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Introduction

Dealing with risk is particularly important for financial corporations such as banks
and insurance companies, since these face uncertain events in various lines of their
business. There exist several characterizations of risk which do not always have to
describe distinct issues. This could be market risk, credit risk or operational risk,
but also model risk or liquidity risk. Insurance companies additionally have to deal
with underwriting risk, for example. The aim of integrated risk management is to
manage some or all kinds of potential risk simultaneously. According to McNeil
et al. (2005), the more general notion of risk management describes a “discipline
for living with the possibility that future events may cause adverse effects”, while
banks or insurance companies are even able to “manage risks by repacking them and
transferring them to markets in customized ways”. Consequently, risk management
can be regarded as a “core competence” of such companies.

Historically, methods of dealing with risk go back to mean–variance optimization
problems. These were first considered by de Finetti (1940) (see Barone (2006) for a
translated version of the original article in Italian), whereas the issue only became
famous with the work of Nobel laureate Markowitz (1952). Before, a main focus
was on the mean of the underlying quantities, whereas these works brought the risk
component in terms of the variance into play. Currently, some discussion about the
contribution of the two authors can be observed in the literature. First, Markowitz
(2006) himself claims that de Finetti did not solve the problem for the general case
of correlated risk. However, this argument is contrasted in Pressacco and Serafini
(2007), where the authors reason that de Finetti solved the problem, but under a
regularity assumption which is not always fulfilled.

An important tool in risk management is the implementation of risk measures, in
particular ones which go beyond the variance. Since the risk is modelled by random
quantities, i. e. random variables or, in a dynamic framework, stochastic processes,
it is often possible to estimate or approximate the distribution of such positions.
However, the actual realization of the risk remains uncertain. One way to quantify
the risk beyond its distribution is to use risk measures. Risk measures assign a
value to a risk at a future date that can be interpreted as a present monetary value
or present and future monetary values if dynamic risk measures are applied.

Let us now review some regulatory aspects and describe how risk measures are
applied in risk management so far. This aspect started with the first Basel accord
and its amendment which introduced the risk measure Value–at–Risk for calculat-
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ing the regulatory capital in internal models. Furthermore, special emphasis is put
on credit and operational risk within the context of Basel II. While these accords
aim to stabilize the international banking business, similar regulatory frameworks
are introduced for the insurance sector via Solvency 2, having a more local or na-
tional character. In particular, the aim is to regulate by law what kind of risk
measures should be used to calculate the companies’ target capital in order to
ensure a certain level of solvency. Special emphasis is put on the coherent risk
measure Average Value–at–Risk, sometimes denoted as Expected Shortfall, which
is used in Solvency 2 instead of Value–at–Risk in Basel II. It has the advantage of
being subadditive for general risks, therefore awarding diversification (see Chap-
ter 1 for a more thorough investigation). Value–at–Risk fulfills this property only
in an elliptical world. Consequently, using Value–at–Risk is not always the wrong
thing to do but dangerous if applied inappropriately.

Although many problems are similar for the banking and insurance sector respec-
tively, there are some distinctions between these two kinds of firms. Banks mainly
deal with bounded risks, e. g. when facing credit risk. On the other hand, insur-
ance companies often have to consider unbounded risks, e. g. when heavy–tailed
distributed financial positions are present. To address both situations, we always
treat integrable but not necessarily bounded risks in this work. Furthermore, a
main issue will be to develop risk management tools for dynamic models. These
naturally occur when considering portfolio optimization problems or in the con-
text of developing reasonable risk measures for final payments or even stochastic
processes. We consider only models in discrete time and denote these approaches
with dynamic risk management.

In dynamic economic models, one often faces a Markovian structure of the un-
derlying stochastic processes. Hence, a method we will frequently use is the theory
of Markov decision processes (MDP), sometimes also addressed as dynamic pro-
gramming (DP) introduced in Bellman (1952). In this work, one field where the
method is applied is dynamic portfolio optimization. This is a standard approach.
However, the theory can even be used to solve optimization problems that occur
in economically motivated definitions of dynamic risk measures. One can even go
further to define a reasonable class of dynamic risk measures for a model with
incomplete information. Thorough investigations on Markov decision processes
can be found e. g. in Hinderer (1970), Puterman (1994) or Hernández-Lerma and
Lasserre (1996). Further applications beyond economics are possible in biology or
telecommunications, for example.

An MDP is defined as follows. First, one needs a dynamical system of interest
which can be influenced over time by a risk manager through the choice of certain
decision variables. Then, one has to define the state space of the process of interest,
the action space and the restriction set of admissible decision variables. Further-
more, a transition function and a transition law are introduced. They describe
the realization of the (random) state of the process in the next period in case the
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former state and the current decision variable are given. Usually, it is assumed that
in each period a certain reward depending on the current state and action is gen-
erated and that at the end of the finite time scale, there also is a terminal reward
depending on the final state. The objective is now to find a policy, i. e. a sequence
of decisions, which maximizes the expected accumulated reward. The main result
of the theory is that this problem can be solved by the so–called value iteration,
which is a sequence of one–period optimization problems. By this method, one
can obtain the optimal target value and an optimal policy. Now we give an out-
line of this work and briefly describe how Markov decision theory can be applied
in dynamic risk management. We will regularly state economic interpretations of
important results. In particular, this concerns the structure of optimal investment
policies derived in Chapter 2 and inequalities obtained when comparing values of
dynamic risk measures.

In Chapter 1 the general notion of static and conditional risk measures is in-
troduced. We review the related literature and describe important examples such
as Value–at–Risk and Average Value–at–Risk. Properties of risk measures are dis-
cussed and motivated economically. Furthermore, representation results from the
literature are stated for coherent risk measures and for risk measures of Kusuoka–
type. In particular, we stress the importance of Average Value–at–Risk, which will
also become obvious in the consecutive chapters. Finally, we prove some simple
measurability results for the conditional versions of Value–at–Risk and Average
Value–at–Risk. This is essential when applying these risk measures in the con-
struction of our dynamic risk measure in Chapter 4.

Chapter 2 is devoted to a natural application of Average Value–at–Risk, namely
in the context of dynamic portfolio optimization. We consider a standard multi–
period Cox–Ross–Rubinstein model with one bond and one risky asset, where an
investor is able to invest his wealth into one risk–free bond and one risky asset.
The following mean–risk optimization problems are investigated. First, we aim to
minimize the risk represented by the Average Value–at–Risk of the final wealth
under the constraint that at least a minimal expected final wealth is attained.
This problem can be solved by a standard convex optimization approach via the
Lagrange function and by formulating a Markov decision model. The convex op-
timization approach is possible due to convexity of Average Value–at–Risk. As
a tool, we derive a generalization of a theorem by Runggaldier et al. (2002). In
the same manner, the converse problem is solved, i. e. we maximize the expected
final wealth under an Average Value–at–Risk constraint. We also give optimal
investment strategies, showing that these are equal for both problems and of the
structure of hedging strategies in the standard Cox–Ross–Rubinstein model. In the
last part of the chapter, we formulate a variation of the latter problem by consider-
ing intermediate risk constraints when maximizing the expected final wealth. The
idea is to ensure that – based on the current wealth – the risk of the relative gain or
loss until the next period is bounded by a given risk level. Again, a Markov deci-
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sion model yields the solution of the optimization problem. Instead of considering
a Lagrangian approach, we have to adapt the restriction set of the related MDP
and directly obtain the optimal policy, which is of a different structure than the
one from above. Furthermore, the optimal target value has a different structure,
too.

While so far only static and conditional risk measures have been considered,
Chapter 3 introduces the notion of dynamic risk measures. The demand for such
tools is motivated by the following reasons based on arguments from Wang (1999).
First, companies often face financial positions that have to be described by pro-
cesses rather than by final payments. On the other hand, risk is not only to be
measured at an initial date but should be adapted over time using the informa-
tion modelled by a filtration which becomes available over time. First, we give
a thorough overview on the related literature. Similar to Chapter 1 we describe
important and economically motivated properties and state representation results
for dynamic risk measures from the literature. It turns out that it is important
to discern between law invariant measures and ones without this property, where
the latter one seems to be the more natural one. Moreover, the notion of stabil-
ity of sets of probability measures is closely related to the given representations.
Concluding the chapter we show that this definition is equivalent to consistency of
such sets defined in Riedel (2004).

The overview on the literature has shown that there is still a lack of reasonable
and practicable dynamic risk measures. Hence, in Chapter 4 a risk measure for
processes by Pflug and Ruszczyński (2001) is generalized by constructing a dynamic
version of this measure. First, we show that under certain conditions, the risk
measure fulfills most of the properties introduced in the previous chapter. Since
the dynamic risk measure is defined as an optimization problem, we aim to solve
this and give a closed formula for the risk measure. We are able to do so in a
Markovian environment by defining a related Markov decision model and applying
the value iteration. In a further step, we consider the relationship of the dynamic
risk measure with the stable representation results stated in Chapter 3. It turns
out that this is only possible for income processes which are final values, but not for
general income processes. However, one can derive a different stable representation
for our dynamic risk measure. Concluding the chapter we prove some simple
martingale properties which allow for a standard interpretation of the monetary
values that the components of the risk measure represent.

The solution via Markov decision processes in Chapter 4 gives rise to the idea of
generalizing the model to one with incomplete information in Chapter 5. More pre-
cisely, we assume that the generating variables of the model depend on a random
parameter whose distribution is unknown. Now, the optimization problem in the
definition of the dynamic risk measure from the previous chapter is transformed
by introducing a so–called Bayesian optimization problem. The solution of the
problem is obtained by extending the state space of the Markov decision model by
a distributional component, representing the current estimation of the unknown
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distribution. It is well known that this model is equivalent to the Bayesian for-
mulation. We use this approach to define a class of dynamic risk measures for
such models in an analogous way as in Chapter 4. It can be observed that the
models are identical if the parameter is known. Furthermore, we are able to solve
the optimization in a binomial model in the case the unknown distribution is in
the class of Beta distributions, compare also Attachment B. As a central result
of this chapter we proof a comparison result for the two different risk measures
in the binomial model. The necessary assumptions are fulfilled in the Cox–Ross-
Rubinstein–model, but not for a three–period game by Artzner. However, due to
the elementary character of the latter example, we can also give corresponding
comparison results for the latter example.
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Some basic notation is used throughout this work.

℘(E) the power set of an arbitrary set E

N (N0) positive (non–negative) integers

R (R+, R∗+) (non–negative, positive) real numbers

x+ (x−) positive (negative) part of x ∈ R,

i. e. x+ = max{x, 0} (x− = (−x)+)

B Borel sets on the real line

BA Borel sets on a subset A ⊂ R
B Borel sets on R = R ∪ {∞,−∞}

(Ω,F ,P) basic probability space

E expectation with respect to P
EQ expectation with respect to another probability

measure Q on (Ω,F)

Q a set of probability measures on (Ω,F)

Q∗ (Qe) a set of probability measures on (Ω,F) which are

absolutely continuous with respect (equivalent) to P
P(Θ) the set of all probability measures on Θ ⊂ R
G a sub–σ–algebra of F

L0(Ω,G,P) equivalence classes of (G,B)–measurable risks.

Lp(Ω,G,P) equivalence classes of (G,B)–measurable and

p–integrable (or bounded) risks, p ∈ [1,∞].

Lp(Ω,G,P) analogous equivalence classes of (G,B)–measurable risks

Xn
L1→ X convergence in L1, i. e. limn→∞ E |Xn −X| = 0

ess. sup, ess. inf essential supremum (infimum) of a random variable or

of a set of random variables, compare Attachment A

1A(x) ∈ {0, 1} indicator function of a set A,

i. e. 1A(x) = 1 if and only if x ∈ A

L(X) the law of a random variable X

L(X |Y = y) the conditional law of a random variable given {Y = y}
¤ marks the end of a proof
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1 Static and conditional risk
measures

The mathematical notion risk in its most general definition corresponds to the un-
certain value of a financial position at a future point of time denoted by T . This
could be e. g. the price of an asset or an insurance claim, which a bank or an insur-
ance company faces. In our setting, a positive value of the position is interpreted as
an income whereas a negative value is a loss. Sometimes, the literature deals with
the reverse definition. However, we follow the setting of the central works Artzner
et al. (1999) and Acerbi and Tasche (2002). We assume that all occurring random
variables already represent discounted values. In the first section of this chapter we
introduce the underlying model and the notion of coherence. In the following two
sections, relevant examples such as the Value–at–Risk and the Average Value–at–
Risk and further properties are described. The last section deals with conditional
(static) risk measures. These will be an essential tool for the construction of an
explicit dynamic risk measure which will be introduced in Chapter 4.

A more practicably orientated version of the first three sections, which are essen-
tially based on works as Artzner et al. (1999), Tasche (2002), Acerbi and Tasche
(2002) and Szegö (2005), can be found in Bäuerle and Mundt (2005). Furthermore,
several relevant applications are described there.

1.1 Model and definition

We now want to measure the risk. To this extend, let us formally define what a risk
and a risk measure is. Assume that we are given some probability space (Ω,F ,P).
All occurring equalities and inequalities among random variables are understood
in the almost sure sense with respect to P. We restrict ourselves to integrable
risks since the Average Value–at–Risk, which we will use frequently throughout
this work, can only be defined for those risks.

Definition 1.1. A risk is a (F ,B)–measurable random variable X : Ω → R.
Denote with L1(Ω,F ,P) the equivalence classes of integrable risks. A mapping
ρ : L1(Ω,F ,P) → R is called a risk measure if it is monotone and translation
invariant, i. e.

1



1 Static and conditional risk measures

(MON) For all X1, X2 ∈ L1(Ω,F ,P) it holds

X1 ≤ X2 ⇒ ρ(X1) ≥ ρ(X2).

(TIN) For all X ∈ L1(Ω,F ,P) and c ∈ R, it holds

ρ(X + c) = ρ(X)− c.

The following class of convex risk measures is thoroughly investigated for bounded
random variables in Föllmer and Schied (2004).

Definition 1.2. A risk measure ρ is called convex, if we have the following:

(CVX) For all X1, X2 ∈ L1(Ω,F ,P) and λ ∈ [0, 1] holds

ρ(λX1 + (1− λ)X2) ≤ λρ(X1) + (1− λ)ρ(X2).

The property of convexity is a generalization of coherence, a notion that was
discussed in the literature earlier than convexity. The leading work was done
in Artzner et al. (1999), where risk measures on finite probability spaces where
investigated.

Definition 1.3. A convex risk measure ρ is called coherent, if it is homogeneous:

(HOM) For all X ∈ L1(Ω,F ,P) and λ > 0 it holds

ρ(λX) = λρ(X).

Remark. If (HOM) is fulfilled, then convexity is equivalent to subadditivity, i. e.

(SUB) For all X1, X2 ∈ L1(Ω,F ,P) it holds

ρ(X1 + X2) ≤ ρ(X1) + ρ(X2).

Consequently, coherence of a mapping ρ : L1(Ω,F ,P) → R is usually defined by
the four properties (MON), (TIN), (HOM) and (SUB). Note that a homogeneous
mapping ρ : L1(Ω,F ,P) → R is always normalized, i. e. ρ(0) = 0. This can be seen
by

ρ(0) = ρ(2 · 0) = 2ρ(0).

Moreover, if ρ is translation invariant and normalized, we obtain for c ∈ R
ρ(c) = ρ(0 + c) = ρ(0)− c = −c.

For |Ω| < ∞, the main result in Artzner et al. (1999) was a representation theorem
for coherent risk measures which showed that coherence does not determine a
unique risk measure but rather a whole class. To derive a general representation
result on L1(Ω,F ,P), a technical continuity property has to be introduced. We
now state the general version of the representation theorem which is from Inoue
(2003).
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1.1 Model and definition

Theorem 1.1. A mapping ρ : L1(Ω,F ,P) → R is a coherent risk measure and
fulfills the Fatou–property

(FAT) For all X, X1, X2, · · · ∈ L1(Ω,F ,P) such that Xn
L1→ X, n →∞, it

holds
ρ(X) ≤ lim inf

n→∞
ρ(Xn).

if and only if there exists a convex L1(Ω,F ,P)–closed and L∞(Ω,F ,P)–bounded set
Q of probability measures on (Ω,F) which are absolutely continuous with respect
to P such that

ρ(X) = sup
Q∈Q

EQ[−X], X ∈ L1(Ω,F ,P). (1.1)

Remark. Before the general result was derived in Inoue (2003), the representation
was proved for bounded random variables on general probability spaces in Delbaen
(2002). The Fatou–property then has to be formulated for uniformly bounded
sequences that converge in probability. Generalizations of the result for convex
risk measures can be found e. g. in Föllmer and Schied (2004).

Economic interpretation. An intensive discussion of the introduced properties
can be observed in the literature. We give here a short summary of the main
arguments. Fix a mapping ρ : L1(Ω,F ,P) → R and, whenever necessary, a risk
X ∈ L1(Ω,F ,P).

The properties of monotonicity and translation invariance are well accepted. We
consequently used them as central properties that a mapping should have if it is
called a risk measure. First, obviously a risk that is pointwise not smaller than
another risk should be assigned a value of the risk measure that is not larger.
Hence, monotonicity is a natural assumption when measuring risk. Furthermore,
translation invariance implies

ρ(X + ρ(X)) = ρ(X)− ρ(X) = 0, (1.2)

hence providing an interpretation of ρ(X) as a monetary value as follows. If we
have ρ(X) > 0, this number can be seen as an amount of money that is invested in
a risk–free bond (recall that we neglect the interest rate here). If both X and ρ(X)
are held in an aggregated portfolio, its value of the risk measure then becomes 0
by (1.2). On the other hand, if ρ(X) ≤ 0, the amount −ρ(X) can be subtracted
from X with the overall risk still being 0.

The discussion about homogeneity is more ambiguous. This property seems to
make sense if ρ(X) is indeed seen as a monetary value. By homogeneity, the value
of the risk measure changes proportionally if the financial position X is calculated
in a different currency. An argument against this property is mentioned in Föllmer
and Schied (2004). They claim that there are many situations where the value of
the risk measure does not increase linearly if this is the case for the position −X.

3



1 Static and conditional risk measures

There is no more extensive study of this argument. We conclude that assuming
homogeneity or not is the essential difference of the two worlds of coherent and
convex risk measures respectively.

The properties of subadditivity and, in a similar way of convexity, are again quite
well–established. There is some discussion though because the famous Value–at–
Risk is not subadditive whereas this risk measure is broadly accepted in the banking
industry. This is further strengthened by the proclamation of Value–at–Risk within
the context of Basel II. The standard argument in favor of subadditivity is that it
encourages diversification. More precisely, if a risk measure ρ is not subadditive,
it could happen that a company which uses ρ can be led to split the company in
order to reduce the total capital requirement. However, this is not desired from a
regulatory point of view. Indeed, the Swiss ”Federal Office of Private Insurers” is
on its way to regulate by law the coherent risk measure Average Value–at–Risk for
determining the target value of an insurance company. This is also considered in
the negotiations about Solvency 2, while the banking sector still favors Value–at–
Risk.

Additionally, subadditivity is a favorable property for the company itself and
its policy holders. First, it is useful to obtain a bound for the risk of the whole
company by summing up the risk of the different branches. Moreover, it implies
that the risk of a whole group of policy holders is smaller than the sum of the
singular risks.

We have seen which central properties of risk measures can be motivated by
mathematical and economical aspects. Now, we are going to introduce the afore-
mentioned risk measures Value–at–Risk and Average Value–at–Risk and discuss its
properties. Furthermore, some more classes of risk measures, namely law invariant
and comonotone risk mappings will be investigated in Section 1.3.

1.2 Examples

Let us now define some examples of risk measures. In particular, we formally define
Value–at–Risk (V@R) and Average Value–at–Risk (AV@R).

The worst–case–measure and the negative expectation

Two simple coherent, but not very practicably relevant risk measures can be defined
as follows:

ρWC(X) := − ess. inf(X) = ess. sup(−X),

ρEV(X) := E [−X],

where X ∈ L1(Ω,F ,P). The worst–case–measure ρWC becomes ∞ for unbounded
random variables, such that in this case, a risk measure ρ should be allowed to
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1.2 Examples

attain values in R. It is too conservative to be used in a reasonable way. The same
conclusion holds for the negative expectation ρEV because it does not contain any
relevant information about the riskiness of the underlying financial position X.

Both risk measures fit in the context of Theorem 1.1 with

QWC := Q∗ and QEV := {P},

where Q∗ is the set of all probability measures that are absolutely continuous with
respect to P.

Value–at–Risk

A classic and famous – though strongly criticized in works as Artzner et al. (1999),
Acerbi and Nordio (2001) or Acerbi and Tasche (2002) due to its lack of subadditiv-
ity – homogeneous risk measure is Value–at–Risk. Defining upper and lower quan-
tiles of the distribution function FZ = P(Z ≤ ·) of a random variable Z : Ω → R
via

q+
γ (Z) = inf{z ∈ R | FZ(z) > γ} = sup{z ∈ R | FZ(z) ≤ γ}, γ ∈ (0, 1),

and

q−γ (Z) = inf{z ∈ R | FZ(z) ≥ γ} = sup{z ∈ R | FZ(z) < γ}, γ ∈ (0, 1),

the Value–at–Risk for a level γ ∈ (0, 1) of a risk X is the lower γ–quantile of −X,
formally

V@Rγ(X) := −q+
1−γ(X) = q−γ (−X) = inf{x ∈ R | P(−X ≤ x) ≥ γ}, γ ∈ (0, 1).

Consequently, V@Rγ(X) represents the smallest monetary value such that −X
does not exceed this value at least with probability γ. Hence, we are interested in
calculating the Value–at–Risk for large values of γ, e. g. γ = 0.95 or γ = 0.99. There
are two main disadvantages of Value–at–Risk. First, we have already mentioned
that it is in general not subadditive, see Acerbi and Tasche (2002). However,
in the family of elliptical distributions, Value–at–Risk is subadditive such that it
is not always an inappropriate risk measure. Another disadvantage is the fact
that Value–at–Risk ensures that our future loss stays below a certain level with
some high probability γ, whereas it does not take the amount of the loss into
account – if it occurs. More generally, the distribution of X above this level is
not relevant. This might not be interesting for stake holders, but is important for
regulatory institutions for example. To overcome these drawbacks, the Average
Value–at–Risk was developed. It is worth mentioning that another drawback is
that Value–at–Risk is not sensitive to small changes of the safety level γ, i. e. is not
continuous with respect to this probability.
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1 Static and conditional risk measures

Average Value–at–Risk

This risk measure can be defined by using Value–at–Risk. Indeed, for γ ∈ (0, 1)
it represents an average of the Value–at–Risk to all safety levels larger than γ,
formally

AV@Rγ(X) :=
1

1− γ

∫ 1

γ

V@Ru(X)du, γ ∈ (0, 1), (1.3)

for X ∈ L1(Ω,F ,P). The definition, which is continuous and strictly increasing
in the safety level γ, is also valid for γ = 0 and we obtain AV@R0(X) = ρEV(X).
Furthermore, we set AV@R1(X) = ρWC(X), compare Kusuoka (2001). Note that
we always have

AV@Rγ(X) ≥ V@Rγ(X), γ ∈ [0, 1].

However, Average Value–at–Risk can attain the value ∞ whereas Value–at–Risk
is always finite.

Coherence of Average Value–at–Risk is ensured by the following result which
shows that the risk measure fits into the setting of Theorem 1.1.

Theorem 1.2. Let γ ∈ [0, 1]. Then AV@Rγ is a coherent risk measure with the
Fatou property. It holds

AV@Rγ(X) = sup
Q∈Qγ

EQ[−X], X ∈ L1(Ω,F ,P),

with the set of probability measures

Qγ :=
{

Q ¿ P
∣∣ dQ

dP
≤ 1

1− γ

}
, γ ∈ [0, 1]. (1.4)

Proof. See Theorem 4.47 in Föllmer and Schied (2004).

By definition, it can be observed that Average Value–at–Risk indeed takes into
consideration how high a potential loss above the level V@Rγ(X) can be. Besides
the name Average Value–at–Risk, also notions as Conditional Value–at–Risk or
Expected Shortfall can be found frequently in the literature. Usually, they denote
the same risk measure. However, sometimes care has to be taken how the authors
define their risk measures because the same name could be used for different risk
measures. If X has an absolutely continuous distribution, it holds

AV@Rγ(X) = E [−X | −X ≥ V@Rγ(X)],

which is sometimes claimed to be a coherent risk measure and called Average
Value–at–Risk, which is wrong though for general distributions. We restrict our-
selves to the name Average Value–at–Risk for the risk measure defined above
because the name intuitively fits with the definition (1.3). Moreover, the name
”Conditional Value–at–Risk” collides with the notion of conditional risk measures
treated in Section 1.4.
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1.2 Examples

The definition (1.3) still uses Value–at–Risk. For certain distributions, this might
be numerically hard to obtain. But by Uryasev and Rockafellar (2002), Average
Value–at–Risk can be represented by a simple convex optimization problem. Fix
γ ∈ (0, 1) and X ∈ L1(Ω,F ,P). Then we have

AV@Rγ(X) = inf
b∈R

{
b +

1

1− γ
E

[
(−X − b)+

] }
. (1.5)

In fact, the infimum is actually attained in b∗ = V@Rα(X). Hence

AV@Rγ(X) = V@Rγ(X) +
1

1− γ
E

[
(−X − V@Rγ(X))+

]
. (1.6)

We have noted above that AV@Rγ(X) and E [−X | − X ≥ V@Rγ(X)] do not
coincide. More precisely, it holds by Corollary 4.3 in Acerbi and Tasche (2002)

AV@Rγ(X)

=
1

1− γ

(
E

[−X · 1{−X≥V@Rγ(X)}
]− V@Rγ(X)

(
γ − P(−X < V@Rγ(X))

))
.

The relation of Value–at–Risk and Average Value–at–Risk is emphasized by Figure
1.1.
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Figure 1.1: V@R and AV@R

We conclude that Average Value–at–Risk is a coherent risk measure which is
more conservative than Value–at–Risk, two important facts that make it a reason-
able tool for measuring risk. We have emphasized above that a certain conditional
expectation can be mistaken for Average Value–at–Risk. Hence, let us take a closer
look at some related risk measures to conclude this section.
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1 Static and conditional risk measures

Tail Conditional Expectation or Expected Shortfall

We can define the so–called Tail Conditional Expectation (TCE) for upper and
lower quantiles and the Expected Shortfall (ES). Let γ ∈ (0, 1) and set

TCE−γ (X) := E [−X | X ≤ q−1−γ(X)] = E [−X | −X ≥ q+
γ (−X)],

TCE+
γ (X) := ESγ(X) := E [−X | X ≤ q+

1−γ(X)] = E [−X | −X ≥ q−γ (−X)]

for X ∈ L1(Ω,F ,P). By definition, we have

TCE+
γ (X) ≤ TCE−γ (X)

and

TCE+
γ (X) = E [−X | −X ≥ V@Rγ(X)].

Hence, some older works claimed TCE+
γ (X) = AV@Rγ(X). However it was shown

in Acerbi and Tasche (2002) that in general only

TCE+
γ (X) ≤ TCE−γ (X) ≤ AV@Rγ(X) (1.7)

holds and that the inequalities can be strict even for non–academic distributions.
On the other hand, we have equality of all terms in (1.7) if X has a continuous
distribution. The cited work gives a thorough overview on the relationship of all
the risk measures introduced above.

1.3 Further properties and representations

In Kusuoka (2001), some more interesting properties are defined which are fulfilled
by Value–at–Risk and Average Value–at–Risk. Two risks X1, X2 ∈ L1(Ω,F ,P) are
called comonotone if there exist non–decreasing (B[0,1],B)–measurable functions
f1, f2 : [0, 1] → R and a random variable U on (Ω,F ,P) with L(U) = U(0, 1) such
that

X1 = f1(U), X2 = f2(U).

Definition 1.4. Let ρ be a risk measure.

(NEG) ρ is called negative if for all risks X ∈ L1(Ω,F ,P) we have

X ≥ 0 ⇒ ρ(X) ≤ 0.

(LIN) ρ is called law invariant if for all X1, X2 ∈ L1(Ω,F ,P) it holds

L(X1) = L(X2) ⇒ ρ(X1) = ρ(X2).
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1.3 Further properties and representations

(COM) ρ is called comonotone additive if for all risks X1, X2 ∈ L1(Ω,F ,P)
we have

X1, X2 comonotone ⇒ ρ(X1 + X2) = ρ(X1) + ρ(X2).

Note that by a simple and standard argument, negativity and subadditivity
imply monotonicity:

Let ρ be a negative and subadditive risk measure and let X1, X2 ∈
L1(Ω,F ,P) with X1 ≤ X2. Then we obtain first by subadditivity and
then by negativity

ρ(X2) = ρ(X2−X1 + X1) ≤ ρ(X2−X1) + ρ(X1) ≤ 0 + ρ(X1) = ρ(X1).

Hence, ρ is monotone.

The other two properties now lead to interesting subclasses of the class of co-
herent risk measures. The law invariant ones are characterized simply by using
the Average Value–at–Risk and a subset of the class P(0, 1) of all probability mea-
sures on (0, 1). If the subset contains only one probability measures on (0, 1) we
obtain the class of law invariant and comonotone risk measures. The interval is
interpreted as the set of the safety levels γ for which the Average Value–at–Risk is
defined. The following representation results were first proven by Kusuoka (2001)
for bounded random variables and then generalized by Bäuerle and Müller (2006)
for integrable ones.

Theorem 1.3. A mapping ρ : L1(Ω,F ,P) → R is a law invariant coherent risk
measure with the Fatou–property if and only if there exists a compact and convex
set M⊂ P(0, 1) such that

ρ(X) = sup
µ∈M

∫ 1

0

AV@Rγ(X)µ(dγ), X ∈ L1(Ω,F ,P).

We say that a risk measure with the above properties is of Kusuoka–type.

Remark. The result can be generalized for convex risk measures, compare Theo-
rem 4.54 in Föllmer and Schied (2004).

Adding the property of comonotone additivity yields the following representa-
tion.

Theorem 1.4. A mapping ρ : L1(Ω,F ,P) → R is a comonotone additive risk
measure of Kusuoka–type if and only if there exists µ ∈ P(0, 1) such that

ρ(X) =

∫ 1

0

AV@Rγ(X)µ(dγ), X ∈ L1(Ω,F ,P).
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1 Static and conditional risk measures

By Theorem 9 in Kusuoka (2001), we have

AV@Rγ(X) = inf{ρ(X) | ρ of Kusuoka–type and ρ(X) ≥ V@Rγ(X)},
for every X ∈ L1(Ω,F ,P) and γ ∈ (0, 1). The proof, which is given there only in
the case X ∈ L∞(Ω,F ,P), can be adapted exactly for integrable risks, based on
Theorem 1.3. Hence, Average Value–at–Risk is the smallest coherent risk measure
dominating Value–at–Risk.

In Jouini et al. (2006) it was further shown for bounded random variables that
every law invariant convex risk measure has the Fatou–property. Note that in their
notation, −ρ is a monetary utility function. As far as we know the generalization to
unbounded but integrable risks has not been proved yet. But this is not supposed
to be part of this work.

Example 1.1. As a simple example for a law invariant and comonotone coherent
risk measure we can consider for N ∈ N a sequence (αj)j=1...,N ⊂ [0, 1) of safety

levels and a sequence of weight factors (pj)j=1,...,N ⊂ (0, 1) such that
∑N

j=1 pj = 1
and define

ρ(X) :=
N∑

j=1

pj · AV@Rαj
(X), X ∈ L1(Ω,F ,P).

Accepting the two central properties law invariance and comonotone additivity
from above as reasonable provides another argument for the importance of Average
Value–at–Risk, because it generates the resulting subclasses of coherent risk mea-
sures. Hence, let us shortly investigate the economic background of the properties
from Definition 1.4.

Economic interpretation. Negativity (which is implied by monotonicity if the
risk measure is normalized) is a natural property. If a risk is non–negative no loss
can occur, hence the risk measure should not attain a positive value for this risk.

An argument in favor of law invariance (at least in the static setting) can be
found in Wang et al. (1997). If two risks follow the same law, they should be
assigned the same value of the risk. This is because this value should depend on
the probability distribution of the risk X rather than on the actual state of the
world that leads to a realization of the financial position X.

Finally, comonotone additivity reflects a property that seems natural when rating
a portfolio of two comonotone risks X1 and X2 by a coherent risk measure ρ. More
precisely, if X1 and X2 are held together in one portfolio, the company faces a more
risky situation as if these ”coupled” risks were held separately. Hence, we should
have

X1, X2 comonotone ⇒ ρ(X1) + ρ(X2) ≤ ρ(X1 + X2).

Together with the reverse inequality which is fulfilled by subadditivity, this leads
to the property of comonotone additivity.
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1.4 Remarks on conditional risk measures and measurability

The conclusion of Section 1.2 and this section is the importance of Average
Value–at–Risk. First, it has a economic interpretation and fulfills all relevant
properties of a risk measure. Moreover, it can be used to generate further risk
measures with interesting properties. In Chapter 2, Average Value–at–Risk will
be implemented in classic portfolio optimization problems, either as target value
or within the constraints. On the other hand, using Average Value–at–Risk we
are able to define a dynamic risk measure for income processes and extend this to
models with incomplete information. This will be done in Chapters 4 and 5. As
a preparation, we need some remarks on conditional static risk measures in the
following section.

1.4 Remarks on conditional risk measures and
measurability

In this section, we briefly want to examine the notion of a conditional risk measure.
The necessity for this comes from situations when at time t = 0 some information
about the underlying risk is already available. More formally, we can interpret the
static model from the previous sections in the sense that at time t = 0, we have no
information represented by the trivial σ–algebra F0 := {∅, Ω} and at time t = T ,
we have the information represented by the σ–algebra F . An underlying risk X
then is a (F ,B)–measurable random variable whereas the corresponding value of
a risk measure ρ(X) is, being a constant, (F0,B)–measurable. Now, we can model
more available information at time t = 0 by replacing F0 with a general sub–σ–
algebra G ⊂ F , which we fix throughout the rest of this section. Hence, the value
of the risk measure should be allowed to be a (G,B)–measurable random variable.
This approach will be very important when considering dynamic risk measures in
Chapter 3.

We will now describe the setting from works as Bion-Nadal (2004), Detlefsen and
Scandolo (2005) and Ruszczyński and Shapiro (2006) and introduce conditional
versions of the most important examples treated in Section 1.2 because these will
frequently be used in the dynamic setting.

Definition 1.5. A mapping ρ( · | G) : L1(Ω,F ,P) → L0(Ω,G,P) is called a condi-
tional risk measure if it is monotone and conditional translation invariant, i. e.

(MON) For all X1, X2 ∈ L1(Ω,F ,P) it holds

X1 ≤ X2 ⇒ ρ(X1 | G) ≥ ρ(X2 | G).

(CTI) For all X ∈ L1(Ω,F ,P) and Z ∈ L1(Ω,G,P), it holds

ρ(X + Z | G) = ρ(X | G)− Z.

11



1 Static and conditional risk measures

In addition, ρ is called coherent, if it is conditional homogeneous and subadditive,
i. e.

(CHO) For all X ∈ L1(Ω,F ,P) and Λ ∈ L1(Ω,G,P) with Λ ≥ 0 it holds

ρ(ΛX | G) = Λρ(X | G).

(SUB) For all X1, X2 ∈ L1(Ω,F ,P) it holds

ρ(X1 + X2 | G) ≤ ρ(X1 | G) + ρ(X2 | G).

Remark. Other properties such as convexity can also be defined analogously to the
unconditional setting. We skip a more explicit investigation since we do not need
the details here. In the aforementioned works, various representation theorems
similar to Theorem 1.1 are derived. Again, it is shown that certain properties of a
conditional risk measure ρ( · | G) are equivalent to ρ( · | G) being of the form

ρ(X | G) = ess. sup
Q∈Q

EQ[−X | G] (1.8)

for a set Q of probability measures being absolutely continuous with respect to P.

The simplest example for a coherent conditional risk measure is the negative
conditional expectation defined via

ρEV(X | G) := E [−X | G], X ∈ L1(Ω,F ,P).

Furthermore, we can introduce conditional versions of Value–at–Risk and Av-
erage Value–at–Risk which coincide with the usual versions if G = {∅, Ω}. Note
that since we consider only real valued random variables, a regular conditional
distribution of X under G exists for X ∈ L1(Ω,F ,P), which can be verified by
Theorem 6.3 in Kallenberg (2002). More precisely, there exists a probability kernel
P (X,G) : Ω× B → [0, 1] from (Ω,G) to (R,B) such that

P (X,G)( · , B) = P(X ∈ B | G)( · ) P–almost surely

for every B ∈ B. Now, using law invariance, the following is well defined for
γ ∈ (0, 1) and ω ∈ Ω:

V@Rγ(X | G)(ω) := V@Rγ(P
(X,G)(ω, · )) := inf{x ∈ R |P(−X ≤ x | G)(ω) ≥ γ},

although it is not clear yet if V@Rγ(X | G) is indeed (G,B)–measurable. We will
verify this in a lemma below. Before doing so, let us introduce the corresponding
conditional version of Average Value–at–Risk. This is inspired by (1.5) and can
be found e. g. in Ruszczyński and Shapiro (2006). Again, let X ∈ L1(Ω,F ,P),
γ ∈ (0, 1) and ω ∈ Ω. Set

AV@Rγ(X | G)(ω) := inf
Z G–meas.

E
[
Z +

1

1− γ
(−X − Z)+ | G

]
(ω). (1.9)

Now, measurability of the defined conditional versions is provided by the following
result.
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1.4 Remarks on conditional risk measures and measurability

Lemma 1.1. Let X ∈ L1(Ω,F ,P) and γ ∈ (0, 1). Then it holds:

(i) V@Rγ(X | G) is (G,B)–measurable. Moreover, V@Rγ( · | G) is a homogeneous
conditional risk measure.

(ii) AV@Rγ(X | G) is (G,B)–measurable and we have

AV@Rγ(X | G) = V@Rγ(X | G) +
1

1− γ
E

[
(−X − V@Rγ(X | G))+ | G]

.

Moreover, AV@Rγ( · | G) is a coherent conditional risk measure.

Proof. (i) We have to show (V@Rγ(X | G))−1(B) ∈ G for every B ∈ B. It suffices
to consider Borel sets of the type B = (−∞, x] for some x ∈ R. We obtain

(
V@Rγ(X | G)

)−1(
(−∞, x]

)
= {ω ∈ Ω |V@Rγ(X | G)(ω) ≤ x}
= {ω ∈ Ω |P(X > −x | G)(ω) ≥ γ}
= {ω ∈ Ω |P(X ∈ (−∞,−x] | G)(ω) ≤ 1− γ}
=

(
P(X ∈ (−∞,−x] | G)

)−1(
[0, 1− γ]

) ∈ G.

The last step follows since, by definition, P(X ∈ B | G) is (G,B[0,1])–meas-
urable.

Monotonicity of V@Rγ( · | G) can now be obtained directly from the definition
as in the unconditional case. Conditional translation invariance and homo-
geneity can be proved in similar ways, so we restrict ourselves to translation
invariance. Let Z ∈ L1(Ω,G,P). Proposition 2.13 in Yong and Zhou (1999)
yields for almost every ω ∈ Ω:

V@Rγ(X + Z | G)(ω) = inf{x ∈ R |P(−X − Z ≤ x | G)(ω) ≥ γ}
= inf{x ∈ R |P(−X ≤ x + Z(ω) | G)(ω) ≥ γ}
= inf{x− Z(ω) ∈ R |P(−X ≤ x | G)(ω) ≥ γ}
= V@Rγ(X | G)(ω)− Z(ω).

(ii) Measurability of AV@Rγ(X | G) was already shown in Ruszczyński and Sha-
piro (2006), where it was proved that the conditional Average Value–at–Risk
can be represented in the form (1.8) with the same sets as in the uncondi-
tioned case introduced in (1.4). Furthermore, this already yields coherence
of the conditional Average Value–at–Risk. However, measurability can al-
ternatively be obtained if we show that the optimization problem in (1.9) is
solved by Z∗ = V@Rγ(X | G). By Proposition 2.13 in Yong and Zhou (1999)
we have

AV@Rγ(X | G)(ω) = inf
Z G–meas.

{
Z(ω) +

1

1− γ
E

[
(−X − Z(ω))+ | G

]
(ω)

}
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1 Static and conditional risk measures

for almost every ω ∈ Ω. Consequently, the target value depends for every
(G,B)–measurable Z only on Z(ω) and not on Z(ω′), ω′ 6= ω. Hence, by
the solution in the static case in (1.6), the infimum is attained for every
(G,B)–measurable Z such that Z(ω) = V@Rγ(X | G)(ω). This is e. g. fulfilled
for Z = V@Rγ(X | G), which is an admissible choice by part (i), therefore
yielding the assertion.

Since the unconditional versions of Value–at–Risk and Average Value–at–Risk
represent law invariant risk measures, we can also interpret them as functions
on the set of all probability distributions on R with finite mean rather than on
L1(Ω,F ,P). In this setting, the following observation is simple but important.

Corollary 1.1. If it holds G = σ(Y ) for some real–valued random variable Y on
(Ω,F ,P), we obtain for almost every ω ∈ Ω

V@Rγ(X |Y )(ω) = V@Rγ(L(X |Y = Y (ω))),

AV@Rγ(X |Y )(ω) = AV@Rγ(L(X |Y = Y (ω))).

Proof. Let ω ∈ Ω. Then we have as a direct consequence of the factorization
lemma for conditional expectations P (X,σ(Y ))(ω, ·) = L(X |Y = Y (ω)). Hence, the
assertion for Value–at–Risk is clear. But for Average Value–at–Risk, the same
follows directly from the representation in Lemma 1.1 (ii)

Remark. More intuitively, we write in the setting of the previous corollary for
every law invariant risk measure ρ

ρ(X |Y = y) := ρ(L(X |Y = y)), y ∈ Range(Y ).

Concluding this section, we give another example of a conditional risk measure
which is just a mixture of ρEV( · | G) and AV@Rγ( · | G). It will be a major tool in
Chapters 4 and 5.

Example 1.2. Define for X ∈ L1(Ω,F ,P), γ ∈ (0, 1) and p ∈ (0, 1)

ρ(X | G) := p · E [−X | G] + (1− p) · AV@Rγ(X | G).

We obtain in a similar calculation as done in the proof of Lemma 1 in Pflug and
Ruszczyński (2001):

ρ(X | G) = inf
Z G–meas.

E
[
Z +

1− γp

1− γ
(−X − Z)+ − p(−X − Z)− | G

]
,

where the infimum is again, similar as in the proof of part (ii) of Lemma 1.1,
attained in Z = V@Rγ(X | G).

If G = F0, the static risk measure ρ := ρ( · | G) even is a comonotone risk measure
of Kusuoka–type by Example 1.1.
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2 Portfolio optimization with
constraints in a binomial model

A classic problem in financial mathematics is mean–risk optimization, in particular
when the wealth is modelled by a portfolio. For example, one aims to find an
optimal investment strategy into one risk–free bond and one risky asset. In the
standard theory, there are two important optimization problems with constraints.
First, one could aim to minimize the risk of the portfolio under some constraint
that ensures a certain minimum expected return. The other approach could be to
maximize this expected return under some risk constraint. We will show how these
problems are related in a binomial model and solve the corresponding optimization
problems by introducing a classic Markov decision model. Furthermore, we will
consider a model that uses intermediate risk constraints. The idea for the latter
model is inspired by Cuoco et al. (2001) and Pirvu (2007), where continuous time
models with Value–at–Risk–constraints are investigated.

2.1 The model

We consider a classic multi–period Cox–Ross–Rubinstein–model (CRRM) on a
given probability space (Ω,F ,P) with one risk–free bond and one risky asset. Our
main concern is the final value of the portfolio, i. e. we want to maximize its ex-
pected utility or minimize its risk. In the classic theory of mean–risk optimization,
the risk is measured by the variance. But since it is not a very reasonable risk mea-
sure, we replace it with the Average Value–at–Risk. We have seen in the previous
chapter that this is a economically founded choice.

The Markov decision model defined below is similar to the one implicitly used
in Runggaldier et al. (2002) and Favero and Vargiolu (2006). The time horizon is
finite and discrete. Hence, the trading takes place at times t ∈ {0, 1, . . . , T} for
some T ∈ N. Assuming that the bond is constantly equal to 1 we can model the
price of the asset as follows. The up and down movement of the price is described by
a sequence of independent and identically distributed random variables (Yt)t=1,...,T

with distribution

P(Y1 = u) = p = 1− P(Y1 = d)

for some probability p ∈ (0, 1) and some 0 < d < 1 < u, which implies no–arbitrage.
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2 Portfolio optimization with constraints in a binomial model

Consequently, the price process follows the recursion

S0 ≡ 1, St+1 = St · Yt+1, t = 0, 1, . . . , T − 1.

The information is modelled by the natural filtration

F0 = {∅, Ω}, Ft := σ(Y1, . . . , Yt), t = 1, . . . , T.

An investment strategy at time t ∈ {0, 1, . . . , T} is a vector ϕt := (bt, at) modelling
the amount of the current wealth that is invested in the bond and the asset respec-
tively. This means that, for a given initial wealth V0 = b0 + a0, the capital can be
defined via

Vt+1 := bt+1 + at+1 = bt + atYt+1, t = 0, 1, . . . , T − 1.

The last equation is the assumption that only self–financing strategies are admis-
sible. We only consider these kind of strategies and furthermore assume that the
strategy process (ϕt)t=0,1,...,T is (Ft)t=0,1,...,T –adapted. Proposition 5.7 in Föllmer
and Schied (2004) yields that the self–financing property is equivalent to the wealth
process fulfilling the recursion

Vt+1(at) := Vt+1 = Vt + at(Yt+1 − 1), t = 0, 1, . . . , T − 1. (2.1)

Hence, we can restrict ourselves to the decision about the amount at of the asset
we want to hold. Our investment in the bond is then given by bt = Vt − at. In
general, at and bt can be allowed to attain even negative values if we assume that
shortselling is possible. We will discern these cases in the investigations below.
Note that if shortselling is not allowed, we have to choose at ∈ [0, Vt]. We denote
with F T the set of all admissible policies as described above, see below for a more
formal definition. If shortselling is not allowed, we write F T

ns instead of F T . Since
the wealth process (Vt)t=0,1,...,T depends on the choice of a policy π ∈ F T it is
sometimes denoted by (V π

t )t=0,1,...,T .
Let us now discuss the optimization problems described at the beginning. One

objective is to maximize the expected utility of the final wealth under a risk con-
straint, i. e.

sup
π∈F ′

E [u(V π
T ) |V0 = v]

s.t. ρ(V π
T |V0 = v) ≤ R

(UM)

for some utility function u : R → R, a risk measure ρ and a given maximal risk
level R ∈ R ∪ {∞}, where R = ∞ is interpreted as the unconstrained case. The
set F ′ could mean either F T or F T

ns. A variant of this problem is to replace the risk
constraint on the final value with intermediate constraints. This will be dealt with
in Section 2.3. A second approach is to minimize the risk under the constraint that
a certain minimal expected return can be achieved, i. e.
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2.1 The model

inf
π∈F ′

ρ(V π
T |V0 = v)

s.t. E [V π
T |V0 = v] ≥ µ

(RM)

for given µ ∈ R ∪ {−∞}. Hence, µ = −∞ represents the unconstrained case.
Here, we choose the identity function as a utility function, i. e. set u := idR.

This is a special case of a power utility function or HARA utility function as it is
called in Föllmer and Schied (2004). As a risk measure, we incorporate Average
Value–at–Risk, i. e. define ρ := AV@Rγ for given γ ∈ (0, 1). We have seen in the
previous chapter that it is a reasonable choice in economically motivated models.

To solve these problems we have to introduce the theory of Markov decision
processes. The following quantities are relevant for this approach.

• The state space is denoted by S ⊆ R and equipped with the σ–algebra S :=
BS. Let v ∈ S be an element of the state space, where v represents a
realization of the wealth process at time t ∈ {0, 1, . . . , T}. If shortselling
is not allowed we set S := R+, otherwise S = R.

• The action space is A = R equipped with A := B. Then a ∈ A denotes the
invested amount in the asset.

• Sometimes there are restrictions on the actions, therefore for state v ∈ S
the space of admissible policies is D(v) ⊂ A and the restriction set is then
D = {(v, a) ∈ S × A | a ∈ D(v)}. We assume that D(v) is convex for v ∈ S.
This is fulfilled in all of the treated models. For example, set D(v) := [0, v]
for v ∈ S if F ′ = F T

ns and if there are no intermediate constraints.

• The disturbance has values in E = {u, d} equipped with E := ℘(E).

• The transition function Tt : D × E → S at time t = 1, . . . , T is given by

Tt(v, a, y) := v + a · (y − 1), (v, a, y) ∈ D × E.

• The transition law Qt : D×S → [0, 1] at time t = 1, . . . , T is the conditional
distribution of V π

t given (V π
t−1, at−1) = (v, a) ∈ D, formally

Qt(v, a; B) := P(Tt(v, a, Yt) ∈ B), B ∈ S.

• The one-step reward function at time t = 0, 1, . . . , T − 1 is usually a mea-
surable mapping rt : D → R. In our models it vanishes, i. e. we can choose
rt ≡ 0, t = 0, 1, . . . , T − 1.

• The terminal reward function is a measurable mapping JT : S → R. In the
mean maximization problem without a constraint for example, it is chosen
as JT (v) = v, v ∈ S.

17



2 Portfolio optimization with constraints in a binomial model

We are now ready to solve various optimization problems. The theoretical back-
ground is the following theorem for which we need another definition.

Definition 2.1. For t = 0, . . . , T − 1, the set of (T − t)−step admissible Markov
policies is given by

F T−t := {π = (ft, . . . , fT−1) | fk : S → A (S,A)–meas., k = t, . . . , T − 1}.

By defining the classic value functions via

Jt,π(v) := E [JT (V π
T ) |V π

t = v], v ∈ S,

for every π = (ft, . . . , fT−1) ∈ F T−t and

Jt(v) := inf
π∈F T−t

Jt,π(v), v ∈ S,

Theorem 3.2.1 in Hernández-Lerma and Lasserre (1996) yields the following result.

Theorem 2.1. Let t ∈ {0, 1, . . . , T − 1}. If the functions J ′T (v) := JT (v) and

J ′t(v) := inf
a∈D(v)

E
[
J ′t+1(Vt+1)

∣∣Vt = v, at = a
]
, v ∈ S, (2.2)

defined for t = 0, . . . , T − 1 are measurable and if the infimum is attained in
a∗ = f ∗t (v) ∈ D(v), such that f ∗t : S → A is a (S,A)–measurable function, then
π∗ := (f ∗0 , . . . , f ∗T−1) ∈ F T is an optimal policy in the sense that

J0(v) = J0,π∗(v) = J ′0(v), v ∈ S.

2.2 Risk minimization

In this section we want to solve the risk minimization problem (RM) introduced
above with ρ := AV@Rγ for given γ ∈ (0, 1). We assume throughout this sec-
tion that shortselling is possible, i. e. choose F ′ = F T . Furthermore, define the
probability

p∗ :=
1− d

u− d
∈ (0, 1).

Note that we have
p > p∗ ⇔ E [Y1 − 1] > 0, (2.3)

i. e. there is a tendency for an increase in (2.1) if p > p∗ and a decrease if p < p∗

(if we invest a positive amount in the asset). Hence, we can interpret our problem
as a favorable game in the former case and as an unfavorable game in the latter
case. Note that p∗ is the risk–neutral probability in the CRRM, i. e. it defines the
unique martingale measure P∗ in this model via P∗(Yt = u) = p∗, t = 1, . . . , T , see
e. g. Theorem 5.40 in Föllmer and Schied (2004).
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2.2 Risk minimization

2.2.1 The unconstrained case

As an introductory step, let us first solve (RM) without a constraint. Formally,
we set µ = −∞. Below, we discern the cases p > p∗ and p < p∗. For the sake of
completeness, let us briefly make some statements if p = p∗.

Lemma 2.1. Assume p = p∗ and let v ∈ S, γ ∈ (0, 1). Then the following holds
for arbitrary π ∈ F T :

(i) E [V π
T |V0 = v] = v,

(ii) AV@Rγ(V
π
T |V0 = v) ≥ −v.

Proof. In the case p = p∗, (V π
t )t=0,1,...,T is a P–martingale for every π ∈ F T .

Hence, E [V π
T |V0 = v] = v. Furthermore, it holds for any random variable X that

AV@Rγ(X) ≥ E [−X], therefore yielding also the second part.

Now, the following result holds.

Proposition 2.1. Let γ ∈ (0, 1) and v ∈ S. Then it holds

inf
π∈F T

AV@Rγ(V
π
T |V0 = v) =





−v , γ ≥ 1−
(

min
{ 1− p

1− p∗
,

p

p∗

})T

,

−∞ , otherwise.

In the finite case, an optimal policy is given by π∗ = (0, . . . , 0).

Proof. If p = p∗ the assertion is obvious using Lemma 2.1 and noting that the lower
bound −v given in part (ii) is attained for π = (0, . . . , 0). Now, assume p 6= p∗.
The representation (1.5) yields

inf
π∈F T

AV@Rγ(V
π
T |V0 = v)

= inf
π∈F T

inf
b∈R

{
b +

1

1− γ
E

[
(−V π

T − b)+ |V0 = v
] }

= inf
b∈R

{
b +

1

1− γ
inf

π∈F T
E

[
(−V π

T − b)+ |V0 = v
] }

=





inf
b∈R

{
b +

1

1− γ

( 1− p

1− p∗

)T

(−v − b)+
}

, p > p∗,

inf
b∈R

{
b +

1

1− γ

( p

p∗

)T

(−v − b)+
}

, p < p∗,

where the last step follows from Theorem 4.1 in Runggaldier et al. (2002). If we
set

c :=





1

1− γ

( 1− p

1− p∗

)T

, p > p∗,

1

1− γ

( p

p∗

)T

, p < p∗,
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2 Portfolio optimization with constraints in a binomial model

then the function

b 7→ b + c · (−v − b)+, b ∈ R,

is linearly increasing for b > −v. Furthermore, it is non–increasing for b < −v if
and only if c ≥ 1. In this case, the minimal value is attained in b∗ = −v. Otherwise,
i. e. if c < 1, the function is strictly increasing and piecewise linear on the real line,
hence tending to −∞ for b → −∞.

Since

c ≥ 1 ⇔





γ ≥ 1−
( 1− p

1− p∗

)T

, p > p∗

γ ≥ 1−
( p

p∗

)T

, p < p∗,

the assertion follows. Note that optimality of the policy π∗ in the finite case follows
because V π∗

T = V0 ∈ R and AV@Rγ(V0) = −V0.

Remark. 1. The optimal policy is not unique. We can observe from the proof
and Theorem 4.1 in Runggaldier et al. (2002) that for p > p∗, for example,
also π = (f0, . . . , fT−1) with

ft(v) = −v − V0

u− 1
, v ∈ S, t = 0, 1, . . . , T − 1,

is optimal. To apply the mentioned Theorem, we incorporated a constant
claim H(ST ) := −b.

2. It is important to observe that exactly one of the two values 1−p
1−p∗ and p

p∗
is less than 1 while the other one is greater than 1, depending on whether
p > p∗ or p < p∗. Hence, the inequality for γ in the proposition is always
non–trivial.

3. We see by the result that if the safety level γ is chosen very small, i. e. we are a
risk–lover, it is possible to choose a policy π which yields an arbitrarily small
risk. However, it is more reasonable to choose γ large, hence our minimal
risk will usually be larger than −∞. This interpretation also applies to the
results given below.

Interpretation of the optimal policy The proposition shows that if we choose
a sufficiently large safety level γ we minimize our risk by investing nothing in
the risky asset and obtain a minimal risk which is equal to AV@Rγ(V0 |V0 = v).
Hence, it is not possible to diminish this initial risk further by investing a positive
proportion of the wealth into the asset over time.
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2.2 Risk minimization

2.2.2 A constraint on the final value

Now, we want to solve (RM) with general µ ∈ R. As a preparation, we need a
simple lemma. Set Y := Y1. Then we have by a direct calculation for γ ∈ (0, 1)

AV@Rγ(Y ) = −d− 1[0,p](γ)
p− γ

1− γ
(u− d) ≤ −d,

AV@Rγ(−Y ) = u + 1[0,1−p](γ)
1− p− γ

1− γ
(d− u) ≤ u.

(2.4)

The relationship of p and p∗ now provides some properties of these two values.

Lemma 2.2. Let γ ∈ (0, 1).

(i) If p > p∗, then AV@Rγ(−Y ) > 1. Moreover, p > p−p∗
1−p∗ and

AV@Rγ(Y )





> −1 , γ >
p− p∗

1− p∗
,

= −1 , γ =
p− p∗

1− p∗
,

< −1 , γ <
p− p∗

1− p∗
.

(ii) If p < p∗, then AV@Rγ(Y ) > −1. Moreover, 1− p > p∗−p
p∗ and

AV@Rγ(−Y )





> 1 , γ >
p∗ − p

p∗
,

= 1 , γ =
p∗ − p

p∗
,

< 1 , γ <
p∗ − p

p∗
.

Proof. The proof is given for part (i). Part (ii) can be done in a similar manner.
Note that the inequalities p > p−p∗

1−p∗ and 1− p > p∗−p
p∗ are obvious.

Let p > p∗. For every random variable X it holds AV@Rγ(X) ≥ E [−X]. Hence,

AV@Rγ(−Y ) ≥ E [Y ]
(2.3)
> 1.

Therefore the first part of (i) follows.
Let γ ≥ p > p−p∗

1−p∗ . We obtain AV@Rγ(Y ) = −d > −1. Consider now the
converse γ < p. Then the following holds:

AV@Rγ(Y ) > −1 ⇔ −d− p− γ

1− γ
(u− d) > −1

⇔ 1− d >
p− γ

1− γ
(u− d)

⇔ p∗ >
p− γ

1− γ

⇔ γ >
p− p∗

1− p∗
.
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2 Portfolio optimization with constraints in a binomial model

Doing the same calculation replacing ”>” with ”=” and ”<” finally yields the
assertion.

As an illustration for the solution of problem (RM) let us first take a look at the
one–period case. This can be treated in an elementary way.

The one–period case

Let T = 1 and v ∈ S be given and assume p > p∗. We have to solve

inf
a∈R

AV@Rγ(v + a(Y1 − 1))

s.t. E [v + a(Y1 − 1)] ≥ µ.

Denote the optimal target value by J0(v). The constraint can be reformulated with
a ∈ R as

E [v + a(Y1 − 1)] ≥ µ ⇔ a ≥ µ− v

E [Y1 − 1]
.

If v ≤ µ, only non–negative values for a are admissible. Hence, the target function
becomes by coherence of Average Value–at–Risk

h(a) := AV@Rγ(v + a(Y1 − 1)) = a(AV@Rγ(Y1) + 1)− v, a ∈ R+.

By Lemma 2.2 (i), the function h is non–decreasing on R+ if and only if γ ≥ p−p∗
1−p∗ .

In this case, the optimal value for a is the smallest admissible one, i. e. we have
a∗ = µ−v

E [Y1−1]
. It is unique if and only if γ > p−p∗

1−p∗ . If γ < p−p∗
1−p∗ , h is linear and

strictly decreasing, hence tending to −∞ for a →∞.
If v > µ, also negative values for a are admissible. We obtain

h(a) = −a(AV@Rγ(−Y1)− 1)− v, a ∈ R−,

and the function h is decreasing on R− again by Lemma 2.2 (i). With the same
argument as above the optimal value for a is a∗ = 0 if γ ≥ p−p∗

1−p∗ and h tends to
−∞ otherwise. Summing things up, we have

J0(v) =





(µ− v)+ · AV@Rγ(Y1) + 1

E [Y1 − 1]
− v , γ ≥ p− p∗

1− p∗
,

−∞ , γ <
p− p∗

1− p∗
.

In the same manner we obtain for p < p∗

J0(v) =





(µ− v)+ · AV@Rγ(−Y1)− 1

E [Y1 − 1]
− v , γ ≥ p∗ − p

p∗
,

−∞ , γ <
p∗ − p

p∗
.

If p = p∗, no policy is admissible for v < µ and all policies are admissible otherwise.
In the latter case, a = 0 is optimal by the lower bound given in Lemma 2.1 (ii).
Hence the representations for p > p∗ are also valid for p = p∗ if we set 0 · ∞ = 0.
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2.2 Risk minimization

The multi–period case

In order to treat this problem, we take a Lagrangian approach. Define the Lagrange
function L : F T × R+ → R via

L(π, λ) := AV@Rγ(V
π
T |V0 = v) + λ

(
µ− E [V π

T |V0 = v]
)
, (π, λ) ∈ F T × R+.

The optimal value of (RM) is then given by

h1(v) := inf
π∈F T

sup
λ≥0

L(π, λ), v ∈ S. (2.5)

To find an optimal pair (π∗, λ∗) for (RM) we first solve the dual problem

h2(v) := sup
λ≥0

inf
π∈F T

L(π, λ), v ∈ S, (2.6)

which in general gives only a lower bound for the primal problem (RM), i. e. it holds
h1 ≥ h2. However, we will see below that the optimal target values are equal and
how we obtain an optimal policy for (RM) from an optimal pair (π∗, λ∗) of the
dual problem (2.6).

The latter can be rewritten as follows, again applying (1.5):

h2(v)

= sup
λ≥0

inf
π∈F T

{
AV@Rγ(V

π
T |V0 = v) + λ

(
µ− E [V π

T |V0 = v]
)}

= sup
λ≥0

inf
π∈F T

{
inf
b∈R

{
b +

1

1− γ
E

[
(−V π

T − b)+ |V0 = v
] }

+ λ
(
µ− E [V π

T |V0 = v]
)}

= sup
λ≥0

inf
b∈R

{
b(1 + λ) + λµ + inf

π∈F T

{(
λ +

1

1− γ

)
E

[
(−V π

T − b)+ |V0 = v
]

− λE
[
(−V π

T − b)− |V0 = v
] }}

= sup
λ≥0

inf
b∈R

{
b(1 + λ) + λµ + inf

π∈F T
E

[
JT (V π

T ) |V0 = v
]}

,

where we used V π
T + b = (V π

T + b)+ − (V π
T + b)−, b ∈ R, for π ∈ F T and set

JT (v′) =
(
λ +

1

1− γ

)
(v′ + b)− − λ(v′ + b)+, v′ ∈ S.

Consequently, as a first step we have to solve the Markov decision model introduced
above with JT as defined to obtain the inner infimum. Again, we give a detailed
proof in the case p > p∗ and only state the similar result if p < p∗. Define one–step
policies for b ∈ R via

f
(1)
b (v′) := −v′ + b

u− 1
, f

(2)
b (v′) :=

v′ + b

1− d
, v′ ∈ S.

The theorem is formulated for a slightly more general form of JT .
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2 Portfolio optimization with constraints in a binomial model

Theorem 2.2. Let α1 > α2 ≥ 0, b ∈ R, and assume p 6= p∗. Furthermore, define
JT (v) := α1(v + b)− − α2(v + b)+ and D(v) = A, v ∈ S. Then it holds:

(i) If p > p∗ we have for v ∈ S

J0(v)

=





( 1− p

1− p∗

)T

α1(v + b)− −
( p

p∗

)T

α2(v + b)+ ,
( 1− p

1− p∗

)T

α1 ≥
( p

p∗

)T

α2,

−∞ , otherwise.

In the finite case, an optimal policy πb = (f0, . . . , fT−1) ∈ F T is given by

ft = max
{
f

(1)
b , f

(2)
b

}
, t = 0, 1, . . . , T − 1.

(ii) If p < p∗ we have for v ∈ S

J0(v)

=





( p

p∗

)T

α1(v + b)− −
( 1− p

1− p∗

)T

α2(v + b)+ ,
( p

p∗

)T

α1 ≥
( 1− p

1− p∗

)T

α2,

−∞ , otherwise.

In the finite case, an optimal policy πb = (f0, . . . , fT−1) ∈ F T is given by

ft = min
{
f

(1)
b , f

(2)
b

}
, t = 0, 1, . . . , T − 1.

Proof. We only show part (i), so assume p > p∗. If we can prove that for all
t ∈ {0, 1, . . . , T − 1} and v ∈ S

J ′t(v)

=





( 1− p

1− p∗

)T−t

α1(v + b)− −
( p

p∗

)T−t

α2(v + b)+ ,
( 1− p

1− p∗

)T−t

α1 ≥
( p

p∗

)T−t

α2,

−∞ , otherwise,

the assertion will follow from Theorem 2.1.
The proof is by backward induction on t and the main work has to be done for

t = T − 1. By definition of J ′T−1, we have to solve for v ∈ S

J ′T−1(v) = inf
a∈A
E [α1(v + b + a(YT − 1))− − α2(v + b + a(YT − 1))+]

= inf
a∈A

{
p
(
α1(v + b + a(u− 1))− − α2(v + b + a(u− 1))+

)

+ (1− p)
(
α1(v + b + a(d− 1))− − α2(v + b + a(d− 1))+

)}
.

24



2.2 Risk minimization

Assume first that v ≥ −b. In this case

ψ(1) := f
(1)
b (v) = − v + b

u− 1
≤ 0 ≤ − v + b

d− 1
= f

(2)
b (v) =: ψ(2).

We have to analyze the slope of the piecewise linear function from above – which
has to be minimized – on the three intervals (−∞, ψ(1)), [ψ(1), ψ(2)] and (ψ(2),∞).
For a ∈ (ψ(2),∞), we have v + b + a(u− 1) > 0, v + b + a(d− 1) < 0 and the slope
becomes negative on this interval if and only if

− pα2(u− 1)− (1− p)α1(d− 1) < 0

⇔ −pα2
u− 1

u− d
− (1− p)α1

d− 1

u− d
< 0

⇔ 1− p

1− p∗
α1 <

p

p∗
α2. (2.7)

Hence, by choosing a arbitrarily large, we obtain J ′T−1(v) = −∞ if (2.7) holds.
Assume now that 1−p

1−p∗α1 ≥ p
p∗α2 so that there is an optimal value for a with

a ≤ ψ(2) (note that if equality holds in (2.7), also every a > ψ(2) is optimal). If
even a < ψ(1) then v + b + a(u − 1) < 0, v + b + a(d − 1) > 0 and the slope on
(−∞, ψ(1)) is always negative because

− pα1(u− 1)− (1− p)α2(d− 1) < 0

⇔ −pα1
u− 1

u− d
− (1− p)α2

d− 1

u− d
< 0

⇔ p∗

p
α2 <

1− p∗

1− p
α1,

which is always fulfilled because α1 > α2 and p > p∗. Consequently, an optimal
value a∗ for a fulfills a∗ ≥ ψ(1), hence a∗ ∈ [ψ(1), ψ(2)]. The last step is to analyze
the slope on this interval. We obtain v + b + a(u− 1) ≥ 0, v + b + a(d− 1) ≥ 0 for
a ∈ [ψ(1), ψ(2)] and therefore the function is non–increasing on this region:

− pα2(u− 1)− (1− p)α2(d− 1) ≤ 0

⇔ −α2

(
p
u− 1

u− d
+ (1− p)

d− 1

u− d

)
≤ 0

⇔ α2(p(1− p∗)− (1− p)p∗︸ ︷︷ ︸
>0 for p>p∗

) ≥ 0.

This always holds since by assumption α2 ≥ 0. We conclude that a (not necessarily
unique) optimal value for a is given by a∗ = ψ(2) and that

J ′T−1(v) = −pα2(v + b + ψ(2)(u− 1)) = −pα2

(
v + b− (v + b)

u− 1

d− 1

)

= − p

p∗
α2(v + b), v ≥ −b.

(2.8)
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2 Portfolio optimization with constraints in a binomial model

Now, let v < −b. We then have ψ(2) < ψ(1) and we can show in a similar way
as above that the function is strictly decreasing on (ψ(1),∞) if and only if (2.7)
holds, hence again J ′T−1(v) = −∞. Assuming the converse 1−p

1−p∗α1 ≥ p
p∗α2 shows

that the infimum is attained in a∗ = ψ(1) which yields

J ′T−1(v) = −(1− p)α1(v + b + ψ(1)(d− 1)) = − 1− p

1− p∗
α2(v + b), v < −b. (2.9)

Combining (2.8) and (2.9) gives the desired result for t = T − 1. The optimal
policy fT−1 is given by

fT−1(v) = max{ψ(1), ψ(2)} = max
{
f

(1)
b (v), f

(2)
b (v)

}
, , v ∈ S,

which is indeed an (S,A)–measurable function.
Finally, assume that the assertion holds for fixed t ∈ {1, . . . , T − 1}. If

( 1− p

1− p∗

)T−t

α1 >
( p

p∗

)T−t

α2

the assertion follows from the induction hypothesis exactly in the same way as for

t = T − 1 by replacing α1 with
(

1−p
1−p∗

)T−t
α1 and α2 with

(
p
p∗

)T−t
α2. Now, the

converse

C :=
( 1− p

1− p∗

)T−t

α1 ≤
( p

p∗

)T−t

α2, (2.10)

implies ( 1− p

1− p∗

)T−t+1

α1 <
( p

p∗

)T−t+1

α2.

Hence, we have to show J ′t−1(v) = −∞ for all v ∈ S. If the inequality in (2.10) is
strict, we obtain J ′t(v) = −∞ for all v ∈ S, hence also J ′t−1(v) = −∞ for all v ∈ S.
In the case of equality in (2.10) it holds for the constant C > 0 and v ∈ S

J ′t−1(v) = inf
a∈A
E [J ′t(Vt) |Vt−1 = v, at−1 = a]

= C · inf
a∈R
E [(v + b + a(Yt − 1))− − (v + b + a(Yt − 1))+]

= −C · sup
a∈R

{
v + b + a(E [Yt − 1])

}
= −∞.

The last equality follows because p 6= p∗. This concludes the proof.

Remark. 1. One can observe from the proof that πb is not always the unique
optimal policy. First, if α2 = 0 additionally every ft with

ft(v) ∈ [
min

{
f

(1)
b (v), f

(2)
b (v)

}
, max

{
f

(1)
b (v), f

(2)
b (v)

}]

is optimal for all t ∈ {0, 1, . . . , T − 1}. If on the other hand α2 > 0 and if

( 1− p

1− p∗

)T

α1 =
( p

p∗

)T

α2 respectively
( p

p∗

)T

α1 =
( 1− p

1− p∗

)T

α2
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2.2 Risk minimization

then every f0 with f0(v) ≥ max
{
f

(1)
b (v), f

(2)
b (v)

}
(for p > p∗) or with

f0(v) ≤ min
{
f

(1)
b (v), f

(2)
b (v)

}
(for p < p∗ respectively) is also optimal. The

components f1, . . . , fT−1 of πb are unique though.

2. Theorem 4.1 in Runggaldier et al. (2002) is a special case of this result with
α1 = 1 and α2 = 0. In order to obtain the same optimal policies we refer
to the first part of this remark. Furthermore, our proof still works with an
analogous result if one replaces b with a claim to be hedged as they do and
by extending the state space.

3. It is not possible to use Theorem 3.2 from Favero and Vargiolu (2006) with
l : R → R, l(x) := α1x

− − α2x
+, and a claim H(ST ) ≡ b for example since

an important assumption would be that V0 < b. But in our model, it is not
reasonable to exclude an initial wealth smaller than b.

To obtain optimal policies for (RM) we need the following lemma, which provides
the expectation of the final wealth under the policies given in Theorem 2.2.

Lemma 2.3. Let b ∈ R and consider the policy πb defined in Theorem 2.2. Then
it holds for v ∈ S:

(i) If p > p∗ and b ≥ −v or if p < p∗ and b ≤ −v it holds

E [V πb
T |V0 = v] = v + (v + b) · pT − (p∗)T

(p∗)T
≥ v.

(ii) If p > p∗ and b ≤ −v or if p < p∗ and b ≥ −v it holds

E [V πb
T |V0 = v] = v − (v + b) · (1− p∗)T − (1− p)T

(1− p∗)T
≥ v.

Proof. We only prove the case p > p∗ and b ≥ −v. Let πb = (f0, . . . , fT−1). First,
a simple inductive argument yields V πb

t + b ≥ 0 for every t ∈ {0, 1, . . . , T − 1} if

V0 = v. Hence, ft(V
πb
t ) =

V
πb
t +b

1−d
. We furthermore obtain

V πb
t = v + (v + b) · Zt, t = 0, 1, . . . , T, (2.11)

where Z = (Zt)t=0,1,...,T is a non–negative Markov chain defined recursively through

Z0 = 0, Zt = Zt−1 +
1 + Zt−1

1− d
(Yt − 1), t = 1, . . . , T.

This can be seen inductively. The case t = 0 is obvious. Now assume that the
assertion holds for V πb

t−1. Then

V πb
t = V πb

t−1 + ft−1(V
πb
t−1)(Yt − 1) = V πb

t−1 +
V πb

t−1 + b

1− d
(Yt − 1)

= v + (v + b) · Zt−1 +
v + (v + b) · Zt−1 + b

1− d
(Yt − 1) = v + (v + b) · Zt,
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2 Portfolio optimization with constraints in a binomial model

hence (2.11) is shown. By construction, the expectations of the components of Z
follow the recursion

EZ0 = 0, EZt = EZt−1 +
1 + EZt−1

1− d
E [Yt−1] =

p− p∗

p∗
+EZt−1 · p

p∗
, t = 1, . . . , T,

hence

EZt =
pt − (p∗)t

(p∗)t
, t = 0, 1, . . . , T. (2.12)

We conclude that for every πb with b ≥ −v

E [V πb
T |V0 = v]

(2.11)
= v + (v + b) · EZT

(2.12)
= v + (v + b) · pT − (p∗)T

(p∗)T
.

Now consider Theorem 2.2 with α1 := λ + (1− γ)−1 and α2 = λ for fixed λ ≥ 0.
To stress the dependence of the value function from λ and b set Jλ,b

0 := J0. Define

γ1(p, p
∗) :=





(1− p∗)T − (1− p)T

(1− p∗)T
, p > p∗,

0 , p = p∗,
(p∗)T − pT

(p∗)T
, p < p∗,

γ2(p, p
∗) :=





pT (1− p∗)T − (1− p)T

(
p(1− p∗)

)T − (
(1− p)p∗

)T
, p > p∗,

0 , p = p∗,

(1− p)T (p∗)T − pT

(
(1− p)p∗

)T − (
p(1− p∗)

)T
, p < p∗,

and

Cγ(p, p
∗) :=





min

{
(p∗)T

pT − (p∗)T
,
(1− p)T (1− γ)−1 − (1− p∗)T

(1− p∗)T − (1− p)T

}
, p > p∗,

∞ , p = p∗,

min

{
(1− p∗)T

(1− p)T − (1− p∗)T
,
pT (1− γ)−1 − (p∗)T

(p∗)T − pT

}
, p < p∗.

Note that always γ2(p, p
∗) ≥ γ1(p, p

∗) and that under the condition γ ≥ γ1(p, p
∗),

we have Cγ(p, p
∗) ≥ 0. The following lemma provides the solution of the inner

infimum in (2.6).

Lemma 2.4. Let λ ≥ 0 and assume p 6= p∗. Then we have with V0 = v ∈ S

inf
π∈F T

L(π, λ) =

{
(µ− v)λ− v , λ ∈ [0, Cγ(p, p

∗)], γ ≥ γ1(p, p
∗),

−∞ , otherwise.
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2.2 Risk minimization

In the finite case, the unique optimal policy for 0 < λ < Cγ(p, p
∗) is given by

π∗ = π−v, where πb is defined as in Theorem 2.2 for b ∈ R. For λ = 0 the same
policy is optimal but not unique, see the remark after Theorem 2.2 for α2 = 0.

If λ = Cγ(p, p
∗) > 0 the set of optimal policies is given as follows. In the case

γ ≥ γ2(p, p
∗) every πb with b ≥ −v is optimal. For γ1(p, p

∗) ≤ γ ≤ γ2(p, p
∗) one

has to choose b ≤ −v.

Proof. We have seen above that

inf
π∈F T

L(π, λ)

= inf
π∈F T

inf
b∈R

{
b(1 + λ) + λµ + E

[(
λ +

1

1− γ

)
(V π

T + b)− − λ(V π
T + b)+ |V0 = v

]}

= inf
b∈R

{
b(1 + λ) + λµ + inf

π∈F T
E

[(
λ +

1

1− γ

)
(V π

T + b)− − λ(V π
T + b)+ |V0 = v

]}

= inf
b∈R

{
b(1 + λ) + λµ + Jλ,b

0 (v)︸ ︷︷ ︸
=: g(λ, b)

}
,

where in the last step we used Theorem 2.2 with α1 = λ + (1 − γ)−1 and α2 = λ
for fixed λ ≥ 0. The optimal policy for the inner infimum is given by πb defined in
the theorem for fixed b ∈ R. Let p > p∗. Again by Theorem 2.2 we have for b ∈ R
and λ ≥ 0

Jλ,b
0 (v) = −∞ ⇔

( 1− p

1− p∗

)T

(λ + (1− γ)−1) <
( p

p∗

)T

λ

⇔ λ >

(
(1− p)p∗

)T

(
p(1− p∗)

)T − (
(1− p)p∗

)T
(1− γ)−1.

Consequently, inf
π∈F T

L(π, λ) = −∞ for all λ ∈ R+ \ I1, where

I1 :=

[
0,

(
(1− p)p∗

)T

(
p(1− p∗)

)T − (
(1− p)p∗

)T
(1− γ)−1

]
.

If conversely λ ∈ I1, then

g(λ, b) = b(1 + λ) + λµ +
( 1− p

1− p∗

)T (
λ + (1− γ)−1

)
(v + b)− −

( p

p∗

)T

λ(v + b)+.

Therefore, g(λ, ·) is a piecewise linear function with slope

∂g(λ, b)

∂b
=





1 + λ−
( 1− p

1− p∗

)T (
λ + (1− γ)−1

)
, b < −v,

1 + λ−
( p

p∗

)T

λ , b > −v.
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2 Portfolio optimization with constraints in a binomial model

Hence, the infimum over all b ∈ R is finite – and then attained in b∗ = −v – if and
only if for λ ≥ 0

inf
b∈R

g(λ, b) > −∞ ⇔ 1 + λ−
( 1− p

1− p∗

)T

(λ + (1− γ)−1 ≤ 0 ≤ 1 + λ−
( p

p∗

)T

λ

⇔ λ ≤ (1− p)T (1− γ)−1 − (1− p∗)T

(1− p∗)T − (1− p)T
∧ λ ≤ (p∗)T

pT − (p∗)T

⇔ λ ≤ Cγ(p, p
∗).

Note that b∗ = −v is the unique optimal point if and only if λ < Cγ(p, p
∗). We

thoroughly treat the uniqueness below.
If γ < γ1(p, p

∗) we have Cγ(p, p
∗) < 0 and therefore I2 := [0, Cγ(p, p

∗)] = ∅.
Consequently, we have for λ ∈ R+ \ I2

inf
π∈F T

L(π, λ) = inf
b∈R

g(λ, b) = −∞. (2.13)

Now, let γ ≥ γ1(p, p
∗), so I2 6= ∅, and λ ∈ I2. A simple calculation yields I2 ⊂ I1:

(p∗)T

pT − (p∗)T
>

(
(1− p)p∗

)T

(
p(1− p∗)

)T − (
(1− p)p∗

)T
(1− γ)−1

⇔ γ < pT (1− p∗)T − (1− p)T

(
p(1− p∗)

)T − (
(1− p)p∗

)T
= γ2(p, p

∗) (2.14)

⇔ (1− p)T (1− γ)−1 − (1− p∗)T

(1− p∗)T − (1− p)T
<

(
(1− p)p∗

)T

(
p(1− p∗)

)T − (
(1− p)p∗

)T
(1− γ)−1,

hence it always holds

Cγ(p, p
∗) ≤

(
(1− p)p∗

)T

(
p(1− p∗)

)T − (
(1− p)p∗

)T
(1− γ)−1.

The infimum becomes for γ ≥ γ1(p, p
∗) and λ ∈ I2 with b∗ = −v and Jλ,−v

0 (v) = 0

inf
π∈F T

L(π, λ) = inf
b∈R

g(λ, b) = g(λ, b∗) = −v(1 + λ) + λµ + Jλ,−v
0 (v)

= (µ− v)λ− v.

Together with (2.13) this yields the first part of the assertion.
In this situation we see from the calculation above that an optimal policy π∗,

i. e. with L(π∗, λ) = (µ−v)λ−v, is given by π∗ = π−v. If λ < Cγ(p, p
∗) the policy is

also unique since g(λ, · ) is strictly decreasing on (−∞,−v) and strictly increasing
on (−v,∞). However, for λ = Cγ(p, p

∗) this is not the case. We have seen that the
function g(λ, · ) is constant on (−v,∞) for γ ≥ γ2(p, p

∗) and constant on (−∞,−v)
for γ ≤ γ2(p, p

∗). Hence, additionally every πb for b > −v or b < −v respectively
is optimal if λ = Cγ(p, p

∗). This concludes the proof.
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2.2 Risk minimization

Now, the solution of (RM) is based on the following standard result from convex
optimization theory, which follows immediately from Theorem 5, Chapter 1, §1.1
in Ioffe and Tihomirov (1979), for example.

Let X be a linear space and A ⊂ X a convex subset. Introduce the problem

inf
x∈A

g0(x)

s.t. g1(x) ≤ 0,
(CO)

for convex functions g0, g1 : X → R. Furthermore, define the Lagrange function
L : X × R+ → R via

L(x, λ) := g0(x) + λ · g1(x), (x, λ) ∈ X × R+

Then (CO) is equivalent to

inf
x∈A

sup
λ≥0

L(x, λ). (PP)

The dual problem is

sup
λ≥0

inf
x∈A

L(x, λ), (DP)

which gives in general only a lower bound for the primal problem.

Theorem 2.3. Assume that the Slater condition is fulfilled, i. e. that there exists
x ∈ A such that g1(x) < 0. Then the following are equivalent for x∗ ∈ A:

(i) x∗ is an optimal solution of (PP).

(ii) There exists λ∗ ≥ 0 such that (x∗, λ∗) is an optimal solution of (DP) and
fulfills the Kuhn–Tucker–conditions

L(x∗, λ∗) = inf
x∈A

L(x, λ∗), g1(x
∗) ≤ 0, λ∗g1(x

∗) = 0.

Furthermore, if (i) or (ii) holds, the optimal values of (PP) and (DP) are equal.

Theorem 2.3 can be applied to (RM) since V π
T is linear in π. It follows that

the target function of (RM) is convex in π due to subadditivity of the Average
Value–at–Risk. Furthermore, the constraint is a linear function in π and the Slater
condition is obviously fulfilled, too. Now, the following result holds.

Theorem 2.4 ((RM) with shortselling). Consider the function h1 defined in (2.5)
and let v ∈ S. Then

h1(v) =

{
(µ− v)+ · Cγ(p, p

∗)− v , γ ≥ γ1(p, p
∗),

−∞ , otherwise.
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2 Portfolio optimization with constraints in a binomial model

Furthermore, in the finite case an optimal policy is πb∗ defined in Theorem 2.2 with

b∗ =





(µ− v)+ (p∗)T

pT − (p∗)T
− v ,

if γ ≥ γ2(p, p
∗) and p > p∗

or γ ≤ γ2(p, p
∗) and p < p∗

,

−(µ− v)+ (1− p∗)T

(1− p∗)T − (1− p)T
− v ,

if γ ≤ γ2(p, p
∗) and p > p∗

or γ ≥ γ2(p, p
∗) and p < p∗

.

If p 6= p∗, µ > v, γ > γ1(p, p
∗) and γ 6= γ2(p, p

∗) the given optimal policy is unique.

Proof. If p = p∗ Lemma 2.1 implies that there are no admissible policies for v < µ.
Hence, h1(v) = ∞ = (µ− v) · Cγ(p, p

∗). Conversely, in the case v ≥ µ, all policies
are admissible and the problem is equivalent to the one in Proposition 2.1. Hence,
it holds with the convention 0 · ∞ = 0

h1(v) = −v = 0 · ∞ − v = (µ− v)+ · Cγ(p, p
∗)− v

and πb∗ with b∗ = −v is optimal.
The rest of the proof is given for p > p∗. If γ < γ1(p, p

∗) assume that there
exists a solution π∗ of (RM). By Theorem 2.3 there exists λ∗ ≥ 0 such that
infπ∈F T L(π, λ∗) = L(π∗, λ∗) > −∞. But this a contradiction to Lemma 2.4,
where we have seen that infπ∈F T L(π, λ) = −∞ for all λ ≥ 0. Hence, no optimal
policy π∗ exists and consequently h1(v) = −∞, since obviously there always exist
admissible policies.

Now assume γ ≥ γ1(p, p
∗). We obtain for the dual problem with Lemma 2.4

h2(v) = sup
λ≥0

inf
π∈F T

L(π, λ) = sup
0≤λ≤Cγ(p,p∗)

{
(µ− v)λ− v

}

= (µ− v)+ · Cγ(p, p
∗)− v,

where λ∗ = Cγ(p, p
∗) if µ > v and λ∗ = 0 otherwise. Furthermore, the set of

policies π such that L(π, λ∗) = h2(v) is given by Lemma 2.4. If we can show that
then there is such an optimal π so that additionally, the pair (π, λ∗) also fulfills
the Kuhn–Tucker–conditions, then Theorem 2.3 yields h1(v) = h2(v) and therefore
the assertion.

First, consider the simpler case µ ≤ v = V0, hence λ∗ = 0. If γ > γ1(p, p
∗)

we have Cγ(p, p
∗) > 0 = λ∗. Lemma 2.4 yields that a corresponding optimal

policy is πb with b = −v. This is clearly admissible since V
π−v

T = v and there-
fore E [V π∗

T |V0 = v] = v ≥ µ, hence the pair (π∗, λ∗) fulfills the Kuhn–Tucker–
conditions. If γ = γ1(p, p

∗) we have Cγ(p, p
∗) = 0 = λ∗. Again by Lemma 2.4

we have that π−v is optimal with b = −v, for example. We have seen that it is
admissible and therefore have completed this part.

Now suppose µ > v, hence λ∗ = Cγ(p, p
∗) and the corresponding set of optimal

policies is given by Lemma 2.4. First, we aim to find b ≥ −v with

E [V πb
T |V0 = v] = µ. (2.15)
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2.2 Risk minimization

We will even show that there exists a unique b∗1 ≥ −v such that this is fulfilled and
that every πb with b ≥ b∗1 is admissible for (RM).

Recall that πb = (f0, . . . , fT−1) with

ft(v
′) = max

{
− v′ + b

u− 1
,−v′ + b

d− 1

}
, v′ ∈ S, t = 0, 1, . . . , T − 1.

By Lemma 2.3 we obtain

E [V πb
T |V0 = v] = v + (v + b) · pT − (p∗)T

(p∗)T
.

Setting E [V πb
T |V0 = v] = µ and solving for b shows that

b∗1 := (µ− v) · (p∗)T

pT − (p∗)T
− v > −v

yields the unique π∗ = πb∗1 from the class {πb | b ≥ −v} such that (2.15) holds.
Furthermore, every πb with b ≥ b∗1 is admissible for (RM). One can show similarly
that there exists a unique b ≤ −v with (2.15) defined by

b∗2 := −(µ− v) · (1− p∗)T

(1− p∗)T − (1− p)T
− v < −v

such that every πb with b ≤ b∗2 is admissible for (RM).

Now, in order to check that a pair (π∗, λ∗) with L(π∗, λ∗) = infπ∈F T L(π, λ∗)
fulfills the Kuhn–Tucker–conditions we have to discern two cases. If γ = γ1(p, p

∗)
we have λ∗ = 0. In this case we only have to find an optimal π∗ that is also
admissible for (RM). By Lemma 2.4 and the considerations from above this is
fulfilled for every πb with b ≤ b∗2, i. e. these policies are also optimal for the primal
problem (RM).

Otherwise, i. e. if γ > γ1(p, p
∗), we have λ∗ > 0 and π∗ has to fulfill the constraint

of (RM) even with equality in order to ensure λ∗(µ−E [V π∗
T |V0 = v]) = 0. Again,

Lemma 2.4 and the considerations from above yield that for γ > γ2(p, p
∗) this can

only be fulfilled for πb∗1 and for γ1(p, p
∗) < γ < γ2(p, p

∗) by πb∗2 . If γ = γ2(p, p
∗),

both policies are optimal.

Remark. 1. This is of course the same result that we obtained in an elementary
way for the one–period case.

2. It was also shown that in the case µ ≤ v, i. e. if we have an initial wealth that
is already at least as high as the desired minimal expected terminal wealth
µ, it is optimal to invest nothing in the asset and the solution is the same as
in the unconstrained case.
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2 Portfolio optimization with constraints in a binomial model

Interpretation of the optimal policy The optimal policy is of the type πb for
some b ∈ R. It can be observed that for p > p∗ the invested amount in the
risky asset is always positive and for p < p∗ it is always negative. This seems
quite natural since e. g. for p > p∗ we expect an upward tendency of the asset and
otherwise a downward development.

Furthermore, the invested amount at at every time t ∈ {0, 1, . . . , T −1} is always
a fraction of Vt + b, where the value of −b could be regarded as a constant claim
similar to the model in Runggaldier et al. (2002). This fraction depends on whether
the term Vt + b is positive or negative but on the other hand does not change over
time. As described in Remark 4.2 in Runggaldier et al. (2002) the policy can be
regarded as a hedging strategy in the CRRM for a certain claim.

2.3 Utility maximization

In this section, the complementary problem (UM) and a variation introduced below
and denoted by (UM’) are investigated. The aim is to maximize the expected
wealth under risk constraints. First, we briefly consider the problem (UM) as
described above. Not surprisingly, this can be treated in exactly the same way
as (RM). Afterwards, we discern the two cases with and without shortselling and
show how the expected final wealth can be maximized with and without certain
intermediate constraints.

2.3.1 Comparison with the risk minimization

The problem (UM) with u = idR, ρ = AV@Rγ for some γ ∈ (0, 1) has the following
solution, which is again attained by a Lagrangian approach. Denote the optimal
target value of (UM) with h(v).

Theorem 2.5 ((UM) with shortselling). Let v ∈ S. Then

h(v) =





(R + v) · (Cγ(p, p
∗))−1 + v , R ≥ −v, γ ≥ γ1(p, p

∗),
−∞ , R < −v, γ ≥ γ1(p, p

∗),
+∞ , otherwise.

Proof. In the same way as in Subsection 2.2.2 we have equality of primal and dual
problem and

h(v) = inf
λ≥0

sup
b∈R

{
b(1 + λ) + λR− inf

π∈F T
E

[
JT (V π

T − b) |V0 = v
]}

where JT is as in Theorem 2.2, this time with

α1 := 1 +
λ

1− γ
> 1 =: α2.
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The rest follows analogously to the proofs of Lemma 2.4 and Theorem 2.4. Note
that the intervals that occur in the proofs are

I1 =

[(
p(1− p∗)

)T − (
(1− p)p∗

)T

(
(1− p)p∗

)T
(1− γ),∞

)

and
I2 =

[
(Cγ(p, p

∗))−1,∞)
.

In the case R < −v and γ ≥ γ1(p, p
∗), the optimal (here: maximal) value of the

expectation is −∞, implying that no admissible policies exist. This seems a little
odd at first glance, but looking at the one–period model illustrates indeed why this
is the case. Let p > p∗. If T = 1, we have with π = (f0) ∈ F 1, f0(v) = a, v ∈ S,
for arbitrary a ∈ A

AV@Rγ(V
π
1 |V0 = v) = AV@Rγ(v + a(Y1 − 1))

=

{ −v + a(AV@Rγ(Y1) + 1) , a ≥ 0
−v − a(AV@Rγ(−Y1)− 1) , a < 0.

By Lemma 2.2, we have AV@Rγ(−Y1)− 1 > 0 and in the case

γ ≥ γ1(p, p
∗) =

p− p∗

1− p∗

also AV@Rγ(Y1) + 1 ≥ 0. Consequently, it holds that

AV@Rγ(V
π
1 |V0 = v) ≥ −v > R, π ∈ F 1.

We now want to give a simple result comparing the problems (UM) and (RM)
and show that the optimal policies for both problems are identical. They can be
regarded as equivalent by choosing the parameters µ and R appropriately. This re-
lationship is quite standard for related mean–variance portfolio optimization prob-
lems.

Proposition 2.2. Let γ ≥ γ1(p, p
∗) and consider the problem (UM) with R ∈ R

and v ∈ S such that R ≥ −v. Let π∗ be an optimal policy for the problem (RM)
with

µ∗ := (R + v) · (Cγ(p, p
∗))−1 + v.

Then π∗ also is a solution of (UM). Conversely, taking µ ∈ R with µ ≥ v, an
optimal policy for (UM) with

R∗ := (µ− v) · Cγ(p, p
∗)− v

is a solution of (RM).
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Proof. If π∗ is an optimal policy for (RM) with µ∗ as defined above, we have by
definition µ∗ ≥ v and obtain by Theorem 2.4

AV@Rγ(V
π∗
T |V0 = v) = (µ∗ − v) · Cγ(p, p

∗)− v

= ((R + v) · (Cγ(p, p
∗))−1 + v − v) · Cγ(p, p

∗)− v

= R + v − v = R.

Hence, π∗ is admissible for (UM). But since π∗ is also admissible for (RM), it holds

E [V π∗
T |V0 = v] ≥ µ∗ = (R + v) · (Cγ(p, p

∗))−1 + v, (2.16)

where the right hand side is just the optimal value of the target function of problem
(UM). Hence, π∗ is even optimal for (UM) with equality in (2.16). The proof of
the second part works analogously.

2.3.2 The unconstrained case

For the sake of completeness, we give here the very simple result on mean maxi-
mization without constraints. Formally, set R = ∞. Furthermore, we assume for
the rest of this chapter that p 6= p∗.

Proposition 2.3. Let v ∈ S. Then it holds:

(i) With shortselling, we have

sup
π∈F T

E [V π
T |V0 = v] = ∞.

(ii) If shortselling is not allowed, we have

sup
π∈F T

ns

E [V π
T |V0 = v] =

{
v · (EY1)

T , p > p∗

v , p < p∗

In the case p > p∗, the unique optimal policy π = (f0, . . . , fT−1) ∈ F T
ns is

given by ft(v
′) = v′, v′ ∈ S, t = 0, 1, . . . , T − 1, whereas π = (0, . . . , 0) ∈ F T

ns

is optimal when p < p∗.

Proof. (i) Choose π = (0, . . . , 0, fT−1) ∈ F T with fT−1(v) = a, v ∈ S, for an
arbitrary constant a ∈ R. We obtain

E [V π
T |V0 = v] = v + aE [YT − 1].

Depending on p > p∗ or p < p∗ we see that (compare (2.3)) we can choose a
arbitrarily large or small respectively, hence the assertion.
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2.3 Utility maximization

(ii) Consider the Markov decision model from Section 2.1 with D(v) = [0, v],
v ∈ S, and JT (v) = v. We obtain

J ′T−1(v) = sup
a∈D(v)

E [J ′T (VT (aT−1)) |VT−1 = v, aT−1 = a]

= sup
a∈D(v)

{v + aE [YT − 1]}

=

{
v · EYT , p > p∗

v , p < p∗,

where a∗ = f ∗T−1(v) = v ∈ D(v) for p > p∗ and a∗ = f ∗T−1(v) = 0 ∈ D(v)
for p < p∗. Observing that EYT > 0 iteratively yields the assertion using
Theorem 2.1.

Interpretation of the optimal policy Part (ii) yields the natural result that
without a constraint and without shortselling, one should invest at time t as much
as possible, here the whole capital Vt, in the asset if p > p∗, i. e.E [Y1− 1] > 0, and
everything in the risk–free bond otherwise.

2.3.3 Intermediate constraints

Now we aim to solve the following modification of (UM):

sup
π∈F ′

E [V π
T |V0 = v]

s.t. AV@Rγ(V
π
t |V π

t−1) ≤ R(V π
t−1), t = 1, . . . , T ,

(UM’)

where the risk function R : S → R is some (S,B)–measurable mapping modelling
the risk constraint. We will see immediately why this construction is chosen. Again,
the set F ′ can mean either F T

ns or F T .
A simple choice would be to set R(v) := R, v ∈ S, for fixed R. However, the

idea of the model (UM’) is that based on the current state, in every trading period
from t− 1 to t it is ensured that the risk does not exceed a certain maximal level.
But after some periods the current wealth could already be very high. Thus, the
risk constraint R could become redundant if its level is not adapted over time by
using the current wealth. Indeed, we will model the function R such that we can
ensure that the risk of the relative gain or loss of wealth from one point of time to
the next one is not too high. We believe that this is a more reasonable approach.

No shortselling

If shortselling is not allowed, the wealth process only attains non–negative values,
i. e.S = R+. Furthermore, we have F ′ = F T

ns. In this case,

D(v) ⊂ [0, v], v ∈ S.
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2 Portfolio optimization with constraints in a binomial model

The risk constraint might make a further restriction necessary. To follow the
approach described above define

R(v) := v ·R− v, v ∈ S,

for given R ∈ R. Using translation invariance and homogeneity of Average Value–
at–Risk, the optimization problem becomes

sup
π∈F T

ns

E [V π
T |V0 = v]

s.t. AV@Rγ

(
V π

t − V π
t−1

V π
t−1

∣∣∣ V π
t−1

)
≤ R, t = 1, . . . , T .

(UM’)

Obviously, (UM’) fits into the Markov decision model from Section 2.1 by setting
JT (v) = v, v ∈ S. The restriction set becomes for v ∈ S and p > p∗

D(v) =

{
a ∈ [0, v]

∣∣∣ AV@Rγ

(
Vt(a)− Vt−1

Vt−1

∣∣∣Vt−1 = v

)
≤ R

}

=

{
a ∈ [0, v]

∣∣∣ AV@Rγ

(
a(Yt − 1)

v

)
≤ R

}

=
{

a ∈ [0, v]
∣∣∣ a · AV@Rγ(Y1 − 1) ≤ v ·R

}

=





[
0, v ·min{1, δu(γ,R)}] , γ ≥ p− p∗

1− p∗
,

[
v ·max{0, δu(γ, R)}, v]

, γ <
p− p∗

1− p∗
,

where we used Lemma 2.2 and set

δu(γ,R) :=
R

AV@Rγ(Y1 − 1)
, δl(γ, R) :=

R

AV@Rγ(−Y1 + 1)
.

If γ ≥ p−p∗
1−p∗ and R < 0, we have D(v) = ∅, and if γ < p−p∗

1−p∗ , R ≥ 0 implies

D(v) = [0, v]. We conclude that the structure of D(v) depends strongly on the
relationship of γ and R, which determines whether δu(γ, R) > 1 or δu(γ, R) ≤ 1
respectively.

Analogously, we obtain for p < p∗

D(v) =
[
0, v ·min{1, δu(γ, R)}],

where again D(v) = ∅ if R < 0. We are now ready to solve (UM’).

Theorem 2.6 ((UM’) without shortselling). Let v ∈ S. Then the solution of
(UM’) is given by J0(v) which attains the following values.
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2.3 Utility maximization

(i) Let p > p∗. If γ ≥ p−p∗
1−p∗ we have

J0(v) =

{
v · (1 + E [Y1 − 1] ·min{1, δu(γ, R)})T

, R ≥ 0,
−∞ , R < 0.

In the finite case, the unique optimal policy is given by π = (f0, . . . , fT−1)
with

ft(v
′) = v′ ·min{1, δu(γ, R)

}
, v′ ∈ S, t = 0, 1, . . . , T − 1.

For γ < p−p∗
1−p∗ it holds

J0(v) =

{
v · (EY1)

T , R ≥ AV@Rγ(Y1 − 1),
−∞ , R < AV@Rγ(Y1 − 1).,

and the unique optimal policy is as in Proposition 2.3 (ii).

(ii) Let p < p∗. We then have

J0(v) =

{
v , R ≥ 0,
−∞ , R < 0.

For R ≥ 0 the optimal policy is again as in Proposition 2.3 (ii).

Proof. (i) Let p > p∗ and R < 0. If γ ≥ p−p∗
1−p∗ or if γ < p−p∗

1−p∗ and δu(γ, R) > 1,

i. e.R < AV@Rγ(Y1 − 1) < 0, the restriction set becomes D(v) = ∅. Hence

J ′T−1(v) = sup
a∈D(v)

{v + aE [YT − 1]} = −∞

and therefore also J0(v) = J ′0(v) = −∞. If γ < p−p∗
1−p∗ and δu(γ, R) ≤ 1 it

holds
D(v) =

[
v · δu(γ,R), v

]
.

As in the proof of Proposition 2.3 (ii) we obtain J0(v) = v · (EY1)
T .

Now, let R ≥ 0. If γ < p−p∗
1−p∗ we have D(v) = [0, v] and in the same way as

above this yields J0(v) = v · (EY1)
T . In the case γ ≥ p−p∗

1−p∗ it holds

D(v) =
[
0, v ·min{1, δu(γ,R)}].

We obtain

J ′T−1(v) = sup
a∈D(v)

E [JT (VT (aT−1)) |VT−1 = v, aT−1 = a]

= sup
a∈D(v)

{v + aE [YT − 1]︸ ︷︷ ︸
>0

}

= v + E [YT − 1] · sup
a∈D(v)

a (2.17)

= v + E [YT − 1] · v ·min{1, δu(γ,R)}
= v · (1 + E [Y1 − 1] ·min{1, δu(γ,R)}).
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2 Portfolio optimization with constraints in a binomial model

This iteratively yields by Theorem 2.1

J0(v) = J ′0(v) = v · (1 + E [Y1 − 1] ·min{1, δu(γ, R)})T
.

(ii) Let p < p∗ and R < 0. Then D(v) = ∅ and as above J0(v) = −∞. If R ≥ 0
it holds

D(v) =
[
0, v ·min{1, δu(γ, R)}]

and the assertion follows as in the proof of Proposition 2.3 (ii).

Remark. It can be observed from the proof that a further generalization is possi-
ble. Indeed, the parameters R and γ can be chosen time–dependent if we assume
Rt ≥ 0, t = 1, . . . , T . The result would change for γt ≥ p−p∗

1−p∗ , p > p∗, where now

J0(v) = v ·
T∏

t=1

(
1 + E [Yt − 1] ·min{1, δu(γ, R)}).

This is possible since Theorem 2.1 is also valid if the restriction set is time–
dependent (compare Hernández-Lerma and Lasserre (1996), Section 3.4).

Interpretation of the optimal policy First, let p > p∗, i. e. we have an upward
tendency in the asset, and let the safety level γ be sufficiently large. Then there
are either no admissible policies (if we only allow for negative risk at every time
step) or it is optimal to invest a fraction of the current wealth into the risky asset.
This fraction can be smaller than the current wealth (namely if δu(γ, R) < 1),
hence we also invest a positive amount in the risk–free bond, in contrast to the
unconstrained case. This is of course due to the constraint which forces the investor
to be more cautious in this situation. However, if the constant R is chosen too
large, the constraints become redundant and the result is equivalent to the one
from Proposition 2.3 (ii). This argument also applies for small safety levels.

If p < p∗ there are again no admissible policies if we are too careful when choosing
R < 0. For R ≥ 0 we again have to invest everything in the risk–free bond, i. e. our
behaviour does not change compared to the unconstrained case.

Compared to the situation with only a final constraint we see that the structure
of the optimal policy is much simpler and more natural to interpret.

With shortselling

If shortselling is allowed the proofs become more complicated. But the structure of
the optimal value of the target function is very simple. Now, the current wealth can
also attain negative values. Hence, we consider (UM’) with S = R and F ′ = F T

and define the risk function R through

R(v) = |v| ·R− v, v ∈ S,
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2.3 Utility maximization

for given R ∈ R such that we have to solve

sup
π∈F T

ns

E [V π
T |V0 = v]

s.t. AV@Rγ

(
V π

t − V π
t−1

|V π
t−1|

∣∣∣ V π
t−1

)
≤ R, t = 1, . . . , T .

(UM’)

Obviously, (UM’) fits into the Markov decision model from Section 2.1 by setting
JT (v) = v, v ∈ S. The restriction set becomes for v ∈ S, p > p∗ and γ ≥ p−p∗

1−p∗ ,
again with Lemma 2.2,

D(v)

=

{
a ∈ R

∣∣∣ AV@Rγ

(
Vt(a)− Vt−1

|Vt−1|
∣∣∣ Vt−1 = v

)
≤ R

}

=

{
a ∈ R

∣∣∣ AV@Rγ

(
a(Y1 − 1)

|v|
)
≤ R

}

=
{

a < 0
∣∣ a ≥ −|v| · R

AV@Rγ(−Y1 + 1)

}
∪

{
a ≥ 0

∣∣ a ≤ |v| · R

AV@Rγ(Y1 − 1)

}

=
[− |v| · δl(γ, R) , |v| · δu(γ, R)

]
.

Note that for R < 0 the restriction set becomes the empty set and therefore
J0 = −∞. If γ < p−p∗

1−p∗ it holds AV@Rγ(Y1− 1) < 0 and we obtain in a similar way
as above

D(v)

=
{

a < 0
∣∣ a ≥ −|v| · R

AV@Rγ(−Y1 + 1)

}
∪

{
a ≥ 0

∣∣ a ≥ |v| · R

AV@Rγ(Y1 − 1)

}

=
[− |v| · δl(γ, R) , 0

] ∪ [
max{0, |v| · δu(γ, R)} , ∞)

.

Hence, a ∈ D(v) can be chosen arbitrarily large and by (2.17) we have J ′T−1 ≡ ∞
and therefore also J0 ≡ ∞. We conclude that if p > p∗ we only have to consider
the case γ ≥ p−p∗

1−p∗ and R ≥ 0.

On the other hand, if p < p∗ we obtain J0 ≡ ∞ if γ < p∗−p
p∗ and J0 ≡ −∞ if

γ ≥ p∗−p
p∗ and R < 0. Only the case γ ≥ p∗−p

p∗ and R ≥ 0 yields a non–trivial
solution with the same restriction set as above

D(v) =
[− |v| · δl(γ, R) , |v| · δu(γ, R)

]
.

We will now show that with JT (v) = v, v ∈ S, the value functions introduced in
Section 2.1 have the following structure

J ′t(v) = α
(t)
+ v+ − α

(t)
− v−, v ∈ S, t = 0, 1, . . . , T − 1, (2.18)
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2 Portfolio optimization with constraints in a binomial model

where the factors fulfill α
(t)
+ > 0 and α

(t)
+ > α

(t)
− , but possibly α

(t)
− < 0. Again

by Theorem 2.1, the function J ′0 provides the solution of (UM’). As usual, we
thoroughly investigate the case p > p∗ and only state the corresponding result
if p < p∗. We will now define the factors from (2.18) and a corresponding policy
π∗ = (f ∗0 , . . . , f ∗T−1). It is shown in a lemma below that the factors have the desired
properties and in Theorem 2.7 that π∗ is indeed optimal. First, let us define the
following one–step policies for v ∈ S:

f (1)(v) := |v| · δu(γ, R) ∈ D(v),

f (2)(v) := −|v| · δl(γ,R) ∈ D(v)

Algorithm. First, let p > p∗, γ ≥ p−p∗
1−p∗ and R ≥ 0. As initial values we have the

one–step policy f ∗T−1 := f (1) and

α
(T−1)
+ := 1 + E [Y1 − 1] · δu(γ, R), α

(T−1)
− := 1− E [Y1 − 1] · δu(γ,R).

Assume now we are given α
(t)
+ and α

(t)
− with α

(t)
+ > 0 and α

(t)
+ > α

(t)
− for some

t ∈ {1, . . . , T − 1}. We want to define α
(t−1)
+ , α

(t−1)
− and a one–step policy f ∗t−1.

There are four possible values for the factor α
(t−1)
+ . First, define

α+,11 := α
(t)
+ + δu(γ,R) · (u− d) · α(t)

+ · (p(1− p∗)− (1− p)p∗
)
,

α+,12 := pα
(t)
+ + (1− p)α

(t)
− + δu(γ,R) · (u− d) · (α(t)

+ p(1− p∗)− α
(t)
− (1− p)p∗

)
,

α+,21 := α
(t)
+ + δl(γ, R) · (u− d) · α(t)

+ · ((1− p)p∗ − p(1− p∗)
)
,

α+,22 := (1− p)α
(t)
+ + pα

(t)
− + δl(γ, R) · (u− d) · (α(t)

+ (1− p)p∗ − α
(t)
− p(1− p∗)

)
,

and then

α
(t−1)
+,1 :=





α+,11 , δu(γ,R) ≤ 1

1− d
,

α+,12 , δu(γ,R) >
1

1− d
,

α
(t−1)
+,2 :=





α+,21 , δl(γ, R) ≤ 1

u− 1
,

α+,22 , δl(γ, R) >
1

u− 1
.

There are also four possibilities for the factor α
(t−1)
− . First, define

α−,11 := α
(t)
− − δu(γ, R) · (u− d) · α(t)

− · (p(1− p∗)− (1− p)p∗
)
,

α−,12 := pα
(t)
+ + (1− p)α

(t)
− − δu(γ,R) · (u− d) · (α(t)

+ p(1− p∗)− α
(t)
− (1− p)p∗

)
,

α−,21 := α
(t)
− − δl(γ, R) · (u− d) · α(t)

− · ((1− p)p∗ − p(1− p∗)
)
,

α−,22 := (1− p)α
(t)
+ + pα

(t)
− − δl(γ, R) · (u− d) · (α(t)

+ (1− p)p∗ − α
(t)
− p(1− p∗)

)
.
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2.3 Utility maximization

and then

α
(t−1)
−,1 :=





α−,11 , δu(γ,R) ≤ 1

u− 1
,

α−,12 , δu(γ,R) >
1

u− 1
,

α
(t−1)
−,2 :=





α−,21 , δl(γ, R) ≤ 1

1− d
,

α−,22 , δl(γ, R) >
1

1− d
.

Now, we define α
(t−1)
+ and f ∗t−1 : S → A such that f ∗t−1(v) ∈ D(v) for all v ∈ S

with v ≥ 0 as follows (see below for α
(t−1)
− and the case v < 0). In a first step

assume p∗
p
α

(t)
+ ≤ 1−p∗

1−p
α

(t)
− . Then f ∗t−1 := f (1) and α

(t−1)
+ := α

(t−1)
+,1 .

If on the other hand p∗
p
α

(t)
+ > 1−p∗

1−p
α

(t)
− , two cases have to be discerned:

(i) If δl(γ, R) ≤ 1
u−1

, then again f ∗t−1 := f (1) and α
(t−1)
+ := α

(t−1)
+,1 .

(ii) If δl(γ,R) > 1
u−1

set α
(t−1)
+ := max{α(t−1)

+,1 , α
(t−1)
+,2 } and f ∗t−1 := f (1) if it holds

α
(t−1)
+ = α

(t−1)
+,1 and f ∗t−1 := f (2) otherwise.

Now, we want to define α
(t−1)
− and f ∗t−1 : S → A such that f ∗t−1(v) ∈ D(v) for

all v ∈ S with v < 0 as follows. In a first step assume again p∗
p
α

(t)
+ ≤ 1−p∗

1−p
α

(t)
− ,

implying α
(t)
− > 0. Then set f ∗t−1 := f (1) and α

(t−1)
− := α

(t−1)
−,1 .

If on the other hand p∗
p
α

(t)
+ > 1−p∗

1−p
α

(t)
− , again several cases have to be discerned:

(a) α
(t)
− ≤ 0 : Then there are two cases.

(i) If δu(γ, R) ≤ 1
u−1

then f ∗t−1 := f (2) and α
(t−1)
− := α

(t−1)
−,2 .

(ii) If δu(γ, R) > 1
u−1

we set α
(t−1)
− := max{α(t−1)

−,1 , α
(t−1)
−,2 } and f ∗t−1 := f (1) if

α
(t−1)
− = α

(t−1)
−,1 and f ∗t−1 := f (2) otherwise.

(b) α
(t)
− > 0 : Then there are again two cases.

(i) If δl(γ,R) ≤ 1
1−d

then f ∗t−1 := f (1) and α
(t−1)
− := α

(t−1)
−,1 .

(ii) If δl(γ, R) > 1
1−d

, then α
(t−1)
− := max{α(t−1)

−,1 , α
(t−1)
−,2 }. and f ∗t−1 := f (1) if

α
(t−1)
− = α

(t−1)
−,1 and f ∗t−1 := f (2) otherwise.

Now, let p < p∗, γ ≥ p∗−p
p∗ and R ≥ 0. As initial values we have the one–step policy

f ∗T−1 := f (2) and

α
(T−1)
+ := 1− E [Y1 − 1] · δl(γ, R), α

(T−1)
− := 1 + E [Y1 − 1] · δl(γ, R).
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2 Portfolio optimization with constraints in a binomial model

Assume now we are given α
(t)
+ and α

(t)
− with α

(t)
+ > 0 and α

(t)
+ > α

(t)
− for some

t ∈ {1, . . . , T − 1}. We define α
(t−1)
+ and f ∗t−1 : S → A such that f ∗t−1(v) ∈ D(v)

for all v ∈ S with v ≥ 0 as follows (see below for the case v < 0). In a first step

assume p
p∗α

(t)
+ ≤ 1−p

1−p∗α
(t)
− . Then f ∗t−1 := f (2) and α

(t−1)
+ := α

(t−1)
+,2 .

If on the other hand p
p∗α

(t)
+ > 1−p

1−p∗α
(t)
− , two cases have to be discerned:

(i) If δu(γ,R) ≤ 1
1−d

, then again f ∗t−1 := f (2) and α
(t−1)
+ := α

(t−1)
+,2 .

(ii) If δu(γ, R) > 1
1−d

set α
(t−1)
+ := max{α(t−1)

+,1 , α
(t−1)
+,2 } and f ∗t−1 := f (1) if it holds

α
(t−1)
+ = α

(t−1)
+,1 and f ∗t−1 := f (2) otherwise.

Now, we want to define α
(t−1)
− and f ∗t−1 : S → A such that f ∗t−1(v) ∈ D(v) for

all v ∈ S with v < 0 as follows. In a first step assume again p
p∗α

(t)
+ ≤ 1−p

1−p∗α
(t)
− ,

implying α
(t)
− > 0. Then set f ∗t−1 := f (2) and α

(t−1)
− := α

(t−1)
−,2 .

If on the other hand p
p∗α

(t)
+ > 1−p

1−p∗α
(t)
− , again several cases have to be discerned:

(a) α
(t)
− ≤ 0 : Then there are two cases.

(i) If δl(γ,R) ≤ 1
1−d

then f ∗t−1 := f (1) and α
(t−1)
− := α

(t−1)
−,1 .

(ii) If δl(γ, R) > 1
1−d

we set α
(t−1)
− := max{α(t−1)

−,1 , α
(t−1)
−,2 } and f ∗t−1 := f (1) if

α
(t−1)
− = α

(t−1)
−,1 and f ∗t−1 := f (2) otherwise.

(b) α
(t)
− > 0 : Then there are again two cases.

(i) If δu(γ, R) ≤ 1
u−1

then f ∗t−1 := f (2) and α
(t−1)
− := α

(t−1)
−,2 .

(ii) If δu(γ, R) > 1
u−1

, then α
(t−1)
− := max{α(t−1)

−,1 , α
(t−1)
−,2 }. and f ∗t−1 := f (1) if

α
(t−1)
− = α

(t−1)
−,1 and f ∗t−1 := f (2) otherwise.

We have introduced these factors and the optimal policy before proving the
corresponding theorem below because the inductive proof only works if we can
verify the desired properties. This is done in the following lemma.

Lemma 2.5. For all t ∈ {0, 1, . . . , T − 1} it holds

α
(t)
+ > 0 and α

(t)
+ > α

(t)
− .

Proof. We only consider the case p > p∗. The proof is by backward induction on t
where the case t = T − 1 is obvious.

Now assume that the assertion holds for some t ∈ {1, . . . , T − 1} and define

α
(t−1)
+ and α

(t−1)
− by the previous algorithm. First we want to show that α

(t−1)
+ > 0,

where α
(t−1)
+ ∈ {α(t−1)

+,1 , α
(t−1)
+,2 }. Obviously, in the case δu(γ,R) ≤ 1

1−d
we have
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2.3 Utility maximization

α
(t−1)
+,1 > 0 by induction hypothesis and p > p∗. Moreover, note it always holds

α
(t)
+ p(1 − p∗) − α

(t)
− (1 − p)p∗ > 0 since p > p∗. So if conversely δu(γ,R) > 1

1−d
we

obtain

α
(t−1)
+ = pα

(t)
+ + (1− p)α

(t)
− +

R(u− d)

AV@Rγ(Y1 − 1)
· (α(t)

+ p(1− p∗)− α
(t)
− (1− p)p∗

)

> pα
(t)
+ + (1− p)α

(t)
− +

u− d

1− d
· (α(t)

+ p(1− p∗)− α
(t)
− (1− p)p∗

)

= pα
(t)
+ + (1− p)α

(t)
− +

1

p∗
· (α(t)

+ p(1− p∗)− α
(t)
− (1− p)p∗

)

= pα
(t)
+ + α

(t)
+

p

p∗
(1− p∗) > 0.

Finally, α
(t−1)
+ = α

(t−1)
+,2 can only occur if α

(t−1)
+,2 > α

(t−1)
+,1 > 0. Hence, the first part

of the assertion follows.
Now, we want to show α

(t)
+ > α

(t)
− . First, let p∗

p
α

(t)
+ ≤ 1−p∗

1−p
α

(t)
− . We then have

α
(t−1)
+ ∈ {α+,11, α+,12} and α

(t−1)
− ∈ {α−,11, α−,12}, where pairwise comparison of

the values obviously yields the assertion.
Now, let p∗

p
α

(t)
+ > 1−p∗

1−p
α

(t)
− . First note that then we always have

α−,11 < α+,11, α+,12, α
(t−1)
+,2 ,

α−,12 < α+,11, α+,12,

α−,21 < α+,11,

α−,22 < α+,11, α
(t−1)
+,2 ,

such that we can skip these relations in the investigations below.
Let us show α−,12 < α

(t−1)
+,2 . The case α

(t−1)
+ = α+,2 can only occur if the relation

δl(γ,R) > 1
u−1

holds and α
(t−1)
− = α−,12 only if δu(γ, R) > 1

u−1
. We obtain in this

situation

α
(t−1)
+,2 = (1− p)α

(t)
+ + pα

(t)
− +

R(u− d)

AV@Rγ(−Y1 + 1)
· (α(t)

+ (1− p)p∗ − α
(t)
− p(1− p∗)

)

> (1− p)α
(t)
+ + pα

(t)
− +

u− d

u− 1
· (α(t)

+ (1− p)p∗ − α
(t)
− p(1− p∗)

)

= (1− p)α
(t)
+ + p∗

1− p

1− p∗
α

(t)
+ > 0

and

α−,12 = pα
(t)
+ + (1− p)α

(t)
− − R(u− d)

AV@Rγ(Y1 − 1)
· (α(t)

+ p(1− p∗)− α
(t)
− (1− p)p∗

)

< pα
(t)
+ + (1− p)α

(t)
− − u− d

u− 1
· (α(t)

+ p(1− p∗)− α
(t)
− (1− p)p∗

)

= (1− p)α
(t)
− + p∗

1− p

1− p∗
α

(t)
− ≤ 0,
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hence the assertion. The fact that α−,22 < α+,12 is shown similarly.

Let us finally show that α−,21 < α+,12, α
(t−1)
+,2 . By construction, α

(t−1)
− = α−,21

can only occur if α
(t)
− ≤ 0. But this already yields

α−,21 = α
(t)
− + δl(γ,R)︸ ︷︷ ︸

≥0

·(u− d) · α(t)
− · (p(1− p∗)− (1− p)p∗

) ≤ α
(t)
− < α+,12, α

(t−1)
+,2 ,

thus completing the proof.

We are now ready to state and proof the final important result of this chapter.

Theorem 2.7 ((UM’) with shortselling). Let v ∈ S and R ≥ 0. Furthermore,
assume that γ ≥ p−p∗

1−p∗ if p > p∗ and γ ≥ p∗−p
p∗ if p < p∗. Then the solution of (UM’)

is given by
J0(v) = α

(0)
+ v+ − α

(0)
− v−,

where α
(0)
+ and α

(0)
− are defined by the algorithm above which also provides an op-

timal policy.

Proof. Let p > p∗. We claim that

J ′t(v) = α
(t)
+ v+ − α

(t)
− v−, v ∈ S, t = 0, 1, . . . , T − 1. (2.19)

By Theorem 2.1, the assertion will follow. The proof is by backward induction on
t. Consider first t = T − 1. We obtain again

J ′T−1(v) = sup
a∈D(v)

E [JT (VT (aT−1)) |VT−1 = v, aT−1 = a] = sup
a∈D(v)

{v + aE [YT − 1]}

= v + E [YT − 1] sup
a∈D(v)

a = v + E [YT − 1] · |v| · δu(γ, R)

=
(
1 + E [YT − 1] · δu(γ,R)

)
v+ −

(
1− E [YT − 1] · δu(γ, R)

)
v−

= α
(T−1)
+ v+ − α

(T−1)
− v−.

One also sees that a maximizer is given by f ∗T−1. Hence, (2.19) holds for t = T −1.
Assume now that (2.19) is true for some t ∈ {1, . . . , T − 1} and let v ∈ S. We

have to solve

J ′t−1(v) = sup
a∈D(v)

E
[
J ′t(Vt(at−1))

∣∣ Vt−1 = v, at−1 = a
]

= sup
a∈D(v)

{
p
(
α

(t)
+ (v + a(u− 1))+ − α

(t)
− (v + a(u− 1))−

)

+ (1− p)
(
α

(t)
+ (v + a(d− 1))+ − α

(t)
− (v + a(d− 1))−

)}
.

Let us first consider the case v ≥ 0 and recall that the restriction set is given by

D(v) =
[− v · δl(γ, R) , v · δu(γ, R)

]
.
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To determine the slope of the piecewise linear function that we have to maximize
define

ψ(1) := − v

u− 1
≤ 0 ≤ − v

d− 1
=: ψ(2).

Similar to the proof of Theorem 2.2, the slope on (ψ(2),∞) is given by

pα
(t)
+ (u− 1) + (1− p)α

(t)
− (d− 1) > 0

⇔ p

p∗
α

(t)
+ >

1− p

1− p∗
α

(t)
− ,

which holds because p > p∗ and α
(t)
+ > α

(t)
− by Lemma 2.5. Hence, the function is

increasing on this interval. This is also the case on [ψ(1), ψ(2)] because for the slope
it holds

pα
(t)
+ (u− 1) + (1− p)α

(t)
+ (d− 1) > 0 ⇔ α

(t)
+ (p− p∗) > 0,

which is fulfilled since α
(t)
+ > 0 by Lemma 2.5. Finally, it follows for the slope on

(−∞, ψ(1))

pα
(t)
− (u− 1) + (1− p)α

(t)
+ (d− 1) ≥ 0

⇔ p∗

p
α

(t)
+ ≤ 1− p∗

1− p
α

(t)
− ,

which can sometimes be fulfilled. If this is the case, the function is non–decreasing
on R and consequently attains its maximum on D(v) for its maximal admissible
value. Hence, ft−1,1(v) is indeed optimal for a. The value of J ′t−1 depends on
whether ft−1,1(v) ≤ ψ(2) or ft−1,1(v) > ψ(2). We have

ft−1,1(v) ≤ ψ(2) ⇔ δu(γ, R) ≤ 1

1− d
(2.20)

If this is fulfilled, we have v + ft−1,1(v)(u − 1) ≥ 0 and v + ft−1,1(v)(d − 1) ≥ 0.
Hence,

J ′t−1(v) = pα
(t)
+ (v + ft−1,1(v)(u− 1)) + (1− p)α

(t)
+ (v + ft−1,1(v)(d− 1))

=
(
α

(t)
+ + δu(γ,R)α

(t)
+

(
p(u− 1)− (1− p)(1− d)

)) · v
= α+,11 · v.

Similarly, if ft−1,1(v) > ψ(2) and therefore δu(γ, R) > 1
1−d

, we have

J ′t−1(v) = α+,12 · v.

Now, assume p∗
p
α

(t)
+ > 1−p∗

1−p
α

(t)
− , i. e. the function is decreasing on (−∞, ψ(1)). If the

lower bound of D(v) is not smaller than ψ(1), which is equivalent to

ft−1,2(v) ≥ ψ(1) ⇔ δl(γ, R) ≤ 1

u− 1
,
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the function is increasing on D(v) and we have again that ft−1,1(v) is an optimal
value for a. On the other hand, if ft−1,2(v) < ψ(1), we have to compare the value
of the function at ft−1,2(v) and at ft−1,1(v) to find the larger one. Again, there
are two possibilities for ft−1,1(v) depending on the fact whether the inequality in
(2.20) holds or not. The value of the function at ft−1,2(v) becomes

pα
(t)
− (v + ft−1,2(v)(u− 1)) + (1− p)α

(t)
+ (v + ft−1,2(v)(d− 1))

=
(
pα

(t)
− + (1− p)α

(t)
+ + δl(γ, R)

(
α

(t)
+ (1− p)(1− d)− α

(t)
− p(u− 1)

)) · v
= α

(t−1)
+,2 · v,

so that we have to compare α
(t−1)
+,2 with α

(t−1)
+,1 and obtain for the value function

J ′t−1(v) = max{α(t−1)
+,1 , α

(t−1)
+,2 } · v. Combining the cases, it holds for v ≥ 0

J ′t−1(v) = α
(t−1)
+ · v = α

(t−1)
+ · v+. (2.21)

We have also shown that f ∗t−1(v) defined by the algorithm is an optimal value for
a.

If v < 0, the proof works similarly and we can indeed show that

J ′t−1(v) = α
(t−1)
− · v = −α

(t−1)
− · v−. (2.22)

One only has to observe that now ψ(2) < 0 < ψ(1) and that the slope on the interval
[ψ(2), ψ(1)] is

α
(t)
− s(u− d)

(
p(1− p∗)− (1− p)p∗

)
︸ ︷︷ ︸

>0

,

hence the function to be maximized can also be decreasing on this interval, de-
pending on the sign of α

(t)
− . This fact makes it necessary to consider one more case

as it is done in the algorithm. Putting (2.21) and (2.22) together completes the
induction step and therefore also the proof.

Interpretation of the optimal policy The structure of the optimal policy is sim-
ilar to the model without shortselling. The only difference is that we now might
have to invest more than the current wealth into to the risky asset or even have
to invest a negative amount. Furthermore, this factor depends again only on the
sign of the amount of wealth and not on its level. However, this selection is not
constant over time. The “sequence of fractions” is deterministic and obtained by
the algorithm above. It depends on the interplay of the chosen risk level R and
the safety level γ with p and p∗.

We conclude this section and chapter by giving an example on the structure of
the occurring parameters.
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2.3 Utility maximization

Example 2.1. We assume that p∗ < 1
2

and p ≥ 2p∗. The first inequality is
equivalent to

1

1− d
>

1

u− 1
. (2.23)

Furthermore, let R = 1 and γ ≥ max{p, 1 − p}. It follows from (2.4) and the
definition of δu(γ, R) and δl(γ, R) that

δu(γ, R) =
1

1− d
, δl(γ, R) =

1

u− 1
.

We claim that

α
(t)
+ =

( p

p∗

)T−t

> 0, α
(t)
− =

(
2− p

p∗

)(
1+

p− p∗

1− p∗

)T−t−1

≤ 0, t = 0, 1, . . . , T −1.

For t = T − 1 it holds by the algorithm

α
(T−1)
+ := 1 + (u− d)(p− p∗)

1

1− d
=

p

p∗

and

α
(T−1)
− := 1− (u− d)(p− p∗)

1

1− d
= 2− p

p∗
.

Now assume that the assertion holds for t ∈ {1, . . . , T − 1}. First,

α
(t−1)
+ = α+,11 = α

(t)
+ + δu(γ, R)(u− d) · α(t)

+ · (p(1− p∗)− (1− p)p∗
)

= α
(t)
+

(
1 +

u− d

1− d
· (p− p∗)

)
=

( p

p∗

)T−t( p

p∗

)
=

( p

p∗

)T−t+1

.

Because of α
(t)
− ≤ 0 and (2.23) we have α

(t−1)
− = max{α−,12, α−,21} by case (a) (ii)

from the algorithm. But indeed it is easily verified by a straightforward calculation
that α−,21 > α−,12 under the given assumption p∗ < 1

2
. Hence, we obtain

α
(t−1)
− = α

(t)
− − δl(γ, R)(u− d) · α(t)

− · ((1− p)p∗ − p(1− p∗)
)

= α
(t)
− − u− d

u− 1
· α(t)

− · (p∗ − p)

=
(
2− p

p∗

)(
1 +

p− p∗

1− p∗

)T−t−1(
1 +

p− p∗

1− p∗

)

=
(
2− p

p∗

)(
1 +

p− p∗

1− p∗

)T−t

.

Consequently, with the parameters specified as above Theorem 2.7 yields that the
optimal value of (UM’) is given by

J0(v) =
( p

p∗

)T

· v+ −
(
2− p

p∗

)(
1 +

p− p∗

1− p∗

)T−1

· v−, v ∈ S.

For t ∈ {0, 1, . . . , T − 1}, the (unique) optimal one–step policy f ∗t is given by
f ∗t (v) = f (1)(v) if v > 0 and f ∗t (v) = f (2)(v) if v ≤ 0.
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In this chapter the notion of dynamic risk measures is introduced as a natural
generalization of static risk measures. Let us first describe this construction and
review the related literature.

3.1 An overview on the literature

Static risk measurement deals with the quantification of a random financial posi-
tion at a future date T by a real number. This value is interpreted as the risk of
the position measured at time 0. In Chapter 1, we have described how the seminal
paper Artzner et al. (1999) generated a vast growth of the literature dealing with
theoretical and practical aspects of such (static) risk measures. Naturally, the de-
velopment of representations and applications of dynamic risk measures followed
with some delay. However, there is one working paper by Wang which is from the
same year as the publication of the aforementioned work (1999). To our knowl-
edge, Wang was the first one to use the term dynamic risk measure which already
appeared in an early draft of his paper in 1996.

His work on a class of dynamic risk measures includes a short motivation for the
introduction of dynamic risk measures based on three main reasons. The first one
comes from the necessity to generalize the static setting to a framework where pro-
cesses can be considered. This is due to the fact that companies often face risk that
consists of different uncertain values of financial positions that evolve over time,
imagine for example intermediate cash flows. Consequently, it is desirable to have
risk measures for processes. The second generalization of the static model follows
from the fact that over certain periods of time, companies might be willing to adapt
the measured risk when more information becomes available. More precisely, at
each point of time t before the end of the considered time framework T ∈ (0,∞],
the value of the risk measure should be an Ft–measurable random variable if the
information is modelled by some filtration (Ft)t∈T , where T = {0, 1, . . . , T} or
T = [0, T ]. Furthermore, this adaption process should be consistent in the sense
that there is a certain connection between the risk measured at different points of
time. We will later formalize this. As a last reason, optimization problems are often
of a dynamic structure which then yields a demand for dynamic measures which
have to be incorporated in the optimization problem. In this chapter, we mainly
concentrate on dealing with the first two aspects. In the following two chapters
though, we will see how dynamic risk measures themselves can be generated by an
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economically motivated optimization problem.
Let us now have a more thorough look on the literature. Most of the relevant

works distinguish dynamic risk measure by these aspects:

• Dynamic risk measures can be introduced only for final payments or for
processes.

• In the latter case, bounded or unbounded processes are distinguished.

• Analogously to the static case, convex or coherent dynamic risk measures
can be investigated.

• The time–framework can be discrete or continuous and finite or infinite.

• Some works only deal with finite probability spaces, others with general ones.

In this work, we focus on coherent dynamic risk measures for unbounded processes
in a finite and discrete time framework with no restrictions on the probability
space. Nonetheless, we now give an overview on the existing literature in all cases.

The aforementioned work by Wang (1999) describes an iterated version of the
static Value–at–Risk. In a finite and discrete time framework, the risk at a fixed
point of time is calculated by measuring the remaining risk after the next period
based on the available information and adding this term to the value of the fi-
nancial position in the following period. Taking the Value–at–Risk of this sum
conditioned on the current information yields the value of the risk measure at this
fixed date. As a generalization of this example, the class of likelihood–based risk
measures is introduced and characterized by four properties which are all based on
the dynamic structure of the risk measures. However, no actual dynamic version
of the classic coherence properties is used, which is why we will not further deal
with this work. It is interesting in itself, but not linked to the settings introduced
in all the following works. Furthermore, the Value–at–Risk is not a coherent risk
measure, so a dynamic version of it is nothing we want to investigate further. How-
ever, in Hardy and Wirch (2004) a similar approach is used to define a so-called
iterated Conditional Tail Expectation (CTE), where the risk is measured only for
final payments. This is done simply by taking at every point of time the conditional
expectation of the future risk.

Another early work is the one by Cvitanić and Karatzas (1999). Based on an
early draft of Artzner et al. (1999), the static approach is generalized to a setting
in continuous and finite time. Here, a classic financial market with a final financial
position that has to be hedged is considered. Actually, the work is not dealing with
dynamic risk measures since the risk is introduced only at time t = 0 (so–called
initial risk measurement). It is defined as a classic max–min approach over a set of
probability measures and a set of admissible strategies respectively where the target
value to be optimized is the expectation of the discounted shortfall that occurs if a
given liability can not be hedged. Because of the continuous time–framework, this
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paper is not relevant for our work. However, due to its early publication, it was
worth to be mentioned. A similar investigation in discrete time is given in Boda
and Filar (2006), where a dynamic version of the Average Value–at–Risk at a point
of time is just defined as the static Average Value–at–Risk of the future random
loss of a portfolio when using a fixed portfolio strategy. Using this risk measure,
optimization problems are considered and time–consistency then is defined using
the well-known principle of optimality.

A more straightforward generalization approach of coherent static risk measures
was followed by some of the same authors of Artzner et al. (1999), merely in Artzner
et al. (2004) and Delbaen (2006). In the former work, the static representation
result (compare Theorem 1.1) is generalized to measuring the initial risk of discrete–
and infinite–time processes simply by an extension of the probability space. In finite
time, risk measurement over time is then investigated by introducing so–called
risk–adjusted value processes in terms of generalized Snell envelopes. In contrast
to works described below, expectations are not taken of discounted sums of the
components of processes but rather of the component of the process at a certain
stopping time. This model is called the supremum case in Burgert (2005). The
approach is more thoroughly dealt with in Delbaen (2006), adding some consistency
requirement on the risk measurement via the notion of stable sets of probability
measures (compare Section 3.3). A similar approach is introduced in Jobert and
Rogers (2005) for a finite probability space using pricing operators. The authors
reason that this simplifies the axiomatic approach.

In a sequence of papers, a comparable framework is investigated for a number
of different models. The functionals that are characterized are called monetary
risk measures, which corresponds to the fact that they are non–decreasing rather
than non–increasing on their domain (contrary to the functionals that we just call
risk measures). In Cheridito et al. (2006), such functionals are introduced and
characterized for bounded processes in finite and infinite discrete–time. A main
focus is again on the property called time–consistency. This means that the same
risk of a financial position should result ”irrespective of whether it is calculated
directly or in two steps backwards in time”. In Cheridito and Kupper (2006), this
model is supplemented by considering dynamic monetary risk measures that are
composed of static ones. Representation theorems for coherent and convex risk
measures for bounded and unbounded processes in continuous time can be found
in Cheridito et al. (2004) and Cheridito et al. (2005) respectively.

In discrete and finite time, which is the main subject of this thesis, there are
some more interesting works. By the characterization theorems given there, cal-
culating the risk of a process at every point of time is done by applying a static
risk measure to the discounted sum of the future values of the process. This is
why these works deal in fact with dynamic risk measures for final payments. How-
ever, they yield quite a practical view on dynamic risk measure, hence we consider
them important. The dynamic risk measure that we will describe in the following
chapter resembles a typical element of these classes but has the advantage not to
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depend only on the discounted sum of the components of a process of financial
positions. Furthermore, we will see that our dynamic risk measure is not law in-
variant, a property that is not always desirable as shown in the simple Example
4.3. Contrary to this, in Weber (2006), law invariant dynamic risk measures for
bounded processes are investigated. They are only characterized by the properties
of monotonicity and translation invariance and shown to be at every point of time
a static risk measure of the conditional distribution of the discounted sum of the
future values of a process. A similar result, but without the assumption of law
invariance, is given in Riedel (2004) for coherent dynamic risk measures. Here,
again the risk of the discounted sum of the future values of a process is measured
at every point of time, but now with a conditional static risk measure. Compare
Section 1.4 for some notes on the distinction of these two notions. One drawback
in Riedel’s work is the assumption of a finite probability space. This is overcome
in Burgert (2005), where the result is generalized to bounded and unbounded pro-
cesses on general probability spaces. It is merely obtained as a consequence of more
general characterization theorems of convex and coherent dynamic risk measures
for final payments in continuous and discrete time. It is shown, similar to Delbaen
(2006), that there is a correspondence between a dynamic risk measure and a sta-
ble set of probability measures, if a certain time–consistency property is imposed.
Complementary, a similar characterization, though in a different context, is given
in Epstein and Schneider (2003) for utility functions by using recursive multiple
priors. We will describe these results more formally in the following section and
also introduce an interesting translation invariance property that is more general
than the one used in the aforementioned works and which is first used in Frittelli
and Scandolo (2006). In this work, a class of risk measures for processes in discrete
and finite time is investigated. The risk measurement takes only place at time 0.

For the sake of completeness, a few other works for processes in discrete and
finite time are worth to be mentioned. Based on the earlier work Roorda et al.
(2005), dynamic risk measures for final payments on a finite probability space
are characterized in Roorda and Schumacher (2007) for different notions of time–
consistency. Furthermore, these are all compared, and for two of them, a consistent
version of the Average Value–at–Risk is given, hereby completing a note in Artzner
et al. (2004) which shows that the definition of a dynamic Average Value–at–Risk
in the latter work is not consistent. In Section 4.4, we will give another example
to overcome this drawback by using a stable set of probability measures.

In Jouini et al. (2004), a totally different setting for bounded and d–dimensional
portfolios is used. The risk measure now has values in Rn with n ≤ d. This reduc-
tion is based on aggregation procedures. One–dimensional–valued risk measures
for portfolio vectors are also considered in Burgert and Rüschendorf (2006), where
a main focus is put on the relationship with stochastic orderings and dependence
concepts. In Bion-Nadal (2006b), dynamic risk measures in discrete and contin-
uous infinite time are characterized using conditional static risk measures on a
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larger space. In continuous time, an approach via BMO martingales1 is taken in
Bion-Nadal (2006a). Finally, convex dynamic risk measures for bounded processes
in discrete and finite time are again investigated in Föllmer and Penner (2006) by
using the standard notion of conditional static risk measures.

We conclude that there is a number of publications which deal with dynamic risk
measures for final payments or discounted sums of future payments (in a discrete
time framework). An important property of such measures is time-consistency,
which can be defined in various ways. But this is not a main subject in this work.
Since we want to introduce a dynamic risk measure in discrete and finite time
and investigate its properties in the following chapter, we now briefly summarize
the most relevant results that can be related to our dynamic risk measure. We
focus on the accordant notion of time–consistency which is related to stability of
sets of probability measures and thoroughly deal with the property of translation
invariance.

3.2 Definitions, axioms and properties

In this section, our aim is to give a short overview on properties of dynamic risk
measures in discrete and finite time which we consider important. Hence, let the
time set be T = {0, 1, . . . , T} with T ∈ N and let (Ft)t∈T be a filtration on a given
probability space (Ω,F ,P). A dynamic risk measure for an (Ft)t∈{0,1,...,T}–adapted
process then is a mapping that assigns at every point of time t ∈ {0, 1, . . . , T − 1}
an Ft–measurable risk to the process, such that the sequence of the values of
the risk measures is again an (Ft)t∈{0,1,...,T}–adapted process. Furthermore, the
dynamic risk measure should satisfy two elementary properties, which are given in
the following definition. Let

X := {(I1, . . . , IT ) | It ∈ Xt, t = 1, . . . , T},

be the space of all integrable and (Ft)t∈T –adapted processes, where

Xt := L1(Ω,Ft,P), t = 0, 1, . . . , T.

For convenience, we enlarge the random vector (I1, . . . , IT ) by a dummy compo-
nent I0 ≡ 0 whenever necessary. All occurring equalities and inequalities between
random variables are understood in the P–almost sure sense.

Definition 3.1. Let ρ : Ω × {0, 1, . . . , T − 1} × X → R be a mapping and set
ρt(I)(ω) := ρ(ω, t, I) for all (ω, t, I) ∈ Ω×{0, 1, . . . , T −1}×X . Then ρ is called a
dynamic risk measure if (ρt(I))t=0,1,...,T−1 is an (Ft)t=0,1,...,T−1–adapted process and
if the following two conditions are fulfilled:

1A BMO martingale is a uniformly integrable martingale starting in 0 that fulfills a certain
additional integrability condition which uses stopping times.
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3 Dynamic risk measures

(IOP) ρ is independent of the past, i. e. for every t = 0, 1, . . . , T − 1 and
I ∈ X , ρt(I) does not depend on I1, . . . , It−1.

(MON) ρ is monotone, i. e. for all I(1), I(2) ∈ X with I
(1)
t ≤ I

(2)
t for all

t = 1, . . . , T it holds

ρt(I
(1)) ≥ ρt(I

(2)), t = 0, 1, . . . , T − 1.

Remark. 1. We sometimes identify ρ with the corresponding sequence of map-
pings (ρt)t=0,1,...,T−1.

2. Condition (IOP) means that for every I ∈ X it holds

ρt(I1, . . . , IT ) = ρt(0, . . . , 0, It, . . . , IT ), t = 0, 1, . . . , T − 1.

In the following, we further assume that there exists a constant interest rate
r > −1. By ek ∈ X we denote the income process that is one at a fixed point
of time k ∈ {1, . . . , T} and zero otherwise. Let us now review the most impor-
tant properties of dynamic risk measures. Afterwards, we introduce the notion of
coherence, analogously to the static setting.

Translation invariance properties The economic interpretation of the values of
the risk measured is based on these properties. Let ρ be a dynamic risk measure.

(TI1) For all I ∈ X , t ∈ {0, 1, . . . , T − 1} and Z ∈ L1(Ω,Ft,P) it holds

ρt(I + Z · ek) = ρt(I)− Z

(1 + r)k−t
, k = t, . . . , T.

(TI2) This is (TI1) in the case k = T , i. e. for all Z ∈ L1(Ω,Ft,P) and
I ∈ X it holds

ρt(I + Z · eT ) = ρt(I)− Z

(1 + r)T−t
.

(TI3) Let t ∈ {0, 1, . . . , T − 1}. For every process

Z = (0, . . . , 0, Zt, . . . , ZT ) ∈ X

such that
∑T

k=t
Zk

(1+r)k−t is Ft–measurable it holds for all I ∈ X

ρt(I + Z) = ρt(I)−
T∑

k=t

Zk

(1 + r)k−t
. (3.1)
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We obtain from (TI1) or (TI3)

ρt(I + ρt(I) · et) = ρt(I)− ρt(I) = 0,

which provides the same economic interpretation of the value ρt(I) as in the static
setting.

Property (TI1) is an essential tool in Riedel (2004), while (TI2) is used in Weber
(2006). (TI3) is inspired by Definition 4.7 in Frittelli and Scandolo (2006). We
believe that it is the most natural extension of the static translation invariance
in the context of Theorems 3.1 and 3.2, because in the one–period–setting, an
F0–measurable, therefore predictable amount c is added to the FT –measurable
random payoff at time T . Hence, in a multiperiod setting, the risk manager should
be allowed to add at every time t a process Z to the income process I and in this
manner diminish the risk, as long as the discounted sum of the future values of Z
is known at time t. Otherwise, Equation (3.1) would not make sense.

However, considering a generalization of a risk measure by Pflug and Ruszczyński
in the following chapter, we will see that a restriction to Z being a predictable
process can be reasonable too, compare Proposition 4.3.

Coherence properties Analogously to the static case, dynamic risk measures can
be distinguished by the properties of convexity and subadditivity. Furthermore,
homogeneity plays a crucial role when connecting the two former properties.

(CVX) A dynamic risk measure ρ is called convex if for all I(1), I(2) ∈ X ,
t ∈ {0, 1, . . . , T − 1} and Λ ∈ L∞(Ω,Ft,P) with 0 ≤ Λ ≤ 1 it holds

ρt(ΛI(1) + (1− Λ)I(2)) ≤ Λρt(I
(1)) + (1− Λ)ρt(I

(2)).

(SUB) A dynamic risk measure ρ is called subadditive if for all I(1), I(2) ∈ X
and t ∈ {0, 1, . . . , T − 1} it holds

ρt(I
(1) + I(2)) ≤ ρt(I

(1)) + ρt(I
(2)).

(HOM) A dynamic risk measure ρ is called homogeneous if for all I ∈ X ,
t ∈ {0, 1, . . . , T − 1} and Λ ∈ L∞(Ω,Ft,P) with Λ ≥ 0 it holds

ρt(ΛI) = Λρt(I).

As in the one–period model, under homogeneity, subadditivity and convexity are
equivalent. The interpretation of the properties is the same as in the static model.
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3 Dynamic risk measures

Consistency properties These properties are crucial tools when deriving repre-
sentation theorems for dynamic risk measures.

(TCS) A dynamic risk measure ρ is called time–consistent if for all stop-
ping times σ, τ on {0, 1, . . . , T} with σ ≤ τ , all processes I ∈ X
and Z ∈ L1(Ω,Fτ ,P) it holds

ρσ(I + Z · eτ ) = ρσ(I + (1 + r)T−τZ · eT ).

(DCS) A dynamic risk measure ρ is called dynamically consistent if for all
processes I(1), I(2) ∈ X with I

(1)
t = I

(2)
t for a t ∈ {0, 1, . . . , T − 1} it

holds

ρt+1(I
(1)) = ρt+1(I

(2)) ⇒ ρt(I
(1)) = ρt(I

(2)).

Property (TCS) is used in Weber (2006) and Burgert (2005), whereas (DCS) is
defined and motivated in Riedel (2004).

Technical properties To derive characterization theorems, usually some technical
assumptions have to be made.

(REL) A dynamic risk measure ρ is called relevant if for all A ∈ FT with
P(A) > 0 it holds

P(ρt(−1A · eT ) > 0) > 0, t = 0, 1, . . . , T − 1.

(FAT) A dynamic risk measure ρ has the Fatou–property, if for every point
of time t ∈ {0, 1, . . . , T−1} and all processes I(n) ∈ X , n ∈ N∪{∞},
such that

sup
l≥t
E |I(n)

l | ≤ 1, n ∈ N ∪ {∞},

and supl≥t|I(n)
l − I

(∞)
l | L1−→ 0, n →∞, it holds

ρk(I
(∞)) ≤ lim inf

n→∞
ρk(I

(n)), k ∈ {t, . . . , T − 1}.
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(LIN) Let ρ be a dynamic risk measure. Then a = (at)t=0,1,...,T−1 defined
via

at(I) = 1(−∞,0](ρt(I)), I ∈ X∞,

is called the acceptance indicator, where X∞ ⊂ X is the set of
all bounded and adapted processes. Denote with Mc the set of
all probability measures on the real line with compact support.
Then ρ is called law invariant if there exists a measurable mapping
Ht : Mc → {0, 1} such that for t = 0, 1, . . . , T − 1, I ∈ X∞

at(I) = Ht(L(IT | Ft)) P–almost surely.

Since there is a variety of proposals for the property of translation invariance,
we briefly investigate the relationship of (TI1), (TI2) and (TI3). Obviously, (TI2)
follows from (TI3). But indeed, introducing a weaker form of time–consistency,
the following statement can be made.

Proposition 3.1. Let ρ be a dynamic risk measure. Then the property (TI3) is
fulfilled if (TI2) and

(WCS) Let t ∈ {0, 1, . . . , T − 1} and k ∈ {t, . . . , T}. Then it holds for all
Z ∈ L1(Ω,Fk,P) and I ∈ I

ρt(I + Z · ek) = ρt(I + (1 + r)T−kZ · eT )

hold. Furthermore, (TI3) implies (TI1) and a weaker form of (WCS), namely if
only Z ∈ L1(Ω,Ft,P) is allowed.

Proof. Assume that (TI2) and (WCS) hold. Take Z = (0, . . . , 0, Zt, . . . , ZT ) ∈ X
such that

∑T
k=t

Zk

(1+r)k−t is Ft–measurable. Then for I ∈ X

ρt(I + Z) = ρt(I + Zt · et + · · ·+ ZT · eT )
(WCS)

= ρt

(
I +

T∑

k=t

(1 + r)T−kZk · eT

)

= ρt

(
I + (1 + r)T−t

T∑

k=t

Zk

(1 + r)k−t

︸ ︷︷ ︸
Ft–measurable

·eT

)
(TI2)
= ρt(I)−

T∑

k=t

Zk

(1 + r)k−t
.

The second part is almost trivial, since (TI3) obviously implies (TI1). To show
(WCS) for Z ∈ L1(Ω,Ft,P) let I ∈ I. Then

ρt(I + Z · ek)
(TI3)
= ρt(I)− Z

(1 + r)k−t
= ρt(I)− (1 + r)T−kZ

(1 + r)T−t

(TI3)
= ρt(I + (1 + r)T−kZ · eT ).
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3 Dynamic risk measures

Remark. We call the property (WCS) weak consistency. Obviously, (TCS) implies
(WCS).

The following corollary shows the equivalence of the three translation invariance
properties under weak consistency.

Corollary 3.1. Let (WCS) hold. Then (TI1), (TI2) and (TI3) are all equivalent.

Proof. Obviously, (TI3) implies (TI1), from which again (TI2) is a special case.
Consequently, the following sequence of implications is valid:

(TI3) ⇒ (TI1) ⇒ (TI2)
Proposition 3.1⇒ (TI3).

We will later see how the previous corollary implies that the following definition
of (dynamic) coherence is in accordance with the definitions used in related works,
e. g. Weber (2006) or Burgert (2005).

Definition 3.2. A dynamic risk measure ρ is called coherent, if it fulfills (TI3),
(SUB) and (HOM), i. e. if it is translation invariant (of the third kind), subadditive
and homogeneous.

To state representation theorems for dynamic risk measure, we need the follow-
ing definition, used e. g. in Artzner et al. (2004), Definition 3.1 . If Q is a set of
probability measures with P ∈ Q, we denote with Qe the subset of all probability
measures which are equivalent to P and with Q∗ all the ones which are absolutely
continuous with respect to P. We usually only consider such sets where Q = Q∗.

If Q is a probability measure with Q ¿ P on FT and LQ
T := dQ

dP the resulting
density, we are able to introduce the so-called density process of Q with respect to
P via

LQ
t := E [LQ

T | Ft], t = 0, 1, . . . , T.

It is well–known (see Attachment A), that LQ
t is the density of Q with respect

to P on Ft for every t ∈ {0, 1, . . . , T}. Obviously, the process (LQ
t )t=0,1,...,T is an

(Ft)t=0,1,...,T –martingale.

Definition 3.3. A set Q of probability measures is called stable (under pasting),
if for all Q1, Q2 ∈ Qe with density processes (LQ1

t )t=0,1,...,T , (LQ2
t )t=0,1,...,T and all

stopping times τ ∈ {0, 1, . . . , T} the process

L
(τ)
t :=

{
LQ1

t , t = 0, 1, . . . τ,

LQ1
τ

L
Q2
t

L
Q2
τ

, t = τ + 1, . . . , T,

defines an element Q(τ) ∈ Q which is called the pasting of Q1 and Q2 in τ .
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Theorem 3.1. A mapping ρ : Ω×{0, 1, . . . , T−1}×X → R is a relevant and time–
consistent coherent dynamic risk measure with the Fatou property if and only if
there exists a stable, convex and L∞(Ω,FT ,P)–closed set Q of probability measures
that are absolutely continuous with respect to P with dQ

dP ∈ L∞(Ω,FT ,P), Q ∈ Q,
such that for all t = 0, 1, . . . , T − 1

ρt(I) = ess. sup
Q∈Q

EQ

[
−

T∑

k=t

Ik

(1 + r)k−t

∣∣∣Ft

]
, I ∈ X .

Proof. This is Theorem 3.27 in Burgert (2005) in the case p = 1 and q = ∞.
Note that in the cited work, (TI1) instead of (TI3) is assumed in the definition
of coherence. Since time–consistency implies weak consistency and because of
Corollary 3.1, the theorem is still valid when using our notion of coherence.

Remark. The same representation is derived in Riedel (2004) if |Ω| < ∞. One
only has to replace time–consistency by dynamic consistency and one does not need
the Fatou–property. Furthermore, the notion of stability of sets of probability
measures is called consistency. We will later show that the definition in Riedel
(2004) is indeed nothing else than stability.

In Weber (2006), only bounded processes are considered. Hence, let

X∞ := {(I1, . . . , IT ) | It ∈ L∞(Ω,Ft,P), t = 1, . . . , T}.
Theorem 3.2. A dynamic risk measure ρ : Ω × {0, 1, . . . , T − 1} × X∞ → R
satisfies (TI2), (TCS) and (DIN) if and only if there exists a (unique) sequence
(Θt)t=0,1,...,T−1 of monotone, translation and law invariant static risk measures such
that

ρt(I) = Θt

(
L

(
−

T∑

k=t

Ik

(1 + r)k−t

∣∣∣Ft

))
, I ∈ X∞.

Proof. This is Theorem 4.6 in Weber (2006). There it is formulated only for final
payments, but by time–consistency, the slightly more general case mentioned here
also holds.

Remark. In a further step in the mentioned work, another consistency property
is introduced in order to get Θt = Θ0, t = 0, 1, . . . , T − 1.

The aim of this section was to introduce properties of dynamic risk measures
and in particular to investigate the different notions of translation invariance. Fur-
thermore, we have seen how these properties can be used to derive representation
theorems for dynamic risk measures under different collections of properties. In
the following chapter, we introduce a concrete dynamic risk measure and state
its relevant properties. We will also see how this risk measure fits with the two
aforementioned theorems. Before doing so, let us conclude this chapter by first
generalizing the notion of stability of sets of probability measures and then show
its equivalence to what is called consistency of such sets. This is also related to a
supermartingale property of dynamic risk measures for final payments.
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3 Dynamic risk measures

3.3 Stable sets of probability measures

Let the reference probability measure P and k ∈ {1, . . . , T} be fixed throughout
the first part of this subsection.

If Q is another probability measure with Q ¿ P on Fk and LQ
k := dQ

dP
∣∣
Fk

the
resulting density, we are able to introduce the so-called density process of Q with
respect to P via

LQ
t := E [LQ

k | Ft], t = 0, 1, . . . , k.

As above, LQ
t is the density of Q with respect to P on Ft for every t ∈ {0, 1, . . . , k}

and the process (LQ
t )t=0,...,k is an (Ft)t=0,...,k–martingale. We can now formulate a

slight generalization of stability of sets of probability measures.

Definition 3.4. A set Q of probability measures is called stable (under pasting)
on Fk, if for all Q1, Q2 ∈ Qe with density processes (LQ1

t )t=0,...,k, (L
Q2
t )t=0,...,k and

all stopping times τ ≤ k the process

L
(τ)
t :=

{
LQ1

t , t = 0, 1, . . . τ,

LQ1
τ

L
Q2
t

L
Q2
τ

, t = τ + 1, . . . , k,

defines an element Q(τ) ∈ Q which is called the pasting of Q1 and Q2 in τ on Fk.

Remark. 1. For k = T this is just the notion used e. g. in Artzner et al. (2004),
compare our Definition 3.3. Consequently, we sometimes refer to stability on
FT just as stability.

2. Lemma 6.41 and Definition 6.42 in Föllmer and Schied (2004) provide a way
how we can directly obtain the probability measure Q(τ) from Q1 and Q2:

Q(τ)(A) = EQ1 [Q2(A | Fτ )], A ∈ Fk.

(ii) For calculations it is sometimes helpful to notice that for all Q ¿ P on Fk

and stopping times ν, σ on {0, 1, . . . , k} with ν ≥ σ holds

EQ[Z · LQ
σ | Fσ] = E

[
Z · LQ

ν | Fσ

]
, Z ∈ L1(Ω,Fν ,P). (3.2)

The equality is understood in the almost sure–sense with respect to P and
therefore also with respect to Q.

In the next chapter we will need the following useful result. It is related to the
corollary after Lemma 4.1 in Artzner et al. (2004) and a generalization of Lemma 3
in Detlefsen and Scandolo (2005), which is mentioned but not proved in that work.
We give a detailed proof here.
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3.3 Stable sets of probability measures

Proposition 3.2. Let Q be stable on Fk and ν ≤ σ ≤ k stopping times. Then for
every Q ¿ P (not necessarily in Q)

EQ

[
ess. sup

Q′∈Qe

EQ′ [Z | Fσ]
∣∣Fν

]
= ess. sup

Q′∈Qe

EQ[EQ′ [Z | Fσ] | Fν ], Z ∈ L1(Ω,Fk,P).

Proof. Let Z ∈ L1(Ω,Fk,P). The essential tool is Lemma 5.2 in Delbaen (2006).
By taking in their notation the process X = (X1, . . . , Xk) = (Z, . . . , Z) we obtain
Xτ = Z for every stopping time τ ≤ k. We conclude that the set

{EQ′ [Z | Fσ] |Q′ ∈ Qe}

is closed for taking maxima.
Consequently, by Theorem A.32 in Föllmer and Schied (2004) there exists a

sequence (Qn)n∈N ⊂ Qe such that

EQn [Z | Fσ] ↑ ess. sup
Q′∈Qe

EQ′ [Z | Fσ], n →∞.

This holds P–almost surely and consequently also Q–almost surely. Since we have
EQn [Z | Fσ] ≥ EQ1 [Z | Fσ] and EQ[|EQ1 [Z | Fσ]|] < ∞ the conditional version of
the monotone convergence theorem can be applied and we obtain

EQ

[
ess. sup

Q′∈Qe

EQ′ [Z | Fσ]
∣∣Fν

]
= EQ[ lim

n→∞
EQn [Z | Fσ] | Fν ]

= lim
n→∞

EQ[EQn [Z | Fσ] | Fν ]

≤ ess. sup
Q′∈Qe

EQ[EQ′ [Z | Fσ] | Fν ].

(3.3)

On the other hand, we have for all Q0 ∈ Qe

EQ

[
ess. sup

Q′∈Qe

EQ′ [Z | Fσ]
∣∣Fν

]
≥ EQ[EQ0 [Z | Fσ] | Fν ],

so the reverse inequality in (3.3) also holds. This proves the assertion.

Remark. The proof remains valid if the set {EQ′ [Z | Fσ] |Q′ ∈ Qe} is replaced
with an arbitrary set of P–integrable, Fσ–measurable random variables which is
closed for taking maxima.

To conclude this section, we prove that the notion of consistency, defined on
finite probability spaces in Riedel (2004), is equivalent to stability. To this extend,
let us first briefly describe the setting introduced in the aforementioned paper.
From now on we assume |Ω| < ∞ and that for the filtration it holds

Ft = σ(Y1, . . . , Yt), t = 1, . . . , T,
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3 Dynamic risk measures

for some family of random variables (Yt)t=1,...,T on (Ω,F ,P). Let

Ht := Range((Y1, . . . , Yt)), t = 1, . . . , T.

Furthermore, for any set Q of probability measures on (Ω,F), t ∈ {0, 1, . . . , T −1}
and ξt ∈ Ht let

Qξt := {Q( · | (Y1, . . . , Yt) = ξt) |Q ∈ Q, Q((Y1, . . . , Yt) = ξt) > 0}.
The following definition is introduced in Riedel (2004).

Definition 3.5. Assume that for all t = 0, 1, . . . , T − 1 and every history ξt ∈ Ht,
Qξt is a closed and convex set of (conditional) probability measures. The collection
(Qξt)ξt∈Ht,t=0,1,...,T−1 is called a family of conditional probability measures.

(i) Fix t ∈ {0, 1, . . . , T − 1} and ξt ∈ Ht. Furthermore, choose for all histories
ξt+1 = (ξt, yt+1) ∈ Ht+1 a measure Q(ξt,yt+1) ∈ Q(ξt,yt+1) and Rξt ∈ Qξt. Then
the composite probability measure Q(ξt,Yt+1)Rξt is defined via

Q(ξt,Yt+1)Rξt(A) :=
∑

yt+1:(ξt,yt+1)∈Ht+1

Q(ξt,yt+1)(A) ·Rξt(Yt+1 = yt+1)

for A ⊂ {(Y1, . . . , Yt) = ξt}. We denote with Q(ξt,Yt+1)Qξt the collection of
these probability measures.

(ii) The set Q is called consistent if for all t ∈ {0, 1, . . . , T − 1} and ξt ∈ Ht it
holds

Qξt = Q(ξt,Yt+1)Qξt .

By the formula of total probability, the inclusion Qξt ⊂ Q(ξt,Yt+1)Qξt is always
trivial.

The following simple observation shows that consistency and stability are equiv-
alent and that the reverse implication of Corollary 1 (see the proof below) in Riedel
(2004) is also true.

Proposition 3.3. Let Q be a set of probability measures on (Ω,F). Then the
following three statements are equivalent:

(i) The set Q is stable.

(ii) The set Q is consistent.

(iii) If we define for every final value, i. e. for every FT–measurable random vari-
able X (recall |Ω| < ∞) and t ∈ {0, 1, . . . , T − 1}

SX
t (ω) := ρt(0, . . . , 0, X)(ω) := sup

Q∈Q
EQ

[
− X

(1 + r)T

∣∣Ft

]
(ω), ω ∈ Ω,

then (SX
t )t=0,1,...,T−1 is a Q–supermartingale with respect to (Ft)t=0,1,...,T−1 for

every Q ∈ Q.
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3.3 Stable sets of probability measures

Proof. We show (ii) ⇒ (iii) ⇒ (i) ⇒ (ii). The first two parts are just direct
applications of the literature.

If Q is consistent and Q ∈ Q, then (SX
t )t=0,1,...,T−1 is a Q–supermartingale by

Corollary 1 in Riedel (2004).

Now assume that (SX
t )t=0,1,...,T−1 is a Q–supermartingale and let σ, τ be stopping

times on {0, 1, . . . , T} such that σ ≤ τ . Then by the Doob decomposition and the
Optional Sampling Theorem (see e. g. Lemma 7.10 and Theorem 7.12 in Kallenberg
(2002)), we obtain in the same way as in the proof of Theorem 7.29 in Kallenberg
(2002) that

SX
σ ≥ EQ[SX

τ | Fσ].

Hence, Theorem 5.1 in Artzner et al. (2004) yields stability of the set Q.

Finally, let Q be a stable set. To obtain consistency, we have to show

Q(ξt,Yt+1)Qξt ⊂ Qξt , ξt ∈ Ht, t = 0, 1, . . . , T − 1.

So let t ∈ {0, 1, . . . , T − 1} and ξt ∈ Ht. For every yt+1 with (ξt, yt+1) ∈ Ht+1 we
choose a probability measure Qyt+1 ∈ Q and R ∈ Q. By definition of consistency,
we have to show that there exists Q0 ∈ Q such that for all A ⊂ {(Y1, . . . , Yt) = ξt}
it holds

Q0(A | (Y1, . . . , Yt) = ξt) =
∑

yt+1:(ξt,yt+1)∈Ht+1

Q(ξt,yt+1)
yt+1

(A) ·Rξt(Yt+1 = yt+1). (3.4)

Consider now the constant stopping time τ := t + 1 and set Qyt+1 := P for
yt+1 ∈ Range(Yt+1) with (ξt, yt+1) 6∈ Ht+1. Then {Yt+1 = yt+1} ∈ Fτ for all
yt+1 ∈ Range(Yt+1) and

∑
yt+1∈Range(Yt+1)

{Yt+1 = yt+1} = Ω. By Proposition 2.1 in

Delbaen (2006), the following density process defines an element Q0 ∈ Q:

ZQ0

k :=





ZR
k , k ≤ t + 1

∑
yt+1∈Range(Yt+1)

1{Yt+1=yt+1}Z
R
t+1 · Z

Qyt+1
k

Z
Qyt+1
t+1

, k > t + 1.

Now, we easily see that Q0 is indeed the composite probability measure from above.
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To this extend, calculate for a final value X

EQ0

[
X

∣∣Ft

]
= E

[
X · ZQ0

T

ZQ0
t

∣∣Ft

]

= E

[
E

[
X ·

∑

yt+1∈Range(Yt+1)

1{Yt+1=yt+1}
ZR

t+1

ZR
t︸ ︷︷ ︸

Ft+1–measurable

·Z
Qyt+1

T

Z
Qyt+1

t+1

∣∣Ft+1

] ∣∣∣Ft

]

= E

[
ZR

t+1

ZR
t

·
∑

yt+1∈Range(Yt+1)

1{Yt+1=yt+1} · E
[
X · Z

Qyt+1

T

Z
Qyt+1

t+1

∣∣Ft+1

] ∣∣∣Ft

]

= E R

[ ∑

yt+1∈Range(Yt+1)

1{Yt+1=yt+1} · EQyt+1
[X | Ft+1]

∣∣∣Ft

]

=
∑

yt+1∈Range(Yt+1)

E R[EQyt+1
[X · 1{Yt+1=yt+1} | Ft+1] | Ft].

With A ⊂ {(Y1, . . . , Yt) = ξt} and X := 1A we obtain

Q0(A | (Y1, . . . , Yt) = ξt)

=
∑

yt+1∈Range(Yt+1)

E R[Qyt+1(A ∩ {Yt+1 = yt+1} | Ft+1) | (Y1, . . . , Yt) = ξt]

=
∑

yt+1∈Range(Yt+1)

Qyt+1

(
A | (Y1, . . . , Yt, Yt+1) = (ξt, yt+1)

)×

R(Yt+1 = yt+1 | (Y1, . . . , Yt) = ξt)︸ ︷︷ ︸
=0 for (ξt,yt+1)6∈Ht+1

=
∑

yt+1:(ξt,yt+1)∈Ht+1

Q(ξt,yt+1)
yt+1

(A) ·Rξt(Yt+1 = yt+1).

Now, (3.4) and therefore the assertion follows.
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Ruszczyński

In the last chapter, we gave an overview on the literature about dynamic risk
measures in discrete time. It became obvious that the subject has been thoroughly
dealt with theoretically. On the other hand, there is still a lack of practicable
dynamic risk measures for processes that take into account the development of
payments over time, except possibly for the so–called dynamic CTE introduced in
Hardy and Wirch (2004). To deal with this drawback we generalize a proposal by
Pflug and Ruszczyński (2001) that was further investigated in Pflug and Ruszczyń-
ski (2005) and Pflug (2006). In these works, a risk measure for processes is defined,
while we now introduce an intuitive dynamic version of this risk measure. It is
formulated as an optimization problem, which we are able to solve in a Markovian
environment. We will later discuss the advantages of this proposal.

4.1 Definition of the dynamic risk measure

Let T ∈ N. The dynamic risk measure will be defined for general integrable
processes in discrete time, i. e. from the space

X := {(I1, . . . , IT ) | It ∈ Xt, t = 1, . . . , T},

where
Xt := L1(Ω,Ft,P), t = 0, 1, . . . , T.

Let us further introduce the spaces of all predictable processes starting at time
t + 1 for t ∈ {0, 1, . . . , T − 1}, i. e. let

X (T−t) := {(Xt, . . . , XT−1) |Xk ∈ Xk, k = t, . . . , T − 1}.

To define the optimization problem we need some discounting factors and reinsur-
ance premiums. To this extend, let ct ∈ R+, t = 1, . . . , T + 1, with ct+1 ≤ ct,
t = 1, . . . , T , and qt ∈ R+, t = 1, . . . , T , with ct ≤ qt, t = 1, . . . , T . The economic
motivation of the dynamic risk measure is as in Pflug and Ruszczyński (2001):

Consider an insurance–company that faces an income It in every period
t ∈ {1, . . . , T}. At time t−1, a decision to consume an amount at−1 has
to be made. If we denote the wealth of the company at time t by Wt,

67



4 A risk measure by Pflug and Ruszczyński

the accumulated, non–negative wealth of the company can be defined
recursively via

W0 ≡ 0, Wt = W+
t−1 + It − at−1, t = 1, . . . , T.

If Wt < 0, the company faces a loss at time t which is reinsured by
paying an insurance premium of qt · W−

t . Starting in every period
t ∈ {0, 1, . . . , T − 1} with the wealth Wt ∈ Xt, the company faces for
every sequence of decisions (at, . . . , aT−1) ∈ X (T−t) a discounted future
utility of

T∑

k=t+1

1

ct

· (ckak−1 − qkW
−
k

)
+

cT+1

ct

W+
T .

This motivates the definition of a dynamic risk measure as the negative supre-
mum over all strategies of the expectation of this utility.

Definition 4.1. Let Wt ∈ Xt be the wealth at time t ∈ {0, 1, . . . , T − 1}. Then we
define a dynamic risk measure ρPR = (ρPR

t )t=0,1,...,T−1 for I ∈ X via

ρPR
t (I) := − ess. sup

(at,...,aT−1)∈X (T−t)

1

ct

· E
[

T∑

k=t+1

(
ckak−1 − qkW

−
k

)
+ cT+1W

+
T

∣∣∣∣Ft

]
.

Remark. 1. The dynamic risk measure ρPR is independent of the past, if the
starting value of the process Wt in the definition depends only on It but not
on I1, . . . , It−1. As we will see later, a natural choice for Wt indeed fulfills
this assumption.

2. One easily sees that ρPR is monotone if Wt ≡ 0 holds and that the process
(ρPR(I)t)t=0,1,...,T−1 is (Ft)t=0,1,...,T−1–adapted. Hence, ρPR is indeed a dy-
namic risk measure in the sense of Definition 3.1. Further properties will be
investigated in the following sections.

3. Under some additional assumptions, we will show in Section 4.3 that the op-
timization problem can be solved explicitly and that the essential supremum
is in fact a maximum.

Before investigating further properties of the dynamic risk measure, let us first
make three elementary statements.

Proposition 4.1. Let t ∈ {0, 1, . . . , T−1} and I ∈ X . Then we have the following:

(i) It always holds

T∑

k=t+1

ck

ct

E [−Ik | Ft] ≤ ρPR
t (I) +

ct+1

ct

W+
t ≤ −

T∑

k=t+1

E
[ck+1

ct

I+
k −

qk

ct

I−k | Ft

]
.
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4.1 Definition of the dynamic risk measure

(ii) If EW+
t < ∞ then

E [|ρPR
t (I)|] < ∞.

(iii) If we chose ck = qk = cT+1, k = 1, . . . , T , it holds

ρPR
t (I) = −W+

t −
T∑

k=t+1

E [Ik | Ft]

and the optimal strategy is given by (a∗t , . . . , a
∗
T−1) = (W+

t , . . . , W+
T−1).

Proof. We only need to show part (i). The rest follows immediately from this,
since the Ik, k = 1, . . . , T , are assumed to be integrable.

Because of the relation qk ≥ ck ≥ ck+1, k = 1, . . . , T , we have for an arbitrary
strategy (at, . . . , aT−1) ∈ X (T−t)

T∑

k=t+1

(
ckak−1 − qkW

−
k

)
+ cT+1W

+
T

≤
T∑

k=t+1

ck

(
ak−1 −W−

k

)
+ cT+1W

+
T =

T∑

k=t+1

ck

(
Wk −W+

k + ak−1

)
+ cT+1W

+
T

=
T∑

k=t+1

ck

(
W+

k−1 + Ik −W+
k

)
+ cT+1W

+
T

=
T∑

k=t+1

ckIk +
T∑

k=t+1

ckW
+
k−1 −

T∑

k=t+1

ckW
+
k + cT+1W

+
T

=
T∑

k=t+1

ckIk +
T∑

k=t

ck+1W
+
k −

T∑

k=t+1

ckW
+
k

≤
T∑

k=t+1

ckIk + ct+1W
+
t +

T∑

k=t+1

ckW
+
k −

T∑

k=t+1

ckW
+
k =

T∑

k=t+1

ckIk + ct+1W
+
t .

By this, the lower bound follows.
Consider the admissible strategy (at, . . . , aT−1) = (W+

t , . . . , W+
T−1) ∈ X (T−t).

The wealth process becomes Wk = Ik, k = t + 1, . . . , T , and we obtain

ρPR
t (I) ≤ −ct+1

ct

W+
t − 1

ct

· E
[
qt+1I

−
t+1 −

T∑

k=t+2

(
ckI

+
k−1 − qkI

−
k

)
+ cT+1I

+
T

∣∣∣∣Ft

]
,

hence the upper bound.

Remark. The lower bound provided in the first part will give us in some special
cases a simple way to obtain an optimal strategy. This is possible if we can define
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4 A risk measure by Pflug and Ruszczyński

a strategy and show that the lower bound is already attained by inserting this
strategy. Part (ii) shows that the optimization problem introduced to define ρPR

t

has indeed a finite solution if all relevant expectations exist. From the third part
we observe that in the case of constant parameters, the solution is trivial.

4.2 Properties of the dynamic risk measure

Let us now take a closer look at the properties of the dynamic risk measure in
comparison with the setting of Section 3.2. As a preparation, note that the opti-
mization problem at time t introduced above relies on the value of the wealth Wt.
By a simple transformation, it is possible to consider an optimization problem that
starts with Wt ≡ 0.

To this extend, fix t ∈ {0, 1, . . . , T −1} and (at, . . . , aT−1) ∈ X (T−t). For another
sequence of decisions (a′t, . . . , a

′
T−1) ∈ X (T−t) and an income process I ∈ X , we

introduce

W ′
t ≡ 0, W ′

k = (W ′
k−1)

+ + Ik − a′k−1, k = t + 1, . . . , T.

Here, we choose a′t = at −W+
t and a′k = ak, k = t + 1, . . . , T − 1. Consequently,

Wt+1 = W+
t + It+1 − at = W ′

t+1 and inductively, Wk = W ′
k, k = t + 1, . . . , T .

Because W+
t is Ft–measurable, we have (a′t, . . . , a

′
T−1) ∈ X (T−t) and obtain

ct · ρPR
t (I)

= − ess. sup
a=(at,...,aT−1)∈X (T−t)

E

[
T∑

k=t+1

(
ckak−1 − qkW

−
k

)
+ cT+1W

+
T

∣∣∣∣Ft

]

= − ess. sup
a∈X (T−t)

E

[
ct+1at − qkW

−
t+1 +

T∑

k=t+2

(
ckak−1 − qkW

−
k

)
+ cT+1W

+
T

∣∣∣∣Ft

]

= − ess. sup
a∈X (T−t)

E

[
ct+1(a

′
t + W+

t )− qkW
−
t+1 +

T∑

k=t+2

(
ckak−1 − qkW

−
k

)
+ cT+1W

+
T

∣∣∣∣Ft

]

= −ct+1W
+
t − ess. sup

a′=(a′t,...,a
′
T−1)∈X (T−t)

E

[
T∑

k=t+1

(
cka

′
k−1 − qk(W

′
k)
−)

+ cT+1(W
′
T )+

∣∣∣∣Ft

]
.

The optimization problem in the last term now is indeed one which starts with
W ′

t ≡ 0. Consequently, we can write the dynamic risk measure as follows:

ρPR
t (I) = −ct+1

ct

W+
t − ess. sup

a∈X (T−t)

1

ct

· E
[

T∑

k=t+1

(
ckak−1 − qkW

−
k

)
+ cT+1W

+
T

∣∣∣∣Ft

]
,

where the wealth process with given I ∈ X , (at, . . . , aT−1) ∈ X (T−t) and Wt (pos-
sibly depending on I1, . . . , It) is defined via

Wt+1 = It+1 − at, Wk = W+
k−1 + Ik − ak−1, k = t + 2, . . . , T.
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4.2 Properties of the dynamic risk measure

Proposition 4.2. If I ∈ X (T ), i. e. if I is predictable, then

ρPR
t (I) = −ct+1

ct

W+
t −

T∑

k=t+1

ck

ct

E [Ik | Ft]

for t ∈ {0, 1, . . . , T − 1} and an optimal strategy is given by

(a∗t , . . . , a
∗
T−1) = (It+1, . . . , IT ) ∈ X (T−t).

Proof. Using the proposed strategy (which is admissible by assumption), the result-
ing wealth process becomes W ∗

t+1 = · · · = W ∗
T ≡ 0. By inserting this strategy we

can observe that the lower bound given in Proposition 4.1 (i) is actually attained:

− ct+1

ct

W+
t − 1

ct

· E
[

T∑

k=t+1

(
cka

∗
k−1 − qk(W

∗
k )−

)
+ cT+1(W

∗
T )+

∣∣∣∣Ft

]

= −ct+1

ct

W+
t −

T∑

k=t+1

ck

ct

E [Ik | Ft].

Remark. In the case t = 0, this is the result given in Lemma 2 in Pflug and
Ruszczyński (2001).

Now, we can easily deduce two simple properties of this dynamic risk measure,
namely homogeneity and translation invariance.

Proposition 4.3. Let t ∈ {0, 1, . . . , T − 1}. Then we have the following.

(i) Let Λ ∈ L∞(Ω,Ft,P) with Λ > 0. If Wt ≡ 0, then

ρPR
t (Λ · I) = Λ · ρPR

t (I), I ∈ X .

(ii) Let Y = (0, . . . , 0, Yt+1, . . . , YT ) ∈ X (T ) be a predictable process such that∑T
k=t+1 ckYk is Ft–measurable. Then

ρPR
t (I + Y ) = ρPR

t (I)−
T∑

k=t+1

ck

ct

Yk, I ∈ X .

Proof. (i) Let (at, . . . , aT−1) ∈ X (T−t). Then the resulting wealth process for the
income process Λ · I becomes

W
(Λ)
t ≡ 0,

W
(Λ)
k = (W

(Λ)
k−1)

+ + ΛIk − ak−1 = Λ ·
(
W+

k−1 + Ik − ak−1

Λ

)
, k = t + 1, . . . , T.
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4 A risk measure by Pflug and Ruszczyński

By defining (a′t, . . . , a
′
T−1) := Λ−1(at, . . . , aT−1) ∈ X (T−t) we have a one–to–

one correspondence between the two strategies and consequently obtain

ρPR
t (Λ · I)

= − ess. sup
(at,...,aT−1)∈X (T−t)

1

ct

· E
[

T∑

k=t+1

(
ckak−1 − qk(W

(Λ)
k )−

)
+ cT+1(W

(Λ)
T )+

∣∣∣∣Ft

]

= − ess. sup
(a′t,...,a

′
T−1)∈X (T−t)

1

ct

· E
[

T∑

k=t+1

Λ
(
cka

′
k−1 − qk(W

′
k)
−)

+ cT+1Λ(W ′
T )+

∣∣∣∣Ft

]

= −Λ ess. sup
(a′t,...,a

′
T−1)∈X (T−t)

1

ct

· E
[

T∑

k=t+1

(
cka

′
k−1 − qk(W

′
k)
−)

+ cT+1(W
′
T )+

∣∣∣∣Ft

]

= Λ · ρPR
t (I).

(ii) Let again (at, . . . , aT−1) ∈ X (T−t). Then the resulting wealth process for the
income process I + Y becomes

W
(Y )
t = Wt, W

(Y )
t+1 = It+1 + Yt+1 − at = It+1 − (at − Yt+1)

W
(Y )
k = (W

(Y )
k−1)

+ + Ik − (ak−1 − Yk), k = t + 2, . . . , T.

By defining

(a′t, . . . , a
′
T−1) := (at − Yt+1, . . . , aT−1 − YT ) ∈ X (T−t)

we obtain

ρPR
t (I + Y ) +

ct+1

ct

W+
t

= − ess. sup
a∈X (T−t)

1

ct

· E
[

T∑

k=t+1

(
ckak−1 − qk(W

(Y )
k )−

)
+ cT+1(W

(Y )
T )+

∣∣∣∣Ft

]

= − ess. sup
a∈X (T−t)

1

ct

· E
[

T∑

k=t+1

(
ck(a

′
k−1 + Yk)− qk(W

′
k)
−)

+ cT+1(W
′
T )+

∣∣∣∣Ft

]

= ρPR
t (I) +

ct+1

ct

W+
t −

T∑

k=t+1

ck

ct

Yk,

hence the assertion.

Remark. 1. For t = 0, part (i) has been shown in Pflug and Ruszczyński
(2001). Furthermore, also part (ii) was investigated, but for the less general
situation where Y = (y1, . . . , yT ) ∈ RT .
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4.3 Solution via Markov decision processes

2. Part (i) does not hold if we allow for a general Wt. As we will later see, a
natural choice is Wt = It + V@Rγ(It | Ft−1) for some γ ∈ (0, 1) and I ∈ X . If
we choose I such that It+1 = · · · = IT ≡ 0 we obtain for t > 0 by Proposition
4.2

ρPR
t (Λ · I) = −ct+1

ct

(ΛIt + V@Rγ(ΛIt | Ft−1))
+

= −Λ
ct+1

ct

(
It +

1

Λ
V@Rγ(ΛIt | Ft−1)

)+

,

which is in general not equal to Λ · ρPR
t (I) = −Λ ct+1

ct

(
It + V@Rγ(It | Ft−1)

)+

(only if Λ ∈ Xt−1).

3. Part (ii) is similar to the translation invariance property (TI3) introduced in
Section 3.2 but only allows for predictable processes.

We have seen that the dynamic risk measure ρPR is independent of the past
(under a mild assumption), monotone, conditional homogeneous (if Wt ≡ 0, t =
0, 1, . . . , T − 1) and that it fulfills a certain translation invariance property. To
deal with the properties of subadditivity and time–consistency we will now actually
solve the optimization problem in the definition of the dynamic risk measure in a
Markovian setup.

4.3 Solution via Markov decision processes

In this section, we aim to solve the optimization problem in the definition of ρPR

to obtain a closed formula for this dynamic risk measure. We restrict ourselves to
income processes that depend on some underlying Markov chain. For t = 0 and
general processes, this solution is obtained also in Pflug and Ruszczyński (2005),
although the methods used there are different from our approach, namely via the
dual optimization problem. In addition to solving the case t > 0, our method
also allows for a generalization, by which we can treat models with some unknown
parameter. This subject will thoroughly be dealt with in the next chapter. At
the end of this section we will further show that ρPR does not fit in the context of
Weber (2006). To deal with the more interesting setting described in Riedel (2004)
and Burgert (2005) we need some further preparations and therefore skip this to
Section 4.4.

Recall that for t ∈ {0, 1, . . . , T} and I ∈ X

ρPR
t (I) := − ess. sup

(at,...,aT−1)∈X (T−t)

1

ct

· E
[ T∑

k=t+1

(
ckak−1 − qkW

−
k

)
+ cT+1W

+
T

∣∣∣Ft

]
.

where (Wt)t=0,1,...,T is an (Ft)t=0,1,...,T –adapted process introduced in Section 4.1.

73



4 A risk measure by Pflug and Ruszczyński

As usual, let (Ω,F ,P) be a rich enough probability space equipped with a fil-
tration (Ft)t=0,1,...,T . Naturally, we take F = FT . To solve the Markov decision
problem introduced below we further specify this filtration by assuming that there
exist stochastically independent real-valued (therefore (F ,B)-measurable) random
variables Y1, . . . , YT such that

F0 := {∅, Ω}, Ft := σ(Y1, . . . , Yt), t = 1, . . . , T.

We further assume that we are given a Markov chain (Zt)t=0,1,...,T through

Z0 ≡ c ∈ R, Zt := gt(Zt−1, Yt), t = 1, . . . , T,

where gt : R2 → R are (B2,B)–measurable functions. We consider only income
processes I ∈ X for which It depends only on Zt (and, possibly on Zt−1) for
t = 1, . . . , T . In other words, we assume that there exist (B2,B)–measurable
functions hI

t : R2 → R, such that

It = hI
t (Zt−1, Yt), t = 1, . . . , T. (4.1)

Denote the set of these income processes by XM ⊂ X .
This construction might look a little odd at first glance, but two simple examples

show that this is an appropriate model for economic processes.

Example 4.1. Consider an example given by Artzner and mentioned in Pflug and
Ruszczyński (2005). We set T = 3 and throw a coin three times. Each throw t for
t = 1, 2, 3 is modelled by a random variable Yt through

P(Yt = 1) = θ = 1− P(Yt = 0)

for some θ ∈ (0, 1), where 1 means heads and 0 tails. There are two possible games.
In game 1, the player receives 1 e, if the last throw shows heads. In game 2, the
player wins 1 e, if at least two of the three throws show heads. Therefore, we can
write the two income processes as

I(1) = (0, 0, Y3) and I(2) = (0, 0, 1{Y1+Y2+Y3≥2}).

Obviously, both processes are identically distributed if and only if θ = 1
2

(we
exclude the trivial cases θ = 0 and θ = 1), i. e. if the coin is fair. They fit into our
model by defining Z0 ≡ 0, and Zt = Zt−1 + Yt for t = 1, 2, 3. Furthermore, note

that I
(2)
3 does not depend on I

(2)
2 and Y3, but rather on Z2 and Y3 as required in

the model assumptions.

Example 4.2. In the first example, It depends only on Zt. Now, we consider
the standard Cox-Ross-Rubinstein-model to generate an income process, where It

depends on Zt−1 and Yt. Define the distribution of Yt by

P(Yt = u) = θ = 1− P(Yt = d),
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4.3 Solution via Markov decision processes

where 0 < d < 1 < u and θ ∈ (0, 1). Let the price process of an asset be given by
Z0 ≡ 1 and Zt := Zt−1 · Yt for t = 0, 1, . . . , T . If a policy holder has one unit of
this asset in her portfolio, her income from t− 1 to t is given by

It = Zt − Zt−1 = (Yt − 1) · Zt−1, t = 1, . . . , T.

The random variable It can take negative values of course. The income in period
(t − 1, t] can not be formulated as a function of Zt, so we have to include Zt−1 in
defining It. This is why we assume (4.1).

If the probability θ given in these examples is unknown, it can be modelled by
a random variable ϑ. We will treat this case in Chapter 5.

Let us now define all the quantities needed for a standard Markov decision model
and consider how to reformulate the dynamic risk measure ρPR.

• The state space is denoted by S ⊂ R2 and equipped with the σ–algebra
S := B2

S. Let s := (w, z) ∈ S be an element of the state space, where w, z
represent realizations of the wealth process (Wt) and the generating Markov
chain (Zt), respectively.

• The action space is A ⊂ R equipped with A := BA. Then a ∈ A denotes the
invested amount.

• There are no restrictions on the actions. Hence, for state s ∈ S the space of
admissible policies is D(s) = A and the restriction set is D = S × A ⊂ R3.

• The disturbance has values in E ⊂ R equipped with E := BE.

• The transition function Tt : D × E → S at time t = 1, . . . , T is given by

Tt(s, a, y) := (Ft(w, hI
t (z, y), a), gt(z, y)), (s, a, y) = (w, z, a, y) ∈ D × E.

• The transition law Qt : D×S → [0, 1] at time t = 1, . . . , T is the conditional
distribution of Xt given (Xt−1, at) = (s, a) ∈ D, formally

Qt(s, a; B) := P(Tt(s, a, Yt) ∈ B), B ∈ S.

• The one-step reward function at time t = 1, . . . , T is a measurable mapping
rt : D → R.

• The terminal reward function is a measurable mapping VT : S → R.

To derive an explicit representation of (ρt)t=0,1,...,T in terms of conditional static
risk measures (see Section 1.4) we use the setting described above by specifying
the mentioned functions:
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4 A risk measure by Pflug and Ruszczyński

• The transition function becomes for t = 1, . . . , T

Tt(s, a, y) := (w+ + ht(z, y)− a, gt(z, y)), (s, a) ∈ D, y ∈ Z.

• The reward function becomes for t = 0, . . . , T − 1

rt(s, a) = −qtw
− + ct+1a, (s, a) ∈ D.

where we set for convenience q0 := 0.

• The terminal reward function becomes

VT (s) = cT+1w
+ − qT w−, s = (w, z) ∈ S.

Furthermore, we need to introduce a set of admissible policies.

Definition 4.2. For t = 0, . . . , T − 1, the set of (T − t)−step admissible Markov
policies is given by

F T−t := {π = (ft, . . . , fT−1) | fk : S → A (S,A)–meas., k = t, . . . , T − 1}.
Now, we are ready to rewrite the dynamic risk measure in terms of Markov

decision processes. Let t ∈ {0, 1, . . . , T − 1}. Since ρPR
t (I) is Ft–measurable, it is a

function of Y1, . . . , Yt. Let y = (y1, . . . , yt) ∈ Et be a realization of (Y1, . . . , YT ) and
ω ∈ {(Y1, . . . , Yt) = y}. Furthermore, there exists a function hW,Z

t : Et → S such
that (Wt, Zt) = hW,Z

t (Y1, . . . , Yt) and therefore (Wt, Zt)(ω) = hW,Z
t (y). For every

π = (ft, . . . , fT−1) ∈ F T−t, consider the Markov decision process defined via

Xt := (Wt, Zt), Xs := Ts(Xs−1, fs−1(Xs−1), Ys), s = t + 1, . . . , T.

Thus, because of the Markovian structure of all occurring random variables, our
dynamic risk measure becomes

ρPR
t (I)(ω)

= − sup
(at,...,aT−1)∈X (T−t)

1

ct

· E
[

T∑

k=t+1

(
ckak−1 − qkW

−
k

)
+ cT+1W

+
T

∣∣∣∣ (Y1, . . . , Yt) = y

]

= − sup
(at,...,aT−1)∈X (T−t)

1

ct

· E
[
ct+1at +

T−1∑

k=t+1

(
ck+1ak − qkW

−
k

)

+cT+1W
+
T − qT W−

T

∣∣∣∣ (Wt, Zt) = hW,Z
t (y)

]

= − sup
(at,...,aT−1)∈X (T−t)

1

ct

· E
[
qtW

−
t +

T−1∑

k=t

rk(Xk, ak) + VT (XT )

∣∣∣∣ Xt = hW,Z
t (y)

]

= −qt

ct

(hW,Z
t (y))−1 − sup

π∈F T−t

1

ct

· E
[

T−1∑

k=t

rk(Xk, fk(Xk)) + VT (XT )

∣∣∣∣ Xt = hW,Z
t (y)

]
.
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4.3 Solution via Markov decision processes

By defining the classic value functions via

Vt,π(s) := E

[
T−1∑

k=t

rk(Xk, fk(Xk)) + VT (XT )
∣∣∣Xt = s

]
, s ∈ S,

for every π = (ft, . . . , fT−1) ∈ F T−t and

Vt(s) := sup
π∈F T−t

Vt,π(s), s ∈ S,

we obtain for t ∈ {0, 1, . . . , T − 1}

ρPR
t (I) = −qt

ct

W−
t − 1

ct

Vt(Wt, Zt). (4.2)

It is well known how to derive an explicit expression for the value functions. The
following theorem is from Hernández-Lerma and Lasserre (1996) and is valid for
general Borel spaces.

Theorem 4.1. Let t ∈ {0, 1, . . . , T − 1} and s ∈ S be fixed. If the functions
JT (s′) := VT (s′) and

Jk(s
′) := sup

a∈A

{
rk(s

′, a) + E
[
Jk+1(Xk+1)

∣∣ Xk = s′, ak = a
]}

, s′ ∈ S, (4.3)

defined for k = t, . . . , T − 1 are measurable and if the supremum is attained in
a∗ = f ∗k (s′), such that f ∗k : S → A is a (S,A)–measurable function, then π∗ :=
(f ∗t , . . . , f ∗T−1) ∈ F T−t is an optimal policy in the sense that

Vt(s) = Vt,π∗(s) = Jt(s).

Proof. This is Theorem 3.2.1 in Hernández-Lerma and Lasserre (1996). There it
is formulated and proven for the case t = 0. But as it can either be seen from the
proof given there or by adapting the argument for larger t, the general case also
holds.

We can indeed apply this technique and obtain the following result. Before,
introduce for k ∈ {1, . . . , T} the safety level

γk :=
qk − ck

qk − ck+1

∈ (0, 1), (4.4)

the weight factor

λk :=
ck+1

ck

∈ (0, 1) (4.5)

and a corresponding static law invariant coherent risk measure

ρ(k)(X) := λkE [−X] + (1− λk)AV@Rγk
(X), X ∈ L1(Ω,F ,P).

Note that ρ(k) fits into Theorem 1.4 by using Example 1.1 with N = 2, p1 = λk,
p2 = 1 − λk, α1 = 0 and α2 = γk. Hence, the risk measure also satisfies the
additional properties mentioned in the theorem.
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4 A risk measure by Pflug and Ruszczyński

Theorem 4.2. Let t ∈ {0, 1, . . . , T} and (w, z) ∈ S. Then we have the following:

(i) The value function is given by

Vt(w, z) = ct+1w
+ − qtw

− −
T∑

k=t+1

ck · E [ρ(k)(Ik |Zk−1) |Zt = z].

(ii) The optimal policy π∗ = (f ∗t , . . . , f ∗T−1) and the optimal Markov process
(X∗

t , . . . , X∗
T ) are given via

f ∗k (w′, z′) = (w′)+ − V@Rγk
(Ik+1 |Zk = z′), s′ = (w′, z′) ∈ S,

for k = t, . . . , T − 1 and via the recursive relation

X∗
t = (w, z)

and for k = t + 1, . . . , T

X∗
k = (Ik + V@Rγk

(Ik |Zk−1 = X∗
k−1,2), gk(X

∗
k−1,2, Yk)).

Proof. The proof is by backward induction on t. The case t = T is trivial. Since
we will need the argument used in the case t = T − 1, we first consider this. By
the value iteration (Theorem 4.1) we have for (w, z) ∈ S

VT−1(w, z) + qT−1w
−

= sup
a∈A

{
qT−1w

− + rT−1((w, z), a) + E [VT (XT ) | XT−1 = (w, z), aT−1 = a]
}

= sup
a∈A

{
cT a + E [cT+1X

+
T,1 − qT X−

T,1 | XT−1 = (w, z), aT−1 = a]
}

= sup
a∈A

{
cT a + E [cT+1[X

+
T−1,1 + hT (ZT−1, YT )− a]+

− qT [X+
T−1,1 + hT (ZT−1, YT )− a]− | XT−1 = (w, z), aT−1 = a]

}

= sup
a∈A

{
cT a + E [cT+1[w

+ + hT (z, YT )− a]+ − qT [w+ + hT (z, YT )− a]−]
}

= cT w+ + cT+1E [hT (z, YT )]− (cT − cT+1)AV@RγT
(hT (z, YT ))

= cT w+ + cT+1E [IT |ZT−1 = z]− (cT − cT+1)AV@RγT
(IT |ZT−1 = z),

where we used Example 1.2 in the last but one step. We note that the supremum
is attained in

a∗ = f ∗T−1(w, z) = −V@RγT
(hT (z, YT ) + w+) = w+ − V@RγT

(IT |ZT−1 = z),

from which we see that

X∗
T = (w+ + hI

T (z, YT )− f ∗T−1(w, z), gT (z, YT ))

= (hI
T (z, YT ) + V@RγT

(IT |ZT−1 = z), gT (z, YT )).
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4.3 Solution via Markov decision processes

By Lemma 1.1, VT−1 and fT−1 are indeed measurable functions on S, so that
Theorem 4.1 can be applied. Hence, the assertion is true for t = T − 1.

Now assume that the assertion is true for t ≤ T − 1. Together with the value
iteration this yields for (w, z) ∈ S

Vt−1(w, z)

= sup
a∈A

{
rt−1((w, z), a) + E [Vt(Xt) | Xt−1 = (w, z), at−1 = a]

}

= sup
a∈A

{− qt−1w
− + cta + E [ct+1X

+
t,1 − qtX

−
t,1 | Xt−1 = (w, z), at−1 = a]

−
T∑

k=t+1

E
[
E [ck · ρ(k)(Ik |Zk−1) |Zt] | Xt−1 = (w, z), at−1 = a

]}

= sup
a∈A

{− qt−1w
− + cta + E [ct+1[w

+ + ht(z, Yt)− a]+ − qt[w
+ + ht(z, Yt)− a]−]

}

+
T∑

k=t+1

ck · E
[
E [ρ(k)(Ik |Zk−1) |Zt] | Zt−1 = z

]
.

Now, the supremum can be treated analogously to the case t = T − 1, where

a∗ = f ∗t−1(w, z) = −V@Rγt(ht(z, Yt) + w+) = w+ − V@Rγt(It |Zt−1 = z)

and

X∗
t = (w+ + hI

t (z, Yt)− f ∗t−1(w, z), gt(z, Yt))

= (hI
t (z, Yt) + V@Rγt(It |Zt−1 = z), gt(z, Yt)).

This yields already part (ii) of the theorem.
To obtain the desired structure of the sum from the above calculation note that

for every k ∈ {t + 1, . . . , T}, the conditional static risk measure ρ(k)(Ik |Zk−1) is a
function of Zk−1. Therefore the Markov property yields

E
[
E [ρ(k)(Ik |Zk−1) |Zt] |Zt−1 = z

]
= E

[
E [ρ(k)(Ik |Zk−1) |Zt, Zt−1] |Zt−1 = z

]

= E
[
ρ(k)(Ik |Zk−1) |Zt−1 = z

]
.

Plugging things together we get

Vt−1(w, z)

= ctw
+ − qt−1w

− + ct+1E [It |Zt−1 = z]− (ct − ct+1)AV@Rγt(It |Zt−1 = z)

+
T∑

k=t+1

E
[
ρ(k)(Ik |Zk−1) | Zt−1 = z

]

= ctw
+ − qt−1w

− +
T∑

k=t

E
[
ρ(k)(Ik |Zk−1) | Zt−1 = z

]
,

hence the assertion.
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4 A risk measure by Pflug and Ruszczyński

Remark. 1. By defining the dynamic risk measure, we have assumed that we
are given the sequence (qt)t=1,...,T . But because there is a one-to-one corre-
spondence between the sequences (qt)t=1,...,T and (γt)t=1,...,T via

qt =
ct − ct+1γt

1− γt

,

and (4.4) respectively we could rather assume that the safety levels are given.

2. For k = t + 1, . . . , T , note that since X∗
k−1,2 does only depend on z but not

on w, the same holds for X∗
k,1. We conclude that the optimal wealth process

(W ∗
t+1, . . . , W

∗
T ) = (X∗

t+1,1, . . . , X
∗
T,1)

is the same for every value of w.

The dynamic risk measure can now be represented as follows.

Corollary 4.1. For the dynamic risk measure we obtain for t = 0, 1, . . . , T − 1

ρPR
t (I) = −ct+1

ct

W+
t + E

[ T∑

k=t+1

ck

ct

· ρ(k)(Ik |Zk−1)

∣∣∣∣ Zt

]
, I ∈ XM.

Proof. Direct consequence of the previous theorem and (4.2).

Remark. 1. For t = 0, this result has also been obtained in Pflug and Ruszczyń-
ski (2005), where a dual approach to the optimization problem is used. One
advantage of our approach is the fact that we directly obtain the optimal
values of the policy and the underlying wealth process.

Also, we were able to derive a formula for ρPR
t when t > 0, where in Pflug

and Ruszczyński (2005) mainly ρPR
0 is investigated.

Furthermore, the next chapter will show how to generalize this method to
obtain a dynamic risk measure for a model with incomplete information.

A drawback is though, that our method can only be applied by assuming a
Markovian structure of the income process I, i. e. I ∈ XM.

2. Since ck

ct
is just the discount factor from time k to t, we see that the risk

measure at time t is the conditional expectation under Zt of a discounted
sum of convex mixtures of two conditional static risk measure applied to
each component of the process I ∈ XM.

Corollary 4.1 now helps to answer one of the open questions on the properties
of ρPR, namely about subadditivity. If we choose Wt ≡ 0 at every point of time
t ∈ {0, 1, . . . , T − 1}, the dynamic risk measure ρPR becomes subadditive because
the same holds for the components ρ(k), k = 1, . . . , T , in the static sense. On the
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4.3 Solution via Markov decision processes

other hand, a general starting value of the wealth process at every time t does not
lead to subadditivity. This can be seen by first choosing Wt := It+V@Rγt(It |Zt−1).
Take now I(1) = (ξ1, 0, . . . , 0) and I(2) = (ξ2, 0, . . . , 0) for some ξ1, ξ2 ∈ L1(Ω,F1,P).
Since

ρPR
1 (I(1) + I(2)) = −c2

c1

[ξ1 + ξ2 + V@Rγ1(ξ1 + ξ2)]
+

and

ρPR
1 (I(i)) = −c2

c1

[ξi + V@Rγ1(ξi)]
+ i = 1, 2,

we have to specify ξ1 and ξ2 such that

P
(
[ξ1 + ξ2 +V@Rγ1(ξ1 + ξ2)]

+ < [ξ1 +V@Rγ1(ξ1)]
+ +[ξ2 +V@Rγ1(ξ2)]

+
)

> 0 (4.6)

in order to show that subadditivity does not hold. But this is possible simply
by letting ξ1 have an absolutely continuous distribution on the whole real line
(i. e. 0 < FX(x) < 1 for all x ∈ R), e. g. ξ1 ∼ N (0, 1), and taking ξ2 = −ξ1. In this
case,

P
(
[ξ1 + ξ2 + V@Rγ1(ξ1 + ξ2)]

+ = 0
)

= 1.

On the other hand we have

[ξ1 + V@Rγ1(ξ1)]
+ + [ξ2 + V@Rγ1(ξ2)]

+ ≥ [ξ1 + V@Rγ1(ξ1)]
+

and of course by assumption, P(ξ1 + V@Rγ1(ξ1) > 0) > 0. Hence, Equation (4.6)
follows and ρPR is not subadditive.

We conclude this section by calculating the dynamic risk measure ρPR for two
examples.

Example 4.3. Recall that in the example by Artzner we have T = 3, independent
Y1, Y2, Y3 with P(Yt = 1) = θ = 1− P(Yt = 0), t = 1, 2, 3 for some θ ∈ (0, 1) and

Z0 ≡ 0, Zt = Zt−1 + Yt, t = 1, 2, 3.

Consider the two income processes I(1) = (0, 0, Y3) and I(2) = (0, 0, 1{Y1+Y2+Y3≥2}).

Because of I
(i)
t ≡ 0, i = 1, 2, t = 1, 2 we set W

(i)
t ≡ 0, i = 1, 2, t = 1, 2. Corollary

4.1 now yields

ρPR
t (I(i)) =

c3

ct

E
[
ρ(3)(I

(i)
3 |Z2)

∣∣Zt

]
, i = 1, 2, t = 0, 1, 2.

This gives

ρPR
0 (I(1)) = c3 · ρ(3)(Y3),

ρPR
t (I(1)) =

1

ct

ρPR
0 (I(1)), t = 1, 2,
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4 A risk measure by Pflug and Ruszczyński

where

E [−Y3] = −θ, AV@Rγ3(Y3) = −1[0,θ](γ3)
θ − γ3

1− γ3

.

and therefore

ρ(3)(Y3) = −λ3 · θ − (1− λ3) · 1[0,θ](γ3)
θ − γ3

1− γ3

.

We see that all components of ρPR(I(1)) = (ρPR
t (I(1)))t=0,1,2 are constant over all

states ω ∈ Ω and are only a discounted version of ρPR
0 (I(1)). This has the natural

interpretation that the gain of information over time does not change the risk
assessment if the income only consists of a final value which is also stochastically
independent of the past.

This does not hold for the process I(2) though, where additional information
changes the value of the risk measure. We obtain

ρPR
0 (I(2)) = c3 · E

[
ρ(3)(1{Y1+Y2+Y3≥2} |Y1 + Y2)

]

= c3 ·
(
2(1− θ)θ · ρ(3)(Y3) + θ2 · (−1)

)

= c3

(− λ32(θ2 − θ3) + (1− λ3)2(θ − θ2) · AV@Rγ3(Y3)− θ2
)
.

For ω ∈ {Y1 = 0} we have

ρPR
1 (I(2))(ω) =

c3

c1

· E [
ρ(3)(1{Y1+Y2+Y3≥2} |Y1 + Y2) |Y1 = 0

]

=
c3

c1

(
θ · ρ(3)(Y3) + (1− θ) · 0)

=
c3

c1

(− λ3θ
2 + (1− λ3)θ · AV@Rγ3(Y3)

)

and for ω ∈ {Y1 = 1}

ρPR
1 (I(2))(ω) =

c3

c1

· E [
ρ(3)(1{Y1+Y2+Y3≥2} |Y1 + Y2) |Y1 = 1

]

=
c3

c1

(
θ · (−1) + (1− θ) · ρ(3)(Y3)

)

=
c3

c1

(− λ3(θ − θ2) + (1− λ3)(1− θ) · AV@Rγ3(Y3)− θ
)
.

Furthermore,

ρPR
2 (I(2))(ω) =





0 , ω ∈ {Y1 + Y2 = 0},
c3
c2
· ρ(3)(Y3) , ω ∈ {Y1 + Y2 = 1},
−c3

c2
, ω ∈ {Y1 + Y2 = 2}.

We see that after two periods, in the case Y1 +Y2 = 1 the risk for both processes is
the same, since the outcome now only depends on the value Y3, being stochastically
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independent of the past. In the two other situations there is either a sure gain of
0 (if Y1 + Y2 = 0) or 1 (if Y1 + Y2 = 2), which yields a risk of 0 or −1 respectively
times the discounting factor c3

c2
. Direct calculations show that with θ ∈ (0, 1)

ρPR
1 (I(1))(ω)

{
< ρPR

1 (I(2))(ω) , ω ∈ {Y1 = 0},
> ρPR

1 (I(2))(ω) , ω ∈ {Y1 = 1},

ρPR
2 (I(1))(ω)





< ρPR
2 (I(2))(ω) , ω ∈ {Y1 + Y2 = 0},

= ρPR
2 (I(2))(ω) , ω ∈ {Y1 + Y2 = 1},

> ρPR
2 (I(2))(ω) , ω ∈ {Y1 + Y2 = 2}.

If θ is chosen appropriately, all orderings are possible for the case t = 0. But in the
most important situation θ = 1

2
or equivalently, when I(1) and I(2) are identically

distributed, we have

ρPR
0 (I(1)) > ρPR

0 (I(2)).

In particular, we see that the dynamic risk measure ρPR is not law invariant. If
ρPR would fit into the context of Theorem 3.2, the risk of I(1) and I(2) should be
identical at time t = 0, since L(I(1)) = L(I(2)). We have just seen though that this
is not the case.

Economic interpretation. We finally give some economic interpretations for these
inequalities. First, let t = 0. If θ = 1

2
, both processes have the same distribution,

but I(1) has a higher risk. The reason for this fact can be seen by looking at
the structure of the risk measure. The risk at time t = 0 is the expectation of
the conditional static risk measure ρ(3) of the final value I

(i)
3 , i = 1, 2, given the

information Z2. When calculating the risk of I(1), the final payment I
(1)
3 = Y3 is

stochastically independent from this information (namely the random variable Z2).
Thus, the information is not used in this case. On the other hand, calculating the
risk of I(2) uses this additional information that is generated over time in order to
diminish the risk of the process at time t = 0.

Now, consider t = 1. If we had Y1 = 0, then naturally, I(2) has a higher risk
since – to gain 1 e – both the last throws have to show heads, while for I(1) only
the last throw has to show heads. On the other hand, if Y1 = 1, we win 1 e if
one (or both) of the two last throws are successful, whereas I(1) only provides a
positive gain, if the last one shows heads. Consequently, I(1) has a higher risk.

Finally, let t = 2. Obviously, if Y1 + Y2 = 1 the risk of the two processes is
identical. In the other two cases, there is no risk left for the game modelled by I(2),
and we either have a sure gain of 0 or 1, whereas there is still some uncertainty
when using I(1). This explains the inequalities occurring in these situations.

Example 4.4. In the Cox–Ross–Rubinstein model we have

Z0 ≡ 1, Zt = Zt−1Yt, t = 1, . . . , T,
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4 A risk measure by Pflug and Ruszczyński

where P(Yt = u) = θ = 1 − P(Yt = d) for 0 ≤ d < 1 ≤ u and t = 1, . . . , T with
some θ ∈ (0, 1). The income process is given by

It = Zt − Zt−1, t = 1, . . . , T.

We easily compute for t ∈ {1, . . . , T}
E [Yt] = d + θ(u− d),

V@Rγ(Yt) = −d− 1[0,θ](γ)(u− d), γ ∈ [0, 1],

AV@Rγ(Yt) =

{ −d , γ = 1

−d− 1[0,θ](γ) θ−γ
1−γ

(u− d) , γ ∈ [0, 1)
.

As the wealth process we naturally take the optimal process

W0 ≡ 0, Wt = It + V@Rγt(It |Zt−1), t = 1, . . . , T.

Using conditional translation invariance and homogeneity of ρ(k) we obtain for
k ∈ {1, . . . , T}

ρ(k)(Ik |Zk−1) = ρ(k)(Zk−1(Yk − 1) |Zk−1) = Zk−1 ·
(
1 + ρ(k)(Yk)

)
.

This yields for t ∈ {0, 1, . . . , T − 1}
ρPR

t (I)

= −ct+1

ct

W+
t + E

[ T∑

k=t+1

ck

ct

· ρ(k)(Ik |Zk−1)

∣∣∣∣ Zt

]

= −ct+1

ct

(Zt−1 · (Yt − 1) + V@Rγt(Zt−1 · (Yt − 1) |Zt−1))
+

+
T∑

k=t+1

ck

ct

· E [Zk−1 |Zt]
(
1 + ρ(k)(Yk)

)

= −ct+1

ct

Zt−1(Yt + V@Rγt(Yt))
+ +

T∑

k=t+1

ck

ct

· E
[
Zt

k−1∏
j=t+1

Yj

∣∣∣∣Zt

]
· (1 + ρ(k)(Yk)

)

= −ct+1

ct

Zt−1(Yt + V@Rγt(Yt))
+ + Zt

T∑

k=t+1

ck

ct

· E [Y1]
k−t−1 · (1 + ρ(k)(Yk)

)
.

4.4 A stable representation result

Using the result of Corollary 4.1 and the Markovian structure of the occurring
random variables, we can write the risk measure ρPR for t ∈ {0, 1, . . . , T − 1} as

ρPR
t (I) = −ct+1

ct

W+
t + E

[ T∑

k=t+1

ck

ct

· ρ(k)(Ik | Fk−1)
∣∣∣Ft

]
(4.7)
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4.4 A stable representation result

for every I ∈ XM. The results in the remaining part of this chapter regarding the
representation (4.7) are valid for general processes I ∈ X , though.

The aim of this section is to give a different representation of the dynamic
risk measure in terms of stable sets of probability measures. Concluding these
investigations we will give a simple counterexample to show that ρPR does not fit
into the context of Theorem 3.1. This observation will already be intuitively clear
from our derived stable representation.

Let us first examine for k = 1, . . . , T a certain set of probability measures, namely
define

Qk :=
{

Q ∈ P∗k
∣∣ ck+1

ck

≤ LQ
k ≤

qk

ck

, E [LQ
k | Fk−1] ≡ 1

}
.

Similar to the notions introduced in Section 3.2, let P be the set of all probability
measures on Ω, P∗k the subset of all probability measures which are absolutely
continuous with respect to P on Fk and Pe include all probability measures which
are equivalent to P. If Q ∈ P∗k , let LQ

k be the resulting Fk–measurable density.
In order to show that Qk is stable, we first give a reformulation of the set.

Lemma 4.1. For the set Qk defined above it holds:

Qk =
{

Q ∈ P∗k
∣∣ ck+1

ck

· P(B) ≤ Q(B) ≤ qk

ck

· P(B), B ∈ Fk, Q = P on Fk−1

}
.

Proof. Let Q ∈ P∗k and B ∈ Fk−1 ⊂ Fk. By definition, we always have
∫

B

LQ
k dP = Q(B).

Combining this with P(B) =
∫

B
1 dP we conclude that

E [LQ
k | Fk−1] ≡ 1 ⇐⇒ Q(B) = P(B), ∀B ∈ Fk−1.

The second properties are also equivalent, which can be seen as follows:

ck+1

ck

· P(B) ≤ Q(B) ≤ qk

ck

· P(B), ∀B ∈ Fk

⇐⇒ ck+1

ck

·
∫

B

dP ≤
∫

B

dQ ≤ qk

ck

·
∫

B

dP, ∀B ∈ Fk

⇐⇒
∫

B

ck+1

ck

dP ≤
∫

B

LQ
k dP ≤

∫

B

qk

ck

dP, ∀B ∈ Fk

⇐⇒ ck+1

ck

≤ LQ
k ≤

qk

ck

.

The last equivalence follows since LQ
k is Fk–measurable.

Remark. By the relationship

ck+1

ck

· P(B) ≤ Q(B) ≤ qk

ck

· P(B), ∀B ∈ Fk,

for some Q ∈ Qk we see that on Fk not only Q ¿ P but also P¿ Q and therefore
Q ∼ P holds.
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4 A risk measure by Pflug and Ruszczyński

From this result we can straightforwardly deduce that Qk is stable. This is
interesting in itself such that we formulate this property as a proposition.

Proposition 4.4. The set of probability measures Qk is stable on Fk.

Proof. Recall that we have to show for any pair Q1, Q2 ∈ Qk and any stopping
time τ ≤ k that the probability measure Qτ defined via its P–density on Fk

LQτ

k := LQ1
τ

LQ2

k

LQ2
τ

is again in Qk.
For any Q ∈ Qk, we have E [LQ

k | Fk−1] ≡ 1 and therefore also

LQ
t = E [LQ

k | Ft] ≡ 1, t = 0, 1, . . . , k − 1. (4.8)

We immediately obtain

LQτ

k (ω) =





LQ1

k (ω)
L

Q2
k (ω)

L
Q2
k (ω)

= LQ1

k (ω) , ω ∈ {τ = k}
LQ1

t (ω)
L

Q2
k (ω)

L
Q2
t (ω)

(4.8)
= LQ2

k (ω) , ω ∈ {τ = t}, t = 0, 1, . . . , k − 1.

From this we get for B ∈ Fk

Qτ (B) = E [1BLQτ

k ] = E [1B∩{τ=k}L
Q1

k ] + E [1B∩{τ<k}L
Q2

k ]

= Q1(B ∩ {τ = k}) + Q2(B ∩ {τ < k}). (4.9)

Now, stability follows easily:

• First, let B ∈ Fk−1. Because τ ≤ k, we have {τ = k} ∈ Fk−1 and therefore
also B ∩ {τ < k}, B ∩ {τ = k} ∈ Fk−1. Consequently, since Q1, Q2 ∈ Qk,

Qτ (B) = Q1(B ∩ {τ = k}) + Q2(B ∩ {τ < k})
= P(B ∩ {τ = k}) + P(B ∩ {τ < k}) = P(B).

• Now, let B ∈ Fk. We obtain B ∩ {τ < k}, B ∩ {τ = k} ∈ Fk and obtain
again with Q1, Q2 ∈ Qk

Qτ (B) = Q1(B ∩ {τ = k}) + Q2(B ∩ {τ < k})
≤ qk

ck

· P(B ∩ {τ = k}) +
qk

ck

· P(B ∩ {τ < k})

=
qk

ck

· P(B).

In the same manner, Qτ (B) ≥ ck+1

ck
· P(B) holds and hence the assertion is

proved.
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4.4 A stable representation result

Using this lemma, we can now reformulate the components of our dynamic risk
measure.

Lemma 4.2. Let k ∈ {1, . . . , T}. Then:

(i) We have

ρ(k)(X | Fk−1) = ess. sup
Q∈Qk

EQ[−X | Fk−1], X ∈ L1(Ω,Fk,P).

(ii) For t = 0, . . . , k − 1, it holds

E [ρ(k)(X | Fk−1) | Ft] = ess. sup
Q∈Qk

EQ[−X | Ft], X ∈ L1(Ω,Fk,P).

Proof. By definition of the Average Value–at–Risk we initially get for arbitrary
X ∈ L1(Ω,Fk,P)

ρ(k)(X | Fk−1)

= λk · E [−X | Fk−1] + (1− λk) · AV@Rγk(X | Fk−1)

= λk · E [−X | Fk−1] + (1− λk) · ess. inf
Y Fk−1–meas.

{
Y +

1

1− γk

· E [(−X − Y )+ | Fk−1]
}

= ess. sup{E [−X · L | Fk−1] |L Fk–meas., λk ≤ L ≤ 1 + ε, E [L | Fk−1] ≡ 1},
where the last equality in the above calculation follows from equality (6.14) in
Ruszczyński and Shapiro (2006) and where γk = ε

1−λk+ε
which is equivalent to

ε =
qk

ck

− 1.

Let us now identify each occurring L with a probability measure such that Q ¿ P
on Fk by setting LQ

k := L. We obtain

ρ(k)(X | Fk−1) = ess. sup
Q∈Qk

E [−X · LQ
k | Fk−1]

(3.2)
= ess. sup

Q∈Qk

EQ[−X · LQ
k−1 | Fk−1]

= ess. sup
Q∈Qk

EQ[−X | Fk−1],

since LQ
k−1 = E [LQ

k | Fk−1] ≡ 1 for every Q ∈ Qk.

For every t < k we also have LQ
t = E [LQ

k | Ft] ≡ 1 for every Q ∈ Qk. Further-
more, the remark after Lemma 4.1 yields Qk = Qe

k. We consequently obtain by
Proposition 3.2

E [ρ(k)(X | Fk−1) | Ft]

= E [ess. sup
Q∈Qk

EQ[−X | Fk−1] | Ft] = ess. sup
Q∈Qk

E [EQ[−X | Fk−1] | Ft]

= ess. sup
Q∈Qk

E [LQ
k−1︸︷︷︸
≡1

·EQ[−X | Fk−1] | Ft]
(3.2)
= ess. sup

Q∈Qk

EQ[ LQ
t︸︷︷︸
≡1

·EQ[−X | Fk−1] | Ft]

= ess. sup
Q∈Qk

EQ[−X | Ft],

hence the assertion.
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Combining Lemma 4.2 and (4.7) immediately yields the main result of this sub-
section.

Theorem 4.3. For every t ∈ {0, 1, . . . , T − 1} it holds

ρPR
t (I) = −ct+1

ct

W+
t +

T∑

k=t+1

ck

ct

· ess. sup
Q∈Qk

EQ[−Ik | Ft], I ∈ X .

For k = 1, . . . , T , the set Qk is stable on Fk. Furthermore, it does not depend on t.

We now investigate the relationship of this representation with the literature. As
a first note, we can observe that the risk measure does in general not fit into the
setting of Theorem 3.1. This is already intuitively clear, since in the cited theorem,
the class of dynamic risk measures depends at time t merely on the discounted sum
of the future payments, while our risk measure seems to be able to assign different
values to different processes where this discounted sum might be the same. Take
the natural choice of discounting factors

ct := (1 + r)−t, t = 0, 1, . . . , T + 1,

for some r > −1 and assume that there exists some stable set Q such that

ρPR
t (I) = ess. sup

Q∈Q
EQ

[
−

T∑

k=t

ck

ct

Ik

∣∣Ft

]
, I ∈ X . (4.10)

By Theorem 3.1, the dynamic risk measure fulfills the time–consistency property,
i. e. for all I ∈ X , stopping times σ ≤ τ and Z ∈ L1(Ω,Fτ ,P) holds

ρPR
σ (I + Z · eτ ) = ρPR

σ (I + (1 + r)T−τ · Z · eT ).

A most simple counterexample now shows that this can indeed not be the case.
Take T = 2, σ ≡ 0, τ ≡ 1 and let Z some integrable Fτ = F1–measurable random
variable. We obtain for the process I = (I1, I2) = (0, 0)

ρPR
σ (I + Z · eτ ) = ρPR

0 (Z, 0) = c1 · ρ(1)(Z)

= c1 · (λ1E [−Z] + (1− λ1)AV@Rγ1(Z))

and

ρPR
σ (I + (1 + r)T−τ · Z · eT ) = ρPR

0

(
0,

c1

c2

· Z
)

= c2 · E
[
ρ(2)

(c1

c2

· Z
∣∣F1

)]

= c2 · E
[
− c1

c2

· Z
]

= c1 · E [−Z].

Consequently, equality of the last two terms would hold if and only if

E [−Z] = AV@Rγ1(Z),
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4.4 A stable representation result

which in general is only fulfilled if γ1 = 0 or if Z is a constant. We conclude that
a representation as in (4.10) is not possible for our dynamic risk measure ρPR.

But since the set QT is stable (on FT ) we can use it to construct a new dynamic
risk measure in the setting of Theorem 3.1 via

ρM
t (I) := ess. sup

Q∈QT

EQ

[
−

T∑

k=t

ck

ct

Ik

∣∣Ft

]
= E

[
ρ(T )

( T∑

k=t

ck

ct

Ik

∣∣FT−1

) ∣∣Ft

]
, I ∈ X .

Secondly, we now compare our stable sets with some other sets from the literature.
More precisely, in Artzner et al. (2004), a dynamic version of Average Value–at–
Risk ρA = (ρA

t )t=0,1,...,T−1 for final payments is proposed via

ρA
t (0, . . . , 0, X) := AV@R(t,T )

γ (X) := ess. sup
Q∈Q′t

E [−X · LQ
T | Ft], (4.11)

for X ∈ L1(Ω,FT ,P) and γ ∈ (0, 1), where

Q′
t :=

{
Q ∈ P∗T | 0 ≤ LQ

T ≤
1

1− γ
, E

[
LQ

T | Ft

] ≡ 1}, t = 0, 1, . . . , T − 1.

Writing down our proposal for a dynamic risk measure for final payments, we easily
see by arguments used above that

ρPR
t (0, . . . , 0, X) = ess. sup

Q∈QT

EQ[−X | Ft] = E [ρ(T )(X | FT−1) | Ft]

= λT · E [−X | Ft] + (1− λT ) · E [AV@RγT
(X | FT−1) | Ft]

= λT · E [−X | Ft] + (1− λT ) · ess. sup
Q∈QF

EQ[−X | Ft],

where

QF :=
{

Q ∈ P∗T | 0 ≤ LQ
T ≤

1

1− γT

, E [LQ
T | FT−1] ≡ 1

}
.

Stability of the set QF can be proved analogously to Proposition 4.4. In order to
compare the two dynamic risk measures for final payments take for now λT = 0.
We obtain

ρPR
t (0, . . . , 0, X) = ess. sup

Q∈QF

E [−X · LQ
T | Ft].

in contrast to (4.11).
Despite the similarity with the stable set QF = Q′

T−1, the remaining sets Q′
t,

t = 0, 1, . . . , T − 2 are not stable if T > 1 (see Artzner et al. (2004), Section 5.3).
To see why one can not proof stability of Q′

0, for example, in a similar way than
stability of QF , note that in the case T = 2, any stopping time τ can attain the
three values 0, 1 and 2. Consequently, for every Q ∈ Q′

0 we only have LQ
0 ≡ 1

whereas for every Q ∈ Q2, we get LQ
0 = LQ

1 ≡ 1. This property is an essential step
in the proof of Proposition 4.4 when determining Equation (4.9).
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4 A risk measure by Pflug and Ruszczyński

Furthermore, for every ρA
t , t = 0, 1, . . . , T − 1, a different set Q′

t is used. This is
in contrast to the theory in Burgert (2005), where the essence of the construction
of consistent dynamic risk measures is the fact that one only needs one stable set
for every dynamic risk measure ρ = (ρt)t=0,1,...,T−1. These two reasons complement
the given counterexample and illustrate why the dynamic risk measure ρA does
not yield a time–consistent dynamic risk measure for final payments via a stable
representation whereas ρPR does.

Before turning to some simple martingale properties, we are now ready to give
a short summary on the properties of the dynamic risk measure ρPR. We have
seen that it is in general translation invariant and monotone. Further properties
can only be derived by making additional assumptions on the starting value of the
wealth process at every time t ∈ {0, 1, . . . , T − 1}. If this Wt does only depend on
It (but not on I1, . . . , It−1), then we also have independence of the past. This is
fulfilled if we choose

Wt := It + V@Rγt(It | Ft), t = 1, . . . , T − 1. (4.12)

Furthermore, the properties of homogeneity and subadditivity only hold in general
if Wt ≡ 0, t = 1, . . . , T − 1. It is also not possible to get time–consistency for the
dynamic risk measure as long as there are not only final payments. The main con-
clusion of these investigations is that ρPR does not fit into the context of Theorems
3.1 and 3.2.

4.5 Martingales & co.

To conclude this chapter, we give some brief and simple statements on martingale
properties of the representation (4.7). To motivate the investigations and to keep
things simple, we start with the special case of a final payment and then go on to
more general cases. We always consider the natural choice of the wealth process,
i. e. assume (4.12).

Proposition 4.5. Let ξ ∈ L1(Ω,FT ,P). Then (St)t=0,1,...,T−1 with

St := ctρ
PR
t (0, . . . , 0, ξ), t = 0, 1, . . . , T − 1,

is a martingale with respect to (Ft)t=0,1,...,T−1.

Proof. By (4.12) we get Wt ≡ 0, t = 0, 1, . . . , T − 1. Defining η := cT ρ(T )(ξ | FT−1)
yields

St = ct · 1

ct

E [cT ρ(T )(ξ | FT−1) | Ft] = E [η | Ft]

and therefore the assertion.
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Now we treat the dynamic risk measure that was proposed in the previous section
where we constructed a time-consistent variant of ρPR. Recall that we defined

ρM
t (I) = ess. sup

Q∈QT

EQ

[
−

T∑

k=t

ck

ct

Ik

∣∣Ft

]
, I ∈ X ,

where for convenience I0 = 0.

Proposition 4.6. Let I ∈ X . Then (St)t=0,1,...,T−1 with

St := ctρ
M
t (I)−

t−1∑

k=0

ckIk, t = 0, 1, . . . , T − 1,

is a martingale with respect to (Ft)t=0,1,...,T−1.

Proof. We first note that by homogeneity

ρM
t (I) =

ct

cT

· ρPR
t

(
0, . . . , 0,

T∑

k=t

ck

ct

Ik

)
= ρPR

t

(
0, . . . , 0,

T∑

k=t

ck

cT

Ik

)
.

Hence, translation invariance of ρPR (compare Proposition 4.3) yields

St = ct ·
(
ρM

t (I)− 1

ct

t−1∑

k=0

ckIk

)
= ct ·

(
ρPR

t

(
0, . . . , 0,

T∑

k=t

ck

cT

Ik

)
− cT

ct

t−1∑

k=0

ck

cT

Ik

)

= ct · ρPR
t

(
0, . . . , 0,

T∑

k=0

ck

cT

Ik

)
.

With ξ :=
∑T

k=0
ck

cT
Ik we can apply Proposition 4.5 and therefore obtain the asser-

tion.

Remark. Indeed, defining (St)t=0,1,...,T−1 as in the previous proposition by using
an arbitrary dynamic risk measure in the sense of Theorem 3.1 instead of ρM,
the process (St)t=0,1,...,T−1 is in general only a supermartingale. Also compare
Remark 3.28 in Burgert (2005), where the process

(
St

ct

)
t=0,1,...,T−1

is wrongly claimed

to be a supermartingale, and the correct result in Corollary 1 of Riedel (2004) and
its connection with the notion of stability investigated in Proposition 3.3.

Let us consider now how to transform ρPR into a martingale in the general case.

Proposition 4.7. Let I ∈ X . Then (St)t=0,1,...,T−1 with

St := ctρ
PR
t (I) + ct+1W

+
t +

t∑

k=1

ck · ρ(k)(Ik | Fk−1), t = 0, 1, . . . , T − 1,

is a martingale with respect to (Ft)t=0,1,...,T−1.
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Proof. Following the same principle as in the two previous proofs, we obtain

St
(4.7)
= E

[ T∑

k=t+1

ck · ρ(k)(Ik | Fk−1)
∣∣∣Ft

]
+

t∑

k=1

ck · ρ(k)(Ik | Fk−1)

︸ ︷︷ ︸
Ft–measurable

= E
[ T∑

k=1

ck · ρ(k)(Ik | Fk−1)
∣∣∣Ft

]
= E [η | Ft]

with η :=
∑T

k=1 ck · ρ(k)(Ik | Fk−1). Hence, the assertion follows.

Remark. Obviously, Proposition 4.5 follows immediately from Proposition 4.7.

Economic interpretation. The interpretation of Proposition 4.5 is quite obvious.
The result shows, that the process of the discounted risk is a martingale if we only
have a final payment. This means that the average of the risk that we assign to
the final payment (conditioned on the current available information) in the next
period is the same as the risk of today. This is quite natural, since we do not
receive any payments over time until the last period and therefore have no need to
change the assigned risk (on average) from one period to another.
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5 A Bayesian control approach

In this chapter, we generalize the definition of the dynamic risk measure from
Chapter 4 for models with an unknown parameter. This is motivated by the eco-
nomically interpretable properties which we derived for the standard risk measure
in the previous chapter and by the solution of the introduced optimization problem
via Markov decision processes.

5.1 The model

Let (Ω,F ,P) be a rich enough probability space and Y1, . . . , YT real-valued (there-
fore (F ,B)-measurable) random variables on it, where T ∈ N. As usual, P is
called the reference probability measure. Define the corresponding natural filtra-
tion (Ft)t=0,1,...,T on Ω through

F0 := {∅, Ω}, Ft := σ(Y1, . . . , Yt), t = 1, . . . , T.

Furthermore, to model the incomplete information, we assume that all generating
random variables Yt, t = 1, . . . , T depend on a parameter ϑ ∈ Θ ⊂ R which
might be unknown and therefore is modelled as a random variable on the given
probability space with unknown distribution L(ϑ). If ϑ is known, for example with
value θ ∈ Θ, its distribution reduces to L(ϑ) = δθ, where δθ denotes the distribution
concentrated in θ.

Additionally, we make the following structural assumption.

Assumption 1. Under ϑ, the random variables Y1, . . . , YT are independent. Recall
that this means that it holds for all k ∈ {1, . . . , T} and 1 ≤ t1 < · · · < tk ≤ T :

L(Yt1 , . . . , Ytk |ϑ = θ) =
k⊗

l=1

L(Ytl |ϑ = θ), θ ∈ Θ.

Let P(Θ) be the set of all probability measures on Θ so that we have L(ϑ) ∈
P(Θ), and equip P(Θ) with the standard σ-algebra MΘ generated by the so-called
evaluation-functions τB : P(Θ) → [0, 1] defined for every B ∈ BΘ through

τB(µ) := µ(B), µ ∈ P(Θ).

Formally, we have MΘ := σ({τ−1
B (A) |A ∈ B[0,1], B ∈ BΘ}).
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5 A Bayesian control approach

Our aim is to introduce dynamic risk measures for (Ft)t∈T -adapted income pro-
cesses I = (It)t=1,...,T which incorporate this structure with an unknown parameter.
The set of all (Ft)t=0,1,...,T –adapted and integrable processes is again denoted by X .
More generally than in Chapter 3, we call any family (ρt)t=0,1,...,T−1 of mappings
ρt : X ×Ω → R a dynamic risk measure, if, for fixed I ∈ X , (ρt(I))t=0,1,...,T−1 is an
(Ft)t∈T -adapted stochastic process.

Here, we only consider a special class of income processes. To specify our model,
assume that we are given a process (Zt)t=0,1,...,T through

Z0 ∈ R, Zt := gt(Zt−1, Yt), t = 1, . . . , T,

where gt : R2 → R are (B2,B)–measurable functions. Given ϑ, (Zt) is a (not
necessarily homogeneous) Markov chain. Only income processes I ∈ XM are taken
into account. Recall that this means that for t = 1, . . . , T , the random variable It

depends only on Zt−1 and Yt , or in other words, there exist (B2,B)–measurable
functions hI

t : R2 → R, such that

It = hI
t (Zt−1, Yt), t = 1, . . . , T. (5.1)

This construction has already sufficiently been motivated in Section 4.3.

5.2 A Bayesian control approach to dynamic risk
measures

In this section we generate a class of risk measures by introducing a Markov decision
process which is defined for any given income process I ∈ XM and where its solution
corresponds to a Bayesian approach, see below. This approach can be helpful when
facing model uncertainty contained in the parameter ϑ which was introduced above.
In practical problems, the parameter and even its distribution L(ϑ) might not be
known. To deal with this situation in a dynamic setting, one will chose at time
t = 0 a certain prior distribution as an estimation of L(ϑ) and try to use the gain
of information over time to improve this estimation.

The economic interpretation is inspired by the works Pflug and Ruszczyński
(2001), Pflug and Ruszczyński (2005) and Pflug (2006). We assume that a company
or an investor gets an income after each period (t − 1, t] for any t = 1, . . . , T and
is also able to consume an amount at−1, which has to be decided upon at time
t − 1. Hence, we assume at−1 to be Ft−1-measurable. Furthermore, we have to
incorporate the unknown distribution of the parameter ϑ by extending the state
space introduced in Section 4.3.

For every fixed θ ∈ Θ, we can formulate an optimization problem as in Chapter 4
by replacing the reference probability P with P( · |ϑ = θ), since Assumption 1
ensures that the independence property is fulfilled. In this case, reward functions
(rθ

t )θ∈Θ, t = 0, 1, . . . , T − 1 and (V θ
T )θ∈Θ have to be considered and we obtain a
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5.2 A Bayesian control approach to dynamic risk measures

family of value functions (V θ
t )θ∈Θ for every t ∈ {0, 1, . . . , T}. Then we are able to

solve the optimization problem via the value iteration for every θ ∈ Θ. Hence, the
resulting optimal policy π∗ depends in general on the chosen parameter θ. Denote
all other functions and spaces occurring in Section 4.3 with a prime.

Instead of using the approach just described we will try to find optimal Bayes-
policies for certain models, which do not depend on the underlying parameter θ
anymore. This means that we will choose a certain prior distribution µ0 ∈ P(Θ)
and then search for the solution of

V µ0

0 (s) := sup
π∈(F T )′

∫

Θ

V θ
0,π(s)µ0(dθ), s ∈ S ′. (5.2)

We now formulate a general non-stationary Bayesian control model which solves
this optimization problem and then show how to derive a dynamic risk measure
for income processes by this approach.

In the first step, let us introduce all necessary quantities well-known from Markov
decision theory. After that, we define the corresponding risk measure, which derives
easily from the resulting value functions. The notation is analogously to that in
Rieder (1975), for example.

The income and consumption model described above generates a wealth process
(Wt)t=0,1,...,T , where its values depend on Wt−1, It and a decision variable at−1 for
every t = 1, . . . , T . More precisely, assume (Wt)t=0,1,...,T that is of the form

W0 ≡ 0, Wt = Ft(Wt−1, It, at−1), t = 1, . . . , T.

with given measurable transition functions Ft : R3 → R.
We are now able to start with the formulation of our Markov decision process.

Let I ∈ XM be fixed.

• The state space is denoted by S ⊂ R2 × P(Θ) and equipped with the corre-
sponding σ–algebra S := (B2 ⊗MΘ)S. For convenience, we sometimes use
the notation

S = S ′ ×M = S1 × S2 ×M.

Let s := (s′, µ) := (w, z, µ) ∈ S be an element of the state space, where
w, z, µ represent realizations of the wealth process Wt, the generating Mar-
kov chain Zt and the current estimation of the distribution of ϑ at time t,
respectively.

• The action space is A ⊂ R equipped with A := BA. Then a ∈ A denotes the
invested amount.

• In our models, there are no restrictions on the actions, therefore for state
s ∈ S the space of admissible policies is D(s) = A and the restriction set is
D = S × A ⊂ R2 × P(Θ)× R equipped with the σ–Algebra D = S ⊗A.

95



5 A Bayesian control approach

• The noise has values in E ⊂ R equipped with E := BE.

• The transition function Tt : D × E → S at time t = 1, . . . , T is given by

Tt(s, a, y) := (T ′
t(s, a, y), Φt(s, a, T ′

t(s, a, y)))

with
T ′

t(s, a, y) = (Ft(w, hI
t (z, y), a), gt(z, y))

for (s, a, y) = (w, z, µ, a, y) ∈ D × E, where Φt : D × S ′ → P(Θ) is the so-
called Bayes operator, which updates the estimated distribution µ ∈ P(Θ)
by using the noise y ∈ E. It will be defined and further investigated below.

• The transition law Qt : D×S → [0, 1] at time t = 1, . . . , T is the probability
kernel between (D,D) and (S,S) defined by

Qt(s, a; B) :=

∫ ∫
1B(x, Φt(s, a, x))Qθ

t (s, a; dx)µ(dθ), B ∈ S,

for (s, a) ∈ D, where Qθ
t (s, a; A) = P(T ′

t(s, a, Yt) ∈ A |ϑ = θ), A ∈ S ′, and,
by definition, P(T ′

t(s, a, Yt) ∈ A |ϑ = ·) is a (BΘ,B[0,1])-measurable mapping
for every A ∈ S ′.

• The one-step reward function at time t = 0, 1, . . . , T − 1 is the measurable
mapping rt : D → R defined via

rt(s, µ, a) =

∫

Θ

rθ
t (s, a) µ(dθ), (s, µ, a) ∈ D.

• The terminal reward function is the measurable mapping VT : S → R defined
via

VT (s, µ) =

∫

Θ

V θ
T (s) µ(dθ), (s, µ) ∈ S.

Remark. Inserting the random quantities Wt−1, Zt−1, at−1, Yt and µt−1 ∈ P(Θ)
and furthermore defining µt := Φt(Wt−1, Zt−1, µt−1, at−1,Wt, Zt), we obtain for the
value of the transition function

Tt(Wt−1, Zt−1, µt−1, at−1, Yt)

= (Ft(Wt−1, h
I
t (Zt−1, Yt), at−1), gt(Zt−1, Yt), µt)

= (Wt, Zt, µt).

By this, a classic Markov decision process as investigated in Hernández-Lerma and
Lasserre (1996) with Xt = (Wt, Zt, µt) is defined.

A chosen initial distribution µ0 ∈ P(Θ) is called the prior distribution, while the
µt, t = 1, . . . , T , are called posterior distributions. They can be interpreted as the
distribution of ϑ given the history of the Markov decision process at time t if the
true distribution of ϑ is µ0.

96



5.2 A Bayesian control approach to dynamic risk measures

As mentioned above, let us further describe the Bayes operator. Similar to
Rieder (1975), we make the following assumption.

Assumption 2. There exists a σ-finite measure ν on S ′, such that for every t ∈
{1, . . . , T} and (s, a) ∈ D′ the transition law

Qθ
t (s, a; ·) = P(T ′

t(s, a, Yt) ∈ · |ϑ = θ)

has a density qt with respect to ν, that is we assume

P(T ′
t(s, a, Yt) ∈ dx |ϑ = θ) = qθ

t (x | s, a)ν(dx), θ ∈ Θ.

The Bayes operator Φt : D × S ′ → P(Θ) is now defined for t = 1, . . . , T via

Φt(s, µ, a, x)(B) :=

∫
B

qθ
t (x | s, a)µ(dθ)∫

Θ
qθ
t (x | s, a)µ(dθ)

, B ∈ BΘ, (s, µ, a, x) ∈ D × S ′.

Example 5.1. Let us see how the transition law and the Bayes operator look like
if we assume that the generating random variables follow a two–point distribution,
i. e. set E := {u, d}, Θ := [0, 1] and

P(Yt = u |ϑ = θ) = θ = 1− P(Yt = d |ϑ = θ), θ ∈ Θ, t = 1, . . . , T.

Furthermore, let (s, µ, a) ∈ S be the state at time t − 1 with µ 6∈ {δθ | θ ∈ [0, 1]},
such that in particular 0 < mµ :=

∫
Θ

θµ(dθ) < 1. Assume T ′
t(s, a, u) 6= T ′

t(s, a, d).
Then, ν (compare Assumption 2) becomes the counting measure on S ′. Hence,
there are two possible states (for the part in S ′) at time t, namely xu := T ′

t(s, a, u)
and xd := T ′

t(s, a, d). We obtain

qθ
t (xy | s, a) = P(T ′

t(s, a, Yt) = xy |ϑ = θ) = P(Yt = y |ϑ = θ), y ∈ E, θ ∈ Θ.

Consequently, the Bayes operator only has to be calculated for x ∈ {xu, xd} ⊂ S ′

and becomes for B ∈ B[0,1]

µu(B) := Φt(s, µ, a, xu)(B) =

∫
B

qθ
t (xu | s, a)µ(dθ)∫

Θ
qθ
t (xu | s, a)µ(dθ)

=

∫
B

θ µ(dθ)∫
Θ

θ µ(dθ)
=

1

mµ

∫

B

θ µ(dθ)

and analogously

µd(B) := Φt(s, µ, a, xd)(B) =
1

1−mµ

∫

B

(1− θ) µ(dθ).

We conclude that the transition law also follows a two–point distribution, namely
on

G := {(xu, µu), (xd, µd)}.
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It is now easily calculated via

Qt(s, µ, a; {xu} × {µu}) =

∫ ∫
1{xu}×{µu}(x, µu)Q

θ
t (s, a; dx)µ(dθ)

=

∫
Qθ

t (s, a; {xu})µ(dθ) =

∫
qθ
t (xu | s, a)µ(dθ)

=

∫
θµ(dθ) = mµ

and similarly Qt(s, µ, a; {xd} × {µd}) = 1−mµ. Therefore,

Qt(s, µ, a; {xy} × {µy}) = P(Yt = y |ϑ = mµ), y ∈ E, (5.3)

concluding the example.

With the variables defined, we have to maximize the expected reward over the
periods 1 to T , that is the term

E

[
T−1∑

k=0

rk(Xk, ak) + VT (XT )
∣∣∣ X0 = (s, µ)

]

for fixed (s, µ) ∈ S over a set of given sequences (a0, . . . , aT−1) of decisions. These
are specified by the following definition.

Definition 5.1. For t = 0, . . . , T − 1, the set of (T − t)−step admissible Markov
policies is

F T−t := {π = (ft, . . . , fT−1) | fk : S → A (S,A)–meas., k = t, . . . , T − 1}.

Now, we are ready to introduce the sequence of value functions (Vt)t=0,1,...,T .
Fix t ∈ {0, 1, . . . , T −1} and (s, µ) ∈ S. For given π ∈ F T−t the expected reward

over the periods t + 1 to T is

Vt,π(s, µ) := E

[
T−1∑

k=t

rk(Xk, fk(Xk)) + VT (XT )
∣∣∣Xt = (s, µ)

]

and the value function Vt is the maximal expected reward over all π ∈ F T−t,
consequently

Vt(s, µ) := sup
π∈F T−t

Vt,π(s, µ).

Now, the task is to solve this optimization problem and to establish if there is
an optimal policy, such that the supremum is a maximum, that is if there is a
π∗ ∈ F T−t such that

Vt(s, µ) := Vt,π∗(s, µ).
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Analogously to the case t = 0, we set for t ∈ {0, 1, . . . , T − 1} and µ ∈ P(Θ)

V µ
t (s) := sup

π∈(F T−t)′

∫

Θ

V θ
t,π(s)µ(dθ), s ∈ S ′.

Then, the following result (see Theorem 7.3 in Rieder (1975)) is well known. For
a similar thorough treatment of the subject, compare also Chapter 3 in van Hee
(1978).

Theorem 5.1. Assume that either

sup
π∈F T−t

E

[
T−1∑

k=t

r+
k (Xk, fk(Xk)) + V +

T (XT )
∣∣∣ Xt = (s, µ)

]
< ∞, (s, µ) ∈ S,

or

sup
π∈F T−t

E

[
T−1∑

k=t

r−k (Xk, fk(Xk)) + V −
T (XT )

∣∣∣ Xt = (s, µ)

]
< ∞, (s, µ) ∈ S.

Then for all t ∈ {0, 1, . . . , T}, it holds

Vt(s, µ) = V µ
t (s), (s, µ) ∈ S,

In this way, we can solve (5.2) by considering an ordinary Markov decision prob-
lem with an extended state space (compared to Section 4.3. To derive the optimal
policy and explicit representations of the value functions we can use again Theorem
3.2.1 from Hernández-Lerma and Lasserre (1996). For the sake of completeness,
we give here the reformulation of Theorem 4.1 in the context of our model.

Theorem 5.2. Let t ∈ {1, . . . , T} and (s, µ) ∈ S be fixed. If the functions
JT (s′, µ′) := VT (s′, µ′) and

Jk(s
′, µ′) := sup

a∈A

{
rk(s

′, µ′, a) + E
[
Jk+1(Xk+1)

∣∣Xk = (s′, µ′), ak = a
]}

(5.4)

defined for k = t, . . . , T − 1 are measurable and if moreover the supremum is
attained in a∗ = fk(s

′, µ′), such that fk : S → A is an (S,A)–measurable function,
then π∗ := (ft, . . . , fT−1) is an optimal policy in the sense that

Vt(s, µ) = Vt,π∗(s, µ) = Jt(s, µ).

Remark. Again, we can rewrite the value iteration (5.4) in terms of the value
functions for t = 0, . . . , T − 1:

Vt(s, µ) := max
a∈A

{
rt(s, µ, a) + E

[
Vt+1(Xt+1)

∣∣ Xt = (s, µ), at = a
]}

. (5.5)
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Now, we are able to introduce our dynamic risk measure, which is motivated by
(4.2).

Definition 5.2. Consider a Markov decision model for an Markov income pro-
cess I = (It)t=1,...,T ∈ XM as described in Section 5.2 and let the assumptions of
Theorem 5.2 be fulfilled. Furthermore, assume that we are given a wealth pro-
cess (Wt)t=0,1,...,T and an initial distribution µ0 ∈ P(Θ) from which we obtain the
sequence of posterior distributions (µt)t=1,...,T , and define

Xt := (Wt, Zt, µt), t = 0, 1, . . . , T.

Introduce measurable correction functions vt : S1 → R for t ∈ {0, 1, . . . , T − 1} and
define a dynamic risk measure via

ρB,µ0
t (I) := vt(Wt)− 1

ct

Vt(Xt), t = 0, 1, . . . , T − 1.

Remark. 1. Since this definition requires the assumptions of Theorem 5.2 to
be fulfilled, every Vt(·) is a measurable function and therefore every ρB

t (I) is
Ft−measurable. Consequently, the dynamic risk measure (ρB

t (I))t=0,1,...,T−1

is indeed an (Ft)t=0,1,...,T−1–adapted process.

2. As initial wealth process we usually choose the optimal one, i. e. we solve
the optimization problem at time t = 0 and obtain an optimal Markov policy
π∗ = (f ∗0 , . . . , f ∗T−1) ∈ F T . With this in hand, we set for some W0 ∈ S1

Wt = Ft(Wt−1, It, f
∗
t−1(Wt−1, Zt−1, µt−1)), t = 1, . . . , T.

3. Looking at (4.2) motivates the introduction of the correction functions. In
that example, which we will use throughout the following section, we have
vt(w) = − qt

ct
w−, w ∈ S1.

We have introduced a new class of dynamic risk measures and summarized the
necessary results from the literature. For every choice of the reward functions, a
different risk measure is generated. In the following section, we will derive explicit
formulas by using the functions which occurred in Chapter 4.

5.3 Explicit solutions

In this section, we want to solve the optimization problem introduced in the pre-
vious section for certain initial distributions and for the reward functions used in
Chapter 4, namely:

• The transition function becomes for t = 1, . . . , T

Tt(s, µ, a, y) := (T ′
t(s, a, y), Φt(µ, y)), (s, µ, a, y) = (w, z, µ, a) ∈ D × E,

where T ′
t(s, a, y) = (w+ + ht(z, y)− a, gt(z, y)).
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• The reward function becomes for t = 0, . . . , T − 1

r′t(s, a) := rt(s, µ, a) = −qtw
− + ct+1a, (s, µ, a) = (w, z, µ, a) ∈ D.

where we set for convenience q0 := 0.

• The terminal reward function becomes

V ′
T (s) := VT (s, µ) = cT+1w

+ − qT w−, (s, µ) = (w, z, µ) ∈ S.

As initial distributions, we use certain classes of distributions which are preserved
under the Bayes operator, e. g. one–point distributions, which usage corresponds to
the case of a known parameter ϑ, and, as an example of continuous distributions,
the Beta distributions. In the first case, we can treat the model introduced in this
chapter as in Section 4.3. The other example interprets the parameter ϑ as an
unknown probability.

5.3.1 The case when the parameter ϑ is known

Here, we assume that P(ϑ = θ0) = 1 for some known θ0 ∈ Θ, i. e. set µ0 = δθ0 . In
the first step, we calculate the resulting Bayes operator and the transition kernel.
This gives for all t ∈ {1, . . . , T}

Φt(s, δθ0 , a, x)(B) =

∫
B

qθ
t (x | s, a)δθ0(dθ)∫

Θ
qθ
t (x | s, a)δθ0(dθ)

=
qθ0
t (x | s, a)1B(θ0)

qθ0
t (x | s, a)

= 1B(θ0), B ∈ BΘ,

for all s ∈ S ′, a ∈ A and x ∈ S ′, so that we obtain inductively µt = δθ0 for all
t ∈ {1, . . . , T}, independent of the history of the Markov decision process. We
conclude that the estimated distribution of ϑ, starting with δθ0 , does not change
over time. Furthermore,

Qt(s, δθ0 , a; B′ × {δθ0}) =

∫ ∫
1B′×{δθ0

}(x, δθ0)Q
θ
t (s, a; dx)δθ0(dθ)

= Qθ0
t (s, a; B′), (s, a) ∈ D′, B′ ∈ S ′,

which is just the transition law used in Section 4.3 when the reference probability P
is replaced by P( · |ϑ = θ0). Furthermore, Qt(s, δθ0 , a; ·) is concentrated on S ′×{δθ0}
such that we can indeed identify Qt(s, δθ0 , a; · ×{δθ0}) with Qθ0

t (s, a; · ). Summing
things up, the dynamic risk measure ρB is the same as the dynamic risk measure
ρPR with the new reference probability. So, if we denote with E θ0 the expectation,
with V@Rθ0 the Value–at–Risk and with AV@Rθ0 the Average Value–at–Risk with
respect to Pθ0 := P( · |ϑ = θ0), we can define for k = 1, . . . , T

ρ
(k)
θ0

(X) := λkE θ0 [−X] + (1− λk)AV@Rθ0
γk

(X), X ∈ L1(Ω,F ,P),
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5 A Bayesian control approach

and obtain for t ∈ {0, 1, . . . , T − 1} and I ∈ XM

ρ
B,δθ0
t (I) = ρPR,θ0

t (I)

= −ct+1

ct

(It + V@Rθ0
γt

(It |Zt−1))
+ + E θ0

[
T∑

k=t+1

ck

ct

ρ
(k)
θ0

(Ik |Zk−1)
∣∣Zt

]
.

5.3.2 Beta distributions as initial distribution

The result of this subsection can be used to treat e. g. the Artzner–game and the
Cox–Ross-Rubinstein–model. These were introduced in Examples 4.1 and 4.2. To
derive explicit solutions we implement general Beta distribution as initial distribu-
tion and furthermore assume that Θ = [0, 1] and

P(Yt = u |ϑ = θ) = θ = 1− P(Yt = d |ϑ = θ), θ ∈ Θ, t = 1, . . . , T,

for some 0 ≤ d < 1 ≤ u. In this setting, the Beta distribution is a conjugate prior
distribution for the binomial distribution (compare e. g. Runggaldier et al. (2002)).
If we have no information about the parameter ϑ at time t = 0, we usually start
with µ0 = U(0, 1), which is a special Beta distribution, namely U(0, 1) = Beta(1, 1)
in our notation.

To solve the value iteration we again have to calculate the Bayes operator and
the transition kernel. It is well known that the Bayes operator preserves the class
of Beta distributions, which can easily be seen as follows. Let t ∈ {1, . . . , T} and
µ = Beta(α, β), α, β ≥ 0. By Example 5.1 and (B.1), we have for B ∈ B[0,1] and
(s, a) ∈ D′, xu := T ′

t(s, a, u)

Φt(s, µ, a, xu)(B) =

∫
B

θµ(dθ)∫
Θ

θµ(dθ)
=

∫
B

θ θα−1(1− θ)β−1(B(α, β))−1dθ

mµ

=

∫
B

θα(1− θ)β−1dθ

B(α + 1, β)
= Beta(α + 1, β)(B),

i. e. Φt(s, µ, a, xu) = Beta(α + 1, β) and analogously

Φt(s, µ, a, xd) = Beta(α, β + 1)

with xd := T ′
t(s, a, d). Combining these observations, it follows

Φt(s, Beta(α, β), a, T ′
t(s, a, Yt)) = Beta(α + 1{u}(Yt), β + 1{d}(Yt)). (5.6)

Consequently, with such an initial distribution, we only need to calculate the tran-
sition kernel for this class of distributions. Again, Example 5.1 yields

Qt(s, µ, a; {xu} × {Beta(α + 1, β)}) = mµ =
α

α + β
(5.7)
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and analogously

Qt(s, µ, a; {xd} × {Beta(α, β + 1)}) = 1−mµ =
β

α + β
. (5.8)

Hence, Qt(s, µ, a; ·) is a two–point distribution on

G := {(xu, Beta(α + 1, β)), (xd, Beta(α, β + 1))}

Now, we are ready to solve the value iteration. To avoid some notational difficulties,
we introduce some abbreviations. Write the state space as S = S1 × S2 ×M with

M := {Beta(α, β) |α, β ≥ 0}

and define for t ∈ {1, . . . , T} and k ∈ {t, . . . , T} the functions

gt
k : S2 × Ek−t → R

(s2; yt+1, . . . , yk) 7→ gk(gk−1(. . . (gt+1(s2, yt+1) . . . ), yk−1), yk).

Note that we get the special cases gt
t = idS2 and gt

t+1 = gt for k = t and k = t + 1
respectively and that we obtain

L(gt
k(s2; Yt+1, . . . , Yk)) = L(Zk |Zt = s2), s2 ∈ S2.

Furthermore, for k = t, . . . , T we have with (s2; yt, yt+1, . . . , yk) ∈ S2 × Ek−t+1

gt
k(gt(s2, yt); yt+1, . . . , yk) = gt−1

k (s2; yt, yt+1, . . . , yk). (5.9)

Recall that for k ∈ {1, . . . , T} and γ ∈ [0, 1] we introduced the static coherent risk
measure

ρ(k)(X) := λkE [−X] + (1− λk)AV@Rγk
(X), X ∈ L1(Ω,F ,P).

Theorem 5.3. Let t ∈ {0, 1, . . . , T}, (w, z) ∈ S ′. For α, β > 0 we then have the
following:

(i) The value function is given by

Vt(w, z, Beta(α, β)) = ct+1w
+ − qtw

−

−
T∑

k=t+1

ck ·
∑

(z;y)∈{z}×Ek−(t+1)

y=(yt+1,...,yk−1)

k−1∏
j=t+1

P
(
Yj = yj

∣∣ ϑ =
α +

∑j−1
i=t+1 1{u}(yi)

α + β + j − (t + 1)

)
×

ρ(k)
(
Ik

∣∣ Zk−1 = gt
k−1(z; yt+1, . . . , yk−1), ϑ =

α +
∑k−1

i=t+1 1{u}(yi)

α + β + k − (t + 1)

)
.
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(ii) The optimal policy π∗ = (f ∗t , . . . , f ∗T−1) is

f ∗k (w′, z′, Beta(α, β)) = (w′)+ − V@Rγk+1

(
Ik+1

∣∣ Zk = z′, ϑ =
α

α + β

)

for k = t, . . . , T − 1 and (w′, z′) ∈ S ′. Moreover, the optimal Markov process
(X∗

t , . . . , X∗
T ) is given via the recursive relation

X∗
t = (w, z)

and for k = t + 1, . . . , T

X∗
k = (X∗

k,1, X
∗
k,2, X

∗
k,3),

where

X∗
k,1 = hI

k(X
∗
k−1,2, Yk)

+ V@Rγk

(
Ik

∣∣Zk−1 = X∗
k−1,2, ϑ =

α +
∑k−1

i=t+1 1{u}(Yi)

α + β + k − t− 1

)
,

X∗
k,2 = gk(X

∗
k−1,2, Yk),

X∗
k,3 = Beta

(
α +

k∑
i=t+1

1{u}(Yi), β +
k∑

i=t+1

1{d}(Yi)
)
.

Proof. The proof is by backward induction on t ∈ {0, 1, . . . , T − 1}. Let t = T − 1.
The value iteration with µ := Beta(α, β) yields by (5.7) and (5.8)

VT−1(w, z, µ)

= sup
a∈A

{
rT−1(w, z, µ, a) + E [VT (XT ) | XT−1 = (w, z, µ), aT−1 = a]

}

= sup
a∈A

{
rT−1(w, z, µ, a) +

∫

G

VT (x)QT (w, z, µ, a; dx)
}

= sup
a∈A

{
r′T−1(w, z, a) +

α

α + β
V ′

T (T ′
T (w, z, a, u)) +

β

α + β
V ′

T (T ′
T (w, z, a, d))

}

(5.3)
= sup

a∈A

{
r′T−1(w, z, a) + E

[
V ′

T (T ′
T (w, z, a, YT ))

∣∣ ϑ =
α

α + β

]}
.

This optimization problem can be solved as in the proof of Theorem 4.2 and we
obtain

VT−1(w, z, µ) = cT w+ − qT−1w
− + cT+1E

[
hT (z, YT )

∣∣ ϑ =
α

α + β

]

− (cT − cT+1)AV@RγT

(
hT (z, YT )

∣∣ ϑ =
α

α + β

)

= cT w+ − qT−1w
− − cT · ρ(T )

(
IT

∣∣ ZT−1 = z, ϑ =
α

α + β

)
,
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where we used the fact that under P · |ϑ= α
α+β , ZT−1 and YT are independent. So the

assertion is true for t = T − 1 and we note that the supremum is attained in

a∗ = w+ − V@RγT

(
IT

∣∣ ZT−1 = z, ϑ =
α

α + β

)
,

from which we see that

W ∗
T = hI

T (z, YT ) + V@RγT

(
IT

∣∣ZT−1 = z, ϑ =
α

α + β

)
.

Now assume that the assertion holds for t ∈ {1, . . . , T}. To avoid lengthy notations
introduce for k = t + 1, . . . , T , z ∈ S2 and α, β ≥ 0 the term

At(k; z, α, β) :=
∑

(z;y)∈{z}×Ek−(t+1)

y=(yt+1,...,yk−1)

k−1∏
j=t+1

P
(
Yj = yj

∣∣ ϑ =
α +

∑j−1
i=t+1 1{u}(yi)

α + β + j − (t + 1)

)
×

ρ(k)
(
Is

∣∣ Zk−1 = gt
k−1(z; yt+1, . . . , yk−1), ϑ =

α +
∑k−1

i=t+1 1{u}(yi)

α + β + k − (t + 1)

)

and note that by (5.9)

E
[
At(k; gt(z, Yt), α + 1{u}(Yt), β + 1{d}(Yt))

∣∣ ϑ =
α

α + β

]

=
∑
yt∈E

P
(
Yt = yt

∣∣ϑ =
α

α + β

)
At(k; gt(z, yt), α + 1{u}(yt), β + 1{d}(yt))

= At−1(k; z, α, β).

Together with the value iteration the induction hypothesis yields similar to the
case t = T − 1 for µ := Beta(α, β)

V t−1(w, z, µ) + qt−1w
−

= sup
a∈A

{
qt−1w

− + r′t−1(w, z, a) + E
[
Vt(Tt(w, z, a, Yt))

∣∣ ϑ =
α

α + β

]}

= sup
a∈A

{
cta + E

[
ct+1(Ft(w, z, a, Yt))

+ − qt(Ft(w, z, a, Yt))
− ∣∣ϑ =

α

α + β

]}

−
T∑

k=t+1

ck · E
[
At(k; gt(z, Yt), α + 1{u}(Yt), β + 1{d}(Yt))

∣∣ ϑ =
α

α + β

]
.
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Now, the supremum can again be treated as before and we obtain

V t−1(w, z, µ)

= ctw
+ − qt−1w

− − ct · ρ(t)
(
It

∣∣ Zt−1 = z, ϑ =
α

α + β

)

−
T∑

k=t+1

ck · E
[
At(k; gt(z, Yt), α + 1{u}(Yt), β + 1{d}(Yt))

∣∣ ϑ =
α

α + β

]

= ctw
+ − qt−1w

− − ct · At−1(t; z, α, β)−
T∑

k=t+1

ck · At−1(k; z, α, β)

= ctw
+ − qt−1w

− −
T∑

k=t

cs · At−1(k; z, α, β),

which proves part (i). The supremum is attained in

a∗ = w+ − V@Rγt

(
It

∣∣Zt−1 = z, ϑ =
α

α + β

)
,

from which we see that

W ∗
t = hI

t (z, Yt) + V@Rγt

(
It

∣∣ Zt−1 = z, ϑ =
α

α + β

)
.

The formulas for the optimal policy and the wealth process in part (ii) follow
again as in Theorem 4.2 by inserting the quantities recursively. The formula for
the second component of X∗ is trivial and for the last component, namely the
estimated distributions of ϑ, we obtain the desired result by looking at (5.6).

The closed formula for the value functions in Theorem 5.3 is very lengthy. To
deal with this drawback, we rewrite the result in a version that is similar to the
one of Theorem 4.2. To this extend, we introduce some new probability measures.

Definition 5.3. Let t = 0, 1, . . . , T and α, β > 0. Then we define a probability
measure Pt,α,β on σ(Zt, Yt+1, . . . , YT ) via

Pt,α,β(Zt = z, Yt+1 = yt+1, . . . , YT = yT )

:= P(Zt = z)
T∏

j=t+1

P
(
Yj = yj

∣∣ϑ =
α +

∑j−1
i=t+1 1{u}(yi)

α + β + j − (t + 1)

)

for all (z; yt+1, . . . , yT ) ∈ S ′2 × ET−t.

It is easy to check that this indeed defines a probability measure. Furthermore,
we collect some simple but useful properties in a lemma.
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Lemma 5.1. Let t = 0, 1, . . . , T and α, β > 0. Then the following holds:

(i) Zt is independent of (Yt+1, . . . , YT ) under Pt,α,β and we have for z ∈ S ′2

Pt,α,β(Zt = z) = P(Zt = z). (5.10)

(ii) Let k ∈ {t + 1, . . . , T}. Then we have for all (yt+1, . . . , yk) ∈ Ek−t

Pt,α,β(Yt+1 = yt+1, . . . , Yk = yk)

=
k∏

j=t+1

P
(
Yj = yj

∣∣ϑ =
α +

∑j−1
i=t+1 1{u}(yi)

α + β + j − (t + 1)

)
.

(5.11)

(iii) Let T ≥ l ≥ k ≥ t + 1. For all (z, yt+1, . . . , yl) ∈ S ′2 × El−t we then have

Pt,α,β(Yl = yl, . . . , Yk = yk |Yk−1 = yk−1, . . . , Yt+1 = yt+1, Zt = z)

=
l∏

j=k

P
(
Yj = yj

∣∣ ϑ =
α +

∑j−1
i=t+1 1{u}(yi)

α + β + j − (t + 1)

)
.

(5.12)

Proof. (i) Obvious from the product form of the definition.

(ii) We only treat the case k = T − 1 (the case k = T is clear by definition
and part (i)), the rest follows analogously by induction. To this extend, let
(yt+1, . . . , yT−1) ∈ ET−(t+1):

Pt,α,β(Yt+1 = yt+1, . . . , YT−1 = yT−1)

=
∑
z∈S2

∑
yT∈E

Pt,α,β(Zt = z, Yt+1 = yt+1, . . . , YT = yT )

=
T−1∏

j=t+1

P
(
Yj = yj

∣∣ ϑ =
α +

∑j−1
i=t+1 1{u}(yi)

α + β + j − (t + 1)

)
×

∑
yT∈E

P
(
YT = yT

∣∣ϑ =
α +

∑T−1
i=t+1 1{u}(yi)

α + β + T − (t + 1)

)

=
T−1∏

j=t+1

P
(
Yj = yj

∣∣ ϑ =
α +

∑j−1
i=t+1 1{u}(yi)

α + β + j − (t + 1)

)
.
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(iii) We just have to insert the definition of Pt,α,β:

Pt,α,β(Yl = yl, . . . , Yk = yk |Yk−1 = yk−1, . . . , Yt+1 = yt+1, Zt = z)

=
Pt,α,β(Yl = yl, . . . , Yk = yk, Yk−1 = yk−1, . . . , Yt+1 = yt+1, Zt = z)

Pt,α,β(Yk−1 = yk−1, . . . , Yt+1 = yt+1, Zt = z)

=

∏l
j=t+1 P

(
Yj = yj

∣∣ ϑ =
α+
Pj−1

i=t+1 1{u}(yi)

α+β+j−(t+1)

)
· P(Zt = z)

∏k−1
j=t+t P

(
Yj = yj

∣∣ ϑ =
α+
Pj−1

i=t+t 1{u}(yi)

α+β+j−(t+1)

)
· P(Zt = z)

=
l∏

j=k

P
(
Yj = yj

∣∣ ϑ =
α +

∑j−1
i=t+1 1{u}(yi)

α + β + j − (t + 1)

)
.

This lemma provides a more intuitive version of the formula in Theorem 5.3.
Denote for fixed t = 0, 1, . . . , T and α, β > 0 by E t,α,β and ρ

(k)
t,α,β, k > t, the

expectation and the risk measure ρ(k) with respect to Pt,α,β.

Proposition 5.1. Let t = 0, 1, . . . , T and α, β > 0. Then for (w, z) ∈ S ′

Vt(w, z, Beta(α, β))

= ct+1w
+ − qtw

− −
T∑

k=t+1

ck · E t,α,β

[
ρ

(k)
t,α,β

(
Ik

∣∣ Yk−1, . . . , Yt+1, Zt

) ∣∣Zt = z
]
.

Proof. First observe that

ρ(k)
(
Ik

∣∣ Zk−1 = gt
k−1(z; yt+1, . . . , yk−1), ϑ =

α +
∑k−1

i=t+1 1{u}(yi)

α + β + k − (t + 1)

)

= ρ(k)
(
hI

k(g
t
k−1(z; yt+1, . . . , yk−1), Yk)

∣∣ϑ =
α +

∑k−1
i=t+1 1{u}(yi)

α + β + k − (t + 1)

)

(5.12)
= ρ

(k)
t,α,β

(
hI

k(g
t
k−1(z; yt+1, . . . , yk−1), Yk)

∣∣ Yk−1 = yk−1, . . . , Yt+1 = yt+1, Zt = z
)

= ρ
(k)
t,α,β

(
Ik

∣∣ Yk−1 = yk−1, . . . , Yt+1 = yt+1, Zt = k
)

where in the first step we used the fact that Is = hI
s(Zs−1, Ys) by definition and

that Ys and Zs−1 are independent under ϑ. Together with Lemma 5.1 this yields

Vt(w, z, Beta(α, β))

(5.11)
= ct+1w

+ − qtw
− −

T∑

k=t+1

ck · E t,α,β

[
ρ

(k)
t,α,β

(
Ik

∣∣Yk−1, . . . , Yt+1, Zt = z
)]

(5.10)
= ct+1w

+ − qtw
− −

T∑

k=t+1

ck · E t,α,β

[
ρ

(k)
t,α,β

(
Ik

∣∣Yk−1, . . . , Yt+1, Zt

) ∣∣ Zt = z
]
,

hence the assertion.
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The representation of the value functions in Proposition 5.1 is now of the same
structure as the one in the case where ϑ is known, compare Theorem 4.2. This shall
conclude this section. In the next one we will give a result how these two value
functions can be ordered. In fact, under some additional assumption, the value
function starting with a general distribution from P(0, 1) is always not smaller
than the one starting with a one-point distribution for all (w, z) ∈ S ′. After
looking at the theoretical results, we will give an economic interpretation of this
observation.

5.4 Comparison of value functions

In this section we again consider the binomial model, i. e. we assume Θ = [0, 1] and

P(Yt = u |ϑ = θ) = θ = 1− P(Yt = d |ϑ = θ), θ ∈ [0, 1], t = 1, . . . , T.

We have already seen that

qθ
t (T

′
t(s, a, y) | s, a) = P(Yt = y |ϑ = θ), y ∈ {u, d}, θ ∈ Θ.

Hence, the Bayes operator does not depend on (s, a) ∈ D′. Therefore, we shortly
write

Φt(µ, y) := Φt(s, µ, a, T ′
t(s, a, y)), (s, µ, a) ∈ D, y ∈ {u, d}.

After a few preparations we are ready to prove the main theorem of this section,
which we will apply to our main models, if possible.

5.4.1 A comparison result for general distributions

As described at the end of the last section, our main aim is to derive a comparison
result for the two risk measures ρPR and ρB, where the most important case is the
point of time t = 0. Formally, we prove that for any initial distribution µ ∈ P(0, 1)

ρ
PR,mµ

0 (I) ≥ ρB,µ
0 (I)

for all processes I ∈ XM that are constructed as described in Section 5.1. For
any distribution µ on R, we denote, if they exist, by m

(k)
µ , k ∈ N and σ2

µ its k–th

moment and its variance respectively. For convenience, set mµ := m
(1)
µ .

Let us first make a simple observation.

Proposition 5.2. Let t ∈ {0, 1, . . . , T − 1} and s ∈ S ′. If θ 7→ V θ
t,π(s) is convex

on [0, 1] for every π ∈ (F T−t)′, then

Vt(s, µ) ≥ Vt(s, δmµ), µ ∈ P(0, 1).
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Proof. Let µ ∈ P(0, 1). Since θ → V θ
t,π(s) is convex, Jensen’s inequality yields

∫

[0,1]

V θ
t,π(s) µ(dθ) ≥ V

mµ

t,π (s) = Vt,π(s, δmµ), π ∈ (F T−t)′. (5.13)

Consequently,

Vt(s, µ) = sup
π∈(F T−t)′

∫

[0,1]

V θ
t,π(s) µ(dθ)

(5.13)

≥ sup
π∈(F T−t)′

Vt,π(s, δmµ) = Vt(s, δmµ).

Remark. The assertion is always true for t = T−1, if the terminal reward function
V ′

T and the one–step reward function r′T−1 do not depend on θ, since then

V θ
T−1,π(s) = r′T−1(s, fT (s)) + E θ[V ′

T (T ′
T (s, fT (s), YT ))]

= r′T−1(s, fT (s)) + θV ′
T (T ′

T (s, fT (s), u)) + (1− θ)V ′
T (T ′

T (s, fT (s), u)),

which is a linear and therefore convex function in θ for all π = fT ∈ (F 1)′.

In the following subsection on examples, we will see that our models do in general
not fulfill the strong assumption of Proposition 5.2. We also see, that it is usually
not enough to assume convexity of θ 7→ V θ

t,π∗(s), if π∗ is chosen such that

sup
π∈(F T−t)′

Vt,π(s, δmµ) = Vt,π∗(s, δmµ),

because the optimal policies in the last equation of the proof differ in general. To
this extend, compare also Chapter 5 in Rieder (1987).

To prove the main theorem of this section we need two lemmata. The first
one deals with some simple properties of the Bayes operator, while the second one
examines the relationship of two properties of the value functions in the case where
ϑ is known.

Lemma 5.2. Let µ ∈ P(0, 1) and denote with Φ = Φt the Bayes operator. Then:

(i) If σ2
µ = 0, i. e. µ ∈ {δθ | θ ∈ [0, 1]}, then mΦ(µ,u) = mµ = mΦ(µ,d). Otherwise,

we have

mΦ(µ,u) =
m

(2)
µ

mµ

, mΦ(µ,d) =
mµ −m

(2)
µ

1−mµ

.

(ii) The following equivalences hold:

σ2
µ > 0 ⇔ mΦ(µ,u) > mµ ⇔ mµ > mΦ(µ,d).

(iii) If σ2
µ > 0, i. e. µ 6∈ {δθ | θ ∈ [0, 1]}, then:

mµ

1−mµ

(mΦ(µ,u) −mµ) = mµ −mΦ(µ,d).
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Proof. (i) If µ = δθ for some θ ∈ [0, 1], then Φ(µ, u) = δθ = Φ(µ, d) and this case
is obvious. Otherwise, mµ ∈ (0, 1) and by definition we have for B ∈ B[0,1]

as in Example 5.1

Φ(µ, u)(B) =
1

mµ

∫

B

θµ(dθ),

i. e. Φ(µ, u) has the µ–density
id[0,1]

mµ
on the measurable space ([0, 1],B[0,1]).

Analogously, Φ(µ, d) has the µ–density
1−id[0,1]

1−mµ
. Therefore,

mΦ(µ,u) =

∫ 1

0

θ Φ(µ, u)(dθ) =

∫ 1

0

θ · id[0,1](θ)

mµ

µ(dθ) =
m

(2)
µ

mµ

and

mΦ(µ,d) =

∫ 1

0

θ Φ(µ, d)(dθ) =

∫ 1

0

θ · 1− id[0,1](θ)

1−mµ

µ(dθ) =
mµ −m

(2)
µ

1−mµ

.

(ii) This follows from the representation in part (i):

mΦ(µ,u) > mµ ⇔ m
(2)
µ

mµ

> mµ ⇔ σ2
µ = m(2)

µ −m2
µ > 0

⇔ mµ −m2
µ > mµ −m(2)

µ ⇔ mµ >
mµ −m

(2)
µ

1−mµ

⇔ mµ > mΦ(µ,d).

(iii) Again, part (i) yields the assertion:

mµ

1−mµ

(mΦ(µ,u) −mµ) =
mµ

1−mµ

(m
(2)
µ

mµ

−mµ

)

=
mµ(1−mµ)− (mµ −m

(2)
µ )

1−mµ

= mµ − mµ −m
(2)
µ

1−mµ

= mµ −mΦ(µ,d).

Our result is valid for general Bayesian control models with a binomial structure
as described above. Recall that the Bayesian model is based on the assumption
that for every θ ∈ [0, 1], we are given a Markov decision process where the reward
functions V θ

T , rθ
t , t = 0, 1, . . . , T − 1 depend on θ. We now make the following

assumption.
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Assumption 3. For every (s, a) ∈ D′, the functions θ 7→ V θ
T (s) and θ 7→ rθ

t (s, a),
t = 0, 1, . . . , T − 1, are convex on [0, 1].

In our examples these functions do not depend on θ, therefore Assumption 3 is
trivially fulfilled.

Here comes another lemma. Recall that a function g : B → R, B ⊂ R2, is called
supermodular, if

g(min{x11, x12}, min{x21, x22}) + g(max{x11, x12}, max{x21, x22})
≥ g(x11, x21) + g(x12, x22)

for all (x11, x21), (x12, x22) ∈ B.

Lemma 5.3. Consider the model of Section 5.1. If for all t ∈ {0, 1, . . . , T} and
s ∈ S ′, a ∈ A, the function

(y, θ) 7→ V θ
t (T ′

t(s, a, y)), (y, θ) ∈ {u, d} × [0, 1],

is supermodular, then θ 7→ V θ
t (s) is convex on [0, 1] for all t ∈ {0, 1, . . . , T} and

s ∈ S ′.

Proof. We proceed by backward induction on t. The assertion is clear for t = T .
Now assume that for fixed t ∈ {1, . . . , T}, the function V ·

t (s) is convex for all
s ∈ S ′ and recall that

V θ
t−1(s) = sup

a∈A
{rθ

t−1(s, a) + θ · V θ
t (T ′

t(s, a, u)) + (1− θ) · V θ
t (T ′

t(s, a, d))}.

Define for s ∈ S ′, a ∈ A

fa,s(θ) := θ · V θ
t (T ′

t(s, a, u)) + (1− θ) · V θ
t (T ′

t(s, a, d)), θ ∈ [0, 1],

such that

V θ
t−1(s) = sup

a∈A
{rθ

t−1(s, a) + fa,s(θ)}.

Since, by Assumption 3, θ 7→ rθ
t−1(s, a) is convex for every (s, a) ∈ D and the sum

and the supremum of convex functions are again convex, we only have to show
that fa,s is convex for all s ∈ S ′, a ∈ A. To this extend, introduce the convex (by
induction hypothesis) functions gu, gd : [0, 1] → R via

gy(θ) := V θ
t (T ′

t(s, a, y)), θ ∈ [0, 1], y ∈ {u, d},

from which we get

fa,s(θ) = θ · gu(θ) + (1− θ) · gd(θ), θ ∈ [0, 1].
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By the supermodularity–assumption, we have for all θ1, θ2 ∈ [0, 1] with θ1 < θ2

that

V θ1
t (T ′

t(s, a, u)) + V θ2
t (T ′

t(s, a, d)) ≤ V θ1
t (T ′

t(s, a, d)) + V θ2
t (T ′

t(s, a, u))

or equivalently

V θ1
t (T ′

t(s, a, u))− V θ1
t (T ′

t(s, a, d)) ≤ V θ2
t (T ′

t(s, a, u))− V θ2
t (T ′

t(s, a, d)).

We conclude that gu − gd is non–decreasing, and we obtain for all λ ∈ [0, 1] and
θ1, θ2 ∈ [0, 1]

A(λ, θ1, θ2) := λ(1− λ)(θ1 − θ2)(gu(θ1)− gd(θ1)− (gu(θ2)− gd(θ2))) ≥ 0.

Furthermore, convexity of gu and gd yields

fa,s(λθ1 + (1− λ)θ2)

≤λ2θ1gu(θ1) + λ(1− λ)θ1gu(θ2) + λ(1− λ)θ2gu(θ1)

+ (1− λ)2θ2gu(θ2) + λ2(1− θ1)gd(θ1) + λ(1− λ)(1− θ1)gd(θ2)

+ λ(1− λ)(1− θ2)gd(θ1) + (1− λ)2(1− θ2)gd(θ2).

We can write

λfa,s(θ1) + (1− λ)fa,s(θ2)

= λ(1− λ + λ)(θ1gu(θ1) + (1− θ1)gd(θ1))

+ (1− λ)(1− λ + λ)(θ2gu(θ2) + (1− θ2)gd(θ2))

= λ2θ1gu(θ1) + λ(1− λ)θ1gu(θ1) + λ(1− λ)θ2gu(θ2)

+ (1− λ)2θ2gu(θ2) + λ2(1− θ1)gd(θ1) + λ(1− λ)(1− θ1)gd(θ1)

+ λ(1− λ)(1− θ2)gd(θ2) + (1− λ)2(1− θ2)gd(θ2).

The last two calculations show that

λfa,s(θ1) + (1− λ)fa,s(θ2)− fa,s(λθ1 + (1− λ)θ2)

≥λ(1− λ)θ1gu(θ1) + λ(1− λ)θ2gu(θ2) + λ(1− λ)(1− θ1)gd(θ1)

+ λ(1− λ)(1− θ2)gd(θ2)− λ(1− λ)θ1gu(θ2)− λ(1− λ)θ2gu(θ1)

− λ(1− λ)(1− θ1)gd(θ2)− λ(1− λ)(1− θ2)gd(θ1)

= λ(1− λ)(θ1 − θ2)(gu(θ1)− gd(θ1)− (gu(θ2)− gd(θ2))) = A(λ, θ1, θ2) ≥ 0,

which proves convexity of fa,s and therefore the assertion.

Recall that if the reward functions depend on θ ∈ [0, 1], we set for (s, µ, a) ∈ D

VT (s, µ) :=

∫

[0,1]

V θ
T (s) µ(dθ), rt(s, µ, a) :=

∫

[0,1]

rθ
t (s, a) µ(dθ), t = 0, 1, . . . , T − 1.

We obtain the following comparison result.
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Theorem 5.4. Consider the model of Section 5.1. If for all t ∈ {0, 1, . . . , T} and
s ∈ S ′, a ∈ A the function

(y, θ) 7→ V θ
t (T ′

t(s, a, y)), (y, θ) ∈ {u, d} × [0, 1],

is supermodular, then it holds for all t ∈ {0, 1, . . . , T}

Vt(s, µ) ≥ Vt(s, δmµ), (s, µ) ∈ S.

Proof. The proof is again by backward induction on t. For t = T we have to show
that

VT (s, µ) =

∫

[0,1]

V θ
T (s) µ(dθ) ≥ V

mµ

T (s) = VT (s, δmµ), (s, µ) ∈ S.

But this is again a simple consequence of Jensen’s inequality.
Now assume that the assertion holds for fixed t ∈ {1, . . . , T} and let (s, µ) ∈ S,
where µ ∈ P(0, 1) with µ 6∈ {δθ | θ ∈ [0, 1]}. Note that then Φt(µ, y) ∈ P(0, 1) for
y ∈ {u, d}. Furthermore, by definition of the transition kernel we have in the same
way as in (5.7)

Qt(s, µ, a; {xu} × {Φt(µ, u)}) = mµ = 1−Qt(s, µ, a; {xd} × {Φt(µ, d)}). (5.14)

Again, we obtain a two–point distribution on

G := {(xu, Φt(µ, u)), (xd, Φt(µ, d))}

Additionally, we can treat the one-step reward function in the same way as VT

above and obtain for a ∈ A

rt−1(s, µ, a) =

∫

[0,1]

rθ
t−1(s, a) µ(dθ) ≥ r

mµ

t−1(s, a) = rt−1(s, δmµ , a),

since, by model assumption, r·t−1(s, a) is convex on [0, 1]. Consequently, the in-
duction hypothesis (I.H.) yields with µu := Φt(µ, u), µd := Φt(µ, d) and with
mu := mΦt(µ,u), md := mΦt(µ,d)

Vt−1(s, µ)

= sup
a∈A

{
rt−1(s, µ, a) +

∫

G

Vt(x)Qt(s, µ, a; dx)
}

(5.14)
= sup

a∈A

{
rt−1(s, µ, a) + mµ · Vt(T

′
t(s, a, u), µu) + (1−mµ) · Vt(T

′
t(s, a, d), µd)

}

I.H.≥ sup
a∈A

{
rt−1(s, δmµ , a) + mµ · Vt(T

′
t(s, a, u), δmu) + (1−mµ) · Vt(T

′
t(s, a, d), δmd

)
}
.
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The introduced lemmata provide now the result as follows. From Lemma 5.2(ii)
we have md < mµ < mu and part (iii) yields

mµ

1−mµ

=
mµ −md

mu −mµ

. (5.15)

Furthermore, by assumption and Lemma 5.3, Vt(s
′, δ·) is convex on [0, 1] for every

s′ ∈ S ′ and therefore

Vt(s
′, δmµ)− Vt(s

′, δmd
)

mµ −md

≤ Vt(s
′, δmu)− Vt(s

′, δmµ)

mu −mµ

(5.16)

holds. Again, we obtain with s′ = T ′
t(s, a, u), a ∈ A, by the supermodularity–

assumption

Vt(T
′
t(s, a, d), δmµ)− Vt(T

′
t(s, a, d), δmd

)

≤ Vt(T
′
t(s, a, u), δmµ)− Vt(T

′
t(s, a, u), δmd

)

(5.16)

≤ mµ −md

mu −mµ

(
Vt(T

′
t(s, a, u), δmu)− Vt(T

′
t(s, a, u), δmµ)

)

(5.15)
=

mµ

1−mµ

(
Vt(T

′
t(s, a, u), δmu)− Vt(T

′
t(s, a, u), δmµ)

)
,

which is equivalent to

mµ · Vt(T
′
t(s, a, u), δmu) + (1−mµ) · Vt(T

′
t(s, a, d), δmd

)

≥ mµ · Vt(T
′
t(s, a, u), δmµ) + (1−mµ) · Vt(T

′
t(s, a, d), δmµ).

Combining this with the above inequality for Vt−1, we get

Vt−1(s, µ)

≥ sup
a∈A

{
rt−1(s, δmµ , a) + mµ · Vt(T

′
t(s, a, u), δmu) + (1−mµ) · Vt(T

′
t(s, a, d), δmd

)
}

≥ sup
a∈A

{
rt−1(s, δmµ , a) + mµ · Vt(T

′
t(s, a, u), δmµ) + (1−mµ) · Vt(T

′
t(s, a, d), δmµ)

}

= Vt−1(s, δmµ),

thus completing the proof.

Remark. If the terminal reward function VT and the one–step reward function
rT−1 do not depend on θ we have equality of the value functions for t = T − 1:

VT−1(s, µ) = sup
a∈A

{r′T−1(s, a) +

∫

E

V ′
T (T ′

T (s, a, y))QT (s, µ, a; dy)}

= sup
a∈A

{r′T−1(s, a) + mµV
′
T (T ′

T (s, a, u)) + (1−mµ)V ′
T (T ′

T (s, a, d))}

= VT−1(s, δmµ).
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The result can, of course, be used to compare our two dynamic risk measures.
Consider the reward functions as introduced in the previous chapter (or the previ-
ous section).

Corollary 5.1. Let the assumption of Theorem 5.4 be fulfilled. Take a wealth
process (Wt)t=0,1,...,T and the sequence of posterior distributions defined using the
prior distribution µ0 ∈ P(0, 1) and µt+1 := Φt(µt, Yt), t = 0, 1, . . . , T − 1. Then

ρ
PR,mµt
t (I) ≥ ρB, µ0

t (I), I ∈ XM.

In particular, if we use the Beta distributions as a conjugate family for the binomial
distribution, we set µ0 := U(0, 1) and obtain

ρ
PR, 1

2
0 (I) ≥ ρ

B,U(0,1)
0 (I), I ∈ XM.

Proof. This follows directly from Theorem 5.4 with vt(w) := − qt

ct
w−, w ∈ S1:

ρ
PR,mµt
t (I) = −qt

ct

W−
t − 1

ct

V
mµt
t (Wt, Zt) = −qt

ct

W−
t − 1

ct

Vt(Wt, Zt, δmµt
)

≥ −qt

ct

W−
t − 1

ct

Vt(Wt, Zt, µt) = ρB, µ0
t (I).

Economic interpretation for t = 0. We see that if the supermodularity assump-
tion is fulfilled the dynamic risk measure ρPR is more conservative than ρB since it
assigns a higher risk to every process I ∈ XM. In the next section we will see that
this is also the case in the Artzner–game although the supermodularity assumption
is not fulfilled there.

The interpretation of this fact is as follows. Recall that we assume that the
probability distribution of ϑ is unknown and, in order to deal with this fact, we
choose an initial distribution as an estimation for this distribution. Therefore,
when the parameter is known with realization θ0 ∈ (0, 1) using the dynamic risk
measure ρPR can also be interpreted as using δθ0 as an initial distribution, formally,

ρPR,θ0

0 (I) = ρ
B, δθ0
0 (I), I ∈ XM.

As we have seen, in contrast to using a general initial distribution µ0, the current
estimation of L(ϑ) remains constant if we start with δθ0 , i. e. the information over
time, namely the realizations of the generating process (Yt)t=1,...,T , are not taken
into account when calculating the dynamic risk measure. On the other hand, this
is the case if the initial distribution is µ0. Therefore, we are in fact able to diminish
our risk at t = 0 by using the information revealed over time. In this way, the risk
of the process I is assessed more adequately.

To conclude this subsection, we further investigate the relationship of convexity
of V ·

t (s) and the result of the theorem.
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Proposition 5.3. Let t ∈ {0, 1, . . . , T}, s ∈ S ′ and assume that the inequality
Vt(s, δmµ) ≤ Vt(s, µ) holds for all µ ∈ P(0, 1). Then θ 7→ V θ

t (s) is convex on [0, 1].

Proof. It is well known (compare e. g. Chapter 5 in Rieder (1987))) that Vt(s, ·) is
convex on P(0, 1). This can be seen by taking µ1, µ2 ∈ P(0, 1), λ ∈ [0, 1] and

Vt(s, λµ1 + (1− λ)µ2)

= sup
π∈(F T−t)′

∫

Θ

V θ
t,π(s) (λµ1 + (1− λ)µ2)(dθ)

= sup
π∈(F T−t)′

{
λ

∫

Θ

V θ
t,π(s) µ1(dθ) + (1− λ)

∫

Θ

V θ
t,π(s) µ2(dθ)

}

≤ λ sup
π∈(F T−t)′

∫

Θ

V θ
t,π(s) µ1(dθ) + (1− λ) sup

π∈(F T−t)′

∫

Θ

V θ
t,π(s) µ2(dθ)

= λVt(s, µ1) + (1− λ)Vt(s, µ2).

Now take θ1, θ2 ∈ [0, 1], λ ∈ [0, 1] and note that mλδθ1
+(1−λ)δθ2

= λθ1 + (1 − λ)θ2.
The assumption and convexity of Vt(s, ·) then yield the assertion:

V
λθ1+(1−λ)θ2

t (s) = Vt(s, δλθ1+(1−λ)θ2) ≤ Vt(s, λδθ1 + (1− λ)δθ2)

≤ λVt(s, δθ1) + (1− λ)Vt(s, δθ2) = λV θ1
t (s) + (1− λ)V θ2

t (s).

5.4.2 Examples

In this subsection we treat some examples, namely the coin–tossing game proposed
by Artzner and the standard Cox–Ross–Rubinstein–model (CRRM).

Examples and counterexamples in the Artzner–game Consider the Artzner–
example. We have E = {0, 1} and S ′ = R × N0, whereas because of T = 3 also
S ′ = R×{0, 1, 2, 3} can be used. But this makes no difference for our investigations.
Take the process

I1 = I2 = 0, I3 = 1{Z2+Y3≥2}.

First, let us check that the inductive proof of Theorem 5.4 does not work if we
only assume convexity of V ·

t (s), s ∈ S ′. Consider s = (w, z) ∈ S ′ and define with
θ ∈ [0, 1]

pz(θ) := P (Y3 ≥ 2− z |ϑ = θ) =





0 , z = 0,
θ , z = 1,
1 , z ≥ 2.
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Then

V2(s, δθ) = c3w
+ − q2w

−

+ c4E [I3 |Z2 = z, ϑ = θ]− (c3 − c4)AV@Rγ3(I3 |Z2 = z, ϑ = θ)

= c3w
+ − q2w

−

+ c4E [1{Y3≥2−z} |ϑ = θ]− (c3 − c4)AV@Rγ3(1{Y3≥2−z} |ϑ = θ)

= c3w
+ − q2w

− + c4pz(θ) + (c3 − c4)
pz(θ)− γ3

1− γ3

1[0,pz(θ)](γ3),

which is obviously convex in θ for every s = (w, z) ∈ S ′. But the main assumption
of Theorem 5.4 does not hold, as can be seen as follows. Take an arbitrary a ∈ A
and set z = 1, w = 0. Then we have

T ′
2(w, z, a, u) = (w+ + h2(z, u)− a, s2 + u) = (−a, 2)

T ′
2(w, z, a, d) = (w+ + h2(z, d)− a, s2 + d) = (−a, 1).

Taking θ1, θ2 ∈ (0, 1) with θ1 < θ2 < γ3 we obtain with the above calculation and
because pθi

(1) = θi, i = 1, 2,

V2(T
′
2(w, z, a, d), δθ2)− V2(T

′
2(w, z, a, d), δθ1) = c4pθ2(1)− c4pθ2(1) = c4(θ2 − θ1) > 0

and, since pθi
(2) = 1, i = 1, 2,

V2(T
′
2(w, z, a, u), δθ2)− V2(T

′
2(w, z, a, u), δθ1) = c4pθ2(2)− c4pθ2(2) = 0.

We first conclude that even in the case T = t = 1, the reverse implication in
Lemma 5.3 is not true. Also note that for T = 3, a comparison result for V2 is
provided by the remark after Theorem 5.4.

Furthermore, we will now see that convexity of V ·
2(s) is not enough to imply the

assertion of Theorem 5.4, i. e. we will find a pair (s, µ) ∈ S ′ × P(0, 1) such that

V1(s, µ) < V1(s, δmµ).

We can assume without loss of generality that w = 0 and have to consider the two
cases z = 0 and z = 1, which are just the possible realizations of Z1 = Y1.

First, we choose s = (0, 1) and consequently µ = Beta(2, 1), such that mµ = 2
3
.

Furthermore let γ3 > 2
3
, e. g. γ3 = 0.95. In this case, we have AV@Rθ

γ3
(Y3) = 0 for

all θ ≤ 0.95. Subsection 5.3.1 yields

V1

(
0, 1, δ 2

3

)
= −c3 · E 2

3

[
ρ

(3)
2
3

(1{Z2+Y3≥2} |Z2 = 1 + Y2)
]

= −c3 ·
(2

3
ρ

(3)
2
3

(1{Y3≥0}) +
1

3
ρ

(3)
2
3

(1{Y3≥1})
)

= −c3 ·
(2

3
· (−1)− 1

3
· 2

3
· λ3

)
=

2

9
c4 +

2

3
c3,
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while Proposition 5.1 implies

V1

(
0, 1, Beta(2, 1)) = −c3 · E 1,2,1

[
ρ

(3)
1,2,1

(
1{Z2+Y3≥2}

∣∣ Y2, Z1 = 1
)]

= −c3 · E
[
ρ(3)

(
1{Y2+Y3≥1}

∣∣Y2, ϑ =
2 + 1{1}(Y2)

4

) ∣∣ ϑ =
2

3

]

= −c3 ·
(2

3
· ρ(3)

3
4

(1{Y3≥0}) +
1

3
· ρ(3)

1
2

(1{Y3≥1})
)

= −c3 ·
(2

3
· (−1)− 1

3
· 1

2
λ3

)
=

1

6
c4 +

2

3
c3 < V1

(
0, 1, δ 2

3

)
.

Similar calculations show that for s = (0, 0) and thus µ = Beta(1, 2) the reverse
inequality holds:

V1

(
0, 0, δ 1

3

)
=

1

9
c4 <

1

6
c4 = V1

(
0, 0, Beta(1, 2)

)
.

So, indeed assuming convexity in Theorem 5.4 is not enough to ensure the desired
result. We rather have to make the stronger (by Lemma 5.3) assumption on Dt,s,a.

So the theorem does not provide a comparison result for the dynamic risk mea-
sures when considering the Artzner–example. But since the problem is very simple,
all quantities can easily be computed and calculated. We have already done so and
compared the value functions for t = 1 and t = 2. Finally, we find for the value
functions with t = 0, s = (0, 0) and µ = Beta(1, 1) = U(0, 1), therefore mµ = 1

2
,

V0

(
0, 0, δ 1

2

)

= −c3 · E 1
2

[
ρ

(3)
1
2

(1{Z2+Y3≥2} |Z2)
]

= −c3 ·
(1

4
ρ

(3)
1
2

(1{Y3≥0}) +
1

2
ρ

(3)
1
2

(1{Y3≥1}) +
1

2
ρ

(3)
1
2

(1{Y3≥2})
)

= −c3 ·
(
− 1

4
− 1

2
· 1

2
· λ3 +

1

2
· 0

)
=

1

4
c3 +

1

4
c4

and

V0

(
0, 0,U(0, 1)

)

= −c3 · E 0,1,1

[
ρ

(3)
0,1,1(1{Z2+Y3≥2} |Y2, Y1)

]

= −c3 ·
(1

2
· 2

3
· ρ(3)

3
4

(1{Y3≥0}) + 2 · 1

2
· 1

3
· ρ(3)

1
2

(1{Y3≥1}) +
1

2
· 2

3
· ρ(3)

1
4

(1{Y3≥2})
))

= −c3 ·
(
− 1

3
− 1

3
· 1

2
· λ3 + 0

)
=

1

3
c3 +

1

6
c4 > V0

(
0, 0, δ 1

2

)
,

since c4 < c3. We conclude that the risk measures have the reverse order:

ρ
PR, 1

2
0 (I) > ρ

B,U(0,1)
0 (I).
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ρ
PR, 1

2
0 (I(1)) -0.4325

ρ
B,U(0,1)
0 (I(1)) -0.4325

ρ
PR, 1

2
0 (I(2)) -0.4419

ρ
B,U(0,1)
0 (I(2)) -0.445

Y1 = 1 Y1 = 0

ρ
PR,

1+Y1
3

1 (I(1)) -0.5766 -0.2883

ρ
B,U(0,1)
1 (I(1)) -0.5766 -0.2883

ρ
PR,

1+Y1
3

1 (I(2)) -0.7939 -0.0961

ρ
B,U(0,1)
1 (I(2)) -0.7458 -0.1442

Y1 + Y2 = 2 Y1 + Y2 = 1 Y1 + Y2 = 0

ρ
PR,

1+Y1+Y2
4

2 (I(1)) -0.6828 -0.4552 -0.2276

ρ
B,U(0,1)
2 (I(1)) -0.6828 -0.4552 -0.2276

ρ
PR,

1+Y1+Y2
4

2 (I(2)) -0.95 -0.4552 0

ρ
B,U(0,1)
2 (I(2)) -0.95 -0.4552 0

Table 5.1: The dynamic risk measures in the Artzner–game

In Table 5.1 we give some numerical values of the risk measures, where the variables
ck = 0.95k−1, k = 1, 2, 3, c4 = 0.932 and qk = 1.2 · ck, k = 1, 2, 2, are chosen anal-

ogously to Pflug and Ruszczyński (2001). In that work, the values for ρ
PR, 1

2
0 (I(1))

and ρ
PR, 1

2
0 (I(2)) can already be found.

Examples and counterexamples in the CRRM Now, let us treat the CRRM.
First, we want to show that the assumption of Proposition 5.2 is too strong. It
is easily seen that θ 7→ V θ

T−1,π(s) is linear, therefore convex, for every s ∈ S ′ and
π = fT ∈ (F 1)′. So let us take t = T − 2. Furthermore, choose s = (0, 1) ∈ S ′ and
the admissible policy π = (fT−1, fT ) ∈ (F 2)′ defined through

fT−1(w, z) := −1, fT (w, z) := w+ + 1{z=u}u(d− 1), (w, z) ∈ S ′.

Starting with (WT−2, ZT−2) = (w, z) = (0, 1) and using the policy π from above
yields WT−1 = w+ + z(YT−1 − 1) − fT−1(w, z) = YT−1, so W+

T−1 = YT−1 and
W−

T−1 = 0. Furthermore,

WT = W+
T−1 + ZT−2 · YT−1(YT − 1)− fT (WT−1, ZT−1)

= YT−1(YT − 1)− 1{YT−1=u}u(d− 1).

120



5.4 Comparison of value functions

With the reward functions used in Section 5.3 we obtain

V θ
T−2,π(0, 1)

= E [rT−2(XT−2, fT−1(XT−2)) + rT−1(XT−1, fT (XT−1))

+ VT (XT ) |XT−2 = (0, 1, δθ)]

= 0 + E θ[−qT−1W
−
T−1 + cT fT (XT−1) + cT+1W

+
T − qT W−

T ]

= E θ[cT (YT−1 + 1{YT−1=u}u(d− 1)) + cT+1(YT−1(YT − 1)− 1{YT−1=u}u(d− 1))+

− qT (YT−1(YT − 1)− 1{YT−1=u}u(d− 1))−]

= cT (θud + (1− θ)d) + θ2(cT+1[u
2 − ud]+ − qT [u2 − ud]−) + θ(1− θ) · 0

+ (1− θ)θ(cT+1[d(u− 1)]+ − qT [d(u− 1)]−)

+ (1− θ)2(cT+1[d(d− 1)]+ − qT [d(d− 1)]−)

= cT (θud + (1− θ)d) + θ2cT+1u(u− d) + (θ − θ2)cT+1d(u− 1)

− (1− 2θ + θ2)qT d(1− d).

This yields for u = 1

∂2V θ
T−2,π(s)

∂θ2
= 2cT+1u(u− d)− 2cT+1d(u− 1)− 2qT d(1− d)

= 2cT+1(1− d)− 2qT d(1− d) = 2(1− d)(cT+1 − qT d),

which is less than zero, if cT+1

qT
< d, which is clearly a possible choice. So in this

example, θ 7→ V θ
T−2,π(s) is concave and consequently Proposition 5.2 cannot be

applied to obtain comparison results in the CRRM with our reward functions. But
as we will see now, the assumption of Theorem 5.4 is fulfilled.

Note that the state space is S ′ = R×R∗+, therefore Zt > 0 for all t = 0, 1, . . . , T .
Let us first calculate the value functions V θ

t (s) for s ∈ S ′ and θ ∈ [0, 1] at time

t ∈ {1, . . . , T}. Because of (conditional) coherence of the risk measure ρ
(k)
θ for

every k = t + 1, . . . , T Theorem 4.2 yields

V θ
t (w, z)− ct+1w

+ + qtw
−

=
T∑

k=t+1

ck · E θ[−ρ
(k)
θ (Zk−1(Yk − 1) |Zk−1) |Zt = z]

=
T∑

k=t+1

ck · E θ[Zk−1 |Zt = z] · (−ρ
(k)
θ (Yk)− 1)

=
T∑

k=t+1

ck · z · E θ[Y1]
k−(t+1) · (λkE θ[Yk]− (1− λk)AV@Rθ

γk
(Yk)− 1)
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= z ·
T∑

k=t+1

ck · E θ[Y1]
k−(t+1)×

(
λkθ(u− d) + d− 1 + (1− λk)1[0,θ](γk)

θ − γk

1− γk

(u− d)
)
.

Now, let (s, a) = (w, z, a) ∈ S ′×A. Recall that T ′
t(s, a, y) = (w++z(y−1)−a, zy),

y ∈ {u, d}. We obtain

Dt,s,a(θ) = V θ
t (T ′

t(s, a, u))− V θ
t (T ′

t(s, a, d))

= ct+1(w
+ + z(u− 1)− a)+ − qt(w

+ + z(u− 1)− a)−

−ct+1(w
+ + z(d− 1)− a)+ + qt(w

+ + z(d− 1)− a)−

+z(u− d) ·
T∑

k=t+1

ck · E θ[Y1]
k−(t+1) ×

(
λkθ(u− d) + d− 1 + (1− λk)1[0,θ](γk)

θ − γk

1− γk

(u− d)
)

= ct+1(w
+ + z(u− 1)− a)+ − qt(w

+ + z(u− 1)− a)−

−ct+1(w
+ + z(d− 1)− a)+ + qt(w

+ + z(d− 1)− a)−

+z(u− d) ·
T∑

k=t+1

ck · E θ[Y1]
k−(t+1)(λkθ(u− d) + d− 1)

+z(u− d) ·
T∑

k=t+1

ck · E θ[Y1]
k−(t+1)(1− λk)1[0,θ](γk)

θ − γk

1− γk

(u− d).

We have to show that this term is non–decreasing in θ. To this extend, we only have
to consider the two sums. Since E θ[Y1] = θ(u−d)+d, the last one is the sum of non–
negative products of non–decreasing functions, therefore clearly non–decreasing.
The first sum is just the value function V θ

t (0, z(u − d)), if θ ≤ min{γt+1, . . . , γT}.
So we only have to show that V θ

t (s) is non–decreasing in θ on this interval for every
s ∈ S ′. This can be seen as follows. The case t = T − 1 is obvious, so assume
t ≤ T −2. Furthermore, without loss of generality, we can take (w, z) = (0, 1). Let
us write the value function as

V θ
t (w, z)

= ct+1(λt+1θ(u− d) + d− 1) + ct+2(θ(u− d) + d)(λt+2θ(u− d) + d− 1)

+
T∑

k=t+3

ck · E θ[Y1]
k−(t+1)(λkθ(u− d) + d)−

T∑

k=t+3

ck · E θ[Y1]
k−(t+1).
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5.4 Comparison of value functions
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Figure 5.1: The value function in the CRRM

We obtain

∂V θ
t (w, z)

∂θ

= ct+2(u− d) + 2ct+3(u− d)2θ + ct+3d(u− d) +

≥ct+3︷︸︸︷
ct+2 (u− d)d︸ ︷︷ ︸

≥2ct+3(u−d)(θ(u−d)+d)

−ct+2(u− d)

+
T∑

k=t+3

ck(u− d)E θ[Y1]
k−(t+1)−1

(
(k − (t + 1))(λkθ(u− d) + d︸︷︷︸

≥λkd

) + λkE θ[Y1]
)

− 2ct+3(u− d)E θ[Y1]−
T∑

k=t+4

ck(u− d)E θ[Y1]
k−(t+1)−1(k − (t + 1))

≥
T∑

k=t+3

=ck+1︷︸︸︷
ckλk (u− d)E θ[Y1]

k−(t+1)−1(k − t) · E θ[Y1]

−
T−1∑

k=t+3

ck+1(u− d)E θ[Y1]
k−(t+1)(k − t)

= cT+1(u− d)E θ[Y1]
T−t−1(T − t) ≥ 0.
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5 A Bayesian control approach

We conclude that Theorem 5.4 respectively Corollary 5.1 can be applied to the
CRRM when using the reward functions that result from the risk measure ρPR.
To visualize the behaviour of the value function, we provide a simple graph in
Figure 5.1. We set ck = 0.95k−1, k = 1, . . . , T , cT+1 = 0.93T−1 and γk = 0.95,
k = 1, . . . , T . Notice the point of non–differentiability at θ = 0.95 = γT .
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A Absolutely continuous probability
measures

Let (Ω,F) be a measurable space and P a probability measure on it. Denote
with Lp(Ω,F ,P) for p ∈ [1,∞] the equivalence classes of all p–integrable random
variables with respect to P and with L0(Ω,F ,P) the space of all random variables
on (Ω,F). Furthermore, let || · ||p be the standard Lp–norm on Lp(Ω,F ,P). If

X ∈ L1(Ω,F ,P) we just say that X is P–integrable.
If Q is another probability measure on (Ω,F) and G an arbitrary sub–σ–algebra

of F , we say that Q is absolutely continuous with respect to P on G and write
Q ¿G P if every null set of P also is a null set of Q., i. e. if for N ∈ G it holds

P(N) = 0 ⇒ Q(N) = 0.

If Q ¿F P we just write Q ¿ P.
The theorem of Radon–Nikodym provides a characterization of this property.

Theorem A.1. Q is absolutely continuous with respect to P on G if and only if
there exists an (G,B)–measurable random variable L ≥ 0 (i. e.L ∈ L0(Ω,G,P))
such that

EQ[X] = E [X · L], for all X ∈ L0(Ω,G,P), X ≥ 0. (A.1)

We frequently use the notation
dQ

dP

∣∣∣
G

:= L

and set
dQ

dP
:=

dQ

dP

∣∣∣
F
.

Proof. See Theorem A.8 in Föllmer and Schied (2004).

As an application, assume that Q ¿G P with L ∈ L∞(Ω,G,P). As a consequence
of the Hölder–inequality, every P–integrable and (G,B)–measurable random vari-
able X is also Q–integrable:

EQ|X| ≤ E |X| · ||L||∞ < ∞.

It follows that (A.1) also holds for general X ∈ L1(Ω,G,P).
If Q and P have the same null sets in G, i. e. if Q ¿G P and P ¿G Q, we say

that Q and P are equivalent on G and write Q ≈G P. This can be characterized as
follows:
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A Absolutely continuous probability measures

Proposition A.1. Let Q ¿G P. Then

Q ≈G P ⇔ dQ

dP

∣∣∣
G

> 0 P–almost surely.

Proof. See Corollary A.9 in Föllmer and Schied (2004).

This and the following result are important for the investigations in Sections 3.3
and 4.4 and implicitly used there.

Proposition A.2. Let Q ¿F P. If G is an arbitrary sub–σ–algebra of F , then it
holds Q ¿G P and

dQ

dP

∣∣∣
G

= E
[dQ

dP
∣∣G

]
.

Proof. See Proposition A.11 in Föllmer and Schied (2004).

If (Gt)t=0,1,...,T is a filtration on (Ω,F) and Q ¿ P, we can define the so called

density process of Q with respect to P denoted by (LQ
t )t=0,1,...,T via

LQ
t :=

dQ

dP

∣∣∣
Gt

, t = 0, 1, . . . , T.

By the previous Proposition, (LQ
t )t=0,1,...,T is a non–negative (Gt)t=0,1,...,T –mar-

tingale. Obviously, every non–negative (Gt)t=0,1,...,T –martingale (Mt)t=0,1,...,T with
EMT = 1 is a density process of Q defined by dQ = MT dP.

Finally, let us briefly introduce the essential supremum (infimum) of an arbitrary
family of random variables or of a random variable respectively. As is discussed
in Section A.5 of Föllmer and Schied (2004), it is not very sensible to introduce
the pointwise supremum of an uncountable family of random variables. Formally,
let J be an arbitrary index set and (Xj)j∈J a family of (G,B–measurable random
variables. In general (if J is uncountable),

(
sup
j∈J

Xj

)
(ω) := supj∈J Xj(ω)

will not be (G,B)–measurable or even the right concept. The following result
provides a more sensible definition.

Theorem A.2. There exists a (G,B)–measurable random variable X∗ such that

X∗ ≥ Xj P–almost surely for every j ∈ J. (A.2)

Furthermore, X∗ is unique in the sense that for every other (G,B)–measurable
random variable Z fulfilling (A.2) it holds Z ≥ X∗ P–almost surely. We set

ess. sup
j∈J

Xj := X∗
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and call X∗ the essential supremum of (Xj)j∈J with respect to P. The essential
supremum with respect to P is denoted by

ess. inf
j∈J

Xj := − ess. sup
j∈J

{−Xj}.

Proof. See Theorem A.32 in Föllmer and Schied (2004).

We have seen in Section 1.2 that the essential supremum of a random variable
can be used to introduce a (not very reasonable) coherent static risk measure. The
former is defined as an essential supremum over a set of constant random variables,
namely via

ess. sup X := ess. sup{c ∈ R |P(X > c) > 0}.
for a random variable X ∈ L0(Ω,F ,P).
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A Absolutely continuous probability measures
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B The Beta distribution

In this chapter we briefly compile some properties of the Beta distribution. Most
of the facts can be found in Johnson et al. (1995), for example.

First define the gamma function Γ : R∗+ → R∗+ via

Γ(α) :=

∫ ∞

0

tα−1 exp(−t)dt, α > 0.

For integer values it holds

Γ(n) = (n− 1)!, n ∈ N.

A related object is the Beta function B : R∗+×R∗+ → R∗+ which can be defined
through

B(α, β) :=
Γ(α)Γ(β)

Γ(α + β)
, α, β > 0.

It also has an integral representation of the form

B(α, β) =

∫ 1

0

tα−1(1− t)β−1dt, α, β > 0.

Now, we are ready to introduce the Beta distribution. It is absolutely continuous,
concentrated on (0, 1) and defined as follows. A random variable X on a given
probability space (Ω,F ,P) follows a Beta distribution with parameters α, β > 0 if
the distribution of X has the Lebesgue–density

fX(x) =
xα−1(1− x)β−1

B(α, β)
· 1(0,1)(x), x ∈ R.

We write X ∼ Beta(α, β). A special case occurs if α = β = 1. Then by definition
X ∼ U(0, 1). However, the distribution function FX cannot be calculated explicitly
for general parameters.

This distribution arises for example when X1 and X2 have Gamma distributions
with parameters α1, β > 0 and α2, β > 0 respectively and by setting

X :=
X1

X1 + X2

.

Then, X has a Beta distribution with parameters α1, α2 for arbitrary β > 0. In
particular, if β = 1

2
and αj =

nj

2
for nj ∈ N, j = 1, 2 we have that Xj follows a
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B The Beta distribution

χ2–distribution with nj degrees of freedom for j = 1, 2 and X ∼ Beta
(

n1

2
, n2

2
).

Finally, let us give some important moments if X ∼ Beta(α, β). Denote with m
(k)
X

the k–th moment of X, k ∈ N. It holds

m
(k)
X =

B(α + k, β)

B(α, β)
=

α(α + 1) · · · (α + k − 1)

(α + β)(α + β + 1) · · · (α + β + k − 1)
. (B.1)

Hence,

EX =
α

α + β
,

VarX =
αβ

(α + β)2(α + β + 1)
.

Furthermore,

E
[ 1

X

]
=

α + β − 1

α− 1
,

E
[ 1

1−X

]
=

α + β − 1

β − 1
.
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Figure B.1: Densities of X ∼ Beta(α, β)
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After years of hard struggle I finally found and resolved π...


