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Erik Bitzek

Atomistische Simulationen zur Versetzungsbewegung und zur
Wechselwirkung von Versetzungen mit Rissspitzen und Poren

Zusammenfassung

Die Untersuchung des Versagensverhalten von Materialien stellt eine der Hauptaufgaben der Werk-
stoffwissenschaft dar. Neben der experimentellen Materialforschung und der theoretischen Mate-
rialphysik hat sich in letzter Zeit die Werkstoffmodellierung und -simulation als weitere Disziplin
herausgebildet. Dabei spielen atomistische Simulationsmethoden besonders bei der Aufklärung der
grundlegenden Eigenschaften von Kristalldefekten eine wesentliche Rolle.
Die vorliegende Arbeit beschäftigt sich mit den für das Materialversagen elementaren Kristalldefek-
ten: der Versetzung und dem Riss. Dementsprechend besteht die Arbeit aus zwei Teilen.

In Teil I wird dem Zusammenhang zwischen der Struktur und den Eigenschaften von Versetzungen
auf der atomaren Skala und deren Auswirkung auf die Versetzungsbewegung nachgegangen. Im
Vordergrund steht dabei die Frage, wie die Dynamik der Versetzungsbewegung deren Wechselwirkung
mit kurzreichweitigen Hindernissen beeinflusst. Hierzu wurden zunächst Molekulardynamiksimu-
lationen an Stufen- und Schraubenversetzungen in Aluminium, Nickel und Kupfer durchgeführt,
und die grundlegenden Parameter der Versetzungsbewegung bestimmt. Die Simulation der Wech-
selwirkung einer Stufenversetzung mit Poren unterschiedlicher Größe dient als Modellsystem zur
Untersuchung dynamischer Effekte in der Versetzungs-Hindernis-Wechselwirkung. Dabei zeigten
sich selbst bei Raumtemperatur ausgeprägte Trägheitseffekte die zu einer Erniedrigung der zur
Hindernisüberwindung benötigten kritischen Spannung führen. Diese Trägheitseffekte konnten mit
den aus den atomistischen Simulationen bestimmten Parametern der Versetzungsbewegung sowohl in
einem dynamischen Linienspannungsmodell als auch in Versetzungsdynamiksimulationen quantitativ
abgebildet werden. Solche Modelle ermöglichen somit das Studium dynamischer Versetzungseffekte
auf Längen- und Zeitskalen, die der atomistischen Simulation nicht zugänglich sind.

In Teil II steht die Untersuchung der Entstehung von Versetzungen an Rissfronten im Vordergrund.
Hierzu wurden dreidimensionale atomistische Simulationen an atomar scharfen und abgestumpften
Rissen in der γ-Orientierung in Ni durchgeführt. Dabei zeigten sich fundamentale Unterschiede
zwischen der Versetzungsemission von propagierenden und statischen Rissen. Eine lokale Änderung
der Rissfrontorientation kann bei dynamischen Risse zur Emission von abstumpfenden Versetzungen
führen. Für statische Risse ist dieser Mechanismus nicht ohne weiteres möglich. Dies kann die im
Experiment beobachteten Unterschiede in den aktiven Gleitsystemen erklären. Insbesondere erklärt
dieser Mechanismus die Enstehung von ”V”-förmigen Versetzungsquellen in dynamischen Bruchver-
suchen in Si [1]. Weiterhin wurde erstmals die Wechselwirkung bereits bestehender Versetzungen mit
einer Rissfront simuliert. Dabei konnten grundlegende, teilweise bisher unbekannte, Mechanismen der
Versetzungs-Riss-Wechselwirkung identifiziert werden. Insbesondere konnte der auch experimentell
beobachtete Mechanismus der ”stimulierten Versetzungsemission” [2] näher untersucht werden.



Erik Bitzek

Atomistic Simulation of Dislocation Motion and
Interaction with Crack Tips and Voids

Abstract

The study of materials failure and its relationship to the microstructure of the material lies at the
heart of materials science. In this context, computational modeling has become a reliable tool to
investigate the behavior of materials and complements the traditional theoretical and experimental
approaches in materials science. In particular atomistic simulation methods can provide valuable
information on fundamental properties of crystal defects.
This work addresses the fundamental defects responsible for the failure of crystalline materials:
dislocations and cracks. Accordingly this thesis consists of two parts.

In part I, the structure and properties of dislocations are studied on the atomic scale, and their
relationship with the dynamic properties of dislocations is investigated. A major question in this
context is how the dynamics of dislocation motion affects it’s interaction with short-ranged obstacles.
For this purpose the motion of edge and screw dislocations in aluminum, nickel and copper was
studied by molecular dynamics simulations. From the dislocation trajectory at different loads and
temperatures the parameters governing the dislocation motion were determined. Simulations of the
interaction of edge dislocations with voids of different sizes were then used as model system to study
dynamic effects in dislocation - obstacle interaction. It could be shown that effects due to the inertia
of dislocations can significantly lower the critical stress required to pass an obstacle. With the
parameters determined from the atomistic simulations of dislocation motion, the inertial effects can
be quantitatively modeled by dynamic line tension or dislocation dynamics models. These methods
allow to study dynamic dislocation effects on length and time scales not accessible to atomistic
simulations.

Part II is dedicated to the study of the generation of dislocations at crack fronts. Dislocation nucle-
ation processes from crack tips were studied by large scale, three dimensional atomistic simulations of
a γ-oriented mode I crack in nickel. The simulation of static, subcritical (K < KIc) and dynamically
propagating cracks revealed fundamentally different mechanisms of dislocation nucleation. For prop-
agating cracks a local reorientation of the crack front can lead to the emission of blunting dislocation
half loops. This mechanism is specific to propagating cracks, which can explain the differences in
the activated slip systems between experiments on static and on propagating cracks. In particular,
this mechanism offers an explanation for the ”V”-shaped dislocation sources observed in dynamic
fracture experiments in Si [1]. Furthermore the interaction of preexisting lattice dislocations with
crack fronts was studied for the first time on the atomic scale. These simulations allowed to iden-
tify – to a large part hitherto unknown – fundamental interaction mechanisms. In particular, the
experimentally observed stimulated emission of dislocations [2] is studied in detail.
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Simulations à l’échelle atomistique du mouvement de dislocations et de
leur interaction avec fronts de fissures et cavités

Résumé

L’étude de la défaillance des matériaux et du rapport entre microstructure et défaillance se trouve au
coeur de la science des matériaux. Dans ce contexte, la modélisation et simulation du comportement
des matériaux sur ordinateur est devenue un outil fiable qui complète les approches théoriques et
expérimentales traditionnelles dans la science des matériaux. Dans ce domaine, en particulier les
méthodes de simulation à l’échelle atomique peuvent fournir des informations utiles sur les propriétés
fondamentales des défauts du réseau cristallin.
Ce travail traite les défauts fondamentaux responsables de la défaillance de matériaux cristallins: les
dislocations et les fissures. En conséquence cette thèse se compose de deux parties.
Dans la première partie, la structure et les propriétés de dislocations statiques sont étudiées à l’échelle
atomique, et leur rapport avec les propriétés dynamiques des dislocations est examiné. Une ques-
tion importante dans ce contexte est comment la dynamique du mouvement de dislocation affecte
l’interaction entre dislocation et obstacles de courte portée. A cette fin, le mouvement des disloca-
tions coin et vis a été étudié par simulations de dynamique moléculaires utilisant différents potentiels
d’aluminium, de nickel et de cuivre. A partir de la trajectoire de dislocations soumit à différentes
charges et températures, il a été possible d’établir les paramètres qui régissent le mouvement des dis-
locations. Des simulations de l’interaction d’une dislocation coin avec des cavités de tailles différentes
ont servi de système modèle pour étudier les effets dynamiques dans l’interaction entre dislocation
et obstacle. Ces simulations ont pu montrer que les effets dus à l’inertie des dislocations peuvent
réduire de manière significative la contrainte critique nécessaire pour surmonter un obstacle. Avec les
paramètres déterminés à partir des simulations atomistiques du mouvement de dislocation, les effets
d’inertie peuvent être reproduits quantitativement par un modèle de tension de ligne dynamique ou
par des modèles de dynamique de dislocation. Ces méthodes permettent ainsi d’étudier les effets
dynamiques de dislocation sur des échelles de temps, de longueur non accessibles aux simulations
atomistiques.
La partie II est consacrée à l’étude de l’origine des dislocations aux fronts de fissures. Les proces-
sus de nucléation de dislocation ont été étudiés par des simulations atomistiques en 3D de fissures
dans un cristal de nickel en orientation γ soumis à un chargement en mode I. Les simulations de
fissures statiques soumis à une charge sous-critiques (K < KIc) et de fissures dynamiques montrent
des différences fondamentales des mécanismes de nucléation de dislocation aux fissures statiques et
dynamiques. Une modification locale de l’orientation du front de fissure peut en cas de fractures dy-
namiques conduire à l’émission de dislocations qui réduisent l’acuité du front de fissure. Ce mécanisme
est spécifique à la rupture dynamique, ce qui peut expliquer les différences dans les systèmes de glisse-
ment actifs entre les expériences sous charge statique et de rupture dynamique. En particulier, ce
mécanisme offre une explication pour les sources en forme de ”V” observées dans des expériences
d’arrêt de rupture dynamiques dans le silicium [1]. De plus, l’interaction du front de fissure avec
des dislocations existantes a pu être étudiée pour la première fois à l’échelle atomique. Ceci a per-
mis d’identifier des mécanismes d’interaction entre dislocation et fissure qui étaient jusqu’à présent
en grande partie inconnues. En particulier, l’émission stimulée de dislocations, qui était observée
expérimentalement [2] a pu être étudiée en détail.
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Chapter 1

Introduction

The study of the failure of materials and its relationship to the microstructure of the material
lies at the heart of materials science. Materials failure can be divided into two generic types:
brittle and ductile. Materials characterized as ductile under certain conditions show extensive
plastic deformation before they break, whereas brittle materials only show limited plasticity
and break shortly after the elastic regime. Both types of macroscopic failures are ultimately
determined on the atomic scale. This is particularly evident in the case of brittle fracture
where individual atomic bonds are broken by an atomically sharp crack [3]. However, also
the ability of the material to generate dislocations, which are the carriers of plasticity, and
the mobility of dislocations is ultimately determined by the nature of the atomic bond. It is
therefore obvious that a detailed understanding of brittle fracture and plasticity requires an
understanding of the elementary processes on the atomic scale. Experimental information on
this length scale is difficult to obtain, therefore atomistic modeling is in many cases the only
way to study such processes in detail.

Materials failure generally involves processes on several length and time scales. The macro-
scopic continuum mechanics for example dictates the stress state around a crack. At the scale
where the polycrystalline nature of the material becomes apparent, elasticity and plasticity
are however inherently inhomogeneous and anisotropic. Within a grain, the zone around the
crack-tip is controlled by the long-range elastic interactions of dislocations with the crack,
with each other and with other obstacles like precipitates or grain boundaries. The according
length scale is often of the order 10−6 m and is usually referred to as a mesoscale [4] between
the atomistic and the macroscopic scales. These length scales are connected with each other
and processes in all of them may contribute to the total fracture energy. Fracture is therefore
inherently a multiscale phenomenon of considerable complexity. Similarly, crystal plasticity
presents a multiscale problem in time and space, which involves e.g. the formation of entan-
gled dislocation structures. Typically materials are neither fully ductile nor absolutely brittle.
The combination of plasticity and fracture can lead to complex phenomena like fatigue or the
brittle-to-ductile transition (BDT).

Computational modeling has become a reliable tool for investigating the behavior of ma-
terials and complements the traditional theoretical and experimental approaches in materials
science. Within the multiscale materials modeling (MMM) approach [5, 6] dislocation dy-
namics (DD) simulations [7] have a key role: they bridge the gap between the continuum and
the atomistic scale where continuum approaches begin to break down and atomistic methods
reach their time and length-scale limitations. However, DD simulations require input from the

6
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atomic scale. One important point for example is the determination of the obstacle strength
of localized obstacles. Of similar importance for the modeling of dislocation-obstacle interac-
tions on the mesoscale are the parameters governing the actual dynamics of the dislocation
motion. So far most dislocation simulations are based on viscous laws of motion which neglect
the inertia of dislocations. This approximation is adequate for the simulation of overdamped
dislocations under quasistatic loading conditions. However, such a simplified equation of mo-
tion is likely to be insufficient for high speed or high strain rate deformation of materials,
including cutting processes or shock loading, and for situations with abruptly varying driving
forces, like low temperature dislocation-obstacle interaction processes or dislocations in the
vicinity of cracks [8].

A fundamental aspect of all types of mesoscale simulations is the inclusion of information
from atomistic simulations on processes which can not be simulated on the mesoscale but have
to be included by constitutive rules. Short range dislocation-dislocation interaction, cross-slip
and dislocation nucleation are typical examples. Currently, dislocations in DD simulations can
only be generated by initially specified pre-existing dislocation sources. However, dislocation
nucleation and multiplication at crack tips obviously are important processes for which no
reliable models exist. Experimental studies on the interaction of single dislocations with
loaded cracks in silicon single crystals using in situ X-ray topography showed for example
massive and rapid dislocation multiplication when the dislocation impinges on the crack front
[2]. Atomistic simulations are currently the only possibility to investigate such fundamental
– but largely unexplained – processes in full detail.

The purpose of this work is twofold. One aim is to provide quantitative information on
the parameters governing the dynamics of dislocations in fcc metals. The focus thereby is on
dynamic dislocation effects, i.e. effects which are caused by the inertia of dislocation and by
the dislocation drag forces [9]. The second objective is to gain a qualitative understanding of
the atomistic processes during the interaction of dislocations with cracks.

This thesis is accordingly divided into two parts. Part I reports on a comprehensive atom-
istic study on the static and dynamic properties of dislocations in Al, Ni and Cu. The static
dislocation properties include the dislocation line energy, core structure and the Peierls stress
of the dislocation. From simulations of moving dislocations subjected to various temperatures
and stresses the dislocation drag coefficient, the rest mass and behavior at high velocities are
determined. In addition static and dynamic simulations of dislocations interacting with voids
are performed to study dynamic dislocation effects in dislocation-obstacle interactions.

Part II addresses the interaction of single dislocations of different orientations and Burgers
vectors with atomically sharp and blunted crack tips. Experimentally this has been studied
in dislocation free silicon single crystals [2], which represents a special case. However, the
interaction of dislocations with cracks, and the generation and multiplication of dislocations
at or near crack fronts are of fundamental importance in all materials showing a BDT. The
dislocation-crack interaction in studied by molecular dynamics (MD) simulation using a po-
tential for nickel. Ni shares the basic aspects of the glide systems of Si and has a high mobility
of dislocations, in agreement with the mobility of dislocations in Si at temperatures near the
brittle-to-ductile transition temperature. Although Ni usually is a ductile material, brittle
fracture takes place in atomistic simulations when the crack is oriented on certain cleavage
planes corresponding to the experimental fracture planes in Si. The use of EAM potentials
in combination with high-performance computing furthermore allows the simulations of large
systems needed to account for the long range stress fields of cracks.

In the following chapter, a brief introduction to the physics of dislocations and cracks is
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given, together with an overview of the current literature on the dynamics on dislocations
and crack tip plasticity. It is however assumed that the reader is already familiar with the
basic aspects of dislocation theory and fracture mechanics. Chapter 3 introduces the methods
and the set-ups used in the present studies, as well as some methods for the analysis of the
results. The results of the studies on dislocation dynamics and dislocation-crack interaction
are presented, discussed and summarized separately in part I and part II respectively.



Chapter 2

Theoretical background and

literature overview

2.1 Dislocations

The properties of dislocations, their creation, motion, multiplication, annihilation and their
interaction with each other and with other crystal defects lies at the heart of the discussion of
plastic deformation of crystalline materials. The theory of dislocations is presented in depth
in several basic reference works [10–13]. The presentation of this theory is therefore limited
to the aspects necessary for the understanding of the following chapters, with a focus on the
dynamics of dislocations. For an introduction to dislocations and their geometrical properties
the reader is referred to above literature. Throughout this work the naming conventions
according to Hirth and Lothe [12] are used.

2.1.1 Continuum theory of dislocations

2.1.1.1 Energy of a dislocation

The energy of a dislocation can be divided into the linear elastic part Eel of the strain energy
outside the dislocation core (radius r0) and the core energy Ecore:

Etotal = Eel + Ecore . (2.1)

The energy per length L stored in the elastic strain field of a infinite straight dislocation in
a region bounded by cylinders with radius r0 and R can be calculated by integration of the
stress field [12]. In an isotropic elastic continuum (characterized by the shear modulus µ and
Poisson’s ratio ν) the energy per unit length of a screw (s) or edge (⊥) dislocation of Burgers
vector b is

Es
el

L
=

µb2

4π
ln

R

r0
(2.2)

E⊥
el

L
=

µb2

4π(1 − ν)
ln

R

r0
. (2.3)

9
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By introducing the energy coefficient K the above expressions can be generalized to the
anisotropic case [12]:

Eel

L
=

Kb2

4π
ln

R

r0
. (2.4)

For a perfect screw dislocation oriented along the 〈110〉 axis of a fcc crystal the energy
coefficient can be expresses via the stiffness tensor cij (in abbreviated subscript notation, the
apostrophe denotes the elastic constant in the appropriate coordinate system) as [12]

Ks = (c′44c
′
55 − c′16

2
)1/2 . (2.5)

For edge and mixed dislocations the determination of the energy factor is rather tedious.
Teutonico [14] and Duncan [15] show methods how to derive these energy factors. In the case
of isotropic elasticity, the energy of mixed dislocations where the Burgers vector forms an
angle θ with the line direction, the energy of a mixed dislocation is

Emixed
el

L
=

µb2(1 − ν cos2 θ)

4π(1 − ν)
ln

R

r0
. (2.6)

The above equations implicate that the dislocation energy depends logarithmically on r0

and the crystal size R. For crystals containing many dislocations the dislocations tend to form
low energy configurations in which the long range stress fields are canceled. An appropriate
value for R in the case of randomly arranged dislocations is approximately half the average
dislocation spacing [13].

The radius r0 is usually considered to delimit the region in which the linear elastic theory
breaks down. However, the choice of the inner cutoff radius r0 in Eq. 2.2 is arbritrary, as
long as the total energy, Eq. 2.1, is not affected. Therefore r0 is frequently chosen such that
Ecore = 0. Alternative choices include r0 = b and r0 = rphys

0 , where rphys
0 defines a physical

core in which the local atomic order (e.g. coordination number or inversion symmetry) differs
from that of an unfaulted crystal by some measure.

An increase of dislocation line length results in an increase in energy. Therefore a line
tension Γ with units of energy per unit length can be attributed to a dislocation. In a first
approximation the line tension of a dislocation Γ can be set equal to its energy per unit length,
Eq. 2.2. However, the character of the dislocation changes as it bows out. This is neglected
in the isotropic line tension approximation, i.e. edge, screw and mixed segments are assumed
to have the same energy per unit length. This would only be the case for ν = 0. In all other
cases, the dislocation line will experience additional forces tending to rotate the dislocation
towards screw orientation. The line tension is therefore defined as [13]

Γ = Eel(θ) +
d2Eel

dθ2
. (2.7)

For a more thorough discussion of the concept of line tension the reader is referred to [16]
and [17].

2.1.1.2 Dislocations and obstacles

Apart from diffusion effects at high temperatures, plastic deformation in crystalline materials
occurs by the glide of dislocations. Hence the critical shear stress for the onset of plastic
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Figure 2.1: Interaction of a dislocation with localized obstacles which exert a glide resistance force
F which in equilibrium is balanced by line tension forces Γ.

deformation is the stress required to move dislocations. Creation of obstacles to the dislo-
cation motion therefore leads to an increase of the flow stress. The understanding of the
strengthening mechanisms due to interaction of dislocations with various types of obstacles
has been one of the successes of dislocation theory. The foundations of dislocation - obstacle
interaction are given in various text books, e.g. [13,18,19]. A detailed discussion of individual
strengthening mechanisms like work hardening, solid solution and particle strengthening can
be found in [20].

Therefore the treatment of dislocation - obstacle interactions is limited here to the special
case of equally spaced, localized obstacles. This case corresponds to the configuration which
is later modeled in the MD study of dislocation-obstacle interaction. In this situation, the
resistance to dislocation motion due to obstacles is represented by a force Fobst. acting on a
point of the dislocation line. Under an applied shear stress τ the dislocation will bow out
between two obstacles. The radius of curvature R is then related to τ and the line tension Γ
by [13]:

τb =
Γ

R
. (2.8)

The bowing of the dislocation is shown in Fig. 2.1. The equilibrium of the line tension and
the obstacle force at the pinning point leads to the following relationship for the cusp angle
2Φ :

Fobst. = 2Γ cos Φ . (2.9)

The dislocation will break away from obstacles separated by a distance L if the maximum
resisting force Fmax

obst at the obstacle is reached by the driving force τbL which is acting on
the entire dislocation line between the obstacles. With Eq. 2.9 the obstacle strength can be
characterized by a critical angle Φc given by the critical stress τc for dislocation break-away:

Φc = cos−1

(

τcbL

2Γ

)

. (2.10)

The flow stress for a regular square array of localized obstacles can thus be expressed as

τc =
2Γ

bL
cos Φc . (2.11)

The different theories to derive the critical resolved shear stress for an random array of
obstacles are presented in detail in [9].
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2.1.2 Effects of crystal structure on dislocations

In the previous section dislocations were treated in an ideal linear elastic continuum. This
approach however can not be used to describe the dislocation core where the linear elastic
solution diverges. In reality dislocations exist in a crystalline lattice, and the effect of lattice
periodicity needs to be taken into account in the description of dislocations. The probably
most successful model of a dislocation which takes into account the discreteness of the lattice
structure is the so-called Peierls-Nabarro (PN) model [21, 22] which is introduced in the
next section. Specific features of dislocations in face-centered cubic (fcc) metals are briefly
introduced in section 2.1.2.2. Sec. 2.1.2.3 gives a brief introduction to cross-slip in fcc crystals,
which is relevant for the study of dislocations near cracks.

2.1.2.1 The Peierls-Nabarro model of dislocations

A dislocation in a crystalline lattice introduces a disregistry of atomic coordination across
the slip plane. The disregistry is usually defined as the displacement difference (or slip
distribution) δ(x) between two atoms on adjacent sites above (▽) and below (△) the slip
plane [13]:

δ(x) = u△(x) − u▽(x) . (2.12)

The width of a dislocation ζ is then defined as the distance over which the disregistry is greater
than one-half of its maximum value [13]. The width of the dislocation core is determined by
the nature of interatomic bonding. An other useful representation of the core structure is
given by the distribution of Burgers vector ̺(x) which is the derivative of the disregistry curve.

The disregistry in the dislocation core leads to a core energy and to a resistance against
motion of the dislocation which are both a function of the interatomic forces. The continuous
distribution of Burgers vectors leads to an additional elastic energy. In the first estimate of
the lattice resistance [21,22] in a simple cubic model lattice it was assumed that the atoms on
the planes △ and ▽ interact with a simple sinusoidal force relation. A balance of this forces
with the elastic stresses from the two half-crystals gives the well-known analytical function
solution [22,23]

δPN(x) =
b

π
tan−1

(

x

ζ

)

+
b

2
(2.13)

ζ =
Kb

4πτmax
, (2.14)

where K is an appropriate elastic constant and τmax is the maximum restoring stress [23].
In this framework the Peierls stress τP necessary to surmount the periodic Peierls barriers
is [12,23]

τP = 4πK exp

(

−4πζ

b

)

. (2.15)

It is interesting to note that the Peierls-Nabarro model is one of the first ”hybrid” models of
multi-scale simulations in so far that is combines continuum theory with a discrete description
of the dislocation. There is extensive literature concerning the Peierls-Nabarro model and its
extensions and generalizations. Schoeck for example has used a variational principle [24–27]
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with parameterized functions for the disregistry function, the Peierls-Nabarro solution ansatz
and the generalized stacking-fault energy, to carry out 2-dimensional studies which can take
into account anisotropic effects and the relaxation of the dislocation structure. An other
approach to extend the original PN model is the semidiscrete variational PN model [23, 28]
which can be extended to non-planar dislocation cores.

2.1.2.2 Dislocations in face-centered cubic metals

In face-centered cubic (fcc) metals with lattice constant a0 the shortest lattice vectors, and
therefore the most likely Burgers vectors, are of the type b = a0

2 〈110〉. These perfect disloca-
tions are however usually dissociated into two Shockley partial dislocations according to the
reaction [12,13]:

a0

2
〈110〉 → a0

6
〈211〉 + SF +

a0

6
〈121̄〉 , (2.16)

including an intrinsic stacking fault (SF) between the two partial dislocations. Within the
framework of isotropic linear elasticity the calculation of the separation distance d between
the two partial dislocations b1 and b2 with line direction ξ is straight forward by equating
the repulsive force caused by the stress fields of the dislocations with the attractive action of
the stacking fault energy γsf (see e.g. [12]):

γsf =
µ

2πd

[

(b1 · ξ)(b1 · ξ) +
(b1 × ξ) · (b2 × ξ)

1 − ν

]

. (2.17)

Using the energy coefficient of the anisotropic elasticity theory for the edge (⊥) and screw
(s) components of the partial dislocation, the anisotropic elastic separation of the partial
dislocations is given by [12,29]

d =
2

γsf
(Ksb

2
s − K⊥b2

⊥) . (2.18)

The intrinsic stacking fault energy γsf can thus be determined e.g. from transmission
electron microscopy (TEM) of dissociated dislocations. The concept of stacking fault energy
was generalized to the generalized stacking fault energy (GSF), or γ-surface, by Vitek [30].
It is defined as the energy density obtained when a crystal is divided along a glide plane
in two halfs which are rigidly shifted against each other and the atoms are allowed to relax
only perpendicular to the glide plane. The γ surface has proven extremely useful for the
description of dislocation core structures in connection with the PN model, and the modeling
of dislocation nucleation from grain boundaries [31] or cracks [32].

Throughout this work extensive use of the Thompson notation is made to describe dislo-
cations in fcc crystals and their reactions. The Thompson tetrahedron is shown in Fig. 2.2,
and an example of its use is given in the figure caption.

The sequential arrangement of the partial dislocations is not arbritrary as they have to
enclose the intrinsic stacking fault. A way of ensuring this is to use the following axiom
together with the naming convention of [12]: When a dislocation (e.g. CD) is viewed from
the outside of the Thompson tetrahedron along its positive line direction, the stacking fault is
limited on the left by the ”Greek-Roman” partial βD and to the right by the ”Roman-Greek”
partial Cβ. Viewed along the same positive line direction from inside the tetrahedron the
sequence of the partial dislocations has to be Cβ on the left and βD on the right [12].
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Figure 2.2: Opened up Thompson tetrahedron presenting both the Thompson notation and the usual
crystallographic notation. The notation 〈1̄1̄0| is used instead of the usual notation [1̄1̄0] to indicate the
sense of the direction. For example, the perfect dislocation with Burgers vector a0/2[1̄1̄0] on the (11̄1̄)
plane is denoted in the Thompson notation by CD(b). This dislocation can dissociate into Cβ + βD.

2.1.2.3 Cross-slip in face-centered cubic metals

The dissociation of dislocations into Shockley partials has direct influences on the motion of
screw dislocations. In fcc metals, screw dislocations are constraint to a glide in the plane
containing their stacking fault, and cross-slip to an other plane is more difficult than for
undissociated screw dislocations [13]. It is widely accepted that cross-slip in fcc metals usu-
ally takes place by the so-called Friedel-Escaig (FE) mechanism [12]. In the FE cross-slip
mechanism the dislocation has to form a constriction in the primary plane, which is then
followed by a re-dissociation in the cross-slip plane, see Fig. 2.3a.

An alternative cross-slip mechanism has been suggested by Fleischer [33]: the leading
partial dislocation could change glide planes by dissociating into two partial dislocations, one
of them on the new glide plane, the other being sessile. The trailing partial dislocation then
combines with the sessile partial dislocation to form the trailing partial dislocation in the
cross-slip plane. Contrary to the FE mechanism, the Fleischer (FL) mechanism is sensitive
to the angle through which the cross-slip takes place. For an obtuse angle cross-slip by the
Fleischer mechanism can be described for CD(b) → CD(a) by

Cβ → αD + CD/βα and (2.19)

βD + CD/βα → Cα . (2.20)
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b=CD
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bD

Cb

bD
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Ca
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bD

aD

ba

Cb

bD

Figure 2.3: Cross-slip mechanisms for a screw dislocation in an fcc crystal (top): a) Friedel-Escaig
(FE); b) Fleischer mechanism (FL) to a cross-slip plane making an acute angle with the primary plane.
Please note that the (b)-plane is viewed from inside the Thompson tetrahedron, whereas the (a)-plane
is viewed from the outside.

The cross-slip of the same dislocation by an acute angle is realized by

βD → αD + βα and (2.21)

Cβ + βα → Cα , (2.22)

See Fig. 2.3b.

The Fleischer mechanism has recently been observed in MD simulations at high stresses
and low temperatures [34, 35]. The FE mechanism on the other hand was also studied with
atomistic simulations [36], however it has been argued that the simulation set-up in [36]
favors the FE mechanism over the FL by symmetry [34, 37]. There exist therefore currently
an uncertainty whether the Fleischer mechanism of cross-slip maybe a viable alternative to
the Friedel-Escaig mechanism, especially at high stresses [34,37].

2.1.3 Dislocation dynamics

2.1.3.1 Equation of motion of a dislocation

The force Fa that an applied shear stress τ exerts on a dislocation segment of unit length with
Burgers vector b leads to an acceleration of the dislocation if the resolved shear stress is larger
than the Peierls stress, which can be regarded as an internal force Fi. The rate of acceleration
is determined by the inertia (or effective mass) m of the dislocation. A deceleration comes
from damping or drag effects which dissipate energy. They are characterized by the viscous
drag coefficient B. For non-straight dislocations the dislocation self-interaction which can be
regarded as a line tension Γ acts in the way to minimize the line energy. In the string model of



16 CHAPTER 2. THEORETICAL BACKGROUND AND LITERATURE OVERVIEW

a dislocation [38–40], the following equation of motion for a dislocation of unit length aligned
along the x-direction and moving with speed v = ∂y

∂t in the y-direction can be formulated [16]:

∂

∂t

(

m
∂y

∂t

)

+ B
∂y

∂t
− Γ

∂2y

∂x2
= Fa(t) + Fi + Ft(t) + Fr(x, y) . (2.23)

Here, an additional interaction of the dislocation with obstacles is included by an obstacle
resistance Fr(x, y), which determines the boundary conditions for y and dy/dx at the ob-
stacle. In addition to external forces, random thermal forces can also excite oscillations of
the dislocation [41]. They are represented in Eq. 2.23 by a randomly fluctuating Langevin
thermal force Ft(t) [16,40,41].

For many practical purposes, the internal forces as well as the thermal forces can be
neglected, and Eq. 2.23 can be further reduced to describe the motion of a straight dislocation
segment under the influence of the Peach-Koehler force τb:

∂

∂t

(

m
∂y

∂t

)

+ B
∂y

∂t
= τb . (2.24)

However, the applicability of Eq. 2.23 and Eq. 2.24 to the dynamics of dislocations has sev-
eral limitations. First of all the radiation of elastic waves by accelerating dislocation segments
is not directly taken into account, but incorporated in B. Granato and Lücke [39] solved this
by coupling the string model to the equation of elastic waves in an isotropic linear elastic
continuum. For subsonic dislocations, the accelerating dislocation is moving through its own
radiated field which in principle requires special treatment since the force on the dislocation
then is an integral function of its history [42]. Continuum elasticity theory furthermore does
not take into account the discrete nature of the crystal in which the dislocation moves. Effects
of the crystal lattice are discussed further in sections 2.1.3.3 and 2.1.3.4.

Experiments and simulations (see section 2.1.4) have however shown that in many cases
Eq. 2.23 gives an adequate description of the motion of dislocations upto a sizable fraction of
the sound velocity [43]. Determining the range in which Eq. 2.23 can be applied is together
with the determination of the parameters which govern the motion of dislocation a goal of
this thesis.

2.1.3.2 The effective mass of a dislocation

As discussed in [44,45] the effective mass of a uniformly moving dislocation is closely related
to its energy. The energy of a dislocation segment of unit length moving at a velocity v can
be calculated by integrating the strain energy and the kinetic energy [46,47]:

Es =
Es

0

γ
(2.25)

E⊥ = Es
0

c2
t

2v2
(16γl + 8γ−1

l − 14γ − 12γ−1 + 2γ−3) (2.26)

where γ =
√

1 − v2/c2
t , γl =

√

1 − v2/c2
l , ct is the transverse sound velocity, and cl is the

longitudinal sound velocity. Es
0 is the energy of a screw dislocation at rest, see Eq. 2.2. Weert-

man [47] derived the expression for the effective mass of uniformly moving screw dislocations
in analogy to classical mechanics as one half of the coefficient of v2 in the Taylor expansion of
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the total energy Es = Es
0/γ . The mass per unit length of a screw dislocation at low velocities

is then given by

ms
0 =

Es
0

c2
t

. (2.27)

At high velocities the total energy can be written as

Es =
ms

0v
2

√

1 − v2/c2
t

= msv2 (2.28)

giving the relativistic expression for the inertia ms = ms
0/γ.

In contrast to the screw dislocation, the Taylor expansion of the total energy of a moving
edge dislocation contains no terms in v2. Therefore the above approach to derive the mass of
a dislocation can not be applied to edge dislocations. For slow moving dislocations, however,
the following expression was derived by Weertman [47]:

m⊥
0 =

(

1 +
c4
t

c4
l

)

ms
0 . (2.29)

The rest masses of edge and screw dislocations are very similar, since the longitudinal wave

speed cl =
√

λ+2µ
ρ is usually about twice the transverse wave velocity ct =

√

µ/ρ (with Lamé

constant λ, shear modulus µ and mass density ρ). With the above, one can estimate the rest
mass of a length b of dislocation to be about m0b ≈ 1

2ρb3, i.e. roughly one half atom per
Burgers vector. Equations 2.2, 2.27 and 2.29 lead to following relation between rest mass of
and edge dislocation and its line energy at rest:

E⊥
0 =

m⊥
0 c2

t

1 − ν

(

1 +
c4
t

c4
l

)−1

. (2.30)

The effective mass of a fast moving edge dislocation can be derived by considering the
change in the energy E⊥ of the dislocation caused by a force F [43,48]:

dE⊥ = Fdx = Fvdt . (2.31)

Using the chain rule

dE⊥ =
dE⊥

dv

dv

dt
dt (2.32)

the force can be written as

F =
1

v

dE⊥

dv

dv

dt
= m⊥

1

dv

dt
. (2.33)

Hirth et al. [43] and Sakamoto [48] independently derived different expressions for the dy-
namic mass of a moving edge dislocation. However, in the following it is shown that the two
expressions are equivalent to each other by taking into account the appropriate definition
of the force in Eq. 2.23. Hirth et al. [43] identified in Eq. 2.33 the factor multiplying the
acceleration as mass m⊥

1 .
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Sakamoto [48], however, defined the mass m⊥
2 by the change of momentum with time

F =
dp

dt
=

d

dt
m⊥

2 v (2.34)

=

(

dm⊥
2

dv
· v + m⊥

2

)

dv

dt
= m⊥

1

dv

dt
, (2.35)

thereby obtaining the following integral expression for the mass:

m⊥
2 =

1

v

v
∫

0

1

v

dE

dv
dv =

1

v

v
∫

0

m⊥
1 dv . (2.36)

The kinetic energy of a moving edge dislocation is then simply given by

E⊥
kin =

1

2
m⊥

2 v2 . (2.37)

Both expressions for the effective mass can be calculated using the total energy of the
moving edge dislocation (Eq. 2.25) [43,48]:

m⊥
1 =

Es
0c

2
t

v4
(−8γl − 20/γl + 4/γ3

l + 7γ + 25/γ − 11/γ3 + 3/γ5) (2.38)

m⊥
2 = Es

0(−2/c2
t γ + 4c2

t /c
4
l γl − 16c4

t γ/5v6 + 8ctγ
3/5v6 + 8c4

t γ
5/5v6

− 64c2
t γ/15v4 + 16c2

t γ
3/15v4 + 8c2

t γl/v
4 − 68γ/15v2 + 4c2

t γl/c
2
l v

2 + v2/ct4γ3) . (2.39)

In the limit of small velocities both equations reduce to Eq. 2.29 [43, 48]. The assumptions
leading to the derivation of the expression for the dislocation mass, Eqs. 2.31 - 2.33, are
generally applicable, and the so derived expressions for the mass can be used in Eq. 2.24 to
describe the uniform or non-uniform motion of a dislocation [43].

The mass of an edge dislocation approaches infinity as γ−3 while it approaches infinity
as γ−1 for screw dislocations. In figure (2.4) the effective mass of edge (Eq. 2.39) and screw
(Eq. 2.28) dislocations are plotted as function of their velocity. It can be seen that the effective
mass of an edge dislocation differs from the rest mass by 20% at a velocity about v ≈ ct/3,
whereas the mass of a screw dislocation is increased by 20% at v ≈ ct/2.

The effective mass m of a mixed dislocation (θ: angle between Burgers vector and line
direction) moving with uniform velocity v is given by [48]:

m(θ) = ms cos2(θ) + m⊥
2 sin2(θ) . (2.40)

2.1.3.3 Special velocities

The continuum theory of high velocity dislocations and of special velocities which put a limit
to the maximal dislocation velocity is reviewed in [44, 47] and in [12]. Therefore this section
provides only a brief summary on the continuum theory of high velocity dislocation motion.
Models which include the discreteness of the crystalline lattice are discussed in [49] and are
covered here in some more detail. These theories will be later compared to the results of the
atomistic simulations.
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Figure 2.4: The mass of an edge and a screw dislocation as function of their velocity (compare
Eq. 2.39 and Eq. 2.27) calculated with the values of ct, cl of Cu.

The dislocation motion is typically classified as either subsonic, transonic or supersonic.
Subsonic dislocations are slower than the shear wave velocity v < ct. Screw dislocations are
called supersonic for ct < v, whereas supersonic edge dislocations are faster than the velocity
of longitudinal waves: cl < v. Transonic velocities are v = ct for screw dislocations and
ct < v < cl for edge dislocations. Within the continuum theory a uniformly moving subsonic
dislocation has a stress and displacement field which is constant in the coordinate system
moving with the dislocation. In this case no sound waves are radiated from the dislocation.
The energy of the dislocation is constant and in the absence of drag forces no external stresses
are required to keep the dislocation in motion [44].

At the transverse shear wave velocity ct the effective mass and the energy of the moving
dislocation are both diverging. Therefore it is not possible to accelerate a dislocation above
this speed. In anisotropic crystals two transversal waves of different polarization exist. The
velocities ct1,2 of the two shear waves in the 〈111〉 direction are [50]:

ct1 =

√

(c′44 +
√

2c′14)/ρ (2.41)

ct2 =

√

(c′44 − c′14/
√

2)/ρ , (2.42)

where the c′ij denote the elastic constants in the appropriate coordinate system of the dis-
location. The slower of the two shear wave velocities is the limiting velocity for dislocation
motion. Depending on the elastic anisotropy of the material, the limiting velocity can be
significantly smaller than the usual expression for the shear wave velocity ct =

√

c′44/ρ (e.g.
in Cu ct2 = 0.756ct). With these appropriate sound velocities the velocity dependence of the
mass of edge and screw dislocations can be compared as plotted in Fig. 2.4.

At the Rayleigh wave velocity cR the width of edge dislocations goes to zero [12]. This
fact is not by itself limiting the dislocation velocity, but it causes edge dislocations of like sign
that move faster than cR to attract each other, which can in principle lead to a spontaneous
multiplication of dislocations. For dislocations in a crystal with free surfaces cR would appear
as the limiting velocity, because at this velocity resonance with the surface waves occurs and
the energy of the solid would approach infinity as v is accelerated towards cR [12]. The
appropriate Rayleigh wave velocity cR in an anisotropic crystal can be calculated by solving



20 CHAPTER 2. THEORETICAL BACKGROUND AND LITERATURE OVERVIEW

following equation [51]:

c2
R

c2
l

√

c′22
c′33

(

1 − c2
R

c2
l

)

=

(

1 − c′223
c′22c

′
33

− c2
R

c2
l

)

√

1 − c2
R

c2
t2

. (2.43)

For the metals considered here the differences between ct2 and cR are less than 5%.

Continuum elasticity does not take into account the discrete nature of the underlying crys-
tal. The discreteness of the lattice has important consequences on the propagation of sound
waves. According to the dispersion relation low frequency sound wave propagate at wave
speeds according to the continuum theory. High frequency waves travel at lower speeds. Fast
moving dislocations can thus be supersonic with respect to some high frequency plane waves
and subsonic with respect to other waves. Such partially supersonic dislocations can there-
fore be expected to radiate high frequency phonons. This was first analyzed by Eshelby [52]
for the case of a screw dislocation in a Peierls-Nabarro model within an isotropic medium.
According to Eshelby the dislocation begins to radiate when its velocity exceeds the phase
velocity cp = ω

k of the slowest phonon mode (characterized by its wave vector k and frequency
ω) in the first Brillouin zone. According to [52] the radiative damping depends exponen-
tially on the dislocation width ζ and is for velocities slightly larger than cp proportional to
(v − cp)

3/2. It has however been argued that due to Umklapp processes (i.e. phonon-phonon
interactions which change the total crystal momentum by a reciprocal lattice vector) there is
no slowest mode at which the dislocation can radiate, and that radiative damping should be
also important at lower dislocation velocities, see [12,53].

Celli and Flytzanis [54, 55] have derived a relation between the applied strain and the
dislocation velocity for a screw dislocation in a two-dimensional lattice using lattice dynamics
and nearest neighbors interactions. Like the Eshelby model, the dislocation will radiate only
when its velocity equals the phase velocity of some lattice waves. However, their model
brakes down when there are elastic waves with phase velocity and group velocity both equal
to the dislocation velocity. The energy fed from the dislocation core to these lattice waves
propagates in the medium with the group velocity of the waves and therefore never escapes
from the core of the dislocation [54]. Bhate [56] has suggested that this might be the physical
reason for stress independent velocity plateaus at vp < cR observed in MD simulations of edge
dislocations subjected to high stresses [53,56–60], see also sec. 2.1.4.

One of the most recent attempts to model high velocity dislocation motion close to critical
velocities is the augmented Peierls-Nabarro model by Rosakis [61]. Rosakis modified the
Peierls model to include drag and gradient effects and thus to provide a kinetic relation
between shear stress and velocity of uniformly moving dislocations. The model can explain
the transonic results obtained by Gumbsch and Gao [57,62] and predicts unstable motion for
cR < v < ct. However, the model, though nonlocal in nature, is still based on continuum
elasticity and thus fails to capture the reported special subsonic velocities vp [53].

2.1.3.4 Dislocation drag

Any dislocation moving in a crystal experiences drag forces due to its interaction with various
elementary excitations. The drag force Fdrag per unit length is characterized by the drag
coefficient B, which is usually taken to be velocity independent (Newtonian viscous material):

Fdrag = −Bv (2.44)
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The drag coefficient of pure metals comprises contributions from dislocation interaction with
phonons (Bph), electrons (Be) and, in magnetic materials, magnons (Bm) [16]. At temper-
atures T smaller than 20% of the Debye temperature ΘD (see App. A for the values of the
Debye temperature), the constant electron viscosity is the dominating term, but it can be
safely neglected for higher temperatures where the phonon viscosity outweighs Be.

Detailed discussions of dislocation drag processes and compilations of experimentally de-
termined drag coefficients can be found in the reviews by Nadgorny [16] and Alshits [49,63,64].
Therefore only a brief overview of the most important drag mechanisms is provided in the
following.

Phonon wind One of the most important drag mechanisms is the phonon wind. Phonons
are scattered by anharmonicities of the strain field of the moving dislocation. Using Born’s
theory of scattering and the thermal energy density EV = 3kTz/a3

0 (k: Boltzmann constant,
z: number of atoms per unit cell, a0: lattice constant) Leibfried [65] estimated the magnitude
of this effect to be

Bw
ph =

σ0

10ct

3kTz

a3
0

. (2.45)

The scattering cross section σ0 is in the original treatment taken to σ0 = a0 [65], however, it
is frequently set to σ0 = b, see e.g. [16, 49]. As discussed by Nadgornyi [16] the reliability of
equation (2.45) and the numerical factor 1/10 is limited by approximations and due to the
implicit linear temperature dependence of Bw

ph. According to Lothe [66] the numerical factor
may vary between 1/60 and 1/5. More elaborate treatments of the drag by phonon wind lead
to a temperature dependence of Bw

ph ∼ T 5 for T ≪ ΘD and Bw
ph ∼ T for T & ΘD [16].

Slow phonon viscosity The slow-phonon viscosity is caused by the interaction of dislo-
cation with phonons with relatively small group velocities dω/dk. The phonon viscosity is
related to the density of phonon modes per unit frequency range D(ω), which is inversely
proportional to the group velocity. The density of slow phonons is only appreciable for high
temperatures T ≈ ΘD, where their contribution to the phonon drag is constant with T and
becomes comparable to Bw

ph.

Flutter effect Energy dissipation by the flutter effect is due to the excitation of vibrations of
the dislocation line by phonons, which then re-radiate energy. When the dislocation is moving
this gives rise to a net force opposing the motion. The flutter effect can be ignored at high

temperatures T ≈ ΘD (
Bfl

ph

Bw
ph

. 0.1), but it makes an essential contribution at low temperatures

T ≪ ΘD (
Bfl

ph

Bw
ph

≈ 1 for T ≈ 0.2ΘD). For intermediate temperatures the magnitude of the flutter

effect is proportional to the temperature [16].

Radiation friction When a dislocation moves in a crystalline lattice its atomic configura-
tion and elastic energy experiences periodic changes due to the Peierls relief. The periodic
changes of the configuration of the dislocation core and its nonuniform motion over the relief
should lead to radiation of elastic waves by the dislocation, i.e. to radiation friction [63]. In
general the radiation friction is not proportional to v, and is thus best described by the radi-
ation friction stress τr. It is defined by the constant external force necessary to compensate
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for radiation losses τr = Fext,rad/b. At high velocities, where the dislocation kinetic energy is
much higher than the Peierls level, perturbations of the uniformity of the dislocation motion
can be regarded as negligible. In this regime only the oscillations of the strain field contribute
to the radiation friction. It appears that this contribution to the radiation friction can be
noticeable against the background of phonon dragging only for near-sonic dislocations at low
temperatures [63]. With decreasing dislocation velocity the degree of nonuniformity of its
motion increases, and accordingly the radiation losses due to the dynamic oscillations due
to the variations of the velocity increases, and the radiation at higher harmonics becomes
more and more effective [49]. The viscous dissipation stabilizes the motion of the dislocation.
Depending on the drag coefficient an effect of the ”dry friction” type should occur [16, 49].
There τr approaches the static Peierls stress τP with decreasing v.

In the most recent studies of lattice wave emission on dislocations moving in square or
triangular lattices, Koizumi et al. [67, 68] postulated however, that the energy loss due to
radiation is about one order of magnitude larger than the theoretical estimates of phonon-
scattering mechanisms - even at room temperature. The statement by Nadgornyi [16] that the
problem of radiation friction is still too inadequately studied to allow consistent or quantitative
conclusions therefore seems to still hold true.

Electron drag The interaction of moving dislocations with conduction electrons is at-
tributed to the interaction of the electrons with the propagating elastic waves [16]. It is
independent of temperature since it involves only the energy of the electrons at the Fermi
surface and the thermal energy is small compared to the Fermi energy. A typical value is
Be = 1µPa s [16], electron drag is therefore only noticeable at low temperatures.

The knowledge of ”typical” drag coefficients is crucial for assessing various effects linked
to the dynamics of dislocations – some of which will be discussed in this thesis. Compilations
of experimental values for drag coefficients can be found in [16, 49, 63, 64]. However, the
experimental values scatter widely – even when the same method is useda. A generally used
value for the drag coefficient at room temperature in aluminum is B(Al,RT)=26 µPa s, other
published values range from B(Al,RT)=8-60 µPa s [16]. For copper, usually B(Cu,RT)=17
µPa s is assumed (experimental range: 10-85 µPa s), see also table 5.1 on page 229 of [16].

2.1.3.5 Effects of dislocation inertia

The motion of dislocations is usually described by assuming that at each moment in time
the velocity of a dislocation is only determined by the momentarily acting Peach-Koehler
force [7, 16]b: v(t) = τb

B . The assumption of over-damped dislocation motion fails however
for rapidly changing forces (e.g. in high strain rate deformation, shock loading, interaction
with localized obstacles or high frequency agitation) and for high velocity dislocations at
low temperatures or high stresses (e.g. near crack tips). In these cases the inertia of the
dislocation can not be neglected and dynamic effects have to be taken into account.

aCommonly used methods include the measurement of the velocity of individual dislocations, amplitude
independent internal friction, high-speed deformation of crystals and slip-band mobility [16].

bThis over-damped dislocation motion has to be distinguished from the quasi-static (or strain rate inde-
pendent) regime. In the latter a dislocation configuration is assumed to be always in mechanical equilibrium
with externally applied loads, thus not following a dynamic evolution of the dislocation configuration.
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Accelerated motion of dislocations As can be seen in Fig. 2.4 the dislocation mass stays
nearly constant for velocities v < ct/3. Thus for small velocities Eq. 2.23 can be rewritten for
a dislocation of unit length subjected to a force due to an applied shear stress τ as

m0
∂

∂t
v + Bv = τb , (2.46)

which can be integrated to

v(t) =
τb

B

(

1 − e
−tB
m0

)

. (2.47)

After the relaxation time tr = m0/B the velocity of a dislocation accelerating from zero
velocity differs from the uniform steady state velocity

vss =
τb

B
(2.48)

by less than 1/e. For typical values of B at room temperature (see pervious section), this
time is in the range of few tens of ps. For this reason acceleration is usually neglected in
DD simulations, which have typical timesteps in the µs range [7]. However, for resolved
shear stresses which would lead to steady state velocities larger than about ct/3 (for edge
dislocations) or ct/2 (for screw dislocations) the velocity dependence of the mass can not be
neglected anymore. At room temperature this is typically the case for stresses in the range
between τ = 1/3ctB/b ≥ 50 MPa (edge dislocation in Cu) to τ ≥ 100 MPa (screw dislocation
in Al). In these cases Eq. 2.24 has to be solved numerically.

Overdamped versus underdamped dislocation motion The transverse sound velocity
puts an upper limit to the attainable steady state velocity. Thus, the dislocations in metals
subjected to resolved shear stresses which would lead to vss = τb

B > ct are clearly not in the
steady state and their motion is dominated by inertia rather than dissipation – their motion
is underdamped. From this point of view, dislocation motion in material systems with high
yield strength and low lattice resistance (e.g. nanocrystalline copper [69]) is very likely to be
underdamped.

A more general way to determine whether the motion of a dislocation segment is over-
or underdamped is to use the model of a harmonic oscillator [16]. The ground frequency
ω0 =

√

k/m is then determined by the stiffness k and the mass m of the system, and the
damping is defined as β = B/2m with drag coefficient B. If the ratio β/ω0 is smaller than 1,
oscillatory motion is possible (underdamped case), for β/ω0 > 1 no oscillations are possible,
the system is overdamped. In the constant line tension model of a dislocation, the stiffness
is equivalent to the line tension Γ, B and m are the dislocation drag coefficient and the
dislocation rest mass per unit length [16]c The ground frequency of a dislocation segment of
length L can be taken as ω0 = πct/L, thus the critical drag coefficient Bc is

Bc =
2πm0ct

L
, (2.49)

cEquating the stiffness k of a harmonic oscillator with the line tension Γ as proposed by Nadgornyi [16] is

questionable as the restoring force in a line tension model is not of the form −ky but −Γ d2y

dx2 = −Γ/R(y) (see
Eq. 2.23). In the constant line tension approximation for small bow-outs the radius of curvature is given by

R(y) = L2+4y2

8y
, thus for small y the restoring force can be linearized to − 8

L2 Γ. This would lead in Eq. 2.49 to

a factor of 4
√

2 instead of 2π. In the following this small difference is neglegted.
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Figure 2.5: Sketch of the process of inertial overshooting according to [71]. a) schematic of the
motion of the dislocation line. The solid line at position 3 represents the static equilibrium position
of the dislocation line subjected to shear stress τ . The dashed line represents the overshoot position
of the underdamped dislocation at the same stress. b) shows the assumed displacement y(t, x = 0) as
function of time for a underdamped (dashed line) and a overdamped dislocation (solid line).

or with equations 2.30 and 2.27

Bs
c =

2πΓs

Lct
(2.50)

B⊥
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2πΓs

Lct

(

1 +
c4
t

c4
l

)

. (2.51)

For estimating whether dislocations are under- or overdamped the segment length L is usually
set to the effective obstacle spacing, e.g. the Friedel length [16]. For typical values of B and
E0 = µ′b2/2 as suggested by Nadgornyid [16], underdamped dislocation motion at room
should take place below an effective obstacle spacing of about L ≈ 300 nm (Cu) or L ≈ 80
nm (Al). From this estimation one can expect that even at room temperature a significant
fraction of dislocation segments in heavily cold worked [70] or irradiated [5] fcc metals, as
well as in some particle strengthened alloys [9] are in the underdamped regime.

Dynamic effects in dislocation - obstacle interactions An important consequence of
underdamped dislocation motion is the possibility for a moving dislocation which is running
up against obstacles to pass over its static equilibrium position by virtue of its inertia. The
notion of inertial overshooting of dislocations was first proposed independently by Suenaga and
Gallingan [72] and by Granato [71] to explain the enhanced plasticity of superconductors in
the superconducting state compared to the normal state. The process of inertial overshooting
is visualized in Fig. 2.5. After depinning from an obstacle a dislocation segment accelerates
and moves towards the next obstacles (pos. 1 in Fig. 2.5a ) and meets the obstacles with the
impinging velocity vi (pos. 2). Its static equilibrium position under the applied shear stress
would correspond to pos. 3. An overdamped dislocation would approach this configuration as
indicated by the solid curve in Fig. 2.5b. Underdamped dislocations, however, can overshoot
the equilibrium position and oscillate about the static configuration. Like in the static case
(see sec. 2.1.1.2) the dynamic configurations can be characterized by the angle formed by
the dislocation near the obstacles. For dynamic release of the dislocation from the obstacle
the minimum dynamic angle Φd then has to be smaller than the critical angle Φc determined
from the static equilibrium of forces. Dynamical obstacle passing by inertial overshooting is

dIn section 7.3.2 it will be shown that this frequently used expression can in many cases lead to a significant
overestimation of Bc.
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sometimes also referred to as weak dynamic effect [9,73]. A different mechanism is postulated
to be at work for very small drag coefficients and high dislocation velocities. For strong

dynamic effects the dislocation segment which is directly interacting with the obstacle has to
have accumulated enough kinetic energy to directly break through the obstacle upon contact
[9, 73].

The effect of inertia on the motion of a dislocation through a random array of obstacles
was included in some mesoscopic models [73–80], see e.g. the review by Nadgornyi [16]. In
the following we briefly resume the educative results of Schwarz and Labusch [73, 74] who
were the first to develop such a model.

In addition to inertial effects Schwarz and Labusch [73] also allowed for a finite width w of
the randomly arranged obstacles, which were modeled by one dimensional force-distance pro-
files. Their model, however, is limited to weak obstacles with a not too high volume fraction
f . 0.2. The constant line tension approximation is used and interactions between the dislo-
cation segments are neglected (quasi-straight line approximation). Furthermore thermal acti-
vation is disregarded. Schwarz and Labusch reduced the usual parameters m0, B,Γ,Φc, L,w
by introducing normalized parameters and coordinates to only two characteristic parameters:
the normalized obstacle range

η0 =
w

L cos Φc
1/2

(2.52)

and the normalized drag coefficient

γ =
BL√

4Γm0 cos Φc
. (2.53)

The stress is normalized by the Friedel stress

τc,F =
2Γ cos Φ

3/2
c

bL
. (2.54)

With the reduced parameters and coordinates the equation of motion of a dislocation through
a planar array of random obstacles was solved numerically [73].

One fundamental finding of their calculations is that in case the normalized drag is small
enough (γ . 3), one has to distinguish two different (normalized) critical resolved shear
stresses (CRSS) [73]. The upper CRSS τd,c is the highest stress which still leads to a stable
configuration when the dislocation has no starting velocity and the stress is applied qua-
sistatically. The lower CRSS τd,l is the lowest stress (starting from τd,c) at which a moving
dislocation would move indefinitely. Under standard experimental conditions τd,c is mea-
sured [9]. It has to be stressed that τd,c is only equal to the (appropriately normalized) static
critical stress τc for high damping γ > 3. Below γ ≈ 3 dynamic effects come into play as
the first breakaway event in the random array of obstacles is seen to dynamically trigger the
depinning from other obstacles [73]. The possibility of such dynamic unzipping processes
was also pointed out by Indenbom and Chernov [81]. These processes are caused by the local
acceleration due to the dislocation obstacle interaction, which generates waves that can travel
along the dislocation and assist the unpinning of the dislocation from other obstacles.

The calculated normalized critical dynamic stresses τd,c and τd,l are shown in Fig. 2.6
for different normalized drag coefficients and obstacle sizes. Three different regimes can
be identified. For very low damping τd,c is larger than τd,l and independent of γ, whereas
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Figure 2.6: Critical normalized upper and lower dynamic stress τd,c and τd,l as function of normalized
damping γ for different normalized obstacle widths η0 as calculated by Schwarz and Labusch [73]. For
clarity only smoothed curves are shown.

τd,l is increasing with γ. For point-obstacles (η0 = 0) the lower critical dynamic stress is
proportional to the normalized drag: τd,l ∼ γ. For medium damping 0.1 . γ . 3 the upper
CRSS τd,c and τd,l increase with γ. Above γ ≈ 1 both CRSS are approximately the same.
For strong damping γ > 3 the dislocation motion is overdamped and there are no dynamic
effects [73]. This empirical finding can be used to derive a critical drag factor which includes
information of the obstacle strength. With the definition of γ and using Γ = m0c

2
t the critical

drag coefficient for point-like obstacles is

BSchwarz
c =

3 · 2m0ct

L

√

cos Φc , (2.55)

which for weak obstacles Φc ≈ π/2 is comparable to Eq. 2.49. For larger obstacles the
critical drag γc at which τd,c and τd,l deviate from their high-γ-value is reduced. Schwarz and
Labusch [73] described the variation of γc with η0 by

γc(η0)

γc(η0 = 0)
=

1

(1 + 3η0)1/2
. (2.56)

Due to the statistical nature of the model no functional form for τd,c and τd,l can be given.

The direct observation of inertial effects in dislocation - obstacle interactions is only pos-
sible with atomistic simulations. However, to the authors knowledge no detailed simulations
targeting these effects have been reported yet. Indirect experimental evidence for inertial
effects have been frequently reported for pure superconductors [71, 72, 82] and solid solu-
tions [83–86], as well as for some precipitation hardened materials [87, 88]. In these experi-
ments the low temperature anomalies of the CRSS are usually attributed to inertial effects.
However, also the bimodal stress relaxation during creep experiments at low temperatures
(10 K) has been interpreted as a consequence of inertial effects [86].
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2.1.4 Atomistic simulations of dislocations

Since the first atomistic calculations of dislocation core structures and energies about half a
century ago [89–91] atomistic calculations have increasingly been used to study dislocation
properties. Instead of providing a broad review, only selected recent works on fcc metals
in the following areas relevant to this thesis are presented: dislocation core structures and
-energies, Peierls stress, dynamic properties of dislocations, dislocations at high velocities,
static and dynamic dislocation-obstacle interactions.

The dissociation of perfect dislocations in fcc metals into Shockley partial dislocations was
the subject of several atomistic studies [29,36,92–98]. These studies characterized the internal
structure of the dissociated dislocation through the disregistry function [93, 95, 97], as well
as through the separation distance and core width. In most of these studies the values are
compared with the theoretical estimates based on elasticity theory and the Peierls-Nabarro
model [93,95–97]. The deviations of the elastic stress field derived from atomistic simulations
of dislocations from the stress field of Volterra dislocations have been analyzed recently in
more detail in terms of dislocation core fields [98].

The Peierls stress τP was also calculated in many of the above studies [29, 92–97, 99],
showing however large differences, see sec. 7.1.2. The Peierls stress is very sensitive to the
boundary conditions. The effect of boundary forces on the Peierls stress of edge, screw and
mixed dislocations in Al were computed and subsequently subtracted in a careful study by
Olmsted et al. [94]. This work will be used as reference for the calculations of τP .

Much less work has been reported on the actual atomistic dynamics of dislocation motion.
Amongst the first simulations of dislocation motion is the work by Daw et al. [100, 101]
on edge dislocations in nickel with and without hydrogen interstitial impurities. For pure
nickel at room temperature they observed dislocation motion with a steady velocity which
is in good agreement with Leibfried’s estimate of phonon damping [65]. At high stresses a
saturation velocity was observed at about 0.6ct. Later simulations of the dynamics of edge
dislocations in nickel and aluminum by Rodney [58, 102] and Bhate [56] showed basically
the same characteristics: a nearly linear increase of the dislocation drag coefficient with
temperature and a saturation of the dislocation velocity significantly below ct. The dynamics
of screw dislocation dipoles in Cu was studied by Mordehai et al. [103] who observed a
deviation from the linear increase of dislocation velocity with stress at velocities larger than
about half the transverse sound velocity. An extensive study on the dislocation mobility of
edge and screw dislocations in Al and Ni was recently published Olmsted et al. [53]. They
report two regimes of dislocation motion, one in which the dislocation velocity is linear in
τ/T (applied shear stress over temperature), and a nonlinear regime which differs for edge
and screw dislocations. The nonlinear regime for screw dislocation is believed to be caused
by radiative damping [53]. However, no relationship between the subsonic velocity plateau
exhibited by edge dislocations and any special or ”forbidden” velocities could be determined.
A convincing physical interpretation of the plateau velocity has not yet been offered.

Atomistic simulations of the interaction of dislocations with obstacles have been performed
for various types of obstacles, like other dislocations [104, 105], grain boundaries [106, 107],
solute atoms [108,109] or precipitates [110,111]. Recently, however, especially the interaction
processes of moving dislocations with defect clusters created by irradiation has attracted
much interest [5,112–118]. Elasticity theory can be used for a simple treatment of hardening
due to these defects, however knowledge of the individual short-range interactions, which
are atomic-scale in nature, can be obtained only from atomistic simulations. An example of
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the importance of atomic scale processes is the interaction of dislocations with stacking fault
tetrahedra (SFTs). Depending on the geometry different reactions can take place [117, 118],
involving partial absorption, shearing or restoration of the SFTs. These mechanisms can
explain the formation of the experimentally observed defect-free channels cleared by gliding
dislocations. The atomic scale structure of the dislocation is also influencing the interaction
of dislocations with voids, leading to deviations from the continuum treatment [114,116].

Although the above studies also include dynamic (in contrast to quasistatic) simulations,
there are currently no systematic studies addressing dynamical effects in dislocation-obstacle
interactions (see sec. 2.1.3.5).
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2.2 Fracture

Fracture, the separation of a material body under load into two, or more, pieces can proceed
by different mechanisms [119], e.g.:

• the rupture of atomic bonds by tensile stresses (cleavage fracture)

• complete plastic necking

• void growth and coalescence

• cavity growth and coalescence by stress-directed diffusion (creep fracture)

• strain-rate assisted localized chemical attack at the crack tip (stress corrosion cracking)

In the following we will look more closely at cleavage fracture in crystals in combination with
plasticity at the crack tip. In contrast to the quantitative study of dislocation motion, the
study of dislocation processes at crack tips in part II of this thesis is of more qualitative nature.
Therefore only basic knowledge of linear elastic fracture mechanics (LEFM) is required and
no separate introduction in LEFM is given here. For a comprehensive introduction to fracture
mechanics the reader is referred to [120–123]. Textbooks, however, usually do not cover the
brittle-to-ductile transition in much detail. The difference between brittle and ductile fracture
and the brittle-to-ductile transition are therefore addressed in the sections 2.2.1 and 2.2.2.
The origin of the dislocations near the crack tip in an otherwise dislocation free crystal is one
of the underlying questions in the study of the brittle-to-ductile transition and the main topic
of the second part of this thesis. Therefore sec. 2.2.2 gives special attention to the review of
the experimental and theoretical literature on nucleation and multiplication of dislocations
at crack tips. The theoretical background and literature overview is closed with an overview
of atomistic simulations of fracture processes.

2.2.1 Intrinsically brittle versus intrinsically ductile solids

In linear elastic fracture mechanics it is assumed that once the applied stress intensity factor
KA exceeds the material’s toughness KC fracture propagates by cleavage. Conversely to such
intrinsically brittle materials, intrinsically ductile materials develop a plastic zone (PZ) at
the crack tip.Within this plastic zone the singularity of the stress field proportional to r−1/2

vanishes. In the first approximation the stress within the PZ is equal to the yield stress of
the material [124].

The first theoretical attempt to determine whether a material will fail by brittle fracture
or show plastic relaxation at the crack tip was based on the comparison of the theoretical
strength of a crystal under tension versus the theoretical shear strength. From atomistic pair
potential calculations Kelly et al. [125] concluded that cleavage fracture should take place in
diamond or rock salt, whereas the fcc metals should deform plastically. The application of
their model to materials showing intermediate behavior, however, is less straight forward.

2.2.2 Brittle-to-ductile transition

Most materials do not fall in the categories of ideally ductile or ideally brittle, but show an
intermediate behavior which depends on the temperature and loading rate. Many crystalline
materials like steels, refractory metals, intermetallic phases, semiconductor crystals, ceramics



30 CHAPTER 2. THEORETICAL BACKGROUND AND LITERATURE OVERVIEW

and some ionic crystals exhibit two distinct failure regimes: at low temperatures or high
loading rates they fail by brittle fracture, whereas at high temperatures or low loading rates
they deform plastically. Between these two stages the so called brittle-to-ductile transition
(BDT) takes place [126–130].e The brittle-to-ductile transition temperature (BDTT) as well
as the fracture toughness of semi-brittle materials are determined by the competition between
the breaking of chemical bonds at the crack tip and the mechanism which lead to plastic
deformation at the crack tip [3,132]. Materials which show a BDT are frequently called semi-
brittle, relating to the fact that they are intrinsically brittle, but this feature can be masked
if a plastic zone can develop sufficiently fast to stop the crack [133].

The importance of the brittle-to-ductile transition for engineering applications has been
highlighted by several accidents involving the brittle fracture of steel structures, like the large
scale fracture of the Liberty ships during and after World War II [18, 134]. Therefore signif-
icant theoretical and experimental efforts were made to uncover the limiting and therefore
controlling processes during the development of plastic zones. Two processes are required
to form a plastic zone: the nucleation of dislocations and their motion away from the crack
tip. As detailed below, the question whether the brittle to ductile transition is controlled by
the ability of the material to generate dislocations or whether the BDT is dominated by the
dislocation mobility has been subject of intense discussion [2, 133–135]. Still today’s under-
standing of the BDT does not allow to transfer results between different loading situations
and between different material classes [133]. Furthermore, the microstructural complexities
of real world materials including grain boundaries or precipitates are generally not taken into
account in the models describing the BDT.

Most BDT models are based on static cracks subjected to a constant loading rate K̇I . The
technically more relevant issue of propagating cracks is less frequently addressed with BDT
models. The processes at the crack tip which lead to an arrest of a propagating crack by the
evolution of a PZ below the crack arrest toughness KIa (or above the BDTT) have not yet
been studied in detail.

2.2.2.1 Experiments

Semibrittle materials lose most of their fracture resistance and ductility when the temperature
is lowered below the BDTT. This temperature is often the lowest temperature at which such
a material can be used for engineering purposes. There exists a large body of experimental
studies on the fracture behavior of different materials under various testing conditions such
as temperature, loading rate, specimen geometry, environment, composition, microstructure,
crystallographic orientations, etc. For the of study the underlying mechanisms of the BDT,
well defined experiments – ideally with constant stress intensity rate and on single crystals
– are necessary. Such studies have been performed by Riedle and Gumbsch [136–138] on the
brittle-to-ductile transition in tungsten single crystals. From these experiments it is concluded
that the nucleation of dislocation is the dominant factor controlling the fracture toughness
at low temperatures. However, if the number of active sources is sufficiently high – either
by pre-deformation or due to thermal activation – the fracture toughness is rate dependent,
which indicates that the dislocation mobility becomes the controlling factor [136–138]. An
overview about how the BDT in W can be modeled by dislocation dynamics simulations is
given in [139,140]. The most thoroughly studied model material however is single crystalline

eBrittle-to-ductile transitions are not limited to crystalline materials, but the underlying mechanisms of the
BDT e.g. in polymers [18] or quasicrystals [131] differ from crystalline materials and are not discussed here.
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silicon. The simulations in part II of this thesis were mainly motivated by careful experiments
on single crystalline Si. The according experimental data is therefore reviewed in more detail.

Since single crystalline silicon exhibits a sharp brittle-to-ductile transition [126] and since
high purity, dislocation free single crystals are commercially available, the BDT in silicon
has been studied extensively by many groups [2, 126–128, 135]. In these studies a static
crack is subjected to a driving force which increases at a constant rate K̇I until cleavage
fracture or large scale plastic deformation occurs at a given temperature. Although due to
different experimental set-up, specimen geometry and dopant content the measured BDTT
vary amongst the different groups, the following results can be generalized as follows [128]:

• Si shows an abrupt BDT in which the fracture toughness rises suddenly in a narrow
temperature range (less than 5K).

• The fracture toughness at temperatures below the BDTT, where silicon fractures by
cleavage, is nearly independent of temperature.

• The BDTT is correlated with the loading rate K̇I by an Arrhenius-type law. The
activation energy (2.2 eV) equals that for dislocation motion in Si; it is influenced by
the content of dopants, just like the dislocation mobility.

• For temperatures above the BDTT and constant K, dislocation nucleation occurs nearly
independent of temperature at about 0.25KIc .

From these experiments the common view has emerged that dislocation mobility is the rate
controlling parameter which determines the BDT and the BDTT at a given loading rate
[126,127,141]. However, it was observed that pre-deformation of the silicon specimens causes
a semi-brittle regime to occur in which the fracture toughness rises slowly from the low
temperature value [142]. It was furthermore shown [2, 135, 143], that the BDTT can be
shifted to higher temperatures by increasing the perfection of the crack front, e.g. reducing
the number of cleavage steps. This indicates that dislocation nucleation at the crack front
is inhomogeneous. From these and other observations it was concluded that although the
mechanism of the BDT is governed by the mobility of dislocations, the brittle-to-ductile
transition temperature is strongly dependent on the activity and density of dislocation sources
[144–148]. Detailed studies on dislocation loop nucleation at crack fronts and of the early
stages of plastic zone formation in Si show that the dislocation nucleation is indeed a highly
inhomogeneous process [2, 135, 143, 147, 149]. Hirsch, Roberts and Samuels [145] and later
Michot and coworkers [150] identified the distance between the dislocation sources along the
crack tip as a sensitive parameter for the BDT.

Argon and Gally [1, 151] developed an experimental technique in which a cleavage crack
propagate up a temperature gradient with different externally controlled velocities. These
experiments yield complementary information to the above mentioned fracture experiments
at constant K̇ and constant temperatures. In their experiments the crack tip advances in
a series of jerky steps between which the crack tip stress field samples different material
’elements’ for a certain time at increasingly higher temperatures until the residence time of
the crack tip becomes of the order of the time required to fully develop a crack tip shielding
zone where the crack is arrested [1]. Under these conditions cleavage crack arrest occurs at
increasing temperatures with increasing average crack velocity.
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Figure 2.7: The four crystallographic specimen orientations used in the study of mode I fracture in
Si. The Thompson tetrahedron shows the orientation of the slip systems with respect to the crack
front (after [147]).

Sources of dislocations at crack tips The early stages of plastic zone formation
in initially dislocation free Si were subject of detailed studies to clarify the origin and the
nature of the first dislocations which nucleated at the crack front [1, 2, 134, 147, 152–154].
The four types of crystallographic specimen orientations used to study mode I cracks in Si
are shown in Fig. 2.7. The orientations with {110} cleavage planes, in particular the so
called γ−orientation, thereby generally lead to cleavage surfaces of better quality compared
to fracture along {111}-planes [147]. In the following, the experimental results relevant to the
study of dislocation sources at crack tips are summarized.

One of the first comprehensive studies of dislocation emission in all four specimen orienta-
tions of Fig. 2.7 was performed by George and Michot [147]. Their in-situ observations using
synchrotron X-ray topography and subsequent analysis by chemical etching of the fracture
surfaces revealed that in each orientation only a limited number of the possible slip systems
are activated. The observed Burgers vectors are often active only in one of the two possible
glide planes. In many cases the observed predominant slip systems do not correspond to the
ones subjected to the largest driving forces. George and Michot therefore concluded, that the
choice of the slip system is not only influenced by the stress state, but is also dictated by the
nature of the dislocation source [147].

Sources were frequently detected at the intersection of the crack front with the free surfaces
[147, 149]. Dislocation nucleation in the early stages also takes place at a limited number
of special sites along the crack front [147]. Only in some cases these sites correspond to
observable crack front ledges [149]. Crack tip ledges can therefore act as dislocation sources,
but not all visible ledges lead to dislocation emission, and not all emissions can be traced to
leges [147].

The detailed study of dislocation source configurations in the α-orientation (see Fig. 2.7)
revealed that a few sources emit only dislocations with one Burgers vector, sometimes involv-
ing cross-slip. In some cases these one-Burgers-vector sources are linked to crack tip ledges.
One case was observed were cross-slip from a dislocation from a one-Burgers-vector source
produced a source at the crack tip in the cross-slip plane [147]. Most sources however emit
several Burgers vectors on several slip systems [147], forming at least two main rows of dis-
locations. These sources could not be traced back to defects on the crack front. The etch
pits on both cleavage surfaces coincide ahead of the crack front. Behind the crack front only
one row is visible on each half-sample [147]. The same experimental set-up was later used by
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Figure 2.8: Etch pit pattern of dislocations emitted on the (a) and (b) planes as observed in the
crack arrest experiments of Gally and Argon [1]. The sources (S) are supposed to be cleavage ledges
from which screw dislocations DC are emitted towards the flank regions of the crack.

Slip plane
Author (a) (b) (c) (d)
George and Michot [147] BC, DB AD, CA DB,(AD) (BC), (CA)
Loyola de Oliveira et al. [152] - AD, CA AD CA
Gally and Argon [1] ? ? - -

Tab. 2.1: Observed slip systems activated at crack tips in the γ orientation. Burgers vectors in
brackets denote slip systems which were inactive in a few samples, but still frequently observed.

Loyola de Oliveira [152] to study dislocation nucleation at γ-oriented cracks. It was found
that in the early stages of plastic zone development at least two Burgers vectors are activated
which are generally distributed over four slip systems. In the later stages usually four Burgers
vectors are present, each corresponding to loops formed in both of the glide planes available
to the Burgers vector [152].

A distinction between ”primary” and ”secondary” sources was subsequently introduced
by Michot and coworkers [148]. Primary sources are often connected to crack front ledges.
Typically relatively few primary sources are observed in the experiments by Michot et al. [149].
With a minimum distance of about 50 µm between these sources they can only provide limited
crack front shielding which is insufficient to avoid brittle fracture. Therefore the existence
of other dislocation sources is required to explain the BDT [149]. These sources which are
supposed to be activated during growth of the plastic zone are called secondary sources
[148]. Analysis by atomic force microscopy (AFM) confirmed that secondary sources are not
associated with preexisting defects like ledges [135]. These secondary sources emit only few
dislocations per slip plane, but are much closer spaced than the primary sources [135]. Michot
et al. postulate that plastic relaxation at a crack tip starts by the activation of few primary
sources which emit tens of dislocations, followed by the triggering of many secondary sources,
each of them emitting only few dislocations on other glide planes [135,148,149]. A mechanism
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of dislocation source multiplication has been proposed in which the intersection of a dislocation
with the crack front triggers a secondary source through the process of ”stimulated emission”
[135,148,149]. This mechanism is presented in some more detail in the next two sections.

A qualitatively different source configuration was found by Gally and Argon in their
experiments on crack arrest in a temperature gradient [1, 134, 151]. Their experiments on
cracks in the γ-orientation indicate that the plasticity of the entire crack arrest process is
accomplished by the slip activity on the symmetric (a) and (b) planes. This leads to the ”∧”-
shaped source configuration indicated by an ’s’ in Fig. 2.8. The distance between the sources
is about 5 µm, while the average spacing of observable ledges was 2-3 times larger [151]. The
etch pits forming the ∧ do not match across the fracture surface. Ahead of the well delineated
zone of sources is a region with high density of etch pits which is sharply terminated about 5
µm in front of the sources. Contrary to the experiments by Michot et al. which showed long
rows of etch pits in front of the crack, nearly no etch pits are found further in front of the
arrested crack [1]. The Burgers vector of the dislocations could not be determined.

Gally and Argon assume that the dislocation sources in Fig. 2.8 correspond to cleavage
ledges from which screw dislocations with Burgers vector CD are nucleated [1, 134, 151]. It
is argued that the nucleation of these dislocations from cleavage ledges is kinetically favored.
The screw dislocations CD should experience a very low energy barrier, as it does not require
the creation of a free surface. In contrast, the nucleation of dislocations on the (c) and (d)-
planes should be connected to a very large energy barrier [134]. The nature of the resolved
shear stress on the (a) and (b) plane allow dislocations with b = CD only to expand slightly
ahead of the crack and favor their backwards expansion [1].

Besides the different source configurations, one of the main differences between the ob-
servations in the experiments of Michot and coworkers [2, 135, 147, 152] at constant K̇ and
the crack arrest experiments by Gally and Argon [1, 134, 151] is the absence of dislocations
on the (c) and (d) planes in the latter. Gally and Argon argue in favor of the emission of
screw dislocations CD, whereas George and Michot observed 60◦ dislocations on the (a) and
(b) planes [147], see also Tab. 2.1. These differences are attributed by Gally and Argon to
the predominance of plane stress conditions in the thin samples used in [2, 135,147,152] (0.6
mm compared to 3 mm in [1]) which significantly changes the resolved shear stress acting on
the various slip systems [1]. The observed slip systems in fracture experiments on initially
dislocation free single crystalline Si specimens in the γ-orientation are summarized in Tab. 2.1.

Stimulated dislocation emission Rapid dislocation multiplication immediately after
intersection of the crack front by an attracted dislocation generated from a remote source
was first reported by Michot in fracture experiments on GaAs [150]. The process of such
”stimulated emission” of dislocations at a crack tip was studied in detail by Scandian [2,153].
The schematic geometry used by Scandian [153] in his study on γ-oriented cracks in 300-600
µm thick Si single crystals is shown in Fig. 2.9. In this case the incoming dislocations were
created by placing an indent at a certain distance from the crack tip. The experiments were
performed in-situ at high temperatures and subcritical loading. The evolution of the plastic
zone was followed by in-situ X-ray topography using synchrotron radiation. In general it was
found that one incoming dislocation can produce tens of dislocation lines. The generated
dislocations have different Burgers vectors [2] and usually glide on different planes. Stimu-
lated dislocation emission corresponds therefore not to pure multiplication of the incoming
dislocation.
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Figure 2.9: Experimental geometry used by Scandian to study the stimulated dislocation emission
on a γ-oriented crack in silicon [153].

A sequence of topographs showing stimulated dislocation emission in the γ-orientation is
shown in Fig. 2.10. The dislocations created by the indentation in Fig. 2.10a are of type CA(b).
In Fig. 2.10b some of these half loops have traversed the crystal (arrow). In Fig. 2.10c a DB(a)
loop appears (arrow). In Fig.2.10d this loop has developed and traversed the crystal. Its screw
segments are found on the two sides of the crack (arrows). A significant decrease of the crack
tip stress field can be noted in this figure which is related to a massive development of a plastic
zone. The results of Scandian’s study on stimulated emission are summarized in Tab. 2.2 in
which the stimulating dislocation and the stimulated glide systems are characterized. Similar
results by Scandian et al. on stimulated dislocation emission at cracks in the β-orientation
are reported in [2].

The mechanism behind the stimulated emission remains unclear. Nucleation by stimulated
emission is assumed to be an easy process, since it is operative already at small applied loads
(0.3 KIc) [135,150]. It thus can by-pass the high energy processes required in the homogeneous
nucleation processes. Stimulated emission is not necessarily linked to the creation of an atomic
crack ledge by the incident dislocation. Also dislocations with Burgers vectors parallel to the
cleavage plane can lead to stimulated emission [2]. It is argued that the stress amplitude
attained locally at the intersection point between the dislocation core and the crack front is
of the order of the theoretical shear strength. This could lead to a local mechanical instability
of the lattice [150]. An alternative hypothesis is that the relative atomic displacements induced
by the dislocation on nearby slip planes could lead to the formation of a dislocation nucleus
which can then grow due to the applied stress field [153]. Stimulated emission is believed to
be a general mechanism which should work in any material containing bulk sources [150].

2.2.2.2 Models of dislocation emission from crack tips

The emission of a dislocation from an atomistically sharp crack tip was first studied in depth
by Rice and Thomson [132]. They studied the evolution of a dislocation half loop in front of a
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Figure 2.10: Emission of dislocations stimulated by one dislocation coming from an indentation
(γ-orientation, T= 1023 K, loading: 0.5 KIC , diffraction vector g = [22̄0]). in-situ X-ray topographs
by Scandian [153]. (a) to (d) in-situ X-ray topography observations. (a):t = 36 min, (b):t = 52 min,
(c):t = 65 min, (d):t = 105 min.

crack tip under the combined action of the (repulsive) stress field of the crack, the (attractive)
image forces due to the free crack surfaces and the surface tension force from the creation
of surface ledges by the dislocation nucleation (attractive). The configuration in which the
mechanical stability of the dislocation loop is evaluated is depicted in Fig. 2.11a. If the
dislocation loop reaches a critical radius rc ≈ (µb/KI)

2 it will spontaneously grow. Rice
and Thomson assumed that for a critical radius of the order of the dislocation core radius
r0 there should be no barrier to dislocation nucleation. Comparing the critical value of KI

for spontaneous dislocation emission with the critical value KIc for cleavage, they predicted
brittle fracture for materials with µb2/r0γs > 10. As in the model by Kelly et al. [125] all
fcc metals are predicted to be ductile, whereas all bcc metals should fail by cleavage. Rice
and Thomson also considered thermal activation of the dislocation nucleation process as one
way of explaining the BDT. The calculated energy barriers are however prohibitive for most
semibrittle materials.

The original Rice and Thomson model [132] of dislocation emission from a crack tip has
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Stimulating dislocation predominant dislocations other dislocations
DB(a) CB(a) & CB(d) -
DA(b) CA(d) DB(c) & ?
DB(a) CA(d) DA(b)
CB(a) CB(a) & DB(a) & CB(d) CA(b) & ?

Tab. 2.2: Observed slip systems during stimulated emission in the study of Scandian [153]. The
configuration shown in Fig. 2.10 corresponds to the third sample.

inclined
plane

oblique
plane

led
ge

a) b) c)

Figure 2.11: Different possible configurations for the emission of dislocations from a crack tip: (a)
inclined slip plane intersecting the crack front along its whole length, (b) oblique plane intersecting
the crack front, (c) cleavage surface ledge in at the crack front (adapted from [134]).

been refined by many authors, especially by taking into account atomistic considerations in
the nucleation of dislocations by the introduction of a Peierls-Nabarro potential along the
slip plane [32,155–160]. The treatment of Rice and coworkers [32,158,161] of the dislocation
generation is based on stress arguments, whereas the treatment of Schoeck [156,157,159,160]
is based on the total Gibbs free energy. In principle these two approaches should lead to the
same results, but it was argued that the energy based approach should lead to a more realistic
comparison with atomic simulations [160]. Including the Peierls-Nabarro potential in the Rice
and Thomson model overcomes the problem of using an ill defined dislocation core radius r0.
With the so-called unstable stacking fault energy γusf Rice [32] introduced a material specific
parameter which measures the materials resistance to dislocation nucleation at the crack tip
f. The stress intensity factor required for dislocation nucleation is then proportional to

√
γusf.

In these models the calculated energy barrier to dislocation emission is lowered compared
to the original Rice and Thomson model, but still too high for thermal activation. Further
refinements of Rice’s Peierls model include corrections for the creation of surface ledges, crack
tip blunting, effects of crystal anisotropy, tension-shear coupling and surface stresses, see the
discussions in [163–165].

All these models have in common that they describe the dislocation nucleation at the
crack tip as a homogenous process – even when the problem is treated in three dimensions
(dislocation half loop on an inclined plane intersecting the crack front) [155]. Zhou and
Thomson [166] were the first to consider inhomogeneous dislocation nucleation at defects of
the crack tip. They discussed in detail the emission of dislocations from ledges on cracks.
Their basic idea is that a ledge on a crack loaded in mode I has locally a stress intensity factor

fThe unstable stacking fault energy is defined as the excess energy of an interplanar shear configuration
in which two atomic layers are displaced by half a periodicity displacement parallel to each other. It can be
accurately calculated using first-principle total energy methods [162].



38 CHAPTER 2. THEORETICAL BACKGROUND AND LITERATURE OVERVIEW

with a large mode III component. A crack with a ledge is described in terms of dislocations
as composed of fictive edge dislocations with b normal to the crack plane which have at the
ledge jogs of pure screw character. These screw dislocations can then be emitted ahead of
the crack tip. Although Zhou and Thomson’s treatment shows that ledges on cracks can
be efficient sources for dislocations, it can not account for the complicated slip geometries
observed in experiments [147].

Xu et al. [167, 168] used their variational boundary integral (VBI) technique to study
the emission of dislocations from tips of cleavage cracks for the three geometries shown in
Fig. 2.11. The VBI method has the advantage to be able to deal with the expected three-
dimensional configurations of the critical dislocation nucleus. Their results for α-iron indicate
that thermally activated dislocation nucleation on inclined slip planes which contain the crack
front (Fig. 2.11a) is very unlikely (the activation energy ∆Uact. at KIc is about 22 eV). Also,
the nucleation on oblique planes cutting the crack front (Fig. 2.11b) in the interior of a solid
can be excluded ( ∆Uact. ≈ 55 eV). According to Xu [168] the only possible mechanism of
dislocation nucleation in α-Fe is the one from cleavage ledges ( ∆Uact. ≈ 1 eV for a ledge
height of 50 nm), which with realistic values for the crack velocity also leads to reasonable
estimates for the BDTT. The existence of ledge-like defects along the crack front therefore
is proposed to have a significant influence on the brittle-to-ductile transition. The above
mentioned models of dislocation nucleation at the crack front are discussed in detail in the
recent review by Xu [164].

D

A

B

C

a) b)

crack front

FR-source

cross-slip

Figure 2.12: Suggested dislocation source multiplication mechanisms based on stimulated emission:
a) as suggested by Michot [148] for the α-orientation; b) suggested by Scandian [153] for the γ-
orientation.

Based on their observation that a dislocation source can be easily activated at the in-
tersection point between the crack front and an attracted dislocation [2, 150, 153] (see the
preceeding section), Michot and coworkers developed a model of dislocation source multipli-
cation based on the process of stimulated emission [135, 148]. To explain the observed steep
increase of dislocation density around the crack tip in Si [2, 150], Michot and coworkers pro-
posed the following ”avalanche multiplication” mechanism [135, 148]: a dislocation emitted
by the primary source (Spr in Fig. 2.12 a)) on the plane with maximum resolved shear stress
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cross-slips to a plane where it is attracted by the crack; the intersection leads to a secondary
source Sse which emits dislocations which can then cross-slip again. This leads to a repetitive
process. The required cross-slip in this avalanche mechanism is enabled by the back-stress
of the dislocations previously emitted by Spr. The shielding effect by these dislocations is
smaller than their loop radius [169], therefore the shielding at the secondary source is very
low and it can emit a new bundle of dislocations [148]. The cross-slip process suggested by
Michot (Fig. 2.12a) which leads to a direct intersection of the crack front by the cross-slipped
dislocation is however not universal, but depends on the crystallographic orientation of the
crack system and the available slip systems. For other crystallographic orientations in Si other
mechanisms have to be considered. A more general mechanism suggested by Scandian [153],
Fig. 2.12b, involves the creation of a Frank-Read (FR) source by the cross-slip of the screw
part of a dislocation loop emitted by the primary source. The dislocations emitted by the FR
source then stimulate the creation of a secondary source at the crack front.

2.2.3 Atomistic fracture simulations

Two dimensional atomistic studies have provided valuable information on many aspects of
fracture like lattice trapping [170–172], cleavage anisotropy [173], forbidden velocities and
dynamic instabilities like crack branching and dislocation emission in dynamic brittle fracture
[174–176], and the role of non-linear elasticity on dynamic fracture [177, 178]. An overview
about atomistic theory and simulation of fracture is given e.g. in [179–181].

Fully three dimensional atomistic simulations of fracture processes in single crystals are
however relatively scarce [35,182–188]. Perhaps best known is the work of Abraham et al. on
large scale simulations of ductile failure with up to one billion atoms [35,182–184]. The three-
dimensional simulations on notched fcc crystals under constant tension revealed that using a
Lennard-Jones potential, brittle crack propagation in the γ-orientation planes is possible upto
about one third of the Rayleigh wave speed [182]. At this velocity the crack tip roughens
on the atomic scale. This instability results in the massive emission of dislocations and
crack propagation stops by crack tip blunting [182]. Their largest simulations of a Lennard-
Jones crystal with two opposing sharp cracks showed complex interactions of thousands of
dislocations leading to work-hardening [183]. The analysis of these simulations by Buehler
et al. [35, 184] revealed as main mechanisms of work hardening dislocation cutting processes
(including jog formation and point defect creation), activation of secondary slip system by
cross-slip and Frank-Read sources, and formation of sessile dislocations like Lomer-Cottrell
locks.

Zhou and coworkers [185, 186] have studied ductile failure at constant strain rate in fcc
crystals in the (010)[101] crack system using an EAM and a Morse potential. They observed
the emission of jogging dislocations at the intersection of the crack with the free surface, and
of blunting or jogging dislocations along the crack front. The type of the emitted dislocation
depends thereby on the potential [186]. Different potentials were also used in the study of
Kimizuka et al. [187] on γ-oriented cracks subjected to a constant strain rate. Using an
aluminum EAM potential they observed the emission of 〈100〉 dislocations on {010}-planes
which break up into 1/2〈110〉 dislocation loops. In Cu only the usual 1/2〈110〉 dislocations
are observed. The characteristics of the dislocation emission is however found to be different
for 0 K and temperatures above 50 K. At 0 K the crack starts to propagate by brittle cleavage
and with increasing strain starts to emit dislocations. In contrast at 50 K no brittle fracture
takes place and dislocation emission occurs early and less abruptly than at 0K, leading to a



40 CHAPTER 2. THEORETICAL BACKGROUND AND LITERATURE OVERVIEW

less concentrated dislocation ’cloud’ [187].
The above simulations provide interesting insights into the general aspects of ductile fail-

ure. Direct connections to experimental observations were however not intended. Quantitative
calculations of the activation energy for dislocation loop emission in copper were performed by
Zhu et al. [188]. Their 3D calculation of the saddle-point configuration led to a significantly
higher activation energy than the continuum estimate. Homogenous dislocation nucleation
on inclined slip planes is therefore considered highly unlikely [188]. It is now widely accepted
that the presence of any heterogeneity along the crack front should significantly reduce the ac-
tivation energy for dislocation emission [134,148,168,188]. However, to the authors knowledge
no corresponding detailed three dimensional atomistic simulations of defective crack fronts
have been published so far. In particular, the atomistic mechanisms during the interaction of
cracks with preexisting lattice defects have not yet been the topic of thorough investigations.



Chapter 3

Simulation methods

3.1 Molecular dynamics

Molecular dynamics (MD), the numerical solution of Newtons equation of motion for an sys-
tem of interacting particles using discrete time steps, is a well established simulation method
in physics, biochemistry and materials science [189–191]. The method is described in detail
in several books, e.g. [189, 192, 193]. The current state of the art of molecular dynamics
simulations for atomistic modeling in materials science is summarized in chapter 2 of the
”Handbook of Materials Modeling” [194]. The MD software package used for all the sim-
ulations in this thesis, IMD (ITAP Molecular Dynamics), is described in [195–197] and is
documented in [198]. Therefore this section concentrates on the characteristics determining
the simulations, namely the interaction potential and the initial and boundary conditions.
For an introduction to the MD method the reader is referred to the above cited literature.

The determination of equilibrium structures and of the stability of atomic configurations
under mechanical loads requires different methods, which are sometimes referred to as molec-

ular statics. Several such methods for structural optimization of atomic configurations by
energy minimization exist, see [190, 199]. For our purposes, however, the standard methods
showed relatively poor performance or had severe limitationsa. Therefore a new method (Fast
Inertial Relaxation Engine, FIRE) for fast structural relaxation was developed. It is described
in [200] and in the appendix B.

3.1.1 Interatomic potentials

To model the atomic interactions, potentials which follow the Embedded Atom Method
(EAM) [201–204] representation of the interaction energy are used. The ability to capture the
most essential features of metallic bonding together with their computational efficiency lead
to a widespread use of these semi-empirical potentials. For information about the theory be-
hind the embedded-atom potential the reader is referred to the recent review by Mishin [205].
The details of the implementation of EAM potentials in IMD are described in [197].

To study the sensitivity of dislocation properties on the interatomic potential, different
potentials were used for the same material. The properties of the potentials relevant for the
present study are listed in appendix A.

aEnergy minimization by the current state of the art Broyden-Fletcher-Goldfarb-Shanno (BFGS) method
for example fails to determine the stability of configurations under load, see [200].

41
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For aluminum the widely used potential by Ercolessi and Adams [206], in the following
denoted by AlI , is applied. It is one of the few potentials which are fitted to material properties
extrapolated to 0 K. I.e. simulations at 300 K yield the lattice constant and elastic properties
corresponding to those of Al at room temperature – contrary to the other potentials in this
study. Subsequently, the melting point of the potentials is very close to the experimental one.
AlII is a more recent potential by Mishin et al. [207]. The development of this potential, like
the other potentials by Mishin, included the fitting to a large set of energies of alternative
crystal structures generated by ab initio calculations. The potential is therefore expected
to be very well suited to model the different local environments encountered in atomistic
simulations of lattice defects. The phonon-dispersion curve calculated with AlII furthermore
agrees very well with the experimental curve. This aspect can be important for the realistic
modeling of the dislocation - phonon interaction. Whereas the elastic properties of the two
Al potentials differ by less than 10%, the stacking fault energy γsf is about 30% lower in
AlI than in AlII . From this different dissociation widths can be expected for dislocations
modeled by the two potentials. The generalized stacking fault curves of the two potentials
were discussed and compared to ab initio calculations by Zimmerman et al. [208].

Nickel was modeled by a potential of Angelo et al. [209, 210] (NiI)
b and a potential re-

cently developed by Mishin [213] (NiII). The difference in elastic constants between the two
potentials are smaller than 5%. The potential by Angelo et al. however has an unrealistically
low stacking fault energy, leading to a difference of 50% between the γsf of the two potentials.
This difference is expected to be reflected in the dislocation core structure of dislocations in
the two potentials.

Additionally dislocations were also studied in Cu, modeled by the potential of Mishin et

al. [214]. The fracture simulations were only performed with NiII .

3.1.2 Temperature control

The control of temperature is of special importance for the study of dislocation - phonon
interaction. The canonical ensemble with constant number of particles N , constant volume
V and constant temperature T (NVT ensemble) was applied. To control the temperature
of a system after an equilibration phase a Nosé-Hoover thermostat [215, 216] is used (see
also [192] for a discussion and comments on the implementation). Special care was taken to
optimize the thermostat coupling to produce canonical temperature fluctuations about the
desired thermostat temperature.

Holian et al. [217] suggested to choose a coupling rate of the Nosé-Hoover thermostat
which is identical to the characteristic vibrational frequency of the system under study. For
this purpose the Einstein frequency is frequently used [198]. However, the coupling can be
further optimized by analyzing the frequency spectrum of NVT simulations using different
coupling constants. A bad choice of the coupling rate produces an extra peak outside the
native frequency spectrum. With a good choice of the coupling, the frequency spectrum
is only slightly distorted, see also [198]. In the present study the dynamics of dislocations
subjected to a shear stress is studied. I.e. the temperature of a driven system has to be

bDuring the course of this study the original tabulated potential [211] however showed serious flaws. The
first derivative of the tabulated potential is discontinuous, leading to jumps in the forces. The potential was
therefore independently refitted by the author and by Dupuy [212]. This refitting was complicated by the fact
that the published mathematical form of the potential [209,210] does not correspond to the original tabulated
potential.
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controlled. Therefore the above optimization of the coupling parameter is performed under
boundary conditions that perform work on the system (see next section). A good coupling
does not significantly disturb the original frequency spectrum of the system, while still keeping
the temperature fluctuating about the desired temperature (for details see [198]). The used
coupling constants are listed in Tab. A.1.

As alternative thermostating method, a local thermostat suggested by Finnis [218] was
used with the published parameters for nickel. The time step in all simulations was set to 2
fs.

3.1.3 Boundary conditions

In the present study four types of different boundary conditions were used. Atoms in fixed

boundaries were not allowed to move at all, whereas atoms with restricted motion were allowed
to move only in some directions. This way for example 2D dynamic boundary conditions [219]
can be realized in which atoms were free to move in one plane. The boundary layers should be
large enough that the atoms inside the volume limited by the boundaries interact only with
atoms which have bulk properties. In the present study, 2D dynamic boundary conditions
were frequently used together with force boundary conditions. Under these conditions atoms
belonging to outer planes were subjected to extra, external forces. Of course care has to be
taken that the system is not subject to a net impulse or torque.

Periodic boundary conditions (PBC) are used to mimic the presence of an infinite bulk
surrounding the simulation box. The simulation box is in this case used as a primitive cell
from which a lattice of identical cells is constructed which surrounds the original simulation
box. The particles in the simulation box are then interacting with all other particles within the
simulation box and all the other cells – including its own periodic images, see also [189,192].
The studied configurations have to be compatible to periodic extension. For edge dislocations
this means that because of the additional half-plane periodic boundary conditions can only
be applied parallel to the glide plane of the dislocation. It should furthermore be noted, that
under periodic boundary conditions all defects interact with their own periodic copies.

3.2 Simulation set-up

3.2.1 Simulation set-up for dislocations

Two types of simulation set-ups were used for the study of dislocations. To study static
properties like dislocation core structures and the strain energy of dislocations, a cylindrical
set-up was used. All the atoms in the cylinder were displaced according to the anisotropic
elastic solution of the displacement field [12] of the dislocation in the center of the cylinder
using the program DISLOELAST [220]. The outermost atoms were fixed in these positions
and periodic boundary conditions were applied along the direction of the dislocation line.

To study the Peierls stress and the properties of moving dislocations as well as their
interaction with obstacles a rectangular simulation box was used. A sketch of the simulation
box together with its crystallographic orientation and the Burgers vectors of the dissociated
dislocation in Thompson’s notation is shown in Fig. 3.1. By applying periodic boundary
conditions along the dislocation line and in glide direction an infinite array of equally spaced
infinite dislocation lines is modeled. Atoms belonging to the four outer (11̄1̄)-layers were
free to move in the x- and y-direction but were fixed in z-direction. With these 2D-dynamic
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Figure 3.1: Sketch of the used simulation box and it’s crystallographic orientation for the simulation
of an edge dislocation. Periodic boundary conditions (PBC) are used in the line- and glide-direction,
whereas 2D-dynamic boundary conditions are applied in z-direction. Upon relaxation the dislocation
splits into two Shockley partial dislocations (here the edge dislocation DA → Dβ + βA).

boundary conditions the curving of the slab is suppressed, thus modeling conditions in bulk
material. Contrary to fixed boundary conditions the 2D-dynamic BC do not significantly
alter the temperature distribution within the slab.

To introduce the dislocation the approach of Rodney [58,102] was followed and generalized
to screw and mixed dislocations. The atoms in the slab are displaced in x and y-direction
according to an approximation of the isotropic elastic solution for the displacement field of
the dislocation [12]. Thereafter, the ledge at the surface, caused by the edge component of the
dislocation, is removed. The introduction of an additional half plane by edge dislocation is
accounted by adding bx/2 to the periodicity length in x direction Lx. In this way a dislocation
is created in a simulation box which is periodically extendable in the x and y-directs is created
while maintaining flat z surfaces. Upon relaxation the dislocation dissociates into the two
Shockley partial dislocations.

The combination of PBC and 2D-dynamic boundary conditions corresponds to the ap-
plication of forces on the sample which balance the lattice rotation normally associated with
dislocations having an edge dislocation component. These forces influence the dislocation
properties. However, by using large enough box sizes these effects could be minimized. The
box sizes were chosen such that comparison to the dislocation core structures obtained in the
cylindrical set-up yielded no significant differences. Typical box sizes were between 48×4×25
nm3 and 86 × 4 × 41 nm3, see sec. 5.1.4 for details. The alternative use of free surfaces in z
direction would lead to a buckling of the slab which induces unrealistically short dissociation
distances and unrealistic surface waves for moving dislocations [221].

The Peierls stress and dislocation motion were studied by applying extra forces on the
atoms of the outermost (11̄1̄)-layers (force boundary conditions) leading to the desired shear
stress τ . The starting conditions were equilibrated structures which were sheared according
to the anisotropic elastic solution corresponding to τ . The Peierls stress was determined using
an iterative procedure in which τ is increased in steps by consecutively applying additional
shear to the last relaxed configuration.
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3.2.2 Simulation set-up for cracks

3.2.2.1 Geometry and boundary conditions

The simulation set-up for the study of cracks and their interaction with dislocations is shown
in Fig. 3.2. The simulated systems correspond to cubic crystals with side lengths of 25 nm
(small system, 1.4 million atoms) and 75 nm (large system, 38.4 million atoms). On the side
surfaces along the crack front direction 2D dynamic boundary conditions were used. These
allow for crack propagation or closure. On all other side surfaces fixed boundary conditions
were used. The boundary regions consisted of five atomic layers and are indicated in Fig. 3.2.
In this crystal a crack, and additionally a dislocation, can be introduced (see sec. 3.2.2.3
below). The crack tip is positioned at about 2/5Lx of the system size Lx in x−direction.

This simulation set-up provides enough space for dislocation processes at the crack tip. It
furthermore allows for crack propagation under conditions of nearly constant energy release
rate G [175]. This would not be the case if the atoms at the top and bottom of the cube were
not clamped by flat ’grips’ in y-direction but displaced according to the linear elastic solution
of a semi-infinite stable crack.

Along the x-and y-direction different boundary conditions than in Fig. 3.2 could be used.
However, due to the later introduction of dislocations, periodic boundary conditions along
the crack front direction (z) are not possible. To simulate free boundary conditions on the
z-surface, the Poisson contraction would have to be taken into account when straining the
system. However, even then preliminary simulations showed a strong tendency towards dis-
location nucleation at the boundaries of the free surface and at the crack tip (see also the
simulations by Zhou [186]). Similarly, 2D-dynamic or fixed boundary conditions have to be
used along the x-direction to avoid nucleation at the edges between the x and y surfaces.

x

z

y

25 nm
25 nm

25
 n

m

[001]

[1−10][1
10

]

fixed atoms

2D dynamic

Figure 3.2: Simulation set-up used for the study of the interaction between cracks and dislocations
in the γ-orientation. The small sample (1.4 million atoms) shown here contains a relaxed crack which
is blunted by the removal of one atomic layer.
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All the crack simulations used either standard molecular dynamics simulations at 0 K or
static relaxation methods, see appendix B. By using a nickel potential [213], this study can
build on prior 2D fracture simulations in Ni [175]. The large number of atoms involved in
these simulations required the use of high-performance computing platforms. Details on the
computational issues involved in the massively parallel MD simulations are given in [222].
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Figure 3.3: Plot of the potential energy per atom as function of strain ǫ to determine the Griffith
strain ǫG in the small sample. Because of the additional energy due to the straining of the grips (’cut
and strained’), the Griffith strain can not be calculated from the strained sample (’strained’) and the
energy of the cut sample (’cut’).

3.2.2.2 Determination of the Griffith strain

According to the Griffith concept of energy balance (see e.g. [121,122]), a crack is thermody-
namically stable when the reduction of strain energy by crack advance equals the energy of
the newly created surface. The critical strain ǫG at which a sharp crack is stable is therefore
related to the box size (volume V = Lx × Ly × Lz, area A = Lx × Lz) by:

ǫG =

√

4γ(110)A

E∗V
∼ L

− 1
2

y (3.1)

(E∗: Young’s modulus for plane strain or plane stress loading in the appropriate orientation,
γ(110): (110) surface energy). The simulation box therefore has to be sufficiently large to
reach sensible strain values.

The critical strain can in principle be directly calculated using Eq. 3.1 and the theoretical
values of E∗ and γ(110) (see App. A). However, to avoid effects caused by the boundary
conditions, ǫG was determined by applying the concept of energy balance directly on the
potential energy of the simulation box. Fig. 3.3 shows as example the potential energy of the
(free atoms) within the simulation box as function of homogeneous strain along y. Also shown
is the potential energy of the sample with two free surfaces produced by a cut according to an
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imaginary cleavage by the crack. However, due to the fixed boundary conditions, the creation
of the free surfaces can not relieve all the strain. By the different lattice parameter, the fixed
atoms in the strained grips influence the energy of the free atoms within the sample. This is
shown in Fig. 3.3 where the energy of the strained sample with free surfaces is plotted. This
small effect has to be taken into account to accurately determine the Griffith strain, which
is in given by the intersection in Fig. 3.3 of the ’cut and strained’ curve with the ’strained’
curve.c The Griffith strain was calculated for plane strain loading and for boundary conditions
modeling plane-stress like loading, see the next section.

3.2.2.3 Initial conditions and loading of the crack

Sharp cracks were introduced by applying an approximate displacement field followed by
relaxation. For the creation of blunted cracks one or three (110) half planes were additionally
removed. The initial approximation of the crack displacement field was chosen following [223].
For this purpose the box was initially strained along the y-axis according to the Griffith load.
Then the atoms were displaced along the y-direction so that the resulting crack is of elliptical
shape. The center of the ellipse corresponds to the intersection of the cleavage plane with
the left boundary (see Fig. 3.2). The short axis of the ellipse corresponds to d = ǫGLy/2.
The boundary atoms on the left of the center were not strained but displaced upwards an
downwards by d. This way the boundary at the left is fully relaxed, whereas the region
in front of the crack tip is strained according to the Griffith load. The fixed boundary
conditions provide additional stability against crack closing. Upon relaxation, the atoms
assume positions according to the strain field of the loaded crack under the given boundary
conditions. The stress field of this crack of course does not correspond to the stress field of
a semi-infinite crack in an infinite medium. However, the main characteristics of the stress
field near the crack tip are maintained.

Two loading conditions were simulated: plane strain loading and plane stress like con-
ditions. The mathematical idealization of the plane stress case is of course only valid for
infinitely thin samples. However, by including the Poisson contraction along the z-direction,
conditions more akin to plane stress can be modeled. Similar conditions closer to plane
stress than to plane strain are assumed to prevail in the experiments on thin Si samples by
George [147] and Scandian [2, 153], see also the discussion in [1]. The stress field in thin
samples is expected to change significantly the resolved shear stresses on the various slip sys-
tems from the pure plane strain case [1]. The consideration of the Poisson contraction during
straining is an attempt to model such effects of plane stress like loading conditions.

The displacement field of the stable crack was obtained after relaxation by determining
the atomic displacements relative to the positions in the reference system without crack. This
allowed to smoothly load or unload the crack without severely disturbing the crack field by
scaling all atomic displacements. Such scaling of the displacement field does not change the
overall shape of the simulation box or of the elastic strain field.

cAn alternative is to not strain the grips. Therefore 2D dynamic boundary conditions in x- and z-direction
and 1D dynamic boundary conditions along the edges would have to be used. As the Griffith strain is a very
sensitive parameter, it is in any case advisable to determine ǫG under exactly the same conditions under which
the crack will be simulated.
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+ =

Figure 3.4: Sketch of the process used to create the initial configuration for the simulations of
dislocation-crack interaction. The displacement field of a relaxed crack is added to the configuration
of a dislocation relaxed under the same boundary conditions.

3.2.2.4 Combining crack and dislocation

Linear elasticity theory allows the superposition of strain fields. The initial configuration to
study the interaction of dislocations with cracks was thus realized by adding the displacement
field of the crack to the configuration of a relaxed dislocation, see Fig. 3.4. The dislocation
therefore was created in the same crystal and with the same boundary conditions which were
used to create the crack configuration (see sec. 3.2.1 for the creation of the dislocation). The
influence of the boundary conditions on the dislocation can be seen in Fig. 3.4 where the
dislocation is slightly bowed out due to image forces.

This superposition method can be also applied to other types of defects, e.g. to create
a void in front of a crack or to study dislocation - dislocation interactions. Of course the
combined configuration can only consist of atoms present in both original configurations.
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3.3 Visualization and characterization of crystallographic defects

Changes in the regular structure of the crystalline lattice caused by crystallographic defects
like vacancies, surfaces, interfaces or dislocations lead to an increase of the potential energy of
the atoms surrounding the defect. A straightforward approach to visualize defects in a crystal
is therefore to display only atoms with increased potential energy (typically Epot & 0.98Ecoh).
This energy visualization, however, fails when thermal energy comes into play. Methods which
analyze the changes in geometry of the crystal lattice induced by a defect are less affected
by thermal noise. The determination of atoms with a coordination number deviating from
the given crystal structure is the simplest of these methods. However, it is not able to
detect stacking faults. A more advanced geometrical method able to identify stacking faults
is the centrosymmetry parameter introduced by Kelchner et al. [224]. In a centrosymmetric
crystal structure like fcc, each atom has pairs of equal and opposite bonds to its nearest
neighbors. The centrosymmetry parameter Pi of an atom i measures the local departure from
the centrosymmetry. In an fcc structure with 12 nearest neighbors j it is defined as [224]

Pi =

6
∑

j=1

|Rj + Rj+6|2 , (3.2)

where Rj and Rj+6 are the vectors to the six pairs of opposite nearest neighbors [224]. A
surface atom is thus characterized by a Pi > a2

0, atoms in an stacking fault position have
a 0.2a2

0 ≤ Pi < a2
0, and atoms in the core of a partial dislocations are characterized by

0.01a2
0 ≤ Pi < 0.2a2

0. An other geometrical method is to classify pairs of atoms according
to their local environment. In the common-neighbor analysis (CNA) [225, 226] each pair of
atoms having common nearest neighbors is characterized by a set of four indices ijkl. They
describe whether the atom pair consists of nearest neighbor atoms (i), the number of common
nearest neighbor atoms (j), the number of bonds between the common nearest neighbor atoms
where bonded atoms are nearest neighbor atoms (k), and the number of bonds in the longest
continuous chain formed by the k bonds between common nearest neighbors (l). The indices
allow a robust discrimination between atoms in fcc or hcp stacking and dislocation core atoms.
Centrosymmetry parameter as well as the CNA can be used to locate dislocations in crystals
having temperatures upto half the melting temperature.

The above mentioned methods do not give any information on the Burgers vector of a
dislocation. The simplest method to determine the Burgers vector of a dislocation is by
analyzing the displacements of atoms on adjacent atomic planes caused by the glide of the
dislocation between these planes. Zimmerman and coworkers formalized this approach by
introducing the atomic slip vector [227]:

si = − 1

ns

n
∑

i6=j

(xij − Xij) . (3.3)

In this expression, n is the number of nearest neighbors of atom i, ns is the number of slipped
neighbors, xij is the vector between atom i and j in the current configuration, whereas Xij

is the corresponding vector in a reference configuration at zero stress and no mechanical
deformation. Any inhomogeneous deformation near an atom will lead to a large magnitude of
the slip vector. This method can provide quantitative information about lattice deformation
and also about the Burgers vector of dislocations which have produced a certain amount of
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slip. However, the determination of the Burgers vectors in configurations involving many
dislocations on the same or adjacent slip plane, or complicated reactions (eventually leading
to sessile dislocations) can become impossible.

Hartley and Mishin [228] have recently developed a method to describe the misfit in
the vicinity of dislocation cores based on the Nye tensor. The Nye tensor α describes the
distribution of infinitesimal dislocations and is related to the Eulerian deformation gradient
G by [228]

α = −(∇× G) . (3.4)

The numerical integration over the spatial distribution of components of the Nye tensor
permits an accurate calculation of the Burgers vectord.

An other way to gain more quantitative information about the structure of (partial)
dislocation cores is to calculate the disregistry function ∆u (Eq. 2.12) from the atomic dis-
placements above and below the glide plane relative to a reference structure. The atomic
misfit function ρ which represents the linear Burgers vector density can then be obtained
by numerical differentiation of ∆u. The edge and screw components of ρ from the two par-
tial dislocations b1,2 can be fitted by the derivatives of the analytical solution of the original
Peierls-Nabarro model (Eq. 2.13) :

ρPN(x) = b1

πζ2

„

1+
(x−xc,1)2

ζ2
2

« + b2

πζ2

„

1+
(x−xc,2)2

ζ2
2

« , (3.5)

which corresponds to two Lorentzians. An alternative method to determine the position and
the width of partial dislocations is to plot energy of the atoms above and below the glide
plane. Also in this case, Lorentz functions can be fitted to the data.

Further information on defects can be obtained by visualizing the associated stress and
strain fields. The components of the atomistic stress tensor are calculated from the virial
stress [189] using Voronoi tessellation to calculate the atomistic volume, see also [198]. The
visualizations of atomistic configurations were realized with the free software AtomEye by
Ju Li [229], which also allows for simple analysis (coordination number, centrosymmetry
parameter).

Once the atoms constituting the dislocation core are found the dislocation line information
can in principle be extracted from atomistic simulations. While this is a simple task for single,
straight dislocations, the general 3D case with complicated dislocation arrangements requires
methods from computational geometry. For this purpose parts of Mark Duchaineaus free
software library LibGen [230] have been used.

Combining the CNA method for identifying dislocation core atoms with the LibGen tools
for extracting the dislocation line information and the Nye tensor method for calculating
Burgers vectors allows to generate directly from atomistic simulations dislocation configura-
tions for dislocation dynamics simulations e.

dAlthough visualizing the spatial distribution of components of the Nye tensor provides an instructive way
of representing dislocation core structures, accurate values of the splitting distance can not be determined by
this method. This is due to the fact that for numerical reasons bond-angle distortions larger than a chosen
angle have to be ignored. The location of the maximum of the Nye tensor distribution, however, depends on
the choice of this angle.

eA fully automatized computer tool for this purpose is currently under development in collaboration with
M. Duchaineau, A. Hartmaier and C. Brandl.
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Chapter 4

Properties of straight static

dislocations

The core structure and the properties of straight periodic dislocation lines were obtained by
relaxing the starting configurations created by the operations described in sec. 3.2.1. Two
set-ups were used: a periodic dislocation line in a cylinder with fixed surfaces deformed
according to the anisotropic displacement field and a rectangular simulation box with periodic
boundary conditions along the line and glide directions and 2D dynamic boundary conditions
in z-direction. The latter set-up will also be used for the dynamic simulations of dislocation
motion. The radius of the cylinder was about 50 nm (containing about 0.7 million atoms),
typical box sizes were 48× 4× 25 nm3 (about 0.3 million atoms) and 96× 4× 46 nm3 (about
1.2 million atoms), the maximal box size was 223 × 4 × 107 nm3 (about 8 million atoms).
The exact dimensions depend on the crystallographic orientation, the lattice constant and
the thermal expansion of the potentials.

4.1 Dislocation core structure

Several methods to analyze crystallographic defects were introduced in sec. 3.3. These are
now used to analyze the structure of the dissociated dislocations. Fig. 4.1 shows the different
core structures of an edge dislocation in the two nickel potentials as example for the use of
the methods of analysis. For comparison, the core structure of a screw dislocation in NiI is
shown in Fig. 4.2a.

The determination of the splitting distance d between the partial dislocations by identi-
fying the dislocation cores by the coordination number of their atomsa (Fig. 4.1a) proved the
easiest method. However, the exact location of the center of wide partial dislocation cores
was sometimes difficult to obtain. Furthermore, the method fails when partial dislocations
have pure screw character, like in the case of 30◦ dislocations. Fig. 4.1b shows the disregistry
function ∆u (Eq. 2.12) from which the linear Burgers vector density, Fig.4.1c was calculated.
The fit of Lorentzians to the energy of the atoms is demonstrated in Fig. 4.1d. The full width
at half maximum (FWHM) w provides a measure for the width of the partial dislocations.
The measure of atomic energy can also be used to quickly estimate core energies of different
potentials or dislocation types. Additional information can be obtained by plotting the stress

aDefined here as the number of nearest neighbor atoms within a radius of 0.9a0.
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Figure 4.1: Comparison of the core structure of edge dislocations calculated with two Ni potentials:
a) atoms with coordination number 13. b) disregistry ∆u. c) Burgers vector distribution ρ. The edge
(screw) component is represented by a continuous (· · · )) line. d) potential energy per atom along a
line above the glide plane with fitted Lorentz functions.
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field around the dislocation, see Fig. 4.3. The plots show a qualitative difference of the stress
field depending on the splitting distance. For closely spaced partial dislocation the stress
field of the screw dislocation component of the partial dislocations cancel each other. This is
the case although the the Burgers vector components in screw orientation have fully formed
(compare the relative intensities of the Nye tensor distribution in Fig. 4.4). Widely separated
partial dislocations show clearly the characteristic stress field of the partial dislocations .
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Figure 4.2: Core structure of a screw dislocation in NiI : a) Burgers vector density fitted by a
Peierls-Nabarro mode. The edge edge (screw) component is represented by a continuous (· · · ) line. b)
Potential energy of atoms above (▽) and below (△) the glide plane, fitted by Lorentz functions. The
inset shows the core atoms as determined by their coordination number.

The values for d determined by identifying the partial dislocation cores by the coordination
number of their atoms agreed in most cases well with the d determined by fitting the peaks of
the potential energy of the atoms or the Burgers vector distribution. Peak fitting, however,
can lead to peak position which fall between atomic positions. The two method can thus lead
to d differing by up to 1b. The error margin of d is therefore set to ±b.

The boundary conditions in the cylindrical set-up represent the displacement field of a
perfect dislocation. This configuration thus favors a small splitting distance. The introduction
of a half plane leads to a curvature of the planes parallel to the glide plane of an edge
dislocation. This curvature is prevented by the 2D dynamic boundary conditions in the
thin film set-up. This set-up therefore favors a larger splitting distance. For the used box
sizes, however, the splitting distance between the partial dislocations was independent of the
box size (see also Tab. 4.3) and identical to d determined using the boundary conditions
from anisotropic elasticityb. Calculations of the Nye tensor distribution also revealed no
significant differences between the dislocation core configurations from the large simulations
of the dislocation within the cylindrical setup and the dislocations relaxed in the setup for
dynamic simulations, see Fig. 4.4.

The splitting distances d and the two measures for the dislocation widths ζ and w for edge
and screw dislocations are shown in Tab. 4.1. The width ζ of the partial dislocation Burgers
vector distribution was taken from the fits to the widest distribution (i.e. to the edge Burgers
vector distribution for an edge dislocation). The partial dislocation width is larger when it

bSimulations on smaller boxes revealed significant differences in d for Lx < 31 nm and Ly < 7.5 nm.
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Figure 4.3: The local distribution of the shear stress σzx around an edge dislocation in Nickel (left,
Angelo potential), Nickel (middle, Mishin potential) and Aluminum (right, Ercolessi potential) shows
qualitative difference depending on the dissociation width d.
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Figure 4.4: Calculated Nye tensor distributions for an edge dislocation in AlI . Left: dislocation
relaxed within a cylinder using and using atomistic displacement from anisotropic elastic theory.
Right: dislocation relaxed in the setup for dynamic simulations, Lx = 48 nm, Lz = 25 nm. All units
are in Å.

is determined from fits to the atomic energies than when it is determined from fits to the
Burgers vector distribution. This can have several reasons. One reason is that the location of
the maximum of the edge and of the screw components of the Burgers vector distribution are
not identical. The energy of the core atoms is caused by both the edge and screw component
of the displacement, the width w can therefore be larger than ζ. Furthermore the ”energy of
an atom”c is not only caused by the strain directly at the position of the atom, but also by

cThe energy of an individual atom can be defined in the EAM-framework. It has however no direct physical
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the configuration in its surrounding. The spread out of the potential energy can therefore be
different from the distribution of the Burgers vector.

As additional information the height of the energy peak of the partial dislocation is given
in the form (Epeak − Ecoh)/Ecoh, which provides a rough measure for the relative dislocation
core energy.

The splitting distance d decreases with increasing stacking fault energy (see Appendix A)
and is smaller for screw dislocations than for edge dislocations (see Tab. 4.1 and Figs. 4.1 and
4.2), in accordance with Eq. 2.18. Similarly, the width of the partial dislocations is larger for
partial dislocations with strong edge component compared to more screw like partial disloca-
tions. A small splitting distance can lead to core overlap, even though the partial dislocation
cores identified by the coordination number are clearly separated, see Fig. 4.1. In the case of
AlII the strong core overlap can prevent the fitting of two discernable peaks in the Burgers
vector distribution. With the exception of NiII the relative increase in potential energy of the
atoms constituting the dislocation core shows no larger variations for the different potentials.

Potential d [b] ζ1 [b] w1 [b] ζ2 [b] w2 [b] ∆E/Ecoh

edge dislocation
AlI 5.2 1.9 3.5 1.9 3.5 0.015
AlII 4.2 1.6 2.8 1.6 2.8 0.018
NiI 11.7 2 4.1 2 4.1 0.017
NiII 8 1.8 2.9 1.8 2.9 0.024
Cu 14.2 1.8 3.3 1.8 3.3 0.019

screw dislocation
AlI 3 1.3 2.7 1.3 2.7 0.014
AlII 2.2 - - - - 0.013
NiI 5.7 1.6 3.4 1.6 3.4 0.014
NiII 4 1.2 2.6 1.2 2.6 0.022
Cu 5.2 1.3 2.9 1.3 2.9 0.016

30◦ dislocation
AlI 3.5 1.7 2.1 1.3 3.4
AlII 2.5 - - - -
NiI 7.2 1.4 2 2.7 4.2
NiII 5.2 1 1.6 1.8 2.9
Cu 8 1.2 1.8 2.2 3.3

60 ◦ dislocation
AlI 5 2 1.4 3.5 2.4

Tab. 4.1: Partial dislocation splitting distance d, partial dislocation width ζ (from Burgers vector
distribution) and w (FWHM of potential energy) as measured from peak fitting. The relative difference
of the potential energy of the dislocation core atoms to the cohesive energy is used as indicator for the
relative core energy.

relevance as the distribution of the energy between different atoms can be changed without changing the total
energy.
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4.2 Dislocation strain energy

The strain energy of a dislocation can be calculated by starting from the dislocation center
and summing up the excess energy Epot−Ecoh of all atoms within a cylinder of radius R [91].
Figs. 4.5 - 4.6 show plots of the so calculated strain energy per unit length versus ln R for the
different simulation set-ups. The results for the cylindrical set-up with boundary conditions
according to the anisotropic elastic solution for the respective dislocation follow a straight
line for sufficiently large R. The results for the simulation boxes for the dynamic simulations
follow the same line upto Rdev where the strain energy becomes larger than for the cylindrical
set-up. The strain energy usually started to deviate from the cylindrical set-up by more than
2% for Rdev ≈ Lz/4. The difference in total strain energy at R . Lz/2, however, was always
less than 10%.

The deviation from the linear fit for large R were caused by the 2D dimensional boundary
conditions. These boundary conditions led to a combination of positive (for the z-components
of the stress field) and negative image dislocations, which alter the stress field of the disloca-
tion. Such boundary effects are immanent to simulation set-ups for moving dislocations and
have to be accounted for in the discussion.

Potential prelog. fact. [eV/Å] r0 [b] rdev[b] Edev
core [eV/Å]

edge dislocation
AlI 0.195 0.78 5 0.36
AlII 0.1798 0.52 5 0.4
NiI 0.3797 1.02 11 0.9
NiII 0.3751 0.76 7 0.85
Cu 0.2398 0.97 14 0.65

screw dislocation
AlI 0.1294 0.54 6 0.32
AlII 0.1174 0.35 6 0.33
NiI 0.2425 0.63 11 0.69
NiII 0.2346 0.47 7 0.65
Cu 0.131 0.45 7 0.48

60◦ dislocation
AlI 0.1794 0.74 6 0.36

Tab. 4.2: Results of the fits to the strain energy of cylinders containing a dislocation as function of
the logarithm of its radius, see Figs. 4.5 - 4.6. The mathematical core radius r0 is determined from
the intercept of the straight line with the r axis, whereas rdev is an estimate of the radius where the
strain energy not longer follows the logarithmic relationship. The energy at this point is frequently
taken as core energy Edev

core.

The strain energy departed also from the linear fit for small values of R, see e.g. Fig. 4.6.
This departure at rdev is usually attributed to the brake-down of linear elasticity close to
the dislocation core, and the Energy at rdev is often taken as core energy Edev

core [13, 91]. The
deviation is independent of the set-up d. Due to the lattice discreteness rdev can be only
determined with an error of at least ±b. The slope of the line drawn tangent to the linear
portion of the Estrain over ln R plots yields the anisotropic energy factor K of Eq. 2.4, while

dThe different energies for the first point at R = 5 Å in Fig. 4.5 are most probably due to an uncertainty
of b/2 in the determination of the center of the cylinder.
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Figure 4.5: Plot of the strain energy per unit length contained within cylinders of radius R from the
center of a dislocation. The strain energy was obtained using displacements from anisotropic elasticity
as boundary conditions (BC) and two different box sizes for dynamic simulations. A straight line has
been fitted to the strain energy using the logarithm of R. Top: edge dislocation in AlI , middle: edge
dislocation in AlI compared to AlII , bottom: screw dislocation in AlI .
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Figure 4.6: Plot of the strain energy contained in cylinders of Radius R around edge dislocations in
two different nickel potentials.

the intercept with the x-axis yields the mathematical core radius r0. All these values are
summarized for the different dislocations and potentials in Tab. 4.2.

The dissociation of the dislocation into partial dislocation clearly affected the strain energy
as the deviation from the linear fit at rdev is clearly linked to the splitting distance d, see
e.g. Fig. 4.6. The energy at that point Edev

core is therefore not only the core energy but also
contains the energy due to the strain field between the partial dislocations. Therefore Edev

core

is higher for NiI than for NiII although the potential energy of the atoms within the partial
dislocation cores is higher for NiII , see Tab. 4.1.

For roughly equally spaced partial dislocations the energy of the dislocation cores (see
Tab. 4.1) can make a measurable difference in the total energy, see Fig. 4.5, middle. Upto a
radius of about 30 nm the edge dislocation in AlII has a higher potential energy than the
edge dislocation in AlI although AlI is the elastically stiffer potential, see Tab. 4.2.
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4.3 Peierls stress

The Peierls stress of dislocations is very sensitive to boundary effects and to the details of
the interatomic forces. The Peierls stress in fcc metals has been subject of detailed atomistic
studies, both by molecular dynamic and static methods [94–97] and in the Peierls-Nabarro
model [23, 27]. The calculation of exact values for the Peierls stress τP is not intended here
and would require special treatment of the boundary conditions [94]. The estimation of τP in
the set-up for dynamic simulations can however serve to further characterize the dislocation
core and its mobility in the various interatomic potentials and to estimate finite size effects.

Lower and upper boundaries for the Peierls barrier were calculated by iteratively shearing
the sample and relaxing it under applied force boundary conditions. At the lower limit of
τP the system relaxed into a local minimum, whereas at the upper limit no relaxation was
possible. Tab. 4.3 shows the effect of the simulation box size on the splitting distance and
the stress values bracketing τP for an edge dislocation in AlI .

The values of the Peierls stress in Tab. 4.4 range from 10−7µ′ (edge dislocation in Cu)
to 10−4µ′ (screw dislocation in Al), in agreement with the generally low Peierls stress for
face centered cubic metals (τP . 10−6µ′ to 10−5µ′ [13]). The values of τP for AlI in the
large box furthermore agree exactly with the values determined by Olmsted et al. [94] which
were corrected for image force effects. The applied method therefore is able to determine the
Peierls stress, and at the used system sizes boundary effects should have only a relatively
small impact on the most sensitive property of dislocations. However, at very low stresses
(τ . 10−7µ′) the gradients in the sample become very small which can lead to convergence
problems in the relaxation method (GLOC, see appendix B). The determination of low
Peierls barriers might therefore be problematic. The determination of the (larger) Peierls
stress of screw dislocations is not affected by this problem. There the large difference of the
Peierls stress in NiI and NiII shows that different potentials for the same material can lead
to extremely different Peierls stresses.
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boxsize (Lx, Ly, Lz[nm]) d [Å ] lower limit for τP [MPa] upper limit for τP [MPa]
(48,1,11) 15 3.0 3.2
(48,19,11) 15 3.0 3.2
(48,4,25) 15 2.5 2.7
(48,4,46) 15 2.5 2.7
(96,4,25) 15 2.7 2.9
(96,4,46) 15 2.0 2.2

Tab. 4.3: Influence of the box size on the splitting distances d and on the Peierls stress τP determined
from static simulations in AlI .

Potential lower limit for τP [MPa] upper limit for τP [MPa]
edge dislocation

AlI 2.0 2.2
AlII 1.3 1.5
NiI 0.24 0.26
NiII 0.02 0.04
Cu - 0.02

screw dislocation
AlI 13 14
NiI 20 22
NiII 4 5
Cu 2.25 2.5

60◦ dislocation
AlI 17.5 20

Tab. 4.4: Upper and lower limits for the Peierls stress τP for edge and screw dislocations determined
by energy minimization with force boundary conditions.



Chapter 5

Properties of straight moving

dislocations

The motion of dislocations in aluminum, nickel and copper was studied under an applied shear
stress at different temperatures. Most simulations were performed on edge dislocations, but
also screw dislocations and in some cases 60◦ dislocations were simulated. The simulations
were performed using a broad range of simulation box sizes. Exemplarily simulations were
performed using different hydrostatic pressures.

Molecular dynamics simulations can only be run over small time spans, typically in the
order of nanoseconds. In order to enable the study of dislocation motion at different temper-
atures, stresses, system-sizes and using various potentials, the typical simulated time ranged
from 150 - 400 ps. Thus dislocation velocities below approx. 1/20ct were not accessible
within this study. The focus of this study is on dislocation motion in the linear stress -
velocity regime. Most of the simulations were therefore performed with stresses leading to
velocities of approx. 1/5ct, where relativistic effects can be neglected. Simulations were also
performed in the high velocity regime (v > ct/2), which is usually not reached during normal
experimental deformation of bulk materials.

The general outcome of the simulations and the important question how they are influ-
enced by the simulation set-up will be addressed in the next section. In sec. 5.2 the dislocation
velocity is studied as a function of stress and temperature.

5.1 General results and simulation aspects

The outcome of the dynamic simulations under temperature control and applied stress were
snapshots at different times of the atomistic configuration containing the dislocation. From
these configurations the position of the dislocation line had to be extracted. Depending on
the temperature induced noise, the dislocation cores were identified either by the stacking
sequence or the more complicated common neighbor analysis (see sec. 3.3). The dislocation
line position was subsequently determined by a 2D line tracking algorithm, see Fig. 5.1 for
an example of the method. In the following, the dislocation position on the x-axis will be
displayed as function of time – giving the trajectory of the dislocation. Thereby the position
of the whole dislocation is represented by the center of mass of the leading partial along
the x-direction. Depending on the dislocation line length and partial dislocation spacing,
the method works well up to relatively high temperatures (∼ 1/3 − 1/2Tm). An example of

62
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Figure 5.1: Example for the determination of the position of a moving edge dislocation line by the
common neighbor analysis (CNA) and 2D line tracking. Only a part of simulation box is shown (AlI ,
30 K, 4 MPa, 48 × 19 × 11 nm3).

typical trajectories x(t) determined by the above method is shown in Fig. 5.2.
As can be seen in the example of Fig. 5.2 the dislocations reached nearly constant velocities

v after a certain an acceleration period. For the same applied shear stress this steady state
velocity and the acceleration period depend on temperature. the steady state velocity vss

was estimated from such trajectories by measuring the (constant) slope of x(t). Of course
not all trajectories were so smooth as the ones shown in Fig. 5.2. Especially for low velocities
the dislocation motion can become unsteady, leading to a rougher trajectory due to higher
temperatures or lower stresses. However, also for low velocities the mean velocity showed the
same proportionality to the stress as at higher velocities. Therefore the stress was chosen to
produce smooth trajectories for all temperatures.

5.1.1 Details of dislocation motion

In the one dimensional representation of the moving dislocation line like in Fig. 5.2 the internal
degrees of freedom of the dislocation are neglected. The dislocation line as whole as well as
each of its partial dislocations can oscillate along its mean line direction. An example for
such excitations of the dislocation lines is shown in Fig. 5.3b. The modulation of the splitting
distance d can be used for a simplified study of the internal vibrations. Its behavior over
time shows usually a mixture of characteristic frequencies (see Fig. 5.3a). As expected from
Fig. 5.3b the characteristics and amplitude of the oscillation of d depend on the simulated line
length. The splitting distance and the amplitude of the vibrations increases with increasing
temperature, see Fig. 5.4. The slight increase of d (Typically by approx. 1b over 300 K) is
most probably caused by a decrease of the stacking fault energy with the temperature.

Vibrations of partial dislocations can lead to drag forces on the entire dislocation, see
sec. 2.1.3.4. In the following, however, the microscopic details are neglected and the net
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Figure 5.2: Example of dislocation trajectories: the motion of an edge dislocation in NiI under
identical applied shear stress τ=30 MPa but at different temperatures.

motion of the entire dislocation is studied.

5.1.2 Temperature control and dislocation motion

An important aspect in modeling the dynamic behavior of dislocations is the control of the
temperature of the simulated system. The method to derive an appropriate coupling con-
stant for the Nosé-Hoover thermostat was outlined in section 3.1.2. Different values for τ−1

η

were used to asses whether the choice of the thermostat parameter influenced the dislocation
motion. Although the non-optimized values for τ−1

η produced visible oscillations of the total
temperature during the simulation runs, it can be seen from Fig. 5.5 that the dislocation
trajectory and steady state velocity were not affected.

As further test, a local thermostat developed by Finnis [218] was used with the published
parameters for nickel [218]. Although this thermostat uses a completely different method
to control the temperature compared to the global temperature control by the Nosé-Hoover
thermostat, the dynamics of the dislocation remained unchanged, see Fig. 5.5.

The restricted mobility of the atoms in the 2D dynamic boundary layers imposes a kinetic
energy equal to 0 in the z-direction within the boundary. The effect of these boundary
conditions on the temperature of the atoms within the box was assessed by calculating the
velocity distribution in atomic planes normal to z and fitting them to a Maxwell distribution.
The influence of the boundary layers on the kinetic temperature was very small even for layers
next to the boundary. The velocity distribution was only slightly affected for the layers close
to the boundary.

5.1.3 Influence of hydrostatic pressure

Most potentials use the room temperature lattice constant as equilibrium lattice parameter:
aexp.

0 (RT ) = asim.
0 (0 K). The potential parameters at 0 K then also represent other material
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Figure 5.3: Details of the dislocation motion: a) splitting distance d as function of time for the
longest and the shortest dislocation of Fig. 5.8, the 2 outlying peaks are artefacts from the periodic
boundary conditions along x; b) from left to right: subsequent configurations of partial dislocation
lines. The time between the configurations in b) is 1 ps. At the stress of 5 MPa the motion of the
dislocation is unsteady. During the displayed time period of 6 ps the center of mass of the dislocation
moved by 1 Å, therefore the position of the subsequent dislocation configurations were shifted against
each other.

properties at room temperature. This causes deviations from the experimentally accessible
material properties at a certain temperature from the calculated material properties at the
same temperature. The aluminum potential of Ercolessi [206] is in this case an exception as
it uses the 0K lattice constant.

The effect of the use of the room temperature lattice constant as equilibrium lattice
parameter on the dislocation motion can be assessed by performing simulations at 300 K
with different lattice parameters. This corresponds to determining the influence of hydrostatic
pressure P on the dislocation motion. Fig. 5.6 shows the trajectory of an edge dislocation
in AlI at 300 K using the lattice constants of the potential for different temperatures. For
pressures below 1 GPa the trajectory and steady state velocity remained nearly unchanged.a

Slight hydrostatic pressure therefore seems to have no large effect on the dislocation motion.

Preliminary simulations of dislocation motion in Cu under shock loading conditions [231]
at P ≈ 30 GPa, however showed significant differences in the dislocation motion. At these

aThe unsteady motion of the dislocation with a0(0 K) is probably due to the fact that the starting config-
uration was deformed according to the elastic constants at P = 0.
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Figure 5.4: Dislocation dissociation distance d in AlI as function of time for 30 K, 4.5 MPa (blue)
and 300 K 30 MPa (red).

300 K, 30 MPa

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0  20  40  60  80  100
t[ps]

x
[Å
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Figure 5.5: Effect of temperature control by different thermostats and thermostating parameters τ−1
η

on the dislocation trajectory (edge dislocation in NiII , 42 × 4 × 22 nm3, 300K , 30MPa)

high pressures the elastic constants and the stacking fault energy differ strongly from their
values at P = 0. The high resolved shear stresses under shock loading should however lead
to highly relativistic dislocation motion. Dislocation motion under shock loading condition is
outside the scope of this thesis.

5.1.4 Size effects in dislocation motion

Like in all simulations of defects that have a long range stress field, the size and the shape of
the simulation box have an influence on the dynamics of the dislocation. This influence must
be qualitatively understood and – where possible – minimized.

By applying periodic boundary conditions in x direction an array of linear dislocations
spaced by Lx is simulated. The dislocation thus interacts with its own periodic images and
with their emitted phonons. Fig. 5.7 shows two trajectories of edge dislocations in AlI at
T = 300 K and τ = 30 MPa with Lx = 48 and Lx = 96 nm. The steady state velocity was for
both dislocations vss = 6.7±0.1 Å/ps. The trajectories show slight deviations from the linear
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Figure 5.7: Effect of different box lengths Lx in x-direction on the motion of an edge dislocation in
AlI .

fits. These deviations could however not be directly correlated with the box dimensions and
sound velocities.

The length of the dislocation line is related to its possible vibration modes. Phonon in-
duced vibrations of the dislocation line cause a drag force by the flutter effect, see sec. 2.1.3.4.
This effect is mainly important at low temperatures. Fig. 5.8 shows the influence of the peri-
odic box width on the trajectory of an edge dislocation at 100 K. Linear fits to the dislocation
trajectories yield approximately the same steady state velocities. However, the trajectory of
the dislocation with the shortest periodic line length shows variations in the velocity where
the other dislocations have reached steady state. These variations are most probably linked
to the limitation of vibrational modes of the short dislocation. Stress fluctuations can locally
retard the motion of a long dislocation and thereby excite vibrations on the whole line. Dislo-
cations with a short periodicity length are stiffer, stress fluctuations therefore are more likely
to influence the motion of the whole line.
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Figure 5.8: Effect of the dislocation line length Ly on the motion of an edge dislocation in AlI .

The influence of the box height on the dislocation motion can be clearly seen in Fig. 5.9.
The increase of Lz was correlated with the acceleration period, whereas the steady state
velocity was not influenced. The acceleration of a dislocation is determined by its mass (see
sec. 2.1.3), which depends on the radius available to the strain field of the dislocation. Within
the simulation box the shortest radius corresponds to Lz/2, which explains the observed
change in the acceleration phase of the dislocation. The inertia of dislocations will be discussed
in detail in sec. 7.2.1.
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Figure 5.9: Effect of different box heights Lz on the motion of an edge dislocation in AlI .

The following results were obtained using typically box sizes of 48 × 4 × 25 nm3 to 86 ×
4× 41 nm3, which are significantly larger than the simulation boxes used in recent studies on
dislocation motion [53,58,96,103].

The determination of the steady state velocity is subjected to certain errors. The most
important source of error is the possibility that the dislocation has not reached its steady
state velocity. This effect was assessed and minimized by fitting on different subsets of the
trajectory. By comparing the drag coefficient (see next section) determined by using different
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stresses and box sizes the error in determining vss is estimated to about 5 to at maximum
10%.

5.2 Dislocation velocity as a function of stress and temperature

The measured steady state velocity of the dislocations in Al, Ni and Cu is shown in figures
5.10 to 5.12 as function of the applied shear stress τ and temperature T . Two regimes with
different stress and temperature dependencies of the velocity can easily be distinguished.
In the low velocity regime the dislocation velocity for edge and screw dislocations depends
linearly on τ , and is approximately proportional to 1/T . Whereas the behavior of edge and
screw dislocations is similar at low velocities, it differs in the high velocity regime.

At high stresses the velocity of the edge dislocations increases only marginally with τ and
depends only weakly on the temperature. Olmsted et al. [53] recently observed the existence
of a temperature and stress independent ”plateau velocity” for edge dislocations (at about 26
Å/ps for Al and 21 Å/ps for Ni). The present simulations however show that depending on
the potential, the velocity of the edge dislocation can still significantly increase in the high
velocity regime. The term plateau velocity is therefore somewhat misleading. A convincing
physical interpretation of the high velocity has not been offered yet (see also the discussion
in [53]). In particular, factors determining the onset of the high velocity regime have not
been identified. It should be noted that the onset of the high velocity regime, as well as the
”plateau velocity” are independent of the box size and its aspect ratio.

For screw dislocations the high velocity regime sets in at lower velocities compared to edge
dislocations. Similar to the edge dislocation temperature dependence of the velocity is less
pronounced for the high velocity dislocations than in the low velocity regime. The increase
of the velocity of screw dislocations with τ is generally stronger than for edge dislocations,
see Figs. 5.10 - 5.12. As the crossover to the high velocity regime occurs at lower velocities
compared to the edge dislocations, the velocity of screw dislocations is for the same stress
generally lower than that of edge dislocations. The behavior of the 60◦ dislocation in AlI
(Fig. 5.10 ) is somewhere in between that of an edge and a screw dislocation.

The high velocity regimes in the different potentials are compared in Tab. 5.1. For this
purpose a ”crossover” velocity vc is introduced to provide a measure of the velocity range
within which the transition between the two velocity regime occurs. Furthermore the stress
dependence of the dislocation velocity at low temperature is indicated. Relative to the ve-
locity of transverse sound waves the crossover velocity vc is the largest in Cu and smallest
in Al. Relative to ct the crossover velocity vc does not show pronounced differences between
the different potentials for the same material. However, there are differences between the
potentials in the rate of velocity increase with τ .

The edge dislocation in copper seems to be a special case. Dislocation motion takes place
in the low velocity regime upto about 0.9ct. The highest measured subsonic edge dislocation
velocity vp = 15.99Å/ps at 900 MPa is just about 0.99cR. The velocity of the edge dislocation
in this case seems to be limited either by ct or cR, which are nearly identical: cR = 0.99ct. It
is therefore not clear if the same mechanism leads to the high velocity regime as in the other
cases, or whether relativistic effects are at work.

Based on theoretical considerations, Roos et al. [232] proposed a velocity dependent flutter
mechanism. To study the flutter effect of dislocation drag (see sec. 2.1.3.4), simulations
with the dislocation length equal to the minimum repeat distance were performed on edge
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Figure 5.10: Dislocation velocity as function of stress and temperature for dislocations in Al. The
open symbols denote simulations which were performed with dislocation length equal to the minimum
repeat distance along the dislocation line.
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Figure 5.11: Dislocation velocity as function of stress and temperature for dislocations in nickel.
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Figure 5.12: Dislocation velocity as function of stress and temperature for dislocations in Cu.

edge dislocation screw dislocation
Potential vc [Å/ps] vc [ct]

dv
dτ

[Å/(ps MPa)] vc [Å/ps] vc [ct]
dv
dτ

[Å/(ps MPa)]
AlI 20 - 22 0.65 0.002 14 - 15 0.44 0.008
AlII 18 - 20 0.6 0.005 14 - 15 0.47 0.008
NiI 17 - 19 0.76 0.003 15 - 16 0.66 0.005
NiII 15 - 17 0.71 0.002 13 - 15 0.62 0.003
Cu 14 - 15 0.89 0.001 13 - 14 0.83 0.002

Tab. 5.1: Characteristics of the high-velocity regime in the different potentials. The crossover velocity
vc approximately determines the onset of the high-velocity regime. The stress dependence of the
dislocation velocity at 30 K, dv

dτ
, is approximated by the slope of a linear fit.

dislocations in AlI (open symbols in Fig. 5.10). Significant differences can only be seen in
the low velocity regime at 30 K where the ”short” dislocation is about ∆v = 0.7Å/ps faster
than the dislocations with Ly ≥ 4 nm. At 100 K the difference in velocity for the low velocity
dislocations is only ∆v = 0.15Å/ps. Simulations in the high velocity regime or at higher
temperatures showed no differences between the dislocations of different lengths.

In some cases transonic dislocation velocities or the disintegration of the dislocation at
very high stresses was observed. For example, the edge dislocation in AlI at 30 K became
transonic at τ = 1.2 GPa and moved for about 150 ps with v = 53Å/ps= 1.65ct (see also
Fig. 5.16). Transonic dislocation motion was also seen at 300 K in Cu (edge dislocation with
v = 1.51ct at τ = 1 GPa). Dislocation instability and multiplication was for example observed
for the screw dislocation in AlI at 30 K and τ = 1.5 GPa. These special cases will not be
addressed further, since the simulation set-up is not fully adequate for a detailed study of
dislocations under extreme loading conditions.b

bOne problem is that the energy input by the work done by the force boundary conditions can lead to a
melting of the boundary layers. Other problems can arise by the reflection of sound waves emitted by trans- or
supersonic dislocations and due to too weak thermostat coupling. Displacement boundary conditions together
with damping layers would be better suited for these simulations.
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Figure 5.13: Dissociation distance d of an edge dislocation in AlI as function of time.

The low velocity regime will be analyzed in more detail in section 7.2.2. Here the focus
is on the high velocity regime where further information on the moving dislocation can be
obtained by inspection of the dislocation core. For the sake of clarity and space only exemplary
figures are presented. The qualitative behavior of the dislocations is similar for all cases.

Figure 5.13 shows the typical course of the distance d between the partial dislocation for a
dislocation moving at high velocity. After a short time during which the dissociation distance
continuously decreases, d fluctuates around a new, velocity and temperature dependent, dy-
namic equilibrium distance d(v). This dynamic dissociation distance is shown as function of
the dislocation velocity in Fig. 5.14. It can be seen that the temperature dependence of d is
mainly due to the difference in the equilibrium distance at v = 0. For low dislocation velocities
v . ct/2 the partial dislocation distance is nearly velocity independent. At higher dislocation
velocities a significant decrease of d with increasing v can be seen. Edge dislocations show
typically a stronger decrease of d with v over a smaller velocity range than screw dislocations.
A leveling off of d to nearly constant values can be seen in some cases at velocities close to ct.

c

The edge dislocation in Cu showed however nearly no decrease of d. A comparison of Fig. 5.14
with Tab. 5.1 furthermore shows that the velocity at which the partial dislocation cores would
start to overlap, d ≈ w (see Tab. 4.1) is approximately correlated with the crossover velocity
vc of screw dislocations. For edge dislocations, this velocity gives a good indication of the
velocity range in which the velocity changes only marginally with τ (”plateau velocity”). The
velocity dependence of d will be discussed in detail in sec. 7.2.3.

Further analysis of the core structure showed in some cases changes of the dislocation
core for very fast and close partial dislocations. As an example the edge dislocation at 30
K in NiII is shown in Fig. 5.15. The structure in the coordination number representation
in Fig. 5.15a can be directly compared to that of the same dislocation at rest, Fig. 4.1a.
In general, the potential energy of the atoms in the partial dislocation cores increases at

cFor very small d . 3b an accurate automatic determination of d is however not always possible, the error
margin in is therefore larger for small d. A further problem for the determination of d arises by the change of
the core structure.
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Figure 5.14: Dissociation distance d versus dislocation velocity for edge and screw dislocations. The
dashed curves correspond to a isotropic model for the relativistic contraction of d. The horizontal line
indicates the width w at v = 0 of a partial dislocation. See text and sec. 7.2.3 for details.
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Figure 5.15: Kinetic energy (b) and core structure of a edge dislocation in NiII moving with v = 20.65

Å/ps from left to right (τ = 900 MPa, 30 K).

lower separations. The potential energy of the atoms surrounding the dislocation cores is also
increased compared to the dislocation at rest or at low velocities. In the coordination number
representation of high velocity dislocations the configuration can show features which suggest
an out of the plane spreading of the dislocation core, see Fig. 5.15a. However, careful analysis
of the stacking fault (e.g. Fig. 5.15c) and the Nye tensor distribution (Fig. 5.15d) revealed
no out of plane components of the Burgers vector distribution.

In addition to the core structure the kinetic energy around the region of fast moving
dislocations is shown in the Figures 5.15 to 5.17. The special case of a transonic dislocation
(ct1 < v < ct2) is shown in Fig. 5.16a. Two Mach cones formed by transverse acoustic waves
are clearly visible. The apex angle 2α of the Mach cone is related to the dislocation velocity
v and the appropriate sound velocity c by [233]

sin α =
c

v
. (5.1)

With v = 5.3 Å/ps, the measured angles α1 ≈ 36◦ and α2 ≈ 42◦ allow to determine the
velocity of the two transverse acoustic waves in Fig. 5.16a to ct1 ≈ 35.5 Å/ps and ct2 ≈
31.2Å/ps, which compares well with the values according to the potential ct1 = 36.78Å/ps
and ct2 = 32.15Å/ps (see Eq. 2.41 and Tab. A.1). This case illustrates how kinetic energy is
radiated away from the moving dislocation. The propagation of kinetic energy away from the
moving dislocation core can however also be seen for a fast moving subsonic edge and screw
dislocations, Fig. 5.16b,c. The radiation is however not symmetric, and at approximately the
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Dislocation cw1
[Å/ps] cw2

[Å/ps] cp1
[Å/ps] cp2

[Å/ps]
edge dislocation, AlI 26 23 23.4 19.6
screw dislocation, AlI 26 23 23.4 19.6
edge dislocation, AlII 24 21 24.2 20.1
screw dislocation, AlII 20 13 24.2 20.1
edge dislocation, NiII 14 23.9 17.4
screw dislocation, NiII 11 23.9 17.4

Tab. 5.2: Velocities cw according to Eq. 5.1 of the waves exited by the fastest subsonic dislocations
in different potentials. In addition the slowest phase velocities cp of transverse phonons are given.

same velocity the screw dislocations shows less radiation than the edge dislocation. From the
measured angles and the dislocation velocities, the velocity cw of the emitted waves can be
determined with Eq. 5.1. These velocities are summarized for the different dislocations in
Tab. 5.2. They were determined from the fastest subsonic dislocations at 30 K, see Figs. 5.10
and 5.11. The determination of the angle α is not very accurate, therefore the values in
Tab. 5.2 are only approximative. Indications of radiation of acoustic waves, however much
weaker, were also found at lower velocities.

The edge dislocation in Cu, however, seems to be a special case. Although the dislocation
in Fig. 5.17 moves at v = 0.99cR, no indication of radiation could be detected. The atoms
around the dislocation cores have high velocities. However, this excitation seems not to
propagate as a wave away from the moving dislocation, but to move with the dislocation.

To analyze how the motion of the dislocation is connected to the generation of acoustic
waves, the velocities of the atoms around the dislocations are shown in Fig. 5.18a-c. It can
be clearly seen that the kinetic energy shown in Fig. 5.16b is mainly due to the motion of
atoms in the y and z-directions. Fig. 5.18d shows the x and y-position of an atom directly
above the glide plane during the passage of the edge dislocation. At v = 27.8 Å/ps the entire
dislocation, which has a width of about 12 Å, passes the atom within about 0.4 ps. Whereas
the x-position of the the atom increases continously according to the Burgers vector of the full
dislocation, the atom is rapidly deflected in the y-direction according to the Burgers vector
of the partial dislocations (the same holds true for the atoms below the glide plane). The
period corresponds to a vibration frequency ν ≈ 2.5 THz.
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Figure 5.16: Structure (colored by coordination number, left) and kinetic energy (right) of fast
transonic (a) and subsonic (b,c) dislocations in AlI .
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Figure 5.17: Core structure (a) and kinetic energy of a a edge dislocation in Cu moving with v = 15.99

Å/ps at τ = 900 MPa and 30 K.
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Chapter 6

Dislocation - obstacle interaction

The interaction between dislocations and short range, localized obstacles was studied using
nanovoids as model obstacles. Spherical voids are well defined and easily created in atomistic
simulations. Compared to other typical localized obstacles like precipitates or stacking fault
tetrahedra atomistic mechanisms are less important for the dislocation - void interaction.
Elasticity theory of dislocations can thus be used to describe the dislocation - void interaction
on the continuum scale [234]. Within the multi-scale modeling approach atomistic simulations
of the interaction between dislocations and voids can be used to calibrate and validate higher
scale models [5,114]. Voids are furthermore ubiquitous in irradiated materialsa and therefore
play an important role in irradiation hardening.

The interaction of edge dislocations with voids of different sizes was studied using the
same set-up as for the study of the dynamics of dislocations in the previous chapter. The
static depinning as well as the dynamic dislocation - void interaction at different temperatures
was studied using two different Ni potentials and a regular array of voids with radii Rvoid =
1b, 2b, 4b, 6b spaced by L ≈ 13 and L ≈ 27 nm. The box height was Lz = 22 nm. Additional
simulations were performed on edge dislocations in AlI and on screw dislocations in NiII .
The present study is one of the most extensive surveys on dislocation - void interaction in fcc
metals. It complements the recent detailed studies of Osetsky and Bacon [114,115,236] who
applied loading at a constant strain rate. The use of constant stresses – necessary to study
dynamic effects in dislocation - obstacle interaction – requires, however, to perform many
simulations to bracket the critical depinning stresses. With typically about 2.4 million atoms
per simulation this procedure requires significant computing resources.

The main emphasis of this study is on the exploration of general dynamic effects in the
interaction of dislocations with obstacles. The void is thereby used as a model obstacle.
Obstacle aspects specific to voids, like void degeneration by multiple shearing or the influence
of the glide plane distance from the center of the void [116], were therefore not studied.

6.1 Void properties

The center of the voids was placed in the middle between two nearest neighbor atoms above
and below the glide plane. The atomic configurations which were removed from the sample to
form the void are shown in Fig. 6.1a. In this figure the energy of the voids defined by the energy

aThe type of defects created upon irradiation depend on the material and irradiation conditions. Strong
void formation is reported e.g. for copper under neutron irradiation at temperatures above 500 K [235].
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difference between the perfect (relaxed) slab and the energy of the relaxed box containing
the void, corrected for the different number of atoms, is shown for the two potentials. As
a reference the surface energy of the void is calculated using the (111) surface energy γ(111)

times the surface area of the void. Fig. 6.1b shows the increase in potential energy when
the upper and lower halfs of the voids are displaced relative to each other according to the
passage of a dislocation.
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Figure 6.1: (a) The energy of voids as function of their radius Rvoid as determined by static relaxation
using two nickel potentials. In addition the surface energy calculated by Es

(111) = 4πR2
voidγ(111) is

plotted. (b) Excess energy of the surface step created by the passage of a dislocation through the
center of the void.

6.2 Dislocation pinning by voids

The starting configurations for the determination of the static depinning stress of a dislocation
from an array of voids were created by placing a dislocation close to the void array and
minimizing the energy without applied stress. During the relaxation process the dislocation
finds its minimum energy configuration where line energy is reduced by the annihilation of
a part of the dislocation line at the void. The so obtained configuration was then deformed
according to some initial stress and relaxed under constant force boundary conditions. The
process is identical to the one used to determine the Peierls stress, see sec. 3.2.1.

The bracketing values for the critical stress for dislocation depinning are shown in Fig. 6.2
and are also summarized in the tables 6.1 and 6.2. The relaxed configurations at sub-critical
stress τ < τc are shown in Figs. 6.3 and 6.4. Fig. 6.2 shows the increase of the critical stress
with increasing void size. For the two simulated void separations L, τc shows a decrease which
is approximately proportional to 1/L. The two Ni potentials show, however, significantly
different critical stresses to depin from the voids. With the exception of the smallest void, the
critical stress is larger in the NiII than in the NiI potential, the difference range from about
20% (Rvoid = 6b) to about 60%(Rvoid = 4b). The NiI potential has furthermore the same τc

for voids of radius Rvoid = 1b and Rvoid = 2b.

The dislocations at sub-critical load show three different configurations: for the smallest
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void the dislocation was pinned with its leading partial dislocation (Fig. 6.3a), whereas the
dislocation was pinned by its trailing partial dislocation at the next larger void (Fig. 6.3b). For
voids larger than Rvoid ≥ 4b both partial dislocations were simultaneously pinned (Fig. 6.4)
and depinned together from the voids. For the dislocation in the NiII potential the void
diameter of 8b is equal to the partial dislocation separation (see Tab. 4.1). The dislocation
in the NiI potential has a larger splitting distance, however the presence of the void lead to
a constriction of the dislocation.

The sub-critical configurations in Figs. 6.3 and 6.4 show also other interesting details.
The shape of the partial dislocation is not symmetric at the void. As consequence the angle
Φ (see Fig. 2.1) is not identical on both sides of the void. The reason for this asymmetry is
seen in the orientation dependence of the dislocation line energy. Partial dislocations with
local screw orientations have locally a lower line energy. Reorientation of these segments is
therefore energetically unfavorable. Local reorientation of segments can also lead to Φ ≈ 0◦

directly at the void, see Fig. 6.4b). Due to these effects, the geometrical determination of
Φc is to a certain degree arbitrary (i.e. the choice of the tangent line determining Φ is not
unique).

With respect to the smallest void it has to be recalled that it consist just of 6 vacancies.
It therefore is better described as a small vacancy cluster. Both the energy in the perfect and
in the sheared case in this cluster are higher in NiII than in NiI – in contrast to all other
voids. The pinning of the leading partial dislocation instead of the partial dislocation in this
case is probably due to a significant reduction of obstacle strength after the shearing of the
cluster by one partial Burgers vector. The second partial dislocation thus is subjected to a
lower pinning force which is overcome by the acting stress.
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6.3 Dynamics of dislocation - void interaction

To study the dynamics of the interaction of a moving dislocation with a void the dislocation
is initially positioned l ≈ 30 nm in front of the array of voids and relaxed. The entire system
is then expanded according to the thermal expansion of the potential and equilibrated at the
chosen temperature. The sample is then homogeneously deformed according to the applied
shear stress. Force boundary conditions are used to keep this stress. The procedure is identical
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to the one for the study of the accelerating dislocations, see section 3.2.1 and chapter 5. To
determine the critical stress τd at which the dislocation passes the void, several simulations
had to be performed to bracket τd.

The simulation at constant stress mimics the situation in which a dislocation breaks free
from an obstacle, accelerates and encounters an other obstacle. It can thus be compared to
the situation for the determination of the lower critical resolved shear stress (CRSS) τd,l of the
model of Schwarz and Labusch [73], but here for a regular array of obstacles (see sec. 2.1.3.5).
Usually simulations of dislocation - defect interactions are performed at constant loading
rates ǫ̇ (typically ǫ̇ ≈ 107 s−1) [113–117]. In these simulations the dislocation starts in the
vicinity of the void and is therefore trapped already at low stresses. The critical stress in
this situation corresponds therefore to the stress necessary to depin a pinned dislocation. It
can not be compared with the upper CRSS τd,c of Schwarz and Labusch. Their definition
τd,c accounts for dynamic effects after the first depinning event from a random array of
obstacles [9, 73]. In a regular array such dynamic effects like dynamical unzipping which
lower the the CRSS compared to overdamped simulations can not be detected. Contrary
to the present simulations, MD simulations at constant ǫ̇ are not suited to study dynamical
effects in dislocation-obstacle interactions.

Figures 6.5 to 6.7 show typical sequences of the interaction between moving dislocations
and an array of voids. At sub-critical stresses τ < τd the dislocation moves towards the
voids, is attracted to the voids and gets pinned, see Figs. 6.5a, 6.6a, and 6.7. The part of
the dislocation which is not directly interacting with the void, however, keeps moving. It is
interesting to note that these parts of the dislocation propagate for a certain time as a nearly
straight line (see e.g. Fig. 6.6a at 40 ps, or Fig. 6.7 from 32 to 36 ps). The arms of the
dislocation then bow out to a maximum amplitude, swing back and oscillate.

At low applied stress, the small voids are cut by the leading partial dislocation but the
trailing partial dislocation remains pinned. During the swing back of the dislocation the
trailing partial dislocation can unpin and the leading partial gets pinned again, see Fig. 6.5a.
During the simulation of large voids the leading partial dislocation also frequently unpins
during the bow-out, but subsequently gets pinned again after the maximum bow-out, see
Fig. 6.6a. At stresses close to the dynamical depinning stress τ . τd, temporary depinning of
the entire dislocation from large voids was sometimes observed, see Fig. 6.7. These processes at
τ < τd show the importance of the (permanent) detachment of the trailing partial dislocation
as the critical step during the depinning of dislocations from voids.

At stresses τ > τd the dislocation meets the void, bows-out, overshoots the critical con-
figuration (see Fig. 6.3 and Fig. 6.4) and detaches from the void, see Fig. 6.5b and Fig. 6.6b.
The velocity of the dislocations is in this cases still large enough to escape from the image
forces and the attractive stress field of the void. The dynamic depinning from the void array
leads to waves on the dislocation line, see e.g. Fig. 6.6b. Note that the stress for dynamical
obstacle passing τd is much lower than the stress τc for unpinning in the static simulations
(Tabs. 6.1 and 6.2).

The above findings point at the importance of the dislocation inertia in dynamical dislocation-
obstacle interaction. A different situation was observed during the depinning process of a
(initially moving) dislocation from the small vacancy cluster at 500K, see Fig. 6.8. At this
high temperature (1/3 of the melting temperature Tm of the potential, see Tab. A.1) ther-
mally activated processes at weak obstacles close to the critical stress can not be neglected
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46 ps 48 ps 53 ps51 ps

44 ps41 ps39 ps37 ps

(a) T = 100 K, τ = 12.5 MPa, Rvoid = 2b, L= 27 nm

32 ps 34 ps 36 ps 37 ps

38 ps 39 ps 41 ps 42 ps

(b) T = 100 K, τ = 15 MPa, Rvoid = 2b, L= 27 nm

Figure 6.5: Snapshots from a dynamic simulation of a moving edge dislocation in NiII interacting
with with a void: (a) sub-critical stress τ < τd, the dislocation bows out and swings back; (b) at τ > τd

the dislocation overshoots and depins from the void. Only atoms with coordination number 6= 12 are
shown.
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36 ps 40 ps 44 ps 48 ps

52 ps 56 ps 66 ps 92 ps

(a) T = 300 K, τ = 60 MPa, Rvoid = 4b, L= 28 nm

38 ps

46 ps

32 ps 34 ps 36 ps

44 ps42 ps40 ps

(b) T = 300 K, τ = 67.5 MPa, Rvoid = 4b, L= 28 nm

Figure 6.6: Snapshots from a dynamic simulation of a moving edge dislocation interacting with a
void in NiII at sub-critical (a) and over-critical (b) shear stress. The stacking fault ribbon of the
dislocation and the void are identified by the centro-symmetry parameter.
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32 ps 34 ps 36 ps 38 ps

40 ps 42 ps 44 ps 46 ps

48 ps 52 ps 54 ps 60 ps

Figure 6.7: Snapshots from a dynamic simulation at 30 K of a moving edge dislocation interacting
with with a void of radius Rvoid = 6b at an applied shear stress of τ = 40 MPa. Only atoms with
coordination number 6= 12 are shown. The dislocation dynamically reaches the critical angle and
depins from the void. However, it can not sufficiently accelerate to escape the 1/r stress field of the
void and the image forces.

any more. The time scale of these mechanisms is however much longer than for dynamical
obstacle passing. Due to the well known time scale limitations of MD simulations and their
stochastic nature, thermally activated process are difficult to study quantitatively with the
used simulation method. The focus of this study is on dynamical effects during dislocation-
obstacle interactions. Therefore simulation runs which showed signs of thermally assisted
depinning events were excluded from the study.
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40 ps 65 ps 96 ps

100 ps 105 ps 106 ps

Vacancy
cluster

Figure 6.8: Example of thermally assisted dislocation unpinning in the case of a vacancy cluster in
NiI at 500K and 45 MPa. Please note the timescale involved. The dislocation is identified by the
centro-symmetry parameter. Due to thermal fluctuations also atoms not belonging to the dislocation
or the void are shown.

The values of the dynamical depinning stress τd for the different obstacles, spacings and
temperatures are summarized together with the critical stress τc determined from the static
simulations (see previous section) in Tab. 6.1 for NiI and Tab. 6.2 for NiII .

The ratio τd/τc of dynamical depinning stress to the critical stress from the static simu-
lations is plotted as function of temperature in figures 6.9 and 6.10. It can be seen that τd

follows an approximately linear relationship with Temperature. The general slope of for all
Rvoid and L is approximately 0.001 K−1. Linear fits (Tab. 6.3) show a dependence of the slope
of τd/τc on void spacing and on the void size. For the systems under study, the critical stress
for dynamical obstacle passing at 30 K could be reduced by nearly one order of magnitude
compared to the static case. Even at room temperature, dynamic effects lead to a reduction
of the critical stress by about 30-50%. The increase of τd with temperature clearly shows
that thermal effects (like thermally activated events or the decrease of the elastic constants
with temperature) are not responsible for the reduction of the depinning stress. Furthermore,
dynamic simulations which started with a pinned dislocation (relaxed and equilibrated at
τ = 0) showed a much higher depinning stress at the same temperature (values in brackets
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Rvoid [b] Ly [Å] τc [MPa] T [K] τd [MPa]

1b 150 75 - 80 100 15 - 16
- 300 30 - 33

1 129 85 - 90 -
1 259 42.5 - 45 -
2 138 85 - 90 30 7.5 - 10

- 100 15 - 17.5
- 200 27.5 - 30
- 300 40 - 45
- 400 45 - 50

2 267 42.5 - 45 30 6 - 7.5
- 100 13 - 14
- 200 17.5 - 20
- 300 27.5 - 30

4 276 90 - 100 30 15 - 17.5
- 100 25 - 30
- 200 35 - 40

6 289 160 - 175 30 30 - 32.5
- 100 45 - 50
- 200 60 - 65
- 300 80 - 90

Tab. 6.1: Critical stress for a edge dislocation in NiI to pass a row of voids with radius Rvoid spaced

by Ly: τc - static calculation, τd - dynamic simulations. See also the plot of τc in Fig. 6.2. (b This
first set of simulations was performed with Lz = 10 nm and an initial distance from the void of l = 15
nm.)

in Tab. 6.2).
Several trends can be derived from Fig. 6.9 and Fig. 6.10: τd decreases with increasing

L and – except at low temperatures T . 100 K – with increasing Rvoid. The dynamical
depinning stress is furthermore generally lower in NiII than in NiI . These trends can be
summarized by noting that obstacle configurations with a high static depinning stress τc

exhibit a low ratio τd/τc and thus show pronounced dynamic effects.
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Figure 6.9: The ratio of the dynamic depinning stress τd over the static critical stress τc as function
of temperature for different void arrays as determined from the simulations using the NiII potential.
The slope of the linear fits are summarized in Tab. 6.3.
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Figure 6.10: Same as Fig. 6.9 for NiII .
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Rvoid [b] Ly [Å] τc [MPa] T [K] τd [MPa]

1 129 67.5 - 70 30 4 - 5
- 100 10 - 12.5
- 200 17.5 - 20
- 300 27.5 - 30
- 400 40 - 45

1 259 30 - 33 30 5 - 6
- 100 7.5 - 9
- 200 17.5 - 20
- 300 20 - 22.5

2 138 115 - 120 30 7.5 - 9
- 100 17.5 - 20
- 200 25 - 27.5
- 300 35 - 37.5
- 400 50 - 55

2 267 55 - 60 30 4 (30) - 6 (30.25)
- 100 12.5 (32.25) - 15 (35)
- 200 20 (37.5) - 22.5 (40)
- 300 28 (40) - 30 (45)

4 276 150 - 160 30 22.5 - 25
- 100 30 - 33
- 200 45 - 50
- 300 60 - 67.5
- 400 70 - 75

6 289 200 - 212.5 30 40 - 44.25
- 100 50 - 55
- 200 65 - 70
- 300 80 - 90
- 400 100 - 110

Tab. 6.2: Same as Tab. 6.1 for an edge dislocation in NiII , compare also to Fig. 6.2. The values in
brackets denote the depinning stress from dynamic simulations of a pinned dislocation in subjected to
instantaneous loading.

Potential Rvoid [b] Ly [Å] τd/τc/T [K−1]
NiI 2 138 0.0013
NiI 2 267 0.0018
NiI 4 276 0.0013
NiI 6 289 0.0012
NiII 1 129 0.0015
NiII 1 259 0.002
NiII 2 138 0.001
NiII 2 267 0.0015
NiII 4 276 0.0009
NiII 6 289 0.0008

Tab. 6.3: . Slope of τd/τc as determined from linear fits in Fig. 6.9 and 6.9. The error of the fits is
about 5-10%.



Chapter 7

Discussion

7.1 Static dislocation properties

In chapter 4 static calculations with different atomic interaction potentials were used to
determine the characteristics of the dislocation core configuration, the line energy and the
Peierls stress of edge, screw and mixed dislocations. These properties of static dislocations
can be compared to models from dislocation theory and to a wide range of experimental
literature.

7.1.1 Dislocation dissociation

The dissociation width of dislocations in fcc metals plays an important role for the Peierls
stress and the mobility of dislocations [237,238]. The elastic separation d of partial dislocations
is given for the isotropic case by Eq. 2.17 in section 2.1.2.2. In this equation the effect of
elastic anisotropy can be approximated by substituting the shear modulus µ with the shear
modulus µ′ = (c11 − c12 + c44)/3 determined from the transformation of the tensor of elastic
constants cij to the coordinate system of the dislocation.

To treat the elastic properties of dislocation in a fully anisotropic framework the Stroh
formalism [239] can be used. Figs. 7.1 - 7.3 show the anisotropic solution for d calculated for
different line orientations Θ using the program DISDI [240] which is based on the ANACALC
routine designed by Head et al. [241]. This solution is compared with the results from the static
calculations (see sec. 4.1) and with the solution of Eq. 2.17 for edge and screw dislocations
(see appendix A for the material parameters).

In general the partial dislocation separations determined from the atomistic calculations
are in good agreement with the selected experimental values.a But it can not be argued and
should not implicate that the agreement with experiment is any better than that of continuum
theory. The partial dislocation separation determined from the atomistic simulations dsim is
in all cases larger than the analytical solution daniso, see Figs. 7.1 - 7.3. The deviation
∆d = dsim − daniso is typically in the range of 1/2 − 2b, not proportional to d, and larger for
screw dislocations than for edge dislocations. For closely spaced partial dislocations like in
the case of screw dislocations in Al this deviation can make a difference of up to 100%.

aAn overview about experimentally determined stacking fault energies and measurements of d can be found
in [243].

91
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Figure 7.1: Splitting distance d for dislocations with different character as determined from the
relaxation using two Al potentials compared to the theoretical predictions using linear elasticity theory.
Screw dislocations are characterized by an angle of Θ = 0◦ between line direction ξ and Burgers vector
b, edge dislocations have Θ = 90◦. See also table 4.1. Experimental data according to [26]
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Figure 7.2: Same as Fig. 7.1 for two nickel potentials. Experimental data from [242].

Similar discrepancies between the results from atomistic simulations and analytical cal-
culations using the stacking fault (SF) energy and elastic constants of the potentials were
reported in the literature [29,36,94,95,97,244] for different simulation set-ups and potentials.
In the present study d was independent of the simulation set-up. Furthermore, the value for
the edge dislocation in AlI agrees with the result of Olmsted et al. [94], and the splitting
distance for screw dislocations in NiI is identical to the one recently reported in [97]. In
these studies, d was obtained by using boundary conditions and methods for measuring the
dislocation position which were different from the present study. Together with the reports in
the literature the findings indicate that the differences between anisotropic calculations and
simulations might reflect a general aspect of partial dislocation splitting.
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Figure 7.3: Same as Fig. 7.1 for copper. Experimental data according to [36].

According to Eq. 2.17 an increase in d is related to a effective decrease of the stacking
fault energy γsf or to an effective increase of the repulsive stress between the two partial
dislocations. At least for the larger splitting distances effects due to nonlinear elasticity
should be negligible. Rasmussen et al. [36] argued that the in plane-smearing of the partial
dislocations effectively reduces the stacking fault width. However, the force on the dislocations
due to the stacking fault is independent of its extend, and it is not clear how the spreading of
the partial dislocation core into the stacking fault should decrease its energy. Duesbery [29]
put forward that if the two partial dislocations are close to each other the attractive Burgers
vector component (e.g. in case of a edge dislocation the screw components) of the partial
dislocations might not fully form, thus leading to a stronger repulsion. However, the Nye
tensor analysis in Fig. 4.4 shows that at a splitting distance of d ≈ 5b the screw components
have already fully formed. This effect should therefore be negligible for wider spaced partial
dislocations.

The dissociation of extended dislocations in fcc metals has been extensively studied by
Schoeck in the framework of the generalized two dimensional Peierls model [24–27, 245]. In
this model the atomic misfit energy in the glide plane is calculated using the γ-surface [30],
which is approximated by a two dimensional Fourier series. Schoeck’s generic γ-surface is
for fcc metals fully characterized by γsf and the maximum fault energy γm. For the atomic
displacements across the glide plane a two dimensional ansatz according to the original Peierls-
model is chosen. The total (elastic and atomic misfit) energy is then minimized with respect
to the dislocation separation d and width ζ.

Using this model it has been shown by Schoeck [25] that the splitting distance not only
depends on the SF energy at the local minimum in the ’stacking fault position’ but also on
the structure of the γ-surface. For higher γm the generalized two dimensional Peierls model
predicts a higher deviation ∆d from the anisotropic solution [25], and a larger ∆d for screw
dislocations than for edge dislocations. These predictions are in qualitative agreement with
the results shown in Figs. 7.1 - 7.3: all types of dislocations have a deviation ∆d from the
anisotropic solution which is larger for AlII (γm = 575 mJ/m2) than for AlI (γm = 555
mJ/m2). Similarly ∆d(NiII) > ∆d(NiI) with γm(NiII)=1.613 J/m2 > γm(NiI)= 1 J/m2.
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A direct comparison of the dislocation splitting distance in atomistic simulations with the
results of the generalized Peierls model is currently under way [245]. By using an approxi-
mation of the γ-surface corresponding to the NiI potential, Schoeck calculated the splitting
distance for a screw dislocation [245], which is exactly identical to the one observed in the
simulations (Tab. 4.1).

This clearly shows that the dislocation dissociation distance is not determined by the
elastic constants and γsf alone. This has important consequences, e.g. for the determination
of SF energies from TEM observations of d [25], and for the determination of cross-slip
energies.

Assuming that the γ-surface of an EAM potential would perfectly represent the real ma-
terial, the atomistically determined d would be identical to the splitting distance determined
by a ’perfect’ experiment. As seen above, this value will however be larger than the split-
ting distance of Volterra partial dislocations in a continuum daniso, Eq. 2.18. By using the
experimental d in Eq. 2.18 to calculate the stacking fault energy γsf , the so determined γsf ,
are smaller than the real value. Judging e.g. from Fig. 7.1, the differences could be as large
as approx. 30%. Experimental scatter can also account for errors of similar magnitude (see
e.g. Fig. 7.2), but following the above conclusions, the values for γsf in the literature (see
e.g. [243]) should generally be too low. A correction of these values would require accurate
information on the ’real’ γ-surface.

First-principles stacking fault energies are available for a number of fcc metals, see e.g.
[208]. And as expected from the above arguments they tend to overestimate the experimental
values [246,247]. It should be noted, however, that all defect energies are usually overestimated
by first-principles calculations [247]. Due to the scatter in first-principles data for γsf and
the availability of experimental data for many metals, EAM potentials are traditionally fit
to experimental SF energies [247]. The above finding therefore has direct consequences for
quantitative comparisons between atomistic simulations and experiment.

In section 4.1 the Peierls-Nabarro model was used to fit the width ζ of the edge and
screw components of the two partial dislocations. In the one dimensional PN model, the
width of one dislocation can be expressed as ζ = Kb/4πτmax (Eq. 2.13). The maximum
restoring stress τmax is in this case given by the maximal gradient of the γ-surface [248]. For
dissociated dislocations in fcc crystals, τmax is the maximal slope of the stacking fault curve
in 〈112〉 direction, see Fig. A.1 in Appendix A. Eq. 2.13 has been applied to calculate ζ
for partial dislocations. It yielded the same order of magnitude as the partial dislocation
width determined from computer simulations [95]. This attempt to calculate the width of
one partial dislocation of a dissociated dislocation with a one dimensional PN model seems
however questionable: contrary to a perfect dislocation the Peierls relief of a partial dislocation
is not symmetric. The solution Eq. 2.13 of the original Peierls-Nabarro model can thus not
be directly applied to such a situation.

In general the original Peierls-Nabarro model is not valid for dissociated dislocations, as
it assumes slip along one direction only. For partial dislocations, treatment in two dimensions
is necessary [23]. Many PN theories like the above mentioned generalized two dimensional
Peierls model [24] or the semidiscrete variational PN model [23, 28] have been proposed to
study dissociated dislocations in fcc metals. One important insight obtained by the generalized
two dimensional Peierls model is that the displacement vectors of mixed dislocations can
deviate from the crystallographic Burgers vector, even when it runs along a path of lowest
misfit energy [24]. The reason for this is that edge and screw components of the mixed
dislocation can adjust independently to the minimum energy configuration, as the elastic
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response of the medium is different for the two types of displacements. This statement should
be also valid for Shockley partial dislocations.

7.1.2 Peierls stress

The determination of the Peierls stress from model calculations, based on the Peierls-Nabarro
model, from experiments, and more recently from atomistic calculations has been the subject
of research over half a century [249,250]. Although the original simple Peierls-Nabarro model
has been superseded by more realistic approaches, its qualitative description of the dependence
of the Peierls stress on the material properties (Eq. 2.15) are generally recognized to be valid:
τP is orders of magnitudes smaller than the theoretical shear strength, slip usually takes
place on the most widely spaced planes and dislocations with wide, planar cores have lower
values for τP compared to dislocations with narrow core. For this reason, edge dislocations
are generally more mobile than screw dislocations [13].

These qualitative features are also reflected in the results in Tab. 4.4: the Peierls stress of
screw dislocations is one order of magnitude higher than for edge dislocations, and between the
different fcc metals the Peierls stress decreases with increasing dissociation distance between
the partial dislocations. However, large differences in τP exist between the different potentials.
The Peierls stress depends sensitively on the details of the atomic interactions. Therefore
calculations with different potentials – or γ-surfaces in the case of the PN-model – can lead
to a wide range of values for τP . This is directly reflected in the result of recent calculations
of the Peierls stress summarized in Tab. 7.1.

The overall magnitude of the Peierls stresses determined by the atomistic simulations
(Tab. 4.4) agrees with the notion of a generally low Peierls stress for face centered cubic
metals (τP . 10−6µ′ to 10−5µ′ [13]). For AlI the values of τP are in excellent agreement with
the elaborate study on the same potential of Olmsted et al. [94]. For NiI the values of τP

agree well with the ones determined by the nudged elastic band method in [97]. The used
method therefore seems to provide reliable estimates for τP in different potentials. Besides the
differences between the used potentials, additional effects due to additional stresses [29,251],
or boundary effects can account for the various values of τP . A special case was reported
in [99], where two different core structures existed for edge dislocations in Al.

The differences in the γ-surfaces used in the PN-model are the reason for the large varia-
tions reported e.g. in [252,253]. Although the improved Peierls-Nabarro models can directly
benefit from accurately determined γ-surfaces from ab-initio calculations, it suffers some
shortcomings [27, 254]. The problem of using a one dimensional PN model like in [95, 246]
has been already addressed in the previous section and is discussed in [23,27]. The results of
such studies can only be considered to be approximate. An important aspect is that in some
PN-models the relaxation of the atoms when the dislocation moves across the Peierls energy
barrier is not taken into account [254]. I.e. the dislocation displacement profile stays constant
during the motion of the dislocation. This can be the cause for the trend in Tab. 7.1 towards
higher Peierls stresses in the PN-model compared to the direct atomistic simulations.

When comparing the values for τP in Tab. 7.1 with experimental data one has to be aware
of a 50-year-old puzzle in materials science: the estimates of τP from the Bordoni peak internal
friction (IF) measurements or from Harper-Dorn creep show a factor of 100 discrepancy to
those obtained from mechanical testing, see [249] and references therein. It has been argued
that IF experiments sample the average dislocation population and thus measure the ’true’
Peierls stress, whereas low temperature plastic deformation experiments sample only the
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Cu,⊥ Cu, s Ni, ⊥ Ni, s Al, ⊥ Al, s

this study 0.05 6 0.03 - 0.3 5 - 30 5-6 50
direct atomistic 2 [255] 7 [255] 1 [95] 10 [95] 6 [94] 50 [94]
simulations 40-270 [29] 0.3 [97] 20 [97] 8 [93] 320 [251]

4-880 [99] 4 [99]
Peierls-Nabarro 50-350 [252] 5 [95] 8 [95] 7 [246] 312-1000 [256]
models 11-93 [253] 110-3350 [252]

Tab. 7.1: The Peierls stress of edge (⊥) and screw (s) dislocations in different metals as determined
in recent simulations. The Peierls stress is given in units of 10−5µ.

weakest areas [250]. The critical resolved shear stress (CRSS) in such weak areas is thought
to be caused by internal stresses which modify the partial dislocation separation: when d is
an integral multiple na′ of the Peierls energy period a′ the partial dislocations move in phase
and the CRSS represents the Peierls stress. If however d = (n+1/2)a′ the partials are exactly
out of phase and the energy of the dislocation remains unchanged under translation. The
resulting CRSS should be consequently zero [29, 257, 258]. In his atomistic simulations on
screw dislocations in copper Duesbery [29] in fact found a 85% decrease of the Peierls stress
depending on the partial dislocation separation.

In the simple version of this model the two partials are rigidly coupled and the Peierls
”hills” are symmetric [250, 258]. The effect of the partial dislocation on the downward slope
of the Peierls hill pushing the other dislocation uphill should however depend on the shape of
the Peierls barrier and on the strength of the interaction between the two partial dislocations.
Like the deviation of the displacement vectors of mixed dislocations from the crystallographic
Burgers vector and the splitting distance, the cooperative motion and the Peierls stress depend
on the details of the entire γ-surface. Furthermore, the relaxation of the dislocation core atoms
during the motion of the dislocation across the Peierls energy barrier has to be considered. One
dimensional models Peierls-Nabarro models like in [248], which rely only on the dislocation
width and the fault energy or resistance curves (Fig. A.1), therefore miss features essential
for a quantitative determination of τP .

As stated in the previous section, atomistic calculations of the Peierls stress with semi-
empirical potentials are impaired by the lack of an accurate representation of the γ-surface and
the stacking fault energy [27, 245]. Therefore values for the Peierls stress or Peierls energy
derived from atomistic simulations can at best be only considered as order of magnitude
estimate. However, atomistic simulations in combination with generalized PN-models could
provide information on how the shape of the γ-surface influences τP e.g. by affecting the
cooperative motion of the partial dislocations.

7.1.3 Line energy

In section 4.2 the additional energy due to the presence of a dislocation in the crystal was
calculated. The plots of the strain energy per unit length of dislocation as a function of the
cylinder radius R (Figs. 4.5 - 4.6) followed the logarithmic relationship predicted by the linear
elastic theory for a wide range of R (see also sec. 2.1.1):

Eel

L
=

Kb2

4π
ln

R

r0
. (7.1)
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The fits of straight lines to the linear portion of Eel as function of ln R directly provides the
factor Kb2

4π of Eq. 7.1. The values of this factor in Tab. 4.2 are in excellent agreement with the
results of anisotropic elastic calculations following [12] using the program DISLOELAST [220],
see Tab. 7.2.

Potential Kaniso(⊥) [GPa] Kaniso/Kfit rp
dev [b] Kaniso(s) [GPa] Kaniso/Kfit rp

dev [b]
AlI 48.5313 0.9954 2 32.025 1.0006 5
AlII 44.1237 1.0002 3 28.7736 1.0013 5
NiI 123.388 1.0003 5 78.6374 1.0024 8
NiII 121.68 1.0018 3 75.8968 0.9955 5
Cu 73.3253 0.9923 7 40.6169 0.9593 4

Tab. 7.2: Comparison of the anisotropic energy factor Kfit for edge (⊥) and screw (s) dislocations
determined by atomistic calculations (see Figs. 4.5 - 4.6 and Tab. 4.2) and the result of anisotropic
elastic calculations. A rough estimate of the partial dislocation radius rp

dev is also provided.

The energy of a dislocation core is determined by the non-linear interatomic forces between
the individual atoms within the core. The local bonding topology is therefore an important
quantity and a dislocation could display several metastable core structures. The existence
of such different core structures for dislocations in aluminum was recently claimed [99]. The
reported core structures, however, were specific to the used potential. In general, experiments
are unable to provide precise information on core energies: such data can only be obtained
from atomistic simulations [237].

The partitioning of the total (elastic + core) energy is to a large extend arbritrary. Thus
the mathematical core radius r0 is not by itself a physical quantity, but describes only the
choice of the partitioning. It is usually set such that the core energy in Eq. 2.1 becomes
zero. Its value can then be obtained directly from the intercept of the straight line with the
abscissa, see sec. 4.2.

In the literature the radius rdev at which the strain energy deviates from Eq. 7.1 is often
identified with the onset of the nonlinear core region and thus identified with the dislocation
core radius [13]. For dissociated dislocations, however, the effect of the splitting distance
has to be accounted for. A simple way to define the distance rp

dev for onset of nonlinearity
for partial dislocations would be rp

dev = rdev − d/2 (see Tab. 7.2). This value can however
be only interpreted as a very rough estimate, as d and rdev each have an error margin of
±b. Furthermore rp

dev does not account for core overlap. The effect of the nonlinear partial
dislocation core region on Estrain(R) is furthermore difficult to asses, as the nonlinear regions
make up only a certain part of the cylinder volume.

The usual definition of core energy Edev
core = Estrain(rdev) is also not adequate for dissociated

dislocations. It would include not only the core energy of the partial dislocations but also the
stacking fault energy, and the linear elastic part of the strain energy between the two partial
dislocations. In general, the deviation from linear elasticity does not have to correspond to the
physical dislocation core, in which elasticity itself no longer provides an adequate description
of atomistic topology and bonding.
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7.2 Moving dislocations

The motion of dislocations at different temperatures and subjected to varying shear stresses
was studied in chapter 5. The dislocation motion is determined by the resolved shear stress
acting on the dislocation, its rate of acceleration – the inertia of the dislocation – and the
forces opposing the motion of the dislocations. In the following the dislocation inertia and the
viscous drag at intermediate stresses will be discussed, and special effects for high-velocity
dislocations will be addressed.

As mentioned in chapter 5, molecular dynamics methods are limited to the simulations
of small time spans. Therefore dislocation motion dominated by thermal activation, typical
for dislocation velocities . 10−2ct, can not be addressed here. This study focuses on the
dislocation motion for v > 10−2ct, sometimes also called the high-velocity region [49], in
which the dislocation motion has a viscous character.

7.2.1 Dislocation inertia

Figure 5.9 shows that the time it takes for the dislocation to accelerate at a given temperature
clearly depends on the box hight Lz. In the setup used here, Lz corresponds to the smallest
dimension normal to the dislocation line. The increase of the acceleration period is therefore
qualitatively in agreement with the increase of dislocation inertia m⊥,s

0 according to continuum
theory.

To see whether there is also a quantitative rapport between the acceleration character-
istics of the dislocations in the simulations and the theoretical predictions, a method to fit
the equation of motion to the dislocation trajectory was developed. It has been shown in
sec. 2.1.3.2 that the expressions of Hirth [43] et al. and Sakamoto [48] for the dynamic mass
of an edge dislocation can be transformed into each other. For practical reasons the definition
according to Eq. 2.33 and the following equation of motion for an edge dislocation

m⊥
0 ·
(

m⊥
1

m⊥
0

)

· ∂

∂t
v − F + Bv = 0 , (7.2)

with m⊥
1 defined in Eq. 2.38 are used. For screw dislocations the same equation is used,

however, m⊥
1 is replaced by ms from Eq. 2.28, and m⊥

0 accordingly with ms
0.

In the case of an edge dislocation this equation of motion can be solved only numerically.
In doing so, the initial conditions x(t = 0) = x0, v(t = 0) = v0 as well as m⊥,s

0 , B and F can
be treated as variable parameters. The solution xfit(t) of Eq. 7.2 can then be compared to the
n discrete points of the dislocation trajectory xMD(t) obtained from the MD simulations. A

minimization algorithmb can then be used to minimize the difference χ =
∑

t

√
(xfit(t)−xMD(t))2

n

by varying x0, v0,m
⊥,s
0 , B and F . Physically realistic parameter values for x0, v0 and F were

enforced by penalty functions.
To get a reasonable estimate of the rest mass m0 the fits have to be carried out in the low

velocity and low damping regime (see Tab. 7.3). The onset of motion from rest (t . 2Lz/ct)
is not considered for the fit, because it might be affected by the starting conditions of the
simulations. Due to the periodic boundary conditions the dislocation is interacting with its
own radiated phonons. This effect is minimized by only considering the motion during the the

bNumerical integration and minimization were performed in Mathematica [259], which for numerical mini-
mization uses Brent’s principal axis method [260].
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first 100-150 ps. The quality of the fit depends on the quality of the trajectory. Typical mean
deviations of the fitted solution of Eq. 7.2 from the data points of xMD(t) were b/5 . χ < b c.
Examples of the fitted equation of motion to different trajectories in boxes of different heights
are shown in Fig. 7.4, the results for m⊥,s

0 are summarized in Tab. 7.3.
The ability to fit the dislocation trajectories with Eq. 7.2 shows to a certain extend the

validity of the expression for the dynamic mass, Eqs. 2.28 - 2.38 . Attempts to fit the trajectory
with a constant m⊥,s failed, and applying e.g. the functional form of ms (Eq. 2.28) to edge
dislocations also lead to unacceptable fits. The terms of higher order in γ in Eq. 2.38 make
the numerical solution of Eq. 7.2 also sensitive to the correct values of ct and cl. Although the
numerical method described above leads to good fits, its accuracy does not allow to discern

the small difference of the factor
(

1 +
c4t
c4
l

)

(Eq. 2.29) between the rest mass of edge and screw

dislocations, see Tab. 7.3.
The fits to the dislocation trajectories show a significant deviation ∆F of the force accel-

erating the dislocation from the applied force, see Tab. 7.3. The differences are rather small,
and seem to be correlated with the Peierls stress. It is believed that ∆F is related to “dry
radiation friction”, as will be discussed in the next section.

Given the usual time and length scales of MD simulations (ps, Å), the adapted unit of the
rest mass per unit length is pN·ps2/Å2 = 10−16Kg/m. It can be also expressed in units of
mass of the respective atom type per Burgers vector: m0(Al)= 0.51 atoms/b, m0(Ni)= 0.52
atoms/b, m0(Cu)= 0.46 atoms/b (for the largest box-sizes). These values are in excellent
agreement with the notion of a rest mass of about half an atom per Burgers vector [47]. It
should however be highlighted, that the inertia of dislocation is not caused by the mass of
the atoms within the dislocation core, see sec. 2.1.3.2.

With the expression for the rest mass (Eqs. 2.27, 2.29), and an estimate for the outer
cut-off radius of R ≈ Lz/2 − 3d111 one can calculate the appropriate core radius:

rm
0 = exp

(

− c4
l c

2
t m0

(

c4
l + c4

t

)

K

)

R . (7.3)

The values of rm
0 are shown in Tab. 7.3 (the material parameters are taken from Tab. A.1 and

Tab. 7.2). In addition to the error in the determination of m0 the values of rm
0 are subjected

to some error caused by the definition of R in the 2D dynamic boundary conditions (which
were accounted for by subtracting the 2D dynamic boundary layers from the box height).
Within these error margins rm

0 is independent of the simulation box size, indicating that the
logarithmic dependence of m0 of Lz is indeed valid.

Taking into account that the total dislocation strain energy determined from the static
simulations in the set-up for dynamic simulations is somewhat higher (. 10%) than the one
from the cylindrical set-up (see sec. 4.2), the appropriate core radius for dislocations without
finite size effects should be somewhat (approx. 0.5 − 1b) larger than the values in Tab. 7.3.

The lower cut-off radius rm
0 determined from the effective rest mass of the dislocations

characterizes full dislocations. It can therefore directly be compared with the mathematical
core radius r0 and with the core radius determined from the deviation from linear elasticity
rdev from Tab. 4.2. Both r0 and rdev clearly lie outside the error margin for rm

0 . However,

cTo examine the robustness of the results from the fitting procedure, the fitting was performed with many
different starting points. Furthermore the fitting was repeated on different subsets of the data, and within
different parameter subspaces. The error margins in Tab. 7.3 were determined from the range of parameter
values found in these different fits.
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Figure 7.4: Trajectories of edge dislocations in thin films of different heights Lz. The lines correspond
to fits of the numerical solution of the equation of motion Eq. 7.2.

for the cases without strong core overlap rm
0 is of the order of magnitude of the partial

dislocation width w determined from the FWHM of the energy of the partial dislocation
core atoms, Tab. 4.1, and is surprisingly well represented by rp

dev (Tab. 7.2), although this is
intended to estimate the radius of one partial dislocation only. It is furthermore interesting
to note that within the error margin rm

0 is independent of the potential.

Usually, the total energy Etotal of a dislocation is seen as the only physically relevant
and measurable quantity. The core energy Ecore and its (mathematical) radius r0 are in this
context ”merely parameters in a mathematical partition” of Etotal [261]. The invariance of
Etotal of a static dislocation is thereby not limited to continuum theory. It can be defined by
a thought experiment in which a dislocation dipole is created in an infinite lattice in which
atoms near the dislocation cores are allowed to relax [261]. Etotal then describes the increase
in the total atomistic energy due to the presence of a dislocation dipole. The physical core
radius rphys

0 , defined by the atoms whose local atomic order is drastically different from that
of the crystalline lattice, is not addressed in this context.

For a moving dislocation however, the total energy of a dislocation is no more invariant
with respect to the partitioning between core energy and strain energy Eel. According to the
derivation of the dislocation inertia, Eqs. 2.31 - 2.33, only the part of Etotal which changes
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System m0 [10−18 Kg/m] rm
0 [b] ∆F/b [MPa]

edge dislocation
AlI , 4 MPa, (48,19,11) 41 ± 3 2.1 ± 0.5 0.4 ± 0.2
AlI , 4 MPa, (96,4,25) 62 ± 2 2.1 ± 0.1 0.4 ± 0.1
AlI , 4 MPa, (48,4,46) 80 ± 5 2 ± 0.3 0.4 ± 0.1
AlII , 4 MPa, (48,4,25) 55 ± 5 1.7 ± 0.5 0.5 ± 0.2
NiI , 10 MPa, (42,8,10) 83 ± 5 5.3 ± 0.2 1.6 ± 0.5
NiI , 10 MPa, (42,8,22) 155 ± 5 4.9 ± 0.2 2. ± 0.5
NiII , 10 MPa, (42,4,22) 165 ± 5 4.4 ± 0.4 0.2 ± 0.1
NiII , 10 MPa, (84,4,40) 205 ± 10 4.8 ± 0.4 0.2 ± 0.1
Cu , 6 MPa, (86,4,41) 190 ± 10 7 ± 1 0.3 ±0.1

screw dislocation
AlI ,12 MPa, (49,5,25) 63 ± 2 1.7 ± 0.1 1.3 ± 0.2
NiII , 10 MPa, (43,4,22) 160 ± 10 4.5 ± 0.5 1.7 ± 0.1

Tab. 7.3: The dislocation rest mass m0 and the ’friction force’ ∆F as determined by the fits of the
numerical solution of the equation of motion 7.2 to the trajectory of dislocations at 30 K (see also
Fig. 7.4). From the theoretical expression for m0, Eqs. 2.29 and 2.4, and the box height Lz an effective
dislocation core radius rm

0 for the mass can estimated.

with the dislocation velocity contributes to its inertia. According to Eq. 2.25 this is the
case for the entire elastic energy.d The energy of the physical dislocation core – which can
not be described by elasticity – will certainly also depend on the dislocation velocity as the
dislocation core changes for high velocities [12]. However, there will be a constant minimum
energy caused by the locally distorted bonding within the dislocation core.

Therefore the lower cut-off radius rm
0 becomes a physical quantity which (together with

R and K) defines the inertia of a dislocation. It follows from the above reasoning that it is

closely related, however not necessarily identical, to the physical core radius rphys
0 .

It should be noted that the term physical core radius might not be fully adequate for
dislocations in fcc metals. Unlike r0, rdev or rm

0 the physical core radius is not a mathematical
quantity representing characteristics of a ’virtual’ perfect dislocation. Dissociated dislocations
should therefore be described by two physical dislocation cores – which for mixed dislocations
can have different rphys,p

0 – plus the stacking fault. In this context it is not clear how rphys,p
0 is

defined in the case of core-overlap. Furthermore, the (partial-) dislocation cores in fcc metals
are usually spread out in the glide plane (see e.g. Figs. 4.1 and 4.2), thus not showing a
radial symmetry inflicted by the term core radius. The generalized dislocation widths ζ from
2D PN-models seem more adequate for describing dissociated dislocations in fcc metals than
rphys
0 .

7.2.2 Dislocation drag

The dislocation drag can be separated into a velocity dependent viscous drag characterized
by the drag coefficient B and contributions without linear velocity dependence, like the radi-
ation friction, see sec. 2.1.3.4. The fits to the dislocation trajectory in the low-velocity and
low-temperature regime (Tab. 7.3) showed indications for the existence of a dynamic friction
stress τr = ∆F/b. For the edge dislocation the radiation stress τr is about one order of mag-

dThis statement includes also nonlinear elastic contributions.
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nitude smaller than the static Peierls stress τP in Al, and about one order of magnitude larger
than τp in Ni and Cu. The radiation stress for screw dislocations is by one order of magnitude
larger than that of edge dislocations, see Tab. 4.4. Fits to dislocation trajectories at higher
temperatures and stresses, however, showed no clear indication of a dynamic friction stress.
The existence of a ”dry friction type” of radiation friction with τr ≈ τP was postulated by
some models (see e.g. sec. 2.1.3.4 and the review by Alshits [64]). However, no consistent
theory of radiation friction currently exists [16,68]. Based on their simulations of dislocation
motion at 0 K in square and triangular lattices Koizumi et al. [68] stated that even at room
temperature the energy loss of moving dislocations is about one order of magnitude larger
than the theoretical value estimated by phonon-scattering mechanisms. The present simula-
tions however show that velocity independent radiation friction does not provide a significant
contribution to the drag of dislocations in fcc lattices in the investigated velocity regime and
at T & 100 K (see also the following discussion).
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Figure 7.5: Plot of the drag coefficient B as function of the temperature. The simulation results for
different types of dislocations and two aluminum potentials are compared with experimental values
[262]. ΘD denotes the Debye temperature.

Therefore in the following the radiation friction is neglected, and the drag coefficient of
dislocations moving with steady state velocity vss in the low velocity regime (vss < ct/3) is
determined in the usual way:

B =
τb

vss
. (7.4)

The so obtained drag coefficient is shown for Al, Ni and Cu in Figs. 7.5 to 7.7. These values
can be directly used in dislocation dynamics (DD) simulations [263–265]e. Where available,

eIt should however be kept in mind that the drag by electrons and in Ni also magnons is not modeled by
MD.
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Figure 7.6: Plot of the drag coefficient B as function of the temperature as determined from dynamic
simulations of edge and screw dislocations using two different potentials for Ni. ΘD denotes the Debye
temperature.

experimental values are shown. In these figures the following general observations can be
made:

• The drag coefficient follows a roughly linear relationship with the temperature

• The magnitude of B is comparable for Al, Ni and Cu

• screw and 60◦ dislocations have a higher drag coefficient than edge dislocations.

In the following the drag coefficient of dislocations in the different potentials will be analyzed
in more detail.

The drag coefficients of edge, screw and 60◦ degree dislocations in the two aluminum
potentials are shown in Fig. 7.5. The dynamics of three types of dislocations were studied
with the aluminum potential of Ercolessi (AlI) [206]. This potential was also used to study the
flutter effect, see Fig. 5.10. However, as mentioned in sec. 5.2, the effect was only noticeable
at 30 K. The different velocities there translate to a difference in B of only 0.1 µPa s. The
flutter effect can thus be safely neglected at temperatures above approx. 100 K, in accordance
with the theory (see sec. 2.1.3.4). Fig. 7.5 shows that the drag coefficient of screw and 60◦

dislocations are similar, but edge dislocations have generally a lower drag coefficient. The
drag coefficient of edge dislocations in AlI shows a somewhat lower increase with temperature
compared to the other dislocations and is generally lower than B for edge dislocations in AlII .
A linear fit to the data of the edge dislocations in AlI yields a slope of (4.5 ± 0.1) · 10−8 Pa
s/K. This has to be compared to (5.7 ± 0.2) · 10−8 Pa s/K for the other dislocations. This
slope is in very good agreement with the result of (5.8 ± 0.5) · 10−8Pa s/K from a linear fit
to the experimental data by Gorman [262]. The absolute value of the drag coefficient in the
experiments is however about 9±0.5 µPa s higher than in the simulations. The reason for this
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Figure 7.7: Plot of the drag coefficient B as function of the temperature as determined from dynamic
simulations of edge and screw dislocations in copper. For comparison experimental values are also
plotted. ΘD denotes the experimental Debye temperature. See text for details.

difference is unclear. Drag by electrons is not included in the MD simulations, but according
to the measurements by Hikata et al. [266] it should only give a constant contribution of
Be = 1.4µPa s. Leibfried’s estimate, Eq. 2.45, of the drag by phonon wind gives a pre-factor
of 3kTz/20ctb

2 = 3.1 · 10−8Pa s/K, which is about 2 times smaller than the one determined
from experiment and simulation.

The drag coefficient for edge and screw dislocations in the two Ni potentials is shown
in Fig. 7.6. Although the static properties of the dislocations in the two potentials differ
significantly, their drag coefficients are very similar. The slope (4.6 ± 0.1 · 10−8 Pa s/K) and
absolute value of the drag coefficient of edge dislocations agree very well with the prediction
of Leibfrieds equation Bwind/T = 3kTz/20ctb

2 = 4.62 · 10−8 Pa s/K. The drag coefficient of
screw dislocations, however, shows a somewhat steeper slope: 6 ± 0.1 · 10−8 Pa s/K.

The drag coefficient for copper is shown as function of temperature in Fig. 7.7. Linear fits
for edge and screw dislocations show somewhat different slopes of (5±0.2)·10−8 Pa s/K (edge)
and (6±0.2)·10−8 Pa s/K (screw). These values are both lower than the slope provided by the
Leibfried relation (Bwind/T = 7.8·10−8 Pa s/K). Up to room temperature, the experimental B
by Jassby et al. [267] and Kobelev et al. [268] agree rather well with the simulations. A linear
fit to the experimental date agrees well with the fit to the simulations, see Fig. 7.7. However,
the experimental values suggest a nonlinear increase of B with T [267,268]. Such a nonlinear
behavior is predicted for Cu by more elaborate theories of dislocation drag, see [16, 63]. It
is unclear why the simulation does not show a similar deviation from the straight line. A
possible reason might be that the Debye temperature of the potential does not correspond to
the experimental one, or an influence of the use of room temperature properties as potential
properties at 0K

The linear relationship between temperature and drag coefficient in the Leibfried approx-
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imation, Eq. 2.45, is the simplest approach to describe dislocation drag by phonon processes.
In the derivation of the drag by phonon wind, Eq. 2.45, Leibfried furthermore did not cal-
culate the cross section for phonon scattering by dislocations, but assumed it to be of the
order of the lattice constant [65]. Therefore Eq. 2.45 applies basically to any scattering mech-
anism with a diameter of the order of a0. Especially it applies also for the flutter effect [63].
However, the phonon scattering diameter due to nonlinear phonon - dislocation interactions
depends on the nonlinear region of the dislocation core. It is noteworthy, that the different
dislocation core structures and energies in the different potentials for the same material have
no significant effect on B. The deviation of the Leibfried estimate from the experimental
values by approx. +80% and -40% is however relatively small compared to the possible vari-
ations of 1/60 - 1/5 for the numerical factor in Eq. 2.45, and compared to the experimental
scatter, see sec. 2.1.3.4.

More elaborated treatments of dislocation drag than Eq. 2.45 have been subsequently
developed, which include different interaction mechanism and more adequate representations
of anharmonicity, see e.g. [16,64]. These models, however, require information on the anhar-
monicity like the Murnaghan modulus [64] which is not readily available for interatomic poten-
tials. Similarly, the application to experimental data is also not straight-forward. Fusenig [88]
for example used a combination of 3rd order series approximation of the integral functions
used by Alshits [64] to fit the the dislocation drag in Cu, see Fig. 7.7. The fit describes well
the deviations from a straight line for the experimental values. However, the fit was only
possible by using an unreasonably small value ΘD = 235 K for the Debye temperature [88].

The existing theoretical studies of phonon damping do furthermore not offer any expla-
nation of the larger drag for screw dislocations compared to edge dislocations. The more
elaborate theories of dislocation - phonon interaction can consider edge and screw disloca-
tions by different anharmonical factors [16]. However, according to the numerical example
by Nadgornyi (page 237 in [16]) edge dislocations in Cu should experience larger drag than
screw dislocations. One could argue that the more compact core of screw dislocations could
lead to a stronger scattering of phonons. Further detailed studies are required to address this
question.

From a modeling point of view and given the scatter of the obtainable experimental data,
the results of the atomistic simulations can be summarized as follows:

• The atomistic simulations agree well with experiments.

• The details of the potential do not significantly influence the drag coefficient - the
character of the dislocation has a larger influence.

• For most modeling applications the use of a drag coefficient which is linear with T is
adequate, at least up to the Debye temperature.

7.2.3 High velocity dislocations

The simulations of dislocation motion at higher stresses revealed a high velocity regime of
dislocation motion where the dislocation velocity increases only slightly with increasing stress,
and is less sensitive to temperature. At very high velocities radiation of phonons by the
dislocation can be seen (see Fig. 5.16). For screw dislocations, the high velocity regime starts
at lower velocities than for edge dislocations. In the high velocity regime the increase of
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velocity v with applied shear stress τ is furthermore generally stronger for screw dislocations
than for edge dislocations. Nearly stress and temperature independent ”velocity plateaus”
or ”preferred velocities” for edge dislocations have also been reported in the literature [53,
56, 57, 60]. Different velocity regimes were also recently identified for screw dislocations [53,
103]. Olmsted et al. [53] found in their detailed atomistic study on dislocation motion in
Ni and Al that the velocity of screw dislocations in the high velocity regime could be fitted
to the radiation damping form postulated by Eshelby [52]. However, no convincing physical
interpretation of the plateau velocity for edge dislocations could be provided, and the existence
of a threshold velocity for radiative damping could not be explained [53].

Different theories for the motion of dislocations at high velocities have been proposed and
can be compared against the simulation results presented in sec. 5.2. Roos et al. proposed
that the drag caused by the flutter mechanism becomes velocity dependent and diverges when
v approaches the shear wave velocity [232]. Integrating the equation of motion, Eq. 7.2 mod-
ified with the proposed functional form of B(v), however does not reproduce the dislocation
trajectories from the simulations. Furthermore, the simulations with dislocations of minimal
line length showed that the flutter effect does not lead to a significant drag in the high velocity
regime (see Fig. 5.10).

In sec. 2.1.3.3 two possible theories which include special subsonic velocities were pre-
sented. Eshelby postulated radiative damping for velocities v > ω

k larger than the phase
velocity cp of the slowest phonon mode. These velocities can be calculated from the fre-
quency νt of transverse phonons at the boundary of the first Brillouin zone (see appendix A).
The results are given in Tab. 5.2. A comparison of these values with the crossover velocity
vc, Tab. 5.1, or the velocity of the emitted waves, Tab. 5.2, shows no significant correlation,
in accordance with the discussion of Olmsted [53].

Bhate [56] determined from phonon dispersion relation in AlI the velocities vg=p1
= 20.7

Å/ps vg=p2
= 11.1 Å/ps and at which phonons have the same phase and group velocity.

Based on the model of Celli and Flytzanis [54,55] Bhate [56] suggested that theses velocities
represent limit velocities for dislocation motion. As can be seen from Fig. 5.10 this is not the
case in the present simulations.

The observations that the high velocity regime is connected with the overlap of the partial
dislocation cores (Figs. 5.10-5.12 and Fig. 5.14), and that subsonic high velocity dislocations
show radiation (Fig. 5.16) point to an alternative explanation of the high velocity regime. In
sec. 2.1.3.4 radiation friction was introduced as drag mechanism. There, periodic changes of
the dislocation core configuration lead to radiation. The according theories (see e.g. [16, 49,
64]) however were derived from the motion of perfect dislocations in Frenkel-Kontorova type
models. Currently no theory describes the radiation of dislocations moving in realistic crystal
structures.

Fig. 5.18d show that during the passage of a fast edge dislocation the atoms above (and
below) the glide plane experience a relatively large and fast deflection. This is caused by
successive displacement by the rapidly following partial dislocations. It is therefore speculated
that the large atomic accelerations lead to the observed radiation. The mode of displacement
within the partial dislocation cores is reflected in the atomic velocities within the emitted
wave, see Fig. 5.18. The atomic accelerations depend on the velocity of the dislocation and
on the spacing of its partial dislocations. It can be therefore hypothesized that depending
on the dynamic partial dislocation separation different modes of radiation friction exist. The
large distance between the partial dislocations of the edge dislocation in Cu could thus explain
the observed high vc for for this dislocation.
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The distance d between the partial dislocations is determined by the stress field of the
moving partial dislocations and the stacking fault energy. The stacking fault energy is as-
sumed to be velocity independent, the stress field of a moving dislocation however depends
on its velocity [47]. If the attraction between the partial dislocations due to the screw (edge)
components of the partial dislocations of an edge (screw) dislocation is neglected, d(v) is
proportional to the contraction of the stress field in the glide plane. For screw dislocations
this corresponds simply to the relativistic contraction [47]. Therefore the dynamic splitting
distance can be written as

d(v) ≈ d(v = 0) ·
√

1 − v2

c2
t

. (7.5)

The situation is more complicated for edge dislocations. Within isotropic linear elasticity
theory the stress σxy within the glide plane of an edge dislocation moving with velocity v is
given as [47]:

σ⊥
xy(v) =

2bct
2µ





r

1− v2

cl
2

r

1− v2

ct
2

x2 −
“

1− v2

2ct
2

”2

x2



x

πv2
√

1 − v2

c2t

. (7.6)

This equation can be compared to the usual expression for the stress field of an edge dislocation
for y = 0 [13]:

σ⊥
xy(v = 0) =

bµ

2(1 − ν)πx
. (7.7)

Using the relation

ν =
c2
l − 2c2

t

2
(

c2
l − c2

t

) (7.8)

the contraction of the stress field of a moving edge dislocation can be determined from Eq. 7.6
and Eq. 7.7, and the following approximation for d can be obtained:

d(v) ≈ −d(v = 0) ·
c2
l

(

4
(
√

1 − v2

c2
l

√

1 − v2

c2t
− 1
)

c4
t + 4v2c2

t − v4
)

2c2
t

(

c2
t − c2

l

)

v2
√

1 − v2

c2t

. (7.9)

The curves according to Eq. 7.5 and 7.9 are plotted in Fig. 5.14. It can be seen that at least for
velocities smaller than the crossover velocity vc the determined d follow quite well the above
relationships. However, edge dislocations in Ni and Cu show at high velocities deviations
from Eq. 7.9. This is most probably due to the neglect of anisotropy in the derivation of
Eq. 7.9.

How exactly the partial dislocation distance affects the radiation of phonons requires
further investigation. In general, however, for screw dislocations the criterion

d(vc) ≈ w (7.10)
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seems to provide a good estimate for the crossover velocity delimitating the high velocity
radiation dominated regime from the low velocity drag controlled region. For edge dislocation
the crossover occurs already at somewhat lower velocities. It has to be noted, that the
suggested reason for the crossover to the high velocity regime is not directly related to any
”special” velocity derived from the phonon dispersion, but rather to the properties of the
dislocation.

7.3 Static and dynamic dislocation - obstacle interactions

7.3.1 Static dislocation depinning

The interaction between dislocations and voids has recently attracted renewed interest in the
context of multi-scale modeling of irradiation damage [5, 114, 115, 269]. Elasticity theory of
dislocations and defects provides a valid description of strengthening, but there are problems
when it comes to processes that are controlled by atomic-scale mechanisms. The multi-
scale modeling approach wherein the mechanisms and parameters describing the dislocation-
obstacle interaction are derived from atomistic simulations and fed into higher level continuum
mechanical models is now widely recognized as the method of choice for treating the mechan-
ical response of (irradiated) materials. In this context voids can serve as model obstacles to
mutually validate continuum approaches and atomistic modeling [114].

The critical stress required for the unpinning of a (edge) dislocation from a row of voids
is usually described using the following relationship by Scattergood and Bacon [234]:

τ⊥
SB =

µ′b

2πL

(

ln(D−1 + L−1)−1 + ∆
)

, (7.11)

where (D−1 + L−1)−1 is the harmonic mean of obstacle spacing L and diameter D in units
of b. The parameter ∆ describes the resisting force caused by the creation of a surface step.
It is defined as normalized surface energy [234]:

∆ =
γsurf

µ′b
4π ln(R/r0)

, (7.12)

where the factor ln(R/r0) is usually taken equal to unity.

The rationale behind this model follows the treatment of the Orowan mechanism where
the extention of dislocation dipoles from the obstacles is believed to be the main cause of the
Orowan stress [270]. The argument of the logarithm (D−1 + L−1)−1 is thereby interpreted as
effective outer cut-off radius for the energy of the dislocation lines making up the dipole [270].
Scattergood and Bacon [234] reported that Eq. 7.11 fits very well the results of their continuum
model of a flexible dislocation interacting with a row of voids. The model incorporated the
effect of self-interaction of the dislocation, and the boundary condition for a dislocation at
a void surface were treated as though the terminating segment is in equilibrium with a flat,
infinite surface. The effect of the creation of the surface step was included by a point force
tangential to the surface at the intersection point of the dislocation. Equation 7.11 was also
recently shown to fit well the critical stress for an edge dislocation interacting with an array
of voids in bcc Fe as determined by Osetsky and Bacon using atomistic modeling [114,236].

The critical stress for a screw dislocation can be calculated by replacing µ′ by µ′/(1 −
νA). I.e. a screw dislocation creates an edge dislocation dipole. The elastic anisotropy
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Figure 7.8: Static unpinning stress as function of the harmonic mean of obstacle spacing L and void
diameter D, compare also to Fig. 6.2. In addition to the values from the simulations the theoretical
estimate from Scattergood and Bacon [114, 234] and the results of a model which assumes that the
critical stress is determined by the annihilated dislocation core energy (which is taken from Fig 4.6)
is plotted.

is thereby taken into account by using the effective anisotropic shear modulus µ′ and the
effective anisotropic Poisson ratio νA = 1 − Ks/K⊥ [270].

Eq. 7.11 with the appropriate values of ∆ and µ′ for the two potentials is plotted in
Fig. 7.8 together with the results from the static simulations (Tab. 6.1 and Tab. 6.2). It can
be seen that Eq. 7.11 considerably overestimates the critical stress for the simulated void
sizes. This behavior was also found in the recent studies of dislocations interacting with
voids in copper [114, 116]. There the overestimation is attributed to the effect of dislocation
dissociation which is not taken into account in Ref. [234]. Osetsky and Bacon assumed that
for voids with diameter D smaller than the splitting distance d the partial dislocations break
from the void individually [114]. Since the magnitude of the partial Burgers vectors is less
than b, it was reasoned that the individual critical stress values are lower than for a full
dislocation [114]. However, Eq. 7.11 in this case does not provide a quantitative description
of the stress necessary for the depinning of partial dislocations. Furthermore, also voids with
D > d (Rvoid = 4, 6b in NiII) show a lower τc than predicted by Eq. 7.11. Additionally the
constriction of the dislocation can lead to simultaneous trapping of the two partial dislocations
by voids with D < d. Upto now there is no model that can quantitatively predict the critical
stress required for dislocations to unpin from small voids (D . d).

In general, the application of Eq. 2.2 to calculate the line energy is restricted to R > rdev,



110 CHAPTER 7. DISCUSSION

see section 4.2. For smaller cut-off radii the line energy can only be calculated atomistically.
In order to estimate the critical depinning stress based on the properties of static disloca-
tions obtained in sections 2.2 and 7.1 we propose an ansatz based on energetic considerations.
Dislocation-obstacle interactions can be described in terms of the energy which has to be
provided to the dislocation to overcome the obstacle [13]. In the case of an dislocation inter-
acting with a void one can assume that the energy barrier is correlated with the dislocation
core energy which is annihilated by the void plus the energy ∆Estep ≈ bπDγsurf necessary to
produce the step of one Burgers vector:

∆Epot = ∆Ecore + ∆Estep ≈ DEcore + bπDγsurf . (7.13)

To overcome the void, the dislocation has to be displaced by a distance ∆x = D. In the static
case at 0 K the energy to overcome the obstacle is provided by the mechanical work W done
by the applied load

∆Epot = W = τbL∆x . (7.14)

The critical stress can thus be estimated by

τc,est. =
∆Ecore + ∆Estep

bLD
. (7.15)

All the necessary values can be obtained by atomistic calculations. However, to make the
connection to the continuum theory, one can use Eq. 2.2 and the effective anisotropic modulus
and Poisson contraction, and one gets for R > rdev

τc,est. =
µ′b

4π(1 − νA)L
ln(D/2) +

πγsurf

L
. (7.16)

For L >> D where ln(D−1 + L−1)−1 ≈ ln(D) this expression can be directly compared to
Eq. 7.11. Considering the usual values for νA and ln(D/2)/ ln(D) ≈ 0.8 for typical D & 10b,
Eq. 7.16 and Eq. 7.11 lead to similar values for the pre-factor to the logarithm. The difference
of π/2 in the the constant describing the energy of the step is of minor importance as additional
parameters due to the lower cut-off radius for the dislocation are usually subsummized into
the additional constant.

The advantage of Eq. 7.15 is that it is not limited to the case D/2 > rdev where Eq. 2.2
can be applied. For small voids DEel(D/2) can be directly determined from Fig. 4.6 f and
∆Estep can be taken from ∆Ecut of Fig. 6.1b. For the vacancy cluster the potential energy
barrier can be estimated by using the value of ∆E/Ecoh from Tab. 4.1 for the high energetic
dislocation core atoms. The results of Eq. 7.15 obtained with these values are shown in
Fig. 7.8. It can be seen that with the information gained from atomistic simulations Eq. 7.15
provides reasonable estimates for the critical depinning stress from small voids.

In this context it is interesting to note that in the simulations the depinning was always
controlled by the trailing partial dislocation, except for the case of the cluster of 6 vacancies
where the obstacle strength is significantly degraded after the passage of the first partial
dislocation. This can be directly seen from the static simulations for the void with Rvoid = 2b,
Fig. 6.3, and from the dynamic simulations, see figures 6.5 to 6.7. Fig. 6.7 e.g. shows that

fFor the void with Rvoid = 2b where the partial dislocations interact individually with the void 1/2Eel(D/2)
was used.
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leading partial dislocation can temporarily unpin from the void, whereas the trailing partial
dislocation stays pinned. In their quasi-static simulations under constant load rate Osetsky
and Bacon [114] see the same behavior for small voids, however for larger voids they report
a critical resolved shear stress controlled by the leading dislocation. For voids with D > d,
however, simultaneous release of both partial dislocations is reported. From an energetic
point of view the energy barrier for the leading partial dislocation to leave the void should
be lower than for the trailing partial dislocation because a part of the stacking fault energy
between the two partial dislocations is annihilated by the void.
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Figure 7.9: Critical angle calculated in the isotropic line tension approximation with the critical
stress and the line tension from atomistic simulations. The configuration for the lower boundary of τc

in NiII is also shown.

Due to the reorientation of dislocation segments at the void surface and the dissociation
into partial dislocations the geometrical determination of a critical angle Φc is to a certain
degree arbritrary (see sec. 6.2). To provide information on the obstacle strength for the widely
used isotropic line tension models an alternative route can be used. Within this model Eq. 2.10
can be used to calculate an effective critical angle for a virtual full dislocation, provided that
τc, L and Γ are known. For consistency Eq. 2.30 is used here with the dislocation rest mass
m0 from Tab. 7.3 to determine the line-tension. This way the appropriate values for the
parameter r0 and R for the simulations are automatically included. The so determined values
for Φc are shown in Fig. 7.9. The Φc are within the typical range for weak (Φc ≃ 90◦) to
medium obstacles (Φc ≃ 45◦). The definition of the obstacle strength by the breaking angle
Φc calculated by equation 2.10 is used in many models of strengthening. It should however be
kept in mind that the line tension used in Eq. 2.10 depends logarithmically on the simulation
box size. With information on the appropriate K and r0 (see Tab. 7.2 and Tab. 7.3) the Φc

can be scaled according to experimentally reasonable R. The Φc can then e.g. be used in an
isotropic line tension model where the obstacle is assumed to be point like and the dislocation
segments on both sides of the obstacle do not interact with each other.
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Dislocation dynamics (DD) simulations divide the dislocation line into segments which
interact with each other. They therefore automatically include the interaction of dislocation
segments at both sides of the obstacle. The simple definition of Φc by a constant line ten-
sion is therefore not adequate for DD simulations which have to use the full information on
D,L, τc.

g In providing information on the strength of individual obstacles, atomistic simu-
lations play an important role in multi-scale modeling, as such information e.g. on obstacles
caused by irradiation is difficult to obtain experimentally. Transmission electron microscopy
(TEM) observation of in-situ strained irradiated metals seem in this context a promising
method to determine critical angles of obstacles [271]. Further studies in this direction trying
to compare experimental and atomistic results are important to clarify whether the mecha-
nisms observed in atomistic simulations are still dominating under experimental conditions,
or whether other mechanisms, e.g. dislocation climb, become important at realistic strain
rates and temperatures.

7.3.2 Dynamics of dislocation - void interactions

In section 6.3 it was shown that the critical stress τd to pass an array of voids is significantly
smaller for moving dislocations compared to the critical stress τc necessary to depin a static
dislocation from the same array of voids. The dependence of τd on the initial distance of
the dislocation from the voids (Tab. 6.2) and its decrease with increasing temperature are
clear indications for inertial effects. Thermal effects like thermal activation or the change of
dislocation- or obstacle properties, e.g. due to the change of the elastic constants, can not
explain these effects.

The theory of inertial overshooting was introduced in section 2.1.3. In contrast to the com-
plex situation in experiments which has to be modeled by mesoscopic models of dislocations
interacting with an array of random obstacles [73–80], atomistic simulations can provide direct
evidence and a quantitative description of inertial effects for individual dislocation-obstacle
interactions. Such studies are important to provide the parameters for meso-scale models
which include dynamic effects [77, 79, 80, 263, 265] and to provide a testing ground for these
models. Furthermore the study of dynamical dislocation effects is useful for the interpretation
of atomistic simulations of plasticity at high strain rates. The present work presents the first
detailed atomistic study of dynamical effects during dislocation-obstacle interaction.

In the following the dynamical effects are analyzed with respect to the energies involved in
the dislocation-void interaction (sec. 7.3.2.1) and a simple line tension model is developed to
assess the magnitude of inertial effects in the interaction of dislocations with a regular array
of localized obstacles (sec. 7.3.2.2). Results of dislocation dynamics (DD) simulations which
take the dislocation inertia into account are presented in sec. 7.3.2.3. Implications from the
analysis of individual overshooting events for the study of dynamical effects of dislocations
moving in a random array of obstacles will be discussed in sec. 7.3.2.4.

7.3.2.1 Dynamic overcoming of energy barriers

The description of the interaction of dislocations with obstacles in terms of the energy barrier
∆Epot and the work W provided by the applied load was already used in section 7.3.1 to
estimate the critical stress in the case of dislocation depinning from the voids in the static

gThe determination of Φc in DD simulations furthermore has to be calibrated with τc and L to account for
the discretization of the dislocation line.
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simulations. By including the kinetic energy Ekin and the dissipated energy Edis this concept
can be extended to study the dynamic interaction of moving dislocations with obstacles (see
also [263,272]).

For simplicity in the following the potential energy of the system instead of the Gibbs
free energy is used, and thermal activation is neglected. Passing the obstacle then requires to
surmount an energy barrier of height ∆Epot. In the static case, corresponding to the balance
of forces (Eq. 2.9) for Φc, the energy required to pass the barrier is provided by the work
Wc done on the dislocation by the applied stress τc. If a fast moving dislocation has enough
kinetic energy Ekin = 1

2m(v)v2L to outweigh the energy Edis which is dissipated during the
process of the dislocation bow-out, the dislocation can overshoot its equilibrium position and
eventually pass the energy barrier ∆Epot dynamically. Dynamical obstacle passing in a purely
mechanical model is thus possible at stresses τd < τc when the work Wd done by this stress
is larger than the barrier hight lowered by the kinetic energy:

Wd > Wc − (Ekin − Edis) . (7.17)

The contributions of the terms in Eq. 7.17 are path dependent and not easily accessible. If
one assumes that the critical depinning configuration is the same for the dynamic case and the
static case, the critical depinning configuration can be characterized by the critical angle Φc

and the area Ac swept by the dislocation between the first contact till the depinning. The work
done in the static case can thus be estimated to be W est.

c = τcbAc. In the dynamic case, the
work done by the dynamic passing stress τd to reach the critical configuration is W est.

d = τdbAc.
The dissipated energy during bow-out can be estimated to Eest.

dis = 1
2viBAc, which, just like

the kinetic energy, depends on the velocity vi(τd, B) at which the dislocation impinges on
the obstacle. This velocity can directly be determined from the atomistic simulations or by
solving the equation of motion (Eq. 7.2) with τd, l,m

⊥
0 and B as determined from above. In

sec. 7.3.1 the critical area Ac was approximated by LD to determine τc. For the study of the
different energy contributions in Eq. 7.17, however, the area swept by the dislocation to reach
the critical configuration in the static case at τc is known and can be directly determined
from the atomistic simulations.h

These contributions were calculated for a void (Rvoid = 4b, L=276Å) in NiII , see Fig. 7.10.
The estimated work in the static case agrees reasonably well with the estimated energy barrier
from section 7.3.1 ∆Epot = 2RvoidEel(Rvoid) + ∆Ecut(Rvoid) = 13.2 eV with the values from
Fig. 6.1b and Fig. 4.6. It can be seen in Fig. 7.10 that the sum Wd + Ekin − Edis in all of
the dynamic cases is – within the error margins – comparable to the work in the static case.
It can also be seen that the increase of the dissipated energy with temperature has to be
balanced by an increase in the work done on the dislocation. The large contribution of the
kinetic energy of the dislocation to the obstacle passing clearly indicates that the dynamical
obstacle passing at τd < τc is indeed an inertial effecti. Furthermore, the kinetic energy of
the whole dislocation line needs to be considered. The effect can therefore be considered as a
weak dynamic effect (see sec. 2.1.3.5).

hFor this purpose the atomistic slip vector (see sec. 3.3) was determined and the number of slipped atoms
above the glide plane was multiplied with the area per atom on a {111} plane.

iThe same kind of study was also performed using a mono-atomic step on a surface as obstacle [272], where
the same conclusions were reached. Although not representing a realistic obstacle, the surface step has the
advantage that its energy barrier is well defined by the energy to increase the dislocation line length by one
atomic layer plus the energy to produce the kink in the surface step.
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Figure 7.10: Estimated energy contributions of the applied stress acting on the dislocation (W ), of

the dislocation inertia (Ekin) and the drag forces (Edis) for overcoming a void (Rvoid = 4b, L=276Å)
in NiII . The dashed line shows the estimated energy barrier ∆Epot from sec. 7.3.1.

The description of inertial effects in an energy framework allows to easily derive qualitative
implications of parameters like obstacle strength, spacing, etc. on dynamic effects in general.

The kinetic energy of a dislocation is a function of the square of its velocity, therefore
inertial effects depend sensitively on the impinging velocity vi. Inertial effects are therefore
of course expected for dislocations subjected to high shear stresses and low temperatures.
However, the dislocation also requires a certain free flight distance l between the obstacles to
accelerate, and the magnitude of inertial effect is furthermore limited by the reduced stress
sensitivity of the dislocation velocity in the high velocity regime, see sec. 7.2.3. The lack of
adequate acceleration distance l is for example the cause for the less pronounced dynamic
effect at the large voids at low temperatures compared to the smaller voids, see figures 6.9
and 6.10. At 30K and τd = 42 MPa (for Rvoid = 6b) for example, the dislocation reaches
only a velocity of vi ≈ 11 Å/ps after l = 300 Å compared to v ≈ 15 Å/ps which would be
reached after 200 nm.j The dislocation velocity required for large inertial effects, i.e. small
τd/τc ratios, require large stresses τd and accordingly large τc. Dislocations overcoming closely
spaced, strong obstacles are therefore candidates for inertial effects.

The antagonist of the kinetic energy is the dissipation of energy during the process of
dislocation bow-out. This of course depends on temperature via the drag coefficient B, but
also on the area swept by the dislocation until it reaches the critical configuration. Therefore
at the same critical stress and same L, larger obstaclesk should show less pronounced inertial
effects than small obstacles. This provides a physical reason for the increase of τd,c with η0

in the model of Schwarz and Labusch [73], see sec. 2.1.3.5.

jThe steady state velocity vss = τb
B

in this case would be higher than ct.
kMore general obstacles with large extension in the direction of motion of the dislocation, e.g. platelets.
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7.3.2.2 Dynamic line tension model
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Figure 7.11: Magnitude of the inertial effect τd/τc as function of obstacle spacing L and drag
coefficient B, estimated with a dynamic line tension model with B and m0 as determined from the
atomistic simulations. The critical angle is in a) Φc = 81.5◦ and in b) Φc = 56◦, the acceleration
distance of the dislocation is in both cases l = 30 nm. The solid line represents the classical criterion
for overdamped motion Eq. 2.50, the white points indicate the results of the dynamic simulations of
dislocation-void interaction.

The previously introduced description of inertial effects in terms of the different contribu-
tions to pass the potential energy barrier does not provide a valuable mean to estimate the
magnitude of inertial effects as it requires knowledge of vi and Ac. The usual criterion Eq. 2.49
provides the critical drag coefficient Bc below which the dislocation motion is underdamped.
It provides however no way to estimate how large the effect of inertia would be.

The use of a simple dynamic line tension model is suggested to obtain an quantitative
estimate of the ratio τd/τc for a gliding dislocation interacting with an equally spaced row
of obstacles (see also [273]). Such a dynamic line tension model can be used to map out
the parameter space in which dynamical effects are expected by determining the critical
stress to overcome the obstacles for a wide range of different B,L, l and Φc. In this way
it can also provide rough estimates of τd/τc for obstacle configurations whose study by MD
is computationally prohibitive. The dynamic line-tension model corresponds to a simplified
version of the model used by Schwarz and Labusch [73]. It uses however non-normalized
parameters and a grid of equally spaced point obstacles. This allows a direct comparison
to the MD simulations. According to Schwarz and Labusch [73] using point-like obstacles is

justified because η0 = 2Rvoid/L cos Φ
−1/2
c ≪ 1.

To study the time evolution of a dislocation line of length L pinned at the end points and
subjected to a stress τ the dislocation line is discretized into straight segments for which the
equation of motion

∂

∂t

(

M
∂y

∂t

)

+ B
∂y

∂t
− Γ

∂2y
∂x2

(

1 +
(

∂y
∂x

)2
)3/2

= τb (7.18)

is solved using a leap-frog integrator [189].lThe line tension Γ is assumed to be isotropic and

lFor the calculation of the partial derivatives the usual numerical methods with errors of O(4) were used.
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Figure 7.12: Same as Fig. 7.11 for Φc = 81.5◦ and l = 0 nm (a), and l = L (b).

independent of the velocity.m The increase of the dislocation velocity is limited in the high
velocity regime. For practical reasons, a limit velocity vlim ≈ vc (see sec. 7.2.3) can therefore
be introduced. The boundary and initial conditions are: x(0, t) = x(L, t) = 0, x(y, 0) =
0, ẋ(y, 0) = vi.

n The impinging velocity vi is determined by calculating the velocity which
is reached by a dislocation after an acceleration distance l using a one dimensional version
of Eq. 7.18. The time evolution of Eq. 7.18 is calculated for a range of τ . At each time
step the angle Φ is compared to Φc

o, thus allowing to detect inertial overshooting events at
τd < τc. This method can also be used to study e.g. the dynamical detachment of dislocations
from pinning points under high frequency agitation or the effect of inertia on the depinning
of pinned dislocations at different loading rates ǫ̇. The parameters m0,Γ, B, vlim

p for the
dynamic line tension model can be taken from atomistic simulations, theory or experiment.

The estimates of τd/τc as a function of B and L of the dynamic line tension model for
different materials, initial conditions and obstacle strengths are shown in form of contour plots
in Figs. 7.11 to 7.13.q Although the drag coefficient B(T ) is not necessarily a linear function
of T , a temperature scale is added to indicate the covered temperature range. In addition the
criterion Bc = 2πm0ct

L for overdamped vs. underdamped dislocation motion calculated with
the parameters used in the dynamic line tension model (see also Eqs. 2.49 and 2.50) is shown
in the figures.

The comparison in Fig. 7.11 of τd/τc as determined from the MD simulations with the
range calculated by by the dynamic line tension model show that with the atomistic informa-
tion (m0 and Γ determined from Tab. 7.3, B from Fig. 7.6, l = 30 nm) the simple dynamic
line tension model provides reasonable estimates of the inertial effect. This is also the case

mThe line tension depends in principle also on the velocity [48]. As detailed in [16, 17] the line tension is
caused by the dislocation self interaction. Its value in the relativistic regime thus depends on the velocities of
all dislocation segments. The simple concept of constant line tension therefore does not apply for curved high
velocity dislocations with locally different velocities and accelerations.

nWith this velocity profile as starting condition and typical Γ, m0, B relatively small time steps ∆t of the
order of 10 fs and discretization lengths ∆y ≈ 1b have to be used for numerical stability.

oΦc is determined directly in the program using isotropic line tension approximation (see e.g. [19]) and τc.
pWhere m0 and Γ are related by Eq. 2.28 or Eq. 2.30.
qThe determination of the contours of equal τd/τc is performed on a non-equidistant grid. The rounding of

τd to the contour lines and the interpolation between the discrete τd can introduce some irregularities in the
plots.
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Figure 7.13: Same as Fig. 7.11 for a) Φc = 56◦,l = L, b) Φc = 45◦, l = L.

for the voids in NiI and Al (not shown). As expected the inertial effects are highest for low
temperatures and narrow obstacle spacing (high Ekin, low Edis). For small L inertial effects
can still be of importance at room temperature.

The effect of the acceleration distance l on τd can be seen by comparing Fig. 7.11a (l = 30
nm) with Figs. 7.12a(l = 0 nm) and 7.12b (l = L). Even when the dislocation has no initial
velocity, its acceleration during the bow-out under instantaneously applied stress can lead to
a weak inertial effect, explaining the values of τd in brackets in Tab. 6.2. The differences in
l show only up in the very low temperature regime where the relaxation time tr = m0/B is
correspondingly longer. There, the longer l is the lower is τd.

The effect of obstacle strength Φc on the inertial effect can be rationalized by comparing
Fig. 7.12b and Figs. 7.13a and 7.13b. The maximally possible decrease of the critical passing
stress by inertial effects (smallest possible ratio τd/τc) is significantly influenced by the obstacle
strength. For very strong obstacles the inertial effect is limited by the maximum impinging
velocity which is determined by l and the limit velocity. Due to the higher involved shear
stresses which lead to generally higher velocities, the extend of the region of inertial effects is
larger for stronger obstacles.

Many aspects of the material properties affect the inertial effects. Of course the dislocation
rest mass and the drag coefficient are important parameters for dynamical effects, but also the
sound velocity and the limiting dislocation velocity directly affect the maximal kinetic energy
available to a dislocation. Furthermore the line tension Γ is related by the sound velocity ct

to the rest mass m0. For the same Φc metals with higher m0 will also have higher τc, thus
higher driving forces on the dislocations. The dynamic line tension model was also used with
the parameters for the AlI and Cu potentials. For copper the inertial effects are qualitatively
and quantitatively similar to Ni. The differences in the line tension due to the different elastic
moduli are leveled off for m0 by the differences in the sound velocity, see also Tab. 7.3. The
differences in the drag coefficient become only important in the high temperature region. For
aluminum, however, the inertial effects are less pronounced compared to Ni, in agreement
with the criterion for over/underdamping Eq. 2.49.

With correct parameters, the dynamic line tension model can thus provide an estimate for
the magnitude of inertial effects during the interaction of a straight moving dislocation line
and a row of equally spaced identical obstacles. This kind of information is not provided by
Eq. 2.49 which is used to characterize underdamped versus overdamped dislocation motion.
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The model can in principle also be used to study dynamical effects for pinned dislocations
subjected to a constant load rate. However, it will suffer similar limitations to high strain
rates like DD simulations. The model can not be used to determine the upper critical resolved
shear stress (CRSS) τd,c as defined by Schwarz and Labusch [73]. As detailed in sec. 2.1.3.5
this would be the CRSS measured experimentally. However, the deviation of dynamical upper
critical CRSS from the overdamped CRSS (τc) is correlated with the deviation of the lower
CRSS (τd,l) from τc, see Fig. 2.6. In the context of the Schwarz-Labusch model the ratio τd/τc

can therefore be seen as an indicator under which conditions inertial effects on τd,c can be
expected.

The simplifications inherent to the dynamic isotropic line tension model neglect effects due
to the dislocation self interaction or due to the splitting into partial dislocations. The assump-
tion of point-like obstacles furthermore does not allow to study the influence of obstacle size
and of long range stress fields. To study the dynamics of the interaction of dislocations with
realistic obstacles (and obstacle distributions) and to determine directly measurable effects
of inertia on the CRSS, dislocation dynamics (DD) simulations which include the dislocation
mass and use realistic drag coefficients are the method of choice, these are presented in the
next section. The dynamic line tension model can however serve as guidance to decide un-
der which conditions DD with inertia should be used, and when standard overdamped DD
simulations are fully adequate.

7.3.2.3 Dislocation dynamics simulations with inertia

Dislocation dynamics (DD) simulations which include the inertia of dislocations and use re-
alistic drag coefficients can be used on the one hand to study in detail aspects of dynamic
dislocation-obstacle interaction which are not accessible by MD simulations, an on the other
hand large scale DD simulation can be used to model experimental situations in which dy-
namic effects are likely to occur. Such studies are not possible with the quasi-static, over-
damped dislocation motion according to v = τb/B used in most of the DD codes [4,274,275].

Weygand [263] recently implemented an inertia based equation of motion for dislocations
into a discrete dislocation dynamics model. The DD model of Weygand et al. [276] is based on
a discretization of the dislocation line using straight segments connected at nodal points. The
motion of the dislocation is then described by the positions and velocities of the nodal points.
The appropriate equation of motion for the nodal points was derived using the principle of
virtual work. The interaction between dislocations is calculated using linear elasticity theory,
neglecting relativistic effects. The maximum velocity of a dislocation segment (not a nodal
point) must therefore be restricted to about ct/2. Further details of the implementation of
inertia into the DDD model are given in [263].

The small vacancy cluster (Rvoid = 1b) of Tab. 6.1 was used as test case [263]. In the
DDD simulation, the row of vacancy clusters were translated into finite size obstacles of
similar diameter. After detection of the pinning event, two pinned nodal points, representing
the two intersection points of the dislocation with the vacancy cluster, are introduced on
the dislocation line. The depinning event is controlled by a critical curvature/angle of the
dislocation at the pinning center set to fit τc of the static atomistic simulations. r

rThe critical stress in the DD simulations has to be independent from the regularization scheme for the
local self-interaction. This was achieved by controlling the minimum and maximum length of the dislocation
segments.
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Φ

Figure 7.14: Results of different DD simulations: the thick line corresponds to the configuration
before unpinning of the underdamped dislocation at τd ; the dashed line represents the final configu-
ration of an overdamped dislocation at τd; the thin black line represents the critical configuration at
τc > τd in a quasistatic simulation. DD calculations by D. Weygand [263].

Simulation τMD
c [MPa] τDDD

c [MPa]

static 75 - 80 75 ±2
100 K 15 - 16 13 ±1
300 K 30 - 33 30 ±2

Tab. 7.4: Lower and upper bound for the stress required for the edge dislocation to pass an array of
obstacles separated by L = 15 nm at different temperatures T . The obstacles in the MD simulations
consist of 6 clustered vacancies in the NiI potential. For the DD simulations a pinning center with
similar diameter was chosen (see text). The initial distance between dislocation and obstacle was in
both cases l = 15 nm.

To validate the implementation of the dislocation inertia into the DD model, overdamped
and underdamped simulations with m0, l, B(T ) according to the atomistic simulations were
performed. Fig. 7.14 shows three different dislocation configurations. It can be seen that the
critical configuration from the quasi-static calculation at τ just below τc is attained during the
dynamic simulations at τd < τc, whereas the final configuration in the overdamped quasistatic
simulation at τd is far from the critical configuration. The inertial overshooting can thus also
be seen in DD simulations. With the appropriate B(T ) and m0 the DD simulations with
inertia can also quantitatively reproduce the MD results of dynamic unpinning, see Tab. 7.4.

With the model of Weygand dynamic effects in dislocation - obstacle interactions can be
studied on a large scale, including different kinds of obstacles and -distributions. The model
has already been applied to the study of the formation and stability of Lomer locks [264],
where, depending on the loading conditions, considerable inertial effects have been found for
short dislocation lengths. It has furthermore been used to study dislocation damping under
high-frequency agitation [265], where for typical B and dislocation loop lengths the inertia of
a dislocation was found to become important for frequencies in the GHz regime.

Also other groups are currently implementing inertial effects in their DD simulations. For
example Pilon et al. recently used two dimensional DD simulations including inertia to show
the importance of inertial effects for the formation of dislocation dipoles [277].

7.3.2.4 Relationship to experiments and mesoscale modeling

An important difference between the present MD simulations and the experimental situation is
the neglect of the obstacle randomness. Except for special situations like solid solutions [109],
current atomistic simulations can not take into account the effect of obstacle randomness
in dislocation-obstacle interactions. Atomistic simulations of dislocation-obstacle interaction
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therefore can usually not provide statements directly relevant to experiments. However, in the
framework of multi-scale modeling [278] atomistic simulations of idealized dislocation-obstacle
interactions can be used to inform mesoscopic models. Atomistic simulations are especially
valuable to provide parameters for meso-scale models, to validate these models and to suggest
refinements of the models based on the observed microscopic interaction mechanisms.

In sec. 2.1.3.5 the model by Schwarz and Labusch [73] of a dislocation interacting with
a random array of weak obstacles was introduced. In the following the simulation results
are compared with the results of Schwarz and Labusch [73]. It is furthermore shown how
the inclusion of atomistic information into this model can lead to a better agreement with
experimental data [88].

As stated in sec. 6.3, the dynamical depinning stress τd in the simulations corresponds
to the lower critical resolved shear stress (CRSS) τd,l in the model of Schwarz and Labusch
[73]. According to their model, for the case of point obstacles (normalized obstacle width
η0 = 0), the dependence of the normalized τd,l on the normalized drag coefficient γ should be
independent of the obstacle arrangement [73]. The slope of τd,l in Fig. 2.6 should in this case
be equal to γ [73]. With the definitions of the normalized parameters of the Schwarz-Labusch
model (Eqs. 2.52 - 2.54) this can be expressed as

τdbL

2Γ(cos Φc)3/2
=

BL√
4Γm0 cos Φc

. (7.19)

Using the definition of τc, Eq. 2.11, and the expression for the mass of an edge dislocation,
Eq. 2.30, the above equation can be written as

τd

τc
= B(T )

L

2m0ct

√

(1 − ν)(1 − c4
t /c

4
l ) . (7.20)

The drag coefficient B(T ) of NiII has been determined in sec. 7.2.2. The appropriate dislo-
cation mass m0 for the simulation set up is given in Tab. 7.3. With these values Eq. 7.20
yields τd/τc = 0.0014 K−1 for L = 267 Å and τd/τc = 0.0007 K−1 (L = 138 Å). Given the
errors of the fits involved in the determination of m0, B(T )/T and τd/τc, these values are in
good agreement with the slopes determined from the simulations, Tab. 6.3. The model of
Schwarz and Labusch [73] thus provides an adequate description for the functional depen-
dence of τd,l for point obstacles. The qualitative trend of less steep slopes for larger obstacle
sizes in Tab. 6.3 is also captured by Fig. 2.6. The absolute values of τd (Tab. 6.2) are however
underestimated by Fig. 2.6. Furthermore, the detailed analysis of the kinetic energy involved
in the dislocation-void interaction showed no strong dynamic effects at γ = 0.08, which were
predicted by Schwarz and Labusch for γ ≪ 1 [73].

The model of Schwarz and Labusch was also used by Fusenig and Nembach to interprete
their data on the temperature dependence of the CRSS of precipitation hardened copper [88].
The CRSS determined by compression tests are shown in Fig. 7.15a for different temperatures
T and different volume fractions f of cobalt precipitates. The normalized damping coefficient
γ calculated with Eq. 2.53 by Fusenig and Nembach [88] is shown for f = 0.023 in Fig. 7.15b
(dashed line).s The experimental CRSS corresponds in this case to the upper CRSS τd,c in the
Schwarz-Labusch model [88]. The appropriate obstacle width was determined to η0 ≈ 0.1.
Therefore the curve for η0 = 0 in Fig. 2.6 was used for the discussion [9, 88], it is shown

sThe matrix in the system Cu-Co is nearly pure Cu [9], damping of the dislocation motion by solute atoms
can therefore be neglected.
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separately in Fig. 7.15c. With the γ-values determined by Fusening and Nembach (Fig. 7.15b),
the Schwarz-Labusch model (Fig. 7.15c) however does not match the experimental data. With
these values Fig. 7.15c predicts significant inertial effects at room temperature (RT), whereas
below 100 K no changes of the CRSS are expected (see the black lines in Fig. 7.15). This
discrepancy can be resolved by using in Eq. 2.53 the appropriate value of m0 instead of
m0 = ρb2 as used in [88]. The line-tension Γ was calculated by Fusenig and Nembach using
the factor log(L/b) with L ≈ 30 nm [88]. Determining m0 by using this value in Eq. 2.30 leads
to a factor of about 1.8 by which the results of Eq. 2.53 in Fig. 7.15b have to be multiplied.
Considering further as lower cut-off radius 7b as determined in Tab. 7.3 instead of b, the γ
used in [88] (dashed line in Fig. 7.15b) should be multiplied by 2.3, resulting in the red curve
in Fig. 7.15b. With the rescaled γ, the Schwarz-Labusch model (Fig. 7.15c) describes well the
temperature dependence of the experimentally determined CRSS. Especially only relatively
small inertial effects are expected at room temperature.
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Figure 7.15: a) Experimentally determined CRSS of copper-rich copper-cobalt single crystals versus
the temperature TD at which the specimens have been deformed (from [88]). The average particle
radius is r ≈ 2.9 nm, f indicates the volume fraction of the precipitates. b) Reduced damping constant
γ calculated from experimental values with Eq. 2.53 (dashed line, according to [88]) and rescaled by the
appropriate dislocation mass (red line). c) Normalized CRSS vs γ according to [73], see also Fig. 2.6.

Figure 7.15a shows that the relative reduction of τd,c by inertial effects from T = 200 K to
12 K is about 15% (for f = 0.0223, 20% for f = 0.0093). This is much less than the reduction
of about 40% predicted by the model of Schwarz and Labusch, Fig. 7.15c. This discrepancy
can be explained by resorting to recent MD simulations by Shim and Wirth [279]. Their
simulations of the interaction between an edge dislocation and a coherent cobalt precipitate in
Cu revealed that at temperatures below about 250 K a new interaction mechanism becomes
active: at low temperatures, the trailing partial bypasses the precipitate with the Orowan
mechanism, whereas it shears the precipitate at high temperatures. As actually the strength
of the precipitates increases with lower temperature, the inertial effect is significantly larger
than the above estimated 15% which is obtained with the lower, high temperature obstacle
strength.

From the comparison with the experiment [88] and the MD simulations it can be concluded
that the model by Schwarz and Labusch [73] captures essential aspects of inertial effects in the
interaction of underdamped dislocations with a random array of obstacles. The comparison
furthermore shows the importance of the choice of appropriate values for Γ, ct,m0 and B in
modeling dynamic dislocation effects. The line tension Γ should be calculated by using in



122 CHAPTER 7. DISCUSSION

Eq. 2.4 the mean obstacle spacing L as outer cut-off radius (see also [9]) and a reasonable
estimate for the lower cut-off radius. The effective mass of the dislocation can then be obtained
by Eqs. 2.27 and 2.30. The quantitative results of Hiratani et al. [77, 79, 80] obtained with
m0 = ρb2/2 should therefore be regarded with caution.

The used simulation set-up does not allow to make direct predictions for experiments.
However, according to [73] the deviation of of the measured CRSS τd,c from the overdamped
CRSS τc is correlated with the deviation of τd,l from τc, see Fig. 2.6. The existence of dy-
namical effects in our simulations therefore suggest that inertial effects could be measured at
relatively high temperatures in fcc metals irradiated under conditions favoring the formation
of closely spaced voids. Under such conditions dynamic effects in dislocation-obstacle interac-
tions might be of importance for the explanation of plastic instability and creation of cleared
channels in irradiated metals [113,271].

Besides from the interaction of dislocations with localized obstacles like voids and precipi-
tates dynamic effect might also be important in the deformation of micro- to nanoscale samples
or nanocrystalline metals. These show usually a significantly increased yield stress [280] com-
pared to their bulk or coarse-grained counterparts. When these samples deform plastically,
the dislocations in the samples are subjected to high stresses, and therefore can attain the
high velocities required for inertial effects. For example, recent analysis of the velocity distri-
bution in DD simulations modeling micro compression test (see e.g. [281–283]) showed that
a significant fraction of the dislocations participating in strain burst have velocities which
are in the relativistic regime [284]. Furthermore the length of dislocation segments is limited
by the dimensional constraints. The probability of underdamped motion of dislocation seg-
ments is therefore increased. Compared to the deformation of large scale samples where the
plasticity is carried by many dislocations, the effect of the individual dislocation-obstacle or
dislocation-dislocation interactions should become more pronounced at small scales. Individ-
ual strain burst events therefore could show signs of inertial effects. This could for example
be studied by performing micro compression tests at low temperatures.
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Conclusion I:

Dislocation Motion and Interaction

with Obstacles

The properties of static and dynamic dislocations were studied in atomistic simulations using
different potentials for Al, Ni and Cu. This large scale study provides a database of dislocation
properties which can be used directly in mesoscale simulations of plasticity [263–265]. It
furthermore enabled the correlation between properties of static dislocations and dynamic
dislocation properties, thus leading to new physical insights.

From the static calculations of straight dislocations the following conclusions could be
drawn:

• The dissociation distance d between the partial dislocations was found to be consistently
larger than the one calculated by anisotropic elasticity theory using the stacking fault
energy γsf of the potentials. It could be shown that the generalized Peierls model by
Schoeck [25] using an adequate representation of the generalized stacking fault (GSF)
curve of the potential provides the same results as the atomistic simulations. The ne-
cessity to include information on the GSF for a correct calculation of d has important
consequences for the calculation of stacking fault energies from experiments and subse-
quently for the quantitative interpretation of results obtained by atomistic simulations.

• Evaluation of the Peierls stress τP revealed large differences among the different EAM
potentials for the same material. The current EAM potentials which use experimentally
determined γsf can only provide an order of magnitude estimate of the Peierls stress of
the modeled material.

In addition to the determination of the drag coefficient of dislocations in Al, Ni and Cu, the
study of moving dislocations under various stress and temperatures revealed the following:

• Moving dislocations exhibit two distinct velocity regimes. Whereas no qualitative dif-
ferences between edge and screw dislocations exist in the low velocity regime, the onset
of the temperature insensitive high velocity regime and the stress dependence of the
dislocation velocity in the high velocity regime is different for edge and screw disloca-
tions.
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• In the low velocity, drag controlled regime the drag coefficient B shows an approximately
linear increase with temperature up to the Debye temperature. The simulated values
are comparable to experimental values. Although the different potentials lead to signif-
icantly different core properties, no significant differences in the dislocation drag could
be found between the potentials modeling the same material. Screw dislocations how-
ever showed a consistently larger B than edge dislocations. To the authors knowledge
no current dislocation theory can explain this difference.

• By fitting the equation of motion to the dislocation trajectories it was possible to deter-
mine the effective dislocation rest mass m0 from atomistic simulations. A core cut-off
radius rm

0 was defined to determine m0. Contrary to the usual mathematical core ra-
dius r0, motivated by the partition of the dislocation energy into strain energy and core
energy, m0 has direct physical relevance.

• The crossover between the the low velocity drag controlled regime and the high velocity
regime is attributed to the onset of phonon radiation leading to strong energy dissipation
of the moving dislocation. It is speculated that the overlap of the partial dislocation
cores at high velocities leads to a new mode of radiation friction. The dislocation
velocity at which the dynamic dissociation distance is about the same as the partial
dislocation width can be calculated from the relativistic contraction of the stress field.
It gives a good estimate for the onset of the high-velocity regime.

The discussion of the simulation of the interaction of edge dislocations with rows of equally
spaced voids of different sizes lead to following conclusions:

• For the voids studied, the critical stress τc necessary to pass the voids as determined
from the static calculations is significantly lower than the prediction of the model by
Scattergood and Bacon [234]. A model, based on the work necessary to recreate the
annihilated line energy, was developed to explain the atomistic results. For large voids
and typical spacing the model provides approximately the same results as the equation
by Scattergood and Bacon.

• The simulation of dynamic dislocation - obstacle interactions at different temperatures
showed direct evidence of inertial overshooting. Dynamical passing of the obstacles was
possible at significantly lower stresses than the static critical stress [263,272]. A detailed
analysis of the energetic contributions affirmed that the kinetic energy is indeed the
cause of the dynamic effect. A dynamic line tension model was subsequently developed
to estimate the importance of inertial overshooting for different obstacle strengths, -
spacings and temperatures [273]. This model as well as dislocation dynamics simulations
which include atomistic information of dislocation inertia and drag reproduced very well
the atomistically determined τd [263,273].

• The temperature dependence of the dynamical depinning stress agrees well with the
model of Schwarz and Labusch [73] for the lower critical resolved shear stress. The
atomistic information on the dislocation mass can be used to provide a better estimate
for the normalized drag coefficient in the experiments of Fusenig and Nembach [88]. The
corresponding rescaling of the drag coefficient lead to a better quantitative agreement
between the experimentally observed temperature dependence of the CRSS with the
Schwarz-Labusch model. The model of Schwarz and Labusch [73] therefore captures
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essential aspects of inertial effects in the interaction of underdamped dislocations with
a random array of obstacles.



Chapter 9

Outlook I

Several ideas how this work could be extended have already been presented in the respective
sections. They will be summarized here, together with open questions and possible areas of
future investigations.

Properties and modeling of static dislocations In the light of the present study, ex-
perimental values of the stacking fault energy determined by measurement of the dissociation
distance d by TEM observation and then analyzed simply by the Eq. 2.18 might need some
correction. Accurate first-principles calculations of the generalized stacking fault (GSF) curve
used in generalized Peierls-Nabarro (PN) type models can lead to more accurate calculations
of d and would allow a reinterpretation of the experimental data [243]. As the amount and
accuracy of ab-initio calculations increases, fitting of EAM potentials to first-principle GSF
data should become more common, thus e.g. allowing a more accurate determination of the
Peierls stress from atomistic simulations.

A concerted study with atomistic methods and the generalized PN model using the same
model GSF curves could provide valuable insights into the processes during the surmounting of
the Peierls barrier. A question of particular interest would be how the details of the GSF curve
influence the cooperative motion of the partial dislocations over the Peierls barrier [250,258].

Moving dislocations Compared to the study of the properties of static dislocations, de-
tailed atomistic investigations of moving dislocations are relatively recent. There are therefore
still many open questions, concerning for example the reason for the higher drag coefficient of
screw dislocations. The present study could be directly extended to investigate in more detail
the dynamics of mixed dislocations. It would for example be interesting to study whether the
drag coefficient of mixed dislocations depends on the direction of motion, like it is the case
for the Peierls stress [94]. Further studies are also necessary to analyze in more detail the
nature of the radiation friction stress at low temperatures and velocities. Here a combination
of the fitting procedure for the equation of motion to the dislocation trajectory and a detailed
analysis of the emitted waves (following e.g. [68]) in realistic crystal structures could provide
valuable information for models of radiation friction.

The existence of a high velocity regime has only recently been reported. Further atomistic
and especially experimental studies of the high velocity regime are highly desirable to verify
the suggested mechanism of crossover and to further elucidate the exact mechanism behind
the observed strong radiation of phonons below ct.

126



127

High velocity dislocations can be expected under shock loading conditions. However, the
dynamic properties of dislocations at high volumetric compressions leading to hydrostatic
pressures P of upto several tens of GPa are still poorly studied. Preliminary simulations of
dislocation motion in Cu under shock loading conditions [231] showed significant differences
in the dislocation motion compared to P ≈ 0. For example the stacking fault energy and
the elastic constants change in a way that the motion of the partial dislocations is only very
weakly coupled. Further studies in this direction seem promising, are however complicated
by the required very large systems and small time steps.

In the present study the drag on single, straight dislocations was studied. This situation
is comparable to the experimental situation where the displacements of single dislocations
after a stress pulse is measured [16]. Under usual experimental conditions, however, other
extrinsic damping mechanisms come into play [16]. When a dislocation encounters a local
obstacle, additional phonon radiation and waves on the dislocation are induced which can
lead to additional dragging of the dislocation. A possible way to study this effect is to fit
the equation of motion to the trajectory of dislocation after its interaction with an obstacle.
The strain field of a moving dislocation can induce oscillations on pinned [285] and moving
dislocations, leading to a kind of flutter effect. New statistical physics approaches to describe
collective phenomena of dislocations [286] open up new ways to provide information on the
stress fluctuations at a dislocation caused by the surrounding moving dislocations necessary
to develop a theory of this effect.

Dynamics of dislocation - obstacle interactions Most aspects related to inertial effects
like the existence of dynamic unzipping events have to be studied by mesoscopic models. Only
models which take the random obstacle distribution into account can provide experimentally
verifiable conclusions. Atomistic simulations can however be used to to study fundamental
aspects of inertial effects. For example the influence of obstacle size on inertial effects could be
studied by modeling equally spaced coherent precipitates of different sizes but equal obstacle
strength by adequately modifying the atomic interaction potential. This allows also to study
the influence of attractive compared to repulsive obstacles on the inertial effect.

Further areas of research Dynamic effects can be expected whenever the driving forces
for dislocation motion vary abruptly. As discussed, this is the case when a moving dislocation
meets with obstacles. However, the dislocation inertia can become important also in other
situations. This outlook is closed by pointing out some areas of research which could benefit
from the present study on dislocation drag and inertia.

The interaction of dislocations with elastic waves has recently attracted renewed interest
from both the theoretical [265, 287, 288] and from the experimental side [289, 290]. For the
study of such interactions the use of realistic values for the drag coefficient, dislocation line
tension and -mass are important. The study of Walcker et al. suggests that for typical
application condition of surface acoustic wave (SAW) filters [290] at frequencies in the GHz
range, dislocation motion is underdamped and the dislocation mass has to be taken into
account. Under special conditions the dislocation can attain relativistic velocities under the
subtle strains introduced by SAWs [289] so that the velocity dependence of the mass should
not be neglected. At higher stresses dynamic depinning and repining as observed in Fig. 6.7
could be possible for pinned dislocations vibrating at high frequencies.

The monitoring of acoustic emission by fast moving, underdamped dislocations recently
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proved a promising tool to study the intermittent character of plastic flow caused by dislo-
cation avalanches [291, 292]. The interpretation of the amplitude and energy of the acoustic
wave in terms of dislocation dynamics and plastic deformation is however based on a model by
Rouby et al. [293] which assumes instantaneous acceleration of dislocations. A more realistic
treatment of underdamped dislocation motion including acceleration and deceleration phases
could eventually lead to more precise models of acoustic emission sources.

The use of realistic mobility laws including dislocation acceleration might also be useful
in the modeling of dislocations near cracks. At high loading rates the inertia of dislocations
could have an influence on the size of the plastic zone around a crack tip. This might be
of special relevance for transition metals or semiconductors which show a temperature and
loading rate dependent transition from brittle to ductile failure.



Part II

Dislocation Nucleation and

Multiplication at Crack Tips
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The processes involved in the generation of dislocations at crack tips were studied for
dynamically propagating cracks and their interaction with obstacles as well as for static cracks
and their interaction with preexisting dislocations. Whereas the nucleation of dislocations
from undisturbed static and dynamic cracks has already been the subject of several simulation
studies, the interaction of cracks with defects, and especially dislocations, has not yet been
investigated in full three dimensional detail. The study of the processes during the interaction
of dislocations with a crack front is at the center of the second part of this thesis.

The following fracture simulations were performed on the so called γ-orientation shown in
Fig. 9.1. It provides two sets of symmetrically arranged slip planes (a) and (b) (in Thompson
tetrahedral notation). These planes contain a Burgers vector normal to the (110) cleavage
plane. A second symmetric set of slip planes (c) and (d), oblique to the cleavage plane and
the crack front, contain the crack propagation direction which is parallel to a possible slip
direction.
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Figure 9.1: Orientation of the slip planes with respect to the crack front in the γ-orientation. The
Thompson tetrahedron notation is applied to identify the Burgers vectors and glide planes.

As described in the methods section 3.2.2, two different loading conditions were used:
plane strain deformation along the y-axis and straining along the y-direction combined with
the Poisson contraction in z direction, which models the plane stress case. All simulations
were performed using the NiII potential by Mishin [213]. Most large scale simulations were
preceded by simulations on smaller systems. They allowed to develop and test the simulation
methods. These simulations will frequently also be presented, as in combination with the
large scale simulations they provide a possibility to asses finite size effects in the interaction
mechanisms between cracks and dislocations. The effect of the boundary conditions on the
dislocation - crack interactions are also addressed in appendix C.



Chapter 10

Properties of straight cracks

10.1 Griffith load

Atomically sharp cracks were introduced at the predetermined Griffith load according to the
method outlined in sec. 3.2.2 and subsequently relaxed. Except for the small configuration
under plane stress like conditions, this method produced stable cracks. The displacement field
of the relaxed cracks was subsequently rescaled and added to the original sample to produce
an over- or underloaded crack. Table 10.1 shows the Griffith strain and loading at which a
stable relaxation of the crack became impossible.

This stability range is relatively small compared to the lattice trapping range of 1-6%
in 2D simulations [294]. This is most probably due to the fact that in the region of the
2D dynamic boundary conditions the position of the crack front differs from the position
of the crack within the bulk of the sample, see Fig. 10.1. The advance of the crack front
by about 3b indicates that the net force in the crack opening mode on the atoms in the 2D
dynamic boundary region is larger than the net force acting on the atoms within the box. The
constrained motion in the boundary layers results in plane strain conditions at the surface –
like within the sample.

However, atoms at the surface have also less bonds, which in the EAM-framework are
stronger [201]. In the present case the net effect leads to a reduced resistance towards crack
opening within the 2D dynamic boundaries. This boundary effect can constantly provide
kinks necessary for the crack propagation by kinks, thus significantly reducing the lattice
trapping.

Blunted cracks were produced by the removal of one or three (110) layers. Although
blunting provided stability against crack closing, it did not significantly increase the stabil-

size [nm3] stress state ǫG stability range [ǫG]
25 × 25 × 25 plane strain 0.0343 0.99 - 1.01
25 × 25 × 25 plane stress 0.0433 -
75 × 75 × 75 plane strain 0.01896 0.99 - 1.002
75 × 75 × 75 plane stress 0.02738 0.99 - 1.005

Tab. 10.1: Griffith load ǫG and the loading under which an atomically sharp crack became unstable
upon relaxation. The sharp crack in the small sample could not be stabilized under conditions modeling
plane stress loading because dislocations were emitted at all loads.
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Figure 10.1: Top view on a part of the cleavage plane of an atomically sharp crack relaxed at ǫG

(plane strain). The atoms are colored according to their potential energy. In the 2D dynamic boundary
region the crack has advanced by 3b relative to the crack front in the middle of the box.

ity against crack advance. The reason can be seen in Fig. 10.2a. During the relaxation of
the blunted crack tip at loads close to ǫG atomically sharp cracks develop from the blunted
crack tip. This re-initiation of a sharp crack from blunted crack tips by unequal stretching
of the crack tip bonds has also been observed in two dimensional calculations [294]. This
phenomenon is attributed to the nonlinearity of the atomic interaction at high strains [294].
In three dimensions the breaking of the crack tip symmetry does not need to occur homoge-
neously along the crack front. Therefore atomic steps on the sharp cracks frequently formed
upon relaxation of blunted cracks close to ǫG, see Fig. 10.2b.

y
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b)a)

Figure 10.2: Relaxed structure of a crack blunted by removal of one (110) layer at 0.96ǫG (small
sample, plane strain). During the relaxation an atomically sharp crack developed from the initially
blunted pre-crack (a). Monoatomic steps on the sharp crack as shown in b) were frequently produced
during this process. The atoms are colored according to their coordination number. In a) all atoms
are shown, in b) only atoms in imperfect coordination are displayed.
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Deformation according to the
linear elastic solution for a
semi−infinite crack

Strained cuboidal simulation box

Figure 10.3: Sketch of the relationship between the linear elastic solution of a semi-infinite crack in
an infinite continuum (solid line) and the finite simulation box (dashed line). The boundary conditions
lead to a modification of the stress field.

10.2 Stress field of the cracks

The local atomic stress tensor (see sec. 3.3) was calculated from the relaxed configurations of
blunted cracks. Fig. 10.4 shows the different stress components as interpolated from a vertical
slice of atoms from the middle of the sample. The figure shows also the plane strain stress
field of a semi-infinite sharp crack in a infinite medium calculated from anisotropic elasticity
theory [295]. The stress field obtained by the atomistic calculations was nearly constant in
crack front direction. From Lz/2 to Lz −5b the main stress components changed by less than
1%.

Ideal plane stress conditions are characterized by σzz = 0. This stress state is an mathe-
matical idealization. A vanishing σzz can thus not be expected for the boundary conditions
used to model plane stress loading. However, by allowing for the Poisson contraction the σzz

stress component is significantly reduced compared to the plane strain loading, see Fig. 10.4.
Of course also the other components of the atomistic calculations under plane strain and
plane stress loading differ from the anisotropic elastic calculations. The reason is that the
boundary conditions of the simulation box lead to a superposition of additional stress fields.
The displacement field of the semi-infinite sharp crack in the infinite medium would lead to a
deformation of the initially cuboidal simulation box. The fixed boundary conditions enforce
orthogonal side surfaces and lead amongst others to a compressive stress field on the crack
surfaces, see the sketch in Fig. 10.3.

These differences are clearly visible in the stress field of the simulated cracks, Fig. 10.4.
For the small system, the difference from the anisotropic elastic solution was more pronounced
than for the large system displayed in Fig. 10.4. However, in the immediate surroundings of
the crack tip, the characteristics of the atomistic stress field corresponds to the K-dominated
field of the linear elastic solution.
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Figure 10.4: The components of the stress field of the crack in the large sample relaxed under
conditions modeling plane stress at ǫ = 0.024 (left) and relaxed under plane strain conditions at
ǫ = 0.018 (center) compared to the anisotropic plane strain solution with KI for ǫ = 0.018 (right). Note
the different color scales for the different stress components (from top to bottom: σxx, σyy, σzz, σzy).



10.3. STABILITY OF IMPERFECT CRACK FRONTS 135

10.3 Stability of imperfect crack fronts

In addition to the study of the stability of perfect, sharp and blunted crack tips, some ex-
amples of crack fronts containing defects like steps or kinks were simulated. Most of the
simulations were performed on the small system under plane stress loading, which showed a
strong tendency to dislocation emission.

A first set of simulations consisted of crack fronts blunted by removal of one (110)-layer
in which a step was introduced by displacing the atoms on two sides according to the passage
of a dislocation with Burgers vector b = BC(d) or b = DB(a) (Thompson tetrahedral
notation). The configurations resulting from the relaxation at a load of 0.95ǫG are shown
in Fig. 10.5. Upon relaxation, steps created according to the passage of one dislocation
remained stable. A step of 2b remained stable when the cut was made along the (d)-plane
(Fig. 10.5c). The 2b step was however unstable when it formed an acute angle with the
crack front (Fig. 10.5d). Dislocation were emitted in both cases when the crack surfaces were
displaced by 3b (Fig. 10.5e,f).

Steps on atomically sharp cracks were frequently produced during relaxation of blunted
crack at loads close to ǫG, like in Fig. 10.2b. Like the artificially created steps, these
monoatomic steps did not lead to dislocation emission upon relaxation. Even during dy-
namic crack propagation these steps could remain stable for some time. This will be followed
up in sec. 10.4.

Relaxation of 3 − 6b wide kinks on atomically sharp cracks in the small sample under
homogeneous plane strain loading at 0.96ǫG resulted in perfect straight cracks. No dislocations
were emitted during the relaxation of kinked cracks.

The dynamics of the interaction between lattice dislocations and cracks will be presented
in detail in the next chapter. However, if the dislocation is initially positioned close to the
crack tip, also static calculations can be performed. Fig. 10.6a shows the relaxed configuration
of a 60◦ dislocation DB(a) at the crack tip of a blunted crack at 0.95ǫG on plane stress loading.
The dislocation processes will be analyzed later, however one can note that the relaxation of
a dislocation intersecting the crack front did not lead to the emission of dislocations. The
relaxed configuration was subsequently equilibrated at 100 K. Also during this equilibration
period no dislocations were nucleated at the crack tip. However, the dislocation DB(a) cross-
slipped at a distance from the crack front onto the (c)-plane and later cut the crack front, see
Fig. 10.6b.

10.4 Dynamic fracture and dislocation emission

To study crack instability and dislocation emission during dynamic fracture, the displacement
field of sharp cracks under plane strain conditions were rescaled to produce an overloaded
starting configuration for MD simulations at 0 K. The present simulation set-up is clearly not
intended for the study of dynamic fracture, as the running distance is very short, and sound
waves are reflected by the boundaries (see e.g. [296] for more adequate boundary conditions).
However, in order to be able to later compare dislocation generation during dislocation-crack
interactions with the dislocation emission from dynamic cracks, the same set-up was used for
both studies. The relevant wave velocities for the study of dynamic fracture in the γ-oriented
Ni are cl = 60.14 Å/ps, ct1 = ct2 = 37.74 Å/ps, and cR = 32.97 Å/ps, see Eqs. 2.41 and 2.43.

At an overload of 1.1ǫG brittle crack propagation with a steady state velocity of v ≈
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Figure 10.5: Final configurations after relaxation of crack fronts cut according to the passage of
a dislocation with Burgers vector b = u (small sample, plane stress loading at 0.95ǫG). In a)-c)
no dislocation has been nucleated and only atoms with coordination number 6= 12 are shown. In
the configurations d)-f) a dislocation has been nucleated during relaxation. The atoms are colored
according to their CNA-value, thus showing the stacking fault produced by the nucleated dislocations.

10Å/ps≈ 0.3cR took place. At an overload of 1.2ǫG the crack propagated only for about 12
ps before emitting dislocations. The crack velocity attained just before dislocation emission
was close to 0.4cR. This is in good agreement with the 2D simulations of dynamic fracture in
Ni of Gumbsch et al. [175] where the maximum steady-state velocity is found to be limited
to 40% of the Rayleigh wave speed.

Snapshots from the dislocation nucleation process are shown in Fig. 10.8. The first dis-
locations were generated at the boundary of the 2D-dynamic region. However, about 1 ps
later homogeneous dislocation nucleation occurred on all slip planes along the entire crack
front. Only partial dislocations were formed during the simulation run. According to Van
Swygenhoven et al. [31] such a behavior can be expected for low ratios of stacking fault energy
to unstable stacking fault energy, which is the case in NiII (γsf/γusf = 0.45, see appendix
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Figure 10.6: Blunted crack with 60◦ dislocation DB(a) at 0.95ǫG (plane stress, small sample). The
atoms are colored according to the centro-symmetry parameter. The final configuration after relaxation
is shown in a). b) is a snapshot from the equilibration of the sample at 100 K showing cross-slip of the
dislocation. No dislocations were emitted from the crack front during relaxation and thermalization.
The details of the dislocation processes will be presented in chap. 11.

A). A distinctive feature of the nucleation process is that the partial dislocations on oblique
and vertical slip planes form together in most cases . This leads to the formation of stair-rod
partial dislocations. This can best be seen in the back view at t = 19 ps in Fig. 10.8.

To the authors knowledge such ”co-nucleation” has not yet been reported in the literature.
The studies on the γ-crack of Kimizuka et al. [187] in Al and Cu and the studies by Abraham
et al. [35, 183] using a Lennard-Jones (LJ) potential however show that for the same crystal
structure and crack orientation dislocation emission can exhibit very different characteristics
for the same loading conditions. These differences probably arise due to different degrees
of elastic anisotropy and differences in the atomic bonding. The simulation conditions used
in [187] (constant loading at ǫ̇ = 2 · 109 1/s) and in [35,183] (4% strain) can however also be
the cause for the observed differences in the characteristic of dislocation nucleation.

Fig. 10.7 shows the same type of co-nucleation in case of a propagating crack containing
a step in the crack front. The step resulted from the relaxation of the blunted pre-crack.
Contrary to the the homogenous dislocation nucleation, localized dislocation nucleation close
to the step occurred at relatively low overload. By the emission of the blunting dislocations
αC and αD the local crack front orientation became parallel to Bα.
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Figure 10.7: Emission of dislocations from a propagating sharp crack containing a monoatomic step
(1.025ǫG, small sample, plane strain). The atoms are colored according to their CNA value. From the
different crack tip structure it can be seen that the emission of the blunting dislocations αC and αD
led to a crack front orientation parallel to Bα.
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Figure 10.8: Emission of dislocations from a propagating sharp crack (1.2ǫG, large sample, plane
strain). The atoms are colored according to their CNA value.
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10.5 Dynamic crack interacting with a void

To be able to compare the processes during dislocation-crack interaction with the interaction
processes of a crack with an other defect, the interaction of a propagating crack with a
void was studied. For this purpose the displacement field of a sharp crack at 1.1ǫG was
added to a configuration containing a relaxed void of radius Rvoid = 10Å. As can be seen in
Fig. 10.9 the void effectively pins the advancing crack front by causing the massive emission
of dislocations. The process of partial dislocation emission corresponds to the previously
described co-nucleation. The symmetric upwards and downwards emission of dislocations on
the (a) and (b)-plane leads to a blunting of the crack tip by one Burgers vector. The crack
front assumes a ’V’-shape with local crack front directions of βA and Bα. The crack front
outside the ’V’ can still propagate. It can penetrate the ’V’ in a zipper-like way by subsequent
emission of further dislocations on (a) and (b). The consecutive creation of stacking faults
leads to twined areas. It is interesting to note that no dislocations are nucleated at the void
prior to its contact with the crack. Although the crack cleaved the surrounding material, the
atoms on the void circumference were still partially in contact (not shown).
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Figure 10.9: Interaction of a propagating crack with a void (Rvoid = 10Å, 1.1ǫG, large sample, plane
strain). For t = 13 − 21 ps only atoms with increased potential energy are show, for t = 29 ps the
atoms are colored according to their CNA value. The partial dislocations on the (b) and (c) as well
as the partial dislocations on the (d) and (a) planes are connected by the respective stair-rod partial
dislocations.
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Dislocations interacting with cracks

The interaction between dislocations and cracks is of course determined by the nature of the
dislocation, i.e. its Burgers vector and glide plane, and the characteristics of the crack, e.g.
blunted versus sharp. It is furthermore determined by the stress state, i.e. the loading with
respect to the Griffith load ǫG and whether plane stress or plane strain conditions prevail. In
addition, the relative orientation of the dislocation with respect to the crack and its impinging
velocity can influence the dislocation-crack interaction.

The need of finite size simulation boxes has a number of consequences for the study of
dislocation-crack interactions. The introduced dislocation is pinned at the boundaries. The
initial distance of the dislocation from the crack therefore determines if, and with which
curvature, the dislocation reaches the crack. The box boundaries furthermore put a limit to
the dislocation motion and cause image forces on the dislocations. The rather small systems
which can be simulated by MD lead to high Griffith strains. Therefore not only the loading
relative to ǫG is important, but also the absolute strain. In highly strained samples artefacts
due to nonlinear effects are possible.

Given the computational costs of the large scale simulations, it is clear that extensive
parameter studies can not be performed. However, the influence of all the above parameters
were at least studied in exemplary simulations. Other important factors like temperature or
the effect of multiple dislocations on the same glide plane could however not be addressed.

The remainder of this chapter is organized as follows. First the simulation set-up is pre-
sented and symmetry considerations are used to reduce the number of dislocations which
have to be included in the study. Next the simulations of dislocations interacting with static,
blunted cracks and atomically sharp cracks will be presented in separated sections, followed
by exemplary simulations of dislocations interacting with propagating cracks. Preliminary
studies on small samples were used to quickly asses the most important features of the partic-
ular configuration for each dislocation orientation. The chapter closes with a summary of the
simulation results. The simulation resulted often in very complex dislocation structures. For
the sake of clarity, however, a detailed analysis is only presented for prevalent, characteristic
processes.

11.1 Simulation set-up and symmetry considerations

To study the interaction of preexisting lattice dislocations with cracks, the displacement field
of straight relaxed dislocations was added to the configuration of a stable crack as described
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in section 3.2.2. In most of the simulations, the crack was blunted by removal of one (110)
layer. Some simulations, however, were performed on sharp cracks or cracks blunted by
removal of 3 (110) layers. To model the situation in the experiments by the Michot group
(see sec. 2.2.2.1) most simulations were performed by modeling a similar ”plane stress like”
situation as described in sec. 3.2.2.

A typical example of a starting configuration is shown in Fig. 11.1. Only the atoms
which have an increased potential energy and do not belong to the box boundaries are shown.
Similar figures will be frequently used in the following. The initial position of the relaxed
dislocation is indicated by its distance ∆x from the crack front, measured within the cleavage
plane. In Fig. 11.1 the dislocation will have to move a distance l ≈ 1.73∆x till it intersects
the crack front.
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Figure 11.1: Set-up for the simulation of a straight 60◦ dislocation DB(a) with a crack in the γ-
orientation. The box marks the edges of the simulated atomistic cube, from which only the inside atoms
with increased potential energy are shown. The Thompson tetrahedron and the glide plane, which is
viewed from inside the Thompson tetrahedron, are also drawn. The distance between dislocation and
the crack tip is denoted by ∆x, whereas l is the distance between the dislocation and its intersection
point with the crack front (at z = 37.5 nm).

Symmetry considerations allow to limit the study to a subset of possible slip systems.
The analysis of the driving forces caused by the stress field of a crack on the various slip
system in the γ orientation show three different groups of slip systems. The slip systems of
these groups are summarized in Table 11.1. The details of this analysis are worked out in
sec. 12.3. However, simple geometrical reasoning can be used to confirm the classification in
Tab. 11.1. For example it can be seen in Fig. 9.1 or Fig. 11.1 that the glide planes (c) and (d)
are mirror symmetric with respect to the crack plane. Similarly, the behavior of dislocations
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I AC(b) ≡ BD(a) BC(a) ≡ AD(b)
II AC(d) ≡ BD(c) BC(d) ≡ AD(c)
III AB(d) ≡ DC(a) AB(c) ≡ DC(b)

Tab. 11.1: Symmetry relations between slip systems for the γ oriented crack. Dislocations in the
same class experience the same forces in the stress field of the crack. Within the same class, the
behavior of dislocations on the right and on the left side of the table is mirror symmetric with respect
to the crack plane.

on the (a)-plane with b = BD and b = BC is mirror symmetrical with respect to the
cleavage plane. Only dislocations belonging to class I and II are observed in experiments,
see sec. 2.2.2.1. To compare with the experimental study of Scandian [153] the focus of the
present study is on incoming dislocations on the (a)-plane with Burgers vector b = ±DB.
Only some simulations were performed with dislocations with Burgers vector b = ±DC(a)
and with dislocations on the (c)-plane. Dislocations with these Burgers vectors and various
line orientations were simulated starting from different distances from the crack front.

In this context it is important to point out that due to the anti-mirror symmetry of the
σxy stress component (see Fig. 10.4) there is no general mirror symmetry with respect to the
crack plane for the driving forces on dislocations. E.g. a straight horizontal dislocation line
above the crack will in general not experience the same forces as the same dislocation situated
below the crack

The simulations are performed at high strains and near to the critical load for fracture.
It is therefore important to asses the sensitivity of the processes during dislocation-crack
interaction to (small) changes of the initial conditions. Mechanisms which are observed in
both the large and the small samples can be considered to be rather robust. Test on small
samples at high strains using symmetrically equivalent initial conditions showed furthermore
that the solutions diverged from each other only after multiple dislocation reactions took
place.

11.2 Blunted cracks

11.2.1 Incoming dislocations on the (a)-Plane

The orientation of the (a)-plane with respect to the crack front is shown in Figs. 9.1 and 11.1.
In addition to the dislocation normal to the fracture plane shown in Fig. 11.1, horizontal
dislocations and dislocations inclined to the crack front were studied. Symmetry arguments
can be used to rationalize that a straight screw dislocation with b = ±DC perpendicular to
the crack plane does not experience a net driving force. Therefore, this kind of dislocations
were not subjected to further studies.

11.2.1.1 Perpendicular 60◦ dislocation

Small system, plane stress

Straight dislocations with line direction ξ = DC and Burgers vector b = ±DB were simulated
in a small sample (25 × 25 × 25 nm3, plane stress, ǫG = 0.0433) at different strains (0.8, 0.9
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Figure 11.2: Processes during the interaction of an initially straight 60◦ dislocation with Burgers
vector b = DB(a) with the crack front (0.95ǫG plane stress loading, small sample, ∆x = 2 nm, crack
blunted by one layer). Only atoms with increased potential energy are shown.

and 0.95ǫG). The distance of the dislocations from the crack front was in all cases ∆x = 2
nm, and the crack was blunted by removal of one (110)-plane.

Dislocations with Burgers vector b = BD and ξ = DC were simply repelled from the
crack front. Dislocations with the opposite Burgers vector b = DB were attracted towards
the crack. For these dislocations, three typical processes could be identified (see Figs. 11.2 -
11.4):

1. Change of glide plane of the upper part of the leading partial dislocation at the crack
front: Dα → Dβ + βα. This mechanism is already active at low loads of 0.8ǫG.

2. Stimulated nucleation of (partial and full) dislocation loops on the inclined glide planes
(c) and/or (d), at the intersection of the incoming dislocation with the crack front
(starting at 0.9ǫG).

3. Cross-slip on (c) of a part of the incoming dislocation which had attained screw char-
acter: Dα + αB → Dγ + γB (starting at 0.9ǫG).

The stimulated emission of dislocations from the crack front did not take place in all simu-
lations. In addition to a critical loading of the crack necessary for stimulated emission, the
dislocation nucleation process depended on the velocity of the incoming dislocation. Fig. 11.3
compares two series of snapshots of simulations with the same starting configuration and
boundary conditions (0.95ǫG). In one simulation, however, the velocity of all atoms was set
to zero shortly before the dislocation met the crack front (t = 2ps). The impinging velocity
vi of the dislocation was thus reduced to vi ≈ 8 ± 5Å/ps instead of vi ≈ 22 ± 5Å/ps. During
the entire simulation time dislocation emission from the crack tip did not occur. However,
change of glide plane and cross-slip were observed.

The cross-slip processes started close to the box boundary, where the dislocation is already
constricted. Cross-slip occurred by the Fleischer mechanism. The details of this mechanism
will be analyzed in sec. 11.2.1.2 on other simulations. By increasing the size of the simulation
box in crack front direction the cross-slipped dislocation can cut the crack front, see Fig. 11.4.
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Figure 11.3: Time series of the process of stimulated emission in Fig. 11.2. Upper and lower row show
simulations with the same starting configuration and boundary conditions. However, in the lower row
the velocities of all atoms is set to 0 at t = 2ps. Contrary to the simulation without freezing (upper
row), no stimulated dislocation nucleation is observed in this simulation. The defects are identified
using their CNA value.

It can be seen in Fig. 11.4d that a partial dislocation loop nucleated at the intersection of
the cross-slipped dislocation and the crack. The nucleation took place some time after the
leading partial dislocation Dγ had cut the crack front, but before the trailing partial touched
the crack tip. Like the second partial dislocation loop on (d) emitted at the first intersection
point, this dislocation loop was nucleated on top of a stacking fault, leading to a two layer
thick ”twin”.

According to Tadmor and Hai [297] materials with low ratios of stacking fault energy γsf

to unstable stacking fault energy γusf combined with a high ratio of the unstable twinning
energy γutf to γusf have a high tendency to twinning. This is the case for the NiII potential
used in this study (γsf/γusf = 0.45, γutf/γusf = 0.83, see appendix A). According to [297,298]
two layer thick micro-twins are precursors to deformation twinning.

The stacking faults are obstacles to the dislocation motion on intersecting planes. How-
ever, as can be seen in Fig. 11.4d the dislocations could penetrate through these twins. Using
the centro symmetry parameter, the inset in Fig. 11.4e shows how the two layer thick twin
was cut by CB(d). The trailing partial δB stayed at the twin boundary, whereas the leading
partial continued to glide on a plane one atomic layer below the original glide plane. Similarly
the twin boundary was displaced by one atomic layer.
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Figure 11.4: Snapshots of the simulation of a crack blunted by 1 layer and a 60◦ dislocation with
Burgers vector b = DB(a) in the 25 × 25 × 75 nm sample at 0.95ǫG (plane stress, ∆x = 2 nm3).
The top frames a)-d) show only a part of the system, in which defects are identified using their CNA
value. The lower frame e) shows the entire sample in which the defects have been filtered out by their
potential energy. The inset in e) shows how a partial dislocation has penetrated through a micro twin
(color encodes the centro symmetry parameter).
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Large scale simulations, plane stress

The interaction of the straight 60◦ dislocation with ξ = DC and Burgers vector b = BD
with a crack blunted by removal of one (110) layer was studied at 0.82, 0.84, 0.92 and 1.01ǫG.
For these simulations in the large system (75 × 75 × 75 nm3, ǫG = 0.0274) the distance to
the crack tip was ∆x = 6 nm. Depending on the load, the dislocation reached the crack tip
after 7-9 ps. Its velocity at that time was about vi ≈ 21 Å/ps. An additional simulation
at 0.92ǫG was performed with a starting distance of ∆x ≈ 13 nm to study the influence of
∆x on the dislocation-crack interaction. Furthermore, the influence of additional blunting by
removal of three (110) layer on the dislocation-crack interaction was studied at 0.97ǫG and
1.01ǫG (∆x = 6 nm).

The change of glide plane of the leading partial dislocation Dα upon contact with the
crack front was observed in all configurations, see Fig. 11.5 to Fig. 11.10. In some cases this
process was followed by the creation of partial dislocations on the (a) and (b)-planes, e.g.
Fig. 11.5. Stimulated dislocation emission occurred at loads of 0.92 ǫG and above. At these
loads a sharp crack developed and propagated in the anti-shielded region of the crack front.
In contrast to the simulations in the small system, no cross-slip was observed.

The processes during the interaction of the dislocation with the crack at a load of 0.82ǫG

are shown in Fig. 11.5. Upon contact with the crack front the leading partial dislocation
changed the glide plane and created thereby a stair rod dislocation: Dβ(a) → Dβ(b) + βα.
About 3 ps later a partial dislocation loop with Burgers vector βC(b) nucleated where Dβ(a)
had intersected the crack front. This dislocation annihilated the stacking fault created by
Dβ(b), and together they form the full dislocation DC(b). It also reacted with the stair
rod dislocation αβ + βC → Cα. With the trailing partial of the incoming dislocation this
reaction led to the full dislocation CB(a). This ”unzipping” of a dislocation thus creates two
dislocations with new Burgers vectors: DB(a) → DB(c) + CB(a). During the whole process
the lower part of the incoming dislocation DB(a) proceeded on its glide plane. The same
mechanism occurred at 0.84ǫG.

At a load of 0.92ǫG a sharp crack developed during the approach of the dislocation within
the anti-shielded part of the blunted crack front, see Fig. 11.6. This sharp crack advanced
by roughly 3b at the outermost (2D dynamic) boundary. Upon intersection, the upper part
of the leading partial changed the glide plane as in the other simulations. After 12 ps,
however, a dislocation loop with Burgers vector Cδ has formed at the intersection between
the dislocation and the crack front. This process is connected with the creation of a partial
dislocation βC(b). At the intersection between both dislocations, the stair rod dislocation βδ
was formed, see Fig. 11.6b. The growth of the loop Cδ(d) led to the closing of opened up part
of the crack front. After 48 ps the trailing partial δB of the nucleated loop was emitted. The
full dislocation CB(d) cut the lower part of the original DB(a). Due to the screw component
of DB(a) the arms of the dislocation CB(d) could not directly annihilate and formed a long
dislocation dipole. The dislocation dipole subsequently collapsed into two dipole loops.

In the simulation at 1.01ǫG a sharp crack developed on the both sides of the blunted
crack tip and propagated towards the dislocation. Like in the simulations at lower loads the
leading partial dislocation changed its glide plane from (a) to (b). The stimulated emission
of Dγ on the (c)-plane was connected with the generation of Cα(a), see Fig. 11.7a. The
following processes included the nucleation of the trailing partial dislocations on the (a) and
(b)-plane and the emission of the trailing partial of the stimulated loop on (c), see Fig. 11.7b.
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Figure 11.5: Series of snapshots from the simulation of a crack blunted by one layer and a 60◦

dislocation with Burgers vector b = DB(a) at 0.82ǫG (large system, plane stress, ∆x = 6 nm) which
show the initial change of glide plane of the leading partial dislocation and the subsequent ”unzipping”-
processes leading to the new dislocations: DB(a) → DB(c) + CB(a). The insets show a view along
the crack front (−z) of the same configurations. The defects are identified using their CNA value.
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Burgers vector b = DB(a) at 0.92ǫG (large system, plane stress, ∆x = 6 nm) showing the stimulated
emission of a full dislocation loop on the (d)-plane. Only atoms with increased potential energy are
shown, except for the insets in a)-d) which show atoms colored according to their CNA-value. The
insets in e) and f) show the entire simulation box.
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Figure 11.7: Details of the dislocation processes of a crack blunted by one layer and a 60◦ dislocation
with Burgers vector b = DB(a) at a load of 1.01ǫG (large system, plane stress, ∆x = 6 nm). The
CNA is used to identify defects within a small region of the entire simulation box. The dislocations
involved in the processes are indicated. The processes include the change of the glide plane by Dα,
stimulated emission of dislocation loops on the (c)-plane, nucleation of CB(a) and βC(b) leading to
the formation of a vacancy row, and the simultaneous nucleation of Cδ and αC from the moving crack
front.

The process is similar to the ”unzipping” in Fig. 11.5, however, the sequence and location of
the nucleated dislocations were different. This led to the formation of a vacancy row. The
propagating crack front additionally caused the simultaneous nucleation of Cδ and αC partial
dislocations, connected by the stair-rod αδ. This later process is similar to the emission of
dislocations by running cracks, see sec. 10.4.

Effect of increased initial distance Snapshots from the simulation run at 0.92ǫG

with the dislocation initially placed ∆x = 13 nm in front of the crack are shown in Fig. 11.8.
Three main differences to the simulation at the same load but with the dislocation starting
from ∆x = 6 nm (Fig. 11.6) can be seen. The absence of stimulated dislocation emission is
probably caused by the reduced velocity of the dislocation at contact with the crack front
(vi ≈ 17Å/ps compared to vi ≈ 21Å/ps for ∆x = 6 nm). The absence of crack advance
could be due to a decrease of the shielding or anti-shielding of the crack front. This aspect is
illustrated in Fig. 11.9. It can be seen that the curvature due to the pinning of the dislocation
also decreased the portion of the dislocation line which can effectively shield or anti-shield the
crack front. Finally, the dislocation line swung back and oscillated, which can be attributed
to the line tension of the dislocation. These observations highlight the importance of the
initial position of the dislocation as parameter determining the possible reactions.
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Figure 11.8: Snapshots from the simulation of a crack blunted by one layer and a 60◦ dislocation
with Burgers vector b = DB(a) at a load of 0.92ǫG (large system, plane stress) with the dislocation
starting further away (∆x = 16 nm) than in Fig. 11.6. The pinning points exert a force acting against
the bow-out, thus leading to a reduced impinging velocity and an oscillatory behavior. Stimulated
dislocation emission did not take place. Only atoms with increased potential energy are shown.
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Figure 11.9: Plane view projection of the dislocation in the simulations at 0.92ǫG, Figs. 11.6 and
11.8, before intersection of the crack front. a) snapshot at t = 7 ps with the dislocation starting at
∆x = 6 nm apart from the intersection point. b) snapshot at t = 15 ps from the simulation with
∆x = 13 nm. The bow-out leads to a reduction of the shielding/anti-shielding of the crack.
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Figure 11.10: Details from the simulation of a dislocation interacting with a crack blunted by removal
of 3 (110) layers 60◦ and a dislocation with Burgers vector b = DB(a) at 0.97ǫG (large sample, plane
stress, ∆x = 6 nm). Only a part of the simulation box is shown, the atoms are colored according to
their CNA value. In a) a sharp crack had developed which moved within the anti-shielded region and
emitted a dislocation towards the dislocation. Stimulated emission of dislocations is shown in b); c)
shows the subsequent reactions.

Effect of increased crack blunting At loads of 0.97 and 1.01ǫG additional blunting
of the crack tip by removal of 3 (110) layers did not prevent the formation of an atomically
sharp crack in the stress field of the dislocation, see also sec. 10.1. Like in the studies with the
crack blunted by one layer, the crack front propagated in the anti-shielded region at 0.97ǫG,
and at 1.01ǫG the entire crack front moved towards the dislocation. In both simulations a
new process was observed: the advancing crack emitted a partial dislocation loop (Dγ(c))
towards the dislocation before the dislocation cut the crack front, see Fig. 11.10a. This partial
dislocation loop originated in both cases from an atomic step on the crack front which had
developed in the stress field of the dislocation. The partial dislocation reacted with the
incoming dislocation. As a result one part of DB(a) cross-slipped onto (c). The subsequent
reactions are shown in Fig. 11.10b,c. The processes at 1.01ǫG were basically the same as in
Fig. 11.10, except that the crack front kept moving and thus emitted further dislocations like
the running cracks in sec. 10.4.

Large scale simulations, plane strain

The interaction of DB(a) with a crack blunted by one (110) layer was studied under plane
strain conditions at loads of 0.85ǫG and 0.95ǫG. Contrary to the simulations under plane
stress conditions, no stimulated emission took place. The observed processes were variations
of the unzipping mechanism of Fig. 11.5. The details of the resulting structure thereby depend
on whether the nucleation of Cα(a) takes place on the same plane as the glide plane of the
incoming dislocation DB(a) or on a neighboring plane.
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11.2.1.2 Horizontal 30◦ dislocations

Small system, plane stress

Studies on the small samples under conditions modeling plane stress were performed on the
four possible orientations of 30◦ dislocations with b = ±DB(a) relative to the crack. The
dislocations were initially separated from the crack by ∆y =5 nm, and the crack was blunted
by removal of one (110) layer. The starting configurations and their evolution during the first
picoseconds of the simulations is shown in Fig. 11.11.

The blunting dislocation DB(a) was drawn towards the crack independent of its location
relative to the crack plane. However, the attraction differed in strength and direction, the
first contact between dislocation and crack therefore occurred on different parts of the crack.
Furthermore when the upper dislocation met the crack, the crack was first cut by the screw-
like partial dislocation αB, whereas the lower dislocation cut the crack with a leading partial
dislocation of edge character. Similarly, repulsion of BD(a) varied between upper and lower
dislocation. The forces on the dislocations arising from the stress field of the crack will
be analyzed in detail in sec. 12.3 The horizontal 30◦ dislocations are closer to the screw
orientation than the 60◦ dislocations. Significant parts of the initially horizontal dislocation
can thus assume screw character, enabling cross-slip of the repelled as well as of the attracted
dislocation, see Fig. 11.11b and c.

Typical processes observed in the small scale simulations at 0.95ǫG include the stimulated
emission of partial dislocations on the (c) and (d)-plane when the incoming dislocation inter-
sected the crack front, see Fig. 11.11a, and the cross-slip of parts of the incoming dislocation
towards or away from the crack front, see Fig. 11.11b and c. Also simple dislocation bow out
in the stress field of the crack and swinging back and forth of the dislocation were observed,
see Fig. 11.11d.

Fig. 11.12 shows the cross-slip process of Fig. 11.11c in more detail. As can be seen, no
constriction of the dislocation took place, instead the leading partial dislocation αD disso-
ciated into αD → γD + αγ, according to the cross-slip mechanism proposed by Fleischer.
Subsequently, the trailing dislocation reacted with the stair rod dislocation, forming the trail-
ing dislocation on the cross-slip plane: Bα + αγ → Bγ. In this process, however, kinks on
the incoming dislocation transformed into jogs on the cross-slipped dislocation BD(c). Upon
slip of BD(c) the jogs led to the formation of a vacancy tubes.



154 CHAPTER 11. DISLOCATIONS INTERACTING WITH CRACKS

[1
10

]

z

x

y

[1−10]

[0
01

]
[1

10
]

z

x

y

[1−10]

[0
01

]

Dα

Dα

α B

ξ

ξ

α D
B α

B α
α D

(multiple)
cross slip
towards crack

ξ=Bαb=BD(a)

b=DB(a) ξ=Bα

stimulated 
emission

α B

away from crack
cross slip

dislocation
bowing

t=2 ps t=4 ps

a)

t=0 ps

b)

c)

d)

Figure 11.11: Starting configurations for the simulation of horizontal 30◦ dislocations and their
evolution in the small sample at 0.95ǫG (small sample, plane stress, ∆y = 5 nm, crack blunted by
one layer). The characteristic processes are indicated. Only atoms within the sample with increased
potential energy are shown. The view on the glide plane is from inside the Thompson tetrahedron.
Note that the compact core of partial dislocations with pure screw character ±αB can be distinguished
from the core of the partial dislocation with edge character.
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Figure 11.13: Details from the simulation of DB(a) in the small sample at 0.95ǫG. The atoms are
color coded according to their CNA value. The multiple cross-slip process of Fig. 11.11b) is shown in
a). The cross-slip of subsequent screw dislocation segments leads to a jogged dislocation on the cross-
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of jog dissociation (only the newly developed dislocations are labeled, please note the indicated line
directions). This mechanism led to the formation of a four layer thick twin.
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Figure 11.14: Interaction of the 30◦ dislocation DB(a) coming from above with the crack at 0.88ǫG

(large sample, plane stress, ∆y = 5.0 nm, crack blunted by one layer). Only atoms with increased
potential energy are displayed. Upon contact of the dislocation with the crack tip, a partial dislocation
loop was nucleated, and the trailing partial Dα changed its glide plane.

Kinks on dislocations naturally arise when the dislocation is not aligned with a close-
packed crystallographic orientation. Dislocations oriented close to the screw orientation can
thus have several segments with screw orientation separated by monoatomic kinks. The
cross-slip of the kinked dislocation DB(a) led to dislocation segments on neighboring planes
connected by extended jogs. see Figs. 11.11b and 11.13. The extended jogs were however
not stable within the stress field of the crack. A possible mechanism of jog destruction is
proposed in Fig. 11.13. The jog destruction led to the formation of a 4 layer thick twin.

Large scale simulations, plane stress

Simulations in the large sample with a crack blunted by one layer were carried out with all
the four orientations of dislocations to the crack shown in Fig. 11.11. Starting with various
initial distances ∆y of the dislocation from the crack simulations were performed at loads
0.82ǫG and 0.88ǫG.

Fig. 11.14 shows the typical processes during the interaction of the 30◦ dislocation DB(a)
with the crack underneath. The dislocation started at a distance ∆y = 5 nm from the
crack tip. After the initial intersection of the dislocation and the crack a large part of the
dislocation was annihilated at the crack surface. The remaining parts of the dislocation moved
in opposite directions, towards and away from the crack tip, and produced a step on the crack
surface. When the trailing partial dislocation Dα intersected the crack front, it changed its
glide plane: Dα → Dβ + βα. At about the same time a partial dislocation loop Dγ was
emitted on the (c)-plane. Later a second partial dislocation loop with b = Dγ was emitted
on top of the stacking fault created by the first stimulated dislocation. The same processes –
stimulated emission of a dislocation loop and partial cross-slip of Dα – took also place when
the dislocation started further away from the crack (∆y = 16 nm) and at lower loads (0.82ǫG).

The same dislocation DB(a) positioned underneath the crack (at ∆y = 24, 17, 8 and 5
nm) showed a different behavior, see Fig. 11.15. Upon contact with the crack tip, the part
in front of the crack cross-slipped onto the (c)-plane, where it propagated along the crack
flank. The other part of the dislocation was annihilated at the crack surface. The cross-
slip process itself took place according to the Fleischer mechanism through an obtuse angle:
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Figure 11.16: Snapshots from the interaction of 30◦ dislocations BD(a) starting from ∆y = 5
nm above the crack (0.88ǫG, large sample, plane stress, crack blunted one layer). Only atoms with
increased energy are shown. Cross-slip occurred only when a segment with screw character came
sufficiently close to the crack tip. In the other cases the dislocations just swung back and forth.

αB → Dγ + αγ/BD. The Hirth dislocation lock reacted subsequently with Dα to form the
trailing partial on (c): Dα + αγ/BD → γB. The interaction processes were independent of
the load and the initial distance. The impinging velocity was in all cases about vi ≈ 22 Å/ps.
Stimulated emission of dislocations was not observed.

Dislocations BD(a) coming from above were strongly repelled above the crack. In front
of the crack tip they experienced a downwards driving force. Dislocations placed further
away from the crack (at ∆y = 23 nm and ∆y = 16 nm, 0.82ǫG) therefore adopted an ”S”
shape.Dislocation cross-slip away from the crack was only observed for an initial distance of
∆y ≈ 5 nm and 0.85ǫG, see Fig. 11.16.

Dislocations with Burgers vector BD(a) coming from below the crack were strongly
repelled by the crack tip. When the dislocation was initially situated close to the crack
(∆y = 6 nm), a part of the dislocation annihilated at the crack surface, see Fig. 11.17. The
remaining parts of the dislocation were bound to the crack surface. Due to the repulsion, no
direct interaction between the dislocation and the crack tip was possible. Contrary to the
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Figure 11.17: Snapshots from the interaction of a 30◦ dislocation BD(a) starting at a distance
∆y = 5.6 nm below the crack (0.88ǫG, large sample, plane stress, crack blunted by one layer). Only
atoms with increased energy are shown. The dislocation is strongly repelled by the crack tip, and no
direct interaction between crack tip and dislocation takes place.

simulations of the same dislocation situated above the crack, the dislocation could not reach
screw orientation, and consequently cross slip was impossible in this configuration.

Each of the four configurations of 30◦ dislocations showed a different behavior in the stress
field of the crack. This allows to determine how the potential energy of the system is influenced
by the different processes. Therefore simulation runs with the same load and approximately
the same ∆y have to be compared. This is done in Fig. 11.18 for ǫ = 0.88ǫG and ∆y ≈ 5 nm.
Fig. 11.18 shows. that as expected the configuration with attracted dislocations (b = DB,
◦,3 in Fig. 11.18) has a lower energy than the configuration containing repelled dislocations
(b = BD, +,×). It shows furthermore that the relative decrease of the potential energy of the
system depends on the dislocation process: only processes leading to a significant dislocation
line length unloading the strained region in front of the crack tip led to a significant reduction
of potential energy. This was the case for the stimulated emission of a partial dislocation loop
(3), but also for the expansion of the cross-slipped dislocation in front of the crack (+). The
cross-slip at the crack surface without significant increase in dislocation line length in front
of the crack (◦) and the the partial annihilation of the dislocation at the crack surface and
the bowing out of the remaining part of the dislocation (×) led to nearly no reduction of the
total energy.

Large scale simulations, plane strain

Simulations without Poisson contraction were also performed on the dislocation DB(a).
Fig. 11.19a shows the equivalent setup to Fig. 11.14 with plane strain conditions and at
higher load (0.95ǫG). No stimulated emission took place. Instead the same unzipping mech-
anism as for the dislocation oriented normal to the crack, displayed in Fig. 11.5, was active.
For the dislocation DB(a) situated below the crack, only the change of glide plane of the
leading dislocation was observed, see Fig. 11.19. The cross-slip process observed under plane
stress conditions, Fig. 11.15, was not activated.
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Figure 11.19: Snapshots from the interaction of 30◦ dislocations DB(a) with a crack at 0.95ǫG

(large sample, plane strain, crack blunted by one layer). Only atoms with increased energy are shown.
The starting configuration in a) is identical to that of Fig. 11.14 (∆y = 5 nm). For b) the set-up is
equivalent to that of Fig. 11.15 (∆y = 5.3 nm). Neither cross-slip nor stimulated emission takes place.
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Figure 11.20: Starting configurations (t = 0 ps) for the small scale study of screw dislocations and
their immediate reaction (t = 1 ps) on the stress field of the crack at 0.95ǫG (small sample, plane
stress, ∆x = 5 nm crack blunted by one layer). Only atoms with increased potential energy are
shown. Burgers vector a) b = DB(a) and in b) b = BD(a).

11.2.1.3 Inclined screw dislocations

Small sample, plane stress

Screw dislocations with Burgers vector b = ±DB are inclined to the crack front. In an infinite
body, a straight, infinite screw dislocation can not be positioned below a semi-infinite crack
without cutting the crack surface. This is only possible, when the dislocation comes from
above the crack. Therefore only screw dislocations with b = ±DB were studied in initial
configurations like the ones shown in Fig. 11.20. The basic set-up is similar to the situation
in the experiments of Scandian [153], see also Fig. 2.10.

All the simulations in the small sample showed cross-slip of the dislocation. Depending
on the Burgers vector, the cross-slip was directed either towards the crack tip (b = DB) or
away from the crack (b = BD), see Fig. 11.20.
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Large scale simulations, plane stress

The interaction of the screw dislocation with a crack blunted by removal of one atomic layer
was studied at a load of 0.88ǫG and initial distances of ∆x = 16, 11 and 8 nm. An additional
simulation was performed at 0.96ǫG using a crack tip which was blunted by removal of three
(110)-layers.

The initial distance determines the location of the pinning points of the dislocation at the
box boundaries. The initial distance thus not only determines the distance of the dislocation
from the crack tip, but also the relative length of dislocation which is situated above the
crack and in front of the crack tip. The screw dislocation with b = DB is attracted above the
crack surface and repelled in front of the crack (vice versa for b = BD). The position of the
pinning points therefore has a large effect on the dislocation bow out. At an initial distance
of ∆x = 16 nm for example, the screw dislocation DB(a) could not reach the crack tip and
just swung back and forth.

At an initial distance of ∆x = 11 nm the dislocation bowed out to an ”S”-shape, and
came into contact with the crack, see Fig. 11.21. Upon contact with the crack tip, the trailing
partial dislocation changed the glide plane Dα → Dβ + βα and a partial dislocation loop
with b = δC was emitted on the (d)-plane. In the following the emitted dislocation interacted
with both the partially cross-slipped dislocation and the incoming dislocation, see Fig. 11.21c.
With the trailing partial βC it formed a stair rod dislocation βδ. More important, however,
is the cutting process with the incoming dislocation DB(a) which led to cross slip to DB(c),
see Fig. 11.21d. The cross slipped part was attracted to the the crack tip which it cut in
Fig. 11.21f. During this process the original part of the dislocation attached to the crack
tip acted as ”pole” around which DB(C) revolved, see Fig. 11.21d-f. Basically the same
mechanisms were observed when the crack was blunted by removal of three atomic layers
instead of one as in Fig. 11.21. Also in this case a pinned arm of the original dislocations
acted as pole or shaft around which the cross-slipped dislocation gyrated.

At a closer spacing of the dislocation (∆x = 8 nm), the bow out was not so pronounced
as in the case of of ∆x ≈ 11 nm, see Fig. 11.22. The absence of a dislocation on the (d)-plane
which in the previous simulation triggered the cross-slip and the smaller dislocation bow-out
led to the qualitatively different reactions showed in Fig. 11.22 compared to the previous
simulation. In particular, no pole around which a cross-slipped dislocation could revolve was
created.
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Figure 11.21: Snapshots from the simulation of the screw dislocation DB(a) initially positioned
∆x = 11 nm in front of the crack tip at 0.88ǫG (large sample, plane stress, crack blunted by one layer).
The ”pole” around which the cross-slipped dislocation revolves is indicated in d). The revolving
dislocation later cuts the crack front. Only atoms with increased potential energy are shown. The
insets show details of the structure using the CNA analysis.
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Figure 11.22: Snapshots from the simulation of a screw dislocation b = DB(a) initially positioned
∆x = 8 nm in front of the crack tip at 0.88ǫG (large sample, plane stress, crack blunted by one layer).
Only atoms with increased potential energy are shown. New dislocations are created by stimulated
emission (b) and cross-slip.
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The screw dislocation with b = BD did neither cross-slip nor reach the crack when it
was started from ∆x ≈ 11 nm in front of the crack. At an initial distance of ∆x = 8 nm,
however, the dislocation immediately cross-slipped on the (c) plane, see Fig. 11.23. Cross-slip
took place by the Fleischer mechanism. The local curvature of BD(a) before cross-slip led to
one acute and one obtuse angle with the cross-slipped dislocation.
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D γB
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Figure 11.23: Snapshots from the simulation of a screw dislocation with b = BD(a) initially po-
sitioned ∆x = 8 nm in front of the crack tip at 0.88ǫG (large sample, plane stress, crack blunted by
one atomic layer). Only atoms with increased potential energy are shown. The dislocation cross-slips
on the (c) plane by the Fleischer mechanism. However, the cross-slip initially occurs on two adjacent
planes, forming an acute and an obtuse angle with the primary plane, see inset in b). The smaller
section of the cross slipped dislocation shrinks and the dislocation moves only on one cross-slip plane,
see c).

Screw dislocations were also simulated in configurations under plane strain conditions.
However, even at an initial distance from the crack tip of ∆x = 8 nm and 0.95ǫG the screw
dislocation with b = DB did not reach the crack tip, but swung only back and forth.

11.2.1.4 Inclined 15◦ dislocations

Inclined 15◦ dislocations with b = ±DB were simulated in the large sample under plane
stress conditions at 0.88ǫG and initial distances of ∆x = 10 nm and ∆x = 5 nm.

At ∆x = 10 nm, the dislocation DB(a) was just swinging in the stress field of the crack.
At ∆x = 5 nm, the dislocation started to cross-slip relatively far away from the crack tip,
as shown in Fig. 11.24. When the dislocation cut the crack front the lower part of the
dislocation also cross-slipped on (c), where it merged with the previously cross-slipped part
of the dislocation.

The same dislocation with opposite Burgers vector is shown in Fig. 11.25. The dislocation
also cross-slipped relatively far away from the crack tip.The cross-slipped part of the disloca-
tion cut the crack tip and expanded along the upper crack surface. The non cross-slipped part
of the dislocation normal to the crack front was subjected to the ”unzipping” mechanism, as
displayed in Fig. 11.5
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Figure 11.24: Snapshots from the simulation of a 15◦ dislocation with b = DB(a) initially positioned
∆x = 5 nm in front of the crack tip at 0.88ǫG (large sample, plane stress, crack blunted by one layer).
Cross-slip by the Fleischer mechanism started relatively far away from the crack front (a), however,
the dislocation also cross-slipped at the crack surface (b). The two cross-slipped dislocations merge in
(c). Only atoms with increased potential energy are shown.
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Figure 11.25: Snapshots from the simulation of a 15◦ dislocation with b = BD(a) initially positioned
∆x = 5 nm in front of the crack tip at 0.88ǫG (large sample, plane stress, crack blunted by one layer).
In a) the dislocation cross-slips on the (c) plane towards the crack. Cutting of the crack front by the
cross-slipped part of the lower dislocation did not lead to any further dislocation generation. Only
atoms with increased potential energy are shown.
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11.2.1.5 Horizontal edge dislocation, b = ±DC

All previously simulations were performed on dislocations with Burgers vector b = ±DB.
Simulations with b = ±DC are reported here and in sec. 11.4. Note that these Burgers vectors
have not been observed in the experiments on γ-oriented cracks in thin silicon wavers [153].

The results of the simulation of an horizontal edge dislocation with Burgers vector b = DC
initially positioned ∆y = 5 nm below a blunted crack in the large sample at a plane stress
load of 0.88ǫG are shown in Fig. 11.26. The starting configuration of the dislocation was
already strongly bowed by the action of the image forces caused by the fixed box walls. The
characteristic features of this simulations were the change of the glide plane of the leading
partial dislocation Dα → Dγ + αγ upon contact with the crack tip, and the stimulated
emission of δC partial dislocations onto the (d)-plane, see Fig. 11.26.
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Figure 11.26: Snapshots from the simulation of the edge dislocation with b = DC(a) initially
positioned ∆y = 5 nm below the crack tip at 0.88ǫG (large sample, plane stress conditions, crack
blunted by one layer). Only atoms with increased potential energy are shown. In b) the leading
partial dislocation changed its glide plane to the (c) plane, leaving a stair rod dislocation behind.
Stimulated emission on the (d) plane can be seen in c) and d).
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11.2.2 Incoming dislocations on the (c)-plane

The interaction of dislocations on the (c)-plane with a crack were studied in the large sample
under plane stress conditions for 30◦ and 60◦ dislocations with b = DB. An additional
simulation was performed with the 30◦ dislocation under plane strain conditions. The 30◦

dislocation was initially positioned at a distance ∆x = 9 nm in front of the crack, the 60◦

dislocations BD(c) were initially placed at a distance ∆y = 6 nm above and below the crack.
Fig. 11.27 shows the results for the 30◦ dislocation and for the 60◦ dislocation BD(c)

situated above the crack. Like in the simulation of the 60◦ dislocation positioned below the
crack (not shown), no stimulated dislocation emission, cross-slip or other dislocation reaction
occurred. This was also the case for the 30◦ dislocation under plane strain conditions at
0.95ǫG. The dislocations were however subjected to large driving forces leading even to
transonic velocities for the 30◦ dislocations.
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Figure 11.27: Snapshots from simulations of dislocations b = BD(c) interacting with the crack at
0.88ǫG (large sample, plane stress, crack blunted by one layer). Only atoms with increased potential
energy are shown. No cross-slip or stimulated dislocation emission occurred. a) 30◦ dislocation and
∆x = 9 nm b) 60◦ dislocation and ∆y = 6 nm
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11.3 Sharp cracks

Atomically sharp cracks are stable within a very narrow loading range, see chapter 10.1.
Sharp cracks can thus react to the stress field of a dislocation by opening up and propagating
or by closing. The crack front usually becomes curved when subjected to the inhomogeneous
stress field of a dislocation. Sharp cracks should therefore add to the complexity of the
dislocation-crack interaction. Only a few exemplary simulations were performed on sharp
cracks.

11.3.1 Large sample, plane stress

Simulations under plane stress conditions were performed with a 60◦ and a screw dislocation
with b = DB(a) at 0.995ǫG and ∆x = 6 nm.

Fig. 11.28 shows the snapshots from the simulation of the 60◦ dislocation DB(a). At
the beginning the same processes as in case of a blunted crack (see e.g. Fig. 11.6) took
place: The leading partial dislocation changed its glide plane (Dα → Dβ + αβ) and the
emission of a partial dislocation loop Dγ(c) was stimulated. However, as the crack advanced
in the anti-shielded region of the crack front, Dβ slipped back. At the intersection point of
the advancing crack front and DB(a) a partial dislocation loop Bδ(d) was nucleated. This
dislocation reacted with αB to a stair rod dislocation αδ. The crack closed in the region
shielded by Dγ, and further dislocations (Bδ(d) and Dγ(c)) were emitted by the moving
crack.
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Figure 11.28: Snapshots of the 60◦ dislocation DB interacting with a sharp crack at 0.995ǫG (plane
stress, ∆x = 6 nm). Only atoms with increased potential energy are shown.

The interaction of a screw dislocation with b = DB initially placed ∆x = 6 nm in front
of the sharp crack tip at a plane stress load of 0.995ǫG is shown in Fig. 11.29. As in the
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Figure 11.29: Snapshots of the screw dislocation DB interacting with a sharp crack at 0.995ǫG

(plane stress,∆x = 6 nm). One arm of the non cross-slipped part of the incoming dislocation is pinned
at the crack tip and acts as pole of a spiral source.
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previous simulations with blunted cracks (Figs. 11.21 - 11.23), the dislocation was attracted
by the crack surface. However, at the high stress caused by the loading close to the Griffith
load the dislocation cross-slipped towards the crack. Like in Fig. 11.12 the cross-slip occurred
on two adjacent slip planes, and the so created jog produced a row of vacancies, Fig. 11.29a.
The cross-slipped dislocation cut the crack surface while a part of the incoming dislocation
annihilated at the crack surface, Fig. 11.29b. The non cross-slipped part of the dislocation
moved towards the crack tip where it triggered the nucleation of new dislocations; amongst
others two partial dislocations Dγ on the (c)-plane and BC(a) on the same glide plane as the
incoming dislocation. More important, however, is the fact that the cross-slipped dislocation
which cut the crack front bowed over its non-cross-slipped arm and cut the crack front again.
The non-cross-slipped arm of the original dislocation at the crack tip thus served as pinning
point of a spiral source, see Fig. 11.29b-c . A possible configuration for a similar spiral source
can also be seen in Fig. 11.23, however in the Fig. 11.29 the spiral source operated for more
than one entire cycle and repeated operation could have been possible.

11.3.2 Large sample, plane strain

Simulations under plane strain conditions were performed in the large system at 0.998ǫG with
30◦ dislocations with b = DB situated ∆y = 24 nm below and ∆y = 9 and 24 nm above
the crack and with b = BD situated ∆y = 16 nm above the crack. Furthermore a screw
dislocation with b = DB situated ∆x = 9 nm in front of the crack was simulated.

The screw dislocation at ∆x = 9 nm and the 30◦ dislocations b = DB at ∆y = 9 nm and
∆y = 24 nm did not reach the crack front. Instead the dislocations swung in the stress field
of the cracks, which in turn reacted onto the stress field of the dislocation. Such a process is
shown in Fig. 11.30 for the screw dislocation.
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Figure 11.30: Snapshots of the screw dislocation DB interacting with a sharp crack at 0.998ǫG

(plane strain, ∆x ≈ 8 nm). The motion of the dislocation and the crack are coupled by their stress
fields.

The processes during the interaction of the 30◦ dislocation DB starting from ∆y = 24
nm below the crack are shown in Fig. 11.31. The behavior of the dislocation, including the
change of the glide plane of Dα → Dβ + αβ, is the same as in the case of a blunted crack
tip, see Fig. 11.19. However, the significant crack closure led to a local crack front orientation
parallel to Bα. There the dislocation loops αC and αD were emitted on the (a)-plane. The
nucleation of this dislocations is combined with the emission of Cδ and Dγ which led to the
creation of stair rod dislocations, see the inset in Fig. 11.31c. This process corresponds to the
process in Fig. 10.9 during the interaction of a sharp crack with a void.

Figure 11.32 shows snapshots from the simulation of the 30◦ dislocation BD(a) starting
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Figure 11.31: Snapshots of the 30◦ dislocation DB interacting with a sharp crack at 0.998ǫG (plane
strain, ∆y = 24 nm). Only atoms with increased potential energy are shown. Crack closure in the
shielded region leads to a local [11̄2̄] orientation of the crack front. On this part of the crack front
blunting dislocation half loops are emitted which are linked to dislocation on the inclined plane, see
inset in c) in which the atoms are colored according to their CNA value.

at ∆y = 16 nm above the crack. The dislocation came very close to the crack tip where it
reached screw orientation and cross-slipped. This cross-slip at a sharp crack and 0.998ǫG was
the only time that cross-slip occurred under plane strain loading. As stated at the beginning
of this chapter the cross-slip tendency is higher when the stress state is not pure plane strain.
The cross slip in Fig. 11.31 indicates that cross slip onto the inclined planes can occur also
under plane strain conditions.

x

y

z

Dα

Bα
ξ

γD

γ

a) t=0 ps b) t=16 ps
30 dislocation, b=BD

c) t=32 ps

B

Figure 11.32: Snapshots of the 30◦ dislocation BD interacting with a sharp crack at 0.998ǫG (plane
strain, ∆y = 16 nm). Only atoms with increased potential energy are shown. This example shows
that cross-slip onto the inclined glide planes is also possible under plane strain conditions where the
resolved shear stress on the (c) and (d)-planes is not as high as in the plane stress case.
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Figure 11.33: Snapshots of the interaction between a running crack and the 60◦ dislocation DB(a)
at a plane strain of 1.04ǫG (∆x = 8 nm). Only atoms with increased potential energy are shown. The
intersection of the crack with the dislocation leads to crack front segments with orientations along
Bα and βA, from which partial dislocation half loops like Dα are emitted. The process of dislocation
emission is the same as in Fig. 10.9.

11.4 Dynamic cracks and dislocations

The interaction of a propagating crack with the 60◦ dislocation DB(a) placed at ∆x = 8 nm
in front of the crack was studied in the large sample under plane strain conditions and an
overload of 1.04ǫG. The interaction of a sharp crack at an overload of 1.05ǫG with a vertical
screw dislocation with b = DC (∆x = 10 nm) was studied under plane strain conditions in the
small sample (50× 25× 25nm3). These studies were motivated by the observation that sharp
propagating cracks can develop from blunted crack tips in the stress field of dislocations, and
that these cracks can emit dislocations towards the incoming dislocation (see e.g. Fig. 11.10).

The interaction of an atomically sharp crack with the 60◦ DB(a) at an overload of 1.04ǫG is
shown in Fig. 11.33. The simulation is equivalent to the one shown in Fig. 11.28 just at higher
load. The initial processes (Fig. 11.33a) were similar to the ”unzipping” process in Fig. 11.28
and Fig. 11.5. The velocity with which the dislocation approached the crack (vi ≈ 17 ± 5
Å/ps) was about three times faster than the crack velocity at that time (v ≈ 5± 2.55 Å/ps).
By the interaction with the dislocation and the emission of dislocations the crack front was
locally arrested. The rest of the crack front, however, kept propagating. The crack front
direction thus became locally parallel to the Bα and βA directions. This enabled multiple
emission of dislocation half loops on the (a) and (b) planes, which were coupled by stair rod
dislocations to partial dislocations on the (c) and (d). This process is almost identical to the
emission of dislocations in the simulation of the crack-void interaction, Fig. 10.9.

The vertical screw dislocation with b = DC does not experience any driving force in the
stress field of the γ-crack. This dislocation was therefore used to study how the presence
of the dislocation would affect a propagating crack. Fig. 11.34 shows that the stress field
of the dislocation led to an instability of the crack front which caused the emission of a
partial dislocation on the (c)-plane towards the dislocation. The emitted dislocations reacted
with Dα of the screw dislocation forming γα, which allowed Dα to interact with the crack
front. Emission of the trailing partial dislocation γB and the subsequent development of a
full dislocation loop unloaded the whole small sample, and crack propagation stopped. No
emission of dislocations on the blunting planes (a) and (b) was observed. The same crack
under the same load without dislocation propagated at a constant velocity v ≈ 3± 0.25 Å/ps
without showing signs of instability or dislocation emission.
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Figure 11.34: Snapshots of the interaction between a running crack and the screw dislocation DC(a)
at a plane strain of 1.05ǫG (small sample: 50× 25× 25nm3, ∆x = 10 nm). Only atoms with increased
potential energy are shown. In the stress field of the dislocation the running crack emits a partial
dislocation. The same crack without dislocation propagated without emission of dislocations.



Chapter 12

Discussion

The study of crack front stability, the simulations of propagating cracks and their interaction
with obstacles, and the analysis of the interactions between preexisting dislocations and cracks
showed a plentitude of different phenomena. The aim of this discussion is not to provide de-
tailed explanations for the specific effects, but rather to deduce generic principles which can
be applied to mesoscopic models. Furthermore, the limitations of the MD method only allow
for a qualitative comparison with the – upto now scarce – experimental literature.

The discussion is organized as follows: The next section critically reviews the consequences
of various aspects of the present simulations for the discussion of the results. Sec. 12.2
summarizes and classifies the observations from the atomistic simulations. The driving forces
on dislocations in the stress field of a semi-infinite crack are analyzed in sec. 12.3. These
can be used to discuss the observed mechanism independent of the specific simulation set-
up. Atomistic details of the dislocation-crack interactions are discussed in sec. 12.4. The
differences between the model material and the experiments in Si are addressed in sec. 12.5,
which closes with a qualitative comparison of the simulations to experiments.

12.1 Simulation specific aspects

It is clear that MD simulations are not able to model the full complexity inherent to the
different time and length scales involved in fracture processes. Specific aspects of the present
simulations which are relevant for the interpretation of the simulation results are addressed
here.

Potential A general feature of the simulations was the tendency towards twin formation
by emission of partial dislocations on adjacent planes, and the frequent observation of single
partial dislocations. As mentioned in sec. 10.4 and chap. 11 this is related to the characteristics
of the potential [31, 297]. I.e. the same simulations with different potentials can lead to the
formation of full dislocations and no twinning. Similarly the characteristics of dislocation
emission and the tendency towards cross-slip should depend on the potential.

Simulated time Only relatively short time periods were simulated (the longest simu-
lation was 80 ps). Therefore slower processes could not be observed. Furthermore, processes

174
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like the emission of trailing partials, which require that a dislocation has moved a certain
distance from the crack tip may have been missed.

Temperature All simulations were performed without temperature control at an initial
temperature of 0 K. Therefore processes requiring thermal activation could not be recorded.
Simulation of fracture at elevated temperatures is possible [223], but outside the scope of this
thesis.

Size limitations The most severe limitations are due to the restrictions on the number
of atoms that can reasonably be simulateda, leading to limited system sizes. As already
mentioned, the size limitation has several consequences. The large strains required by the
Griffith criterion can lead to artefacts. The pinning of the dislocation at the box boundaries
has a significant influence on the possible dislocation processes. The reflection of sound waves
and the image forces caused by the boundary conditions furthermore influence the dislocation
behavior. Some aspects of the influence of the boundary conditions on the dislocation - crack
interaction are discussed in appendix C.

An other aspect is that in relation to the small system size even displacements by only 1b
are relatively large. A blunting by one atomic layer is extremely small on the experimental
scale, it is however still noticeable if the entire system has a height of 100 layers (small sys-
tem). The emission of a single dislocation does not significantly reduce the load on a crack
tip under experimental conditions. Incontrast, the expansion of a full dislocation loop in the
entire small system decreases the strain by about 1%.

All these limitations have to be considered when discussing the simulation results. The
independence of the processes from system size and boundary conditions as well as physical
reasoning based on the crystallography or stress field can however allow to draw generalizable
conclusions.

12.2 Interaction mechanisms between dislocations and cracks

The interplay between cracks and dislocations was studied in the following settings:

• Nucleation of dislocations from static cracks

• Nucleation of dislocations from fast, propagating cracks

• Generation of dislocations during the interaction of a propagating crack with static
obstacles

• Interaction between mobile dislocations with static cracks.

Whereas the first two cases have previously been studied to some extent by atomistic sim-
ulations (see sec. 2.2.3), the latter have not yet been addressed by simulations. Although
similar processes might be active in these cases, the emission of dislocations from a propa-
gating crack is conceptually different from the nucleation of dislocations from static cracks.

aGiven the computational resources, larger simulation runs are possible. However, the amount of data
which has to be analyzed becomes a critical parameter. A typical simulation run with about 38 million atoms
generates about 150 GB of data.
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The nucleation and propagation of dislocations at static cracks determines the initial fracture
toughness KIc, possibly as a function of loading rate K̇ and temperature T . This case is
addressed by most BDT models. The emission of dislocations from propagating cracks, either
by dynamic instability or by the interaction with obstacles, in contrast, is related to the crack
arrest toughness KIa. Although of greatest technical relevance, the atomistic and mesoscopic
processes leading to the arrest of propagating cracks by the evolution of a plastic zone are
not fully understood. In the following the processes in the simulations of the above cases are
summarized and discussed.

12.2.1 Dislocation emission from static cracks

Static cracks blunted by removal of one atomic layer are relatively stable against the emission
of dislocations. At loads larger than the Griffith load, brittle cleavage rather than dislocation
emission takes place. A step created by the relative displacement of atomic planes at the
crack tip by b does not lead to the emission of dislocations at 0.95ǫG. Similarly the strain
field of a dislocation placed at the blunted crack tip does not lead to dislocation emission.
Larger displacements of the crack fronts leads to dislocation emission on the inclined (c) and
(d) planes. Relative displacements produced by cuts along the (a) plane produced less stable
crack configurations compared to cracks along the (d) plane, see sec. 10.3.

The step height of 2−3b at which a dislocation nucleated can be compared with the nudged
elastic band calculation of dislocation loop emission on an inclined plane (configuration (a)
in Fig. 2.11) by Zhu et al. [188]. At the saddle point configuration their partial dislocation
in copper had a forward and lateral extension of 10 and 30b, respectively. The corresponding
activation barrier is ∆Eact = 1.1 eV, such homogeneous dislocation nucleation is therefore un-
likely to take place in experiments [188]. The presence of heterogeneities along the crack front
should significantly reduce the activation energy for (inhomogeneous) dislocation nucleation,
but small disturbances (1 − 2b) are not necessarily sufficient.

12.2.2 Dislocation emission from propagating cracks

Perfect atomically sharp cracks propagated by brittle cleavage upto loads of 1.1ǫG. Homoge-
neous nucleation of dislocations on all glide planes occurred along the crack front at 1.2ǫG.
This process is different from the emission of partial dislocation loops from static cracks.
Almost all dislocations on the (c) and (d) planes were connected by stair-rod dislocations
with blunting dislocations on the (a) and (b) planes. Such dislocation emission has not been
reported in the previous studies on γ-oriented cracks in fcc [184,187]. These simulations, how-
ever were performed at very high loads or loading rates. Therefore the dislocation nucleation
process might not be comparable to the present simulations. However, it has to be mentioned
that large differences in the nature of the emitted dislocations have been observed between
Al and Cu [187]. The observed type of coupled dislocation emission can therefore be even-
tually specific to the potential. The influence of material properties like elastic anisotropy,
generalized stacking fault energies and bonding characteristics on dislocation emission from
cracks in three dimensions has not been studied in detail.

Two processes can be envisaged that generate joint dislocations like Cδ + δα + αC: the
nucleation of a blunting dislocation αC at local variations of the crack front orientation
which subsequently cross-slips onto the (d)-plane, or the creation of a nucleus from which
dislocations on both planes grow simultaneously. Analysis of the simulations did not allow to
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determine which process is active. Defects like steps on the propagating crack front can lead
to localized dislocation emission at lower loads and velocities. The process, however, is the
same as for homogeneous nucleation. The crack front orientation is clearly changed by this
process.

12.2.3 Dislocation generation during crack-obstacle interactions

The interaction of the propagating crack with a void and the dislocation DB(a) in the large
sample caused the massive emission of partial dislocations on the blunting planes (a) and (b).
These dislocations were coupled to dislocations on the (c) and (d) planes like the dislocations
emitted from propagating cracks. The symmetric upwards and downwards emission of dis-
locations on (a) and (b) leads to an effective blunting of the crack. As a consequence, the
propagation of the crack stops and the crack assumes locally an orientation parallel to Bα or
βA. As the unaffected crack region keeps propagating and the blunting dislocations expand
further, the crack front becomes ’V’-shaped.

This was not the case for the crack interacting at low overload with the dislocation DC(a).
Here the expansion of a full dislocation loop effectively unloaded the small sample and crack
propagation stopped also in the unaffected crack regions.

The emission of blunting dislocations from propagating cracks which due to the interaction
with obstacles assume local crack front orientations which are contained in the blunting planes
should be a general phenomenon for a crack in the γ-orientation. The observed coupling to
non-blunting dislocations may be specific to the present simulations and is not required for
the emission of blunting dislocations.

12.2.4 Interactions between preexisting dislocations and cracks

Most of the processes involved in the dislocation - crack interaction are qualitatively different
from the above described processes. The following mechanisms relevant to crack tip plasticity
could be identified from the simulations of dislocation - crack interactions:

Stimulated emission The emission of a dislocation at the intersection of dislocation
and crack front was relatively frequently observed (see e.g. Fig. 11.6), however only for incom-
ing dislocations on the (a)-planeb and under plane stress conditions. From the simulations
with b = DB(a) only the horizontal 30◦ dislocation did not lead to stimulated emission. Par-
tial as well as full dislocation were emitted on both the (c) and (d) planes. Their nucleation
and propagation is not coupled to the existence of blunting dislocations. One incoming dislo-
cation can stimulate the emission of multiple dislocations, and activate both glide planes (c)
and (d). The number of dislocations generated by stimulated emission increases with increas-
ing load. The emission of dislocation loops efficiently reduces the strain energy stored in the
system, see Fig. 11.18. Whether stimulated emission takes place depends on the impinging
velocity of the dislocation. Slow dislocations do not trigger dislocation nucleation, but fast
dislocations can generate new ones. This indicates that stimulated dislocation emission still
requires the overcoming of a significant activation barrier. In experiments, thermal activation
should facilitate stimulated emission.

bOnly in one case in the small system nucleation on top of the stacking fault produced by an incoming
dislocation on the (c)-plane was observed, however, not directly after impact of the dislocation, see Fig. 11.4.
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Partial cross-slip The change of glide plane of one partial dislocation according to
e.g. Dα → Dβ + βα occurred in nearly all simulations where the dislocation cut the crack
front, see e.g. Fig. 11.5, but also Fig. 11.26. This process only takes place on one side of
the crack, highlighting the general asymmetry of dislocation-crack interactions with respect
to the cleavage plane. The resulting stair-rod dislocation at the crack tip frequently acted
as nucleus for the nucleation of partial dislocations. They can lead to an ”unzipping” of the
initial dislocation into two new dislocations according to DB(a) → DB(c) + CB(a), see e.g.
Fig. 11.5. The generation of new dislocation line length by this process, however, takes place
mostly behind the crack tip. It therefore does not efficiently shield the crack from the stressed
region in front of the crack tip.

Cross-slip Some dislocations on the (a)-plane which reached screw orientation in front
of the crack cross-slipped onto the (c)-plane, see e.g. Fig. 11.12. Cross-slip always proceeded
by the Fleischer mechanism, i.e. without prior constriction of the dislocation. In most
cases cross-slip occurred through the acute angle, in some cases the cross-slipped dislocation
formed an acute and an obtuse angle with the remaining dislocation on the initial glide plane.
Cross-slip took place preferably under plane stress conditions, cross-slip under plane strain
conditions was observed only in one simulation. Cross-slip occurred towards and away from
the crack, and the cross slipped part of the dislocation could intersect the crack front at a
different point than the original dislocation. Cross-slip of a kinked dislocation line by the
Fleischer mechanism leads to extended jogs on the cross-slip plane. Upon glide these jogs
produced rows of vacancies. Cross-slip by the Fleischer mechanism has already been reported
in atomistic simulations at high stresses [34] and in fracture simulations [35]. The Fleischer
mechanism seems therefore a viable alternative to the Friedel-Escaig mechanism of cross-slip,
at least at high stresses and low temperatures.

Spiral source Under certain circumstances cross-slip lead to the creation of a spiral
source, see e.g. Fig. 11.29. This can be the case e.g. for the screw dislocation DB(a) which
is attracted towards the crack surface and repelled by the crack tip. It therefore intersects
the crack surface behind the crack tip. If a part of the dislocation cross-slips above the crack
plane, it will cut the crack front. The non-cross-slipped part which ends on the crack surface
can then act as the pole of a spiral source around which the cross-slipped dislocation on the
(c)-plane is revolving. Such a configuration for a spiral sources can also be seen in Fig. 11.21.
However, in this and other configurations the sources did not operate for one full cycle as the
spiral was blocked by stacking faults on the (d)-plane. Only the spiral source in Fig. 11.29
operated for one entire cycle.

Formation of sharp cracks For blunted cracks close to the Griffith load, the stress
field of a dislocation lead to the development of atomically sharp cracks in the anti-shielded
region of the crack front, see e.g. Fig. 11.6. Crack closure in the shielded region, however, is
not possible for the blunted cracks.

All but the last of the above mechanisms can be active for dislocations interacting with
both, blunted or sharp cracks. Dislocations which interacted with atomically sharp cracks –
either already existent or formed in the presence of the dislocation – showed two additional
mechanisms:
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Induced dislocation emission The stress field of a dislocation can induce the emission
of a dislocation on the (c) or (d)-plane from a propagating sharp crack towards the dislocation,
see e.g. Fig. 11.34. The dislocation emission process is different from that of a propagating
unstable crack in sofar that it is localized and not coupled to dislocations on the blunting
planes. The same crack at the same load does not emit dislocations without presence of the
dislocation stress field.

Crack front reorientation The stress field of the incoming dislocation or of emitted
dislocations can lead to a curved crack front. If the crack front direction attains an orienta-
tion which lies within the vertical, blunting slip planes (a) or (b), the same processes like in
sec. 12.2.3 can be active.

Depending on the nature of the dislocation and the crack and the initial position of the
dislocation, these mechanisms were able to produce pronounced crack tip plasticity, e.g. by
creating within 30 ps three full dislocations and two partial dislocations of significant line
length (see Fig. 11.29). The overall dislocation activity increases with increasing load and is
higher under plane-stress conditions than for plane-strain conditions.

12.3 Dislocations in the stress field of cracks

In sec. 10.2 the stress fields of the cracks under plane strain and plane stress-like loading
conditions were determined from the atomistic calculations. As expected, due to the boundary
conditions the atomistic stress fields are qualitatively and quantitatively different from the
anisotropic solution for a semi-infinite crack in an infinite, linear elastic continuum [295]. The
consideration of the Poisson contraction reduces the z-components of the stress tensor σ. The
simulations modeling plane stress loading show however still plane strain characteristics. The
mathematical idealization of plane stress conditions can not be fully reached in large scale,
three dimensional simulations.

The atomistic stress fields as well as the stress field of the continuum theory can be used
to calculate the glide component of the Peach-Koehler force [12]

FPK =
[(b · σ) × ξ] · [ξ × (b× ξ)]

|b × ξ| (12.1)

that a dislocation segment of unit length would experience at any given point within the
sample.c With the exception of the region close to the boundaries, the stress field of the
straight crack front is independent of z. It is therefore sufficient to calculate FPK on a plane
normal to the z-axis.d The magnitude FPK of the glide component of the Peach-Koehler
force caused by the stress field of the simulated cracks was calculated under plane strain and
plane stress conditions with the matlab program package DISPROCRAST [299]. The results
are shown in Figs. 12.1 - 12.4. These figures show also the glide force calculated with the
anisotropic plane strain and plane stress solution for the stress field of a semi-infinite crack

cThis approach neglects however the image force on the dislocation caused by the free fracture surfaces.
An inclusion of these forces for arbitrary oriented dislocations would require a numerical treatment.

dThis plane does not correspond to a glide plane. However, only the distance of the dislocation segment
from the crack front determines the stress at the location of the dislocation, not the projected distance on the
glide plane. A projection on the glide plane is therefore not necessary.



180 CHAPTER 12. DISCUSSION

Figure 12.1: Glide component FPK of the Peach-Koehler force on dislocations on the (a)-plane
calculated from the crack stress field under plane strain conditions. The top row shows the results
for the crack stress field calculated with anisotropic elasticity theory (KI for ǫ = 0.018). The bottom
row shows FPK calculated from the stress determined from the relaxed crack in the large sample
(ǫ = 0.018, crack blunted by one layer). The dislocation DC(a) (left) belongs to the symmetry class
III, DB(a) represents class I. Note the different color scales.

(compare also to Fig. 10.4). The plots include slip systems from each of the classes I-III of
Tab. 11.1. Fig. 12.1 and Fig. 12.3 for example show that DC(a) and AB(c) indeed belong
to the same symmetry class (III) of slip systems with respect to the driving forces caused by
γ-oriented cracks.

The differences between the stress fields derived from the atomistic calculations and from
the continuum solution are reflected in the Peach-Koehler force. The main characteristics
of the driving force near the crack tip are however present in the atomistic simulations, see
Figs. 12.1 - 12.4. Although including the Poisson contraction reduced the σzz component of
the crack tip stress field, Figs. 12.2 and 12.4 show that the characteristics of the glide force is
still dominated by the plane strain conditions. The boundary conditions modeling the plane
stress conditions however increased the driving force for dislocations like DB(c) compared to
the plane strain case. This led to the higher tendency towards cross-slip in the simulations
modeling plane stress conditions compared to the simulations under plane strain loading, in
agreement with the ideal plane stress case.
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Figure 12.2: Same as Fig. 12.1 but the top row shows the glide force calculated from the anisotropic
elastic solution for plane stress conditions. The lower row shows the results obtained from the stress
field of the simulation using plane stress-like boundary conditions (ǫ = 0.024, large sample, crack
blunted by one layer).

The plots of the glide force in Figs. 12.1 - 12.4 can be used to analyze the motion of
the incoming dislocations in chapter 11. For this purpose the absolute value of FPK is not
important. The existence of regions of different sign of the glide force already provides some
qualitative understanding of the behavior of the dislocations in the stress field of the crack.
The relative magnitude of FPK on different slip systems can be used to asses the tendency
of dislocation segments in screw orientation to cross-slip to an other plane. By assuming
that a screw dislocation will cross-slip to the plane with the highest resolved shear stress,
|FPK(a)| − |FPK(c)| can be used to quantify this tendency. Fig. 12.5 shows the cross-slip
tendency for the dislocation BD. For both, plane strain and plane stress conditions, the dis-
location experiences nearly everywhere a higher driving force on the (c) plane. The same kind
of reasoning can be used to study the tendency towards partial cross-slip according to e.g.
αC → δC + αδ. The difference in glide force between αC(a) and δC(d) is shown in Fig. 12.6.
From this figure it can be seen that indeed the blunting partial dislocations emitted on the
(a) and (b)-planes, e.g. by a propagating crack (see Fig. 10.8), should have a strong tendency
to change their glide plane.
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Figure 12.3: Same as Fig. 12.1 for dislocations on the (c)-plane (plane strain). AB(c) (left) belongs
to the same class III as DC(a) from Fig. 12.1. DB(c) is part of symmetry class II.

By using the continuum solution to analyze the processes in our simulations rather than
the FPK directly derived from the atomistic calculations, the interpretation of the simulations
can be generalized to γ-cracks in materials with the same slip systems.e In the following, the
above described qualitative analysis is illustrated using some of the simulation results. In
all cases the continuum solution for the plane strain case are used, as the simulations using
boundary conditions modeling the plane stress case were still dominated by plane strain.

Vertical 60◦ dislocation b = DB(a) in front of the crack Fig. 12.1 shows the glide
force acting on dislocation segments on the (a)-plane with b = DB. The straight dislocation
line in front of the crack is attracted towards the crack above and below the crack plane. The
shape of the dislocation, see e.g. Fig. 11.9, is bowed out according to these forces, with a
bulge where the dislocation experiences a repulsive force. Upon contact with the crack front,
the lower part of the dislocation still experiences a positive glide force while the upper part
of the dislocation stopped at the boundary of the region where the glide force changes its
sign. At the crack surface, the leading partial dislocation can change its glide plane. This is

eThe stress field of the crack depends however on the anisotropy of the crystal. This can lead to small
differences in the relative magnitude of FPK , however without changing the main characteristics.
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Figure 12.4: Same as Fig. 12.2 for dislocations on the (c)-plane (plane stress).

favored by the higher driving force in this region of the crack on Dβ(b) compared to Dβ(b),
see Fig. 12.6.

The continuum analysis can of course not provide any insight on the atomistic processes
leading to the stimulated emission of dislocation loops. However, it shows that the emitted
loops, e.g. CB(d) in Fig. 11.6, experience a large driving force and can expand over a large
portion of the glide plane, see Fig. 12.3 (CB(d) is mirror symmetric to the depicted DB(c),
see Tab. 11.1). The emission of dislocations on the (c) and (d) planes is more favorable under
plane stress-like loading than under plane strain conditions, compare Figs. 12.3 and 12.4.

Horizontal 30◦ dislocations b = ±DB(a) above and below the crack Fig. 12.1
can also be used to analyze the 30◦ dislocations. The horizontal dislocation b = DB(a) above
the crack, Fig. 11.14, experiences a downwards acting (negative) glide force towards the crack
surface and is repelled by the crack tip. The same dislocation positioned below the crack,
Fig 11.15, experiences an upward (positive) attraction by the crack tip and a repulsion by
the crack surface. As can be seen from Fig. 12.1 the acting forces are not mirror symmetric
with respect to the cleavage plane. The repulsion directly at the crack tip is different for the
two dislocations, their behavior at the crack tip was therefore also different. Whereas the
trailing partial of the dislocation above the crack plane changed its glide plane to (b), the
same dislocation below the crack cross-slipped on the (c)-plane. The cross-slip took place



184 CHAPTER 12. DISCUSSION

|F
PK

 (a)| − |F
PK

 (c)| for b = D B

x [Å]
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y
[Å
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[Å

]

 

 

0 100 200 300 400 500 600 700
0

100

200

300

400

500

600

700

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
(a)

(c)

|F
PK

(Dα(a))| − |F
PK

(Dβ(b))| 

x [Å]
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[Å

]

 

 

0 100 200 300 400 500 600 700
0

100

200

300

400

500

600

700

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Dα(a)

Dβ(b)

Figure 12.6: Difference in the absolute magnitude of the Peach-Koehler force FPK on partial dis-
locations on different glide planes calculated from the continuum solution of a semi-infinite crack
under plane strain. The plots indicate the tendency that a partial dislocation changes its glide plane
according to αC → δC + αδ (left) or Dα → Dβ + βα (right).

in the region expected from Fig. 12.5. Cross-slip is also favorable above the crack, however,
the initially horizontal dislocation = DB(a) can not reach the screw orientation above the
crack. The differences between the simulations under plane strain conditions and under the
conditions modeling plane stress-like loading can be rationalized by the different development
of the stress field in front of the crack in the atomistic simulations, see Figs. 12.1 and 12.2.

Inclined screw dislocation b = ±DB(a) The importance of the position of the
inclined screw dislocation with respect to the crack front can be directly seen in Fig. 12.1.
Depending on the portion of the dislocation line which resides in an attractive region (corre-
sponding e.g. to a negative force for b = DB(a) above the crack), the dislocation is either
attracted or repelled. The location of the pinning points also determines whether the disloca-
tion within the stress field of the crack can assume screw orientation in the regions favorable
for cross-slip, see Fig. 12.5.
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Dislocations on the (c) plane The (c) and (d) planes are contained in two of the
three symmetry classes of slip systems, see Tab. 11.1. However, only dislocations on (c) and
(d) planes belonging to class II have been observed experimentally, see sec. 2.2.2.1. The
studied dislocation DB(c) belongs to this class. The driving force on this dislocation is
significantly higher on the (c)-plane than on the (a)-plane, especially for the plane stress
case, see Figs. 12.3 and 12.4. This led to the high dislocation velocities in sec. 11.2.2. The
dislocations with b = ±DB(c) experience a glide force of the same sign in most of the glide
plane. The dislocations in the simulation showed no cross-slip or other dislocation processes.
Cross-slip to (a) is only favorable in very small regions in which the dislocations have to
reach screw character, see Fig. 12.5. In the region favorable for cross-slip which is close to
the surface, however, additional effects du to image forces have to be expected.

Conditions favorable for multiple operation of dislocation sources The atom-
istic simulations showed that the creation of an operating spiral source is possible under
certain conditions, see Fig. 11.29. In order to operate multiple times, a dislocation source
should of course not be blocked by other dislocations or stacking faults. However, the back
stress of emitted dislocations is also an important factor for the operation of a source. Dislo-
cations in the stress field of cracks stop in the region where the Peach-Koehler force changes
its sign. Dislocations emitted from a source will thus pile up in these regions leading to an
back stress on the source and eventually to a ”running dry” of the source. Only cross-slip –
which can become favorable in the stress field of a dislocation pile-up – can reduce the back
stress. Multiply operating sources of any type at or near cracks should therefore be found
most probably in slip systems with large regions in which the driving force does not change
its sign. For the γ-crack under plane strain conditions this is only the case for slip systems of
the type DB(c), see Fig. 12.3, which belong to the symmetry class II (see Tab. 11.1). Under
ideal plane stress conditions the system DB(a) (class I) also becomes favorable for multiply
operating dislocation sources, see Fig. 12.2.

The above considerations are only a first step towards a qualitative understanding of
dislocation processes at or near crack tips. By considering only the forces on dislocation
segments caused by the stress field of the crack, several basic aspects are neglected. Besides
the lack of image forces and the effect of the line tension of the dislocation, the reaction of
the crack is neglected. This can include crack opening or closing, crack front reorientation
and the change of the stress field by crack tip blunting. In the above treatment the three
dimensional nature of the problem is furthermore only incorporated by accounting for the
different glide planes.

A further important aspect that is neglected is the existence of multiple dislocations. The
emission of dislocations lead to a shielding of the crack. The stress field of dislocations and
dislocation pile-ups can significantly influence the the behavior of dislocations close to cracks.
A deeper understanding of the role of dislocation-crack interactions for the crack initiation
and crack arrest toughness as well as the brittle-to-ductile transition most probably requires
the modeling of dislocation ensembles close to the crack. The explicit (stimulated) nucleation
of dislocations at crack fronts can however not be directly included in pure continuum models.
Currently, only atomistic calculations can provide dislocation nucleation criteria.
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12.4 Atomistic aspects

A detailed investigation of the atomistic mechanisms during the nucleation of dislocations
from propagating or static cracks is not intended here. The analysis of the reaction pathway
and of the critical configuration for dislocation nucleation at crack tips would require other
methods like the nudged elastic band method (NEB) [300], see also [188]. These methods
require information on realistic starting and end configurations, which could in principle be
determined from the present simulations. It is however unclear how transferable these results
would be with respect to other potentials or materials. In addition there is currently no pos-
sibility to link such kind of detailed atomistic information (in Ni) to available experimental
observations. The study of the atomistic mechanisms of (stimulated) dislocation nucleation is
therefore left for future investigations, and only more general atomistic aspects are addressed
in this section.

One more general question is in how far the Burgers vector and glide plane of the nucleated
dislocation is (energetically) determined by the stress field and to what extent it is (kinetically)
determined by the nature of the defect at the crack front [2]. The effect of the nature of the
dislocation source on the emitted dislocations is usually discussed in the context of dislocation
emission from cleavage ledges [1, 2, 166, 168]. Besides the resolved shear stress the creation
of new surfaces and the line energy of the nucleated dislocation is considered as parameter
determining the character of the dislocation [1]. In the light of our simulations the last aspect
however seems questionable. The nucleation of a full dislocation always proceeds via the
nucleation of two separate partial dislocations. The kinetics of the nucleation process should
therefore be determined by the nucleation barriers of the partial dislocations and not by the
line energy of the full dislocation.

The influence of the nature of the dislocation source on the character of the emitted
dislocation can be clearly seen when comparing the dislocation emission from propagating
cracks, e.g. Fig. 10.8, with that from static cracks, e.g. Figs. 10.5 (blunted crack) or Fig. 11.28
(sharp crack). Although the characteristics of the crack stress field should be similar, different
types of dislocations are nucleated. However, the ”co-nucleation” of dislocations on (a) and
(d)-planes from propagating cracks is probably due to local variations of the crack front
direction which enable the emission of blunting dislocations on the (a) and (b)-planes similar
to the emission in the case of the interaction of the crack front with an obstacle, Fig. 10.9.
The nature of the crack is therefore not directly comparable to a straight, static crack.

A detailed inspection of a stimulated emission process revealed the configuration shown
in Fig. 12.7. It shows that upon contact of the 30◦ dislocation DB(a) with the crack front
three partial dislocation nuclei were generated. They all lie on the inclined planes (c) and
(d). The Burgers vectors Cδ(d) and Dγ(c) experience the same driving force, but not δB(d).
From these nuclei only the dislocation Dγ(c) grew during the following picosecond, whereas
the others disappeared. This is an indication that at least in this case the nature of the defect
created by the incoming dislocation may perhaps determine the type of the glide plane, but
not the Burgers vector of the emitted dislocation.

An other question is why not all types of dislocations led to stimulated dislocation emission
in the simulations. For all the incoming dislocations DB on the (a) plane which cut the crack
front, only the 30◦ dislocation starting from below the crack did not lead to stimulated
dislocation emission. This might be related to the fact that the trailing partial dislocation
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αB contrary to all the other cases did not cut the crack front. This partial dislocation does
not lead to crack opening but only produces a kink in the crack front. This kink might lead
to an energetically unfavorable crack tip configuration that is prone to dislocation emission.

A more general and perhaps more important observation is that incoming dislocations
on the (c) plane did not stimulate dislocation emission. This is the case although they
have the same Burgers vector DB which caused stimulated emission when gliding on the
(a) plane. The dislocations furthermore intersected the crack front with a significant kinetic
energy. One possible explanation for this observation is that the expansion of the dislocations
on the (c)-plane efficiently reduced the strain in the sample. Dislocations DB(c) can in
general relieve more strain than on the (a)-plane, however, in a large sample this effect
should become smaller. An other possible reason lies in the nature of the created defect on
the crack front. The static simulations of cracks cut according to the passage of dislocations
with b = BC(d) and b = DB(a) showed that the cuts made by the dislocation on the (c)
or (d)-plane (according to symmetry class II) were more stable than cuts on the (a)-plane
(symmetry class I) which make an acute angle with the crack front, see sec. 10.3. In this
case, however, the passage of more dislocations, e.g. coming from the same source on (c),
might trigger dislocation emission. An other aspect is that the dislocation with b = BC(d)
did not have to stop a the crack tip (see the plot of the Peach-Koehler force, Fig. 12.3). The
fact that a part of the dislocation DB(a) has to stay at the crack tip might be important for
stimulated emission. This might be even more relevant in the experimental situation, where
thermal activation processes should facilitate stimulated dislocation emission. The first step
to simulate the effect of temperature on a dislocation resting at the crack front, Fig. 10.6
showed however no dislocation emission.

The few experimental results on stimulated emission can not clarify the above questions.
In the γ-orientation, only stimulated emission triggered by dislocations on the (a) and (b)
plane were reported [153]. The sole case of stimulated emission in the β-orientation was
triggered by CB(a) [2, 153]. According to the Peach-Koehler force due to the stress field
of the crack, one part of this dislocation would also have to stop at the crack front. This
dislocation, however, does not lead to the creation of a crack front ledge. This is an indication
that also kinks in the crack front can lead to dislocation emission.

Further modeling and experimental studies are necessary to identify the exact mechanisms
of stimulated dislocation emission and to clarify whether all types of dislocations or only
dislocations on certain slip systems can trigger dislocation emission from crack tips.

12.5 Relation to experiments

In the present study, nickel was used as model material to elucidate fundamental mechanisms
of dislocation-crack interactions. The face-centered cubic metals have the same slip systems as
the diamond-cubic structure of silicon. There are of course significant differences between both
materials. These are addressed in the following section. A discussion of the simulation results
in the context of available experimental results is limited to general aspects like the nature
of the generated dislocations and the characteristics of dislocation source configurations. A
qualitative discussion of these aspects is given in the sections 12.5.2 and 12.5.3.
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Figure 12.7: Detail of the emission process of the partial dislocation Dγ from the simulation of the
30◦ dislocation DB(a) coming from above the crack (0.88ǫG, large sample, plane stress, ∆y = 50 nm,
crack blunted by one layer), see Fig.11.14. Atoms are colored according to their CNA value. The
assumed Burgers vectors of the dislocation nuclei in a) are based on the determination of the slip
vector.
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12.5.1 Nickel versus silicon

In addition to sharing the same slip systems as Si, brittle cleavage of cracks in the γ-orientation
is possible in the Ni-potential. This is not the case for semiempirical potentials for Si [172].
The Nickel potential thus allows to reproduce the basic crystallographic ingredients to model
fracture in Si.

However, the strong tetrahedral bonding in Si results in a more complex dislocation core
structure and higher Peierls stress compared to fcc metals [13]. This results e.g. in a strongly
anisotropic line energy of dislocations which lead to the well-known preferential orientation
of the dislocation line along Peierls valleys [12]. The dislocations in Si therefore do not bow
out as easily as in Ni, and dislocation loops acquire a hexagonal shape. The atomic bonding
in Si furthermore leads to a directional cleavage anisotropy: crack propagation on a {110}
plane is easy along 〈110〉 directions and difficult in the 〈001〉 directions [173]. Therefore
inducing crack front curvature should be more difficult in Si compared to Ni. The bonding
also influences the mobility of dislocations in Si. However, at temperatures close to the brittle-
to-ductile transition temperature (BDTT) dislocations on the glide set in Si are mobile, and
their velocity is fairly isotropic [301]. This aspect is adequately modeled by the simulations
in Ni at 0 K.

Further differences between the simulations in Ni and experiments in Si can arise due to the
stronger elastic anisotropy of Ni compared to Si. The resulting driving forces on dislocations
in the stress field of a crack under plane strain loading calculated with anisotropic elasticity
theory are shown in Fig. 12.8. They show the same characteristics than for Ni (Figs. 12.1 and
12.3). The minor differences between Ni and Si are reflected in the plots for the cross-slip
tendency, Fig. 12.9.

In conclusion, the simulations using Ni as model material should capture most of the
fundamental aspects of dislocation - crack interactions in Si near the BDTT which are related
to the stress field of the crack and to crystallography. The specific atomistic mechanisms of
dislocation nucleation, however, depend on the nature of the atomic bonding and can not be
transferred from Ni to Si.
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Figure 12.8: Driving forces on the three different classes of slip systems in Si. Compare to Figs. 12.1
and 12.3.

12.5.2 Comparison of observed dislocations

The slip systems which were observed in the simulations presented in the chapters 10 and
11 are summarized in Tab. 12.1. Only slip systems on which new dislocations of significant
line length were created are considered. The generally observed predominance of partial
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Figure 12.9: Cross-slip tendency in Si for dislocation segments with b = DB in screw orientation,
compare to Fig. 12.5.

dislocations over full dislocations is linked to the already mentioned tendency of the potential
towards emission of partial dislocations and the relatively short simulated times. However,
the different mechanisms observed in the dislocation generation from propagating cracks and
from cracks at rest are reflected in the activated slip systems. Dislocation generation from
propagating cracks took place on the (a) and (b) planes, which was connected – probably by
cross-slip – with dislocations on the (c) and (d) planes. Dislocation emission on (a) and (b)
planes was not observed from static cracks containing defects of the crack front. Only in few
cases dislocation activity on these planes was observed during the interaction of incoming
dislocations with the crack tip. No stimulated emission on (a) and (b) planes was observed.
Dislocations on (a) and (b) were created by ”assisted nucleation” during the ”unzipping” of
the initial dislocation, see Fig. 11.5.

The activated slip systems in the simulations can be directly compared with the experi-
mental observations in Tabs. 2.1 and 2.2. Like in the simulations of stimulated emission, the
predominant dislocation activity in the experimental study took place on the (d) plane (see
Tab. 2.2 and [153]). Some dislocation activity on the (a) and (b) planes was also reported,
however, the analysis of the dislocation configuration was performed after a significant plastic
zone has developed [153]. The population of these glide planes therefore is not necessarily
caused by stimulated emission and can be also linked to cross-slip processes. The comparison
with the experimental data is eased by the used of the symmetry classes defined in Tab. 11.1.
Like in the corresponding experiments, the simulations of dislocation nucleation from stable
cracks and of stimulated emission showed activity of slip systems belonging to class I and II.
No dislocations with Burgers vector parallel or vertical to the crack front orientation (class
III) were observed.

In their crack arrest experiments Argon and Gally observed only dislocations on the (a)
and (b) planes [1, 134, 151]. They could not determine the Burgers vector of the emitted
dislocations. Based on energetic considerations on the emission of dislocations from cleavage
ledges [166, 168] they assumed that the dislocations were emitted as pure screw dislocations
with Burgers vector CD [1, 134, 151], see also sec. 2.2.2.1. As only partial dislocations were
emitted in the simulations of propagating cracks, no statement concerning the Burgers vec-
tor of full dislocations emitted from propagating cracks can be made. Gally and Argon [1]
attributed the differences between the activated slip system in their experiments and the slip
systems observed by Michot and coworkers to the predominance of the plane stress conditions
in the thin samples used by Michot et al..

The simulations in the chapters 10 and 11 however showed that significant differences
in the characteristics of dislocation emission and available dislocation sources exist between
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Slip plane
simulation set-up (a) (b) (c) (d)
propagating crack αD, αC Dβ, Cβ Dγ Cδ
propagating crack + obstacle αD, αC Dβ, Cβ Dγ Cδ
crack front defect - - Dγ Cδ
stimulated emission (CB) (DC) Dγ, DB CB, (Cδ)

Tab. 12.1: Activated slip systems in the different simulation set-ups. Burgers vectors in brackets
denote slip systems which were only sometimes observed or did not show significant dislocation line
lengths. Compare to Tab. 2.1 and 2.2.

propagating cracks and static cracks. These differences could well be the reason for the
activation of different slip systems in the groups of Michot and Argon. In the light of the
present simulations and the experiments by Michot and Argon, it can be postulated that
different processes can be active in the formation of plastic zones from propagating cracks

and from initially static cracks. Conceptionally, the development of a plastic zone from
propagating crack is connected to the crack arrest toughness KIa, whereas the evolution of
local dislocation structures at a crack tip under increasing remote loading determines the
fracture initiation toughness KIc. The current models of the brittle-to-ductile transition do
not address crack tip processes involved in the continued propagation of cleavage cracks, or
their arrest by the emission of crack tip shielding dislocations.

12.5.3 Sources of dislocations

12.5.3.1 Propagating cracks

The crack arrest experiments by Gally and Argon [1,151] revealed ∧-shaped etch pit patterns
which are identified to emanate from potent dislocation sources at the crack tip which pro-
duced sufficient dislocation line length to fully shield the crack front. Theses ∧-sources are
shown in Fig. 2.8, and the interpretation of the mechanism leading to these configurations
was given in sec. 2.2.2.1.

The simulation results of propagating cracks interacting with defects (see Figs. 10.7, 10.9
and 11.33), however, suggest the mechanism described in sec. 12.2.3 leading to a ’V’-shaped
configuration of the crack front as alternative source mechanism for the crack arrest exper-
iments of Gally and Argon [1, 151]. This mechanism would produce the same configuration
of etch pits seen in Fig. 2.8. However, the location of the sources would then not be at the
indicated ’S’ in Fig. 2.8 but at the lower intersection of the etch-pit rows delineating the
intersection of the (a) and (b) planes with the cleavage plane. Emission of the blunting half
loops on the (a) and (b) planes would then take place with the propagating crack front, rather
than backwards as suggested by Gally and Argon [1,151]. The blunting dislocation half loops
should shield the crack front more efficiently than the suggested expansion of dislocation loops
to the flank regions of the crack where the strain is already partially relieved.

The process of dislocation emission in the crack arrest experiments by Gally and Argon
can thus be re-interpreted as follows: In the initial stages of crack front arrest, crack front
ledges or other defects lead to retarding forces on the crack front, which assumes a cusped
shape. Ideally blunting dislocation half loops can be emitted upwards and downwards on the
(a) and (b) planes when the crack front direction locally reaches an orientation parallel to [11̄2]
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or [11̄2̄]. This process only takes place when the temperature at the crack tip is sufficiently
large to allow for the necessary thermal activation of dislocation nucleation and propagation.f

The expansion of blunting dislocation half loops is connected with the propagating, sharp
crack tip, see e.g. Figs. 10.9 and 11.33. This leads to the ’V’-shaped etch pit pattern in
Fig. 2.8. Crack propagation should halt when the blunted crack fronts meet (at the points ’S’
in Fig. 2.8). Edge dislocations with b = ±DC are the most probable candidate for the emitted
dislocation half loops, as they experience a large driving force and would lead to maximal
blunting of the crack tip (by symmetric upwards and downwards emission by 2b). However,
also dislocations of type DB(a) are possible. The emission of blunting half loops needs not to
occur symmetrically on both sides of the crack, which agrees with the etch-pit patterns. The
cross-slip process observed in the simulations is probably specific to the potential. However,
cross-slip could also explain the region of high dislocation density in front of the arrested
crack tip.

It has to be stressed that the above dislocation source mechanism leading to ’V’-shaped
crack fronts is specific to propagating cracks. It should however be a general feature in different
materials and crystal structures, as long as multiple blunting slip systems exist for the given
crack orientation, which intersect the crack front direction at an angle attainable by local
variations of the crack front orientation (e.g. the (100)[001] system in bcc). One consequence
of such a mechanism would be that the crack arrest toughness KIa could in principle show a
different orientation dependence than the fracture initiation toughness KIc.

12.5.3.2 Static cracks

In their study on the formation of dislocation loops at static crack tips, Michot and coworkers
distinguish between primary and secondary dislocation sources, see also sec. 2.2.2.1. The
present study focuses on secondary sources, i.e. sources that are not associated with detectable
pre-existing defects on the crack front. The general observation of George and Michot [147]
of preferred dislocation nucleation at and close to the sample surface agrees well with the
increased slip activity on (c) and (d) planes in the simulations modeling plane stress compared
to plane strain.

Single Burgers vector source A special case observed by George and Michot [147]
was a source configuration producing only one Burgers vector (see also sec. 2.2.2.1). In several
cases these dislocations emanated from crack tip ledges. An alternative source configuration
for a one-Burgers-vector-source for the observed cases without ledges would be the spiral-

source observed in the simulations, see sec. 12.2.4. Once such a source is formed, it can
operate multiple times – as long as it is not blocked by other dislocations or the back stress
of dislocation pile-ups. The nucleation from crack tip ledges on the other hand becomes more
difficult for each emitted dislocation, as the hight of the ledge is reduced by each emitted
dislocation.

Stimulated emission and dislocation multiplication The simulations confirmed
the experimental observation, that the intersection of the crack front by an attracted dislo-

fIn their study of the interaction of a propagating crack in Si with a stationary inclined dislocation Sherman
and Be’ery [302] showed that at room temperature the crack is deflected and no dislocation nucleation takes
place. This situation is comparable to Fig. 11.34. In the Ni potential, however, dislocation nucleation takes
place at 0 K, as would be the case in Si close to the BDTT.
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cation can stimulate the emission of dislocations [2, 150, 153]. As discussed above, the type
of the generated dislocations in the simulations corresponds to the experimentally observed
dislocations. It has to be pointed out, that the simulations showed no stimulated emission
for intersecting dislocations on the (d) or (c) planes. Experimental results on stimulated
emission from such dislocations have not been reported. The question whether all attracted
dislocations can lead to stimulated emission is decisive for models of dislocation source mul-
tiplications. Based on atomistic calculations such mesoscopic models of source multiplication
could include criteria for stimulated dislocation emission, possibly combined with a nucleation
rate.

The exact atomistic mechanisms of the process of stimulated emission are most probably
related to the atomic bonding. These mechanisms were not further examined. The simu-
lations have however revealed further mechanisms which can be active in the interaction of
dislocations and cracks, e.g. the formation of sharp cracks in the stress field of the dislocation
and the reorientation of the crack front.

Cross-slip of dislocations from the (a) plane on the (c) or (d) planes was an important
feature in the simulations. Cross-slip of emitted dislocations is required by the dislocation
source multiplication models of Michot [148] and Scandian [153], see also sec. 2.2.2.2. With
stimulated emission on the (d)-plane, the model of Scandian, Fig. 2.12 b), requires cross-slip
on the (b)-plane. Such cross-slip processes were not seen in the simulations and are according
to Fig. 12.5 only favorable in very small regions. As already stated by Michot et al. [148], the
existence of many dislocations is a necessary to create a back stress on the emitted dislocation
and thus facilitate its cross-slip. With the size and time limitations of MD the simulation of
avalanche multiplication processes involving e.g. external dislocation sources is currently out
of reach. Atomistic simulations can however be used to study the fundamental mechanisms
like cross-slip and stimulated emission involved in such processes. Based on this information,
mesoscopic modeling can then be used to describe the interaction of pre-existing and nucleated
dislocations and the crack, thus enabling a deeper understanding of the role of primary and
secondary dislocation sources on crack tip plasticity.
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Conclusions II:

Dislocation Nucleation and

Multiplication at Crack Tips

In part II of this work dislocation generation at crack tips has been investigated with molec-
ular dynamics simulations. The use of an EAM potential for nickel thereby allowed to model
generic features related to crystallography and dislocation mobility of fracture in silicon close
to the brittle-to-ductile transition temperature. Molecular dynamics simulations have inher-
ent size and time limitations which affect the dislocation processes at the crack tip. General
mechanisms can however be derived from the simulations by relating the observed processes
to the underlying crystallography and to the linear elastic crack tip stress field. The discussion
of the dislocation processes can be furthermore limited to three slip systems which represent
different symmetry classes.

Dislocation nucleation at cracks in the γ-orientation was studied for propagating cracks
as well as for static crack tips. It was found that in both cases different mechanisms lead-
ing to the generation of dislocations can be active, and that therefore dislocations populate
different slip systems. This can explain the observation of different active glide planes in the
crack arrest experiments by Gally and Argon [1, 151] and the experiments by George and
Michot [147] on static cracks subjected to a constant loading rate.

Propagating cracks The local crack front orientation of propagating cracks can dif-
fer from the global crack front direction. For fast cracks this can be caused by dynamic
instabilities of the crack front. However, also defects on the crack front like ledges, or the
interaction of the propagating crack with lattice defects can locally deflect the crack front.
When the local crack front orientation lies within a blunting slip plane, blunting dislocation
half-loops can be emitted, see e.g. Fig. 10.9. This process offers an alternative explanation
for the ’V’-shaped dislocation sources, Fig. 2.8, observed by Gally and Argon [1, 151]. The
above mechanism of dislocation emission is specific to propagating cracks. It can be however
transfered to other crystal structures and orientations.

Static cracks and stimulated emission Contrary to the propagating cracks, defects
on static crack fronts led only to nucleation of dislocations on the oblique glide planes. Dislo-
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cation emission from defects at the crack front (”primary sources”) alone can not account for
the brittle-to-ductile transition in silicon [148,149]. The creation of ”Secondary” dislocation
sources by the interaction of dislocations with the crack front was therefore postulated by
Michot and coworkers [2, 135, 148, 149]. The simulations confirmed the experimental obser-
vation, that the intersection of the crack front by an attracted dislocation can stimulate the
emission of dislocations [2, 150, 153]. However, in the simulations only incoming dislocations
on slip planes orthogonal to the cleavage plane led to stimulated emission of dislocations.
Models of dislocation source multiplication based on stimulated emission and cross-slip as
proposed by Michot [148] and Scandian [2] do currently not include criteria for stimulated
dislocation emission. In these models the dislocation cross-slip is a result of the interaction
of many dislocations with the crack. Therefore such ”avalanche multiplication” processes are
not suited for MD simulations.

The first simulations of dislocation-crack interaction showed furthermore various other
effects. They depend on the nature of the dislocation, and the characteristics of the crack,
as well as on the stress state. The relative orientation of the dislocation with respect to the
crack and its initial distance have to be taken into account as further parameter determining
the possible dislocation processes. The cross-slip of dislocations in the stress field of the crack
by the Fleischer mechanism is one central process. At high stresses and low temperatures
the Fleischer mechanism seems therefore a viable alternative to the Friedel-Escaig mechanism
of cross-slip. Cross-slip above the crack flank led to the creation of a spiral source. Such
a source could correspond to the experimentally observed ’one-Burgers-vector-source’ [147]
which were not linked to crack tip ledges.



Chapter 14

Outlook II

The study of fracture processes by large scale, three dimensional atomistic simulations is
still in the early stages. In particular, the interaction between cracks and pre-exiting lattice
defects has not been simulated before. Therefore this study can only present a first step
towards a deeper understanding of the origin and the multiplication of dislocations at crack
tips. Further atomistic simulations and modeling efforts on different scales in combination
with dedicated model experiments are necessary to shed light on the processes leading to crack
tip plasticity and the brittle-to-ductile transition. Some suggestions for future investigations
are summarized below.

Dislocation nucleation processes Probably the greatest open issue is the understand-
ing of the dislocation nucleation process and its dependence on the crack front morphology
and the atomic bonding. Three dimensional simulations of dynamical fracture showed pro-
nounced differences in the emission of dislocations from cracks in Al and Cu [187]. It is
currently not clear how elastic anisotropy and differences in the GSF-curves influence the
nucleation of dislocations from cracks. Detailed studies using the same set-up and different
atomic potentials should elucidate this question. Especially studies complementary to the
present one using potentials with low tendency towards twinning and increased tendency
towards emission of full dislocations, e.g. AlI [31], would be desirable.

Dislocation nucleation from defects at the crack front has only been studied in detail
for cleavage ledges in a Peierls-Nabarro framework [167, 168]. Clearly, further studies on
the effect of the nature and magnitude of crack front defects on dislocation nucleation are
required to get a better understanding of dislocation emission from more realistic crack fronts.
Such studies would possibly require new simulation methods or the combination of dynamic
and static methods to explore different potential reaction pathways leading to dislocation
nucleation. A critical issue in dislocation nucleation processes is thermal activation and thus
the possibility of qualitative differences in the dislocation-crack interaction processes at higher
temperatures. Future studies should therefore include dynamic simulations of dynamic and
static cracks, with and without defects, at elevated temperatures.a

Additional simulations of dislocations intersecting crack fronts could clarify further the
influence of the boundary conditions and of the absolute strain on the stimulated dislocation
emission and following processes. Especially simulations using significantly larger samples
would be desirable. This would reduce the absolute strain and should also reduce dislocation-

aMethods for the study of fracture processes at elevated temperatures are described e.g. in [223].
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dislocation reaction which may block potential source mechanisms.b Alternatively one could
during the simulation increase the load to account for the strain relief and back stress caused
by emitted dislocations. This would help to clarify whether the intersection of a dislocation
with the crack front can create a source for many dislocations.

A natural extension of this work would be the simulation of dislocation - crack interactions
in other material classes like bcc or intermetallics. However, in these cases the dislocation
mobility might however be a critical aspect requiring elevated temperatures. With the advent
of reliable tight binding descriptions of silicon [303] and new concepts like fitting on the
fly [304], simulations of dislocation - crack interactions should in the future also become
possible for silicon.

Dislocations in the stress fields of cracks The pinning of the dislocation at the box
boundaries leads to a significant restriction to the configurations attainable by the dislocation
in the stress field of the crack. While larger simulation boxes could alleviate these restrictions,
the underlying problem would remain. Dislocation dynamics simulations could be used to
asses the differences between the pinned dislocation in the simulation box an an unbounded
dislocation in the stress field of the crack. By studying the motion of dislocations coming
from far sources towards the crack, DD simulations could provide information on realistic
initial dislocation positions for the atomistic simulations.

Mesoscopic modeling of dislocation - crack interactions A full understanding of
crack tip plasticity requires the modeling of dislocation nucleation processes as well as of their
motion and interaction with each other and with the crack. Most current dislocation dynamics
simulations of crack tip plasticity [139] do not take into account the full three dimensional
nature of the problem. To reproduce semi-brittle fracture processes a three dimensional
mesoscale model should include primary sources and the possibility of stimulated dislocation
nucleation as well as pre-existing bulk dislocations. The information on dislocation nucleation
criteria can currently only be provided by atomistic modeling. Similarly, information on the
activation energy of dislocation cross-slip by the Fleischer mechanism can be derived from
atomistic simulation. However, a particular challenge for mesoscopic modeling of dynamic
fracture processes will be the coupling between crack propagation, closing or blunting and
dislocation processes. In the long term, information from atomistically informed mesoscale
models should lead to an improved continuum theory of basic material fracture phenomena.

bE.g. in some of the simulations potential spiral sources were blocked by the stacking fault produced by
emitted dislocations.



Appendix A

Properties of the atomic interaction

potentials

Table A.1 summarizes the properties of the different used potentials relevant for the study of
dislocation motion and dislocation interactions with voids and crack tips. The values for all
the properties are determined at 0 K. Where available the values are taken from the original
publications. Most of these values were confirmed by test calculations. Other properties were
calculated within the izbs potential documentation project or extracted from the literature.

a0 is the lattice parameter; E0 the cohesive energy of the potential; γsf ,γusf ,γutf are the
stacking fault, unstable stacking fault and unstable twin fault energy, respectively; cij are the
elastic stiffness constants; µ′, ν ′ are the shear modulus and the Poisson’s ratio in slip plane
and slip direction; A is the anisotropy factor; cl and ct1,2 are the velocities of longitudinal
and transversal sound waves, see Eq. 2.41; cR is the Rayleigh wave speed, Eq. 2.43; νt are
the frequencies of transverse phonons at the points X and L of the Brillouin zone; Tm is the
melting temperature; ΘD is the Debye temperature according to [16]; α is the linear expansion
coefficient; 1/τη is the coupling parameter for the Nosé-Hoover thermostat in IMDa.

aPlease refer to [198] and the actual IMD distribution for the implementation of the parameter inv tau eta.
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Cu NiI NiII AlI AlII

a0 [Å] 3.615 3.52 3.52 4.032 4.05
E0 [eV/atom] -3.54 -4.45 -4.45 -3.36 -3.36

γsf [mJ/m2] 44.4 88.8 134.6 106.0 145.5
γusf [mJ/m2] 162.0 212.1 297.3 128.2 167.4
γutf [mJ/m2] 183.4 254.1 359.8 168.9 219.7
γ(111) [mJ/m2] 1239 1928 1759 870 870

γ(110) [mJ/m2] 1475 2350 2087 1035 1006

c11 [GPa] 169.9 264.4 241.3 118.1 114
c12 [GPa] 122.6 147.3 150.8 62.3 61.6
c44 [GPa] 76.2 124.8 127.3 36.7 31.6
µ′ [GPa] 41.2 74.6 72.6 30.8 28
ν ′ 0.446 0.363 0.376 0.34 0.348
A 3.22 2.52 2.81 1.32 1.21

cl [km/s] 4.99 6.008 6.024 6.856 6.650
ct1 [km/s] 2.92 3.742 3.779 3.687 3.421
ct2 [km/s] 1.63 2.358 2.254 3.215 3.115
cR [km/s] 1.62 2.347 2.245 3.145 3.032

νt(X) [THz] 5.2 6.44 6.78 5.8 5.98
νt(L) [THz] 3.32 4.29 4.2 4.3

Tm [K] 1327 1478 ±25 939 ± 3
ΘD [K] 331 476 476 408 408
α [10−6 1/K] 20.3 16.6 8.2 22.5 20.7
1/τη [ps−1] 33 30 30 30 33

Tab. A.1: Properties relevant to the study of dislocations of different potentials: NiI by Angelo et

al. [209], NiII by Mishin [213], AlI by Ercolessi and Adams [206], AlII by Mishin and Farkas [207] and
Cu by Mishin [214].
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Figure A.1: Left: fault energy curves as a function of rigid displacement in partial Burgers vector
direction bp = a0

6 〈112〉 on a glide plane for the the different potentials. Right: restoring stress
calculated as gradient from the fault energy curve.
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Relaxation methods

Providing mechanical equilibrium structures as initial configurations for dynamic simulations
is of fundamental importance for the simulations of dislocations and cracks. This corresponds
to finding the (nearest) atomistic configuration of minimal potential energy, starting from a
given starting structure. Finding such structures is a general problem in computational mate-
rials science, solid state physics and chemistry. A large variety of well established optimization
methods can be applied to minimize the energy of a group of atoms, like steepest descent and
conjugated gradient methods, or Newton-Raphson methods [190, 199, 260, 305]. In addition
to the application of these classical optimization methods to atomistic configurations, there
are many variants to use molecular dynamics for minimization purposes by removing kinetic
energy from the system (quenching) [300, 306, 307]. A thorough treatment of optimization
algorithms is provided in [260,305], and their applications to atomistic modeling are discussed
in [190,199].

In general, there is no ‘best‘ method for finding minimum energy configurations. The
choice of the minimization algorithm depends on a number of factors. Different methods
can can be appropriate, depending on whether only thermal noise should be removed from a
system, the optimal structure of an atomic arrangement should be determined, or whether the
range of mechanical stability of a system under load should be tested. Relaxation algorithms
implemented in the molecular dynamics package IMD are the conjugate gradient (CG) method
by Fletcher and Reeves [260], the micro convergence (MIC) scheme by Beeler [306], and the
global convergence (GLOC) scheme by Bitzek and Gumbsch [263]. The frequent need for
the relaxation of very large systems, e.g. to determine ǫG, however, called for more efficient
relaxation methods.

The global convergence method is a modification of the micro convergence method [306].
Instead of calculating the scalar product between force ~Fi and velocity ~vi of each atom and
setting ~vi = 0 if ~Fi · ~vi ≤ 0, it operates on the 3N -dimensional global force and velocity
vectors F = (F1,x, F1,y, F1,z, . . . , FN,x, FN,y, FN,z) and v = (v1,x, v1,y, v1,z, . . . , vN,x, vN,y, vN,z).
So, whenever the whole system (consisting of N atoms) is passing a minimum of the 3N -
dimensional energy surface (F ·v ≤ 0) the velocities of all atoms are set to zero. This method
is extremely simple to implement in the MD integration scheme and is usually somewhat faster
than the conjugate gradient method. It circumvents the slow propagation of information over
long ranges (e.g. via stress fields) inherent in the local damping of MIC. However, with
increasing system sizes plateau-phases corresponding to internal modes of vibration dominate
the relaxation process with GLOC (see Fig. B.1).
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Figure B.1: The relaxation with GLOC of a void in Cu shows with increasing system size (PBC
in all directions) the emergence of plateaus in the force norm. These plateaus are related to internal
vibration modes and slow down the relaxation process.

The only parameter necessary for GLOC and MIC is the time step ∆t for the MD inte-
grator. A straight forward choice would be to take the same time step as for a MD simulation
of the system ∆tMD. However, as the intention of GLOC and MIC is not the accurate re-
production of atomic trajectories but the search for a minimum energy configuration, larger
time steps can be used, thus significantly speeding up the relaxation process. In general, each
system will have a different maximal time step for which stable relaxation is still possible.

By using a simple adaptive time step algorithm, the system can be rapidly propagated
towards a minimum by increasing the time step. Once the system has passed a minimum, the
velocities are set to zero, the atomic positions are reset to the positions of the last integration
step, and ∆t is reduced. When care is taken that ∆t is not becoming too large and the time
step is not directly increased from the start on or after passing the minimum, the adaptive
global convergence algorithm (ADGLOC) is fast (see Fig. B.2) and extremely robust.

The efficiency of the algorithm can further be improved by modifying the global velocity
vector to point more in the direction of the forces [308].

The resulting algorithm of the so called FIRE (Fast Inertial Relaxation Engine) method
consists of an iteration of the following steps:

1. calculate F, v

2. change the velocities to v = (1−mix)v+mix F

|F| |v|

3. if the number of steps since the last minimum is larger than minsteps, increase ∆t:
∆t = ∆t·incfac, but only as long as ∆t ≤ ∆tmax, else the time step is ∆tmax. Decrease
mix: mix= mix·mix dec

4. if F · v ≤ 0 decrease ∆t: ∆t = ∆t·decfac, set all velocities to zero: v = 0 and set mix
back to the starting value mix start .



203

5. propagate atoms according a molecular dynamics integration scheme.

The parameters minsteps, incfac, decfac, mix start, mix dec are not directly linked
to the physics of the system which should be relaxed. Like for the five parameters in the stan-
dard conjugated gradient implementation [260], their choice is guided by experience. The fol-
lowing set of parameters yielded a fast and robust behavior for nearly all the systems studied in
this thesis: minsteps=5, incfac=1.1, decfac=0.5, mix start=0.1, mix dec=0.99. The
maximal time step ∆tmax is related to the vibrational properties of the system. Taking
the typical time step ∆tMD used in a MD simulationa of the same system as reference (e.g.
∆tMD = 2 fs for most of the studied systems), for most configurations the following time steps
will produce fast and robust relaxation: MIC: ∆tMIC = 10∆tMD, GLOC: ∆tGLOC = 3∆tMD,
ADGLOC and FIRE: ∆tmax = 10∆tMD. To relax localized disturbances which can lead to
large forces, the relaxation can be preceded by 50-100 MIC steps after which all velocities are
set to zero.

FIRE has been extensively tested and reaches in all test cases the minimum energy con-
figuration using significantly less function evaluations (’calls to force’) than the conjugated
gradientb, thus leading to a faster relaxation of the system [200].

To measure the degree of relaxation, the smallness of the root-mean-square (RMS) of the

global force FRMS = |F|/(3N)
1
2 , often referred to as the force norm, is taken as a represen-

tative measure for the degree of relaxationc.
Fig. B.2 shows exemplary the behavior of different algorithms, in this case while relaxing

a small sample containing a crack. The reduction of the plateau phase by the adaptive time
stepping can be clearly seen. The modification of the global velocity vector by the ’mixing’
leads to an additional performance increase. By starting the relaxation process with 50 MIC
steps, the algorithms benefit from the fast initial relaxation of localized disturbances by MIC.
The total time required to relax e.g. a dislocation could thus be reduced by a factor of about
3 compared to the previously used method.

The algorithm and its performance is discussed in more detail in [200]. Its computational
efficiency, its robustness and simplicity make FIRE a versatile alternative to standard relax-
ation methods. The use of FIRE is not restricted to molecular modeling – preliminary studies
on other, more general, multidimensional minimization problems show it to be much more
efficient than previously used common algorithms [309]. An application for patent for FIRE
has been filed.

aThe MD time step is usually chosen to sample about 30-50 times the maximal vibration frequency of the
system.

bTo increase the stability and performance, the standard implementation of the ”Numerical Recipes” [260]
has been modified so that the first bracketing step in each CG-step is chosen to be twice as large as the
minimizing step from the previous CG-step, and the bracketing routine was modified to ensure that only steps
in the positive search direction are performed. All parameters are chosen such as to minimize the required
calls to force (especially linmintol =0.01).

cTo ensure that the minimum has been reached, this measure has to be combined with others, like the
maximum force on an atom.
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Figure B.2: Relaxation of a crack in a small test system with different algorithms. The newly
developed algorithm FIRE reduces the necessary computation time by a factor of about three compared
to the formerly used algorithms like conjugated gradient (CG) or GLOC [200].



Appendix C

Influence of boundary conditions on

the dislocation - crack interaction

Due to the long range stress fields of cracks and dislocations the choice of boundary conditions
is of major importance. In dynamic simulations of finite size the boundaries will always affect
the simulation outcome. The reasons for the choice of the simulation set-up were described
in sec. 3.2.2. To asses the influence of the boundary conditions on the mechanisms during
the dislocation-crack interaction some simulations with alternative boundary conditions in
x-direction were performed.

Fig. C.1 shows the differences during the simulation of a sharp crack under plane strain
loading in a small sample interacting with the 60◦ dislocation DB(a) when 2D dynamic
boundary conditions were applied in stead of the fixed boundaries on the −x-surface. The
2D dynamic boundary conditions clearly favored the closing of the crack. Furthermore, they
caused attractive image forces on the dislocations. Therefore the dislocations show signifi-
cantly stronger bow out.

Although the overall configuration and the dynamics of the dislocation - crack interaction
was significantly different for the two boundary conditions, the mechanisms were the same:
partial dislocation cross slip with nucleation of a new partial dislocation at the stair-rod
dislocation, crack front motion and nucleation of partial dislocation half loops at the crack
front connected by stair-rod dislocation with partial dislocation on the (d)-plane. These
mechanisms therefore seem to be insensitive to the actual boundary conditions.
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2D dynamic
boundary

fixed boundary

b)

x

y

z

a) 

Figure C.1: Comparison between the simulation using fixed boundary conditions (a) and 2D dynamic
boundary conditions (b) at the −x surface of the 60◦ dislocation DB(a) interacting with a sharp crack
(0.96ǫG, small sample under plane strain, t = 10 ps).
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[65] G. Leibfried, “Über den Einfluß thermisch angeregter Schallwellen auf die plastische
Deformation,” Z. Phys. 127, 344–356 (1950).

[66] J. Lothe, “Theory of Dislocation Mobility in Pure Slip,” J. Appl. Phys. 33, 2116–2125
(1962).

[67] H. Koizumi, H. O. K. Kirchner, and T. Suzuki, “Emission of elastic waves from a
dislocation in a 2-D discrete lattice,” Mater. Sci. Eng. A pp. 117–120 (2001).



BIBLIOGRAPHY 211

[68] H. Koizumi, H. O. K. Kirchner, and T. Suzuki, “Lattice wave emission from a moving
dislocation,” Phys. Rev. B 65, 214104 (2002).

[69] L. Lu, R. Schwaiger, Z. Shan, M. Dao, K. Lu, and S. Suresh, “Nano-sized twins induce
high strain rate sensitivity of flow stress in pure copper,” Acta Mater. 53, 2169 – 2179
(2005).

[70] J. G. Sevillano, in Plastic deformation and fracture of materials, Vol. 6 of Materials

science and technology, H. Mughrabi, ed., (VCH, Weinheim, 1993), Chap. 2. Flow stress
and work hardening, pp. 19 – 88.

[71] A. V. Granato, “Dislocation Inertial Effects in the Plasticity of Superconductors,” Phys.
Rev. B 4, 2196–2201 (1971).

[72] M. Suenaga and J. M. Galligan, “Dislocation motion in the normal and the supercon-
ducting states,” Scr. Metall. 5, 829–836 (1971).

[73] R. B. Schwarz and R. Labusch, “Dynamic simulation of solution hardening,” J. Appl.
Phys. 49, 5174–5187 (1978).

[74] R. B. Schwarz, “Dislocation stress-velocity dependence in alloys,” Phys. Rev. B 21,

5617 –5627 (1980).

[75] A. I. Landau, “The Effect of Dislocation Inertia on the Thermally Activated Low-
Temperature Plasticity of Materials: I. Theory,” Phys. Status Solidi A 61, 555–563
(1980).

[76] R. D. Isaac and A. V. Granato, “Rate theory of dislocation motion: Thermal activation
and inertial effects,” Phys. Rev. B 37, 9278–9284 (1988).

[77] M. Hiratani and E. M. Nadgorny, “Combined Modelling of Dislocation Motion with
thermally activated and Drag-Dependent Stages,” Acta Mater. 49, 4337–4346 (2001).

[78] J. M. Schwarz and D. S. Fisher, “Depinning with Dynamic Stress Overshoots: Mean
Field Theory,” Phys. Rev. Lett. 87, 096107–1 (2001).

[79] M. Hiratani, H. M. Zbib, and M. A. Khaleel, “Modeling of thermally activated dislo-
cation glide and plastic flow through local obstacles,” Int. J. Plast. 19, 1271 – 1296
(2003).

[80] M. Hiratani and V. Bulatov, “Dynamical effects on dislocation glide through weak
Obstacles,” In Linking Length Scales in the Mechanical Behavior of Materials, R. Rudd,
T. Balk, W. Windl, and N. Bernstein, eds., Mater. Res. Soc. Symp. Proc. 882E, EE4.4
(Warrendale, PA, 2005).

[81] V. L. Indenbom and V. Chernov, “Dynamic Waves along dislocations overcoming local
obstacles,” Sov. Phys. Solid State 21, 759–764 (1979).

[82] G. Kostorz, “The Influence of the Superconducting Phase Transition on the Plastic
Properties of Metals and Alloys,” Phys. Status Solidi B 58, 10 – 42 (1973).

[83] R. D. Isaac, R. Schwarz, and A. Granato, “Internal-friction measurments of dislocation
inertial effects in dilute alloys of lead,” Phys. Rev. B 18, 4143–4150 (1978).



212 BIBLIOGRAPHY

[84] T. A. Parkhomenko and V. V. Pustovalov, “The Low-Temperature Yield Stress
Anomaly in Metals and Alloys,” Phys. Status Solidi A 74, 12–42 (1982).
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2000, E. Krause and W. Jäger, eds., pp. 37 – 47 (Springer , Heidelberg, 2001).

[198] IMD, “the ITAP Molecular Dynamics Program,”, http://www.itap.physik.uni-
stuttgart.de/˜imd.

[199] T. Schlick, Molecular modeling and simulation: an interdisciplinary guide, Vol. 21 of
Interdisciplinary Applied Mathematics (Springer-Verlag, New York, 2002).

[200] E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, and P. Gumbsch, “Structural Relaxation
Made Simple,” Phys. Rev. Lett. 97, 170201 (2006).

[201] M. S. Daw and M. I. Baskes, “Embedded- Atom Method: Derivation and application
to impurities, surfaces, and other defects in metals,” Phys. Rev. B 29, 6443–6453 (1984).

[202] S. M. Foiles, M. I. Baskes, and M. S. Daw, “Embedded-atom-method functions for the
fcc metals Cu, Ag, Au, Ni, Pd, Pt and their alloys,” Phys. Rev. B 33, 7983–7991 (1986).

[203] M. S. Daw, “Model of Metallic Cohesion: The Embedded-Atom Method ,” Phys. Rev.
B 39, 7441–7452 (1989).

[204] M. S. Daw, S. M. Foiles, and M. I. Baskes, “The Embedded Atom Method: A Review
of Theory and Applications,” Mat. Sci. Reports 9, 251 (1993).

[205] Y. Mishin, in Handbook of materials modeling, S. Yip, ed., (Springer, Berlin, 2005),
Chap. 2.2, Interatomic potentials for metals, pp. 459 – 478.

[206] F. Ercolessi and J. B. Adams, “Interatomic Potentials form First-Principles Calcula-
tions: the Force-Matching Method,” Europhys. Lett. 26, 583–588 (1994).

[207] Y. Mishin, D. Farkas, M. J. Mehl, and D. A. Papaconstantopoulos, “Interatomic poten-
tials for monoatomic metals from experimental data and ab initio calculations,” Phys.
Rev. B 59, 3393–3407 (1999).

[208] J. A. Zimmerman, H. Gao, and F. F. Abraham, “Generalized stacking fault energies
for embedded atom fcc metals,” Modelling Simul. Mater. Sci. Eng. 8, 103–115 (2000).

[209] J. E. Angelo, N. R. Moody, and M. I. Baskes, “Trapping of hydrogen to lattice defects
in nickel,” Modelling Simul. Mater. Sci. Eng. 3, 289 – 307 (1995).

[210] M. I. Baskes et al., “Comment: Trapping of hydrogen to lattice defects in nickel,”
Modelling Simul. Mater. Sci. Eng. 5, 651 (1997).

[211] M. Baskes, private communication (unpublished).

[212] L. Dupuy, private communication (unpublished).

[213] Y. Mishin, “Atomistic modeling of the γ and γ′-phases of the Ni-Al system,” Acta
Mater. 52, 1451–1467 (2004).



220 BIBLIOGRAPHY

[214] Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter, and J. D. Kress, “Struc-
tural stability and lattice defects in copper: ab initio , tight binding and embedded-atom
calculations,” Phys. Rev. B 63, 224106 (2001).
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