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Deutsche Kurzfassung

Folgende Probleme stellen Systeme zur Entscheidungsfindurgrol3e Heraus-
forderungen: Erstens die Unsicherheit bei der Entschesfimdung beim Vor-
liegen von unscharfem Wissen; zweitens die Komplexitat Alevendungsbe-
reiche, die eine Verwertung von Wissen aus vielen Bereienfrdert; und drit-
tens die dauernd&nderung der Systemumgebung, die den Systemen eine groRe
Anpassungsfahigkeit abverlangt. Diese Arbeit pragengéinen ontologiebasiert-
en und serviceorientierten Ansatz fur Systeme zur Enidahgsfindung, welcher
verschiedene Methoden integriert und optimiert, um jedegg@annten Heraus-
forderungen angehen zu kdnnen.

Die meisten bekannten Losungen sind nur darauf zugesehnéiner dieser
Herausforderungen gewachsen zu sein. So kdnnen bespisésentscheidungs-
theoretische und analytische Ansatze sehr gut mit unsgah&Vissen umgehen,
wohingegen Expertensysteme und wissensbasierte Sysesserbnit der Kom-
plexitat gebietsubergreifender Anwendungen zurechirken. Aber kaum eines
von ihnen kann ein praktisches Rahmenwerk zu den Entsamgsfindungssyste-
men anbieten, das in der Lage ist, alle drei Probleme glaitkwlosen.

Im Mittelpunkt der Arbeit steht die Entwicklung eines ortgiebasierten un-
scharfen Modells —OntoBayes Es ermdoglicht eine Integration von Ontolo-
gien, Bayesschen Netzwerken und Influenz-Diagrammen ikvéérOntologien-
Sprache OWL, um die Vorteile von allen Methodiken zu komdxien, da sie sich
gegenseitig gut erganzen kdnnen. OntoBayes setzt sghveei Teilen zusam-
men: der Wissensbasis und den Entscheidungsmodellen.

Ontologien verfugen Uber eine hervorragende Modelfigsfidhigkeit fur ko-
mplexe Einsatzgebiete, sie konnen jedoch unscharfesWigsht reprasentieren.
Im Gegensatz dazu haben Bayessche Netze eine ausgezei€tamegkeit zur
Darstellung von unscharfem Wissen, sind aber wiederurk beschrankt bei der
Reprasentation von Wissen aus komplexen Anwendungggebie

Diese Arbeit erweitert OWL durch Hinzufigen neuer Anniatiaén zur Dar-
stellung von Wahrscheinlichkeiten und Abhagigkeitdieteen, um Bayessche
Netze in Form der Ontologien reprasentieren zu konneres®integrierte Wis-
sensbasis bildet den "Wissens-Anteil” der Entscheideuingerstiutzungssysteme.



Um jedoch die Entscheidungsfindung zu verwirklichen, suisbzzliche Erweiter-
ungen der Entscheidungsmodelle unbedingt erforderliehs@chen Erweiterun-
gen spielen Ontologien auch eine sehr wichtige Rolle. Bast auf Ontolo-
gien, insbesondere auf Bayesschen Netzen, lassen sickaméslliche Entschei-
dungsmodelle mit individuellen Anwendungsontologierzsfmeren. Als Beisp-
iele solcher Anwendungsontologien seien hier Influenzgienme, Entscheid-
ungsnetzwerke sowie Markov-Entscheidungsprozesse genan

Jede Anwendungsontologie verfugt Uber eine Menge vonofationen zur
Definition von aufgabenspezifischen Konzepten. Hieraumkd spezialisierte
Entscheidungsmodelle gebildet werden. Diese werden vate8yen verwen-
det, um bestimmte Aufgaben mit unscharfem Wissen zu bigealt Diese Er-
weiterungen von OntoBayes bilden dann den wesentlichetaBetil der Ent-
scheidungsmodelle der Systeme. Kombiniert mit dem OnteBayodell sind
Systeme zur Entscheidungsfindung nun in der Lage, mit Uasheit und Kom-
plexitat umzugehen. In dieser Arbeit werden Influenz-Daagme verwendet, um
Entscheidungsmodelle bilden zu kdnnen. Fur OntoBayeslevein Protégé Plu-
gin OWLOnNtoBayesmplementiert, mit dem die Benutzer die Wissensbasis und
die Entscheidungsmodelle leichter verarbeiten konnen.

Die Eigenschaft der Anpassungsfahigkeit kann die Legstier Systeme in
erheblichem Mal3e verbessern. Diese Arbeit optimiert dithbtiik derVirtuellen
Wissensgemeinschdéingl. virtual knowledge community, VKC) und setzt den
Ansatz derService-Orientierte ArchitektufSOA) ein, um diese Eigenschaft in
die Systeme einzubringen.

VKCs bieten eine Plattform zum Wissensaustausch an undgdichen es,
das Wissen der sich standig andernden Systeme rectzeitiktualisieren. Die
Aktualisierung von Wissen fuhrt zur Anpassung der Entslthregsmodelle und
Entscheidungsprozesse. Die existierende Methodik ietjedingeschrankt durch
ihre Unfahigkeit, unscharfes Wissen zu behandeln, irsimere beim Austausch-
en von bayesschen Informationen. Dies wird dadurch optinuied erweitert,
dass sich die bekannten Konzepte von VKCs fur struktueltenumerische baye-
ssche Informationen jeweils mit zusatzlichen Operaticauesbauen lassen. Auch
die Informationen von Influenz-Diagrammen kdnnen mit éliffler VKCs ausge-
tauscht werden. Damit VKCs wirklich mit OntoBayes zusamarbgiten kbnnen,
missen VKCs in OWL angepasst werden, da OWL die formalle@m zur
Wissensreprasentation von OntoBayes ist.

Der Ansatz von SOA ermoglicht mehr Flexibilitat der Sysee Jeder Prozess
besteht aus vielen kleinen Web-Diensten, die von untezdtibhen Systemkom-
ponenten geliefert werden. Mit dAnderung der Systemumgebung werden neue
Prozesse oder Arbeitsablaufe nach Bedarf durch SelektimhZusammenset-
zen von neuen Web-Diensten rekonstruiert, und lassen sicbrdzur Entschei-
dungsfindung an die gegebeAaderung anpassen. Somit kdnnen Systeme zur



Entscheidungsunterstiitzung nicht nur die drei oben gaearHerausforderungen
angehen, sondern auch mit lose gekoppelten, verteiltenpdoenten arbeiten
und plattformunabhangig bleiben.

Basiert auf OntoBayes, VKCs, Multiagent-Systemen und WaiSes wurde
ein Prototyp eines Systems zur Entscheidungsunterstijgruimplementiert. Po-
tenzielle Anwendungsgebiete dafur sind beispielsweiganken, in der Medizin
oder im Katastrophenmanagement und der Katastropheclkierang zu finden.
Um die Durchfurbarkeit des Systems testen zu konnen,aimde Szenarios fur
Katastrophenversicherung entworfen und evaluiert warééme Graphische Be-
nutzerschnittstelle wurde implementiert, um das Bediemehdas Testen des Sys-
tems zu vereinfachen.
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Chapter 1

Introduction

1.1 Motivation

During the 1950s and 1960s the concept of decision suppsrinwvastigated from
two aspects: the theory of organizational decision makmdtae techniques of
interactive computer systems. After that it became an afeasearch that fo-
cuses on computerized system supporting decision makingties [Pow03]. A
DSS Decision Support Systgroan be defined as “a computer program that pro-
vides information in a given domain of application by meafealytical decision

models ..."” [KM95].

The main challenges for DSSs are uncertainty, adaptivitpwkedge man-
agement, collaboration, intelligence and explanatoryguostc. [DLO5,HolOlL,
[(Gro96,[Nak0B]. There are too many kinds of DSSs nowadays taisdalmost
impossible to give a succinct survey about them. In genbel are designed to
address only one or two of the above challenges. Most of therdesigned and
developed based on precision and certainty. They are ibfea® work under
uncertainty. They provide unreliable solutions based erestsumption of closed
environments. For most real applications, uncertaintyigavitable feature and
can not be ignored. Agents do not act within a static and cdos@onment but
within a dynamic and open one. The available information @stly incomplete
and often imprecise because agents almost never have @aodbgswhole truth
implied by their environment. Agents must therefore actarmehcertainty, and
must be able to make optimal decisions with limited compaoitet resources.

The maingoal of this dissertation is to design a theoretical framewonk fo
DSSs to address all of these challenges, particularly tladlecige to decision
making under uncertainty.
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1.1.1 A Motivating Example

This work is one of the interdisciplinary projects of the fgzaduate college “nat-
ural disaster”, which is financed by DFG, the German Resdeawandation. Con-
sidering this background a simple decision problem fromajglication domain
of catastrophe insurance will be briefly introduced below asotivating example.

Example 1.1 Mr. Bob has bought a house in Shanghai and this house is not far
away from the HuangPu River. Now he is trying to decide whetleeneeds a
flood insurance for this house. If he needs it, then he musw khe potential
flooding insurance products that he can choose from. Andlyiha must decide
which one among them he should buy.

Probably Bob can make use of some different existing DSSstdglpful in-
formation and to make proper decisions in the face of unicgytaFor example,
the GIS Geoinformationssystéman provide him information about the flooding
risk of his house by using risk card or map; the portal of insge companies or
agencies can provide him information about available petslaf flooding insur-
ance; the homepage of an insurance expert can help him wwe¢gahese products
etc.. But there are still many problems can not be solved éyelsystems.

The first problem is the limited capability of human judgneeot uncertainty
(or probability). In this example Bob tries to make ratiodatisions under uncer-
tainty — the flooding risk. For example he is informed by Gl&tttine probability
of a 100-year flood in this area is 20%, and a 100-year flood ustshappened
one year ago. What does the figure 20% mean for Bob? Can Babrietehis
information correctly? Unfortunately, according to thedst of human judgments
of probability, judged probabilities do not conform to thguations of probability
theory [BAH90]. Probably Bob will think that the occurrenpeobability is too
low or “lightnings won't strike the same place twice”. Sudagdes could lead to
wrong decisions. To reduce the biases of human judgment tigide making
under uncertainty, DSSs must be adapted to uncertain kdgele

The second problem is the limited capability of knowledgenagement of
human, particularly for domain specific knowledge. In thimmple Bob can
probably only take the flooding risk and the premium of an iasae product
into account, in spite of the fact that there are many othetofa having impact
on the decision of buying it. For example the risk coveragaroinsurance, the
financial status of the buyer and so on. How to structure alhe$e factors and
how to make an optimal decision based on them? That is olyitars difficult
for Bob, except when he is an insurance expert. From thippetive DSSs must
be knowledge-based and integrated with decision theories.

The third problem is the limited capability of human to reicopen and dy-
namical environments. When Bob makes a decision to conswseevace, prob-
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ably some new and better services are issued. How can Bott testche is kept
up to date? For such situations DSSs must be adaptive to thetpal changes of
the environment.

There are other unsolved problems besides these disculseed, &.9. the
system support of collaboration between Bob and domainrexike explanatory
power of DSSs for their recommendations and so on. Nowadaggisting DSSs
can help Bob solve these problems at the same time. Theraftnamework
for DSSs will be investigated and proposed in this work bodimf practical and
theoretical perspectives, in order to solve the problemsthé next section the
underlying methodologies of such a framework will be suacy

1.2 The Underlying Methodologies

The proposed framework in this work touches the followingegach fields: on-
tologies, Bayesian networks, influence diagrams, virtnalldedge communities,
multiagent systems and web services.

From the local perspective of a DSS, each of these metho@slbgs its spe-
cial features and can address the challenges mentionee iaghsection, respec-
tively. But from the global perspective each of them has ws éimitations and
incompatibility. They can not be automatically integrateid the system without
any optimization or improvement. Therefore an integrat@dt®n for DSSs is
desired to meet the goals of the work.

The key reason for using ontologies in DSSs is that they entlid repre-
sentation of background knowledge about a domain in a maamderstandable
form. Ontologies can formally and explicitly specify a shdiconceptualization
[Gru93]. They can excellently represent the organizatistracture of large com-
plex domains, but their application is bounded becauseef thability to deal
with uncertainty [KP98].

In order to overcome this limitation, Bayesian Networks|wi introduced
into the framework. Bayesian networks are widely used gcabpimodel for prob-
abilistic knowledge representation under uncertainty®dé. Two kinds of infor-
mation can be represented in a BBafesian NetworBs structure and numerical
information. The former is in principle a DA@frected Acyclic Graphwhere
nodes are random variables and arcs between nodes implyepgendency (or
conditional) relation between the variables. The lattéhésBayesian probabilis-
tic information of random variables.

In comparison with ontologies, BNs have their excellentighbio represent
uncertain knowledge in a sound mathematical way. But theyary limited be-
cause of their inability to represent complex structureshdims. Obviously they
can complement themselves via a sound combination aimitadiailg advantages
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of both. Inspired by this approach, an ontology-driven utagety model — On-
toBayes — will be proposed in this thesis.

OntoBayes has two parts: a knowledge part and a decisionlrpade The
former is an integration of the certain and uncertain kndgéebased on ontolo-
gies and BNs respectively, while the latter can descrildferdiht decision models
based on influence diagrams. An Ihffluence Diagramcombines a BN with
additional node types for decision choices (or actions) atiies. Utilities are
used to quantify the preferences of different choices. fonal agent can make
a best decision among all choices according to the prinopMEU (Maximum
Expected Utility. MEU indicates that a rational decision under the explicit
certainty of the situation is the decision with the greatagtected utility, i.e. the
maximization of the expected benefits of the possible ougsom

OntoBayes makes use of OWW\Eb Ontology Languaﬂas the underlying
ontology modeling language and extends it with additionalkdations according
to the semantics of BNs and IDs. Nowadays OWL is the broadtgsted ontol-
ogy language of the semantic web. OWL builds upon RREgpurce Description
Framewor with more descriptive power. It aims to reach maximal cotiiyila
ity with XML, RDF and existing ontology languages and lograrheworks. A
Protég plugin OWLOnNtoBayesvill be implemented for the OntoBayes model.
It allows users to edit and codify BNs and IDs into OWL filestwé graphical
user interface.

Virtual knowledge communities will be applied to enable th#aboration be-
tween agents in DSSs. The concept of a VRKEtUal knowledge communityas
introduced as a means for agents to share knowledge abqic§NME04]. It aims
to increase the efficiency with which information is madeiladde throughout the
society of agents. VKCs can provide a virtual place for coapmknowledge re-
trieval, sharing decision models and building virtual tsam

Corporate knowledge was defined as the overall knowledgerbet by agents
within a system and their ability to cooperate with each oierder to meet their
goal [MHCO4]. Decision making based on corporate knowldugebecome cru-
cial for a society made of distributed agents each posgggsiown knowledge,
particularly when the knowledge is uncertain. During a psscof decision mak-
ing agents can profit from the corporate knowledge of thetietp better than
only from their sole knowledge. Agents are required to knaw eonly what it
knows but also what they know, and are expected to make maxiose of the
knowledge.

In this thesis we will extend VKCs with semantic features dfBand IDs, in
order to make them compatible with the OntoBayes model. Duadt that the

http://iwww.w3.0rg/TR/owl-guide
2Protégeé is an ontology editor. http://protege.stanfatd/
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previous implementation of VKCs is based on RDF, we need &padKCs to
suit the needs of OntoBayes which is totally built on OWL.

The Multiagent paradigm and web services are the selectedhibyechni-
cal foundations of the framework. The DSS is implemente@tas intelligent
agents which have the characteristics of reactivity, prei@é¢ and sociability.
These characteristics make them suitable as softwareesnfir the delegation
of diverse decision making tasks and for collaborative waeitk each other. We
will design and implement the system in which all componemésbuilt as web
services so that users or system agents can integrate tliepedarm agent tasks
helping users according to various knowledge sources.

The world of web services was characterized as loosely edugistributed
systems based on service oriented computing. The use ofeveices could be
considered as actions that the agent may take to meet its dogleneral, decision
making is not a simple event but a process leading to thetsmtenf a course of
action among several alternatives. Agents need to selddbastompose different
actions in order to make a decision. From the point of vieweo¥ise, the process
of decision making consists of different services provitlgdhe agent itself or
by external agents. This viewpoint supports us to implentfeatDSS based on
web services. A service oriented architecture will be desigto facilitate the
implementation of the DSS. Such an architecture makes tt# ld&e adaptive
and flexible.

Throughout the thesis, we will make use of some simple madexamples
in the application domain of catastrophe insurance, to chestnate the feasibility
of the framework and to test the implementation of the DSSadn, even if the
application study is specific, the framework presented is tiesis could serve
as a basis to build different DSSs working under uncertaaity a probabilistic
approach.

1.3 Structure of the Thesis

This dissertation is structured as follows. Chafller 2 ohices general back-
ground of the theoretical foundations upon which the fraoréws based: on-
tologies, which are used as an underlying knowledge reptasen paradigm for
DSSs; BNs, which are used to model uncertain knowledge vatiditional de-
pendency and probabilities; IDs, which are used to reptegameral class of de-
cision problems and to evaluate optimal policies for thesélems. Additionally
two important uncertainty approaches, the probabiligtigraach and the fuzzy
approach, will be discussed.

ChapteB introduces general background of DSSs and psesemte impor-
tant challenges first. Then an advanced and abstract frarkéaroDSSs is pro-
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posed to address these challenges. It is characterized harabased view, a
layered view, a decision theoretical view and a process,vespectively. Finally,
main features of the framework will be summarized.

Chapte¥ introduces the motivation as well as the desighefintoBayes
model. Afterwards integrating BNs and IDs into OWL will bevastigated, re-
spectively. The integration of BNs and OWL solves the probtd incorporating
uncertainty into ontologies. It is one of the main purposethis doctoral work.
Eventually a survey of related works for incorporating uteiaty and ontology
will be discussed.

Chapteib is devoted to investigate how to address the engepgiradigm of
knowledge dissemination and collaboration in Decisiong@upSystems through
VKCs. At first, the motivation and definition of VKCs will be @sented. Then
an overview of all basic concepts using to model VKCs will b&aduced ac-
cording to [Ham04]. Afterward it will be investigated howiteake use of VKCs
to facilitate knowledge dissemination, particularly weémphasis on knowledge
sharing and decision models sharing in the OntoBayes mdaddhst it will be
demonstrated how to utilize VKCs for supporting decisiorking in terms of
collaboration and adaptivity.

Chaptei® will first describe a service oriented architec@gcording to the
proposed framework, in order to guide the implementatioa @fSS. A simple
overview of the implementation will be provided next. Aftiwat the DSS will
be tested with a designed use case in decision support foh@sing catastrophe
insurance products.

ChaptefY is the last chapter of this thesis. It is devoteditorsarize contri-
butions and to outline the future works and open researeis lin

The appendix provides detailed descriptions for the OWlewesions in the
OntoBayes model.



Chapter 2

Preliminaries and Definitions

This chapter is devoted to introduce three important themiefoundations used
throughout this thesis, namely ontologies, Bayesian nésy@Ns) and Influence
Diagrams (IDs). Among them, ontologies are most importaatause the work
of Chaptel¥ focuses on building an ontology-driven modelrggrating BNs
and IDs into ontologies. Besides these three methodologewill introduce the
probabilistic and fuzzy approaches for dealing with ureiaty, with emphasis on
the probabilistic one.

2.1 Ontologies

In this section we will introduce the methodology of ontdkesy from its historical
derivation to its new position in the domain of computer sce2 Formal defini-
tions, features and categorizations of ontologies will vemgfirst. Afterward the
most important formal languages for representing ontel®gn the last decade
will be surveyed in Section Z2.1.3 afd 2]1.4. The focus of thwey is OWL,
which is the selected underlying formal ontology languawgetiis work.

2.1.1 History, Motivation, Definition and Features

The very termOntoIogﬂ derives from philosophy originally and is the study of
being in the world. The word itself is composed of two Greekdgoontosand
logos The former stands for “being” and the latter for “treati§&PELC04].
Ontology as a philosophical discipline is originally useddistinguish between
essence and existence. It is often used as a synonym of “hysiap” which

1In order to avoid confusing the term ‘ontology’ in the field miilosophy and information
science, it was proposed in [GG95] to use the words ‘Ontdlfgigh capital ‘0’) and ‘ontology’
(with lowercase ‘0’) to distinguish them respectively.

7
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refers to the work of Aristotle for explaining the nature lnétworld in the field of
philosophy [SmiOB]. Different philosophers have differ@mterpretations about
Ontology, but all of them agreed with the point that the egaknof Ontology
must be the capture of the essence of entities and theiifdasisn in reality.
The only debate is with which division to classify tgm

Since the early nineties the term Ontology has gained neseieey in the field
of information science. On the basis of the commonness legtwhkilosophy and
Al (Artificial Intelligencg [McC95,[Smi03], the Al researchers adopted the term
ontology for knowledge representation by drawing the issafithe works carried
out over the last 2000 years. The main motivation to use ogie$ in Al is to
facilitate knowledge sharing and reuse in a computatioagl [ifen01]. There are
several pioneer projects devoted to develop a library ofable ontologies, for
instance the project Knowledge Sharing Effort (KSE) [NBH] and Cyc[[GLID].

Definitions of Ontologies

Many different definitions of ontologies were given in theeties. Neches et al.
defined ontologies in [NFF1)] as follows: “An ontology defines the basic terms
and relations comprising the vocabulary of a topic area..A.few years later, a
more simple definition was introduced by Gruberin [Gru93]:

Definition 2.1 An ontology is an explicit specification of a conceptualaat

The term “conceptualization” was introduced by Geneseaeith Nilsson in the
field of Al in [GN87]. They pointed out that a conceptualipatiis the most im-

portant step for formal knowledge representation. It idekithe individuals, con-
cepts, and other entities presumed to exist in the world badnterrelationships
between them. Gruber claimed [N [Grli95]: A “conceptual@atis an abstract
and simplified view of the world to be presented by wish. Buitii became

the center point criticized because of the ambiguousnesivord by using it

[Smi0Z] and the incompleteness of foundational relafldB®S04]. Studer et al.
extended Definitiof 2] 1 in [SBEY8] as follows:

Definition 2.2 An ontology is a formal, explicit specification of a sharedoep-
tualization.

This definition is widely spread and accepted in the field @drimation science,
even though there are still debates about conceptualrdtiwill be the underly-
ing definition of ontologies adopted in this thesis. In congan with Definition

2There existed many divisions, for example substantiatiat$ fluxists, adequists and reduc-
tionists. More detailed descriptions can be foundin [SIHGBELCO4].

3Foundational Relations such as part-of, member-of, pamtidf etc. are required for correlat-
ing different biomedical ontologies.
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2.1 there are two words more in Definitibn2.2: ‘formal’ antiased’. Accord-
ing to [Fen01[ SBFY8], the former points out that ontolograsst be presented
in formal language, not in natural language. The latter easjztes that the cap-
tured knowledge within ontologies should be commonsemnserder to facilitate
or insure the knowledge sharing between different comnatiwic parties.

Features of Ontologies

From the definitions as mentioned above some inherent anteatary features
of ontologies can be summarized as follows:

¢ Individuals play a central role in an ontology. An individual exists asma s
gle, separate thing or being. The set of individuals is callet Normally
each individual has a clear identity to make them distingaie from oth-
ers, even though they have common properties.

e Conceptsare abstract groups or collections of individuals whichenthe
same properties. The concept space is normally continuodisnrdinite.
The instantiation of a concept results in its individuals.

e Properties are alway associated with concepts or individuals.

¢ Relationshipsexist between concepts or individuals and can be specified
based on the assignment of properties in ontologies.

e Constraints are used to specify concepts or individuals more precisaly a
explicitly. They can also be used to describe exceptionkerontological
world.

Every ontology language must support the definition andrgesm of these key
features (or elements) to facilitate the ontological cqgalization.

2.1.2 Ontology Categories

There are many works devoted to categorize ontologies diépgon the levels of
generality or other viewpoints, such as the categorizatmmesented ir [MVI95,
VHSWY7 [Gua9d, LMO1, SPOD4]. Among them the one based om&snvork
[Gua98] was the most accepted and adopted by other reseatwause of the
introduction of the terms “top-level ontology” and “domaintologies”. Accord-
ing to his work there are four kinds of ontologies. From geh&y specific they
are top-level ontologies, domain ontologies, task ontel®gnd application on-
tologies. This classification is depicted in Figlirel 2.1 wahis borrowed from
[Gua98]. The arrows in the figure represent the speciatimatlationship.
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top-level ontology

N

domain ontology task ontology

~ 7

application ontology

Figure 2.1: Types of ontologies according to their level eherality.

e Top-level ontologiesclassify high-level and domain-independent ontolo-
gies which provide very general concepts and link all otleniain spe-
cific) ontologies. They are often characterized as repteggicommon
sense concepts. The main problem in the knowledge worldeis¢iman-
tic heterogeneity [Cal02] because similar terms may digignificantly in
meaning in different ontology-driven systems. This prablaakes the inte-
gration of different information systems difficult. To dewth this problem,
the IEEE Standard Upper Ontolcﬂ;Working Group is trying to build top-
level ontologies which can provide generic concepts sutimes space and
So on.

e Domain ontologiesprovide vocabularies about concepts and their relation-
ships within a specific domain. They specialize or extendepts defined
in a top-level ontology to build reusable knowledge entitirat can be
shared between different domaihs JAS03].

e Task ontologiesprovide concepts and relationships associated with generi
tasks or activities.

e Application ontologies provide application-dependent concepts and pro-
vide the vocabulary for given applications related to aaiertask or activ-

ity.

This work makes use of the first two kinds of ontologies to ¢ttt an ontology-
driven decision support system (see Chapler 6). The terpl&eel ontologies”
will be simplified as “upper ontologies” in this thesis besauit is often men-
tioned as a synonym for “upper-level ontologies”. [N [DOBAAB upper ontology

“http://suo.ieee.org
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is defined as “a set of integrated ontologies that charaetea set of basic com-
monsense knowledge notions” .

Lightweight and Heavyweight Ontologies

Nowadays ontologies play a more and more important role imymatural scien-
tific or economic domains, especially in new emerging dosbake the Semantic
Web [BLHLOT]. But most applications in this field make use otaogies as a
synonym for “taxonomies”, for instance the Yahoo! DiregtddNSPS@. Such
taxonomies can also provide a hierarchical classificatiocoacepts from gen-
eral to special, but only witlSubClass0f andSuperClass0f relations (or the
is-a relation). In order to distinguish ontologies from taxones) the ontology
community proposetightweightand heavyweighbntologies. Lightweight on-
tologies are closed to taxonomies and consist of concepisept taxonomies,
relationships (not only restricted to tisearelation) between concepts and prop-
erties defined on concepts, whereas heavyweight ontolegiesprovide more
semantic modeling within ontologies by means of addingmsi@and constraints

to lightweight ontologieS [GPELC0A4].

2.1.3 Semantic Networks and RDF(S)

The paradigm of semantic networks is one of the most impbokiaowledge rep-
resentation methodologies inspired by the semantic assmeimodel of human
memory in the field of cognitive psychology. This model pethibut the exis-
tence of associative relations which link the semanticatlgnected concepts in
the human memory. Aemantic networls a directed graph composed of named
nodes and labeled edges, where each node represents atogiticgpname and
a unidirectional edge represents the associative relbetween nodes [Rei91].
RDF is an XML Extensible Markup Languay®ased language of the W3C
(the World Wide Web Consortigmecommendation to describe resources about
anything, but its main utility is for metadata descriptianghe Semantic Web
[McBO4]. Itis designed to describe resources in a minimedigstraining, flexible

way [KC04].
RDF Graph

A RDF graphis composed dfriples, each consisting of a subject, a predicate and
an object as shown in Figure 2.2 (from [KC04]), where

SUNSPSC is an internationally established classificatiatiesy of the merchandise-economy.
http://www.unspsc.org/
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Figure 2.2: The graphical representation for a generic Ripket

predicate

e asubjectis a resource described with or withBun URI Uniform Re-
source Identifiey,

e a predicate defines attributes or relations used to describe a resoarce (
resources). The predicate is also known agtiopertyof the triple, and

e anobjectis a resource described with or without an URI, or a literdeve
a literal is a string or fragment of XML and is used to identiBlues such
as numbers and dates by means of a lexical representafidKC

A triple specified as above representstatemenbdf a relationship between
the things denoted by the nodes that it links. The notion oFRilatements
corresponds to the structure of simple English sentencessoulRces, proper-
ties and statements are the underlying three componentisdDF data model
[GPELCO4].

From the perspective of graph theory an RDF graph simply issgtéd graph
with labels on both nodes and edges. In comparison with teerighgion of se-
mantic networks above, RDF graphs are obviously equivadtettie knowledge
representation paradigm of semantic netwolrks [CKO1].

RDF Schema

The RDF data model provides a generic method to allow moglelimbject mod-
els in a semantic way, but without any clearly defined sernantihis limitation is
lifted by the schema language RDAS¥F Schemp also known as the RDF Vo-
cabulary Description Languade [BG04]. RDFS is built on tbRBF and extends
it with some simple but basic primitives for modeling RDFsdas and properties
hierarchically. The combination of RDF and RDFS is then kn@as RDF(S).
According to [BG04] the RDFS primitives can be grouped in&sib classes
and properties, container classes and properties, dolectreification vocabu-
lary, and utility properties. RDFS makes use of the spetifina, domainand
range to define subject and object resources associated withFRRaEhproperty,

6 In case no URI description is given, the subject is represkby a blank node which means
either that people have no ideas about the name of the notatahe name does not exist at all.
In fact not every thing in the real world needs to have its oama.



2.1. ONTOLOGIES 13

respectively. On the one hand these specifications enaldeeintes about the
types of things based on the statements; on the other hapdehee as a vocabu-
lary documentation in the web by using XML namespates [SER]DO

OIL and DAML+OIL as RDF(S) Extensions

RDF and RDF Schema are supposed to be the most basiKK&Wedge Rep-
resentatiof) formalisms for specifying resources in the semantic weht die
to their limited expressivity[JAvHO4], they can not fully tssfy the need of se-
mantic webs for more modeling power. Therefore a joint atiie was formed
(between the years 2000 and 2001), in order to create a ri@hguage, named
DAML+OILH. This name is a combination of the names of DAML-GNand
oILf.

DAML-ONT stands forDAML Ontology Languagevhere DAML is an acro-
nym for the DARPA projecDARPA Agent Markup LanguageOIL stands for
Ontology Interchange Languagend Ontology Inference Layer This initiative
was funded by the European Union IST project On-To-Knowdeaigd combines
techniques from three different communities [HHOO, BGHBRYH™0d]:

e frame-based systenfr epistemological modeling and frame-based primi-
tives,

e DL (Description Logi¢ for the formal semantics and reasoning support, and
e web standard languagegith XML and RDF syntax.

OIL has different layers. From low to high they are core Oltarglard OIL,
Instance OIL and Heavy OIL. The higher layer is establishedhe basis of a
lower layer and is more functional and complex [GPELIC04].

Similar to OIL, DAML+OIL was also developed as an extensiéiR®F(S)
with more powerful concepts for describing ontologies,aréwless it has no lay-
ered structures [PSD2, CvHIA1]. It extends RDF(S) with DL-based KR prim-
itives. In comparison with RDF(S), DAML+OIL has the follomg additional
features[[GPFELCU04, AvHO4]:

e Ability of inference: DAML+OIL allows reasoning with the exessions
disjointWith, TransitiveProperty, UnambiguousProperty, inver-
se0f , equivalentTo and so on.

"http://www.daml.org/2001/03/daml+oil-index.html
8http://www.daml.org/2000/10/daml-ont.html
Shttp://www.ontoknowledge.org/oil/
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OIL DAML +OIL OWL

RDFS

Others RDF

XML

Figure 2.3: XML based ontology markup languages.

e Boolean combinations of classes: DAML+OIL allows classresgions in-
volvingdisjointUnionOf, union0f, intersection0f, Or complementOf.

e Cardinality restriction: DAML supports cardinality, mia@inality, and
maxCardinality for limiting the number of statements witie tsame sub-
ject and predicate.

e Local scope of properties: DAML has the expressteatriction which
allows local restrictions on certain properties for deghmth exceptions,
whereas RDF(S) can only specify restrictions in a globapsco

Figure[2Z.3B is borrowed froni [Dae05]. The most important togyp markup
languages are presented in the figure, where the word “dtbkaisns that there
are also other XML-based ontology languages, for examplé ¥Ontology Ex-
change Languaﬂ. The relationships between these languages are cleady ill
trated here. In the next subsection OWL will be introducedetail, because it
is the most important and popular ontology language for émeastic web nowa-
days and it is also the underlying specification languagéi®OntoBayes model
(see Chaptdd 4).

2.1.4 Web Ontology Language

OWL is developed by the Web Ontology (WebOnt) Working Gﬂlﬂn February
2004 it was officially announced by W3C as a semantic web stahidr facili-
tating to process the content of information instead of pussenting information
to humans[[MvHO4]. Now OWL is the broadly accepted ontologyduage of
the semantic web. It aims to reach maximal compatibilityhwitML, RDF(S)

LOnttp://www.ai.sri.com/pkarp/xol/
Uhitp://www.w3.0rg/2001/sw/WebOnt/
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OWL Full

OWL Lite OWL DL

Figure 2.4: Three species of OWL and their set-relations.

and existing ontology languages and logic frameworks. DReML+OIL, OWL
builds upon RDF(S) (see FigureP.3) with more descriptivegrolt derives from
DAML+OIL and covers most of its features, therefore it is ganto DAML+OIL.
But there are still some differences between them [GPFEL.C8&fore demon-
strating these similarities and differences, it is importirst to investigate the
various language elements of OWL in detail.

Three Divisions of OWL

As illustrated in Figur&Zl4, OWL is divided into three lageepresented by three
increasingly expressive sublanguages, respectivelyrderao reflect compro-
mises between expressivity and implementability [AF0d].

e OWL Lite extends RDF(S) and captures the most essential and basic fea
tures of (lightweight) ontologies, in order to facilitatailding taxonomies
(or hierarchical ontologies) by means of some simple caing. The mo-
tivation to set up this layer is to provide a straightforwamngplementability
for developers with a minimal useful subset of languageufest[MvHO4],
but a restricted expressivity.

e OWL DL retains the vocabulary of OWL Lite and extends it with newlan
guage primitives, in order to make use of the expressivitya@mputational
efficiency as much as possible at the same time. In fact mded the com-
plete OWL vocabulary, but with some constraints which easxploiting
the formal underpinnings and the computational tractgfdi Description
Logic. Therefore OWL DL has an efficient reasoning suppotti®lmited
to the full compatibility with RDF(s)[[AvHO4].

e OWL Full allows to use all primitives of OWL and gives the users full
flexibility to combine them with RDF(S), as long as the ressilegal RDF
[AVHO4]. On the one hand OWL Fullis full compatible with ROF), but on
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the other hand it is very difficult to achieve complete (oraadint) reasoning
support, and therefore no computation guarantees are.given

The Primitives of OWL

Syntactically all primitives of OWL are based on the XML sgxt According
to features described in Sectibn2]1.1, most of them can bghip grouped as

follows:

e Primitives for defining concepts

owl:Class is used to define concepts in ontologies which are known
as classes in OWL.

owl:Thing andowl:Nothing are predefined classes and used to spec-
ify the most as well as the least general classes, resplyctivee for-
mer contains all individuals and the latter is empty.

one0f can only be used in conjunction witlw1 : Class to define enu-
merated classes.

owl:equivalentClass is used for defining equivalent concepts.
disjointWith states the disjointness of numerous concepts.

owl:intersectionOf, owl:union0f andowl: complementOf are us-
ed to define boolean operations of conjunction, disjunciioa nega-
tion respectively.

e Primitives for defining individuals

owl:sameAs states the identity between individuals.
owl:differentFrom states that an individual differs from others.

owl:allDifferent can only be used in conjunction withwl:dis-
tinctMembers to state that numerous individuals differ from each
other.

e Primitives for defining properties

owl:0bjectProperty andowl:DatatypeProperty are the only two
property types in OWL. The former relates objects to othgecis,
whereas the latter relates objects to datatype values. atatyge
properties can usewl:dataRange for setting enumerated datatypes
or simply use predefined XML Schema datatEes

Phitp://www.w3.0rg/2001/XMLSchema
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— owl:equivalentProperty is used to define equivalent properties.

— owl:TransitiveProperty, owl:SymmetricProperty andowl:in-
verse0f can be used to define transitivity, symmetricity and inverse
between properties.

— owl:FunctionalProperty defines that a property has a unique value
for each object.

— owl:InverseFunctionalProperty indicates that two different ob-
jects can not share the same value.

e Primitives for defining constraints

— owl:Restrictions is used to specify the constraints on concepts.

— owl:onProperty indicates which property is restricted with regard to
aclass.

— allValueFrom andSomeValueFrom define the logical universal quan-
tifier and existential quantifier respectively.

— hasValue is used to define that the value of a property is a certain
individual, but is not allowed in OWL Lite.

— cardinality, maxCardinality andminCardinality define restr-
icted cardinality. In the OWL DL and OWL Full synopses thediar
nality is arbitrary, whereas in OWL Lite it can be only rested to
either O or 1.

Besides these mostimportant ones there are also someipesiar giving header
information, for versioning or other special uses in OWL:

e owl:0Ontology is used to group all headers and versioning information to
facilitate the ontology management.

e owl:imports is used for importing other ontologies into the current dhe.
is transitive: IfA importsB andB importsC, thenA importsC.

e owl:versionInfo, owl:priorVersion, owl:backwardCompatibleWith
andowl:incompatibleWith are used for versioning.

e owl:DeprecatedClass andowl:DeprecatedProperty are used to pro-
vide the common feature of deprecation by versioning.

e owl:AnnotationProperty allows annotations on classes, properties, indi-
viduals and ontology headers.
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Figure[2Z5 presents all primitives in OWL and the correspogdnes in DAML+
OIL. It is taken from [GPELCO4], but with slight changes besa the original
specification is based on the W3C draft documentation for GWER003) which
are out of date. More detailed explanations about the priestof OWL can be

found in [SWMO04 [ MvHO4| BvHH 04].

Similarities and Differences between OWL and DAML+OIL

After the introduction of the basic language elements of QWiw it is possible to
summarize the similarities and differences between OWLRANBIL+OIL. OWL
is almost equal to its predecessor DAML+OIL due to the hisadbackground
introduced above. The similarities generally exist ateéHevels:

e At the level of exchange language syntax the languages @uitasi Both
of them make use of RDF/XML-based syntax for defining thentenying
exchange syntax. OWL renames most of the primitives of th&DAOIL
(see Figur&?l]5).

e At the level of abstract syntak [PSHHO04] both languages rftaenced by
the frame paradigms. OWL DL and OWL Lite have a frame-liketisus
syntax similar to OIL.

e At the level of formal semanti¢ [HorD5] they are designeddolasn DL, in
order to integrate the key features of DL into OWL and DAML+Q\the
expressivity, automated reasoning and the compositigrfRRDS04].

OWL is so close to DAML+OIL that it can be easily transformatbiDAML+OIL
[GGPT02]. In spite of major similarities there are still some imamt differences
between them which should be taken into account:

e OWL is more close to OIL than DAML+OIL. It has different layge(see
FigurelZ#), while DAML+OIL is more DL-like.

e The primitives are syntactically similar, but still diffamt (see Figure2.5).
— OWL adopts the RDF(S) primitives, for exampléfs : subClass0f,

rdfs:subProperty0f etc., while DAML+OIL renames them.

— OWL allows defining symmetric properties with1 : SymmetricPro-
perty as opposed to DAML+OIL.

— OWL does not allow qualified number restriction, for examjiel :
hasClass( etc..

— OWL makes use of two primitivess1 :union0f andowl:disjoint-
With instead of the simple primitiv@aml :disjointUnion0f in DA-
ML+OIL.
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OWL DL

Class expressions allowed in: rdfs:domain,rdfs:range,rdfs:subClassof
owl:intersectionOf,owl:equivalentClass,
owl:allValuesFrom,owl:someValuesFrom

Values are not restricted (0..N) in: owl:minCardinality,owl:maxCardinality,owl:Cardinality

owl:DataRange, rdf:List, rdf:first, rdf:rest, rdf:nil

owl:hasValue (daml:hasValueOf)

owl:oneOf (daml:oneOf)

owl:unionOf (daml:unionOf), owl:complementOf (daml:complementOf)
owl:disjointWith (daml:disjointWith)

OWL Lite

owl:Ontology (daml:Ontology),
owl:versionInfo (daml:VersionInfo),
owl:imports (daml:imports),
owl:backwardCompatibleWith,
owl:incompatibleWith, owl:priorVersion,
owl:DeprecatedClass,
owl:DeprecatedProperty

owl:Class (daml:Class),

owl:Restriction (daml:Restriction),

owl:onProperty (daml:onProperty),

owl:allValuesFrom (daml:toClass) (only with class identifiers and named datatypes),
owl:someValuesFrom (daml:hasClass) (only with class identifiers and named datatypes),
owl:minCardinality (daml:minCardinality, restricted to {0,1}),

owl:maxCardinality (daml:maxCardinality, restricted to {0,1}),

owl:cardinality (daml:cardinality, restricted to {0,1})

owl:intersection0Of (only with class identifiers and property restrictions)

owl:0ObjectProperty (daml:ObjectProperty),
owl:DatatypeProperty (daml:DatatypeProperty),
owl:TransitiveProperty (daml:TransitiveProperty),
owl:SymmetricProperty,

owl:FunctionalProperty (daml:UniqueProperty),
owl:InverseFunctionalProperty (daml:UnambiguousProperty),
owl:AnnotationProperty

owl:Thing (daml:Thing),
owl:Nothing (daml:Nothing)

owl:inverseOf (daml:inverseOf),

owl:equivalentClass (daml:sameClassAs) (only with class identifiers and
property restrictions),

owl:equivalentProperty (daml:samePropertyAs),

owl:sameAs (daml:equivalentTo),

owl:differentFrom (daml:differentIndividualFrom),

owl:AllDifferent, owl:distinctMembers

RDF(S)

rdf :Property

rdfs:subProperty0f

rdfs:domain

rdfs:range (only with class identifiers and named datatypes)
rdfs:comment,rdfs:lable,rdfs:seeAlso,rdfs:isDefinedBy

rdfs:subClass0f (only with class identifiers and property restrictions)

Figure 2.5: Primitives of OWL Lite and OWL DL in comparison ti
DAML+OIL.
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Protége as An Ontology Editor

This work utilizes the tool Prot’e%in Version 3.2.1 for developing ontologies in
the application domains of natural disaster and catastrapurance. As an on-
tology editor Protégé will mainly be used to satisfy thewtedge representation
requirements for users. The graphical visualization oblmgfies is realized by us-
ing the plugin ofOWLViE4 which is integrated with the Protégé-OWL plugin and
is implemented by the University of Manchester. For the &iaacy checking the
reasoner RACHER] can be used.

A new Protégé plugidWLOntoBayes$or completing all ontological exten-
sions in OntoBayes (see Chaplér 4) is implemented withirudesit research
project [HerQ¥]. The plugin allows users to construct danspecific Bayesian
Networks and Influence Diagrams with a graphical user iater{see ChaptEl 6).

2.2 Uncertainty

There are many systems that are designed and developeddrapeetision and
certainty. They provide unrealizable solutions based eragsumption of closed
environments. For the most real applications uncertagigavitable and can not
be ignored.

2.2.1 Uncertainty Categories

Informationimperfectionis the most difficult, but unavoidable problem faced by
agents in an open environment. According to Smets’ apprfiamie96] it can be
generally grouped into imprecision, inconsistency or utacety.

e Imprecision presents the ambiguity, vagueness or approximation of-info
mation.

¢ Inconsistencyexpresses that contradictory conclusions can be drawidbase
on given information or statements.

e Uncertainty is caused by a lack of knowledge about the environment when
agents need to decide the truth of statements. Uncertaartybe dis-
tinguished objectively and subjectivelyObjective uncertaintyelates to
randomness which likely qualifies the occurrence possibiif an event,
whereasubjective uncertaintgepends on the subjective opinions of agents
about the truth value of information.

Bitp://protege.stanford.edu/
nttp://www.co-ode.org/downloads/owlviz/co-ode-indexp
Bohttp://www.racer-systems.com/products/tools/inditap
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Imprecision and inconsistency are essential propertlageceto information con-
tent whereas uncertainty is a property of the relation betbe information and
our knowledge about the world.

Besides the classification based on Smets’ approach, anadvepoint de-
scribing perspectives on computational perception anaitog under uncer-
tainty, is proposed i [SGD0]. Two broad categories of utaiety, U-Type One
andU-Type Twogare suggested:

e The first type of uncertainty deals with information arisfrgm the random
behavior of physical systems.

e The second type of uncertainty deals with information agsrom human
perception and cognition processes.

The first type has been investigated for centuries with &ffof statistical theory.
The statistical methodologies are very useful to modeltipse, but lack the so-
phistication to process the second type. In order to dedl thi¢ second type,
several effective methods were been proposed, e.g. fumry, loeural networks
and so on.

In the next two sections we will give an simple overview of faezy and
probabilistic approaches for representing uncertaintyerAative approaches of
uncertainty modeling and logical inference exist, e.g. Dlenpster-Shafer ap-
proaches[[Dem67, Dem6bi8, Sha76] etc.. In this work, we makeotithe proba-
bilistic approach, BNs, to deal with uncertainty for thenfirmvork of DSSs.

2.2.2 The Fuzzy Approach

Fuzzy logic is derived from fuzzy set theory, which was idwoed by Lotfi A.
Zadeh in 1965. It was developed for looking at vagueness iath@matical way.
Its basic idea is to allow expressing of the membershipicgldtetween an object
and a set by a membership function ranging from 0 to 1. By eoytithe classic
(or crisp) set allows the membership function to take on dwtyvalues 0 and 1.
Let X be a set of objects, with generic elements noterl &hen a fuzzy set can
be formally defined as follow$§ [Zadb5]:

Definition 2.3 A fuzzy set Ain X is characterized by a membership funciox) f
which maps each objectxX to a real number in the intervd0, 1].

The value offa(x) represents the “the grade of membershipkafh A with the
implication that the nearer the value is to 1, the higher é&sdbgree of member-
ship.
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f(x) f medium(x)

f_low(x) f_high(x)

20 40, 60 80 100 X
! (in Euro/month)

Figure 2.6: Fuzzification for the premium of an insurancedpiai.

A number of elementary operations can be used for modelirmyfaystems.
Basic operations in sets (union, intersection, compleptkat correspond to bool-
ean operators (OR, AND, and NOT) have their equivalent izysets and fuzzy
logic. These basic operations satisfy some axioms, for pl@nbe Morgan’s
law, Monotonicity, Associativity, Commutativity and so {@ad65]. In addition
to logical operations, there are also algebraic operatiéns instance, the alge-
braic product, algebraic sum, algebraic difference, comeenbination and so on

[Men01].

Fuzzy Modeling

In principle a fuzzy system can be modeled by the followingibateps according

to [br07]:

e The first step is to identify the inputs and outputs of theeystising fuzzy
variables described in linguistic terms. For example, fftan”, “Risk
of Coverage” as inputs and “Buy Product” as an output for glening to
purchase an insurance product.

e The second step is tHeazzificationwhich comprises the process of trans-
forming crisp values into degrees of membership with fuzzg slescribed
with linguistic terms. For example, for the fuzzification af insurance
product premiunx = 50€/month, the three membership functiofig,(x),
fmediun{X) @and fhign(X) as depicted in Figule .6, can be used. They charac-
terize a low, medium and high premium fuzzy set, respectivEhe given
premiumx = 50 €/month belongs with a degree &f,(x) = 0.75 to the
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fuzzy set “low” and with a degree ofyegiun{X) = 0.25 to the fuzzy set
“medium”.

e The core step is to build &uzzy inference machingith a set of rules
relating the input condition to the output responses. Thakes can be
expressed as a list AfF-THEN pairs: IF <fuzzy proposition> THEN
<fuzzy proposition>, where the first fuzzy proposition of the pair is the
input condition, and the second fuzzy proposition is thepoutesponse.
For instance]F Premium=IlowAND Risk of Coverage=fulfHEN Buy Prod-
uct=yes

e The last step is thdefuzzificatiorwhich is a process to convert the fuzzy
value to a single crisp value, because the result of all nilashave fired
within the inference machine is a fuzzy set. In order to apipé/fuzzy set
in the application, it is required to reduce it to a crisp eatepresenting
the set. There are many methods of defuzzification, eachwaiilous ad-
vantages and drawbacks [BBSX]]. Among themcenter of gravityand
maximunmethods are the two most used. But the final choice of defuzzifi
cation methods can only be decided based on the user’s erperand the
way of thinking.

2.2.3 The Probabilistic Approach

The probabilistic approach was introduced in the 1600’s @mginally was in-
vestigated for analyzing games of chance in a mathematea|@GD80]. After
that it has been widely developed and applied to many fieldghe field of Al
many research efforts were made to use probabilistic metfarddealing with
uncertainty in KBS Knowledge-based SystenfleHN9Q].

Interpretation of Probability

There are four main interpretations @bability. the frequency theory, the pro-
pensity theory, chance and Bayesianism (5ee [Wil05] fomaes). They can be
grouped broadly into objective or subjective probability.

e Objective probability (or physical probability) is a classical approach to
probability and was developed based on the classical defirof probabil-
ity that Pierre Simon Laplace identified in his workéorie analytique des
probabilites[dL98]. It defines the probability of an event as the “limitf o
its relative frequency in a large number of trials.

Mathematically it can be represented as follows: If a randoperiment
can result im mutually exclusive and equally likely outcomes ananibf



24 CHAPTER 2. PRELIMINARIES AND DEFINITIONS

these outcomes result in the occurrence of the efgtite probability ofA
is defined byP(A) = T

Objective probability reflects the physical interpretat@and includes the
frequency and propensity interpretation.

e Subjective probability (or Bayesian probabilitﬁ is an alternative way
to measure the probability of an event relying on the subjeaipinions
of agents, where the probability is often interpreted asgrate of belief
about an event or a proposition. For example two agents canditierent
degrees of belief about the same proposition even thougththe the same
background knowledge.

Subjective probability reflects the mental interpretateord includes the
chance and Bayesianism interpretation.

Foundations of Probability

As mentioned above there are many ways to interpret prababiherefore it is
important to define common and basic concepts independeothythe different
interpretations, in order to understand the basis of pridibatiheory. This is usu-
ally done by relying okolmogorov’s axiomsBefore introducing the axioms, it is
necessary to define the probability space mathematicalighwi the foundation
of probability theory.

Definition 2.4 A probability spacéQ, <7, P) is a measure space such that
P(Q) =1,

where the non-empty s@tis the sample spacey the g-algebra onQ and P the
probability measure (or probability] [Bau®?2].

Each element of the sample spd2és an atomic eventft]. Each element of the
o-algebra<Z is anevent Awhich is a collection oatomic everd determined by
some set-algebraic rules governed by the laws of Booleabedg Two events,
A andB are said to benutually exclusiver disjointif P(ANB) = 0. For exam-
ple, union, intersection, complement and De Morgan’s lawprdbability P is a
positive function

P:o — R.

Itis a mapping fromo-algebrag’ to the space of real numbdrsrestricted to the
interval[0, 1].

16subjectivists, also known as Bayesians or followergpittemic probabilitywhich empha-
sizes the close link between knowledge and probability.

In the literature, atomic events are often referressimple pointand define a random variable
as a function taking an atomic event as input and returnirejuievfrom the appropriate domain.
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Kolmogorov’s Axioms

The following three axioms are known as tkelmogorov’'s axiomsleveloped by
the Russian mathematician Andrei Kolmogorov, who builthgrest of probabil-
ity theory based on the simple foundations as explainede[i#R02].

1. All probabilities are between 0 and 1. For any evignt

0<P(A) < 1. (2.1)

2. The probability of the certain atomic event in the entample space equals
1
P(Q)=1. (2.2)

It means also that there are no atomic events outside thelsapgrce.

3. If two eventsA andB are mutually exclusive, then

P(AVB) = P(A) + P(B). (2.3)

From these axioms some consequences can be deduced fdatiadcprobabili-
ties. For example it can be extended to the addition law dbaibdity (or the sum
rule),

P(AVB)=P(A)+P(B)-P(AAB), (2.4)

the inclusion-exclusion principle,
P(Q\A)=1-P(A), (2.5)
and the probability of the impossible event
P(0) =0. (2.6)

Events are also known as propositions by Bayesianism. $wibrk we use the
term “random variables” to simplify the notation, by allowi to speak about
P(X = x) as a function ok instead of having to take into consideration a huge
number of unlinked event§ [Dan06]. In the algebraic axiomadibn of proba-
bility theory, the primary concept is not that of probalyilaf an event or of a
proposition, but rather that ofrandom variable In this thesis we only takdis-
creterandom variables into account, which include boolean rendariables as a
special case, with values from an enumerable domain. Weruspgercase letter
as the first letter for random variables and lowercase onethéir values. The
domain of the variable will be denoted dem(X). For instance, the domain of
the variable “premium” is given bgtom Premium) = {low, mediumhigh}.
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2.3 Bayesian Networks

As a probabilistic approach, BNs are selected for modelimgettain knowledge
in this work.

2.3.1 Definitions

BN provide a natural way to represent and reason about uncdraiviedge
on a formal theoretical basis. Before we introduce the desmbf BNs formally,
we will first define some terminologies which are adopted fistandard graph
theory and will be used to facilitate the explanation of BNs.

Definition 2.5 (Directed Graph) Given a set of vertices (or nodes), a directed
graph (or digraph) isa graply = (7,&) with& C 7 x 7.

All edges in a digraph are directed. They are often calleatievs of the digraph.
The number of nodes in the digraph will be denoted’&s

Definition 2.6 (Directed path) A directed path P in a digraph is a sequence of
consecutive directed edges. It can be denoted as) g — ... — X, (or P =
(X1,...,%n)), where Xe 7,i=1,...,n.

We make use ofP to denote the length of a path It equals the number of
edges in the path, i.e., for a path witmodes the length is— 1. Theith element
of the path is a node and can be denoted®f@s For example for the patR =
(Xl,XZ,XQ,),X]_,Xz,Xg eV, JiP is 2 andP[1]=X2.

Definition 2.7 (DAG) A DAG is a digraph without any directed path % ... —
Xn such that X = X,.

For a nodeX € 7, the parentsof X are nodes from which there is an arrow in
¢ going to X. The set of parents is denoted par(X). The set ofchildren
of X (denoted ahi(X)) are nodes reached by an arrow starting fr§m The
descendantsf X (denoted aslegX)) is the set of nodes which are offspring,
or offspring of offspring, etc. of the given variab¥ while theancestorsof X
(denoted aanq X)) are the variables which are parents, or parents of pareats,
of X.

Professor Jensen, one of the most influential researchénssifield, defined

BNs in [Jen96, Jen01] as follows:

Definition 2.8 A BN consists of the following:

18BNs are also known aBayesian netsprobabilistic networksBayesian belief networksr
belief networks
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A set of variables and a set of directed edges between vagabl

Each variable has a finite set of mutually exclusive states.

The variables together with directed edges from a DAG.

To each variable X with parents, Y..,Y,, there is attached the potential
table A(X|Y1, ..., Yn).

A BN is a probabilistic graphical model whose main strengttiue to the fact that
it can represent both qualitative information as well asngjtetive information.
According to this strength Definitidn 2.8 can be refined aloed [WII05]:

Definition 2.9 Given a finite set” of discrete variablds, a BN.Z = (¢,)on
¥ consists of a qualitative compone#itand a quantitative componertt’

e The qualitative component is a DAG= (7,&’), where? and & are re-
spectively the sets of verti€dsaind directed edges in the graph.

e The quantitative component contains a set of probabiligcdrations..
For each variable Xe 7/, . specifies the probability distribution of X.

This work uses thislefinitionas its underlying theory basis for uncertainty mod-
eling. We will begin our explanation with the quantitativarpfirst.

2.3.2 The Quantitative Information

The quantitative part of a BN contains the numerical infarorarepresenting

probability distributions associated with Bayesian Valesa. This part describes
how the variables relate to each other quantitatively. &laee two types of proba-
bility distributions in BNs: either unconditional or cotidinal. Such distributions

are represented as probability tables.

Unconditional Probability

In order to describe what is known about a variakléX € ¥) in the absence
of any other evidence, Bayesian probability uses uheonditional(or prior)
probability. It is written asP(X). An unconditional probability is normally
the purely subjective assessment of an experienced expertexample, given
a Bayesian variabl@ermindependent on any other variables ataim Term) =
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Term=short| Term=long
0.4 0.6

Table 2.1: The unconditional probability table #fTerm).

{short long}, then a possible probability distribution & Term) can be repre-
sented as in Table2.1.

The unconditional probability of a set of variabl¥sg ..., X, in a conjunction
can be written a® (X1 A ... AXn) (or P(Xy, ..., Xn) for short). It can be expressed
by the JPD jpint probability distribution) of these variables. For example, given a
variableRiskCoveraganddomRiskCoverage= {low,mediumhigh}, then the
JPD ofP(Term RiskCoveraggcan be represented by a<2 table with 6 proba-
bility entries.

Conditional Probability

Once agents have observed some evidences which influencéheveredefined
variables, unconditional probabilities are no longer appate. In this case, we
useconditional (or posteriol) probability. The notation used B(X|Y), where
X,Y € 7. It can be read as “the probability 8fgivenB”. Conditional probabili-
ties can be defined in terms of unconditional probabilities:

P(XAY)

PXIY) =~ 55

(2.7)
whereP(Y) > 0. For exampleP(Premium= low|RiskCoverage= high) = 0.1
indicates that if the risk coverage of an insurance prodiiobserved to be high
and no other information is available yet, then the proligtithat the product has
a low premium will be 0.1. Equatidn2.7 can also be written as

P(XAY) =P(X|Y)P(Y), (2.8)

which is called theproduct rule[RNO3]. Starting from Equation 2.7 ahdP.8 we
can deriveBayes’ theorem

YIX)P(X)

PXIY) = 29)

The conditional probability?(X|Y) indicates the dependency (or influence) rela-
tion between variableX andY: X depends orY (orY influencesX). In order

It is possible to work with BNs involving continuous variabl for example, variables subject
to Gaussian distribution. In this work we only take into ametdiscrete variables with finite states.
20The sety of vertices is the set of variables on which the BN is defined.
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Premium=low| Premium=medium Premium=high
RiskCoverage=low 0.6 0.2 0.1
RiskCoverage=medium 0.3 0.5 0.2
RiskCoverage=high 0.1 0.3 0.7

Table 2.2: The conditional probability table fB(PremiumRiskCoveragge

to represent the quantitative informationR(X|Y), the CPT Conditional Prob-
ability Tablg is introduced. For instanc®(PremiuniRiskCoveraggexpresses
that the premium of an insurance product depends on its oigérage. TablE2.2
presents the CPT ¢f(PremiunRiskCoverage

A useful generalization of the product rule (Equation 2s8)hechain rule
Let X1, ...,Xn be a set oh variables, then the JPB(Xg, ..., X) can be written as a
product ofn conditional probabilities via repeated application of EtjonZ.3:

P(XL 7Xn) = P(X17 7Xn—1)P(X2|X1)P(X1) (210)

Let par(X) denote all parents of variable(see Page26), then Equatfon2.10 can
be formulated as follows:

P(X0 s Xe) = ﬁPr(mpar(m). (2.11)

Definition 2.10 (Conditional independence)Given XY,Z C 7, X and Y are
conditional independent given Z

P(X|Y,Z) = P(X|Z). (2.12)

In this work we make use of Dawid’s notatidX_LY|Z), or simply (X_LY|Z) to
denote conditional independente [Daw79]. Some proparede followed from
Definition[Z.10, for example, symmetry, decomposition, kveaion, contraction

and intersectior [PeaDO].

2.3.3 The Qualitative Information

The qualitative part of a BN describes the structure infaromerepresented by a
DAG over its vertices, where the vertices here correspondati@bles of a BN
(whence the common symbdl). Edges in a DAG denote a certain relationship
which holds on pairs of variables. Normally the relatiopsiidicates the statisti-
cal dependency between variables, but it varies with théagtpn. For example,

it can be interpreted as causal relationship in a causalanktfizea00].

214ff” is shorthand for “if and only if”.
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The Dependency

In this work, an edgeX — Y indicates thedependencyr influence relation be-
tween variableX andY: Y depends oiX or X influencesr. The notationrX — Y

can express the same meaning as the notation for condipooiadbility P(Y|X).

For exampleP(PremiumRiskCoveragg (see Tabld2]2) can be expressed here
with the graphical notatioRiskCoverage- Premium

Definition 2.11 (Markov Blanket) A Markov Blanket of a node X in a B is
a set of nodes, which is composed of (@r, chi(X) and par(Y;), ¥Y; € chi(X).

The Markov Blanket oiX can be denoted asb(X). It is important because it is
the only knowledge that is needed to predict the behavidnatfmodeX in a BN.
Based on Definitiofi 211 the following two theorems can bes@®ered (and can

be proven[[Pea88])).
Theorem 2.12 (Markov Condition) P(X_LY|par(X)),VX € ¥ and Ye 7' \degX).

Theorem 2.13 P(X_LY|mb(X)), VY € 7\(mb(X) N {X})ina BNZ.

Hypothesis and evidence

Evidence is information about a certain situation via oason. If the variable
represented by a nodeabservedthen the node is said to be amidencenode.
There are three types of evidences that can be applied to BNs:

e Hard evidence is an instantiation of a variaBlavith E = e. It means, that
a variable is with a degree of 100% in one state, and with aegdegfr0% in
all other stated [BF05].

e Soft evidence mearts £ g, i.e., it is only known thaE does not have state

e [BEOS].

¢ Virtual evidence is a method widely adopted in BNs infereaicd was pre-
sented in[[Pea9d7]. Itis the likelihood of a variable’s dimition. The likeli-
hood is presented by the probability of observihbeing in state [Din05].

As opposed to observed variables, variables whose valae®aknown are called
hiddenvariables. Based on the definition of observed variablee\(tdenc@)
and Bayes’ theorem (Equati@nP.9), the essence of BNs cargressed via the

following formula:
elH)P(H)

WM@:WP@ , (2.13)

22In this work when we speak about evidences, they are autoatigtconsidered as hard evi-
dences.
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Serial connection Diverging connection Converging connectic

Figure 2.7: Three types of connections in BNs.

whereH is a hypothesis. It shows how to compute the belief about atmgsis
upon observing evideneein the Bayesian inferencE[Pea00].

d-separation

The purpose of introducing d-separation is to describe hohamge of certainty
in one variable may change the certainty for other variables

In Figure[2Y three types of connections in BNs are illusttafThe first type
is serial connection. The influence of an evidera&n be transmitted through
the serial connection unless any variable in the connedsionstantiated. The
second type is diverging connection. The influence of anexade can only be
passed to the childrechi(X1) unless the state of; is known. The third type is
converging connection. The influence of an evideacan only be passed to the
parentspar(X;) if either X; or any variable oflegX;) is instantiated. Based on
these three types of connections we can define d-separatiofiavs [Jen96]:

Definition 2.14 (d-separation) Given XY € 7 (X #Y)ina BN, X and Y are
d-separated if for all paths between X and Y, there is an mesfiate variable Z
such that either

e the connection is serial or diverging and Z is instantiated,

e the connection is converging, and neither Z nor any of debas received
evidence.

A andB ared-connectedif they are not d-separated. X andY are d-separated,
then changes in the belief &f have no impact on the belief changingYaf

Proposition 2.15 VY € MB(X) ina BN, if Y is instantiated, then X is d-separated
from Z, where&vZ € 7\{X} NMB(X).
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2.3.4 Bayesian Reasoning

Bayesian reasoning is statistical inference for comptitiegoelief change (or the
posterior probability distribution) for a set of query \asles by given observa-
tions. Simply it is a process used to draw conclusions froidences. The al-
gorithms in BNs make use of the principles of probabilistiasoning and Bayes’
theorem. A lot of algorithms have been developed for botltiexad approximate
reasoning. For a survey of them refer[fo [GH02].

Exact Reasoning

Approaches of exact reasoning are based on exploratioreafatisal structures
in BNs for efficient computation. There are many algorithimsexact reasoning
in BNs. These include the variable elimination algoritiniPg4], the polytree
algorithm [Pea97], the clique-tree algorithm [L$88], thagtion tree algorith@
[Cow98] and so on.

The computation complexity of inference algorithms deeml the structure
of a BN. When the structure is in polytree, it can be lineathia size of the net-
work, where the size is defined as the number of CPT entriesif Bie structure
of a BN is not in polytree, then the algorithm in general is hdtd [C0090)].

Approximate Reasoning

Approaches of approximate reasoning are normally basetbohastic simulation
which aims to give fast, accurate approximations to past@robabilities in BNs
by reducing the time and space complexity of exact reas@ppgoaches. Itis ad-
equate for very large networks. Like for the exact reasarimgye are also many
algorithms for the approximate approaches, for examplpontance sampling al-
gorithms [Hen8/7, FC89, FFBZ, CDO00] and Markov Chain Montd®C@MCMC)
methods[[RC04]. Generally the approximate algorithms Heeen proven to be
NP-hard [DL93].

Each exact or approximate algorithm has different progeind is adequate
for different classes of inference problems. Itis not easseiect one among them
for a given BN due to thalgorithm selection problerfRic7/6]. Many research
efforts are devoted to deal with this problem based on esgimethods[Borg6],
the approach of algorithm analysis [Wil97] and the approafcbystem analysis
[NJ96]. In this work we do not focus on developing, optimzior selecting any

23The clique-tree algorithm and the junction tree algoritigether are also known as the clus-
tering algorithms.

24Roughly speaking, NP-hard is a mathematical term to indlittat it is impossible to compute
a solution within reasonable time.
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inference algorithms, instead we make use of an existingvitvch provides
reasoning support for our DSS.

Backward vs. Forward reasoning

All reasoning algorithms can be grouped into two types: fodvor deductive)
reasoning and backward (abductive) reasoning.

e Theforward reasoningsimply aims to draw new conclusions by given ini-
tial facts. It does not increase the qualitative knowledgsebin BNs but
changes the quantitative part, therefore it is also knowedisf updating
Normally it is unnecessary to use Bayes’ theorem in the faw@asoning.

e The backward reasoningimply aims to explore the best explanations by

given hypothesis (or goals). It is more complex becausees to favor one
conclusion above others. This means that it attempts eith&lsify al-
ternative explanations, or to show the likelihood of theofad conclusion.
The backward reasoning is also knowrba$ief revision If the queried vari-
ables are all hidden variables, then it is known as the MR&s( Probable
Explanatior). Bayes’ rule is often applied in the backward reasoning.

2.3.5 Features of Bayesian Networks
Based on the probability theory, BNs possess the following features [BruQ2]:

Consistency Consistency means that reasoning results in BNs are freedera-
doxes and internal contradiction. The results do not chamgledo not de-
pend on the route along which the available information cxpssed.

Unigue Once the prior knowledge is fixed, BNs lead to unique conohssi This
means that there is only a unique way from “input” to “output”

Plausibility The probabilistic approach extends crisp logic by uncetyaiepre-
sented through probability. Based on this approach thetgaave tech-
niques of BNs can replicate the essential features of glduseasoning
(reasoning under conditions of uncertainty) which seemeertagical to a
human being and is mathematically sounder.

So far we have reviewed the basic concepts of BNs. The valinesahethodology
lies entirely in what can be done with it. 1n [GIy01] threelitiés of BNs are
pointed out:

Predication The use of BNs for predication is obvious due to its naturat ofa
forward reasoning.
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Control This functionality can also be understood under the tgiagnosis The
underlying technique is backward reasoning.

Discovery In many cases the structure of the network for representohgnaain
application can be discovered from experiments, obsenmstidata, and
background knowledge.

In this work we are only interested in the first utility due beir significant mean-
ing for DSS.

2.4 Influence Diagrams

IDY were introduced by Howard and Matheson [HM84] and have Wisilf
fected the development of decision making under unceytairihe field of Al, for
example in applications of medical diagnosis, controletyst and so o [BouD5].
An ID combines a BN with additional node types for choices gotions) and
utilities. Before giving the formal definitions of IDs, it meaningful to introduce
some important concepts about utilities.

2.4.1 Utility

Probability theory (inclusive BNSs) provides an agent’'siéfebn the basis of evi-
dences in a quantitative way. But it is still required to finideanework to describe
the desired action of the agent and its rational behavioordier to deal with this
aspect|nfluence Diagramsakes use diitility to model and assess the preference
among decision outcomes.

Choice, Preference and Utility

LetC be a finite set othoicekd {c1,...,Cn} that an agent as a decision maker can
select, then @referencaelation onC can be introduced for ranking all decision
choices. This relation is defined as follows.

Definition 2.16 (Preference) An agent’s preference on C is a binary relation
over {cy, ,% (the choice set of C) with-C Vp x C, i.e. it is a subset of all
ordered pairg! (ci,c;j), where ¢,cj € C and i# |.

?5They are also known agecision networker decision graphgsee [Fen01]).
26They are also known asternativesor actionsin some literatures.
211t is often the case that an ordered pair will be called sinapbair.
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We can write(cj, ¢j) €~ or ¢ > ¢; to indicate that the choiog is at least as good
as another choicej. More precisely we can refine the preferencdy means
of ¢ >~ ¢j andc; ~ ¢j, whereg; - ¢; andc; ~ ¢j meang; is strictly preferred or
equivalent tac respectively. There are some semantic constraints onrprefes:

e Reflexivity: Vc € C,
c>C.

e Transitivity: Vci,cj,cc € Candi # j #Kk,

G = Cj,Cj = Ck = Cj = C.

e Orderability:Vc;, cj € C, there must be a preference betwegandc;.

(Gi>cj)u(cj = c)uU(c ~cj).

There are also other constraints, for example, continsitipstitutability, mono-
tonicity and decomposability. A survey of them can be founfRNO3].

Rather than ranking the choices just by setting prefereanebem, we can
quantify them with the help of utility which is considered asiumerical rating
and can be assigned to each possible chgio€C. The utility can be expressed
as autility functionwhich maps each choiag to a real number.

Definition 2.17 (Utility Function) A utility function on C is a map
u:C—R.
The existence of the utility function follows the utilityipciple defined as follows:
u(ci) > u(cj) < ¢ > cj and

U(Ci) = U(Cj) < G ~ Cj.

An axiomatic extension of the ordinal concept of utility teaertain payoffs is the
EU (Expected Utility. When an agent choosess its decision from the choice
setC, then all possible outcomes of the decision can be denot@digs), where
the indexi ranges over the different outcomes. Now we can define theceegbe
utility of the choicec (denoted a&U(c)) as follows:

EU(c) = Z Pr(Out(c))U (Out(c)) (2.14)

A rational agent should make a best decision among all chkdmeactions) ac-
cording to the principle oMEU which indicates that a rational decision under
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conditions of uncertainty is the decision with the greassgtected utility, i.e. the
result of the maximization of the agent’s expected utilfgrmally it means that
Vc e C, 3¢ € C, ¢ # ¢ such thatEU(c') = EU(c). Simply this fact can be ex-
pressed as follows:

MEU(C) = m%xEU(c). (2.15)
ce
Combined Equation 215 aid 2114 we can derive

MEU(C) = rcne%x Pr(Out(c))U (Out(c)). (2.16)

2.4.2 Formal Definition of IDs
Based on the definitions frori [HMD5, Jen01, L1D06] we can fdlyndefine IDs

as follows:

Definition 2.18 Given a set of nodeg” associated with the following function:
f:v—-{0,0,0},

then an ID is a DAG%q = (7, &) with

Ve={ve7|t(v)=O},

Vp ={ve ¥|f(v) =0},

W = {ve 7|f(v) = 0},
Ec={e=(vyw) e &ve ¥\W and we \},
Ep ={e=(ww) e &lve ¥\W and we \p},
Eu ={e=(vw) e &lve ¥\W and we W },

and& = EpUEcUEy.

Definition[ZI8 expresses that an ID includes three typesodés: decision nodes
Vp, chance nodeg: and value nodegy, i.e. 7 = {Mp} U{Vc} U{W }.

e Chance nodesig/represent propositional (or random) variables that are not
controlled by the decision maker. Like the nodes in BNs eddem is
associated with a probability distribution over its domairvalues. Graph-
ically they are represented by circles.

¢ Decision nodes yrepresent the possible choices available to the decision
maker. Graphically they are represented by baxes
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e Utility node&d W represent the agent’s utility function ovear(\y ). They
are not allowed to have children nodes. Graphically theyepeesented by
diamonds®.

Originally, utility nodes were designed without states. tie extended
framework MOID (Multi Objective Influence Diagrami$DHO4], they are
allowed to have multiple states for expressing differenecives.

Additionally there are three types of edges (or arcs) foresging different rela-

tionships[[TS9D0].

e Informational arcs I are arcs into decision nodes and indicate which in-
formation is known to the decision maker at decision time.

e Conditional arcs g are arcs into chance nodes and indicate the probabilistic
dependency on the associated variables.

e Functional arcs Ig are arcs into a utility nofid and indicate which vari-
ables are functionally dependent on the utility node. Mamgsy, they are
variables used as decision criteria for utility nodes.

Based on Definitioi 218 two additional assumptions aresszng for evaluating
IDs.

Remark 2.19 (Total order) If there are totally n decision nodes in an influence
diagram%q, then there must be a pathP (D4, ...,Dp) in %g.

This assumption allows decision making in sequence.

Remark 2.20 (No-forgetting) Let |; denote the set of all observed chance nodes
when making a decision on the decision nogle;then | must be available when
decision O is made (for j> i+ 1).

The no-forgettingassumption expresses that the decision maker must remember
the past observations and decisiohsis the set of variables observed before the
first decision is taken. Anf (i > 0) indicates that all variables are observed after
the (i — 1)th decision but before thi¢h decision. It is obviously that all parents of
Di (par(D;)) are also parents @;.

Figure[Z.38 illustrates a simple example of deciding to buynanrance prod-
uct by means of an ID. There are two chance nodes, one decistimand one

28They are often calledalue nodesn the literature. According taJRND3] we use this term to
maintain the distinction between utility and value funogo

29Generally there is only one utility node in an ID. When there more than one, then the
associated utility is a sum or product function of all ilitodes[[CDOB].
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W BuyProduct
RiskCoverage

Figure 2.8: A simple Influence Diagram.

U(yes,low) =-100
U(no,low) =50
U(yes,medium) = 4(
U(no,medium) =10
U(yes,high) =80
U(no,high) =-80

Table 2.3: The utility table fo (PremiumBuyProduc.

utility node. They are defined as followdom(Premium) = {low, mediumhigh},
domRiskCoveragge= {low,mediumhigh}, anddom BuyProduc} = {yesno}.
The utility nodeU can be specified d$(par(U)) = U (BuyProductPremiunj in
Table[Z3B. This table reflects the preferences of a decisakem

2.4.3 Evaluating Influence Diagrams

The main objective of evaluating IDs is to use the quantificebf a decision
maker’s preferences to determine an optimal solution faz@sibn problem.
Policy, Strategy and Solution

Before we investigate the different evaluating algorithins necessary to intro-
duce some related terms that are defined as follows accoa{dgn01]:

Definition 2.21 (Policy) Given an ID%4 = (¥, &) and for each decision node
D € \p, there is a policyd which is a mapping:

0 :dom(par(D)) — domD).

A decision node has many different policies dependent omlifferent configu-
rations of its parents. For exampl&,: (Premium= low) — BuyProduct= yes
is a policy of the decision nodBuyProductin Figure[Z38, and : (Premium=
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low) — BuyProduct= nois also one. Generally we can simply denote all policies
of D asdp. All policies of BuyProductthen is the sedguyproduct

Definition 2.22 (Optimal policy) Given an ID%q4 = (¥, &), a policy 6* for a
decision node D is optimal iff

EU(5%) > EU(3),V3 € dp.

The value of a policyd is the expected utility given that the decision nodes are
executed according .

Definition 2.23 (Strategy) Given an ID%4 = (7, &), a strategy for4g is a set
of policiesé;,

6 : dom(par(Dj)) — dom(D;)

one for each decision nodg B Vp, i =1,...,{Vp.

Definition 2.24 (Solution) A solution for an ID is a strategy that maximizes the
expected utility.

Evaluating Algorithms

There are different algorithms for evaluating IDs. The fdation of all evaluating
algorithms is the probabilistic inference algorithm. Thauitive way to evaluate
IDs is transforming them into BNs. After that all Bayesiafeirence algorithms
can be used to evaluate them.

Cooper proposed a method that primarily aims to reduce IBiN® [Coo88].
He set up some rules for converting decision nodes andyutibtles to chance
nodes. After construction has been completed, the probfdmading an optimal
decision in IDs is automatically reduced to the same probieBNs for which a
number of solving algorithms exist.

The algorithm proposed by Shachter and P20t [SP92] is &¢ctuedy simi-
lar to the original one from Shachtér [Sha86], but it is mdifecient. It simply
utilizes the feature of Bayesian independency and the totir constraint for
decision nodes. The optimization process is recursivedoh . It iterates over
the decision nodes from the last one to the first one.

Based on previous work of Zhang and Podle [ZR92, ZP94] arrithgo was
proposed in[[Zha98] which divides an regular ID into two ipdedent partitions,
the parents of each decision node and the rest of the nodeshaRc techniques
of the algorithm are the stepwise decomposition of IDs aedthndard Bayesian
inference methods. After the decomposition an optimalgydior each decision
can be evaluated. Also based on inference of BNs, Xiang afil§¥@1] proposed
a similar method which is as efficient as others mentionegeadmut simpler.
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Besides the approaches using BNs there are other methdudss®&henoy’s
valuation-based networks [Shé92]. More detailed desoriptof these algorithms

can be found in[RNO3, Cro04].

An Abstract Algorithm

According to RNO3] algorithms for evaluating an solution of an ID can be ab
stractly described by the following steps:

1. Instantiate all available chance nogbes(D) for current decision nodb.
2. For each instantiation of decision ndde-= d:

(a) Update the probabilities fgrar(U ) by using any standard probabilis-
tic inference algorithm, whend is a utility node associated witD.

(b) Calculate the expected utilityU (d).
3. ReturnD = d’ if EU(d’) is the highest utility oD, otherwiseD = d.

Normally the evaluation algorithm for finding a solution deéo solve the whole
model by exploring all the possible combinations of decisimdes and chance
nodes. For some situations it may be not necessary for éwajudne whole
model. For example, only a part of some significant infororaimight already
be enough to identify the best choice for the next decisiep.stn this case the
computation will be much faster than in the case when allgediare evaluated.
For instance the todbeNI€J provides algorithms for both policy evaluation and
the best choice calculation.

SOnhttp://genie.sis.pitt.edu/



Chapter 3

A Framework for DSSs

Since the early 1970s, works centered on Iﬂﬁsmnology and applications have
developed significantly. Not only individuals but also wgr&ups, teams and
especially virtual organizations make use of DSSs to sob@sibn problems,
which are appearing in almost any real life applications.

This chapter gives an overview of definitions and categtidma about DSSs
first. Then some significant system requirements and clggewill be pointed
out. Sectioi 312 will propose an abstract framework for D&®spted to proba-
bilistic uncertain knowledge. The framework builds uporuanver of theoretical
and technical foundations (part of them already introdundghaptefP), to deal
with these generic requirements and challenges of DSSs.nérete implemen-
tation of this framework, both at the theoretical level andhe technical level,
will be investigated in detail in the following chapters. cBen[3.3 summarizes
some basis features of the proposed framework, and sharpes towards the
deployment of the framework for building real applicatiaifSSs.

3.1 Definitions, Categorizations and Challenges

Before we introduce some definitions of DSSs, it is meaningfgive a clear in-
terpretation oflecision makingAn abstract view of decision making is to make a
choice among several alternatives. A more sophisticat i that it is a process
of selecting a course of action among alternative choicedtzkhan pointed out
that “making a decision means designing and committing toedeg)y to irrevoca-
bly allocate valuable resource$” [Hol89]. One interestognt in this definition

1n the literature knowledge based systems are sometimesdesad as a synonym for DSSs
because they formalize domain knowledge to enable deamsaking based on mechanized rea-
soning. But we distinguish between KBSs and DSSs by the FadtDSS can be knowledge
driven, but not necessarily so.

41
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is that an actual allocation of resources can be understoddruaking action,
which is obviously not included in the decision making psgeAnother interest-
ing point is the word “irrevocable”, which indicates the eoént importance by
making any decisidh In fact decision making is a process rather than a single
activity.

3.1.1 Definitions of DSSs

There are many definitions of DSSs, but none is universattgpied, because of
the different context information according to the devehlemt, usage, and inten-
tion and so on. Klein and Methlie defined DSSs as follows:

A computer program that provides information in a given doma
of application by means of analytical decision models aredss to
databases, in order to support a decision maker in makingides
effectively in complex and ill-structured (non-prograntsted tasks

KM95].

Druzdzel and Flynn define DSSs in [DFO03] as “interactive catapbased sys-
tems that aid users in judgment and choice activities”. FPqénted out that
“the term DSS remains a useful and inclusive term for mangsypf informa-
tion systems supporting decision makin 97]. In a deyaview, DSSs can
be abstractly described as any method upport decision making. In this
sense, it is not necessary and also impossible to give aeuligfinition of DSSs.
In this work DSSs are simply considered as interactive cdaerguased systems
that support the decision making process.

In spite of no common accepted definition of DSSs we can sumemaome
basic elements of decision problems which must be takereictount when de-
signing DSSs:

¢ Decision makers an agent (or a set of agents) which can make a decision for
a given decision problem. An agent can be a person, a machansodtware
entity. In any decision making process the identificatiodedfision makers
is always the first important step, because all other elesretaited to the
process are dependent on it. There may be many other agetedfby the
decision and each of them has its special role, for exampteadoexperts,
knowledge engineers and so on.

2Some actions can only be recovered without regard to theofwstovery. In contrast some
actions can not be recovered physically, for example a toss. |
3|t means that DSSs must not be necessarily computer based.
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e Decision alternatives and outcomare other essential elements of a deci-
sion. Decision alternatives are available decision ogtiirthe time of the
decision. When a decision maker chooses an alternative, tbas sub-
ject to a corresponding outcome. Decision outcomes are lhetjaally
attractive, therefore a decision maker needs to evaluate tfased on their
desirability. This implies a measure of preferences ovemthHow to do
that was already shown in Section 214.1.

In a formal system decisions can be modeled with variables tlae alter-
natives for each decision can be specified with a domain afegabf the
decision variable. For example in an ID there are decisiatesavith spec-
ified domain values.

e A Decision contextonsists of a decision domain and of a decision situa-
tion. The former concentrates on the conceptual level, edwethe latter
addresses the individual level.

— A Decision domaimeeds to be identified for each decision problem
due to the fact that all decision problems are domain speciiine
important requirement for DSSs is to provide a generic domaodel
(or many models) related to each decision problem. Theseslmod
should be abstract, generic enough for achieving the comessand
reusability.

— A Decision situationneeds to be identified for each decision prob-
lem due to the fact that all decision problems are situatp@tsic. It
means that decision problems vary over situations. Diffedecision
makers differ themselves from situation to situation. Efgera same
decision problem, different decision makers can decidaliiferent
alternatives.

3.1.2 Categories of DSSs

Based on different viewpoints many classifications of DS8svproposed in the
last decade [PowD3]. One approach to categorize DSSs id basdifferent in-
teractive behavior between users and systems to suppastatemaking. They
are either passive or active [CJW98].

e A passiveDSS is a system that aids to support decision making by simpli
fying and reducing non-structured problems to well-defiteesks that can
be predefined in a system without any ambiguity. Most of tradal DSSs
are passive and not adequate for real and complex appheatio
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e An activeDSS is a system that is able to respond to changes or exception
and is able to exhibit goal-directed behavior by taking thgtive, in order
to solve decision problems.

Another approach for classifying DSSs is according to thmidant component
in the system. INJPow0?2] there are five generic types of D88stified:

e A communications-drive®SS is a system that supports decision making
with the emphasis on communications and collaborationmnisdo cooper-
ative and collaborative decision making based on one or grangpware.

e A data-drivenDSS is a system that support decision making with the em-
phasis on accessing to and manipulating a time series ohaltdata or
external data. For example GIS€ographic Information Systejrere data-
driven.

e A document-driverDSS is a system that supports decision making with
the emphasis on retrieval and management of unstructu@dnts in a
digital format.

e A model-driverDSS is a system that supports decision making with the em-
phasis on accessing to and manipulating decision modelat&aormally
constructed by statistical, financial, OBgeration Researglor simulation
methods.

e A knowledge-driverDSS is a system that supports decision making with
the help of a knowledge base. Normally this kind of DSS corebiKBS
and other methodologies for decision making. The frameuwioak will be
proposed in next section, for building DSSs combines theveadge-driven
aspect and others, for example agent-based aspect, serigoéed aspect
and so on (see SectibnB.3).

3.1.3 Challenges of DSSs

A sound DSS must be able to address the following impoxhalienges

Uncertainty As discussed in Sectidn 2.2 uncertainty is one of the mosttiday
challenges in an open and dynamic environment for decisiakimg. Not
only the imperfection of information, but also the uncertaature of cor-
relations between decisions and outcomes, causes undgridherefore, a
good DSS must be able to work under uncertainty.
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Adaptivity Another daunting challenge is the perpetual change in thigan
ment. Therefore, DSSs have to scale up and adapt to changivgedge,
workflow, and operational setting_ [DLD5]. Particularly, adaptive DSS
should be flexible enough so that a decision making procesbeguickly
reconstructed or modified without high cost. From the perspe of sys-
tem engineering, all components of the system should belpasupled,
in order to increase their reusability.

Knowledge ManagementKM (Knowledge Managemaeris a discipline concer-
ned with the representation, processing, distributioniamioving of know-
ledge by humans, machines, organizations and societiesinKh8Ss ap-
pears to be more and more important because decision makagnowl-
edge intensive activity with knowledge throughout the vehacision mak-
ing process: problem identification, data (or evidencehgang, diagnosis
or predication and so on. The more proficient decision madexsn KM,
the more competitive they are within the global knowledgaety [Hol01].

Due to the heterogeneity of information resources the tfeeess and ef-
ficiency of knowledge management can only be ensured whetiesron

the establishment of a common and formal language. The uliffibere

is to select a formal representation language which makeadedff be-

tween expressiveness and tractability, because the mpresstve a formal
language is, the less tractable it is, and vice-versa.

e Expressiveness a schema-level or conceptual level issue for mod-
eling decision processes, models and other relevant kagelen a
better way. The background knowledge behind decision nggiiab-
lems in certain application domain must be expressible.

e Tractabilityis a data-level or individual level issue for providing leett
data exchange, query and integration.

Collaboration To enable decision making to be efficient DSSs must offer & pla
form for collaboration with teamwork of all participatingents in the de-
cision process. A decision maker needs to collaborate Wwikd agents in
getting the knowledge they need and solving decision probliney have,
with careful coordination, cooperation, negotiation amdresynchroniza-
tion of activities. From this perspective, the collabaratmust be designed
into systems from the start and cannot be patched in [ai&9€&3r

Intelligence One of the decisive factors to estimate the support capiabilf a
DSS are its intelligent behaviors. Such intelligences aneexided in the
whole decision making process and in all of the system corepisi for
example knowledge management, algorithms, reasoningcaod. s
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Explanatory The explanatory power of a DSS refers to its ability of exilag
its action. Two characteristics are related to this chgkerransparency

andflexibility [Nak08].

e Transparency refers to the ability of DSSs that the decisiaker or
other users are allowed to have an insight into the undeylgnech-
anism for decision support. A black box for such mechanismsi
desired.

e Flexibility refers to the viewpoint of the Ul{ser Interfacg of DSSs,
because DSSs are highly interactive by the fact that DSSotcen
place humans but rather support them by augmenting theiteldm
computational and cognitive capability. Thereforesar-friendlyand
flexible user interface is very important. Uls are not rigidi open
and flexible for a wide variety of end-user interactions adow to
their divergent demands, for instance interaction viacgjaé, argu-
mentation and so o [DED3].

3.2 A Framework for DSSs

The challenges as discussed above shape up our view towards\telopment of
an advanced and abstract framework for DSSs. It must be alalddress these
challenges in an open and dynamic decision environmenicpkrly with em-
phasis on uncertain knowledge. Tliameworkcan be characterized by different
views: a pillar-based view, a layered view, a decision tagcal view and a pro-
cess view.

3.2.1 The Pillar-based View

As illustrated in Figuré_3]1, a DSS rests on a 6-piffameworkand each pillar
serves as a building block of the system. We can group a#irgilhto two classes
— either theoretical or technical foundations — in the tefiright sequence. The
first four pillars are the theoretical foundations for demismaking.

e Ontologiescan be used to address the challenge of KM in a DSS. As ex-
plained in Sectiol 211 ontologies as a formal methodology feailitate
knowledge representation, acquisition, sharing and exghaDue to bal-
anced expressiveness and tractability of OWL, we use itasitiderlying
KR language for the system and develop ontology-based fabish are at
least compatible with OWL) for KM in the system.
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e BNs are the underlying method for addressing the challefgecaertainty
in a DSS. They can represent uncertain knowledge in a gralphey and
provide inference power in probabilistic reasoning.

e IDs are used as an underlying method for representing decisiodels,
analyzing the models for supporting decision making.

e VKCs (Virtual Knowledge Communitigare used to address the challenges
of collaboration and adaptivity of a DSS. The concept of a Vi&tables
us to model corporate knowledge as the amount of knowledmadad by
individual agents[[MC04]. Additionally, VKCs can enhanc®Kn a DSS
in a distributed way. A detailed introduction to VKCs and theestigation
of integrating VKCs into DSSs will be described in Chajifer 5.

The last two pillars are considered as the most importahtnieal foundations to
implement the system. A simple explanation of these tedgie$ with regard to
a DSS will be given as follows. More detailed descriptionthefdesign of a DSS
based on them will be given later in Chaikr 6.

e The Multiagentparadigm is one of the selected overall technical founda-
tions in DSSs. It is used to address the challenge of systastiigence.
This introducesntelligent agentsas a powerful metaphor in the field of
DSSs. These agents link certain decision problem typestandécision
environment in which they operate. Intelligent agents afendd as agents
capable of autonomous action in situated environment iardemeet their
design objectived [W0099]. They possess the followingdeabaracteris-
tics: reactivity, proactivityandsociability. These basic characteristics make
them suitable as software entities for the delegation afrdi decision mak-
ing tasks and for collaborative work with each other.

e Web Serviceas another selected overall technical foundation in DS&s ar

used to address the challenge of system adaptivity, exjolignpower and
Ul flexibility. We will design the system architecture in whi all com-
ponents are built as web services so that users or systensdggrate
them and perform agent tasks helping users according tousknowledge
sources. The whole system will be developed as a S&#&\ice Oriented
Architecturg, which provides the system with the following featuresde
coupling, implementation neutrality, flexible configurélyj long lifetime

and granularity[[SHU5].

In this work we propose an ontology driven uncertain modeltoBayes, which
integrates BNs and IDs into ontologies, in order to preseifV@dvantages of
them. Based on this integration, a DSS now rests on a 4-gilllamework, as
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Collaboration

Repository

Figure 3.3: The framework of DSSs with a layered view.

illustrated in Figuré312. In the next chapter we will demoate how to integrate
them into OntoBayes based on OWL and how to use OntoBayesdditdting
decision support.

3.2.2 The Layered View

In addition to the pillar-based view, the proposed framdwior DSSs has a lay-
ered view as shown in FiguteB.3. THiameworkconsists of four generic layers:
a repository layer, a management component layer, a cofiibo layer and an
application layer. Each layer has its own functionalitiesl @an communicate
with the layers that are directly adjacent to it. In a bottopnapproach the hi-
erarchical layers construct a system from the back end t@pipdication front
end.

e The repository layeris the lowest layer consisting of different kinds of
repositories. A repository is a place to store and maintata;dit can be
centralized or distributed over a network. Traditionathg lowest layer in
a system is the database layer which has a similar functignslowadays
the trend is to build repositories within the system rath@ntto use sim-
ple databases because more and more information systemstasenply
data-based, but heterogeneous and hybrid. They coveratiffégypes of
information resources such as knowledge, models and ssrgic. Itis im-
possible to store them in a unique database, but it is eadgdsity, store,
maintain and access them through different kinds of reposes.

e The management component layisran important and complicated layer
of the framework. It is the backbone of the system and susthi@ run-
ning system. There are lots of components required to peoditierent
operations and functionalities to the system. From thetpafiview of a
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service oriented system these components must be loosghjecband in-
dependently managed, in order to insure a flexible configlitsabasting
lifetime and granularity of the system. Each managemenfpom@ant pro-
vides its own services that can be used within the system pubéshed
to construct a business process for instance. In this layefiods at least
the repository management which is responsible for aaugsstoring and
maintaining different repositories in the repository laye

e Thecollaboration layeris a virtual place where agents can meet together
and collaborate with each other, in order to facilitate cogape knowledge
acquisition for supporting decision making. The backboithis layer are
VKCs.

e Theapplication layeris the front end of the system. Users or agents will
discover and select services provided by the system to theldown appli-
cations. Applications can be used either within the corgtdinew system
to design different management tools or for third partiegcviare the ser-
vice consumers located outside the system, e.g. a knowledder from
a partner company who wants to access the knowledge reposito

An implementation based on this layered framework will irzdssed and demon-
strated in Chaptéd 6.

3.2.3 The Decision Theoretical View

In order to better understand the abstract framework of D&8swill discuss it
from a decision theoretical viewpoint. This viewpoint hiasee different perspec-
tives: descriptive normativeandprescriptivél [BRT8E].

e Thenormativeperspective focuses on how rational agents (humans or soft-
ware entitiespught to make optimal decisions by using axioms. The main
disciplinary background of this perspective are stasstmathematics and
economics, for example, expected utility etc..

e Thedescriptiveperspective gives emphasis to tingtual way that ordinary
agents are observed to make (rational or non-rationalsaes indepen-
dently of the theoretical axioms, because the cognitivealsdipy of hu-
mans is limited. The main disciplinary background of thisgpective are

4There are some discussion about the different perspeciVede some researchers consid-
ered the normative and prescriptive approaches as the stimee researchers pointed out there is
a fourth approach: the constructive approach, which reéebsiild rationality models for decision
makers from their answers to preference-related quegBMB0€].
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Perspective Characteristics Ways to get decision models
descriptive exogenous rationality, observations and empirical
(actually do or done) generic and context free | findings
normative exogenous rationality, postulate based on a
(ought) generic and context free | priori established norms
prescriptive endogenous rationality, unveil the system of
(could) specific and situation awarevalues of decision makers

Table 3.1: Differences between perspectives of decisidkinga

psychology and behavioral sciencEs [Dil98]. For examle,qualitative
information of BNs is descriptive.

e Theprescriptiveperspective emphasize how agerusild (should and can)
make decisions reflecting the practical domain, i.e. thaisitens are coher-
ent with the decision situation. It selectively fuses thealgtive and nor-
mative perspectives by exploiting the logical consequeiacel the empiri-
cal findings, respectively, but behaves more advantaggouiti some sys-
tematic reflection. Generally this approach aims to dev&dopniques and
aids for supporting and improving human decision makin@&x[Saro4].
The main disciplinary background of this perspective amerafon research
and management science.

According to the descriptions above ahd [BMIF] we can summarize the main
differences between these approaches in Table 3.1.

The frameworkproposed in this section fuses all of these three perspmsctiv
to provide high performance DSSs. Two important buildingckk, BNs and
IDs are both descriptive and normative. Another one, ogiel which will be
used to facilitate knowledge management in a DSS, is morerigése, because
most decision relevant knowledge is descriptive, for eXamgecision models
and processes. In the collaboration layer we can utilize ¥k&Cgather context
aware and decision situational information, in order teegagents more practical
decision support with a prescriptive approach. Therefotg,framework has a
hybrid decision making approach.

3.2.4 The Process View

Generally a DSS can provide two levels of decision suppb#,low and high
levels:

e Thelow Levelsupportregards a DSS more as a query system which can pro-
vide information according to the queries. Decision makiesloying this
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. processing
input » output

low level: query answer
high level: decision solution _
problem recommendatior

Figure 3.4: Two levels of decision support with an inputgautview.

kind of support normally are dealing with some simple decigproblems
that can be solved directly or with minimal analysis effdiysthemselves.

In this level ontologies play a key role, because most qaerie for knowl-
edge acquisition and can be easily answered with ontolbggegoning.
Due to the uncertainty factor, it is also possible that asienimaker wants
to know some probabilistic information. The probabilityegies in a DSS
can be answered by using BNs, but they still belong to onto&bgjueries
because of the integration of BNs and ontology with OntoBaye

e Thehigh levelsupport regards a DSS more like a decision analytic system
which can recommend solutions according to the decisioblenes via an-
alyzing and forecasting of the current and future envirommBue to their
limited cognitive and computational capability, humaniden makers are
not able to solve complex decision problems (under limitee}, therefore
they need such a high level support with decision analysis.

In this level normative decision theory (consisting of IPsybability theory
and utility theory) plays a key role because it is the undegdydecision
analytic methodology in a DSS with probabilistic uncertiamowledge.

In Figure[3:4 we illustrate these two levels with an inputpat view. The box
between the input and output refers to the processing in 8®.0he low level
support is so simple and intuitive that it does not need toxdpéagned any more.
On the contrary the high level support is more complicatechbse it includes
a dynamical decision analysis process. Inspired by thesdecanalysis cycle
[HaI89] and Simon’s model of the decision procdss [Sim60Jsptt thedecision
analysis processto the following phases corresponding to Figurd 3.5:

1. Basis developmeris the first phase of the process. Broadly speaking, the
termbasisrefers to all basic information related to a decision probl@he
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Real
Decision
Problem

basis refinement

Figure 3.5: A decision analysis process.

following steps are required for such information gathgrin

(a) Identify the context of the decision problem, i.e. theigsien domain
and situation (as described in Pageé 43).

(b) Identify decision makers and other participants in thecpss (e.qg.
domain expert and knowledge engineer).

(c) Identify or develop the decision model. In DSSs a deaisitodel
is a formal model of a decision problem in a comprehensivenfor
e.g. models represented in IDs and encoded in OWL. In thetbase
the system can identify a formal decision model for a givetisien
problem in its model base, the analysis process goes directhe
next step, otherwise it is required to develop a formal decismodel
with the help of domain experts and knowledge engineers.

(d) Identify the decision analysis method. When the systdentifies
which formal model it can use for solving the problem, it cdentify
the corresponding analysis method, i.e. which reasonidgezalua-
tion method can be used for analyzing this model. Parsingmibe!-
ogy of the model will be involved in this step, in order to idi&nthe
formal model based on predefined upper ontologies.

2. Analysis the second phase in the decision analysis cycle, condist® 0
following two steps:
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(a) Deterministic analysigims to reduce the size of the original model
by eliminating unimportant variables or identify more exide via
similarity analysis. In this step more domain-specific kfemge to
determine the ranges on some variables is required. It esthat we
take explicit advantage of ontologies via incorporatinttgnype into
BNs and IDs.

(b) Probabilistic analysisonsists of (1) probabilistic and risk-attitude as-
sessment, and (2) policy evaluation. The first task depemdsgly
on the decision context (the domain and the situation) osgexific
decision maker’s problem. The second task is the centrilitathe
analysis phase where we can take advantages of utilizingnmoax
expected utility.

3. Recommendatigrthe third phase in the decision analysis cycle, gives a
report of the analysis results to the decision maker. Su@part includes
a recommended solution or a ranking of alternatives for geesibn maker,
and when necessary, with explanations.

4. Decision phasés the phase where the decision maker makes a choice not
only based on the recommendation of the system, but alsogdke fea-
sibility of the recommendation into account. The final dexiswill be re-
turned to the system for basis appraisal.

The steps as described above are interrelated and can latagps needed through-
out the process.

3.3 Features of the Framework

After the detailed description of the proposed framewoikvalwe can summarize
some basideaturesas follows:

Ontology-driven From the integrated view in Figufe_B.2 we can see that the
framework is ontology-driven, because after the integratvith OntoBayes,
the whole KM in the system is ontology-based. VKCs as digted KM
are also ontology-driveh [YCO6b]. The decisive point of Kiitis knowl-
edge representation, because the development of otherooemis of KM
depends on the selected methodology of KR. Based on the gedpgame-
work, all knowledge (include uncertain knowledge) of DSSskas use of
OWL as the underlying KR language. Therefore all knowledygerisive
activities must be ontological.
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Agent-based One of the selected basic technical foundations is MM&I{j Agent
Systemy(see Figur€3]1). It means that the framework will be immated
under the multiagent paradigm; therefore it is agent-based

Service-oriented Another technical foundation is SOA. It means that the frame
work will be implemented under Web Services paradigm, tioeeeit is
service-oriented.

Uncertainty adaptive Introducing BNs into the framework allow DSSs to deal
with probabilistic uncertainty in a mathematical sound wiagrefore it is
adapted to uncertainty.

Decision-analytic Incorporating BNs and IDs into the framework make the uti-
lization of the principles of decision theory, probabilibeory, and decision
analysis to decision problems possible. Systems basedese firinciples
are decision analyti¢ [DF03].

In principle the framework is generic and flexible enoughéaised for a variety
of design decision problems. The basic features as meutiaheve shape up
views towards the deployment of the framework for buildieglrapplications of
DSSs, for example the application domain of catastroph&ramee (see Section

63).
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Chapter 4
The OntoBayes Model

In the last chapter we introduced some important challeofi@S$Ss and proposed
an abstract framework to address them. The building bloékbkeoframework
based on four pillars (as theoretical and technical fouoda} were illustrated in
Figure[322. Among these pillars, the one called OntoBayd¢kdsmost impor-
tant and considered as a core model of the proposed frame®atkBayess an
ontology-driven uncertainty model, which integrates BNd &Ds into ontologies
for preserving the advantages of them. OntoBayes is devotaddress the fol-
lowing challenges of DSSs: uncertainty, knowledge managerwith emphasis
on knowledge representation), specification and develapwigformal decision
models for decision analysis. In this chapter, the OntoBagedel will be intro-
duced and completed based on the previous wrks [¥ICO5, Y (OEa60].

The motivation of the research effort about OntoBayes wiljlven in Section
B, as well as a simple overview. Afterward integrating Bite OWL will be
investigated in Sectidn4.2. This section is the main pathisfchapter, because
it solves the problem of incorporating uncertainty into @Beiyes which is one
of the main purposes of this doctoral work. In Secfion 4.3 vilkimwvestigate the
integration of IDs and OWL. At last a survey of related works ihcorporating
uncertainty and ontology will be given in Sectionl4.4.

4.1 Motivation and Overview of OntoBayes

A key reason for using ontologies in DSSs is that they endlgledpresentation of
background knowledge about a domain in a machine undeséntbrm. After
the introduction to ontologies in Sectign .1 we knew themfeature of on-
tologies is that they can excellently represent the orgaitiaal structure of large
complex domains. But their application is bounded becatiskeeir inability to
deal with uncertainty [KP98].

57
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In order to allow agents to work with uncertainty, an extensof ontologies,
which has the capability of capturing uncertain knowledigewt concepts, prop-
erties and relations in domains and of supporting reasomitiginaccurate infor-
mation, is mandatory. Along this direction, researchexl@tempted in the past
to use different non-probabilistic and probabilistic metblogies for incorporat-
ing uncertainty into ontologies. In Sectibn?.2 it was dateat the uncertainty
modeling in this work will follow the probabilistic direain, because “the only
satisfactory description of uncertainty is probabilitifin87]. As discussed in
SectioZB BNs have the excellent ability to represent daiteknowledge in a
sound mathematical way. But they are very limited becaudbef inability to
represent complex structured domains.

Comparing the main advantage and disadvantage of BNs aontbgi#s it is
obvious that they can complement themselves via a soundinatign aiming at
taking advantages of both. This is one of the key reasongémgsing OntoBayes
— an integrated approach for building the domain knowledgayents, including
certain and uncertain knowledge.

Besides domain knowledge related to decision problemsitage DSSs still
need (formal) decision models to support them when makimgsaa. As de-
scribed in Sectioh 214 the methodology of IDs has the extidikility to represent
decision models in a graphical way and to analyze them wittihemaatical algo-
rithms. Therefore, to complete the task of decision makumgpsrt, OntoBayes is
extended with the integration of IDs. The reason for sebgciDs is that there are
natural links between IDs and BNs as explained in Se¢fidaadiZ.B. Users can
easily construct decision models by using IDs based on Bistal their similar
structures.

Overview of OntoBayes

Abstractly the OntoBayes model is designed with two part&newledge part

and a decision model part. The former is an integration abgeand uncertain

knowledge based on ontologies and BNs respectively, windéatter can describe
different decision models based on IDs.

In order to facilitate the use of OntoBayes in DSSs, paridylto facilitate
the share and reuse of knowledge and decision models fosideanakers, a
formal language for representing the knowledge part anddoesion model part
is necessary and important. We make use of OWL as the undg#R language
for OntoBayes. Therefore the design of OntoBayes must béemgnted based
on OWL. For that, we need extend OWL with the features of BN&1&rs. In the
following sections we will describe these extensions iratet
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4.2 The Extension of BNs

The first step for building the OntoBayes model is to extends BNOWL. Ac-
cording to Definition[ZB, the extension of BNs follows tworgeectives: the
qualitative and quantitative perspective. But before $tigating the extension
according to these perspectives, it is significant to ektitae essentials of BNs
at a high and general level with an upper ontology. The uppéslogy will be
considered as the underlying abstract specification foBHyesian extension.

4.2.1 An Upper Ontology

In SectioZ. TR it was pointed out that ontologies can begmatzed into different
levels with regard to their generality. At the highest andstrabstract level it is
upper ontologies which are used to refer to top-level omgfiel®in this work.

In Figure[4.1 a simplified view of an upper ontology is illegtd to capture the
essentials of a BN. The graphical notions used here are loastbe RDF-Triples
as shown in FigurEZ2.2. Ellipses with solid line represertblmgical concepts,
whereas ellipse with dashed line represent predefined XNiersa datatypes.
Each arrow with a label indicates the relationship between ¢concepts. The
numbers on the label are the cardinality constraints.

This figure introduces the very general and commonsensesptsiand their
properties in the Bayesian world. As mentioned above therévweo perspectives
in the Bayesian world: the qualitative and quantitativespective. In the figure
we make use of two boxes with dashed blue edges and green tedgasie the
gualitative and quantitative information in the upper dogy, respectively.

From the qualitative perspective a BN consists of a numbehahce nodés
As depicted in the figure there is a red arrow with a lab¥lendsOn associated
with chance nodes. It indicates the only relationship betwdifferent chance
nodes — the (statistical) dependency. Every chance nod8Mhia either condi-
tional or unconditional depending on whether it dependstbarachance nodes or
not. A chance node is a discrete variinich has a domain of finite and mutu-
ally exclusive states. In this work the domain is simplifisdize datatypetring.

A chance node is an evidence node when it is instantiatedamittbserved state.

From the quantitative perspective each chance node of a Bésigned with at
least one corresponding joint probability distributiont bnly one distribution is
set asactive. This active distribution will be used as a default disttibo when

In place of using the more common term “nodes”, here we makesofithe term “chance
nodes”, because it can facilitate to extend BNs to IDs whiaksify nodes into three types: chance
nodes, value nodes and decision nodes.

2As mentioned in Chapt&t 2 we consider that all nodes of a BNércbntext of our work have
only discrete domain of values, in order to facilitate the&sian extension in OWL.
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hasPcCell
1.*

- xsd:stri—né‘ R hasPValue -~~~ -

“_ _ xsd:float
T T 1 1 1 1 -7
Q owl:Class —  owl:Property
’:::::' XML schema datatype —= rdfs:subClassOf

Figure 4.1: The simplified upper ontology for specifying Bayan Networks in
OWL.

executing a reasoning mechanism on the BN. As depicted inr&ig.l proba-
bility distributions in this work are represented in therfoof probability tables.
Therefore each such distribution consists of a number ¢é tedlls: ProbCell.
Each cell contains two elements: a parameter for one of asipte instantia-
tion combinations oK |par(X) (see Section2.3.2) of the given Bayesian variable
X and a corresponding probability value. In the case that acghaode has no
parent it is simply a possible instantiation ¥f Such a parameter and its prob-
ability value will be specified as the datatypesafring andfloat (between O
and 1) in OWL, respectively. As described in Tablel 2.2, theme nine instan-
tiation combinations foP(PremiumRiskCoverage For example the parameter
of the instantiatior?(Premium= high|RiskCoverage- high) = 0,2 is the string
“Premium=high|RiskCoverage=high” and its corresponding probability value
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Concept Name | Annotation in OWL |
BayesianNetwork <owl:Class rdf:ID=‘‘BayesianNetwork’’>
ChanceNode <owl:Class rdf:ID=‘‘ChanceNode’’>
CondNode <owl:Class rdf:ID=‘‘CondNode’’>
UncondNode <owl:Class rdf:ID=‘‘UncondNode’’>

JointProbDist <owl:Class rdf:ID=°‘JointProbDist’’>
CondProbDist <owl:Class rdf:ID=‘‘CondProbDist’’>
UncondProbDist | <owl:Class rdf:ID=‘‘UncondProbDist’’>
ProbCell <owl:Class rdf:ID=‘‘ProbCell’’>

Table 4.1: Concepts and their annotations used for the Bayextension in
OWL.

is the float value ¢.2”".

The graphical notations simplify the description of BNst tan not fully ex-
press the complete specification in OWL, for example theraxiar constraint) of
the disjointness between the concepisdNode andUncondNode. In order to de-
scribe the upper ontology more detailed and explicitly, atagtical specification
of OWL annotations is required.

| Property Name | Annotation in OWL |

consistsOf <owl:0ObjectProperty rdf:ID="consists0f">
hasCondTable | <owl:0bjectProperty rdf:ID="hasCondTable">
hasUncondTablé <owl:0bjectProperty rdf:ID="hasUnCondTable">
dependsOn <owl:0ObjectProperty rdf:ID="dependsOn">
hasActiveP <owl:ObjectProperty rdf:ID="hasActive">
hasPCell <owl:ObjectProperty rdf:ID="hasCell">
hasObserved | <owl:DatatypeProperty rdf:ID="hasObserved">
hasDomain <owl:DatatypeProperty rdf:ID="hasDomain">
hasPParameter | <owl:DatatypeProperty rdf:ID="hasParameter">
hasPValue <owl:DatatypeProperty rdf:ID="hasPValue">

Table 4.2: Properties and their annotations used for Bagesttension in OWL.

The OWL annotations for all important concepts and propsrimodeled in
the upper ontology are specified in Tablel4.1 4.2. Thef@itstconcepts in
Table[4.1 are used for specifying the qualitative part of g ®Nereas the others
for specifying the quantitative part. Talle .2 contairisobject and datatype
properties used in the upper ontology. The detailed deasmnipf each OWL
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class and property of the Bayesian extension will be givejgpendix[A] and

4.2.2 The Qualitative Extension

The most basic step to construct the qualitative part of a$3id specify random
variables of the BN in an ontology explicitly as well as alp@adency relations
between them, because of the following reasons:

e The dependency relations are not automatically specifieehwhodeling
ontologies.

e The dependency modeling can indicate which random vasadke depen-
dent. It means that BNs can be easily extracted from an ayydiased on
this specification.

e A common dependency modeling method is more applicabledltimmain
specific method like the one proposed in Ding’s work [20] wwhioakes
use of BNs to overlap different ontologies over a single domén order
to reach this goal Ding and Peng design some set-theorgiroagh based
rules for dependency modeling within the original languddewever these
rules can not satisfy the requirements of our model, whiotsait facilitat-
ing probabilistic reasoning to support decision makingarnghcertainty.
We need a more generic dependency modeling than the setticeap-
proach.

In order to solve the problems just mentioned we introduceaditional prop-
erty element<owl:0bjectProperty rdf:ID="dependsOn"/> to markup de-
pendency information in an OWL ontology. Before we give arfat definition of
dependency in OntoBayes, we introduce some notations vanemfluenced by
the Object Oriented Programming (OOP) approach. We dematbjact property

o between a domain clagé and a range clasgé aso(X,Y). It is considered as
an available operation of the subject clagso the object clasy . A datatype
propertyd of the classX will be denoted a¥X.d, whered is considered as a class
attribute ofX. Now we can define a dependency relation between two preperti
in an ontology as follow.

Definition 4.1 A dependency is a pair X» Y, where each of X and Y is either a
datatype property X or an object property 0X,Y). Itis read as “X depends on
Y”.

3The entire OWL encoding for the upper ontology of BNs is to derfd under the web link
http://iaks-www.ira.uka.de/home/yiyang/DSS/UpperOntologies.
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This definition clearly points out that each Bayesian vdeiab the OntoBayes
model is either an object property or a datatype propertye fain reason for
using properties to model random variables in an ontolagyed BN is that they
enable more precise context modeling than those introdad®¥€05,[GHKPO4].
Context information can be delivered based on the natursradi structure be-
hind an object or a datatype property — a RDF-triple whichststs of a subject,
a predicate and an object (see Seclion P.1.3). These cantesthation provide
the following features:

e To avoid possible errors when extracting a Bayesian stra¢tam ontolo-
gies.

For instance, in the application domain of catastropherarsze we model
two object propertiesiveIn andLocatedAt associated with the domain
classPerson. These properties have the same range dlasstion. The
object propertyLiveIn(Person,Location) indicates the permanent of-
ficial address whil&ocatedAt (Person,Location) stores the present ad-
dress. Another clas&turalDisaster in the example has a datatype prop-
ertyOccurrenceProbability. If we directly define that the datatype prop-
ertyOccurrenceProbability depends on the ontology concéptation,
then insurance companies can not distinguish the occlenamdability of

a natural disaster between customer’s resident locatidraetual location.
In fact they only care about the occurrence probability atrésident loca-
tion of a customer, because there are the real propertggstfe house) to
be insured. To avoid such confusion by modeling we decidpe¢aify de-
pendency between properties, not between classes. Therefccord with
the notations described above, the correct dependencylimgptere for the
datatype propertyaturalDisaster.OccurrenceProbability should be
that NaturalDisaster.OccurrenceProbability depends orLiveIn-
(Person,Location).

e To facilitate agents to find executable actions as well atsituct their
decision models (i.e. IDs) from the Bayesian knowledge.

There are two kinds of Bayesian variables in OntoBayes:tylaggproper-
ties or object properties. Datatype properties will notddest into account,
because they are more like attributes to their associatsgdets and not exe-
cutable. On the contrary agents or users can selectivelyecoobject prop-
erties into decision nodes according to their executgbifior example the
object propertie8uy (Customer,Product) andSell(Provider, Prod-
uct) as Bayesian variables can be considered as two executdliasac
for a customer or an insurance agent, respectively, be¢hageenable to
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<owl:Class rdf:ID="Product.Premium">
<owl:Restriction>
<owl:onProperty>
<owl:0bjectProperty rdf:ID="dependsOn"/>
</owl:onProperty>
<owl:hasValue rdf:resource="#Product.RiskCoverage"/>
</owl:Restriction>
<rdfs:subClass0f>
<owl:Class rdf:ID="CondNode"/>
</rdfs:subClass0f>
</owl:Class>

<rdfs:subClass0f>
<owl:Class rdf:ID="UncondNode"/>
</rdfs:subClass0f>
</owl:Class>

Figure 4.2. A partial OWL encoding for specifying the Bayasivariables
Product.Premium, Product.RiskCoverage and the dependency between them.

express actions formally and naturally in the form of “antesubject-verb-
object”.

FigurelLP? shows the encoding for the dependency denoftamuct Premium—
ProductRiskCoveragé OWL. The partial encoding indicates that the Bayesian
variablesProduct . Premium andProduct.RiskCoverage are subclasses of the
class (of the upper ontologgpndNode andUncondNode respectively. More de-
tails are illustrated in Figufe4.8 in Sectibn4]2.5.

4.2.3 The Quantitative Extension

The qualitative extension of OWL alone is not enough for niedeour ontology-
driven BNs. It is required to specify Bayesian variabledwéissociated quantita-
tive information, namely probability tables. For this pasg we define four OWL
classesiincondProbDist, CondProbDist, JointProbDist andProbCell. AS
described in Section4.2.1 the first two classes are definatktify the uncon-
ditional probability and the conditional probability resgively. They are sub-
classes offointProbDist and disjoint.JointProbDist has an object property
hasPCell associating another claBsobCell.

Table[4.B and Figure—4.3 are used to analyze the represemti#tan uncon-
ditional probability table in an ontological way. Accordito them we know that
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| ProbCell | hasPParameter(xsd:string) | hasPValue(xsd:float)|

cell .1 Product.RiskCoverage=low 0.2
cell .2 Product.RiskCoverage=midd|e 0.5
cell.3 Product.RiskCoverage=high 0.3

Table 4.3: The unconditional probability table for the Bsig@ variable
ProductRiskCoveragéa datatype property).

<owl:Class rdf:ID="Product.RiskCoverage">
<UncondProbDist rdf:ID="table_1">
<hasPCell>
<ProbCell rdf:ID="cell_3">
<hasPParameter rdf:datatype="#string"
>Product.RiskCoverage=high</hasPParameter>
<hasPValue rdf:datatype="#float"
>0.3</hasPValue>
</ProbCell>
</hasPCell>
<hasPCell>
<ProbCell rdf:ID="cell_2">
<hasPParameter rdf:datatype="#string"
>Product.RiskCoverage=middle</hasPParameter>
<hasPValue rdf:datatype="#float"
>0.5</hasPValue>
</ProbCell>
</hasPCell>
<hasPCell>
<ProbCell rdf:ID="cell_3">
<hasPParameter rdf:datatype="#string"
>Product.RiskCoverage=1low</hasPParameter>
<hasPValue rdf:datatype="#float"
>0.2</hasPValue>
</ProbCell>
</hasPCell>
</UncondProbDist>
</owl:Class>

Figure 4.3: The partial OWL encoding for the unconditionedlgability table
illustrated in TabléZ]3.
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‘ ProbCell H hasPParameter(xsd:string) ‘ hasPVaIue(xsd:roat)‘
cell_.1 | Product.Premium=lojProduct.RiskCoverage=low 0.6
cell.2 || Product.Premium=loyProduct.RiskCoverage=middle 0.3
cell_3 || Product.Premium=IloyProduct.RiskCoverage=high 0.1
cell.4 | Product.Premium=midd|Broduct.RiskCoverage=low 0.2
cell.5 || Product.Premium=midd|Eroduct.RiskCoverage=midd|e 0.5
cellL.6 || Product.Premium=midd|Eroduct.RiskCoverage=high 0.3
cell.7 || Product.Premium=higRroduct.RiskCoverage=low 0.1
cell.8 | Product.Premium=higRroduct.RiskCoverage=middle 0.2
cell.9 | Product.Premium=higRroduct.RiskCoverage=high 0.7

Table 4.4: The conditional probability table f&Product PremiumProduct-
RiskCoverage

the Bayesian variablBroduct .RiskCoverage has an unconditional probability
table which is an instanceable_1 of the clasJncondProbDist. This instance
is associated with three instances of the classCell via the object property
hasPCell. They arecell 1, cell 2 andcell 3. Each cell consists of a param-
eter and a probability value.

The conditional probability table can be constructed inmailsir way as the
unconditional one. Table4.4 and Figlrel4.4 are used to aedhe representa-
tion of a conditional probability table in an ontological yaAccording to them
we know that the Bayesian variali@oduct .Premium has a conditional prob-
ability table which is an instanceable_2 of the classCondProbDist. This
instance is associated with nine instances of the d¢lassCell via the object
propertyhasPCell. They arecell 1, cell 2, ... andcell 9. The illustrated
encodings in FigurE4.4 is not complete because it contailystavo of the nine
table cells:P(Product Premium= low|ProductRiskCoverage- low) = 0.6 and
P(ProductPremium= high|ProductRiskCoverage- high) = 0.7. The other se-
ven can be similarly encoded.

The encodings in Figule4.4 and in Figlirel 4.3 are so simikrttiere is al-
most no differences between them, because we simplify thé Gpécification
for parameters of table cells with XML schema datatgpeing. Based on this
simplification, the modeling of probabilistic informatiam an ontology is easier
and more efficient (we will discuss some related works in i8e@.4 to show
this feature). The only difference here is the class “inticaCondProbDist and
UncondProbDist that can identify whether a probability table is conditiboa
unconditional.

For all cells of a conditional table, we need parse theirpatars. Therefore,
we implement a small parser to analyze the parameter of et ¢ell, in or-
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<owl:Class rdf:ID="Premium">
<CondProbDist rdf:ID="table_2">
<hasPCell>
<ProbCell rdf:ID="cell_1">
<hasPValue rdf:datatype="#float"
>0.6</hasPValue>
<hasPParameter rdf:datatype="#string"
>Product.Premium=low|Product.RiskCoverage=low>
</hasPParameter>
</ProbCell>
</hasPCell>
<hasPCell>
<ProbCell rdf:ID="cell_9">
<hasPParameter rdf:datatype="#string"
>Product.Premium=high|Product.RiskCoverage=high
</hasPParameter>
<hasPValue rdf:datatype="#float"
>0.7</hasPValue>
</ProbCell>
</hasPCell>
</CondProbDist>
</owl:Class>

Figure 4.4: The partial OWL encoding for the conditionallpability table illus-
trated in Tabl€4l4.

der to make it suitable for Bayesian reasoning accordingayeB’ theorem (see

EquatioZD).

4.2.4 The Graphical Representation

The presentation of the knowledge part of OntoBayes was rsddiae through
some sort of markup language in OWL. There is, in addition;aglgical repre-
sentation. There are in fact two graphical models in the kedge part of On-
toBayes: an OWL and a Bayesian graph (or network) models. fGimeer is a
directed graph which is built on the graph data model of RBH|lastrated in
figure[Z2, and additionally has a markup of dependencyioelabetween prop-
erties. This graph model can visualize all possible infaromaof a specified
ontology such as the class hierarchy or the dependencioreddor instance. But
it exhibits so many different relations that it is challemgjto visualize any signifi-
cant overview of such graphs in realistic cases. Thereferextract the Bayesian
graph model from this model, in order to clearly show the dejeacy relations
which are more interest for decision makers. These two nsazhel be also dis-
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Figure 4.5: The graphical representation for a generic nlggecy triple.

tinguished through their nodes. Indeed, while the nodesarWL graph model
only consist of classes and datatypes, the nodes in the Bayg=ph model are
properties.

The underlying structure of any expression for BNs in Onigd3ais also a
collection of triples, each consisting of a subject, a pratsi and an object, where
the predicate is constantly the dependency relatéprendsOn and the subject and
object are either an object properties or a datatype prpjentn the ontological
knowledge. Such a triple is calledd@pendency tripleThere are two differences
from an RDF triple in the graphical representation. The @iret is that we omit the
predicate as a label of an arc because the predicate hergiguithe second one
is that the arrow of arcs is not from subject to object, butfrabject to subject,
because the intuitive meaning of an arrow in a properly cangtd network is
usually thatX has a direct influence on [RNO3]. We illustrate it in Figur€&4l5 as
opposed to a generic RDF triple in figurel2.2.

We can simply construct an OWL graph model with the help of Ridid
dependency triples. FiguEe#.6 shows some concepts andtioperties as well
as the relations in the domain of insurance and natural teéisaghe ellipse is a
graphical notation for OWL classes and the rectangle is @sedata types. A
label on an arrow line refers to a property. The dashed lindatsathe influence
relation. For examplé&roductPremium— Buy(CustomeProduct) means the
premium of a product has influence on a purchase action. nafainfluence
relation is an inverse property of a dependency relation.

Using dependency triples we can build a Bayesian graph ninydéle follow-
ing simple rules.

e First we extract all dependency triples from an OntoBayeslogy and
represent them separately according to fifurk 4.5.

e Next, all triples will be merged: all nodes with a same idéertiare com-
posed into one single node. For example, if there are twies#— B and
B — C, they can be merge into a Bayesian Network with only one ridde
suchasA— B — C.

In figure[4Y we illustrate the BN extracted from Figlirel 4.6heTellipses are
Bayesian variables and the dashed lines specify the inffusziations between
them.
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Figure 4.6: The OWL graph model for an insurance ontology.
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Figure 4.7: The Bayesian graph model extracted from theamse ontology.
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4.2.5 Construction of the Knowledge Part

The upper ontology illustrated in Figuie .1 can be used idegthe develop-
ment of domain specific BNs. The underlying OWL file for encaygthis upper
ontology will be published through an URI for making its agsérom users (par-
ticularly for domain experts and knowledge engineers) iptsand easier. Users
can import the file to another OWL file in which they can spedhg domain
specific Bayesian knowledge by using Protégé. After irtipgiit there are many
predefined concepts for creating domain specific Bayesiaablas and probabil-
ity tables. As described in the last sections all domainifipdgayesian variables
are subclasses of the predefined classceNode and all probability tables asso-
ciated with them are composed with instancegaifntProbDist andProbCell.

Figure[4.8 depicts how to use this upper ontology to consttomain specific
Bayesian knowledge. According to this figure it is clear tinat knowledge part
of OntoBayes consists of ontological knowledge (the yeltmne) and Bayesian
knowledge (the blue zone). They are related to each otherei@hy if we want to
build Bayesian knowledge in Ontobayes, we need to builddimsdlogical knowl-
edge. Based on the ontological knowledge we can furthertxarisBayesian
knowledge. The Bayesian upper ontology is at the highest lawhe whole ap-
plication, from bottom to top. As shown in Figure 4.8 we wamtcbnstruct the
Bayesian domain knowledge for the application of catastedpsurance. We can
do that directly with the help of the upper ontology, but theeyBsian knowledge
could be more sound and factual when we build it upon the gredidated onto-
logical knowledge (e.g. from domain experts). AccordingHis idea a Protégé
plugin, OWLOnNtoBayess implemented for building the Bayesian knowledge in
OntoBayes. The plugin allows the user to construct a BN ieagent with the
given upper ontology via drag and drop interfdce [Her07].

4.3 The Extension of IDs

Decision models are comprehensible for agents, only whenglovide a seman-
tic understanding of their structure and sound syntacsipactification behind the
semantics. As mentioned before we make use of IDs as the lymdetheory
for the decision model part of OntoBayes due to their exoeligaphical expres-
siveness and their understandability. In this section wedemonstrate how to
integrate IDs into OntoBayes in an ontological way. But befthat, it is mean-
ingful to extract the essentials of IDs at a high and genenallwith an upper
ontology, which will be considered as the underlying alzstspecification for the
OWL extension.
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4.3.1 An Upper Ontology

In Figure[4.® a simplified view of an upper ontology is depicte define an ID.
The graphical notations used here are similar to them ibitestl in Figurd_4]1,
but have three types of arcs more. This figure introduces ¢ng general and
commonsense concepts and their properties in the world &f iBccording to
Definition ZI8, an ID consists of three type of nodes: deaisiodes, utility
nodes and chance nodes. The relations between them ar¢edeipi¢che figure
as three arc types: informational arcs (the green arrowitional arcs (the red
arrow) and functional arcs (the yellow arrow). The nodes arc$ between the
nodes together build the core of the upper ontology. Moraildetbout them were
introduced in Sectiof2.4.

This upper ontology is more complicated that the one for BBIst there are
a lot of similarities between them, due to the fact that imgiple an ID can be
seen as an extension of a BN with two additional kinds of nodesision nodes
and utility nodes. From this perspective each chance notlesiinas exactly the
same specification as the chance node illustrated in Flgdkeparticularly the
specification for probability tables associated to eaclnchanode. Indeed we
take over the quantitative part of Figurel4.1 to specify thee information of
chance nodes in IDs. In this section we will focus on the OWtessgions for
decision nodes and utility nodes.

As depicted in the upper ontology each decision node in and®dxactly
a set of alternatives that is simply labeled in an XML Schem@ypestring.
The difficult task for completing the specification of decisinodes is to deal
with the informational arcs which links other nodes into @id®n node. Such
informational arcs are colored in green. As depicted in L9 there are only
two types of nodes having informational arcs: decision sated chance nodes,
because of the formal definition of IDs. In OntoBayes makingeaision in a
given decision model equals choosing an alternative forcasuben node of the
model. The informational arcs related to this decision nagay all information
resources that should be observed when making the decibiaine context of
chance nodes these nodes will become evidence nodes t@tissoth node. And
in the context of decision nodes these informational arosbeaused to indicate
the sequence of all decision nodes in the decision model.

Similar to a chance node, each utility node is associateld aviet of tables,
not for specifying probability but for specifying utilityOnly one utility table is
active and will be taken into account when evaluating theBBch utility table
consists of a number of table cells which can be constructed ianalogous way
to the cells of a probability table. The main difference hisrthe XML Schema
datatypefloat will not be restricted between 0 and 1.

The graphical notations simplify the description of IDsf{ ban not fully ex-
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Figure 4.9: The simplified upper ontology for specifying IDOWL.
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press the complete language specification. In order to itbesitre upper ontology
more detailed and explicitly, syntactical annotations WIOof IDs are required.

The entire annotations for all important concepts and ptagsemodeled in
the upper ontology are specified in Tablel 4.5 4.6, reispéct We need to
point out that the three important arc types — informatiprainditional and
functional — will be specified as object propertiesknownBy, influenceOn
andattributeBy in OWL, respectively, wherénfluenceOn is an inverse ob-
ject property ofdependsOn specified in the Bayesian extension.

The detailed description of each class and property of thé.@¥tension for
IDs will be given in AppendiX’AB an

4.3.2 Using the upper ontology

In this subsection we will investigate how to use the uppéology (introduced in
the last section) for representing IDs in OWL formally, wetimphasis on decision
nodes and utility nodes. A simplified ID describing a decaisioodel for buying
a catastrophe insurance product is illustrated in Figut8.4The used graphical
notations are almost the same as that used in Sdciibn 2.4na&imedifference is
that arcs in the figure are colored to distinguish the thréerént types of them.
There are two dashed green arcs. They are used to indicateotfargetting
assumption in IDs as mentioned in Remiark®.20.

As specified in the upper ontology each decision node justsiEeremember
which nodes are informational related to itself directtyneans that the decision
nodeD; don’'t need to remember what the decision nBg€i # j) observed. But
according to RemaikZ119 we knew that there is a directedthatiighout all de-
cision nodes. It means that all decision nodes in an ID araesdd@l. Therefore
agents can find out the sequential relation between deaisidesD; andD;. Un-
der the known decision sequence information observed &&i@n be transfered
to the later decision node. For example the decision Dedésion n in the fig-
ure has all information observed at the decision n@&l8g Customer ,House)
and Buy (Customer,Product). In Figure[41l we can identify these informa-
tional arcs and knowledge associated with them through & @nnotation
isKnownBy encoded in the specification of these two decision node.

In Table[4Y a utility table for the utility nod82 is specified. The utility
values are represented in different integer numbers. Framsrio plus they re-
flect the preferences of all decision choices in the tablenflow to high. For
example, under the conditiodfroduct.Premium=1ow, the decision alternative
Buy (Customer,Product)=yes has the lowest utility-100 and will be not pre-

4The entire OWL encoding for the upper ontology of IDs is to barfd under the web link
http://iaks-www.ira.uka.de/home/yiyang/DSS/UpperOntologies.
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Concept Name \ Annotation in OWL

InfluenceDiagram <owl:Class rdf:ID=‘‘InfluenceDiagram’’>
DecisionNode <owl:Class rdf:ID=‘‘DecisionNode’’>
UtilityNode <owl:Class rdf:ID=‘‘UtilityNode’’>
UtilityTable <owl:Class rdf:ID=‘‘UtilityTable’’>
UtilityCell <owl:Class rdf:ID=‘‘UtilityCell’’>
ChanceNode <owl:Class rdf:ID=‘‘ChanceNode’’>
CondNode <owl:Class rdf:ID=‘‘CondNode’’>
UncondNode <owl:Class rdf:ID=‘‘UncondNode’’>
JointProbDist <owl:Class rdf:ID=°‘JointProbDist’’>
CondProbDist <owl:Class rdf:ID=‘‘CondProbDist’’>
UncondProbDist | <owl:Class rdf:ID=‘‘UncondProbDist’’>
ProbCell <owl:Class rdf:ID=‘‘ProbCell’’>

Table 4.5: Concepts and their annotations used for IDs in OWL

Property Name \ Annotation in OWL

InformationalArc| <owl:0bjectProperty rdf:ID="isKnownBy">
CondiationalArc | <owl:0bjectProperty rdf:ID="influenceOn">
FunctionalArc <owl:0ObjectProperty rdf:ID="attributeOf">
hasDNode <owl:0bjectProperty rdf:ID="hasDNode">
hasCNode <owl:0bjectProperty rdf:ID="hasCNode">
hasUNode <owl:0bjectProperty rdf:ID="hasUNode">
hasUTable <owl:0bjectProperty rdf:ID="hasUTable">
hasUCell <owl:0bjectProperty rdf:ID="hasUCell">
hasActiveU <owl:0bjectProperty rdf:ID="hasActiveU">
hasCondTable | <owl:0bjectProperty rdf:ID="hasCondTable">
hasUncondTable| <owl:0bjectProperty rdf:ID="hasUnCondTable">
hasPCell <owl:0bjectProperty rdf:ID="hasPCell">
hasActiveP <owl:0bjectProperty rdf:ID="hasActiveP">
hasUValue <owl:DatatypeProperty rdf:ID="hasPValue">
hasDomain <owl:DatatypeProperty rdf:ID="hasDomain">
hasObserved <owl:DatatypeProperty rdf:ID="hasObserved">
hasUParameter | <owl:DatatypeProperty rdf:ID="hasPParameter">
hasAlternatives | <owl:DatatypeProperty rdf:ID="hasAlternatives">
hasPParameter | <owl:DatatypeProperty rdf:ID="hasPParameter">
hasPValue <owl:DatatypeProperty rdf:ID="hasPValue">

Table 4.6: Properties and their annotations used for IDSAA.O




76 CHAPTER 4. THE ONTOBAYES MODEL
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Figure 4.10: A simplified ID used for demonstrating the OWlession of IDs.
<owl:Class rdf:ID="Buy(Customer,Product)">

<rdfs:subClass0f>
<owl:Class rdf:ID="DecisionNode"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="Buy(Customer,Hause)">
<owl:Restriction>
<owl:onProperty>
<owl:0bjectProperty rdf:ID="isKnownBy"/>
</owl:onProperty>
<owl:hasValue rdf:resource="#Buy(Customer,Product)"/>
</owl:Restriction>
<rdfs:subClass0f>
<owl:Class rdf:ID="DecisionNode"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="Hause.Price">
<owl:Restriction>
<owl:onProperty>
<owl:0bjectProperty rdf:ID="isKnownBy"/>
</owl:onProperty>
<owl:hasValue rdf:resource="#Buy(Customer,Hause)"/>
</owl:Restriction>
<rdfs:subClass0f>
<owl:Class rdf:ID="ChanceNode"/>
</rdfs:subClass0f>
</owl:Class>

Figure 4.11: The partial OWL encoding for specifying the iden node
Buy (Customer ,House) and Buy(Customer,Product) illustrated in Figure

A.10.
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‘ UtilityCell H hasUParameter(xsd:string) hasUVaIue(xsd:roat)‘
cell.1 Buy(Customer,Product)=yes,Product.Premium=Ilow -100
cell_2 Buy(Customer,Product)=no,Product.Premium=Ilow 50
cell.3 Buy(Customer,Product)=yes,Product.Premium=middle 40
cell 4 Buy(Customer,Product)=no,Product.Premium=middle 10
cell.5 Buy(Customer,Product)=yes,Product.Premium=high 80
cell_.6 Buy(Customer,Product)=no,Product.Premium=high -80

Table 4.7: The utility table for the utility nod&2 associated with two at-
tributes: the decision nodBuy(Customer,Product) and the chance node
Product.Premium.

ferred for decision makers. As illustrated in Figlire #11@,has two attributes: the
decision nod®uy (Customer,Product) and the chance nodeoduct . Premium.
The underlying OWL encoding for this table is shown in Figdig2. With the
help of the annotatioattribute0f we can identify all attributes of a utility node.
Encoding for utility tables in OWL can be constructed simyldo probability ta-
bles. A simple syntax parser is necessary and implememtedjer to decompose
parameters of each utility able cell into separated attegu

4.3.3 Construction of the Decision Model Part

The upper ontology illustrated in Figure¥.9 can be used idegilhe development
of domain specific decision models (i.e. IDs). The OWL file éorcoding this
upper ontology will be published through URI for making itscass from users
(particularly for domain experts and knowledge enginepossible and easier.
Users can import the file to another OWL file in which they wiesify a do-
main specific ID by using Protégé. After importing it them® many predefined
concepts for creating domain specific decision nodes, eéandes with proba-
bility tables and utility nodes with utility tables. As shovin Figure[Z.Tll and
H.12 all domain specific nodes in an ID are subclasses of #defined classes
ChanceNode, DecisionNode or UtilityNode. And each utility table associated
with a utility node are composed with an instanc&oflityTable and a number
of instances ofitilityCell.

Figure[4IB depicts how to construct a decision model basetthe knowl-
edge part of OntoBayes by using the upper ontology of IDss Tigure clearly
illustrates that the decision model part and the knowledgeqf OntoBayes are
related to each other. Often a decision model is involved amyrdifferent do-
mains. Therefore we need different domain knowledge beferéry to build a
decision model in OntoBayes. The approach here is simildrd@mne discussed
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<owl:Class rdf:ID="Buy(Customer,Product)">
<owl:Restriction>
<owl:onProperty>
<owl:0bjectProperty rdf:ID="attributeOf"/>
</owl:onProperty>
<owl:hasValue rdf:resource="#U2"/>
</owl:Restriction>
<rdfs:subClass0f>
<owl:Class rdf:ID="DecisionNode"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="Product.Premium">
<owl:Restriction>
<owl:onProperty>
<owl:0bjectProperty rdf:ID="attributeOf"/>
</owl:onProperty>
<owl:hasValue rdf:resource="#U"/>
</owl:Restriction>
<rdfs:subClass0f>
<owl:Class rdf:ID="ChanceNode"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="U2">
<UtilityTable rdf:ID="table_1">
<hasUCell>
<UtilityCell rdf:ID="cell_1">
<hasUParameter rdf:datatype="#string"
>Buy (Customer ,Product)=yes,Product.Premium=1low
</hasUParameter>
<hasUValue rdf:datatype="#float"
>-100</hasUValue>
</UtilityCell>
</hasUCell>
<hasUCell>
<UtilityCell rdf:ID="cell_6">
<hasUParameter rdf:datatype="#string"
>Buy (Customer ,Product)=no,Product.Premium=high
</hasUParameter>
<hasUValue rdf:datatype="#float"
>-80</hasUValue>
</UtilityCell>
</hasUCell>
</UtilityTable>
</owl:Class>

Figure 4.12: The partial OWL encoding for the utility tableistrated in Table
2.
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in Sectionl42.Zb. Whereas there we make use of ontologicaklkatge to sup-
port the construction of Bayesian knowledge, here we makeotithe Bayesian
knowledge to support construct decision models. The figufadt extends Figure
.8 with the green zone — the decision model part of OntoBajreshe figure
the upper ontology of IDs is at the highest level in the whaipligation, from
bottom to top. We can construct an ID for any application domdirectly with
the help of the upper ontology, but it will be more converfiesfficient and fac-
tual when we build the ID upon the given validated Bayesiaovidedge. Such
Bayesian knowledge can be composed from many different BMsad to differ-
ent domains. The plugi®WLOntoBayesllows users to construct an ID based
on the given BNs via a drag and drop interface.

Features of OntoBayes

We can summarize some features of the OntoBayes model as/$oll

e OntoBayes is an ontology-driven model. It means that alluies of an
ontology-based system are remained in OntoBayes, e.gafoapresenta-
tion, reusability etc..

e OntoBayes is OWL compatible. The description in the lastises showed
the formal OWL Annotations for BNs and IDs. OWL is the most aid
used language in semantic webs nowadays. Therefore, OygeBas good
potentials in semantic webs.

e OntoBayes has an intuitive ability of graphical represgoita Ontologies,
BNs and IDs, all of them can be good represented graphic@hgrefore
OntoBayes is really easier to be understood and to use.

e OntoBayes is a model for dealing with uncertainty. The iraégn with
BNs and IDs provides the ability of uncertainty modeling iprababilistic
approach.

In the next section we will introduce some related approse¥tgch aim at incor-
porating uncertainty into ontologies, particularly wittetemphasis on OWL.

4.4 Related Works

There has been some attempts to incorporate non-prolibéied probabilistic
methodologies of representing uncertainty into ontolsggech as fuzzy logic and

SThe natural link between BNs and IDs provides such conveeieNost nodes in an ID are
chance nodes which can be directly taken over from BNs, tegetith the associated probability
tables.
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Figure 4.13: Construction of the decision models part basethe knowledge
part of OntoBayes by using the upper ontology of IDs.
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probability approaches. This section gives a survey of thetmrelevant works in
the last decade, especially those related to OWL. In Se@idd works based
on the probabilistic approach will be discussed. Then tlmyfuapproach for
extending OWL with uncertainty modeling is discussed int®e®.Z2.2.

4.4.1 The Probabilistic Approaches

The probabilistic approaches for the ontology (or other WR)adigm are those
most related to our research effort. Among them, mainly wdréised on OWL
are investigated.

Probabilistic frame-based systems

The approach that seems closest to ours is the old work oeKalhd Pfef-
fer [KP98]. Building on their earlier work?-CLASSICKLP97] and Object-
Oriented Bayesian NetworKP97], they proposegbrobabilistic frame-based
systemswhich integrate BNs into a frame-based system to preséeadvan-
tages of both.

BNs are widely used for modeling uncertainty because of theiellent graph-
ical expressiveness and computational power, but theynaeguate for repre-
senting large and complex domains [MIL.96]. On the contragmi-based sys-
tems have excellent ability to represent large complex dasnaith their organi-
zational structure, but show limitations due to their itigpto deal with uncer-
tainty [KP98]. It is clear that they can complement themsslvery well. The
complementariness motivates the authors to propose theagpof probabilistic
frame-based systems.

From the perspective of its main objective, the OntoBayedeh a simi-
lar approach, but it adopts the more recent methodologyctiradists of propos-
ing ontology-driven uncertain knowledge base. Besidedhjsctive, OntoBayes
possesses decision models which aim to support agents gnd&gisions under
uncertainty for given problems. From the perspective ofitiy@lementation de-
tails, OntoBayes makes use of totally different modelingglaages, definitions
and translation rules both syntactically and semantically

BayesOWL

Ding proposed in[Din05] a probabilistic ontology approaBayesOWLIt makes
use of BNs as the underlying uncertainty theory to extend Qwith probabilistic
features, in order to facilitate ontology mapping in the aatit web [DPP04].
The probabilistic modeling in BayesOWL is represented wvias additional
language markups, which can be simply reflected in an uppetagy as illus-
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Figure 4.14: The upper ontology for the probabilistic esien in BayesOWL.
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Table 4.8: A simple unconditional probability tat#€A) and conditional proba-
bility table P(A|B).

trated in Figurd_414. The figure provides an abstract viewthefapproach for
extending Bayesian probability in OWL. Three classBsprProbObj, Cond-
ProbObjT and CondProbObjF are used to instantiate probability distributions
over a variable. The first class is devoted to specify undardil probabilities
and the last two for expressing conditional probabilitiEsr example TablE_4.8
describes two simplest probability tables fofA) andP (A|B). To encode these
tables in OWL, these classes with associated propertiassad e.ghasVariable
for queried variablehasProbValudor probabilistic values andasConditiorfor
condition variables of the queried one [DP04].

Indeed, it is unnecessary to give the full joint probabitlitgtributions ofP (A)
andP(A|B) in BayesOWL, because it only allows two-valued (either toxe
false) random variables in the Bayesian modeling and basedotmogorov’s
axioms it is very easy to calculate that—A) = 1 - P(A), P(—BJA) = 1 -
P(B|A) andP(—B|—-A) = 1 - P(B|—A). By reason of this feature BayesOWL
introducesCondProbObjTand CondProbObjFo express conditional probabili-
ties instead of just using one construc@ondProbObj

In fact for representin@ (A) andP(A|B) the only necessary information is
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<PriorProb0Obj rdf:ID="P(A)">
<hasVariable><rdf:value>A</rdf:value></hasVariable>
<hasProbValue>0.8</hasProbValue>

</PriorProb0bj>

<CondProb0ObjT rdf:ID="P(B|A)">
<hasCondition><rdf:value>B</rdf:value></hasCondition>
<hasVariable><rdf:value>A</rdf:value></hasVariable>
<hasProbValue>0.4</hasProbValue>

</CondProb0bjT>

<CondProbObjF rdf:ID="P(B| (not)A)">
<hasCondition><rdf:value>notB</rdf:value></hasCondition>
<hasVariable><rdf:value>A</rdf:value></hasVariable>
<hasProbValue>0.7</hasProbValue>

</CondProb0bjF>

Figure 4.15: Encoding for Table4.8 with additional markups

colored in red in Tablg4l8 according to Kolmogorov's axiofrigjure4.Ib presents
the encoding of these red marked information for describiiege two tables in a
machine-readable way.

The main objective of BayesOWL is to provide a method to sujpgatology
mapping by translating an OWL ontology to a BN, e.g. concapsgability, con-
cept overlapping and concept subsumption [DP04]. The aghravolves aug-
menting and supplementing OWL semantics with additionadjleage markups
for supporting uncertainty reasoning and representingdas BNs. This work
is the first published important research effort in the fidithe Bayesian exten-
sion geared for the semantic web, but due to the special tblgedts application
potential is very limited. The solutions provided in Bay&¢Dcan meet its own
requirements, but not for more complex applications sucB&Ss. There are
some weak points in the approach.

e BayesOWL restricts itself to the lightweight ontology. Ieans that only
the ontology taxonomy can be translated into BNs. But Manymlex do-
mains like disaster management and catastrophe insurandseccorrectly
modeled only based on the heavyweight ontology.

e The Bayesian extension allows only two-valued random téegm Maybe it
is sufficient for ontology mapping, but for real applicatahis impossible
to specify all Bayesian variables only with boolean values. example the
simple unconditional table represented in Tdblé 4.3 carbaapecified in
BayesOWL because of this limitation. Therefore a multiwesl approach
is absolutely required.
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e The additional markups are only allowed in OWL Full. Thussithfficult
to guarantee consistency with the ontological uncertaimygleling. For re-
taining the ontological reasoning support, it is bettergefkthe uncertainty
extension at the level of OWL DL.

e The language markups can only be used to specify the quargitaforma-
tion of BNs. For applications relying on BNs it is also ne@gdo be able
to specify the qualitative part.

These weaknesses are solved in the OntoBayes model. In proaagh heavy-

weight ontologies and multi-valued random variables alewadd. In order to

retain the full compatibility with OWL, OntoBayes implentahe Bayesian ex-
tension under OWL DL, which means that the consistency amdniological rea-

soning support are guaranteed. As described in SdclibtOat®Bayes provides
both qualitative and quantitative extensions in OWL. Besjdhe main purpose
of BayesOWL is very different from our approach.

The Bayesian approach of SOCAM

Gu et al. proposed an ontology-based middleware, SOCAbt\ce-Oriented
Context-Aware Middlewajefor building context-aware mobile services in intel-
ligent environments [GWPZ04]. The context information Utk environments
is inevitably uncertain. The uncertain context modeling@CAM is based on
probabilistic ontologies using BNS[GPZ04].

In order to incorporate BNs into common ontologies, Gu et@mbposed a
similar approach to BayesOWL. They slightly modified thesedl annotations
of BayesOWL, to markup arbitrary conditional probabilifgr instance using
one class construct@ondProbto replaceCondProbObjTand CondProbObjF
in BayesOWL. But they did not overcome the limitation of twalued random
variables. As mentioned in Ding’s approach, it is not sugfitifor more complex
applications. Generally the way to the quantitative extansf BNs is totally
different from our approach.

For specifying qualitative Bayesian information they attuce an additional
RDF elementrdfs:dependsOn which allows to capture dependency between
properties. This dependency extension in OWL is similathi® qualitative ex-
tension in OntoBayes, but we don't introduce new RDF elerte@WL, but just
define an object properiyepends0On with existing OWL primitives. Therefore
our extension is fully compatible with OWL DL, whereas theean SOCAM is
not.

The main similarity between the Bayesian extension in SOCa#id Onto-
Bayes is that both of them only allow to specify the depengé&etween ontology
properties, not between classes. The motivation behind @gpecification is the
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Figure 4.16: A general view of the probabilistic ontologesiied in MEBN and
PR-OWL.

same — to obtain more context information. In fact SOCAM hasrgjer con-
text awareness requirements than OntoBayes. The contaréaess is one of the
main objectives in SOCAM, therefore a new OWL primitivel : classifiedAs
was designed for classifying context information and fertfor supporting con-
text reasoning. In OntoBayes the context information suppdl be seen as an
additional feature of DSSs, but not as the main feature. #he new primitives
in SOCAM cause the incompatibility of the Bayesian extensiath OWL DL.

Like BayesOWL, SOCAM did not provide any decision mecharsismnich
can be directly used by agents for supporting decision ngakihis missing fea-
ture is fully realized in OntoBayes and considered to be dmaain features of
DSSs.

PR-OWL

In [dCLLOY] a probabilistic ontology approach, PR-OWL, waeposed. It aims
to justify the lack of uncertainty support in common ontgldgrmalisms and to
improve the semantic interoperability in open environregetg. in the seman-
tic web vision [CLLO6]. Before giving a comparison with OBayes and the
approaches mentioned above, it is important to investigateinterpret this ap-
proach first.

PR-OWL is implemented based on the definitionpodbabilistic ontologies
[Cos0%] and makes use of MEBMN(Ilit-Entity Bayesian Netwo)KLC05,[CLO6]
as its underlying logic basis. Syntactically PR-OWL prasd number of OWL
constructs for building probabilistic ontologies, whessamantically it must ac-
cord with the MEBN theory. FigureZ116 (slightly modified theginal one from
[CLADSG]) presents a general view of the extension from MEBNPR-OWL by
omitting many details of the actual implementation. Thisifegdemonstrates five
classes for specifying the most general concepts involaedefining a proba-
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Figure 4.17: The simplified upper ontology of PR-OWL.

bilistic ontology based on the MEBN theory. A probabilistintology consists
of at least one individual of clagdTheory A MTheoryis formed by a collec-
tion of MFrags defined by a set of random variables and other related i@fttom
[CCO5]. In MEBN these variables are representedNasies and can be classified
into three types: input, resident and context nodes. Eadk has correspondent
states and probabilistic distributions, either condiloor unconditional.

In fact the implementation in PR-OWL is more complicatedntlitawas il-
lustrated above. FigufeZ]17 tries to capture the essemtidhe core part of the
probabilistic extension with a simplified upper ontologhelmain form of prob-
ability distributions in the Bayesian world is probabiligbles. Costa et al. stated
that each clasPR-OWL Tabldas a subclass oProbDistand consists of a num-
ber of table cells represented by cld&&®bAssign Such a cell has a probability
value assigned for a state of a random variable (i.e. a nadeh ghe states of
its parents nodes, when the variable has a conditional prdyalistribution. In
order to specify the conditional table cells, Costa et aédtto make use of the
classCondRelationshigvhich actually only expresses the n-ary relation between
the involved variable, the table cells, parent nodes of #reable and their states,
because in OWL only binary relations can be directly corséd. This n-ary
construct leads to the increased complexity when compdéhgrand using the
PR-OWL to build Bayesian probability tables. However thestdifficult prob-
lem, how to enable the product rule by giving the states opaikent variables
to construct a conditional probability table, is still ueat in this approach. A
hard coded solution (e.g. a syntax parser) is also unavi@deoe. According to
[CLLOB] PR-OWL provides the following key features:
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e PR-OWL makes use of additional language markups at the t&v@WL
DL to facilitate the integration of probability into ontajees. Therefore it
has full compatibility with OWL DL.

e The enhanced expressivity of MEBN based on the first ordec &ltpws to
model more complex problems with BNs, especially for repnéisig entity
types.

e The flexibility of using PR-OWL for different Bayesian prdibstic tools
based on different probabilistic technologies.

In order to achieve the first feature, the backward compdyivith the base lan-
guage of OWL, PR-OWL must increase the syntactical compylégimodel the
probabilistic extension in OWL. Figute 4118 shows how T&Hcan be encoded
in PR-OWL based on the given upper ontolidgsom [Cos05]. In comparision
with Figure[4£Ib and Figure—4.3 it has more than 80 lines andooisly is too
complex and difficult to be comprehended by users. Basedi®odmparison the
conclusion can be drawn that OntoBayes provides the bethetian by express-
ing the Bayesian probability in OWL. It provides a simple rabidg option in the
syntactical level but which is still expressive enough. @pproach of BayesOWL
has a simplest syntax but can not overcome the limitationvoftalued expres-
sions.

The second feature of PR-OWL is only useful when BNs are tieroethod
applicable for problem solving. On the one hand, identify@mtity types in BNs
can be easily solved in OntoBayes or other methodologiestwtdmbine the
technigues of BNs and ontologies, because ontologiemndigsh their knowl-
edge both at the conceptual and at the individual levelsy phavide an excellent
feature to classify entities and their instances. On therdtand the MEBN the-
ory is not mature enough for real applications in large ca@xplomains. There
are many methods which can be used to enhance the ontologésaining and
expressivity by incorporating first order logic into ontgies (and also in OWL
[GHMOS]). They can be standardized and better acceptedeirséimantic web
than PR-OWL, because in the semantic world ontologies ntiyréand in the
future) play the key role, not BNs. From this perspective @reoBayes model
provides an open formalism that is also fully compatiblerv@WL and gives
knowledge workers the possibility to adapt the probalilishtology with cus-
tomized first order logic methods.

The third feature is considered as a big benefit of PR-OWILIn 5] “...
That level of flexibility can only be achieved using the utyileg semantics of

5This example is encoded with the help of Protégé accoritige upper ontology which can
be downloaded under the following webpage:
http://mason.gmu.edu/ pcosta/pr-owl/pr-owl.owl
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<ProbAssign rdf:ID="ProbAssign_B1">
<hasConditionant>
<CondRelationship rdf:ID="CondRelationship_A">
<hasParentState rdf:resource="#true"/>
<isConditionant0f> <ProbAssign rdf:ID="ProbAssign_notB1">
<isProbAssignIn>
<PR-0WLTable rdf:ID="PR-0OWLTable_AB">
<isProbDist0f> <Resident rdf:ID="B">
<hasProbDist rdf:resource="#PR-OWLTable_AB"/>
<hasParent><Resident rdf:ID="A"> <isParentOf rdf:resource="#B"/>
<hasProbDist>
<PR-0WLTable rdf:ID="PR-OWLTable_A">
<isProbDist0f rdf:resource="#A"/>
<hasProbAssign>
<ProbAssign rdf:ID="ProbAssign_notA">
<hasStateProb rdf:datatype="http://www.w3.org/2001/XMLSchema#decimal"
>0.2</hasStateProb>
<hasStateName rdf:resource="#false"/>
<isProbAssignIn rdf:resource="#PR-OWLTable_A"/>
</ProbAssign></hasProbAssign>
<hasProbAssign>
<ProbAssign rdf:ID="ProbAssign_A">
<hasStateProb rdf:datatype="http://www.w3.org/2001/XMLSchema#decimal"
>0.8</hasStateProb>
<hasStateName rdf:resource="#true"/>
<isProbAssignIn rdf:resource="#PR-OWLTable_A"/></ProbAssign>
<ProbAssign rdf:ID="ProbAssign_notB2">
<hasStateName rdf:resource="#false"/>
<isProbAssignIn rdf:resource="#PR-OWLTable_AB"/>
<hasStateProb rdf:datatype="http://www.w3.org/2001/XMLSchema#decimal"
>0.3</hasStateProb>
<hasConditionant>
<CondRelationship rdf:ID="CondRelationship_notA">
<hasParentState rdf:resource="#false"/>
<hasParentName rdf:resource="#A"/>
<isConditionantOf rdf:resource="#ProbAssign_notB2"/><isConditionant0f>
<ProbAssign rdf:ID="ProbAssign_B2">
<hasConditionant rdf:resource="#CondRelationship_notA"/>
<hasStateProb rdf:datatype="http://www.w3.org/2001/XMLSchema#decimal"
>0.7</hasStateProb>
<hasStateName rdf:resource="#true"/>
<isProbAssignIn rdf:resource="#PR-0WLTable_AB"/></ProbAssign>
</ProbAssign></hasProbAssign>
<hasProbAssign rdf:resource="#ProbAssign_B2"/>
<hasProbAssign rdf:resource="#ProbAssign_notB1"/>
<hasProbAssign rdf:resource="#ProbAssign_B1"/>
</PR-0WLTable></isProbAssignIn>
<hasConditionant rdf:resource="#CondRelationship_A"/>
<hasStateName rdf:resource="#false"/>
<hasStateProb rdf:datatype="http://www.w3.org/2001/XMLSchema#decimal"
>0.6</hasStateProb>
</ProbAssign></isConditionant0f>
<isConditionantOf rdf:resource="#ProbAssign_B1"/>
<hasParentName rdf:resource="#A"/></CondRelationship></hasConditionant>
<isProbAssignIn rdf:resource="#PR-OWLTable_AB"/>
<hasStateProb rdf:datatype="http://www.w3.org/2001/XMLSchema#decimal"
>0.4</hasStateProb>
<hasStateName rdf:resource="#true"/>
</ProbAssign>

Figure 4.18: Part of the encoding for Tablel4.8 in PR-OWL.
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first-order Bayesian logic (MEBN) ...Unfortunately it only possesses the bound-
ed flexibility, if the Bayesian extension in OWL must be boaddvith MEBN.
The real flexibility can only be achieved when the extensioly eelies on the
syntax and semantic of BNs, neither more nor less. Only sacbrdological
extension of BNs can be easily applied to diverse Bayesiaa because they have
common understanding on Bayesianism. From this persgettiy OntoBayes
model possesses more flexibility than PR-OWL.

OWL QM

Pool et al. proposed another probabilistic extension to Q@WWL_QM (OWL
Quiddity*Modelel, for eliciting and representing PRMPfobabilistic Relational
Mode) [PECADS]. A PRM aims to model uncertainty (in the form of patilis-
tic distributions) about the values of attributes of olgeict a certain domain of
discourse. Based on the general features of relational isdaan express much
more information than common BNS [EGKR99]. QM is a represton language
for PRM provided by IEfl and based loosely on frames.

OWL_QM is a similar approach to PR-OWL but makes use of a diffevent
derlying uncertain modeling language, PRM. It extends OWihwa number of
PRM constructs to represent quiddity facets, slot-chaiagable discretizations
and probabilistic distributions and tablés [PECA05]. Oae whole OWLQM is
only an implementation of PRM in OWL. In comparison with PRVYO it pro-
vides a smaller extension with less parsing and reasonimgosts, but similarly
it can not utilize the advantages of ontologies to facgitehowledge elicitation
for decision making. The only way to make the most of prohstil ontologies
is to integrate the probabilistic methodologies and omige into a whole model
(like the OntoBayes model), not just simply represent tlodabilistic techniques
in a certain ontology language, e.g. in OWL or in DAML+OWL aswlon.

Fukushige’s approach

The work of Fukushige [Fuk04, Fuko5] proposed a vocabularyBayesian ex-
tensions in RDF and a corresponding probability calcutaframework. This
proposal distinguishes three kinds of probabilistic infation encoded in RDF:
probabilistic distributions (with unconditional and catahal probabilities), ob-
servations (with observed data), and probabilistic bel{@fith posteriors). The
motivation of introducing different kinds of these infortiwan in the vocabulary is
not only to facilitate the representation of the basic dpsion of Bayesian infor-
mation, but also to facilitate the representation of chaggnformation by belief

/It stands for Information Extraction and Transport and i®evise company specialized in
BNs solutions.



90 CHAPTER 4. THE ONTOBAYES MODEL

updating. Unlike Fukushige’s work, in OntoBayes or othgrraaches mentioned
above we do not distinguish them directly, instead, we fasuthe mathematical
foundations of BNs with discrete variables, where suchaideis have either un-
conditional or conditional probabilistic distributionser their states (or values).
Similar to the approaches of PR-OWL and OV@M, Fukushige’s work simply
focused on making use of RDF as the underlying formal languadacilitate the

usage of BNs in the semantic web, not preserving the advasiaigontologies.

Other approaches

Giugno and Lukasiewicz proposed3HOQD) for dealing with probabilistic on-
tologies in the semantic web [GL02]. It is a probabilistitension ofSHOQD),
which extendsSHQwith individuals and concrete datatyp&s [H501]. The syntax
of P-SHOQD) is based on conditional constraints [Luk98], whereassamanti-
cal part is based on lexicographic entailment from prolistimldefault reasoning
[CLukOT]. This approach provides probabilistic reasoniegttires of consistency,
concept satisfiability, concept overlapping etc.. It isfustor supporting ontol-
ogy mapping, but not sufficient for more generic applicatiovith ontological
engineering.

Helsper and Gaag proposed a methodology for building BNsutyir ontolo-
gies [HvdGOP]. The main goal of their work is to investigateshimportant it
is to integrate ontologies in a system-engineering appré@ocdeveloping proba-
bilistic networks [HvdGORB]. Based on an oesophagus ontolbgy demonstrated
how to construct an oesophagus BN, but very informally fromtheoretical and
technical viewpoints. Another deficiency of this methodhattit only concen-
trates on building BNs with the help of ontologies, but notbeiding them in
ontologies.

Holi and Hyvonen proposed a methodin [HH04, HHO5] to represin over-
lap between concepts and to compute it from the ontologynamy. They made
use of BNs as the underlying uncertainty technique for sgrtation and com-
putation. A graphical notion for modeling the concept suibgtion can be repre-
sented easily in RDF(S). But this method results in an extigharge and com-
plicated BN when too many relations and overlaps among queege translated.

4.4.2 The Fuzzy Approaches

Besides the probabilistic approaches discussed abowes #ne also other ap-
proaches to uncertainty extensions for ontologies suchuzsyflogic. Stoilos
et al. proposed a method for extending OWL with fuzzy set peeuzzy OWL
(or f-OWL), in order to capture, represent and reason with unceméammation

in the semantic wely [SSDF].
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Fuzzy OWL is a fuzzy extension of OWL DL with additional degsg¢o OWL
facts. It makes use of crisp OWL's syntax as its building ki&cln order to ex-
press the fuzzyness degree added to the facts, it introduncadditional element
<owlx:degree>. The reasoning feature is implemented by combining the syn-
tactical extensions with 8HOIN, which extendsSHOIN to the fuzzy case by
letting concepts and roles denote fuzzy sets of individaals relations among
them respectively. In ESHOIN the fuzzy knowledge base contains fuzigox
RBoxand ABox where eaclTBox RBoxand ABoxis a finite set of fuzzy con-
cept axioms, fuzzy role axioms and fuzzy assertions resée{SST 05]. A
reasoning engine for Fuzzy OWEiRE, was proposed in [SSSKD6].

Another fuzzy approach for extending OWL, FOWL, was projokg Gao
and Liu in [GL0O5]. They provide a number of new vocabularies éncoding
fuzzy constructs, axioms and constraints, in order to memtto fuzzy DL. Be-
sides the vocabularies, some rules are specified to trarGMt. to FOWL, be-
cause from the viewpoint of fuzzy set, some common OWL cotscape also
special fuzzy concepts. But their work still has the lackyoftactical parser and
a reasoning machine for FOWL.
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Chapter 5

Virtual Knowledge Communities

This chapter is devoted to investigate how to address thegamgeparadigm of
knowledge dissemination and collaboration in decisiorpsuipsystems through
VKCs.

In Sectior 51l we will give the motivation and definition of \O§. Afterward
an overview of all basic concepts using to model VKCs will hegaduced ac-
cording to [HamO#] in Sectiond.2. Sectibnls.3 5.4 aretl/to investigate
how to make use of VKCs to facilitate knowledge dissemimgtparticularly with
emphasis on knowledge sharing in the OntoBayes model. WéoNdw the no-
tations introduced in the last Chapter for denoting da&typobject properties in
OntoBayes. In the last section we will demonstrate how VK&sloe utilized for
supporting decision making in terms of collaboration anaiyity.

5.1 Motivations and Definitions

Before we introduce what VKCs are, we will first describe wtatporate knowl-
edge is and investigate how decision making support cantgrofn corporate
knowledge. Then the AOAAXgent Oriented AbstractiQrparadigm will be intro-
duced as a grounding theory behind the facilitation of ccafgoknowledge in the
society of agents, since it was demonstrate@ in [MCO04] tbgparate knowledge
can take advantages of AOA. At last we will define VKCs and axpthe natural
link between corporate knowledge and VKCs.

Corporate Knowledge and Decision Making Support

Nowadays most DSSs put much greater emphasis on knowledgageraent.
This is clearly justified. Making a decision once one has tyktiknowledge is
often the easy part. Under an open, dynamic and uncertairoenvent, decision

93
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making based on corporate knowledge has become crucial $ociaty made
of distributed agents each possessing its own knowledgécuylarly when the
knowledge is uncertain.

Corporate knowledgeras defined as the overall knowledge detained by agents
within a system and their ability to cooperate with each oiferder to meet their
goal [MHCO4]. During a process of decision making agentsroake decisions
more easily, precisely and rationally based upon corpdaatsviedge than only
based on their sole knowledge. Agents are required to kndvomly “what it
knows” but also “what they know”, and are expected to makeimam use of
their knowledge.

Agent Oriented Abstraction

The AOA paradigm[[CMEQ4] covers the concepts of agents, @ied knowl-
edge, utility functions and society of agents. Indeed, AGAased on Weber’s
classical theory in Sociology [WebB6]. AOA assumes thammégeare entities
consisting of both a knowledge component and a decision mgakiechanism.
The former is partitioned into four components, also cadedotations: ontol-
ogy, communication, cognition and security. The latterelated to its tasks and
goals. It generates utility functions and is based upon timvkedge component.
Chiefly, agents can be defined in terms of knowledge and astidgiity. The
AOA model can be abstractly summarized by a number of badinitiens. A
detailed description is to be found inJCMEO04].

In [MCO04] applications of the AOA model to the abstract madglof corpo-
rate knowledge are investigated. Corporate knowledge efsatl as the amount
of knowledge provided by individual agents. To avoid theasapion between
agents and knowledge, it was considered that agents halieitypepresented
knowledge and communication ability. A knowledge compamg\wmodeled as a
scenario to demonstrate the corporate knowledge modelithgwvthe AOA. The
concrete implementation for corporate knowledge withinAA@as introduced in

[MHCO4].

Communities, Virtual Communities and VKCs

Traditionally, information is mostly centralized withiruaiform information struc-
ture. This viewpoint is not truly compliant with the naturé kmowledge that
is subjective, distributed and contextual [BBC02]. Frore fferspective of the
knowledge information society, modern knowledge managemiten focuses on
the constitution of communities of practice and commusitéinterest[[FOU1].
In the real life society or organization,@mmunitycan be seen as a group in
which individuals come together around a shared purposerest, or goal, but
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the communication between the individuals are often offliaee-to-face, for ex-
ample communities of practice [Wer98] and so on.

Nowadays such communities are becoming more and wmidre&l due to the
internet revolution, particularly due to the web 2.0 rewimn which mainly fo-
cuses on the online collaboration and sharing among useridt upon the sup-
ports of modern IT infrastructures more and more virtuaboigations or enter-
prises can go beyond the physical distance and organizhbonndaries, in order
to improve their efficiency and ability to support sharing@dources in a timely
fashion as well as to maximize their economical profits. Ftbis perspective, a
virtual communitycan be seen as a society of individual agents coming together
around a shared purpose, interest, or goal, but using cemgupports rather than
face-to-face interactions for their communicatidns [RjS04ost virtual commu-
nities exist therefore purely in cyberspace [KKBB07].

The concept of virtual communities can be supported wrtaial knowledge
communityin order to bring the concerned agents together to sharekhewl-
edge with each other. VKCs can be abstractly defined as a noeagénts to
share knowledge about a topic [MHCO04]. It aims to increageetfficiency with
which information is made available throughout the soctétgigents.

From the point of view of corporate knowledge managemergnegcan be
individuals, software assistants or automata. Agentsgzsssnowledge and pro-
cesses within the society which tends to make agents praihetexchange know-
ledge with each other. These processes are distributedghooit the society and
contribute through their own intrinsic goals to solve a wrdpigh level challenge,
for example solving a decision problem. This provides th& hetween corpo-
rate knowledge and VKC§ [MCD4]. Generally VKCs can be seethasealized
concept for corporate knowledge.

5.2 Basic Concepts of VKCs

In this section we will give a simple overview of the basic cepts according
to the first prototype of VKCs[[Ham04]. In this prototype theare two main
modeling for VKCs:agent modelingndcommunity modeling

Agent Modeling

The agent modeling has four key notions: personal ontolagywledge instances,
knowledge cluster and mapper.R&ersonal ontologyepresents the knowledge of
an agent. It describes the taxonomy of the relationshipséd®st the concepts and
predicates what an agent understands. Kiimvledge instanceare instances of
objects defined into the personal ontology. It was assunedathagent’s knowl-
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edge consists of both its personal ontology and knowledsfamees according to
its personal ontology. Thienowledge clusteas a sub-part of an ontology can be
shared among agents. It is defined by a head concept, a ptorttez different
parts of knowledge existing in the cluster. Timapperchiefly contains a set of
mapping from personal terms to mapped terms, and allowstageradd such
mappings, and use the mapper to normalize or personalizeea gnowledge
cluster or instance. It facilitates knowledge sharing agnagents with regards to
the heterogeneity of knowledge.

Community Modeling

The community modeling has also some key notions: domaintefest, com-
munity pack and community buffer. Aomain of interesexists in each virtual
knowledge community and is similar to the concept of ontgltay agents. It is
given by a community leader who created the community. dégramunity pack
is what defines the community. It consists of a community Kiedge cluster, a
normalized ontologyvhich contains at least the head of the community cluster,
and the identification of the leaders of the community. €bemunity buffecan
record messages which are used by the member of a commurshate their
knowledge. This approach is compatible with blackboardesys, but still has
its difference, because agents cooperate to solve thgiecage problems, not
towards a unique goal.

Knowledge Community Process

Agents’ actions related to knowledge communities are tHeviing ones: initi-
ate, reorient, leave, terminate and join a community as askxchange knowl-
edge. Every agent can initiate a community by creating atapd a community
buffer and advertising about this community. Advertisiaglone through a spe-
cific agent calleccommunity of communitieshich has a central directory of all
communities. All agents of the system are members of thisnconity. At the
same time of initiating a community, a community park is alseated. It contains
a knowledge cluster of the initiator, a normalized ontolagyd the identification
of the initiators. The information will be posted to the conmmty buffer.

Community reorientation is needed because the knowledgeatde uniquely
considered at design time. It should evolve over time. Rebation consists of
sending a new community cluster to the community of comnnesit

Agents can leave a community voluntarily, but it could bedtsrced out by
the leaders. When a leader leaves a community, a new leackeused, if it is
the unique leader in this community.
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Community termination consists of erasing the communityeoand its ref-
erence posted to the community of communities during thenconity’s life-
time.The community can only be terminated by one of the conityleaders.

5.3 Knowledge Sharing through VKCs

The main objective to use VKCs in DSSs is to enable decisiokimgebased on
corporate knowledge, i.e. DSSs need VKCs working as a phatfor facilitating
knowledge exchange between different individual agen¢éfoi® we demonstrate
how VKCs can facilitate knowledge sharing, it is necessamnake clear which
kinds of information can and will be exchanged through VK@ticularly in the
context of OntoBayes.

DSSs built upon the proposed framework (see Chdpter 3) poslse Onto-
Bayes model. As described in the last chapter OntoBayesstsmé two parts: a
knowledge part and a decision model part. The former reéer®tmal ontolog-
ical knowledge (which is certain) and Bayesian knowledgRi¢tvis uncertain),
whereas the latter refers to different (formal) decisiordeis corresponding to
different decision problems. In this chapter we will showtttve can utilize and
adapt VKCs for sharing information in both parts of OntoBsy®ot only the on-
tological and Bayesian knowledge, but also the decisionatsod

As mentioned in Chapté&t 4 the OntoBayes model is ontologyedr because
the selected underlying representation language botthé&kmowledge part and
for the decision part is OWL. In fact the main challenge fookedge sharing
now is how to integrate OWL with VKCs syntactically and to¢ake semantical
consistency of BNs and IDs into account at the same time.

5.3.1 A Simple Scenario

To demonstrate how to exchange ontological knowledge, 8ageknowledge
and decision models through VKCs, a simplified scenario fwrmation sharing
between actors in the insurance field is as follows.

There are three kinds of basic actors operating in the fiaklrance compa-
nies (or providers), insurance agents and insurance cessom

e Insurance companies offer a product range. Nowadays th@aaes can
not only utilize insurance agents as their selling chanieisalso sell their
products directly to customers via web servides

1A company can open its own B2C-site to offer its own produdteeut paying any provision
to insurance agents.
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Community of Communities
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Figure 5.1: The simplified view of virtual knowledge commiigs of the catas-
trophe insurance scenario.

e Insurance agerﬁsoffer a selling and distribution channel. Traditionally,
one agent is “hooked” up to only one insurance company, naysathey
can easily switch from one company to another via web sesvice

e Insurance customers can buy a product (i.e. an insuranugy peither from
an insurance agent or from an insurance company directlya Eastomer
it makes no real differences whether he or she buys the prédue whom.
The most important factor for making a purchase decisioha@spremium
of an insurance policy.

In this scenario, most agents can be divided into these #utee groups described
above. To simplify the description we denote “IP”, “IA” antC” for these three
actor groups of insurance companies, of insurance agedtsfansurance cus-
tomers, respectively. In order to distinguish differentaig having the same role,
we add numbers to these notations. For example “IA1” and *IIA&/e the same
role of insurance agents, but they are different individu@esides these actors,
there could be other participants in the scenario, for eXxepgomain experts,
knowledge engineers and so on.

2Here the insurance agents differ from the term “agents” iswery often used in this thesis.
The latter refers to the multiagent paradigm.

SWeb services offer a new distribution channel for insuracmepanies, but they also offer
agents more flexibility in offering products and servicesirdifferent product providers.
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In the community of communities there are three VKCs illattd in Fig-
ure[B. In the VKC “InsuranceAgentForum” there are only @gents: “IA1l”
and “IA2”. They want to sharing information about their puads. In the VKC
“FloodIinsurance” there are three agents: “IA1”, “IC1” ankiP1”. It may be
created by the agent “IC1” for finding appropriate insurapeceducts against
flooding. The VKC “DecisionOfPurchase” has many particigaflAl”, “IC1",
“IP1”, “DE1” and “DEZ2”, where “DE1” and “DE2” are domain expis for mak-
ing purchase decisions and want to help “IA1” complete itsisien model.

We will make use of these VKCs to illustrate the knowledgenexge of on-
tologies, BNs and IDs in the following sections, respedjive

5.3.2 The Exchange of Ontological Knowledge

For facilitating the exchange of normal ontological knodge, we can make use
of the basic concepts introduced in Sectiod 5.2. The badicafirontological
knowledge can be exchanged in any community is the RDF tilipigtrated in
Figure[Z2. In[[HYCOB] we have illustrated a concrete e-hess scenario for
showing how to exchange ontology-driven knowledge throuHICs in details.
Here we just simply demonstrate the knowledge exchangedeghagents in the
VKC “InsuranceAgentForum” in Figufe3d.2.

In this VKC there are two agents: “IA1” and “IA2”, and both d¢fdm are in-
surance agents, but independent of each other. Messadpesdarnmunity buffer
are structured through simplified notations of ontologiék woncepts, their in-
stances and relations. For example, the notatigruranceProvider: {IP1}
denotes that the concepisuranceProvider has an instanceP1. The dashed-
arrowed line between agents and the community buffer shiogveperation in an
exchange process.

The agent “IA1” created this community and wrote a messagiedrcommu-
nity buffer. This message contains the information aboatglemium and the
risk coverage of an insurance product “Earthquakelnse’gmovided by “IP1”.
Besides this agent there is another agent “IA2” who has alsvast in this com-
munity. It joined the community and posted a message. Thssage contains
the same ontology structure, but with different instances.

After the message input both of them read the messages piostedther
agents in this community, to complete a simple knowledgéamnge process. Af-
ter the knowledge exchange, both of “IA1” and “IA2” know they can pro-
vide more concrete insurance products for their custonf@rg)stance insurance
against flood or against earthquake with a given premium.

According to the basic concepts of VKCs there are simply &vels of knowl-
edge exchange in ontologies: at the level of knowledge etumtd at the level
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InsuranceAgentForum

Community Buffer

write .
----------- InsuranceProvider: {IP1}

R / ProvidedBy

' // Product: {Earthquakelnsurance}
read |,

/<\ l RiskCoverage  Premium l
¥
R Bl InsuranceProvider: {IP2}
write
ProvidedBy

Product: {FloodInsurance}

RiskCoverage  Premium

Figure 5.2: A simple example for ontological knowledge extuipe.

of knowledge instance. The former concentrates on thetsteiof ontologies,
whereas the latter focuses on the instances of ontologies.

5.3.3 The Exchange of Bayesian Knowledge

As described in Sectidn 4.2 Bayesian knowledge in OntoBa&yalso ontology-
driven. Syntactically it is specified in OWL, therefore itnche shared between
agents through VKCs in principle. But some adaption is negudue to the dif-
ferent semantic between ontologies and BNs. According fobien[Z.9 and the
upper ontology of BNs (as illustrated in Figurel4.1), theibaschangeable unit
of Bayesian knowledge is abstracted in Figuré 5.3.

Each exchangeable basic unit must contain two parts ofrrdton: quali-
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Figure 5.3: The basic exchangeable unit of Bayesian knayaed

Levels of knowledge exchange

Knowledge cluster Knowledge instance
Ontological knowledge Ontological _ structure} Ontological instances: in-

concepts, relations stances of concepts

Bayesian structure: Bayesian instances: in

Bayesian knowledge Bayesian variables andstances of Bayesian vari
the dependency relationables and their probability
beteen them distribution

Table 5.1: The difference of knowledge exchange betweendidontologies

tative and quantitative. The former is the structure basit whereas the latter
is the numerical basic unit. Each numerical unit is simplyrabpbility table
associated to a variable (represented by ellipse) in thétafiae part. In fact
each probability table in OntoBayes is an instance of thestlendProbDist or
UncondProbDist according to the extended OWL specification in Sedfioh 4.2.

The Knowledge Exchange

Table[5.1 shows the differences of knowledge exchange leetBbls and ontolo-
gies both at the level of knowledge cluster and knowledgeim®. In compari-
son with the ontological knowledge exchange, the knowlediggter in Bayesian
knowledge contains the qualitative information of BNs, tlee variables and the
dependency relations between them. And the knowledgenicsteontains both
the qualitative and quantitative information, i.e. thaamses and the probabilistic
distributions of the variables.

In Figure[5.% we demonstrate the knowledge exchange betaggamts in the
VKC “FloodInsurance”. The agent “IC1” created this VKC fondiing a suitable
insurance product against flooding. It posted a piece ofaigeBian knowledge in
a message to indicate that an action for buying an insurarziipt depends on
the premium of the product. This VKC drew attention of anotigent “IP1”. So
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FloodInsurance

Community buffer

P2

. dependsOn )
 PLl _—

L - Product.Premium \ -

7 ' P3,
/ dependsOn '

Product.RiskCoverae/
~ InsuranceProvider:{IP1

- providedBy

P dependsOn

e g ',7 =
e Buy(Customer,Product) PS5,
InsuranceAgent: {IA1}

R N providedBy

Product: {FloodInsurance}

J/ RiskCoverage  Premium

Figure 5.4: The knowledge exchange in the VKC “FloodInsoedn
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o JointProbDist:{P5} Tt
Tl 1 "~

Figure 5.5: The knowledge sharing of the probability ta#én the VKC “Flood-
Insurance”.

it joined this VKC and posted two messages: one is for its Bayeknowledge
about the dependency relation between the premium, termsncoverage of an
insurance product — the premium of an insurance productrakpen the term
and risk coverage of the product; another one is for its affex flood insurance
policy. Besides “IC1” and “IP1” there is another agent “IA&ho has also interest
in the VKC and wrote a message, because after the knowleddeege with
“IA2” in the VKC "InsuranceAgentForum” (see Figufeb.2) ihéw that it can
offer a flood insurance policy to “IC1”, but provided by “IP@lith different policy
constraints comparing with the one of “IP1”. Therefore itota a message to
provide such information to “IC1".

As illustrated in the figure both of Bayesian knowledge anwlmgical knowl-
edge are exchanged between agents in this VKC, becausedtpests are built
upon OntoBayes and have an integrated approach of theirledge. It must
be pointed out that at the same time of exchanging the gtiaditanformation
of Bayesian knowledge, the corresponding quantitativermation must be ex-
changed too. In order to obtain a good overview of the figue simplified the
quantitative information as red boxes labeled \witin fact each of such boxes de-
notes a probabilistic table associated with a Bayesiamabka] either conditional
or unconditional.

As pointed out in Sectidn4.2 the probabilistic informatafra BN is specified
in OWL, i.e. that it is ontology-driven. Therefore, it can éechanged through
VKCs in principle as well as the normal ontological concepés exchange based
on RDF-triples. For example, the conditional probabiléple P5 in the VKC
“FloodInsurance” can be illustrated in Figurel5.5 as a bemdlinstances in the

RDF-triple

JointProbDist 22! probcelt

Generally we specified in the upper ontology of BNs (see [eigil) that a prob-
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ability table has arbitrary number of cells (at least oneut Bieoretically the
number of cells in a table is computable based on the statelated variables.
For example, if the variabl8uy (Customer,Product) has two states{yes,
no} andProduct.Premium has three statesflow, medium, high}, thenP5
has exactly 6 € 2 x 3) cells as shown in Figule™.5. More detailed syntactical
representation of such tables is described in Sefion]4r2dously. Here we
just want to emphasize the semantic feature —ctirapletenessf probability ta-
bles — when exchanging them in VKCs. It means that a prolgléble is only
exchangeable when its entire cells are complete. For iostas has 6 cells and
can not be exchanged if anyone of these 6 cells is not invalvélde exchange
process.

The Knowledge Evolvement

After the exchange each agent can adapt its old knowledgereapectively to
its knowledge cluster and personal ontologies with the n&arination. The
feature introduced in the above example is illustrated guFé[5.6 and Figure
respectively. They show the updated knowledge of thatét@él”, including
both of ontological and Bayesian knowledge.

“IC1” can evolve its ontological knowledge by merging thessa&ges inputed
by “IP1” and “IA1” respectively. The result of the merge isos¥m in Figure
which includes both conceptual and individual knowkdgor example the
concept “Product” is now linked to two different concefissuranceAgent and
InsuranceProvide, with the object propertprovidedBy. This is the knowl-
edge evolvement at the conceptual level. At the individexal “IC1” knows now
that there are two providers who can offer him the produd¢timseFloodInsur-
ance. One provider is “IA1” and the other is “IP1”. Each provideifers an
Floodinsurance with different constraints. In the figure we distinguish the
ferent offers with the green and blue color, respectively.

“IC1” can also complement its Bayesian knowledge about tageBian vari-
ableProduct . Premium with the dependency relations to other varialtesduct .
Term andProduct.RiskCoverage. The probabilistic distributions about each
variable must be taken into account too.

Most Variables can simply take over the probability tablestpd in the VKC.
But some variables can not do that, because these proliabiifermation is not
compatible in the following situations:

e One variable has both conditional and unconditional prdibabables in
a VKC. For example the variablRroduct .Premium had two probability
tablesP1 andP4 in the VKC “FloodInsurance”P1 is the conditional one
posted by the agent “IP1”, whereBs is unconditional and posted by the
agent “IC1".
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providedBy providedBy

Product: {FloodInsurance}

RiskCoverage  Premium

Clionmgn TS Clmedunbigh b

Figure 5.6: Ontological knowledge evolvement of the agé@t" following the
knowledge exchange in the VKC “FloodInsurance”.

_P3 . P2
Product.RiskCoverage ~’ Product.Term > -~

dependsOn

dependsOn

P5
Buy(Customer,Product) -~

Figure 5.7: Bayesian knowledge evolvement of the agent™lGllowing the
knowledge exchange in the VKC “FloodInsurance”.

In this case the variable will take over the conditional dregause the struc-
tural type of the variable in a BN is changed from uncondgico condi-
tional. Therefore in FigurE8.6 the varial®eoduct .Premium can only
take over the conditional probability talite.

e One variable has more than one probability table in a VKC, vt the
same type (either conditional or unconditional).

In this case the variable will take over all the tables, beeaas specified in
OntoBayes we allow a Bayesian variable to have more than aipility
table. But among them, only one table is active.

We mentioned that the completeness of probability tablestrba guaran-
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Figure 5.8: The basic exchangeable unit of IDs in VKCs.

teed during the quantitative Bayesian knowledge exchakgeept that, there is
another semantical restriction for the qualitative Bagedtnowledge exchange
according to the definition of BNs: the DAG condition. EverBnust be a
DAG. Before the knowledge exchange it can be insured thaB#yesian knowl-
edge taken by an agent is sound. It is expected that theisitiuaimains the same
after the knowledge exchange. In order to make it sure, taétgtive knowledge
evolvement of a BN must be checked with the DAG condition. éams that any
new variable added into a BN will be guaranteed not to causele @ the BN.

5.4 Decision Model Sharing through VKCs

Similarly as for the Bayesian knowledge, decision mode@3ntoBayes are repre-
sented based on IDs and are also ontology-driven. They capdmfied in OWL
formally. Therefore decision models can be shared betwgents through VKCs
too. According to Definitiol 218 and the upper ontology o$las illustrated in
Figure[4.9), the basic exchangeable units of IDs are alisttac Figurd 5.8.
There are totally 6 basic exchangeable units of IDs and tty@es of nodes
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Levels of kno

wledge exchange

Knowledge cluster

Knowledge instance

Bayesian knowledge

Ontological knowled Ontological structure} Ontological instances: in
ologicalknowledge concepts, relations. stances of concepts.
Bayesian structure: Bayesian instances: in

Bayesian variables a
the dependency relati
between them.

q

dstances of Bayesian var
nables and their probabilit
distribution.

Decision models with IDg

Structure  of IDs:
chances nodes, deg
» sion nodes and utility
nodes and the relation
between them.

Instances of ID: instance

i-of all kinds of nodes, the
probability distributions of
schance nodes, the utilit
function of utility nodes.

Table 5.2: The difference of knowledge exchange betweeolagies, BNs and

IDs.

in such units: chance nodes, decision nodes and utility 1¢ide more detail
descriptions see Pa@el36). The exchange of such units isughyimore com-
plex than the exchange of Bayesian units, due to the additiso node types:
decision nodes and utility nodes.
The chance nodes can be exchanged as when exchanging Bayeitsa be-
cause they are in fact Bayesian variables associated wathapilistic distribu-
tions. For the decision nodes we can simply make use of theaddbr exchang-
ing ontological knowledge as described in Secfion'b.3.2abse they are not
associated with any extra information and each of them cacohbsidered as a
“subject” or an “object” node in a RDF-triple. But, for theility nodes we need
to take the associated utility functions (simplified asitytilables in OntoBayes)
into account as when dealing with the chance nodes and ttedaapility tables.

The Exchange of Decision Models

Table[5.2 extends Tabl[eh.1 to show the differences of kriiydeexchange be-
tween ontologies, BNs and IDs, both at the level of knowledgster and knowl-
edge instance. In comparison with the ontological and Bapdenowledge ex-
change, the knowledge cluster in IDs contains more stracinfiormation and the
knowledge instance contains not only the instance of ndulegslso the probabil-

ity tables and utility tables.

In Figure[5.® we demonstrate the knowledge exchange ofidaaisodels be-
tween agents in the VKC “DecisionOfPurchase”. The agentL*I€reated this
VKC for completing its decision model to support making aghase decision.
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U(Buy(Customer,Product),Product.Premiupi)tility Value |

U(yes,small) -100
U(no,small) 50
U(yes,medium) 40
U(no,medium) 10
U(yes,high) 80
U(no,high) -80

Table 5.3: The utility table Ul forU(par(U)) = U(ProductPremium
Buy(CustomerProduct)).

Based on the Bayesian knowledge that it obtained from the VIRIGodInsur-
ance” (see Figured.7), it can construct a simple decisiodahby converting
the Bayesian variablBuy (Customer ,Product) to a decision node. Then “IC1”
inputed this model as a message in the community buffer. dieroto com-
plete this model, a utility node with a utility table relatéalthe decision node
Buy (Customer,Product) IS required.

As illustrated in the figure, a domain expert “DE1” (may be @oreomist)
joined this VKC to help “IC1” complete the model. It posted @&srage that
contains a utility nod& with a utility tableU1. This utility node has two par-
ent nodes: the decision no@ay (Customer,Product) and the chance node
Product.Premium. The utility table is specified as

U (par(U)) = U (Buy(CustomerProduct), Product Premiumn)

in Table[&.3B.

Another domain expert “DE2” (may be a psychologist) who kileat the risk
behavior of an agent is an important factor to make a purcti@sision. It joined
the VKC too and posted its knowledge according to the detipiroblem. This
message contains a utility nod@ssociated with a chance natlestomer . Risk-
Behavior. And the domain value of the chance node is specifietbagCustomer
RiskBehavioy = {aversionneutrality, seeking. Chance nodes in IDs are in fact
variables in BNs, therefore they must be specified with podita tables as ex-
plained in Sectiol5.3.3. In the VKC “DecisionOfPurchaskeé tthance node
Customer.RiskBehavior possesses a probability talme.

According todomCustomeRiskBehavioy the utility tableu2 of the node
U is constructed in TablE®3.4. The way to exchange utilitygabs similar to
exchange probability tables as mentioned in the last sedtecause as specified
in SectiorT4.B the underlying encoding of these tables is OMJieans that they
can be exchanged based on RDF-triples. In order to explamoiie clearly, we
illustrate the utility tablev2 in Figure[5.ID. U2 is an instance of the ontology
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DecisionOfPurchase

Community Buffer

_P3
Product.RiskCoverage ~~

Buy(Customer,Product)

\ \ -
[

. 'P6
R Customer.RiskBehavior: H@

Figure 5.9: The decision models exchange in the VKC “Deoi®iff*urchase”.

| U(Costomer.RiskBehavior) Utility Value |

U(aversion) -50
U(neutrality) 0
U(seeking) 50

Table 5.4: The utility table U2 fad (par(U )) = U (CostomeRiskBehavioy.
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7 UtilityTable:{U2} e
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hasUtility -~ _ hasCell

1

Buy(Customer,Product) -

Figure 5.10: The knowledge sharing of the utility tabtzin the VKC “Deci-
sionOfPurchase”.

classUtilityTable which is associated with another clagsilityCell based

on the predicateasCell. Each utility table has at least one cell as specified in the
figure. The instance2 possesses exactly 3 instancedoflityCell: cell 1,
cell 2 andcell_3, according tadlomCustomeRiskBehavio). Like probability
tables, the semantic feature — tt@mpletenessf utility tables — must be taken
into account when exchanging them in VKCs.

The Evolvement of Decision Models

After the exchange of decision models each agent can adagtiilecision model
base respectively. In Figutehl11 we illustrate that theney€1” completed its
decision model for purchasing a catastrophe insuranceuptadter the exchange
in the VKC “DecisionOfPurchase”.

Before the exchange process the agent “IC1” only knew theant make a
decision on the nodBuy (Customer,Product), but did not know how it should
take this decision. After the exchange it has a complete inwitle the help of
two domain experts “DE1” and “DE2”. Now “IC1” knows that it sbld make a
decision based on the utility measure of the nod€his utility node merged two
utility tables posted in the VKC “DecisionOfPurchase”. Tdngestion is how to
merge them? As mentioned in Sectlon 2.4 the most used methdeht with this
problem is to create an associated utility which is a sum odpet function of
these utility nodes. as illustrated in Figlre3.11, “IC1hcaergeu1 andu2 into
one utility nodeu with a sum function. For example, if the risk behavior of “IC1
is identified axrisk seeking, then according to Table$.4 we must add 50 to all
utility values inU1. The resulted table is represented in TabIé 5.5.

We mentioned that the completeness of utility tables musfuaganteed dur-
ing the exchange. Except that, there is another semargstaiations for exchang-
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Buy(Customer,Product) 0
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Figure 5.11: The agent “IC1” complete its decision modeldarchasing catas-
trophe insurance product after the knowledge exchangeiNIKC “DecisionOf-
Purchase”.

| U(Buy(IC1,Product),Product.Premium,IC1.RiskBehayipUtility Value |

U(yes,small,seeking) -100+50
U(no,small,seeking) 50+50
U(yes,medium,seeking) 40+50
U(no,medium,seeking) 10+50
U(yes,high,seeking) 80+50
U(no,high,seeking) -80+50

Table 5.5: The utility table U1+U2 fotJ (par(U)) = U (ProductPremium
Buy(IC1, Product),IC1.RiskBehavioywith identified risk behaviorseeking
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ing decision models according to the definition of IDs: the@®¢ondition and the
total order condition (see Pafi€ 37) of IDs. Every ID must beA&DBefore the
knowledge exchange it can be insured that an ID taken by am &g DAG, and
the same condition will be expected after the exchange. derdo make it sure,
for any new node added into an ID it will be checked whetheaitses a circle in
the ID.

The total order of an ID indicates that there must be a dicepth through
all decision nodes in the ID. To avoid violating this semafgature of IDs, after
adding any new decision node to an ID, it must be checked hieaé tis a direct
path throughout all decision nodes including the new one.

5.5 Collaboration through VKCs

In the last sections we demonstrated how to enable distaliii through VKCs,
with emphasis on knowledge sharing in the OntoBayes modehi$ section we
will show how to facilitate the collaboration and adapmitrough VKC.

Collaboration for Virtual Teams

As discussed in Sectidn .1, most organizations or engampiave distributed
structures in different places or even virtually, in ordekeep their global com-
petence. Instead of teams with face-to-face communicstieintual teams for
collaborative problem solving are required in such orgatnins, due to the phys-
ical distance (different locations and time zones) andgawizational boundaries.
In Figure[2 IR a simplified DSS is illustrated to provide a gr@nview for
collaborationthrough VKCs. In the system there are many components: agent
management, knowledge management, reasoner and so on.tefnsyser, the
decision maker, can get support through the system intettasolve a decision
problem. The system assigns a domain expert and a knowletgeeer to the
decision maker, in order to facilitate thasis developmeifivhich is the first step
in the decision analysis process presented in Figude 3.®Meoproblem. The
system component “Agent Management” creates three ag®i&, “DE” and
“KE” for representing these three human users in the sysesmpectively. These
three agents build a virtual team “VKC’ that only aims to deal with this deci-
sion problem. But the basis development can not be compdetigdvith the help
of the knowledge expert and the knowledge engineer. Itrstidds the domain
and situational knowledge relevant for this problem. Tfees the system cre-
ates two system agents “KM1” and “KM2” and assigns them tovilieial team
“VKC _1", where “KM1” is responsible for finding related domain kvledge in
the system repositories and “KM2” answers for gatheringences according to
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Figure 5.12: Agents collaborate with each other via VKCs @inaple DSS.

the problem. “KM1” and “KM2” join the virtual team “VKC1” and together
with the human user agents they can build a formal decisiodeinfr solving
this problem. According to the decision analysis process¢lam still needs an
additional agent “DA’ for decision analysis. “DA’ is creat®y “Agent Manage-
ment” and possesses the reasoning ability for the giversibecmodel. Now the
team is complete. Each member has its special functioratitytakes a unit of
task which is decomposed from the original decision problem

All members of the virtual team “VKCL” can work together collaboratively
without regards to the physical distance and organizaltlomandaries. For exam-
ple the decision maker “DM ” is an European who wants to buyaskmear the
“HuangPu” river in Shanghai. He must decide whether a flosdriance is neces-
sary for him, and when necessary who can provide such preamnct which one
he should buy. Therefore it asks the DSS for decision makipgart. The system



114 CHAPTER 5. VIRTUAL KNOWLEDGE COMMUNITIES

assigns “DM” two helpers from Europe, “DE” and “KE”, due toetlconfidence
problem (he may rely on an European expert more than a loedl éwalditionally

an agent “KM3” answers for the product query from “DM”. Tobget with other
agents as mentioned above, a virtual team to support “DM&taldished. They
don't need face-to-face communication any more.

It is pointed out in FigurE5.12 that an agent can be involwedany different
communities, according the principle of VKCs. For exampthe agent “KM2”
can participate in both “VKQ” and “VKC_n" at the same time, in order to gather
more evidences through knowledge sharing in VKCs.

Adaptivity from the Perspective of KM

As discussed in Sectidn3.1.3 one challenge for DSS iadagtivity, which has
two perspectives: one is the knowledge management andlike istthe system
engineering. VKCs can be used to deal with the former, wisetiea latter can
be accomplished through the implementation of the systesedan SOA (see
ChaptefDb).

Most systems will provide the feature of adaptivity in a calited approach
— the monitoring of a system landscape. On the contrary systayered with
VKCs have a distributed approach to provide this featureerg in VKCs are
distributed. They can selectively join different commiestbased on their own
interests at the same time. They can work more proactivelyalise they don't
wait for the report of knowledge changing from any centradtegn component
like a monitor. They can update their knowledge and alsas@pdéineir new obser-
vations about knowledge of the system environment withraagents by actively
participating into different communities. Changes can bkvdred to the right
community, for the right agents and at the right time, basedifberent domain of
interest. Then agents can adapt their decision models émgigcision problems.

For example, in a disaster management DSS there are sons aganected
to sensors for gathering information about water gaugey Wikdirectly deliver
the changes to an assigned controller who can decide whietlogen the water
gate or to keep it closed. But, they can also share this chartbeother agents
through VKCs. They can create a new VKC to give other agentgpgortunity
to join the VKC and obtain the changes. Or they can selegtjoéh some com-
munities where there are already agents having interesteikinowledge about
changing water gauge.

It's quite the opposite in a monitoring system where ageaksalie more reac-
tively, because they can and must update their knowledge wieesystem moni-
tor observes something has either change or is new.
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Implementation and Test

This chapter aims to design and implement a DSS based onaime\vork pro-
posed in Chaptdrd 3 and to test the feasibility of the DSS watimes evaluation
scenarios. In the first section an architecture is desigaeddiding the imple-
mentation. The next section is devoted to give an overvieth@fmplementation
from the general technical perspective. In the last se¢hierDSS will be evalu-
ated with emphasis on the main objectives of this work — decimaking with

uncertain knowledge, (formal) knowledge integration int@Bayes, and knowl-
edge sharing through VKCs.

6.1 A System Architecture

According to the layered framework illustrated in Figlird a. service oriented
architecture is designed for DSSs. There are four coloran,csnagenta, yellow,
and green. As depicted in Figurel6.1 this architecture hasyroeamponents and
each of them can be assigned to a layer of the framework aogota the color

representing it. Components in cyan, magenta, yellow, aadrgbelong to the
repository, management, collaboration and applicatigarlaespectively. In the
following subsections the architecture will be described bottom up approach.

The Repository Layer

In the lowest layer, the repository layer, there are at lwaskinds of repositories:
a service repository and an OntoBayes repository.

e The Service repositorys used to store service descriptions. All services
published by the DSS can be retrieved from this repository.

e The OntoBayes repositorys in fact the public knowledge and decision
model storage of the system. In the OntoBayes model therihi@e kinds

115
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Figure 6.1: An architecture according to the layered fraor&wsee Figuré3l3)
for DSSs.
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of OWL files: the ontological knowledge, the Bayesian knalgie and deci-
sion models. They can be distinguished with the upper ogtesodescribed
in Chaptef®.

e Other repositories can be built for the system or for userdemand. For
example repositories for storing policy, business praeeasd so on.

The Management Component Layer

In the management layer there are several types of manageormaponents and
each of them has its own functionalities and provides diffiéservices.

e A repository managememrovides basic services to manage all kinds of
repositories, e.g. operations for access, recovery amptésm preservation
of repositories. These operations are very basic suckaak write, modify
etc., but are not able to interpret the content in the repoeg. Advanced
operations like these are provided by the knowledge managecompo-
nent. For example, operations for recognizing the contehts file in a
repository will be provided by knowledge management, nohis layer.

e A decision managemetakes responsibility for managing all activities di-
rectly related to decision making. These activities araristance to man-
age different decision making processes, to distinguiffierdnt decision
support levels (simple query vs. decision analysis) andrsoTde deci-
sion analysis process described in Sedfion B.2.4 will béempnted in this
component.

e A knowledge managemesihould provide services to manage the knowl-
edge life cycle: knowledge generation, knowledge codificetknowledge
transfer (also known as knowledge sharing), and knowleggdication
[ALOI]. We take only knowledge generation and codificatiotoiaccount
in this system component, because in this work knowledgestea is the-
oretically designed based on VKCs as discussed in Chhptad 3/KCs
build the collaboration layer of the system.

For knowledge generation operations such as the acquisstymthesis, and
creation of knowledge are required. In fact all knowledg&ased in differ-
ent repositories in format of certain files, e.g. OWL-file awdon. There-
fore we need tools to recognize the content of these filesamitlex them,
as well as to query them.

For knowledge codification tools to represent knowledge dnyverting it
into formal formats are required, because only the formaiasentation can
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make knowledge easily accessible and transferable. IrtlibsEs knowl-
edge codification is theoretically based on the work of thegrated model
OntoBayess introduced in Chaptéf 4. The introduced underlying férma
representation language for OntoBayes is OWL, thereforbnust be
able to edit and codify knowledge (ontologies, BNs and 1Dgd iOWL
files.

¢ A reasoner managemehas the responsibility for assigning algorithms for
reasoning about a BN or evaluating an optimal policy of anBDilding
a reasoner management component in a DSS separately i$ ifiseére
are many algorithms available for solving a decision problEor example
agents can make use of an exact reasoning to query a Bayesiablg, but
it can also make use of an approximate reasoning to do this.wor

To enable the DSS work, at least two algorithms must be mahlagéehis
component: one for reasoning about BNs and the other fouatiat I1Ds.

e A user managememirovides authentication and authorization services for
users. Each user has a different role in the system and hagliffisrent
rights. For example, there are knowledge workers, domagmerts, knowl-
edge engineers, administrators, decision makers (i.eertdaisers) and so
on. Users may consume services provided by the system oréy Wiey
are granted permission.

e An agent managemetdkes responsibility to manage all agents. For exam-
ple, to create agents, to terminate agents and so on. Thete@kinds of
agents running in the system: system agents and user agdér@dormer
run on each management component and have its functi@salifhey are
created by the system. The latter are created by users vgitinas! tasks.

The Collaboration Layer

In the collaboration layer there are VKCs which provide d@uat place for agents
to meet and work together. As discussed in Chdgter 5 two maiatibnalities

will be provided in this layer: corporate knowledge supgortdecision making

through knowledge exchange and collaborative working iéigl teams.

The Application Layer

The front end of the system, the application layer, proviges interfaces based
on web services to support decision problem solving. Dewgisupport in the

application front end will be realized through the utilinat of web services pro-

vided by the system back end.
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In fact each user interface is a service consumer and themysack end is
thus a service provider. As depicted in Figlird 6.1 the semyateway connects the
back end and the application front end of the DSS. It enablegieal integration
of service consumers and providers and a logical connebitnween the back
and front ends of the system.

Repositories, all management components as well as VKGedbdte system
are connected to the gateway through a service bus. Sethaethey provided
can be published in the service repository and consumeddyg uia the gateway.
Applications can be constructed dynamically and flexiblysblecting services on
demand and composing them into a executable process.

6.2 Implementation

In accord with the architecture illustrated above a prqgietyf a DSS is mainly im-
plemented within the interrelated works of GuillauIGUiG#{d Hering [Her07].
The prototype is developed with the programming languaga.J#n this sec-
tion we only give a simple overview of the implementationt tiee details, be-
cause it is not possible to describe the concrete implertientaork of the whole
system in details within the limited place in this thesis. mlaletails such as
UML (Unified Modeling Languagediagrams can be found under the web link
http://iaks-www.ira.uka.de/home/yiyang/DSS/UMLs as well as in[[GuiO7]
and [HerQ7].

In order to facilitate the implementation, we make use of ynaxisting tools
and API @Application Programming InterfageMost of them are open source, but
there are also commercial softwares. In the following sctises we will describe
what are implemented in the prototype and with which teahesy(open sources
or commercial softwares).

6.2.1 An Application Interface

According to the architecture user interfaces in the appiba layer are required
to facilitate the interaction between users and the DSShénptrototype a GUI
(Graphical User Interfacgis implemented based on the techniqudafa Swing
As depicted in Figure®@l 2 the GUI consists of five tabs: thertat, the repository
management tab, the VKC tab, the user management tab andeheraanage-
ment tab.

Among them the main tab is the main user interface for detisiaking sup-
port. This tab is set as the default display of the GUI. In this the following
operations are implemented:
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Main | Repaositary Management || WK I' Lser Management || Agent Management |

QUERY o I need a flooding Insurance?

Result

decision model niUni-k A\ Dissertation|Dissertation\Examples)Scenariol i needAnalysis. awl | [

Tesz, vou need itc!

LOGOLT

Figure 6.2: The main tab of the GUI.

e Operation for submitting queries. There is a query panelséy gan type a
guery in this panel and submit it to the DSS.

e Operation for displaying query results. There is a resuttehaAn input
qguery will be processed in the system back end and its ansilldreadis-
played in the result panel.

e Operation for opening an OWL file with Protégé. When themsitted query
is a decision problem which needs high level decision suppesides the
guery results, a decision model used to solve the problesetusned. And
users can explore the decision model with the Protégé ahdyim OWLON-
toBayes

Other tabs of the GUI will be introduced in the next subsectio

6.2.2 Management Components

In this subsection we will survey the implementation of eiéint management
components of the DSS.
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User lisk

Thom user name Darvid
Matthew '
password KEEEE

[ Add User l[ apply Changes J [ Delete User ]

Figure 6.3: The user management tab of the GUI.

User Management

In the user management component operations for authgatiGnd authoriza-
tion are implemented on JAAS4va Authentication and Authorization Seryice
1.0 which is a set of Java packages for providing servicesuutbeaticate and
enforcing access controls upon users.

In this component all users of the DSS are managed and cleatroh user
can log in the system only when his login information (thernaene and the pass-
word) can be authenticated here. After the successful atitiagion his access
right will be loaded through an authorization service ostbomponent, accord-
ing to the predefined user profile.

In Figure[6.B the user management tab is illustrated. Intéughe following
operations are implemented:

e Operations for assigning roles to a user. Each user has doolexample
end user, domain expert, and administrator and so on. Bifteples are as-
signed with different access rights. The access right df eaer determines
which operations are allowed for him in the DSS. For examplerad user
can view public repositories, but he is not allowed to motlifgm, because
such operations belong only to an administrator.

e Operations for modifying user information such as passvamaiso on.
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e Operations for adding and deleting users. These operatrerenly allowed
for system administrators.

Repository Management

The repository management component is implemented bashd bpen source
content repositonApache Jackrabifit1.0. Jackrabbit 1.0 is an implementation of
the JCR Java Content RepositonAPI in accord with the JSRIava Specification
Requegt170. JSR 170 specifies standard APIs to access contentitoeess
in a uniform manner with the Java technology. Following basgierations are
implemented:

e Operations for creating or deleting a repository.
e Operations for opening (or viewing) a repository.
e Operations for adding or deleting a file or a folder in a refoogi

In Figure[&4 the repository management tab of the GUI isttated. This
tab contains sub-tabs. The most left sub-tab, “reposgirgves an overview of
all repositories of the DSS. According to the architectineré are at least two
repositories in the system: a service repository and anEBayes repository. All
web services files are stored in the service repository. Ar@MiL files are stored
in the OntoBayes repository. These OWL files are used to ntbdadntological
knowledge, Bayesian knowledge and decision models (i.8).Dherefore they
are categorized into three folders: ontology, BN and ID. @atiled information
about each repository can be displayed in a separated Bub-ta

As illustrated in the figure users can create their own reéposs for their own
purposes. For example, there is a repository called "B@pssitory” and it stores
Bob’s private content. Only Bob can access and modify tipsseory and other
users have no right to access it, except the administrators.

Reasoner Management

In the reasoner management component there are only twathlge used for
the system: one for BNs and the other for IDs. The former isxactealgorithm,
the clustering algorithni[Pead7], for reasoning about BMsereas the latter is
for evaluating IDs and was abstractly described in Sefidr{see Pa 0).
The implementation of these algorithms are provided by . Netica-
J is the Java version of Netica API which allows to build BNsl dDs, to do

Ihttp://jackrabbit.apache.org/
2http://www.norsys.com/netica-j.html
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Baob's Repositary ! o :
ServiceRepositary path of the reposit.... | Ciirepositaries\RepositoryCOfBob
OntoBayesRepositary
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Delete File
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Figure 6.4: The repository management tab of the GUI.
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probabilistic inference and to evaluate optimal policyisla commercial prod-
uct provided by Norsys Software Corporation. For using algms provided by
Netica-J we implement a bridge which can set connectionsdest OntoBayes
and Netica. The OWL files in OntoBayes representing BNs arsdwill be con-

verted into Bayes nets and decision nets in the format ofcidetiespectively.
Every reasoning request for OntoBayes will be sent to Neticaugh the bridge,
and the results will be returned in the same way.

In this prototype the main purpose implementing this congmbrs not to pro-
vide many selective and comparable algorithms for BNs arg] Hdt to provide
the minimal set of algorithms that can guarantee the reagaility of the sys-
tem. From this perspective one algorithm for each methodasigh to test the
feasibility of the system. Further functionalities of tiesmponent (as mentioned
in Sectiof&.11) will be complemented in future works.

Agent Management

The implementation of the agent management componentésitmasJADE Java
Agent DEvelopment FramewdﬂlGA. JADE provides an agent platform which
simplifies the implementation of all basic specification$t?A (Foundation for
Intelligent Physical Agenjcompliant MAS. In this component the following op-
erations are implemented:

e Two classes of agents: user agents and system agents. &ses agpre-
sent users to execute operations for them in the systemugethe whole
system is agent-based and all communications in the systerbedween
agents, not between users and system components directign &/ user
logs in the system successfully, a corresponding user agére auto-
matically created in the DSS. This agent will take over ther ysofile and
can execute operations assigned either by the user or bystens For
example, to join a VKC or all VKCs for finding useful informati.

System agents are created for different components anghasswith pre-
defined tasks, operations and services. The DSS can crea@ngsagents
as it needs, depending on the system burden. If there are seavige re-
quests to one component, the component can create manys dgeake
over the requests concurrently.

e Operations for assigning roles to an agent. According tcs#reices pro-
vided by different system components, agents will be assigtifferent
roles similar to user’s ones.

Shttp://jade.tilab.com/
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Main || Repositary Management | wkC i| Iser Management | Agent Management !

agent list

Agentl agn_ant-ici | AgentZ |

Agents role |Reasoner Management & |
figents

Add Agent Delete Agent

Figure 6.5: The agent management tab of the GUI.

e Operations for creating or killing agents. For avoiding taste the system
resource and to make the system efficient, the agent manageorapo-
nent needs to suppress agents in time after they do finishtéiséi

e Operations for monitoring all agents. All agents are traldkg the system.
JADE provides a centralized approach to track them, theraledirectory
with a unique identifier for each agent.

A user interface is implemented for facilitating the mamragat of agents. It is
illustrated in Figuré 615.

Knowledge Management

As mentioned in the last section only knowledge generatr@haodification are
implemented in the knowledge management component, bekaos/ledge trans-
fer will be implemented in the collaboration layer througK@s.

For knowledge generation an index engine and a query engeérgle-
mented in this prototype. They can help agents search dospa&icific knowl-
edge (and decision models) in the repositories. The indgiercan index all
OWL files with meaning tags, in order to make the retrievalhefsie files easily
and quickly. And the query engine is used to answer the ogitcdb queries, as
well as to find situational knowledge — evidences of domaiec#r BNs and
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IDs. The indexes are hardcoded and the query engine is inepiet based on
the Jena SPAR@_query engine. SPARQL is a query language for RDF and
is a standard of W3C. The syntax of SPARQL is SQL-like and e¢asyse and
understand.

For knowledge codification a Protégé plugin, OWLOntoBaygimplemented
in this prototype. The implementation of this plugin is hea the Protégé API
and Jena OWL API. This plugin enables to edit and codify BN&I&s into OWL
files with a GUI. The way to codify them in OWL was introduceddhaptef®.

Figure[&6 and FigurE8.7 illustrate the GUI of the plugin.efiédhnare many
functionalities implemented in this plugin. Among them thest important are
the following ones:

e Operations for creating or deleting chance nodes. As de=tin Section
B2 and Sectiof 4.3 the basement of BNs and IDs in OntoBagesraolo-
gies. The properties of an ontology are used to create chamdes and
decision nodes. As shown in Figrel6.6 and Fiduré 6.7 theeptieg are
listed in the left panel. They can be moved to the right pandldisplayed
as nodes.

e Operations for creating or deleting decision nodes. We acansteuct an
ID based on a given BN. We can get a menu of operations. Oneriengio
operation is allowing to convert a chance node into a detisaxle.

e Operations for creating or deleting utility nodes. Thesdeasocan be di-
rectly created by using a similar menu as mentioned above.

e Operations for creating or deleting arrows between nodhs.types of an
arrow can be identified automatically depending on the typedes which
the arrow goes into.

e Operations for editing states of a chance node or a deciside.n

e Operations for editing probability tables of a chance node.

e Operations for editing utility tables of a utility node.
We select the variablBloodingInsurance.Premium as an example to test the
operations for editing states and probability tables. lguFe[6.8 there are two

panels. The left one is for editing states and the right oferiprobabilities. Be-
fore a probability table can be specified for a Bayesian tégiahe state space of

4 http://www.w3.org/TR/rdf-spargl-query/
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Figure 6.9: Construct the utility table of a utility node.

the variable must be defined first. Due to the fact that we akg discrete vari-
ables into account, in the left panel we can define the varigblodingInsur-
ance.Premium has three discrete statEsow,middle,high}. For making appli-
cations more practical, we can define each state with inteofaeal number. For
example the premium has the stater when it is lower than 50 Euro per month.

After the states of a variable are completely defined, we panify its proba-
bility tables. The probability table of the varial#@oodingInsurance.Premium
is specified in the right panel. As shown in the panel, we cati§pmany prob-
ability tables for this variable, but only one is active wihreasoning about a BN.
The active table can be selected via the check box shown abbeeutility table
of a utility node can be constructed similarly. Figlirel 6.8gants the utility table
of the utility nodeu2 in Figure[6.Y.

As shown above nodes in BNs or in IDs can be easily construgtethe
plugin. At the same time they can be encoded in OWL files adegrtb the
upper ontologies defined in Chaplér 4. The plugin is the mah for them to
construct the knowledge and decision model bases of the D&&Smain user
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groups of this plugin are knowledge engineers and domaiaréxpBut end users
can also make use of them to view decision models for havirigsaght into the
underlying mechanism for decision support.

Decision Management

The following functionalities are implemented in the demmsmanagement com-
ponent in the prototype:

e Recognition of two different levels of decision support@cting to Figure
B.4. An interpreter is implemented to analyze the input mgsd$rom users
and distinguish whether it is a service request for the loxeller for high
level decision support.

e Construction of the decision analysis process depicteigure[35. In the
case that a user requests a high level support, the decisadyses process
will be involved. A set of agents will be created for this pess. They
have different unit of tasks: basis development, analyssgmmendation
and basis refinement. For the basis development the decisiaext will
be analyzed by an interpreter (agent), according to thesaecproblem.
Two agents are created by the knowledge management contpatesi-
sion model identifier and situational knowledge identifieine former will
identify a necessary decision model in the OntoBayes reggsi When
a decision model is identified, the latter will query the wen@ntoBayes
repository for finding situational knowledge — evidencesr &nalysis the
decision model with given evidences, an agent created byetsner man-
agement component will assigned with an adequate algotithtne pro-
cess. After that results will be delivered to the user by #mmmendation
agent. It will also monitor the action that the user will takerefine the
basis.

In the first prototype this component is implemented with edbaded solution,
because a full automatic solution can only be guaranteedvmking techniques
such as natural language processing etc.. This is but bey@ndcope of this
doctoral work.

6.2.3 Virtual Knowledge Communities

The implementation of VKCs in this prototype is a major esien of the works
of Calmet et al.[[CMEO4, MC04, HamD4]. The following workgamplemented
to extend VKCs for archiving the full integration of VKCs af@htoBayes.
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Extension of normalized ontology into OntoBayes model.l'Gaarmalized
ontology of the old work contains only one head of the comryudius-

ter. But to be compatible with the OntoBayes model there aaathmost
three heads in each community buffer: one for ontologicaledge, one
for Bayesian knowledge and the other for decision modelsrdfore the
normalized ontology are extended to work with three heads.

Extension of knowledge cluster and knowledge instances@ritoBayes
model. The difference of knowledge cluster and knowledgéaimces be-
tween ontological knowledge, Bayesian knowledge and atetimodels are
shown in Tablé¢k]1 and Takleb.2. Their existing impleménatan only

work with ontological knowledge, but not for others. Themef they are
extended to cover all differences, e.g. extensions of Bagesstances and
IDs’ instances etc..

DAG check. The precondition for a legal BN or a legal ID is tleach
of them must be a DAG. After the Bayesian knowledge or decisiodel
exchange the system must check whether the resulted new BNigstill

a DAG.

OWL compatibility. The underlying formal representatiantjuage for On-
toBayes is OWL, but the previous implementation of VKCs isdzhon

RDF. In order to integrate VKCs with OntoBayes, VKCs must bepat-

ible with OWL. But we can not just translate or convert OWL dilmto

RDF files. Such a solution will violate the semantic meaniagtared in an
OWL file, because OWL is built upon RDF and has more descegiower.

Therefore we decide to improve the implementation of VKCseiach the
OWL compatibility.

This part is implemented by using APIs of Agentoﬁ\lErot’eg’e and JeBa
Jena is a semantic web framework for Java application dpwedot. The
exchangeable knowledge and decision models in OntoBagésnptement-
ed in the Java APlenaOWLModel. Additionally two parsers are imple-
mented for the semantic restrictions mentioned in Chéptené for OWL-
based probability tables and the other for OWL-based wytifibles. They
are used to parse the string expression of each cell of thestabd to ensure
that a table is only exchangeable when it is complete (nG ee# ignored
during the exchange process).

A GUI for the management of VKCs. As illustrated in Figlre@<some
basic operations of VKCs are available in the GUI. For examaplser agent

Shttp://agentowl.sourceforge.net/
Shttp://jena.sourceforge.net/
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Figure 6.10: The VKC management tab of the GUI.

can create a new VKC or join an existing one. It can termina&@ which
belongs to itself, i.e. it is the community leader of the VKC.

6.2.4 The Web Service Gateway

The web service gateway of the DSS is implemented as a J2EES@feer with
the help ofApache Tomcat ﬂhndApache Axi€® Tomcat is a Java Servlet con-
tainer for implementinglava Servleand JSP JavaServer Pagéswhich are de-
veloped by Sun Microsystems aiming to make the web-baseditappns possi-
ble, simple, dynamical, rapid and platform-independenisAs a SOAP Simple
Object Access Protocﬂ engine server which plugs into Tomcat and has addi-
tional supports for WSDLWeb Services Description Languﬂ SOAP is an
XML-based communication protocol started by W3C and isglesil for data in-
terchange between systems and for execution of FEnEte Process Callini-
tially SOAP was entirely based on HTTP, but now it has beeereded to a generic
conveyor of information on top of a variety of transport pals [ACKMO04].

A WSDL document defines services as collections of netwodpemts, or

http://tomcat.apache.org/index.html
8http://ws.apache.org/axis/index.html
http://www.w3.org/TR/soap/
nttp://www.w3.org/TR/wsdl
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ports. Each WSDL specification consists of two parts: anrabspart and a con-
crete part. The former contains abstract information ablefined data types, a
unit of communication, an action supported by the serviceaaoollection of op-
erations. The latter defines the concrete protocol bindmlgedi related endpoints,
where each endpoint is defined as a combination of a bindidgaaretwork ad-
dress[[ACKMO4].

The use of WSDL is simplified through the help of Axis, becaAses pro-
vides two commandsjava2WSDL andWSDL2java. The first one can be used for
building WSDL from Java classes, and the second one foribgiléhva APIs and
deployment descriptor templates in accord with web sesvspecified in WSDL.
These methods together make it easier to develop the DSSOAafproach.

The DSS can build all services based on the implemented JaisatArough
the commondjava2wSDL. These services will be published in the service repos-
itory and can be used for applications. In our system theiegupn interface is
also implemented in Java. In fact it is a service consumecl{ent). It sends
service requests via SOAP to the gateway of the system. T®iemyas a service
provider will analyze the requests and return the corredmgnservices back.
After getting the services, the applications can convestéhservices by using
WSDL2java into Java classes which can be directly used for application

For example to use the main GUI as shown above, the user “Bafgquired
to log in first. He inputs his user name and his password indgalpanel and
then the GUI (the client) sends an authentication servigaast with the given
login information (encoded in a SOAP message) to the sydiethe gateway of
the system this SOAP message will be decoded and analyzeddétivered to a
user management agent. The agent identifies Bob with hisvpagsuccessfully
and returns a confirmation service to the client. Then “Babéliowed to log in
to the system and to use other functionalities provided byststem.

6.3 Test

In this section we only test the feasibility of the prototygdehe DSS. A use case
is constructed according to the decision problems destiib&xampldLl (see
pagd®), in order to facilitate the test.

The whole use case will be demonstrated in five scenariosdiogao the se-
guential steps that Bob will go through to solve these prokslby using the DSS.
Based on the analysis of these scenarios we can test the injautiges of the
framework proposed in Chapiédr 3 — decision making with utadeknowledge,
(formal) knowledge integration in OntoBayes, and knowkedtaring through
VKCs.

e Decision making with uncertain knowledge. This is a commesaitire of
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most decision analytical systems, but is very importantiasic. In this use
case, there are many uncertain factors having influence@sioe making:

the risk of flooding, the relation between the financial staitia customer
and the premium of an insurance product etc.. Thereforesidecanalytical

systems are widely used for solving these problems. Sceha8, 4 and 5
can be used to test that our DSS is able to make optimal desibi@sed on
given IDs with predefined probability tables and utility led

In fact for this objective, a wide variety of BN-based toals available, e.g.
Hugin, Netica and so o [MurD2]. The usual steps are: 1) bwilfind a

decision model (an ID); 2) find (or set) evidences; 3) evaat optimal
policy. Among these steps the first two are the most impaqriaetause
the last step is mathematically calculable and the resulhigue when the
decision model and evidences related to the model are givenDSS also
follows these steps for making decision under uncertaiBtyt the way to
deal with the first two steps in our DSS is unique and diffeosnfrothers,
because of the next two points.

e Knowledge integration in OntoBayes. This is a unique featfrour DSS
compared to other DSSs. Most existing tools provide GUI tolding BNs
or IDs and specifying them in a certain syntactical formathsas XML
etc.. With the implemented Protégé plugdWLOntoBayesve can also
easily edit BNs and IDs, not only their structures but alse tlamerical
information, e.g. probability and utility tables. And atidnally we can
encode them in OWL files formally, i.e. not only at the synizadtlevel,
but also at the semantical level, as introduced in the Onte8aodel (see
ChaptefH).

In the OntoBayes model BNs and IDs are not just representad mnto-

logical way (in OWL), but incorporated into ontologies. $hntegration
provides coherent connections between ontologies, BN$2sdThe con-
nections are implemented through the way of constructirancé nodes
and decision nodes. As described in Chapler 4, these noegsa@rerties
of ontologies. They indicate the required context inforigrator given deci-
sion problems. And this context information can be iderdifi& ontology
reasoning or queries. This incorporation enables to findesges for BNs
and IDs automatically, not manually. We will show this featin all five

scenarios.

e Knowledge sharing through VKCs. This is another uniqueuieabf our
DSS compared to other DSSs. In Scenario 4 and 5 we will showtbhow
facilitate knowledge sharing via VKCs, to utilize VKCs fastablishing vir-
tual teams related to given decision problems, and how id buicomplete
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Figure 6.11: The decision model for insurance need analysis

decision models by sharing knowledge through VKCs.

Our DSS has low level decision support — query to the knowddalgse. Scenario
2 will show this feature by using the formal ontological queEmguage SPARQL
based on the knowledge base (ontologies) of the system.

6.3.1 Scenariol

The first problem faced by Bob is that he must find out whethedaels a flooding
insurance at all. He inputs a message in the query panel: ‘fiz®d a flooding
insurance?”.

The DSS finds a decision model (an IRgedAnalysis.owl in the Onto-
Bayes repository which matches this decision problem. TBigontains two
chance nodekocation.FloodingRisk andPerson.FinancialStatus, a de-
cision nodeneed (Person,FloodingInsurance), and a utility nodéJ. They are
illustrated in Figuré &11. The arrows goingigoint out that the chance nodes
are two decision criteria to evaluate the expected utilitye probability tables of
Location.FloodingRisk andPerson.FinancialStatus and the utility table
of U are specified in the OWL file. These numerical information barviewed
and modified with the GUI illustrated in Figuke 5.8 and] 6.%pectively. The
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arrow going toneed (Person,FloodingInsurance) points out that the infor-
mation about the flooding risk must be known for making thisisien.

Now the system is trying to find evidences about these chandesn The
notations of chance nodes and decision nodes indicate titextanformation
which should be retrieved through ontology queries. Actwdo the user profile
provided by user management, the system tries to find théidocand financial
status of Bob. The following queries are sent to the queryneng

SELECT 7Location

WHERE {?Person:Username "Bob" . 7Person:residentAt
?Location}

SELECT 7FinancialStatus

WHERE {7Person:Username "Bob" . 7Person:FinancialStatus
?FinancialStatus}

The result of the first query iShanghai and the second query i® matches
found based on the ontology filgerson. owl in the OntoBayes repository. Now
another query is shipped to the engine:

SELECT 7FloodingRisk
WHERE {?Location:CityName "Shanghai" . 7Location:FloodingRisk
?FloodingRisk }

Based on another ontology fite skCard. owl the resulthigh will be returned to
the systelﬁ Now the whole ID with all numerical information (the tabjesd all
evidences can be evaluated by using the algorithm assigngttlveasoner man-
agement. The expected utility of the decision naded (Person,Flooding-
Insurance) is computed:(need=yes,62.5) and (need=no, -55). The deci-
sion can be made based on the highest expected utilityd=yes,62.5).

All of these queries are processed in the system backgroBald.will only
get a recommendation message in the result panel: “Yes, ged a flooding
insurance.” and a URI of the used formal decision model. Bihds still the pos-
sibility to have an insight into the decision model, when pers it with Protégé
and the plugirOWLOnNtoBayes

6.3.2 Scenario 2

Now Bob needs to know all potential flooding insurance prd¢sldbat he can
choose from. He inputs a message: “Which flooding insuramodygts are

Hwe simplified the necessary information of a location fomidfging the flooding risk in our
scenario. In the reality it needs the exact information sagkountry, city, street and so on. But
the simplification has no impact on the quality of this testrerio.
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there?”. The DSS identifies that it is a low level support exju Therefore this
message will be translated into the following SPARQL queryte interpreter of
the DSS.

SELECT 7PolicyName
WHERE {?FloodingInsurance:PolicyName ?PolicyName }

Based on the OWL filensuranceProduct.owl in the repository the query en-
gine returns the resulPolicyA, PolicyB, PolicyC.

6.3.3 Scenario 3

Now Bob must decide to choose one product anfasig cyA, PolicyB, PolicyC.
He inputs a new message: “Which one should | buy from the meg@roducts
‘PolicyA, ‘PolicyB’ and ‘PolicyC’?” The system identifiethat it is a high level
support request. It means that a decision model is needeHisodecision prob-
lem. There is a simple decision mogelrsonalBuyModel . owl in the repository
of Bob which can be used to analyze this problem.

This decision model is illustrated in Figure @.12 as an Ias$ similar struc-
ture to the one depicted in Figufte_8.11. But the decision nadeis ID is
buy (Person,FloodingInsurance) and the chance nodes &®odingInsur-
ance.Quality andFloodingInsurance.Premium. These two chance nodes are
the decision criteria of the utility node To evaluate this ID we need evidences.
The following queries are used to find evidences of the chandes in the ID for
the given insurance produBblicyA.

SELECT “p

WHERE {?FloodingInsurance:Premium 7p .
?FloodingInsurance:policyName "PolicyA"}

SELECT 7p

WHERE {?FloodingInsurance:Quality 7p .
?FloodingInsurance:policyName "PolicyA"}

The result of the first query isidd1e and of the second queryi® matches
found according to the ontology filénsuranceProduct.owl in the OntoBayes
repository. Similar queries can be constructedH#eticyB andPolicyC. The
results can be simplified as follows:

PolicyB.Premium=low, PolicyB.Quality=no matches found
PolicyC.Premium=high, PolicyC.Quality=no matches found

Now the IDpersonalBuyModel . owl has all information that it needs and can
calculate the expected utility of the decision nddg (Person,FloodingInsur-
ance) according to the specified utilities 0f The expected utility fobuy (Bob,
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Figure 6.12: The decision model for buy a flooding insurance.

PolicyA) are (buy=yes,36) and (buy=no,34). Forbuy(Bob,PolicyB) they
are (buy=yes, 116) and(buy=no,-78). Forbuy (Bob,PolicyC) they are(buy=
yes,-32) and(buy=no, 114). According to the highest expected utility two opti-
mal decisions are returned to BolPolicyA orPolicyB is your optimal choice”.

6.3.4 Scenario 4

It is obvious that Bob can not really solve his problem of pasing an insurance
product only based on the decision mopetsonalBuyModel. owl from his own
repository. He needs more support from the system, e.g fr&i@s/ He sends a
request to the system for creating a virtual tédKC1in the VKCs. This virtual
team has the domain of interest “Bob’s flooding insurance’'tae normalized on-
tology of Bob’s decision modgersonalBuyModel . owl (Figure[&IP). The sys-
tem assigns a domain expert of assessing insurance policp@id, to this vir-
tual team. David join¥ KC1and shares his decision modekessPolicy2.owl
to help Bob make an optimal decision. Bob can complete hissaecmodel
personalBuyModel .owl with assessPolicy2.owl. The new decision model
was illustrated in Figure8.7 and is specifietiryModel . owl.

In fact David adds a new decision noglesess (InsuranceExpert,Flood-
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ingInsurance) to Figure[&TIP. This decision node has a utility nadewhich
has a determinate variablmsuranceExpert.AssessPayment as its decision
criterion. With the added nodes the new model is informindp Bwat David can
evaluate the insurance products and give a quality repoudtabem. Based on
the quality evaluation Bob can make a better decision. ButtHis service Bob
must pay.

The new decision model is a sequential decision problemodé8ob makes
a decision to buy one product, he must decide first whetheekdathe service
of product quality evaluation. To make the first decisionbBeeds to know the
payment for David — the evidence of the chance nDaleid . AssessPayment.
An instance of the chance node was given in the VKC1 when Davnitted his
decision modelDavid.AssessPayment=high. Now the decision model can be
evaluated based on this evidence. The expected utilityfesss (David,Flood-
ingInsurance) are (assess=yes,17.5) and (assess=no,95.8). Therefore
Bob decides not to take David’s service, because it is toemsige. The decision
problem is not solved. Bob still has no idea which one he shbuly between
PolicyA andPolicyB, but at least he got a new decision model.

6.3.5 Scenario 5

Bob sends his personal agent to join all VKCs and to find usefarmation for
his problem. InVKC2 (having the domain of interest “Alice’s Flooding Insur-
ance”) he observed that the payment for the domain expert-HMygo, is low. He
asks Hugo for joining his virtual team. Hugo joins it and pd®s the same pay-
ment of the quality evaluation service as for Alice. Now Bolalgzes his decision
model again, but with the new evidencBugo . AssessPayment=1ow. The ex-
pected utility forassess (Hugo ,FloodingInsurance) are(assess=yes,117.5)
and (assess=no,75.8). According to the highest expected utility Bob decides
to take Hugo’s service.

Hugo gets the payment of Bob and evaluaesicyA andPolicyB. The do-
main knowledge for evaluating the quality of insurance picid was illustrated
in Figure[6.6 and specified imssessPolicy.owl. The figure is a BN and indi-
cates that the quality of an insurance product depends ee thiteria: the term,
the risk coverage and the premium of an insurance producé pfémiums of
PolicyA andPolicyB were identified in Scenario FolicyA.Premium=middle
andPolicyB.Premium=low. The remaining evidences that Hugo needs to know
are about the nodéd oodingInsurance.RiskCoverage andFloodingInsur-
ance.Term for these two products, respectively. With the followingeges to
insuranceProduct.owl Hugo can get the results for PolicyRolicyA.Risk-
Coverage=high andPolicyA.Term=long.
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SELECT 7t

WHERE {?FloodingInsurance:Term 7t .
?FloodingInsurance:policyName "PolicyA"}

SELECT 7r

WHERE {?FloodingInsurance:RiskCoverage 7r .
?FloodingInsurance:policyName "PolicyA"}

With similar queries the results fep1icyB can be retrieved to®olicyB.Risk-
Coverage=low andPolicyB.Term=long. Now the BN &ssessPolicy.owl)
can update the probabilities of all of its nodes, given tlodservations. The prob-
ability distribution of the nod@loodingInsurance.Quality given the observa-
tions ofPolicyA andPolicyB are(PolicyA.Quality=good,0.68), (PolicyA.
Quality=bad,0.32), (PolicyB.Quality=good,0.3) and(PolicyB.Quality
=bad,0.7).

Based on these results Hugo gives the report to Bob with laisiation result:
PolicyA.Quality=good andPolicyB.Quality=bad. Now Bob can evaluate
his decision model again based on the new evidences reploytétligo. The
expected utility forbuy (Bob,PolicyA) are (buy=yes,150) and (buy=no,80).
For buy (Bob,PolicyB) they are(buy=yes,40) and (buy=no,80). According
to these utilities the system recommends to Bob to kelyicyA, notPolicyB.
The problem is solved finally.

6.3.6 Concluding Remarks

In this section we presented a series of scenarios for teftenfeasibility of the
DSS, with a focus on the following main features.

e Decision making with uncertain knowledge. Our DSS is decisinalyt-
ical which combines utility theory and probability theoryhe uncertain
knowledge modeling is based on BNs and the decision anayysased on
IDs. Scenario 1, 3, 4 and 5 demonstrated that our system claa opamal
decisions with uncertain knowledge like other method@edjiased on IDs.

Comparing Scenario 3 to Scenario 5, a conclusion can be diehore ev-
idences can be found, more precise decision can be made incantain
environment. With the decision model used in Scenario 3 Batbagrec-
ommendation from the DSS with two choices: RplicyA or PolicyB.
But it is still unclear which one is better. If he must make aigi®n at that
time, he will probably chooskolicyB, because its premium is lower than
PolicyA. In factPolicyA is better tharPolicyB as shown in Scenario 5.
The evidences about the quality of these products helpedgBoh better
and precise recommendation from the DSS.
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e Knowledge integration in OntoBayes. As shown in the sceisathe under-

lying formal representation language of OntoBayes is OWilspite of the
fact that it represents three different methodologies.deniify the factual
interpretation for an OWL file we make use of upper ontologiescribed
in SectionZ.P anf413. The formal knowledge codification atdBayes
enables to identify the domain specific and situational Hedge used for
BNs and IDs automatically.

Knowledge sharing through VKCs. Knowledge managemenstoah en-
hance knowledge by a variety of ways including generatiadjfcation
and transfer. But “without a culture that supports the relsaf knowledge

sharing, the tools can be uselegs™ [Rug97].

In Scenario 4 Bob created a VKC for building a virtual team edlihg with
his decision problem. He took the advantage of knowledgershthrough
VKCs by completing his decision model with the shared moddehe par-
ticipant David. And in Scenario 5 he sent its personal agempiatticipate
in all exiting VKCs for obtaining more useful knowledge. $hs exactly
the corporate knowledge approach for decision making. €hkelr of this
scenario shown that Bob did profit from corporate knowledigEause he
got an optimal solution which he will never know when he did atlize
VKCs. Together with Scenario 4 and 5 we demonstrated how VE&dls
facilitate knowledge sharing and how decision making caxfitpirom cor-
porate knowledge.

The exchanged knowledge and decision models through VK@seipresented
scenarios in fact can only take place in the community bufet hardly be ob-
served. But for testing the feasibility of the VKCs approasghmust record these
exchanged unit in OWL files. All OWL files used in the scenaabsve can be
found under the web linkttp://iaks-www.ira.uka.de/home/yiyang/DSS/
Testdata.
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Conclusions

The maingoal of this dissertation was to design and develop a DSS adapted t
uncertain knowledge. As discussed in Seclioh 2.2 unceytarone of the most
important, daunting, but inevitable challenges in an op®h dynamic environ-
ment for decision making. Not only the imperfection of infation, but also the
uncertain nature of correlations between decisions andoogs, cause uncer-
tainty. Therefore, a sound DSS must be able to work underrtaioty. Besides
uncertainty, there are other important challenges to addres mentioned in Sec-
tion[31.3 they are adaptivity, knowledge managementabolation, intelligence
and the explanatory power.

In order to meet the goal, the followingsearch objectivewere established
and achieved:

1. The development of an advanced and abstract framewoi®3&s to ad-
dress all these challenges in an open and dynamic envirdnpeeticularly
with the emphasis on uncertain knowledge. This framewatkasacterized
by different views: a pillar-based view, a layered view, aidi®n theoretical
view and a process view (see Secfiod 3.2).

The pillar-base view points out six important methodolsgé the frame-
work. They are ontologies, BNs, IDs, VKCs, MAS and Web SesicThe
first four methodologies are the theoretical foundationthefframework,
whereas the last two are the technical building blocks fgl@menting it.
Features and functionalities of these methodologies wijard to DSSs are
described in Sectidn 3.2.1.

The layered view shows the hierarchical layers from theesygdiack end to
the application front end in a bottom up approach. There @ue generic
layers: a repository layer, a management component layed|aboration
layer and an application layer (see Secfion8.2.2). Thesgdauided the
design of the architecture depicted in Figlird 6.1.
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The decision theoretical view summarizes normative, desee and pre-
scriptive perspectives of the framework (see SedilonIB.2t3points out
that the proposed framework has a hybrid decision makingoagp with
all of these three perspectives.

The process view points out a low level and a high level decisupport
of the framework (see Section 3.P.4). The former regards 8 D6re as a
guery system which can provide information according tarnipait queries,
whereas the latter regards a DSS more like a decision anaiygtem which
can recommend solutions according to the decision probigananalyz-
ing and forecasting current and future environment. Theléwel support
is relative simple and intuitive. On the contrary the highelesupport is
more complicated because it needs a dynamical decisiogsasmgrocess
(depicted in Figuré_3l5) which is inspired by the decisioalgsis cycle
[Hol89] and Simon’s model of the decision process [SIm60].

. The design, development and use of the OntoBayes modetisidn sup-

port for solving decision problems having complex struetand uncer-
tainty (see Chaptéid 4). OntoBayes integrates the methg@s@f ontolo-
gies, BNs and IDs into an ontology-driven model, in order teserve all
advantages of them.

OntoBayes is designed with two parts: a knowledge part andcssion

model part. The former includes ontological and Bayesiaowkedge,

while the latter specifies different decision models basedDs. The se-
lected underlying formal KR language of OntoBayes is OWLotder to

enable the integration of BNs and IDs into ontologies, twparmntologies
(depicted in Figuré&4l1 arid 4.9 respectively) are given émtaring essen-
tials of BNs and IDs. Moreover, a number of OWL annotatiomssgecified
based on these upper ontologies in OntoBayes.

As described in Sectidn4.2.5 dnd 413.3 in OntoBayes thdagital knowl-

edge, Bayesian knowledge and decision models are not seplawsd inter-
related. The interrelation between them facilitates kmalgke acquisition
through ontological queries which are very important to #wvilences for
decision making under uncertainty as shown in Se¢fion 6.3.

The utilization of the OntoBayes model provides formal supgpfor deci-
sion making. From the syntactical perspective the OntoBayedel totally
rests on OWL which is a formal language for modeling ontasgiFrom
the semantical perspective OntoBayes not only retains sbalitsemantic
of ontologies, but also incorporates the semantics of BNisIBs into on-
tologies. In order to distinguish the specifications of efiént OWL files
in the OntoBayes model, upper ontologies for BNs and IDs aggasted.



143

These upper ontologies are predefined in the head informati®WL files
in OntoBayes as described in Section 4.2 4.3. Therefo@VeL file
can be easily recognized whether it specifies a BN or an ID.

The most related works based on the probabilistic approagioathe fuzzy
approach are investigated and surveyed in Se€fidn 4.4. Uiveysshows
that the OntoBayes model is an original work and differs Vfieoyn other
proposals or methods in the domain of incorporating uncegtanto on-
tologies. The knowledge part of OntoBayes has similaritigs them, but
the decision model part is unique and decisive for decisiaking support.

. The adaption and use of VKCs in decision support for thetgol of knowl-
edge transfer. VKCs provide a virtual platform to share kisolge, deci-
sion models and to facilitate the collaboration in a disitélal way. A simple
scenario was designed and introduced to demonstrate iC{saeteb).

VKCs are not a simple extension of the previous implemematiper-
formed in the group and starting with Hammond’s wdrk [HamOBEtom
the theoretical perspective the previous works do not cgmwih the new
requirements and solutions described in Chdgter 5. VKCexpected to
be fully integrated with OntoBayes which incorporates uttase knowledge
and decision models into ontologies. This challenge carbaaddressed
with a simple extension of the previous works of VKCs. Mosportant
concepts about VKCs such as normalized ontology, knowletigster and
knowledge instances, must be extended and redesigned foB&yes in
accord with the semantics of BNs and IDs.

From the technical perspective the previous works are nequate for the
knowledge exchange based on the underlying modeling laysy@WVL.
Hammond implemented VKCs in his master thesis with a UMLellaap-
proach. The resulted prototype can only be used to exchabgeldased
ontological knowledge. In order to integrate VKCs with OB#&yes, VKCs
must be compatible with OWL, not only with RDF. The solutiohcon-
verting OWL files into RDF files is not practical because OWLbisld
upon RDF and has more descriptive power. Therefore the mmai¢ation
of VKCs must be improved to reach the OWL compatibility.

. The development and test of a prototype of a DSS accorditigetproposed
framework. An agent-based and service-oriented architeds designed
and proposed in Sectidn®.1. The MAS paradigm makes ageitableuas
software entities for the delegation of diverse decisiokingtasks and for
collaborative works. The SOA approach enables featuresost coupling,
implementation neutrality, flexibility and adaptivity of3$s.



144 CHAPTER 7. CONCLUSIONS

Based on the system architecture (depicted in Figude 6.Ipttype is

implemented by using many open sources and commercial &eabw This
prototype is able to support decision making with the Onieamodel and
VKCs under uncertainty. A Protégé plugdWLOntoBayess implemented
for the OntoBayes model. It allows users to edit and codifysiMd IDs
into OWL files with a user friendly GUI. Additionally an appétion in-

terface is implemented to facilitate the utilization as Ivasl the test of the
prototype (see Sectidn®.2).

The test part allows to evaluate the feasibility of the piyyte (see Section
[E3). A simple made-up use case in the application domair@istrophe
insurance is created. This use case is demonstrated in émaisas accord-
ing to the sequential steps that the decision maker solvesktproblems
by using the prototype. All five scenarios show the uniquéuieaof the
implemented DSS — knowledge integration in OntoBayes. Agnibiem,
Scenario 1, 3, 4 and 5 successfully evaluate that users cke amimal
decisions based on given BNs and IDs with predefined prababables
and utility tables. Particularly with Scenario 4 and 5, iei&luated that the
prototype is feasible to facilitate knowledge sharing vidG5, to utilize
VKCs for establishing virtual teams related to given dexigproblems, to
build or complete decision models by sharing knowledgeughoVKCs.

7.1 Future Works

The implementation of the first prototype of the DSS will beeexled and im-
proved. More reasoning algorithms for BNs and IDs will be iempented. After
that users can compare the computation results by usingreiif algorithms for
same decision problems. More decision making (or analyssjesses are ex-
pected to be incorporated into the system. Different preeegprovide different
perspectives for making a decision about a same probleny. Willegive users or
other service consumers more flexibility when selectingyioled web services to
support decision making.

In collaboration with the catastrophe insurance projettthe postgraduate
school “Natural Disasters” applicable ontologies and sieai models about nat-
ural disasters and catastrophe insurances will be dewelapé evaluated. This
should allow real applications of the prototype in decisapport concerning low
probability-high loss-events like flooding and so on.

Open research lines to be considered, based on the expefrent the doc-
toral work are:

e Enhancement of the decision model part of the OntoBayes mtteother
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BN-based methods for decision making. The current devedoprof the
decision model part in OntoBayes only allows to specify togg-driven
IDs. But theoretically this part can be extended to contaneoBN-based
methods such Markov decision process, decision networksanah. By
means of domain specific upper ontologies these methodsecdeduribed
in OWL enabling thus a semantical understanding.

¢ Integration of decision making or analysis processes withraal business
process language. In order to execute the decision angdyst®ss pro-
posed in the framework, a hardcoded solution is implemeintéake proto-
type. But a more elegant and efficient solution is to execuith processes
automatically. For that, processes can be integrated withxacutable pro-
cess language, e.g. BPEL (Business Process Execution agagu

e Atrust mechanism for agents involved in knowledge shatingugh VKCs.
The current development of VKCs does not include any trusthameism
which can measure or control the knowledge transfered biytage VKCs.
This lack can resultin unreliable knowledge sharing thiougCs and lead
to incorrect decisions. To avoid that, VKCs must be enhandgéua trust
mechanism.

e Methods to assess achieved decisions based upon corpooatekige with
possible conflicting information. Once obtaining corperbhowledge, it is
possible to get conflicting information from different ager~or example a
variable can be observed with different evidences, or wiilere¢nt proba-
bility distributions, from different information source$herefore methods
for assessing such conflicting information are necessary.
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Appendix A

Preliminary OWL Annotations for
OntoBayes

OWL Annotations used to extend BNs and IDs into ontologietheOntoBayes
model are described in details in the following sections.

A.1 Class Annotations of BNs

<owl:Class rdf:ID="BayesianNetwork” >

Description:
This class represents a BN as an ontological concept. A geBér
consists of many chance nodes.

Subclasses: None

Properties (with BayesianNetwork as its domain):
consistsOF (multiple ChanceNode)

<owl:Class rdf:ID="ChanceNode” >

Description:
This class represents discrete variables of a BN as chartesndt
is the super class of all domain specific nodes in a BN. Eachagha
node has domain values specified in the datatype of stringenvitme
state of a chance node is observed, then it is an evidenabiarEach
chance node is associated with at least one probabilitg taBmong
these tables one is selected to be active when reasoning @ieoBN
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of the node. A chance node may have dependency relationfi¢osot
Based on the dependency relation we can divide chance noidetsvio
types: conditional and unconditional nodes.

Subclasses:
<owl:Class rdf:ID=‘‘CondNode’’>
<owl:Class rdf:ID=‘‘UncondNode’’>

Properties (with ChanceNode as its domain):
hasObserved (single xsd:string)
hasDomain (single xsd:string)
dependsOn (multiple ChanceNode)
hasActiveP (single JointProbDist)

<owl:Class rdf:ID="CondNode” >

Description:
This class represents conditional chance nodes of a BN wiaslpar-
ents in the BN. It is the subclass CfianceNode and inherits all prop-
erties of a generic chance node. Every conditional chande has at
least one CPT.

Subclasses: None

Properties (with CondNode as its domain):
hasObserved (single xsd:string)
hasDomain (single xsd:string)
dependsOn (multiple ChanceNode)
hasActiveP (single JointProbDist)
hasCondTable (multiple CondProbDist)

<owl:Class rdf:ID="UncondNode” >

Description:
This class represents unconditional chance nodes of a Bihwias
no parents in the BN. It is the subclass@ifanceNode and inherit all
properties of a generic chance node. Every unconditiorei@i node
has at least one unconditional probability table.

Subclasses: None
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Properties (with UncondNode as its domain):
hasObserved (single xsd:string)
hasDomain (single xsd:string)
dependsOn (multiple ChanceNode)
hasActiveP (single JointProbDist)
hasUncondTable (multiple CondProbDist)

<owl:Class rdf:ID="JointProbDist” >

Description:
This class represents the joint probability distributiba 8ayesian vari-
able (the chance node). In this work joint probability disitions are
representable by probability tables. According to the tyfdbe node as-
sociated with the probability table, it can be divided immisubclasses:
unconditional and conditional probability distributiofws tables). Each
table consists of a number of table cells.

Subclasses:
<owl:Class rdf:ID=‘‘CondProbDist’’>
<owl:Class rdf:ID=‘‘UncondProbDist’’>

Properties (with JointProbDist as its domain):
hasPCell (multiple ProbCell)

<owl:Class rdf:ID="CondProbDist” >

Description:
This class represents conditional probability tables oNaIBis the sub-
class ofJointProbDist and inherits all properties dfointProbDist.

Subclasses: None

Properties (with CondProbDist as its domain):
hasPCell (multiple ProbCell)

<owl:Class rdf:ID="UncondProbDist” >

Description:
This class represents unconditional probability tablea BN. It is the
subclass ofointProbDist and inherits all properties 0bintProbDist.
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Subclasses: None

Properties (with UncondProbDist as its domain):
hasPCell (multiple ProbCell)

<owl:Class rdf:ID="ProbCell” >

Description:
This class represents cells of a probability table. To siipgie annota-
tions in OWL, we specify them with two associated datatyppprties:
one for representing probability values and the other foapeters. To
distinguish cells of a CPT from the cells of an unconditigorabability
table, a syntax parser is implemented in the work.

Subclasses: None
Properties (with ProbCell as its domain):

hasPParameter (single xsd:string)
hasPValue (single xsd:float)

A.2 Property Annotations of BNs

<owl:ObjectProperty rdf:ID="consistsOf” >

Description:
This object property is the link between a BN and its chanadeso It
indicates the membership of a chance node, i.e. to which BNd& n
belongs.

<owl:ObjectProperty rdf:ID="dependsOn” >

Description:
This object property specifies the dependency relationdstvtwo cha-
nce nodesA andB. If A depends omB, thenA is a conditional chance
node associated with CPTs aBds an unconditional chance node asso-
ciated with unconditional probability tables.
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<owl:ObjectProperty rdf:ID="hasCondTable” >

Description:
This object property links a conditional chance node to a.CH$ al-
lowed in this work that a conditional chance node have maae time
CPTs.

<owl:ObjectProperty rdf:ID="hasUncondTable” >

Description:
This object property links an unconditional chance node @Pd. It is
allowed in this work that an unconditional chance node haweerthan
one unconditional probability tables.

<owl:ObjectProperty rdf:ID="hasActiveP” >

Description:
This object property indicates that a probability tableds\ee when rea-
soning about a BN. Due to the fact that chance nodes in thik mwary
have many probability tables, it is important to set exact table for
the need of reasoning computation.

<owl:ObjectProperty rdf:ID="hasPCell” >

Description:
This object property is the link between a probability tadnhel the cells
of the table. It can indicate to which table a cell belongs.

<owl:DatatypeProperty rdf:ID="hasDomain” >

Description:
This datatype property specifies the domain value of a dseaiable
(the chance node) of a BN usingd:string. The domain value con-
sists of many mutual and exclusive states.

<owl:DatatypeProperty rdf:ID="hasObserved” >

Description:
This datatype property indicates the observed state of acehaode
usingxsd:string. A chance node is a discrete variable in a BN and
has many states. Once a state is observed, the probability gathe
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state will be changed to 100%. This mean the state of theblariga an
evidence.

<owl:DatatypeProperty rdf:ID="hasPValue” >

Description:
This datatype property specifies the probability value of@bpbility
table cell usingksd:float. And the value is restricted to the interval
[0,1].

<owl:DatatypeProperty rdf:.ID="hasPParameter” >

Description:
This datatype property specifies the parameter of a prabataible cell
usingxsd:string. The parameter of a cell is a possible combination
of states of variables. In fact each probability table cel$ fa binary
relation with a parameter and a corresponding probabiétye.

A.3 Class Annotations of IDs

Due to the fact that the class and property annotations ol @8VL are extended
based on the annotations of BNs, we will only describe thetiaiel ones in the
following sections.

<owl:Class rdf:ID="InfluenceDiagram” >

Description:
This class is used to specify a generic ID in OWL. An ID hasetki@ds
of node: chance nodes, decision nodes and utility nodes.

Subclasses: None

Properties (with InfluenceDiagram as its domain):
hasUNode (multiple UtilityNode)
hasDNode (multiple DecisionNode)
hasCNode (multiple ChanceNode)
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<owl:Class rdf:ID="DecisionNode” >

Description:
This class is used to specify decision nodes of IDs in OWL hibexi-
sion node represents a set of possible alternatives alatialolecision
makers. These alternatives are specified wiifh: string.

Subclasses: None
Properties (with DecisionNode as its domain):

hasAlternatives (single xsd:string)
isKnownByY (single DecisionNode)

<owl:Class rdf:ID="UtilityNode” >

Description:
This class is used to specify utility nodes of IDs in OWL. Alitjinode
may have many utility tables, but is allowed to have only octeve table
for evaluating IDs.

Subclasses: None
Properties (with UtilityNode as its domain):

hasUTable (multiple UtilityTable)
hasActiveU (single UtilityTable)

<owl:Class rdf:ID="UtilityTable” >

Description:
This class is used to specify utility tables in OWL which cafiect the
preferences of a decision maker. Similar to probabilitydapa utility
table consists of many table cells.

Subclasses: None

Properties (with UtilityTable as its domain):
hasUCell (multiple UtilityCell)
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<owl:Class rdf:ID="UtilityCell” >

Description:
This class is used to specify cells of a utility table. Simtia cells of
probability table, such a utility table cell has a parameied a utility
value.

Subclasses: None
Properties (with UtilityCell as its domain):

hasUParameter (single xsd:string)
hasUValue (single xsd:float)

A.4 Property Annotations of IDs

<owl:ObjectProperty rdf:ID="hasDNode” >

Description:
This object property is the link between an ID and its decisiodes.
An ID may have many decision nodes.

<owl:ObjectProperty rdf:ID="hasCNode” >

Description:
This object property is the link between an ID and its charames. An
ID may have many chance nodes.

<owl:ObjectProperty rdf:ID="hasUNode” >

Description:
This object property is the link between an ID and its utihtydes. An
ID may have many utility nodes.

<owl:ObjectProperty rdf:ID="isKknownBy” >

Description:
This object property is used to specify informational ancsan ID.
Such arcs are arcs into decision nodes and indicate whichaition is
known to a decision maker at a decision time.
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<owl:ObjectProperty rdf:ID="influenceOn” >

Description:
This object property is used to specify conditional arcsnnl. It is
an inverse property afependsOn and indicates the probabilistic depen-
dency on the associated variables.

<owl:ObjectProperty rdf:ID="attributeOf” >

Description:
This object property is used to specify functional arcs innFunc-
tional arcs are arcs into a utility node and indicate whichaldes are
functionally dependent on the utility node.

<owl:ObjectProperty rdf:ID="hasUTable” >

Description:
This object property is used to link a utility node to a wjilteble. A
utility node may have many utility tables.

<owl:ObjectProperty rdf:ID="hasUCell” >

Description:
This object property is used to link a utility table to a uyiltable cell.
A utility table consists of many cells.

<owl:ObjectProperty rdf:ID="hasActiveU” >

Description:
This object property is used to specify an active utilityléatyhich is
involved in the evaluation algorithm of an ID.

<owl:DatatypeProperty rdf:ID="hasAlternatives” >

Description:
This datatype property is used to specify possible alteresbf a deci-
sion node usingsd: string.

<owl:DatatypeProperty rdf:ID="hasUValue” >

Description:
This datatype property is used to specify the utility valtia otility table
cell usingxsd: float.
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<owl:DatatypeProperty rdf:ID="hasUParameter” >

Description:
This datatype property is used to specify the parameter tfity table
cell usingxsd:string. A utility table cell is completed in a binary
relation with the propertitasUvalue and this one.
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