
Construction and Analysis
of

Geometric Networks

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften /
Doktors der Naturwissenschaften

der Fakultät für Informatik
der Universität Fridericiana zu Karlsruhe (TH)

vorgelegte

Dissertation

von

Marc Benkert

aus Berlin

Tag der mündlichen Prüfung: 3. Mai 2007

Erster Gutachter: Herr PD Dr. Alexander Wolff

Zweiter Gutachter: Herr Dr. Marc van Kreveld

2

Contents

Introduction 5
0.1 Concepts from Computational Geometry . 10
0.2 Thesis outline . 12

I Constructing Geometric Networks 19

1 Manhattan Networks 21
1.1 Introduction . 21
1.2 Basic definitions . 23
1.3 Neighbors and the generating set . 25
1.4 Minimum covers . 25
1.5 An approximation algorithm . 30
1.6 The approximation factor . 36
1.7 Mixed-integer program . 41
1.8 Experiments . 42
1.9 Open problems . 47

2 Interference-minimal networks 49
2.1 Introduction . 49
2.2 Computing exact-interference graphs . 52
2.3 Computing estimation-interference graphs . 57
2.4 Generalizations and extensions . 66

3 Boundary Labeling with 1-bend leaders 69
3.1 Introduction . 69
3.2 Problem definition . 71
3.3 Algorithms for labels on one side . 72
3.4 Algorithms for labels on two sides . 86
3.5 Experiments . 93

II Analyzing Geometric Networks 97

4 Detecting and Reporting Flocks 99
4.1 Introduction . 99
4.2 Approximate flocks . 102

3

4 CONTENTS

4.3 Approximation algorithms . 105
4.4 Minimize the number of reported flocks . 109
4.5 Experiments . 111
4.6 Concluding remarks . 116

5 A Geometric Dispersion Problem 119
5.1 Introduction . 119
5.2 A simple greedy strategy . 122
5.3 Algorithm outline . 122
5.4 Adjusting the PTAS of Hochbaum and Maass 124
5.5 The freespace and a metric on unit disks . 126
5.6 The nearest-neighbor graph . 127
5.7 Placement regions of nearest pairs are disjoint 129
5.8 Placing the 2/3-disks . 134
5.9 Conclusion . 135

Deutsche Zusammenfassung 137

Glossar 141

List of publications 148

Bibliography 151

Curriculum Vitae 163

Introduction

Each time we open a road map, we try to perceive some information about the location of
the depicted places or connections by which one place can be reached starting from another
place. In most of the cases our aim is to plan a route that should be as short as possible
concerning its time consumption. We do this by analyzing the depicted geometric information
in a simple way; by the color or width of a road we know its type. Hence, together with the
length information about each road section we can—under the idealistic assumption that
there will be no traffic jam—estimate how long we probably need for certain routes.

Figure 1: Road map of Schwenningen and its vicinity, 1939.

Each time a graph theorist opens a road map, he sees a network that is endowed with
geometric information and other attributes of the objects contained. Well, indeed, the graph
theorist sees the same as we do but in a different perspective. The reason for this is that he
is aware of the theoretic concept that is used to illustrate this road network, for him, it is a
graph.

A graph consists of vertices (also called nodes) and links (also called edges) that connect

5

6

the vertices. In the case of the road map network, the vertices are the depicted cities or
junctions and the links are the roads that connect them. Additionally, the links can be
endowed with weights, which, for the road map, indicate road lengths or traveling times.
Other attributes, like the color of a road, record additional information. Naturally, attributes
can also be set for the displayed vertices. When we plan our trip it is important whether the
roads that we want to use are rural roads, highways or expressways because this significantly
affects the traveling time. For the graph theorist our endeavors to find the best possible route
by hand simply come down to performing a shortest-path query in an appropriate graph.
If the tour should minimize the petrol costs, the links of the graph should be weighted by
the amount of petrol needed for traveling along the corresponding road. If the tour should
minimize the required time, the links should be weighted by the required traveling time.

However, the graph theorist does not need any explicit geometric information to perform
a shortest-path query. For him, it is enough simply to know the underlying graph with all
its vertices and links, i.e. the possibilities of going from any vertex to any other. A shortest-
path query then finds the best possibility to go from vertex A to vertex B by checking
intermediate vertices and possibly all links of the graph. In this sense the query can be dealt
with using graph-theoretic concepts only. Graph theory in general and shortest-path queries
in particular form a wide field, which is already quite well exploited and which will not be
discussed in this thesis. We are interested in networks that are additionally endowed with
geometric information. What makes the road map a geometric network is the fact that the
real topology of the depicted places is preserved by its rendering. This helps us enormously
in understanding the geometric information that should be conveyed.

This leads us to the first discipline when dealing with geometric networks: their visual-
ization. Basically, there are three disciplines:

Visualization – Which geometric properties do we want to represent and how do we accom-
plish that?

Construction – How do we construct geometric networks that fulfill some desired properties?

Analysis – What information can we extract from a geometric network and how can we
make use of this information?

When we are looking for a good visualization, the network itself is given and we look
for a representation that maintains or emphasizes predefined geometric information. This
representation is usually an embedding of the network in the plane, i.e. in 2-dimensional
space. To accomplish that aim, one usually proceeds in two steps. Firstly, an embedding for
the vertices is fixed, i.e. for each vertex its location in the plane is determined. Secondly, we
decide on the type of geometric object with which the links shall be illustrated and the links are
added to the drawing of the embedding. Typical link types are straight lines, polygonal lines,
or curved lines. Which type we choose depends on the purpose that the link representation
should fulfill and, often enough, on the beauty of the emerging rendering. For example, if we
want to illustrate a graph that can be drawn in the plane such that no two links intersect,
in the majority of the cases we want to find a representation that preserves this property, if
no other properties we want to emphasize prohibit this. There may be applications which
request an embedding of a geometric into 3-dimensional space, however, the scope of this
thesis will only encompass networks in 2-dimensional space.

INTRODUCTION 7

For the road map, finding a vertex embedding is in general a trivial issue: as there is no
reason not to preserve the exact topology, the embedding is simply found by appropriately
scaling the original data. However, for small scales there arises a different problem: we have
to decide which dispensable vertices we skip. This is necessary simply because the map
does not offer enough space anymore to display and label all vertices. After fixing the vertex
embedding, we insert the roads into the network. This step also depends on the used scale and
we first have to decide which roads we will incorporate. A road is then drawn as a polygonal
or curved line that reasonably reflects its real geometric course, if there is enough space to do
so. If the scale is too small to allow an authentic drawing we have to appropriately deform the
original course such that the characteristic trait of the road is still maintained. This is, e.g.,
relevant for strongly winding mountain roads. Generating maps at different scales is all but
a trivial task and cartographs devote a lot of work to these kind of generalization problems.
For a survey on common generalization techniques see for example [Wei97].

A typical example for which it is not appropriate to heavily rely on the real geometric
data, when we want to find a good visualization, is the metro map. First and foremost we
look for a visualization of this transportation network that meets the customers demands as
well as possible. Each single line should be nicely traceable, interchange facilities have to be
marked in an understandable way and so on. However, additionally, the real topology should
still be recognizable. Otherwise this would lead to confusions in the understanding of the
map since the customer has, in most cases, at least a rough knowledge about the geography
of the depicted region. A very common solution is to start with the original topology and
deform it only slightly, see Figure 2 for an example. Figure 2a visualizes the transportation
network of the city of Karlsruhe utilizing the real coordinates of the stations. Figure 2b
depicts the resulting visualization of Nöllenburg and Wolff’s approach [NW06]. They used a
mixed-integer program to encode and optimize the criteria that have been touched on above.

To summarize, a good visualization is always a visualization that meets the customer
demands. This concludes my short overview on the discipline of visualization. In my thesis,
visualization will only play a small role since the embedding of the vertices will already be
fixed by the input. So, visualization will only be used for illustration purposes.

Network construction is the discipline that asks for the construction (or extension) of a
network on a given set of vertices, or a given part of the network such that the outcome fulfills
some predetermined properties. Almost always, these properties include the optimization of
some quality criterion. Again, road maps provide an illustrative example. Assume for the
moment that there haven’t been built any roads and we want to set up a road network for
a set of cities from scratch. This road network should connect the cities in a good way, but
what does ’a good way’ intrinsically mean? Well, an obvious requirement is the connectivity
of the network, since it should be possible to get from any city to any other. But in most cases
connectivity alone is not enough. Assume that we live in city A and want to visit a friend who
lives in city B. Understandably, there is a limit on the detour that we are willing to accept
compared to the air-line distance between A and B. Then why don’t we just build a road
between every pair of cities? Simply because this would be disastrously uneconomical, not
to mention the unnecessary destruction of too much nature. This is best illustrated by two
plausible examples; see Figure 3. For three nearly collinear cities it would make no sense to
set up a direct connection between the outermost cities when there are roads connecting the
outermost cities with the mid city. For two cluster of cities that lie far apart, one connecting
road is enough to serve for low inter-cluster detours.

The technical term for the concept that was just described is spanners with low weight.

8

(a) Original topology.

(b) Map produced by the approach of Nöllenburg and Wolff [NW06].

Figure 2: Comparison between two representations of the Karlsruhe transportation network.

INTRODUCTION 9

(a) Three nearly collinear cities. (b) Two city clusters.

Figure 3: Sparse road networks that serve low-detour connections.

And indeed, in practice, it also makes no sense to build a dense road network. For every
arrangement of cities a surprisingly sparse network can be found that provides connections
that do not let the maximum occurring detour get too big. A good overview to the theory
of spanners is given in a survey paper by David Eppstein [Epp00]. Spanners play a role in
the first to chapters of my thesis and for this reason a more formal introduction is given in
Section 0.1.1.

Back to the (geometric) properties in our road-map example. The basic property is con-
nectivity, the two other criteria are the building cost and the maximum occurring detour that
shall be acceptable. In terms of the optimization criterion we have two choices to describe a
’good’ network. Either we try to establish a network that offers connections between any two
cities not exceeding a predefined detour value and minimize the building cost, or we fix the
amount of money that we can afford and try to set up a network that minimizes the maximum
occurring detour under this restriction, see e.g. [SZ04]. The latter scenario seems to be the
more practical one. There are also examples of larger practical relevance than setting up a
road network from scratch, e.g. the planning and building of bypass roads [FGG05]. Here, an
existing network is to be extended in an optimal way. The prevailing optimization criterion
is the ability of the resulting network to cope with the expected volume of traffic.

In Chapters 1, 2 and 3 we consider problems of the above kind. Together they constitute
the first part of my thesis: constructing geometric networks. The considered problems all have
in common that the embedding of the vertices (cities) is already fixed by the input and the
task is to set up a network on these sets that fulfills given properties and optimizes a certain
criterion. A more detailed description to each of these problems can be found in the outline
of this thesis in Section 0.1.

The last of the three disciplines is the analysis of geometric networks. Obviously, this dis-
cipline encompasses analyzing a network for special—unknown—geometric properties. E.g.,
if we are given a road network, we want to know how big the maximum occurring detour is
and for which pair of cities it is attained. Beyond analyzing for properties I want to classify
a second model to this discipline. Assume that we do already know the geometric properties
of the network we are dealing with. Now, we want to utilize these properties to support
other analysis techniques, such as shortest-path queries. Indeed, in graph theory there are
two approaches that use geometric information to speed-up the search for a shortest path
from A to B. Both approaches share the same idea: the search is guided by geometric in-
formation provided by the embedding of the network. In the first approach [SV86], vertices
that lie geometrically closer to the target B (Euclidean distance) are considered as interme-
diate vertices for a shortest A–B path before vertices that lie further away. In the second
approach [WWZ06], geometric containers are used. A preprocessing step is used, computing
for every edge {A,C} the candidate vertices that can be reached by a shortest path starting
from vertex A and using edge {A,C}. This information is stored in a geometric container,

10

represented by the smallest axis-aligned bounding box that contains all candidates. Obviously
this information helps to guide the search; we only have to check edges that actually can lead
to B when we are looking for a shortest path from A to B. So far I have concealed that both
approaches make use of Dijkstra’s Algorithm. Wagner et al. [WW07] give a brief introduction
to this pioneering algorithm and a survey on speed-up techniques.

In my thesis, analyzing geometric networks constitutes the second part. In Chapter 4
the traces of moving objects are investigated and analyzed for their group behavior and in
Chapter 5 a so-called nearest-neighbor graph is analyzed for its maximum degree and this
information is used to bring the algorithm for a packing problem to work. For a detailed
outline of these problems see Sections 0.2.4 and 0.2.5.

To summarize this introduction, geometric networks appear in many circumstances in
everyday life. They are the most important data structure for modeling flows of traffic, goods
or information. Constructing geometric networks that satisfy certain properties is a necessary
discipline for the utilization of these properties, e.g. in railway and road network planning or
in the design of VLSI layouts. An appropriate visualization is the tool for providing a good
understanding of the information (and properties) that should be conveyed to an observer.
Analyzing and understanding geometric networks helps to make use of the properties.

Two sections conclude this introduction. In Section 0.1 I introduce two basic concepts
from computational geometry and in Section 0.2 I sketch the content of each chapter and
summarize the results.

0.1 Concepts from Computational Geometry

On several occasions in this thesis t-spanners occur and the technique of range searching is
used. These concepts are well known in Computational Geometry. I introduce them briefly
in the next two sections.

0.1.1 t-spanners

One can explain the essence of a t-spanner in a single sentence: Given a set of points in the
plane and a constant t ≥ 1, a Euclidean t-spanner is a network in which, for any pair of
points, the ratio of the network distance and the Euclidean distance of the two points is at
most t.

As we will need the notion of a t-spanner on several occasions in this thesis, I will give a
detailed definition. Let P be a set of n points in the plane. For two points u, v ∈ P let |u, v|
denote the Euclidean distance between u and v. Let G = (P,E) an undirected, connected
graph on P having straight-line edges weighted by the Euclidean distance of the corresponding
edge. Let |u, v|G denote the length of a shortest u–v path in G. The stretch factor δ(u, v) of
a point pair u, v is defined as:

δ(u, v) =
|u, v|G
|u, v|

.

The stretch factor δG of the graph G is defined to be the maximum occurring stretch
factor between any pair of points:

δG = max
u,v∈G,u 6=v

δ(u, v).

0.1. CONCEPTS FROM COMPUTATIONAL GEOMETRY 11

Frequently the term stretch factor is also referred to as dilation. A graph is said to be a
t-spanner if its stretch factor is at most t, see Figure 4. The complete graph on P is obviously
a 1-spanner, but as the complete graph has Θ(n2) edges it is practically irrelevant. For most
applications a good spanner with a small number of edges is desired, as seen in the example
of a road network in the introduction. The Yao-Graph was the first graph with a linear
number of edges that provably had a constant stretch factor [Yao82, Kei88, RS91]. There
are a variety of other properties that a spanner is often desired to supply, which depend on
the application, e.g. bounded degree, small total edge length, small spanning diameter and
the required construction time of the spanner. The comparison criterion for small total edge
length is the length of a minimum spanning tree on P . The spanning diameter of a graph
is the length of the longest shortest path when all edges are weighted by 1. It gives the
maximum number of hops that are required to get from one point to another.

However, the field of Euclidean spanners has already been well studied since Chew [Che89]
introduced them. For the understanding of my thesis, only the definition is necessary. I
conclude with two references that cover the theory of spanners as far as possible: Euclidean
Spanners: Short, Thin and Lanky by Arya et al. [ADM+95], and Spanning trees and spanners
by David Eppstein [Epp00].

2

1

1
1u

v

1

δ(u, v) = 2

Figure 4: A 2-spanner and the point pair u, v that defines the stretch factor of the graph.

0.1.2 Range searching

In Chapter 2 and Chapter 4 performing range queries plays a crucial role for the algorithmic
realization of the desired demands. For this reason, I introduce the basic idea of range
searching here and give a very simple example showing how an approximate range query can
be conducted.

Assume we want to answer queries of the following type: we are given a set P of points
in the plane and a query object, e.g. a disk D, and we want to efficiently report the points in
P ∩D. Obviously we can traverse all points and simply check whether each point lies in D or
not, which would take linear time if the query object is of constant complexity. If we only have
to deal with a single query object this would be the best we could do, but what happens if we
have to process a whole series of different query objects? Then, it makes sense to preprocess
the point set and establish a data structure that can answer queries in sublinear time. In
the introduction of his survey paper on range searching [Aga97], Agarwal nicely sketched the
technique that usually forms the basis for such a data structure: a set of disjoint canonical
subsets of P is stored. Roughly speaking, the query will then make use of this information
by deciding whether whole subsets lie inside or outside the query range. We will further

12

illustrate this in a small example below. The notion of storing point subsets immediately
suggests a trade-off between space requirement and query time. A data structure suggested
by Matoušek [Mat93] is a nice example of this. For a user-defined parameter M > n he builds
a data structure of size O(M) in O(n1+δ + M polylog n) time, where δ is an arbitrary small
positive constant, such that queries can be answered in O((n/M1/3) polylog n) time.

Usually, the stored subsets are arranged in a tree-like structure. We show this for an
approximate range query. If accuracy is not required we can approximate in the following
sense. Say we have given a query object, e.g. a disk D, and the diameter of the object is d.
We give the concession that any point outside D, but not further than ε · d distance away
from D may or may not be counted for the query. Here, ε is some chosen, positive constant
that determines the grade of exactness. Obviously, dealing with approximate range queries
is algorithmically easier than with exact queries as we do not have to care about the exact
location of points close to the boundary of D. For example, say that we want to query a
disk D and we only want to output the (approximate) number of points in D (range counting
query). We use a split tree to preprocess and store the points. The root of this tree is assigned
a square that contains all input points. As additional information for each vertex, we store
the number of points contained in its corresponding region. Hence, for the root, this number
is |P |, see Figure 5. If the corresponding square R of a vertex in the split tree contains at
most one point, the vertex is a leaf. Otherwise the vertex has four children that correspond
to the four equally-sized squares that emerge when R is further partitioned, for more detailed
information about split trees see for example [dBvKOS00].

Let D1+ε denote the region that contains D and the points not farther away from D than
ε·d, i.e. the enlarged query region. Recall that points in D1+ε\D may or may not be counted.
The query starts at the root of the split tree. For every vertex υ that is encountered by the
query, we check whether the corresponding square (i) lies completely within D1+ε, (ii) lies
completely outside of D or (iii) has non-empty intersection with D as well as with the outside
of D1+ε. For (i) we count the number of points in the square for the query; for (ii) we don’t.
Neither in case (i) nor in case (ii) do we have to descend further into the subtree of υ. For
(iii) we cannot make any decision and must descend further into the subtree of υ.

Note that the exact query time depends on many different matters, e.g. the height of
the tree, additional information that is stored with the vertices and not least the time that is
required to decide whether a point subset has non-empty intersection with the query object or
not. The above example was only chosen to illustrate the functionality of a range query. Since
a normal split tree, as described above, can have linear height, the worst-case complexity of
a query in the example is still linear.

0.2 Thesis outline

The contents of the five chapters of this thesis are outlined in the next sections. Chapters
1–3 constitute the constructing part and Chapters 4–5 constitute the analyzing part.

0.2.1 Manhattan Networks – Chapter 1

This work is concerned with the study of 1-spanners under the Manhattan (or L1-) metric.
The Manhattan metric differs significantly from the Euclidean metric, for which a shortest
path is always realized by a straight-line. For the Manhattan metric a shortest path between
two points is not uniquely defined: any shortest rectilinear path that connects the two points

0.2. THESIS OUTLINE 13

D
D1+ε

R1R2

R3 R4

R′
1R′

2

R′
3 R′

4

(a) A point set P and (parts of) the subdivision
into squares that builds the basis for the split tree.

53

12 17 11

R1
R2 R3

R4

13

R′
1 R′

2 R′
3

R′
4

04 3 4

2 0 1 1 2 1 0 1

(b) The split tree for P and the above subdivision. The subtrees
of R1, R2 and R3 are omitted. The query for D is illustrated in the
subtree rooted at R4. Shaded numbers are counted for the query; it
is not necessary to descend further.

Figure 5: Performing an approximate range query using a split tree.

14

realizes the Manhattan distance. We call such a path a Manhattan path. The naming stems
from the street system of Manhattan where almost all streets lead North–South (Avenues) or
West–East (Streets).

A network that provides Manhattan paths between any two participating points is called
a Manhattan network. More precisely, a Manhattan network for a set of points is a set of
axis-parallel line segments whose union contains a Manhattan path for each pair of points.
Two Manhattan networks for the same point set are depicted in Figure 6.

Finding a Manhattan network for a given point set is a trivial task. Take, for example,
the complete rectilinear grid that is induced by the input points. However, the problem
of finding a minimum Manhattan network (MMN), i.e. a Manhattan network of minimum
total length, is more complicated. By now, it is still not known whether such a network
can be computed in polynomial time or whether this problem is NP-hard. In Chapter 1 we
present an approximation algorithm for the problem. Given a set P of n points, our algorithm
computes in O(n log n) time and linear space a Manhattan network for P whose length is at
most 3 times the length of an MMN for P .

(a) minimum MN, length: 36. (b) MN computed by our al-
gorithm, length: 41.

Figure 6: Manhattan networks

We also establish a mixed-integer programming formulation for the MMN problem. With
its help we extensively investigated the performance of our factor-3 approximation algorithm
on random point sets. For two types of artificially generated point sets we found out that the
practical performance of our algorithm was significantly better than the theoretical bound
may suggest. On average our algorithm performed by a factor of approximately 1.3.

At the time our work was published [1] our algorithm had the provably best approximation
factor, disregarding a 2-approximation algorithm (Kato et al. [KIA02]) whose correctness
proof was incomplete. In [1] we also introduced a mixed-integer progam formulation of the
problem in order to be able to solve instances optimally and to compare the results yielded
by our approximation algorithm.

In the meantime the French researchers Chepoi, Nouioua and Vaxés [CNV05] have suc-
ceeded in generating a 2-approximation algorithm. They did this by relaxing the integer
variables of our mixed-integer program and rounding them in an appropriate way. However,
their algorithm must solve a linear program with Θ(n3) variables and constraints. Thus, it is
much slower than our algorithm.

The Manhattan network problem may have applications in city planning or VLSI design.
Lam et al. [LAP03] also describe an application from computational biology that stems from
the comparison of gene sequences. In Chapter 1 this application is described in more detail.

0.2. THESIS OUTLINE 15

0.2.2 Interference-minimal Networks – Chapter 2

A wireless ad-hoc network can be represented as a graph in which the nodes represent wireless
devices, and the links represent pairs of nodes that communicate directly by means of radio
signals. The interference caused by a link between two nodes u and v can be defined as the
number of other nodes that may be disturbed by the signals exchanged by u and v. This
definition was first made by Burkhart et al. [BvRWZ04].

In this work we deal with the following task. Given the position of the nodes in the plane,
links are to be chosen such that the maximum interference caused by any link is minimized,
under the restriction that the network fulfills a certain desirable property. The properties that
we are interested in are connectivity, bounded dilation and bounded link diameter. We give
efficient algorithms to find networks in two different models. In the first model, the signal
sent by u to v reaches exactly the nodes that are not farther from u than v is. In the second
model, we assume that the boundary of a signal’s reach is not known precisely and that our
algorithms should therefore be based on acceptable estimations. More precisely this means
that a signal sent from u to v reaches v in any case, but is definitely lost if distance to u exceeds
(1 + ε)|u, v| where | · | denotes the Euclidean distance and ε is a small positive constant. The
latter model yields faster algorithms. Furthermore, the running times of our algorithms in the
exact model are output-sensitive. They depend on the smallest interference value k for which a
network with the desired property exists. For example, we need O(nk2+n log n log k) time for
finding the minimum-interference spanning tree in the exact model and O(n/ε2(1/ε + log n))
for finding it in the estimation model.

0.2.3 Boundary Labeling – Chapter 3

When endowing a map with information about the depicted places, it might happen that
there is simply not enough space for all labels to lie directly at the point they refer to (e.g.
metropolitan areas), or it is not desired that labels lie in the map because they would occlude
other important information (e.g. in medical atlases). A common method for such cases is to
place the labels around the map and to connect a point with its label by an arc. To ease the
understanding of the point-label assignments it has turned out that equally-shaped arcs are
convenient for visual perception. In Chapter 3 we give algorithms that compute such labelings
with labels located on the boundary of the map. We formalize the setting as follows: n points
are contained in a rectangle R. They are to be connected to rectangular labels that lie either
on one or on two opposite sides of R. An assignment from a point p to a label ` is indicated
by a polygonal line, which we call leader, leading from p to `. A first obvious restriction that
serves clarity is that no two leaders are allowed to intersect. We consider two types of shapes
that we use for the leaders: rectilinear leaders, called po-leaders, that consist of a horizontal
and a vertical segment, and leaders that consist of a horizontal and a diagonal segment, called
do-leaders. Figures 7a and 7b show examples of the two types. Both types of leaders have
at most one bend but direct leaders consisting of a single horizontal segment are explicitly
allowed and desired for a nice labeling.

The algorithmic task now is to determine a good (bijective) assignment from the set of
points to the set of labels. This assignment can be seen as a bipartite graph with the points
and labels being the vertices and the leaders being the edges. Consequently, the problem is a
mixture of a graph-drawing problem and a classical labeling problem.

To simplify visual perception we can optimize for two criteria: the total number of bends
and the total leader length in a labeling. We first consider optimizing one criterion inde-

16

R

(a) po-leaders.

R

(b) do-leaders.

Figure 7: Leader types

pendently from the other. The length-optimization variants of the described problems can
basically be solved by sweep-line algorithms. The bend-minimization variants do not allow
sweep-line algorithms in most cases; algorithms based on dynamic programming can be ap-
plied, however. This of course is reflected in the running times of the presented algorithms.
For example, the version with labels on one side of R using po-leaders takes O(n log n) time
for length minimization while our algorithm for bend minimization requires O(n3) time. By
the O(n log n) algorithm for the po-leaders we improve a quadratic algorithm of Bekos et
al. [BKSW07]. The new bound is tight.

Labeling a point set with do-leaders is more difficult than labeling with po-leaders. The
primary reason for this is that there are points that cannot connect to any label, e.g. in
Figure 7b the topmost point cannot connect to the bottommost label—indicated by the dotted
line—by a do-leader. Hence, the running time for do-leaders is worse than for po-leaders. For
one-sided length minimization our algorithm requires O(n2) time, and for bend minimization
it requires O(n5) time.

We implemented our algorithms to evaluate their practical behavior. In addition to the
practical evaluation we also discuss the advantages and disadvantages of the two leader types
and the two optimization criteria.

0.2.4 Detecting Flocks – Chapter 4

Data representing moving objects is rapidly becoming more widely available, especially in the
area of wildlife GPS tracking. It is a central belief that information is hidden in large data sets
in the form of interesting patterns. One of the most commonly sought-after spatio-temporal
patterns is the flock. A flock is a large subset of objects moving along paths close to each
other for a certain pre-defined time. In Chapter 4 we give a new definition that we argue is
more realistic than previous ones, and by the use of techniques from computational geometry
we present fast algorithms to detect and report flocks.

Our definition of flock involves three parameters: the flock size m ∈ N, the flock time
span k ∈ N and the flock radius r ∈ R+. A flock must consist of at least m entities that move
together for at least k consecutive time steps. We define together to mean that for each of
the k time steps there is a disk of radius r that contains all flock entities, see Figure 8.

We assume that the trace of each entity participating in the input is given by a polygonal
line (trajectory) with k vertices. The k vertices indicate the position of the entity at a set of
predefined points in time. If more than k positions of the entities are given, our algorithm
will look at each time span of k consecutive steps independently.

Our idea for the algorithmic accomplishment of detecting flocks in these sets of trajectories
is to canonically map each trajectory to a point in R2k and then apply range reporting and
counting queries in R2k. If we use the right type of query objects, these queries detect all flocks

0.2. THESIS OUTLINE 17

p2

p4

p1

p3

Figure 8: The entities p1, p2 and p3 form a flock for a period of 3 time steps.

and can report the entities that belong to a detected flock. We give several approximation
algorithms where the approximation is with respect to the radius r.

Apart from the total number of observed entities, the parameter k is crucial for the running
time of our algorithms since, in general, range queries become significantly slower the higher
the dimension is. We evaluated our algorithms and found that they are still practical for
k = 16 time steps on meaningful input data.

0.2.5 Packing Disks – Chapter 5

A variant of a classical packing problem forms the basis of this chapter: in a rectangle ρ that
already contains a set R of packed unit disks, further unit disks are to be packed such that
neither of the newly packed disks intersects any other disk. Packing the maximum number m
of non-intersecting unit disks into a polygonal area is known to be NP-hard [FPT81]. On the
positive side, Hochbaum and Maass [HM85] have proven the existence of a polynomial-time
approximation scheme (PTAS). We approximate in a different sense. Let α be a fixed real in
(0, 1]. Our task is to pack a set Bα of at least m disjoint disks of radius α into ρ such that no
disk in Bα intersects a disk in R. Note that m, the maximum number of unit disks that can
be packed, is neither known a priori nor will it be known after our algorithm has finished.

Since this variant of the problem is similar to the approximation of the number of unit
disks, it is somewhat surprising that there is no PTAS. Baur and Fekete [BF01] showed that
for square objects the problem cannot be solved in polynomial time for any α > 13/14, unless
P = NP. Their inapproximability proof adapts to disks but with a constant much closer
to 1 than 13/14. In Chapter 5 we present a polynomial-time algorithm for packing disks with
α = 2/3.

In our approximation, the analysis of a nearest-neighbor graph plays a crucial role. First,
we make use of Hochbaum and Maass’ PTAS to compute a set B1 of at least 8m/9 disjoint
unit disks. Next, we define a distance measure d for two disks in B1. Roughly speaking, d
measures the length of the shortest path that translates the two disks without intersecting any
of the predefined disks in R. We compute the nearest-neighbor graph G on B1 with respect to
d. The vertices in G correspond to the disks in B1 and an edge indicates a nearest-neighbor
relation between the two incident disks. We prove that G has bounded maximum degree,
which helps to find a lower bound on the number of matched disks in a maximum matching
of G. Then, we assign a region to each matching pair such that all regions are pairwise disjoint
and do not intersect any other disk in B1. Finally, we place three disks of radius 2/3 in the
region of each matching pair and one disk of radius 2/3 into each unmatched disk in B1. We
can show proceeding like this we place at least 9/8 many disks as there are in B1. Recall that
B1 contains 8m/9 unit disks. Hence, we have placed at least m disks of radius 2/3.

This dispersion problem may have applications in non-photo realistic rendering system,

18

where 3D models are to be rendered in an oil painting style. Another application is given by
sample surveys of particular regions in the plane, e.g. soil ground. To serve a high quality of
the sample the measuring should be nicely distributed.

Part I

Constructing Geometric Networks

19

Chapter 1

Manhattan Networks

Constructing a Manhattan network constitutes the first chapter of the constructing part of this
thesis. The geometry element is given by the input, n points in the plane. The requirement on
the network is the supply of shortest Manhattan paths between any point pair. The criterion
that is to be minimized is the total length of the segments contained in the network.

The chapter is based on journal publication [2]: Marc Benkert, Alexander Wolff, Florian
Widmann and Takeshi Shirabe: “The minimum Manhattan network problem: Approxima-
tions and exact solutions”.

1.1 Introduction

Under the Euclidean metric, in a 1-spanner (which is the complete graph) the location of each
edge is uniquely determined. This is not the case in the Manhattan (or L1-) metric, where
an edge {p, q} of a 1-spanner is a Manhattan p–q path, i.e. an x- and y-monotone rectilinear
path between p and q. A 1-spanner under the Manhattan metric for a finite point set P ⊂ R2

is called a Manhattan network and can be seen as a set of axis-parallel line segments whose
union contains a Manhattan p–q path for each pair {p, q} of points in P .

In this chapter we investigate how the extra degree of freedom in routing edges can be used
to construct Manhattan networks of minimum total length, so-called minimum Manhattan
networks (MMN). The MMN problem may have applications in city planning or VLSI layout,
but Lam et al. [LAP03] also describe an application in computational biology. For aligning
gene sequences they propose a three-step approach. In the first step, they use a local-alignment
algorithm like BLAST [AGM+90] to identify subsequences of high similarity, so-called high-
scoring pairs (HSP). In the second step they compute a network for certain points given by
the HSPs. They do not require that each point be connected by Manhattan paths to all other
points, but only to those that have both a larger x- and a larger y-coordinate. A Manhattan
path in their setting corresponds to a sequence of insertions, deletions, and (mis)matches
that are needed to transform one point representing a gene sequence into another. Lam et
al. show that modifying an algorithm by Gudmundsson et al. [GLN01] yields a O(n3)-time
factor-2 approximation for their problem. They state that the restriction to the network they
compute helps to considerably reduce the size of the search space for a good alignment, which
is computed by dynamic programming in the third step of their approach.

21

22 CHAPTER 1. MANHATTAN NETWORKS

1.1.1 Previous work

The MMN problem has been considered before, but until now, its complexity status is un-
known. Gudmundsson et al. [GLN01] have proposed an O(n log n)-time factor-8 and an O(n3)-
time factor-4 approximation algorithm. Later Kato et al. [KIA02] have given an O(n3)-time
factor-2 approximation algorithm. However, the correctness proof of Kato et al. is incomplete.
Both the factor-4 approximation and the algorithm by Kato et al. use quadratic space. After
the journal version on which this chapter is based had been submitted, Chepoi et al. [CNV05]
gave a factor-2 approximation algorithm based on linear programming. We now briefly sketch
these algorithms.

Gudmundsson et al. [GLN01] considered each input point p separately. From p they
established Manhattan paths to those points p′ where the bounding box of p and p′ contained
no other input point. This yields a Manhattan network. In order to establish the paths from
p to all points p′, they considered the points p′ in each of the four quadrants relative to p
simultaneously. In each of the quadrants, these points define a staircase polygon. The points
p′ are connected to p by rectangulating the staircase polygon, minimizing the length of the
segments used for the rectangulation. Solving this subproblem by a factor-2 approximation
algorithm yields the factor-8 approximation algorithm for the MMN problem while using
dynamic programming to solve the subproblem optimally yields the factor-4 approximation.

Kato et al. [KIA02] observed that it is not always necessary to connect p explicitly to all
points p′. Instead, they came up with the notion of a generating set, i.e. a set of pairs of
points with the property that each network that contains Manhattan paths between these
point pairs is already a Manhattan network. In a first step they constructed a network N ′

whose length is bounded from above by the length of an MMN. Kato et al. designed the
network N ′ such that it contains Manhattan paths for as many point pairs in the generating
set as possible. They claimed that in a second step, they could rectangulate the facets of N ′

such that the remaining unconnected point pairs are connected and the total length of the
new segments is again bounded from above by the length of an MMN. Both the details of
this step and the proof of its correctness are missing in [KIA02].

Chepoi et al. [CNV05] use the relaxation of the mixed-integer program that we introduce
in Section 1.7 and that we published before [1]. Their algorithm is based on cleverly rounding
the solution of this linear program which uses O(n3) variables and constraints. Thus, their
algorithm is much slower than all previous algorithms, including ours.

1.1.2 Our results

In this chapter we present an O(n log n)-time factor-3 approximation algorithm. We use the
generating set of [KIA02], and we also split the generating set into two subsets for which
we incrementally establish Manhattan paths. However, our algorithm is simpler, faster and
uses only linear (instead of quadratic) storage. The main novelty of our approach is that we
partition the plane into two regions and compare the network computed by our algorithm
to an MMN in each region separately. One region of the partition is given by the union
of staircase polygons that have to be pseudo-rectangulated. For this subproblem a factor-2
approximation suffices. It runs in O(n log n) time and is similar to the factor-2 approximation
for rectangulating staircase polygons that Gudmundsson et al. [GLN01] proposed.

We also establish a mixed-integer programming (MIP) formulation for the MMN problem.
Our formulation is based on network flows. It yields an exact solver that finds MMNs for

1.2. BASIC DEFINITIONS 23

small point sets within a bearable amount of time. We implemented our factor-3 approxima-
tion algorithm and used the exact solver to measure its performance on random point sets.
Further, we make an extensive comparison with other algorithms including the factor-4 and -8
approximations of Gudmundsson et al. [GLN01]. It turns out that our algorithm usually finds
Manhattan networks that are at most 50% longer than the corresponding MMN. However,
for any ε > 0 there is a point set for which our algorithm returns a Manhattan network that
is (3− ε) times as long as the corresponding MMN.

In Section 1.2 and 1.3 we give some basic definitions and show how helpful information
for our network is computed. In Section 1.4 we detail how the backbone of our network is
computed. We describe the algorithm precisely in Section 1.5 and analyze its approximation
factor in Section 1.6. In Section 1.7 we give our MIP formulation. In Section 1.8 we use it
to evaluate the practical performance of several algorithms. We conclude with some open
problems in Section 1.9.

Our algorithm is available as Java applet under URL http://i11www.ira.uka.de/manhattan.
The applet also features the factor-4 and factor-8 approximation algorithms by Gudmundsson
et al. [GLN01].

1.2 Basic definitions

We use |M | to denote the total length of a set M of line segments. For all such sets M we
assume throughout this chapter that each segment of M is inclusion-maximal with respect to⋃

M . It is not hard to see that for every Manhattan network M there is a Manhattan network
M ′ with |M ′| ≤ |M | that is contained in the grid induced by the input points, i.e. M ′ is a
subset of the union U of the horizontal and vertical lines through the input points. Therefore
we will only consider networks contained in U . It is clear that any meaningful Manhattan
network of a point set P is contained in the bounding box BBox(P) of P . Finding a Manhattan
network for given P is rather easy, e.g. the parts of U within BBox(P) yield a Manhattan
network. However, the point set {(1, 1), . . . , (n, n)} shows that this network is not always a
good approximation, in this case it is n times longer than an MMN.

We will use the notion of a generating set that has been introduced in [KIA02]. A gen-
erating set Z is a subset of P × P with the property that a network containing Manhattan
paths for all pairs in Z is already a Manhattan network of P .

The authors of [KIA02] defined a generating set Z with the nice property that Z consists
only of a linear number of point pairs. We use the same generating set Z, but more intuitive
names for the subsets of Z. We define Z to be the union of three subsets Zhor, Zver and Zquad.
These subsets are defined below. Our algorithm will establish Manhattan paths for all point
pairs of Z—first for those in Zhor ∪ Zver and then for those in Zquad.

Definition 1.1 (Zver) Let P = {p1, . . . , pn} be the set of input points in lexicographical order,
where pi = (xi, yi). Let x1 < · · · < xu be the sequence of x-coordinates of the points in P in
ascending order. For i = 1, . . . , u let P i = {pa(i), pa(i)+1, . . . , pb(i)} be the set of all p ∈ P with
x-coordinate xi. Then

Zver = {(pi, pi+1) | xi = xi+1 and 1 ≤ i < n}
∪ {(pa(i), pb(i+1)) | ya(i) > yb(i+1) and 1 ≤ i < u}
∪ {(pb(i), pa(i+1)) | yb(i) < ya(i+1) and 1 ≤ i < u}.

See Figure 1.3, where all pairs of Zver are connected by an edge. Note that Zver consists

http://i11www.ira.uka.de/manhattan

24 CHAPTER 1. MANHATTAN NETWORKS

of at most n − 1 point pairs. If no points have the same x-coordinate, it holds that Zver =
{(pi, pi+1) | 1 ≤ i < n}, i.e. Zver is the set of neighboring pairs in the lexicographical order.
The definition of Zhor is analogous to that of Zver with the roles of x and y exchanged.
Figure 1.4 shows that Zhor ∪ Zver is not necessarily a generating set: Since (p, h) ∈ Zhor and
(p, v) ∈ Zver, no network that consists only of Manhattan paths between pairs in Zhor ∪ Zver

contains a Manhattan p–q path. This shows the necessity of a third subset Zquad of Z.

Definition 1.2 (Zquad) For a point r ∈ R2 denote its Cartesian coordinates by (xr, yr). Let
Q(r, 1) = {s ∈ R2 | xr 6 xs and yr 6 ys} be the first quadrant of the Cartesian coordinate
system with origin r. Define Q(r, 2), Q(r, 3), Q(r, 4) analogously and in the usual order. Then
Zquad is the set of all ordered pairs (p, q) ∈ P × P with q ∈ Q(p, t) \ {p} and t ∈ {1, 2, 3, 4}
that fulfill

(a) q is the point that has minimum y-distance from p among all points in Q(p, t) ∩ P with
minimum x-distance from p, and

(b) there is no q′ ∈ Q(p, t) ∩ P with (p, q′) or (q′, p) in Zhor ∪ Zver.

Obviously Zquad consists of at most 4n point pairs. For the proof that Zquad is in fact
sufficient for Z = Zver ∪ Zhor ∪ Zquad to be a generating set, see [KIA02].

For our analysis we need the following areas of the plane. Let Rhor = {BBox(p, q) |
{p, q} ∈ Zhor}, where BBox(p, q) is the smallest axis-parallel closed rectangle that contains p
and q. Note that BBox(p, q) is just the line segment Seg[p, q] from p to q, if p and q lie on the
same horizontal or vertical line. In this case we call BBox(p, q) a degenerate rectangle. Define
Rver and Rquad analogously. Let Ahor, Aver, and Aquad be the subsets of the plane that are
defined by the union of the rectangles in Rhor, Rver, and Rquad, respectively.

Any Manhattan network has to bridge the vertical (horizontal) gap between the points of
each pair in Zver (Zhor). Of course this can be done such that at the same time the gaps of
adjacent pairs are (partly) bridged. The corresponding minimization problem is defined as
follows:

Definition 1.3 (cover [KIA02]) A set of vertical line segments V is a cover of (or covers)
Rver, if any R ∈ Rver is covered, i.e. for any horizontal line ` with R∩ ` 6= ∅ there is a V ∈ V
with V ∩ ` ∩ R 6= ∅. We say that V is a minimum vertical cover (MVC) if V has minimum
length among all covers of Rver. The definition of a minimum horizontal cover (MHC) is
analogous.

Figure 1.5 shows an example of an MVC. Since any MMN covers Rver and Rhor, Kato et
al. have the following result.

Lemma 1.1 ([KIA02]) The union of an MVC and an MHC has length bounded by the
length of an MMN.

To sketch our algorithm we need the following notations. Let N be a set of line segments.
We say that N satisfies a set of point pairs S if N contains a Manhattan p–q path for each
{p, q} ∈ S. We use

⋃
N to denote the corresponding set of points, i.e. the union of the line

segments in N . Let ∂M be the boundary of a set M ⊆ R2.
Our algorithm will proceed in four phases. In phase 0, we compute Z. In phase I, we

construct a network N1 that contains the union of a special MVC and a special MHC and

1.3. NEIGHBORS AND THE GENERATING SET 25

satisfies Zver ∪ Zhor. In phase II, we identify a set R of open regions in Aquad that do not
intersect N1, but need to be bridged in order to satisfy Zquad. The regions in R are staircase
polygons. They give rise to two sets of segments, N2 and N3, which are needed to satisfy
Zquad. For each region A ∈ R we put the segments that form ∂A \

⋃
N1 into N2, plus, if

necessary, an extra segment to connect ∂A to N1. Finally, in phase III, we bridge the regions
inR by computing a set N3 of segments in the interior of the regions. This yields a Manhattan
network N = N1 ∪N2 ∪N3.

The novelty of our analysis is that we partition the plane into two areas and compare
N to an MMN in each area separately. The area A3 consists of the interiors of the regions
A ∈ R and contains N3. The other area A12 is the complement of A3 and contains N1 ∪N2.
For a fixed MMN Nopt we show that |N ∩A12| ≤ 3|Nopt ∩A12| and |N ∩A3| ≤ 2|Nopt ∩A3|,
and thus |N | 6 3|Nopt|. The details will be given in Section 1.5.

1.3 Neighbors and the generating set

We now define vertical and horizontal neighbors of points in P . Knowing these neighbors
helps to compute Z and R.

Definition 1.4 (neighbors) For a point p ∈ P and t ∈ {1, 2, 3, 4} let p.xnbor[t] = nil if
Q(p, t) ∩ P = {p}. Otherwise p.xnbor[t] points at the point that has minimum y-distance
from p among all points in Q(p, t) ∩ P \ {p} with minimum x-distance from p. The pointer
p.ynbor[t] is defined by exchanging x and y in the above definition.

All pointers of types xnbor and ynbor can be computed by a simple plane sweep in
O(n log n) time. The set Zver is then determined by going through the points in lexicographical
order and examining the pointers of type xnbor. This works analogously for Zhor. Note that
by Definition 1.1 each point q ∈ P is incident to at most three rectangles of Rver, at most
two of which can be (non-) degenerate. We refer to points p ∈ P with (p, q) ∈ Zver as vertical
predecessors of q and to points r ∈ P with (q, r) ∈ Zver as vertical successors of q. We call a
predecessor or successor of q degenerate if it has the same x-coordinate as q. Note that each
point can have at most one degenerate vertical predecessor and successor, and at most one
non-degenerate vertical predecessor and successor. Horizontal predecessors and successors are
defined analogously with respect to Zhor. For each t ∈ {1, 2, 3, 4} the pair (q, q.xnbor[t]) lies
in Zquad if and only if q.xnbor[t] 6= nil and no vertical or horizontal predecessor or successor
lies in Q(q, t). We conclude:

Lemma 1.2 All pointers of type xnbor and ynbor, and the generating set Z can be computed
in O(n log n) time.

1.4 Minimum covers

In general the union of an MVC and an MHC does not satisfy Zver ∪ Zhor. Additional
segments must be added to achieve this. To ensure that the total length of these segments
can be bounded, we need covers with a special property. We say that a cover is nice if each
cover segment contains an input point.

26 CHAPTER 1. MANHATTAN NETWORKS

σ(p, q)

p

q

sq

sq

h

Figure 1.1: Illustration for Lemma 1.3.

Lemma 1.3 For any nice MVC V and any nice MHC H there is a set S of line segments
such that V ∪H ∪S satisfies Zver ∪Zhor and |S| ≤W +H, where W and H denote width and
height of BBox(P), respectively. We can compute the set S in linear time if for each R ∈ Rver

(Rhor) we have constant-time access to the segments in V (H) that intersect R.

Proof. We show that there is a set SV of horizontal segments with |SV | ≤W such that V ∪SV

satisfies Zver. Analogously it can be shown that there is a set SH of vertical segments with
|SH | ≤ H such that H ∪ SH satisfies Zhor. This proves the lemma.

Let (p, q) ∈ Zver. If R = BBox(p, q) is degenerate, then by the definition of a cover, there
is a line segment s ∈ V with R ⊆ s, and thus V satisfies (p, q).

Otherwise R defines a non-empty vertical open strip σ(p, q) bounded by p and q. Note
that by the definition of Zver, R is the only rectangle in Rver that intersects σ(p, q). This
yields that the widths of σ(p, q) over all (p, q) ∈ Zver sum up to at most W . Thus we are
done, if we can show that there is a horizontal line segment h such that the length of h equals
the width of σ(p, q) and V ∪ {h} satisfies (p, q).

Now observe that no line segment in V intersects σ(p, q) since V is nice and σ(p, q)∩P = ∅.
Hence, the segments of V that intersect R in fact intersect only the vertical edges of R. We
assume w.l.o.g. that xp < xq and yp < yq (otherwise rename and/or mirror P at the x-axis).
This means that due to the definition of Zver, there is no input point vertically above p.
Thus, if there is a segment sp in V that intersects the left edge of R, then sp must contain p.
Analogously, a segment sq in V that intersects the right edge of R must contain q. Since V
covers R, sp or sq must exist. Let ` be the horizontal through the topmost point of sp or the
bottommost point of sq. Then h = `∩R does the job, again due to the fact that V covers R,
see Figure 1.1. Clearly h can be determined in constant time. ♣

In order to see that every point set has in fact a nice MVC, we need the following defini-
tions. We restrict ourselves to the vertical case, the horizontal case is analogous.

For a horizontal line ` consider the graph G`(V`, E`), where V` is the intersection of `
with the vertical edges of rectangles in Rver, and there is an edge in E` if two intersection
points belong to the same rectangle. We say that a point v in V` is odd if v is contained in
a degenerate rectangle or if the number of points to the left of v that belong to the same
connected component of G` is odd, otherwise we say that v is even. For a vertical line g
let an odd segment be an inclusion-maximal connected set of odd points on g. Define even
segments accordingly. For example, the segment s (drawn bold in Figure 1.6) is an even
segment, while f \ s is odd. We say that parity changes in points where two segments of
different parity touch. We refer to these points as points of changing parity. The MVC with

1.4. MINIMUM COVERS 27

the desired property will simply be the set of all odd segments. The next lemma characterizes
odd segments, especially item (v) prepares their computation. Strictly speaking we have to
state whether the endpoints of each odd segment are odd too, but since a closed segment has
same length as the corresponding open segment, we consider odd segments closed.

Lemma 1.4 Let g : x = xg be a vertical line through some point p = (xp, yp) ∈ P , meaning
that xp = xg. It holds that:

(i) Let e be a vertical edge of a rectangle R ∈ Rver. Then either all points on e are even or
the only inclusion-maximal connected set of odd points on e contains an input point.

(ii) Let R1, . . . , Rd and R′
1, . . . , R

′
d′ be the degenerate and non-degenerate rectangles in Rver

that g intersects, respectively. Then d = |g ∩ P | − 1 and d′ ≤ 2. If d = 0 then d′ > 0
and each R′

i has a corner in p. Else, if d > 0, there are p1, p2 ∈ P such that g ∩ (R1 ∪
· · · ∪Rd) = Seg[p1, p2]. Then each R′

i has a corner in either p1 or p2.

(iii) There are bg < tg ∈ R such that g ∩ Aver = {xg} × [bg, tg].

(iv) The line g contains at most two points of changing parity and at most one odd segment.
For each point c of changing parity there is an input point with the same y-coordinate.

(v) If g has no point of changing parity, there is either no odd segment on g or the odd
segment is {xg}×[bg, tg]. If g has one point c of changing parity, then either {xg}×[bg, yc]
or {xg} × [yc, tg] is the odd segment. If g has two points c and c′ of changing parity,
then {xg} × [yc, yc′] is the odd segment.

Proof. For (i) we assume without loss of generality that e is the right vertical edge of R =
BBox(p, q) and that q is the topmost point of e. If R is degenerate it is clear that all points
on e (including p and q) are odd, and we are done. Thus we can assume that xp < xq. Let
p0 = q, p1 = p, p2 . . . , pk be the input points in order of decreasing x-coordinate that span
the rectangles in Rver that are relevant for the parity of e. Let pi = (xi, yi). For 2 6 i 6 k
define recursively yi = min{yi, yi−2} if i is even, and yi = max{yi, yi−2} if i is odd. Let
pi = (xi, yi), and let L be the polygonal chain through p0, p1, p2, p3, . . . , pk, see Figure 1.6.
Note that the parity of a point v on e is determined by the number of segments of L that the
horizontal hv through v intersects. If hv is below pk, then it intersects a descending segment
for each ascending segment of L, hence v is even. If on the other hand hv is above pk, then
it intersects an ascending segment for each descending segment—plus p1p0, hence v is odd.
In other words, if yk = y0, all points of e are even, if yk = y1, all points of e are odd, and
otherwise parity changes only in (x0, yk) and q is odd. This settles (i).

(ii) follows directly from the definition of Zver, and (iii) follows from (ii), see also Figure 1.2.
For (iv) we first assume d = 0. Then (ii) yields d′ ∈ {1, 2} and g ∩ P = {p}. By (i) we

know that the only inclusion-maximal connected set of odd points on each vertical rectangle
edge on g contains an input point, i.e. p. Thus there are at most two points of changing parity
and there is at most one odd segment on g. Also according to the above proof of (ii), parity
can change only in points of type (x0, yk), and yk is the y-coordinate of some input point in
the set {p0, . . . , pk}.

Now if d > 0 note that all degenerate rectangles consist only of odd points. By (ii) we
have that g ∩ (R1 ∪ · · · ∪ Rd) = Seg[p1, p2] and that each of the at most two non-degenerate
rectangles has a corner in either p1 or p2. Thus again the statement holds.

28 CHAPTER 1. MANHATTAN NETWORKS

g g g g

R′
1

R′
2

R′
1 R′

2

R1

R′
1

R′
2

R′
1

p
p1

p2

bg

tg

bg

tg

bg

tg

bg

tg

Figure 1.2: Illustration for Lemma 1.4 (ii) and (iii).

For the proof of (v) we make a case distinction depending on d′. If d′ = 0, g intersects only
degenerate rectangles and thus there is no point of changing parity on g and the odd segment
is {xg} × [bg, tg]. Otherwise we assume w.l.o.g. that e is contained in g. If e = {xg} × [bg, tg]
holds, we are done. The argument of (i) shows that either e contains no point of changing
parity and hence all points of e are of one parity, or c = c1 is the only point of changing parity
and the odd segment is {xg} × [c1, tg = yp]. If e 6= {xg} × [bg, tg], there is a further rectangle
Rp in Rver with Rp = BBox(p, r) and xp 6 xr, yp < yr. If Rp is non-degenerate all points on
{xg} × [bg, tg] \ e are even, as there are no relevant rectangles to the right. In this case we
have no odd segment on g if e is completely even, the odd segment is {xg}× [bg, yp = c1] if e is
completely odd, and if c is a point of changing parity the odd segment is {xg}×[c = c1, yp = c2].
If Rp is degenerate, {xg}× [p, r] has to be added to the odd segments stated as before, besides
the same argument holds with a possibly rectangle Rr connected to r. ♣

q

Q(p, 1)

v

p
h

Figure 1.3: Point pairs in Zver. Figure 1.4: The pair (p, q) is in Zquad.

Lemma 1.5 The set V of all odd segments is a nice MVC, the odd MVC.

Proof. Clearly V covers Rver. Let ` be a horizontal line that intersects Aver. Consider a
connected component C of G` and let k be the number of vertices in C. If k is even then any
cover must contain at least k/2 vertices of C, and V contains exactly k/2. On the other hand,

1.4. MINIMUM COVERS 29




 L

pk

pk

p0

p1

p2

p2

p3

p4

e

f

s

Figure 1.5: The odd MVC. Figure 1.6: Proof of Lemma 1.4.

if k > 1 is odd then any cover must contain at least (k − 1)/2 vertices of C, and V contains
exactly (k − 1)/2. If k = 1, any cover must contain the vertex, and so does V as the vertex
belongs to a degenerate rectangle. Thus V is an MVC. Lemma 1.4 (i) shows that V is nice.
♣

Lemma 1.6 The odd MVC can be computed in O(n log n) time using linear space.

Proof. We compute the odd MVC by a plane sweep. Let x1 < · · · < xu be the ascending
sequence of all distinct x-coordinates. For each vertical line gi : x = xi we determine in a
preprocessing step the points bi and ti such that gi ∩ Aver = [bi, ti]. For this it suffices to go
through the input points in lexicographical order. For each gi we introduce numbers βi and
τi which we initially set to ∞. After the sweep βi and τi will determine the odd MVC in the
following way: If βi = τi =∞, then there is no odd segment on gi, otherwise gi contains the
odd segment xi × [βi, τi]. These two variables are sufficient since according to Lemma 1.4(iv)
there is at most one odd segment on gi.

We use a sweep-line algorithm to compute the values βi and τi. As usual, our sweep-
line algorithm is supported by two data structures, the event-point queue and the sweep-line
status. According to Lemma 1.4,(iv) there is an input point r with yc = yr for each point
c of changing parity and according to (v) we have to determine these points in order to get
the odd segments. Thus, the event-point queue can be implemented as a sorted list of all
y-coordinates of the input points. Note that the same y-value can occur more than once.
This ensures that at each event point only one event takes place. The sweep-line status is a
balanced binary tree in which each node corresponds to a connected components of G`, where
` is the current position of the horizontal sweep line. Our sweep line ` is a horizontal line
sweeping all rectangles in Rver from bottom to top.

While the sweep line moves from one event point to the next, the sweep-line status main-
tains the connected components of G` in a balanced binary tree T . Initially T is empty.
Whenever ` reaches an event point, we update T . For each component C of G` we store two
indices lC and rC with the property that the leftmost node of C lies on glC and the rightmost
node on grC . The tree T is organized such that rC′ < lC for two components of G` if C ′ is a
left child of C, while rC < lC′ if C ′ is a right child.

The following component modifications can occur on an event: a component appears or
disappears, one component is replaced by a new one, a component is enlarged or reduced,
two or three components are joined or a component is split into two or three components.

30 CHAPTER 1. MANHATTAN NETWORKS

We can decide in constant time which type of event takes place, simply by evaluating bi, ti,
and—if they exist—bi±1 and ti±1, where i is the index of the line which contains the input
point that caused the current event. For each event we have to change the entries of at most
three components and update T accordingly.

Each of these update operations takes O(log n) time. For example if a component is split
into two, this component has to be found, its entries have to be updated and a new component
has to be created and inserted to T .

The correct values βi, τi for each line gi are computed during the sweep. At any point of
time, the values βi and τi indicate the information about the odd segment on gi detected so
far: βi =∞ means no odd segment has been found yet, while βi 6=∞ says that there is an odd
segment on gi with lower endpoint (xi, βi). If additionally τi 6= ∞ then the upper endpoint
has also been detected yet and the odd segment on gi is xi × [βi, τi]. Thus, at each event we
have to check whether there are odd segments that start or end at y`, the current y-value of
the sweep line `. According to Lemma 1.4(v), points of changing parity are always endpoints
of odd segments, while bottom- or topmost points of Aver ∩ gi may be endpoints. In order
to find all endpoints, we have to consider the old and new entries of changing components
whenever T is updated. Bottommost points occur, if a new components appears, a component
is enlarged or components are joined. Topmost points occur, if a component disappears, is
reduced or components are split. Points of changing parity can occur if the extent of a
component changes, components are joined or split or one component is replaced by a new
one. If we have found a bottommost point bi, we check whether bi is odd and hence the lower
endpoint of the odd segment on gi is bi. We do this by examining lC , rC and i, where C is
the component that contains bi. If lC = rC (degenerate rectangle) or the parities of lC and i
are different, bi is odd and we set βi = bi. If we discover a point of changing parity, we check
whether it is the lower or upper endpoint of the odd segment on gi. If βi is still ∞ the point
of changing parity is the lower endpoint, otherwise the upper. We set accordingly βi = y` or
τi = y`. At a topmost point ti we only have to check whether there is an odd segment on
gi and whether ti is the upper endpoint of the odd segment. This is the case if βi 6= ∞ and
τi =∞, we then set τi = ti.

As there are at most 3n operations that change components during the sweep, we have to
handle O(n) of these checks. After sorting, each of the n events of our sweep takes O(log n)
time. Thus, the total running time is O(n log n). ♣

The odd MHC can be computed analogously.

1.5 An approximation algorithm

Our algorithm ApproxMMN proceeds in four phases, see Figure 1.10. In phase 0 we compute
all pointers of type xnbor and ynbor and the set Z. In phase I we satisfy all pairs in Zver∪Zhor

by computing the network N1, the union of a nice MVC Cver, a nice MHC Chor, and at most
one additional line segment for each rectangle in Rver ∪ Rhor. In phase II we compute the
staircase polygons that were mentioned in Section 1.2. The union of their interiors is area
A3. Network N2 consists of the boundaries of these polygons and segments that connect the
boundaries to N1. In phase III we compute a network N3 of segments in A3. The resulting
network N1 ∪N2 ∪N3 satisfies Z.

1.5. AN APPROXIMATION ALGORITHM 31

Phase 0. In phase 0 we compute all pointers of types xnbor and ynbor, and the set Z.
We organize our data structures such that from now on we have constant-time access to all
relevant information such as xnbor, ynbor, vertical and horizontal predecessors and successors
from each point p ∈ P .

Phase I. First we compute the nice odd MVC and the nice odd MHC, denoted by Cver and
Chor, respectively. Then we compute the set S of additional segments according to Lemma 1.3.
We compute Cver, Chor and S such that from each point p ∈ P we have constant-time access
to the at most two cover segments (i.e. segments in Cver ∪ Chor) that contain p and to the
additional segments in the at most four rectangles incident to p.

Lemmas 1.1, 1.3, and 1.6 show that N1 = Cver ∪ Chor ∪ S can be computed in O(n log n)
time and that |N1| 6 |Nopt|+ H + W holds. Recall that Nopt is a fixed MMN.

Phase II. In general N1 does not satisfy Zquad; further segments are needed. In order to
be able to bound the length of these new segments, we partition the plane into two areas A12

and A3 as indicated in Section 1.2. We wanted to define A3 such that |Nopt ∩A3| were large
enough for us to bound the length of the new segments. However, we were not able to define
A3 such that we could at the same time (a) satisfy Zquad by adding new segments exclusively
in A3 and (b) bound their length. Therefore we put the new segments into two disjoint sets,
N2 and N3, such that N1 ∪N2 ⊆ A12 and N3 ⊆ A3. This enabled us to bound |N1 ∪N2| by
3|Nopt ∩ A12| and |N3| by 2|Nopt ∩ A3|.

We now prepare our definition of A3. Recall that Q(q, 1), . . . , Q(q, 4) are the four quad-
rants of the Cartesian coordinate system with origin q. Let P (q, t) = {p ∈ P ∩ Q(q, t) |
(p, q) ∈ Zquad} for t = 1, 2, 3, 4. For example, in Figure 1.12, P (q, 1) = {p1, . . . , p5}. Due to
the definition of Zquad we have Q(p, t) ∩ P (q, t) = {p} for each p ∈ P (q, t). Thus the area
Aquad(q, t) =

⋃
p∈P (q,t) BBox(p, q) is a staircase polygon. The points in P (q, t) are the “stairs”

of the polygon and q is the corner opposite the stairs. In Figure 1.12, Aquad(q, 1) is the union
of the shaded areas. In order to arrive at a definition of the area A3, we will start from
polygons of type Aquad(q, t) and then subtract areas that can contain segments of N1 or are
not needed to satisfy Zquad.

Let ∆(q, t) = int
(
Aquad(q, t) \ (Ahor ∪ Aver)

)
, where int(M) denotes the interior of a set

M ⊆ R2. In Figure 1.12, ∆(q, 1) is the union of the three areas with dotted boundary. Let
δ(q, t) be the union of those connected components A of ∆(q, t), such that ∂A ∩ P (q, t) 6= ∅.
In Figure 1.12, δ(q, 1) is the union of the two dark shaded areas A and A.

Due to the way we derived δ(q, t) from Aquad(q, t), it is clear that each connected compo-
nent A of δ(q, t) is a staircase polygon, too. The stairs of A correspond to the input points
on ∂A, i.e. P (q, t) ∩ ∂A. Let qA be the point on ∂A that is closest to q. This is the corner of
A opposite the stairs. The next lemma is very technical, but it is crucial for the estimation
of our network within the δ(q, t) regions.

Lemma 1.7 Areas of type δ(q, t) are pairwise disjoint.

Proof. For each pair (p, q) ∈ Zquad we define its forbidden area Fpq to be the union of
BBox(p, q) and the intersection of (a) the halfplane not containing p that is bounded by
the horizontal through q and (b) the open strip between the verticals through p and q, see
Figure 1.7. We have Fpq ∩ (P \ {p, q}) = ∅ since the existence of a point r ∈ Fpq ∩ (P \ {p, q})
would contradict (p, q) ∈ Zquad.

32 CHAPTER 1. MANHATTAN NETWORKS

Suppose there is a point s ∈ δ(q, t) ∩ δ(q′, t′) with (q, t) 6= (q′, t′). Clearly q 6= q′ since
δ(q, t) ⊂ int(Q(q, t)) and δ(q, t′) ⊂ int(Q(q, t′)) and int(Q(q, t)) ∩ int(Q(q, t′)) = ∅ for t 6= t′.
Since δ(q, t), δ(q′, t′) ⊆ Aquad we know that there are points p and p′ with (p, q), (p′, q′) ∈ Zquad

such that s ∈ BBox(p, q) ∩BBox(p′, q′). Let B = BBox(p, q) and B′ = BBox(p′, q′). Without
loss of generality, we assume that p is to the right and above q.

We know that p′, q′ 6∈ B since B ⊂ Fpq. Analogously p, q 6∈ B′. Let `(xq, yp) and r(xp, yq)
be the other two corners of B, see Figure 1.8. There are three cases:

Case I: B′ ∩ {`, r} = ∅.
Recall that B′ ∩ {p, q} = ∅ and that B ∩ B′ 6= ∅. Thus B′ lies in the vertically un-
bounded open strip S1 = (xq, xp) × (−∞,∞) or in the horizontally unbounded open
strip S2 = (−∞,∞) × (yq, yp) determined by two opposite edges of B, see Figure 1.8.
(Note that p′ and q′ cannot lie on the boundary of S1 or S2, otherwise (p, q) or (p′, q′)
would not be in Zquad.) Now if B′ ⊂ S1 (see the dashed rectangle in Figure 1.8), then
p′ or q′ lies in Fpq contradicting (p, q) ∈ Zquad. If on the other hand B′ ⊂ S2 (see the
dotted rectangle in Figure 1.8) then p or q lies in Fp′q′ contradicting (p′, q′) ∈ Zquad.

q

p

Fpq

BBox(p, q)

Figure 1.7: The forbidden
area Fpq is shaded.

q

p

B

S1

S2

`

r

Figure 1.8: Case I.

q

p

B

S1

S2

`

r

q′

p′

B′

Figure 1.9: Case III.

Case II: B′ ∩ {`, r} = {r}.
Now the upper left corner of B′ lies in B since again B′ ∩ {p, q} = ∅. Thus the lower
left corner of B′ is an input point (p′ or q′) but lies in Fpq contradicting (p, q) ∈ Zquad.

Case III: B′ ∩ {`, r} = {`}.
In this case the lower right corner of B′ lies in B and the upper right corner of B′

lies above B in S2. If p′ was the upper right corner of B′, we would have q ∈ Fp′q′ ,
which contradicts (p′, q′) ∈ Zquad. Thus p′ lies in S2 to the left of B and q′ in S1

above B, see Figure 1.9. Such a constellation is indeed possible. Note, however, that
B ∩ B′ ⊂ BBox(q, q′). Furthermore {q, q′} ∈ Zver since BBox(q, q′) and the open strip
bounded by the verticals through q and q′ are completely contained in Fpq ∪ Fp′q′ and
thus do not contain any input points except q and q′. These observations yield s ∈
B ∩ B′ ⊂ BBox(q, q′) ⊂ Aver, which contradicts s ∈ δ(q, t) since δ(q, t) is contained in
the complement of Aver. ♣

We are now sure that we can treat each connected component A of δ(q, t) independently.
Finally we define A3 =

⋃
t∈{1,2,3,4}

⋃
q∈P δ(q, t) and A12 = R2 \ A3. This definition ensures

that N1 ⊂ A12 as desired. The set N2 will be constructed as follows: for each connected
component A of A3, we put ∂A \

⋃
N1 into N2 and test whether N1 contains a Manhattan

1.5. AN APPROXIMATION ALGORITHM 33

path from qA to q. If not, we add a further segment to N2. This segment lies in Ahor and will
be defined below. Since Ahor as well as ∂A are contained in A12, we have N2 ⊂ A12. The set
N3 will be defined in phase III and will be arranged such that N3 ⊂ A3.

We now describe how to compute P (q, t) and how to find the connected components of
δ(q, t). We compute all sets P (q, t) by going through the input points and checking their
Zquad-partners. This takes linear time since |Zquad| = O(n). We sort the points in each set
P (q, t) according to their x-distance from q. This takes O(n log n) total time. The remaining
difficulty is to decide which points in P (q, t) are incident to the same connected component of
δ(q, t). In Figure 1.12, {p1, p2} ⊂ ∂A and {p3, p4, p5} ⊂ ∂A. For our description how to figure
this out we assume t = 1 and P (q, 1) = (p1, . . . , pm). Note that each connected component
of δ(q, 1) corresponds to a sequence of consecutive points in P (q, 1). By definition, for each
connected component A of δ(q, 1) and all pi, pj ∈ A we have pi.ynbor[3] = pj .ynbor[3].

We detect these sequences by going through p1, . . . , pm. Let pi be the current point and
let A be the current connected component. If and only if pi.ynbor[3] 6= pi+1.ynbor[3] there is
a rectangle RA ∈ Rhor that separates A from the next connected component of δ(q, 1). The
rectangle RA is defined by the point vA = pi.ynbor[3] and its horizontal successor wA, which
in this case is unique, see Figure 1.12. It remains to specify the coordinates of the corner
point qA of A. Let p0 be the (unique) vertical successor of q. Then xqA = xp0 and yqA = ywA .

At last, we want to make sure that N1 ∪ N2 contains a Manhattan q–qA path. The
reason for this is that in phase III we will only compute Manhattan paths from each pi ∈ ∂A
to qA. Concatenating these paths with the q–qA path yields Manhattan pi–q paths since
qA ∈ BBox(q, pi). Note that segments in N3 lie in A3 and thus cannot help to establish a
q–qA path within BBox(q, qA) ⊂ A12.

The set N1 contains a Manhattan q–p0 path Pver and a Manhattan vA–wA path Phor,
since (q, p0) ∈ Zver and (vA, wA) ∈ Zhor. If qA ∈ Pver, then clearly N1 contains a Manhattan
q–qA path. However, N1 also contains a Manhattan q–qA path if qA ∈ Phor. This is due
to the fact that Pver and Phor intersect. If qA 6∈ Pver ∪ Phor, then Phor contains the point
cA = (xqA , yvA), which lies on the vertical through qA on the opposite edge of RA. Thus, to
ensure a Manhattan q–qA path in N1 ∪N2, it is enough to add the segment sA = Seg[qA, cA]
to N2. We refer to such segments as connecting segments.

The algorithm ApproxMMN does not compute Pver and Phor explicitly, but simply tests
whether qA 6∈

⋃
N1. This is equivalent to qA 6∈ Pver ∪ Phor since our covers are minimum

and the bounding boxes of Pver and Phor are the only rectangles in Rver ∪Rhor that contain
sA. Due to the same reason and to the fact that cover edges are always contained in (the
union of) edges of rectangles in Rver∪Rhor, we have that sA∩

⋃
N1 = {cA}. This shows that

connecting segments intersect N1 at most in endpoints. The same holds for segments in N2

that lie on ∂A3. This is important as later on, in Section 1.6 we need that a segment in N1

and a segment in N2 intersect at most in their endpoints. We summarize:

Lemma 1.8 In O(n log n) time we can compute the set N2, which has the following prop-
erties: (i) N2 ⊂ A12, (ii) a segment in N1 and a segment in N2 intersect at most in their
endpoints, and (iii) for each region δ(q, t) and each connected component A of δ(q, t), N1∪N2

contains ∂A and a Manhattan q–qA path.

Proof. The properties of N2 follow from the description above. The runtime can be seen as
follows. Let A be a connected component of A3 and mA = |P ∩ ∂A|. Note that

∑
mA =

O(n) since each point is adjacent to at most four connected components of A3, according

34 CHAPTER 1. MANHATTAN NETWORKS

to Lemma 1.7. After sorting P (q, t) we can compute in O(m) time for each A the segment sA

and the set ∂A \
⋃

N1. This is due to the fact that we have constant-time access to each of
the O(m) rectangles in Rhor ∪ Rver that intersect ∂A and to the O(m) segments of N1 that
lie in these rectangles. ♣

Phase III. Now, we finally satisfy the pairs in Zquad. Due to Lemma 1.8 for each connected
component A of A3 it is enough to compute a set of segments B(A) such that the union of
B(A) and ∂A contains Manhattan paths from any input point on ∂A to qA. We say that such
a set B(A) bridges A. The set N3 will be the union over all sets of type B(A). The algorithm
Bridge that we use to compute B(A) is similar to the “thickest-first” greedy algorithm for
rectangulating staircase polygons, see [GLN01]. However, we cannot use that algorithm since
the segments that it computes do not lie entirely in A3.

For our description of algorithm Bridge we assume that A lies in a region of type δ(q, 1).
Let again (p1, . . . , pm) denote the sorted sequence of points on ∂A. Note that ∂A already
contains Manhattan paths that connect p1 and pm to qA. Thus we are done if m ≤ 2.
Otherwise let p′j = (xpj , ypj+1), aj = Seg[(xqA , yp′j

), p′j] and bj = Seg[(xp′j
, yqA), p′j] for j ∈

{1, . . . ,m − 1}, see Figure 1.13. We denote |aj | by αj and |bj | by βj . From now on we
identify staircase polygon A with the tuple (qA, p1, . . . , pm). Let B be the set of segments that
algorithm Bridge computes. Initially is B = ∅. The algorithm chooses an i ∈ {1, . . . ,m− 1}
and adds—if they exist—ai−1 and bi+1 to B. This satisfies

{
(pi, q), (pi+1, q)

}
. In order to

satisfy
{
(p2, q), . . . , (pi−1, q)

}
and

{
(pi+2, q), . . . , (pm−1, q)

}
, we solve the problem recursively

for the two staircase polygons
(
(xqA , ypi), p1, . . . , pi−1

)
and

(
(xpi+1 , yqA), pi+2, . . . , pm

)
.

Our choice of i is as follows. Note that α1 < · · · < αm−1 and β1 > · · · > βm−1. Let
Λ = {j ∈ {1, . . . ,m − 1} | αj 6 βj}. If Λ = ∅, we have α1 > β1, i.e. A is flat and broad. In
this case we choose i = 1, which means that only b2 is put into B. Otherwise let i′ = maxΛ.
Now if i′ < m − 1 and αi′ 6 βi′+1, then let i = i′ + 1. In all other cases let i = i′. The idea
behind this choice of i is that it yields a way to balance αi−1 and βi+1, which in turn helps to
compare αi−1 +βi+1 to min{αi, βi, αi−1 +βi+1}, i.e. the length of the segments needed by any
Manhattan network in order to connect pi and pi+1 to q, see also the proof of Theorem 1.9.

To avoid expensive updates of the α- and β-values of the staircase polygons in the recur-
sion, we introduce offset values xoff and yoff that denote the x- respectively y-distance from
the corner of the current staircase polygon to the corner qA of A. In order to find the index
i in a recursion, we compare αj − xoff to βj − yoff instead of αj to βj as in the definition of Λ
above. Figure 1.11 shows the pseudo code of algorithm Bridge for a staircase polygon A of
type δ(q, 1).

Running time and performance of algorithm Bridge(A) are as follows:

Lemma 1.9 Given a connected component A of A3 with |P ∩ ∂A| = m, algorithm Bridge
computes in O(m log m) time a set B of line segments with |B| 6 2|Nopt ∩ A| and

⋃
B ⊂ A

that bridges A.

Proof. As for the running time, note that the monotone orders of α1, . . . , αm−1 and β1, . . . , βm−1

permit to find i by binary search in O(log m) time. The recursion tree has O(m) nodes. Thus
the algorithm runs in O(m log m) time.

As for the performance, note that according to Lemma 1.7, A does not intersect any other
connected component of A3. The performance proof is similar to the analysis of the greedy
algorithm for rectangulation, see Theorem 10 in [GLN01].

1.5. AN APPROXIMATION ALGORITHM 35

ApproxMMN(P)

Phase 0: Neighbors and generating set
for each p ∈ P and t ∈ {1, 2, 3, 4} do

compute p.xnbor[t] and p.ynbor[t]
compute Z = Zver ∪ Zhor ∪ Zquad.

Phase I: Compute N1

compute odd MVC Cver and MHC Chor

compute set S of additional segments
N1 ← Cver ∪ Chor ∪ S, N2 ← ∅, N3 ← ∅

Phase II: Compute N2

compute A3

for each connected component A of A3 do
N2 ← N2 ∪ (∂A \

⋃
N1)

if qA 6∈
⋃

N1 then
N2 ← N2 ∪ {sA}

Phase III: Compute N3

for each connected component A of A3 do
N3 ← N3 ∪ Bridge(A)

return N = N1 ∪N2 ∪N3

Figure 1.10: ApproxMMN(P)

Bridge
(
A = (qA, p1, . . . , pm)

)
for i = 1 to m− 1 do

compute αi and βi

return SubBridge
(
1,m, 0, 0

)
SubBridge

(
k, l, xoff , yoff

)
Acurr = (qA + (xoff , yoff), pk, . . . , pl)
if l − k < 2 return ∅
Λ =

{
j ∈ {k, . . . , l − 1} : αj − xoff 6 βj − yoff

}
i = maxΛ ∪ {k}
if i < l − 1 and αi − xoff 6 βi+1 − yoff

then i = i + 1
B = ∅
if i > 1 then

B = B ∪ {ai−1 ∩Acurr}
if i < l − 1 then

B = B ∪ {bi+1 ∩Acurr}
xnew = xpi+1 − xqA

ynew = ypi − yqA

return B ∪ SubBridge(l, i− 1, xoff , ynew)
∪ SubBridge(i + 2, l, xnew, yoff)

Figure 1.11: Bridge

36 CHAPTER 1. MANHATTAN NETWORKS

p1

p3

p2

p4 p5

p0

A
qA

qA

cA

cA

A

RA

RA

vA = q
wA

vA

wA

qA

p1

pi

pi+1
ai−1

bi+1

xoff

yoff Aoff

Aright

pm

Atop

p′i

Figure 1.12: Notation: Aquad(q, 1) shaded, ∆(q, 1)
with dotted boundary, and δ(q, 1) = A∪A′ with dark
shading.

Figure 1.13: Notation for al-
gorithm Bridge.

Let i be the index determined in the first call to algorithm SubBridge, see Figure 1.11.
If i > 1, let Atop be the part of A properly above ai−1, otherwise let Atop = ∅. If i < m− 1,
let Aright be the part of A properly to the right of bi+1, otherwise let Aright = ∅. Now let
Aoff = A \ (Atop ∪Aright). Note that ai−1 ∪ bi+1 ⊂ Aoff .

By induction we can assume that |B(Atop)| 6 2|Nopt ∩ Atop| and |B(Aright)| 6 2|Nopt ∩
Aright| . Thus, we are done if we can show that αi−1 +βi+1 6 2|Nopt ∩Aoff | (*). The network
Nopt has to contain segments in Aoff in order to satisfy

{
(pi, q), (pi+1, q)

}
, more precisely

|Nopt∩Aoff | > min{αi, βi, αi−1+βi+1}. Obviously (*) holds if Nopt contains segments of length
at least αi−1 + βi+1 in Aoff . Therefore, it remains to show that αi−1 + βi+1 6 2 min{αi, βi}.
We make a case distinction depending on how i was derived. If Λ = ∅, then i = 1, α1 > β1 and
Atop = ∅. In this case only b2 is added to B and β2 < min{α1, β1} = β1. If i′ = maxΛ = m−1,
an analogous argument holds. Next we analyze the case i′ < m − 1 and αi′ > βi′+1, where
i is set to i′. This yields that βi+1 < αi and thus αi−1 + βi+1 < 2αi. On the other hand,
by the definition of Λ, we have αi ≤ βi. Hence 2αi ≤ 2 min{αi, βi}. It remains to analyze
the case i′ < m − 1 and αi′ ≤ βi′+1, where i is set to i′ + 1. This yields αi−1 6 βi and thus
αi−1 + βi+1 < 2βi. On the other hand, by the definition of Λ, we now have αi > βi. Hence
2βi ≤ 2 min{αi, βi}. ♣

We conclude this section by analyzing the running time of ApproxMMN.

Theorem 1.1 ApproxMMN runs in O(n log n) time and uses O(n) space.

Proof. Each of the four phases of our algorithm takes O(n log n) time: for phase 0 refer to
Lemma 1.2, for phase I to Lemmas 1.3 and 1.6, for phase II to Lemma 1.8 and for phase III
to Theorem 1.9. ApproxMMN outputs O(n) line segments. ♣

1.6 The approximation factor

As desired we can now bound the length of N in A12 and A3 separately. Theorem 1.9 and
Lemma 1.7 directly imply that |N ∩ A3| = |N3| 6 2|Nopt ∩ A3|. Note that by |Nopt ∩ A3| we
actually mean |{s∩A3 : s ∈ Nopt}|. It remains to show that |N ∩A12| = |N1∪N2| is bounded
by 3|Nopt ∩ A12|.

Recall that by Lemmas 1.1 and 1.3, |N1| 6 |Nopt| + H + W . Since the segments of Nopt

that were used to derive the estimation of Lemma 1.1 lie in Aver ∪ Ahor ⊂ A12, even the

1.6. THE APPROXIMATION FACTOR 37

stronger bound |N1| 6 |Nopt ∩ A12| + H + W holds. It remains to analyze the length of N2

segments. Let Nver
2 (Nhor

2) denote the set of all vertical (horizontal) segments in N2. We will
compare the length of Nver

2 to the length of Cver and the length of Nhor
2 to the length of Chor.

Lemma 1.12 will yield the desired length bounds. In the following we show how the length
bound for Nver

2 is obtained, this is the more complicated case as the connecting segments are
vertical. First, we need to distinct the connecting segments and all other segments of N2.
We call the non-connecting segments in N2 boundary segments as they lie on ∂A3. Due to
Lemma 1.8, segments in Nver

2 and segments in Cver intersect at most in segment endpoints.
Thus, a horizontal line ` with `∩P = ∅ does not contain any point that lies at the same time in⋃
Cver and in

⋃
Nver

2 . We restrict ourselves to such lines, this makes no difference in terms of
overall length as we exclude only a finite number of lines. In order to obtain Lemma 1.12, we
will characterize the sequences that are obtained by the intersection of such a line ` with cover
and boundary segments and cover and connecting segments, see Lemma 1.10 and Lemma 1.11,
respectively.

Lemma 1.10 Let ` be a horizontal line with ` ∩ P = ∅ and ` ∩ BBox(P) 6= ∅. Consider the
sequence of boundary and cover segments intersected by `. Then

(i) No more than two boundary segments are consecutive.

(ii) The left- and the rightmost segments are cover segments.

Proof. We show that each boundary segment s is (directly) preceeded or succeeded by a cover
segment. This implies immediately (i). The kind of cover segment (predecessor or successor)
that is assigned to a boundary segment shows that no boundary segments can be left- or
rightmost and thus (ii) follows.

We show the above statement for boundary segments that lie on the boundary of a con-
nected component A of A3. W.l.o.g. we assume that A is part of a region of type δ(q, 1). Let
p1, . . . , pm be the input points on ∂A ordered according to x-distance from q. As earlier, let
vA = p1.ynbor[3] and let wA be the horizontal successor of vA. Let R denote the rectangle in
Rver defined by the point q and its vertical successor p0, see Figure 1.14. Let p` = s ∩ ` and
let y` be the y-coordinate of `. Note that p` ∈

⋃
Nver

2 and thus p` /∈
⋃
Cver. There are two

cases for the type of s.
First, s could be the boundary segment to the left of A. In this case s lies on the right

vertical edge of R. Let q` = (xq, y`) be the point opposite of p` on the left vertical edge of
R. Then q` ∈

⋃
Cver since R ∈ Rver and p` /∈

⋃
Cver. Due to int(R) ⊂ int(A12), no boundary

segments intersects the relative interior of Seg[p`, q`], and thus p` is preceeded by q` ∈
⋃
Cver

on `.
Second, s could be a vertical “staircase segment” to the right of A. In this case we show

that s is succeeded by a segment in Cver. There are two subcases: either s is the left edge
of BBox(pi, pi+1) for some i ∈ {1, . . . ,m− 1} or the left edge of BBox(pm, wA). For the first
subcase let β denote BBox(pi, pi+1). We show that ` intersects a vertical cover segment in
β. At the same time we show that β ∩ A3 = ∅, and hence there is no boundary segment
in the interior of β. This is done by characterizing the point pairs (p′, q′) ∈ Zquad with
BBox(p′, q′)∩ int(β) 6= ∅ and showing that the connected component of A3 that is incident to
p′ does not intersect β. Let σ and τ be the vertical and horizontal strips, respectively, that are
induced by β, see Figure 1.14. The strip τ does not contain any input point to the left of β
since this would contradict pi and pi+1 lying in the same connected component of δ(q, 1). The

38 CHAPTER 1. MANHATTAN NETWORKS

strip σ does not contain any input point below β since this would contradict (pi+1, q) ∈ Zquad.
Let β′ be β minus its right and top edge. There is no input point in β′, otherwise there would
be a point p ∈ β′ with (p, q) ∈ Zquad contradicting pi and pi+1 being consecutive. Let r be the
rightmost input point on the top edge of β and let t be the topmost input point on the right
edge of β. (Possibly pi = r and pi+1 = t.) Since there is a point r′ ∈ Q(r, 4) with (r′, r) ∈ Zhor

and a point t′ ∈ Q(t, 2) with (t′, t) ∈ Zver, we must have that q′ = t and p′ ∈ Q(q′, 2), otherwise
BBox(p′, q′) would not intersect int(β). Observe that the rectangle BBox(r, r′) ∈ Rhor splits
BBox(p′, q′) into two connected components. However, the component incident to p′ does not
intersect int(β), and thus β ∩A3 = ∅. Since BBox(t, t′) ∈ Rver and yt′ ≥ ypi , it is clear that `
intersects a vertical cover segment in β, either the one that is induced by the non-degenerate
rectangle BBox(t, t′) if y` > yt or by the degenerate rectangle BBox(pi+1, t) itself if y` < yt.

Last, we examine the subcase that ` intersects β = BBox(pm, wA). We have to proceed
differently as we lose the property that no input point lies in the vertical strip below β.
Consider b = pm.xnbor[4] (allowing b = wA). We assume w.l.o.g. ypm > yb otherwise let
b = b.xnbor[4] until this is the case. Now, b could lie in int(β), but only if there is a point b′

with xb′ = xb and yb′ < ywA otherwise there would be a point p ∈ int(β) with (p, q) ∈ Zquad.
We discard this case for a moment and assume that already yb < ywA holds. Now, there is
a point p′ ∈ Q(b, 2) with (p′, b) ∈ Zver. By the construction, it is clear that yp′ > ypm and
thus the vertical line through b splits β into two connected components. For the component
β′ incident to pm we can use the same argument as above to show that β′ ∩ A3 = ∅ since
the vertical strip below β′ does not contain any input points by construction. Hence, s is
succeeded by a vertical cover segment in BBox(p′, b). Now, back to the discarded case: if
y` < yb, s is succeeded by the degenerate rectangle BBox(b, b′), otherwise the same argument
holds with p′ ∈ Q(b, 2) and (p′, b) ∈ Zver. ♣

For the following characterization of connecting segments note that such segments lie only
in non-degenerate rectangles of Rhor.

Lemma 1.11 Let ` be a horizontal line that intersects the interior of a rectangle R` ∈ Rhor.
Consider the sequence of connecting and cover segments in R`. Then

(i) No connecting segment lies on a vertical edge of R`.

(ii) No more than two connecting segments are consecutive.

(iii) At least one of the two leftmost segments is a cover segment.

(iv) At least one of the two rightmost segments is a cover segment.

(v) The left- or rightmost segment is a cover segment.

Proof. In order to show (i), we show that no connecting segment is incident to an input
point. By construction, each connecting segment sA = Seg[qA, cA] lies on a vertical edge
of a rectangle R = BBox(q, p0) ∈ Rver and in a rectangle RA = BBox(vA, wA) ∈ Rhor. By
construction must R be non-degenerate, otherwise qA ∈

⋃
Cver. Thus, cA 6= q. Clearly qA 6= q.

Now {cA, qA} ∩P \ {q} 6= ∅ would contradict (p, q) ∈ Zquad for any point p ∈ ∂A∩P . Hence,
sA is not incident to an input point.

Now, since a connecting segment sA is not in Cver and lies on a vertical edge of a rectangle
R ∈ Rver it is pre- or succeeded by the cover segment on the opposite edge of R. This directly
shows (ii), (iii) and (iv).

1.6. THE APPROXIMATION FACTOR 39

σp0

pi

pi+1

q

τA

qA

p1

pm

RA

R

β

vA

wA

r

t
r′

t′

p′

Figure 1.14: The area int(τ ∩ β) does not
intersect any boundary segment, but a seg-
ment in Cver.

w

qv

p

s
A

R`

R

Figure 1.15: An impossible constellation:
(w, p) ∈ Zhor excludes (p, q) ∈ Zquad.

qA

qA′

s s′
v

w

R R′

A

A′

Figure 1.16: Not both s and s′ lie in N2.

Our proof for (v) is by contradiction: we assume that the leftmost segment s and the
rightmost segment s′ in R` are connecting segments. Let R` = BBox(v, w). Let w.l.o.g. v
be the lower left point and w be the upper right point of R`, see Figure 1.15. Let A and A′

be the connected components of A3 with s = sA and s′ = sA′ . Note that RA = RA′ = R`.
Let R and R′ be the rectangles in Rver whose vertical edges contain s and s′, respectively.
Clearly s must lie on the left edge of R and s′ on the right edge of R′. Thus, A must be a
region of type δ(q, 2) or δ(q, 3). First, assume A ⊆ δ(q, 2) for some q ∈ P . Then would A lie
above R and q below R, see Figure 1.15. However, this is impossible. Let p be the leftmost
point in P (q, t) ∩ ∂A. Then p has a Zhor partner in Q(p, 4) which contradicts (p, q) being in
Zquad. Thus, A ⊆ δ(q, 3) and analogously A′ ⊆ δ(q′, 1) for some q′ ∈ P , see Figure 1.16. Now,
the Manhattan v–w path in N1 contains at least one of the corner points qA or qA′ . This
contradicts s and s′ both being connecting segments. ♣

Combining Lemma 1.10 and Lemma 1.11 yields:

Lemma 1.12 |Nver
2 | 6 2|Cver| −H and |Nhor

2 | 6 2|Chor| −W .

Proof. For a horizontal line ` with `∩P = ∅ we want to compare the numbers #Nver
2 and #Cver

of segments in Nver
2 and Cver intersected by `, respectively. If we show that #Nver

2 6 2#Cver−1,
|Nver

2 | 6 2|Cver| − H follows. (Sweep BBox(P) from bottom to top. The at most n lines
that we have to exclude draw no distinction in terms of length.) It remains to show that
#Nver

2 6 2#Cver − 1. Observe that due to Lemma 1.11 (i), ` intersects connecting segments
at most within the interior of a rectangle in Rhor. On the other hand, due to the definition of
A3, ` does not intersect any boundary segments within the interior of such a rectangle. We
investigate three cases.

First, consider the case that ` intersects no connecting segment. Thus, only cover and
boundary segments are intersected. By Lemma 1.10 at most two boundary segments are
consecutive and both the left- and rightmost intersected segments are cover segments. By a
simple counting argument, this even yields #Nver

2 6 2#Cver − 2.
Second, consider the case that ` intersects no boundary segments. Then, by Lemma 1.11 (ii)

and (v), at most two connecting segments are consecutive and the left- or rightmost segment
is a cover segment. Now, further using Lemma 1.11 (iii) and (iv) yields #Nver

2 6 2#Cver − 1
as desired.

40 CHAPTER 1. MANHATTAN NETWORKS

q

wA

p0

qA

sA

A

(a) Network computed by ApproxMMN.

q

wA

p0

qA

sA

(b) An MMN of the same point set.

Figure 1.17: A bad example.

Third, consider the case that ` intersects both boundary and connecting segments. Lem-
mas 1.10 (ii) and 1.11 (v) yield that the left- or rightmost intersected segment is a cover
segment. Thus if in the sequence of segments intersected by ` at most two segments in Nver

2

are consecutive, we are in the same situation as in the second case. Hence #Nver
2 6 2#Cver−1.

However, there is a case in which more than two Nver
2 segments are consecutive: two

consecutive boundary segments are succeeded (or preceeded) by a rectangle R ∈ Rhor. Due to
Lemma 1.11 (iii) and (iv) at most one of the following two segments within R is a connecting
segment. Hence, no more than three segments in Nver

2 are consecutive. If there are three
consecutive segments in Nver

2 , then one of them is a connecting segment that is left- or
rightmost in R. W.l.o.g. we assume that the connecting segment is leftmost in R. Then by
Lemma 1.11 (v) the rightmost segment in R is a cover segment. From this we deduce two
things: (a) since ` intersects at most one rectangle in Rhor, three consecutive segments in
Nver

2 occur at most once. (b) If there are three such segments, then by Lemma 1.10 (ii) both
the left- and rightmost segments intersected by ` are cover segments. Hence, we again have
#Nver

2 6 2#Cver − 1.
To bound the length of Nhor

2 segments is easier since connecting segments are vertical. An
analogous, simpler argument holds. ♣

This finally settles the approximation factor of ApproxMMN.

Theorem 1.2 |N | 6 3|Nopt|.

Proof. By Lemma 1.12 and |Cver∪Chor| 6 |Nopt∩A12| we have |N2| 6 2|Nopt∩A12|−H−W .
Together with |N1| 6 |Nopt| + H + W this yields |N1 ∪ N2|/|Nopt ∩ A12| 6 3. Theorem 1.9
and Lemma 1.7 show that |N3|/|Nopt ∩A3| 6 2. Then, the disjointness of A12 and A3 yields
|N |/|Nopt| ≤ max{|N1 ∪N2|/|Nopt ∩ A12|, |N3|/|Nopt ∩ A3|} ≤ 3. ♣

In Figure 1.17 a network computed by ApproxMMN and an MMN of the same point set
are depicted. The example indicates that there are point sets P for which the ratio |N |/|Nopt|
is arbitrarily close to 3, where N is the Manhattan network that ApproxMMN computes
for P . The reason for the particularly bad performance of ApproxMMN on this point set
is that neither the wA–q path nor the p0–q path (bold solid line segments) contain the point
qA. This forces ApproxMMN to use the connecting segment sA.

However, the example of Figure 1.17 is rather artificial. We were sure that, like most
approximation algorithms, ApproxMMN performs significantly better in practice. In Sec-
tion 1.8 we evaluate how ApproxMMN behaves on randomly generated point sets. To be
able to compare the network computed by ApproxMMN with an MMN, we established a
mixed-integer programming (MIP) formulation which is detailed in the next section.

1.7. MIXED-INTEGER PROGRAM 41

1.7 Mixed-integer program

In this section we give a MIP formulation of the MMN problem that first appeared in [1]. It
is based on network flows. For each pair of points (p, q) in Z we guarantee the existence of a
Manhattan p–q path by requiring an integer flow from p to q.

We need some notation: For the set P of n input points with p1 = (x1, y1), . . . , pn =
(xn, yn) let x1 < · · · < xu and y1 < · · · < yw be the ascending sequences of x- and y-
coordinates of the input points, respectively. The grid Γ induced by P consists of the grid
points (xi, yj) with i = 1, . . . , u and j = 1, . . . , w. In this section we assume that all pairs
(p, q) ∈ Z are directed such that xp ≤ xq holds. Now, for each pair (p, q) ∈ Z let V (p, q) =
Γ ∩ BBox(p, q) and let A(p, q) be the set of arcs between horizontally or vertically adjacent
grid points in V (p, q). Horizontal arcs are always directed from left to right, vertical arcs
point upwards if yp < yq and downwards otherwise. Our formulation is based on the grid
graph GP (V,A), where V =

⋃
(p,q)∈Z V (p, q) and A =

⋃
(p,q)∈Z A(p, q). Let E = {{g, g′} |

(g, g′) ∈ A or (g′, g) ∈ A} be the set of undirected edges.
For each pair (p, q) ∈ Z we enforce the existence of a p–q Manhattan path by a flow model

as follows. We introduce a 0–1 variable f(p, q, g, g′) for each arc (g, g′) in A(p, q), which
encodes the size of the flow along arc (g, g′) from p to q. For each grid point g in V (p, q) we
introduce the following constraint:

∑
(g,g′)∈A(p,q)

f(p, q, g, g′) −
∑

(g′,g)∈A(p,q)

f(p, q, g′, g) =


+1 if g = p,

−1 if g = q,

0 else.

(1.1)

This constraint enforces flow conservation at point g, as the first sum represents the
total outflow and the second sum represents the total inflow at g. In total, there are O(n3)
constraints and variables of this type, since |Z| ∈ O(n) and |V (p, q)|, |A(p, q)| ∈ O(|Γ|) =
O(n2). Next we introduce a continuous variable F (g, g′) for each edge {g, g′} in E. This
variable will in fact be forced to take a 0–1 value by the objective function and the following
constraints. The MMN that we want to compute will consist of all grid edges {g, g′} with
F (g, g′) = 1. We now add a constraint for each {g, g′} in E and each (p, q) ∈ Z with
gg′ ⊆ BBox(p, q):

F (g, g′) ≥

{
f(p, q, g, g′) if (g, g′) ∈ A(p, q),
f(p, q, g′, g) if (g′, g) ∈ A(p, q).

(1.2)

This constraint forces F (g, g′) to be 1 if the arc (g, g′) or the arc (g′, g) carries flow in any
A(p, q). Clearly we have O(n2) new variables, and accordingly O(n3) new constraints, again
since |Z| ∈ O(n). Our objective function expresses the total length of the selected grid edges:

min
∑

{g,g′}∈E

|gg′| · F (g, g′), (1.3)

where |gg′| is the Euclidean distance of g and g′. The objective function drives each F (g, g′)
to be as small as possible. Thus, Constraint 1.2 forces F (g, g′) to be 0 or 1.

In total this MIP formulation uses O(n3) variables and constraints. By treating pairs in
Zquad more carefully, a reduction to O(n2) is possible. We implemented exact solvers based on
both formulations, but it turned out that the variant with a quadratic number of constraints

42 CHAPTER 1. MANHATTAN NETWORKS

(0, 0) (4, 0) (11, 0)

(3, 6) (5, 4)

(0, 9) (11, 9)

(a) The result of the LP solver. (b) The result of the MIP solver (an MMN).

Figure 1.18: A gap instance.

and variables was slower than the one with a cubic number. Therefore, we omit the details
of the quadratic formulation here.

It is not hard to see that the MIP formulation (1.1)–(1.3) always yields an MMN:

Theorem 1.3 Let P be a set of points and let A and E be defined as above. Let F : E → R+
0

and f : Z × A → {0, 1} be functions that fulfill (1.1) & (1.2) and minimize (1.3). Then the
set of line segments {gg′ | {g, g′} ∈ E, F (g, g′) ≥ 1} is an MMN of P .

Due to our objective function (1.3), Equation (1.1) can be replaced by an inequality (with
direction ≥). If the resulting constraint matrix was totally unimodular (i.e. every square
submatrix has determinant in {−1, 0,+1}), every vertex of the solution polyhedron would
be integral. This would mean that the relaxation of the MIP formulation yielded an MMN
and thus, the MMN problem would be solvable in polynomial time. Unfortunately it turned
out that this is not the case. There are instances with fractional vertices that minimize
our objective function. There are even instances for which the objective value of the LP
is strictly less than that of the MIP. Figures 1.18a and 1.18b show such an instance with
optimal fractional and integral solution, respectively. The dotted segments in Figure 1.18a
have flow 1/2. The value of the objective function is 58.5, while the length of an MMN for
this point set is 60, see Figure 1.18b. For a while we hoped that we could at least prove
half-integrality of the solution polyhedron. Then, rounding the LP solution would give a very
simple polynomial-time factor-2 approximation. However, it was not obvious to us how to
prove half-integrality of the solution polyhedron.

1.8 Experiments

To show that our algorithm performs better on average instances, we implemented Approx-
MMN and the MIP formulation described in Section 1.7. Then we generated two classes
of random point sets. We used the MIP solver Xpress-Optimizer (2003) [Das03] by Dash
Optimization with the C++ interface of the BCL library to compute optimal solutions at least
for small instances.

1.8.1 Experimental set-up

We implemented ApproxMMN in C++ using the compiler gcc-3.3. The two classes of random
point sets, Square and HalfCircle, were generated as follows.

1.8. EXPERIMENTS 43

Figure 1.19: An MMN for a Square-01 in-
stance with 15 points.

Figure 1.20: An MMN for a HalfCircle-02
instance with 10 points.

Square-k instances were generated by drawing n different points with uniform distribu-
tion from a kn × kn integer grid. We wanted to see the effects of having more (k small) or
less (k large) points with the same x- or y-coordinate. If a pair of points shares a coordinate,
the Manhattan path connecting them is uniquely determined. We used k ∈ {1, 2, 5, 10}. For
an example of a Square-01 instance see Figure 1.19.

HalfCircle-k instances consist of a point p1 at the origin o and n−1 points on the upper
half of the unit circle. The points are distributed as follows. The angular range I = [0, π/4]
is split into k subranges I1, . . . , Ik of equal length. We used k ∈ {1, 2, 5, 10, 99}. Then n − 1
random numbers r2, . . . , rn are drawn from I. If the number ri falls into a subinterval of even
index, it is mapped to the point pi = (sin ri, cos ri), otherwise to pi = (− sin ri, cos ri). The
resulting points pi (except for the topmost point in each quadrant and the“bottommost”point
in each subinterval) form pairs (pi, p1) that lie in Zquad. This makes HalfCircle instances
very different from Square instances where usually only very few point pairs belong to Zquad.
For an example of a HalfCircle-02 instance, see Figure 1.20.

We generated instances of the above types and solved them with ApproxMMN and with
the Xpress-Optimizer using the MIP formulation. The results of our experiments can be found
in Figures 1.21–1.23. In all graphs the sample size, i.e. the number of points per instance, is
shown on the x-axis. For each sample size we generated 50 instances and averaged the results
over those. In Figure 1.21a the y-axis shows the performance ratio of ApproxMMN, i.e.
|N |/|Nopt|. In Figures 1.21b and 1.22 we compared the performance ratios of ApproxMMN,
a slightly modified variant of ApproxMMN, and the O(n3)-time factor-4 approximation
algorithm of Gudmundsson et al. [GLN01]. In the graphs we skipped the factor-8 approxima-
tion algorithm [GLN01] because its results were only slightly worse than those of the factor-4
approximation: the difference was below 5%.

We also tested the performance of the following simple method to which we will refer
as LPsolver+rounding. Recall that in the MIP formulation described in Section 1.7, a grid
segment gg′ is part of the solution if f(p, q, g, g′) = 1 for some (p, q) in Z. Now we relax
all these 0–1 variables of type f(p, q, g, g′) and solve the resulting linear program (LP). Our
method LPsolver+rounding puts the grid segment gg′ into the solution if there is some (p, q)
in Z with f(p, q, g, g′) > 0. By the construction of the MIP it is clear that this network is a
Manhattan network.

44 CHAPTER 1. MANHATTAN NETWORKS

1

1
.1

1
.2

1
.3

1
.4

1
.5

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

H
a
lfC

ircle-0
1

3

3

3
3
3
3
3
3
3

3

H
a
lfC

ircle-1
0

+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
S
q
u
a
re-0

1

2

2

2
2

2
2

2
2

2
2

2

S
q
u
a
re-1

0

×

×

×

×

×

×
×

×
×

×

×

(a
)

A
p
p
r
o
x
M

M
N

o
n

va
rio

u
s

in
sta

n
ce

cla
sses

1

1
.1

1
.2

1
.3

1
.4

1
.5

5
0

1
0
0

1
5
0

2
0
0

2
5
0

F
a
cto

r4
-G

L
N

3

3
3

3
3

3
3

3
3

3 3

A
p
p
ro

x
M

M
N

+

+

+
+

+
+

+
+

+
+ +

A
p
p
ro

x
M

M
N

-v
a
r

2

2

2
2

2
2

2
2

2
2 2

L
P

so
lv

er+
ro

u
n
d
in

g

×
×

×
×

×
×

×
×

×
×

×

(b
)

V
a
rio

u
s

a
lg

o
rith

m
s

o
n

S
q
u
a
r
e
-1

0
in

sta
n
ces

F
igu

re
1.21:

P
erform

ance
of

various
algorithm

s.

1
.3

1
.3

5

1
.4

1
.4

5

1
.5

1
.5

5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

F
a
cto

r4
-G

L
N

3

3

3

3

3

3

3
3

3

3

A
p
p
ro

x
M

M
N

+

+

+

+
+

+
+

+
+

+
A

p
p
ro

x
M

M
N

-v
a
r

2
2

2
2

2
2

2
2

2

2

(a
)

H
a
l
f
C

ir
c
l
e
-0

1
in

sta
n
ces

1
.1

1
.2

1
.3

1
.4

1
.5

1
.6

1
.7

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

F
a
cto

r4
-G

L
N

3

3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3

A
p
p
ro

x
M

M
N

+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

+
A

p
p
ro

x
M

M
N

-v
a
r

2

2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2

(b
)

H
a
l
f
C

ir
c
l
e
-1

0
in

sta
n
ces

F
igu

re
1.22:

P
erform

ance
of

various
algorithm

s
on

H
a
l
f
C

ir
c
l
e

instances.

1.8. EXPERIMENTS 45

In Figure 1.23 the y-axis measures the ratio between the running times of the corre-
sponding algorithms over the running time of ApproxMMN. The asymptotic runtime of our
implementation is Θ(n2), the CPU time consumption was measured on an Intel Xeon machine
with 2.6 GHz and 2 GB RAM under the operating system Linux-2.4.20. The Xpress-Optimizer
was run on the same machine.

1.8.2 Results

The MIP solver required an unacceptable amount of time (i.e. at least several hours) on
HalfCircle-01 instances of more than 50 points and on Square-01 instances of more than
250 points. The performance ratio of ApproxMMN seems to approach 1.1–1.2 on Square
instances of increasing size, and 1.3–1.5 on HalfCircle instances, see Figure 1.21a. On
HalfCircle instances we observed that with an increasing number k of subranges the per-
formance of ApproxMMN degrades. The reason for this is that each subrange induces a
connected component of type δ(o, 1) or δ(o, 2). Thus, the length of the network N2 increases
with an increasing number of subranges. Indeed, the length of N2 seems to be the bottleneck
of our algorithm.

To reduce this effect we implemented a slightly modified variant of ApproxMMN, to
which we will refer as ApproxMMN-var. This variant changes only the networks N2 and
N3. We explain the approach exemplarily for a connected component A of type δ(q, 1). Let
again p1, . . . , pm be the input points on ∂A ordered according to x-distance from the input
point q in the lower left corner of A. Let RA be the rectangle in Rhor that touches the bottom
edge of A, see Figure 1.14. Let vA and wA be the input points that span RA.

In phase II ApproxMMN-var adds only the segments Seg[p1, (xp1 , ywA)] and
Seg[pm, (xp1 , ypm)] instead of the whole boundary of A to N2. Accordingly, the connecting
segment is now Seg[(xp1 , ywa), (xp1 , yvA)]. As before, the connecting segment is inserted only
if necessary. In phase III, a similar algorithm to algorithm Bridge is used to establish con-
nections from p2, . . . , pm−1 to (xp1 , ywa). Here we use the thickest-first algorithm introduced
in [GLN01]. Now the parts of ∂A that represent the staircase between p1 and pm are only
inserted if the thickest-first algorithm requires this. However, the segments that lie on ∂A are
now inserted in N3, and there is the rub. We were not able to prove |N3 ∩A3| 6 2|Nopt ∩A3|
for ApproxMMN-var.

However, as we had hoped, the performance of ApproxMMN-var was better than that
of ApproxMMN. Figure 1.21b shows the performance of ApproxMMN, ApproxMMN-var,
the factor-4 approximation algorithm by Gudmundsson et al. [GLN01] and LPsolver+rounding.
Exemplarily for the Square instances, we included the graphs for the Square-10 instances.
The behavior of the algorithms was similar on the other Square instances, with slightly
better results. On Square instances ApproxMMN performed only slightly worse than Ap-
proxMMN-var. This is different on HalfCircle instances as Figure 1.22 shows. Especially
with an increasing number of subranges the influence of N2 on the total length of the network
increases. The performance of LPsolver+rounding was amazingly good. The worst perfor-
mance ratio of this method was 1.078. It occurred on a Square-10 instance with 25 points.
Moreover, LPsolver+rounding solved all Circle instances optimally.

The CPU time of ApproxMMN depends neither on the value of k nor on the instance
type. Solving instances with 3000 points took only about 5–6 seconds. In contrast to that,
the runtime of the exact solver heavily depended on the value of k and even more on the
instance type. Square instances were solved the faster the smaller k, because then the

46 CHAPTER 1. MANHATTAN NETWORKS

probability for two points having the same x- or y-coordinate is higher, which predetermines
a larger number of segments to be in the network. The average CPU time of the exact
solver on Square-10 instances with 250 points was about 170 seconds, compared to 0.1–0.2
seconds for ApproxMMN. HalfCircle instances were solved slower the smaller k, because
then more grid points and grid segments lie in more rectangles of Rquad, which means that
the MIP formulation has more constraints and variables. Generally Square instances were
solved much faster than HalfCircle instances. This is due to the number of Zquad pairs,
which is significant higher in HalfCircle instances. The MIP formulation requires O(n2)
variables and constraints for a point pair in Zquad, while it requires only O(n) variables and
constraints for point pairs in Zver ∪Zhor. (There are Zquad pairs that require Θ(n2) variables
and constraints.)

We wanted to see how fast the MIP solver becomes if it only has to compute a solution as
good as the one computed by ApproxMMN. The Xpress-Optimizer allows to specify a bound
that stops the branch-and-bound process as soon as the target function is at least as good as
the bound. We refer to this version of the MIP solver as MIPsolver-approx and to the original
exact version as MIPsolver-opt. The results are shown in Figure 1.23, where the average ratio
between the running times of MIPsolver-approx, MIPsolver-opt and LPsolver+rounding over
the running time of ApproxMMN is shown. For Square-10 instances, MIPsolver-approx
is not much faster than MIPsolver-opt. This changes with decreasing k: for Square-01 in-
stances MIPsolver-approx takes only about half the time of MIPsolver-opt. This is due to
the fact that the smaller k the more segments in a Manhattan network are predetermined.
The method LPsolver+rounding turned out to run only slightly faster than MIPsolver-opt.
HalfCircle instances were solved relatively fast by MIPsolver-approx. Solving HalfCir-
cle-01 instances with 45 points took MIPsolver-opt on average 2200 seconds CPU time as
compared to 1.2 seconds for MIPsolver-approx (and 0.01 seconds for ApproxMMN).

0

200

400

600

800

1000

1200

1400

1600

1800

50 100 150 200 250

MIPsolver-opt

3
3

3

3

3
3

3 3

3

33

MIPsolver-approx

+ +
+

+

+
+

+

+

+

+

+
LPsolver+rounding

2
2

2

2

2

2

2

2

2

2

2

(a) Square-10 instances

0

50

100

150

200

250

300

10 15 20 25 30 35 40 45

MIPsolver-opt

3

3

3
3

MIPsolver-approx

+ + +
+

+
+

+

+

+
LPsolver+rounding

2

2

2

2

(b) HalfCircle-01 instances

Figure 1.23: Ratios of the running times of MIPsolver-opt, MIPsolver-approx, and LP-
solver+rounding over the running time of ApproxMMN.

Finally we compared the values of the objective function of the MIP and its LP relaxation.
We found out that there are only few instances where the relaxation yields a smaller value of
the objective function than the MIP. For an example of an instance with a gap between the
two values, see Figure 1.18a. We found gaps in only three Square-10 instances. Moreover, in
all of these cases the gap was very small, namely less than 0.011% of the value of the objective
function in the MIP formulation. In the example in Figure 1.18, which was constructed by

1.9. OPEN PROBLEMS 47

Figure 1.24: The Real Manhattan problem: a shortest path connecting two sites.

hand, the gap is 2.5%.
Note that the existence of a gap means that the face of the solution polyhedron with

maximum objective function value has only fractional corners, while the existence of a frac-
tional corner does not imply a gap. If, however, the LP solver finds such a fractional corner
and there is an integral corner, then our rounding scheme returns a non-optimal network.
We conjecture that there are only few point configurations that cause a gap and that these
configurations cannot occur in HalfCircle instances.

1.8.3 Conclusion

For time-critical applications and large instances clearly ApproxMMN or ApproxMMN-var
are the methods of choice. They solve instances with 3000 points within 5–6 seconds CPU
time. On average point sets the networks they compute are usually not more than 50% longer
than an MMN. Within a threshold of 100 seconds CPU time we were only able to compute
optimal networks of the following sizes: HalfCircle instances of at most 25 points and
Square instances of at most 175 points. The (polynomial-time!) method LPsolver+rounding
returns amazingly good results, but its running time is only slightly faster than the exact solver
based on our MIP formulation and thus we were only able to solve instances of the above size
with it.

1.9 Open problems

The main open question is the complexity status of the MMN problem. Until now there are
not even hints whether it is polynomially solvable, it is NP-hard, or has intermediate status. In
the latter cases it would be of interest to find out whether a polynomial-time approximation
scheme exists or whether the MMN problem cannot be approximated arbitrarily well. As
mentioned in the introduction Chepoi et al. [CNV05] recently gave a factor-2 approximation
algorithm that rounds the solution of a linear program with O(n3) variables and constraints.
It would be interesting to see whether it is possible to establish a fast factor-2 approximation
algorithm, say one that runs in O(n log n) time. In order to solve larger instances optimally,
it would be of interest to design a fixed-parameter algorithm. However, it is unclear to us
what to choose as parameter.

We conclude with two variants of the problem. The first variant is the real MMN problem
where apart from the point set an underlying rectilinear grid G is given, e.g. the streets of
Manhattan, on which the network has to lie. Again each pair of points must be connected
by a shortest possible rectilinear path and the length of the network is to be minimized.
However, the shortest rectilinear path connecting two points can now be longer than a usual

48 CHAPTER 1. MANHATTAN NETWORKS

Manhattan path, see Figure 1.24. The real MMN problem is at least as hard as the MMN
problem since G can be set to the grid induced by the input points.

Chepoi et al. [CNV05] suggest another variant of the MMN problem, the F -restricted
MMN problem. Given a point set P and a set F of pairs of points in P , find a network
of minimum length that connects the point pairs in F with Manhattan paths. This variant
also generalizes the MMN problem, which is an F -restricted MMN problem where F is a
generating set. The F -restricted MMN problem is NP-hard, since it also generalizes the
rectilinear Steiner arborescence problem, which is NP-hard [SS00]. In the rectilinear Steiner
arborescence problem only point sets P in the first quadrant are considered. The aim is to find
a rectilinear network of minimum length that connects all points in P to the origin o. This is
equivalent to solving the F -restricted MMN problem for P ′ = P ∪ {o} and F = {o} × P .

The Manhattan network problem and all its variants seem to be hard because it is not
possible to consider the problem locally. Two points that lie very far from each other affect
all the network segments that lie within the bounding box induced by the two points. This
is also the reason why it seems to be hopeless to apply dynamic programming. On the other
hand it also seems to be hard to come up with a hardness proof.

Acknowledgments

We would like to thank Hui Ma for implementing large parts of ApproxMMN, and Anita
Schöbel, Marc van Kreveld, Leon Peeters, Karin Höthker, Gautam Appa, Dorit Hochbaum,
Bettina Speckmann, and Raghavan Dhandapani for interesting discussions.

Chapter 2

Interference-minimal networks

Constructing intereference-minimal networks yields the second chapter of the constructing
part. As for the Manhattan networks the geometric aspect is already given by the input, the
location of n points in the plane. The restriction on the resulting networks here concerns the
type of network: we look for a spanning tree, a t-spanner for some additionally given t > 1
and a d-hop network for some additionally given d ∈ N. The optimization task is to find
networks of the above types that minimize the occuring interference.

The chapter is based on conference publication [3]: Marc Benkert, Joachim Gudmundsson,
Herman Haverkort and Alexander Wolff: “Constructing Interference-Minimal Networks”. A
full version will soon be published in the Internation Journal of Computational Geometry and
Application.

2.1 Introduction

Wireless ad-hoc networks consist of a number of wireless devices spread across a geographical
area. Each device has wireless communication capability, some level of intelligence for signal
processing and networking of the data, and a typically limited power source such as a small
battery.

We study networks that do not depend on dedicated base stations: in theory, all nodes
may communicate directly with each other. In practice however, this is often a bad idea: if
nodes that are far from each other would exchange signals directly, their signals may interfere
with the communication between other nodes within reach. This may cause errors, so that
messages have to be sent again. Communicating directly over large distances would also
require sending very strong signals, since the necessary strength depends at least quadratically
on the distance (in practice the dependency tends to be cubic or worse). Both issues could lead
to rapid depletion of the devices’ limited power sources. Therefore it is advisable to organize
communication between nodes such that direct communication is restricted to pairs of nodes
that can reach each other with relatively weak signals that will only disturb a small number
of other nodes. We model such a network as a graph G = (V,E), in which the vertices V
represent the positions of the mobile devices in the plane, and the links (or edges) E represent
the pairs of nodes that exchange signals directly. Communication between nodes that do not
exchange signals directly should be routed over other nodes on a path through that network.
According to Prakash [Pra99], the basic communication between direct neighbors becomes

49

50 CHAPTER 2. INTERFERENCE-MINIMAL NETWORKS

unacceptably problematic if the acknowledgement of a message is not sent on the same link
in opposite direction. Therefore we will assume that the links are undirected.

Our problem is therefore to find an undirected graph on a given set of nodes in the plane,
such that all nodes are connected with each other through the network (preferably over a short
path), interference problems are minimized, and direct neighbors in the network can reach each
other with signals of bounded transmission radius. We will focus on guaranteeing connectivity
and minimizing interference; bounding the transmission radius is an easy extension, which we
discuss in Section 2.4. Since wireless devices tend to move frequently, we need to be able to
construct networks with the desired properties fast.

The optimal network structure depends ultimately on the actual communication that takes
place. This is generally not known a priori. Therefore we aim to optimize a network property
that we believe to be a good indicator of the probability that interference problems will occur.
Assuming that each node can adjust the strength of each signal so that it can just reach the
intended receiver, such indicators may be:

sending-link-based interference of a link {u, v}: the number of nodes that are within
reach of the signals from the communication over a particular link {u, v} in the network
(proposed by Burkhart et al. [BvRWZ04], also studied by Moaveni-Nejad and Li [ML05])
– in other words, the number of nodes that are hindered when the link {u, v} is active.
This is the definition of interference we focus on in this chapter.

sending-node-based interference of a node u: the number of nodes that receive signals
transmitted by u (proposed by Moaveni-Nejad and Li [ML05]) – in other words, the
number of nodes that are hindered when u is active.

receiving-node-based interference of a node u: the number of nodes transmitting sig-
nals that reach u (proposed by Rickenbach et al. [vRSWZ05]) – that is, the number of
nodes that may prevent u from communicating effectively.

Previous results. To construct a network that connects all nodes and minimizes the max-
imum and total sending-link-based interference, we could run Prim’s minimum-spanning-tree
algorithm [Pri57] with a Fibonacci heap. Assuming that the interference for each feasible
link is given in advance, this takes O(m + n log n) time, where n is the number of nodes and
m is the number of eligible links. If all possible links are considered, we can compute their
interference values in O(n9/4 polylog n) time (see the proof of Lemma 2.3). This will then
dominate the total running time.

To make sure that nodes are connected by a relatively short path in the network, one
could construct a t-spanner on the given set of nodes. Burkhart et al. [BvRWZ04] presented
a first algorithm to construct a t-spanner for given t > 1 such that the maximum interference
of the edges in the spanner is minimized. It was later improved by Moaveni-Nejad and Li
in [ML05]. Assuming that the interference for each possible link is again given in advance, the
running time of their algorithm is O(n log n(m+n log n)). If all possible links are considered,
the running time is O(n3 log n).

The approach for sending-linked-based interference can be modified to optimize sending-
node-based interference by defining the interference of a link {u, v} to be the maximum of
the sending-node-based interferences of u and v. The maximum occurring interference of
a link will then be the maximum occurring node interference in the original sending-node-
based setting. Unfortunately, we cannot apply this modification to fit the receiving-node-

2.1. INTRODUCTION 51

based interference. With sending-link-based interference we can decide whether a link causes
too much interference independently of the other links that may be active. With receiving-
node-based interference this is not possible, so that completely different algorithms would
be needed. Rickenbach et al. [vRSWZ05] only give an approximation algorithm for the case
where all nodes are on a single line (the highway model).

Our results. We improve and extend the results of Burkhart et al. and Moaveni-Nejad and
Li in two ways.

First, apart from considering networks that are simply connected (spanning trees) and
networks with bounded dilation (t-spanners), we also consider networks with bounded link
diameter, that is, networks such that for every pair of nodes {u, v} there is a path from u
to v that consists of at most d links (or ‘hops’), where d is a parameter given as input to
the algorithm. Such d-hop networks are useful since much of the delay while sending signals
through a network is typically time spent by signals being processed in the nodes rather than
time spent by signals actually traveling.

Second, we remove the assumption that the interference of each possible link is given
in advance. For each of the three properties (connectivity, bounded dilation or bounded
link diameter), we present algorithms that decide whether the graph Gk with all links of
interference at most k has the desired property. The main idea is that we significantly restrict
the set of possible links for which we have to determine the interference, in such a way that we
can still decide correctly whether Gk has the desired property. To find the smallest k such that
there is a network with interference k and the desired property, we do a combined exponential
and binary search that calls the decision algorithm O(log k) times. The resulting algorithms
are output-sensitive: their running times depend on the interference of the resulting network.

Our algorithms work for sending-link-based and sending-node-based interference. We
present two models: the exact model and the estimation model. In the exact model, we
assume that the signal sent by a node u to a node v reaches exactly the nodes that are not
farther from u than v is. Our algorithms for this model are faster than the algorithm by
Moaveni-Nejad and Li [ML05] for k ∈ o(n). In the estimation model, we assume that it is
not realistic that the boundary of a signal’s reach is known precisely: for points w that are
slightly farther from u than v is, counting w as being disturbed by the signal sent from u to
v is as good a guess as not counting w as disturbed. It turns out that with this model, the
number of links for which we actually have to compute the interference can be reduced much
further, so that we get faster algorithms, especially for spanning trees with larger values of k.
Our results are listed in Table 2.1.

We proceed as following: in Section 2.2 we propose our output-sensitive algorithms for
the case of exact interference values, and examine their running times. In Section 2.3 we
introduce our model for estimations of link interference and describe one algorithm for each
of the network properties (connectivity, bounded dilation, and bounded link diameter). In
Section 2.4 we briefly discuss some generalizations of our algorithms: nodes with bounded
transmission radius and weighted nodes.

52 CHAPTER 2. INTERFERENCE-MINIMAL NETWORKS

exact model (expected) estimation model (determ.)

spanning tree min{n9/4 polylog n, nk2 + nk log n} n
ε2 (log n + 1

ε)

t-spanner n2 log k(k + log n) n2 log k(1
ε2 + log n)

d-hop network min{n9/4 polylog n, nk2}+ n2 log n log k n
ε2 (n log k + 1

ε)

Table 2.1: Running times of our algorithms to find a minimum-interference network with the required
property. The running times are given in O-notation, n is the number of nodes, k is the maximum
interference of any link in the resulting network, and ε specifies the relative inaccuracy with which
a signal’s reach and the dilation of a spanner are known. Worst-case running times for deterministic
algorithms for the exact model are slightly worse than the expected running times of the randomized
algorithms listed in the table. The listed running times for the estimation model are worst-case.

2.2 Computing exact-interference graphs

We are given a set V of n points in the plane in general position, that is, we assume that
no three input points lie on a straight line or on a circle1. Our aim is to establish a wireless
network that minimizes interference. First, we define interference. Let u, v be any two points
in V . If the edge (link) {u, v} is contained in a communication network, the range of u must
be at least |uv|. Hence, if u sends a signal to v this causes interferences within the closed
disk D(u, |uv|) that has center u and radius |uv|. The same holds for v. This leads to the
following definition that was first given by Burkhart et al. [BvRWZ04]. See also Figure 2.1.

Definition 2.1 ([BvRWZ04]) Let
(
V
2

)
denote the set of all pairs {u, v} ∈ V with u 6= v.

The sphere of an edge e = {u, v} is defined as S(e) := D(u, |uv|) ∪ D(v, |uv|). For any
edge e = {u, v} ∈

(
V
2

)
we define the interference of e by Int(e) :=

∣∣V ∩ S(e) \ {u, v}
∣∣. The

interference Int(G) of a graph G = (V,E) is defined by Int(G) := maxe∈E Int(e).

In this section, we will give algorithms to compute minimum-interference networks of three
types. The first type is a spanning tree T , the second type of network is, for an additionally
given t > 1, a t-spanner, and the third type is a d-hop network, for a given integer d > 1.

The main idea of the algorithms is the same. For given j > 0 let, in the following,
Gj = (V,Ej) denote the graph2 where Ej includes all edges e with Int(e) 6 j. Assume
that Ej can be computed by calling a subroutine ComputeEdgeSet with arguments V and j.
Exponential and binary search are used to determine the minimum value of k for which Gk

has the desired property P, see Algorithm 2.2. We first try upper = 0, and compute all edges
of G0. If G0 does not have the desired property, we continue with upper = 1 and then keep
doubling upper until Gupper has the desired property. We compute the interference values for
each of its edges, and continue with a binary search between lower = upper/2 and upper. In
each step we construct Gmiddle, the graph to be tested, by selecting the edges with interference
at most middle = 1

2(lower + upper) from Gupper, which has already been computed. Note

1None of the algorithms presented in this chapter explicitly requires the point set to be in general position,
however, some of the tools used assume general position, for example the concept of higher-order Delaunay
edges and the range searching data structures used in Section 2.2.1.

2If the sphere of an edge is defined as D(u, |uv|)∩D(v, |uv|) then Gj is the j-relative neighbourhood graph,
and if the sphere is the disk D((u + v)/2, |uv|/2) (shaded in Figure 2.1) then Gj is the j-Gabriel graph [JT92].

2.2. COMPUTING EXACT-INTERFERENCE GRAPHS 53

v

S(e)

u e

Figure 2.1: The sphere S(e) of e. Here Int(e) = 9.

MinInterferenceNetwork(V,P)

// exponential search
upper ← 1/4
repeat

upper ← 2 · upper
Eupper ← ComputeEdgeSet(V, bupperc)
Gupper ← (V,Eupper)

until FulfillsProperty(Gupper,P)
lower ← bupper/2c
// binary search
while upper > lower + 1 do

middle← 1
2(lower + upper)

Gmiddle ← (V, all edges in Eupper with interference at most middle)
if FulfillsProperty(Gmiddle,P) then

upper ← middle
else lower ← middle

return Gupper

Figure 2.2: The basic algorithm.

that in the binary search phase, the search interval boundaries lower and upper are always
even.

To get a spanning tree, we test with the property P = connectivity. After running
Algorithm MinInterferenceNetwork to find the minimum k for which Gk is connected,
we run a standard minimum spanning tree algorithm on Gk. The result is a tree T that
minimizes both maxe∈T Int(e) and

∑
e∈T Int(e) among all spanning trees. For the t-spanner

and the d-hop network, the test consists of determining the dilation or the link diameter of
the network. We do this with an all-pairs-shortest-paths computation.

Note that the only non-trivial steps in algorithm MinInterferenceNetwork are the
subroutines FulfillsProperty and ComputeEdgeSet. We first give details on how to implement
ComputeEdgeSet, that is, how to compute Ej and the interference values of the edges in Ej

efficiently for any j.

54 CHAPTER 2. INTERFERENCE-MINIMAL NETWORKS

2.2.1 Computing edge interferences

An edge {u, v} is an order-j Delaunay edge if there exists a circle through u and v that has
at most j points of V inside [GHvK02].

Lemma 2.1 All edges in Ej are order-j Delaunay edges.

Proof. Let e = {u, v} be an edge with Int(e) 6 j. Then by Definition 2.1, the sphere S(e)
contains at most j points other than u and v. The disk that has e as diameter, see Figure 2.1,
contains at most j points in its interior as it is contained in S(e) and does not contain u and
v. Thus, e is an order-j Delaunay edge. ♣

There is a close connection between order-j Delaunay edges and higher-order Voronoi
diagrams that we will use.

Lemma 2.2 (Lemma 2 in [GHvK02])
Let V be a set of n points in the plane, let j 6 n/2 − 2, and let u, v ∈ V . The edge {u, v}
is an order-j Delaunay edge if and only if there are two incident faces, F1 and F2, in the
order-(j + 1) Voronoi diagram such that u is among the j + 1 points closest to F1 but not
among the j + 1 points closest to F2, while v is among the j + 1 points closest to F2 but not
among those closest to F1.

Since the worst-case complexity of the order-(j+1) Voronoi diagram is O((j+1)(n−j−1))
[Lee82], it follows that O(nj) pairs of points give rise to all order-j Delaunay edges. This is
because any two incident faces induce exactly one point pair that corresponds to a Delaunay
edge. These pairs can be computed in O(nj2c log∗ j + n log n) expected time [Ram99] (the
best-known deterministic algorithm has a worst-case running time that is only worse by a
polylogarithmic factor [Cha00]). Note that this also implies that the number of edges in Ej

is bounded by O(nj).

Lemma 2.3 Given n points in the plane, (i) any edge set Ej with j 6 n/2−2 can be computed
in O(nj2 + nj log n) expected time; (ii) after O(n9/4 polylog n) preprocessing time, any edge
set Ej can be computed in O(nj) worst-case time.

Proof. (i) Computing the order-(j +1) Voronoi diagram and thus all O(nj) order-j Delaunay
edges takes O(nj log j +n log n) expected time. A data structure of the order-(j +1) Voronoi
diagram can be built in O(nj log n) time that supports point location queries in O(log n) time.
Thus, the time for the construction of the diagram (and the point-location data structure)
dominates the time we need to determine for each node v ∈ V the cell in the order-(j + 1)
Voronoi diagram in which it lies. This cell corresponds to a list Lv of the j + 1 nearest nodes
to v in V .

According to Lemma 2.1, Ej is contained in the set of all order-j Delaunay edges. We
simply test for each of the O(nj) candidate edges in Ej whether its interference is at most j.
For a candidate edge e = {u, v} we look at the lists Lu and Lv that we have precomputed. If
v is not included in Lu we conclude Int(e) > j + 1 and reject e. Analogously, we reject e if
u is not included in Lv. Otherwise we traverse Lu until we find v and count the number of
points found. After that we traverse Lv until we find u and count the number of points that
are not in D(u, |uv|) ∩D(v, |uv|) as these points have already been counted. We accept e as

2.2. COMPUTING EXACT-INTERFERENCE GRAPHS 55

an edge of Ej if and only if we count at most j points.3 Since the lists Lu and Lv are given in
advance this test can be done in O(j) time per edge. Thus, testing all O(nj) candidate edges
requires O(nj2) time and hence computing one edge set Ej takes O(nj2 + nj log n) expected
time in total.

(ii) Project all input points (x, y) parallel to the z-axis on a three-dimensional parabola
z = x2 + y2, and build a data structure on them so that we can report the number of
points lying inside the intersection of two halfspaces efficiently. We use the half-space range
query data structure by Matoušek [Mat93], who showed that one can build such a data
structure of size O(M) in time O(n1+δ + M polylog n), such that queries can be answered
in O((n/M1/3) polylog n) time, where δ is an arbitrarily small positive constant. We choose
M = n9/4, and get preprocessing time O(n9/4 polylog n) and query time O(n1/4 polylog n).
Observe that in the plane, an input point lies inside a circle if and only if in three dimensions,
its projection on the parabola lies below the plane that contains the projection of the circle
on the parabola. The number of points in D(u, |uv|) and D(v, |uv|) can thus be determined
by halfspace queries in the data structure mentioned above, and the number of points lying
in D(u, |uv|) ∩D(v, |uv|) is determined by querying the data structure with the intersection
of two halfspaces.

We use this to compute Int(e) for all O(n2) possible edges e in O(n9/4 polylog n) total
query time, sort the results for all edges by increasing interference value in O(n2 log n) time,
and store the results. After that, any edge set Ej can be found in O(nj) time by simply
selecting the edges e with Int(e) 6 j from the head of the sorted list. ♣

2.2.2 The total running time

Theorem 2.1 Algorithm MinInterferenceNetwork runs in
O(min{nk2 + nk log n, n9/4 polylog n}+ P (n, nk) log k) expected time, where n is the number
of nodes, k is the interference of the network output, and P (n, m) is the runtime of Fulfill-
sProperty on a graph with n nodes and m edges.

Proof. During the exponential-search phase, ComputeEdgeSet is called dlog ke times to com-
pute an edge set Ej in time O(nj2+nj log n). As the j′s in the running time are geometrically
increasing values, the terms in the running time that depend on j are dominated by the com-
putation of Ek. The total expected time spent by ComputeEdgeSet is thus O(nk2 + nk log n)
(by Lemma 2.3 (i)). Once the total time spent by ComputeEdgeSet has accumulated to
Ω(n9/4 polylog n), we compute the interference values for all possible edges at once and sort
them in O(n9/4 polylog n) time. After this, we can identify all sets Ebupperc for geometrically
increasing values of upper up to at most 2k easily in O(nk) time (by Lemma 2.3 (ii)). In
the binary-search phase, selecting edges of Emiddle from Eupper takes O(nk) time, which is
done O(log k) times for a total of O(nk log k). A total of O(log k) tests for the property P on
graphs with O(nk) edges takes O(P (n, nk) · log k) time. ♣

3Note that the computation of the order-j Voronoi diagram instead of the order-(j + 1) Voronoi diagram
would not be sufficient to decide whether Int(e) 6 j. For example, the nearest neighbor of u could be v while
u is not one of the j nearest neighbors of v. Then we would have Int(e) > j, but we cannot decide whether
Int(e) = j.

56 CHAPTER 2. INTERFERENCE-MINIMAL NETWORKS

2.2.3 Minimum-interference spanning trees

In this section we consider the basic problem of computing a connected graph with minimum
interference. For a graph with n nodes and m edges, we can test by breadth-first search
in O(n + m) worst-case time whether it is connected. We have P (n, nk) = O(nk) and by
applying Theorem 2.1 we get:

Corollary 2.1 We can compute a connected graph with minimum-interference in expected
time O(min{nk2+nk log n, n9/4 polylog n}), where k is the interference of the network output.

We can compute the minimum spanning tree of the resulting graph in O(nk+n log n) time
(for example with Prim’s algorithm), with the weights of the edges set to their interference
values. Note that any minimum spanning tree T on the given set of vertices not only minimizes∑

e∈T Int(e) but also Int(T) = maxe∈T Int(e) for the set of all connected trees. Therefore such
a tree can be found in the minimum-interference graph Gk obtained by Corollary 2.1. By
running Prim’s algorithm on Gk, we can compute T from Gk in O(nk + n log n) time, i.e.,
P (n, nk) = O(nk + n log n). We get the following corollary:

Corollary 2.2 We can compute a spanning tree T of V with minimum-interference that min-
imizes

∑
e∈T Int(e) and maxe∈T Int(e) in expected time O(min{nk2+nk log n, n9/4 polylog n}).

2.2.4 Minimum-interference t-spanners

It is often desired that a network is not only a connected network, but also a t-spanner for
some given constant t [BvRWZ04, LW04]. The dilation of a graph with n nodes and m edges,
and thus the check whether it is a t-spanner, can be computed in O(nm + n2 log n) time by
computing all pairs’ shortest paths with Dijkstra’s algorithm [Dij59]. We have P (n, nk) =
O(n2k + n2 log n) and by applying Theorem 2.1 we get:

Corollary 2.3 For any t > 1 we can compute a t-spanner of V with minimum-interference
in O(n2 log k(log n + k)) expected time.

The weight of a graph G, denoted wt(G), is defined as the sum of its edge lengths. By
adding a postprocessing step to the computation of a minimum-interference t-spanner, we
obtain the following:

Lemma 2.4 For any constants t > 1 and ε > 0 we can compute a (1+ ε)t-spanner of V with
weight O(wt(MST (V))) and interference k in O(n2 log k(log n + k) + nk log n/ε7) expected
time, where MST (V) is a minimum weight spanning tree of V and k is the interference of
the minimum-estimated interference of any t-spanner of V .

Proof. Compute a t-spanner G of V with minimum-interference using Corollary 2.3, and let k
be the interference of G. Note that G has O(nk) edges. Now we argue that we can compute
a (1 + ε)-spanner G′ of G in O(nk log n/ε7) time such that G′ has interference k and weight
O(wt(MST (V))).

Let G be an arbitrary t-spanner for a point set V having m edges, where t > 1 is a
constant. Let ε be an arbitrary positive real constant. The greedy algorithm in [GLN02]
computes a subgraph G′ of G that is a (1 + ε)-spanner of G and that satisfies the so-called
leapfrog property. The graph G′ can be computed in O(m log n/ε7) time, for details see the

2.3. COMPUTING ESTIMATION-INTERFERENCE GRAPHS 57

book by Narasimhan and Smid [NS07]. Das and Narasimhan [DN97] have shown that any
set of edges that satisfies the leapfrog property has weight O(wt(MST (V))). This completes
the proof of the lemma. ♣

2.2.5 Minimum-interference d-hop networks

We can test whether a given graph is a d-hop network by computing its link diameter and
checking if it is at most d. For a graph with n nodes and m edges, the link diameter can
be computed in O(nm) worst-case time by doing a breadth-first search from every vertex.
Alternatively, since all edge weights for the distance computation are ‘1’ we can compute
the link diameter in O(n2 log n) expected time with the all-pairs-shortest-paths algorithm by
Moffat and Takaoka [MT87]. Thus, P (n, nk) = O(n2 log n) and by applying Theorem 2.1 we
get:

Corollary 2.4 For any integer d > 1 we can compute a d-hop network with minimum-
interference in O(min{nk2, n9/4 polylog n}+ n2 log n log k) expected time.

2.3 Computing estimation-interference graphs

In this section we show how to compute minimum-interference networks in the estimated
model. We define estimated interference as follows (see Fig. 2.3a):

Definition 2.2 Let D(u, r) be the closed disk centered at u with radius r. The (1+ ε)-sphere
S1+ε(e) of an edge e = {u, v} is defined as S1+ε(e) := D(u, (1 + ε) · |uv|)∪D(v, (1 + ε) · |uv|).
For 0 6 ε1 6 ε2 we say that an integer I is an (ε1, ε2)-valid estimation of the interference of
e if and only if

∣∣V ∩ S1+ε1(e) \ {u, v}
∣∣ 6 I 6

∣∣V ∩ S1+ε2(e) \ {u, v}
∣∣.

We will use ε-valid estimation as a shorthand for (0, ε)-valid estimation. Our aim is to
compute minimum-interference networks based on ε-valid estimations of interference. To do
so we will need to fix a particular assignment Intε :

(
V
2

)
→ N of ε-valid estimations for all

edges, which will be explained in more detail below.

2.3.1 The well-separated pair decomposition

Our construction uses the well-separated pair decomposition by Callahan and Kosaraju [CK95],
which we briefly present here.

Definition 2.3 ([CK95]) Let s > 0 be a real number, and let A and B be two finite sets
of points in R2. We say that A and B are well-separated with respect to s, if there are two
disjoint disks DA and DB of same radius r, such that

(i) DA contains A,
(ii) DB contains B, and
(iii) the minimum distance between DA and DB is at least s · r.

The parameter s will be referred to as the separation constant. The next lemma follows easily
from Definition 2.3.

58 CHAPTER 2. INTERFERENCE-MINIMAL NETWORKS

Lemma 2.5 ([CK95]) Let A and B be two finite sets of points that are well-separated with
respect to s, let u and x be points of A, and let v and y be points of B. Then

(i) |uv| 6 (1 + 2/s) · |uy|,
(ii) (1− 4/s) · |xy| 6 |uv| 6 (1 + 4/s) · |xy|, and
(iii) |ux| 6 (2/s) · |xy|.

Definition 2.4 ([CK95]) Let V be a set of n points in R2, and let s > 0 be a real number.
A well-separated pair decomposition (WSPD) for V with respect to s is a sequence of pairs
of non-empty subsets of V , {A1, B1}, {A2, B2}, , . . . , {Am, Bm}, such that (i) Ai and Bi are
well-separated with respect to s, for i = 1, . . . ,m, and (ii) for any two distinct points u and v
of V , there is exactly one pair {Ai, Bi} in the sequence, such that (a) u ∈ Ai and v ∈ Bi, or
(b) v ∈ Ai and u ∈ Bi. The integer m is called the size of the WSPD.

Callahan and Kosaraju [CK95] showed that a WSPD of size O(s2n) can be computed in
O(s2n + n log n) time.

2.3.2 A sparse interference-estimation graph

Consider the complete graph Gε = (V,Eε), where the weights of the edges are computed as
follows.

Let {Ai, Bi}16i6m be a well-separated pair decomposition of V with separation constant
s = 8 + 18/ε. For each well-separated pair {Ai, Bi} select two arbitrary points u ∈ Ai

and v ∈ Bi, and compute an (1
3ε, 2

3ε)-valid interference estimation of {u, v}. This value is
assigned to all edges {x, y} in Eε with x ∈ Ai and y ∈ Bi. This assignment with interference
estimations for all edges e ∈ Eε is denoted by Intε(e).

We will denote by Gε
j = (V,Eε

j) the subgraph of Gε containing all the edges of weight
at most j. The following lemma shows that Intε correctly represents ε-valid estimations of
interference.

Lemma 2.6 Let V be a set of points and let {Ai, Bi}16i6m be a WSPD of V with separation
constant s = 8 + 18/ε. Let ẽ = {u, v} and e = {x, y} be two edges such that u, x ∈ Ai and
v, y ∈ Bi. It holds that every (1

3ε, 2
3ε)-valid interference estimation for ẽ, denoted I, is an

ε-valid interference estimation for e.

Proof. We will prove the lemma in two steps. First we show (i) that D(x, |xy|) ⊆ D(u, (1 +
1
3ε)|uv|) (and analogously D(y, |xy|) ⊆ D(v, (1+1

3ε)|uv|)) which implies that S1(e) ⊆ S1+ε/3(ẽ),
and thus |V ∩ S1(e)| 6 |V ∩ S1+ε/3(ẽ)| 6 I. Then, in the second step, we show (ii) D(u, (1 +
2
3ε)|uv|) ⊆ D(x, (1 + ε)|xy|) (and analogously D(v, (1 + 2

3ε)|uv|) ⊆ D(y, (1 + ε)|xy|)) which
implies that S1+2ε/3(ẽ) ⊆ S1+ε(e), and thus I 6 |V ∩ S1+2ε/3(ẽ)| 6 |V ∩ S1+ε(e)|. As a
consequence of the two bounds we have |V ∩ S1(e)| 6 I 6 |V ∩ S1+ε(e)| and thus I is an
ε-valid interference estimation for e.

(i): Let px be the point on the perimeter of D(u, (1 + 1
3ε)|uv|) closest to x. It suffices to

2.3. COMPUTING ESTIMATION-INTERFERENCE GRAPHS 59

u v

r
(1 + ε)r

px

qx

x
u

y
v

(1 + ε
3)|uv|

(1 + 2ε
3)|uv|

(a) (b)

|xy| (1 + ε)|xy|

Figure 2.3: (a) The light gray area represents the (exact) interference region, that is, the sphere
S(u, v), while the larger region represents the estimated interference region, that is, the sphere
S1+ε(u, v). (b) Illustration for the proof of Lemma 2.6.

show that |xpx| > |xy|. We use the triangle inequality and Lemma 2.5(ii) and (iii).

|xpx| > |pxu| − |xu|

= (1 +
ε

3
) · |uv| − |xu|

> (1 +
ε

3
)(1− 4

s
) · |xy| − 2

s
· |xy|

= (1 +
ε

3
− 4ε

3s
− 6

s
) · |xy|

> |xy|.

The last inequality follows from s = 8 + 18/ε > 4 + 18/ε.
(ii): Let qx be the point on the perimeter of D(u, (1 + 2

3ε)|uv|) furthest from x. It suffices
to show that |xqx| 6 (1+ ε) · |xy|. We use the triangle inequality and Lemma 2.5(ii) and (iii).

|xqx| 6 |qxu|+ |xu|

= (1 +
2ε

3
) · |uv|+ |xu|

6 (1 +
2ε

3
)(1 +

4
s
) · |xy|+ 2

s
· |xy|

= (1 +
2ε

3
+

8ε

3s
+

6
s
) · |xy|

6 (1 + ε) · |xy|.

The last inequality follows from the assumption that s > 8 + 18/ε. ♣

Next we define the edge set Ẽε as follows. For each well-separated pair {Ai, Bi} select
exactly one pair of points u, v such that u ∈ Ai and v ∈ Vi. The edge {u, v} is added to Ẽε

setting its weight to be the ε-valid estimation Intε({u, v}). Note that the number of edges in
Eε is n(n− 1)/2 while the number of edges in Ẽε is bounded by O(n/ε2), that is, the number
of well-separated pairs.

60 CHAPTER 2. INTERFERENCE-MINIMAL NETWORKS

MinEstimatedInterferenceNetwork(V,P)

G̃ε ← (V, Ẽε)
upper ← 1/4
repeat

upper ← 2 · upper
Ẽε

upper ← all edges in Ẽε with weight at most upper

G̃ε
upper ← (V, Ẽε

upper)
until FulfillsProperty(G̃ε

upper,P)
lower ← bupper/2c
// binary search
while upper > lower + 1 do

middle← 1
2(lower + upper)

Ẽε
middle ←all edges in Ẽε with weight at most middle

G̃ε
middle ← (V, Ẽε

middle)
if FulfillsProperty(G̃ε

middle,P) then
upper ← middle

else lower ← middle
return Gε

upper

Figure 2.4: The basic algorithm for the estimated model.

2.3.3 Computing minimum-estimated-interference networks

We will use the same approach as we used in Section 2.2, with one difference, instead of using
the graphs Gj we will use the graphs Gε

j . Actually we will go one step further, instead of
using Gε

j we will use G̃ε
j = (V, Ẽε

j).
The general algorithm for finding a minimum-interference network based on estimated

interferences is given in Algorithm 2.4. Next we analyze the running time of the general
algorithm and then prove the correctness for each of the three properties that we consider.

Lemma 2.7 The graph G̃ε = (V, Ẽε) can be constructed in O(n/ε2(log n + 1/ε)) time.

Proof. Initially set Ẽε to be empty. Construct a well-separated pair decomposition with
respect to s = 8+18/ε in O(n/ε2 +n log n) time. For each well-separated pair {Ai, Bi} select
an arbitrary pair of points u ∈ Ai and v ∈ Bi. Perform an ε′-approximate range counting
query [AM00] with S1+ε/2(u, v) as the query range, where ε′ = ε

12+6ε . The number of reported
points (minus u and v) determines an estimated interference between |V ∩ S1+ε/3(u, v)| and
|V ∩ S1+2ε/3(u, v)| and hence an ε-estimated interference for every edge in Eε, according to
Lemma 2.6. Since the query range has constant complexity, each such query can be answered
in O(log n+1/ε) time with the BBD-tree by Arya and Mount [AM00] (following the analysis
by Haverkort et al. [HdBG04]). In total this requires O(n/ε2(log n+1/ε)) time since O(n/ε2)
queries are performed. ♣

Theorem 2.2 Algorithm MinEstimatedInterferenceNetwork runs in
O(n/ε2(log n+1/ε)+P (n, n/ε2) log k) time, where n is the number of nodes, k is the maximum

2.3. COMPUTING ESTIMATION-INTERFERENCE GRAPHS 61

ε-valid estimated interference of any edge in the network output, and P (n, m) is the running
time of FulfillsProperty on a graph with n nodes and O(m) edges.

Proof. The graph G̃ε = (V, Ẽε) is constructed in O(n/ε2(log n + 1/ε)) time. The exponential
and binary search is iterated at most dlog ke times. Each time the edge set Ẽε

j is computed
in O(n/ε2) time by looking at all edges in Ẽε. The graph is tested for the desired property
in O(P (n, n/ε2)) time. Summing up the time bounds gives a total of O(n/ε2(log n + 1/ε) +
P (n, n/ε2) log k) time. ♣

Before we study the three desirable properties (connectivity, bounded dilation, and bounded
link diameter) we need two basic properties of the graph G̃ε.

2.3.4 Two properties of the sparse graph

For technical reasons we have to ensure that the interference estimations of all shortest edges
in Gε are zero. This can be accomplished during the processing of the well-separated pair
decomposition without requiring any extra time.

In Theorem 2.3 below we show that G̃ε
j closely approximates Gε

j . For the proof we require
the following technical lemma.

Lemma 2.8 For a well-separated pair {Ai, Bi} let {u, v} be an arbitrary edge, where u ∈ Ai

and v ∈ Bi, with ε-valid interference estimation j. Then for every edge {x, y} with x, y ∈ Ai

or x, y ∈ Bi it holds that every ε-valid interference estimation of {x, y} is at most j.

Proof. The distance between x and y is bounded by 2/s · |uv| according to Lemma 2.5. By
the choice of s this is less than ε/9 · |uv| and thus, for reasonably small values of ε, it holds
that S1+ε(x, y) ⊆ S(u, v), see Figure 2.5a. Hence, even if {u, v} attains its minimum possible
ε-valid interference estimation j, each ε-valid interference estimation of (x, y) is at most j. ♣

u v

x
y

Ai Bi

S(u, v)
S1+ε(x, y)

(a) (b)

x

v

u

y

Figure 2.5: (a) Illustration for the proof of Lemma 2.8. (b) Illustration for the proof of Theorem 2.3.

Let dj(u, v) and d̃j(u, v) denote the Euclidean length of the shortest path between u and
v in Gε

j and G̃ε
j , respectively.

Theorem 2.3 For any u, v ∈ V and any non-negative integer j we have dj(u, v) 6 d̃j(u, v) 6
(1 + ε) · dj(u, v).

62 CHAPTER 2. INTERFERENCE-MINIMAL NETWORKS

Proof. Since Ẽε
j is a subset of Eε

j the left inequality follows. It remains to prove the right
inequality. For this it is sufficient to show that for every edge e = {u, v} in Eε

j there is a path
P in Ẽε

j such that |uv| 6 |P | 6 (1 + ε)|uv|.
Sort the edges of Eε

j with respect to their length in increasing order. We denote the edges
in the sorted sequence by e1, . . . , em. The theorem is now proven by induction on the length
of the edges.
Base cases: Consider a shortest edge e1 = {u, v} in Eε

j . Our claim is that e1 is also in Ẽε
j .

From Definition 2.4 it follows that there is a well-separated pair {Ai, Bi} with Ai = {u} and
Bi = {v} (or Ai = {v} and Bi = {u}). As {u, v} is a closest pair in V , its interference
estimation is zero by construction. Hence, e1 is in Ẽε

j .
Induction hypothesis: Assume that the theorem holds for all edges of Eε

j shorter than ei.
Induction step: Consider the edge ei = {u, v}, and let {Ai, Bi} be the well-separated pair
such that u ∈ Ai and v ∈ Bi. According to the construction of Ẽε

j there exists an edge {x, y}
in Ẽε

j such that x ∈ Ai and y ∈ Bi, see Figure 2.5b. For ease of explanation we assume that
{x, y} ∩ {u, v} = ∅ (the case of {x, y} ∩ {u, v} 6= ∅ is only easier, as the rest of the proof will
show).

The length of {x, y} is at most (1 + 4/s) · |uv|, according to Lemma 2.5. According to
Lemma 2.8, the edges {u, x} and {y, v} are in Eε

j . Hence, as {u, x} and {y, v} are shorter
than ei, there is path Pux between u and x of length at most (1 + ε) · |ux|, and a path Pyv

between y and v of length at most (1 + ε) · |yv| in G̃ε
j by induction hypothesis. For the u-v

path Pux, {x, y}, Pyv in G̃ε
j we have:

d̃(u, v) 6 d̃(u, x) + d̃(x, y) + d̃(y, v)

6 (1 + ε) · |ux|+
(

1 +
4
s

)
· |uv|+ (1 + ε) · |yv|

6 (1 + ε) · 2
s
|uv|+

(
1 +

4
s

)
· |uv|+ (1 + ε) · 2

s
|uv|

=
(

1 +
8
s

+
4ε

s

)
· |uv|

6 (1 + ε) · |uv|.

In the third inequality we used Lemma 2.5 and in the final inequality we used that s was
chosen to be 8 + 18/ε > 4 + 8/ε. ♣

2.3.5 Minimum-estimated interference spanning trees

We start with the most basic property, namely connectivity. We will prove the corresponding
estimated versions of Corollaries 2.1 and 2.2 in Section 2.2.3.

From Theorem 2.3 it immediately follows that Gε
j is connected if and only if G̃ε

j is con-
nected. Thus a simple approach to test the connectivity is to use a breadth-first search in G̃ε

j

which takes linear time with respect to the size of Ẽε
j . By filling in P (n, kn) = O(n/ε2) in

Theorem 2.2 we get:

Corollary 2.5 We can compute a minimum-estimated-interference connected graph in
O(n/ε2(log n + 1/ε)) time.

2.3. COMPUTING ESTIMATION-INTERFERENCE GRAPHS 63

And by running Kruskal’s algorithm on the graph G̃ε
k we get:

Theorem 2.4 We can compute a minimum-estimated-interference spanning tree T of V with∑
e∈T Intε(e) =

∑
e∈Tmin

Intε(e) in O(n/ε2(log n + 1/ε)) time, where Tmin is a minimum
spanning tree of Gε

k with respect to Intε.

Proof. Running Kruskal’s algorithm [Kru56] on G̃ε
k takes O(n/ε2 +n log n) time and thus the

running time is dominated by the computation of G̃ε
k according to Corollary 2.5.

It remains to show that G̃ε
k contains a spanning tree T of cost equal to the cost of

Tmin. Consider the edges in Eε
k and order them with respect to their interference esti-

mations. If two edges have the same interference estimation then we order them with re-
spect to the Euclidean distance between their endpoints. For simplicity, let Tmin denote the
minimum spanning tree obtained by running Kruskal’s algorithm using this ordering. Let
{u1, v1}, {u2, v2}, . . . , {un−1, vn−1} be the edges of Tmin in the order in which they were added
to Tmin.

Consider the subgraph F̃ of G̃ε
k constructed as follows: for each edge {uj , vj} in Tmin, find

the well-separated pair (Ai, Bi) such that uj ∈ Ai and vj ∈ Bi, and add the edge {x, y} ∈ G̃ε
k

with x ∈ Ai and y ∈ Bi to F̃ . Clearly the cost of F̃ is equal to the cost of Tmin, since for
every edge {u, v} in Tmin an edge {x, y} is added to F̃ whose interference estimation equals
the estimation of {u, v}. It remains to prove that F̃ is a spanning tree.

We will prove the following statement:

For each edge {uj , vj} in Tmin there is a path in F̃ between uj and vj . (*)

Since F̃ contains n− 1 edges, it follows that F̃ must be a spanning tree. Our proof of (*) is
by induction over the index j of the edges in Tmin.

Base case: The first edge added to Tmin is {u1, v1}. By construction, {u1, v1} is the
shortest edge in

(
V
2

)
and its interference estimation is zero. Then the well-separated pair that

contains it must be a pair (Ai, Bi) with Ai = {u1} and Bi = {v1} and hence, {u1, v1} is also
in F̃ .

Induction hypothesis: Assume that condition (*) holds for all edges {u1, v1}, . . . ,
{ui−1, vi−1} in Tmin.

Induction step: Let {xi, yi} be the edge in F̃ corresponding to {ui, vi}, and let {Ai, Bi}
be the well-separated pair such that ui, xi ∈ Ai and vi, yi ∈ Bi. Our claim is that there is
a path between ui and xi, and a path between vi and yi, only containing edges from the set
{{u1, v1}, . . . , {ui−1, vi−1}}. According to Lemma 2.8 an interference estimation of the edge
{ui, xi} does not exceed the interference estimation of the edge {ui, vi}, and obviously {ui, xi}
is shorter than {ui, vi}. Thus {ui, xi} was considered before {ui, vi} and either it was added
to Tmin, or ui and xi were already connected in Tmin and adding {ui, xi} would have created a
cycle in Tmin (at the time when {ui, xi} would have been inserted according to the order). In
both cases it follows that ui and xi are connected in Tmin by a path that only contains edges
from the set {{u1, v1}, . . . , {ui−1, vi−1}}, and thus, by the induction hypothesis, they are also
connected in F̃ . The same argument yields a path in F̃ between vi and yi. This completes
the proof of (*). ♣

64 CHAPTER 2. INTERFERENCE-MINIMAL NETWORKS

2.3.6 Minimum-estimated-interference t-spanners

We use the same approach as in Section 2.2.4 and apply Dijkstra’s algorithm to compute the
dilation in G̃ε

j . This takes O(n2/ε2 + n2 log n) time. Note that according to Theorem 2.3, G̃ε
j

is at least an (1 + ε)t-spanner if Gε
j is a t-spanner. Thus, we implement the answer of the

routine FulfillsProperty to be ’yes’ if and only if G̃ε
j is an (1 + ε)t-spanner. This only implies

that Gε
j is an (1 + ε)t-spanner, but the interference of Gε

j is at most the minimum-estimated
interference of a t-spanner with respect to Intε. Thus, P (n, n/ε2) = O(n2/ε2 + n2 log n) and
by applying Theorem 2.2 we obtain:

Corollary 2.6 In O(n2 log k(1/ε2 +log n)) time we can compute a (1+ε)t-spanner of V with
estimated interference at most the minimum-estimated interference of any t-spanner of V .

2.3.7 Minimum-estimated-interference d-hop networks

When one wants to construct a d-hop network with minimum estimated interference value
it seems hard to avoid studying all the edges in Eε

j . A simple way to check if a graph is a
d-hop network is to perform a breadth-first search (BFS) in Gε

j from each of the nodes. The
problem is that the running time is linear in the number of edges, thus running the n searches
in Gε

j would give a cubic running time. Also, we cannot perform the BFS in G̃ε
j since G̃ε

j does
not approximate Gε

j when it comes to the number of hops. We will show, however, that for
every Gε

j we can perform an implicit breadth-first search in a graph T that has only O(n/ε2)
edges.

The graph T is the split tree [CK95] S that is built in the first step of Algorithm 2 in
order to compute the WSPD, augmented with a number of non-tree edges. In particular, S is
a binary tree in which each vertex corresponds to a subset of V . We identify each vertex with
its corresponding point set. The root of S is V . For any non-leaf vertex A ∈ S and its two
children A1,A2 it holds that A1 ∩ A2 = ∅ and A1 ∪ A2 = A. All leaves correspond to single
points and for every well-separated pair {Ai, Bi}16i6m there is exactly one vertex A ∈ S with
A = Ai and one vertex B ∈ S with B = Bi. (However, not all vertices in S correspond to a set
Ai or Bi.) To avoid confusion we will always refer to the nodes of T as vertices. For a given
vertex A, our algorithm needs to access all vertices B such that {A,B} corresponds to a pair
{Ai, Bi} of the WSPD. Therefore we extend S with edges between all pairs of vertices that
correspond to pairs of the WSPD. This extended version of S constitutes the graph T that
we will use for our breadth-first search. The non-tree edges are distinguishable from the tree
edges and can be inserted without additional cost when computing the WSPD. Observe that
the number of tree edges is at most 2(n−1) while the number of edges that join well-separated
sets is O(n/ε2). Therefore T has O(n/ε2) edges.

The idea is now to perform n implicit BFS’s, one for each point x ∈ V . The value
MaxHops(x) obtained by the implicit BFS for x is the depth of a BFS-tree of Gε

j with root
x. After performing all implicit BFS’s, we have access to the link diameter of Gε

j which is
maxx∈V MaxHops(x).

We will first give the algorithm to compute MaxHops(x) and then prove its correctness.
The algorithm is essentially the same as the one by Gudmunsson et al. [GNS03] but slightly
modified to fit our setting. It computes a breadth-first forest consisting of breadth-first trees
rooted at all vertices of T which contain x, these are exactly x itself and all its ancestors in
the split tree. As usually the breadth-first search features a queue Q of vertices that still have

2.3. COMPUTING ESTIMATION-INTERFERENCE GRAPHS 65

to be processed and it terminates as soon as Q is empty. For each vertex A of the split tree,
the algorithm maintains two variables:

• color(A), whose value is either white, gray , or black , and

• dist(A), whose value is the minimum distance to get from x to at least one point of A
in Gε

j (as computed by the algorithm).

The algorithm will maintain the following invariants: All vertices that are white have not
been visited yet. The vertices that are grey have been visited and are stored in the queue Q.
All vertices A that are black have been processed already and dist(A) contains the correct
distance from x.

Step 1: For each vertex A ∈ T set color(A) := white and dist(A) :=∞.

Step 2: Initialize an empty queue Q. Starting at the leaf of T storing x, walk up the tree to
the root. For each vertex A encountered, set color(A) := gray and, if A corresponds to a set
in a well-separated pair, set dist(A) := 0 and append A to the end of Q.

Step 3: If Q is empty then go to Step 4. Otherwise, let A be the first element of Q. Delete
A from Q and set color(A) := black . For each well-separated pair {Ai, Bi} for which Ai = A
(or Bi = A) and whose edges have interference estimations of at most j, let B be the vertex
in T with B = Bi (B = Ai). If B is white do the following:

Step 3.1: Starting at vertex B, walk up the split tree until the first non-white vertex is
reached. For each white vertex A′ encountered, set color(A′) := gray and, if A′ corresponds
to a set in a well-separated pair, set dist(A′) := dist(A) + 1 and add A′ to the end of Q.

Step 3.2: Visit all vertices in the subtree of B. For each vertex A′ in this subtree, set
color(A′) := gray and, if A′ corresponds to a well-separated set, set dist(A′) := dist(A) + 1
and add A′ to the end of Q.

After all such vertices B have been processed, go to Step 3.

Step 4: Return MaxHops(x) = max{dist(A) | A ∈ T is a set in a well-separated pair}.

Observe that, if A′ is the first non-white vertex reached in Step 3.1, all vertices on the
path from A′ to the root of the split tree are non-white. Also, if color(B) = white, then all
vertices in the subtree of B (these are visited in Step 3.2) are white.

To estimate the running time of the algorithm, we first note that Step 1 as well as Step 2
takes O(n) time. The total time for Step 3 is proportional to the number of edges in T and
the total time for walking through T in Steps 3.1 and 3.2. It follows from the algorithm that
each edge of T is traversed at most once. Therefore, Step 3 takes O(n/ε2) time, which is also
the total running time of the BFS from x. We now prove its correctness.

Theorem 2.5 The value returned by the above algorithm is MaxHops(x).

Proof. We show (*): for each A ∈ T that corresponds to a set in a well-separated pair,
dist(A) is the minimum distance to get from x to at least one point of A in Gε

j . This proves
the claim as all nodes V are stored in a leaf of T and correspond to a well-separated set, thus
the set in Step 4 over which the maximum is taken contains all the distances from x to every
other node in Gε

j and no bigger values than that.

66 CHAPTER 2. INTERFERENCE-MINIMAL NETWORKS

Note that, besides initializing with ∞, dist(A) is set only once for each A, namely when
A is encountered for the first time. We show the following two invariants: (i) when dist(A)
is set, there is at least one node in A that is at most dist(A) steps away from x in Gε

j and
(ii) no vertex in A can be reached from x by less than dist(A) steps. This proves (*). Step 2
sets dist(A) to zero for all A ∈ T that contain x and thus fulfills the two invariants for these
vertices.

Next, we show that invariant (i) holds for Step 3.1 and Step 3.2. Let {Ai, Bi} be the
well-separated pair that caused the calls of Step 3.1 and Step 3.2 and let B = Bi. Since
dist(Ai) = dist(Bi) − 1, we can prove by induction that the invariant holds for Ai and thus
there is at least one point a ∈ Ai that can be reached from x in dist(B)− 1 steps. However,
as the interference estimations of all edges between Ai and Bi is at most j this means that in
Gε

j all points in B can be reached from x via a in dist(B) steps. This shows invariant (i) for
Step 3.1 as all vertices on the path from B to the first non-white ancestor contain supersets
of the point set that corresponds to B. It also shows invariant (i) for Step 3.2 as the vertices
in the subtree of B contain subsets of the point set that corresponds to B.

We prove that invariant (ii) holds throughout the algorithm by contradiction. Let B ∈ T
be the first vertex encountered for which (ii) is violated. This means that there exists a path
e1, . . . , e` ∈ Gε

j connecting x and a node v ∈ B with ` < dist(B) edges. Let e` = {u, v} and
{Ai, Bi} be the unique well-separated pair with u ∈ Ai and v ∈ Bi. The path e1, . . . , e`−1

connects x with u ∈ Ai by ` − 1 edges. Since B is a minimal counterexample, invariant
(ii) holds for Ai which means that dist(Ai) 6 ` − 1. This is a contradiction because then
dist(B) 6 dist(Ai) + 1 = ` as again all edges between Ai and Bi are in Gε

j . ♣
Recall that we can implement the function FulfillsProperty(Gε

j,“has link-diameter at most
d”) as follows. We augment the split tree S of the WSPD with the O(n/ε2) edges that
correspond to well-separated sets whose representative edges have interference estimation of
at most j. Then we run the above algorithm once for each node in V . We have P (n, n/ε2) =
O(n2/ε2) and by applying Theorem 2.2 we get:

Corollary 2.7 Given a set V of n points in the plane and an integer d, one can compute a
d-hop network with minimum estimated interference value in O(n/ε2(n log k + 1/ε)) time.

2.4 Generalizations and extensions

In this section we consider different models and different interference functions, and we discuss
the possibility to modify the presented algorithms to handle these cases.

Bounded transmission radius: Burkhart et al. [BvRWZ04] and Moaveni-Nejad and Li [ML05]
considered the case where each transmitter has a bounded transmission radius. The algo-
rithms in Section 2.2 can be modified to handle this case. For the estimated interference
model our algorithms only work if for every well-separated set {A,B} there is indeed a point
pair u, v with u ∈ A, v ∈ B which are allowed to communicate. This ensures that the sparse
graph is connected. In practice the above restriction seems to make sense as otherwise com-
munication between stations u and v out of a well-separated set for which any communication
is forbidden has to be routed on graph paths that make large detours concerning the bee-line
distance of u and v.

2.4. GENERALIZATIONS AND EXTENSIONS 67

Weighted points: In the scenario in which the points are weighted, the weights can be
thought of as a measure of importance assigned to the nodes. Points with a very high weight
are very important and thus interference with those nodes should be avoided. The changes to
the algorithms in Section 2.2 are trivial, since range counting queries can easily be modified
to handle weighted points. In the estimated interference model the same bounds also hold
for the weighted case. The only difference is in computing the interference value of an edge
– fortunately the BBD-tree [AM00] can also be used for weighted range queries without
additional preprocessing or query time.

68 CHAPTER 2. INTERFERENCE-MINIMAL NETWORKS

Chapter 3

Boundary Labeling with One-Bend
Leaders

As in the two previous chapters the geometric aspect is given by the input: n points contained
in a rectangle R. Here, a network will not be involved in the strong sense. However, the points
and labels together with the determined assignment from labels to points can be interpreted
as a bipartite graph. The optimization is done on the number of bends that are contained in
the edge set of the graph and on the total edge length. Both are minimized in order to get a
high-quality labeling.

I have done main parts of this research together with Herman Haverkort, Mira Lee and
Martin Nöllenburg on the Fifth Korean Workshop on Computational Geometry. An abstract
entitled “Improved algorithms for length-minimal one-sided boundary labeling” has been ac-
cepted on the 23rd European Workshop on Computational Geometry [4]. Furthermore, an
extended version entitled “Algorithms for multi-criteria one-sided boundary labeling” which
is based on ideas of this chapter has been accepted at the 15th International Symposium on
Graph Drawing and will be published soon [5].

3.1 Introduction

Presentation of visual information often makes use of textual labels for features of interest
within the visualization. Well-known examples stem from diverse areas such as cartography,
anatomy, engineering, sociology etc. Visualizations in these applications all have in common
that a graphic may have very dense regions that need to be enriched by textual information
in order to convey its full meaning. A lot of research on automatic label placement has
concentrated on placing labels as close to the features of interest as possible, see the extensive
bibliography on map labeling by Wolff and Strijk [WS96]. However, there are situations in
which this is impossible or undesirable. Such situations can occur if the labels are relatively
large (for example a block of text rather than a single word), if the labeled features lie so
close to each other that there is not enough space to place the labels, or if the full figure
should remain visible, without parts of it being occluded or cluttered by labels. Geographic
maps that depict metropolitan areas and medical atlases are examples were these situations
occur. A reasonable alternative for static displays is to place the labels next to the actual
illustration and connect each label to its feature by a curve. This is called a call-out, and
the curves are called leaders. An example is shown in Figure 3.1. To produce a call-out, we

69

70 CHAPTER 3. BOUNDARY LABELING WITH 1-BEND LEADERS

have to decide where exactly to place each point’s label and how to draw the curves such that
the connections between points and labels are clear and the curves do not clutter the figure.
Clearly, leaders should not intersect each other to avoid confusion.

Figure 3.1: Anatomy of a human embryo [Gra18].

Recently, interest in algorithms for this problem has grown. Fekete and Plaisant [FP99]
described an interactive labeling technique that uses leaders. A set of points in a focus
area around the cursor position is labeled to the left and to the right of the focus using non-
intersecting polygonal leaders with up to two bends. Points not in the focus remain unlabeled.
Ali et al. [AHS05] describe several heuristics for assigning label positions in a call-out to the
points being labeled, using straight-line and rectilinear leaders. They first compute an initial
labeling and subsequentially eliminate intersections between leaders. Bekos et al. [BKSW07]
insist that it is desirable to keep the leaders short and avoid unnecessary bends. Therefore they
define the problem as an optimization problem where either the total number of bends or the
total length of the leaders is to be minimized under the condition that leaders are not allowed
to intersect. They consider a set of points contained in an axis-aligned rectangle R. The labels
are placed around R and connected to the corresponding points by non-intersecting rectilinear

3.2. PROBLEM DEFINITION 71

leaders. Variants with labels on one, two, or four sides of R are considered. The focus of their
work is on efficient algorithms for minimizing the total leader length; the problem of finding
efficient algorithms to minimize the number of bends is mostly left open. In subsequent
works Bekos et al. study variations where labels are arranged in multiple columns on one
side of the rectangle [BKPS06a] or where a set of polygons is labeled instead of a set of fixed
points [BKPS06b]. The latter is motivated by the fact that features in an illustration often
extend over an area and are not just single points.

One of the most important aspects determining the readability of a boundary labeling
is the type of the leaders that is used. Surprisingly, it is not always the best choice to rely
exclusively on straight-line leaders as in Figure 3.1. The reason is that the variety of different
slopes among the leaders may unnecessarily clutter the visualization, especially if the number
of labels is large. Leaders look less disturbing if their shape is more uniform and a small
number of slopes is used. At the same time leaders appear easier to follow if their bends are
smooth. In all work cited above, leaders are either straight lines or polylines whose segments
may have arbitrarily many different slopes, or they are rectilinear, which means that they
have rather sharp bends.

In this work we follow the problem definition of Bekos et al. [BKSW07] and aim to reduce
the number of sharp bends in two ways. First, we introduce leaders that can also consist
of diagonal segments of a fixed angle. This leads to smoother bends and leaders that are
visually easier to follow. Secondly, in addition to algorithms that minmize the total length of
the leaders, we provide algorithms that minimize the number of bends, both for rectilinear
leaders and for leaders with diagonal segments. To the best of our knowledge there is no
literature that deals with diagonal leaders algorithmically.

In the following sections we describe the problem more precisely and give algorithms for
labels placed on one side of the figure and for labels placed on two sides of the figure. In the
last section we compare the effects of the leader type and the optimization criterion on the
basis of an example. For practical issues, we come to the conclusion that a hybrid method
that simultaneously minimizes the leader length and the number of bends may be the method
of choice.

3.2 Problem definition

We are given a set P of n points, a rectangle R that contains P , and n disjoint rectangles
(labels) of equal width that border R on the left side or on the right side. The points are
to be matched with the labels and the matching shall be indicated by a polygonal line–the
leader—connecting the point with its corresponding label.

We consider two types of leaders. A po-leader for a point q consists of two segments: a
vertical segment (’p’arallel to the labeled sides of R) that starts at q, followed by a horizontal
segment (’o’rthogonal to the labeled sides of R) that ends at the corresponding label (the
terminology is from Bekos et al. [BKSW07]). Furthermore we introduce do-leaders, that start
with a ’d’iagonal line segment and end in a horizontal segment. The diagonal segments are
always directed towards the side of R where the label is, and have a fixed angle with the
x-axis—for simplicity we assume this angle to be fixed at 45◦. However, our algorithms are
applicable for any angle between 0◦ and 90◦ degree. Both leader types are illustrated in
Figure 3.2.

A point is labeled directly if its leader is a single line segment, that is, if only the horizontal

72 CHAPTER 3. BOUNDARY LABELING WITH 1-BEND LEADERS

R

(a) po-leaders.

Rp

`

(b) do-leaders.

Figure 3.2: Valid labelings for labels on the left side.

segment has non-zero length, otherwise it is labeled by a leader that contains a bend, from
now on called bend leader.

A labeling is a matching of points to labels and a selection of leaders that connects each
point to its label. A labeling is valid if every point has a unique label and every label is
connected to a unique point, and no two leaders intersect.

Our goal is to find a valid labeling with the minimum number of bends (that is, with the
maximum number of directly labeled points), or with the minimum total leader length. The
problem type of minimizing the number of bends is, for all variants, accessible to dynamic
programming. Minimizing the total leader length can obviously be done by the same tech-
nique if we change the way in which the costs of the solutions of subproblems are computed.
However, for minimizing the leader length in most variants sweepline-based algorithms can
be used to improve upon the corresponding dynamic-programming solution.

In Section 3.3 we present algorithms for the variants in which labels are located only on
one side of the point-containing rectangle R and in Section 3.4 we present algorithms where
labels are located on two opposite sides of R.

For simplicity we assume throughout this chapter that the label rectangles are uniform
(our techniques can easily be extended to non-uniform label rectangles at fixed positions along
the labeled sides of R). For the one-sided case we assume that the labels are located on the
left side of R. For simplicity we further assume that no two input points lie on a horizontal
line induced by a label and that for the po-leaders no two input points lie on a vertical line
and for the do-leaders no two input points lie on a diagonal line.

3.3 Algorithms for labels on one side

We first explain in Section 3.3.1 how to find a labeling with the minimum number of bends.
For the po-leaders this can be done in O(n3) time. Obviously there always exists a valid po-
leader labeling since any point can connect to any label by a po-leader. Then, we explain how
to extend our approach to an algorithm for do-leaders that runs in O(n5) time. Apparently,
do-leaders are harder to handle since for them, there are points that cannot connect to any
label. See Figure 3.2b where no do-leader can connect p and `, indicated by the dashed line.

In Section 3.3.2 we give sweepline-based algorithms that generate length-minimum label-
ings using po- and do-leaders. For po-leaders our algorithm requires O(n log n) time improving
the algorithm of Bekos et al. [BKSW07] that had quadratic running time. For do-leaders our
algorithm requires O(n2) time.

3.3. ALGORITHMS FOR LABELS ON ONE SIDE 73

3.3.1 Bend minimization

po-leaders

The dynamic program is based on the following idea. Choose a label ` for the rightmost point
r. Then, the leader from r to ` splits the problem into two independent subproblems that
can be solved recursively, see Figure 3.3a.

r

`

R

(a) Split into two independent
subproblems.

1
2

6
7
8

0

2n + 1 d’

d

10

4

(b) Numbering of the strips and the
points r, d and d′.

Figure 3.3: The idea for the dynamic programming.

Combinatorially, there are 2n different positions in which the leader of r can connect to a
label. These 2n positions are induced by the horizontal lines through each point and through
each horizontal side of the label rectangles, see Figure 3.3b. We identify these positions with
the strips between two consecutive horizontal lines and number them from 1 to 2n from
bottom to top. For the boundary cases of the dynamic program we give the halfplane below
R number 0 and the halfplane above R number 2n + 1, and introduce two dummy points d
and d′ that lie on the right corners of R, see Figure 3.3b.

A subproblem is now specifiecd by two parameters bot and top that define strips from the
set {0, 1, . . . , 2n, 2n+1}. These parameters uniquely define a subproblem as follows. Let nsub

be the number of labels between, but not including, the labels incident to bot and top. These
nsub labels are the open labels for the specified subproblem, that is, the labels that need to be
assigned to a point. Let Rsub be the closed strip between the upper horizontal line incident
to bot and the lower horizontal line incident to top, see Figure 3.4. The leftmost nsub points
in Rsub (and on its boundary) are the points that need to be assigned to a label and belong
to the subproblem.

top

bot

`sub }Rsub
Psub

Figure 3.4: The subproblem defined by bot and top.

We will store the number of bends of the optimal labelings in a table T . A table entry

74 CHAPTER 3. BOUNDARY LABELING WITH 1-BEND LEADERS

T [bot, top] gives the minimum number of bends for an optimal labeling of the corresponding
subproblem. The entry T [0, 2n+1] characterizes the whole input and hence gives the minimum
number of bends in a valid labeling of the complete input. The labeling itself is obtained by
keeping track of the subproblems whose solutions were used in the optimal solution.

To compute a solution to the complete problem, we fill the table T recursively in a top-
down fashion.

If no open label remains between bot and top we set T [bot, top] = 0.
To solve a specific subproblem [bot, top] that has at least one open label, we try all possible

choices for the leader of the rightmost point r in the subproblem. Note that not every choice
of a position for the leader of r results in a feasible split in the sense that both resulting
subproblems actually have a valid labeling. In the example of Figure 3.3b only positions
1, 3, 4, 6, 8 and 10 are feasible for the leader of r. The remaining positions 2, 5, 7 and 9 split
the problem into two subproblems in which the number of open labels does not match the
number of points that still have to be labeled. Such subproblems do not contribute any
information to the global optimum labeling and thus we do not compute their values. We
restrict our choices of leaders for r to those that end in a strip σ ∈ {bot + 1, . . . , top− 1} such
that a leader from r to the label at σ results in a feasible split.

We define δr,σ to be 0 if σ is one of the two strips incident to r (then r can be labeled
directly, for example when σ = 3 or 4 in Figure 3.3b) and 1 otherwise (then r is labeled by a
bend leader). The required entries are now computed by the following recursion:

T [bot, top] = min
σ∈{bot+1,...,top−1} feasible

T [bot, σ] + T [σ, top] + δr,σ.

Theorem 3.1 A valid one-sided bend-minimum labeling using po-leaders can be computed in
O(n3) time requiring O(n2) space.

Proof. We first sort all points once by x-coordinate and once by y-coordinate in O(n log n)
time.

The table T has O(n2) entries. For determining the solution of a subproblem we first
compute the points belonging to the subproblem, its rightmost point r, and all feasible splits.
This can be done in O(n) time by traversing the sorted lists. To compute the optimal solution
for a subproblem, we have to examine at most 4n entries of the table, which takes O(n) time.

The overall worst-case running time is thus O(n2) entries times O(n) time each, which
yields a total running time of O(n3).

Eventually, the dynamic program finds the optimal solution as it iterates over all valid
labelings. ♣

Note that when filling T in a top-down fashion as mentioned above, many of the entries
do not need to be computed since they do not belong to a feasible split.

do-leaders

Leaders of the do-type may provide a better readability of the figure as their shape is smoother.
However, they are harder to handle as in general not every point can connect to every label by
a do-leader as pointed out earlier. Nevertheless, we can use a dynamic programming approach
very similar to the solution for po-leaders.

For simplicity we assume that no two points lie on a horizontal or a diagonal line and
no point lies on a horizontal line induced by a label boundary. We use the previous nota-

3.3. ALGORITHMS FOR LABELS ON ONE SIDE 75

tion for the 2n strips that define the combinatorially distinct leader ending positions, recall
Figure 3.3b. The main difference between the solution for do-leaders and the solution for
po-leaders is that we now need four parameters of linear choice to sufficiently describe a sub-
problem, namely two parameters that indicate the lower boundary and two that indicate the
upper boundary of the subproblem.

Let bot < top be positions from the strip set {0, 1, . . . , 2n, 2n + 1} and let p and q be
points from the set P ∪ {rbot, rtop}. Then, the lower boundary of the subproblem specified
by p, bot, q, and top consists of the do-leader from point p to the label incident to position
bot. The upper boundary consists of the do-leader from point q to the label at position top.
The open labels of the subproblem are the labels between bot and top, and the points that
belong to the subproblem are the points in the interior of the region bounded by the leaders
mentioned above and the vertical line through min{xp, xq}, see Figure 3.5. The points p and
q are required for the definition of a subproblem since otherwise, together with the region
boundary, the set Psub would not be well-defined.

q

p

top

bot

`sub

Rsub

Psub

Figure 3.5: The subproblem defined by p, bot, q, and top.

As before, the table entry T [p, bot, q, top] gives the minimum number of bends for leaders of
points in Psub in a valid labeling of the corresponding subproblem. The entry T [rbot, 0, rtop, 2n+
1] includes the whole input and thus gives the minimum number of bends in a valid labeling
for the complete instance.

The computation of the table entries is similar to the computation for po-leaders. Let r
be the rightmost point in Psub and let σ be a strip in {bot+ 1, . . . , top− 1}. This set contains
all strips that are incident to an open label that can be connected to r by a do-leader that has
its horizontal segment in σ. We say that σ is feasible for a subproblem if σ is incident to an
open label and if the do-leader as described above splits the problem into two subproblems
in which the number of points and open labels match. For a feasible strip σ we define δr,σ as
for po-leaders.

The table is filled as for po-leaders, with the exception that it now can happen that a
subproblem has no feasible strip. An example where this happens is depicted in Figure 3.6:
for the depicted subproblem the number of open labels and points matches, but leaders from
r can only reach the label below ` creating subproblems in which the number of open labels
and points do not match. If the problem defined by p, bot, q, top has no feasible strip, we set
T [p, bot, q, top] =∞.

In Section 3.3.2 we will give a further characterization to detect infeasibility as early as
possible but for now we are contented with the above cardinality test of labels and points. If
the number of open labels in an subproblem is zero, we set T [p, bot, q, top] = 0.

Otherwise, we compute T [p, bot, q, top] by the following recursion:

76 CHAPTER 3. BOUNDARY LABELING WITH 1-BEND LEADERS

Rsub

`{open R`

r

Figure 3.6: Infeasible subproblem for which the number of points and labels match.

T [p, bot, q, top] = min
σ∈{bot+1,...,top−1} feasible

T [p, bot, r, σ] + T [r, σ, q, top] + δr,σ.

With the same analysis as before, but now with a table of size O(n4), we get the following
result:

Theorem 3.2 A valid one-sided bend-minimum labeling using do-leaders can be computed in
O(n5) time requiring O(n4) space, if there is any. If not we can report infeasibility within the
same time and space bounds.

3.3.2 Length minimization

po-leaders

For the special case of minimizing the total leader length using po-leaders one can do better
than in O(n3) time. Bekos et al. [BKSW07] have given a quadratic-time algorithm. We will
give a sweepline algorithm that runs in O(n log n) time and show that this bound is tight.

Lemma 3.1 comprises the key for showing that the lablings produced by our algorithms
(for po- and do-leaders) are crossing-free. We need the following notation. Let l(p, `) denote
the leader from point p to label `. We say that l(p, `) is downwards oriented if ` is below p.
Conversely, l(p, `) is a upwards oriented if ` lies above p.

Lemma 3.1 For any labeling L∗ with po- or do-leaders that may contain crossings and has
minimum total leader length, there is a crossing-free labeling L whose total leader length does
not exceed the total leader length of L∗. This labeling L can be constructed from L∗ in O(n2)
time.

Proof.
We first observe that L∗ does not contain any crossings between a downwards-oriented

leader l(p, `) and an upwards-oriented leader l(q, m): it is easy to see that if such a crossing
exists, we could reduce the total leader length by replacing the leaders l(p, `) and l(q, m) by
l(p, m) and l(q, `). Hence, L∗ would not be optimal, see Figure 3.7(a). In a similar way we
can verify that in L∗ no direct leader can have a crossing with a downwards-oriented leader
and an upwards-oriented leader at the same time.

We call a crossing in L∗ in which at least one downwards-oriented leader is involved a
downward crossing. An upward crossing is defined analogously. From the above it follows
that the set of leaders involved in downward crossings contains downwards-oriented leaders

3.3. ALGORITHMS FOR LABELS ON ONE SIDE 77

and possibly direct leaders, the set of leaders involved in upward crossings contains upwards-
oriented leaders and possibly direct leaders, and no leader appears in both sets.

Below we explain how L∗ can be transformed into a labeling without upward crossings
without increasing the total leader length and without introducing more downward crossings.
The transformation can be carried out in O(n2) time. By repeating the transformation upside-
down, we can subsequently eliminate all downward crossings without re-introducing upward
crossings, thus obtaining a crossing-free labeling with the same total leader length as L∗.

`

m
p

q

(a) In a labeling of mini-
mum total leader length,
differently oriented lead-
ers do not intersect.

q p
`i

`j

(b) Purging upward
crossings: before
processing `i

q p
`i

`j

(c) Purging upward
crossings: after
processing `i

Figure 3.7: Illustrations for the proof of Lemma 3.1.

To eliminate the upward crossings we proceed as follows. The approach follows the idea of
Bekos et al. [BKSW07], generalized to leaders with any bend angle α including do-leaders. Let
`1, . . . , `n be the sequence of all labels ordered from bottom to top. We process the labels in
this order and make sure that all leaders ending at already processed labels are not involved
in upward crossings any more. Now assume that we are about to process label `i and its
leader l(p, `i). In O(n) time we determine the leader l(q, `j) that is involved in the leftmost
upward crossing with l(p, `i)—if there is any. Since all labels below `i have already been
processed and are not involved in any upward crossings any more, `j must lie above `i. This
implies that the crossing is located on the horizontal segment of l(p, `i), see Figure 3.7(b).
We now swap the label assignment and replace l(p, `i) and l(q, `j) by l(p, `j) and l(q, `i), see
Figure 3.7(c). Obviously this does not change the total leader length. Both new leaders
l(p, `j) and l(q, `i) are upwards-oriented leaders and hence they cannot be involved in any
new downward crossings—otherwise the new labeling, and therefore also the original labeling
L∗, would be suboptimal. Regarding upward crossings, the horizontal segment of l(q, `i) is
crossing-free since all leaders to labels below `i are crossing-free, and the horizontal segment
of l(q, `i) is crossing-free by construction. Hence, l(q, `i), the leader to `i, is not involved in
any upward crossing and we can proceed with `i+1.

Since each of the n labels is processed exactly once, using O(n) time per label, the total
running time is O(n2). ♣

We now describe our O(n log n)-time algorithm to compute a crossing-free labeling with
po-leaders of minimum total length. The algorithm first scans the input to divide it into
parts that can be handled independently; then it uses a sweepline algorithm for each of these
parts. For a higher generalization we now allow space between two labels. The more restricted
version in which the labels connects directly to each other works absolutely analogously.

The initial scan works as follows. Consider the horizontal strips defined in the previous
subsection. We traverse these strips in order from bottom to top, counting for each strip σ:

• paσ: number of points above σ (incl. any point on the top edge of σ);

78 CHAPTER 3. BOUNDARY LABELING WITH 1-BEND LEADERS

`

Figure 3.8: Left: Classification of strips in the plane-sweep algorithm: neutral strips are shaded,
downward and upward strips are marked by arrows. When the sweep line reaches the label `, the two
black points are in W . Right: The completed minimum-length labeling.

• `aσ: number of labels above σ (incl. any label intersecting σ);

• pbσ: number of points below σ (incl. any point on the bottom edge of σ);

• `bσ: number of labels below σ (incl. any label intersecting σ).

Note that for every strip, paσ + pbσ = n, and `aσ + `bσ is either n or n + 1. We classify the
strips in three categories and then divide the input into maximal sets of consecutive strips of
the same category (see Figure 3.8):

• downward : strips s such that paσ > `aσ (and therefore pbσ < `bσ);

• upward : strips s such that pbσ > `bσ (and therefore paσ < `aσ);

• neutral : the remaining strips; these have paσ = `aσ and/or pbσ = `bσ.

Neutral sets are handled as follows: any point p that lies in the interior of a neutral set is
labeled with a direct leader.

Points in an upward set S (including any points on its boundary) are labeled as follows.
We use a plane-sweep algorithm, maintaining a waiting list W of points to be labeled, sorted
by increasing x-coordinate. Initially W is empty. We sweep S with a horizontal line from
bottom to top. During the sweep two types of events are encountered: point events (the line
hits a point p) and label events (the line hits the bottom edge of a label `). When a point
event happens, we insert the point in W . When a label event happens, we remove the leftmost
point from W and connect it to ` with the shortest possible leader. Using the leftmost point
for labeling ` prevents producing crossings in the further run of our algorithm.

Points in downward sets are labeled by a symmetric plane sweep algorithm, going from
top to bottom.

Theorem 3.3 The valid one-sided length-minimum labeling using po-leaders can be computed
in O(n log n) time requiring O(n) space.

3.3. ALGORITHMS FOR LABELS ON ONE SIDE 79

Proof. The algorithm described above can easily be implemented to run in O(n log n) time
and O(n) space. We will now prove that the algorithm produces a crossing-free labeling of
minimum total leader length.

We observe that in any optimal labeling L, no leader crosses a neutral strip. To see this,
consider any neutral strip σ. Assume paσ = `aσ (otherwise we have pbσ = `bσ, and that case
is symmetric). Let `σ be the label that intersects σ, if it exists. Suppose L contains a leader
l that crosses σ. We consider three cases:

• If l connects a point p to `σ, then l can be shortened by moving its horizontal segment
on σ closest to p, eliminating the intersection with σ (Figure 3.9(a), top).

• If l leads from a point p above σ to a label ` below σ, then, because paσ = `aσ,
there must also be a leader l′ leading from a point p′ below σ to a label `′ above or
intersecting σ. Now the total leader length can be reduced by connecting p to `′ and p′

to ` (Figure 3.9(a), bottom).

• The case that l leads from a point p below σ to a label above σ is symmetric to the
previous case.

σ

`′

σ

p p

p′ p′

`

`′

`

σ

`σ

σ

`σ

p p

(a) Eliminating intersections with neu-
tral strips

p

p′
`

`′

`

`′

p′

p

(b) The black points are in W when the
sweep line reaches `.

Figure 3.9: Illustrations for the proof of Theorem 3.3

Swapping the labels of p and p′ may cause leaders to intersect each other. Therefore the
above argument only shows that if L contains a leader that crosses a neutral strip, then L
is not length optimal among all, not necessarily crossing-free labelings. However, Lemma 3.1
shows that for any optimal labeling that has intersections, there exists a crossing-free labeling
that is equally good. Thus the above argument also shows that if L contains a leader that
crosses a neutral strip, then L is not optimal among all crossing-free labelings.

It follows that in any optimal labeling, points in the interior of neutral sets are labeled by
direct leaders—as done by our algorithm. Observe that between any downward strip and any
upward strip, both paσ − `aσ and pbσ − `bσ differ by at least two. When going from a strip
to an adjacent strip, the value of each of these expressions changes by at most one. Hence
downward strips and upward strips are always separated by neutral strips. It follows that
in any optimal labeling, the points in any upward (or downward) set S must be labeled by
leaders that lie entirely within S. We will now argue that our plane-sweep algorithm for such
a set S produces an optimal labeling for the points in S.

80 CHAPTER 3. BOUNDARY LABELING WITH 1-BEND LEADERS

Consider an upward set S. Note that the strip β directly below S is a neutral strip with
pbβ 6 `bβ while the bottommost strip σ in S has pbσ > `bσ; hence we have pbβ = `bβ and
the first event must be a point event for a point p on the bottom edge of S. Observe that
the strips β and σ may intersect a label ` (as in Figure 3.8), but it cannot be used to label
p: since pbβ = `bβ and no leaders can cross β, all labels up to and including ` are needed to
label points below β. So we must label all points in (and on the boundary of) S with labels
that lie entirely above σ. It remains to prove that our algorithm produces such a labeling.

First note that as soon as the number of label events processed catches up with the number
of point events processed, we enter a neutral strip and the plane sweep of S ends; thus W
always contains at least one point when a label event happens. Now consider a labeling L that
deviates from the one produced by our algorithm. Let ` be the lowest label that, according
to L, is not connected to the leftmost point p that is in W when the sweep line reaches `.
Note that it follows that p is connected to a label `′ above ` with a leader that crosses all
strips that intersect `; see Figure 3.9(b). Now ` cannot be connected to any other point in
W , because that would create a crossing with the leader between p and `′. So ` must be
connected to a point p′ above the sweep line—but then swapping the labels of p and p′ and
subsequently resolving any resulting crossings would give a labeling with smaller total leader
length. Hence any labeling that deviates from the one produced by our algorithm must be
suboptimal. ♣

Lemma 3.2 The valid one-sided length-minimum labeling using po-leaders cannot be com-
puted faster than in O(n log n) time.

Proof. To see that solving the labeling problem takes Ω(n log n) time in the worst case,
consider a sequence x1, x2, . . . , xn of distinct positive numbers, not necessarily in sorted
order. Suppose we compute a crossing-free labeling with po-leaders for a set of points
(x1, y1), (x2, y2), ..., (xn, yn), where 0 < yi < 1 for 1 6 i 6 n and yi 6= yj for 1 6 i < j 6 n,
and a set of labels with lower right corners (0, 1), (0, 2), ..., (0, n), and look up, for the labels
(0, 1), (0, 2), ..., (0, n) in order, the points attached to it. We would find the points sorted
in order of increasing x-coordinate, otherwise leaders would intersect. Hence computing a
crossing-free labeling is at least as difficult as sorting. ♣

do-leaders

We cannot use the same approach as for po-leaders since not every point can connect to every
label by a do-leader. Roughly speaking we will use a generalization of the algorithm by Bekos
et al. [BKSW07] for computing the valid length-minimum labeling using po-leaders that takes
these restrictions into account.

We start by introducing necessary conditions for the existence of a do-labeling and show
how to algorithmically make use of them. In the end, we will constructively see that the
established conditions are already sufficient for the existence of a valid do-labeling.

Each label ` induces a funnel-shaped subregion R` in which all points that could be
assigned to this label are located, refer to Figure 3.6 for an example. The arrangement of
all these regions defines O(n2) cells, see Figure 3.10. All points in the same cell of this
arrangement can connect to the same set of labels and these sets are distinct for any two
cells.

A cell itself is the intersection of an ascending and a descending diagonal strip and after
numbering these strips we can index each cell, e.g. the white cell in Figure 3.10 has index

3.3. ALGORITHMS FOR LABELS ON ONE SIDE 81

cell (5, 6)

1 2 3 4 5 6 70

1 2 3 4 5 6 70

4 5,
6{L5,6

Figure 3.10: The cell arrangement.

(5, 6), when we take the index of the descending strip as first coordinate. For a cell (i, j) we
denote the label set that can be reached by Li,j and the smallest triangle bordering to Li,j

and containing (i, j) by 4i,j , see Figure 3.10. Now, a necessary condition for the existence of
a do-labeling is obviously that the number ni,j of points in 4i,j shall not exceed the number
of labels in Li,j which is i + j − n. Otherwise there will be unassigned points left over in 4i,j

that cannot connect to any other labels beside Li,j . We say that i + j − n is the level of cell
(i, j) and summarize the necessary conditions in the following lemma.

Lemma 3.3 There can only be a valid do-labeling if for each k-level cell (i, j) it holds that
ni,j ≤ k.

We can check these necessary conditions in O(n2) time. For this we have to compute
all numbers ni,j : initially we set each ni,j to zero. For each input point we determine its
containing cell (i, j) and increment ni,j by one. Then, each ni,j gives the number of points in
the cell (i, j) but we aim for the number of points in 4i,j . We traverse the cells in increasing
order of their levels. Apparently, all 1-level cells already contain the desired values, for all
other cells ni,j is updated based on three predecessor values (see Figure 3.10):

ni,j ← ni,j + ni,j−1 + ni−1,j − ni−1,j−1.

This counts each point in4i,j exactly once. The time complexity per cell is obviously constant.
Now, we ready to present our algorithm that computes the length-minimum labeling. We

assume that we computed the numbers ni,j in a preprocessing and neither of the necessary
conditions has been violated. For a k-level cell (i, j) for which ni,j is k we say that 4i,j is full,
meaning that in any valid do-labeling each of the ni,j points in 4i,j connects to a label in Li,j .
For the algorithm we generalize the above definition: a triangle 4i,j is full if the numbers of
points in 4i,j and labels in Li,j that have not been assigned yet match. From now on we call
such points and labels open.

The algorithm traverses the cells in increasing order of their levels and for each level
from bottom to top. Whenever we find a k-level cell (i, j) for which 4i,j is full, we call the
subroutine complete(4i,j) which computes a length-minimum valid labeling for the remaining
open items in 4i,j . Then, 4i,j is marked as completed. Eventually the traversal will examine
the n-level cell (n, n) and if not all points have been assigned yet, an assignment for the
remaining open points and labels will be found.

82 CHAPTER 3. BOUNDARY LABELING WITH 1-BEND LEADERS

In the procedure complete(4i,j) we process the open labels from bottom to top. Basically,
for each open label ` the point that we assign to ` is the first open point that we find when
we sweep R` ∩ 4i,j by a horizontal line from bottom to top (from now on we will omit the
obvious intersection with 4i,j . If the placement of the leader inserts any crossing with earlier
drawn-in leaders we purge the crossings by flipping assigned labels without changing the total
leader length similarly to Bekos et al. algorithm for the po-leaders.

However, we have to pay attention during the completion of a triangle 4i,j : each time we
assign a point that does not lie in a 1-level cell, we artificially shift this point into the 1-level
cell adjacent to the assigned label, see Figure 3.13. This decreases the number of open labels
for incompleted subtriangles of 4i,j while the number of open points in them stays the same,
thus, these triangles can become full. If this happens we have to bring the completion of these
recently filled subtriangles forward to the usual completion of 4i,j .

For describing the full operation mode of complete(4i,j) we distinguish the two cases that
either a full triangle has newly been found (complete(4i,j)) or a subtriangle (subtriangle-
complete(4i′,j′)) has become full during the completion of a supertriangle.

complete(4i,j): First, we traverse the incompleted cells of 4i,j by a breadth-first search
starting from (i, j). This yields lists of the remaining open points and labels in 4i,j . If the
lists of points and labels are empty we mark (i, j) as completed and are done, otherwise we
sort both lists according to increasing y-coordinate.

Together with the BFS we purge redundant cells: due to already completed subtriangles
of 4i,j cells can have become equivalent in the sense that they now can reach the same
set of open labels. We merge these equivalent cells and assign the number and level of the
original topmost-level cell to the newly emerged cell. Obviously, this maintains the number
of points and labels in the triangle associated with the new cell, see Figure 3.11. This step
is indispensable for the maintenance of a quadratic running time as the update of the cell
entries that we have to do when we make an assignment later on would cause the runtime to
get super-quadratic if the number of cells was quadratic.

1
2

0
1

2
3

2

2
3

Figure 3.11: Merging redundant cells.

After finishing these initilizations we start with assigning points to the open labels. For
this, we sweep the labels from bottom to top. For an open label ` we do the following: we
traverse the list of open points and assign the first point p that we find and that is in R`

to `. We remove ` and p from the lists of open labels and points. If the leader from p to `
intersects earlier drawn-in leaders we take the leader of the topmost label among them and
flip the assigned points with `, we repeat this step until there are no crossings any more, see
Figure 3.12.

Furthermore, after making an assignment, we update the cell structure and data of 4i,j .
For cells that have become redundant by the assigment this works analogously as for the
initilization. For the numbers ni,j we have shifted the assigned point from its original cell

3.3. ALGORITHMS FOR LABELS ON ONE SIDE 83

` ``

pq

`′ `′ `′

Figure 3.12: Purging crossings after assigning p→ `.

to the cell c` adjacent to `. We trace the leader from ` back to p and update the affected
cells accordingly, see Figure 3.13. This update can cause subtriangles (i′, j′) to become full.
If this happens we have to bring their completion forward. For this, we prepare the lists of
open labels and points in 4i′,j′ and start the subroutine subtriangle-complete(4i′,j′). Then,
we mark (i′, j′) including the according points and labels as completed and proceed with the
completion of 4i,j .

Finally, after the last open label in 4i,j is assigned we mark 4i,j as completed.

4i′,j′6 7

`

`′
p

q

Figure 3.13: 4i′,j′ becomes full by assigning p → `. The open point q in 4i′,j′ now has to be
assigned to `′ in order to find a valid labeling.

subtriangle-complete(4i′,j′): As before, only the lists of open points and labels are
handed over by the overall procedure and are not computed by BFS.

Now we show that this algorithm indeed computes a valid length-minimum labeling in
quadratic time.

Theorem 3.4 The valid one-sided length-minimum labeling using do-leaders can be computed
in O(n2) time requiring O(n2) space, if there is any. If not we can report infeasibility within
the same time and space bounds.

Proof. We assume that the necessary conditions from Lemma 3.3 hold, otherwise we report
infeasibility after the O(n2)-time preprocessing.

For the correctness of the described algorithm it is obviously sufficient to show that the
procedure complete(4i,j), not called within the completion of a supertriangle, computes a
valid length-minimum labeling within 4i,j . We do this in the following stages: after com-
plete(4i,j) has finished it holds that

84 CHAPTER 3. BOUNDARY LABELING WITH 1-BEND LEADERS

(i) each of the labels Li,j is assigned to a distinct point in 4i,j .
(ii) the computed labeling is crossing free and length-minimum.
(iii) the computed labeling is valid, i.e. crossing free.

Finally for the time and space requirements we show that

(iv) the algorithm can be implemented in quadratic time and space.

For simplicity we prove (i)–(iii) only for cells (i, j) for which 4i,j does not contain any of
the outermost 1-level cells, i.e. neither (1, n) nor (n, 1). Then, 4i,j is a right-angled triangle
with its hypotenuse on the left. This makes the understanding easier. It is not hard to see
that the following considerations generalize to the omitted cells. For sake of completeness
note that complete(4i,j) has to sweep 4i,j from top to bottom if the cell (1, n) is contained
in 4i,j .

(i):
We show that in the end every label that had been open when complete(4i,j) was called,

gets a point assigned. Marking assigned points ensures that they are not assigned twice and
thus the assignment is distinct.

Let `1, `2, . . . , `k be the numbering of the labels Li,j from bottom to top. We show that
each time we take the next label ` = `l from the open label list we still find an open point in
R`. Let 4below be

⋃l−1
κ=1 Rκ \ R` and 4above be

⋃k
κ=l+1 Rκ \ R`, see Figure 3.14. Inductively

the labels `1, . . . , `l−1 are already assigned. As the necessary conditions for the existence of
a valid labeling hold we know that there are at most k − l points in 4above. This yields that
R` ∪4below contains at least l points. Furthermore, by the proceeding of the algorithm it is
clear that no point in R` is assigned to a label in `l+1, . . . , `k yet; some of the labels bordering
to 4above can already be assigned but then their assigned points can only lie in 4above or a
supertriangle of 4above that does not contain R` otherwise ` would also be assigned yet as it
then lies in an earlier processed full triangle, a contradiction.

By the necessary conditions we also know that 4below contains at most l− 1 points all of
which are assigned because we have only shifted points from R` to 4below as long as 4below

was not full. Thus, the number of open points in R` is at least k− (k− l)− (l− 1) = 1, which
means we still find an open point in R` for assigning it to `l.

`l = `

`1

`l−1

`l+1

`k

4above

4below

R`

≤ k − l

≤ l − 1

Figure 3.14: Illustrating part (i) of the proof of Theorem 3.4.

(ii):
We compare the labeling L∗ that we would get by complete(4i,j) without performing any

crossing purges with a length-minimum labeling Lmin for 4i,j in which each point is labeled

3.3. ALGORITHMS FOR LABELS ON ONE SIDE 85

by a distinct label but that is allowed to have crossings. Then, proving that L∗ and Lmin are
equal in length is sufficient for (ii) because Lemma 3.1 shows that final labeling produced by
complete(4i,j) is crossing free and has no longer total leader length than L∗.

The key observation is that minimizing the total leader length comes down to minimizing
the total length ld of diagonal leader segments: for a point p let lxp be the x-distance to the
labeling side of R. Then, a leader from p to any label has length lxp + (1− 1√

2
)ldp, where ldp is

the length of the diagonal segment of p’s leader. Thus, the total length of a fixed labeling is∑
p lxp + (1− 1√

2
)ldp =

∑
p lxp +(1− 1√

2
)
∑

p ldp =
∑

p lxp +(1− 1√
2
)ld which shows that minimizing

ld also minimizes the total length.

`

R`

`′

p`′

p` `

R`

`′

p`′

p`

Figure 3.15: Illustrating part (iii) of the proof of Theorem 3.4.

We show that complete(4i,j) computes an assignment which minimizes the total length
of diagonal leader segments in 4i,j . We will show this by a nested induction. The outer
induction is on the level k of the cell (i, j) and the inner induction on kopen, the number of
open points and labels when we find 4i,j to be full.

Outer induction base k = 1:
As the necessary conditions are satisfied, 4i,j contains exactly one point that is not assigned
yet. Thus, kopen must be 1 and the open point is assigned to the label incident to 4i,j which
is the case for every valid labeling.

Outer induction step k > 1:
Inner induction base kopen = 0: There are no remaining open items.
Inner induction step kopen > 0: Let ` be the bottommost open label adjacent to 4i,j and let
p` be the point that the algorithm assigns to `. We prove that there is an assignment for
the remaining open items that minimizes the total length of diagonal leader segments that
indeed labels p` with `. The rest is then done by the induction hypotheses: Subtriangles that
became full by the assignment are solved optimally by the outer induction hypothesis and
the triangle 4i,j in which ` and p` are not open any more is solved optimally by the inner
induction hypothesis.

It remains to prove that there is an minimum assignment that assigns p` to `, assume the
contrary. We show that there is a minimum assignment OPT ′ in which p` is assigned to a
label `′ and the point assigned to label ` is p′ such that we can switch the labels of p′ and p
resulting in an assignment OPT whose diagonal leader length is not longer than the one of
OPT ′. This contradicts the assumption as we then have a minimum assignment for which p
is assigned to `.

86 CHAPTER 3. BOUNDARY LABELING WITH 1-BEND LEADERS

By outer and inner induction hypothesis, all subtriangles of 4i,j that are already com-
pleted have been labeled optimally. Since we took ` to be the bottommost open label in
4i,j this means that there is a minimum assignment OPT ′ in which p`′ lies above p` and
`′ lies above `. By p`′ ∈ R` and by simple geometric observations we first get that p`′ is in
R`′ and that we could indeed assign p`′ to `′, see Figure 3.15. By a case distinction on the
relation between p` and and the horizontal strip incident to ` (below/in-strip/above) and on
the relation between p` and p`′ (left/right) it is not hard to see that the assignment p`′ → `′,
p` → ` never exceeds the assignment p`′ → `, p` → `′ in terms of diagonal leader length
which yields the desired. We omit the examination of each case, two examples are depicted
in Figure 3.15 where the significant diagonal segments are drawn bold and dotted for the
assignment p`′ → `, p` → `′ and solid for the assignment p`′ → `′, p` → `.

(iii):
Storing the cells of the arrangement dominates the space consumption and is quadratic.

A call to complete(4i,j), where 4i,j has κ open points, requires at most O(κ2) time: after
the lists of open points in 4i,j have been generated and sorted in O(κ log κ) time, finding the
point for an open label and updating the list of remaining items is in O(κ). For the crossing
purges we have to deal with at most O(κ2) crossings in total. Since each point appears as an
open point for exactly one full triangle this settles the total running time of O(n2). ♣

Remark. Constructively our algorithm shows that the necessary conditions in Lemma 3.3
are already sufficient for the existence of a valid do-labeling. Hence, for any subproblem that
we deal with in the dynamic program of the bend-minimization algorithm for do-leaders in
Section 3.3.1, we can check whether the subproblem is feasible in O(m2) time where m is the
number of points in the subproblem. Performing these checks raises the theoretic running time
of the algorithm from O(n5) to O(n6). However, in practice we detect infeasible subproblems
as soon as possible, meaning that we do not compute needless table entries. It turned out
that indeed, performing the checks yields a better running time in practice.

3.4 Algorithms for labels on two sides

In this section we consider the problem of matching points with labels that are placed on the
left and on the right side of R. For simplicity we assume that the labels on the left and right
side are aligned. Let again n denote the number of points and the number of labels. Note
that by the above assumption n is always even and the number of labels on each side is n/2.

For the bend-minimization problems we use dynamic programming again. Disappoint-
ingly, the running times of our algorithms are rather high, i.e. O(n8) for the po-leaders and
even O(n14) for the do-leaders. Accordingly to the one-sided cases, the algorithms can be
adapted for computing the length-minimum labelings as well, within the same running times.
However, for length-minimization Bekos et al. [BKSW07] gave a nice quadratic-time algorithm
for po-leaders that we briefly sketch in Section 3.4.2. For finding the length-minimum labeling
using do-leaders it is still open whether there exists an algorithm with running time faster
than O(n14). However, this suggests itself as for all other variants there are faster algorithms
for length-minimization than for bend-minimization.

3.4.1 Bend minimization

For both leader types the idea is the same: we partition the region of a subproblem into two
regions by a polygonal line. Each such region represents a new subproblem that can be solved

3.4. ALGORITHMS FOR LABELS ON TWO SIDES 87

independently. We will show that by the way in which we partition the regions, there is at
least one bend-minimum labeling that will be found by our algorithm.

For the po-leaders a polygonal split line will require three parameters of linear range while
for the do-leaders we need five. Thus, the table sizes are O(n6) and O(n10), respectively, Since
we have to examine O(n2) and O(n4) table entries for the determination of a new entry, we
end up with a running time of O(n8) and O(n14) for the po- and do-leaders, respectively.

We adapt the numbering of horizontal strips from Section 3.3.1, recall Figure 3.3b. Note
that we now have 3

2n strips that partition R while the half planes below and above R are
numbered with 0 and 3

2n + 1.
Differing from the one-sided case we here impose the following restriction (*): each non-

direct leader connects to the label in the middle of the strip that was assigned for its con-
nection. Direct leaders still connect to their labels on the boundary of two strips as they
induce this boundary, otherwise there will not be any direct leaders at all. Restriction (*)
enables a simpler split which requires less technical details as without the restriction as we
then can split the subproblems always with lines located in the middles of the strips. We note
that our methods could be extended obeying the general case of sliding ports but this would
involve nasty technical details; the theoretic running time would remain the same, however
the number of horizontal strips has to doubled.

In general, (*) ensures that the connecting points will not lie too close to a label boundary,
which justifies the restriction in practice. Surely, we increase the minimum length for the
length minimum labeling by (*) if we use the algorithm for length minimization, but by the
above argument the readability of the theoretic length minimal labeling is poor anyway.

However, we have to make sure that we do not lose any significant labelings for the
optimization by (*). We show that the number of bends in a bend-minimum labeling L that
does not obey (*) is not less than the number in a bend-minimum labeling obeying (*): let
σ be the strip in which a non-direct leader l connects to its label in L. W.l.o.g. we assume
that l is upwards directed and connects to a label ` on the left side, see Figure 3.16. Let
L∗inv be the labeling that emerges from L when (*) gets fulfilled, i.e. we move all non-direct
leaders to the midpoints of their corresponding connecting strips. L∗inv has the same number
of bends than L and is obviously not valid if and only if l intersects a leader l′ that it did
not intersect in L. Since there are no points in the interior of σ, l′ can only be a non-direct,
downards directed leader that connects to the label on the right side in σ, see Figure 3.16.
However then, redirecting l to the right and l′ to the left yields a labeling L∗ that has not
more bends than L and whose length is even smaller than the length of L∗inv. Thus, we do
not lose significant labelings for the bend minimization.

strl`

L

l′

L∗
inv L∗

Figure 3.16: We do not lose a significant bend-minimum labeling by restriction (*).

po-leaders

As in Section 3.3.1 we assume that no two input points lie on a horizontal or a vertical line
and no input point lies on a horizontal line induced by a label rectangle.

88 CHAPTER 3. BOUNDARY LABELING WITH 1-BEND LEADERS

For the po-leaders we need a partitioning of the R into vertical strips: R is partitioned
into n + 1 vertical strips by the vertical lines through every input point. We number these
strips by 0, 1, . . . , n from left to right.

A subproblem of the dynamic program is enclosed by a lower and an upper boundary line.
The lower boundary line consists of a left horizontal segment in strip horbot

` , a right horizontal
segment in strip horbot

r , and a vertical segment in strip verbot connecting the two horizontal
segments. Note that the vertical segment is unnecessary if both horizontal segments use
the same strip. In this case we can simply set the vertical parameter to 0. Similarly, the
triple (hortop` , vertop,hortopr) defines the upper boundary line. We will abbreviate the triple
(horbot

` , verbot,horbot
r) by

−→
bot and the triple (hortop` , vertop,hortopr) by

−→
top. Additionally, we

need a seventh parameter type to complete the description of a subproblem, this parameter
indicates whether there are still open labels on both sides of R (type = 2) only on the left
side of R (type = 1l) or only the the right side (type = 1r). A subproblem is thus specified
by six parameters, with O(n) choices for six of them and a constant range for the seventh.

In contrast to the one-sided case, when splitting, we here only partition the plane and do
not assign the labels that are incident to the boundary line yet. This is why we additionally
endow the horizontal parameters by a sign that indicates whether the label incident to the
denoted strip belongs to the subproblem (+) or not (−). Hence, the range of the parameters
horbot

` ,horbot
r ,hortop` ,hortopr is {0,±1, . . . ,±3

2n, 3
2n + 1}. The range of verbot and vertop is

{0, 1, . . . , n}. See Figure 3.17 for examples.

+2

−6

0

+3

+5

10 102

0

1` 1r

3

Figure 3.17: The subproblem of type = 2 with
−→
bot = (−6, 2,+5) and

−→
top = (10, 0, 10) is highlighted

in light grey. The degenerated subproblems of type = 1` and type = 1r for
−→
bot = (0, 0, 0) and

−→
top = (+2, 3,+3) are highlighted in grey.

We call the subproblems of type 1l and 1r degenerated. We have to describe their definition
in more detail since we want them to use the same parameters as the type-2 instances. Let
(1`[1r],

−→
bot,
−→
top) be a degenerated subproblem and let n` [nr] be the number of belonging labels

on the left [right] side. Then, the degenerated instance (1`[1r],
−→
bot,
−→
top) contains the n` [nr]

leftmost [rightmost] points of the subproblem region, see Figure 3.17 for an example.
The table entry T [

−→
bot,
−→
top, type] shall give the minimum number of bends for a valid

labeling of the induced subproblem. The base cases are: for a subproblem that contains no
points we set T = 0. For a subproblem that contains one point we check whether there is
a po-leader that directly connects to the open label, whether a connection by a bend leader
is possible or whether there is no po-leader at all that connects the point and the incident
label. Accordingly we set T = 0, T = 1, or T =∞, a situation in which the latter happens is
depicted in Figure 3.18.

A subproblem S that still contains at least two points will be further split. For this we
use a polygonal cut line defined by three parameters (horcut

` , vercut,horcut
r) =:

−→
cut splitting S

3.4. ALGORITHMS FOR LABELS ON TWO SIDES 89

`
p

Figure 3.18: There is no po-leader from p to label `.

into two subproblem. To make sure that these subproblems are well-defined we only iterate
over polygonal lines

−→
cut that do not stick out of the region defined by S. For this we consider

the regions as closed, meaning that |horcut
` | can come from {horbot

` ,horbot
` + 1, . . . ,hortop` }

and |horcut
r | can come from {horbot

r ,horbot
r + 1, . . . ,hortopr }. By looking at

−→
bot and

−→
top we

can obviously determine the values of vercut that satisfy the above condition in constant
time. Moreover, using only one vercut for splitting is enough, namely one of the vercut’s that
splits into two subproblems in which the number of points and associated labels match. To
summarize, we call a triple

−→
cut feasible if the induced polygonal line does not stick out of S

and splits S into two subproblems in which the number of points and associated labels match.
We define −−→cut to be (−horcut

` , vercut,−horcut
r). This makes sure that the label ` incident

to the split line is assigned to only one subproblem. However, we have to be a bit more
careful here, if ` does not belong to the problem that we are about to split, the horizontal
strip parameters must always appear as their negative value as we would otherwise re-assign
` that had already been assigned to a different subproblem.

Now, we can give the recursion for the computation of the table entries.

T [
−→
bot,
−→
top, 2] = min−→

cut feasible

{
T [
−→
bot,
−→
cut, 2] + T [−−→cut,

−→
top, 2], T [

−→
bot,
−→
top, 1`] + T [

−→
bot,
−→
top, 1r]

}
,

T [
−→
bot,
−→
top, 1`] = min−→

cut feasible

{
T [
−→
bot,
−→
cut, 1`] + T [

−→
cut,
−→
top, 1`]

}
+ δp`,h`

,

T [
−→
bot,
−→
top, 1r] = min−→

cut feasible

{
T [
−→
bot,
−→
cut, 1r] + T [

−→
cut,
−→
top, 1r]

}
+ δpr,hr .

Note that if there is no feasible split for a subproblem, we define the minimum over an
empty set as ∞. In the degenerated cases p` (pr) denotes the rightmost (leftmost) point of
the instance. In the first case a feasible cut is of the type (−h`, vercut,horcut

r), where h` is the
strip that the leader of p` connects to. The value δp`,h`

is defined as for the one-sided case
and equals 0 if the leader is direct and 1 otherwise. For a degenerated subproblem of type 1r

the terms are defined analogously.
For a better understanding we have ignored a technical detail by now: there are feasible

splits that split a type-2 instance into a degenerated and a non-degenerated subproblem. We
can overcome this easily: everytime a type-2 instance is generated we check whether its type
is really 2. If not we change the type accordingly. This can be done in constant time by
looking at

−→
bot and

−→
top and its signs.

The entry T [0, 0, 0, 3
2n + 1, 0, 3

2n + 1, type = 2] characterizes the whole input instance and
thus gives—as Theorem 3.5 will show—the minimum number of bends for a valid labeling.
The table size is O(n6) and each entry can be determined by exploiting O(n2) other entries
which establishs the theoretical worst-case running time of O(n8).

Theorem 3.5 A valid bend-minimum two-sided labeling using po-leaders can be computed in
O(n8) time requiring O(n6) space.

90 CHAPTER 3. BOUNDARY LABELING WITH 1-BEND LEADERS

Proof.
Let S be a subproblem defined by (

−→
bot,
−→
top, type). We show that for every assignment of

(
−→
bot,
−→
top, type) the table entry T [

−→
bot,
−→
top, type] holds the minimum number of bends for a valid

labeling of S or ∞ if there is no valid labeling. Note that the input instance always has a
valid labeling.

We start with the case that S is degenerated, w.l.o.g. of type 1`. The analysis is very
similar to the one-sided case, however, we have to take more care as the boundary lines are
not necessarily straight lines.

Let n` be the number of associated labels on the left side, let P` be the n` leftmost points
in S and let p` be the rightmost point in P`, see Figure 3.19a. Finally, let v` be the vertical
strip that has p` on its left boundary. If no valid labeling for S exists we (possibly later) end
up with a subproblem for which there is no valid labeling as we only iterate over feasible splits.
This means that eventually T will be evaluated as∞. So we only consider the case that there
is a valid labeling, we fix a bend-minimum one and denote the strip in which the leader of p`

connects to the left side in the bend-minimum labeling by h` (if the leader is a direct leader
and thus incident to two strips, we can take any). We set horcut

` = −h`, vercut = v` and horcut
r

appropriately in {horbot
r ,horbot

r +1, . . . ,hortopr } such that the induced polygonal line
−→
cut does

not stick out of the region of S. By the structure of the two boundary lines it is not hard to
see that such a value for horcut

r always exists. As in the one-sided case, there is only a linear
number of feasible splits for such a degenerated instance.

h`
p`

v`

}horcut
r

h`

(a) Type 1`.

Rleft

Rrightv

h`

hr

v`

p`

pr

l`

lr

(b) Type 2.

Figure 3.19: Illustrations for the proof of Theorem 3.5. The polygonal lines that split the instance
such that a fixed bend-minimum labeling is found are depicted in white.

By construction
−→
cut is not pierced by any leader of the fixed bend-minimum labeling.

By setting horcut
` = −h` and counting δp`,h`

we reserve this strip for the optimal leader of
p` and define two subproblems that both do not contain p` and its label any more. These
subproblems are then solved optimally by induction.

It remains to show that T [
−→
bot,
−→
top, type] also holds the correct value for S being of type 2.

Let n` and nr be the number of associated labels on the left and on the right side, respectively.
There is at least one vertical strip v` such that the mid-vertical line v in v` partitions the
region of S into two regions Rleft and Rright such that there are n` points in Rleft and nr

points in Rright, see Figure 3.19b. Again, we fix a bend-minimum labeling. We show that
there is always a feasible split using v` such that its split line is not pierced by any leader of
the fixed labeling. Then we are done since the emerging subproblems are solved optimally by
induction.

We look at the intersections of v and leaders in the fixed bend-minimum labeling. If no

3.4. ALGORITHMS FOR LABELS ON TWO SIDES 91

leader intersects v, the dynamic program finds the value of the bend-minimum labeling when
it looks at T [

−→
bot,
−→
top, 1`]+T [

−→
bot,
−→
top, 1r] and the split into two degenerated subproblems. Next,

consider the case that there are leaders intersecting v. By the choice of v there must be a
point in Rright that receives its label on the left side for every point in Rleft that receives
its label on the right side. Obviously, we can find a pair of leaders (l`, lr), l` emanating in
Rright and ending on the left side, lr emanating in Rleft and ending on the right side, such
that no other leader intersects v between the intersection points p` and pr of l` and lr with
v, see Figure 3.19b. It follows that p` 6= pr otherwise l` and lr would intersect, w.l.o.g. we
assume that p` is above pr. First, consider the case that l` and lr both have bends in the fixed
bend-minimum labeling. Let h` be the strip in which l` connects to its label and accordingly
let hr be the strip in which lr connects to its label. Then, setting |horcut

` | = h`, |horcut
r | = hr

and vercut = v` indicates a split line that is not pierced by any leader of the fixed labeling:
its complete left (right) horizontal segment coincides with a part of l` (lr) and the vertical
segment is not pierced by any leader by construction. The case in which any of l` and lr are
direct leaders in the fixed labeling is slightly more involved: we have to take care since the
split line, which is always in the middle of a strip, does not coincide with the leader any more.
However, for p` being above pr it is not hard to see that choosing |horcut

` | to be the lower
incident strip to l` in case of l` being a direct leader and choosing |horcut

r | to be the upper
incident strip to lr, together with vercut = v` again indicates a split line that is not pierced
by any leader of the fixed labeling.

Hence, when iterating over all feasible splits for which the absolute values of horcut
` and

horcut
r match the above choices, we also look at a split whose subproblems can be solved as

in the optimal labeling (the combination of assigned labels has to match).
Because the vertical parameter v` is fixed, for a split into two subproblems we examine at

most O(n2) table entries by iterating all possible horizontal segments of the split. This gives
a running time of O(n8). ♣

do-leaders

The basic idea for computing the bend-minimum labeling using do-leaders is absolutely anal-
ogous as for the po-leaders: the plane is partitioned into regions such that the boundaries
are not pierced by any leader of a fixed bend-minimum labeling. Differing to the case of
po-leaders, the lines that split into subproblems here involve diagonal segments instead of
vertical segments.

v

Figure 3.20: The white line indicates the split into two subproblems.

The vertical line v that splits the points evenly into a left and right region for which
the number of points and associated label matches must here also be choosen as a diagonal
line. Since v can be crossed by two do-leaders in the fixed bend-minimum labeling which have

92 CHAPTER 3. BOUNDARY LABELING WITH 1-BEND LEADERS

different diagonal direction than v, we need five parameters of linear range to define one region
boundary, see Figure 3.20. This immediately suggests a table size of O(n10). Similarly to the
po-leaders we can spare one of these five parameters for the split line into two subproblems.
This is why we end up with a running time of O(n14). As the analysis is very similar to the
case of po-leaders and does not bear any new ideas we omit the details and state only the
result.

Theorem 3.6 A valid bend-minimum two-sided labeling using do-leaders can be computed in
O(n14) time requiring O(n10) space, if there is any. If not we can report infeasibility within
the same time and space bounds.

3.4.2 Length minimization

po-leaders

For finding the length-minimum labeling with labels on two sides Bekos et al. [BKSW07] give
a nice quadratic-time algorithm that does not seem to be improvable. We briefly outline
the functionality of their algorithm. They sweep the points from bottom to top and fill a
quadratic table T , where T [i, j] contains the length of the length-minimum labeling of the
i + j lowest points for which i points have received labels on the left side and j points on
the right side. The entry T [i, j] can be determined by checking T [i− 1, j] and T [i, j − 1] and
deciding whether the (i + j)th point receives its label on the left or on the right side. In
the end entry T [n/2, n/2] contains the length of the length-minimum labeling of the input
instance and the labeling itself can be found by backtracking. Again, a postprocessing step
to purge crossings is required. Crossings of leaders that go to the same side can be purged
as for the one-sided case. Crossings of leaders that go to different sides cannot occur because
they would contradict the length minimality.

Theorem 3.7 (Bekos et al. [BKSW07]) For labels on two sides, a valid length-minimum
labeling using po-leaders can be computed in O(n2) time requiring O(n2) space.

Remark. Bekos et al. technique is not applicable for minimizing bends since a bend
leader in the minimum bend labeling can be very long which is not covered by the dynamic-
programming “sweep-from-bottom-to-top”-approach. One could try to overcome this by com-
puting a minimum matching in the complete graph in which direct leaders are weighted by
0 and bend leaders are weighted by 1. However, this approach fails too, since the labeling
induced by the minimum matching can contain crossings and purging these crossings would
not leave the number of bends unchanged.

do-leaders

For finding the length-minimum labeling using do-leaders we have not found an algorithm
that outperforms the adapted O(n14)-time algorithm for minimizing the number of bends.
Apparently, we cannot adapt previous strategies: the feasibility grid for the one-sided case
is completely out of place because we do not even know to which side a point should be
assigned; if the point-containing rectangle R is wide enough, a point that can reach only a
limited number of labels on one side can reach all labels on the other side which makes an
argumentation impossible without fixing a side assignment for all points first. Bekos et al.
dynamic-programming “sweep-from-bottom-to-top”-approach cannot be applied either since

3.5. EXPERIMENTS 93

not every point can be labeled by every label. Their algorithm strongly relies on this property
that trivially holds for the po-leaders.

Theorem 3.8 The valid length-minimum two-sided labeling using do-leaders can be computed
in O(n14) time requiring O(n10) space, if there is any. If not we can report infeasibility within
the same time and space bounds.

3.5 Experiments

We implemented our algorithms1 to evaluate their practical running time and to judge the
quality of the labelings they produce.Let us start with a simple question. Which of the
labelings in Figure 3.21 is preferable, i.e. which optimization criterion produces the better
labeling, the length or the bend minimization? We get back to our answer for this question
at the end of this section and first start with a general discussion on the results.

Figure 3.21: An instance where the bend-minimum labeling has 1 bend and the length-minimum
labeling has n− 1 bends.

One-sided labelings. We tested the algorithms for the one-sided labelings on a map show-
ing the departments of France, see Figure 3.22. The labelings were computed on an AMD
Sempron 2200+ with 1GB main memory, which took 1 ms for the po-leaders and 15 ms for
the do-leaders. Running the dynamic programs in a top-down fashion, for po-leaders 39% of
O(n2) table entries were computed, while for the do-leaders only 0.21% of O(n4) entries were
computed. We also ran the algorithms on artifically generated instances of 100 points. Here,
the computation of the po-leaders took 234 ms averaged over 30 instances and on average 22%
of the table entries were computed. The average running time for the do-leaders on the same
instances was 3328 ms and on average 0.01% of the table entries were computed.

Two-sided labelings. The results for the two-sided labelings were very disappointing. For
the simpler case of the po-leaders even computing instances with only 10 points already took
several minutes. Hence, one can hardly say that our two-sided algorithms are of any practical
relevance. After the results for the po-leaders had already been so bad, we refrained from
implementing the two-sided do-leader version.

To get a two-sided labeling in practice we suggest to either use the po-leader length-
minimization algorithm of Bekos et al. [BKSW07] (see Section 3.4.2) or to split the instance
along the vertical line through the point with median x-coordinate and to solve the resulting
one-sided problems. We leave it as an open problem to find efficient heuristics for dividing
points between the left and the right side in an appropiate fashion to find good two-sided po-

1A Java applet is available at http://i11www.iti.uni-karlsruhe.de/labeling.

http://i11www.iti.uni-karlsruhe.de/labeling

94 CHAPTER 3. BOUNDARY LABELING WITH 1-BEND LEADERS

and do-labelings. Note that splitting in the middle does in general not yield aesthetically good
results. For do-leaders a feasible instance can even get infeasible by splitting in the middle.

po-leaders vs. do-leaders. Comparing po- to do-leaders, we find do-leaders preferable be-
cause their shape is easier to follow, which simplifies finding the correct label for a point and
vice versa.

Distance between leaders. A bothering aspect of our figures is the closeness of some
leader segments: in Figure 3.22a the vertical segments of the leaders for Franche-Comte and
Lorraine are so close that seeing the correct assignment becomes impossible. A way to handle
this problem is to only accept a leader to a certain point if there is no other point within a
predefined safety margin around the leader. If we do not find a feasible solution that obeys
this restriction we reduce the safety margin and start from scratch.

Leader connecting points. Another bothering aspect is that a direct leader may get very
close to a label boundary and thus complicates the point-to-label understanding, see e.g. the
leader that connects to Alsace in Figure 3.22c. A way to handle this problem is either to
introduce safety spaces between the labels or to incorporate penalities for closeness to label
boundaries in the dynamic programs.

Optimizing for length vs. bends. Optimizing the minimum total leader length seems to
give more comprehensible and visually more pleasing results than optimizing the minimum
total number of bends. The reason for this seems to be that optimizing for minimum length
favours having each label close to the point being labeled. This results in a label assignment
where the vertical order of the labels tends to reflect the location of the points in the figure
fairly well. In contrast, when minimizing the number of bends this correspondence is more
easily lost, which can be confusing, see e.g. the label position of Alsace in Figures 3.22a
and 3.22b. In addition, the longer the non-horizontal leader segments are, the harder leaders
are to follow—see Alsace in Figure 3.22b and Franche-Comte in Figures 3.22b and 3.22d.

Nevertheless, locally, bend minimization may produce nicer labelings than length mini-
mization, see e.g. the regions Poitou-Charantes, Auvergne and Limousin. In the minimum-
bend labeling these regions are labeled exclusively by direct leaders, while with minimum-
length labeling these regions are labeled by non-direct leaders. For this reason we conjecture
that a hybrid method may produce the best labelings. The idea is that a penalty has to be paid
for every non-direct leader and that this penalty depends on the length of the non-horizontal
segment of the leader.

A hybrid method The hybrid method combines the objectives of length and bend mini-
mization in the following way: the value badhyb(l) that a leader l contributes to the objective
function is

badhyb(l) =
|non-horizontal segment(l)|
|horizontal segment(l)|

+ λbendδbend(l), (3.1)

where δbend(l) is 1 if l has a bend and 0 if l is a direct leader, | · | denotes the Euclidean length.
The motivation for taking the length ratio between non-horizontal and horizontal segment of
the leader into account is that a long non-horizontal segment on a short horizontal segment

3.5. EXPERIMENTS 95

looks worse than on a long horizontal segment. The parameter λbend is used to adjust the
weight of the penalty for the bend. Increasing λbend favors to have a few number of bends in
the resulting labeling.

When testing the hybrid method in practice, our hope that this hybrid method would
combine the advantages of the other two methods was fairly well fulfilled, see Figures 3.22e
and 3.22f. The comprehension of the point-label assignment is locally optimized. Additionally,
the longer a leader is, the more acceptable it becomes that the location of its label does not
exactly reflect the position of the point. This seems to be acceptable for a good visualization
of the labeling.

Conclusion. We find that it is better to minimize the total length rather than the number of
bends, and that do-labelings are superior to po-labelings. However, to obtain an aesthetically
excellent labeling it is not enough to compute the minimum-length do-labeling. Local aspects
and the distance between leaders have to be taken into account. For this we suggest to
choose a hybrid method that combines both approaches for the production of nice labelings
in practice.

96 CHAPTER 3. BOUNDARY LABELING WITH 1-BEND LEADERS

	Alsace

	Provence-Alpes-Cote d’Azur

	Lorraine

	Franche-Comte

	Languedoc-Roussilion

	Midi-Pyrenees

	Aquitaine

	Rhone-Alpes

	Auvergne

	Limousin

	Poitou-Charantes

	Champagne-Ardenne

	Bourgogne

	Picardie

	Ile-de-France

	Centre

	Haute-Normandie

	Basse-Normandie

	Pays-de-la-Loire

	Bretagne

	Nord-Pas de Calais

(a) Min. number of bends for po-leaders.

	Alsace

	Provence-Alpes-Cote d’Azur

	Franche-Comte

	Rhone-Alpes

	Languedoc-Roussilion

	Midi-Pyrenees

	Aquitaine

	Lorraine

	Champagne-Ardenne

	Bourgogne

	Auvergne

	Limousin

	Poitou-Charantes

	Picardie

	Ile-de-France

	Centre

	Pays-de-la-Loire

	Haute-Normandie

	Basse-Normandie

	Bretagne

	Nord-Pas de Calais

(b) Min. number of bends for do-leaders.

	Alsace

	Provence-Alpes-Cote d’Azur

	Franche-Comte

	Languedoc-Roussilion

	Midi-Pyrenees

	Rhone-Alpes

	Aquitaine

	Bourgogne

	Auvergne

	Limousin

	Poitou-Charantes

	Centre

	Pays-de-la-Loire

	Lorraine

	Champagne-Ardenne

	Ile-de-France

	Bretagne

	Basse-Normandie

	Picardie

	Haute-Normandie

	Nord-Pas de Calais

(c) Minimum length for po-leaders.

	Alsace

	Provence-Alpes-Cote d’Azur

	Franche-Comte

	Rhone-Alpes

	Languedoc-Roussilion

	Midi-Pyrenees

	Aquitaine

	Bourgogne

	Auvergne

	Limousin

	Poitou-Charantes

	Centre

	Pays-de-la-Loire

	Lorraine

	Champagne-Ardenne

	Ile-de-France

	Bretagne

	Basse-Normandie

	Picardie

	Haute-Normandie

	Nord-Pas de Calais

(d) Minimum length for do-leaders.

	Alsace

	Provence-Alpes-Cote d’Azur

	Lorraine

	Franche-Comte

	Languedoc-Roussilion

	Midi-Pyrenees

	Rhone-Alpes

	Aquitaine

	Champagne-Ardenne

	Bourgogne

	Auvergne

	Limousin

	Poitou-Charantes

	Picardie

	Ile-de-France

	Centre

	Pays-de-la-Loire

	Haute-Normandie

	Basse-Normandie

	Bretagne

	Nord-Pas de Calais

(e) Hybrid method for po-leaders.

	Alsace

	Provence-Alpes-Cote d’Azur

	Franche-Comte

	Rhone-Alpes

	Languedoc-Roussilion

	Midi-Pyrenees

	Auvergne

	Aquitaine

	Limousin

	Lorraine

	Champagne-Ardenne

	Bourgogne

	Poitou-Charantes

	Picardie

	Ile-de-France

	Centre

	Pays-de-la-Loire

	Haute-Normandie

	Basse-Normandie

	Bretagne

	Nord-Pas de Calais

(f) Hybrid method for do-leaders.

Figure 3.22: One-sided labelings for the main-land departments of France.

Part II

Analyzing Geometric Networks

97

Chapter 4

Detecting and Reporting Flocks

Flock recognition constitutes the first chapter of the analyzing part. We want to analyze the
given trajectories of entities that move in the plane for the social behavior of the participating
individuals. Are all moves independent from each other or are there flocks of individuals
gathering and moving along together for a certain amount of time?

The chapter is based on conference publication [6]: Marc Benkert, Joachim Gudmunds-
son, Florian Hübner and Thomas Wolle: “Reporting Flock Patterns”. A full version has been
submitted to the International Journal of Computational Geometry and Application.

4.1 Introduction

Data related to the movement of objects is becoming increasingly available because of sub-
stantial technological advances in position-aware devices such as GPS receivers, navigation
systems and mobile phones. The increasing number of such devices will lead to huge spatio-
temporal data volumes documenting the movement of animals, vehicles or people. One of the
objectives of spatio-temporal data mining [MH01, RHS01] is to analyse such data sets for in-
teresting patterns. For example, a herd of 25 moose in Sweden was equipped with GPS-GSM
collars. The GPS collar acquires a position every half hour and then sends the information
to a GSM-modem where the positions are extracted and stored. Analysing this data gives in-
sight into entity behaviour, in particular, migration patterns. There are many other examples
where spatio-temporal data is collected [wtp06, Por]. The analysis of moving objects also has
applications in sports (e.g. soccer players [IS02]), in socio-economic geography [FRC01] and
in defence and surveillance areas.

We model a set of moving objects by a set P of n moving point objects p1, . . . , pn whose
locations are known at τ consecutive time-steps t1, . . . , tτ that is, the trajectory of each object
is a polygonal line that can self-intersect, see Fig. 4.1a. For brevity, we will call moving point
objects entities from now on. We assume that the positions are sampled synchonously for
all entities, and that an entity moves between two consecutive positions along a straight line
with constant speed.

There is some research on data mining of moving objects (e.g. [KSB01, SC03, SB00,
VC06]) in particular, on the discovery of similar directions or clusters. Verhein and Chawla
[VC06] used associated data mining to detect patterns in spatio-temporal sets.

In 2002 Laube and Imfeld [LI02] proposed a different approach: the REMO (RElative

99

100 CHAPTER 4. DETECTING AND REPORTING FLOCKS

p2
p

t1

t2
t3

t4

t6
p4

p1

p3

(a) (b)

t7
t9

t5

Figure 4.1: (a) A polygonal line describing the movement of an entity p in the time interval [t1, t6].
(b) p1, p2, p3 form a flock in the time interval [t7, t9].

MOtion) framework, which defines similar behaviour in groups of entities. They define a col-
lection of spatio-temporal patterns based on similar direction of motion or change of direction.
Laube et al. [LvKI04] extended the framework by not only including direction of motion, but
also location itself. They defined several spatio-temporal patterns, including flock, leadership,
convergence and encounter, and gave algorithms to compute such patterns efficiently.

Laube et al. [LvKI04] developed an algorithm for finding the largest flock pattern (maxi-
mum number of entities) using the higher-order Voronoi diagram with running timeO(τ(nm2+
n log n)), where m is the minimum number of entities that a flock has to contain. They also
showed that the detection problem can be answered in O(τ(nm+n log n)) time. Applying the
paper by Aronov and Har-Peled [AHP05] to the problem gives a (1 + ε)-approximation with
expected running time O(τn/ε2 log2 n). Gudmundsson et al. [GvKS04] showed that if the disk
(i.e. the region in which the entities have to be in order to form a flock) is (1+ε)-approximated
then the detection problem can be solved in O(τ(n/ε2 log 1/ε + n log n)) time.

However, the above algorithms only consider each time-step separately, that is, given
m ∈ N and r > 0 a flock is defined by at least m entities within a circular region of radius
r and moving in the same direction at some point in time. We argue that this is not enough
for most practical applications, e.g. a group of animals may need to stay together for days or
even weeks before it defines a flock. Therefore we propose the following definition of a flock:

Definition 4.1 continuos (m, k, r)-flock – Let there be given a set of trajectories, where each
trajectory consists of τ line segments. A flock in a time interval I = [ti, tj], where j−i+1 > k,
consists of at least m entities such that for every point in time within I there is a disk of radius
r that contains all the m entities.

Given this model, Gudmundsson and van Kreveld [GvK06] recently showed that comput-
ing the longest duration flock and the largest subset flock is NP-hard to approximate within
a factor of τ1−ε and n1−ε, respectively. They also give a 2-radius approximation algorithm
for the longest duration flock with running time O(n2τ log n).

We describe efficient approximation algorithms for reporting and detecting flocks, where
we let the size of the region deviate slightly from what is specified. Approximating the size
of the circular region with a factor of ∆ > 1 means that a disk with radius between r and ∆r
that contains at least m objects may or may not be reported as a flock while a region with a
radius of at most r that contains at least m entities will always be reported.
We present several approximation algorithms for this model, for example, a (2 + ε)-approx-
imation with running time T (n) = O(τnk2(log n + 1/ε2k−1)) and a (1 + ε)-approximation
algorithm with running time O(1/mε2k) · T (n).

Our aim is to present algorithms that are efficient not only with respect to the size of the

4.1. INTRODUCTION 101

input (which is τn), but we also keep the dependency on k and m as small as possible. For
most of the practical applications we have seen that m was between a couple of entities to a
few hundreds or even thousands, and k was between 5 and 30.

In this model a set of entities can form many flocks and even one single entity can be
involved in several flocks. For example, a flock involving m + 1 entities trivially contains
m + 1 flocks of cardinality m. We must specify what we want to find and report in a given
data set, see [GvKS04] for a discussion. A first possibility is simply to detect whether a flock
occurs. If so, we may want to report one example of a flock. Secondly, we may want to find
all flocks that occur. Thirdly, we may want to report the largest-size subset of entities that
form a flock. In this chapter we mainly deal with the variant of finding all flocks of a given
size m, in Section 4.4 we briefly discuss the other variants.

Next we give a brief description of the skip-quadtree structure used in this chapter to-
gether with a description of the computational model used. In Section 4.2 we give a discrete
version of the definition of a flock and prove that it is equivalent to the original definition
provided that the entities move with constant velocity between consecutive time-steps. Fur-
thermore, we describe our general approach to detect flocks. Then, in Section 4.3, we give
three approximation algorithms which are all based on the general approach. In Section 4.4
we discuss different ways of pruning the set of flocks reported, and in the final section we
discuss our implementations and experimental results.

4.1.1 Computational model

One of the main tools used in this chapter is the skip-quadtree presented by Eppstein,
Goodrich and Sun [EGS05] in 2005. As it is standard [BET99, EGS05] in computational
geometry, we assume that certain operations on quadtrees or octrees can be done in constant
time. The computations needed to perform point location, range queries or nearest neigh-
bour queries in a quadtree, involve finding the most significant binary digit at which two
coordinates of two points differ. We assume that this can be done using a constant number
of machine instructions by a most-significant-bit instruction, or by using floating-point or
extended-precision normalisation.

4.1.2 Skip-quadtree

We will show that approximation algorithms can be obtained by performing a set of range-
counting queries in higher-dimensional space. There are several data structures supporting
this type of query; quadtrees, skip-quadtrees, octrees, kd-trees, range trees, BBD-trees, BAR-
trees and so on. For our requirements we can either use skip-quadtrees or BBD-trees, and
since the implementation of the randomised skip-quadtree is very simple we chose to use the
skip-quadtree.

The skip-quadtree uses a compressed quadtree as the bottom-level structure. The standard
compressed quadtree for d dimensions uses O(2d ·n) space and the worst-case height is O(n).
We briefly describe the structure and show how to modify the structure so that it uses O(dn)
space while the query time will increase by a factor of O(d).

First, here is the original description of a compressed quadtree taken from [EGS05]. Con-
sider the standard quadtree T of the input set S. We may assume that the center of the root
square (containing the set S) is the origin and half the side length of any square in T is a
power of 2.

102 CHAPTER 4. DETECTING AND REPORTING FLOCKS

Define an interesting square of a quadtree to be one that is either the root or that has
at least two non-empty quadrants. Any quadtree square p containing at least two points
contains a unique largest interesting square q in T . The compressed quadtree explicitly only
stores the interesting squares, thus removing all the non-interesting squares and deleting their
empty children. So for each interesting square p, the compressed quadtree stores 2d bi-directed
pointers, one for each d-dimensional quadrant. If the quadrant contains at least two points,
the pointer goes to the largest interesting square inside the quadrant; if the quadrant contains
one point, the pointer goes to that point; and if the quadrant is empty the pointer is null.

The above description of a compressed quadtree implies that the size of the tree is O(2d ·n).
We will modify the tree in the following way. Instead of storing information about which
children contain points and which children are empty, we use a list that contains only the
non-empty children. This improves the space complexity to O(dn), however this modification
will increase the cost of a search in the tree since deciding if a child exists or not requires
O(d) time using binary search in the list of at most 2d children.

For fat regions Q, the skip-quadtree supports (1+δ)-approximate range (counting) queries,
i.e. the query range Q is approximated by an extended query range Qδ. The extended query
range Qδ consists of Q and all points within a distance δ ·w from Q, where w is the diameter
of Q. The approximate query counts all points in Q, it either counts or does not count points
in Qδ \Q and it does not count any point in Rd \Qδ. We use Corollary 11 of [EGS05]:

Corollary 4.1 ([EGS05]) We can answer a (1 + δ)-approximate range query with convex
or non-convex fat region in Minkowski space in O(log n + 1/δd−1) time.

Since the dimensionality d is considered to be constant in [EGS05], the factor d · 2d was
omitted by the authors when stating the running time in the above corollary. The above
discussion of our modifications is summarized in the following corollary.

Corollary 4.2 Insertion, deletion and search in the modified d-dimensional skip-quadtree
using a total of O(dn) space can be done in O(d log n) time. For any δ > 0, a (1 + δ)-
approximate range counting query for any fat region of complexity O(d) can be answered in
time T (n) = O(d2(log n + 1/δd−1)).

4.2 Approximate flocks

The input for the flock problem is a set P of n trajectories p1, . . . , pn, where each trajectory pi

is a sequence of τ coordinates in the plane (xi
1, y

i
1), (x

i
2, y

i
2), . . . , (x

i
τ , y

i
τ), where (xi

j , y
i
j) is the

position of entity pi at time tj . We assume that the movement of an entity from its position
at time tj to its position at time tj+1 is described by the straight-line segment between the
two coordinates, and that the entity moves along the segment with constant velocity.

4.2.1 An equivalent definition of flock

Next we give an alternative and algorithmically more simple definition of a flock.

Definition 4.2 discrete (m, k, r) - Let there be given a set of trajectories, where each tra-
jectory consists of τ line segments. Let I be a time interval [ti, tj], with j − i + 1 > k and
i 6 j 6 τ . A flock in time interval I consists of at least m entities such that for every discrete
time-step t` ∈ I, there is a disk of radius r that contains all the m entities.

4.2. APPROXIMATE FLOCKS 103

Note that the center of a disk does not have to coincide with one of the positions of the
entities, see for example the disk D5 in Fig. 4.2.

t1

t2

t3
t6

t7

t8

(a) (b)

t1

t2

t3
t4

t6

t7

t8

t5

t4

t5

D5

Figure 4.2: A flock of four entities in the time interval [t1, t8], according to the definitions of (a)
continuos and (b) discrete flocks.

Lemma 4.1 If the entities move with constant velocity along straight line segments between
consecutive positions, then the definitions of continuos (Def. 4.1) and discrete (Def. 4.2) flocks
are equivalent.

Proof. Consider a given time interval I = [t1, tk] and assume that FA and FB are the set of
all flocks in I according to Definition 4.1 and 4.2, respectively. Obviously every flock fA ∈ FA

is also a flock in FB, thus FA ⊆ FB.
It remains to prove that FB ⊆ FA. Let fB be an arbitrary flock in FB, and let D` and

D`+1 be disks of radius r that include the entities of fB at time t` and t`+1 respectively, see
Fig. 4.3a. It is enough to consider every two discrete time-steps t` and t`+1 in I separately.

Next we prove that at every point in time γ ∈ I ′ = [t`, t`+1] there is a disk Dγ that contains
all the entities {p1, . . . , pm} in fB. Let c` and c`+1 be the centers of D` and D`+1, respectively,
and let h be the straight-line segment with endpoints at c` and c`+1, as illustrated in Fig. 4.3a.
An entity q that moves with constant velocity on h has a well-defined position at time γ ∈ I ′,
we denote this position by cγ . Next we show that the disk Dγ with center at cγ and radius
r contains all the entities of fB. Let pi be an arbitrary entity of fB. Since the movement of
q and pi during I ′ follows a straight-line and since q and pi move with constant velocity, the
relative trajectory of pi in relation to q is a straight-line segment as shown in Fig. 4.3b. Since
a disk is convex and since pi(t`) and pi(t`+1) are points within D` and D`+1, respectively, it
holds that pi(γ) must lie within Dγ . Consequently, fB ∈ FA and therefore FB ⊆ FA which
completes the proof of the lemma. ♣

(a) (b)

` p̃

pi
c` c`+1

pi
`

pi
`+1

ct

pi
t

Figure 4.3: Illustration for the proof of Lemma 4.1.

104 CHAPTER 4. DETECTING AND REPORTING FLOCKS

In the remainder of this chapter we refer to Definition 4.2 whenever we talk about flocks.
Definition 4.2 immediately suggests a new approach; for each time interval [ti, ti+k−1] check
whether there is a set of m entities F = {p1, . . . , pm} that can be covered by a disk of radius
r at each discrete time-step in [ti, ti−1+k]. Next we show how this observation allows us to
develop an approximation algorithm.

4.2.2 The general approach

When developing an algorithm for flock detection one of the main obstacles that we encoun-
tered was to detect flocks without having to keep track of all the objects in a potential flock.
That is, when we consider a specific time-step; the number of potential flocks can be very
large and the number of objects that one needs to keep track of for each potential flock
might be Ω(n). In general this problem occurs whenever one attempts to develop a method
that processes the input time-step by time-step. In this chapter we avoid this problem by
transforming the trajectories into higher dimensional space. We then build a tree structure
for every possible start time 1, ..., τ and flock length k from scratch, and we then perform
counting queries in this tree structure. This might seem like overkill, but both the theoretical
results and the experimental bounds support this approach, as long as k is fairly small. Note
that the gain is that we only need to count the number of points in a region, instead of keeping
track of the actual entities.

The basic idea is to model a 2-dimensional polygonal line with d vertices as a single point
in 2d dimensions. Formally, the trajectory of an entity p in the time interval [ti, tj] is described
by the polygonal line

p = 〈(xi, yi), (xi+1, yi+1), . . . , (xj , yj)〉,

which we map to the single point p′(i, j) in 2(j − i + 1)-dimensional space:

p′ = (xi, yi, xi+1, yi+1, . . . , xj , yj).

Let p1 and p2 be two entities. Now, a key characterization that will help to find flocks
is that two entities p1 and p2 are close to each other during the time interval [ti, ti+k−1] if
and only if the two points p′1(i, i + k − 1) and p′1(i, i + k − 1) are close to each other in
R2k. Therefore, the first step when checking whether there is a flock in the time interval
[ti, ti+k−1] is to map the corresponding polygonal lines of all entities to R2k. We now define
an (x, y, i, r)-pipe which is an unbounded region in R2k. Such a pipe contains all the points
that are only restricted in two of the 2k dimensions (namely in dimensions i and i + 1) and
when projected on those two dimensions lie in a circle of radius r around the point (x, y).
Formally, a (x, y, i, r)-pipe is the following region:{

(x1, . . . , x2k) ∈ R2k | (xi − x)2 + (xi+1 − y)2 6 r2
}

Two entities p1 and p2 have distance at most r at time-step j ∈ {i, i + k − 1} if and only
if there exists a pipe with radius r for the dimensions corresponding to j such that the 2k-
dimensional points p′1 and p′2 are contained in that pipe. Hence, two entities p1 and p2 have
distance at most r at time-steps i, ..., i + k − 1 if and only if there exist k pipes with radius
r for the dimensions corresponding to i, ..., i + k − 1 such that the 2k-dimensional points p′1
and p′2 are contained in all those pipes. This leads to a characterisation of the flock-pattern,
which is formalised by the following equivalence.

4.3. APPROXIMATION ALGORITHMS 105

Equivalence 4.1 Let F = {p1, . . . , pm} be a set of entities and let I = [t1, tk] be a time
interval. Let p′1, . . . , p

′
m be the mappings of the trajectories of the entities in F to R2k w.r.t.

I. It holds that:
F is an (m, k, r)-flock ⇐⇒

∃(x1, y1, . . . , xk, yk) ∈ R2k : ∀p ∈ F : p′ ∈
k⋂

i=1

(xi, yi, 2i− 1, r)-pipe

4.3 Approximation algorithms

We will now show how approximation algorithms can be obtained by performing a set of range
counting queries in higher dimensional space. These algorithms approximate the flock radius
r. Here, a ∆-approximation (with ∆ > 1) means that every (m, k, r)-flock will be reported, an
(m, k,∆r)-flock may or may not be reported, while no (m, k, r̂)-flock will be reported, where
r̂ > ∆r.

4.3.1 Method ‘box’: A (
√

8 + ε)-approximation algorithm

By Equivalence 4.1 it is fairly straight-forward to develop a (
√

8+ε)-approximation algorithm,
where ε > 0 can be chosen. For each time interval I = [ti, ti+k−1], where 1 6 i 6 τ − k + 1,
we do the following computations.

For each entity p let p′ denote the mapping of the trajectory of p to R2k with respect to
I. We construct a skip-quadtree T for the point set P ′ = {p′1, . . . , p′n}. Then, for each point
p′ ∈ P ′ we perform a (1 + δ)-approximate range counting query in T with δ = ε/

√
8, where

the query range Q(p′) is a 2k-dimensional cube of side length 4r and center at p′. That is, we
approximate the 2k-dimensional cube which is itself an approximation for the query region.
Every such query region containing at least m entities corresponds to an (m, k, (

√
8 + ε)r)-

flock as Lemma 4.2 will show. Note that the same flock may be reported several times. We
call the method ‘box’, since the query region is a box.

Lemma 4.2 The algorithm is a (
√

8 + ε)-approximation algorithm.

Proof. First we show that every (m, k, r)-flock is reported by the algorithm. Let f be such a
flock, e.g. in the time interval I = [ti, ti+k−1] and let pf be an arbitrary entity of f . We will
prove that the approximation algorithm returns an (m, k, (

√
8 + ε)r)-flock g such that f ⊆ g.

According to Definition 4.2 for each discrete time-step tl in I there exists a disk Dl with
radius r that contains the entities in f . The algorithm performs a counting query for each
point in P ′ w.r.t. [ti, ti+k−1], in particular for p′f . The query range Q(p′f) is a 2k-dimensional
cube of side length 4r and center at p′f , where p′f is the point in R2k corresponding to pf .
For a discrete point of time tl, the query range corresponds to a square Q′ in two dimensions
with center at p and side length 4r, where the dimensions mark the x− and y−positions of
the entities at time tl. As every entity of f has distance at most 2r to pf this implies that
every entity in f lies within Q(p′f). Thus, when pf is queried, the algorithm reports a flock g
such that f ⊆ g.

To establish the approximation bound we still have to show that we only report (m, k, (
√

8+
ε)r)-flocks and that no (m, k, r′)-flock g where r′ exceeds (

√
8 + ε)r is reported. Let g be a

reported flock w.r.t. the time interval I = [ti, ti+k−1]. We have to show that for every time-
step tl in I there exists a disk of radius (

√
8 + ε)r that contains the entities in g. This follows

106 CHAPTER 4. DETECTING AND REPORTING FLOCKS

trivially by the choice of δ. If we choose δ to be ε/
√

8, the square of side length 4(1 + δ)r is
contained in the disk with radius (

√
8 + ε)r centered at p′f , as illustrated in Fig. 4.4a. This

completes the proof of the lemma. ♣

Lemma 4.3 The algorithm reports at most τn (m, k, (
√

8+ε)r)-flocks. It runs in O(τnk2(log n+
1/ε2k−1)) time and requires O(τn) space.

Proof. The number of reported flocks is trivially bounded by n, the number of entities, times τ ,
the number of time-steps. At each of the (τ−k+1) time intervals the algorithm builds a skip-
quadtree of the n elements from scratch. In total this requires O(τkn log n) time according to
Lemma 4.2. Then a (1 + δ) approximate-range counting query is performed for each of the n
entities; each query requires O(k2(log n + 1/ε2k−1)) time as δ = ε/

√
8. Hence, the total time

needed to perform all the n(τ − k + 1) queries is bounded by O(τk2n(log n + 1/ε2k−1)) and
thus dominates the running time as stated in the lemma.

The space needed to build the skip-quadtree for each time interval is O(τn), and since we
only maintain one tree at a time the bound follows. ♣

p

(√
8 +

ε)

p

(2 +
ε)

(c)(a) (b)

2(1 + δ)

p

1 +
ε

sample point

2
2

Figure 4.4: Illustration of the query regions of methods box (a), pipe (b) and sample-points (c) for
r = 1. The approximative query ranges are marked by dashed lines.

4.3.2 Method ‘pipe’: A (2 + ε)-approximation algorithm

The algorithm is similar to the above algorithm. The main difference is that we will use the
intersection of k pipes as the query regions instead of the 2k-dimensional box. For each time
interval I = [ti, ti+k−1], where 1 6 i 6 τ − k + 1, we do the following computations.

For each entity p let p′ denote the mapping of the trajectory of p to R2k with respect to
I. We construct a skip-quadtree T for the point set P ′ = {p′1, . . . , p′n}. Then, for each point
p′ ∈ P ′ we perform a (1 + ε)-approximate range counting query in T , where the query range
Q(p′) is the intersection of the k pipes (xi, yi, 2i−1, 2r), where (xi, yi) is the position of entity
p at time-step ti. We call the method ‘pipe’, since the query region is the intersection of pipes.

We use the definition of fatness that was introduced by van der Stappen [vdS94]. For
convex objects it is basically equivalent to other definitions [AKS95, AFK+92, vK98].

Definition 4.3 ([vdS94]) Let α > 1 be a real value. An object s is α-fat if for any d-
dimensional ball D whose center lies in s and whose boundary intersects s, we have volume(D) 6
α · volume(s ∩D).

4.3. APPROXIMATION ALGORITHMS 107

Lemma 4.4 The intersection of d pipes (xi, yi, 2i − 1, 2r), 1 6 i 6 k, in 2d-dimensional
space is a bounded convex 4d-fat region whose boundary consists of O(d) surfaces that can be
described by quadratic functions.

Proof. W.l.o.g. we assume that the center of the intersection I of the d pipes is the origin,
then I can be described by the following d inequalities:

x2
1 + x2

2 6 r2

x2
3 + x2

4 6 r2

. . .

x2
d−1 + x2

d 6 r2.

The set of inequalities together with the fact that the inequalities are pairwise independent
immediately gives that I is bounded, convex and its boundary consists of O(d) surfaces that
can be described by quadratic functions. Thus it remains to prove that I is 4d-fat. We
place an arbitrary ball whose center lies in I and consider the intersection of the ball and I
projected onto two dimensions, say dimension 2i − 1 and 2i. The projection of the ball is a
disk whose center lies within the projection of I which is also a disk. Thus, it is obvious that
at least 1/4 of the projected ball lies in the projected region of I. Taking all dimensions into
account yields that I is 4d-fat. ♣

Recall that since the query range is convex and fat we can use the result stated in
Lemma 4.2.

Lemma 4.5 The algorithm is a (2 + ε)-approximation algorithm.

Proof. The proof follows from the same arguments as used in the proof of Lemma 4.2.
When approximately evaluating the query range Q(p′) which is the intersection of the k pipes
(xi, yi, 2i − 1, 2r), 1 6 i 6 k where (xi, yi) is the position of entity p at time-step ti, we test
whether there is an (m, k, (2 + ε)r)-flock which p is part of. If p is part of an (m, k, r)-flock
f in the time interval I, the disk with radius r containing all the entities in f at time-step
ti ∈ I is contained in the disk with radius 2r centered at (xi, yi). Thus, when querying p, the
algorithm reports an (m, k, (2 + ε)r)-flock g with f ⊆ g. ♣

Lemma 4.6 The algorithm reports at most τn (m, k, (2+ε)r)-flocks. It runs in O(τnk2(log n+
1/ε2k−1)) time and requires O(τn) space.

The proof of Lemma 4.6 is absolutely analogous to the proof of Lemma 4.3.
Remark. A quick comparison between Lemmas 4.3 and 4.6 reveals that even though the

approximation factor of the second method is smaller the running time is identical. However,
this is a theoretical bound, in practice we chose to implement the (2+ ε)-approximation with
the help of a compressed quadtree. The reason for this is that the skip-quadtree computes
the volume between a d-dimensional cell (orthogonal box) and Q(p′), where Q(p′) is the
intersection of the k pipes, which is possible in theory but hard in practice. The query
data structure of a compressed quadtree only checks whether the intersection is non-empty
which is much easier to implement. Consequently, the experiments that we performed for the
(8 + ε)-approximation use the skip-quadtree whild the (2 + ε)-approximation use a standard
compressed quadtree.

108 CHAPTER 4. DETECTING AND REPORTING FLOCKS

4.3.3 Method ‘sample-points’: A (1 + ε)-approximation algorithm

We use the same approach as for the (2 + ε)-approximation but instead of querying only the
input points in R2k we will now query O(1/ε2k) sample points for each entity point. For each
time interval I = [ti, ti+k′], where 1 6 i 6 τ − k + 1 and k′ = k − 1, we do the following
computations.

For each entity p let p′ denote the mapping of the trajectory of p to R2k with respect to
I. Construct a skip-quadtree T for the point set P ′ = {p′1, . . . , p′n}. Let Γ be the intersection
points of a regular grid in R2k of spacing ε · r/2. Each input point p′i generates the sample
set Γ∩D(p′i), where D(p′i) is the 2k-dimensional ball of radius 2r centered at p′i. Clearly, this
gives rise to O(1/ε2k) sample points for each entity p. We call the method ‘sample-points’,
since the query region is based on sample points. A necessary condition for a sample point
q to induce an (m, k, r)-flock is that there are at least m entities in the disk Dq of radius 2r
centered at q. As we generated at most O(n/ε2k) sample points, this means that we have to
check at most O(n/(mε2k)) candidate sample points that might define a flock.

Now, we perform a (1 + ε/(2 + ε))-approximate range counting query in T for each sam-
ple point q = (x1, y1, . . . , xk, yk), where the query range is the intersection of the k pipes
(xi, yi, 2i− 1, (1 + ε/2)r), 1 6 i 6 k. We prove the approximation bound:

Lemma 4.7 The algorithm is a (1 + ε)-approximation algorithm.

Proof. The (1 + ε/(2 + ε))-approximation of the range query ensures that no (m, k, r′)-flock
with r′ > (1 + ε)r is reported: as we query pipes of radius (1 + ε/2)r, the maximum distance
from a grid query point to a counted entity is bounded by (1+ε/2) ·(1+ε/(2+ε))r = (1+ε)r.

Next, we show that each (m, k, r)-flock is reported by the algorithm. Assume that f is an
(m, k, r)-flock in the considered time interval I. We prove that the approximation algorithm
returns an (m, k, (1 + ε)r)-flock g such that f ⊆ g.

Let (x1, y1, . . . , xk, yk) ∈ R2k be a point that induces an (m, k, r)-flock f with respect to
I. We look only at one time-step ti ∈ I. By the cell spacing it is obvious that there are
sample points (. . . , xq

i , y
q
i , . . .) ∈ Γ such that the Euclidean distance from (xq

i , y
q
i) to (xi, yi)

is less than εr/2. This means that the disk (in R2) with radius (1 + ε/2)r centered at the
projection of q completely contains the disk with radius r centered at (xi, yi). Thus, when
checking the sample points (. . . , xq

i , y
q
i , . . .) all entities of f are in range for time-step ti. As

this holds analogously for all other time-steps the algorithm reports an (m, k, (1 + ε)r)-flock
g such that f ⊆ g. ♣

Lemma 4.8 The algorithm reports at most τn (m, k, (1+ε)r)-flocks. It runs in O(τnk2

mε2k (log n+
1/ε2k−1)) time and requires O(τn) space.

Proof. The number of reported flocks is trivially bounded by n, the number of entities, times
τ , the number of time-steps. At each of the (τ − k + 1) time intervals the algorithm builds
a skip-quadtree of the n elements from scratch. In total this requires O(τkn log n) time,
according to Lemma 4.2. Next a counting query is performed for each of the O(n/(mε2k))
candidate sample points in Γ; each query requires O(k2(log n+1/ε2k−1)) time, thus the total
time needed to perform all n(τ − k + 1) queries is as stated in the lemma.

The space needed to build the skip-quadtree for each time interval is O(kn), and since we
only maintain one tree at a time the bound follows.

♣

4.4. MINIMIZE THE NUMBER OF REPORTED FLOCKS 109

4.4 Minimize the number of reported flocks

The general (theoretical) approach described in Section 4.3 has the following disadvantage:
As every entity is tested, a flock consisting of exactly m elements can be reported up to
m times. This may get even worse if a flock is found whose number of entities exceeds m.
Below we briefly discuss three approaches how reporting this redundant information could be
avoided. The main idea for all of them is to reduce the number of reported flocks. The last
approach abandons the restriction that a flock defining region always has to be disk.

This section is concluded by a brief discussion how to deal with the issue that a flock can
be together for more than the required k time steps.

Each entity is part of at most one flock.

In theory one object can be part of many flocks at the same time, while in practice this seems
unreasonable. Thus, the first method we propose guarantees that an object belongs to at
most one flock at a time.

The strategy for this approach is very simple. If a counting query reports a flock then the
entities involved in the flock are marked and the skip-quadtree is updated so that the marked
entities will not be counted again. The additional time that we have to spend updating the
tree is O(nk log n) per time-step, thus O(τnk log n) in total. The number of reported flocks
is trivially bounded by τn/m.

Each entity is part of at most a constant number of flocks.

The above approach minimizes the number of reported flocks; however, it also overlooks a lot
of flocks. Therefore we chose to use a different approach in the experiments which guarantees
a higher level of correctness while bounding the number of flocks that an entity may belong
to simultaneously.

The idea is that when a flock is found every input point within the query region will
be marked, so that no query will be performed with those points as centers. Using a simple
packing argument it follows that the maximal number of flocks an entity can be part of during
a time-step is bounded by 22k. By an array we can easily keep track of the points that shall
not be checked as aflock-defining centers.

Extending flocks that have been found.

In such an approach we also assume that each entity can only be part of at most one flock.
Once a flock is found, we first check whether we can reasonably extend it, which means we
may manipulate the disk as flock-defining region if it seems reasonable to join objects closeby.
There are many ways to do this that work in practice, however, guaranteed theoretical bounds
are hard to prove.

We discuss one possible approach: assume we found a flock f when querying Q(p), the
query range of p ∈ R2k. We then use the skip-tree to run an approximate range reporting query
on the query region Q(p) reduced by a factor c, where c is some constant larger than 1. Let
N(p) be the set of entities found by this query. Next, we perform the usual approximate range
counting queries for each entity q ∈ N(p). If we find ’another’ flock f ′ for q, we merge f and
f ′, see Figure 4.5a. For the output we will report both, the coordinates (xp

1, y
p
1 , . . . , x

p
k, y

p
k)

and (xq
1, y

q
1, . . . , x

q
k, y

q
k) of p and q, respectively. Thus, so far, the flock defining region has

110 CHAPTER 4. DETECTING AND REPORTING FLOCKS

become the union of two disks, then we go on iteratively. If c is 1, the set N(p) would contain
all objects in the query range Q(p) and we could upgrade the counting query to a reporting
query. However, this would yield strange mergers that are not desired, see Figure 4.5b. For
the (1 + ε)-approximation we could replace the approximate range reporting query by just
checking the neighbouring grid cells of p ∈ Γ. These give us the candidates for which a flock
could potentially be extended.

As in the first strategy—each entity is part of at most one flock—we mark all the entities
of a flock after a flock has been found that cannot be extended any more. Updating the
skip-tree with respect to these marks costs O(nk log n) per time-step, thus O(τnk log n) in
total.

For each entity we perform at most one approximative range reporting query per time-
step, one of each is in O(k2(log n + 1/ε2k−1)), i.e. in total this requires the same amount of
time as for all counting queries. We have to set additional marks in the skip-tree in order
to prevent that we report a point twice for one time-step. This works analogously as for the
’flock’ marks and in the same amount of time. The number of reported flocks is bounded by
τn/m, however, we still need O(τn) space to report them.

(b)(a)

p

q
p

qQ(p)

Q(q)1
c

· Q(p)

Figure 4.5: (a) the flock found with center p is extended by q, (b) the flock found with center p
should not be extended by q.

Prioritizing long-duration flocks.

Furthermore, we would like to report the entire time interval the flock is defined for. That
is, if a flock stays together for longer than k time intervals then the longer interval should be
reported.

The idea is to keep track of which flock an object belongs to at each step. Then as a
preprocessing step of each iteration the algorithm tests if the flock is still together, if so, they
are removed from the set of entities and the remaining entities are processed as described
above.

Testing whether a flock still exists for a subsequent time step can be done by performing
a number of approximate range counting queries in the plane. For this we check every new
position of a flock member whether it induces a new flock-defining region that contains enough
of the old flock members to extend the flock.

4.5. EXPERIMENTS 111

4.5 Experiments

In this section we report on the performed experiments. We describe the experimental setup,
i.e. the hard- and software used for the experiments, we briefly explain the methods and we
present and discuss the resulting running times with respect to different input parameters.

4.5.1 Setup

We used a Linux operated off-the-shelf PC with an Intel Pentium-4 3.6 GHz processor and
2 GB of main memory. The data structures and algorithms were implemented in C++ and
compiled with the Gnu C++ compiler. The running times are reported as seconds. All
our trajectories used in the experiments were created artificially. Each trajectory of length
k was generated as a single point in 2k dimensions. Hence, we now focus from now on on
the characteristics of these higher dimensional point sets that were generated. The point
sets differ in size (10,000 - 160,000 points; one algorithm was run with more than 1 million
points), in length of the time interval (4–16 time-steps) and also in the distribution of the
points (uniformly random or clustered).

To ensure that our algorithms indeed find flocks, we arranged 10% of the points in each
point-set in such a way that they form randomly positioned flocks. Each of the flocks has
m = 50 entities in a circle of radius r = 50 (hence the number of artificially inserted flocks is
0.002 times the total number of points). As it is unlikely to have flocks that were generated
by accident, we inserted those artificial flocks to make sure that the methods correctly find
them.

The remaining 90% of the points were randomly distributed, either uniformly or in clusters.
Although it is improbable it is possible for these points to interfere or extend our artificial
flocks. The purpose of the clustered point sets is that they are more likely to resemble real
data, and hence it is interesting to compare the impact of different distributed point sets on
the running times of our methods. Each cluster was generated by choosing randomly a cluster
center and then distributing (with a Gaussian distribution) a number of points around that
center. However, the number, distribution, radius and density of the clusters was chosen such
that it is unlikely (although it can happen) to create flocks by accidents, i.e. a cluster is not
dense enough to form a flock because its radius is much larger than the flock radius. Choosing
the clusters in this way makes a comparison between the results for clustered and uniformly
randomly distributed point sets easier, as the differently distributed points can have a strong
effect on the height and width of the created tree structures.

In our experiments each point coordinate of an input point is an integer taken from
the interval

[
0, ..., 213

]
or

[
0, ..., 216

]
. Note that each generated data instance contains the

coordinates of points for a certain number of time-steps τ , and in the experiments on that
instance, we always looked for flocks of at least m = 50 entities in a circle with radius r = 50
and of length k with k = τ .

Note that our artificially created instances are in a sense not very realistic: if we translate
a randomly created point in R2k back to the k different positions in the plane, these positions
may be fairly chaotic. However, for the functionality of our algorithms this seems to be
irrelevant since for them it is more important how dense the points lie. Unfortunately, it is
very hard to get any meaningful real-world data.

When performing a range query, ε influences the approximate region to be queried. One
could expect that a larger value of ε can lead to shorter running times and more flocks that

112 CHAPTER 4. DETECTING AND REPORTING FLOCKS

are found, because the descent in the tree can be stopped earlier and the query region can
become larger. However, apart from very marginal fluctuations, this behaviour could not be
observed in initial experiments. Our point sets and therefore our trees in the experiments
are rather sparsely filled. Hence, the squares corresponding to most of the leaves in the tree
(which correspond to single points in a point set) are still quite large compared to the flock
radius r and also to (1 + ε)r. Furthermore, it often seems that the point sets are too sparse
to find any random flocks. Therefore we refrained from reporting results for different ε and
only use ε = 0.05.

4.5.2 Methods

We compare the results of four methods called box [(8 + ε)-approximation], pipe [(2 + ε)-
approximation], no-tree and pruning. All of them mark points that were found to belong to a
flock, and in the further course of the algorithm these marked points are not used as potential
flock centers, see Section 4.4 for a discussion. The output of the algorithms are the centers of
the flocks found. The box and pipe method are named after the shape of region that we query
for the corresponding method and are explained in Sections 4.3.1 and 4.3.2, respectively.

The no-tree method (which was implemented for the sake of comparison) does not use
a tree as underlying structure. It consists of two nested loops: the outer loop runs over all
input points and specifies a potential flock center. Tthe inner loop runs over all input points
as well and computes the distance between a point and the potential flock center. If there are
enough points within a ball (around the potential flock center) of double flock-radius (see the
proof of Lemma 4.2 for an explanation why the radius is doubled) then the algorithm reports
a flock. Hence, the no-tree method is a 2-approximation.

The pruning method takes advantage of the fact that each flock of a certain length k is
also a flock of length k∗ < k. Therefore all points not involved in flocks of length k∗ cannot be
involved in flocks of length k. The method works as follows. As a first step we compute flocks
of length 4 using the box method. Then we build a new tree containing only those points that
were contained in flocks during the first step. This drastically reduces the number of points.
We then again apply the box method on the new tree for the entire length k. Applying the
box method means that the approximation factor of the pruning method is (8 + ε).

4.5.3 Results

We ran the experiments with few generated point sets for each combination of point-set
characteristics, such as number of points, number of time-steps and point distribution. The
results were very similar for fixed characteristics and hence the tables below show the numbers
for only one collection of point-sets with the specified characteristics. The results of the
algorithms are depicted in Table 4.1, where the coordinates of the points are chosen from the
interval

[
0, ..., 216

]
. The columns below ‘input’ specify the number of points and the number

of time-steps, and the columns below ‘uniformly’ and ‘clustered’ show the number of flocks
found and the running times needed when performing the box-, pipe- and no-tree-algorithm
on the corresponding input. We also performed the same experiments on point-sets where
the coordinates where chosen from

[
0, ..., 213

]
. Table 4.2 shows those results. The results for

the method with pruning are given in Table 4.3. Because of the similarity of the results for
a different number of time-steps, we only report the results for 16 time-steps in that table.
Table 4.4 shows the results of the no-tree method for a large number of time-steps and a

4.5. EXPERIMENTS 113

small number of entities. All tables show the results, i.e. the number of flocks found and the
running time in seconds, only for ε = 0.05, because no big influence of different values of
ε was observed. From our point of view the running times are much more important than
the number of flocks found. Hence, the number of flocks are shown here only for the sake of
completeness. These numbers are indicated in italics in case they deviate from the number of
artificially inserted flocks. (In most cases the methods found exactly as many flocks as were
artificially inserted.)

4.5.4 Discussion

Flat trees in high dimensions.

One general observation is that the running times of our algorithms are increasing with the
number of time-steps (i.e. with the number of dimensions). Recall that an internal node of
an octree has 2d children where d is the number of dimensions. Using 16 time-steps means
32 dimensions which translates to more than 4 billion quadrants, i.e. children of an internal
node (in our approach we only store non-empty children in a list, which reduces storage space
but increases time complexity). In an experiment with 160,000 points in 32 dimensions it is
very unlikely that many of the randomly distributed points (not in flocks) fall into the same
quadrant. Therefore the tree is very flat, i.e. have only a very small depth, which results in
high running times.

Number of flocks.

Most of the times the algorithms found exactly as many flocks as were artificially put into the
point-sets. A few times more flocks were found but only in instances with a small number of
time-steps. This is reasonable since if points that are not belonging to an artificially inserted
flock, form a flock at all, then it is more likely that this happens for a small number of
time-steps.

One case is remarkable (see Table 4.2, on clustered points, n = 160K, k = 4), where the
box method found more than 1300 flocks while the pipe method found only 320 flocks.

This difference can be explained by recalling that the volume of the pipe query region is
strictly smaller than the volume of the box query region. Let us consider one single flock F ,
that was artificially generated. The large number of flocks found by the box method indicates
that for that instance the distribution of the points and clusters (in combination with a high
number of points and a small coordinate space) is dense enough so that there are many points
that lie inside the box query region that is centered at some point in F but not inside the pipe
query region that is also centered at some point in F (note that the difference in volume of
these two query regions exponentially increases with the number of dimensions). By nature
of our methods, many of these points can contribute to the total number of flocks as a flock
center, hence, counting F multiple times. On top of that it also might be that the points are
dense enough to form random flocks of radius at most

√
8 + ε.

In some of our experiments we observed that the algorithms found fewer flocks than
artificially were inserted. This can happen if two flocks are close to each other and fall into
one query region and hence will be counted as one flock by the algorithm.

114 CHAPTER 4. DETECTING AND REPORTING FLOCKS

input uniformly distributed clustered
box pipe no-tree box pipe no-tree

n k flocks time flocks time flocks time flocks time flocks time flocks time
10K 4 20 0 20 0 20 5 20 0 20 1 20 5
10K 8 20 2 20 1 20 5 20 1 20 0 20 5
10K 16 20 2 20 1 20 6 20 1 20 0 20 5
20K 4 40 1 41 0 40 21 40 0 40 1 40 20
20K 8 40 7 40 5 40 21 40 1 40 0 40 22
20K 16 40 13 40 10 40 25 40 3 40 2 40 25
40K 4 80 0 80 1 80 83 80 1 80 0 80 83
40K 8 80 32 80 22 80 87 80 2 80 2 80 87
40K 16 80 62 80 44 80 99 80 8 80 7 80 101
80K 4 160 3 163 3 160 332 160 3 160 2 160 332
80K 8 160 129 160 88 160 347 160 6 160 4 160 346
80K 16 160 244 160 182 160 392 160 30 160 29 160 392

160K 4 320 8 321 10 320 1326 320 8 320 5 320 1327
160K 8 320 441 320 316 320 1391 320 20 320 15 320 1384
160K 16 320 986 320 768 320 1576 320 102 320 93 320 1564

Table 4.1: Results for ε = 0.05 and a large coordinate space, where trajectories are sparsely
distributed, i.e. the position-coordinates are in

[
0, ..., 216

]
. The number of flocks is reported and

the running time (in seconds).

input uniformly distributed clustered
box pipe no-tree box pipe no-tree

n k flocks time flocks time flocks time flocks time flocks time flocks time
10K 4 20 1 20 0 20 5 20 2 20 1 20 4
10K 8 20 8 20 6 20 6 20 2 20 2 20 6
10K 16 20 14 20 11 20 6 20 5 20 11 20 6
20K 4 40 1 40 4 40 20 40 2 40 1 40 20
20K 8 40 52 40 35 40 22 40 6 40 4 40 22
20K 16 40 83 40 58 40 25 40 17 40 44 40 25
40K 4 80 4 80 15 80 83 81 6 80 2 80 83
40K 8 80 237 80 166 80 87 80 16 80 21 80 87
40K 16 80 347 80 244 80 99 80 55 80 177 80 99
80K 4 160 10 160 57 160 333 206 16 160 8 160 332
80K 8 160 932 160 696 160 348 160 45 160 77 160 348
80K 16 160 1411 160 1124 160 394 160 164 160 594 160 395

160K 4 320 29 320 201 320 1326 1317 42 320 27 320 1331
160K 8 320 3179 320 2658 320 1393 320 124 320 238 320 1392
160K 16 320 6015 320 4226 320 1575 320 692 320 2306 320 1576

Table 4.2: Results for ε = 0.05 and a smaller coordinate space, where trajectories are densely
distributed, i.e. the position-coordinates are in

[
0, ..., 213

]
. The number of flocks is reported and the

running time (in seconds).

4.5. EXPERIMENTS 115

Coordinate space
[
0, ..., 213

]
vs.

[
0, ..., 216

]
.

Somewhat surprising might be that the algorithms ran faster on point-sets with coordinates
in

[
0, ..., 216

]
were much faster than those with point-sets with coordinates in

[
0, ..., 213

]
(all

other parameters were the same). One explanation is that in a bigger underlying space (i.e.
where the coordinates are in

[
0, ..., 216

]
) it is more likely that the query region falls into

a single square corresponding to a quadtree node. Due to the sparseness of the point-sets
the algorithms are likely to find just a single point in that square. On the other hand in a
smaller underlying space the query region might intersect more squares, which results in more
subsequent queries, which in turn takes more time.

Uniformly distributed vs. clustered data.

When comparing the results of the uniformly distributed point-sets with the clustered point-
sets it becomes evident that our tree-based algorithms nearly always perform better on the
clustered data. This behaviour could be expected because, as we have seen from the experi-
ments in general, uniformly distributed points result in trees that are rather flat (especially
for higher dimensions). Before exploring what this means, recall that an internal node of an
original (compressed) quadtree has 2d nodes as children, where d is the dimension. In our
modified quadtree a node will not have pointers to all these children, but will have a list
associated that only contains the non-empty children. Now consider e.g. a quadtree for 16
time-steps. Then the root node R of that tree has 232 children. If we store n = 160, 000
uniformly distributed points (in 32 dimensions) in that quadtree, we will most likely have
that all children nodes of R correspond to quadrants of the tree that are very sparsely filled.
A quadrant that contains only one point will not create another level in the tree structure.
Hence, for high dimensions it is unlikely that we have trees with large height. Querying such
a flat tree, however, is expensive as this involves checking all 2d children or, as in our case,
traversing the entire list of non-empty children, which is likely to have O(n) length in high
dimensions. It is a ‘good balance’ between height and width of a tree that allows fast query
times. Clustered data sets are more likely to create trees that are deeper on some branches
or subtrees, and therefore the algorithm will descent on those subtrees cutting off everything
not contained in them. As expected, the no-tree method (which is not using a tree) is not
affected by the two different types of data.

No-tree method vs. box method vs. pipe method.

We observe that the no-tree method’s running times are quadratic in the number of points
and not influenced by the number of time-steps, as expected. On the other hand the box
and pipe algorithms are strongly influenced by the number of time-steps and the number of
points. As discussed above for high dimensions the box and pipe methods operate on an
underlying tree that is very flat. A large query region in combination with a small coordinate
space causes their behaviour to become similar (although with a big overhead) to the no-tree
method. The difference between the box and pipe method is caused by the different data
structure they use. The box method uses the more complex skip-quadtree, while the pipe
method uses a compressed quadtree.

116 CHAPTER 4. DETECTING AND REPORTING FLOCKS

Pruning.

Table 4.3 shows the running times of the pruning method for k = 16 and ε = 0.05. The
impressive impact of the pruning step is illustrated in Figure 4.6 where the running times of
the usual box and the pruning method are shown for point sets with coordinates in

[
0, ..., 213

]
.

Depending on the density and distribution, even some point-sets with more than 1 million
points can be dealt with by the pruning method within a few minutes. Furthermore, we
observed that the number of time-steps hardly has an influence on the running times. An
exception are the clustered point sets with coordinates in

[
0, ..., 213

]
and a large number of

points, where we experienced much longer running times and a strong correlation between the
number of time-steps and running time. Also the point distribution (uniformly or clustered)
does not affect the running times on point-sets with coordinates in

[
0, ..., 216

]
. However,

for point-sets with coordinates in
[
0, ..., 216

]
, we observe much longer running times for the

clustered point-sets. This can be explained by noting that after the pruning step it is likely
that the remaining points form a flock also for more time-steps. Therefore, almost every query
to the data structure gives a flock and hence, the number of queries drastically decreases. For
the clustered point sets with coordinates in

[
0, ..., 213

]
, however, the probability of random

flocks is much higher. The fact that the pruning method sometimes finds less flocks than the
box method can be explained by noting that the pruning method performs two runs of the
box method each of which can handle the points in a different order. Therefore the second
run of the box method can encounter points which do not belong to any flock.

input coordinates from
[
0, ..., 213

]
coordinates from

[
0, ..., 216

]
uniformly clustered uniformly clustered

n k flocks time flocks time flocks time flocks time
10K 16 20 0 20 1 20 1 20 0
20K 16 40 1 40 2 40 1 40 0
40K 16 80 3 80 6 80 2 80 2
80K 16 160 11 160 15 160 3 160 3

160K 16 320 30 320 45 320 9 320 9
320K 16 639 82 633 303 640 26 640 25
640K 16 1271 194 1268 1796 1280 75 1280 75

1280K 16 2501 533 2507 9213 2560 249 2560 246

Table 4.3: Results for the pruning method for ε = 0.05. The number of flocks is reported and the
running time (in seconds).

4.6 Concluding remarks

In this chapter we have presented different algorithms for finding flock patterns and analysed
them theoretically as well as experimentally. From the experiments we have seen that our
tree-based algorithms can perform very well. Especially for a small number of time-steps the
resulting running times are often very small. However, they depend very much on the charac-
teristics of the input point-sets, which motivates more research and experiments, preferably
on real-world data.

4.6. CONCLUDING REMARKS 117

 0

 100

 200

 300

 400

 500

 600

 700

 0 200 400 600 800 1000 1200

ru
nn

in
g

tim
e

in
 s

ec
on

ds

number of points in K

Box_uniformly
Box_clustered

Pruning_uniformly
Pruning_clustered

Figure 4.6: Running times for k = 16, ε = 0.05 and point coordinates from
[
0, ..., 213

]
.

For a larger number of time-steps the no-tree method can be used. This method’s running
time is mainly influenced by the number of entities and not by the number of dimensions.
Table 4.4 shows the performance of this algorithm for up to 40000 entities and up to 1000
time-steps. As we have seen from Tables 4.1 and 4.2, the characteristics (such as distribution
and coordinate space) of the point sets have no influence on the running time of the no-tree
method and therefore, Table 4.4 only shows the results for uniformly distributed points with
coordinates in [0, ..., 216]. We see that even point sets with 1000 time-steps can be searched
for flocks of length 1000 within a few minutes.

input uniformly distributed with coordinates from
[
0, ..., 216

]
k = 32 k = 64 k = 125 k = 250 k = 500 k = 1000

n flocks time flocks time flocks time flocks time flocks time flocks time
10K 20 14 20 16 20 15 20 15 20 18 20 21
20K 40 59 40 67 40 69 40 73 40 85 40 88
40K 80 235 80 265 80 278 80 294 80 332 80 337

Table 4.4: Results of the no-tree method, ε = 0.05. The number of flocks is reported and the running
time (in seconds).

Hence, for a small number n of entities and many time-steps, we can use the no-tree
method, which has a running time quadratic in n. For many entities and few time-steps k our
tree-based methods perform very well. They have a running time exponential in the number

118 CHAPTER 4. DETECTING AND REPORTING FLOCKS

of dimensions of the tree, i.e. they are exponential in k. Thus, we are faced with a trade-
off. One approach to tackle the case of many entities and many time-steps has recently been
developed by Al-Naymat et al. [ANCG07]. They process the data in a preprocessing step that
reduces the number of dimensions (i.e. time-steps) by random projection. In experiments it
was shown [ANCG07] that the tree-based methods perform very well on the data with reduced
dimensionality. As a conclusion we see that the idea of projecting trajectories into points in
higher dimensional space is very viable for finding flocks in spatio-temporal data.

This chapter is a first step towards practical algorithms for finding spatio-temporal pat-
terns, such as flocks, encounters and convergences. Future research should not only include
more efficient approaches to compute these patterns but also more complicated patterns, e.g.
hierarchical patterns or repetitive patterns.

Chapter 5

A Geometric Dispersion Problem

This chapter completes the analyzing part and the whole thesis. Though the input, given
unit disks in a rectangular region, do not indicate a geometric network at all, the analysis of
a nearest-neighbor graph on a special set of unit disks comprises the key to the solution of
the dispersion problem we deal with.

The chapter is based on conference publication [7]: Marc Benkert, Joachim Gudmundsson,
Christian Knauer, Esther Moet, René van Oostrum and Alexander Wolff: It was invited to
the special issue of the International Journal of Computational Geometry and Application
and is currently under review.

5.1 Introduction

The geometric dispersion problem we consider in this chapter is placing points in a restricted
area of the plane such that the points are located as far away as possible from a set of points
that is already present, and simultaneously as far away from each other as possible as well.
This problem has applications in surveying, in non-photorealistic rendering, and in obnoxious
facility location.

In surveying one may be interested in certain soil or water parameters. For a given
domain, measurements of some parameter are known for a given set of locations, and one has
the means to do extra measurings or set up a number of new measuring stations. It is desired
that these new locations are nicely distributed over the area that has not yet been covered
by the given fixed locations.

In non-photorealistic systems 3D models are to be rendered, e.g., in an oil painting style.
For an example, see Figure 5.1. When a model is rendered “painterly”, instead of computing
the color of each pixel by ray casting, the color is solely based on lighting and model properties.
The idea is to generate a number of brush strokes. Each of these starts at a selected pixel that
defines the color for all pixels that are covered by this brush stroke. The aim is to distribute
the locations of the brush strokes more or less evenly.

In the general facility location problem a set of customers is given that is to be served
from a set of facilities. The goal is to place a number of facilities in such a way that the
distance to the closest facility is minimized over all customers. In other words, facilities
are desirable, and customers like to be close to them. In obnoxious, or undesirable, facility
location problems, the opposite is true: customers now consider it undesirable to be in the
proximity of these facilities, and the goal is to maximize the distance to the closest facility

119

120 CHAPTER 5. A GEOMETRIC DISPERSION PROBLEM

Figure 5.1: The packing problem we consider in this chapter occurs in non-photorealistic rendering,
e.g., when using an oil painting style.

over all customers. Examples of such undesirable facilities are, for instance, nuclear power
plants or garbage dumps.

There are several models for and variants of the problem, see the surveys by Cappan-
era [Cap99] and Tóth [T0́4], and the monographs [Rog64, ZT99]. The problem we will study
is a special case of the following problem.

Problem 1 (PackingScaledTranslates) Let α ∈ (0, 1] be a fixed real, let S ⊂ R2 be a
shape of positive area, and let αS be the result of scaling S at the origin with a factor of
α. Given an area A ⊂ R2, pack at least m disjoint translates of αS into A, where m is the
maximum number of disjoint translates of S that can be packed into A.

Note that we do not know the value of m a priori. The special case that we study

ρ

R

(a) (c)(b)

Figure 5.2: (a) The input: a rectangle ρ and a set R of (possibly overlapping) unit disks. (b) An
optimal solution where m = 6 unit disks are packed in ρ \

⋃
R. (c) A solution with m disks of radius

3/4.

5.1. INTRODUCTION 121

is referred to as the PackingScaledDisks problem. In this case S is the unit disk and
A = ρ \

⋃
R is a given rectangle ρ minus a set R of n given obstacle disks (see Figure 5.2). It

is easy to see (and we will give the proof in Section 5.2) that greedily placing radius-α disks
in A solves PackingScaledDisks for α ≤ 1/2. The main contribution of this chapter is a
polynomial-time algorithm for α = 2/3.

In their pioneering work Hochbaum and Maass [HM85] described a polynomial-time ap-
proximation scheme (PTAS) for the problem of packing the maximum number of translates
of a fixed shape into a region given by the union of cells of the unit grid. The problem is
known to be NP-hard [FPT81].

Even though the corresponding geometric dispersion problem looks very similar, inap-
proximability results have been shown. Baur and Fekete [BF01] investigated the complexity
of different variants of the geometric dispersion problem, one of which is a special case of
PackingScaledTranslates where S is the axis-parallel unit square and A is a rectilinear
polygon with n vertices. We refer to this problem as PackingScaledBoxes. Baur and
Fekete showed that it cannot be solved in polynomial time for α > 13/14 unless P = NP.

They also gave a 2/3-approximation for PackingScaledBoxes. Their algorithm can be
sketched as follows. First they compute a set S of at least 2m/3 disjoint unit squares in the
given polygon A, using the PTAS of Hochbaum and Maass. Then they use the space occupied
by the squares in S to pack at least m squares of side length 2/3 in A. Their algorithm runs
in O(n40 log m) time. If the user does not insist on an explicit list of all squares in the output,
the running time becomes O(n38), i.e., strongly polynomial.

The two main steps of our 2/3-approximation for PackingScaledDisks are conceptually
the same as those of Baur and Fekete’s algorithm. To make it work for disks, however, we
need a more refined analysis. First of all we have to adjust the PTAS of Hochbaum and
Maass to packing disks. From this PTAS we need 8m/9 unit disks. We also need a more
involved geometric argument that guarantees sufficient space for the radius-2/3 disks. It is
based on a matching in a nearest-neighbor graph of the unit disks. As the algorithm of Baur
and Fekete, our algorithm is exclusively of theoretical interest—the involved constant (hidden
by the big-Oh notation) is extremely large: roughly 16201620, see Section 5.4.

For completeness we mention that Ravi et al. [RRT94] considered two abstract disper-
sion problems to which they refer as MAX-MIN and MAX-AVG. In those problems a set
of n objects with their pairwise distances and a number k < n is given, and the task is to
pick k of the given objects such that the minimum (resp., average) distance among them
is maximized. It is known that both versions are NP-hard. Ravi et al. showed that unless
P = NP there is no constant-factor approximation for MAX-MIN in the case of arbitrary
distances. For the case that the distances fulfill the triangle inequality they gave factor-2 and
factor-4 approximation algorithms for MAX-MIN and MAX-AVG, respectively. The former
is optimal. Wang and Kuo [WK88] investigated a variant of MAX-MIN where the objects
are points in Euclidean space. They gave an O(max{kn, n log n})-time algorithm for the
one-dimensional case and showed that it is NP-hard to solve the two-dimensional case. For
MAX-AVG, Ravi et al. [RRT94] solved the one-dimensional case within the same time bound
while the two-dimensional problem is still open.

We show that greedily packing works for α ≤ 1/2 in the next section. We outline our
algorithm for α = 2/3 in Section 5.3. We give the details in Sections 5.4–5.8, and conclude in
Section 5.9.

122 CHAPTER 5. A GEOMETRIC DISPERSION PROBLEM

5.2 A simple greedy strategy

Here we present a simple greedy approach that guarantees a 1/2-approximation. We use the
term r-disk as shorthand for a disk of radius r. Consider an initially empty set B. The greedy
algorithm will iteratively add 1/2-disks to B until no more disks can be added. More exactly,
in each round a 1/2-disk D is added to B if D lies entirely within ρ and does not intersect
any of the disks in B or R.

Observation 5.1 For α ≤ 1/2 greedily packing region A solves PackingScaledDisks in
O((m + n)2) worst-case or in O((m + n) log(m + n)) expected time.

Proof. The following simple charging argument shows that we will place at least m disks in
this way. Consider an arbitrary (optimal) placement Π of m disjoint unit disks in A. We
charge a disk D in Π whenever the center of an α-disk falls into D. We claim that all disks
in Π get charged at least once during the execution of the greedy algorithm. Assume this
was not the case. Then we could place a α-disk concentrically into an uncharged unit disk.
This would contradict the termination condition of the greedy algorithm. Thus each of the
m disks in Π has in fact been charged. Since the placement of a α-disk causes the charging
of at most one disk in Π, the greedy algorithm places at least m α-disks as stated.

The greedy algorithm can be implemented as follows. First, we compute the union of the
disks in R scaled by a factor of two. Second, we intersect this union with a copy of ρ shrunken
by one unit in each direction. The resulting region—call it A′—contains the centers of all
unit disks that lie in ρ and do not intersect any disk in R. Then we pick any vertex v on the
boundary of A′, subtract the unit disk centered at v from A′ and repeat until A′ is empty. As
Aurenhammer [Aur88] has observed, (the boundary of) a union of disks can be represented
via the power diagram of the disks. A power diagram is a generalization of a Voronoi diagram
where the distance used is the power distance instead of the Euclidean distance. The power
distance of a point p from a disk of radius r and center c is defined by |pc|2 − r2. Given
s disks of arbitrary radii, their power diagram can be computed incrementally, either in
O(s2) worst-case time [AE84] or by randomized algorithms for abstract Voronoi diagrams in
O(s log s) expected time [KMM93]. Thus, the greedy algorithm can be implemented to run
in O((m̃ + n)2) worst-case or in O((m̃ + n) log(m̃ + n)) expected time, where m̃ ≥ m is the
number of disks in the output.

The lemma follows by observing that m̃ = O(m + n). This holds again due to a simple
charging argument: if we charge each disk placed by the greedy algorithm to the closest disk
in Π∪R, then each of the m + n disks in this set gets charged at most a constant number of
times. ♣

Clearly the greedy algorithm for α = 1/2 works also for other shapes that are convex and
point-symmetric. The running time, however, will depend on how fast unions of these shapes
can be computed incrementally.

5.3 Algorithm outline

We now give a rough outline of our 2/3-approximation algorithm for the problem Pack-
ingScaledDisks, see Algorithm 5.3. We refer to our algorithm as DiskPacker. For r > 0
and a set R ⊆ R2 let the r-freespace of R, denoted Fr(R), be the set of the centers of all r-disks

5.3. ALGORITHM OUTLINE 123

DiskPacker(ρ,R)

Compute the 1-freespace F1 = F1(ρ \
⋃
R) and the extended 1-freespace F⊗1 .

Use the PTAS of Hochbaum and Maass [HM85] to compute a set of at least 8/9 ·m disjoint
unit disks in F⊗1 .

Greedily fill possible gaps in the remaining freespace with further unit disks as long as this
is possible.

Let B be the set of unit disks placed by PTAS and post-processing.
Define a metric dist(·, ·) on B.
Compute the nearest-neighbor graph G = (B, E) with respect to dist.
Find a sufficiently large matching in G.
for each pair {D,D′} of unit disks in the matching do

Place three 2/3-disks in a region defined by D and D′.
for each unmatched unit disk D ∈ B do

Place one 2/3-disk in D.
return B2/3, the set of all placed 2/3-disks.

Figure 5.3: The framework of our algorithm.

ρ

R
F1

F⊗
1

C ′

C
v

v′

Figure 5.4: The 1-freespace F⊗
1 (light shaded) and a shortcut vv′ (dashed) between the connected

components C and C ′ of F1.

that are completely contained in R. Let the extended r-freespace F⊗r (R) be the Minkowski
sum of Fr(R) and an r-disk.

Recall that A = ρ \
⋃
R. We first compute the sets F1 = F1(A) and F⊗1 = F⊗1 (A), see

Figure 5.4. Then, we apply the PTAS of Hochbaum and Maass [HM85] to F⊗1 . For any
positive integer t, the PTAS places at least (1− 1/t)2 ·m unit disks into F⊗1 , where m is the
maximum number of unit disks that can be packed into F⊗1 . For more details, see Section 5.4.
As we aim for a set of at least 8m/9 unit disks we set t = 18 since this is the smallest integer
for which (1− 1/t)2 exceeds 8/9. After running the PTAS we greedily fill possible gaps in the
remaining freespace with further unit disks. Let B be the set of unit disks placed by PTAS
and post-processing, and let m′ ≥ 8m/9 be the cardinality of B.

Then we compute a set B2/3 of at least 9m′/8 ≥ m disjoint 2/3-disks in A. We obtain B2/3

in two steps. First, we compute a matching in the nearest-neighbor graph G = (B, E) of B
(see Section 5.6) with respect to a metric dist(·, ·) that we will specify in Section 5.5. Second,
we define a region for each pair of unit disks in the matching such that (a) we can place three

124 CHAPTER 5. A GEOMETRIC DISPERSION PROBLEM

≥ 4

4/3

Figure 5.5: Packing three 2/3-disks (bold) in the region (shaded) spanned by a pair of unit disks
(dotted).

2/3-disks in each region (see Figure 5.5) and (b) the regions are pairwise disjoint. The main
part of the chapter (see Section 5.7) is proving that property (b) actually holds. For each
unmatched unit disk we place a 2/3-disk such that their centers coincide, see Section 5.8.
Next we describe each step of Algorithm DiskPacker in more detail.

5.4 Adjusting the PTAS of Hochbaum and Maass

The PTAS of Hochbaum and Maass [HM85] packs a near-optimal number of squares into
a grid-aligned rectilinear region. In this section we detail how to adjust their PTAS to our
situation: we want to pack disks instead of squares, our region A is not rectilinear but a
rectangle with holes that are unions of disks, and we do not have an underlying grid.

For packing (square) objects of size k×k into some given region R, the shifting technique of
Hochbaum and Maass [HM85] works as follows. Let t be a positive integer. Take a square grid
of cell size kt× kt. For each grid cell that intersects R, solve the corresponding local packing
problem in f(t) time optimally, where f is some function. Let the set of all packed objects be
L0,0. Then shift the grid by the vector (ki, kj) for i = 0, . . . , t− 1 and j = 0, . . . , t− 1. Each
shifted grid Γi,j yields a solution Li,j . Let OPT be an optimal solution and let OPTi,j be the
set of all objects in OPT that do not intersect the boundaries of the grid cells in Γi,j . By the
pigeon-hole principle there is a pair (i?, j?) such that OPTi?,j? contains at least (1 − 1/t2)
times as many objects as OPT. Note that each solution Li,j contains at least as many objects
as OPTi,j . Thus Li?,j? is a (1 − 1/t2)-approximation of OPT. Hochbaum and Maass state
that each local packing problem can be solved in f(t) = Ñ t2 time, where Ñ is the number of
objects that can be packed in the corresponding (k × k)-square. This yields a total running
time of O(k2t2N t2), where N is the number of unit squares needed to cover region R.

Now we detail how to apply the shifting technique to the problem of packing unit disks
in the region A = ρ \

⋃
R. Note that a unit disk fits into a (2 × 2)-square. Thus if we

choose k = 2, the above analysis concerning the approximation factor carries over. It remains
to show how to solve the local packing problems optimally. So let S be a grid cell of size
(2t × 2t) that intersects A and that may contain or intersect obstacle disks, i.e., disks in R.
Let OPTS be an optimal solution for packing unit disks in S.

We first make OPTS canonical as follows. We go through the disks in OPTS from left
to right. For each disk D we move D as far left as possible – either horizontally or following
the boundary of obstacle disks or previously moved disks. If D happens to hit another disk
D′ such that their centers lie on the same horizontal line, we move D along the lower half
of the boundary of D′ until D hits another object or until D reaches the lowest point of D′.
In the former case D has reached its destination, in the latter case we continue to move D
horizontally until the next event occurs, which we treat as before. If D hits the left edge of

5.4. ADJUSTING THE PTAS OF HOCHBAUM AND MAASS 125

2t

S

R Fcurr
1 (S)

Bcurr

Figure 5.6: Example situation for one step in the incremental procedure of the disk-placing PTAS.

S, we move D downwards along the edge until D hits either another disk or the bottom edge
of S.

This process yields the following. Every disk D in the canonical version OPT′
S of OPTS

touches at least two other objects (disks or square edges) with its left side (including the
south pole). These are the objects that stop D from moving further to the left, and they
completely determine the position of D. Using this fact we now compute OPT′

S by generating
all canonical solutions, each of them by incrementally adding unit disks from left to right.

Let nS be the number of obstacle disks that intersect S. These disks are contained in a
((2t+4)× (2t+4))-square. In 1910 Thue [Thu10] proved that the density of any arrangement
of non-overlapping unit disks in the plane is at most π/

√
12, the ratio of the area of the unit

disk to the area of the circumscribed regular hexagon. Using Thue’s result, we know that
nS ≤ (π/

√
12) · (2t + 4)2 < 5t2 for t ≥ 12. In each step of our incremental procedure we

have at most max{nS + 1, 2t} choices to place a unit disk such that its left side touches two
previously placed objects (again including obstacles and edges of S). Figure 5 shows a set R
of red disks and a set Bcurr of blue disks that have already been placed. The set of possible
choices to place the next disk has been marked by dotted circles. Their centers correspond
to locally leftmost points in Fcurr

1 (S), the 1-freespace in S with respect to the obstacle disks
and the previously placed disks (see the shaded region in Figure 5.6). Let Ñ be the number
of disks in OPTS . Again by Thue [Thu10], we know that Ñ < 5t2. Thus there are at most
f ′(t) = (5t2)5t2 choices, which can be enumerated within O(f ′(t)) time. For the PTAS, this
yields a running time of O(t2 · (N/t2) · (5t2)5t2) = O(N), where N = O(n + m) denotes the
area of ρ. This is due to the fact that for one position of the grid we have O(N/t2) local
packing problems, and there are O(t2) grid positions. Recall from the previous section that
we have to apply the PTAS for t = 18. Thus we have a polynomial-time algorithm, but the
constants hidden by the big-Oh notation are extremely large.

If after applying the PTAS the remaining 1-freespace Fcurr
1 (ρ) of the whole instance is

not empty, we greedily place further unit disks centered on points in Fcurr
1 (ρ) until Fcurr

1 (ρ)
is empty. This is to make sure that small components (especially those which offer space for
only one unit disk) are actually packed optimally. We will need this for our final counting
argument, see Section 5.8. Let B be the set of all disjoint unit disks that are placed by the
PTAS and in the greedy post-processing phase. Let m′ be the cardinality of B.

126 CHAPTER 5. A GEOMETRIC DISPERSION PROBLEM

5.5 The freespace and a metric on unit disks

We briefly recall the setting. We are given a set R of n unit disks whose centers lie in a
rectangle ρ, see Figure 5.2(a). The disks in R are allowed to intersect. Let A = ρ \

⋃
R. We

first compute the freespace F1 = F1(A). According to Aurenhammer [Aur88] the union of
n disks can be computed in O(n log n) time and the complexity of its boundary is linear in
n. We apply Aurenhammer’s algorithm to the disks in R scaled by a factor of 2. Then we
intersect the resulting union with ρ shrunken by 1 unit. This yields F1 and F⊗1 in O(n log n)
time.

Next, we want to introduce a metric dist(·, ·) on unit disks in F⊗1 . The idea of our
algorithm is to use the connected components of F1 to identify all maximal regions where
we can place 2/3-disks. To guarantee that all such regions are discovered we need to join
components of F1 that are not connected but still can hold 2/3-disks in the space between
them. This is the idea behind the following definition.

Definition 5.1 Let C and C ′ be two connected components of F1, and let v and v′ be vertices
on the boundaries of C and C ′, respectively. We say that the straight-line segment vv′ is a
shortcut if |vv′| 6 2/3 ·

√
11 ≈ 2.21, where |pq| denotes the Euclidean distance of points p and

q. Let S(C,C ′) be the set of all shortcuts induced by C and C ′. We set

F+
1 = F1 ∪

⋃
C,C′∈F1

s∈S(C,C′)

s.

Figure 5.4 depicts F1, F⊗1 , and a shortcut vv′. Throughout this chapter we will use upper-
case letters to denote disks and the corresponding lower-case letters to denote their centers.
Now, we are ready to define our metric for a connected component of F+

1 , see Figure 5.7.

Definition 5.2 Let D and D′ be unit disks that lie in F⊗1 . Let d and d′ be their respective
centers. The distance dist(D,D′) of D and D′ is the length of the geodesic g(d, d′) of d and d′

with respect to F+
1 . The tunnel T (D,D′) of D and D′ is the union of all points in A within

distance 1 of a point on g(d, d′).

From the definition of F⊗1 it is easy to see that any 2/3-disk D2/3 centered at a point
of g(d, d′) does not intersect any disk in R. (This will also follow from Lemma 5.2.) Thus
D2/3 is contained in the tunnel T (D,D′). Since R is the union of a set of unit disks the
geodesic between two points in F+

1 can only consist of line segments and arcs of radius 2, see
Figure 5.7(b).

Recall that our algorithm computes a matching in the nearest-neighbor graph G = (B, E)
induced by the metric dist(·, ·) on the set B of unit disks that we get from the PTAS by
Hochbaum and Maass. For each pair {D,D′} of disks in the matching we now define a
region A(D,D′) into which we later place three 2/3-disks as in Figure 5.5. An obvious way
to define this region would be to take the union of all 2/3-disks centered at points of the
geodesic between d and d′ in F2/3. Our definition is slightly more involved (for illustration see
Figure 5.7), but it will simplify the proof of the main theorem in Section 5.6. The theorem
states that two such regions are disjoint if the corresponding unit disks are pairwise disjoint.
This makes sure that the 2/3-disks which we place into the regions are disjoint.

5.6. THE NEAREST-NEIGHBOR GRAPH 127

D D′

T (D,D′)

T (D,D′)D

D′

T2/3(D, D′)

D′

g2/3(d, d′)

T (D, D′)

R ∈ R

D

T2/3(D, D′)

T2/3(D, D′)

g(d, d′) = g2/3(d, d′)

g(d, d′) = g2/3(d, d′)

v′

v

(a) (c)(b)

g(d, d′)

Figure 5.7: The geodesic g(d, d′) (a) in the unrestricted case, (b) in the presence of obstacles, and
(c) in case of a shortcut.

Definition 5.3 Let D and D′ be unit disks in F⊗1 . Let g2/3(d, d′) be a geodesic from d to d′

in F2/3(T (D,D′)). Then the 2/3-tunnel T2/3(D,D′) of D and D′ is defined as all points in
A within distance 2/3 of a point on g(d, d′). Finally define the placement region A(D,D′) of
D and D′ be D ∪D′ ∪ T2/3(D,D′).

According to Chang et al. [CCK+05] the geodesics g(d, d′) and g2/3(d, d′) from d to d′ can
be computed in O(n2 log n) time.

5.6 The nearest-neighbor graph

Recall that m is the maximum number of disjoint unit disks that fit in F⊗1 . From (our variant
of) the PTAS of Hochbaum and Maass [HM85] we get a set B of m′ ≥ 8m/9 disjoint unit
disks in F⊗1 . Then we compute the nearest-neighbor graph G = (B, E) induced by the metric
dist(·, ·). We consider G a directed graph, where an edge (C,D) is in G if D is the nearest
neighbor of C, for C,D ∈ B. In case of a tie, we pick any of the nearest neighbors of C, so
every vertex in G has exactly one outgoing edge.

As for the algorithm we next find a matching in G and place three 2/3-disks in the
placement region A(C,D) for each pair {C,D} in the matching. Finally we place a 2/3-disk
for each unmatched disk in B. In Section 5.8 we show that in this way we place at least
9m′/8 ≥ m disks of radius 2/3 in total.

For nearest neighbor graphs of points in Euclidean space it is well-known that the max-
imum degree of the graph is bounded by 6. However, our setting is quite different so for
completeness we include the following lemma.

Lemma 5.1 The nearest-neighbor graph G = (B, E) with respect to dist is plane and has
maximum degree 7.

Proof. The following standard argument shows that G is plane. Assume that (C,D) and
(E,F) are in G and that g(c, d) and g(e, f) intersect. Let p be one of the intersection points

128 CHAPTER 5. A GEOMETRIC DISPERSION PROBLEM

D′

≥ 4
3

α

R

g(c, d′)

g(c, d)

C

D

< 11
3

Figure 5.8: Illustration for the proof of Lemma 5.1.

of g(c, d) and g(e, f). This implies that the lengths of g(c, p), g(d, p), g(e, p) and g(f, p) must
all be equal. Then, however, either g(c, d) or g(e, f) cannot be a geodesic—a contradiction to
(C,D) or (E,F) being in G.

It remains to show the degree bound. Let C be an arbitrary unit disk in B. Since by
construction of G the outdegree of each vertex is 1, it suffices to bound the indegree of C
by 6.

Let D,D′ ∈ B be two disks for which (D,C) and (D′, C) are in E . Consider the geodesics
g(c, d) and g(c, d′). By construction they end in C with a straight-line segment, see Figure 5.8.
Now, it is enough to show that the angle α between g(c, d) and g(c, d′) in C is larger than
360◦/7. We analyze the setting for which α is minimized. Note that if D and D′ touched
C, then we would immediately have α ≥ 60◦ since D and D′ are disjoint. To minimize
α, the disks D and D′ must lie at some distance from C, but such that the inequalities
dist(C,D) 6 dist(D,D′) and dist(C,D′) 6 dist(D,D′) are still obeyed. Hence there must be
some disk in R that lies in the wedge-like region between the geodesics g(c, d) and g(c, d′).
Among these disks let R be the one closest to C.

Due to the way the disks in B have been placed, R cannot be very far from C, otherwise
there would be a disk in B closer to D or D′ than C. For the same reason, there must be other
disks in R on the opposite sides of g(c, d) and g(c, d′). The disks in R must leave a corridor of
width at least 2·2/3, otherwise there would not be a shortcut between them that the geodesics
can use. This yields |rc| < 11/3. If the distance were larger, the presence of an additional disk
in B would immediately contradict (D,C) and (D′, C) being in E , see the indicated dotted
disks in Figure 5.8. By construction the distance of any point on the geodesics g(c, d) and
g(c, d′) to r is at least 5/3. Now some simple trigonometry yields α > 52.2◦, which is greater
than 360◦/7 ≈ 51.4◦. If we repeat the above construction we can place at most six disks
D,D′, D′′, . . . such that C is the nearest neighbor of all of them. ♣

From now on we call {C,D} ⊆ B a nearest pair if (C,D) or (D,C) is an edge in G, i.e.,
if D is closest to C or C is closest to D (among the disks in B). Recall that the placement
region A(C,D) of C and D was defined as C ∪D ∪ T2/3(C,D). As a nearest pair {C,D} can
be in the matching, we have to prove the following two statements:

(i) three 2/3-disks fit into A(C,D) and

(ii) for any nearest pair {E,F}, where C, D, E, and F are pairwise disjoint, it holds that

5.7. PLACEMENT REGIONS OF NEAREST PAIRS ARE DISJOINT 129

A(C,D) ∩ A(E,F) = ∅.

Note that we do not have to care whether A(C,D) intersects A(C,E) because a matching
in G contains at most one pair out of {C,D} and {C,E}. Three 2/3-disks obviously fit into
A(C,D) since C and D do not intersect, see Figure 5.5. Thus, statement (i) is true. The
remaining part of this chapter will focus on proving statement (ii).

5.7 Placement regions of nearest pairs are disjoint

By the definition of shortcuts, unit disks whose centers lie in different components of F+
1

do not intersect. This immediately yields that A(C,D) ∩ A(E,F) = ∅ holds for {C,D}
and {E,F} being nearest pairs from different components. Thus it remains to show that
A(C,D) ∩A(E,F) = ∅ for nearest pairs {C,D} and {E,F} that lie in the same component.

We split the proof into two parts. The first part (Lemma 5.4) shows that T2/3(C,D) does
not intersect any disk other than C and D. The second part (Theorem 5.1) shows that no two
2/3-tunnels T2/3(C,D) and T2/3(E,F) intersect. We start with two technical lemmas that we
need to prove the first part.

d

e
60◦

2
3π

c
2
3

R ∈ R

5
3

(a) (b)T ′
2/3(C,D)

E

R ∈ R

e

S ∈ R

v D

C
c

dd

Figure 5.9: Illustrations for (a) the proofs of Lemmas 5.2–5.3 and (b) case 2 in the proof of Lemma 5.4.

Lemma 5.2 Let C and D be two unit disks in F⊗1 . If |cd| 6 2
3

√
11 then g2/3(c, d) is a

straight-line segment.

Proof. Let T ′
2/3(C,D) be the Minkowski sum of a 2/3-disk and the line segment cd, see

Figure 5.9(a). If g2/3(c, d) is not a line segment, then a disk E in B∪R intersects T ′
2/3(C,D).

We establish a lower bound on |cd| for this to happen. Note that C, D and E are pairwise
disjoint as C and D are disks in B.

Clearly, the minimum distance between c and d is attained if E and T ′
2/3(C,D) only

intersect in a single point and furthermore, both E and C as well as E and D intersect in a
single point. This means that |ce| = |de| = 2. Moreover, the Euclidean distance between e
and the straight-line segment cd is 1 + 2

3 = 5
3 . By Pythagoras’ theorem we calculate |cd| to

be at least 2
3

√
11. This means that T ′

2/3(C,D) is contained in A = ρ \
⋃
R.

If C and D belong to different components of F1, they must be connected via a shortcut
according to Definition 5.1. Thus, g2/3(c, d) is a line segment. ♣

130 CHAPTER 5. A GEOMETRIC DISPERSION PROBLEM

Lemma 5.3 Let D and E be two unit disks in F⊗1 that touch each other. Then dist(D,E) 6
2
3π.

Proof. Let D and E be two unit disks in F⊗1 that touch each other, as illustrated in Fig-
ure 5.9(a). The length of the curve g(D,E) is maximized if there is an obstacle disk R that
touches D and E and no shortcut could be taken. In this case g(D,E) describes a circular
arc of radius 2 spanning 60◦, thus its length is 1

6 · 2 · 2π = 2
3π. ♣

Now, we are ready to prove the first part:

Lemma 5.4 Let {C,D} ⊆ B be a nearest pair. No disk of B∪R\{C,D} intersects T2/3(C,D).

Proof. From the definition of freespace and Definitions 5.2 and 5.3 it immediately follows that
neither T (C,D) nor T2/3(C,D) are intersected by a disk in R. Thus, it remains to prove that
apart from C and D no disk in B intersects T2/3(C,D).

Without loss of generality, assume that C is the disk in R closest to D. The proof is by
contradiction, i.e., we assume that there is a disk E ∈ B that intersects T2/3(C,D).

First, we move a unit disk on g(C,D) from the position of D to the first position in which
it hits E. Denote the disk in this position by D. We claim that the length of g(d, e), within
F+

1 , is shorter than g(c, d). This obviously contradicts C being the nearest neighbor of D,
and would thereby complete the proof of the lemma.

We have to consider two cases for the upper bound on the length of g(d, e).
Case 1: If d is in F1 and there is an obstacle disk R ∈ R that touches D and E, then the

length of g(d, e) is maximized and g(d, e) is an arc of radius 2 and spanning 60◦. Lemma 5.3
yields g(d, e) 6 2

3 . It might be that g(d, e) does not lie entirely within F1. However, as
D,E ⊆ F⊗1 , there must then be a shortcut that would shorten the length of g(d, e) even
further.

Next we give a lower bound on the length of g(c, d). Since E touches T2/3(C,D) and D it
follows that C and D are disjoint, otherwise E could not intersect T2/3(C,D). Consequently
C,D and E are pairwise disjoint and, according to Lemma 5.2, the Euclidean distance between
c and d is greater than 2

3

√
11. Putting the two bounds together we get:

g(d, e) 6
2
3

<
2
3

√
11 < g(c, d).

Case 2: If d is not in F1 then d must lie on a shortcut vv′ and the unit disk D intersects
at least one disk in R. Let v be the endpoint of the shortcut (v, v′) closest to E and let
D2/3 be the 2/3-disk centered at d. Note that v must lie in the same component as e, thus
g(d, e) consists of a straight-line segment from d to v followed by the geodesic g(v, e). The
length of g(d, e) is maximized if the angle ∠vde is maximized. This is the case if a unit disk
R ∈ R touches E and D2/3 and a unit disk S ∈ R touches D2/3 such that d, r and s are
collinear, as shown in Figure 5.9(b). By parametrization it follows that the length of g(d, e)
is maximized if the length of dv is maximized, which is bounded by 1/3

√
11, according to

Lemma 5.2. By Pythagoras’ theorem we can now compute the coordinates of e, they are
≈ (−1.8182,−0.8333), where the coordinate system is fixed by d = (0, 0) and r = (0,−5/3).
The geodesic g(v, e) consists of an arc of radius 2, applying the cosine theorem then yields
that the length of g(v, e) is approximately 1.1105, which gives that g(d, e) < 1

3

√
11 + 1.105.

Next we need a lower bound on the length of g(c, d). Using the same ideas as above, the
position of c can be computed by Pythagoras’ theorem to be ≈ (−1.9356, 1.1632) and the

5.7. PLACEMENT REGIONS OF NEAREST PAIRS ARE DISJOINT 131

length of the geodesic g(c, v) is at least 1.4607 using the cosine theorem. Thus,

g(d, e) 6
1
3

√
11 + 1.105 <

1
3

√
11 + 1.4607 < g(c, d).

Since g(d, e) has been shown to be shorter than g(c, d), in all cases, d must be closer to c
than to e, which is a contradiction to the initial assumption. This completes the proof of the
lemma.

Note that the disks involved in this construction can be moved such that the lengths of
g(d, e) and g(c, d) changes. However, the above construction minimizes their difference.

♣

(b)(a)
R

C D

F

p

E

S

R

C
D

E F

p
4
3

(0, 7
3)

(0,− 7
3

1

S

pCD

Figure 5.10: Illustrating the proof of (a) Theorem 5.1 and (b) case (ii) in the proof of Theorem 5.1.

Lemma 5.4 proves that no other disks apart from C and D intersect T2/3(C,D). It remains
to prove that no two 2

3 -tunnels T2/3(C,D) and T2/3(E,F) intersect.

Theorem 5.1 Let {C,D}, {E,F} ⊆ B be two nearest pairs such that C,D,E and F are
pairwise disjoint, it holds that T2/3(C,D) ∩ T2/3(E,F) = ∅.

Proof. The proof is by contradiction again. We ssume that T2/3(C,D) and T2/3(E,F) inter-
sect and show that this would either contradict {C,D} or {E,F} being nearest neighbors.
Obviously it is enough to exclude the case that T2/3(C,D) and T2/3(E,F) intersect in a single
point. We first characterize such an instance which helps us to conduct the contradiction
proof.

For the sake of completeness we first have to exclude the case that g(c, d) and g(e, f) use
the same shortcut: if they did, the geodesics g2/3(c, d) and g2/3(e, f) would intersect which
immediately yields that g(c, d) and g(e, f) would intersect–a contradiction to Lemma 5.1.

Thus, we can assume that the intersection point p of T2/3(C,D) and T2/3(E,F) lies in F1

and neither g(c, d) nor g(e, f) takes a shortcut containing p. This in turn means that we can
assume that no shortcut is taken at all. We observe that at least one of the disks {C,D,E, F}
intersects the unit disk τ with center p; otherwise there would be another disk in B located
in the space between C,D,E and F which would immediately contradict {C,D} as well as
{E,F} being nearest pairs. Without loss of generality, let C be a disk that intersects τ .

132 CHAPTER 5. A GEOMETRIC DISPERSION PROBLEM

Let pCD be the point on g2/3(C,D) such that |ppCD| = 2/3, see Figure 5.10(a). Define
pEF similarly. We will assume that there is a vicinity of pCD and pEF in which g2/3(C,D)
and g2/3(E,F) are arcs. The case when one vicinity of pCD and pEF is a straight line is easier
and can be handled using similar arguments.

The curvature of g2/3(C,D) and g2/3(E,F) in a vicinity of pCD and pEF induces the
existence of two disks R,S ∈ R as illustrated in Figure 5.10(a). Since R and S forces the
curvature of g2/3(C,D) and g2/3(E,F) we may introduce the following coordinate system.
The origin is p and the coordinates of r and s are (0, 7

3) and (0,−7
3), respectively.

As a consequence of Lemma 5.2 we get that g2/3(C,D) and g2/3(E,F) start with a
straight-line segment of length at least 1

3

√
11, again see Figure 5.10(a). Thus, the curva-

ture of g2/3(C,D) in pCD infers that |cpCD| > 1
3

√
11 holds, which means that C either lies

completely to the left of the y-axis or to the right. This holds analogously for the other disks.
Without loss of generality, we assume that C and E lie to the left of the y-axis and D and F
lie to the right, see Figure 5.10(a).

Note that we have to take into account the exact relationship behind the pairs {C,D}
and {E,F} being nearest pairs, e.g., C could be the nearest neighbor of D, or D could be
the nearest neighbor of C. We will prove the following:

(i) dist(C,E) < dist(E,F)

(ii) dist(C,E) < dist(C,D)

(iii) dist(D,F) < dist(C,D)

Item (i) says that C is closer to E than F is. Thus, in order for {E,F} to be a nearest
pair, E must be the nearest neighbor of F . We use this fact to show that (ii) and (iii) hold.
Together, (ii) and (iii) comprise the contradiction: (ii) says that D is not the nearest neighbor
of C, while (iii) says that C is not the nearest neighbor of D. Hence, {C,D} cannot be a
nearest pair.

(i): To prove that dist(C,E) < dist(E,F) we will argue that T (E,F) intersects C, i.e.,
there is a unit disk E whose center lies on g(E,F) that intersects C and not F . Let E
be defined by the left and bottommost point e on g(E,F) such that E intersects C. This
is illustrated in Figure 5.10(b). The proof of (i) can then be completed by showing that
dist(C,E) < dist(E,F).

First we prove that there exists a position of e such that E intersects C, i.e., a unit
disk cannot pass between C and S without intersecting C. This could only be achieved by
maximizing |cs|. Recall that C intersects τ , thus, |cs| is maximized if C touches R and τ , i.e.,
C takes its left and topmost position, as shown in Figure 5.10(b). Using Pythagoras’ theorem
we can compute the coordinates of c for this setting to be ≈ (−1.62, 1.17). From now on we
will omit the sign ≈ when stating results of the calculations. Hence, it holds that |cs| 6 3.86
which in turn yields that no unit disk can pass between C and S since this would require
|cs| > 4.

Next, we minimize the distance dist(E,F) in order to get F to be closer to E than to
C. For this, E should take its rightmost position touching C. This position is attained if
C is as far as possible from S, i.e., E takes position (−1.62, 1.17) again. Using Pythagoras’
theorem, the coordinates of e is (−1.29,−0.80). This means that |epEF | > 1.29 and thus
dist(E,F) > 1.29+ 1

3

√
11 as |pEF F | > 1

3

√
11 holds. According to Lemma 5.3 dist(C,E) 6 2

3π,

5.7. PLACEMENT REGIONS OF NEAREST PAIRS ARE DISJOINT 133

r

s

c

e

f

α

2 14
3

2
√

3

2

14
3 4

r

d

s

β

T (E,F)

(a) (b)

Figure 5.11: Illustration of the proof of the lower bound on |cd| in case (ii).

and we have:
dist(C,E) 6

2
3
π < 1.29 +

1
3

√
11 6 dist(E,F),

which concludes (i).
(ii): To prove that dist(C,E) < dist(C,D) always holds we first establish a lower bound

on dist(C,D) and then an upper bound on dist(C,E). For the lower bound on we try to push
C and D as close as possible together under the restriction that E can still be the nearest
neighbor of F . To minimize dist(C,D), C should take its right and bottommost position and
D should take its left and bottommost position.

For the bound on D we only use the fact that D is not allowed to intersect the tunnel
T (E,F). If it does, we would get dist(D,E) < dist(E,F) by a similar argument as in (i).
(Here, the corresponding point f can even lie further to the right than (1.29,−0.80) as D
does not have to intersect τ .) However, dist(D,E) < dist(E,F) together with (i) would
immediately contradict {E,F} to be a nearest pair. Disk D takes its left and bottommost
position without intersecting T (E,F) if D touches R and is infinitesimal close to T (E,F).
For simplicity we assume that D touches T (E,F), see Figure 5.11(a). Standard trigonometric
calculations give the left and bottommost coordinates of d to be (1.70, 1.29).

For the right and bottommost position of C we use the following arguments. Let f be
the rightmost point on g(E,F) such that F touches either C or E. We use that E has to
be touched by C otherwise C is closer to F than E. We compute the right and bottommost
position of C if F touches C and E at the same time, see Figure 5.11(b). Note, that this
actually yields a position in which C is closer to F than E (with respect to our metric
dist). Again, standard trigonometry gives that the right and bottommost coordinates of c is
(−1.35, 0.86).

Now a lower bound on |cd| is the Euclidean distance between (1.70, 1.29) and (−1.35, 0.86)
which is 3.08. We obtain the final lower bound on dist(C,D) by noting that both C and D
touch R, if not the Euclidean distance between c and d could be shortened, hence the geodesic
has to follow the circular arc around R, thus we get dist(C,D) > 3.49.

By Pythagoras’ theorem we can also compute the coordinates of f to be (0.25,−0.35) –
we will need them in the proof of (iii).

To prove (ii) it remains to show an upper bound on dist(C,E) which is less than 3.49. We

134 CHAPTER 5. A GEOMETRIC DISPERSION PROBLEM

try to push C and E as far away from each other as possible, under the restriction that E is
still the nearest neighbor of F . It is clear that C has to take its left and topmost position,
which is already known as (−1.62, 1.17), from (i), while E should take its left and bottommost
position. Again, we only use that on the rightmost point f on g(E,F) such that either C or
E is touched by F , it must be E that is touched. First, we compute the rightmost point f
on g(E,F) where F touches C taking position (−1.62, 1.17) and touches S. As we know the
coordinates of c and s, we can compute the coordinates of f by Pythagoras’ theorem. It holds
that f is (−0.33,−0.36), see Figure 5.12(a). Now, E takes its left and bottommost position if
it touches S and F . Using Pythagoras’ theorem again, we get that e = (−1.87,−1.64). This
yields the upper bound on |ce| of 2.82. However, g(C,E) may have to curve around S so we
get dist(C,E) < π. Putting it together we get:

dist(C,E) < π < 3.49 < dist(C,D),

and we are done with (ii).
(iii): We use the lower bound on dist(C,D) that was derived in (ii). Thus, we only have

to show an upper bound on dist(D,F) which is less than 3.49. For the upper bound we try
to push D and F as far away from each other as possible, under the restriction that E can
still be the nearest neighbor of F . For this, D has to take its right and topmost position
while F has to take its right and bottommost position. We can assume that D takes position
(1.70, 1.29), the position of D which was responsible for the lower bound on dist(C,D). This
assumption is justified since, if D does not take position (1.70, 1.29), we move D on g(C,D)
to this position, say D, and show that dist(D,F) < 3.49. Then, dist(D,F) < dist(C,D) also
holds since dist(C,D) > 3.49.

To maximize dist(D,F) we need F to take its bottommost position. Consider the disk
P ′ that touches C and S and lies to the right of cs, see Figure 5.12(b). For the right and
bottommost position of C, which is (−1.35, 0.86), we already computed the position of P ′

to be (0.25,−0.35). This implies that D does not intersect P ′ as |dp′| > 2 (recall that the
position of D was decided in the previous section). We have shown that C, D and E do not
intersect P ′, however, then F has to intersect P ′ otherwise there would be another disk in B
located in the space between C,D,E and F which would immediately contradict {C,D} as
well as {E,F} being nearest pairs. The disk F now takes its right and bottommost position if
it touches P ′ and S. Using Pythagoras’ theorem the position of F is shown to be (1.84,−1.55).

As a result we get |df | < 2.84 but since g(D,F) may have to curve around some other
disk we get dist(D,F) < 3.18. Putting it together we get:

dist(D,F) < 3.18 < 3.49 < dist(C,D) 6 dist(C,D),

and we are done with (iii) and, hence also the theorem. ♣

5.8 Placing the 2/3-disks

In the previous sections we have detailed how we compute a set B of m′ ≥ 8m/9 unit disks in
A and how we determine the nearest-neighbor graph G = (B, E) with respect to the metric
dist(·, ·). In order to finally place the 2/3-disks we compute a matching in G. Observe that G
can consist of more than one connected component. We consider each connected component
separately. We start with components of size 1. Let B1 be the set of all unit disks in B that

5.9. CONCLUSION 135

D

14
3 4

r

s

β
C

E
F

R

S

P ′

R

C D

F

p

E

S

(−1.62, 1.17)

(a) (b)

Figure 5.12: (a) The upper bound on |ce| in case (ii). (b) Illustrating the proof of case (iii).

are singletons in G. Observe that each disk in B1 corresponds to a connected component of F1

that has been packed optimally since we applied a greedy post-processing step to the PTAS,
see Section 5.4. Thus we do not lose anything if we place only one 2/3-disk for each of the
m′

1 = |B1| singleton unit disks. Let B2 = B \B1 and let m′
2 = m′−m′

1 be the number of disks
in B2. Note that m′

2 ≥ 8(m−m′
1)/9 since m′

2 is the number of disks in an 8/9-approximation
of packing unit disks into those components of F1 that contain at least two unit disks. Finally
let G2 be the subgraph of G restricted to B2. We show that G2 contains a matching with at
least m′

2/8 edges.
By Lemma 5.1 each connected component C contains a spanning tree of degree at most 7.

In that tree we repeatedly match a leaf with its unique incident vertex. When two vertices are
matched they are removed from the tree. This may partition the tree into a forest. For each
tree in the forest the process continues iteratively. This yields a matching in C that contains at
least d|C|/8e edges. Repeating this argument for each connected component yields a matching
in G2 that contains at least dm′

2/8e edges.
According to Theorem 5.1 and Lemma 5.4 we can pack three 2/3-disks inA(C,D) for every

matched pair {C,D} such that these 2/3-disks are pairwise disjoint. For each of the remaining
unmatched disks in G we place one 2/3-disk in each unit disk. Let B2/3 be the set of the 2/3-
disks that we placed, including those for the m′

1 unit disks in B1. By construction no two disks
in B2/3 intersect. The cardinality of B2/3 is at least 3dm′

2/8e+ 3bm′
2/4c+ m′

1 ≥ 9m′
2/8 + m′

1.
Since m′

2 ≥ 8(m −m′
1)/9, the set B2/3 contains at least m disks, and we can conclude with

the following theorem.

Theorem 5.2 Algorithm DiskPacker is a polynomial-time 2/3-approximation for the prob-
lem PackingScaledDisks.

5.9 Conclusion

Naturally our main result is purely of theoretic interest. In terms of running time the bottle-
neck is our disk-packing variant of the PTAS of Hochbaum and Maass, which we apply with
an approximation factor of 8/9. To obtain an algorithm with better running time one might

136 CHAPTER 5. A GEOMETRIC DISPERSION PROBLEM

try to consider larger components, or improve the number of matched disks. However, to get
a considerable improvement it seems unavoidable to use a completely different approach. Are
there fast algorithms for values of α between 1/2 and 2/3?

From a theoretical point of view it would be desirable to reconsider the square case in
order to narrow the gap between the lower bound 2/3 and the upper bound 13/14 of Baur
and Fekete [BF01]. Their inapproximability result can be adapted to the disk case, but would
yield an upper bound very close to 1, leaving an even larger gap than in the square case.

Acknowledgments

We thank Esther Moet and Marc van Kreveld for very helpful comments. We are also very
indebted to the anonymous referees, whose comments have helped us a lot.

Deutsche Zusammenfassung

Geometrische Netzwerke

Geometrische Netzwerke sind das Rückgrat bei der Modellierung von Verkehrs-, Waren- und
Informationsströmen – ob in der Eisenbahnnetzplanung, dem VLSI-Layout oder der Analyse
des Internets. Die Netzwerke werden als geometrische Graphen repräsentiert, in denen die
Objekte durch Punkte modelliert werden, die z.B. Städte oder Personen entsprechen, und die
Beziehungen selbst Punkte verbindende Linien oder Streckenzüge sind, die z.B. Straßen oder
Verwandtschaften entsprechen. Die geometrische Komponente wird dabei zumeist durch die
Einbettung der Objekte in die Ebene festgelegt, sofern diese Einbettung nicht selbst gesucht
ist wie z. B. bei der Generierung von U-Bahnplänen, in denen die Lage der Bahnhöfe selten
der tatsächlichen geographischen Lage entspricht. Die Probleme, die in dieser Disseration
behandelt werden, beschränken sich auf den 2-dimensionalen Raum.

Die Dissertation besteht aus zwei Teilen, einem konstruktiven und einem analytischen Teil.
Dabei werden in beiden Teilen ausschließlich Probleme betrachtet, in denen die geometrische
Lage der teilnehmenden Objekte bereits durch die Probleminstanz festgelegt ist.

Im konstruktivem Teil werden Algorithmen vorgestellt, die auf den Objekten der Instanz
ein Netzwerk konstruieren. Dieses Netzwerk muss gewissen Anforderungen genügen und op-
timiert im Idealfall ein vorgegebenes Gütekriterium. Ist die Optimierung im Einzelfall zu
komplex, geben wir anstelle der Optimallösung lediglich eine Approximation dieser aus. Diese
Verfahrensweise ist sämtlichen Problemen gemein, die im konstruktiven Teil betrachtet wer-
den. Es handelt sich hierbei um die Konstruktion von Manhattan-Netzwerken, Netzwerken
minimaler Interferenz sowie das Beschriften einer Punktemenge.

Im analytischen Teil spielen geometrische Netzwerke eine implizite Rolle. Es werden ein
Mustererkennungsproblem und ein geometrisches Dispersionsproblem, verwandt mit einem
Packproblem, betrachtet. Bei diesen beiden Problemstellungen steht die Analyse eines geo-
metrischen Netzwerks im Vordergrund. Für das Mustererkennungsproblem soll die Verhaltens-
weise sich bewegender Objekte (z.B. Tiere) analysiert werden. Für das Packproblem birgt die
Analyse eines geometrischen Netzwerks den entscheidenden Schlüssel zur Problemlösung.

Einteilen der Probleme in Komplexitätsklassen, Beweisen von Gütegarantien der Appro-
ximationen sowie asymptotische Laufzeitanalyse bilden das theoretische Grundprinzip, nach
dem die Algorithmen untersucht und klassifiziert werden.

Manhattan-Netzwerke

Ein Manhattan-Netzwerk (MN) ist ein Netzwerk, das eine gegebene Menge von Punkten mit
vertikalen und horizontalen Segmenten so verbindet, dass jedes Punktepaar eine bezüglich
der Manhattan-Metrik kürzeste Verbindung besitzt. Ein triviales Manhattan-Netzwerk ist

137

138 DEUTSCHE ZUSAMMENFASSUNG

z.B̃. das rechteckige Gitter, welches durch die Punktemenge induziert wird. Es scheint kom-
binatorisch schwer zu sein, ein MN zu finden, das die Gesamtlänge der enthaltenen Segmente
minimiert. Der in der Dissertation vorgestellte Algorithmus knüpft an bestehende Forschung
an und konnte zum Zeitpunkt der Veröffentlichung den besten Approximationsfaktor von 4
auf 3 verbessern. Das ausgegebene MN ist theoretisch also höchstens dreimal so lang wie ein
minimales MN.

Da es möglich ist, das Problem durch ein gemischt-ganzzahliges Programm zu codieren,
konnten wir unseren Algorithmus auch praktisch evaluieren. Auf verschiedenen Typen künst-
lich generierter Eingabedaten erreichte er im schlechtesten Fall einen Approximationsfaktor
von durchschnittlich 1.3 und ist somit signifikant besser als die theoretische Gütegarantie
erwarten lässt, vergleiche auch Abbildung 6.

In der Zwischenzeit ist es den französischen Forschern Chepoi, Nouioua und Vaxés [CNV05]
gelungen, die bestehende Forschung, unsere eingeschlossen, so zu verfeinern, dass sie einen,
allerdings deutlich langsameren, Algorithmus mit theoretischer Gütegarantie von 2 angeben
können. Dabei wird unser gemischt-ganzzahliges Programm relaxiert und die resultierenden,
reellwertigen Variablen werden geschickt gerundet.

Netzwerke minimaler Interferenz

In diesem Szenario sind die in der Ebene gegebenen Punkte Sendestationen, die untereinander
Nachrichten austauschen wollen. Da ein Sendevorgang zweier Stationen jedoch Interferenzen
verursacht, soll die Menge der möglicherweise gleichzeitig sendenden Paare beschränkt wer-
den. Eine Kante im gesuchten Netzwerk signalisiert die Erlaubnis für die beiden inzidenten
Stationen, Nachrichten untereinander zu versenden. Ist die direkte Kommunikation zwischen
A und B verboten, so wird die Nachricht über Zwischenstationen geroutet. Ein interferenz-
minimales Netzwerk enthält eher kurze Kante, da die Interferenz für sie nicht so hoch ist.

Wir konstruieren Netzwerke minimaler Interferenz für die folgenden Kriterien: Zusam-
menhang, Kürze der geometrischen Länge der Verbindungen und Anzahl der benötigten Zwi-
schenstationen um eine Nachricht von A nach B zu verschicken.

Zudem betrachten wir zwei Modelle: Im exakten Modell nehmen wir an, dass ein Sendesi-
gnal genau die Kreisscheibe um den sendenden Punkt erreicht. Im Schätzmodell kennen wir
die genaue Position nicht, an der das Signal verloren geht. Wir gehen davon aus, dass das
Signal in jedem Fall die Distanz d zur angestrebten Empfangsstation zurücklegt und dann
irgendwo in einer Entfernung von d bis (1 + ε)d zur Sendestation verlorengeht. Das Schätz-
modell ermöglicht es uns, die entwickelten Algorithmen für das exakte Modell unter einer
sinnvollen praktischen Annahme nochmals zu beschleunigen.

Konstruktion eines bipartiten Netzwerks für ein Beschriftungsproblem

Bei diesem Problem handelt es sich um eine Kombination aus einem Graphenzeichen und ei-
nem Beschriftungsproblem: Beschriftet werden sollen Punkte, die in einem Rechteck R liegen.
Für die Beschriftung der Punkte werden dabei uniforme Beschriftungsrechtecke reserviert, die
rechts und/oder links von R liegen. Gesucht ist eine optimale Zuordnung der Punkte zu den
Beschriftungsrechtecken. Das Problem ist somit eine Mischung eines rein geometrischen und
eines klassischen Graphenproblems.

Vollständig definiert wird das Problem durch die Art der Verbindung, mit denen die
Punkte und Beschriftung verbunden werden. Wir betrachten zwei Verbindungstypen: der

139

erste Typ besteht entweder aus einem einzigen horizontalen Segment oder beginnt mit einem
vertikalen Segment (po-leader), an das sich dann ein horizontales Segment anschließt. Beim
zweiten Typ ist ein diagonales Segment als erstes Segment erlaubt (do-leader), siehe Abb. 7a
und Abb. 7b.

Die Optimierungskriterien für eine gute Lesbarkeit der Beschriftung sind zum einen mi-
nimale Anzahl von Kantenknicken und zum anderen minimale Gesamtlänge aller Kanten.
Für die Längenminimierung verwenden wir hauptsächlich sogenannte Sweepline-Algorithmen,
während die Algorithmen für die Knickminierung auf dynamischem Programmieren beruhen.
Die Algorithmen wurden implementiert und praktisch evaluiert.

Analyse von Bewegungsmustern in Objektschwärmen

Eine Studie in Alaska bildete die Motivation zu dieser Forschungsarbeit: Karibus wurden mit
GPS-Sensoren ausgestattet und deren Zugverhalten über einen längeren Zeitraum beobachtet,
um Rückschlüsse auf Herdenbildung der Tiere ziehen zu können.

Die Idee zur algorithmischen Durchführung dieser Analyse ist es, die Zuglinie eines Tieres
für τ Zeitschritte zunächst kanonisch als Punkt im R2τ einzubetten. Nachdem dies für alle
Tiere geschehen ist, werden in R2τ Bereichsabfragen (range counting/reporting queries) geeig-
net durchgeführt, die das Bestehen von Herden erkennen und die Tiere einer Herde ausgeben
können. Eine Herde ist dabei eine Ansammlung einer vorgegebenen Anzahl von Tieren, die
für einen Mindestzeitraum nahe genug beieinander (Kreisscheibe) bleiben, siehe auch Abbil-
dung 8.

Die Innovation unserer Arbeit gegenüber früheren Algorithmen liegt dabei in der simul-
tanen Betrachtung der Zeitintervalle. Frühere Arbeiten haben jeden einzelnen Zeitschritt un-
abhängig voneinander analysiert und dabei versucht, durch den momentanen Aufenthaltsort
der Tiere sowie die Interpolation ihrer Bewegungsrichtung Rückschlüsse auf Herdenbildungen
zu ziehen.

Ein geometrisches Dispersionsproblem

Eine Variante eines klassischen Packungsproblems liegt dieser Arbeit zugrunde: In einer ge-
gebenen Region wurde bereits eine gewisse Anzahl von Einheitskreisscheiben verteilt. Diese
können z.B. Messpunkte zur Erhebung der Bodenqualität modellieren. Um den Rest der
Region sowohl repräsentativ als auch effektiv zu erschließen, soll die maximale Anzahl wei-
terer disjunkter Einheitskreisscheiben in das Gebiet eingepasst werden. Dieses Problem ist
NP-schwer. Wir approximieren in folgendem Sinn: Wir versuchen, den Radius r der einzu-
passenden Kreisscheiben zu maximieren, so dass wir garantieren können, dass wir mindestens
soviele Kreisscheiben vom Radius r einpassen wie Kreisscheiben vom Radius 1 eingepasst
werden können. Sei diese Anzahl κ1. Dies gelang uns für r = 2/3. Für unseren Algorithmus
spielt die Konstruktion und Analyse eines sogenannten Nächsten-Nachbar-Graphen dabei die
entscheidende Rolle.

Zunächst wenden wir einen bereits bestehenden Approximationsalgorithmus [HM85] zum
Einpassen von Einheitskreisscheiben an, um eine Menge K von Einheitskreisscheiben zu er-
halten, deren Kardinalität mindestens 8/9 · κ1 ist. Auf dem Raum, der die Menge K und die
gegebenen festen Kreisscheiben enthält, definieren wir eine Metrik, die – vereinfacht gesagt –
die minimale Länge eines kürzesten Weges der Kreisscheibe K in die Position von Kreisscheibe
K ′ angibt, ohne dass dabei eine der vorab eingezogenen Kreisscheiben berührt wird.

140 DEUTSCHE ZUSAMMENFASSUNG

Bezüglich dieser Metrik bestimmen wir den Nächsten-Nachbar-Graphen der Menge K.
Dieser ist ein geometrisches Netzwerk, in dem die Menge der Kreisscheiben K der Menge der
Knoten des Graphen entspricht und eine Kante eine Nearest-Neighbor-Beziehung der zwei
inzidenten Kreisscheiben angibt. Mit Hilfe eines eines maximalen Matchings des Nearest-
Neighbor-Graphen können wir eine Menge von disjunkten Kreisscheiben mit Radius 2/3 an-
zugeben, deren Anzahl mindestens 9/8 mal so gross ist wie die der Einheitskreisscheiben in
K. Da die Anzahl von Kreisscheiben in K mindestens 8/9 · κ1 war, haben wir wie gewünscht
insgesamt mindestens κ1 Kreisscheiben mit Radius r = 2/3 platziert.

Glossar

Beim Aufschreiben dieser Dissertation hat mich das Verfassen der Einleitung vor die größte
Herausforderung gestellt, da die Inhalte der einzelnen Kapitel größtenteils schon in vorzeig-
baren Zustand, zumeist als Journalversionen, vorlagen. Da diese Inhalte in formaler Sprache
verfasst sind und viele Definition, Sätze und Formeln enthalten, habe ich mich dazu entschie-
den, in einem kleinen Nachwort auch nochmal etwas lockerer zu Werke zu gehen und eine
kleine Einführung für Nicht-Informatiker sowie ein paar interessante Fakten zum Drumherum
der vorgestellten Arbeiten zu geben.

Hinweis! Der Abschnitt 5.9, Anleitungen für Nicht-Informatiker, ist also speziell den
Leuten gewidmet, die dieses Buch in der Hand halten und nur entfernt etwas mit Informatik
zu tun haben.

Während der vier Jahre meiner Doktorandenzeit stand ich oftmals vor der Herausfor-
derung, Freunden oder Bekannten verständlich zu erklären, was ich denn eigentlich mache.
Ok, mit den Komplexitätsklassen P und NP hab ich da natürlich gar nicht erst angefangen,
meistens musste die Beschriftung eines U-Bahnlinienplans als praktische Anwendung von geo-
metrischen Netzwerken herhalten. Hier möchte ich nun aber versuchen, die Grundwerkzeuge,
mit denen wir in der theoretischen Informatik üblicherweise hantieren, all den Leuten näher-
zubringen, die nicht tagtäglich damit zu tun haben. Und trotz eindringlicher Warnung meines
Betreuers (”Da musst du ja bei der Erfindung der Turingmaschine anfangen!”) versuche ich
mich auch an den Klassen P und NP.

Anleitungen für Nicht-Informatiker

Während meiner Zeit als Mathematikstudent sind wir immer ironisch mit der Tatsache umge-
gangen, dass Mathematiker gerne einfache Sachverhalte so verklausulieren, dass sie höchstens
noch von anderen Mathematikern, aber unter keinen Umständen von Nicht-Mathematikern
verstanden werden können, obwohl wir das selbst natürlich auch gerne mit Freude betrieben
haben. Nun, beim Informatiker ist diese Neigung zwar nicht ganz so ausgeprägt, aber aufgrund
der Tatsache, dass die meisten Informatiker auch eine mathematische Ausbildung vorzuwei-
sen haben, dennoch vorhanden. Ein perfektes Werkzeug dafür ist die sogenannte Groß-Oh-
Notation, die oftmals sogar noch von Informatikstudenten im Grundstudium als kryptisch
angesehen wird. Im gewissen Sinne breche ich also ein Tabu, wenn ich im Abschnitt 5.9.1
versuche, ihr den Schrecken zu nehmen.

Die Groß-Oh-Notation erfüllt natürlich auch einen sehr praktischen Zweck: Sie gibt kurz
und prägnant an, wie schnell ein Algorithmus (asymptotisch) arbeitet. Ganz grob gesagt kann
man dann Probleme in Klassen unterteilen, für die schnelle Algorithmen existieren und für
die vermutlich nur langsame Algorithmen existieren. Hierbei handelt es sich um die Komple-

141

142 GLOSSAR

xitätsklassen P und NPC, mehr dazu im Abschnitt 5.9.2. Abschließend erkläre ich, was ein
Approximationsalgorithmus eigentlich ist und was man über das Resultat aussagen kann, das
er liefert, siehe Abschnitt 5.9.3.

5.9.1 Was ist asymptotische Laufzeit?

Zuallerst sollte ein Algorithmus natürlich das korrekte Ergebnis liefern, aber mindestens ge-
nauso wichtig ist, wie schnell er das tut. Ein korrekter Algorithmus ist nichts wert, wenn die
Menge an Daten, die er verarbeiten kann, zu begrenzt ist. Nun könnten wir hergehen und
einfach die absolute Bearbeitungszeit eines Algorithms in, z.B. Millisekunden, messen und
diese in Relation zur Eingabegröße setzen. Dies würde das Laufzeitverhalten allerdings nur
unzureichend beschreiben. Zum Einen wären unsere gemachten Messungen natürlich abhän-
gig von der verwendeten Hardware, zum Anderen kann man keine Aussage darüber treffen,
wie schnell der Algorithmus bei Verwendung besserer Hardware arbeiten würde, bzw. wie
groß die Daten sein dürften, mit denen wir den besseren Rechner füttern dürften, um in ver-
gleichbarer Zeit zum schlechteren Computer und einer geringeren Datenmenge ein Ergebnis zu
bekommen. Mehr Aufschluss über das allgemeine Laufzeitverhalten des Algorithmus bekom-
men wir dagegen schon, wenn wir die Laufzeitmesspunkte für verschiedene Eingabegrößen
in ein Diagramm eintragen, siehe Abbilung 5.13. Hier wurden Laufzeitmesspunkte für den
O(n5)-Algorithmus zur Berechnung einer knickminimalen Beschriftung aus Abschnitt 3.3.1
aufgetragen. Was wir damit gemacht haben, ist bereits ein erster Schritt hin zur asymptoti-
schen Laufzeitanalyse des Algorithmus: Wir versuchen, die Laufzeitkurve zu interpolieren um
Rückschlüsse auf das Verhalten des Algorithmus für größere Eingabegrößen ziehen zu können.

Dies lässt sich natürlich auch mathematisch präzisieren. Die Eingabegröße bezeichnet man
üblicherweise mit dem Parameter n. Wenn die Aufgabe z.B. darin besteht, ein Feld mit Zahlen
zu sortieren, dann bezeichnet n die Anzahl der zu sortierenden Zahlen. Als theoretische Lauf-
zeit geben wir nun die Anzahl der Berechnungsschritte in Abhängigkeit von n an, die nötig
sind, um das Problem zu lösen. Ein erstes Ziel ist somit schon erreicht: Unsere Bewertung
ist unabhängig von der verwendeten Hardware geworden. Nachdem wir die Anzahl der Be-
rechnungsschritte angeben können, spielt für die tatsächliche Laufzeit auf einem bestimmten
Computer (im idealisierten Fall) also nur noch die Zeit eine Rolle, die dieser Computer be-
nötigt, um einen Berechnungsschritt auszuführen. Mathematisch verbleibt folgendes Problem
zu lösen: Wie drücke ich aus, dass zwei Algorithmen ungefähr dieselbe Laufzeit haben? Nun,
indem ich die Laufzeit einfach als Funktion in n angebe. Dazu folgendes Beispiel:

Wir können obiges Sortierproblem mit folgendem naiven Algorithmus lösen: Wir gehen
das Feld der n Zahlen in einem ersten Durchlauf durch, um die kleinste Zahl zu finden. Hierfür
brauchen wir n− 1 Vergleichsoperationen. Danach bleiben n− 1 Zahlen übrig, aus denen wir
mit dem gleichen Verfahren wiederum die kleinste Zahl bestimmen. Alles in allem brauchen
wir also

(n− 1) + (n− 2) + (n− 3) + · · ·+ 2 + 1 =
1
2
(n− 1)n =

1
2
n2 − 1

2
n

Vergleichsoperationen um das Feld zu sortieren. Um es kurz zu machen, in Groß-Oh-Notation
ist die Laufzeit unseres Algorithmus damit O(n2). Die entscheidende Rolle spielt dabei le-
diglich der Term, der die Laufzeit festlegt, falls die Eingabegröße n unendlich groß würde,
welcher in unserem Fall 1

2n2 ist. Der Term 1
2n ist vernachlässigbar, da er für große Werte von

n von 1
2n2 dominiert wird. Unsere Laufzeitfunktion nähert sich also, asymptotisch, für große n

der Kurve 1
2n2 und kann schließlich nicht mehr von ihr unterschieden werden. Mathematisch

143

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100 120 140 160

Z
ei

t i
n

M
ill

is
ek

un
de

n

n

Laufzeit Algorithmus knickminimal, do-leaders

1.87325e-07*x**5

Abbildung 5.13: Die Laufzeitmesspunkte des O(n5)-Algorithmus aus Abschnitt 3.3.1 und eine ein-
gepasste Kurve von Grad 5, beides logarithmisch skaliert.

ausgedrückt heißt das: limn→∞
(1
2
n2− 1

2
n)

(1
2
n2)

= 1. Konstante Faktoren, die nicht von n abhängen,

werden in der Oh-Notation verschluckt, in unserem Fall gilt dies für 1
2 . Der Grund hierfür

ist, dass konstante Faktoren mathematisch irrelevant sind, wenn man verschiedene von n ab-
hängige Funktionen auf ihr Verhalten für n gegen ∞ untersucht. Dies wird am einfachsten
wieder durch ein Beispiel illustriert: Vergleicht man einen Algorithmus, der 100n Berechnungs-
schritte benötigt mit einem Algorithmus, der 1

2n2 Berechnungsschritte benötigt, so sieht der
Vergleich in der Oh-Notation also O(n) zu O(n2) aus. Der erste Algorithmus ist also asympto-
tisch schneller. Zwar benötigt der erste Algorithmus für Eingabelängen kleiner als 200 mehr
Berechnungsschritte als der zweite, für alle Eingabelängen über 200 schlägt er den zweiten
Algorithmus aber um Längen. Asymptotisch schneller lässt sich also wie folgt rechtfertigen:
Für genügend große Eingabelängen führt der asymptotisch schnellere Algorithmus immer we-
niger Berechnungsschritte durch als der asymptotisch langsamere. Ein optimaler Algorithmus
für das Sortierproblem hat übrigens eine asymptotische Laufzeit von O(n log n).

Für den nächsten Abschnitt ist die folgende Definition von Relevanz:

Definition 5.4 (Polynomialzeit) Falls die asymptotische Laufzeit eines Algorithmus höchs-
tens O(nk) ist, wobei k eine von n unabhängige, natürliche Zahl ist, so heißt der Algorithmus
polynomiell in der Eingegabegröße n.

144 GLOSSAR

5.9.2 Welche Bedeutung haben die Komplexitätsklassen P und NP?

P ist die Klasse der Probleme, die in Polynomialzeit von einer deterministischen Turing-
maschine1 zu lösen sind. NP ist die Klasse der Probleme, die in Polynomialzeit von einer
nicht-deterministischen Turingmaschine zu lösen sind.

Punkt. Soweit zu den Definitionen der Komplexitätsklassen P und NP. Würde ich, wie
von meinem Betreuer befürchtet, nun tatsächlich anfangen zu erklären, was es denn nun genau
mit diesen Definitionen auf sich hat, so wäre diese Dissertation vermutlich nochmal doppelt
so lange geworden wie sie ohnehin schon ist. Deswegen möchte ich darauf verzichten und
stattdessen auf die Bedeutung dieser Klassen und grob darauf eingehen, was man sich unter
ihnen vorstellen kann.

Die Klasse P ist (noch) relativ einfach erklärt, in ihr liegen alle Probleme für die es
einen Algorithmus gibt, der das Problem in Polynomialzeit löst. Der Informatiker spricht
von effizient zu lösenden Problemen und betrachtet diese Probleme als einfache Probleme.
In der Klasse NP liegen potentiell mehr und auch schwerere Probleme als in P. Wobei
wir hier allerdings schon bei den Knackpunkten angekommen sind, dem ’potentiell mehr’
und ’schwerere’. Definitionsgemäß liegen alle Probleme, die in P liegen auch in NP. Als ein
schweres Problem betrachtet der Informatiker ein Problem, das sich nicht effizient lösen lässt.
Aber bis heute konnte der Nachweis, dass ein solch schweres Problem existiert, das nicht in
P liegt und das somit NP zu einer echten Oberklasse von P machen würde, nicht geführt
werden. Allerdings wird die Annahme P 6= NP unter den Informatikern als vermutlich gültig
akzeptiert. Die Korrektheit dieser Annahme aber zu beweisen (oder doch zu widerlegen) bildet
das derzeit wohl größte offene Problem der theoretischen Informatik.

Nun ein paar erläuternde Worte zu NP. Die Klasse NP umfasst alle Probleme, um genau
zu sein, alle Entscheidungsprobleme, für die sich zumindest in Polynomialzeit verifizieren lässt,
ob eine vorgeschlagene Lösungskonfiguration das Problem tatsächlich löst oder nicht. Damit
ist auch sofort klar, dass P ⊂ NP gilt, denn wenn ich ein Problem optimal in Polynomialzeit
lösen kann, dann kann ich durch Vergleichen mit der Lösung natürlich für jede vorgeschlagene
andere Lösungskonfiguration in Polynomialzeit entscheiden, ob sie das Problem ebenfalls löst.
Allerdings bedeutet die obige Definition der Klasse NP nicht, dass NP-Probleme überhaupt
nicht zu lösen sind. Man geht jedoch davon aus, dass es NP-Probleme gibt, die sich nicht
effizient lösen lassen, also nicht in Polynomialzeit. Könnte man für ein Problem, welches
nachgewiesenermaßen in NP liegt, also zeigen, dass es sich nicht effizient lösen lässt, so hätte
man P 6= NP bewiesen. Therotisch gibt es in der Klasse NP nochmal eine ausgewiesene
Teilklasse besonders schwerer Probleme, dieNP-vollständigen Probleme (Klassenbezeichnung
NPC). Diese Probleme sind so schwer, dass ein einziger polynomialer Lösungsalgorithmus
eines NPC-Problems, Lösungsalgorithmen für alle NP-Probleme induzieren würde. Man
hätte dann P = NP gezeigt. Abbildung 5.14 illustriert die angesprochenen Sachverhalte in
einem Mengendiagramm.

Als Beispiel eines NPC-Problems, das also vermutlich in NP \ P liegt, möchte ich das
Pfad-Dilations-Problem angeben: Für n gegebene Punkte in der Ebene soll derjenige Pfad be-
stimmt werden, der alle Punkte geradlinig verbindet und der als Graph die kleinste Dilation
hat (Umweg des Weges zwischen zwei Punkten im Graphen verglichen mit deren Luftliniendi-
stanz, siehe Abschnitt 0.1.1). In Abbildung 5.15 ist der optimale Dilationspfad und ein Pfad
sehr schlechter, großer Dilation für eine Beispielpunktemenge angegeben.

1Eine ausführlichere Beschreibung ist etwa Wikipedia zu entnehmen, siehe
http://de.wikipedia.org/wiki/Turingmaschine

145

P NP

NPC

(a) Die vermutliche Wahrheit.

P NP

NPC

P NP

NPC

=

⇒

(b) Die Auswirkung eines NP-vollständigen
Problems in P.

Abbildung 5.14: Enthalten-Sein-Relationen der verschiedenen Komplexitätsklassen.

(a) Der optimale Pfad (b) Ein schlechter Pfad.

Abbildung 5.15: Das Pfad-Dilations-Problem.

146 GLOSSAR

Das Pfad-Dilations-Problem wurde jüngst von Giannopoulos, Knauer und Marx [GKM07]
als NPC-Problem erkannt. Es lässt sich wie folgt korrekt als Entscheidungsproblem formu-
lieren: Gegebenen n Punkte in der Ebene und ein Parameter t > 1, gibt es einen Pfad, der
die n Punkte verbindet und der eine Dilation von höchstens t hat?

Die Zugehörigkeit zur Klasse NP ist offensichtlich: Wenn ich einen Pfad als Lösungsvor-
schlag gegeben habe, dann kann ich für jedes der O(n2) vielen Punktepaare mit Hilfe der
Distanz im Graphen deren Dilation in Polynomialzeit berechnen und dann einfach entschei-
den, ob die maximale Dilation, die aufgetreten ist, kleiner als t war. Falls dies zutrifft, ist der
vorgeschlagene Pfad ein Pfad, der das Problem löst.

Offensichtlich ist das Problem allerdings auch nicht unlösbar: Ich kann jeden möglichen
Pfad betrachten, dessen Dilation berechnen und bekomme die Lösung dann einfach als den
Pfad, für den ich die kleinste Dilation gefunden habe. Dieses Vorgehen ist aus Informatiksicht
gesehen aber ineffizient, da es n!/2 kombinatorisch verschiedene Möglichkeiten gibt, n Punkte
durch einen Pfad zu verbinden. In der Tat habe ich mich während meiner Doktorandenzeit
etwas eingehender mit dem Pfad-Dilations-Problem beschäftigt und auch einen solchen fakto-
riellen Lösungsalgorithmus implementiert. Die Ineffizienz dieses Algorithmus konnte ich dann
daran ablesen, dass er zur Berechnung von Instanzen mit 8 Punkten bereits mehrere Sekun-
den gebraucht hat, und dass bei Instanzen mit mehr als 8 Punkten ein Memory-Overflow
aufgetreten ist.

Sollte NP 6= P wahr sein, würde das für das Pfad-Dilations-Problem bedeuten, dass
kein polynomialer Lösungsalgorithmus existiert. Gelänge es Ihnen aber, lieber Leser, einen
polynomialen Lösungsalgorithmus zu entwickeln, so hätten Sie damit gleichzeitig NP = P
gezeigt und ein weiteres Leben als ruhmreicher Informatiker wäre Ihnen gewiss.

5.9.3 Was ist ein Approximationsalgorithmus?

Approximationsalgorithmen werden üblicherweise für NP-vollständige Probleme verwendet.
Falls die Klassen P und NP tatsächlich verschieden sind, wovon man ausgeht, rechtfertigt das
Wissen, dass ein NP-vollständiges Problem keinen polynomialen Lösungsalgorithmus zulässt,
ein approximatives Vorgehen. Ein Approximationsalgorithmus sollte daher aber eine effiziente
Laufzeit haben und man sollte die Bereitschaft mitbringen, sich mit einer Lösung zufrieden
zu geben, die (geringfügig) schlechter als eine optimale sein kann. Dass Vergleichen von Lö-
sungen impliziert natürlich sofort das Vorhandensein einer Funktion, die die Güte der Lösung
bewertet. Approximationsalgorithmen exisitieren also nur für solche Art von Problemen, bei
denen also eine optimale Lösung approximiert wird. In Kapitel 1 ist diese Gütefunktion et-
wa die Länge des resultierenden Netzwerks, welche es in diesem Fall zu minimieren gilt. Die
Gütegarantie des Approximationsalgorithmus gibt man durch seinen Approximationsfaktor
an: Für die Manhattan-Netzwerke hat unser Algorithmus einen Approximationsfaktor von 3,
was nichts anderes bedeutet, als dass wir garantieren können, dass das Netzwerk, das unser
Algorithmus ausgibt, im schlechtesten Fall höchstens dreimal so lang ist wie ein minimales
Manhattan-Netzwerk.

Wie bereits erwähnt, sind Approximationsalgorithmen hauptsächlich interessant, wenn sie
polynomiale Laufzeit haben und ein Problem approximieren, das sich vermutlich nicht opti-
mal in Polynomialzeit lösen lässt. In Spezialfällen können allerdings auch nicht-polynomielle
Approximationsalgorithmen oder auch Approximationsalgorithmen für Probleme, die polyno-
miell gelöst werden können, von Interesse sein. Wenn sich z.B. ein Problem nur in kubischer
(O(n3)) Zeit optimal lösen lässt, so ist ein Faktor-1.5 Approximationsalgorithmus in linearer

147

Zeit (O(n)) durchaus algorithmisch von Interesse.

Interesting Facts

Chapter 2 - Interference-minimal Networks

There was a funny error in the conference version of this work. For the fuzzy model we adjusted
the transmission power of the sending stations in an insufficient way. By chance they may
have never reached any other station simply because the signal gets lost somewhere in the
fuzzy region before arriving at the terminal station. This insufficieny was surprisingly never
noticed by any reviewer or any auditor during the talks (in fact from Herman himself), but
was, of course, fixed for the journal version.

In früheren Versionen dieser Arbeit befand sich ein lustiger Fehler: Für das Schätzmodell
hatten wir die Sendestärke der Stationen so festgelegt, dass gesendete Signale möglicherweise
nie an den vorgesehenen Empfangsstationen ankommen würden, weil sie schon vorher in der
Fuzzy-Region verloren gehen würden. Glücklicherweise wurde diese kleine Unzulänglichkeit
von keinem Gutachter oder Zuhörer eines Vortrags (außer Herman selbst) je bemerkt und in
der endgültigen Version dann natürlich auch bereinigt.

Chapter 3 - Boundary Labeling

I did significant parts of the research for this work together with Mira Lee, Herman Haverkort
and Martin Nöllenburg during the Fifth Korean Workshop on Computational Geometry. After
we had unsuccessfully been trying greedy strategies for two days, Herman came to us in the
morning of the third day and stated ”I just had an idea ... in the shower! Why don’t we apply
dynamic programming?” And this has indeed well worked out. It seems like you could have
the best ideas while showering.

Bedeutende Teile der Forschung an dieser Arbeit habe ich zusammen mit Mira Lee, Her-
man Haverkort und Martin Nöllenburg während eines Workshops gemacht. Nachdem wir zwei
Tage lang vergeblich versucht hatten, Greedy-Strategien anzuwenden, kam Herman am mor-
gen des dritten Tags beim Frühstück mit den Worten: ”Hey, ich hatte gerade eine Idee
unter der Dusche! Warum probieren wir es nicht mit dynamischen Programmieren?” auf uns
zu. Und das hat in der Tat funktioniert. Anscheinend kann man die besten Ideen also auch
während dem Duschen haben.

Chapter 4 - Detecting Flocks

Apart from the caribous this work has another, more politically incorrect motivation that
stems from surveillance policy, for example tracing peoples by the signals of their mobiles.
And indeed I heard that there was a request from the Australian Ministry of Defence to
look at these kind of problems. This of course yielded perfect stuff for my class reunion: ”I
just come from Australia ... I worked there on behalf of the Australian Ministry of Defence.”
Sounds good!

Neben den Karibus hat diese Arbeit auch noch eine weitere Anwendung, die politisch
eher bedenklich ist: Das Überwachen von Personen, z.B. anhand der Signale ihrer Handys.
Und tatsächlich habe ich gehört, dass es eine dementsprechende Anfrage des Australischen
Verteidigungsministeriums für diese Art von Probleme gab. Was natürlich perfekten Stoff für

148 GLOSSAR

mein Klassentreffen geliefert hätte, sofern ich hingegangen wäre: ”Ja, ich komme gerade aus
Australien, war dort unterwegs im Auftrag des Australischen Verteidigungsministerium.”

Chapter 5 - Packing Discs

The result of this work is naturally only of theoretic interest as an algorithm with running
time worse than O(n324) can never be of any practical use. For this reason the first working
title of the paper had been ”A slow approximation algorithm”. Well, most of the co-authors
liked this title but eventually it broke down by the veto of one co-author and became ”A
polynomial-time approximation algorithm”.

Das Resultat dieser Arbeit ist natürlich rein theoretischer Natur, da ein Algorithmus,
dessen Laufzeit noch schlimmer als O(n324) ist nie irgendeine Anwendung in der Praxis finden
würde. Deshalb lautete der erste Arbeitstitel des Papers ”A slow approximation algorithm”.
Im Prinzip hat dieser Titel (fast) allen Autoren gefallen, ist letztendlich dann aber doch am
Veto eines Ko-Autors gescheitert und politisch korrekt in ”A polynomial-time approximation
algorithm” umbenannt worden.

List of publications

[1] Alexander Wolff, Marc Benkert, and Takeshi Shirabe. The minimum Manhattan network
problem: Approximations and exact solutions. In Proc. 20th European Workshop on
Computational Geometry (EWCG’04), pages 209–212, Sevilla, 24–26 March 2004.

[2] Marc Benkert, Alexander Wolff, Florian Widmann, and Takeshi Shirabe. The mini-
mum Manhattan network problem: Approximations and exact solutions. Computational
Geometry: Theory and Applications, 35(3):188–208, 2006.

[3] Marc Benkert, Joachim Gudmundsson, Herman Haverkort, and Alexander Wolff. Con-
structing interference-minimal networks. In Jǐŕı Wiedermann, Julius Stuller, Gerard Tel,
Jaroslav Pokorný, and Mária Bieliková, editors, Proc. 32nd Int. Conf. on Current Trends
in Theory and Practice of Computer Science (SOFSEM’06), volume 3831 of Lecture Notes
in Computer Science, pages 166–176. Springer-Verlag, 2006.

[4] Marc Benkert and Martin Nöllenburg. Improved algorithms for length-minimal one-
sided boundary labeling. In Proc. 23rd European Workshop on Computational Geometry
(EWCG’07), pages 190–193, Graz, 19–21 March 2007.

[5] Marc Benkert, Herman Haverkort, Moritz Kroll, and Martin Nöllenburg. Algorithms for
multi-criteria one-sided boundary labeling. In Proc. 15th Int. Symp. Graph Drawing (GD
’07), 2007. To appear.

[6] Marc Benkert, Joachim Gudmundsson, Florian Hübner, and Thomas Wolle. Reporting
flock patterns. In Yossi Azar and Thomas Erlebach, editors, Proc. 14th Annu. Europ.
Symp. on Algorithms (ESA’06), volume 4168 of Lecture Notes in Computer Science,
pages 660–671. Springer-Verlag, 2006.

[7] Marc Benkert, Joachim Gudmundsson, Christian Knauer, Esther Moet, René van Oost-
rum, and Alexander Wolff. A polynomial-time approximation algorithm for a geometric
dispersion problem. In Danny Z. Chen and Der-Tsai Lee, editors, Proc. 12th Annu. Int.
Comput. Combinatorics Conf. (COCOON’06), volume 4112 of Lecture Notes in Com-
puter Science, pages 166–175. Springer-Verlag, 2006.

[8] Michael Baur and Marc Benkert. Network comparison. In Ulrik Brandes and Thomas
Erlebach, editors, Network Analysis, volume 3418 of Lecture Notes in Computer Science
Tutorial, chapter 12, pages 318–340. Springer-Verlag, 2005.

[9] Marc Benkert, Joachim Gudmundsson, Christian Knauer, René van Oostrum, and
Alexander Wolff. A polynomial-time approximation algorithm for a geometric disper-
sion problem. International Journal of Computational Geometry and Applications, 2007.
To appear.

149

150 LIST OF PUBLICATIONS

[10] Marc Benkert, Joachim Gudmundsson, Herman Haverkort, and Alexander Wolff. Con-
structing interference-minimal networks. Computational Geometry: Theory and Appli-
cations, 2007. To appear.

[11] Iris Reinbacher, Marc Benkert, Marc van Kreveld, Joseph S.B. Mitchell, Jack Snoeyink,
and Alexander Wolff. Delineating boundaries for imprecise regions. Algorithmica, 2007.
To appear.

[12] Damian Merrick, Martin Nöllenburg, Alexander Wolff, and Marc Benkert. Morphing
polygonal lines: A step towards continuous generalization. In Proc.23rd European Work-
shop on Computational Geometry (EWCG’07), pages 6–9, Graz, 2007.

[13] Marc Benkert, Martin Nöllenburg, Takeaki Uno, and Alexander Wolff. Minimizing intra-
edge crossings in wiring diagrams and public transport maps. In Michael Kaufmann
and Dorothea Wagner, editors, Proc. 14th Int. Symposium on Graph Drawing (GD’06),
volume 4372 of Lecture Notes in Computer Science, pages 270–281. Springer-Verlag,
2007.

[14] Iris Reinbacher, Marc van Kreveld, Tim Adelaar, and Marc Benkert. Scale dependent
definitions of gradient and aspect and their computation. In Andreas Riedl, Wolfgang
Kainz, and Gregory A. Elmes, editors, Proc. 12th Intern. Symp. Spatial Data Handling
(SDH’06), pages 863–879, 2006.

[15] Marc Benkert, Joachim Gudmundsson, Christian Knauer, Esther Moet, René van Oost-
rum, and Alexander Wolff. A polynomial-time approximation algorithm for a geomet-
ric dispersion problem. In Proc. 22st European Workshop on Computational Geometry
(EWCG’06), Delphi, 27–29 March 2006.

[16] Iris Reinbacher, Marc Benkert, Marc van Kreveld, Joseph S.B. Mitchell, and Alexander
Wolff. Delineating boundaries for imprecise regions. In Gerth Stølting Brodal and Stefano
Leonardi, editors, Proc. 13th Annu. Europ. Symp. on Algorithms (ESA’05), volume 3669
of Lecture Notes in Computer Science, pages 143–154. Springer-Verlag, 2005.

[17] Iris Reinbacher, Marc Benkert, Marc van Kreveld, and Alexander Wolff. Delineating
boundaries for imprecise regions. In Proc. 21st European Workshop on Computational
Geometry (EWCG’05), pages 127–130, Eindhoven, 9–11 March 2005.

[18] Marc Benkert, Florian Widmann, and Alexander Wolff. The minimum Manhattan net-
work problem: A fast factor-3 approximation. In Jin Akiyama, Mikio Kano, and Xue-
hou Tan, editors, Proc. 8th Japanese Conf. on Discrete and Computational Geometry
(JCDCG’04), volume 3742 of Lecture Notes in Computer Science, pages 16–28. Springer-
Verlag, 2005.

[19] Marc Benkert, Joachim Gudmundsson, Herman Haverkort, and Alexander Wolff. Con-
structing interference-minimal networks. In Proc. 21st European Workshop on Compu-
tational Geometry (EWCG’05), pages 203–206, Eindhoven, 9–11 March 2005.

[20] Michael Baur, Marc Benkert, Ulrik Brandes, Sabine Cornelsen, Marco Gaertler, Boris
Köpf, Jürgen Lerner, and Dorothea Wagner. visone - software for visual social network

LIST OF PUBLICATIONS 151

analysis. In P. Mutzel, M. Jünger, and S. Leipert, editors, Proceedings of the 9th In-
ternational Symposium on Graph Drawing (GD’01), volume 2265 of Lecture Notes in
Computer Science, pages 463–464, 2002.

152 LIST OF PUBLICATIONS

Bibliography

[ADM+95] Sunil Arya, Gautam Das, David M. Mount, Jeffrey S. Salowe, and Michiel Smid.
Euclidean spanners: Short, thin, and lanky. In Proc. 27th Annu. ACM Sympos.
Theory Comput. (STOC’95), pages 489–498, 1995. 11

[AE84] Franz Aurenhammer and Herbert Edelsbrunner. An optimal algorithm for con-
structing the weighted Voronoi diagram in the plane. Pattern Recogn., 17:251–
257, 1984. 122

[AFK+92] Helmut Alt, Rudolf Fleischer, Michael Kaufmann, Kurt Mehlhorn, Stefan
Näher, Stefan Schirra, and Christian Uhrig. Approximate motion planning and
the complexity of the boundary of the union of simple geometric figures. Algo-
rithmica, 8:391–406, 1992. 106

[Aga97] Pankaj K. Agarwal. Range searching. In Jacob E. Goodman and Joseph
O’Rourke, editors, Handbook of Discrete and Computational Geometry, chap-
ter 31, pages 575–598. CRC Press LLC, Boca Raton, FL, 1997. 11

[AGM+90] Stephen F. Altschul, Warran Gish, Webb Miller, Eugene W. Myers, and David J.
Lipman. Basic local alignment search tool. Journal of Molecular Biology,
215:403–410, 1990. 21

[AHP05] Boris Aronov and Sariel Har-Peled. On approximating the depth and related
problems. In Proc.of 16th ACM-SIAM Symposium on Discrete Algorithms
(SODA’05), pages 886–894, 2005. 100

[AHS05] Kamran Ali, Knut Hartmann, and Thomas Strothotte. Label layout for inter-
active 3D illustrations. J. WSCG, 13:1–8, 2005. 70

[AKS95] Pankaj K. Agarwal, Matthew Katz, and Micha Sharir. Computing depth orders
for fat objects and related problems. Comput. Geom. Theory Appl., 5:187–206,
1995. 106

[AM00] Sunil Arya and David M. Mount. Approximate range searching. Computational
Geometry: Theory and Applications, 17:135–152, 2000. 60, 67

[ANCG07] Ghazi Al-Naymat, Sanjay Chawla, and Joachim Gudmundsson. Dimensionality
reduction for long duration and complex spatio-temporal queries. In Proc. of
the 22nd ACM Symposium on Applied Computing, pages 393–397. ACM, 2007.
118

153

154 BIBLIOGRAPHY

[Aur88] Franz Aurenhammer. Improved algorithms for discs and balls using power dia-
grams. J. Algorithms, 9:151–161, 1988. 122, 126

[BET99] Marshall Bern, David Eppstein, and Shang-Hua Teng. Parallel construction
of quadtrees and quality triangulations. Internat. J. Comput. Geom. Appl.,
9(6):517–532, 1999. 101

[BF01] Christoph Baur and Sándor P. Fekete. Approximation of geometric dispersion
problems. Algorithmica, 30(3):451–470, 2001. 17, 121, 136

[BKPS06a] Michael A. Bekos, Michael Kaufmann, Katerina Potika, and Antonios Symvo-
nis. Multi-stack boundary labeling problems. In S. Arun-Kumar and N. Garg,
editors, Proc. Foundations of Software Technology and Theoretical Computer
Science (FSTTCS2006), volume 4337 of Lecture Notes in Computer Science,
pages 81–92. Springer-Verlag, 2006. 71

[BKPS06b] Michael A. Bekos, Michael Kaufmann, Katerina Potika, and Antonios Symvonis.
Polygon labelling of minimum leader length. In K. Misue, K. Sugiyama, and
J. Tanaka, editors, Proc. Asia Pacific Symposium on Information Visualisation
(APVIS2006), volume 60 of CRPIT, pages 15–21, 2006. 71

[BKSW07] Michael A. Bekos, Michael Kaufmann, Antonios Symvonis, and Alexander Wolff.
Boundary labeling: Models and efficient algorithms for rectangular maps. Com-
putational Geometry: Theory & Applications, 36:215–236, 2007. 16, 70, 71, 72,
76, 77, 80, 86, 92, 93

[BvRWZ04] Martin Burkhart, Pascal von Rickenbach, Roger Wattenhofer, and Aaron
Zollinger. Does topology control reduce interference? In Proc. 5th ACM Int.
Symp. Mobile Ad Hoc Networking and Computing (MobiHoc’04), pages 9–19,
2004. 15, 50, 52, 56, 66

[Cap99] Paola Cappanera. A survey on obnoxious facility location problems. Technical
Report TR-99-11, University of Pisa, 1999. 120

[CCK+05] Ee-Chien Chang, Sung Woo Choi, DoYong Kwon, Hyungju Park, and Chee-K.
Yap. Shortest path amidst disc obstacles is computable. In Proc. 21th ACM
Symposium on Computational Geometry, pages 116–125, 2005. 127

[Cha00] Timothy M. Chan. Random sampling, halfspace range reporting, and con-
struction of (6 k)-levels in three dimensions. SIAM Journal on Computing,
30(2):561–575, 2000. 54

[Che89] L. Paul Chew. There are planar graphs almost as good as the complete graph.
J. Comput. Syst. Sci., 39:205–219, 1989. 11

[CK95] Paul B. Callahan and S. Rao Kosaraju. A decomposition of multidimensional
point sets with applications to k-nearest-neighbors and n-body potential fields.
Journal of the ACM, 42(1):67–90, January 1995. 57, 58, 64

[CNV05] Victor Chepoi, Karim Nouioua, and Yann Vaxés. A rounding algorithm for ap-
proximating minimum Manhattan networks. In Chandra Chekuri, Klaus Jansen,

BIBLIOGRAPHY 155

José D. P. Rolim, and Luca Trevisan, editors, Proc. 8th Intern. Workshop Ap-
prox. Algorithms for Combinatorial Optimization Problems (APPROX’05), vol-
ume 3624 of Lecture Notes in Computer Science, pages 40–51. Springer-Verlag,
2005. 14, 22, 47, 48, 138

[Das03] Dash Optimization Inc. Xpress-Optimizer Reference Manual. Warwickshire,
U.K., 2003. 42

[dBvKOS00] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf.
Computational Geometry: Algorithms and Applications, second edition.
Springer-Verlag, 2000. 12

[Dij59] Edsger W. Dijkstra. A note on two problems in connection with graphs. Nu-
merische Math., 1:269–271, 1959. 56

[DN97] Gautam Das and Giri Narasimhan. A fast algorithm for constructing sparse
Euclidean spanners. International Journal of Computational Geometry and Ap-
plications, 7:297–315, 1997. 57

[EGS05] David Eppstein, Michael T. Goodrich, and Jonathan Z. Sun. The skip quadtree:
a simple dynamic data structure for multidimensional data. In Proc.of the 21st
ACM Symposium on Computational Geometry (SoCG’05), pages 296–305, 2005.
101, 102

[Epp00] David Eppstein. Spanning trees and spanners. In Jörg-Rüdiger Sack and Jorge
Urrutia, editors, Handbook of Computational Geometry, pages 425–461. Elsevier
Science Publishers B.V. North-Holland, Amsterdam, 2000. 9, 11

[FGG05] Mohammad Farshi, Panos Giannopoulos, and Joachim Gudmundsson. Finding
the best shortcut in a geometric network. In Proc. 21st Symposium on Compu-
tational Geometry (SoCG’05), Journal of the ACM, pages 327–335, 2005. 9

[FP99] Jean-Daniel Fekete and Catherine Plaisant. Excentric labeling: Dynamic neigh-
borhood labeling for data visualization. In [CHI], pages 512–519, 1999. 70

[FPT81] Robert Fowler, Mike Paterson, and Steven Tanimoto. Optimal packing and
covering in the plane are NP-complete. Information Processing Letters, 12:133–
137, 1981. 17, 121

[FRC01] A.U. Frank, J.F. Raper, and J.-P. Cheylan, editors. Life and motion of spatial
socio-economic units. Taylor & Francis, London, 2001. 99

[GHvK02] Joachim Gudmundsson, Mikael Hammer, and Marc van Kreveld. Higher order
Delaunay triangulations. Computational Geometry – Theory & Applications,
23(1):85–98, 2002. 54

[GKM07] Panos Giannopoulos, Christian Knauer, and Daniel Marx. Minimum-dilation
tour is NP-hard (extended abstract). In Proc. of the 23rd European Workshop
on Computational Geometry (EWCG), Graz, Austria, 2007. 146

156 BIBLIOGRAPHY

[GLN01] Joachim Gudmundsson, Christos Levcopoulos, and Giri Narasimhan. Approxi-
mating a minimum Manhattan network. Nordic Journal of Computing, 8:219–
232, 2001. 21, 22, 23, 34, 43, 45

[GLN02] Joachim Gudmundsson, Christos Levcopoulos, and Giri Narasimhan. Improved
greedy algorithms for constructing sparse geometric spanners. SIAM Journal
on Computing, 31(5):1479–1500, 2002. 56

[GNS03] Joachim Gudmundsson, Giri Narasimhan, and Michiel Smid. Distance-
preserving approximations of polygonal paths. In Proc. 23rd Conf. Foundations
Software Technology Theoretical Comput. Sci. (FSTTCS’03), pages 217–228,
2003. 64

[Gra18] Henry Gray. Anatomy of the Human Body. Lea & Febiger, Philadelphia, 1918.
70

[GvK06] Joachim Gudmundsson and Marc van Kreveld. Computing longest duration
flocks in trajectory data. In Proc. 14th ACM Symposium on Advances in GIS,
pages 35–42, 2006. 100

[GvKS04] Joachim Gudmundsson, Marc van Kreveld, and Bettina Speckmann. Efficient
detection of motion patterns in spatio-temporal data sets. In I.F. Cruz and
D. Pfoser, editors, Proc.of the 12th Int. Symposium of ACM Geographic Infor-
mation Systems, pages 250–257, Washington DC, USA, 2004. 100, 101

[HdBG04] Herman Haverkort, Mark de Berg, and Joachim Gudmundsson. Box-trees for
collision checking in industrial installations. Computational Geometry Theory
and Applications, 28(2–3):113–135, 2004. 60

[HM85] Dorit S. Hochbaum and Wolfgang Maas. Approximation schemes for covering
and packing problems in image processing and VLSI. Journal of the ACM,
32:130–136, 1985. 17, 121, 123, 124, 127, 139

[IS02] Sachiko Iwase and Hideo Saito. Tracking soccer player using multiple views. In
Proc.of the IAPR Workshop on Machine Vision Applications (MVA02), pages
102–105, 2002. 99

[JT92] Jerzy W. Jaromczyk and Godfried T. Toussaint. Relative neighborhood graphs
and their relatives. Proc. IEEE, 80(9):1502–1517, 1992. 52

[Kei88] J. Mark Keil. Approximating the complete Euclidean graph. In R. Karlsson
and A. Lingas, editors, Proc. First Scandinavian Workshop on Algorithm Theory
(SWAT’88), volume 318 of Lecture Notes in Computer Science, pages 208–213,
Halmstad, Sweden, 5–8 July 1988. Springer-Verlag. 11

[KIA02] Ryo Kato, Keiko Imai, and Takao Asano. An improved algorithm for the min-
imum Manhattan network problem. In Prosenjit Bose and Pat Morin, editors,
Proc. 13th Annual International Symposium on Algorithms and Computation
(ISAAC’02), volume 2518 of Lecture Notes in Computer Science, pages 344–
356. Springer-Verlag, 2002. 14, 22, 23, 24

BIBLIOGRAPHY 157

[KMM93] Rolf Klein, Kurt Mehlhorn, and Stefan Meiser. Randomized incremental con-
struction of abstract Voronoi diagrams. Computational Geometry: Theory and
Applications, 3:157–184, 1993. 122

[Kru56] Joseph B. Kruskal. On the shortest spanning subtree of a graph and the trav-
elling salesman problem. Proc. American Mathematical Society, 7:48–50, 1956.
63

[KSB01] George Kollios, Stan Sclaroff, and Margit Betke. Motion mining: discovering
spatio-temporal patterns in databases of human motion. In Proc.of the ACM
SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discov-
ery, 2001. 99

[LAP03] Fumei Lam, Marina Alexandersson, and Lior Pachter. Picking alignments from
(Steiner) trees. Journal of Computational Biology, 10:509–520, 2003. 14, 21

[Lee82] Der-Tsai Lee. On k-nearest neighbor Voronoi diagrams in the plane. IEEE
Trans. Comput., C-31:478–487, 1982. 54

[LI02] Patrick Laube and Stephan Imfeld. Analyzing relative motion within groups of
trackable moving point objects. In M. J. Egenhofer and D. M. Mark, editors,
Proc. Geographic Information Science 2002 (GIS’02), volume 2478 of Lecture
Notes in Computer Science, pages 132–144. Springer-Verlag, 2002. 99

[LvKI04] Patrick Laube, Marc van Kreveld, and Stephan Imfeld. Finding REMO – de-
tecting relative motion patterns in geospatial lifelines. In P. F. Fisher, editor,
Proc.of the 11th Int. Symposium on Spatial Data Handling (SDH’04), pages
201–214, Berlin, 2004. Springer-Verlag. 100

[LW04] Xiang-Yang Li and Yu Wang. Minimum power assignment in wireless ad hoc
networks with spanner property. In Proc. IEEE Workshop on High Performance
Switching and Routing (HPSR’04), pages 231–235, 2004. 56

[Mat93] Jiri Matoušek. Range searching with efficient hierarchical cuttings. Discrete
Comput. Geom., 10(2):157–182, 1993. 12, 55

[MH01] Harvey J. Miller and Jiawei Han, editors. Geographic Data Mining and Knowl-
edge Discovery. Taylor & Francis, London, 2001. 99

[ML05] Kousha Moaveni-Nejad and Xiang-Yang Li. Low-interference topology control
for wireless ad hoc networks. Internatational Journal Ad Hoc & Sensor Wireless
Networks, 1(1–2):41–64, 2005. 50, 51, 66

[MT87] Alistair Moffat and Tadao Takaoka. An all pairs shortest path algorithm with
expected time O(n2 log n). SIAM J. Comput., 16(6):1023–1031, 1987. 57

[NS07] Giri Narasimhan and Michiel Smid. Geometric Spanner Networks. Cambridge
University Press, 2007. 57

[NW06] Martin Nöllenburg and Alexander Wolff. A mixed-integer program for drawing
high-quality metro maps. In Patrick Healy and Nikola S. Nikolov, editors, Proc.

158 BIBLIOGRAPHY

13th Int. Symposium on Graph Drawing (GD’05), volume 3843 of Lecture Notes
in Computer Science, pages 321–333. Springer-Verlag, 2006. 7, 8

[Por] Porcupine caribou herd satellite collar project.
http://www.taiga.net/satellite/. 99

[Pra99] Ravi Prakash. Unidirectional links prove costly in wireless ad-hoc networks.
In Proc. 3rd Int. Workshop on Discrete Algorithms and Methods for Mobile
Computing and Communications (DIALM’99), pages 15–22. ACM Press, 1999.
49

[Pri57] Robert C. Prim. Shortest connection networks and some generalisations. Bell
Systems Technical Journal, pages 1389–1410, 1957. 50

[Ram99] Edgar A. Ramos. On range reporting, ray shooting and k-level construction.
In Proc. 15th Annu. ACM Sympos. Comput. Geom. (SoCG’99), pages 390–399,
1999. 54

[RHS01] John F. Roddick, Kathleen Hornsby, and Myra Spiliopoulou. An Updated Bib-
liography of Temporal, Spatial, and Spatio-temporal Data Mining Research. In
J. F. Roddick and K. Hornsby, editors, Temporal, spatial and spatio-temporal
data mining, TSDM 2000, volume 2007 of Lecture Notes in Artificial Intelli-
gence, pages 147–163, Berlin, 2001. Springer-Verlag. 99

[Rog64] Claude A. Rogers. Packing and Covering. Cambridge University Press, Cam-
bridge, England, 1964. 120

[RRT94] Sundaram S. Ravi, Daniel J. Rosenkrantz, and Giri Kumar Tayi. Heuristic and
special case algorithms for dispersion problems. Operations Research, 42(2):299–
310, 1994. 121

[RS91] Jim Ruppert and Raimund Seidel. Approximating the d-dimensional complete
Euclidean graph. In Proc. 3rd Canad. Conf. Comput. Geom. (CCCG’91), pages
207–210, 1991. 11

[SB00] Neil Sumpter and Andrew J. Bulpitt. Learning spatio-temporal patterns for
predicting object behaviour. Image Vision and Computing, 18(9):697–704, 2000.
99

[SC03] Choon-Bo Shim and Jae-Woo Chang. A new similar trajectory retrieval scheme
using k-warping distance algorithm for moving objects. In Proc. of the 4th
Int. Conference on Advances in Web-Age Information Management (WAIM’03),
volume 2762 of Lecture Notes in Computer Science, pages 433–444. Springer-
Verlag, 2003. 99

[SS00] Weiping Shi and Chen Su. The rectilinear Steiner arborescence problem is NP-
complete. In Proc. 11th Annu. ACM-SIAM Symp. Disc. Algorithms (SODA’00),
pages 780–787, 2000. 48

[SV86] Robert Sedgewick and Jeffrey S. Vitter. Shortest paths in Euclidean space.
Algorithmica 1, pages 31–48, 1986. 9

BIBLIOGRAPHY 159

[SZ04] Mikkel Sigurd and Martin Zachariasen. Construction of minimum-weight span-
ners. In Susanne Albers and Tomasz Radzik, editors, Proc. 12th Annual Eu-
ropean Symposium on Algorithms (ESA’04), volume 3221 of Lecture Notes in
Computer Science, pages 797–808. Springer-Verlag, 2004. 9

[T0́4] Gabor Fejes Tóth. Handbook of Discrete and Computational Geometry, 2nd
Edition, Jacob E. Goodman and Joseph O’Rourke, editors, chapter 2, Packing
and covering. CRC Press LLC, Boca Raton, FL, 2004. 120

[Thu10] Axel Thue. Über die dichteste Zusammenstellung von kongruenten Kreisen in
der Ebene. Christiania Vid. Selsk. Skr., 1:3–9, 1910. 125

[VC06] Florian Verhein and Sanjay Chawla. Mining spatio-temporal association
rules, sources, sinks, stationary regions and thoroughfares in object mobility
databases. In Proc.of the 11th Int. Conference on Database Systems for Ad-
vanced Applications (DASFAA’06), volume 3882 of Lecture Notes in Computer
Science, pages 187–201. Springer-Verlag, 2006. 99

[vdS94] A. F. van der Stappen. Motion Planning amidst Fat Obstacles. Ph.D. disserta-
tion, Dept. Comput. Sci., Utrecht Univ., Utrecht, Netherlands, 1994. 106

[vK98] Marc van Kreveld. On fat partitioning, fat covering, and the union size of
polygons. Comput. Geom. Theory Appl., 9(4):197–210, 1998. 106

[vRSWZ05] Pascal von Rickenbach, Stefan Schmid, Roger Wattenhofer, and Aaron Zollinger.
A robust interference model for wireless ad-hoc networks. In Proc. 5th Int.
Workshop on Algorithms for Wireless, Mobile, Ad Hoc and Sensor Networks
(WMAN’05), 2005. CD-ROM. 50, 51

[Wei97] Robert Weibel. Generalization of Spatial Data: Principles and Selected Algo-
rithms. In Marc van Kreveld, Jürg Nievergelt, Thomas Roos, and Peter Wid-
mayer, editors, Algorithmic Foundations of Geographic Information Systems,
volume 1340 of Lecture Notes in Computer Science, chapter 5, pages 99–152.
Springer-Verlag, 1997. 7

[WK88] D. W. Wang and Yue-Sun Kuo. A study on two geometric location problems.
Inform. Process. Letters, 28(6):281–286, 1988. 121

[WS96] Alexander Wolff and Tycho Strijk. The Map-Labeling Bibliography.
http://i11www.ira.uka.de/map-labeling/bibliography/, 1996. 69

[wtp06] Wildlife tracking projects with GPS GSM collars.
http://www.environmental-studies.de/projects/projects.html, 2006. 99

[WW07] Dorothea Wagner and Thomas Willhalm. Speed-up techniques for shortest-path
computation. In Proc. 24th Int. Symp. on Theoretical Aspects of Computer
Science (STACS’07), Lecture Notes in Computer Science, 2007. To appear. 10

[WWZ06] Dorothea Wagner, Thomas Willhalm, and Christos Zaroliagis. Geometric short-
est path containers. ACM Journal on Experimental Algorithms 10, 2006. Article
No. 1.03. 9

160 BIBLIOGRAPHY

[Yao82] Andrew Chi Chih Yao. On constructing minimum spanning trees in k-
dimensional spaces and related problems. SIAM Journal on Computing,
11(4):721–736, 1982. 11

[ZT99] Chuanming Zong and John Talbot. Sphere Packings. Springer-Verlag, 1999.
120

Thanks to ...

... Alex for being obtrusive (sometimes) in a positive sense which includes sharpening
my grasp of academic writing and, hopefully also, improving my own abilites of aca-
demic writing.

... Joachim and Marc for showing me the easiness of doing research and for inviting me
to Sydney and Utrecht, respectively.

... Martin for pushing me for longer working hours by his steady presence in the office
(that was engaging).

... Damian, the native English speaker, for revising the introduction.

... all i11-staff, especially Michael, Martin, Étienne, Steffen and Marco, for helping me
with LaTeX details or other stuff for which I had been too lazy to figure it out on my
own. Though you knew of my laziness, you always helped me. :-)

... my parents—my dad insisted on being named here ;-)—for supporting me on my
whole way to the PhD.

... the janitor who—within 4 years—never complained about me taking the bike to the
office.

161

162 BIBLIOGRAPHY

Curriculum Vitae

19.12.76 born in Berlin, Germany

21.06.96 A-levels at Friedrich Schiller Gymnasium Fellbach, Ger-
many

02.09.96 – 30.09.97 alternative service in a residence for mentally disabled per-
sons

01.10.97 enrolment at Universität Konstanz, Germany; major in
mathematics, minor in computer science

07.01.03 graduation from Universität Konstanz; title of Master’s
Thesis: “Über den kleinsten Primitivrest modulo p”

01.04.03 – 31.03.07 research assistant of PD Dr. Alexander Wolff at Karlsruhe
University; work on project“Geometric Networks and their
visualization” funded by the German Research Foundation
(DFG)

12.09.05 – 16.09.05 research stay at the University of Utrecht, The Nether-
lands, under supervision of Prof. Dr. Marc van Kreveld

4.10.05 – 23.12.05 research stay at NICTA, Sydney, Australia under supervi-
sion of Dr. Joachim Gudmundsson. Supported by a DAAD
(German Academic Exchange Service) grant

163

	Introduction
	Concepts from Computational Geometry
	Thesis outline

	I Constructing Geometric Networks
	Manhattan Networks
	Introduction
	Basic definitions
	Neighbors and the generating set
	Minimum covers
	An approximation algorithm
	The approximation factor
	Mixed-integer program
	Experiments
	Open problems

	Interference-minimal networks
	Introduction
	Computing exact-interference graphs
	Computing estimation-interference graphs
	Generalizations and extensions

	Boundary Labeling with 1-bend leaders
	Introduction
	Problem definition
	Algorithms for labels on one side
	Algorithms for labels on two sides
	Experiments

	II Analyzing Geometric Networks
	Detecting and Reporting Flocks
	Introduction
	Approximate flocks
	Approximation algorithms
	Minimize the number of reported flocks
	Experiments
	Concluding remarks

	A Geometric Dispersion Problem
	Introduction
	A simple greedy strategy
	Algorithm outline
	Adjusting the PTAS of Hochbaum and Maass
	The freespace and a metric on unit disks
	The nearest-neighbor graph
	Placement regions of nearest pairs are disjoint
	Placing the 2/3-disks
	Conclusion

	Deutsche Zusammenfassung
	Glossar
	List of publications
	Bibliography
	Curriculum Vitae

