (V, A) in transitive orientation
Output: all triangles
forall v ∈ V do1

forall u ∈ {u ∈ V : ∃(u, v) ∈ A} do2

forall w ∈ {w ∈ V : ∃(v, w) ∈ A} do3

output triangle {u, v, w};

Lemma 6 Algorithm 4.1 lists all triangles of comparability graph given in
transitive orientation. It can be implemented to run in O(n + δ) time.

Proof: We start with the correctness. Every triangle has to be in transi-
tive orientation. Clearly each transitive triangle has a center node v, as in
Figure 4.1(a). Hence, each triangle is listed exactly once by the algorithm.
Clearly, each output {u, v, w} is guaranteed to be a triangle.

Let us consider the time complexity. If we consider the loop starting at line 1
to be empty we iterate in n steps over all nodes. We start the loop of line 2
conditional only if the outgoing links from v are not empty. Thus, we guar-
antee that every iteration produces an output and both loops are in O(δ).
Note that we still get running time in O(m + δ) if we do not perform this
test. �

A Triangle Counting Algorithm for Transitively Ori-
ented Graphs

Algorithm 4.1 lists the counting algorithm for comparability graphs in tran-
sitive orientation.

Lemma 7 Algorithm 4.1 counts all triangles of a transitive orientation for
each node. It can be implemented to run in O(m) time.

Proof: Note that the number of outgoing and incoming edges (line 5 and
line 3) of a node sum up to the degree. Then the running time is due to the
Handshake Lemma.

4.3. CHORDAL GRAPHS 53

Algorithm 4.2: Triangle Counter for Comparability
Graphs
Input: comparability graph D = (V, A) in transitive orientation
Output: number of triangles δ(v) for each node v
forall x ∈ V do1

δ(x)← din(x) · dout(x);2

forall v ∈ {v ∈ V : ∃(x, v) ∈ A} do3

δ(x)← δ(x) + dout(v);4

forall v ∈ {v ∈ V : ∃(v, x) ∈ A} do5

δ(x)← δ(x) + din(v) ;6

We distinguish between three types of triangles for each node x. There are
exactly din(x) · dout(x) triangles for which x is the center node (x = v in
Figure 4.1(a)). They are counted in line 2. The node x is the “first” node
(x = u in Figure 4.1(a)) of the triangles with the pair (v, w) ∈ V × V for
which (x, v), (v, w) ∈ A. There are exactly

∑
v:(x,v)∈A dout(v) of those and

they are counted in the loop starting at line 3. The node x is the “last” node
(x = w in Figure 4.1(a)) of the triangles with the pair (u, v) ∈ V × V for
which (u, v), (v, x) ∈ A. There are exactly

∑
v:(v,x)∈A din(v) of those and they

are counted in the loop starting at line 5.

�

4.3 Chordal Graphs

A graph is chordal if every simple cycle of length at least four has a chord,
i.e. an edge between two nodes that do not induce an edge in the cycle.
Equivalently, a chordal graph does not have an induced k-cycle for k larger
than three. A perfect elimination order (PEO) is an order of the nodes
v1, . . . , vn such that all neighbors of vi in G[{vj : j ≤ i}] induce a clique.
A graph is chordal if and only if it has a perfect elimination order [Fulker-
son and Gross, 1965]. Testing chordality and moreover computing a perfect
elimination order can be done in linear time [Rose et al., 1976].

This is done with so called lexicographic breadth first search (lexBFS) a vari-
ant of BFS which ensures that unvisited neighbors of a currently visited
node are discovered before non-neighbors. A survey of lexBFS and related
elimination orders can be found in [Corneil, 2004].

54 CHAPTER 4. GRAPH CLASSES

Now, we have collected all ingredients to efficiently perform triangle compu-
tation in chordal graphs and in the end show the following Theorem:

Theorem 6 All triangles of a chordal graph can be listed in O(m + δ) time
and counted in O(m) time.

To do so, we first compute a PEO and then iterate over the nodes in the
inverse order. In each iteration we determine all triangles of the current
node with those nodes of lower PEO number. How this is precisely done
depends on whether we want to count, see Algorithm 4.4, or list all triangles,
see Algorithm 4.3.

Algorithm 4.3: Triangle Lister for Chordal Graphs

Input: chordal graph G; PEO (v1, . . . , vn);
Output: all triangles
for vk = (vn, . . . , v1) do1

forall vi ∈ Γ(vk) do2

forall vj ∈ Γ(vk), i < j do3

output triangle {vi, vj, vk};4

remove vk from G;5

Lemma 8 Algorithm 4.3 lists all triangles of a chordal graph. It can be
implemented, such that it runs in O(m + δ) time.

Proof: We start with the correctness of the algorithm. In line 4 only
triangles are listed, since all neighbors of vk with lower PEO number than
k induce a clique together with vk. Note that i < k (i.e. all neighbors of vk

have lower PEO number than vk) is always true because of line 5.

A triangle is listed at most once since any combination of i, j, k can appear
at most once. This is due to the removal of node vk after processing it in
line 5 and the requirement i < j in line 3.

It remains to be shown that all triangles are listed. Let G[{u, v, w}] be a
triangle and without loss of generality assume u < v < w with respect of the
given PEO. Since k iterates over all vertices there is a value of k such that
vk = w. Note that at this time u and v are still present in the graph because
we iterate in invers PEO in line 1. Then there must exist some value of i
such that vi = u and some value of j such that vj = v. Therefore the triangle
{u, v, w} is listed.

4.3. CHORDAL GRAPHS 55

We turn to the time complexity. A crucial point is to execute line 2 and
line 3 efficiently, i.e. incrementing i and j in constant time. This can be
achieved if the neighborhoods are also sorted according to the PEO. Sorting
all neighborhoods according to a given order of nodes can be done in linear
time, e.g. by proceeding in a similar manner as in Algorithm 3.6 on page 32.

By the proof of correctness above line 4 is executed exactly δ times. However,
the Loop in line 3 might be empty. Therefore, it remains to be shown that
all loops including those of line 3 are in linear time. This is nothing else but
an iteration over all edges. �

Algorithm 4.4: Triangle Counter for Chordal Graphs

Input: chordal graph G; PEO (v1, . . . , vn);
Output: all triangles
for i = (1, . . . , n) do

δ(vi)← 0;

for vk = (vn, . . . , v1) do1

δ(vk)← δ(vk) +
(

d(vk)
2

)
;2

forall vi ∈ Γ(vk) do3

δ(vi)← δ(vi) + d(vk)− 1;4

remove vk from G;5

Algorithm 4.4 is merely an adoption of Algorithm 4.3 for counting.

Lemma 9 Algorithm 4.4 counts all triangles of a chordal graph. It can be
implemented, such that it runs in O(m) time.

Proof: We start with the time complexity. Analogous as in the previous
proof all loops together can be implemented to run in the order of the number
of edges. Nothing else remains to be shown here.

We show in the following that in every iteration of the loop beginning at
line 1 all currently existing triangles containing the node vk (and no more)
are counted.

Only neighbors of vk with lower PEO are present in the current loop k. There
are |Γ(vk)| = d(vk) such neighbors with which vk induces a clique and hence
there are

(
d(vk)

2

)
triangles in this clique containing node vk. Consequently in

line 2 all triangles of node vk with nodes of lower PEO number than k are
counted for node vk.

56 CHAPTER 4. GRAPH CLASSES

(a) house (b) hole (c) domino (d) gem

Figure 4.2: Forbidden induced subgraphs.

It remains to be shown that the triangles are counted for the nodes with
PEO number less than k. In the loop starting at line 3 the triangle number
for these nodes is updated. There are again d(vk) of them. Each forms
triangles with vk and the rest of the d(vk) − 1 nodes in the induced clique.
Consequently the number d(vk)− 1 has to be added, which is done in line 4.

Arriving at line 5 all triangles containig node vk have been counted and vk

can be savely removed. �

4.4 Distance Hereditary Graphs

The distance hereditary graphs will be the last graph class we consider in
this chapter.

Introduction and Preliminaries

A connected graph G is distance hereditary if for any path P of G the induced
subgraph G[V(P)] is distance preserving (isometric). That means that any
two nodes of P have the same distance in G as in G[V(P)]. We will use the
abbreviation DH for distance hereditary in the following.

There exists an equivalent definition by forbidden subgraphs [Hammer and
Maffray, 1990]: a graph is DH if and only if it does not have an induced
subgraph of the type: house, hole (induced cycle of length at least five),
domino or gem. See Figure 4.2. The abbreviation HHDG-free is frequently
used in the literature.

Distance hereditary graphs have an equivalent description, like chordal graphs,
based on an elimination order. A graph is distance hereditary if and only if
it has a 2-simplicial elimination order [Nicolai, 1996]. See for example the

4.4. DISTANCE HEREDITARY GRAPHS 57

(a) split (b) split decomposition

Figure 4.3: A split and its decomposition.

survey [Corneil, 2004] for the definition and computation of such an order.
We used the perfect elimination order to efficiently list and count triangles
for the case of chordal graphs in Section 4.3. However, here we will use a
further equivalent formulation for DH graphs based on splits.

We have listed the important and more common ways to describe DH graphs,
but there are more. The book “Graph classes, a survey” [Brandstädt et al.,
1999] is a good starting point for the interested reader.

Splits

A split [Cunningham, 1982] in a graph G = (V, E) is a partition of the set V
into two sets U and W , such that |U | > 1 as well as |W | > 1, and such that
for all u′, w′ : u′ ∈ U ′ = U ∩ Γ(W), w′ ∈ W ′ = W ∩ Γ(U) ⇒ {u′, w′} ∈ E.
See Figure 4.3(a) for an example.

Given a split S = (U,W) the graph can be split decomposed by

1. adding the split nodes u and w,

2. adding the split edge {u, w},

3. adding the edges {{u′, u} : u′ ∈ U ′} and {{w,w′} : w′ ∈ W ′} respec-
tively, and

4. removing all edges {{u′, w′} : u′ ∈ U ′, w′ ∈ W ′}.

See Figure 4.3 for an example. We will call the edges which are not created
in Step 2 the regular edges.

Without the split edge {u, w} the remaining graph falls into two connected
components which are called the split components. This procedure can be ap-
plied recursively until no further suitable split is found. If the result consists
of components of the size three the graph is called totally split decomposable,

58 CHAPTER 4. GRAPH CLASSES

(a) original graph (b) totally decomposed graph

Figure 4.4: A graph and its total decomposition.

see Figure 4.4. As the split edges always form bridges between the compo-
nents the resulting graph is a tree of components which is called the split
decomposition tree.

A graph is totally decomposable if and only if it is distance hereditary [Ham-
mer and Maffray, 1990]. The total decomposition can then be computed in
linear time [Hammer and Maffray, 1990]. A later result also gives a linear
time decomposition algorithm for the general case [Dahlhaus, 1994].

Let us have a closer look to adjacent nodes in Figure 4.4(a) and their connec-
tion in the decomposition in Figure 4.4(b). We can see that all of them are
connected by an alternating path of regular and split edges. This observation
holds generally and we emphasize it in Lemma 10 since it will become very
useful in later sections of this chapter.

Lemma 10 Two nodes are adjacent in G if and only if they are connected
by a path of alternating regular and split edges in the decomposition tree T .

Both directions can be easily seen by induction over the splits. Note, that
such a path always starts and ends with a regular edge.

There are only 9 variants of components in a total decomposition possible, see
Figure 4.5 on page 71. As the total decomposition is a tree of components we
divide the components into leaf components (Figure 4.5(a) to Figure 4.5(c)),
and internal components(Figure 4.5(d) to Figure 4.5(h)). Component comp-
0 (Figure 4.5(i)) is listed for completion. From now on, we will exclude graphs
of size less than 4 from the discussion.

4.4. DISTANCE HEREDITARY GRAPHS 59

The Size of the Total Decomposition Tree

The algorithms for counting or listing triangles, which we will give later
in this section, take the decomposition tree of a DH graph as an input.
We already mentioned that it can be efficiently computed in linear time.
However, it is even more interesting if DH graphs are stored implicitly as a
total decomposition.

Lemma 11 Let T be an arbitrary total decomposition tree of a DH graph G.
The size of T is linear in the number of the nodes of G.

Proof: Let T denote the total decomposition tree of a DH graph G. Let
l1 be the number of leaf components, l2 the number of internal components
with exactly 2 split nodes, and l3 the number of internal components with

3 split nodes. Then |T | ∈ Θ(l1 + l2 + l3) clearly holds since T is a tree.
We show that l1 + l2 + l3 ∈ O(|V |) in the following. Since any of the leaf
components includes two nodes of G we have

l1 ∈ O(|V |) . (4.1)

Likewise l2 ∈ O(|V |) is true, because each such component includes one node
of G. It remains to be shown that l3 ∈ O(|V |).

Let T ′ be the tree in which all of the internal components with exactly 2
split nodes have been replaced by a split edge. All the leaf components and
internal components with 3 split nodes remain. Since T ′ is a connected tree
it follows by induction that l1 = 2 + l3. Now, by Equation 4.1 l3 ∈ O(|V |)
holds, too. �

The Listing Algorithm

We have collected all ingredients to formulate an algorithm and prove the
following theorem by the end of this chapter.

Theorem 7 All triangles of a distance hereditary graph can be listed in linear
time.

The algorithm we will develop in this section takes a total decomposition
tree T as an input. The more or less straight forward solution would be
to reconstruct the original graph G by iteratively rebuilding the splits. Let

60 CHAPTER 4. GRAPH CLASSES

us again consider Figure 4.3 on page 57. If we store the “inter split” edges
between W ′-nodes (as well those between U ′-nodes) we can easily output all
the triangles that occur across this split: each node in U ′ forms a triangle
with each inter W ′ edge (and also the other way round). No other triangles
are involved in this split.

We use the basic idea just mentioned. However, we proceed in a slightly more
complicated fashion. The reason is that we can then reuse some concepts in
the next section, where we will discuss efficient triangle counting.

Instead of simply merging some random split we proceed from outside to
inside, towards a randomly chosen split edge which we call the root. We
thereby use an order that ensures that the components lying to the outside
of the currently processed split have already been processed. Such an order
is the well known postorder tree traversal for example. Note that during the
traversal we do not rebuild G from its decomposition representation. We only
carry along and modify interesting sets of nodes and edges that are potential
candidates for triangles.

Let us go into details, Algorithm 4.5 on page 61 contains the core steps. Han-
dling of the internal components is separated into Function 4.6 on page 62.
In the first part of Algorithm 4.5 starting at line 1 the leaf components are
initialized. For each leaf component we create two sets: one containing

edges and the other containing nodes. These sets are associated with the
split node of the component. The part starting at line 3 handles the pro-
cessing of the internal components. Here, the associated data of already
processed neighboring components are evaluated (e.g. triangles lying across
the affected split are listed), updated and passed on. The chosen postorder in
line 3 guarantees that components lying outside of a current component have
already been processed. In Figure 4.4 on page 58 the direction of the split
edges implies which components are outside with respect to the undirected
root edge. The tuple of integers listed with each component is one valid pre-
and postorder with respect to the root.

The actual handling of each internal component is listed in Function 4.6 on
page 62. Note that distinguishing between components does not suffice. Let
us consider for example the component comp-iic:

• If the component is traversed as in Figure 4.6(c), by Lemma 10 the node
x does not share an edge with any of the nodes of the set associated
with u′. This case is handled in line 1 and following.

• On the other hand, if the component is traversed as in Figure 4.6(d),
again by Lemma 10 the node x forms triangles with all the edges in

4.4. DISTANCE HEREDITARY GRAPHS 61

Algorithm 4.5: Triangle Lister for DH Graphs

Input: total decomposition of a DH graph G
Output: all triangles of G
for comp ∈ LeafComponents do1

switch comp do
case comp-ia

V (w)← {x, y}, E(w)← {{x, y}}
case comp-ib

V (w)← {x, y}, E(w)← ∅
case comp-ic

V (w)← {y}, E(w)← ∅

RootEdge: {u, w} ← arbitrary split edge between two internal2

components;
forall comp = (int. components in postorder with resp. RootEdge) do3

OutIn(comp) see Function 4.6 on page 62

for x ∈ V (u) do4

for {y, z} ∈ E(w) do
output triangle {x, y, z};

for x ∈ V (w) do5

for {y, z} ∈ E(u) do
output triangle {x, y, z};

62 CHAPTER 4. GRAPH CLASSES

Function 4.6: Triangle Lister for DH Graphs: OutIn
case comp-iia Figure 4.6(a)

for {y, z} ∈ E(u′) do
output triangle {x, y, z};

V (w)← {x}, E(w)← ∅;
case comp-iib Figure 4.6(b)

for {y, z} ∈ E(u′) do
output triangle {x, y, z};

E(w)← E(u′);
for y ∈ V (u′) do

E(w)← E(w) ∪ {{x, y}} ;
V (w)← V (u′) ∪ {x};

case comp-iic case 1 Figure 4.6(c)1

E(w)← E(u′), V (w)← V (u′) ∪ {x};
case comp-iic case 2 Figure 4.6(d)2

for {y, z} ∈ E(u′) do3

output triangle {x, y, z};
E(w)← E(u′), V (w)← V (u′);4

case comp-iiia Figure 4.6(e)5

E(w)← E(u′) ∪ E(v′);
for x ∈ V (u′) do

for {y, z} ∈ E(v′) do
output triangle {x, y, z};

for x ∈ V (v′) do
for {y, z} ∈ E(u′) do

output triangle {x, y, z};

for x ∈ V (v′) do
for y ∈ V (u′) do

E(w)← E(w) ∪ {{x, y}};

V (w)← V (u′) ∪ V (v′);

case comp-iiib case 1 Figure 4.6(f)
for x ∈ V (u′) do

for {y, z} ∈ E(v′) do
output triangle {x, y, z};

for x ∈ V (v′) do
for {y, z} ∈ E(u′) do

output triangle {x, y, z};

E(w)← E(v′), V (w)← V (v′);

case comp-iiib case 2 Figure 4.6(g)
V (w)← V (u′) ∪ V (v′), E(w)← E(u′) ∪ E(v′)

4.4. DISTANCE HEREDITARY GRAPHS 63

the set associated with node u′ but not with any nodes in the data sets
associated with w. This case is handled in line 2 and the following.

The component comp-iiib has to be treated in a similar way. The remaining
components are symmetric with respect to the traversal.

We come to the third and final part of Algorithm 4.5. After all internal
components have been treated the root edge {u, v} has associated data to
both nodes. By Lemma 10 the nodes in the node set attached to u form
triangles with all the edges of the attached set to w and vice versa. The
triangles are computed in the same fashion as for component comp-iiia (see
line 5 of Function 4.6).

Lemma 12 Algorithm 4.5 lists exactly the triangles of a DH graph.

Proof: We prove by induction over the processing of the components in
the same order as Algorithm 4.5 proceeds.

To do so we need some definitions first. Let us call the split node of a
component which is closest to the root edge the inward split node. Each
component has such a node, one and only one. We will denote this node for
the currently regarded component with w throughout this proof. Further we
use w′ for the node connected with a split edge {w,w′} to w. The remaining
split nodes of a component are denoted with u and v, if they exist. This
notation is consistent with Figure 4.6 on page 72.

For a decomposition tree T and some split edge {u, w} we assume that B{u,w}
would be a decomposition of G with only one split, namely the one induced
by {u, w}. Further let Bu be the connected component of B{u,w} \ {u, w}
that includes u. Let us regard Figure 4.3 on page 57 for an example, where
Bu corresponds to the induced graph of the nodes U ∪ U ′ ∪ {u}. Note also
that our algorithm never rebuilds any Bv actually. It is a merely theoretical
concept used only within this proof.

We will show that the following induction hypotheses hold after processing
the current component with the inward split node w:

1. All the triangles induced by V(Bw) in G have been listed.

2. The set E(w) contains exactly all the edges of E(G) that are part
of a triangle with the node w in Bw: E(w) = {{x, y} ∈ E(G) :
{x, w}, {y, w}, {x, y} ∈ E(Bw)}.

64 CHAPTER 4. GRAPH CLASSES

3. The set V (w) contains exactly all the nodes of V(G) that are adjacent
to w in Bw: V (w) = {x ∈ V(G) : {x, w} ∈ E(Bw)}.

Note that only invariant 1 is relevant to finally show the Lemma, the re-
maining ones are only helper statements. The inductive base cases consist
on verifying the properties listed above for the components handled before
line 2 is reached. These are all the leaf components and the correctness for
those is easy to see.

In the following we show that the statements hold when processing compo-
nent “comp-iic case 2” as in Figure 4.6(d). This case is handled by line 2
and following in Function 4.6. By Lemma 10 the node x is connected to all
nodes in V (u′) and hence forms triangles with all the edges in E(u′). All
these triangles (and no others) are listed in the Loop beginning at line 3.
According to Lemma 10 the node x is not connected to any of the nodes of
V(Bw) ∩ V(G) in G. Hence, it must not be included in V (w), and conse-
quently does not have an endpoint in E(w). The node u is incident to all
nodes listed in V (u′), hence again by Lemma 10 we can simply assign the
set V (u′) and E(u′) to the node w, which is done in line 4. This shows that
invariant 2 and 3 hold from which the correctness of invariant 1 follows.

Showing the invariants for the remaining 6 cases of Function 4.6 is quite
similar to what we have just seen. We omit the details here. We continue
with the final part, processing the root edge {w, u}. By the inductive hy-
pothesis all triangles induced by V(Bw) and V(Bu) in G have been listed.
By the invariants each edge in the set E(u) forms triangles with each node
in V (w) and the other way round. Also by the invariants and Lemma 10
no further triangle exists that contains both nodes from V(Bw) and V(Bu).
All these triangles and no further are listed in line 4 respectively line 5 of
Algorithm 4.5. �

Lemma 13 Algorithm 4.5 can be implemented to run in O(m + δ) time and
O(m) space.

Proof: We consider linked lists as data structures to store the edges and
nodes sets. They can be merged in constant time when the formation of
unions is required. The linear space requirement now follows from the fact
that each edge respectively node is contained in at most one of the sets.

For the time complexity we note that finding and initializing all the leaf
components can be done in linear time. Computing a postorder of the

4.4. DISTANCE HEREDITARY GRAPHS 65

internal components can also be done in linear time. We turn to the internal
components handled in Function 4.6. We first disregard all the for-loops, in
this case only set merging operations remain. Due to the linked lists such an
operation can be done in constant time and all merging operations together
are in the size of the number of components. Now, we disregard all the loops
containing triangle output. The remaining loops create edges and add them
to the sets or they add nodes to the sets. As already mentioned with the
space complexity each edge and each node is listed only once. Hence, all
these operations are in O(m).

Finally we include the for-loops with triangle output in our consideration.
With exception of component comp-iiib every iteration of the loops also
outputs a triangle. For component comp-iiib some empty iterations of the
outer loops iterating over the nodes could occur if the corresponding edge
sets are empty. However, this can be avoided if the edge sets are previously
tested whether they are empty. In that case only one operation is required in
the other case every operation also outputs a triangle. Therefore, the number
of all operations is in O(m + δ) time. �

The Counting Algorithm

We will show Theorem 8 by the end of this section. Note, that the O(n)
bound requires the graph to be encoded in total decomposition. Otherwise
a decomposition preprocessing step in O(m) time and space is required.

Theorem 8 All triangles of a distance hereditary graph can be counted in
O(n) time and space.

The main code is listed in Algorithm 4.7. As promised we reuse some concepts
that we developed with the listing algorithm of Section 26. Due to this we
can keep this introduction brief and focus on the main differences between
the two algorithms. Instead of storing sets of nodes and edges we only store
the size of those. We call the associated variables n(v) for the size of the
node set, respectively m(v) for the size of the edge set. In the listing case we
proceeded from outside to inside and listed the triangles along this traversal.
Here we traverse from outside to inside, too. See line 2 of Algorithm 4.7.
However, we then also traverse from inside to outside (line 2) where we take
along the data to the nodes. The actual output is then computed in a final
step in line 4.

66 CHAPTER 4. GRAPH CLASSES

Now, we proceed with actually showing Theorem 8 in several parts. These
parts are self contained but generally rather compact compared to those of
the previous chapter.

Algorithm 4.7: Triangle Counter for DH Graphs

Input: total decomposition of a DH Graph
Output: number of triangles δ(v) for each node v
RootEdge ← arbitrary split edge between two internal components;1

forall comp = (components in postorder with resp. RootEdge) do2

OutIn(comp) see Function 4.8 on page 69

forall comp = (components in preorder with resp. RootEdge) do3

InOut(comp) see Function 4.9 on page 70

forall comp ∈ components do4

Calc-δ (comp) see Function 4.10 on page 71

Lemma 14 Algorithm 4.7 can be implemented to run in O(n) time and
space.

Proof: We consider the time complexity first. Note that the postorder and
the preorder can be computed in time linear in the size of a tree. Processing
each component in the Functions 4.8, 4.9 and 4.10 can be done in constant
time. By Lemma 11 there are only O(n) components. Each component is
processed at most once in each of the three loops starting at line 2, 3, and 4.
Hence, the total running time is in O(n).

Now, let us consider the space complexity. We associate at most 2 integers
with each node. There are no more than 3 nodes in any component and by
Lemma 11 the number of components is in O(n). �

Lemma 15 Let T be the total decomposition tree of G. After the execution
of line 3 for each split node u the following holds:

• n(u) is equal to the number of regular nodes that are connected to u in
T by an alternating path,

• m(u) is equal to the number of pairs that consist of regular nodes, which
are themselves connected by an alternating path, and also connected by
an alternating path to u.

4.4. DISTANCE HEREDITARY GRAPHS 67

Proof: Let T be the total split decomposition tree of a DH graph G with
a designated root edge {u, w}. Let us call the split node of a component
which is closest to the root edge the inward split node. Each component has
exactly one such node. In Figure 4.4(b) on page 58 the inward split nodes
are those split nodes which are not pointed by an arrowhead. The remaining
split nodes are called the outward split nodes. Note that the in- and outward
split nodes define a partition on the set of the split nodes. Further, for some
split edge {w,w′} let Tw be the connected subtree of T \{w,w′} that includes
w.

We first prove the statement for all inward split nodes. We do so by induction
over processing the components in the same (post)order as used in line 2 of
Algorithm 4.7. The induction basis is covered by the processing of the leaf
components∗ handled in the Lines 1, 2, and 3 in Function 4.8. It is straight
forward to see that the statement holds after processing the leaf components
by Function 4.8.

We proceed to the inductive step where we consider exemplarily the process-
ing of component “comp-iic case 1” starting at line 4 in Function 4.8. By
induction hypothesis and by using postorder processing the associated n(u′)
and m(u′) data for node u′ has been computed such that the statements hold.
The node w is connected by an alternating path ending with a split edge to
u′. All the alternating paths from u′ to regular nodes in Tu′ start with non
split edges. Hence, w is connected by an alternating path to all those nodes,
too. Further w is connected by an alternating path to x. The number of
regular nodes connected to w by an alternating path in Tw is consequently
given by n(u′)+1. In Tw the node x is not connected by an alternating path
to any regular node that is connected to u′ by such a path. Hence, m(w) is
equal to m(u′) in Tw.

The correctness for the remaining components can be shown analogously.
This is rather straight forward and we do not go into further details. Now
the statements have to be shown for all of the outward nodes. This can be
done by induction over the components in preorder. It is again very similar
to the inward case and we omit the details here. �

For a split node u let {u, w} be its incident split edge. Assume that B{u,w}
would be the split decomposition of G with only one split, namely the one
induced by split edge {u, w}. Further let Bu be the connected component of

∗following strictly Algorithm 4.7 the set of bases cases would be empty and the leaf
nodes are handled in the inductive step, either way yields the same result

68 CHAPTER 4. GRAPH CLASSES

B{u,w} \ {u, w} which includes the node u. Figure 4.3 on page 57 shows such
an setup with G being the graph on the left (Figure 4.3(a)) and B{u,w} being
the graph on the right (Figure 4.3(b)).

If we consider Lemma 10 together with Lemma 15 we can immediately state
the following. After performing the out-in and in-out part of Algorithm 4.7
the number of the non split nodes adjacent to u in Bu is equal to n(u) and
the number of edges between those nodes in Bu is equal to m(u). Corollary 9
gives the statement in a more formal way.

Corollary 9 After the execution of line 3 in Algorithm 4.7 for each split
node u and Bu defined as above

n(u) = |{v ∈ V(G) : ∃{u, v} ∈ E(Bu)}| (4.2)

and
m(u) = |{{x, y} ∈ E(G) : ∃{u, x} and {u, y} ∈ E(Bu)}| (4.3)

hold.

We are going to use Corollary 9 to show the last Lemma in this section.

Lemma 16 Line 4 of Algorithm 4.7, respectively Function 4.10, computes
the number of triangles δ(v) for each node v of a distance hereditary graph.

Proof: We show exemplarily that component comp-ia is correctly handled
in line 1 of Function 4.10. Let w′ denote the adjacent split node of w.
By Lemma 10 node x forms triangles with all edges between neighbors of
w′ in Bw′ . There are exactly m(w′) such edges by Corollary 9. Further x
forms triangles with y and all nodes that are neighbors of w′ in Bw′ . There
are exactly n(w′) such neighbors. Consequently, these triangles sum up to
n(w′)+m(w′). By Lemma 10 we have considered all triangles that include x.
Thus, δ(x) is computed correctly in line 2. For node y the same arguments
hold and there remains nothing to be shown for this component.

Again showing the correctness for the remaining 6 components is analogous
to this case and we omit further details. �

4.4. DISTANCE HEREDITARY GRAPHS 69

Function 4.8: Triangle Counter for DH Graphs: OutIn
switch comp do

case comp-ia Figure 4.5(a)1

n(w)← 2, m(w)← 1;

case comp-ib Figure 4.5(b)2

n(w)← 2, m(w)← 0;

case comp-ic Figure 4.5(c)3

n(w)← 1, m(w)← 0;

case comp-iia Figure 4.6(a)
n(w) = 1;
m(w) = 0;

case comp-iib Figure 4.6(b)
n(w) = n(u′) + 1;
m(w) = m(u′) + n(u′);

case comp-iic case 1 Figure 4.6(c)4

n(w) = n(u′) + 1;
m(w) = m(u′);

case comp-iic case 2 Figure 4.6(d)
n(w) = n(u′);
m(w) = m(u′);

case comp-iiia Figure 4.6(e)
n(w) = n(u′) + n(v′);
m(w) = m(u′) + m(v′) + n(u′) · n(v′);

case comp-iiib case 1 Figure 4.6(f)
n(w) = n(v′);
m(w) = m(v′);

case comp-iiib case 2 Figure 4.6(g)
n(w) = n(u′) + n(v′);
m(w) = m(u′) + m(v′);

70 CHAPTER 4. GRAPH CLASSES

Function 4.9: Triangle Counter for DH Graphs: InOut
switch comp do

case comp-iia Figure 4.6(a)
n(u) = 1;
m(u) = 0;

case comp-iib Figure 4.6(b)
n(u) = n(w′) + 1;
m(u) = m(w′) + n(w′);

case comp-iic case 1 Figure 4.6(c)
n(u) = n(w′);
m(u) = m(w′);

case comp-iic case 2 Figure 4.6(d)
n(u) = n(w′) + 1;
m(u) = m(w′);

case comp-iiia Figure 4.6(e)
n(u) = n(v′) + n(w′);
m(u) = m(v′) + m(w′) + n(v′) · n(w′);
n(v) = n(u′) + n(w′);
m(v) = m(u′) + m(w′) + n(u′) · n(w′);

case comp-iiib case 1 Figure 4.6(f)
n(u) = n(v′);
m(u) = m(v′);
n(v) = n(u′) + n(w′);
m(v) = m(u′) + m(w′);

case comp-iiib case 2 Figure 4.6(g)
n(u) = n(w′);
m(u) = m(w′);
n(v) = n(w′);
m(v) = m(w′);

4.4. DISTANCE HEREDITARY GRAPHS 71

Function 4.10: Triangle Counter for DH Graphs: Calc-δ
switch comp do

case comp-ia Figure 4.5(a)1

δ(x) ← m(w′) + n(w′);2

δ(y) ← m(w′) + n(w′);

case comp-ib Figure 4.5(b)
δ(x) ← m(w′);
δ(y) ← m(w′);

case comp-ic Figure 4.5(c)
δ(y) ← m(w′);
δ(x) ← 0;

case comp-iia Figure 4.5(d)
δ(x) ← m(u′) + m(w′);

case comp-iib Figure 4.5(e)
δ(y) ← m(u′) + m(w′) + n(u′)n(w′);

case comp-iic Figure 4.5(f)
δ(x) ← m(w′);

(a) comp-ia (b) comp-ib (c) comp-ic

(d) comp-iia (e) comp-iib (f) comp-iic

(g) comp-iiia (h) comp-iiib (i) comp-0

Figure 4.5: Components of a total decomposition.

72 CHAPTER 4. GRAPH CLASSES

(a) comp-iia (b) comp-iib

(c) comp-iic case 1 (d) comp-iic case 2

(e) comp-iiia (f) comp-iiib case 1

(g) comp-iiib case 2

Figure 4.6: Directions for the processing the internal components.

Chapter 5

Applications of Triangle Listing
in Network Analysis

Chapter Introduction

In this chapter we will discuss applications in network analysis for which the
computation of the related indices is based either on triangle counting or
triangle listing.

The clustering coefficient introduced by Watts and Strogatz [1998] is prob-
ably the most established network index that is computationally based on
triangle counting. Given three actors u, v and w with mutual relations be-
tween v and u as well as between v and w, the clustering coefficient of the
node v represents the likelihood that u and w are also related. In other words
it is the average value of edges between pairs of neighbors. When we con-
sider the graph induced by the neighbors of v it is the density of this graph.
Therefore we prefer to use the term neighborhood density. The average value
over all nodes is the clustering coefficient coefficient of the graph. It is one of
the most popular network indices. At the time of this writing a search with
scholar.google.com for the term yields about 112000 results.

Harary and Paper [1957] introduced the index of transitivity in the context
of linguistics. It has become popular again for some time. However, mainly
because it has been used intendedly or unintendedly in the place of the
clustering coefficient, in [Newman et al., 2002] for example.

Various versions of the edge weighted neighborhood density have become
popular recently [Grindrod, 2002; Lopez-Fernandez et al., 2004; Barrat et al.,

73

74 CHAPTER 5. APPLICATIONS

2004; Onnela et al., 2005; Zhang and Horvath, 2005; Kalna and Higham,
2006]. The computation of those differs for the various cases.

Connectivity measures based on short cycles or small cliques have been pro-
posed by Batagelj and Zaveršnik [2003] and considered by Palla et al. [2005].
As a triangle is simultaneously the smallest non trivial clique and the short-
est non trivial cycle, efficient listing of triangles plays an important role in
the computation of this measures.

Contribution and Related Work. By the nature of this chapter we
mostly reproduce results from other publications and present them in a stan-
dardized manner.

In the case of the clustering coefficient and transitivity we mainly focus on
the properties and relation of theses parameters. The inequality of both
indices was discussed by Bollobás and Riordan [2002] and independently by
Ebel, Mielsch, and Bornholdt [2002]. We introduce a variant of the clustering
coefficient that takes weights of the nodes into account. We show that the
relation of both indices can be given by certain functions for the node weights.
The resulting equations of this approach were presented in [Bollobás and
Riordan, 2002].

The other indices are considered with respect of efficient computation. Our
basic approach is to give algorithms that compute the desired output by
generic triangle listing. This simply means that the algorithm can make use
of a procedure that lists all triangles of a graph, each triangle once and only
once. In the case of short cycle connectivity we can improve the algorithms
from [Batagelj and Zaveršnik, 2003]. The edge weighted clustering coefficient
has been used in many variations, we present a general algorithm that is
applicable for the different weight functions that have been considered.

Organization. We consider the connectivity induced by short cycles in
Section 5.1. A similar measure induced by small cliques follows in Section 5.2.
Section 5.3 contains the neighborhood density and most notably an extension
to weighted edges. Finally Section 5.4 discusses the clustering coefficient and
the related index of transitivity.

5.1 Short Cycle Connectivity

Batagelj and Zaveršnik investigated the connectivity induced by short cycles
in [Batagelj and Zaveršnik, 2003]. The idea is that nodes (respectively edges)

5.1. SHORT CYCLE CONNECTIVITY 75

have to be connected by a sequence of cycles which are overlapping in some
terms. The authors introduce the concepts for cycles of length 3 and give
also algorithms for the computation in this case. Some properties are proven
for general k-cycles but without algorithmic context.

Triangular Node Connectivity

Two nodes u and w are triangularly node connected if there exists a sequence
of triangles (∆1, . . . , ∆s) with u ∈ V(∆1), V(∆i)∩V(∆i+1) 6= ∅ for 1 ≤ i < s,
and w ∈ V(∆s). The triangular node connectivity defines an equivalence
relation V3 on the set of nodes.

Batagelj and Zaveršnik give an algorithm to compute the equivalence classes
of V3. It is based on algorithm edge-iterator (see page 29 in Section 3.1.3)
and it inherits the running time in O(dmax ·m) of that algorithm.

Lemma 17 ([Batagelj and Zaveršnik, 2003]) The equivalence classes of the
relation V3 can be computed in O(dmax ·m) time.

By the above definition two nodes u and w are related by V3 if and only if
there exists a path P that connects u and v and every edge in P is contained
in a triangle. Algorithm 5.1 uses this observation to compute the equivalence
classes of V3. It is based on generic triangle listing, which also bounds its
running time.

Corollary 10 The equivalence classes of V3 can be computed in O
(
m3/2

)
time.

Algorithm 5.1: Equivalence classes of V3

Input: graph G = (V, E);
Output: connected components C1,...,i of G, each containing

equivalent nodes;
forall ∆uvw ∈ G do

markEdge({u, v}); markEdge({v, w}); markEdge({w, u});
forall e ∈ E do

if e is not marked then
G← G[E \ e];

C1,...,i ← connected components of G;
return C1,...,i;

76 CHAPTER 5. APPLICATIONS

Figure 5.1: An example of triangular connectivity. There is only one equiv-
alence class of the nodes induced by V3 but three equivalence classes of the
edges induced by E3.

Triangular Edge Connectivity

The triangular edge connectivity induces equivalence classes of edges simi-
lar to the node connectivity. Two edges {u, w} and {x, y} are triangularly
connected if there exists a sequence of triangles (∆1, . . . , ∆s) with {u, w} ∈
E(∆1), E(∆i) ∩ E(∆i+1) 6= ∅ for 1 ≤ i < s, and {x, y} ∈ E(∆s). The trian-
gular edge connectivity defines an equivalence relation E3 on the set of the
edges. See Figure 5.1 for an example of induced equivalence classes given by
the two relations.

Lemma 18 ([Batagelj and Zaveršnik, 2003]) The equivalence classes of the
relation E3 can be computed in O(dmax ·m) time.

Algorithm 5.2: Equivalence classes of E3

Input: graph G = (V, E);
Output: sets S1,...,i, each holding equivalent edges
forall {u, w} ∈ E do

makeSet (S{u,w});

forall ∆uvw ∈ G do
union(S{u,v}, S{u,w});
union(S{u,v}, S{v,w});

return S1,...,i;

The algorithm in [Batagelj and Zaveršnik, 2003] depends on processing the
triangles in a specific order. Unfortunately, this cannot be guaranteed by
generic triangle listing. Our Algorithm 5.2 based on generic triangle listing
uses basic set creation, finding, and merging operations. This multiplies
the complexity of such operations to the running time complexity of triangle
listing. However, they can be performed asymptotically in α(m), see [Cormen
et al., 2001] for example. The function α is the inverse of the Ackermann

5.2. SMALL CLIQUE CONNECTIVITY 77

function. Note that α grows very slowly. It is a constant not bigger than
four for any practical considerations.

Corollary 11 The equivalence classes of the relation E3 can be computed in
O
(
α(m) ·m3/2

)
time.

We note that this result is more of theoretic value. The required data struc-
tures are generally not available in standard programming libraries, and the
BOOST-graph-library is the only exception we are aware of. However, a run-
ning time in O

(
log m ·m3/2

)
can be achieved by the more commonly used

dynamic tree data structures.

5.2 Small Clique Connectivity

In the two publications [Derenyi et al., 2005; Palla et al., 2005] connectivity
by overlapping of small cliques is considered. The basic idea is similar to the
short cycle connectivity in [Batagelj and Zaveršnik, 2003] which we discussed
in in the previeous section. Indeed, Batagelj and Zaveršnik [2003] generalize
the concept briefly and the connectivity considered by Palla et al. [2005]
can be seen as a special case of this. Note that the contributions differ in
principle. Batagelj and Zaveršnik consider methods whereas [Derenyi et al.,
2005; Palla et al., 2005] primarily contain analytical results on networks.

In the small clique connectivity the authors define two nodes u and w equiv-
alent if they are connected by a path of k cliques, where the overlap of the
cliques is k − 1 nodes at least. Let us give a more formal definition. Let
Gk = (V k, Ek) consist of the node set V k containing all k-cliques of G as
nodes. Two nodes vk

i and vk
j in V k are adjacent in Gk if and only if there

exist nodes v1, . . . , vk−1 ∈ V , all of them contained in V
(
vk

i

)
and in V

(
vk

j

)
,

i.e.
∣∣V(vk

i

)
∩ V
(
vk

j

)∣∣ ≥ k−1. The connected components in Gk are the basis
of the analytical consideration in [Palla et al., 2005]. Clearly this approach
does not define an equivalence relation on V as the cycle connectivity does.
A node v ∈ V might be contained in several nodes vk

i ∈ V k which can belong
to different connected components. The number of the different components
for a node v ∈ V is actually one of the considered properties.

Depending on what kind of analysis is done, one can either construct Gk

explicitly or construct sets, where each of those contains the nodes of V that
can be found in one connected component of Gk. However, these methods
are not subject of this work and in the following we will focus on listing
all of the k-cliques and in particular on the 4-cliques. The authors set k =

78 CHAPTER 5. APPLICATIONS

4 for the larger networks they consider. Let us note that they performed
their computation in a different way, which is only vaguely described in
the publication (quote [Palla et al., 2005]: “we use an algorithm which is
exponential”).

Algorithm 5.3 is essentially a compact presentation of Algorithm 3.7 on
page 35. We reproduce it here to conveniently compare the difference to
Algorithm 5.4 which is an extension to K4 listing. Now, let us consider the

Algorithm 5.3: 3-Clique Lister

Input: undirected graph G = (V, E);
nodes (1, . . . , n) in order of non increasing degrees;
adjacencies (γ1(v), . . . , γ|Γ|(v)) for each v = (1, . . . , n) ordered in same
order as the nodes;
Output: all 3-cliques as node-sets;
for ` = (1, . . . , n) do1

for k ∈ Γ(`), k < ` do2

for j ∈ Γ(k) ∩ Γ(`), j < k do3

output {j, k, l};

Algorithm 5.4: 4-Clique Lister

Input: undirected graph G = (V, E);
nodes (1, . . . , n) in order of non increasing degrees;
adjacencies (γ1(v), . . . , γ|Γ|(v)) for each v = (1, . . . , n) ordered in same
order as the nodes;
Output: all 4-cliques as node-sets;
for ` = (1, . . . , n) do1

for k ∈ Γ(`), k < ` do2

for j ∈ Γ(k) ∩ Γ(`), j < k do3

for i ∈ Γ(j) ∩ Γ(k) ∩ Γ(`), i < j do4

output {i, j, k, l};

time complexity. Recall from Section 3.1.3 that line 1 together with line 2
require m-steps. Line 2 can be performed in 2

√
m steps, because of k < l

(see also the proof of Lemma 5 on page 33). Now, by similar arguments line 4
multiplies 3

√
m more steps to the total running time and we can conclude

the following corollary.

5.3. NEIGHBORHOOD DENSITY 79

Corollary 12 Algorithm 5.4 lists all 4-cliques of an undirected graph. It can
be implemented to run in O(m2) time.

As in the case of the triangles we cannot expect any better result since an
n-clique contains Θ(n4) 4-cliques in terms of n, or Θ(m2) 4-cliques in terms
of m respectively. We can easily extend the algorithms to list all k-cliques.
The total number of steps of such an algorithm is given asymptotically by
1/k

∏k
i=1 (i

√
m) for k ≥ 2 and we can bound the running time of the derived

k-clique listing algorithm by O
(
k! mk/2

)
for k ≥ 2.

We tested an implementation of Algorithm 5.4 on the “Movie Actor Network
2004” (see page 38 in Section 3.2). The execution time to list all 4-cliques
turns out to be about 70 minutes. Let us recall that the execution time
for listing all triangles by an implementation of Algorithm 5.3 was about 1
minute. We did not try to list all 5-cliques. We can estimate very roughly
that the computation of those for the same graph should take somewhere
between 4 and 2000 days. The first number is a linear extrapolation from
triangle and 4-clique listing. The upper bound is due to the running time
analysis from above.

5.3 Neighborhood Density

Neighborhood Density or Clustering Coefficient of a
Node

Let us recall from Section 4 that the neighborhood density (also called the
clustering coefficient) of a node v with degree at least 2 is given by the quo-
tient of triangles and wedges %(v) = δ(v)/τ(v). A wedge of v is a simple path
of length 2 for which v is the center node. Therefore, the number of wedges
can be easily computed as

(
d(v)
2

)
. This leaves the determination of the num-

ber of triangles as the main problem in computing the neighborhood density.
We briefly discussed triangle counting algorithms and their complexity in
Section 3.1 on page 23. Up to date the most efficient counting algorithms
achieve running time in O(nγ) respectively in O

(
m2γ/(γ+1)

)
, where γ is the

matrix multiplication coefficient.

An algorithm based on generic triangle listing is given in Algorithm 5.5.

Corollary 13 Algorithm 5.5 computes the neighborhood density (i.e. clus-
tering coefficient of a node) for all nodes of a graph. It can be implemented
to run in O

(
m3/2

)
time.

80 CHAPTER 5. APPLICATIONS

Algorithm 5.5: Neighborhood Densities

Input: graph G with ∀v : d(v) ≥ 2
Output: neighborhood density %(v) for all nodes of V
for v ∈ V do

δ(v)← 0;

forall triangles ∆u,v,w in G do
δ(u)← δ(u) + 1;
δ(v)← δ(v) + 1;
δ(w)← δ(w) + 1;

for v ∈ V do

%(v)← δ(v)/
(

d(v)
2

)
;

The neighborhood densities are rarely considered for themselves. However,
the clustering coefficient which is the average value over all neighborhood
densities of a graph is very popular. We will discuss it in Section 5.4. A
variation of the node density that takes edge weights into consideration will
be discussed in the following.

5.3.1 Edge Weighted Neighborhood Density

We extend the neighborhood density in a natural way to take weights on edges
into account. A very general definition is given that includes the commonly
used varieties by which the weighted neighborhood desity can be defined.
We will give an efficient algorithm to compute these. We will discuss some
restricted cases and develop a faster algorithm for those.

Generalized Presentation

Let µ denote a function that maps each edge of the graph to a strictly positive
real, i.e. µ : E → R+. We write shorthand µuv for µ({u, v}) in the following.
Recall that the neighborhood density %(v) of a node v is defined as the
quotient of triangles divided by wedges %(v) = δ(v)/τ(v). We rewrite this
expression first in Equation 5.1, in which we replace δ(v) with the sum over
all triangles that contain node v. Likewise, we replace τ(v) with the sum of
all wedges for which v is the center node.

5.3. NEIGHBORHOOD DENSITY 81

%(v) =

∑
∆uvw∈{∆v⊂G}

1∑
Υuvw∈{Υv⊂G}

1
(5.1)

We place functions of the participating edge weights into the sums instead
of simply adding up the number 1. This extended formulation is given in
Equation 5.2. Note that we rather use a shorthand notation here, e.g. the
arguments of f and g are the edge weights of the triangles and not the
subgraphs themselves.

%µ(v) = ϕ(v)

∑
∆uvw∈{∆v⊂G}

f(µvu, µuw, µvw)∑
Υuvw∈{Υv⊂G}

g(µvu, µvw)
(5.2)

In this general setup we require the functions ϕ : V → R, g : R × R → R,
and f : R3 → R to be computable in O(1) time. Further, µ and g must be
chosen such that the denominator does not take the value zero. We already
mentioned, that the unweighted version of the neighborhood density is not
defined for nodes with degree less than two. This caries over to the weighted
case. Table 5.1 lists a few functions for f and g that are self-evident. Some
combinations of those are shown in Table 5.2. Note that we omitted any
constant factors in Table 5.2, for this reason the values may actually differ
in the referenced publications.

Matrix Formulation and Computation

Before we list algorithms for computing the weighted coefficient we will review
an alternative formulation based on matrices that has been used for example
in [Barrat et al., 2004], [Onnela et al., 2005], and [Zhang and Horvath, 2005].

Let the nodes of G be indexed (v0, . . . , vn). Let A be the adjacency matrix:
A ∈ {0, 1}n×n with aij = 1 if {vi, vj} ∈ E, and aij = 0 otherwise. Quite
similar, let M be a real quadratic n × n matrix M ∈ Rn×n with entries
mij = µ({vi, vj}) if {vi, vj} ∈ E and mij = 0 else. With this notation
Equation 5.2 can be equivalently expressed by Equation 5.3.

%µ(vk) = ϕ(vk)

∑
1≤i≤n

∑
i<j≤n

aikaijajk · f(mik, mij, mjk)∑
1≤i≤n

∑
i<j≤n

aikajk · g(mik, mjk)
(5.3)

82 CHAPTER 5. APPLICATIONS

(a) f(µvu, µuw, µvw)

1. 1

2. µuw

3. µuv+µvw

2

4. µuv+µuw+µvw

3

5. µuv · µvw

6.
√

µuv · µvw

7. µuv · µuw · µvw

8. 3
√

µuv · µuw · µvw

(b) g(µvu, µvw)

1. 1

2. µuv+µvw

2

3. µuv · µvw

4.
√

µuv · µvw

Table 5.1: Some functions for the edge weighted neighborhood density.

reference f(µvu, µuw, µvw) g(µvu, µvw)

[Lopez-Fernandez et al., 2004] µuw 1

[Barrat et al., 2004] µuv + µvw µuv + µvw

[Onnela et al., 2005] 3
√

µuv · µuw · µvw 1

[Grindrod, 2002], [Zhang and Hor-

vath, 2005], [Kalna and Higham,
2006]

µuv · µuw · µvw µuv · µvw

Table 5.2: Used combinations for the edge weighted neighborhood density.

5.3. NEIGHBORHOOD DENSITY 83

In the case of multiplicative functions like f = µuv ·µuw ·µvw and g = µuv ·µvw

this reduces to a simplified version as in Equation 5.4.

%∗µ(vk) = ϕ(vk)

∑
1≤i≤n

∑
i<j≤n

muv ·muw ·mvw∑
1≤i≤n

∑
i<j≤n

muv ·mvw

(5.4)

Kalna and Higham [2006] give their version in the form of Equation 5.4. They
also give an equivalent of Equation 5.4 in algebraic formulation using matrix
power operations and basic vector operations. They conclude that %∗µ(v) for
all nodes can be computed in O(n3) time. The theoretic bound based on fast
matrix multiplication is in O(n2.37) [Coppersmith and Winograd, 1990]. The
algebraic representation used by Kalna and Higham does not impose any
disadvantages in their case since the input is a dense matrix with mij > 0
for i 6= j.

Grindrod [2002] uses the weighted neighborhood density in conjunction with
a network model, no real networks are considered. Other publications [Lopez-
Fernandez et al., 2004; Barrat et al., 2004; Onnela et al., 2005; Zhang and
Horvath, 2005] do not go into details of computation. We note that the
algorithm directly gained from Equation 5.3 has a running time in Θ(n3)
and due to the matrix representation a space consumption in Θ(n2). For the
usual case of sparse networks the running time is not optimal and the space
requirement makes such an approach intractable for larger networks.

Algorithms

We will give an algorithm to compute the weighted neighborhood density by
generic triangle listing that is based on Equation 5.2. We will further give
an improved version for restricted functions g.

A realization directly derived from Equation 5.2 is listed in Algorithm 5.6. It
computes the edge weighted neighborhood density for all nodes v of the input
graph. We handle the general case of arbitrary functions f(µvu, µuw, µvw),
g(µvu, µvw), and ϕ(v). We require that these functions are computable in
O(1) time. We further note that depending on the function G and on the
graph structure, the result of Algorithm 5.6 might not be defined in the case
of a division by zero in Equation 5.2.

The correctness of Algorithm 5.6 is obvious due to the direct translation from
Equation 5.2. The loops of line 1 and 4 can be implemented to run in linear
time with reasonable data structures. The loops of line 2 and 3 are critical

84 CHAPTER 5. APPLICATIONS

Algorithm 5.6: Edge Weighted Neighborhood Densities

Input: graph G with ∀v : d(v) ≥ 2, edge weights µ : E → R+

Output: weighted neighborhood density %µ(v) for all nodes of V
for v ∈ V do1

δ(v)← 0, τ(v)← 0;

forall triangles ∆u,v,w in G do2

δ(u)← δ(u) + f(µuv, µvw, µuw);
δ(v)← δ(v) + f(µvu, µuw, µvw);
δ(w)← δ(w) + f(µwu, µvu, µwv);

forall wedges Υu,v,w in G do3

τ(v)← τ(v) + g(µvu, µvw);

for v ∈ V do4

%µ(v)← ϕ(v) · δ(v)/τ(v);

for the running time. Recall from Chapter 3 that listing all triangles of a
graph can be done asymptotically in the number of wedges. The wedges are
conveniently listed by a loop over all pairs of neighbors of a node and we
conclude with the following Lemma.

Lemma 19 Algorithm 5.6 can be implemented to run in O(m) space and
O(τ)=O(

∑
V d2(v)) time.

Let us remark that listing the wedges and for many cases computing g are
“cheap” operations, i.e. they involve only small constants. However, listing
the triangles may be not so “cheap” and despite the above observation the
line 2 can practically determine the execution time.

We now consider the case g(µvu, µvw) = c · (µuv + µvw), with c being a
constant. We can then reformulate the denominator of Equation 5.2 since
an edge incident with v is part of d(v)− 1 wedges:∑
Υuvw∈{Υv⊂G}

g(µvu, µvw) =
∑

Υuvw∈{Υv⊂G}

c · (µuv +µvw) = c
∑

u∈Γ(v)

(d(v)− 1)µvu

An adapted version is listed in Algorithm 5.7, in which we replaced line 3
of Algorithm 5.6. The computation of g for all nodes can now be performed
in O(m) steps. Consequently the part requiring the most steps is now the
listing of the triangles and computing function f . This implies an effort in
O
(
m3/2

)
, see Section 3.1 for details.

5.4. CLUSTERING COEFFICIENT AND TRANSITIVITY 85

Algorithm 5.7: Edge Weighted Neighborhood Densities with
Additive g

. . . (as in Algorithm 5.6) . . .

forall v ∈ V do3

forall u ∈ Γ(v) do
τ(v)← τ(v) + (d(v)− 1)µvu;

. . . (as in Algorithm 5.6) . . .

Corollary 14 The edge weighted neighborhood density can be computed in
O
(
m3/2

)
time if g is restricted to g(µvu, µvw) = c · (µuv + µvw) or g = 1.

Usage of the Weighted Neighborhood Density

As in the case of the standard neighborhood density it is very popular to
compute the average over all nodes and argue for or against the small world
property of the considered network. But there are also cases, in which the
distribution of the weighted neighborhood densities are considered like in the
following example.

Kalna and Higham [2006] analyze gene expression correlation data from nor-
mal and tumor tissues. They consider the distribution of weighted degrees
and edge weighted neighborhood density. The latter is given in the form of

%µ(v) =

∑
∆uvw∈{∆v⊂G}

µvu · µuw · µvw∑
Υuvw∈{Υv⊂G}

µvu · µvw

.

They found that the cancer tissue has more pronounced features such as
sharper pikes in both the degree and neighborhood density distribution. The
authors point out that in the weighted neighborhood density distribution
these differences are more clearly visible than in the degree distribution.

5.4 Clustering Coefficient and Transitivity

We have already introduced the clustering coefficient and the transitivity in
the Preliminaries, see Section 4. We first recall some definitions briefly. Then
we further investigate the properties of the indexes and the relation of the
both.

86 CHAPTER 5. APPLICATIONS

The Clustering Coefficient

The clustering coefficient was introduced by Watts and Strogatz [1998] in the
context of social network analysis. Given three actors u, v and w with mutual
relations between v and u as well as between v and w, it represents the like-
liness that u and w are also related. We introduced this concept formally as
the neighborhood density %(v) = δ(v)/τ(v) (Equation 2.10 on page 16). The
clustering coefficient of a graph is the average over the neighborhood densi-
ties of its nodes. To compute the clustering coefficient of existing networks
with nodes of degree one we define

c (G) =
1

|V ′|
∑
v∈V ′

%(v), (5.5)

where V ′ is the set of nodes v with d(v) ≥ 2. Alternatively to Equation 5.5
the term %(v) is in some cases defined to be either zero or one for nodes v
with degree at most one and included in the sum. The computation of the
index is straight forward. It essentially relies on computing the neighborhood
densities which we discussed in Section 5.3.

Transitivity

We defined the transitivity of a graph G as used in [Newman et al., 2002] as

t(G) =
3 δ(G)

τ(G)
,

see Equation 2.12 on page 17. It is essentially the index of transitivity
[Harary and Paper, 1957] or the transitivity ratio [Harary and Kommel, 1979]
restricted to undirected graphs. Like the clustering coefficient it involves
wedges and triangles and it is also between zero and one by Equation 2.9.
The computation of this index is straight forward and its efficiency is bounded
by the efficiency of counting all triangles in a graph. Note that there is no
known algorithm that is more efficient in counting the triangles for the whole
graph compared to counting the number of triangles for all nodes.

Let us consider a series of sparse graphs Gn with m ∈ o
(
n4/3

)
and at least

one high degree node v with d(v) ∈ Θ(n). Because of the latter τ(G) ∈ Ω(n2)
holds. By δ ∈ O

(
m3/2

)
(Equation 2.6) we get δ ∈ o(n2) and we can conclude

with the following.

Corollary 15 The transitivity t approaches zero for a series of growing
sparse graphs with high degree nodes.

5.4. CLUSTERING COEFFICIENT AND TRANSITIVITY 87

This leads to some important consequences. Skewed or even power law degree
distributions have been found in many real work networks and these have
commonly nodes with relatively high degree. By Corollary 15 the transitivity
does not seem to be a meaningful network index for those kinds of networks.
Bollobás and Riordan [2002] proved that the value of t drops with (log2 n)/n
for constructed graphs by the LCD model . In practice this model is equivalent
to the so called preferential attachment generators, which will be briefly
discussed in this work in Section 6.1 on page 95.

Notes on Naming Conventions

We follow historical conventions in the way we use the names “clustering
coefficient” and “transitivity” for a graph. The latter derives from transi-
tive relations and the equivalent property in directed graphs, see page 51
in Section 4.2 where the transitive orientation is introduced. A priori the
term doesn’t make much sense in undirected graphs. The word “clustering”
itself is awfully overloaded in network analysis. For the case of the clustering
coefficient of a node we rather prefer to use the term neighborhood density.
In the case of the index for the whole graph we keep the name “clustering
coefficient”. We can thus also easily distinguish between the corresponding
value for nodes or the whole graph. What we call a wedge is called a triple
in some publications that deal with both the clustering coefficient and the
transitivity. The term “triple” is also used with other meanings in literature,
e.g. in [Buriol et al., 2006]. Therefore, we decided not to adopt this term.

Extending the Clustering Coefficient with Node Weights
and Formal Relation to the Transitivity

The basic results of the following were given by Bollobás and Riordan [2002].
We give the contents in a unified presentation and extend them.

The transitivity as in Equation 2.12 was claimed to be equal to the clustering
coefficient as in Equation 2.11 in [Newman et al., 2002]. However, this is
clearly not true and the complete graph of four nodes with one edge removed
is the smallest counterexample, see Figure 5.2(a). It is even possible to
construct a series of graphs, such that c→ 1 and t→ 0 for n→∞, see the
double star [Bollobás and Riordan, 2002] in Figure 5.2(b). The reverse case
can be constructed by a graph Gc+r consisting of a c-clique and an r-ring,
see Figure 5.2(c). We get t(G) ≈

(
c
3

)
/
((

c
3

)
+ r/3

)
and hence t(G) → 1 for

88 CHAPTER 5. APPLICATIONS

1

2 3

4

(a) c 6= t

1 2 3 4 n...

a

b

(b) c→ 1 and t→ 0

c
c

c

c

r
r

r

r

c
r

(c) c→ 0 and t→ 1

Figure 5.2: Examples for the inequality of clustering coefficient and transi-
tivity.

r ∈ o(c3). On the other hand we get c(G) ≈ c/(r + c) and hence c(G) → 0
for r ∈ ω(c).

A formal relation between the two indices will follow after introducing the
following convenient extension. The definition of the clustering coefficient
does not consider the fact that, depending on the network, some nodes might
be more important than others. This can be specified by a weight function
that is either induced by the graph structure or given explicitly. For a weight
function w : V → R+ we define the node weighted clustering coefficient to be

cw(G) =
1∑

v∈V ′
w(v)

∑
v∈V ′

w(v)%(v). (5.6)

Two implicit weight functions are immediate, the degree-based weight w(v) =
d(v), and the weight given by the number of wedges w(v) = τ(v). In the
second case, τ(v) simply cancels out in each additive term of the numerator,
and we get cτ (G) =

∑
δ(v)/

∑
τ(v) which can be rewritten by equation

Equation 2.5 and Equation 2.12 to

t(G) = cτ (G). (5.7)

We recognize the transitivity herewith as the wedge weighted clustering coef-
ficient. The following properties can be drawn directly from this observation.

Corollary 16 The indices c and t are equal for graphs where

• all nodes have the same degree, or

5.4. CLUSTERING COEFFICIENT AND TRANSITIVITY 89

• all nodes have the same clustering coefficient.

An equivalent of Equation 5.7 was given in [Bollobás and Riordan, 2002].

Historical Notes on Confusing the Clustering Coefficient with the
Transitivity

As shortly mentioned previously the indices c and t are not uncommonly
confused with each other. We list some literature on the history of this in
chronological order.

Harary and Paper [1957] introduced the term index of transitivity in an
analytical sense. As the name suggests it is defined for directed graphs.
However, simplified to undirected graphs it is essentially what we defined as
the transitivity.

Watts and Strogatz [1998] coined the term clustering coefficient. The index
was introduced in context of studying what the authors refer as high local
“clustering” and “cliquishness” of networks. On the one hand it is introduced
as a measure on the nodes which is equivalent with what we defined as the
neighborhood density. Watts and Strogatz define the clustering coefficient
of a graph as the average of the neighborhood densities over all nodes. They
show that the value of the clustering coefficient is relatively high for many real
world networks compared to the random graph models of Erdős and Rényi
[1959] and Gilbert [1959]. They also give a random graph “model” based
on random modification of a torus that achieves high clustering coefficients
on the one hand but also a short average path length for a random pair of
nodes. The latter behavior is known as the “small world” or “six degrees of
separation” result of Milgram [1967]. With the work [Watts and Strogatz,
1998] a “small world” network becomes known as a network that has high
clustering coefficient and short average path length.

Barrat and Weigt [2000] give a “simplified” version of the clustering coef-
ficient. They write:“a simple redefinition” . . . “without altering its physical
signification”. This redefinition is actually equivalent to the transitivity.
However, Barrat and Weight use their version of the index only with re-
spect to certain graphs that have little variation in their degree distribution
from the average degree. We have seen that both definitions are practically
equivalent for these networks, see Corollary 16. Barrat and Weight actually
support the equivalence with some mathematical arguments and “numerical
checks”, i.e. computational experiments on small world networks.

90 CHAPTER 5. APPLICATIONS

In 2001 and 2002 confusion manifest in a series of papers by Newman [2001];
Newman, Strogatz, and Watts [2001]; Newman, Watts, and Strogatz [2002].
The last of the three publications contains the quote “Consider the following
expression for the clustering coefficient (which is one of a number of ways it
can be written):”

3× number of triangles on the graph

number of connected triples∗ of vertices
(5.8)

Clearly, Equation 5.8 is equivalent to the definition of the transitivity in
Equation 2.12. The publications [Newman et al., 2001] and [Newman et al.,
2002] contain also computational results on real world networks where the
clustering coefficient is considered. They compute a value of 0.199 for the
movie actor collaboration network. We compute t = 0.166 and c = 0.785 for
the data set we have available for the movie actor collaboration of the year
2002. While some variation might be explained by slightly different data sets
(the movie actor network is updated frequently) it seem clear that Newman,
Watts and Strogatz actually computed the transitivity. In the original work
[Watts and Strogatz, 1998] the clustering coefficient is computed to 0,79 for
the movie actor collaboration network. Our result 0.785 agrees with this.

Bollobás and Riordan [2002] and independently Ebel, Mielsch, and Bornholdt
[2002] state that the both terms c and t are not equivalent.

Values for Real World Networks

We consider values for c and t of real world networks to test of agreement
with Corollary 16 and Corollary 15. These are presented in Table 5.3 along
with some other properties. Some of these networks have a longer description
along with extended properties in Section 3.2.

The first network is based on the German roads, see also page 37. It is almost
planar, has little maximum degree and little variation in the degree, see
Figure 3.3(a) on page 39. The values of c and t are quite close. The following
three networks are based on projections of bipartite networks. The “DBLP
Trier” is based on collaborative publications within the computer science
community. The “actor” networks are based on actors playing together in a
movie, see also page 38. All of these networks have considerable high values
of c and comparatively lower values of t. The actor network has an increase
in t from the year 2002 to the year 2004. Note that this is not a contradiction

∗wedges, in our definition

5.4. CLUSTERING COEFFICIENT AND TRANSITIVITY 91

roads
DBLP
Trier

actor
2002

actor
2004

google
2002

WWW
Notre
Dame

n 4.8 · 106 3.1 · 105 3.8 · 105 6.7 · 105 3.9 · 105 3.3 · 105

m 5.9 · 106 8.3 · 105 1.5 · 107 2.7 · 107 4.8 · 105 1.1 · 107

dmax 7 248 3956 4605 1160 10721
davr 2.5 5.4 78.7 82.6 2.4 6.7
t 0.048 0.341 0.166 0.262 0.007 0.088
c 0.050 0.760 0.785 0.796 0.228 0.466

Table 5.3: Clustering coefficient and transitivity in real networks.

to Corollary 15. The maximal degree did only increase by a factor of 1.16
while the size of the network almost doubled.

The last two networks share some characteristics. The “WWW Notre Dame”
is based on hyper links within a domain. See page 38 for a description and
Figure 3.5(a) on page 41 for further properties. The “google 2002” network is
based on the google contest from the year 2002. We do not exactly now how
it is constructed. By its properties and origin we might speculate on a web
graph background, too. Nevertheless, both have high degree nodes and quite
small values for the transitivity. The values for “WWW Notre Dame” are
higher for those of “google 2002”, this can be explained by large number of
edges in the first one. In general we see good agreement with our conclusions
from Corollary 15 and Corollary 16 for the considered real networks.

92 CHAPTER 5. APPLICATIONS

Chapter 6

A Graph Generator with
Adjustable Clustering
Coefficient and Increasing
Cores

Chapter Introduction

The creation of random networks is important to understand existing net-
works and to test algorithms. Seminal work exploring properties of ran-
dom networks dates back to 1959, see e.g. [Erdős and Rényi, 1959], [Gilbert,
1959], [Austin et al., 1959].

After the discovery of so called power-laws [Faloutsos et al., 1999] or at least
heavy tailed degree distributions [Chen et al., 2001] in Internet related graphs
and other networks; generators were proposed that mimic this behavior. A
very popular approach functions by the so called linear preferential attach-
ment [Barabási and Albert, 1999; Albert et al., 1999]. Starting with a prime
graph a newly inserted vertex connects to existing nodes with probability
linear to their current degree. The concept was introduced in [Barabási and
Albert, 1999] and refined to a strict mathematical model in [Bollobás et al.,
2001]. Efficient algorithms for various generators are discussed in [Batagelj
and Brandes, 2005].

However, generators only based on preferential attachment were found not
to achieve various properties of existing graphs, see e.g. [Bu and Towsley,
2002]. In this section, we consider generators that on the one hand work

93

94 CHAPTER 6. GRAPH GENERATORS

according to the preferential attachment rule but also achieve high values of
the clustering coefficient. Our proposed generator achieves also an increasing
core number κ and increasing size of the cores. See page 18 in Section 2.4
for an introduction to the core structure of a graph.

Contribution and Related Work. Holme and Kim proposed a gener-
ator with “tunable clustering coefficient” based on preferential attachment
in [Holme and Kim, 2002]. However, we show that their approach gives the
desired high clustering coefficients only for a limited set of parameters. On
the other hand the method in [Li, Leonard, and Loguinov, 2004] achieves
high clustering coefficients in a more general sense. However, it does so
by post-processing an existing graph and hence does not model a growing
process.

We give a very simple and well defined extension of preferential attachment
and we show experimentally, that our approach can achieve any value of the
clustering coefficient up to 0.68 for a wide range of input parameters. We
also consider the core structure of the generated graphs. We reason that
traditional preferential attachment as well as the approach in [Holme and
Kim, 2002] does not achieve any non trivial core structure. However, we
validate that our approach does so. More precisely we experimentally show,
that our generator produces increasing core numbers κ and increasing size of
the cores Ck≤κ for a series of growing graphs.

A simplified version of our generator was used in [Schank and Wagner, 2004,
2005a] to test the efficiency of an algorithm for approximation of the clus-
tering coefficient. These publications contain the results with respect to the
achieved clusterings coefficient. However, these are presented in a very com-
pact manner. The results with respect to the evolution of the core structure
are new in this work. We are not aware of any other generators that are
designed to produce increasing core structures for evolving graphs. Actually,
results on the evolution of the core structure in real world networks appeared
only very recently, for example in [Aggarwal et al., 2006].

Organization. The remaining of this chapter is organized as follows. We
start with the general linear preferential attachment generator in Section 6.1
where we give a well defined generator in pseudo code. We review the gen-
erator by Holme and Kim [2002] in Section 6.2. We show experimentally
that it fails to generate high clustering coefficients for general parameters
and give an explanation for this behavior. We give the new generator in Sec-
tion 6.3 and experimentally verify some properties of the generated graphs.

6.1. A LINEAR PREFERENTIAL ATTACHMENT GENERATOR 95

We first give a well defined pseudo code of our generator in Section 6.3. In
the following we consider the achieved clustering coefficients and the basic
core structure of the generated graphs. In the last part we give two vari-
ants that address undiscretized clustering coefficient values and a simplified
implementation.

6.1 A Linear Preferential Attachment Gen-

erator

The basic idea behind linear preferential attachment is to connect in each step
one new vertex v with µ new edges to existing vertices. Algorithm 6.1 depicts
a linear preferential attachment generator, where a part of it is outsourced in
Function 6.2. Linear preferential attachment is characterized by choosing an
existing vertex u to be connected to v with probability d(u)/

∑
v∈V d(v) as

in line 1 of Function 6.2. The return statement in line 2 of function PA-Step

is not used in Algorithm 6.1, but it is required for the algorithm in the next
section when we use Function 6.2 again.

Algorithm 6.1: A Preferential Attachment Generator

Input: integer n, µ ≥ 1 ;
Output: graph GPA

n,µ

Data: initially empty node array A, node v
G(V, E)← max{µ, 2}-clique ;1

forall v ∈ V do
for (1, . . . , d(v)) do

append v → A;

for (µ + 1, . . . , n) do
v ← NewNode() ;2

V ← V ∪ {v};
for (1, . . . , µ) do

PA-Step(v);

96 CHAPTER 6. GRAPH GENERATORS

Function 6.2: PA-Step

Input: node v
Data: Node: u;
repeat

r ← uniformRandomInteger({0, . . . , |A|});1

u← A[r];
until u 6= v and {u, v} /∈ E ;
E ← E ∪ {u, v};
append u→ A, v → A;
return u;2

Note that we differ in constructing a clique as a prime graph (line 1) from
many “traditional” descriptions of preferential attachment generators, in-
cluding [Barabási and Albert, 1999]. Often a single node or a graph with an
empty edge set in the beginning is used. However, if there are no edges the
operation in line 1 of Function 6.2 is not defined. Further Function PA-Step

is easier to describe this way since it is always possible to find µ nodes that
have no link to v.

At first glance the running time appears to be a critical point. The µ + 1-th
node connects to all currently existing nodes. Choosing neighbors randomly
in the loop of Function 6.2 seems to be quite inefficient. However, it is actu-
ally equivalent to the so called coupon collector problem and for connecting
the µ + 1-th to all other nodes the expected running is in O(µ log µ).

Corollary 17 Algorithm 6.1 is well defined. For a fixed value of µ it can be
implemented to use linear space and to run in expected linear time.

6.2 The Holme-Kim Generator

Holme and Kim give a variation of a preferential attachment generator
that is also supposed to achieve a high clustering coefficient in [Holme and
Kim, 2002]. They try to achieve this by adding a so called “triad formation
step”. Algorithm 6.3 lists an equivalent of Holme’s and Kim’s algorithm and

6.2. THE HOLME-KIM GENERATOR 97

Function 6.4 lists the triad formation step.

Algorithm 6.3: Holme-Kim Generator

Input: integer: n, µ ≥ 1; real: 0 ≤ p ≤ 1 ;
Output: graph GHK

n,µ,p

Data: initially empty node array A; nodes: v, w
G(V, E)← max{µ, 2}-clique ;1

forall v ∈ V do
for (1, . . . , d(v)) do

append v → A;

for (µ + 1, . . . , n) do2

v ← newNode() ;
w ← PA-Step(v) ;3

for (2, . . . , µ) do
with probability p: TF-Step(v,w) ;4

else: w ← PA-Step(v) ;5

In each loop (line 2) of Algorithm 6.3 the PA-Step is called at least once
(line 3). Then for the remaining 2 to µ new edges of v either TF-Step is
called with probability p (line 4) or PA-Step is called again with probability
1−p (line 5). In function TF-Step a triangle ∆v,w,u between the new node v,
the node from the last PA-Step w and a random neighbor u of w is formed.

Function 6.4: TF-Step

Input: node v,w
repeat

u← uniformRandonAdjacentNode(w);
until v 6= u and {v, u} /∈ E ;
E ← E ∪ {u, v};
append u→ A, v → A;

We applied a subtle change to the original description of Holme and Kim,
which is not given in pseudo code and leaves some room for interpretation.
The difference is that we start with a µ- or at least 2-clique as in Algorithm 6.1
of the previous section. As already noted this makes function PA-Step easier
to describe but also simplifies Function 6.4. Any node in V \ {v} has at
least degree µ and in course of executing TF-Step node v has less than µ
neighbors. Hence it is always possible to find a neighbor of u of w that has
no link to v. In the original description this is not necessarily the case and
PA-Step is performed instead. We remark that for large n and for higher
numbers in the loop of line 2 this case rarely happens and both specifications

98 CHAPTER 6. GRAPH GENERATORS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50000 100000 150000 200000

cl
us

te
rin

g
co

ef
fic

ie
nt

number of nodes

ξ=1.8
ξ=1.5
ξ=1.2
ξ=0.9
ξ=0.6
ξ=0.3
ξ=0.0

Figure 6.1: Clustering coefficients for the Holme-Kim generator with µ = 3.

are practically equivalent.

Now, let us analyze Algorithm 6.3 with respect of the achieved clustering
coefficient. On average the TF-Step is called (µ − 1)p-times for each new
node v and Holme and Kim define∗

ξ = (µ− 1)p. (6.1)

Figure 6.1 shows the results for µ = 3 and various values of ξ. This agrees
with the result of Holme and Kim shown in Figure 3(a) in [Holme and Kim,
2002]. As to be expected the clustering coefficient is highest for p = 1. The
authors have carried out only experiments with µ = 3, and they write: “We
only focus on the case of µ = 3 with expectation that other values of µ should
give qualitatively the same behavior.”†

We will check this claim experimentally in the following. Figure 6.2 shows
the results for p = 1, which will give the highest clustering coefficients, and
various values of µ. We find that the clustering coefficient falls significantly
with higher values for µ. We will try to give an explanation for this in the
following.

Our hypothesis is, that the clustering coefficient of the Graph is “not far”
from the neighborhood density of the most recently added node. Now, the

∗The original notation in is different: µ is denoted with m and ξ with mt.
†We allowed us to change the symbols in the quotation to the ones we use.

6.2. THE HOLME-KIM GENERATOR 99

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 50000 100000 150000 200000 250000 300000

cl
us

te
rin

g
co

ef
fic

ie
nt

number of nodes

µ=2
µ=3
µ=5

µ=8
µ=12
µ=25

µ=50

Figure 6.2: Highest clustering coefficients achieved with the Holme-Kim
generator for various µ.

µ 2 3 5 8 12 25 50
(µ−1)p

(µ
2)

= 2
µ

1 0.67 0.4 0.25 0.17 0.08 0.04

cexp

(
GHK

n,µ,p

)
for n > 3 · 105 0.74 0.62 0.47 0.35 0.27 0.15 0.08

Table 6.1: Experimental results for the clustering coefficient cexp

(
GHK

n,µ,p

)
from Figure 6.2 compared with c

(
GHK

n,µ,p

)
as in Equation 6.2.

most recently added node v has ξ expected triangles created by the function
TF-Step. We ignore other triangles that may be induced by existing edges
between the neighbors of v for now. Since v has degree µ our claim is

lim
n→∞

c
(
GHK

n,µ,p

)
≈ (µ− 1)p(

µ
2

) =
2p

µ
. (6.2)

This is generally in agreement with Table 6.1 where we compare the achieved
clustering coefficient with our prediction. We see two discrepancies:

• The observed coefficients are lower than our prediction for high values.
We explain this by the fact that new arriving nodes introduce higher
degrees of existing nodes and therefore effectively reduce the coefficient
of existing nodes.

100 CHAPTER 6. GRAPH GENERATORS

• For low values we get slightly higher coefficients. This can be explained
by “existing”, i.e. not by function TF-Step purposely created triangles.
For low values they superimpose the effect mentioned above.

However, our general conclusion is that the clustering coefficient of the Holme-
Kim generators falls with the inverse of µ.

6.3 The New-Generator

In the last section we observed, that the clustering coefficients of graphs gen-
erated by the Holme-Kim generator fall significantly with increasing values of
µ, i.e. the number of added edges in each step. In the following we propose a
new generator that is based on linear preferential attachment, but does also
achieve high clustering coefficients as well as increasing core size for a family
of growing graphs.

The New-Generator listed in Algorithm 6.5 is similar to standard pref-
erential attachment. However, in each round of the main loop we call an
additional CC-Step (Function 6.6) after each PA-Step. In the CC-Step edges
between the neighbors of the most recently added node v are inserted until
the desired neighborhood density %(v) is reached.

Algorithm 6.5: New-Generator

Input: integer n, µ ≥ 1, ε ≤
(

µ
2

)
;

Output: graph GNEW
n,µ,ε

Data: initially empty node array A, node v
G(V, E)← max{µ, 2}-clique ;
forall v ∈ V do

for (1, . . . , d(v)) do
append v → A;

for (µ + 1, . . . , n) do
v ← newNode() ;
V ← V ∪ {v};
for (1, . . . , µ) do

PA-Step(v);

CC-Step(v, ε);

6.3. THE NEW-GENERATOR 101

Function 6.6: CC-Step

Input: node v, int ε;
Data: node u;
while δ(v) < ε do

repeat
u←randomAdjacentNode(v);
w ←randomAdjacentNode(v);

until u 6= w and {u, w} /∈ E ;
E ← E ∪ {u, w};
append: u→ A, w → A;

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 200000 400000 600000 800000 1e+06 1.2e+06

number of nodes

ε=10
ε=9
ε=8
ε=7

ε=6
ε=5
ε=4
ε=3

ε=2
ε=1

Figure 6.3: Number of added edges on average in CC-Step for µ = 5 and
various ε.

6.3.1 Clustering Coefficient

We assume again that the clustering coefficient of a graph is mainly influenced
by the last nodes that were added. Hence, we adjust the neighborhood
density of the last added node v, by increasing the number of edges between
neighbors of v until the number ε is reached, see Function 6.6. Note that the
neighborhood density of the last added node is then bounded by

%(v) ≥ ε(
µ
2

) . (6.3)

Compared to standard preferential attachment and also to the Holme-Kim
generator, it is not exactly known how many edges µ are inserted in each

102 CHAPTER 6. GRAPH GENERATORS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

cl
us

te
rin

g
co

ef
fic

ie
nt

number of nodes

ε=10
ε=9
ε=8
ε=7

ε=6
ε=5
ε=4
ε=3

ε=2
ε=1
ε=0

(a) µ = 5, various ε

 0.675

 0.68

 0.685

 0.69

 0.695

 0.7

 0.705

 0 100000 200000 300000 400000 500000 600000

cl
us

te
rin

g
co

ef
fic

ie
nt

number of nodes

µ=10 ε=45
µ=9 ε=36
µ=8 ε=28
µ=7 ε=21
µ=6 ε=15

µ=5 ε=10
µ=4 ε=6
µ=3 ε=3
µ=2 ε=1

(b) hightest clustering coefficients: ε =
(
µ
2

)
Figure 6.4: Clustering coefficients for Algorithm 6.5.

6.3. THE NEW-GENERATOR 103

ε

(µ
2)

= ε
10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

cexp

(
GNEW

n,5,ε

)
0.07 0.12 0.19 0.25 0.32 0.39 0.46 0.52 0.60 0.68

Table 6.2: Experimental results from Figure 6.4 compared with Equation 6.3.

round by our method µ ≤ µ ≤ µ + ε. Figure 6.3 shows how many edges are
created on average in Function CC-Step for µ = 5 and various values of ε.
We can see that µ ≥ 9/10 · ε + µ and also that there is little fluctuation.

Figure 6.4(a) and Table 6.2 show the resulting clustering coefficients of Algo-
rithm 6.5 for µ = 5 and various values of ε. Figure 6.4(b) shows the result for
µ and the corresponding highest values of ε = µ(µ−1)/2. We first notice that
we can achieve high clustering coefficients. If we compare with Equation 6.3,
the neighborhood density of the last added node, we get approximately

lim
n→∞

c
(
GNEW

n,µ,ε

)
≈ 0.7

ε(
µ
2

) . (6.4)

6.3.2 Core Structure

We introduced the core concept in Section 2.4. Table 6.3 lists some real world
networks with their corresponding core number and network size. Some of
these networks have been introduced in Section 3.2, the others are described
in [Schank and Wagner, 2005c]. While the core number differs for the net-
works, it is considerably high in many cases. The movie actor network shows
a notable increase in the core number between the two given instances from
2002 and 2004. As the movie actor network origins from a projection of a
bipartite network (see page 38 in Section 3.2), one might expect a relative
high core number. The projection results in a number of larger cliques. Each
of them induces a core of its size minus one and the total core number can
be even larger due to overlaying of cliques.

The evolution of the core structure in the Autonomous System Graph of
the Internet was studied in [Aggarwal et al., 2006]. This network is based
on routing paths between admistrative collections of Internet router subnet-
works. This recent study shows that the core number actually increased
during the years from 2001 to 2004. For the same network a layout method
which highlights the pronounced core structure was proposed in [Baur et al.,
2005].

104 CHAPTER 6. GRAPH GENERATORS

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 20000 40000 60000 80000 100000 120000

co
re

-n
um

be
r

number of nodes

(a) core number for µ = 3 and ε = 2

 0

 1000

 2000

 3000

 4000

 5000

 0 20000 40000 60000 80000 100000

nu
m

be
r

of
 n

od
es

 in
 k

-c
or

e

number of nodes

k=3
k=4
k=5
k=7

k=10
k=20

(b) core sizes for µ = 3 and ε = 2

Figure 6.5: Resulting cores for Algorithm 6.5.

6.3. THE NEW-GENERATOR 105

n m κ

Road Network of Germany 4799875 5947001 3
Movie Actor Network 2002 382219 15038083 365
Movie Actor Network 2004 667609 27581275 1005
Movie Actor Network 2004 (no porn) 366131 7711904 173
DBLP Authors 307971 831557 114
Google Contest 2002 394510 480259 13
High Energy Physics Publications 27240 341923 37
Internet Router Network 192244 609066 32
Notre Dame WWW 325729 1090108 155
US Patents 3774768 16518947 64

Table 6.3: Core numbers for some real world networks.

In standard preferential attachment as well as in the Holme-Kim generator
new edges are always inserted with the node added at last, which has then a
degree of µ. Therefore the empty graph remains when all nodes with degree
µ or less are removed iteratively. We can draw the following corollary from
this observation.

Corollary 18 The core number of a graph generated by standard preferential
attachment or generated by the Holme-Kim generator is not higher than the
number of added edges in each round: κ

(
GPA

n,µ

)
≤ µ and κ

(
GHK

n,µ,p

)
≤ µ.

We want to emphasize that both the core number and the core size only
depend on the input parameter µ but not on the size of the graph.

Let us now consider the proposed generator Algorithm 6.5. Additionally to
adding µ edges to a new node v we also add ε edges between the neighbors
of v. Theses neighbors have been selected by preferential attachment and we
can therefore hope that we also place a considerable fraction of these edges
between high degree nodes. This should increase the density within the
subgraph of the high degree nodes and we expect that the core size κ(G) and
also the number of nodes in the k-cores are increasing for growing graphs.
This can only be true if ε > 0 holds, otherwise the New-Generator is
identical to the preferential attachment generator.

Figure 6.5 shows the core number, and some k-core sizes for graphs generated
with our algorithm. As we predicted both are increasing over time, i.e. for
growing sizes of the graph. We therefore argue that our generator models
real world networks also with respect of the core structure much better than
previous algorithms.

106 CHAPTER 6. GRAPH GENERATORS

Variations of the New-Generator

Undiscretizing the Clustering Coefficient

The clustering coefficients of Algorithm 6.5 between consecutive values of ε
might differ from the desired value. Algorithm 6.7 lists a variation with an
additional input parameter 0 ≤ p ≤ 1. It combines the clustering coefficient
of the two consecutive values ε− 1 and ε linearly such that

c
(
GNEW

n,µ,ε,p

)
= c

(
GNEW

n,µ,ε−1

)
+ p

[
c
(
GNEW

n,µ,ε

)
− c

(
GNEW

n,µ,ε−1

)]
with high probability. Now it is possible to achieve any number between 0
and 0.68 for clustering coefficient c.

Algorithm 6.7: Variation of Algorithm 6.5

Input: integer n, 2 ≤ µ, 1 ≤ ε ≤
(

µ
2

)
;

real 0 ≤ p ≤ 1;
Output: graph GNEW

n,µ,ε,p

Data: initially empty node array A; node v;
G(V, E)← max{µ, 2}-clique ;
forall v ∈ V do

for (1, . . . , d(v)) do
append v → A;

for (µ + 1, . . . , n) do
v ← NewNode() ;
V ← V ∪ {v};
for (1, . . . , µ) do

PA-Step(v);

with probability p: CC-Step(v, ε);
else: CC-Step(v, ε− 1);

Simplifying the Implementation

Function 6.6 was given such that it is convenient to analyze the results. How-
ever, computing the neighborhood and keeping track of it is a computational
burden, though it can be done efficiently, see Chapter 3. Moreover, it com-
plicates an implementation significantly. Therefore we give in Function 6.8
an alternative of CC-Step that is simpler but looses some accuracy. How-
ever, from the results shown in Figure 6.3 we can assume that this variation
behaves well, i.e. the added number of edges between neighbors is stable in
expectation.

6.3. THE NEW-GENERATOR 107

Function 6.8: Variation of CC-Step

Input: node v, int ε
Data: node: u;
for (1, . . . , ε) do

u←RandomAdjacentNode(v);
do

w ←RandomAdjacentNode(v);
while u = w ;
if {u, w} /∈ E then

E ← E ∪ {u, v};
append: u→ A, v → A;

Chapter Conclusion

We gave a new graph generator that is based on preferential attachment and
creates graphs with adjustable clustering coefficient, in which any value up
to 0.68 can be achieved. The value of the clustering coefficient does not
depend on the total number of edges added in each round. The total number
of edges added in each round is not deterministic but it can be estimated
well. Our experiments show that core number and the size of the cores of the
generated graphs grow with the size of the graph. This behavior is reasonable
for existing evolving networks as it has been shown recently. The dynamic
analysis of the core structure seems to be at its very beginning. Our generator
is a first step in this area with qualitative reasonable behavior.

108 CHAPTER 6. GRAPH GENERATORS

Chapter 7

Approximating Clustering
Coefficient, Transitivity and
Neighborhood Densities

Chapter Introduction

The consideration of very large graphs in network analysis [Kumar et al.,
2000; Abello et al., 2002; Eubank et al., 2004] requires or makes it at least
very desirable that the analysis can be performed in linear or preferably
even in sub-linear time. We have seen in Chapter 3 that triangle listing and
triangle counting can be performed very efficiently. However, the algorithms
do still have super-linear running times with respect to the input size. It
is even impossible to achieve running time in the size of the input for the
case of triangle listing. Consequently applying these algorithms to compute
network indices like the clustering coefficient results in super-linear running
times, too.

This chapter is devoted to algorithms for the efficient approximation of the
following indices in sub-linear time with respect to the size of graph. We
consider the case of approximating the clustering coefficient c and its node
weighted version cw for which the transitivity is a special case. We also
consider the neighborhood densities of the nodes.

Contribution and Related Work. Approximation algorithms based on
sampling are well known and have been used extensively for various applica-
tions. Eubank et al. [2004] use such a method to approximate the clustering

109

110 CHAPTER 7. APPROXIMATION

coefficient c by sampling nodes and compute the average neighborhood den-
sity of the samples. They mention that by applying general probabilistic
bounds it suffices to take O(log n) samples.

Our main contribution is a O(1) time algorithm for approximating the clus-
tering coefficient c. We further give a O(n) time algorithm for the case of
the node weighted clustering coefficient cw of a graph. These results and the
algorithms on which they are based on were published in [Schank and Wag-
ner, 2005a]. These work here extends our publication by the following. We
review the method based on sampling nodes and also show why our method
to approximate c is favorable. We will further give an algorithm to approx-
imate all neighborhood densities of a graph in O(n log n) time, along with
some consideration of practical applications.

Peripherally related to our work is the approximation of the number of trian-
gles by streaming algorithms [Bar-Yosseff et al., 2002; Jowhari and Ghodsi,
2005; Buriol et al., 2006].

Organization. The rest of this chapter is organized as follows. We give
some definitions and other prerequisites first. We review the method of
approximating c by sampling the neighborhood density of several nodes in
Section 7.1. We will then introduce a method based on sampling wedges in
Section 7.2. In Section 7.3 we consider the approximation of the neighbor-
hood density of nodes of a graph. A conclusion closes this chapter.

Preliminaries

Approximation and Randomized Algorithms

We introduced the concept and especially the running time of an algorithm
on page 17 in Section 2.3. An approximation algorithm is an algorithm that
transforms the input to an output that is by some measure close to the
desired output. The full meaning for our purpose will become clear within
this chapter. Randomized algorithms appear frequently in the context of
approximation algorithms. A randomized algorithm uses a number of random
bits besides its usual input. In general either the output or the running time
or both will depend also on the random input bits. The main interest will be
in the expected output or the expected running time and the behavior of the
distribution “around” the expected value. Actually, we have already seen
randomized algorithms in Chapter 6. The probabilistic context there was

111

quite clear without giving any additional explanation. However, this chapter
requires some further knowledge in this area which we will introduce now.

Probability

We will extend the basic concepts of probability which we presented on
page 12 in Section 2.1. Two random variables X and Y are independent
if for all x, y ∈ R

P [{X = x} ∩ {Y = y}] = p(x) · p(y).

For a real number r and independent random variables X, Y the linearity of
expectation

E [r ·X · Y] = r · E [X] · E [Y] (7.1)

is a useful property. There exist several results that bound the likeliness to
deviate from the expectation of a random variable. The very general Markov
inequality

P [X ≥ rE [X]] =
1

r
. (7.2)

is valid for non-negative random variables X and r a positive real. For sums
of non-negative independent random variables the much stronger Chernoff
bound can be derived from Equation 7.2. The most general version of this
bound can not be applied with ease in many cases and therefore many vari-
ants exist.

A very convenient bound for our purpose is due to Hoeffding [Hoeffding,
1963]. Since it is similar to the Chernoff bound it is also referred to as the
Chernoff-Hoeffding bound. Let Xi be independent real random variables
bounded by 0 ≤ Xi ≤ β for all i. Then, Hoeffding’s bound [Hoeffding, 1963]
states for k ∈ N>0

P

(∣∣∣∣∣1k
(

k∑
i=1

Xi

)
− E

[
1

k

(
k∑

i=1

Xi

)]∣∣∣∣∣ ≥ ε

)
≤ 2e

−2kε2

β2 . (7.3)

Hoeffding’s Bound in Example

We give an example on approximating an average value by Hoeffding’s bound
first. Assume that we have m boxes. Each box is either empty or contains
one item. We can compute the average number of items in a box in O(m)

112 CHAPTER 7. APPROXIMATION

time by looking in each box. Alternatively we can pick k-times a box uni-
formly at random and sum up the found items. At the end we divide the
summed up items by k and have an approximation of the average number
of items in one box. Note that the expected number of items found in one
box sampled uniformly at random is exactly the average value we are looking
for. Hoeffding’s bound tells us how many boxes k we should pick to have the
desired result, i.e. the deviation from the average and the probability that
this result is correct.

For example we want to be off from the average by at most ε = 0.01 items
and the value should be correct in all but one of ν=

(
49
6

)
cases∗, i.e. the

normalized probability of getting a correct result is p = ν−1
ν

. The random
variable Xi corresponds to picking up a box and count the including items
which are either zero ore one, therefore β = 1. Now, rearranging Equation 7.3
generally yields

k =

⌈
β2

2ε2
ln 2ν

⌉
(7.4)

and with our parameters we compute k ≈ 8.6 ·104 for the number of samples
we should take. In asymptotic notation we get k ∈ Θ(1/ε2 log ν). We want
to emphasize the following two points:

• the number of samples, and thus also the running time, is independent
of the number of total items, and

• raising the probability of correctness (logarithmic factor) is very cheap
compared to improving the error bound (quadratic factor).

Note that it is not uncommon to include the input size nevertheless, e.g. for
P (m) a polynomial in m one can get increasing probabilities of correctness
with ν ∈ Θ(P (m)) whilst achieving running times in O(log m). However,
in such cases as in our example there is a priori no reason why a larger
instance should be handled with higher probability of correctness than a
smaller instance.

∗1
/(

49
6

)
=1/13983816 corresponds to the likeliness of winning the main price in the

weekly German lottery with one single trial

7.1. APPROXIMATING THE CLUSTERING COEFFICIENT BY SAMPLING NODES 113

7.1 Approximating the Clustering Coefficient

by Sampling Nodes

Let us recall that the clustering coefficient of a graph G is the average neigh-
borhood density

c (G) =
1

|V |
∑
v∈V

%(v),

in which %(v) = δ(v)/
(

d(v)
2

)
. We assume, that %(v) is well defined for all

nodes, i.e. d(v) ≥ 2 for all v ∈ V .

A straightforward method to approximate the clustering coefficient of a graph
c (G) would be to take samples from the neighborhood densities of the set
of nodes. Let S be a multiset of nodes chosen uniformly at random from V .
Then

apx (c (G)) =
1

|S|
∑
v∈S

%(v)

is an approximation of c (G) and Algorithm 7.1 lists a direct realization with
k = |S|.

Algorithm 7.1: c-Approximation by Node Sampling

Input: graph G = (V, E) with ∀v ∈ V : (v) ≥ 2;
number of samples k;
Output: approximation of c (G);
Data: real r;
r ← 0;
for (1, . . . , k) do

v ← uniformRandomNode of all nodes V ;
r ← r + %(v);1

return apx (c (G)) = r/k;

This method has been used by Eubank et al. [2004]. They mention that
choosing k in Θ(log n) “is easily shown via a Chernoff bound to give an
accurate estimate”.

Actually, if we directly apply Hoeffding’s bound (Equation 7.3) it suffices
to choose k ∈ O(1) for a fixed error bound ε and fixed probability p of
approximating within the range induced by this bound. See the example on
page 111 for details. In the following we will assume k ≥ 1 to be bounded
by a constant.

114 CHAPTER 7. APPROXIMATION

Let us investigate the expected running time of Algorithm 7.1. The crux
clearly lies in line 1 in which the neighborhood density of the sampled node
v is computed. Without any knowledge of the structure of G and especially
the neighborhood Γ(v) a direct algorithm has no choice but performing

(
d(v)
2

)
tests for edges in the neighborhood of v. For k ∈ O(1) the probability of a
node v being sampled in Algorithm 7.1 is asymptotically 1/n. Therefore
the following equation holds for the expected running time E [T] of a direct
implementation of Algorighm 7.1

E [TAlg7.1] ∈ Θ

(
1

n

∑
v∈V

d2(v)

)
(7.5)

Now, let us consider a family of graphs with exactly one node v of degree
d(v) ∈ Ω(n) and all other nodes with degrees bounded by a constant. We
can then directly conclude from Equation 7.5 that

E [TAlg7.1] ∈ Ω(n) .

Note that we are still considering worst case running times with respect to
the input of graphs. The expected running time does not depend on various
graph instances, but is due to the randomized sampling of the nodes.

We have seen that a constant number of samples leads to an at least linear
expected running time. Let us have a closer look at the running times de-
pending on the random input. The whole point of applying tail inequalities
as the Chernoff bounds is to show that is is very unlikely to deviate far from
the expected value. This has been achieved for the computed approximation
apx (c). However, the distribution of the running times of Algorithm 7.1 it-
self doesn’t behave well in this sense. Let us consider again a graph with one
single high degree node as above. For this case the expected running time is
in Θ(n), but we get running time in Ω(n2) with probability as high as k/n

P
[
TAlg7.1 ∈ Ω

(
n2
)]
≥ 1

n
.

To amend this problem one could also approximate the neighborhood den-
sities %(v) for the nodes itself. However, we will propose a more elegant
solution in the following section.

7.2. APPROXIMATING THE CLUSTERING COEFFICIENT BY SAMPLING WEDGES 115

7.2 Approximating the Clustering Coefficient

by Sampling Wedges

We will give approximation algorithms for the node weighted clustering coef-
ficient cw (including the transitivity) and for the unweighted clustering coef-
ficient c. Before getting to the algorithms we will first extend the transitivity
t(G) in a similar manner as the clustering coefficient c (G) in Equation 5.6
on page 88.

Extending the Transitivity

Let Π be the set of all wedges in a graph G, then τ(G) = |Π|. Further
consider the mapping X : Π→ {0, 1}, where X(Υ) equals one if there is an
edge between the outer nodes of the wedge Υ, and zero otherwise. Then we
can rewrite the transitivity as

t(G) =
1

|Π|
∑
Υ∈Π

X(Υ).

This equation is similar to the definition of the clustering coefficient in Equa-
tion 2.11 on page 17. We define

t$(G) =
1∑

Υ∈Π

$(Υ)

∑
Υ∈Π

$(Υ)X(Υ). (7.6)

with a weight function $: Π→ R+.

Lemma 20 The weighted clustering coefficient is a special case of the weighted
transitivity.

Proof: For a node weight function w, let $(Υ) = w(v)
τ(v)

where v is the center
of wedge Υ. Further, let Πv be the set of wedges with center v. Then ac-
cordingly τ(v) = |Πv| and

∑
Πv

X(Υ) = δ(v). The following transformation
completes the proof:

cw = 1P
V ′

w(v)

∑
V ′

w(v)%(v) = 1P
V ′

w(v)
t(v)

t(v)

∑
V ′

w(v)m(v)
t(v)

= 1P
V ′

w(v)
t(v)

P
Πv

1

∑
V ′

w(v)
t(v)

∑
Πv

X(Υ) = 1P
V ′

P
Πv

w(v)
t(v)

∑
V ′

∑
Πv

w(v)
t(v)

X(Υ)

= 1P
Π

$v

∑
Π

$vX(Υ) = T$

�

116 CHAPTER 7. APPROXIMATION

The proof above will be useful for the upcoming approximation algorithms.
Let Υ be a wedge with center node v. For w(v) = τ(v), i.e. $ ≡ 1 we get
the unweighted transitivity t$ = t. Likewise for w ≡ 1, i.e. $(Υ) = 1/τ(v)
we get the unweighted clustering coefficient t$ = c.

7.2.1 Approximating the Weighted Clustering Coeffi-
cient

We will show the following theorem in this Section.

Theorem 9 The node weighted clustering coefficient cw and particularly the
transitivity t can be approximated in O(n) time.

Roughly speaking our approximation algorithm samples wedges with appro-
priate probability. It then checks whether an edge between the non center
nodes of the wedge is present. Finally, it returns the ratio between the
number of existing edges and the number of samples. The pseudo code is
presented in Algorithm 7.2. For simplicity we restrict the node weights to
strictly positive integers.

Lemma 21 For a graph G with given node weights w(v), a value apx (cw(G))
that is in [cw(G)− ε, cw(G) + ε] with probability at least ν−1

ν
can be computed

in O
(
n + log ν

ε2
log n

)
time.

Proof: We prove that Algorithm 7.2 has the requested properties. Let
us first consider the time complexity. The running time of the first for-loop
(starting at line 1) is obviously in O(n). For the second for-loop (line 2), the
findIndex function (line 4) can be executed in log(n) steps asymptotically
by performing binary search. Choosing two adjacent nodes (line 5 up to
line 6) is expected to be in constant time. Testing of edge existence (line 6)
is expected to be in constant time as well if for example a hashed data
structure is used for the edges. Finally, defining k = dln(2ν)/(2ε2)e gives
total expected running time of O

(
log ν
ε2

log n
)

for the second for-loop.

In order to prove the correctness for our choice of k, we make use of Hoeffd-
ing’s bound [Hoeffding, 1963]. See Equation 7.3 on page 111 and in general
Section 7 starting at page 111. We will now prove that the expectation E [l/k]
is equal to cw and that the bounds on ε and ν−1

ν
are fulfilled for our choice of

k. The proof of Lemma 20 on page 115 implies that cw can be computed by
testing for each wedge whether it is contained in a triangle or not. With the

7.2. APPROXIMATION BY SAMPLING WEDGES 117

Algorithm 7.2: Node Weighted Clustering Coefficient Ap-
proximation
Input: graph G = (V, E) with ∀v ∈ V : d(v) ≥ 2;
arbitrary indexed order of nodes (v1, . . . , vn);
node weights w : V → N>0;
number of samples: k;
Output: approximation of cw

Data: node variables: u, w;
integer variables: r, l, j, φ0,...,n;
φ0 ← 0;
for i = (1, . . . , n) do1

φi ← φi−1 + w(vi);

l← 0 ;
for (1, . . . , k) do2

r ← uniformRandomNumber({1, . . . , φn});3

j ← findIndex(i : φi−1 < r ≤ φi);4

u← uniformRandomAdjacentNode(vj) ;5

repeat
w ← uniformRandomAdjacentNode(vj) ;

until u 6= w ;
if {u, w} ∈ E then6

l← l + 1;

return apx (cw(G)) = l/k ;

118 CHAPTER 7. APPROXIMATION

same notation as in Section 7.2 and particularly as in the proof of Lemma
20, we get

cw(G) =
1∑

u∈V ′
w(u)

∑
v∈V ′

∑
Υ∈Πv

w(v)

τ(v)
X(Υ)

where w(v)/τ(v) is the weight of the corresponding wedge. This corresponds
to the probability of w(v)/ (τ(v)

∑
w(u)) that a wedge is chosen in one single

loop starting at line 2. Hence, by linearity of the expectation E [l/k] = cw

holds. The random variable X(Υ) is a mapping from Π to {0, 1}, and conse-
quently β = 1 in Equation 7.3. We can now immediately see that the bounds
on ε and the probability ν−1

ν
are fulfilled for our choice of k. �

One may regard the error bound ε and the probability ν as fixed parameters.
The number of wedges τ(v) for a node v can be computed in O(1) time if
e.g. adjacency arrays are used. Theorem 9 follows from these observations.

7.2.2 Approximating the Clustering Coefficient

The central statement of this section is the following Theorem.

Theorem 10 The clustering coefficient c of a graph G can be approximated
in constant time.

To show it we will use a simplified version of Algorithm 7.2 which is listed
in Algorithm 7.3. The main difference is that the node v, which corresponds
to node vj in Algorithm 7.2, is now sampled uniformly at random from all
nodes in V . Thus, all lines dealing with the node weights are not required
and removed.

To see the correctness one verifies that a wedge at center node v is sampled
with probability 1/ (τ(v)|V |) which corresponds to the correct weight w ≡ 1
or $ = 1/τ for obtaining c, compare to the proof of Lemma 20 on page 115
and the paragraph following that proof. The rest follows analogously as in
the proof of Lemma 21 on page 116.

Corollary 19 For a graph G a value apx (c (G)) that is in [c(G)−ε, c(G)+ε]
with probability at least ν−1

ν
can be computed in O

(
log ν
ε2

)
time.

7.2. APPROXIMATING THE NEIGHBORHOOD DENSITIES 119

Algorithm 7.3: Clustering Coefficient Approximation

Input: graph G = (V, E) with ∀v ∈ V : d(v) ≥ 2;
number of samples: k;
Output: approximation of cw

Data: node variables: u, w;
integer variables: l;
l← 0 ;
for (1, . . . , k) do

v ← uniformRandomNode(V);
u← uniformRandomAdjacentNode(v) ;
repeat

w ← uniformRandomAdjacentNode(v) ;
until u 6= w ;
if {u, w} ∈ E then

l← l + 1;

return apx (c (G)) = l/k ;

Performance in Practice. We implemented Algorithm 7.3 to approxi-
mate the clustering coefficient. We set the parameters to ε = 0.01 and
ν =

(
49
6

)
. It takes between 0.8 seconds for a very small graph of 4 nodes up

to 1.4 seconds for the larger “Movie Actor Network 2004” (see page 38 in
Section 3.2). This difference could be explained by the cache of the CPU.
Note, that the execution times do not contain the creation of the used hash
data structures for the edges.

7.3 Approximating the Neighborhood Densi-

ties

In this section we give algorithms to approximate the neighborhood density
%(v), i.e. the clustering coefficient of the nodes of a graph. The main result
is compactly given by the following theorem.

Theorem 11 All the neighborhood densities %(v) of a graph G can be ap-
proximated in O(n log n) time.

The main algorithm is listed in Algorithm 7.4. We will discuss it in the
following.

120 CHAPTER 7. APPROXIMATION

First note that there is a trivial bound for high degree nodes in otherwise
sparse graphs. The neighborhood G[Γ(v)] of a node v can not contain more
than m − d(v) edges and therefore %(v) ≤ (m − d(v))/

(
d(v)
2

)
holds. Hence,

the neighborhood density of nodes with ε > (m − d(v))/
(

d(v)
2

)
can be set to

zero without any further computational effort for an allowed deviation of ε.
This happens in line 1 of Algorithm 7.4. In the case of the “Notre Dame
WWW” network (see also page 38 in Section 3.2) three nodes fall into this
category for ε = 0.05. However, these 3 out of 325729 nodes reduce the
overall number of edge tests, and thereby also the execution time, to 1/3-rd
(for Algorithm 7.4 without the approximation of line 2).

Algorithm 7.4: Neighborhood Densities Approximation

Input: graph G = (V, E) with d(v) ≥ 2 for all v ∈ V ;
subset U of V ; parameter k, ε;
Output: approximation ϕ(v) of %(v) for all v ∈ U ;
forall v ∈ U do

if ε > (m− d(v))/
(

d(v)
2

)
then

ϕ(v)← 0;1

else if k <
(

d(v)
2

)
then

ϕ(v)← k-sampling-apx (%(v));2

else
ϕ(v)← %(v);3

The next step is to include the k-sampling, i.e. test for k randomly chosen
pairs of neighbors whether they are connected by an edge. This method is
integrated with line 2 to Algorithm 7.4. If we want to ensure that each node
has the same probability of being approximated correctly, we need to change
Equation 7.4 to

k =

⌈
β2

2ε2
ln (2ν |U |)

⌉
, (7.7)

from which k can be computed.

For k ≥
(

d(v)
2

)
sampling does not make sense and therefore those remain-

ing nodes are handled with the standard method of testing edges between
all neighbors (see algorithm node-iterator on in line 3. See page 26 in Sec-
tion 3.1.2 for a discussion of this method.

Let us note that the approximation in line 2 is essential for the following
corollary, the cases handled by the lines line 1 and line 3 give improvements

7.3. APPROXIMATING THE NEIGHBORHOOD DENSITIES 121

in the running time by a factor that depends on the graph structure and the
choice of k.

Corollary 20 Algorithm 7.4 can be implemented such that it approximates

the neighborhood density of all nodes in U ⊂ V of a graph G in O
(
|U | log(ν|U |)

ε2

)
time. For each node v a value apx (%(v)) is computed, which is in [%(v) −
ε, %(v) + ε] with probability at least ν−1

ν
.

Discussion of the Practical Relevance. We tested how small k has to
be set to beat the execution time of algorithm forward in an implementation.
The result for the graph “Movie Actor Network 2004” (see Section 3.2 on
page 38) is k ≈ 190 which does not give terribly good bounds on ε. For
example we would get ε ≈ 0.2 for the rather low probability of correctness
that exactly one node out of all nodes is not approximated correctly in ex-
pectation.

Therefore, we have to draw the following conclusion: it is not beneficial to
approximate the neighborhood density for all nodes in the case of sparse
graphs. For reasonable bounds on the deviation there exist exact algorithms
with at least equivalent execution times, i.e. algorithm forward .

This leaves two mentionable cases where Algorithm 7.4 should be used in
practice. Algorithm 7.4 can be applied if one is interested in the neighbor-
hood densities of a small subset of V . This is actually the reason, why we
listed Algorithm 7.4 such that it processes a subset U of V . In this context
note that algorithm forward for example can only be applied to process the
whole graph. Further, the running time of the approximation algorithm is
sub-linear in the case of dense graphs. We performed an experiment where
we compared the execution time of forward with the approximation algo-
rithm on dense graphs, which were generated Gn,m graphs (see Section 3.2
on page 42) with density ρ = 0.5. The number of samples was set to k = 3429.
The break even point between the two algorithms turned out to be at about
m = 2.2 · 106 edges, and the execution time at this point was about 20 sec-
onds. Certainly these numbers are specific to the implementation and the
used hardware. However, they show that the graph sizes are not exorbitant
when it is favorable to use Algorithm 7.4.

122 CHAPTER 7. APPROXIMATION

Chapter Conclusion

We have seen various results on the approximation of the clustering coeffi-
cient. We highlight the possibility of approximating the clustering coefficient
c of a graph in constant time. We have shown that it is feasible to apply this
methods in practice. However, especially in the case of approximating the
clustering coefficient of all nodes it has to be carefully considered whether it
is worth applying an approximative method instead of a fast exact algorithm.

The algorithms might have a further impact on the approximation of the
coefficients for very large networks that do not fit into main memory. For
example, it is known that the exact number of triangles can not be counted
by streaming algorithms with reasonable models [Bar-Yosseff et al., 2002].
However, it can be approximated within some bounds [Bar-Yosseff et al.,
2002; Jowhari and Ghodsi, 2005; Buriol et al., 2006]. This is a field for
future research.

Chapter 8

Conclusion

We introduced a triangle listing algorithm which is very efficient in practice.
Its execution time is competitive to the previously considered practical al-
gorithms. However, our algorithm also achieves optimal running time with
respect to the input size of the network. Due to the improved running time,
our algorithm performs much better on large graphs with high degree nodes.
These types of networks are quite commonly considered in network analysis.
Our algorithm achieves execution times in minutes on recent hardware for
graphs that fill up all the main memory of an adequately equipped com-
puter. The bottleneck is now rather memory consumption, and techniques
that avoid storing the graphs in central memory will be the focus in the
future.

We considered a variety of graph classes with respect to triangle listing and
triangle counting. We presented triangle listing algorithms that achieve a
linear running time in the input (the size of the graph) and the output (the
number of triangles). For the case of triangle counting we developed algo-
rithms that have a running time linear in the number of edges or even in
the number of nodes. These algorithms do not use techniques that involve
high constants in the running times. Therefore, they can be used in practical
applications. They also exploit the triangular structure of the graph method-
ologically, which gives insights into the respective triangular structures.

We reviewed a variety of network analysis related problems that benefit from
efficient triangle listing algorithms. We discussed the neighborhood densities
and different weighted variants thereof. We gave a unified notation of those
weighted versions and a general algorithm to compute them by generic tri-
angle listing. We discussed the clustering coefficient and the related index
of transitivity. We gave improved algorithms to compute equivalence classes

123

124 CHAPTER 8. CONCLUSION

of triangular connected nodes and edges. In the context of connectivity by
cliques we showed that our triangle listing algorithm can be extended to a
4-clique listing algorithm that achieves acceptable execution times even for
larger graphs.

We reviewed the approach to approximate the clustering coefficient of a graph
by computing the average of the neighborhood densities of randomly sampled
nodes. We have observed that this approach leads to an expected running
time at least linear in the number of nodes. We gave an approximation algo-
rithm that achieves a constant running time. It is based on sampling wedges
and can be extended to approximate weighted versions of the clustering co-
efficient. Similar techniques can be used to approximate the neighborhood
density of a node. In the case of considering all nodes of a graph, these
algorithms have a strong competitor based on the very efficient triangle list-
ing algorithm as discussed above. However, we have shown cases where the
approximation nevertheless shows considerable advantages.

We gave a graph generator that is based on preferential attachment. Unlike
previously presented approaches, our generator achieves high clustering co-
efficient values for a wide range of parameters. Additionally, we achieve a
nontrivial core structure of the generated networks that increases with the
graph size.

Acknowledgments

First of all I would like to thank my supervisor Dorothea Wagner for giving
me the opportunity to work with her, for the advice and help all over the
years, and for providing the very nice environment in her algorithmics group.
I’m very thankful to Ulrik Brandes, who provided many times the help of a
second supervisor and particularly let me work with him and his group in
Konstanz.

I enjoyed the time with my former office colleague Sabine Cornelsen and my
current Christian Pich. Sabine gave me excellent guidance at the beginning
of this work. Christian was always very helpful and had a lot of patience with
me. Special thanks to Christian and Sabine as well as Michael Baur, Martin
Hoefer, Martin Holzer and Svetlana Mansmann for their critical proofreading
of parts of this manuscript. I warmly thank Sabine Cornelsen for hinting
to and discussing split decomposable graphs, as well as Ulrik Brandes for
hinting to and discussing chordal graphs. Many administrative duties would
have cost me much more time without the help of Marco Gaertler.

Some work done during recent years did not find its way into this thesis,
simply because it did not fit so well to the main topic. Nevertheless I would
like to thank the people that were involved with it. Thomas Erlebach and
Alexander Hall let me join their interesting work during my time at the ETH
Zurich. Michael Baur’s help was and is very valuable for the recent work in
the CREEN project.

I also enjoyed incredible support and patience from Monika Kulartz during
the compilation of this work. I’m very thankful to my parents for their
support and trust during my whole education.

Last but not least let me thank again Dorothea Wagner and Ulrik Brandes
for taking their time as referees for this thesis.

125

126 CHAPTER 8. ZUSAMMENFASSUNG

Zusammenfassung

Verschiedene Methoden in der Netzwerkanalyse basieren auf dem effizienten
Abzählen oder Auflisten aller Dreiecke eines Graphen. Die Nachbarschafts-
dichte (engl. clustering coefficient) ist eine der zur Zeit populärsten Kenn-
größen der Netzwerkanalyse. Ihre schnelle Berechnung hängt von dem effizi-
enten Abzählen aller Dreiecke eines Graphen ab. Diese Arbeit beschäftigt sich
mit algorithmischen Problemen in der Netzwerkanalyse, die in engem Bezug
zu der Anzahl und der Struktur der Dreiecke in einem gegebenen Netzwerk
stehen.

Wir betrachten zunächst Algorithmen für das effiziente Auflisten aller Drei-
ecke eines Graphen. Im Gegensatz zum Abzählen der Dreiecke ist das Aufli-
sten ein universelleres Werkzeug, da sich beispielsweise aus einem Algorith-
mus zum Auflisten aller Dreiecke sehr einfach ein Algorithmus zum Abzählen
aller Dreiecke ableiten lässt. Beide Probleme wurden in der Vergangenheit
weitgehend nur theoretisch betrachtet. Es sei hierzu insbesondere auf [Alon
et al., 1997] verwiesen, die den bis dato effizientesten Algorithmus zum Ab-
zählen aller Dreiecke vorstellt. Dieser Algorithmus basiert auf schneller Ma-
trizen-Multiplikation, eine Technik, die zwar weitreichende theoretische Kon-
sequenzen hat, in der Praxis aber nicht verwendet wird. Wir konzentrieren
uns jedoch insbesondere auf die praktische Anwendbarkeit von Algorithmen
für das Auflisten aller Dreiecke. Die bisher einzige Arbeit, die dieses Pro-
blem auch im Hinblick auf praktische Anwendungen beleuchtet ist [Batagelj
and Mrvar, 2001]. Der dort betrachtete Algorithmus dient uns als Grundla-
ge für die Entwicklung eines neuen Algorithmus mit besserer Laufzeit. Wir
erweitern ihn um einige sehr einfache zusätzliche Operationen und Daten-
strukturen und beweisen, dass seine asymptotische Laufzeit bezüglich der
Anzahl der Kanten optimal ist. Zudem zeigen wir experimentell, dass dieser
Algorithmus im allgemeinen sehr schnelle Ausführungszeiten erreicht und
insbesondere auch bei Eingaben mit hohen Knotengraden sehr effektiv ist.

Weiterhin befassen wir uns mit dem Auflisten und Aufzählen aller Dreiecke in
speziellen Graphklassen. Hierbei steht nicht die praktische Anwendung, son-
dern die angewandte Methodik im Vordergrund. Wir beginnen mit Graphen,
deren Kernzahl durch eine Konstante beschränkt ist. Dazu gehören plana-
re Graphen und auch Graphen die durch die Methode lineare Bevorzugung,
besser bekannt unter dem englischen Begriff “linear preferential attachment”,
erzeugt werden. Im weiteren behandeln wir transitiv orientierbare und chor-
dale Graphen. Als letzte Klasse betrachten wir sogenannte distanzvererbende
Graphen, bei denen in jedem durch einen Pfad induzierten Untergraph die
gleichen Knotenabstände wie im Originalgraph gelten. Die vorgestellte Me-

8.0. ZUSAMMENFASSUNG 127

thode zum Auflisten und Zählen der Dreiecke basiert bei distanzvererbenden
Graphen allerdings auf einer weiteren, durch Zerlegung charakterisierten Ei-
genschaft. Falls der Graph in einer impliziten Zerlegung kodiert ist, erreichen
wir für das Zählen der Dreiecke eine Laufzeit, die linear in der Anzahl der
Knoten ist. Insgesamt erreichen wir für alle erwähnten Graphklassen Lauf-
zeiten, die linear in der Größe von Eingabe und Ausgabe sind. Im Falle des
Aufzählens bedeutet dies, dass die Laufzeit linear in der Größe des Graphen
ist, und im Falle des Auflistens, dass sie linear in der Größe des Graphen plus
der Anzahl der im Graphen vorhanden der Dreiecke ist.

Im Bezug auf Anwendungen in der Netzwerkanalyse beschränken wir uns auf
Algorithmen, die als Eingabe eine Liste der Dreiecke des Graphen verwenden.
Dies ist zum einen aus den schon besprochenen Inhalten und zum anderen
aus der praktischen Wiederverwendbarkeit des immer gleichen Algorithmus
zur Auflistung aller Dreiecke motiviert. Als erste Anwendung behandeln wir
die Berechnung der Äquivalenzklassen, die durch Wege sich überlappender
kurzer Zyklen induziert sind. Dieser Verallgemeinerung von Zusammenhangs-
komponenten in Graphen wurde in [Batagelj and Zaveršnik, 2003] vorgestellt.
Als Spezialfall werden auch Zusammenhangskomponenten, die auf kurzen Zy-
klen der Länge drei - also Dreiecken beruhen, betrachtet und Algorithmen
zur Berechnung der entsprechenden Äquivalenzklassen angegeben. Basierend
auf dem generischen Auflisten von Dreiecke können wir Algorithmen mit
verbesserter Laufzeit aufzeigen. Ähnlich zu dem Zusammenhangsbegriff, der
auf Wegen sich überlappender kurzer Zyklen beruht, lässt sich Zusammen-
hang auf Basis der Überlappung von kleinen Cliquen definieren. In diesem
Kontext zeigen wir die Erweiterbarkeit unseres Algorithmus zum Auflisten
aller Dreiecke auf das Auflisten aller k-Cliquen und belegen experimentell
dessen Anwendbarkeit, indem wir alle 4-Cliquen eines größeren Netzwerkes
auflisten.

Die Dichte des durch die Nachbarn induzierten Graphen eines Knotens be-
zeichnen wir als Nachbarschaftsdichte. Sie ist in der englischsprachigen Lite-
ratur als “clustering coefficient” eines Knotens bekannt. Algorithmisch lässt
sich diese für alle Knoten sehr einfach durch das Abzählen und damit auch
Auflisten aller Dreiecke berechnen. Wir konzentrieren uns bei der algorith-
mischen Besprechung auf den interessanteren Fall des mit Kantengewich-
ten versehenen Graphen. Der Mittelwert der Nachbarschaftsdichten über alle
Knoten wird als Nachbarschaftsdichte oder Cluster-Koeffizient des Graphen
selbst bezeichnet. Seine Berechnung selbst ist algorithmisch weniger inter-
essant, aber da in der Literatur wir der Cluster-Koeffizient und der ähnlich
definierte Transitivitäts-Index manchmal fälschlicherweise synonym verwen-
det werden, diskutieren wir einige Eigenschaften dieser Indizes, insbesondere

128 CHAPTER 8. ZUSAMMENFASSUNG

die Unterschiede zwischen den entsprechenden Werte für bestimmte Graph-
klassen.

Eine wichtige Rolle für das Verständnis real existierender Netzwerke spielen
Algorithmen zur Generierung von Graphen mit bestimmten Eigenschaften.
Zudem werden Graphgeneratoren zum Testen von Algorithmen benötigt. Ein
sehr populäres Modell für die Erzeugung von Graphen ist die sogenannte
lineare Bevorzugung. Mit ihr lassen sich Graphen erzeugen, bei denen die
Verteilung der Knotengrade gute Übereinstimmung mit der entsprechenden
Verteilung bei vielen realen Netzwerken hat. Es hat sich allerdings gezeigt,
dass der Cluster-Koeffizient eines auf diese Weise erzeugten Graphen deut-
lich niedriger ist als bei den in realen Netzwerken typischerweise gefundenen
Werten. Eine entsprechend angepasster Generator, der angeblich einen hohen
Cluster-Koeffizient erzielt, wurde in [Holme and Kim, 2002] vorgestellt. Wir
zeigen experimentell, dass dieser Ansatz tatsächlich nur sehr eingeschränkt
funktioniert. Wir führen einen neuen Algorithmus zur Generierung von Gra-
phen ein, der diese Einschränkungen nicht zeigt. Weiterhin zeigen wir, dass
die von unserem Algorithmus generierten Graphen, im Gegensatz zu den
durch die erwähnten Methoden erstellen Graphen, eine nicht triviale Kern-
struktur aufweisen.

Im letzten Kapitel befassen wir uns mit der näherungsweisen Berechnung
des Cluster-Koeffizienten eines Graphen durch Stichprobenerhebung. Eine
solche Methode mit einer erwarteten Laufzeit, die mindestens proportional
zu der Anzahl der Knoten ist, wird in [Eubank et al., 2004] angewendet. Wir
zeigen, dass sich der Cluster-Koeffizient durch Stichprobenerhebung sogar in
konstanter Laufzeit approximieren lässt.

Bibliography

James Abello, Panos M. Pardalos, and Mauricio G. C. Resende, editors.
Handbook of massive data sets. Kluwer Academic Publishers, Norwell,
MA, USA, 2002. ISBN 1-4020-0489-3.

Vinay Aggarwal, Anja Feldmann, Marco Gaertler, Robert Görke, and
Dorothea Wagner. Analysis of Overlay-Underlay Topology Correla-
tion using Visualization. In Proc. 5th IADIS International Conference
WWW/Internet Geometry, Murcia, Spain, 5–8 October 2006.

Réka Albert, Albert-László Barabási, and Hawoong Jeong. Mean-field theory
for scale-free random networks. Physica A, 272:173–187, 1999.

Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given
length cycles. Algorithmica, 17(3):209–223, 1997.

T.L. Austin, R.E. Fagen, W.F. Penney, and J. Riordan. The number of com-
ponents of random linear graphs. The Annals of Mathematical Statistics,
30:747–754, 1959.

Ziv Bar-Yosseff, Ravi Kumar, and D. Sivakumar. Reductions in streaming
algorithms, with an application to counting triangles in graphs. In SODA
’02: Proceedings of the thirteenth annual ACM-SIAM symposium on Dis-
crete algorithms, pages 623–632, Philadelphia, PA, USA, 2002. Society for
Industrial and Applied Mathematics. ISBN 0-89871-513-X.

Albert-László Barabási and Réka Albert. Emergence of scaling in random
networks. Science, 286:509–512, 1999.

Alain Barrat and Martin Weigt. On the properties of small-world network
models. The European Physical Journal B, 13:547–560, 2000.

Alain Barrat, Marc Barthelemy, Romualdo Pastor-Satorras, and Alessan-
dro Vespignani. The architecture of complex weighted networks.
PROC.NATL.ACAD.SCI.USA, 101:3747–3752, 2004.

129

130 BIBLIOGRAPHY

Vladimir Batagelj and Ulrik Brandes. Efficient generation of large random
networks. Physical Review E, 71(036113), 2005.

Vladimir Batagelj and Andrej Mrvar. Pajek – A program for large network
analysis. Connections, 21(2):47–57, 1998.

Vladimir Batagelj and Andrej Mrvar. A subquadratic triad census algorithm
for large sparse networks with small maximum degree. Social Networks,
23:237–243, 2001.

Vladimir Batagelj and Matjaž Zaveršnik. An O(m) algorithm for cores de-
composition of networks. Technical Report Preprint Series, volume 40,
number 798, Insitute of Mathematics, Physics and Mechanics, Depart-
ment of Theoretical Computer Science, University of Ljublana, Ljubljana,
Slovania, 2002.

Vladimir Batagelj and Matjaž Zaveršnik. Short cycles connectivity, 2003.

Michael Baur, Ulrik Brandes, Marco Gaertler, and Dorothea Wagner. Draw-
ing the as graph in 2.5 dimensions. In Proceedings of the 12th International
Symposium on Graph Drawing (GD’04), Lecture Notes in Computer Sci-
ence, pages 43–48, 2005.

Béla Bollobás. Extremal Graph Theory. Dover Publications, Incorporated,
2004. ISBN 0486435962.

Béla Bollobás. Modern Graph Theory, volume 184 of Graduate Texts in
Mathematics. Springer-Verlag, 1998.

Béla Bollobás and Oliver M. Riordan. Mathematical results on scale-free
random graphs. In Stefan Bornholdt and Heinz Georg Schuster, editors,
Handbook of Graphs and Networks: From the Genome to the Internet,
pages 1–34. Wiley-VCH, 2002.

Béla Bollobás, Oliver M. Riordan, Joel Spencer, and Gábor Tusnády. The
degree sequence of a scale-free random graph process. Randoms Structures
and Algorithms, 18:279–290, 2001.

Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad. Graph classes:
a survey. Society for Industrial and Applied Mathematics, Philadelphia ,
PA , USA, 1999. ISBN 0-89871-432-X.

Tian Bu and Don Towsley. On distinguishing between Internet power law
topology generators. In infocom02 infocom02.

BIBLIOGRAPHY 131

Luciana S. Buriol, Gereon Frahling, Stefano Leonardi, Alberto Marchetti-
Spaccamela, and Christian Sohler. Counting triangles in data streams.
In PODS ’06: Proceedings of the twenty-fifth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, pages 253–262,
New York, NY, USA, 2006. ACM Press. ISBN 1-59593-318-2.

Qian Chen, Hyunseok Chang, Ramesh Govindan, Sugih Jamin, Scott
Shenker, and Walter Willinger. The origin of power laws in Internet topolo-
gies revisited. In infocom02 infocom02.

Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing algo-
rithms. SIAM J. Comput., 14(1):210–223, 1985. ISSN 0097-5397.

Don Coppersmith and Shmuel Winograd. Matrix multiplication via arith-
metic progressions. Journal of Symbolic Computation, 9(3):251–280, 1990.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. MIT Press, 2nd edition, 2001.

Derek G. Corneil. Lexicographic breadth first search - a survey. In Juraj
Hromkovic, Manfred Nagl, and Bernhard Westfechtel, editors, WG, volume
3353 of Lecture Notes in Computer Science, pages 1–19. Springer, 2004.
ISBN 3-540-24132-9.

W.H. Cunningham. Decomposition of directed graphs. SIAM J. Alg. Disc.
Meth., 3:214–228, 1982.

Elias Dahlhaus. Efficient parallel and linear time sequential split decompo-
sition (extended abstract). In P. S. Thiagarajan, editor, FSTTCS, volume
880 of Lecture Notes in Computer Science, pages 171–180. Springer, 1994.
ISBN 3-540-58715-2.

Roman Dementiev, Lutz Kettner, and Peter Sanders. Stxxl: Standard tem-
plate library for xxl data sets. In Gerth Stølting Brodal and Stefano
Leonardi, editors, ESA, volume 3669 of Lecture Notes in Computer Sci-
ence, pages 640–651. Springer, 2005. ISBN 3-540-29118-0.

Imre Derenyi, Gergely Palla, and Tamas Vicsek. Clique percolation in ran-
dom networks. Physical Review Letters, 94:160202, 2005.

Reinhard Diestel. Graph Theory. Graduate Texts in Mathematics. Springer-
Verlag, 2nd edition, 2000.

Holger Ebel, Lutz-Ingo Mielsch, and Stefan Bornholdt. Scale-free topology
of e-mail networks. Phys. Rev. E, 66(3):035103, Sep 2002.

132 BIBLIOGRAPHY

Paul Erdős and Alfred Rényi. On random graphs I. Publicationes Mathe-
maticae Debrecen, 6:290–297, 1959.

Stephen Eubank, V.S. Anil Kumar, Madhav V. Marathe, Aravind Srinivasan,
and Nan Wang. Structural and algorithmic aspects of massive social net-
works. In Proceedings of the 14th Annual ACM–SIAM Symposium on
Discrete Algorithms (SODA’04), pages 718–727, 2004.

Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law
relationships of the Internet topology. In Proceedings of SIGCOMM’99,
1999.

Delbert R. Fulkerson and O. A. Gross. Incidence matrices and interval
graphs. Pacific J. Math., 15(3):835–855, 1965.

Marco Gaertler and Maurizio Patrignani. Dynamic analysis of the au-
tonomous system graph. In IPS 2004 – Inter-Domain Performance and
Simulation, pages 13–24, March 2004.

Horst Gilbert. Random graphs. The Annals of Mathematical Statistics, 30
(4):1141–1144, 1959.

Martin C. Golumbic. The complexity of comparability graph recognition and
coloring. 18(3):199–208, 1977.

Peter Grindrod. Range-dependent random graphs and their application to
modeling large small-world proteome datasets. Physical Review E, 66(6):
066702, 2002.

Peter L. Hammer and Frédéric Maffray. Completely separable graphs. Dis-
crete Appl. Math., 27(1-2):85–99, 1990. ISSN 0166-218X.

Frank Harary and Helene J. Kommel. Matrix measures for transitivity and
balance. Journal of Mathematical Sociology, 6:199–210, 1979.

Frank Harary and Herbert H. Paper. Toward a general calculus of phonemic
distribution. Language : Journal of the Linguistic Society of America, 33:
143–169, 1957.

Wassily Hoeffding. Probability inequalities for sums of bounded random
variables. Journal of the American Statistical Association, 58(301):713–
721, 1963.

Petter Holme and Beom Jun Kim. Growing scale-free networks with tunable
clustering. Physical Review E, 65(026107), 2002.

BIBLIOGRAPHY 133

infocom02. Proceedings of Infocom’02, 2002.

Alon Itai and Michael Rodeh. Finding a minimum circuit in a graph. SIAM
Journal on Computing, 7(4):413–423, 1978.

Hossein Jowhari and Mohammad Ghodsi. New streaming algorithms for
counting triangles in graphs. In Lusheng Wang, editor, COCOON, volume
3595 of Lecture Notes in Computer Science, pages 710–716. Springer, 2005.
ISBN 3-540-28061-8.

Gabriela Kalna and Des Higham. Clustering coefficients for weighted net-
works. volume 3, pages 132–138, 2006.

Ton Kloks, Dieter Kratsch, and Haiko Müller. Finding and counting small
induced subgraphs efficiently. Information Processing Letters, 74(3–4):
115–121, 2000.

Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, D. Sivakumar,
Andrew Tomkins, and Eli Upfal. The Web as a graph. In Proc. 19th
ACM SIGACT-SIGMOD-AIGART Symp. Principles of Database Systems,
PODS, pages 1–10. ACM Press, 15–17 2000.

Matthieu Latapy. Theory and practice of triangle problems in very large
(sparse (power-law)) graphs, 2006.

Xiafeng Li, Derek Leonard, and Dmitri Loguinov. On reshaping of cluster-
ing coefficients in degree-based topology generators. In Stefano Leonardi,
editor, Algorithms and Models for the Web-Graph: Third International
Workshop, WAW 2004, Rome, Italy, October 16, 2004, Proceeedings, vol-
ume 3243 of Lecture Notes in Computer Science, pages 68–79. Springer-
Verlag, 2004.

Luis Lopez-Fernandez, Gregorio Robles, and Jesus M. Gonzalez-Barahona.
Applying social network analysis to the information in cvs repositories. In
Proceedings of the International Workshop on Mining Software Reposito-
ries, pages 101–105, 2004.

Ross M. McConnell and Jeremy P. Spinrad. Linear-time transitive orienta-
tion. In SODA ’97: Proceedings of the eighth annual ACM-SIAM sympo-
sium on Discrete algorithms, pages 19–25, Philadelphia , PA , USA, 1997.
Society for Industrial and Applied Mathematics. ISBN 0-89871-390-0.

Ulrich Meyer, Peter Sanders, and Jop F. Sibeyn, editors. Algorithms
for Memory Hierarchies, Advanced Lectures [Dagstuhl Research Seminar,

134 BIBLIOGRAPHY

March 10-14, 2002], volume 2625 of Lecture Notes in Computer Science,
2003. Springer. ISBN 3-540-00883-7.

Stanley Milgram. The small world problem. Psychology Today, 1:61, 1967.

Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cam-
bridge Univ. Press, 1995. ISBN 0-521-47465-5.

Mark E. J. Newman. Scientific collaboration networks. i. network construc-
tion and fundamental results. Phys. Rev. E, 64(1):016131, Jun 2001.

Mark E. J. Newman, Steven H. Strogatz, and Duncan J. Watts. Random
graphs with arbitrary degree distributions and their applications. Phys.
Rev. E, 64(2):026118, Jul 2001.

Mark E. J. Newman, Duncan J. Watts, and Steven H. Strogatz. Random
graph models of social networks. Proceedings of the National Academy of
Science of the United States of America, 99:2566–2572, 2002.

Falk Nicolai. A hypertree characterization of distance-hereditary graphs,
1996.

J. P. Onnela, J. Saramaki, J. Kertesz, and K. Kaski. Intensity and coherence
of motifs in weighted complex networks. Physical Review E, 71:065103,
2005.

Gergely Palla, Imre Derenyi, Illes Farkas, and Tamas Vicsek. Uncovering
the overlapping community structure of complex networks in nature and
society. Nature, 435:814, 2005.

Donald J. Rose, Robert E. Tarjan, and George S. Lueker. Algorithmic aspects
of vertex elimination on graphs. SIAM Journal on Computing, 5(2):266–
283, 1976.

Sheldon M. Ross. Introduction to Probability Models. Academic Press, 8th
edition, 2003.

Thomas Schank and Dorothea Wagner. Approximating clustering-coefficient
and transitivity. Technical Report 2004-9, Universität Karlsruhe, Fakultät
für Informatik, 2004.

Thomas Schank and Dorothea Wagner. Approximating clustering coefficient
and transitivity. Journal of Graph Algorithms and Applications, 9(2):265–
275, 2005a.

BIBLIOGRAPHY 135

Thomas Schank and Dorothea Wagner. Finding, counting and listing all
triangles in large graphs, an experimental study. In Proceedings on the
4th International Workshop on Experimental and Efficient Algorithms
(WEA’05), volume 3503 of Lecture Notes in Computer Science. Springer-
Verlag, 2005b.

Thomas Schank and Dorothea Wagner. Finding, counting and listing all
triangles in large graphs, an experimental study. Technical report, Univer-
sität Karlsruhe, Fakultät für Informatik, 2005c.

Stephen B. Seidman. Network structure and minimum degree. Social Net-
works, 5:269–287, 1983.

Gopalakrishnan Sundaram and Steven S. Skiena. Recognizing small sub-
graphs. NETWORKS: Networks: An International Journal, 25, 1995.

Virginia Vassilevska, Ryan Williams, and Raphael Yuster. Finding the small-
est -subgraph in real weighted graphs and related problems. In Michele
Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors,
ICALP (1), volume 4051 of Lecture Notes in Computer Science, pages
262–273. Springer, 2006. ISBN 3-540-35904-4.

Duncan J. Watts and Steven H. Strogatz. Collective dynamics of “small-
world” networks. Nature, 393:440–442, 1998.

Bin Zhang and Steve Horvath. A general framework for weighted gene
co-expression network analysis. Statistical Applications in Genetics and
Molecular Biology, 4, 2005.

Index

adjacent, 13
algorithm, 17

approximation, 110
randomized, 110
step, 17
triangle counting, 23
triangle listing, 23

arboricity, 18, 21
arc, 13

BFS
lexBFS, 53

chord, 14, 53
clique

n-, 13
clustering coefficient, 16, 17, 86, 89

of a node, 87
weighted

node, 88
connected, 15

triangularly edge, 76
triangularly node, 75

core, 18
k-, 18
main, 18
number, 18
the, 18

cycle, 14

degeneracy, 18
degree, 13

in-, 14
maximal, 14

out-, 14
density, 12, 13
digraph, 13
distance, 15
distribution, 12

edge, 12
elimination order

2-simplicial, 56
perfect, 53

event, 12
expectation, 12

linearity of, 111

graph, 12
chordal, 53
comparability, 51
complete, 13
dense, 13
directed, 13
distance hereditary, 56
simple, 13
undirected, 12

underlying, 13
graph model

LCD, 87
preferential attachment, 87

Handshake Lemma, 14
hole, 14

incident, 13
independent, 111
isometric, 56

136

INDEX 137

leaf, 15
linear preferential attachment, 93

matrix multiplication exponent, 24

neighborhood, 13
neighborhood density, 16, 79, 87, 89
network, 12
node, 12

O-notation, 11

path, 14
length, 14

planar graph, 50
postorder, 15
predecessor, 15
preferential attachment, 51
preorder, 15
probability measure, 12
probability space, 12

random variable, 12
running time

linear, 17
worst case, 17

sample space, 12
small world property, 85
split, 57
split decomposition, 58
standard deviation, 12
subgraph, 14

edge induced, 14
node induced, 14

subtree, 15
successor, 15

transitive orientation, 51, 87
transitivity, 17, 86

index of, 86, 89
ratio, 86

tree, 15

root, 15
spanning, 15

triangle, 15
triple, 87

variance, 12
vertex, 12

wedge, 16, 87

138 CHAPTER 8. CURRICULUM VITAE

Curriculum Vitae

Thomas Schank studied mathematics and physics at the University of Kon-
stanz. He spent the third year of his studies at the Northern Arizona
University in Flagstaff/USA. He graduated in 2002 with the degree “Wis-
senschaftliches Staatsexamen”. From October 2002 to March 2003 he partic-
ipated in the “Predoc Course: Combinatorics, Geometry and Computation”
at the ETH-Zürich/Switzerland. In 2000, he started as a Ph.D. student in
the Algorithms & Data Structures group in Konstanz. Since 2004, he works
as a scientific assistant in the algorithmics group of Prof. Dr. Wagner at the
University of Karlsruhe (TH).

