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1 Introduction

One major benefit of higher-level programming languages over machine code
is, that the programmer is relieved of assigning storage locations to the val-
ues the program is processing. To store the results of computations, almost
every processor provides a set of registers with very fast access. However, the
number of registers is often very small, usually from 8 to 32. So, for complex
computations there might not be enough registers available. Then, some of
the computed values have to be put into memory which is, in comparison
to the register bank, huge but much slower to access. Generally, one talks
about a memory hierarchy where the larger a memory is, the slower it is to
access. The processor’s registers represent the smallest and fastest end of this
hierarchy.

Common programming languages do not pay attention to the memory hi-
erarchy for several reasons. First of all, the number, size and speed of the
different kinds of memory differ from one machine to another. Secondly, the
programmer should be relieved of considering all the details concerning the
underlying hardware architecture since the program should efficiently run on
as many architectures as possible. These details are covered by the compiler,
which translates the program as it is written by the programmer into ma-
chine code. Since the compiler targets a single processor architecture in such
a translation process, it takes care of these details in order to produce effi-
cient code for the processor. Thus, the compiler should be concerned about
assigning as many variables as possible to processor registers. In the case that
the number of registers available does not suffice the compiler has to carefully
decide which variables will reside in main memory. This whole task is called
register allocation.

The principle of register allocation is simple: the compiler has to determine
for each point in the program which variables are live, i.e. will be needed in
some computation later on. If two variables being live at the same point in the
program, i.e. they are still needed in some future computation, they must not

1



2 Introduction

occupy the same storage location, especially not the same register. We then
say the variables interfere. The register allocator then has to assign a register
to each variable while ensuring that all interfering variables have different
registers. However, if the register allocator determines that the number of
registers does not suffice to meet the demand of the program, it has to modify
the program by inserting explicit memory accesses for variables that could not
be assigned a register. This part, called spilling , is crucial since memory access
is comparatively slow. To quote [Hennessy and Patterson, 1997, page 92]:

Because of the central role that register allocation plays, both
in speeding up the code and in making other optimizations use-
ful, it is one of the most important—if not the most important—
optimizations.

1.1 Graph-Coloring Register Allocation

The most prominent approach to register allocation probably is graph col-
oring . Thereby, interference is represented as a graph: each variable in the
program corresponds to a node in the graph. Whenever two variables in-
terfere, the respective nodes are connected by an edge. As we want to map
the variables to registers, we assign registers to the nodes in the interference
graph so that two adjacent nodes are assigned different registers.

In graph theory, such a mapping is called a coloring.1 The major problem
is that an optimal coloring, i.e. one using as few colors as possible, is generally
hard to compute; it is NP-complete. Furthermore, the problems of checking a
graph for its k-colorability and the problem of finding its chromatic number,
i.e. the smallest number of colors needed to achieve a valid coloring of the
graph, are also NP-complete. In his seminal work, Chaitin et al. [1981] showed
that each graph is the interference graph of some program. Thus, register
allocation is NP-complete, also.

To color the interference graph, usually a heuristic is applied. The vari-
ables which have to be spilled are determined during coloring when a node
cannot be assigned a color by the heuristic. This leads to an iterative approach
as shown below:

1The term coloring originates from the famous four color problem: Given a map, are
four colors sufficient to color the countries on the map in a way that two adjacent countries
have different colors? This question was positively answered in 1974 after being an open
question for more than 100 years.
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Build Coalesce Color

Spill

coloring failed

While being very successful in the past twenty years, this approach suffers
from several inconveniences:

• Depending on the coloring heuristic used, spills may occur although the
graph is colorable.

• The coalescing phase which is responsible for eliminating unnecessary
move instructions by merging nodes in the interference graph might
degrade the colorability of the interference graph. Therefore, one uses
conservative coalescing methods to ensure that eliminating moves does
not cause spilling. Due to the generality of the interference graphs,
these algorithms have proven to be too pessimistic leaving a considerable
number of uneliminated copies.

• Even if the compiler reduces the register pressure at the instructions of
the program to a bearable amount, the shape of the control flow graph
of the program may induce additional register demand. This additional
demand is not efficiently predictable.

• Spilling is only subordinate to coloring. Since spilling is not activated
unless the coloring heuristic fails, the decision which node to spill is very
dependent on the way the heuristic works. This may lead to spilling de-
cisions which improve the structure of the interference graph concerning
coloring but are a bad choice regarding the program’s performance.

• When spilling has taken place, the interference graph has to be re-built
since the program has been modified by inserting the load and store
instructions implementing the spill. Since interference graphs are com-
monly large and complex data structures, this is an expensive operation
especially for just-in-time compilation scenarios.

1.2 SSA-based Register Allocation

Chaitin’s reduction has one indispensable feature to sustain the generality
of the interference graphs: a variable must be definable more than once.
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This especially means that if a variable is defined multiple times, all values
computed at these definitions must be written to the same register. While
this seems to be an obvious presumption, it allows for generating arbitrary
interferences and thus arbitrary interference graphs.

Having multiple definitions per variable is a serious obstacle in various
compiler phases and optimizations. In many optimizations one is interested
in the definition of a variable being the place where the variable is written to,
i.e. defined. However, this is generally dependent on the place in the program
since a variable may have multiple definitions! Think of a variable a defined
in a then- and an else-clause of an if statement and asking which expression
is responsible for a’s value after the if as shown in Figure 1.1a.

if . . . then
a← 0

else
a← 1

· · · ← a + 1

(a) non-SSA

if . . . then
a1 ← 0

else
a2 ← 1

a3 ← Φ(a1, a2)
· · · ← a3 + 1

(b) SSA

Figure 1.1: If-Then-Else

To remedy this problem, the static single assignment form (SSA form)
has been invented (see Rosen et al. [1988] and Cytron et al. [1991]). The basic
trick is to identify the variable with its definition. As a direct consequence,
each variable is defined only once. At join points of the control flow, where the
definition of a variable is not unambiguously determinable, so-called Φ-oper-
ations are placed which can be thought of as a control flow dependent move
instructions. The SSA equivalent for our example is shown in Figure 1.1b. The
former non-SSA variable a has been split into three SSA variables a1, a2, a3.
This enables the register allocator to assign different registers to a1, a2, a3

instead of a single one for a. Each non-SSA program can be converted into
an SSA form program by applying SSA construction algorithms such as the
one by Cytron et al. [1991].

The central result of this thesis is the fact that the interference graphs of
SSA form programs are chordal. This has a significant impact on the way
register allocators can be built:
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• Coloring and spilling can be completely decoupled.

• Since chordal graphs are perfect they inherit all properties from perfect
graphs, of which the most important one is, that the chromatic number
of the graph is equal to the size of the largest clique. Even stronger, this
property holds for each induced subgraph of a perfect graph. In other
words, chordality ensures that register pressure is not only a lower bound
for the true register demand but a precise measure. Determining the
instruction in the program where the most variables are live, gives the
number of registers needed for a valid register allocation of the program.
Unlike non-SSA programs, the structure of the control flow graph cannot
cause additional register demand.

• This allows the spilling phase to exactly determine the locations in the
program where variables must reside in memory. Thus, the spilling
mechanism can be based on examining the instructions in the program
instead of considering the nodes in the interference graph. After the
spilling phase has lowered the register pressure to the given bound, it is
guaranteed, that no further spill will be introduced. So spilling has to
take place only once.

Spill Color Coalesce

• Coloring a chordal graph can be done in O(|V |2). We will furthermore
show that the order in which the nodes of the interference graph are
colored is related to the order of the instructions in the program. Hence,
coloring can be obtained from the program without materializing the
interference graph itself.

• The major source of move instructions in a program are Φ-operations.
Coalescing these copies too early might result in an unnecessarily high
register demand. The coalescing phase must take care that coalescing
two variables will not exceed the number of available registers. Instead of
merging nodes in the interference graph, we try to assign these two nodes
the same color. The graph remains chordal this way and coalescing can
easily keep track of the graph’s chromatic number and refuse to coalesce
two variables if this would increase the chromatic number beyond the
number of available registers. However, as we show in Section 4.5, this
modified graph coloring problem is NP-complete.
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1.3 Overview of this Thesis

Chapter 2 provides notational foundations and a more precise introduction
to the register allocation problem and its components. Chapter 3 gives an
overview over the state of register allocation research that is relevant and
related to this thesis. Chapter 4 establishes the chordal property of the in-
terference graphs of SSA form programs. Based on this theoretic foundation,
methods and algorithms for spilling, coalescing and the treatment of register
constraints are developed to exploit the benefits of SSA-based register allo-
cation. Please note that this chapter makes intensive use of terminology
of the theory of perfect graphs. (Readers not familiar with this should read
Appendix A beforehand). Afterwards, an experimental evaluation of the new
register allocator proposed is presented in Chapter 5. The thesis ends with
final conclusions and an outlook to further research. Finally, Appendices A
and B provide the terms and definitions of graph theory and integer linear
programming which are needed in this thesis.



2 Foundations

In this chapter we present the formal foundations needed throughout this
thesis.

2.1 Lists and Linearly Ordered Sets

In the following we often deal with lists and sets where the order of the
elements matter. A list of length n over a carrier set X is defined as a total
map s : {1, . . . , n} → X. The set of all lists of length n over X is denoted by
L n(X). Furthermore

L (X) =
⋃
i∈N

L i(X)

represents the set of all lists over X. For a list s ∈ L (X) with s(1) =
x1, . . . , s(n) = xn we shortly write (x1, . . . , xn). The i-th element of a list s
is denoted by s(i). If there is some i for which s(i) = x we also write x ∈ s.

A linearly ordered set is a list in which no element occurs twice, i.e. the
map s is injective. The set S (X) of linearly ordered sets over X is thus
defined as

S (X) = {s | s ∈ L (X) and s injective}

If a list (x1, . . . , xn) is also a linearly ordered set, we sometimes emphasize
this property by writing 〈x1, . . . , xn〉.

In the following, we often will deal with maps returning a list or a linearly
ordered set. For example, let X and Y be two sets and a : X → L (Y ) be
such a map. Instead of writing a(x)(i) for accessing the i-th element of the
returned list, we will write a(x, i) according to the isomorphy of A→ (B → C)
and (A×B)→ C.

7



8 Foundations

2.2 Programs

Throughout this thesis we only consider register allocation on the procedure-
level. This means the input we are processing is a single procedure given
by its control flow graph consisting of labels and instructions. To stick to
established conventions we call such a unit a program. Since register allocation
has to assign storage locations to variables, we do not care about the kind
of computation carried out by an instruction but on which variables it reads
and writes. All this is captured in a program P being a tuple

(V,O,L, pred , arg , res, op, start)

consisting of

• a set of variables V .

• a set of operations O from which the operations of the program are
drawn. We will use infix notation for unary and binary operations. We
require that there is a copy operation y ← x which copies the value from
variable x to variable y.

• a set of labels L which denote the instructions of the program.

• a function pred : L→ S (L) which assigns each label a linearly ordered
set of predecessor labels. Whenever there is an i ∈ N for which `′ =
pred(`, i), we write `′

i→ `. If i is not important in the context we write
`′ → `. We further define |`| = |pred(`)|.
The map pred induces a complementary map succ : L → 2L which is
defined as succ(`) = {`′ | `→ `′}.

• a usage function arg : L→ L (V ) denoting which variables are read at
a certain label.

• a definition function res : L → S (V ) expressing which variables are
written by the instruction at a certain label.

• an operation assignment op : L → O reflecting the operation executed
at some label.

• a distinct label start ∈ L for which |start | = 0 giving the start of control
flow.
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For some ` ∈ L, op(`) = τ , res(`) = (y1, . . . , ym) and arg(`) = (x1, . . . , xn)
we will write shortly

` : (y1, . . . , ym)← τ (x1, . . . , xn)

reflecting that the operation τ reads the variables x1, . . . , xn and writes the
variables y1, . . . , ym at label `. We say a label ` is a definition of a variable x
if x ∈ res(`) and ` is a usage of a variable x if x ∈ arg(`), respectively.

We visualize the program by drawing its control flow graph (CFG). We
put a label, its associated operation and variables into boxes. If there is flow
of control from ` to `′ and ` is the i-th predecessor of `′, i.e. there is `

i→ `′,
we draw an edge from the box of ` to the box of `′ and annotate the i at the
edge’s arrow if it is important in the context. Figure 2.1 shows a program in
pseudo-code and its control flow graph.

procedure sum(n)
i← 1
j ← 0
while i ≤ n do

j ← j + i
i← i + 1

return j

start : n← start

`1 : i← 1

`2 : j ← 0

`3 : if≤(i, n)

`4 : j ← j + i

`5 : i← i + 1 `6 : return j

Figure 2.1: Example program P and its control flow graph

We say a linearly ordered set of labels 〈`1, . . . , `n〉 is a path iff there is
`1 → `2, . . . , `n−1 → `n. To indicate that there is a path from `1 to `n we
write `1 →∗ `n. A path B = 〈`1, . . . , `n〉 is called a basic block if for each `i

and `j holds:

1. For each 1 ≤ i < n holds: succ(`i) = {`i+1} and pred(`i+1) = {`i}

2. B is maximal, i.e. it cannot be extended by further labels.
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Our example program consists of four basic blocks: B1 = 〈start , `1, `2〉, B2 =
〈`3〉, B3 = 〈`4, `5〉 and B4 = 〈`6〉.

As control flow within basic blocks is not important for our work, we will
draw all labels within the same basic block in one box and only give control
flow edges leaving and entering basic blocks. The result of doing so is shown
in Figure 2.2.

start : n← sum
`1 : i← 1
`2 : j ← 0

`3 : if≤(i, n)

`4 : j ← j + i
`5 : i← i + 1 `6 : return j

1
2

Figure 2.2: Simplified drawing using basic blocks

A control flow edge ` → `′ is critical if |`′| > 1 and there exists some
`′′ 6= `′ with ` → `′′, i.e. the edges connects a label with multiple successors
to a label with multiple predecessors.

We say a label ` dominates another label `′ iff each path from start to
`′ also contains `. We then write ` � `′. In our example in Figure 2.1,
`1 dominates `2, . . . , `6. It is clear, that start dominates all other labels in
the CFG. Dominance is an order relation (i.e. it is reflexive, transitive and
anti-symmetric), cf. Lengauer and Tarjan [1979] for example. Furthermore,
dominance induces a tree order on the labels, since for `1 � `3 and `2 � `3
there must always be `1 � `2 � `3 or `2 � `1 � `3. Thus, each label ` has
a unique label idom(`) 6= `, called its immediate dominator , for which holds:
∀`′ ≺ ` : `′ � idom(`) . The immediate dominator of ` is the parent of ` in
the CFG’s dominance tree.

Following the nomenclature of Budimlić et al. [2002], we say a program is
strict if for each variable x and each usage ` of x holds: Each path from start
to ` contains a definition of x. If a program is non-strict due to the violation
of the strictness property by a variable x we also say that the variable x is
not strict.
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2.3 Static Single Assignment (SSA)

We say, a program fulfils the static single assignment property (SSA-proper-
ty) if each variable is statically defined once. In our setting this means that
for each variable there is exactly one label where the variable is written to.
We will write Dx for the label where x is defined. Obviously, the program in
Figure 2.1 does not have the SSA-property since e.g., the variable i is defined
at labels `1 and `5. If a program possesses the SSA-property, we also say the
program is in SSA-form.

Programmers often use the same variable to refer to different computations
which are dependent on the control flow of the program. Consider the example
program in Figure 2.2. The variable i is defined twice: inside the loop and
before the loop. If the example program were in SSA-form, only one definition
of i would be allowed. Thus, one of the definitions has to write to another
variable. Let us say that the definition inside the loop shall write to a variable
i′. Now, the question is, to which definition (i or i′) the usage of i inside the
loop shall refer? Obviously, this is dependent on from where the loop was
entered: if we came from outside we should use i, otherwise we should use i′.

This disambiguation is provided by a new operation (denoted by Φ) that
selects variables dependent on the edge a basic block was reached:

` : (y1, . . . , ym)← Φ
(
x′1, . . . , x

′
m×n

)
with n = |`|

If ` was reached via pred(`, i), the variables x(i−1)n+1, . . . , x(i−1)n+m are
copied to y1, . . . , ym in parallel. For better comprehension, we will consider
the Φ-operation as given in a matrix style notation

` : (y1, . . . , ym)← Φ

x11 · · · x1m

...
. . .

...
xn1 · · · xnm


where xij corresponds to x′(i−1)n+j . Each column of the matrix corresponds
to a result variable and each row of the matrix associates the variables in that
column with a particular predecessor.

As the arguments of a Φ-operation are related to control flow, we reflect
this in a comfortable way to describe the arguments of a Φ-operation.

arg(`, i) =

{
(xi1, . . . , xim) if op(`) = Φ
arg(`) otherwise



12 Foundations

2.3.1 Semantics of Φ-operations

To express the semantics of the Φ-operations, we split each Φ-operation into
two parts. A read part called Φw and as many write parts Φr as there are
predecessors of the Φ’s label. The semantics of the Φ-operation is then given
by considering the program after applying the program transformation TΦ.

Definition 2.1 (Transformation TΦ): Consider a label

` : (y1, . . . , ym)← Φ

x11 · · · x1m

...
. . .

...
xn1 · · · xnm


For each predecessor pred(`, i) insert a label

`i : Φr(xi1, . . . , xim)

splitting the edge from pred(`, i) to `. Replace the Φ-operation in ` by

` : (y1, . . . , ym)← Φw

The semantics of Φw and Φr is defined as follows:

J(y1, . . . , ym)← ΦwK := Jy1 ← $1; · · · ; yn ← $nK
JΦr(x1, . . . , xm)K := J$1 ← x1; · · · ; $n ← xnK

where $1, . . . , $m are variables that did not occur in P . Note that this im-
plies that the $i are multiply defined and thus violate the single assignment
property. However, this is no problem as they serve only for modelling the
semantics of Φ-operations. In other words: we use a transformation of an SSA
program to a non-SSA program to model the semantics of a Φ-operation.

Figure 2.3 illustrates the transformation TΦ. Intuitively, Φ-operations can
be seen as control-flow dependent parallel copies . The parallel character of
the Φ evaluation is most important, since assignments can be cyclic as in

(y, x)← Φ
[
x y
y x

]
which means, that x and y are swapped when the label is reached along the
edge from its first predecessor. Figure 2.4 shows the example program in
SSA-form.
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(y1, y2)← Φ
[
x11 x12

x21 x22

]

A B

(a) A Φ-operation in some program P

(y1, y2)← Φw

Φr(x11, x12) Φr(x21, x22)

A B

(b) TΦ(P )

Figure 2.3: The program transformation TΦ

Remark 2.1: The matrix-style notation of Φ-instructions used in this thesis
is not common in literature. Instead of a single Φ with a vector result and
a matrix of operands one finds a φ for each column of the matrix with the
arguments separated by commas. We find this misleading for two reasons:

1. it suggests that these φ-instructions are executed serially which is not
the case.

2. The commas make φ-instructions seem like each operand is needed to
“compute” the results of the φ-instruction. This is also not the case
since only the i-th operand is needed when the φ’s label ` is reached
along pred(`, i)

Figure 2.5 juxtaposes the style used in this thesis and the classical notation.

2.3.2 Non-Strict Programs and the Dominance Property

In principle, SSA-form programs can be non-strict (contain variables which
are not properly initialised). That is, there is a usage ` of some variable x for
which there is a path from start to ` which does not contain Dx. However,
almost every SSA-based algorithm only considers strict programs by relying
on the dominance property:
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start : n← sum
`1 : i1 ← 1
`2 : j1 ← 0

`′ :
(

i3
j3

)
← Φ

[
i1 i2
j1 j2

]
`3 : while i ≤ n

`4 : j2 ← j3 + i3
`5 : i2 ← i3 + 1 `6 : return j

1

2

Figure 2.4: Example program P in SSA-form

y1 ← φ(x11, . . . , xn1)
...

ym ← φ(x1m, . . . , xnm)
(a) Classical

(y1, . . . , ym)← Φ

 x11 · · · x1m

...
. . .

...
xn1 · · · xnm


(b) Matrix

Figure 2.5: Φ-Notations

Definition 2.2 (SSA Dominance Property): Let x be a variable and ` be a label
for which there is some i such that x ∈ arg(`, i). If op(`) = Φ then Dx �
pred(`, i), else Dx � `.

Mostly, SSA is constructed in a strict way, also if the corresponding non-
SSA program was not strict. Each SSA construction algorithm needs to
rewrite the uses of the labels to the correct SSA variable created for a non-SSA
variable. In a strict program this poses no problem. In a non-strict program
however, for every non-strict variable, there will be at least one use which is
not correctly mappable to a definition. Many construction algorithms then
create a new variable which is initialized to zero (or any other value) right in
front of the use. While this results in a correct program, the initialization to
zero will probably result superfluous code being generated. A better solution
is to introduce a dummy variable undef which is defined right after start so
that it dominates all the labels in the program. If a proper definition is not
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(y1, . . . , y3)← Φ
[

x11 x12 x13

x21 x22 x23

]
(a) Program fragment

y1 ← x11

y2 ← x12

y3 ← x13

y1 ← x21

y2 ← x22

y3 ← x23

(b) Program fragment with copies
implementing a Φ

Figure 2.6: SSA Destruction

(a3, b3)← Φ
[

a1 b1

a2 b2

]
(a) SSA

a3 ← a1

b3 ← b1
 

(b) Post-SSA

Figure 2.7: Lost Copy Problem

found for some (non-strict) use, the use is rewritten to undef. Of course, no
code will ever be generated for the initialization of undef.

2.3.3 SSA Destruction

Since no currently available processor provides Φ-operations, a compiler must
destruct the SSA-form before final machine code is emitted. Usually, Φ-oper-
ations are implemented by inserting a sequence of copy instructions in each
predecessor block of the Φ’s block. Figure 2.6 illustrates the basic principle.

However, there are two subtleties arising from the definition of the Φ-op-
eration’s semantics as stated in Definition 2.1.

Lost Copies
Consider a Φ-operation in a block B having n predecessors B1, . . . , Bn.
Since the transfer action from the arguments in the Φ-operation’s i-
th row to the results is done on the way from the i-th predecessor to
the Φ-operation’s block, there might not be a block to which the copy
instructions can be appended to. If the i-th predecessor has multiple
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(a2, b2)← Φ
[

b2 a2

· · · · · ·

]
(a) SSA

a2 ← b2

b2 ← a2 

(b) Post-SSA

Figure 2.8: Φ-Swap Problem

successors, the copies related to the Φ-operation would be also executed
if control is not transferred to the Φ-operation’s block, i.e. the edge from
Bi to B is critical. As the copies must be done “on the edge” from Bi

to B, the critical edge must be split by inserting a block B′
i between Bi

and B.

Φ-Swap
The arguments and results of Φ-operations may be cyclically interde-
pendent as shown in Figure 2.8a. Then, implementing a Φ-operation
straightforwardly using a sequence of copies leads to wrong code as
shown in Figure 2.8b. The value of a2 is destroyed after the first copy
but is needed in the second one to be transferred to b2. In this case, one
must either use an instruction swapping a2 and b2 or introduce a third
copy and rewrite the sequence to

t ← a2

a2 ← b2

b2 ← t

2.4 Global Register Allocation

Let P be a program as defined in Section 2.2. A register allocation ρ : VP → R
of the program P assigns elements of some (finite) set R, called registers,
to variables of P . Note that most processors have multiple register classes.
Commonly one performs register allocation for each class separately. A valid
register allocation must take the structure of the program into account: it
is intuitively clear that some variables x and y cannot be assigned the same
register if a definition of x would overwrite the value of y from the register
although y’s value might still be needed “later on”. We then say x and y
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interfere. As interference is a binary relation on the program’s variables,
we will often talk about the interference graph (IG) IP = (VP , E) where
E = {xy | x and y interfere}. By requiring that a valid register allocation ρ
never assigns two interfering variables to the same register, ρ is a coloring of
the IG. Figure 2.9 shows the IG of the program shown in Figure 2.1.

i

j

n

Figure 2.9: Interference graph of the example program

2.4.1 Interference

Interference is commonly (but not necessarily only) defined using the notion
of liveness:

Definition 2.3 (Liveness): A variable x is live at some label ` if there is a path
from ` to some usage `′ of x and the path does not contain a definition of x.

We call the set of labels where a variable x is live the live range of x. The
number of variables live at some label ` is called the register pressure at `.
Liveness is usually computed by solving a pair of dataflow equations

liveout(`) =
⋃

`′∈succ(`)

livein(`′)

livein(`) = [liveout(`) r res(`)] ∪ arg(`)

using a standard worklist algorithm (cf. Nielson et al. [1999] for example). If
we say x is live at ` we mean that x ∈ livein(`).

Straightforwardly, this gives the standard definition of interference:

Definition 2.4 (Interference): Two variables x and y interfere if and only if
there is a label where both are live.

However, this definition only regards the structure of the program. Struc-
tural interference of two variables can be disregarded if x and y contain the
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start : · · ·

`1 : a← · · · `2 : b← · · ·

`3 : · · ·

`4 : · · · ← b `5 : · · · ← a

Figure 2.10: Non-strict program

same value at all labels where they are simultaneously live, since as they
contain the same value, they can share their storage location. This becomes
important if one considers non-strict programs. If a program is not strict,
there may be a path from start to the usage of some variable x which does
not contain a definition of x. The content of x on this path is arbitrary, so
it can be considered equal to any other value. Thus, x will not interfere with
any other variable y on the path to ` although x and y may be simultaneously
live on the path. Consider the program fragment in Figure 2.10. a and b
are both non-strict variables and are both live at the label `3. According to
Definition 2.4 they interfere. However, if we reach `3 either the value of a
or b is arbitrary depending on how we reached `3 (through `1 or `2). Thus
we could assign the same register to a and b without compromising validity.
Conclusion: defining interference by liveness is only an approximation and
may be refined through a more precise analysis of the program.

2.4.2 Coalescing and Live Range Splitting

The shape of the IG can be modified by splitting live ranges. To split the live
range of a variable x, a copy x′ ← x is inserted at an appropriate label ` in
the program where x is live. All successive usages of x then get rewritten to
use x′ instead of x. Accordingly, the IG of the program obtains a new node
x′ and a part of the edges incident to the node of x are moved to the node
of x′. Thus, live range splitting can lower the degree of the node whose live
range is split.
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Figure 2.11 shows an example program P ′, its IG and a program P ′′ which
resulted from P ′ by splitting the live range of variable d before the last basic
block. IP ′′ has a lower chromatic number (2) than IP ′ whose chromatic
number is 3. Thus, live range splitting can have a positive effect on the
colorability of the interference graph. Consider the extreme case where the
live ranges of all live variables are split in front and behind each label. Then,
the IG degenerates into a set of independent cliques where each clique consists
of the nodes corresponding to the variables live at that label. Each of these
cliques is trivially colorable using exactly as many colors as the size of the
clique.

Note that constructing the SSA form breaks live ranges since Φ-operations
represent (parallel) copy instructions. The effect of this particular splitting on
the IG of the program will be thoroughly discussed in Chapter 4. Live range
splitting obviously can improve the colorability of the IG, but it introduces an
extensive amount of shuffle code, mainly copy instructions that transport the
contents of the split variable to new variables. As one is usually not willing
to accept an arbitrary amount of inserted shuffle code, the register allocator
tries to remove as many of the inserted copies as possible. This technique is
known as coalescing . The art of coalescing is to remove as many moves as
possible without pushing the chromatic number of the IG over the number of
register available.

To express the information of variables emerging from split live ranges,
we extend the IG of a program P with a set A ⊆ [VP ]2 of affinity edges (see
Appendix A for notation): xy ∈ A indicates that x and y are involved in a
copy instruction and assigning x and y the same color or merging them into
one node will save a copy instruction. Furthermore, we also equip the IG with
a cost function c : A→ N to weight the affinity edges arbitrarily . Thus, the
IG will from now on be a quadruple IP = (VP , E, A, c). In drawings of the
IG such as in Figure 2.11d, we indicate affinity edges with dotted edges and
costs superscripted.

2.4.3 Spilling

Not every program P has a valid register allocation. This is exactly the case
if the chromatic number of the interference graph is larger than the number
of available registers: χ(IP ) > |R| = k. In order to make IP k-colorable,
the program must be transformed. This is achieved by writing the values of
some set of variables to memory at some points of the program. By inserting
load and store instructions for a variable x, the live range of x is fragmented.
This lowers the register pressure at several other labels. The quality of the
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a← 1

b ← a + a
c ← a + 1
d ← b + 1
store c

e ← 1
d ← a + 1
store e

store d

(a) Example Program P ′

a

b

c

d

e

(b) IG of P ′

a← 1

b ← a + a
c ← a + 1
d1 ← b + 1
store c
d3 ← d1

e ← 1
d2 ← a + 1
store e
d3 ← d2

store d3

(c) P ′′: splitting live ranges in P ′

1

1
a

b

c

d1

d3

d2 e

(d) IG of P ′′

Figure 2.11: Effects of live range splitting on the IG
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spilling process is crucial for the performance of the program, since the time for
accessing a memory location can exceed the time for accessing a register by at
least one order of magnitude in today’s processor architectures. An alternative
to storing and loading a variable is to recompute it. This is commonly known
as rematerialisation. Of course, all operands of the instruction writing to the
variable must be live at the point of rematerialisation. Thus, this technique
is useful for operations with few or even no operands, such as constants.

2.4.4 Register Targeting

Up to now we assumed that each register is assignable to every variable.
When compiling for real processor architectures this is rarely the case. Most
processors impose register constraints on several of their instructions. This
may even lead to unallocatable programs in the first place. Assume two
variables x and y being defined by some instruction i at labels `1 and `2
respectively. The instruction i has the constraint that its result is always
written to a specific register. If x and y interfere, the interference graph of the
program does not have a valid coloring since two interfering variables must be
assigned the same register. Generally, one splits the live ranges of constrained
variables at the labels where the instruction imposing the constraint is acting
on the variable. This allows for moving the variable from/to the constrained
register and place it in an arbitrary register. Common constraints of current
processor architectures and runtime systems are:

• An instruction requires an operand or a result to reside in a specific
subset of registers. Mostly, this subset is of size 1. We write x|S to
express that x’s value has to be in one of the registers of the set S at
its occurrence.

• The instruction requires an operand to have the same register as a result.
This is commonly the case for two-address-code machines like x86.

• An instruction needs a result register to be different from some operand
register. This situation also occurs with two-address-code machines and
some RISC architectures like the ARM.
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3 State of the Art

The major distinction between register allocation approaches is global versus
local register allocation. Global register allocation works at the procedure
level, whereas local register allocation only considers basic blocks or only
single statements and their expression trees. Local register allocation is far
less complex since it avoids all subtleties which arise from control flow split-
and merge points. The drawback however is, that the local allocations have
to be combined across basic block borders. Very simple approaches store all
variables live at the end of a basic block to memory and reload all variables
live at the entrance to the successor. This approach is nowadays considered
unacceptable due to significant performance drawbacks arising from the huge
amount of memory traffic on block borders.

This problem becomes even worse when register allocation only considers
a single expression tree. Although an optimal allocation for the tree can be
obtained efficiently (cf. Sethi and Ullman [1970]) for standard register files,
combining the allocation for each expression to acceptable fast code is diffi-
cult. This problem is attacked by global register allocation which performs the
allocation on the procedure level. Some compilers rely on a mixed local/global
allocation strategy reserving some registers for a local allocator inside the in-
struction selector and using a global allocator to assign registers to variables
living over multiple basic blocks.

Although global register allocation eliminates inter-block fixup-code, the
problem is algorithmically complex. Furthermore, common global register
allocators as presented in this chapter rely on heavy-weight data structures
that need careful engineering.

The register allocation approach presented in this thesis certainly belongs
to the “global” category. Thus, we will focus on global register allocation
techniques and mention other approaches along the way. The most prominent
technique for global register allocation is graph coloring where the interfer-
ence graph is materialized as a data structure and processed using coloring
algorithms.

23
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3.1 Graph-Coloring Register Allocation

Graph coloring register allocation (GCRA) goes back to the 1960s where
Ershov [1965] used “conflict matrices” to record interferences between vari-
ables in a basic block. These matrices are basically the adjacency matrices of
the interference graph. The breakthrough of GCRA is marked by the sem-
inal work of Chaitin et al. [1981] rediscovering a coloring scheme by Kempe
[1879]. Chaitin et al. proved that each undirected graph is the interference
graph of some program. This assertion is very strong since it implies the NP-
completeness of GCRA via the NP-completeness of general graph coloring
(cf. [Garey and Johnson, 1979, Problem GT4]).

Let us revisit Chaitin’s proof since we will use a similar technique for our
purposes in Section 4.5. Consider an arbitrary, undirected graph G = (V,E).
Firstly, we augment V with an additional node, say x, giving V ′. We insert
edges from x to all nodes in V resulting in a new edge set E′. An optimal
coloring for G′ = (V ′, E′) can be easily turned into a coloring for G by simply
deleting x. Since x is adjacent to all nodes in V , its color is different from the
colors assigned to the nodes in V . Now, a program is constructed from G′ in
the following way:

1. Add a start basic block S.

2. For each v ∈ V ′ add a basic block Bv containing the instruction return x+
v

3. For each edge e = ab ∈ E′ add a basic block Bab containing the following
instruction sequence:

a ← 1
b ← 0
x ← a + b

4. Add control flow edges from S to Bab, from Bab to Ba and Bb.

Consider figure 3.1. It shows the graph C4 and the program which is con-
structed following the rules above. A valid register allocation for the program
in figure 3.1b can be transformed into a valid coloring of the graph in fig-
ure 3.1a simply by deleting the node for x and all its incident edges from the
interference graph of the program. Thus, not only the allocation problem but
also the problems

1. How many registers will be needed for a particular program?

2. Are k registers sufficient for a register allocation of a program?
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a

b

c

d

(a) C4

switch(. . . )

a ← 0
b ← 1
x ← a + b

return x + a

b ← 0
c ← 1
x ← b + c

return x + b

c ← 0
d ← 1
x ← c + d

return x + c

d ← 0
a ← 1
x ← d + a

return x + d

(b) Program for C4

Figure 3.1: A graph and the program generated from it

are NP-complete in the number of variables in the program.
Hence, a heuristic which mostly all graph coloring register allocators have

in common is applied: Firstly, unnecessary copies are removed in the coa-
lescing phase. This is done by merging the nodes of the argument and the
result of a copy instruction into a single node if they do not interfere. This is
performed aggressively, i.e. for as many copy instructions as possible. Then
coloring is attempted in two phases:

simplify
searches for a node that has fewer than k neighbors. If such a node is
found, it is removed from the graph and pushed onto a coloring stack.
If no such node is found, a node is selected for spilling, spill code is
inserted, the IG is rebuilt and coloring starts over again.

select
If the simplify-phase managed to remove all nodes from the graph, the
nodes are popped from the coloring stack one by one and re-inserted
into the graph. This produces a valid coloring, since each node has no
more than k−1 neighbors as it is re-inserted into the graph. Thus there
will be always a free color to color the node.

This iterative approach, as shown in Figure 3.1, is typical for more or less all
GCRA approaches.
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Build Coalesce Color

Spill

coloring failed

Figure 3.2: General scheme of Chaitin-style GCRA

3.1.1 Extensions to the Chaitin-Allocator

Chaitin’s approach has been subject to many improvements in the last decades.
However, the basic scheme, as depicted in Figure 3.1, always stays the same.
The main improvements deal with better coalescing heuristics as the removal
of copy instructions became more and more important as compilers started
using SSA and register allocators incorporated live range splitting.

3.1.1.1 The Briggs Allocator

A drawback in Chaitin’s approach is the pessimism in coloring. The nodes
which have to be spilled are selected while removing the nodes from the graph
(this phase is called simplify above). Thereby it is implicitly assumed that
a node with k or more neighbors upon removal cannot be colored when the
variables are re-inserted into the graph. It is pessimistically assumed that
all neighbors of the node have different colors. However, for many graphs
this leads to unnecessary spills like the graph C4 which is shown figure 3.1a.
Chaitin’s heuristic is not able to color C4 with two colors.

This inability was corrected by Briggs et al. [1994]. They delay the spilling
decision to the reinsertion phase and take the coloring of the already re-
inserted neighbors of a node into account. Thus, their approach is called
optimistic coloring . In fact, their approach is able to color C4 with two
colors.

A further improvement by Briggs et al. is on coalescing: Chaitin’s origi-
nal method aggressively merged each (non-interfering) copy-related node pair
into a single node. Since that merged node likely has a higher degree, the
colorability of the graph is probably affected which might cause additional
spills as Chaitin’s method is not able to revoke coalescing. Briggs noticed
that the number of additional spills introduced by aggressive coalescing is sig-
nificant. Therefore, he proposed conservative coalescing which only coalesces
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two nodes if the colorability of the graph is not affected. Thus, coalescing two
nodes conservatively will never cause an additional spill.

More precisely, two nodes a and b are conservatively coalesceable if the
node c, resulting from merging a and b, will have fewer than k neighbors of
significant degree. The degree of a node is significant if it is larger than or
equal to k. The reason for this is that all neighbors of c not of significant
degree can be removed before c is removed. Then, c surely can be removed
since there are at most k − 1 nodes which could not have been removed yet.

3.1.1.2 Iterated Register Coalescing

George and Appel [1996] extended Briggs’ approach by firstly sharpening
the conservative coalescing criterion and secondly interleaving simplification
with coalescing. Consider a pair of copy-related nodes a, b in the IG of some
program. The nodes a and b can be coalesced, if each neighbor t of a
either already interferes with b, or t is of insignificant degree. For a proof
consult Appel and Palsberg [2002] for example.

Using this criterion, George and Appel [1996] modified the coloring scheme
of Briggs by interleaving coalescing and simplification in the following way:

Simplify
Remove non-copy-related nodes with insignificant degree from the graph

Coalesce
Perform conservative coalescing on the graph resulting from simplifica-
tion. The hope is that simplification already decreased the degrees of
many nodes so that it is more likely that the criterion discussed above
matches. When there remains no pair of nodes to coalesce, simplification
is tried again.

Freeze
If the simplification/coalesce cycle could not eliminate/coalesce nodes
from the graph, all nodes of insignificant degree which are still involved
in copies are marked as not copy-related which excludes them from
further coalescing attempts. These copies will be present in the resulting
program. If a node was frozen, simplify/coalesce is resumed. Else, the
allocator continues as the one of Briggs.

3.1.1.3 Optimistic Coalescing

Recognizing that conservative coalescing removes too few copies, Park and
Moon [2004] revived the aggressive coalescing scheme as used in Chaitin’s
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original allocator. However, their allocator is able to undo the coalescing
decision during the select phase. Assume a node a resulted from coalescing
several nodes a1, . . . , an. If a cannot be assigned a color in the select phase,
the coalescing is undone. Then each of the ai is inspected if it can be colored.
If not, it is selected for spilling. For the remaining set A of not spilled nodes,
each combination of subsets of A is checked if it can be colored with the same
color. Each such subset S is rated by the spill costs all nodes in A r S would
cause. The subset causing the least spill costs is then chosen and colored. The
remaining nodes are merged again and placed at the bottom of the coloring
stack.

3.1.2 Splitting-Based Approaches

As shown in Section 2.4.2, splitting live ranges can have a positive impact
on the colorability of the IG. This was firstly noticed by Fabri [1979] in a
more general paper about storage optimization. Since then, there have been
many attempts to integrate live range splitting in existing register allocators
or build new algorithms having a live range splitting mechanism built-in.

3.1.2.1 Priority-Based Register Allocation

Based on Fabri’s observations, Chow and Hennessy [1984, 1990] presented
a graph coloring approach that differs from the Chaitin-style allocators in
various ways:

1. Register allocation is performed only on a subset of the registers. A
part of the register file are reserved for the allocation process inside the
instruction selector. Thus, this approach can be considered as a mixed
local/global method.

2. Instead of considering the definitions and usages of variables at the in-
struction level, basic blocks are used as the basic unit of allocation.
A basic block is considered a single instruction and each variable de-
fined/used inside the block is automatically used/defined by the block.
This leads to significant smaller IGs, but it disallows a register to hold
different quantities inside a single basic blocks which restricts the free-
dom of allocation. To ease this problem, basic blocks are split after a
certain number of instructions.

3. Live ranges whose nodes are of insignificant degree are removed from the
graph before starting. Thus, the algorithm only works on the critical
part of the graph.
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4. Coloring does not follow the simplify/select-scheme but a priority-based
scheme. Live ranges with higher priorities get colored earlier. The
priority represents the savings from assigning a live range to a register
instead of keeping it in memory. If a live range cannot be colored it
is attempted to split it. The basic block containing a definition of the
live range is inspected for a free register to contain a portion of the
live range. If there is a free register to contain the split live range, the
successor blocks are tried in breadth-first order.

3.1.2.2 Live Range Splitting in Chaitin-style Allocators

For Chaitin-style allocators live range splitting has a significant impact. As
the coloring heuristic is very dependent on the degrees of the nodes in the
IG, reducing the degree of a node generally results in better colorability. Re-
consider the extreme example of Section 2.4.2. If the IG is decomposed into
cliques and is k-colorable, i.e. there is no clique larger than k, each node has
at most k− 1 neighbors. Thus, all nodes have insignificant degree and can be
eliminated by the simplify-phase.

Briggs [1992] intensively experimented with splitting live ranges before
starting the allocation. In his PhD thesis, he mentions several split paradigms.
Amongst others, he used the split points caused by Φ-operations which were
left over after destructing SSA. His results were mixed. As colorability of
the IG improved, his coalescing method was less able to remove a satisfactory
number of copies. Recall that in his conservative coalescing scheme, two nodes
were only coalesced if the resulting node will have fewer than k neighbors of
significant degree.

3.1.3 Region-Based Approaches

Region-based register allocation performs the allocation on smaller parts, so-
called regions of the program and combines the partial results to a single one
for the program. Considering regions enables the allocator to invest more
efforts in special parts of the program such as loops. A major drawback in
the general graph-coloring approaches is that the structure of the program is
not well represented by the interference graph: a node in the IG representing
a “hot” variable inside a loop is hardly discriminable from some temporary
which is used only once outside all the loops. Region based approaches mainly
differ in the way they define a region.

Callahan and Koblenz [1991] compute a tile tree over the CFG that is
similar to the CFG part of the abstract syntax tree. The tiles are colored
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separately using the standard simplify/select scheme in a bottom-up pass
over the tile tree. A second pass combines the results of the tile colorings into
a valid coloring for the whole program. They are furthermore able to select
good locations for spills. By moving them up/down the tile tree, they are
able to move them out of loops or inside branches. Norris and Pollock [1994]
use the program dependence graph (PDG) mainly because their compiler
infrastructure is based on the PDG.

Lueh et al. [2000] provide a more general approach to region based register
allocation. First, each region is colored separately. If the IG for a region is not
simplifiable, a set of transparent live ranges (i.e. live ranges whose variables
do not have any definition or use inside the region) is selected for spilling. The
spill is however delayed and performed in a later phase called graph fusion:
The IGs of regions are fused along the control flow edges connecting the
regions. If the fused IG is not simplifiable live range splitting is attempted on
the live ranges spanning the control flow edge on which fusion is attempted.
In the worst case, all live ranges are split which corresponds to not fusing
both IGs. As a nice side-effect, delayed spilling regards the split live ranges
and is able to spill portions of live ranges that do not contain definitions or
usages of the live range’s variable.

3.1.4 Other Graph-Coloring Approaches

In the last years, the examination of the graph-theoretical structure of in-
terference graphs has become of more interest in research. Andersson [2003]
investigated more than 20000 IGs from existing compilers especially from the
Optimal Coalescing Challenge (see Appel and George [2000] for 1-perfectness
(see Section A.2) and found that all graphs he checked were 1-perfect.

Pereira and Palsberg [2005] went further and examined the interference
graphs of the Java 1.4 standard library compiled by the JoeQ compiler after
SSA destruction and found that 95% of them were chordal. Based on this
observation, they applied standard optimal coloring techniques for chordal
graphs like maximum cardinality search as described in Golumbic [1980].
Since these coloring methods also work on non-chordal graph, although non-
optimally, their allocator does not have to use the simplify/select mechanism.
They furthermore present graph-based spilling and coalescing heuristics which
allow them to get rid of the iterative approach commonly found in GCRA:
after spilling, coloring and coalescing the allocation is finished. This allows
for very fast allocation, since the IG has to be built only once.

Independently and simultaneously, Brisk et al. [2005], Bouchez et al. [2005]
and ourselves (see Hack [2005]) proved that the interference graphs of SSA-
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form programs are chordal. Brisk et al. are pursuing the application of SSA-
based register allocation to hardware synthesis where SSA never has to be
destructed since Φ-operations are implementable with multiplexers. Bouchez
et al. give a thorough complexity analysis of the spilling problem for SSA-
form programs, showing the NP-completeness of several problem variants.
Our consequence of the fact that SSA IGs are chordal is presented in this
thesis. Parts of this thesis have been published by the author and others in
Hack et al. [2005], Hack et al. [2006] and Hack and Goos [2006].

3.1.5 Practical Considerations

3.1.5.1 Register Targeting in Chaitin-style Allocators

A common practice in research is to assume that each variable can be assigned
every register. For real-life processor architectures and runtime systems this
assumption is not true. Both constrain the set of assignable registers available
to the variables of the program. It might even occur that these constraints
lead to an unallocatable program if a standard GCRA is applied without
special preparation. This is the case if two interfering variables must reside
in the same register due to targeting constraints. Consider Figure 3.3a. The
variables x and y must be both assigned to register R to fulfill the constraints
imposed by τ . Since both interfere, they cannot reside in the same register and
the constraints are not fulfillable. Instead of constraining x and y one inserts
copies of both and rewrites the usages accordingly. Then, the constrained live
range is reduced to its minimum size and the interference of constrained live
ranges is removed. A similar problem arises if the same variable is used at
least twice in the presence of disjunct constraints. Commonly GCRAs insert
copies behind/before each constrained definition/usage of a variable.

To express the register restriction, the IG is commonly enriched with pre-
colored nodes, one for each register. If a variable cannot be assigned to register
Ri, an edge from v’s node to Ri’s node is inserted. As a lot of constraints are
of the type: instruction I writes its result always in register Ri thus variable
v, as being the result of I, is pinned to register Ri. This introduces edges
from v’s node to all register nodes except the one of Ri.

Smith et al. [2004] propose an approach modifying the simplification crite-
rion of the Chaitin/Briggs-allocators to handle aliased registers1 as they occur
in several architectures.

1Some parts of a register can be accessed under different names. For example, bits 0-7
and 8-15 of the 32-bit register eax on the x86-Architecture can be accessed with registers
al and ah respectively.
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x ← · · ·
y ← · · ·

...
· · · ← τ(x|{R}, . . . )

...
· · · ← τ(y|{R}, . . . )
(a) An uncolorable

Program

x ← · · ·
y ← · · ·

...
x′ ← x
· · · ← τ(x′|{R}, . . . )

...
y′ ← y
· · · ← τ(y|{R}, . . . )
(b) Fixed Program

Figure 3.3: A program uncolorable due to register constraints

3.1.5.2 Pre-Allocation Spilling

The spilling approach of Chaitin-style allocators is very crude since the spilling
decisions are only taken based on the coloring heuristic becoming stuck. As a
node in the IG corresponds to a live range and the whole live range is selected
to be spilled, all uses and definitions are rewritten using loads and stores.
However, it is not acceptable in practice to have a whole live range with five
uses inside a loop spilled because of one use in a non-loop region of a program
where the register pressure is too high. Region-based approaches, as presented
in the last paragraphs, try to attack this problem. In practice however, one
often uses a spilling phase before starting the allocation (see Paleczny et al.
[2001] or Morgan [1998]).

This re-allocation spilling phase lowers the register pressure at each label
to the number of available registers. This will not guarantee the allocation to
succeed without spilling but does the major amount of spilling in advance. All
spills in the allocator are then due to control flow effects or the imperfection
of the coloring heuristic. The pre-allocation spiller can be program sensitive.
Morgan [1998] depicts the following procedure:

1. Before spilling some variable, determine all loops where register pressure
is too high and select variables live through these loops without being
used inside of them to be spilled around the loop.

2. If this did not lower the register pressure to k everywhere, perform
Belady’s algorithm (see Belady [1966]) on the basic blocks where the
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register pressure is still too high. This algorithm was originally devel-
oped for paging strategies in operating systems, selecting those pages
to be removed from main memory whose next use was furthest in the
future. In terms of register allocation this means that if all registers are
occupied and a register is needed for a result or argument of a label,
all variables currently in registers are examined and the one with the
furthest use is selected to be spilled.

This has been transferred to register allocation: if a variable has to be
spilled, the one whose next use is furthest away is taken.

3. Belady’s algorithm will incur fixup loads and stores on the incoming
control flow edges of the block it is performed on. Attempts are made
to move these loads and stores to better places using techniques similar
to partial redundancy elimination.

3.1.5.3 Storing the Interference Graph

All graph coloring approaches presented above need the IG as a data structure
materialized in memory. As interference graphs can have more than 10000
nodes and are not sparse, they consume a significant amount of memory
and are time-consuming to build. Unfortunately, GCRA approaches need
to perform neighbor checks (is a a neighbor of b) and the iteration over all
neighbors of a node. So, an adjacency matrix or adjacency lists would be
desirable to perform both operations in acceptable time. Cooper et al. [1998]
discuss engineering aspects of IGs in greater detail.

3.2 Other Global Approaches

Graph coloring has not been the only attempt to global register allocation.
The costly iterative algorithm of the Chaitin-style allocators with the huge
IG as a data structure make graph coloring a technique which is not trivial to
implement, requires careful engineering and consumes a lot of compile time.
Especially for the field of Just-In-Time (JIT) compilation where compile time
matters, register allocation algorithms with emphasis on fast compile time
have been developed. They mostly work linearly in the size of the program
and usually do not achieve the same quality as graph-coloring register allo-
cators. Besides these fast algorithms, there are approaches which focus on
obtaining optimal solutions for the register allcoation problem using integer
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linear programming. Here, we shortly outline representative approaches for
both fields.

3.2.1 Linear-Scan

The linear-scan approach (cf. Poletto and Sarkar [1999]) aims at fast compile
times which are of great importance in the field of JIT compilation. Unlike
the other approaches presented on the last pages, the linear-scan algorithm
does not consider the control flow graph and precise liveness information dur-
ing register allocation. It assumes that there exists a total order < of the
instructions. Using this total order, each variable has exactly one live inter-
val [i, j] with i < j. These intervals can be computed by a single pass over
program. However, since the instructions must be ordered linearly the live
intervals may cover instructions where the variable is not live according to
liveness analysis (as presented in Definition 2.3).

Then, the intervals are sorted increasingly in order of their start points.
In a second pass, registers are assigned first come first served to the intervals.
When there is no register left to assign, one of the currently “active” intervals
has to be spilled. Different heuristics are applicable there. The one chosen by
Poletto and Sarkar [1999] is to spill the interval whose end point is furthest
away which is similar to the heuristic presented in Section 3.1.5.2.

Linear-scan is very popular in JIT-compilers mainly because it runs fast
and is easy to implement. Due to its simplicity and the imprecise liveness
information the quality of the allocation is considered inferior to the one
produced by GCRA. In the last years, several improvements were proposed to
cope with the deficiencies of imprecise liveness information and incorporating
other register allocation tasks such as constraint handling and coalescing.
For more details, see Traub et al. [1998], Wimmer and Mössenböck [2005] or
Mössenböck and Pfeiffer [2002].

3.2.2 ILP-based Approaches

Goodwin and Wilken [1996], Fu and Wilken [2002] were the first to give an
ILP (integer linear programming) formulation of the whole register allocation
problem including spilling, rematerialisation, live range splitting, coalescing
and register targeting. Their measurements show that it takes about five
seconds for 97% of the SPEC92 benchmark suite to be within 1% of the
optimal solution. They furthermore present a hybrid framework where critical
control flow paths can be allocated with the ILP mechanism and the rest is
processed with a standard graph coloring approach.
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Appel and George [2001] focus on spilling and separate spilling and register
assignment. First, ILP-based spilling inserts spills and reloads and lowers the
register pressure to the number of available registers. To obtain a valid allo-
cation, live ranges are split in front of each label as discussed in Section 2.4.2
by inserting parallel copy instructions. Thus, the IG degenerates into a set
of cliques which is trivially colorable. Now, it is up to the coalescing phase
to remove as many copies as necessary. Appel and George state this problem
as finding a coloring of the IG which has minimal copy costs and name it
Optimal Register Coalescing. In their experiments, they first tried iterated
register coalescing which failed to remove a satisfactory number of copies due
to its conservatism. Second, they applied optimistic register coalescing which
produced satisfactory results concerning the runtime of the program.

3.3 SSA Destruction

Although not being a register allocation approach SSA destruction has a sig-
nificant influence on register allocation. It is common sense to destruct SSA
before performing register allocation. This is mostly due to a historical rea-
son: graph coloring register allocation was invented earlier than SSA. To
make SSA-based compilers “compatible” with existent (non-SSA) backends,
SSA has to be destructed before the code generation process starts.

As discussed in Section 2.4.2, Φ-operations induce a live range splitting
on the program. Recent SSA destruction approaches which go beyond the
simple copy insertion scheme as presented in Section 2.3.3, try to subsume
as many variables of the same Φ-congruence class in the same non-SSA vari-
able (see Sreedhar et al. [1999] and Rastello et al. [2004]). Thereby, these
approaches perform a coalescing on SSA variables before register allocation
and might accidentally increase the chromatic number of the graph as shown
in Figure 2.11. The fact that many variables were merged into one is invisible
to the register allocator afterwards. It thus will be unable to undo this pre-
allocation coalescing. To our knowledge, there is no register pressure sensitive
SSA destruction approach.

3.4 Conclusions

We presented an overview over existing approaches in global register alloca-
tion which are relevant to this thesis. The salient approach is graph coloring
as invented by Chaitin and improved by Briggs. The algorithm is dominated



36 State of the Art

by the generality of the occurring interference graphs; as shown in Section 3.1,
each undirected graph can occur as an IG. Thus, the coloring scheme is de-
signed to handle arbitrary graphs. However, the simplify/select-scheme favors
graphs which contain some nodes of insignificant degree and eliminating a
node causes more and more nodes to become eliminable.

We have seen that live range splitting is important since it renders the IG
better colorable by the simplify/select-scheme at the costs of introducing copy
instructions which have to be eliminated using coalescing. As many compil-
ers use the SSA-form at least in some optimizations, the copy instructions
introduced by the SSA destruction are still present in the register allocation
phase. This led to an increasing importance of coalescing which culminated
in the optimistic approach by Park and Moon.



4 SSA Register Allocation

4.1 Liveness, Interference and SSA

In this section, we investigate the properties of interference in strict SSA-
form programs. We show that, using liveness-based interference (as given in
Definition 2.4), the interference graphs of SSA-form programs are chordal.
Before turning to the discussion of liveness and interference, let us start with
a remark on the special variable undef.

A Short Note on undef

In Section 2.3.2, we introduced the dummy variable undef as a means to con-
struct strict SSA-form programs. At each use of undef, its value is undefined.
Hence, its value can be read from an arbitrary register, i.e. it does not interfere
with any other variable, although it might be simultaneously live. As were
are interested in keeping the liveness-based notion of interference, we will ex-
clude undef from the set of variables on which register allocation is executed.
Independently from the register allocation, we can assign an arbitrary register
to undef.

4.1.1 Liveness and Φ-operations

The standard definition of liveness, as given in Definition 2.3, is based on the
notion of usage. For ordinary operations, a variable x is used at a label ` if
x ∈ arg(`). However, this is not true for Φ-operations: control flow selects a
single row out of the Φ-matrix. The variables of this row are copied to the
result variables and the rest of the operands are ignored.

Applying the liveness-based definition of interference and treating Φ-op-
erations like ordinary operations would directly lead to mutual interference

37
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of variables in the Φ-matrix. Thus, two variables in different rows of a Φ-
matrix could never share the same register. This is a valid definition which
does not lead to wrong register allocations. However, it is more restrictive
than reality. Figure 4.1 shows an SSA-form program and two valid register
allocations. In Figure 4.1b the standard liveness definition is applied, hence
a1 and a2 interfere. The register allocation in Figure 4.1c is valid although
two interfering (in the sense of Definition 2.4) variables are assigned the same
register. This is even the most desirable allocation since the Φ-operation then
degrades to a no-operation.

if . . . then
a1 ← 0

else
a2 ← 1

a3 ← Φ
[

a1

a2

]
· · · ← a3 + 1

(a) SSA

if . . . then
R1 ← 0

else
R2 ← 1

R1 ← Φ
[

R1

R2

]
· · · ← R1 + 1

(b) Näıve liveness
definition

if . . . then
R1 ← 0

else
R1 ← 1

R1 ← Φ
[

R1

R1

]
· · · ← R1 + 1

(c) Realistic liveness
definition

Figure 4.1: Liveness and Φ-operations

To reflect the control flow dependent behavior of Φ-operations, they have
to be specially modeled concerning liveness. We express the liveness of SSA-
form programs using the program transformation TΦ used to define the se-
mantics of Φ-operations (see Definition 2.1).

Definition 4.1 (SSA-Liveness): A variable x is live at ` in P if x is live at ` in
TΦ(P ).

Corollary 4.1: The interference graphs of P and TΦ(P ) are isomorphic.

Although being not defined in the above way, the liveness of Φ-operat-
ions is equivalently modelled by the SSA-tailored liveness analysis algorithm
given in [Appel and Palsberg, 2002, page 429] and reflected in the dataflow
equations given by Brisk et al. [2005].



4.1 Liveness, Interference and SSA 39

4.1.2 Interference

Based on the liveness-based definition of interference (Definition 2.3) in SSA-
form programs, Budimlić et al. [2002] gave three lemmas (4.2–4.4) relating
liveness and interference to the dominance relation of the SSA form. We
present these lemmas including the proofs since their understanding is vital for
the rest of this thesis. Based on these lemmas, we prove that the interference
graphs of strict SSA-form programs are chordal. Therefore, we consider the
transformed program TΦ(P ) of a strict SSA-form program P . A summary of
the graph theory needed for this section can be found in Appendix A.

Lemma 4.1: In TΦ(P ) each use of a variable v is dominated by Dv.

Proof. For labels with non-Φ operations this is given by the SSA dominance
property (Definition 2.2). Consider a strict program P , a label ` with op(`) =
Φ and a variable v with v ∈ arg(`, i). Due to the SSA dominance property
Dv � pred(`, i) holds. As the Φr-operation using v is placed directly after
pred(`, i) it is also dominated by Dv.

Lemma 4.2: Each label ` where a variable v is live is dominated by Dv.

Proof. Assume, ` is not dominated by Dv. Then there exists a path from
start to ` not containing Dv. From the fact that v is live at ` it follows that
there is a path from ` to some usage `′ not containing Dv (see Definition 2.3).
This implies, that there is a path from start to `′ not containing Dv which is
impossible in a strict program.

Lemma 4.3: If two variables v and w are live at some label `, either Dv dom-
inates Dw or vice versa.

Proof. By Lemma 4.2, Dv and Dw dominate `. Since dominance is a tree
order (see Section 2.2), either Dv dominates Dw or Dw dominates Dv.

Remark 4.1: Note that this lemma states that each edge in the interference
graph G can be directed according to dominance. Thus, if uv ∈ EG and
Du � Dv the edge uv points from u to v. One can further prove that the edge
directions induced by dominance form an R-orientation (see section A.2.1.4)
which suffices to show G’s chordality.

Lemma 4.4: If v and w interfere and Dv � Dw, then v is live at Dw.

Proof. Assume, v is not live at Dw. Then, there is no path from Dw to some
usage `′ of v. So v and w cannot interfere.
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Lemma 4.5: Let uv, vw ∈ EG and uw 6∈ EG. If Du � Dv, then Dv � Dw.

Proof. Due to Lemma 4.3, either Dv � Dw or Dw � Dv. Assume Dw � Dv.
Then (with Lemma 4.4), w is live at Dv. Since u and v also interfere and
Du � Dv, u is also live at Dv. So, u and w are live at Dv which cannot be by
precondition.

Finally, we can prove that the interference graph of a program in SSA
form contains no induced cycle longer than three:

Theorem 4.1 (Chordality): The interference graph G of a program in SSA form
is chordal.

Proof. We will prove the theorem by showing that G has no induced subgraph
H ∼= Cn for any n ≥ 4. We consider a chain in G

x1x2 . . . xn ∈ EG with n ≥ 4 and ∀i ≥ 1, j > i + 1 : xixj 6∈ EG

Without loss of generality we assume Dx1 � Dx2 . Then, by induction with
Lemma 4.5, Dxi � Dxi+1 for all 1 < i < n. Thus, Dxi � Dxj for each j > i.

Assume, there is an edge x1xn ∈ EG. Then, there is a label ` where x1

and xn are live. By Lemma 4.2, ` is dominated by Dxn and due to the latter
paragraph, ` is also dominated by each Dxi , 1 ≤ i < n. Let us consider a label
Dxi , 1 < i < n. Since Dxi dominates `, there is a path from Dxi to `. Since
Dxi does not dominate Dx1 , there is a path from Dxi to ` which does not
contain Dx1 . Thus, x1 is live at Dxi . As a consequence, x1xn ∈ EG implies
x1xi ∈ EG for all 1 < i ≤ n. So, G cannot contain an induced Cn, n ≥ 4 and
thus is chordal.

4.1.2.1 SSA versus non-SSA Interference Graphs

The main difference between SSA and non-SSA interference graphs lies in the
live range splitting induced by Φ-operations. Here, the parallel copy nature
of Φ-operations is vital. Traditionally, Φ-operations are implemented using
a sequence of copy instructions. These (sequential) copy instructions create
interferences between the arguments and the results of the Φ-operation. These
interferences were not present in the SSA program as shown in Figure 4.2.

In most compilers, SSA gets destructed before register allocation. Thereby,
the sequence of the copies implementing a Φ-operation is fixed arbitrarily be-
fore register allocation. This imposes unnecessary constraints on the register
allocator due to the added artificial interferences. It is more reasonable to
allocate registers first and then arrange the copies in an order that fits the
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Φr(a, b, c, d)
(a′, b′, c′, d′)← Φw

a

a′

b

b′

c

c′

d

d′

dc

b a

d′c′

b′ a′

(a) SSA

d′ ← d
c′ ← c
b′ ← b
a′ ← a

a

a′

b

b′

c

c′

d

d′

dc

b a

d′c′

b′ a′

(b) non-SSA

Figure 4.2: Copy instructions, live ranges and interferences in the SSA and
non-SSA case

allocation, i.e. create only interferences between nodes that do not have the
same color, which keeps the coloring of the SSA program valid for the de-
structed non-SSA program. Furthermore, it is just this premature fixing of
the copy sequence that creates cycles in the interference graph rendering it
unchordal and thus not efficiently treatable.

4.1.3 A Colorability Criterion

As coloring for chordal graphs has complexity O(|V |2) (see Remark A.1 in
Appendix A) we can check the k-colorability of an interference graph by sim-
ply applying the coloring algorithm described in Remark A.1. However, by
establishing a relation between the labels of the program and the cliques in the
interference graph, we can check for k-colorability more efficiently. Trivially,
all variables v1, . . . , vn being live at a label ` induce a clique in the interference
graph of the program since they all interfere. While being not true in general,
the converse does also hold for SSA-form programs1:

Lemma 4.6: For each clique C ∼= Kn ⊆ G, VC = {v1, . . . , vn}, there is a
permutation σ : VC → VC , such that Dσ(v1) � · · · � Dσ(vn).

1This was proved independently by Bouchez et al. [2005]
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Proof. By Lemma 4.3, for each vi, vj , 1 ≤ i < j ≤ n either Dvi � Dvj holds
or Dvj � Dvi . Thus v1, . . . , vn are totally ordered and every sorting algorithm
can produce σ.

Theorem 4.2: Let G be the interference graph of a SSA-form program and C
an induced subgraph of G. C is a clique in G if and only if there exists a label
in the program where all V (C) are live.

Proof. “⇐” holds by definition. “⇒”: By Lemma 4.6, there exists a permu-
tation σ of the {v1, . . . , vn} = VC such that Dσ(v1) � · · · � Dσ(vn). Then, by
Lemma 4.4, all σ(v1), . . . , σ(vn−1) are live at Dσ(vn).

With the perfectness of chordal graphs, we directly obtain the following
colorability criterion:

Theorem 4.3: Let ` ∈ LP be the label with the highest register pressure being
k. Then, χ(IP ) = k.

4.1.4 Directions from Here

The theoretical results of this section can be used for a new register allo-
cation method circumventing many difficulties of the traditional approaches
presented in Chapter 3. Most significantly, spilling and coloring can be com-
pletely separated. Theorem 4.3 assures that register pressure is identical to
k-colorability. Thus, we can apply the pre-allocation spilling methods as de-
scribed in Section 3.1.5.2 once. We then obtain a k-colorable interference
graph as spilling lowered the register pressure at each label to k. This in-
terference graph is colorable in O

(
|V | · ω(G)

)
. Furthermore, as ω(G) ≤ k

after spilling and k is constant, coloring is linear. As shown in Section 4.3,
coloring can be done without materializing the interference graph itself by
two passes over the program’s dominance tree. Furthermore, as presented
in Section 4.4, copy instructions can be used to turn the SSA program into
a non-SSA program in a way that preserves the SSA coloring. The register
allocator has then produced a valid register allocation. To lower the number
of move instructions created by the Φ-implementation, Section 4.5 presents
coalescing methods which optimize the coloring with respect to affinity edges.
This leads to the following sequential register allocation process:

Spill
Section 4.2

Color
Section 4.3

Coalesce
Section 4.5

Φ-Impl
Section 4.4
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Section 4.6 discusses how the allocator has to be modified in order to handle
register constraints imposed by the processor’s instruction set architecture
and the runtime’s binary interface. This comprises an additional pass before
spilling and a slight modification to the coloring phase.
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4.2 Spilling

To apply the coloring algorithm of Section 4.3 and to obtain a valid register
allocation, we need to establish that the program is k-colorable. In prac-
tice, it is likely that the register pressure in a program exceeds the number
of available registers. Therefore, before coloring, spilling has to rewrite the
program in order to make it k-colorable. This rewriting is done using load-
and store-operations which transfer the values between the register file and
the main memory. As the access to main memory can be several orders of
magnitude slower than the access to registers, load- and store-operations must
be used very carefully. The complexity of minimizing this memory traffic has
been shown NP-complete by Farach and Liberatore [1998] and in particular
by Bouchez et al. [2005] in the SSA context.

The failure-driven spilling of GCRAs is often not satisfactory, since the
program’s structure is insufficiently represented in the interference graph.
Hence, most compilers apply a pre-coloring spilling phase which lowers the
register pressure at the labels in the program to the amount of available regis-
ters (see Section 3.1.5.2). Due to Theorem 4.3 this heuristic suffices to produce
a validly colorable program in the SSA-based setting.

Hence, the main focus of this section is to discuss how the existing and
approved program-sensitive spilling approaches can be applied to SSA-form
programs.

4.2.1 Spilling on SSA

Before presenting how existing techniques can be adapted to work in the SSA-
based setting, we discuss several SSA specific issues a spilling algorithm has
to deal with. Let us first define what spilling means. If the register pressure
is too high at a certain label, one of the variables live there cannot be held
in a register and must thus be moved to memory. Therefore, we enhance
the program with a second set of variables M = {m1, . . . } called memory
variables. To make memory variables better distinguishable from ordinary
variables, we typeset them in bold face. Memory variables are excluded from
register allocation since they describe values in memory. However, each mem-
ory variable must have a location in memory where its value is held. Similarly
to the map ρ which assigns each (ordinary) variable a register, we introduce
a map & : M → N which assigns each memory variable a memory address. In
contrast to the set of registers, we assume that there are at least as many mem-
ory addresses as memory variables so that memory variables never compete
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for the same resource. Furthermore, we allow three operations to read/write
memory variables:

1. An operation spill2 which reads an ordinary variable and writes to a
memory variable.

2. An operation reload which reads a memory variable and writes to an
ordinary variable.

3. The Φ-operation.

All other operations must work on ordinary variables.3 A spilling algorithm
has to make sure that this condition is met by placing spill- and reload-
operations at suitable places. Two aspects demand special attention and are
specific to spilling on the SSA form.

4.2.1.1 Φ-operations with Memory Operands

A Φ-operation may define more variables as registers are available. Thus, an
SSA-based spiller must not only insert spill and reloads but also rewrite Φ-
operations. Let k be the number of registers. After spilling, |res(`) r M | ≤ k
must hold for each label ` containing a Φ-operation.

Note carefully that a Φ-operation with memory operands may introduce
memory operations when the Φ-operation gets lowered by the Φ-implementation
phase as described in Section 4.4.2. Whether a Φ-operation with memory
operands causes memory traffic depends on the spill slot assignment &. If
for each memory Φ-result y and each corresponding argument xi there is
&y = &xi then no code has to be generated for the memory part of the Φ-
operation at all. Thus, “optimal” spilling approaches must not only consider
the placement of spill and reload operations in order to fulfil the register pres-
sure criterion but also the assignment of spill slots. To our knowledge, this
problem has not been studied yet. Even the “optimal” approaches presented
in Section 3.2.2 ignore this fact.

We also require that if the result variable of a Φ-operation is a memory
variable, all corresponding operands are memory variables as well. One could
also allow having mixed memory/register operands for a result but this would

2The reason why we name these instructions spill and reload is that we want to keep
the spilling process as architecture-independent as possible. When the spiller inserted
these operations the instruction selection mechanism can turn them into actual machine
instructions.

3This reflects common load/store architectures. Some CISC machines, such as x86, have
the possibility to directly process memory operands.
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defer a part of the spill and reload code insertion to the SSA destruction
phase. We found it more elegant to have only the spiller handling the spill
and reload code.

4.2.1.2 SSA Reconstruction

After spilling, the program must be in SSA form to benefit from the results
of Section 4.1. However, if a variable v is reloaded at several locations, these
reloads form additional definitions of v. This clearly violates the static single
assignment property (see Figure 4.3). Therefore, for each variable v for which
reloads are introduced by the spiller, SSA has to be reconstructed.

Instead of performing an SSA construction algorithm on the whole pro-
gram, we can restrict ourselves to the variables which were involved in spilling.
All other variables still have only one definition.

We follow the same principles as the classical SSA construction algorithm
by Cytron et al. [1991]: For each spilled variable x compute the iterated
dominance frontier of the set of labels L containing the definition and all
labels containing a reload of x:

L = {` | res(`) = {x} ∧ op(`) = reload} ∪ {Dx}

Firstly, give each variable defined by the labels in L a new version number.
This reinstalls the single assignment property. Secondly, we have to rewire
each use of former x to one of the variables defined at the labels in L. Let
F bet the set of iterated dominance frontiers of L (for example, see [Appel
and Palsberg, 2002, page 406] for an algorithm to compute these). Let U be
the set of uses of x. For each ` ∈ U we search up the dominator tree. If we
reach a label `r in L, we subsitute x in arg(`) by res(`r). If ` is in the iterated
dominance frontier F , we insert a Φ-operation and search the predecessors of
` for valid definitions of x. Algorithm 4.1 shows this procedure in pseudo-
code. Note that by re-wiring the usages of several variables, some variables
defined by Φ-operations may not be used anymore. A dead code elimination
pass after spilling will remove these.

4.2.2 Generic Procedure

Assume some spilling algorithm produces a set of spills and reloads for some
variable y in the original program. The new program P ′ has to be rewritten
to reflect the spilling algorithm’s results. Let us consider possible spills and
reloads for y. Firstly, y can be the result of a Φ-operation or not. If it is,
the spiller has to determine if y’s entry in the Φ-operation shall be completely
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x← 1

· · · ← x
...

Register Pressure
too high!

...
· · · ← x

z ← x + y

(a) Example SSA Program
before Spilling

x← 1

· · · ← x
x ← spill(x)

...
x ← reload(x)
· · · ← x

z ← x + y

(b) x spilled, SSA violated

x1 ← 1

· · · ← x1

x ← spill(x1)
...

x2 ← reload(x)
· · · ← x2

x3 ← Φ
[
x1

x2

]
z ← x3 + y

(c) x spilled, SSA reconstructed

Figure 4.3: Spilling and SSA
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Algorithm 4.1 SSA reconstruction

procedure SSA-Reconstruction(set of variables D)
F ← iterated dominance frontier of {Dd | d ∈ D}
U ← {` | D ∩ arg(`) 6= ∅} . All labels using one of the vars in D.
for all u ∈ U do

for all i for which arg(u, i) ∈ D do
x←Find-Def(u, i, D, F )
arg(u, i)← x

procedure Find-Def(label u, int p, set of variables D, set of labels F )
if op(u) = Φ then

u← pred(u, p)
while u 6= start do . While we are not at the start label

if res(u) ∩D 6= ∅ then . Check if the label defines a var of D
return res(u) ∩D . If so return the defined variable

else if u ∈ F then . If the label is in the domi-
nance frontier, we have to
insert a Φ

if op(u) 6= Φ then . If there is no Φ insert one
Insert a new label u′

pred(u′)← pred(u)
pred(u)← 〈u′〉
op(u′)← Φ
u← u′

Insert new result y′ with an empty row in the Φ-matrix
D ← D ∪ y′ . Needed to break recursion
for i ∈ 1 . . . |pred(u)| do

Set i-th entry in y’s row to Find-Def(u, i, D, F )
u← idom(u) . Go up the dominance tree
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(. . . ,y, . . . )← Φ

264· · · x1 · · ·
...

· · · xn · · ·

375
(a) y is Φ-spilled

(. . . , y, . . . ) ← Φ

264· · · x1 · · ·
...

· · · xn · · ·

375
...

y ← spill(y)

(b) y is spilled after the Φ

Figure 4.4: Spilling at a Φ-operation

transferred to memory or if y is ordinarily written to a register by the Φ and
spilled afterwards. In the former case, we say that y was Φ-spilled. Figure 4.4
illustrates both situations. Section 4.4.2 deals with the implementation of
spilled Φ-operations.

Before describing the program transformation to be performed after spilling
let us state more precisely, what the result of a a spilling algorithm is. For
each variable y ∈ V we expect three items to be computed:

• A set Ry ⊆ L containing inserted reload operations

`i : yi ← reload(y1)

Note that we explicitly direct all reloads to the first inserted spill (y1)
and rely on the SSA reconstruction algorithm to rewire them to their
correct definitions as explained below.

• A set Sy ⊆ L of labels with spill operations

`i : yi ← spill(y)

• A flag ϕy denoting that y is the result of a Φ-operation and is to be
Φ-spilled. In that case Sy solely contains the label of the Φ-operation
which defines y.

What is left to do is to rewire all uses of the ordinary and memory variables
related to y to their correct definitions. This comprises setting the memory
variable arguments for the reloads as well as the ordinary variable arguments
for the uses of y. Thus, we invoke the SSA reconstruction algorithm twice.
Once passing the spills as definitions and once passing the reloads and the
original definition of y as definitions.
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Note that if a variable is to be Φ-spilled, spills for all xi in the correspond-
ing row of the Φ-matrix must be present, since the whole row has to be turned
into memory variables.

4.2.3 Rematerialisation

An alternative to spilling a variable to memory is to recompute its value.
This is commonly known as rematerialisation. Assume y is a variable whose
value was computed by a label y ← τ(x1, . . . , xn). Recomputing y at some
other place of the program obviously requires that the xi are live at this
place. Hence, the spilling decisions for the xi influence the recomputability
of y. Thus, rematerialisation is especially attractive for operations with few
operands or even none. This comprises constants as well as unaliased load
instructions. These are loads from memory addresses for which the compiler
can exactly determine the set of store instructions writing to this location.
Between two stores to such an unaliased memory address the load instruction
can be arbitrarily duplicated. Such load instructions occur frequently to access
the parameters of functions passed on the stack.

Rematerialisation can be easily integrated into the SSA-based setting as
discussed in the last paragraphs. The labels recomputing a variable corre-
spond to the reloads of that variable. Thus, these labels can be added to
the set Ry like reloads. If the spiller produced only rematerialisations for a
variable there is obviously no spill.

4.2.4 A Spilling Heuristic

In this section, we show how a well-known spilling heuristic can be integrated
into an SSA-based register allocator. Given k registers and a label ` in a block
B = 〈`1, . . . , `n〉, where l > k variables are live. Clearly, k − l variables have
to reside in memory at ` for a valid register allocation. The method of Belady
selects those to remain in memory, whose uses are farthest away from this
label, i.e. N(`, v) is maximal. Whereas “away” means the number of instruc-
tions that have to be executed from ` until the use is reached. If the use is in
the same basic block, this number is simply given by the number of instruc-
tions between ` and the use. If the use is outside `’s block, we have to define
a reasonable measure. This could by the minimum, average or maximum of
all next uses in the successor blocks depending on how pessimistic/optimistic
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the heuristic shall be. We will here use the minimum variant:

N ′(`, v) =

∞ if v is not live at `

1 + min
`′∈succ(`)

N(`′, v) otherwise (4.1)

N(`, v) =

{
0 if v is used at `

N ′(`, v) otherwise
(4.2)

We will apply Belady’s method to each basic block separately and combine
the results to obtain a solution for the whole procedure. Consider a basic
block B. We define P as the set of all variables live in at B and the results of
the Φ-operation in B if there is one. These variables are passed to the block B
from another block. A value v live in at B is passed on each incoming control
flow edge to B. For a result y of a Φ-operation

(. . . , y, . . . )← Φ

· · · x1 · · ·
...

· · · xn · · ·


the x1, . . . , xn are passed along the respective incoming control flow edges to
B.

Since we have k registers, only k variables can be passed to B in registers.
Let σ : P → P be a permutation which sorts P increasingly according to N
(relative to the entry of block B). The set of variables which we allow to be
passed in registers to B is then

I :=
{
pσ(1), . . . , pσ(min{k,l})

}
We apply the Belady scheme by traversing the labels in the block from entry
to exit. A set Q of maximal size k is used to hold all variables that are
currently in registers. Q is initialized with I, optimistically presuming that
all variables of I are kept in registers upon entering the block B.

At each label `, the arguments arg(`) have to be in registers when the
instruction is reached. Assume that some of the arguments are not contained
in Q, i.e. L := arg(`) r Q is not empty. Thus, reloads have to be inserted for
all variables in L. By inserting reloads, the values of the variables are brought
into registers. Thus,

max{|L|+ |Q| − k, 0}

variables are removed from Q. As the method of Belady suggests, we remove
the ones with the highest N . Furthermore, if a variable v ∈ I is displaced
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before it was used, there is no sense in passing v to B in a register. inB

denotes the set of all v ∈ I which are used in B before they are displaced.
We assume, that all variables defined by τ = op(`) are written to registers

upon executing τ . This means, that

max{|res(`)|+ |Q| − k, 0}

variables are displaced from Q when τ writes its results4. Note, that for all
v ∈ arg(`), there is N(v, `) = 0 which implies that the arg(`) will be displaced
lastly. However, it is not the uses at ` which decide but the uses after `. This
is resembled by N ′ as defined above. We define the set outB to be the value
of Q after processing each label in the block.

Finally, after processing each block as described above, we have to combine
the results to form a valid solution for the whole program. In particular, we
have to assure, that each variable in inB for some block B must reach B in
a register. Therefore, we have to check each predecessor P of B and insert
reloads for all inB routP on the edge from P to B5. All the spills and reloads
determined by this procedure are then given to the algorithm described in
Section 4.2.2 to restore the SSA property.

4Note, that Q ∩ res(`) = ∅ since the program is in SSA form.
5Inserting code on an edge is possible by eliminating critical edges and placing the code

in the appropriate block.
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4.3 Coloring

Let us assume that the program is k-colorable, i.e. the spilling phase lowered
the register pressure to k at all labels where it exceeded k. Hence, the chro-
matic number ω(G) of (chordal) interference graph G of the program is less
or equal to k. A chordal graph G can be efficiently colored in O

(
|V | · ω(G)

)
using perfect elimination orders (see Appendix A for the necessary graph
theory and specifically Remark A.1). The coloring process is similar to the
simplify/select-scheme presented in Section 3.1. The major difference is that
a node has not only to be of insignificant degree but also simplicial6 to be
removed from the graph. Note that this is a strengthening of the criterion
used in Chaitin-style allocators: if IP is k-colorable, the largest clique is of
size k due to the perfectness of chordal graphs. All neighbors of a simplicial
node are contained in the same clique. Thus it has at most k − 1 neighbors
and is of insignificant degree.

Lemma 4.5 directly leads to the fact that dominance induces a perfect
elimination order on the interference graph. Assume P to be the transformed
version of an SSA-form program using TΦ and IP = (V,E, A, c).

Theorem 4.4: A variable v can be added to a PEO of IP if all variables whose
definitions are dominated by the definition of v have been added to the PEO.

Proof. To be added to a PEO, v must be simplicial. Let us assume, v is not
simplicial. Then, by definition, there exist two neighbors a, b of v that are
not connected (va, vb ∈ E and ab 6∈ E). By proposition, all variables whose
definitions are dominated by Dv have been added to the PEO and removed
from IP . Thus, Da � Dv. Then, by Lemma 4.5, Dv � Db which contradicts
the proposition. Thus, v is simplicial.

Thus, we obtain a perfect elimination order on IP by a post-order traversal
of the dominance tree of the program. Conversely, we can start coloring at
the label which dominates all other labels moving to the label dominating
all others but the former one and so on. Thus, coloring can be done in a
pre-order walk of the dominance tree as shown in Algorithm 4.2.

6i.e. all its neighbors form a clique.
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Algorithm 4.2 Coloring an interference graph of a SSA-form program

procedure Color-Program(Program P )
Color-Recursive(start block of P )

procedure Color-Recursive(Basic block B = 〈`1, . . . , `n〉)
for all x ∈ livein(B) do . All variables live in have

already been colored
assigned ← assigned ∪ ρ(x) . Mark their colors as occupied

for i← 1 to n do
for all x ∈ arg(`i) do

if last use of x then
assigned ← assigned r ρ(x)

for all y ∈ res(`i) do
ρ(y)← one of R r assigned

for {C | B = idom(C)} do . Proceed with all children
in the dominance tree

Color-Recursive(C)
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4.4 Implementing Φ-operations

Traditionally, register allocation is done after SSA destruction mainly due to
the fact that the SSA form and thus its destruction was invented after register
allocation. Thus, to let existing register allocation approaches still be applica-
ble, SSA form is commonly destroyed before register allocation is performed.
However, to exploit the advantages of SSA-based register allocation, SSA de-
struction before register allocation is no longer necessary. Furthermore, as
shown in Section 4.1, premature SSA destruction unnecessarily constrains
register allocation.

However, since no standard processor provides instructions to directly im-
plement Φ-operations, they have to be removed at some point in the compiler.
In our setting, this point in time is after register allocation. To make use of
the coloring found for the SSA program, Φ-operations have to be removed in
a way that transfers the SSA coloring to the resulting non-SSA program. One
could easily implement Φ-operations using loads and stores. However, this is
inefficient due to the memory traffic. Thus, we will discuss how Φ-operations
can be implemented with other standard instructions, such as register-register
copies.

Consider a program P with a label ` containing a Φ-operation and the
transformed version TΦ(P ) as described in Section 2.3.1. In the transformed
version, the Φ at ` is replaced by a Φw-operation. Each control flow edge to
` is extended by a special label which holds a Φr-operation corresponding to
the row in the Φ-matrix. Firstly, we will only consider the register variable
arguments and results of the Φ-operation. These arguments and results are
contained in registers. The treatment of memory variables will be discussed
afterwards.

4.4.1 Register Operands

Consider the (register) results Y = y1, . . . , ym of the Φw and the k-th prede-
cessor `′ of ` corresponding to the k-th row X = xk1, . . . , xkm in the Φ-matrix.
Consider a valid register allocation ρ : V → R on P . Let RY be the set of
registers assigned to the results of Φw and RX be the set of registers assigned
to the arguments of Φr. Note, that in general |RX | ≤ |RY |, since not all of
the arg(`′) need to be distinct. Thus, multiple arguments of the Φr might be
identical and thus have been assigned the same register. Let β : Y → X be a
map with β(yi) = xki assigning each result the argument it gets assigned by
the Φ-operation.
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`′ : Φr(R1, R1, R2, R5, R4)

` : (R1, R2, R3, R4, R5)← Φw

· · · ← τ(R6, . . . )

(a) Φr-Φw-pair

R1R2

R3

R4 R5

R6

(b) Register Transfer
Graph T

Figure 4.5: A register allocated Φw-Φr-pair and the corresponding register
transfer graphs T and T ′

Let us now consider the (directed) register transfer graph T = (R, TE).
The nodes of the transfer graph are formed by the registers. The edges TE ⊆
R×R represent the value transport between the registers caused by the Φ-op-
eration at `: We draw an edge from Ri to Rj for each y ∈ Y with ρ(y) = Rj

and ρ(β(y)) = Ri to indicate that the value of Ri has to be moved to Rj .
More formally:

TE =
{(

ρ(β(y)), ρ(y)
)
| y ∈ Y

}
(4.3)

Note that each node has only one edge pointing at it since each register is
written at most once by the Φw-instruction. However, a node might very well
have more than one outgoing edge. This indicates that a variable is duplicated
by the Φ-operation.

Figure 4.5a shows an example for a Φw-Φr-pair and the corresponding
register transfer graph. The first two arguments of the Φr are the same as
they are kept in the same register (R1). The Φw creates a copy of the value
in R1 and stores it in R2. Hence, the node R1 in the corresponding transfer
graph T (see Figure 4.5b) has two outgoing edges.

The register-register move instructions concerning T are now generated by
the following scheme:

1. First, consider the set of registers

U =
{
ρ(y) | y ∈ Y ∧ β(y) = undef

}
which will hold a copy of the dummy variable undef (see Section 2.3.2).
As their content is undefined, no move instruction has to be created to
initialize their value. Hence, all incoming edges to the nodes in U can
be deleted.
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2. Initialize a set F containing all unused registers at the label of the Φr-
operation `′. Note that F is not the set of nodes in T which have no
incident edges. It has to be calculated by regarding all variables live at
`′ and the registers allocated to them. In our example in Figure 4.5b,
R6 has no incident edges but is not in F since it is allocated to a variable
which is live in at `.

3. While there is an edge e = (r, s), r 6= s for which the outdegree of s
equals 0:
The register s does not carry an argument value which has to be trans-
ferred to a result. For example, the edge (R2, R3) in Figure 4.5b fulfills
this property. Thus, we can safely write to register s by issuing a copy

s← r

Then, e is deleted from T as the move was issued. To free the registers
as early as possible, we let all remaining outgoing edges of r originate at
s except for self-loops. (Although it would not be incorrect to redirect
self-loops, it would create unnecessary move instructions.) We add r to
the set of free registers F and remove s from F .

4. Now, T is either empty or contains one or more cycles of the form
C = {(r1, r2), (r2, r2), . . . , (rn, r1)} such as the cycle (R4, R5), (R5, R4)
in Figure 4.5b. Such a cycle corresponds to a permutation of registers
which can be implemented in various ways:

(a) Trivially, self-loops (cycles of length 1) generate no instruction.
(b) Assume F is not empty and contains a free register rt. Then we

can implement the cycle C by a sequence of copy instructions

rt ← r1

r1 ← r2

r2 ← r3

...
rn ← rt

(c) Assume F is empty and thus there is no free register. Note that
this is only the case if transfer graph solely consists of cycles (in-
cluding self-loops) and the register pressure is at maximum at `′.
As known from algebra, each permutation can be implemented us-
ing a series of transpositions, in our case an instruction that swaps
two registers.
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If the processor does not provide swap instructions, a transposi-
tion can be emulated using three xor-operations or, if the machine
uses two’s-complement arithmetics, additions or subtractions (see
Warren [2002] for example). If no such alternative is available, e.g.
for floating point registers, a load and a store instruction have to
be issued to save and restore one register of the permutation. This
is the only case where SSA-based register allocation can introduce
additional memory traffic after spilling.

4.4.2 Memory Operands

The memory part of Φ-operations has to be implemented accordingly. Analo-
gous to the register part, the implementation of the memory part is dependent
on the spill slot allocation &. If a memory Φ-result y and an argument x in
the corresponding row have different spill slots, the value of x has to be moved
to &y. Note that the coalescing algorithms presented in Section 4.5 are di-
rectly applicable to memory variables. Hence, coalescing spill slots can (and
almost always will) decrease the number of load and store instructions. The
only difference is that the number of colors is unlimited and can thus be set
to the number of memory variables in the program.

Unfortunately, most architectures will require a register to load a value to
and store it back to a different location.7 This additional register demand is
only dependent on the spill slot allocation and therefore not considered by
the spilling algorithm. Let y1, . . . ,ym be the memory results of a Φ-operation
and x1, . . . ,xm be the corresponding arguments of a predecessor block B of
the Φ’s label:

(y1, . . . ,ym)← Φw

Φr(x1, . . . ,xm)

The memory copy has to be implemented somewhere in block B where all
xi have been defined. As it is very likely that there will be some place in B
where a register is free, ignoring this additional register demand while spilling
is justified. Otherwise, the spill slot assignment has to be integrated into the
spilling mechanism.

7On x86, one can use push and pop instructions with memory operands to perform the
memory part of a Φ-operation without an additional register.
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4.5 Coalescing

As we have seen in the past sections, live range splitting occurs quite fre-
quently in an SSA-based register allocator. Firstly, by the implicit live range
splitting of Φ-operations and secondly by the spilling phase (as presented in
Section 4.2). Furthermore, register constraint handling will also introduce
additional live range splits as presented in Section 4.6. As live range splitting
causes the insertion of move instructions, aggressive live range splitting can
result in a significant performance loss. Thus, an optimizing compiler should
try to minimize the number of inserted moves. This optimization problem is
commonly known as the copy coalescing problem.

In this chapter we will give a precise definition of the coalescing problem
in the SSA-based setting and prove it NP-complete even for programs that
do not contain register constraints but only Φ-operations. Then, we present
a heuristic approach to the coalescing problem and an optimal method using
integer linear programming (ILP).

4.5.1 The Coalescing Problem

As described in Section 4.4, pairs of Φr- and Φw-operations can be imple-
mented using move instructions and register swaps. However, the number of
required move/swap instructions depends on the register transfer graphs as
introduced in that section. Obviously, if the registers allocated to the Φw-
Φr-pair match properly, i.e. there are only self-loops in the transfer graph,
no move instruction is needed at all. To express this wish, affinity edges
are added to the interference graph as described in Section 2.4.2. For each
Φr-Φw-pair

Φr(x1, . . . , xm)
(y1, . . . , ym) ← Φw

we add the affinity edges x1y1, . . . , xmym. Each affinity edge can be annotated
by a number denoting the costs incurred by failing to assign the incident nodes
the same register. In a compiler, these costs can be derived from measured or
calculated execution frequencies (cf. Wu and Larus [1994] for example) of the
label the Φr is located at. Thus, more often executed Φr-operations create
affinity edges having higher costs. Hence, we define coalescing as the task of
finding a good coloring for the IG taking into account the costs of the affinity
edges. Let IP = (V,E, A, c) be the IG of some program P . Furthermore, let
ρ be a valid register allocation on P and |·|ρ : A → N the function returning
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the cost of an affinity edge given the allocation ρ:

|xy|ρ =

{
0 if ρ(x) = ρ(y)
c(xy) otherwise

If |xy|ρ = 0 we also say that ρ fulfils the affinity xy. The cost function
summarizing the costs of the whole interference graph G = (V,E, A, c) under
a coloring ρ is then given as

‖G‖ρ =
∑

xy∈A

|xy|ρ

Definition 4.2 (SSA-Coalescing): Let G = (V,E, A, c) be an interference graph
of an SSA program. SSA-Coalescing is the optimization problem

min
ρ
‖G‖ρ

Remark 4.2: This formulation is only an approximation in terms of the number
of instructions needed to implement the Φr-Φw-pair. It only allows for opti-
mizing the size the resulting parallel copy, not their inner structure. Hence,
there are register allocations with minimal costs which need more instructions
to implement the pair than other allocations with higher costs. For example,
consider the register transfer graphs shown in Figure 4.6. Let G be the IG

R1

R2

R3

R4

R5

R6

R7

(a) ρ1

R1

R2

R3

R4

R5

R6

R7

(b) ρ2

Figure 4.6: Register Transfer Graphs for Allocations ρ1 and ρ2

of the program and the costs of all affinity edges be 1. According to the cost
function defined above, ‖G‖ρ1 = 6 and ‖G‖ρ2 = 7. Thus, ρ1 is a better col-
oring with respect to ‖ · ‖. However, ρ1 will demand nine copy instructions
while ρ2 will only demand eight. Furthermore, ρ1 will demand three swap
instructions while ρ2 will demand six.

However, as the presented coalescing algorithms are capable of fulfilling
the vast majority of affinities, this formulation is sufficient in practice.
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4.5.1.1 The Complexity of SSA-Coalescing

Allowing arbitrary interference graphs G and especially arbitrary affinities
between nodes of G, one can easily produce instances where coalescing directly
corresponds to a general graph coloring problem. This has also been noted
by Appel and George [2001].

However, this does not provide the complexity of coalescing on graphs
arising from SSA programs we are concerned with, since our graphs do not
exhibit arbitrary structure. The interference part is chordal and the affinity
part is generated by live range splitting. For proving the NP-completeness
of coalescing on this subset of graphs, we have to generate an SSA program
from an instance of an NP-complete problem and show that coalescing on
the program’s interference graph induces a solution to the instance of the
NP-complete problem.

The proof of the NP-completeness of SSA-Coalescing on SSA interference
graphs is a classical reduction proof using graph coloring. First we select an
arbitrary graph H and construct an SSA program from it. The Φ-operations
in that program are placed in a way that an optimal coalescing induces an
optimal coloring in H and vice versa. The technique is a variation of the one
used by Rastello et al. [2003].

Theorem 4.5: SSA-Coalescing is NP-complete concerning the number of Φ-op-
erations in the program.

Proof. We reduce the NP-complete problem of finding a k-coloring of a graph
H to SSA-Coalescing. We construct a SSA-form program from H in the fol-
lowing way:

• There is one label ` containing a Φ-operation

(p1, . . . , pk)← Φ

 v1 · · · v1

...
...

v|VH | · · · v|VH |


• For each node vi ∈ VH there is a variable vi, a label `i containing a

definition of vi and a control flow edge `i → `

• For each edge vivj ∈ EH we add two variables aij and aji and two labels
`ij , `ji which contain a definition of aij and aji respectively.
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• For each edge vivj ∈ EH we further add a label `′ij containing a Φ-op-
eration

(pij , pji)← Φ
[

vi aji

aij vj

]
• For each edge vivj ∈ EH following control flow edges are added:

– `i → `ji

– `j → `ij

– `ij → `′ij

– `ji → `′ij

In the interference graph G of the constructed program, an edge vivj ∈ EH

creates the following gadget:

vi

aij

vj

aji

pij pji

p1 p2

The dashed lines denote that assigning the two nodes the same color will lower
the cost by one. First of all, let us consider a lower bound for the costs. Since
each vi can only be assigned one color, there are k − 1 nodes pi having other
colors than vi, resulting in costs of k − 1 for vi. So, each optimal solution
incurs costs of at least |VH |(k − 1).

Assume H is k-colorable and let g be a k-coloring of H. Assign each
vi ∈ VG the color g(vi), vi ∈ VH . Since g(vi) 6= g(vj) for each vivj ∈ EH ,
the nodes vi, aij , pij can be assigned the same color. Thus, g incurs costs of
exactly |VH |(k − 1). So each k-coloring of H induces an optimal solution of
SSA-Coalescing.

A coloring f of G, which does not correspond to a k-coloring of H is no
(optimal) solution of SSA-Coalescing: Since f corresponds to no k-coloring
of H, there is vivj ∈ EH for which f(vi) = f(vj). Thus, f(aij) 6= f(vi)
and f(aji) 6= f(vj) resulting in costs strictly greater than |VH |(k − 1). Thus,
SSA-Coalescing is NP-complete with the number of Φ-operations.
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Example 4.1: Consider the following example graph H:

v1 v2 v3

The graph H above generates following program fragment:

`1 : v1 ← `2 : v2 ← `3 : v3 ←

`21 : a21 ← `12 : a12 ← `32 : a32 ← `32 : a23 ←

`′12 : (p12, p21)← Φ
[

v1 a21

a12 v2

]
`′23 : (p23, p32)← Φ

[
v2 a32

a23 v3

]

` : (p1, p2)← Φ

v1 v1

v2 v2

v3 v3



Remark 4.3: This proof also demonstrates that the quality of copy minimiza-
tion is generally not only dependent on the number of colors available but also
on the interference graph’s structure. No matter how many colors (registers)
we have, the costs of |VH |(k − 1) are not eliminable. Thus, each interference
graph exhibits a lower bound of copy costs caused by its structure.

4.5.2 A Coalescing Heuristic

In this section, we present a heuristic for finding good colorings with respect
to the affinity costs. Our approach is based on similar observations as the
optimistic register coalescing method by Park and Moon [2004] as presented
in Section 3.1.1. However, we never modify the structure of the interference
graph as we wish to maintain its chordality. Merging nodes in the graph can
easily destroy its chordality and hence all the knowledge about colorability
this provides. We only modify the coloring of the graph by trying to assign
affinity related chunks of nodes the same color. Thereby, we try to find a
better coloring according to ‖G‖.

Note that up to now, we did not need to construct the interference graph
as a data structure. For this coalescing heuristic, we need interference checks
and iterating over the interference neighbors of each node. As shown below,
even this can be done without constructing the graph itself.
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Figure 4.7: Graph with an unfulfillable affinity for k = 3

Before continuing, let us give some definitions related to affinity edges
which we will use in the following. In the following, let G = (V,E, A, c) be an
interference graph.

Definition 4.3 (Affinity related): Let x, y ∈ V . We say x and y are affinity
related if there exists a path from x to y in G consisting of affinity edges. We
then write x ∼ y. Note that ∼ is a equivalence relation. Furthermore, we say
a set X is affine if all its members are pairwise affinity related.

Definition 4.4 (Affinity Component): X is an affinity component if and only if
X is closed under ∼.

In general, not all nodes inside an affinity component can be assigned
the same color due to interferences. Either two nodes in an affinity compo-
nent directly interfere or there is simply no coloring allowing them to possess
the same color. The graph in Figure 4.7 shows an example where two non-
interfering nodes cannot be assigned the same color (assuming that three
colors are available for coloring). As we want to assign all nodes in the chunk
the same color, since the chunks do not directly correspond to affinity com-
ponents since an affinity component is not necessarily free of interferences.
Thus, upon creating the chunk, it is often the case that several affinity edges
inside the same affinity component are “sacrificed”, i.e. we deliberately do
not fulfil the affinity. The following greedy method is applied to partition the
graph into interference-free chunks:

Place each node in a separate chunk. Sort all affinity edges according to
their costs from high to low. Now process each affinity edge a = xy from the
most expensive to the cheapest. If no node in x’s chunk does interfere with
any node of y’s chunk, the chunks of x and y are unified (see Algorithm 4.5).

Afterwards, the chunks are put into a priority queue with the most expen-
sive one in front. The cost of a chunk is the sum of the costs of all affinity
edges whose nodes are contained in the chunk. Then, we start (re-)coloring
the chunks. While the priority queue is not empty, we pick the first (most ex-
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pensive) chunk C. For each color c we try to color each node inside the chunk
with c. This is done with recursive recoloring which is explained below. The
order of the nodes in which the recoloring is attempted is free since in practice
there are rarely two nodes of the same affinity component in the same inter-
ference component; i.e. recoloring one node has no influence on other nodes
inside the same chunk. Consider the interference graph in Figure 5.5 on
page 96. It consists of several interference components which are linked by
affinities. Recoloring one node just affects the interference component of the
node and no node outside the interference component.

After recoloring to c, probably not all of the affinities inside the chunk
C will be fulfilled. Some of the nodes in C might just not be colorable with
c. Consider the subset Sc ⊆ C containing all nodes which were recolorable
to c. Sc in turn is partitioned into disjoint sets Sc = S1

c ] · · · ] Sn
c by the

relation ∼, i.e. there several affine subsets in Sc. Each of the Si
c represents a

certain amount of eliminated costs which is determined by the weights of the
affinity edges connecting the nodes inside Si

c. Of course, as all nodes in Si
c

are colored with c, all of these affinity edges are fulfilled. Let |Si
c| denote the

costs eliminated by Si
c.

Let Mc ∈ {S1
c , . . . , Sn

c } be the subset of Sc which eliminates the most costs
for color c, i.e.

Mc = Sj
c , j = arg max

1≤i≤n
|Si

c|

As we try the recoloring for all colors, there is a color c′ for which |Mc′ | is
maximal, or more formally

c′ = arg max
1≤c≤k

|Mc|

This color is chosen to be the definite color for the nodes in Mc′ . Then all
nodes in Mc′ are fixed to c′, i.e. changing their color by future recoloring
attempts is prohibited to prevent already eliminated costs from arising again.

The rest of the chunk, i.e. all nodes of the chunk not inside Mc′ are packed
together to a new chunk and re-inserted into the priority queue (probably at
another position due to the changed costs). See Algorithm 4.3 for details.

Recoloring is performed recursively through the graph (see Algorithm 4.4).
If a node x shall be recolored to a color c and c is admissible for that node, all
its interference neighbors are scanned for color c. All neighbors of x having
color c are then recolored to a color different from c. Thereby, we keep all
recolored nodes in a list and remember the old color so that the recoloring can
be rolled back if c is not feasible for x. This transactional character ensures
the correctness of the approach since the validity of the coloring is always
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Algorithm 4.3 Coalescing

procedure Recolor-Chunk(IG G, Chunk C, Queue Q)
best costs ← 0
for all c ∈ R do . For all colors

Unfix all nodes in chunk
for all x ∈ C do . Try to bring all nodes to c

Recolor(G, x, c)
fixed(x)← true

M ← best affine subset colored to c
if |M | ≥ best costs then

. Memorize the best color/costs/component
best color ← c
best costs ← |M |
best set ←M

Unfix all nodes in the chunk
for all x ∈ best set do

. Bring all nodes of the best component to the best color
Recolor(G, x, best color)
fixed(x)← true

rest ← best set r C . Make a new chunk out of the rest
if rest 6= ∅ then

v ← some node of rest
v.chunk ← v
for all x ∈ C r best set do

x.chunk ← v.chunk
Add v.chunk to Q

procedure Coalesce(Interference Graph G = (V,E, A, c))
Build-Chunks(G)
priority queue Q← ∅
for all chunks C do

Insert C into Q

while Q is not empty do
C ← pop(Q)
Recolor-Chunk(G, C, Q)
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Algorithm 4.4 Recoloring

procedure Set-Color(Node x, Color c, Set of nodes N)
fixed(x)← true . Mark the node as fixed
old color(x)← ρ(x) . Remember its old color
N ← N ∪ {x} . Add it to the changed set
ρ(x)← c . Set the new color

function Avoid-Color(IG G, Node x, Color c, Set of nodes N)
if ρ(x) 6= c then return true

r ← false
if ¬fixed(x) ∧ admissible(x) r {c} 6= ∅ then

Select adm. color c′ 6= c which is used least by x’s neighbors
Set-Color(x, c′, N)
r ← true
for all {y | xy ∈ EG} do

r ← Avoid-Color(G, y, c′, N)
if r = false then

break
return r

procedure Recolor(IG G = (V,E, A, c), Node x, Color c)
if c is admissible for x and ¬fixed(x) then

N ← ∅ . This set stores all nodes whose color is changed
Set-Color(x, c, N) . Set the color of x to c
for all {y | xy ∈ E} do . Look at all neighbors of x

if ρ(y) = c then . If one has also color c
r ← Avoid-Color(G, y, c, N) . Try to recolor it
if r = false then . If that failed, recoloring x failed

for all v ∈ N do . Rollback to the former coloring
ρ(v)← old color(v)

for all v ∈ N do
fixed(v)← false
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retained. Furthermore, to guarantee termination, we do not change the color
of a node again if it has already been changed in the current recoloring effort.

Algorithm 4.5 Building Chunks

procedure Build-Chunks(Interference Graph G = (V,E, A, c))
for v ∈ V do

v.chunk ← v
for each a = xy ∈ A sorted according to c from large to small do

if ¬∃vw ∈ E : v.chunk = x.chunk ∧ w.chunk = y.chunk then
y.chunk ← x.chunk

4.5.2.1 Mimicking the Interference Graph

Budimlić et al. [2002] already used the Lemmas 4.2–4.4 for checking interfer-
ence of two variables (nodes) without building the IG itself. However, using
only these lemmas can generate false positives since they are only a necessary
but not a sufficient condition for interference. Here, we present an enhance-
ment which provides exact interference information and a method to list all
interference neighbors of some node x. Therefore, we make use of the def-use
chains, i.e. the list of all uses of each variable. To sum up, we require the
following information to be already computed:

• The dominance relation.

• Liveness information between basic blocks, i.e. all variables live in and
live out of a basic block.

• A list of all uses for each variable.

This information is often used in modern optimizing compilers and likely to
be computed a priori. Note that since coalescing does not modify the program
this information is static and does not have to be updated or recomputed.

Interference Test

Let us assume we want to check whether x interferes with y. Lemma 4.3
clearly shows that the definitions of x and y are always dominance-related if
they interfere. So, if neither Dx � Dy or Dy � Dx, x and y cannot interfere.
Let us assume without loss of generality that Dx � Dy. Note, that Dx � Dy

is necessary but not sufficient for interference. Thus, we use Lemma 4.4 to
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find the definitive answer. Thus, we have to check if x is live at Dy. Firstly,
we make use of the computed liveness information. If x is not killed in the
block of Dy it is live at the end of that block if x and y interfere. If x is not
live at the end of Dy’s block, we have to check if there is a usage of x which
is (strictly) dominated by Dy. Algorithm 4.6 shows the pseudocode of the
interference check.

Algorithm 4.6 Interference Check

function Interference-Check(program P , variables x, y)
if Dy � Dx then

t← y
b← x

else if Dx � Dy then
t← x
b← y

else
return false

. From now on holds Dt � Db

if t is live out at the block of Db then
return true

for all uses ` of t do
if Db � ` then

return true

return false

Remark 4.4: Theoretically, the interference check is expensive since a variable
could have many uses. However, measurements in our compiler shows an
average use count of 1.7 per variable. Hence, the loop body in the interference
check algorithm is not executed very often.

Enumerating all Neighbors

The second important operation on interference graphs is to list all interfer-
ence neighbors of a given node x. Again, we use the results of Section 4.1 to
circumvent the explicit materialization of the graph. As the live range of x
is restricted to the dominance subtree of Dx (cf. Lemma 4.2) we only have
to consider that part of the program. The set of interfering nodes can be



70 SSA Register Allocation

obtained by a small modification to the SSA liveness algorithm presented by
[Appel and Palsberg, 2002, Page 429]. Consider Algorithm 4.7. All variables
which are simultaneously live with x are recorded in a set N . This is done
by starting a depth first search on the control flow graph from each usage of
x upwards to Dx. By walking over the labels in the blocks a neighbor might
be added redundantly to N as it might occur multiple times in the argument
arrays of different labels. As these sets are usually bitsets, these redundant
additions are not very costly. However, for large programs one can compute
the neighbors for each node once and cache them using adjacency lists.

Algorithm 4.7 Enumerating all Neighbors

procedure Int-Neighbors(variable x, set of variables N)
N ← ∅
visited ← ∅
for all uses ` of x do

Find-Int(block of `, x, N , visited)

procedure Find-Int(block B = 〈`1, . . . , `n〉, variable x, set of variables N , set
of labels visited)

visited ← visited ∪B
L← liveout(`n)
`← `n

while ` 6= `1 ∧ ` 6= Dx do
L← L r res(`)
L← L ∪ arg(`)
if x ∈ L then

N ← N ∪ L
`← pred(`, 1)

for all ` ∈ pred `1 do
if Dx � ` ∧ block of ` 6∈ visited then

Find-Int(block of `, x, N , visited)

4.5.2.2 A Note on Memory Variable Coalescing

As mentioned in Section 4.4.2, the coalescing heuristic presented here can also
be used to coalesce spill slots. In fact, it is sufficient to run only the Build-
Chunks procedure as shown in Algorithm 4.5. This will subdivide the memory
variables into chunks. As there are at least as many spill slots as variables,
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each resulting chunk can be assigned a different spill slot. Hence, recursive
recoloring is not necessary for memory variable coalescing.

4.5.3 Optimal Coalescing by ILP

In this section we describe a method yielding optimal solutions for SSA-
Coalescing using integer linear programming (ILP). For readers not famil-
iar with basic ILP terminology, we refer to Appendix B. Firstly, we give a
standard problem formulation for SSA-Coalescing. Then, we present further
refinements of the formulation to prune the search space for the ILP solver.
This work has been contributed by Grund [2005] in his diploma thesis and is
presented in Grund and Hack [2007].

4.5.3.1 Formalization

Let IP = (V,E, A, c) be the interference graph of some program P . Since
every solution of SSA-Coalescing is also a valid coloring, we start by modeling
a common graph coloring problem. For each vi ∈ V and each possible color c
the binary variables xic indicate the color of node vi: if xic = 1 the variable
xi has color c. The following constraint enforces that each node has exactly
one color:

∀vi ∈ V :
∑

c

xic = 1

Furthermore, incident nodes must have different colors. Normally, constraints
like xic +xjc ≤ 1 are used for each edge xixj in the graph. For chordal graphs
the number of these inequalities can be drastically lowered using a minimum
clique cover:

Definition 4.5 (Minimum Clique Cover, MCC): A minimum clique cover of a
graph G is a minimal set of cliques {C1, . . . , Cm} such that VG = VC1 ∪ · · · ∪
VCm .

For general graphs finding a MCC is NP-complete. However, for chordal
graphs a MCC can be computed in O(|V |2), see Gavril [1972] for example.
Given a MCC {C1, . . . , Cm}, the edges in the graph can be modeled by clique
inequations expressing that no two nodes in the same clique can have the
same color. Thus, we add for each Cj in the MCC and each color c:∑

vi∈Cj

xic ≤ 1
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Register constraints (as discussed in Section 4.6) can be integrated in the
model by either setting the forbidden xic to 0, or by omitting the correspond-
ing variables and adjusting the respective constraints accordingly.

So far, the model results in a valid coloring of G. Now we define the cost
function and add additional variables and constraints to model the affinities.
For each edge vivj ∈ A the binary variable yij shall indicate, whether the
incident nodes have the same color (yij = 0), or different colors (yij = 1).
To model the positive costs c(vivj) arising from assigning vi and vj different
colors, the cost function to be minimized is given by∑

vivj∈A

c(vivj) · yij

To relate the y to the x variables, we add a constraint per color and affinity
edge in A. Since the yij are automatically forced towards 0 due to minimiza-
tion, we only must enforce yij = 1, if vi and vj have different colors:

yij ≥ xic − xjc

yij ≥ xjc − xic

Our measurements (see Grund and Hack [2007]) showed that the ILP
solving process takes very long if the solver is provided solely the equations
presented above. Therefore, we present two improvements to the ILP for-
mulation which significantly decrease the solution time of the ILP. The first
improvement aims at reducing the size of the problem by modelling only “rel-
evant” nodes of the IG in the ILP. This is achieved by exploiting a simple
graph theoretical observation. The second improvement increases the size of
the problem by adding additional inequalities. However, these new inequal-
ities are so called cuts, i.e. they do not rule out any feasible solutions but
shrink the search space. One could say, they provide the solver with more
knowledge about the problem’s structure to enable it to detect and discard
invalid solutions earlier.

4.5.3.2 Reducing the Problem Size

To reduce the number of variables and constraints, we use the same observa-
tion as the coloring heuristic presented in Section 3.1: if a node has less than
k neighbors, it definitely can be colored. Hence, before setting up the ILP, we
remove successively all nodes from G, which have less than k neighbors and
do exhibit neither affinities nor register constraints. The remaining graph G′

then represents the “core” of the problem. The coloring for G′ found by the
ILP solver can then be completed by adding the removed nodes again.



4.5 Coalescing 73

e
d

a b c

yad + ycd ≥ 1

yad + yde + yec ≥ 1

(a) Path-inequalities

b c d

a

yad + ybd + ycd ≥ 2

(b) Clique-Path-inequality

Figure 4.8: Examples for the two classes of inequalities.

4.5.3.3 Additional Inequalities

Finally, we present two types of inequalities which can be used to prune the
search space further: Path- and Clique-Ray-cuts. The basic idea of both
types is to provide the solver with lower bounds for the costs by modelling
facts about the interplay of affinity- and interference edges.

Path-Cuts

The first kind of cuts we are adding to the formulation is based on the obser-
vation that if there is a path of affinity edges between two interfering nodes,
at least one of the affinity edges cannot be fulfilled as both nodes interfere.
Consider the example in Figure 4.8a. As a and c interfere, at least the affinity
ad or the affinity dc cannot be fulfilled.

Definition 4.6: Let G = (V,E, A, c) be an interference graph. We call two
nodes a, b ∈ V affinity violating if a and b interfere and there exists a path
P = (VP , AP ), VP = {a, . . . , b} of affinity edges such that the only interference
of nodes in the path is between a and b, i.e. G[VP ] = (VP , {a, b})

Let v1 and vn be affinity violating and P = v1 . . . vn be an affinity violating
path. Note that in general there can exist multiple such paths. As v1 and vn

interfere, at least one affinity on P can not be fulfilled which is represented
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by the following inequality:

n−1∑
i=1

yi,i+1 ≥ 1

Clique-Ray-Cuts

The second type of inequality is based on a clique C = {v1, . . . , vn} in the
interference graph combined with a node vm 6∈ C. If vm is affinity related
with each vi in C, only one of the affinities can be fulfilled, i.e. n− 1 affinities
will be violated. Consider the example in Figure 4.8b. a wants the same
color as b, c and d. As b, c, d interfere they have different colors so at most
one of the affinities ab, ac, ad can be fulfilled. This is reflected in following
Clique-Ray-cut:

n∑
i=1

yim ≥ n− 1

Adding both kinds of constraints decreases the solution time of the prob-
lems significantly as shown in Grund and Hack [2007]
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4.6 Register Targeting

So far, we considered only homogeneous register sets; each register was assign-
able to each variable at each label. In reality however, there are instructions
imposing constraints on the set of allocatable registers of their results and/or
arguments. Furthermore, the runtime system often restricts register assign-
ment on several occasions such as subroutine calls . Fulfilling these constraints
is not a matter of optimization but required to ensure the correctness of the
allocation. Section 5.1.2 gives several examples of constrained instructions
and runtime system conventions.

To formally express the constraints imposed by the processor/runtime-
system, we consider two maps

Aarg : L→ L (2R)
Ares : L→ L (2R)

which assign each argument and result of each label a set of admissible
registers. For example, if Aarg(`, 2) = {R1, R2}, then the variable used at `’s
second argument has to be assigned to R1 or R2.

As shown in Section 3.1.5.1, register constraints can lead to uncolorable
interference graphs due to the unauspicious interaction between interference
and targeting constraints. This problem is commonly solved by minimizing
the constrained live ranges by inserting copies. The constraint is transferred
to the copy, so that the live range itself remains unconstrained. The live
range of a constrained copy remains restricted to the label that caused the
constraints.

In the case of arguments, this method might result in additional register
demand: if an argument x of some label ` lives through `, it also interferes with
its copy which was created due to the constraint at `. However, it could have
been possible to assign x a register fulfilling the constraint directly, saving the
copy and not increasing the register pressure as shown in Figure 4.9.

To handle register targeting constraints appropriately in an SSA-based
register allocator, three steps are necessary:

1. As shown above, label- or operation-based constraints can produce pro-
grams that do not possess a valid register allocation. Thus, the program
has to be modified to make register allocation possible. In the course of
doing so, the operation-based constraints are transformed to variable-
based ones as registers are assigned to variables not to operations.

2. The register demand of the constrained instruction has to be modelled
precisely by register pressure to keep Theorem 4.3 valid.
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x ← · · ·
...

x′ ← x
() ← τ(x′|{R1}, . . . )

...
· · · ← x

(a) x and copy x′

interfere. Need two
Registers

x ← · · ·
...

() ← τ(x|{R1}, . . . )
...

· · · ← x

(b) No copy. Need one
Register

Figure 4.9: Insertion of copies causes additional register demand

3. The coloring algorithm (Algorithm 4.2) has to be modified to respect
the variable based constraints.

We start with step 1 by considering an isolated, arbitrarily constrained
instruction in a single basic block. We show, that determining the copies
which have to be inserted to make such a single instruction allocatable is
NP-complete. Consequently, we investigate a restriction on the constraints
which allows for an efficient assignment for such operations. Afterwards, we
consider step 2 and examine which conditions have to hold such that register
pressure always correctly reflects the register demand. At last, we discuss how
these results concerning a single constrained instruction can be transferred to
a program with multiple constrained instructions.

4.6.1 Copy Insertion

Let us start by investigating the simplest case and restrict ourselves to a
program P with a single basic block and a single constrained label ` with
arbitrary constraints located right after the first label start of P . For now, we
will only consider the label ` and how we can find a valid register allocation
for `’s arguments and results.

The first eye-catching oddity is that the same variable x can be used
multiple times at ` but under different constraints as shown in Figure 4.10a.
This imposes unsatisfiable constraints to the variable x as x shall assigned to
both R1 and R2. To enable variable-based constraints, x has to be copied to
another variable x′. x is then constrained to R1 and x′ to R2 (or vice versa)
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· · · ← τ(x|{R1}, x|{R2})

(a) Same variable, different
constraints at two arguments

x′ ← x
. . . ← τ(x|{R1}, x

′|{R2})

(b) One constraint per variable

Figure 4.10: Uncolorable program and transformed version

as shown in Figure 4.10b. Afterwards, there will be at least one admissible
register for each argument of `.

The next obstacle are variables living through the constrained label, i.e.
they are live in and live out at that label. Consider the following situation:

A variable x lives through ` and its set of admissible registers is not disjoint
with the set of admissible registers of the (probably constrained) results. It
might be necessary to insert a copy for x since there will be no admissible
register free for x depending on the admissible registers of the results. For
example, for an instruction

y|{R1} ← τ(x|{R1}, z)

and x interfering with y, x has to be copied to some temporary which then is
consumed by `. Unfortunately, unless P = NP, there is no efficient algorithm
to decide whether there is a register allocation for ` without inserting a copy.
We prove this by reducing from the NP-complete problem Sim-P-Match. Con-
sequently, determining the minimum number of copy instructions to make `
assignable is NP-complete, too.

Definition 4.7 (Sim-P-Match): Given a bipartite graph G = (X, Y,E) and a
collection F ⊆ 2X of subsets of X. Is there a subset M ⊆ E of edges such
that for each C ∈ F the set of edges M ∩ (C × Y ) is a C-perfect match in G?

Elbassioni et al. [2005] prove Sim-P-Match NP-complete even for |F| = 2.

Theorem 4.6: Register allocation of a basic block and a single, arbitrarily con-
strained label is NP-complete.

Proof. Let G = (X, Y,E) be a bipartite graph and F = {F1, F2} ⊆ 2X a
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family of subsets of X. Y coincides with the set of registers. Construct ` in
the following way:

• arg` = F1, res` = F2 r F1.

• Let N(x) = {y | xy ∈ G} be the set of neighbors of x.

• Set Aarg(`, i) = N(x) if arg(`, i) = x or Ares(`, i) = N(x) if res(`, i) = x.

• if x ∈ F1 ∩ F2, then x shall live through `, i.e. we add a label `′ after `
and make `′ use x. Thus x interferes with each y ∈ res(`).

A valid register assignment of all arguments and results of ` directly corre-
sponds to a solution of Sim-P-Match. Figure 4.11 gives an example for a
Sim-P-Match instance and the program resulting from the reduction.

However, the case where the constraints are completely arbitrary is rare
in practice. More common are situations where the variables are either un-
constrained or limited to a single register.

Definition 4.8 (Simple Constraint Property):

1. Each argument / result is either unconstrained or constrained to a single
register:

Ax(`, i) = R or |Ax(`, i)| = 1

2. Two arguments / results may not be constrained to the same register:

1 = |Ax(`, i)| = |Ax(`, j)| =⇒ Ax(`, i) ∩ Ax(`, j) = ∅
for x ∈ {arg , res} and 0 ≤ i < j ≤ |x`|

Under this assumption, the amount of copies is efficiently determinable: if
a live-through variable is constrained to a single register, it has to be copied if
and only if there is a result being constrained to the same register. From now
on, we assume that each instruction fulfils the simple constraint property. In-
structions for which this property does not hold a priori can be prepared in the
following way: consider the argument and result constraints separately. For
each constrained argument / result find an admissible register and consider
it as a simple constraint. This can be done by computing separate bipartite
matchings for arguments to admissible registers and results to admissible reg-
isters. Since this is only a heuristic, superfluous copy instructions could be
inserted. However, this should be rarely the case in practice.

We can now transfer the constraint annotation from the label to the vari-
ables of P . Therefore, we define a map α : V → 2R as follows:
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a

b

c

d

e

f

R1

R2

R3

R4

F1

F2

(a) Bipartite Graph G with two
sets F1 = {a, b, c, d} and

F2 = {c, d, e, f}

(a, b, c, d) ←
(e|{R3}, f) ← τ(a, b|{R2}, c, d|{R2,R3})

← τ(c, d, e, f)
(b) Program generated from G

Figure 4.11: A Sim-P-Match instance and the generated Program
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• Let I = {i1, . . . , in} be the set for which x = arg(`, i) for all i ∈ I. The
copies we inserted ensure that there is at least one admissible register
for x, i.e.

A =
⋂
i∈I

Aarg(`, i) 6= ∅

We thus set α(x) = A.

• If Dx = ` there exists exactly one i with res(`, i) = x since P is in SSA
form. We thus set α(x) = Ares(`, i).

• Otherwise α(x) = R

4.6.2 Modelling Register Pressure

Up to now, we only considered the copies needed to produce a valid coloring.
By enforcing the simple constraint property this can be done efficiently. To be
able to keep Theorem 4.3 valid, we furthermore have to ensure that the register
pressure at constrained labels exactly resembles the register demand . In the
presence of constraints this is not always the case, as shown in Figure 4.12a.
The label on the left of that figure requires two registers although the register
pressure is one. This leads us directly to the definition of a register pressure
faithful label:

y|{R1} ← τ(x|{R2})
(a) Non register

pressure faithful label

z ← · · ·
y|{R1} ← τ(x|{R2}, z)

(b) Fixed version

Figure 4.12: Register Pressure Faithful Instructions

Definition 4.9 (Register Pressure Faithful Label): A label ` is register pres-
sure faithful if there is a register allocation of `’s arguments and results with
max{|res(`)| + t, |arg(`)|} registers where t is the number of arguments of `
living through `.

Clearly, the label in Figure 4.12a is not register pressure faithful. However,
such a situation should seldomly appear in practice. Nevertheless, one can
add dummy arguments to the label to fix this as shown in Figure 4.12b.
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4.6.3 Interference Graph Precoloring

If we simplify the constraints as described in the above section, the program
consisting of a single basic block and a single constrained label can be colored
efficiently. The next step is to investigate more complex programs with more
basic blocks and more constrained labels. Again, we benefit from recent results
of graph theory. The simple constraint problem directly corresponds to the
Precoloring Extension Problem.

Definition 4.10 (Precol-Ext): Given a graph G = (V,E) where some nodes are
already colored. Can we extend this precoloring to a complete k-coloring of
G?

Biró et al. [1992] prove that Precol-Ext is NP-complete for interval graphs
and thus for chordal graphs. Thus, register allocation in presence of simple
constraints is NP-complete. Hence, we cannot generalize the results of the
last section to the whole program. However, a relaxed version of Precol-Ext
called 1-Precol-Ext which restricts the number of precolored nodes to one per
color is polynomially solvable for chordal graphs as shown by Marx [2004].

As generally the same constrained operation can occur multiple times in
a program, the number of nodes precolored with the same color is generally
larger than one. This renders the constrained coloring problem NP-complete
again. As we are interested in efficiently coloring the graph, we transform
the program in a way that it fulfils the properties of 1-Precol-Ext. As the
following theorem shows live range splitting provides exactly what is needed:

Theorem 4.7: By splitting the live ranges of all variables live at the entry to `
the interference graph is separated into two disconnected components.

Proof. We will show that there is no interference edge from any variable whose
definition is dominated by ` to any variable whose definition is not dominated
by `. Consider the interference graph I = (V,E, . . . ) of the program. Assume
some x with ` � Dx and some y with ` 6� Dy. Further assume there is an
edge xy ∈ E. Then either Dx � Dy or vice versa due to Lemma 4.3. If
Dx � Dy then also ` � Dy due to the transitivity of �. Hence, Dy � Dx.
Because ` 6� Dy there is Dy � ` due to the tree property of � as described
in Section 2.2. Due to Lemma 4.4, y is live at Dx. Since ` � Dx there is
a path from ` to some usage of y. Thus y is live at `. This contradicts the
premise that all live ranges of variables live at ` have been split. Hence, all
variables defined at labels dominated by ` form a separate component in the
interference graph.
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Hence, each connected component of the interference graphs contains ex-
actly one simple-constrained label. By splitting all the live ranges at `, we
delegate all the complexity of Precol-Ext to the coalescing phase (as discussed
in Section 4.5) which will try to remove the overhead caused by the live range
split.

The live range split before ` is done be inserting a Φr-Φw-pair using each
variable which was at the entry to ` and defining new versions of these. Note
that splitting all live ranges introduces copies of existing variables which are
not yet used in the program. Let x1, . . . , xn be the set of variables live at the
entry to `. By inserting a Φr-Φw-pair

Φr(x1, . . . , xn)
(x′1, . . . , x

′
n) ← Φw

for each xi a copy x′i is inserted. Thus, we might need to re-wire some of
the uses of xi to x′i. Note that this can even cause the insertion of additional
Φ-operations. From another point of view, one could argue that x′i is just
another definition of xi and xi has now multiple definitions violating the
single assignment property. Hence we apply the SSA reconstruction algorithm
presented in Section 4.2.1 to re-install SSA and re-wire each use of xi to the
correct definition.

4.6.4 Coloring

Finally, let us discuss how we can obtain a valid coloring of the graph com-
ponent with the constrained label `. The label `s immediately preceding ` is
the one containing the Φw-operation as discussed above. As stated by The-
orem 4.7, `s dominates all other definitions of variables in the interference
graph component. Thus, due to Theorem 4.4 there is a PEO of the graph’s
component ending in res`s = 〈x′1, . . . , x′n〉. As the constrained label comes
right after `s the tail of the PEO is res(`), res(`s). This means that the re-
sults of the `s and ` can be colored first. Note that all arguments to ` are
results of `s and are thus colored before `’s results.

The following preconditions are met by doing so:

• ` fulfils the simple constraint property.

• ` is register pressure faithful.

• Spilling lowered the register pressure to at most k everywhere.

• The results of `s and ` can be colored first for the graph component
under consideration.
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We thus assign all constrained variables their color. Note that the simple con-
straint property restricts a constrained variable to a single register. Further
note that the register pressure truth guarantees that there is a valid register
allocation of `’s arguments and results with r = max{|res(`)| + t, |arg(`)|}
registers. As the register pressure before ` is at least |arg(`)| and after ` at
least t+ |res(`)|, there can only be k−r variables live through ` without being
used by `. As ` needs at most r registers there will be enough registers for
all variables living by `. So our only task is to find a register allocation of `
needing no more than r registers.

Algorithm 4.8 computes the initial coloring at a constrained label. Firstly,
all constrained variables at ` are colored with their designated color. After-
wards, all arguments dying at ` are colored. Thereby, colors used by the
constrained results are re-used if possible (not already in use by an argu-
ment). The same applies to the remaining unconstrained results. At last, all
arguments live through ` (set T ) have to be colored with colors different from
those already used, since they interfere with both the dying variables (set A)
and the variables defined (set D).

To complete the coloring for the labels `s and `, all variables defined by
the Φw at `s which are not used at ` have to be colored with colors not used
by any argument or result of `. The rest of the component can be colored
with Algorithm 4.2 starting with the label after `.

4.6.5 An Example

To demonstrate the process of register targeting in an SSA-based register
allocator, we consider a call instruction on the x86 platform. Processors of
the x86 family provide seven general purpose registers named eax, ebx, ecx,
edx, esi, edi, ebp. The GNU C compiler provides a fast call extension by
which the first two (integer) parameters to a function can be passed in the
registers ecx and edx. All other parameters are passed on the stack. The
registers eax, ecx, edx may be overwritten by the callee, i.e. they are caller-
save. The other registers have to be saved by the callee if necessary, i.e. they
are callee-save.

For functions returning an integer (which we assume for this example), the
result of the function call is passed in eax. As the caller has to assume that
the contents of the caller-save registers are destroyed upon returning from the
call, they can be treated as if they were additional call results. Hence, we
insert two dummy variables d1 and d2 to model the destruction of edx and
ecx after the call. Let us furthermore assume that the call is indirect, i.e.
the called address is passed in a register which is not constrained. Consider
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Algorithm 4.8 Coloring at a constrained Label

procedure Constrained-Coloring(label `)
T ← {x | x ∈ arg(`) ∧ x lives through `}
A← arg(`) r T
D ← res(`)
CR ← ∅
CA ← ∅
R′ ← R

for all constrained arguments x do
CA ← CA ∪ α(x) . Mark the register as occupied
A← A r x
T ← T r x . Mark the argument as assigned
ρ(x) = α(x) . Set its color
if x ∈ T then

R′ ← R′ r ρ(x)
for all constrained results x do . The same for the results

CD ← CD ∪ α(x)
D ← D r x
ρ(x) = α(x)

for all x ∈ A do . The rest arguments are not constrained
if CD r CA 6= ∅ then . Try to use a color of the results

ρ(x)← one of CD r CA

else . If there is none, take a fresh one
ρ(x)← one of R′ r CA

for all x ∈ D do . Same for the results
if CA r CD 6= ∅ then

ρ(x)← one of CA r CD

else
ρ(x)← one of R′ r CD

Assign registers to T from the set R′ r (CD ∪ CA)
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following program fragment. It shows the call instruction with its address
argument (variable a) and the two arguments to the called function (x, y).

x ← · · ·
y ← · · ·

...
(z|{eax}, d1|{ecx}, d2|{edx}) ← call(a, x|{ecx}, y|{edx})

...
. . . ← τ(z, x)

The result of the call and one argument are used later on by τ . Thus, one ar-
gument lives through the call. Obviously, the call fulfils the simple constraint
property since each variable is either unconstrained or restricted to a single
register. It is easy to see that a copy has to be inserted for argument x since
it is used later on. This is because the register ecx which x is supposed to
be in, is destroyed by the call itself. Below is the program fragment with the
inserted copy.

x ← · · ·
y ← · · ·

...
x′ ← x

(z|{eax}, d1|{ecx}, d2|{edx}) ← call(a, x′|{ecx}, y|{edx})
...

· · · ← τ(z, x)

This copy has even made the call instruction register pressure faithful since
there is a register allocation of its arguments with

|res(`)|︸ ︷︷ ︸
=3

+ t︸︷︷︸
=0

= 3

One such allocation is:

z eax a eax
d1 ecx x′ ecx
d2 edx y edx
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5 Implementation and Evaluation

We conducted various measurements to show the competitiveness of the reg-
ister allocator presented in this thesis. Since the pre-spilling heuristics as
presented in Section 3.1.5.2 are sufficient, our allocator will never introduce
additional spill code after spilling has happened. Thus, concerning spilling,
the presented allocator is at least as good as any other allocator available,
since it can use the same register-pressure-based spilling methods. The main
question arising from this paradigm, is whether the live range splitting im-
plied by Φ-operations and register constraints causes significant performance
penalties. Thus, we chose the x86 architecture for measurements since it is
known to possess many irregularly constrained instructions. Therefore , we
expect a large amount of live range splits due to these constraints.

Before presenting the results of the experimental investigation, we describe
the compiler used to conduct the measurements.

5.1 Implementation

We implemented the register allocator described in the previous chapter into
the C compiler developed at the Institut für Programmstrukturen und Datenor-
ganisation at the Universität Karlsruhe. This compiler is built upon Firm
(see Lindenmaier et al. [2005]), a graph-based SSA intermediate representa-
tion which is similar to the Sea of Nodes IR described by Click and Paleczny
[1995].

5.1.1 The Firm Backend

Based on the IR Firm, we implemented a completely SSA-based backend.
After all architecture independent optimizations in the compiler’s “middle
end” have been finished, the code represented by data and control flow graphs

87
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gets lowered successively. Firstly we implement the rules of the application
binary interface (ABI). This comprises building stack frames, deciding which
parameters of function calls will reside in registers or on the stack and so
on. Afterwards, the architecture independent IR nodes are replaced by nodes
representing machine instructions.

As register allocation requires a totally ordered instruction sequence to
compute liveness (and thus interference) correctly, the data dependence graphs
inside the basic blocks are scheduled using a common latency based list
scheduling algorithm as described in Muchnick [1998].1

Now register allocation takes place. The allocation is performed separately
for each register class. As described in the previous chapter, the register
allocator runs in several phases:

1. Copy instructions for constrained instructions are inserted to make the
register pressure match the actual register demand (see Section 4.6).

2. Spilling is performed using the heuristic described in Section 3.1.5.2 and
the book of [Morgan, 1998, page 319]. It is adapted using the methods
described in Section 4.2.1.

3. Then live range splits for constraint handling are inserted (see Sec-
tion 4.6.3) and registers are assigned to the variables (see Section 4.3)

4. Afterwards, coalescing runs as an (optional) optimization of the coloring,
trying to remove as many move instructions as possible.

5. Φ-operations are implemented as described in Section 4.4 and the as-
sembly text file is emitted.

5.1.2 The x86 Architecture

In this section we describe how the features of the x86 are displayed to the
register allocator. Due to its long history, the x86 architecture exhibits sig-
nificant differences compared to standard RISC architectures. We will briefly
present the features which deserve special treatment:

1. x86 processors provide eight 32-bit integer registers. One register (esp)
is reserved as the stack pointer and is hence excluded from register
allocation. The other registers are called eax, ebx, ecx, edx, esi, edi
and ebp. Most instructions also allow to access the lower 16 bit of

1Future implementations could enhance the scheduling algorithm by heuristics which
keep track of the register pressure as described in Hoxey et al. [1996].
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eax,. . . ,ebp through aliased registers ax,. . . ,bp. The lower 16 bit of
eax,. . . ,edx can also be accessed in 8 bit portions through registers
al,ah,. . . ,dl,dh.

2. Almost all binary instructions use 2-address code, i.e. the first operand
of the instruction is also the target of the instruction. Thus, if the first
operand is assigned to register eax the result of the operation is written
to eax.

3. Several instructions exhibit register constraints. For the argument as
well as the result registers. Mostly, these constraints demand that an
argument or result must reside in a specific register.

4. The floating point registers are organized as a stack. Most instructions
implicitly use the top of the stack (TOS) as operand and result. Thus,
registers cannot be assigned directly to floating point variables.

We address these irregularities as follows:

5.1.2.1 Aliased Registers

C dictates that all char and short operands are casted to int in integer
computations and as an int is 32-bit wide in our compiler, most integer
operations will be 32-bit operations. Thus, we do not support access to the
aliased register parts of the integer registers. This sometimes leads to slightly
slower code since narrowing results in additional mask instructions that
clear the respective bits.

5.1.2.2 2-Address Code

If the operand variable assigned to the target register becomes dead at that
label in question, 2-address code can be seen as a kind of code compression
since the instruction word needs to store only two registers. But if that
operand (let us call it the overwritten operand) lives past the instruction it
has to be copied to the result register before the instruction.2 However, this
“trick” bears a subtle problem. Consider a non-commutative operation such
as sub and a label

` : z ← sub(x, y)

2Note that these copies can be optimized away by the coalescing phase if they are not
necessary.
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where x lives through ` and y dies at `. Assume, the register allocator pro-
duced a register allocation where ρ(z) = ρ(y) = eax and ρ(x) = ebx. Then
using the “copy trick” would result in the following code sequence destroying
the contents of eax before it is used:

x′ : eax ← x : ebx
z : eax ← sub(x′ : eax, y : eax)

Some instructions such as sub can be re-formulated to circumvent this diffi-
culty. In the example above, one could write

x′ : eax ← neg(x : eax)
z : eax ← add(x′ : eax, y : ebx)

thereby making the dying operand the overwritten one. However, for the
most non-commutative instructions this is not possible. Therefore, for non-
commutative operations we have to ensure that the result register is different
from the register assigned to the overwritten operand. This is achieved by
adding an artificial use after the label which forces this operand to live through
the label. Then the not overwritten operand interferes with the result and
never gets assigned the same register. Concerning our example above this
yields the following code:

` : z ← sub(x, y)
use(y)

Note that this artificial use can be omitted if both operands are the same.
Furthermore, if the overwritten operand dies at the label and the second one
lives through it a third register is needed. Thus, 2-address code can cause
additional register pressure.

5.1.2.3 Register Constraints

Almost all constrained instructions require that an operand (or result) must
reside in one specific register. Examples are shown in the table below.

Instruction Constraints
multiplication one operand must be in eax; result is in edx:eax

division 64-bit operand and result must be in edx:eax
shift and rotate shift count must be in register ecx

byte load result is 8-bit register, i.e. one of eax, . . . , edx
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Besides the byte loads, all constrained x86 instructions only exhibit con-
straints to single registers. For byte loads, only the subset eax, . . . , edx
is admissible. To fulfill the single constraints property (see Section 4.6.1),
one of these registers can be arbitrarily selected. However, our coalescing
algorithms (see 4.5) can take all admissible registers into account.

5.1.2.4 Stack-based FPU

Leung and George [2001] describe an approach which allows to assign vir-
tual registers to the floating point variables and turn them into FPU stack
operands afterwards. Alternatively, on more modern incarnations of the x86
architecture, the SSE2 instruction set is available which allows to perform
double precision floating point arithmetic in the lower halves of eight 128-bit
vector registers.

5.2 Measurements

In principle, k-colorable chordal graphs can by colored optimally with the
simplify/select-scheme.3 Since the original allocator presented by Chaitin
merges nodes in the coalescing phase, spills might be introduced in favor of
copies, which is unacceptable. This cannot happen using conservative coa-
lescing allocators. However, they remove far too few copies (see Section 3.1.1
and Appel and George [2001]) due to their conservative heuristic. We also
experimented with Park and Moon’s optimistic register coalescing (see Sec-
tion 3.1.1) that is able to undo some coalescings. We found that it frequently
inserted spills into the k-colorable chordal IGs. This is mainly because it can
only undo the coalescing of the node that is currently to be colored. If the
coloring for a node fails due to already colored coalesced nodes their coalesc-
ing cannot be undone. This results in current allocators either inserting spills
in favor of copies or removing far too few copies to prevent spills from being
inserted.

In comparison to existing, non-SSA register allocators our allocator will
not add a single spill after a pressure-based spilling algorithm has run. Since
these spilling heuristics are also applied by conventional register allocators, we
never insert more spills than a conventional allocator using the same pressure-
based spilling heuristic. Hence, our investigations concentrate on the overhead
caused by the live range splitting due to Φ-operations, spilling and register

3A chordal graph always has a simplicial node and simplicial nodes have insignificant
degree, so there is always a node available for elimination.
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targeting, and on evaluating the performance of the coalescing heuristic pre-
sented in this thesis.

5.2.1 Quantitative Analysis of Coalescing

We applied the heuristic presented in Section 4.5.2 to all C programs in the in-
teger part of the CPU2000 benchmark (see http://www.spec.org/cpu2000).
This comprises all programs in CINT2000 but 252.eon which is C++. In total,
4459 functions were examined. Afterwards, we applied the ILP formulation
to all those functions to compare the heuristic’s results to the solutions found
by the ILP solver.

5.2.1.1 Φr-Operations

Let us start with a general statistics of the test programs. The table in
Figure 5.1 shows the total number of Φr-operations (broken down by their
arity) of all compiled programs before spilling, before coloring and before
coalescing. The numbers are presented in Figure 5.1. A Φr of arity three will
result in three move instructions if the respective results and operands could
not be assigned the same color. The “Before Spill” column gives the numbers
of Φ-operations before any program modification by the register allocator
took place. Spilling adds more Φ-operations (or extends existing ones by
adding more columns). Obviously there are many Φr-operations with one
operand initially. After the spilling phase there are more Φr-operations with
multiple operands. The coloring phase, which splits live ranges to handle
register constraints, inserts many new Φr-operations with about four or five
operands. This is reasonable since they are used to split all live ranges in front
of a constrained instruction, the resulting Φr-operation has all live variables as
operands. Values between three and five are common for the register pressure
when there are seven registers available. Obviously, the register allocator adds
many live range splits. This is mostly due to the register constraints imposed
by the x86 architecture. For machines with few constraints, the number of
Φr-operations after spilling is more representative. Nevertheless, this makes
a powerful coalescing approach indispensable.

5.2.1.2 Interference Graphs

Most interference graphs were rather small having less than 500 nodes, as
shown in Figure 5.2. The enormous amount of live range splitting is reflected
in the interference graphs as shown in Figure 5.3: the column “∅ Aff. Nodes”

http://www.spec.org/cpu2000
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Arity Before Spill Before Color Before Coalesce

1 33596 20299 10656
2 4934 15292 12014
3 2009 11495 16248
4 692 7668 35294
5 280 7677 25986
6 200 3212 14261
7 99 2928 9753
> 7 350 0 0

Σ 42160 68571 124212

Figure 5.1: Number of Φr-operations
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Figure 5.2: Interference Node Distribution

lists the average of all nodes having incident affinity edges. Comparing to the
average number of nodes in the graph (given by column “∅|V |”), always more
than 50% of the nodes are involved with affinities. Moreover, the number of
nodes inside a connected interference component is around ten (see column “∅
Comp. Size”). The average degree concerning affinity edges (column “∅∆Aff”)
is around two which reflects the breaking of live ranges in basic blocks by
constraint handling. This is also nicely displayed in the graph in Figure 5.5.

Concerning copies to eliminate/minimize we discriminate between two pa-
rameters: the number of satisfied affinity edges, i.e. edges for which the in-
cident nodes are assigned the same color, and eliminated costs. The costs
incorporate the dynamic behavior of the program by weighting affinity edges
with a factor dependent on the program location where the corresponding
copy resides. Maximizing the number of satisfied edges corresponds to mini-
mizing the costs under the premise that all costs are equal. We consider the
sum of all affinity costs in the IG.4 Figure 5.4 presents the parameters of the
test programs relevant for coalescing. The column “Init Costs” represents the
costs of the coloring before coalescing was applied. Accordingly, “Init Unsat”
gives the number of unsatisfied affinity edges before coalescing. Note, that
the coloring before coalescing is valid, though it is not good.

4There are graphs for which there is no coloring such that all affinity edges are unsatis-
fied.
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Benchmarks ∅ |V | max |V | ∅ Aff. Nodes ∅ Comp. Size ∅∆Aff

164.gzip 164.38 930 109.08 8.67 1.92
175.vpr 169.41 2293 85.24 9.30 1.82
176.gcc 201.56 6646 112.28 9.84 1.95
181.mcf 116.27 388 65.04 10.80 1.68
186.crafty 721.12 2752 534.41 10.96 1.81
197.parser 123.83 1684 68.48 8.53 1.92
253.perlbmk 198.88 3658 122.55 9.53 1.99
254.gap 220.01 3574 151.50 9.75 2.03
255.vortex 201.01 4380 106.94 10.47 2.07
256.bzip2 148.45 1016 92.12 8.43 1.87
300.twolf 318.07 3152 197.11 12.04 1.65

Figure 5.3: Interference Graph Statistics

Max Costs Init Costs Max Unsat Init Unsat

164.gzip 3456885 2225991 9010 6574
175.vpr 17105748 6949543 18716 13057
176.gcc 221483452 145321851 124379 88535
181.mcf 136390 71807 1422 928
186.crafty 27781660 19681278 8233 5664
197.parser 22227033 17270365 21272 15828
253.perlbmk 49321969 34860898 89714 66871
254.gap 131547137 89237335 113067 84846
255.vortex 28572683 21770254 98745 75164
256.bzip2 7007580 4882642 6368 4540
300.twolf 162497955 63259503 30904 18151

Figure 5.4: Costs and Number of Affinity Edges
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Figure 5.5: A typical interference graph with affinities as it is produced
by our compiler for the x86 architecture. Note the interference components
connected by affinity edges which are caused by intensive live range splitting.
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5.2.1.3 The Coalescing Heuristic

To improve their coloring with respect to affinity costs, all IGs were processed
by coalescing heuristic presented in Section 4.5.2. The results are displayed
in Figure 5.6. The diagram shows three columns per benchmark. The black
one shows the maximal costs of all IGs in the respective benchmark. The
dark grey column “Init” shows the costs before coloring and the light gray
one “Heuristic” shows the costs after the coalescing heuristic ran. The table
in Figure 5.6 also lists the number of unsatisfied affinity edges after coalesc-
ing (“After Unsat”) and the percentage with respect to the total number of
affinity edges (“%After Unsat”). The column “%After Costs” gives the per-
centage of affinity costs present in the IG after coalescing. We can see that
the percentage of costs that are eliminated by the heuristic ranges from 91%
to 98%. Hence, the presented heuristic is a reasonable means to eliminate
most of the copies inserted due to live range splitting. Figure 5.7 shows the
runtime distribution of the coalescing heuristic. For 80% percent of all inter-
ference graphs the heuristic takes less than 500ms to run. It should be noted
that the heuristic is written in Java and the compiler is implemented in C.
This runtime includes the transfer of the interference information from C to
Java. A pure C implementation would surely be faster.

5.2.1.4 ILP Coalescing

To better assess the quality of the coalescing heuristic we applied an ILP
solver to all benchmark programs.5 We used the ILP formulation presented
in Section 4.5.3 and set the time limit for the solver to five minutes. Prior
to the ILP, we ran the heuristic on the graph and provided its solution as a
start value to the ILP solver. Hence, the solver did not need to spend time on
searching a feasible solution in the beginning. Out of 4459 problems, only 211
were not solved optimally within this time. In those cases we also recorded
the best lower bound (abbreviated BB in the following) known to the solver
after five minutes. The optimal solution of a problem lies between BB and the
objective value returned. However, a common observation in practice is that
the solver starts lowering the objective value6 and then remains a long time at
the same best solution, only raising the lower bound. Therefore, there might
be problems among the 211 non-optimal ones, for which the ILP solution is
optimal but the solver failed to prove it within the time limit.

5The solver was CPLEX 9.1 (see http://www.ilog.com) on a 2.4Ghz Pentium with 1GB
main memory.

6Note that we expressed coalescing as a minimization problem

http://www.ilog.com
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164 175 176 181 186 197 253 254 255 256 300

Costs

Bench
Max Init Heuristic

After Costs %After Costs After Unsat %After Unsat

164.gzip 118165 3.42 569 6.32
175.vpr 250873 1.47 1209 6.46
176.gcc 5180274 2.34 7635 6.14
181.mcf 7335 5.38 93 6.54
186.crafty 938870 3.38 477 5.79
197.parser 1052474 4.74 1763 8.29
253.perlbmk 2651188 5.38 6948 7.74
254.gap 3875514 2.95 7637 6.75
255.vortex 2379601 8.33 7881 7.98
256.bzip2 331873 4.74 386 6.06
300.twolf 3360710 2.07 1548 5.01

Figure 5.6: Quality of the Coalescing Heuristic
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Figure 5.7: Speed of the Coalescing Heuristic

Figure 5.8 shows a diagram comparing the heuristic’s results to the ones
of the ILP solver expressed in costs after coalescing per benchmark. The bars
entitled “ILP 5min” represent the objective values as they were returned by
the solver. This is a optimistic estimation on the optimality since it considers
the best known solution as the optimal one in the case the solver was not able
to prove the optimality in time.

The bar “ILP 5m BB” shows the costs if the best solutions are substituted
with the best lower bounds for the non-optimal problems. This is a pessimistic
estimation on the optimality as the optimal cannot be better than the bound.
The true optimum lies somewhere between “ILP 5min” and “ILP 5m BB”.

The columns “Quot” (and “Quot BB”) relate the results of the heuristic to
the ILP. It shows the percentage of the costs left by the heuristics in relation
to the costs left after the ILP solution (and the best lower bound, both after
five minutes solving time).

Concluding, the heuristic’s results are 80% worse than the ones of the
ILP in the worst case and 10% worse in the best case. Considering the huge
reduction in costs the heuristic yielded, these results can be seen as close
to the optimum. This proposition is supported by the following runtime
measurements.

5.2.2 Runtime Experiments

To investigate the effects of coalescing several measurements concerning the
speed of the compiled programs were carried out. We present the results for
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Costs
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Heuristic ILP 5m ILP 5m BB Quot Quot BB

164.gzip 118165 97356 30935 121.37 381.97
175.vpr 250873 218105 215758 115.02 116.28
176.gcc 5180274 3429671 2641368 151.04 196.12
181.mcf 7335 6925 4567 105.92 160.61
186.crafty 938870 852833 390419 110.09 240.48
197.parser 1052474 678415 609249 155.14 172.75
253.perlbmk 2651188 1596567 1424011 166.06 186.18
254.gap 3875514 2908392 1930799 133.25 200.72
255.vortex 2379601 1292513 1248252 184.11 190.63
256.bzip2 331873 239528 196840 138.55 168.60
300.twolf 3360710 2915713 1253567 115.26 268.09

Figure 5.8: Quality of Coalescing Heuristic
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the benchmarks 164.gzip and 256.bzip2. Both programs were compiled in
five versions:

1. Without any coalescing.

2. With the heuristic presented in Section 4.5.2.

3. With the ILP-based method as described in Section 4.5.3. Again, the
solver was equipped with the coloring of the heuristic as a start solution.
The ILP measurements were done with three different time limits: 1, 5
and 30 minutes.

150

200

250

300

164.gzip 256.bzip2

Seconds
Iteration

Bench
w/o Coalesce Heur ILP 1 ILP 5 ILP 30 GCC

Benchmark w/o Coalesce Heur ILP 1 ILP 5 ILP 30 GCC

164.gzip 307 191 191 191 191 178
256.bzip2 314 234 229 230 229 189

Figure 5.9: Runtime Experiments

The machine on which the runtime tests ran was an AMD Athlon XP
3000+ with 1 GB of main memory and SuSE Linux 9.3 installed. We used
the standard SPEC tools to measure the speed of the program. As a reference
we also ran the tests with GCC-compiled versions of the test programs. We
used GCC version 3.3.5 with the switches -O3 -march=athlon-xp. Figure 5.9
shows the runtime in seconds for the two selected benchmarks.

One can see that with coalescing, the runtime decreases massively. The
ILP solutions however (independent of the solver time limit), do not improve
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the runtime significantly. The good values for GCC are mainly due to other
deficiencies in our compiler, such as bad scheduling leading to many spills or
lack of other optimizations such as loop unrolling and aggressive exploitation
of machine features.



6 Conclusions and Future Work

6.1 Conclusions

In this thesis we present a novel approach of performing register allocation on
the SSA form. Our main contribution is the proof that interference graphs
of SSA-form programs are chordal. This theoretical result has far reaching
consequences for the architecture of global register allocators which we com-
prehensively cover in this thesis:

• Pressure based spilling heuristics as they are commonly used are now
sufficient to make the interference graph colorable. No further spills will
be introduced by the coloring phase. This allows to consider coloring
and spilling separately, which is an enormous simplification to register
allocation since the expensive iterative approach used in most global
graph-coloring register allocators can be abandoned.

• We provide a thorough analysis of the register targeting problem as it
occurs in all contemporary runtime systems and processor architectures.
We show, that for general register constraints, register allocation is NP-
complete even for a single constrained instruction in one basic block.
Based on this result, we consider a restricted version of the targeting
problem and show how it can be seamlessly integrated in our register
allocator framework.

• We show that coloring the interference graph can actually be done with-
out constructing the graph itself. This is very important for scenarios
where compile speed matters, such as Just-In-Time compilers, as inter-
ference graphs are usually complex data structures that are tedious to
administer.

• As our maxim is to never make spills in favor of copies, the elimination

103
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of copies (coalescing) may never be allowed to turn a valid coloring
into an invalid one. Thus, we express coalescing as an optimization
problem over interference graphs: find not only a valid coloring but
a good one with respect to copy costs. Thereby, we take care that
the interference graph itself is never modified to preserve its chordality;
the only thing that changes is its coloring. Furthermore, we describe
efficient ways how coalescing algorithms can query the interference graph
without materializing it as a data structure.

After laying the theoretical foundations, we evaluate our approach using
a modern C compiler targeted at the x86 architecture. Hereby, our focus is
directed on the quality of the proposed coalescing methods. As constrained
instructions appear frequently in the code for x86 processors, a lot of live range
splitting is performed by our allocator. As our runtime experiments show, this
makes coalescing crucial as it reduces the runtime of the test programs by 40%.

Furthermore, as the evaluation shows, the proposed coalescing heuristic
delivered solutions which are very close (between 10% and 80% worse) to the
ones found by an ILP solver. These ILP solutions were proven to be optimal
in 95% of all compiled functions. Concerning the runtime of the compiled pro-
grams, the better solutions of the ILP solver provide only marginal speedup.
Hence, the proposed heuristic provides very good results.

6.2 Future Work

Future research in this area could include the following topics:

• We experimented with machines with few registers. Evaluating this
allocator for machines with more registers (especially newer DSPs with
64 or 128 registers) is desirable. Especially the effects of having a large
register file on coalescing have to be investigated.

• Our copy minimization problem only takes into account the given loca-
tions for the live range splits. It is not capable of moving copies to other
places in the program. However, allowing live range splits at arbitrary
locations could result in lower total costs.

• The integration of more complicated register targeting issues like paired
registers and aliased registers is important especially for DSPs.

• The potential compile time benefits of SSA-based register allocation
could be investigated in Just-In-Time compilation scenarios.



A Graphs

Let [A]k be the set of all subsets of A containing k elements. A graph G =
(V,E) is a pair of a set of vertices V and a set of edges E ⊆ [V ]2. If there
is {v, w} ∈ E we will write vw ∈ E. A graph G′ = (V ′, E′) is a subgraph of
G if V ′ ⊆ V ′ and E′ ⊆ [V ′]2. A subgraph G′ ⊆ G is an induced subgraph if
whenever there is vw ∈ E for v, w ∈ V ′ there is vw ∈ E′. If G′ = (V ′, E′)
is an induced subgraph of G, we will also write G[V ′] since it is exactly the
graph containing all edges of G which end in vertices of V ′.

G G′ G′′

Figure A.1: G′ and G′′ are both subgraphs of G. G′ is also an induced
subgraph of G

A graph G = (V,E) with E = [V ]2 is called a complete graph. A complete
graph with n vertices is abbreviated Kn. If H is a induced complete subgraph
of G, then H is called a clique. The size of the largest clique in a graph G is
called its clique number . It is abbreviated by ω(G). In Figure A.1, ω(G) = 3
and ω(G′) = ω(G′′) = 2.

A path P = (V,E) is a graph with

V = {v1, . . . , vk} and E = {v1v2, . . . , vk−1vk}

If P = ({v1, . . . , vk}, E) is a path, we shortly write P = v1v2 . . . vk. Let
P = (V,E) be a path and |V | ≥ 3, then C = (V,E ∪ vkv1) is a cycle. Note
that K3 ∼= C3. For example, the graph G′ in Figure A.1 is isomorphic to C4.
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v

w

Figure A.2: A graph with an C9 subgraph, a chord vw and induced subgraphs
C6 and C5

An edge which connects two vertices of a cycle in some graph G but is not
member of the cycle is called a chord . Thus, a cycle in a graph is chordless if
it is induced. Figure A.2 shows a C9, a chord and two induced cycles.

A.1 Bipartite Graphs and Matchings

Let G = (V,E) by a graph. A set of edges M ⊆ E is a matching of G if for
each e1, e2 ∈M there is e1 ∩ e2 = ∅. A matching M is perfect if the edges in
M cover all nodes, i.e. V =

⋃
e∈M e.

A graph G = (V,E) is called bipartite if V can be subdivided into two
disjoint subsets A and B such that for each edge e = xy there is either
x ∈ A, y ∈ B or x ∈ B, y ∈ A. We then also write G = (A,B, E).

A.2 Perfect Graphs

Let G = (V,E) be a graph. A (vertex) coloring c(G) : V → R maps the
vertices of G to some set R with the condition that c(v) 6= c(w) for each edge
vw in E. The smallest k = |R| for which there exists a coloring of G is called
the chromatic number of G and is denoted by χ(G). A coloring c(G) : V → R
with |R| = χ(G) is called a coloring of G. Trivially for each graph G holds
ω(G) ≤ χ(G). For all graphs in Figure A.1 there is ω(G) = χ(G). However
χ(C5) = 3 and ω(C5) = 2.

Finding a minimal coloring, determining the chromatic number and check-
ing if a graph is k-colorable are all NP-complete, cf. [Garey and Johnson, 1979,
Problem GT4] for example.

A graph G is called perfect if χ(H) = ω(H) for each induced subgraph H
of G. Trivially, if a graph contains an induced odd cycle ≥ 5 (C2k+3) it is not
perfect. Thus, the graph in Figure A.2 is not perfect.
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A.2.1 Chordal Graphs

A graph is called chordal (also triangulated or rigid-circuit) if it does not con-
tain any induced cycle longer than 3. All graphs in Figure A.1 are not chordal
since they have induced cycles longer than 3. Chordal graphs are perfect, see
e.g. the textbook by Golumbic [1980]. There exist several characterizations
of chordal graphs which are helpful for understanding their properties, so we
discuss some of them here, briefly.

A.2.1.1 Gluing on Cliques

By the definition above, each Kn is chordal since a complete graph does not
possess any induced cycle longer than three. Let G be graph with subgraphs
G1, G2 and S for which there is G = G1∪G2 and S = G1∩G2. We then say, G
is obtained by gluing G1 and G2 along S. One can show that iff G1 and G2 are
chordal and S is a complete graph, then G is also chordal (cf. Diestel [2005]
for example). Thus, chordal graphs can be constructed by recursively gluing
chordal graphs on cliques starting with complete graphs. See Figure A.3 for
an example.

⇒

Figure A.3: Gluing on Cliques

A.2.1.2 Intersection Graphs of Subtrees

Gavril [1974] showed that the class of chordal graphs are exactly the class
of intersection graphs of subtrees. A subtree can be thought of as a tree-
shaped interval having multiple ends. Figure A.4a shows a set of subtrees
and Figure A.4b their intersection graph.
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(a) Set of subtrees T

a

b

c

d

(b) Intersection graph of
subtrees T

Figure A.4: Subtrees and their Intersection Graphs

A.2.1.3 Perfect Elimination Orders

One of the simplest method to check if a graph is chordal is to construct
a perfect elimination order (PEO). A PEO is obtained by successively remov-
ing simplicial vertices from the graph. Let G = (V,E) be a graph. A vertex
v is simplicial if v and all its neighbors induce a clique in G. For example,
the vertices a, c and d are simplicial in the graph shown in Figure A.4b. By
a theorem of Dirac [1961], each chordal graph with more than one vertex
possesses at least two simplicial vertices. Furthermore, by removing a vertex
from a chordal graph, the graph remains chordal. Thus, chordal graphs can
successively be eliminated by removing simplicial vertices. Note, that a cycle
longer than three does not have any simplicial vertex.

Remark A.1: PEOs provide a simple way to color chordal graphs optimally.
Let G = (V,E) be chordal and ω(G) = k. Re-insert the vertices of the PEO
in reverse order and assign each vertex a color that has not been used by its
already inserted neighbors. When a vertex v is inserted, it is simplicial, thus
all its already inserted neighbors form a clique. As the largest clique in the
graph is k, v has as at most k − 1 neighbors and there is a color left to color
v.

A.2.1.4 R-Orientations

Another way of characterising chordal graphs are so called R-orientations.
An orientation of an undirected graph G = (VG, EG) is a directed graph
D = (VG, ED) with ED ⊆ VG × VG for which holds if ab ∈ EG there is either
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(a, b) ∈ ED or (b, a) ∈ ED. An R-orientation D of an undirected graph G is
an orientation which further fulfills following properties:

1. D contains no directed cycles

2. If (b, a) ∈ ED and (c, a) ∈ ED then there is bc ∈ EG, i.e. (b, c) ∈ ED or
(c, b) ∈ RD.

Rose [1970] shows that the graphs possessing an R-orientation are chordal
and vice versa.
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B Integer Linear Programming

Integer linear programming (ILP) is the problem of maximizing or minimiz-
ing a linear objective function subject to linear (in)equality constraints and
integrality restrictions on a set of variables. In general, solving an ILP is
NP hard, but in practice even large instances (depending on the formula-
tion of the problem) can be solved in a reasonable amount of time. Let
P = {x | Ax ≥ b, x ∈ Rn

+}, c ∈ Rn, b ∈ Rm, A ∈ Rm×n. Then ILP is the
problem:

min f = cT x, x ∈ P ∩ Zn

cu
t

P
PI

I

The set P is called the feasible region as it
contains all feasible solutions of the problem.
P is called integral if it is equal to the convex
hull PI = conv(P ∩Zn) of the integer points
I. Droping the integrality constraints leads
to the relaxed version of the problem:

min f = cT x, x ∈ P

The figure to the right gives an example for
the relation between the feasible region and
the convex hull in two-dimensional space: the thick lines denote the feasible
region P while the dashed lines denote the convex hull of P ∩ Zn. All real
points in P are feasible concerning the relaxed problem while the feasible
points for the ILP are given by all (integral) points in PI .

In constrast to solving an ILP, solving the relaxed problem is possible
in polynomial time. Hence, if one can formulate the problem in a way that
P = PI then solving the relaxed problem leads to the solutions of the ILP.
Thus, one is generally interested in finding additional inequalties for the ILP
formulation which do not constrain the problem further but close the gap
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between the feasible region and the convex hull. Such inequalities are called
cuts. In our example, the dotted line represents a cut. Cuts are generally a
mean to provide the solver with more information of the problem’s structure so
that it can discard infeasible solutions more quickly. For an in-depth coverage
on (I)LP we refer to Schrijver [1986], Nemhauser and Wolsey [1988].
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