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Introduction

Over the past decades the current theoretical description, the Standard
Model of elementary particle physics, was solidified by many measurements
as the basic theory describing fundamental particles and their interactions. It
is extremely successful in explaining the high-precision data collected by ex-
periments so far. The Standard Model includes several intrinsic parameters
which have to be measured in experiments. Independent analyses of differ-
ent physical processes can constrain those parameters. By combining those
measurements physicists might be sensitive to physics beyond the Standard
Model. If they are inconsistent it allows to get a hint on the theory that
might supersede the Standard Model.

The goal of the analysis presented in this thesis is to measure some of
these parameters in the Bs meson system. The Bs meson, consisting of an
anti-b and s quark, is not a pure mass eigenstate, thus allowing a Bs meson to
oscillate into its antiparticle via weak interacting processes. This is a general
feature of any neutral meson. The history of meson mixing measurements is
more then 50 years old. It was first observed in the kaon system [1]. The
oscillation in the Bd system was measured very precisely by the B factories
[2, 3], whereas the oscillation frequency of the Bs was measured with more
than 5σ significance last year by CDF [4] and first evidence for mixing in the
D0 system was presented only this year [5, 6].

Besides the measurement of the oscillation frequency and therefore the
mass difference of the mass eigenstates, the difference in lifetime of both
states is also of major interest as it is connected to CP violation. The mea-
surement of CP violation is important since it can explain the observation
that matter dominates the universe and not antimatter. One way to measure
CP violation is by separating the two mass eigenstates of the Bs in common
decay modes for Bs and B̄s, like in Bs → J/ψ φ. Direct CP violation and
mixing induced CP violation are both very small and difficult to measure
at the moment for Bs, but common decay modes allow for CP violation in
interference between decay with and without mixing, which might be large
enough to be measurable. Although the expected uncertainty for measuring
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the CP violating phase is large, a significant deviation from the Standard
Model expectation might be observed, thus indicating new physics.

The separation of the two lifetime components of the two mass eigenstates
in the Bs system can be exploited to perform a precise measurement of the
lifetime difference and their mean lifetime. Any lifetime measurement in the
B hadron sector is interesting for comparison with other B hadrons. In first
order the heavy b quark dominates the decay time for any B hadron leading
to a similar lifetime for all B hadrons. Precise measurements of B hadron
lifetimes showed a hierarchy, which can be understood in the framework of
Heavy Quark Expansion (HQE) theory. In Chapter 1 a short introduction is
given to the underlying theory for mixing and HQE.

Bs mesons are a very rare kind of particles and are currently only pro-
duced at the Tevatron, except for test runs at KEK-B and CLEO. In their
default operation the center of mass energy of the B factories is not sufficient
to create Bs, but only Bd mesons. Therefore the Bd sector is studied with
a great precision, whereas measurements in the Bs sector have rather large
uncertainties. This started to changed with upper and lower boundaries on
∆ms by DØ [7] and the very precise ∆ms measurement by CDF [4] last year.
The measurement of the lifetime difference of the two Bs mass eigenstates
was previously done by CDF with roughly 20% of the statistics compared to
the analysis presented here. Recently, DØ published their result [8], which
does agree with the Standard Model expectation very well, whereas the pre-
vious CDF measurement [9] had a surprisingly large lifetime difference, but
was consistent with Standard Model prediction within the large statistical
uncertainty.

The good performance of the Tevatron and the CDF II detector allowed
us to redo the ∆Γ measurement with much larger statistics. Further neural
network techniques are used to improve the purity of the selection. Since the
Bs → J/ψ φ decay used in this thesis is very easy to trigger, this analysis is
based on one of the largest Bs meson collections so far and allows to make
one of the most precise lifetime and lifetime difference measurements of the
Bs. The accelerator complex, CDF II detector and the selection process will
be presented in Chapters 2 and 3.

The lifetime is measured by utilizing the decay time distribution of re-
constructed events. The expected Bs lifetime difference is of the order of
ten percent, thus the distribution is a combination of two very similar ex-
ponential functions. To separate these better, the fact that the Bs mass
eigenstates are nearly CP eigenstates can be exploited. The pseudoscalar to
vector-vector, P → V V , decay allows to make an angular analysis, which
helps to distinguish the two different mass eigenstates and measure their life-
times. To obtain the parameters of interest from the Bs → J/ψ φ decay a
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time dependent angular analysis is presented in Chapter 4.
To cross-check the analysis the Bd → J/ψK∗ decay can be studied, which

is also a P → V V decay. Although CDF is not able to compete with the
lifetime measurements of the B factories due to their huge amount of Bd

events, the angular analysis of this decay will have competitive sensitivity
for the amplitudes and strong phases. Chapter 5 will present the angular
analysis of Bd → J/ψK∗ decay.

The Bs result assuming no CP violation will be presented in Chapter 6.
In Chapter 7 the evaluation of the systematic uncertainties for both decays
is summarized. Chapter 8 will present the results for the Bs decay including
the CP violating phase. The last chapter will then summarize and discuss
the results. It will also provide an outlook into the near future of similar
studies.
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Chapter 1

Theory

This chapter focuses on the theoretical understanding of the B meson decay
process described in this thesis. As underlying theory we use the Standard
Model of elementary particle physics. It describes the properties of elemen-
tary particles and the interactions between them.

There are six types of quarks and six different leptons plus their anti-
particles. They are all fermions, typically grouped into three families. Their
main properties are listed in Table 1.1. Leptons are spin-1/2 particles which
interact weakly and, in case they have electric charge, also electromagneti-
cally. Quarks have in addition color charge and therefore also participate in
the strong interaction. In the Standard Model the interactions are mediated
by gauge bosons, associated with the symmetries of the model

SUC(3) → Gα
µ, α = 1− 8

SUL(2) → W α
µ , α = 1, 2, 3

UY (1) → Bµ,

where Gα
µ corresponds to eight spin-1 gluons mediating strong interaction

and the three W α
µ and Bµ give rise to the four physical bosons W± and Z0,

the force carriers of the weak interaction, and γ, mediating electromagnetic
interaction. The repective charges of the three symmetry groups are the
weak hypercharge, weak isospin and color.

The only way for the lightest particle of each quark family to decay is
via the charged current interaction of the W± boson, which allows for a
connection between different families. As a consequence only the quarks of
the lightest family are stable and are the constituents of our world.

The B mesons, which are of interest here, are strongly bound states of a
heavy anti-b quark and a light quark. Throughout this thesis we will denote
the different types by Bq, where q describes the lighter quark. Usually B

5



6 CHAPTER 1. THEORY

name category symbol el. charge [e] mass [MeV/c2]
electron lepton e -1 0.51

electron neutrino lepton νe 0 ≤ 2 · 10−6

up quark quark u +2
3

1.5 – 3.0
down quark quark d −1

3
3 – 7

muon lepton µ -1 105.66
muon neutrino lepton νµ 0 ≤ 0.190
charm quark quark c +2

3
(1.25± 0.09) · 103

strange quark quark s −1
3

95± 25
tau lepton τ -1 1777.0

tau neutrino lepton ντ 0 ≤ 18.2
top quark quark t +2

3
(174.2± 3.3) · 103

bottom quark quark b −1
3

(4.20± 0.09) · 103

Table 1.1: The elementary fermionic particles (spin s= 1
2
) with their electric

charge in units of the electron charge and their mass.

mesons are described by the spectator model, where the light quark is the
spectator. The lightest B meson can decay only via the weak interaction,
which is dominated by the b→Wq process, with a virtual W boson and a c
or u quark. This allows to access the Vcb and Vub elements of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix elements, which describes the transition
between the quarks types. Further, due to higher order processes, B meson
decays are sensitive also to Vtd and Vts, elements of the CKM matrix.

The determination of the individual parts of the CKM matrix is one of
the major tasks of contemporary particle physics. The following sections
will present how the observables, we are interested in, are measured in the
experiment and can be related to the Standard Model parameters.

1.1 Weak Interaction and the CKM Matrix

As mentioned above, we are interested in the charged current weak interac-
tion. The part of the electro-weak Lagrangian describing the charged current
weak interaction can be written in terms of the mass eigenstates of quarks
as

Lcc = − g2√
2
(ūL, c̄L, t̄L)γ

µVCKM





dL
sL
bL



W †
µ + h.c., (1.1)
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where VCKM is the 3× 3 transformation matrix between the mass and weak
eigenstates. The Transformation can be written as





d′

s′

b′



 =





Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb



 ·





d
s
b



 , (1.2)

where the primed quarks are the weak eigenstates and the non-primed quarks
are mass eigenstates. Since the elements of the CKM matrix are complex
numbers, the matrix contains 2 ·32 real parameters. Constrains on the CKM
matrix lower the actual number of free parameters. In the Standard Model
the CKM matrix has to satisfy the following constrains:

• The unitarity of CKM matrix. This means V †
CKMVCKM = 1, which

reduces the number of free parameters by nine.

• The Lagrangian is invariant under one global phase rotation, which
reduces the number of free parameters by one.

• Finally there are four relative phases which can be removed by redefi-
nition of the quark field. This reduces the number of free parameters
describing the CKM matrix by four.

Usually the remaining four parameters are interpreted as three rotational
angles and a complex phase. The current standard notation for the CKM
matrix is then

VCKM =





c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13



 ,

(1.3)
where cij = cos Θij and sij = sin Θij, thus leading to the three angles
Θ12,Θ23,Θ13 and the phase δ.

From experiments it is known that the following hierarchy holds: s13 <<
s23 << s12 << 1, which allows to make an approximation using the Wolfen-
stein parameterization

VCKM ≈





1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1



 +O(λ4), (1.4)

where λ = sin Θ12 ≈ 0.2, η = sin Θ13 sin δ13/Aλ
3, ρ = sin Θ13 cos δ13/Aλ

3,
A = sin Θ23/λ

2.
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1.1.1 Unitarity Triangle

The unitarity condition of the VCKM can be expressed as

3
∑

i=1

VijV
∗
ik = δjk =

3
∑

i=1

VjiV
∗
ki j=1..3, k=1..3.

Six of these equations can be visualizes as triangles in a complex plane, called
unitary triangles. These equations are equivalent to the products of two out
of three columns or rows. Leading to two groups of three triangles. Two of
each group have the same shape, being only rotated in the complex plain.
The three equations corresponding to the column products give rise to the
three conditions

(V †V )21 : V ∗
usVud + V ∗

csVcd + V ∗
tsVtd = 0 (1.5)

(V †V )31 : V ∗
ubVud + V ∗

cbVcd + V ∗
tbVtd = 0 (1.6)

(V †V )32 : V ∗
ubVus + V ∗

cbVcs + V ∗
tbVts = 0. (1.7)

The graphical representation for one of the unitary triangle is shown in Figure
1.1. Here we choose to illustrate the second condition (equation 1.6), which
is often called “The Unitary Triangle”, since it is best studied as the three
sides are of the same order of magnitude (O(λ3)). This is not true for the
other two unitary triangles, which are very flat and therefore more difficult
to study. The angles of the triangle are defined as

φ1 = β = arg

(

−V
∗
cbVcd
V ∗
tbVtd

)

(1.8)

φ2 = α = arg

(

− V
∗
tbVtd

V ∗
ubVud

)

(1.9)

φ3 = γ = arg

(

−V
∗
ubVud
V ∗
cbVcd

)

(1.10)

Different measurements of physical quantities are related to different
CKM matrix elements. These parameters are not derived in the Standard
Model, but are fundamental parameters which have to be obtained through
experiments. One of the major goals of particle physics today is to measure
these quantities. Over-constraining them will allow to check for consistent re-
sults between different types of processes. Further we can determine whether
the triangles are closed, or not. In this way we test the unitarity of the CKM
matrix and for new physics.
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Figure 1.1: The unitarity triangle representing the product of the first and
third column of the CKM matrix.

b c(u)

d,s,νl

u,c,l

W

Vcb(Vub)

Figure 1.2: Feynman diagram describing the b quark decay in the Standard
Model.
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1.2 B Meson Lifetimes

The Standard Model allows the b quark to decay solely to a c or u quark via
a virtual W boson, with the corresponding CKM matrix coupling elements
(see Figure 1.2). The decay width for the hadronic b-decay in the Standard
Model is given by

Γq1q̄2(b→ q) =
3G2

Fm
5
b

192π3
|Vq1q2|2|Vqb|2F (ǫq), (1.11)

where GF is the Fermi coupling constant and F (ǫq) is the phase space factor
for the decay. Thus measurements of the lifetime τ = 1/Γ have a direct
connection to the fundamental Standard Model CKM parameters.

Now the issue here is, that we do not observe free b quarks, but they are
always bound in hadronic states with other quarks. Due to interaction of the
b quark, the lifetime of the hadron is not the same as for the free quark.

B mesons can be to first order described using the spectator model, where
a heavy quark (in our case the b) is bound to the lighter “spectator” quark.
In the spectator model, the heavy quark dominates the lifetime and the B
meson decay can therefore be described with good precision by the decay of
the free quark. A direct consequence is, that all B mesons would have the
same lifetime, which does not agree with observed hierarchy

τBc
< τBs

≈ τBd
< τBu

. (1.12)

The differences of the B meson lifetimes can be understood using Heavy
Quark Expansion (HQE) theory of the Standard Model [10, 11, 12]. HQE is
based on QCD principles, where the decay rate of the b mesons is expressed
in an expansion series of 1/mb. Leading order calculations in HQE reproduce
the common lifetime for B mesons, originating from the free b quark lifetime,
as expected in the spectator model. Terms of order 1/m2

b can be neglected,
since they are higher order corrections associated with the b-quark alone.
Therefore, they are similar for any B meson. However, terms of order 1/m3

b

describe effects between the two constituent quarks in the meson. For the
Bd and Bu the most important processes are shown in Figures 1.3 to 1.5.

The influence of Pauli Interference (PI) on the hadron decay is depicted
in Figures 1.3 and 1.4. For Bu the decay products of the external and color
suppressed internal weak W decay are the same and allow for interference.
In contrast, the decays of the Bd have different final states which does not
allow for such an effect. Since the interference for the Bu is destructive, its
lifetime gets larger compared to decays without Pauli Interference.

A second type of contribution, which exist only for some mesons, is the
Weak Annihilation (WA) possible only for charged B mesons and allows for
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Figure 1.3: Feynman diagrams describing Pauli Interference for Bu mesons.

Figure 1.4: The similar Feynman diagrams for Bd mesons compared to Bu

(see Figure 1.3). Since the final state is different there is no Pauli Interference
of the two Bd decay modes.

an additional way to decay, which reduces the lifetime for Bu and Bc (see
figure 1.5).

Weak Exchange (WE) on the other hand exists only for neutral B mesons
and baryons (see figure 1.5). However, the Weak Exchange decay for mesons
is helicity suppressed, since the cd (cs) spin is defined by the zero spin of the
Bd (Bs). For the qq̄ pair the helicity has to be opposite, which suppresses
this decay mode for mesons.

In general in HQE the hard physics processes are summed up in the
so called Willson Coefficients. They can be calculated using perturbation
theory. The remaining soft process must be calculated by other means. This
allows to make predictions of the different B hadron lifetimes. This technique
can also be used for c hadron lifetime predictions, although the expansion is
done for 1/mc instead of 1/mb, which is worse.

The current status of theory and experiments show quantitatively good
agreement. For this thesis especially the theoretical predictions which include
Bs and Bd lifetimes [13, 10] are of interest

τBu
/τBd

= 1.053± 0.023 (1.13)

τBs
/τBd

= 1.00± 0.01. (1.14)
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Figure 1.5: Feynman diagrams describing the Weak Annihilation (left) and
Weak Exchange (right). Weak Annihilation is an additional way to decay
for charged B mesons, while Weak Exchange contributes only to neutral B
meson and baryon decays.

From the discussion above it is clear that there is no process which would
cause a significant difference between the Bd and Bs lifetimes. Therefore, we
expect to obtain a similar lifetime for Bs and Bd mesons. The Bd lifetime is
very precisely measured by the B factories and will allow us to check whether
our measurement of the Bs lifetime is consistent with it.

1.3 Time Evolution of Neutral B Mesons

The b quark can be combined to a neutral B meson with an s or d quarks,
forming either a Bs or Bd meson. Charged B mesons are formed with u and
c quarks. In this chapter we discuss the time evolution of neutral Bd and Bs

mesons. The theoretical background is common for both mesons and we will
just say B meson until we go into specific details of the Bs meson state.

Without any weak interaction there would be no connection between the
|B〉 and |B̄〉 states. However, weak interaction enables quarks to change its
flavor, which allows for transitions between the two states. This behaviour is
called B meson mixing [14, 15]. Although we introduced this for B mesons,
mixing is allowed for any neutral meson state. This process can be nicely il-
lustrated using Feynman diagrams (see Figure 1.6 for the lowest order mixing
diagrams).

Due to the mixing any pure state will evolve into a quantum superpo-
sition, a|B〉 + b|B̄〉, after a while. Assuming the Wigner-Weisskopf approx-
imation, the time evolution of the strong interacting B − B̄ eigenstates is
described by a Schrödinger equation ,ψ =

(

a
b

)

,

i
∂

∂t
ψ = (M− i

2
Γ)ψ, (1.15)
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q

b
_

t t

W +

W −

q
_

b q

b
_

W W

t
_

t

q
_

b

Figure 1.6: Lowest order Feynman diagrams illustrating B meson mixing.
Due to their shape they are often called box diagrams. The t quark can be
replaced by u and c, but the t quark dominates the loop process, since the
amplitude is proportional to the square of the quark mass.

where

(M− i

2
Γ) =

(

m11 − i
2
Γ11 m12 − i

2
Γ12

m∗
12 − i

2
Γ∗

12 m22 − i
2
Γ22

)

. (1.16)

CPT invariance requires m11 = m22 = m and Γ11 = Γ22 = Γ. The heavy and
light mass eigenstate can be written as

|BL,H〉 = p|B0〉 ± q|B̄0〉, |p|2 + |q|2 = 1. (1.17)

The eigenvalues are

λL,H = (m− i

2
Γ)± q

p
(M12 −

i

2
Γ12) (1.18)

with

q

p
=

√

M∗
12 − i

2
Γ∗

12

M12 − i
2
Γ12

=
VtbV

∗
td

V ∗
tbVtd

. (1.19)

The time evolution of the mass eigenstates are then

|BL,H(t)〉 = |BL,H(0)〉e−iλL,Ht = |BL,H(0)〉e−iML,Ht−
1
2
ΓL,Ht, (1.20)

where ML,H = Re(λL,H) and ΓL,H = −2Im(λL,H). This can be translated
into the time evolution of the flavor eigenstates

|B(t)〉 = g+(t)|B〉+ q

p
g−(t)|B̄〉 (1.21)

|B̄(t)〉 =
p

q
g−(t)|B〉+ g+(t)|B̄〉, (1.22)

where g±(t) = 1
2
(e−iλLt ± e−iλH t).
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Now we can to calculate the time-dependent decay rates for flavour spe-
cific modes

|〈B|B̄(t)〉|2 =

∣

∣

∣

∣

p

q

∣

∣

∣

∣

2

|g−(t)|2 (1.23)

|〈B̄|B(t)〉|2 =

∣

∣

∣

∣

q

p

∣

∣

∣

∣

2

|g−(t)|2 (1.24)

|〈B|B(t)〉|2 = |g+(t)|2 (1.25)

|〈B̄|B̄(t)〉|2 = |g+(t)|2, (1.26)

where

|g±(t)|2 =
1

2

[

cosh

(

∆Γt

2

)

± cos(∆Mt)

]

e−Γt,

∆M = MH −ML,

∆Γ = ΓL − ΓH .

1.3.1 Bs Decays

For the understanding of the CP-violation in the Bs decays we follow the
derivation from reference [15]. From the time evolution we get the following
decay rates for the two CP final states f and f̄

Γ[Bs(t)→ f ] = |Af |2
{

|g+(t)|2 + |λf |2|g−(t)|2 + 2Re[λfg
∗
+(t)g−(t)]

}

,

Γ[Bs(t)→ f̄ ] = |Āf̄ |2
∣

∣

∣

∣

q

p

∣

∣

∣

∣

2
{

|g−(t)|2 + |λ−1
f̄
|2|g+(t)|2 + 2Re

[

λ−1
f̄
g+(t)g∗−(t)

]}

,

Γ[B̄s(t)→ f ] = |Af |2
∣

∣

∣

∣

p

q

∣

∣

∣

∣

2
{

|g−(t)|2 + |λf |2|g+(t)|2 + 2Re[λfg+(t)g∗−(t)]
}

,

Γ[B̄s(t)→ f̄ ] = |Āf̄ |2
{

|g+(t)|2 + |λ−1
f̄
|2|g−(t)|2 + 2Re

[

λ−1
f̄
g∗+(t)g−(t)

]}

.

(1.27)

In case when the decay amplitudes are dominated by a single weak phase.
Then

|Af | = |Āf̄ |, |Af̄ | = |Āf |,

and

λ =
q

p

〈f |B̄s(t)〉
〈f |Bs(t)〉

, λ̄ =
p

q

〈f̄ |B̄s(t)〉
〈f̄ |B̄s(t)〉

.
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λ can be expressed in terms of related CKM matrix elements. Using the
definition βs = arg(−VcdV

∗

cb

V ∗

tb
Vts

) it translates to

λ =
q

p

〈f |B̄s(t)〉
〈f |Bs(t)〉

=
VtbV

∗
ts

V ∗
tbVts

VcsV
∗
cb

V ∗
csVcb

=
VcdV

∗
cb

V ∗
tbVts

VtbV
∗
td

V ∗
csVcb

, (1.28)

Re(λ) = Re

(

VcdV
∗
cb

V ∗
tbVts

VtbV
∗
td

V ∗
csVcb

)

= cos(2βs), (1.29)

Im(λ) = Im

(

VcdV
∗
cb

V ∗
tbVts

VtbV
∗
td

V ∗
csVcb

)

= sin(2βs). (1.30)

If we assume no CP violation in decay

|〈f |Bs〉| = |〈f̄ |B̄s〉| (1.31)

and no CP violation in mixing

|q/p| 6= 1, (1.32)

so that CP violation only comes in via interference between mixing and decay

|〈f |B̄s → Bs〉+ 〈f |Bs〉| 6= |〈f̄ |Bs → B̄s〉+ 〈f̄ |B̄s〉| (1.33)

Since the final state |f〉 and |f̄〉 with |f̄〉 = CP |f〉, are CP eigenstates,
λfCP

= ηf = ±1. Equation (1.27) can then be rewritten for this case as
follows

Γ[Bs(t)→ f ] = |Af |2e−Γs t {cosh(∆Γs t/2)

− cos(2βs) sinh(∆Γs t/2)− sin(2βs) sin(∆ms t)} ,
Γ[Bs(t)→ f̄ ] = |Af |2e−Γs t {cosh(∆Γs t/2)

+ cos(2βs) sinh(∆Γs t/2) + sin(2βs) sin(∆ms t)} ,
Γ[B̄s(t)→ f ] = |Af |2e−Γs t {cosh(∆Γs t/2)

− cos(2βs) sinh(∆Γs t/2) + sin(2βs) sin(∆ms t)} ,
Γ[B̄s(t)→ f̄ ] = |Af |2e−Γs t {cosh(∆Γs t/2)

+ cos(2βs) sinh(∆Γs t/2)− sin(2βs) sin(∆ms t)} .
(1.34)

1.3.2 Untagged Bs Decays

For an untagged sample, meaning that we do not attempt to identify the
b quark flavor of the B meson at production time, the formulas described
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above change slightly. Assuming that the same number of Bs and B̄s are
produced, the decay rates for Bs(t) and B̄s(t) into a given final state are
added

Γ[
(−)

B s (t)→ f ] = |Af |2e−Γs t {cosh(∆Γs t/2)− cos(2βs) sinh(∆Γs t/2)} ,

Γ[
(−)

B s (t)→ f̄ ] = |Af |2e−Γs t {cosh(∆Γs t/2) + cos(2βs) sinh(∆Γs t/2)} .
(1.35)

The terms depending on the mass difference ∆ms cancel each other out. But
an untagged analysis still allows to determine the lifetime difference ∆Γ and
the weak phase βs.

1.3.3 No CP Violation in Untagged Bs Decays

In the Standard Model the approximation of no CP Violation for Bs (βs = 0)
is close to the expectation. Looking at Bs(L,H) we see that for q

p
= −e−2iβs the

two mass eigenstates are CP eigenstates. Thus any information about the
CP state when the Bs decays can help to separate the two mass eigenstates.
For the Bs → J/ψ φ decay the angular distribution provides such information
as described in the next section.

In contrast for Bd, where |β| >> 0, q
p
6= 1, the mass eigenstates are no

CP eigenstates. Therefore, it is not used to separate the Bd(L,H). Since the
lifetime difference for Bd is expected to be small, we fit only the mean lifetime
for Bd and set ∆Γ = 0.

1.3.4 Angular Analysis

Equation 1.35 describes the behaviour of a decay to a single CP eigenstates.
The Bs → J/ψ φ decay studied in this analysis is a mixture of CP eigenstates.
To be more precise, the decay products are two vector mesons, which can have
three independent final states. These three states can we written in terms
of different angular momenta L = 0, 1, 2. Alternatively we can write the
decay amplitudes in components longitudinal or transverse to the direction of
motion of the vector meson, which are perpendicular or parallel to each other.
These states have different amplitudes A0, A⊥, A|| (|A0|2 + |A⊥|2 + |A|||2 = 1),
where the first and third are CP even final state and the second is CP odd. All
three angular momentum states have different polarizations, which determine
their angular distributions.

We analyze the angular distributions in the coordinate system of the J/ψ
rest frame, where the φ direction defines the x-axis and the KK decay plane
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Figure 1.7: Definition of the angles describing the Bs → J/ψ φ decay.

the y-axis, with pY (K+) > 0. The z-axis is perpendicular to the xy-plane.
The decay can be described using the following three different angles (see
figure 1.7) [16]:

• Θ: angle between the µ+ and the z-axis in the J/ψ rest frame.

• φ: angle between the µ+ projection on the xy-plane and the x-axis in
the J/ψ rest frame.

• Ψ: angle between the K+ and the negative B direction in the φ rest
frame.

By studying the angular distribution, it is possible to statistical distinguish
the different CP eigenstates of the Bs.

1.4 Predictions

In this analysis the two untagged decays Bs → J/ψ φ and Bd → J/ψK∗ are
analysed. We want to measure the lifetime of the Bd and Bs. Using an
angular analysis we will also be able to separate the two CP eigenstates for
Bs, allowing us to measure the lifetime difference and CP violating phase
φs = 2βs. This will allow us to check HQE predictions for the lifetimes and
will help to constrain the CKM matrix.

Current theoretical predictions and measurements for the most interesting
parameters are
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Quantity Prediction
τBu

/τBd
1.053± 0.023 [13]

τBs
/τBd

1.00± 0.01 [10]
τBd

458.7 µm [17]
∆Γ 0.096± 0.039 ps−1 [18]
φs 0.24◦ ± 0.08◦ [18]



Chapter 2

The Experiment

Since the B meson of interest do not occur in our environment they have to
be produced artificially for study. They are created in high energy particle
collisions. Accelerators are used to obtain those high energy particles, and
complex detectors are used for studying their collisions. This thesis uses data
collected by the CDF II (Collider Detector at Fermilab) detector, which is
used to reconstruct the decay products of the collision. The Fermilab Teva-
tron particle accelerator complex provides high energetic proton– anti-proton
collisions. Both are situated at the Fermi National Accelerator Laboratory,
Fermilab, located in Batavia near Chicago, Illinois (USA).

The Tevatron started with RUN I, where first collisions were produced
and detected in 1985 at a center-of-mass energy of

√
s = 1.8 TeV. CDF is a

general purpose detector, which has taken data with the integrated luminos-
ity of 90 pb−1 in the first eleven years of operation.

Since the shutdown in 1996, the Tevatron and its detectors CDF and DØ
have undergone major upgrades for RUN II, which started at the end of 2001.
The analysis presented here uses up to 1.7 fb−1 of data taken during RUN
II.

2.1 Accelerator Complex

The Fermilab accelerator is an advanced accelerator complex, which is sche-
matically illustrated in Figure 2.1. It consists of several systems to obtain
protons, create anti-protons, accelerate both types of particles and produce
collisions at the interaction points inside the detectors.

19
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Figure 2.1: Fermilabs accelerator complex for run ii.

2.1.1 Proton Production

The first stage of acceleration is achieved using a Cockcroft-Walton pre-
accelerator. Negatively charged hydrogen ions are produced with electric
discharges into a hydrogen gas. The electrostatic field in the Cockcroft-
Walton chamber accelerates the negative ions. After filtering out anything
except the H−, they are introduced into a 150 m long linear accelerator
(Linac) [19], where they are accelerated from an energy of approximately
750 keV using drift tubes to reach 116 MeV followed by RF cavities, which
allow for the final energy of 400 MeV.

At the entry to the Booster [20, 21], a synchrotron with a diameter of
about 150 m, the negatively charged 400 MeV hydrogen ions are directed
through a carbon foil, which strips off the electrons, leaving bare protons.
In the Booster the protons are accelerated to an energy of 8 GeV using RF
cavities [22].

The last acceleration stage before entering the Tevatron is taking place
in the Main Injector (MI) [20].
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2.1.2 Anti-proton Production

Compared to protons, anti-protons are difficult to obtain and their produc-
tion is the main limiting factors for the Tevatron performance. In the previ-
ous chapter it was described how to get protons into the Main Injector. For
the anti-proton production protons are accelerated to 120 GeV in the Main
Injector and are sent to a nickel target. The collisions produces a shower of
secondary particles, which is focused by a lithium lens [23]. Using magnetic
fields, 8 GeV anti-protons are selected and sent to the Debuncher [20, 23].
Here the momentum spread of the beam is reduced by extending it in space
by bunch rotation and adiabatic de-bunching is performed [20, 23].

Since the anti-proton production rate is low several techniques are used
to minimize their loss. In general the anti-proton beam should be confined to
a small phase space volume, which is equivalent to a cold beam. To achieve
this, stochastic [24, 25] and electron cooling are used [26, 27, 28].

From the Debuncher the anti-protons are extracted into the Accumulator
[20, 23], which is a synchrotron with a mean radius of 75 m. Here, as the
name implies, the anti-protons can be collected for hours at an energy of 8
GeV and are continuously cooled down using stochastic cooling.

The anti-protons are transfered to the Recycler [20, 29], which is located
in the same tunnel as the Main Injector. Originally the Recycler was meant
to accept and store the anti-protons after a colliding store (period of colliding
beams in the Tevatron) for the next cycle along with new anti-protons from
the Antiproton Source. These plans did not work out and the Recycler
now stores the anti-protons allowing to operate the Accumulator at its best
efficiency and cools the anti-protons further using stochastic cooling as well
as electron cooling.

2.1.3 Main Injector

The Main Injector is designed to operate in different modes for different
purposes. As mentioned before it is capable of accepting protons from the
Booster and anti-protons from the Recycler and Accumulator. As the final
pre-acceleration step both beam types can be accelerated to 150 GeV for
the injection into the Tevatron. Besides anti-proton production, the proton
beam with an energy of 120 GeV is also used for other experiments at the
Fermilab.
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2.1.4 The Tevatron

The final acceleration is achieved by the Tevatron [20], a collider with a
circumference of about six kilometers. There, the protons and anti-protons
get their final energy of 0.98 TeV each, which provides a center of mass energy
of 1.96 TeV. Both beams share the same beam pipe but circulate in opposite
directions. Until LHC startup, which is planed for the near future, it is the
highest energy hadron collider in the world. It is the first accelerator using
super-conducting magnets, necessary to achieve such high energies for the
given radius.

The beam is split in three trains, each containing 12 bunches. The gaps
between the trains allow the kicker magnets to ramp up in order to abort the
beam by dumping it into graphite beam dumps. Once the Tevatron is loaded
with 36 proton and 36 anti-proton bunches the particles are accelerated to
the maximum energy. Starting with 150 GeV protons and anti-protons the
acceleration to 980 GeV takes only a few seconds. Having two times 36
bunches circulating in opposite directions there are 72 regions where bunch
crossing occur. Two of these regions are placed close to the center of the two
detectors, CDF II and DØ. At these special two points additional effort is
made to maximize the number of collisions of protons and anti-protons by
focusing both beams using quadrupole magnets. On the other 70 crossing
regions the interaction is minimized by having proton beam circulating on
one strand of a helix and the anti-protons on the other.

At the interaction regions the approximate instantaneous luminosity is
given by

L =
nfNpNp̄

4πσxσy
,

where n is the number of bunches, f the revolution frequency, Np(Np̄) is the
number of protons (anti-protons) per bunch and σx and σy are the average
transverse widths of the bunches. The instantaneous luminosity decreases
over time since particles are lost and the long range interaction at the crossing
regions heat up the beam, leading to an increase in σx and σy. By integrating
L over time we get the amount of collected data.

Figure 2.2 shows the development of the initial luminosity over time,
whereas Figure 2.3 shows the integrated luminosity from the beginning of
RUN II until recently. The mean efficiency of data taking is > 80%. The
data used for this analysis corresponds to an integrated luminosity of up to
1.7 fb−1.

As was shown so far, to create collisions at this high center of mass energy
a lot of effort has to be made. To make inferences of the physical processes,
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Figure 2.2: The peak initial luminosity in RUN II over time.

detectors have to be build to analyse the outcomes of the interactions.

2.2 CDF II Detector

The CDF II detector [30] is a solenoidal general purpose detector located at
the interaction point B0 of the Tevatron. It is build to allow for very broad
physics program, which go from relatively low energetic charm and bottom
physics to high energy top and Higgs physics as well as direct searches for
physics beyond Standard Model

The detector scheme is shown in Figure 2.4. It is designed to have an
azimuthal and forward-backward symmetry. The inner part consists of a
tracking system for charged particles, followed by the time-of-flight detector,
calorimeters and muon detectors on the outside.

The detector is described using a coordinate system where the polar angle
θ is measured from the positive z direction (proton direction, which points
east at the location of the CDF II detector), the azimuthal angle φ is mea-
sured from the Tevatron plane. Instead of θ the Lorentz invariant pseudo-
rapidity η is commonly used, η = − ln(tan( θ

2
)).

The following short description focuses on the central region only, |η| < 1,
and does not explain anything about the end cap detectors.It uses informa-
tion of the central tracking system and particle identification from the energy
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Figure 2.3: Integrated luminosity during RUN II over time. In red the de-
livered luminosity by the Tevatron and in blue the recorded luminosity by
CDF II detector.

Figure 2.4: Elevation view of one half of the CDF II detector.
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Figure 2.5: R/z cross view of the
inner tracking system.

Figure 2.6: Schematic view of
Layer 00.

deposit in the drift chamber, time-of-flight and muon detectors.

2.2.1 Tracking System

The tracking system of the CDF II detector is placed inside a super-conduc-
ting solenoid, which provides a uniform magnetic field of up to 1.4 T along
the detector axis to bend the tracks of charged particles to helices.

All charged particles ionize the passed material. This ionization happens
near the trajectory of the particle. By using detectors which are capable of
measuring ionization, the path of a charged particle can be reconstructed
from the deposited energy. This process is usually called tracking.

The CDF tracking system consists of two different detector systems. Next
to the beam pipe is a silicon micro strip detector, which is surrounded by an
open-cell drift chamber. The silicon detector provides the necessary resolu-
tion near the interaction point, where the track density is rather large. The
drift chamber on the other hand provides excellent tracking at larger radius.

Silicon Detector

The silicon detector itself consists of several sub-detectors. For a schematic
view see Figure 2.5. On the outside it starts with the Intermediate Silicon
Layers (isl) which covers a radial range of 20 to 28 cm. It has an acceptance
in |η| < 1.9. It is followed by the Silicon Vertex Detector (svx ii), which
covers a radial range of 2.5 to 10.7 cm with an |η| acceptance up to 2. And
finally the Layer 00 (L00) at a radius of about 1.5 cm.

For a precise lifetime measurement of B mesons with a typical lifetime of
≈ 450µm, one needs a very good track resolution near the beam pipe. Layer
00 [31], which is mounted directly on the beam pipe, provides a measurement
as close as possible to the interaction point. The whole silicon detector
consists of radiation hard micro strip detectors.
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Layer 00 consists of two overlapping single-sided layers of silicon at radii
1.35 cm and 1.62 cm with different widths (see Figure 2.6). In z it has a total
lengths of 94 cm, which corresponds to |η| < 4.

The Silicon Vertex Detector [32] is separated in three cylindrical barrels,
each 29 cm long. Each barrel consists of 5 layers of double-sided silicon strip
detectors located at radii between 2.5 and 10.7 cm. Layers 0 (innermost), 1
and 3 combine a r− φ measurement on one side with a 90◦ stereo (r− z) on
the other side. Layers 2 and 4 (outermost) combine an r − φ measurement
with a second measurement rotated not by 90◦ but only by 1.2◦ (small angle
stereo, SAS).

The outermost silicon detector system is the Intermediate Silicon Layers
detector [33] (see Figure 2.5). It consists of a single layer at a radius of 22 cm
in the central region of |η| < 1, and two layers in the plug region (1 < |η| < 2)
at radii of 20 cm and 29 cm. The whole Intermediate Silicon Layers detector
is made of double sided small angle stereo micro strip detectors, but only
every second strip is read out to reduce the amount of data. This affects the
single hit resolution compared to the silicon detector, which is constructed
in the same way.

The whole silicon detector provides an impact parameter resolution of
about 40 µm, which already includes the 30 µm contribution from the beam
width. The z0 resolution is roughly 70 µm. Although it is possible to recon-
struct tracks using only the silicon detector, the tracking quality is greatly
improved by using tracks that were already found in the drift chamber.

Drift Chamber

The second tracking system is a cylindrical multi-wire open cell drift chamber
called Central Outer Tracker (cot) [34] which covers the radii from 44 to
132 cm and a region |η| ≤ 1. The design goal for the COT was to ensure
that the maximum drift time is less than the 132 ns bunch spacing. It
is designed to operate at 100 ns by reducing the maximum drift distance
and using a gas mixture with a large drift velocity (50:50 Argon-Ethane).
Although it has a much poorer direction and position resolution (140 µm)
than the Inner Tracker, it provides a much better momentum resolution
(σ(pT )/p2

t = 0.0015c/GeV) thanks to the larger radial extension, and a higher
purity due to lower track density compared to the silicon detector.

2.2.2 Particle Identification

There are different types of stable particles created during collisions. The
attribute stable is used for any kind of particle with a lifetime long enough to
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pass through the detector. These are protons, kaons, pions, muons, electrons
and neutrinos. Only the track of the charged ones can be measured. For the
analysis it is very helpful to distinguish those kinds of particles.

The CDF II detector has several systems dedicated to particle identifi-
cation. In the central region there are from the inside outwards the Time
of Flight System (ToF) [35], electromagnetic and hadronic calorimeter and
the muon chambers. Additionally the energy deposit in the drift chamber is
used for particle separation.

For the analysis presented here the muon chambers are crucial for the
J/ψ selection. Further we need a good separation between pions and kaons
to reduce the background for the φ→ KK decay and to distinguish the decay
products for the K∗ → πK. The ToF provides good separation power for low
energetic particle and is complemented by the energy deposit measurement
in the drift chamber at higher momenta.

Time of Flight

The Time of Flight System , which was fitted in the space between the drift
chamber and the solenoid (see Figure 2.7), consists of 216 scintillating bars
along the length of the drift chamber. Those bars cover the full φ range and
roughly |η| < 1. The ToF measures the arrival time Tm for a particle. This
can be combined with the momentum measurement from the COT to derive
the mass of the particle by using the relation

m =
p

c

√

(ct)2

L2
− 1,

where L is the path length and t = Tm−T0 is time difference of the measured
time and the production time T0. The ToF time resolution is ≈ 100 ps which
allows a particle separation between kaons and pions above 2σ for p < 1.6
GeV/c. In Figure 2.8 the separation power for the different particle types
depending on the momentum is shown. It can be seen that the separation
power is better for low energetic particles.

This is a powerful tool for background rejection and as such of vital
importance for this analysis. The loss in separation power is complemented
with the measurement of the specific energy-loss in the drift chamber.

Specific Energy-Loss (dE/dx)

When traversing the drift chamber, charged particle loss energy primarily
due to ionization and atomic excitation. The energy loss is described by the
Bethe-Bloch equation and depends on the velocity β = v/c of the particle.
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Thus a particle identification is possible. The amount of deposited energy
is not measured directly, but is determined from the width of the pulses on
the sense wire. The width ∆t is logarithmically proportional to the charge
deposit and therefore to the energy loss

∆t ∝ logQ ∝ dE

dx
.

Figure 2.8 also shows the discriminating power versus the momentum for
the energy loss measurement in the drift chamber. It supplements the particle
identification from the Time of Flight measurement at higher momentum
reasonably well.

Muon Chambers

Muons are about 200 time heavier than electrons and thus do radiate 2002 =
40000 times less bremsstrahlung. Further they do not interact strongly with
the atomic nuclei of the detector. Therefore muons can transverse much
more material than any other charged particle. Since most other particles
are absorbed by the calorimeter, muon chambers are typically mounted on the
outside of the detector. This provides a very pure muon candidate selection.

The muon system [36] at the CDF II detector is a set of scintillators,
drift tubes and steel absorber, used for the detection of muons above pt ≈
1.5 GeV/c. The muon systems are not able to take data within two bunch
crossings, but the low occupancy of the muon chambers allows integration
over several bunch crossings.

CDF II has four different muon detectors, covering a region of |η| < 2.
The track segment measured in the muon chambers is matched to a track in
the drift chamber to obtain a good track resolution. Due to the screening
of the calorimeters, the muon identification is very pure. The remaining
background consists of a few kaons and pions reaching the muon chambers,
muons coming from outside and from the in-flight decay of pions to muons.
Especially the last one is difficult to remove, since it is a real muon coming
from the direction of the interaction point.

Table 2.1 gives on overview of the different muon systems. The CMP
is an upgrade in the very central region on top of the CMU to reduce the
misidentification rate, whereas the CMX extends the |η| range up to 1.

2.2.3 Calorimeters

The information derived from the calorimeters is not used for this analysis
since it is optimized for much higher energies and jets. In context of this
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CMU CMP CMX IMU
|η| ≤ 0.6 ≤ 0.6 0.6− 1.0 1.0− 2.0

drift tube length 226 640 180 363
max. drift time [ns] 800 1400 1400 80

pion absorption length 5.5 7.8 6.2 6.2-20
min. muon pt [GeV] 1.4 2.2 1.4 1.4-2.0

Table 2.1: Design parameters of the different muon systems.
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analysis it is mainly important as absorber in front of the muon chambers
and is described here shortly for completeness.

The solenoid and the tracking volume are surrounded by the calorimeters,
designed to measure the energy of photons, electrons and jets. Measuring
everything else, it allows to determine the missing energy associated to neu-
trinos. There are altogether five calorimeter systems: central electromagnetic
calorimeters, central hadron calorimeters, end-wall hadron calorimeters, end-
plug electromagnetic and hadron calorimeters, covering the whole azimuth
range and the pseudo rapidity up to |η| = 3.64.

CEM The scintillator based Central Electromagnetic Calorimeter (CEM)
is segmented into 48 independent wedge modules. It is constructed of two
rings of 24 wedges each that make contact at z = 0. Each wedge subtends
150 in azimuth and approximately one unit in η.

CES The Central Electromagnetic Shower (CES) detector is a set of cath-
ode strips and anode wires. It measures the energy distribution at the elec-
tron maximum transverse shower position. The stripes and wires find the
position of the shower peak within ∼ 2 mm in z and x. The energy profile
of the shower is measured using the 5 strips and wires neighboring the peak.
This includes more than 99 % of the shower. The CES anode wires pro-
vides measurements in φ direction and cathode strips in η direction. Inside
each chamber the wires run along the z direction are split in the middle at
z = 121.2 cm. There are 32 wires at low |z| (0.2 < |z| < 121.2 cm) and 32
at high |z| (121.2 < |z| < 239.6 cm) for a total of 64 in one wedge. There
are 69 strips at low |z| and 59 at high |z|. The perpendicular distance to the
beam line is 184 cm.

CPR The Central Pre-Radiator (CPR) chamber system consists of a set
of chambers placed between the solenoid coil and the CEM. Its distance to
the beam line is 168 cm. Inside each chamber the wires are running along
the z axis. There are 16 wires at low |z| (7.9 < |z| < 119.7 cm) and 32 at
high |z| (123.5 < |z| < 235.3 cm).

CHA/WHA The hadronic calorimeters are directly behind the electro-
magnetic calorimeter. Similar to the electromagnetic one they consist of
alternating layers of scintillator and steel. For more detailed information
about the calorimeters see references [37, 38, 39].



Chapter 3

Candidate Selection

This chapter focuses on the description of the selection process of the B
candidates, which are used for the time dependent angular analysis. The
Tevatron produces collisions with the interaction rate of 2.5 MHz.

The complicated structure of the CDF II detectors allows for different
measurements in different sections of the detector. Because of the following
reasons this analysis uses only the central region (|η| < 1) of the CDF II
detector:

• The Time of Flight detector, which is very important for the separation
between kaons and pions, is covering only the central region of the
detector. In case of the Bs decay, this helps to improve the purity of
the signal. For the Bd decay it is crucial, since the definition of the
angles describing the decay depends on the identification of the kaon.

• The di-muon triggers select only CMU (|η| < 0.6) and CMX (|η| < 1)
muon candidates. Since the angular acceptance is crucial for the later
analysis, we need candidates which are well defined and understood in
the simulation. Therefore, only those di-muon candidates from CMU
and CMX that fired the trigger are considered.

• To pass all measurement layers in the COT a particle has to be in the
|η| region below 1. For a precise momentum resolution it is important
to have as many hits in the COT as possible. The mass resolution of
reconstructed particles is largely influenced by the momentum resolu-
tion. Having a good mass resolution improves the signal to background
ratio.

Taking all these effects into account the central region is the optimal
region for this analysis.

31



32 CHAPTER 3. CANDIDATE SELECTION

This chapter is structured in the same way the final candidate selection
is obtained. Although the trigger is partially implemented in hardware and
directly connected to the detector, it is the first step in the selection pro-
cess and therefore described in this chapter. The second part describes the
CDF software used for reconstructing the events. Some rough candidate pre-
selection is described in section three, followed by a short interlude about
the simulated Monte Carlo events. In the last section we describe the final
candidate selection obtained by using neural networks.

3.1 Trigger System

At the Tevatron, collisions at the interaction point occur at a rate of 2.5
MHz. Most of these events are background events, which are not interesting
for the physics program of CDF. A large fraction of these are minimum bias
events, with proton anti-proton scattering processes. At the Tevatron, the
production rate for these events is four orders of magnitudes higher than for
bottom quarks. Accepting every event would lead to a data flow of ≈ 0.5
TB/s. This enormous amount is impossible to store. The task of the triggers
is the selection of the physically interesting events and writing only these to
tape for further processing.

The trigger system at CDF is organized in three different levels. The
structure and data flow is illustrated in Figure 3.1. Figure 3.2 illustrates the
trigger subsystems of Level-1 and Level-2. The individual levels are described
in the following sections. For the analysis presented here, the di-muon trigger
is used and the description will focus on this one.

3.1.1 Level-1

The first trigger level uses information from all detector components but
the silicon vertex detector (see Figure 3.2). At this level, three independent
systems reconstruct basic physical objects:

• L1Cal: calorimeter objects

• L1Muon: muon candidates

• L1Track: track reconstruction by the eXtremely Fast Tracker (XFT)
[40]. Additionally tracks are matched to hits in the muon chamber and
energy deposit in the calorimeters.

Information from these three components is used to make a decision whether
an event is passed to the next level. Level-1 needs roughly 5.5 µs to make a



3.1. TRIGGER SYSTEM 33

Figure 3.1: View of the data flow of
the CDF II trigger system.
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decision, which is longer than the time between two bunches. Therefore, the
information is stored in a 42 clock cycle deep pipeline. It is a synchronous
system implemented in custom designed hardware which reads in a new event
and makes a decision for an earlier event in the pipeline at the same time.
Thus being able to handle the 2.5 MHz event rate. The acceptance rate of
the first trigger level is below 50 kHz.

Different Level-1 triggers looking for different characteristics exist simul-
taneously. The di-muon trigger is one of them. During operation of CDF
in the last years the di-muon trigger was constantly revised and optimized.
Therefore the data used in this analyses consists of events with different char-
acteristics. The different trigger paths can be divided in two main groups:
CMU-CMU triggers, where both muons are found in the very central region,
and CMU-CMX triggers, where one muon is detected in the range covered by
the CMX detector. The di-muon trigger checks several things to determine
whether an event fulfills the following criteria.

• The transverse momentum and φ information is taken from the XFT
tracks matched to hits in the muon chambers. This is extrapolated to
the inner radius of the muon system. Due to the uncertainty of the
extrapolation coming from multiple scattering, a window covering the
3σ area in φ is determined and called the footprint.

• A tower in the muon system has to agree which at least one footprint.
Then the tower is called a muon tower. A tower requires at least one
of its stacks to have a Level-1 muon track segment. A stack are four
cells of scintillator stacked on top of each other. It is required that at
least cells 1 and 3 or 2 and 4 have hits which coincide during the stub
gate width of 396 ns.

• For the di-muon trigger, two muon towers are needed, which are either
at different sides (east and west) of the detector, or at least separated
by two muon towers, where the gap between two wedges is treated as
a tower, as well.

Further there are the following criteria, which are encoded in the trigger
name:

PTx: pt of the XFT track needs to be greater than x.

DPHIx: The difference in φ of the two muons must be smaller than x.

OPPQ: Both muons need to have opposite charge.

xMTy: The transverse mass for the two muons must be between x and y.
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PSx, DPS: The trigger is either pre-scaled by the factor x or dynamically
pre-scaled.

Some of the triggers are pre-scaled, which means that only one out of n
events that fulfill the trigger requirements is sent to Level-2, where n is the
pre-scale factor. This prevents the overall trigger system from exceeding the
maximal possible event rate at different luminosities. The dynamic pre-scale
is an improvement of the fixed pre-scale, that allows to change the factor
dynamically to allow the optimal performance at all times and luminosities.

3.1.2 Level-2

In contrast to Level-1, Level-2 is an asynchronous system processing events
accepted before. It extends the information from Level-1 by adding data from
the central calorimeter (CES) and the r − φ strips of the silicon detector.

The CES information is processed by the L2CAL subsystem looking for
energy tower clusters. The XSEC system matches XFT track primitives ex-
trapolated to the CES radius with energy deposits above certain thresholds in
the calorimeter, in order to identify electrons. The third Level-2 component
is the Silicon Vertex Trigger (SVT) [41], which identifies displaced secondary
vertices, which is very important for studying long lived b-hadrons. The SVT
extends XFT tracks inside the silicon detector by adding r − φ hits. This
improves the φ0 and pt resolution and adds the track impact parameter d0.

Level-2 needs roughly 20 µs to process a given event. A buffer of 4 events
reduces the risk of loosing interesting events coming from Level-1. The output
rate of Level-2 is about several hundred Hz. The full list of trigger paths used
in this analysis is listed in appendix A. For each trigger the details can be
derived from the name of the trigger. If an event is fulfilling all criteria, it is
accepted and passed on to Level-2.

3.1.3 Level-3

Level-3 is implemented in software running on a farm of Linux PCs. In case
of a Level-2 accept, the entire detector is read out from the buffers of each
detector component. The so called Event Builder takes care of the proper
order of all event fragments. The converter node creates the event record,
which is the complete event information stored in a format suitable to be
analysed by the CDF software.

The event record is submitted to one of the processors in Level-3. Having
the complete information of the detector and more time for processing, the
full COT and SVX offline track reconstruction is performed. The Level-1
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and Level-2 trigger decisions are confirmed with improved resolution for pt,
φ, z0, cos Θ and d0.

The triggers used in this analysis require during Level-3 that the invariant
mass of the reconstructed di-muon candidate is nearby the J/ψ mass. An
accepted event is stored on tape for later analysis. The output rate of Level-3
is of the order of 100 Hz.

3.2 Offline Reconstruction

The CDF II experiment uses a common software framework developed in
C++. As mentioned above, the data written out by the Level-3 trigger is
stored in a format to be analyzed by the CDF II offline software.

The framework is organized in packages, which allows a modular ap-
proach, to fit different analysis strategies. The packages are structured in
a way, that independent physics groups can develop their independent soft-
ware without interference. The modules of the framework can be ordered
in a way, that the output from the first module is available for the later
ones. Thus a hierarchy starting from low level modules, which for example
reconstruct tracks, to higher level physical objects like B candidates is easily
implemented.

The next sections will describe some important part of the reconstruction
of the B mesons.

3.2.1 Good Run Selection

The experiments CDF II and DØ are run by independent collaborations.
This implies that the two experiments and the beam division have to optimize
the global performance of the experimental setup. This leads to situations
where the collisions are carried on, although on of both experiments does
not perform optimal In such a situation the CDF II detector does not stop
taking data, but will continue to record events as long as there are collisions.
Different physics groups do rely primarily on different parts of the detector.
Therefore even if some parts of the detector do not work, some groups might
consider the data useful.

A simple example are the muon chambers. In case they do not work
properly, the analysis presented here could not use the data taken during
this period. On the other hand do many analysis not need them and would
not be affected. This implies that for any run period used in this analysis it
should be checked that the data was taken under stable condition with all
necessary components fully functional.
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To make this feasible, the individual parts of the experimental setup are
monitored constantly during data taking and marked appropriately. For
different systems, there exist several good run flags, which can be checked
for each run in the offline analysis.

The B group at CDF agreed on a set of requirements necessary for any
analysis. They can be summarized as:

• A single run should have more than 10 nb−1 with a trigger table ap-
proved for physics.

• All three trigger levels worked properly and there were no problems
with the data processing.

• The Cerenkov luminosity counters were working properly.

• The silicon detector, muon chambers and drift chamber were working
properly.

The data fulfilling these criteria correspond to roughly 1.7 fb−1. The
amount of data for the Bd decay is lower, due to the following criterion. The
calibration of the particle identification via energy loss in the drift chamber
is very useful for both decays to suppress background. The data above 1.3
fb−1 is not perfectly calibrated, which implies a small inefficiency for the Bs

decay in the event selection. For the Bd decay the calibration is crucial for
the determination of the acceptance due to an addition background. This
peculiarity for Bd will be explained in more detail later in this chapter and
does not allow to take data above 1.3 fb−1 at the moment.

3.2.2 Event Reconstruction

For this analysis the BottomMods package [42, 43] was used to reconstruct
both, Bs → J/ψ φ and Bd → J/ψK∗, decays. The lowest order Feynman dia-
grams of the B meson decays are shown in Figure 3.3. The three intermediate
resonant states are reconstructed in the following decay modes

• J/ψ → µ+µ−

• φ→ K+K−

• K∗ → K±π∓.

The J/ψ reconstruction is the same for both B mesons, but the decay
products of the second intermediate meson are different. Before reconstruct-
ing the B meson from their decay products, all tracks are refitted using
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Figure 3.3: Feynman graph describing the Bs → J/ψ φ and Bd → J/ψK∗

decays.

the KalmanFitter and the appropriate rest mass hypothesis for the particle
hypothesis of the final state. For muons the candidate selection is rather
pure due to the low backgrounds in the muon chambers, whereas for pions
and kaons any track is reconstructed using both particle hypotheses. This
causes a lot of combinatorial background, which should be reduced as much
as possible.

The B meson candidates are reconstructed backwards from the stable
particles by combining particles originating from the same resonances. As
described in Chapter 2, a muon candidate needs to have a track segment in
the muon chambers associated with a track in the drift chamber, which is
required to have a transverse momentum of at least 1.5 GeV/c. Two muon
candidates with opposite charge are combined in a vertex fit to form a J/ψ
candidate. The world average mass is used for the muon candidates in the
vertex fit. We use di-kaon pairs for the φ reconstruction and use the kaon
world average mass in the vertex fit. Both kaons are required to have different
charge. In the similar way the K∗ is obtained by doing a vertex fit using a
kaon and pion candidate with opposite charge. For the reconstruction of the
B meson the J/ψ is then combined using the partner meson φ or K∗ to get
either a Bs or Bd candidate. In the vertex fit of the B meson, the mass of
the J/ψ candidate is set to the world average value for the J/ψ, whereas for
the φ or K∗ mass the reconstructed value from the previous fit is used.

3.2.3 Loose Candidate Selection

The reconstruction above provides a very loose candidate selection, which is
dominated by background events. To keep the combinatorial background low,
without loosing to much signal events, the mass windows, opposite charge
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requirements and minimal transverse momenta of the decay products are
used.

The decay chain is reproduced in software, using the modular ansatz of the
CDF II software framework. The surviving B meson candidates are stored
using the B Stntuple framework [44]. Each reconstructed stable and unstable
particle for each event is stored, including the vertex fit information. The
individual information for each particle and the vertex fit results can then
be accessed in the next analysis steps.

3.3 Pre-selection

An important step for most analyses in particle physics is an event selection
of a reasonable size, which allows fast development cycles in the final analysis.
Although the Stntuple described in the previous section allows to make a full
analysis, we use an additional step to reduce the data sample size. Whereas
the Stntuple framework allows for a complicated file structure, e.g. a single
pion instance can be part of different B meson candidates in an event, we
convert the files into flat ntuples, which means that for each candidate all
decay particles and vertex information are stored independently in flat ROOT
ntuples.

This simple structure allows for fast changes in the next analysis steps.
Another set of preselecting cuts are implemented on this level. These cuts
are mainly on kinematic and vertex-fit variables and sometimes just confirm
requirements of the level before.

Basic quality cuts on the different particle candidates are summarized in
table 3.1. Independent of the particle hypothesis, each track needs to have a
minimal transverse momentum of 0.4 GeV/c.

The cuts presented in this section are only very loose requirements to
reduce the combinatorial background. The final candidate selection is done
using a neural network, which transforms all available information into a
single discriminating variable. The neural network will be discussed after a
short interlude about simulated decays.

3.4 Monte Carlo Simulation

Monte Carlo samples used in this analysis are generated using standard CDF
full simulation in the release 6.1.4mc. Event generation starts with BGener-
ator to produce a single Bs (Bd) meson, which is then decayed using the Evt-
Gen package [45]. All particles are decayed according to phase space. This
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Cuts Bd Bs

Run number <226196
K or π:
pt > 0.4 > 0.4 GeV/c
Muon:
Di-muon pair triggered yes yes
pt > 1.5 > 1.5 GeV/c
J/ψ (MJ/ψ = 3.0969 GeV) [17]:
|Mµµ −MPDG

J/ψ | ≤ 80 ≤ 80 MeV/c2

K∗ (MK∗ = 0.89166 GeV) [17]:
pt > 2.0 GeV/c
|MKπ −MPDG

K∗ | ≤ 80 MeV/c2

φ (Mφ = 1.01946 GeV) [17]:
pt > 1.0 GeV/c
|MKK −MPDG

φ | ≤ 100 MeV/c2

B Meson:
σcτ < 150 < 150 µm
pt > 4.0 > 4.0 GeV/c

Table 3.1: Summary of loose cuts during Bd and Bs Meson reconstruction
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allows us to re-weight the sample according to any decay model depending
on our needs. After the decay, the full simulation of the CDF detector [46]
and di-muon J/ψ trigger simulation follows. Simulated events are then recon-
structed by standard CDF offline production and stored at GridKa Karlsruhe
into SAM [47].

Both samples are further processed by the same pre-cuts and analysis
steps described in the sections before. This guarantees a good agreement
between the simulated events and the signal events on data. Simulated events
are of major importance in this analysis for two reasons. First they are used
in the training of the neural networks described in the next section, second
they are essential for deriving detector and reconstruction efficiency, which
will be described in chapter 4.

3.5 Neural Network Selection

For the final selection of the B candidates we use a neural network to separate
signal from background. Using this tool, correlations between variables are
taken into account and the information of the different variables is combined
in an optimal way into a single discriminating variable.

We choose the NeuroBayes [48] package, since it is one of the most ad-
vanced implementations of a neural network. It combines a three-layer feed
forward network with a very robust and sophisticated pre-processing. Fig-
ure 3.4 is a schematic representation of such a three-layer network topology.
Each node in the input layer corresponds to one input variable. The hidden
layer connects all input nodes and output nodes. Their number should be of
the same order as the input nodes. In our case only a binary decision for the
classification of signal and background events is needed. This requires only
a single output node ([-1,+1]).

Nodes in different layers of the network are connected with weights. For
a single node, these weights wij of the input nodes xi have to be combined
and the output of the node must be calculated. Figure 3.5 shows a graphical
representation for a single node. The input is combined by a biased weighted
sum

aj(~x) =
∑

i

wijxi + µj,

where µj is needed for the threshold, introduced by the additional bias node
in the input layer. The output of a single node is mapped from the possible
input interval [− inf ,+ inf] to [−1,+1] by the sigmoid function

S(~x) =
2

1 + exp(a(~x))
− 1.
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The network topology is defined by the number of input variables, output
nodes and hidden nodes, but the weights between the layers are unknown
and have to be determined. This is done during the training of the network.
Using a training sample of known classes, the weights of the network can
be optimized in order to get as close as possible to the truth of the training
sample. The optimization is done by minimizing a cost function, which
describes the difference of the current network output and the true result.
NeuroBayes uses an entropy function as cost function

E =
N

∑

i=1

− ln

(

1

2
(1 + oiti)

)

,

where oi is the network output, ti the target value and N the number of
training samples. In the multidimensional space, spanned by the weights, a
back-propagation algorithm is used to find a minimum.

Hitherto, the description of NeuroBayes is similar to any feed-forward
network, but might be different in some detail. One unique feature of Neu-
roBayes is its sophisticated preprocessing for each input variable. The pre-
processing helps the minimization step of the cost function described before.
It transforms and de-correlates the input variables and allows the use of
discrete input variables and variables that are not always defined [49].

Further regularization schemes are implemented to avoid over-training
and to improve the networks generalization capabilities. This is done by
removing weights which get insignificant and by adding the sum of squared
weights to the cost function. The later causing the optimization to prefer
smaller weights, stabilising the training.

The next sections will explain individually for each neural network used
in this analyses

• the datasets used for the training,

• the variables chosen as input and

• the result of each training.

3.5.1 Bs Neural Network

The aim of this neural network is to distinguish Bs meson decays from back-
ground events. We assume that the background events in the Bs mass region
have a similar properties as near the Bs mass. Since we can take events from
both sides of the mass peak, we can assume that these events will on average
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represent the topology of the background events inside the Bs meson mass
region. Thus a representative collection of background events for training
can be taken from the lower and upper sidebands in the mass distribution
(5.2666-5.3266 GeV/c2 and 5.4066-5.4666 GeV/c2). The mass distribution
after the pre-selection, and before the network selection, is shown in Figure
3.6.

Since the signal mass region consists of a mixture of signal and background
events, we use simulated Bs meson decays as signal for the training of the
neural network. Fifty thousand signal events and fifty thousand background
events from the sidebands were used for the training of the network.

As input for the neural network many different discriminating variables
are available. Since we want to make a time-dependent fit, we cannot cut on
or use the decay time of the B meson without sculpting the decay time dis-
tribution, we want to measure. Also the mass of the meson candidate is not
available, since we use different mass regions for the signal and background
events for training. Besides these two restrictions a large variety is available.
Typical examples are transverse momenta, masses of decay products, quality
of vertex fits and variables identifying particle types (PID). For a detailed
overview and the correlations between the variables, see table 3.2. For the
PID we use the likelihood ratio which combines the energy deposit measure-
ment in the drift chamber and the time of flight measurement, originally
developed for the same side kaon tagger [50]. For the muon identification we
employ the likelihood discriminant used by the soft muon tagger [51].

The results of the training can be seen in Figure 3.7. The network sepa-
rates signal (+1) from background (−1) very well, and the purity is linearly
dependent on the network output. Any deviation from the linear dependence
would mean a non optimal behaviour of the neural network. This network
is then used to make the final candidate selection, by imposing a cut on the
network output.

To get an unbiased criterion of the optimal cut on the network out-
put, we estimated for different cuts on the network output the significance,
NS/
√
NS +NB, on data in the mass region ±20 MeV/c2 around the signal

peak. NB is the number of background events calculated from the background
parameters determined in a mass fit. NS is the total number of events in the
±20 MeV/c2 mass region minus NB.

Figure 3.8 shows the distribution of the significance versus the cut on the
network output. Since it is relatively flat around its maximum, the exact
value of the cut has no strong influence on the significance. We choose a
cut of 0.6 for Bs for the final selection. For the ±20 MeV/c2 mass window
around the Bs mass we obtain a significance of S/

√

(S +B) = 37.7 for
the final selection. The mass distribution of the final selection is shown
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# Variable Bs Bd

1 training target ←
3 pt(B) ←
10 pt(J/ψ) ←
5 pt(φ) pt(K

∗)
8 pt(K1) pt(K)
9 pt(K2) pt(π)
15 max(pt(µ

+), pt(µ
−)) ←

16 min(pt(µ
+), pt(µ

−)) ←
12 |Mµµ −MPDG

J/ψ | ←
7 |MKK | |MKπ|
4 Prob(χ2)(Bs) ←
11 Prob(χ2)(J/ψ) ←
6 Prob(χ2)(φ) (K∗)
2 χ2

rφ(B) ←
17 PIDK(K+) PIDK(K)
18 PIDπ(K

+) PIDπ(K)
19 PIDK(K−) PIDK(π)
20 PIDπ(K

−) PIDπ(π)
13 max(lh(µ+), lh(µ−)) ←
14 min(lh(µ+), lh(µ−)) ←
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Table 3.2: Overview of the variables (left) and their correlations (right) used
for training of the Bs (top) and Bd (bottom) neural network. The arrow
indicates common variables of both decays. For a detailed description of the
individual variables see Appendix B.
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Figure 3.7: Network output distribution (left) for the simulated Bs mesons
(blue) and background events from the sidebands (green). The purity on the
training sample as a function of network output (right).

in Figure 3.6. Compared to the selection before the neural network, the
number of background events is reduced by a factor of ≈ 25 with roughly
half of the signal being kept. Since the neural network was trained using
simulated signal decays and background events from data, any discrepancy
in the simulation might influence the training result. The neural network
might have learned to distinguish real data from simulated events and not
Bs decay from background. To check that this is not the case we can compare
the neural network output distribution for the simulated signal and the signal
from data, using sideband subtracted data in the signal region. Figure 3.9
shows the good agreement for the two distributions.

3.5.2 Bd Neural Network

The neural network selection procedure for the Bd candidates is very similar
to the Bs, described in the section before. The neural network was trained
using a combination of reconstructed data events from the sidebands and
simulated decays for signal. The lower and upper sidebands of the mass
windows for the background events are different, due to the lower mass of
the Bd: 5.13-5.2094 GeV/c2 and 5.3294-5.43 GeV/c2.

The variables used for the training are very similar and are also listed in
Table 3.2. For the result of the training see Figure 3.10. As before, the neural
network is able to separate signal from background very well and the neural
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Figure 3.8: Signal significance as a function of the cut on the network output
for Bs. (left) and Bd (right). The line denotes the cut used for the final
selection.
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Figure 3.9: The Bs neural netwok output distribution for simulated signal
events and sideband subtracted data in the signal region.
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Figure 3.10: Network output distribution (left) for the simulated Bd mesons
(blue) and background events from the sidebands (green). The purity on the
training sample as a function of network output (right).

network output is near the optimum, since the purity is a linear function of
the network output.

3.5.3 Swap Suppression Neural Network

In the Bd decay the association of the K∗ decay products is ambiguous. Due
to this there are B candidates reconstructed with swapped pion-kaon hy-
pothesis. From previous studies at CDF, we expect that roughly 10% [9] of
the signal candidates are reconstructed with swapped mass assignment. Bd

events reconstructed with the wrong mass hypothesis have several severe ef-
fects on the distributions. Although the underlying true angular distribution
is correct, the angles describing the decay of these events are calculated with
the wrong particle as K reference. Further the transverse momenta and re-
constructed masses are calculated with the wrong mass hypothesis. Another
difference is the shape of the acceptance of these candidate, which will be
introduced in the next chapter.

Since there is a large fraction of these events, they have to be taken into
account. There are two possible ways. Either they have to be parameterized
and included in the fit function, where the swapped and un-swapped angles
can be calculated, or, to treat them as systematic uncertainty, they have to
be removed from the selection as good as possible.

Although we can include the swapped component in the fit model, there
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Figure 3.11: Network output distribution (left) for the simulated Bd mesons
(blue) and background events from the sidebands (green) with swapped kaon
pion assignment and the purity on the training sample as a function of net-
work output (right).

are several uncertainties which will result in large systematic uncertainties.
Besides the very different acceptance distribution, the mass distribution of
the swapped candidates is broader but at the same place as the signal. This
means we have to rely on the mass model from simulated events since it
cannot be determined reliably in a fit on data. The same is true for the
fraction of swapped candidates. Therefore, we decided to follow the second
procedure by training a dedicated neural network to distinguish swapped Bd

candidates and remove them from our data sample.

To train the network we used the same simulated events for signal and
background as before, once reconstructed with the right mass assignment
and a second time using the wrong assignment. The input variables and
their correlations are listed in table 3.3. Besides the particle identification
variables, the reconstructed K∗ mass is a very important input.

The network output distribution of the training sample can be seen in
Figure 3.11. The network can identify swapped candidates very well and is
able to reduce the amount of swapped candidates to roughly half a percent,
estimated on the simulated events, at a purity of fifty percent using a neural
network cut of 0.8. We are then able to fit the data without any swapped
component and treat its influence as systematic uncertainty.

Since we have two neural networks for the Bd selection the selection pro-
cedure is slightly different compared to Bs. First we use the precut of 0.8
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# Variable Bd Swap
1 training target
2 pt(K)
3 σ(pt(K))
4 pt(π)
5 σ(pt(π))
6 |MKπ|
7 PIDK(K)
8 PIDπ(K)
9 PIDµ(K)
10 PIDe(K)
11 PIDp(K)
12 PIDK(π)
13 PIDπ(π)
14 PIDµ(π)
15 PIDe(π)
16 PIDp(π)
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Table 3.3: Overview of the variables (left) and their correlations (right) used
for training of the swap suppression neural network. PID is the likelihood
ratio for different particle hypotheses. Similar variables are described in
Appendix B.
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Figure 3.12: Mass distribution of the Bd candidates after the pre-selection
(left) and the final neural network selection (right). The lines denote the
sidebands.

on the swap suppression network to suppress the swapped fraction to very
low values and optimized then in a similar way as for the Bs by maximizing
the significance. We choose to use > 0.5 for the cut on the neural network
output for the Bd candidates. The selection after both neural network cuts
is shown in Figure 3.12. For the significance in the 20 MeV/c mass region,
NS/

√

(NS +NB)(±20MeV/c2), we obtain 61.8. The background is signifi-
cantly reduced with a large fraction of signal events remaining. Similar as
for Bs we check that the neural network learned to distinguish Bd decays
from background by comparing the neural network output distribution for
the simulated signal and the signal from data, using sideband subtracted
data in the signal region. Figure 3.13 shows the good agreement for the two
distributions.
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events and sideband subtracted data in the signal region.



Chapter 4

Fit Function

In Chapter 1 we derived, starting from the Standard Model, formulas de-
scribing the B meson decay. In this chapter, we will continue this course and
discuss all parts necessary to obtain the probability density function describ-
ing the data. The signal functions, resolution and acceptance are given by
theory and experiment, whereas we are going to take an empirical approach
for the background description. We will slightly change our parameterization
by using φs = 2βs instead of βs from now on.

The decay is described only by a few variables, which have to be derived
from the data. The CDF II detector described in Chapter 2 consists of many
subsystems, providing many measurements of very different quantities. In
the previous Chapter 3 we discussed the reconstruction of physical objects
from the detector measurements, which allowed us to make a very good
selection of the interesting events. The likelihood function only depends on
some of these reconstructed physical observables:

m the mass of the B meson,

ct the decay time of the B meson,

σct the estimated decay time uncertainty of the B meson,

~ω = (ψ, φ, θ) three angles describing the decay, defined in section 1.3.4,

ξ describing the tag of the events.

In the next section, we will explain shortly the maximum likelihood
method used to estimate the parameters. The second section will discuss
each individual variable and the way its shape is parameterized, which will
also contain detector effects. We will then combine these in the following
two sections independently for Bs and Bd to obtain the complete probability

53
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density function. The last section will then discuss some details of the fitting
procedure and its implementation.

4.1 Parameter Estimation

For the final selection, we can generalize the data from the experiment as
n independent measurements, ~x1, ~x2, ..., ~xn, of the multidimensional variable
~x = (m, ct, σct, ~ω, ξ). The purpose of the parameter estimation is to deduce
one or more parameters of the model from these measurements. Due to
limited statistics and the uncertainty of the input variables, the estimated
parameters will be determined only with some precision. Having a probability
density function f(~x|~a) describing the data, where ~a are all the parameters,
we can use the maximum likelihood method [52] to extract the best estimate
of the parameters ~a and their uncertainties.

From the probability density function and the n measurements we can
construct the likelihood function

L(~a) = f(~x1|~a) · f(~x2|~a) · ... · f(~xn|~a) =

n
∏

i=1

f(~xi|~a).

The maximum likelihood method returns the best estimate of parameters â
that maximizes L(~a), having the given measurements ~xi. L(â) is equivalent
to the statement that for those parameter values â, the probability to observe
the given measurements ~xi is maximized. Due to practical reasons, usually
the negative log likelihood function

F (~a) = −
n

∑

i=1

ln f(~xi|~a)

is minimized instead. One necessity of the maximum likelihood method
is that the probability density function must be normalized for any set of
parameter values

∫

f(~xi|~a)d~x = 1.

The normalization of the likelihood function is not always trivial. It will be
discussed in more detail later.

For any parameter estimation method, there are several criteria which
should be fulfilled. If ~a0 are the true values then the method is

consistent: For infinite statistics the estimated parameters will be the
true parameters, limn→∞ â = ~a0.
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unbiased: The expected parameters are the true parameters, E[â] =
~a0, where E[â] is the expectation of â.

efficient: The fit returns the smallest possible uncertainties of â.

robust: The fit is not affected by wrong data and wrong assump-
tions.

In general the maximum likelihood method is consistent, but it is only unbi-
ased and efficient in case of infinite statistics [52].

4.2 Fit Model Components

The probability density function can be factorized into mass, decay time and
angular function, if they are uncorrelated. In addition we have two kinds
of classes of events, signal and background, which have different shapes in
some of the variables. Since the signal and background distributions are two
independent components, the probability density function can be written as

P = fsPS(m, cτ, σcτ , ~ω, ξ) + (1− fs)PB(m, cτ, σcτ , ~ω), (4.1)

where fs is the fraction of signal events in the sample of n measurements. In
case the different variables are not correlated, the probability density function
can be factorized. In our case the probability density function gets the form

P = fsXS(m) · YS(cτ, σcτ , ~ω, ξ) · Y ′
S(σct)

+(1− fs)XB(m) · YB(cτ, σcτ) · Y ′
B(σct) · ZB(~ω). (4.2)

We have written the formula already in a the very specific way useful for the
analysis. We omitted the parameters of each part here for compactness, but
will introduce them when discussing the individual parts of the probability
density function in the next sections.

In general we choose an empirical approach for the background descrip-
tion. By selecting pure background events from the sideband, we can choose
a set of functions that describes the background. The same description is
then used for the background in the signal region, as well.

4.2.1 Mass

Any hadronic state has a natural width, depending on the decay. We analyze
weak decays, which means that the natural width is very small. The mass
distribution is convoluted with the resolution function. The shape of the mass
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distribution is dominated by the detector resolution, which is approximately
Gaussian. Figures 3.6 and 3.12 show the mass distribution for the two decays
of interest. A single Gaussian seems not to be sufficient to describe the mass
shape properly, therefore we use two Gaussian for the signal part. Both
Gaussians use the same mean M but have independent widths σm and smσm.
The corresponding normalized signal probability density function is

XS(m|M,σ, fm, sm) = (1− fm)
1√

2πσm
e
−

(m−M)2

2σ2
m + fm

1√
2π(smσm)

e
− (m−M)2

2(smσm)2 ,

(4.3)
where fm is the fraction between the two Gaussians.

The background is described using a set of linear functions. Two indepen-
dent linear functions are used for the prompt and non-prompt background in
the mass space. The combined normalized background probability density
function for the mass is then

XB(m|a, aNP , fNP ) = (1− fNP )XP
bg(m|a) + fNPX

NP
bg (m|aNP )

= (1− fNP )am+
1− a

2
(M2

max −M2
min)

Mmax −Mmin

+

fNPaNPm+
1− aNP

2
(M2

max −M2
min)

Mmax −Mmin
,

where a and aNP are the slopes of the lines, fNP the fraction of the non
prompt background and Mmin and Mmax are the upper and lower boundaries
of the mass window (5.2666-5.4666 GeV/c2 for Bs and 5.13-5.43 GeV/c2 for
Bd).

Although the aim of this analysis is not a mass measurement, the fit
of the mass distribution is very important. It provides a very good prior
probability, whether an event is more likely signal or background. The signal
fraction parameter is dominated by the influence of the mass distribution.
The CDF II detector has a very precise momentum measurement due to the
large drift chamber. Since the detector resolution governs the width, it allows
to have narrow mass resonances of ≈ 10 MeV/c2 for B decays leading to less
background.

4.2.2 Decay Time

Throughout this thesis the decay time is measured as a distance by multi-
plying the measured time until the decay with c. The decay of a particle is
governed by an exponential law, but to describe the observed distribution,
an exponential function is not enough. We also have to take into account
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the detector resolution, which is of the order of several ten micrometers.
Thus, the distribution we observe is an exponential function convoluted with
a Gaussian. The width of the Gaussian, corresponding to the estimated un-
certainty on the decay time σct, is calculated on an event-by-event basis for
each candidate multiplied with an global scale factor Sct. The probability
density function for the decay time is then given by

Y (ct, σct|cτ, Sct) = E(ct|cτ)⊗G(ct, σct|Sct), (4.4)

where

E(ct|cτ) = Θ(ct)
1

cτ
e−

ct
cτ (4.5)

G(ct, σct|Sct) =
1√

2πSctσct
e
−

(ct)2

2(Sctσct)
2 . (4.6)

All decay time distributions in this thesis are convoluted with the Gaussian
resolution in the same way. For the two mass eigenstates of the signal we
have two different lifetime parameters: cτH and cτL. The implemented decay
time probability density function for the signal will be described later in more
detail.

Similar to the approach of the mass distribution of the background, its
decay time distribution is described using an empirical set of functions. For
an example of the decay time distribution of the sidebands see Figures 5.5
or 6.7. The dominant part of the background distribution is a Gaussian
peak around zero, describing prompt decays. The event-by-event decay time
uncertainty allows us to compose the central Gaussian out of the summa-
tion of the individual Gaussian distributions. We observe that the composed
function is too narrow to describe the data, since the estimated decay time
uncertainty is too optimistic. This is compensated by introducing the scale
factor Sct. Assuming that this scale factor is on average the same for all
events, we are able to determine it by the prompt background distribution.
Further the distribution has a negative and a larger positive tail, which are
not described well with the single Gaussian. Both tails are subsumed under
non-prompt background. An often used parameterization for the complete
background distribution is a Gaussian around zero to describe the prompt
component and three exponentials for the rest, one to describe the negative
tail (f−, cτ−), on for the shortlive positive component (f+, cτ+) and another
one for the longlived positive component (f++, cτ++). The decay time prob-
ability density function for background becomes
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YB(ct, σct|f−, f+, f++, cτ−, cτ+, cτ++, Sct)

= (1− fNP )Y P
B (ct, σct|Sct)

+fNPY
NP
B (ct, σct|f−, f+, f++, cτ−, cτ+, cτ++, Sct)

= (1− f− − f+ − f++)G(ct, σct|Sct)
+f−E(−ct|cτ−)⊗G(ct, σct|Sct)
+f+E(ct|cτ+)⊗G(ct, σct|Sct)
+f++E(ct|cτ++)⊗G(ct, σct|Sct), (4.7)

where the width of the Gaussian is also scaled with the global scale factor Sct,
fx is the fraction and cτx the lifetime of the given background component.
Note that f− + f+ + f++ is equal to the non-prompt fraction fNP .

4.2.3 Decay Time Uncertainty Distribution

Comparing the decay time uncertainty distribution for signal and background
in data, we observe that they are not the same. The background distribution
can easily be obtained from the sidebands, whereas the signal distribution is
derived by subtracting the distribution of the sidebands from the distribu-
tion in the signal region. If those distributions are different for signal and
background, the decay time fit has to take the decay time uncertainty dis-
tribution into account [53]. The signal and background probability density
function is multiplied by Y ′

S(σct) and Y ′
B(σct) respectively. The distributions

are shown in Figure 4.1. These are normalized distributions of the decay time
uncertainty, used directly in the likelihood function by taking the content of
the bin for a given σcτ from the appropriate histogram.

4.2.4 Angular Distributions

To investigate angular distributions we use the transversity basis, as intro-
duced in section 1.3.4, to describe the decay into two vector mesons.We will
denote the three angles by ~ω = {θ, φ, ψ}.

The angular distribution for the signal is discussed separately for Bs and
Bd later in this chapter, since it is not independent of the decay time distribu-
tion. Here we focus on the description of the background using an empirical
set of functions. In first order we assume that the three angles are indepen-
dent of each other, but we allow for correlation by adding the three functions,
f4 − f6, which describe the interference terms in the signal model. We use
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Figure 4.1: Normalized decay time uncertainty distributions for Bd (left)
and Bs (right). The background (blue) is taken from the sidebands. Signal
(black) is the sideband subtracted signal region.

the following empirical function for the background

ZB(~ω|z0,φ, z1,φ, z2,φ, z1,θ, z2,θ, z1,ψ, z2,ψ, z3,ψ, z4,ψ, z5,ψ, z4, z5, z6) =

(1 + z1,φ cos(2φ+ z0,φ) + z2,φ cos2(2φ+ z0,φ))

π(2 + z2,φ)
×

1− z1,θ cos2 θ + z2,θ cos4 θ

2− z1,θ2/3 + z2,θ2/5
×

(
1 + z1,ψ cos(ψ) + z2,ψ cos2(ψ) + z3,ψ cos3(ψ)

2 + 2/3z2,ψ + 2/5z4,ψ

+
z4,ψ cos4(ψ) + z5,ψ cos5(ψ)

2 + 2/3z2,ψ + 2/5z4,ψ
)

−z4
9

32π
sin2 ψ sin 2θ sin φ

+z5
9

32π

1√
2

sin 2ψ sin2 θ sin 2φ

+z6
9

32π

1√
2

sin 2ψ sin 2θ cosφ. (4.8)

This description is based on data from the sidebands and any detector and
selection effects are already included in this empirical description. The good
agreement of the fit for the sidebands can be seen in Figures 5.5 and 6.7.

4.2.5 Angular Acceptance

With a perfect detector and without any selection of the candidates we could
assume to have homogeneous acceptance in the detector and it would be
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easy to normalize the probability density function. Since this is not the
case, we have to check and correct those distributions being affected by the
detector geometry and the selection process. The J/ψ trigger has an uniform
acceptance when measuring decay times. To keep the decay time distribution
unaffected by the selection, we did not use any decay time related quantities
for the soft candidate pre-selection or included them in the neural network.
This is not the case for the angles ~ω describing the decay. Figure 4.2 shows the
distributions of the three angles for simulated Bs events after reconstruction.
These events were generated using a flat distribution in all three angles. The
effect from the detector and selection process on the angular distributions is
too significant to be left alone and must be incorporated into the fit function.
Since the distributions were generated flat, the acceptance function can be
interpreted as probability to find an event at a position in the ~ω space. It
can be incorporated in the probability density function by multiplying the
angular functions with the three dimensional acceptance function ǫ(~ω).

The acceptance is stored in a three dimensional histogram. Both, the
angular distribution and the acceptance function, are normalized indepen-
dently, thus their product might not be normalized anymore. The difficulty
is now to keep the function used for fitting normalized for all possible values
of the different parameters. The integral of the angular functions can be
calculated analytically. After integrating over the volume of a single bin of
the three dimensional acceptance histogram, the normalization factor can be
calculated by summing over all bins. The analytic normalization of the prob-
ability density function and the acceptance is described in more detail in the
appendix D. The normalization factor Zn needs to be calculated whenever a
parameter changes, but the normalization factor can be written in a way that
the major part of the computation needs to be done only once (see equation
D.3). The time dependent angular distribution of the signal including the
acceptance A(~ω) is then

YS(~ω, t, σct|ΓL,ΓH , |A0(0)|, |A||(0)|, |A⊥(0)|, δ⊥, δ||, φs, Sct)

=
d4P (~ω, t)

d~ωdt
× A(~ω)/Zn(4.9)

4.2.6 Acceptance Function Correction

The signal only simulation (see section 3.4) used to estimate the acceptance
function is not in perfect agreement with the data used in the analysis. The
run period in the simulation does only cover the period up to 760 pb−1.
Further, there are always small differences in the simulation compared to
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Figure 4.2: The distributions of the three angles describing the Bs → J/ψ φ
candidates after reconstruction of the simulated events. All three distribu-
tions were generated flat.
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the data. We correct for these effects by comparing different variables and
reweighting the simulated data before deriving the shape of the acceptance.
The distribution of the data in the signal region is obtained by subtracting
the background using the sidebands in the mass space.

We correct the simulated events for differences in some variables to obtain
the acceptance histogram.

• Different ratio of di-muon pairs triggered by CMU-CMU and CMU-
CMX triggers. This will influence the η distribution of the muons
which might have different acceptance.

• Over time the minimal transverse momentum requirement changed and
different trigger paths with different transverse momentum thresholds
operate at the same time. To compensate this we order the candi-
dates in three different classes of muon pT : both muons with pT > 3
GeV/c, both with pT > 2 GeV/c but at least one below pT < 3 GeV/c,
everything else (at least on muon with pT < 2 GeV/c).

• The B meson transverse momentum spectrum is taken from a his-
togram, which might slightly differ from the data. Therefore, we correct
for the pT of the B.

There are different ways how to correct a sample in different variables. If
the variables are uncorrelated, we could just estimate the correction factor
for each distribution, but in our case all three variables are correlated in some
unknown way. To estimate the influence of this correction we implemented
several methods to correct the acceptance function.

• Neglecting the correlation of the variables we just estimate the weights
independently and re-weight according to the product of the weights.

• A consecutive approach, where we first correct for the trigger ratio, then
re-weight using the di-muon transverse momentum classes and finally
take the B meson transverse momentum spectrum into account. The
weights of the second and third step is only calculated after correcting
for the previous effects.

• The third method was a training of a neural network to estimate the
individual weight for each event. Using a neural network we take possi-
ble correlations between the variables used for reweighting into account
in an optimal way. We used more quantities as input variables than for
the default method. Those are the transverse momentum and η vari-
ables of the B, φ, J/ψ and muons. To train the network with sideband
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Figure 4.3: Network output distributions for the sideband subtracted
data/signal (blue) and simulated/background events (green).

subtracted events we used the special feature of NeuroBayes that allows
to train with negative training weights. By using data from the side-
bands with positive training weights for background and additionally
in the signal region with negative training weights we can train against
the simulated data and let the network estimate the difference. The
training with opposite weights is similar to create distributions with
sideband subtracted background. The weight which accounts for the
data-simulation difference is then calculated by: P (NN)/(1− P (NN)),
where the network output, NN ǫ [−1, 1], is transformed into a proba-
bility P (NN) = (NN+1)/2. The result of the training can be seen in
Figure 4.3. That both distributions are close to zero shows that in first
order their agreement is quite good.

Although the neural network approach is in general the best way to cor-
rect for the disagreement between data and simulation, it might actually
introduce some uncertainties. The issue is not the method itself, but the
signal only simulation used to derive the acceptance. Since it was generated
flat in the angular space, it might have some differences to the data which
should not be corrected for. This is actually true for all of the reweighting
procedures. Since all of the correction methods improve the agreement be-
tween data and simulation significantly and produce similar results, we take
the remaining differences into account by treating them as systematic uncer-
tainty. This is discusses later in Chapter 7. As can be seen in Figures 4.4
and 4.5 the data agrees well with the simulation after the reweighting.
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Figure 4.4: Comparison of sideband subtracted Bs data distribution (dots)
with simulation before reweighting (dotted black line) and after reweighting
(solid blue line). Shown are the fractions of CMX/CMU triggers (top left),
transverse momentum of the Bs (top right) and the transverse momentum
of the higher/lower pT muon (bottom left/right).
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Figure 4.5: Comparison of sideband subtracted Bd data distribution (dots)
with simulation before reweighting (dotted black line) and after reweighting
(solid blue line). Shown are the fractions of CMX/CMU triggers (top left),
transverse momentum of the Bd (top right) and the transverse momentum
of the higher/lower pT muon (bottom left/right).
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4.2.7 Bd Acceptance

Similar to the Bs decay the Bd acceptance is affected by the detector ac-
ceptance and reconstruction. Again we use a simulated Monte Carlo sample
which was generated with flat angular distribution to derive the acceptance.
Figure 4.6 shows the acceptance of these angles for simulated Bd events af-
ter reconstruction. The angular function is then multiplied with the three
dimensional acceptance and normalized.

The most striking difference to the Bs acceptance is the shape of the cosψ
distribution. The ψ angle is measured between the kaon from the K∗ decay
and the negative direction of the B meson in the K∗ rest frame. There are
two reasons for the observed differences. First, the mass difference of the
kaon and pion of the K∗ decay leads to an asymmetry in the distribution.
The acceptance disfavors large values of cosψ, which is equivalent to the kaon
going in the direction of the original K∗. This leads to a low momentum for
the pion for those candidates, which reduces their reconstruction probability.

The other major difference is the ditch for cosψ around -0.5. The ac-
ceptance for Bd candidates with swapped kaon-pion mass hypothesis is very
different. Due to the wrongly assigned particle type the cosψ distribution
peaks around the value -0.5. Since we use a swap suppression network to
attempt to suppress swapped candidates we remove part of the properly
reconstructed Bd meson candidates in that cosψ region.

4.3 Bs Log Likelihood Function

For the Bs the parameterization of the angular background is slightly mod-
ified. Since the cos(ψ) distribution is rather flat, we only use the first two
parameters of lowest order and fix the other, z3,ψ, z4,ψ and z5,ψ, to zero. Also
the φ offset z0,φ is fixed to zero in the case of Bs.

As described in Chapter 1, we observe different CP final states, which have
different angular momenta. Using the linear polarization amplitudes A0(t),
A||(t) and A⊥(t) introduced in section 1.3.4, we can write the time dependent
angular distribution as combinations of the bilinear decay amplitudes [54] as

d4P (~ω, t)

d~ωdt
∝ |A0(0)|2f1T+ + |A||(0)|2f2T+ +

|A⊥(0)|2f3T− + |A0(0)||A||(0)|f5 cos(δ||)T+ +

|A||(0)||A⊥(0)|f4 cos(δ⊥ − δ||) sinφs(e
−ΓH t − e−ΓLt)/2 +

|A0(0)||A⊥(0)|f6 cos(δ⊥) sinφs(e
−ΓH t − e−ΓLt)/2, (4.10)
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Figure 4.6: The distributions of the three angles describing the Bd → J/ψK∗

candidates after reconstruction of the simulated events without swapped can-
didates. All three distributions were generated flat.



68 CHAPTER 4. FIT FUNCTION

where

T± = ((1± cosφs)e
−ΓLt + (1∓ cosφs)e

−ΓH t)/2

f1(~ω) =
9

32π
2 cos2 ψ(1− sin2 θ cos2 φ)

f2(~ω) =
9

32π
sin2 ψ(1− sin2 θ sin2 φ)

f3(~ω) =
9

32π
sin2 ψ sin2 θ

f4(~ω) = − 9

32π
sin2 ψ sin 2θ sinφ

f5(~ω) =
9

32π

1√
2

sin 2ψ sin2 θ sin 2φ

f6(~ω) =
9

32π

1√
2

sin 2ψ sin 2θ cosφ (4.11)

Note that the time dependent angular distribution is invariant under the
transformations

φs → −φs, δ⊥ → δ⊥ + π (4.12)

and
∆Γ→ −∆Γ, φs → φs + π. (4.13)

Because of this four fold ambiguity the measurement is insensitive to the
signs of φs and ∆Γ. In the following we will only show one of the four
solutions. The other three equally likely solutions can be obtained by the
given transformations.

For the background the detector acceptance was included in the empirical
description. The signal shape is given by theory, but the detector itself and
the selection process will introduce an angular acceptance function A(~ω).
We try to keep the acceptance as uniform as possible, but we have to take it
into account. Thus the time dependent angular probability density function
becomes

YS(cτ, σcτ , ~ω, ξ) · Y ′
S(σct) =

d4P (~ω, t)

d~ωdt
⊗G(ct, σct|Sct)A(~ω)/ZnY

′
S(σct).

(4.14)

All the necessary parts of the likelihood function are now introduced, and
we can combine them. Whereas the probability density function for prompt
and non prompt background factorizes in mass, decay time and angular space,
and is therefore just the product of three probability density functions, this
is not the case for the signal. As described in section 4.2.5 we have to
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normalize the time dependent angular part for each change in parameters.
Starting from equation 4.1, the complete lnL of the time-dependent angular
analysis is

lnL =
N

∑

j=1

ln[fsXS(mj)Y
′
S(σctj )ZS( ~ωj , tj, σctj ) +

(1− fs)[(1− fNP )XP
B (mj)Y

P
B (ctj , σctj) +

fNPX
NP
B (mj)Y

NP
B (ctj , σctj )]Y

′
B(σctj )ZB( ~ωj)]

=
N

∑

j=1

ln[fsXS(mj)
d4P (~ω, t)

d~ωdt
⊗G(ct, σct|Sct)× A(~ω)/Zn +

(1− fs)[(1− fNP )XP
B (mj)Y

P
B (ctj , σctj)

+fNPX
NP
B (mj)Y

NP
B (ctj , σctj )]Y

′
B(σctj )ZB( ~ωj)], (4.15)

where the individual part are defined in equation 4.3 to 4.8 and Y ′
B(σctj ) is

shown in Figure 4.1 and A(~ω) in Figure 4.2.
We then minimize −2 lnL using MINUIT [55]. In the actual implemen-

tation of the fit we did not use exactly the parameters described above but
the linear combination of the interesting parameters to obtain directly the
quantities of highest interest. Instead of ΓH and ΓL we used the decay width
difference ∆Γ = ΓH − ΓL and the mean lifetime cτs = 2c/(ΓH + ΓL) as fit
parameters.

Γ =
c

cτs
(4.16)

cτL =
cτs

1 + 0.5∆Γτs
(4.17)

cτH =
cτs

1− 0.5∆Γτs
(4.18)

(4.19)

Since the sum of the amplitudes should be one, one of them is given by the
other two. Further the amplitude parameterization is changed to guarantee
that the amplitudes stays in physically allowed range. This stabilizes the
minimization procedure, since no unphysical values are allowed. The param-
eters needed can be calculated from the fit result by the transformations

A‖ =
√

1− A2
0A

′
‖ (4.20)

A⊥ =
√

1− A2
0 −A2

‖. (4.21)
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4.3.1 Case of no CP Violation

Assuming the Standard Model, where φs is of the order of one degree we can
fix φs = 0. In such a case the fit function simplifies and T± in equation 4.11
and 4.10 become

T+ = e−ΓLt

T− = e−ΓH t

In addition the interference terms between CP-even and CP-odd eigenstates
drops out. Thus equation 4.10 gets

d4P (~ω, t)

d~ωdt
∝ |A0(0)|2f1e

−ΓLt + |A||(0)|2f2e
−ΓLt +

|A⊥(0)|2f3e
−ΓH t + |A0(0)||A||(0)|f5 cos(δ||)e

−ΓLt

∝ [|A0(0)|2f1 + |A||(0)|2f2 + |A0(0)||A||(0)|f5 cos(δ||)]e
−ΓLt +

|A⊥(0)|2f3e
−ΓH t (4.22)

Comparing equations 4.10 and 4.22 we see that the second one does not
depend on the strong phase δ⊥ anymore, which therefore cannot be estimated.

4.4 Bd Log Likelihood Function

To describe the decay Bd → J/ψK∗ we can use the same definition for
the angles as before. But there are few differences and complications. The
lifetime difference in the Bd system is estimated to be very small, (3.0 ±
1.2)10−3 [56], and measurements so far agree with zero. In the case of Bs,
the mass eigenstates are close to CP eigenstates, which is not the case for Bd.
Further Bd → J/ψK∗ is not a common decay mode, but a flavour-specific
decay. Taking these effects together, the time-dependence for an initially
produced Bd(B̄d) gets [56]

0.5[cosh(∆Γt/2)± cos(∆mdt)]e
−Γt. (4.23)
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We assume the same number of Bd and B̄d and expanding in ∆Γ. When
ignoring terms quadratic in ∆Γ the time dependent angular distribution is

d4P (~ω, t, ξ)

d~ωdt
∝ [|A0(0)|2f1(~ω) + |A||(0)|2f2(~ω) +

|A⊥(0)|2f3(~ω) +Re(A∗
0(0)A||(0))f5(~ω)±

Im(A∗
||(0)A⊥(0))f4(~ω)±

Im(A∗
0(0)A⊥(0))f6(~ω)]× e−Γdt

= {|A0(0)|2f1(~ω) + |A||(0)|2f2(~ω) +

|A⊥(0)|2f3(~ω) + |A0(0)||A||(0)|f5(~ω) cos(δ||)±
|A||(0)||A⊥(0)|f4(~ω)[sin(δ⊥ − δ||)]±
|A0(0)||A⊥(0)|f6(~ω)[sin(δ⊥)]} × e−Γdt, (4.24)

where the upper (lower) arithmetic operator denotes the flavor specific decay
of a Bd (B̄d) to K+π− (K−π+). The angular function are defined above. The
likelihood is put together in the same way as for Bs and looks the same as
equation 4.15. The implementation of both likelihoods is actually done only
once, by implementing the most general likelihood function, described in the
next section.

4.5 Fit Procedure

There are several minor implementation issues, which are discussed in this
section. Instead of using two different fitters for Bd and Bs, it is possible to
use the same likelihood function, but fixing some parameters or setting some
variables in a way that it can be used for Bd and Bs.

Equation C.8 is the most general probability density function for a tagged
sample. This function can be used for the fit in Bs with

• fixing the parameter δ0 = 0

• setting the product ξD = 0.

Equation C.8 does then agree with equation 4.10. To fit Bd data the following
is done

• fixing the parameter δ0 = 0

• fixing ∆Γ = 0

• setting the variable ξD = ±1 depending on the charge of the kaon from
K∗
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• fixing φs = 0

• fixing ∆m = 0.

Fixing ∆m = 0 does not mean we fix the mixing frequency for Bd to zero,
but has purely technical reasons to get an agreement between the two for-
mulas. Equation C.8 then reduces to equation 4.24. This allows to use a
single implementation for both analyses. Further the fit function is already
prepared for future measurements using flavor tagged Bs samples.

When fitting such a complicated function, which depends on many pa-
rameters, it is necessary to start with reasonable parameter values. To get a
good starting point for the final fit, a sequence of maximum likelihood fits is
performed. In each step the parameters derived in the step before are used as
starting values for the next step. First the background lifetime parameters
are determined in a fit to the events in the mass sidebands. These sideband
events are then used in the second step to fit the mass, decay time and an-
gular distribution of the background. In the third step the mass of all events
is fitted. The following fit of mass, lifetime and angles is the final fit for Bd.
For Bs, two mass, decay time and angular fits of all events are performed.
First φs and one strong phase is fixed to 0, which is equivalent to Standard
Model expectation, then all parameters are kept floating.

Not only the values, but also the uncertainties are estimated by the fit.
The default uncertainty calculation of Minuit uses the error matrix calculated
in Migrad as approximation, which is valid in case the negative log likelihood
function is parabolic around the minimum. For the final results, we use Minos
to calculate the positive and negative error. Minos varies one parameters with
respect to all others to find the parameter value for which the likelihood has
a value F (â) + 1. Therefore, Minos obtains the one sigma region above
and below the minimum allowing to quote asymmetric and more precise
uncertainties.



Chapter 5

Bd Results

As shown in the previous chapter and in Chapter 1, the fit function for Bd

and Bs have large parts in common and therefore they are implemented as
a single probability density function used for Bd and Bs. Thus, we are able
to check our method and implementation of the angular fit and amplitude
decomposition of the Bs decay by analyzing the independent Bd sample,
which has more statistics. BaBar [57] and Belle [58] made similar angular
analyses of Bd → J/ψK∗, allowing us to cross-check our result with their
independent measurements.

Besides of the fit result, the next sections will present also a validation
of the fitting framework. We will present pull distributions, likelihood scans
and the fit projections. As the data is of high quality, we begin to be sensitive
to small details of the signal description, which require to introduce the Kπ
S-wave component in the Bd description.

5.1 Kπ S-wave Contribution

Up to now we concentrated the discussion of the Bd decay on the Bd →
J/ψK∗ decay itself, the swap component, where pion and kaon hypothe-
sis is swapped, and the empirical background parameterization. But when
checking the projections of the fit results using the previously defined time
dependent decay rate (equation 4.24), especially the cosψ distribution (see
Figure 5.1) does not seem to be described very well by the data anymore

The reason for the discrepancy is another contribution to the signal, which
is not covered by the signal probability density function and not included in
the background parameterization. We analyse the Bd decay to two vector
mesons, but the decay Bd → J/ψKπ is also possible and previous studies
[59] have shown, that it is not negligible. In principle the Kπ can have any

73
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integer spin, but the S and P waves are the main contributions. We can
extend the differential decay rate to include the Kπ S-wave contribution and
the interference between the S and P wave. The signal probability density
function for a Bd meson gets

d4P (~ω, t, ξ)

d~ωdt
∝
= cos2 λ{[|A0(0)|2f1(~ω) + |A||(0)|2f2(~ω)

+ |A⊥(0)|2f3(~ω) + |A0(0)||A||(0)|f5(~ω) cos(δ||)

+ |A||(0)||A⊥(0)|f4(~ω)[sin(δ⊥ − δ||)]
+ |A0(0)||A⊥(0)|f6(~ω)[sin(δ⊥)]]

+ sin2 λf7(~ω)

+ 1/2 sin 2λ(f8(~ω) cos(δ|| − δS)|A|||+ f9(~ω) sin(δ⊥ − δS)|A⊥|
+ f10(~ω) cos(δS)|A0|)}
×e−Γdt, (5.1)

where δs is another strong phase due to the S-wave component, AS = |AS|eiδs,
and λ is proportional to its amplitude. It is defined as:

cosλ =
AP

√

A2
P + |AS|2

sinλ =
|AS|

√

A2
P + |AS|2

,

where AS is the amplitude of the Kπ S-wave and AP is the amplitude for
the resonant K∗ P-wave. For more details see reference [60]. The f functions
are defined as

f7(~ω) =
3

32π
2(1− sin2 θ cos2 φ)

f8(~ω) = − 3

32π

√
6 sinψ sin2 θ sin 2φ

f9(~ω) =
3

32π

√
6 sinψ sin 2θ cosφ

f10(~ω) =
3

32π
4
√

3 cosψ(1− sin2 θ cos2 φ). (5.2)

In Figure 5.1 we can see the improvement in the fit projection when allow-
ing for the Kπ S-wave contribution in the fit function. The same behaviour
was seen by the B factories [58, 60]. Similar to the swap component in the
Bd signal, we can either include the S-wave in the fit function or add it to
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Figure 5.1: Sideband subtracted and acceptance corrected cos(ψ) fit projec-
tion for Bd without (left) and with (right) Kπ S-wave contribution.

the systematic uncertainties. As this is a more complete description of the
physics, we use the fit including the Kπ S-wave as baseline fit and assign the
difference to the fit without S-wave as systematic uncertainty.

5.2 Fit Verification

For an experiment there is typically only one set of data, which is used in
the fit to derive the best estimate of the parameters. We do know the true
values only by some uncertainty from other experiments or by theoretical
predictions. Any sample is subject to statistical fluctuations, therefore we
want to know whether the fit can reproduce the true parameter within its
statistical uncertainties or not.

Typically this is done by so called toy studies using pseudo experiments.
Each pseudo experiment consists of events which are generated from dis-
tributions used in the probability density function. For example, the mass
distribution of the signal is simulated by producing random numbers with
a Gaussian distribution. In a similar way we can generate decay time and
angular distributions, which allows us to test the time dependent angular
analysis we want to use on data. If we create such a pseudo experiment
with infinite statistics, the fitter should reproduce the parameters we used
for generating the distributions. If we want to have a more realistic under-
standing of the real data, we generate the same number of events we observe
in the experiment. The single pseudo experiment will suffer from the same
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statistical uncertainty as in data. If we generate hundreds of independent
pseudo experiments, we can study the properties of the fit function. This
can be conveniently studied by creating pull distributions of the pseudo ex-
periments for each parameter derived from the fit. The pull for a parameter
p is defined as

pfit − ptrue
σpfit

, (5.3)

where pfit and σpfit
are the fit result of the parameter and its uncertainty

for the given pseudo experiment, and ptrue is the value used to produce the
distribution. In the ideal case, if the fit gives the correct answer, the pull
distributions of the pseudo experiments are Gaussians around zero with a
width of one. If this is not the case, we cannot expect that the estimated
parameter and its uncertainty from data will be correct.

The following pages show plots from pseudo experiment studies for Bd →
J/ψK∗. There are four plots for each studied variable arranged in a square.
The lower left plot shows the distribution of the fitted value. The input value
is indicated by an arrow. The lower right plot shows the distribution of the
uncertainty returned by the fit. The difference between fitted and input value
is displayed in the upper right plot. Finally the upper left plot shows the
distribution of the pulls.

1000 pseudo experiments are generated with the same number of events
as in data. The input values of the parameters are listed in Table 5.1. Figures
5.2, 5.3 and 5.4 show the parameter distributions for the toy study. Table
5.2 summarizes the result of the pull distributions for the signal parameters.
The mean and width of the Gaussian used to fit the pull distribution agree
very well with the expectations.
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parameter value
fs 0.143
M 5.28 GeV
σ 8.14 MeV
fm 0.3
sm 2.0
cτ 460 µm
A0 0.75
δ|| -2.9
A|| 0.4
δ⊥ 2.9
a -0.315
aNP -5.2
Sct 1.37

parameter value
f++ 0.069
f+ 0.077
f− 0.012
cτ++ 0.042
cτ+ 0.0062
cτ− 0.020
z1,φ 0.176
z2,φ -0.036
z1,θ 0.60
z2,θ 0.33
z1,ψ 0.80
z2,ψ 0.51
z3,ψ -0.20
z4,ψ -0.70
z5,ψ -1.0
z0,φ 0.2

Table 5.1: Parameter values used to create pull distributions for Bd.

Par. Mean signi. Width Fit prob. Shift
cτ 0.0527±0.0326 1.61 1.03±0.0231 0.0867 4.91e-05
|A0| 0.0503±0.0313 1.61 0.991±0.0222 0.757 0.000238
δ‖ 0.0253±0.0296 0.855 0.937±0.0209 0.682 0.00103
|A‖| -0.0487±0.0326 1.49 1.03±0.023 0.0886 -0.00121
δ⊥ -0.00433±0.0311 0.139 0.984±0.022 0.815 -0.00149

Table 5.2: Summary of the Gaussians fitted to the pull distributions for the
individual parameters. The significance of the deviation of the mean is listed
in the third column. The fit probablility of the Gaussians are listed in the
fifth and the shift of the mean of the parameter distribution to the value
used for production is in the sixth column.
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Figure 5.2: Distribution of pull (upper left), parameter (lower left), error
(lower right) and parameter shifted with respect to the production value
(upper right) for cτ (four left plots) and |A0| (four right plots) for Bd. The
production value is denoted by the arrow.
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80 CHAPTER 5. BD RESULTS

5.3 Fit Projections

Another very important check is the agreement of the fit model with the
derived parameters and the data. For a multidimensional fit, this cannot be
easily visualized in the multidimensional space. Therefore, the projection for
each of the variables is done by integrating over all other variables. These
one dimensional distribution can be then easily compared to data.

As described in Chapter 4 the parameters of the background are estimated
from the mass sidebands before the final fit. The empirical parameterization
of the background can be checked using the projection of the sidebands. In
Figure 5.5 the projections of the angles and decay time are shown. The
fit does agree very well with the background. The mass distribution is not
shown, since we remove the events in the signal mass region.

The final fit projections are shown for in Figure 5.6. The full fit results,
as well as the signal (including the Kπ S-wave contribution) and background
part are plotted separately. Besides the fit projection comparison, there are
more analytical ways to compare the agreement between data and the fit
results. χ2, defined as

χ2 =

n
∑

i=1

(yi − yt,i)2

yi
(5.4)

can be used to quantify the agreement of two distributions. Here yi are the
number of entries in bin i and yt,i is the prediction from the fit. The χ2

value should be roughly equal to the number of bins, n, minus the number of
free parameters, χ2 ≈ (n− npar.). The number of entries per bin is required
to be greater than ten to allow for a meaningful result. In principle the χ2

value should be calculated on the multidimensional space. If the likelihood
factorizes, the independent distributions can be checked. The probability to
observe such a χ2 value or larger for the given number of degrees of freedom,
ndf, is 98% (χ2/ndf = 2561/2715) for the angular function, 66% (χ2/ndf
= 80/86) for the decay time distribution and 99% (χ2/ndf = 47/71) for the
mass distribution.

5.4 Likelihood Profiles

Further the shape of the likelihood around the minimum should be studied.
There are slightly different ways to study the likelihood around the minima.
The most simple way is to vary the parameter of interest around the minima
and calculate the value of the probability density function, keeping the rest of
the parameters at their values at the global minimum. The more advanced
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Figure 5.5: Bd decay time and angular projections of the upper and lower
sidebands only.
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Figure 5.6: Projections of the results of the unbinned maximum likelihood
fit of the Bd decay.
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way would be to minimize for each point where the likelihood function is
evaluated with respect to all other parameters. In case that a parameter
is uncorrelated to all others, both methods will give the same results. For
infinite statistics, the shape of the likelihood will be parabolic. With less
statistics this might not be the case.

We scanned the most interesting signal parameters by calculating the
likelihood values for 20 interpolation points in the two σ region around the
parameter minimum. The shape of the likelihood function can be seen in
Figure 5.7. On the y-axis the difference of the likelihood to the global min-
imum is shown. All distributions are close to the expected parabolic shape
and show that the fit converged to a local minimum.

5.5 Results

None of the cross checks for the Bd decay shows any complications. They give
us confidence that the fit result and its uncertainties are properly estimated
by the likelihood method. The final results for all the Bd fit parameters
are summarized in Table 5.3. They are in good agreement with previous
measurements [57, 58]. The correlation matrix of the signal parameters of
the final fit are listed in Table 5.4. The systematic uncertainties are discussed
in Chapter 7. The fraction of Kπ S-wave contribution is estimated to be
1.6± 0.8%, which is similar to the estimation by the BaBar experiment [61].

We obtain a signal yield of ≈ 7567 ± 98 from 73726 events in the whole
region. The fitted parameters for the signal are

cτd = 455± 6 µm

|A0|2 = 0.564± 0.009

|A|||2 = 0.214± 0.012

δ|| = −2.94± 0.08

δ⊥ = 2.96± 0.06 (5.5)
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Figure 5.7: Bd likelihood profiles for the signal parameters.
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parameter lt. bkg. fit bkg. fit mass fit fit wo Kπ S-w. fit with Kπ S-w.
fs - - 0.1663± 0.0034 0.1660± 0.0021 0.1660± 0.0021
M - - 5.2793± 0.0002 5.2792± 0.0001 5.2792± 0.0001
σ - - 0.0071± 0.0007 0.0088± 0.0003 0.0088± 0.0003
fm - - 0.582± 0.121 0.306± 0.042 0.306± 0.042
sm - - 2.024± 0.131 - -
cτ [µm] - - - 454.7± 5.8 455.2± 5.8
|A0| - - - 0.755± 0.006 0.751± 0.006
δ|| - - - −2.98± 0.087 −2.94± 0.083
|A||‘| - - - 0.697± 0.018 0.700± 0.019
δ⊥ - - - 2.96± 0.06 2.96± 0.06
λ - - - - 0.123± 0.035
δs - - - - 2.27± 0.223
a - 1.42± 0.35 −0.640± 0.243 −0.20± 0.24 −0.20± 0.24
aNP - −2.16± 0.96 - −4.13± 0.65 −4.11± 0.65
f++ 0.0546± 0.0049 0.0545± 0.0050 - 0.0542± 0.0032 0.0547± 0.0033
f+ 0.0977± 0.0073 0.0975± 0.0073 - 0.1016± 0.0045 0.1016± 0.0045
f− 0.0183± 0.0022 0.0180± 0.0022 - 0.0184± 0.0012 0.0184± 0.0012
cτ++ 0.0434± 0.0028 0.0434± 0.0029 - 0.0398± 0.0017 0.0397± 0.0017
cτ+ 0.0073± 0.0008 0.0074± 0.0008 - 0.0067± 0.0004 0.0067± 0.0004
cτ− 0.0161± 0.0016 0.0162± 0.0017 - 0.0181± 0.0010 0.0184± 0.0012
Sct - 1.302± 0.013 - 1.294± 0.007 1.294± 0.007
z1,φ - 0.325± 0.016 - 0.346± 0.009 0.346± 0.009
z2,φ - 0.136± 0.030 - 0.134± 0.017 0.133± 0.017
z1,θ - 0.569± 0.085 - 0.648± 0.047 0.649± 0.047
z2,θ - 0.134± 0.097 - 0.228± 0.054 0.228± 0.054
z1,ψ - 0.893± 0.062 - 0.792± 0.036 0.800± 0.036
z2,ψ - 0.512± 0.107 - 0.527± 0.061 0.535± 0.061
z3,ψ - −0.513± 0.225 - −0.174± 0.131 −0.176± 0.132
z4,ψ - −0.820± 0.117 - −0.781± 0.067 −0.791± 0.067
z5,ψ - −0.870± 0.194 - −1.168± 0.113 −1.171± 0.114
z0,φ - 0.266± 0.043 - 0.244± 0.022 0.241± 0.022

Table 5.3: Parameter values determined in a sequence of fits for Bd.

|A0| |A‖| δ‖ δ ⊥ cτ δS λ

|A0| 1.000
|A‖| 0.033 1.000

δ‖ 0.048 0.188 1.000

δ ⊥ -0.022 0.067 0.669 1.000
cτ 0.020 -0.001 0.004 0.001 1.000
δS -0.147 -0.325 -0.100 0.103 0.000 1.000
λ 0.105 0.302 0.148 -0.076 0.006 -0.915 1.000

Table 5.4: Correlation matrix of the signal parameter of the final fit for Bd.





Chapter 6

Measurement of ∆Γ Assuming
Validity of the Standard Model

In the Standard Model, the angle 2βs = φs of the unitary triangle is very
small. This allows for the approximation to neglect the CP-violating phase
φs in the fit. In this chapter we present the measurement of the Bs lifetime
difference and mean lifetime using the simplified signal probability density
function as described in section 4.3.1.

The structure of this chapter is very similar to the previous one. For
details on definitions, see the appropriate section there. As in Bd case to
validate the fit we present pull distributions, projections and the likelihood
profiles for the signal parameters.

6.1 Fit Validation

1000 pseudo experiments are generated with the same number of events as
in data. The input values of the parameters are chosen to be close to the
values obtained on data. They are listed in Table 6.1.

Most pull distribution look very reasonable (see Figures 6.1, 6.2, 6.3 and
6.4). Table 6.2 summarizes the results of the Gaussian fit to the pull dis-
tributions. Only the mean of cτ is shifted by approximately 10% of the
statistical uncertainty with more than three sigma significance. This bias
seems to come from limited statistics, since the shift gets smaller when using
a set of pseudo experiments with larger statistics.

One of the parameters used to generate the pseudo experiments is actually
rather different from what we observe on data. When changing δ|| to a value
closer to what we obtain on data, δ|| = −2.7, the pull distribution does not
look acceptable anymore (see Figure 6.5). The distribution itself (lower left

87
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parameter value
fs 0.33
M 5.366 GeV
σ 8.14 MeV
fm 0.3
sm 2.0
cτ 440 µm
∆Γ 0.13 ps−1

A0 0.76
δ|| −2.0
A|| 0.45
δ⊥ 0
a −0.53
aNP −4.13

parameter value
f++ 0.023
f+ 0.062
f− 0.022
cτ++ 0.052
cτ+ 0.038
cτ− 0.013
Sct 1.34
z1,φ 0.30
z2,φ 0.26
z1,θ 0.5
z2,θ 0.7
z1,ψ = z2,ψ = z4 = z5 = z6 0

Table 6.1: Parameter values used to create pull distributions for Bd.

plot in Figure 6.5) shows a second peak structure at π and the peak around
the produced value is actually shifted to lower values. The fit is not able to
reproduce the signal parameters δ|| properly anymore. The influence of the
discrepancy of δ|| on the other variables seems not to be significant, since
the pull distribution are good for all other parameters (see Table 6.3). To
understand the source of the issue of the δ|| pull distribution better we will
take a look at the likelihood profiles and discuss the details in the following
section.

6.2 Likelihood Profiles

Making one dimensional scans of the likelihood function around the global
minimum revealed an interesting double structure for δ|| (see Figure 6.6). The
δ|| likelihood profile shows a symmetry around π, which can be understood
when looking at the probability density function (see equation 4.22). Since
the strong phase is only in front of the cos-term of the f5 function, the
probability density function is symmetric around π. The symmetry point
distorts the likelihood function and the fit does not determine the proper
uncertainties with un-biased central values. In the previous section we have
shown that the result of the fit is correct for the value of δ|| = 2.0, thus
indicating the proper working of the fit. Therefore we will not present a
point estimate for δ||, but only its likelihood profile as a result.
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Par. Mean signi. Width Fit prob. Shift
fs 0.0546±0.032 1.71 0.999±0.0226 0.876 -0.00196
M 0.0269±0.0319 0.843 0.995±0.0225 0.811 9.03e-06
cτ -0.103±0.0328 3.12 1.02±0.0232 0.589 -9.35e-05
∆Γ 0.0619±0.0328 1.89 1.02±0.0232 0.181 -0.000842
A0 -0.0337±0.0328 1.03 1.02±0.0232 0.274 -0.000974
δ|| 0.0306±0.0302 1.01 0.943±0.0214 0.122 -0.00816
A|| -0.00992±0.0321 0.309 1±0.0227 0.173 -0.00189

Table 6.2: Summary of the Gaussians fitted to the pull distributions for the
individual parameters. The significance of the deviation of the mean is listed
in the third column. The fit probablility of the Gaussians are listed in the
fifth and the shift of the mean of the parameter distribution to the value used
for production is in the sixth column. The pseudo experiments are produced
using the numbers from Table 6.1.

6.3 Fit Projections

The projections of the fit using only the sidebands are shown in Figure 6.7.
The background can be well parameterized using the empirical approach.
Since the cosψ distribution is simpler for the Bs decay than for Bd, only the
first two parameters of the ψ distribution, z1,ψ and z2,ψ, are used in the fit.
The fit results for the background parameters are listed in Table 6.4.

The projections of the final fit for signal and background are shown in
Figure 6.8. The signal and background parts are drawn independently. Also
the CP even and CP odd components are illustrated. The agreement between
data and fit is very good and with the current statistics, there is no indication
of any missing component in the fit.

6.4 Results

Using the neural network we obtain a signal yield of 2506± 51 for Bs. The
background description included some parameters, z4,z5 and z6, allowing for
a similar correlation between the angles as in the signal. All these parameters
turned out to be very small, indicating no such correlation in the background.
Table 6.4 shows the parameters determined in each fit step for Bs. Due to
the issues with the likelihood scan and pull distribution described in the sec-
tions before, there is no point estimate for δ||, but we present the likelihood
scan instead. To estimate the goodness of the fit a χ2 is determined for the



90 CHAPTER 6. MEASUREMENT OF ∆Γ UNDER SM ASSUMPTION

)s(fσ-true)/s(f
-5 -4 -3 -2 -1 0 1 2 3 4 5
0

20

40

60

80

100

120

-truesf
-0.03 -0.02 -0.01 0 0.01 0.02 0.03
0

20

40

60

80

100

120

sf
0.3 0.32 0.34 0.36
0

20

40

60

80

100

120

)s(fσ
0 0.002 0.004 0.006 0.008 0.01

0

100

200

300

400

500

600

(M)σ(M-true)/
-5 -4 -3 -2 -1 0 1 2 3 4 5
0

20

40

60

80

100

120

M-true
-0.5 0 0.5

-310×0

10

20

30

40

50

60

70

80

90

M
5.365 5.3655 5.366 5.3665 5.367

0

20

40

60

80

100

120

(M)σ
0 0.05 0.1 0.15 0.2 0.25 0.3

-310×0

100

200

300

400

500

Figure 6.1: Distribution of pull (upper left), parameter (lower left), error
(lower right) and parameter shifted with respect to the production value
(upper right) for the signal fraction and mass for Bs. The production value
is denoted by the arrow.

three-dimensional angular distribution using 20 × 20 × 20 bins. Bins with
low statistics are merged with neighboring bins until at least ten events are
present in data and predicted by the fitted model. We obtain the probabil-
ities of 34% (χ2/ndf = 668.0/654) for Bs with fixed φs = 0 for the angular
function, 70% (χ2/ndf = 52/58) for the decay time distribution and 96%
(χ2/ndf = 51/71) for the mass distribution. We obtain the following values
for the signal parameters

cτs = 456± 13 µm

∆Γ = 0.076+0.059
−0.063 ps−1

|A0|2 = 0.530± 0.021

|A|||2 = 0.230± 0.027

The correlation matrix of the signal parameters is shown in Table 6.5.

Constrained Fit

An additional fit was done using a theoretical constraint. As described in
section 1.2, using HQE we can estimate the lifetimes of B hadrons. One of
the results of Heavy Quark Expansion theory is that the Bs and Bd lifetime is
predicted to agree within 1%. Since the Bd lifetime is measured very precisely
at B factories, we take it as an additional constraint for the Bs lifetime in
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Figure 6.2: Distribution of pull (upper left), parameter (lower left), error
(lower right) and parameter shifted with respect to the production value
(upper right) of cτ and ∆Γ for Bs. The production value is denoted by the
arrow.

the likelihood fit. Adding up the experimental and theoretical uncertainties
we constrain the mean lifetime to 458.7± 5.3 µm.

The Gaussian constraint is included in the fit by adding the value of a nor-
malized Gaussian for the parameter of interest to the existing log likelihood
function, lnL,

lnL′ = lnL+ lnG(cτ |cτ constr, σconstrcτ ).

The Gaussian G is centered around cτ constr and its width is given by σconstrcτ .
Using the Bd mean lifetime constraint the fit result is then

cτs = 458± 5 µm

∆Γ = 0.081± 0.050 ps−1

|A0|2 = 0.531± 0.020

|A|||2 = 0.230± 0.026
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Figure 6.3: Distribution of pull (upper left), parameter (lower left), error
(lower right) and parameter shifted with respect to the production value
(upper right) of |A0| and δ‖ for Bs. The production value is denoted by the
arrow.
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Figure 6.4: Distribution of pull (upper left), parameter (lower left), error
(lower right) and parameter shifted with respect to the production value
(upper right) of |A‖| for Bs. The production value is denoted by the arrow.
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Par. Mean signi. Width Fit prob. Shift
fs 0.0142±0.035 0.406 1.01±0.0247 0.274 9.78e-05
M 0.0489±0.0358 1.36 1.03±0.0253 0.584 7.63e-06
cτ -0.101±0.0346 2.92 0.999±0.0245 0.724 -0.000127
∆Γ -0.0234±0.0337 0.695 0.972±0.0238 0.207 -0.00506
A0 -0.0346±0.0341 1.01 0.984±0.0241 0.28 -0.00108
δ|| -0.233±0.0346 6.75 0.996±0.0244 0 0.0312
A|| 0.0102±0.0334 0.305 0.965±0.0236 0.375 -0.0006

Table 6.3: Summary of the Gaussians fitted to the pull distributions for the
individual parameters. The significance of the deviation of the mean is listed
in the third column. The fit probablility of the Gaussians are listed in the
fifth and the shift of the mean of the parameter distribution to the value
used for production is in the sixth column. The pseudo experiments are
produced using δ|| = 2.7 instead δ|| = 2.0 from Table 6.1. The production
value depending bias of δ|| illustrates the symmetry of the probability density
function.
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Figure 6.6: Bs likelihood profiles for the signal parameters.
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Figure 6.7: Bs lifetime and angular projections of the upper and lower side-
bands only.
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Figure 6.8: Projections of the results of the unbinned maximum likelihood
fit of the Bs decay under the assumption of no CP violation, φs = 0.
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parameter lf bkg. fit bkg. fit mass fit fit with φs = 0 constr. fit
fs - - 0.2488± 0.0091 0.2581± 0.0053 0.2580± 0.0053
M - - 5.3663± 0.0003 5.3664± 0.0002 5.3664± 0.0002
σ - - 0.0067± 0.0012 0.0072± 0.0004 0.0072± 0.0004
fm - - 0.42± 0.34 0.32± 0.07 0.32± 0.07
sm - - 1.88± 0.40 2.32+0.20

−0.16 2.32± 0.17
cτ [µm] - - - 456.4± 13.0 458.4± 4.9
∆Γ [ps−1] - - - 0.076+0.059

−0.063 0.081± 0.050
|A0| - - - 0.728+0.014

−0.015 0.729± 0.013
δ|| - - - 2.77+0.98

−0.23 2.77± 0.31
|A′

||| - - - 0.699+0.037
−0.039 0.701± 0.036

δ⊥ - - - - -
φs - - - - -
a - −0.97± 1.20 −0.86± 1.18 −0.86± 1.15 −0.86± 1.15
aNP - −1.94± 3.89 - −2.10+3.93

−3.94 −2.10± 3.94
f++ 0.0978± 0092 0.0977± 0.0092 - 0.0916+0.0080

−0.0079 0.0912± 0.0079
f+ 0.0218± 0.0061 0.0218± 0.0062 - 0.0187+0.0063

−0.0054 0.0187± 0.0058
f− 0.0180± 0.0035 0.0179± 0.0035 - 0.0191+0.0033

−0.0029 0.0192± 0.0031
cτ++ 0.0114± 0.0017 0.0114± 0.0017 - 0.0120+0.0017

−0.0015 0.0120± 0.0016
cτ+ 0.065± 0.012 0.0644± 0.0119 - 0.0661+0.0146

−0.0105 0.0660± 0.0120
cτ− 0.0197± 0.0031 0.0197± 0.0032 - 0.0176+0.0020

−0.0022 0.0176± 0.0022
Sct - 1.368± 0.022 - 1.390+0.018

−0.017 1.390± 0.018
z1,φ - 0.106± 0.022 - 0.093± 0.017 0.093± 0.017
z2,φ - −0.017± 0.047 - −0.051+0.033

−0.032 −0.051± 0.033
z1,θ - 0.089± 0.169 - 0.188+0.128

−0.133 0.188± 0.130
z2,θ - −0.023± 0.191 - 0.039+0.146

−0.150 0.039± 0.147
z1,ψ - 0.040± 0.025 - 0.031± 0.020 0.031± 0.020
z2,ψ - −0.087± 0.048 - −0.144+0.037

−0.036 −0.144± 0.037
z0,φ - −0.037± 0.218 - 0.008+0.156

−0.159 0.008± 0.156
z4 - −0.0074± 0.0177 - −0.0001± 0.0139 −0.0001± 0.0139
z5 - 0.0005± 0.0254 - −0.0393+0.0205

−0.0204 −0.0393± 0.0205
z6 - 0.0089± 0.0253 - 0.0185± 0.0201 0.0184± 0.0201

Table 6.4: Parameter values determined in a sequence of fits for Bs.

|A0| |A‖| δ‖ ∆Γ cτ
|A0| 1.000
|A‖| 0.229 1.000
δ‖ 0.061 -0.430 1.000
∆Γ 0.656 0.464 0.027 1.000
cτ 0.422 0.372 -0.037 0.601 1.000

Table 6.5: Correlation matrix of the signal parameters determined in the
final unconstrained fit for Bs.





Chapter 7

Systematic Uncertainties

Every effect of the data that is not incorporated in the fit model might lead to
systematic effects in the parameters estimated from the unbinned maximum
likelihood fit. Using pseudo experiments we estimate the influence of each
effect that might be or is in the data, individually on the signal parameters,
by incorporating the effect in the simulation. In this chapter we present the
different effects we studied for the Bd and Bs decay under the assumption
of no CP violation (φs = 0) in interference between decay with and without
mixing. The analysis strategy for φs floating in the fit is very different and
will be presented in the next chapter.

The parameter distributions of the pseudo experiments are used to es-
timate the systematic uncertainties. The parameter distributions obtained
from the toy studies presented in the previous chapters are used as reference.
When adding a systematic effect, pseudo experiments are produced to get a
set of parameter and pull distribution for each parameter derived in the fit.
The size of the systematic uncertainty is obtained by subtracting the mean
of the references from the mean of the distributions derived when including
the systematic effects. The numerical values of the uncertainties are listed
in Table 7.1 and 7.2 for Bd and Bs, respectively.

7.1 Signal Mass Model

The signal mass distribution was modelled using a double Gaussian with a
common mean. Although the model seems to describe the data very well, it
might be that we missed an additional component. Due to the good agree-
ment using the two Gaussian, we assume that an unknown third component
of the signal description has less influence then the second Gaussian. There-
fore, by producing pseudo experiments with a double Gaussian structure, but
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fitting this allowing only a single Gaussian, the systematic effect of any third
component should be smaller then what we see in this test. This was done
for the Bd and Bs decays independently. The mass model seems to introduce
only small uncertainties on the fit results.

7.2 Angular Model of the Background

The angular model of the background was tested by using two different fitters
and quoting the differences as systematic effect. Two fits were done, one
with the complete empirical model for the background, the other with a
reduced model where some of the parameters were fixed to zero. Some of
the polynomials were reduced by some order and the terms allowing for the
correlations were disabled. This allows us to make a conservative estimation
of any forgotten parameterization, or it allows us to estimate if we used too
many parameters to model the background. In general we observe a good
agreement between the background fit and the data, but we cannot know,
whether we used to many parameters or used a model that is too simple.

7.3 Decay Time Resolution Model

As explained in section 4.2.2, the decay time distribution is not just an ex-
ponential, but it needs to be convoluted with the resolution function. A
single Gaussian is used to model the decay time resolution function. But
the negative tail in the decay time distribution of the background indicates
that this might not be enough. The decay time distributions for the pseudo
experiments are produced by simulating events following an exponential and
convoluted with a Gaussian. To estimate the influence of an additional posi-
tive and negative longlived term we simulate events where we add exponential
tails to the resolution function used to generate the pseudo experiments. The
fraction and amount of exponential tails of signal events is taken from the
fraction and lifetime of the negative lifetime component of the background.
As we can see from Table 7.2 the decay time resolution model is the major
contribution to the uncertainty of the Bs mean lifetime measurement.

7.4 Cross-Feed

The two decay channels, Bd → J/ψK∗ and Bs → J/ψ φ, analysed in this
thesis are very similar in their final decay products. They only differ in a
pion/kaon, which is combined with another kaon and two muons. This is
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especially delicate, since the pion/kaon separation is not perfect. Thus it
is very easy to misreconstruct one decay mode for the other. Bd → J/ψK∗

events can be reconstructed as Bs candidates by misidentifying the pion from
the K∗ decay as a kaon. Therefore the K∗ is reconstructed as a φ leading to
a fake Bs candidate. These candidates have by construction a mass that is
close to the true Bs mass.

Taking simulated Bd events but reconstructing them as Bs candidates
we can estimate the relative fraction of cross-feed that passes reconstruction.
Starting from the same number of simulated B events for Bd and Bs, we ob-
tain a relative reconstruction efficiency of NBd

/NBs
≈ 0.35%. Thus starting

from the same amount of Bd and Bs candidates a rather small fraction of
the Bd candidates survive. To estimate the number of Bd events in the Bs

sample we also have to take into account the relative production rate and
branching ratios. At the Tevatron the relative production rate, fd/fs, for d
and s quarks is roughly 39.6%/10.4% ≈ 3.8. Thus we will have about three
to four times more Bd than Bs mesons. Further the different branching ratios
will change the number of events for the specific decays we are interested in.
The acceptance is already taken into account by the detector simulation.

Taking the numerical values from reference [17] we estimate the fraction
of Bd in the Bs sample to be

NBd

NBs

× fd
fs

Br(Bd → J/ψK∗)×Br(K∗ → K±π∓)

Br(Bs → J/ψ φ)× Br(φ→ K+K−)
=

0.35% × 3.8 · 1.3 · 10−3 · 0.67

9.3 · 10−4 · 0.49
≈ 2.5% (7.1)

We incorporated this in the systematic studies by exchanging three percent
of the signal Bs candidates by Bd events for each pseudo experiment. For the
mean lifetime we use the Bd world average of 458.7 µm [17]. The mass shape
is taken from the simulated signal only sample. For the angular distributions
we use the parameters determined in the fit of the Bd → J/ψK∗ sample.

The reverse misreconstruction is also possible. By mis-assigning the pion
hypothesis to a kaon the φ of the Bs can be reconstructed as K∗ leading to
a Bd candidate. Taken into account the production fraction and branching
rations, the contamination in the Bd sample is one order of magnitude smaller
and therefore neglected in this analysis.
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7.5 Bd Candidates with Swapped Mass As-

signment

The swapped candidates were already discussed in more detail in section
3.5.3. We estimate on simulated event, that we can reduce the fraction
of swapped events to about half a percent using the swap suppression net-
work. We can study their effect on the fit parameters by replacing some of
the Bd events with swapped reconstructed decays, where the pion and kaon
hypothesis is exchanged, in the pseudo experiments. Since the estimation
of the fraction of those swapped reconstructed events is done on simulated
events, we want to stay conservative and therefore exchange twice as much
of the signal events with swapped candidates. From the simulated events
we know that the mass distribution is wider than for properly reconstructed
candidates. We simulate it to be three times as wide as the narrow signal
component. The decay time is the same as for un-swapped Bd candidates
and the angular distribution is taken from the simulated Bd events, which
were reconstructed with swapped Kπ assignment.

7.6 SVX Alignment

The position of the individual wavers of the silicon detector is known only
within a limited precision. To study the influence on the fit, typically sim-
ulated events are produced, where the silicon detector is slightly changed
in the detector simulation. In the previous CDF analysis of the decays pre-
sented here, the uncertainty on the the lifetime was estimated to be ±1µm[9].
More recent studies at CDF [62] also estimated the uncertainty of the mis-
alignment of the SVX detector. There it was concluded that the systematic
uncertainty on the lifetime is about 2 µm. We assume to have similar un-
certainties, as the other measurements, but we are not only interested in the
lifetime we also have to estimate the influence on other parameters, as well.
Therefore we use two sets of pseudo experiments which are generated with a
lifetime changed by ±2 µm from the measured value. As the final systematic
uncertainty on the individual parameters, we take the largest effect found for
the positive and negative shift. For Bd it is the largest source of uncertainty
for the measured lifetime.



7.7. S-WAVE CONTRIBUTION 103

7.7 S-Wave Contribution

In section 5.1 we introduced a Bd specific component in the fit, the S-Wave
contribution. It describes the decay of the Bd → J/ψK∗ without the resonant
K∗ state. We obtained a S-Wave fraction of 1.6 ± 0.8%, which does agree
with zero within 2σ. Although this component is included in the fit, we take
the difference between the fit with and without this component as additional
systematic uncertainty. This effect is not considered for Bs decays since the
φ mass width is much narrower and its mean is closer to the threshold than
for the K∗. Thus the amount of S-Wave contribution for Bs is much smaller
than for Bd.

7.8 Decay Time Uncertainty Distribution

As has be shown in reference [53] the decay time uncertainty distributions
have to be taken into account in a lifetime fit function if the distributions
are different for signal and background. They have to be included in the
likelihood function in case we want to measure a lifetime using the event-by-
event decay time measurement. The fit can be done without the decay time
uncertainty, but the result might be biased. For Bs we observed only a slight
difference in the two fits with and without the distributions and therefore
neglect the difference.

The change in the parameters for Bd was much larger when comparing
those two fits. Therefore we decided to take the difference into account
and add it as a systematic uncertainty. Since the fit without decay time
uncertainty distributions is overestimating the effect, we used half of the
observed difference as systematic uncertainty.

7.9 Summary

In this chapter we have described different effects that might affect the fit re-
sult in one direction or the other. The systematic uncertainties for the signal
parameters are summarized in tables 7.1 and 7.2. The total uncertainty is
obtained by adding individual contributions in quadrature. The distribution,
the values are derived from, can be found in reference [63].
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Sys. Eff. \ Parameter: cτ [µm] |A0| |A||| δ|| δ⊥
Signal mass model 2 0.001 - 0.001 0.003
ct resolution model 3 - 0.002 0.005 0.002
K/π swap 2 0.001 0.001 0.001 0.003
SVX alignment 4 - - 0.001 0.001
Angular bg. model 2 0.005 0.004 - -
S-Wave 1 0.006 0.004 0.031 0.002
σ(ct) templates 1 0.005 0.002 0.006 0.003
Total 6 0.009 0.006 0.032 0.006

Table 7.1: Summary of systematic uncertainties assigned to the signal pa-
rameters of the Bd decay.

Sys. Eff. \ Parameter: cτ [µm] ∆Γ |A0| |A||| δ||
Signal mass model - 0.001 0.001 0.002 0.004
ct resolution model 7 0.003 0.001 0.001 0.003
Bd cross feed - 0.004 0.003 0.003 0.069
Binning - - 0.002 - -
SVX alignment 1 0.002 - - 0.001
Angular bg. model 2 0.004 0.006 0.002 0.072
Total 7 0.006 0.008 0.009 0.100

Table 7.2: Summary of systematic uncertainties assigned to the signal pa-
rameters of the Bs decay assuming φS = 0.



Chapter 8

Measurement of φs

In the fit with floating φs we observe a systematic bias explained in the next
section. As the bias is large and non-linear, we decided not to correct the
central value and the uncertainty for this bias but to quote a p-value for com-
patibility with the Standard Model and to create a confidence region using
likelihood ratios. In this way the bias is automatically taken into account
by the pseudo experiments. These methods and the result are introduced in
this chapter.

8.1 Systematic Bias

A maximum likelihood estimator is only guaranteed to be without any bias in
the fit parameters for unlimited statistics (see also section 4.1). The amount
of statistics needed for unbiased results depends on the probability density
function and the value of the parameters. When fitting for ∆Γ under the
assumption of φs = 0 we had the first experience with a problematic variable,
the strong phase δ‖. There the value of the parameter is close to a symmetric
point which together with the available statistics leads to a situation where
two solutions are not well separated. For the fit of Bs with free φs we observe
systematic biases when using pseudo experiments. In Figure 8.1 the fit results
for 750 pseudo experiments are shown. The experiments were produced
using φs = 0 and ∆Γ = 0.1 as input, which is close to the standard model
expectation.

Naively we would expect that the parameter distribution from the pseudo
experiments is centered around the production value and symmetric on both
sides. Due to the four fold ambiguity described in section 4.3, all results are
transformed to positive values of ∆Γ and negative φs. For ∆Γ the mean of
the distribution tends to larger values with additional long tails leading to
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an asymmetric shape. For φs the situation is a bit more complicated, since
the distribution was produced at zero, but is strongly shifted away from zero.
Due to the mentioned ambiguity, all values are flipped to the negative side.
The shape of the distribution is a combined effect of statistical uncertainties
and a bias to larger values. The bias explains the lack of fitted values at zero
for φs and the surprisingly large absolute values of the parameter distribution,
although the pseudo experiments were produced with φs = 0.

Similar to the difficulties of the strong phase δ‖ for the Standard Model
assumption fit, we can understand the behavior of the pseudo experiments
by inspecting the probability density function. There are some difficulties
when parameters tend toward some special values. As a reminder, the time
dependent angular distribution, which was derived before (see equation 4.10),
is

d4P (~ω, t)

d~ωdt
∝ |A0(0)|2f1(~ω)(T+)

+ |A||(0)|2f2(~ω)(T+)

+ |A⊥(0)|2f3(~ω)(T−)

+ |A0(0)||A||(0)|f5(~ω) cos(δ||)(T+)

+ |A||(0)||A⊥(0)|f4(~ω)[cos(δ⊥ − δ||) sinφs(e
−ΓH t − e−ΓLt)/2]

+ |A0(0)||A⊥(0)|f6(~ω)[cos(δ⊥) sinφs(e
−ΓH t − e−ΓLt)/2], (8.1)

where

T± = ((1± cos φs)e
−ΓLt + (1∓ cosφs)e

−ΓHt)/2.

Two parts of the function are zero for φs = 0. This leads to an undetermined
parameter δ⊥ and an effective loss of degree of freedoms of the probability
density function. Similar if ∆Γ = 0.0 ps−1 the lifetimes τH and τL have
the same value and the difference of their exponentials gets zero. Then the
two parameters φs and δ⊥ cannot be estimated anymore. Any statistical
fluctuation in the sample will allow the likelihood estimator to find a better
minimum when allowing these values from being non-zero, since there are
more degrees of freedom to parameterize the data. This also means that
with larger true φs the bias gets smaller because there is less room to improve
the fit result by increasing the values. For ∆Γ the statistical uncertainty is
comparable to the magnitude of the result, but for φs the uncertainty is much
larger than the expected value. Due to the non-linearity of the φs bias, we
are not able to determine the true value on data.

These complication in the fit function need special treatment, since the
value and its uncertainty of the affected parameters will be biased. When
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Figure 8.1: Fit result of ≈ 750 pseudo experiments for ∆Γ (top left) and
φs (top right) with an assumption of φs = 0 and ∆Γ = 0.1 (blue arrows).
The bottom plot, φs versus ∆Γ, illustrates the bias away from zero for both
parameters. φs and ∆Γ are significantly shifted in this case.
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obtaining the result on data, it will be difficult to estimate the un-biased
value. Therefore we check first the agreement of the Standard Model with
our result on data and then extend this procedure to derive a confidence
region in the ∆Γ− φs plane corresponding to the fit result on data.

8.2 P-Value Definition

We need some way to express the agreement between the fit result on data and
any specific model. We want to make a test of the specific hypothesis, that the
true values are the ones given by the model. To quantify the compatibility of
the fit result with any specific model we use a likelihood ratio R as suggested
by Feldman and Cousins [64]. It is defined as

R(∆Γ, φs) = log
L(∆̂Γ, φ̂s, θ̂)

L(∆Γ, φs, θ̂′)
, (8.2)

where θ denotes all other fit parameters, except the ones tested (∆Γ, φs),
and the hat indicates the values of parameters that minimize L. Note that θ̂
are the parameter values that minimize L for floating ∆Γ and φs and θ̂′ are
the values at the minimum for ∆Γ and φs fixed to the values of the model
of interest. The R value from data can then be compared to an R-value
distribution obtained from pseudo experiments to calculate a probability for
the agreement. The step-by-step procedure is the following:

• In the pseudo experiments that we generate to obtain the distribution
of likelihood ratios for fixed values of ∆Γ and φs we have to choose
values for all other parameters. Our best estimate for these parameters
are the values obtained from a fit to data, where we fix ∆Γ and φs to
the specific values we want to test. This procedure is know as plug-
in method and allows us to determine all other parameters, θ, for a
specific model.

• For the specific pair of ∆Γ and φs values that we want to investigate
we generate pseudo experiments with the given ∆Γ and φs values and
the other input parameters, θ, set to the values obtained from the fit
to data in the previous step.

• We then compare the normalized distribution of R values from the
pseudo experiments f(R,∆Γ, φs) to the value Rdata(∆Γ, φs) from data
to obtain the p-value, which is defined as

p(∆Γ, φs) =

∫ ∞

Rdata(∆Γ,φs)

f(R,∆Γ, φs)dR. (8.3)
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As there is no clear way how to incorporate the systematic uncertainties
and as they are small compared to the statistical uncertainties, we only in-
clude the statistical uncertainty in the calculation of the p-values and the
confidence region.

With this frequentist method we are able to determine the probability
that we observe a result with R ≥ Rdata, if ∆Γ and φs are the values predicted
by some model. We can extend this method to create a confidence region of
the fit result on data instead of quoting results for single hypothesis.

8.3 Confidence Region

We use the same method as described in the previous section to define a
confidence region that contains with 90% and 95% probability the true val-
ues of ∆Γ and φs. In order to construct such a region, for each pair on a
∆Γ-φs grid we generate pseudo experiments and determine the distribution
f(R,∆Γ, φs) of likelihood ratios. The confidence region is then defined by
the ∆Γ-φs pairs which satisfy the conditions

p(∆Γ, φs) > 10% ⇔ (∆Γ, φs) inside 90% C.L. region

p(∆Γ, φs) > 5% ⇔ (∆Γ, φs) inside 95% C.L. region (8.4)

The p-value calculation in the ∆Γ-φs plane is only an approximation, since
we do not know whether the shape would change for a different value of the
other parameter. The optimal thing to do, would be to create a confidence
region on the multidimensional space of all parameters. But the vast number
of test points in such a grid would be enormous and would require a lot of
time and computational resources. On the other hand we assume that the
confidence region will mainly depend on the two parameters of interest. To
check this we modify some of the other parameters for several points to check,
whether our assumption is legitimate. Further we checked that systematic
effects do not strongly influence our results.

Plug-In Method Cross-Checks

To check that the plug-in method does not lead to a significant under- or
over-coverage we generated pseudo experiments with varied values for cτ ,
δ|| and δ⊥, the parameters that show the strongest correlation to ∆Γ and
φs. The R-distributions and the p-values obtained from this variation are
shown for three different ∆Γ-φs pairs in Figures 8.2, 8.3 and 8.4. No strong
dependence on the varied parameters is observed.
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Figure 8.2: Influence of cτ and δ|| on the likelihood ratio and p-value for
∆Γ = 0.10 ps−1 and φs = 0.0 (δ⊥ was not considered, since for φs = 0.0 δ⊥
is undetermined). The blue and red distributions are for input parameters
which were shifted by ±1σ. p is the estimated probability and P denotes
the probablility to observe a value for χ2 or larger for the agreement of the
distributions for the original and shifted parameters.

A confidence region does only take into account statistical uncertainties.
We checked that the whole shape is not strongly affected by systematic ef-
fects by comparing the p-value distribution of one point in the confidence
region with simulated pseudo experiments including tails in the decay time
uncertainty distributions and including cross feeds from B0 as described in
the section 7.3 and 7.4 respectively. In Figure 8.5 it is shown that there is
no large discrepancy observed.

To keep the computational resources in a reasonable range, the fit of the
toys at each point for the confidence region was done using a faster fit pro-
cedure than the one used for the final fits on data in Chapter 5 and 6. The
background parameters were estimated from the sidebands and kept fixed
when fitting the signal region. To confirm that this does not influence the
confidence region, we compared for two point that there is no large discrep-
ancy in the p-values (Figure 8.6).

8.4 Results

In this chapter we presented the method used to derive the agreement be-
tween our data and different models. Especially important here is the good
agreement with the Standard Model of p-value(SM)= 22%. We also scanned
the full ∆Γ-φs plane to estimate the region which is compatible at 90% and
95% confidence level with the result we observe on data. The result is shown
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Figure 8.3: Influence of cτ , δ|| and δ⊥ on the likelihood ratio and p-value for
∆Γ = 0.30 ps−1 and φs = π/2. The blue and red distributions are for input
parameters which were shifted by ±1σ. p is the estimated probability and P
denotes the probablility to observe a value for χ2 or larger for the agreement
of the distributions for the original and shifted parameters.



112 CHAPTER 8. MEASUREMENT OF φS

R = -(LH ratio)
0 5 10 15 20 25

fr
ac

. o
f 

p
se

u
d

o
 e

xp
er

im
en

ts

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

: p= 0.10τc
P= 0.43: p= 0.09  τc
P= 0.39: p= 0.11  τc

R = -(LH ratio)
0 5 10 15 20 25

fr
ac

. o
f 

p
se

u
d

o
 e

xp
er

im
en

ts

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

: p= 0.10||δ
P= 0.58: p= 0.07  ||δ
P= 0.41: p= 0.10  ||δ

R = -(LH ratio)
0 5 10 15 20 25

fr
ac

. o
f 

p
se

u
d

o
 e

xp
er

im
en

ts

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

: p= 0.10δ
P= 0.60: p= 0.09  δ
P= 0.41: p= 0.08  δ

Figure 8.4: Influence of cτ , δ|| and δ⊥ on the likelihood ratio and p-value for
∆Γ = 0.15 ps−1 and φs = 3π/4. The blue and red distributions are for input
parameters which were shifted by ±1σ. p is the estimated probability and P
denotes the probablility to observe a value for χ2 or larger for the agreement
of the distributions for the original and shifted parameters.
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Figure 8.5: Differences of the p-value when producing pseudo experiments
with and without specific systematic effects (left: resolution model, right: Bd

cross feed) for: ∆Γ = 0.15 ps−1, φs = 3π/4. The blue and red distributions
are for input parameters which were shifted by ±1σ. p is the estimated
probability and P denotes the probablility to observe a value for χ2 or larger
for the agreement of the distributions for the original and shifted parameters.
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Figure 8.6: Differences of the p-value when letting all parameters float in the
final fit and fixing the background parameters using sideband for two points:
∆Γ = 0.10 ps−1, φs = 0.0 and ∆Γ = 0.15 ps−1, φs = 3π/4. The blue and
red distributions are for input parameters which were shifted by ±1σ. p is
the estimated probability and P denotes the probablility to observe a value
for χ2 or larger for the agreement of the distributions for the original and
shifted parameters.
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Figure 8.7: 90% and 95% confidence region in the φs-∆Γs plane. Only the
first quadrant is shown. The other three quadrants can be obtained via the
transformations given in equations 4.12 and 4.13.
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in Figure 8.7. It should be mentioned that the confidence region does not
directly relate to a two dimensional likelihood scan. The confidence region
takes into account any observed biases by testing the hypothesis for each
single point.





Chapter 9

Summary and Outlook

Detailed studies of mesons containing bottom quarks allow precise tests of the
Standard Model and provide unique opportunities to search for new phenom-
ena beyond the current theoretical knowledge. The time dependent angular
analysis of B meson decays provides an ideal proving ground for our current
theoretical understanding. The Tevatron, a proton anti-proton collider at a
center of mass energy of

√
s = 1.96 TeV, is currently the only place which

provides sufficient energy to produce Bs mesons. The observed events used
in this analysis are recorded by the CDF II experiment, one of the two de-
tectors, designed to detect and measure the properties of particles produced
in those collisions. The complex hadronic environment and the high colli-
sion rate need advanced trigger techniques to select the events of interest.
One of the characteristic signatures of the two B meson decays of interest,
Bd → J/ψK∗ and Bs → J/ψ φ, is the occurrence of two muons which can be
exploited in the trigger. This analysis uses 1.7 fb−1 (1.3 fb−1 for Bd) of data
preselected by the di-muon trigger. The goal of this analysis was to do mea-
sure the lifetime difference ∆Γ of the two mass eigenstates, BsH and BsL, the
mean Bs lifetime cτs and the weak phase φs, using a time dependent angular
analysis of the Bs decays. The lifetime difference does also depend on the
weak phase φs, which originates from CP violation in interference between
decays with and without mixing. In the Standard Model this phase is very
small, allowing for the approximation of no CP violation. These parame-
ters are of particular physical interest as they allow to constrain the possible
contribution of new physics. The angular analysis was implemented as an
unbinned maximum likelihood fit.

Multiple neural networks are used to improve the event selection of the
B mesons. The neural networks allow to combine the input variables opti-
mally into a single discriminating variable, which takes correlations between
the variables into account. Simulated signal events and combinatorial back-

117
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par. this work Belle [58] BaBar [57]

cτd 454 ± 6± 6 µm
|A0|2 0.569 ± 0.009 ± 0.006 0.574 ± 0.012 ± 0.009 0.556 ± 0.009 ± 0.010
|A|||2 0.210 ± 0.011 ± 0.007 0.231 ± 0.012 ± 0.008 0.211 ± 0.010 ± 0.006

δ|| −2.990 ± 0.09 ± 0.01 −2.887 ± 0.090 ± 0.008 −2.93 ± 0.08 ± 0.04

δ⊥ 2.963 ± 0.06 ± 0.01 2.938 ± 0.064 ± 0.010 2.91 ± 0.05 ± 0.03

Table 9.1: Our final result for the mean lifetime, the decay amplitudes and
the strong phases for the Bd measurement, and the latest available results
from the B factories. The uncertainties show competitive precision of CDF
to dedicated B experiments.

ground events from data were used as training patterns. The final candidate
selection provided a signal yield of roughly 7500 Bd and 2500 Bs events when
optimizing the cut on the neural network output to maximize the significance,
NS/
√
NS +NB, where NS and NB are the number of signal and background

events, respectively.

The Bd → J/ψK∗ decay channel was analyzed to cross-check the analysis
strategy by comparing with the results from the B factories, which did very
similar analyses of the same decay channel. The final result for the mean
lifetime, the decay amplitudes and the strong phases are shown together with
the latest available results from the B factories [57, 58] in Table 9.1. The re-
sults of the independent experiments are consistent within their uncertainties.
Also the measured Bd lifetime is in very good agreement to the world average
of 458.7±2.7 µm [17]. Compared to the previous CDF measurement [9], the
Bd analysis was extended by the neural network for suppressing misrecon-
structed Bd events, where the kaon/pion particle hypothesis was swapped,
by the additional non-resonant Kπ S-wave Bd component and by increased
statistics. The new result is compatible with the previous measurement with
about 2.5 times smaller uncertainties.

The same method developed in this thesis can be used to investigate direct
CP violation, since Bd → J/ψK∗ is a flavor specific decay mode where the
charge of the kaon is directly correlated to the flavor of the b quark. Typically,
direct CP violation is measured by an asymmetry in the total decay rate of
each flavor. The angular analysis allows for a complementary measurement
in the future by making two independent time dependent angular fits for Bd

and B̄d separately.

Analyzing the Bs → J/ψ φ decay channel assuming no CP violation, φs =
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Figure 9.1: Bs likelihood profile for the strong phase under the assumption
of no CP violation.

0, the following results for the physical parameters are obtained by the fit

cτs = 456± 13(stat.)± 7(sys.) µm

∆Γ = 0.076+0.059
−0.063(stat.)± 0.006(sys.) ps−1

|A0|2 = 0.530± 0.021(stat.)± 0.007(sys.)

|A|||2 = 0.230± 0.027(stat.)± 0.009(sys.).

The likelihood profile for the strong phase δ|| is shown in Figure 9.1. Having
the current number of events, two equally allowed solutions are very close to
each other. The non-parabolic shape can be understood from the symmetry
of the strong phase in the probability density function around π. More
statistics will allow to separate the two solutions and to give a numerical
result for δ|| in the future.

In addition, a second fit was done where the Bs lifetime was constrained
to be equal to the well measured Bd lifetime. The experimental uncertainty
was added to the 1% theoretical uncertainty from Heavy Quark Expansion
(HQE) theory. For the Bs fit assuming φ = 0 and using the Gaussian lifetime
constraint cτs = 458± 5.3 µm, the result is

cτs = 458± 5(stat.)± 7(sys.) µm

∆Γ = 0.081± 0.050(stat.)± 0.006(sys.) ps−1

|A0|2 = 0.531± 0.020(stat.)± 0.007(sys.)

|A|||2 = 0.230± 0.026(stat.)± 0.009(sys.).
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The lifetime difference of the Bs mass eigenstates from the constrained
and unconstrained fits are in very good agreement with Standard Model
expectations. The measured mean lifetime for the unconstrained Bs fit is
also in very good agreement with the current mean lifetime for Bd. The
agreement between the mean lifetimes of the two neutral B mesons, Bs and
Bd, is one of the predictions from HQE. The Bs lifetime and the lifetime
difference are currently the most precise measurements of these quantities.

When fitting the floating weak phase, a bias to larger values in ∆Γ and φs
is observed. The source of the bias is related to the smallness of the physical
parameters of interest and the structure of the probability density function.
Due to the limited number of events, the statistical uncertainties on those
parameters are rather large and the maximum likelihood fit tends to increase
those parameters, since it allows to describe any statistical fluctuation. To
circumvent those difficulties probabilities are derived from likelihood ratios
to constructed a confidence region, which takes the bias into account. A
likelihood ratio, following the procedure suggested by Feldman-Cousins [64],
is used to test for the compatibility of a specific ∆Γ-φs pair with the data.
Scanning many points in a grid in the ∆Γ-φs plane, a region is constructed
which contains the true ∆Γ-φs values at a 90% or 95% confidence level. One
of these points is the Standard Model assumption, where the interference
induced weak phase is negligible and ∆Γ was set to 0.1 ps−1. The probability
to observe our result on data under the Standard Model assumption is 22%.
The whole confidence region is shown in Figure 9.2. This figure also includes
a band which denotes new physics models. Our result does not allow to
exclude any of these models.

In conclusion, the currently most precise values for the mean lifetime and
the lifetime difference of the two mass eigenstates of the Bs are obtained.
The measurement of the CP violating phase is in good agreement with the
Standard Model expectation.

The time dependent angular analysis can be extended to add the flavor
tagging information of the b quark at production time for each event into the
fit. One of the prerequisites for this is a good measurement of the Bs mixing
frequency, done last year by CDF [4]. The result of the mixing measurement
combined with the flavor tagging information will lead to a more precise
measurement of the weak phase using the angular analysis and will allow
to make more stringent constraints on physics beyond the Standard Model.
This effort is currently ongoing by both collaborations DØ and CDF at the
Tevatron and will provide interesting results and more insight into the Bs

system in the near future.
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Figure 9.2: 90% and 95% confidence region in the φs-∆Γs plane. Only the
first quadrant is shown. The other three quadrants can be obtained via the
transformations φs → −φs and ∆Γ→ −∆Γ, φs → φs + π.





Appendix A

Trigger Paths

L2 Trigger L3 Trigger
L2 AUTO L1 CMU1.5 PT1.5 & CMX1.5 PT2 JPSI CMU1.5 CMX20
L2 AUTO L1 CMU1.5 PT1.5 & CMX1.5 PT2 CSX JPSI CMU1.5 CMX22
L2 AUTO L1 CMU1.5 PT1.5 & CMX1.5 PT2 CSX PS0 JPSI CMU1.5 CMX23
L2 AUTO L1 TWO CMU1.5 PT1.5 JPSI CMU1.5 CMX2 ALLPHI
L2 PS100 L1 CMU1.5 PT1.5 & CMX1.5 PT2 CSX JPSI CMU1.5 CMX2 NOL2
L2 PS100 L1 TWO CMU1.5 PT1.5 JPSI CMU1.5 CMX2 NOL2
L2 PS10 L1 CMU1.5 PT1.5 & CMX1.5 PT2 CSX JPSI CMU1.5 CMX2
L2 PS10 L1 TWO CMU1.5 PT1.5 JPSI CMU2 CMX2 PS10
L2 TWO CMU1.5 PT1.5 DPHI120 OPPQ JPSI CMU2 CMX2 PS2
L2 TWO CMU1.5 PT1.5 DPHI120 OPPQ DPS JPSI CMU2 CMX2 PS50
L2 TWO CMU1.5 PT2 DPHI120 OPPQ JPSI CMUCMU1.5
L2 TWO CMU1.5 PT2 DPHI120 OPPQ PS10 JPSI CMUCMU1.5 ALLPHI
L2 AUTO L1 CMUP6 PT4 JPSI CMUCMU1.5 NOL2
L2 CMU1.5 PT1.5 & CMX1.5 PT2 DPHI120 OPPQ JPSI CMUCMU2
L2 CMU1.5 PT1.5 & CMX1.5 PT2 DPHI120 OPPQ DPS JPSI CMUCMU2 PS10
L2 CMU1.5 PT1.7 & CMU1.5 PT3 1.7MT7 DPS JPSI CMUCMU2 PS2
L2 CMU1.5 PT1.7 & CMU1.5 PT3 1.7MT7 LUMI 185 JPSI CMUCMU2 PS50
L2 CMU1.5 PT1.7 & CMX1.5 PT3 1.7MT7 DPS JPSI CMUCMU MT DPS
L2 CMU1.5 PT1.7 & CMX1.5 PT3 1.7MT7 LUMI 185 JPSI CMUCMU MT LUMI 185
L2 CMU1.5 PT2 & CMX1.5 PT2 DPHI120 OPPQ PS10 JPSI CMUCMX3 MT DPS
L2 CMU1.5 PT2 & CMX1.5 PT2 DPHI120 OPPQ PS2 JPSI CMUCMX3 MT LUMI 185
L2 CMU1.5 PT2 & CMX1.5 PT2 DPHI120 OPPQ PS50 JPSI CMUP4 CMU1.5
L2 CMUP6 PT8 JPSI CMUP4 CMU1.5 L2 DPS
L2 CMUP6 PT8 DPS JPSI CMUP4 CMU L2 DPS
L2 CMX1.5 PT2 & CMU1.5 PT3 1.7MT7 DPS JPSI CMUP4 CMX2
L2 CMX1.5 PT2 & CMU1.5 PT3 1.7MT7 LUMI 185 JPSI CMUP4 CMX2 L2 DPS
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L2 DPS L1 CMUP6 PT4 JPSI CMUP4 CMX L2 DPS
L2 PS200 L1 CMU1.5 PT1.5 & CMX1.5 PT2 CSX JPSI CMUPCMU HIGHPT
L2 PS200 L1 TWO CMU1.5 PT1.5 JPSI CMUPCMU HIGHPT DPS
L2 PS500 L1 CMU1.5 PT1.5 & CMX1.5 PT2 CSX JPSI CMUPCMX HIGHPT
L2 RL20HZ L1 CMUP6 PT4 JPSI CMUPCMX HIGHPT DPS
L2 TRK8 L1 CMUP6 PT4 JPSI CMXCMU3 MT DPS
L2 TWO CMU1.5 PT2 DPHI120 OPPQ PS2 JPSI CMXCMU3 MT LUMI 185
L2 TWO CMU1.5 PT2 DPHI120 OPPQ PS50 EXPRESS JPSI CMUCMU

Table A.1: Summary of triggers used in this analysis.



Appendix B

Neural Network Input
Variables

# Variable Bs Bd

1 training target ← the target of the training:
signal or background

3 pt(B) ← transverse momentum of the
B meson (Bs or Bd)

10 pt(J/ψ) ← transverse momentum of the
intermediate J/ψ resonance

5 pt(φ) pt(K
∗) transverse momentum of the

intermediate φ or K∗ resonance
8 pt(K1) pt(K) transverse momentum of the one of

the Bs kaons or of the kaon in Bd

9 pt(K2) pt(π) transverse momentum of the other
kaon or pion

15 max(pt(µ
+), pt(µ

−)) ← maximal transverse momentum
of the two muons

16 min(pt(µ
+), pt(µ

−)) ← minimal transverse momentum
of the two muons

12 |Mµµ −MPDG
J/ψ | ← mass difference of the di-muon

resonance to the
J/ψ world average mass

7 |MKK | |MKπ| mass of the di-kaon (Bs) or
kaon-pion (Bd) resonance

4 Prob(χ2)(Bs) ← Probability of the B meson
vertex fit
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11 Prob(χ2)(J/ψ) ← Probability of the J/ψ
resonance vertex fit

6 Prob(χ2)(φ) (K∗) Probability of the φ or
K∗ resonance vertex fit

2 χ2
rφ(B) ← χ2

rφ of the B
meson vertex fit

17 PIDK(K+) PIDK(K) likelihood ratio for kaon
particle identification

18 PIDπ(K
+) PIDπ(K) likelihood ratio for pion

particle identification
19 PIDK(K−) PIDK(π) likelihood ratio for kaon

particle identification
20 PIDπ(K

−) PIDπ(π) likelihood ratio for pion
particle identification

13 max(lh(µ+), lh(µ−)) ← likelihood ratio for
muon particle identification

14 min(lh(µ+), lh(µ−)) ← likelihood ratio for
muon particle identification



Appendix C

Derivation of the fit function

The time evolution of the angular distribution for tagged Bs mesons is [16]

d3Γ(Bs(t))

d~ω
∝ |A0(t)|2f1(~ω) + |A||(t)|2f2(~ω)

+ |A⊥(t)|2f3(~ω) + Re(A0(t)
∗A||(t))f5(~ω)

+ Im(A||(t)
∗A⊥(t))f4(~ω)

+ Im(A0(t)
∗A⊥(t))f6(~ω), (C.1)

whereas for B̄s mesons it has the form

d3Γ(B̄s(t))

d~ω
∝ |Ā0(t)|2f1(~ω) + |Ā||(t)|2f2(~ω)

+ |Ā⊥(t)|2f3(~ω) + Re(Ā∗
0(t)Ā||(t))f5(~ω)

+ Im(Ā∗
||(t)Ā⊥(t))f4(~ω)

+ Im(Ā∗
0(t)Ā⊥(t))f6(~ω), (C.2)

using [65]

A∗
f̃
(t)Af (t) =< (X1X2)f̃ |Heff |Bs >

∗< (X1X2)f |Heff |Bs >

×[|g+(t)|2 + ηf̃CPe
−iφsg+(t)g∗−(t) + ηfCP e

iφsg+(t)∗g−(t) + ηf̃CPη
f
CP |g−(t)|2],

(C.3)

and

Ā∗
f̃
(t)Āf (t) =< (X1X2)f̃ |Heff |Bs >

∗< (X1X2)f |Heff |Bs >

×[|g−(t)|2 + ηf̃CP e
−iφsg∗+(t)g−(t) + ηfCPe

iφsg+(t)g∗−(t) + ηf̃CPη
f
CP |g+(t)|2],

(C.4)

127



128 APPENDIX C. DERIVATION OF THE FIT FUNCTION

where

|g±(t)|2 =
1

4
[e−ΓLt + e−ΓLt ± 2e−ΓL cos(∆mt)]

g+(t)g∗−(t) =
1

4
[e−ΓLt − e−ΓLt − 2ie−ΓL sin(∆mt)]. (C.5)

A straight forward calculation gives the time evolution

|A0(t)|2 =
|A0(0)|2

2
[(1 + cos(φs))e

−ΓLt + (1− cos(φs))e
−ΓH t

−2e−Γt sin(∆mt) sin(φs)]

|Ā0(t)|2 =
|A0(0)|2

2
[(1 + cos(φs))e

−ΓLt + (1− cos(φs))e
−ΓH t

+2e−Γt sin(∆mt) sin(φs)]

|A||(t)|2 =
|A||(0)|2

2
[(1 + cos(φs))e

−ΓLt + (1− cos(φs))e
−ΓH t

−2e−Γt sin(∆mt) sin(φs)]

|Ā||(t)|2 =
|A||(0)|2

2
[(1 + cos(φs))e

−ΓLt + (1− cos(φs))e
−ΓH t

+2e−Γt sin(∆mt) sin(φs)]

|A⊥(t)|2 =
|A⊥(0)|2

2
[(1− cos(φs))e

−ΓLt + (1 + cos(φs))e
−ΓH t

+2e−Γt sin(∆mt) sin(φs)]

|Ā⊥(t)|2 =
|A⊥(0)|2

2
[(1− cos(φs))e

−ΓLt + (1 + cos(φs))e
−ΓH t

−2e−Γt sin(∆mt) sin(φs)]

(C.6)
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Re(A0(t)
∗A||(t)) =

|A0(0)||A||(0)|
2

cos(δ0 + δ||)[(1 + cos(φs))e
−ΓLt +

(1− cos(φs))e
−ΓH t − 2e−Γt sin(∆mt) sin(φs)]

Re(Ā0(t)
∗Ā||(t)) =

|A0(0)||A||(0)|
2

cos(δ0 + δ||)[(1 + cos(φs))e
−ΓLt +

(1− cos(φs))e
−ΓH t + 2e−Γt sin(∆mt) sin(φs)]

Im(A||(t)
∗A⊥(t)) = |A||||A⊥|[+e−Γt cos(∆mt) sin(δ⊥ − δ||)

−0.5 sin(φs) cos(δ⊥ − δ||)(e−ΓLt − e−ΓH t)

−e−Γt sin(∆mt) cos(φs) cos(δ⊥ − δ||)]
Im(Ā||(t)

∗Ā⊥(t)) = |A||||A⊥|[−e−Γt cos(∆mt) sin(δ⊥ − δ||)
−0.5 sin(φs) cos(δ⊥ − δ||)(e−ΓLt − e−ΓH t)

+e−Γt sin(∆mt) cos(φs) cos(δ⊥ − δ||)]
Im(A0(t)

∗A⊥(t)) = |A0||A⊥|[+e−Γt cos(∆mt) sin(δ⊥ − δ0)
−0.5 sin(φs) cos(δ⊥ − δ0)(e−ΓLt − e−ΓH t)

−e−Γt sin(∆mt) cos(φs) cos(δ⊥ − δ0)]
Im(Ā0(t)

∗Ā⊥(t)) = |A0||A⊥|[−e−Γt cos(∆mt) sin(δ⊥ − δ0)
−0.5 sin(φs) cos(δ⊥ − δ0)(e−ΓLt − e−ΓH t)

+e−Γt sin(∆mt) cos(φs) cos(δ⊥ − δ0)]
(C.7)

Taking the tagging decision ξ ∈ {−1, 0, 1} and dilution D = 2P − 1 into
account the probability density function gets

d4P (~ω, t)

d~ωdt
∝ |A0(0)|2f1(~ω)(T+ − (ξDT ))

+ |A||(0)|2f2(~ω)(T+ − (ξDT ))

+ |A⊥(0)|2f3(~ω)(T− + (ξDT ))

+ |A0(0)||A||(0)|f5(~ω) cos(δ0 + δ||)(T+ − (ξDT ))

+ |A||(0)||A⊥(0)|f4(~ω)[cos(δ⊥ − δ||) sinφs(e
−ΓH t − e−ΓLt)/2

+e−ΓtξD(cos(∆mt) sin(δ⊥ − δ||)
− sin(∆mt) cos(φs) cos(δ⊥ − δ||))]

+ |A0(0)||A⊥(0)|f6(~ω)[cos(δ⊥ − δ0) sinφs(e
−ΓH t − e−ΓLt)/2

+e−ΓtξD(cos(∆mt) sin(δ⊥ − δ0)
− sin(∆mt) cos(φs) cos(δ⊥ − δ0))],

(C.8)
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where

T± = ((1± cosφs)e
−ΓLt + (1∓ cos φs)e

−ΓH t)/2

T = e−Γt sin(∆mt) sin(φs) (C.9)

In the experiment only the difference of the strong phases can be measured.
This allows us to fix one of the strong phases. Throughout this thesis δ0 is
fixed to zero, δ0 = 0.



Appendix D

Normalization

The normalization factor for signal PDF multiplied with the acceptance has
the following form

P (~ω, t) × A(~ω) ∝ A(~ω)×
∫

dt

∫

d~ω{|A0(0)|2f1(~ω)(T+) +

|A||(0)|2f2(~ω)(T+) +

|A⊥(0)|2f3(~ω)(T−) +

|A0(0)||A||(0)|f5(~ω) cos(δ||)(T+) +

|A||(0)||A⊥(0)|f4(~ω)[cos(δ⊥ − δ||) sinφs(e
−ΓH t − e−ΓLt)/2] +

|A0(0)||A⊥(0)|f6(~ω)[cos(δ⊥) sinφs(e
−ΓH t − e−ΓLt)/2]}.

(D.1)

We can integrate out the time dependence analytically

P (~ω, t)× A(~ω) ∝
∫

d~ω × A(i, j, k){|A0(0)|2f1(~ω)((1 + cos φs)cτL +

(1− cosφs)cτH) +

|A||(0)|2f2(~ω)[(1 + cos φs)cτL + (1− cosφs)cτH ] +

|A⊥(0)|2f3(~ω)[(1− cosφs)cτL + (1 + cosφs)cτH ] +

|A0(0)||A||(0)|f5(~ω) cos(δ||)[(1 + cosφs)cτL +

(1− cosφs)cτH ] +

|A||(0)||A⊥(0)|f4(~ω)[cos(δ⊥ − δ||) sinφs(cτH − cτL)/2] +

|A0(0)||A⊥(0)|f6(~ω)[cos(δ⊥) sinφs(cτH − cτL)/2]}
×A(~ω).

(D.2)
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Since we use a three dimensional histogram A(i, j, k) for the acceptance we
can sum over the bins and integrate the angular functions over each bin

P (~ω, t)× A(~ω) ∝
∑

i,j,k

A(i, j, k)× {|A0(0)|2((1 + cosφs)cτL + (1− cosφs)cτH)
∫ ~ωmax(i,j,k)

~ωmin(i,j,k)
d~ωf1(~ω) +

|A||(0)|2((1 + cosφs)cτL + (1− cosφs)cτH)
∫ ~ωmax(i,j,k)

~ωmin(i,j,k)
d~ωf2(~ω) +

|A⊥(0)|2((1− cosφs)cτL + (1 + cosφs)cτH)
∫ ~ωmax(i,j,k)

~ωmin(i,j,k)
d~ωf3(~ω) +

|A0(0)||A||(0)| cos(δ||)((1 + cosφs)cτL + (1− cosφs)cτH)
∫ ~ωmax(i,j,k)

~ωmin(i,j,k)
d~ωf5(~ω) +

|A||(0)||A⊥(0)|[cos(δ⊥ − δ||) sinφs(cτH − cτL)/2]
∫ ~ωmax(i,j,k)

~ωmin(i,j,k)
d~ωf4(~ω) +

|A0(0)||A⊥(0)|[cos(δ⊥) sinφs(cτH − cτL)/2]
∫ ~ωmax(i,j,k)

~ωmin(i,j,k)
d~ωf6(~ω) },

(D.3)

where

∫ ~ωmax(i,j,k)

~ωmin(i,j,k)

d~ωf1(~ω) = [F1]
~ωmax(i,j,k)

~ωmin(i,j,k)
=

∫ ~ωmax(i,j,k)

~ωmin(i,j,k)

d~ω
9

32π
2 cos2 ψ(1− sin2 θ cos2 φ)

∫ ~ωmax(i,j,k)

~ωmin(i,j,k)

d~ωf2(~ω) = [F2]
~ωmax(i,j,k)

~ωmin(i,j,k)
=

∫ ~ωmax(i,j,k)

~ωmin(i,j,k)

d~ω
9

32π
sin2 ψ(1− sin2 θ sin2 φ)

∫ ~ωmax(i,j,k)

~ωmin(i,j,k)

d~ωf3(~ω) = [F3]
~ωmax(i,j,k)

~ωmin(i,j,k)
=

∫ ~ωmax(i,j,k)

~ωmin(i,j,k)

d~ω
9

32π
sin2 ψ sin2 θ

∫ ~ωmax(i,j,k)

~ωmin(i,j,k)

d~ωf4(~ω) = [F4]
~ωmax(i,j,k)

~ωmin(i,j,k)
=

∫ ~ωmax(i,j,k)

~ωmin(i,j,k)

d~ω − 9

32π
sin2 ψ sin 2θ sin φ

∫ ~ωmax(i,j,k)

~ωmin(i,j,k)

d~ωf5(~ω) = [F5]
~ωmax(i,j,k)

~ωmin(i,j,k)
=

∫ ~ωmax(i,j,k)

~ωmin(i,j,k)

d~ω
9

32π

1√
2

sin 2ψ sin2 θ sin 2φ

∫ ~ωmax(i,j,k)

~ωmin(i,j,k)

d~ωf6(~ω) = [F6]
~ωmax(i,j,k)

~ωmin(i,j,k)
=

∫ ~ωmax(i,j,k)

~ωmin(i,j,k)

d~ω
9

32π

1√
2

sin 2ψ sin 2θ cosφ.

(D.4)

The F1 → F6 have to be calculated once at the beginning of the fit and keep
their values. The summation over bins of the acceptance histogram has to
be redone each time a parameter changes.
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