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Introduction

Each time we open a road map, we try to perceive some information about the location of
the depicted places or connections by which one place can be reached starting from another
place. In most of the cases our aim is to plan a route that should be as short as possible
concerning its time consumption. We do this by analyzing the depicted geometric information
in a simple way; by the color or width of a road we know its type. Hence, together with the
length information about each road section we can—under the idealistic assumption that
there will be no traffic jam—estimate how long we probably need for certain routes.
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Figure 1: Road map of Schwenningen and its vicinity, 1939.

FEach time a graph theorist opens a road map, he sees a network that is endowed with
geometric information and other attributes of the objects contained. Well, indeed, the graph
theorist sees the same as we do but in a different perspective. The reason for this is that he
is aware of the theoretic concept that is used to illustrate this road network, for him, it is a
graph.

A graph consists of vertices (also called nodes) and links (also called edges) that connect
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the vertices. In the case of the road map network, the vertices are the depicted cities or
junctions and the links are the roads that connect them. Additionally, the links can be
endowed with weights, which, for the road map, indicate road lengths or traveling times.
Other attributes, like the color of a road, record additional information. Naturally, attributes
can also be set for the displayed vertices. When we plan our trip it is important whether the
roads that we want to use are rural roads, highways or expressways because this significantly
affects the traveling time. For the graph theorist our endeavors to find the best possible route
by hand simply come down to performing a shortest-path query in an appropriate graph.
If the tour should minimize the petrol costs, the links of the graph should be weighted by
the amount of petrol needed for traveling along the corresponding road. If the tour should
minimize the required time, the links should be weighted by the required traveling time.

However, the graph theorist does not need any explicit geometric information to perform
a shortest-path query. For him, it is enough simply to know the underlying graph with all
its vertices and links, i.e. the possibilities of going from any vertex to any other. A shortest-
path query then finds the best possibility to go from vertex A to vertex B by checking
intermediate vertices and possibly all links of the graph. In this sense the query can be dealt
with using graph-theoretic concepts only. Graph theory in general and shortest-path queries
in particular form a wide field, which is already quite well exploited and which will not be
discussed in this thesis. We are interested in networks that are additionally endowed with
geometric information. What makes the road map a geometric network is the fact that the
real topology of the depicted places is preserved by its rendering. This helps us enormously
in understanding the geometric information that should be conveyed.

This leads us to the first discipline when dealing with geometric networks: their visual-
ization. Basically, there are three disciplines:

Visualization — Which geometric properties do we want to represent and how do we accom-
plish that?

Construction —How do we construct geometric networks that fulfill some desired properties?

Analysis — What information can we extract from a geometric network and how can we
make use of this information?

When we are looking for a good visualization, the network itself is given and we look
for a representation that maintains or emphasizes predefined geometric information. This
representation is usually an embedding of the network in the plane, i.e. in 2-dimensional
space. To accomplish that aim, one usually proceeds in two steps. Firstly, an embedding for
the vertices is fixed, i.e. for each vertex its location in the plane is determined. Secondly, we
decide on the type of geometric object with which the links shall be illustrated and the links are
added to the drawing of the embedding. Typical link types are straight lines, polygonal lines,
or curved lines. Which type we choose depends on the purpose that the link representation
should fulfill and, often enough, on the beauty of the emerging rendering. For example, if we
want to illustrate a graph that can be drawn in the plane such that no two links intersect,
in the majority of the cases we want to find a representation that preserves this property, if
no other properties we want to emphasize prohibit this. There may be applications which
request an embedding of a geometric into 3-dimensional space, however, the scope of this
thesis will only encompass networks in 2-dimensional space.
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For the road map, finding a vertex embedding is in general a trivial issue: as there is no
reason not to preserve the exact topology, the embedding is simply found by appropriately
scaling the original data. However, for small scales there arises a different problem: we have
to decide which dispensable vertices we skip. This is necessary simply because the map
does not offer enough space anymore to display and label all vertices. After fixing the vertex
embedding, we insert the roads into the network. This step also depends on the used scale and
we first have to decide which roads we will incorporate. A road is then drawn as a polygonal
or curved line that reasonably reflects its real geometric course, if there is enough space to do
so. If the scale is too small to allow an authentic drawing we have to appropriately deform the
original course such that the characteristic trait of the road is still maintained. This is, e.g.,
relevant for strongly winding mountain roads. Generating maps at different scales is all but
a trivial task and cartographs devote a lot of work to these kind of generalization problems.
For a survey on common generalization techniques see for example [Wei97].

A typical example for which it is not appropriate to heavily rely on the real geometric
data, when we want to find a good visualization, is the metro map. First and foremost we
look for a visualization of this transportation network that meets the customers demands as
well as possible. Each single line should be nicely traceable, interchange facilities have to be
marked in an understandable way and so on. However, additionally, the real topology should
still be recognizable. Otherwise this would lead to confusions in the understanding of the
map since the customer has, in most cases, at least a rough knowledge about the geography
of the depicted region. A very common solution is to start with the original topology and
deform it only slightly, see Figure [2| for an example. Figure [2a] visualizes the transportation
network of the city of Karlsruhe utilizing the real coordinates of the stations. Figure
depicts the resulting visualization of Nollenburg and Wolff’s approach [NW06]. They used a
mixed-integer program to encode and optimize the criteria that have been touched on above.

To summarize, a good visualization is always a visualization that meets the customer
demands. This concludes my short overview on the discipline of visualization. In my thesis,
visualization will only play a small role since the embedding of the vertices will already be
fixed by the input. So, visualization will only be used for illustration purposes.

Network construction is the discipline that asks for the construction (or extension) of a
network on a given set of vertices, or a given part of the network such that the outcome fulfills
some predetermined properties. Almost always, these properties include the optimization of
some quality criterion. Again, road maps provide an illustrative example. Assume for the
moment that there haven’t been built any roads and we want to set up a road network for
a set of cities from scratch. This road network should connect the cities in a good way, but
what does ’a good way’ intrinsically mean? Well, an obvious requirement is the connectivity
of the network, since it should be possible to get from any city to any other. But in most cases
connectivity alone is not enough. Assume that we live in city A and want to visit a friend who
lives in city B. Understandably, there is a limit on the detour that we are willing to accept
compared to the air-line distance between A and B. Then why don’t we just build a road
between every pair of cities? Simply because this would be disastrously uneconomical, not
to mention the unnecessary destruction of too much nature. This is best illustrated by two
plausible examples; see Figure |3} For three nearly collinear cities it would make no sense to
set up a direct connection between the outermost cities when there are roads connecting the
outermost cities with the mid city. For two cluster of cities that lie far apart, one connecting
road is enough to serve for low inter-cluster detours.

The technical term for the concept that was just described is spanners with low weight.



(a) Original topology.

(b) Map produced by the approach of Néllenburg and Wolff [NW0G].

Figure 2: Comparison between two representations of the Karlsruhe transportation network.
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(a) Three nearly collinear cities. (b) Two city clusters.

Figure 3: Sparse road networks that serve low-detour connections.

And indeed, in practice, it also makes no sense to build a dense road network. For every
arrangement of cities a surprisingly sparse network can be found that provides connections
that do not let the maximum occurring detour get too big. A good overview to the theory
of spanners is given in a survey paper by David Eppstein [Epp00]. Spanners play a role in
the first to chapters of my thesis and for this reason a more formal introduction is given in
Section

Back to the (geometric) properties in our road-map example. The basic property is con-
nectivity, the two other criteria are the building cost and the maximum occurring detour that
shall be acceptable. In terms of the optimization criterion we have two choices to describe a
"good’ network. Either we try to establish a network that offers connections between any two
cities not exceeding a predefined detour value and minimize the building cost, or we fix the
amount of money that we can afford and try to set up a network that minimizes the maximum
occurring detour under this restriction, see e.g. [SZ04]. The latter scenario seems to be the
more practical one. There are also examples of larger practical relevance than setting up a
road network from scratch, e.g. the planning and building of bypass roads [FGGO05]. Here, an
existing network is to be extended in an optimal way. The prevailing optimization criterion
is the ability of the resulting network to cope with the expected volume of traffic.

In Chapters [T}, [2] and [3] we consider problems of the above kind. Together they constitute
the first part of my thesis: constructing geometric networks. The considered problems all have
in common that the embedding of the vertices (cities) is already fixed by the input and the
task is to set up a network on these sets that fulfills given properties and optimizes a certain
criterion. A more detailed description to each of these problems can be found in the outline
of this thesis in Section [0.1]

The last of the three disciplines is the analysis of geometric networks. Obviously, this dis-
cipline encompasses analyzing a network for special—unknown—geometric properties. E.g.,
if we are given a road network, we want to know how big the maximum occurring detour is
and for which pair of cities it is attained. Beyond analyzing for properties I want to classify
a second model to this discipline. Assume that we do already know the geometric properties
of the network we are dealing with. Now, we want to utilize these properties to support
other analysis techniques, such as shortest-path queries. Indeed, in graph theory there are
two approaches that use geometric information to speed-up the search for a shortest path
from A to B. Both approaches share the same idea: the search is guided by geometric in-
formation provided by the embedding of the network. In the first approach [SV86], vertices
that lie geometrically closer to the target B (Euclidean distance) are considered as interme-
diate vertices for a shortest A—B path before vertices that lie further away. In the second
approach [WWZ06], geometric containers are used. A preprocessing step is used, computing
for every edge {A, C} the candidate vertices that can be reached by a shortest path starting
from vertex A and using edge {A,C}. This information is stored in a geometric container,
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represented by the smallest axis-aligned bounding box that contains all candidates. Obviously
this information helps to guide the search; we only have to check edges that actually can lead
to B when we are looking for a shortest path from A to B. So far I have concealed that both
approaches make use of Dijkstra’s Algorithm. Wagner et al. [WWQT] give a brief introduction
to this pioneering algorithm and a survey on speed-up techniques.

In my thesis, analyzing geometric networks constitutes the second part. In Chapter []
the traces of moving objects are investigated and analyzed for their group behavior and in
Chapter [5| a so-called nearest-neighbor graph is analyzed for its maximum degree and this
information is used to bring the algorithm for a packing problem to work. For a detailed
outline of these problems see Sections and

To summarize this introduction, geometric networks appear in many circumstances in
everyday life. They are the most important data structure for modeling flows of traffic, goods
or information. Constructing geometric networks that satisfy certain properties is a necessary
discipline for the utilization of these properties, e.g. in railway and road network planning or
in the design of VLSI layouts. An appropriate visualization is the tool for providing a good
understanding of the information (and properties) that should be conveyed to an observer.
Analyzing and understanding geometric networks helps to make use of the properties.

Two sections conclude this introduction. In Section [0.1] I introduce two basic concepts
from computational geometry and in Section [0.2] I sketch the content of each chapter and
summarize the results.

0.1 Concepts from Computational Geometry

On several occasions in this thesis ¢-spanners occur and the technique of range searching is
used. These concepts are well known in Computational Geometry. I introduce them briefly
in the next two sections.

0.1.1 t{-spanners

One can explain the essence of a t-spanner in a single sentence: Given a set of points in the
plane and a constant ¢ > 1, a Euclidean t-spanner is a network in which, for any pair of
points, the ratio of the network distance and the Euclidean distance of the two points is at
most ¢.

As we will need the notion of a t-spanner on several occasions in this thesis, I will give a
detailed definition. Let P be a set of n points in the plane. For two points u,v € P let |u,v]
denote the Euclidean distance between u and v. Let G = (P, E)) an undirected, connected
graph on P having straight-line edges weighted by the Euclidean distance of the corresponding
edge. Let |u,v|e denote the length of a shortest u—v path in G. The stretch factor §(u,v) of
a point pair u, v is defined as:

_ |uaU|G

d(u,v)

o fu]

The stretch factor dg of the graph G is defined to be the maximum occurring stretch
factor between any pair of points:

og = ) .
@ u,vreng}éyév (u,v)
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Frequently the term stretch factor is also referred to as dilation. A graph is said to be a
t-spanner if its stretch factor is at most ¢, see Figure[d The complete graph on P is obviously
a 1-spanner, but as the complete graph has ©(n?) edges it is practically irrelevant. For most
applications a good spanner with a small number of edges is desired, as seen in the example
of a road network in the introduction. The Yao-Graph was the first graph with a linear
number of edges that provably had a constant stretch factor [Yao82l [Kei88, [RS91]. There
are a variety of other properties that a spanner is often desired to supply, which depend on
the application, e.g. bounded degree, small total edge length, small spanning diameter and
the required construction time of the spanner. The comparison criterion for small total edge
length is the length of a minimum spanning tree on P. The spanning diameter of a graph
is the length of the longest shortest path when all edges are weighted by 1. It gives the
maximum number of hops that are required to get from one point to another.

However, the field of Euclidean spanners has already been well studied since Chew [Che89)]
introduced them. For the understanding of my thesis, only the definition is necessary. 1
conclude with two references that cover the theory of spanners as far as possible: Fuclidean
Spanners: Short, Thin and Lanky by Arya et al. [ADM™95], and Spanning trees and spanners
by David Eppstein [Epp00].

Figure 4: A 2-spanner and the point pair u, v that defines the stretch factor of the graph.

0.1.2 Range searching

In Chapter [2] and Chapter [4] performing range queries plays a crucial role for the algorithmic
realization of the desired demands. For this reason, I introduce the basic idea of range
searching here and give a very simple example showing how an approximate range query can
be conducted.

Assume we want to answer queries of the following type: we are given a set P of points
in the plane and a query object, e.g. a disk D, and we want to efficiently report the points in
PN D. Obviously we can traverse all points and simply check whether each point lies in D or
not, which would take linear time if the query object is of constant complexity. If we only have
to deal with a single query object this would be the best we could do, but what happens if we
have to process a whole series of different query objects? Then, it makes sense to preprocess
the point set and establish a data structure that can answer queries in sublinear time. In
the introduction of his survey paper on range searching [Aga97], Agarwal nicely sketched the
technique that usually forms the basis for such a data structure: a set of disjoint canonical
subsets of P is stored. Roughly speaking, the query will then make use of this information
by deciding whether whole subsets lie inside or outside the query range. We will further



12

illustrate this in a small example below. The notion of storing point subsets immediately
suggests a trade-off between space requirement and query time. A data structure suggested
by Matousek [Mat93] is a nice example of this. For a user-defined parameter M > n he builds
a data structure of size O(M) in O(n'*® + M polylogn) time, where § is an arbitrary small
positive constant, such that queries can be answered in O((n/M"/3) polylogn) time.

Usually, the stored subsets are arranged in a tree-like structure. We show this for an
approrimate range query. If accuracy is not required we can approximate in the following
sense. Say we have given a query object, e.g. a disk D, and the diameter of the object is d.
We give the concession that any point outside D, but not further than ¢ - d distance away
from D may or may not be counted for the query. Here, ¢ is some chosen, positive constant
that determines the grade of exactness. Obviously, dealing with approximate range queries
is algorithmically easier than with exact queries as we do not have to care about the exact
location of points close to the boundary of D. For example, say that we want to query a
disk D and we only want to output the (approximate) number of points in D (range counting
query). We use a split tree to preprocess and store the points. The root of this tree is assigned
a square that contains all input points. As additional information for each vertex, we store
the number of points contained in its corresponding region. Hence, for the root, this number
is | P|, see Figure If the corresponding square R of a vertex in the split tree contains at
most one point, the vertex is a leaf. Otherwise the vertex has four children that correspond
to the four equally-sized squares that emerge when R is further partitioned, for more detailed
information about split trees see for example [dBvKOSQ0].

Let Di4. denote the region that contains D and the points not farther away from D than
e-d, i.e. the enlarged query region. Recall that points in D1\ D may or may not be counted.
The query starts at the root of the split tree. For every vertex v that is encountered by the
query, we check whether the corresponding square (i) lies completely within Dj4., (ii) lies
completely outside of D or (iii) has non-empty intersection with D as well as with the outside
of Di4c. For (i) we count the number of points in the square for the query; for (ii) we don’t.
Neither in case (i) nor in case (ii) do we have to descend further into the subtree of v. For
(iii) we cannot make any decision and must descend further into the subtree of v.

Note that the exact query time depends on many different matters, e.g. the height of
the tree, additional information that is stored with the vertices and not least the time that is
required to decide whether a point subset has non-empty intersection with the query object or
not. The above example was only chosen to illustrate the functionality of a range query. Since
a normal split tree, as described above, can have linear height, the worst-case complexity of
a query in the example is still linear.

0.2 Thesis outline

The contents of the five chapters of this thesis are outlined in the next sections. Chapters
1-3 constitute the constructing part and Chapters 4-5 constitute the analyzing part.

0.2.1 Manhattan Networks — Chapter [1]

This work is concerned with the study of 1-spanners under the Manhattan (or L;-) metric.
The Manhattan metric differs significantly from the Euclidean metric, for which a shortest
path is always realized by a straight-line. For the Manhattan metric a shortest path between
two points is not uniquely defined: any shortest rectilinear path that connects the two points
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(a) A point set P and (parts of) the subdivision
into squares that builds the basis for the split tree.
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(b) The split tree for P and the above subdivision. The subtrees
of Ri, Rz and R3 are omitted. The query for D is illustrated in the
subtree rooted at R4. Shaded numbers are counted for the query; it
is not necessary to descend further.

Figure 5: Performing an approximate range query using a split tree.
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realizes the Manhattan distance. We call such a path a Manhattan path. The naming stems
from the street system of Manhattan where almost all streets lead North—South (Avenues) or
West-East (Streets).

A network that provides Manhattan paths between any two participating points is called
a Manhattan network. More precisely, a Manhattan network for a set of points is a set of
axis-parallel line segments whose union contains a Manhattan path for each pair of points.
Two Manhattan networks for the same point set are depicted in Figure [6]

Finding a Manhattan network for a given point set is a trivial task. Take, for example,
the complete rectilinear grid that is induced by the input points. However, the problem
of finding a minimum Manhattan network (MMN), i.e. a Manhattan network of minimum
total length, is more complicated. By now, it is still not known whether such a network
can be computed in polynomial time or whether this problem is NP-hard. In Chapter [I] we
present an approximation algorithm for the problem. Given a set P of n points, our algorithm
computes in O(nlogn) time and linear space a Manhattan network for P whose length is at
most 3 times the length of an MMN for P.

. l—I—o

l [ ]
(a) minimum MN, length: 36. (b) MN computed by our al-
gorithm, length: 41.

[ ]

Figure 6: Manhattan networks

We also establish a mixed-integer programming formulation for the MMN problem. With
its help we extensively investigated the performance of our factor-3 approximation algorithm
on random point sets. For two types of artificially generated point sets we found out that the
practical performance of our algorithm was significantly better than the theoretical bound
may suggest. On average our algorithm performed by a factor of approximately 1.3.

At the time our work was published [I] our algorithm had the provably best approximation
factor, disregarding a 2-approximation algorithm (Kato et al. [KIA02]) whose correctness
proof was incomplete. In [I] we also introduced a mixed-integer progam formulation of the
problem in order to be able to solve instances optimally and to compare the results yielded
by our approximation algorithm.

In the meantime the French researchers Chepoi, Nouioua and Vaxés [CNV05] have suc-
ceeded in generating a 2-approximation algorithm. They did this by relaxing the integer
variables of our mixed-integer program and rounding them in an appropriate way. However,
their algorithm must solve a linear program with ©(n?) variables and constraints. Thus, it is
much slower than our algorithm.

The Manhattan network problem may have applications in city planning or VLSI design.
Lam et al. [LAPO3] also describe an application from computational biology that stems from
the comparison of gene sequences. In Chapter [1| this application is described in more detail.
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0.2.2 Interference-minimal Networks — Chapter 2]

A wireless ad-hoc network can be represented as a graph in which the nodes represent wireless
devices, and the links represent pairs of nodes that communicate directly by means of radio
signals. The interference caused by a link between two nodes u and v can be defined as the
number of other nodes that may be disturbed by the signals exchanged by w and v. This
definition was first made by Burkhart et al. [BvRWZ04].

In this work we deal with the following task. Given the position of the nodes in the plane,
links are to be chosen such that the maximum interference caused by any link is minimized,
under the restriction that the network fulfills a certain desirable property. The properties that
we are interested in are connectivity, bounded dilation and bounded link diameter. We give
efficient algorithms to find networks in two different models. In the first model, the signal
sent by u to v reaches exactly the nodes that are not farther from u than v is. In the second
model, we assume that the boundary of a signal’s reach is not known precisely and that our
algorithms should therefore be based on acceptable estimations. More precisely this means
that a signal sent from u to v reaches v in any case, but is definitely lost if distance to u exceeds
(1+¢)|u,v| where | - | denotes the Euclidean distance and ¢ is a small positive constant. The
latter model yields faster algorithms. Furthermore, the running times of our algorithms in the
exact model are output-sensitive. They depend on the smallest interference value k for which a
network with the desired property exists. For example, we need O(nk?+nlognlogk) time for
finding the minimum-interference spanning tree in the exact model and O(n/e?(1/e +logn))
for finding it in the estimation model.

0.2.3 Boundary Labeling — Chapter [3]

When endowing a map with information about the depicted places, it might happen that
there is simply not enough space for all labels to lie directly at the point they refer to (e.g.
metropolitan areas), or it is not desired that labels lie in the map because they would occlude
other important information (e.g. in medical atlases). A common method for such cases is to
place the labels around the map and to connect a point with its label by an arc. To ease the
understanding of the point-label assignments it has turned out that equally-shaped arcs are
convenient for visual perception. In Chapter [3|we give algorithms that compute such labelings
with labels located on the boundary of the map. We formalize the setting as follows: n points
are contained in a rectangle R. They are to be connected to rectangular labels that lie either
on one or on two opposite sides of R. An assignment from a point p to a label ¢ is indicated
by a polygonal line, which we call leader, leading from p to ¢. A first obvious restriction that
serves clarity is that no two leaders are allowed to intersect. We consider two types of shapes
that we use for the leaders: rectilinear leaders, called po-leaders, that consist of a horizontal
and a vertical segment, and leaders that consist of a horizontal and a diagonal segment, called
do-leaders. Figures and show examples of the two types. Both types of leaders have
at most one bend but direct leaders consisting of a single horizontal segment are explicitly

allowed and desired for a nice labeling.
The algorithmic task now is to determine a good (bijective) assignment from the set of

points to the set of labels. This assignment can be seen as a bipartite graph with the points
and labels being the vertices and the leaders being the edges. Consequently, the problem is a
mixture of a graph-drawing problem and a classical labeling problem.

To simplify visual perception we can optimize for two criteria: the total number of bends
and the total leader length in a labeling. We first consider optimizing one criterion inde-
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Figure 7: Leader types

pendently from the other. The length-optimization variants of the described problems can
basically be solved by sweep-line algorithms. The bend-minimization variants do not allow
sweep-line algorithms in most cases; algorithms based on dynamic programming can be ap-
plied, however. This of course is reflected in the running times of the presented algorithms.
For example, the version with labels on one side of R using po-leaders takes O(nlogn) time
for length minimization while our algorithm for bend minimization requires O(n?) time. By
the O(nlogn) algorithm for the po-leaders we improve a quadratic algorithm of Bekos et
al. [BKSWOT7]. The new bound is tight.

Labeling a point set with do-leaders is more difficult than labeling with po-leaders. The
primary reason for this is that there are points that cannot connect to any label, e.g. in
Figure[7h]the topmost point cannot connect to the bottommost label—indicated by the dotted
line—by a do-leader. Hence, the running time for do-leaders is worse than for po-leaders. For
one-sided length minimization our algorithm requires O(n?) time, and for bend minimization
it requires O(n%) time.

We implemented our algorithms to evaluate their practical behavior. In addition to the
practical evaluation we also discuss the advantages and disadvantages of the two leader types
and the two optimization criteria.

0.2.4 Detecting Flocks — Chapter [

Data representing moving objects is rapidly becoming more widely available, especially in the
area of wildlife GPS tracking. It is a central belief that information is hidden in large data sets
in the form of interesting patterns. One of the most commonly sought-after spatio-temporal
patterns is the flock. A flock is a large subset of objects moving along paths close to each
other for a certain pre-defined time. In Chapter [4] we give a new definition that we argue is
more realistic than previous ones, and by the use of techniques from computational geometry
we present fast algorithms to detect and report flocks.

Our definition of flock involves three parameters: the flock size m € N, the flock time
span k € N and the flock radius » € RT. A flock must consist of at least m entities that move
together for at least k consecutive time steps. We define together to mean that for each of
the k£ time steps there is a disk of radius r that contains all flock entities, see Figure

We assume that the trace of each entity participating in the input is given by a polygonal
line (trajectory) with k vertices. The k vertices indicate the position of the entity at a set of
predefined points in time. If more than k£ positions of the entities are given, our algorithm
will look at each time span of k consecutive steps independently.

Our idea for the algorithmic accomplishment of detecting flocks in these sets of trajectories
is to canonically map each trajectory to a point in R%* and then apply range reporting and
counting queries in R?*. If we use the right type of query objects, these queries detect all flocks
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Figure 8: The entities p;, p2 and ps form a flock for a period of 3 time steps.

and can report the entities that belong to a detected flock. We give several approximation
algorithms where the approximation is with respect to the radius r.

Apart from the total number of observed entities, the parameter k is crucial for the running
time of our algorithms since, in general, range queries become significantly slower the higher
the dimension is. We evaluated our algorithms and found that they are still practical for
k = 16 time steps on meaningful input data.

0.2.5 Packing Disks — Chapter [5|

A variant of a classical packing problem forms the basis of this chapter: in a rectangle p that
already contains a set R of packed unit disks, further unit disks are to be packed such that
neither of the newly packed disks intersects any other disk. Packing the maximum number m
of non-intersecting unit disks into a polygonal area is known to be N'’P-hard [FPT8I]. On the
positive side, Hochbaum and Maass [HMS85] have proven the existence of a polynomial-time
approximation scheme (PTAS). We approximate in a different sense. Let o be a fixed real in
(0,1]. Our task is to pack a set B, of at least m disjoint disks of radius « into p such that no
disk in B, intersects a disk in R. Note that m, the maximum number of unit disks that can
be packed, is neither known a priori nor will it be known after our algorithm has finished.

Since this variant of the problem is similar to the approximation of the number of unit
disks, it is somewhat surprising that there is no PTAS. Baur and Fekete [BF01] showed that
for square objects the problem cannot be solved in polynomial time for any o > 13/14, unless
P = N'P. Their inapproximability proof adapts to disks but with a constant much closer
to 1 than 13/14. In Chapter |5 we present a polynomial-time algorithm for packing disks with
a=2/3.

In our approximation, the analysis of a nearest-neighbor graph plays a crucial role. First,
we make use of Hochbaum and Maass’ PTAS to compute a set By of at least 8m/9 disjoint
unit disks. Next, we define a distance measure d for two disks in B;. Roughly speaking, d
measures the length of the shortest path that translates the two disks without intersecting any
of the predefined disks in R. We compute the nearest-neighbor graph G on By with respect to
d. The vertices in G correspond to the disks in B; and an edge indicates a nearest-neighbor
relation between the two incident disks. We prove that G has bounded maximum degree,
which helps to find a lower bound on the number of matched disks in a maximum matching
of G. Then, we assign a region to each matching pair such that all regions are pairwise disjoint
and do not intersect any other disk in B;. Finally, we place three disks of radius 2/3 in the
region of each matching pair and one disk of radius 2/3 into each unmatched disk in B;. We
can show proceeding like this we place at least 9/8 many disks as there are in B;. Recall that
B1 contains 8m /9 unit disks. Hence, we have placed at least m disks of radius 2/3.

This dispersion problem may have applications in non-photo realistic rendering system,
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where 3D models are to be rendered in an oil painting style. Another application is given by
sample surveys of particular regions in the plane, e.g. soil ground. To serve a high quality of
the sample the measuring should be nicely distributed.
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Chapter 1

Manhattan Networks

Constructing a Manhattan network constitutes the first chapter of the constructing part of this
thesis. The geometry element is given by the input, n points in the plane. The requirement on
the network is the supply of shortest Manhattan paths between any point pair. The criterion
that is to be minimized is the total length of the segments contained in the network.

The chapter is based on journal publication [2]: Marc Benkert, Alexander Wolff, Florian
Widmann and Takeshi Shirabe: “The minimum Manhattan network problem: Approxima-
tions and exact solutions”.

1.1 Introduction

Under the Euclidean metric, in a 1-spanner (which is the complete graph) the location of each
edge is uniquely determined. This is not the case in the Manhattan (or L;-) metric, where
an edge {p,q} of a l-spanner is a Manhattan p—q path, i.e. an z- and y-monotone rectilinear
path between p and ¢. A 1-spanner under the Manhattan metric for a finite point set P C R?
is called a Manhattan network and can be seen as a set of axis-parallel line segments whose
union contains a Manhattan p—¢ path for each pair {p, ¢} of points in P.

In this chapter we investigate how the extra degree of freedom in routing edges can be used
to construct Manhattan networks of minimum total length, so-called minimum Manhattan
networks (MMN). The MMN problem may have applications in city planning or VLSI layout,
but Lam et al. [LAP03| also describe an application in computational biology. For aligning
gene sequences they propose a three-step approach. In the first step, they use a local-alignment
algorithm like BLAST [AGM™90] to identify subsequences of high similarity, so-called high-
scoring pairs (HSP). In the second step they compute a network for certain points given by
the HSPs. They do not require that each point be connected by Manhattan paths to all other
points, but only to those that have both a larger x- and a larger y-coordinate. A Manhattan
path in their setting corresponds to a sequence of insertions, deletions, and (mis)matches
that are needed to transform one point representing a gene sequence into another. Lam et
al. show that modifying an algorithm by Gudmundsson et al. [GLNOI] yields a O(n?®)-time
factor-2 approximation for their problem. They state that the restriction to the network they
compute helps to considerably reduce the size of the search space for a good alignment, which
is computed by dynamic programming in the third step of their approach.

21
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1.1.1 Previous work

The MMN problem has been considered before, but until now, its complexity status is un-
known. Gudmundsson et al. [GLNOT] have proposed an O(n log n)-time factor-8 and an O(n?)-
time factor-4 approximation algorithm. Later Kato et al. [KIA02] have given an O(n?)-time
factor-2 approximation algorithm. However, the correctness proof of Kato et al. is incomplete.
Both the factor-4 approximation and the algorithm by Kato et al. use quadratic space. After
the journal version on which this chapter is based had been submitted, Chepoi et al. [CNV05]
gave a factor-2 approximation algorithm based on linear programming. We now briefly sketch
these algorithms.

Gudmundsson et al. [GLNOI|] considered each input point p separately. From p they
established Manhattan paths to those points p’ where the bounding box of p and p’ contained
no other input point. This yields a Manhattan network. In order to establish the paths from
p to all points p’, they considered the points p’ in each of the four quadrants relative to p
simultaneously. In each of the quadrants, these points define a staircase polygon. The points
p’ are connected to p by rectangulating the staircase polygon, minimizing the length of the
segments used for the rectangulation. Solving this subproblem by a factor-2 approximation
algorithm yields the factor-8 approximation algorithm for the MMN problem while using
dynamic programming to solve the subproblem optimally yields the factor-4 approximation.

Kato et al. [KIA02] observed that it is not always necessary to connect p explicitly to all
points p’. Instead, they came up with the notion of a generating set, i.e. a set of pairs of
points with the property that each network that contains Manhattan paths between these
point pairs is already a Manhattan network. In a first step they constructed a network N’
whose length is bounded from above by the length of an MMN. Kato et al. designed the
network N’ such that it contains Manhattan paths for as many point pairs in the generating
set as possible. They claimed that in a second step, they could rectangulate the facets of N’
such that the remaining unconnected point pairs are connected and the total length of the
new segments is again bounded from above by the length of an MMN. Both the details of
this step and the proof of its correctness are missing in [KIA02].

Chepoi et al. [CNV05] use the relaxation of the mixed-integer program that we introduce
in Section and that we published before [I]. Their algorithm is based on cleverly rounding
the solution of this linear program which uses O(n?) variables and constraints. Thus, their
algorithm is much slower than all previous algorithms, including ours.

1.1.2 Our results

In this chapter we present an O(nlogn)-time factor-3 approximation algorithm. We use the
generating set of [KIA02], and we also split the generating set into two subsets for which
we incrementally establish Manhattan paths. However, our algorithm is simpler, faster and
uses only linear (instead of quadratic) storage. The main novelty of our approach is that we
partition the plane into two regions and compare the network computed by our algorithm
to an MMN in each region separately. One region of the partition is given by the union
of staircase polygons that have to be pseudo-rectangulated. For this subproblem a factor-2
approximation suffices. It runs in O(nlogn) time and is similar to the factor-2 approximation
for rectangulating staircase polygons that Gudmundsson et al. [GLNOI] proposed.

We also establish a mixed-integer programming (MIP) formulation for the MMN problem.
Our formulation is based on network flows. It yields an exact solver that finds MMNs for
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small point sets within a bearable amount of time. We implemented our factor-3 approxima-
tion algorithm and used the exact solver to measure its performance on random point sets.
Further, we make an extensive comparison with other algorithms including the factor-4 and -8
approximations of Gudmundsson et al. [GLNOI]. It turns out that our algorithm usually finds
Manhattan networks that are at most 50% longer than the corresponding MMN. However,
for any € > 0 there is a point set for which our algorithm returns a Manhattan network that
is (3 — ¢) times as long as the corresponding MMN.

In Section and we give some basic definitions and show how helpful information
for our network is computed. In Section we detail how the backbone of our network is
computed. We describe the algorithm precisely in Section [I.5] and analyze its approximation
factor in Section In Section we give our MIP formulation. In Section (1.8 we use it
to evaluate the practical performance of several algorithms. We conclude with some open
problems in Section [1.9

Our algorithm is available as Java applet under URL hittp:/ /il lwww.ira.uka.de/manhattan.
The applet also features the factor-4 and factor-8 approximation algorithms by Gudmundsson
et al. [GLNOI].

1.2 Basic definitions

We use | M| to denote the total length of a set M of line segments. For all such sets M we
assume throughout this chapter that each segment of M is inclusion-maximal with respect to
U M. It is not hard to see that for every Manhattan network M there is a Manhattan network
M’ with |M'| < |M| that is contained in the grid induced by the input points, i.e. M’ is a
subset of the union U of the horizontal and vertical lines through the input points. Therefore
we will only consider networks contained in U. It is clear that any meaningful Manhattan
network of a point set P is contained in the bounding box BBox(P) of P. Finding a Manhattan
network for given P is rather easy, e.g. the parts of U within BBox(P) yield a Manhattan
network. However, the point set {(1,1),...,(n,n)} shows that this network is not always a
good approximation, in this case it is n times longer than an MMN.

We will use the notion of a generating set that has been introduced in [KIA02]. A gen-
erating set Z is a subset of P x P with the property that a network containing Manhattan
paths for all pairs in Z is already a Manhattan network of P.

The authors of [KITA02] defined a generating set Z with the nice property that Z consists
only of a linear number of point pairs. We use the same generating set Z, but more intuitive
names for the subsets of Z. We define Z to be the union of three subsets Zyor, Zver and Zgyad-
These subsets are defined below. Our algorithm will establish Manhattan paths for all point
pairs of Z—first for those in Zjor U Zyer and then for those in Zgyaq.

Definition 1.1 (Zyey) Let P ={p1,...,pn} be the set of input points in lexicographical order,
where p; = (z4,v;). Let x* < --- < 2% be the sequence of x-coordinates of the points in P in
ascending order. Fori=1,... u let P' = {Pa(i)> Pa(i)+15 - - - » Po(i) } be the set of all p € P with
x-coordinate x*. Then
Zyer = {(pi, pir1) | xi = xi1 and 1 < i < n}
U A{(Pa(i)s Poi+1)) | Ya@) > Ypi+1) and 1 < <wu}
U {®si) Paiit1)) | Yos) < Ya(i+1) and 1 < < u}.

See Figure where all pairs of Zye are connected by an edge. Note that Z,. consists
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of at most n — 1 point pairs. If no points have the same x-coordinate, it holds that Z,., =
{(piypi+1) | 1 < i < n}, i.e. Zye is the set of neighboring pairs in the lexicographical order.
The definition of Zp,. is analogous to that of Zye with the roles of x and y exchanged.
Figure shows that Zyor U Zyer is not necessarily a generating set: Since (p, h) € Zpor and
(p,v) € Zyer, no network that consists only of Manhattan paths between pairs in Zyo U Zyer
contains a Manhattan p—q path. This shows the necessity of a third subset Zy,aq of Z.

Definition 1.2 (Zquaa) For a point r € R? denote its Cartesian coordinates by (z,,y,). Let
Q(r,1) = {s € R? | &, < x5 and y,. < ys} be the first quadrant of the Cartesian coordinate
system with origin r. Define Q(r,2), Q(r,3), Q(r,4) analogously and in the usual order. Then
Zquad s the set of all ordered pairs (p,q) € P x P with ¢ € Q(p,t) \ {p} and t € {1,2,3,4}
that fulfill

(a) q is the point that has minimum y-distance from p among all points in Q(p,t) N P with
minimum x-distance from p, and

(b) there is no ¢’ € Q(p,t) N P with (p,q") or (¢',p) in Znor U Zyer-

Obviously Zguaaq consists of at most 4n point pairs. For the proof that Z,,.q is in fact
sufficient for Z = Zyer U Zpor U Zquad to be a generating set, see [KIA02].

For our analysis we need the following areas of the plane. Let Ryor = {BBox(p,q) |
{p,q} € Znor}, where BBox(p, q) is the smallest axis-parallel closed rectangle that contains p
and ¢. Note that BBox(p, q) is just the line segment Seg|p, g| from p to ¢, if p and q lie on the
same horizontal or vertical line. In this case we call BBox(p, q) a degenerate rectangle. Define
Ryer and Rguad analogously. Let Ayqr, Aver, and Aguaq be the subsets of the plane that are
defined by the union of the rectangles in Ryor, Rver, and Rquad, respectively.

Any Manhattan network has to bridge the vertical (horizontal) gap between the points of
each pair in Zyey (Zhor). Of course this can be done such that at the same time the gaps of
adjacent pairs are (partly) bridged. The corresponding minimization problem is defined as
follows:

Definition 1.3 (cover [KIAO02]) A set of vertical line segmentsV is a cover of (or covers)
Ruver, if any R € Ryer 15 covered, i.e. for any horizontal line £ with RN{ # () there is a V€V
with VNLN R # (. We say that V is a minimum vertical cover (MVC) if V has minimum
length among all covers of Ryer. The definition of a minimum horizontal cover (MHC) is
analogous.

Figure shows an example of an MVC. Since any MMN covers Ryer and Ry, Kato et
al. have the following result.

Lemma 1.1 ([KIAO02]) The union of an MVC and an MHC has length bounded by the
length of an MMN.

To sketch our algorithm we need the following notations. Let N be a set of line segments.
We say that N satisfies a set of point pairs S if N contains a Manhattan p—g path for each
{p,q} € S. We use |JN to denote the corresponding set of points, i.e. the union of the line
segments in N. Let OM be the boundary of a set M C R2.

Our algorithm will proceed in four phases. In phase 0, we compute Z. In phase I, we
construct a network Nj that contains the union of a special MVC and a special MHC and
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satisfies Zyer U Zhor- In phase II, we identify a set R of open regions in Aquaq that do not
intersect /N1, but need to be bridged in order to satisfy Zyuaq. The regions in R are staircase
polygons. They give rise to two sets of segments, No and N3, which are needed to satisfy
Zquad- For each region A € R we put the segments that form 0A \ |JN; into Na, plus, if
necessary, an extra segment to connect A to Nj. Finally, in phase I, we bridge the regions
in R by computing a set N3 of segments in the interior of the regions. This yields a Manhattan
network N = Ny U Ny U Ns.

The novelty of our analysis is that we partition the plane into two areas and compare
N to an MMN in each area separately. The area A3 consists of the interiors of the regions
A € R and contains N3. The other area Ajs is the complement of A3 and contains N7 U Ns.
For a fixed MMN Nype we show that |N N Aja| < 3|Nopt N Arz| and [N N A3z| < 2| Nopt N Azl
and thus |[N| < 3|Nopt|. The details will be given in Section

1.3 Neighbors and the generating set

We now define vertical and horizontal neighbors of points in P. Knowing these neighbors
helps to compute Z and R.

Definition 1.4 (neighbors) For a point p € P and t € {1,2,3,4} let p.xnbor[t] = nil if
Q(p,t) N P = {p}. Otherwise p.xnbor[t] points at the point that has minimum y-distance
from p among all points in Q(p,t) N P\ {p} with minimum x-distance from p. The pointer
p.ynbor[t] is defined by exchanging x and y in the above definition.

All pointers of types xnbor and ynbor can be computed by a simple plane sweep in
O(nlogn) time. The set Zye, is then determined by going through the points in lexicographical
order and examining the pointers of type xnbor. This works analogously for Zy.,. Note that
by Definition each point ¢ € P is incident to at most three rectangles of Ryer, at most
two of which can be (non-) degenerate. We refer to points p € P with (p,q) € Zyer as vertical
predecessors of q and to points r € P with (q,7) € Zyer as vertical successors of g. We call a
predecessor or successor of ¢ degenerate if it has the same z-coordinate as q. Note that each
point can have at most one degenerate vertical predecessor and successor, and at most one
non-degenerate vertical predecessor and successor. Horizontal predecessors and successors are
defined analogously with respect to Zy.,. For each t € {1,2,3,4} the pair (g, ¢.xnborlt]) lies
in Zqguaq if and only if g.xnbor[t] # nil and no vertical or horizontal predecessor or successor
lies in Q(q,t). We conclude:

Lemma 1.2 All pointers of type xnbor and ynbor, and the generating set Z can be computed
in O(nlogn) time.

1.4 Minimum covers

In general the union of an MVC and an MHC does not satisfy Zyer U Znor. Additional
segments must be added to achieve this. To ensure that the total length of these segments
can be bounded, we need covers with a special property. We say that a cover is nice if each
cover segment contains an input point.
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Figure 1.1: Illustration for Lemma

Lemma 1.3 For any nice MVC V and any nice MHC H there is a set S of line segments
such that VU H U S satisfies Zyer U Znor and |S| < W + H, where W and H denote width and
height of BBox(P), respectively. We can compute the set S in linear time if for each R € Ryer
(Ruor) we have constant-time access to the segments inV (H) that intersect R.

Proof. We show that there is a set Sy of horizontal segments with |Sy| < W such that VU Sy
satisfies Zyer. Analogously it can be shown that there is a set Sy of vertical segments with
|Si| < H such that H U Sy satisfies Zyo;. This proves the lemma.

Let (p,q) € Zyer- If R = BBox(p, q) is degenerate, then by the definition of a cover, there
is a line segment s € V with R C s, and thus V satisfies (p, q).

Otherwise R defines a non-empty vertical open strip o(p,q) bounded by p and ¢q. Note
that by the definition of Zye, R is the only rectangle in Ry that intersects o(p,q). This
yields that the widths of o(p,q) over all (p,q) € Zyer sum up to at most W. Thus we are
done, if we can show that there is a horizontal line segment h such that the length of A equals
the width of o(p,q) and V U {h} satisfies (p,q).

Now observe that no line segment in V intersects o(p, q) since V is nice and o (p, ¢) NP = {.
Hence, the segments of V that intersect R in fact intersect only the vertical edges of R. We
assume w.l.o.g. that z, < z, and y, < y, (otherwise rename and/or mirror P at the z-axis).
This means that due to the definition of Z;, there is no input point vertically above p.
Thus, if there is a segment s, in V that intersects the left edge of R, then s, must contain p.
Analogously, a segment s, in V that intersects the right edge of R must contain ¢. Since V
covers R, s, or s, must exist. Let £ be the horizontal through the topmost point of s, or the
bottommost point of s,. Then h = ¢N R does the job, again due to the fact that V covers R,
see Figure Clearly h can be determined in constant time. &

In order to see that every point set has in fact a nice MVC, we need the following defini-
tions. We restrict ourselves to the vertical case, the horizontal case is analogous.

For a horizontal line ¢ consider the graph Gy(Vy, Ey), where V; is the intersection of ¢
with the vertical edges of rectangles in Ryer, and there is an edge in Ey if two intersection
points belong to the same rectangle. We say that a point v in V} is odd if v is contained in
a degenerate rectangle or if the number of points to the left of v that belong to the same
connected component of GGy is odd, otherwise we say that v is even. For a vertical line g
let an odd segment be an inclusion-maximal connected set of odd points on g. Define even
segments accordingly. For example, the segment s (drawn bold in Figure is an even
segment, while f\ s is odd. We say that parity changes in points where two segments of
different parity touch. We refer to these points as points of changing parity. The MVC with
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the desired property will simply be the set of all odd segments. The next lemma characterizes
odd segments, especially item prepares their computation. Strictly speaking we have to
state whether the endpoints of each odd segment are odd too, but since a closed segment has
same length as the corresponding open segment, we consider odd segments closed.

Lemma 1.4 Let g : © = x4 be a vertical line through some point p = (xp,yp) € P, meaning
that x, = x4. It holds that:

(i) Let e be a vertical edge of a rectangle R € Ryey. Then either all points on e are even or
the only inclusion-mazimal connected set of odd points on e contains an input point.

(i) Let Ry,...,Rq and R, ... vRZl’ be the degenerate and non-degenerate rectangles in Ryey
that g intersects, respectively. Then d = [gNP|—1 and d < 2. Ifd =0 then d > 0
and each R} has a corner in p. Else, if d > 0, there are p1,ps € P such that g N (R U
-+ U Ryq) = Seg[p1,p2]. Then each R} has a corner in either py or ps.

(111) There are by <ty € R such that g N Aver = {24} X [bg, 14].

(iv) The line g contains at most two points of changing parity and at most one odd segment.
For each point ¢ of changing parity there is an input point with the same y-coordinate.

(v) If g has no point of changing parity, there is either no odd segment on g or the odd
segment is {x g} x[bg, tg]. If g has one point c of changing parity, then either {x4} X [by, yc]
or {zg} X [ye,t4] is the odd segment. If g has two points ¢ and ¢’ of changing parity,
then {x4} X [ye, ye] is the odd segment.

Proof. For (i) we assume without loss of generality that e is the right vertical edge of R =
BBox(p, ¢) and that ¢ is the topmost point of e. If R is degenerate it is clear that all points
on e (including p and ¢) are odd, and we are done. Thus we can assume that z, < z,. Let
pPo = ¢,p1 = P,P2-..,Pk be the input points in order of decreasing x-coordinate that span
the rectangles in Ry that are relevant for the parity of e. Let p; = (z;,y;). For 2 <i <k
define recursively ¥; = min{y;, 7i—2} if @ is even, and ¥; = max{y;, 7i_2} if i is odd. Let
Pi = (24,%;), and let £ be the polygonal chain through po,p1,p2,P3, - - -, Dk, see Figure
Note that the parity of a point v on e is determined by the number of segments of £ that the
horizontal h, through v intersects. If h, is below py, then it intersects a descending segment
for each ascending segment of £, hence v is even. If on the other hand h, is above Py, then
it intersects an ascending segment for each descending segment—plus p1pg, hence v is odd.
In other words, if J; = yo, all points of e are even, if 7 = y1, all points of e are odd, and
otherwise parity changes only in (zg, k) and ¢ is odd. This settles .

follows directly from the definition of Zy.,, and follows from , see also Figure

For we first assume d = 0. Then yields d' € {1,2} and ¢ N P = {p}. By (i) we
know that the only inclusion-maximal connected set of odd points on each vertical rectangle
edge on g contains an input point, i.e. p. Thus there are at most two points of changing parity
and there is at most one odd segment on g. Also according to the above proof of , parity
can change only in points of type (xo, k), and g is the y-coordinate of some input point in
the set {po,...,px}

Now if d > 0 note that all degenerate rectangles consist only of odd points. By we
have that ¢ N (R U--- U Ry) = Seg[p1, p2] and that each of the at most two non-degenerate
rectangles has a corner in either p; or po. Thus again the statement holds.
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Figure 1.2: Illustration for Lemma and .

For the proof of (v we make a case distinction depending on d’. If d’ = 0, g intersects only
degenerate rectangles and thus there is no point of changing parity on g and the odd segment
is {z4} X [bg,te]. Otherwise we assume w.l.o.g. that e is contained in g. If e = {z4} X [by, t,]
holds, we are done. The argument of (i) shows that either e contains no point of changing
parity and hence all points of e are of one parity, or ¢ = ¢; is the only point of changing parity
and the odd segment is {x4} X [c1,t5 = yp]. If € # {x4} X [by, 4], there is a further rectangle
R, in Ryer with R, = BBox(p, r) and Tp < Xr,Yp < yr. If R, is non-degenerate all points on
{z4} x [bg,t4] \ € are even, as there are no relevant rectangles to the right. In this case we
have no odd segment on g if e is completely even, the odd segment is {z4} x [bg,y, = c1] if e is
completely odd, and if ¢ is a point of changing parity the odd segment is {z4} X [c = ¢1,yp = c2].
If R, is degenerate, {4} X [p, 7] has to be added to the odd segments stated as before, besides
the same argument holds with a possibly rectangle R, connected to 7. &

? A Q( 71)

[
[}
o4
he ®
4 >
° p
[ XV
Figure 1.3: Point pairs in Zy,. Figure 1.4: The pair (p,q) is in Zgyad-

Lemma 1.5 The set V of all odd segments is a nice MVC, the odd MVC.

Proof. Clearly V covers Ryer. Let £ be a horizontal line that intersects Aye,. Consider a
connected component C of Gy and let k be the number of vertices in C'. If k is even then any
cover must contain at least k/2 vertices of C, and V contains exactly k/2. On the other hand,
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iy

Figure 1.5: The odd MVC. Figure 1.6: Proof of Lemma

if £ > 1 is odd then any cover must contain at least (k — 1)/2 vertices of C, and V contains
exactly (k —1)/2. If k = 1, any cover must contain the vertex, and so does V as the vertex
belongs to a degenerate rectangle. Thus V is an MVC. Lemma shows that V is nice.
L)

Lemma 1.6 The odd MVC can be computed in O(nlogn) time using linear space.

Proof. We compute the odd MVC by a plane sweep. Let z! < --- < z% be the ascending
sequence of all distinct z-coordinates. For each vertical line g; : « = 2 we determine in a
preprocessing step the points b; and ¢; such that g; N Ayer = [b4, t;]. For this it suffices to go
through the input points in lexicographical order. For each g; we introduce numbers 3; and
7; which we initially set to co. After the sweep §; and 7; will determine the odd MVC in the
following way: If 3; = 7; = oo, then there is no odd segment on g;, otherwise g; contains the
odd segment z° x [3;, 7;]. These two variables are sufficient since according to Lemma
there is at most one odd segment on g;.

We use a sweep-line algorithm to compute the values 3; and 7;. As usual, our sweep-
line algorithm is supported by two data structures, the event-point queue and the sweep-line
status. According to Lemma there is an input point r with y. = y, for each point
¢ of changing parity and according to we have to determine these points in order to get
the odd segments. Thus, the event-point queue can be implemented as a sorted list of all
y-coordinates of the input points. Note that the same y-value can occur more than once.
This ensures that at each event point only one event takes place. The sweep-line status is a
balanced binary tree in which each node corresponds to a connected components of Gy, where
£ is the current position of the horizontal sweep line. Our sweep line £ is a horizontal line
sweeping all rectangles in Ryer from bottom to top.

While the sweep line moves from one event point to the next, the sweep-line status main-
tains the connected components of Gy in a balanced binary tree 7. Initially 7 is empty.
Whenever /¢ reaches an event point, we update 7. For each component C' of Gy we store two
indices Ic and r¢ with the property that the leftmost node of C' lies on g;, and the rightmost
node on g,.. The tree T is organized such that r¢ < lo for two components of Gy if C' is a
left child of C, while ro < I if C is a right child.

The following component modifications can occur on an event: a component appears or
disappears, one component is replaced by a new one, a component is enlarged or reduced,
two or three components are joined or a component is split into two or three components.
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We can decide in constant time which type of event takes place, simply by evaluating b;, t;,
and—if they exist—b;+1 and ¢;11, where ¢ is the index of the line which contains the input
point that caused the current event. For each event we have to change the entries of at most
three components and update 7 accordingly.

Each of these update operations takes O(logn) time. For example if a component is split
into two, this component has to be found, its entries have to be updated and a new component
has to be created and inserted to 7.

The correct values 3;, 7; for each line g; are computed during the sweep. At any point of
time, the values §; and 7; indicate the information about the odd segment on g; detected so
far: 3; = oo means no odd segment has been found yet, while (3; # oo says that there is an odd
segment on g; with lower endpoint (z¢,3;). If additionally 7; # oo then the upper endpoint
has also been detected yet and the odd segment on g; is #% x [3;, 7;]. Thus, at each event we
have to check whether there are odd segments that start or end at y,, the current y-value of
the sweep line £. According to Lemma , points of changing parity are always endpoints
of odd segments, while bottom- or topmost points of Aye N ¢g; may be endpoints. In order
to find all endpoints, we have to consider the old and new entries of changing components
whenever 7 is updated. Bottommost points occur, if a new components appears, a component
is enlarged or components are joined. Topmost points occur, if a component disappears, is
reduced or components are split. Points of changing parity can occur if the extent of a
component changes, components are joined or split or one component is replaced by a new
one. If we have found a bottommost point b;, we check whether b; is odd and hence the lower
endpoint of the odd segment on g; is b;. We do this by examining lo,rc and ¢, where C' is
the component that contains b;. If [c = r¢ (degenerate rectangle) or the parities of [ and i
are different, b; is odd and we set §; = b;. If we discover a point of changing parity, we check
whether it is the lower or upper endpoint of the odd segment on g;. If §; is still oo the point
of changing parity is the lower endpoint, otherwise the upper. We set accordingly 5; = y¢ or
T; = yp. At a topmost point ¢; we only have to check whether there is an odd segment on
g; and whether t; is the upper endpoint of the odd segment. This is the case if §; # oo and
T; = oo, we then set 7; = ¢;.

As there are at most 3n operations that change components during the sweep, we have to
handle O(n) of these checks. After sorting, each of the n events of our sweep takes O(logn)
time. Thus, the total running time is O(nlogn). &

The odd MHC can be computed analogously.

1.5 An approximation algorithm

Our algorithm APPROXMMN proceeds in four phases, see Figure[I.10] In phase 0 we compute
all pointers of type xnbor and ynbor and the set Z. In phase I we satisfy all pairs in Zyer U Zpor
by computing the network Np, the union of a nice MVC Cye,, a nice MHC Cj, and at most
one additional line segment for each rectangle in Ryer U Rpor. In phase II we compute the
staircase polygons that were mentioned in Section [[.2l The union of their interiors is area
As. Network Ny consists of the boundaries of these polygons and segments that connect the
boundaries to Ni. In phase III we compute a network N3 of segments in A3. The resulting
network N1 U Ny U N3 satisfies Z.
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Phase 0. In phase 0 we compute all pointers of types xnbor and ynbor, and the set Z.
We organize our data structures such that from now on we have constant-time access to all
relevant information such as xnbor, ynbor, vertical and horizontal predecessors and successors
from each point p € P.

Phase I. First we compute the nice odd MVC and the nice odd MHC, denoted by Cyer and
Chor, respectively. Then we compute the set S of additional segments according to Lemma [1.3
We compute Cyer, Chor and S such that from each point p € P we have constant-time access
to the at most two cover segments (i.e. segments in Cyer U Cpor) that contain p and to the
additional segments in the at most four rectangles incident to p.

Lemmas and show that N1 = Cyer U Cphor U S can be computed in O(nlogn)
time and that |[Ni| < |Nopt| + H + W holds. Recall that Nop is a fixed MMN.

Phase II. In general Ni does not satisfy Zguaq; further segments are needed. In order to
be able to bound the length of these new segments, we partition the plane into two areas Ajs
and Ag as indicated in Section We wanted to define A3 such that |Nope N Ajg| were large
enough for us to bound the length of the new segments. However, we were not able to define
As such that we could at the same time (a) satisfy Zqaq by adding new segments exclusively
in A3 and (b) bound their length. Therefore we put the new segments into two disjoint sets,
Ny and N3, such that N3 U Ny C Ao and N3 C Ajs. This enabled us to bound | Ny U Na| by
3| Nopt N Ajz2| and |N3| by 2| Nopt N As|.

We now prepare our definition of As. Recall that Q(q,1), ..., Q(gq,4) are the four quad-
rants of the Cartesian coordinate system with origin ¢q. Let P(q,t) = {p € P N Q(q,1) |
(p,q) € Zquaa} for t =1,2,3,4. For example, in Figure m P(q,1) ={p1,...,ps}. Due to
the definition of Zg,.q we have Q(p,t) N P(q,t) = {p} for each p € P(q,t). Thus the area
Aquad (g, 1) = UpeP(q,t) BBox(p, q) is a staircase polygon. The points in P(q,t) are the “stairs”
of the polygon and ¢ is the corner opposite the stairs. In Figure Aquad (g, 1) is the union
of the shaded areas. In order to arrive at a definition of the area Az, we will start from
polygons of type Aquad(q,t) and then subtract areas that can contain segments of Ny or are
not needed to satisfy Zgyad-

Let A(g,t) = int(Aquad(q,t) \ (Anor U Aver)), where int(M) denotes the interior of a set
M C R?. In Figure A(q, 1) is the union of the three areas with dotted boundary. Let
0(g,t) be the union of those connected components A of A(q,t), such that 9A N P(q,t) # 0.
In Figure §(q,1) is the union of the two dark shaded areas A and A.

Due to the way we derived 0(q,t) from Aguad(q, 1), it is clear that each connected compo-
nent A of d(q,t) is a staircase polygon, too. The stairs of A correspond to the input points
on 0A, i.e. P(q,t) N OA. Let g4 be the point on A that is closest to ¢. This is the corner of
A opposite the stairs. The next lemma is very technical, but it is crucial for the estimation
of our network within the §(q,t) regions.

Lemma 1.7 Areas of type 6(q,t) are pairwise disjoint.

Proof. For each pair (p,q) € Zquad we define its forbidden area F,q to be the union of
BBox(p, q) and the intersection of (a) the halfplane not containing p that is bounded by
the horizontal through ¢ and (b) the open strip between the verticals through p and ¢, see
Figure We have F,q N (P \{p,q}) = 0 since the existence of a point r € F,q N (P \ {p,q})
would contradict (p, q) € Zguad-
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Suppose there is a point s € d(q,t) N (¢, t") with (q,t) # (¢',t'). Clearly ¢ # ¢ since
d(q,t) C int(Q(q,t)) and d(q,t") C int(Q(q,t')) and int(Q(q,t)) Nint(Q(g,t')) = @ for ¢t # ¢'.
Since §(q,t),0(¢",t') C Aquad we know that there are points p and p’ with (p, q), (?',¢’) € Zquad
such that s € BBox(p,q) N BBox(p/,¢’). Let B = BBox(p, q) and B’ = BBox(p', ¢'). Without
loss of generality, we assume that p is to the right and above gq.

We know that p’, ¢’ & B since B C Fyq. Analogously p,q & B'. Let {(z4,y,) and r(zp, yq)
be the other two corners of B, see Figure [[.8 There are three cases:

Case I: B'n{{,r}=10.

Recall that B’ N {p,q} = 0 and that B N B’ # (). Thus B’ lies in the vertically un-
bounded open strip S1 = (x4, xp) X (—00,00) or in the horizontally unbounded open
strip So = (—00,00) X (yq,yp) determined by two opposite edges of B, see Figure
(Note that p’ and ¢’ cannot lie on the boundary of S; or Ss, otherwise (p,q) or (p',q’)
would not be in Zyyaq.) Now if B” C S; (see the dashed rectangle in Figure , then
p' or ¢ lies in F), contradicting (p,q) € Zguad. If on the other hand B’ C S (see the
dotted rectangle in Figure then p or g lies in Fj,, contradicting (p, ¢') € Zquad-

Figure 1.7: The forbidden
area [}, is shaded. Figure 1.8: Case L. Figure 1.9: Case III.

Case II: B'n{{,r} ={r}.

Now the upper left corner of B’ lies in B since again B’ N {p,q} = (). Thus the lower
left corner of B’ is an input point (p’ or ¢’) but lies in Fj, contradicting (p, ¢) € Zquad-

Case III: B'Nn{¢,r} = {(}.

In this case the lower right corner of B’ lies in B and the upper right corner of B’
lies above B in Ss. If p’ was the upper right corner of B’, we would have ¢ € Fyp,
which contradicts (p/,¢') € Zquaa. Thus p’ lies in Sy to the left of B and ¢’ in S;
above B, see Figure [1.9] Such a constellation is indeed possible. Note, however, that
BN B’ € BBox(q,q'). Furthermore {q,q'} € Zye since BBox(q, ¢') and the open strip
bounded by the verticals through ¢ and ¢’ are completely contained in Fj,q U Fjy, and
thus do not contain any input points except ¢ and ¢’. These observations yield s €
BN B’ C BBox(q,q') C Ayer, which contradicts s € d(q,t) since §(q,t) is contained in
the complement of Aye. s

We are now sure that we can treat each connected component A of (g, t) independently.
Finally we define As = Uyeq19,3.43 Ugep 0(¢: 1) and Ayp = R?\ Ajs. This definition ensures
that N7 C Ao as desired. The set Ny will be constructed as follows: for each connected
component A of Az, we put JA \ |JN; into Ny and test whether Nj contains a Manhattan
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path from ¢4 to ¢. If not, we add a further segment to No. This segment lies in A}, and will
be defined below. Since Ay, as well as A are contained in A;s, we have No C Ajs. The set
N3 will be defined in phase III and will be arranged such that N3 C As.

We now describe how to compute P(q,t) and how to find the connected components of
0(q,t). We compute all sets P(q,t) by going through the input points and checking their
Zquaa-partners. This takes linear time since |Zqyaq| = O(n). We sort the points in each set
P(q,t) according to their z-distance from q. This takes O(nlogn) total time. The remaining
difficulty is to decide which points in P(q,t) are incident to the same connected component of
0(q,t). In Figure {p1,p2} C A and {p3,ps,p5} C OA. For our description how to figure
this out we assume ¢t = 1 and P(q,1) = (p1,...,pm). Note that each connected component
of §(g, 1) corresponds to a sequence of consecutive points in P(q,1). By definition, for each
connected component A of §(¢,1) and all p;, p; € A we have p;.ynbor[3] = p;.ynbor[3].

We detect these sequences by going through p1,...,pn. Let p; be the current point and
let A be the current connected component. If and only if p;.ynbor[3] # p;41.ynbor[3] there is
a rectangle Ry € Ry, that separates A from the next connected component of §(g,1). The
rectangle Ry is defined by the point v4 = p;.ynbor[3] and its horizontal successor w4, which
in this case is unique, see Figure It remains to specify the coordinates of the corner
point g4 of A. Let py be the (unique) vertical successor of q. Then z,, = x},, and yq, = Yuw,-

At last, we want to make sure that Ny U No contains a Manhattan g—q4 path. The
reason for this is that in phase III we will only compute Manhattan paths from each p; € 0A
to g4. Concatenating these paths with the ¢—g4 path yields Manhattan p;,—g paths since
qa € BBox(q,pi). Note that segments in N3 lie in 43 and thus cannot help to establish a
q—q4 path within BBox(q,q4) C Ajs.

The set N contains a Manhattan ¢—py path Pyer and a Manhattan va—w4 path Ppor,
since (q,po) € Zyver and (va,w4) € Zhor- If g4 € Pyer, then clearly Nj contains a Manhattan
q—qa path. However, N; also contains a Manhattan ¢—qg4 path if g4 € Phor. This is due
to the fact that Pyey and Py, intersect. If g4 & Pyer U Phor, then Py, contains the point
ca = (g4, Yv,), which lies on the vertical through g4 on the opposite edge of R4. Thus, to
ensure a Manhattan g—g4 path in Nj U No, it is enough to add the segment s4 = Seg[qa, c4]
to No. We refer to such segments as connecting segments.

The algorithm APPROXMMN does not compute Pyer and Py, explicitly, but simply tests
whether g4 ¢ (JNi1. This is equivalent to g4 € Pyer U Phor Since our covers are minimum
and the bounding boxes of Pyey and Ppor are the only rectangles in Ryer U Rpor that contain
s4. Due to the same reason and to the fact that cover edges are always contained in (the
union of ) edges of rectangles in Ryer U Rhor, we have that s4 NJ N1 = {ca}. This shows that
connecting segments intersect N1 at most in endpoints. The same holds for segments in No
that lie on 0As. This is important as later on, in Section [1.6| we need that a segment in Ny
and a segment in Ny intersect at most in their endpoints. We summarize:

Lemma 1.8 In O(nlogn) time we can compute the set No, which has the following prop-
erties: (i) Na C A1z, (ii) a segment in N1 and a segment in Na intersect at most in their
endpoints, and (iii) for each region 6(q,t) and each connected component A of §(q,t), N1 UNo
contains 0A and a Manhattan q—qa path.

Proof. The properties of Ny follow from the description above. The runtime can be seen as
follows. Let A be a connected component of A3 and my = |P N JA|. Note that > my =
O(n) since each point is adjacent to at most four connected components of As, according



34 CHAPTER 1. MANHATTAN NETWORKS

to Lemmall.7] After sorting P(q,t) we can compute in O(m) time for each A the segment s4
and the set A\ |JN;. This is due to the fact that we have constant-time access to each of
the O(m) rectangles in Rpor U Ryer that intersect A and to the O(m) segments of Ny that
lie in these rectangles. L)

Phase III. Now, we finally satisfy the pairs in Zq,aq4. Due to Lemma for each connected
component A of Ajs it is enough to compute a set of segments B(A) such that the union of
B(A) and 0A contains Manhattan paths from any input point on A to ¢4. We say that such
a set B(A) bridges A. The set N3 will be the union over all sets of type B(A). The algorithm
BRIDGE that we use to compute B(A) is similar to the “thickest-first” greedy algorithm for
rectangulating staircase polygons, see [GLN01]. However, we cannot use that algorithm since
the segments that it computes do not lie entirely in As.

For our description of algorithm BRIDGE we assume that A lies in a region of type (g, 1).
Let again (pi,...,pmn) denote the sorted sequence of points on JA. Note that 0A already
contains Manhattan paths that connect p; and p,, to g4. Thus we are done if m < 2.
Otherwise let pi = (Tp;,Yp;1)s a5 = Seg[(xqmyp;_),p;] and b; = Seg[(:vp;_,qu),p;-] for j €
{1,...,m — 1}, see Figure [1.13] We denote |a;| by a; and |b;| by 8;. From now on we
identify staircase polygon A with the tuple (g4, p1,...,pm). Let B be the set of segments that
algorithm BRIDGE computes. Initially is B = (). The algorithm chooses ani € {1,...,m—1}
and adds—if they exist—a;_1 and b;;1 to B. This satisfies {(pi,q), (piH,q)}. In order to
satisfy {(pg, Q) (Pi-1, q)} and {(pi+2, Q) (Pm—1, q)}7 we solve the problem recursively
for the two staircase polygons ((qu,ypi),pl, .. ,pi,l) and ((acle,qu),pHg, . ,pm).

Our choice of i is as follows. Note that ay < -+ < app—1 and 1 > -+ > B_1. Let
A={je{l,...,m—1}]|a; < f;}. f A =0, we have a1 > 1, i.e. A is flat and broad. In
this case we choose 7 = 1, which means that only by is put into B. Otherwise let / = max A.
Now if i <m — 1 and ay < Bir41, then let ¢ = ¢/ + 1. In all other cases let ¢ = i'. The idea
behind this choice of ¢ is that it yields a way to balance a;—1 and (§;41, which in turn helps to
compare «;_1 + Bi+1 to min{ay, 5i, ai—1 + Pi+1}, i-e. the length of the segments needed by any
Manhattan network in order to connect p; and p;11 to g, see also the proof of Theorem [1.9

To avoid expensive updates of the a- and (-values of the staircase polygons in the recur-
sion, we introduce offset values zog and yog that denote the z- respectively y-distance from
the corner of the current staircase polygon to the corner g4 of A. In order to find the index
¢ in a recursion, we compare o; — To to 3; — Yo instead of o to B; as in the definition of A
above. Figure shows the pseudo code of algorithm BRIDGE for a staircase polygon A of
type d(g, 1).

Running time and performance of algorithm BRIDGE(A) are as follows:

Lemma 1.9 Given a connected component A of As with |P N 0A| = m, algorithm BRIDGE
computes in O(mlogm) time a set B of line segments with |B| < 2|Nopt NA| and |JB C A
that bridges A.

Proof. As for the running time, note that the monotone orders of a1, ..., 1 and 51, . .., Bm_1
permit to find ¢ by binary search in O(log m) time. The recursion tree has O(m) nodes. Thus
the algorithm runs in O(mlogm) time.

As for the performance, note that according to Lemma A does not intersect any other
connected component of As. The performance proof is similar to the analysis of the greedy
algorithm for rectangulation, see Theorem 10 in [GLNOI].
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APPROXMMN (P)

Phase 0: Neighbors and generating set
for eachp e Pand t € {1,2,3,4} do
compute p.xnbor[t] and p.ynbor]t]

compute Z = Zyer U Zpor U Zguad-

Phase I: Compute Ny

compute odd MVC Cyer and MHC Cyor
compute set S of additional segments
N1 Cyer UChor US, Np (2)7 N3 0

Phase II: Compute Ny

compute A3
for each connected component A of A3 do
Ny «— Ny U (8A\UN1)
if g4 ¢ |J Ny then
Ny «— Ny U {SA}

Phase III: Compute N3

for each connected component A of A3 do
N3 «— N3 U BRIDGE(A)

return N = N7 U Ny U N3

Figure 1.10: APPROXMMN(P)

BRIDGE (A = (¢4, p1,---,Pm))

fori=1tom—1do
compute «; and (;
return SUBBRIDGE(l, m, 0, O)

SUBBRIDCE (k, [, Zoff, Yofr)

Acurr = (QA + (xoffayoff)apkv"-apl)

if | —k <2 return 0

A= {jE {k,...,l—l}: Qj — Toff gﬁj—yoff}
i =maxAU{k}

ifi<l—1and o; — o < Bit1 — Yost

theni=1i7+1
B=10
if 7 > 1 then

B=BU {ai_l N Acurr}
if i <l —1 then
B=DBU {bi—i-l N Acurr}
Tnew = Tp;p1 — Lqa
Ynew = Yp; — Yqa
return B U SUBBRIDGE(l,i — 1, Zoff, Ynew)
U SUBBRIDGE(i + 2,1, Tnew, Yoft)

Figure 1.11: BRIDGE
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vaA
Yoff
wz
Loy cx R qA
Figure 1.12: Notation: Aguad(g, 1) shaded, A(g,1) Figure 1.13: Notation for al-
with dotted boundary, and 6(¢q,1) = AUA’ with dark gorithm BRIDGE.

shading.

Let i be the index determined in the first call to algorithm SUBBRIDGE, see Figure [1.11
If i > 1, let Agop be the part of A properly above a;_1, otherwise let Ayop = 0. If i < m — 1,
let Ayigny be the part of A properly to the right of bj1, otherwise let Aygne = 0. Now let
Ag = A\ (Atop U Aright)- Note that a;—1 U bj11 C Aog-

By induction we can assume that |B(Aiop)| < 2|Nopt N Agop| and |B(Asight)| < 2[Nopt N
Asight| . Thus, we are done if we can show that a;_1 + Bi11 < 2|Nopy N Aog| (*). The network
Nopt has to contain segments in Ayg in order to satisfy {(pi,q), (pzurl,q)}, more precisely
| Nopt VAof| = min{ay, i, ai—1+Bi+1}. Obviously (*) holds if Nop contains segments of length
at least aj_1 + Biy1 in Aog. Therefore, it remains to show that a;—1 + Giy1 < 2min{a,, §;}.
We make a case distinction depending on how ¢ was derived. If A = (), then i = 1, oy > (31 and
Atop = (0. In this case only by is added to B and 2 < min{ai, 51} = f1. If ¢/ = max A = m—1,
an analogous argument holds. Next we analyze the case i/ < m — 1 and «; > f(y41, where
i is set to ¢'. This yields that 3;11 < «a; and thus a;_1 + 8;11 < 2a;. On the other hand,
by the definition of A, we have o; < f3;. Hence 2a; < 2min{«;, 4;}. It remains to analyze
the case i/ < m — 1 and ay < (By41, where 7 is set to ¢’ + 1. This yields o;—1 < ; and thus
;-1 + Bi+1 < 20;. On the other hand, by the definition of A, we now have a; > ;. Hence

We conclude this section by analyzing the running time of APPROXMMN.

Theorem 1.1 ApPPROXMMN runs in O(nlogn) time and uses O(n) space.

Proof. Each of the four phases of our algorithm takes O(nlogn) time: for phase 0 refer to
Lemma T2} for phase I to Lemmas [I.3] and [I.6] for phase II to Lemma [I.§ and for phase III
to Theorem APPROXMMN outputs O(n) line segments. &

1.6 The approximation factor

As desired we can now bound the length of N in A;9 and Ajz separately. Theorem [I.9] and
Lemma [1.7] directly imply that [N N As| = [ N3] < 2|Nopt N As|. Note that by [Nopt N As| we
actually mean |[{sNA3 : s € Nopt }|. It remains to show that [N N.Aj2| = | N1 UN3| is bounded
by 3|N0pt N ./412|.

Recall that by Lemmas and |N1| < |Nopt| + H + W. Since the segments of Nopt
that were used to derive the estimation of Lemma lie in Ayer U Apor C Ajo, even the
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stronger bound |N1| < [Nopt N Aj2| + H + W holds. It remains to analyze the length of N
segments. Let Ny° (NJ°F) denote the set of all vertical (horizontal) segments in Na. We will
compare the length of Ny to the length of Cyer and the length of N;Of to the length of Cyo;.
Lemma will yield the desired length bounds. In the following we show how the length
bound for N3*' is obtained, this is the more complicated case as the connecting segments are
vertical. First, we need to distinct the connecting segments and all other segments of Ns.
We call the non-connecting segments in Ny boundary segments as they lie on 9A3. Due to
Lemma segments in Ny*" and segments in Cyer intersect at most in segment endpoints.
Thus, a horizontal line £ with /NP = () does not contain any point that lies at the same time in
U Cyer and in |J Ny°". We restrict ourselves to such lines, this makes no difference in terms of
overall length as we exclude only a finite number of lines. In order to obtain Lemma[l.12] we
will characterize the sequences that are obtained by the intersection of such a line ¢ with cover
and boundary segments and cover and connecting segments, see Lemma[I.10jand Lemma[T.11

respectively.

Lemma 1.10 Let ¢ be a horizontal line with £ VP = and ¢ N BBox(P) # (. Consider the
sequence of boundary and cover segments intersected by £. Then

(i) No more than two boundary segments are consecutive.
(ii) The left- and the rightmost segments are cover segments.

Proof. We show that each boundary segment s is (directly) preceeded or succeeded by a cover
segment. This implies immediately . The kind of cover segment (predecessor or successor)
that is assigned to a boundary segment shows that no boundary segments can be left- or
rightmost and thus follows.

We show the above statement for boundary segments that lie on the boundary of a con-
nected component A of A3. W.l.o.g. we assume that A is part of a region of type d(q,1). Let
P1, ..., Pm be the input points on JA ordered according to z-distance from . As earlier, let
vA = p1.ynbor[3] and let wy be the horizontal successor of v4. Let R denote the rectangle in
Ryer defined by the point ¢ and its vertical successor pg, see Figure Let py = sN £ and
let yy be the y-coordinate of ¢. Note that p, € |J Ny and thus py ¢ |JCyer- There are two
cases for the type of s.

First, s could be the boundary segment to the left of A. In this case s lies on the right
vertical edge of R. Let gy = (x4, y¢) be the point opposite of p; on the left vertical edge of
R. Then gy € |JCyer since R € Ryer and py € |JCyer- Due to int(R) C int(A12), no boundary
segments intersects the relative interior of Seg[py, ¢¢], and thus p, is preceeded by gy € |J Cyer
on {.

Second, s could be a vertical “staircase segment” to the right of A. In this case we show
that s is succeeded by a segment in Cye;. There are two subcases: either s is the left edge
of BBox(p;, pi+1) for some ¢ € {1,...,m — 1} or the left edge of BBox(py,,w4). For the first
subcase let 3 denote BBox(p;, pi+1). We show that ¢ intersects a vertical cover segment in
B. At the same time we show that 5N A3z = (), and hence there is no boundary segment
in the interior of 3. This is done by characterizing the point pairs (p',q¢) € Zguaa with
BBox(p/,¢’) Nint(3) # 0 and showing that the connected component of Ajg that is incident to
p’ does not intersect 3. Let o and 7 be the vertical and horizontal strips, respectively, that are
induced by (3, see Figure The strip 7 does not contain any input point to the left of 3
since this would contradict p; and p;4; lying in the same connected component of §(g, 1). The
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strip o does not contain any input point below 3 since this would contradict (pi+1,¢) € Zquad-
Let 3’ be 3 minus its right and top edge. There is no input point in (', otherwise there would
be a point p € ' with (p,q) € Zquaa contradicting p; and p;11 being consecutive. Let r be the
rightmost input point on the top edge of § and let ¢ be the topmost input point on the right
edge of 5. (Possibly p; = r and p;4+1 = t.) Since there is a point 7’ € Q(r,4) with (r',7) € Zhor
and a point t' € Q(t,2) with (¢',t) € Zyer, we must have that ¢ = t and p’ € Q(¢/, 2), otherwise
BBox(p/, ¢’) would not intersect int(3). Observe that the rectangle BBox(r,7’) € Ryor splits
BBox(p', ¢') into two connected components. However, the component incident to p’ does not
intersect int(/3), and thus SN Az = (). Since BBox(t,t') € Ryer and yy > yp,, it is clear that £
intersects a vertical cover segment in (3, either the one that is induced by the non-degenerate
rectangle BBox(t,t') if y; > y: or by the degenerate rectangle BBox(p;11,t) itself if y, < y;.

Last, we examine the subcase that ¢ intersects = BBox(p,,wa). We have to proceed
differently as we lose the property that no input point lies in the vertical strip below (.
Consider b = p,.xnbor[4] (allowing b = wy). We assume w.l.o.g. y,,, > y» otherwise let
b = b.xnbor[4] until this is the case. Now, b could lie in int(/3), but only if there is a point &
with a2y = 23, and yy < yw, otherwise there would be a point p € int(8) with (p,q) € Zguad-
We discard this case for a moment and assume that already y, < v, holds. Now, there is
a point p' € Q(b,2) with (p/,b) € Zyer. By the construction, it is clear that y,, > y,,, and
thus the vertical line through b splits 3 into two connected components. For the component
(3 incident to p,, we can use the same argument as above to show that 3 N A3 = ) since
the vertical strip below 3 does not contain any input points by construction. Hence, s is
succeeded by a vertical cover segment in BBox(p’,b). Now, back to the discarded case: if
Yo < Yp, s is succeeded by the degenerate rectangle BBox(b, V'), otherwise the same argument
holds with p’ € Q(b,2) and (p/,b) € Zyer. &

For the following characterization of connecting segments note that such segments lie only
in non-degenerate rectangles of Ryor.

Lemma 1.11 Let ¢ be a horizontal line that intersects the interior of a rectangle Ry € Ryor-
Consider the sequence of connecting and cover segments in Ry. Then

(i) No connecting segment lies on a vertical edge of Ry.
(ii) No more than two connecting segments are consecutive.
(iii) At least one of the two leftmost segments is a cover segment.
(iv) At least one of the two rightmost segments is a cover segment.
(v) The left- or rightmost segment is a cover segment.

Proof. In order to show (i), we show that no connecting segment is incident to an input
point. By construction, each connecting segment s4 = Seg[ga,ca] lies on a vertical edge
of a rectangle R = BBox(q,pg) € Ryer and in a rectangle R4 = BBox(va,w4) € Rpor- By
construction must R be non-degenerate, otherwise g4 € |JCyer. Thus, ¢4 # q. Clearly g4 # q.
Now {ca,qa} NP\ {q} # 0 would contradict (p,q) € Zquaa for any point p € JAN P. Hence,
s4 is not incident to an input point.

Now, since a connecting segment s4 is not in Cye, and lies on a vertical edge of a rectangle
R € Ryer it is pre- or succeeded by the cover segment on the opposite edge of R. This directly

shows , and .
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o
Figure 1.15: An impossible constellation:
(w,p) € Zyor excludes (p,q) € Zquad-

F' R
N qA/ w

S S
. . v qal
Figure 1.14: The area int(7 N ) does not
intersect any boundary segment, but a seg-
ment in Cyer- Figure 1.16: Not both s and s’ lie in Ns.

Our proof for (ED is by contradiction: we assume that the leftmost segment s and the
rightmost segment s’ in Ry are connecting segments. Let Ry = BBox(v,w). Let w.l.o.g. v
be the lower left point and w be the upper right point of Ry, see Figure Let A and A’
be the connected components of Az with s = s4 and s’ = s4. Note that R4 = Ry = Ry.
Let R and R’ be the rectangles in Ry whose vertical edges contain s and s’, respectively.
Clearly s must lie on the left edge of R and s’ on the right edge of R’. Thus, A must be a
region of type 0(q,2) or d(q,3). First, assume A C §(q,2) for some g € P. Then would A lie
above R and ¢ below R, see Figure However, this is impossible. Let p be the leftmost
point in P(q,t) N OA. Then p has a Zy,, partner in Q(p,4) which contradicts (p, q) being in
Zquad- Thus, A C §(q,3) and analogously A’ C 6(¢’, 1) for some ¢’ € P, see Figure Now,
the Manhattan v—w path in N7 contains at least one of the corner points g4 or g4.. This
contradicts s and s’ both being connecting segments. &

Combining Lemma, and Lemma yields:

Lemma 1.12 |N3y®| < 2|Cyer| — H and |NE"| < 2|Cpor| — W.

Proof. For a horizontal line ¢ with /NP = () we want to compare the numbers # N3 and #Cuyer
of segments in Ny and Cy., intersected by ¢, respectively. If we show that #Ny*" < 2#Cyer—1,
INS®"| < 2|Cyer| — H follows. (Sweep BBox(P) from bottom to top. The at most n lines
that we have to exclude draw no distinction in terms of length.) It remains to show that
#N5 < 2#Cyer — 1. Observe that due to Lemma , ¢ intersects connecting segments
at most within the interior of a rectangle in Rpor. On the other hand, due to the definition of
As, £ does not intersect any boundary segments within the interior of such a rectangle. We
investigate three cases.

First, consider the case that ¢ intersects no connecting segment. Thus, only cover and
boundary segments are intersected. By Lemma [1.10| at most two boundary segments are
consecutive and both the left- and rightmost intersected segments are cover segments. By a
simple counting argument, this even yields #Ny*" < 2#Cyer — 2.

Second, consider the case that £ intersects no boundary segments. Then, by Lemma
and @, at most two connecting segments are consecutive and the left- or rightmost segment
is a cover segment. Now, further using Lemma and yields #NJ" < 2#Cyer — 1
as desired.
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(a) Network computed by APPROXMMN. (b) An MMN of the same point set.

Figure 1.17: A bad example.

Third, consider the case that ¢ intersects both boundary and connecting segments. Lem-
mas and yield that the left- or rightmost intersected segment is a cover
segment. Thus if in the sequence of segments intersected by ¢ at most two segments in N5
are consecutive, we are in the same situation as in the second case. Hence # Ny < 2#Cyer— 1.

However, there is a case in which more than two N3 segments are consecutive: two
consecutive boundary segments are succeeded (or preceeded) by a rectangle R € Ryo,. Due to
Lemma and at most one of the following two segments within R is a connecting
segment. Hence, no more than three segments in N5 are consecutive. If there are three
consecutive segments in Ny, then one of them is a connecting segment that is left- or
rightmost in R. W.l.o.g. we assume that the connecting segment is leftmost in R. Then by
Lemma the rightmost segment in R is a cover segment. From this we deduce two
things: (a) since ¢ intersects at most one rectangle in Ry, three consecutive segments in
N3 occur at most once. (b) If there are three such segments, then by Lemma both
the left- and rightmost segments intersected by £ are cover segments. Hence, we again have
#Nger < 2#Cver - L

To bound the length of NJ°" segments is easier since connecting segments are vertical. An
analogous, simpler argument holds. &

This finally settles the approximation factor of APPROXMMN.

Theorem 1.2 |N| < 3| Nopt|-

Proof. By Lemmaand |Cyer UChor| < |Nopt N A12| we have |[No| < 2|Nopt N A2| —H —W.
Together with |N1| < [Nopt| + H + W this yields | N1 U Na|/|Nopt N Aj2| < 3. Theorem
and Lemma |1.7|show that |N3|/|Nopt N Az| < 2. Then, the disjointness of A2 and A3 yields
IN|/|Nopt| < masc{|Ny U Nal /[ Nopt, 0 A, [Nl /| Nopt, 0 As} < 3. »

In Figure [I.17] a network computed by APPROXMMN and an MMN of the same point set
are depicted. The example indicates that there are point sets P for which the ratio |N|/| Nopt|
is arbitrarily close to 3, where N is the Manhattan network that APPROXMMN computes
for P. The reason for the particularly bad performance of APPROXMMN on this point set
is that neither the w4—¢ path nor the pg—q path (bold solid line segments) contain the point
qa. This forces APPROXMMN to use the connecting segment s4.

However, the example of Figure [1.17] is rather artificial. We were sure that, like most
approximation algorithms, APPROXMMN performs significantly better in practice. In Sec-
tion [I.8] we evaluate how APPROXMMN behaves on randomly generated point sets. To be
able to compare the network computed by APPROXMMN with an MMN, we established a
mixed-integer programming (MIP) formulation which is detailed in the next section.
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1.7 Mixed-integer program

In this section we give a MIP formulation of the MMN problem that first appeared in [I]. It
is based on network flows. For each pair of points (p, q) in Z we guarantee the existence of a
Manhattan p—¢ path by requiring an integer flow from p to q.

We need some notation: For the set P of n input points with p1 = (z1,91), ...,pn =
(Tp,yn) let 21 < -+ < 2% and y! < --- < y® be the ascending sequences of x- and y-
coordinates of the input points, respectively. The grid I' induced by P consists of the grid
points (x%,y7) with i = 1,...,u and j = 1,...,w. In this section we assume that all pairs
(p,q) € Z are directed such that =, < z, holds. Now, for each pair (p,q) € Z let V(p,q) =
I' " BBox(p, q) and let A(p,q) be the set of arcs between horizontally or vertically adjacent
grid points in V(p,q). Horizontal arcs are always directed from left to right, vertical arcs
point upwards if y, < y, and downwards otherwise. Our formulation is based on the grid
graph Gp(V, A), where V = U(p,q)eZ V(p,q) and A = U(p,q)eZ A(p,q). Let E = {{9,9'} |
(9,9') € Aor (¢,g) € A} be the set of undirected edges.

For each pair (p, q) € Z we enforce the existence of a p—¢ Manhattan path by a flow model
as follows. We introduce a 0-1 variable f(p,q,g,q’) for each arc (g,¢") in A(p,q), which
encodes the size of the flow along arc (g, ¢’) from p to q. For each grid point g in V(p, q) we
introduce the following constraint:

+1 ifg=np,
> fwaed) - D>, fhade) = (-1 ifg=q, (1.1)
(9,9")€A(p,q) (9',9)€A(p,q) 0 else.

This constraint enforces flow conservation at point g, as the first sum represents the
total outflow and the second sum represents the total inflow at g. In total, there are O(n?)
constraints and variables of this type, since |Z| € O(n) and |V (p,q)|, |A(p,q)| € O(|I'|) =
O(n?). Next we introduce a continuous variable F(g,g’) for each edge {g,¢'} in E. This
variable will in fact be forced to take a 0—1 value by the objective function and the following
constraints. The MMN that we want to compute will consist of all grid edges {g,¢'} with
F(g,¢g') = 1. We now add a constraint for each {g,¢'} in F and each (p,q) € Z with
99’ € BBox(p, q):

F(g.9")

f(p,q,9,9") i
f(p.q,q,9) i

f(g,9") € A(p,q),

(9/9) (p.q) (12)
f(g',9) € Alp, )
This constraint forces F(g,g’) to be 1 if the arc (g,¢’) or the arc (¢',g) carries flow in any
A(p, q). Clearly we have O(n?) new variables, and accordingly O(n3) new constraints, again

since |Z| € O(n). Our objective function expresses the total length of the selected grid edges:

min Y |gg'|- Flg,9), (1.3)
{9,9'}€E

where |gg'| is the Euclidean distance of g and ¢’. The objective function drives each F(g, g')
to be as small as possible. Thus, Constraint forces F'(g,4’') to be 0 or 1.

In total this MIP formulation uses O(n?) variables and constraints. By treating pairs in
Zquaa more carefully, a reduction to O(n?) is possible. We implemented exact solvers based on
both formulations, but it turned out that the variant with a quadratic number of constraints
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(0,9) (11,9)
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(a) The result of the LP solver. (b) The result of the MIP solver (an MMN).

Figure 1.18: A gap instance.

and variables was slower than the one with a cubic number. Therefore, we omit the details
of the quadratic formulation here.
It is not hard to see that the MIP formulation (1.1))—(1.3)) always yields an MMN:

Theorem 1.3 Let P be a set of points and let A and E be defined as above. Let F : B — R(J{

and [ Z x A — {0,1} be functions that fulfill & and minimize . Then the
set of line segments {gg’ | {g9,9'} € E, F(g,4') > 1} is an MMN of P.

Due to our objective function , Equation can be replaced by an inequality (with
direction >). If the resulting constraint matrix was totally unimodular (i.e. every square
submatrix has determinant in {—1,0,+1}), every vertex of the solution polyhedron would
be integral. This would mean that the relaxation of the MIP formulation yielded an MMN
and thus, the MMN problem would be solvable in polynomial time. Unfortunately it turned
out that this is not the case. There are instances with fractional vertices that minimize
our objective function. There are even instances for which the objective value of the LP
is strictly less than that of the MIP. Figures [1.18a] and [1.18b] show such an instance with
optimal fractional and integral solution, respectively. The dotted segments in Figure
have flow 1/2. The value of the objective function is 58.5, while the length of an MMN for
this point set is 60, see Figure For a while we hoped that we could at least prove
half-integrality of the solution polyhedron. Then, rounding the LP solution would give a very
simple polynomial-time factor-2 approximation. However, it was not obvious to us how to
prove half-integrality of the solution polyhedron.

1.8 Experiments

To show that our algorithm performs better on average instances, we implemented APPROX-
MMN and the MIP formulation described in Section [1.7] Then we generated two classes
of random point sets. We used the MIP solver Xpress-Optimizer (2003) [Das03] by Dash
Optimization with the C++ interface of the BCL library to compute optimal solutions at least
for small instances.

1.8.1 Experimental set-up

We implemented APPROXMMN in C++ using the compiler gce-3.3. The two classes of random
point sets, SQUARE and HALFCIRCLE, were generated as follows.
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IT 3 X

Figure 1.19: An MMN for a SQUARE-01 in- Figure 1.20: An MMN for a HALFCIRCLE-02
stance with 15 points. instance with 10 points.

SQUARE-k instances were generated by drawing n different points with uniform distribu-
tion from a kn x kn integer grid. We wanted to see the effects of having more (k small) or
less (k large) points with the same z- or y-coordinate. If a pair of points shares a coordinate,
the Manhattan path connecting them is uniquely determined. We used k € {1,2,5,10}. For
an example of a SQUARE-01 instance see Figure [1.19

HALFCIRCLE-k instances consist of a point p; at the origin o and n—1 points on the upper
half of the unit circle. The points are distributed as follows. The angular range I = [0, 7 /4]
is split into k subranges I, ..., I} of equal length. We used k € {1,2,5,10,99}. Then n — 1
random numbers 7o, ..., 7, are drawn from I. If the number r; falls into a subinterval of even
index, it is mapped to the point p; = (sinr;, cosr;), otherwise to p; = (—sinr;, cosr;). The
resulting points p; (except for the topmost point in each quadrant and the “bottommost” point
in each subinterval) form pairs (p;, p1) that lie in Zgyaq. This makes HALFCIRCLE instances
very different from SQUARE instances where usually only very few point pairs belong to Zguad-
For an example of a HALFCIRCLE-02 instance, see Figure [[.20

We generated instances of the above types and solved them with APPROXMMN and with
the Xpress-Optimizer using the MIP formulation. The results of our experiments can be found
in Figures |1.21 In all graphs the sample size, i.e. the number of points per instance, is
shown on the z-axis. For each sample size we generated 50 instances and averaged the results
over those. In Figure the y-axis shows the performance ratio of APPROXMMN, i.e.
|N|/|Nopt|. In Figures and we compared the performance ratios of APPROXMMN,
a slightly modified variant of APPROXMMN, and the O(n?)-time factor-4 approximation
algorithm of Gudmundsson et al. [GLNOI]. In the graphs we skipped the factor-8 approxima-
tion algorithm [GLNOI1] because its results were only slightly worse than those of the factor-4
approximation: the difference was below 5%.

We also tested the performance of the following simple method to which we will refer
as LPsolver+rounding. Recall that in the MIP formulation described in Section [I.7] a grid
segment gg’ is part of the solution if f(p,q,g,9') = 1 for some (p,q) in Z. Now we relax
all these 0—1 variables of type f(p,q,g,9’) and solve the resulting linear program (LP). Our
method LPsolver+rounding puts the grid segment gg’ into the solution if there is some (p, q)
in Z with f(p,q,g,9") > 0. By the construction of the MIP it is clear that this network is a
Manhattan network.
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Figure 1.21: Performance of various algorithms.
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algorithms on HALFCIRCLE instances.
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In Figure the y-axis measures the ratio between the running times of the corre-
sponding algorithms over the running time of APPROXMMN. The asymptotic runtime of our
implementation is ©(n?), the CPU time consumption was measured on an Intel Xeon machine
with 2.6 GHz and 2 GB RAM under the operating system Linux-2.4.20. The Xpress-Optimizer
was run on the same machine.

1.8.2 Results

The MIP solver required an unacceptable amount of time (i.e. at least several hours) on
HALFCIRCLE-01 instances of more than 50 points and on SQUARE-01 instances of more than
250 points. The performance ratio of APPROXMMN seems to approach 1.1-1.2 on SQUARE
instances of increasing size, and 1.3-1.5 on HALFCIRCLE instances, see Figure On
HALFCIRCLE instances we observed that with an increasing number k of subranges the per-
formance of APPROXMMN degrades. The reason for this is that each subrange induces a
connected component of type d(o,1) or §(0,2). Thus, the length of the network Ns increases
with an increasing number of subranges. Indeed, the length of N, seems to be the bottleneck
of our algorithm.

To reduce this effect we implemented a slightly modified variant of APPROXMMN, to
which we will refer as APPROXMMN-var. This variant changes only the networks Ns and
N3. We explain the approach exemplarily for a connected component A of type d(q,1). Let
again pi,...,pm be the input points on JA ordered according to z-distance from the input
point ¢ in the lower left corner of A. Let R4 be the rectangle in Ry, that touches the bottom
edge of A, see Figure Let vq and w4 be the input points that span R4.

In phase II APPROXMMN-var adds only the segments Seg[p1, (2p, , Yw,)] and
Seg[pm, (p,, Yp, )] instead of the whole boundary of A to Ni. Accordingly, the connecting
segment is now Seg[(Zp,, Ywy )s (Tp,, Yu, )]. As before, the connecting segment is inserted only
if necessary. In phase III, a similar algorithm to algorithm BRIDGE is used to establish con-
nections from pa, ..., pm—1 to (2p,, Yuw,). Here we use the thickest-first algorithm introduced
in [GLNO1]. Now the parts of A that represent the staircase between p; and p,, are only
inserted if the thickest-first algorithm requires this. However, the segments that lie on JA are
now inserted in N3, and there is the rub. We were not able to prove N3N As| < 2| Nope N As|
for APPROXMMN-var.

However, as we had hoped, the performance of APPROXMMN-var was better than that
of APPROXMMN. Figure[1.21b|shows the performance of APPROXMMN, APPROXMMN-var,
the factor-4 approximation algorithm by Gudmundsson et al. [GLNO1] and LPsolver+rounding.
Exemplarily for the SQUARE instances, we included the graphs for the SQUARE-10 instances.
The behavior of the algorithms was similar on the other SQUARE instances, with slightly
better results. On SQUARE instances APPROXMMN performed only slightly worse than Ap-
PROXMMN-var. This is different on HALFCIRCLE instances as Figure [1.22 shows. Especially
with an increasing number of subranges the influence of Ny on the total length of the network
increases. The performance of LPsolver+rounding was amazingly good. The worst perfor-
mance ratio of this method was 1.078. It occurred on a SQUARE-10 instance with 25 points.
Moreover, LPsolver+rounding solved all CIRCLE instances optimally.

The CPU time of APPROXMMN depends neither on the value of k nor on the instance
type. Solving instances with 3000 points took only about 5-6 seconds. In contrast to that,
the runtime of the exact solver heavily depended on the value of k£ and even more on the
instance type. SQUARE instances were solved the faster the smaller k, because then the
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probability for two points having the same z- or y-coordinate is higher, which predetermines
a larger number of segments to be in the network. The average CPU time of the exact
solver on SQUARE-10 instances with 250 points was about 170 seconds, compared to 0.1-0.2
seconds for APPROXMMN. HALFCIRCLE instances were solved slower the smaller k, because
then more grid points and grid segments lie in more rectangles of Rquaq, which means that
the MIP formulation has more constraints and variables. Generally SQUARE instances were
solved much faster than HALFCIRCLE instances. This is due to the number of Zy,.q pairs,
which is significant higher in HALFCIRCLE instances. The MIP formulation requires O(n?)
variables and constraints for a point pair in Zguaq, while it requires only O(n) variables and
constraints for point pairs in Zyer U Zpor. (There are Zgyaq pairs that require O(n?) variables
and constraints.)

We wanted to see how fast the MIP solver becomes if i