
Mean-Variance Portfolio Selection
With Complex Constraints

Zur Erlangung des akademischen Grades eines
Doktors der Wirtschaftswissenschaften

(Dr. rer. pol.)

von der Fakultät für
Wirtschaftswissenschaften

der Universität Karlsruhe (TH)

genehmigte

DISSERTATION

von
Dipl.-Wi.-Ing. Michael Stein

Tag der mündlichen Prüfung: 06.06.2007

Referent: Prof. Dr. Hartmut Schmeck
Korreferentin: Prof. Dr. Marliese Uhrig-Homburg

Karlsruhe, 2007

Acknowledgements

The main parts of the research documented in this thesis were conducted during the
years I worked at the Institute of Applied Informatics and Formal Description Methods
(AIFB) in Karlsruhe. The productive and nevertheless relaxed working climate there
and the helpfulness of my co-workers deserves to be highly praised.

Of the many persons that contributed – directly or indirectly – to this work, I would
especially like to thank my thesis advisor Prof. Dr. Hartmut Schmeck for his unwavering
support and for the freedom to always follow my own ideas. I also want to express
my gratitude to Prof. Dr. Marliese Uhrig-Homburg and to Prof. Dr. Oliver Stein for
reviewing my thesis.
Particularly, I want to thank Dr. Jürgen Branke for many productive, interesting and
encouraging discussions over the past few years. The joint work with him provided the
foundation for what is now the final “product” of my efforts.

I would also like to mention that the research for this thesis was financially supported
by the Schleicher Foundation, to which I hereby want to express my sincere gratitude.

Finally, I would like to thank my family for their permanent support and for providing
me with a “safe haven” even in stressful and chaotic times.

Karlsruhe, September 2007 Michael Stein

i

Contents

1 Introduction 1

2 The Mean-Variance Optimization Model 3
2.1 Fundamentals of Portfolio Selection . 3
2.2 The Standard Mean-Variance Model . 6
2.3 Measures of Risk . 11
2.4 Benchmark Problems . 12
2.5 Constraint Types . 13

2.5.1 Linear Constraints . 14
2.5.2 Nonconvex Constraints . 15

3 A PQP-Solver 20
3.1 A PQP-Algorithm . 21
3.2 Related Work . 25
3.3 Implementation Variants . 27

3.3.1 Column Rearrangement . 27
3.3.2 Substitution of Variables with Active Bounds 30
3.3.3 System Split . 31

3.4 Test Results . 32
3.5 Implementation Details . 35

3.5.1 Matrix Representation . 35
3.5.2 Cycling . 39

3.6 Complete Algorithm Description . 40
3.7 Summary and Concluding Remarks . 45

4 Point-Based Solution Approaches Based on the ε-Constraint Method 47
4.1 Performance Measurement . 49
4.2 Efficient Distribution of Points . 50
4.3 Mixed-Integer Modelling . 56
4.4 Heuristics Based on the ε-Constraint Method 59

4.4.1 Heuristics for Portfolio Selection Problems with 5-10-40-Constraint 61
4.4.2 Heuristics for Portfolio Selection Problems with Max. Cardinality . 64
4.4.3 Heuristics for Portfolio Selection Problems with Buy-In Thresholds 65

4.5 Test Results for ε-Constraint Methods . 67
4.5.1 Problem Instances with 5-10-40-Constraint 68
4.5.2 Problem Instances with Maximum Cardinality Constraint 70
4.5.3 Problem Instances with Buy-In Thresholds 73

ii

Contents

4.5.4 Performance Improvement by the 2-Phase Procedure 76
4.6 Summary: ε-Constraint Heuristics . 80

5 An Envelope-Based MOEA 82
5.1 Metaheuristics: Related Approaches . 83
5.2 Multi-Objective Evolutionary Algorithms 85
5.3 A Point-Based Multi-Objective EA . 87
5.4 An Envelope-Based Multi-Objective EA 89

5.4.1 Calculating the Aggregated Front 90
5.4.2 Representation and Genetic Operators 95

5.5 Empirical Evaluation . 96
5.5.1 Parameter Settings . 96
5.5.2 Test Results . 97

5.6 Concluding Remarks . 100

6 Combining Point-Based and Envelope-Based Approaches 103
6.1 Algorithm Description . 103
6.2 Test Results . 105
6.3 Summary: Combination of Point-Based and Envelope-Based Approaches . 113

7 Summary and Conclusion 115

A Further Test Results 119
A.1 Heuristics for Problems with 5-10-40-Constraint 119
A.2 Heuristics for Problems with a Maximum Cardinality Constraint 122
A.3 Heuristics for Problems with Buy-In Thresholds 125

References 129

iii

List of Figures

3.1 Useful matrix representations for the algorithm implementation 37

4.1 Comparison of two approximations for a Pareto front 47
4.2 Difficulties with the weighting approach in nonconvex regions 48
4.3 Ideal and maximum delta-area for point-based solution approaches. 50
4.4 Ideal and maximum delta-area for envelope-based solution approaches. . . 50
4.5 Estimation error of point-based solutions 52
4.6 Framework for point-based heuristics . 59
4.7 Results of the point-based heuristics for P1 with 5-10-40-Constraint . . . 69
4.8 Results of the point-based heuristics for P5 with 5-10-40-Constraint . . . 70
4.9 Results of the point-based heuristics for P3 with a max. cardinality of 4 . 71
4.10 Results of the point-based heuristics for P7 with a max. cardinality of 8 . 73
4.11 Results of the point-based heuristics for P1 with a buy-in threshold of 0.05 75
4.12 Ideal delta-area for 2-solver-calls heuristic with varying point budgets for

P3 with 5-10-40-Constraint . 76

5.1 NSGA-II ranking procedure . 86
5.2 10 randomly initialized envelopes and 5 corresponding aggregated fronts

for P5 with a max. cardinality of 4 . 91
5.3 Creating virtual corner portfolios . 93
5.4 Different intersections constellations . 94
5.5 Possible jump discontinuities within the current mean interval 95
5.6 Typical fronts obtained on test problem P1 (left) and test problem P5

(right) with cardinality constraint. 99
5.7 Typical fronts obtained on test problem P1 (left) and test problem P5

(right) with 5-10-40-Constraint. 99
5.8 Convergence curves for P5 with cardinality constraint (left) and 5-10-40-

Constraint (right). 100
5.9 Randomly initialized populations of envelopes and portfolios for P1 with

5-10-40-Constraint . 101

6.1 Points calculated with the 2-solver-calls heuristic and resulting envelopes . 109
6.2 Solutions of several heuristics for P5 with 5-10-40-Constraint 110
6.3 Convergence curves of several heuristics for P5 with 5-10-40-Constraint . 112

A.1 Results of the point-based heuristics for P2 with 5-10-40-Constraint . . . 119
A.2 Results of the point-based heuristics for P3 with 5-10-40-Constraint . . . 120

iv

List of Figures

A.3 Results of the point-based heuristics for P4 with 5-10-40-Constraint . . . 120
A.4 Results of the point-based heuristics for P6 with 5-10-40-Constraint . . . 121
A.5 Results of the point-based heuristics for P7 with 5-10-40-Constraint . . . 121
A.6 Results of the point-based heuristics for P1 with a max. cardinality of 4 . 122
A.7 Results of the point-based heuristics for P2 with a max. cardinality of 4 . 123
A.8 Results of the point-based heuristics for P4 with a max. cardinality of 4 . 123
A.9 Results of the point-based heuristics for P5 with a max. cardinality of 8 . 124
A.10 Results of the point-based heuristics for P6 with a max. cardinality of 8 . 124
A.11 Results of the point-based heuristics for P2 with buy-in threshold 0.05 . . 125
A.12 Results of the point-based heuristics for P3 with buy-in threshold 0.05 . . 126
A.13 Results of the point-based heuristics for P4 with buy-in threshold 0.05 . . 126
A.14 Results of the point-based heuristics for P5 with buy-in threshold 0.05 . . 127
A.15 Results of the point-based heuristics for P6 with buy-in threshold 0.05 . . 127
A.16 Results of the point-based heuristics for P7 with buy-in threshold 0.05 . . 128

v

List of Tables

3.1 Average CPU-time of PQP solver variants in seconds 33
3.2 Average CPU-time per corner portfolio in seconds 34
3.3 Algorithm runtimes with two different matrix representations for the QR

decomposition . 38

4.1 Test results for ε-Constraint heuristics and MIQP solver on problems with
5-10-40-Constraint . 68

4.2 Test results for ε-Constraint heuristics and MIQP solver on problems with
cardinality constraints . 72

4.3 Test results for ε-Constraint heuristics and MIQP solver on problems with
a buy-in threshold of 0.05 . 74

4.4 Multiples for similar solution quality on problems with 5-10-40-Constraint 77
4.5 Multiples for similar solution quality on problems with a cardinality con-

straint . 78
4.6 Multiples for similar solution quality on problems with buy-in thresholds . 79

5.1 Max. delta-area for E-MOEA and P-MOEA on problems with a cardinal-
ity constraint . 97

5.2 Ideal delta-area for E-MOEA and P-MOEA on problems with a cardinal-
ity constraint . 98

5.3 Max. delta-area for E-MOEA and P-MOEA on problems with 5-10-40-
Constraint . 98

5.4 Ideal delta-area for E-MOEA and P-MOEA on problems with 5-10-40-
Constraint . 98

6.1 Test results for the combination algorithm on problems with 5-10-40-
Constraint . 106

6.2 Test results for the combination algorithm on problems with a maximum
cardinality constraint . 107

6.3 Test results for the combination of an MIQP solver and the envelope
approach . 108

vi

1 Introduction

In the 1950s, when an important part of the theoretical basis for what is now known
as mean-variance portfolio selection was developed, few would have imagined what kind
of computational processing power would be available half a century later. This devel-
opment makes it possible to solve extensions of the original portfolio selection problem
that were considered to be intractable at that time – if they were considered at all.
The initial idea for this thesis is based on the following observation: it is impossible
to transform the regulatory framework mutual funds have to comply with in Germany
into constraints that are easily integrated into classical mean-variance optimization.
With the large amount of money invested into these financial instruments, it does seem
reasonable to take a closer look at this problem in order to analyze what extensions to
the classical optimization model are required and how they influence the problem solving
methodology.
Other constraints that do not fit into the “mold” of classical mean-variance optimization
are treated in several publications, in particular the so called cardinality constraints, buy-
in thresholds, and integer constraints. Of these three types only cardinality constraints
and buy-in thresholds are relevant for large-scale investment, which is the reason we will
focus on these categories and not on integer constraints. When looking at the published
approaches capable of integrating these nontrivial constraints into the optimization, one
cannot fail to notice that they mainly rely on metaheuristics and often seem to be not
especially well adapted to the task. We have found that cardinality constraints and
buy-in thresholds can be handled in a similar fashion as the “difficult” constraints that
are based on the German investment law. Due to the fact that only those two categories
are relevant for large scale investment, the topic of this thesis has been extended to
additionally include cardinality constraints and buy-in thresholds.
Algorithms for portfolio optimization may have different objectives. If the mean-variance
paradigm is accepted and no special investor preference is given, then the “perfect”
algorithm would compute the set of Pareto optimal solutions in an immeasurably short
time for all problem sizes and all types of constraints. As there is no algorithm with this
capability, the goal can only be to get as close as possible to this “perfect” algorithm.
The two main objectives in the design of the algorithm are therefore speed and solution
quality. The main goal of this thesis was to develop different types of algorithms that
can cope with nonconvex constraints and that are either able to produce a solution of
sufficient quality very quickly, or that are able to compute a very good solution, but
need more time. The design of these algorithms can therefore be interpreted as a new
bicriteria optimization problem that has to be solved.

1

1 Introduction

This thesis is structured as follows:
In Chapter 2, a short rationale for the economic model and the resulting problem formu-
lation – the mean-variance model – is given. The drawbacks of the model are highlighted,
and we briefly touch upon the usage of different risk measures like e.g. Value at Risk1.
We also introduce different types of constraints, namely those that can be easily inte-
grated into the standard portfolio selection algorithms (linear constraints), and those
that can not (nonconvex constraints).
Chapter 3 aims at providing a fast and reliable algorithm that is capable of calculating
the complete Pareto front for the mean-variance portfolio selection problem when there
are only linear equations and inequalities, i.e., when the feasible region defined by the
constraints is convex. Different algorithm variants for this problem are examined, and
we describe how to implement them in an efficient manner. Due to several algorithmic
improvements, the fastest implementation is capable of calculating the complete Pareto
front in a very short amount of time even on large problem instances.
In Chapter 4, we describe several heuristics that belong to the category of so called
ε-Constraint methods and are able to approximate the Pareto front for problems with
nonconvex constraints like e.g. cardinality constraints. This is accomplished by trans-
forming the expected return criterion into an additional linear inequality. Two aspects
of the ε-Constraint algorithms are discussed, namely how to best calculate a single point
and how to distribute these points along the Pareto front. The developed algorithm
variants are then evaluated in a series of extensive tests.
The next chapter, Chapter 5, describes a new algorithm, the envelope-based multi-
objective evolutionary algorithm, developed especially for mean-variance portfolio selec-
tion with nonconvex constraints. Instead of typical evolutionary algorithms in which an
individual represents a single portfolio, in our algorithm, an individual corresponds to
a set of convex constraints. In a series of tests, we compare this new type of algorithm
with a state-of-the-art multi-objective evolutionary algorithm and are able to show that
our algorithm is superior with respect to convergence rate, solution quality during the
algorithm run, and final solution quality.
In the last major chapter we propose to integrate algorithm parts from Chapters 4 and
5 in order to create a faster and even better algorithm for portfolio selection problems
with nonconvex constraints. The comparison with the previous results demonstrates
that the newly designed procedures are able to compute better results in less time than
the purely point-based approaches.
We conclude the thesis with a brief summary and outlook in Chapter 7. Several addi-
tional diagrams with test results can be found in the Appendix.

1In the remainder of the thesis, we assume the validity of the mean-variance model, and therefore only
expected return (mean) and variance are used as optimization criteria.

2

2 The Mean-Variance Optimization Model

In the first section of this chapter, we will briefly summarize the economic principles
that form the basis for mean-variance portfolio selection. An introduction similar to the
one presented here can be found in any of the standard references for financial economics
(see e.g. Huang and Litzenberger [HL88], or LeRoy and Werner [LW01]) or in the books
from Markowitz [Mar59, Mar87].
Section 2.2 introduces the mean-variance model for portfolio selection. It consists of two
optimization criteria (variance and expected return) and an arbitrary number of linear
equations and inequalities. Three different approaches how to compute a solution for this
model are presented: the ε-Constraint approach, the weighting method, and parametric
quadratic programming. In Section 2.3 we describe other possible dispersion measures
besides the variance which better capture the notion of risk, and Section 2.4 explains the
origin of the benchmark problems we will use for testing in the remainder of the thesis.
In Section 2.5, which concludes this chapter, we specify several types of constraints that
may be relevant for portfolio selection problems, we categorize them and analyze their
influence on the difficulty of the optimization process.

2.1 Fundamentals of Portfolio Selection

In a market economy, nearly everybody regularly has to solve a variation of the problem
that lies at the core of portfolio selection: what to do with a given amount of money in
order to get the highest degree of overall well-being. This problem description is very
vague. In order to handle it quantitatively, several additional assumptions, simplifica-
tions, and formalizations have to be made.
In economics, “well-being” is often measured with the help of a utility function u : Y 7→
R, that maps every possible outcome Y for an event to a real number. A higher objective
function value indicates a higher degree of well-being.
The first assumption we make – which is rather general – is that the investor is only
interested in financial gain. Other motivations, like e.g. the preference of investments
that are ethically unobjectionable, are not considered.
Another important simplification is the assumption that the investment process can be
expressed as a so called one-period model. In a one-period model, the investment decision
is taken at a point in time t0, and during the period 4t the decision is not or can not
be revised. At t1 = t0 +4t, each investment offers a specific yield. The investor’s goal
in this model is to maximize his end-of-period wealth W1. What makes this decision
problem nontrivial is that for some or all investments the end-of-period yield is not
known in t0, which makes the problem non-deterministic.
One-period models certainly have serious drawbacks, as it is hardly imaginable that an
investor will stand by and do nothing if she receives important information during the

3

2 The Mean-Variance Optimization Model

period 4t that would cause her to adapt her investment positions to the new circum-
stances. Unfortunately, more advanced models that allow multiperiod transactions or
even continuous buying and selling introduce a degree of complexity that is not easy
to handle. They also require either additional information, e.g. about the consumption
preferences of the investor, or they make general assumptions in that direction (e.g. only
the terminal wealth is of interest). As the algorithms allowing the integration of com-
plex constraints are our main topic, an additional treatment of multiperiod or continuous
models would by far exceed the scope of this thesis. Therefore, for an introduction and
an overview of the different methodologies applied in multiperiod portfolio selection, the
reader is referred to Steinbach [Ste01]. A good starting point for continuous models in
general is a survey by Sundaresan [Sun00].
We assume further that the investment decision in the presence of uncertainty is based
on the so-called expected utility hypothesis, which says that the optimal decision under
uncertainty is the one that maximizes expected utility (cf. von Neumann and Morgen-
stern [vNM44]). The expected utility hypothesis is not without contentious points, as
documented e.g. by Ellsberg [Ell61], Kahnemann and Tversky [KT79, KT04], or Rabin
[Rab00]. Nevertheless, the hypothesis is accepted in many standard texts and will be
presumed to be valid in the remainder of this thesis.
The Taylor-Expansion of the utility function u(W1) at position E(W1) results in the
following equation:

u(W1) = u(E(W1)) + u′(E(W1)) (W1 − E(W1))

+
1
2
u′′(E(W1))(W1 − E(W1))2 +

∞∑
n=3

1
n!
u(n)(E(W1))mn(W1)

(2.1)

where E(W1) is the expected end-of-period wealth and mn(W1) is the nth moment of
W1 at position E(W1).
When Eq. 2.1 is used to express the expected utility of the investor, we get the following
result:

E(u(W1)) = E(u(E(W1))) + E(u′(E(W1))(W1 − E(W1)))

+ E(
1
2
u′′(E(W1))(W1 − E(W1))2) + E(

∞∑
n=3

1
n!
u(n)(E(W1))mn(W1))

= u(E(W1)) + u′(E(W1))E(W1 − E(W1))

+
1
2
u′′(E(W1))E((W1 − E(W1))2) + E(

∞∑
n=3

1
n!
u(n)(E(W1))mn(W1))

= u(E(W1)) + u′(E(W1))(E(W1)− E(W1)) +
1
2
u′′(E(W1))V (W1)

+ E(
∞∑
n=3

1
n!
u(n)(E(W1))mn(W1))

= u(E(W1)) +
1
2
u′′(E(W1))V (W1) + E(

∞∑
n=3

1
n!
u(n)(E(W1))mn(W1))︸ ︷︷ ︸

s

(2.2)

4

2 The Mean-Variance Optimization Model

The main argument of Markowitz [Mar59, Mar87] is that if the utility function of the
investor is quadratic or if it can be approximated with sufficient precision by a quadratic
function, then the term s in Eq. 2.2 becomes 0. In this case, expected utility can be
expressed solely in terms of expected return E(W1) and variance V (W1). If it is further
assumed that the utility function is concave, i.e. the second derivative is negative, then
from all portfolios with the same expected return the one with the smallest variance
maximizes expected utility.
Concave utility functions that are quadratic have one serious drawback: For each one
there is an input value above which the gradient of the utility function becomes negative.
An increase in wealth would therefore decrease utility, which is not compatible with what
would usually be seen as a rational behavior.
Markowitz [Mar59, Mar87] argues that for reasonable utility functions the quadratic
approximation should be good enough in a sufficiently large area around E(W1) to
prevent a major loss caused by approximation errors. Empirical results by Kallberg and
Ziemba [KZ83] and Kroll et al. [KLM84] confirm this proposition.
If the utility function is not quadratic, there is a second reason why it makes sense
to focus solely on expected return and variance. Under the condition of multivariate
normally distributed asset returns, the return distribution of every portfolio consisting
of those assets is also Gaussian, due to the fact that the normal distribution is stable.
Moreover, any normal distribution is completely defined by its first and second moment
(i.e. expected return and variance). Therefore, as long as the investor is risk averse, the
conclusion is the same as above, irrespective of the type of utility function: for any given
value of expected return, the portfolio with the smallest variance maximizes expected
utility.
One obvious problem with using Gaussian distributions to model asset returns is based on
the attribute of the normal distribution to be unbounded from below: if the investment
alternatives are regular shares, their value can not fall below 0, i.e. there is not even the
smallest probability for the return to be smaller than −1.
The main argument against normality of the asset returns is, however, that there is a lot
of empirical evidence that investment returns are not multivariate Gaussian. Classical
references documenting this are e.g. Mandelbrot [Man63] and Fama [Fam65].
But even if neither of the circumstances mentioned above (quadratic utility or normally
distributed asset returns) are assumed to be true, there is a good chance that the portfolio
that maximizes expected utility is fairly close to the one that minimizes variance for a
given value of expected return (see e.g. Kroll et al. [KLM84] or Cremers et al. [CKP03]).
In the problematic case that expected utility has to be maximized with neither quadratic
utility nor normally distributed returns, there is no other choice but to explicitly deter-
mine the utility function of the investor – which is often not an easy task – and then to
directly use it in the optimization process. Depending on the type of the utility function,
this may be nearly impossible to do in a reasonable amount of time.
For this reason, this thesis is restricted to mean-variance optimization.

5

2 The Mean-Variance Optimization Model

2.2 The Standard Mean-Variance Model

The standard one-period mean-variance (MV) optimization problem can be expressed as
a bicriteria optimization model where the solution simultaneously maximizes expected
return and minimizes portfolio variance with respect to a given set of equality and
inequality constraints:

Standard Mean-Variance Model (SMVM)

minV (x) = xTCx (2.3a)

maxE(x) = xTµ (2.3b)
subject to

AIx ≤ bI (2.3c)

xTe = 1 (2.3d)
AEx = bE (2.3e)

Element xi of the vector x ∈ Rn denotes the fraction of the budget invested in asset i.
C ∈ Rn×n is the covariance matrix, e ∈ Rn represents the unit vector, µ is the vector
of expected returns of all assets. AI and AE are the coefficients matrices of inequalities
and equalities; bI and bE denote the corresponding right hand sides. Equation 2.3d
(the budget constraint) guarantees that the fractions of the budget add up to 1. The
budget constraint can be easily expressed as a part of the equations that are modeled by
AEx = bE . We have mentioned it separately, however, as the constraint is often written
down explicitly in other publications as well, probably due to its effect to normalize the
solutions.
If the investor does not have to spend the complete budget, i.e., if he is allowed to keep
a cash reserve (or if he can invest in a riskless asset), this can be easily integrated into
the model by adding an asset with the desired yield (0 or a riskless interest rate) and
a standard deviation of 0. Additionally, the “new” asset has to be uncorrelated to all
other assets1.
Other types of constraints compatible with the standard model but often mentioned
separately are e.g. the prohibition of short sales, sector constraints, and upper bounds
on asset weights. They are discussed in more detail in Section 2.5.
The necessary data for the mean-variance model consists of the expected return for every
asset – an n-vector – and the respective n × n covariance matrix. Since the covariance
matrix is symmetric, we require in total n variances and n(n−1)/2 covariances. In total
we therefore need to acquire 2n + n(n − 1)/2 = 1

2n(n + 3) data elements prior to the
actual mean-variance optimization. To find a good estimate for that many numbers is of
critical importance, since even small estimation errors can have grave consequences for
results of the optimization. Kallberg and Ziemba [KZ83] and Chopra and Ziemba [CZ93]
have found that mean-variance optimization is especially sensitive to variations of the

1If we assume that the riskless asset has the index k, this is achieved by setting all elements of the
covariance matrix that have either row or column index k to 0.

6

2 The Mean-Variance Optimization Model

expected returns. Best and Grauer [BG91] described the analytical framework to perform
sensitivity analysis with respect to changes of the vector of expected returns and the right
hand sides of the constraints. This framework is closely related to parametric quadratic
programming algorithms that are discussed extensively in Chapter 3. A more general
discussion of the difficulties to apply mean-variance analysis in practice can be found in
Michaud [Mic89], although again the main focus is put on the sensitivity of the input
data.
Several publications propose techniques to get better estimates of both expected returns
and the covariance matrix. See e.g. Jobson and Korkie [JK80], Black and Litterman
[BL92], Chopra et al. [CHT93], Ledoit and Wolf [LW04], Elton et al. [EGS06] and the
references therein. Following a different approach, Jagannathan and Ma [JM03] propose
to introduce nonnegativity constraints instead of more advanced parameter estimation
techniques.
This thesis is concerned mainly with the actual optimization algorithms and not with
the generation of the required input data. In the remainder of the thesis we therefore
assume that the given data (the vector of expected returns and the covariance matrix)
is correct.
There is usually no single portfolio that both minimizes variance and maximizes expected
return. Instead, the result of an optimization based on the SMVM is generally a set of
efficient portfolios.

Definition. A portfolio is efficient / Pareto optimal in the context of mean-variance
portfolio selection if and only if there is no other feasible portfolio that improves at least
one of the two optimization criteria without worsening the other.

When a portfolio is efficient, there is no other portfolio that complies with the constraints
and has

1. lower variance and higher expected return or

2. lower variance and the same expected return or

3. the same variance and higher expected return.

The set of all efficient portfolios is called the Pareto front, Pareto Frontier, or the Efficient
Frontier.
There are three well-established approaches to calculate a “solution” for problem SMVM:
the ε-Constraint approach, the weighted sum method, and algorithms for parametric
quadratic programming. Which of these is to be selected depends on the goal of the
optimization, and on the capabilities of the software packages that are available for the
task.
We will briefly discuss all three in this section2.

2An extended presentation of the parametric quadratic programming approach can be found in Chap-
ter 3, and the ε-Constraint method plays an important role in Chapter 4.

7

2 The Mean-Variance Optimization Model

ε-Constraint Approach

If it is our intention to find the point on the Efficient Frontier with the minimum variance
that has an expected return of at least Ef , this automatically removes one objective
function and introduces an additional constraint. The resulting optimization problem
is – as the covariance matrix is positive semidefinite – a convex quadratic programming
problem (QP):

ε-Constrained Quadratic Programming Model (ε-QPM)

minV (x) = xTCx (2.4a)
subject to

xTµ ≥ Ef (2.4b)
AIx ≤ bI (2.4c)

xTe = 1 (2.4d)
AEx = bE (2.4e)

The solution of this model can be easily computed by using a QP-solver from one of
several more advanced optimization software packages. A list of suitable programs and
libraries is provided by the NEOS Guide [NEO06].
Such a solution, however, represents only one point on the Efficient Frontier. An ap-
proximation of the complete Pareto front can be computed by repeatedly solving the
ε-QPM with increasing (or decreasing) Ef . In multicriteria optimization, this method-
ology is usually called ε-Constraint method. For further information on the ε-Constraint
approach from a general multicriteria point of view, the reader is referred to Changkong
and Haimes [CH83], or to Miettinen [Mie98].
One main drawback attributed to the ε-Constraint method is the time it requires to
generate a sufficiently precise approximation, as the ε-QPM has to be solved for a large
number of different values of Ef . Steuer et al. [SQH06] measured the time it took for only
a very crude approximation (20 different values of Ef) with a commercial optimization
package. Their conclusion was that for larger problem sizes, the slowness of the approach
made this method inferior to parametric quadratic programming.
Unfortunately, the ε-Constraint method is the only approach most software packages
and toolboxes offer for portfolio selection (for more details, see Steuer et al. [SQH06]).

Weighting Approach

The weighting method is another very basic but widely used approach in multicrite-
ria optimization (Miettinen [Mie98]). In the field of portfolio selection, models of this
type are regularly employed. Furthermore they form the basis for parametric quadratic
programming algorithms. By default, a model based on the weighting methodology is
similar to the ε-QPM insofar as its solution is also just a single point on the Pareto front.

8

2 The Mean-Variance Optimization Model

Instead of turning one objective into an additional constraint, however, the “new” single
objective function F is a weighted sum (or difference) of both objective functions from
the SMVM:

λe-QPM

minF (x) = xTCx− λexTµ (2.5a)
subject to

AIx ≤ bI (2.5b)

xTe = 1 (2.5c)
AEx = bE (2.5d)

In order to approximate the Efficient Frontier, the λe-QPM has to be solved for different
values of λe. It is sufficient to look at the solutions for λe ≥ 0, as with them, all the
points on the Efficient frontier can be calculated. The same procedures that solve the
ε-QPM can be used here as well, as most quadratic programming solvers permit a linear
term in the otherwise quadratic objective function.
The solution sets that can be calculated for varying parameters (either Ef or λe) are the
same for both models: The Lagrange functions are identical if the parameter λe from
model λe-QPM is interpreted as the multiplier for the expected return constraint in the
ε-QPM3:

L(x,ν,λ,λe) = xTQx− λe xTµ+ νT (AIx− bI) + λT (AEx− bE)

As a consequence, the Karush-Kuhn-Tucker conditions – which are necessary and suffi-
cient for optimality if the objective function and the constraints are convex – are identical
as well:

∇L(x,ν,λ,λe) = 0 (2.6a)

νi (
N∑
j=1

aijxj − bi) = 0 ∀ i = 1, . . . , l (2.6b)

AIx ≤ bI (2.6c)
AEx = bE (2.6d)
ν, λe ≥0 (2.6e)

Each value of λe ∈ [0;∞) is mapped to exactly one value of Ef . For a proof and further
details, the reader is referred to Markowitz [Mar87]. It is obvious that for λe = 0 the
solution of the λe-QPM is the Minimum Variance Portfolio (MVP), and that if λe is
large enough, the calculated solution is the portfolio with maximum expected return.

3For sake of brevity, the budget constraint xTe = 1 has been considered as part of the general equations.

9

2 The Mean-Variance Optimization Model

Parametric Quadratic Programming Approach

If the Pareto front as a whole has to be calculated for a portfolio selection problem
of type SMVM, the only choice is an active set algorithm for parametric quadratic
programming (cf. Chapter 3). This algorithm solves the λe-QPM parametrically for all
λe in the interval [0,+∞).
Starting from one point on the Efficient Frontier, the algorithm computes a sequence
of so called corner portfolios x1, . . . ,xm. These corner portfolios define the complete
Efficient Frontier as all other points on the Pareto front are convex combinations of the
two adjacent corner portfolios:
If xi and xi+1 are adjacent corner portfolios with expected returns Ei and Ei+1, Ei ≤
Ei+1, then for every Ei,λ with Ei,λ = λEi + (1− λ)Ei+1, λ ∈ [0, 1] the optimal portfolio
xλ is calculated as xλ = λxi + (1− λ)xi+1.
Depending on the capabilities of the algorithm that is used to solve the mean-variance
optimization problem, the linear constraints may have to be adapted to the required for-
mulation. The “classical” parametric quadratic programming algorithm from Markowitz
[Mar87], the Critical Line Algorithm, supports only equations and nonnegativity con-
straints, i.e. inequalities which ensure that variables remain positive. Therefore, general
inequalities of the type Ax ≤ b have to be transformed into equations by using slack
variables (see, e.g., Markowitz [Mar87] and especially Rudolf [Rud94]). This approach
is problematic as it increases the problem size due to the additional variables.
In Chapter 3 we present an optimized version of a parametric quadratic programming
algorithm that accepts both equations and inequalities. Thus, no modifications to the
problem structure are necessary4.
An important simplification common to all portfolio selection models mentioned above
is that the elements of x are assumed to be real numbers. Considering that shares can
usually not be bought and sold in fractions, this may have the effect that the solution
of the SMVM (and therefore also solutions of the ε-QPM and the λe-QPM) may not
be applicable to the actual optimization problem of the investor. The divergence can
be quite significant if the available budget is small. Given a larger budget, however,
the difference between the solution of problem SMVM and the solution of the actual
optimization problem – where the number of traded assets has to be an integer – is
negligible5.
The computational difficulties that result if integer constraints are included in the opti-
mization are briefly discussed in Section 2.5.2 together with problems caused by other
types of constraints that can not be integrated into the standard model.

4Naturally, all variables have to be shifted to the left hand side of the constraints, and “larger than”
inequalities have to be multiplied by −1.

5Another justification for using real valued variables is that in several interviews, portfolio managers
for mutual funds did confirm that they only work with fractions of the available budget due to the
fact that their budget is subject to daily changes.

10

2 The Mean-Variance Optimization Model

2.3 Measures of Risk

One common interpretation of the variance in the standard model is that it quantifies
portfolio risk. Therefore, mean-variance optimization is often referred to as risk-return
optimization. This point of view is controversial as the meaning of the term risk in
everyday perception clashes with the mathematical definition of variance. One main
problem of variance as a measure of risk is that both positive and negative deviations of
the actual return from the expected portfolio return are equally taken into account when
the variance is calculated. Only very few investors will, however, consider it a problem if
the portfolio return is larger than the return that was expected before. A risk measure
that only measures the downside deviations while leaving out the upside potential may
be more compatible with what would usually be expected from a measure of risk.
As a consequence of this problem and also due to the rising importance of risk manage-
ment in financial institutions, which are also mainly concerned with negative deviations
of the return, several authors have examined the application of alternative risk measures
in portfolio selection with the intention to better capture the notion of risk.
Two approaches that have played a prominent role as risk measures in the last few years
are Value at Risk (VaR) and Conditional Value at Risk (CVaR).
Value at Risk is a concept that describes risk as the loss of a portfolio of assets which
is not surpassed given a confidence level α. The VaR is therefore the difference between
the expected return of the portfolio and the (1 − α)-quantile of its return distribution.
Due to certain drawbacks of the VaR-approach like, e.g., the lack of sub-additivity (see
Artzner et al.[ADEH99]), Conditional Value at Risk is often suggested as a suitable
replacement. Conditional Value at Risk (CVaR), also called Expected Tail Loss (ETL),
is the expected loss under the condition that the portfolio return is below the same
α-quantile that marks the threshold of the VaR.
There are other measures of risk that try to capture the asymmetric meaning of risk, with
the semivariance measure suggested by Markowitz [Mar59] being the most prominent.
Grootveld and Hallerbach [GH99] analyze different downside-risk measures and compare
the results of their application to those of the standard mean-variance framework.
Konno and Yamazaki [KY91] proposed to replace portfolio variance with the so-called
Mean Absolute Deviation (MAD) which is defined as follows:

ωp = E(| x′r − µ′x |)

with r as the vector of random variables representing the returns of all assets, x as
vector of portfolio weights and µ as vector of expected returns. Their main arguments
for this modification were:

1. With MAD, no covariance matrix is necessary. Therefore the number of parameters
to be estimated before the optimization is significantly lower.

2. Konno and Yamazaki claim that quadratic mean-variance optimization with large
dense covariance matrices is computationally not feasible. In the MAD model, it
is only necessary to solve a linear optimization problem.

11

2 The Mean-Variance Optimization Model

3. They also argue that the solution of their optimization model results in fewer assets
being included in the portfolio whereas for the mean-variance case the number of
assets with a weight larger than 0 may be large.

The second reason does not align with our experience (cf. Chapter 3), and we also did
not witness the effect that the mean-variance model results in a large number of small
weighted assets. Simaan [Sim97] compared both models with respect to the consequences
of estimation errors in the parameters. He concluded that the resulting error is less severe
in the mean-variance model.
In this thesis, neither VaR, nor CVaR, nor MAD will be considered any further. Instead,
we will focus on the variance of the portfolio return. For additional information on VaR
and CVaR in the context of portfolio selection, the reader is referred to e.g. Uryasev
[Ury00], Krokhmal et al. [KPU02], Maringer [Mar05], Gaivoronsky and Pflug [GP05], or
Alexander and Baptista [AB04].
Besides the initial paper from Konno and Yamazaki [KY91], the MAD model is discussed
and extended in Konno and Wijayanayake [KW02] and different solution approaches are
treated in Konno and Yamamoto [KY05]. Mansini et al. [MOS03] give an overview of
the different LP-solvable portfolio optimization problems, among them the MAD and
the CVaR model. They also provide a computational comparison of the different models
on real life data.

2.4 Benchmark Problems

Many authors test their approaches on the publicly available benchmarks provided in
the OR-library [Bea06]. For mean-variance portfolio selection, 5 data sets are available,
which we will use as well, namely

P1 The smallest problem, the Hang Seng benchmark consisting of 31 assets.

P2 The benchmark data set based on the DAX 100 containing 85 assets.

P3 The benchmark based on the FTSE 100 with 89 assets.

P4 The S&P benchmark with 98 assets.

P5 The largest problem in the OR-library, the Nikkei 225 benchmark with 225 assets.

The data sets consist of values for the expected return and the standard deviation of each
asset and of the correlation matrix. They were initially used by Chang et al. [CMBS00].
Since we also required larger data sets in order to examine which approaches scale well,
we additionally tested it on larger problem instances:

P6 A benchmark with 500 assets

P7 A benchmark with 1000 assets

P8 A benchmark with 2000 assets

The data sets were generously provided by the authors of Hirschberger et al. [HQS07].
They were generated according to a method described in that paper.

12

2 The Mean-Variance Optimization Model

2.5 Constraint Types

In this section, we will discuss (i) constraints that are relevant for German mutual funds
and (ii) constraints that are mentioned in publications in this field of research.
With the Standard Mean-Variance Model (SMVM) in mind, constraints for mean-
variance portfolio selection can be divided into two groups: constraints that are com-
patible with the model and those that are not.
A constraint is compatible with the SMVM if it can be expressed as a linear term of
the optimization variables which has to be either larger than, smaller than, or equal to
a given constant:

a1x1 + a2x2 + a3x3 + . . .+ anxn ⊕ b

with ⊕ ∈ {≤,≥,=}.
Any feasible region defined by a single linear constraint or the intersection of an arbitrary
number of linear constraints is convex.

Definition. Convex Set:
A set M is convex if, for any two points x,y ∈ M , all points λx + (1 − λ)y, λ ∈ [0, 1]
are elements of M as well.

Definition. Convex Function:
A function defined on a convex set M is convex if for any two point x,y ∈ M the
following is true for all λ ∈ [0, 1]:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

Convexity of the search space is, together with a convex objective function, the essential
property that makes an optimization problem easier to solve. If both requirements are
fulfilled, then each local minimum of the objective function is also a global minimum.
It is therefore sufficient to find a local minimum, which is usually not too difficult. The
obvious approach is to find a solution that fulfills the Karush-Kuhn-Tucker conditions.
There are, however, several types of constraints that are convex but cannot be expressed
as linear constraints. One such constraint would be an upper bound on the variance of
the portfolio. All parametric and most nonparametric quadratic programming solvers
are, as of today, unable to cope with such constraints, although in the last few years,
quadratic constraints have been integrated in a few commercial packages (c.f. [NEO06]).
All three models presented in Section 2.2 use the variance of the portfolio as a part of or
as the sole optimization criterion. We think that as a consequence of this, an additional
constraint that restricts variance does not make sense. Other types of constraints that
are convex but not linear are – to our knowledge – not broadly used in the context of
portfolio selection.
The constraints that are discussed in the remainder of this section are either linear or
nonconvex.

13

2 The Mean-Variance Optimization Model

2.5.1 Linear Constraints

Most of the restrictions that are relevant for portfolio selection can be expressed as linear
constraints. The following list provides the most common types of linear constraints:

1. The prohibition of short sales6:
For many mutual funds, short selling is not allowed at all. In the context of a
single-period mean-variance framework, such a constraint is usually modelled as
x ≥ 0.

2. Lower bounds on individual assets:
Constraints of this type are modelled as xi ≥ li and are therefore just a generic
variant of the short sales prohibition.

3. Upper bounds on single asset (xi ≤ ui), on groups of single assets (xi ≤ ui ∀i ∈ Υ),
or on all assets (x ≤ u).
If there are upper bounds on all assets, such constraints have the effect to prevent
the uneven distribution of the budget among only very few assets. Constraints
of this type are often defined by laws which intend to limit the leeway of those
responsible for the investment policy of financial instruments. In a German mutual
fund, for example, the share of the budget that is invested into any single asset
is not allowed to surpass 10% (see [Inv05]). Upper bounds on single assets that
are lower than those on all the other assets may occur if the investor has a certain
aversion against them. This may go as far as to set the upper and lower bound
of an asset to the identical value. In this case, the fraction invested in this asset
is already determined and does not have to be calculated. The dimension of the
optimization problem can (and should) therefore be reduced by 1.

4. Sector constraints:
Constraints of this type limit the fraction of the budget that may be invested in
certain sectors, e.g. in assets of automobile producers, in the energy sector, or in
shares from software producers. A sector constraint can be modelled as follows:∑

i∈ Ξ

aixi ≤ b

where Ξ is the set of those assets that belong to the restricted sector. ai is usually 1,
but constraints are conceivable where for some i ∈ Ξ, ai is increased or decreased.
One plausible situation where this might be the case is if a corporation is active
in several sectors, only the “parts” of the corporation active in a particular sector
are relevant for the sector constraint.

Lower bounds on sectors are sometimes defined as well (
∑

i∈ Ξ aixi ≥ b). Con-
straints of this type are usually used if a mutual fund is dedicated to a particular

6Short selling allows an investor to profit from falling prices by “borrowing” an asset and selling it with
the expectation that he can buy the same asset back later for a reduced prize.

14

2 The Mean-Variance Optimization Model

sector like, e.g., the oil industry, and the prospectus defines a guarantee that a
given share of the budget is invested in this sector at all times.

5. Regional constraints:
Constraints of this type set an upper or lower bound to the fraction of the budget
that may be invested in assets of a given region, for example
At least 70% of the budget has to be invested in European shares. They are modelled
similarly to sector constraints.

Both sector constraints and regional constraints are often specified in the prospec-
tus of an investment fund, as they define its overall investment policy.

The consequences of any of these constraints depend strongly on the actual data. What
can be stated irrespective of the type of constraint is that if the basic tenets of mean-
variance optimization are accepted and the given problem data (the vector of expected
returns and the covariance matrix) is assumed to be correct, every optimization problem
with any type of additional constraint can at best have a solution of the same quality as
the equivalent problem that does not include the constraint. If the constraint is binding,
the result will often be worse. As a consequence, it does not make sense for an investor
to introduce too many restrictions.
The main argument for the introduction of constraints is that they keep the solution of
the mean-variance model in an area of the search space that is economically reasonable7.

2.5.2 Nonconvex Constraints

In the following we will describe several constraints that can not be expressed in a way
which would permit their integration into the models presented in Section 2.2, i.e. they
cannot be expressed as a set of linear equations and/or linear inequalities. The core
problem with all of them is that they cause the search space to become nonconvex.

Buy-In Thresholds

Buy-in thresholds prevent assets from being included in a portfolio with small weights
only. They determine that asset weights are either above a lower bound lb, or the asset is
not part of the portfolio at all. The main reason for such a constraint might be that some
costs are – at least partially – determined by the number of different shares that are held
(e.g. information costs, fixed transaction costs). Shares with very small weights would
therefore just increase these costs without having any real impact regarding portfolio
variance or expected return.
Jobst et al. [JHLM01] have shown that a portfolio selection problem with buy-in thresh-
olds can be formulated as a mixed-integer problem (MIP)8 by adding a binary variable

7If the problem is completely unconstrained, i.e. if not even the amount an asset can be sold short is
limited, it is possible to achieve infinite expected return. In that case, an infinite amount of stock
has to be bought and sold short, however. Such a result is not compatible with economic reality.

8Mixed-integer problems, often also called mixed-integer programs, are optimization problems in which
some of the decision variables have to be integral while others are allowed to assume real values.

15

2 The Mean-Variance Optimization Model

for each investment alternative. With N assets and binary variables ρi, i = 1 . . . N , the
MIP looks as follows:

SMVM with buy-in threshold lb

minV (x) = xTQx (2.7a)

maxE(x) = xTµ (2.7b)
subject to

AIx ≤ bI (2.7c)

xTe = 1 (2.7d)
AEx = bE (2.7e)

lbρi ≤ xi ≤ uρi (2.7f)
ρi ∈ {0, 1} i = 1 . . . N (2.7g)

u denotes the upper bound for all assets. It can be set to 1 if no stricter upper bound is
given.
Unfortunately, neither “standard” QP solvers nor their parametric variants can handle
binary variables, as such variables are inherently nonconvex. But even if it is possible
to model the problem without binary variables, the search space of this problem is
nonconvex due to the added constraint.

Proof. Assume the portfolios x and y are feasible, and that variable xi = 0, and variable
yi = lb. Obviously any convex combination of x, y, apart from x and y themselves, is
not feasible.

Cardinality Constraints

Investors and fund managers often wish to control the number of assets in the mutual
fund they own/manage:
The fund manager might – due to monitoring reasons, or in order to reduce transaction
costs – set an upper limit on the number of securities in a portfolio (maximum cardinality
constraint).
A wealthy private investor, however, might prefer a well diversified portfolio, and there-
fore sets a number of assets which his portfolio must contain at least (minimum cardi-
nality constraint). Horniman et al. [JHLM01] pointed out that a minimum cardinality
constraint is intrinsically linked with buy-in thresholds: on the one hand, a high thresh-
old limits the number of assets the portfolio can contain, and on the other hand, if there
is no threshold at all, any xi can be set to a very small value instead of being zero,
meaning that the minimum cardinality constraint is rendered completely ineffective.
The nonconvexity of the search space prevents the application of the classical methods
(e.g. parametric quadratic programming) on problem instances with maximum cardinal-
ity constraints as well.

16

2 The Mean-Variance Optimization Model

Proof. If a maximum cardinality of K is assumed, and it is further assumed that the
portfolios x and y are feasible, and that variable xi > 0 for i = 1, . . . ,K and that
variable yi > 0 for i = K + 1, . . . , 2K, then any convex combination of x, y, apart from
x and y themselves, is not feasible.

The nonconvexity of the search space in a problem with constrained minimum cardinality
stems from the buy-in thresholds that are necessary in this case.
By using integer variables, the Standard Mean-Variance Model (SMVM) can be modified
so that its solution complies with a maximum cardinality constraint. If we assume that
the number of different assets to be held is limited to K, the model looks as follows:

SMVM with maximum cardinality constraint
minV (x) = xTQx (2.8a)

maxE(x) = xTµ (2.8b)
subject to

AIx ≤ bI (2.8c)

xTe = 1 (2.8d)
AEx = bE (2.8e)

xi ≤ uiρi ρi ∈ {0, 1} i = 1, . . . , N (2.8f)
n∑
i=1

ρi ≤ K (2.8g)

Ineq. 2.8f requires an upper bound ui for every variable. If none is given, it can be
set to 1 as long as short sales are not permitted. Otherwise, the upper bound has to
be adapted accordingly – although it is questionable if it makes much sense to use a
cardinality constraint when short sales are allowed.
Irrespective of how the maximum cardinality constraint is modelled, we would like to
point out that the presence of such a constraint can make the problem NP-complete,
but only if the maximum cardinality is a fraction of the total number of assets (Bien-
stock [Bie96]). If the maximum cardinality is a small constant, the number of different
combinations of shares larger than 0 is polynomial.

The 5-10-40-Constraint

The German investment law [Inv05] states in §60(1) that, roughly translated, securities
of the same issuer are allowed to amount to up to 5% of the net asset value of the mutual
fund. They are allowed to amount to 10%, however, if the total of all of these assets is
less than 40% of the net asset value. This constraint is especially interesting as it is the
only one based on German law that can’t be incorporated into the SMVM (see Section
2.2) in the form of linear constraints.
Again, the difficulty is the result of the nonconvexity of the search space / feasible region.

17

2 The Mean-Variance Optimization Model

Proof. Assume that the portfolios x and y are feasible, and that xi = 0.1, i = 1, . . . , 4
and xj = 0.05, j = 5, . . . , 16. Assume further that yi = xi for all i except y4 = 0.05 and
x5 = 0.1. Any convex combination of x and y, apart from x and y themselves, is not
feasible: the sum of all assets with xi > 0.05 is obviously larger than 40%.

As a consequence, this problem can’t be handled by either a QP-solver or the available
algorithms for parametric quadratic programming.
Using the vector ρ consisting of binary variables ρi, i = 1, . . . , N , the portfolio selection
problem with 5-10-40-Constraint can be formulated as follows:

SMVM with 5-10-40-Constraint
minV (x) = xTQx (2.9a)

maxE(x) = xTµ (2.9b)
subject to

AIx ≤ bI (2.9c)

xTe = 1 (2.9d)
AEx = bE (2.9e)

ρTx ≤ 0.4 (2.9f)
x− 0.05ρ ≤ 0.05e (2.9g)
ρi ∈ {0, 1} ∀i = 1, . . . , N (2.9h)

x ≥ 0 (2.9i)

Ineq. 2.9g enforces that if ρi = 1, xi may go up to 10%, otherwise (ρi = 0) the upper
bound of xi is 5%. Ineq. 2.9f then ensures that the combined share of those variables
whose weight may become larger than 5% is limited to 40%.

Integer Constraints

Integer constraints, sometimes also called minimum transaction lots or roundlots, are
another type of “complex” constraint often mentioned in publications that treat non-
convex extensions of the mean-variance portfolio selection model (see e.g. Mansini and
Speranza [MS99], Jobst et al. [JHLM01]). The reason for integer constraints is that
many investment alternatives can usually not be bought and sold in non-integer quanti-
ties9. If the basic SMVM is used, element i of the solution will only by pure chance be
an integer multiple of the budget fraction γi that is the equivalent of the prize for one
share of investment alternative i.

9Exceptions are e.g. mutual funds and index certificates.

18

2 The Mean-Variance Optimization Model

For the whole solution to comply with an integer constraint, xi has to be replaced by
γiki in the SMVM:

SMVM-Int
minV (k) = (Γk)TCΓk (2.10a)

maxE(k) = (Γk)Tµ (2.10b)
subject to
AI(Γk) ≤ bI (2.10c)

(Γk)Te ≤ 1 (2.10d)
AE(Γk) = bE (2.10e)
ki integer ∀i (2.10f)

where k is the vector of integer decision variables. To simplify the notation, we have
introduced the N×N -matrix Γ, a diagonal matrix with the diagonal elements consisting
of vector γ. Ineq. 2.10d had to be modified in order to cope with leftover budget that is
caused by the integer constraints. Another way to handle this would be to introduce an
asset that represents cash and is divisible up to the smallest currency unit (e.g. cent).
Based on empirical results, Maringer [Mar02a] has concluded that integer constraints are
primarily relevant for investors with a small budget, as the difference in results between
an integer solution and the solution of the basic model becomes insignificant when the
budget is increased. As our main intention is the treatment of constraints that are
relevant for investors with large budgets, we will not consider integer constraints in the
remainder of this thesis.
Instead, the focus will be put on the development of solutions for problems containing
cardinality constraints, the 5-10-40-Constraint, and partially for problems with buy-in
thresholds.
For further information about methods that allow the calculation of solutions for prob-
lems with integer constraints, the reader is referred to Mansini and Speranza [MS99],
Jobst et al. [JHLM01], Lin and Wang [LW02], Maringer [Mar02a], Streichert et al.
[SUZ03, SUZ04a, SUZ04b], and Li et al. [LSW06].

19

3 A Solver for Parametric Quadratic
Programming

This chapter aims at providing an efficient and reliable algorithm that is able to calculate
the complete Pareto front for the mean-variance portfolio selection problem with linear
equations and inequalities. For further background information about the mean-variance
problem, the reader is referred to Section 2.2.
There are several reasons why it may be necessary to calculate the complete Pareto
front:

• Not much is known about the utility function or the risk aversion of an investor.

• The investor wants to take a look at all “interesting” portfolios and then, based
on that, she will take her decision.

• There is a large group of investors with similar constraints but different risk-return
preferences.

As mentioned in Chapter 2, algorithms for the calculation of all portfolios on the Pareto
front belong to the category of parametric quadratic programming algorithms – or
shorter: PQP algorithms – and are presented in several publications. The first of them
was the so called Critical Line Algorithm mentioned in the seminal work by Markowitz
[Mar56].
To our knowledge, all algorithms that are capable of calculating the whole Efficient
Frontier assume that the search space is convex, usually by requiring that all constraints
are linear in nature. (For a brief overview of the different types of constraints, see Section
2.5.)
As the overall goal of this thesis is the handling of nonconvex constraints in a mean-
variance framework, a PQP algorithm is unable to solve problems with such constraints
directly and does not help much at first glance. However, by selecting different convex
subsets in the nonconvex search space, we are able to use a PQP algorithm to calculate
a Pareto front for each subset. These Pareto fronts can then be merged into a solution
for the problem with nonconvex restrictions. For a detailed description on how the
convex subsets are chosen, the reader is referred to Chapter 5 and Chapter 6. Chapter 5
also describes how a PQP algorithm can be integrated into an evolutionary algorithm
framework. For such an application, efficiency of the PQP algorithm is particularly
crucial, as it has to be executed multiple times. A faster algorithm permits a larger
number of convex subsets to be calculated, which in turn might lead to a better overall
solution.

20

3 A PQP-Solver

Only very few publications that describe algorithms for parametric quadratic program-
ming give any hints on how to implement these algorithms in an efficient and numerically
stable way for large portfolio sizes, which is our main focus in the remainder of this chap-
ter. The chapter is based on an article by Stein, Branke, and Schmeck [SBS07].
The subsequent sections of this chapter are organized as follows:
Section 3.1 presents the algorithm framework that provides the basis of our implemen-
tation. In Section 3.2 we compare other existing approaches for parametric and non-
parametric quadratic programming. Based on our framework from Section 3.1 several
modifications intended to shorten algorithm runtime will be described in Section 3.3.
The test results for these algorithm variants are presented in Section 3.4. In Section 3.5,
two different matrix representations are introduced, and we show how both are incor-
porated into the implementation of the fastest algorithm variant. We also highlight one
implementation detail that is crucial to achieve correct solutions. As there is no pub-
licly available algorithm that realizes all the proposed improvements, in Section 3.6 we
provide a step-by-step description of the fastest algorithm variant which should help the
reader in implementing it efficiently. (Our own implementation will be used in Chapter
5 to calculate the solutions for the convex subsets.) The chapter concludes with a brief
summary and hints at potential extensions of the PQP algorithm.

3.1 An Algorithm for
Parametric Quadratic Programming

As a starting point, we have used a modified version of the active set algorithm for
parametric quadratic programming (PQP) presented by Best [Bes96] and have adapted
it for portfolio selection. In order to familiarize the reader with all the variables and
the used methodology, we summarize the algorithm in a short way and refer the reader
to Best [Bes96] for a more detailed description. The implemented algorithm solves the
λe-QP model (see Section 2.2) for all values of the parameter λe in the interval [0,+∞):

λe-QPM

minF (x) = xTCx− λexTµ (3.1a)
subject to

AIx ≤ bI (3.1b)
AEx ≤ bE (3.1c)

with the element xi of the n-vector x again denoting the fraction of the budget invested
in asset i. The n×n-matrix C is the covariance matrix, the n-vector µ denotes the vector
of expected returns of all assets. AI and AE are the coefficient matrices of inequalities
and equalities; bI and bE denote the respective right hand sides. To simplify notation,
the budget constraint (xTe = 1) is considered as part of the equations and will not be
mentioned separately in the remainder of this chapter.

21

3 A PQP-Solver

To start the parametric programming routine, at least one portfolio on the Pareto front
has to be known. Due to the fact that it is usually easier and computationally cheaper
to solve an optimization problem with a linear objective function instead of a quadratic
objective function, our PQP algorithm starts at the portfolio with the highest possible
expected return, which is the solution of the following optimization problem:

max{µTx | AIx ≤ bI , AEx = bE} (3.2)

If this solution is unique, as is nearly always the case for “normal” portfolio selection
problems, the portfolio lies at the end of the Efficient Frontier that is associated with
the highest λe.
Otherwise, there are infinitely many portfolios that achieve the highest possible expected
return, and it is necessary to select from all these solutions to problem (3.2) the portfolio
with the lowest variance:

min{xTCx | µTx = Em,AIx ≤ bI , AEx = bE} (3.3)

Here, Em denotes the maximum expected return calculated in (3.2). This is a quadratic
programming problem that can be solved with any of the available standard codes
or packages for this problem class (see e.g. the NEOS Optimization Software Guide
[NEO06]).
If not all portfolio weights have an upper and lower bound, it is possible that the expected
return is unbounded and therefore a solution to problem (3.2) does not exist. In this
case it is necessary to compute the minimum variance portfolio:

min{xTCx | AIx ≤ bI , AEx = bE} (3.4)

and start the parametric quadratic programming algorithm from the other end of the
Efficient Frontier.
For the PQP algorithm to successfully calculate the global optimum for each λe, it is
necessary to have a positive semidefinite covariance matrix C. For portfolio selection
problems this is always the case due to the fact that the variance V = xTCx of any
portfolio has to be larger than or equal to zero1.
At the heart of the active set algorithm is the separation of the inequalities into active
and inactive constraints at a given point x̂. A linear inequality f(x̂) ≤ b is active at x̂,
if the equation f(x̂) = b is fulfilled as well. Otherwise (i.e. if f(x̂) < b) the constraint
is inactive. Equations can be interpreted as constraints that are always active. The
set of all constraints (both inequalities and equations) active at a given point is called
the active set. The Efficient Frontier consists of adjacent segments, each of which is
characterized by an active set Ina that is constant. At the transit point – also called
corner portfolio – to the next segment, the active set changes. The first constraint that
switches status determines both the end of the segment and the set In+1

a of the adjacent
segment.

1Difficulties might arise if the covariance matrix is positive semidefinite, but not positive definite, as
even slight numerical errors can cause the matrix to become indefinite. To prevent this, it might be
advisable to add a very small positive constant (i.e. 10−7) to all diagonal elements.

22

3 A PQP-Solver

One iteration of the algorithm works as follows:
If λe of the starting point and Ina for the current segment are given, and Aa is the matrix
of active constraints, the end of the segment is computed by solving the system of linear
equations that results from the Karush-Kuhn-Tucker conditions(

C ATa
Aa 0

)(
x
λ

)
=
(

0
ba

)
+ λe

(
µ
0

)
(3.5)

and determining the first Lagrange multiplier λi of any inequality that becomes 0. (The
Lagrange multipliers of the equations are allowed to be negative.) Additionally the
inactive constraints have to be checked whether they become active. If the matrix
H =

(
C ATa
Aa 0

)
is nonsingular, the parametric solution of (3.5) can be determined by

solving the two sets of linear equations:

H

(
hx,q
hλ,q

)
=
(

0
ba

)
and

H

(
hx,p
hλ,p

)
=
(
µ
0

)
for the vectors

(hx,q
hλ,q

)
and

(hx,p
hλ,p

)
.

To determine the end of the current segment, the values of λ̂e and λ̃e have to be obtained.
λ̂e indicates the end of the current segment if the end point is determined by any of the
inactive constraints becoming active. λ̂e is calculated as follows:

λ̂e = max
{
bi − aiThx,q
aiThx,p

∀ i = 1 . . .m with i /∈ Ia and aiThx,p < 0
}

(3.6)

λ̃e indicates the end of the segment if the end point is determined by some restriction
changing status from active to inactive:

λ̃e = max
{
hλ,q,i
hλ,p,i

∀ i = 1 . . .m with i ∈ Ia and hλ,p,i > 0
}

(3.7)

λe for the next corner portfolio is therefore calculated as λe = max{λ̂e, λ̃e}. If λe is
determined by (3.6) and the responsible index is l, In+1

a = Ina ∪ {l}. Similarly, if λe is
determined by (3.7) and the responsible index is o, In+1

a = Ina \ {o}. Both Best [Bes96]
and Perold [Per84] present a similar solution for what to do if row l of matrix A which
has to be added to Aa is linearly dependent on Aa. They then calculate the constraint
that changes from active to inactive and remove the constraint from the active set In+1

a .
In both algorithms, however, there is the prerequisite that the current matrix Ana has
full row rank.
If the algorithm starts at the point with the highest expected return, it happens quite
often that the first A0

a constructed from this point does not comply with the above
requirement.

23

3 A PQP-Solver

Example:
maxE(x) = λeµ

Tx (3.8a)
subject to

xTe = 1 (3.8b)
x ≤ 0.1 (3.8c)
x ≥ 0 (3.8d)

The solution for this problem will have the ten shares with the highest expected return
at their upper bound 0.1 and all other shares at their lower bound 0. Therefore, for
each share either its upper bound or its lower bound constraint is active. The coefficient
vector of budget constraint (3.8b) can then be expressed as a linear combination of the
coefficient vectors of the upper and lower bounds which means that Aa does not have
full row rank.
The solution we propose, which is even applicable if the covariance matrix is only positive
semidefinite and not positive definite, works as follows:
If the matrix H is singular, the following optimization problem is solved to determine
λe, λ, and x:

MIN-λe

min λn+1
e (3.9a)

subject to

Cx+ATaλ = λn+1
e µ (3.9b)

Ax ≤ b (3.9c)
λ ≥ 0 (3.9d)

The elements of the calculated x determine the weights at the end of this segment,
elements of λ that are 0 indicate which of the active constraints will be inactive in the
next segment. If any of the inactive constraints become active – which is easily tested
by inserting the calculated x into (3.9c) – it is inserted into In+1

a .
By construction, this procedure guarantees Karush-Kuhn-Tucker optimality at the end
of the current segment. (It is trivial to show that solutions for values of λe in the interval
(λn+1
e , λne) which are calculated as λe = ξλn+1

e + (1 − ξ)λne , ξ ∈ (0, 1) are optimal as
well.)

The following short description of the algorithm concludes this section:

1. Initialization:

a) Calculate and store the initial starting solution x0.
b) Determine the associated active set I0

a

c) Set k ←− 0 and set λke ←−∞.

24

3 A PQP-Solver

2. If H =
(
C ATa
Aa 0

)
is nonsingular

a) Calculate the vectors
(hx,q
hλ,q

)
and

(hx,p
hλ,p

)
b) Calculate the values λ̂e, λ̃e and λk+1

e ←− max{λ̂e, λ̃e}
c) Set xk+1 ←− hx,q + λk+1

e hx,p.
d) Determine the next active set Ik+1

a and update matrix H.

Otherwise

a) Calculate λk+1
e , λk+1 and xk+1 by solving the linear optimization problem

MIN-λe.
b) Determine the next active set In+1

a and update matrix H accordingly.

3. If λke > 0, store the calculated solution xk+1, set k ←− k + 1 and go to step 2,
otherwise (i.e. if the end of the algorithm run is reached) calculate and store

xk+1 ←− λke
λke − λk+1

e

xk+1 +
λk+1
e

λke − λk+1
e

xk

4. Terminate.

3.2 Related Work

The first and also – at least in the field of portfolio selection – best known algorithm for
parametric quadratic programming was developed by Harry Markowitz [Mar56] and is
called the Critical Line Algorithm (see e.g. the book from Markowitz [Mar87] for a de-
tailed description). This algorithm in its basic form allows as constraints only equations
and nonnegativity bounds for individual variables. To model additional inequalities,
slack variables have to be added. This is a huge disadvantage in optimization problems
with upper bounds for all assets, as the number of variables is at least doubled. (For an
extensive description how the Markowitz algorithm has to be modified in order to cope
with upper bounds, the reader is referred to Rudolf [Rud94].)
Perold [Per84] presented an algorithm version that is especially adapted to covariance
matrices which are generated by a factor/index model (see e.g. Sharpe [Sha63] or Elton
et al. [EGBG03]). This attribute of the covariance matrix makes it possible to express
it in a way that permits the application of efficient factorization techniques for sparse
matrix decomposition. The problem formulation considers upper and lower bounds on
individual assets and also general equations. General inequalities require the introduc-
tion of slack variables. Additionally, the model from Perold allows the consideration of a
so called turnover constraint, and it also permits the expected return to be the weighted
sum of concave piecewise linear functions instead of just the weighted sum of linear func-
tions. To speed up the algorithm further, Perold’s procedure substitutes active upper
and lower bounds into the system of equations that has to be solved (see Section 3.3).
The algorithm presented by Gould [Gou91] is actually a general purpose large-scale
quadratic programming algorithm which is based on an active-set method. But Gould

25

3 A PQP-Solver

also describes how to use his algorithm parametrically, although it is not specifically
adapted to portfolio selection. It also uses the substitution of upper and lower bounds,
and like the procedure from Perold, it is actually intended for sparse matrix representa-
tion.
Jacobs et al. [JLM05] integrated the factor technique used by Perold into the algorithm
from Markowitz [Mar87]. The focus, however, was put on how to compute the Pareto
front for portfolio selection problems with realistic short positions. The algorithm suffers
from the same drawback as the Critical Line Algorithm from Markowitz, since upper
bounds for assets require additional slack variables.
Best and Kale [BK00] also substituted active upper and lower bounds into the system of
equations that has to be solved, but additionally, to further speed up the algorithm, they
separated the resulting system of equations into two parts that are solved sequentially.
Subsection 3.3.3 describes this in more detail.
Assumptions about the structure of the covariance matrix (besides the requirement of
positive semidefiniteness) are not necessary for the algorithm variants we present in
Section 3.3. One of their main advantages is the ability to work with dense covariance
matrices without increasing computation time. (Sparsity does not play any role in the
algorithm variants presented in the following section.)

“Normal” nonparametric primal active-set algorithms for quadratic programming and
algorithms for parametric quadratic programming with a linear and a quadratic objective
function do not differ too much. (Chapter 16 in the book from Nocedal [NW99] is a good
introduction to active-set quadratic programming algorithms. The amount of published
material on quadratic programming in general is immense, but the bibliography of Gould
and Toint [GT01] contains an extensive listing of publications up to the year 2001.)
The main distinction is the requirement of the PQP algorithm to calculate all points
on the Pareto front, while a nonparametric QP algorithm only needs to calculate the
optimum for the single quadratic objective function. It is therefore more flexible in
choosing the way how to proceed during an algorithm run. This advantage can be
reflected in a reduced number of iterations, and therefore in faster algorithm convergence.
In parametric quadratic programming, there is no shortcut: All corner portfolios have
to be determined in order to be able to calculate all points on the Pareto front.
The operations performed on the matrix H and its decomposition, which are a conse-
quence of either the activation of an inactive constraint or the deactivation of an active
constraint, are essentially the same for both types of algorithms.
Where the algorithms mainly differ is in the computation of the initial solution and in
the choice of pivoting operations. The nonparametric active-set algorithm can choose
any active constraint to be dropped from the active set as long as the Lagrange multiplier
has the correct sign, while the parametric algorithm needs to remove the first constraint
whose multiplier would drop below 0 in order to maintain optimality.

26

3 A PQP-Solver

3.3 Implementation Variants

The implementation variants of the algorithm framework we present in this section are
aimed at calculating the Efficient Frontier as fast as possible without losing numerical
stability. There are essentially two main options that offer the possibility to improve run
time efficiency significantly:

1. The calculation of the initial decomposition of matrix H.

2. The adaptation of the decomposition to the changes in the active set Ia.

It is only feasible to calculate the inverse of matrix H from scratch in every iteration
if the problem size is very small. If we have n possible investment alternatives and
m active constraints this would require O((m + n)3) floating point operations (flops)
each time. For large problem sizes, it would be prohibitively slow in comparison to
the use of a matrix decomposition and its consecutive adaption to the new active set.
The decomposition of a matrix is an O((n + m)3) operation as well, at least if there
is no specific knowledge about the structure of the matrix. It is sufficient, however, to
calculate the decomposition once at the beginning of the algorithm run and to adapt it
in each iteration to the new Ia. This adaptation – also called updating (if a constraint
is added to the active set) or downdating (if a constraint is removed from the active set)
– only requires O((n+m)2) flops.
The choice of the matrix decomposition which is used to solve System (3.5) is an im-
portant design decision. The most common decompositions which are applicable are
the LU decomposition and the QR decomposition. The LU decomposition requires only
about half the number of floating point operations for the initial decomposition. Its
main disadvantage, however, is its numerical instability and that the up- or downdating
is – if pivoting is used to improve numerical stability – complicated and requires more
bookkeeping than the simpler updating procedures for the QR decomposition. There
are efficient implementations for LU decompositions that try to maintain sparsity during
up- and downdating procedures. This advantage is of great importance if the covariance
matrix and the constraint matrices are sparse. As the following algorithm variants are
intended to work well for general covariance matrices, however, this advantage does not
pay off. We have therefore decided to use the QR decomposition.
But the techniques we present in the remainder of this section, which help to speed up
the active set algorithm, can be applied to both decompositions.

3.3.1 Column Rearrangement

To improve algorithm efficiency it is essential to separate the inequality constraints into
upper and lower bounds for single shares on one side and into general inequalities on
the other side. It is our observation that in typical portfolio selection problems with a
large number of investment alternatives, most of the inequalities are upper and lower
bounds. The category of general inequalities often consists of sector or region constraints
(e.g. constraints that limit the amount of money which is invested in European shares,

27

3 A PQP-Solver

in energy sector shares, . . .). If there are several hundred or even several thousand
possible investment alternatives, the number of conceivable sector or region constraints
will usually be small in comparison to the number of upper and lower bounds on single
shares. As a consequence, for large problems, the set of constraints active at a given
point on the Efficient Frontier is generally made up of mostly upper and lower bounds.
This offers the possibility to significantly reduce the amount of work that is necessary
to calculate the initial QR decomposition. As a first step the columns of the matrix H
have to be rearranged:

Ĥ =

ATb,a ATg,a C

0 0 Ag,a
0 0 Ab,a

Ab,a denotes the coefficient matrix of the active bounds, Ag,a is the coefficient matrix
of the other (i.e. general) active constraints.
System (3.5) is changed accordingly:ATb,a ATg,a C

0 0 Ag,a
0 0 Ab,a

λbλg
x

 =

 0
bg,a
bb,a

+ λe

µ0
0

 (3.10)

λb denotes the vector of Lagrange multipliers for the active bounds, λg represents the
multipliers for the general constraints, bb,a and bb,g are the respective right hand sides
of the constraints.
In order to minimize the number of flops required to transform Ĥ into an upper trian-
gular matrix, the active upper and lower bounds in Ab,a have to be sorted beginning
with the active bound with the lowest number and ending with the one with the hightest
number.

Example:

In a problem with 5 shares and an initial efficient point where share 1 and 5 are at their
upper bound, and share 2 is at its lower bound, Ab,a looks as follows:

Ab,a =

1 0 0 0 0
0 −1 0 0 0
0 0 0 0 1

(If all inequalities are formulated as less-or-equal constraints, all coefficients on the left
hand side of a lower bound constraint flip their sign. The only nonzero coefficient in the
second row is therefore -1.)
As matrix H is – due to the sorting of the constraints in Ab,a – already well on its
way to being triangular, it is easy to finish this process by using a sequence of Givens’
rotations. The number of necessary Givens’ (or plane) rotations to complete the QR
decomposition depends on the number of active bounds ν and on the number of other
(general) constraints ξ that are active.

28

3 A PQP-Solver

If the matrix H is nonsingular, the number of active constraints ν + ξ has to be smaller
than or equal to n. (If ξ + ν > n, the matrix

(Ag,a
Ab,a

)
has more rows than columns and

therefore cannot have full row rank. As a consequence, H is singular.)
The number of plane rotations required to bring Ab,a and ATb,a into the desired shape is
ν(n− ν). This is also the maximum number of rotations that are required to transform
either Ab,a or ATb,a, as the following instance of Ab,a shows:

νz }| {
x 0 0 0
0 x 0 0
0 0 x 0
0 0 0 x

n−νz }| {
x x x
x x x
x x x
x x x

−→

n−νz }| {
0 0 0
0 0 0
0 0 0
0 0 0

νz }| {
x 0 0 0
0 x 0 0
0 0 x 0
0 0 0 x

Fortunately, if matrix Ab,a has the shape that requires the most rotations, which occurs
when bounds of the first ν variables are active, matrix ATb,a is already upper triangular
and vice versa.
If the worst case for the matrix Ag,a and its transposed ATg,a is assumed, which is when
the first and the last column of Ag,a have only nonzero elements, the number of Givens
rotations necessary to transform both of them to the required shape is ξ((n− ν − 1) +
(n− ν − ξ)).

nz }| {
x x x x x x x x
x x x x x x x x
x x x x x x x x

−→

n−νz }| {
0
0
0

x x x
0 x x
0 0 x| {z }

ξ

νz }| {
x x x x
x x x x
x x x x

The last remaining part of H to be transformed is the covariance matrix C which
requires 1

2(n− ν − ξ − 1)(n− ν − ξ) plane rotations:

x x x x x x x
x x x x x x x
x x x x x x x
x x x x x x x
x x x x x x x
x x x x x x x
x x x x x x x| {z }

n

−→

x x x
x x x
x x x
x x x
x x x
0 x x
0 0 x| {z }
n−ξ−ν

x
x
x
x
x
x
x|{z}
ξ

x x x
x x x
x x x
x x x
x x x
x x x
x x x| {z }

ν

The upper bound s for the number of necessary plane rotations is therefore:

s = ν(n− ν) + ξ((n− ν − 1) + (n− ν − ξ)) +
1
2

(n− ν − ξ − 1)(n− ν − ξ) (3.11)

With our assumption that most of the shares are either at their upper or lower bound,
n− ν can be replaced by a (small) constant c, and equation (3.11) becomes:

s = νc+ ξ((c− 1) + (c− ξ)) +
1
2

(c− ξ − 1)(c− ξ) (3.12)

29

3 A PQP-Solver

This indicates clearly that – if the assumption ν ≈ n is valid – the number s of Givens
rotations necessary to make H upper triangular is of order O(n).
The technique we presented is also applicable to other constraints if the nonzero elements
can be arranged in a proper way. The amount of saved computation time depends on
the number of such constraints and on the number of nonzero elements below the main
diagonal.

3.3.2 Substitution of Variables with Active Bounds

Another modification to greatly improve the runtime of the active set algorithm also
uses the difference between simple bounds on individual assets and all other constraints.
The basic idea – presented e.g. by Perold [Per84] or Gould [Gou91]) – is quite simple:
If either upper or lower bound on an asset is active in a given segment, then the variable
associated with this constraint is fixed at this bound. Therefore the calculation of the
variable in this segment is unnecessary, and the value of the bound can be substituted
into the system of linear equations.
System 3.10 is then reduced to:

(
ATb,a ATg,a C′

0 0 A′
g,a

)λbλg
x′

 =
(

0 +α
bg,a + β

)
+ λe

(
µ
0

)
(3.13)

C′ and A′
g,a are the covariance matrix and the coefficient matrix of the general active

constraints, each with the columns of the fixed variables removed. x′ is the vector of
the remaining variables. α and β are the adjustments due to the fixed variables:

α = C xf , β = Ag,a xf

xf is the vector with xi = 0 if no bound constraint is active for variable i, and xi = ui
or xi = li, depending on whether the upper or lower bound is active.
At the beginning of an algorithm run, α and β have to be calculated once. They
then have to be updated each iteration if another bound becomes active or inactive.
(If another general constraint changes status, the vectors on the right hand side of the
system have to be expanded or shortened accordingly.)
The initial calculation of α requires O(νn) flops, the calculation of β amounts to O(νξ)
flops. If the assumption of Subsection 3.3.1 – the number ν of active bounds is near n
and the number ξ of general constraints is a (small) constant – still holds, the complexity
of the initial calculation is O(n2). The adaptation of α and β to a changed active set
requires O(n) flops.
The main advantage gained by introducing this modification is a huge reduction of the
size of matrix H (or Ĥ respectively), and, as a consequence, a reduction of the number
of flops needed to calculate and update the decomposition and also of the number of
flops that are required to solve the system.
If there is a variable with identical upper and lower bound, then the value for this variable
does not change at all during the computation of all segments. Therefore the variable

30

3 A PQP-Solver

can – and should – be removed in a preprocessing step, due to the fact that only one
of the bounds can be substituted into the system and the matrix H (or Ĥ) would then
be singular. As a consequence, the corresponding element in the vector µ as well as the
proper row and column in the covariance matrix have to be removed as well.
The presented technique does not depend on the order of the columns in matrix H or
Ĥ. Both modifications – column rearrangement and the removal of variables with active
bounds – can thus be used together.

3.3.3 System Split

Like Perold’s algorithm [Per84], the algorithm developed by Best and Kale [BK00] re-
moves the variables with active bounds, but additionally, it separates the system of
equations into two parts that can be solved sequentially.
The first part consists of all rows of the Karush-Kuhn-Tucker (KKT) system that do
not contain a Lagrange multiplier for either upper or lower bound, i.e. the matrix ATb,a
has only zeroes in these rows.
Best and Kale called this system the kernel system, and the coefficient matrix on the
left the kernel matrix :(

C′
K ATg,a,K

A′
g,a 0

)(
x′

λg

)
=
(

0 +αK
bg,a + β

)
+ λe

(
µK
0

)
(3.14)

The index K denotes rows without any Lagrange multipliers for a single asset bound,
the index K marks the rows that at least contain one Lagrange multiplier for a bound
constraint.
The remaining lines of the KKT system form the second system of linear equations:

(
C′
K

AT
g,a,K

AT
b,a,K

)x′

λg
λb

 =
(
0 +αK

)
+ λe

(
µK
)

(3.15)

By splitting the system of equations and removing the now unnecessary matrix ATb,a
from the Kernel system, the decomposition of the Kernel matrix and the solution of this
system require only a small fraction of the time that would be necessary otherwise.
If the assumption holds that only n − ν = c variables are neither at their upper nor at
their lower bound and that no variable is both at its upper and lower bound, the kernel
matrix has just the size (c+ ξ)× (c+ ξ).
Hence the time for the initial decomposition is not dependent on the number of invest-
ment alternatives n.
As soon as x′ and λg are known, the computation of the Lagrange multipliers for the
bounds is trivial, as each remaining multiplier appears in a separate row. AT

b,a,K
is a

permutation of the identity matrix. Due to its structure, it is not necessary to even
store this matrix any more. It is sufficient to know which Lagrange multiplier appears
in which row.

31

3 A PQP-Solver

The update process at the end of an iteration varies depending on whether a general
inequality or a bound constraint changes status:

• If a general inequality becomes active, it is added to the kernel matrix, i.e. an
additional row is inserted into matrix A′

g,a and a column is inserted into ATg,a,K .
The right hand side of the new active constraint has to be modified to compensate
for fixed variables due to active upper and lower bounds.
Additionally, System 3.15 has to be adapted by including the correct column ele-
ments of the constraint gradient into matrix AT

g,a,K
.

In case of a change from active to inactive, the opposite adaptations are required.

• If a bound constraint becomes active, the column associated with the variable
that is now fixed is removed from the kernel matrix and from System 3.15. As a
consequence, the right hand sides (αK , αK , and β) of both systems have to be
modified as described.
The new active upper or lower bound requires an associated Lagrange multiplier
which entails that the row in which this multiplier appears has to be shifted from
the kernel system to System 3.15.
Should a bound constraint become inactive, the opposite modifications have to be
performed.

It cannot be emphasized enough that, as a consequence of (i) the substitution of variables
by their active bounds and (ii) of the additional splitting of the system of linear equations
into two separately solvable parts, the matrix at the core of the each iteration (i.e. the
kernel matrix) is normally tiny in comparison to the covariance matrix or the matrix H
as defined in Section 3.1
Techniques to transform the system in a way to make the matrices more sparse, and
then to use a sparse matrix decomposition (see e.g. Perold [Per84] or Jacobs et al.
[JLM05]) are therefore neither necessary nor will they shorten computation time. Hence
the origin and underlying structure of the covariance matrix is – as long as it is positive
semidefinite – mostly irrelevant for the performance of this algorithm variant.
The presented algorithm also allows for an easy integration of linear transaction costs,
or even piecewise linear transaction costs, as long as the cost function is convex. Such
transaction costs change the function for the expected portfolio return from linear to
piecewise linear and concave. Additional calculations have to be made only when a bound
constraint is active, as now the multipliers of two adjacent constraints/segments have to
be checked whether they become 0. For further details on how this can be realized, the
reader is referred to Perold [Per84] or if a more detailed treatment is required, to Best
and Hlouskova [BH05].

3.4 Test Results

The following test results were achieved on a problem with 225 investment alternatives
from a benchmark set that was first used by Chang et al. [CMBS00] and is available

32

3 A PQP-Solver

as part of the OR-Library [Bea06] and on three covariance matrices for 500, 1000, and
2000 shares kindly provided by the authors of Hirschberger et al. [HQS07]. They were
generated by a procedure presented in that paper. The values for the expected returns
were generated randomly for these three problems.
The computation time was measured on a computer with an AMD-Athlon-CPU with
1,5 GHz, the operating system we tested on was Linux. The program was compiled with
version 3.3 of the Gnu Compiler Collection [GCC06] with the optimization level set to 3.
Only the actual CPU-time used to calculate the solution was measured, as the complete
runtime depends on the load of the operating system during computation. For the
solution of the linear programming problems – both the maximization of the expected
return and solution of MIN-λe – we used a commercial library, namely CPLEX 9.0
from ILOG [CPL06].
The listed values for the CPU-time are the averages of ten algorithm runs together with
the associated standard error. The lower bound for all variables was set to 0, the upper
bound to 0.1. No additional (general) constraints besides the budget constraint were
used.
Table 3.1 shows the results for the different algorithm variants.

Table 3.1: Average CPU-time of PQP solver variants in seconds

Problem (problem size) P5 (225) P6 (500) P7 (1000) P8 (2000)
standard QR decomposition 8.34 90.76 637.8 4137.5
standard error ±0.005 ±0.11 ±0.98 ±5.45
column rearrangement 3.96 41.80 179.9 1453.0
standard error ±0.014 ±0.10 ±0.93 ±0.97
substitution of variables 0.58 5.71 22.94 187.70
standard error ±0.005 ±0.03 ±0.06 ±0.48
system split variant 0.09 0.48 1.39 6.75
standard error ±0.004 ±0.01 ±0.01 ±0.01

As can be expected, each improvement reduces computation time, with the system split
variant being the fastest implementation by a wide margin. The reader may have noticed
that this test setting, due to the fact that there are no constraints besides a single equality
(budget constraints) and the bound constraints on the variables, is the most favorable
for the system split algorithm.
But even if a small number of additional (general) constraints is introduced, the runtime
of the system split algorithm does not increase dramatically. A comparison of the effect
when 20 arbitrary “general” inequalities are included is shown in Table 3.2 for the
problems with 500, 1000 and 2000 assets.

33

3 A PQP-Solver

These general inequalities were constructed as follows:∑
i≡0 (mod 2)

xi ≤ 0.6 (3.16a)

∑
i≡1 (mod 2)

xi ≤ 0.6 (3.16b)

∑
i≡k (mod 3)

xi ≤ 0.5 k = 0, 1, 2 (3.16c)

∑
i≡k (mod 5)

xi ≤ 0.4 k = 0, 1, 2, 3 (3.16d)

∑
i≡4 (mod 5)

xi ≤ 0.35 (3.16e)

∑
i≡0 (mod 7)

xi ≤ 0.35 (3.16f)

∑
i≡1 (mod 7)

xi ≤ 0.33 (3.16g)

∑
i≡k (mod 7)

xi ≤ 0.3 k = 2, 3, 4, 5, 6 (3.16h)

∑
i≡k (mod 11)

xi ≤ 0.15 k = 0, 1, 2 (3.16i)

In order to increase the effect of these constraints, we set the upper bounds for all assets
to 1, with the intention that many of the additional constraints should become active
on large parts of the Pareto front.

Table 3.2: Average CPU-time per corner portfolio in seconds

Problem (problem size) P6 (500) P7 (1000) P8 (2000)
20 general inequalities 0.00539 0.0130 0.0297
standard error ±7.24e-6 ±8.58e-6 ±1.76e-5
no general inequalities 0.00467 0.0118 0.0326
standard error ±1.09e-5 ±5.36e-6 ±1.30e-5

Due to the inclusion of these constraints, the number of corner portfolios in the Pareto
front changed. In order to get some meaningful results, we calculated the average CPU-
time required to compute a corner portfolio.
The findings for the problems with 500 and 1000 assets are as expected: in both instances,
there is a slight increase in computation time. As the last column shows, however, the
obtained results have to be interpreted with great care: although the portfolio selection
problem has now 20 additional general constraints, the average time required to calculate
a corner portfolio was reduced for the problem with 2000 assets.

34

3 A PQP-Solver

There are probably two reasons for this curious effect:

1. In the problem without general constraints, problem MIN-λe has to be solved,
as the active constraints are linearly dependent. This was not the case when the
additional constraints were included. The call to the LP-solver takes by far longer
than the calculation of a “normal” segment.

2. In this special case at the end of the algorithm run, when λe was very small
and variance reduction was more important than return maximization, the kernel
matrix did get by far larger in the problem without additional constraints. This
effect depended largely on the selection of the general constraints in this case. The
results might be the other way round if either the problem data or coefficients in
the inequalities were different.

Our tentative conclusion from this test is that the addition of a small number of general
constraints to the problem does not seem to change the runtime of the system split
variant very much. A more detailed analysis would require extensive further testing.

3.5 Implementation Details

The transformation of the algorithm framework presented in the previous section into
a functional and efficient implementation is not straightforward. In this section, we will
present two different matrix representations that were used to implement the system
split variant, and we will explain the reason behind their selection for specific tasks in
our algorithm. We will also highlight a small but critical part of the algorithm that is
prone to numerical errors and a method to prevent them.

3.5.1 Matrix Representation

In the process of implementing the algorithm variants in C++, two different matrix
representations were used, both intended for the storage of dense matrices.
The first representation is straightforward: the elements are stored, as is customary in
C or C++, in row-major order. The matrix has, however, enough spare memory to
handle the insertion of a predetermined number of rows and columns without having to
allocate any more. Nevertheless, insertion and deletion of rows and columns – which are
the operations that have to be performed in the presented algorithms – require extensive
copy operations except if they are performed at one of the edges of the occupied area
that adjoins the unused memory. Therefore the position of the matrix elements in the
allocated space has to be chosen to fit these operations: if columns have to be inserted
mainly at the right hand side of the matrix, it makes sense to store the matrix elements
at the left edge of the allocated space (see e.g. Figure 3.1(a)).
With row-major storage structure, the unused memory to the right (or left) of the matrix
is especially important. If the unused memory is placed to the right of the matrix, the
number of necessary copy operations for column insertion at position k is reduced from

35

3 A PQP-Solver

nearly n2 (if there is no spare memory) to (n − k)n (or to kn, if the free memory is
placed to the left of the matrix).
The spare rows at the bottom (or top) don’t influence the number of copy operations.
They just allow insertion without dynamically allocating new memory. (It is just the
other way round if a column-major storage scheme is used.)
Even more important, however, is that this representation stores all elements of a matrix
row contiguously. If an appropriate container (e.g. a C-type array or the STL-vector in
C++) is used, this storage layout allows for easy usage of so called Basic Linear Algebra
Subroutines, a collection of highly efficient routines with a standardized interface that
provide the building blocks for many linear algebra tasks. There are machine-optimized
versions of the BLAS for nearly all known architectures. For a full overview of the
standard and available implementations the reader is referred to the BLAS project page
[BLA06]. Should there be no optimized version of the BLAS for a given environment, the
developer can use ATLAS [ATL06], a program that generates an optimized BLAS-library
for a given architecture by empirically tuning it.
But even if the linear algebra operations are implemented from scratch, the contiguous
storage of the elements in one matrix row helps to shorten computation time by reducing
the number of cache misses – assuming that matrix access is predominantly row-based.
If a matrix library does not offer this kind of representation directly, the same effect can
usually be achieved by defining what is often called a matrix view on a given matrix,
i.e. by creating a temporary object which gives access to a rectangular subset of the
matrix. In case of insertion or deletion of a row or column, the copy operations are
performed and then the old matrix view is deleted and a new view with modified size is
created. In the remainder of this paper, we will call this matrix representation submatrix
representation.

To cope with the main drawback of extensive copy operations of the submatrix represen-
tation, another matrix representation which allows cheap insertion and removal of both
rows and columns was used. It works by channeling access to matrix elements through
two mapping vectors, one to map vertical access (v) and one to map horizontal access
(h). This is depicted in Figure 3.1b.
A prerequisite for the efficient application of this technique is that all possible matrix
rows and columns are known from the start, and the actual matrix is just a subset of
these rows and columns2. To prevent confusion of the reader, the matrix that contains
all rows and columns will be called the underlying matrix, and the matrix that contains
only the subsets of rows and columns will be referred to as current matrix. The two
possible implementation alternatives are for the mapping vectors to be – and to remain
– ordered or not; we decided on using sorted vectors to maintain the relative order of
rows and columns.
If element (i, j) of the current matrix has to be accessed, this representation returns the
element (vi,hj) of the underlying matrix.

2This is fulfilled for the algorithm variants that were presented above.

36

3 A PQP-Solver

Covariance matrix
and
active constraints

unused allocated memory

(a) Typical matrix representation with
spare memory to make insertion easy

 v

h

(b) Matrix representation with horizontal and
vertical mapping vectors which allow easy in-
sertion or deletion of rows and columns

Figure 3.1: Useful matrix representations for the algorithm implementation

Example:

If v′ = (1, 3) and h′ = (2, 3) and the underlying matrix looks as follows:
1 4 7 8
2 6 4 0
3 5 2 6
0 8 4 7

then – if the indices are counted beginning with 1 – the current matrix is

(
4 7
5 2

)
.

Should it be necessary to insert the first column of the underlying matrix, h′ would be
changed to (1, 2, 3) and the current matrix would become

(
1 4 7
3 5 2

)
.

Unfortunately, the elements that comprise one row of the current matrix are usually not
stored contiguously, which – in case of large matrices – can lead to an increase in cache
misses. This drawback also prevents the effective usage of standard BLAS-functions.
To show the consequence of using the mapping representation for row-based operations
on medium- or large-scale matrices, we implemented the algorithm that uses column
rearrangement both with the QR decomposition stored in a mapping representation
and also in a submatrix representation. The results of the runtime tests are shown in
Table 3.3. For both matrix representations, we used GSL - - [Chr06], an object-oriented
wrapper for the GSL, and extended it with the required functionality; we did not use an
architecture-optimized version of the GSL and its BLAS-operations. The runtime tests
were performed on the same system as above, with 10 repetitions for each configuration
and problem. Upper bounds for all assets were again set to 0.1, lower bounds remained
at 0. No additional constraints beside the budget constraint were included.

37

3 A PQP-Solver

Table 3.3: Comparison of the algorithm runtime (measured in CPU-seconds), using two
different matrix representations for the QR decomposition

Problem (problem size) P5 (225) P6 (500) P7 (1000) P8 (2000)
column rearrangement (mapping) 5.05 54.60 237.9 2467.9
standard error ±0.004 ±0.15 ±0.21 ±5.02
column rearrangement (submatrix) 3.96 41.80 179.9 1453.0
standard error ±0.014 ±0.10 ±0.93 ±0.97

As can be seen clearly, the advantage of the submatrix representation is significant and
increases with the problem size, even though no architecture-optimized BLAS-operations
were used. If we had done that, the difference would have probably become even more
pronounced.
We decided to incorporate both matrix representations into the algorithm in such a way
as to maintain their respective advantages and reduce the drawbacks of each:
The matrix

(C ATg
Ag 0

)
contains all possible rows and columns of the kernel matrix (Eq.

3.14) and therefore also all rows and columns of the matrix
(
C′
K
AT
g,a,K

)
which will be

called non-kernel-row matrix.
Additionally, those general constraints which are inactive are also contained.
This clearly implies that it makes sense to use mapping vectors to manage all three
matrices with the help of the mapping representation from above:

• The matrix
(C ATg
Ag 0

)
is used as underlying matrix.

• Three current matrices with different vertical mapping vectors but identical hori-
zontal mapping are constructed:

1. the kernel matrix
2. the non-kernel-row matrix
3. the matrix containing all inactive general constraints

• At any given moment in an algorithm run, every row can belong to one and only
one vertical mapping vector. The operations that are necessary at the end of
each segment include the manipulation of these vectors: when a row “leaves” one
matrix, it is added to another.

• The horizontal mapping contains (ordered) references to the columns of all assets
that are neither at their upper nor at their lower bound and to all columns with the
gradients of the active general constraints. Should it be necessary, the horizontal
mapping vector is updated at the end of segment as well.

This matrix representation permits insertion or deletion of row or column in a linear
amount of time. For the storage of the QR decomposition, we used the submatrix

38

3 A PQP-Solver

representation with unused space above and to the right of the matrix for both QT and
R to allow for fast row operations.
For an extensive treatment of update and downdate operations in a QR factorization, the
reader is referred to Golub and van Loan [GvL96, pp. 606-611], to Gill et al. [GMW91,
pp. 133-138] and especially to Stewart [Ste98, pp. 326-353].
One might wonder if it is necessary to store the kernel matrix in addition to its decom-
position. But due to the fact that the covariance matrix is normally stored in the main
memory anyway, and the general constraints have to be stored somewhere as well, the
explicit storage of the kernel matrix does not require a lot of additional memory (only
p(p+ n) floating point numbers, if p is the number of general constraints), and it allows
for an easier algorithm implementation, and – in the rare case this should happen when
using a QR decomposition – it permits to check if numerical problems occurred with the
decomposition.
Should main memory be scarce, it is possible, due to the symmetry of

(C ATg
Ag 0

)
, to

halve the required memory for the underlying matrix by overloading the access operator
to return element (j, i) if element (i, j) is needed if it is situated in the nonexisting half
of the matrix. (This was not implemented, however, as it would certainly increase the
average time required to access an element, and memory was sufficiently available for
the problem sizes we calculated. But for problems with 3000, 4000, or even more assets,
it may turn out to be necessary.)

3.5.2 Cycling

The term cycling is used in the field of linear programming to describe a situation when
the Simplex algorithm gets “stuck”: the same vertex is reached again after two or more
iterations without having made any progress with respect to the objective function.
An equivalent situation can occur during an algorithm run of the PQP algorithm: due to
small numerical errors it is possible that one constraint becomes active in one iteration
and inactive in the subsequent iteration without any (significant) change in λe. This
could in the worst case lead to a stalling of the algorithm and, as a consequence, to
possible memory overflow due to infinite cycling. In practice, a complete standstill
happens only very rarely. The most probable reason for this fortunate behavior is that
although the same constraints are active after two iterations in such a cycle, the QR
decomposition varies slightly – due to small numerical errors as well.
For larger problem sizes, a repetition for several iterations can be observed in nearly
every algorithm run, however. As each unnecessary iteration of the algorithm costs
computation time and to prevent the rare event of a complete stalling, two modifications
to the algorithm were tested:
Our first idea to prevent algorithm cycling was to modify Eq. 3.7 so that λ̃e is at least ε
smaller than the current λe, where ε denotes a very small constant. This does eliminate
almost all the cycles.
A suitable determination of ε is not easy, as λe does often comprise several orders of
magnitude and ε must be large enough for the algorithm to “ jump” over the numerical
error. We got the best results when in each iteration epsilon was set as the product of
the current λe and a small constant.

39

3 A PQP-Solver

The biggest disadvantage of this approach is the rare case that another constraint would
have become active in the interval (λe − ε, λe). (This is also the reason why ε should
not be made too large.) If this happens, the Lagrange multiplier for the constraint
that was overlooked becomes negative and optimality is not guaranteed any longer. To
prevent this, additional checks would have to be implemented and the corner portfolio
with negative Lagrange multipliers would have to be repaired. The repair however, has
to be performed in a way that ensures that cycling does not occur in this part of the
algorithm.
To sidestep this fairly complicated procedure, our second approach was to prevent an
active constraint from becoming inactive if

1. it was made active in the last iteration and

2. the prospective λ̃e calculated due to this constraint is very nearly identical with
the current λe.

As this approach blocks only one specific constraint, the probability of a wrong decision
is by far smaller than in our first approach, where all constraints where prevented from
becoming inactive in the interval (λe − ε, λe).
This approach does seem to eliminated cycling completely in our test problems. One
can certainly construct a case in which cycling is not caused by only one constraint, but
instead by a series of constraints that become inactive and active in a very unfortunate
order without any change in λe. A situation like that – called degeneracy in the context
of linear programming – does seem to happen more often when the objective function
is linear. Elaborate strategies have been developed to cope with it (see e.g. Gill et al.
[GMSW89]). The occurrence of such an event seems to be extremely rare with quadratic
objective functions and, to our knowledge, has not occurred in several thousand different
algorithm runs we have made.

3.6 Complete Algorithm Description

This section contains an in-depth description on how the modified version of the system
split algorithm can be implemented when both the mapping and the submatrix repre-
sentation and the mapping representation are used. It is our intention to support the
reader in reimplementing it without too much difficulty.
The algorithm solves the following optimization problem for all λe ∈ [0,∞):

min{xTCx− λeµTx | Agx ≤ bg, AEx = bE , l ≤ x ≤ u} (3.17)

where u and l are the upper and lower bounds, Agx ≤ bg is the system of “general”
inequalities, and AEx = bE is the system of equations.

40

3 A PQP-Solver

The algorithm in detail:

1. Initialization:

a) Calculate initial starting solution x0 by solving the optimization problem:

min{xTCx | Agx ≤ bg, AEx = bE , l ≤ x ≤ u} (3.18)

(Any reliable and fast LP-Solver will suffice, as the optimization problem is
quite small for a linear program. The tolerances of the LP-Solver have to be
chosen so that the results are sufficiently precise, however.)

b) Determine at the point x0 the associated sets I0
g,a of active general constraints,

I0
l,a of active lower bounds and I0

u,a of active upper bounds.
c) Substitute the active bounds into the KKT-system by modifying the vector

on the right hand side that is nonparametric with respect to λe:(
0
bg

)
−→

(
α

bg + β

)
with α = C xf and β = Ag xf where xf,i = 0 if neither upper nor lower
bound of asset i is active, xf,i = ui if asset i is at its upper bound, or xf,i = li
if the lower bound of asset i is active.

d) Generate two systems of linear equations and one system of inequalities based
on the mapping representation with

(C ATg
Ag 0

)
as underlying matrix:

i. the kernel system:(
C′
K ATg,a,K

A′
g,a 0

)(
x′

λg

)
=
(

αK
bg,a + βa

)
+ λe

(
µK
0

)
ii. the system containing the non-kernel-rows:(

C′
K

AT
g,a,K

)(x′

λg

)
+AT

b,a,K
λb = αK + λeµK

iii. the system of inactive general inequalities:

(
A′
g,na 0

)(x′

λg

)
≤
(
bg,na + βna

)
where the index K indicates rows that are part of the kernel systen, i.e. those
rows that do not contain multipliers for active bounds, while in rows marked
with the index K, those multipliers do appear. Matrices marked with a
prime are obtained by removing those columns that belong to variables whose
upper or lower bound is active. Similarly, x′ is the vector of all those asset
weights that are not fixed. The index na denotes rows with inactive general
inequalities.

41

3 A PQP-Solver

The leftmost matrices in all three systems are constructed by using the under-
lying matrix from above together with the same horizontal mapping vector.
This vector is composed of all i with i /∈ I0

l,a and i /∈ I0
u,a and of the index

numbers of all active general constraints (both equations and inequalities)
according to their position in the underlying matrix. (The vertical mapping
vectors for the three matrices are disjoint.)

e) Generate a QR decomposition of the kernel matrix
(C′

K ATg,a,K
A′
g,a 0

)
. The ma-

trices QT and R are stored using the submatrix representation3. If m is the
number of general constraints (equations and inequalities), memory of the
size of (n+m)2 floating point numbers is allocated for each of the matrices4.
The elements of both matrices are stored in the bottom left corner of the
allocated memory.

f) Set k ←− 0 and set λke ←−∞.

2. If
(C′

K ATg,a,K
A′
g,a 0

)
is nonsingular (which can be checked easily by examining if the

absolute value of all diagonal elements in R are larger than a threshold ε) then

a) Calculate the vectors
(hx′,q
hλg,q

)
and

(hx′,p
hλg,p

)
which determine x′ and λg in the

current segment: (
x′

λg

)
=
(
hx′,q

hλg,q

)
+ λe

(
hx′,p

hλg,p

)
The vectors are calculated by solving the following two systems of equations
using back substitution:

R

(
hx′,q

hλg,q

)
= QT

(
αK

bg,a + βa

)

R

(
hx′,p

hλg,p

)
= QT

(
µK
0

)
b) Calculate the vectors hλb,q and hλb,p as follows5:

hλb,q = αK −
(
C′
K

AT
g,a,K

)(hx′,q

hλg,q

)

hλb,p = µK −
(
C′
K

AT
g,a,K

)(hx′,p

hλg,p

)

3The matrix QT was used instead of Q, as only the transposed is required in the following calculations.
4If memory is scarce, it may be necessary to handle the allocation more dynamically, as usually the

matrices Q and R are much smaller than (n+m)× (n+m).
5This works only if the matrix AT

b,a,K
is the identity matrix. Otherwise, i.e. if AT

b,a,K
is a permutation

matrix, the order of the elements has to be changed accordingly.

42

3 A PQP-Solver

c) Determine the values λ̂e,g, λ̂ue,b, λ̂
l
e,b, λ̃e,g, and λ̃e,b:

λ̂e,g = max

{
bg,na,i + βna,i − (a′

g,na,i)
Thx′,q

(a′
g,na,i)Thx′,p

∀ i = 1, . . . ,m with i /∈ Ig,a and ai
Thx,p < −ε

}

λ̂ue,b = max
{
u′i − hx′,q,i
hx′,p,i

∀ i = 1, . . . , n with i /∈ Iu,a ∪ Il,a and hx′,p,i < −ε
}

λ̂le,b = max
{
l′i − hx′,q,i
hx′,p,i

∀ i = 1, . . . , n with i /∈ Iu,a ∪ Il,a and hx′,p,i > ε

}
λ̃e,g = max

{
−
hλg ,q,i

hλg ,p,i
∀ i = 1, . . . ,m with i ∈ Ig,a and hλg ,p,i > ε

}
λ̃e,b = max

{
−
hλb,q,i
hλb,p,i

∀ i = 1, . . . , n

with i ∈ Iu,a ∪ Il,a and hλb,q,ihλb,p,i < 0 and −
hλb,q,i
hλb,p,i

< λe + ε

}
d) Set λk+1

e ←− max{λ̂e,g, λ̂ue,b, λ̂le,b, λ̃e,g, λ̃e,b}
e) If λk+1

e = λ̂e,g and λ̂e,g is determined by index j,
• set Ik+1

g,a ←− Ikg,a ∪ {j}
• add row and column for general constraint j to the kernel matrix
• update QR decomposition

else if λk+1
e = λ̃e,g and λ̃e,g is determined by index j,

• set Ik+1
g,a ←− Ikg,a \ {j}

• remove row and column for general constraint j from the kernel matrix
• downdate QR decomposition

else if λk+1
e = λ̂ue,b and λ̂ue,b is determined by index j

• set Ik+1
u,a ←− Iku,a ∪ {j}

• substitute uj into the underlying matrix which changes αK , αK , βa, and
βna and then remove the column associated with asset j from the kernel
matrix
• shift the row that will contain the multiplier of the new bound constraint

from the kernel matrix to the non-kernel-row matrix
• downdate QR decomposition

else if λk+1
e = λ̂le,b and λ̂le,b is determined by index j

• set Ik+1
l,a ←− I

k
l,a ∪ {j}

• substitute lj into the underlying matrix which changes αK , αK , βa, and
βna and then remove the column associated with asset j from the kernel
matrix
• shift row that will contain the multiplier of the new bound constraint

from the kernel matrix to the non-kernel-row matrix
• downdate QR decomposition

43

3 A PQP-Solver

else if λk+1
e = λ̃e,b and λ̃e,b is determined by index j

• if j ∈ Ikl,a: set Ik+1
l,a ←− I

k
l,a \ {j} and change back αK , αK , βa, and βna

by “unsubstituting” lj
• if j ∈ Iku,a: set Ik+1

u,a ←− Iku,a \ {j} and change back αK , αK , βa, and
βna by “unsubstituting” uj
• Insert the column associated with asset j into the kernel matrix
• shift row that contains the multiplier which has become 0 from the non-

kernel-row matrix to the kernel matrix
• downdate QR decomposition

f) Set xk+1
i ←− hx′,q,i + λk+1

e hx′,p,i for the variables that are not fixed, and set
xk+1
i = ui or xk+1

i = li if the upper or lower bound of asset i is active in the
current segment.

Otherwise, i.e. the matrix
(C′

K ATg,a,K
A′
g,a 0

)
is singular:

a) Calculate λk+1
e , λg, λb, and xk+1 by solving the linear optimization problem

MIN-λe-l-u:

min λk+1
e (3.19a)(

C′
K ATg,a,K

A′
g,a 0

)(
x′(k+1)

λg

)
− λk+1

e

(
µK
0

)
=
(

αK
bg,a + βa

)
(3.19b)(

C′
K

AT
g,a,K

)(
x′(k+1)

λg

)
+AT

b,a,K
λb = αK + λk+1

e µK (3.19c)

Ag x
k+1 ≤ b (3.19d)

l ≤ xk+1 ≤ u (3.19e)
λb,λg ≥ 0 (3.19f)
λe ≥ 0 (3.19g)

with all variables defined as above.
b) Determine the active constraints that will leave Ikg,a, I

k
l,a, and Iku,a by checking

if any of the multipliers in λb and λg have become 0 at the solution point.
Calculate residuals (e.g. rg = b−Ag x) for all inactive constraints to deter-
mine which of those will become active. Handle activation and deactivation
of constraints as described in Step 2e of the algorithm.

3. If λke > 0, store the calculated solution xk+1 and go to step 2,
otherwise (i.e. if the end of the algorithm run is reached) calculate and store

xk+1 ←− λke
λke − λk+1

e

xk+1 +
λk+1
e

λke − λk+1
e

xk

4. Terminate.

44

3 A PQP-Solver

3.7 Summary and Concluding Remarks

This chapter details several variants of active set algorithms for portfolio selection and
documents their runtimes on large problem instances.
In Section 3.1 we present an algorithm framework based on the work of Best [Bes96].
We have adapted this algorithm to portfolio selection problems and have extended it
in a way that enables it to cope with several linearly dependent active constraints –
even if such a situation should occur at the starting point of the algorithm. Section 3.2
gives an overview of related work and highlights the difference between the parametric
quadratic programming algorithms for portfolio selection and “conventional” active-set
algorithms.
Based on the characteristic of realistic portfolio selection problems to have both upper
and lower bounds for all or nearly all assets, Section 3.3 describes how the presented
algorithm framework can be modified to speed up the time required for the computation
of the Efficient Frontier. We present three implementation variants: (i) column rear-
rangement, (ii) the substitution of upper and lower bounds and (iii) the separation of
the system of linear equations into 2 parts that can be solved sequentially. In Section
3.4 the performance improvement of these implementation variants are documented on
medium- to large-scale portfolio selection problems. The fastest algorithm, the system
split variant, is able to solve large problem instances in a very short time and has proven
to be suitable even if the number of general inequalities is increased.
Section 3.5 describes two matrix representations, the submatrix representation and map-
ping representation, and outlines how they can be used to efficiently implement the sys-
tem split variant so that it benefits from the advantages of both representations without
having to put up with most of their drawbacks. In this section we also describe a sim-
ple way to prevent algorithm stalling that is caused by small numerical errors. If not
taken care of, this problem can occur quite regularly and can slow down the algorithm
considerably.
Since, as far as we know, there is no implementation of a PQP solver in the public
domain that is both efficient and able to cope with large problem instances, we provide
an in-depth description of the fastest algorithm variant in Section 3.6. This should
help other practitioners in easily reimplementing it so that they can use it in their own
research without too much effort.

Extensions:

The ability to cope with piecewise linear transaction costs would broaden the possi-
ble applications of the algorithms, and we intend to include this functionality in the
near future, as we think practitioners would find this especially helpful when using the
presented PQP solver.
Another interesting, although possibly complicated, extension of our algorithm would
be the integration of at least one additional linear optimization criterion.
With respect to the actual implementation, a relatively easy-to-do improvement would be
the switch to architecture-optimized BLAS-codes. This should further shorten algorithm

45

3 A PQP-Solver

run times, although we assume that the improvement would only be minor due to the
small matrices in the system split variant. (Optimized BLAS routines show their advan-
tages not until the matrices reach a certain size. See e.g. Mello and Khabibrakhmanov
[MK06].) Nevertheless, an actual in-depth profiling of algorithm variants that use dif-
ferent matrix libraries with respect to occurring cache misses might yield interesting
insights.

46

4 Point-Based Solution Approaches Based
on the ε-Constraint Method

Point-based solution approaches for multicriteria problems try to approximate a Pareto
front by generating a number of points that are close to the front. To achieve a good
approximation of the complete front, proximity of all points to the Pareto front is not
sufficient, however, as this does not guarantee to cover the front in its whole breadth:
Figure 4.1(a) shows an (imaginary) approximation for a Pareto front with all its solutions
very close to the actual front (which usually would not be known) — but they are all
situated in a narrow interval. The heuristic that produced solution (a) might be the
right choice just for those investors that already know their area of interest is in this
interval. Figure 4.1(b) depicts a set of points that are distributed more evenly over the
whole Pareto front, but the individual solution is on average farther away from the front.
If the main goal is a reasonably good approximation of the complete Pareto front, the
heuristic that calculated the solutions in (b) may be preferable to (a).

(a) All solutions in narrow interval, but close to
the Pareto front

(b) Solutions distributed widely, significant dis-
tance between individual solution and Pareto
front

Figure 4.1: Comparison of two approximations for a Pareto front in mean-variance space

A successful point-based approach that intends to approximate the complete Efficient
Frontier has to perform well in both aspects: getting closer to the front and maintaining
an even distribution.

47

4 Point-Based Solution Approaches Based on the ε-Constraint Method

These tasks can be tackled either sequentially – one part of the algorithm is responsible
for the distribution of the points, another tries to place the calculated portfolios as close
to the actual Pareto front as possible – or simultaneously – the algorithm is constructed
in such a way that the two aspects are interwoven and can not be separated without a
complete redesign.
Algorithms that handle both goals separately usually transform the bicriteria problem
into an optimization problem with a single objective in the same way as demonstrated
for the convex problem in Section 2.2.
Unlike in the convex case, however, only the approach to transform the second optimiza-
tion criterion into an additional restriction (ε-Constraint method) can be applied here,
since a linear combination of the two objectives can not be used to identify those regions
of the Pareto front that are nonconvex (see e.g. Jobst et al. [JHLM01]).

Figure 4.2: Inability to reach nonconvex sections of the Pareto front (region ABC) with
the weighting approach.

Figure 4.2 illustrates this. Region ABC of the Pareto front can never be obtained by
using an objective function F (x) = xTCx − λexTµ regardless of the value for λe. As
it is usually easier to work with a quadratic objective function and linear constraints
instead of a linear objective function and a quadratic constraint, the expected return
criterion is converted into another constraint:

xTµ ≥ Ef

In this chapter we will focus on using the ε-Constraint method to generate point-based
approximations for mean-variance portfolio selection problems that contain, among reg-
ular convex constraints, one of three nonconvex constraints: Either (i) a maximum cardi-
nality constraint, or (ii) a minimum threshold constraint, or (iii) the 5-10-40-Constraint

48

4 Point-Based Solution Approaches Based on the ε-Constraint Method

based on German investment law. (Chapter 5 presents multi-objective evolutionary al-
gorithms that do not require the transformation of one of the objectives into another
constraint. They handle both optimization aspects simultaneously.)
The remainder of this chapter is structured as follows:
In Section 4.1, we start by describing how we measure solution quality for problems
with nonconvex constraints. Section 4.2 presents a 2-phase algorithm that efficiently
distributes the points over the Pareto front with the goal to get the best approxima-
tion when only a limited number of points (portfolios) can be calculated. In Section
4.3 we discuss whether the problem formulation of the three problem types (problems
with either a maximum cardinality, buy-in thresholds, or the 5-10-40-Constraint) has
to be modified in order to allow the application of commercially available high perfor-
mance mixed-integer solvers, and if so, how the modifications should look like. Section
4.4 presents heuristics for each nontrivial constraint type that, given a lower bound
for the expected return, aim at calculating the portfolio with the smallest variance.
These heuristics have been tested on 7 benchmark problems, and the obtained results
are presented and analyzed in Section 4.5. Additionally, in this section, we report on
tests that give an approximation on the effectiveness of the 2-phase procedure for point
distribution. We conclude this chapter with a brief summary in Section 4.6.

4.1 Performance Measurement

Measuring performance in a multi-objective setting is difficult, because it requires the
comparison of complete frontiers or approximations thereof and not only singular so-
lutions/portfolios. A number of possible performance measures are discussed e.g. in
Hansen and Jaszkiewicz [HJ98] or in Zitzler et al. [ZTL+03]. In the following, we will
judge a generated front by its deviation from the ideal front, which is defined as the
efficient frontier of the problem without non-convex constraints1. This ideal front is
an upper bound on the performance and can be computed efficiently with parametric
quadratic programming, like e.g. the algorithm presented in Chapter 3. To measure the
deviation, we calculate the area between the resulting front and the ideal front. One dif-
ficulty with area-based methods is to define the maximum variance and minimum return
boundaries to calculate the area, see Figure 4.3. If these values are set far apart, extreme
portfolios have a very large impact on solution quality. If they are set too close, some
parts of the front may be cut off. Since the appropriate borders are not clear, we report
on two values here: The area using the maximum variance and minimum yield portfolios
from the ideal front (ideal delta-area), and the maximum variance and minimum yield
from any asset in the available universe (max. delta-area).
Figure 4.3 illustrates how the success of an optimization run is measured for point-based
approximations. If an approximation for the Pareto front can be described not only
as a collection of points, but as a set of curves – as e.g. depicted in Figure 4.4 – the
optimization results are measured analogously. The only difference now is that the area
to be calculated does not have a stair-shaped appearance any more. Chapters 5 and 6

1For the problem with 5-10-40-Constraint, the upper bound of all assets is set to 10%.

49

4 Point-Based Solution Approaches Based on the ε-Constraint Method

Figure 4.3: Ideal and maximum delta-area for point-based solution approaches.

present methods with this capability (envelope-based algorithms). An algorithm that
reduces the negative effect of the “stairs” in Fig. 4.3 is presented in the following section.

Figure 4.4: Ideal and maximum delta-area for envelope-based solution approaches.

4.2 Efficient Distribution of Points

When a limited number of points is used to approximate the Pareto front, there is
always an approximation error due to the fact that nothing is known about the solutions
between two adjacent points. This error exists even if all those points lie directly on the
actual Pareto front.

50

4 Point-Based Solution Approaches Based on the ε-Constraint Method

Figure 4.5(a) illustrates the problem: suppose that points x and y with the coordinates
(xe, xv) and (ye, yv) on the Pareto front are known, but no other points in-between. If
a prospective investor wants to achieve an expected return that is larger than xe, she
has no choice but to at least invest in Portfolio y. Thus, she has to accept the higher
variance yv that goes with it. If, however, the portfolio of an investor is required to have
a variance below yv, then xe is the maximum expected return she can achieve.
As described in Section 4.1, we use the area between the solution of the relaxed problem
and the approximation to measure algorithm success. The additional area which is the
result of using a point-based approximation instead of the actual Pareto front in the
interval (xe, ye) can be estimated as Fap = 1

2cd. Obviously, this can only be a very
rough estimate as we do not know the shape of the actual Efficient Frontier between x
and y. The shorter the interval (xe, ye), however, the more the Pareto front will usually
resemble a straight line, and the more accurate the approximation will be.
If an infinite number of points could be calculated, the approximation error would con-
verge to 0. In reality, only a limited amount of time is available, and therefore we can only
calculate a limited number of points (portfolios) – which will be called the computation
budget henceforth. We will now describe an algorithm that, given such a computation
budget, determines where the points are to be placed on the expected return axis in
order to reduce the approximation error as far as possible.
In order to be able to calculate the distribution of points, we will again assume that
the Pareto front can be linearized piecewise: given a set of points (portfolios) that are
already known, we assume that the points between two adjacent portfolios are on or
near a direct line between those two points.
Figure 4.5(b) illustrates the improvements that can be achieved if one or two additional
points are placed between x and y. (We again assume linearity of the Pareto front in
the interval [xe, ye].)
Given two points x and y on the Pareto front with the coordinates (xe, xv) and (ye, yv),
xe < ye, the reduction of the approximation error that is achieved by inserting n evenly
spaced additional points can be calculated as follows:

∆Fap = mc2 n

2(n+ 1)

where c = ye − xe and m = (yv − xv)/c.
The additional reduction of the approximation error when we evenly distribute n points
between x and y instead of n− 1, is therefore:

∆F (n−1)→n
ap = mc2 n

2(n+ 1)
−mc2n− 1

2n
=
mc2

2
1

n(n+ 1)
(4.1)

The basic idea of our algorithm is as follows:
In a first phase, a set of different values for the lower bound Ef of the expected return is
determined by distributing a small share of the computation budget equidistantly over
the interval [Emin, Emax]. The minimum yield Emin and the maximum yield Emax have
to be chosen in a way that no part of the Pareto front is inadvertently cut off. Then,

51

4 Point-Based Solution Approaches Based on the ε-Constraint Method

(a) Estimate of the approximation error if no
points between x and y are known

(b) Improvement of the approximation by calcu-
lating one or two additional solutions between x
and y

Figure 4.5: Estimation error of point-based solutions

a solution for each of those values for Ef is calculated. In the second phase of our
algorithm, based on the solutions from the first phase, new values for Ef are determined
by means of Eq. 4.1 so that the approximation error is minimized. For each newly
determined value of Ef , we also solve a single-criterion optimization problem with Ef
as the lower bound for the expected return.
In the subsequent sections we will present several methods to solve these single-criterion
problems. Important for the design of the distribution algorithm is not how they work
in detail, but if they are capable of determining Emin and Emax exactly (mixed integer
approaches, Section 4.3) or not (heuristic approaches, Section 4.4).
As simple as the basic concept for the algorithm seems, there are several aspects of it
that have to be considered in more detail, some of which depend partially on whether a
mixed integer solver or a heuristic is used to calculate the single criterion solutions.

Determination of Emax and Emin

If a mixed integer solver for quadratic programming (MIQP solver) is available and the
nonconvex problem can be modeled as a mixed integer problem (see Section 4.3), it is
easy to get precise values for both Emax and Emin. Emax can simply be determined by
maximizing the expected return with respect to both convex and nonconvex constraints.
(For this, even a mixed integer solver for linear problems is sufficient.) Emin is just the
minimum variance portfolio that complies with both types of constraints. (This problem
requires a mixed integer solver that can cope with a quadratic objective function.)
If we cannot use an MIQP solver – either because none is available or since the com-
putation of the solution would need too much time – and we have to rely on heuristics,
Emax and Emin have to be determined by other means. A reasonable value for Emax is

52

4 Point-Based Solution Approaches Based on the ε-Constraint Method

the maximum return of the ideal front, i.e. the highest return that can be achieved when
the nonconvex constraint is not considered. Usually, this value is sufficiently close to the
maximum yield of the nonconvex problem so that not much of the computation budget
is wasted.
Unfortunately, Emin cannot be determined as easily and as precisely. The yield of the
minimum variance portfolio (MVP) of the ideal front is too restricting, as quite often
there are nondominated2 solutions with an expected return below this value.
Two approaches to determine Emin seemed reasonable for us: The first one – which
might be suitable for the practitioner – is to look at the share data, and, if available, at
results of previous optimization runs and then to make an educated guess. The second
approach is to calculate the minimum yield that can be achieved when all constraints
beside the nonconvex constraint are considered. We did opt for the second method, since
it allows to specify Emin without any external input, and we can be sure not to have
cut off a part of the Pareto front. The main problem with the second approach is that
the minimum expected return is usually far smaller than the yield of the portfolio at
the low-variance boundary of the Pareto front. As a consequence, a good part of the
computation budget used in the first phase is wasted beyond the left edge of the Efficient
Frontier.
If an investor is only interested in a segment of the Pareto front, Emin and Emax can be
chosen according to her preferences.

Border Areas of the Phase 1-Results

The problem of what is to be done after Phase 1 to the left of the leftmost nondominated
portfolio and to the right of the respective rightmost nondominated portfolio depends
again on wether an MIQP solver or some heuristic is used. If a mixed integer solver is
available and has been used to determine Emin and Emax, the portfolios that correspond
to Emin and Emax are part of the Pareto front and mark the respective boundaries. No
further measures are necessary, as the Pareto front spans the whole interval [Emin, Emax].
In case heuristics are used, the Pareto front usually spans only part of the interval
[Emin, Emax]. The two border areas require special handling:
If the lower bound for the expected return Ef is smaller than the expected return El
of the portfolio that has the lowest variance of any portfolio the heuristic is able to
calculate, this expected return constraint should not be binding. The heuristic will
therefore return the same portfolio for all values of Ef < El

3. Hence, the expected
return of the nondominated portfolio with the lowest variance calculated in Phase 1 can
be assumed to mark the minimum-variance edge of the Pareto front.
If Er is the highest expected return value the heuristic could find a feasible solution
for, and h1 is the number of portfolios allocated to Phase 1, then we know that right

2A solution of a multicriteria optimization problem is nondominated with respect to a given set S of
other solutions if and only if there is no other solution in S that is better in at least one criterion
and not worse in all other criteria. Otherwise, the solution is dominated.

3It is certainly possible to imagine heuristics that are designed otherwise, but for the heuristics presented
in this thesis, the statement can be accepted to be true.

53

4 Point-Based Solution Approaches Based on the ε-Constraint Method

edge of the Pareto front is somewhere in the interval [Er, Er + Emax−Emin
h1−1). As we have

no further information about the characteristics of the Pareto front in the interval, we
decided to allocate a “neutral” share of the remaining budget on this interval, i.e. the
interval receives roughly the number of points that it would get if the points would be
distributed equally spaced in Phase 2 as well. The number of points r in the interval is
calculated as follows:

r =
⌊

Emax − Emin

(h− 1)(Er − El)
(t− h)

⌋
where t is the computation budget, i.e. the number of portfolios that we are allowed to
calculate in total.

Dividing the Computation Budget on Phase 1 and Phase 2

What share of our computation budget is invested in Phase 1 depends on

1. the total number of portfolios that can be calculated:
If the total budget is very small, enough of it has to be invested into Phase 1 in
order to at least get a small number of nondominated points as a result. If Phase 1
returns only one or two nondominated solutions, the advantages of our algorithm
are unable to come into play.

2. whether a MIQP solver or heuristics are used to calculate the points:
In case of the heuristics, a part of the budget in Phase 1 is “wasted” on the area
below the minimum-variance-boundary of the Pareto front. Therefore the share
of Phase 1 should be neither too small (may result in not enough nondominated
solutions) nor too large (a larger part of the overall budget is wasted below the
MVP). If an MIQP solver is used, the number of portfolios in Phase 1 is less
relevant.

Concluding, the algorithm needs enough portfolios to get reasonable results in Phase 1
and has to have left enough of the budget for Phase 2 to take advantage of the information
gathered in first phase. During our tests, we used an overall budget of several hundred
points, and we decided on allocating 10% of it to Phase 1, we used a small number of
points to cope with the border areas (see above), and the rest of our point budget was
“spent” on Phase 2.

Calculating the Number of Points per Interval

If k nondominated points (portfolios) have been computed in the first phase, there are
k − 1 intervals into which the remaining computation budget has to be placed. Each of
these intervals has its own value ci and mi. The number of portfolios that is not yet
used is h2 = t−h1−r. If ni is the number of points we allocate to interval i, the optimal

54

4 Point-Based Solution Approaches Based on the ε-Constraint Method

distribution – based on the assumption of linearity between the points – is the solution
of the following optimization problem:

max f(n) =
k−1∑
i=1

mic
2
i

ni
2(ni + 1)

subject to
k−1∑
i=1

ni = h2

ni ∈ N0 ∀i = 1, . . . , k − 1

This integer optimization problem which at a first glance might look difficult, is fairly
easy to solve since the values for n1, . . . , nk−1 can be computed iteratively: starting with
the first point, with the help of Eq. 4.1 we can decide for each point in which interval it
is to be placed. The interval with the highest estimated reduction of the approximation
value ∆Fnj→nj+1

ap,j , j = 1, . . . , k− 1 receives the point. The only information we need for
this is the cj , mj and the current nj for all intervals. If a point is placed in interval j,
nj is increased by one and the value for ∆Fnj→nj+1

ap,j has to be updated. Then, without

requiring any further computation (besides the search for the highest ∆Fnj→nj+1
ap,j), the

next point can be placed. When the whole remaining budget h2 has been distributed,
the values for Ef are calculated by spreading the portfolios evenly over the intervals.
With nj as the number of portfolios to be placed in Interval j, Ej,l as the lower (left)
boundary of the interval, and Ej,u as the upper (right) boundary, all Ef,j in the interval
are determined as follows:

Ef,j = Ej,l +
i

nj + 1
(Ej,u − Ej,l) with i = 1, . . . , nj

After calculating the solutions for each of these values of Ef in all intervals, the domi-
nated solutions have to be removed from the union of the three solution sets (i.e. from
the results of Phase 1, Phase 2, and the border areas). The remaining (nondominated)
solutions form the (hopefully good) approximation of our Pareto front.

Other Distribution Algorithms

The simplest approach, and also the one used most often, is to distribute the available
computation budget evenly over the feasible region. In the tests in this chapter we will
determine the percentage of the computation budget that can be saved if we replace the
naive distribution with the algorithm developed by us.
There are also some completely different approaches how to place the evaluation points
to get a good approximation of the complete Pareto front (see e.g. normal boundary
intersection by Das and Dennis [DD98]). Their main focus, however, is usually put on

55

4 Point-Based Solution Approaches Based on the ε-Constraint Method

problems with more than two objectives and the difficulties resulting from that4. For a
general overview, the reader is referred to Miettinen [Mie98].

4.3 Mixed-Integer Modelling

Optimization problems are denoted as mixed-integer problems if some of the decision
variables have to be integral while others are allowed to assume real values. Of spe-
cial interest for mean-variance portfolio selection are so called quadratic mixed-integer
programs (MIQPs). An MIQP is an optimization problem with a quadratic objective
function and linear constraints, which may be both equalities and inequalities.

In the last ten years, especially in the years 1996–2000, critical improvements in the field
of mixed integer solvers have been made that allow to handle problems which before had
been considered unsolvable in a reasonable amount of time. These advances were possible
due to the integration of what, up to then, were considered to be mainly theoretical
concepts into a production algorithm. For a brief overview on these improvements, the
reader is referred to Bixby et al. [BFG+00]. A general overview on integer programming
can be found e.g. in Wolsey [Wol98]. Kallrath [Kal02] is a good reference when the
reader is interested in the capabilities of mixed-integer modelling techniques.
By adding binary variables, the convex bicriteria problem can be extended to take non-
convex constraints into account (see Section 2.5) The additional modifications that are
caused by applying the ε-Constraint method have no effect on the part of the model that
contains the binary variables – and vice versa.

The single-criterion mixed integer problem with a buy-in threshold can therefore be
expressed as follows:

ε-Constraint mean-variance problem with a buy-in threshold of lb
minV (x) = xTQx (4.2a)

subject to

xTµ ≥ Ef (4.2b)
AIx ≤ bI (4.2c)

xTe = 1 (4.2d)
AEx = bE (4.2e)

lbρi ≤ xi ≤ uρi (4.2f)
ρi ∈ {0, 1} i = 1 . . . N (4.2g)

4If there are more than two optimization criteria, one of the main drawbacks of the ε-Constraint method
becomes more important: In order to get an approximation of a given granularity the number of points
that have to be evaluated grows exponentially with the number of optimization criteria. Current
publications try to address this problem (see e.g. Laumanns et al. [LTZ06]). As we only have two
criteria, this drawback does not affect us.

56

4 Point-Based Solution Approaches Based on the ε-Constraint Method

with binary variables ρi, i = 1, . . . , N indicating whether asset i is included in the
portfolio or not. (The other variables have the usual meaning. For further details, the
reader is referred to Section 2.5.)

Problem instances with a maximum cardinality constraint can be transformed similarly:

ε-Constraint mean-variance problem with maximum cardinality K

minV (x) = xTQx (4.3a)
subject to

xTµ ≥ Ef (4.3b)
AIx ≤ bI (4.3c)

xTe = 1 (4.3d)
AEx = bE (4.3e)

xi ≤ uiρi (4.3f)
ρi ∈ {0, 1} i = 1 . . . N (4.3g)

n∑
i=1

ρi ≤ K, (4.3h)

where ρi is the binary variable that specifies whether asset i should be included in
the portfolio, and li and ui are the lower and upper bounds for the weights if the
corresponding asset is included.
The two optimization models with buy-in thresholds or maximum cardinality constraints
can be input into a solver for mixed integer quadratic programs (MIQP) directly without
needing to change anything at all.
The modelling of the 5-10-40-Constraint as MIQP is not as straightforward, however, as a
similar ε-Constraint transformation still includes a product of variables in Inequality 4.4f:

SMVM with 5-10-40-Constraint
minV (x) = xTQx (4.4a)

subject to

xTµ ≥ Ef (4.4b)
AIx ≤ bI (4.4c)

xTe = 1 (4.4d)
AEx = bE (4.4e)

ρTx ≤ 0.4 (4.4f)
x− 0.05ρ ≤ 0.05e (4.4g)
ρi ∈ {0, 1} ∀i = 1, . . . , N (4.4h)

x ≥ 0 (4.4i)

57

4 Point-Based Solution Approaches Based on the ε-Constraint Method

MIQP solvers are unable to cope with constraints of this type and require the introduc-
tion of N additional real valued variables:

SMVM with 5-10-40-Constraint (MIQP model)
minV (x) = xTCx (4.5a)

subject to

xTµ = E (4.5b)

xTe = 1 (4.5c)
x− 0.05ρ ≤ 0.05e (4.5d)
t− 0.1ρ ≤ 0 (4.5e)
t− x ≤ 0 (4.5f)

x+ 0.1ρ− t ≤ 0.1e (4.5g)

tTe ≤ 0.4 (4.5h)
x, t ≥ 0 (4.5i)
ρi ∈{0, 1} i = 1, . . . , N (4.5j)

Thereby, ρi = 1 implies that asset i is allowed up to 10%, while ρi = 0 restricts asset i
to 5% (Inequality 4.5d). If ρi = 0, Inequality 4.5e requires ti = 0, otherwise ti = xi by
Inequalities 4.5e, 4.5f, and 4.5g. Inequalities 4.5d and 4.5h restrict the “heavyweights”
to 10%, and their sum to 40%.
Once formulated appropriately, any of the available mixed integer quadratic program-
ming (MIQP) solvers can be used to solve the model. Software packages that contain
such a solver can be found at NEOS [NEO06], although – compared to the number of
available QP-solvers – there are by far fewer programs with the required capability. In
any case, there is no guarantee for getting the optimal portfolio quickly. If there is not
enough time to allow the algorithm to terminate regularly, the best feasible portfolio
calculated so far can be used instead — a normal practice when working with mixed
integer solvers. Of course, this abandons the optimality guarantee.
For further information about the mixed integer approach to the cardinality constrained
problem without using an external MIQP-solver, the reader is referred to Bienstock
[Bie96], who examined the computational complexity of the problem, tested a self-
developed branch-and-cut algorithm using disjunctive cuts, and discussed some of the
implementation problems that occurred.
Jobst et al. [JHLM01] use a branch-and-bound algorithm to solve the cardinality con-
strained problem with buy-in thresholds as well as an index tracking problem, where a
portfolio subject to cardinality constraints should perform as closely as possible to an
index in terms of expected return and variance. As they calculate many points on the
efficient frontier, the available time is too short for solving each MIQP to optimality.
Therefore, they limit the number of nodes in the search tree of the branch-and-bound
algorithm for each given expected return Ef . To speed up the algorithm further, a pre-
viously calculated solution for an adjacent point is used as a warm start solution for the
new value of expected return.

58

4 Point-Based Solution Approaches Based on the ε-Constraint Method

Based on our experience, the ability to reuse information gathered in previous solver
runs is essential in achieving satisfactory algorithm performance.
Advantages of the mixed integer approaches are certainly that optimality is guaranteed
if the algorithm terminates. On the other hand, running time is difficult to predict,
and modelling complex constraints is not always straightforward as the example of the
5-10-40-Constraint has demonstrated.
Unfortunately, an MIQP solver can only approximate the Pareto front pointwise; a
mixed-integer version of a parametric quadratic programming algorithm is not known.
But Chapter 6 describes an algorithm that combines the MIQP methodology with an
algorithm that calculates curve-based segments of the Pareto front and merges these
segments into a curve-based approximation of the whole front.

4.4 Heuristics Based on the ε-Constraint Method

Our main intention in developing the point-based heuristics was to get a feasible solution
of fairly good quality in a short time. Feasibility was a core requirement for any solution,
as otherwise we could just solve a standard mean-variance problem that does not contain
any nonconvex constraints and very quickly get an infeasible solution that is optimal.
Which of the other two design objectives – speed and solution quality – is more important
depends on the application context. For this reason, we will report on both criteria in
our tests, the quality of the approximation and the time required to calculate it.
Figure 4.6 illustrates the overall procedure of all point-based heuristics in this section.

Figure 4.6: Framework for point-based heuristics

59

4 Point-Based Solution Approaches Based on the ε-Constraint Method

The basic assumption behind all of the heuristics in this section is that the feasible region
– which is nonconvex – is the union of a collection of convex subsets, each of which is in
turn defined by a set of linear constraints. This is true for all three nonconvex problem
types we want to solve, and it is the foundation of all of the heuristics that are presented
in this section.
We further surmise that the solution of the relaxed mean-variance problem, i.e. of the
problem that contains all constraints with the exception of the nonconvex one, is a good
indication as to which of the convex subsets is the most promising.
With a given lower bound Ef for the expected return, the relaxed problem is passed on
to a quadratic programming (QP) solver as a first step. The QP solver – the algorithm
that calculates a solution for a quadratic optimization problem with linear constraints
– is one of the core components of all ε-Constraint heuristics in this chapter. As there
are highly optimized codes that provide the required functionality (cf. the NEOS Guide
[NEO06]), we have decided – as with the MIQP solver – not to implemented it ourselves.
(More information about our choice for the QP solver is provided in Section 4.5.)
The formulation of a model for the relaxed problems is not difficult at all. In case of a
problem with the 5-10-40-Constraint and a short sales prohibition, the model looks as
follows:

Convex relaxation of a problem with 5-10-40-Constraint:
minV (x) = xTQx (4.6a)

subject to

xTµ ≥ Ef (4.6b)
AIx ≤ bI (4.6c)
AEx = bE (4.6d)

x ≤ 0.1e (4.6e)

Inequality 4.6e contains the part of the 5-10-40-Constraint that does not compromise
the convexity of the feasible region. (The budget constraint can be expressed in terms
of Equation 4.6d, any short sales constraint in terms of Inequality 4.6c.)
The relaxations for problems with either cardinality constraint or buy-in thresholds are
nearly identical, the only difference is that they lack Ineqequality 4.6e.
In a second step, the solution of the relaxed problem is analyzed and a linearly con-
strained subset is chosen. The quadratic programming problem with the feasible region
defined by the new subset is again passed on to the QP solver. Depending on which
heuristic is used, the procedure may terminate after two solver calls with a feasible solu-
tion, or the result is analyzed again, and the loop is be repeated till a given termination
criterion is fulfilled.
This procedure has to be repeated for many different values of Ef . Therefore the QP
solver is called quite frequently. Since only minimal time is required for all the other parts
of the algorithm, the solver calls amount to the largest share of the overall algorithm
runtime. Hence how often to call the solver is the design decision – besides the number
of points we use – that directly influences the overall time we need to calculate an
approximation.

60

4 Point-Based Solution Approaches Based on the ε-Constraint Method

For problems with a 5-10-40-Constraint, we have developed three heuristics, and both
for maximum cardinality constrained problems and problems with buy-in thresholds,
two heuristics were designed and tested. In the following, we describe each of them as
pseudocode and give some additional explanatory remarks.

4.4.1 Heuristics for Portfolio Selection Problems with 5-10-40-Constraint

The first heuristic for the problems with the 5-10-40-Constraint is called 2-solver-calls
heuristics. It works as documented in Algorithm 1.

Algorithm 1 2-solver-calls heuristic for problems with 5-10-40-Constraint
1: for all i do
2: ui ← 0.1
3: end for
4: x← S(u, Ef)
5: L0.05 ← {i}xi>0.05

6: if
∑

i∈L0.05
xi > 0.4 then

7: for all i /∈ L0.05 do
8: ui ← 0.05
9: end for

10: Add constraint r0.4 :
∑

i∈L0.05
xi ≤ 0.4

11: x← S(u, r0.4, Ef)
12: end if

In the pseudocode of this heuristic, ui is the upper bound for asset i, Ef , as usual,
denotes the lower bound for the expected return. S(u, Ef) and S(u, r0.4, Ef) represent
calls of the quadratic programming solver with the parameters u and Ef . Additionally,
the second solver call has to pass the constraint r0.4 to the solver5.
One of the main tasks of the heuristic is accomplished in Line 5: the analysis of the
solution that has been calculated in the first solver call. There all assets that have been
set to a weight larger than 0.05 by the QP solver are added to the set L0.05. If the sum of
the asset weights in L0.05 is smaller than 0.4 (Line 6), the solution of the relaxed problem
is feasible for the problem with nonconvex constraints, and the algorithm terminates.
Otherwise the upper bound of all assets not in L0.05 is set to 0.05 (Lines 7,8) and a
restriction r0.4 is added, which sets an upper bound of 40% for the sum of all assets in
the set L0.05. The solution we get from the second solver call is definitely feasible.
As the name indicates, the heuristic requires at most two solver calls for every value of
Ef . The main cause for solutions of poor quality is probably the result of the restrictive
setting we use for constraint r0.4. As a consequence of r0.4, it is highly probable that
several of the of the assets in L0.05 will fall below 5% and wouldn’t have to be included

5The covariance matrix, the vector of expected returns, the lower bounds for the assets, and all the
other linear constraints AEx = be, AIx ≤ bI have to be transferred to the solver as well. We did
not include them in our description as they do not change.

61

4 Point-Based Solution Approaches Based on the ε-Constraint Method

in the r0.4-Constraint at all. If this happens, the other elements of L0.05 are therefore
forced to be smaller than they actually would have to be.
In order to cope with this drawback, we have developed the n-solver-calls heuristic,
which is described in Algorithm 2.

Algorithm 2 n-solver-calls heuristic for problems with 5-10-40-Constraint
1: for all i do
2: ui ← 0.1
3: end for
4: Ml ← ∅, L0.05,o ← ∅, r0.4 ← ∅
5: finished = false
6: while ¬finished do
7: x← S(u, r0.4, Ef)
8: L0.05 ← {i}xi>0.05

9: if
∑

i∈L0.05
xi > 0.4 then

10: Ml ←Ml ∪ {i }i∈L0.05,o
V
i/∈L0.05

11: for all i ∈Ml do
12: ui ← 0.05
13: end for
14: Modify constraint r0.4 :

∑
i∈L0.05

xi ≤ 0.4
15: L0.05,o ← L0.05

16: else
17: finished = true
18: end if
19: end while

In this algorithm, the set L0.05 is once more used to store the indices of those assets that
have a weight larger than 5%. Additionally, we need the set L0.05,o. This set contains all
the assets that had a weight larger than 5% in the previous iteration of the while-loop
(Lines 6–19). The notation r0.4 ← ∅ describes an operation that sets r0.4 as a constraint
that is always fulfilled and thus does not influence the solver result.
Ml denotes the set of “locked” assets. Locked assets are assets with an upper bound
set to 5%. In the n-solver-calls heuristic, an asset that has been locked can never be
unlocked, i.e. the upper bound is never raised. Additionally, we use the termination flag
(“finished”) which indicates feasibility of the solution. When finished is set to true, the
algorithm stops the next time Line 6 is encountered.
The other variables in the algorithm have the same meaning as above.
After initializing Ml, L0.05,o, and r0.4, the algorithm starts in a similar fashion as the 2-
solver-calls heuristic: the same relaxed problem is solved. The solution is again analyzed
and L0.05 is set to contain all assets with a weight larger than 5%.
If the solution is not feasible with respect to the 5-10-40-Constraint (Line 9), the variables
that have had a weight larger than 5% in the previous iteration of the while-loop and
have fallen below the 5% barrier in the solution of the current iteration are added to
Ml. Then, Constraint r0.4 is updated with the new L0.05. Finally, L0.05,o is set to the
current value of L0.05, and the while-loop starts anew.

62

4 Point-Based Solution Approaches Based on the ε-Constraint Method

The number of solver calls in the n-solver-calls heuristic can vary between 1 (if the
solution of the relaxed problem is feasible) and a number close to the size of the asset
universe (if one asset after another has to be locked). Both extreme cases can occur only
theoretically, however. In practice, we have found that the QP solver is called between
3 and 6 times.
A third heuristic for portfolio selection problems with a 5-10-40-Constraint, the partial
derivatives heuristic, tries to find a middle ground between the previous two. It limits
the solver calls to two, but tries to more intelligently select the assets that are limited
to 5%. Algorithm 3 describes the procedure.

Algorithm 3 Partial derivatives heuristic for problems with 5-10-40-Constraint
1: for all i do
2: ui ← 0.1, gi ← 0
3: end for
4: x← S(u, Ef)
5: L0.05 ← {i}xi>0.05

6: Σ0.05 ←
∑

i∈L0.05
xi

7: if Σ0.05 > 0.4 then
8: for all i ∈ L0.05 do
9: gi ← ∂V

∂xi
(0.05− xi)

10: end for
11: for all i /∈ L0.05 do
12: ui ← 0.05
13: end for
14: while s0.05 > 0.4 do
15: Find j with gj = min{i} gi
16: L0.05 ← L0.05 \ j
17: Σ0.05 ← Σ0.05 − xj
18: uj ← 0.05
19: gj ← 0
20: end while
21: Add constraint r0.4 :

∑
i∈L0.05

xi ≤ 0.4
22: x← S(u, r0.4, Ef)
23: end if

In this algorithm, Σ0.05 initially denotes the sum of all shares that have a weight larger
than 5%. During the algorithm, we subtract from Σ0.05 the weights of those shares that
are newly restricted up to 5% (Line 17). gi is 0 if asset i has a weight below 5%, or if
its upper bound is set to 5%. Otherwise, gi is set to the estimate of the variance change
that occurs if the upper bound of asset i is reduced from 10% to 5% (Line 9). This
estimate, ∂V

∂xi
(0.05 − xi), is not very precise. It takes into account neither the budget

63

4 Point-Based Solution Approaches Based on the ε-Constraint Method

constraint6 nor any other linear constraints with the exception of the upper bounds. It
can be calculated very quickly, however.
The algorithm uses these estimates to iteratively identify those variables that (hope-
fully) do the least harm if their upper bound is set to 5%. The upper bounds of the
respective variables are then set to 5%, L0.05, Σ0.05, and the respective elements gi are
changed accordingly (Lines 15-19). This is repeated as long as the weights of those assets
that remain in L0.05 add up to more than 40%. Afterwards, constraint r0.4 has to be
introduced again to ensure feasibility, as the reduction of several variables enforces an
increase in others.

4.4.2 Heuristics for Portfolio Selection Problems with a Maximum
Cardinality Constraint

Jobst et al. [JHLM01] describe a simple point-based heuristic for mean-variance portfolio
selection problems with a maximum cardinality of k which they called reoptimization
heuristic. It works as described in Algorithm 4.

Algorithm 4 Reoptimization heuristic for problems with a maximum cardinality of k
1: for all i do
2: ui ← 1.0
3: end for
4: Lk ← ∅
5: x← S(u, Ef)
6: Add k assets with k largest xi to Lk
7: for all i /∈ Lk do
8: ui ← 0
9: end for

10: x← S(u, Ef)

After solving the relaxed problem (Line 5)7, the k assets with the largest portfolio weights
in this solution are identified and added to the set Lk. The upper bounds of all shares
not in Lk are set to 0 (Line 8). The solution computed in the second solver call is –
if the solver is able to calculate one at all – feasible for the portfolio selection problem
with maximum cardinality constraint. Exactly two solver calls for every Ef are used by
the heuristic. The heuristic is quite similar to the 2-solver-calls heuristic from above.
In the n-solver-calls heuristic for problems with a maximum cardinality constraint,
which we describe in Algorithm 5, we have modified the reoptimization heuristic with
the objective to improve solution quality. The price is, once more, a larger number of
solver calls.

6If the weight of any asset is reduced, another one has to “take up the slack” in order to ensure that
the whole budget is spent.

7We assumed that there is no stricter upper bound in the problem than 1 and that the lower bound
is 0. Any upper bound in the interval [1

k
, 1] can be used, however; in that case, Line 2 has to be

modified.

64

4 Point-Based Solution Approaches Based on the ε-Constraint Method

Algorithm 5 n-solver-calls heuristic for problems with a maximum cardinality of k
1: for all i do
2: ui ← 1.0
3: end for
4: Ml ← ∅
5: x← S(u, Ef)
6: Ml ← {i}xi<ε
7: for all i ∈Ml do
8: ui ← 0
9: end for

10: x← S(u, Ef)
11: while |Ml| < N − k do
12: Find j with xj < xi∀i /∈Ml

13: uj ← 0
14: Ml ←Ml ∪ {j}
15: x← S(u, Ef)
16: end while

Ml denotes the set that contains the indices of the shares that are forced to become 0,
since their upper bounds are set to 0. At the start of the algorithm, Ml is initialized
to be empty and the relaxed problem is solved. The obtained solution is analyzed and,
in a first step, Ml is set to contain all shares that have a weight smaller than ε (Line
6). The value for ε depends on the precision of the quadratic programming solver and
on the number of investment alternatives. We have found that 10−5 1

N , with N the size
of the asset universe, is a reasonable value for ε. The intention of this operation is the
removal of shares with a weight so small that it has little or no influence on the portfolio
variance. If the asset remained in the portfolio, it would occupy one of the k available
slots. In the next step, the problem is solved again, but with the newly modified vector
of upper bounds. Then, in an iterative procedure, the share with the smallest weight is
identified, added to Ml, and its upper bound is set to 0. This is repeated as long as the
number of assets not in Ml exceeds the maximum cardinality k.

4.4.3 Heuristics for Portfolio Selection Problems with Buy-In Thresholds

For problems with a buy-in threshold of lb, we have again designed a simple heuristic that
does not use more than 2 solver calls for each Ef . It works as described in Algorithm 6.
l denotes the vector of lower bounds for all assets. The solution of the relaxed problem
determines if either xi is set to 0, or its lower bound is raised from 0 to lb. If xi is larger
than lb

2 in the relaxed solution, then its lower bound is raised (Line 12), otherwise xi is
forced to have zero weight (Line 9). This can be interpreted as a simple “rounding” of
the variables.
For the buy-in threshold problem, an improved heuristic – the n-solver-calls heuristic –
was developed as well. Algorithm 7 describes its functionality in pseudocode.

65

4 Point-Based Solution Approaches Based on the ε-Constraint Method

Algorithm 6 2-solver-calls heuristic for a problem with buy-in threshold lb
1: for all i do
2: ui ← 1.0
3: li ← 0
4: end for
5: Ll ← ∅
6: x← S(u, l, Ef)
7: Ll ← {i}xi< lb

2

8: for all i ∈ Ll do
9: ui ← 0

10: end for
11: for all i /∈ Ll do
12: li ← lb
13: end for
14: x← S(u, l, Ef)

Algorithm 7 n-solver-calls heuristic for a problem with buy-in threshold lb
1: for all i do
2: ui ← 1.0
3: li ← 0
4: end for
5: x← S(u, l, Ef)
6: for all i with xi < ε do
7: ui ← 0
8: end for
9: for all i with xi > lb do

10: li ← lb
11: end for
12: x← S(u, l, Ef)
13: while ∃ i with 0 < xi < lb do
14: Find j with 0 < xj < lb and xj ≤ xi ∀i
15: Find k with 0 < xk < lb and xk ≥ xi ∀i
16: if xj < lb − xk then
17: uj ← 0
18: else
19: lk ← lb
20: end if
21: x← S(u, l, Ef)
22: end while

66

4 Point-Based Solution Approaches Based on the ε-Constraint Method

The n-solver-calls heuristic starts by solving the relaxed problem (Line 5)8. In the next
step, variables with a weight smaller than ε are forced to actually become 0 (Lines 6-8).
The value for ε was – as in the n-solver-calls heuristic for maximum cardinality problems
– determined to be 10−5 1

N . Variables with weights exceeding lb have their lower bounds
set to lb, thus ensuring that they also comply with the buy-in threshold constraint in
later solver calls (Lines 9-11).
After getting a new solution based on the more restrictive bounds (Line 12), the one
asset that violates the buy-in threshold and is closest to either 0 or the threshold lb is
identified. This variable is from then on set to become 0 (if it was closer to that value)
or its lower bound is set to lb (if the asset was near the threshold). The ensuing problem
is solved again, and the loop is repeated as long as there are asset weights that do not
comply with the buy-in threshold constraint.

4.5 Test Results for ε-Constraint Methods

In this section, we report on the results we achieved with the point-based heuristics and
the MIQP solver.
We once more measured the computation time on our benchmark system with an AMD-
Athlon-CPU with 1,5 GHz and Linux (Debian sid) as operating system. The program
containing all algorithms was compiled with version 3.3 of the Gnu Compiler Collection
[GCC06] with the optimization level set to 3. We only report the actual CPU-time that
was needed to calculate the solution, as the “real” duration of a run is influenced by the
load of the operating system during computation. (Normally the two values do not differ
too much as long as the test platform is used exclusively for testing and has sufficient
main memory.)
We used CPLEX 9.0 from ILOG [CPL06] to provide both “normal” quadratic program-
ming and MIQP functionality. This should, at least approximately, guarantee the same
code maturity level for both utilized solvers. Regarding the conventional QP solver, we
examined in a series of preliminary tests how well the barrier optimizer as well as the
simplex optimizer from CPLEX (for more details, the reader is referred to the CPLEX
user manual [CUs03]) perform. The simplex-based algorithm proved to be significantly
faster, most probably due to its superior warm start capabilities. We therefore decided
to exclusively use the simplex optimizer in the tests reported in this thesis.
The listed CPU-times are the averages of ten algorithm runs together with the respective
standard error. We have to mention that the reported runtimes are strongly influenced
by the choice of the QP solver. Therefore, if the CPLEX solver is replaced by another
solver, no reliable prediction about the changes of absolute runtimes are possible. The
relative order of the computation times should, hopefully, remain the same.
Regarding the solution quality, we again report on both the ideal and the maximum
delta-area (cf. Section 4.1).

8We again assume that it is possible to invest 100% of the budget in a single asset and that short sales
are not allowed. For different upper bounds the algorithm has to be modified accordingly (Line 2).

67

4 Point-Based Solution Approaches Based on the ε-Constraint Method

For all test runs, we used the 2-phase procedure described in Section 4.2 to efficiently
distribute our computation budget along the expected return axis. We set our total
computation budget for both phases to 400 and used 10% of it in Phase 1.

4.5.1 Problem Instances with 5-10-40-Constraint

Table 4.1 lists the results we obtained for problem instances P1-P7 (see Section 2.4 for
more information about the test problems). As in most related publications, we also
introduced a short sales prohibition and therefore set the lower bound for all assets
to 0. The upper bounds were, due to the 5-10-40-Constraint, set to 10%. Otherwise,
besides the budget constraint and the linear constraints that are a consequence of the
5-10-40-Constraint, no further linear equations or inequalities were introduced.

Table 4.1: Test results for the ε-Constraint heuristics and the MIQP solver on problem
instances with 5-10-40-Constraint

2-solver-calls n-solver-calls part. deriv. MIQP
P1 (N = 31)
ideal delta-area 6.53e-07 2.95e-07 4.81e-07 2.03e-07
max. delta-area 3.22e-06 2.57e-06 4.11e-06 1.30e-06
CPU-time ± std. error 1.99 ± 0.0033 2.89 ± 0.0050 1.28 ± 0.0023 6.92 ± 0.0052
P2 (N = 85)
ideal delta-area 9.86e-08 6.17e-08 1.76e-07 3.44e-08
max. delta-area 2.21e-06 1.95e-06 4.67e-06 1.19e-06
CPU-time ± std. error 3.98 ± 0.0033 6.16 ± 0.0048 3.13 ± 0.0034 41.75 ± 0.013
P3 (N = 89)
ideal delta-area 6.57e-08 3.52e-08 8.50e-08 1.86e-08
max. delta-area 1.11e-06 8.18e-07 1.63e-06 4.75e-07
CPU-time ± std. error 3.67 ± 0.0028 5.59 ± 0.0045 3.06 ± 0.0051 44.62 ± 0.017
P4 (N = 98)
ideal delta-area 1.56e-07 9.17e-08 1.98e-07 6.44e-08
max. delta-area 2.14e-06 1.71e-06 3.04e-06 1.24e-06
CPU-time ± std. error 3.77 ± 0.0022 5.53 ± 0.0026 3.13 ± 0.0015 69.58 ± 0.383
P5 (N = 225)
ideal delta-area 2.17e-07 9.86e-08 1.44e-07 7.07e-08
max. delta-area 3.34e-06 2.43e-06 2.32e-06 1.63e-06
CPU-time ± std. error 11.48 ± 0.0158 23.33 ± 0.0129 11.59 ± 0.0063 152.4 ± 0.073
P6 (N = 500)
ideal delta-area 1.12e-05 6.23e-06 1.22e-05 4.80e-06
max. delta-area 6.12e-04 4.72e-04 8.07e-04 3.11e-04
CPU-time ± std. error 49.59 ± 0.022 103.2 ± 0.039 56.3 ± 0.028 1622 ± 1.51
P7 (N = 1000)
ideal delta-area 2.00e-05 1.22e-05 2.52e-05 8.43e-06
max. delta-area 2.14e-03 2.06e-03 2.88e-03 1.46e-03
CPU-time ± std. error 175.0 ± 0.27 300.0 ± 0.33 192.6 ± 0.07 8826 ± 3.6

Surprisingly, the mixed-integer solver was able to calculate the 400 points for all problem
instances in an acceptable amount of time even though the number of variables had to

68

4 Point-Based Solution Approaches Based on the ε-Constraint Method

be tripled. The problem instance with the largest asset universe (P7) was solved in
less than two and a half hours. This amount of time would be acceptable in many
application scenarios, especially if we consider that there are much faster computers
available nowadays.
The three heuristics (2-solver-calls, n-solver-calls, and partial derivatives heuristic) were
able to provide an approximation to the Pareto front in much less time – which was
the intent of their design. The 2-solver-calls heuristic is faster than the n-solver-calls
heuristic but, as expected, the solution quality is not as good. Disappointingly, when
we consider the max. delta-area, the solution quality of the partial derivatives heuristic
is even worse than that of the 2-solver-calls heuristic on 6 of the 7 problem instances.

 0.0007

 0.0008

 0.0009

 0.001

 0.0011

 0.0012

 0.0013

 0.0014

 0.0015

 0.003 0.0035 0.004 0.0045 0.005 0.0055

va
ria

nc
e

expected return

2-solver-calls
partial deriv.

n-solver-calls
MIQP

Figure 4.7: Nondominated frontiers calculated by the 2-solver-calls heuristic, the n-
solver-calls heuristic, the partial derivatives heuristic, and the MIQP solver
for P1 (31 asset universe) with 5-10-40-Constraint

The nondominated frontiers of the four algorithms for Problem 1 (31 assets) are dis-
played in Figure 4.7. These results demonstrate nicely the main drawback of the partial
derivatives heuristic. In the area close to the minimum variance portfolio, the heuristic
is better than the 2-solver-calls heuristic. The problem is to be found in the area with
high expected returns. There, the partial derivatives heuristic is unable to calculate a
feasible solution in a relatively large interval, which in turn results in a poor overall so-
lution quality. This is also the reason why the partial derivatives heuristic is faster than
the 2-solver-calls heuristic: infeasibility is usually detected quickly, while the calculation
of a feasible solution requires more time. A possible rationale for the poor performance
may be found at the core of the partial derivatives heuristic: the assets with small values
of ∂V

∂xi
(0.05−xi) get an upper bound of 5%. This is, however, only appropriate if variance

69

4 Point-Based Solution Approaches Based on the ε-Constraint Method

reduction is the main concern. Should the maximization of the expected return be more
important, the technique will quite often choose the wrong assets for a reduction.
Similar results can be observed for the other problem instances9 – with one exception:
for P5 (225 assets), the partial derivatives heuristic surpasses even the n-solver-calls
heuristic, at least when we only look at the max. delta-area. Figure 4.8(a) shows
that the n-solver-calls heuristic is superior on nearly the whole breadth of the expected
return axis. Therefore, the ideal delta-area is smaller for the n-solver-calls heuristic.
The explanation why the results are different for the max. delta-area is to be found at
the right edge (Figure 4.8(b)), where the partial derivatives heuristic is able to return
feasible solutions beyond the end of the n-solver-calls heuristic. The values at both ends
of the curves, and especially at the right one, have a huge impact on the max. delta-area
(cf. Section 4.1). In this case, the effect was large enough to offset the otherwise inferior
performance along the rest of the Pareto front.

 0.0003

 0.00035

 0.0004

 0.00045

 0.0005

 0.00055

 0.0006

 0.00065

 0.0007

 0 0.001 0.002 0.003

va
ria

nc
e

expected return

2-solver-calls
partial deriv.

n-solver-calls
MIQP

(a) Complete fronts

 0.0004

 0.00045

 0.0005

 0.00055

 0.0006

 0.00065

 0.0007

 0.002 0.0025 0.003

va
ria

nc
e

expected return

2-solver-calls
partial deriv.

n-solver-calls
MIQP

(b) Right edge of the fronts

Figure 4.8: Nondominated frontiers calculated by the 2-solver-calls heuristic, the n-
solver-calls heuristic, the partial derivatives heuristic, and the MIQP solver
for P5 (225 asset universe) with 5-10-40-Constraint

This problem instance demonstrates that blindly trusting only one of the highly aggre-
gated results provided by any of the two area measures can be misleading. We therefore
recommend to graphically compare the results of the heuristics in ambiguous cases.
Appendix A.1 contains corresponding figures for the other problem instances (P2, P3,
P4, P6, and P7).

4.5.2 Problem Instances with Maximum Cardinality Constraint

Table 4.2 lists the results for problem instances P1-P7 (see Section 2.4 for more details)
when a maximum cardinality constraint was introduced. Again, short sales were not
allowed. Apart from the ever present budget constraint, no further linear equations or

9The difference is, however, not always as pronounced as in the first problem instance.

70

4 Point-Based Solution Approaches Based on the ε-Constraint Method

inequalities were introduced. We limited the maximum number of different shares the
portfolio may contain to 4 for the smaller problem instances P1–P4, and to 8 for the
larger problems P5–P7.
Both the reoptimization heuristic and the n-solver-calls heuristic are able to rapidly
compute an approximation of the Pareto front of fairly good quality. The n-solver-calls
heuristic again yields better results but nearly quadruples computation time. Problem
3 (89 asset universe; Figure 4.9) is one instance in which results of the reoptimization
heuristic are clearly inferior, while for P7 (1000 asset universe; Figure 4.10), it is difficult
to even visually discern the different curves. All front approximations are much closer
to the ideal front than in problems with a 5-10-40-Constraint: the max. delta-area is by
far smaller even though the Pareto fronts for cardinality constrained problems stretches
across a larger distance in the mean-variance space10.
The figures depicting the nondominated fronts for the P1, P3, P4, P5, and P6 are again
provided in Appendix A.2. The results for these problem instances vary slightly, but P3
is the one instance in which the reoptimization heuristic performs worst.
Summarizing: the nondominated fronts calculated by the n-solver-calls heuristic are
always very close to the ideal front, while there are a few areas where the reoptimization
heuristic is unable to calculate efficient solutions (cf. Figure 4.9 for Ef ∈ [0.0058, 0.0063]).
Nevertheless, the results for both heuristics are surprisingly good.

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.003 0.004 0.005 0.006 0.007 0.008 0.009

va
ria

nc
e

expected return

reoptimization
n-solver-calls

MIQP

Figure 4.9: Nondominated frontiers calculated by the reoptimization heuristic, the n-
solver-calls heuristic, and the MIQP solver for Problem 3 (89 assets) with a
maximum cardinality of K = 4

10The longer Pareto fronts are the result of the nonexisting upper bounds for problems with a cardinality
constraint.

71

4 Point-Based Solution Approaches Based on the ε-Constraint Method

Table 4.2: Test results for the ε-Constraint heuristics and the MIQP solver on
problems with cardinality constraints. Maximum cardinality was set
to K = 4 for problems P1–P4, and to K = 8 for problems P5–P7.

reoptimization n-solver-calls MIQP
P1 (N = 31)
ideal delta-area 1.93e-07 1.92e-07 1.67e-07
max. delta-area 2.85e-07 2.83e-07 2.58e-07
CPU-time ± std. error 0.31 ± 0.0026 0.453 ± 0.0015 3.93 ± 0.0033
P2 (N = 85)
ideal delta-area 6.67e-07 5.12e-07 4.55e-07
max. delta-area 1.05e-06 8.91e-07 8.24e-07
CPU-time ± std. error 1.465 ± 0.0017 4.496 ± 0.0062 764.6 ± 0.12
P3 (N = 89)
ideal delta-area 3.65e-07 2.40e-07 2.19e-07
max. delta-area 5.83e-07 4.58e-07 4.38e-07
CPU-time ± std. error 1.835 ± 0.0022 5.368 ± 0.0039 2079 ± 0.33
P4 (N = 98)
ideal delta-area 7.82e-07 5.90e-07 5.36e-07
max. delta-area 1.09e-06 8.80e-07 8.19e-07
CPU-time ± std. error 2.117 ± 0.0021 7.707 ± 0.0062 78474 ± n.a.1

P5 (N = 225)
ideal delta-area 2.10e-08 1.61e-08 1.42e-08
max. delta-area 4.71e-08 3.21e-08 3.01e-08
CPU-time ± std. error 5.72 ± 0.0033 8.077 ± 0.0047 194.6 ± 0.094
P6 (N = 500)
ideal delta-area 2.058e-06 1.31e-06 n.a.
max. delta-area 3.95e-06 2.32e-06 n.a.
CPU-time ± std. error 28.76 ± 0.0074 47.86 ± 0.014 n.a.
P7 (N = 1000)
ideal delta-area 6.98e-06 5.58e-06 n.a.
max. delta-area 2.19e-05 1.56e-05 n.a.
CPU-time ± std. error 109.9 ± 0.19 204.5 ± 0.44 n.a.
1 Due to the extremely long algorithm runtime, the configuration was started

only once. Therefore the standard error could not be calculated.

72

4 Point-Based Solution Approaches Based on the ε-Constraint Method

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13

va
ria

nc
e

expected return

reoptimization
n-solver-calls

ideal front

Figure 4.10: The ideal front and the results of the reoptimization heuristic and the n-
solver-calls heuristic for Problem 7 (1000 assets) with maximum cardinality
of K = 8.

Problems with cardinality constraints seem to pose a far stronger challenge for the
CPLEX MIQP solver than those with a 5-10-40-Constraint, since the computation time
is far longer. For the two largest problem instances, we were unable to get results in a
reasonable amount of time. And, when we look at the results from the two heuristics,
there doesn’t seem to be much potential for improvement anyway: e.g. in Figure 4.10,
we printed the solution of the ideal front instead of the MIQP solution we did not have,
and the difference between two heuristics and the ideal front is hard to discern. Only
when sections of the front are scaled up the discrepancy gets more visible.
One drawback of the MIQP solver is demonstrated by the results of P4: it is not always
obvious which problems require longer computation times. The solution of P4 with
a maximum cardinality of 4 took nearly a day to run through, while the solution of
Problem 5 with maximum cardinality of 8 could be computed in little more than 3
minutes. The runtimes of the heuristics are much more consistent, with a slight edge for
the reoptimization heuristic, since the number solver calls is predetermined.

4.5.3 Problem Instances with Buy-In Thresholds

Table 4.3 lists the results that were obtained for the problem instances P1-P7 (cf. 2.4)
with an additional buy-in threshold of 0.05. Again, short sales were not allowed (xi ≥
0 ∀i), and we also did not use any upper bounds. As always, the budget constraint was
introduced to normalize the results.

73

4 Point-Based Solution Approaches Based on the ε-Constraint Method

Table 4.3: Test results for the ε-Constraint heuristics and MIQP solver for
problems P1–P7 with a buy-in threshold of 0.05.

2-solver-calls n-solver-calls MIQP
P1 (N = 31)
ideal delta-area 7.18e-08 7.14e-08 6.75e-08
max. delta-area 7.21e-08 7.17e-08 6.78e-08
CPU-time ± std. error 0.391 ± 0.0018 0.478 ± 0.002 5.893 ± 0.0037
P2 (N = 85)
ideal delta-area 3.71e-08 3.52e-08 3.35e-08
max. delta-area 5.54e-08 5.33e-08 5.18e-08
CPU-time ± std. error 1.551 ± 0.0023 3.562 ± 0.0042 54.06 ± 0.014
P3 (N = 89)
ideal delta-area 3.03e-08 2.51e-08 2.36e-08
max. delta-area 3.92e-08 3.40e-08 3.24e-08
CPU-time ± std. error 1.942 ± 0.002 4.813 ± 0.003 120.6 ± 0.021
P4 (N = 98)
ideal delta-area 4.92e-08 3.90e-08 3.73e-08
max. delta-area 6.50e-08 5.02e-08 4.87e-08
CPU-time ± std. error 2.337 ± 0.003 6.168 ± 0.012 238.8 ± 0.043
P5 (N = 225)
ideal delta-area 6.78e-09 6.38e-09 5.47e-09
max. delta-area 9.64e-09 9.24e-09 8.33e-09
CPU-time ± std. error 6.63 ± 0.0037 9.112 ± 0.0049 291.6 ± 0.11
P6 (N = 500)
ideal delta-area 9.58e-07 6.66e-07 5.28e-07
max. delta-area 1.21e-06 9.20e-07 7.49e-07
CPU-time ± std. error 41.58 ± 0.010 54.07 ± 0.023 3611 ± 0.63
P7 (N = 1000)
ideal delta-area 3.94e-06 3.21e-06 2.96e-06
max. delta-area 7.27e-06 4.96e-06 4.72e-06
CPU-time ± std. error 156.8 ± 0.27 219.6 ± 0.49 22919 ± n.a.1

1 Due to the extensive algorithm runtime, this configuration was solved only
once. As a consequence, the standard error could not be calculated.

74

4 Point-Based Solution Approaches Based on the ε-Constraint Method

Both heuristics, the 2-solver-calls heuristic and the n-solver-calls heuristic, did extremely
well. Their results are – apart from tiny deviations – so close to the solution of the MIQP
solver to be visually indistinguishable on all problem instances (see e.g. Figure 4.11). The
diagrams for the other problem instances are provided in the appendix in Section A.3.
The max. delta-areas are even smaller than those calculated for portfolio selection
problems with cardinality constraints. A significant part of it is made up of the ideal
delta-area, i.e. the influence of the values at the edges of the Pareto front is not as
pronounced as is was for problems with 5-10-40-Constraint.
The results of the n-solver-calls heuristic surpassed those of the 2-solver-calls heuristic
on all test problems, but again at the cost of longer computation times.

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 0.011

va
ria

nc
e

expected return

2-solver-calls
n-solver-calls

MIQP

Figure 4.11: Results of the 2-solver-calls heuristic, the n-solver-calls heuristic, and the
MIQP solver for Problem 1 (31 assets) with a buy-in threshold of 0.05

The MIQP solver was able to provide results for all problem instances as well, but the
computation time for the larger problems was quite extensive. Considering that the
heuristics are able to compute results that are quite close in a small fraction of the time,
the only benefit of the MIQP solver seems to be that it guarantees optimality.
One curious effect that can be observed to some degree on all problem instances with
buy-in thresholds is a “jump” at the right edge of the Pareto front. This jump is easily
explained: the rightmost point of the Pareto front is the one for which 100% of the
budget is invested in the asset with the highest expected return. As each share that is
included in the portfolio has to reach at least the threshold lb, no feasible solutions can
exist between this rightmost point and the point that has a share of 1 − lb invested in
the asset with the highest expected return and a share of lb invested in the one with the
second highest expected return.

75

4 Point-Based Solution Approaches Based on the ε-Constraint Method

4.5.4 Performance Improvement by the 2-Phase Procedure

In all previous tests in this chapter, we used the 2-Phase procedure from Section 4.2
to determine a series of values for Ef . In this section, we report on tests that try to
estimate how many additional points are necessary to achieve a solution of equivalent
quality when we just distribute the points evenly in the interval [Emin, Emax].
In the results reported above, a budget of 400 points had been used in all tests, with
40 points in the first phase, and 360 in the second. For the following set of tests we
have varied the point budgets in the range between 500 to 1200, with a stepsize of
50 (i.e. the first test had 500 points, the second 550 points, . . .). The points have
been distributed equidistantly between Emin and Emax, which we have determined as
described in Section 4.2.
We have also calculated a linear approximation for the set of pairs (n, F (n)) consisting
of the number of points and the associated solution quality. Figure 4.12 illustrates this
for Problem 3 and the 2-solver-calls heuristic.

 6.54e-08

 6.56e-08

 6.58e-08

 6.6e-08

 6.62e-08

 6.64e-08

 6.66e-08

 500 600 700 800 900 1000 1100 1200

id
ea

l d
el

ta
-a

re
a

number of points

even spacing, 2-solver-calls heuristic
linear regression

result of 2-phase procedure with 400 points

Figure 4.12: Ideal delta-area for 2-solver-calls heuristic with varying point budgets and
equidistantly spaced values of Ef . Linear regression for the points, and the
result of the 2-Phase procedure for 400 points.
Problem instance: P3 (89 assets) with 5-10-40-Constraint

With this approximation, we have interpolated the number of points we would have
needed to achieve the same solution quality as the 2-Phase procedure with 400 points.
With this interpolation, we have then calculated the multiples based on the original 400
point count, e.g. 945/400 ≈ 2.36. In order to achieve comparable results, the upper and

76

4 Point-Based Solution Approaches Based on the ε-Constraint Method

lower bounds as well as maximum cardinality and buy-in thresholds have been set to
the same values we had used in the previous tests in Chapter 4.
For the problems with 5-10-40-Constraint, Table 4.4 reports on the calculated multiples
and on the coefficients of determination (i.e. the squared correlation coefficient) R2 that
measure regression quality. Values with R2 < 0.5 are not reported. As the max. delta-
area is strongly influenced by the rightmost portfolio, a slight horizontal shifting of this
portfolio can distort the result in a massive way. This caused problems for the 3 heuristics
developed for the problem type with 5-10-40-Constraint: no reliable linear trend could
be identified for the max. delta-area, as the coefficient of determination was consistently
below 0.4. We therefore only print the multiples based on the ideal delta-area.
In case of the MIQP solver, the right edge of the front has been determined in advance by
solving a mixed-integer linear program. Therefore, the expected return of the rightmost
portfolio is always the same, irrespective of the computation budget. As a consequence,
with the MIQP solver, the results for the max. delta-area are nearly identical to the ones
from the ideal delta-area. They are reported in Table 4.4 as well.

Table 4.4: Multiples required to achieve similar solution quality with equidistant
spacing for problems with 5-10-40-Constraint. (Basing point: results
obtained with 2-Phase procedure and 400-point budget)

2-solver-calls n-solver-calls part. deriv. MIQP
P1 (N = 31)
ideal (max.) delta-area 2.93 n.a.1 2.71 1.53 (1.54)
R2: ideal (max.) 0.87 0.82 0.92 (0.93)
P2 (N = 85)
ideal delta-area 3.12 2.74 2.87 1.46 (1.43)
R2: ideal (max.) 0.94 0.52 0.55 0.95 (0.95)
P3 (N = 89)
ideal delta-area 2.51 2.95 2.93 1.38 (1.38)
R2: ideal (max.) 0.87 0.76 0.52 0.95 (0.95)
P4 (N = 98)
ideal delta-area 2.46 2.1 2.48 1.28 (1.28)
R2: ideal (max.) 0.93 0.66 0.59 0.94 (0.94)
P5 (N = 225)
ideal delta-area 3.2 3.14 3.25 1.05 (1.08)
R2: ideal (max.) 0.92 0.92 0.84 0.96 (0.96)
P6 (N = 500)
ideal delta-area 2.7 1.8 3.03 2.3 (2.31)
R2: ideal (max.) 0.79 0.52 0.56 0.94 (0.94)
P7 (N = 1000)
ideal delta-area 2.7 2.52 2.93 1.93 (1.93)
R2: ideal (max.) 0.92 0.51 0.72 0.94 (0.92)

1 The value of R2 was well below 0.5 in this case. Therefore no reliable interpo-
lation could be calculated.

In Table 4.5, we document the results for similar tests that were performed on problems
with a maximum cardinality constraint. As was indicated in Fig. 4.9 and Fig. 4.10,

77

4 Point-Based Solution Approaches Based on the ε-Constraint Method

the right edges of the heuristics and the MIQP solver are – for all practical purposes –
situated on the ideal front, so that the results (coeff. of determination and multiples) of
the ideal delta-area and the max. delta-area do not differ much. Both are reported in
Table 4.5. Due to extensive runtimes of the MIQP solver variant, the tests for Prob-
lem 4 have not been carried out, as they alone would have required nearly one month
computation time.

Table 4.5: Multiples required to achieve the same solution quality with equidistant spac-
ing for problems with a maximum cardinality constraint. (Basing point: re-
sults obtained with 2-Phase procedure and 400-point budget)

reoptimization n-solver-calls MIQP
P1 (N = 31)
ideal (max.) delta-area 1.78 (1.75) 1.76 (1.73) 1.41 (1.39)
R2: ideal (max.) 0.94 (0.94) 0.94 (0.94) 0.94 (0.94)
P2 (N = 85)
ideal (max.) delta-area 3.18 (3.15) 2.84 (2.82) 2.36 (2.34)
R2: ideal (max.) 0.93 (0.93) 0.93 (0.93) 0.94 (0.94)
P3 (N = 89)
ideal (max.) delta-area 2.34 (2.34) 2.28 (2.28) 1.22 (1.22)
R2: ideal (max.) 0.92 (0.92) 0.96 (0.96) 0.94 (0.94)
P4 (N = 98)
ideal (max.) delta-area 2.66 (2.6) 2.54 (2.54) n.a.
R2: ideal (max.) 0.75 (0.75) 0.94 (0.94)
P5 (N = 225)
ideal (max.) delta-area 3.37 (3.36) 3.36 (3.36) 2.13 (2.13)
R2: ideal (max.) 0.94 (0.94) 0.94 (0.94) 0.94 (0.94)
P6 (N = 500)
ideal (max.) delta-area 2.69 (2.59) 3.02 (2.99) n.a.
R2: ideal (max.) 0.94 (0.94) 0.94 (0.94)
P7 (N = 1000)
ideal (max.) delta-area 3.49 (2.96) 3.51 (3.51) n.a.
R2: ideal (max.) 0.94 (0.94) 0.94 (0.94)

Table 4.6 reports the multiples for problems with a buy-in threshold of 0.05. For this
problem type, the calculated multiples and values for R2 show no significant differences
regardles whether they are based on the max. delta-area or the ideal delta-area, at
least when only the numerical precision displayed in Table 4.6 is considered. Thus it is
sufficient to report only a single value.
For the heuristics (2-solver-calls, n-solver-calls, reoptimization, or partial derivatives)
the calculated multiples for all three problem types are nearly always above 2.0, i.e. the
2-Phase allows to save at least 50% of the computational “expenditure” in comparison
to the näıve approach of equidistant spacing. The only exception is the smallest instance
(P1) for both the maximum cardinality constrained problem and the problem with buy-
in thresholds. But even in these two cases, the multiples were still 1.7 or higher.

78

4 Point-Based Solution Approaches Based on the ε-Constraint Method

Table 4.6: Multiples required to achieve the same solution quality with equidistant spac-
ing for problems with a buy-in threshold of 0.05. (Basing point: results
obtained with 2-Phase procedure and 400-point budget)

2-solver-calls n-solver-calls MIQP
P1 (N = 31)
ideal/max. delta-area 1.7 1.7 1.28
R2: ideal/max. 0.93 0.93 0.93
P2 (N = 85)
ideal/max. delta-area 3.03 3.03 2.29
R2: ideal/max. 0.9 0.9 0.9
P3 (N = 89)
ideal/max. delta-area 2.28 2.34 1.35
R2: ideal/max. 0.95 0.94 0.94
P4 (N = 98)
ideal/max. delta-area 2.59 2.61 1.9
R2: ideal/max. 0.92 0.92 0.93
P5 (N = 225)
ideal/max. delta-area 3.44 3.44 2.15
R2: ideal/max. 0.89 0.89 0.93
P6 (N = 500)
ideal/max. delta-area 2.85 2.99 2.46
R2: ideal/max. 0.89 0.89 0.94
P7 (N = 1000)
ideal/max. delta-area 3.46 3.45 n.a.
R2: ideal/max. 0.88 0.88

The multiples calculated for the MIQP solver are not as high, but they are still well above
1. The reason why the MIQP approach does not benefit as much is probably to be found
in the different determination of the boundaries: if no MIQP solver is available, it is not
possible to determine the nondominated portfolio with the lowest variance without using
up part of the point budget. In case of evenly spaced points, a large amount of the budget
is wasted in the interval between Emin and expected return of the minimum variance
portfolio. With the 2-Phase procedure, the same happens in the first phase, but since
we only use a small part of the budget for this, not many points are wasted. In Phase
2, nothing of the budget is squandered beyond the minimum variance portfolio as the
points are distributed according to the expected gain – which is 0 between Emin and the
expected return of the minimum variance portfolio.
The heuristics therefore benefit in two ways from the 2-Phase procedure: by (a) a
more efficient determination of the minimum variance portfolio and (b) the effective
distribution of the bulk of the budget. The MIQP solver can only profit from the
second advantage, since the first functionality is already provided by the MIQP itself,
irrespective if the 2-Phase distribution is used or not.

79

4 Point-Based Solution Approaches Based on the ε-Constraint Method

Nevertheless, our overall conclusion is that regardless if we use heuristics or an MIQP
solver to calculate a single point, the 2-Phase procedure is able to produce equivalent
results in significantly less time.

4.6 Summary: ε-Constraint Heuristics

In this chapter we have described heuristics that are able to calculate a point-based
approximation of the Pareto front for portfolio selection problems with nonconvex con-
straints. These heuristics have all been based on the ε-Constraint method which changes
the bicriteria mean-variance problem into a single-criterion problem by setting a lower
bound for one of the criteria. In a mean-variance setting, the expected return is usually
the criterion that is transformed into an additional constraint, and the minimization of
the variance remains the sole objective.
The two main tasks,

1. the distribution of the points along the expected return axis

2. the minimization of the variance with respect to both convex and nonconvex con-
straints

have been tackled separately. We have specified an algorithm that efficiently allocates
a given budget of search points along the expected return axis with the goal to reduce
the approximation error.
We have also presented several relatively simple but nevertheless effective heuristics
that quickly calculate a feasible solution of acceptable quality for the single-criterion
mean-variance problem with nonconvex constraints. Additionally, we have shown how a
problem with 5-10-40-Constraint can be modelled in a way that allows quadratic mixed
integer solvers to be used in place of the heuristics11.
Test results indicate that the heuristics are quite effective for problems with maximum
cardinality constraint or buy-in thresholds. The results for those two problem types
were very close to the theoretical optimum, with the more time-consuming heuristics
usually yielding slightly better results. The quality of the heuristic results for problems
with 5-10-40-Constraint was, compared to the other two problem types, not as good, but
again the more time-consuming heuristics were superior with respect to solution quality.
We have also reported the results for all three problem types when the problem-specific
heuristics were replaced by an MIQP solver. Surprisingly, the MIQP solver was quite
fast for problems with 5-10-40-Constraint, while several problem instances with buy-in
thresholds or especially with a maximum cardinality constraint needed much more time.
Furthermore, we have tried to estimate how much of the computational budget can be
saved when the 2-Phase algorithm for point distribution is used instead of näıvely placing
the points in evenly spaced intervals. The savings were generally higher for the heuristics
than for the MIQP solver, as in case of the heuristics, the algorithm avoids wasting large

11For problems with buy-in thresholds or cardinality constraints, no significant changes to the models
presented in Section 2.5 are necessary for them to be processed by an MIQP solver.

80

4 Point-Based Solution Approaches Based on the ε-Constraint Method

sections of the budget on areas that don’t contain any nondominated solutions. When
an MIQP solver is available, the exact right and left end of the Pareto front can be
calculated easily, with the consequence that no part of the budget is wasted beyond the
edges of the Pareto front even if we use the simple distribution scheme.

81

5 An Envelope-Based Multi-Objective
Evolutionary Algorithm

This chapter is focused on generating a solution for portfolio selection problems with
nonconvex constraints as well, but the approach we propose is quite different to those
discussed in Chapter 4. The algorithms described in the previous chapter have one
commonality: they are all based on the ε-Constraint method, i.e. they set a lower bound
for the expected return and thus turn this criterion into an additional linear inequality.
Since the solution of such a model only represents a single point on the efficient frontier,
the single-point algorithms have to be applied many times with different expected returns
in order to obtain a reasonable approximation of the true efficient frontier.
Some heuristic approaches like evolutionary algorithms allow to consider multiple ob-
jectives simultaneously, generating a set of solutions approximating the efficient frontier
in one run. However, they are still point-based, generating a finite set of alternative
portfolios.
What we suggest in this chapter is to combine a multi-objective evolutionary algorithm
(MOEA) with an embedded parametric quadratic programming (PQP) algorithm in
order to solve these portfolio selection problems with nonconvex constraints. The idea
is to let the evolutionary algorithms handle the nonconvex constraints and to basically
divide the problem into a set of problems with convex constraints, which can be solved
optimally with a PQP algorithm. The overall solution to the problem is then generated
by combining the solutions of the individual convex problems. As we will demonstrate,
the approach significantly outperforms other state-of-the-art evolutionary algorithms.
Furthermore, to our knowledge, this is the first approach to nonconvex portfolio selection
yielding a continuous solution set, as opposed to the discrete solution set generated by
the point based approaches.
The basic problem type considered in this chapter remains the one formalized as the
Standard Mean-Variance Model (SMVM):

SMVM

minV (x) = xTCx (5.1a)

maxE(x) = xTµ (5.1b)
subject to

AIx ≤ bI (5.1c)

xTe = 1 (5.1d)
AEx = bE (5.1e)

82

5 An Envelope-Based MOEA

with one of two types of additional (nonconvex) constraints added to the problem: either
the 5-10-40-Constraint or a maximum cardinality constraint. (For more details on the
model and the different constraints, the reader is referred to Chapter 2.) We did not
consider buy-in thresholds in this chapter, although constraints of that kind could be
handled by our new approach in a straightforward manner1.
In order to make the results comparable to those already calculated, we replaced the
general inequalities by upper bounds of 1 and lower bounds of 0 for all individual shares:

minV (x) = xTCx (5.2a)

maxE(x) = xTµ (5.2b)
subject to

xTe = 1 (5.2c)
0 ≤ xi ≤ 1 i = 1, . . . , N (5.2d)

(Needless to say, the nonconvex constraints have still to be added to the problem for-
mulation.)
The remainder of this chapter is in large parts based on Branke et al. [BSS+06]. It is
structured as follows: In Section 5.1, we provide a brief overview on related approaches
that use metaheuristics to solve portfolio selection problems that are subject to non-
convex constraints. A short introduction to multi-objective evolutionary algorithms is
provided in Section 5.2, followed in Section 5.3 by a short description of a state-of-the-
art point-based MOEA which will be used as a reference later on. Our approach, called
envelope-based multi-objective evolutionary algorithm (E-MOEA), is presented in Sec-
tion 5.4. Section 5.5 reports on the empirical evaluation of our approach. This chapter
concludes in Section 5.6 with a brief summary.

5.1 Metaheuristics: Related Approaches

Because of the potentially extensive running times of the mixed integer approaches (for
runtime tests, see Section 4.5), and due to either their complex implementation (when
implemented by oneself), or due to the high prices of commercial mixed integer pack-
ages, many researchers have turned to metaheuristics. The term metaheuristic usually
describes a generic optimization principle that is widely applicable to many different
problem domains. Quite often, the basic idea behind a metaheuristic is inspired by a
natural phenomenon, be it a physical process like simulated annealing (SA) or biologi-
cally inspired algorithms like ant colony optimization (ACO) or evolutionary algorithms
(EAs). Like other heuristics, such metaheuristics do not guarantee optimality, but it is
hoped that they quickly find solutions of reasonable quality.
There are several publications discussing the use of metaheuristics to solve nonconvex
portfolio selection problems. Most of them apply the metaheuristic just to solve the

1The results from Chapter 4 indicate that buy-in thresholds don’t seem to modify the Pareto front
significantly when they are introduced. The approximation is nearly identical to the ideal front.

83

5 An Envelope-Based MOEA

MIQP with a given desired expected return, i.e. to generate a single point of the efficient
frontier in mean-variance objective space.
Chang et al. [CMBS00] compare an EA, tabu search, and SA to solve portfolio selec-
tion problems in which each solution has to contain a predetermined number of assets.
Because none of the approaches turned out to be a clear winner, they suggest to run
all three and combine the results. Schaerf [Sch02] improves on the work of Chang et
al. by testing several neighborhood relations for tabu search. Crama and Schyns [CS03]
apply simulated annealing to a portfolio selection problem with cardinality constraints
as well as turnover and trading restrictions. They particularly focused on ways to han-
dle constraints, partially by enforcing feasibility, partially by introducing penalties. A
hybrid between SA and EA is proposed in Maringer and Kellerer [MK03]. In Maringer
[Mar02b], ACO is used only to determine the relevant assets for a cardinality-constrained
portfolio selection problem, while the weights are determined with a conventional QP
solver. The only authors who, to our knowledge, address the 5-10-40-Constraint are
Derigs and Nickel [DN01]. They use SA for optimization, but do not provide details on
how they ensure feasibility of solutions. In a later publication [DN03], they expand their
previous work, but the focus is put on developing a decision support system for portfolio
selection. In [EKS04], a problem with five objectives and nonconvex constraints is con-
sidered, but the five objectives are accumulated into one based on multiattribute utility
theory. Then local search, SA, tabu search and an EA are used to solve the resulting
single-objective mixed-integer problem.
Eddelbüttel [Edd96] uses a QP solver within a genetic algorithm to solve the index-
tracking problem. Here, the GA determines which assets should be included in the
portfolio, while the optimal weights are calculated by the QP solver.
Instead of setting the expected return E as constant Ef and then solving a separate
single-objective optimization problem for several Ef as do all of the above methods and
as was done in Chapter 4 as well, Streichert et al. [SUZ03, SUZ04a, SUZ04b], apply
a multi-objective evolutionary algorithm (MOEA). MOEAs are variants of EAs that
exploit the fact that EAs work with a population of solutions, and simultaneously search
for a set of efficient alternatives in a multi-objective setting. (See also the Section 5.2.)
Note that while this approach generates several solutions along the efficient frontier in
one run, it is still point-based, i.e. it only generates a discrete set of solutions. Since we
will use this algorithm for empirical comparison with our approach, it will be discussed
in more depth in Section 5.3.
Other publications reporting on the use of MOEAs for portfolio selection include Lin
and Wang [LW02] who consider roundlots (cf. Section 2.5, and Fieldsend et al. [FMP04],
who address the cardinality issue but consider the number of allowed assets, K, as a
third objective to be minimized. Armananzas and Lozano [AL05] apply multi-objective
variants of greedy search, SA and ACO to the cardinality-constrained portfolio selection
problem. Schlottmann and Seese [SS05] consider credit portfolio optimization and use a
gradient-based local search within their MOEA.
A recent survey on metaheuristics in financial applications can be found in Schlottmann
and Seese [SS04].

84

5 An Envelope-Based MOEA

A general advantage of metaheuristic approaches is certainly their flexibility. It would
be straightforward e.g. to use an alternative risk measure. Also, the multi-objective
versions allow to generate a whole set of solutions, approximating the efficient frontier
with a single run. Additionally, they do not require specialized software packages in order
to solve quadratic programming problems or MIQPs. Access to highly efficient solvers of
this type is a basic prerequisite of the approaches from Chapter 4 in order to get point-
based approximation of the Pareto front. Unfortunately, commercial high-performance
programs/libraries with the necessary capabilities are often quite expensive.

5.2 Multi-Objective Evolutionary Algorithms

In this section we will briefly introduce the main ideas behind multi-objective evolution-
ary algorithms (MOEAs) which are needed as foundation for the subsequent sections.
For a more detailed introduction to MOEAs, the reader is referred to Deb [Deb01] or
Coello et al. [CVL02].
Evolutionary algorithms are stochastic iterative optimization heuristics inspired by nat-
ural evolution. Starting with a set of candidate solutions (population), in each iteration
(generation), promising solutions are selected as potential parents (mating selection),
and new solutions (individuals) are created by mixing information from the parents
(crossover) and slightly modifying them (mutation). The resulting offspring are then
inserted into the population, replacing some old or less fit solutions (environmental se-
lection). By continually selecting good solutions for reproduction and then creating new
solutions based on the knowledge represented in the selected individuals, the solutions
“evolve” and become better and better adapted to the problem to be solved, just like in
nature, where the individuals become better and better adapted to their environment
through the means of evolution.
The basic operations of an evolutionary algorithm can be described as follows:

1: t← 0
2: initialize P (0)
3: evaluate P (0)
4: while (termination criterion not fulfilled) do
5: copy selected individuals into mating pool: M(t)← s(P (t))
6: crossover: M ′(t)← c(M(t))
7: mutation: M ′′(t)← m(M ′(t))
8: evaluate M ′′(t)
9: update population: P (t+ 1)← u(P (t) ∪M ′′(t))

10: t← t+ 1
11: end while

with t denoting the generation counter, P (t) the population at generation t, and s, c,m,
and u representing the different genetic operators. Evolutionary algorithms have proven
successful in a wide variety of applications. For a more detailed introduction to EAs,
the reader is referred to Eiben and Smith [ES03].

85

5 An Envelope-Based MOEA

(a) Non-dominance sorting to determine fronts (b) Crowding distance calculation within a front

Figure 5.1: NSGA-II first ranks individuals according to non-dominance sorting (a) and
within a front according to crowding distance (b).

Because EAs maintain a population of solutions throughout the run, they can also be
used to simultaneously search for a set of solutions approximating the efficient frontier
of a multi-objective problem.
The main difference between single objective EAs and MOEAs is the way they rank
their solutions for selection. While in single objective EAs the ranking is unambiguously
defined by the solution quality, this is not so straightforward in the case of multiple
objectives. MOEAs have two goals: they want to drive the population towards the
efficient frontier, while at the same time maintaining a diverse set of alternative solutions.
To achieve the first goal, most MOEA implementations rely on the concept of dominance.
Solution A dominates solution B if A is at least as good as B in all objectives, and
better in at least one objective. A solution is called nondominated with respect to a set
of solutions if and only if it is not dominated by any other solution in that set.
One particularly popular MOEA variant is the nondominated sorting genetic algorithm
(NSGA-II), see Deb [Deb01]. It ranks individuals according to two criteria. First, in-
dividuals are ranked according to non-dominancy: All nondominated individuals are
assigned to Front 1, then they are removed from the population, and then again, all
nondominated solutions are determined and are assigned Front 2, etc. until the pop-
ulation is empty. The result of this process is illustrated in Figure 5.1(a). Within a
front, solutions are ranked according to the crowding distance, which is defined as the
circumference of the rectangle defined by their left and right neighbors, and infinity if
there is no neighbor. This concept is illustrated in Figure 5.1(b). Individuals with high
crowding distance are preferred, as they are in more isolated regions of the objective
space. In the example in Figure 5.1(b), individuals a and d have the highest priority
within the front, followed by individual b and then c because the rectangle defined by
the respective left and right neighbor is larger for individual b.
In every iteration, NSGA-II generates p offspring solutions, where p is the population
size. The old population and the offspring are then combined, ranked according to the

86

5 An Envelope-Based MOEA

above two criteria, and the better half forms the new population. For mating selection,
tournament selection is used which randomly draws two solutions from the population
and chooses the one on the better front or, if they are from the same front, the one with
the larger crowding distance.

5.3 A Point-Based Multi-Objective EA

Although there is, to our knowledge, no definite comparison of the different approaches
discussed in Section 5.1, we consider the approach by Streichert et al. [SUZ03, SUZ04a,
SUZ04b] as state-of-the-art metaheuristic. Not only is it one of the few papers apply-
ing MOEAs, but they have also tested and compared a number of variations regarding
encoding and operators. We re-implemented their algorithm, and will use it as refer-
ence for empirical comparison with our newly developed envelope-based MOEA. The
algorithm is described below. Note that some adaptations were necessary to handle
the 5-10-40-Constraint, as this constraint has not been considered in Streichert et al.
[SUZ03, SUZ04a, SUZ04b].
We have already mentioned that the approach uses a MOEA for optimization. In par-
ticular, it is based on the standard nondominated sorting genetic algorithm (NSGA-II
and its predecessor NSGA) as described above.
As genetic representation, Streichert et al. [SUZ03, SUZ04a, SUZ04b] recommend to
use a hybrid binary/real-valued encoding, which is also used by several other successful
approaches like Chang et al. [CMBS00]. With this encoding, a solution is defined by a
vector of continuous variables c = (c1, . . . , cN)T representing the weights of the individual
assets. An additional vector of binary variables k = (k1, . . . , kN)T is used to indicate if
the asset is included in the portfolio at all. The latter vector allows the EA to easily
add or remove an asset by simply flipping the corresponding bit, and thus facilitates the
handling of cardinality constraints.
For a portfolio selection problem that contains a cardinality constraint and buy-in thresh-
olds, the decoding of the two vectors to get the actual portfolio works as follows (see e.g.
[CMBS00, SUZ04a]):

1. All ci are set to zero if ki = 0.

2. If
∑N

i=1 sign(kici) is more or less than the required cardinality, the solution is
repaired by changing some elements of c. For the maximum cardinality problem,
elements are set to 0 in the order of increasing ci (i.e. the assets with the smallest
share are set to zero).

3. The vector c is normalized:
c′i =

ci∑
ci

(5.3)

4. The final weight xi is calculated:

xi =
{
l + c′i (1− |Υ|l) if i ∈ Υ
0 otherwise

(5.4)

87

5 An Envelope-Based MOEA

where l is the minimum buy-in threshold and |Υ| denotes the number of elements
in Υ.

The 5-10-40-Constraint has not yet been considered by Streichert et al., and thus we
had to adapt the decoding and repair mechanism. It works in 7 steps as follows.

1. All ci are set to zero if ki = 0.

2. The vector c is normalized:
xi =

ci∑
ci

3. The surplus amount exceeding the 10% threshold is calculated, Ω =
∑

xi>0.1
(xi−0.1).

All xi > 0.1 are set to 0.1.

4. the surplus Ω has to be redistributed to the weights below 10%. Each weight below
10% is raised by the amount (0.1−xi) · Ω

Ψ , where Ψ =
∑

0<xi<0.1
(0.1−xi). If Ψ < Ω,

no weight will have a value above 10% after the first step.

5. In the group with more than 5%, we only accept the assets with the largest weights
such that the sum is still less than or equal to 40%. All others are capped to 5%
and the excess weight is distributed to the other assets analogously to the above
step.

6. If there is not enough room for all the excess weight to be redistributed among the
assets with less than 5%, the remaining is used to fill up the assets between 5%
and 10% up to 10% in order of decreasing weight.

7. The previous step may again lead to a violation of the 5-10-40-Constraint. In this
case, assets are removed from the 5-10% group in order of increasing weights, and
the weight in excess of 5% is distributed to the other assets in the 5-10% group
similar to the previous step.

Note that any valid portfolio for the problem with 5-10-40-Constraint contains at least
16 different assets (4 times 10% plus 12 times 5%). If this is the case, the above decoding
will result in a feasible portfolio. By appropriate mutation and crossover operators (see
below) we make sure that the binary string has always at least 16 bits set to “1”.
For both cardinality constraints and the 5-10-40-Constraint, the weights after the above
repair steps are written back into the weight-vector of the genotype and overwrite the
original values. This allows the information gained by the repair mechanism to be
inherited to the offspring (Lamarckism) and has been recommended in Streichert et al.
[SUZ04b].
For mutation, simple bit flip is used on the binary vector, and Gaussian mutation on
the real-valued vector. For crossover, we use N-point crossover independently on both
real-valued and binary vector. In Streichert and Ulmer [SUZ04a], this crossover operator
was reported to be competitive to other, more complex crossover operators. We follow

88

5 An Envelope-Based MOEA

this suggestion for the cardinality constrained problems. For the 5-10-40-Constraint, as
explained above, we need at least 16 assets with ki = 1 for a feasible solution. Therefore,
for this constraint we modify the operators on the bit string as follows: The crossover
operator first transfers all bits to the child where both parents are equal. The remaining
bits are traversed in random order and randomly taken from either parent until the
maximum number of zeros has been reached (i.e. N − 16 if N is the number of assets).
Any remaining bits are set to 1. If, after mutation, the resulting bit string contains less
than 16 ones, some of the performed 1 to 0 bit flips are reversed to make the string valid.
In the remainder of this chapter, we will denote this point-based MOEA as P-MOEA.

5.4 An Envelope-Based Multi-Objective EA

In this section, we will present our new envelope-based multi-objective evolutionary algo-
rithm (E-MOEA) for portfolio selection problems. It combines the efficiency of the PQP
algorithm for calculating the whole continuous front with the ability of multi-objective
evolutionary algorithms to take complex constraints into account and to generate mul-
tiple solutions within a single run. The main idea of the envelope-based approach is to
use the MOEA to define suitable convex subsets of the original search space, run the
PQP algorithm on every subset, and then recombine the partial solutions to form the
complete front.
A single solution of the MOEA (i.e. an individual) defines a convex subset by specifying
how the nonconvex constraints are to be handled. In case of a cardinality constraint, a
solution defines which assets are allowed a weight greater than zero. The corresponding
convex problem is just the standard problem which contains only those variables not
forced to zero. Note that, in particular if the allowed cardinality is much smaller than
the total number of available assets, this means that the generated sub-problem is much
smaller than the original problem, which results in a tremendous reduction of the runtime
of the PQP algorithm.
In the case of the 5-10-40-Constraint, a solution defines which assets are allowed up to
10% and hence have to be included in the 40% constraint. All other assets are restricted
to at most 5%.
For each subset, the PQP algorithm can be used to efficiently calculate the whole Pareto
front of the corresponding standard mean-variance portfolio selection problem. More
details on the basic workings of the PQP algorithm are discussed in Chapter 3. Because
we apply the PQP algorithm to every individual generated by the EA, an efficient im-
plementation is crucial. We use a modified variant of the algorithm described by Best
and Kale [BK00]. For an in-depth discussion of implementation intricacies, the reader
is referred to Chapter 3 as well.
The result of the PQP algorithm is a front in the mean-variance space which is efficient for
the sub-problem, but not necessarily for the overall problem with nonconvex constraints.
We call such a partial front an envelope. The EA is now used to find a collection of
such envelopes which together form a solution to the overall problem.

89

5 An Envelope-Based MOEA

For this purpose, we use a multi-objective EA based also on the general framework of
NSGA-II (see Deb [Deb01]). But instead of a solution being represented by a single point
(portfolio) in the mean-variance space, now every solution is represented by an envelope
in the mean-variance space. An exemplary population is depicted in Figure 5.2(a). The
example shows that situations in which envelopes entirely dominate other envelopes
occur very rarely. Instead, at many points, envelopes intersect with other envelopes.
Even without intersections, envelopes may have dominated and nondominated parts.
Thus, we had to adapt the nondominated sorting and crowding distance calculation to
work with envelopes.
The basic idea can be described as follows:
We need to determine the nondominated part of the set union of all envelopes which
will be called the (first) aggregated front in the remainder of this thesis. Following
the idea of nondominated sorting, we assign Rank 1 to all individuals contributing at
least partially to the first aggregated front. Then, we iteratively remove these individu-
als/envelopes from the population, and determine the aggregated front of the remaining
individuals, assigning them the next higher rank, etc. The resulting ranking and the
generated aggregated fronts are depicted in Figure 5.2(b).
It is clear that different individuals contribute differently to an aggregated front. Some
may contribute only a small segment of the front, while others contribute large segments.
Also, some parts of the aggregated front may be represented by several individuals. We
use this information to rank the individuals within a front (substituting the crowding
distance sorting in NSGA-II). For this purpose, we determine for each individual the
length of the segment contributed to the aggregated front2. Parts common to several
individuals are shared among those individuals. For example, if the part contributed
solely by an individual i has length 5, and a part with length 4 is shared with another
individual j, the overall contribution of individual i is 5 + 4/2 = 7. Within a front,
individuals contributing more are considered more important. Parts of the efficient
frontier not belonging to the aggregated front are not taken into account.
The actual implementation of the above envelope-based nondominated sorting is more
involved than one would assume at a first glance. The main part – the algorithm that
calculates the aggregated front – will be briefly described below. For more details, the
reader is referred to Scheckenbach [Sch06].

5.4.1 Calculating the Aggregated Front

The basic principle to determine the aggregated front from a given set of envelopes works
as follows:
The algorithm starts with the envelope that contains the corner portfolio with the high-
est overall yield, since this portfolio – and thus the envelope it belongs to – is not
dominated by any other envelope. Moving from this point in the direction of decreasing
yield, the algorithm iteratively selects those envelopes that for a given value of E(x)

2Although in principle it would be possible to calculate the true length of a segment, for reasons of
simplicity we approximated the length by the Euclidean distance between the end points. Another
possible criterion would have been the reduction in hypervolume if the individual is removed.

90

5 An Envelope-Based MOEA

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

-0.003 -0.002 -0.001 0 0.001 0.002 0.003 0.004

va
ria

nc
e

expected return

(a) A population of envelopes.

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

-0.003 -0.002 -0.001 0 0.001 0.002 0.003 0.004

va
ria

nc
e

expected return

4

3 2

1

11
2

4

5

(b) Corresponding aggregated fronts and as-
signed ranks.

Figure 5.2: Ten randomly initialized envelopes and the five corresponding aggregated
fronts for a problem with a maximum cardinality constraint of k = 4 for the
Nikkei dataset (P5).

dominate all the other envelopes. The collection of these nondominated parts represents
the aggregated front.

In order to simplify the algorithm description, we will first introduce several basic equa-
tions and definitions:
Each envelope is determined by a collection of corner portfolios. Every portfolio xα
in the interval between two adjacent corner portfolios u and v is defined as a convex
combination of these two corner portfolios:

xα = αu+ (1− α)v = v + α(u− v︸ ︷︷ ︸
=:w

), α ∈ [0, 1] (5.5)

Its expected return and variance are:

E(xα) = αE(u) + (1− α)E(v) = E(v) + αE(w), α ∈ [0, 1] (5.6)

V (xα) = (v + αw)TQ(v + αw) = vTQv + 2αvTQw + α2wTQw, α ∈ [0, 1] (5.7)

By using Eq. 5.6 to replace α in Eq. 5.7, V can be expressed solely in terms of E(xα):

V (Eα) = vTQv − 2vTQw
Ev
Ew

+wTQw

+ 2
(
vTQw

Ew
− w

TQw

E2
w

)
Eα +

wTQw

E2
w

E2
α, Eα ∈ [Eu, Ev]

(5.8)

(For sake of brevity, E(xα), E(v), and E(w) have been replaced by Eα, Ev, and Ew.
We have further assumed that Eu < Ev.)

91

5 An Envelope-Based MOEA

Eq. 5.8 demonstrates that in the mean-variance space, the image of each segment is part
of a convex parabola, since

V ′′(Eα) =
wTQw

E2
w

≥ 0

An envelope is therefore the continuous concatenation of parabola segments. When the
aggregated front is considered, however, continuity usually can not be assumed, as e.g.
Figure 5.2(b) shows.
In the further description of the procedure that calculates the aggregated front, the
following expressions and abbreviations will be helpful:
The segment with the lowest expected return known to belong to the aggregated front
will be called current segment, the envelope it is a part of will be referred to as the
current envelope. The corner portfolio that marks the end of a segment and has the
lowest expected return and variance is the LCP, the one with highest yield and variance
is the UCP. The goal of each algorithm iteration is to find the next segment that is part
of the aggregated front, the succeeding segment. The segment that was the current
segment in the last iteration is referred to as the preceding segment.
There are three main scenarios how the transition from the current segment to the
succeeding segment can take place:

1. The succeeding segment intersects the current segment.

2. The succeeding segment is reached by a vertical jump.

3. A horizontal or diagonal jump occurs at the end of the current segment.

The intersection scenario and the jump scenarios are treated separately:

Intersection

At the start, a list of candidates is compiled that comprises all segments that do not
belong to the current envelope. Then, in the next step, segments are removed from the
list if their exp. return coordinates don’t overlap at all with exp. return coordinates of
the current segment. We additionally used the convexity of the individual segments and
of the whole envelope (cf. Markowitz [Mar87]) to further reduce the list size. For further
details, the reader is referred to Scheckenbach [Sch06].
One possible way to calculate the intersection points is to equate the right hand sides of
Eq. 5.8 for the current segment and the candidate segment.
Our procedure for the calculation is slightly different, however. Its main advantage is
that it allows us to check easily for numerical errors when the succeeding segment has
been chosen3 (see Scheckenbach [Sch06]).
In a first step, we calculate “virtual” corner portfolios that shorten the two segments to
be considered in way that they completely overlap with respect to their expected return

3If the slope of two segments that intersect is nearly identical, the numerical error can – as a consequence
of limited floating point precision – be quite large. There is no simple way to cope with this besides
checking regularly and making corrections if necessary.

92

5 An Envelope-Based MOEA

exp. return

variance

1

2

3

4

a

b

current front

candidate
front

Figure 5.3: Creating virtual corner portfolios

coordinates. Suppose a situation as depicted in Figure 5.3, with the current segment
defined by x1 and x2, and the candidate segment determined by x3 and x4. Then the
virtual portfolios xa and xb are calculated as follows:

xa = x3 +
E(x1)− E(x3)
E(x4)− E(x3)

(x4 − x3)

xb = x1 +
E(x4)− E(x1)
E(x2)− E(x1)

(x2 − x1)

In the virtual segments (xa → x4) and (x1 → xb), the portfolios at an intersection can
be described as in Eq. 5.5:

xcandidate = xa + tcandidate(x4 − xa), tcandidate ∈ [0, 1]

xcurrent = x1 + tcurrent(xb − x1), tcurrent ∈ [0, 1]

Since the intervals [E(xa), E(x4)] and [E(x1), E(xb)] are identical, tcandidate and tcurrent

are the same at an intersection point and can therefore be replaced by t. With this,
equating the variances at the intersection point leads to:

xa
TQxa + 2 (x4 − xa)T Qxa · t+ (x4 − xa)T Q (x4 − xa) · t2 =

x1
TQx1 + 2 (xb − x1)T Qx1 · t+ (xb − x1)T Q (xb − x1) · t2

⇐⇒

[
(x4 − xa)T Q (x4 − xa)− (xb − x1)T Q (xb − x1)

]
· t2

+ 2
[
(x4 − xa)T Qxa − (xb − x1)T Cx1

]
· t+

[
xa

TQxa − x1
TQx1

]
= 0 (5.9)

93

5 An Envelope-Based MOEA

exp. return

var.

(a) Several envelopes
intersecting at different
points.

exp. return

var.

(b) Two envelopes touch-
ing but not intersecting.

exp. return

var.

(c) Two envelopes inter-
secting twice.

Figure 5.4: Different intersections constellations

This quadratic equation can have two solutions, or one, or none at all. If there is
no solution, the parabolas of the two segments don’t intersect. In the rare case of
one solution, the candidate segment touches the current segment (see Fig. 5.4(b)) but
remains dominated. When there are two solutions, i.e. there is a “real” intersection, a
solution is only relevant if it is in [0, 1], as only these result in an intersection in the
interval [E(xa), E(xb)]. Usually, at most one of the two solutions will result in a feasible
solution in the interval (Fig. 5.4(a)), but in rare cases, the two segments intersect twice
in [E(xa), E(xb)] (see Fig. 5.4(c)). Then the intersection point with the higher expected
return has to be chosen.
When the complete list of candidates has been covered, the intersection point with the
highest expected return in the interval [E(LCP), E(UCP)] of the current segment defines
the succeeding envelope, but only if there is no vertical jump point with an even higher
expected return.

Jump Points

A vertical jump to another envelope (Figure 5.5(a)) can occur everywhere on the current
segment, but the succeeding segment has to be situated at the end of another envelope,
namely the one with the highest expected return. It is therefore sufficient to check if
the high-yield end of every envelope is in the interval [E(LCP), E(UCP)] of the current
segment. Of all those envelopes fulfilling the condition, only those that start below the
current segment dominate part of the current segment. Of these dominating envelopes,
the one that starts with the highest expected return determines the succeeding envelope
if no intersection with a higher expected return has been found.
A horizontal jump (Figure 5.5(b)) can only occur when the minimum variance portfolio
(MVP) of an envelope is reached, i.e. when the current envelope ends and neither an
intersection point nor a suitable vertical jump is found in the last segment. In this case
all segments of the other envelopes are identified that have a UCP with higher variance
and an LCP with lower variance than the variance of the MVP at the end of the current
envelope. Of these candidate segments only those are viable to be the succeeding segment
that have an LCP with a lower expected return than the MVP of the current envelope.

94

5 An Envelope-Based MOEA

exp. return

var.

(a) Vertical jump to an-
other envelope.

exp. return

var.

(b) Horizontal jump at the
end of an envelope.

exp. return

var.

(c) Diagonal jump at the
end of an envelope.

Figure 5.5: Possible jump discontinuities within the current mean interval

For each of the remaining candidates an artificial corner portfolio with the same variance
as the MVP is constructed, and the one with the highest expected return is the candidate
that is chosen as succeeding segment. Before the succeeding segment is definitely chosen,
however, we have to check if a diagonal jump (Figure 5.5(c)) occurs that dominates the
segment of the horizontal jump. For this to happen, there must be an envelope with
a maximum exp. return smaller than that of the MVP and larger than the one of the
artificial corner portfolio of the chosen candidate. Additionally, the variance of this
envelope must be lower than the variance of the artificial corner portfolio. Is there more
than one envelope that fulfills the conditions for a diagonal jump, the one that has the
highest expected return is chosen.
When such a diagonal jump happens, it has to be recorded when the aggregated front
is stored. Otherwise it can not be easily detected that there is a discontinuity in the
front. (Horizontal and vertical jumps can be detected easily from the corner portfolios
of the aggregated front, as there are two consecutive portfolios with either no change in
variance or expected return.)
What was not covered above were cases that are the result of overlapping envelopes. For
more details on how these are handled, the reader is referred to Scheckenbach [Sch06].
The whole procedure to assemble the aggregated front terminates when the portfolio
with the lowest variance of all envelopes is reached.

5.4.2 Representation and Genetic Operators

As discussed above, the EA is only responsible for handling the nonconvex constraints,
the appropriate weights are then determined by a PQP algorithm. Thus, in principle,
a simple binary encoding would be sufficient. However, we wanted to feed back some
information from the PQP algorithm to the evolutionary algorithm. For this reason,
we are using a permutation encoding. Then, for the maximum cardinality constraint,
simply the first K assets are used in the portfolio. For the 5-10-40-Constraint, the first K
assets are considered potential heavyweights, with a share of at most 10%4 and inclusion

4Note that the weight of these assets can be set below 5% by the PQP algorithm, although they are
still included in the 40% constraint. This helps in the sorting, as such an asset is then moved behind
more important assets that are set to 5%, reducing the chance to be included again after mutation.

95

5 An Envelope-Based MOEA

in the 40% constraint, while all others are restricted to less than 5%. The parameter K
here is variable and also part of the solution encoding.
After the PQP algorithm has been applied, the permutation is sorted with respect to
the average weight an asset had in all corner portfolios that are part of the aggregated
front. Thus, an asset which received a high weight will appear early on the permutation,
and subsequently have a higher probability to be among the first K after crossover and
mutation.
As genetic operators, we use the uniform order based crossover and swap mutation.
For the latter, an asset that belongs to the first K is swapped with an arbitrary other
asset. For the 5-10-40-Constraint, the parameter K is modified by adding a Gaussian
number with mean 0 and standard deviation Pm. The size is then rounded and capped
if necessary.
To further improve the efficiency of our algorithm, we introduced two additional con-
cepts: duplicate elimination and a variable population size. In duplicate elimination,
we remove individuals that share a part of an aggregated front with another individual,
but which are nowhere better than the other individual. The variable population size
allows us to increase the number of individuals in the population if the current first ag-
gregated front consists of more individuals than would fit into the population. Keeping
a fixed population size would then mean to delete a valuable part of the solution. Note
that because our approach is envelope-based, it requires a much smaller population size
than point-based approaches anyway. The alternative to an adaptive population size,
namely to work with an equally large population as the point-based approaches from
the beginning, would have slowed down convergence unnecessarily. Independent of the
population size, the number of offspring generated in every iteration remains constant
and equal to the original population size.

5.5 Empirical Evaluation

To test the new approach, we used three of the benchmark data sets from the OR-Library
[Bea06], P1, P4, and P5. Because we want to show that our algorithm also scales well,
we additionally tested it on P6. (For further details on the benchmarks, the reader is
referred to Section 2.4.)
For the cardinality constrained problems, we set the maximum cardinality to K = 4 for
P1 and P4, and to K = 8 for P5 and P6.
To measure algorithm performance we again provide both the max. delta-area and the
ideal delta-area (see Section 4.1 for a detailed explanation).

5.5.1 Parameter Settings

For P-MOEA, we use the same parameter settings as in Streichert and Ulmer [SUZ04a],
i.e. a population size of 250 and tournament size of 8. For the bit string, bit flip mutation
with mutation probability for each bit 2/(number of assets) and N-point crossover with
probability 1.0 are applied. For the real-valued string, mutation is done by adding a

96

5 An Envelope-Based MOEA

value from a normal distribution with σ = 0.05 to each weight, crossover is again N-
point crossover with probability 1.0.
For E-MOEA, the following parameter settings have been chosen without much testing.
The initial population size is set to 30, and 30 individuals are generated in every iteration.
The mutation and crossover operators have been described above. Probability to swap
each of the first K assets for the cardinality problem is 1/K, for problems with 5-10-40-
Constraint, probability to swap any of the heavyweights is 1/7.
As discussed before, P-MOEA requires a significantly larger population size, as each
individual only represents a single point, as opposed to a whole envelope as in E-MOEA.
All reported results are averages over 30 runs. Experiments were conducted on a PC
with AMD Sempron 1.6 GHz processor and 1 GB RAM. Maximum allowed running
time for the problem with 5-10-40-Constraint was set to 500, 1000, 2000, and 4000 CPU
seconds for P1, P2, P3, and P4, respectively. Since the cardinality constrained problem
seemed easier, we allowed only half the running time for each problem.

5.5.2 Test Results

The results on all 4 benchmark problems are summarized in Tables 5.1 to 5.4. Table 5.1
reports on the max. delta-area, i.e. the area between obtained efficient frontier and ideal
front with wide margins, for the cardinality constrained problem at the end of the run.
The same information, but with respect to ideal delta-area, is provided in Table 5.2. As
can be seen, E-MOEA significantly outperforms P-MOEA on all benchmark problems.
In terms of the ideal delta-area, the relative performance of P-MOEA is somewhat better,
indicating that it particularly has a problem in finding the portfolios with high expected
return or low variance.

Table 5.1: Max. delta-area at the end of the run for E-MOEA and P-MOEA on test
problems with cardinality constraint, average ± std. error, all values in terms
of 10−6.

P1 (K = 4) P4 (K = 4) P5 (K = 8) P6 (K = 8)

P-MOEA 1.1613 2.7787 9.3292 4124.1363
standard error ± 0.0159 ± 0.0521 ± 0.2287 ± 123.6716

E-MOEA 0.2275 0.8048 0.0561 5.9063
standard error ± 0 ± 0.00003 ± 0.0052 ± 0.2939

The results for the problem with 5-10-40-Constraint look similar (see Tables 5.3 and
5.4), although the differences between P-MOEA and E-MOEA are generally smaller.
Typical efficient frontiers for P1 and P5 with cardinality constraint are depicted in
Figure 5.6. As can be seen, for the small problem (P1), both algorithms perform quite
well. In fact, the figure zooms in on only a part on the front, as on a plot of the
whole front, the differences would be hard to see. Still, E-MOEA clearly outperforms
P-MOEA and is indistinguishable from the ideal front over large parts. For the larger

97

5 An Envelope-Based MOEA

Table 5.2: Ideal delta-area at the end of the run for E-MOEA and P-MOEA on test
problems with cardinality constraint, average ± std. error, all values in terms
of 10−6.

P1 (K = 4) P4 (K = 4) P5 (K = 8) P6 (K = 8)

P-MOEA 1.0605 1.6981 2.1250 125.1611
standard error ± 0.0160 ± 0.0175 ± 0.0189 ± 1.1580

E-MOEA 0.1371 0.5222 0.0123 2.4398
standard error ± 0 ± 0.00003 ± 0.0003 ± 0.09637

Table 5.3: Max. delta-area at the end of the run for E-MOEA and P-MOEA on test
problems with 5-10-40-Constraint, average ± std. error, all values in terms of
10−6.

P1 P4 P5 P6

P-MOEA 1.3274 1.5107 1.7339 446.7284
standard error ± 0.0002 ± 0.0197 ± 0.0138 ± 11.4963

E-MOEA 1.3019 1.2416 1.6511 344.7926
standard error ± 0.0007 ± 0.0001 ± 0.0047 ± 3.8489

problem, P-MOEA does not seem to be able to come close to the performance of E-
MOEA. In particular in the area of higher returns, its deficiencies are obvious. It seems
that P-MOEA does not scale very well to larger problem sizes. (In Streichert et al.
[SUZ04a, SUZ04b, SUZ03], the algorithm was only tested on small problems with up to
81 assets.) One reason may be that there are usually only few assets with a high return,
and exactly those have to be combined in the portfolio to obtain an overall high return.
Identifying the high-return assets out of a large set may prove difficult for the P-MOEA.
E-MOEA on the other hand finds solutions hardly distinguishable from the ideal front
also for the larger problems.

Table 5.4: Ideal delta-area at the end of the run for E-MOEA and P-MOEA on test
problems with 5-10-40-Constraint, average ± std. error, all values in terms of
10−6.

P1 P4 P5 P6

P-MOEA 0.2188 0.1028 0.0807 7.6607
standard error ± 0.00002 ± 0.0009 ± 0.0003 ± 0.1116

E-MOEA 0.2023 0.0631 0.0700 4.9756
standard error ± 0.00001 ± 0.0001 ± 0.00006 ± 0.0290

98

5 An Envelope-Based MOEA

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 0.004 0.005 0.006 0.007 0.008

va
ria

nc
e

expected return

P-MOEA
E-MOEA

ideal front

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 0 0.001 0.002 0.003 0.004

va
ria

nc
e

expected return

P-MOEA
E-MOEA

ideal front

Figure 5.6: Typical fronts obtained on test problem P1 (left) and test problem P5 (right)
with cardinality constraint.

 0.0007

 0.0008

 0.0009

 0.001

 0.0011

 0.0012

 0.0013

 0.003 0.004 0.005 0.006

va
ria

nc
e

expected return

P-MOEA
E-MOEA

ideal front

 0.00036

 0.00038

 0.0004

 0.00042

 0.00044

 0.00046

 0.00048

 0.0005

 0.0016 0.0018 0.002 0.0022 0.0024

va
ria

nc
e

expected return

P-MOEA
E-MOEA

ideal front

Figure 5.7: Typical fronts obtained on test problem P1 (left) and test problem P5 (right)
with 5-10-40-Constraint.

For the 5-10-40-Constraint, the fronts obtained by P-MOEA and E-MOEA are much
closer to each other, and further away from the ideal front. Still, the front obtained
by E-MOEA dominates P-MOEA’s front basically everywhere. Note that again for
visibility, the plot for the larger problem only shows a segment of the overall front.
When looking at the obtained solution quality in terms of max. delta-area over running
time, it is clear that the advantage of E-MOEA over P-MOEA is significant throughout
the run. Figure 5.8(a) looks at P5 with cardinality constraint. Clearly, E-MOEA starts
out much better, and converges much faster than P-MOEA (for the small problem, E-
MOEA even found the best solution within 5 out of the 250 available seconds in every
single run). Note that we plot against running time. Because E-MOEA has to run a PQP
algorithm for every individual, it can only evaluate about 13500 individuals during the
1000 seconds allowed, while P-MOEA generates and evaluates approximately 1,945,000
individuals in the same time frame.

99

5 An Envelope-Based MOEA

 0

 2e-06

 4e-06

 6e-06

 8e-06

 1e-05

 1.2e-05

 1.4e-05

 1.6e-05

 0 100 200 300 400 500 600

m
ax

. d
el

ta
-a

re
a

time

P-MOEA
E-MOEA

 1.6e-06

 1.8e-06

 2e-06

 2.2e-06

 2.4e-06

 0 200 400 600 800 1000

m
ax

. d
el

ta
-a

re
a

time

P-MOEA
E-MOEA

Figure 5.8: Convergence curves for P5 with cardinality constraint (left) and 5-10-40-
Constraint (right).

For the problem P5 with 5-10-40-Constraint, E-MOEA also starts better than P-MOEA,
then P-MOEA quickly catches up only to fall behind again (see Figure 5.8(b)). The
difference in the number of individuals evaluated is even more striking here than for
P5 with cardinality constraint, since the 5-10-40-Constraint does not allow to remove a
large fraction of the assets for the PQP algorithm. While E-MOEA can generate only
about 3000 individuals in the given 2000 seconds, P-MOEA generates approximately
3,475,000.
One explanation for the superiority of E-MOEA, besides being envelope-based, is cer-
tainly its in-built weight optimization by the PQP algorithm. This effect is visible in
Figure 5.9, which depicts the solution quality of randomly generated solutions for both
the P-MOEA and the E-MOEA. Clearly, E-MOEA has a much better start, as the ma-
jority of randomly generated envelopes is clearly better than the majority of randomly
generated portfolios.

5.6 Concluding Remarks

Parametric quadratic programming algorithms – like the one described in detail in Chap-
ter 3– are a very efficient way to calculate the whole efficient frontier for a standard
mean-variance portfolio selection problem. The inclusion of nonconvex constraints such
as a maximum cardinality constraint, buy-in thresholds, or the 5-10-40 rule from the
German investment law, however, renders the feasible region nonconvex and thus pre-
vents us from applying this fast and efficient method. In the previous chapter we have
therefore – similar to other researchers – resorted to solving these problems point-based.
We approximated the efficient frontier by iteratively solving a sub-problem with a fixed
expected return Ef , and repeated this for many different settings of Ef . Most other
publications work within a meta-heuristic framework, but nevertheless, the approaches
are all point-based.

100

5 An Envelope-Based MOEA

Figure 5.9: Randomly initialized populations of envelopes and portfolios for the 5-10-40
problem and the Hang Seng Dataset (P1).

In this chapter, we have proposed a new envelope-based multi-objective evolutionary
algorithm (E-MOEA), which is a combination of a multi-objective algorithm with an
embedded solver for parametric quadratic programming. The task of the MOEA is to
define a set of convex subsets of the search space. Then, for each subsets the PQP algo-
rithm can efficiently generate an efficient frontier, a so-called envelope. The combination
of all generated envelopes then forms the overall solution to the problem.
To our knowledge, our approach is the first metaheuristic approach which is not point-
based, but which is capable of generating a continuous front of alternatives for portfolio
selection problems with nonconvex constraints. Compared with a state-of-the-art point-
based MOEA, E-MOEA was shown to find significantly better frontiers in a shorter
time. Both approaches presented in this chapter do not depend on the availability of a
highly efficient QP solver, as did the ε-Constraint heuristics presented in the previous
chapter.
The results presented above showed clearly that the E-MOEA is superior to the P-MOEA
with respect to solution quality and calculation time. The only arguments for P-MOEA
are flexibility and ease of implementation: (i) When working with the P-MOEA, it is not
too problematic to exchange the variance as a measure of dispersion with e.g. Value at
Risk. (ii) It is by far easier to implement an algorithm similar to the P-MOEA we have
used, but it definitely is not trivial to produce an working version of the E-MOEA, since
this additionally requires a fast PQP algorithm and an efficient procedure to calculate
the aggregated front.

101

5 An Envelope-Based MOEA

As future work, we are planning to integrate a more intelligent mutation operator that
uses shadow prices to influence mutation probabilities. Also, the ideas of envelope-
based MOEAs should be transferred to other applications. In particular, the idea seems
very promising when applied to portfolio re-balancing problems that include fixed and
variable transaction costs.

102

6 Combining Point-Based and
Envelope-Based Approaches

In the previous chapter, we introduced a new type of algorithm for solving nonconvex
portfolio selection problems, the envelope-based multi-objective evolutionary algorithm
(E-MOEA). The core idea of this new approach was to have individuals that not only
describe one point in the solution space but instead define a whole area of the Pareto
front. This can be achieved by using a set of convex constraints as a new encoding
scheme for an individual.
The cost – measured in computation time – for “decoding” such an individual, i.e.
for calculating the envelope, is usually much higher than the construction of a single
portfolio by e.g. a point-based MOEA. It stands to reason that heuristic knowledge
might be beneficial in determining which sets of convex constraints are to be used for
the envelopes instead of the stochastic search we applied in Chapter 5. The simple idea
for an enhanced algorithm is therefore to gain this knowledge from feasible points that
have been constructed before, with either point-based heuristics or by the application of
a mixed integer solver for quadratic programs.
In the following section, we will describe how this notion has been realized and which de-
sign decisions have been taken in the process. We then present test results documenting
the performance of this new algorithm in Section 6.2.

6.1 Algorithm Description

Provided a feasible point in the search space, it is a simple task – at least for the problem
types considered here – to determine a convex set of linear constraints that (i) comply
with all given constraints, both convex and nonconvex and that (ii) define the envelope
which the respective portfolio is part of.
The combination algorithm we have designed can be divided into four main parts:

1. The calculation of a limited number of feasible solutions with either an MIQP solver
(guarantees optimality, needs more time) or any of the presented ε-Constraint
heuristics (fast, but solution quality may be lacking).

2. The analysis of the feasible solutions to determine a set of convex constraints for
each. These sets are then added to the collection of sets, but only if an identical
set is not yet present in the collection.

3. For each of the sets in the collection the respective envelope is calculated.

4. All envelopes are accumulated to the aggregated front with the algorithm presented
in Section 5.4.

103

6 Combining Point-Based and Envelope-Based Approaches

We will discuss the first two parts in more detail, the third and fourth are identical to
the procedure we used as part of the envelope-based MOEA (Section 5.4):

Calculating a Set of Nondominated Points

Both the results of the heuristics and the results of the mixed-integer models presented
in Chapter 4 can be used as feasible solutions – as could the results of the point-based
MOEA. Due to the large amount of computation time required to achieve a sufficiently
good solution with a P-MOEA, it does not make sense to use this kind of heuristic as a
basis.
We have made the observation that the aggregated front for portfolio selection problems
with nonconvex constraints usually consists of only very few envelopes, typically between
5 and 20. In order to construct the actual Pareto front, at least one feasible point on
every envelope would have to be known, as one point is enough to determine the convex
set of constraints for the envelope which the point is a part of. Unfortunately, the
placement of the envelopes that are part of the Pareto front is not known at the time
when the expected return values of the points have to be chosen. Thus enough points
have to be distributed along the axis of expected return, and we have to place them in
a way that has a high probability for each of the envelopes of the Pareto front to be
“touched” at least once.
Depending on whether higher speed or better solution quality is desired, we have to
choose a suitable single point algorithm from the ones presented in Chapter 4. If fast
computation is more important than being on or near the optimum, one of the heuristics
is the better choice, since the time spent on each individual point is by far smaller and
varies less. Is it, however, more important to get a solution as close as possible to the
actual Pareto front, the MIQP solver is clearly the algorithm we would select.
As it is not obvious which of the two distribution schemes, equidistant placement or
the 2-Phase procedure, is better in this context, we tested both variants. The main
advantage of the 2-Phase procedure – the placement of the points in a way that reduces
the area between the nondominated front and the ideal front – does probably not come
into play here, since the calculated portfolios don’t exist as actual points in the final
solution but are instead just used to determine the envelopes.

Determining the Sets of Convex Constraints

Given a point that is on the actual Pareto front (if an MIQP solver is used in the first part
of the algorithm) or close to it (in case of the heuristics), the set of convex constraints
that defines an envelope can be easily determined by analyzing such a point:

• For problems with 5-10-40-Constraint, we only have to set the upper bounds of
those assets with a weight larger than 0.05 + ε to 10%1, and their sum has to be
capped by 40%. The upper bound of all the other assets is set to 5%.

1The introduction of a very small positive constant ε is necessary in order to account for rounding
errors and limited precision of the QP solver.

104

6 Combining Point-Based and Envelope-Based Approaches

• For problems with a maximum cardinality constraint, the assets that are smaller
than 0+ε are set to equal 0 and can be removed completely from the problem data
(covariance matrix, vector of expected returns) when the envelope is calculated.

• Similarly, for problems with buy-in thresholds, all assets that are smaller than 0+ε
are set to 0 as well, but additionally the lower bound of those assets with a weight
larger than 0 + ε is set to the threshold.

After this has been done for all available points, the number of envelopes to be calculated
can be significantly reduced by eliminating duplicates. This is achieved by starting
with an empty collection of convex sets and consecutively adding new sets of convex
constraints based on the calculated points, whereas a new set of constraints is only
included in the collection if an identical set is not yet present in the collection. For each
member of the collection, the respective envelope is calculated, and, in a last step, the
aggregated front is determined by combining the thus constructed envelopes.

6.2 Test Results

The following test results demonstrate how much the combination algorithm reduces cal-
culation time and improves solution quality in comparison to the point-based heuristics.
In these tests, we only considered problems with either 5-10-40-Constraint or maximum
cardinality constraint2.
As test platform, we once more used a computer with an AMD-Athlon-CPU with 1,5
GHz and Linux (Debian sid) as operating system. The program was compiled with
version 3.3 of the Gnu Compiler Collection [GCC06] with optimization level 3.
As solver for the mixed integer and the “standard” quadratic programming part, CPLEX
9.0 from ILOG [CPL06] was chosen again.
We tested both the heuristics and the MIQP solver for the calculation of the individual
points. But we reduced the point budget from 400 to 40, which we assumed should still
be enough to reach each of the nondominated envelopes at least once. These 40 points
were distributed either equidistantly or with the 2-Phase procedure (cf. Section 4.2), and
we report the results for both approaches. When we applied the 2-Phase distribution
scheme, we divided the 40 points with a 1:3 ratio on the first and second phase, and not
with the 1:9 ratio we used with the 400 point budget. The reason for this modification
was to ensure that enough points were allocated in the first phase to have a good chance
for the distribution algorithm to be able to work reliably.
For problem instances with 5-10-40-Constraint, Table 6.1 describes the results we ob-
tained when we used the 2-solver-calls heuristic and the n-solver-calls heuristic in the
first part of the combination algorithm3. For each configuration (i.e. each problem in-
stance, each of the heuristics, and the two distribution schemes), the values for the max.
delta-area and the ideal delta-area are listed.

2The algorithm for buy-in thresholds is nearly identical to the maximum cardinality case.
3As the partial derivatives heuristic performed poorly, we had decided to limit the tests to the other

two heuristics.

105

6 Combining Point-Based and Envelope-Based Approaches

Table 6.1: Test results for the combination algorithm on problems with 5-10-40-
Constraint. The 40 points in the first part were generated by the 2-solver-
calls and the n-solver-calls heuristic, with results for equidistant spacing and
2-Phase spacing of the points reported separately. The reduction of the max.
delta-are, ideal delta-area, and CPU-time in comparison to the “simple” ε-
Constraint based heuristics with 400 points and 2-Phase distribution is re-
ported in parentheses. Algorithm runtime was measured in seconds.

2-solver-calls n-solver-calls
equal distr. 2-Phase equal distr. 2-Phase

P1 (N = 31)
ideal delta-area (red.) 2.07e-07 (68%) 2.04e-07 (69%) 2.08e-07 (29%) 2.08e-07 (29%)
max. delta-area (red.) 1.41e-06 (56%) 1.39e-06 (57%) 1.40e-06 (46%) 1.40e-06 (46%)
CPU-time (red.) 0.24 (88%) 0.24 (88%) 0.28 (90%) 0.31 (89%)
P2 (N = 85)
ideal delta-area (red.) 3.56e-08 (64%) 3.51e-08 (64%) 3.57e-08 (42%) 3.57e-08 (42%)
max. delta-area (red.) 1.19e-06 (46%) 1.21e-06 (45%) 1.21e-06 (38%) 1.21e-06 (38%)
CPU-time (red.) 0.71 (82%) 0.73 (82%) 1.03 (83%) 0.97 (84%)
P3 (N = 89)
ideal delta-area (red.) 2.40e-08 (63%) 2.26e-08 (66%) 1.93e-08 (45%) 1.93e-08 (45%)
max. delta-area (red.) 6.99e-07 (37%) 6.46e-07 (42%) 4.76e-07 (42%) 4.76e-07 (42%)
CPU-time (red.) 0.78 (79%) 0.8 (78%) 1.14 (80%) 1.19 (79%)
P4 (N = 98)
ideal delta-area (red.) 6.34e-08 (59%) 6.34e-08 (59%) 6.34e-08 (31%) 6.27e-08 (32%)
max. delta-area (red.) 1.24e-06 (42%) 1.24e-06 (42%) 1.24e-06 (27%) 1.24e-06 (27%)
CPU-time (red.) 1.48 (61%) 1.68 (55%) 1.64 (70%) 2.07 (63%)
P5 (N = 225)
ideal delta-area (red.) 8.17e-08 (62%) 7.82e-08 (64%) 7.74e-08 (21%) 7.63e-08 (23%)
max. delta-area (red.) 2.09e-06 (37%) 2.06e-06 (38%) 1.97e-06 (19%) 1.97e-06 (19%)
CPU-time (red.) 1.89 (84%) 2.39 (79%) 3.49 (85%) 4.15 (82%)
P6 (N = 500)
ideal delta-area (red.) 5.16e-06 (54%) 5.15e-06 (54%) 5.89e-06 (5%) 4.79e-06 (23%)
max. delta-area (red.) 3.76e-04 (39%) 3.76e-04 (39%) 4.54e-04 (4%) 3.11e-04 (34%)
CPU-time (red.) 30.37 (39%) 37.12 (25%) 33.5 (68%) 50.84 (51%)
P7 (N = 1000)
ideal delta-area (red.) 8.39e-06 (58%) 8.34e-06 (58%) 8.36e-06 (32%) 8.30e-06 (32%)
max. delta-area (red.) 1.46e-03 (32%) 1.46e-03 (32%) 1.46e-03 (29%) 1.46e-03 (29%)
CPU-time (red.) 98.27 (44%) 114.37 (35%) 114.15 (62%) 182.62 (39%)

The relative reduction of these areas in comparison the results we got by just applying
the purely point-based ε-Constraint approaches (with a budget of 400 points) is printed
in parentheses. Additionally we report on the runtime of the algorithms. The per-
centage of time the combination algorithm variants saved in comparison to the runtime
of the “normal” ε-Constraint heuristics (again with a 400 point budget) is reported in
parentheses as well.

106

6 Combining Point-Based and Envelope-Based Approaches

Table 6.2 does the same for the reoptimization heuristic and the n-solver-calls heuristic
for problem instances with a maximum cardinality constraint. As in previous tests, the
cardinality K was set to 4 for Problems 1–4, and to 8 for Problems 5–7.
Finally, the results for the combination of the MIQP solver with the envelope approach
are listed in Table 6.3, for problems with 5-10-40-Constraint and for the instances with
maximum cardinality constraint.

Table 6.2: Test results for the combination algorithm on problems with a maximum
cardinality constraint. The 40 points in the first part were generated by
the reoptimization heuristic and the n-solver-calls heuristic, with results for
equidistant spacing and 2-Phase spacing of the points reported separately.
The reduction of the max. delta-are, ideal delta-area, and CPU-time in com-
parison to just applying the “simple” heuristics with 400 points and 2-Phase
distribution is reported in parentheses. The maximum cardinality was chosen
as in all previous tests: K = 4 for P1–P4, K = 8 for P5–P7. Algorithm
runtime was measured in seconds.

reoptimization n-solver-calls
equal distr. 2-Phase equal distr. 2-Phase

P1 (N = 31)
ideal delta-area (red.) 1.38e-07 (29%) 1.51e-07 (22%) 1.43e-07 (26%) 1.51e-07 (21%)
max. delta-area (red.) 2.29e-07 (20%) 2.44e-07 (14%) 2.33e-07 (18%) 2.44e-07 (14%)
CPU-time (red.) 0.09 (71%) 0.07 (77%) 0.13 (71%) 0.09 (80%)
P2 (N = 85)
ideal delta-area (red.) 5.10e-07 (24%) 5.10e-07 (24%) 4.99e-07 (3%) 5.01e-07 (2%)
max. delta-area (red.) 8.89e-07 (15%) 8.89e-07 (15%) 8.78e-07 (1%) 8.80e-07 (1%)
CPU-time (red.) 0.29 (80%) 0.19 (87%) 1.05 (77%) 0.5 (89%)
P3 (N = 89)
ideal delta-area (red.) 2.94e-07 (20%) 2.87e-07 (21%) 2.17e-07 (9%) 2.16e-07 (10%)
max. delta-area (red.) 5.12e-07 (12%) 5.06e-07 (13%) 4.35e-07 (5%) 4.34e-07 (5%)
CPU-time (red.) 0.33 (82%) 0.26 (86%) 1.24 (77%) 0.63 (88%)
P4 (N = 98)
ideal delta-area (red.) 6.12e-07 (22%) 6.11e-07 (22%) 5.60e-07 (5%) 5.64e-07 (4%)
max. delta-area (red.) 9.10e-07 (16%) 9.09e-07 (16%) 8.65e-07 (2%) 8.69e-07 (1%)
CPU-time (red.) 0.41 (81%) 0.31 (85%) 1.73 (78%) 0.93 (88%)
P5 (N = 225)
ideal delta-area (red.) 1.40e-08 (33%) 1.32e-08 (37%) 1.16e-08 (28%) 1.29e-08 (20%)
max. delta-area (red.) 4.00e-08 (15%) 2.91e-08 (38%) 2.76e-08 (14%) 2.88e-08 (10%)
CPU-time (red.) 1.12 (80%) 1.21 (79%) 1.62 (80%) 1.51 (81%)
P6 (N = 500)
ideal delta-area (red.) 1.70e-06 (17%) 1.82e-06 (11%) 1.07e-06 (18%) 1.43e-06 (-9%)
max. delta-area (red.) 3.55e-06 (10%) 3.72e-06 (6%) 2.07e-06 (11%) 2.46e-06 (-6%)
CPU-time (red.) 6.98 (76%) 5.89 (80%) 12.24 (74%) 7.55 (84%)
P7 (N = 1000)
ideal delta-area (red.) 6.22e-06 (11%) 6.45e-06 (8%) 4.89e-06 (12%) 4.67e-06 (16%)
max. delta-area (red.) 2.03e-05 (7%) 2.14e-05 (2%) 1.49e-05 (4%) 1.47e-05 (6%)
CPU-time (red.) 33.26 (70%) 28.11 (74%) 64.36 (69%) 43.8 (79%)

107

6 Combining Point-Based and Envelope-Based Approaches

Table 6.3: Test results for the combination algorithm on problems with either 5-10-40-
Constraint or maximum cardinality constraint. The 40 points in the first part
were generated by an MIQP solver, with results for equidistant spacing and
2-Phase spacing of the points reported separately. The reduction of the max.
delta-are, ideal delta-area, and CPU-time in comparison to just applying the
MIQP solver with 400 points and 2-Phase distribution is reported in paren-
theses. The maximum cardinality was chosen as in all previously reported
tests: K = 4 for P1-P4, K = 8 for P5. Algorithm runtime was measured in
seconds.

5-10-40-Constraint Max. cardinality
equal distr. 2-Phase equal distr. 2-Phase

P1 (N = 31)
ideal del.-area (red.) 2.03e-07 (0.3%) 2.02e-07 (0.5%) 1.37e-07 (18%) 1.38e-07 (18%)
max. del.-area (red.) 1.30e-06 (0.0%) 1.30e-06 (0.1%) 2.28e-07 (12%) 2.29e-07 (11%)
CPU-time (red.) 0.91 (87%) 0.82 (88%) 0.75 (81%) 0.45 (89%)
P2 (N = 85)
ideal del.-area (red.) 3.42e-08 (0.4%) 3.42e-08 (0.4%) 4.43e-07 (2.6%) 4.44e-07 (2.3%)
max. del.-area (red.) 1.19e-06 (0.0%) 1.19e-06 (0.0%) 8.12e-07 (1.4%) 8.14e-07 (1.3%)
CPU-time (red.) 5.29 (87%) 4.47 (89%) 216.4 (72%) 104.5 (86%)
P3 (N = 89)
ideal del.-area (red.) 1.80e-08 (3.4%) 1.80e-08 (3.4%) 2.14e-07 (2.6%) 2.14e-07 (2.5%)
max. del.-area (red.) 4.75e-07 (0.1%) 4.75e-07 (0.1%) 4.32e-07 (1.3%) 4.32e-07 (1.2%)
CPU-time (red.) 6.17 (86%) 5.41 (88%) 583.0 (72%) 401.6 (81%)
P4 (N = 98)
ideal del.-area (red.) 6.27e-08 (2.8%) 6.27e-08 (2.8%) 5.22e-07 (2.6%) 5.24e-07 (2.2%)
max. del.-area (red.) 1.24e-06 (0.1%) 1.24e-06 (0.1%) 8.05e-07 (1.7%) 8.07e-07 (1.5%)
CPU-time (red.) 8.26 (88%) 8.56 (88%) 18851 (76%) 8546 (89%)
P5 (N = 225)
ideal del.-area (red.) 7.02e-08 (0.7%) 6.99e-08 (1.2%) 1.09e-08 (24%) 1.09e-08 (24%)
max. del.-area (red.) 1.63e-06 (0.0%) 1.63e-06 (0.0%) 2.68e-08 (11%) 2.68e-08 (11%)
CPU-time (red.) 18.22 (88%) 17.55 (88%) 29.4 (85%) 20.7 (89%)
P6 (N = 500)
ideal del.-area (red.) 4.74e-06 (1.3%) 4.74e-06 (1.2%) n.a. n.a.
max. del.-area (red.) 3.11e-04 (0.0%) 3.11e-04 (0.0%) n.a. n.a.
CPU-time (red.) 235.4 (85%) 189.9 (88%) n.a. n.a.
P7 (N = 1000)
ideal del.-area (red.) 8.26e-06 (2.1%) 8.27e-06 (2.0%) n.a. n.a.
max. del.-area (red.) 1.46e-03 (0.0%) 1.46e-03 (0.0%) n.a. n.a.
CPU-time (red.) 1107 (87%) 987.4 (89%) n.a. n.a.

On problem instances with 5-10-40-Constraint, irrespective of choice of placement scheme
and heuristics, the improvement of the solution quality is quite significant (up to 69%).
Additionally, the algorithm runtime is far shorter than if just the “normal” ε-Constraint
methods are used. The 2-Phase distribution scheme does seem to perform equally well
or slightly better than the equidistant placement for both of the two heuristics. For
the two largest problems, the runtime advantage of the combination algorithm is not as

108

6 Combining Point-Based and Envelope-Based Approaches

pronounced, but never falls below 25%. The main cause for this is probably that a larger
number of envelopes had to be calculated, and each of those has more corner portfolios
than the envelopes of the smaller problem instances, and a single step to calculate the
next corner portfolio is quite costly due to the large covariance matrices. The accumu-
lation of these three effects probably swallows up much of the time we saved in the first
part.
Perhaps most surprising are the results of the 2-solver-calls heuristic. Although it has
been mainly developed to quickly calculate a feasible portfolio of acceptable quality,
when it is combined with the envelope approach it delivers solutions that are nearly on
par with the n-solver-calls heuristic – and their calculation requires less time.
The reason for this unexpected success becomes clear when we look at Figure 6.1 which
depicts the solution of the 2-solver-calls heuristic (40 point budget) and the resulting
envelopes for Problem 1: the original portfolios from the 2-solver-calls heuristic are
completely dominated by the envelopes. The explanation for this is to be found in the
processing step that determines how the sets of convex constraints are constructed from
the calculated points. For every solution of the point-based heuristic we don’t just copy
the set of convex constraints from the ε-Constraint problem and calculate the respective
envelope, but instead we generate a different set of convex constraints. This new set is
based on the shares that have an actual weight of larger than 5% in the solution, and
only those assets are included in the 40%-Constraint, which results in the constraint to
be “less binding”.

 0.0007

 0.0008

 0.0009

 0.001

 0.0011

 0.0012

 0.0013

 0.0014

 0.003 0.0035 0.004 0.0045 0.005 0.0055

va
ria

nc
e

expected return

2-solver-calls
envelope 1
envelope 2
envelope 3
envelope 4
envelope 5

Figure 6.1: Nondominated portfolios calculated with the 2-solver-calls heuristic (40 point
budget) and the resulting envelopes generated with the information from
these portfolios. Problem instance: P1 (31 assets) with 5-10-40-Constraint.

109

6 Combining Point-Based and Envelope-Based Approaches

Figure 6.2 gives an impression of the disparities in solution quality for the simple point-
based algorithms and their combination with the envelope-based approach. Even though
the n-solver-calls heuristic is considerably closer to the results of the combination algo-
rithms, the difference is still quite obvious. The results for the two combination al-
gorithms, however, are nearly identical. The main difference is that the combination
with n-solver-calls heuristic was able, for this problem instance, to get solutions slightly
beyond the ends of the front generated by the 2-solver-calls-combination.

 0.0003

 0.00035

 0.0004

 0.00045

 0.0005

 0.00055

 0.0006

 0.00065

 0.0007

 0 0.0005 0.001 0.0015 0.002 0.0025 0.003

va
ria

nc
e

expected return

2-solver-calls
n-solver-calls

Combination (2-solver-calls)
Combination (n-solver-calls)

Figure 6.2: Solution of the 2-solver-calls heuristic (400 point budget), the n-solver-calls
heuristic (400 point budget), the combination algorithm with 2-solver-calls
heuristic (40 point budget), and combination algorithm with n-solver-calls
heuristic (40 point budget). For all point-based heuristics (both standalone
and as part of the combination algorithm), the 2-Phase distribution scheme
was used. Problem instance: P5 (225 assets) with 5-10-40-Constraint.

When either the reoptimization heuristic or the n-solver-calls heuristic is combined with
the envelope approach to solve problems with a maximum cardinality constraint (see
Table 6.2), the runtime reduction is consistently above 70%, and no relative increase in
runtime can be detected for larger problem sizes. The simple explanation for this is that
the calculation of the envelopes for, e.g., P7 does on average not require more time than
that of P5, as we eliminate all shares that are set to zero. Thus the covariance matrix
is shrunk to size K ×K before the parametric quadratic programming solver is applied.
The improvements to the solution quality for the heuristics in the maximum cardinal-
ity case are not as high as the ones in the 5-10-40-Constraint case. This is probably
a consequence of the fact that the solution quality of the heuristics in cardinality con-

110

6 Combining Point-Based and Envelope-Based Approaches

strained problems was by far better to begin with. Nevertheless, in nearly all scenarios,
an improvement is still noticeable.
Based on the results for the seven problems, it is difficult to come to a conclusive answer
whether the equidistant distribution or the 2-Phase distribution scheme is superior, as
there are several scenarios in which either of the two yields better results.
When we compare the two heuristics, the n-solver-calls heuristic in most cases justifies
its longer computation time by generating better results. The simpler reoptimization
heuristic is not far off, but this is not as surprising as above, since even for the standard
point-based approach (cf. Chapter 4), the results of this heuristic were not much worse
than those of the n-solver-calls heuristic.
The combination of an MIQP solver with the envelope approach (Table 6.3), has only
a very limited potential for solution improvement, as all the points calculated by the
MIQP solver are guaranteed to be optimal. The only improvement is to be found in
the ability of the combination algorithm to change the stair-shaped nondominated front
(cf. Figure 4.3) into a front consisting of envelopes (cf. Figure 4.4). This effect can
be observed in the improvement of the ideal delta-area. As the right edge (point with
maximized expected return) and left edge (MVP) of the front is determined by the MIQP
solver, irrespective of whether the point-based approach or the combination algorithm is
used, the additional areas that are part of the max. delta-area are identical. Therefore
the relative reduction of the max. delta-area is much smaller.
Due to the longer time it takes to calculate a single point with the MIQP solver, the
additional cost for computing the envelopes and the aggregated front does not matter
as much as in case of the heuristics. The runtime improvement is therefore close to
the possible maximum of 90% for all problem instances, irrespective of the distribution
scheme and the nonconvex constraint type.
Again, a reliable statement whether the equidistant or the 2-Phase distribution is better
can not be made. The results are quite close for all problems and both problem types.
The advantage of the 2-Phase procedure to distribute the points in a way that not many
points are wasted beyond the left end of the Pareto front does not come into play here,
as the left end can be – and is – determined exactly with the MIQP solver. The simpler
equidistant approach does therefore seem to be sufficient here.
In order to give the reader a better impression how the different algorithms presented in
the thesis compare with respect to both computation time and solution quality, we have
conducted a series of additional tests on Problem 5 with 5-10-40-Constraint. In order
to construct “simulated” convergence curves, we varied the point budget (and thus also
the computation time) for the “pure” ε-Constraint approaches and their combination
counterparts. The results are documented in Figure 6.3. For the 2-solver-calls heuristic,
the n-solver-calls heuristic, and the combinations of envelope-based approach and these
heuristics, the point budget was set to values between 20 and 1000, for the MIQP-solver
and its envelope-based extension, we started with 10 points and raised the budget to
700. For the P-MOEA and the E-MOEA, “real” convergence curves had been already
calculated in Chapter 5. Due to the fact that the clock speed of the computer on which
we performed the tests for the E-MOEA and the P-MOEA was slightly higher (1.6 GHz)

111

6 Combining Point-Based and Envelope-Based Approaches

than the one on which all the other tests were done (1.5 GHz), the measured computation
times had to be adjusted to compensate for this.
As we tried to avoid the effect that the results are mainly influenced by the two portfolios
with either the lowest variance or the highest return, Figure 6.3 uses the ideal delta-area
to measure solution quality.

 6e-08

 8e-08

 1e-07

 1.2e-07

 1.4e-07

 1.6e-07

 1.8e-07

 2e-07

 2.2e-07

 2.4e-07

 0 20 40 60 80 100

id
ea

l d
el

ta
-a

re
a

time (s)

P-MOEA
E-MOEA

2-solver-calls
n-solver-calls

Combination (2-solver-calls)
Combination (n-solver-calls)

MIQP
Combination (MIQP)

Figure 6.3: Convergence curves of the 2-solver-calls heuristic, the n-solver-calls heuristic,
the P-MOEA and the E-MOEA, the MIQP solver and three combination
algorithms (envelope-based with 2-solver-calls, n-solver-calls and MIQP) for
P5 (225 assets) with 5-10-40-Constraint.

We have to emphasize that there is an important distinction between the inner workings
of the P-MOEA and the E-MOEA on the one side and all the other algorithms on
the other sides. This difference is critical to the interpretation of Figure 6.3: The
convergence curves of the P-MOEA and the E-MOEA depict the average result of a
number of algorithm runs over time. The “simulated” curves of the other algorithms
have been constructed by applying the respective procedure repeatedly for the different
budgets. Due to the structure of the ε-Constraint algorithms, there is no easy way to
calculate e.g. a solution with a 300 point budget by just inserting an additional 100
points into the solution that we got with a 200 point budget. Distributing the points
across the expected return axis would be easy to realize, but the solution thus calculated
would not be the same as the one we got when we started with 300 points, and its quality
would probably be worse.

112

6 Combining Point-Based and Envelope-Based Approaches

Evolutionary algorithms are able to provide a solution regardless how much time they
are given, and, given more time, the solution can be improved without having to restart
the algorithm. This is certainly an advantage, and the other algorithms presented here
would require extensive redesign to gain the same capability.
Given the information of the previous tests, the results in Figure 6.3 are, for the most
part, as expected. The P-MOEA converges quite slowly, the E-MOEA is faster and – if
given enough time – gets very close to the optimal solution. The 2-solver-calls heuristic
is able to provide a solution in a very short amount of time, but the quality is not
overwhelming, and even with a large point budget, it does not improve much. After
little more than 20 seconds, all the other algorithms are superior. The results of the
n-solver-calls heuristic are better, but the heuristic suffers from the same basic problem
as the 2-solver-calls heuristic, namely its results cannot be improved significantly beyond
a certain level, which is still a good distance away from the actual optimum, even if a
large number of points is used for the approximation 4.
The results for the MIQP solver are quite good, and if there is enough time to calculate
a larger number of points, the approximation will be nearly perfect. The only algorithm
clearly superior is the combination of the MIQP solver with the envelope approach.
After 10 seconds at most it provides results that are better than all the results the other
heuristics are able to calculate, even when they are given much more time.
Should no MIQP solver be available, or would the calculation of even very few points take
longer than we are willing to wait and we need to get a quick solution, the “extension” of
the 2-solver-calls heuristic or the n-solver-calls heuristic with the envelope approach are
the best choice. Curiously, the combination algorithm that is based on the 2-solver-calls
heuristic is able to compute a better approximation than the one with the n-solver-calls
heuristic for nearly all tested point budgets. This does seem to be a problem specific
effect. But the results for both combination algorithms are nevertheless quite remarkable,
especially when compared to the results of their point-based counterparts.

6.3 Summary: Combination of Point-Based and
Envelope-Based Approaches

In this Chapter, we have presented an algorithm that uses the different ε-Constraint
approaches from Chapter 4 to determine sets of convex constraints that define envelopes
of feasible – and hopefully good – solutions. These envelopes are then calculated and
accumulated to an aggregated Front.
Based on extensive tests, we were able to show that this algorithm delivers results
that are significantly better in most scenarios. The combination algorithm was able
to calculate these often superior solutions in a fraction of the time expended by the
“simple” point-based procedures. It could do this since the information from a single
point is enough to determine an envelope, which in turn defines a complete set of feasible

4Therefore the convergence curves of the ε-Constraint heuristics have not been calculated for budgets
of more than 1000 points.

113

6 Combining Point-Based and Envelope-Based Approaches

solutions. A relatively small number of points can therefore represent enough information
to effectively describe the whole Pareto front.
Every type of point-based solution can be post-processed this way, irrespective of the
algorithm guaranteeing optimality for each point or not. Even portfolios that have been
constructed using a point-based evolutionary algorithm (cf. Section 5.3) could be treated
in this fashion, and thus their solution could be improved without too much effort. An
envelope-based post-processing might be especially worthwhile if only a small number
of points on or near the Pareto front is known.
One main advantage of the combination algorithm is a description of the Pareto front
that no longer is made up of just a collection of points, but instead consists of a set of
curves (parabola segments) that define a solution for the whole breadth of the aggregated
front.
The algorithm we presented was just a simple but very effective realization of the prin-
ciple to combine point-based and envelope-based approaches. All of the more complex
building blocks of the procedure – (i) the construction of a feasible solution given a min-
imum expected return, (ii) the calculation of the envelopes, and (iii) their fusion into
an aggregated front – were already available as part of the algorithms presented in the
previous chapters5. The only drawback of the algorithm, in our opinion, is the limited
availability of these building blocks, especially of the parametric quadratic programming
algorithm and the algorithm that calculates the aggregated front, as there are no pub-
licly available libraries that are efficient and offer this functionality. If all the parts have
to be implemented from scratch, the required effort is quite extensive.
Neither the point-based heuristic nor the distribution schemes we used were especially
designed towards this type of algorithm. Therefore, there is a good chance that other
methods to calculate feasible points may be even more effective in combination with the
envelope approach. This is a topic we intend to cover in more detail in the future.

5The only task not yet realized was the analysis of the points to determine the sets of convex constraints,
which was – in comparison to the other algorithm parts – easy to implement.

114

7 Summary and Conclusion

The goal of this thesis was to develop, document, and test different approaches that are
able to efficiently calculate a sufficiently precise approximation of the complete Pareto
front for mean-variance portfolio selection problems with nonconvex constraints.
The main content of this thesis can be summarized as follows:
After a brief introduction in Chapter 1, the economic principles behind the mean-variance
model have been presented in Chapter 2, together with the model itself and a short
description of the methodology of the three main solution approaches: the weighting
method, the ε-Constraint approach, and parametric quadratic programming. We have
also briefly touched upon other risk measures besides the variance of the portfolio. Ad-
ditionally, the different types of constraints for portfolio selection have been listed in
Chapter 2 and we have analyzed them regarding the possibility to easily integrate them
into the standard mean-variance optimization model. The constraints for which this is
not possible – the so called nonconvex constraints – are the basis of the problems we have
addressed in Chapters 4, 5, and 6. The three constraints of this type we have focused
on are (i) the 5-10-40-Constraint based on §60(1) of the German investment law, (ii)
maximum cardinality constraint, and (iii) buy-in thresholds.
Before tackling problems with nonconvex constraints, however, an efficient and numeri-
cally stable parametric quadratic programming (PQP) algorithm for “standard” mean-
variance optimization has been presented in Chapter 3. This algorithm is an important
building block for techniques used in later chapters. Due to several algorithmic improve-
ments, our PQP solver is capable of calculating the complete Pareto front in a very short
amount of time even on large problem instances. We have also provided some advice
regarding the implementation of the algorithm by presenting two matrix representations
and by demonstrating how they can be used in different parts of the PQP algorithm to
further enhance efficiency.
Chapter 4 describes the ε-Constraint approach to generate a point-based approximation
for portfolio selection problems with any one of the three nonconvex constraints. Two
main aspects of the ε-Constraint method have been discussed in detail: how to distribute
a given point budget along the Pareto front as efficiently as possible, and how to get
good results for each of those points. Based on a series of tests conducted on a set of
benchmark problems, we demonstrated that the 2-Phase algorithm we developed for the
efficient distribution of points is able to calculate results of significantly better quality
than we would get by spacing points equidistantly on the expected return axis. We
also proposed several heuristics designed especially for the calculation of each point.
As expected, the more time-consuming heuristics are, in most cases, able to produce
superior results. By transforming the basic mean-variance model into a mixed-integer
model, we were able to replace the heuristics with a commercial solver that guarantees

115

7 Summary and Conclusion

solution optimality for each point. The results thus gained are as good as a point-based
approximation can be, but the time necessary to calculate them can be prohibitively
long – especially for problems with a maximum cardinality constraint.
In Chapter 5, we have presented a new algorithm, the envelope-based multi-objective
evolutionary algorithm (E-MOEA), which is a combination of a multi-objective evolu-
tionary algorithm and an embedded PQP solver. The task of the MOEA is to find
convex subsets of the search space. Then, for each subset the PQP algorithm calculates
the Pareto front, which we call an envelope. These envelopes are then combined to form
the overall solution to the problem. For comparison, we also implemented and tested
a state-of-the-art multicriteria evolutionary algorithm (P-MOEA) by Streichert et al.
[SUZ03, SUZ04a, SUZ04b]. This algorithm had been designed specifically for portfo-
lio selection problems with nonconvex constraints. The test results of our E-MOEA
are much better than those of the P-MOEA with respect to convergence rate, solution
quality during the algorithm run, and final solution quality.
And finally, in Chapter 6, we have proposed to combine the envelope-based approach of
the E-MOEA with the ε-Constraint algorithms from Chapter 4. The intention was to find
the most promising convex subsets with the aid of “good” points that have already been
calculated by the point-based algorithms. Therefore, after computing a certain number
of points, they are analyzed and the convex subsets they belong to are identified. Then,
the envelopes that are associated with the subsets are determined and, in a last step,
the aggregated front is computed. For the first part of the combination algorithm – the
calculation of a set of points on or near the Pareto front – ε-Constraint heuristics or
an MIQP solver can be used. Tests have shown that a much smaller number of points
than we used for a point-based approximation is usually enough to determine most of
the relevant envelopes. Since the calculation of the respective number of envelopes is
not very time consuming, the overall computation times of the combination algorithms
are significantly shorter than those of the “pure” ε-Constraint methods, and the solution
quality is improved as well, especially when we combine the envelope approach with the
faster heuristics.
Based on our experiences and the results of the previous chapters, we provide a brief
summary of the strengths and weaknesses of the presented algorithms:

1. P-MOEA:
The point-based multi-objective evolutionary algorithm (P-MOEA) is easy to im-
plement and very flexible, since the variance can be replaced by other dispersion
measures like e.g. CVaR or VaR, and there are several different ways to integrate
constraints. Generated solutions are of poor quality especially on large problem
instances, and their calculation requires a comparably long time.

2. E-MOEA:
The envelope-based multi-objective evolutionary algorithm (E-MOEA) is more
complicated, due to two nontrivial core elements, the PQP solver and the ag-
gregation of the envelopes. The results are better than those of the P-MOEA,
and the algorithm converges faster. It is especially well suited for problems with
maximum cardinality constraint, since for those, it delivers nearly perfect results

116

7 Summary and Conclusion

in comparatively short time. Its results are not point-based, i.e. the output of an
algorithm run is a functional description of the nondominated frontier that allows
to easily calculate all portfolios on the front. This is a significant improvement
over point-based approaches which produce just a collection of points.

3. Point-based ε-Constraint heuristics (2-solver-calls/reoptimization and
n-solver-calls):
The heuristics are able to calculate feasible solutions very fast, but often of minor
quality. If given enough time, even the P-MOEA might be able to produce a better
approximation.

The n-solver-calls heuristic calculates fewer points in the same time, but its results
are normally much better than those of the 2-solver-calls heuristic, at least for
problem instances with 5-10-40-Constraint. Both heuristics are easy to implement
if a fast and reliable external QP solver is available. The choice of solver has a
huge influence on the speed of the heuristics, since the accumulated time for all
the solver calls represents the bulk of overall algorithm runtime.

4. MIQP solver:
If a fast mixed-integer solver is available to calculate the single points, the solution
it produces is nearly perfect, since every point is on the Pareto front. The main
drawbacks of this approach are the long time it requires to calculate a solution and
that this solution is point-based. Its results are therefore only an approximation of
the Pareto front even though all the calculated points are situated on the front. A
main problem for the implementation is that there are only very few libraries with
algorithms that have the capability and speed to solve mixed-integer quadratic
programming problems in an acceptable time, and – to our knowledge – they are
all commercial and the licenses are not cheap. (With a library that contains such
an algorithm, however, the implementation can be done fairly easily.)

5. Combination algorithms:
These algorithms are much faster than the point-based algorithms (2-solver-calls,
n-solver-calls, or the MIQP solver) they are based on, and their results are superior
as well. Like the solution computed by the E-MOEA, the result of every combina-
tion algorithm is not just a collection of points but an envelope-based description
of the nondominated frontier. The main drawback is that the algorithm is more
complex and requires significantly more effort to implement than the purely point-
based solution approaches. But once a working implementation is available, there
is no good reason to still use the purely point-based approaches.

Which of the algorithms presented in this thesis is actually the best strongly depends
on the preferences of the person that has to use it – and also on the availability of
those algorithm components that cannot be implemented in short order, like e.g. a high-
performance MIQP solver. The description and analysis of the different approaches we
have provided hopefully help the reader in selecting the one that is most suited to his
needs.

117

7 Summary and Conclusion

We will conclude this chapter and the whole thesis with a brief outlook on what we think
would be the most promising extensions of the presented algorithms, and what future
research aspects remain to be tackled.
One idea for an algorithm modification that is easy to realize and might prove interesting
is the combination of the point-based heuristics and the envelope-based MOEA. The
simpler heuristics could be used to “jump-start” the E-MOEA by providing an initial
starting solution of fairly good quality. Ideally, such an algorithm would nevertheless
converge to a very good solution, but this result could be achieved in much less time than
when the E-MOEA were initialized randomly. Compared to the algorithms presented in
Chapter 6, this new combination might have the additional advantage that the solution
quality could be improved by just extending the runtime of the algorithm.
We think, however, that the most promising extension of the techniques presented here
could be the integration of both variable and fixed transaction costs into the mean-
variance framework: It is not too difficult to modify the parametric quadratic program-
ming algorithm from Chapter 3 in a way that enables it to cope with variable transaction
costs. Additionally, fixed transaction costs can probably be addressed by introducing
binary variables in a similar fashion as was the case with e.g. cardinality constraints.
With the integration of those techniques and the respective modifications to the “non-
convex” algorithms we think there is a good chance that we would not only be able to
model the problems with both fixed and variable transaction costs, but to provide their
solution in an acceptable amount of time. This could be of great practical relevance
when managing real-world portfolios.
The sensitivity of the results with respect to estimation errors in the input data is an
aspect we have deliberately ignored in this thesis. Several publications have dealt with
this in a standard mean-variance setting, but none of them, at least as far as we know,
has included nonconvex constraints. It is not too difficult to construct a worst case
scenario in which tiny changes in the input data result in completely different solutions
in the portfolio space, but we think that only extensive tests based on real world data
and commonly used estimation techniques could provide meaningful results.
Finally, extending the presented algorithms to a multiperiod or continuous setting would
be particularly challenging, since, among many other difficulties, this would mean that
compliance with all constraints probably has not only to be guaranteed at the beginning
of the single period, but at the beginning of each period (multiperiod model) or even
during the whole investment period (continuous model).

118

A Further Test Results

A.1 Heuristics for Problems with 5-10-40-Constraint

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.002 0.003 0.004 0.005

va
ria

nc
e

expected return

partial deriv.
2-solver-calls
n-solver-calls

MIQP

Figure A.1: Results of the 2-solver-calls heuristic, the n-solver-calls heuristic, the partial
derivatives heuristic, and the MIQP solver for Problem 2 (85 assets) with
5-10-40-Constraint

119

A Further Test Results

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0.00045

 0.0025 0.003 0.0035 0.004 0.0045 0.005 0.0055

va
ria

nc
e

expected return

2-solver-calls
partial deriv.

n-solver-calls
MIQP

Figure A.2: Results of the 2-solver-calls heuristic, the n-solver-calls heuristic, the partial
derivatives heuristic, and the MIQP solver for Problem 3 (89 asset universe)
with 5-10-40-Constraint

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.002 0.003 0.004 0.005 0.006

va
ria

nc
e

expected return

2-solver-calls
partial deriv.

n-solver-calls
MIQP

Figure A.3: Results of the 2-solver-calls heuristic, the n-solver-calls heuristic, the partial
derivatives heuristic, and the MIQP solver for Problem 4 (98 asset universe)
with 5-10-40-Constraint

120

A Further Test Results

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.02 0.025 0.03 0.035 0.04 0.045

va
ria

nc
e

expected return

2-solver-calls
partial deriv.

n-solver-calls
MIQP

Figure A.4: Results of the 2-solver-calls heuristic, the n-solver-calls heuristic, the partial
derivatives heuristic, and the MIQP solver for Problem 6 (500 asset universe)
with 5-10-40-Constraint

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12

va
ria

nc
e

expected return

2-solver-calls
partial deriv.

n-solver-calls
MIQP

Figure A.5: Results of the 2-solver-calls heuristic, the n-solver-calls heuristic, the par-
tial derivatives heuristic, and the MIQP solver for Problem 7 (1000 asset
universe) with 5-10-40-Constraint

121

A Further Test Results

A.2 Heuristics for Problems with a Maximum Cardinality
Constraint

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 0.011

va
ria

nc
e

expected return

reoptimization
n-solver-calls

MIQP

Figure A.6: Results of the reoptimization heuristic, the n-solver-calls heuristic, and the
MIQP solver for Problem 1 (31 assets) with a maximum cardinality con-
straint of K = 4

122

A Further Test Results

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

va
ria

nc
e

expected return

reoptimization
n-solver-calls

MIQP

Figure A.7: Results of the reoptimization heuristic, the n-solver-calls heuristic, and the
MIQP solver for Problem 2 (85 assets) with a maximum cardinality con-
straint of K = 4

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

va
ria

nc
e

expected return

reoptimization
n-solver-calls

MIQP

Figure A.8: Results of the reoptimization heuristic, the n-solver-calls heuristic, and the
MIQP solver for Problem 4 (98 assets) with a maximum cardinality con-
straint of K = 4

123

A Further Test Results

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 0 0.001 0.002 0.003 0.004

va
ria

nc
e

expected return

reoptimization
n-solver-calls

MIQP

Figure A.9: The ideal front and the results of the reoptimization heuristic and the n-
solver-calls heuristic for Problem 5 (225 assets) with maximum cardinality
constraint of K = 8.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055

va
ria

nc
e

expected return

reoptimization
n-solver-calls

ideal front

Figure A.10: The ideal front and the results of the reoptimization heuristic and the n-
solver-calls heuristic for Problem 6 (500 assets) with maximum cardinality
constraint of K = 8.

124

A Further Test Results

A.3 Heuristics for Problems with Buy-In Thresholds

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

va
ria

nc
e

expected return

2-solver-calls
n-solver-calls

MIQP

Figure A.11: Results of the 2-solver-calls heuristic, the n-solver-calls heuristic, and the
MIQP solver for Problem 2 (85 assets) with a buy-in threshold of 0.05

125

A Further Test Results

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

va
ria

nc
e

expected return

2-solver-calls
n-solver-calls

MIQP

Figure A.12: Results of the 2-solver-calls heuristic, the n-solver-calls heuristic, and the
MIQP solver for Problem 3 (89 assets) with a buy-in threshold of 0.05

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

va
ria

nc
e

expected return

2-solver-calls
n-solver-calls

MIQP

Figure A.13: Results of the 2-solver-calls heuristic, the n-solver-calls heuristic, and the
MIQP solver for Problem 4 (98 assets) with a buy-in threshold of 0.05

126

A Further Test Results

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004

va
ria

nc
e

expected return

2-solver-calls
n-solver-calls

MIQP

Figure A.14: Results of the 2-solver-calls heuristic, the n-solver-calls heuristic, and the
MIQP solver for Problem 5 (225 assets) with a buy-in threshold of 0.05

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055

va
ria

nc
e

expected return

2-solver-calls
n-solver-calls

MIQP

Figure A.15: Results of the 2-solver-calls heuristic, the n-solver-calls heuristic, and the
MIQP solver for Problem 6 (500 assets) with a buy-in threshold of 0.05

127

A Further Test Results

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14

va
ria

nc
e

expected return

2-solver-calls
n-solver-calls

MIQP

Figure A.16: Results of the 2-solver-calls heuristic, the n-solver-calls heuristic, and the
MIQP solver for Problem 7 (1000 assets) with a buy-in threshold of 0.05

128

References

[AB04] G. J. Alexander and A. M. Baptista. A comparison of VaR and CVaR con-
straints on portfolio selection with the mean-variance model. Management
Science, 50(9):1261–1273, 2004.

[ADEH99] P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath. Coherent measures of
risk. Mathematical Finance, 9(3):203–228, 1999.

[AL05] R. Armananzas and J. A. Lozano. A multiobjective approach to the portfolio
optimization problem. In Congress on Evolutionary Computation, pages
1388–1395. IEEE, 2005.

[ATL06] Automatically Tuned Linear Algebra Software (ATLAS). online:
http://math-atlas.sourceforge.net/, 2006. Last accessed: 2006-10-18.

[Bea06] J. E. Beasley. OR-library. online, http://people.brunel.ac.uk/

~mastjjb/jeb/info.html, 2006. Last accessed: 2006-10-18.

[Bes96] M. J. Best. An Algorithm for the Solution of the Parametric Quadratic Pro-
gramming Problem. In H. Fischer, B. Riedmüller, and S. Schäffler, editors,
Applied Mathematics and Parallel Computing, pages 57–76. Physica, 1996.

[BFG+00] R. Bixby, M. Fenelon, Z. Gu, E. Rothberg, and R. Wunderling. Mip: Theory
and practice – closing the gap. In M. J. D. Powell and S. Scholtes, editors,
System Modelling and Optimization: Methods, Theory, and Applications,
pages 19–49. Kluwer Academic Publishers, 2000.

[BG91] M. J. Best and R. R. Grauer. Sensitivity analysis for mean-variance portfolio
problems. Management Science, 37(8):980–989, 1991.

[BH05] M. J. Best and J. Hlouskova. An algorithm for portfolio optimization with
transaction costs. Management Science, 51(11):1676–1688, 2005.

[Bie96] D. Bienstock. Computational study of a family of mixed-integer quadratic
programming problems. Mathematical Programming, 74(2):121–140, 1996.

[BK00] M. J. Best and J. K. Kale. Quadratic programming for large-scale portfo-
lio optimization. In Jessica Keyes, editor, Financial Services Information
Systems, pages 513–529. CRC Press LLC, 2000.

[BL92] F. Black and R. Litterman. Global portfolio optimization. Financial Ana-
lysts Journal, 48(5):23–43, 1992.

129

References

[BLA06] Basic Linear Algebra Subprograms (BLAS). online:
http://www.netlib.org/blas, 2006. Last accessed: 2006-10-18.

[BSS+06] J. Branke, B. Scheckenbach, M. Stein, K. Deb, and H. Schmeck. Portfolio
optimization with an envelope-based multi-objective evolutionary algorithm.
European Journal of Operational Research, submitted 2006.

[CH83] V. Changkong and Y. Y. Haimes. Multiobjective Decision Making: Theory
and Methodology. Elsevier Science Publishing Co., 1983.

[Chr06] C. H. Christensen. GSL - -. online:
http://cholm.home.cern.ch/cholm/misc/\#gslmm, 2006. Last accessed:
2006-10-18.

[CHT93] V. K. Chopra, C. R. Hensel, and A. L. Turner. Massaging mean-variance
inputs: Returns from alternative global investment strategies in the 1980s.
Management Science, 39(7):845–855, 1993.

[CKP03] J.-H. Cremers, M. Kritzman, and S. Page. Portfolio formation with higher
moments and plausible utility. Financial economics 272-12, Revere Street
Working Paper Series, 2003.

[CMBS00] T.-J. Chang, N. Meade, J. B. Beasley, and Y. Sharaiha. Heuristics for car-
dinality constrained portfolio optimisation. Computers & Operations Re-
search, 27:1271–1302, 2000.

[CPL06] ILOG CPLEX. online:
http://www.ilog.com/products/cplex/, 2006. Last accessed: 2006-10-18.

[CS03] Y. Crama and M. Schyns. Simulated annealing for complex portfolio selec-
tion problems. European Journal of Operational Research, 150(3):546–571,
2003.

[CUs03] User’s Manual CPLEX. ILOG CPLEX, Version 9.0, 2003.

[CVL02] C. Coello Coello, D. A. Van Veldhuizen, and G. B. Lamont. Evolutionary
Algorithms for solving multi-objective problems. Kluwer, 2002.

[CZ93] V. K. Chopra and W. T. Ziemba. The effect of errors in means, variances,
and covariances on optimal portfolio choice. The Journal of Portfolio Man-
agement, 19:6–11, WINTER 1993.

[DD98] I. Das and J. E. Dennis. Normal-boundary intersection: A new method for
generating the pareto surface in nonlinear multicriteria optimization prob-
lems. SIAM Journal on Optimization, 8(3):631–657, 1998.

[Deb01] K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. Wiley,
2001.

130

References

[DN01] U. Derigs and N.-H. Nickel. On a metaheuristic-based DSS for portfolio
optimization and managing investment guideleines. In Metaheuristics In-
ternational Conference, 2001.

[DN03] U. Derigs and N.-H. Nickel. Meta-heuristic based decision support for portfo-
lio optimization with a case study on tracking error minimization in passive
portfolio management. OR Spectrum, 25:345–378, 2003.

[Edd96] D. Eddelbüttel. A hybrid genetic algorithm for passive management. Com-
puting in economics and finance, Society of Computational Economics, 1996.

[EGBG03] E. Elton, M. Gruber, S. Brown, and W. Goetzmann. Modern Portfolio
Theory and Investment Analysis. John Wiley and Sons, 6th edition, 2003.

[EGS06] E. Elton, M. Gruber, and J. Spitzer. Improved estimates of correlation
coefficients and their impact on optimum portfolios. European Financial
Management, 12(3):303–318, 2006.

[EKS04] M. Ehrgott, K. Klamroth, and C. Schwehm. An MCDM approach to port-
folio optimization. European Journal of Operational Research, 155:752–770,
2004.

[Ell61] D. Ellsberg. Risk, ambiguity, and the savage axioms. Quarterly Journal of
Economics, 75(4):643–669, 1961.

[ES03] A. E. Eiben and J. E. Smith. Introduction to evolutionary computing.
Springer, 2003.

[Fam65] E. F. Fama. The behavior of stock-market prices. The Journal of Business,
38(1):34–105, 1965.

[FMP04] J. E. Fieldsend, J. Matatko, and M. Peng. Cardinality constrained portfolio
optimisation. In Z. R. Yang, R. M. Everson, and H. Yin, editors, Intelligent
Data Engineering and Automated Learning, volume 3177 of LNCS, pages
788–793. Springer, 2004.

[GCC06] Gnu Compiler Collection. online:
http://gcc.gnu.org/, 2006. Last accessed: 2006-10-18.

[GH99] H. Grootveld and W. Hallerbach. Variance versus downside risk: Is there
really that much difference? European Journal of Operational Research,
114:304–319, 1999.

[GMSW89] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. A practical
anti-cycling procedure for linearly constrained optimization. Mathematical
Programming, 45(3):437–474, 1989.

[GMW91] P. E. Gill, W. Murray, and M. H. Wright. Numerical Linear Algebra and
Optimization. Addison-Wesley, 1991.

131

References

[Gou91] N. I. M. Gould. An algorithm for large-scale quadratic programming. IMA
Journal of Numerical Analysis, 11:299–324, 1991.

[GP05] A. A. Gaivoronskiy and G. Pflug. Value-at-risk in portfolio optimization:
properties and computational approach. Journal of Risk, 7(2):1–31, 2005.

[GT01] N. Gould and P. Toint. A quadratic programming bibliography. online:
www.optimization-online.org/DB_HTML/2001/02/285.html, 2001.

[GvL96] G. H. Golub and C. F. van Loan. Matrix Computations. Johns Hopkins
University Press, 3rd edition, 1996.

[HJ98] M. P. Hansen and A. Jaszkiewicz. Evaluating the quality of approximations
to the non-dominated set. Technical report, Institute for Mathematical
Modelling, Technical University of Denmark, Lyngby, 1998.

[HL88] C. Huang and R. H. Litzenberger. Foundations for Financial Economics.
Elsevier Science Publishing Co., Inc., 1988.

[HQS07] M. Hirschberger, Y. Qi, and R. E. Steuer. Randomly generating portfolio-
selection covariance matrices with specified distributional characteristics.
European Journal of Operational Research, 177(3):1610–1625, 2007.

[Inv05] Investmentgesetz (InvG). online: http://www.bafin.de/gesetze/invg.
htm, 2005. Last accessed: 2006-10-18.

[JHLM01] N. J. Jobst, M. D. Horniman, C. A. Lucas, and G. Mitra. Computational
aspects of alternative portfolio selection models in the presence of discrete
asset choice constraints. Quantitative Finance, 1:489–501, 2001.

[JK80] J. D. Jobson and B. Korkie. Estimation for markowitz efficient portfolios.
Journal of the American Statistical Association, 75(371):544–554, 1980.

[JLM05] B. I. Jacobs, K. N. Levy, and H. M. Markowitz. Portfolio optimization
with factors, scenarios, and realistic short positions. Operations Research,
53(4):586–599, 2005.

[JM03] R. Jagannathan and T. Ma. Risk reduction in large portfolios: Why impos-
ing the wrong constraints helps. The Journal of Finance, 53(4):1651–1683,
2003.

[Kal02] J. Kallrath. Gemischt-ganzzahlige Optimierung: Modellierung in der Praxis.
Vieweg, 2002.

[KLM84] Y. Kroll, H. Levy, and H. M. Markowitz. Mean-variance versus direct utility
maximization. Journal of Finance, 39(1):47–61, March 1984.

[KPU02] P. Krokhmal, J. Palmquist, and S. Uryasev. Portfolio optimization with
Conditional Value-at-Risk objective and constraints. The Journal of Risk,
4(2):11–27, 2002.

132

References

[KT79] D. Kahnemann and A. Tversky. Prospect theory: An analysis of decision
under risk. Econometrica, 47(2):263–292, 1979.

[KT04] D. Kahnemann and A. Tversky. Prospect theory: An analysis of decision
under risk. In A. Tversky and E. Shafir, editors, Preferences, Belief, and
Similarity, pages 549–581. The MIT Press, 2004.

[KW02] H. Konno and A. Wijayanayake. Portfolio optimization under d.c. trans-
action consts and minimal transaction unit constraints. Journal of Global
Optimization, 22:137–154, 2002.

[KY91] H. Konno and H. Yamazaki. Mean-absolute deviation portfolio optimization
model and its application to tokyo stock market. Management Science,
37(5):519–531, May 1991.

[KY05] H. Konno and R. Yamamoto. Global optimization versus integer program-
ming in portfolio optimization under nonconvex transaction costs. Journal
of Global Optimization, 32:207–219, 2005.

[KZ83] J. G. Kallberg and W. T. Ziemba. Comparison of alternative utility functions
in portfolio selection problems. Management Science, 29(11):1257–1276,
November 1983.

[LSW06] D. Li, X. Sun, and J. Wang. Optimal lot solution to cardinality constrained
mean-variance formulation for portfolio selection. Mathematical Finance,
16(1):83–101, 2006.

[LTZ06] M. Laumanns, L. Thiele, and E. Zitzler. An efficient, adaptive parameter
variation scheme for metaheuristics based on the epsilon-constraint method.
European Journal of Operational Research, 169(3):932–942, March 2006.

[LW01] S. F. Leroy and J. Werner. Principles of Financial Economics. Cambridge
University Press, 2001.

[LW02] D. Lin and S. Wang. A genetic algorithm for portfolio selection problems.
Advanced Modeling and Optimization, 4(1):13–27, 2002.

[LW04] O. Ledoit and M. Wolf. Honey, i shrunk the sample covariance matrix.
Journal of Portfolio Management, 31(1):110–119, 2004.

[Man63] B. Mandelbrot. The variation of certain speculative prices. The Journal of
Business, 36(4):394–419, 1963.

[Mar56] H. M. Markowitz. The optimization of a quadratic function subject to linear
constraints. Naval Research Logistics Quarterly, 3:111–133, 1956.

[Mar59] H. M. Markowitz. Portfolio Selection: Efficient Diversification of Invest-
ments. Wiley, Yale University Press, 1959.

133

References

[Mar87] H. M. Markowitz. Mean-Variance Analysis in Portfolio Choice and Capital
Markets. Blackwell Publishers, 1987.

[Mar02a] D. Maringer. Portfolioselektion bei Transaktionskosten und Ganzzahligkeits-
beschränkungen. Zeitschrift für Betriebswirtschaft, 72(11):1155–1175, 2002.

[Mar02b] D. Maringer. Werpapierselektion mittels Ant Systems. Zeitschrift für Be-
triebswirtschaft, 72(12):1221–1240, 2002.

[Mar05] D. Maringer. Distribution assumptions and risk constraints in portfolio
optimization. Computational Management Science, 2(2):139–153, 2005.

[Mic89] R. O. Michaud. The markowitz optimization enigma: Is ’optimized‘ opti-
mal? Financial Analysts Journal, 45(1):31–42, 1989.

[Mie98] K. Miettinen. Nonlinear multiobjective optimization. Kluwer, 1998.

[MK03] D. Maringer and H. Kellerer. Optimization of cardinality constrained port-
folios with a hybrid local search algorithm. OR Spectrum, 25:481–495, 2003.

[MK06] U. Mello and I. Khabibrakhmanov. On the reusability and numeric efficiency
of C++ packages in scientific computing. online:
citeseer.ist.psu.edu/634047.html, 2006. Last accessed: 2006-10-11.

[MOS03] R. Mansini, W. Ogryczak, and M. G. Speranza. LP solvable models for
portfolio optimization: A classification and computational comparison. IMA
Journal of Management Mathematics, 14:187–220, 2003.

[MS99] R. Mansini and M. G. Speranza. Heuristic algorithms for the portfolio
selection problem with minimum transaction lots. European Journal of Op-
erational Research, 114:219–233, 1999.

[NEO06] Optimization software guide. online:
http://www-fp.mcs.anl.gov/otc/Guide/SoftwareGuide/, 2006. Last ac-
cessed: 2006-10-18.

[NW99] J. Nocedal and S. J. Wright. Numerical Optimization. Springer-Verlag New
York, 1999.

[Per84] A. F. Perold. Large-scale portfolio optimization. Management Science,
30(10):1143–1160, October 1984.

[Rab00] M. Rabin. Risk aversion and expected-utility theory: A calibration theorem.
Econometrica, 68(5):1281–1292, September 2000.

[Rud94] M. Rudolf. Algorithms for Portfolio Optimization and Portfolio Insurance.
Dissertation, Hochschule Sankt Gallen, 1994.

134

References

[SBS07] M. Stein, J. Branke, and H. Schmeck. Efficient implementation of an active
set algorithm for large scale portfolio selection. Computers & Operations
Research, to appear, 2007.

[Sch02] A. Schaerf. Local search techniques for constrained portfolio selection prob-
lems. Computational Economics, 20(3):170–190, 2002.

[Sch06] B. Scheckenbach. Envelope-based portfolio optimization with complex con-
straints. Master’s thesis, Institute AIFB, University of Karlsruhe, Germany,
2006.

[Sha63] W. F. Sharpe. A simplified model for portfolio analysis. Management Sci-
ence, 9(2):277–293, 1963.

[Sim97] Y. Simaan. Estimation risk in portfolio selection: The mean variance
model versus the mean absolute deviation model. Management Science,
43(10):1437–1446, 1997.

[SQH06] R. E. Steuer, Y. Qi, and M. Hirschberger. Portfolio optimization: New ca-
pabilities and future methods. Zeitschrift für Betriebswirtschaft, 76(2):199–
216, 2006.

[SS04] F. Schlottmann and D. Seese. Financial applications of multi-objective evo-
lutionary algorithms: recent development and future research directions. In
C. Coello-Coello and G. Lamont, editors, Applications of Multi-Objective
Evolutionary Algorithms, pages 627–652. World Scientific, 2004.

[SS05] F. Schlottmann and D. Seese. A hybrid heuristic approach to discrete multi-
objective optimization of credit portfolios. Computational Statistics Data
Analysis, 47(2):373–399, 2005.

[Ste98] G. W. Stewart. Matrix Algorithms Volume 1: Basic Decompositions. SIAM,
1998.

[Ste01] M. C. Steinbach. Markowitz revisited: Mean-variance models in financial
portfolio analysis. SIAM Review, 43(1):31–85, 2001.

[Sun00] S. M. Sundaresan. Continuous-time methods in finance: A review and an
assessment. The Journal of Finance, 55(4):1569–1622, August 2000.

[SUZ03] F. Streichert, H. Ulmer, and A. Zell. Evolutionary algorithms and the car-
dinality constrained portfolio optimization problem. In GOR Operations
Research Conference, pages 253–260. Springer, 2003.

[SUZ04a] F. Streichert, H. Ulmer, and A. Zell. Comparing discrete and continuous
genotypes on the constrained portfolio selection problem. In Genetic and
Evolutionary Computation Conference, volume 3103 of LNCS, pages 1239–
1250, 2004.

135

References

[SUZ04b] F. Streichert, H. Ulmer, and A. Zell. Evaluating a hybrid encoding and
three crossover operators on the constrained portfolio selection problem. In
Congress on Evolutionary Computation, volume 1, pages 932–939. IEEE
Press, 2004.

[Ury00] S. Uryasev. Conditional Value-at-Risk: Optimization algorithms and appli-
cations. Financial Engineering News, 14:1–5, February 2000.

[vNM44] J. von Neumann and O. Morgenstern. Theory of Games and Economic
Behavior. Princeton University Press, 1944.

[Wol98] L. A. Wolsey. Integer Programming. Wiley-Interscience, 1998.

[ZTL+03] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. da Fonseca.
Performance assessment of multiobjective optimizers: An analysis and re-
view. IEEE Transactions on Evolutionary Computation, 7(2):117–132, 2003.

136

