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Chapter 1

Introduction

The sheer amount of information that is available for users on the World Wide Web, in an
enterprise portal, or even on their own desktop is unmanageable without using effective and
efficient search engines. E.g., it would be nearly impossible to use the Web of today without
an efficient search engine, such as Google1.

Although the quality of search engine results has improved significantly in the last few years,
the results are still not adequate in many cases. The main reason is that current commercial
search engines are still based on the full-text search paradigm, i.e., they are still based on the
assumption that relevant documents must be somewhat similar to a user query on the syntactic,
textual level. Searching for relevant documents using a classical, syntax-based search engine
is therefore similar to a “prediction game” [vB98]. The users try to predict which terms are
included in relevant documents, and document providers try to predict which terms interested
users would use.

There are lots of situations when it is easy to “win” the prediction game, i.e., to use the proper
terms in our query. In this case existing search technology works well. This is usually the
case when we search for concrete, characteristic things, such as a specific person, product
or website, which has a distinguishing name. In many other cases, however, the syntactic
(dis)similarity does not reflect semantic (dis)similarity, and classical systems fail. This is es-
pecially the case when the searcher has a more abstract, research type of information need,
which is formulated using vague, higher level concepts2. Many relevant documents will not
contain those vague concepts directly but will be related only at a semantic level. Moreover,
some special queries, such as spatial or temporal queries, do not really fit into the term-based
paradigm. It is very hard to find documents relevant for the “in the XX. century” information
need by using simple keyword matching.

This problem is well-known in the information retrieval community. A possible solution to
solve it is to annotate resources with semantic metadata, which describes the meaning of the
document. Using this metadata it is possible to find also such relevant documents that are
syntactically not similar to the query terms.

Semantic metadata is usually specified using a controlled vocabulary, i.e., a finite set of care-
fully chosen terms. The motivation for constraining the set of vocabulary elements is to avoid
the ambiguity of unconstrained natural language. In the field of classical information retrieval

1http://www.google.com
2Such as: “Important political events during the Second World War”
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(IR), so called thesauri are used to specify the controlled vocabulary. Terms in a thesaurus
are normally structured using linguistic relations, such as narrower terms, broader terms, and
synonyms.

After Tim Berners-Lee coined the idea of the Semantic Web [BLHL01], ontologies – shared,
explicit specifications of a conceptualization describing a specific domain [Gru93] – became
popular. Ontologies together with semantic metadata form the basic infrastructure of the Se-
mantic Web vision. Ontologies define a controlled vocabulary in the first place, like thesauri.
Ontologies define vocabulary elements, however, on an abstract, semantic level. That means,
ontology elements are not terms any more but abstract notions, identified by language indepen-
dent, globally unique identifiers (URIs). Moreover, relations among ontology elements are not
necessary linguistic relations any more, instead arbitrary semantic relations are allowed. To
summarize, ontologies can describe a domain more precisely than a thesaurus, in a language
independent way.

In general, it seems compelling and intuitive that semantic metadata help improve the effec-
tiveness3 of search engines. After all, having high-quality semantic annotations, it seems to be
a trivial task to retrieve all semantically relevant documents to a query. Unfortunately, this is
not true in practice.

It is a very expensive, and time consuming task to develop a thesaurus. Therefore, the coverage
of a thesaurus is almost never complete, i.e., there will always be important terms that are not
included in the thesaurus, and therefore cannot be used in semantic annotations. On the other
hand, if we try to include all kinds of terms into the thesaurus, it will be soon too complicated
and large for practical use, and therefore it will fail one of its main goals, namely to reduce the
ambiguity of natural language.

If a thesaurus is already available, it is still an expensive and time consuming task to annotate
existing documents with the terms it contains. It will therefore often happen that important
annotations will be missing, and some of the annotations will even be wrong. These arguments
also hold for ontologies that provide an even more powerful, and thus more complicated, model
for knowledge representation than thesauri. Therefore, it is important to see that in the real
world, ontologies and semantic annotations are almost always imperfect in some way.

Considering these issues, it is not really surprising that in general, it cannot be shown that
thesauri improve the effectiveness of IR systems. On the contrary, systems operating solely
on thesaurus-based annotations are usually less effective than systems directly using document
texts [Cle91, Sal86]. The reasons are inadequate coverage and errors in annotations. Recent
research also shows, however, that the combination of thesaurus-based search algorithms with
full-text search algorithms can improve effectiveness in some domains[SRN04, Cro00].

In most of the state-of-the art ontology based systems it is silently assumed that ontologies,
when used in an IR system, automatically improve effectiveness. Based on the experiences
with thesauri, however, it is clear that this assumption cannot be accepted without further
validation. There is a hope, of course, that the assumption that ontologies help IR is not false.
After all, ontologies provide much more sophisticated means to precisely represent domain
knowledge. I.e., there is a possibility that the positive effects of using a precise, semantic

3It is important to distinguish between efficiency and effectiveness of an IR system. Efficiency means that the
searcher gets the results fast, effectiveness means that the quality of results is good.
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domain model in IR will outweigh the inherent negative effects of imperfection that cannot be
fully avoided.

Therefore, the main goal of this thesis is to validate the assumption that ontologies help im-
prove information retrieval effectiveness. Special attention is given to the issue of imperfection
in ontologies and semantic metadata. It is important to address this issue because, as classical
IR research on thesauri (i.e., on very simple ontologies) shows, imperfection has the potential
to invalidate the intuitively compelling assumption about the usefulness of ontologies for IR.

Another main concern of this thesis is the efficiency of ontology-based information systems.
Because of the increased representation power of ontologies, reasoning with such ontologies
has very high complexity. Moreover, ontology reasoners are yet immature, their performance
is not comparable with other well-established technologies, such as relational databases and
full-text search engines. It is therefore a very challenging task to keep the good efficiency of
current IR systems, while at the same time improving their effectiveness using ontologies —
which is the ultimate goal of this research.

The main issues toward these goals are the following:

Place of ontologies in the IR process: It has to be analyzed where ontological knowl-
edge can be exploited during the IR process.

Methodology for using ontologies in an IR system: This work aims to provide a
holistic solution for the application of ontologies in IR systems.

Representing imperfect domains: Not only ontologies and semantic metadata can be
imperfect but also our mental model (conceptualization) can be vague, uncertain and
subjective. This latter kind of imperfection, which I term domain imperfection, has to be
considered as well. This work gives solutions for representing domain imperfection in
the temporal dimension.

Scalability issues: Reasoning in ontologies using expressive formalisms, such as OWL-
DL4, is highly complex. In classical IT terms ontology reasoning is non-tractable5. On
the other hand, scalability (in terms of the size of the documents) is very important, espe-
cially in Web information systems, where millions or even billions of documents have to
be managed. Because of the theoretical worst-case complexity of ontology reasoning it
is very unlikely that solutions using solely ontology reasoning for information retrieval
will scale so well that they can be used in large web information systems. This work
therefore examines the possibility of reusing existing, scalable IR technology as part of
an ontology-based information system.

Evaluation of IR effectiveness: As mentioned, the statement that ontologies help im-
prove IR effectiveness cannot be accepted without further evaluation because of the issue
of imperfection. Therefore, it has to be experimentally evaluated whether in general it
is possible to improve IR effectiveness using ontologies. In this work, evaluation is con-
ducted using the classical and well-accepted evaluation measures of IR — precision and
recall. It is also of interest whether higher quality, more precise ontologies provide better

4OWL-DL is the ontology standard promoted by the W3C at the time of writing of this thesis. See [Mv04]
5Reasoning in OWL-DL is NEXPTIME-complete, while already NP-complete problems are usually considered

as non-tractable
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results than simpler and thus less precise ontologies. A positive result would motivate
using more complex, more powerful ontology formalisms, such as OWL-DL, instead of
simpler, light-weight ontologies, or thesauri.

The main idea of this thesis is to solve these issues by the combination of classical IR tech-
nologies with ontology-based reasoning. In particular, I propose to use ontologies only in those
IR process steps where scalability is not an issue. This is the case during the indexing phase
where semantic metadata of documents are automatically generated. For the query execution
itself, I propose to use classical full-text search to retrieve documents. This technology has
been proved to scale well even to the size of the whole Web6.

The basic assumption underlying this approach is that it is possible to create such document and
query representations so that the classical, syntax-based ranking algorithms yield semantically
meaningful results.

The thesis is organized as follows:

In Chapter 2, I introduce the fundamentals of the areas information retrieval and ontologies,
which are needed to understand the discussions in this thesis. In Chapter 3, I analyze why full-
text search engines fail to deliver high-quality results for some types of queries. Based on this
analysis, I identify the major requirements that an ontology-based information system should
fulfill. Based on these requirements, I analyze the state of the art in ontology-based information
systems in Chapter 4. In Chapter 5, I provide a high-level overview of my approach that meets
the identified requirements. In the later chapters, I address specific issues of my solution in
more detail.

Chapter 6 introduces a fuzzy temporal model to represent imperfect temporal information,
and also discusses how to create such intervals. Chapter 7 identifies the requirements of an
ontology formalism that can be used in my system, and describes the ontology formalism that
I used during my work. Chapter 8 discusses how to use the background knowledge stored
in the ontology to create high quality semantic annotations. Chapter 9 shows how exploit
those semantic metadata to improve the effectiveness of search: how to expand the user query;
and how to combine the results of various queries to diminish the negative effect of ontology
imperfection.

For an ontology-based information system, an ontology is always needed. Chapter 10 intro-
duces a methodology to create an ontology. This methodology is based on the experiences
during the VICODI EU project, and it is customized for the needs of ontology-based informa-
tion retrieval.

The ideas presented in this thesis were implemented in a research prototype. Chapter 11 dis-
cusses some implementation issues and also introduces the prototype system from the end-
user’s prespective. Chapter 12 evaluates the ideas presented in the previous chapters by dis-
cussing the experiments made using the prototype implementation of the information system.
Finally, Chapter 13 concludes this thesis and provides some outlook.

6Consider e.g., Google.
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Chapter 2

Fundamentals

The two main areas of this thesis are information retrieval (IR) and ontologies. This chap-
ter introduces the fundamentals of these two areas, which are needed to understand the later
discussions.

2.1 The IR process

To effectively support information retrieval, one must first understand how users search, i.e.,
the IR process must be analyzed.

Figure 2.1 shows a typical IR process. At the beginning, the user would like to satisfy some
abstract information need. She or he has to formulate a query representing this information
need (or part of it), which can be executed by the system. This query is submitted to the system.
The system itself is free to automatically transform (usually expand) the query, if needed.

The IR system does not usually operate on the physical documents themselves but rather on a
representation of the documents in a specific information model. This representation is created
during a document indexing step. Finally, the document representations are matched against
the query, and the matching representations are ranked according to an algorithm, and returned
to the user. The result list normally contains a user friendly summarization of the document,
which is generated from the document representation stored in the system. Based on this sum-
mary, the user can easily proceed to the physical document (if it is available in the system).

There are many different ways to represent documents and queries in an IR system, and it is not
necessary that document representations and the query representation use the same information
model. E.g., in classical Boolean retrieval [BR99, pp. 25–27], the document is represented as
a flat list of terms, and the query is a logical formula over the query terms. There are many
other models, however, which represent the query and the documents in the same information
model. E.g., the vector space model (VSM) [BR99, pp. 27–30] represents both documents and
queries as weighted lists of terms. If the query and the documents are represented in the same
model, the matching and ranking step is usually implemented by defining a suitable similarity
measure on the information model. The result is the list of documents that are most similar to
the query according to this similarity measure. The list is ranked by the similarity score of the
documents.
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Information system

Documents

Document
representation

Transformed
query

User
query

Information
need

Matching
Ranking

index formulate

transform

get ranked results

Figure 2.1: The information retrieval process

While the indexing step usually happens only once, and the document representations are
cached in the IR system, the “formulate query–execute–examine results” cycle normally hap-
pens many times. Typically, users do not know their information need exactly. Instead, the in-
formation need evolves during the search process, based on the information the user sees during
her or his search. Bates coined the term “berry picking” in her seminal works [Bat90, Bat89]
to describe the behavior of a typical user during the search process. The metaphor refers to
the process where users formulate many simple, possibly semantically independent queries,
which describe only parts of their complex information need. Moreover, users also jump be-
tween different information sources. In other words, they collect small pieces of information
(the berries) in the forest of information systems. Additionally, Bates also noted that a typical
search process continually evolves, i.e., the information need of the users changes based on
the documents they viewed during the process. E.g., a user can start with the information need
“Events of the Russian Revolution” but she or he can get fascinated by one of the key figures
of this event, and end up with searching for details about this person.

2.2 Data retrieval vs. information retrieval

It is important to see the difference between classical data retrieval (which happens, e.g., in
database management systems) and information retrieval.

In information retrieval the usual assumption, which is validated by everyday experience, is
that most users cannot formulate their information need precisely in form of a query. There
are many reasons for it. First, as was described above, users are often not sure about their
information need. Second, it is very common that users do not know the query formalism that
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well. This problem can be solved by educating the users. Further, in many cases users are
simply not ready to invest a bigger amount of time to formulate a complex, precise query but
specify only a rough approximation of their real information need. They hope that the query
representation is “close enough” to their information need, so that the system will provide
meaningful results, and thus they save time by avoiding the tiring mental process of formulating
a complex query. Some recent studies analyzing the logs of major search engines show that the
average query submitted by users contains only two or three query terms [JP01, SJ04]. Finally,
it is also possible that the query formalism itself is not powerful enough to faithfully represent
the information need.

Based on this discussion, it is easy to see that in most cases one IR query is only an approxima-
tion of the real information need. It is therefore even theoretically not possible to provide the
“perfect” answer(s) to a query but rather a set of possibly good answers is needed. On the one
hand, we need to consider partial matches, or similarity between the query and the candidate
resources in the repository. On the other hand, the answers should be ranked according to the
probability that they are relevant to the original, ill-defined information need.

This is a fundamental difference between information retrieval and data retrieval in databases.
In the latter case, it is assumed that the query perfectly describes the information need of the
user (or a program), and therefore the perfect set of answers can be returned. Here, ranking
of the answers is not needed, as each and every answer that matches the query is completely
relevant to the original information need. There is a recent movement to integrate the merits
of IR and database systems [AYCR+05]. Researchers strive to keep the possibility of asking
structural queries but provide efficient ranking of results at the same time. It is questionable
today, however, whether it is possible to meet these goals in one system.

2.3 Full-text IR and the vector space model

The state of the art in IR is still full-text search today. Many of the popular systems use some
kind of term based information model. In these models documents are represented as some
structure of terms. A term is usually a word in the document but it can also be a phrase, or any
other character sequence, such as a URI.

One of the most popular term-based information models for document and query representation
in IR systems is the vector space model (VSM) [BR99]. This model represents both documents
and queries as a weighted set of terms. The basic assumption underlying the model is that the
terms are independent of each other, i.e., if there are t terms in the whole document repository,
one term represents one dimension in the abstract t-dimensional term space. This means,
each document representation is a t-dimensional vector ~dj , where the ith element of the vector
represents the weight wi,j of the term ti in document dj . The query vector ~q is interpreted
similarly.

Using this metaphor of a t-dimensional space, the similarity between two representations is
calculated in this model using the cosine metric in Eucledian spaces:
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sim(dj, q) =
~dj · ~q∣∣∣~dj

∣∣∣ · |~q| (2.1)

=

∑t
i=1 wi,j · wi,q√∑t

i=1 w2
i,j ·
√∑t

i=1 w2
i,q

(2.2)

There are many different ways to calculate the wi,j weights of the terms but practically all of
the state-of-the-art systems using the VSM use some variation of the TF/IDF heuristic. TF
stands for term frequency, IDF stands for inverse document frequency. Informally, the term
frequency counts how many times a term appears in a document. The document frequency of
a term counts in how many documents a term appears in the document collection. The inverse
document frequency is the inverse of this number. The TF/IDF heuristic states that the term
weight is related to these two frequencies, i.e.,

wi,j = TF · IDF (2.3)

As term frequency value it is usual to use the fi,j relative frequency of a term, i.e.,

fi,j =
Fi,j

maxlFl,j

(2.4)

where Fl,j denotes the absolute frequency of the term tl in document dj . The inverse document
frequency idfi of term ti can be calculated as

idfi = log
N

ni

(2.5)

where N denotes the total number of documents in the system, and ni denotes the number of
documents where term ti appears.

These formulas for calculating the term weights represent just one possible way. In prac-
tice, almost every IR system applies its own heuristic for calculating the term weights. These
heuristics usually always include the relative frequency and the inverse document frequency of
terms in some way but sometimes they also consider other metrics. E.g., the OKAPI TF score
[RWB99], which provides the best results in IR experiments, also considers the length of the
actual document, and the length of the average document in the repository.

Although the term independence assumption, which underlies the VSM, clearly does not hold
in the real world1, the model still produces surprisingly good results. Although there are lots
of other, more complicated, term-based IR models available, the results of VSM is comparable
with the results of more complicated models. On the other hand, the VSM is very simple,
easy to comprehend for users, and it is easy to compute the similarity scores. That explains its
popularity.

1E.g., the words“computer” and “network” are more likely to appear together in a document, than the words
“computer” and “lunch”.
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2.4 Efficiency and Effectiveness

It is important to clarify some IR terminology, which is frequently used in the literature, and
which will also be used in this work. Generally, there are two concerns of an IR system.
First, it should provide good results, which fulfill the information need of the user. If a system
fulfills this goal, we say it is effective, or it performs well. Therefore in the area of IR, the
word effectiveness always refers to the quality of results. In many cases, the word performance
is also used to refer to the quality of results. To avoid confusion with the word performance
referring to the execution speed of a system, I will use the phrase retrieval performance instead.
This terminology is also common in the IR literature.

The other concern of an IR system is that it should provide high-quality answers fast. Nowa-
days, users are not ready to wait for a long time to get the results of the system. If the user
abandons an IR system because it is too slow, it does not matter how good the results are the
system would otherwise provide. If a system provides its answers fast, we say it is efficient.
During this thesis, I will also use the word performance to denote the speed of a system, i.e.,
its efficiency. This is usual in most areas of computer science.

Clearly, the ultimate goal of IR research is to provide information systems that are both effec-
tive and efficient.

2.5 Representing background knowledge

2.5.1 Thesauri

Besides various term-frequency heuristics, another way to improve search effectiveness is to
incorporate background knowledge into the search process. The IR community concentrated
so far on using background knowledge expressed in the form of thesauri [BR99, pp. 170–173].
Thesauri define a set of standard terms that can be used to index and search a document col-
lection (controlled vocabulary) and a set of linguistic relations between those terms. Typical
linguistic relations are the “narrow term” or “hyponym”, and the “broader term” or “hyper-
nym” relations. Examples of thesauri are the HASSET thesaurus2 (Humanities and Social Sci-
ence Electronic Thesaurus), and the GEMET thesaurus3 (GEneral Multilingual Environmental
Thesaurus).

Probably the most famous thesaurus is the Wordnet4, which defines linguistic relations for the
whole English language. Wordnet, however, is also called an “ontology” sometimes because
it defines the relations between so-called “synsets” — defining a specific meaning of a word
— and not between simple terms. This also shows — as we will see soon — that the notions
“thesaurus” and “ontology” are not clearly defined, and the borders between the two notions
are fuzzy.

2http://www.data-archive.ac.uk/search/hassetSearch.asp
3http://www.eionet.eu.int/gemet
4http://wordnet.princeton.edu
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2.5.2 Ontologies

A more powerful way to represent background knowledge about a domain than using the-
sauri is to use ontologies. Ontologies form the basic infrastructure of the Semantic Web
[BLHL01].

Originally, ontology was a philosophical science defined as the “study of existence, of all the
kinds of entities — abstract and concrete — that make up the world.” [Sow00]. Intuitively,
the science of ontology defines the domain of discourse we can make statements about, i.e., it
defines the predicates of a logical formalism. In other words, ontology connects the abstract
formulas of a logical formalism with the real world.

The fundamental question of ontology is: “What is there?”. The simplest answer “Every-
thing” is useless, and therefore different ontological theories of various philosophers provide
different categorizations of “things” that exist in the world. These categorizations normally
specify a tree, starting with the most abstract category of THING or BEING, and defining a
hierarchy of categories. In this hierarchy each member of a subcategory is also a member of
its supercategory (normally referred to as an “is-a” relation in computer science).

In the area of knowledge representation, researchers use the definition of Gruber [Gru93],
which defines an ontology as a “specification of a conceptualization”. Note that here an on-
tology is a concrete artifact and not an abstract science any more. Therefore in the context of
knowledge representation it makes sense to speak about “an ontology” or “ontologies”.

As everyone can feel, this definition of Gruber is quite general, which caused a lot of confusion
about what the word ontology really means. As the idea of the Semantic Web became more
and more popular among researchers, the word “ontology” became more and more popular,
too. As a result of that, today almost every knowledge representation formalism is called “an
ontology”, which actually renders this word empty.

Interestingly, this observation, i.e., that “many knowledge representation formalisms can be
called as an ontology” is explicitly stated in [SW01], where also a summary of existing for-
malisms is given, which were considered as an ontology in one or more scientific publications.
I cite this summary in Figure 2.2. As can be seen, formalisms that are compatible with Gru-
ber’s definition range from catalogs (simple list of things) to logical formalisms that support
automatic reasoning. A very similar categorization is given in [McG03].

Because the original definition of an ontology is so vague, I felt it useful to provide a slightly
more restrictive, and thus more precise, definition of what an ontology is.

Definition (Ontology). I consider in this thesis as an ontology any formalism with a well-
defined mathematical interpretation, which is capable at least to represent a subconcept tax-
onomy, concept instances and user-defined relations between concepts.

2.5.3 Ontology modeling constructs

In a typical ontology meeting my definition there are the following modeling constructs:
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An ontology is:

a catalog

a set of 
text files

a collection 
of taxonomiesa glossary

a thesaurus a collection 
of frames

a set of general 
logical constraints

without 
automated reasoning

with 
automated reasoning

complexity

Figure 2.2: Different types of ontologies

• Elements of the knowledge domain are called instances. Examples are
NAPOLEON BONAPARTE or GEORGE W. BUSH.

• Sets of instances are called concepts. Examples are PERSON or COUNTRY. Instances of
a concept are connected to a concept via the “is a” or “instance of” relation. In contrast
to object oriented programming, most ontology languages do not require that an instance
belongs to exactly one concept. E.g., NAPOLEON BONAPARTE can be the instance of
EMPEROR and GENERAL at the same time.

• Concepts can be organized into a “concept hierarchy” or “concept taxonomy” via the
“subconcept of” relation. E.g., EMPEROR can be modeled as a subconcept of PERSON.
A subconcept of relation is only valid formally if all instances of the subconcept are also
instances of the superconcept5. In our case, all emperors are persons, therefore it is a
correct subconcept relation. An example for a formally invalid subconcept relation is the
Politics → Elections relation6 where an election is not a “politics” but rather belongs to
the politics topic. The requirement of the formality of the subconcept relations is one
of the major differences between ontologies as I understand them and other less formal
structures such as thesauri.

• Concepts can be connected via relations. E.g., two PERSON concepts can be connected
via the MARRIEDWITH relation. Many ontology languages support only binary rela-
tions, i.e., relations that connect exactly two instances.

5This definition represents an extensional interpretation where the definition of the subconcept relation is based
on the instances, i.e., on the extensions of the participating concepts. An intensional definition of the subcon-
cept relation is also possible that is based on the logical definition of the concepts. In this case, the definition
of the subconcept should logically include (imply) the definition of the superconcept. These two kinds of
definitions define the same subconcept relation.

6taken from www.yahoo.com
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• Attributes containing data values can be defined on concepts. E.g., the HEIGHTINCM

attribute can be defined on the concept PERSON

• Sometimes attributes and relations together are termed as properties.

• Instances are connected via instances of relations of their concepts, i.e., via relation
instances. E.g., the instances NAPOLEON and JOSPEHINE can be connected via an in-
stance of the MARRIEDWITH relation.

• Attribute values can be specified on instances. E.g., the value of the HEIGHTINCM

attribute on the instance NAPOLEON would be 168.

• Properties (relations and attributes) can sometimes have subproperties. The validity cri-
teria for the subproperty relation is similar to the subconcept relation: an instance of the
subproperty should be always a valid instance of the superproperty. E.g., we can define
the LIVESWITH relation as a superproperty of the MARRIEDWITH relation.

• Many ontology formalisms separate the concepts, instances and properties from each
other. I.e., if something was modeled as a concept, it cannot be a property or an instance
in the same ontology. Sometimes it is useful, however, if some entities can be instances,
concepts or properties at the same time. E.g., an APE is an instance of the SPECIES

concept but at the same time the concept of the AMY, THE APE7 instance. If an entity
may play different roles in an ontology formalism, we say that the formalism supports
metamodeling.

• Ontology formalisms work with abstract entities, which are identified by unique, lan-
guage independent identifiers (in many case URIs). It is therefore a common practice to
define a separate lexical layer in the ontology, which provides language-dependent la-
bels and their synonyms for the specific abstract ontology entities (see Figure 2.3). E.g.,
the instance URN:ONTOLOGY:NAPOLEON_I can have the label “Napoleon Bonaparte”
and the synonyms “Napoleon I of France”, “Napoleon I” etc. Using this technique it
is also possible to define different lexical layers for different languages, while reusing
the same abstract ontology structure. Usually, also some informal description of the
ontology entities (documentation) is stored in the lexical layer.

The lexical layer has two very important roles. First, it makes it easier for humans to
browse the ontology. Second, it is crucial for automatic mapping of natural language
texts to ontology elements.

2.5.4 Semantic annotations

The usual way to use ontologies and thesauri in IR is to annotate documents with the ele-
ments of the ontology (or thesaurus). This annotation is usually called semantic annotation or
(semantic) metadata. I will also use these terms interchangeably in this thesis.

7Amy, the ape who could communicate using sign language, is one of the main characters in Michael Crichton’s
famous novel, Congo.
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lexical layer

language-independent
semantic core

urn:ontology#Napoleon_I

English German

...

“Napoleon Bonaparte”

“Napoleon I”

“Napoleon I of France”

“Napoléon, Kaiser der Franzosen”

“Napoléon I.”

“Napoléon Bonaparte”

Figure 2.3: Semantic core and lexical layer in ontologies

2.6 Summary

In this chapter I introduced the fundamentals of information retrieval and ontologies that are
necessary to follow the discussion in later chapters. First, I analyzed the information retrieval
process and discussed the difference between information and data retrieval. Later, I intro-
duced the vector space model and the popular TF-IDF heuristic to calculate similarity between
document representations in this model. I also clarified the notions of efficiency and effective-
ness.

In the remaining part of the chapter, I introduced ontologies. First, I gave a more precise
definition of an ontology than the most cited definition of Gruber. Later, I analyzed the usual
structure of an ontology fulfilling this definition.

13





Chapter 3

Problem analysis

In this chapter, the causes are analyzed why full-text search fails on specific kinds of searches
and how ontologies could help to solve these problems. I will show how the possible imperfec-
tion of ontologies makes the claim that ontologies help improve the efficiency of information
retrieval unacceptable without thorough evaluation. I also identify other crucial features, such
as scalability and user friendliness, that an ontology-based information retrieval system, which
strives to solve the deficiencies of full-text search, should fulfill. I formulate the identified
features of this chapter as formal requirements toward the new ontology-based system. These
requirements will serve as a basis for the discussion in later chapters.

3.1 Motivating scenario

To guide the problem analysis about the impact of ontologies on information retrieval and also
to motivate the use of ontologies in the information retrieval process, I will use the VICODI
system that was developed during the EU IST VICODI project with my active participation
[NDO05]. The VICODI system is a typical ontology-based information system and thus shows
most of the opportunities and problems of this kind of systems.

The goal of the VICODI project was to demonstrate the utility of the so-called visual contex-
tualization by building a web portal for European history1. The main idea of visual contextu-
alization is to visualize (a part of) the document context to make the document content more
comprehensible for the user2.

Although there were already some attempts to give a thorough definition for what a context
is (e.g., [Dey01]), these definitions are vague and not generally accepted. In the following
discussion I use the word “context” in its usual, informal meaning in the English language3.

In the case of the VICODI project, the spatial and temporal context of a document was visual-
ized. The context visualization was based on the semantic metadata that was semi-automatically
generated for the documents. Semantic metadata of the documents used an ontology of Euro-
pean history. In the eurohistory.net portal, which was developed during the project, we

1Available under http://eurohistory.net
2Using a well-known metaphor from knowledge management, knowledge is “information in context” [Rum01].
3According the Merriam-Webster dictionary, context is “the interrelated conditions in which something exists

or occurs”.
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displayed historical maps together with documents. The map reflected the actual historical pe-
riod of the document where important geographical and political regions were highlighted.

In addition, also navigational elements were generated, which allowed the user to initiate new
semantic queries simply by clicking on these elements. Terms in the text that were part of the
semantic metadata of the document were highlighted. These terms and also the elements of the
map were clickable and initiated so called context-sensitive queries. These queries operated
on the semantic metadata of documents in the repository. In addition to the element that was
clicked on, the whole semantic metadata of the actual document was considered. I.e., if the
user clicked on “Russia” on the map and the actual document was about “Napoleon”, she got
documents where both Russia and Napoleon appeared. In other words, the user got information
about Russia in the context of Napoleon. That is where the term “context-sensitive query” came
from.

For example, Figure 3.1 shows a document about the Battle of Trafalgar, which was visually
contextualized using the aforementioned techniques.

Figure 3.1: Visually contextualized document about the Battle of Trafalgar

To summarize, the eurohistory.net portal is an ontology-based information system,
where a complex, large ontology is used in various ways to improve the services provided for
the user. It is therefore a good case study to identify typical problems and merits of these kinds
of systems. I will use therefore the eurohistory.net portal and its domain — European
history, and history and news in general — in my examples throughout this thesis.

16

eurohistory.net
eurohistory.net


3.2 The prediction game

3.2 The prediction game

Van Bakel coined the term “prediction game” as a methaphor for the classical, text-based
search process [vB98]. A syntax-based search is successful if the user can successfully guess
the right terms that are contained in relevant documents, and only in relevant documents.
Providers, on the other hand, have to guess which terms will be used by their potential users
and use those in their documents or web sites4.

For some specific kinds of information needs, it is easy to “win” the prediction game, i.e.,
to find the proper search terms. Guha and his colleagues categorize searches as navigational
and research searches5. In navigational searches the users are interested to find a very specific
document (or web site) by providing phrases they expect to find in the document. In many
cases the user already knows the document, she or he only wants to find it again. In these
kind of searches it is normally easy to choose the right terms and those terms describe the
relevant document quite characteristically. E.g., when we search the web site of a company or
a celebrity, or we search for a scientific paper and we know the authors and the title. In such
navigational searches we can greatly profit from the impressive performance and simplicity of
full-text searching.

In research searches, on the other hand, the user would like to find any (mostly unknown)
resource about a specific object or topic. In this case, it is usually not trivial to guess the exact
terms that will show up in relevant documents. It is especially hard to find the right terms if
the user is unfamiliar with the topic, although she or he needs more information exactly in this
case. Therefore, we can say that for research searches the existing syntax-based technology is
less suitable and there is a big potential for improvements using semantic technologies. In this
thesis, I concentrate on these types of questions.

3.3 Full-text search

3.3.1 Problems with full-text search

Pure text-based search fails when a search term is not found literally in relevant documents.
The major cases when this happens are the following:

Vagueness of natural language: Synonyms, homographs and inflection of words can all
fool algorithms that see search terms only as a sequence of characters.

Indirectly relevant concepts: There are many cases, where specific concepts6 are not men-
tioned directly in the document text but they are still relevant for the document semanti-
cally. Clearly, current search engines cannot find those documents. High-level, vaguely

4There are various utilities and services to optimize keywords in web sites, such as
http://www.submitexpress.com/ or http://www.wordtracker.com/

5There are also other possibilities to categorize user search goals. E.g., Rose and Levinson [RL04] identify nav-
igational, informational and resource types of searches, whereas their navigational category is more restricted
than that of Guha et al. I use the categorization of Guha et al. because of its simplicity.

6Here I use the word concept in its usual, informal meaning and not as an ontology modeling construct that was
introduced in Chapter 2.
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defined abstract concepts like the “Kosovo Conflict”, “Industrial Revolution” or the “Iraq
War” are typical examples of this phenomenon. Other example of indirect concepts is
when users search for the “European Union” and they do not find relevant documents
containing only the words “Berlin” or “Germany”. Similarly, if users search for “cars”
they will not find documents mentioning only “BMW” or “VW”. These indirect con-
cepts can be explored only by exploiting semantic relations between concepts, such as
the “part Of” or the “is a” relations.

Numeric dimensions: In the case of numeric dimensions we are usually not interested in
exact matches but we expect that relevant documents contain a feature which is in a
specific interval. In this case, there is usually no syntactic matching among terms in
relevant documents. Good examples for such dimensions are time and space. If we
search documents about the “20th century” using exactly that phrase, we expect to find
also relevant resources containing the character sequences like “1945” or “1956” because
1945 and 1956 as numbers are in the time interval from 1901 to 2000. Clearly, those
relevant documents will not be found by simple keyword matching. Another example
is the query “near Karlsruhe”. In this case we are also interested in documents about
Ettlingen, Wissembourg etc. because the spatial coordinates are in a specific area around
Karlsruhe. Keyword matching fails in that case, too.

Most of the current systems can successfully handle various inflection forms of words using
stemming algorithms in most cases. However, it seems that the lots of heuristics and ranking
formulas using text-based statistics that were developed during classical IR research in the last
decades [BR99], cannot master the other mentioned issues.

3.3.2 Requirements inferred by full-text search problems

Ideally, an information system should provide a solution for all of the mentioned deficiencies of
full-text search engines. This also includes the deficiencies in the area of numeric dimension.
In this work, I will address all the mentioned problems, however, in the numeric dimension
area I will concentrate only on the temporal dimension and I ignore the issues with the spa-
tial dimension. Therefore, based on the discussion above, the following requirements can be
formulated.

Requirement (NL vagueness). An information system should handle the vagueness of natural
language.

Requirement (Semantic relations). An information system should exploit semantic relations
to find also relevant concepts that are not mentioned explicitly in the document text.

Requirement (Time dimension). An information system should support user queries concern-
ing the time dimension.

3.4 Ontologies for information retrieval

Apart from the usual statistical approaches, semantic annotation provides another way to im-
prove IR effectiveness. Ontology formalisms that meet the ontology definition in Section 2.5.2
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allow for a much more sophisticated representation of background knowledge than classical
thesauri. They represent knowledge on the semantic level, i.e., they contain semantic enti-
ties — concepts, relations and instances — instead of simple words. Moreover, they allow
for specifying custom semantic relations between entities and also for storing well-known
facts and axioms about a knowledge domain (including temporal information). This additional
expressive power (compared to thesauri) allows for the identification of the validity context
of specific relations. E.g., while in the context of the “Napoleon invades Russia” event the
“Napoleon – Russia” relation is valid, it does not hold in general7.

Based on this discussion, it seems that ontologies theoretically solve all of the mentioned
problems of full-text search.

3.4.1 Potential uses of ontologies in the IR process

I see the potential to exploit ontologies in the IR process (see Section 2.1) at the following
places:

Query formulation: The ontology as a kind of controlled vocabulary can support the user
in formulating the query. First, the user gets an idea of what is available in the document repos-
itory by checking the ontology. Second, she or he can also see the semantical relations among
the ontology entities. This helps her or him to navigate to potentially interesting ontology
entities and add them to the query.

Query expansion: Based on the semantic relations in the ontology, it is possible to find
ontology entities which could also be interesting for the actual query. Using the temporal and
spatial information in the ontology, it is even possible to consider the actual context of the
query and use only relations that are relevant for the actual context. For example, if the query
contains Napoleon and St. Helena, we should not use the relation connecting Napoleon with
Russia8. The query expansion can happen automatically but it is also possible to generate only
suggestions for the user for possible expansions of the query. In this case, the technique can be
considered as a kind of query formulation support.

Similarity measure: It is easy to see the potential of an ontology-based similarity mea-
sure. Compared to syntax-based similarity measures, ontology-based measures could exploit
the ontology structure and thus measure semantic similarity. E.g., the term list (“Lenin”, “Win-
ter Palace”, “1917”) has no syntactic similarity to the term list (“Vladimir Ilyich Ulyanov”,
“Russian Revolution”) but the two lists are semantically similar9.

7For example, Napoleon had nothing to do with Russia in the early years of his career.
8Napoleon was exiled to the island St. Helena in 1815 and he died there in 1821. He invaded Russia years

before, in 1812.
9The attack on the Czar’s Winter Palace in St. Petersburg in 1917 was one of the most important events of the

Russian Revolution. Vladimir Ilyich Ulyanov is the birth name of Lenin, the leader of the revolution.
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Indexing: If we have an ontology, it is useful to create semantic annotations as (part of)
document representations. This allows us to match documents with queries semantically,
instead of syntactically. E.g., while the term “Napoleon” is ambiguous, the ontology URI
#Napoleon_I clearly identifies Napoleon Bonaparte and avoids returning documents for
example of his son, Napoleon III.

In addition to using ontology elements as semantic annotations, we can use the knowledge
stored in the ontology to identify potentially interesting elements to include into the semantic
annotation, which are not explicitly mentioned in the text. E.g., if many events, locations and
politicians related to the Kosovo Conflict appear in a document and also the time context is that
of the Kosovo Conflict, we can safely assume that also the Kosovo Conflict itself is relevant for
the document. Thus, it should be added to the semantic annotation, even if the phrase “Kosovo
Conflict” does not appear in the document.

Basically it is the same idea that we described at query expansion: we use the knowledge stored
in the ontology to find relevant elements in the ontology to a specific set of already known
ontology elements, in context. In contrast to classical thesauri, ontologies allow us to represent
relations at the semantic level and to represent spatial and temporal context information of
specific relations. In many application domains, including history, spatial and temporal context
is very important and they are good indications whether a potential relation between ontology
entities is valid for a specific document, or for a specific query.

Visualization: If we have semantic annotations associated with the documents, we can
exploit them to display additional relevant information to a document. This makes it easier for
users to comprehend the content of the document. The already introduced eurohistory.
net portal is a good example for this approach. As was discussed, in the eurohistory.
net portal the spatial and temporal context of the document was visualized by displaying a
historical map relevant for the temporal context of the document. The most important countries
in the spatial context were colored on the map10 (see also Figure 3.1).

It is important to see that semantic metadata alone is usually not enough for visualization
purposes but the ontology itself has to be used, too. In our application example, because
visualization happens at the country level but semantic metadata can be also at the settlement
or region levels, additional inferencing is needed to determine the country (or countries) of
specific settlements and regions. E.g, if BERLIN is part of the semantic annotation and the
temporal context is the early 19th century, it will be inferred that PRUSSIA should be colored
on the historical map. In the early 21th century the relevant country would be GERMANY, of
course.

Visualization is a huge research field (see e.g., Chapter 10 of [BR99]) and a thorough exam-
ination of this field is out of scope of this thesis. Therefore, it is mentioned here only for the
sake of completeness.

Navigation: As we discussed, a typical information retrieval process is an iterative, evolv-
ing process. In other words, users usually submit many queries to collect all of the information
pieces that together satisfy their (possibly changing) information needs. In addition to context

10Such maps are called choropleth maps
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visualization, also navigational elements can be generated automatically. They support users
in reformulating their queries, based on the semantic metadata and information stored in the
ontology. E.g., in the eurohistory.net portal visualized elements were interactive. The
user could click on any of the visualized elements (such as on parts of the colorized maps),
which initiated a query that returned all resources about that element in the context of the ac-
tual document11. E.g., if the actual document was about Napoleon and the temporal context
of the document was the early 19th century, the user was able to navigate to resources about
Russia in the context of Napoleon and the 19th century simply by clicking on Russia on the
historical map.

3.5 Imperfection in background knowledge

As even thesauri solve many of the problems of full-text based systems, one would intuitively
expect that using thesauri significantly improves search effectiveness. As ontologies are even
more powerful, this assumption also applies to them naturally. Therefore, ontology-based
information systems are automatically accepted as superior to classical, syntax-based systems
by many researchers. Unfortunately, experience with thesauri shows that this assumption is
usually not true because of the imperfection of thesauri [Sal86].

Because our intuition that using background knowledge will automatically increase retrieval
effectiveness does not seem to be correct, it is a natural requirement that systems that claim to
achieve a gain in retrieval performance, should be evaluated.

Requirement (Evaluation). The claim that an information system using background knowl-
edge increases IR effectiveness cannot be accepted intuitively but must be evaluated.

3.5.1 Imperfect ontologies

One possible major cause for this failure in the case of thesauri is the “noise” of thesaurus
relations between thesaurus terms. As was mentioned before, linguistic relations, such as syn-
onyms, are normally valid only between specific meanings of two words. Thesauri, however,
represent those relations as generally valid between the syntactic form of words. E.g., while
“baby” and “infant” are synonymous in one specific context, the word “baby” has many other
meanings where it is not synonymous with “infant”12. Therefore, representing these words
as synonyms in a thesaurus would not be correct in all situations. This deficiency of thesauri
usually results in false positives in the search result.

Another, and perhaps the bigger problem is that the manual creation of thesauri and the an-
notation of documents with thesaurus terms is very expensive. Moreover, automatic creation
of high-quality thesauri fails because term co-occurrence, which is used by most statistical
methods to measure the strength of the semantic relation between words, is not valid from a
linguistic-semantical point of view [Kur05]. I.e., if two words appear together frequently, it

11It was assumed that the context of the document can be estimated by considering the semantic metadata of the
document.

12Such as when it is used to denote someone’s girlfriend.
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does not necessary mean that there is a strong relation between them. On the contrary, if two
words do not appear together frequently, it does not mean that there is not semantic relation
between them. E.g., [Kur05] found based on the analysis of the German and English Wikipedia
that members of word groups, such as “New York”, “Albert Einstein” or “hard drive”, appear
the most frequently together. In this case, however, there is no semantic relation between the
words of the word group. I.e., one cannot say that the word “new” is semantically related to
the word “york”, or the word “hard” is semantically related to the word “drive” and therefore
there should be some relation between them in a thesaurus. On the other hand, in the case of
words that did have semantic relations, such as synonymy13, hyponymy14 or meronymy15, the
co-occurence measure was not significantly higher than in the case of completely unrelated
words.

As a result, thesauri and annotations using them are often incomplete or erroneous, resulting
in decreased search performance.

As was discussed (see Section 3.4), ontologies have many advantages in comparison to classi-
cal thesauri and thus they have a bigger potential to improve IR results than thesauri. However,
ontologies (and semantic annotations using them) also suffer from the high costs of manual
creation, similarly to thesauri. Moreover, automatic creation of ontologies and semantic meta-
data is even a more challenging task than the automatic creation of thesauri. Because of this,
ontologies and semantic annotations are hardly ever perfect. Indeed, currently good quality
ontologies and semantic annotations are a very scarce resource. This claim is based on both
personal experiences during the VICODI project [NDO05] and on our analysis of available
ontologies and metadata on the present Web16.

During the VICODI project, a comprehensive ontology of European history was developed.
Although the eurohistory.net portal, which was the result of VICODI, showed some of
the potentials of an ontology-based information system, the quality of the results were plagued
by the lack of proper ontological information, due to the prohibitive cost of developing an
ontology fully covering such a wide domain.

The main lesson learned from the project is that it is very hard to switch from present full-
text based information systems to semantic based ones in one big step because the costs of a
high-quality, comprehensive ontology that would cover17 the whole content of the system are
prohibitive. Rather a gradual approach is needed, which combines the merits of statistical and
ontological approaches and thus provides a smooth transition between the two worlds. In such
an approach it would not be required to build a perfect ontology covering the whole domain in
one step.

In addition to the costs of ontology creation, another cause for ontology imperfection is the
limited expressive power of ontology formalisms. Although they are much more powerful
than thesauri, there are still many important aspects that cannot be modeled in present-day

13words with (almost) same meaning, such as “doctor” and “physician”
14words having an “is a” relationship, such as “car” and “BMW”
15words having a “part of” relationship, such as “car” and “wheel”
16E.g., http://www.daml.org/ontologies/, http://ontolingua.nici.kun.nl:5915/ and

http://protege.cim3.net/cgi-bin/wiki.pl?ProtegeOntologiesLibrary
17Under “ontology coverage” I mean the situation when an ontology contains the necessary elements to describe

the relevant entities of a document. In this case I say that the ontology “covers” the topic that is described in
the document, or simply the ontology “covers” the document.
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ontology languages18. Therefore, imperfection in ontologies and metadata should probably be
considered even in the long run, as the expressive power of ontologies cannot be significantly
raised without losing decidability of ontology reasoning.

Requirement (Ontology imperfection). An information system should tolerate the imperfec-
tion of ontologies and semantic metadata.

3.5.2 Domain imperfection

Even if there were enough resources in a project to build the perfect ontology and to seman-
tically annotate the resources without errors, in some cases our knowledge of the domain is
simply imperfect. I term this type of imperfection as domain imperfection. If we want to build
an ontology which faithfully reflects our domain knowledge, domain imperfection should also
be represented. If we encoded our imperfect knowledge as if it was perfect, we would clearly
distort our domain knowledge. This could potentially result in reduced retrieval performance,
at the end.

Requirement (Domain imperfection). An ontology should explicitly represent imperfection of
domain knowledge.

According to Smets [Sme96], the two main types of imperfection are imprecision and uncer-
tainty. Imprecision is related to the content of a statement: more than one world is compatible
with the information. Uncertainty, on the other hand, results from a lack of information about
the world, so that we cannot decide whether a statement is true or false. In other words, im-
precision is a property of the information itself, while uncertainty is a property of the relation
between the information and our knowledge about the world.

In our application scenario of history, domain imperfection appears mainly in the time dimen-
sion. Therefore, various types of temporal imperfection are reviewed below to motivate the
need for representing imperfect information in ontologies and also to identify the requirements
for a temporal model.

It is important to note that time modeling is a crucial feature in many other application domains,
not only in history. Examples are medicine, criminal and financial information systems. More-
over, every system that deals with news is inherently time dependent. After all, what is news
today, is history tomorrow. The importance of time modeling is shown by the numerous works
in the area of temporal databases [JDB+98, EJS98] and temporal reasoning [Vil94].

3.6 Time modeling in history

It is quite obvious that time modeling is a fundamental issue for modeling historical infor-
mation, since almost every historical statement is time dependent. Additionally, we identified
several specific features during the VICODI project that make capturing this information a
challenge. For one, time information in history is often uncertain or ill-defined. It is usually

18Such as belief, uncertainty, gradual truth values. In many cases also the form of logical axioms are limited.
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extracted from historical documents written in an imprecise and inherently vague style. Even
worse, important documents are often missing or contain contradictory information, so tem-
poral information about historical events is uncertain. Apart from the uncertainty of temporal
information, historical events are often abstract, so their definition is inherently subjective.
For example, we have found it impossible to precisely define the time span of the “Middle
Ages”.

Imperfection of historical temporal specifications is also shown by specifications such as “?
- 1640” (meaning that the beginning time of the event is unknown) or “ca. 1801” (meaning
circa, i.e., around this year).

I review now the unique features of historical temporal specifications in more detail.

3.6.1 Uncertainty

Sometimes information about a historical event can only be deduced from documents reporting
about related events. Often several documents state contradictory facts about some event. As
an example consider Stalin’s birth date. Officially for the USSR it is 1879-12-1219 but accord-
ing to church records his birth was registered on 1878-12-06. Historians are in disagreement
over which time specification is the right one.

In such a case we say that the temporal specification of the event is uncertain. Temporal
uncertainty belongs to Smets’ uncertainty category of imperfection.

3.6.2 Subjectivity

Many historical events are not exactly defined but are subjective. For example, “Early Renais-
sance”, “Russian Revolution” or “Industrial Revolution” do not have a clear definition, so it is
impossible to clearly state exactly when these events occurred. The temporal extent of these
abstract events sometimes also depends on the cultural background of the domain expert. E.g.,
the “Second World War” or the “Middle Ages” mean something different for experts from
Germany and Japan.

In this case it is intuitive for historians to talk about “beginning or end phases”, “process, de-
velopment and core periods” or “transition periods”, which clearly indicates that the traditional
model of having temporal intervals with definite start and end points does not meet the reality
in this case.

Temporal subjectivity belongs to Smets’ imprecision category of imperfection.

19For the sake of consistency and simplicity, I use the language independent ISO 8601 date format in this thesis.
This format has the YYYY-MM-DD pattern, where YYYY denotes the year, MM denotes the month as
number, and DD denotes the day. See e.g., [WW97] for more information.
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3.6.3 Vagueness

Historical time specifications are given at different granularity (years, months, days) and are
often defined vaguely (early morning, spring etc.). Hence, the temporal specification is not
known precisely but is vague.

The reader may also note that any temporal specification made in a natural language will
become vague if we refine the granularity of temporal axis sufficiently.

Temporal vagueness belongs to Smets’ imprecision category of imperfection, like temporal
subjectivity.

3.6.4 Combined aspects

There are also events exhibiting a combination of the aforementioned aspects of imperfection,
so the temporal model should be capable of representing all of them in a unified manner. E.g.,
in the statement “The Cold War ended in the late eighties” both subjectivity (Cold War) and
vagueness (late eighties) are present.

Requirement (Unified representation of temporal imperfection). A temporal model should
represent the uncertainty, vagueness and subjectivity aspects of imperfection in a unified frame-
work.

3.7 User Friendliness

An ontology-based system usually provides the possibility to formulate highly complex,
ontology-based queries which are very similar to full-fledged database queries, expressed in
SQL. These kinds of queries are seen as superior by many researchers to simple, full-text
queries. Intuitively, this claim seems plausible. While full-text query engines usually process
queries only as a bag of words, it is possible to express very complex relationships between
the query concepts with ontological queries. E.g., it is possible to express the following query:
“All battles of the Second World War in France where Charles de Gaulle participated”. A full-
text search engine would see only the words “battle”, “Second World War” and “Charles de
Gaulle” and it is impossible to represent the relations between the query concepts.

However, as mentioned in Section 2.2, it is a high cognitive load for users to formulate their in-
herently imprecise and uncertain information needs in some explicit form. This cognitive load
is further increased if a system forces users to formulate a database-like structured, complex
query. Most casual users are not able to formulate SQL queries and similarly they cannot for-
mulate ontology queries, either. Although the process of query formulation can be supported
by various tools and visualization, it is still much slower and more complicated than simply
typing some keywords in a text area. This was also our experience during the VICODI project:
our users wanted to search like they got used to search in Google — by simply typing some of
the keywords.
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Requirement (Natural language query). An information system should provide the possibility
for its users to start with a simple, natural language query.

After the user got the first results from the information system, new and innovative ontology-
based user interface techniques can be used to support the further browsing in the repository,
or query reformulation [Sto05]. The starting point, however, should be always easy and nat-
ural for the users, otherwise they will refuse using the system. Of course, for power users,
such as librarians or researchers, an advanced, ontology-based query interface can be provided
additionally, if needed.

3.8 Scalability and Interactivity

3.8.1 The importance of efficiency

The main concern of information retrieval in general, and in this thesis in particular, is the
effectiveness of IR, i.e., the quality of results. However, efficiency, i.e., the speed of the system
retrieving the results, should not be neglected, either. E.g., in the VICODI portal a very impor-
tant lesson learned was that if users are unsatisfied with the speed of the system, they do not
care about the quality of the results but leave the system and search for another, faster one.

In the case of the eurohistory.net portal, users were especially unhappy about the email
notification system we used in the case of time intensive tasks20. This all shows that nowa-
days most users expect information systems that they can use interactively. Therefore, during
this thesis I consider only interactive information systems and assume that for an interactive
application the maximum response time users are ready to tolerate is 10 seconds.

It is important to stress, however, that there are some processes of an information system which
need not to be interactive but can be processed offline. Such examples include in most cases
the automatic creation of metadata and the indexing of documents for full-text search.

An ontology-based information system should be scalable both in terms of ontology size and
the size of the document repository. For scalability, the latter is critical. Even in the Intranet
of a bigger company there are potentially millions of documents, which should be handled by
an information system. If we consider the whole Web, scalability is an even bigger challenge.
E.g., the index of the Google search engine contains over 8 billion documents21. In this thesis
I do not address the issue of a web search engine but the solution should be usable in a typical
company Intranet.

Requirement (Scalability). An information system should execute user queries interactively,
i.e., the response time should not be higher than 10 seconds. The system should be interactive
even with millions of documents in its repository.

20The system did not provide the result interactively but sent an email notification to the user when her or his
request was processed and the user could return to a specific web page to view the results.

21Source: http://de.wikipedia.org/wiki/Google
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3.8.2 Efficiency problems of ontology reasoning

Many of the existing ontology-based information systems foresee a central ontology man-
agement framework and most of the tasks in the information system are accomplished using
ontology reasoning or ontology navigation services provided by this framework [MSSV02,
HMSS01, VFC05]. These systems represent everything in the ontology: the background do-
main knowledge, the documents (resources), the document annotations, and the lexical infor-
mation of the ontology elements22.

This was also the case at the beginning of the development at the eurohistory.net portal.
We planned to use the KAON ontology management system [MMV02] as the basic infrastruc-
ture for the portal, which provides many features for ontology navigation, management, multi-
lingual labels, and light-weight reasoning. It turned out, however, that for some important tasks
the KAON system did not provide support, or its performance was not adequate.

In an ontology-based system it is a challenge to reach the required level of scalability because
ontology-reasoning is theoretically highly complex and it is usually not tractable23. More-
over, as ontologies are still a relatively young technology, existing reasoners and ontology-
management systems are still immature and do not use all of the caching and indexing tech-
nologies that are available for more established technologies, such as relational databases 24.

The fundamental problem using ontology reasoning for information retrieval is, however, the
lack of ranking support in ontology reasoning. Ontology queries yield a set of new facts,
without any ranking — similarly to results of database queries. Although it is possible to
calculate some ranking score after the results were retrieved, this approach does not scale, if
there are lots of intermediate results.

3.8.3 Experimental demonstration of the efficiency problems

To demonstrate the problems of using ontology reasoning for IR, I did some experiments by
running the typical task of full-text search on documents represented in the well-known vector
space model (see Section 2.3 and [BR99, pp. 27–30]). I used the PostgreSQL database25 on
one hand, with a highly optimized, simple schema to represent terms of documents according
to the vector space model. The schema was motivated by the relational implementation of the
Topic-based Vector Space Model (TVSM) [Kur04] and is shown in Appendix A.

My motivation to use a relational database (RDBMS) as one of the test systems instead of an
ontology reasoner was that most of the current ontology management frameworks use rela-
tional databases as their underlying infrastructure26. I.e., some ontology reasoning steps are

22Such as labels in the natural languages supported by the system, where there can be optionally many labels for
a language, representing all the synonymous descriptions of the abstract ontology entity.

23Sometimes not even decidable.
24Although caching of results is already used in some systems, such as Ontobroker

(http://www.ontoprise.de) or Pellet (http://www.mindswap.org/2003/pellet/)
25http://www.postgresql.org/
26Some other reasoners support only in-memory ontologies. However, such reasoners cannot handle large on-

tologies that do not fit in the main memory of the computer and therefore I do not consider those as a viable
alternative.
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translated to SQL queries on databases; others that cannot be expressed as database operations
are calculated in memory on the data returned by the SQL queries. Therefore, using a bare
RDBMS actually simulates a perfect ontology reasoner that executes all of the ontology rea-
soning tasks that are not expressible as SQL queries in zero time. In other words, during the
test I eliminated the possible negative effect of the yet immature implementations of ontology
reasoners. I could do this simplification because already the bare database technology exhibits
the main problem of ontology reasoning for IR, i.e., that ranking must be executed after re-
trieving intermediate search results. To simulate full-text search in a relational database, first
documents that contain at least one search term are returned and later the ranking scores are
calculated on-the-fly by the SQL query. The first step can be executed very efficiently because
database indexes on term and document ids can be used. If there are too many documents,
however, which satisfy this first condition, it is extremely expensive to keep all of the results in
the main memory and calculate the VSM scores afterward. To summarize the discussion, with
the following test I actually show that this deficiency alone is enough to render using RDBMS
and thus also ontology reasoning infeasible for IR on big document collections.

The other system participating in the test was my own full-text search engine based on the
Lucene framework27. Lucene in an open-source Java library which makes it possible to imple-
ment simple full-text search engines very easily. Lucene does not use any relational database
for storing the full-text index but it defines its own, highly optimized, file based index structure.
Its main feature in this context is that the calculation of ranking scores happens during query
execution.

During the test I run a full-text search on documents and both systems returned a ranked list
of relevant results. I was mostly interested in how the systems scale in terms of document
size (number of terms in a document), query size, and number of documents in the repository.
I executed the tests using a local PostgreSQL database installation and a local Lucene-based
Java search engine on the same machine and measured the execution time. The system I used
was a Pentium IV 2.8 GHz PC with 1 GB RAM. As I used a multi-tasking operating system28

for the tests, the exact execution time values are most probably not precise but the tendency and
the order of magnitude of the values should be significant. The results of the experiments are
shown from Table 3.1 to Table 3.4. The response time values that violate the SCALABILITY

requirement are marked.

As one can expect the response times are increased when the query size (Table 3.1), the repos-
itory size (Table 3.2), and the average document size (Table 3.4) grows. Concerning Table 3.3,
it is important to see that if the number of used terms in the whole repository increases, the
chance that a specific term appears in many documents decreases. This means, for the same
repository, and for the same query and document sizes, the more terms are used in the reposi-
tory, the fewer results will be retrieved. Clearly, less results can be retrieved faster. Therefore,
in this case the response times decrease as the number of terms increases29.

As can be seen from the tables, PostgreSQL response times violate the SCALABILITY require-
ment in many cases, even for moderate size repositories. On the other hand, Lucene had no
problems even when dealing with very big repositories.

27http://lucene.apache.org
28Windows XP Professional
29with a small exception on the Lucene side, where the response times are so small that they can be actually

considered as constant
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Table 3.1: Scalability in terms of query size

Average response time (ms)
No. of query terms PostgreSQL Lucene

5 1693 94
10 3047 125
50 285517 458

100 267274 620
500 331264 3354

1000 401251 5355

Constants
No. of docs 100000

No. of terms 10000
No. of terms/docs (max.) 1000

Table 3.2: Scalability in terms of repository size

Average response time (ms)
No. of docs PostgreSQL Lucene

100 73 172
1000 198 177

10000 1511 183
100000 17371 240

1000000 187244 865

Constants
No. of query terms 100

No. of terms 10000
No. of terms/docs (max.) 100

Table 3.3: Scalability in terms of term frequency

Average response time (ms)
No. of terms PostgreSQL Lucene

1000 2177 213
10000 1526 187

100000 99 177
1000000 94 203

Constants
No. of query terms 100

No. of docs 10000
No. of terms/docs (max.) 100

Table 3.4: Scalability in terms of document size

Average response time (ms)
Max. no. of terms/doc PostgreSQL Lucene

10 266 156
100 1521 193

1000 21742 213
10000 133115 479

Constants
No. of query terms 100

No. of terms 10000
No. of documents 10000
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This small experiment demonstrates that using the wrong technology for a specific task can
have catastrophic consequences when the repository size grows. Some of the ontology-based
systems that use ontology reasoning for retrieval do not experience these problems because
they work with a relatively small ontology, and with a small to moderate size of documents.
However, during the VICODI project, where we had to work with a big ontology, and a real-
size document repository, we experienced serious performance problems.

3.8.4 Combining ontology reasoning with other technologies

Based on the experimental results presented here, and our experiences in the VICODI project,
I can state that a system using exclusively ontology reasoning for all of its task including
information retrieval will not scale well in terms of the repository size.

A possible solution for this problem is if an ontology-based information system does not use
ontology reasoning for retrieval exclusively but combines various technologies (including on-
tology reasoning) to achieve good-quality results and to meet the scalability constraints. This
allows the system to use mature, highly optimized techniques to deliver specific standard in-
formation system services and use ontology reasoning only at places when it is suitable.

3.9 Feasibility

Ontology-based information systems always need an ontology and semantic annotations using
this ontology to be able to operate. As was discussed, it is very expensive to develop an
ontology manually. Still, it is possible to achieve because the interesting concepts and their
relations are limited in a specific domain. Moreover, there are some tools and systems in the
areas of ontology learning, such as Text2Onto [CV05], KIM [KPT+05], or OntoGen [FMG05],
which support users populating an ontology with new instances, or finding interesting concepts
and relations in a domain. These tools usually work by examining syntactic patterns in texts of
a document collection but they do not “understand” the text. Therefore, they can only support
manual ontology creation but cannot replace humans completely in the ontology engineering
process.

It is even more expensive than building ontologies, however, to manually annotate millions of
documents based on the ontology. While some very big companies can afford to pay full-time
employees in some limited, mission-critical domains to manually annotate documents, this is
not an option for most of the small and medium sized companies. Even the biggest companies
cannot afford to manually annotate all of the documents on their Intranet.

One of the biggest success factors of the classical full-text search was the fact that existing doc-
ument collections can be indexed completely automatically. Every approach that is feasible in
real life should also operate completely automatically, with the option, that the automatically
generated metadata can be reviewed and corrected manually, if needed. It is important, how-
ever, that the system outperforms full-text search engines even in the case when it uses only
completely automatically generated (i.e., non-validated) metadata, otherwise it is very hard to
show the utility of ontology-based approaches.
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Requirement (Metadata generation). An ontology-based information system should generate
the metadata needed for its operation completely automatically. Although manual correction
of metadata is allowed, the system should be evaluated using the automatically generated
metadata.

3.10 Summary

In this chapter I analyzed the causes why traditional full-text based search engines fail to
meet user expectations for research types of queries. I used the eurohistory.net web
portal as a motivating scenario for the discussion, together with its application domain, i.e.,
history. We have seen that theoretically thesauri and ontologies can solve most of the identified
problems and therefore it could be intuitively expected that using these artifacts should improve
IR results. Still, existing IR experience with thesauri shows that this is not necessarily the case.
I identified errors and missing information in thesauri and ontologies as the main possible cause
for this phenomenon on the one hand; and the missing capabilities of ontology formalisms to
precisely represent imperfect domain knowledge, on the other hand.

Later, I reviewed historical temporal specifications as a typical example for domain imperfec-
tion. I identified three aspects, namely uncertainty, vagueness and subjectivity, which should
be handled by a formalism suitable for representing imperfect temporal information.

Finally, I showed the importance of scalability and interactivity in ontology-based informa-
tion systems and identified automatic metadata generation as an important criterion for the
feasibility of any ontology-based information system.

For easier reference, a full list of identified requirements is shown in Figure 3.2.
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NL vagueness: An information system should handle the vagueness of natural lan-
guage.

Semantic relations: An information system should exploit semantic relations to find
also relevant concepts that are not mentioned explicitly in the document text.

Time dimension: An information system should support user queries concerning the
time dimension.

Evaluation: The claim that an information system using background knowledge in-
creases IR effectiveness cannot be accepted intuitively, but must be evaluated.

Ontology imperfection: An information system should tolerate the imperfection of
ontologies and semantic metadata.

Domain imperfection: An ontology should explicitly represent imperfection of do-
main knowledge.

Unified representation of temporal imperfection: A temporal model should rep-
resent the uncertainty, vagueness and subjectivity aspects of imperfection in a uni-
fied framework.

Natural language query: An information system should provide the possibility for its
users to start with a simple, natural language query.

Scalability: An information system should execute user queries interactively, i.e. the re-
sponse time should not be higher than 10 seconds. The system should be interactive
even with millions of documents in its repository.

Metadata generation: AAn ontology-based information system should generate the
metadata needed for its operation completely automatically. Although manual cor-
rection of metadata is allowed, the system should be evaluated using the automati-
cally generated metadata.

Figure 3.2: Identified requirements
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Chapter 4

State of the Art

In this chapter, I review the state-of-the art of ontology-based information systems based on the
requirements identified in the previous chapter. Currently ontology-based information systems
can be categorized into two groups.

Systems that focus on retrieving instances of a given ontology belong to the first group. These
systems are mainly useful in knowledge management where the users would like to access the
knowledge stored in the form of an ontology. Documents can also be used in such systems but
in this case the “one document – one ontology instance” assumption is used. Of course, this
assumption is valid only in some special domains, like in the case of web pages of a university
department, where one page describes a staff member of a university, or a research topic.
Although in our application domain this assumption does not hold, some of the problems are
also present in our domain, and some solutions can be reused.

The other group contains information systems that focus on document retrieval. In these sys-
tems, documents are annotated with many ontology instances, i.e., they do not have the “one
document – one ontology instance” assumption any more. This is also the case in our applica-
tion domain.

It is important to note that in the first group it does not make sense to consider ontology
imperfection because users browse the ontology itself. Therefore, if an ontology instance is
missing (or erroneous), there is no chance to notice or correct it. Moreover, semantic metadata
generation does not make sense, either, as semantic metadata is not needed in this case.

4.1 Systems focusing on ontology instance retrieval

4.1.1 QuizRDF

QuizRDF [DW04] exploits RDFS [BG04] annotations attached to documents describing ex-
actly one instance from an ontology. It is also assumed that one ontology instance has exactly
one direct class in the RDFS schema. The indexer of the system indexes both RDF [MM04]
triples (i.e., semantic metadata) and the full-text of the document. The information model for
document representation consists of tuples in the form:

<text, class, property, doc_URL>
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An example for a tuple of an RDF statement is:

<"Smith", Employee, HASLASTNAME, http://company.org/doc1>

representing the fact that the textual value of the HASLASTNAME property of the document
with the URL http://company.org/doc1 is “Smith”. Only such RDF statements are
indexed where an RDF literal (i.e., a string) is involved in the statement.

It does not make sense to talk about properties in the full-text part, therefore the full-text part
is indexed using tuples with empty properties, such as:

<"John Smith", Employee, ∅, http://company.org/doc1>

The user can search the text part (first element) of the tuples using traditional full-text search.
The results are the documents which are denoted by the URLs in the tuples. Ranking is based
on the usual TF-IDF scheme [SB88].

The results can be filtered based on the class information. E.g., the user can search for “Smith”
and after that she or he can filter the results to show only employees.

It is also possible to browse the ontology by clicking on the class name, or by following the
properties of the class which connects it with other classes. E.g., it is possible to navigate from
employees to their skills or projects.

In contrast to simple full-text search, after selecting a class, it is also possible to start a struc-
tured query, by filling the textual properties of the class by the desired textual phrases. E.g., it
is possible to search for employees with the last name “Smith”.

Discussion

QuizRDF shows a simple approach to combine full-text search with semantic metadata. It
demonstrates that ontological information can be encoded so that it is compatible with full-
text search. This solution is clearly scalable.

This proposal, however, meets only few of the requirements from Chapter 3. It does not make
use of ontology relations during the search, it only provides the possibility to browse the related
instances after the search results returned. It also ignores the issues of domain imperfection,
and does not make use of temporal information. Moreover, in [DW04] no evaluation of the
system is presented.
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4.1.2 SEAL Portals

The SEAL I and II portal systems [HMSS01, MSSV02] use a central ontology to provide
semantic search and browsing functions. They build on the Ontobroker reasoning engine1, and
implement instance retrieval as ontology query answering. The system was deployed in real-
world applications, among others the university portal of the authors was driven by the system.
In this portal, users can search for all employees who do research in a specific research topic,
or they can list all publications that a specific employee has written.

The biggest problem with using classical ontology query answering for information retrieval
is that the results are not ranked (see also Section 3.8.2). Therefore, a novel approach was
needed in these portals to rank the results which were provided by the inference engine. A
very sophisticated approach was proposed in [SSS03]. Here both the structure of the ontology,
and the reasoning structure are considered to find instances that “better” match the initial on-
tological query than others. The ontology structure is exploited by examining the specificity
of the relations between the instances2. The more specific a relation, the higher the ranking
score given to it. To exploit the reasoning structure, the reasoning tree is extracted from the
reasoning engine, and results that are inferred in fewer steps get a higher ranking score.

The ranking algorithm was evaluated in a small-scale user study [Sto05], and was found supe-
rior to unranked ontology reasoning results.

Discussion

The SEAL system shows that it is possible to implement information retrieval based on pure
ontology query answering. It is questionable, however, how the solution would scale for exten-
sive ontologies, e.g., when there are many thousands or tens of thousands of instances. First,
all of the results must be returned which match the query and after that a complex ranking
algorithm is applied on these results. If the results that the reasoner provides are numerous, it
is expected that the performance of the system will not be adequate.

On the other hand, in many domains the size of the ontology is moderate. E.g., in a typical
university department ontology there are not so many instances. Therefore, in these application
domains this approach provides a feasible solution that can potentially return very high-quality
results.

The ranking algorithm can be problematic in real-world situations, too. While the Ontobroker
system is able to provide a reasoning tree, in general it is a very rare feature for a reasoner.
Therefore, this technique cannot be used in most ontology-based systems.

This system ignores domain imperfection, and does not exploit temporal information. It does
not support natural language queries either.

1Ontobroker is a product of the Ontoprise GmbH (http://www.ontoprise.de).
2i.e., the number of instances that are connected to a specific instance through the same relation
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4.1.3 The system of Zhang et al.

An interesting approach is proposed by Zhang et al. [ZYZ+05]. They propose to use reasoning
in a fuzzy description logic (DL) ontology to implement semantic information retrieval. In
fuzzy DL, statements take the form i : C ≥ α denoting the fact that the instance i belongs to
concept C with at least the truth value α. Based on such an ontology, a fuzzy DL reasoner can
return a list of instances for a query j : D ≥ β, which belong to the concept D with at least
the value β.

The main idea in the proposed system is to represent search results of classical full-text search
engines as fuzzy DL statements in the ontology. For each document in the repository, an
instance3 is inserted into the ontology. For a full-text query Q, statements in the form i : Dq ≥
σ are inserted for document instances i, where σ is the score returned by the full-text search
engine. Dq is a proxy concept representing all the documents which are relevant to the query
Q. The i : Dq ≥ σ statement expresses the fact that the truth value of “document i is relevant
to query Q” is at least σ.

After integrating the results of the full-text query into the ontology, arbitrary fuzzy DL queries
can be used to retrieve information from the ontology. E.g., we could ask for people, whose
name contain “Smith” and gave a presentation, where at least one of the slides was about the
topic “ontology”. In this case, the two full-text queries “Smith” and “ontology” are executed
using a traditional full-text engine, and the results are integrated into the ontology using the
proxy concepts DSmith and Dontology. After that, the query can be answered using fuzzy DL
reasoning.

Discussion

The presented approach provides a powerful way to combine results of ontology reasoning
and traditional full-text search. Zhang et al. did some experiments with a small knowledge
base, and could show that their approach provides better results than running simple queries
containing only purely fuzzy DL and purely IR concepts4. Moreover, using fuzzy DL has
the potential to represent domain imperfection in the ontology, although this option was not
discussed in the paper.

Although this system has the potential to answer very complex queries, it does not scale well
for big document collections. First of all, the first, the full-text search phase is executed sep-
arately, potentially yielding lots of results. These results have to be added to the ontology
(yielding potentially a very big ontology), and fuzzy DL reasoning has to be used to retrieve
the results. Fuzzy DL reasoning is theoretically highly complex, therefore it does not scale up
to ontologies with many elements.

This approach does not exploit temporal information.

It is important to note that although this system retrieves ontology instances, it partially also
belongs to the second group of systems because some of the ontology instances represent

3Instances are termed as individuals in DL terminology but we use the word instance to remain consistent with
other parts of the thesis.

4Such queries could be executed by a separate search engine and a fuzzy DL reasoner, respectively.
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documents. Therefore, it can also be used to retrieve documents, like documents containing
the word “ontology”, and having an author with the first name “John”.

4.1.4 The system of Rocha et al.

Rocha and his colleagues propose a system for retrieving documents, describing a specific
instance in the ontology [RSA04]. They assume that ontological queries are too complicated
for most of the users, and therefore plain text queries have to be supported to get relevant
ontology instances5. Therefore, the users start with a plain text query, and the system returns
a list of relevant ontology instances to the query, better to say the documents describing those
instances.

To achieve this goal, they use full-text search on a textual representation of ontology instances.
These initial results are refined later by a spread activation procedure which exploits the ontol-
ogy to find other relevant ontology instances, which are syntactically not similar to the original,
textual query.

Generally, a spread activation algorithm propagates weights in a graph between nodes. In
this case, the ontology is viewed as a graph, instances being the nodes, and relations between
instances being the edges. The initial weights of the nodes are the weights provided by the
full-text search. These weights are propagated later between a source instance i and a target
instance j using the following formula:

wj = wi ∗ wij ∗ fij ∗ (1− α) (4.1)

where wj denotes the weight of the target instance after propagation, wi denotes the weight of
the source instance, wij denotes a dynamically calculated weight of the relation between the
instances, and fij and α are constant parameters of the algorithm. fij defines the importance of
a specific type of relation f . Such a way, one can for example express that the LEADS property
is more important than the MEMBEROF property. The α parameter specifies a weakening
factor.

The wij weight of a relation is calculated using the same basic ideas already introduced at the
SEAL portal approach. In this case, a so-called cluster measure and a specificity measure are
combined to get the wij weight. The former checks the percentage of common neighbors of the
two instances, building on the assumption that instances that have many common neighbors
are similar. The latter defines a measure whose value decreases for relations which connect
many instances in the ontology. The termination of the propagation algorithm is ensured by
simply executing it only once.

The proposed approach was implemented in two systems, and user evaluations were conducted.
For two example queries the users were asked to validate whether the proposed instances are
really relevant to the query. The results were very convincing, the rate of relevant instances
were above 90% for all of the tests. Moreover, sometimes surprising, relevant instances were
proposed that could not have been found using full-text search.

5This assumption is formulated in our NATURAL LANGUAGE QUERY requirement, as well.
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Discussion

Rocha et al.’s approach clearly shows the value of using background knowledge stored in
an ontology during information retrieval. Although the complexity of the spread activation
algorithm would be prohibitive for document retrieval, it provides acceptable performance
for ontology instance retrieval. Their user evaluation shows that ontology-based systems can
provide higher quality results than traditional full-text search.

This system does not exploit temporal information, and ignores the issues of domain imper-
fection.

4.2 Systems focusing on document retrieval

4.2.1 KIM

The KIM (Knowledge and Information Management) platform [KPT+05, PKO+04] provides
an integrated framework, where all aspects of ontology-based information systems are sup-
ported. These include (semi-)automatic ontology population, (semi-)automatic creation of
metadata, and ontological querying.

The system uses the GATE natural language processing (NLP) framework6 to automatically
extract new ontology instances and metadata from documents. Only the labels of existing
ontology instances together with the concept taxonomy of the ontology are used in various
heuristics during the metadata extraction phase. The semantic annotation, which is the result
of the metadata extraction process, connects a specific part of the document (a word or a phrase)
with an ontology instance.

Before the indexing phase, KIM extracts the ontology instances from the semantic annotations,
and adds their unique identifiers to the document text. Later, during indexing, these ontology
instance identifiers are also stored in the full-text index. This makes it possible to search for
documents later using ontology instance identifiers, instead of just using the natural language
label of the ontology instance. This practically eliminates the vagueness of natural language
because instance identifiers are unique in the ontology, in contrast to natural language labels
that can be connected to many ontology instances.

KIM requires the user to formulate a classical ontological query. It first filters the ontology
instances using ontology inference, and then uses the full-text index to retrieve documents
which refer to those ontology instances.

Discussion

KIM provides a holistic ontology-based information system that supports automatic metadata
extraction, and even automatic ontology population – an issue that is out of scope of this thesis.
The system scales well because simple full-text search is used to access the documents, and

6http://gate.ac.uk/
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ontology reasoning is used only to identify relevant ontology instances based on the user query,
i.e., to transform the ontology-based query to a full-text query. The example of KIM shows
again that with the proper encoding of semantic metadata as text it is possible to use full-text
search engines to index and retrieve semantic information.

Ontology imperfection is addressed by allowing users to combine traditional full-text search
results with ontology-based search results. How this combination exactly happens, is not de-
tailed in the literature.

The major weakness of the KIM system is that it does not exploit the ontology in the metadata
extraction phase. No semantic relations and no time information are used to increase the
precision of the generated metadata. Domain imperfection is not addressed by the system,
either.

4.2.2 The system of Vallet et al.

The system proposed by Vallet and his colleagues [VFC05] also provides a complete solution,
similarly to KIM, which involves automatic metadata generation and semantic querying.

During annotation, mainly the lexical part of the ontology is used, similarly to the KIM system.
In addition, they also exploit a so-called classification taxonomy to help disambiguate ontology
instances. The idea is to classify concepts in the ontology into broad categories, such as Cul-
ture, Politics7 etc. During annotation time, they first classify the document, and based on this
classification they choose ontology instances from the candidates, whose category matches the
document category. E.g., the word “Irises” is linked to Van Gogh’s painting, if the document
is categorized under Arts, rather than linking it to the flower.

Documents are represented in the ontology as instances, and semantic annotations are also
stored in the ontology. Annotations are connected with documents, and weighted using the
standard TF-IDF algorithm.

They require the user to submit an RDQL8 ontology query, where the query variables can be
weighted, showing their importance. This query is first executed against the ontology, and
yields a list of ontology instances. Further, all of the documents are retrieved, which refer
to those instances. Finally, the results are ranked using the document annotations on the one
hand, and the query variable weights on the other hand.

Vallet et al. also address the issue of ontology imperfection by combining the result of the
semantic search with the result of a full-text search engine. To create a full-text query, they
simply extract all textual information from the original RDQL query. The approach they take
is very simple: the rank of a document is simply the weighted sum of the original full-text and
the ontology-based search ranks.

Vallet et al.’s work is the only work to the best of my knowledge that evaluates the effect
of ontology imperfection on IR results. They executed some queries on a relatively small
repository of documents, where some of the queries were about areas that were not covered
by the ontology. They found that in those cases the system simply falls back to the level

7The taxonomy follows the IPTC Subject Reference Standard, see http://www.iptc.org/NewsCodes
8http://www.w3.org/Submission/RDQL/
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of a traditional search engine but does not provide worse results. However, they also found
that wrong semantic annotations can seriously spoil the results because the semantic search
algorithm trusts those annotation too much.

Discussion

Vallet et al.’s work is very inspiring because they also seriously consider the effect of ontology
imperfection on retrieval results. Their work show that one must be very careful during the
automatic generation of semantic metadata because wrong semantic metadata has a strong
negative impact on retrieval performance.

A major weakness of their system is that they use ontology reasoning for retrieval, which does
not scale for big repositories. Moreover, they do not address temporal issues and ignore domain
imperfection.

4.2.3 SCORE

SCORE (Semantic Content Organization and Retrieval Engine) is a comprehensive solution
[SBA+02] which is reported to be deployed commercially9. It provides a high-performance,
industry-ready solution. It supports automatic metadata extraction, and also semantic query-
ing.

For metadata extraction SCORE uses a heuristic similar to that of Vallet et al.: it classifies
documents into categories, and uses these categories to disambiguate text-to-instance-label
mappings. SCORE defines a separate ontology, called the “world model” that defines a hier-
archy of document categories together with their attributes that should be automatically filled
during semantic metadata generation. I.e., the metadata generation task of SCORE is basi-
cally a classical information extraction task where a pre-defined scheme of attributes should
be automatically filled. This is a simpler task than generating arbitrary metadata.

SCORE can automatically determine the category of a document using a classifier committee,
i.e., by combining results of many classifiers to achieve better results. Knowing the exact
category of the document in advance provides good possibilities for disambiguation of entities.
E.g., “Golf” can refer to the product of Volkswagen in the category “automobile” and to the
sport discipline in the category “sports”.

SCORE also uses an ontology that codifies background knowledge about the world, called the
“knowledge base”. SCORE exploits this ontology by considering semantic relations between
instances for disambiguation. I.e., if the document contains many neighbors of one candidate,
and none of the other, it chooses the candidate with more neighbors. SCORE can also auto-
matically infer the values of some document attributes using the relations among instances.

9However, we could not access the http://www.voquette.com URL of the system, which is given in the
paper, to verify that fact. It seems that Voquette was acquired by another company, named Fortent (http:
//www.fortent.com/), and SCORE may still provide the basic infrastructure for the various knowledge
management products of the company.
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Using the generated metadata, various applications can be developed that exploit this metadata,
including semantic search, personalization of content etc.

Discussion

SCORE shows a high-performance, pragmatic solution, although the high performance is
achieved by storing the whole index in main memory. This may not be feasible for very exten-
sive ontologies and/or document collections. Unfortunately, it is not possible to find out how
SCORE works in detail, as in the literature only a high-level description of the commercial
system is available.

What definitely can be determined is that the system does not exploit temporal information,
and does not address domain and ontology imperfection. An interesting feature of the system
is, however, that it exploits semantic relations in the ontology both for disambiguation and for
the expansion of the semantic metadata.

4.2.4 OWLIR

The OWLIR (Ontology Web Language and Information Retrieval) system [FMJ+05, SFJ+02]
focuses on integrating classical IR technology with semantic search. The system is deployed
for event filtering where the goal is to provide university students with relevant event descrip-
tions based on their profile.

The approach of OWLIR is the following. The input of the system are full-text descriptions of
events. First, semantic metadata is generated using information extraction techniques. They
use the AerotextTM commercial system, therefore this step is not described in detail. The
OWLIR system uses inferencing to enrich semantic metadata which was created by the infor-
mation extraction system. On the one hand, they exploit the concept hierarchy, e.g., to infer
that a basketball match is a sport event. On the other hand, they use the knowledge base to add
additional information about specific instances. E.g., they use the Internet Movie Database
(IMDB)10 to add genre information for movies based on their title.

Semantic metadata is stored in DAML+OIL [vPH01]11 but in principle any formalisms based
on RDF may be used, including OWL [DS04]. Metadata is embedded into the original docu-
ment, i.e., a document consists of the original free-text and of the embedded semantic metadata
in DAML+OIL format.

The OWLIR system provides a mechanism, termed swangling12, which can convert an arbi-
trary RDF triple into a string representation. For each RDF triple, seven new RDF triples are
generated. These new triples include the original triple and the other triples are formed by
replacing one or two positions of the triple with a wildcard entity13. E.g., from the triple

<#movie1, HASGENRE, #romantic>

10http://imdb.com/
11a predecessor of the OWL W3C standard
12Semantic Web mangling
13rdf:Resource
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the following triples are generated:

<#movie1, HASGENRE, #romantic>
<*, HASGENRE, #romantic>
<#movie1, *, #romantic>
<#movie1, HASGENRE,*>

<*, *, #romantic>
<*, HASGENRE,*>
<#movie1, *, *>

Each resulting triple is then hashed and converted to a base-32 number (i.e., to a artificial
word) which can be directly indexed by any traditional full-text search engine. To summarize,
the swangling process produces seven, full-text-indexer-friendly artificial words for each RDF
triple. The swangled terms are then also included into the original document and the result is
indexed using a traditional full-text engine.

A user query looks almost identical to a document: it contains free text parts but can also
contain DAML+OIL markup. The only difference is that in the DAML+OIL markup of the
query, variables may also be used to denote the information needed by the user. After enriching
the query using inferencing and applying the described swangling procedure, a simple full-text
search provides the results.

The OWLIR system was deployed and evaluated in the domain of university event descriptions,
and was shown to provide results that are superior to simple full-text search. The results of the
small-scale evaluation showed that semantic search (implemented with swangling) alone is
already superior to full-text search, and that the best results are provided when user queries
contained both free-text and semantic parts.

Discussion

The OWLIR system demonstrates that ontology-based preprocessing of queries and document
metadata can improve the results of IR systems, even if syntactical similarity measures are
used during query execution. These results are very motivating for me because they show a
possible way to incorporate ontology reasoning to an information system without sacrificing
scalability.

Although it is a very flexible solution, one problem with the swangling approach (and with the
metadata model itself) is that it is not possible to encode the relative importance of ontology
entities (or RDF triples) to the document. By contrast, in the KIM system the identifiers of the
recognized ontology entities are inserted each time they appear in the text. I.e., entities that
appear more frequently, automatically get a higher score during full-text search14.

OWLIR does not exploit temporal information, does not address domain imperfection. More-
over, it seems that natural language queries are not supported, that means, in the case of a
purely textual query no semantic search happens, only a traditional full-text search is exe-
cuted. Their automatic metadata generation solution is not used to automatically generate a
14Using the usual TF-IDF score.
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semantic part for pure full-text queries. Finally, it is somewhat redundant to perform ontology-
based inferencing both on the metadata and on the query — a fact that the authors of OWLIR
also admit.

4.3 Summary

In the previous sections I analyzed the state of the art based on the requirements that were
discussed in Chapter 3. A summary of this analysis is shown in Table 4.1.

Table 4.1: Systems and requirements
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QuizRDF X1 X2 - N - X N - X
SEAL Portals X X - N - - N X -
Zhang et al. X3 X - N X4 - N X X5

Rocha et al. X X - N - - N X X
KIM X X6 - X7 - X8 X - X9

Vallet et al. X X - X - - X X -
SCORE X X - - - X X - ?
OWLIR X X - X - X X X -

Legend: X – fulfills the requirement, - – does not fulfill the requirement, N – not applicable, ? – not
known, X1 – only in the case of classes, X2 – only browsing is supported, X3 – not solved in the

full-text part, X4 – there is potential in the formalism, X5 – in the full-text part of the query, X6 – only
concept taxonomy, X7 – no details are known how full-text search integrated, X8 – starts with ontology

search that may not scale, X9 – only in the ontology search part

Based on this analysis the following general statements can be made. All of the systems
address the issue of the vagueness of natural language, which is not surprising, as it is one of the
main motivations to use an ontology in the first place to avoid the problems that this vagueness
causes. Most of the systems combine various techniques such as natural language processing,
full-text search and ontology reasoning. It is also apparent that systems that scale well, achieve
this scalability by using traditional full-text indexing and querying. They encode semantic
information in a way that it can be indexed by traditional search engines. In other words, they
also accept the assumption that it is possible to create such document and query representations
that the classical, syntax-based ranking algorithms yield semantically meaningful results.
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It is interesting to see that although some of the systems are evaluated casually, almost no eval-
uation was conducted in a real-world situation, where the ontology was incomplete. Vallet et
al. were the first to admit that ontology imperfection can have negative effects on the perfor-
mance of an ontology-based information system, and they were the first to evaluate some of
the consequences of imperfect ontologies.

In general, it can be stated that systems focusing on document retrieval address the issue of
ontology imperfection by combining full-text search with semantic search. They either do
it implicitly by encoding the textual representation of the semantic metadata into the docu-
ment text (KIM, OWLIR) or they explicitly combine the results of pure full-text and semantic
searches (Vallet et al.).

The issue of domain imperfection is not considered by any of the systems. Temporal informa-
tion is not exploited by any of the analyzed approaches, either. Finally, during the mapping
between document texts and ontology entities, mostly only syntactic heuristics are used, or at
most the concept taxonomy is exploited. OWLIR and SCORE advance this state of the art by
expanding semantic metadata using semantic relations in the ontology.
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Chapter 5

Overview of my approach

As was shown in the previous chapter, currently there is no approach mentioned in the literature
that fulfills all of the identified requirements in Chapter 3. Therefore, a new approach is needed
that fulfills these requirements. This chapter gives a high-level overview of such an approach.
My aim is to give a basic, intuitive understanding of the whole solution. In the subsequent
chapters, I will introduce specific parts of the solution in more detail.

Based on the analysis in Chapter 3, the problem statement of this work is intuitively the fol-
lowing: The goal is to exploit background knowledge stored in ontologies to increase IR ef-
fectiveness so that

• the performance (speed) of the resulting system remains adequate even for big document
collections, and

• the possible negative effects of ontology and domain imperfection are tolerated.

5.1 Lessons learned from related work

Based on the analysis of related work in the previous chapter, the following lessons have been
learned.

Scalability through full-text search: All of the systems that achieved good performance
on big repositories used full-text search engines for document indexing and querying. It seems
that today there is no real alternative to full-text search for efficient information retrieval.

Semantic metadata in full-text indexes: In spite of the fact that full-text search engines
are used, it is still possible to annotate documents with semantic metadata and harvest the
advantages of semantic technology. The solution is to encode semantic annotations so that the
result is compatible with the information model used by the chosen full-text search engine1.
The swangling approach introduced by the OWLIR system [FMJ+05, SFJ+02] shows that
in principle, it is possible to encode arbitrary RDF statements in full-text indexes. However,
syntactic similarity measures applied by the full-text search engine still must make sense on the
encoded version of the semantic metadata to provide meaningful results. It seems questionable

1usually the “bag of words” model
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whether this assumption holds for such complicated encodings as the introduced swangling
technique.

Natural language processing for text-to-ontology mapping: Many systems apply
shallow natural language processing (NLP) techniques to improve the results of automatic
metadata generation. A major part of metadata generation is the mapping of text snippets to
ontology instances. In this task, it is clearly advantageous to use the various syntactic-linguistic
heuristics of NLP to find meaningful text snippets that are matched with the lexical layer of the
ontology. Moreover, the additional type information that is delivered by some NLP systems2

is also useful to increase the quality of text-to-ontology mapping.

Combining full-text and semantic search: Some systems combine the results of se-
mantic search3 with the results of traditional full-text search to deal with ontology imperfec-
tion. This is a very simple, natural way to tackle the problem, and has the advantage that
the ontology-based system operates exactly as a full-text search system if there is absolutely
no ontology available. In other words, the system degrades nicely as the imperfection of the
ontology increases.

5.2 Missing features in state-of-the-art solutions

Although state-of-the-art systems solve lots of problems analyzed in Chapter 3, there are still
some issues which remain unsolved.

First, domain imperfection is ignored by all of the systems. Although in the fuzzy description
logic-based information system of Zhang and her colleagues [ZYZ+05] there is a potential in
the ontology formalism to represent some aspects of domain imperfection, they do not exploit
this opportunity.

Second, the time dimension is not handled by any of the systems, i.e., it is not possible to
search for temporal information.

Third, ontology information is not fully exploited by any of the systems during automatic
semantic metadata generation. Some of the reviewed systems use only the lexical layer of the
ontology, and the concept hierarchy. In these systems, semantic metadata generation basically
means matching ontology entity labels to text snippets in the document content. Of course,
this task is already challenging because the mapping between the textual labels and abstract
ontological entities is not always trivial and there is often a need for disambiguation.

Some other systems also exploit semantic relations in the ontology to expand the generated
metadata and thus to find indirectly relevant instances. The evaluation results of OWLIR show
the great potential in doing such expansion. However, there is a chance in the case of an
extensive ontology (or in the case of an ontology with errors) that such an expansion adds
wrong information to the semantic metadata, especially when applied to the uncertain results

2such as the information whether a text snippet denotes a person, or a location
3I consider also full-text search operating on encoded semantic metadata as semantic search.
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of the disambiguation step. Therefore, all information should be considered to limit the chance
of wrong inferences. My hypothesis is that considering the temporal context of the actual
document together with the time information stored in the ontology can effectively scope the
set of possibly related instances and therefore reduce the chance of wrong inferences.

Finally, the reviewed systems focusing on document retrieval support only traditional
ontology-based queries for semantic search, and do not provide the possibility for the users
to start a semantic search by specifying a full-text query.

My solution addresses these weaknesses, and this is the main contribution of this thesis.

5.3 Fundamental modeling decisions

To come up with a solution that fulfills the requirements that were identified in Chapter 3
and advances the state-of-the-art in the areas that were discussed above, some fundamental
modeling decisions have to be made. These decisions are discussed in this section.

Same semantic information model for query and documents: I use the same infor-
mation model to represent semantic metadata of documents and semantic user queries because
it has some advantages (see also Section 2.1). First, using the same model, information re-
trieval can be intuitively understood as finding the most similar document to the query. This
makes ranking of results natural. Second, because there is no difference among documents and
queries from a conceptual point of view, this approach can be also used for information filter-
ing, when new documents should be matched with user profiles, defined as static queries.

Syntactic similarity measure: The potential of ontology-based similarity measures were
identified in Section 3.4.1. However, based on the analysis of the related work, and on my own
practical experiences, I believe that such similarity measures simply do not scale well enough
to be used in information systems with big document collections. Therefore, I also follow
the approach that was already successfully applied by some other systems and use traditional
full-text search for querying. In other words, I use the syntactic similarity measure provided
by full-text search engines.

Time dimension: To provide support for the time dimension, temporal information must
be included into the information model used by my system.

NLP for metadata generation: I follow the trend in state-of-the-art systems and apply
shallow NLP on document texts to increase the quality of text-to-ontology-entities mapping.
Shallow NLP means that a full (and costly) linguistic analysis of the document text is not con-
ducted, only some limited text analysis techniques are applied, such as tokenization, sentence
splitting or named entity recognition.
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Fully exploiting ontology: It is extremely expensive to develop ontologies, and there is a
lot of useful information stored in them in the optimal case. It is a waste of resources to ignore
this information during the metadata generation phase. Using purely syntactic techniques, it
is impossible to identify relevant instances that are only implicitly mentioned in the document
text. In other words, finding relevant documents that do not explicitly mention some search
terms is possible only with semantic search. It is one of the features where semantic search is
clearly superior to traditional full-text search. Therefore, this opportunity should be exploited.
In contrast to many state-of-the-art systems, I will use semantic relations between instances to
find indirectly relevant instances. Moreover, during this process, I will consider the temporal
context of the document and the temporal information stored in the ontology to make well-
founded decisions about which relations should be really exploited4.

Ontology-based heuristic rules: Although the ontology itself contains the domain
knowledge, it does not specify how to exploit this knowledge. I specify the operational knowl-
edge that describes how the ontology should be used during the IR process via ontology-based
heuristic rules. The term “heuristic” only emphasizes the fact that it is not fully possible to
model by simple rules the complex cognitive process of humans when they decide about the
relevance of abstract concepts. Therefore, the rules will just approximate this cognitive pro-
cess, i.e., they can be viewed as heuristics.

Avoiding redundant use of ontology reasoning: In Section 3.4.1 I discussed the po-
tential advantages of using ontology reasoning during the indexing and querying steps. It is
important to see, however, that these two steps should not be analyzed in isolation because they
are complementary. Clearly, if resources are perfectly annotated with semantic metadata, i.e.,
the metadata contains all directly or indirectly relevant ontology entities, there is no need to do
any query extension because even a simple syntactic matching of metadata element URIs will
find all relevant documents. But even if we do not manage to generate the perfect metadata,
it makes no sense to exploit the same ontology during query extension that was used dur-
ing metadata generation to extend semantic annotations because the query extraction process
would suffer from the same problems as the metadata generation process.

Thus the ontology should be used either only during the metadata generation or only during
the query expansion step. I choose the metadata generation step because this choice seems to
have some advantages:

• The temporal and conceptual context5 of the document can be estimated better because
the estimation is based on a much longer text than at query time. A better estimation
of the temporal and conceptual context means better decisions later, when indirectly
relevant ontology entities are identified.

• The efficiency of ontology reasoning is less critical because metadata generation is per-
formed offline. This also means that more complicated reasoning axioms can be used to
improve semantic metadata than would be possible during query time.

4Consider e.g., the example about Napoleon and Russia in Section 3.4.
5The conceptual context here denotes the already identified ontology entities in the document text.
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So, I use ontology reasoning only during metadata generation, and use fast, syntactic heuristics
during query expansion.

Combination of semantic and full-text query results: As was discussed, all state-of-
the-art systems that somehow consider ontology imperfection, solve the problem by combining
results of semantic search with results of a full-text search engine. This has the advantage that
the new system is “backwards compatible” with the classical, full-text search based informa-
tion systems. I.e., even if there is no ontology at all, the system is still operational. I also use
this approach to deal with ontology imperfection.

5.4 The ontology-supported IR process

The decisions described above resulted in the following ontology-supported IR process, shown
in Figure 5.1.

The ontology-supported IR process has the same major parts than the classical IR process:
indexing and querying.

During the indexing step the goal is to create semantic metadata describing the meaning of a
document as well as possible. The metadata generation process is split into three parts. First,
shallow natural language processing (NLP) is used to generate all kinds of useful information
that can improve the quality of the text-to-ontology mapping later. This information includes
the specification of token and sentence boundaries, and the identification of various types of
text snippets: phrases denoting persons, organizations, time specification etc. The information
created by NLP is stored in the form of NLP annotations. These annotations are used next to
create an initial metadata representation. During this initial step, text snippets are matched
with ontology instances. Disambiguation of the ontology instances is also performed in this
step. Finally, the initial set of metadata elements is expanded using ontology-based heuris-
tic rules. The goal of this expansion step is to find ontology entities that are relevant to the
document but which are not explicitly mentioned in the document text.

After the semantic metadata is generated, it should be indexed by a full-text search engine.
During this step, the metadata is transformed into a representation that is compatible with some
chosen full-text engine. After the transformation, a full-text index of the semantic metadata
can be created (metadata index in Figure 5.1).

In addition to the semantic metadata creation and indexing, the indexing part of the ontology-
supported IR process also includes the classical full-text indexing of document contents.

The querying part of the process starts with the textual user query6. As the first step, this
query has to be parsed, and a semantic representation of the query has to be provided. As was
discussed, the semantic query uses the same information model as the document metadata.
Therefore, the same NLP and metadata generation components can be used for this task as for
the metadata generation of documents. The only difference is that metadata expansion is not
performed during query time, as was discussed in the previous section.

6Expert users also have the option to directly specify the semantic query.
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As the next step, two full-text queries are generated from the semantic query. The first query
searches the full-text index representing the semantic metadata of the documents. This query
is termed the metadata query. The second query searches the full-text index containing the
indexed document contents. This query is termed the content query. After executing these two
queries, the results are combined, and the combined result constitutes the final query results
that are returned back to the user. I term the whole query process combining the results of the
metadata and content queries semantic querying.

Various aspects of the ontology-supported IR process are described in Chapters 8 and 9 in more
detail.
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5.5 High-level system architecture

To evaluate the ideas presented above, a research prototype named IRCON (Information
Retrieval in Context, using ONtologies) was developed, which implements the outlined
ontology-supported IR process. The IRCON prototype is a classical three-tier web applica-
tion, implemented in Java. The high-level architecture of IRCON is shown in Figure 5.2.

Figure 5.2: The high-level architecture of IRCON

In the architecture, I combine various technologies to achieve scalability and good quality of
results at the same time. In detail, the following technological decisions were made:

• For storing structured information that does not require ontology reasoning, the ma-
ture relational database technology is used. Structured information in this application
includes semantic annotations, and also the lexical layer of the ontology. I store the on-
tology lexical layer in the database because it is just simple syntactical information, and
I do not want to reason on it, only to retrieve it for indexing purposes. Further, also the
document texts themselves are stored in the relational database, which provides access
control on the documents, and allows to keep the repository consistent. In the IRCON
prototype, I used the freely available PostgreSQL database management system7.

• For full-text search over ontology labels and in documents, a classical full-text search
engine is used. Because the prototype was implemented in Java, I used the Lucene

7http://www.postgresql.org/
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Java framework8 to implement the search engine. Lucene is the most popular open-
source framework in the Java world for search engines, which scales up to millions of
documents. Therefore, it was suitable for my purposes to demonstrate the viability of
the solution on real-world size document collections.

• Ontology navigation and reasoning is used during ontology-supported indexing of docu-
ments, as was discussed above. Ontology management is implemented using the KAON9

and KAON210 frameworks. While KAON provides a comprehensive ontology editing
framework [MMV02], KAON2 provides an efficient ontology reasoner implementation
[HMS04].

• During metadata generation the GATE11 framework is used. GATE is an open source,
Java-based NLP framework. This framework is very popular in the NLP research because
it allows an easy combination of various NLP tools, such as part-of-speech tagger, named
entity recognizer etc. It forms the basis of some more advanced systems requiring NLP,
such as the Text2Onto framework for ontology learning [CV05].

To summarize, I combine four technological areas in my architecture to achieve the goals that
were identified during the problem analysis: relational databases, full-text search, ontology
reasoning, and natural language processing.

The components of the architecture shown in Figure 5.2 are described in the following:

Full-text Search Engine: Maintains its own optimized, file-based full-text indexes (both
for metadata and content searches), and executes full-text searches against it. Theoreti-
cally, any full-text search engine could be used here, including major web search engines,
such as Google. As was discussed, in my prototype I used my own implementation, a
search engine based on the Lucene framework.

Repository: Based on a PostgreSQL relational database, the repository stores all kinds of
structured information that does not require ontology reasoning, as was discussed above.

NLP Framework: As was discussed, various components of the GATE NLP framework are
used. This component takes the text of a document and produces NLP annotations de-
scribing various linguistic aspects of the text.

Ontology Reasoner: An important component of the application, it provides access to the
ontology. It allows other components to navigate in the ontology structure, and it also
allows them to execute ontology-based queries. As was already discussed, the ontology
reasoner builds on the KAON and KAON2 frameworks.

Metadata Creator: Creates the semantic annotation of a document. First, it processes the
results of the NLP subsystem, which are stored in the repository. Later, it refines the
results provided by NLP using ontology-based heuristics. This component is also able
to parse a textual query into its semantic representation.

8http://lucene.apache.org
9http://kaon.semanticweb.org

10http://kaon2.semanticweb.org
11http://gate.ac.uk/

53

http://lucene.apache.org
http://kaon.semanticweb.org
http://kaon2.semanticweb.org
http://gate.ac.uk/


Chapter 5 Overview of my approach

Resource Indexer: Indexes the resources (documents) in the repository. This includes a
traditional full-text indexing, and also the indexing of the semantic metadata that was
created by the Metadata Creator component, and which is stored in the repository. This
component is also responsible for transforming the semantic metadata during indexing
to a form that is processable by the full-text search engine.

Resource Searcher: Executes the semantic query, combining the results of the metadata
and content queries. It takes a semantic query as an input, and it is responsible for
generating the FTS query representations of the semantic query.

Ontology Indexer: Indexes the lexical layer of the ontology. Because the lexical layer con-
tains only textual information, it can be readily indexed by the full-text search engine, no
transformation is needed. In addition to the lexical layer information, also information
about the parent concepts of an ontology instance is encoded into the index to speed up
ontology navigation.

Ontology Searcher: Provides full-text search on the ontology instance labels. Also the
required ontology concepts can be specified during the search. E.g., it is possible to
search for instances of the PERSON concept that have the label “Bush”.

Web GUI: The graphical user interface of the prototype is a usual web interface, implemented
using the open-source Tapestry framework12. Apart from allowing the user to execute
searches in the usual way, the GUI also displays the semantic annotation of a document,
and it also allows the user to explore the ontology itself. During the semantic search, the
web GUI is responsible for parsing the textual user query into a semantic query repre-
sentation using the Metadata Creator component. The semantic query is later processed
by the Resource Searcher component.

Resouce Uploader: Uploads resources13 into the resource repository.

Ontology Transformer: The ontology is not necessarily specified by domain experts in a
format that can be readily used by the ontology reasoner. This component transforms
the ontology from its conceptual format to the format that is supported by the ontology
reasoning frameworks used in IRCON.

5.6 Feasibility of the approach

On the one hand, the introduced ontology-based information system has the potential to sig-
nificantly increase the quality of IR results. On the other hand, it was already discussed that
developing ontologies is very expensive, and takes a long time. It is easy to see that a document
collection in a company Intranet, or on the World Wide Web, potentially contains documents
about arbitrary topics. This means, to fully exploit the power of ontologies an ontology would
be needed that models the whole world. Experience shows that building such an ontology is
practically impossible. Although there were some attempts to build such mega-ontologies14,

12http://jakarta.apache.org/tapestry/
13in the current implementation textual documents
14E.g., the CYC project (http://www.opencyc.org/), whose ontology currently contains 47000 concepts,

and 306000 facts about these concepts.
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none of these ontologies really managed to model the whole world. Moreover, no really suc-
cessful application of such huge ontologies is known, therefore the high costs of their devel-
opment are not justified. In general, it can be observed that the bigger an ontology is, the
more difficult to comprehend, and therefore the more difficult and expensive to extend it. This
suggests a natural upper-limit on the size of ontologies that can be developed with justifiable
investments. This size is definitely much smaller than the size of the “world ontology” would
be.

This means that it is practically impossible to cover all documents in the information sys-
tem by an ontology, and therefore it seems questionable whether it is feasible to develop an
ontology-based information system. My proposed system, however, does not require full on-
tology coverage. Ontology imperfection was accounted for by using NLP and full-text search.
This means, the system can operate even with a completely empty ontology. Even in this case,
slightly better results are expected than using traditional word-based full-text search engines
because of the application of NLP techniques. However, when an ontology of adequate quality
is available for some specific domain, the system will hopefully outperform traditional full-
text search. In other words, the system does not force its users to fully transform their existing
full-text search systems into an ontology-based one but allows a smooth transition between the
two worlds. Actually, I believe that the state when every topic in the repository is covered by
an ontology will be never reached in practice. For many kinds of searches, the use of ontology-
based techniques is simply unnecessary, as was discussed Section 3.2. For such topics, users
will probably never have the motivation to invest money and resources in ontology building.

Therefore, I foresee the following usage of the proposed system in a practical situation. First,
the system is operated without any ontology. Later, specific domains can be identified, where
the effectiveness of the system is inadequate15. In these specific areas ontologies are developed,
together with heuristics that describe how to exploit the ontological information to improve
metadata generation, and consequently to improve IR results. This usage pattern guarantees
that

• resources are not wasted on building ontology and developing heuristics on domains
where full-text search already provides adequate results,

• the costs of ontology development are directly motivated by user need, and increased
user satisfaction caused by better results instantly justifies the costs,

• ontology development will be feasible because small, well-scoped ontologies are built,
and no attempt is made to build some huge “world ontology”.

5.7 Summary

In this chapter, I gave a general overview of my approach. First, I reviewed ideas and lessons
learned from state-of-the-art systems, which are useful in my research context. Later, I ana-
lyzed missing features in state-of-the-art systems, and described an ontology-based informa-
tion retrieval process, which addresses those deficiencies. Next, I introduced the high-level

15E.g., by analyzing user complaints, or performing evaluation.
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system architecture, which technically realizes that IR process. At the end of the chapter, I
discussed the feasibility of my proposed ontology-based IR system in a real-world situation.
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Chapter 6

Representing temporal imperfection

As was discussed in Section 3.5.2, domain imperfection should explicitly be represented in the
ontology to lower ontology imperfection and consequently to create the potential to increase
the quality of search results (DOMAIN IMPERFECTION requirement). This chapter describes
a solution for representing domain imperfection for temporal specifications in ontologies. A
new, fuzzy temporal model is proposed after analyzing the requirements for such a temporal
model. Later, it is shown how to acquire such fuzzy temporal specifications from domain
experts. Finally, the generality of the approach is demonstrated by applying it on imperfect
spatial specifications.

6.1 Requirements

As was shown in Section 3.6, the three aspects of temporal imperfection, namely uncertainty,
vagueness and subjectivity, should be represented in a common modeling framework (UNIFIED

REPRESENTATION OF TEMPORAL IMPERFECTION requirement). This is a minimal require-
ment for a suitable time model.

6.1.1 Temporal Relations

Generally speaking, a temporal model should provide support for the usual temporal relations.
A model that does not provide for temporal relations, cannot be considered a proper temporal
model. The usual requirement in the field of temporal models is that a model should at least be
able to represent the thirteen temporal interval relations defined by Allen in [All83]. Apart from
these relations, we have found during the VICODI project that the relation intersects,
checking whether two time intervals have a common point, is also very useful in the historical
context [NM03]. Hence, Table 6.1 summarizes all of the operations required1. In this table,
for an interval i, i− denotes the starting point of the interval and i+ denotes the ending point of
the interval.

1i.e., the thirteen relations of Allen and the intersects relation
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Table 6.1: Required temporal relations

Interval Relation Definition

i before j i+ < j−

i after j j before i
i overlaps j (i− < j−) ∧ (i+ > j−) ∧ (i+ < j+)

i overlapped-by j j overlaps i
i during j (i− > j−) ∧ (i+ < j+)

i contains j j during i
i meets j i+ = j−

i met-by j j meets i
i starts j (i− = j−) ∧ (i+ < j+)

i started-by j j starts i
i finishes j (j− < i−) ∧ (i+ = j+)

i finished-by j j finishes i
i equals j (i− = j−) ∧ (i+ = j+)

i intersects j (i+ > j−) ∧ (i− < j+)

6.1.2 Compatibility with classical time specifications

It is a natural requirement that the temporal model should, if applied to traditional, crisp and
definite temporal specifications, yield the same results as in classical temporal models. Af-
ter all, there are some temporal specifications, which are precise, and we would like to use
those together with the imperfect specifications. In other words, the approach should naturally
subsume the classical case.

6.1.3 Temporal Specifications vs. General Theory of Time

My requirements differ from those usually found in temporal reasoning literature (e.g. [DP89,
Dut88, GV95, DAR02]). My goal is not to develop a general axiomatization of time, which
can be used to reason about relatively known temporal events. For example, in temporal logic
one can axiomatize that event A occurred before event B and event B occurred before event
C. Then one can derive that A occurred before C, even without knowing the exact time when
either of the events occurred.

In my application field, I deal mainly with concrete temporal specifications which may be
imperfect but still use absolute dates. I.e., instead of knowing the event A occurred before
event B, the absolute dates of the A and B events are known (such as 750 B.C or 2006-01-01).
In such a setting, axiomatizing the total order of the time dimension is not necessary since it
follows naturally from the total order of dates. E.g., it is quite easy to determine using basic
arithmetics that the year 2000 is later than the year 1000, there is no need for complicated
logical axioms.

I have found that many application domains share this fundamental feature: rather than requir-
ing a general theory of time allowing arbitrary inferences, they deal with numerous concrete
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temporal facts associated with domain entities2. In such a setting, a general theory of time
is overkill because it unnecessarily requires inferencing capabilities of significant computa-
tional complexity. This logical theory should be replaced with more efficient mechanisms,
implemented outside the logical framework.

6.2 Models of imperfection

As we have seen, three aspects of imperfection have to be modeled: uncertainty, vagueness
and subjectivity. In this section, I review the most popular theories to represent these aspects
of imperfection.

6.2.1 Modeling uncertainty

For modeling uncertainty, probability theory is the most popular and the most suitable theory.
I assume that the basics of probability theory are well-known to the reader. If not, the basics
can be found in many textbooks, e.g., in [Fel70].

6.2.2 Modeling vagueness

Although probability theory could also be used to model vagueness, it is generally debated
whether probability distributions are appropriate for representing cases when objective statis-
tics that probability distributions are based on are missing [DP86]. Because of that, most
approaches in temporal reasoning for modeling vague temporal knowledge use the possibility
theory that was proposed by Zadeh [Zad78].

Because possibility theory may not be generally known, I review the basics here. More details
are available in [DP86].

Let Π : 2Ω → [0, 1] be a possibility measure defined on an event space Ω. Let Π(A) denote the
degree of possibility that event A ⊆ Ω occurs (or that proposition A is true). The fundamental
axiom of possibility theory is that the possibility of the disjunction of two propositions A and
B is the maximum of the possibility of the individual propositions [DP86]:

Π(A ∨B) = max(Π(A), Π(B)) (6.1)

Related to this possibility measure we can also define a possibility distribution π : Ω → [0, 1]
as

π(x) = Π({x}) for all x ∈ Ω (6.2)

Unlike a probability distribution, a possibility distribution does not necessarily sum up to
one.

2E.g., the life times of historical persons.
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Using (6.1) it is easy to see that

Π(A) = maxx∈Aπ(x) for all A ∈ Ω (6.3)

A classical example to show the difference between a possibility measure vs. a probability
measure follows [Zad78, Sme96]. Consider the number of eggs that Hans is going to eat
tomorrow morning. Let π(u) the degree of ease with which Hans can eat u eggs. Let p(u) be
the probability that Hans will eat u eggs tomorrow. A possible distribution of p(u) and π(u) is
shown on Table 6.2.

u 1 2 3 4 5 6 7 8
π(u) 1.0 1.0 1.0 1.0 0.8 0.6 0.4 0.2
p(u) 0.1 0.8 0.1 0.0 0.0 0.0 0.0 0.0

Table 6.2: The possibility and probability distributions for the egg example

We can see that while the possibility that Hans can eat four eggs for breakfast is one, the
probability that he may do is zero. While the possibility distribution describes Hans’ capability
to eat eggs, the probability distribution describes his habit about eating eggs. Although Hans
could perhaps eat even 8 eggs if he starts with a completely empty stomach and he is forced
to do it (possibility), it is absolutely unlikely that he would eat 8 eggs next day based on the
statistics about the eggs he has eaten in the past (probability). I.e., a high degree of possibility
does not imply a high degree of probability, nor does a low degree of probability imply a low
degree of possibility. However, if an event is impossible, it is also improbable.

6.2.3 Modeling subjectivity

For representing the third type of imperfection, subjectivity, the major theory is the theory of
fuzzy sets, also proposed by Zadeh [Zad65].

In this subsection, I briefly recapitulate the fundamental notions about the fuzzy sets and fuzzy
logic. Further details can be found in any textbook of fuzzy sets or fuzzy logic (e.g. [DP00,
NW97, MMSW93]).

Fuzzy sets generalize the notion of classical, crisp sets3. A crisp subset A of the set U (the
universe of discourse) can be specified using the characteristic function A : U → {0, 1}.
A(x) = 1 if x ∈ A and A(x) = 0 if x /∈ A. Similarly, a fuzzy subset A of U can be
characterized with a membership function A : U → [0, 1]. For each x ∈ U A(x) represents
the membership grade of x in A. Hence, x can be a member of a A only partially. I call
fuzzy subsets (of U) simply fuzzy sets from now on and assume that the universe of discourse
is understood from the context.

Similarly to the crisp case, the logical connectives and (∧), or (∨) and negation (¬) may be
identified in the fuzzy case with the set operations fuzzy intersection (∩), fuzzy union (∪) and

3The word “crisp” is used as a counterpart of “fuzzy”.
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fuzzy set complement (AC). The usual definition of the fuzzy set operations (which we will
also use in this thesis) are the following:

(A ∩B)(x) = min(A(x),B(x)) (6.4)
(A ∪B)(x) = max(A(x),B(x)) (6.5)

AC(x) = 1−A(x) (6.6)

The core of A is the crisp set CA = {x ∈ U : A(x) = 1}, i.e., the set of elements which
completely belong to A. The support of A is the crisp set SA = {x ∈ U : A(x) > 0}, i.e., the
set of elements which somewhat belong to A.

A fuzzy set A is called convex if the following holds:

∀x∀x1∀x2 x ∈ [x1, x2] ⇒ A(x) ≥ min(A(x1),A(x2)) (6.7)

The height of a fuzzy set is the maximum membership grade of any element from the universe
in the fuzzy set. I.e.,

height(A) = sup
x∈U

A(x) (6.8)

A fuzzy set is called normalized if its height is 1.

6.2.4 Comparison of the theories

If we consider the three introduced theories (probability theory, possibility theory, and fuzzy
sets), it is easy to see that from a mathematical point of view all three theories assign a value
from the [0, 1] interval to each member of the universe of discourse. The only difference from
this mathematical point of view is the set of axioms that must hold on this assignment. The
axioms of the probability theory are the most restrictive, whereas in the case of the fuzzy
set theory and the possibility theory, there are no restrictions on the assignment. Thus, from
a mathematical point of view, all three theories define fuzzy sets. Therefore, it is useful to
discuss the semantic difference between the theories from an epistemical point of view. The
difference between the possibility and the probability theory was already discussed in Sec-
tion 6.2.2, therefore I will concentrate here on the difference between the fuzzy set theory and
the other two theories.

Fuzzy set vs. possibility distribution

First, let us compare the fuzzy set theory with the possibility theory. Both a fuzzy set and a
possibility distribution define an ill-defined set by providing membership grades or possibility
values for the members of a universe. Our intuition tells us that it does not really matter
whether an ill-defined set is given as a fuzzy set or a possibility distribution, it is the same.
Zadeh formalized this intuition in his possibilistic principle as follows. Let A(x) denote the
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membership of x ∈ U in A fuzzy set, describing an ill-defined set. Let πA(x) denote the
possibility distribution of the same ill-defined set. In this case the following equality holds:

πA(x) = A(x) for all x ∈ U (6.9)

where U denotes the universe. In other words, a fuzzy set can be also interpreted as a possibility
distribution and a possibility distribution can also be interpreted as a fuzzy set.

The only difference between a mathematical fuzzy set interpreted as a fuzzy set, or a possibility
distribution, is the usual application scenario where they are used. In the case of a fuzzy set,
one normally knows an objectively measurable feature of an individual and the question is
how much this individual belongs to the ill-defined set. In the case of the possibility theory,
we know for sure that an individual belongs to the ill-defined set and we are interested in the
possibility that this individual has some specific measurable feature. E.g., let us consider the
fuzzy set of “Tall men”, shown in Figure 6.1.
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Figure 6.1: Fuzzy set of tall men

If we interpret this definition as a fuzzy set we can ask how much Hans, who is 191 cm tall,
belongs to the set of “Tall men”. The answer is 0.8, i.e., Hans is pretty tall. If we interpret this
mathematical construct as a possibility distribution, we can ask, how big is the possibility that
Hans is 191 cm tall, if we know that Hans is tall. The result is again 0.8, this time denoting the
information that it is quite possible that Hans’ height is exactly 191 cm if we know that he is
tall.
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Fuzzy set membership value vs. probability

To highlight the difference between the degree of membership, represented by fuzzy sets, and
uncertainty, represented by probability theory, let us consider the following example. If we
have a bottle of unknown liquid where it is written: “Drinkable with degree 0.7” (degree of
membership), it is 100% sure that the liquid will not kill us but it is also 100% sure that we will
have some health problems after drinking the liquid. An example for such a liquid could be
swamp water. On the other hand, if it is written on the bottle: “Drinkable with probability 0.7”
(uncertainty), we have either a totally drinkable liquid (e.g., water) or a totally undrinkable
liquid (e.g., poison) in the bottle.

It is also clear that the two dimensions can be mixed, i.e., it is easy to imagine a bottle which
is “drinkable with degree 0.7 with a probability of 0.8”. In this case, it is very likely, that the
liquid is almost drinkable (e.g., swamp water).

6.3 Hierarchy of imperfection aspects in time
specifications

Although it was already briefly explained in Section 3.6 why the aspects of uncertainty, vague-
ness and subjectivity have to be combined in historical time specifications, I would like to
further motivate the need for this combination on a detailed example.

Based on my analysis of historical specifications, I noticed that there is a natural hierarchy
among the aspects of imperfection in these specifications. To explain these aspects, I take the
example of specifying the time interval of the “Dark Ages”. The Dark Ages normally denotes
the period of the Early Middle Ages and it starts with the fall of the ancient Western Roman
Empire, and ends with the coronation of Charlemagne as the Emperor of the Roman Empire.
The beginning of the end of the Dark Ages starts with the birth of Charlemagne4.

On the lowest level there is the vagueness of temporal specifications which is inherent in
natural language. “Early morning”, “in spring”, “at the beginning of the eighties” are just
some simple examples of typical vague phrases, which usually appear in natural language
texts. In our example there are many examples of vagueness. The fall of the Roman Empire
happens gradually during the period from 337 to 476. As another example the birth date of
Charlemagne can be considered. One possible period for the birth date starts on 747-04-15 and
ends on 748-04-01, and no further information is known to make this period more precise. It
is interesting to note that even natural language specifications, which seem to be precise, such
as “in 476”, are vague if we use a higher granularity of time in our model, such as days.

Above vagueness comes uncertainty. This aspect of imperfection is probably not very com-
mon in most application domains but it is important in history. In history, in some cases there
are contradictory accounts about a specific event, containing alternative dates. Sometimes it is
not clear, which one of these accounts (and thus dates) is true. It is important to see that the
alternative dates themselves can be also vague because the accounts are themselves written in

4Of course, because the Dark Ages is a very subjective notion, it is just a possible definition for the sake of
example which can be definitely debated historically.
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a natural language. Considering our example, the birth of Charlemagne is a typical example of
an uncertain date. There are three generally accepted possibilities. Two of the possible dates
are known precisely: 742-04-02 (probability 0.3) and 747-04-01 (probability 0.1). The third
(and most probable, with probability 0.6) possibility is that Charlemagne was born sometime
during the 747-04-15 – 748-04-01 period. Here it is easy to see that this specification is both
uncertain and vague.

At the highest level, we have subjectivity. In the case of complex events, it makes sense to
speak of transition periods, which are somewhat still relevant to the complex event but not
completely. The beginning and the end of these periods are usually marked by specific events
and the dates of these events can be vague and also uncertain. In our example, the fall of
the Western Roman Empire definitely marks the beginning of the Dark Ages. The birth of
Charlemagne marks the beginning of the transition period, which leads out of the Dark Ages.
This transition period we consider only partially relevant to the “Dark Ages”, with a relevance
value of 0.7. Finally, the coronation of Charlemagne as Emperor on 0800-12-25 definitely ends
the “Dark Ages”.

The hierarchy of the imperfection aspects is shown in Figure 6.2, using the example of the
Dark Ages.
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Figure 6.2: The hierarchy of imperfection aspects on the example of Dark Ages
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6.4 Related Work

There is a significant amount of approaches for representing temporal information in the areas
of temporal reasoning and temporal databases. Most of these, however, consider only classical
time intervals (or time points) and do not deal with any form of temporal imperfection.

There are some approaches, however, which provide some solutions for handling imperfect
temporal information. Most of them model uncertainty or vagueness with possibility or prob-
ability distributions on interval endpoints.

In the area of temporal databases [EJS98], the approaches [DRS01, DS98] define the prob-
ability distribution of each endpoint of crisp time intervals. However, most of the temporal
specifications are rather vague than uncertain and as was described in Section 6.2.2, possibility
theory is considered as more suitable for modeling such specifications.

Because of that, most approaches in temporal reasoning for modeling imperfect temporal
knowledge use possibility distributions expressed as fuzzy sets to represent uncertainty. Dubois
and Prade [DP89] propose an approach where endpoints of a fuzzy interval are modeled as
fuzzy numbers. Further, they use possibility theory [Zad78, DP86] to calculate time points
which are possibly or necessarily between the two fuzzy endpoints. They also provide fuzzy
extensions of Allen’s interval algebra and some basic inference mechanisms.

Kurutach [Kur95] also proposes using fuzzy numbers representing interval endpoints similarly
to Dubois and Prade. Moreover, he imposes constraints on the length of intervals. Godo
and Vila [GV95] propose using fuzzy sets constraining the length of the time period between
intervals. Although this approach is adequate for some problems in the health-care domain, it
is inadequate for modeling historical imprecise intervals as it is not possible to specify absolute
dates for intervals.

As was shown above, almost all of the approaches for representing uncertain intervals are
based on the notion of uncertain or vague interval endpoints. However, as was discussed in
Section 3.6, it is not always intuitive to assume that there is a (possibly ill-known) definite
starting and ending point for an interval. There are some events, where it makes sense of
speaking of “transition periods” in addition of a “core period”. E.g., consider the case of the
Russian Revolution. Although the core period of this event is only between 1917 and 1919,
the periods of 1905–1917 and 1919–1930 are also considered as partially part of this complex
event. In this case, the transition periods are much longer than the core period of the event.
Using an endpoint-based approach one has to decide which one of the possible endpoints to
take, which means losing information.

An interesting approach for representing uncertainty about time-dependent events, which fol-
lows a different idea than the works introduced so far is that of Dutta’s [Dut88]. He uses the
set of known intervals as the universe for fuzzy sets. A fuzzy set representing an event e shows
the possibility for each interval i that that event occurs in it. Although this approach is differ-
ent from the other described approaches in the sense that it is capable of representing fuzzily
defined events, it views intervals themselves only as abstract, crisp entities without any further
temporal specification. Therefore, it is not applicable to our application scenario.
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As a summary, we can tell that although there is a significant body of work in time modeling,
the vast majority of related work concentrates on modeling crisp and definite temporal infor-
mation (for which I use the synonyms “traditional” or “classical” in this chapter). Moreover,
existing approaches for modeling imprecise temporal information focus on handling either
uncertainty or subjectivity but not both.

Because existing approaches do not fulfill the requirements described in Section 6.1 the devel-
opment of a new temporal model is needed.

6.5 Temporal Model

6.5.1 The preferred mathematical model of imperfection

Based on the analysis of related work we can state that possibility theory is the prevalent
modeling formalism to model temporal imperfection. Possibility distributions alone, however,
model only vagueness, while we also have to model uncertainty and subjectivity.

We have seen that mathematically both a probability distribution (representing uncertainty) and
a possibility distribution (representing vagueness) is a fuzzy set. Therefore, the theory of fuzzy
sets as a mathematical formalism can serve as a unifying theory for all kinds of imperfection.
Based on this considerations, I build my time model on the fuzzy set theory.

6.5.2 Intervals or Points?

The most fundamental question in any temporal model is the choice of the basic temporal
primitive. The relevant scientific literature mentions two standard primitives [Vil94, Cho94]:
time instants (or time points, chronons) and time intervals. A temporal model can be based on
either or on both of them.

There is an ongoing debate in the literature about which primitive is more appropriate, with no
clear winner. While time instants are more commonly used in the temporal database research
community [EJS98], time intervals or mixed approaches are more popular in the artificial in-
telligence (AI) community [Vil94]. In [Vil94] it has been argued that the choice of the basic
primitive mostly depends on the application requirements. I believe that time intervals are
closer to human intuitive perception of time. Instants can always be viewed as time intervals if
the granularity of time dimension is sufficiently increased. Further, intervals lend themselves
to an intuitive generalization to the fuzzy case.

6.5.3 Continuous vs. Discrete

Although there are some good arguments in the temporal database literature (e.g., [MS91]) for
using a discrete time model, most of the approaches in AI use the continuous model, as it fits
well to the choice of intervals as the basic primitive.
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Under a continuous temporal model, each natural language “time point” translates to an in-
terval in the temporal model. Therefore, I choose the unbounded, continuous time line T as
the basis for defining time intervals which is isomorphic to the set of real numbers. I.e., there
exists a natural total ordering among elements of T . Elements of T are termed as “time points”
in this work. To anchor this abstract time line to a real calendar system, I choose the zero time
point t0 to match to the zero point of the Gregorian calendar, measured by the Greenwich Mean
Time (GMT).

6.5.4 Time Intervals as Fuzzy Sets

In the following presentation, I assume that we need to represent an abstract interval i when a
historical event happens. Let i− denote its abstract, ill-known starting point and i+ its abstract,
ill-known ending point. As discussed in Section 3.6, intervals of historical events cannot be
defined precisely. I call such an interval imperfect and model it by means of a fuzzy set I,
defined by its membership function I : T → [0, 1].

I(t) represents our confidence level that t is in i. If I(t) = 0, we are completely confident that
t is not in i; if I(t) = 1, we are completely confident that t is in i.

I term such a fuzzy set representing an abstract interval as a fuzzy interval. I denotes the set of
all fuzzy intervals.

Fuzzy intervals are capable of representing imprecision caused by all of the three special prop-
erties of historical knowledge (vagueness, uncertainty or subjectivity) in a unifying way. It is
because the possibility to express partial confidence of the membership of some time point t in
i allows us the express the imperfection of the accounts about the interval i, regardless of the
actual nature of imperfection. E.g., Figure 6.3 shows the fuzzy interval for the “Dark Ages”,
which contains all three kinds of imprecision, as was discussed before5.

I do not pose any constraints on the fuzzy intervals except the requirement that they should
be convex. I.e., the abstract interval i, which is represented by the fuzzy interval, should
be continuous. Although some events occur at time intervals which are not continuous (e.g.,
“Poland exists as a country”), they can be represented as a set of subevents denoting continuous
parts of the original event (e.g. “Poland exists for the first time”, “Poland is divided among
the Russian Empire, the Habsburg Empire and Prussia/Germany” and “Poland exists after the
First World War”).

Although it is not a requirement, usually fuzzy intervals will be normalized because in most
cases, we are absolutely certain that at least some periods are definitely part of the abstract
interval i. Of course, there are some exceptions imaginable. E.g., the life period of King
Arthur because we are not even sure whether King Arthur existed at all.

In the case of normalized convex fuzzy sets, their support and core are continuous6.

Further, I assume that all time points of i must be in the support of I (denoted as SI). I.e., if
t /∈ SI, then we are certain that t /∈ i. I also assume that all of the time points in the core of
I (denoted as CI) are really members of i. I.e., if t ∈ CI, then we are certain that t ∈ i. This

5The exact algorithm for constructing this interval is discussed in the next section.
6The core of a non-normalized fuzzy set is empty.
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Figure 6.3: The fuzzy temporal interval of “Dark Ages”

can also be written as CI ⊆ i ⊆ SI. The relation between the core and the support of a fuzzy
interval I and the abstract interval i is shown in Figure 6.4.

68



6.6 Creating fuzzy time intervals

1

0

co
nf
id
en
ce

time

I

C
I

S
I

i

Figure 6.4: Relation between the fuzzy interval and the abstract interval

6.6 Creating fuzzy time intervals

Although we have now a temporal model that can represent all aspects of temporal imperfec-
tion, it is unrealistic to expect that domain experts will directly provide us with fuzzy temporal
intervals. This is especially true in a domain like history, where the experts do not have a
mathematical background. It is therefore very important to discuss how to obtain such fuzzy
temporal intervals in a real-world scenario.

6.6.1 Creating intervals using statistical distribution

A common technique to create fuzzy sets is to collect some statistical information about how
many percent of domain experts claim that a specific proposition is true or false [DP86]. E.g.,
if 90% of the experts say that the date 1939-09-01 belongs to the complex event “Second World
War” then the membership value of the 1939-09-01 time point in the fuzzy temporal interval
representing the Second World War is 0.9.

Using this heuristics, even the World Wide Web can be exploited to automatically generate
fuzzy time intervals. Such an approach is described by Schockaert [Sch05]. The main idea of
his approach is to crawl the Web for statements in the form “XXX started in YYY”, “XXX
ended in YYY” etc. for a specific event XXX. He uses the Google search engine, executes
such queries and analyzes the results. After the analysis, he is able to extract candidate starting
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and ending dates for a specific event, and also the frequency distribution of the dates. He
applies various heuristics on this frequency distribution to automatically construct the fuzzy
time interval.

Although this approach is described for the fuzzy time model proposed by Schockaert and his
colleagues [SCK, SCK05], the same procedure could also be applied for my model. However,
I prefer a manual approach because I see some problems with the statistics-based approach.

First, because fuzzy intervals are very subjective, there is a danger that an interval generated
based on a general statistics will not meet the intuition of domain experts or users. E.g., on the
Internet there are sources which claim that the Second World War ended with the Reunification
of Germany. Although most of the historians will not agree with this statement, a purely
statistical approach, such as the one described here, is sensitive to such outliers. On the other
hand, if domain experts are not available, Schockaert’s approach provides a simple solution to
create fuzzy time intervals.

Second, it is important to see that an interval is not only imperfect because the definition of
complex events are subjective but even the mental model of one expert is imperfect. On the one
hand, uncertainty and vagueness comes from the historical sources and no expert can eliminate
that type of imperfection. On the other hand, no true historian would name a specific date as a
starting or ending point of a complex event. They rather think in “transition periods”, as was
described. Therefore, even if we ask one historian, she will not give us a definite time interval.
Consequently, it is useful to provide an approach that can capture the mental model of one
expert about a specific fuzzy interval. For that purpose, a statistics-based approach is clearly
not an option.

My approach is to provide a graphical tool for domain experts where they can specify the
different aspects of imperfection separately, and the tool constructs the fuzzy time interval
automatically, based on this information. The advantage of this solution in comparison with
the statistics-based approach is that in theory it is enough to have just one historian to define
the fuzzy intervals. The clear drawback of the approach is the manual effort needed to create
the intervals.

6.6.2 The algorithm for the construction of fuzzy intervals

The hierarchy described in Section 6.3 allows the domain experts to build a fuzzy time interval
step-by-step. They start by specifying the vagueness level, proceed by specifying uncertainty,
and finally build a complex interval by specifying the subjectivity aspect.

Before I explain the algorithm to construct fuzzy intervals, I have to introduce some terminol-
ogy. A probability point represents one point in a probability distribution. A probability point
itself can be either crisp (one point on the timeline), or vague. In the latter case one probability
point is represented by a possibility distribution, i.e., a fuzzy set. Probability points that form
a probability distribution are grouped together in a subjectivity point. A subjectivity point is
an abstract time point, where the subjective degree of happening of a complex historical event
changes. E.g., the “birth of Charlemagne” event is such a subjectivity point, which changes
the subjective degree of relevance from 1.0 to 0.7, for the interval of the Dark Ages. A sub-
jectivity point can be also a crisp point, if it consists of only one probability point, which is
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not vague. E.g., this is the case for the coronation of Charlemagne, where we know the exact
date: 0800-12-25. Alternatively, a subjectivity point is itself a complex fuzzy set. The “birth
of Charlemagne” or the “fall of the Western Roman Empire” events form such subjectivity
points. (See also Figure 6.2.)

As the experts specify only probability and subjectivity points, we need an algorithm which
combines the three aspects of imperfection. We have already seen in Section 6.2 that math-
ematically it is not a problem to combine possibility and probability distributions with fuzzy
sets because all of the three theories can be represented mathematically as fuzzy sets. How-
ever, epistemologically there are big differences between those theories. Therefore, it is not
possible to simply combine a fuzzy set representing a probability distribution with a fuzzy set
representing degrees of membership but a sophisticated algorithm is needed which considers
the epistemological meaning of the fuzzy sets.

I provide here such an algorithm, which takes a set of subjectivity points and their membership
values as an input and creates a fuzzy set representing all three kinds of imperfection together.
As was already discussed, this combined fuzzy set represents the combined confidence of the
expert that a specific time point belongs to the abstract interval of a complex historical event.

The algorithm consists of two major logical steps. First, the fuzzy set for each subjectivity
point is created. Later, the fuzzy sets of the individual subjectivity points are combined to
form the final fuzzy set representing the abstract interval. These two steps are described below
in detail.

Constructing fuzzy representation of a subjectivity point

1. For all uncertainty points of the subjectivity point do:

a) Scale underlying fuzzy set with the probability of the uncertainty point. E.g., in
Figure 6.5 the scaled fuzzy set of the 0747-04-15 – 0748-04-01 probability point is
shown, which is part of the “Birth of Charlemagne” subjectivity point.

b) Calculate the positive extension of the scaled fuzzy set (representing the confidence
that a time point is after or equal the abstract point represented by the fuzzy set). If
Ii,j(t) denotes the original fuzzy set of the jth uncertainty point of the ith subjec-
tivity point, then I+

i,j(t) denoting the positive extension is calculated as:

I+
i,j(t) = sup

s≤t
Ii,j(s) (6.10)

E.g., the positive extension of the 0747-04-15 – 0748-04-01 probability point is
shown in Figure 6.6.

c) Calculate the negative extension of the scaled fuzzy set (representing the confidence
that a time point is before the abstract point represented by the fuzzy set). If Ii,j(t)
denotes the original fuzzy set of the jth uncertainty point of the ith subjectivity
point, then I−i,j(t) denoting the negative extension is calculated as:

I−i,j(t) = sup
s>t

Ii,j(s) (6.11)
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Figure 6.5: The scaled down fuzzy set of 0747-04-15 – 0748-04-01

Figure 6.6: The positive extension of 0747-04-15 – 0748-04-01
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E.g., the negative extension of the 0747-04-15 – 0748-04-01 probability point is
shown in Figure 6.7.

Figure 6.7: The negative extension of 0747-04-15 – 0748-04-01

2. Calculate the positive extension of the whole subjectivity point (denoted by I+
i (t) for the

ith subjectivity point) by combining the positive extensions of the uncertainty points by
summing their values.

I+
i (t) =

n∑
j=1

I+
i,j(t) (6.12)

E.g., the positive extension of the whole “Birth of Charlemagne” subjectivity point is
shown in Figure 6.10. For reference, also the positive and negative extensions of the
0742-04-02 and 0747-04-01 probability points are displayed in Figure 6.8 and Fig-
ure 6.9.

Figure 6.8: The positive and negative extensions of 0742-04-02
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Figure 6.9: The positive and negative extensions of 0747-04-01

Figure 6.10: The positive extension of “Birth of Charlemagne”

3. Calculate the negative extension of the whole subjectivity point (denoted by I−i (t) for
the ith subjectivity point) by combining the negative extensions of the uncertainty points
by summing their values.

I−i (t) =
n∑

j=1

I−i,j(t) (6.13)

E.g., the negative extension of the whole “Birth of Charlemagne” subjectivity point is
shown in Figure 6.11.

4. Calculate the fuzzy set representing our confidence level that a specific time point is after
and not before the subjectivity point (denoted by Ci(t)) as:

Ci(t) =
I+
i (t) + (1− I−i (t))

2
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Figure 6.11: The negative extension of “Birth of Charlemagne”

E.g., the “after and not before” fuzzy set for the “Birth of Charlemagne” subjectivity
point is shown in Figure 6.12.

Figure 6.12: The “after and not before” set of “Birth of Charlemagne”

5. Calculate the portion of the final fuzzy set defined by the ith subjectivity point (denoted
by Xi(t)) by combining the values before and after the subjectivity point.

Xi(t) = (1−Ci(t))Bi + Ci(t)Ai,

where Bi denotes the subjective value before the ith subjectivity point and Ai denotes
the value after the ith subjectivity point.

E.g., the portion of the final fuzzy set defined by the “Birth of Charlemagne” subjectivity
point is shown in Figure 6.13.
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Figure 6.13: The portion defined by “Birth of Charlemagne”

Constructing fuzzy interval from subjectivity points

After we have the fuzzy sets for the individual subjectivity points, it is possible to construct the
final fuzzy interval. We construct the fuzzy set representing the final fuzzy interval X(t) that
combines all three aspects of imperfection by gluing the Xi(t) pieces together. Let c−i denote
the first point of the support of Ci(t) (i.e., the first point that has a non-zero membership value).
We define pairwise disjoint validity intervals for the Xi(t), 1 ≥ i ≤ n pieces, which are shown
in Table 6.3.

Table 6.3: Validity interval definitions

Piece Validity interval

X1(t) (−∞, c−2 )
X2(t) [c−2 , c−3 )

...
Xi(t), i > 1 and i < n [c−i , c−i+1)

...
Xn(t) [c−n , +∞)

If vi denotes the ith validity interval, X(t) is calculated as:

X(t) = Xi(t) if t ∈ vi (6.14)
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Finally, the last remaining question is how to define Bi and Ai for the specific Xi(t) pieces.
The Ai values are given by the user using the GUI. The Bi values are defined as:

Bi = Xi−1(c
−
i ) if i ≥ 2 (6.15)

B1 = 0

E.g., the whole fuzzy set for the Dark Ages is shown in Figure 6.16. For reference, the portions
defined by the “Fall of the Western Roman Empire” and the “Coronation of Charlemagne” are
shown in Figure 6.14 and in Figure 6.15.

Figure 6.14: The portion defined by “Fall of the Western Roman Empire”

Figure 6.15: The portion defined by “Coronation of Charlemagne”
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Figure 6.16: The fuzzy temporal interval of “Dark Ages”

Discussion

The introduced algorithm generates a fuzzy interval from an arbitrary combination of vague-
ness, uncertainty and subjectivity specifications. It is important to note, however, that at spe-
cific steps of the algorithm some application-dependent, ad-hoc decisions were made, how to
combine the different kinds of theories. This was needed because currently there is no math-
ematical theory, how probability distributions, possibility distributions and fuzzy sets should
be combined. As was already discussed, these constructs are all fuzzy sets mathematically.
Still, epistemically they represent very different things. Therefore, it is not trivial, how the
different theories should be combined and what is the exact meaning of such combinations.
Consequently, other strategies are also possible theoretically, if the results of the algorithm do
not seem to be intuitive for the domain experts. In our case, we were happy with the results of
the algorithm because it always produced results that seemed to be intuitive.

In the algorithm, examples for such application-specific combinations are the following:

• In step 1.a, we scaled the values of a possibility distribution with values of a probability
distribution. Although mathematically it is a valid operation, epistemically it is prob-
lematic to multiply a possibility value with a probability value. The result of such a
combination is neither a possibility, nor a probability distribution. Clearly, instead of the
simple multiplication, other, more complex, mathematical operations, would be equally
valid. E.g., one could multiply with the square of the probability value to emphasize
values with a greater probability.

• In step 4, we calculated our confidence that some time point t is after and not before a
specific subjectivity point by taking the mean of the “after” and “not before” fuzzy sets.
Other mean operations, such as the geometric mean or the harmonic mean would also
be possible. It would also be possible to take only one of the two sets into consideration
(e.g., only the “after” set) because the role of the Ci(t) value is basically to smooth the
transition between two subjectivity values.
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6.6 Creating fuzzy time intervals

• Finally, when we combined the subjectivity point intervals, we simply defined crisp va-
lidity intervals of the Xi(t) parts based on their supports. A more complicated combina-
tion algorithm that considers also overlapping Xi(t) areas and constructs some transition
in such areas (similarly to step 4) would also be possible.

6.6.3 GUI of the fuzzy interval construction tool

The described algorithm was implemented in Java as a stand-alone fuzzy interval construc-
tion tool. This tool allows domain experts to follow the described step-by-step construction
process.

Experts start by specifying the probability points of a subjectivity point. As was described, a
probability point can be either a simple timepoint, or a possibility distribution. To keep things
simple, experts can specify a very simple type of possibility distribution with the tool, which
consists of a “core period” and a “marginal period” (see Figure 6.17). This effectively creates a
distribution with a trapezoid shape. E.g., Figure 6.18 shows the distribution of the probability
point for the “Fall of the Western Roman Empire”, which happens gradually during the period
from 337 to 476, as was already discussed. It is modeled here so that the core period is from
0475-01-01 to 0476-12-31, and the marginal period is from 0337-01-01 to 0476-12-31.

Figure 6.17: The dialog to specify a probability point

As the next step, the tool allows experts to specify the probability distribution for a group of
probability points. The software validates the probability distribution, i.e., checks that the sum
of the probabilities is one. E.g., the probabilities for the “Charlemagne is born” event from the
example introduced in Figure 6.2 should sum up to one7.

Finally, the experts can specify the degree of membership of the time points after the subjectiv-
ity point in the abstract time interval. The tool automatically constructs the fuzzy interval and
also displays it visually. The tool uses the algorithm for constructing the fuzzy interval that
was discussed previously in detail. As an example, Figure 6.19 shows the result of specifying
the time period for the Dark Ages.

7The probabilities in this example are 0.3, 0.1, and 0.6, respectively.
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Figure 6.18: Possibility distribution of the “Fall of the Western Roman Empire”

Figure 6.19: Specifying the Dark Ages with the fuzzy interval creation tool

6.7 Fuzzy Temporal Relations

As was discussed in Section 6.1.1, a proper temporal model should support at least the temporal
relations defined by Allen. Therefore, to demonstrate that the introduced fuzzy temporal model
is a proper temporal model, I show in this section how to realize the relations from Table 6.1
in my fuzzy model.

It is important to observe that since the intervals are not crisp, the relations between the in-
tervals will not be crisp, either. After all, since the intervals are not exact, we cannot exactly
determine whether one interval precedes the other one or not. Hence, given two imperfect
intervals i and j and a crisp temporal relation θ, the fuzzy temporal relation Θ will take the
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fuzzy intervals I and J and produce a number c ∈ [0, 1], giving the confidence that the classical
temporal θ relation holds between i and j.

Extending classical temporal relations to fuzzy sets is not easy, since classical relations in
Table 6.1 are defined using interval endpoints. However, for fuzzy intervals the notion of
endpoints is meaningless. Therefore, I define fuzzy temporal relations in an alternative way,
which is still compatible with the crisp case.

I do this in several steps: first I reformulate the definition of crisp temporal relations using
set operations on intervals, thus eliminating references to interval endpoints. In doing so, I
introduce several auxiliary unary operators on intervals (e.g., “negative extension”), which
create new intervals representing timepoints with some particular relationship to the original
interval (e.g., timepoints which are before the last timepoint of the original interval). After that,
I extend the definitions of temporal relations to the fuzzy case by providing a fuzzy counterpart
of auxiliary operators and by reusing the usual fuzzy set operations.

6.7.1 Defining Crisp Temporal Relations using Set Operations

The basic idea for eliminating references to interval endpoints is the following. First, we can
notice that for all t1, t2 ∈ T , if t1 < t2, then the interval between t1 and t2 is not equal to the
empty set. This we can be written as

t1 < t2 ⇔ (t1, t2) 6= ∅ (6.16)

Second, if t1 = t2, then we have to make sure that both intervals (t1, t2) and (t2, t1) are empty
sets, thus expressing that neither t1 is after t2 or vice versa. This can be written as

t1 = t2 ⇔ (t1, t2) = ∅ ∧ (t2, t1) = ∅ (6.17)

Further, we define several auxiliary unary operators on intervals. The role of these operators
is to construct the intervals commonly used in definitions of temporal relations. The following
eight operators <−, ≤−, >−, ≥−, <+, ≤+, >+, ≥+, take a crisp interval and construct a new
crisp interval containing all of the time points which are (strictly) before or (strictly) after the
starting or ending point of the original interval. E.g., <−(i) = (−∞, i−). The definition of
these operators is given in Table 6.4.

Now, we are ready to redefine the temporal relations using the ideas presented in (6.16) and
(6.17) and the unary operators from Table 6.4. I explain how this is done for the starts
relation, since its definition uses both endpoint equality and inequality. Other relations are
defined similarly and are given in Table 6.5. I did not redefine the after, overlapped-by,
contains, met-by, started-by and finished-by relations, as they are simply the
inverse of other relations.

We start the redefinition of the starts relation by repeating the definition from Table 6.1:

istarts j
def
= (i− = j−) ∧ (i+ < j+) (6.18)
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Table 6.4: Auxiliary unary operators

Operator Result

<− <−(i) = (−∞, i−)
≤− ≤−(i) = (−∞, i−]
>− >−(i) = (i−, +∞)
≥− ≥−(i) = [i−, +∞)
<+ <+(i) = (−∞, i+)
≤+ ≤+(i) = (−∞, i+]
>+ >+(i) = (i+, +∞)
≥+ ≥+(i) = [i+, +∞)

The constraint i− = j− can be expressed as (cf. (6.17))

[
(i−, j−) = ∅

]
∧
[
(j−, i−) = ∅

]
(6.19)

which can be written with the help of auxiliary unary operators as

[
>−(i) ∩<−(j) = ∅

]
∧
[
>−(j) ∩<−(i) = ∅

]
(6.20)

because we know that

(t1, t2) = (t1, +∞) ∩ (−∞, t2) (6.21)

This last step is needed to eliminate all references to interval endpoints in the definition.

Similarly, the constraint i+ < j+ can be expressed using (6.16) and (6.21) as

>+(i) ∩<+(j) 6= ∅ (6.22)

Hence, the starts relation can be defined by means of set operations on intervals as

>−(i) ∩<−(j) = ∅ ∧
istarts j

def
= <−(i) ∩>−(j) = ∅ ∧

>+(i) ∩<+(j) 6= ∅
(6.23)

Finally, it is important to note that the intersects relation has not been derived from the
definition in Table 6.1. Instead, simply the fact was used that it expresses the constraint that
the intersection of i and j is not empty.
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Table 6.5: Transcribed Relations

Temporal Relation Definition

i before j >+(i) ∩<−(j) 6= ∅

i overlaps j
>−(i) ∩<−(j) 6= ∅ ∧
<+(i) ∩>−(j) 6= ∅ ∧
>+(i) ∩<+(j) 6= ∅

i during j
<−(i) ∩>−(j) 6= ∅ ∧
>+(i) ∩<+(j) 6= ∅

i meets j
>+(i) ∩<−(j) = ∅ ∧
<+(i) ∩>−(j) = ∅

i starts j
>−(i) ∩<−(j) = ∅ ∧
<−(i) ∩>−(j) = ∅ ∧
>+(i) ∩<+(j) 6= ∅

i finishes j
<−(i) ∩>−(j) 6= ∅ ∧
>+(i) ∩<+(j) = ∅ ∧
<+(i) ∩>+(j) = ∅

i equals j
>−(i) ∩<−(j) = ∅ ∧
<−(i) ∩>−(j) = ∅ ∧
>+(i) ∩<+(j) = ∅ ∧
<+(i) ∩>+(j) = ∅

i intersects j i ∩ j 6= ∅

6.7.2 Extending Auxiliary Interval Operators to Fuzzy Intervals

In this section, we extend the auxiliary interval operators to operate on fuzzy intervals. I denote
the extended operators with the same symbols as in the crisp case, i.e., as <−, ≤−, >−, ≥−,
<+, ≤+, >+, ≥+. Each fuzzy auxiliary operator O will be a function O : I → I, i.e, it
will take a fuzzy interval and yield another fuzzy interval. The semantics of O(I) should be
understood as follows: O(I)(t) gives our confidence that t is in ω(i) for the corresponding
crisp auxiliary operator ω. For example, <−(I)(t) represents our confidence that t is in <−(i).
In order to make my notation simpler, I will sometimes write O(I) as IO.

It is important to stress again that the crisp interval i is just an abstract interval that usually
cannot be defined (as was explained in Section 6.5.4). This was the motivation for fuzzy inter-
val in the first place. Consequently, we can apply the crisp operators on these crisp intervals
only in an abstract sense. The analogy between the crisp intervals and operators and the fuzzy
intervals and operators is used only to make the definitions of the fuzzy intervals and operators
more intuitive and not to suggest that the crisp intervals could really be defined.

The relation among the crisp and the fuzzy operators is shown in Figure 6.20, on the example
of the >−operator.
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Figure 6.20: Crisp and fuzzy operators

In the rest of this subsection, I will show how to extend the operators ≥− and <− to the fuzzy
case. The other operators can be extended in a similar manner and their definitions are shown
in Table 6.6.

The operator ≥− should, for some fuzzy interval I representing interval i, give a fuzzy interval
I≥−, representing the interval ≥−(i). Let s−I and s+

I denote the starting and ending points of
SI (i.e., of the the support of I). By assumptions from Section 6.5.4, we know that i ⊆ SI.
Therefore, I≥−(t) should be 0 for each t < s−I and should be 1 for each t > s+

I because we
know that each time point before s−I are before i− and we know that each time point after s+

I is
after i+ and therefore also after i−. For a t ∈ SI, we can tell that our confidence that t ∈ ≥−(i)
should be as big as our confidence that s ∈ ≥−(i) for any s ≤ t. Therefore, I define the
operator ≥− : I → I as follows:

I≥−(t) =


0 if t < S−I
sups≤t I(s) if t ∈ SI

1 if t > S+
I

(6.24)

The definition of the operator <− is easy, if we already defined the ≥− operator. It should be
noted that if t ∈ <−(i), then t /∈ ≥−(i). Therefore I simply define the I<− fuzzy interval as
the fuzzy complement of the I≥− fuzzy interval:

I<−(t) = IC
≥−(t) = 1− I≥−(t) (6.25)
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Table 6.6: Fuzzyfied Unary Operators

Operator Definition

<− 1− I≥−(t)

≤− 1− I>−(t)

0 if t < S−I
>− sups<t I(s) if t ∈ SI

1 if t > S+
I

0 if t < S−I
≥− sups≤t I(s) if t ∈ SI

1 if t > S+
I

0 if t < S−I
<+ sups>t I(s) if t ∈ SI

1 if t > S+
I

0 if t < S−I
≤+ sups≥t I(s) if t ∈ SI

1 if t > S+
I

>+ 1− I≤+(t)

≥+ 1− I<+(t)

The results of applying the ≥− and <− operators on the “Dark Ages” fuzzy interval are shown
in Figure 6.21 and Figure 6.22.

Figure 6.21: Applying ≥− on the Dark Ages interval
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Figure 6.22: Applying <− on the Dark Ages interval

6.7.3 Constraints using Comparison with the Empty Set

Before we can finally extend the definitions of the temporal relations to fuzzy intervals, we
must extend constraints of the form a ∩ b 6= ∅ and a ∩ b = ∅ to fuzzy intervals. I use the
following main idea: the value supt I(t) (i.e., the maximum confidence of membership of any
time point in the interval) gives the confidence that some t is in i, i.e., our confidence that i is
not empty.

Since fuzzy intersection is expressed using the min operator (cf. Section 6.2.3), our confidence
that a ∩ b 6= ∅ can be represented as

sup
t

min(A(t),B(t)) (6.26)

Since a ∩ b = ∅ is simply the negation of a ∩ b 6= ∅, our confidence in that this constraint is
fulfilled is given as

1− sup
t

min(A(t),B(t)) = inf
t

max(AC(t),BC(t)) (6.27)

6.7.4 Temporal Relations on Fuzzy Intervals

Now we are ready to extend the definition of the temporal relations to fuzzy intervals based on
the transformed definitions from Table 6.5. I define a fuzzy temporal relation Θ as a function
Θ : I × I → [0, 1]. In other words, a temporal relation takes two fuzzy intervals and gives
the confidence that the crisp temporal relation holds between the abstract intervals represented
by the respective fuzzy intervals. I denote the fuzzy temporal relations with big letters to
distinguish them from their crisp counterparts.
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I only discuss the definition of relation STARTS(I,J). Other relations can be defined in a
similar way and they are shown in Table 6.7. We start from the definition of the crisp relation
starts, which was defined in Subsection 6.7.1 as

>−(i) ∩<−(j) = ∅ ∧
istarts j

def
= <−(i) ∩>−(j) = ∅ ∧

>+(i) ∩<+(j) 6= ∅
(6.28)

After applying the rules for transcribing the constraints (cf. Subsection 6.7.3) we obtain:

STARTS(I,J) = min(
inft max(I≤−(t),J≥−(t)),
inft max(I≥−(t),J≤−(t)),
supt min(I>+(t),J<+(t)))

(6.29)

Table 6.7: Fuzzy Temporal Relations

Relation Definition

BEFORE(I,J) supt min(I>+(t),J<−(t))

OVERLAPS(I,J)
min(supt min(I>−(t),J<−(t)),

supt min(I<+(t),J>−(t)),
supt min(I>+(t),J<+(t)))

DURING(I,J)
min(supt min(I<−(t),J>−(t)),

supt min(I>+(t),J<+(t)))

MEETS(I,J)
min(inft max(I≤+(t),J≥−(t)),

inft max(I≥+(t),J≤−(t)))

STARTS(I,J)
min(inft max(I≤−(t),J≥−(t)),

inft max(I≥−(t),J≤−(t)),
supt min(I>+(t),J<+(t)))

FINISHES(I,J)
min(inft max(I≤+(t),J≥+(t)),

inft max(I≥+(t),J≤+(t)),
supt min(I>−(t),J<−(t)))

EQUALS(I,J)

min(inft max(I≤+(t),J≥+(t)),
inft max(I≥+(t),J≤+(t)),
inft max(I≤−(t),J≥−(t)),
inft max(I≥−(t),J≤−(t)))

INTERSECTS(I,J) supt min(I(t),J(t))
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6.8 Discussion of the fuzzy temporal model

In this section I discuss the model and relations presented in this chapter and demonstrate how
they fulfill the requirements from Section 6.1.

6.8.1 Representing Imprecise Information.

As discussed briefly in Section 6.5.4, fuzzy intervals are capable of representing all three causes
of impreciseness in history. They represent the net confidence of the history expert about the
statement t ∈ i, where the lack of confidence can be caused by any combination of vagueness,
uncertainty and subjectivity.

With this approach it is possible to model not only the core period of an event but also tran-
sition, development etc. periods, which are only partially relevant to a specific event. This is
possible because I define fuzzy intervals directly, without referencing the endpoints. In this
sense my approach is superior to the other approaches, which were discussed in Section 6.4.

As examples for fuzzy intervals, possible interpretations of the intervals “late twenties – early
thirties” (Figure 6.23), “320? – 330”8 (Figure 6.24), and “Russian Revolution” (Figure 6.25)
are shown. Each of the fuzzy intervals shows one of the special characteristics of historical
knowledge, namely vagueness, uncertainty, and subjectivity, respectively.

Figure 6.23: Fuzzy interval of “late twenties” – “early thirties” (vagueness)

8The beginning of the interval is uncertain, it is assumed that the interval starts in 318 with 0.3 probability and
in 320 with 0.7 probability.

88



6.8 Discussion of the fuzzy temporal model

Figure 6.24: Fuzzy interval of 320? – 330 (uncertainty)

Figure 6.25: Fuzzy interval of “Russian Revolution” (subjectivity)
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6.8.2 Compatibility with Crisp Case

It is easy to see that fuzzy relations are natural extensions of the classical ones, as they give
the same results on crisp intervals as the classical ones. This is because I defined the fuzzy
relations based on the original definitions of the classical relations. Hence, the requirements
on the compatibility with the crisp case is completely fulfilled.

6.8.3 Intuitiveness of Fuzzy Relations.

I believe that my fuzzy relations yield intuitive results, where I mean with “intuitive” that the
relation yields a result of 1 if we are completely certain that the classical relation exists between
the abstract intervals represented by the fuzzy intervals. Moreover the relation should yield 0,
if we are certain that this is impossible. A result between zero and one is given if neither of
these possibilities are sure.

E.g., in the case of the BEFORE(I,J), it should yield 1, if SI before SJ holds (i.e., we are
sure that i before j holds) and it should yield 0, if CI before CJ does not hold (i.e. we are
sure that i before j does not hold). These three cases are shown graphically in Figures 6.26
to 6.28.

Intuitiveness can similarly be checked for other fuzzy relations.
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Figure 6.26: BEFORE(I,J) = 1
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92



6.8 Discussion of the fuzzy temporal model

time

I

C
I

S
I

J

C
J

S
J

I>+
 

J<- 

min(I>+,J<-) 

1
co
nf
id
en
ce

BEFORE(I,J) = sup min(I>+,J<-) = 0 

0

1

co
nf
id
en
ce

0

1

co
nf
id
en
ce

0

1

co
nf
id
en
ce

0

Figure 6.28: BEFORE(I,J) = 0
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6.9 Alternative approaches

The temporal model described here was published in [NM03]. To the best of my knowledge,
we were the first to propose a temporal model, which is capable of capturing all aspects of
imperfection in historical temporal information9 and also provides a set of temporal relations,
which allows reasoning on these temporal specifications.

Later, alternative approaches for representing fuzzy temporal relations were also proposed,
which are discussed here. The alternative approaches also build on the idea to use fuzzy sets
directly to encode imperfect temporal intervals. This fact is very encouraging because it shows
that the basic idea of my temporal model has been accepted in the research community.

One of the relevant works is that of Ohlbach [Ohl04]. He also proposes to use fuzzy sets to
represent whole temporal intervals, instead of starting or ending points of intervals. He also
fuzzifies Allen’s relations but with a different focus. He proposes to fuzzify the relations them-
selves also for the crisp case, i.e., to represent relations such as “long before”. Operationally,
he also uses the positive and negative extensions of fuzzy sets to define interval relations but
he chooses to calculate the overlapping area of fuzzy sets to determine the degree to which a
specific fuzzy relation holds. It is also a difference that he uses point-to-interval relations as a
basic unit of his fuzzy temporal algebra, while I use point-to-point relations as basic units. For
our application domain the major disadvantage of Ohlbach’s approach is that his fuzzy rela-
tions are not compatible with the crisp case. I.e., it is not possible to express the classical crisp
before, after, etc. relations with his fuzzy relations. On the other hand, his approach provides
much more flexibility to specify different definitions of the various fuzzy relations.

Recently, partly motivated by my work, Schokaert and his colleagues also proposed a time
model based on fuzzy time intervals [SCK, SCK05]. They build their representation on fuzzy
point-to-point relations. With their approach, they are able to make some statements about the
transitivity, reflexivity and symmetry property of their fuzzy relations and they can show that
using some specific fuzzy t-norms10 to define the temporal relations, these properties coincide
with the crisp case. In that sense, their model is much more elaborate than my model or the
model of Ohlbach. On the other hand, their model is mathematically much more involved than
my model and the interval relations can be calculated less efficiently. Because the additional
features provided by their model are not needed in our application domain, I use my simpler,
more efficient model in this thesis.

6.10 Generality of the approach

The introduced approach to fuzzify temporal relations is general and can be applied to other
domains. As an example, I show how to fuzzify spatial relations using the same fundamental
idea.

9i.e., uncertainty, subjectivity, and vagueness
10In fuzzy logic, minimum and maximum are not the only possibilities to define the fuzzy intersection and union

operations. The operators which are used to calculate fuzzy intersection are called “t-norms”, the operators to
represent fuzzy union are called “t-conorms”.
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In most information systems where spatial data is managed, location information of places is
stored with the help of a so-called bounding shape. This bounding shape specifies the relevant
geographical points of an entity (city, country, river etc.) in a two (sometimes three) dimen-
sional space of geographical coordinates. The typical operation in such information systems
is to find stored bounding shapes which have overlapping regions with a reference bounding
shape. Such way one can find cities located in a country, countries which a river flows through
etc.

Similarly to the case of the presented fuzzy temporal model, where the notion of temporal
interval was extended to a fuzzy temporal interval, it is also possible to extend the notion of
the bounding shape to the notion of a fuzzy bounding shape.

6.10.1 Fuzzy Bounding Shapes

In the following presentation, we assume that we need to represent a crisp bounding shape s
inside which an entity is located. A crisp bounding shape has a characteristic function s(x, y)
which gives 1 for a specific coordinate if it is part of the bounding box, and 0 if it is not. We
denote the set of all possible x coordinates as X and the set of all possible y coordinates as Y .
We denote crisp bounding shapes as s and t and their characteristic function with s(x, y) and
t(x, y), respectively.

Similarly to the temporal case, it is possible that we are not completely confident, whether a
specific coordinate belongs to the bounding shape of an entity or not. Again, similarly to the
temporal case the cause of this lack of confidence can be uncertainty or vagueness11 but also
level of preference12.

We can say that an entity is clearly located inside an abstract bounding shape but we do not
know that bounding shape precisely. We call such a bounding shape imperfect and model it by
means of a two dimensional fuzzy set S, defined by its membership function S : X × Y →
[0, 1]. S(x, y) represents our confidence level that (x, y) is in s. If S(x, y) = 0, we are
completely confident that (x, y) is not in s; if S(x, y) = 1, we are completely confident that
(x, y) is in s. I term such a fuzzy set representing an abstract bounding shape as a fuzzy
bounding shape. I denote the set of all fuzzy bounding shapes as S and elements of S as S and
T.

Of course, similarly to the temporal case we also need to extend crisp spatial relations to the
fuzzy case. In present spatial information systems the most widely used relation is the overlaps
relation on bounding shapes. This relation is defined for the crisp case as:

overlaps(s, t) =


1 if ∃x ∈ X and ∃y ∈ Y

such that
s(x, y) = t(x, y) = 1

0 otherwise

(6.30)

11i.e., missing information about the location
12e.g., a citizen of Karlsruhe may view the neighboring city of Ettlingen as “somewhat part of” Karlsruhe
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Chapter 6 Representing temporal imperfection

This crisp overlaps relation can be extended to the fuzzy case easily by providing a fuzzy
OVERLAPS operation:

OVERLAPS(S,T) = sup
x,y

(max(S(x, y),T(x, y))) (6.31)

6.10.2 Bounding Boxes vs. Bounding Shapes

In real-world information systems, bounding shape membership is not defined for each pos-
sible (x, y) coordinates for performance reasons but bounding shapes are rather represented
with the help of simple geometric forms (rectangular, polygon, ellipse etc.), or as a set of such
simple forms. In the case of a simple rectangular shape bounding shapes are called bounding
boxes.

The advantage of representing bounding shapes with simple geometric forms is the dramati-
cally decreased amount of needed storage space13 and the increased performance when calcu-
lating the results of bounding shape operations14. Of course, the drawback of the approach is
that the spatial specifications will be less precise.

Similarly to the crisp case, it is also possible to construct fuzzy spatial bounding shapes as a
union of simpler fuzzy bounding shapes. E.g., one may define fuzzy bounding shapes using
bounding boxes, where each point inside such a sub-bounding box has the same membership
value. An example for that is shown on Figure 6.29.

10

10 0
 0.2
 0.4
 0.6
 0.8

 1

Figure 6.29: An example fuzzy spatial bounding box

13e.g., only four real numbers are needed to represent a bounding box
14e.g., to determine whether two rectangular areas overlap only several simple real-number comparisons have to

be done
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6.11 Summary

In this chapter a novel temporal model was introduced. The model is built on the theory
of fuzzy sets and represents imperfect temporal intervals as fuzzy temporal intervals. It was
shown that this model can represent all aspects of temporal imperfection in a unified model.
Later it was discussed how such fuzzy temporal intervals can be created and a user-friendly
graphical tool was introduced for this purpose. Finally, the generality of the approach to define
fuzzy temporal intervals was demonstrated by defining fuzzy bounding shapes to represent
imperfect spatial specifications, using the same fundamental ideas that were applied on time
intervals.

The introduced model is a full-featured temporal model that can represent all of the usual
temporal relations. Therefore, it is a valuable contribution on its own. Moreover, the model is
used in the ontology-supported IR process during the metadata generation step, which will be
discussed in Chapter 8 in detail.
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Chapter 7

Ontology formalism

We have seen in Section 2.5 that the definition of an ontology is rather vague. Although I
have constrained the original definition of Gruber, there are still many possibilities to define an
ontology formalism that fulfills the definition. Moreover, during Chapter 3 I identified some
additional requirements that an ontology formalism should meet. In this chapter, I analyze
these requirements from the ontology formalism point of view. I define and describe an ontol-
ogy formalism that fulfills all these requirements and that will be used in this thesis.

7.1 Requirements

The first requirement toward an ontology formalism is that it should be an ontology according
to our definition in Section 2.5. I.e., it should have a “well-defined mathematical interpreta-
tion”, and should at least be “capable to represent a subconcept taxonomy, concept instances
and user-defined relations between concepts”. Moreover, to fulfill the DOMAIN IMPERFEC-
TION requirement, the ontology formalism should allow us to represent fuzzy temporal inter-
vals, and relations between such intervals.

A further analysis of history as an application domain reveals that many of the relations are
time-dependent. E.g., a person is member of a group or organization only during a limited
period of time, or a person has a role only during a limited period of time etc. Moreover,
time-dependency can be combined with other common properties of ontology relations, such
as symmetry, transitivity and inverse relations.

An example for a time-dependent symmetric relation is the “married with” relation. In a mod-
ern society marriage can be broken up, i.e., two persons are married to each other only during
a specific time period. Marriage is a symmetric relation, if a husband is married to his wife,
the wife is also married to her husband.

An example for a time dependent transitive relation is the “part of” relation between locations.
The relation is transitive, e.g., if Strasbourg is part of Alsace, and Alsace is part of France, then
Strasbourg is also part of France. On the other hand, the relation is time dependent because
the ownership of territories and cities can change. E.g., Alsace changed its owner many times
during the history, it was sometimes part of France, sometimes part of Germany.

It is easy to see that time dependent relations can have inverse relations, too. E.g., the “part of”
relation can have an inverse relation “has part”.
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Therefore, we can state as a final requirement that an ontology formalism should be able to
represent symmetric, transitive and inverse relations, both timed and non-timed.

7.2 Choosing the appropriate formalism

7.2.1 Alternative formalisms

When choosing the appropriate ontology formalism, one should always strive to choose an
already available standard formalism to guarantee interoperability with other systems using
semantic technology. Based on this principle, the most straightforward choice would be one of
the OWL languages: OWL-Lite, OWL-DL or OWL-Full [PSHH04]. Unfortunately because
the OWL language family builds on the description logic (DL) formalism [BCM+03], the OWL
variants support only binary relations out-of-the-box. To represent timed relations, however,
at least ternary relations are needed because a timed relation connects the source and the target
of the relation with a time specification.

The standard way to solve the problem of relations with higher arity in the OWL-world is to
reify them. Reification means that the relation is transformed into a new instance of a new
concept which is connected with the original entities participating in the relation. E.g., instead
of specifying a “married with” timed relation connecting two persons, one could specify a new
MARRIAGE concept and represent the marriage as an instance of this new concept. I.e., the
statement MARRIEDWITH(Bill, Mary, “after 2001-01-01”) is transformed to a new instance
MARRIAGEOFBILLANDMARY of the MARRIAGE concept which is connected with the in-
stances BILL, MARY and the user-defined datatype representing “after 2001-01-01” (using
three binary relations).

The problem is that transitivity of relations is a built-in construct in DL-like formalisms, and
cannot be expressed using axioms. This means, if we reify a transitive relation, we loose the
possibility to declare that it is a transitive one. Therefore, reification cannot be used in this case,
which means that OWL cannot fulfill the requirement to represent timed transitive relations,
such as “part of”.

Besides OWL another popular ontology formalism is F-Logic [KLW95] which is also used
by, e.g., the WSML formalism for modeling semantic web service ontologies [dB05]. This
formalism allows one to represent relations of arbitrary arity, therefore the reification problem
does not occur. Moreover, all of the relation properties (symmetry, transitivity and inverse of)
can be expressed with valid axioms. The only problem which ruled out this formalism was that
there were no freely available F-Logic reasoner implementations known to me that supported
user-defined datatypes.

7.2.2 A Datalog-based ontology formalism

Finally, I decided to use the Datalog formalism [Ull88, CGT90, Dah96]. Datalog is a for-
malism for deductive databases. It is relationally complete and in addition it also supports
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recursion. Datalog can represent relations with arbitrary arity and when I started the imple-
mentation of the research prototype, an efficient Datalog reasoner that allowed the definition
of user-defined datatypes was already available — the KAON2 reasoner [HMS04].

It must be noted, however, that Datalog itself is not an ontology formalism according to my
definition from Section 2.5. In particular, it does not support the usual ontology modeling
constructs: concepts, instances and relations. Datalog is a logical formalism, therefore the
only modeling constructs are logical predicates and logical axioms (rules). Consequently, it
was necessary to design my own mini-ontology language on top of Datalog that axiomatized
the semantics of usual ontology constructs.

The modeling constructs of this ontology language are shown in Table 7.1. As it can be seen,
the constructs are the “usual” ones that can be found in almost all ontology languages. The
only unique feature is the possibility to use temporal relations and freely use relation metaprop-
erties (such as symmetry or transitivity) also on temporal relations. This has two advantages:
first, existing ontology editors can be reused to model large parts of the ontology. Second,
major parts of ontologies defined in my formalism can be exported to widely used ontology
formalisms, such as OWL.

Table 7.1: Ontology modeling constructs

Modeling construct Datalog predicate

Concept CONC(x)
Instance INST(x)

“Normal” relation NREL(x)
Temporal relation TREL(x)

Attribute ATTR(x)
Instance of ISA(i,c)

Domain concept DOMAIN(r, c)
Range concept RANGE(r,c)

Symmetric relation SYMM(r)
Transitive relation TRANS(r)
Inverse relations INV(p,r)

“Normal” relation value NRVAL(r,is,it)
Temporal relation value TRVAL(r,is,it)

Attribute value AVAL(r,i,v)
Subconcept of SUBC(c,d)

Instance of ISA(i,c)
Subproperty of SUBP(i,c)

To simplify the Datalog axioms that formally define the language semantics, some auxiliary
modeling constructs were defined (shown in Table 7.2). Although these constructs also make
sense and can be found in many ontology formalisms, they are not used directly by users but
only internally in the meta-axioms that define the language semantics.
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Table 7.2: Auxiliary modeling constructs

Modeling
construct

Datalog
predicate

Remark

Relation REL(r) Either a normal or a temporal relation
Property PROP(p) A relation or an attribute

Finally, the axioms that define the semantics of the ontology formalism are shown in Fig-
ures 7.1 and 7.21. As can be seen, most of the elements have the usual semantics. In contrast
to OWL, however, my formalism uses the so-called “closed world assumption” (CWA), i.e.,
domain and range declarations on properties are interpreted as constraints and not as inference
rules. In my ontology language the “LOVES relation has the range PERSON” statement creates
a constraint, where it is checked, that each ontology instance, which has an incoming LOVES

relation, is really a person. CWA is used by all relational database implementations and also
by many ontology formalisms, including most F-Logic implementations.

By contrast, OWL uses the so-called “open-world assumption” (OWA), where no constraints
are used in the language, only inference rules. In OWL, the same “LOVES relation has the
range PERSON” statement would create an axiom that would infer that every instance, which
has an incoming LOVES relation, is an instance of the PERSON concept.

In general, it cannot be said that either OWA or CWA is better suited for knowledge represen-
tation. There are drawbacks and advantages of both formalisms. Using CWA, however, has the
advantage that formalisms using this assumption usually have much more efficient reasoning
procedures than formalisms using OWA. Moreover, I felt that CWA fits the human intuition
better in the application context of history.

1In addition, axioms are needed that check that parameters of the predicates are of the right type. E.g., in the
case of the ISA(i,c) predicate, it must be checked that INST(i) and CONC(c) hold. Those trivial “boilerplate”
axioms are not included in the tables.
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A normal relation is a relation:
REL(x) :- NREL(x)

A temporal relation is a relation:
REL(x) :- TREL(x)

Relations are properties:
PROP(x) :- REL(x)

Attributes are properties:
PROP(x) :- ATTR(x)

No metamodeling, an entity has only one type:
!- CONC(x), PROP(x)
!- CONC(x), INSTC(x)
!- PROP(x), INSTC(x)
!- NREL(x), TREL(x)
!- NREL(x), ATTR(x)
!- TREL(x), ATTR(x)

Subconcept is transitive:
SUBC(x,z) :- SUBC(x,y), SUBC(y,z)

Subproperty transitive:
SUBP(x,z) :- SUBP(x,y), SUBP(y,z)

Indirect instance:
ISA(i,d) :- ISA(i,c), SUBC(c,d)

Relation value is valid for superproperties:
NRVAL(r,is,it) :- NRVAL(p,is,it), SUBP(p,r)

Timed relation value is valid for superproperties:
TRVAL(r,is,it,t) :- TRVAL(p,is,it,t), SUBP(p,r)

Attribute value is valid for superproperties:
AVAL(r,i,v) :- AVAL(p,i,v), SUBP(p,r)

Transitive relation values:
NRVAL(p,x,z) :- TRANS(p), NRVAL(p,x,y), NRVAL(p,y,z)

Transitive timed relation values:
TRVAL(p,x,z,t3) :- TRANS(p), TRVAL(p,x,y,t1),

TRVAL(p,y,z,t2), INTERSECTION(t1,t2,t3)
Symmetric relation values:

RVAL(p,y,x) :- SYMM(p), RVAL(p,x,y)
Symmetric timed relation values:

TRVAL(p,y,x,t) :- SYMM(p), TRVAL(p,x,y,t)

Figure 7.1: Datalog axioms defining the semantics of the ontology formalism
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Property inverse is symmetric:
INV(y,x) :- INV(x,y)

Inverse relation values:
NRVAL(r,y,x) :- INV(p,r), NRVAL(p,x,y)

Inverse temporal relation values:
TRVAL(r,y,x,t) :- INV(p,r), TRVAL(p,x,y,t)

Domain constraint on relations:
!- DOMAIN(r,c), NRVAL(r,si,ti), ¬ ISA(si,c)

Domain constraint on timed relations:
!- DOMAIN(r,c), TRVAL(r,si,ti,t), ¬ ISA(si,c)

Domain constraint on attributes:
!- DOMAIN(a,c), AVAL(a,i,v), ¬ ISA(i,c)

Range constraint on relations:
!- RANGE(r,c), NRVAL(r,si,ti), ¬ ISA(ti,c)

Range constraint on timed relations:
!- RANGE(r,c), TRVAL(r,si,ti,t), ¬ ISA(ti,c)

Figure 7.2: Datalog axioms (continued...)

7.3 Fuzzy time in the ontology formalism

7.3.1 General considerations

In this section, it is discussed how the fuzzy temporal model described previously in Chapter 6
can be used in ontology modeling.

The approach for integrating the temporal model into ontological definitions follows the pat-
tern of modular semantics2 which I believe will gain importance in the near future when the
complexity of domains being modeled increases. This pattern is based on the observation that
a particular formalism may be good for some modeling tasks but totally inappropriate for other
ones. Trying to apply the most general formalism (e.g., first-order logic) to all modeling tasks
usually results in cumbersome systems with inadequate performance. Rather, a more promis-
ing approach is to combine various formalisms in a modular way, thus harvesting the best of
each of them. Here I apply this principle to time modeling. However, it is easy to imagine a
spatial algebra being orthogonally added to the temporal and ontology formalisms in a similar
manner.

My approach may schematically be described as in Figure 7.3. On the left-hand side of the
figure is the ontology model, on the right-hand side is the fuzzy temporal model with the
semantics as described in Chapter 6. These two heterogeneous semantics are orthogonal and
need to be integrated at the syntactic and at the semantic level.

2Although the term “modular semantics” was coined by Boris Motik and myself in [NM03], the idea of integrat-
ing different logical formalisms in one system is not completely new and there are different existing solutions.
E.g., consider the concept of concrete domains in description logics [BH91], or the work of Pan and Horrocks
to extend the W3C OWL standard with datatype groups [PH03].
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syntactic
integration

semantic integration

Data types

Fuzzy
Temporal
Model

Ontology
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Temporal
Relation
Predicates

Figure 7.3: Integrating Ontology and Fuzzy Temporal Models

Integration at the syntactic level defines how to physically connect elements from one model
with another. Datatypes provide an excellent mechanism for this purpose. Many ontology
languages (e.g., OWL [PSHH04]) offer the capability of modeling atomic objects whose se-
mantics is out of scope of the logical theory.

In the semantic interpretation of the ontology, instances of datatypes are interpreted as mem-
bers of some concrete domain (often denoted as ∆D). On the other hand, ontology instances
are interpreted as members of the abstract domain (often denoted as ∆I).

The concrete and abstract domains must be disjoint, thus causing the semantics of data types
and of the ontology model to be separated. In my case, I introduced a separate data type which
is responsible for representing fuzzy temporal information.

Integration at the semantic level defines how properties of one model semantically relate to the
other model. In our case this means that we need to specify how the temporal relations from
Section 6.7 are represented in the ontology formalism.

This is done by introducing a predicate into the ontology model for each temporal relation
from Table 6.7. One can think of these predicates as built-ins: the arguments of the predicate
are fuzzy intervals whose content is opaque to host ontology formalism. The predicates serve
as a gate between the two worlds, providing an abstract interface to the interval model. One
must observe that although the semantics of the predicates is not axiomatized in the ontology
formalism, reasoning may still be performed on the arguments and results of the predicates.
Each predicate has an additional argument receiving the fuzzy value of the relation. For exam-
ple, if the fuzzy interval I is before interval J with the confidence level 0.8 then the statement
BEFORE(I,J,0.8) is true. Note that constraints on the confidence level can be expressed by
using variables3:

BEFORE(I,J, X) ∧ X > 0.8 (7.1)

To summarize the discussion on integrating fuzzy time into ontologies, we can state that an
ontology formalism should support the definition of user-defined datatypes and should also

3if the ontology formalism supports them
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provide some means to connect the predicates of the datatype to the main ontology formal-
ism.

7.3.2 Integration into the Datalog-based formalism

In the Datalog-based formalism, fuzzy time is represented as a user-defined datatype and spe-
cial predicates connect those datatypes with the main ontology language. Luckily, KAON2
supports user-defined datatypes and user-defined predicates operating on those datatypes.
Therefore, it was not a problem to implement this feature.

In addition to the predicates defining fuzzy temporal relations, I also needed to integrate a
fuzzy operation into the language, namely the fuzzy intersects operation. This operation is
needed for transitive temporal relations, where a new temporal interval has to be created. Here
the fuzzy intersection operation seemed to be the most suitable. E.g., if we know that Alsace is
part of Germany between 1940 and 1945; and we also know that Strasbourg is part of Alsace
after ca. 357, we can infer that Strasbourg is part of Germany between 1940 and 1945 by
intersecting the time intervals 1940–1945 and ca. 357–today.

7.4 Summary

In this chapter, first the requirements toward an ontology formalism were analyzed. I showed
that time dependent relations are of crucial importance in the domain of history and that the
common ontology modeling constructs (such as reflexivity or transitivity) should also be sup-
ported for those relations. I also showed that none of the existing ontology formalisms com-
pletely fulfill these requirements.

Consequently, I devised a Datalog-based ontology formalism. This formalism fulfills all of the
identified requirements. Moreover, it uses the principle of “modular semantics” to efficiently
integrate fuzzy temporal reasoning into the ontology language. This new ontology formalism
was implemented using the freely available KAON2 reasoner.
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Metadata generation

NL processing

Ontology

Metadata
index

Documents

Doc. NLP 
annotations

Initial
metadata

Extended
metadata

Heuristic
rules

Content
index

Query NLP
annotation

Semantic
query

Metadata
query

Full-text
query

Metadata
query results

Content
query results

Final
query results

Metadata
generation

Content
indexing

Metadata
expansion

Metadata
indexing

Query 
transformation

Query 
execution

Result
combination

Content
query

Indexing Querying

Figure 8.1: Metadata generation in the ontology-supported IR process

107



Chapter 8 Metadata generation

In this chapter, I give a detailed overview of my solution for automatically generating seman-
tic metadata which fulfills the METADATA GENERATION requirement. The metadata gener-
ation process exploits the semantic relations and temporal information that are stored in the
ontology (SEMANTIC RELATIONS and TIME DIMENSION requirements) and it tolerates on-
tology and domain imperfection (ONTOLOGY IMPERFECTION and DOMAIN IMPERFECTION

requirements).

The solution can also be applied to parse the full-text query provided by the user into its
semantic representation. Figure 8.1 shows the topics that are discussed in this chapter in the
context of the whole ontology-supported IR process.

8.1 Information model

8.1.1 Requirements

As was discussed in Chapter 5, semantic metadata of the documents and the semantic query
use a common information model. Based on the analysis of the requirements in Chapter 3, this
information model should have the following characteristics:

• Represents information semantically, to solve language vagueness and to represent indi-
rectly relevant entities (NL VAGUENESS requirement).

• Represents temporal information (TIME DIMENSION requirement).

• Deals with domain imperfection in the temporal dimension (DOMAIN IMPERFECTION

requirement).

• Deals with ontology imperfection (ONTOLOGY IMPERFECTION requirement).

• Supports the ranking of results during information retrieval (see the discussion in Sec-
tion 2.2).

• Supports scalable retrieval of results (SCALABILITY requirement).

8.1.2 Related work

Most of the related work to the information model was already discussed in Chapter 4. Based
on the analysis of the related work, I identified some ideas and solutions, which can be reused in
my approach. Although these ideas were already discussed in Chapter 5 before, I recapitulate
here the ones that are most relevant for the information model for a better understanding.

First, systems that try to deal with some aspects of ontology imperfection combine full-text
search with semantic search to diminish the negative effect of missing ontological information
[VFC05, KPT+05, PKO+04]. As was discussed, I use this idea, too.

Second, to achieve scalability, most of the systems use full-text search engines and represent
semantic information so that it can be indexed by full-text search engines [RSA04, KPT+05,
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PKO+04, FMJ+05, SFJ+02]. Of course, this approach has some disadvantages. It is very com-
plicated to represent structured information in the information model, if it has to be compatible
with the “bag of words” approach of the full-text search engines. Although it is possible to do
it — e.g., consider the swangling approach used by the OWLIR system — it is questionable
whether the ranking algorithms optimized for the bag of words approach yield meaningful re-
sults on such “hacks”. In spite of these potential disadvantages of the approach, it seems to me
that currently there is no other alternative to achieve a scalable information retrieval system.
Therefore, I will follow this way, too, and require that the model is compatible with full-text
search engines.

Some features are missing from the approaches introduced so far. First, none of the models
represent the time dimension explicitly. Second, although these systems exploit natural lan-
guage processing (NLP) techniques to improve the quality of generated semantic metadata,
they discard the NLP-results and do not represent those in the model. This is problematic
because complex nominal phrases and named entities — the results of NLP — are better rep-
resentations of the document content than a simple set of words.

The information model that inspired the IRCON information model the most is the informa-
tion model used in the VICODI system [NDO05]. The VICODI model was motivated by the
simplicity and good results of the vector space model (VSM). VICODI extended the classical
VSM to include semantic information, i.e., ontology entities and temporal information.

Document metadata in the VICODI model consists of a weighted set of elements from a suit-
able ontology (conceptual part) and of a weighted set of temporal intervals (temporal part). For
example, a possible (partial) metadata of a document that reports on some aspects of the Gulf
War could be the following:

{ George_H_W_Bush:0.7, 1990-1991:1.0,
USA:0.8, Iraq:1.0, Gulf_War:1.0 }

where GEORGE_H_W_BUSH, USA, IRAQ and GULF_WAR are elements (instances) of the
ontology and the numbers represent relevancy weights.

What is missing from the VICODI model is the possibility to represent fuzzy time intervals
and results of NLP in order to deal with ontology and domain imperfection.

8.1.3 The IRCON information model

The IRCON model is an extension of the original VICODI model. The goal of the extensions is
to create a model that represents some aspects of imperfection better than the original VICODI
model.

The IRCON model consists of three parts: a textual, a conceptual and a temporal part.

The textual part is almost identical with the classical VSM: It is a weighted set of terms. In
contrast to the classical VSM, however, the textual part contains phrases instead of simple
words. In other words, I use a “bag of phrases” model instead of the usual “bag of words”
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approach. I.e., in my model the textual part contains phrases such as “President George H. W.
Bush”. Elements of the textual part are termed Weighted Terms (WTerms).

My motivation to do this is to save the results of NLP in the information model. Normally, the
bag of words approach is used only because it is too expensive to execute NLP on document
texts. In my case, however, NLP is essential for metadata generation, therefore no efficiency
penalty is incurred. On the other hand, it would be a waste of resources to discard the NLP
results and only use simple words in the textual part. Especially the named entities (names
of persons, companies or locations) that are extracted during NLP constitute a very important
part of the document semantics [KPT+05].

The conceptual part contains a weighted set of ontology entity URIs. Entity URIs uniquely
identify elements of the ontology (such as a concept or an instance). Elements of the conceptual
part are termed Weighted Ontology Instances (WOIs)1.

Finally, the temporal part consists of a weighted set of fuzzy temporal intervals. Elements of
the temporal part are termed Weighted Temporal Intervals (WTIs).

An example (partial) semantic metadata in this information model for a document describing
some aspects of the Gulf War could be the following2:

{
textual: {"Invasion of Kuwait":1.0, "Burning Oil Towers":0.5}
conceptual: {George_H_W_Bush:0.7, USA:0.8,

Iraq:1.0, Gulf_War:1.0}
temporal: {1990-1991:1.0}
}

8.1.4 Discussion

The advantage of the IRCON model is that it is very similar to the classical vector-space model
(VSM, see Section 2.3). Therefore, it is expected that the similarity measure that the VSM uses
will also provide good results in the semantic case.

The drawback of the model is that it is much simpler than, e.g., the swangling approach men-
tioned above. This makes executing more advanced queries, such as “all wars led by the US”,
impossible. However, based on my experience in the VICODI project, such advanced queries
are not typical, most users prefer simple queries3.

My experiences are in line with web studies that show that the average query length on the web
contain 2.21 terms, with 62% of the queries containing only one or two terms and less than 4%
of the queries more than 6 terms [JSS00].

1Although also other types of ontology entities could be stored in the conceptual part, during my work I only
stored instances in the conceptual part of the metadata. That is why I use the term weighted ontology instance
instead of the more general term weighted ontology entity.

2For the sake of simplicity, traditional temporal intervals are used in the examples.
3In this case “US wars” would be a typical user query.
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8.2 Existing approaches for semantic metadata
generation

Generating high-quality semantic metadata with the least possible human effort is generally
agreed to be an important step toward the Semantic Web (see e.g. [DEG+03]). Thus, there
are several projects that aim to support or replace human experts in the metadata generation
task.

Approaches such as OntoAnnotate [SMH01], SHOE [HH00], Annotea [KKPS02], or WebKB
[ME99] propose frameworks for manual annotation of metadata. E.g., a GUI4 application
which facilitates the annotation of semantic tags is provided by [HH00]. However, fully manual
approaches do not scale well for large information systems and these approaches also violate
the METADATA GENERATION requirement.

There are a couple of automatic annotation systems as well, most of them are parts of complete
IR solutions that were already analyzed in Chapter 4.

8.2.1 The KIM system

As was mentioned in Chapter 4, the KIM system [KPT+05] is based on the GATE framework.
It matches the labels of ontology entities with text snippets as one of the first steps during the
natural language processing pipeline. Later, the concept information of matching candidates is
exploited during a disambiguation step, where the type information that is automatically gen-
erated by the GATE framework is corrected [PKO+03]. Using this disambiguation technique,
it is mainly possible to avoid false categorization of text snippets. E.g., the phrase “U.S. Navy”
would be recognized as a person name using the standard NLP heuristics5 but if it is contained
in the ontology as an organization, this false categorization can be avoided. I.e., the KIM
system exploits the labels and the concept information of ontology instances during semantic
metadata generation.

8.2.2 The system of Vallet et al.

Vallet and his colleagues [VFC05] exploit the concept taxonomy in the ontology, as well. They
attach category information to each concept in the ontology and use automatic classification
of the document text to determine the category of the content. If a text snippet ambiguously
matches more than one ontology instance, they choose the match whose concept’s category
fits the document category. Using this technique, it is possible to distinguish between “Irises”
as a kind of flower and as a famous picture of Van Gogh. Moreover, the system also uses the
“longest match principle” to disambiguate matching ontology instances: it prefers instances
with labels that have a longer match. E.g., “Real Madrid” is preferred to “Madrid”.

4Graphical User Interface
5Because it matches the rule that also recognizes correct person names, such as “P. C. Lockemann”, or “G.

Nagypal”.
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8.2.3 OWLIR and SCORE

Although the OWLIR [FMJ+05, SFJ+02] and SCORE [SBA+02] systems also support au-
tomatic metadata generation, they use commercial systems for this task, therefore it is not
possible to gain deep insights about their approach. What is important to note about these
systems is that they expand the initial set of metadata gained by mapping the text to ontology
instances using the semantic relations (and attributes) stored in the ontology.

8.2.4 The SemTag system

The SemTag system provides a scalable solution for automatic semantic annotation [DEG+03].
This system also uses mainly the textual labels that are attached to ontology entities. They also
exploit, however, the concept taxonomy of the ontology by considering not only the label of
the ontology entity but also all concept labels in the taxonomy path up to the ontology root.
Moreover, they match not only the actual text snippet with the ontology label but they use a so-
called “spot” — the text snippet and 10 words surrounding it. They use the common TF-IDF
formula on the spot–taxonomy path pairs to find the most similar ontology entity to a given
spot. Their claim is that considering the 10 word context of a text snippet provides enough
information to successfully disambiguate most of the cases.

8.2.5 The S-CREAM system

The goal of S-CREAM [HSC02] is to generate full-featured RDF statements about the docu-
ments. E.g., it could be encoded in RDF that GEORGE W. BUSH is a PERSON and he LEADS

the UNITED STATES. This model is much more general and powerful than my annotation
model. It is important to note, however, that in my case, most of the information is already
encoded in the ontology. Therefore, it is not necessary to state the same information again
in document annotation. In this sense, S-CREAM can be also viewed as a tool for automatic
ontology population.

S-CREAM follows a two-step approach for semantic metadata generation. First, it uses the
Amilcare tool6 for information extraction. Amilcare can annotate documents with user-defined
XML tags using a user-defined XML vocabulary. To do that, Amilcare needs a manually
annotated training corpus. Based on this corpus, it automatically generates extraction rules
using various machine learning techniques. Using these rules, Amilcare can automatically
annotate new, unseen documents.

At the next step, these XML annotations must be transformed into RDF statements. The main
challenge is that in many cases, the information contained in the XML annotations are not
sufficient to generate the needed RDF statements. The authors of S-CREAM use ontology-
based heuristic rules to infer the best possible mapping between the XML annotations and
the RDF statements. During the mapping, the main task is to generate the relations between
the entities (such as the relation between George Bush and the United States); the mapping

6http://nlp.shef.ac.uk/amilcare/
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between the XML and RDF representations of ontology instances and concepts is straightfor-
ward. Of course, it also helps if the set of XML tags is designed so that the XML-to-RDF
mapping is easy, e.g., by encoding ontology relation names in such XML tag names (such
as <country_lead_by_person> instead of <country>). There is a trade-off, how-
ever, between the number and complexity of XML tag names and the quality of information
extraction results.

Based on this discussion, it is clear that the ontology-based rules and also the set of XML tags
are highly domain-dependent. On the other hand, it is possible to provide high-quality results
by carefully hand-crafting the XML tag names and the ontology-based rules and by manually
annotating a training corpus.

8.2.6 The C-PANKOW system

The authors of C-PANKOW [CLS05] propose an advanced annotation and disambiguation
system without any machine learning technique. Their approach is to identify correct con-
ceptual entities by measuring statistical information from Google search results. The system
uses, however, only syntactical information, i.e., it cannot find indirectly mentioned instances.
Moreover, the purpose of the system is only to assign the correct semantic type information to
the text snippets in the text (such as “River” or “Country” to “Niger”) but they do not connect
the text snippets with an ontology. In other words, they do not generate semantic metadata in
our sense.

8.2.7 Summary

To summarize, we can state that most state-of-the-art systems still concentrate on the task
of matching text snippets with the most appropriate ontology entity (usually instance). For
this task, they usually only exploit the lexical information of the ontology and the concept
taxonomy. They ignore all other information contained in the ontology, including relations be-
tween instances and attribute values. There are some exceptions, however, including OWLIR,
SCORE and S-CREAM, that use semantic relations in the ontology.

The reviewed systems ignore temporal information and do not deal with ontology and domain
imperfection.

Most systems cannot identify indirectly relevant ontology entities, they can identify only those
entities that are explicitly mentioned in the document text. OWLIR and SCORE are exceptions
in that regard because they perform metadata expansion that has the potential to find indirectly
relevant entities.

8.3 Overview of the metadata generation steps

This section provides a high-level overview of my metadata generation approach. The
approach is a slightly improved version of the solution, which was already published in
[YN06].
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As we have seen, many systems use NLP as a first step for semantic metadata generation
because it is easier to work with the information generated by NLP than with the raw document
text. Therefore, I start metadata generation with an NLP step, which generates various NLP
annotations (discussed in detail in the next section). Based on this information, it is possible to
generate an initial version of the semantic metadata, using the information model introduced
in Section 8.1. This includes the matching of document text snippets with their corresponding
ontology entities. During this initial metadata generation step, disambiguation of entities is
also performed, based on the temporal context of the document. With temporal context I
denote the weighted set of (fuzzy) time intervals that will ultimately form the temporal part of
the semantic metadata.

This initial metadata contains only ontology entities that are directly mentioned in the docu-
ment text because it is based on the NLP output. Therefore, to find indirectly relevant ontology
entities, a metadata expansion step is executed. In this step, the initial metadata is successively
expanded using heuristic rules that exploit ontology information. The expanded metadata con-
stitutes the final semantic metadata, which is stored in the IRCON repository.

The whole metadata generation process is shown in Figure 8.2 (the figure is a part of Fig-
ure 8.1). In the following, I describe the individual steps in more detail.

NL processing

Ontology

Extended
metadata

Heuristic
rules

Doc. NLP
annotations

Initial
metadata

Original
document

Metadata
generation

Metadata
expansion

Legend

Process DataData
input output

Figure 8.2: Steps of the automatic metadata generation process.

8.4 Natural language processing

All of the systems that were introduced so far, use only a subset of the NLP repertoire. This
subset is sometimes referred to as shallow parsing or shallow NLP because unlike pure NLP
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applications it usually does not include a full (costly) linguistic analysis of the text. The costs
of full-NLP are prohibitive for most applications [Kur04] and experience of the introduced
state of the art systems7 shows that shallow NLP provides acceptable results for the task of
semantic metadata generation. Therefore, I also use shallow NLP in my system.

Shallow NLP methods include many techniques, such as token and sentence splitting or part-
of-speech detection. The linguistic information obtained by these steps serve as input to the
named entity recognition (NER) step. Named entities (NE) are entities that are usually repre-
sented as instances in an ontology. These include concrete persons, locations, organizations
etc. Normally, also date specifications are considered as named entities. Named entities are
important because experience shows that NE occurring in text documents constitute a major
part of their semantics [KPT+05].

Detected named entities (NEs) may also have referring phrases in the text with different con-
tent. These are called coreferences and can be distinguished into nominal and pronominal type.
An example for a nominal coreference is the term “president of the United States” referring to
the NE “George W. Bush” in a document. The “he” reference pointing to “George W. Bush”
is a pronominal coreference.

To the best of my knowledge, currently there is no existing IR system that exploits corefer-
ence information to create semantic metadata8. However, I consider this an important step,
since coreference resolution9 can improve term relevance estimation, as our tests have shown
[YN06].

For shallow NLP, I use the established text engineering framework GATE10 that includes com-
ponents for various NLP tasks, including NER and coreference resolution. I use the standard
ANNIE components, which are included in the standard GATE installation.

The result of the described NLP operations are GATE annotations following a special annota-
tion scheme. They contain detailed linguistic information about each identified term, like its
position within the sentence, part-of-speech information, and a list of its coreferences. The an-
notations also contain the token type information generated by the NER step (such as person,
organization etc.). These GATE annotations are automatically stored for each document in a
relational database for later use during the initial metadata generation step.

This separation of costly NLP operations from subsequent ontology-dependent tasks has some
significant advantages. First, linguistic annotations can be generated independently from ontol-
ogy lookup operations and thus are independent from any changes in the ontology11. Second,
different ontology-based heuristics can be applied and tested without complete regeneration of
GATE annotations.

7e.g., KIM [KPT+05] or the system of Vallet et al. [VFC05]
8Of course, coreference information is extensively used for other purposes, such as indexing full-text documents

[KL05] or generating document summaries [BWK+03].
9modern implementations may achieve an F-measure of up to 70 percent

10General Architecture for Text Engineering, http://gate.ac.uk/
11For better coreference recognition among named entities, it is sometimes necessary to update the gazetteer lists

of GATE based on the ontology labels. In most cases, however, GATE does a good job in properly identifying
named entities using various syntactic heuristics.
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8.5 Initial semantic metadata generation

8.5.1 Identifying ontology instances

To successfully create semantic metadata, the system must be able to identify the appropriate
ontology instances for the NEs identified during the NLP step12. It is a difficult task because a
term in the document can syntactically match many ontology instances. To reduce this ambi-
guity to a minimum, my implementation follows the already mentioned “longest match princi-
ple”, which is also used by [VFC05]. According to this principle, always the longest possible
text snippet is matched with the ontology instance labels. I.e., we prefer “U.S. Marines” to
“U.S.”. It is still possible, however, that more than one ontology instance (OI) matches the
longest text snippet. In this case, all OI candidates are stored for the text snippet.

Next, linguistic annotations covering an ontology instance are transformed to ontology instance
annotations (OIAnnotation). Every OIAnnotation consists of URIs of possibly matching on-
tology instances (OI) and the number of occurrences of its candidate OIs. The resolved corefer-
ences are taken into account simply by increasing the occurrence counter of the OIAnnotation.
E.g., if a pronoun is detected as a coreference to a certain entity and that entity is known to be
an OI, the occurrence counter of the OIAnnotation is increased by one.

8.5.2 Handling non-ontological named entities

The remaining GATE NE annotations are categorized as term annotations (TermAnnotation)
and date annotations (DateAnnotation). Term annotations contain the (normalized) terms from
the text, together with their occurrence counters; whereas date annotations are special term
annotations, where the term text represents a valid date (or time) specification, such as “May
12, 2006” or “today”13.

8.5.3 Calculating metadata weights

After this step, all annotations are transformed to the initial document metadata, using the
model introduced in Section 8.1. The mapping is straightforward. WTIs are generated from
DateAnnotations, WTerms from TermAnnotations and WOIs from OIAnnotations. The main
question is how to calculate the weight of the metadata elements. The main principle here is
that the weight of the metadata element should increase when the corresponding annotation
appears more frequently in the document. I.e., I follow the basic principle that is used by
classical full-text indexing.

12Actually we consider all tokens (text snippets) in the text during this step, not only the text snippets that were
identified by GATE as NEs. This is needed because GATE sometimes fails to correctly identify text parts as
NEs.

13The current implementation can only handle absolute date specifications, such as “May 12, 2006”. Relative
date specifications, such as “today”, are ignored.
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Based on this principle, weights of metadata elements are calculated according to the following
logarithmic function:

w (x) =

(
log (x + 1)

log (rmax + 1)

)2

(8.1)

where w (x) denotes the resulting weight of a new metadata element; x denotes the occurrence
counter of the corresponding annotation element and rmax the largest occurrence counter of
all annotation elements for the document. This exact function is the empirical result of many
experiments that were executed during the work described in [Yol06]. These experiments
showed that a simple linear function of the occurrence frequencies does not yield good results
because it usually generates almost-zero weights for entities that are not the most important in
the text but still relevant. This logarithmic function “smoothes” the results and gives a little bit
more weight also for the not-so-important entities.

Table 8.1 illustrates by example the transformation from NLP annotations to an initial docu-
ment representation (with rmax = 36) in a document about the United Airlines Flight 9314.

Table 8.1: Calculating metadata element weights

Entity Occurrence Metadata weight

United-Airlines-Flight-93 36 1.0
Ziad-Jarrah 7 0.33

World-Trade-Center 3 0.15
George-W.-Bush 2 0.093

8.5.4 Weights for time intervals

The introduced weight calculating function is directly applied on WOIs and WTerms, where
the maximum occurrence parameter is calculated by considering all OIAnnotations and Ter-
mAnnotations. For WTIs, however, it would be problematic to directly apply this function
because the coreference semantic usually does not apply for time intervals. If we would only
consider the exactly same time specifications as coreferences, in a typical document all time
intervals would get the same weight. This is because in a typical document an exact time
specification appears only once. This would also mean that all time intervals would get an
extremely low weight if we applied the maximum occurrence value calculated by considering
ontology and term annotations.

My solution for time interval weight calculation is based on the insight that the classical coref-
erence semantic should be relaxed for time intervals15. More precisely, I consider overlapping

14All examples in this chapter are based on a Wikipedia document describing the United Airlines Flight 93. This
flight was hijacked during the September 11, 2001 attacks and crashed in Pennsylvania after the passengers
tried to gain back the control over the machine. Ziad Jarrah was the terrorist pilot flying the machine. This
document was processed during the evaluation of the IRCON system (described in Chapter 12), i.e., the
presented examples are results of the implemented system.

15I also consider simple dates as time intervals with the length of one day.
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time intervals as co-occuring. If two time intervals overlap, I create a new time interval, which
is the combination (union) of the two original time intervals. The occurrence value of the new
interval is the sum of the occurrence values of the original intervals. I iteratively check the
pairwise overlap among the time intervals until there are no overlapping time intervals in the
set of WTIs.

The exact temporal relation to check overlapping intervals depends on how conservative the
strategy one takes. The intersects and the during relations (see Table 6.1) seem to be the
most appropriate to model the semantics of the natural language “overlaps” relation, where
the during relation means a more conservative strategy. For my experiments I used the inter-
sects relation which seemed to give more intuitive results. After this procedure, I apply the
introduced weight calculation algorithm for the remaining WTIs to calculate the final weights,
where I consider only the WTIs for calculating the rmax parameter of the function.

As an example, Table 8.2 shows a partial list of identified time intervals in the United Airlines
Flight 93 document. It can be seen that most of the intervals have the occurrence value 1. The
only overlapping intervals in this set are the intervals (2002-09-10 – 2002-09-11) and (2002-
09-11 – 2002-09-12). Merging these two intervals results in a new interval (2002-09-10 –
2002-09-12) with an occurence value of 1 + 1 = 2 (see Table 8.3). Finally, Table 8.4 shows
the final list of intervals with the calculated occurrence weights.

Table 8.2: Initial temporal part

Time interval Occurrence

2001-09-11 – 2001-09-12 3
2001-09-19 – 2001-09-20 1
2001-10-01 – 2001-10-31 1
2002-09-10 – 2002-09-11 1
2002-09-11 – 2002-09-12 1

Table 8.3: Merged temporal part

Time interval Occurrence

2001-09-11 – 2001-09-12 3
2002-09-10 – 2002-09-12 2
2001-09-19 – 2001-09-20 1
2001-10-01 – 2001-10-31 1

Table 8.4: Final temporal part

Time interval Weight

2001-09-11 – 2001-09-12 1.0
2002-09-10 – 2002-09-12 0.63
2001-09-19 – 2001-09-20 0.25
2001-10-01 – 2001-10-31 0.25
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8.5.5 Handling fuzzy time specifications

Another issue that had to be considered during the parsing of time intervals was the case
of fuzzy time specifications. As was already discussed in Chapter 3, many documents in the
history and/or news domains contain vague, natural language specifications. Examples for such
specifications include “early October 2006”, “the mid-1970s”, or “the late 80s”. The fuzzy
time model that was introduced in Chapter 6 can represent such time specifications without
any problems. I parsed those fuzzy specifications by specifying some pre-defined operators for
the fuzzy hedges “early”, “mid” and “late” that created a new fuzzy set based on the original
crisp set representing a traditional temporal interval. E.g., Figure 8.3 shows the fuzzy interval
that was automatically created for the time specification “early October 2006”.

Figure 8.3: The fuzzy interval representing “early October 2006”

To implement the overlap checking on fuzzy temporal intervals, the fuzzyfied versions of the
intersects or the during relations can be used (see Table 6.7). As was discussed above, I used
the intersects relation. For creating the merged intervals, I used the fuzzy union operation,
which is the standard counterpart of the crisp union operation on traditional intervals. This
way, the whole transformation and weight calculation process can also be applied to fuzzy
intervals.

8.5.6 Disambiguation of ontology instances

The last issue that remains for the initial metadata generation step is the disambiguation of
the OntologyAnnotations. Clearly, it is possible that even using the longest match principle,
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more than one ontology instance matches a specific text snippet. E.g., the phrases “George
Bush” or “President Bush” would find both GEORGE_H_W_BUSH and GEORGE_W_BUSH.
As was discussed in Section 8.2, there are several possible approaches to deal with this prob-
lem. Most state of the art approaches apply some kind of syntactical heuristic that tries to
decide based on some syntactic characteristics of the text snippet, of the ontology instance
label, and/or of the surrounding document, which one is the most probable OI candidate. To
justify these approaches, examples are usually presented that include OIs of different concepts.
However, in the history and news domain, most ambiguity appears among the same types of
OIs, among person names, organization names etc. The case of the two President Bushes is
such an example. In this case, alternative disambiguation approaches are needed.

My solution for the problem is to exploit the temporal information in the ontology to solve
the disambiguation problem. In many cases it helps to decide which is the proper OI, if we
consider the temporal context of a document. E.g., in a document that has the time context of
the year 2001, it is much more likely that “President Bush” matches GEORGE_W_BUSH than
in a document with the time context of the year 1991.

For disambiguation, exactly this idea was implemented in my system. If an OntologyAnno-
tation has more than one OI candidate, all candidates are checked whether they fit into the
temporal context of the document16. Currently this check is implemented by comparing the
existence time of the instance with all time intervals in the temporal part of the metadata using
the fuzzy intersects relation and taking the maximum value of these checks as our confidence
that the instance is in the time context of the document17. The candidate with the biggest con-
fidence value is then selected as the matching OI. If more than one candidate has the same
maximal confidence value, all such candidates are added to the semantic metadata and the
weight is distributed evenly among them.

8.6 Metadata expansion

8.6.1 General approach

The main idea that distinguishes my approach from most other state of the art solutions18 is
the metadata expansion step. During this step, the semantic relations stored in the ontology
are exploited to find ontology elements that are indirectly relevant for the document but are not
mentioned explicitly. This goes beyond a syntactic mapping between text snippets and labels
of OIs, as in other approaches. As a result, the system is capable of automatically drawing
some basic conclusions about the relevance of abstract concepts, similar to human readers’
cognitive processing.

In general, the cognitive process to infer the relevance of abstract, indirect concepts can be
very complex. Indeed, based on my analysis, some features are needed that are not supported
even by the most expressive (but decidable) well-known ontology formalisms, such as OWL

16The temporal part of the metadata is generated before the conceptual part, so this is possible.
17Of course, using other fuzzy relations would be also possible. E.g., the fuzzy during relation would define a

more conservative strategy.
18with the exception of OWLIR and SCORE
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or F-Logic. E.g., counting the ontology entities that fulfill some specific constraints was not
possible in either of these formalisms. Therefore, some parts of the reasoning algorithm had
to be implemented in a Turing-complete programming language (in my case in Java) and only
parts of the algorithms could be delegated to the ontology reasoner.

Generally, however, this would mean that to implement the inference rules one would always
write a special purpose program. This would make the process too complex and thus infeasible.
Therefore, we identified some common patterns of reasoning by analyzing documents in the
history and news domains. These patterns described the great majority of inferences about the
relevance of abstract concepts. In my system, it is only possible to define inference rules that
follow these identified patterns. On the one hand, this naturally limits the expressiveness of
the inference rules. On the other hand, it constraints the search space for meaningful inference
rules, and thus makes the rule specification process easier. I term the rules fitting the simplified
inference patterns heuristic rules, to stress the fact that they can only incompletely model the
complex reasoning process about the relevance of abstract concepts that happens in the human
brain.

When the inference rules are known, the metadata expansion step is conceptionally simple: an
algorithm iteratively applies these heuristic rules and terminates when no further adaptations
can be made to the document metadata. The resulting metadata is the final result of the whole
metadata generation process.

8.6.2 Evaluation ontology

For evaluation purposes, an ontology and some heuristic rules were developed. Although the
evaluation and its results are discussed only later in Chapter 12, I describe the ontology already
here and some of the heuristic rules in the next subsection.

The evaluation ontology was strongly inspired by the ontology that was designed for the VI-
CODI project19 [Nag04] and is a simplified version of the latter. However, the new ontology
also contains some new elements that did not exist in the original VICODI ontology, such
as the time-dependent relations that were not supported by the ontology formalism used in
VICODI20.

The high-level structure of the ontology is shown in Figure 8.4. The concept hierarchy starts
with the THING concept. This is common to almost all ontologies21. The three subconcepts
of THING are EVENT, LOCATION and PARTICIPANT, representing events, locations and enti-
ties that can participate (ISINVOLVEDIN relation) in an event that happens in (possibly many)
location(s) (HAPPENSAT relation). This major structure shows how important time (events)
and space (locations) are in this application domain. Locations can be parts of other locations
(ISPARTOF relation) and events can be subevents of other, bigger events (ISSUBEVENTOF

relation).

Among participants I distinguish between agentive entities (the AGENT concept) and non-
agentive entities (currently only the OBJECT concept). Agentive entities can initiate events

19Available for download at http://www.vicodi.org
20VICODI used the ontology formalism of the KAON system that is a slight extension of RDFS.
21In many cases this main concept is called “Root” or “Entity”.
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(INITIATES relation), while objects can only passively participate in events. In this simple
ontology there are currently two types of agents: persons (PERSON concept) and organizations
(ORGANIZATION concept).

It is interesting to note that one kind of the locations, namely geo-political entities
(GEO-POLITICAL ENTITY concept) are also modeled as organizations. This is needed be-
cause geo-political entities, such as countries or cities, are typically viewed as locations (e.g.,
George Bush lives in the USA) but on the other hand, they are also agentive entities that can
initiate events (e.g., USA attacks Iraq).

There are some custom relations among persons and organizations and among organiza-
tions, such as LEADS or ISCHILDORGANIZATIONOF. There is also a generic relation
among participants (INTERACTSWITH). Finally, all entities except for geographical features
(GEOGRAPHICAL FEATURE concept) have an attribute that constraints the time period when
they can be considered as relevant for a document (HAPPENSDURING attribute for events and
ISACTIVEDURING attribute for participants).

It is also important to note that there are many time-dependent relations in the ontology, i.e.,
relations that are valid only during a specific period of time. Such relations include, e.g., the
LEADS or the ISPARTOF relations.

The ontology itself contains 217 instances, 47 relation instances, 188 timed relation instances,
and 11 temporal attributes. One of the temporal attributes (the HAPPENSDURING time of
the 2003 INVASION OF IRAQ instance) is defined using the fuzzy time model introduced in
Chapter 6. The ontology was developed approx. in 5 workdays. I.e., it is a typical example of
a casual, imperfect ontology.

8.6.3 Heuristic rules

The heuristic rules follow the pattern shown in Figure 8.5. To put it simple, the pattern allows
domain experts to specify rules that add new OIs to the conceptual part of the metadata

• if they exist in the temporal context of the document and

• if they are connected with other instances in the metadata through relations that are valid
in the temporal context of the document.

For checking whether an OI or a relation is in the temporal context, I use the same algorithm
that was described previously for the disambiguation of OIs.

For the further discussion, I will call the instances, whose existence in the metadata is checked,
the antecedent OIs and the instance that is selected by the rule for addition the consequent
OI.

Concrete examples of rules following this pattern are shown in Figure 8.6 and Figure 8.7.
The first rule adds new events to the metadata based on participants of these events, while the
second rule adds new, abstract events based on their subevents. Parallel with the evaluation
ontology, 13 such heuristic rules were defined.

Table 8.5 shows an example for the application of the “3 participants rule”, while Table 8.6
shows an example application of the “subevent rule”.
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Add x to M if all of the following conditions hold

• C(x)

• aT (x)

• ∃x1,1 · · ·x1,n1 : n1 ≥ N1∧x1,1 ∈ M ∧· · ·∧x1,n1 ∈ M ∧C1(x1,1)∧· · ·∧C1(x1,n1)∧
rT
1 (x1,1, x) ∧ · · · ∧ rT

1 (x1,n1 , x)

...

• ∃xk,1 · · ·xk,nk
: nk ≥ Nk∧xk,1 ∈ M∧· · ·∧xk,nk

∈ M∧Ck(xk,1)∧· · ·∧Ck(xk,nk
)∧

rT
k (xk,1, x) ∧ · · · ∧ rT

k (xk,nk
, x)

where M denotes the current document metadata; C(x) denotes that x is instance of the
concept C; rT (x, y) denotes that the instances x and y are connected with a relation r,
whose validity time is in the temporal context of the document; and aT (x) denotes that
the value of the attribute a on instance x is in the temporal context of the document.
The input parameters of the pattern are M , the C1 · · ·Ck concepts, the N1 · · ·Nk minimal
cardinalities, the C concept, the r1 · · · rk relations, and the a attribute. The specification
of a is optional and k ≥ 1 must hold.

Figure 8.5: Rule pattern

Add x to M if all of the following conditions hold

• Event(x)

• happensDuringT (x)

• ∃x1 · · ·xn : n ≥ 3 ∧ x1 ∈ M ∧ · · · ∧ xn ∈ M ∧ Participant(x1) ∧ · · · ∧
Participant(xn) ∧ isInvolvedIn(x1, x) ∧ · · · ∧ isInvolvedIn(xn, x)

Idea: If at least three instances of the Participant concept – e.g., instances of the con-
cepts PERSON or ORGANIZATION – are contained in the current semantic metadata, these
participants are related via the ISINVOLVEDIN relation to the same EVENT instance and
the temporal context of the document is compatible with the time interval given by the
temporal attribute HAPPENSDURING of this event, then this event is considered relevant
for the document.

Figure 8.6: 3 participants rule

Table 8.5: Example application of the three participants rule

Participants Event

United-Airlines-Flight-93
Ziad-Jarrah ⇒ Sept-11-2001-Terrorist-Attack

World-Trade-Center
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Add x to M if all of the following conditions hold

• Event(x)

• happensDuringT (x)

• ∃x1 · · ·xn : n ≥ 1 ∧ x1 ∈ M ∧ · · · ∧ xn ∈ M ∧ Event(x1) ∧ · · · ∧ Event(xn) ∧
isSubEventOf(x1, x) ∧ · · · ∧ isSubEventOf(xn, x)

Idea: At least one ontology instance of the concept EVENT in the metadata leads to the
addition of all related EVENT instances (via relation ISSUBEVENTOF).

Figure 8.7: Subevent rule

Table 8.6: Example application of the subevent rule

Subevent Abstract event

Sept-11-2001-Terrorist-Attack ⇒ War-on-Terrorism

In addition to the rule scheme, it is also possible to define thresholds on the minimum weights
of the considered antecedent OIs. E.g., if a threshold 0.3 is specified for the subevent in the
subevent rule, an event that has the weight 0.2 in the metadata will not be considered as a
valid antecedent OI for the rule. Moreover, it is also possible to specify a threshold on the
time context check. This makes sense because the metadata contains fuzzy time intervals.
Therefore, the temporal context check will not necessary yield a result of 0.0 or 1.0 but an OI
or a relation can also be partially in the temporal context. E.g., if a threshold 0.3 is specified
on the HAPPENSDURING attribute in the subevent rule, consequent event OIs that are not in
the time context with at least 0.3 confidence will not be proposed by this rule.

8.6.4 Weight calculation

The heuristic rules identify new, relevant OIs but to create the WOIs, also the OI weights have
to be defined.

Our weight calculation scheme for the WOIs introduced by the heuristic rules is the follow-
ing:

w =

(
p∑

i=1

wi

p

)
·

n∏
j=p+1

(
1 +

wj

2 + p

)
(8.2)

where w denotes the resulting weight of the new WOI; w1, w2, ..., wp, wp+1, ..., wn are the
weights of all n WOIs in decreasing order, which are used as input values of the rule with a
minimum cardinality of p =

∑
Ni. This means, at least p WOIs of the current metadata have

to meet the rule requirements. The more additional elements are contained in the metadata, the
higher the resulting weight of the WOI gets (until a maximum of 1.0). The exact formula is
the result of empirical experiments [Yol06].
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In addition to this weight calculation formula, it is also possible to specify an amplification
factor for each rule. The result of the formula multiplied by the amplification factor yields the
final weight of the WOI.

With the amplification factor, it is possible to express our general confidence in a given rule.
E.g., we can be more confident in the 3 participants rule than in the subevent rule. It can be
expressed by setting the amplification factor for the subevent rule lower than the amplification
factor of the 3 participants rule.

Table 8.7 shows the weight calculation process for the 3 participants rule, with an amplification
factor of 0.98. Because there are exactly three participant OIs, the second part of the formula
is not executed. To show the effect of additional antecedent OIs, Table 8.8 shows the weight
calculation result for a modified version of the same rule where only the existence of two
participants is required. It can be seen that additional antecedent OIs significantly increase the
weight of the consequent OI.

Table 8.7: Weight calculation example for the three participants rule (p=3)

OI Weight

United-Airlines-Flight-93 1.0
Ziad-Jarrah 0.33

World-Trade-Center 0.15

⇓
Sept-11-2001-Terrorist-Attack 0.48

Table 8.8: Weight calculation example for the two participants rule (p=2)

OI Weight

United-Airlines-Flight-93 1.0
Ziad-Jarrah 0.33

World-Trade-Center 0.15

⇓
Sept-11-2001-Terrorist-Attack 0.68

8.6.5 Expanding the metadata

After the proposed WOI of a rule is calculated, the metadata should be changed. If the metadata
does not yet contain the WOI, it will be simply added to the metadata. If another WOI with
the same OI part already exists in the metadata, only the weight of that WOI is adjusted. In
the current implementation, the new weight of the metadata WOI will simply be the maximum
of its existing weight and the weight of the WOI proposed by the rule. We also experimented
with other possibilities, such as calculating the average of the weights but empirically the
simple maximum strategy provided the most intuitive results.
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8.6.6 The metadata expansion algorithm

Based on the previous discussion, the whole algorithm for the metadata expansion is as fol-
lows:

1. Set the current document metadata as the initial metadata.

2. Apply the following steps iteratively

a) Execute all applicable rules on the current metadata.

b) Extend the current metadata with WOIs added by the rules (or adjust the weights of
existing WOIs, if they are already there). If WOIs with the same OI are proposed
by different rules, use only the WOI with the highest weight.

c) If the metadata has been modified, restart the iteration.

3. Return the current metadata as the final metadata.

The resulting metadata is the final semantic metadata of the IR system and it is stored in the
central repository for later indexing.

8.7 Manual correction of metadata

As we have seen, the metadata generation process is fully automatic. It cannot be expected,
however, that the quality of the generated metadata reaches the quality of manually created
metadata. Therefore, the possibility is provided for domain experts in the IRCON prototype
to review the generated metadata, validate, and (if needed) correct it. I.e., the system also
provides for a semi-automatic annotation process.

It is important to see that the metadata generation process can be started many times. Regen-
erating semantic metadata is rather the rule than the exception and this is the most convenient
way to react to ontology changes. Clearly, it would be catastrophic if during automatic re-
generation of metadata, already validated or manually added information would be changed or
even lost, or manually deleted information would be added again. To avoid this situation, the
information whether a metadata element has been validated or not is stored directly in the in-
formation model using a “validated” flag22. Elements that bear this flag are not changed during
the regeneration process.

The possibility to validate parts of the metadata has many interesting uses. E.g., identifying
relevant time information in the document text is a very challenging task, which has (at least
nowadays) a relatively high error rate. Erroneous temporal information in the metadata can
also decrease the quality of the conceptual part of the metadata. If after an initial run, the
domain expert manually corrects the temporal part it can greatly increase the quality of the
conceptual part. Even though the expert has to review the temporal part, she or he is still
relieved from the laborious work of mapping text snippets to ontology instances.

22Manually added information automatically gets the validated flag. Manually deleted information is not deleted
completely, just kept in the model with weight zero.
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8.8 Query parsing

If one considers the ontology-based IR process introduced in Section 5.4, it is easy to see that
the tasks of metadata generation and query parsing are very similar. In both cases, the input
is free text and the output is a construct in the information model. Therefore, the techniques
introduced for automatic metadata generation can also be used for query parsing.

There are some minor differences, however. While during metadata generation, we can use the
assumption that the major part of the document semantics is covered by NEs and consequently
only include NEs into the textual part of the metadata, in the case of query parsing each and
every query token counts. E.g., if the user submits a query “USA attacks Iraq”, the “attacks”
string should not be deleted from the query, even though it is not a named entity. Further, in
the case of a query, it is not possible to effectively estimate the weight of information model
elements because usually queries are simply too short: each token usually appears only once.
This normally results in a situation, where each element of the query has a weight 1.023.

Therefore, in our example, the query would look like the following24:

{
textual: {"attacks":1.0}
conceptual: { USA:1.0, Iraq:1.0 }
temporal: {}
}

Based on this discussion, only one small change is needed to the existing metadata genera-
tion framework: When invoked in query parsing mode, the framework should keep all non-
recognized tokens of the query and add them to the textual part of the information model.
In the IRCON prototype, this change was implemented and the same framework is used for
metadata generation and query parsing.

8.9 Comparison with related works

As was shown in Section 8.2, for the disambiguation of entities at the text-to-ontology match-
ing step, most systems use some kind of heuristics that exploits the context of the information.
“Context” means here, however, only the surrounding words in the document, i.e., no semantic
information is exploited. While this approach seems to work for disambiguating entities of
different types (such as Niger as country and Niger as river), this makes the disambiguation of
cases where the entities are of the same type (e.g., deciding between George H. W. Bush and
George W. Bush) practically impossible. In my work, I experimented using the time context
of the document for disambiguation instead. This approach has the potential to disambiguate
entities in the mentioned problematic case. This timed-based approach is orthogonal to the

23Of course, if a token is ambiguous, i.e., it matches more than one ontology instance, the weights can be lower
than 1.0.

24Actually in a perfect ontology, the “USA attacks Iraq” event(s) would have been already added to the ontology
and recognized by the query parser.
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syntactic heuristics used by the other systems and the two approaches can be integrated in one
system to further improve the results.

The system that follows a very similar approach to my solution is S-CREAM. They also build
on the results of a legacy information extraction system and refine the results with ontology-
based heuristic rules. The approach of S-CREAM is highly domain-dependent, similarly to my
approach. This has some advantages (better results in the domain) but also some drawbacks
(more human effort needed). S-CREAM has a different focus, however. Instead of identifying
indirectly relevant entities, they concentrate on finding the relations between ontology entities
in the text. This task is complementary to my approach and can be considered as part of the
ontology building or ontology population, respectively. I.e., the two tasks can be combined.

The OWLIR system also expands semantic metadata using the information stored in the ontol-
ogy. However, they do not exploit the temporal context of the document to guide the inference.
This has the danger of inferring wrong facts because some of the relations do not always hold
among ontology entities and therefore may not be relevant for a specific document.

The SCORE system also expands the initial semantic metadata using ontology relations. They
do not exploit, however, the temporal context of the document, similarly to the OWLIR system.
An interesting idea of the SCORE system is to use ontology relations during the disambigua-
tion step. Clearly, if a candidate ontology entity is better connected with other entities in the
current metadata than the other candidate, the better connected candidate is more likely to be
the proper one. I use the time context of the document during the disambiguation step but the
idea of SCORE could also be integrated into my system, the two approaches are orthogonal.

Although the system of Rocha et al. [RSA04] (discussed in Section 4.1.4) is a system for query
expansion, we have seen in this chapter that metadata generation has many commonalities
with query expansion. Therefore, the approach presented in that work could be used at the
metadata expansion step in my system. It would be an interesting future work to check whether
the results provided by the naive approach of Rocha et al., where the propagation rules are
domain-independent, are better or worse than the results provided by my domain-dependent
approach. It is a possibility to make the system more robust and cheaper to set up by using
some default, domain-independent heuristics like in the system of Rocha et al. and apply
hand-crafted, domain-specific rules to improve the results only if needed.

8.10 Summary

In this chapter, I introduced my solution for automatic metadata generation. After a review of
the related approaches, I discussed the steps of my metadata generation process in detail. This
included the initial shallow NLP-based information extraction step, the metadata generation
step (including the disambiguation of the matched ontology entities), and finally the expansion
of metadata using ontology-based heuristic rules. The major contributions of my approach are
the following:

• It can find indirectly relevant concepts not explicitly mentioned in the document text.
To do that, it applies ontology-based heuristic rules during the metadata expansion step
that exploit semantic relations and the time information stored in the ontology. Only
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few other state of the art systems perform metadata expansion, most other systems only
match text snippets to ontology entities, i.e., they can only find concepts that are explic-
itly mentioned in the document text.

• In my approach, the temporal context of the document is also considered. This can ef-
fectively guide both the disambiguation of ontology entities and the metadata expansion
step. My approach is unique in this regard.

Later, I discussed the possibility of defining a semi-automatic annotation process to further
increase the quality of metadata. Next, I showed how the introduced framework can be used
for query parsing as well. Although viewing query parsing as a special kind of metadata
generation seems to be quite intuitive, this idea is not used by any other system.

I closed this chapter by comparing my approach with other state of the art solutions and iden-
tifying ideas for possible further improvements.
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Figure 9.1: Indexing and querying in the ontology-supported IR process
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In this chapter, I will show how to exploit the generated semantic metadata, and how to imple-
ment semantic querying that meets the requirements SCALABILITY and ONTOLOGY IMPER-
FECTION.

As already discussed in Chapter 5, to meet the requirements two major problems have to be
solved:

• The semantic metadata (and also the metadata query) has to be represented in a form
that is processable by legacy full-text search engines. It is also important that the syntac-
tic similarity of the full-text representation indicates semantic similarity of the original
semantic metadata. If this is achieved, the syntactic similarity measure that is used by
the full-text search engine will provide intuitive results.

• To deal with ontology imperfection, the results of the metadata query should be com-
bined with the results of the content query. There are many possibilities to do this, and
the best possible solution should be chosen after a careful analysis.

This chapter will discuss these two problem areas in greater detail. The topics discussed here
are shown in the context of the whole IR process in Figure 9.1.

9.1 Indexing

9.1.1 Problem analysis

As was already described in Chapter 5, the indexing step generates two indexes: one index for
the semantic metadata, and one traditional full-text index on the document content. The latter
task is trivial and therefore not discussed further. In the following, the creation of the semantic
metadata index is discussed in detail.

As was shown before, the IRCON information model consists of three parts: the textual, the
conceptual and the temporal parts. All parts contain a weighted set of metadata elements.

It is quite straightforward to create a full-text search friendly representation of the textual
and conceptual parts. The textual part contains text snippets that can be indexed without any
change. The conceptual part contains ontology instances. These instances have a unique iden-
tifier (URI) that can be represented as a string, and can be indexed as a usual, natural language
term1.

1Of course, the full-text representations of different kinds of metadata elements must be clearly identifiable later
on. E.g., if we search for the ontology instance with the URI “Bush”, we do not want to get any documents
that contained “Bush” in the textual part of the metadata. Lucene supports the definition of different index
fields in the text index, so it is easy to do this separation. In search engines that do not support such index
fields, an alternative solution would be to encode the metadata part information into the generated full-text
term. E.g., generate “uri_Bush” instead of “Bush” for the conceptual part.
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The vector space model2 that is used by many full-text search engines (FTSE), including the
Lucene library that I used, is based on the assumption that document terms are independent3,
and the only meaningful relation among them is equality. I.e., two words are either equal (the
same), or not equal. Using these assumptions, the list of all t terms in all documents form a
t-dimensional vector space where the cosine measure between the t-dimensional term vectors
can be used as a meaningful similarity measure4. These assumptions are valid for the textual
and conceptual parts, therefore it is easy to create the mapping between these parts and the
VSM.

The temporal part, however, is more complicated because these assumptions do not hold. Tem-
poral intervals are clearly not independent, and there are many possible relations among them
(see Table 6.1). It is therefore not trivial how to make the time dimension compatible with a
full-text search engine. Probably this is one of the causes why the existing approaches ignore
temporal information. Therefore for the temporal part, a custom solution is needed, which will
be explained in the next subsections.

Before discussing the temporal part, however, a minor issue has to be solved. The IRCON
information model contains a weighted list of elements, whereas classical FTSE are designed
to index a flat list of words (the document content). So, it must be shown how to represent the
metadata element weights in the full-text index.

9.1.2 Representing metadata element weights

FTSE use some variation of the TF-IDF measure to estimate the weight of a term in the doc-
ument content5. Therefore, the task is to achieve that the TF-IDF measure used by the FTSE
yields the same weight for the full-text term representation of a metadata element as the meta-
data element originally had in the semantic model.

A possible approach to achieve that would be to control the term frequency part of the TF-
IDF measure, i.e., to increase the frequency of the full-text representations of more important
metadata elements. I.e., if one metadata element has twice as much weight than the other
element, the frequency of its full-text term representation should be twice as much, too.

There are two problems, however, with this naive approach. First, the IDF part of the TF-IDF
measure is still there, and it is very hard to control because it is calculated over the whole doc-
ument repository. Luckily, some FTSE allow users to adjust the TF-IDF measure. E.g., it was
possible to set the IDF part of the Lucene TF-IDF measure to a constant 1.0. Another problem
is that by manipulating the frequency of terms we have to discretize the continuous weights
of the metadata elements. I.e., we have to decide what will be the frequency of the elements

2or “bag of words” model
3This assumption is clearly not valid in the general case because there are many words that appear together in

many cases. Consider e.g., the words “computer” and “network”. Experience with full-text search systems
shows, however, that this simplification does not significantly decrease retrieval performance and it simplifies
the model dramatically.

4For more details on the VSM see Section 2.3.
5In the TF-IDF measure, TF stands for term frequency, IDF stands for inverse document frequency. The basic

idea of this measure is that a specific term is the more important for a document, the more frequent it appears
in that document, and the less frequent it appears in other documents in the collection. For more details see
Section 2.3.
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with the weight 1.0. E.g., if we decide that the frequency will be 10, we can only represent the
metadata weights with a 0.1 accuracy. Clearly, there is a trade-off between the accuracy of the
weights and the size of the full-text index: bigger accuracy means more generated terms, and
a bigger index. In the IRCON protoype, I transform metadata weights with 0.1 accuracy.

E.g., with 0.1 accuracy the following conceptual metadata part

{George_H_W_Bush:0.7, USA:0.8}

would be represented in the full-text index as

"George_H_W_Bush George_H_W_Bush George_H_W_Bush
George_H_W_Bush George_H_W_Bush George_H_W_Bush
George_H_W_Bush USA USA USA USA USA USA USA USA"

9.1.3 Representing the temporal part

Kalczynski and Chou provide a very interesting solution for the problem of representing tem-
poral information in a full-text search friendly way [KC05]. They discretize time intervals into
temporal granules, such as days. E.g., the time interval (2006-01-01 – 2006-01-03) can be
represented as a sequence of three days:

{ 2006-01-01, 2006-01-02, 2006-01-03 }

This approach works even for fuzzy time intervals. In this case, a weight is also associated with
the granules, which represents the membership value of the granule in the fuzzy time interval.
E.g.,

{ 2006-01-01 [1.0], 2006-01-02 [0.7], 2006-01-03 [0.3] }

For these granules, it can be assumed that they are independent from each other, and that
the only interesting relation among them is equality. Using such assumptions, time granules
can also be represented using virtual words, and indexed by full-text search engines. I also
follow this approach to create a representation of the temporal part of the information model
that is compatible with FTSEs. I use days as granules because day granularity is adequate in
the application domain of history. It is important to note, however, that the transformation to
granules is independent of the chosen granularity level. Finer (or coarser) granules than days
can be chosen if required by the application domain.

What is missing from the approach of Kalczynski and Chou is a solution for scalability. For
long time intervals, and fine granules, the transformation described here will result in a very
large number of granules. E.g., to represent the (1000-01-01 – 2000-01-01) time interval with
day granules, more than 360000 granules are needed. Such a big number of granules cannot
be efficiently indexed with full-text search engines6.

6Many full-text search engines index only the first several thousand words of a document.
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9.1.4 Solving the scalability problem

To solve the problem of scalability of the naive approach on long time intervals7, I use the
idea of aggregation that is very common in the area of data warehousing (see e.g. [Kim96]).
The main idea is that if the number of the generated granules exceeds a given threshold8, the
time interval should be converted using coarser granules. E.g., the time interval (1001-01-01
– 2000-12-31) should be encoded using centuries as granules, instead of days. Of course,
some information is lost with this approach. My hypothesis is, however, that this information
loss causes only a minimal decrease of IR effectiveness because in the case of very long time
intervals the user information need is usually not expressed using very fine granules. E.g., using
the example above, a typical user would express the interval as “the second millennium”, and
would not use days.

The switch between the granularity levels happens simply by taking the average of membership
values on the smaller granularity as the new membership value on the bigger granularity. E.g.,
if we have the following granule/membership value pairs on the year granularity

1001/0.1, 1002/0.2, 1003/0.3, 1004/0.4, 1005/0.5,
1006/0.6, 1007/0.7, 1008/0.8, 1009/0.9, 1010/1.0

the membership value for the (1001 – 1010) decade granule would be 0.55.

9.2 Querying

As was already described in Chapter 5, two full-text queries are generated from the semantic
query. The first, metadata query searches the full-text index representing the semantic meta-
data of the documents. The second, content query searches the full-text index containing the
indexed document contents. After executing these two queries using an FTSE, the results are
combined, and the combined result constitutes the final query results that are returned back to
the user.

9.2.1 Generating the metadata query

The same idea that was used during indexing can also be applied to generate the metadata query
out of the semantic query. However, some search engines, including Lucene, also support
weights on query terms. Using such search engines, the trade-off between the accuracy of
weights and the length of the query does not exist, and more precise queries can be used.

E.g., for the semantic query:

{George_H_W_Bush:0.7, USA:0.8}

7which are frequent in the domain of history
8In my work I use a threshold of 400 granules.
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the generated Lucene query with 0.01 accuracy would be:

"George_H_W_Bush^70 USA^80"

The termˆweight notation is an element of the Lucene query language and denotes the
weight of the given query term. In my prototype, I generated query weights with 0.01 accu-
racy.

9.2.2 Searching with multiple temporal granularities

Although the aggregation approach introduced in Section 9.1.4 solves the problem of scalabil-
ity for indexing, it introduces a new problem. If we have more than one granularity, it is no
longer clear which granularity should be used in the metadata query. Even if the user specifies
the time dimension in the query very precisely (e.g., using the day granularity), we still would
like to retrieve documents which could be indexed only with coarser granularities (e.g., with
centuries). Conversely, if the user searches using a coarse granularity, we still would like to
return documents that were indexed using finer granularities.

Clearly during query time, the system cannot know for each document, which granularity
was used when that very document was indexed. My solution to the problem is to index
documents using all granularities, where the threshold on the number of granularities is not
exceeded. Similarly, the temporal part of the query is also transformed into queries using all of
the possible granularities (where the threshold is not exceeded). In this way it does not matter
which granularity was used during document indexing, and which is used during query time,
matching documents will always be found.

Of course, the approach is redundant because a document will be found for all of the granular-
ities, which were used at indexing time, and which are the same or coarser than the smallest
query granularity. Based on my practical experience, however, this redundancy does not cause
performance problems.

9.2.3 Supported temporal relations in metadata queries

Because the temporal part must be transformed to granules before indexing, and because the
VSM supports only equality on query terms, the only temporal relation that can be expressed
among temporal intervals is a kind of “intersects” relation. More precisely, the full-text search
engine finds documents for a temporal interval specification in the query, where at least one
temporal interval in the temporal part of the document metadata intersects one of the query
intervals (see the “intersects” relation in Chapter 6).

However, the “intersects” relation, which is indirectly expressed using full-text search, has
some nice operational characteristics. Please recall that the classical “intersects” relation is
binary, and the fuzzy version considers only the maximal membership value of the time points
in the overlapping area of the time intervals. In contrast to that, full-text search results on the
temporal granules also consider the size of the overlapping area. E.g., if the user searches for
the date 1945-05-08, documents describing exactly the requested date will have higher scores
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than documents describing the whole forties, or the whole 20th century. It is because the TF-
IDF score incorporates also the length of the document vector (see Equation (2.1)). The longer
the “document” is (i.e., the bigger the total number of granules is) the less score will be given
for the same number of matching granules.

Of course, this means that none of the (fuzzy) temporal relations that were discussed in Chap-
ter 6 are effectively used during retrieval. On the other hand, the fuzzy temporal model and
the fuzzy temporal relations are used during metadata generation as discussed in the previous
chapter.

An alternative approach for the temporal part would be that it is implemented using a special
solution, instead of using various “hacks” to tweak the temporal model into the less powerful
VSM. Indeed, we experimented with a solution for fuzzy temporal querying on top of the
relation database technology [Zhe04]. In this solution, arbitrary fuzzy relations could be used
in queries. It was even possible to efficiently calculate the results because we used various
optimizations to avoid calculating the result of fuzzy relations for each fuzzy interval stored in
the database. A small set of result candidates could be selected using out of the box relational
indexes based on some mathematical characteristics of the fuzzy interval relations.

It must be noted, however, that his approach returns a non-ranked set of temporal intervals that
are in the required relation with a reference fuzzy interval. Ranking these intervals in memory
can be very expensive if there are many results.

Another problem with this approach is that one has to deal with two separate indexes: one for
the temporal information, the other for the conceptual and textual part. This means that a user
query should be split into two parts, and the results should be combined after running the two
parts separately. In the typical case, however, both parts would simply return too many results,
and it would be very inefficient to combine the results later in main memory. E.g., consider the
query about “Bush” in “2001”. If we run the query with both query terms together, there will
be not so many documents that are about Bush in the year 2001. However, if we run the queries
“Bush” and “2001” separately, there will be lots of results for both subqueries (but especially
for the very general temporal query). Based on some experiments, one can expect result sizes
that are orders of magnitude bigger than the result size of the combined query. These huge
results must be completely loaded into main memory, and scanned to find documents that
fulfill both query phrases at the same time. For big document collections this is clearly not
a feasible solution. With the completely full-text solution, on the other hand, it is not even
necessary to load the full result set into the main memory, if the user is interested only in the
first several hundred results (or even less), which is the typical case in Internet applications
[SJ04, JP01, JSS00, JS03].

9.2.4 The need for query combination

As was discussed in Chapter 5, the results of the metadata query are not adequate in many
cases because of various imperfection issues. For a generic document repository it cannot be
guaranteed that the ontology covers all topics of the repository (or covers them well enough).
Moreover, even if the ontology would theoretically provide adequate coverage, it can still
happen that for a specific document no semantic metadata was generated. In these cases, the
metadata query would clearly not return adequate results. As was shown in Chapter 5, the
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combination of content search results with the metadata query results can help to solve this
problem.

9.2.5 Generating the content query

Before the results of the content query can be combined with the metadata query results, the
content query has to be generated based on the semantic query.

For the textual part of the semantic query it is easy to specify the content query: the text
snippets are simply copied, and the query weights are specified as described above at the
metadata query.

For the conceptual part, the lexical layer of the ontology is exploited. For each OI in the
conceptual part, the OI label, and also the OI synonyms, are added to the content query. While
the label added with the weight of the OI, the weights for synonyms are reduced9 to compensate
the fact that synonyms contain some “noise”10. E.g., for the OI GEORGE_H_W_BUSH the text
phrases “George H. W. Bush”, “George Bush”, “President Bush”, “President George Bush”
and “Bush” are all added to the full-text query, where “George H. W. Bush” is the OI label and
the other phrases are the synonyms11.

Finally, for the temporal part, a similar strategy can be followed that was described during
indexing. An additional problem is, however, how to represent the granules in text form. I.e.,
for the day granule 2006-10-01 the following textual representations are all valid: “2006-10-
01”, “October 1, 2006”, “October 1, 2006”, “October 1st 2006”, “10/1/2006” etc. Clearly, all
these representations can blow up the final content query significantly, and it is still cannot
be guaranteed that all relevant documents are found because in the document texts many time
specifications are actually time intervals. E.g., the text “early October 2006” would seman-
tically match 2006-10-01 but syntactically does not match any of the textual representations.
Still, the granule strategy seems promising but when setting the threshold on the number of
granules, the syntactic variability has to be considered. E.g., if each granule has 10 syntactic
representations on the average, the threshold on the number of granules at a specific granule
level should be 10 times less than during indexing time to avoid a blow up in the query size12.

9.2.6 Combining search results

After we discussed how to generate the semantic and content queries, the last unresolved issue
is how to combine the results of these queries. There is no easy answer in general because it is
not a trivial question which is the best strategy for query combination.

9in the current implementation by 30%
10e.g., both George W. Bush and George H. W. Bush has the synonym “Bush” in the ontology
11Of course, the exact list depends on the actual list of synonyms in the ontology.
12In the actual IRCON implementation, I generated full-text representation of the temporal part only for the year

granules because here the syntactic variability is minimal. Experimenting with other granules in the content
query, and especially the negative or positive effect of having them in the content query, is a subject of future
research.

138



9.2 Querying

In the IR literature, there are many approaches for combining evidences of relevance or search
results. I reviewed these approaches, and selected some promising algorithms to experiment
with.

IR systems that are built on the inference network model [MC04], or on the belief network
model [RM96], are capable of combining different sources of evidence to estimate the prob-
ability that a document is relevant for a given user information need. E.g., the approach de-
scribed in [SRN04] combines the results of various subqueries that are generated from the
original user query using different linguistic relations from a thesaurus. These approaches
use Bayesian networks [Pea94] for the combination of evidences. In these networks, results
returned by the subqueries are viewed as probability estimations that a specific document is
relevant for the user’s information need. Although in general, there are many possibilities to
combine these probability estimations to estimate the combined probability that a document
is relevant for the user’s information need, most approaches uses the logical OR combination.
With this strategy, a document is deemed to be relevant for the information need, if any of the
subqueries returned it as relevant. To estimate the combined probability of a document, i.e., its
relevance score, the following formula is used:

rel(d) = 1−
∏

i

(1− reli(d)) (9.1)

where reli(d) denotes the relevance estimation returned by the ith subquery for a document d13.
I will denote this formula as Bayes OR from now on.

A second big area of IR that is concerned about combining search results is the area of
metasearch [Cro00, AM01]. At metasearch, the task is to combine the results of different,
independent query engines into one coherent list of results. Because I also have two indepen-
dent queries14, the various metasearch algorithms can be directly applied in my case. Although
there are lots of different approaches, it seems that the so-called CombMNZ15 algorithm pro-
vides very good results, in spite of its simplicity [AM01]. Probably for this reason it is one of
the standard algorithms in this area. The formula to calculate the relevance score of a document
according to CombMNZ is the following:

rel(d) = nd ∗
∑

i

reli(d) (9.2)

where nd denotes the number of systems that returned non-zero relevance score for a document
d.

Finally, Vallet et al. also proposed a custom combination algorithm in their work [VFC05] for
the combination of semantic and full-text search results. Although this algorithm is not well-
known, I included it in my experiments because this work was the first to explicitly examine

13The formula uses the fact that p1 ∨ p2 = ¬(¬p1 ∧¬p2) for the p1 and p2 logical variables. Moreover, it is also
a well-know axiom of the probability theory that Pr(¬p) = 1− Pr(p) where Pr(p) denotes the probability
that the logical variable p is true.

14Although the queries are executed using the same FTSE, they are operating on two independent indexes, there-
fore their results can be considered as independent.

15The MNZ part in the name is an acronym of “multiply by number non-zero”.
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the combination of full-text and semantic search. The formula to calculate the relevance score
for a document according to this strategy is the following:

rel(d) = t ∗
∑

i

relsem(d) + (1− t) ∗ relfts(d) (9.3)

where t is a parameter of the algorithm, relsem(d) denotes the relevance score returned by
the semantic search for a document d, and relfts(d) denotes the relevance score returned by
the full-text search for a document d. Vallet et al. propose to set the t parameter to 0.5 by
default, and change it to 1.0 when relfts(d) = 0, and change it to 0.2 when relsem(d) = 0. It
is clear that these values are somehow ad-hoc, and changing the t value affects the results of
the algorithm. I did some experiments with various t values with the data that I used for the
evaluation of my solution (see Chapter 12). Indeed, I found that on the one hand, the exact
value of t greatly affects the results but on the other hand, this effect is inconsistent across
different user queries. I.e., increasing the t value helped increase the quality of the results for
one query but it decreased retrieval performance for other queries at the same time. Therefore,
I used the same t values that were proposed by Vallet et al.

In general, it is impossible to say which of these strategies for query combination is better than
the others. Therefore, I ran experiments with the different strategies as part of the evaluation
of my system. The results of this evaluation are reported in Chapter 12.

9.3 Comparison with related work

The exact implementation of the indexing and querying steps are highly dependent on the cho-
sen information model. Therefore, a direct comparison with other state of the art approaches is
nearly impossible. There are some aspects of the systems, however, that can be compared. The
systems that I mention here were already analyzed in Chapter 4 in general but the following
discussion focuses more on the issue of indexing and querying. I consider here only systems
that somehow involve full-text search techniques because the decision to use full-text search
for IR is fundamental to my approach.

The first category of systems avoids the combination of indexes (or queries) and encodes all
needed information into the full-text index. The QuizRDF system [DW04] encodes the text
literal part of simple RDF statements into the same full-text index that is used to store the
full-text information. The OWLIR system [FMJ+05, SFJ+02] stores arbitrary RDF triples in
the full-text index that are encoded using the swangling method. These encoded triples can be
indexed and queried together with the document text using traditional FTSE. The KIM system
changes the original document content by adding unique semantic identifiers to the text where
named entities were identified. After this expansion, the text can be indexed and queried with
a traditional FTSE. Naturally, these systems do not have the problem of combining the results
from many query sources. However, they also lose the possibility to control how the full-text
search affects the results of the semantic search.

The second category of systems explicitly combines the results of full-text search and semantic
search or semantic reasoning. In the fuzzy-DL based system of Zhang et al. [ZYZ+05] the
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results of full-text search are integrated into the DL ontology as special fuzzy DL statements,
and classical ontology reasoning is applied on this ontology to answer queries. In the system of
Rocha et al. [RSA04], a FTS is executed over the textual representations of ontology instances.
Later, these initial results are expanded using a spread activation algorithm. Finally, Vallet et
al. [VFC05] combines the results of a semantic search (executed using ontology reasoning on
an ontology that closely resembles the VSM), and full-text search using their custom query
combination strategy. As was discussed in previous chapters, I do not consider IR based on
ontology reasoning as a viable approach. The system of Vallet et al., however, uses an approach
that is very similar to my solution. The only important difference is that they use ontology
reasoning for the semantic search part, while I use FTS also for this part (the metadata query)
to achieve scalability. Although in these approaches it would be in principle possible to exploit
the lexical layer of the ontology, they do not make use of this possibility and generate only
simple full-text searches.

As was previously discussed in Chapter 4, none of the systems deal with temporal information.
As was shown in this chapter, representing and querying temporal information is far from
trivial, therefore I consider this part a significant contribution of my work when compared to
the related approaches.

9.4 Summary

In this chapter, I gave a detailed account on the indexing and querying steps of the ontology
supported IR process. First, I showed how to represent the semantic metadata so that it can be
indexed and queried by traditional full-text search engines. Representing the textual and the
conceptual part was easy because the assumption of the vector space model (VSM) holds that
the elements are independent and the only meaningful relation among them are (in)equality.
The only problem to solve was how to represent element weights in the full-text index.

Representing the temporal part was much more challenging because there are lots of relations
among time intervals that we do not want to lose during indexing. My approach to this problem
was to discretize time intervals into so called granules. For these granules the assumptions of
VSM hold. I also addressed the problem of performance that may occur with this approach if
too many granules are generated.

In the second part of the chapter I discussed how to combine the results of metadata and content
queries to achieve results that are robust against ontology imperfection. I introduced several
query combination algorithms that were used during system evaluation. I also described how
to enhance the content query by exploiting the lexical layer of the ontology and the temporal
part of the semantic query.

To summarize, my approach is unique in the sense that it supports the indexing and querying
of temporal information and that it allows for exploiting the lexical layer of the ontology in the
content query.
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Chapter 10

Ontology development

An ontology plays a central, crucial role in an ontology-based information system. It is not
easy, however, to build an ontology. The development of ontologies is comparable in complex-
ity with the design and development of complex software. Therefore, similarly to software
development, methodological support is needed to guide the development of ontologies.

This chapter reviews the state of the art of ontology development, and reports on our hands-on
experiences during the VICODI project. Based on this, I describe the methodology that evolved
during the project and was customized to the needs of ontology-based systems focusing on
information retrieval. The methodology was also used in this thesis to build an ontology for
evaluation purposes.

Parts of this chapter, and a more detailed discussion of ontology development methodologies
and design principles were already published in [Nag05] and in [Nag07].

10.1 State of the art of ontology development

Ontology development is a very complex, creative process, therefore a methodology that co-
ordinates its various activities is crucial for its success [GPFLC04]. Ontology development
is comparable in complexity with software engineering, a field where already lots of mature
methodologies exist such as the Rational Unified Process [Hun03] or Extreme Programming
[Bec00]. Unfortunately, because the field of ontologies is not so mature yet as the field of
software engineering, currently there is no set of established, generally accepted methodolo-
gies. There were numerous methodologies proposed, however, and some of them are quite
elaborate.

The main purpose of a methodology is to define the life cycle of the ontology development pro-
cess, i.e., the order in which the various ontology development activities should be executed.
Most of the methodologies propose the evolving prototypes approach where development ac-
tivities are executed in cycle, producing more and more mature versions of the ontology.

In the recent decades, lots of methodologies were proposed. Some good studies and overviews
on ontology methodologies, which can be recommended for more details, are the following:
[FLGP02], Chapter 3 in [GPFLC04], and [JBCV98]. Here I briefly review two methodolo-
gies: the On-to-Knowledge methodology and the METHONTOLOGY methodology. These
are relatively mature, detailed methodologies that influenced our work in VICODI the most.
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10.1.1 The On-to-Knowledge methodology

The On-to-Knowledge methodology (OTK) [SAB+03, Sur03, SS02] concentrates on build-
ing knowledge based systems where ontologies form an important part of the system. This
methodology defines two orthogonal processes, the Knowledge Process and the Knowledge
Meta Process. The former describes the process of ontology usage, the latter guides the ontol-
ogy creation. We are interested here only in the Knowledge Meta Process.

OTK defines the following steps as part of the Knowledge Meta Process (see also Fig-
ure 10.1):

Feasibility
study Kickoff Refinement Evaluation

Application
&

Evolution

Figure 10.1: OTK steps

Feasibility Study: OTK follows the CommonKADS methodology [SAA+99] in order to
decide whether it makes sense to start the project, i.e., to build the ontology.

Kickoff: During this phase the ontology requirements are finalized: the exact goal and the
scope of the ontology is determined. According to the middle-out strategy, an initial list of
important entities is collected during a brainstorming session and a list of relevant experts and
knowledge sources is compiled. Design guidelines are also provided which will guide the
development process. Competency questions are collected which can be used later to validate
the ontology.

Refinement: In this phase, relevant knowledge is extracted from the identified knowledge
sources (and from human experts) and is formalized. This is the main development phase of
the methodology.

Evaluation: OTK describes three types of evaluation that can be conducted:

• Technology-focused evaluation: This includes checking the syntactic correctness and
semantic consistency of the ontology, its performance, modularity, maintainability etc.
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• User-focused evaluation: This includes checking whether the ontology contains all of
the information which was identified in the ontology specification document. A usage
pattern based evaluation is also part of this process where it is checked that all parts of
the ontology are really used, i.e., there are no unnecessary parts in it.

• Ontology-focused evaluation: This checks the semantic correctness of the ontology.
Both philosophical methods (such as OntoClean [GW02]) and ontology evaluation rules
[GP01] can be used to find incorrect conceptualizations.

Application & Evolution: It is important to see that no ontology is ever complete as our
understanding of the world (i.e., our conceptualization) evolves constantly. It is also possible
that the needs of the ontology users or applications change over time, i.e., other parts of the
domain will become relevant. During this phase, these changes are reflected, and the ontology
is evolved.

OTK proposes a cyclic ontology development process, i.e., the Refinement and Evaluation
phases are iterated until a stable, high-quality ontology version is reached. Later, the lessons
learned during the Application & Evolution phase can also initiate a new development cycle.

10.1.2 The METHONTOLOGY methodology

The METHONTOLOGY methodology [LGPSS99, GP97] describes a process similar to OTK
but it focuses more on the ontology development (it does not address the Knowledge Process)
and describes the conceptualization activity in much more detail.

METHONTOLOGY groups the ontology development activities in three categories. Man-
agement activities include activities that are common to all kinds of projects. Development
oriented activities form the core of the development process, and they are normally conducted
sequentially. The activities of OTK all belong to this category. Finally, support activities are
crucial for the success of the development activities (and such for the whole project), and they
are conducted in parallel with one or more development activities. Many of them (like doc-
umentation) are performed continuously throughout the whole project. A more fine-granular
categorization and a detailed account on ontology development activities is found in Section
3.1 of [GPFLC04].

METHONTOLOGY defines an evolutionary type of life cycle (similarly to OTK), which is
shown in Figure 10.2. This means that the development activities are executed iteratively
throughout the development process. From the project management activities, planning is
done at the very beginning, control and quality assurance are continuous. All of the integral
activities are done continuously, although the amount of knowledge acquisition, integration
and evaluation decreases as the ontology matures and its structure stabilizes.

In contrast to OTK, METHONTOLOGY separates the steps of conceptualization, formaliza-
tion and implementation. During conceptualization, a model of the relevant domain knowledge
is created that is is not necessary suitable for reasoning and can be in any form which is under-
stood and accepted by domain experts (e.g., Excel sheets, a mind map, semi-structured text).
This model is transformed into a chosen formalism (e.g., first order logic [Fit96], F-Logic
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Figure 10.2: Methodology lifecycle

[KLW95], or description logic (DL) [BCM+03]) during the formalization step. This formal
representation is semi-computable, i.e., it can be rewritten into a suitable syntax quite easily,
which can serve as an input for a reasoner. Finally, during the implementation step, the for-
mal representation is codified in a specific ontology language (such as OWL-DL [PSHH04]),
which can be directly executed in a suitable reasoner.

The main strength of this methodology is the detailed description of the conceptualization
activity. METHONTOLOGY describes various artifacts which specify different aspects of the
conceptual model, such as the glossary of terms, the concept dictionary, the concept taxonomy
or the table of instances. The conceptualization process is a controlled development of these
artifacts.

More detailed descriptions of the documents forming the intermediate conceptual model of
METHONTOLOGY and the steps that should be taken can be found in Section 3.3.5 of
[GPFLC04] and in [GP97]. A detailed practical example using METHONTOLOGY is de-
scribed in [LGPSS99].

10.1.3 Conceptualization strategies

Conceptualization is probably the most important, and definitely the most complex task of the
ontology building process. There are different strategies for defining a model that provides a
specification of our conceptualization [GPFLC04, SS02].
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Following the top-down strategy one starts with the most general concept (e.g., THING) and
tries to refine the ontology structure along different distinguishing notions. This strategy is
usable mostly in the case of top-level, philosophical ontologies.

The bottom-up strategy starts with a suitable set of information resources (databases, docu-
ments) which should be described by an ontology. In the first step, interesting entities are
collected from these resources that are worth to be included in the ontology. This process can
be supported by information extraction (IE) and ontology learning tools like Text2Onto1 or
Amilcare2. Later on, the ontology engineer tries to find common superconcepts and super-
properties of the identified concepts and properties, and specifies the proper concepts for the
identified instances.

The advantage of the bottom-up strategy is that the ontology will definitely describe the target
document corpus or database(s) properly, i.e., it will describe the “information supply” well.
On the other hand, there is a danger with this approach that the ontology will be too focused on
a specific information resource, thus it will not be reusable. This strategy is suitable for very
low-level, application ontologies, where a specific information resource should be semantically
described, and not recommended for high-level ontologies, which should be independently
developed from specific databases or document corpora.

Finally, the middle-out strategy starts with a list of most important ontology entities (concepts,
properties) which can be collected during a brain-storming session. This approach can be used
for both low-level, application ontologies, or medium-level, domain or task ontologies where
a list of most important concepts can be easily identified at the beginning.

10.1.4 Design guidelines

It is important to note that ontology methodologies only describe the high-level development
process but they do not provide practical guidelines how a “good” ontology should look like,
and how to model certain common issues. Such practical guidelines are very important,
however, during the daily work of the ontology engineer. Just consider that design patterns
[GHJV94] in the area of software development are very popular, and generally accepted as
useful.

This fact was already realized by the Semantic Web community, and the Semantic Web Best
Practices and Deployment Working Group was formed as part of the W3C3, which started to
develop guidelines for practical ontology modeling issues (e.g., [Noy04, Rec04]). A detailed
list of practical guidelines was also published in [Nag05], and in [Nag07]. These guidelines
are not detailed here because they are beyond the scope of this discussion.

10.1.5 Summary

To summarize the discussion on ontology development methodologies, the following important
points can be enumerated:

1http://ontoware.org/projects/text2onto/
2http://nlp.shef.ac.uk/amilcare/
3http://www.w3.org/2001/sw/BestPractices/
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• Most methodologies advocate a highly iterative approach to deal with the complexity of
ontology development.

• There seems to be disagreement whether it is a good idea to separate the conceptual-
ization, formalization and implementation steps. Some methodologies (such as OTK)
merge these steps. As a matter of fact, most ontology development tools also assume
that the conceptualization is directly specified in the implementation model.

• Ontology specification and scoping is important. It guides the process, and helps to make
well-founded modeling decisions.

• A list of design guidelines that most practitioners can agree on is still missing for ontol-
ogy development. Unfortunately, methodologies themselves do not define such guide-
lines. However, the first steps were already made to create guidelines how to model some
common constructs in ontologies.

10.2 VICODI experiences

During the VICODI project a large ontology of European history was developed. This ontology
was required for the VICODI prototype.

During the ontology development process we tried to apply the ideas presented in the previ-
ously described methodologies. As a result of our trial-and-error attempts to apply elements of
these methodologies, it turned out which parts could be reused readily, which parts had to be
changed, and which elements were missing. In the following I report on these experiences.

The VICODI experiences were already published in more detail in [NDO05, Nag04].

10.2.1 Requirements of an ontology supporting IR

The clear specification of the ontology goal is crucial for the successful development of the
ontology [vSW97, SS02]. The goal of the VICODI ontology was the same as the goal of the
ontology for the evaluation of IRCON: to support the ontology-based IR process. That is, to
support the automatic creation of semantic metadata, and the search for this metadata. In the
following, I discuss what requirements follow from this high-level goal.

The ontology defines the elements of the information model that was described in Section 8.1.
I.e., if the ontology does not contain a specific element, it cannot be represented in the seman-
tic metadata. This implies that for a successful and comprehensive metadata generation the
ontology must contain lots of ontology instances.

In addition to instances, the ontology must also contain relations among instances and time
information to support the heuristic rules for metadata expansion that were described in Sec-
tion 8.6.3. It is also important to note that the heuristic rules do not profit from extensive, deep
concept or property hierarchies. They only profit from concepts and properties that are directly
used in the rule definitions.
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To summarize, the ontology has to contain lots of instances and relations, and it is not required
that it defines a complex concept and/or property taxonomy.

10.2.2 Conceptualization strategy

In VICODI, we first tried to follow the middle-out strategy that is advocated by OTK and
which is also compatible with the METHONTOLOGY methodology. I.e., we started the on-
tology development process with a brain storming session, where most important concepts
were identified. We also collected a list of competency questions. Finally, our domain experts
manually marked-up some selected “miniworlds”, i.e., a small list of documents in some se-
lected domains. This latter was needed to validate whether the core concepts identified during
the brain storming session really cover the entities that appear in documents.

The first real problems appeared when we tried to refine the concept and property taxonomies
of the ontology. The domain experts started to specify very deep and detailed concept and
property hierarchies in the specific domain of history where they were especially interested in.
However, other important parts of the domain were not covered at all. Even worse, the do-
main experts could not understand the hierarchies that other experts proposed, simply because
they did not have such deep expertise or interest in that very specific subarea. Therefore, no
consensus of those detailed hierarchies was possible, and discussions ended up with endless
philosophical debates.

Moreover, there were only few or absolutely no documents in the document repository about
the domains that were modeled in detail, while some other, popular areas where there were
lots of documents were not modeled by any experts. As a conclusion, it became clear that
the domain was simply too wide to be modeled in a detail big enough to satisfy a historian.
However, it also turned out that such a detailed modeling was not necessary at all because the
heuristic rules that exploited the ontology were not prepared for such a detailed ontology struc-
ture. Therefore, the participants of the project agreed after a while that a very detailed concept
and property hierarchy is actually a waste of project resources, and should be avoided.

I believe that the described situation is very common in ontology building projects. It seems
extremely hard to decide how detailed a specific domain should be modeled. A complete
model that domain experts tend to go for seems to be possible only in very limited, specific,
technical domains. Measurement units in physics, or the elements of the periodic system in
chemistry are good examples of that. In more complex domains, however, it is very hard
to find the abstraction level where the ontology should stop. Unfortunately, this issue is not
addressed adequately in the ontology methodology literature, where sometimes very small, toy
ontologies are presented as examples (e.g., [LGPSS99]).

In the VICODI case, the solution was to concentrate on the instances that actually appeared
in the documents, and extend the concept and property hierarchy only in cases where a new
heuristic rule for metadata extension could be specified. Although the resulting ontology did
not describe European history in the detail adequate for a historian, it was much more use-
ful for the task on hand, namely supporting ontology-based metadata generation and IR. In
other words, VICODI showed that scoping is crucial for an ontology development project.
It also showed that for IR ontologies, a bottom-up approach for conceptualization is better
than a middle-out or top-down strategy. However, an initial brain-storming session, which is
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characteristic for the beginning of a middle-out strategy, can help to focus the ontology devel-
opment.

10.2.3 The need for an intermediate model

At first, we tried to define the ontology directly in the implementation formalism, as it is sug-
gested by some methodologies (such as OTK). It seemed to be a pragmatic, simple approach
to merge the conceptualization, formalization and implementation steps and directly use the
available graphical ontology editors to develop the ontology.

Our experience showed, however, that the ontology formalism of the KAON system we used
at that time was cumbersome to use for our domain experts. KAON uses a slight extension
of RDFS that — similarly to OWL, the current W3C standard for ontologies — supports only
binary relations between concepts. In history, however, time plays a very important role, and
therefore most of the relations are timed. This requires relations of higher arity which can be
represented in RDFS (or in OWL) through reification4. This resulted in ontology structures,
however, that were not easily understandable for our domain experts, and which were very
cumbersome to edit. This fact considerably slowed down the knowledge acquisition process,
i.e., getting new instances and relation instances to the ontology.

Another problem was that most of the time, specifications in history were imperfect (see also
Section 3.6), and this fact could not be represented in RDFS. Although elements of the tem-
poral model that was described in Chapter 6 were already devised during the VICODI project
[NM03], ontology support for the fuzzy time model was implemented only later, after the
project ended. Still, our domain experts wanted to explicitly denote the imperfection of tem-
poral specifications somehow.

These experiences show that there are some very good reasons to separate the conceptualiza-
tion and implementation steps, and do not force domain experts to specify their conceptualiza-
tion directly in the target ontology formalism.

The main problem with the direct approach is that most formal ontology languages are de-
signed with the motivation to provide for several reasoning constructs. A natural requirement
from the user side is that these reasoning operations should be calculated efficiently, or at least
the reasoning should be decidable. Clearly, the more expressive an ontology language is, the
more complicated the reasoning will be, and it is easy to reach the point where the reasoning
will no longer be decidable. Therefore, these languages make various compromises in the area
of expressiveness in favor of efficiency. This means that in many cases, the knowledge required
to properly represent the target domain requires constructs that are not supported by the target
ontology language. As a result, it is possible that changes in the conceptual structure (such as
the mentioned reification) are required because of the limitations of the target formalism.

4for a brief explanation of reification refer to Section 7.2.1
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10.2.4 Properties of an intermediate model

Instead of specifying our mental model directly in the implementation formalism during the
conceptualization activity, a so-called intermediate model should be developed. This may not
be suitable for ontology reasoning but it can include any knowledge representation constructs
which seem to be natural for the problem at hand. This model may be defined in any form
which is understood and accepted by domain experts (e.g., Excel sheets, a mind map, semi-
structured text, or combinations thereof).

This approach has many advantages. First, even if some of the constructs can be represented
in the target formal language using a workaround (e.g., representing n-ary relations as concept
instances), this makes the understanding of the model for humans much more complicated, and
thus reduces the possibility of ontology reuse. On the other hand, if a natural representation of
the ontology is available at the conceptual level, people do not have to “parse” the low-level
formal representation.

Second, if some information cannot be represented in the target formalism at all, we may still
have it in the conceptual model. If we later switch to a more powerful formalism, we can
readily reuse this information.

Finally, because the conceptual model uses constructs that naturally describe the domain of
discourse, it is easier to communicate it toward the domain experts. It is sometimes even
possible that domain experts can edit parts of the model, without active participation of the
ontology engineer. This helps to solve the common dilemma: who should develop an ontol-
ogy? Domain experts who understand the domain but have only a little or absolutely no idea
of good ontology design; or the ontology engineer who has extensive knowledge about proper
ontology constructs but only a limited knowledge of the domain of discourse? By using inter-
mediate models, the domain experts can edit those representations, and the ontology engineer
can devise the best ways to map those (possibly) non-computable conceptual representations
into formal ontology constructs. In most cases, it is even possible to find ways to generate parts
of the formal ontology out of parts of the conceptual model fully automatically.

Although the intermediate model is not necessary suitable for ontology reasoning, it should be
machine processable. Only in this case it is possible to automatize the generation of the formal
model out of the conceptual model, at least partially.

The value of intermediate models was already proved in many real-world systems (such as
Galen [RWRR01], or in the OTK use cases [SS02]). It is also interesting to note that the
idea of separating the conceptual model from the implementation (i.e., the concrete ontology
formalism) is very similar to the vision of Model Driven Architecture (MDA), a movement
which became popular recently in the software engineering field5.

10.2.5 Intermediate models in VICODI

To solve the presented problems, we also started to use intermediate models in VICODI
[Nag04]. Although this approach requires more advanced tool support for transforming in-

5See http://www.omg.org/mda/ for details
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termediate models into the target ontology formalism, the problems described above gave us
enough motivation to try this path. In the intermediate model it was possible to

1. encode knowledge in a way that was familiar to the domain experts and

2. specify information that was not included into the final formal ontology but was consid-
ered useful by the domain experts.

This approach was a great success and significantly sped up knowledge acquisition in the
project. However, creating the necessary tool support remained a non-trivial issue.

10.2.6 Tool support

The conceptualization phase of ontology development basically consists of the following ma-
jor tasks: creating the concept and property structure of the ontology, populating the ontology
with instances and relation instances that connect them, and specifying attributes of these in-
stances.

Deficiencies of graphical ontology editors

For editing the concepts and properties of an ontology, there are several graphical ontology
editors, such as KAON OIModeler6, Protege7 or SWOOP8. As we have seen, however, an on-
tology supporting IR should also contain lots of instances, relation instances, and attributes.

Collecting new instances, relation instances and attribute values can be a very cumbersome
and time consuming work for domain experts. Ontology learning tools that build on shallow
natural language processing (NLP) promise support for this process. A typical example for
such a tool is Text2Onto [CV05], which is based on the GATE framework9. Unfortunately,
based on our experiences during and after the VICODI project, the results of these systems are
not yet adequate to serve as a direct input for an ontology. Therefore, ontology development
and ontology population still remain predominantly manual, human resource intensive tasks.

Existing graphical ontology editors have various problems with ontologies containing lots of
instances. First, they do not scale well, i.e., they are simply too slow on big ontologies. This
is rather an implementation than a conceptual problem but a very important obstacle during
real-world ontology editing. Second, their GUI does not support browsing and editing a large
number of entities. E.g., most editors simply list all instances of a concept, which is clearly
useless if the concept has more than a dozen instances10.

As another example, at the time of writing of this thesis it was impossible to select more than
one entity in the Protege editor, and run an operation on all of the selected entities. If several

6http://kaon.semanticweb.org/
7http://protege.stanford.edu/
8http://www.mindswap.org/2004/SWOOP/
9GATE is also used by KIM [PKO+04], or by my metadata generation system

10E.g., in the VICODI ontology the PERSON concept had more than 5000 indirect instances.
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hundred instances should be moved between two concepts11, this limitation clearly renders the
editor unusable.

Finally, most of the editors operate on the formalization or the implementation level. I.e.,
they are tied to specific ontology formalisms (such as KAON to the KAON OIModel, and
SWOOP to OWL), or to specific ontology modeling paradigms (such as Protege to frame-
based ontologies, or recently to OWL). In other words, they are not flexible enough to support
the intermediate models approach, which was used in VICODI.

VICODI’s hybrid approach for ontology editing

The solution to this problem, which was first developed during the VICODI project [Nag04],
and was later refined during my thesis work, is the following. We used a hybrid approach for
ontology editing: visual editors for concepts and properties, and legacy spreadsheet editors
for instance editing. Therefore, the scalability problem that was mentioned above, does not
occur. Moreover, most of the intermediate model features, which are needed for concepts and
properties, can be somehow modeled in visual editors.

During VICODI we used the KAON OIModeler editor for concept and property editing be-
cause it provided some nice features in comparison to other ontology editors. These features
include a nice graph view of the concept and property structure, and the possibility to apply
operations on many selected entities12.

The KAON OIModel ontology formalism13 does not have the notion of “timed properties” that
were used in VICODI. However, the KAON OIModel supports metamodeling, i.e., ontology
entities can be concepts, properties or instances at the same time. The instance interpretation of
a concept or property is called its spanning instance. It was easy to exploit this feature to model
timed properties. We simply defined a special TEMPORALPROPERTY concept, and declared
the spanning instances of properties that were timed as instances of this special concept (see
Figure 10.3 which shows an excerpt from the ontology for the HASPART timed property). That
way, the KAON OIModel, as an intermediate model, contained all of the information that
was needed to automatically transform it to the ontology formalism, which was described in
Section 7.2.2.

Sometimes introducing such “hacks” into the intermediate model is not possible because it
would not be intuitive for domain experts. In our case, it was possible to extend the visual editor
to support the needed feature, i.e., to declare a property timed by setting a checkbox, instead
of manually declaring the concept as an instance of the TEMPORALPROPERTY concept. This
made this solution transparent to the domain experts.

Normally, ontology editors provide a plugin API, which allows to add specific extensions and
features relatively easily. It is clear that it is best to choose a visual editor, whose native
supported formalism is the closest to the one that is needed by the intermediate model, and
therefore the fewest extensions are needed.
11This happens quite often, especially when introducing new, more specific subconcepts to the concept taxonomy.
12In contrast to the Protege editor, as was described above.
13a slight extension of RDFS, for more details see [MMV02]
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Legend

Concept

Subconcept

Conceptrelation

Instance

spanning
instance

instance of

LocationTemporalProperty

MetaProperty

kaon:Root

Thing

hasParthasPart

domain range

Figure 10.3: Timed properties in a KAON OIModel

Spreadsheet programs for instance editing

Spreadsheet programs, such as MS Excel or OpenOffice Calc are ideal for editing huge number
of entities. They are therefore also suitable for editing lots of ontology instances and relation
instances. Using the fast and powerful search/replace and copy/paste features, it is relatively
easy to make even extensive changes in the instance base — changes that would not be pos-
sible using visual editors, such as Protege. The easiest way to exploit these programs is to
define a standard structure based on the intermediate model. E.g., in my case I had the fol-
lowing spreadsheet tables during my thesis work: Instances, Relations, TemporalRelations,
TemporalAttributes and Lexical.

Using spreadsheets as intermediate models for the instance level, it is also very easy to define
intermediate models which provide specialized constructs for cases that are common in the
target domain. E.g., during the VICODI project, we had a special table in the sheet, which
was customized for defining person roles. In a person role, a person was connected with a role
specification (such as EMPEROR); with a location where the role was played, and with a time
specification during which the role was played. In a “traditional”, generic ontology formalism
it would be quite cumbersome to express such relationships. In our case, it was possible to
simply enter the needed information to one row of an Excel sheet ((see Figure 10.4).

This flexibility of defining customized sheets for complicated modeling constructs is perhaps
the biggest merit of the spreadsheet approach: it is much easier to define new tables, or new
columns in a spreadsheet, than to extend a visual editor when the required modeling idioms
are missing from the intermediate model.
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Figure 10.4: Role specifications in the VICODI spreadsheet

The drawback of the approach is that only minimal sanity checking14 can be done during in-
stance editing time15. E.g., it is possible to refer to non-existing instances and concepts, or
violate domain and range constraints in the ontology. Those modeling errors would not be
possible in a visual ontology editor which does not allow the user to refer to non-existing enti-
ties, and can check simple ontological constraints, such as property domain and range. In the
“spreadsheet approach”, sanity checking is deferred until “upload time” when the intermediate
model is transformed into the final ontology formalism.

Transformation of the intermediate models

At the very end, the two parts of the intermediate model — the one defining the concepts
and properties, and the other defining the instances and their relations or attributes — are
transformed into the implementation ontology formalism, which can be used for reasoning.
This step must happen fully automatically, of course. Technically it is not a problem because

14The definition of sanity checking according to the The New Hacker’s Dictionary: “The act of checking a piece
of code (or anything else, e.g., a Usenet posting) for completely stupid mistakes”.

15Although some checks are possible by using macros implemented in the scripting language of the spreadsheet
program, such as Visual Basic.
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there are APIs to access both the ontology formalisms supported by visual editors and the
various spreadsheet formats. E.g., during VICODI, and also later during my thesis work I used
the KAON API to access the KAON OIModel, and the “Java Excel API”16 to access the Excel
spreadsheets.

The transformation was not a problem conceptually, either, because the two parts of the inter-
mediate model defined all the information that was needed by the target formalism17.

During VICODI, the KAON OIModel also served as the implementation formalism. During
my thesis work, I used the implementation formalism that was discussed in Chapter 7.

10.3 The VICODI methodology for building IR
ontologies

Based on our previously described experiences during the VICODI project we were able to
construct an ontology building methodology that was customized for the development of IR
ontologies. This methodology, termed the VICODI methodology, was successfully used dur-
ing the VICODI project to build the ontology of European history. The same methodology
was then used in this thesis work to build the ontology for evaluating my ontology-based IR
system.

The methodology follows the bottom-up strategy for conceptualization, with an initial brain-
storming activity, which is characteristic for the beginning of the middle-out strategy. It is
inspired and based on METHONTOLOGY, therefore I will discuss here only the differences
between the two methodologies grouped by the specific ontology development activities.

10.3.1 Specification

The specification in the VICODI methodology is informal, and document collection oriented.
It consists mainly of identifying documents in an existing document collection, which will
serve as the basis of the new ontology18. The specification also includes an initial set of the
metadata generation rules, which should be supported by the ontology.

Knowing the knowledge sources and the rules guides the process of ontology creation very
effectively but also ties the ontology closely to the document collection. The goal of the ontol-
ogy is to support the metadata generation process on the one hand, and effective information
retrieval on the other hand. These tasks are clearly dependent on the document collection.
Moreover, it is not the goal of the ontology to provide a complex, deep and full axiomatiza-
tion of any application domain that would be independent of any actual document collection.
Therefore, the strong relation between the ontology and the document collection is not a draw-
back in this application scenario.

16http://www.jexcelapi.org
17The spreadsheet part even defined elements that were not transformed into the implementation formalism, such

as information on the imperfection of time specifications.
18or of a new extension to an existing ontology
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10.3.2 Conceptualization and knowledge acquisition

The conceptualization process is instance- and rule-oriented. Instance-oriented means that the
process starts first by collecting promising instances from the documents, and the concept and
property structure is refined only later, when most of the new instances are already known.
Rule-oriented means that the already identified heuristic rules guide the process of creating
new concepts, relations and attributes for the ontology. In line with the goals of the ontology
development stated in Section 10.2.1, only such changes are made in the concept and property
structure of the ontology that have the potential to increase metadata generation and/or infor-
mation retrieval effectiveness. This all defines a bottom-up strategy for conceptualization.

It is usually helpful to conduct a short brain-storming at the beginning of the conceptualization
activity, to identify the most important concepts of the domain. A list of the most important
concepts can ease the task of finding new instances in the documents. Therefore, such a brain-
storming phase is also encouraged by the VICODI methodology. Although the brain-storming
activity is normally characteristic for a middle-out strategy, it does not mean that the VICODI
methodology follows this strategy. On the contrary, after the initial brain-storming activity, the
VICODI methodology follows the bottom-up strategy to strictly scope the conceptualization
and knowledge acquisition processes.

Another distinguishing feature of the conceptualization activity in this methodology is the
heavy use of intermediate models. As was explained, we had very good experiences with in-
termediate models during the VICODI project. We could clearly see that it helped domain
experts to participate in the ontology building process because it was possible to fine-tune the
modeling constructs to the application domain. It was also easier to add additional documen-
tation about design decisions, or about information which could not been represented in the
target ontology formalism. E.g., in the VICODI model only classical time intervals were used,
and the temporal imperfection issues were added only as informal comments. Finally, inter-
mediate models can be edited much more comfortably using well-known tools than ontologies
with existing visual ontology editors.

10.3.3 Formalization and Implementation

The formalization and implementation steps are merged, and the intermediate models are trans-
formed directly to the ontology formalism described in Chapter 7.

10.3.4 Evaluation and ontology adjustment

The evaluation metric of the ontology is the quality of the generated semantic metadata and
the quality of information retrieval results. Therefore, the methodology proposes a technology-
focused evaluation of the ontology, where information retrieval and metadata generation results
are analyzed, and potential deficiencies are identified.

In addition, the evaluation can also be made user-centric, by concentrating on queries that most
user execute, and on documents that most users examine. As the result of the evaluation, a list
of documents may be identified that are not covered properly by the ontology. Although it is
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not strictly part of the ontology evaluation, during this phase also a list of new ontology-based
rules can be identified, that can be applied to improve semantic metadata quality. At the same
time, rules that cannot be exploited during metadata generation (i.e., never executed), can be
removed.

If deficiencies (missing ontology elements) were identified during evaluation, the ontology
has to be adjusted. This means that the conceptualization activity should be started again.
In other words, the VICODI methodology defines a cyclic process, similarly to many other
methodologies, including METHONTOLOGY and OTK.

10.4 Summary

In this chapter, I first reviewed the state of the art of ontology development. Later, I reported
on our experiences during the VICODI project where a large ontology of European history was
developed for an ontology-based information portal. These experiences showed that (1) on-
tologies for IR are different from other types of ontologies, (2) existing methodologies are not
suitable for developing this kind of ontologies without change and (3) there was no adequate
tool support for the development of such ontologies.

Based on these experiences, a new methodology for the development of IR ontologies emerged
during the project. This methodology is termed the VICODI methodology, and it was de-
scribed in the remaining part of the chapter. The VICODI methodology defines an instance
and rule oriented methodology which follows the bottom-up strategy for conceptualization.
An important characteristic of the methodology is the use of intermediate models during the
conceptualization step that allows for a greater involvement of domain experts in the ontology
development process than is possible in the usual case.
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User interface and implementation

The ideas and algorithms previously presented in Chapters 6 to 10 were implemented in the
IRCON prototype. The IRCON prototype is a classical three-tier web application from a tech-
nological point of view. Its user interface allows non-expert users to interact with the system
and explore the capabilities of an ontology-supported information system.

This chapter first describes the IRCON user interface which extensively exploits the ontology
and the generated semantic metadata to make the search process more user friendly. Later,
some aspects of the implementation are addressed that realized the flexible architecture of
IRCON. Next, the system is described from the point of view of the system administrator.
Finally, a discussion of some performance issues with ontology reasoning that were discovered
and solved during the course of implementation concludes this chapter.

11.1 User interface and user workflow

In this section, the user interface of the IRCON prototype is reviewed and the workflow of the
end-user is described.

11.1.1 Requirements for the IRCON user interface

The goal of the IRCON user interface is to provide a possibility for end users to experiment
with ontology-based IR. I expect that the typical end-user is not an IR-expert but has some
experience with traditional Internet search engines, such as Google. This defines the following
requirements towards the user interface:

• It should be possible to specify a query in natural language by simply typing it in a text
field because users are accustomed to that possibility and they expect it. See also the
requirement NATURAL LANGUAGE QUERY.

• The user interface should visualize semantic metadata in some form. This feature allows
users to further navigate in the repository without manually submitting new queries.
This is especially important for users who are not IR experts. Moreover, by explicitly
displaying semantic metadata we stress the fact that the system can do something more
than a traditional full-text IR system. I.e., we encourage users to explore the semantic
possibilities provided by the system.

159



Chapter 11 User interface and implementation

• Browsing of the ontology should be supported. This is a trivial feature in any ontology-
based information system. Developing ontologies costs time and money, and the result-
ing artifact is interesting per se. By browsing the ontology, users can explore non-trivial
relations among information entities. Moreover, they can also get some impression about
which topics are addressed by the document collection.

• Ontologies also provide the possibility for semantic disambiguation. Users can exactly
specify which “John Smith” or “George Bush” they exactly mean. In doing so, they
open the possibility for the system to provide better search results that better fit their
information need. This semantic disambiguation should be easy and intuitive for the end
user.

11.1.2 Related work

In this subsection, I briefly review the works that inspired the user interface of the IRCON
prototype. This list of solutions represents by no means a comprehensive list of efforts in the
area of ontology-based user interfaces, as this area was not the main focus of this thesis.

Most ontology-based information systems, including the ones that were reviewed in Chapter 4,
allow users to browse the ontology. This can be very helpful to formulate new queries to the
system, or just simply to explore what kind of topics are covered in the document repository.
The IRCON prototype also provides this feature.

Apart from that trivial way of exploiting an ontology, there are also other possibilities to make
use of the knowledge stored in ontologies in the user interface. These possibilities make use of
the fact that information retrieval is rather a process than an independent list of query–answer
interactions with the system, as was explained in Section 2.1. Clearly, the queries in this
process are semantically related and usually a query is a simple semantic transformation of the
previous one. Some examples of these transformations are: including synonyms of existing
search terms into the query, excluding synonyms, adding new, semantically related search
terms etc. [Bat90]. This semantic transformation requires complex cognitive processing and
lots of experience from the end user. Therefore, especially beginners often have problems to
formulate good queries based on the results of previous ones. This query-reformulation process
can be effectively supported using the background knowledge stored in ontologies or using the
semantic metadata that is associated to documents.

The system of Stojanovic [Sto05] automatically proposes new queries based on the previous
query, using a simple linguistic ontology. Users just have to click on one of the proposals
to start a new query. I.e., the system completely eliminates the need to reformulate the query
because users only have to decide which reformulation is the closest to their information needs,
which is an easier task. The solution was successfully evaluated in a small-scale evaluation
where PhD students found the suggestions of the system relevant to their information need.

This approach clearly shows that advantages of automatic query suggestions to guide the un-
experienced user in the query reformulation process, and motivated the need for such a feature
in the IRCON prototype. However, the presented solution of directly generating suggestions
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based on user queries was overly complex for my purposes, and therefore was not directly ex-
ploited. Instead, IRCON uses a simpler method, based on the metadata of the currently viewed
document, to provide navigation hints for the users.

The Semantic Search system, proposed by Guha and his colleagues [GMM03] uses seman-
tic metadata of documents and ontological knowledge to provide background information of
the query on the one hand, and to improve the results of full-text search on the other hand.
To achieve these goals, the denotation of the query has to be clarified first. E.g., if the user
searches for “John Smith”, the proper John Smith has to be selected first from the ontology.
They propose a manual approach for that, where the possible denotations of query terms are
proposed to the user who can simply select the right meaning of the query term. To start,
the system always picks one of the denotations automatically, so in many cases no selection
is needed by the user. In some cases, such as in the example of John Smith above, there are
simply too many possible denotations of a term. In such cases, the system provides a “this
denotation” link for the search results. I.e., in a query about “John Smith”, there will be a link
“this John Smith” to each query result. That way, the user still gets the opportunity to select
the right denotation, even if there are many hundreds or thousands of possibilities.

After the right denotation of a term has been selected, the information is used in the Semantic
Search system in two ways. First, the relevant portions of the ontology are shown to the user
together with the query results. E.g., the user sees the profession, the birth date, working
place, living place etc. of his or her selected John Smith. This allows the user to navigate to
semantically related entities (i.e., to semantically transform the query ) simply by clicking on
an entity displayed. E.g., the user could click on the workplace of John Smith to execute a new
query about that entity.

Further, knowing the right denotation of a search term can be used to improve the results of
full-text search by exploiting background information in the ontology. E.g., the query can be
extended by the email address of the person, or if the person is a musician, music related doc-
uments that contain the search term can get a higher ranking score. Unfortunately, the authors
of the paper present only some vague ideas about this approach, and no concrete details.

The Semantic Search system introduces many interesting ideas that inspired the IRCON GUI.
First, the feature to semantically disambiguate query terms just by a simple click was also
implemented in IRCON, albeit in a different (simpler) manner. Second, the idea of show-
ing semantically relevant information to the user to facilitate navigation (i.e., automatic query
transformation) was also implemented in IRCON. In contrast to Semantic Search, however,
IRCON uses the metadata of the document to display related entities of the ontology for a
specific information need.

The VICODI system [NDO05] that was already briefly introduced in Section 3.1 visualizes the
semantic metadata of the documents. In VICODI, all document terms that were linked with
a metadata element are highlighted. Metadata elements that do not have linked terms in the
document text (i.e., indirectly relevant concepts) are listed below the document text. Finally,
metadata elements that represent locations are visualized on a historical map that is selected
based on the temporal part of the metadata. E.g., in a document about the Battle of Trafalgar,
United Kingdom, France and Spain are highlighted on a historical map of the first decade of
the 19. century1 (see Figure 3.1).

1VICODI contained a map for each decade. The Battle of Trafalgar happened in 1805.
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Similarly to the other discussed systems, clicking on the highlighted elements initiates a new
semantic query. In addition, VICODI implemented the idea to initiate the semantic query “in
context” by considering all of the metadata elements of the actual document, and not only the
element that was actually clicked on. Of course, the element that was clicked on gets the most
weight in the query. E.g., if the user clicks on France in the Battle of Trafalgar document,
she or he gets documents about France in the context of Battle of Trafalgar, and not simply
documents generally about France.

The VICODI system strongly inspired the IRCON GUI. IRCON basically implements the
same ideas as VICODI on the user interface, with some differences:

• IRCON strictly separates the metadata elements from the document content. I.e., meta-
data elements are not highlighted in the document text, even if the textual representation
of a metadata element appears in the text. This has the advantage that indirectly and
directly relevant entities can be treated in a uniform manner, which allows a consequent
visualization of all metadata elements.

• IRCON provides some advanced metadata visualization features, such as the explicit
visualization of the importance of the metadata element and that metadata elements are
ordered based on their relevance.

• IRCON provides the possibility to directly browse the definition of a metadata element
in the ontology, and also to initiate a contextual search based on that element just by one
click. In contrast, VICODI allowed only the initiation of new queries, which made the
access to the ontology complicated.

• IRCON allows users to select more than one element as relevant or irrelevant for the next
contextual query. This provides more flexibility than VICODI.

• Finally, IRCON does not implement the visualization of maps that was a major feature of
VICODI. Although this is a very nice and user-friendly feature, it is very challenging to
implement it, and it was not considered crucial for the IRCON prototype. It is, however,
a possible future extension of the IRCON system.

11.1.3 The end-user workflow

The end-user interacts with the IRCON system following the workflow that is shown in Fig-
ure 11.1. The user has two options to start a new query. First, she or he can specify a textual
query on the home page of the application, similar to Google (see Figure 11.2). Experienced
users can also directly build a semantic query by specifying the elements of the conceptual,
textual and temporal parts one-by-one (see Figure 11.3). They can browse the ontology to pick
elements of the conceptual part, and use the tool for constructing fuzzy temporal intervals (see
Section 6.6.3) for the temporal part.

Our experience in VICODI showed that domain experts and end-users cannot reliably deter-
mine the exact weight of a metadata or query element. I.e., they cannot really say whether the
exact weight of an element is 0.56 or 0.62. Therefore, instead of requiring users to specify
the exact weight of a query element, they can chose the weight from a weight scale from zero
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Figure 11.1: The workflow of the end-user search and navigation process

to five2. These weights are then mapped to the weights 0.0, 0.2 etc., respectively. A similar
mapping is executed for display purposes in the opposite direction. E.g., all values between 0.8
and 1.0 are mapped to the display weight five. This is needed because many of the weights are
generated by the automatic semantic metadata generation algorithm which naturally produces
weights such as 0.56 or 0.62.

Semantic queries can be executed directly by the system. Textual queries are first automatically
parsed into a semantic query which is then processed identically to a manually defined semantic
query.

The results of a semantic query are shown together with the query itself (see Figure 11.4).
This is especially important when the user specified the query as natural language text because
the results of query parsing can be controlled, and semantic disambiguation can be done when
necessary. In addition, this solution also allows some simple forms of query reformulation.

The query is displayed on the left side of the GUI. Elements of the query are ordered by their
weights. Elements of the conceptual part are linked with the ontology, i.e., when the user
clicks on a WOI, she or he can browse the ontology beginning with the OI. Clicking on the
intervals results in a string that can be directly imported and thus displayed in the fuzzy interval
construction tool. Elements of the textual part are displayed as simple text.

Each metadata element contains a search icon (see Figure 11.5 that shows the visualization of
the #GEORGE_W._BUSH metadata element). By clicking on this icon, the user can initiate a
new semantic search, where the entity that was clicked on is emphasized (has the weight 1.0),

2from one to five for a query
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Figure 11.2: The start page of the IRCON prototype

all of the other metadata elements are weakened, and the elements that are below a threshold
are removed from the query. This practically implements the “contextual search” idea of the
VICODI system. In addition, the user can also select and deselect items of the query, and
can initiate a new search. Elements that were selected get the maximal weight, elements that
were deselected are removed from the query. All other elements are weakened as described
above.

This mechanism practically allows the user to disambiguate the query simply by clicking on
the right alternative(s) and optionally deselecting the wrong alternative(s). E.g., when the user
specified “Bush” as the textual query, the system will create a semantic query containing both
the OIs #GEORGE_H._W._BUSH and #GEORGE_W._BUSH. The user can easily emphasize
the right Bush simply by clicking on it. This method can be viewed as an alternative implemen-
tation of the first idea for semantic disambiguation that was described for the Semantic Search
system. In addition, the user can also emphasize elements for other purposes, e.g., when she
or he gets especially interested in some parts of the query based on the result list.

Expert users additionally have the option to manually refine the semantic query on the semantic
query editing page, which is the same page that is used for defining new semantic queries. In
this page, they can freely add and remove elements to any parts of the query, and they can
freely change the weights of existing elements.

Instead of initiating a new query using one of the described options, the user can also select a
document from the result list. In this case, the document is displayed together with its semantic
metadata (see Figure 11.6). The semantic metadata of the document is visualized using the
same method that was described before for the semantic query. This is not surprising because
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Figure 11.3: Specifying the semantic query in IRCON

the semantic metadata and the query use the same information model. Consequently, the user
has the same options to start a new query as she or he had on the result list page:

1. She or he can directly start a new query by emphasizing one element.

2. She or he can select and deselect some elements ans start a new query.

3. She or he can manually edit the semantic query starting from the actual document meta-
data.

To summarize the discussion about the search process, we can say that non-expert users have
the option to control the IR process simply by clicking on various elements of the user inter-
face, i.e., there is no need to actively reformulate any queries. From the user point of view, the
IR process feels like browsing, the fact that in the background new semantic queries are con-
structed and executed is transparent to him or her. The only query that a non-expert user has to
pose is a simple textual one that is common in current Internet search engines, and therefore
familiar to the users. Expert users, however, have the freedom to fine-tune queries to get more
precise results.

Besides supporting the IR process, the IRCON prototype also has the functionality to edit
descriptive and semantic metadata. To use this functionality, users have to log in to the system.
Descriptive metadata includes the title and abstract of a document.

Semantic metadata use the same information model as semantic queries and therefore the query
editing page can also be used to edit metadata. There are two differences, however. First, users
have the option to validate metadata elements. Because metadata elements are generated fully
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Figure 11.4: Results list in IRCON

Figure 11.5: Visualization of one metadata element

automatically, it is a very valuable information whether human experts agree with the decisions
of the algorithm. This information can be used to train and fine-tune heuristic rules. Second,
in contrast to queries, also elements with the weight zero are retained. This is because it is a
very valuable information that some elements that were considered relevant by the algorithm
were later deleted by a domain expert. Users have the option, however, to hide elements with
weight zero.

It is important to stress that in the current implementation this data is used only to guarantee
that no manually validated metadata element gets overwritten by the results of the automatic
metadata generation process. Because validated data is never deleted, it can positively af-
fect the result of the metadata generation already in the current system because the heuristic
rules work with high-quality, validated elements, and consequently they can make better deci-
sions.
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Figure 11.6: Document view in IRCON

The information could be also used, however, to record the discrepancies between the results
of the metadata generation process and the decisions of domain experts. This could provide
a good basis to automatically fine-tune heuristic rules with using machine learning solutions.
This possibility, however, has not been implemented in the current system.

In addition to the option to manually edit and validate metadata, users that are logged in have
the possibility to edit the content of the documents, and to initiate the automatic (re-)generation
of semantic metadata.

11.2 Flexible architecture

11.2.1 Architecture overview

The IRCON application is a classical three-tier web application, implemented in Java. The
high-level infrastructure of the application together with the technologies and frameworks were
already discussed in Chapter 5 and displayed in Figure 5.2. Figure 11.7 shows the high-level
architecture again for convenience.
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Figure 11.7: Architecture of IRCON (identical with Figure 5.2)

11.2.2 Requirements

The basic requirement for the implementation of this architecture was flexibility. To execute
the evaluation of the system (which is described in the next chapter), different algorithms had to
be tested and compared with each other. I.e., it should be easy to replace the implementations
of the individual modules.

In addition, the IRCON application is very complex, integrating many different technologies.
The functionality of a given module is dependent on many other modules that use different,
complex technologies. E.g., the metadata creator module uses both the ontology reasoner, the
ontology searcher (i.e., indirectly the full-text search engine), and also accesses the document
repository (i.e., the relational database). All these dependencies make it difficult to develop and
test such a module. A common solution for this problem is the use of so called mock objects or
stubs [HT04] during testing that simulate the functionality of other modules a specific module
depends on. To use this technique, it is again required that the implementation of the modules
can be easily replaced by the dummy implementations during testing.

11.2.3 Inversion of control and the Spring framework

To implement the required flexibility, the “inversion of control” principle [Fow04] was used
throughout the implementation. The basic idea of this principle is that dependencies of an
object are injected into the object, and are not set or created by the object itself. That way, code
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dependencies just appear automatically in the object, and can be used without knowing how
the dependencies were set. If the principle of inversion of control is combined with the rule that
dependencies should be referenced only by their interfaces and never by their implementation
classes, the basis for the required flexible architecture is set.

To implement the inversion of control principle, I used the Spring framework3. This framework
implements an inversion of control container that can inject dependencies into objects based
on external configuration, usually specified in XML configuration files. Spring also provides
several other useful features that made the implementation of IRCON much easier. These
features include the possibility to automatically start and commit database transactions on the
invocation of specific methods of specific interfaces (a kind of aspect orientation) and several
utility classes that support the JDBC-based interaction with databases.

11.2.4 Implementing the semantic search process

I demonstrate the presented ideas of inversion of control and Java interfaces on the example
of the semantic search process implementation. Flexibility is achieved in other parts of the
architecture similarly.

The semantic search process is an important part of the Resource Searcher module. It
takes as input a semantic query (represented by the MetaData class), and returns a list of
ResourceSearchResult objects that contain the necessary information for the GUI to
represent the result (such as the URI and title of the resource, and its ranking score). As was
described in Chapter 9, the search process needs to generate full-text queries against the con-
tent index and the metadata index, execute the queries, and combine the results using one of
the combination algorithms that were described in Section 9.2.6. For evaluation purposes, var-
ious combination algorithms had to be experimented with. Moreover, during the course of the
development, many possibilities had to be tested to find the optimal algorithm for the transfor-
mation of the semantic query to the content and metadata full-text queries. Finally, the parts of
the search process are quite complex. Therefore, they were implemented and tested separately,
using the testing principle of mock objects.

The UML class diagram of the search process implementation is shown in Figure 11.8. As
can be seen, the search process itself is represented by the SearchProcess interface,
so it can easily be plugged in to the Resource Searcher module. The interface is imple-
mented by the SimpleSearchProcess class that references a list of activity layers. An
activity layer consists of a list of activities, represented by the Activity interface. The
SimpleSearchProcess simply executes each activity in each activity layer by invoking
the enact() method of these activities.

The Activity interface has several subinterfaces. MetaDataProviders pro-
duce a MetaData object. These are needed by QueryExecutors that are also
ResourceResultCreators, i.e., they create a list of ResourceSearchResult
objects. RankMergers are also ResourceResultCreators and need other
ResourceResultCreators as input. Finally, MetaDataConsumers can receive a
MetaData object. This hierarchy of interfaces provides the flexibility to model many

3http://www.springframework.org
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kinds of search processes. E.g., implementations of MetaDataProvider may implement
query rewriting algorithms that change the semantic query representation, implementations of
RankMerger usually implement score combination algorithms, etc. In the current imple-
mentation some theoretical possibilities of this structure are not used, e.g., as was described in
Chapter 5, query expansion of the semantic query is not executed.

The SimpleSearchProcess makes the assumption that the first activity layer consists
of one MetaDataConsumer, and injects its input MetaData to this activity. Further, it
assumes that the last activity layer consists of one ResourceResultCreator activity, and
returns the output of this activity as its result. By plugging in different implementations of
the Activity interface (and its subinterfaces) into this search process implementation, it is
possible to implement a very wide range of search processes.

The implementations of the interfaces refer to their dependencies only by their interfaces, and
these dependencies are injected by the Spring framework. E.g., the BayesianRankMerger
class that implements the Bayesian algorithm for combining search results refers only to a list
of ResourceResultCreator interfaces. Which are the actual implementations of this
interface, and how many of them are actually passed to this implementation, are unknown.
The actual implementations of the interfaces are defined as Spring beans (components), and
injected to other Spring beans as defined in the Spring XML configuration file. E.g., the
definition of a search process running a metadata search and a content search, and combining
the search results via the Bayesian algorithm is shown in Listing 11.1.

By combining the beans in a different way, a search process can be easily configured that
executes only the metadata search. This configuration is shown in Listing 11.2.

Listing 11.1: Spring definition of the Bayesian combined search process
<bean i d =" s i m p l e B a y e s i a n S e a r c h P r o c e s s "

c l a s s =" de . f z i . i p e . i r c o n . s e a r c h . p r o c e s s . S i m p l e S e a r c h P r o c e s s ">
< property name=" a c t i v i t i e s ">

< l i s t >
< l i s t >

< r e f bean=" t r i v i a l M e t a D a t a P r o v i d e r " / >
< / l i s t >
< l i s t >

< r e f bean=" metaDa taQueryExecu to r " / >
< r e f bean=" c o n t e n t Q u e r y E x e c u t o r " / >

< / l i s t >
< l i s t >

< r e f bean=" bayes ianRankMerger " / >
< / l i s t >

< / l i s t >
< / property >

< / bean>

In addition to the flexibility in designing new processes, this solution also allows
the separate testing of search process activities. E.g., the BayesianRankMerger
class can be implemented and tested without providing any implementations of the
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Listing 11.2: Spring definition of the metadata only search process
<bean i d =" m e t a D a t a S e a r c h P r o c e s s "

c l a s s =" de . f z i . i p e . i r c o n . s e a r c h . p r o c e s s . S i m p l e S e a r c h P r o c e s s ">
< property name=" a c t i v i t i e s ">

< l i s t >
< l i s t >

< r e f bean=" t r i v i a l M e t a D a t a P r o v i d e r " / >
< / l i s t >
< l i s t >

< r e f bean=" metaDa taQueryExecu to r " / >
< / l i s t >

< / l i s t >
< / property >

< / bean>

ResourceResultCreator interface. For testing purposes any mock object framework
may be used. During the IRCON implementation we used the jMock4 framework.

Using mock objects, it is possible to simulate the results of a method invocation of an interface
without actually providing a real implementation of that interface. E.g., in the case of the
BayesianRankMerger class the results returned by the getResults() methods of the
input ResourceResultCreator interfaces can be exactly specified. In doing so, it can be
tested that the BayesianRankMerger class merges the results exactly as expected without
actually implementing or executing the querying part of the search process.

11.2.5 Flexible rule definitions

Besides the flexibility to define different implementations of a specific interface, flexibility is
also needed in another place. The heuristic rules are dependent on the application scenario and
on the ontology, and it should be possible to define them very easily without modifying the
IRCON implementation. The IRCON application allows the definition of heuristic rules in an
XML file, i.e., no programming is needed to specify new rules. The XML Schema describing
the XML configuration file of the heuristic rules is listed in Appendix C.1. As an example,
the XML definition of the of the subevent rule that was discussed in Chapter 8 and shown in
Figure 8.7 is displayed in Listing 11.3.

The full listing of the XML configuration file that was used during evaluation is shown in
Appendix C.2.

4http://www.jmock.org/
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Listing 11.3: XML definition of the subevent rule
< r u l e enable =" yes " a m p l i f i c a t i o n _ f a c t o r =" 0 . 7 " name=" 1 Subeven t ">

< c o n d i t i o n w e i g h t _ t h r e s h o l d =" 0 . 2 ">
< source_concept > u r n : i r c o n : o n t o l o g y # Event < / source_concept >
< c a r d i n a l i t y >1< / c a r d i n a l i t y >
< r e l a t i o n > u r n : i r c o n : o n t o l o g y # i sSubEven tOf < / r e l a t i o n >

< / c o n d i t i o n >
< t e m p o r a l _ a t t r i b u t e >
u r n : i r c o n : o n t o l o g y # happensDur ing
< / t e m p o r a l _ a t t r i b u t e >
< t a r g e t _ c o n c e p t > u r n : i r c o n : o n t o l o g y # Event < / t a r g e t _ c o n c e p t >

< / r u l e >

11.3 Administration workflow

Before the system is ready to provide support for the end-users, the necessary artifacts that are
needed by the system have to be generated. This is the task of the system administrator. The
tasks of the system administrator and the generated artifacts are shown in Figure 11.9. The
administration workflow has two major parts: the tasks to generate and index the ontology,
and the tasks to generate and index document metadata that use this ontology.
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Figure 11.9: The administration workflow
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To generate the ontology, the administrator first has to create the implementation model of the
ontology out of the intermediate model representation. As was described in Chapter 10, the
intermediate model in our case consists of two files: a KAON1 model describing concepts
and properties, and an Excel file containing the instances together with their relations and
attributes. The implementation formalism is described in Chapter 7, and is implemented using
the KAON2 system. As was described before, for performance reasons the lexical layer of the
ontology is not stored in the implementation formalism but it is stored in a classical relational
database. In the next step, this lexical layer is indexed with a traditional full-text search engine
to allow efficient search in the ontology lexical layer.

On the metadata generation side of the workflow, the first task is to upload the documents into
the database. The IRCON system is capable to upload any document in HTML format that
were downloaded using any crawler tool, such as wget5. During upload, the textual content
has to be extracted from the HTML representation for indexing purposes. Moreover, also a
simplified HTML representation has to be created that is used by the IRCON user interface to
display the document content. This simplified representation is needed because different web-
sites use different layouts and design elements, and they also often contain advertisements and
menu elements that are not relevant for IR purposes. Moreover, often documents downloaded
directly from the Internet do not even contain valid HTML content.

These facts make the extraction of the textual content a challenging task, too. The IRCON pro-
totype automatically corrects erroneous HTML content by using NekoHTML6 that provides a
valid XHTML (and thus XML) document as its output. The prototype also allows administra-
tors to specify XPath statements for specific Internet domains to extract useful content from
the HTML documents. Only parts of the XML tree that match the specified XPath statement(s)
are extracted and simplified. For the extraction of textual content and for the simplification of
HTML, NekoHTML is used again. This tool can remove arbitrary HTML elements from the
XHTML tree. For a simplified HTML presentation some HTML elements are left intact; for
the text extraction, simply all HTML elements are removed.

Another solution was needed for the purposes of the evaluation where the whole Wikipedia
had to be uploaded. Wikipedia does not allow crawling of its whole site because of obvious
performance reasons. Instead, an XML dump of all Wikipedia articles is provided for down-
load. The IRCON prototype supports the uploading of these Wikipedia dumps to its resource
repository.

After the documents are uploaded to the repository, NLP annotations have to be generated.
As was already described in the previous chapters, the GATE framework is used for this pur-
pose.

In the next step, semantic metadata is generated. The NLP annotations, the ontology, the
ontology full-text index and the heuristic rules are all needed to accomplish this task. The role
of these artifacts is described in Chapter 8 in detail, with the exception of the ontology index.
The ontology full-text index is used for the lookup of OI candidates for a specific text snippet,
i.e., during the generation of the initial metadata.

5http://www.gnu.org/software/wget/
6http://people.apache.org/~andyc/neko/doc/html/
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Finally, the documents are indexed. During this step, two full-text indexes are generated: one
index over the textual content of the documents, and another index based on the semantic
metadata of the documents. This process was already described in Chapter 9 in detail.

After the initial installation, there are two common situations when administrative tasks have
to be executed. First, the ontology can change. In this case, practically all of the administrative
steps have to be executed on all documents, with the exception of document upload and NLP
annotation steps7. Second, new documents can be added to the system8. In this case, the
document upload, NLP annotation, metadata generation and document indexing steps have to
be executed on the new documents.

11.4 Performance issues

Although most of the performance issues are solved by using the scalable full-text search
engine Lucene for semantic search, there are also other parts of the IRCON application where
performance matters. Although metadata generation does not have to be an interactive process,
it is clear that when thousands of documents have to be indexed (which is usually the case),
every second matters. Although the upper time limit for indexing a given number of documents
is highly dependent on the actual application case, an approach that requires days just to index
several documents is very likely not feasible for any application scenarios. Another area where
performance matters a lot is the GUI: users should be able to interactively browse the ontology
and view documents (together with their metadata), in addition to searching.

As was already discussed in Chapter 3, ontology reasoning is highly complex. Therefore there
are usually performance issues. During the development of the VICODI and IRCON appli-
cations, we had performance issues when we tried to implement a specific functionality using
ontology reasoning, or using the features provided by the KAON1 and KAON2 frameworks,
in the following cases:

Full-text search in the lexical layer: Although the KAON1 framework provides the
functionality to execute full-text search on ontology labels, this feature had scalability
problems on bigger ontologies, such as the VICODI ontology. The KAON2 system does
not provide such search features any more, partly motivated by our negative feedback
based on the VICODI experiences.

Determine the number of instances for a concept: On the GUI during ontology
browsing, we had the problem that some concepts had so many instances that it was
not useful to display all of them on the GUI. Therefore, we defined an upper threshold
on the number of instances for a concept. If the number of instances exceeded the thresh-
old, only a search field was shown for a specific concept, where the user could execute
a full-text search on the instance labels of the specific concept. To implement this func-
tionality, it was necessary to determine the number of (direct and indirect) instances of a

7Although in some cases it is useful to update the GATE gazetteers for named entity recognition based on
the ontology lexical layer, and rerun the NLP step to get better results for named entity recognition and
coreference resolution.

8Of course, documents can be also deleted from the system but this does not cause any problems.
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concept. It turned out, however, that this operation cannot be executed interactively for
bigger ontologies.

Navigation in the ontology structure: During metadata generation, most of the heuristic
rule operations require traversing the ontology graph. Although one traversing step did
not take really long using the KAON2 system, many such steps had to be executed, and
the sum of the required time was too high for practical scenarios (e.g., for executing the
evaluation of the system).

The generic idea to solve the first two issues can be summarized in the following principle:
“use the ontology directly only when really necessary, generate artifacts out of the ontology
whenever possible”. By following this principle, it is always possible to use the most efficient
technology available for a specific task. E.g., in our case the lexical layer of the ontology was
first extracted into a relational database, and was later indexed by Lucene. Into the Lucene
index also the URIs of the parent concepts of the instance were stored. This allowed to use
full-text search also to implement the full-text search feature for instances of a specific con-
cept, which was needed for ontology browsing. This index is also used during ontology lookup
in initial metadata generation part of the semantic metadata generation step. Finally, the num-
ber of instances for a specific concept were pre-calculated, and the results were stored in the
relational database. The relation between the ontology and the generated artifacts is shown in
Figure 11.10

Ontology

Pre-calculated 
results in DB

Lexical layer
in DB

Full-text index

Legend

Artifact Artifactgenerated from

Figure 11.10: Artifacts generated from the ontology

The idea presented here is similar to the idea of the model driven architecture (MDA)9, which
recently gained some popularity in the area of software development. In MDA terms, the

9http://www.omg.org/mda/
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ontology is the model and the “code” that is generated are the artifacts (database tables, full-
text indexes). The major difference between MDA and our solution is the motivation to apply
the technology: while in the case of MDA the goal is to speed-up the implementation process
of an application, in our case the goal was to increase the performance of the application.

To solve the performance issue with ontology navigation, caching was used. During metadata
expansion, often the same ontology reasoning steps had to be made. Clearly, in such a situation
caching can be very effective. The importance of caching was already recognized by the de-
velopers of KAON2, and KAON2 provides a built-in caching functionality in its latest version.
However, in the version of KAON2 which was available when the IRCON application was de-
veloped, this caching function was not yet implemented. Therefore, in the IRCON application
an application-level cache was used. By applying caching, the metadata expansion step could
be sped up by a factor of 10. As a result, the execution time of the metadata generation step
(including metadata expansion) is now comparable (and in many cases even better) than the
time needed by the NLP step.

11.5 Summary

In this chapter, the implementation details of the IRCON prototype application were discussed.
The IRCON prototype is a comprehensive web application that allows even non-expert users to
experiment with ontology-based IR. It was a non-trivial task to achieve this simplicity despite
of the advanced and complex technologies that underly the system. Both the experiences with
the VICODI prototype and the lessons learned from related work were exploited to reach this
goal.

First, the system was described from the point of view of the end user. Next, I showed how
the required flexibility was achieved in the IRCON architecture by applying the principle of
“inversion of control”, and using the features of the Spring framework. Later, I described the
application from the perspective of the system administrator. Finally, a discussion of some
performance issues related to ontology reasoning and their solutions closed this chapter.
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Chapter 12

Evaluation

12.1 Introduction

As was discussed in Chapter 3, it cannot be stated for sure that using background knowledge
in the IR process automatically increases the retrieval performance of an information system,
as one would expect intuitively. On the contrary, sometimes it is even possible that retrieval
performance decreases if we use hand-crafted background knowledge instead of simple sta-
tistical methods, as experience with thesauri-supported information systems shows. Because
ontologies store hand-crafted background knowledge as well, the same problem can occur also
in ontology-based information systems. Therefore, a thorough evaluation of retrieval perfor-
mance is of paramount importance.

This chapter introduces and discusses the results of a large-scale evaluation using Wikipedia as
test collection. The evaluation was conducted with the IRCON system that was implemented
based on the ideas introduced in this thesis.

12.2 Hypotheses to evaluate

The main question of this thesis is whether possibly imperfect ontologies can help improve IR
effectiveness. Therefore, the main hypothesis to evaluate is the following:

Hypothesis (Main). Possibly imperfect ontologies improve the retrieval performance of an
information system.

Checking this hypothesis effectively means comparing the results of the new system with the
results of a legacy full-text search engine.

Besides checking this main hypothesis, however, there are some other hypotheses that were
identified during the course of this thesis. Those should be evaluated, as well. These hypothesis
are the following:

Hypothesis (H1). Metadata search alone provides good results in areas that are covered by
an ontology, even if the ontology is imperfect.
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As was discussed in Chapter 3, it is impossible in practice to construct an ontology that contains
all entities appearing in a generic document collection, together with all of the interesting
relations between those entities. Therefore, even in areas that are in principle covered by
the ontology, the ontology will be imperfect in the sense that it will not contain all possible
information. Still, it is expected that in such areas the positive effect of using an ontology will
outweigh the negative effect of the imperfection.

Hypothesis (H2). Combining content and metadata query results diminishes the effects of
ontology imperfection.

As was mentioned above, there will usually be topic areas of a document collection that are not
covered at all or not covered adequately by an ontology. Clearly, if a user query refers to such
parts, the results of the metadata search alone will not be adequate. The intuitively compelling
solution to eliminate this negative effect is to combine the results of classical full-text search
engines (in our case the content search) and the results of the semantic search (in our case the
metadata search). It should be evaluated here whether this strategy really helps to improve the
search results. It is also important to see that there are many different algorithms to combine
search results, as was shown in Chapter 9. Therefore, the evaluation should also show which
strategy is the best for combining content and metadata search results.

Hypothesis (H3). The higher quality the ontology has, the better the retrieval performance of
the system is.

As was seen in Chapter 4, most of the state of the art systems use only linguistic information
and sometimes the ontology concept taxonomy during metadata generation and information
retrieval. The intuitively compelling hypothesis, which was explained in this thesis, is that
using more advanced ontology constructs can further increase retrieval performance. More
specifically, I was interested whether adding non-linguistic connections and (fuzzy) temporal
information to the ontology has positive effects on IR effectiveness.

Hypothesis (H4). It is possible to use advanced ontology constructs and provide an interactive
system (according to the SCALABILITY requirement) at the same time.

One possible cause why most state of the art systems do not exploit complex ontology con-
structs is that ontology reasoning is highly complex and therefore time intensive. Extensive use
of ontology reasoning during query time would prohibit building an interactive system, which
would violate the SCALABILITY requirement. As was described in Chapter 5 and Chapter 9,
the idea used in this thesis is to exploit existing and mature full-text search engines during the
query time and use complex ontology reasoning only during metadata generation. It should be
evaluated whether the performance of such a hybrid system meets the criteria of the SCALA-
BILITY requirement.

12.3 Retrieval performance evaluation basics

The performance of an information system can be easily evaluated by measuring response
times. Evaluating retrieval effectiveness, however, is a highly complex issue. In this section I
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review the basics of retrieval performance evaluation that are needed to understand the results
presented in this chapter. More details on the issue can be found in any IR textbook (e.g.,
[BR99] or [Fer03]).

12.3.1 Need for laboratory evaluation

First of all, because IR is an iterative and subjective process (see also Section 2.1), real evalua-
tion would need real users who try to satisfy their information needs to solve various tasks. The
ultimate value of an information system could then be measured by checking user satisfaction.
There are many problems with this approach, however. First, it is extremely expensive to con-
duct such an evaluation. Second, the results of the evaluation are dependent on the evaluating
user and also on the evaluation task. Therefore, it is practically impossible to repeat and reuse
such evaluation results in other contexts.

Knowing the problems and limitations of the “real-world” evaluation, in most of the IR publi-
cations the so-called “laboratory evaluation” is used. Here the results of an information system
are compared to some “golden standard” that describes the perfect results for a specific infor-
mation need. Although this approach ignores many of the characteristics of a real IR process
1, it has the advantage that the results can be reproduced and therefore various retrieval al-
gorithms can be compared with each other. This is also the approach which is used in the
well-known Text REtrieval Conference (TREC)2 series.

12.3.2 Performance measurement in laboratory evaluation

The two main measures that are checked in laboratory experiments are precision and recall.
Let RC denote all relevant documents (for a specific information need, specified as a user
query) in the document collection. Let A denote the documents the system returns for the user
query. Let RA denote the relevant documents in the response set. Let |S| denote the size of a
set S.

Precision is defined as the portion of relevant documents in the response set, i.e.,

Precision =
|RA|
|A|

Recall is defined as the portion of relevant documents that were returned by the system, i.e.,

Recall =
|RA|
|RC |

It is important to see that precision and recall are normally in a reciprocal relation. I.e., the
higher the precision is, the lower the recall is. E.g., if a system dumps the whole document
collection on each request, its recall will be maximal but the precision will be very low.

1e.g., subjectivity and the fact that it is an iterative process with continuously changing information need
2http://trec.nist.gov/
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Most IR techniques that increase one of the two measures usually also decrease the other
measure. E.g., thesauri are normally viewed as a technique that increases recall because the
user query can be extended with linguistically related words. At the same time, thesauri usually
also decrease precision because some of the newly inserted query words are not appropriate in
the query context and therefore introduce false results into the result set.

An IR algorithm is “better” in an absolute sense than an other IR algorithm only if it provides
better precision and better recall at the same time.

Because of the strong connection between precision and recall, normally precision and recall
values are measured together. The standard technique is to take the ranked result list of an
information system and calculate precision and recall based on the top n results. As we increase
n, recall values will usually increase while precision values will usually decrease.

12.3.3 Precision-recall diagrams

The analysis of all precision-recall pairs would be impractical. Thus, in most studies these
values are given only for some standard recall levels. The most common is to use the 11 recall
levels from 0.0, 0.1, 0.2 . . . up to 1.0. Of course, usually the exact precision value for a specific
standard recall level cannot be calculated3. In this case, the precision value for a standard
recall level is interpolated by taking the maximum precision value for any recall levels that are
greater or equal than the given standard recall level.

Using these standard precision-recall pairs, a so-called precision-recall diagram (PR diagram)
can be drawn that shows the precision values at the standard recall levels. Based on the criterion
above, an algorithm is better in an absolute sense than an other algorithm if its curve lies always
above the other curve in the PR diagram.

12.3.4 Precision@20 diagrams

While PR diagrams are a good instrument to reason about the quality of a retrieval algorithm,
most users are rather interested in the quality of the highest ranked results of an information
system. Studies show [SJ04, JS03] that in 70% of the time users on the Web view only the
top 10 results of a search engine. On the average, users view 2.35 pages (one result page
contains 10 results) whereas 50% of the users do not advance to the second page and 75% of
the users do not view more than 2 pages. Finally, users check only 5 documents in the result
set before either their information need is satisfied or they give up and change to a different
search engine.

These results show that real users are rather interested in getting good results early than in high
recall values. Therefore, in addition to PR diagrams I also used another common evaluation
technique, namely measuring the precision at a specific document position. Motivated by the
web study results above, I measured precision up to the position 20. I termed the diagrams
displaying these position-precision pairs Precision@20 (P@20) diagrams.

3E.g., the recall at position x is below 0.1, at position x + 1 is already above 0.1.
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12.4 Evaluation methodology

12.4.1 Selecting the test collection

The biggest problem during retrieval performance evaluation is how to get the “golden stan-
dard” which specifies the set of relevant documents for some selected user queries. There are
some standard test collections available that provide such golden standards. E.g., test collec-
tions produced by the TREC conferences are well-known and widely used. Unfortunately,
these test collections are made for classical (statistics-based) information retrieval and they do
not contain an ontology. Therefore, either an ontology should be developed for one of these
test collections or a new test collection must be designed.

As I was not a domain expert in any of the TREC domains, I decided to take the English
Wikipedia web encyclopedia4 as the basis for my test collection. It contains domains where I
was able to develop a test ontology5. Additional motivation for choosing Wikipedia was the
fact that Wikipedia had the appropriate size to test system performance. Moreover, Wikipedia
is also very well-known on the World Wide Web, therefore achieving better search results on
this collection can have a significant impact on the state of the art of web search.

When developing a new test collection, usually the major question is how one can determine
the set of all relevant documents (needed for calculating recall). It is normally impossible to
scan all documents of a big collection for relevant documents. E.g., the Wikipedia dump I
used contained more then one million documents. Fortunately, Wikipedia has the concept of
“categories” which contain all documents that belong to an abstract topic. This category con-
cept made it possible to identify relevant documents for a specific topic without scanning any
Wikipedia documents. Moreover, the approach has the advantage that the inherent subjectivity
of selecting the relevant documents for a specific topic was not an issue here. A Wikipedia cat-
egory contains a consolidated set of relevant documents for a topic. This selection of relevant
documents was agreed by all Wikipedia contributors.

12.4.2 Selecting the user queries to evaluate

After the decision about the test collection was made, I had to decide about the information
needs (queries) to test. Based on the problem analysis (see Chapter 3), I could see that one
of the weakest points of traditional full-text search (FTS) is the handling of abstract concepts
(topics) where the name of the concept does not necessary appear in relevant documents. One
of the main features of my system is the use of ontology-based heuristic rules that exploit non-
linguistic background information stored in the ontology to explore such indirectly relevant
concepts. Therefore, I chose to evaluate my approach by running queries about two abstract
concepts: “War on Terrorism” (denoted as WOT) and “Gulf War” (denoted as Gulf).

My motivations to choose exactly those two concepts were the following: First, the topics
are well-known, therefore I felt myself a domain expert and could easily design an ontology

4http://en.wikipedia.org, snapshots of Wikipedia are available at http://download.
wikimedia.org as XML files.

5Because Wikipedia changes constantly, it is important to note that I used the 2006-01-25 dump of Wikipedia.
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for these two topics. Second, there were many entities in the ontology that were relevant for
both topics, e.g., Iraq, USA, or Saddam Hussein. Third, there was also a very characteristic
case for disambiguation: two US-presidents with the same name (Bush) were involved in
the two different conflicts. Finally, because of the overlapping, there was a potential of wrong
inferences. E.g., based on a set of ontology instances, such as Iraq, USA, and Saddam Hussein,
it is not easy to decide whether “War on Terrorism” or “Gulf War” is relevant. While it seemed
to be relatively easy to improve search results in domains where the good inferences are clear,
overlapping domains seem to be especially problematic for semantic technologies. Moreover,
in real life overlapping domains seem to be rather the norm than the exception. Therefore, it
was interesting to see how my system behaves in such a challenging situation. Getting good
results in this test would be a good indicator that the approach can be useful also in the “real
world”, outside the laboratory.

12.4.3 Developing the evaluation ontology and rules

As the next step, an ontology had to be designed for the selected domain. I used the ontology
development approach that was presented in Chapter 10 and created an ontology that described
the two selected WOT and Gulf topics. The ontology itself was already discussed in detail in
Section 8.6.2. A full list of ontology instances, relations, attributes, and the ontology lexical
layer can be found in Appendix B.

Parallel to the ontology development, I also developed a list of heuristic rules to improve the
generated metadata. Some examples of these rules were already discussed in Section 8.6.3.
The XML dump of the rule definition file together with its XML Schema can be found in
Appendix C.

12.4.4 Preparing the test collection for the evaluation

Finally, the test collection had to be prepared for the evaluation. First, the Wikipedia dump
had to be processed and the textual and HTML content of the articles had to be extracted
and stored in the repository of the prototype system. It is important to note that Wikipedia
also contains lots of pages that were not relevant for my experiment. These included special
pages (Wikipedia help, user talk protocols, images) and also pages that were only redirections
(aliases) for “real” Wikipedia pages. Finally, I discarded also index pages that contained only
a list of event or person names. Finally, 945843 unique documents remained after the cleaning
process.

After executing the upload process, relevant documents for the two selected topics had to
be determined by exploiting the already mentioned Wikipedia categories. To determine all
relevant documents for a topic, first I selected all categories that contained the text of the
topic in its title (e.g., the categories “Gulf War” and “Gulf War movies”). Next, I transitively
extracted all subcategories of these core categories. Finally, I determined all Wikipedia articles
that belonged to the extracted categories. I selected these articles as the relevant ones for the
topic. With this approach, I got 38 relevant documents for the Gulf topic and 559 relevant
documents for the WOT topic. Two of the Gulf documents did not contain the phrase “Gulf
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War” and 469 of the WOT documents did not contain the phrase “War on Terrorism”. I.e.,
especially in the area of WOT there was a great potential to improve search results.

Ideally, metadata for all Wikipedia documents should have been generated as the next step.
Unfortunately, it was impossible. The GATE annotation process alone took 30 seconds on
the average for one document. The generation of the semantic metadata based on the GATE
annotation (including the metadata expansion step) took 10 seconds per document on the aver-
age. Based on these numbers the whole metadata generation process would have taken approx.
438 days, i.e., more than a year. Moreover, I needed to regenerate the metadata not only once
but many times to experiment with various algorithms and ontology constructs. Therefore,
generating metadata for all documents was clearly impossible.

As an alternative approach I did the following: I generated metadata for all documents that
were selected as relevant for any of the two topics. This gave the chance for the semantic
metadata generation process to assign the proper ontology instances to those documents. In
addition, I also added some “noise” to the set of documents. My motivation was to simulate
the situation where an irrelevant document contains many instances that appear in many rel-
evant documents for an abstract concept. In such cases, there is a danger that the heuristic
rules incorrectly infer that the abstract concept is relevant for the document. To simulate this
situation, I ran the full-text query "Iraq AND Bush" with my Lucene-based full-text search
engine (returned 972 documents) and included all result documents to the list of the documents
to be annotated. With this approach, I got 1457 documents to annotate6. I.e., after an initial
GATE annotation step of approx. 12 hours, I could regenerate the semantic metadata of the
documents in approx. 4 hours.

12.4.5 Evaluation strategy

The final, but at the same time the most important, remaining question is how to evaluate the
hypotheses that were discussed in Section 12.2.

Determining the queries to execute

To evaluate the main hypothesis, results of a classical full-text search engine (the baseline)
have to be compared with results of the new system. As the baseline system I took my Lucene-
based search engine. It is not trivial, however, to determine which full-text search query should
be taken as the baseline. Lucene supports not only the vector space model (VSM, see also
Section 2.3) but among others also (almost) arbitrary boolean queries and proximity queries.
All Lucene queries are ranked using a variation of the usual TF-IDF measure. Therefore, first
the effectiveness of the various FTS queries had to be evaluated. I selected four types of FTS
queries for both topics, based on my personal experience with Lucene and other full-text search
engines. I introduce the queries and their semantics on the example of the Gulf topic:

6Naturally, many documents in the “Iraq AND Bush” result set were also relevant for one of the selected topics.
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• Query: Gulf War. Query code: FTS_OR. This query returns all documents that contain
any of the words “Gulf” or “War”7. This query gives the same results than a VSM
algorithm would do.

• Query: Gulf AND War. Query code: FTS_AND. This query returns all documents that
contain both the “Gulf” and the “War” words. This query returns fewer results than the
previous version.

• Query: "Gulf War"ˆ 3. Query code: FTS_proximity. This query returns all documents
that contain both the “Gulf” and the “War” words within three words distance (a so
called “proximity” query). This variation returns even fewer results than the previous
version.

• Query: "Gulf War". Query code: FTS_quoted. This query returns all documents that
contain the exact phrase “Gulf War”. This variation returns the fewest results from all of
the FTS queries.

Naturally, if there is a clear winner among these queries (based on the PR diagrams), the best
should be taken as the baseline.

For the further experiments, metadata searches8 and combined semantic searches9 had to be
executed. To meet the NATURAL LANGUAGE QUERY requirement, I used the phrases “Gulf
War” and “War on Terrorism” as inputs for my system. Of course, these phrases were auto-
matically parsed and transformed into the proper semantic query representation by the system,
as was described in Chapter 9.

Query combination algorithms

To evaluate the effect of combining metadata and content query results to diminish the negative
effects of ontology imperfection10, the following strategy is used. The results of the metadata
query are compared with the combined search results, following the various query combination
strategies introduced in Chapter 9. These are the Bayesian inference strategy (Bayes), the
CombMNZ strategy, and finally the strategy described by Vallet et al. The ontology used
for the evaluation was developed with low effort and contains a relatively small number of
instances and relations. Hence, it can be viewed as a typical imperfect ontology. Therefore,
the expected results of the metadata search will not be optimal. Thus, I can check whether the
combined search results are better than the pure metadata search results and whether one of
the combination algorithms delivers significantly better results than the others.

Ontology versions for evaluation

To check the impact of ontology quality on the search results11, the experiments are executed
with different ontology versions. First, experiments are run with the full-featured version

7All Lucene queries are case insensitive.
8to evaluate H1 hypothesis
9that combine the results of metadata and content queries, for evaluating the main hypothesis

10H2 hypothesis
11H3 hypothesis
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of the ontology, containing the lexical layer (with labels and synonyms), the non-linguistic
relations, normal and fuzzy time information (ontology code: fuzzy time). Second, the fuzzy
time information in the ontology is replaced with a classical time interval. At the same time,
the parsing of fuzzy time intervals during metadata generation is also switched off (ontology
code: normal time). Next, all time information is removed from the ontology (ontology code:
no time). Finally, also the non-linguistic relations are removed. So, the remaining ontology
becomes a kind of thesaurus (ontology code: no connection).

The results of different experiments are compared with each other. To validate the hypothe-
sis, an increase of the effectiveness is expected when more and more ontological features are
used.

Checking the interactivity hypothesis

Finally, to check the interactivity hypothesis12, the response time is measured for both topics
for the most complex queries (combined query with all ontology features switched on).

As was discussed before, “comparing results” mean in all cases to produce and analyze PR
diagrams and Precision@20 diagrams.

12.5 Evaluation results

12.5.1 Selecting the FTS baseline

The results of running the four types of FTS queries are shown in Figures 12.2 to 12.5 and in
Tables 12.1 to 12.4. In the tables, the precision values that are maximal for a given recall level
or for a given position are printed in bold face to help identify the best algorithm.

As we move from FTS_OR toward FTS_quoted, the queries become stricter and stricter. It
can be expected that they will return fewer and fewer irrelevant results. On the other hand, a
stricter query may miss some relevant documents. E.g., the FTS_quoted query will miss any
relevant WOT documents that do not contain the exact “War on Terrorism” phrase. I.e., what
intuitively can be expected is that the stricter queries will have higher precision values at low
recall levels but the precision-recall curve will drop to zero sooner because they will find fewer
relevant results.

This expectation is completely valid in the case of the WOT scenario, as it can be seen in
Figure 12.2 and in Table 12.1. I.e., in an absolute sense none of the strategies is superior to
the other, with the exception of FTS_proximity and FTS_quoted searches. These two searches
drop to zero precision at the same recall level, thus FTS_quoted is better in an absolute sense
than FTS_proximity.

In the case of the Gulf scenario, all algorithms drop to zero precision at the same recall level,
similarly to the FTS_proximity and FTS_quoted search case in the WOT scenario (see Fig-
ure 12.4 and Table 12.3). This means that the FTS_proximity and FTS_quoted strategies are

12H4 hypothesis
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superior to the FTS_OR and FTS_AND strategies in an absolute sense. It is somewhat surpris-
ing that the FTS_proximity strategy performs better at some recall levels than the FTS_quoted
strategy.

In the Precision@20 diagrams, however, there are no significant differences among the strate-
gies for any of the scenarios. I.e., the end-user will not notice any change in quality if we
change the FTS query strategy. It is really interesting that the FTS_OR algorithm, which was
the worst in the PR diagram, provides the best results in the Precision@20 diagram in the Gulf
scenario (see Figure 12.5 and Table 12.4).

As a conclusion, it is not possible to identify a clear baseline for FTS. The results of the
new system should be compared with all of the discussed FTS strategies that are not worse
than other FTS strategies in an absolute sense. Based on the discussion, the FTS strategies
that will be taken as the baseline for the specific scenarios and diagram types are shown in
Figure 12.1.

WOT PR diagram: FTS_OR, FTS_AND, FTS_quoted

WOT P@20 diagram: FTS_quoted

Gulf PR diagram: FTS_proximity, FTS_quoted

Gulf P@20 diagram: FTS_OR

Figure 12.1: FTS baselines for evaluation

Table 12.1: WOT full-text search precision-recall values

Precision
OR AND proximity quoted

R
ec

al
l

0.0 1.0 1.0 1.0 1.0
0.1 0.008 0.0694 0.0954 0.1054
0.2 0.008 0.0532 0.0 0.0
0.3 0.008 0.0429 0.0 0.0
0.4 0.006 0.0 0.0 0.0
0.5 0.0035 0.0 0.0 0.0
0.6 0.0 0.0 0.0 0.0
0.7 0.0 0.0 0.0 0.0
0.8 0.0 0.0 0.0 0.0
0.9 0.0 0.0 0.0 0.0
1.0 0.0 0.0 0.0 0.0
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Figure 12.2: WOT full-text search precision-recall diagram

Figure 12.3: WOT full-text search precision@20 diagram
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Table 12.2: WOT full-text search precision@20 values

Precision
OR AND proximity quoted

Po
si

tio
n

1 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0
3 0.6667 0.6667 0.6667 0.6667
4 0.5 0.5 0.5 0.5
5 0.4 0.4 0.4 0.4
6 0.3333 0.3333 0.3333 0.3333
7 0.4286 0.4286 0.4286 0.4286
8 0.375 0.375 0.375 0.375
9 0.3333 0.3333 0.3333 0.3333

10 0.3 0.3 0.3 0.3
11 0.2727 0.2727 0.2727 0.2727
12 0.25 0.25 0.25 0.25
13 0.2308 0.2308 0.2308 0.3077
14 0.2143 0.2857 0.2857 0.2857
15 0.2 0.2667 0.2667 0.2667
16 0.1875 0.25 0.25 0.25
17 0.1765 0.2353 0.2353 0.2353
18 0.1667 0.2222 0.2222 0.2222
19 0.1579 0.2105 0.2105 0.2105
20 0.15 0.2 0.2 0.25

Table 12.3: Gulf full-text search precision-recall values

Precision
OR AND proximity quoted

R
ec

al
l

0.0 1.0 1.0 1.0 1.0
0.1 0.625 0.625 0.625 0.625
0.2 0.0104 0.2258 0.2703 0.2778
0.3 0.0104 0.2258 0.2571 0.2609
0.4 0.0104 0.2258 0.2571 0.2609
0.5 0.0104 0.2258 0.25 0.2532
0.6 0.0022 0.1353 0.2072 0.097
0.7 0.0016 0.0427 0.0549 0.0545
0.8 0.0016 0.0209 0.0473 0.0436
0.9 0.0016 0.0139 0.035 0.0362
1.0 0.0 0.0 0.0 0.0
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Figure 12.4: Gulf full-text search precision-recall diagram

Figure 12.5: Gulf full-text search precision@20 diagram
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Table 12.4: Gulf full-text search precision@20 values

Precision
OR AND proximity quoted

Po
si

tio
n

1 1.0 1.0 1.0 1.0
2 0.5 0.5 0.5 0.5
3 0.3333 0.3333 0.3333 0.3333
4 0.5 0.5 0.5 0.5
5 0.6 0.6 0.6 0.6
6 0.5 0.5 0.5 0.5
7 0.5714 0.5714 0.5714 0.5714
8 0.625 0.625 0.625 0.625
9 0.5556 0.5556 0.5556 0.5556

10 0.5 0.5 0.5 0.5
11 0.4545 0.4545 0.4545 0.4545
12 0.5 0.4167 0.4167 0.4167
13 0.4615 0.3846 0.3846 0.3846
14 0.4286 0.3571 0.3571 0.3571
15 0.4 0.3333 0.3333 0.3333
16 0.375 0.3125 0.3125 0.3125
17 0.3529 0.2941 0.2941 0.2941
18 0.3333 0.3333 0.2778 0.2778
19 0.3158 0.3158 0.3158 0.3158
20 0.3 0.3 0.3 0.3

12.5.2 Results of the metadata query

The H1 hypothesis states that metadata search alone provides good results in areas that are
covered by an ontology, even if the ontology is imperfect. To evaluate this hypothesis, I com-
pared the results of the metadata query with the results of the FTS baseline. The results of this
comparison are shown in Figures 12.6 to 12.9 and in Tables 12.5 to 12.8.

As the figures and tables show, the metadata search is clearly superior to all FTS strategies
in an absolute sense13. This is a very interesting and encouraging result because (as was
discussed in Section 8.6.2) the evaluation ontology was developed with low effort, and thus it
can be viewed as a typical imperfect ontology that is developed in the real world. In particular,
this ontology did not contain many of the entities (persons, organizations, events) that are
relevant for the WOT and Gulf topics. It did not contain many of the interesting relations and
time specifications, either. Still, even under such conditions, metadata search could clearly
outperform FTS.

To summarize the discussion, the H1 hypothesis could be successfully evaluated.

13With a small exception: in the WOT scenario the FTS_OR strategy has a marginally higher precision value at
the recall level 0.5 (see Table 12.6).
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Table 12.5: Comparison of WOT full-text and metadata search (precision-recall values)

Precision
FTS OR FTS AND FTS quoted Metadata

R
ec

al
l

0.0 1.0 1.0 1.0 1.0
0.1 0.0080 0.0694 0.1054 0.725
0.2 0.0080 0.0532 0.0 0.6505
0.3 0.0080 0.0429 0.0 0.6145
0.4 0.0059 0.0 0.0 0.549
0.5 0.0035 0.0 0.0 0.0
0.6 0.0 0.0 0.0 0.0
0.7 0.0 0.0 0.0 0.0
0.8 0.0 0.0 0.0 0.0
0.9 0.0 0.0 0.0 0.0
1.0 0.0 0.0 0.0 0.0

Figure 12.6: Comparison of WOT full-text and metadata search (precision-recall diagram)
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Table 12.6: Comparison of WOT full-text and metadata search (precision@20 values)

Precision
FTS quoted Metadata

Po
si

tio
n

1 1.0 1.0
2 1.0 1.0
3 0.6667 1.0
4 0.5 1.0
5 0.4 1.0
6 0.3333 1.0
7 0.4286 0.8571
8 0.375 0.875
9 0.3333 0.7778

10 0.3 0.7
11 0.2727 0.7273
12 0.25 0.75
13 0.3077 0.7692
14 0.2857 0.7857
15 0.2667 0.8
16 0.25 0.8125
17 0.2353 0.7647
18 0.2222 0.7778
19 0.2105 0.7895
20 0.25 0.8

Table 12.7: Comparison of Gulf full-text and metadata search (precision-recall values)

Precision
FTS proximity FTS quoted Metadata

R
ec

al
l

0.0 1.0 1.0 1.0
0.1 0.625 0.625 1.0
0.2 0.2703 0.2778 1.0
0.3 0.2571 0.2609 0.75
0.4 0.2571 0.2609 0.5862
0.5 0.25 0.2532 0.5588
0.6 0.2072 0.097 0.4182
0.7 0.0549 0.0545 0.2813
0.8 0.0473 0.0436 0.22
0.9 0.035 0.0362 0.2
1.0 0.0 0.0 0.1751
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Figure 12.7: Comparison of WOT full-text and metadata search (precision@20 diagram)

Figure 12.8: Comparison of Gulf full-text and metadata search (precision-recall diagram)
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Table 12.8: Comparison of Gulf full-text and metadata search (precision@20 values)

Precision
FTS OR Metadata

Po
si

tio
n

1 1.0 1.0
2 0.5 1.0
3 0.3333 1.0
4 0.5 1.0
5 0.6 1.0
6 0.5 1.0
7 0.5714 1.0
8 0.625 1.0
9 0.5556 1.0

10 0.5 1.0
11 0.4545 0.9091
12 0.5 0.8333
13 0.4615 0.7692
14 0.4286 0.7143
15 0.4 0.7333
16 0.375 0.75
17 0.3529 0.7059
18 0.3333 0.6667
19 0.3158 0.6316
20 0.3 0.6
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Figure 12.9: Comparison of Gulf full-text and metadata search (precision@20 diagram)
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12.5.3 Results of query combination

The H2 hypothesis states that combining content and metadata query results diminishes the
effects of ontology imperfection. To evaluate this hypothesis, I analyzed how the combination
of the content results with the metadata search results affects the retrieval performance. The
experimental results are shown in Figures 12.10 to 12.13 and in Tables 12.9 to 12.12.

Naturally, the retrieval performance of the underlying metadata and content search algorithms
affects the efficiency of the combined algorithm. Based on the experiences from metasearch
research, an increase in retrieval performance is expected if all algorithms provide good results
already by themselves. In addition, the sets of returned relevant documents should significantly
overlap while the sets of returned non-relevant documents should not overlap significantly
[Cro00].

There is no clear winner among the algorithms in any of the evaluated scenarios. This means
that in many situations, the metadata search performs better than the combined search. I.e.,
the combination of the results even slightly decreases the retrieval performance in some cases.
In other words, the H2 hypothesis could not be validated in the chosen scenarios. The reason
is most probably that the results of the metadata search are too good in comparison with the
content search. I.e., the criteria for a successful result combination are not fulfilled because the
content search results are of too low quality.

What is probably more surprising is that none of the combination algorithms could perform bet-
ter than the others. E.g., while the CombMNZ algorithm was clearly the best in some scenarios
(see e.g., Figure 12.12), it was the worst in some other scenarios (see e.g., Figure 12.10 and
Figure 12.11). It seems that the effectiveness of the combination is highly domain-dependent.
However, it is impossible to predict which algorithm will provide the best performance in a
specific case.

It seems based on these results that the strategy proposed by Vallet et al. [VFC05] has the
weakest retrieval performance on the average, although of course there are scenarios where it
provides quite a good results (see e.g., Figure 12.10).
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Table 12.9: WOT metadata and combined semantic search (fuzzy) precision-recall values

Precision
Metadata Bayes CombMNZ Vallet

R
ec

al
l

0.0 1.0 1.0 1.0 1.0
0.1 0.725 0.7273 0.7053 0.7143
0.2 0.6505 0.6348 0.6278 0.645
0.3 0.6146 0.5965 0.5819 0.6036
0.4 0.549 0.5271 0.4817 0.5463
0.5 0.0 0.4409 0.4409 0.4409
0.6 0.0 0.0 0.0 0.0
0.7 0.0 0.0 0.0 0.0
0.8 0.0 0.0 0.0 0.0
0.9 0.0 0.0 0.0 0.0
1.0 0.0 0.0 0.0 0.0

Figure 12.10: WOT metadata and combined semantic search (fuzzy) precision-recall diagram
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Table 12.10: WOT metadata and combined semantic search (fuzzy) precision@20 values

Precision
Metadata Bayes Vallet CombMNZ

Po
si

tio
n

1 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0
3 1.0 1.0 1.0 0.6667
4 1.0 1.0 0.75 0.5
5 1.0 1.0 0.8 0.4
6 1.0 0.8333 0.8333 0.5
7 0.8571 0.8571 0.8571 0.5714
8 0.875 0.875 0.875 0.625
9 0.7778 0.8889 0.7778 0.6667
10 0.7 0.9 0.8 0.7
11 0.7273 0.9091 0.8182 0.6364
12 0.75 0.8333 0.8333 0.6667
13 0.7692 0.8462 0.8462 0.6923
14 0.7857 0.8571 0.8571 0.7143
15 0.8 0.8667 0.8667 0.7333
16 0.8125 0.8125 0.875 0.6875
17 0.7647 0.8235 0.8824 0.6471
18 0.7778 0.8333 0.8889 0.6667
19 0.7895 0.7895 0.8421 0.6842
20 0.8 0.8 0.8 0.65

Table 12.11: Gulf metadata and combined semantic search (fuzzy) precision-recall values

Precision
Metadata Bayes CombMNZ Vallet

R
ec

al
l

0.0 1.0 1.0 1.0 1.0
0.1 1.0 0.9091 1.0 0.8571
0.2 1.0 0.9091 1.0 0.75
0.3 0.75 0.6842 0.8 0.4375
0.4 0.5862 0.5938 0.6296 0.4103
0.5 0.5588 0.5938 0.6 0.3571
0.6 0.4182 0.4902 0.6 0.3571
0.7 0.2813 0.2947 0.4118 0.2362
0.8 0.22 0.2793 0.3563 0.2313
0.9 0.2 0.2229 0.2713 0.159
1.0 0.1751 0.2135 0.2517 0.1564
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Figure 12.11: WOT metadata and combined semantic search (fuzzy) precision@20 diagram

Figure 12.12: Gulf metadata and combined semantic search (fuzzy) precision-recall diagram
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Table 12.12: Gulf metadata and combined semantic search (fuzzy) precision@20 values

Precision
Metadata Bayes Vallet CombMNZ

Po
si

tio
n

1 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0
3 1.0 0.6667 1.0 1.0
4 1.0 0.75 0.75 1.0
5 1.0 0.8 0.8 1.0
6 1.0 0.8333 0.8333 1.0
7 1.0 0.8571 0.8571 1.0
8 1.0 0.875 0.75 1.0
9 1.0 0.8889 0.6667 0.8889
10 1.0 0.9 0.7 0.9
11 0.9091 0.9091 0.7273 0.8182
12 0.8333 0.8333 0.75 0.75
13 0.7692 0.7692 0.6923 0.7692
14 0.7143 0.7143 0.6429 0.7857
15 0.7333 0.6667 0.6 0.8
16 0.75 0.625 0.5625 0.75
17 0.7059 0.6471 0.5294 0.7059
18 0.6667 0.6667 0.5556 0.7222
19 0.6316 0.6842 0.5263 0.6842
20 0.6 0.65 0.5 0.65
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Figure 12.13: Gulf metadata and combined semantic search (fuzzy) precision@20 diagram
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Based on these results, a possible conclusion could be that metadata query should be used alone
instead of combining it with content search. However, it is important to note that there could
be cases where metadata search will not deliver good results. Especially in cases where the
ontology does not contain any entities that are relevant to a specific topic, the metadata search
will not deliver any results on that topic. It is very difficult to estimate ontology coverage
on a specific topic and thus it is difficult to determine whether it makes sense to use result
combination for the actual query14. Therefore, in the general case, it is still better to use
the combined results. Although it will slightly decrease retrieval performance if the ontology
covers high-quality information on a specific topic but it will increase effectiveness on the
average.

To show that the H2 hypothesis holds where there is a negative effect of ontology imperfection
that should be compensated, I did some another experiments using a different set of semantic
metadata. This time, I did not generate semantic metadata for all 1457 documents but I chose
only the documents from the list, whose URIs began with “A” to “D”. This selection yielded
364 documents (approx. 25% of the original), whereas from this set 129 documents were
relevant for the WOT topic (approx. 23% of all relevants), and 15 documents were relevant
for the Gulf topic (approx 40% of all relevants). The results of this experiments are shown in
Figures 12.14 to 12.17 and in Tables 12.13 to 12.16.

The combined strategy now performs better than the pure metadata query. I.e., when the
metadata query results are of low quality, query combination can significantly increase
the quality of the results. Interestingly, on the P@20 diagrams, there are still no big differ-
ences. This is because the few results that were returned by the metadata search were still
relevant. That is, the quality increase caused by the query combination is noticeable only when
the metadata search “runs out” of the results. E.g., Figure 12.17 shows that the precision curve
of the metadata search result drops steadily, while the combined strategies can also keep a
steady precision rate for higher document positions. (Remember, for the Gulf scenario only 15
relevant documents were semantically annotated at all, i.e., the metadata search could return
max. 15 documents.)

Interestingly, even in these new experiments there is no clear winner among the combination
algorithms, as in the previous case.

To summarize: the H2 hypothesis generally holds. However, the experiments also showed
that if the metadata query provides good results (the ontology has a high quality) then query
combination can slightly hurt retrieval performance.

For the following experiments, I used the Bayes strategy to make the scenarios and the discus-
sion simpler. The Bayes strategy seemed to be “in the middle”: although it almost never was
the best, it never was the worst.

14Although an approach that addresses this problem is a possible future research topic.
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Table 12.13: WOT short metadata and combined semantic search precision-recall values

Precision
Metadata Bayes CombMNZ Vallet

R
ec

al
l

0.0 1.0 1.0 1.0 1.0
0.1 0.0 0.3758 0.396 0.3758
0.2 0.0 0.137 0.137 0.137
0.3 0.0 0.0 0.0 0.0
0.4 0.0 0.0 0.0 0.0
0.5 0.0 0.0 0.0 0.0
0.6 0.0 0.0 0.0 0.0
0.7 0.0 0.0 0.0 0.0
0.8 0.0 0.0 0.0 0.0
0.9 0.0 0.0 0.0 0.0
1.0 0.0 0.0 0.0 0.0

Figure 12.14: WOT short metadata and combined semantic search precision-recall diagram
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Table 12.14: WOT short metadata and combined semantic search precision@20 values

Precision
Metadata Bayes Vallet CombMNZ

Po
si

tio
n

1 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0
3 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 0.75
5 1.0 1.0 1.0 0.8
6 1.0 1.0 1.0 0.8333
7 1.0 1.0 1.0 0.8571
8 1.0 1.0 0.875 0.75
9 0.8889 1.0 0.7778 0.7778
10 0.8 0.9 0.7 0.8
11 0.8182 0.8182 0.7273 0.8182
12 0.75 0.75 0.75 0.8333
13 0.7692 0.6923 0.7692 0.8462
14 0.7143 0.6429 0.7143 0.8571
15 0.7333 0.6 0.6667 0.8667
16 0.75 0.625 0.625 0.875
17 0.7647 0.5882 0.5882 0.8235
18 0.7778 0.5556 0.6111 0.7778
19 0.7895 0.5263 0.5789 0.7368
20 0.75 0.55 0.55 0.7

Table 12.15: Gulf short metadata and combined semantic search precision-recall values

Precision
Metadata Bayes CombMNZ Vallet

R
ec

al
l

0.0 1.0 1.0 0.5714 1.0
0.1 0.7778 0.7 0.5714 0.8333
0.2 0.3333 0.6923 0.4815 0.6316
0.3 0.25 0.6316 0.4815 0.6316
0.4 0.0 0.4444 0.3333 0.5294
0.5 0.0 0.3231 0.2771 0.4222
0.6 0.0 0.2 0.2771 0.2
0.7 0.0 0.1688 0.1688 0.1688
0.8 0.0 0.1088 0.1088 0.1088
0.9 0.0 0.0515 0.0515 0.0515
1.0 0.0 0.0 0.0 0.0
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Figure 12.15: WOT short metadata and combined semantic search precision@20 diagram

Figure 12.16: Gulf short metadata and combined semantic search precision-recall diagram
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Table 12.16: Gulf short metadata and combined semantic search precision@20 values

Precision
Metadata Bayes Vallet CombMNZ

Po
si

tio
n

1 1.0 1.0 0.0 1.0
2 0.5 0.5 0.5 1.0
3 0.6667 0.6667 0.3333 0.6667
4 0.5 0.5 0.5 0.75
5 0.6 0.6 0.4 0.8
6 0.6667 0.5 0.5 0.8333
7 0.7143 0.5714 0.5714 0.7143
8 0.75 0.625 0.5 0.75
9 0.7778 0.6667 0.4444 0.7778
10 0.7 0.7 0.4 0.7
11 0.6364 0.6364 0.3636 0.6364
12 0.5833 0.6667 0.3333 0.5833
13 0.5385 0.6923 0.3077 0.5385
14 0.5 0.6429 0.2857 0.5714
15 0.4667 0.6 0.3333 0.5333
16 0.4375 0.625 0.375 0.5625
17 0.4118 0.6471 0.3529 0.5882
18 0.3889 0.6111 0.3889 0.6111
19 0.3684 0.6316 0.4211 0.6316
20 0.35 0.6 0.45 0.6
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Figure 12.17: Gulf short metadata and combined semantic search precision@20 diagram
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12.5.4 The effect of ontology quality

The H3 hypothesis states that the higher quality the ontology has, the better the retrieval per-
formance of the system is. To evaluate this hypothesis, I analyzed whether ontology quality
has some effects on the retrieval performance of the system. To validate the positive effect of a
high-quality ontology on search results, we should get better and better results when we switch
on various ontology constructs.

The experimental results of comparing search results with different ontology features enabled
are shown in Figures 12.18 to 12.25 and in Tables 12.17 to 12.24.

In the WOT scenario, the positive effect of a high-quality ontology can be clearly observed.
There is an especially big quality increase when the relations between ontology instances are
used. When time information is switched on, only a marginal quality increase can be observed
whereas using fuzzy time made no practical difference.

The effect of ontology quality can also be observed in the Gulf scenario, although the results
are not as positive as in the other scenario. When non-linguistic relations are switched on,
retrieval performance actually drops drastically. This happens because on the one hand, there
is practically no room for improvement for semantic search (only two out of 38 relevant docu-
ments are not found by traditional FTS); but on the other hand, there are many possible wrong
inferences because of the overlap between the WOT and Gulf scenarios. Indeed, without time
information, the “Gulf War” concept is wrongly inferred as relevant for many WOT articles.
This causes the observed drop in retrieval efficiency.

This scenario also shows, however, that adding time information can solve this problem. After
adding time information to the ontology, retrieval performance is restored and for some re-
call levels it is even increased. Switching on fuzzy time made no practical difference in this
scenario, either.

The results clearly validate the hypothesis that ontology quality has a significant effect on
retrieval performance. Semantic relations increase recall significantly in cases where FTS
does not deliver adequate results. The potential negative effect of incorrectly applying these
semantic relations, which could eventually decrease precision, can be eliminated by including
temporal information into the ontology which guides the inference process.

To summarize: the H3 hypothesis could be partially validated. Although there is a general
correlation between ontology quality and retrieval results, there are some ontology features
that actually have a negative effect in some scenarios. However, an ontology using all of the
features always provides the best results, even if in some scenarios these best results can
also be reached by using fewer features.

210



12.5 Evaluation results

Table 12.17: Effect of ontology quality on WOT metadata search precision-recall values

Precision
no connection no time normal time fuzzy time

R
ec

al
l

0.0 0.7 0.875 1.0 1.0
0.1 0.3709 0.6867 0.725 0.725
0.2 0.0 0.5989 0.6505 0.6505
0.3 0.0 0.541 0.6154 0.6145
0.4 0.0 0.5078 0.5398 0.549
0.5 0.0 0.0 0.0 0.0
0.6 0.0 0.0 0.0 0.0
0.7 0.0 0.0 0.0 0.0
0.8 0.0 0.0 0.0 0.0
0.9 0.0 0.0 0.0 0.0
1.0 0.0 0.0 0.0 0.0

Figure 12.18: Effect of ontology quality on WOT metadata search precision-recall diagram
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Table 12.18: Effect of ontology quality on WOT metadata search precision@20 values

Precision
no connection no time normal time fuzzy time

Po
si

tio
n

1 0.0 0.0 1.0 1.0
2 0.5 0.5 1.0 1.0
3 0.6667 0.6667 1.0 1.0
4 0.5 0.75 1.0 1.0
5 0.6 0.8 1.0 1.0
6 0.5 0.8333 1.0 1.0
7 0.5714 0.8571 0.8571 0.8571
8 0.625 0.875 0.875 0.875
9 0.5556 0.7778 0.7778 0.7778

10 0.6 0.7 0.7 0.7
11 0.6364 0.6364 0.7273 0.7273
12 0.6667 0.6667 0.75 0.75
13 0.6923 0.6154 0.7692 0.7692
14 0.6429 0.5714 0.7857 0.7857
15 0.6667 0.6 0.8 0.8
16 0.625 0.625 0.8125 0.8125
17 0.6471 0.6471 0.7647 0.7647
18 0.6667 0.6667 0.7778 0.7778
19 0.6842 0.6842 0.7895 0.7895
20 0.7 0.7 0.8 0.8

Table 12.19: Effect of ontology quality on WOT combined search precision-recall values

Precision
no connection no time normal time fuzzy time

R
ec

al
l

0.0 1.0 1.0 1.0 1.0
0.1 0.3353 0.7125 0.7273 0.7273
0.2 0.0 0.5825 0.6348 0.6348
0.3 0.0 0.5385 0.5951 0.5965
0.4 0.0 0.5 0.5234 0.5271
0.5 0.0 0.4475 0.302 0.4409
0.6 0.0 0.0 0.0 0.0
0.7 0.0 0.0 0.0 0.0
0.8 0.0 0.0 0.0 0.0
0.9 0.0 0.0 0.0 0.0
1.0 0.0 0.0 0.0 0.0
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Figure 12.19: Effect of ontology quality on WOT metadata search precision@20 diagram

Figure 12.20: Effect of ontology quality on WOT combined search precision-recall diagram
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Table 12.20: Effect of ontology quality on WOT combined search precision@20 values

Precision
no connection no time normal time fuzzy time

Po
si

tio
n

1 1.0 1.0 1.0 1.0
2 0.5 1.0 1.0 1.0
3 0.6667 1.0 1.0 1.0
4 0.5 1.0 1.0 1.0
5 0.6 1.0 1.0 1.0
6 0.5 0.8333 0.8333 0.8333
7 0.4286 0.8571 0.8571 0.8571
8 0.375 0.875 0.875 0.875
9 0.3333 0.7778 0.8889 0.8889

10 0.3 0.8 0.9 0.9
11 0.2727 0.8182 0.9091 0.9091
12 0.25 0.8333 0.8333 0.8333
13 0.2308 0.7692 0.8462 0.8462
14 0.2143 0.7857 0.8571 0.8571
15 0.2667 0.8 0.8667 0.8667
16 0.3125 0.8125 0.8125 0.8125
17 0.2941 0.7647 0.8235 0.8235
18 0.3333 0.7778 0.8333 0.8333
19 0.3684 0.7895 0.7895 0.7895
20 0.4 0.75 0.8 0.8

Table 12.21: Effect of ontology quality on Gulf metadata search precision-recall values

Recall
no connection no time normal time fuzzy time

Pr
ec

is
io

n

0.0 1.0 0.8889 1.0 1.0
0.1 1.0 0.8889 1.0 1.0
0.2 0.8 0.8889 1.0 1.0
0.3 0.5909 0.3 0.75 0.75
0.4 0.5517 0.2208 0.5862 0.5862
0.5 0.5263 0.1979 0.5588 0.5588
0.6 0.36 0.1264 0.4107 0.4182
0.7 0.36 0.0925 0.2872 0.2813
0.8 0.2981 0.0891 0.2185 0.22
0.9 0.2035 0.0891 0.2 0.2
1.0 0.0 0.0878 0.1751 0.1751
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Figure 12.21: Effect of ontology quality on WOT combined search precision@20 diagram

Figure 12.22: Effect of ontology quality on Gulf metadata search precision-recall diagram
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Table 12.22: Effect of ontology quality on Gulf metadata search precision@20 values

Precision
no connection no time normal time fuzzy time

Po
si

tio
n

1 1.0 0.0 1.0 1.0
2 1.0 0.5 1.0 1.0
3 1.0 0.6667 1.0 1.0
4 1.0 0.75 1.0 1.0
5 1.0 0.8 1.0 1.0
6 1.0 0.8333 1.0 1.0
7 1.0 0.8571 1.0 1.0
8 0.875 0.875 1.0 1.0
9 0.7778 0.8889 1.0 1.0

10 0.8 0.8 0.9 1.0
11 0.7273 0.8182 0.8182 0.9091
12 0.6667 0.8333 0.8333 0.8333
13 0.6923 0.7692 0.7692 0.7692
14 0.7143 0.7143 0.7143 0.7143
15 0.7333 0.6667 0.7333 0.7333
16 0.6875 0.625 0.75 0.75
17 0.6471 0.5882 0.7059 0.7059
18 0.6111 0.5556 0.6667 0.6667
19 0.5789 0.5263 0.6316 0.6316
20 0.55 0.5 0.6 0.6

Table 12.23: Effect of ontology quality on Gulf combined search precision-recall values

Precision
no connection no time normal time fuzzy time

R
ec

al
l

0.0 1.0 1.0 1.0 1.0
0.1 0.875 0.8333 0.9091 0.9091
0.2 0.7273 0.8333 0.9091 0.9091
0.3 0.5909 0.4 0.6842 0.6842
0.4 0.4865 0.2651 0.5938 0.5938
0.5 0.4545 0.2651 0.5938 0.5938
0.6 0.4118 0.1912 0.4902 0.4902
0.7 0.4118 0.125 0.3077 0.2947
0.8 0.3735 0.1056 0.287 0.2793
0.9 0.3125 0.0931 0.2229 0.2229
1.0 0.0 0.0931 0.2135 0.2135
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Figure 12.23: Effect of ontology quality on Gulf metadata search precision@20 diagram

Figure 12.24: Effect of ontology quality on Gulf combined search precision-recall diagram
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Table 12.24: Effect of ontology quality on Gulf combined search precision@20 values

Precision
no connection no time normal time fuzzy time

Po
si

tio
n

1 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0
3 0.6667 0.6667 0.6667 0.6667
4 0.75 0.75 0.75 0.75
5 0.8 0.8 0.8 0.8
6 0.8333 0.8333 0.8333 0.8333
7 0.8571 0.7143 0.8571 0.8571
8 0.875 0.75 0.875 0.875
9 0.7778 0.7778 0.8889 0.8889

10 0.7 0.8 0.9 0.9
11 0.7273 0.8182 0.9091 0.9091
12 0.6667 0.8333 0.8333 0.8333
13 0.6923 0.7692 0.7692 0.7692
14 0.6429 0.7143 0.7143 0.7143
15 0.6667 0.6667 0.6667 0.6667
16 0.625 0.625 0.625 0.625
17 0.5882 0.5882 0.6471 0.6471
18 0.5556 0.5556 0.6667 0.6667
19 0.5263 0.5263 0.6842 0.6842
20 0.55 0.5 0.65 0.65
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Figure 12.25: Effect of ontology quality on Gulf combined search precision@20 diagram
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12.5.5 Comparing combined search with the baseline

To evaluate my Main hypothesis, i.e., that possibly imperfect ontologies improve the retrieval
performance of an information system, I checked whether the results of my system are superior
to the results of traditional full-text search. That is, I compared the combined search results
with the baseline FTS strategies. The experimental results are shown in Figures 12.26 to 12.29
and in Tables 12.25 to 12.28.

I compared the worst-case and best-case performance (based on the ontology-quality experi-
ments) of my system with the baseline. Based on the previous results, the worst case for the
WOT scenario was using the ontology with no connections, whereas for the Gulf scenario, the
worst case was using the ontology with connections but without time information.

The results show that in the best case, semantic search15 is superior to any of the FTS
strategies in any scenarios. Especially in the WOT scenario, the results are really impressive.
Also in the Gulf scenario a very significant retrieval performance gain of 100% can be observed
for some recall levels. The Precision@20 results are significantly better, too. I.e., the gain in
efficiency is not only theoretical but it should be also noticeable for the non-expert end users.

The results also show that semantic search is not superior, or only slightly superior to traditional
FTS in the worst case. As semantic search always requires significant investment for building
the ontology and the heuristic rules, the problem that was observed in traditional IR for thesauri
also exists for ontologies. Ontologies and semantic technologies do not automatically increase
IR effectiveness, the quality of ontologies is crucial. Using all ontology features, however,
guarantees good results in all scenarios (see results of the last section).

In other words: my evaluation study showed that even casually developed, imperfect on-
tologies can be “good enough” to provide very significant improvements in IR perfor-
mance. Therefore the main hypothesis could be successfully evaluated. This positive result
provides a strong motivation for the investment into the application of ontologies in informa-
tion systems16.

15As was discussed in Section 5.4, I term the combination of the metadata and content searches as semantic
search.

16In addition to improving search results, ontologies and semantic metadata have other positive “side effects”,
such as the ability to make query refinement suggestions or navigation among ontology entities.
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Table 12.25: Comparison of WOT full-text and semantic search (precision-recall values)

Precision
FTS OR FTS AND FTS quoted Bayes (worst) Bayes (best)

R
ec

al
l

0.0 1.0 1.0 1.0 1.0 1.0
0.1 0.0080 0.0694 0.1054 0.3353 0.7273
0.2 0.0080 0.0532 0.0 0.0 0.6348
0.3 0.0080 0.0429 0.0 0.0 0.5965
0.4 0.0059 0.0 0.0 0.0 0.5271
0.5 0.0035 0.0 0.0 0.0 0.4409
0.6 0.0 0.0 0.0 0.0 0.0
0.7 0.0 0.0 0.0 0.0 0.0
0.8 0.0 0.0 0.0 0.0 0.0
0.9 0.0 0.0 0.0 0.0 0.0
1.0 0.0 0.0 0.0 0.0 0.0

Figure 12.26: Comparison of WOT full-text and semantic search (precision-recall diagram)
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Table 12.26: Comparison of WOT full-text and semantic search (precision@20 values)

Precision
FTS quoted Bayes (worst) Bayes (best)

Po
si

tio
n

1 1.0 1.0 1.0
2 1.0 0.5 1.0
3 0.6667 0.6667 1.0
4 0.5 0.5 1.0
5 0.4 0.6 1.0
6 0.3333 0.5 0.8333
7 0.4286 0.4286 0.8571
8 0.375 0.375 0.875
9 0.3333 0.3333 0.8889
10 0.3 0.3 0.9
11 0.2727 0.2727 0.9091
12 0.25 0.25 0.8333
13 0.3077 0.2308 0.8462
14 0.2857 0.2143 0.8571
15 0.2667 0.2667 0.8667
16 0.25 0.3125 0.8125
17 0.2353 0.2941 0.8235
18 0.2222 0.3333 0.8333
19 0.2105 0.3684 0.7895
20 0.25 0.4 0.8

Table 12.27: Comparison of Gulf full-text and semantic search (precision-recall values)

Precision
FTS proximity FTS quoted Bayes (worst) Bayes (best)

R
ec

al
l

0.0 1.0 1.0 1.0 1.0
0.1 0.625 0.625 0.8333 0.9091
0.2 0.2703 0.2778 0.8333 0.9091
0.3 0.2571 0.2609 0.4 0.6842
0.4 0.2571 0.2609 0.2651 0.5938
0.5 0.25 0.2532 0.2651 0.5938
0.6 0.2072 0.097 0.1912 0.4902
0.7 0.0549 0.0545 0.125 0.2947
0.8 0.0473 0.0436 0.1056 0.2793
0.9 0.035 0.0362 0.0931 0.2229
1.0 0.0 0.0 0.0931 0.2135

222



12.5 Evaluation results

Figure 12.27: Comparison of WOT full-text and semantic search (precision@20 diagram)

Figure 12.28: Comparison of Gulf full-text and semantic search (precision-recall diagram)
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Table 12.28: Comparison of Gulf full-text and semantic search (precision@20 values)

Precision
FTS OR Bayes (worst) Bayes (best)

Po
si

tio
n

1 1.0 1.0 1.0
2 0.5 1.0 1.0
3 0.3333 0.6667 0.6667
4 0.5 0.75 0.75
5 0.6 0.8 0.8
6 0.5 0.8333 0.8333
7 0.5714 0.7143 0.8571
8 0.625 0.75 0.875
9 0.5556 0.7778 0.8889
10 0.5 0.8 0.9
11 0.4545 0.8182 0.9091
12 0.5 0.8333 0.8333
13 0.4615 0.7692 0.7692
14 0.4286 0.7143 0.7143
15 0.4 0.6667 0.6667
16 0.375 0.625 0.625
17 0.3529 0.5882 0.6471
18 0.3333 0.5556 0.6667
19 0.3158 0.5263 0.6842
20 0.3 0.5 0.65
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Figure 12.29: Comparison of Gulf full-text and semantic search (precision@20 diagram)
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12.5.6 The use case for the fuzzy time model

The previous results showed that fuzzyfying the temporal model does not help increase re-
trieval effectiveness17 if our goal is to find documents about an abstract concept. This does
not mean, however, that the fuzzy time model cannot be used to improve other aspects of IR.
Documents that contain fuzzy time definitions, or user queries that contain fuzzy time specifi-
cations can profit from the model. E.g., in the set of 1457 annotated documents there were 485
fuzzy time expressions that could be parsed during the semantic annotation.

The generated time information can be used to significantly improve the results of queries
that refer to time. E.g., Table 12.29 and Figure 12.30 show the comparison of the results of
the Iraq the early 2000s (FTS OR) and the Iraq AND "the early 2000s"
(FTS AND) full-text queries, and of the Iraq the early 2000s semantic query, using
the Bayes combination method (Bayes)18. It can be clearly seen that the semantic results are
superior to the FTS results.

This improvement in retrieval quality was possible in the case of the semantic query because
time information in the documents and also in the user query was parsed and explicitly repre-
sented. The FTS_AND full-text search could match only documents that explicitly contained
the "the early 2000s". As one could intuitively expect, only a small portion of relevant
documents contained this exact phrase. Finally, the FTS_OR query returned many irrelevant
results because it also returned documents that contained the terms “2000s” or “early” in iso-
lation.

17But it does not decrease retrieval effectiveness, either.
18It is not possible to create a PR diagram because the set of all relevant documents is not known for such a

complex query. The (probably partial) set of relevant documents were manually determined by examining the
first 20 results of all of the three queries.
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Table 12.29: Comparison of “Iraq the early 2000s” full-text and semantic search (preci-
sion@20 values)

Precision
FTS OR FTS AND Bayes

Po
si

tio
n

1 0.0 0.0 1.0
2 0.5 0.5 1.0
3 0.6667 0.3333 1.0
4 0.75 0.25 1.0
5 0.6 0.2 0.8
6 0.6667 0.1667 0.8333
7 0.5714 0.1429 0.8571
8 0.5 0.125 0.875
9 0.4444 0.1111 0.8889

10 0.4 0.1 0.9
11 0.3636 0.0909 0.9091
12 0.3333 0.0833 0.9167
13 0.3846 0.0769 0.9231
14 0.3571 0.0714 0.9286
15 0.4 0.0667 0.9333
16 0.375 0.0625 0.875
17 0.4118 0.0588 0.8824
18 0.3889 0.0556 0.8333
19 0.4211 0.0526 0.8421
20 0.45 0.05 0.85

227



Chapter 12 Evaluation

Figure 12.30: Comparison of “Iraq the early 2000s” full-text and semantic search (preci-
sion@20 diagram)
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12.5.7 Evaluating response times

As the final experiment, I validated the H4 hypothesis which states that it is possible to use
advanced ontology constructs and provide an interactive system at the same time. In doing so,
I measured the response times of the system in the WOT and Gulf scenarios. For the WOT
scenario, the average response time was 0.9063 seconds, and for the Gulf scenario, the average
response time was 2.3957 seconds19. These results clearly show that the system meets the
SCALABILITY requirement because response times are far below 10 seconds. Therefore, the
H4 hypothesis could be successfully evaluated.

There is a significant difference, however, between the query times in the two scenarios. To
check the causes, I measured the query time for the specific tasks during the query process. The
results are shown in Table 12.30. The full semantic time includes the times for parsing the full-
text query into its semantic representation, executing the metadata query, loading the metadata
query results, and combining it with the content query results. The complete full-text time (full
FTS) includes the time needed to execute the content query and to load the content results for
query combination. The miscellaneous part include the processing overhead of calling various
Java methods and also the generation of the metadata and content queries from the semantic
query representation.

Table 12.30: Query response times (in seconds)

WOT Gulf
Query parsing 0.146 0.047

Metadata search 0.0103 0.0053
Loading metadata results 0.052 0.026

FTS (content search) 0.2136 0.4737
Loading FTS results 0.349 1.6927
Combining results 0.0053 0.037

Miscellaneous 0.13 0.114
Full query 0.9063 2.3957

Full semantic 0.2136 0.1153
Full FTS 0.5627 2.1664

The results show some interesting things. First, it is easy to see that the highest fraction of time
is needed for executing the traditional full-text search over document content, and loading these
search results. This means that the overhead caused by the semantic search part is acceptable
in practice.

Second, in the Gulf scenario it takes much more time to execute the full-text search than in
the WOT scenario. This is caused by two factors: first, the FTS query generated for the Gulf
scenario is much more complicated than for the WOT scenario. The query contains more query
clauses because the instance representing the Gulf War event in the ontology has dramatically

19Both values were calculated by averaging the results of three measurements using a P4 2.8 GHz PC with 1GB
RAM running Windows XP Professional.
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more synonyms than the War on Terrorism event. Naturally, the Lucene-based full-text search
engine needs more time to execute a more complicated query.

The second factor that makes the Gulf War query slower is the number of results returned by
the metadata and content queries. For the Gulf War case there were 1710 FTS results while for
the War on Terrorism case there were only 1248 FTS results. Since all subquery results have
to be processed during query combination, more subquery results clearly slow down the whole
query process.

Knowing the causes for the additional query time needed for the Gulf scenario, one could
easily imagine a scenario where the system would not meet the SCALABILITY requirement
anymore. E.g., when the user navigates from a document to other similar documents and the
query is generated automatically (as described in Chapter 11). In this case, the query contains
many elements and it can be also expected that such generic queries will return many results.

The problem can be easily solved, however, by constraining the number of used semantic
model elements in the query (e.g., taking only the most important elements), and by limiting
the number of subquery results that are considered when calculating the final, combined query
results. Limiting the number of subquery results is a very common technique in metasearch
engines [Cro00]. Although these workarounds can theoretically decrease IR effectiveness, it
is very unlikely that they have any effect on the top ranked documents. Therefore, end user
experience is not affected negatively.

12.6 Summary

In this chapter, I evaluated the hypotheses of this work in a large-scale evaluation, using
Wikipedia as the test collection. During evaluation, I executed queries in two scenarios (“War
on Terrorism” and “Gulf War”) and compared the results with a self-made baseline full-text
search engine, implemented using the well-known Lucene Java library.

First, I described the process of test collection creation and the experimental setup in detail.
Further, I presented the results of the evaluation experiments and analyzed the results. The
experiments showed that the major hypotheses of this work were valid. In particular, the main
hypothesis of the work, namely that ontologies can significantly improve IR effectiveness, was
clearly validated by the experimental results.

During evaluation, I experienced two surprising results. First, the fuzzy time model did not
increase IR efficiency in the case of queries on abstract concepts. Second, combined metadata
and content search did not perform better in the chosen scenarios than metadata search alone.

To conclude, the positive results of this evaluation should give enough motivation for decision
makers to invest into the improvement of existing, full-text based information repositories by
the application of ontologies.
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Conclusion and Outlook

The main question of my thesis was whether using ontologies in the IR process improves IR
effectiveness. IR effectiveness was measured in this work using the classical IR measures —
precision and recall. There were two major areas to analyze in order to answer this question.
On the one hand, the issue of ontology imperfection had to be addressed. On the other hand,
performance issues had to be solved.

Starting with the issue of ontology imperfection, it is important to mention that in a perfect
world using a perfect ontology with perfect metadata annotations, the question of this thesis
can trivially be answered with “yes”. In practice, however, ontology development is costly and
error-prone. Therefore most (if not all) ontologies are imperfect: There is missing informa-
tion, they contain errors, or some important domain knowledge cannot be expressed because
of the limitations of the ontology formalism. I termed these kinds of imperfection as ontology
imperfection. Moreover, in some cases our knowledge about the domain is inherently imper-
fect, therefore we cannot encode perfect information into the ontology. I termed this kind of
imperfection domain imperfection.

In the area of IR, most often thesauri are used for codifying background knowledge of a do-
main. Thesauri are similar to ontologies but the formalism is much more limited, language
dependent and focuses strongly on linguistic relations among words. During the last decades
of IR research, it turned out that using background domain knowledge in form of a thesaurus in
the IR process does not automatically increase effectiveness. On the contrary, in many cases a
decrease in retrieval performance was observed. The cause was the imperfection of thesauri.

Ontologies provide some more advanced constructs for representing domain knowledge than
thesauri. These constructs include non-linguistic semantic relations and the possibility to spec-
ify temporal information in the ontology. Therefore, there was a hope at the beginning of this
work that using these advanced constructs can compensate the negative effect of imperfec-
tion and may lead to more effective IR. Indeed, based on the results presented in Chapter 12,
it turned out that if both semantic relations and temporal information is exploited dur-
ing IR, it consistently increases IR effectiveness in comparison with the baseline full-text
search. In other words, the initial hypothesis that the advantages of advanced ontology con-
structs outweigh the drawbacks of ontology imperfection could be successfully validated.

Interestingly however, explicitly representing domain imperfection turned to be useful only in
some special scenarios. It did not hurt IR performance, though, to represent domain imper-
fection explicitly and having this information available in the ontology definitely increases the
value of the ontology for domain experts.
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The other big problem area that was addressed was the issue of performance. The advanced
constructs of ontologies come with a price: Ontology reasoning in highly expressive ontol-
ogy languages is highly complex, the algorithms are usually exponential, i.e., non-tractable.
Therefore, it was a crucial question how to exploit ontologies and provide an IR system that
is usable in practice. The solution was to limit ontology reasoning to the indexing step that
can be processed offline and use a traditional full-text IR system for further steps of the IR
process. Of course, this solution has the apparent drawback that the information model of
classical full-text search engines (bag of words) can only represent semantic metadata with
some information loss. Luckily, it turned out that even with this theoretical information loss
the results were superior to that of traditional full-text search.

To conclude, the main question of this thesis could be answered positively and at the same
time it was possible to provide an ontology-based information system whose performance
is comparable with traditional full-text search.

On the way to find the answer to the main question, this work provided the following contri-
butions:

• A hybrid information model was developed which is capable to represent both seman-
tic metadata and the results of natural language processing in one framework. Using this
model, it was possible to address the aspect of missing information in ontologies. The
introduced model is a variation of the well-known vector space model. This makes it
relatively easy to represent it in a form that is compatible with the “bag of words” model
and thus use classical, mature, full-text search engines to access it.

• A comprehensive methodology is given how to build ontology-based information re-
trieval systems and particularly how to build the underlying ontology itself. The solution
provided here does not make the usual assumption about the correctness of the ontology
and the semantic metadata but it is robust against all kinds of ontology imperfection.

• A new paradigm for automatically creating semantic metadata was developed, which
can add indirectly relevant concepts to the metadata that are not explicitly mentioned
in the text.

• A new fuzzy set based model was proposed to represent imperfect temporal informa-
tion, which is a kind of domain imperfection. Imperfection in the temporal dimension is
common in many application domains, such as history, news, medical or criminal infor-
mation systems. An ontology that strives to represent background knowledge in those
domains should also be able to represent imperfect temporal information. It was also
discussed in detail how to construct fuzzy temporal intervals (elements of the model) in
a user friendly way.

A model that does not provide for the common temporal relations, cannot be considered
as a full-featured temporal model. This thesis therefore provides the fuzzification of
the 13 classical temporal interval relations of Allen [All83]. This allows reasoning with
imperfect temporal information.

• The theoretical and methodological results of this thesis work were tested by implement-
ing a comprehensive prototype of an ontology-based information retrieval system
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(called IRCON). In addition to that, the prototype also provides some basic implementa-
tions of several innovative idea how ontologies could be exploited on the user interface
level. In IRCON, users interact with the system using the well-known textual queries, or
by simply clicking on elements of the user interface. I.e., no additional cognitive effort
is required when compared with traditional search engines, in contrast to some other
ontology-based solutions.

• Using the developed prototype, an extensive, large scale evaluation was conducted to
validate the impact of ontologies on IR effectiveness in a “real world” scenario, using
the popular Wikipedia encyclopedia as the document collection.

Although the ontology-based IR solution presented here is comprehensive and can be exploited
for real-world tasks without any changes, there are of course many possibilities for extensions
and for future research. In the following, I discuss some of these possibilities.

Metadata generation: The solution presented in this work concentrates on the issue of
adding indirectly relevant concepts to the metadata to maximally support research types of
questions. Therefore, it only provides simple solutions for the other tasks of semantic metadata
generation, such as text-to-ontology matching and disambiguation. In these areas, ideas from
advanced state of the art solutions could be integrated into the system.

Heuristic rules: The form of the heuristic rules for metadata expansion that are used in
the current IRCON system is limited. Experiments with more advanced forms of rules would
be definitely interesting. Another problem is the manual construction of rules in the current
system, which makes installing this solution relatively expensive1. Applying approaches of
machine learning to automatically learn new rules is definitely a very interesting area to make
the solution more economic.

Ontology development: The solution highly depends on a relatively high-quality ontol-
ogy2, similarly to all other ontology-based solutions. Developing an ontology is an expensive,
error-prone process. Although this work provided some guidelines for the effective develop-
ment of ontologies specially for IR solutions, the process is still human-resource intensive.
Any solution that makes ontology development cheaper is also advantageous for my system.

One possibility for improvement is using ontology learning [Mae02, CV05] to at least partially
automatize the ontology building process. My personal experiences before and during this the-
sis work showed that ontology learning is not yet ready to effectively help ontology engineers
in developing ontologies. There is, however, clearly a big potential for improvement and on-
tology learning will likely to become an effective tool for ontology development. However,
my personal opinion is that humans will always be needed in the ontology development pro-
cess. This is because the main motivation for developing ontologies is to codify information
that cannot be (fully) inferred by algorithms. Currently only humans are able to codify such

1Although as discussed in Section 5.6, a step-by-step transition path between a traditional full-text search and
my system can be followed. I.e., only such investments must be made that are well-motivated by actual user
needs.

2which does not have to be perfect
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information. If an ontology could be developed fully automatically using any ontology learn-
ing tool, this would effectively mean that there is no need for ontologies any more because
artificial intelligence reached the point where it can compete with human intelligence and thus
does not need ontologies for its task. In such a perfect world, humans could have a decent
conversation with the information system, where they could use any constructs of their natural
language. In such a situation, the need for an ontology would not appear.

Another possibility for improvement in the area of ontology development is to exploit “com-
munity intelligence”, i.e., to develop ontologies massively collaboratively. In current ontology
development clearly the knowledge acquisition and conceptualization steps form the bottle-
neck because there are usually only few domain experts and ontology engineers available and
they are expensive. If the expertise that is needed to develop an ontology could be lowered
significantly, the costs of ontology development would drastically drop because practically
anybody could participate in the process. The recent success of “tagging” approaches and
the buzz about the “Web 2.0” shows how this idea could work in practice. Indeed, the first
proposals have already appeared to exploit the tagging approach for ontology development
[GL06, SdVM06].

Evolution of ontology and metadata: In the current system, metadata has to be com-
pletely regenerated for all documents when the ontology changes. This is not very practical
because metadata generation is time consuming. There are some possibilities to optimize this
process for specific types of ontology changes. First, the number of documents could be lim-
ited where a regeneration of metadata is needed. Second, it could be examined which parts of
the metadata has to be regenerated and which parts can be retained.

Choosing the right strategy for query combination: As was shown in Chapter 12,
combining the content and metadata queries can harm retrieval performance in areas that are
well covered by the ontology. In these areas, it would be better if the metadata query was
executed alone. Providing an estimation of ontology coverage for specific topics and using this
estimation to decide about the right query strategy (i.e., whether to use combination or not)
seems to be a very challenging topic for future research.

Exploiting ontologies on the user interface: This work concentrated on the question
whether ontologies improve IR effectiveness in the classical sense, i.e., whether they improve
precision and recall measures. Information retrieval is, however, a process rather than a simple
query–answer interaction with the system, as was explained in Section 2.1. Ontologies can
definitely be used to support user interaction with the system and thus improve the IR pro-
cess as a whole. Examples for such support include ontology navigation [PKO+04, DW04],
semantic disambiguation [GMM03], intelligent suggestion of alternative queries [Sto05], im-
proved visualization of semantic metadata [NDO05] etc. This work already showed some
simple solutions in this direction but there is of course room for improvement. The main ques-
tion according ontology-based user interface improvements is how to evaluate the positive (or
negative) effects that these techniques may have. So far it still seems to be an open question
which of these techniques are really useful; especially considering the fact that most users are
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accustomed to a simple full-text input field a la Google and are often annoyed by any other
technique that is more complicated than this simple solution.
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Appendix A

Relational schema for vector space
model performance testing

CREATE TABLE DocVector (
do c_ id i n t e g e r ,
t e rm varchar ( 2 5 5 ) ,
we ig h t r e a l ) ;

CREATE INDEX d o c _ i d _ i d x ON DocVector ( d oc _ id ) ;
CREATE INDEX t e r m _ i d x ON DocVector ( te rm ) ;

CREATE VIEW d v _ l e n g t h AS
SELECT doc_id , SQRT(SUM( we ig h t ∗we ig h t ) ) AS l e n g t h
FROM d o c v e c t o r
GROUP BY do c_ id ;

CREATE TABLE dv_length_mv as s e l e c t ∗ FROM d v _ l e n g t h ;
CREATE INDEX d v _ l e n g t h _ i d x ON dv_length_mv ( d oc _ id ) ;
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Evaluation ontology

Table B.1: Ontology instances

Instance label Concept label
2003 invasion of Baghdad Event
2003 invasion of Iraq Event
9/11 hijackers Organization
Abdulaziz al-Omari Person
Abu Abdallah Hassan Ben Mahmoud Person
Abu Ghraib Prison Organization
Abu Ghraib prison Organization
Abu Ghraib prisoner abuse scandal Event
Abu Musab al-Zarqawi Person
Afghanistan Geo-Political Entity
Ahmed Abdallah al-Nami Person
Ahmed al-Ghamdi Person
Ahmed al-Haznawi Person
Ahmed al-Nami Person
Al Jazeera Organization
Al Jazeera TV Organization
Al Qa’im Geo-Political Entity
Albania Geo-Political Entity
Ali Abdul Aziz Ali Person
al-Qaeda Organization
American Airlines Flight 11 Object
American Airlines Flight 77 Object
Asadullah Abdul Rahman Person
Australia Geo-Political Entity
Baghdad Geo-Political Entity
Basra Geo-Political Entity
Battle of Abu Ghraib Event
Benyam (Benjamin) Mohammed al Habashi Person
Brigadier General Abdullah Ali Jasmin Person
Bulgaria Geo-Political Entity
Camp Delta Organization
Camp Echo Organization
Camp Iguana Organization
Camp X-Ray Organization
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Table B.1: Ontology instances (cont.)

Instance label Concept label
Central Intelligence Agency Organization
Citizens for a Free Kuwait Organization
Coalition of the Willing Organization
Congressional Human Rights Caucus Organization
Croatia Geo-Political Entity
Cuba Geo-Political Entity
Czech Republic Geo-Political Entity
Dalibor Lazarevski Person
Denmark Geo-Political Entity
Department of Defense Organization
Dick Cheney Person
Donald Henry Rumsfeld Person
Dragan Markovic Person
Enzo Baldoni Person
Estonia Geo-Political Entity
Fallujah Geo-Political Entity
Fayez Banihammad Person
Fedayeen Saddam Organization
Feredion Jahani Person
George H. W. Bush Geo-Political Entity
George W. Bush Person
Georges Malbrunot Person
Guantanamo Bay Prison Organization
Guantanamo Bay Prison Scandal Event
Gulf War Event
Hamza al-Ghamdi Person
Hani Hanjour Person
Hill & Knowlton Organization
Huffman Aviation Organization
Hungary Geo-Political Entity
Ibrahim Ahmed Mahmoud al Qosi Person
Information Ministry of Iraq Organization
Iran Geo-Political Entity
Iraq Geo-Political Entity
Iraq disarmament crisis Event
Iraq War Event
Iraqi invasion of Kuwait Event
Iraq’s Special Republican Guard Organization
Islamic Army in Iraq Organization
Islamic Front for the Iraqi Resistance Organization
Islamic Resistance Movement Organization
Italy Geo-Political Entity
Jaish Ansar al-Sunna Organization
James (Jimmy) W. Walter Person
Khalid al-Mihdhar Person
Khalid Sheikh Mohammed Person
Kirkuk Geo-Political Entity
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Instance label Concept label
Kuwait Geo-Political Entity
Kuwait City Geo-Political Entity
Latvia Geo-Political Entity
Lauri Fitz-Pegado Person
Liberation Tower Object
Lithuania Geo-Political Entity
London Geo-Political Entity
Lotfi Raissi Person
Majed Mashaan Moqed Person
Majed Moqed Person
Major General Abul Ali Jasmin Person
Major General Victor Renuart Person
Manadel al-Jamadi Person
Marine Corps Organization
Marwan al-Shehhi Person
Marwan Ibrahim Kassar Person
Mohamed al-Kahtani Person
Mohamed Atta al Sayed Person
Mohammed Jawdat Hussein Person
Mohammed Saeed al-Sahaf Person
Mohand al-Shehri Person
Muqtada al-Sadr Person
Mushabib al-Hamlan Person
Mustafa Ahmed al-Hawsawi Person
National Library of Iraq Organization
National Museum of Iraq Organization
Nawaf al-Hazmi Person
New York Geo-Political Entity
Nijirah al-Sabah Person
Oil Ministry of Iraq Organization
Operation Abilene Event
Operation Bayonet Lightning Event
Operation Bulldog Mammoth Event
Operation Chamberlain Event
Operation Clear Area Event
Operation Desert Farewell Event
Operation Desert Scorpion Event
Operation Eagle Curtain Event
Operation Enduring Freedom Event
Operation Industrial Sweep Event
Operation Iron Hammer Event
Operation Iron Promise Event
Operation Ivy Blizzard Event
Operation Ivy Cyclone Event
Operation Ivy Lightning Event
Operation Ivy Needle Event
Operation Ivy Serpent Event
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Table B.1: Ontology instances (cont.)

Instance label Concept label
Operation Longstreet Event
Operation Northern Delay Event
Operation Option North Event
Operation Panther Squeeze Event
Operation Peninsula Strike Event
Operation Phantom Fury Event
Operation Phantom Linebacker Event
Operation Planet X Event
Operation Plymouth Rock Event
Operation Red Dawn Event
Operation Resolute Sword Event
Operation Rifles Blitz Event
Operation Silverdao Event
Operation Soda Mountain Event
Operation Telic Event
Operation Tiger Clean Sweep Event
Operation Valiant Strike Event
Operation Vigilant Resolve Event
Operation Warrior Sweep Event
Operation Yellow Ribbon Event
Osama bin Laden Person
Pakistan Geo-Political Entity
Pentagon Object
Poland Geo-Political Entity
Portugal Geo-Political Entity
Preparations for 2003 invasion of Iraq Event
Raja Azad Person
Ramzi Binalshibh Person
Redouan Chekkouri Person
Republic of Macedonia Geo-Political Entity
Romania Geo-Political Entity
Ronald Schulz Person
Saddam Hussein Person
Sadeq Muhammad Sa’id Ismail Person
Saeed al-Ghamdi Person
Sajad Naeem Person
Salem al-Hazmi Person
Salim Ahmed Hamdan Person
Samarra Geo-Political Entity
Satam al-Suqami Person
Saud Nasir al-Sabah Person
Saudi Arabia Geo-Political Entity
Scorpions Organization
September 11, 2001 Terrorist Attack Event
Slovakia Geo-Political Entity
Slovenia Geo-Political Entity
Soviet Union Geo-Political Entity
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Instance label Concept label
Soviet war in Afghanistan Event
Spain Geo-Political Entity
Staff Lieutenant General Mezahem Saab Al Hassan Al-Tikriti Person
Syria Geo-Political Entity
Taliban Organization
Tawfiq bin Attash Person
The letter of the eight Object
The Pentagon Organization
Thomas M. Pappas Person
Tigris River Geographical Feature
Tikrit Geo-Political Entity
U.S. Department of Commerce Organization
Umm Qasr Geo-Political Entity
UN Security Council Organization
United Airlines Flight 175 Object
United Airlines Flight 93 Object
United Arab Emirates Geo-Political Entity
United Kingdom Geo-Political Entity
United Nations Organization
United Nations Security Council Resolution 660 Object
United States Geo-Political Entity
United States Court of Appeals Organization
United States Department of Defence Organization
United States Navy Organization
United States Supreme Court Organization
United States war in Afghanistan Event
US Army Organization
Veteran Intelligence Professionals for Sanity Organization
Vilnius letter Object
Wail Alshehri Person
Wail al-Shehri Person
Waleed al-Shehri Person
War on Terrorism Event
Wassef Ali Hassoun Person
World Trade Center Object
Yarmuk Hospital Organization
Zacarias Moussaoui Person
Zakariyah Essabar Person
Ziad Jarrah Person
Zoran Naskovski Person

Table B.2: Ontology relations

Source label Target label Relation label
2003 invasion of Baghdad 2003 invasion of Baghdad isSubEventOf
2003 invasion of Iraq 2003 invasion of Iraq isSubEventOf
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Table B.2: Ontology relations (cont.)

Source label Target label Relation label
Abu Ghraib prisoner abuse scan-
dal

Abu Ghraib prisoner abuse scan-
dal

isSubEventOf

Guantanamo Bay Prison Scandal Guantanamo Bay Prison Scandal isSubEventOf
Iraq disarmament crisis Iraq disarmament crisis isSubEventOf
Iraq War Iraq War isSubEventOf
Iraqi invasion of Kuwait Iraqi invasion of Kuwait isSubEventOf
Operation Abilene Operation Abilene isSubEventOf
Operation Bayonet Lightning Operation Bayonet Lightning isSubEventOf
Operation Bulldog Mammoth Operation Bulldog Mammoth isSubEventOf
Operation Chamberlain Operation Chamberlain isSubEventOf
Operation Clear Area Operation Clear Area isSubEventOf
Operation Desert Farewell Operation Desert Farewell isSubEventOf
Operation Desert Scorpion Operation Desert Scorpion isSubEventOf
Operation Eagle Curtain Operation Eagle Curtain isSubEventOf
Operation Enduring Freedom Operation Enduring Freedom isSubEventOf
Operation Industrial Sweep Operation Industrial Sweep isSubEventOf
Operation Iron Hammer Operation Iron Hammer isSubEventOf
Operation Iron Promise Operation Iron Promise isSubEventOf
Operation Ivy Blizzard Operation Ivy Blizzard isSubEventOf
Operation Ivy Cyclone Operation Ivy Cyclone isSubEventOf
Operation Ivy Lightning Operation Ivy Lightning isSubEventOf
Operation Ivy Needle Operation Ivy Needle isSubEventOf
Operation Ivy Serpent Operation Ivy Serpent isSubEventOf
Operation Longstreet Operation Longstreet isSubEventOf
Operation Northern Delay Operation Northern Delay isSubEventOf
Operation Option North Operation Option North isSubEventOf
Operation Panther Squeeze Operation Panther Squeeze isSubEventOf
Operation Peninsula Strike Operation Peninsula Strike isSubEventOf
Operation Phantom Fury Operation Phantom Fury isSubEventOf
Operation Phantom Linebacker Operation Phantom Linebacker isSubEventOf
Operation Planet X Operation Planet X isSubEventOf
Operation Plymouth Rock Operation Plymouth Rock isSubEventOf
Operation Red Dawn Operation Red Dawn isSubEventOf
Operation Resolute Sword Operation Resolute Sword isSubEventOf
Operation Rifles Blitz Operation Rifles Blitz isSubEventOf
Operation Silverdao Operation Silverdao isSubEventOf
Operation Soda Mountain Operation Soda Mountain isSubEventOf
Operation Telic Operation Telic isSubEventOf
Operation Tiger Clean Sweep Operation Tiger Clean Sweep isSubEventOf
Operation Valiant Strike Operation Valiant Strike isSubEventOf
Operation Vigilant Resolve Operation Vigilant Resolve isSubEventOf
Operation Warrior Sweep Operation Warrior Sweep isSubEventOf
Operation Yellow Ribbon Operation Yellow Ribbon isSubEventOf
September 11, 2001 Terrorist At-
tack

September 11, 2001 Terrorist At-
tack

isSubEventOf

United States war in Afghanistan United States war in Afghanistan isSubEventOf
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Table B.3: Ontology temporal relations

Source label Target label Relation label1

2003 invasion of Iraq Iraq happensAt
Abdulaziz al-Omari September 11, 2001 Terrorist At-

tack
initiates

Abu Abdallah Hassan Ben Mah-
moud

Islamic Army in Iraq leads

Abu Ghraib prison Abu Ghraib prisoner abuse scan-
dal

isInvolvedIn

Afghanistan Soviet war in Afghanistan isInvolvedIn
Ahmed al-Ghamdi September 11, 2001 Terrorist At-

tack
initiates

Ahmed al-Haznawi September 11, 2001 Terrorist At-
tack

initiates

Ahmed al-Nami September 11, 2001 Terrorist At-
tack

initiates

Ali Abdul Aziz Ali al-Qaeda isMemberOf
American Airlines Flight 11 Abdulaziz al-Omari interactsWith
American Airlines Flight 11 Mohamed Atta al Sayed interactsWith
American Airlines Flight 11 Satam al-Suqami interactsWith
American Airlines Flight 11 September 11, 2001 Terrorist At-

tack
isInvolvedIn

American Airlines Flight 11 Wail al-Shehri interactsWith
American Airlines Flight 11 Waleed al-Shehri interactsWith
American Airlines Flight 11 World Trade Center interactsWith
American Airlines Flight 77 Hani Hanjour interactsWith
American Airlines Flight 77 Khalid al-Mihdhar interactsWith
American Airlines Flight 77 Majed Moqed interactsWith
American Airlines Flight 77 Nawaf al-Hazmi interactsWith
American Airlines Flight 77 Pentagon interactsWith
American Airlines Flight 77 Salem al-Hazmi interactsWith
American Airlines Flight 77 September 11, 2001 Terrorist At-

tack
isInvolvedIn

Asadullah Abdul Rahman Guantanamo Bay Prison interactsWith
Asadullah Abdul Rahman Guantanamo Bay Prison Scandal isInvolvedIn
Baghdad Iraq isPartOf
Basra Iraq isPartOf
Benyam (Benjamin) Mohammed
al Habashi

Guantanamo Bay Prison interactsWith

Benyam (Benjamin) Mohammed
al Habashi

Guantanamo Bay Prison Scandal isInvolvedIn

Camp Delta Guantanamo Bay Prison isChild-
OrganizationOf

Camp Echo Guantanamo Bay Prison isChild-
OrganizationOf

Camp Iguana Guantanamo Bay Prison isChild-
OrganizationOf

1The ontology formalism allows to specify the validity time for the temporal relations. I did not use this feature,
however, during the evaluation. Therefore, the temporal specifications are omitted from this table.
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Table B.3: Ontology temporal relations (cont.)

Source label Target label Relation label
Camp X-Ray Guantanamo Bay Prison isChild-

OrganizationOf
Congressional Human Rights
Caucus

Gulf War isInvolvedIn

Congressional Human Rights
Caucus

United States isLocatedAt

Dalibor Lazarevski Islamic Army in Iraq interactsWith
Department of Defense Guantanamo Bay Prison Scandal isInvolvedIn
Dick Cheney Gulf War isInvolvedIn
Donald Henry Rumsfeld Guantanamo Bay Prison Scandal isInvolvedIn
Dragan Markovic Islamic Army in Iraq interactsWith
Enzo Baldoni Islamic Army in Iraq interactsWith
Fallujah Iraq isPartOf
Fayez Banihammad September 11, 2001 Terrorist At-

tack
initiates

Fedayeen Saddam 2003 invasion of Iraq isInvolvedIn
Feredion Jahani Islamic Army in Iraq interactsWith
George H. W. Bush Gulf War isInvolvedIn
George W. Bush 2003 invasion of Iraq isInvolvedIn
Georges Malbrunot Islamic Army in Iraq interactsWith
Guantanamo Bay Prison Cuba isLocatedAt
Guantanamo Bay Prison Guantanamo Bay Prison Scandal isInvolvedIn
Gulf War Iraq happensAt
Hamza al-Ghamdi September 11, 2001 Terrorist At-

tack
initiates

Hani Hanjour September 11, 2001 Terrorist At-
tack

initiates

Hill & Knowlton Gulf War isInvolvedIn
Hill & Knowlton United States isLocatedAt
Ibrahim Ahmed Mahmoud al
Qosi

al-Qaeda isMemberOf

Ibrahim Ahmed Mahmoud al
Qosi

Guantanamo Bay Prison interactsWith

Information Ministry of Iraq Baghdad isLocatedAt
Iran Soviet war in Afghanistan isInvolvedIn
Iraq Gulf War initiates
Iraq War Iraq happensAt
Iraqi invasion of Kuwait Kuwait happensAt
Islamic Army in Iraq 2003 invasion of Iraq isInvolvedIn
Islamic Front for the Iraqi Resis-
tance

2003 invasion of Iraq isInvolvedIn

Islamic Resistance Movement 2003 invasion of Iraq isInvolvedIn
Jaish Ansar al-Sunna 2003 invasion of Iraq isInvolvedIn
James (Jimmy) W. Walter September 11, 2001 Terrorist At-

tack
initiates

Khalid al-Mihdhar September 11, 2001 Terrorist At-
tack

initiates
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Source label Target label Relation label
Khalid Sheikh Mohammed al-Qaeda isMemberOf
Kirkuk Iraq isPartOf
Kuwait Gulf War isInvolvedIn
Kuwait City Kuwait isPartOf
Lauri Fitz-Pegado Gulf War isInvolvedIn
Lauri Fitz-Pegado Hill & Knowlton isMemberOf
Liberation Tower Gulf War isInvolvedIn
Liberation Tower Kuwait isLocatedAt
London United Kingdom isPartOf
Lotfi Raissi September 11, 2001 Terrorist At-

tack
initiates

Majed Mashaan Moqed September 11, 2001 Terrorist At-
tack

initiates

Majed Moqed September 11, 2001 Terrorist At-
tack

initiates

Major General Victor Renuart 2003 invasion of Baghdad isInvolvedIn
Manadel al-Jamadi Abu Ghraib prisoner abuse scan-

dal
isInvolvedIn

Marwan al-Shehhi Huffman Aviation isMemberOf
Marwan al-Shehhi September 11, 2001 Terrorist At-

tack
initiates

Marwan Ibrahim Kassar Islamic Army in Iraq interactsWith
Mohamed al-Kahtani al-Qaeda isMemberOf
Mohamed al-Kahtani Guantanamo Bay Prison interactsWith
Mohamed Atta al Sayed Huffman Aviation isMemberOf
Mohamed Atta al Sayed September 11, 2001 Terrorist At-

tack
initiates

Mohammed Jawdat Hussein Islamic Army in Iraq interactsWith
Mohammed Saeed al-Sahaf Information Ministry of Iraq leads
Mohand al-Shehri September 11, 2001 Terrorist At-

tack
initiates

Mushabib al-Hamlan al-Qaeda isMemberOf
Mustafa Ahmed al-Hawsawi September 11, 2001 Terrorist At-

tack
initiates

National Library of Iraq 2003 invasion of Baghdad isInvolvedIn
National Museum of Iraq Baghdad isLocatedAt
Nawaf al-Hazmi September 11, 2001 Terrorist At-

tack
initiates

New York United States isPartOf
Nijirah al-Sabah Gulf War isInvolvedIn
Nijirah al-Sabah Saud Nasir al-Sabah interactsWith
Oil Ministry of Iraq Baghdad isLocatedAt
Osama bin Laden al-Qaeda leads
Osama bin Laden Soviet war in Afghanistan isInvolvedIn
Pakistan Soviet war in Afghanistan isInvolvedIn
Pentagon September 11, 2001 Terrorist At-

tack
isInvolvedIn
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Table B.3: Ontology temporal relations (cont.)

Source label Target label Relation label
Raja Azad Islamic Army in Iraq interactsWith
Ramzi Binalshibh al-Qaeda isMemberOf
Redouan Chekkouri Camp Delta interactsWith
Ronald Schulz Islamic Army in Iraq interactsWith
Saddam Hussein 2003 invasion of Iraq isInvolvedIn
Saddam Hussein Gulf War isInvolvedIn
Sadeq Muhammad Sa’id Ismail Camp Delta interactsWith
Saeed al-Ghamdi al-Qaeda isMemberOf
Saeed al-Ghamdi September 11, 2001 Terrorist At-

tack
initiates

Sajad Naeem Islamic Army in Iraq interactsWith
Salem al-Hazmi September 11, 2001 Terrorist At-

tack
initiates

Salim Ahmed Hamdan Guantanamo Bay Prison interactsWith
Samarra 2003 invasion of Iraq isInvolvedIn
Satam al-Suqami September 11, 2001 Terrorist At-

tack
initiates

Saud Nasir al-Sabah Gulf War isInvolvedIn
Saudi Arabia Gulf War isInvolvedIn
Saudi Arabia Soviet war in Afghanistan isInvolvedIn
Scorpions 2003 invasion of Iraq isInvolvedIn
September 11, 2001 Terrorist At-
tack

New York happensAt

Soviet Union Soviet war in Afghanistan isInvolvedIn
Soviet war in Afghanistan Afghanistan happensAt
Staff Lieutenant General Meza-
hem Saab Al Hassan Al-Tikriti

Fedayeen Saddam leads

Tawfiq bin Attash al-Qaeda isMemberOf
The letter of the eight Czech Republic interactsWith
The letter of the eight Denmark interactsWith
The letter of the eight Hungary interactsWith
The letter of the eight Iraq disarmament crisis isInvolvedIn
The letter of the eight Italy interactsWith
The letter of the eight Poland interactsWith
The letter of the eight Portugal interactsWith
The letter of the eight Spain interactsWith
The letter of the eight United Kingdom interactsWith
Thomas M. Pappas Abu Ghraib prisoner abuse scan-

dal
isInvolvedIn

UN Security Council Iraq disarmament crisis isInvolvedIn
UN Security Council United Nations Security Council

Resolution 660
interactsWith

United Airlines Flight 175 Ahmed al-Ghamdi interactsWith
United Airlines Flight 175 Fayez Banihammad interactsWith
United Airlines Flight 175 Hamza al-Ghamdi interactsWith
United Airlines Flight 175 Marwan al-Shehhi interactsWith
United Airlines Flight 175 Mohand al-Shehri interactsWith
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Source label Target label Relation label
United Airlines Flight 175 September 11, 2001 Terrorist At-

tack
isInvolvedIn

United Airlines Flight 175 World Trade Center interactsWith
United Airlines Flight 93 Ahmed al-Haznawi interactsWith
United Airlines Flight 93 Ahmed al-Nami interactsWith
United Airlines Flight 93 Saeed al-Ghamdi interactsWith
United Airlines Flight 93 September 11, 2001 Terrorist At-

tack
isInvolvedIn

United Airlines Flight 93 Ziad Jarrah interactsWith
United Nations Security Council
Resolution 660

Gulf War isInvolvedIn

United Nations Security Council
Resolution 660

Iraqi invasion of Kuwait isInvolvedIn

United States 2003 invasion of Iraq isInvolvedIn
United States Gulf War initiates
United States Soviet war in Afghanistan isInvolvedIn
United States Court of Appeals Guantanamo Bay Prison Scandal isInvolvedIn
United States Court of Appeals United States isLocatedAt
United States Navy US Army isChild-

OrganizationOf
United States Supreme Court Guantanamo Bay Prison Scandal isInvolvedIn
United States Supreme Court United States isLocatedAt
United States war in Afghanistan Afghanistan happensAt
Veteran Intelligence Professionals
for Sanity

2003 invasion of Iraq isInvolvedIn

Vilnius letter Albania interactsWith
Vilnius letter Bulgaria interactsWith
Vilnius letter Croatia interactsWith
Vilnius letter Estonia interactsWith
Vilnius letter Iraq disarmament crisis isInvolvedIn
Vilnius letter Latvia interactsWith
Vilnius letter Lithuania interactsWith
Vilnius letter Republic of Macedonia interactsWith
Vilnius letter Romania interactsWith
Vilnius letter Slovakia interactsWith
Vilnius letter Slovenia interactsWith
Wail Alshehri September 11, 2001 Terrorist At-

tack
isInvolvedIn

Wail al-Shehri September 11, 2001 Terrorist At-
tack

initiates

Waleed al-Shehri September 11, 2001 Terrorist At-
tack

initiates

Wassef Ali Hassoun 2003 invasion of Iraq isInvolvedIn
World Trade Center New York isLocatedAt
World Trade Center September 11, 2001 Terrorist At-

tack
isInvolvedIn

Yarmuk Hospital Baghdad isLocatedAt
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Table B.3: Ontology temporal relations (cont.)

Source label Target label Relation label
Zacarias Moussaoui al-Qaeda isMemberOf
Zakariyah Essabar al-Qaeda isMemberOf
Ziad Jarrah al-Qaeda isMemberOf
Ziad Jarrah September 11, 2001 Terrorist At-

tack
initiates

Zoran Naskovski Islamic Army in Iraq interactsWith

Table B.4: Ontology temporal attributes

Source label Attribute label Time specification
George H. W. Bush isActiveDuring 1989-01-20;1993-01-20
George W. Bush isActiveDuring 2001-01-20;
2003 invasion of Iraq happensDuring 2002-11-09[0.3];2

2003-03-17[0.7];
2003-03-20[1.0];
2003-05-01[0.5];
2003-12-13[0.2]

September 11, 2001 Terrorist At-
tack

happensDuring 2001-09-11;2001-09-12

Soviet war in Afghanistan happensDuring 1979-12-27;1989-02-15
Gulf War happensDuring 1990-08-02;1991-02-28
Iraq War happensDuring 2003-03-19;
United States war in Afghanistan happensDuring 2001-10-07;
War on Terrorism happensDuring 2001-09-11;
Iraqi invasion of Kuwait happensDuring 1990-08-02;1990-08-03

Table B.5: Ontology lexical layer

Labels (in bold) and their synonyms
2003 invasion of Baghdad

Invasion of Baghdad
2003 invasion of Iraq

2003 Invasion of Iraq
Abdulaziz al-Omari

Abdulaziz Alomari
Abu Musab al-Zarqawi

al-Zarqawi
Ahmed Abdallah al-Nami

Ahmed Abdallah Alnami, Ahmed Abdallah al-Nawi, al-Nami, Alnami, al-Nawi
Ahmed al-Ghamdi

Ahmed Salah al-Ghamdi, Ahmed Alghamdi
Ahmed al-Haznawi

Ahmed Ibrahim al-Haznawi, al-Haznawi

2This is a fuzzy temporal specification. The form of the specification is the following:
date_spec_1[subjective_value1];...;date_spec_N[subjective_valueN], where
the subjective value denotes the subjective value after the specified time point (date).

250



Table B.5: Ontology lexical layer (cont.)

Labels (in bold) and their synonyms
Ahmed al-Nami

Ahmed Abdallah al-Nami, Ahmed al-Nami, Ahmed al-Nawi
Al Jazeera

al Jazeera, Al Jazeera
al-Qaeda

al Qaeda terrorist network, al Qaeda, al-Qaida
Benyam (Benjamin) Mohammed al Habashi

Binyam Mohammed
Central Intelligence Agency

CIA
Citizens for a Free Kuwait

CFK
Congressional Human Rights Caucus

Human Rights Caucus
Department of Defense

DoD
Dick Cheney

Cheney
Donald Henry Rumsfeld

Henry Rumsfeld, Secretary Rumsfeld, Rumsfeld
Fayez Banihammad

Fayez Rashid Ahmed Hassan al Qadi Banihammad
George H. W. Bush

President Bush, Bush, George Bush, President George H.W. Bush, George Bush Snr.
George W. Bush

President George W. Bush, Bush, George Bush, President Bush
Guantanamo Bay Prison

Guantanamo Bay
Gulf War

Persian Gulf War, Operation Desert Storm, Gulf War I, First Persian Gulf War, Operation
Desert Shield, Operation Granby

Hamza al-Ghamdi
Hamza Alghamdi

Hani Hanjour
Hani Saleh Hanjour

Hill & Knowlton
H&K

Ibrahim Ahmed Mahmoud al Qosi
Ibrahim Ahmed Mahmoud

Information Ministry of Iraq
Information Ministry

Iraq War
war of Iraq, 2003 Iraq war, Operation Iraqi Freedom, 2003 Iraq War, Second Gulf War,
2003 occupation of Iraq

Iraqi invasion of Kuwait
Invasion of Kuwait by Iraq
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Table B.5: Ontology lexical layer (cont.)

Labels (in bold) and their synonyms
Islamic Army in Iraq

IAI
Jaish Ansar al-Sunna

al-Sunna
James (Jimmy) W. Walter

Jimmy Walter
Khalid al-Mihdhar

Khalid Almihdhar
Liberation Tower

The Kuwait Telecommunications Tower
Lotfi Raissi

Raissi
Majed Mashaan Moqed

Moqued
Majed Moqed

Majed Mashaan Moqed, Majed Moqued
Major General Victor Renuart

Victor Renuart
Marine Corps

Marines
Marwan al-Shehhi

Marwan Yousef al-Shehhi, Marwan Alshehhi
Mohamed Atta al Sayed

Mohamed Atta al-Sayed , Mehan Atta, Mohammed Atta, Mohammad El Amir, Mo-
hamed El Sayed, Muhammad Muhammad Al Amir Awag Al Sayyid Atta, Muhammad
Muhammad Al-Amir Awad Al Sayad, Mohamed Mohamed Elamir Awad Elsayed, Mo-
hamed Atta

Mohand al-Shehri
Mohand Alshehri

National Library of Iraq
National Library

Nawaf al-Hazmi
Nawaq Alhazmi, Rabia al Makki , Nawaf M.S. Al Hazmi

New York
New York City

Nijirah al-Sabah
Nayirah, Nurse Nayirah

Operation Enduring Freedom
OEF

Operation Phantom Fury
Operation Al-Fajr

Operation Telic
Op TELIC

Osama bin Laden
Usama bin Laden, bin Laden

Saddam Hussein
Iraqi President Saddam Hussein
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Table B.5: Ontology lexical layer (cont.)

Labels (in bold) and their synonyms
Saeed al-Ghamdi

Saeed Alghamdi, al-Ghamdi
Salem al-Hazmi

Salem Alhazmi
Satam al-Suqami

Satam M. A. al-Suqami
Saud Nasir al-Sabah

Nasir al-Sabah
September 11, 2001 Terrorist Attack

9/11, September 11, 2001 attacks, 2001 terrorist attack, September 11, 2001 attack,
terrorist attack on September 11, 2001, September 11, 2001 terrorist attack

Staff Lieutenant General Mezahem Saab Al Hassan Al-Tikriti
General Mezahem, Lieutenant General Mezahem

Thomas M. Pappas
Colonel Pappas

UN Security Council
United Nations Security Council

United Arab Emirates
UAE

United Kingdom
U.K.

United States
U.S., USA, United States of America

United States Supreme Court
Supreme Court

United States war in Afghanistan
2001 war in Afghanistan

Veteran Intelligence Professionals for Sanity
VIPS

Wail al-Shehri
Wail Alshehri

Waleed al-Shehri
Waleed M. al-Shehri, Waleed M. Alshehri

War on Terrorism
War on Terror, GWOT

World Trade Center
WTC, The Twin Towers

Ziad Jarrah
Ziad Samir Jarrah
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Ontology-based heuristic rules

C.1 XML Schema for the definition of ontology-based
heuristic rules

<xs:schema xmlns:xs =" h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema"
elementFormDefault=" q u a l i f i e d ">

< x s : e l e m e n t name=" h e u r i s t i c s ">
<xs:complexType>

< x s : s e q u e n c e >
< x s : e l e m e n t maxOccurs=" unbounded " r e f =" r u l e " / >

< / x s : s e q u e n c e >
< x s : a t t r i b u t e name=" d i s a b l e _ a l l " use=" r e q u i r e d "

type =" xs:NCName " / >
< / xs:complexType>

< / x s : e l e m e n t >
< x s : e l e m e n t name=" r u l e ">

<xs:complexType>
< x s : s e q u e n c e >

< x s : e l e m e n t maxOccurs=" unbounded " r e f =" c o n d i t i o n " / >
< x s : e l e m e n t minOccurs=" 0 " r e f =" t e m p o r a l _ r e s t r i c t i o n " / >

< x s : e l e m e n t r e f =" t a r g e t _ c o n c e p t " / >
< / x s : s e q u e n c e >
< x s : a t t r i b u t e name=" a m p l i f i c a t i o n _ f a c t o r "

use=" o p t i o n a l " type =" x s : d e c i m a l " / >
< x s : a t t r i b u t e name=" e n a b l e " use=" r e q u i r e d "

type =" xs:NCName " / >
< / xs:complexType>

< / x s : e l e m e n t >
< x s : e l e m e n t name=" c o n d i t i o n ">

<xs:complexType>
< x s : s e q u e n c e >

< x s : e l e m e n t r e f =" name " / >
< x s : e l e m e n t r e f =" c a r d i n a l i t y " / >
< x s : e l e m e n t r e f =" t a r g e t _ r e l a t i o n " / >

< / x s : s e q u e n c e >
< x s : a t t r i b u t e name=" w e i g h t _ t h r e s h o l d "

use=" o p t i o n a l " type =" x s : d e c i m a l " / >
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< / xs:complexType>
< / x s : e l e m e n t >
< x s : e l e m e n t name=" name " type =" xs:anyURI " / >
< x s : e l e m e n t name=" c a r d i n a l i t y " type =" x s : i n t e g e r " / >
< x s : e l e m e n t name=" t a r g e t _ r e l a t i o n ">

<xs:complexType>
< x s : s i m p l e C o n t e n t >

< x s : e x t e n s i o n base =" xs :anyURI ">
< x s : a t t r i b u t e name=" t y p e " type =" xs:NCName " / >

< / x s : e x t e n s i o n >
< / x s : s i m p l e C o n t e n t >

< / xs:complexType>
< / x s : e l e m e n t >
< x s : e l e m e n t name=" t e m p o r a l _ r e s t r i c t i o n " type =" xs:anyURI " / >
< x s : e l e m e n t name=" t a r g e t _ c o n c e p t " type =" xs:anyURI " / >

< / xs:schema>

C.2 XML definition of the ontology-based heuristic
rules used during the evaluation

< h e u r i s t i c s
x m l n s : x s i =" h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema−instance "
xs i :noNamespaceSchemaLoca t ion =" h e u r i s t i c s _ f o r _ e v a l u a t i o n . xsd "
d i s a b l e _ a l l =" no ">

< r u l e enable =" yes " a m p l i f i c a t i o n _ f a c t o r =" 0 . 9 8 "
name=" 3 P a r t i c i p a n t s ">
< c o n d i t i o n w e i g h t _ t h r e s h o l d =" 0 . 1 ">

< source_concept >
u r n : i r c o n : o n t o l o g y # P a r t i c i p a n t

< / source_concept >
< c a r d i n a l i t y >3< / c a r d i n a l i t y >
< t e m p o r a l _ r e l a t i o n >

u r n : i r c o n : o n t o l o g y # i s I n v o l v e d I n
< / t e m p o r a l _ r e l a t i o n >

< / c o n d i t i o n >
< t e m p o r a l _ a t t r i b u t e >

u r n : i r c o n : o n t o l o g y # happensDur ing
< / t e m p o r a l _ a t t r i b u t e >
< t a r g e t _ c o n c e p t > u r n : i r c o n : o n t o l o g y # Event < / t a r g e t _ c o n c e p t >

< / r u l e >

< r u l e enable =" yes " a m p l i f i c a t i o n _ f a c t o r =" 0 . 9 8 "
name=" 2 P a r t i c i p a n t s 1 Subeven t ">
< c o n d i t i o n w e i g h t _ t h r e s h o l d =" 0 . 1 ">

< source_concept >
u r n : i r c o n : o n t o l o g y # P a r t i c i p a n t

< / source_concept >
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< c a r d i n a l i t y >2< / c a r d i n a l i t y >
< t e m p o r a l _ r e l a t i o n >

u r n : i r c o n : o n t o l o g y # i s I n v o l v e d I n
< / t e m p o r a l _ r e l a t i o n >

< / c o n d i t i o n >
< c o n d i t i o n w e i g h t _ t h r e s h o l d =" 0 . 2 ">

< source_concept > u r n : i r c o n : o n t o l o g y # Event < / source_concept >
< c a r d i n a l i t y >1< / c a r d i n a l i t y >
< r e l a t i o n > u r n : i r c o n : o n t o l o g y # i sSubEven tOf < / r e l a t i o n >

< / c o n d i t i o n >
< t e m p o r a l _ a t t r i b u t e >

u r n : i r c o n : o n t o l o g y # happensDur ing
< / t e m p o r a l _ a t t r i b u t e >
< t a r g e t _ c o n c e p t > u r n : i r c o n : o n t o l o g y # Event < / t a r g e t _ c o n c e p t >

< / r u l e >

< r u l e enable =" yes " a m p l i f i c a t i o n _ f a c t o r =" 0 . 9 8 "
name=" P a r t i c i p a n t s and Agent ">
< c o n d i t i o n w e i g h t _ t h r e s h o l d =" 0 . 1 ">

< source_concept >
u r n : i r c o n : o n t o l o g y # P a r t i c i p a n t

< / source_concept >
< c a r d i n a l i t y >3< / c a r d i n a l i t y >
< t e m p o r a l _ r e l a t i o n >

u r n : i r c o n : o n t o l o g y # i s I n v o l v e d I n
< / t e m p o r a l _ r e l a t i o n >

< / c o n d i t i o n >
< c o n d i t i o n w e i g h t _ t h r e s h o l d =" 0 . 2 ">

< source_concept > u r n : i r c o n : o n t o l o g y # Agent< / source_concept >
< c a r d i n a l i t y >1< / c a r d i n a l i t y >
< t e m p o r a l _ r e l a t i o n >

u r n : i r c o n : o n t o l o g y # i n i t i a t e s
< / t e m p o r a l _ r e l a t i o n >

< / c o n d i t i o n >
< t e m p o r a l _ a t t r i b u t e >

u r n : i r c o n : o n t o l o g y # happensDur ing
< / t e m p o r a l _ a t t r i b u t e >
< t a r g e t _ c o n c e p t > u r n : i r c o n : o n t o l o g y # Event < / t a r g e t _ c o n c e p t >

< / r u l e >

< r u l e enable =" yes " a m p l i f i c a t i o n _ f a c t o r =" 0 . 9 8 "
name=" 2 Agents ">
< c o n d i t i o n w e i g h t _ t h r e s h o l d =" 0 . 1 ">

< source_concept > u r n : i r c o n : o n t o l o g y # Agent< / source_concept >
< c a r d i n a l i t y >2< / c a r d i n a l i t y >
< r e l a t i o n > u r n : i r c o n : o n t o l o g y # i n i t i a t e s < / r e l a t i o n >

< / c o n d i t i o n >
< t e m p o r a l _ a t t r i b u t e >

u r n : i r c o n : o n t o l o g y # happensDur ing
< / t e m p o r a l _ a t t r i b u t e >
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< t a r g e t _ c o n c e p t > u r n : i r c o n : o n t o l o g y # Event < / t a r g e t _ c o n c e p t >
< / r u l e >

< r u l e enable =" yes " a m p l i f i c a t i o n _ f a c t o r =" 0 . 9 8 "
name=" P a r t i c i p a n t s and L o c a t i o n ">
< c o n d i t i o n w e i g h t _ t h r e s h o l d =" 0 . 1 ">

< source_concept >
u r n : i r c o n : o n t o l o g y # P a r t i c i p a n t

< / source_concept >
< c a r d i n a l i t y >2< / c a r d i n a l i t y >
< t e m p o r a l _ r e l a t i o n >

u r n : i r c o n : o n t o l o g y # i s I n v o l v e d I n
< / t e m p o r a l _ r e l a t i o n >

< / c o n d i t i o n >
< c o n d i t i o n w e i g h t _ t h r e s h o l d =" 0 . 2 ">

< source_concept >
u r n : i r c o n : o n t o l o g y # L o c a t i o n

< / source_concept >
< c a r d i n a l i t y >1< / c a r d i n a l i t y >
< t e m p o r a l _ r e l a t i o n >

u r n : i r c o n : o n t o l o g y # even tHappensAt
< / t e m p o r a l _ r e l a t i o n >

< / c o n d i t i o n >
< t e m p o r a l _ a t t r i b u t e >

u r n : i r c o n : o n t o l o g y # happensDur ing
< / t e m p o r a l _ a t t r i b u t e >
< t a r g e t _ c o n c e p t > u r n : i r c o n : o n t o l o g y # Event < / t a r g e t _ c o n c e p t >

< / r u l e >

< r u l e enable =" yes " a m p l i f i c a t i o n _ f a c t o r =" 0 . 7 "
name=" Leader and Member ">
< c o n d i t i o n w e i g h t _ t h r e s h o l d =" 0 . 2 ">

< source_concept > u r n : i r c o n : o n t o l o g y # Agent< / source_concept >
< c a r d i n a l i t y >1< / c a r d i n a l i t y >
< t e m p o r a l _ r e l a t i o n >

u r n : i r c o n : o n t o l o g y # l e a d s
< / t e m p o r a l _ r e l a t i o n >

< / c o n d i t i o n >
< c o n d i t i o n w e i g h t _ t h r e s h o l d =" 0 . 1 ">

< source_concept > u r n : i r c o n : o n t o l o g y # Agent< / source_concept >
< c a r d i n a l i t y >2< / c a r d i n a l i t y >
< t e m p o r a l _ r e l a t i o n >

u r n : i r c o n : o n t o l o g y # isMemberOf
< / t e m p o r a l _ r e l a t i o n >

< / c o n d i t i o n >
< t e m p o r a l _ a t t r i b u t e >

u r n : i r c o n : o n t o l o g y # i s A c t i v e D u r i n g
< / t e m p o r a l _ a t t r i b u t e >
< t a r g e t _ c o n c e p t >

u r n : i r c o n : o n t o l o g y # O r g a n i z a t i o n
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< / t a r g e t _ c o n c e p t >
< / r u l e >

< r u l e enable =" yes " a m p l i f i c a t i o n _ f a c t o r =" 0 . 7 "
name=" Members ">
< c o n d i t i o n w e i g h t _ t h r e s h o l d =" 0 . 1 ">

< source_concept > u r n : i r c o n : o n t o l o g y # Agent< / source_concept >
< c a r d i n a l i t y >3< / c a r d i n a l i t y >
< t e m p o r a l _ r e l a t i o n >

u r n : i r c o n : o n t o l o g y # isMemberOf
< / t e m p o r a l _ r e l a t i o n >

< / c o n d i t i o n >
< t e m p o r a l _ a t t r i b u t e >

u r n : i r c o n : o n t o l o g y # i s A c t i v e D u r i n g
< / t e m p o r a l _ a t t r i b u t e >
< t a r g e t _ c o n c e p t >

u r n : i r c o n : o n t o l o g y # O r g a n i z a t i o n
< / t a r g e t _ c o n c e p t >

< / r u l e >

< r u l e enable =" yes " a m p l i f i c a t i o n _ f a c t o r =" 0 . 5 "
name=" I n t e r a c t i o n ">
< c o n d i t i o n w e i g h t _ t h r e s h o l d =" 0 . 1 ">

< source_concept >
u r n : i r c o n : o n t o l o g y # P a r t i c i p a n t

< / source_concept >
< c a r d i n a l i t y >3< / c a r d i n a l i t y >
< t e m p o r a l _ r e l a t i o n >

u r n : i r c o n : o n t o l o g y # i n t e r a c t s W i t h
< / t e m p o r a l _ r e l a t i o n >

< / c o n d i t i o n >
< t e m p o r a l _ a t t r i b u t e >

u r n : i r c o n : o n t o l o g y # i s A c t i v e D u r i n g
< / t e m p o r a l _ a t t r i b u t e >
< t a r g e t _ c o n c e p t >

u r n : i r c o n : o n t o l o g y # P a r t i c i p a n t
< / t a r g e t _ c o n c e p t >

< / r u l e >

< r u l e enable =" yes " a m p l i f i c a t i o n _ f a c t o r =" 0 . 7 "
name=" P a r t o f ">
< c o n d i t i o n w e i g h t _ t h r e s h o l d =" 0 . 1 ">

< source_concept >
u r n : i r c o n : o n t o l o g y # L o c a t i o n

< / source_concept >
< c a r d i n a l i t y >1< / c a r d i n a l i t y >
< t e m p o r a l _ r e l a t i o n >

u r n : i r c o n : o n t o l o g y # i s P a r t O f
< / t e m p o r a l _ r e l a t i o n >

< / c o n d i t i o n >
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< t e m p o r a l _ a t t r i b u t e >
u r n : i r c o n : o n t o l o g y # i s A c t i v e D u r i n g

< / t e m p o r a l _ a t t r i b u t e >
< t a r g e t _ c o n c e p t >

u r n : i r c o n : o n t o l o g y # L o c a t i o n
< / t a r g e t _ c o n c e p t >

< / r u l e >

< r u l e enable =" yes " a m p l i f i c a t i o n _ f a c t o r =" 0 . 7 "
name=" P a r t i c i p a n t s a t L o c a t i o n ">
< c o n d i t i o n w e i g h t _ t h r e s h o l d =" 0 . 1 ">

< source_concept >
u r n : i r c o n : o n t o l o g y # P a r t i c i p a n t

< / source_concept >
< c a r d i n a l i t y >4< / c a r d i n a l i t y >
< t e m p o r a l _ r e l a t i o n >

u r n : i r c o n : o n t o l o g y # i s L o c a t e d A t
< / t e m p o r a l _ r e l a t i o n >

< / c o n d i t i o n >
< t e m p o r a l _ a t t r i b u t e >

u r n : i r c o n : o n t o l o g y # i s A c t i v e D u r i n g
< / t e m p o r a l _ a t t r i b u t e >
< t a r g e t _ c o n c e p t >

u r n : i r c o n : o n t o l o g y # L o c a t i o n
< / t a r g e t _ c o n c e p t >

< / r u l e >

< r u l e enable =" yes " a m p l i f i c a t i o n _ f a c t o r =" 0 . 9 "
name=" P a r t i c i p a n t s and Ev e n t s a t L o c a t i o n ">
< c o n d i t i o n w e i g h t _ t h r e s h o l d =" 0 . 1 ">

< source_concept >
u r n : i r c o n : o n t o l o g y # P a r t i c i p a n t

< / source_concept >
< c a r d i n a l i t y >2< / c a r d i n a l i t y >
< t e m p o r a l _ r e l a t i o n >

u r n : i r c o n : o n t o l o g y # i s L o c a t e d A t
< / t e m p o r a l _ r e l a t i o n >

< / c o n d i t i o n >
< c o n d i t i o n w e i g h t _ t h r e s h o l d =" 0 . 2 ">

< source_concept > u r n : i r c o n : o n t o l o g y # Event < / source_concept >
< c a r d i n a l i t y >1< / c a r d i n a l i t y >
< t e m p o r a l _ r e l a t i o n >

u r n : i r c o n : o n t o l o g y # happensAt
< / t e m p o r a l _ r e l a t i o n >

< / c o n d i t i o n >
< t e m p o r a l _ a t t r i b u t e >

u r n : i r c o n : o n t o l o g y # i s A c t i v e D u r i n g
< / t e m p o r a l _ a t t r i b u t e >
< t a r g e t _ c o n c e p t >

u r n : i r c o n : o n t o l o g y # L o c a t i o n
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< / t a r g e t _ c o n c e p t >
< / r u l e >

< r u l e enable =" yes " a m p l i f i c a t i o n _ f a c t o r =" 0 . 7 "
name=" 1 Subeven t ">
< c o n d i t i o n w e i g h t _ t h r e s h o l d =" 0 . 2 ">

< source_concept > u r n : i r c o n : o n t o l o g y # Event < / source_concept >
< c a r d i n a l i t y >1< / c a r d i n a l i t y >
< r e l a t i o n > u r n : i r c o n : o n t o l o g y # i sSubEven tOf < / r e l a t i o n >

< / c o n d i t i o n >
< t e m p o r a l _ a t t r i b u t e >

u r n : i r c o n : o n t o l o g y # happensDur ing
< / t e m p o r a l _ a t t r i b u t e >
< t a r g e t _ c o n c e p t > u r n : i r c o n : o n t o l o g y # Event < / t a r g e t _ c o n c e p t >

< / r u l e >

< r u l e enable =" yes " a m p l i f i c a t i o n _ f a c t o r =" 0 . 9 "
name=" 2 S u b e v e n t s ">
< c o n d i t i o n w e i g h t _ t h r e s h o l d =" 0 . 1 ">

< source_concept > u r n : i r c o n : o n t o l o g y # Event < / source_concept >
< c a r d i n a l i t y >2< / c a r d i n a l i t y >
< r e l a t i o n > u r n : i r c o n : o n t o l o g y # i sSubEven tOf < / r e l a t i o n >

< / c o n d i t i o n >
< t e m p o r a l _ a t t r i b u t e >

u r n : i r c o n : o n t o l o g y # happensDur ing
< / t e m p o r a l _ a t t r i b u t e >
< t a r g e t _ c o n c e p t > u r n : i r c o n : o n t o l o g y # Event < / t a r g e t _ c o n c e p t >

< / r u l e >

< / h e u r i s t i c s >
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