
A Security Gateway for Web Service

Protocols

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

der Fakultät für Informatik
der Universität Fridericiana zu Karlsruhe (TH)

genehmigte

Dissertation

von

Dong Huang

aus Shanghai, China

Tag der mündlichen Prüfung: 25. Juni 2007

Erster Gutachter: Prof. Dr. Jacques Calmet

Zweiter Gutachter: Prof. Dr. Hartmut Schmeck

ii

Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich die vorliegende Dissertation selbständig
verfasst und keine anderen als die angegebenen Hilfsmittel benutzt
habe.

Die Dissertation ist bisher keiner anderen Fakultät vorgelegt worden.

Ich erkläre, dass ich bisher kein Promotionsverfahren erfolglos been-
det habe und dass keine Aberkennung eines bereits erworbenen Dok-
torgrades vorliegt.

Acknowledgements

Firstly, I would like to thank my supervisors, Prof. Dr. Jacques Calmet and Dr. Jorge
Cuellar for their constant dedication, guidance, advice and inspiration. This thesis would
not have been possible without their constructive critisms and motivation. I am also very
grateful to Prof. Dr. Hartmut Schmeck for his advice, encouragement and guidance.

Many thanks to both Dr. Cuellar and Prof. Calmet for arranging for financial support
during my PhD studies, I would like to express my sincere gratitude to their kindness
and the opportunity that they gave me to make the research at Siemens AG, Corporate
Technology. Special thanks go to Dr. Joerg Abendroth who has contributed useful
comments and advice to the work presented here.

Many thanks to my friends and colleagues in the University of Karlsruhe (TH), CT IC3
of Siemens and Corporate Quality Consulting GmbH. They include: Yi Yang, Shane
Bracher, Mike Elschner, Holger Haas, Dr. Monika Maidl and Helga Scherer.

Other friends who deserve a mention include: Jia Ma, Qi Zhu, Cheng Wang, Minhua
Chen and Ming Yang. Thanks for all the encouragements communicated via snail mails,
emails, and phone calls. Special thanks to Dr. Xiujuan Yu for her timly interventions and
words of encouragements I was able to go through the most difficult periods. To all other
friends whose names I have forgotten to mention, thank you.

Lastly, I owe a great debt to my family for supporting my decision to study in the Ger-
many, their sacrifices and their endless support over the years, especially my mother
Mei Huang.

The work presented in this thesis was partly funded by Siemens AG, Corporate Tech-
nology in Munich.

Zusammenfassung

Die Verbreitung von Web Services und service orientierten Architekturen
führen zu einem dramatischen Wandel im Aufbau von internen Systemen
und deren Kommunikation mit externen Systemen.

Um die Kosten von Software zu senken und gleichzeitig ihre Leistungsfähig-
keit zu steigern, setzen immer mehr Firmen und Organisationen Webser-
vices ein. Eines der größten Probleme, welches die Industrie von dem Ein-
satz dieser Standardarchitektur abhält, ist die Sicherheit.

Als Antwort auf diese Sicherheitsbedenken erarbeiten IBM und Microsoft
einen Plan für sichere Webservices und einen Zeitplan für die Entwicklung
von Entwurfsmustern für sichere Webservices, die einen Schutz der Nach-
richtenübertragung im Webserviceumfeld gestatten.

Standardisierungsorganisationen wie OASIS und W3C haben SAML und
XACML vorgeschlagen um ein XML-Schema für Zugriffs- und Berechtigungs-
strukturen sowie ein XML basierendes System für den Austausch von Nut-
zerrechten und weiteren Attributen als Standard zu verabschieden.

Trotz des großen Aufwands, der getätigt wurde, kann im Moment noch nicht
von ausreichendem Sicherheitniveau gesprochen werden. Die Herausfor-
derungen zwischen Geschäftstätigkeit und IT, sich regelmäßig verändern-
den Organisationsstrukturen und flexiblen Geschäftsprozessen/Geschäfts-
modellen anzupassen, stellen zusätzliche Anforderungen an ein skalierba-
res, flexibles und wartbares Sicherheitssystem. Zwei Fallbeispiele zur Be-
gründung unserer Forschungsarbeit:

• Im Kapitel 404 des Sarbanes Oxley Act (SOX) ist beschrieben das alle
Firmen mit mehr als 75 Millionen US$ Marktkapitalisierung die Wirk-
samkeit ihres internen Kontroll- und Regelsystems nachweisen müssen.
Trotz der Aufregung zur Sicherstellung der Einhaltung des SOX ist ei-
ne Einführung eines angemessenen Zugriffskontrollsystems vorteilhaft.
Die Rollen basierte Zugriffskontrolle (RBAC) ist eine solche Möglich-
keit. In großen Organisationen stellt sich jedoch den Sicherheitsbeauf-
tragten als Hauptfrage wie kann er die sich ständigen Änderungen in
gesetzeskonformer Weise zeitgerecht in das System übernehmen.

• Adaptive Geschäftsprozesse entstehen aus der Tatsache heraus, dass
Geschäftsanwendungen von monolithischen Einzelapplikationen zu ser-
vice orientierten Architekturen migrieren. Flexible Anpassungen wegen

sich ändernder Geschäfts-Anforderungen entstehen durch Auf- und Ab-
bau von Aufgaben (Abläufen) virtueller Organisationen. Um die sichere
Ausführung von Geschäftsprozessen zu gewährleisten, ist ein verteiltes
semantisches Gerüst / Rahmenwerk Voraussetzung. Die Nutzung des-
selben semantischen Gerüstes erlaubt es verschiedenen Systeme zu
kommunizieren. Speziell für die Sicherheitsanforderungen der (Web-)
Prozesse, ist es notwendig Einschränkungen und Möglichkeiten in ei-
ner gemeinsamen, verständlichen Art und Wiese zu definieren.

Diese Forschung sieht die Lieferung innovativer Sicherheitslösungen für die
virtuelle, service-orientierte und entstehende Unternehmen voraus, welche
eine sichere Ausführung von Geschäftsprozessen und eine vertrauensvolle
Zusammenarbeit zwischen Organisationen ermöglicht. Weiterhin hat ein ef-
fizientes Authorisierungs-Management von diesen Lösungen folgende Vor-
aussetzungen: (1) Abbildung von Geschäftsabläufen in eine Sicherheits-
Policie und (2) ermöglichen der Zusammenarbeit von unabhängig verwal-
tenden Einheiten/Organisationen.

Diese Arbeit beschreibt Gracia, ein Sicherheits-Gateway welches entwickelt
wurde den Authorisierungsanforderungen von service-orientierten Architek-
turen in Unternehmen zu entsprechen. Ein Sicherheits-Gateway ist ein Aus-
druck der sich auf ein einheitliches Sicherheitskonzept (Gerüst) bezieht ,
die Integration von sicherheitsrelevantem Wissen und die Auswertung und
Durchsetzung von (policy compliances“). Auf dem Konzept einer virtuellen
Wissens Community basierend (VKC) und einer generischen Abstraktion für
Agenten basiertes Wissensaustausch (AOA), stellt Gracia ein generisches
Platform um Wissen auszutauschen zwischen unterschiedlichen Einheiten
oder Unternehmen bereit. Gracia enthält eine eigene Sprache für die Spe-
zifikation von Sicherheitsanforderungen, die Gracia Policy Language (GPL),
welche nach der Syntax und Semantik der Web Ontology Language (OWL)
und der Semantic Web Rule Language (SWRL) und der Inferenzmodell für
die Auswertung von Policies abgeleitet ist/wird. Mit dieser Sprache und dem
dazugehörigen Interferenzmodell ist Gracia in der Lage Policies zu modellie-
ren, welche sowohl Geschäftsregeln als auch regulatorische Einschränkun-
gen (Compliance) erlauben.

Die zweite Hälfte dieser Arbeit beschreibt das Design und die Implementie-
rung des Gracia Gerüstes für die standard webservice Plattform. Diese Ar-
beit verfolgt 2 Ziele, erstens die praktische Demonstration/Machbarkeit von

i

Gracia und zweitens zu erforschen, ob ein Policy basierter Sicherheitsgate-
way für den unternehmensweiten Einsatz möglich ist.

Eine wichtige Voraussetzung in solch einem System ist die Wissensinte-
gration, die den Anteilseignern der Geschäftsprozesse erlaubt ihr Wissen
zu teilen und eine sicherheitsorientierte Herangehensweise an die Prozes-
sebene erlaubt. Diese Voraussetzung, ein Wissens-Integrations-Gerüst für
Gracia zu erstellen, wird aufbauend auf das VKC Gerüst von IAKS an der
Universität von Karlsruhe entwickelt.

Abstract

The advent of Web Services and service-oriented architectures is fundamentally chang-
ing the way we build our internal systems and how internal and external systems inter-
act with each other. To reduce the costs of software systems while at the same time
increasing the capabilities of the systems, more and more companies and organisa-
tions are adopting their IT systems to Web Service technologies. One of the most
important problems, which prevents the industry from producing and implementing a
standards-based architecture, is Security.

In response to security concerns, IBM and Microsoft have collaborated on this proposed
Web Services security plan and roadmap for developing a set of Web Service Security
specifications that address the problem of how to provide protection for messages ex-
changed in a Web service environment. Standard organisations like OASIS and W3C
have also proposed SAML1 and XACML2 to provide an XML schema for representing
authorisation and entitlement policies and an XML-based framework for communicating
user authentication, entitlement-, and attribute information.

However, despite the fact that a lot of effort has been put into solving security concerns,
it is still not able to be said that the web service technology is secure enough. Huge
gaps between business and IT, frequently changing organisation structures and flex-
ible business process/model give us new challenges for building up a system with a
scalable, flexible and easily manageable security framework. This research is mainly
motivated by the following two facts in the real world.

• Under Section 404 of Sarbanes-Oxley (SOX), public companies that have a mar-
ket capitalisation of more than $75 million, must attest to the effectiveness of
internal controls and audit processes. One of the few aspects of SOX compliance
that makes sense is the adoption of a proper access control method. Role-based
access control (RBAC) is one of such methods. In a large organization, the key
question for the Security Manager is how to keep the consistence of RBAC policy
with respect to regulatory compliance and reflect the changes in the real world to
RBAC policy in time.

• Adaptive Business Process is emerging from the fact that business applications
are moving from standalone systems to service oriented architectures, flexibly
adapting to changing business needs and serving them optimally through building

1http://www.oasis-open.org/committees/security/
2http://www.oasis-open.org/committees/xacml/

and dissolving task-driven virtual organisations. To enable secure execution of
business processes, we need firstly a shared semantic framework. Utilising the
same semantic framework enables various systems to understand each other.
Particularly for the process-level security requirements, the first step is to specify
the constraints and capabilities in a commonly understandable way and with the
same vocabulary.

This research envisions the delivery of innovative security solutions for the virtual,
service-oriented-, and evolving enterprise, enabling secure execution of business pro-
cesses and trusted collaboration between organizations. Furthermore, effective man-
agement of authorisation in these solutions requires: (1) the mapping of business level
policies into security policies; (2) enabling collaboration between independently admin-
istered domains/organizations.

This thesis describes Gracia - security Gateway for Risk And Change Information
mAnagement, a security gateway designed to address the authorisation needs for
service-oriented enterprise computing. A security gateway is a term coined to refer
to a united policy management framework for the specification of security policies, the
integration of security-related knowledge, and the evaluation and enforcement of policy
compliances. Based on the concept of the Virtual Knowledge Community (VKC) and
a generic abstraction for agent-based knowledge exchange (AOA), Gracia provides a
generic platform for sharing and exchanging knowledge among different domains and
organisations. At the heart of the Gracia framework is a language for the specification
of security policies, the Gracia Policy Language (GPL), which shares the syntax and
semantics with Web Ontology Language (OWL)3 and Semantic Web Rule Language
(SWRL)4, and the inference model for evaluating policies expressed in GPL. With the
policy language and its inference model, Gracia is able to model policies, which can
express both business rules and constraints from the regulatory compliance.

The second half of the thesis describes the design and implementation of the Gracia
framework for the standard web service platform. The goal of this work is twofold:
Firstly, to demonstrate the practical feasibility of Gracia, and secondly, to investigate
the use of a policy-driven security gateway for enterprise system. An important require-
ment in such systems is knowledge integration that allows stakeholders of business
processes to share their knowledge and enable trust management during the knowl-
edge sharing process. Addressing this requirement, a knowledge integration frame-

3http://www.w3c.org/TR/owl-features
4http://www.w3.org/Submission/SWRL/

i

work for Gracia is developed on top of the VKC framework5 from IAKS at the University
of Karlsruhe. To enforce the Gracia Policy in the real world web service systems, we
have also exploited the possibility to convert Gracia Policy into standardised Web Ser-
vice security policies such as XACML and WS-Policy6. Although full mapping between
these languages is still infeasible, our approach proves the potential usage of semantic
policy language (GPL) in web services security scenarios.

5http://avalon.ira.uka.de/iaks-calmet/papers/SOIC2006.pdf
6http://www.ibm.com/developerworks/library/ws-polfram

Contents

1 Introduction 1

1.1 Introduction . 1

1.2 Research Motivation . 2

1.2.1 Regulatory Compliance . 2

1.2.2 Security in Adaptive Business Processes 8

1.2.3 Service Platform for Mobile Network 10

1.3 Security Challenges . 13

1.3.1 Authentication, Authorisation, Privacy and Audit 14

1.3.2 SOA Security . 15

1.3.3 Security Aspects . 16

1.4 Requirements of the Security Gateway . 16

1.4.1 Policy Specification . 17

1.4.2 Trust and Knowledge Management 17

1.5 Thesis Contribution . 18

1.6 Dissertation Outline . 19

2 Background 21

2.1 XML Web Services and Security . 21

2.1.1 Web Services Protocols . 21

2.1.2 Web Service Security Standards 23

2.1.3 Architectural Approaches . 30

2.2 Corporate Knowledge Management . 33

Contents iv

2.2.1 Agent-Oriented Abstraction . 35

2.3 Business Rules . 36

2.3.1 Business Rule Engine . 38

2.3.2 Semantic Web Rule Language . 40

3 Design Issues and Overview 45

3.1 Introduction . 45

3.2 GRACIA - The Security Gateway Approach 46

3.2.1 Threat Scenario . 47

3.2.2 Countermeasures and Approaches 48

3.2.3 Case Study . 49

3.3 GRACIA Architectural Overview . 51

3.3.1 Gracia Policy Language . 53

3.3.2 Gracia Knowledge Base . 54

3.4 Summary . 54

4 Gracia Policy Language 57

4.1 Introduction . 57

4.2 Related Work . 57

4.2.1 Logic-based Policy Specification 58

4.2.2 Semantic Approaches . 59

4.3 Gracia Policy Language . 68

4.3.1 From GPL to WS-Policy . 70

4.3.2 From GPL to XACML . 74

4.4 Summary . 78

5 Gracia Knowledge Base 79

5.1 Introduction . 79

5.2 Related Work . 79

5.2.1 Knowledge, Constraints and Rule Interchange Format 79

v Contents

5.2.2 Integration of Rules and Ontology 81

5.3 Gracia Knowledge Base . 83

5.3.1 Hybrid Knowledge Base Approach 84

5.3.2 Agent-based Knowledge Integration 85

5.3.3 Example: e-Payment . 88

5.3.4 Trust Issues in Virtual Knowledge Communities 94

5.4 Summary . 109

6 Implementation of the Security Gateway 111

6.1 Introduction . 111

6.2 Reasoning and Querying in Rules and Knowledge Base 112

6.3 Security Gateway . 115

6.3.1 Design of Gracia Policy Framework 117

6.3.2 Implementation of Gracia Policy Framework 118

6.3.3 Design and Implementation of Management Tools 119

6.4 Evaluation . 121

6.5 Summary . 122

7 Conclusion 123

7.1 Review of Achievements . 123

7.2 Future Work . 124

A Gracia Policy Language 125

B Gracia Knowledge Base 133

C Security Ontology 137

D UML Diagrams 139

List of Publications . 159

Chapter 1

Introduction

1.1 Introduction

During the last decade, the IT industry has been increasingly faced with the task of in-
tegrating networked information sources and applications across heterogeneous hard-
ware and software platforms. Initially, the main driving factor for this trend was the de-
mand for the integration of different state-of-the-art systems with incompatible legacy
IT systems within the intranets of large organisations, such as systems for ordering,
parts tracking and billing. Another reason was the advent of the Internet in the com-
mercial arena during the mid-1990’s, which enabled new forms of information access
and exchange, both for businesses and consumers.

The advent of Web Services and service-oriented architectures(SOA) has fundamen-
tally changed the way we build our internal systems and how internal and external
systems interact with each other. Web services are software components that can be
accessed via the Internet using popular web mechanisms and protocols such as the
hypertext transfer protocol (HTTP). Public interfaces of Web services are defined and
described using extensible markup language (XML) based definitions. The emerging
Web service technology has been receiving an enormous amount of attention and dis-
semination both in the academic and the industrial world since the publication of the
first Web service specifications in 2000. The primary reasons for the immense interest
are: (1) the standardisation of the Web service technology is driven by leading industrial
companies and organisations. Competing companies work together in order to ensure
the interoperability of Web service standards. The specifications for Web services are
free of royalty. Software vendors and users need not pay any license fees for their
applications based on Web service specifications. (2) The Web service technology is

2 Chapter 1. Introduction

fully based on XML and Internet technologies such as HTTP, TCP/IP. Therefore, Web
services are independent of hardware, programming, software and operating platforms.
This provides developers and software vendors greater flexibility when developing ei-
ther Web service infrastructures or Web service applications.

In order to reduce the costs of software systems whilst at the same time increasing
their capabilities, more and more companies and organisations are adapting their IT
systems to Web Service technologies. One of the major problems that prevents the
industry from producing and implementing a standards-based architecture is Security.
In response to security concerns, IBM and Microsoft have collaborated on this pro-
posed Web services security plan and roadmap for developing a set of Web Service
Security specifications that address the problem of how to provide protection for mes-
sages exchanged in a Web service environment. Standard organisations like OASIS
and W3C have also proposed SAML [88] and XACML [84] to provide an XML schema
for representing authorisation and entitlement policies and an XML-based framework
for communicating user authentication, entitlement and attribute information.

However, despite the fact that a lot of effort has been put into solving security concerns,
it is still cannot be assumed that the web service technology is adequately secure.
Huge gaps between business and IT, frequently changing organisation structure and
flexible business processes/models provide new challenges for building up a system
with a scalable, flexible and easily manageable security framework. From the following
three real world scenarios, we introduce the motivation of this research.

1.2 Research Motivation

1.2.1 Regulatory Compliance

Understanding the issues surrounding regulatory compliance can be a difficult and frus-
trating endeavor. Most developers or system administrators do not have a legal back-
ground and regulators generally don’t have a background in IT. The result is a failure of
communication: The language and requirements described in legislation are not easy
to pin to explicit software requirements. The following table provides a brief description
of each act and where it is applicable:

Sarbanes-Oxley

In the wake of corporate financial scandals such as the Enron disaster of 2001, U.S.
Congress passed the Sarbanes-Oxley act (commonly abbreviated as SOX). SOX was

1.2. Research Motivation 3

Act Target

Sarbanes-Oxley Privacy and integrity of financial data
in publicly traded corporations

HIPAA Confidentiality, integrity, and availabil-
ity of health care information.

BASEL II Confidentiality and integrity of per-
sonal financial information stored by
financial institutions. Availability of fi-
nancial systems. Integrity of financial
information as it is transmitted. Au-
thentication and integrity of financial
transactions.

Table 1.1: Regulatory Requirements

signed into law in 2002. Its purpose is to give investors more confidence in the financial
reporting process of publicly-traded companies by putting controls in place to ensure
the confidentiality and integrity of financial data. The act applies to companies that
are publicly traded in the United States, but has far-reaching international applicability
due to the fact that many large foreign companies are also traded on the U.S. stock
exchange. The key part of the SOX act for developers is Section 404 entitled ”Man-
agement assessment of internal controls”. This section requires management to take
responsibility for the integrity of financial information by evaluating IT systems and pro-
cesses and producing evidence that the company has done a reasonable job at keeping
sensitive information safe. Whilst SOX doesn’t address IT directly, the implications for
IT are huge, given that most financial data flows through computerised information sys-
tems and Programmer’s code.

SOX has been a major driver for IT security. Section 302 of the Sarbanes-Oxley act
requires that the CEO and CFO issue periodic statements certifying that adequate con-
trols are in place for the control of financial information within their organisation. Un-
awareness of a vulnerable system is no longer a defense because top executives now
have to attest to the implementation of proper controls. To be SOX compliant, compa-
nies must have regular external audits that assess the controls that are in place to en-
sure that data is accurate, unaltered, and offers a true representation of the company’s
financial position. SOX has promoted significant investment into IT and IT security. For
most companies, most of this information-flow takes place through IT systems. This

4 Chapter 1. Introduction

means that IT needs to provide assurance that the data:

• Cannot be altered by unauthorised individuals.

• Cannot be viewed by unauthorised individuals.

• Is available when needed by authorised individuals.

Compliance with the SOX Act requires that companies implement practiceable access
controls on data and service and ensure that system vulnerabilities are patched, disal-
lowing unauthorised modification or leakage. One framework that is commonly used to
help IT comply with the needs of SOX is COBIT (Control Objectives for Information and
Related Technologies)1, an open standard published by the IT Governance Institute
and the Information Systems Audit and Control Association2.

HIPAA–Health Insurance Portability and Accountability Act

The Health Insurance Portability and Accountability Act (HIPAA)3 was passed in 1996
by the U.S. Congress. It established federal regulations that force doctors, hospitals,
and other health care providers to meet baseline standards when handling electronic
protected health information (ePHI), such as medical records and medical patient ac-
counts.

Before the enactment of HIPAA, personal information that accumulated in various pri-
vate databases was thought to be the property of the organisation that owned the
database. The major underlying concept of HIPAA is the notion that the owners of
databases are not necessarily the owners of the data contained therein - they are only
intermediaries. This is a fundamental paradigm shift, because HIPAA compliant organ-
isations must ensure that record owners are guaranteed:

• Access to their own records and the right to request the correction of errors.

• Prior knowledge pertaining to how their information will be used.

• Explicit consent from the involved individuals before ePHI can be used for market-
ing.

• The right to request that any form of communication between organisations and
individuals is kept private.

1http://www.isaca.org/cobit
2http://www.isaca.org
3http://www.cms.hhs.gov/hipaa

1.2. Research Motivation 5

• The right to file formal privacy-related complaints to the Department of Health and
Human Services (HHS) Office for Civil Rights.

There are several provisions of HIPAA, divided into two title sections. Title I deals with
the portability of health insurance coverage for employees and families when changing
jobs, and was also created to ensure that employees with pre-existing medical condi-
tions cannot be unfairly denied medical coverage. Title II contains the ”Administrative
Simplification” provisions and has three subcategories: privacy provisions, HIPAA Elec-
tronic Data Interchange (HIPAA/EDI), and Security Provisions. The security provisions
are the primary concern for developers due to the fact that they contain specific techni-
cal compliance objectives. The security provisions obligate companies to:

• Ensure the confidentiality, integrity, and availability of all ePHI that the health care
entity creates, receives, transmits, or maintains.

• Prevent disclosure of any ePHI information that is not permitted or required.

• Ensure that system information is available for auditing trails.

• Ensure that authentication is in place so that specific workers or entities are who
they say they are.

BASEL II

BASEL II4 is officially known as the International Convergence of Capital Measurement
and Capital Standards. It is a framework established by the Basel committee, a con-
sortium of Central Governing Banks from several countries. The purpose of BASEL II
is to revise the existing international standards used to measure the viability of a bank’s
capital. The previous BASEL accord is considered to be out of date because there are
several realities of modern banking that are not adequately reflected in the regulations.
For example, the original BASEL accord does not take into account arbitrage across
markets.

The majority of BASEL II is worded for banking professionals. Given that BASEL II is
an international standard, it is written in such a way that it can be applied to a variety
of banking systems worldwide. This fact is the reason why the requirements are quite
vague from an IT perspective, at least in terms of actionable compliance targets. How-
ever, there is a substantial collection of information available that describes risks and
mitigation steps for electronic banking and financial services. The following process
steps will help ensure BASEL II compliance:

4http://en.wikipedia.org/wiki/BaselII

6 Chapter 1. Introduction

• Prevent improper disclosure of information.

• Prevent unauthorised transactions from being entered into the computer system.

• Prevent unauthorised changes to software during routine development and main-
tenance that allow fraudulent transactions to be generated, leave certain kinds of
operations unchecked, or disable logging with the goal of bypassing auditing so
that actions may proceed unnoticed.

• Prevent the interception and modification of transactions as they are transmitted
through communication systems such as telephone, data, and satellite networks.

• Prevent interruption of service due to hardware or software failure.

The following strategies can help ensure that the above process steps are satisfied.

• Change Management: It is important that developers be held responsible for
changes that are made to software systems. Modifications to bank software
that allow fraudulent transactions to be executed have not been perpetrated by
viruses from external sources, but rather by disgruntled developers or employees.
Accountability measures need to be put into place to prevent people from insert-
ing arbitrary changes to critical bank software systems. Code reviews should be
conducted frequently by teams of developers and testers to ensure changes are
justified. Source control systems should be put into place to prevent unautho-
rised changes, ideally by enforcing the use of access control lists, or at the very
least, by flagging recent changes for review so that a clear auditing trail can be
constructed in the event of suspected wrong-doing.

• Authentication: It is necessary to ensure that the transactions that take place
within banks are executed solely through legitimate agents. Authentication is the
primary means of ensuring that agents are who they claim to be. When setting up
authentication systems, the utilisation of strong passwords is a must. ”Guest” ac-
counts and anonymous access should be disabled. Passwords should be stored
using a sufficiently strong form of encryption to protect the credentials from attack-
ers who might gain access to them. Technologies such as Secure Socket Layer
(SSL) and digital certificates should be employed. The enforcement of password
policies that re-set credentials on a semi-regular basis is also recommended.

Policy-based Access Control

1.2. Research Motivation 7

From a fundamental information security and controls perspective, it is clear that Web
service security is crucial to regulatory compliance. The requirements for regulatory
compliance apply to any system that processes or maintains data. Given that most
data is stored, accessed, and maintained in electronic format which is often accessed
through Web service components, there is a significant correlation between this infor-
mation and Web Services.

As with most information security initiatives, the requirements for regulatory compli-
ance5 are policy-driven in areas such as:

• User authentication

• Password management

• Access controls

• Input validation

• Exception handling

• Secure data storage and transmission

• Logging

• Monitoring and alerting

• System hardening

• Change management

• Application development

• Periodic security assessments and audits

If security policies designed to maintain regulatory compliance are not put into place
and enforced with adequate business processes and technical controls, Web services
can easily expose systems to danger. Regarding all of the attention that regulatory
compliance has been receiving, one of the few aspects that makes sense is the adop-
tion of a proper access control method. In a large organisation, the key question posed
to the security manager is how to maintain the consistency of access control policy with
respect to regulatory compliance and reflect the changes in the real world to access
control policy in time. The other requirements also include:

5http://www.spidynamics.com/spilabs/education/articles/sarbanes-oxley.html

8 Chapter 1. Introduction

• enabling user single sign-on (SSO) to the applications and content they are au-
thorised to see

• easily extending access control to include Web services applications via stan-
dards such as Security Assertation Markup Language (SAML) [88]

• centrally managing access to applications and information via policy, providing a
single point of policy enforcement and audit of access for all users

• applying rules, in accordance to corporate policy, for the augmentation of internal
controls for regulatory compliance, including time-specific restrictions or access
control based on the location of the originator.

1.2.2 Security in Adaptive Business Processes

Business processes integrate systems, partners, and people to achieve key strategic
and operations objectives. Adaptive business processes can be defined, refined, and
optimised to respond to changing business environments, government regulations and
competitive pressures. Through the evolution of mainframes, Management Informa-
tion Systems (MIS), packaged applications, J2EE-based application platforms, busi-
ness process management systems (BPMS), Service Oriented Architectures (SOA)
are the current focus.

Business process management systems have traditionally not been designed for dy-
namic environments requiring adaptive response. Currently, the need for adaptive busi-
ness process is being driven by the demands of e-commerce in both B2B and B2C. Ini-
tial B2B automation activities were centered around Electronic Data Interchange (EDI)
initiatives. More recent work in the B2B space has focused on the development and
deployment of ebXML (electronic business XML). With both EDI and ebXML the collab-
orating business partners predefine the terms of their electronic interaction. In compari-
son, views toward virtual organisations require flexible, on-the-fly alignment of business
partners; in other words, adaptive capabilities.

The currently available business process management systems span a wide range of
capability. This is not surprising considering that businesses in any sector can ben-
efit from business process management. For example, the insurance industry has
benefited greatly from document management systems, which reduce physical paper-
work, increase the availability of documents and control the flow of information dur-
ing processing. Collaborative and production-oriented business processes are distin-
guished by measures of structure and centricity. Collaborative business processes are

1.2. Research Motivation 9

information-centric. Typically, human interpretation of information drives the business
process in a loosely structured manner. In comparison, production business processes
are process-driven due to their highly repetitive nature. To achieve the efficiency re-
quired of production business process, the processes are highly structured. The re-
quirements of adaptive business process fall between these two broad categories [20].

Adaptive business process needs to react to changing environmental conditions. Cur-
rently, businesses change their processes through two primary mechanisms: Business
Process Reengineering (BPR) and Continuous Process Improvement (CPI). BPR is
the periodic analysis and subsequent redesign of the intra- and inter-business pro-
cesses used by an organisation. BPR is used to overhaul processes in order to cre-
ate operational efficiencies that improve quality and save time and cost. Conversely,
CPI focusses on continuous improvement through the application of small and orderly
changes. Business processes are continuously examined in order to find ways to in-
crease quality and reduce waste. Adaptive business processes respond to changing
conditions through adaptive change. Adaptive change is not constrained by measures
of frequency or impact [20].

Current business processes initiatives have embraced the Web service model. Given
the current state of technology, Web service-based business processes are typically
deployed behind corporate firewalls and are used for intra-organisational workflow. The
reason for this is that Web service specifications are weak in regards of security is-
sues and transaction management. Inevitably, as standards evolve to address these
deficiencies, business processes will shift from the domain of intranets to that of the
Internet. This transition will be accompanied by a new set of problems.

• Security: To enable the secure execution of business processes, we first need
a shared semantic framework. Utilising the same semantic framework enables
various systems to understand each other. Particularly for the process-level se-
curity requirements, the first step is to specify the constraints and capabilities in a
commonly understandable way and with the same vocabulary.

• Transaction Management: When an intranet-based business process system ex-
ecutes, it does so with a collection of services that are owned and managed by
the same organisation. In this environment, service interruptions are infrequent
and typically scheduled due to consolidated system management. In contrast,
Internet-based business processes must be designed for resilient operation as
service partners periodically become unavailable due to decentralised system
management and the lack of network service guarantees. The evolution from
intra- to internet-based business processes will increase the design and run-time

10 Chapter 1. Introduction

complexity, since the coordination mechanism must become more faults-tolerant.

1.2.3 Service Platform for Mobile Network

In 3G, the convergence of telecom and datacom environments will encourage service
providers and operators to change the way in which services are created. Today, ser-
vice creation focusses on network technology, but in 3G applications content will drive
service development.

IP Multimedia Subsystem (IMS)6 is a set of specifications that describes the Next Gen-
eration Networking (NGN)7 architecture for implementing IP based telephony and mul-
timedia services. IMS defines a complete architecture and framework that enables the
convergence of voice, video, data and mobile network technology over an IP-based in-
frastructure. It fills the gap between the two most successful communication paradigms,
cellular and Internet technology. The vision for IMS is to provide cellular access to all
the services that the Internet provides.

IMS architecture supports a wide range of services that are based on SIP8 protocols. An
IMS architecture delivers multimedia services that can be accessed by a user from var-
ious devices via an IP network or traditional telephony system. The underlying network
architecture can be divided into three layers (Device Layer, Transport Layer, and Control
Layer) plus the service layer. Service providers are eager to allow their customers to
be able to develop and implement services that alleviate the existing service resources
described above. However, many enterprise application developers may have an IT
background but are not familiar with complex telephone protocols (e.g. SIP, ISDN etc.);
and they need a simple API for services creation and development. The solution is
Parlay X SOA (Service-Oriented Architecture)(Figure 1.1)9, which has been defined by
Parlay Group in 2003 in order to provide a set of simple-to-use, high-level, telecom-
related Web services. The idea behind Parlay X is to provide Web services in a context
that is already widely adopted and understood by a large number of developers and
programmers and to do so in an environment where there are a variety of development
tools available. With the Parlay X SOA Web services interfaces, the application de-
velopers can access and influence the existing IMS services more easily through Web
services. The Parlay X SOA Web services are connected to the telecommunication net-
work via either the Open Services Access - Gateway (OSA-GW) or directly through

6http://www.3gpp.org/specs/numbering.htm
7http://www.itu.int/ITU-T/ngn/fgngn/index.html
8http://www.sipknowledge.com/SIPRFC.htm
9http://www-128.ibm.com/developerworks/library/ws-soa-ipmultisub1

1.2. Research Motivation 11

data service components over IP Protocols.

Figure 1.1: A high-level view of the Parlay X SOA web services within the IMS architec-
ture

SPICE10 (Service Platform for Innovative Communication Environment) addresses the
remaining unsolved problem of designing, developing and executing efficient and inno-
vative mobile Service creation/execution platforms for networks beyond 3G. This project

10http://www.ist-spice.org

12 Chapter 1. Introduction

will research, prototype and evaluate an extendable overlay architecture and framework
to support easy and quick service creation, test and deployment of intelligent mobile
communication and information services. Building on significant advances in IT tech-
nologies, the SPICE platform will support multiple heterogeneous execution platforms
allowing for new, innovative services to be spread across different operator domains
and over different countries, realising a variety of business models. For users, opera-
tors and service providers, the SPICE project will turn today’s confusing heterogeneity
into a rich and easily manageable service environment by exploiting the diversity of
device capabilities and fostering service adoption. The SPICE approach will broaden
business opportunities in the communications and associated business sectors. Ser-
vice continuity from fixed to mobile access and seamless roaming of services across
operators and networks is far from being a reality. In this context, the main challenges
in SPICE are:

• To provide end-users with a means of communication and tailored applications
anywhere, anytime and on any device;

• To supply service providers and non-professional users with service enablers that
facilitate and accelerate application development.

• To allow operators to take up the role of Service Provider

• To build a user-transparent infrastructure that hides the complexity of services and
applications crossing over different access domains, offers a diversity of services
and copes with the various access network technologies.

The SPICE Project is structured into eight technical work-packages (WP). WP6 (Ser-
vice Access Control and Trust Management) focusses on all aspects related to con-
trolling access to the service platform for users and third party service providers. This
includes providing a security framework to support user and service authentication, au-
thorisation, non-repudiation in single- and multi-domain-environments and also meth-
ods for management and enforcement of service-level agreements. The SPICE plat-
form is required to provide interfaces and a service that will take in two access policies
for each of the combined services and outputs another access policy that will be used
for the combined service.

1.3. Security Challenges 13

1.3 Security Challenges

Traditional approaches to security - specifically network firewalls - are insufficient at
dealing with the emergence of new threats. In order to attain a better understanding
of these threats and the solutions proposed in later chapters, this section provides
some background information about the field of IT security. A detailed definition of
computer security is provided by Bruce Schneier in the foreword to Ross Anderson’s
book on Security Engineering [4]. The definition concentrates on the characteristics of
an attacker, the entity whose actions lead to a dangerous situation:

Security involves making sure things work, not in the presence of random faults, but in
the face of an intelligent and malicious adversary trying to ensure that things fail in the

worst possible way at the worst possible time . . . again and again.

Fundamental to computer security are the concepts of confidentiality, integrity and avail-
ability (CIA), which refer to keeping data secret, ensuring data remains intact and en-
suring systems are responsive. The four implementation domains representing the
foundation of security implementations [58] are: Authentication, Authorization, Privacy
and Audit.

Authentication Authorization

AuditPrivacy

Figure 1.2: Dependencies between Security Domains

These security implementation domains are inter-dependent and Figure 1.2 illustrates
the dependencies between them. For example, it is not possible to implement autho-
risation without authentication. Likewise, both authorisation and authentication rely on
auditing to ensure that security violations are captured for analysis, etc. These do-
mains are described in this section. In particular this thesis focusses on the security
of service-oriented systems and therefore provides a brief introduction to SOA secu-
rity. This section then finishes with a brief note about the following security aspects:
Internal, External and Legal Security.

14 Chapter 1. Introduction

1.3.1 Authentication, Authorisation, Privacy and Audit

Authentication is concerned with the identification of the communication or collaboration
participants. Authentication can be explicit or implicit. In the former case a party has
to explicitly authenticate all incoming requests, whilst in the latter it ”trusts” the invoking
parties to perform authentication. Such notion of trust can be used to describe trust
zones. There are several authentication approaches employed in today’s systems11:

• End-user Web applications usually use web-based authentication mechanisms
ranging from simple basic authentication requiring input of user credential in the
HTTP header to sophisticated mutual certificates authentication schemas, with
the majority of authentications based on either corporate directory services or
specialised applications databases.

• Rich client applications usually implement programmatic authentication, requiring
the consumer to explicitly supply credentials, which are then validated using ei-
ther local operating system security, corporate directory service, or an underlying
database.

• Mainframe applications usually use Resource Access Control Facility (RACF)12

based authentication mechanisms.

Authorisation domain ensures that, once the identity of the requester has been es-
tablished, it is possible to limit their access to operations, data, or other resources.
Authorisation assumes authentication - it is necessary to know who the requester is
in order to decide what they are allowed to do. There are two primary approaches to
implementing authorisation:

• Authorisation of Individual Parties: Every party (user) can be assigned an explicit
set of access rights to functions. This authorisation approach was widely used
for standalone, rich-client applications with a limited amount of users. However, it
doesn’t scale well for Web-based applications with a significant user population.

• Authorisation through Roles: Various roles can be created for each application
and access rights can be assigned to these roles instead of individual parties.
When each party is authenticated, the credentials applied to the party are mapped
to the party’s role (usually through groups in the directory service), which then

11http://orchestrationpatterns.com/serviceSecurity
12http://www.ibm.com/eserver/zseries/racf

1.3. Security Challenges 15

determines whether or not the party is authorised to access a particular function.
This authorisation approach scales well. Role-based authorisation provides the
foundation for the security implementations of many component-based systems.

There are several distinctly different concerns associated with the privacy domain:

• Identification of the end user(s) and/or service(s) that created the message/doc-
ument: This is usually achieved by signing the message/document, potentially
using multiple signatures. This implementation relies on a number of common
standards for digital signatures and is used in B2B commerce, government com-
merce, and even more widely in corporate email communications.

• Ensuring the message’s privacy, either by sending it through a secure channel
or by encrypting or otherwise securing the content: Two examples of such im-
plementation can be seen in the sending of plain text messages over a secure
transport such as HTTPS or TLS or encrypting and sending a message over an
insecure channel.

Auditing should provide the necessary capabilities for storing all of the service’s mes-
sages. Whilst auditing alone does not necessarily suffice for the purposes of non-
repudiation, auditing of the message exchange (proof of content) along with authenti-
cation (proof of origin) generally provides the required level of proof.

1.3.2 SOA Security

Organisations have existing security infrastructures in place. These infrastructures pro-
tect resources on diverse platforms and provide implementations for all or some of
the security domains described above. This SOA model breaks both application and
application-oriented security boundaries. The services abstraction layer brings together
multiple disparate applications into one cohesive service environment. This shift re-
quires a new security approach, above and beyond that of the existing application se-
curity implementations.

Application-Level Security

Exact definitions of application-level security vulnerabilities vary. SPI Dynamics report
[30] defines application-level security vulnerabilities as those weaknesses created when
the constituent components of an application are combined together.

16 Chapter 1. Introduction

The report by Gartner [91], ”Application-Level Firewalls Required”, describes how cur-
rent security measures are targeted at the network-level. They operate by blocking
network packets destined for vulnerable services. Gartner predicts that, in the future,
systems will be attacked primarily at the application-level; i.e. rather than attack the
system hosting the service (where the system is protected by a network-firewall and
security is at it’s strongest), hackers will instead attack the service itself.

1.3.3 Security Aspects

Strong security mechanisms are required for two reasons: on the one hand money and
digital signatures are an attractive aim for attacks and on the other hand it is important
to create trust in the system. These challenges were tackled by a three-level security
categories to increase the reliability of a system [21].

• External security: This level deals with the protection of a system against outside
attacks. The availability of the system, authorisation mechanisms and encrypted
communication are used at this level.

• Internal security: Once the external security barrier has been broken, the internal
security mechanisms allow identification and elimination of intruders by monitoring
the system. At this level so-called malicious players which come from inside the
system can also be detected.

• Legal security: E-business includes transactions in order to achieve valid con-
tract conclusions. A legal instance must be provided, whose actions are similar to
those of a notary and which on the one hand assures the service consumer that
the service provider is really authorised to provide the service and on the other
hand supports service level negotiation. This instance might differ between coun-
tries, states or even companies, depending on local law or policies, but it always
requires security in order to protect the service provider, service consumer and
mediator.

1.4 Requirements of the Security Gateway

This section identifies the research issues and the requirements of a security gateway
that enables policy enforcement and specification for Web services in a service-oriented
environment. The security gateway should also define access privileges for service

1.4. Requirements of the Security Gateway 17

consumers in terms of authorisation to use or access the shared resources. Further-
more, the management of the knowledge of services consumers and providers is im-
portant to ensure that appropriate actions are executed in response to events triggered
by changes in context and occurrence of security violations, e.g., malicious attempts to
access the shared resources.

We will now discuss the requirements of the security gateway for Web services proto-
col in terms of policy specification to enable the establishment of knowledge sharing,
access control and trust in knowledge from members of the services environment.

1.4.1 Policy Specification

Policies have been used in many application areas for managing distributed systems.
This is because a policy-based approach is flexible, scalable and permits adaptation
to changes in security requirements and context by dynamically loading and removing
policies from the system without interrupting its function. It is therefore important to
identify the required policies for Web services protocols and provide a consistent way
of expressing them. The following is a list of policies that are required for our security
gateway:

• Authorisation policies regulate the behaviour of service partners by controlling
access to the services.

• Obligation policies manage and adapt to context changes. When an event occurs,
obligation policies trigger the execution of actions for applying these changes.

• Policies to express security or other requirements such as cardinality, separation-
of-duty constraints and other law constraints.

1.4.2 Trust and Knowledge Management

It is also important to discuss trust between service knowledge sources in SOA. It
should be noted that knowledge-sharing in SOA cannot rely upon the availability of
a fixed network infrastructure, but rather participants can only rely on their own knowl-
edge and information held by other peers in the service transaction processes. Con-
sequently, they need to establish some form of trust-relationship between each other
in order to ascertain the trustworthiness of the information relayed in the services life
cycle.

18 Chapter 1. Introduction

1.5 Thesis Contribution

This thesis describes a semantic policy-based security gateway to support the secure
establishment and management of a Web services environment. There are several
innovations that constitute the contribution of this thesis. The first one is the novel use
of policies to define the security and regulatory constraints for the establishment of a
policy framework. The second innovation is the use of evidence-based trust brokering
protocols to assist the knowledge sharing in SOA by relying on the security information
available in Web services as well as information provided by other agents in the so-
called Virtual Knowledge Community, which will be described in the following chapters.
The last innovation is the design of the security gateway in order to implement our ideas
and also provide a prototype for our work.

We propose to use a Gracia Policy to define the regulatory requirements, the charac-
teristics that Web services must exhibit in order to be eligible to interact with business
processes as well as the policies governing their behaviour for security purposes. This
approach is well suited to the message level as it requires relatively little considera-
tion of the process level and avoids the need for negotiation. Furthermore, it allows
additional information to be conveyed as part of the Gracia Knowledge Base (e.g., Air-
port Security Regulation), provided that the knowledge-owner is trusted. It also allows
for the establishment of trust-relationships between the knowledge sources. We use
ontology to classify the knowledge concepts and instances. For the moment, we repre-
sent the ontology about the security constraints and domain knowledge in a description
logic language called OWL-DL [79] and the rules in Semantic Web Rule Language
(SWRL) [46].

An evidence-based trust brokering protocol was designed in order to assist with trust
management in the Gracia Knowledge Base. Trust assertions can be calculated with
evidence in order to attest to the reputation of the knowledge source which they have
previously verified or they know about.

As a proof-of-concept, this thesis will document a prototype implementation of the se-
curity gateway for web service protocols, which covers the establishment and manage-
ment of knowledge communities as well as the enforcement of access control policies.
The implementation also includes a Gracia Policy Editor to support the creation of Gra-
cia Policy and the Knowledge Management Tool for managing the Gracia Knowledge
Base based on Virtual Knowledge Community (VKC) [21].

1.6. Dissertation Outline 19

1.6 Dissertation Outline

Chapter 3 introduces the related work on Web services security and knowledge man-
agement in SOA. Chapter 3 begins with a discussion of the Web services protocols
and the different architectures used to apply them. Related business processes specifi-
cation language, agent-based knowledge management and business rules will also be
discussed.

Chapter 4 defines the concept of security gateway and presents a real-world sce-
nario including regulatory requirements and policy specification. An overview of the
author’s security gateway-Gracia (security Gateway for Risk And Change Information
mAnagement) will be provided. The reader will be introduced to the Gracia policy spec-
ification with reference to the required policies with formalisation of security constraints
and access control information. Chapter 4 will then conclude with a description of the
Gracia Knowledge Base and the evidence-based Trust Brokering Protocols.

Chapter 5 introduces different approaches to the specification of security policy based
on the logic and semantic web technology. Additionally, the Gracia Policy language
and the representation of security constraints in a formal and semantic way will be
discussed.

Chapter 6 expands on the evidence-based trust brokering protocols and provides de-
tails about the protocols based on the VKC. It also explains the hybrid approach to the
Gracia Knowledge Base.

Chapter 7 includes a description of the architecture and evaluation of the framework by
presenting the implementation of the knowledge management and the access control
model. Two supporting tools will also be introduced, namely the Gracia Policy Man-
agement Tool and the Gracia Knowledge Management Tool. Additionally, this chapter
presents the evaluation of the security gateway in terms of its efficiency.

Chapter 8 provides a conclusion and suggests directions for future work.

Chapter 2

Background

2.1 XML Web Services and Security

According to the Web service specifications available at W3C1, the definition of a Web
service is a software system designed to support interoperable machine-to-machine
interaction over a network. It has an interface defined by machine-processible format
(specifically WSDL) [24]. Other systems interact with the Web service in a manner pre-
scribed by its description using SOAP-messages [40], typically conveyed using HTTP
with an XML serialisation in conjunction with other web-related standards. Considering
Web services itself as a layer, it could be placed between the application and transport
layer in terms of the Internet Model.

2.1.1 Web Services Protocols

SOAP (Simple Object Access Protocol) [40], WSDL (Web Services Description Lan-
guage) [24], and UDDI [13] are the standards for Web services. SOAP has been ac-
cepted and is being standardised by the W3C. WSDL has been submitted to the W3C
for standardisation as the standard language for the description of Web services. UDDI
is the standard directory service for the Web service.

SOAP

SOAP is a lightweight protocol initially proposed by Microsoft, IBM, and other organi-
sations. The SOAP protocol supports XML document exchange and provides a con-
vention for Remote Procedure Call (RPC) using XML messages. SOAP specifies a wire

1http://www.w3.org/2002/ws/

22 Chapter 2. Background

protocol for facilitating highly distributed applications. SOAP is similar to DCOM(Distributed
Component Object Model) and CORBA2 in that it provides an RPC mechanism for in-
voking methods remotely. SOAP differs in that it is a protocol based on open XML
standards and XML document exchange rather than being an object model relying on
proprietry binary formats. Both DCOM and CORBA use binary formats for their payload.
The SOAP gateway performs a similar function to DCOM and CORBA stubs - translat-
ing messages between the SOAP protocol and the language of choice. As a result,
SOAP offers vendor, platform, and language independence. With SOAP, developers
can easily bridge applications written with COM, CORBA, or EnterpriseJavaBeansTM

(EJB)3. In regards to specification, SOAP is composed of three parts:

• A framework describing how SOAP messages should be constructed

• A set of encoding rules for exchanging data types

• A convention for representing remote procedure calls

SOAP was never intended to provide a complete distributed object architecture. SOAP
does not mandate a specific object model, therefore the specification does not address
such issues as distributed garbage collection, message batching, objects-by-reference,
object activation, or type safety. Although it is possible to handle request and response
messages, the SOAP specification does not directly handle asynchronous communi-
cation. It is, however, possible to implement asynchronous communication using the
SOAP protocol; for example, Microsoft’s BizTalk messaging profile uses SOAP as its
wire format and implements asynchronous message exchange.

SOAP is clearly becoming one of the de facto standards for Web services. Because
of its platform and language independence and ease of integration, many companies
are embracing SOAP as a backbone for their Web services strategy. Since the initial
release of the SOAP 1.1 specification in May 2000, more than 30 SOAP toolkits and
development environments have been developed to support a wide variety of devel-
opment platforms (J2EE, .NET, CORBA) and languages (Java, C-sharp, C++, Visual
Basic, Python). Additionally, the W3C has formed a working group to draft the next
generation of the SOAP protocol.

WSDL

WSDL is a language designed for describing the capabilities of Web services. Proposed
by IBM and Microsoft, WSDL combines the best of IBM’s NASSL (Network Accessible

2http://www.omg.org/docs/formal/04-03-12.pdf
3http://java.sun.com/products/ejb/index.html

2.1. XML Web Services and Security 23

Services Language) and Microsoft SOAP Contract Language. WSDL is based on XML
and is a key part of the UDDI initiative. The WSDL document specification helps im-
prove interoperability between applications, regardless of the protocol or the encoding
scheme. The WSDL 1.1 specification defines WSDL as ”an XML grammar for describ-
ing network services as collections of communication endpoints capable of exchanging
messages.” Essentially, a WSDL document describes how to invoke a service and pro-
vides information about the data being exchanged, the sequence of messages for an
operation, protocol bindings and the location of the service. A WSDL document de-
fines services as a collection of endpoints, but separates the abstract definition from
the concrete implementation. Messages and port types provide abstract definitions for
the data being exchanged and the operations being performed by a service. A binding
is provided to map to a concrete set of ports, usually consisting of a URL location and
a SOAP binding.

UDDI

Ariba, IBM, and Microsoft developed the first version of UDDI, the Universal Description,
Discovery and Integration specification. As the name suggests, UDDI allows a business
to describe the services it offers and to discover and interact with other services on the
Web.

UDDI is also a cross-industry open specification that is built on top of existing standards
like TCP/IP, XML, HTTP, DNS, and SOAP. At the heart of UDDI is the UDDI Business
Registry, an implementation of the UDDI specification. With the registry, a business
can easily publish the services it offers and learn what services other businesses are
offering. The registry is created as a group of multiple operator sites. Although each
operator site is managed separately, information contained within each registry is syn-
chronised across all nodes. Business entities describe information about a business,
including their name, description, services offered, and contact information. Business
services provide more details about each service being offered. Each service can have
multiple binding templates, each describing a technical entry point for a service; for
example, mailto, http, ftp, fax, and phone. Finally, tModels describe the particular speci-
fications or standards a service uses. With this information, a business can locate other
services that are compatible with its own system.

2.1.2 Web Service Security Standards

Security is important for Web services due to the fact that more and more comprehen-
sive services are being made available via the Internet and Web services are becoming

24 Chapter 2. Background

increasingly interconnected ”ad hoc” across organisations over the Internet. This envi-
ronment is more hostile than the environments covered by more traditional middleware
such as CORBA. In fact, the lack of security features is currently considered the most
significant inhibitor for the large-scale adoption of Web services.

Apart from the typical security challenges of large-scale distributed applications across
heterogeneous systems and administrational domains, Web services have to deal with
the fact that XML documents contain links to other documents. It is currently unclear
how these links can be secured. At the moment there is no complete security model
for Web services. Some of the more promising emerging specifications are described
in the following paragraphs.

The W3C consortium standardised several specifications related to cryptography: The
XML Digital Signature (XML-DSIG)4 provides integrity, signature assurance and non-
repudiation for whole or partial documents. The XML Encryption (XML-ENC)5 standard
encrypts and decrypts digital content for whole or partial documents, and the XML
Key Management Specification (XKMS)6 provides a method for accessing public key
infrastructure services for distributing, registering, and validating public keys.

The Web Services Security specification (WS-Security) [65] provides a set of mecha-
nisms to help developers of Web Services secure SOAP message exchanges. Specifi-
cally, WS-Security describes enhancements to the existing SOAP messaging to provide
quality of protection through the application of message integrity, message confidential-
ity, and single message authentication to SOAP messages. These basic mechanisms
can be combined in various ways to accommodate the creation of a wide range of
security models using a variety of cryptographic technologies.

WS-Security also provides a general-purpose mechanism for associating security to-
kens with messages. However, no specific type of security token is required by WS-
Security. It is designed to be extensible (e.g. support multiple security token formats) to
accommodate a variety of authentication and authorisation mechanisms. For example,
a requestor might provide proof of identity and a signed claim that they have a particular
business certification. A Web service, receiving such a message could then determine
what kind of trust they place in the claim. Additionally, WS-Security describes how to
encode binary security tokens and attach them to SOAP messages. Specifically, the
WS-Security profile specifications describe how to encode Username Tokens, X.509
Tokens, SAML Tokens , REL Tokens and Kerberos Tokens as well as how to include

4http://www.w3.org/TR/xmldsig-core/
5http://www.w3.org/TR/xmlenc-core/
6http://www.w3.org/TR/xkms2/

2.1. XML Web Services and Security 25

opaque encrypted keys as a sample of different binary token types. With WS-Security,
the domain of these mechanisms can be extended by carrying authentication informa-
tion in Web services requests. WS-Security also includes extensibility mechanisms
that can be used to further describe the credentials that are included with a message.
WS-Security is a building block that can be used in conjunction with other Web service
protocols to address a wide variety of application security requirements.

Message integrity is provided by leveraging XML Signature and security tokens to en-
sure that messages have originated from the appropriate sender and were not modified
in transit. Similarly, message confidentiality leverages XML Encryption and security
tokens to keep portions of a SOAP message confidential.

Security Assertion Markup Language (SAML) [88] is an extension of WS-Security from
OASIS. SAML specifies the language used to exchange identity, attribute and authori-
sation information between parties involved in web service communication in an inter-
operable way. SOAP is used as the SAML request/response protocol transport mecha-
nism. SAML requests and responses reside within the SOAP body. SAML could help in
achieving Single-sign-on (SSO). SSO is a mechanism where the authentication context
of a consumer can be maintained across multiple services.

In addition to WS-Security, web service security specifications also include : WS-Policy
[6], which defines the rules for service interaction, and WS-Trust [97], which defines
trust models for secure exchanges.

Web Service Policy (WS-Policy)

The WS-Policy and WS-Policy Attachment specifications offer mechanisms for a) rep-
resenting the capabilities and requirements of Web services as Policies, b) determining
the compatibility of policies, c) naming and referencing policies, and d) associating poli-
cies with Web service metadata constructs such as service, endpoint and operation.

A policy expression is the XML representation and interoperable form of a Web Services
Policy. A policy expression consists of a Policy wrapper element and a variety of child
and descendent elements. Child and descendent elements from the policy language
are Policy, All, ExactlyOne and PolicyReference. Other child elements of Policy, All
and ExactlyOne are policy assertions. (The Policy element plays two roles: wrapper
element and operator.) Policy assertions can contain a nested policy expression. Policy
assertions can also be marked optional to represent behaviors that may be engaged
(capabilities) for an interaction. The optional marker is the wsp:Optional attribute which
is placed on a policy assertion element.

26 Chapter 2. Background

Web Services Policy language defines two forms of policy expressions: compact and
normal form. The compact form is less verbose than the normal form. The compact
form is useful for authoring policy expressions. The normal form is an intuitive repre-
sentation of the policy data model7.

Figure 2.1: WS-Policy Data Model

The following list shows a service provider policy and a requester policy, where these
policies have been normalised and take the following form:

7http://2006.xmlconference.org/proceedings/122/presentation.pdf

2.1. XML Web Services and Security 27

Listing 2.1: Service Provider Policy

1<wsp:Policy wsu:Id=”ProviderPolicy”>

<wsp:ExactlyOne>

3<wsp:All>

<nsSecurityAssertion level=”high”/>

5<nsReliableMessagingAssertion/>

</wsp:All>

7<wsp:All>

<nsSecurityAssertion level=”medium”/>

9<nsTransactionAssertion/>

</wsp:All>

11</wsp:ExactlyOne>

</wsp:Policy>

Listing 2.2: Service Requester Policy

<wsp:Policy wsu:Id=”Requester Policy”>

2<wsp:ExactlyOne>

<wsp:All>

4<nsSecurityAssertion/>

<nsReliableMessagingAssertion timeout=”100”/>

6<nsReliableMessagingAssertion retries=”3”/>

</wsp:All>

8</wsp:ExactlyOne>

</wsp:Policy>

The Extensible Access Control Markup Language (XACML) specification

XACML [84] is an OASIS standard that describes both a policy language and an access
control decision request/response language. The policy language is used to describe
general access control requirements and has standard extension points for defining new
functions, data types, combining logic, etc. The response always includes an answer
as to whether the request should be allowed using one of four values: Permit, Deny,
Indeterminate or Not Applicable.

In a typical situation, the user wishes to carry out an action in relation to a particular
resource. The user typically submits a request to the entity that protects the resource
(like a filesystem or a web server), otherwise known as a Policy Enforcement Point

28 Chapter 2. Background

(PEP). The PEP then forms a request based on the requester’s attributes, the resource
in question, the pending action and other information pertaining to the request. The
PEP then sends the request to a Policy Decision Point (PDP), which examines the
request in relation to applicable policies and supplies an answer as to whether or not
access should be granted. The answer is returned to the PEP, which then allows or
denies access to the requester. Note that the PEP and PDP may both be contained
within a single application or distributed across several servers. In addition to providing
request/response and policy languages, XACML also carries out the task of finding a
policy that applies to a given request and comparing the request to the policy in order
to supply a yes/no answer.

At the root of all XACML policies is a Policy or a PolicySet. A PolicySet is a container
that can hold other Policies or PolicySets, as well as references to policies found in
remote locations. A Policy represents a single access control policy, expressed through
a set of Rules. Each XACML policy document contains exactly one Policy or PolicySet
root XML tag. Because a Policy or PolicySet may contain multiple policies or Rules,
some of which may evaluate to different access control decisions, XACML needs some
way of coordinating the decisions each one makes. This is done through a collection
of Combining Algorithms. Each algorithm represents a different way of combining mul-
tiple decisions into a single decision. There are Policy Combining Algorithms (used by
PolicySet) and Rule Combining Algorithms (used by Policy).

A Target is basically a set of simplified conditions for the Subject, Resource and Action
that must be met for a PolicySet, Policy or Rule to apply to a given request. A policy
can have any number of Rules which contain the core logic of an XACML policy. At
the heart of most Rules is the Condition, which is a boolean function. If the Condition
evaluates to true, the Rule’s Effect (a value of Permit or Deny that is associated with
successful evaluation of the Rule) will be returned. Evaluation of a Condition can also
result in an error (Indeterminate) or the decision that the Condition doesn’t apply to
the request (NotApplicable). A Condition can be quite complex, built from an arbitrary
nesting of non-boolean functions and attributes.

Attributes are named values of known types that may include an issuer identifier or an
issue date and time. Specifically, attributes are characteristics of the Subject, Resource,
Action, or Environment in which the access request is made. A Policy resolves attribute
values from a request or from some other source through two mechanisms: the Attribut-
eDesignator and the AttributeSelector. An AttributeDesignator lets the policy specify an
attribute with a given name and type, and optionally an issuer as well, and then the PDP
will look for that value in the request, or elsewhere if no matching values can be found in

2.1. XML Web Services and Security 29

the request. There are four kinds of designators, one for each of the types of attributes
in a request: Subject, Resource, Action, and Environment. Because Subject attributes
can be broken into different categories, SubjectAttributeDesignators can also specify a
category to look in. AttributeSelectors allow a policy to look for attribute values through
an XPath query.

Listing 2.3: XACML policy example

1<Policy PolicyId=”SamplePolicy”

RuleCombiningAlgId=”#rule−combining−algorithm:permit−overrides”>

3<Target>

<Subjects>

5<AnySubject/>

</Subjects>

7<Resources>

<ResourceMatch MatchId=”#function:string−equal”>

9<AttributeValue

DataType=”#string”>PrinterService</AttributeValue>

<ResourceAttributeDesignator

11DataType=”#string”

AttributeId=”#:resource:resource−id”/>

13</ResourceMatch>

</Resources>

15<Actions>

<AnyAction/>

17</Actions>

</Target>

19

<Rule RuleId=”LoginRule” Effect=”Permit”>

21<Target>

<Subjects>

23<AnySubject/>

</Subjects>

25<Resources>

<AnyResource/>

27</Resources>

<Actions>

29<ActionMatch

MatchId=”#function:string−equal”>

30 Chapter 2. Background

31<AttributeValue

DataType=”#string”>login</AttributeValue>

33<ActionAttributeDesignator

DataType=”#string”

35AttributeId=”ServiceAction”/>

</ActionMatch>

37</Actions>

</Target>

39<Condition FunctionId=”#function:and”>

<Apply FunctionId=”#function:time−greater−than−or−equal”

41<Apply FunctionId=”#function:time−one−and−only”>

<EnvironmentAttributeSelector DataType=”#time”

43AttributeId=”#environment:current−time”/>

</Apply>

45<AttributeValue DataType=”#time”>10:00:00</AttributeValue>

</Apply>

47<Apply FunctionId=”#function:time−less−than−or−equal”

<Apply FunctionId=”#function:time−one−and−only”>

49<EnvironmentAttributeSelector DataType=”#time”

AttributeId=”#environment:current−time”/>

51</Apply>

<AttributeValue DataType=”#time”>18:00:00</AttributeValue>

53</Apply>

</Condition>

55</Rule>

<Rule RuleId=”FinalRule” Effect=”Deny”/>

57</Policy>

A simple example Policy is listed in List 2.3. Its Target says that the Policy only applies
to requests for the service called ”PrinterService”. The Policy has a Rule with a Target
that requires an action of ”login” and a Condition that applies only if the Subject is trying
to log in between 10am and 6pm.

2.1.3 Architectural Approaches

There are several broad architectural options for implementing security in the context of
web services [89]: XML Gateway, Interceptor, and custom code.

2.1. XML Web Services and Security 31

XML Gateway

XML Gateway (sometimes called XML firewall or XML proxy) is a software package or
hardware appliance that filters XML traffic and blocks unauthorised traffic before it can
reach a protected service (see Figure 2.2) [74].

XML Gateway

Web Services

Web Services
untrusted traffic

trusted traffic

Figure 2.2: XML Gateway

An XML Gateway enforces access control rules by processing security tokens con-
tained within incoming messages, and by ensuring that the XML format and content are
appropriate for the target. It may use the SAML to establish the authentication status
of an end user or to request attribute information, which is used to make an access-
control decision. XML Gateways strive to re-use the existing security infrastructure,
including the preconfigured users, groups, and roles. To do this they typically contain
security adapters to existing security technologies such as LDAP directories, traditional
firewalls, and PKI. Otherwise, the overhead of re-keying rules and user profiles into an
XML Gateway would be prohibitive. XML Gateways often provide additional function-
ality such as data transformation, content-based routing, load balancing and service
traffic monitoring, etc.

The drawback of this architecture is that it leaves the service endpoint addresses unpro-
tected. If the incoming traffic bypasses the gateway and reaches the service endpoint,
it also bypasses the security provisions implemented by the gateway. Consequently,
using this architecture usually requires additional security provisions, for example re-
stricting the physical nodes from which the service endpoint can receive service traffic,
mutual authentication between the gateway and the service endpoint, etc [74].

Interceptor

The Interceptor represents an alternative architecture. Lightweight Interceptors co-
located with service endpoints are used. They employ platform-specific hooks such
as ISAPI Filters, JAX-RPC handlers, MQ exits, etc. to intercept service traffic. When
a service request arrives at the service endpoint it is first processed by the Interceptor,
which evaluates the security rules before passing the request to the service (see Figure

32 Chapter 2. Background

2.3) [74].

Interceptor Service Implementation

Web Services Server

untrusted Traffic

Figure 2.3: Interceptor

Unlike the Gateway (which requires the traffic to flow through an infrastructure com-
ponent) the Interceptor enforces security at the service endpoint itself. Policy-aware
environments such as WSE [45] supply an interesting variation on the Interceptor idea.
In these environments the interceptors are built into the environment itself and can be
configured using either WS-Policy files or custom configurations.

Although this architecture solves the ”last mile” problem it requires security configura-
tions for every Interceptor (i.e., service endpoint). This requirement can cause signifi-
cant management overhead when the security policy changes. A modified Interceptor
architecture can alleviate this problem by combining an interceptor with a centralised
security service (see Figure 2.4) [74].

Interceptor Service Implementation

Web Services Server

untrusted Traffic

Security Service

Figure 2.4: Interceptor with centralised Security Service

In this configuration the Interceptor delegates security processing to a specialised se-
curity service, which performs the actual processing of security rules. This centralises
security processing similarl to the XML Gateway scenario, allowing the movement of
the computationally intensive functionality such as cryptography to dedicated hosts.

2.2. Corporate Knowledge Management 33

This minimises the impact on invocation performance and provides a central point of
management and reporting for service security processing.

Custom Code

The third option entails writing security code into the service itself. For example, the
.NET Common Language Runtime (CLR) includes implementations of XML Signature,
XML Encryption, and WS-Security standards. Similarly a set of libraries providing se-
curity functionality is available on the J2EE platform. These could be adapted to im-
plement security. The arguments for and against custom-coding revolve around the
typical buy versus build decision. While the Gateway and Interceptor models provide
centralised management, auditing, and the ability to make global changes for multi-
ple services, this functionality must be custom-built for home-grown platform-specific
solutions.

2.2 Corporate Knowledge Management

An enterprise can be considered in a distributed computational paradigm. Knowledge
Management is generally considered to have begun in the 1950’s when Alfred Sloan
divisionalised General Motors. With knowledge management, the unmeasurable must
be measured.

In practice, knowledge management often encompasses identifying and mapping intel-
lectual assets within an organisation, generating new knowledge for competitive advan-
tage within an organisation, making vast amounts of corporate information accessible,
sharing of best practices, and technology that enables all of the above - including group-
ware and intranets.

The concept of corporate knowledge has two different aspects. The first relates to busi-
ness and refers to the amount and quality of know-how and information that is available
within a company. The second aspect relates to the framework of information technol-
ogy and is tightly linked to the diverse variety of paradigms that are used to represent
knowledge. With the common use of e-business nowadays these two aspects are be-
coming somewhat interrelated. From the IT point of view one can view an enterprise as
a distributed computational paradigm. Multiagent systems have been invented to tackle
such problems within artificial intelligence but are nowadays also seen as a manage-
ment methodology.

Corporate knowledge generally covers several domains such as document/knowledge
management, discussion forums, skill management and knowledge engineering. The

34 Chapter 2. Background

main paradigms used to represent knowledge are logic, frames or semantic nets. Knowl-
edge Representation (KR) has long been considered one of the principal elements of
Artificial Intelligence and a critical part of all problem-solving [87]. One of the most im-
portant developments in the application of KR has been the development of so-called
frame-based KR languages or systems (proposed by Minsky in 1981 [81]). Frame-
based systems are knowledge representation systems that use frames as their primary
means of representing domain knowledge. A frame is a structure for representing a
concept or situation. Attached to a frame are several different types of information,
for instance, definitional and descriptive information and how to use the frame. While
frame-based KR languages vary from each other to some degree, they share some
common characteristics: (1) frames are organised into hierarchies; (2) frames are com-
posed of slots (attributes) for which fillers (scalar values, references to other frames or
procedures) have to be specified or computed; and (3) properties (fillers, restriction on
fillers, etc.) are inherited from superframes to subframes in the hierarchy according to
the inheritance strategy. It is important to note that, besides the inheritance relation,
frames do not provide the explicit concept of relations between frames but they use the
concept of slot for representing these relations.

Based on the original proposal, several knowledge representation systems have been
built and the theory of frames has evolved. Important descendants of frame-based rep-
resentation formalisms are description logics that capture the declarative part of frames
using logic-based semantics. Moreover, the object-oriented paradigm has adopted the
organisational principles introduced by frame-based systems.

An important branch in AI that is concerned with KR mechanisms deals with the so-
called ontologies [38]. An ontology is a data model that represents a set of concepts
within a domain and the relationships between those concepts. It is used to reason
about the objects within the domain. Ontologies are typically used to describe domain
vocabularies and are actively used in artificial intelligence, the semantic web, software
engineering and information architecture as a form of knowledge representation about
the world or a part of it. The typical elements described by an ontology are:

• Individuals: the basic or ”ground level” objects

• Classes: sets, collections, or types of objects

• Attributes: properties, features, characteristics, or parameters that objects can
have and share

• Relations: ways that objects can be related to one another

2.2. Corporate Knowledge Management 35

Attributes are typically used to represent primitive values whereas relations are used
to relate non-primitive classes. Some common relationships between concepts are
the classification (instance-of, member-of), aggregation (part-of), generalisation (is-a,
subclass-of, a.k.a. subsumption), and partitioning (group, context) of the concepts.

2.2.1 Agent-Oriented Abstraction

The agent-oriented abstraction paradigm is introduced in [22]. It is a high-level ab-
straction for agent modelling and covers the concepts of agents, annotated knowledge,
utility functions and society of agents. Indeed, AOA relies on Weber’s classical the-
ory in Sociology [113]. The model extends the abstraction capabilities of the existing
Agent-oriented Programming paradigm. Abstraction can be viewed as a methodology
to express a system in terms of one selected theoretical framework. The word system
covers software or hardware components of a computer system.

AOA associates the usual features to agents (ability to perceive, reason, act, com-
municate) and it is compliant with a societal approach of agents. AOA assumes that
agents are entities consisting of both a knowledge component and a decision mecha-
nism system. The knowledge component covers any piece of information available in
an enterprise from the technology required to design and produce goods to manage-
ment decision policy through human relations and internal or external communication. It
is partitioned into four components, also called annotations: ontology, communication,
cognition and security.

• Ontology. This annotation covers ontologies and knowledgebases. It is divided
into classes corresponding with structured, unstructured, complete or incomplete
knowledge/ontology. Specialisation of such classes is obtained via a query, infor-
mation retrieval or data mining system. Additionally, languages such as Knowl-
edge Query and Manipulation Language (KQML) [33] or Knowledge Interchange
Format (KIF) [37] may provide a specialisation of these classes.

• Communication. Communication is divided into classes that describe the main
facets of the communication mechanisms between agents and the external world.
Coordination is achieved through subclasses for cooperation, planning (both dis-
tributed and centralised), competition or negotiation. The specialisation of these
classes is performed when implementing protocols, for instance interaction proto-
cols or task distribution protocols. These protocols can be synchronous or asyn-
chronous. The number of possible protocols is enormous. It is even possible to

36 Chapter 2. Background

design a communication protocol by means of an agent system connecting the
communicative entities within an agent system. Message types are also among
the specialisations found in communication. A specialisation for negotiation can
be based upon the market mechanism, a contract net approach or a blackboard
system.

• Cognition. There is obviously a cognitive component among the possible annota-
tions of knowledge. Three main classes exist: semantics, pragmatics and models.
Semantics implies a formalised representation of the cognition found in an agent.
This translates into specialisations that could be logic-based or a well defined view
maintenance mechanism. The class ”‘pragmatics”’ relates to common-sense rea-
soning and reasoning that is not based on a sound theoretical model. The class
”‘models”’ covers any cognitive meaning that although well captured in models is
by no way theoretically certain. This leads to specialisation in terms of speech act
for instance where although the separation into locution, illocution and per locution
is well established, there is no proof it is a theoretically sound simulation of human
communication. It is at best a meaningful approximation. This annotation covers
the implementation features appearing under the following headlines: descriptive,
prescriptive, reactive, pro-active, personal, conventional, objective or subjective,
speaker’s versus hearer’s versus society’s perspective. The BDI model (Belief,
Desire and Intention) is set within this annotation.

• Security. This annotation could also be labelled integrity. It recognises that any
system exists in a real world where laws and rules govern the actions of agents.
An important class is obviously security. Whether for mobile or static agents,
security issues are becoming overwhelmingly important. The specialisation of this
class is achieved, for instance, through the use of classical encryption methods
or firewall technologies. A second class concerns laws and regulations. Whether
within a country or a company, any representative agent is required to obey laws
and regulations. Specialisations relate to the existing regulations, directives and
laws.

2.3 Business Rules

According to the Business Rules Group8, ”a business rule is a statement that de-
fines and constrains some aspect of a business. It is intended to assert business

8http://www.businessrulesgroup.org/

2.3. Business Rules 37

structure or to control or influence the behavior of the business. The business
rules that concern the project are atomic, that is, they cannot be broken down
further”. Modelling business rules as separate entities offers great flexibility. Par-
ticularly in the e-commerce domain, this can be a valuable advantage considering
that the business analyst, who ideally authors the business rules, does not need
to have programming knowledge to change the rules. Typically, changing the busi-
ness rules happens more often than changing the large e-commerce applications.
Moreover, extracting the business rules from the business logic leads to a better
decoupling of the system, which, as a consequence, increases maintainability.
One of the most important facts about business rules is that they are declarative
statements, i.e. they specify what has to be done as opposed to how it has to be
done.

Three basic types of business rules have been identified: integrity rules (also
called ”integrity constraints”), derivation rules (also called ”deduction rules” or
”Horn clauses”), and reaction rules (also called ”stimulus response rules”, ”ac-
tion rules” or ”event-condition-action (ECA) rules”). A fourth type, deontic assign-
ments, has only been marginally discussed (in a proposal for considering ”autho-
risations” as business rules)9.

Figure 2.5: The Rule Type Hierarchy

9http://oxygen.informatik.tu-cottbus.de/rewerse-i1/GRML.pdf

38 Chapter 2. Background

– An integrity rule is an assertion that must be satisfied in all evolving states
and state transition histories of an enterprise viewed as a discrete dynamic
system. There are state constraints and process (or behavior) constraints.
State constraints must hold at any point in time.

– A derivation rule is a statement of knowledge that is derived from other
knowledge by an inference or a mathematical calculation. Derivation rules
allow capturing terminological and heuristic domain knowledge about con-
cepts whose extension does not have to be stored explicitly because it can
be derived from existing or other derived information on demand.

– Reaction rules are concerned with the invocation of actions in response to
events. They state the conditions under which actions must be taken; this
includes triggering event conditions, pre-conditions, and post-conditions (ef-
fects). They define the behavior of a system (or agent) in response to per-
ceived environment events and to communication events (created by commu-
nication acts of other systems/agents). In general, reaction rules consist of
an event condition, a state condition (or precondition), an action term, and a
state effect (or post-condition) formula. Thus, they can also be called Event-
Condition-Action-Effect (ECAE) rules, subsuming Event-Condition-Action (ECA)
and Condition-Action (or production) rules as special cases.

– Deontic assignments of powers, rights and duties to (types of) internal agents
define the deontic structure of an organisation, guiding and constraining the
actions of internal agents.

– In some situations business rules can be described very simply with a single
sentence. In other situations this isn’t the case. Table 2.1 presents one way
of fully documenting the rule ”Tenured professors may administer student
grades”.

2.3.1 Business Rule Engine

Rule engines implement rules evaluation, which focusses on managing a collec-
tion of facts (or knowledgebase) and evaluating rule sets comprised of one of sev-
eral predicates. A rule engine manages a large numbers of facts and efficiently
evaluates predicates that work on these facts.

A typical rule engine consists of several components:

– A rule base contains all the rules for execution.

2.3. Business Rules 39

Name Tenured professors may administer
student grades

Identifier BR0212
Description Only tenured professors are granted

the ability to initially input, modify, and
delete the grades students receive in
seminars that they and only they in-
struct. They may do so only during the
period in which a seminar is active.

Source University Policies and Procedures
Doc ID: U1701
Publication date: August 14, 2000

Related Rules BR12 Qualifying For Tenure
BR65 Active Period for Seminars
BR200 Modifying Final Student
Grades

Table 2.1: Business Rule Example

– The working memory holds the data with which the rule engine operates.

– The Pattern Matcher decides which rules from the rule base apply, given the
content of the working memory.

– An inference engine works in discrete cycles and is used to find out which
rules should be activated in the current cycle (including the activated ones
from previous cycles) by using the pattern matcher.

All activated rules from the conflict set are ordered to form the agenda (the list
from which the right hand side will be executed). The process of ordering the
agenda is called the conflict resolution. To complete a cycle, the first rule on the
agenda is fired and the entire process is repeated. Typical rule engines either
implement a forward or backward-chaining strategy. Backward chaining works
backwards from a conclusion to be proven to determine if there are facts in the
working memory to prove the truth of the conclusion. Forward chaining takes all
the facts stored in the working memory and attempts to apply as many rules as
possible. The inference engine works from the initial content of the workspace
towards the final conclusion.

The Java Rule Engine API specified by the Java Specification Request (JSR)

40 Chapter 2. Background

94 is a Java community effort defining an API for rule engines in the Java world
[56]. The JSR 94 specification standardises a set of fundamental rule engine
operations. These operations include parsing rule sets, adding objects to the
inference process, firing rules and getting objects from the engine as a result.
The main goal of the JSR 94 specification is to integrate different rule engines
with a simple adapter into client applications without settling on one rule engine
vendor. The specification provides two main parts, a rule administration API and
a rule runtime API. The administration interface is primarily used for loading and
managing rule sets (a collection of rules for solving a specific task). The runtime
API is for executing specific rule sets by using a rule session, which represents
the connection between the client and a specific rule engine. The main critique of
rule engine vendors is the lack of a standard rule representation format.

In the area of business rule engines, a number of different tools are available.
Drools10 is one of the most popular open source Java business rule engines. The
Drools rule engine uses an enhanced version of the Rete algorithm [35] called the
Rete-OO algorithm. Drools is a purely forward chaining system. Jess11 (Java Ex-
pert System Shell) is a robust and mature expert system shell for developing rule-
based applications in Java. Jess has many unique features including backward
chaining and working memory queries and can directly manipulate and reason
about Java objects. Both rule engines do not allow a distributed rule execution
and can only be used as a library that is linked to the application.

2.3.2 Semantic Web Rule Language

The Rule Markup Initiative aims to provide a standard rule language and to pro-
vide an interoperability platform integrating various business rule languages, infer-
ence systems and knowledge representation paradigms. It has gained increasing
momentum within the standard, academic, and industrial communities.

RuleML [96] is an XML-based Rule Markup Language that has been proposed by
the Rule Markup Initiative as a canonical language for publishing and sharing rules
on the Web. RuleML is implemented with XML Schema, XSL Transformations
(XSLT) and reasoning engines. The RuleML Initiative collaborates with several
standards bodies including W3C, OMG and OASIS. Because it is XML-based,
RuleML inherits some of its benefits directly from XML, including platform inde-

10http://www.drools.org
11http://www.jessrules.com/jess/index.shtml

2.3. Business Rules 41

pendence and interoperability. RuleML is also extensible, a prime example being
its combination with OWL to form the Semantic Web Rule Language (SWRL) [46]
and its Object-Oriented extension called OO RuleML [16].

RuleML is also translatable into and from other Semantic Web standards via
XSLT. Various tools are also available, including OO jDREW [7], Mandarax12 ,
and NxBRE413.

RuleML covers the entire rule spectrum, from derivation rules and transformation
rules to reaction rules and integrity checking. RuleML can thus specify queries
and inferences in Web ontologies, mappings between Web ontologies, and dy-
namic Web behaviors of workflows, services, and agents. The rule language is
based on XML and is low-level. As an example, consider the following rule:

”The discount for a customer buying a product is 5.0 percent if the customer is
premium and the product is regular”

This rule is expressed in RuleML as follows:

Listing 2.4: RuleML Example

1<imp>

<_head>

3<atom>

<_opr><rel>discount</rel></_opr>

5<tup><var>customer</var>

<var>product</var>

7<ind>5.0percent</ind></tup>

</atom>

9</_head>

<_body>

11<and>

<atom>

13<_opr><rel>premium</rel></_opr>

<tup><var>customer</var></tup>

15</atom>

<atom>

17<_opr><rel>regular</rel></_opr>

12http://mandarax.sourceforge.net
13http://www.agilepartner.net/oss/nxbre

42 Chapter 2. Background

<tup><var>product</var></tup>

19</atom>

</and>

21</_body>

</imp>

where the tags <_head> and <_body> represent the action and the condition of the
rule respectively. Because RuleML is XML-based, it is hard for domain experts to
adopt. This appears to have been the critical factor determining the success of
this language, as recognised by [44]. In this thesis, the TRANSLATOR [44] initia-
tive will be presented which is aimed at raising the level of RuleML abstraction.
TRANSLATOR is an open source tool with the ability to automatically translate
natural language-like sentences written in Attempto Controlled English [36] into
RuleML rules. Likewise, we can also imagine adding a layer on top of our high-
level rules to allow for their expression in a natural language-like format.

An SWRL rule formally expresses an if-then rule using the OWL syntax. A rule ex-
presses the implication relationship between the classes of body (the ”if” clause)
and head (the ”then” clause), both of which consist of kinds of atoms. More com-
plete syntactical information can be found in the SWRL specification. For the sake
of readability, a rule is often written in the following form:

antecedent⇒ consequent,

where both antecedent and consequent are conjunctions of the atoms that are
written as a1 ∧ ... ∧ an. Variables are indicated using the standard convention of
prefixing them with a question mark (e.g., ?x).A sample rule is defined as follows.

hasParent(?personA, ?personB) ∧ hasBrother(?personB, ?personC)⇒
hasUncle(?personA, ?personC).

Using SWRL syntax, the sample rule could be written as follows.

Listing 2.5: SWRL Example

<ruleml:imp>

2<ruleml:_rlab ruleml:href=”#example1”/>

<ruleml:_body>

4<swrlx:individualPropertyAtom

swrlx:property=”hasParent”>

6<ruleml:var>personA</ruleml:var>

<ruleml:var>personB</ruleml:var>

8</swrlx:individualPropertyAtom>

2.3. Business Rules 43

<swrlx:individualPropertyAtom

10swrlx:property=”hasBrother”>

<ruleml:var>personB</ruleml:var>

12<ruleml:var>personC</ruleml:var>

</swrlx:individualPropertyAtom>

14</ruleml:_body>

<ruleml:_head>

16<swrlx:individualPropertyAtom

swrlx:property=”hasUncle”>

18<ruleml:var>personA</ruleml:var>

<ruleml:var>personC</ruleml:var>

20</swrlx:individualPropertyAtom>

</ruleml:_head>

22</ruleml:imp>

Chapter 3

Design Issues and Overview

3.1 Introduction

In recent years, a significant number of companies have implemented e-business
solutions. This is due to the fact that an investment in e-business technologies
promises a competitive advantage through the integration of processes and lower
transaction costs. Companies are enclosing traditional computing tasks, such
as database access or commercial transaction systems, in wrappers as software
services to connect them to the Internet. New tasks, such as computerised auc-
tions and e-marketplaces, have also been introduced as business services. The
concept of Web Services is thought to be the next generation of e-business ar-
chitectures for the web. Such a Service-Oriented Architecture (SOA) describes
principles for the creation of dynamic, loosely-coupled systems based on services
without a specific implementation.

Both Web services and Semantic Web services consider services as fundamental
and central entities. Service descriptions play a central role in publishing services
for use, categorising them and finding the right service to satisfy a need. In [108],
three different aspects are considered in regards to service descriptions: (1) func-
tional, (2) behavioral and (3) non-functional.

The functional description contains the formal specification of what exactly the
service can do. The behavioral description contains the formal specification in re-
gards to how the functionality of the service can be achieved. The non-functional
description captures constraints over the previous two. The most important issues
surrounding the non-functional descriptions are those of security, authentication
and privacy. These issues relate to the exchange of information necessary for the

46 Chapter 3. Design Issues and Overview

service to be consummated. Legal and contractual issues between the provider
and requester of the service also play an importan role.

A policy consists of information that can be used to modify the behavior of a
system [72]. Policies describe the capabilities, requirements and constraints of a
service. Non-functional service descriptions are often used to formalise or specify
assertions in policies.

Two problems arise from the application of web services in e-business:

1. Change and Risk Management. Nowadays e-business scenarios always in-
volve more than one organisation. An increase in competition forces busi-
nesses to make frequent changes to corporate policies and devise strategies
in order to remain competitive. This means that changes have to be made
fast in accordance to market changes. Changes to business rules and pro-
cesses should take effect in an efficient way without the need for recoding
or stopping systems. Rules can be applied when making decisions without
the involvement of humans in business-to-consumer activities. It is unrealis-
tic to expect that knowledgeable staff will always react in real-time to make
decisions. These factors underline the need for business rules as external
entities, thus managed by a Knowledge Management System.

2. Gaps between Business and IT. Managers and administrators, who work at
the business level, tend to use abstract, high-level and human-readable poli-
cies to specify requirements or describe services. At the IT level, things work
the other way around; policies are usually specified in a machine-readable
way and enforced according to the specific environment. Knowledge ex-
change and sharing is necessary in this case to build an intelligent service.

To solve these problems, we proposed a security policy framework for business
processes [50] [48] [51] [49], which described a preliminary concept of policy
management and implementation in SOA. In a new line of work, this framework
is further extended and a security gateway with semantic policy framework for
service-oriented computing (SOC) is introduced in the following sections.

3.2 GRACIA - The Security Gateway Approach

A security gateway is a system made up of software components that is used to
provide a security proxy for web services. For this purpose, the technically feasible

3.2. GRACIA - The Security Gateway Approach 47

service interactions are confined to those specified by the services security policy.
In the context of service-oriented computing, security means only allowing access
or data flows between different web services that are positively wanted.

Security gateways are used as the central interface for web services with different
levels of trust and security requirements. Web services can have different levels
of trust even where the transition is not between internet and intranet. Instead, it
is also possible for two internal services within an organisation to have different
protection requirements.

In contrast to the more customary term ”firewall”, the use of the term ”security
gateway” illustrates the protection of web services and service networks as op-
posed to the uptake of different tasks, such as packet filtering, anti-virus protec-
tion or monitoring of the network traffic (”intrusion detection”). Security gateway’s
tasks often include service access control and security policy enforcement.

3.2.1 Threat Scenario

The following typical threats are assumed for a security gateway:

Organisational Shortcomings and Human Error
It is a relatively common occurrence that, due to negligence and insufficient checks,
people fail to implement, either wholly or partially, legal and regulatory require-
ments that have been recommended or prescribed to them. This can cause dam-
age which otherwise could have been prevented, or at least minimised. Depend-
ing on the function of the person in question and the importance of the compliance
overlooked, the resulting damage could be quite serious. Compliance is frequently
disregarded due to a lack of security awareness and domain knowledge.

Technical Failures
When programs and protocols are planned, mistakes that affect security can be
made in the design. For instance, the developers of the protocols used in the
internet surely did not expect that these protocols would one day become the
basis for a world-wide computer network that is commercially extremely important.

Deliberate Acts
One of the deliberate acts is unauthorised access of web services. Without mech-
anisms for the identification and authentication of users, any control over unautho-
rised use of web services is virtually impossible. If the identification and authenti-
cation function can be abused, it is even possible to initiate automatic attempts by
developing a program that systematically tests all conceivable passwords.

48 Chapter 3. Design Issues and Overview

3.2.2 Countermeasures and Approaches

In order to successfully set up a security gateway for web services, a series of
measures should be taken:

– Determine the security objectives
To offer effective protection, the security gateway must be based on a com-
prehensive security policy and be integrated into the organisation’s IT secu-
rity concept. There are a number of different ways of implementing security
gateways. To determine which concept is best suited to a particular instance,
it is first necessary to clarify which security objectives are to be fulfilled by the
security gateway. In our approach, we define the following objectives:

∗ Protection of the trusted web services against unauthorised access from
the non-trusted stakeholder;

∗ Protection of the transmitted data against attacks on their confidentiality
or integrity;

– Establishing security policies
Based on the security objectives, security policies stipulating the tasks to be
carried out by the security gateway must be created. These security poli-
cies must be embedded into the IT security strategy of the organisation con-
cerned in accordance with regulatory and legal organisations. The security
gateway policy determines the behaviour of the security gateway. It defines
which information, services and protocols the security gateway handles, how
it handles them and who may use them. The security requirements stem
from the organisation-wide security policy and should be formulated into a
specific security policy for the operation of security gateways in order to more
precisely define and implement the high-level and generally formulated se-
curity policy in a given context.

– Construction of the security gateway
In order to build up the security gateway, the security policy and rules ought
to be implemented through the integration of different components. In the tra-
ditional firewall, these components could be packet filters. In our approach,
a logic inference engine, a knowledge management system and an open
source solution for security policy management are intergrated into the gate-
way.

The Gracia approach is based on the developement of the semantic web tech-
nology and knowledge representation methodology. The primary concept of this

3.2. GRACIA - The Security Gateway Approach 49

approach is:

– The knowlege is mergered on a common ontology basis. The knowledge,
which stems from a regulator organisation and the company’s business pol-
icy, also has diffefrent ontology domains. The Virtual Knowledge Community
and Corporate Knowledge are used here to formailise the common ontology
basis for all of these knowledges. Because the knowledge is wriiten in nat-
ural language, in this approach the knowledge is represented in two forms:
descripton logic form and horn logic form.

– This knowledge is interpreted with a semantic-rich language(OWL) and con-
verted into a machine-readable format for the logic reasoning engine and
security policy enforcement component. The logic component decides to
permit or deny the access request to web services and this reasoing task
takes place on the mergered knowledge basis (as mentioned above).

3.2.3 Case Study

A real-world regulator compliance scenario demonstrates the requirements of the
security gateway. Let us consider the case of a security officer, Bob, who is work-
ing at the airport and checking the boarding passengers. The airport is equipped
with several 802.11b hot spots providing travellers, airline employees and security
officers with wireless connectivity for their portable devices, e.g., laptops, PDA
and mobile phones. Airline companies may also provide additional services and
resources to security officers, such as the possibility to control the CCTV Cam-
era to focus on a person of particulary interest. Moreover, while working at the
checking gate, officers may wish to share information with other officersby using
the wireless connectivity available at the airport (considering the fact that some
officers work without a fixed location within the airport.) Therefore, Bob may wish
to access the CCTV service that is available in the area around him to keep an
eye on a suspect person.
Additionally, the requirement for up-to-date information regarding the location of
other officers within the airport means that he should be able to exchange location
information with other officers. These activities need to be regulated by appropri-
ate policies and enforced by specific facilities within the airport system. In partic-
ular, the following policies governing adequate access to services and resources
may apply. We will use these policies as a running policy example throughout the
rest of this thesis. Figure 3.1 illustrates this scenario.

50 Chapter 3. Design Issues and Overview

Figure 3.1: Use Case Scenario: Airport Security

– Information Sharing Policy
Security Officers that are currently co-located with the owner of the policy,
i.e., with his device, are authorised to access the shared information stored
on the owner’s device.
This policy may be instantiated and enforced by Bob to share his information
with co-located officers in a secure way, depending on context conditions at
the moment in question.

– CCTVAccess Policy
Officers that are assigned to work as team leaders and are currently located
in the boarding area are authorised to access the CCTV device.
This policy may be enforced by the provider of a CCTV service that is of-
fered to security officers in some areas of the airport. The enforcement of
this authorisation should ensure that officers having proper rights are able to
access the service. Furthermore, if the default behavior of the system states
that everything that is not explicitly permitted is prohibited, this policy also
prevents unauthorised travellers from accessing the service.

3.3. GRACIA Architectural Overview 51

3.3 GRACIA Architectural Overview

In this section, a security gateway with a semantic policy framework for service-
oriented computing (SOC) is introduced for the specification and enforcement of
policies to support security and trust management for SOC. The security gateway
that intercepts all service requests is illustrated in Figure 3.2. It consists of the
Gracia Policy Framework and the Gracia Knowledge Base.

Figure 3.2: Security Gateway

In order to support conflict resolution and the life-cycle management of policies as
well as to enable reasoning and decision making processes over the knowledge
base, an architecture of the semantic policy framework is illustrated in Figure 3.3.

This includes two supporting services: a policy service and a knowledge service.
Additional components include: reasoner, management tools and repository.

– Policy Service. The policy service acts as a Policy Decision Point 1(PDP)
for web services policies(external) and Gracia Policy Language (internal),

1http://www.ietf.org/

52 Chapter 3. Design Issues and Overview

Figure 3.3: Framework architecture

including security and QoS requests. The policy service acts on service
requests and renders a decision.

– Knowledge Service. The knowledge service manages the Gracia Knowl-
edge Base and the repository of the static knowledge base: business rules,
policies and service descriptions.

– Repositories. Three repositories are used for the storage of service de-
scriptions, web service policies and business rules. This information can be
managed through the policy and knowledge service.

– Reasoner. Reasoner is used to perform logical inference over Gracia Knowl-
edge Base based on knowledge repositories and VKCs. In our implementa-
tion, we use KAON2 [85] 2 as the reasoner. The major advantage of KAON2
is that it is a very efficient reasoner when it comes to reasoning with Descrip-
tion Logics ontologies containing very large ABoxes and small TBoxes [86].
The terms Abox and Tbox are used to describe two different types of state-
ments in ontologies. Together, Abox and Tbox statements make up a knowl-
edge base.

2http://kaon2.semanticweb.org/

3.3. GRACIA Architectural Overview 53

– Management Tools. The policy management tool acts as the interface to
policy service; it manages the life-cycle of policies, creates and deploys new
policies. The knowledge management tool provides an interface to manage
the VKCs and knowledge repositories.

As the policy service acts as a PDP, it receives the service request from the Policy
Enforcement Point (PEP)3 at the service end. There are two possible options:
a) It seeks the suitable policies within the policy repository, renders the decision
and sends the result back to PEP, b) It cannot find the proper policy or there are
conflicts in policies, the request will be converted to a request to the knowledge
service. The knowledge service will analyse the request and prepare a knowledge
base for the next reasoning step. The knowledge base is built on both static
knowledge from repositories and dynamic knowledge from VKCs. VKCs build a
special knowledge component outside the framework and are managed by the
Knowledge Service Agent, which also acts as a leader agent on the knowledge
service. Based on the result of reasoning on the knowledge base, the policy
service can make its decision regarding the service request.

3.3.1 Gracia Policy Language

Web services interact with each other by exchanging SOAP messages. To provide
for a robust development and operational environment, services are described
using machine-readable metadata. This metadata serves several purposes, one
of which being the description of the capabilities and requirements of a service -
often called the web service policy.

Various approaches have been taken to achieve security policy specifications,
including logic-based languages, role-based access control, various access con-
trols and trust specification techniques [27]. However, a specification language,
which can meet the following requirements, is still missing.

– Support of semantic service descriptions. How to model security proper-
ties into the policies and enable reasoning over them?

– Integration of Domain Knowledge. Domain Knowledge such as Business
rules state core business policies. They control and influence business be-
havior. How is it possible to integrate them into the knowledge base and
specify policy using rules?

3http://www.ietf.org

54 Chapter 3. Design Issues and Overview

Various web services and semantic web services approaches such as UDDI4,
OWL-S [26], SWSF [10] and WSMO/WSML [32] have been investigated to de-
scribe the non-functional properties of a service. In [90] a set of the most relevant
non-functional properties for Web services and their modelling are described. An
overview of all these approaches is given in [108].

In this thesis, we define the Gracia policy specification language with an upper
ontology in [51]. From the upper ontology, a domain-specific policy ontology de-
scribes the vocabularies for policies, business rule terms and service descriptions
used within the domain. By using the domain-specific policy template, a policy
specification can be generated automatically with Ontology language OWL [79]
and Rules language SWRL [47]. In Chapter 4, the details regarding the specifica-
tion of policies in this policy framework will be introduced.

3.3.2 Gracia Knowledge Base

In Chapter 5, it will be shown how knowledge sharing and exchange helped us
model policies for services and how we define the Gracia Knowledge Base (GKB).

As Trust is nowadays considered to be a very important issue in knowledge man-
agement, we also defined a trust brokering solution inside the GKB, which we
expect will be able to solve the anonymous trust management problem in SOC.

3.4 Summary

We have investigated a distributed knowledge management approach to aid the
modelling of security policies for web services. This approach is based on the con-
cept of corporate knowledge through the use of VKCs and the contribution from
the Semantic Web Community (OWL and SWRL). By integrating the knowledge
management service, the semantic policy framework is able to access external
VKCs which can provide application-specific knowledge on transactions in SOC.
After the knowledge integration, rich corporate knowledge can be used to fulfill
the task of reasoning and enrich the policy with former unavailable information
such as security requirements of web services and business rules affected by the
transaction processes. In chapter 6, we will introduce the development details of

4http://www.uddi.org

3.4. Summary 55

the prototype of the semantic policy framework, in particular the development of
Policy and knowledge management services.

The aim of this work is to create a security gateway with a semantic policy frame-
work and knowledge management methodology that enables security, trust and
QoS in service-oriented computing environments and provides a novel solution
for fields such as e-business, telecommunication and enterprise application inte-
gration.

Chapter 4

Gracia Policy Language

4.1 Introduction

To address regulatory and security-related issues, policy approaches that specify
policies in a way that is both context-based and semantically-rich are necessary.
Two approaches have been used in our research: an ontology-based approach
that relies heavily on the expressive features of Description Logic (DL) languages,
and a rule-based approach that encodes policies as Logic Programming (LP)
rules.

Explicit policies can help by dynamically regulating access rights to web services
endpoints and maintaining an adequate level of security, predictability, and re-
sponsiveness to human control. By changing policies, service transactions can
be continuously adjusted to accommodate variations in externally imposed con-
straints and environmental conditions without modifying the service implementa-
tion.

In order to capture the changes in the business logic and security-related require-
ments, our approach formalises two kinds of information: Access Control Policy
and Services Security Constraints. This chaper will introduce the formalisation of
this information with our semantic formal approach-Gracia Policy Language.

4.2 Related Work

Logic programming and rule-based formalisms are considered to be appealing
policy specification languages. The most common type of policy is security policy,

58 Chapter 4. Gracia Policy Language

which is used to pose constraints on a system’s behavior. Recently, the notion
of policy has been generalised to include other specifications of behavior and
decisions, including business rules in all their forms. In the emerging area of
service-oriented computing, the word ”policy” is sometimes used to refer to the
orchestration of elementary and compound services. Policies specify the interplay
(dialogs, negotiations, etc.) between different entities and actors for the purpose
of delivering services whilst enforcing desired application constraints and client
requirements.

Policy complexity is increased by the interplay of multiple, heterogeneous require-
ments. These requirements must be harmonised and merged into a coherent pol-
icy. In complex organisations, different branches or departments may have direct
control over their own data and establish their own security policy. At the organ-
isation level, these different policies must be merged. National laws are also an
external source for security constraints. The description of laws in different natural
languages also increases the need for a semantic foundation for policy languages.

4.2.1 Logic-based Policy Specification

Logic-based policy specification languages aim at providing language constructs
that enhance clarity, modularity and other desirable properties. Logic languages
are particularly attractive as policy specification languages. One obvious advan-
tage lies in their clean and unambiguous semantics, suitable for implementation
validation, as well as formal policy verification. Secondly, logic languages can be
expressive enough to formulate all the policies introduced in the literature. The
declarative nature of logic languages yields a good compromise between expres-
siveness and simplicity. Their high level of abstraction, very close to the natural
language formulation of the policies, makes them simpler to use than imperative
programming languages, especially for people with little or no technical training.
Such people are also not experts in formal logics, so generality is sometimes dis-
missed in favour of simplicity. For this reason, some languages do not adopt a
first-order syntax, even if the policy language is then interpreted by embedding it
into a first-order logic (FOL) [14] [17]. The embedding often isolates a fragment of
the target logic with nice computational properties.

In a real system with hundreds of users and hundreds or thousands of data ob-
jects, the set of potential authorisations may have one hundred elements or more.

4.2. Related Work 59

Moreover, if the policy is time-dependent, then the number of authorisations may
increase significantly. Therefore, one can only afford policy languages with low
polynomial complexity. In fact, most of the logic-based policy specification lan-
guages proposed so far are directly or indirectly mapped onto more or less ex-
tended forms of logic programs suitable for efficient, PTIME implementations.

The target logic is typically nonmonotonic, that is, the set of consequences of a
theory do not increase monotonically with the set of axioms in the theory. Pol-
icy specification was proposed long ago as an application of nonmonotonic log-
ics [78]. The reason behind this is that sometimes decisions need to be made
in the absence of information. So, when new information is added to the theory,
some decision may have to be retracted (because they have lost their justification),
thereby inducing a nonmonotonic behavior. In the area of security, such default
decisions arise naturally in real world policies. For example, open policies pre-
scribe that authorisations are granted by default, whilst closed policies prescribe
that authorasations should be denied unless otherwise stated.

For the first time ever, a nonmonotonic logic has been proposed as a policy spec-
ification language by Woo and Lam [116]. They show how default logic can be
used to express a number of different policies. Woo and Lam also provide an ax-
iomatisation of the Bell-LaPadula security model [12], refined by the need-to-know
principle. In order to address complexity issues, Woo and Lam propose the use of
the fragment of default logic corresponding to stratified, extended logic programs,
that is, stratified logic programs with two negations (negation as failure and clas-
sical negation), whose unique stable model can be computed in quadratic time.
Extended logic programs can be easily transformed into equivalent normal logic
programs (with only negation-as-failure) by means of a straightforward predicate
renaming. Default logic is a very flexible policy specification language. Different
users and objects can be treated with different policies.

In the language of the security community, a fixed vocabulary is called a model,
while in the AI community it would probably be regarded as an elementary ontol-
ogy. In the next section, semantic approaches based on ontology are introduced.

4.2.2 Semantic Approaches

The word semantics is derived from the Greek word sematikos -which means sig-
nificant meaning, derived from the sema sign. Semantics, which deals with mean-
ing/content, is one of the three branches of semiotics. The other two branches

60 Chapter 4. Gracia Policy Language

are syntax and pragmatics. Syntax is defined as ”the study of formal relationships
between words” [59]. Pragmatics, deals with the ”study of the relation between
language and context of use” [59]. Semantics differs from syntax (the formal struc-
ture or pattern) in pertaining to what something means. Semantics, the ”study of
meaning”, can also be explained as the relationship between word symbols and
their intended meaning. Formal logic semantics is important as it helps by defin-
ing a language in a methodical way. The formal representation of semantics helps
to perform querying and reasoning.

The different types of semantics are:

– Denotational Semantics. Denotational meaning can be expressed as ”Know-
ing that”, which defines meaning as reference. In logic theory, denotational
semantics formalises the meaning of languages/programs by means of math-
ematical functions.

– Operational Semantics. Operational meaning can be defined as ”Knowing
How”. It is the valid algorithm for performing actions. This is enabled by
defining a set of formal inference rules to define the valid transitions of the
system.

– Axiomatic semantics. Axiomatic semantics is used to define assertions about
properties of a system. It is based on mathematical logic to prove the cor-
rectness of the system. It describes how the state change of the system af-
fects these assertions. In terms of programming, assertions are constraints
such as pre/post-conditions and invariants of an operation, and axiomatic
semantics deals with the state of these constraints after the execution of the
operation.

– Model-Theoretic Semantics: Model-Theoretic Semantics [8] deals with the
study of language meaning using mathematical and logical formalism. Se-
mantics/Meaning of language is given by the interpretation of mathematical
concepts of set-theory; this enables the explanation of the semantics via
formal structures such as predicates. Formalism helps to bring about auto-
mated reasoning. Inferencing and reasoning are based on resolution theory.

The Semantic Web can be defined as ”an extended Web of machine-readable
information and automated services that extends far beyond current capabilities”
[106]. Adding explicit semantics to underlying content will transform the Web into
a global knowledge source that can prove useful to a number of applications. As
opposed to the information overload in the current Web, the Semantic Web will

4.2. Related Work 61

help present the content in a more organised manner. The inherent nature of
Semantic Web technology (semantically enriched) helps develop new and flexible
approaches to Data Integration. This facilitates many applications, particularly
Semantic Web Services, which are built using the infrastructure of the Semantic
Web.

The core of the semantic knowledge present in the Semantic Web is presented
through Ontologies. Ontology can be aptly described as a ”formal specification of
conceptualisation shared in a community” [39]. It can also be looked upon as a vo-
cabulary of terms and relations that is used to represent an unambiguous view of
the world. Ontologies help to formalise the communication across the applications
and extensions of the Semantic Web. The components of ontology can be briefly
summarised as (i) Concepts (Vocabulary) (ii) Structure (hierarchy of concepts and
their attributes) (iii) Specific characteristics of concepts and their attributes (e.g.,
Domain and Range Restrictions, Properties of relations). A clear perspective on
the basics of ontology and its features can help enhance the semantic knowledge
resident in the Semantic Web.

The Web Ontology Language -OWL [79] is a new formal language for the repre-
sentation of ontologies in the semantic Web. OWL characteristics are obtained as
extensions to RDF (Resource Description Framework) and RDF-S (RDF-Schema).
OWL’s semantics are grounded in DL expressivity. An ontology can be viewed as
a Description Logic knowledge base. Description Logic (DL) is a knowledge rep-
resentation formalism (KR) that represents a domain. The domain is described
in terms of the concepts in the domain, properties used to define these concepts
and the relationship between the concepts in the domain. Using DL as a founda-
tion of ontologies helps us use its inherent reasoning to make implicit knowledge
explicit. Based on the level of expression and time-complexity of reasoning, OWL
comes in three flavours:

– OWL-Lite uses simple constraints and reasoning, and is computationally sim-
ple and efficient

– OWL-DL is computationally complete and decidable.

– OWL-Full offers the most maximum expressiveness, but offers no computa-
tional guarantees.

The control of access to web services in compliance scenarios raises novel re-
quirements for the design of policy languages and policy run-time environments.
In compliance scenarios, regulations typically change from one environment to

62 Chapter 4. Gracia Policy Language

another, thus determining continuous variations in their physical position and in
their execution context, including the set of entities and resources they may influ-
ence. Moreover, services can be accessed via the network in various processes,
which exhibit different conditions before or after the service invocation. As it is not
possible to exactly predict all the regulations an entity should be compliant to and
the kind of resources it may wish to have access to, policy-based control cannot
rely on any precise knowledge about the subjects/events/actions that need to be
governed [109].

To deal with such characteristics, recent research efforts propose the adoption of
semantically-rich representations for the expression of policy and domain knowl-
edge. The adoption of Semantic Web languages for the specification and man-
agement of policies in regulator compliance scenarios brings several advantages.
In fact, semantically-rich representations ensure that there is a common under-
standing between the service consumer and service provider, the current execu-
tion context and the actions they are permitted or obliged to perform. Moreover,
modelling policies at a high level of abstraction simplifies their description and
improves the analysability of the system [109]. Semantic Web languages also en-
able expressive querying and automated reasoning about policy representation.

Another emerging direction suggests that, in order to deal with the dynamic con-
text changes that are typical in the service-oriented world, it may be advanta-
geous to build policies directly over context conditions, i.e., to consider context as
a primary element in the specification of policies [82]. The adoption of a semantic
policy approach requires the definition of a policy model that can precisely identify
the basic types of policies required to control services, specify how to express and
represent related policies in a semantically expressive form, and how to enforce
them. The following are considered as basic requirements for a semantic-based
policy language [109]:

– the ability to model and represent the contexts in which services are executed
and to which policies are associated, at a high level of abstraction.

– the ability to define what actions are permitted or forbidden to do on re-
sources in specific contexts (authorisations or permission/prohibition poli-
cies);

– the ability to define the actions that must be performed on resources in spe-
cific contexts (obligations).

To illustrate the expressive capabilities of the two semantic policy frameworks, i.e.,

4.2. Related Work 63

KAoS [19] and Rei [63], we consider the case scenario of security officers within
an airport.

KAoS

KAoS is a framework that provides policy and domain management services for
agent and other distributed computing platforms [19]. It has been deployed in a
wide variety of multi-agent and distributed computing applications. KAoS policy
services allow for the specification, management, conflict resolution and enforce-
ment of policies within agent domains. KPAT, a powerful graphical user interface,
allows non-specialists to specify and analyse complex policies without having to
master the complexity of OWL.

KAoS adopts an ontology-based approach to semantic policy specification. In
fact, policies are mainly represented in OWL as ontologies. The KAoS policy on-
tologies distinguish between authorisations and obligations. In KAoS, a policy
constrains the actions that an agent is allowed or obliged to perform in a given
context. In particular, each policy controls a well-defined action whose subject,
target and other context conditions are defined as property restrictions on the ac-
tion type. The Code below shows an example of KAoS authorisation, which rep-
resents the CCTVAccess policy previously described. The property performedBy
is used to define the class to which the actor must belong for the policy to be
satisfied.

Listing 4.1: KAoS Policy Ontology

1<owl:Class rdf:ID=”BoardingAreaCCTVAccessAction”>

<owl:intersectionOf rdf:parseType=”Collection”>

3<rdfsowl:Class

rdf:about=”&action;AccessAction”/>

5<owl:Restriction>

<owl:onProperty

7rdf:resource=”&action;performedBy”/>

<owl:allValuesFrom

9rdf:resource=”#TeamLeaderOfSecurityOfficer”/>

</owl:Restriction>

11<owl:Restriction>

<owl:onProperty

13rdf:resource=”&action;accessedEntity”/>

<owl:allValuesFrom

15rdf:resource=”#CCTV−Monitor392”/>

64 Chapter 4. Gracia Policy Language

</owl:Restriction>

17</owl:intersectionOf>

</owl:Class>

19<policy:PosAuthorizationPolicy

rdf:ID=”BoardingAreaCCTVAccess”>

21<policy:controls

rdf:resource=”#BoardingAreaCCTVAccessAction”/>

23<policy:hasSiteOfEnforcement

rdf:resource=”&some−ontology;TargetSite”/>

25<policy:hasPriority>10</policy:hasPriority>

</policy:PosAutihorisationPolicy>

In KAoS, context conditions that constrain a policy may be specified through the
definition of appropriate classes defined via property restrictions. In particular, two
main properties, i.e., the hasDataContext and the hasObjectContext properties,
and their subproperties, are used for the characterisation of the action context.
Some subproperties are defined in the KAoS ontology, like for instance the ones
defining the actor (performedBy), the time and the target resource (accessedEn-
tity) of an action, while others may be created within domain-specific ontologies.
The following code shows the definition of a class, namely TeamLeaderOfSecu-
rityOfficer, which represents all the Team Leaders that are working as security
officers within the airport. This class is defined as a subclass of the Security
Officer class, having the affiliation property restricted to the Airport.

As these examples show, KAoS is based on an ontological approach to policy
specification, which exploits OWL, i.e., description logic, features to describe and
specify policies and context conditions. In fact, contexts and related policies are
expressed as ontologies. Therefore, KAoS is able to classify and reason about
both domain and policy specification basing on ontological subsumption, and to
detect policy conflicts statically, i.e., at policy definition time.

Listing 4.2: KAoS Policy Example

<owl:Class rdf:ID=”TeamLeaderOfSecurityOfficer”>

2<rdfs:subClassOf

rdf:resource=”&some−ontology;SecurityOfficer”/>

4<rdfs:subClassOf>

<owl:Restriction>

6<owl:onProperty

rdf:resource=”&some−ontology;Teamleader”/>

4.2. Related Work 65

8<owl:allValuesFrom

rdf:resource=”&some−ontology;Airport”/>

10</owl:Restriction>

</rdfs:subClassOf>

However, a pure OWL approach encounters some difficulties with regards to the
definition of certain kinds of policies - specifically those requiring the definition of
variables. For instance, by relying purely on OWL, we could not define policies,
which indicates property value constraints (in reference to statically unknown val-
ues.) Other examples include policies that contain parametric constraints, which
are assigned a value only at deployment or run time. For this reason, KAoS devel-
opers have introduced role-value maps as OWL extensions, implementing them
within the Java Theorem Prover, used by KAoS [83] [111].

The adoption of role value maps, description logic-based concept constructors
that were originally introduced in the KL-ONE system [99], allows KAoS to spec-
ify constraints between property values expressed in OWL terms, and to define
policy sets, i.e., groups of policies that share a common definition but can be sin-
gularly instantiated with different parameters. The proposed extensions add suffi-
cient expressive flexibility to KAoS for the representation of the policies discussed.
However, non-experienced users may have difficulties in writing and understand-
ing these policies without the help of the KPAT graphical user interface.

Rei

Rei [63] is a policy framework that permits the specification, analysis and rea-
soning about declarative policies defined as norms of behavior. Rei adopts a
rule-based approach to the specification of semantic policies. Rei policies restrict
domain actions that an entity can/must perform on resources in the environment,
allowing policies to be developed as contextually constrained deontic concepts,
i.e., right, prohibition, obligation and dispensation.

The first version of Rei (Rei 1.0) is defined entirely in first order logic with logical
specifications for introducing domain knowledge [60]. The current version of Rei
(Rei 2.0), featured in this paper, adopts OWL-Lite to specify policies and can rea-
son over any domain knowledge expressed in either RDF or OWL [61].
A policy basically consists of a list of rules and a context that is used to define the
policy domain. Rules are expressed as OWL properties of the policy. In particular,
the policy:grants property is used to associate a deontic object with a policy either
directly or via a policy:Granting. The List4.3 shows the Rei 2.0 policy specification

66 Chapter 4. Gracia Policy Language

of the InformationSharing policy.

Listing 4.3: Rei Policy

1<policy:Policy rdf:ID=”InformationSharingPolicy”>

<policy:actor rdf:resource=”#requester”/>

3<policy:grants rdf:resource=”#Perm InfoAccess”/>

</policy:Policy>

In order to specify context conditions, one or more constraints need to be defined.
A constraint, which may be simple or boolean, i.e., the Boolean combination of a
pair of simple constraints, defines a set of actors or a set of actions that fulfill a
certain property. A simple constraint, as shown in the following code, is modelled
as a triple consisting of a subject, a predicate and an object, which defines the
value of the property for the entity, following a pattern that is typical of logical
languages like Prolog.

Listing 4.4: Rei policy-Contraints Example

<constraint:SimpleConstraint rdf:ID=”LocationOfSecurtiyOfficer”>

2<constraint:subject

rdf:resource=”&some−ontology;SecurtiyOfficer”/>

4<constraint:predicate

rdf:resource=”&some−ontology;location”/>

6<constraint:object

rdf:resource=”#SecurtiyOfficer−location”/>

8</constraint:SimpleConstraint>

<constraint:SimpleConstraint

10rdf:ID=”CoLocatedWithSecurtiyOfficer”>

<constraint:subject

12rdf:resource=”#requester”/>

<constraint:predicate

14rdf:resource=”&some−ontology;location”/>

<constraint:object

16rdf:resource=”#SecurtiyOfficer−location”/>

</constraint:SimpleConstraint>

18<constraint:And rdf:ID=”Constraint CoLocated”>

<constraint:first

20rdf:resource=”#LocationOfSecurtiyOfficer”/>

<constraint:second

4.2. Related Work 67

22rdf:resource=”#CoLocatedWithSecurtiyOfficer”/>

</constraint:And>

A constraint can be associated to a policy at three different levels. The first pos-
sibility is to impose a constraint within the definition of a deontic object, by means
of the deontic:constraint property, as shown in the following code. In this case,
the constraint can be expressed over the actor, the action to be controlled or over
generic environmental states.

Additional constraints can be imposed within the Granting specification on the
entity the granting is made to, the deontic object the granting is made over and,
again, over generic environmental states. Finally, it is possible to express a set of
constraints directly within the policy definition through the policy:context property.
These constraints are generically defined as conditions over attributes of entities
in the policy domain.

Listing 4.5: Deontic Logic Example

1<deontic:Permission rdf:ID=”Perm InfoAccess”>

<deontic:actor rdf:resource=”#requester”/>

3<deontic:action

rdf:resource=”&some−ontology;AccessToSharedInfo”/>

5<deontic:constraint

rdf:resource=”#Constraint CoLocated”/>

7</deontic:Permission>

Rei 2.0 uses OWL-Lite for the specification of policies and domain-specific knowl-
edge [61]. Though represented in OWL-Lite, Rei still allows the definition of vari-
ables that are used as placeholders as in Prolog. In fact, as shown in List 4.4,
the definition of constraints follows the typical pattern of rule-based programming
languages, like Prolog.

In this way, Rei overcomes one of the major limitations of the OWL language,
and more generally of description logics. i.e., the inability to define variables. For
example, Rei allows developers to express a policy stating that a user is allowed
to access the shared files of another user if they are located in the same area,
whereas pure OWL would not allow for the definition of the ”same as” concept.

Therefore, Rei’s rule-based approach enables the definition of policies that refer to
a dynamically determined value, thus providing greater expressiveness and flexi-
bility to policy specification. On the other hand, the choice of expressing Rei rules

68 Chapter 4. Gracia Policy Language

similarly to declarative logic programs prevents it from exploiting the full potential
of the OWL language. In fact, Rei rules knowledge is treated separately from
OWL ontology knowledge due to its different syntactical form. OWL inference is
essentially considered as an oracle. Hence, Rei rules cannot be exploited in the
reasoning process that infers new conclusions from the OWL existing ontologies,
which means that the Rei engine is able to reason about domain-specific knowl-
edge, but not about policy specification. As a main consequence of this limitation,
Rei policy statements cannot be classified by means of ontological reasoning.
Therefore, in order to classify policies, the variables in the rules need to be instan-
tiated, which boils down to a constraint satisfaction problem. Let us consider, for
example, the previously described CCTVAccess policy.

Unlike KAoS, Rei does not allow for a policy disclosure process that retrieves
policies controlling a specific type of action. Hence, the user wanting to use the
printer could only try to access it and see what the Rei engine has answered in
response to his/her single access attempt. For the same reason, Rei cannot stat-
ically detect conflicts, like KAoS does, but it can only discover them with respect
to a particular situation.

4.3 Gracia Policy Language

In order to fill the gap between the Knowledge base layer and the Web Services
Implementation layer, we specify a formal semantic language called Gracia Policy
Language(GPL). GPL is based on the syntax and semantics of OWL and SWRL.
This enables the GPL approach with the shared advantage of both description
logic and logic programming.

The model-theoretic semantics of GPL is an extension of the direct model-theoretic
semantics defined in the OWL and SWRL. The Gracia Policy Language is a result
of introducing vocabularies and interpretations of specific security-related con-
cepts inheriting all features of OWL and SWRL. The GPL has been expressed
based on ontologies in Appendix C. Thus, Gracia policies are a combination of
OWL ontologies and SWRL Rules. Similar to the traditional access control and
security models, the GPL ontologies aim to support the formal specification of poli-
cies with respect to standards, legal regulations, domain practices, agreements,
approaches and traditions, etc. Ontologies also define languages. The Gracia
Policy ontologies define the Gracia policy language. Figure 4.1 shows the core
part of the Gracia Policy ontologies.

4.3. Gracia Policy Language 69

Service

hasService

Service Domain

Policy Domain

Policy
hasPolicy

Properties

Rule Domain

Rule

hasRule

hasProperty

Operation

hasOperation

employRule

useProperty

OWL Class

Relationship

Figure 4.1: Gracia Ontology

The next step in describing the formal language is to determine the features of
policy that need to be expressed in the formalism. Each type of policy contains
a number of elements - Subjects, Targets, Actions and Constraints. In order to
provide a complete formal representation of policies, the information contained in
each of these elements must be included in the formalism.

In this section, we describe how each element in a policy is represented in the
formalism and then go on to show how these clauses are combined to specify
Gracia Policy.

Subjects and Targets

The subject and target elements of a policy refer to the ontology objects that are
relevant to the policy. In the case of an authorisation policy, the Subject element is
used to define what is being granted (or denied) the right to perform the operations
specified in the Action clause. The target clause always refers to the objects on
which the operations are being performed.

In our Gracia approach we specify subjects and targets as OWL Class or in-
stances of OWL class, which in their more complex syntax allow for the combina-
tion of objects from different domains using set operations such as intersections

70 Chapter 4. Gracia Policy Language

and unions. These are represented in the formal language of the form:

Listing 4.6: Formal Representation of Subjects and Targets

1Class(namespace:SUBJECT partial)

Individual(namespace:Tom type(owl:Thing))

Operations

Every type of policy has an action element that specifies the operations that are
relevant to it. An operation is defined using an identifier, some optional parameters
and the name of the object upon which it will be performed (i.e. the target). This
is represented in the formal language using the form:

Listing 4.7: Formal Representation of Operations

op(SubjObj, TargObj, OpName, Parms)

For authorisation policies, the action clause simply defines the set of one or more
operations that are allowed (or prohibited) when the policy is applicable.

Constraints

Constraints are used in policy specifications to control the applicability of the policy
based on the runtime state of the system. Although Gracia constraints are spec-
ified using the SWRL rules, typically only a subset of the features of SWRL are
used when specifying policy constraints. In most situations, policy constraints are
defined as Boolean expressions, either using comparison operators or attributes
of objects.

The following section details the mapping of the GPL with current policies such as
WS-Policy and XACML.

4.3.1 From GPL to WS-Policy

One shared characteristic of the current proposed web service policy languages
is that they involve policy assertions and combinations of assertions. For exam-
ple, a policy might assert that a particular service requires some form of reliable
messaging or security, or it may require both reliable messaging and security.
Several industrial proposals (e.g., WS-Policy) appear to restrict them to a kind of
propositional logic with policy assertions being atomic propositions and the com-
binations being conjunction and disjunction. In our approach, a clear semantics

4.3. Gracia Policy Language 71

for the Gracia policy languages can be acquired by mapping the policy language
constructs into a description logic (sub variant of first order logic).

The Web Ontology Language and the Resource Description Framework (RDF
[73]) were chosen as the basis syntax and semantics for the Gracia Policy Lan-
guage. Both RDF and OWL are strict subsets of first order logic, with the sub-
species OWL-DL being a very expressive yet decidable subset. OWL-DL builds on
the rich tradition of description logics where the tradeoff between computational
complexity and logical expressivity has been precisely and extensively mapped
out and practical, scalable reasoning algorithms and systems have been devel-
oped. In our implementation, the formalism underlying the WS-Policy grammar is
captured and translated into OWL-DL class expressions.

Assertions are the building blocks for a Web service policy and satisfying them
usually results in a behavior that satisfies the conditions for the service endpoints
to communicate. A policy assertion is supported by a requestor if and only if the
requestor satisfies the requirement, or accommodates the capability correspond-
ing to the assertion. Policy assertions usually deal with domain-specific knowl-
edge and they can be grouped into policy alternatives. An alternative is satisfied
only if the requestor of the service satisfies all of the policy assertions contained
in the alternative. Note that in our ontology, policy assertions and alternatives are
represented with separate OWL classes related to the containsAssertions prop-
erty. Determining whether a policy alternative is supported is done automatically
using the results of the policy assertions. List 4.8 shows OWL Ontology for Policy
Assertation.

Listing 4.8: OWL Ontology of WS Policy Assertation

1<rdf:RDF xml:base=”&WS−PolicyAssertion.owl;”>

3<!−− Ontology Information −−>
<owl:Ontology/>

5

<!−− Classes −−>
7<owl:Class rdf:about=”#Assertion”/>

<owl:Class rdf:about=”#Integrity”>

9<rdfs:subClassOf rdf:resource=”#Assertion”/>

</owl:Class>

11<owl:Class rdf:about=”#Language”>

<rdfs:subClassOf rdf:resource=”#Assertion”/>

72 Chapter 4. Gracia Policy Language

13</owl:Class>

<owl:Class rdf:about=”#SecurityToken”>

15<rdfs:subClassOf rdf:resource=”#Assertion”/>

</owl:Class>

17<owl:Class rdf:about=”#TextEncoding”>

<rdfs:subClassOf rdf:resource=”#Assertion”/>

19</owl:Class>

<owl:Class rdf:about=”&owl;Thing”/>

21

<!−− Datatypes −−>
23<rdfs:Datatype rdf:about=”&xsd;int”/>

<rdfs:Datatype rdf:about=”&xsd;string”/>

25<!−− Datatype Properties −−>
<owl:DatatypeProperty rdf:about=”#hasEncoding”>

27<rdfs:domain rdf:resource=”#TextEncoding”/>

<rdfs:range rdf:resource=”&xsd;string”/>

29</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about=”#hasLanguage”>

31<rdfs:range rdf:resource=”&xsd;string”/>

</owl:DatatypeProperty>

33<owl:DatatypeProperty rdf:about=”#hasPreference”>

<rdfs:domain rdf:resource=”#Assertion”/>

35<rdfs:range rdf:resource=”&xsd;int”/>

</owl:DatatypeProperty>

37</rdf:RDF>

A policy is supported by the requestor of a service if the requestor satisfies at
least one of the alternatives in the policy. Once the policy alternatives have been
evaluated, it can be automatically determined whether a policy is supported by
the requestor.

There are two operators used for the expression of relations between policies,
alternatives and assertions: All and ExactlyOne. These operators are imple-
mented as OWL classes OperatorAll and OperatorExactlyOne in Mindswap’s on-
tology [69]. OperatorAll requires all the assertions to hold in order for the policy
alternative to be satisfied. OperatorExactlyOne specifies that exactly one of the
assertions has to hold in a collection of policy alternatives for the policy assertion
to be satisfied.

4.3. Gracia Policy Language 73

To capture the semantics of WS-Policy, for example, to determine whether two
policies are consistent with each other, is accomplished by translating the WS-
Policy constructs from a normal form policy expression into OWL constructs. A
normal form policy expression is a straightforward XML Infoset representation of
a policy, enumerating each of its alternatives that in turn enumerate each of its
assertions. The following List 4.9 is a schema outline of the normal form of a
WS-Policy expression:

Listing 4.9: Normal form of a policy expression

1<wsp: Policy>

<wsp:ExactlyOne>

3[<wsp:All> [<Assertion> </Assertion>]* </wsp:All>]*

</wsp:ExactlyOne>

5</wsp:Policy>

First, policy assertions are mapped directly into OWL-DL atomic classes (which
correspond to atomic propositions). Though WS-Policy assertions often have
some discernible substructure, it isn’t the key to their logical status in WS-Policy.
Or rather, that substructure is idiosyncratic to the assertion set, rather than being
a feature of the background formalism. So a general WS-Policy engine must be
adapted to deal with their structure.

Mapping wsp:All to an OWL construct is relatively straightforward because wsp:All
means that all of the policy assertions enclosed by this operator have to be satis-
fied in order for communication to be initiated between the endpoints. Thus, it is
a logical conjunction and can be represented as an intersection of OWL classes.
Each of the members of the intersection is a policy assertion, and the result-
ing class expression (using the operator owl:intersectionOf) is a custom-made
policy class that expresses the same semantics as the WS-Policy one. Handling
wsp:ExactlyOne might be trickier, depending on the interpretation of the construct.
There are two possible interpretations:

– wsp:ExactlyOne means that a policy is supported by a requester if and only
if the requester supports at least one of the alternatives in the policy. In
the previous version of WS-Policy there was a wsp:OneOrMore construct
capturing this meaning. In such cases, the wsp:ExactlyOne is an inclusive
OR, and can be mapped using owl:unionOf.

– The other interpretation is that wsp:exactlyOne means that only one, not
more, of the alternatives should be supported in order for the requester to

74 Chapter 4. Gracia Policy Language

support the policy. This is supported by Kagal’work [60], which states that
although policy alternatives are meant to be mutually exclusive, it cannot be
decided in general whether or not more than one alternative can be sup-
ported at the same time.

A complete formal representation of WS-Policy in Gracia Policy Language is listed
in the Appendix A.1.

4.3.2 From GPL to XACML

The OASIS standard eXtensible Access Control Markup Language (XACML [84])
is a highly expressive access control language with significant deployment. XACML
enables the use of arbitrary attributes in policies, allows for the expression of
”deny” policies and enables the use of hierarchical RBAC. One of the many ap-
proaches that has recently emerged is the use of logic and formal reasoning tech-
niques for analysis and verification of XACML policies. They support only a very
small subset of the language.

We use Description Logics (DL) to provide a formalisation of XACML. At the root
of all XACML policies is a Policy or a PolicySet. Each XACML policy document
contains exactly one Policy or PolicySet root element. A PolicySet is a container
that can hold other Policies or PolicySets, as well as references to policies found
in remote locations. A Policy represents a single access control policy, expressed
through a set of Rules. Rules are the most basic element of XACML that actually
makes access decision. Essentially, a Rule is a function that takes an access
request as input and yields an access decision (Permit, Deny, or Not-Applicable).
To determine if a Rule is applicable to an access request, the Target element is
used. A Target is a set of simplified conditions for the Subject, Resource and
Action that must be met for a Rule to apply to a given request. These use boolean
functions to compare values found in a request with those included in the Target.

Four main policy elements in XACML can be formalised with DL: Rules, Requests,
Policies and Policy Sets. Whilst the Target element of Rules and Requests can
be mapped to a DL class expression, the interaction of the access decision of
various policy elements is difficult, if not impossible, to do using only description
logics. This is due to the semantics of the combining algorithms which requires
us to use a formalism that supports preferences. For this reason, Kolovski [68]
proposed defeasible description logics to capture the semantics of the combining

4.3. Gracia Policy Language 75

algorithms, which is a formalism that allows for the expression of defeasible rules
on top of description logics.

Reasoning services in DDL can be reduced to description logic reasoning, which
makes it possible to use DL reasoners for the analysis of XACML policies. Rep-
resentation of access control policies in description logic, for example OWL, has
additional benefits for the policy author. The general applicability of OWL permits
specification of policy using terminology that exists in a broader context than the
XACML document itself.

A policy can adopt terminology present in enterprise data descriptions, common
industry ontologies, and other OWL content. The benefits of reusing formalisms is
twofold. Firstly, it expedites the policy creation process by avoiding repetition of al-
ready performed business process modelling work. Secondly, it improves quality
by allowing the adoption of high-quality models already validated in other deploy-
ments. The application of OWL to policy creation and management is discussed
in the work from NASA [105].

XACML has a profile targeted at representation of role based access control
(RBAC). In our Gracia approach, we have developed an OWL Ontology for the
RBAC profile in XACML as showed in List 4.10.

Listing 4.10: OWL Ontology for RBAC profile in XACML

1<rdf:RDF

xmlns:rdf=”http://www.w3.org/1999/02/22−rdf−syntax−ns#”

3xmlns:xsd=”http://www.w3.org/2001/XMLSchema#”

xmlns:rdfs=”http://www.w3.org/2000/01/rdf−schema#”

5xmlns:owl=”http://www.w3.org/2002/07/owl#”

xmlns=”http://www.ic3.ct.siemens.com/RBAC.owl#”

7xml:base=”http://www.ic3.ct.siemens.com/RBAC.owl”>

<owl:Ontology rdf:about=””/>

9<owl:Class rdf:ID=”Subject”/>

<owl:Class rdf:ID=”Resource”/>

11<owl:Class rdf:ID=”Role”/>

<owl:Class rdf:ID=”User”>

13<rdfs:subClassOf rdf:resource=”#Subject”/>

</owl:Class>

15<owl:Class rdf:ID=”Contraints”/>

<owl:Class rdf:ID=”Group”>

17<rdfs:subClassOf rdf:resource=”#Subject”/>

76 Chapter 4. Gracia Policy Language

</owl:Class>

19<owl:Class rdf:ID=”CompositeAction”>

<rdfs:subClassOf>

21<owl:Class rdf:ID=”Action”/>

</rdfs:subClassOf>

23</owl:Class>

<owl:Class rdf:ID=”Permission”/>

25<owl:Class rdf:ID=”AtomicAction”>

<rdfs:subClassOf rdf:resource=”#Action”/>

27</owl:Class>

<owl:ObjectProperty rdf:ID=”applyTo”>

29<rdfs:domain rdf:resource=”#Contraints”/>

<rdfs:range rdf:resource=”#Permission”/>

31</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID=”toRole”>

33<rdfs:range rdf:resource=”#Role”/>

<rdfs:domain rdf:resource=”#Permission”/>

35</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID=”inheritFrom”>

37<rdfs:domain rdf:resource=”#Role”/>

<rdfs:range rdf:resource=”#Role”/>

39</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID=”SubjectToRole”>

41<rdfs:domain rdf:resource=”#Subject”/>

<rdfs:range rdf:resource=”#Role”/>

43</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID=”include”>

45<rdfs:domain rdf:resource=”#Group”/>

<owl:inverseOf>

47<owl:ObjectProperty rdf:ID=”partOf”/>

</owl:inverseOf>

49<rdfs:range rdf:resource=”#Group”/>

</owl:ObjectProperty>

51<owl:ObjectProperty rdf:about=”#partOf”>

<rdfs:range rdf:resource=”#Group”/>

53<owl:inverseOf rdf:resource=”#include”/>

<rdfs:domain rdf:resource=”#Group”/>

4.3. Gracia Policy Language 77

55</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID=”toResouce”>

57<rdfs:domain rdf:resource=”#AtomicAction”/>

<rdfs:range rdf:resource=”#Resource”/>

59</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID=”forAction”>

61<rdfs:range rdf:resource=”#Action”/>

<rdfs:domain rdf:resource=”#Permission”/>

63</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID=”havePermission”>

65<rdfs:range rdf:resource=”#Permission”/>

</owl:ObjectProperty>

67</rdf:RDF>

At the current level of maturity, many common RBAC patterns are supported by
the translation, including separation of duties and role cardinality constraints. The
DL translation has potential relevance in any role-based formalism and evaluation
of its applicability to role-based workflow management. The List4.11 shows an
example of XACML policy in the form of Gracia Policy Language. A more detailed
example can be found in the appendix of this thesis.

Listing 4.11: XACML in Gracia Policy Format

1<rdf:RDF

xmlns=”http://www.ic3.ct.siemens.com/rbac example.owl#”

3xmlns:rbac-meta=”http://www.ic3.ct.siemens.com/RBAC.owl#”>

<owl:Ontology rdf:about=””>

5<owl:imports rdf:resource=”rbac.owl”/>

</owl:Ontology>

7<rdf:Property rdf:about=”#toActionandResource”/>

<rdf:Property rdf:about=”RBAC.owl#PermissionToRole”/>

9<rbac-meta:Group rdf:ID=”SecurityOfficer”>

<rbac-meta:SubjectToRole>

11<rbac-meta:Role rdf:ID=”Controller”/>

</rbac-meta:SubjectToRole>

13</rbac-meta:Group>

<rbac-meta:Resource rdf:ID=”Monitor”/>

15<rbac-meta:AtomicAction rdf:ID=”checkStatus”>

<rbac-meta:toResouce rdf:resource=”#Monitor”/>

78 Chapter 4. Gracia Policy Language

17</rbac-meta:AtomicAction>

<rbac-meta:User rdf:ID=”Bob”>

19<rbac-meta:SubjectToRole rdf:resource=”#Controller”/>

</rbac-meta:User>

21<rbac-meta:Permission rdf:ID=”toViewMonitor”>

<rbac-meta:toActionandResource rdf:resource=”#checkStatus”/>

23<rbac-meta:forAction rdf:resource=”#checkStatus”/>

<rbac-meta:toRole rdf:resource=”#Controller”/>

25<rbac-meta:PermissionToRole rdf:resource=”#Controller”/>

</rbac-meta:Permission>

27</rdf:RDF>

4.4 Summary

In this chapter, we introduce our Gracia Policy Language, which shares syntax
and semantics with OWL and SWRL.

We emphasise that, at present, we intend the Gracia Policy Language to be used
not only at design time, but also in a policy enforcement point (PEP) for the en-
forcement of policies. Firstly, it is still not entirely clear how efficient the GPL
would be for enforcement in today’s SOA set-ups. They can be computationally
expensive. Given the fact that one requirement for PEP is that it can handle the
response requirements of applications under load, we need to take care not to
introduce too much overhead.

The full expressivity of XACML is not yet accessible in the DL representation.
Kolovski notes some constructions in XACML that are not readily translatable [68],
XACML uses XML Schema and additional datatypes, which yields a datatype ex-
pressivity that is beyond its counterpart in OWL-DL. For this reason, we may de-
velope user-defined datatype extensions of OWL and enhance the utility of this
approach by enabling translation of access control policies which specify con-
straints with respect to ranges of values. Future research is required to determine
the extent of the overlap between datatype reasoning in the OWL and XACML
representations.

Chapter 5

Gracia Knowledge Base

5.1 Introduction

In our work, Gracia Policy Language is used to represent security constraints and
other regulatory requirements. This kind of security-related information will be
distributed across the whole SOA environment. Even unknown entities could pos-
sibly share their knowledge during the service transaction process and business
process. We then developed the concept of Gracia Knowledge Base, which
is based on the multiagent system approach of the Virtual Knowledge Commu-
nity [21]. In this chapter we will introduce both the hybrid approach to the Gracia
Knowledge Base and discuss trust issues related to knowledge-sharing. A series
of trust-related protocols are designed to transfer the evidence between agents
enabling evidence-based trust management, which is now popular in pervasive
computing and service-oriented computing.

5.2 Related Work

5.2.1 Knowledge, Constraints and Rule Interchange Format

Knowledge Interchange Format (KIF) [37] is a computer-oriented language for
the interchange of knowledge between disparate programs. It has declarative se-
mantics (i.e. the meaning of expressions in the representation can be understood
without the use of an interpreter for the manipulation of the expressions); it is log-
ically comprehensive (i.e. it permits the expression of arbitrary sentences in the

80 Chapter 5. Gracia Knowledge Base

first-order predicate calculus); it provides for the representation of knowledge and
nonmonotonic reasoning rules; and it provides for the definition of objects, func-
tions, and relations. However, KIF is not well designed and has a lack of support
for internet and web environment [95].

Constraint Interchange Format (CIF) is based on the Colan [9] constraint lan-
guage, which itself is based on range restricted first order logic (FOL). Earlier
versions of the language were aligned with Resource Description Framework
(RDF) [54] and SWRL. CIF constraints are essentially defined as quantified impli-
cations, meaning one can re-use the implication structure from SWRL but allow
for nested quantified implications within the consequence of an implication. An
example CIF constraint is shown in human-readable SWRL-style syntax below:

(∀?x ∈ X, ?y ∈ Y)p(?x, ?y) ∧Q(?x)⇒
(∃?z ∈ Z)q(?x, ?z) ∧R(?z)⇒

(∀?v ∈ V)s(?y, ?v)

In [80], an RDF/XML syntax is provided as an extension of the SWRL syntax to
support the publishing and interchange of CIF constraints. A new rdfs:Class Con-
straint, with properties hasQuantifiers and hasImplication is defined. For example,
if one were to introduce a business requirement such as ”every delegation group
must contain at least one participant from the government”, the following code5.1
applies RDF/XML for this constraint.

Listing 5.1: RDF/XML for the constraints

1<cif:Constraint>

<cif:hasQuantifiers

3rdf:parseType=”Collection”>

<cif:Forall>

5<cif:var rdf:resource=”#g”/>

<cif:set rdf:resource=”#Delegationgroup”/>

7</cif:Forall>

<cif:Exists>

9<cif:var rdf:resource=”#p”/>

<cif:set rdf:resource=”#Government”/>

11</cif:Exists>

</cif:hasQuantifiers>

13<cif:hasImplication>

<swrl:Imp>

5.2. Related Work 81

15<swrl:body rdf:parseType=”Collection”/>

<swrl:head rdf:parseType=”Collection”>

17<swrl:IndividualPropertyAtom>

<swrl:classPredicate

19rdf:resource=”#has−member”/>

<swrl:argument1 rdf:resource=”#g”/>

21<swrl:argument2 rdf:resource=”#p”/>

</swrl:IndividualPropertyAtom>

23</swrl:head>

</swrl:Imp>

25</cif:hasImplication>

</cif:Constraint>

Rule Interchange Format (RIF)1 is another interchange format used for logic ex-
pressions on the Web. The W3C RIF WG2 has the mission of producing a rule
interchange format in order to translate rules between rule languages and thus
be able to use them for different rule systems. As the interest in rule languages
and systems is noticeable in different communities such as the Business Rules
and the Semantic Web communities, the W3C RIF WG tries to find consensus
in having a core rule interchange format combined with a set of extensions. The
charter talks about two phases. The first phase addresses a simple, useful and
extensible interchange format for rules. This first phase runs until the end of year
2007. The second phase addresses extensions of the core rule interchange for-
mat developed as a result of the first phase. As RIF is still under developement,
we consider CIF as the basis of our approach. It is expected that CIF will evolve
to use RIF in place of SWRL as the new format takes shape. As it is currently
planned, Phase 1 RIF is essentially Horn Logic. If Phase 2 RIF includes full FOL
it is possible that this format will fully subsume CIF. At this point it is conceivable
to simply define CIF as a subset of RIF: constraints would be interchanged in RIF
itself [92].

5.2.2 Integration of Rules and Ontology

The management of security and regulator constraints requires the appropriate
description of domain knowledge. The current approaches have outlined two main

1http://www.w3.org/2005/rules/
2http://www.w3.org/2005/rules/wg

82 Chapter 5. Gracia Knowledge Base

research directions. On one side, a purely ontology-based approach exploits de-
scription logic, e.g., OWL, to describe policies at a high level of abstraction, in a
form that allows their classification and comparison. This feature is necessary,
for instance, in order to detect conflicts between policies before they are actu-
ally enforced, thus granting interoperability between entities belonging to different
domains that adopt different policies. On the other side, a rule-based approach
relies on the features of logic programming languages, e.g., Prolog, to enable the
evaluation of policy instances.

Description Logics (DLs) are currently the most commonly used formalisms for
building ontologies and have been proposed as standard languages for the spec-
ification of ontologies in the Semantic Web [79]. In particular, the OWL family
of languages, based on Description Logics, has been explicitly designed for this
purpose. DLs are a family of knowledge representation formalisms based on first-
order logic (FOL). In fact, almost all DLs coincide with decidable fragments of
function-free first-order logic with equality, and the language of a DL can be seen
as a restricted FOL language over unary and binary predicates and with a con-
trolled form of quantification (actually, DLs are equipped with a special, variable
free syntax). Notably, DLs have been designed to optimise the trade-off between
expressive abilities and complexity of reasoning, hence the in-depth research into
the computational properties of DLs [5]. However, the typical expressiveness of
DLs doesn’t address the following aspects [95]:

– the possibility of defining predicates of arbitrary arity (not just unary and bi-
nary)

– the use of variable quantification beyond the tree-like structure of DL con-
cepts (many DLs actually correspond to subsets of the two-variable fragment
of first order logic)

– the possibility of formulating expressive queries over DL knowledge bases
(beyond concept subsumption and instance checking)

– the possibility of formalising various forms of closed world reasoning over DL
knowledge bases

– in general, the possibility of expressing forms of nonmonotonic knowledge,
like default rules [94]

The task of overcoming the limitations of OWL and DLs is currently receiving a lot
of attention in the Semantic Web community. In order to fully overcome the above

5.3. Gracia Knowledge Base 83

limitations, the realm of classical first-order logic would have to be abandoned in
favour of nonmonotonic logic.

Almost all the kinds of knowledge that cannot be formally addressed in a classi-
cal, first-order logic setting have a ”rule-like” form, i.e., they can be expressed by
statements in the form ”if the precondition α holds then the conclusion β holds”,
where the precondition and the conclusion are logical properties. However, such
a piece of knowledge cannot simply be formalised through the standard material
implication of classical logic: in other words, it is not possible to capture the in-
tended meaning of the above statement by an implication in classical first-order
logic of the form α→ β.

Therefore, rule-based formalisms grounded in logic programming have repeatedly
been proposed as a possible solution for the above limitations. Therefore, the ad-
dition of a rule layer on top of OWL is nowadays seen as the most important task
in the development of the Semantic Web language stack. The Rule Interchange
Format (RIF) working group of the World Wide Web Consortium (W3C), as men-
tioned previously, is currently working on standardising such a language.

Most of the proposals in this field focus on logic programs expressed in Datalog
(and Datalog’s nonmonotonic extensions) [31]. With respect to DLs, Datalog al-
lows for the use of predicates of arbitrary arity, the explicit use of variables and
the ability to express more powerful queries. Moreover, its nonmonotonic features
allow for the expression of default rules and forms of closed-world reasoning [95].

5.3 Gracia Knowledge Base

In this section, we will first provide a formal definition of the Gracia knowldege
base and then propose an approach aimed at integrating the process information
by mapping it to the ontology language OWL.

With the help of an e-payment example, we will demonstrate the use of VKC and
a multiagent system to enable knowledge sharing in the web services environ-
ment. We also consider the trust of knowledge as the primary security issue in
the knowledge integration process. A series of so-called trust brokering protocols
are introduced to enable the anonymous trust evaluation of agents in the Gracia
knowledge Base.

84 Chapter 5. Gracia Knowledge Base

5.3.1 Hybrid Knowledge Base Approach

The Gracia knowledge base consists of the security and domain ontology en-
riched with rules. For the moment, the ontology about the security constraints
and domain knowledge is represented in OWL DL and the rules in SWRL.

All of the knowledge, the ontology in OWL DL (Tbox), the Horn rules (Rule-box)
and the facts (Abox) are gathered within a single file provided as input to the
reasoner.

– Tbox: the Tbox provides logical definitions of concepts (classes), roles (prop-
erties) and asserted axioms. A TBox stores the conceptual knowledge of an
application domain. It defines the intentional knowledge in the form of a ter-
minology (hence the term ”TBox”). The terminology consists of concepts,
which denote sets of individuals and roles, which in turndenote binary re-
lations between individuals. The Gracia Knowledge Base can build atomic
concepts and roles (concept and role names) and can also build complex
descriptions of concepts and roles. For example, the OWL definition implies
that all Security Officers are subclasses of Airport Officers

– Rule-box: The Rule-box contains all the rules extending the ontology, for
example the CCTVAccessPolicy can be decribed as: inTeamleader(?x) ∧ in-
BoardingZone(?x,?y) → allowtoAccess(?x, ?z). If a security officer x is also
a Teamleader, and x is in theBoarding Zone y, then x is allowed to access a
CCTV device z. Such rules are needed to infer the missing knowledge of the
classes definitions for instance retrieval. Rules are also useful for expressing
queries. For example, to find all of the possible instances of officers in pos-
session of mobile devices with digital signatures di installed: Q(?xi.... xn)←
∧ i=1ton(SE(?xi)) ∧DigiSignatureInstalled(∧,?xi).

– Abox: The Abox contains the individuals (instances of classes) and the in-
stances of relations between them. An ABox contains extensional knowledge
regarding the domain of interest. It introduces the assertional knowledge
(hence the term ”ABox”) (world description). Whereas TBoxes restricts the
set of possible words, ABoxes allows the user to describe a specific state of
the world by introducing individuals (or instances) together with their proper-
ties. In the Abox, knowledge can be divided into a concept assertion, which
states that an individual is a member of concept, and a role assertion with
a pair of individuals. When we say an ABox A is defined with respect to a
Tbox, the concept description in A may contain defined names of TBox.

5.3. Gracia Knowledge Base 85

Notation. A Gracia Knowledge Base is denoted by Σ=(T, A, R) where T is the
TBox, A the ABox and R the Rule-Box. Combining what has been said so far, a
Knowledge Base Σ is a tuple Σ=(T, A, R), which has a model if there exists an
interpretation I that satisfies both T and A. If an axiom α in T or A is true in every
model of Σ, it can then be said that Σ logically implies α.

A complete formal representation example of Gracia Knowledge Base is listed in
the appendix of this thesis B.1.

5.3.2 Agent-based Knowledge Integration

Multiagent systems have been invented to tackle Knowledge Integration problems
within artificial intelligence. The Agent Oriented Abstraction has been proposed to
describe a society of agents in a fully generic way. In this section, the application
of these models to the abstract modelling of the Gracia Knowledge Base will be
discussed.

Agents and Web Services

In the cyber world, agent-based approaches are more powerful when running
agents in a distributed and dynamic environment (potentially on a web-wide scale)
to perform complex actions for their users [43]. Uniting agents and web services
can enhance the construction and flexibility of web service applications [112].

Before discussing some of the other agent-based approaches in the following sec-
tions, it is first necessary to acquaint the reader with some agent related defini-
tions. An agent is capable of carrying out autonomous actions in an assigned en-
vironment in order to meet its design objectives [117]. Based on this definition, an
intelligent agent can be assigned three additional characteristics: reactivity, proac-
tivity and social ability. The concept of the multiagent has emerged as a paradigm
for designing complex software systems. It is mainly used for the more enhanced
formalisation of problems in Distributed Artificial Intelligence (DAI) [114].

The world of web services is characterised as loosely-coupled distributed sys-
tems based on SOC. The use of web services could be described as actions that
the agent might execute to meet its goals. In [53] four major trends that have
driven SOC and Multi Agent Systems (MAS) into the future were analysed. They
are among emerging approaches with MAS-like characteristics in SOC, such as
ubiquitous computing, ontologies, service-level agreements and quality-of-service

86 Chapter 5. Gracia Knowledge Base

measures for instance. All of them can be suitably tackled with MAS concepts and
techniques.

Agent Oriented Abstraction

In the AOA approach, agents are viewed as objects which, through their knowl-
edge contents, are organised into annotations that gather classes. Encapsulation,
inheritance and polymorphism are features that can be adequately defined. The
AOA model can be abstractly summarised into a number of basic definitions. A
detailed description of these definitions can be found in [22].

Chiefly, in AOA all agents have two parts: a decision mechanism and knowledge.
For the former, a scope of possible classification of utility was given: expected
utility function, the common sense measure of usefulness, the class of models
and the class arising from logical modelling. For the latter, there are also some
associated classes: ontology, communication, cognition and safety. Based on
the knowledge annotations, agents can generate utility related to their tasks and
goals.

Within the AOA approach, web services and their related policies can be ab-
stractly modelled in the knowledge part of agents running around the semantic
web. Section 5.3.3 will illustrate this approach with the aid of a working example.

Virtual Knowledge Communities

In [75] the application of the AOA model to the abstract modelling of corporate
knowledge is investigated. To avoid the separation of agents and knowledge, it
was considered that agents explicitly represent knowledge and communication
ability.

Traditionally, information is mostly centralised within a uniform information struc-
ture. This viewpoint is not truly compliant with the nature of knowledge that is
subjective, distributed and contextual [18]. From the perspective of the knowl-
edge information society, modern knowledge management often focusses on the
constitution of communities of practice and communities of interest [34].

The concept of a community of practice or a community of interest can be sup-
ported in a virtual community in order to bring the concerned agents together to
share their knowledge with each other. A community is a place where agents
can meet and share knowledge with other agents who share a similar domain of

5.3. Gracia Knowledge Base 87

interest. The concept of a VKC was introduced as a means for agents to share
knowledge about a topic [76]. It aims to increase the efficiency with which infor-
mation is made available throughout the society of agents.

From the point of view of corporate knowledge management, agents can be in-
dividuals, software assistants or automata. Agents possess knowledge and pro-
cesses within the society tend to make agents produce and exchange knowledge
with each other. These processes are distributed throughout the society and,
through their own intrinsic goals, contribute to the resolution of a unique high-level
challenge. This acts as the link between corporate knowledge and VKC [75].

In the implemented model [42] there are two main modelling-types for VKC: agent
modelling and community modelling. The former has four key aspects: personal
ontology, knowledge instances, knowledge cluster and mapper. Personal ontol-
ogy represents the knowledge of an agent. It describes the taxonomy of the re-
lationships between the concepts and predicates that an agent understands. The
knowledge instances are instances of objects defined by the personal ontology.
It was assumed that an agent’s knowledge consists of both its personal ontology
and knowledge instances according to its personal ontology. The knowledge clus-
ter is the sub-part of an ontology that can be shared between agents. Clusters are
defined by their head concept, an indicator of the different parts of knowledge ex-
isting within a cluster. The mapper chiefly contains a set of mapping from personal
terms to mapped terms, and allows an agent to add such mappings, and use the
mapper to normalise or personalise a given knowledge cluster or instance using
these mappings. It facilitates knowledge-sharing among agents with regards to
the heterogeneity of knowledge.

Community modelling also has some key aspects: domain of interest, community
pack and community buffer. A domain of interest exists in each VKC and is similar
to the concept of ontology for an agent. It is given by the creator of the community,
the community leader. The community pack is what defines the community. It
consists of a community knowledge cluster, a normalised ontology which contains
at least the head of the community cluster, and the identification of the leaders of
the community. The community buffer can record messages which are used by the
member of a community to share their knowledge. This approach is compatible
with blackboard systems but differs in the sense that agents cooperate to find a
solution to their respective problem, not for a unique goal.

The VKC approach has been designed and partially implemented as a prototype
system. The implementation is based on Java Agent Development Framework

88 Chapter 5. Gracia Knowledge Base

(JADE) and Java Runtime Environment (JRE) platform. It was tested and evalu-
ated. A component of the system enables us to simulate virtual knowledge com-
munities (VKCs).

5.3.3 Example: e-Payment

To demonstrate the need for modelling policies and knowledge base of these
policies within the Agent Oriented Abstraction, a scenario of the payment problem
in the e-money system is as follows:

A mobile network operator has developed a service platform to allow customers
to pay bills and buy things both online- and offline with their PDA, cell phone or
laptop. The other customers of the service platform, for example a bank, will
accept the payment request and decide if the transaction should be processed.
Due to the dynamically changing business rules, legal framework for e-business
and customer preferences, policies for these issues are distributed and managed
by different stakeholders in the transaction.

– A customer, Bob, buys a video camera in shop A at airport B, issues a pay-
ment request via his PDA to a payment service of his bank on the service
platform, specifying payment details including the amount to be paid and the
payment method. The payment amount is $1,000 and the payment method
is Visa card.

– The payment service of the bank receives the transaction request. First, the
bank handles the request. The airport only allows transactions in a foreign
currency (such as US Dollars) and the requestor has a good credit history.
Next, based on the preferred payment method and physical connection type
of the customer’s PDA (which could be WLAN, GPRS or Ethernet), an en-
cryption algorithm is chosen. This protects the integrity of the transferred
data due to the fact that physical connection types can support different band-
widths. The bank has an agreement with the shop: requests from customers
in the shop at the airport will be handled with a higher priority. The priority
of policies are ranked in the following order: 1) legality, 2) security and 3)
convenience.

– The network operator knows that Bob’s PDA is connected via GPRS and it is
connected to a base station at airport B.

– The local government allows trading in US dollars and the bank has deter-
mined Bob’s credit history to be good.

5.3. Gracia Knowledge Base 89

In this scenario, we have one authorisation policy of payment service, one obli-
gation policy of PDA, three rules and one non-functional description of payment
service. The concepts of authorisation policy and obligation policy are introduced
in [104]. Three policies of the payment service are modelled: Legality Policy
(Access control), Security Policy (Data Integrity) and Convenience Policy (QoS).
These kinds of services will be different domains of interest in VKCs.

Agents and Their Knowledge

In this scenario, there are five agents categorised as follows: P-agent: “Bank”; R-
agent: “PDA”; M-agents: “Network Operator”, “Local Government” and “Airport”.
It is assumed that any of these agents are modelled as a VKC. This implies that
an agent’s knowledge is ontologically structured. Figure 5.1 provides a simplified
view of knowledge of agents in the scenario. The dashed line indicates instances
of concept, while the solid line with a label and arrow indicates the relationship be-
tween concepts. The VKC approach The basic concepts of VKC were introduced
in Section 5.3.2. Figure 5.2 will now illustrate how to build corporate knowledge
with VKC based on the individual knowledge base shown in Figure 5.1.

All stakeholders in this scenario are defined as service providers (P-agent), ser-
vice requesters (R-agent) and middle-agents (M-agent) [28]. Figure 5.2 depicts
a simplified community of communities for the e-business scenario consisting of
several possible member communities. Agents can create as many communities
as they like. In this picture there are three virtual knowledge communities for differ-
ent domains of interest: legality, security and convenience. As mentioned above,
an agent can join more than one community, agents ”PDA” and ”Bank” participate
in each of these three communities, respectively as service requester and service
provider. The M-agents ”Local Government”, ”Network Operator” and ”Airport”
join the communities “Legality”, “Security” and “Convenience” respectively.

In order to explain the ways in which a community generally works towards the
facilitation of knowledge sharing, the community “Security” is illustrated in Figure
5.3. In order to share their knowledge clusters and instances´, Agents “Bank”,
“Network Operator” and “PDA” can read and write messages in the community
buffer. The dashed line leading from an agent to the community buffer implies that
an agent writes messages into the buffer, whilst the dashed line in the opposite
direction depicts the reading of messages.

In Figure 5.3 messages are structured through simplified notations of ontologies

90 Chapter 5. Gracia Knowledge Base

Knowledge of Network Operator Agent

Knowledge of Bank Agent

Knowledge of Airport Agent

have
Shop

Knowledge of PDA Agent

Encryption

dependOn

use

Bank
have CreditRecord

{GOOD, BAD}

Services

accept

Payment Service

VISA

Credit Card

Payment Method

Master

Customer

employ
Bob’s credit history

is

provide

Shop A

GPRS WLAN

Network Operator

ConnectionType

provide

Customer

Bob Alice

have
signedIn

Base Station

 Airport B

Encryptionprovide
DES

RSA

SAFERK64

dependOn

Shop A Bob

Owner

PDA

Location

hasProperties

PDA p
Government

Currency

Local

US Dollar

Airport

allow

Knowledge of Local Government Agent

hasProperties

Figure 5.1: Agent’s knowledge with their personal ontology and instances.

with concepts, their instances and relations between them. For example, the
notation PaymentMethod:Visa,Master denotes that the concept PaymentMethod
has two instances: Visa and Master.

The agent “Bank” writes one message into the buffer and reads two messages
which are coming from “Network Operator” and from “PDA” respectively. The

5.3. Gracia Knowledge Base 91

Bank

Network Operator

PDAPDA Bank

Local Government

PDA Bank

Community of Communities

Convenience

Airport

CommunityAgent

Legality Security

Figure 5.2: The simplified view of virtual knowledge communities of the e-
business scenario.

agent “Network Operator” writes two messages yet only has interest in the mes-
sage from “PDA”. “PDA” inputs just one simple message but benefits from the
contribution of other agents in the community. After the knowledge exchange
step, each agent use the new information to update its knowledge base respec-
tively to its knowledge cluster and personal ontology. The feature introduced in
the above example (especially for agent “PDA”) is illustrated in Figure 5.4. The
“PDA” now knows that it can sign in to the base station at “Airport B” and employs
the “Payment Service” with Visa or Master card.

Knowledge Integration

The aim of knowledge integration is to build corporate knowledge with VKCs and
knowledge from repositories defined in the semantic policy framework. Because
OWL is closely related to Description Logic, it has many features that are de-
rived from the family of knowledge representation system [79]. OWL is therefore
adopted for the representation of knowledge in this approach. Although OWL is
supposed to be effectively implementable, its expressive power is limited. To solve
this problem, SWRL extends the set of OWL axioms.

92 Chapter 5. Gracia Knowledge Base

Bank

Customer:{Bob}

Network Operator
Customer:{Bob}

ConnectionType:{GPRS,WLAN}

PDA

employ

accept

depentsOn

signIn

dependsOn

CummunityBuffer
Security

Owner:{Bob}

Encryption:{RSA}

Encryption:{RSA}

Service:{PaymentService}

PaymentMethod:{Visa,Master}

BaseStation:{Airport A}

Figure 5.3: Agents who shared their knowledge within the community “Security”.

The following List 5.2 represents a simplified version of the PDA Agent’s knowl-
edge after the Knowledge Integration.

Listing 5.2: Knowledge Integration of PDA agent

<owl:Class rdf:ID=”Encryption” />

2<owl:Class rdf:ID=”PDA” />

<owl:Class rdf:ID=”Owner” />

4<owl:Class rdf:ID=”ConnectionType” />

<owl:Class rdf:ID=”Location” />

6+ <owl:ObjectProperty rdf:ID=”dependOn”>

5.3. Gracia Knowledge Base 93

PaymentMethod:{Visa,Master}

Customer:{Bob}

ConnectionType:{GPRS,WLAN}

employ

accept

depentsOn

signIn

dependsOn

Encryption:{RSA}

BaseStation:{Airport A}

Service:{PaymentService}

Figure 5.4: Knowledge evolvement of the agent “PDA” following the knowledge
exchange in the community “Security”.

+ <owl:ObjectProperty rdf:ID=”hasProperties”>

8+ <owl:ObjectProperty rdf:ID=”hasConnectionType”>

+ <owl:ObjectProperty rdf:ID=”useEncryptAlgorithm”>

10<swrl:Imp rdf:ID=”Rule−1”>

<swrl:body>

12<swrl:AtomList>

<swrl:IndividualPropertyAtom>

14<swrl:argument2>

<ConnectionType rdf:ID=”GPRS” />

16</swrl:argument2>

<swrl:argument1 rdf:resource=”#PDA” />

18<swrl:propertyPredicate

rdf:resource=”#hasConnectionType” />

20</swrl:IndividualPropertyAtom>

</swrl:AtomList>

22</swrl:body>

<swrl:head>

24<swrl:AtomList>

94 Chapter 5. Gracia Knowledge Base

<swrl:IndividualPropertyAtom>

26<swrl:argument2>

<Encryption rdf:ID=”DES” />

28</swrl:argument2>

<swrl:propertyPredicate

30rdf:resource=”#useEncryptAlgorithm” />

<swrl:argument1>

32<swrl:Variable rdf:ID=”#PDA” />

</swrl:argument1>

34</swrl:IndividualPropertyAtom>

</swrl:AtomList>

36</swrl:head>

</swrl:Imp>

38<PDA rdf:ID=”FSC−PDA” />

<ConnectionType rdf:ID=”WLAN” />

40<Encryption rdf:ID=”RSA” />

A prototype system that can generate XACML3 policy based on the corporate
knowledge has been implemented. Through the use of a predefined access con-
trol policy template with essential information of subjects and actions to be taken,
XACML policy can be generated from the results of reasoning over corporate
knowledge.

5.3.4 Trust Issues in Virtual Knowledge Communities

Recent research in the field of trust management shows new possibilities for
achieving direct authorisation of security-critical actions. It is especially mean-
ingful for Virtual Knowledge Communities that are characterised by a large num-
ber of agents operating in the absence of a globally available fixed infrastructure.
Traditional security models depend on centralised administrative authorities such
as the discretionary and mandatory models for access control [70, 98]. In Virtual
Knowledge Communities, it is not feasible to adopt a centralised approach for the
authorisation of actions due to the large scale existence of trust domains [107].

Two types of trust management approaches have been proposed as the solution
to this problem: credential-based and evidence-based trust management. The
credential-based trust management model and the concept of trust management

3OASIS eXtensible Access Control Markup Language, http://www.oasis-open.org

5.3. Gracia Knowledge Base 95

itself were first introduced by Matt Blaze et al. [15]. With this approach, trust is
established through the delegation of privileges to trusted entities via the use of
credentials and certificates. There are many models developed on the basis of the
credential-based model [25,62,71,100]. However, a shortcoming of this approach
is that it neglects the problem of risk and uncertainty.

In order to solve these problems, the first version of an evidence-based model
for the SECURE project ([1] contains the final version of SECURE) was devel-
oped based on several research projects [2, 66, 77, 102, 119]. The work of the
SECURE project defines a collaboration model based on previously defined trust
and risk models. This collaboration model addresses issues related to the trust
management lifecycle - in particular, the process of trust formation, evaluation
and exploitation. It enables evidence-based, autonomous decision making and is
capable of performing this without prior knowledge of the operating environment.
Consequently, this enables collaboration between little known or completely un-
known agents in VKC.

With the evidence-based model, trust relationships are established according to
a pre-defined risk model and trust model. The risk model evaluates the risk that
an agent’s action may pose to the local domain whereas the trust model calcu-
lates the trust value of the agent. This value is primarily based on three aspects:
observation, recommendation and reputation.

Obviously, the proof of an agent’s trustworthiness is relies heavily on the use of
evidence. The work of SECURE [107] has proposed some possible solutions for
gathering evidence to establish the trust levels of agents. However, in the real
world, evidence is usually distributed across multiple networks making it difficult
to find. An agent may interact with other agents in different VKCs. Furthermore,
the other agents can save the historical records of the interactions with the visiting
agent and keep them for a certain period of time. Therefore, when the agent en-
ters a new VKC, it can prove its trustworthiness to the new VKC peers by querying
its old VKC peers for evidence based on its historical behavior and past interac-
tions. Some difficulties, though, which may restrict or even prevent this include:

– Technical limitations of agents. For example, agents could range from a sen-
sor to an intelligent robot equipped with a high-end CPU and huge memory.
Technical characteristics like transmission range, processing power and stor-
age capabilities could also affect the evidence gathering process.

– Technical impediments existing in the VKCs. Firewalls, for instance, can
prove to be an obstacle when they prevent the creation or transmission of

96 Chapter 5. Gracia Knowledge Base

evidence between internal and external entities.

– Privacy policies of witness agents. These policies have the potential to re-
strict the release of evidence information.

This section defines an evidence gathering model which is referred to as trust
brokering [52]. This model is based on the work of the SECURE project. In this
model, a new component named rust broker is added to the trust collaboration
architecture. The trust broker works in conjunction with the other architectural
components to facilitate the secure gathering of evidence across multiple VKCs.
A series of trust brokering protocols are designed to incorporate the trust broker.
The following security requirements are incorporated into the proposed evidence
gathering model:

– Privacy - How can the recommender be prevented from revealing personal
information?

– Data Integrity - How can recommendations (evidence) be protected from
tampering when transmitted between agents?

The proposed “trust broker” model aims at providing secure evidence gathering
techniques whilst, at the same time, ensuring that the privacy of agents is main-
tained.

Previous Work

The SECURE project’s work towards a collaboration model based on the trust
management lifecycle was a major source of inspiration for our research.

In the first version of the SECURE collaboration model, the decision-making pro-
cess is triggered by a collaboration request. This request includes the requester’s
information and the context information. Firstly, the Entity Recognition module
(ER [101]) of the SECURE trust engine recognises the requester, which may con-
sist of a pseudonym for privacy protection. The ER module also plays an important
role in the trade of privacy for trust [101] and decentralised mitigation of Sybil-like
attacks [29] thanks to trust transfer [101]. The other modules of the SECURE trust
engine evaluate the trust value with the help of two different resources: observa-
tion and recommendation. Recommendations should also be adjusted before
they are evaluated. Both resources produce evidence for the evaluation of the
trust value.

The following evidence-gathering options exist [107]:

5.3. Gracia Knowledge Base 97

– Ask known or unknown agents for possible recommenders of evidence.

– Ask neighbors, who may be easily accessible, for possible recommenders of
evidence.

– Broadcast requests for recommendations.

– Ask brokers to suggest good recommenders.

The first approach cannot ensure the trustworthiness of recommenders. Conse-
quently, this can lead to multiple security threats such as recommendation spam-
ming. The second option has the disadvantage of not being able to guarantee
the quality of a recommender. For the third option of broadcasting, this is often
used as a last resort as it results in network flooding and intensifies the threat of
eavesdropping.

EigenTrust [64] presents a distributed and secure method for computing global
trust values based on Power iteration. The global reputation of an agent is deter-
mined by the local trust values assigned to the agent by other entities, weighed by
the global reputations of the assigning entities. However, these distributed trust
algorithms have not considered the technical limitations of entities and are only
designed for use in P2P networks.

ENTRAPPED [55] is a novel approach that provides a mechanism for the distri-
bution of trust information using Distributed Hash Tables to store the trust infor-
mation of P2P environments. It also uses Certification Agencies to make Sybil
attacks [29] expensive. This approach is designed to work in overlay networks,
which enables the collection of all of the evidence. However, for networks such as
ad hoc networks and sensor networks - which have different network topologies
and cannot guarantee the requirements of overlay networks in P2P environments
- an enhanced model is required.

Trust Broker Model

The Trust Broker Model provides an infrastructure for the secure access of trust
information across different system boundaries.

The entire Gracia knowledge base is considered to be a global domain and cat-
egorise individual domains with domain of interest as local domains. The first
reason for this is that the Gracia Knowledge Base consists of multiple diverse
knowledge sources. This characteristic renders a unique approach infeasible. The
second reason is that the sheer number of agents makes it impossible to maintain

98 Chapter 5. Gracia Knowledge Base

C

Local Domain

RTB

Global Domain

B A

E
TB

D

Figure 5.5: Global Domain and Local Domain

information in relation to every single one of them. However, grouping agents into
local domains reduces these costs. All agents should be able to identify other
agents within their local domain. An agent in a local domain views other local do-
mains as remote domains. The identity of an agent may change when it moves to
another domain. This concept of local domains follows real life occurrences. For
instance, agents are commonly divided into groups on an organisational or com-
mercial basis. In the context of our Trust Broker Model, such groupings can be
represented as local domains. It is assumed that all local domains are connected

5.3. Gracia Knowledge Base 99

to each other and that no “isolated isles” are created by the division of the global
domain.

As mentioned before, all agents differ in their capabilities such as their commu-
nication ranges or storage capabilities. We distinguish them using two criteria:
(1) if they can communicate with other domains and (2) if the agent can perform
the basic function of trust brokering. The agents that can fulfill both of these re-
quirements are denoted as strong agents. All other agents are denoted as weak
agents.

Trust Broker and Trust Broker Unit

Within each local domain there is an active trust broker which acts as a bro-
ker agent. The trust broker tracks all information relating to interactions between
agents in the local domain. As an explanation, consider the following scenario:
agent A, who wants to find a possible source of recommendation for agent B,
sends a request with the name of agent B to the trust broker and the trust bro-
ker queries its repository for all agents that have performed the same action with
agent B in the past and requests that these agents provide evidence about B.

Only strong agents in the domain can act as trust brokers. At any single moment,
there is only ever one active trust broker. All other “potential” trust brokers in a
local domain (and the active trust broker itself) are known collectively as the Trust
Broker Pool. Should the active trust broker disconnect or fail to serve the request,
a process called Trust Broker Election is carried out within the Trust Broker Pool
to select a new trust broker. Each time an agent fails to communicate with the
trust broker, it sends a signal for an election. When the number of calls in the
domain exceed a predefined amount, an election takes place. Possible criteria for
the delection of a new trust broker include:

– trustworthiness of a strong agent.

– strong agent’s policy (its own opinion about being a trust broker).

– strong agent’s ability (memory, CPU, network bandwidth, etc.).

– mobility of the agent (embedded device or mobile device).

The repository of all recorded actions is kept up-to-date through the use of the
trust brokering protocols and a backup service operating within the Trust Broker
Pool.

100 Chapter 5. Gracia Knowledge Base

It is assumed that Trust brokers are trusted by all agents in the local domain. To
provide privacy protection, all requests for evidence go through the trust broker in
order to prevent the disclosure of the identity of the agent providing the evidence
to the agent requesting the evidence.

The Trust Broker Unit (TBU) is a component that would be integrated into the SE-
CURE trust engine [1]. The TBU enables: (1) strong agents to provide a brokering
service to others and (2) weak agents to collaborate with the trust broker.

There are two types of TBU - weak TBU for weak agents and strong TBU for
strong agents.

Trust Broker Unit

Trust Box
E

R

Trust Relationship Repository

CG Identity Token Table

Weak / Strong Security Service

Identity Token Service

Entity Information Repository

ATB TBL

Figure 5.6: Trust Broker Unit

As illustrated in Figure 5.6, the weak TBU consists of three sub-components:
Agent Information Repository (AIR), Identity Token Service (ITS) and Weak Se-

5.3. Gracia Knowledge Base 101

curity Service (WSS). The WSS provides basic security functions (such as per-
forming hash functions, encryption, etc.) to agents whereas the ITS enables the
creation of identity tokens and pseudonyms for agents. Pseudonyms are virtual
identities for the identification of agents within a local domain and may change
whenever an agent moves into other local domains. An identity token acts as a
shared secret between the trust broker and the agent itself. The AIR exists in
every agent and contains the following:

– Active Trust Broker (ATB) - The information from the active trust broker in the
domain.

– Trust Brokers List (TBL) - A list of trust brokers that the agent has known or
used (e.g. in cases such as when the agent comes from another domain
or when the agent moves frequently from one local domain to another). It
contains information regarding former trust brokers and the identity tokens
which were used by the agent to interact with all of the trust brokers.

The strong TBU extends the functions of the weak TBU and consists of four sub-
components: Trust Relationship Repository (TRR), Agent Information Repository
(AIR), Identity Token Service (ITS) and Strong Security Service (SSS). The SSS
enables trust brokers to manage their keypairs. Furthermore, it provides services
for the signature of evidence and validation of signatures on incoming evidence.
This mechanism ensures that the integrity of evidence is maintained. The TRR
provides recommendation sources and manages the identity tokens. More specif-
ically, it contains two types of information:

– Collaboration Graph (CG) - This is a directed graph. The agents which have
collaborated with other agents in the same local domain are referred to as
the knots in the graph. The trust relationship, which is, for example, the result
of a collaboration request from B to A, is referred to as a directed trust arrow
from A to B. In the active TBU, the CG is updated each time a collaboration
interaction occurs. However, in a deactivated TBU the collaboration graph is
either empty or contains only redundant information for backup purposes.

– Identity Token Table (ITT) - This table keeps all records of known identity
tokens in the local domain. The trust broker uses the table to verify requests
for the signature of evidence.

The TBU is the technical foundation of the trust brokering model. The process of
trust brokering is defined by the trust brokering protocols which are discussed in
the next section.

102 Chapter 5. Gracia Knowledge Base

Trust Brokering Protocols

A series of trust brokering protocols have been proposed in conjunction with the
trust broker model to implement secure evidence gathering procedures. These
procedures are as follows:

– Registration of a new agent to a local domain.

– Registration of an existing agent to a newly elected trust broker.

– Creating signed evidence.

– Gathering evidence from within the local domain.

– Gathering evidence originating from remote domains.

In all of the protocols, it is assumed that every trust broker possesses an embed-
ded digital certificate issued by a certification authority. Additionally, it is assumed
that trust brokers are somewhat more reliable than ordinary agents and that all
agents in a local domain trust their trust broker.

TBcertificate

generate
identity
token

{identity token} TB pubkey

add token
to TBU

New

request to join local domain

Trust Broker
Agent

Figure 5.7: Registration of a new agent to a local domain

Registration of a new agent to a local domain

This process is executed when an agent enters a new local domain. The purpose
of this protocol is to allow the new agent to register a new identity token with

5.3. Gracia Knowledge Base 103

its new trust broker. The identity token simply acts as a shared secret between
the agent and the trust broker. It contains no personal identification information
about the agent but instead, contains the agent’s chosen pseudonym and a secret
nonce. For privacy protection, whenever an agent enters a new local domain
and creates a new identity token, both the pseudonym and the nonce should be
changed.

Figure 5.7 shows the sequence of events performed in this protocol. To begin, the
new agent sends the trust broker a request to register itself in the local domain.
The trust broker replies to this request by sending its certificate to the new agent.
On receipt of this certificate, the agent creates a new identity token before sending
this token (encrypted with the trust broker’s public key) to the trust broker. Once
received, the trust broker verifies that the selected pseudonym is non-conflicting
(it is assumed that pseudonyms within a local domain are unique) and then adds
the token to its TBU.

fresh
nonce c

New
Trust Broker

NTB pubkey[{c}]hash(identity token)

NTBcertificate

generate

c

Agent

Figure 5.8: Registration of an existing agent to a newly elected trust broker

Registration of an existing agent to a newly elected trust broker

The objective of this protocol is to confirm the identity of a newly elected trust
broker to an existing agent in the local domain. To achieve this, the agent issues
a challenge to the new trust broker and then, based upon its response, the agent
can determine whether or not the new trust broker is indeed the trust broker and
not an attacker.

104 Chapter 5. Gracia Knowledge Base

The sequence of message exchanges for this protocol is shown in Figure 5.8. It
begins with the new trust broker sending its certificate to the agent. When this
certificate is received, the agent creates a challenge (a fresh nonce), encrypts
this using the supplied public key and then encrypts this encrypted data with the
hash of the identity token. To respond to this challenge, the new trust broker must
be capable of informing the agent of the value of the fresh nonce that it created. If
the trust broker is able to successfully decrypt the challenge, then the agent can
be sure that the new trust broker is indeed the true trust broker.

Creating signed evidence

To attribute data integrity protection to evidence when transported between agents,
we have incorporated the use of signed evidence into the trust broker model.
Although such evidence can still be read by everyone, this approach makes it
tamper-resistant.

To create signed evidence, the agent first sends its evidence (encrypted, together
with its identity token, the trust broker’s public key) to the trust broker. The reason
for the inclusion on the agent’s identity token is to prevent other agents from pre-
tending to be the authentic agent. Once received, the trust broker then adds this
information to its collaboration graph before signing the evidence and sending it
back to the agent. Figure 5.9 illustrates this process.

evidence

{evidence, identity token} TB pubkey

sign
evidence

{evidence} TB sig

create

Trust BrokerAgent

Figure 5.9: Creating signed evidence

5.3. Gracia Knowledge Base 105

Gathering evidence from within the local domain

This protocol, otherwise known as the local trust brokering protocol, is designed
for operation solely within the local domain. It aims at locating possible recom-
mendation sources within the local domain and retrieving evidence from these
sources in a secure manner. Information on locating sources is provided in the
CG managed by the trust broker. To explain this protocol, Figure 5.10 provides
a visual representation of its message sequence. It depicts four participants -
specifically, three agents and the trust broker. Agent 1 (E1) wants to perform an
action with Agent 2 (E2). However, E2 first wants to ensure that E1 is trustworthy
and therefore contacts the trust broker (TB) to gather evidence in regards to E1.
Agent 3 (E3) is the evidence provider in this example.

The protocol follows the sequence below:

1. E1 sends a message to E2 requesting permission to perform action A.

2. To make a decision as to whether or not this action should be executed, E2
sends a request to TB asking for evidence on E1 based on action A.

3. TB searches the CG to find possible sources which could provide appropriate
evidence.

E1 E2 TB E3

Search CG for
evidence sources

Request for evidence on E1
for action A

Request for evidence on E1
for action A

{evidence} _TB

{evidence} _TB

I want to perform action A

Verify signature

Verify signature

Figure 5.10: Gathering evidence from within the local domain

106 Chapter 5. Gracia Knowledge Base

4. TB sends a request to E3 (found in the CG) to provide evidence on E1 for
action A.

5. E3 sends the evidence requested (signed by TB).

6. TB verifies the signature on the evidence and forwards it to E2.

7. E2 verifies the signature on the evidence and uses it to make a decision on
E1’s request to perform action A.

The advantage of this protocol is that it provides privacy protection (by hiding
E3’s identity from E2) and data integrity protection for the evidence (preventing
evidence from being tampered with by malicious agents).

Gathering evidence originating from remote domains

E1 E2 TB RTB E3

{encrypted identity
tokens, action A} {encrypted identity

tokens, action A}

Does this TB trust
the RTB(s)?

Decrypt token
Check CG

Request for evidence
on E1 for action A

{evidence}_RTB

Verify signature
and sign

Verify TB’s
signature

[{idE1}RTB , A]

{evidence}_RTB

[{evidence} _RTB]_TB

Verify signature

Local Domain Remote Domain

Figure 5.11: Gathering evidence originating from remote domains

5.3. Gracia Knowledge Base 107

This protocol, also called the remote trust brokering protocol, extends on the pre-
vious protocol to cater for the collection of evidence from remote domains. As
before, the aim of the protocol is still the location of possible recommendation
sources and the secure retrieval of evidence. However, the main complicating
issue here is the involvement of multiple trust domains.

To show how this protocol works, Figure 5.11 illustrates the message flow between
five participants. Agent 1 (E1), Agent 2 (E2) and Trust Broker (TB) are all within
the same local domain whereas Remote Trust Broker (RTB) and Agent 3 (E3)
are located in another trust domain. As with the previous protocol, E1 wants to
perform an action with E2. However, in this scenario, E1 provides E2 with a list of
possible remote sources to gather evidence from. Here, we assume that E1 still
knows its old identity tokens with trust brokers from other local domains as well as
the certificates from these trust brokers. In this example, RTB represents a former
trust broker of E1.

The following is an explanation of each step in this protocol:

1. E1 sends a request to E2 to perform action A. Additionally, E1 sends a set of
tokens for E2 to use to locate remote sources of evidence. This set of tokens
basically consists of E1’s old identity tokens encrypted with the public keys
of the respective former trust brokers. The identities of these remote trust
brokers are also sent with these tokens.

2. E2 receives E1’s request and forwards the received tokens and information
about the desired action to TB so that evidence can be gathered.

3. TB receives the encrypted tokens and decides whether or not to pass them
onto their respective remote trust brokers. TB makes this decision based
on its view of the web of trust. In other words, TB must decide if it trusts a
particular remote trust broker. Following this, TB forwards only the tokens
destined to trustworthy remote trust brokers (along with the action).

4. RTB, a trusted remote trust broker, decrypts the received token and checks
its CG for possible recommendation sources for E1. Note that in this remote
trust domain, E1 here denotes an old pseudonym. RTB then sends a request
for evidence to E3 - the agent found in RTB’s CG possessing evidence on E1.

5. E3 replies to RTB’s request by sending evidence signed by RTB.

6. RTB verifies the signature on this evidence and forwards it to TB.

7. Once received, TB also verifies the signature on the evidence from RTB
and then signs it again. The reason for TB also signing the evidence is be-

108 Chapter 5. Gracia Knowledge Base

cause we assume that E2 does not possess RTB’s certificate. Furthermore,
it proves to E2 that TB considers the external evidence to be trustworthy.
After signing the evidence, TB forwards it to E2.

8. E2 verifies TB’s signature on the evidence and uses it to make a decision
regarding E1’s request to perform action A.

Evaluation Process

t(1)

t(2)

T
ru

st
 B

ro
ke

r

Local Brokering

T
ru

st
 B

ro
ke

r

Trust Broker

Trust Broker

Trust Broker

Remote Brokering

T(a)

T(b)

1

{s, i, c}

1

2

...
...

..

T(n)

t(n)

...
...

..

n

2

n

4

3

Figure 5.12: Evaluation Process

The recommendation, one kind of evidence, is transferred through the trust bro-
kers. In this model, the trust broker can evaluate multiple recommendations to

5.4. Summary 109

derive (1) a combined result, (2) “attraction” for the trust value [107] or (3) recom-
mendations representing a local domain. The output of the evaluation depends
on the brokering protocol. Figure 5.12 shows the hierarchical architecture of the
evaluation process.

The work of the SECURE project presents a {s, i, c}-triple value which can be
used to represent evidence - the historical record of an interaction. The value
s is the number of positive interactions(shared knowledge is true) and c is the
number of negative interactions(shared knowledge is fake). The uncertainty is
taken into account using i. The evidence collected by the trust broker in the local
trust brokering protocol can be defined as:

Rlocal =

∑
i∈N

si×ti
si+ii+ci∑

i∈N ti
(5.1)

where ti is the trust value representing the trustworthiness of agent i to the trust
broker and it weighs the recommendation. It is used to measure the accuracy of
the recommendation. This concept is similar to Meta-Trust [55]. In the remote trust
brokering protocol, the evidence collected from other domains can be defined as:

Rglobal =

∑
j∈M

∑
i∈N

si×ti
si+ii+ci∑

i∈N ti
× Tj∑

j∈M Tj

(5.2)

=

∑
j∈M Rlocal × Tj∑

j∈M Tj

(5.3)

where Tj here represents the trustworthiness of the remote trust brokers to the
local trust broker.

The evaluation of recommendations is a hard process and requires more con-
sideration in regards to performance and feasibility. We only propose a simple
solution here. Further research is required to derive more efficient and feasible
mechanisms to perform these evaluations.

5.4 Summary

This Chapter introduced the hybrid approach to knowledge representation in our
framework. By combining the power of description logic and Horn-like Rules,
we can do more complex reasoning above the Gracia Knowledge Base, which

110 Chapter 5. Gracia Knowledge Base

enables the implementation of the knowledge-based access control in the next
chapter.

This chapter also presented trust brokering protocols for the sharing of knowledge
within the Gracia Knowledge Base. A Trust Broker Unit is installed to manage the
evidence of knowledge sharing transactions. Additionally, protocols are designed
to facilitate the evolution of the trust value/reputation by collecting evidence from
both local and remote domains. The protocols also demonstrate the possibility
of using the trust-based knowledge management method in setting up the Gracia
Knowledge Base.

The next chapter describes the implementation of the Security Gateway and the
Gracia Policy Framework within the Security Gateway. We also present results in
terms of scalability, its robustness against context changes, the efficiency of the
access control model and the communication overheads incurred.

Chapter 6

Implementation of the Security
Gateway

6.1 Introduction

Managing and enforcing security requirements are key principles for success-
ful implementation of web service-based system. A vast number of different
technologies for modelling and representing security requirements exist, start-
ing from the object-oriented model to the Semantic Web approach. Challenges
arise when security-related business logic is directly imbedded into the applica-
tion logic, which is a quite common practice. This has a highly negative impact
on the maintainability of security requirements due to the fact that business logic
tends to change quite frequently.

The usage of an inference engine using knowledge bases can greatly improve the
maintainability in such cases. Such engines handle the execution and manage-
ment of business rules and regulatory constraints from the business domain. The
administration of this kind of knowledge should ideally be performed by domain
experts or business analysts.

In this chapter, we provide an approach to the integration of the Gracia Knowl-
edge Base (GKB) with an ontology inference engine-KAON2, accessible through
a series of Web service based components. All the knowledge, stored in GKB and
managed by a graphic user interface, is accessible via customised Web services
on the top of GKB. The distinguishing feature of our approach is:

– the automated generation of security web service policies like WS-Policy and
XACML from the knowledge base.

112 Chapter 6. Implementation of the Security Gateway

– the automated policy conflicts detection for a changing service-oriented sys-
tem in the run-time.

The approach is a security gateway called Gracia, which consists of a policy
framework and a set of web service-based interfaces for external components
such as Process Engine, Rule Engine and Web Service Repository.

6.2 Reasoning and Querying in Rules and Knowl-
edge Base

We use an inference engine for Rules and a Knowledge Base in our approach.
There are a lot of choices in both the academic and industrial world. Some of
these choices are mentioned in the following paragraphs.

Protégé1 provides different ways in which the user can query the content of an
ontology. The QueryTab is part of the Protégé system and allows the user to
retrieve instances from the ontology that match certain criteria. The queries are
defined following the pattern (class, slot, operator, value) and can be composed in
a conjunction or disjunction of queries. The operator can be set according to the
type of values that the slot may take. For instance, a slot of type String, besides
the equals, allows other lexical operators such as contains or begins with. The
query engine is built-into Protégé frames and uses the closed world assumption,
i.e. it will only return the things that have been explicitly asserted in the knowledge
base as true.

Another powerful way of executing queries in Protégé is the Flora plug-in which
translates a Protégé-frames ontology together with the user-defined axioms into
an F-Logic (Frame-logic) program. The queries are executed in a different process
and the results are displayed as a list in the user interface of the plugin. The vision
of Flora was the realisation of a system that offers a logic-based knowledge rep-
resentation for frames with meta-modeling facilities and side-effects that can be
used not only for knowledge representation but also as a complete programming
language. Flora is implemented on top of XSB Prolog 2 - a Logic Programming
and Deductive Database system - and is founded on F-Logic, HiLog and Trans-
action Logic [118]. Flora has special language constructs for representing frames

1http://www.protege.stanford.edu
2http://xsb.sourceforge.net/

6.2. Reasoning and Querying in Rules and Knowledge Base 113

with complex structures by allowing the nesting of definitions. Flora also supports
a natural way of meta-modeling in the style of HiLog. One use of meta-modeling
is to query the signatures of classes. The Flora plug-in supports the definition of
F-Logic axioms as part of the ontology, which are then used in the execution of
queries.

Mandarax3 is an open source java library for inference rules. This includes the
representation, persistence, exchange, management and processing (querying)
of rule bases. The main objective of mandarax is to provide a pure object oriented
platform for rule based systems. Mandarax is a pure Java implementation of
a rule engine. It supports mutiple types of facts and rules based on reflection,
databases, EJB etc, supporting XML standards (RuleML 0.8). It provides a J2EE
compliant inference engine using backward chaining.

JBoss Rules [57] (aka Drools 3.0) is a Rule Engine implementation based on
Charles Forgy’s Rete algorithm tailored for the Java language. Drools is written
in Java, but is able to run on Java and .Net. JBoss Rules is designed to allow
pluggeable language implementations. The language supported by JBoss Rules
is called Drools Rule Language (DRL). The rule engine supported in JBoss Rules
complies with the standard Java Rule Engine API (known as JSR94 [56]). Analo-
gously to the approaches presented so far in this chapter, in this approach rules
are also triggered by means of invoking methods on the rule engine from Java
code. Therefore, it suffers again from the problems imposed by low-level and
crosscutting rule connections.

In the context of reasoning with OWL, four different approaches can be roughly
distinguished [115]:

– The inference calculus implemented in tableaux-based provers for DLs: They
are available via systems like Pellet [103], RacerPro [41], or FaCT++ [110].
They implement a conceptually sound as well as complete approach for
which many optimisations are so far known. Unfortunately, complete instance
reasoning still requires expensive computations.

– The approaches to transform an OWL ontology into a disjunctive datalog
program and to utilise a disjunctive datalog engine for reasoning: It is im-
plemented in KAON2 [85]. This allows for fast query answering due to well-
known optimisation techniques from deductive databases such as magic set
transformation.

3http://mandarax.sourceforge.net

114 Chapter 6. Implementation of the Security Gateway

– Other systems using a standard rule engine to reason with OWL: for exam-
ple OWLIM [67] or OWLJessKB. This is fast and easily tunable to different
language fragments by simply manipulating the rule set. However, this pro-
cedure is known be incomplete and a drain on resources when filled with
large amounts of implicit knowledge (due to their materialisation strategy.)

– Hybrid approaches: such as QuOnto [3], Minerva [120], Instance Store [11],
or LAS [23] combine an external reasoner (often a tableaux-based system)
with a Database system. This enables the processing of large data volumes
due to secondary storage mechanisms. On the other hand, this combination
only allows for a very limited language expressivity.

Table 6.1 shows a detailed comparison of the reasoners.

Ontology Language Supported Logic RDF Query Rules

KAON a proprietary extension of RDFS DL N/A N/A
KAON2 OWL-DL, OWL-Lite DL SPARQL SWRL
FACT OWL-DL DL N/A N/A
FACT++ OWL-DL DL N/A N/A
Racer OWL-DL DL nRQL SWRL
Cerebra OWL-DL DL Xquery SWRL
cwm OWL-Full DL N/A N3
Euler OWL-Full DL N/A N3
Surnia OWL-Full FOL/DL N/A N/A
Jena/HP OWL-Full DL ARQ/SPARQL N3
Pellet OWL-DL,OWL-Lite DL SPARQL SWRL
F-OWL OWL F-logic,DL N/A N3

,Transaction Logic
E-Wallet N/A N/A N/A N/A
Sesame N/A N/A SPARQL N/A
DLP N/A DL N/A N/A

Table 6.1: Reasoners

Considering the performance and ability in dealing with the large ABox, we have
chosen KAON2 as the inference engine in our approach. KAON2 provides an in-
tegrated API for the reading, writing, and management of OWL DL ontologies ex-
tended with SWRL rules. Currently, OWL RDF and OWL XML file formats are sup-

6.3. Security Gateway 115

ported. A built-in reasoner for OWL DL (except nominals and datatypes) extended
with a DL-safe subset of SWRL is inside the KAON2 framework and reasoning is
based on novel algorithms, which reduce an OWL ontology to a (disjunctive) data-
log program. These algorithms allow KAON2 to handle relatively large ontologies
with high efficiency. Its performance compares favourably to other state-of-the-
art OWL DL reasoners. KAON2 supports the answering of conjunctive queries
expressed in SPARQL. SPARQL is a query language for the RDF developed by
W3C [93].

6.3 Security Gateway

The functionality of the Security Gateway is naturally divided into two parts: the
run-time security function, also called policy enforcement, and the management
function. The enforcement function controls run-time access of requestors to
protected web services and also SOAP messenge-level security (Integrity and
Encryption) , according to ontology-based Gracia policies, attributes of subjects,
objects and operations. The management function provides mechanisms for the
manipulation of Gracia Policy and Gracia Knowledge Base e.g. semantic annota-
tions of rules and domain ontologies.

The enforcement function involves several architectural components and nodes.
A subject of access is a web service client that invokes protected web services
to access data or to affect the real world. The client accesses the web services
through networks. A Security Gateway mediates access to the protected web
service and enforces rules of corresponding security policies and external regu-
latory rules. The Security Gateway must evaluate all requests, correctly evaluate
semantic profiles and policies an be incorruptible and nonbypassable. A Gracia
policy is a combination of ontology and rules. Subject and object descriptors are
well known patterns that provide access to attributes of subjects and objects of
access. In Gracia, we specialise the descriptor pattern into semantic profiles for
users, data, web services, policies and context. Figure 6.1 illustrates a control
flow for the enforcement function that is driven by the Security Gateway.

Let us consider a simple example in order to reveal the roles of the above de-
scribed components and activities that comprise the algorithm of the enforcement
function. In our end-user scenario in section 3.2.3 passengers are able to access
to the printer in their waiting zone using a PDA. A client sends a SOAP/XML re-
quest via Bluetooth to a web service in the control room, which controls a printer

116 Chapter 6. Implementation of the Security Gateway

Figure 6.1: Workflow of Security Gateway

in the airpot. A Security Gateway intercepts this request. After that, the Security
Gateway initiates the process of request evaluation. The Security Gateway ex-
tracts a URI of the web service’s operation, supplied credentials and passenger
context information from request’s header. These are input parameters for the
retrieval or creation of semantic profiles for the passenger and operation. The Se-
curity Gateway can create or retrieve the semantic profile for the object based on
the input SOAP/XML message and its WSDL description. After collecting seman-
tic profiles of the user and operation, the Security Gateway retrieves applicable

6.3. Security Gateway 117

Gracia policies. In our example, this retrieval uses information regarding location
within the airport and the airport printer service policy from the Gracia Knowledge
Base. According to different security requirements, XACML or WS-policy policies
will be generated and enforced by the Gracia policy framework. In the following
section, we will introduce these components in detail.

6.3.1 Design of Gracia Policy Framework

The knowledge base which will be used in the Gracia Policy Framework will be
defined in OWL and SWRL. The decidable subset of OWL, OWL-DL, is used to
represent the information in the system. The rules used to define the access
rights of individuals to web services endpoints are written in a semantically aware
language. SWRL was chosen as the rule language for our system. The main ad-
vantage of using SWRL is its ability to provide support for complex relationships
between properties, therefore extending the expressiveness of what can be de-
fined in OWL-DL. The subjects of the rules will be defined in the knowledge base,
as described in Section 5.3.1. Rules may be written to protect access to two
specific resources; the web service endpoints and the information they return.

Since the Gracia knowledge base is essentially written in OWL-DL, we can use an
OWL-DL reasoning engine to evaluate the rules. To enforce authorisation rules in
our approach, we use a combination of SWRL and OWL-DL. The main advantage
of SWRL, which was discussed in section 2.3.2, may also present a new problem
domain since it extends the expressiveness of OWL-DL beyond the decidable
subset of OWL. There are two ways to overcome this problem. Either restrict the
expressiveness of SWRL and use an existing reasoning engine such as Pellet or
Racer, or use a reasoner such as KAON2 which has been extended to handle
SWRL rules. We have chosen to use the extended reasoner KAON2. To ensure
a decidable result from our authorisation we will restrict how the user writes the
rules rather than restricting the language itself.

Authorisation decisions will be made with respect to a Web Service endpoint. This
may lead to one of three results: 1)full access, 2)no access and 3)limited access.
A requester being granted limited access implies that they can access the end-
point but they will potentially return sensitive information that they do not have
access to. When this happens, the response associated with the initial request
is examined and the information returned must be legally accessible by the re-
quester. Any information that is defined as illegal for the requester will be pruned

118 Chapter 6. Implementation of the Security Gateway

before the response is sent. The level of pruning is defined by the user who is
responsible for the update of the rules and knowledge base.

6.3.2 Implementation of Gracia Policy Framework

The UML component diagram (Figure 6.2) depicts the architecture of the proto-
type for the policy enforcement mechanism. The internal structure of the security
gateway consists of the Gracia knowledge Base, Gracia policy framework and
the reasoner (query processor) provided by the KAON2 of SPARQL queries. The
Gracia knowledge Base has in-memory knowledge base (rule sets) in the form of
an ontology model. All ontologies are accessible via HTTP.

Figure 6.2: Component Diagram of Security Gateway

The development environment consists of several interrelated elements. Java 2
standard edition development kit version 1.54 is a programming language and
platform that was chosen for the prototyping of research ideas. KAON2 is a se-
mantic web framework with an SPARQL processor. Eclipse5 is an open source
community that produces extensions with a myriad of plugins, and it is also called
integrated development environment (IDE). The latest version of the IDE is 3.2.
The Eclipse Test & Performance Tools Platform (TPTP)6 project consists of four
subprojects, one of which provides tools for tracing and profiling java applications

4http://java.sun.com/j2se/1.5.0/
5http://www.eclipse.org
6http://www.eclipse.org/tptp/

6.3. Security Gateway 119

for further analysis of performance. The Protégé is the most appropriate tool for
the creation of defined Gracia ontologies in the RDF/XML exchange syntax of
OWL. The Protégé is an open source and free ontology editor with a number of
plugins for editing (Protege-OWL) and visualising OWL ontologies. In this ap-
proach, Tomcat 6.0 7 is used as a Web and Application server. Apache Axis 1.4 8

is a SOAP engine used as a Tomcat container for web services transactions. SUN
XACML9 is used to enforce the XACML policy generated by the policy framework.
Apache WS-Commons Policy 1.010 is an implementation of the WS-Policy speci-
fication and is used to enforce WS-Policy specification in our approach.

The security functions designed and implemented as part of the security gate-
way are built in Java using Apache Axis as the SOAP implementation. The core
encryption and decryption engine is developed using Apache’s Web Service Se-
curity for Java (WSS4J)11 implementation of the WS-Security specification from
OASIS. It adheres to the W3C specification from XML-Encryption. The signing
and signature verification engine is also developed using WSS4J and adheres to
the W3C specification for XML-Signature. The key management is built according
to the XML Key Management specification(XKMS)12.

6.3.3 Design and Implementation of Management Tools

Management Tools consists of two tools that allow security responsible people to
define and manage security policies and the knowledge base at the level of the
business domain. The policies regarding access control for data, record retention
(archiving of data, exporting/importing of data, deletion/insertion/modification of
data), and transmission of data between systems are supported by our framework.
The knowledge base is based on the VKC approach.

Management Tool comes with two user interfaces, one for knowledge definition
and the other for policy definition. The knowledge definition GUI 6.3 is used by
a domain expert who understands the underlying data and entities and abstracts
attributes and methods out of data entities.

7http://tomcat.apache.org/
8http://ws.apache.org/axis/
9http://research.sun.com/projects/xacml/

10http://ws.apache.org/commons/policy/index.html
11http://ws.apache.org/wss4j
12http://www.w3.org/TR/xkms/

120 Chapter 6. Implementation of the Security Gateway

Figure 6.3: Knowledge Management Tool

To visualise the Gracia Knowledge Base, OWL2Prefuse13 is embedded into the
tool. OWL2Prefuse is a Java package that creates Prefuse14 graphs and trees
from OWL files. It takes care of converting the OWL data structure into the Prefuse
datastructure. This makes it easy to use the Prefuse graphs and trees in our man-
agement tools. The following code helps with the integration of Prefuse graphs
into our approach.

Listing 6.1: Prefuse Code Example

public GraphPanel createGraphPanel(String p_OWLFile){

2OWLGraphConverter graphConverter =

new OWLGraphConverter(p_OWLFile,

true);

4Graph graph = graphConverter.getGraph();

GraphDisplay graphDisp = new GraphDisplay(graph, true);

6GraphPanel graphPanel =

new GraphPanel(graphDisp, true, true);

8return graphPanel;

13http://owl2prefuse.sourceforge.net
14http://prefuse.org

6.4. Evaluation 121

}

The policy definition GUI6.4 closely resembles that of one based on natural lan-
guage; it can be used by any person for the definition of policies, without any
knowledge regarding the idiosyncrasies of the technical domain. It automatically
detects the conflicts, if any, between polices whilst defining them.

The tool automatically ensures the accurate and timely execution of the business
rules and policies as and when the situation arises (based on events, such as
database events, transactional events, external events and temporal events). If
the policy demands it, the policy execution engine can even intelligently defer the
execution of the policy to a more opportune moment.

Figure 6.4: Policy Management Tool

6.4 Evaluation

We piloted the reasoning procedure to test the performance of our security gate-
way. For the programming and testing performance we used tools from Eclipse.
The Eclipse Test & Performance Tools Platform (TPTP) project consists of four

122 Chapter 6. Implementation of the Security Gateway

subprojects, one of which provides tools for tracing and profiling java applications
for further analysis of their performance.

The internal structure of the security gateway has an in-memory knowledge base
(GKB) in the form of an ontology model. All ontologies were placed on the web
server and were accessible via the HTTP protocol. The fastest response time
of the reasoning process corresponded to the simplest policy and domain on-
tologies. The policy ontology consisted of one class for web service clients with
one user, one class for protected objects with one individual and one class for
web service operations with one operation. All RDF statements were loaded into
the KAON2 workspace during the start-up process. The SPARQL query corre-
sponded to the authorisation rule for policies defined using privilege statements
only.

The average cumulative CPU time for the process was 0.57 seconds. The hosting
computer was an FSC Laptop with an Intel Centrino 1.60GHz CPU, 512MB of
RAM and OS Microsoft Windows XP Professional version 2002 with Service Pack
2.

6.5 Summary

We implemented a research prototype of the security gateway for web service
protocols and are currently in the process of field testing it using a knowledge
base comprising of a small set of rules and limited ontology models. We are
currently working on real-world experiments and on further simulation studies to
check the behavior of our security gateway. These experiments additionally sim-
ulate web services transaction events and work loads which do not occur on a
daily basis. Additionally, we are investigating some ideas regarding the ways in
which management tools can exercise a more comprehensive management of
the knowledge base. Firstly, we will enhance the trust management in such a way
that it can manage the trust value of every stakeholder in the SOC. Lastly, we will
work on handling implicit knowledge and complex rules.

This prototype demonstrates the possibile use of a DL reasoner like KAON2 to
support the decision making process in both the access control scenario and web
services policy conflicts detection scenario.

Chapter 7

Conclusion

This chapter provides a summary of the work presented in this thesis and dis-
cusses what has been achieved. We conclude by indicating future work stemming
from the results of the current approach presented in the previous chapter.

7.1 Review of Achievements

The introduction to this thesis identified the contributions this work has made to
the field of policy based security management. In this section we will re-iterate
and summarise this evidence.

– Formal representation of policies and domain knowledge: In Chapter 4
we have presented a formal semantic language called Gracia Policy (GPL)
Language that can be used to represent security policies of web services,
business rules and domain knowledge. The GPL is a combination of OWL
and SWRL, thus, it is based on both Description Logic and Logic Program-
ming. We have also shown how the GPL can be mapped to other standard-
ised web service languages like XACML and WS-Policy. The mapping also
enables the automated generation of a low-level execution policy(XACML,
WS-Policy) from the high-level semantic policy (GPL).

– Hybrid knowledge representation and integration of security informa-
tion: In Chapter 5, we presented a hybrid approach to knowledge repre-
sentation called Gracia Knowledge Base (GKB). The GKB uses the Vir-
tual Knowledge Community (VKC) concept for the integration of knowledge
from different stakeholders into SOC. This knowledge sharing process was
demonstrated by an e-payment example.

124 Chapter 7. Conclusion

– Trust Brokering Protocols for Trust Management in the Virtual Knowl-
edge Community: In Chapter 5, we also defined a series of trust brokering
protocols designed to broker the evidence of knowledge sharing activities in
the VKCs.

– Tool Support: As described in Chapter 6, we developed a prototype to prove
the possibility of building security functions with semantic web technology.
This prototype is a security gateway for web service protocols. We use a
KAON2 reasoner to query the GKB and policies in GPL can be converted into
XACML or WS-Policy by a policy framework, which works as a web service
component inside the security gateway. Management tools have also been
designed to enable easy administration of policies and knowledge.

7.2 Future Work

The formal semantic approach to the security gateway in this thesis is by no
means complete. This section presents the work that we feel is fundamental
to the future development of semantic policy-based security management. This
work can be categorised into the following fields:

– computational complexity: The computional complexity of our approach
increased rapidly whilst the Rule-Box and ABox of the GKB grew bigger. The
efficiency of the system should be optimised by using efficient algorithms.

– Policy analysis: One of the main shortcomings in our policy framework is
the ommision of a method for detecting and resolving policy conflicts. We
hope to extend the policy validation technique to support this vision.

– Tool Implementation: In addition to improving the current user interface,
we also propose to extend the tool to include support for adapting the VKC-
based knowledge management system.

Appendix A

Gracia Policy Language

Listing A.1: WS-Policy in Gracia Policy Format

1<rdf:RDF>

<!−− Ontology Information −−>
3<owl:Ontology rdf:about=””>

<owl:imports>

5<owl:Ontology rdf:about=”&WS−PolicyAssertion.owl;”/>

</owl:imports>

7</owl:Ontology>

9<!−− Classes −−>
<owl:Class rdf:about=”#ExamplePolicy”>

11<owl:equivalentClass>

<owl:Class>

13<owl:intersectionOf rdf:parseType=”Collection”>

<owl:Class>

15<owl:complementOf>

<owl:Class>

17<owl:unionOf rdf:parseType=”Collection”>

<owl:Class>

19<owl:intersectionOf rdf:parseType=”Collection”>

<rdf:Description rdf:about=”#policyClass1”/>

21<rdf:Description rdf:about=”#policyClass2”/>

<rdf:Description rdf:about=”#policyClass3”/>

23<rdf:Description rdf:about=”#policyClass4”/>

</owl:intersectionOf>

126 Appendix A. Gracia Policy Language

25</owl:Class>

</owl:unionOf>

27</owl:Class>

</owl:complementOf>

29</owl:Class>

<owl:Class>

31<owl:unionOf rdf:parseType=”Collection”>

<owl:Class>

33<owl:intersectionOf rdf:parseType=”Collection”>

<rdf:Description rdf:about=”#policyClass3”/>

35<rdf:Description rdf:about=”#policyClass4”/>

</owl:intersectionOf>

37</owl:Class>

<owl:Class>

39<owl:intersectionOf rdf:parseType=”Collection”>

<rdf:Description rdf:about=”#policyClass1”/>

41<rdf:Description rdf:about=”#policyClass2”/>

</owl:intersectionOf>

43</owl:Class>

</owl:unionOf>

45</owl:Class>

</owl:intersectionOf>

47</owl:Class>

</owl:equivalentClass>

49</owl:Class>

51<owl:Class rdf:about=”#elementClass0”>

<rdfs:subClassOf

rdf:resource=”&WS−PolicyAssertion.owl;#SecurityToken”/>

53<owl:equivalentClass>

<owl:Class>

55<owl:intersectionOf rdf:parseType=”Collection”>

<owl:Class>

57<owl:intersectionOf rdf:parseType=”Collection”>

<owl:Restriction>

59<owl:hasValue

rdf:language=”EN”>wsse:Kerberosv5TGT</owl:hasValue>

127

<owl:onProperty rdf:resource=”test#hasTokenType”/>

61</owl:Restriction>

</owl:intersectionOf>

63</owl:Class>

</owl:intersectionOf>

65</owl:Class>

</owl:equivalentClass>

67</owl:Class>

69<owl:Class rdf:about=”#elementClass2”>

<rdfs:subClassOf

rdf:resource=”&WS−PolicyAssertion.owl;#Algorithm”/>

71<owl:equivalentClass>

<owl:Class>

73<owl:intersectionOf rdf:parseType=”Collection”>

<owl:Class>

75<owl:intersectionOf rdf:parseType=”Collection”>

<owl:Restriction>

77<owl:hasValue

rdf:language=”EN”>wsse:AlgSignature</owl:hasValue>

<owl:onProperty rdf:resource=”test#hasType”/>

79</owl:Restriction>

</owl:intersectionOf>

81</owl:Class>

<owl:Class>

83<owl:intersectionOf rdf:parseType=”Collection”>

<owl:Restriction>

85<owl:hasValue rdf:language=”EN”>

http://www.w3.org/2000/09/xmlenc#aes</owl:hasValue>

87<owl:onProperty rdf:resource=”test#hasURI”/>

</owl:Restriction>

89</owl:intersectionOf>

</owl:Class>

91</owl:intersectionOf>

</owl:Class>

93</owl:equivalentClass>

</owl:Class>

128 Appendix A. Gracia Policy Language

95

<owl:Class rdf:about=”#elementClass3”>

97<rdfs:subClassOf

rdf:resource=”&WS−PolicyAssertion.owl;#SecurityToken”/>

<owl:equivalentClass>

99<owl:Class>

<owl:intersectionOf rdf:parseType=”Collection”>

101<owl:Class>

<owl:intersectionOf rdf:parseType=”Collection”>

103<owl:Restriction>

<owl:hasValue

rdf:language=”EN”>wsse:X509v3</owl:hasValue>

105<owl:onProperty rdf:resource=”test#hasTokenType”/>

</owl:Restriction>

107</owl:intersectionOf>

</owl:Class>

109</owl:intersectionOf>

</owl:Class>

111</owl:equivalentClass>

</owl:Class>

113

<owl:Class rdf:about=”#elementClass4”>

115<rdfs:subClassOf

rdf:resource=”&WS−PolicyAssertion.owl;#Algorithm”/>

<owl:equivalentClass>

117<owl:Class>

<owl:intersectionOf rdf:parseType=”Collection”>

119<owl:Class>

<owl:intersectionOf rdf:parseType=”Collection”>

121<owl:Restriction>

<owl:hasValue rdf:language=”EN”>

123http://www.w3.org/2001/04/xmlenc#3des-cbc</owl:hasValue>

<owl:onProperty rdf:resource=”test#hasURI”/>

125</owl:Restriction>

</owl:intersectionOf>

127</owl:Class>

<owl:Class>

129

129<owl:intersectionOf rdf:parseType=”Collection”>

<owl:Restriction>

131<owl:hasValue

rdf:language=”EN”>wsse:AlgEncryption</owl:hasValue>

<owl:onProperty rdf:resource=”test#hasType”/>

133</owl:Restriction>

</owl:intersectionOf>

135</owl:Class>

</owl:intersectionOf>

137</owl:Class>

</owl:equivalentClass>

139</owl:Class>

141<owl:Class rdf:about=”#errorType”/>

<owl:Class rdf:about=”#policyClass0”>

143<rdfs:comment><SecurityToken>

wsse:Kerberosv5TGT

145</SecurityToken></rdfs:comment>

<rdfs:subClassOf rdf:resource=”#errorType”/>

147</owl:Class>

149<owl:Class rdf:about=”#policyClass2”>

<rdfs:subClassOf

rdf:resource=”&WS−PolicyAssertion.owl;#Integrity”/>

151<owl:equivalentClass>

<owl:Class>

153<owl:intersectionOf rdf:parseType=”Collection”>

<owl:Class>

155<owl:intersectionOf rdf:parseType=”Collection”>

<owl:Restriction>

157<owl:allValuesFrom rdf:resource=”#elementClass1”/>

<owl:onProperty rdf:resource=”test#hasAlgorithm”/>

159</owl:Restriction>

</owl:intersectionOf>

161</owl:Class>

</owl:intersectionOf>

163</owl:Class>

130 Appendix A. Gracia Policy Language

</owl:equivalentClass>

165</owl:Class>

167<owl:Class rdf:about=”#policyClass3”>

<rdfs:comment><SecurityToken>

169wsse:X509v3

</SecurityToken></rdfs:comment>

171<rdfs:subClassOf rdf:resource=”#errorType”/>

</owl:Class>

173

<owl:Class rdf:about=”#policyClass11”>

175<rdfs:subClassOf

rdf:resource=”&WS−PolicyAssertion.owl;#Integrity”/>

<owl:equivalentClass>

177<owl:Class>

<owl:intersectionOf rdf:parseType=”Collection”>

179<owl:Class>

<owl:intersectionOf rdf:parseType=”Collection”>

181<owl:Restriction>

<owl:allValuesFrom rdf:resource=”#elementClass11”/>

183<owl:onProperty rdf:resource=”test#hasAlgorithm”/>

</owl:Restriction>

185</owl:intersectionOf>

</owl:Class>

187</owl:intersectionOf>

</owl:Class>

189</owl:equivalentClass>

</owl:Class>

191

<owl:Class rdf:about=”&WS−PolicyAssertion.owl;#Algorithm”/>

193<owl:Class rdf:about=”&WS−PolicyAssertion.owl;#Integrity”/>

<owl:Class rdf:about=”&WS−PolicyAssertion.owl;#SecurityToken”/>

195

<!−− Annotation Properties −−>
197<owl:AnnotationProperty rdf:about=”&rdfs;comment”/>

199<!−− Datatype Properties −−>

131

<owl:DatatypeProperty rdf:about=”#hasAssertion”>

201<rdfs:domain rdf:resource=”#errorType”/>

<rdfs:range rdf:resource=”&xsd;string”/>

203</owl:DatatypeProperty>

205<owl:DatatypeProperty rdf:about=”test#hasTokenType”/>

<owl:DatatypeProperty rdf:about=”test#hasType”/>

207<owl:DatatypeProperty rdf:about=”test#hasURI”/>

209<!−− Object Properties −−>
<owl:ObjectProperty rdf:about=”#hasSecurityToken”/>

211<owl:ObjectProperty rdf:about=”test#hasAlgorithm”/>

213<!−− Instances −−>
<rdfs:Datatype rdf:about=”&xsd;string”/>

215</rdf:RDF>

Listing A.2: XACML in Gracia Policy Format

<rdf:RDF

2xmlns:rdf=”http://www.w3.org/1999/02/22−rdf−syntax−ns#”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema#”

4xmlns=”http://www.ic3.ct.siemens.com/rbac example.owl#”

xmlns:rdfs=”http://www.w3.org/2000/01/rdf−schema#”

6xmlns:owl=”http://www.w3.org/2002/07/owl#”

xmlns:rbac-meta=”http://www.ic3.ct.siemens.com/RBAC.owl#”

8xmlns:daml=”http://www.daml.org/2001/03/daml+oil#”

xmlns:dc=”http://purl.org/dc/elements/1.1/”

10xml:base=”http://www.ic3.ct.siemens.com/rbac example.owl”>

<owl:Ontology rdf:about=””>

12<owl:imports rdf:resource=”http://www.ic3.ct.siemens.com/rbac.owl”/>

</owl:Ontology>

14

<rdf:Property

rdf:about=”http://www.ic3.ct.siemens.com/RBAC.owl#toActionandResource”/>

16<rdf:Property

rdf:about=”http://www.ic3.ct.siemens.com/RBAC.owl#PermissionToRole”/>

18<rbac-meta:Group rdf:ID=”DepartmentHead”>

132 Appendix A. Gracia Policy Language

<rbac-meta:SubjectToRole>

20<rbac-meta:Role rdf:ID=”Managemers”/>

</rbac-meta:SubjectToRole>

22</rbac-meta:Group>

<rbac-meta:Resource rdf:ID=”Invoice”/>

24<rbac-meta:AtomicAction rdf:ID=”signDocument”>

<rbac-meta:toResouce rdf:resource=”#Invoice”/>

26</rbac-meta:AtomicAction>

<rbac-meta:User rdf:ID=”Bob”>

28<rbac-meta:SubjectToRole rdf:resource=”#Managemers”/>

</rbac-meta:User>

30<rbac-meta:Permission rdf:ID=”toSignInvoice”>

<rbac-meta:toActionandResource rdf:resource=”#signDocument”/>

32<rbac-meta:forAction rdf:resource=”#signDocument”/>

<rbac-meta:toRole rdf:resource=”#Managemers”/>

34<rbac-meta:PermissionToRole rdf:resource=”#Managemers”/>

</rbac-meta:Permission>

36</rdf:RDF>

Appendix B

Gracia Knowledge Base

Listing B.1: Gracia Knowledge Base in OWL/SWRL

<?xml version=”1.0”?>

2<rdf:RDF xmlns:rdf=”&rdf;#”

xmlns:rdfs=”&rdfs;#”

4xmlns:owl=”&owl;#”

xmlns:xsd=”&xsd;#”

6xmlns:swrl=”&swrl;#”

xmlns:gkb=”&gkb;#”

8>

10

<!−−
12===

Ontology CLASSES and PROPOERTIES

14===

−−>
16

<owl:Class rdf:ID=”Regulation”>

18<rdfs:subClassOf>

<owl:Restriction>

20<owl:someValuesFrom>

<owl:Class>

22<owl:intersectionOf rdf:parseType=”Collection”>

<owl:Class rdf:about=”#Norm” />

24<owl:Restriction>

134 Appendix B. Gracia Knowledge Base

<owl:someValuesFrom rdf:resource=”#Legislative Body”

/>

26<owl:onProperty rdf:resource=”#utterer” />

</owl:Restriction>

28</owl:intersectionOf>

</owl:Class>

30</owl:someValuesFrom>

<owl:onProperty rdf:resource=”#bears” />

32</owl:Restriction>

</rdfs:subClassOf>

34<rdfs:subClassOf>

<owl:Class rdf:about=”#Legal Document” />

36</rdfs:subClassOf>

</owl:Class>

38

<!−−
40===

Ontology INSTANCES

42===

−−>
44<Regulation rdf:ID=”SOX”>

...

46</Regulation>

48<!−−
===

50SWRL Rules

===

52−−>
<swrl:Variable rdf:ID=”X”/>

54<swrl:Variable rdf:ID=”Y”/>

56

<swrl:Imp>

58<swrl:body rdf:parseType=”Collection”>

<swrl:ClassAtom>

60<swrl:classPredicate rdf:resource=”&gkb;#Solution”/>

135

<swrl:argument1 rdf:resource=”#X”/>

62</swrl:ClassAtom>

<swrl:ClassAtom>

64<swrl:classPredicate rdf:resource=”&gkb;#ValuedConstraint”/>

<swrl:argument1 rdf:resource=”#Y”/>

66</swrl:ClassAtom>

<swrl:IndividualPropertyAtom>

68<swrl:propertyPredicate rdf:resource=”&gkb;#satisfies”/>

<swrl:argument1 rdf:resource=”#X”/>

70<swrl:argument2 rdf:resource=”#Y”/>

</swrl:IndividualPropertyAtom>

72<swrl:IndividualPropertyAtom>

<swrl:propertyPredicate rdf:resource=”&gkb;#violates”/>

74<swrl:argument1 rdf:resource=”#X”/>

<swrl:argument2 rdf:resource=”#Y”/>

76</swrl:IndividualPropertyAtom>

</swrl:body>

78

<swrl:head />

80

</swrl:Imp>

82</rdf:RDF>

Appendix C

Security Ontology

Figure C.1: Security Ontology

Appendix D

UML Diagrams

140 Appendix D. UML Diagrams

Figure D.1: Demo Application

Bibliography

[1] The SECURE project, http://secure.dsg.cs.tcd.ie/.

[2] Alfarez Abdul-Rahman and Stephen Hailes. Supporting trust in virtual com-
munities. In HICSS ’00: Proceedings of the 33rd Hawaii International Con-
ference on System Sciences-Volume 6, page 6007, Washington, DC, USA,
2000. IEEE Computer Society.

[3] A. Acciarri, D. Calvanese, G.D. Giacomo, D. Lembo, M. Lenzerini,
M. Palmieri, and R. Rosati. Quonto: Querying ontologies. In 20th Nat.
Conf. on Artificial Intelligence (AAAI 2005), number 1670-1671, Pittsburgh,
USA, 2005. The MIT Press.

[4] Ross J. Anderson. Security Engineering: A Guide to Building Dependable
Distributed Systems. John Wiley & Sons, Inc., New York, NY, USA, 2001.

[5] F. Baader, D. Calvanese, D.McGuinness, D. Nard, and P. F.Patel-Schneider.
The Description Logic Handbook:Theory, Implementation and Applications.
Cambridge University Press, 2003.

[6] S. Bajaj. Web Services Policy Framework (WS-Policy).
http://schemas.xmlsoap.org/ws/2004/09/policy, March 2006.

[7] M. Ball. OO jDREW: Design and Implementation of a Reasoning Engine
for the Semantic Web, 2005. Honours Thesis Project Report.

[8] Jon Barwise and John Etchemendy. Model-theoretic semantics. Founda-
tions of cognitive science, pages 207–243, 1989.

[9] N. Bassiliades and P. Gray. CoLan. A functional constraint language and its
implementation. Data and Knowledge Engineering, pages 203–249, 1994.

[10] Steve Battle, Abraham Bernstein, Harold Boley, Michael Gruninger, and
Richard Hull. Semantic web services framework (SWSF) overview version
1.0. Semantic Web Services Initiative (SWSI), 2005.

142 Bibliography

[11] S. Bechhofer, I. Horrocks, and D. Turi. The owl instance store: System de-
scription. In 20th International Conference on Automated Deduction (CADE
2005), number 177-181, Tallinn, Estonia, 2005. Springer.

[12] D.E. Bell and L.J. LaPadula. Secure computer systems: Unified exposi-
tion and multics interpretation. Technical Report ESD-TR-75-306, Mitre C.,
1976.

[13] T. Bellwood, S. Capell., et al. Universal Discovery, Discovery, and Integra-
tion (UDDI), 2004. Specification version 3.02.

[14] E. Bertino, C. Bettini, E. Ferrari, and P. Samarati. An access control model
supporting periodicity constraints and temporal reasoning. ACM TODS,
23(3), 1998.

[15] Matt Blaze, Joan Feigenbaum, and Angelos D. Keromytis. The role of trust
management in distributed systems security. In Secure Internet Program-
ming, pages 185–210, 1999.

[16] H. Boley. Object-Oriented RuleML: User-level roles, URI-grounded clauses,
and order-sorted terms. In Second International Workshop on Rules and
Rule Markup Languages for the Semantic Web (RuleML’03), pages 1–16,
2003.

[17] P.A. Bonatti, S. De Capitani Di Vimercati, and P. Samarati. An algebra for
composing access control policies. ACM Transactions on Information and
System Security, 5(1):1–35, 2002.

[18] M. Bonifacio, P. Bouquet, and R. Cuel. Knowledge nodes: the building
blocks of a distributed approach to knowledge management. Journal of
Universal Computer Science, 8(6):652–661, 2002.

[19] J. Bradshaw and A. Uszok. Representation and reasoning for daml-based
policy and domain services in kaos and nomads. In AAMAS ’03: Proceed-
ings of the second international joint conference on Autonomous agents
and multiagent systems, pages 835–842, New York, NY, USA, 2003. ACM
Press.

[20] Paul Buhler, José M. Vidal, and Harko Verhagen. Adaptive workflow = web
services + agents. In Proceedings of the International Conference on Web
Services, pages 131–137. CSREA Press, 2003.

[21] J. Calmet, A. Daemi, R. Endsuleit, and T. Mie. A liberal approach to open-
ness in societies of agents. In Fourth International Workshop on Engineer-
ing Societies in the Agents World (ESAW), London, 2003.

Bibliography 143

[22] J. Calmet, P. Maret, and R. Endsuleit. Agent-oriented abstraction. Revista
(Real Academia de Ciencias, Serie A de Matematicas), 98(1):77–84, 2004.
Special Issue on Symbolic Computation and Artificial Intelligence.

[23] C. Chen, V. Haarslev, and J. Wang. Las: Extending racer by a large abox
store. In Int.Workshop on Description Logics (DL05), number 200-207, Ed-
inburgh, Scotland,UK, 2005.

[24] E. Christensen, F. Curbera, et al. Web Services Description Language
(WSDL). W3C Web Services Activity, 2003. Specification version 1.2.,
W3C Technical Document.

[25] Yang-Hua Chu, Joan Feigenbaum, Brian LaMacchia, Paul Resnick, and
Martin Strauss. Referee: trust management for web applications. In Se-
lected papers from the sixth international conference on World Wide Web,
pages 953–964, Essex, UK, 1997. Elsevier Science Publishers Ltd.

[26] OWL Services Coalition. OWL-S: Semantic markup for web services.
Whitepaper Version 1.0., 2004.

[27] N. Damianou, A. Bandara, M. Sloman, and E. Lupu. A survey of policy
specification approaches. Technical report, Department of Computing, Im-
perial College of Science Technology and Medicine, 2002.

[28] K. Decker, M. Williamson, and K. Sycara. Matchmaking and brokering. In
the Second International Conference in Multi-Agent Systems (ICMAS’96),
Kyoto, Japan, 1996.

[29] J. Douceur. The Sybil Attack. In Proceedings of the 1st Intl Workshop on
Peer-to-Peer Systems(IPTPS¡¯02), 2002.

[30] SPI Dynamics. Webinspect, January 2003.

[31] T. Eiter, G. Gottlob, and H. Mannilla. Disjunctive datalog. ACM Trans. on
Database Systems, 22(3):364418, 1997.

[32] D. Fensel and C. Bussler. The web service modeling framework WSMF.
Technical report, Vrije Universiteit Amsterdam, 2002.

[33] T. Finin, J. Weber, G. Wiederhold, M. Genesereth, R. Fritzson, D. McKay,
J. McGuire, S. Shapiro, and C. Beck. Specification of the kqml agent-
communication language. The DARPA Knowledge Sharing Initiative Ex-
ternal Interfaces Working Group, 1992.

[34] Gerhard Fischer and Jonathan Ostwald. Knowledge management: Prob-
lems, promises, realities, and challenges. IEEE Intelligent Systems,
16(1):60–72, 2001.

144 Bibliography

[35] Charles Forgy. Rete: A fast algorithm for the many pattern/many object
pattern match problem. Artificial Intelligence, 19:17–37, 1982.

[36] N. E. Fuchs, S. Höfler, K. Kaljurand, F. Rinaldi, and G. Schneider. Attempto
controlled english: A knowledge representation language readable by hu-
mans and machines. In Reasoning Web, pages 213–250, 2005.

[37] M. Genesereth and R. Fikes. Kif: Knowledge interchange format version
3.0 reference manual. Technical report, Stanford University, Knowledge
Systems Laboratory, 1992.

[38] T. R. Gruber. A translation approach to portable ontology specifications.
Knowledge Acquisition, 5(2):199–220, 1993.

[39] Thomas R. Gruber. Model formulation as a problem-solving task:
computer-assisted engineering modeling, chapter Knowledge Acquisition
as Modeling, pages 105–127. John Wiley & Sons, Inc, NY, USA, 1993.

[40] M. Gudgin, M. Hadley, et al. SOAP Version 1.2 Part 1: Messaging Frame-
work, 2003. W3C Recommendation.

[41] V. Haarslev and R. Möller. Racer: A core inference engine for the semantic
web ontology language (owl). In the 2nd Int. Workshop on Evaluation of
Ontology-based Tools, pages 27–36, 2003.

[42] Marc Hammond. Virtual knowledge communities for distributed knowledge
management: A multi-agent-based approach using jade. Master’s thesis,
University of Karlsruhe and Imperial College London, 2004.

[43] James Hendler. Agents and the semantic web. Intelligent Systems,
21(2):30–37, 2001.

[44] D. Hirtle. TRANSLATOR: A TRANSlator from LAnguage TO Rules. In Pro-
ceedings of the Canadian Symposium on Text Analysis (CaSTA’06), New
Brunswick, Canada, 2006.

[45] Jason Hogg, Don Smith, Fred Chong, Dwayne Taylor, Lonnie Wall, and
Paul Slater. Web service security. scenarios, patterns, and im-plementation
guidance for web services enhancements (wse) 3.0. Microsoft Press,
2005.

[46] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and
M. Dean. SWRL: A semantic web rule language combining OWL and
RuleML. W3c member submission, World Wide Web Consortium, 2004.

Bibliography 145

[47] Ian Horrocks and Peter F. Patel-Schneider. SWRL: A semantic web rule
language combining OWL and RuleML. Technical report, The Rule Markup
Initiative, May 2004.

[48] D. Huang, Y. Yang, and J. Calmet. A knowledge-based security pol-
icy framework for business process management. In IEEE International
Conference on Intelligent Agents, Web Technologies and Internet Com-
merce(IAWTIC06), pages 154–161, Sydney, Australia, 2006.

[49] D. Huang, Y. Yang, and J. Calmet. Modeling web services policy with cor-
porate knowledge. In IEEE International Conference on E-Business Engi-
neering(ICEBE 2006), pages 216–223, Shanghai, China, 2006.

[50] Dong Huang. Semantic policy-based security framework for business pro-
cesses. In Proc. of the Semantic Web and Policy Workshop, Galway, Ire-
land, November 2005.

[51] Dong Huang. Semantic descriptions of web services security con-
straints. In International Symposium on Service-Oriented System Engi-
neering (SOSE2006), number 81-84, Shanghai, China, October 2006.

[52] Dong Huang and Shane Bracher. Towards evidence-based trust broker-
ing. In Proc. of the SECOVAL Workshop, held in conjunction with the 1st
IEEE/CREATE-NET SecureComm, Athens, Greece, September 2005.

[53] Michael N. Huhns, Munindar P. Singh, Mark Burstein, Keith Decker, Ed Dur-
fee, Tim Finin, Les Gasser, Hrishikesh Goradia, Nick Jennings, Kiran
Lakkaraju, Hideyuki Nakashima, Van Parunak, Jeffrey S. Rosenschein, Ali-
cia Ruvinsky, Gita Sukthankarand Samarth Swarup, Katia Sycara, Milind
Tambe, Tom Wagner, and Laura Zavala. Research directions for service-
oriented multiagent systems. Internet Computing, 9(6):65–70, Novem-
ber/December 2005.

[54] K. Hui, S. Chalmers, P. Gray, and A. Preece. Experience in using rdf
in agent-mediated knowledge architectures. Agent-Mediated Knowledge
Management (LNAI 2926). Springer-Verlag, pages 177–192, 2004.

[55] David Ingram. An Evidence Based Architecture for Efficient, Attack-
Resistant Computational Trust Dissemination in Peer-to-Peer Networks. In
Proceedings of the Third International Conference on Trust Management
(iTrust ’05), May 2005.

[56] Java Community Process. JSR 94: JavaTM Rule Engine API. Specification
available at: http://jcp.org/en/jsr/detail?id=94.

146 Bibliography

[57] JBoss. JBoss Rules. http://www.jboss.com/products/rules.

[58] Simon Johnston. Modeling security concerns in serviceoriented architec-
tures. Developworks, July 2005.

[59] Daniel Jurafsky and J. H. Martin. Speech and Language Processing: An
Introduction to Natural Language Processing, Computational Linguistics,
and Speech Recognition. Prentice-Hall, 2000.

[60] L. Kagal. Rei: a policy language for the me-centric project. Technical Re-
port HPL-2002-270, HP Labs, 2002.

[61] L Kagal. A Policy Based Approach to Governing Autonomous Behavior in
Distributed Environments. PhD thesis, Faculty of the Graduate School of
the University of Maryland, Baltimore County, USA, 2004.

[62] L. Kagal, J. Undercoffer, F. Perich, A. Joshi, and T. Finin. A security ar-
chitecture based on trust management for pervasive computing systems,
2002.

[63] Lalana Kagal, Tim Finin, and Anupam Joshi. A policy language for a perva-
sive computing environment. In IEEE 4th International Workshop on Poli-
cies for Distributed Systems and Networks, 2003.

[64] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. The
eigentrust algorithm for reputation management in p2p networks. In WWW,
2003.

[65] Steve Anderson Kelvin Lawrence, Chris Kaler. Web services security.
Technical report, OASIS, 2004.

[66] M. Kinateder and K. Rothermel. Architecture and Algorithms for a Dis-
tributed Reputation System. In P. Nixon and S. Terzis, editors, Proceedings
of the First International Conference on Trust Management, volume 2692 of
LNCS, pages 1–16, Crete, Greece, May 2003. Springer-Verlag.

[67] A. Kiryakov, D. Ognyanov, and D. Manov. Owlima pragmatic semantic
repository for owl. In Int.Workshop on Scalable SemanticWeb Knowledge
Base Systems (SSWS05), number 182-192 in 1, New York City, USA, 2005.
Springer.

[68] Vladimir Kolovski, James Hendler, and Bijan Parsia. Analyzing web access
control policies. In the 16th International World Wide Web Conference,
2007.

Bibliography 147

[69] Vladimir Kolovski and Bijan Parsia. Ws-policy and beyond: application of
owl defaults to web service policies. In 2nd international semantic web
policy workshop (swpw’06), 2006.

[70] R. Kraft. Research and design issues of access control for network services
on the web. In The 3rd International Conference on Internet Computing (IC
2002), pages 542–548, 2002.

[71] N. Li and J. Mitchell. Rt: A role-based trust-management framework, 2003.

[72] Emil C. Lupu and Morris Sloman. Conflicts in policy-based distributed
systems management. IEEE Transactions on Software Engineering,
25(6):852–869, November/December 1999.

[73] Frank Manola and Eric Miller. Rdf primer. Technical report, W3C Recom-
mendation, February 2004.

[74] Dragos Manolescu and Boris Lublinsky. Soa security.
http://orchestrationpatterns.com/files/SOASecurity.pdf, 2007.

[75] Pierre Maret and Jacques Calmet. Modeling corporate knowledge within
the agent oriented abstraction. In Proc. International Conference on Cyber-
worlds (CW’04), pages 224–231. IEEE Computer Society, 2004.

[76] Pierre Maret, Mark Hammond, and Jacques Calmet. Virtual knowl-
edge communities for corporate knowledge issues. In Proceedings 5th
International Workshop on Engineering Societies in the Agents World
(ESAW’04), volume 3451 of Lecture Notes in Computer Science, pages
33–44, Toulouse, France, October 22-24 2004. Springer.

[77] S. Marsh. Formalising trust as a computational concept, 1994.

[78] J. McCarthy. Applications of circumscription in formalizing common sense
knowledge. Artificial Intelligence, 28:89–116, 1986.

[79] Deborah L. McGuinness and Frank van Harmelen. Owl web ontology lan-
guage overview. Technical report, W3C Recommendation, February 2004.

[80] Craig McKenzie, Peter Gray, and Alun Preece. Extending SWRL to express
fully-quantified constraints. In Proc. of RuleML 2004 Workshop at ISWC
2004, Hiroshima, Japan, November 2004.

[81] M. Minsky. A framework for representing knowledge. In J. Haugeland, edi-
tor, Mind Design: Philosophy, Psychology, Artificial Intelligence, pages 95–
128. MIT Press, Cambridge, MA, 1981.

148 Bibliography

[82] R. Montanari, A. Toninelli, and J.M. Bradshaw. Context-based security
management for multi-agent systems. In Second IEEE Symposium on
Multi-Agent Security and Survivability, Philadelphia, USA, August 2005.
IEEE Press.

[83] L. Moreau, J. Bradshaw, M. Breedy, L. Bunch, M. Johnson, Kulkarni S., Lott
J., Suri N., and Uszok A. Behavioural specification of grid services with the
kaos policy language. In Cluster Computing and Grid 2005, Cardiff, UK,
2005.

[84] Tim Moses. extensible access control markup language (xacml) version 2.0
3. OASIS Standard, Feb 2005.

[85] B. Motik and R. Studer. Kaon2 a scalable reasoning tool for the semantic
web. In the 2nd European Semantic Web Conference (ESWC05), Herak-
lion, Greece, 2005.

[86] Boris Motik, Ulrike Sattler, and Rudi Studer. Query answering for OWL-DL
with rules. In Proc. of International Semantic Web Conference 2004, pages
549–563, Hiroshima, Japan, November 2004.

[87] A. Newell. The knowledge level. Artificial Intelligence, 18:87–127, 1982.

[88] OASIS. Oasis security assertion markup language (saml). Technical re-
port, http://www.oasis-open.org/committees/security, 2004.

[89] Mark ONeill. Architecting security for web services. JavaPro, August 2003.
Available from http://www.ftponline.com/channels/security/javapro/2003
08/magazine/features/moneill.

[90] Justin O’Sullivan, David Edmond, and Arthur H. M. ter Hofstede. Formal
description of non-functional service properties, queensland university of
technology. Technical report, http://www.service-description.com, 2005.

[91] J Pescatore. Web services: Application-level firewalls required. Technical
report, Gartner, Standford, 2002.

[92] Alun Preece, Stuart Chalmers, Craig McKenzie, Jeff Pan, and Peter Gray.
Handling soft constraints in the semantic web architecture. In Proc. of
RoW2006 Reasoning on the Web at WWW2006, Edinburgh, UK, 2006.

[93] Eric Prudhommeaux and Andy Seaborne. Sparql query language for rdf.
W3C Candidate Recommendation, 2006.

[94] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81132,
1980.

Bibliography 149

[95] Riccardo Rosati. The limits and possibilities of combining description logics
and Datalog. In Proceedings of the Second International Conference on
Rules and Rule Markup Languages for the Semantic Web (RuleML2006).
IEEE Computer Society Press, 2006.

[96] The Rule Markup Initiative. RuleML. http://www.ruleml.org/.

[97] S.Anderson. Web services trust language (ws-trust). Technical report,
http://schemas.xmlsoap.org/ws/2005/02/trust, February 2005.

[98] Ravi S. Sandhu and Pierrangela Samarati. Access control: Principles and
practice. IEEE Communications Magazine, 32(9):40–48, 1994.

[99] M Schmidt-Schauss. Subsumption in kl-one is undecidable. In the First Intl
Conference on the Principles of Knowledge Representation and Reasoning
(KR 1989), 1989.

[100] K. Seamons, M. Winslett, T. Yu, B. Smith, E. Child, J. Jacobson, H. Mills,
and L. Yu. Requirements for policy languages for trust negotiation. In POL-
ICY ’02: Proceedings of the 3rd International Workshop on Policies for Dis-
tributed Systems and Networks (POLICY’02), page 68, Washington, DC,
USA, 2002. IEEE Computer Society.

[101] J.-M. Seigneur, A. Gray, and C. D. Jensen. Trust Transfer: Encouraging
Self-Recommendations without Sybil Attack. In Proc. of the Third Interna-
tional Conference on Trust Management, LNCS. Springer, 2005.

[102] G. Shafer. A Mathematical Theory of Evidence. Princeton University Press,
1976.

[103] E. Sirin, B. Parsia, B. Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical
owl dl reasoner. Journal of Web Semantics, 2006.

[104] M. Sloman. Policy driven management for distributed systems. Journal of
Network and Systems Management, 2:333–360, 1994.

[105] Michael A. Smith, Andrew J. Schain, Kendall Grant Clark, Arlen Griffey, and
Vladimir Kolovski. Mother, may i? owl-based policy managementat at nasa.
In the OWLED 2007, 2007.

[106] Berners-Lee T., Hendler J., and Lassila O. The semantic web: A new form
of web content that is meaningful to computers will unleash a revolution of
new possibilities. Scientific American, 2001.

[107] Sotirios Terzis, Waleed Wagealla, Colin English, and Paddy Nixon. The
SECURE collaboration model. Technical report, Dept. of Computer and
Information Sciences, University of Strathclyde, 2003.

150 Bibliography

[108] Ioan Toma and Douglas Foxvog. Non-functional properties in web services.
Technical report, DERI, 2006.

[109] Alessandra Toninelli, Jeffrey Bradshaw, Lalana Kagal, and Rebecca Monta-
nari. Rule-based and ontology-based policies: Toward a hybrid approach to
control agents in pervasive environments. In Proceedings of the Semantic
Web and Policy Workshop, November 2005.

[110] D. Tsarkov and I. Horrocks. Fact++ description logic reasoner: System
description. In Int. Joint Conference on Automated Reasoning (IJCAR06).,
2006.

[111] A. Uszok, J. M. Bradshaw, R. Jeffers, A. Tate, and J. Dalton. Applying kaos
services to ensure policy compliance for semantic web services workflow
composition and enactment. In Third International Semantic Web Confer-
ence, pages 425–440, Hiroshima, Japan, 2004.

[112] Christopher D. Walton. Uniting agents and web services. AgentLink News,
1(18):26–28, August 2005.

[113] Max Weber. Economy and society. University of California Press, 1986.

[114] Gerhard Weiss. Multiagent Systems: A Modern Approach to Distributed
Artificial Intelligence. MIT Press, 1999.

[115] Timo Weithöner, Thorsten Liebig, Marko Luther, Sebastian Böhm, Friedrich
von Henke, and Olaf Noppens. Real-world reasoning with owl. In 4th Euro-
pean Semantic Web Conference 2007, 2007.

[116] T. Y. C. Woo and S. S. Lam. Authorizations in distributed systems: A new
approach. Journal of Computer Security, 2(2,3):107–136, 1993.

[117] Michael Wooldridge. Intelligent agents. In Weiss Gerhard, editor, Multi-
agent Systems: A Modern Approach to Distributed Artificial Intelligence,
chapter 1, pages 27–78. The MIT Press, 1999.

[118] G. Yang and M. Kifer. Flora-2: User’s manual, 2002.

[119] Bin Yu and Munindar P. Singh. An evidential model of distributed reputation
management. In AAMAS ’02: Proceedings of the first international joint
conference on Autonomous agents and multiagent systems, pages 294–
301, New York, NY, USA, 2002. ACM Press.

[120] J. Zhou, L. Ma, Q. Liu, L. Zhang, Y. Yu, and Y. Pan. Minerva: A scalable
owl ontology storage and inference system. In 1st Asian Semantic Web
Conference (ASWC 2006), number 429-443 in 1, Beijing, China,, 2006.
Springer.

List of Figures

1.1 A high-level view of the Parlay X SOA web services within the IMS
architecture . 11

1.2 Dependencies between Security Domains 13

2.1 WS-Policy Data Model . 26

2.2 XML Gateway . 31

2.3 Interceptor . 32

2.4 Interceptor with centralised Security Service 32

2.5 The Rule Type Hierarchy . 37

3.1 Use Case Scenario: Airport Security 50

3.2 Security Gateway . 51

3.3 Framework architecture . 52

4.1 Gracia Ontology . 69

5.1 Agent’s knowledge with their personal ontology and instances. . . 90

5.2 The simplified view of virtual knowledge communities of the e-business
scenario. 91

5.3 Agents who shared their knowledge within the community “Security”. 92

5.4 Knowledge evolvement of the agent “PDA” following the knowledge
exchange in the community “Security”. 93

5.5 Global Domain and Local Domain 98

5.6 Trust Broker Unit . 100

5.7 Registration of a new agent to a local domain 102

152 List of Figures

5.8 Registration of an existing agent to a newly elected trust broker . . 103

5.9 Creating signed evidence . 104

5.10 Gathering evidence from within the local domain 105

5.11 Gathering evidence originating from remote domains 106

5.12 Evaluation Process . 108

6.1 Workflow of Security Gateway . 116

6.2 Component Diagram of Security Gateway 118

6.3 Knowledge Management Tool . 120

6.4 Policy Management Tool . 121

C.1 Security Ontology . 137

D.1 Demo Application . 140

List of Tables

1.1 Regulatory Requirements . 3

2.1 Business Rule Example . 39

6.1 Reasoners . 114

Listings

2.1 Service Provider Policy . 26
2.2 Service Requester Policy . 27
2.3 XACML policy example . 29
2.4 RuleML Example . 41
2.5 SWRL Example . 42
4.1 KAoS Policy Ontology . 63
4.2 KAoS Policy Example . 64
4.3 Rei Policy . 66
4.4 Rei policy-Contraints Example . 66
4.5 Deontic Logic Example . 67
4.6 Formal Representation of Subjects and Targets 70
4.7 Formal Representation of Operations 70
4.8 OWL Ontology of WS Policy Assertation 71
4.9 Normal form of a policy expression 73
4.10 OWL Ontology for RBAC profile in XACML 75
4.11 XACML in Gracia Policy Format . 77
5.1 RDF/XML for the constraints . 80
5.2 Knowledge Integration of PDA agent 92
6.1 Prefuse Code Example . 120
A.1 WS-Policy in Gracia Policy Format 125
A.2 XACML in Gracia Policy Format . 131
B.1 Gracia Knowledge Base in OWL/SWRL 133

Index

.Net, 22
3G, 10

Adaptive Business Processes, 8
AIR, 101
AOA, 35, 86
ATB, 101

BASEL II, 5
BDI, 36
BPMS, 8
BPR, 9

CCTV, 49
CG, 101
CIA, 13
CIF, 80
CLR, 33
COBIT, 4
CORBA, 22
CPI, 9

DCOM, 22
DL, 57

ebXML, 8
ECA, 37
ECAE, 38
ePHI, 4

FOL, 58

GKB, 54
GPL, 53

Health and Human Services, 5
HIPAA, 4
HTTP, 1

IMS, 10
ISAPI, 31
ISDN, 10
ITS, 101
ITT, 101

JADE, 88
JAX-RPC, 31
JRE, 88

KAON2, 52
KAoS, 63
KIF, 35, 79
KQML, 35

LDAP, 31
LP, 57

MIS, 8

NGN, 10

OASIS, 2
OMG, 40
OWL-S, 54

Parlay X, 10
PDP, 28
PEP, 28
PKI, 31

INDEX 157

RACF, 14
Rei, 65
Rete-OO, 40
RPC, 21
RuleML, 40

SAML, 8
Sarbanes-Oxley Act, 2
Service-Oriented Archtecture, 1
SIP, 10
SPARQL, 115
SPICE, 11
SSL, 6
SSO, 8
SSS, 101
SWSF, 54

TBL, 101
TBU, 100
TRR, 101

UDDI, 21, 23

VKC, 18, 86

W3C, 2
WSDL, 21, 22
WSE, 32
WSMO/WSML, 54

XACML, 2
XKMS, 24
XML, 1
XML-DSIG, 24
XML-ENC, 24
XSLT, 40

158 INDEX

159 LIST OF PUBLICATIONS

List of Publications

D. Huang, Y. Yang, J. Calmet: A Knowledge-based Security Policy Framework
for Business Process Management, in Proc. of IEEE International Conference
on Intelligent Agents, Web Technologies and Internet Commerce(IAWTIC06), Syd-
ney, Australia, pp 154-161, 29 November-1 December 2006.

D. Huang: Semantic Descriptions of Web Services Security Constraints,
In Proc. of International Symposium on Service-Oriented System Engineering
(SOSE2006), Shanghai, China, pp 81-84, 25-27 October 2006.

D. Huang, Y. Yang, J. Calmet: Modeling Web Services Policy with Corporate
Knowledge, In Proc. of IEEE International Conference on E-Business Engineer-
ing(ICEBE 2006), Shanghai, China, pp 216-223. October 2006. (Best paper
candidate)

D. Huang: Semantic Policy-based Security Framework for Business Pro-
cesses. In Proc. of International Semantic Web Conference (ISWC2005), the
Semantic Web and Policy Workshop, Galway, Ireland, November 2005.

D. Huang, S. Bracher: Towards Evidence-based Trust Brokering, In Proc. of
the IEEE/CREATE-NET SECOVAL Workshop(SECOVAL 2005), Athens, Greece,
September 2005

	Introduction
	Introduction
	Research Motivation
	Regulatory Compliance
	Security in Adaptive Business Processes
	Service Platform for Mobile Network

	Security Challenges
	Authentication, Authorisation, Privacy and Audit
	SOA Security
	Security Aspects

	Requirements of the Security Gateway
	Policy Specification
	Trust and Knowledge Management

	Thesis Contribution
	Dissertation Outline

	Background
	XML Web Services and Security
	Web Services Protocols
	Web Service Security Standards
	Architectural Approaches

	Corporate Knowledge Management
	Agent-Oriented Abstraction

	Business Rules
	Business Rule Engine
	Semantic Web Rule Language

	Design Issues and Overview
	Introduction
	GRACIA - The Security Gateway Approach
	Threat Scenario
	Countermeasures and Approaches
	Case Study

	GRACIA Architectural Overview
	Gracia Policy Language
	Gracia Knowledge Base

	Summary

	Gracia Policy Language
	Introduction
	Related Work
	Logic-based Policy Specification
	Semantic Approaches

	Gracia Policy Language
	From GPL to WS-Policy
	From GPL to XACML

	Summary

	Gracia Knowledge Base
	Introduction
	Related Work
	Knowledge, Constraints and Rule Interchange Format
	Integration of Rules and Ontology

	Gracia Knowledge Base
	Hybrid Knowledge Base Approach
	Agent-based Knowledge Integration
	Example: e-Payment
	Trust Issues in Virtual Knowledge Communities

	Summary

	Implementation of the Security Gateway
	Introduction
	Reasoning and Querying in Rules and Knowledge Base
	Security Gateway
	Design of Gracia Policy Framework
	Implementation of Gracia Policy Framework
	Design and Implementation of Management Tools

	Evaluation
	Summary

	Conclusion
	Review of Achievements
	Future Work

	Gracia Policy Language
	Gracia Knowledge Base
	Security Ontology
	UML Diagrams
	List of Publications

