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Summary

Terrestrial Reference Frames (TRFs) are based on heterogeneous data derived from continuous
observations by different space geodetic techniques. They are computed by diverse analysis
centres pursuing various strategies of mathematical modelling. Combining individual solutions
to frames of superior quality (like the ITRF) usually involves homogenisation by an empirical
weighting scheme. In this study, different approaches on variance component estimation have
been evaluated for this purpose.

The statistically rigorous Helmert estimator has been compared with two other methods: the
degree of freedom method (which is a special case of an approach known as ”Förstner’s method”)
and a simplified, approximate estimator. It turned out that the Helmert estimator is poorly ben-
eficial due to its high requirements on computation time, since the degree of freedom method
yields equivalent results. Tests have been performed, covering two elementary types of combi-
nations:

Combining a time series of weekly SLR-solutions, all three of the investigated estimators have
yielded relatively homogeneous variance components. Convergence has been achieved after a
few iterations.

Three individual solutions of space geodetic techniques (GPS, SLR and VLBI) have been com-
bined with 46 sets of local ties. Unfortunately, none of the estimators was successful in estimating
46 variance components for the local ties in addition to the three for the space geodetic solutions.
Due to poor redundancy of local ties, the estimation was successful only when the weights of
the local ties were fixed to a priori empirical values.

VII



Kurzfassung

Terrestrische Referenzrahmen (TRFs) werden aus heterogenen Datensätzen abgeleitet, die aus
kontinuierlichen Beobachtungen verschiedener geodätischer Raumverfahren gewonnen werden.
Ihre Berechnung erfolgt durch diverse Analysezentren, die jeweils unterschiedliche Strategien der
mathematischen Modellbildung verfolgen. Bei der Kombination individueller Lösungen zu Refe-
renzrahmen übergeordneter Qualität (wie dem ITRF) erfolgt gewöhnlich eine Homogenisierung
durch empirische Gewichtung der Einzellösungen. Gegenstand dieser Arbeit ist es, hierfür ver-
schiedene Methoden der Varianzkomponentenschätzung zu evaluieren.

Die statistisch strenge Schätzung nach Helmert wurde zwei anderen Methoden vergleichend
gegenübergestellt: der Schätzung nach Freiheitsgraden (einem Spezialfall eines auch als

”
Först-

ner-Methode“ bekannten Verfahrens) sowie einer vereinfachten Näherungslösung. Es ergab sich,
dass der Helmert-Schätzer aufgrund hoher Rechenzeitanforderungen kaum Vorzüge gegenüber
der Schätzung nach Freiheitsgraden bietet, die äquivalente Resultate liefert. Die Anwendung
auf zwei elementare Kombinationstypen wurde getestet:

Bei der Kombination einer Zeitreihe aus SLR-Wochenlösungen lieferten alle drei der untersuchten
Schätzer relativ homogene Varianzkomponenten. Schon nach wenigen Iterationen stellte sich
Konvergenz ein.

Drei individuelle Lösungen verschiedener geodätischer Raumverfahren (GPS, SLR und VLBI)
wurden gemeinsam mit 46 Datensätzen lokaler Verknüpfungsmessungen kombiniert. Leider war
keiner der Schätzer in der Lage, zusätzlich zu den drei Varianzkomponenten der geodätischen
Raumverfahren 46 weitere für die lokalen Messungen zu schätzen, da deren Redundanzanteile
zu gering sind. Die Schätzung gelang nur, wenn die Gewichte der Verknüpfungsmessungen auf
Erfahrungswerte fixiert wurden.
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Résumé

Des repères de référence terrestres (TRFs) sont basés sur des données hétérogènes, déduites
d’observations continues de différentes techniques de géodésie spatiale. Ils sont établis par divers
centres d’analyse qui mènent des stratégies variées de modélisation mathématique. Pour com-
biner des solutions individuelles en vue d’obtenir des repères d’une qualité supérieure (comme
l’ITRF), il faut une homogénéisation par une pondération empirique des solutions particulières.
A cette fin, différentes méthodes d’estimation des composantes de la variance sont évaluées dans
cette étude.

L’estimateur de Helmert, qui est statistiquement rigoureux, a été comparé à deux autres métho-
des : l’estimation par le degré de liberté (qui est un cas spécial de la ≪méthode de Förstner≫) et
un estimateur approximatif et simplifié. Il s’est relevé qu’en raison des besoins élevés de temps
de calcul, l’estimation selon Helmert n’apporte que peu d’avantages par rapport à la méthode
du degré de liberté, le dernier fournissant des résultats équivalents. L’application sur deux types
élémentaires de combinaison a été testée :

Combinant une série temporelle de solutions hebdomadaires SLR, tous les trois estimateurs
examinés ont produit des composantes de la variance relativement homogènes. Après très peu
d’itérations, l’algorithme a convergé.

Trois solutions individuelles de différentes techniques de géodésie spatiale (GPS, SLR et VLBI)
ont été combinées avec 46 jeux de rattachements locaux. Malheureusement, aucun des estima-
teurs n’a réussi à estimer 46 composantes de la variance pour les rattachements à part les trois
pour la géodésie spatiale. A défaut de redondance suffisante des rattachements, l’estimation n’a
réussi qu’en fixant les poids des rattachements à des valeurs empiriques.

IX
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1 Introduction

Providing geometrical reference frames of global dimension is a fundamental task of space
geodesy. The frames are based on heterogeneous data derived from continuous observations
by different techniques, covering long periods of time. Establishing a terrestrial reference frame
(TRF) of superior quality means combining data from multiple individual solutions, each of
them defining its own underlying frame.

Combining TRFs is and has ever been a principal field of activity of the Laboratoire de Recherche
en Géodésie (LAREG), which is part of the French Institut Géographique National (IGN) and
situated in the facilities of the Ecole Nationale des Sciences Géographiques (ENSG) at Marne
la Vallée, France. Since 1995, the software CATREF (Combination and Analysis of Terrestrial
Reference Frames) has been developed at the LAREG to perform combinations.

The CATREF combination algorithm implies that the individual solutions are statistically in-
dependent populations, each of them providing a full covariance matrix. But as the solutions’
provenance differs in observing instruments as well as in functional and stochastic modelling, it
would not be appropriate to assume a uniform level of variance. Hence, the covariance matri-
ces are scaled by individual factors before being introduced into the combination process. The
estimation of these factors (variance components) is the subject of this study.

Over the years, a multitude of approaches has been proposed in the domain of variance com-
ponent estimation. Statistically rigorous estimators and approximate methods differ distinctly
concerning computing time, convergence speed and adequacy of results. Up to now, two methods
have been realised in CATREF software: an approximate least squares estimator (the ”classical”
estimator) and the degree of freedom method. Within the scope of this study, the application
of other approaches is evaluated on the basis of CATREF’s mathematical model. Especially the
statistically rigorous Helmert estimator is focused.

As most considerations in this study are based on adjustment theory, section 2 starts up with a
brief outline of the Gauß-Markov model of parameter estimation. Basic symbols and relations
are introduced to be referenced later. The use of mathematical symbols is consistent as far as
possible within the entire study. Where the meaning of a symbol is contextual, it is pointed out
explicitly. For the ease of reading, appendix C provides an alphabetical reference of all symbols,
their meaning and their page of first occurrence.

Section 3 gives a review of the approaches of variance component estimation proposed so far,
selectively going into detail. It results from a bibliographic research, comprising publications
since the 1970s, mainly by German geodesists. Nevertheless, the synopsis cannot be exhaustive
and has been limited to relevant aspects.

The fourth section introduces the concept of TRFs. Besides some remarks on the way of es-
tablishment, their mathematical representation is described in detail, before the issue how to
define the datum is discussed in particular. Finally, the combination procedure is treated, the
mathematical model of which is derived.

Considering the implementation of algorithms, section 5 presents some relevant details. Con-
siderations concerning the coding of the combination model are made to minimise memory
requirements. Furthermore, the adaptivity of approaches for variance component estimation is
evaluated, and (if applicable) some coding details are elucidated. A concise flowchart of the
complete procedure can be found in appendix D.

Section 6 contains the results this study: Variance component estimators are tested on two
authentic data sets, representing the most common applications for combination of TRFs: time
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series stacking and the combination of solutions originating from different observation techniques.
Diverse approaches are considered, varying in the underlying mathematical model and the chosen
approximate values.

Finally, section 7 draws the conclusion of both theoretical and practical investigations. The
considered estimators are evaluated with respect to strong and weak points as well as to their
applicability on different types of TRF combinations. Open questions are exposed, which are
probably worth for further investigations.
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2 Remarks on Parameter Estimation in the Gauß-Markov Model

Parameter estimation is an indispensable, common tool in geodesy, hence no exhaustive treat-
ment of this subject will be provided here. However, a brief summary is considered to be
necessary to make the reader familiar with the notation applied in this study. Moreover, this
section will serve as reference for subsequent derivations. In the following, the approach of least
squares adjustment is presented.

A set of n differentiable functions f(X) of u parameters X to be estimated is developed at a
point X0 into a Taylor series:

f(X) = f(X0) +
∂f

∂XT
(X − X0) + O

{
(X − X0)

2
}

. (2.1)

With the observations L of the function values f(X) and omitting terms of second order, the
observation equations for adjustment in the Gauß-Markov model can be formulated:

l = Ax + ǫ (2.2)

with l = L − f(X0) n × 1 vector of abridged observations
x = X− X0 u × 1 vector of abridged parameters

A = ∂f

∂XT = ∂f

∂xT n × u design matrix

ǫ n × 1 vector of errors.

Introducing operators for the expectation (E{·}) and the dispersion (D{·}), the functional and
the stochastic model are expressed as follows:

E{l} = Ax = l− ǫ (2.3)

D{l} = Cll (2.4)

with the n × n covariance matrix Cll of the observations. Introducing the predicted errors ǫ̃,
the n × 1 vector of residuals is defined by:

v = −ǫ̃ . (2.5)

By means of a positive definite weight matrix P, for which usually P ∝ C−1
ll holds, the weighted

sum of squares of the residuals is minimised:

vTPv −→ min , (2.6)

and the normal equation system can be derived:

ATPAx̂ = ATPl (2.7)

Nx̂ = n .

In this context, symbols for the normal equation matrix N = ATPA and the right hand side
vector n = ATPl are defined. The circumflex ·̂ denoting estimated quantities, the following
formulas hold in case of a regular normal equation matrix:

x̂ = N−1n (2.8)

l̂ = Ax̂ (2.9)

v = l̂ − l . (2.10)
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The least squares estimator is unbiased, since E{x̂} = x, E{̂l} = Ax and E{v} = 0. Assuming
P = C−1

ll as a special case, the corresponding covariance matrices are:

D{x̂} = Cx̂x̂ = N−1 (2.11)

D{̂l} = C
l̂l̂

= ACx̂x̂A
T (2.12)

D{v} = Cvv = Cll − C
l̂l̂

. (2.13)

Estimating the Variance of Unit Weight

For subsequent considerations it will be important to be familiar with the concept of a unitary
variance factor and its estimation. The approach consists in extending the stochastic model
(2.4) by scaling the covariance matrix:

D{l} = Cll = σ2
0Qll = σ2

0P
−1 . (2.14)

Cll is decomposed into the matrix of cofactors Qll and a scalar factor σ2
0, which is called the

variance of unit weight or the a priori variance factor. Introducing its estimate σ̂2
0, the covariance

matrices of x̂, l̂ and v can be decomposed analogously:

Cx̂x̂ = σ̂2
0Qx̂x̂ (2.15)

C
l̂l̂

= σ̂2
0Ql̂l̂

(2.16)

Cvv = σ̂2
0Qvv . (2.17)

Applying the universal formula for the expectation of an arbitrary quadratic form yTMy (Koch,
1997, eq. (271.1)), y being stochastic:

E{yT My} = E
{

tr
(
D{y}M

)}
+
(
E{y}

)T
ME{y} , (2.18)

the unbiased estimate σ̂2
0 of the variance of unit weight, also called the a posteriori variance

factor, is obtained by evaluating the expectation of the weighted sum of squares of the residuals:

E{vT Pv} = tr(CvvP)

= σ2
0 tr(QvvP)

= σ2
0

[
tr(QllP) − tr(Q

l̂l̂
P)
]

= σ2
0 · (n − u) (2.19)

⇔ σ̂2
0 =

vTPv

n − u
. (2.20)

From (2.20) it is obvious that σ̂2
0 is unbiasedly estimable. In this context, the redundancy r is

introduced, which is equivalent to the number of degrees of freedom of the adjustment problem:

r = n − u = tr(QvvP) . (2.21)

For later considerations it will be important that the redundancy can be decomposed into
redundancy numbers:

ri = [QvvP]ii ∀ i = 1 . . . n (2.22)

where [·]ii extracts the ith element on the main diagonal. Each redundancy number corresponds
to a particular observation. Their overall sum is (cf. (2.19)):

n∑

i=1

ri = r . (2.23)
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3 Estimation of Variance Components

3.1 Motivation

In the linear model of parameter estimation, the a posteriori variance factor (2.20) is an estimator
for the common variance level of the observations. It often serves as well as plausibility check
for the assumptions made a priori – giving reason to modify them if necessary.

In the model of unit weight (2.14), it is assumed that the relations of variance levels among the
observations themselves are known; they are determined by the cofactor matrix Qll. In a way,
one could consider Qll as given whereas σ2

0 is free to be estimated by σ̂2
0 . In practice, however,

an appropriate choice of Qll is not always obvious.

Considering for instance a levelling network, an erroneous assumption of the uniform precision
of the observed height differences (derived e. g. from calibration of the only observing instru-
ment) would distort neither the parameters’ nor the variance factor’s estimates. Otherwise, in
a geodetic network of observed distances and directions, one may as well assume precisions for
the particular observation techniques. But in case the ratio of both variance levels is erroneous,
these assumptions have a determining impact on the estimates.

Variance component estimation renders possible to estimate different levels of variance for mul-
tiple sets of observations, whereas the internal relations of each set must be fixed a priori. In
the following section, the potential of this approach will be pointed out by outlining the options
of variance modelling.

3.2 Variance Modelling

For the estimation of k variance components, the covariance matrix is decomposed in the fol-
lowing way:

Cll = V0 +
k∑

i=1

siVi . (3.1)

s = (s1, s2, . . . , sk)
T is the vector of variance components, and Vi (i 6= 0) are the n×n matrices

modelling their impact. The latter must be chosen thoroughly, for there is no mechanism in the
estimation process to verify their conformity to physical reality. Solely their scale factors si are
free to be estimated. V0 represents a partition of the covariance matrix, the scale of which is
supposed to be definitely known and where no scaling factor is to be estimated. Nevertheless,
V0 = 0 holds for most applications.

Moreover, the following notations are introduced:

k∑

i=0

Vi = Q = P−1 . (3.2)

Note that this definition of the weight matrix P is not in accordance with the one made in
context of the variance of unit weight (2.14). However, the meaning of P will always clear up
in the context of the respective stochastic model.

Facing the question how to establish an adequate model, two examples are given:

1. In the model of unit weight (2.14), there is only one variance component, namely the
variance of unit weight. With k = 1, s = s1 = σ2

0, V1 = Qll and V0 = 0, the reference to
(3.1) is established.
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2. When combining k solutions of Terrestrial Reference Frames (see sect. 4.4), one has k
sets of ni observations (i = 1 . . . k), each of them providing its own covariance matrix.
Decomposing it into a factor σ2

i and a cofactor matrix Qi = P−1
i , the following model is

obtained for the case that no correlations between the sets are assumed (V0 = 0):

si = σ2
i , Vi =




0 · · · 0 · · · 0
...

. . .
...

...
0 · · · Qi · · · 0
...

...
. . .

...
0 · · · 0 · · · 0




∀ i = 1 . . . k (3.3)

Cll =




σ2
1Q1 0 · · · 0
0 σ2

2Q2 0
...

. . .

0 0 σ2
kQk


 . (3.4)

Without giving examples, it ought to be mentioned that (3.1) is capable of a much more com-
plex modelling. Estimating distance-dependent variance components for distance observations
is feasible as well as the estimation of covariance components (cf. e. g. Koch, 1981; Koch,
1997, ch. 361). One deals with the latter when there are non-zero off-diagonal elements in the
corresponding matrices Vi. Anyhow, this is not subject of this study.

3.3 Historical Background

A first approach to estimate variance components was proposed by Helmert (1907). He de-
veloped a method to estimate the weights of uncorrelated sets of observations, where the obser-
vations among themselves are uncorrelated as well ((3.4) with Qi = I ∀ i = 1 . . . k; I denoting
the identity matrix). Neglecting statistical postulates of any kind, his derivation was made in a
merely heuristic manner.

Helmert’s work had nearly been forgotten until Welsch (1978) reviewed it, applying matrix
notation to ease the access for today’s users. But it was already in the 1960s when the subject of
variance component estimation was reintroduced into geodetic literature. Kubik (1967) was one
of the first to renew the research. Furthermore, Grafarend (1978) mentions several papers in
the domain of mathematical statistics from this epoch. Whereas the considerations had initially
been restricted to variance components with or without correlations among the observations
(Kubik, 1967; Kubik, 1970; Ebner, 1972; Förstner, 1979c), the model was extended to
variance and covariance components later (Grafarend, 1978; Koch, 1978; Förstner, 1979a).

In numerous publications, many approaches have been made to develop a more or less optimal
estimator for variance and covariance components. Considering the fact that different approaches
sometimes yield the same results, the following sections intend to classify the estimators.

3.4 Estimator of Helmert Type

According to bibliographical investigations, the notion of an estimator of Helmert type was
presumably introduced by Grafarend and Schaffrin (1979). Grafarend et al. (1980)
give a rather general definition of its construction.
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Anyway, four basically different approaches will be distinguished within this subsection, all
of them yielding algebraically identical formulas for statistically rigorous estimation of variance
components (Teunissen and Amiri-Simkooei, 2007). Because of their conditional equivalence
to the method proposed by Helmert (1907, p. 360; Welsch, 1978), they will be referred to
as Helmert’s estimator. The general estimation formula is given to (Teunissen and Amiri-

Simkooei, 2006, eq. (17) and (18)):
ŝ = H−q (3.5)

with H = (hij) hij = tr(WViWVj) i, j = 1 . . . k (3.6)

q = (qi) qi = vTPViPv − hi0 i = 1 . . . k (3.7)

hi0 = tr(WViWV0) i = 1 . . . k (3.8)

where W = P
(
I− A(AT PA)−1ATP

)
= PQvvP . (3.9)

If H is regular, its Cayley-Inverse H−1 solves (3.5). If not, p̂T s = pTH−q (p ∈ R
k) exists iff p

is in the range of H (Koch, 1997, p. 252). The covariance matrix of the estimates is (Koch,
1997, eq. (362.11)):

D{ŝ} = 2H− . (3.10)

Iteration The estimation of variance components by Helmert’s method is an iterative proce-
dure, because (3.5) is only unbiased if ŝ = 1 = (1, 1, . . . , 1)T (see sect. 3.4.1). To adopt this
condition, the stochastic model (3.1) is refined to scale the matrices Vi appropriately:

Cll = V0 +
k∑

i=i

siVi = V0 +
k∑

i=i

siaiTi . (3.11)

The si are assumed to be 1, the Ti are determinately fixed and the ai are considered to be
approximate values for the variance components. They are chosen adequately for the first step
of iteration and updated after each step until convergence is achieved. ai for the ν +1st iteration
is computed as follows:

(ai)ν+1 = (ai)ν · (ŝi)ν = (ai)1

ν∏

j=1

(ŝi)j ∀ i = 1 . . . k . (3.12)

Convergence is achieved as soon as ŝ = 1 holds within the scope of computational accuracy.

Note that the iterative approach has an impact on the statistical dispersion of the estimated
variance components (Koch, 1997, eq. (363.3)). As the actual parameters of interest are factors
by which the a priori covariance matrices are to be scaled, the focus is on the products aiŝi.
Their variance is:

D̂
{

(ai)ν (ŝi)ν
}

= (ai)ν D
{

(ŝi)ν
}

= 2 (ai)ν (H−)ν . (3.13)

Simplification The computation of the coefficients hij , qi and hi0 can be simplified if the
stochastic model has the following block diagonal structure:

Cll =




Q0 0 0 · · · 0
0 σ2

1Q1 0 · · · 0
0 0 σ2

2Q2 0
...

...
. . .

0 0 0 σ2
kQk




. (3.14)
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Then, (3.6), (3.7) and (3.8) become:

hij = δij

(
ni − 2 tr(N−1AT

i PiAi)
)

+ tr(N−1AT
i PiAiN

−1AT
j PjAj) i, j = 1 . . . k (3.15)

qi = vT
i Pivi − hi0 i = 1 . . . k (3.16)

hi0 = tr(N−1AT
i PiAiN

−1AT
0 P0A0) i = 1 . . . k . (3.17)

δij is the Kronecker symbol, and vi is that ni×1 component of v = (vT
1 ,vT

2 , . . . ,vT
k )T that corre-

sponds to the observations from set i. Analogously, Ai is the ni×u partition of A corresponding
to the same set.

Derivation Although the purpose of this work is application rather than derivation, four
approaches will be outlined in the following: the common BIQUE -method, Rao’s MINQUE -
method (Rao, 1973), the Maximum Likelihood approach and Teunissen’s least squares variance
component estimation (LS-VCE, Teunissen and Amiri-Simkooei, 2007).

3.4.1 BIQUE

A Best Invariant Quadratic Unbiased Estimator (BIQUE) postulates the following properties:

• Quadratic modelling of the estimator

• Unbiasedness of the estimates

• Invariance of the estimates with respect to the parameters and their approximate values

• Minimum variance of the estimates (→ best estimates)

Deriving the estimation formula, this subsection refers to the work of Koch (1978), Koch (1997)
and Welsch (1984). Starting point are the functional model (2.2) and the stochastic model
(3.1), whereas V0 = 0 will be assumed for the sake of simplicity. The postulated properties will
be taken into account successively.

QE – Quadratic Estimator The variance of a normally distributed random vector is a
quadratic function of the vector itself (Caspary and Wichmann, 1994, eq. (4.1-7)). Hence,
an approach in terms of a quadratic form of the observations seems appropriate (cf. (2.18)):

pT s = E{lT Dl} = tr(DCll) + xTATDAx . (3.18)

D is a symmetric n × n matrix with a priori unknown coefficients. As one can easily see by
evaluating a quadratic form into a polynomial, the restriction of symmetry does not concern
the generality of the approach. Neither does the estimation of a linear function pT s of the
variance components instead of the components s themselves, which could be rendered possible
by choosing p = ei. ei = (0, . . . , 0, 1, 0, . . . , 0)T is the unit vector for the ith component.

QUE – Quadratic Unbiased Estimator Unbiasedness is achieved if the variance compo-
nents are independent of the parameters x. This requires (Welsch, 1984, sect. 2.2):

ATDA = 0 . (3.19)

It follows from (3.18):
pT s = tr(DCll) . (3.20)

Comparison of coefficients yields with (3.1) and p = (p1, p2, . . . , pk)
T :

pi = tr(DVi) ∀ i = 1 . . . k . (3.21)
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IQUE – Invariant Quadratic Unbiased Estimator Invariance of the estimates with re-
spect to the approximate values X0 (cf. eq. (2.1)) is achieved by postulating (Welsch, 1984,
sect. 2.3):

DA = 0 . (3.22)

This is a more rigorous postulate than (3.19), since DA = 0 ⇒ ATDA = 0.

BIQUE – Best Invariant Quadratic Unbiased Estimator Applying the universal for-
mula for the variance of a quadratic form (Koch, 1997, eq. (271.2)), the variance of lTDl is in
consideration of (3.22):

D{lTDl} = 2 tr(DCllDCll) . (3.23)

To obtain the ”best” estimates, i. e. estimates of minimum variance, (3.23) has to be minimised
with respect to the unknown quantities, more precisely to D. However, it must be taken into
account that the formula contains the a priori unknown variance components si within Cll. To
remedy this inconvenience, the iterative approach (3.11) is applied (cf. sect. 3.4), assuming the
si to be 1 and preserving the model’s consistency by introducing factors ai to scale the matrix
coefficients appropriately.

With si = 1 ∀ i = 1 . . . k, Cll = Q holds, and (3.23) is minimised by Lagrange’s method,
conditioned by (3.21) and (3.22) (Koch, 1997, ch. 362):

2 tr(DQDQ) − 4 tr(DAΛT ) − 4

k∑

i=1

λi

(
tr(DVi) − pi

)
−→ min

D

. (3.24)

The n × u matrix Λ and λ = (λ1, λ2, . . . , λk)
T contain the Lagrangean multipliers. Solving

(3.24), the system of equations for the BIQUE of variance components can be derived (as it is
carried out in Koch (1997, pp. 249-252)). The result is (3.5) where V0 = 0.

Generally speaking, (3.5) is solely a local BIQUE, for it depends on the approximate values ai.
However, by means of numerical iteration, it becomes a uniform BIQUE.

3.4.2 MINQUE

The Minimum Norm (Invariant) Quadratic Unbiased Estimator (MINQUE) was initially derived
by C. R. Rao in 1970. Brief descriptions can be found in Rao (1973, p. 302) and Rao and

Kleffe (1988, p. 87). An extensive review with reference to geodetic applications is given by
Persson (1980). This section will reproduce merely the basic idea though.

As the name implies, MINQUE is a quadratic unbiased estimator. Whether the postulate of
invariance is comprised as well, depends on the specific definition. Additionally, the Euclidean
norm of a certain matrix has to be minimised, being equivalent to minimising tr(DQDQ)
(Persson, 1980, sect. 2.4).

Assuming normally distributed observations, the invariant MINQUE is identical to the BIQUE
(Koch, 1978). (3.20) yields unbiasedness, invariance is achieved by (3.22), and minimising the
term tr(DQDQ) is equivalent to minimising (3.23).
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3.4.3 Maximum Likelihood Approach

The idea of Maximum Likelihood (ML) estimation is to maximise the probability of occurrence of
the observations with respect to the parameters sought for. Practically, one has to maximise the
value of a Likelihood function L, which means in the case of normally distributed observations:

L(l;x, s) =
1

(2π)
n
2

√
detCll

e−
1

2
vT Pv −→ max . (3.25)

In the stochastic model of unit weight (2.14), maximisation has to be carried out with respect
to x and s = σ2

0 (Koch, 1997, ch. 324). In the model with more than one variance component
(3.1), the maximum with respect to x and s = (si) is sought for.

K. Kubik was the first to apply the ML-approach to the estimation of variance components
in 1967, still restricting the stochastic model (3.1) to sets of uncorrelated observations (Qi =
I ∀ i = 1 . . . k in (3.4)). A conclusion of his work has been published in Kubik (1967), whereas
a more detailed derivation can be found in Kubik (1970). Applicable computational algorithms
are presented in Kubik (1967), Kubik (1970) and Ebner (1972).

Koch (1986) derived a ML-estimator for the general stochastic model (3.1) and obtained an
equation system which is identical to the BIQUE (3.5). (Equivalence to the MINQUE follows.)
Finally, Yu (1996) extended the approach to the most general model of adjustment theory, the
condition adjustment with unknown parameters and constraints among the parameters.

3.4.4 Least Squares Estimation

In 1988, P. J. G. Teunissen proposed a least squares approach to variance component estimation
(Teunissen and Amiri-Simkooei, 2007). Its principal idea is to transform the Gauß-Markov-
Model (2.2) into the model of condition equations (cf. e. g. Koch, 1997, p. 239), using an r × n
matrix B satisfying BA = 0:

w = Bl . (3.26)

w is a r × 1 vector of misclosures with E{w} = 0, the covariance matrix of which is (cf. (3.1)):

Cww = E{wwT} = BCllB
T = BV0B

T +

k∑

i=1

BViB
T si . (3.27)

Due to symmetry, (3.27) subsumes r(r+1)
2 individual equations of the form:

E{wjwl} −
[
BV0B

T
]
jl

=

k∑

i=1

[
BViB

T
]
jl

si j = 1 . . . r, l = j . . . r , (3.28)

which can be interpreted as a standard adjustment problem in the Gauß-Markov-Model with
r(r+1)

2 observations
(
E{wjwl} −

[
BV0B

T
]
jl

)
and k variance components si as unknown param-

eters to be estimated. Evaluating (3.28) with an appropriate weighting scheme by analogy to
(2.8) yields (3.5).

3.5 Förstner’s Method

Starting from the Helmert estimator (3.5), Förstner (1979a) derived a simplified estimator
with some considerable advantages. The notion of ”Förstner’s method” has been given for
instance by Persson (1980) and will be maintained within the scope of this study.
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If the iteration process of the Helmert estimator converges, ŝ = 1 will be finally obtained as
estimate. Introducing this as an a priori assumption, (3.5) can be simplified by expanding the
elements of the matrix H and interchanging the summation order:

q = H · ŝ !
= H · 1 (3.29)

With (3.6), (3.7) and (3.8) follows:

vT PViPv = qi + hi0
!
=

k∑

j=1

hij · 1 + hi0 =

k∑

j=0

tr(WViWVj) = tr(WVi) . (3.30)

Consequently, the following relation holds:

1 =
vT PViPv

tr(WVi)
=: ŝi,F ∀ i = 1 . . . k . (3.31)

ŝi,F is Förstner’s estimator. At the reproducing point, its estimates are identical to those of
Helmert’s method.

3.5.1 Estimation by Degree of Freedom

If the stochastic model is of block diagonal structure (3.14), Förstner’s method can be simplified.
By analogy to the simplification in section 3.4, (3.31) can be modified algebraically:

σ̂2
i,D = ŝi,F =

vT
i Pivi

ni − tr
(
N−1AT

i PiAi

) ∀ i = 1 . . . k . (3.32)

This equation bears a striking resemblance to the estimator for the variance of unit weight
(2.20). Translating (2.20) into (3.32), the numerator persists except for its decomposition by
the k sets of observations, and the denominator can be identified by the redundancy number
of the respective set. The latter will be shown by adapting the definition of the redundancy
number (2.22) to the current stochastic model (3.14):

ri,D = tr
(
[QvvP]ii

)

= tr
([(

Q −A(AT PA)−1AT
)
P
]
ii

)

= tr
(
QiPi

)
− tr

(
AiN

−1AT
i P
)

= ni − tr
(
N−1AT

i PiAi

)
, (3.33)

where [·]ii denotes in this context the extraction of a block matrix on the main diagonal corre-
sponding to the ith set of observations.

As redundancy is equivalent to the number of degrees of freedom, this particular case of Först-
ner’s method is also called the estimation by degree of freedom (e. g. Sillard, 1999, p. 150).

3.5.2 Comparison to Helmert’s Estimator

Compared to the estimator of Helmert type, Förstner’s method features some advantages as
well as some inconveniences, being concisely specified in Förstner (1979b).

First of all, the evaluation of Helmert’s equation system (3.5) is notably time-consuming. For
each iteration, the matrix products WViWVj have to be computed. Förstner’s algorithm
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merely involves the products WVi. For the particular case of the estimation by degree of
freedom (section 3.5.1), not even all elements of the matrix W must be known; only blocks on
the main diagonal are relevant. Generally speaking, Förstner’s method computes its results in
a fraction of the time required by Helmert’s estimator.

Although Förstner’s estimates are identical to Helmert’s in the case of convergence, there is yet
no proof that convergence is achieved on the whole. Requirements for (fast) convergence are to
some extent independent groups of observations and good approximate values ai (Förstner,
1979b). In contrast to the simpler computation of Förstner’s estimator within each step, its
convergence speed is lower (Koch, 1997, ch. 363), referring to the number of necessary iterations.
In most practical applications, the simplicity of the computation outweighs the slowness of the
convergence though.

Another inconvenience of Förstner’s method is the fact that it does not provide a way to derive
an estimator for the variance D{ŝ} of the estimates (Förstner, 1979b).

For the sake of completeness it should be mentioned that Helmert’s estimator may produce neg-
ative estimates, which are inadmissible for variances. However, this can normally be prevented
by the choice of appropriate approximate values ai (Koch, 1978).

3.6 Approximate Estimators

The estimators discussed so far require a considerable amount of computing time, which can be
fatal for adjustment problems of high dimensions. For this reason, some approaches have been
proposed to simplify the estimation process by neglecting the postulates of statistical optimality
and trying to approximate the exact estimates of Helmert type. Their use being restricted to
the stochastic model of disjunctive observation groups (3.14), the starting point is always the
estimation by degree of freedom (3.32).

The numerator of (3.32) consists of an ni-dimensional quadratic form that can easily be com-
puted. Since the number ni of observations of a particular set is known, the matrix product
N−1AT

i PiAi is the most time-consuming element in the computation of (3.32). Hence, it is the
objective of the estimators listed below to replace this term by a simpler one. Or in other words:
An approximation for the redundancy number ri,D (see (3.33)) is sought for.

3.6.1 Helmert’s Simple Estimator

A very elementary approach is to neglect the term N−1AT
i PiAi completely by setting ri,H = ni.

Helmert (1907, p. 358) did so when he proposed the following estimator (which has been
reviewed by Welsch (1978) as a highly simplified alternative to his more complex estimator
mentioned in section 3.3:

σ̂2
i,H =

vT
i Pivi

ri,H
=

vT
i Pivi

ni
∀ i = 1 . . . k . (3.34)

According to simulations by Welsch (1978), σ̂2
i,H features significant biases with respect to σ̂2

i .
It may serve as a rough indication at the most.

3.6.2 Kubik’s Modifications

As Kubik (1967, sect. 6) observes correctly, Helmert’s simple estimator (3.34) is biased. Thus,
he proposes to correct the bias simply by subtracting the overall number of unknowns u, setting
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ri,K = ni − u. As a comparison to the estimator (3.32) implies, this correction does not yield a
rigorous elimination of the estimator’s bias:

σ̂2
i,K =

vT
i Pivi

ri,K
=

vT
i Pivi

ni − u
∀ i = 1 . . . k . (3.35)

3.6.3 Classical Estimator

In addition to the estimation by degree of freedom (section 3.5.1), CATREF software disposes
of another, less complex estimator that is called the ”classical” estimator (Altamimi et al.,
2004a, eq. (13)):

σ̂2
i,C =

vT
i Pivi

ri,C
=

vT
i Pivi

ni − ui,C
=

vT
i Pivi

ni − ni

n
u

∀ i = 1 . . . k . (3.36)

Following the definition of redundancy in the model of unit weight (2.21), a heuristic motivation
for σ̂2

i,C can be given. The overall redundancy is decomposed into redundancy numbers. These
numbers could be further on decomposed in the following way:

r =

k∑

i=1

ri,C =

k∑

i=1

(ni − ui,C) . (3.37)

As it is not feasible to decompose the number of unknowns with respect to the sets of observations
i disjointly, a way must be found to define the components ui,C appropriately. The approach
pursued in CATREF is to distribute the overall number of unknowns among the sets i, weighted
by the corresponding share of observations:

ui,C =
ni

n
u . (3.38)

Due to
∑

i ni = n follows
∑

i ui,C = u, which does not hold for Kubik’s estimator (3.35) where∑
i ui,K = k · u 66= u.

3.6.4 Persson’s Estimator

Persson (1980, sect. 9.3) proposes a different approach. Introducing the number of unknowns
ui,P which are directly concerned by the observation equations of set i, he decomposes the
redundancy in the following way:

ri,P = ni − ui,P + wi · ∆r (3.39)

wi =

ni

ai

k∑
i=1

ni

ai

(3.40)

∆r =

k∑

i=1

(ni − ui,P ) − r . (3.41)

Due to
∑

i ui,P > u, Persson’s redundancy numbers would be significantly biased when calculated
by ni − ui,P ; their sum would not be equal to the overall redundancy. Therefore the bias ∆r is
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evaluated in (3.41) to be distributed among the sets of observations by means of the weighting
scheme (3.40). Denoting the weight factors by wi, the estimator itself is given by:

σ̂2
i,P =

vT
i Pivi

ri,P
=

vT
i Pivi

ni − ui,P + wi · ∆r
∀ i = 1 . . . k . (3.42)

As the weight factors are dependent on the approximate values ai, an iteration is required,
updating (ai)ν+1 = (σ̂2

i,P )ν ∀ i = 1 . . . k after each step ν.

Persson gives an example for application of his estimator on a geodetic network of distances and
horizontal directions. He finds that the differences between these estimates and the estimates of
Helmert type (there: MINQUE) never exceed 2 % at the reproducing point. Hence, considering
the minor complexity of (3.42), this result is remarkable.
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4 Terrestrial Reference Systems and Frames

4.1 Definitions

The notion of reference systems has its roots in classical geodetic survey. To make use of ob-
servations like directions and distances, they have to be parametrised by means of a coordinate
system, the definition of which depends on the particular application. Dealing with local height
networks, only one dimension is taken into account, whereas horizontal control networks neces-
sitate the definition of a two-dimensional reference plane. Three-dimensional reference systems
are considered for industrial surveying as well as in the context of space geodetic techniques like
GPS. In spite of the more general meaning, this study will always refer to three-dimensional
Cartesian coordinate systems with orthonormal base vectors when reference systems are con-
cerned, restricting all considerations to the purely geometrical definition. Physical effects will
not be taken into account.

Precisely, a reference system defines the complete conceptual definition of how a coordinate
system is formed (Seeber, 2003, ch. 2.1.2), meaning principally the determination of its origin,
the orientation of its axes as well as its scale. A conventional reference system comprises the
explicit definition of all models, numerical constants and algorithms (Seeber, 2003, ch. 2.1.2).

A terrestrial reference system (TRS) is a spatial reference system co-rotating with the earth in
its diurnal motion in space (McCarthy and Petit, 2003). Ideally, TRS satisfy the following
conventions:

• The origin is close to the earth’s centre of mass.

• The z-axis approximates the rotation axis of the earth, whereas the x-axis is in the meridian
plane of Greenwich. The y-axis completes the triad to a right-handed system.

• The scale unit is (close to) the SI-metre.

For practical application, the sole definition of a reference system is of little use. To be able
to express the observations in the system, the latter must be made accessible. This is achieved
by means of a reference frame, which is the practical realisation of a reference system through
observations (Seeber, 2003). Hence, a terrestrial reference frame (TRF) is the realisation of a
TRS. It comprises a set of geometrically exactly defined points on or near the earth’s surface
with known coordinates.

However, the application of this definition presumes those points attached to a rigid earth so that
the inner geometry of the frame would be time-invariant. This may be sufficiently assured for re-
gional frames but not for those of global extent, since the earth’s shape is deformed continuously
by geodynamical processes like earth tides and plate tectonics (Heck, 2003). Taking this into
account, TRFs can be defined by introducing linear movements of the points. These represent
reality in a more adequate manner, although they cannot be more than a simple approximation
of the complex actual movements.

The TRFs discussed within the scope of this study consist always of geometrically exactly defined
points in 3D space with coordinates related to a certain epoch and their first time derivatives,
expressed in a TRS. The points will also be referred to as stations. Their velocities being
constant, their positions are always a function of time.

A place where several stations are gathered is called a site. At co-location sites, more than one
observation technique is applied.



16 4 TERRESTRIAL REFERENCE SYSTEMS AND FRAMES

Lastly, celestial reference systems (CRS) will be briefly introduced. In contrast to TRS, they are
not co-rotating with the earth but rather related to extraterrestrial objects. Their realisations
are called celestial reference frames (CRF).

It can be distinguished between kinematic and dynamic celestial reference systems and frames
(Kovalevski and Mueller, 1989). Kinematic CRS are related to very distant objects (e. g.
quasars). As their apparent motion is marginal or zero, the orientation of a kinematic CRF
is rather stable in time and practically independent of earth motions. On the other hand,
dynamic CRS are defined by a number of celestial bodies, the motions of which are described
by a solution of a system of differential equations described in a fixed triad (Kovalevski and

Mueller, 1989).

4.2 Representation of a TRF

There are two ways to represent a TRF (Altamimi et al., 2004b).

• Explicit representation: The TRF is given by the coordinates (x, y, z) and velocities (ẋ, ẏ, ż)
of all comprised stations.

• Implicit representation: The TRF is given by the transformation parameters with respect
to another TRF. In the following, it will be illustrated how to perform transformations
between TRFs.

Transformation between TRFs

Given two sets of N points X1 = {ξ1
1, ξ

2
1, . . . ξ

N
1 } and X2 = {ξ1

2, ξ
2
2, . . . ξ

N
2 } with coordinates in

the 3D-Euclidean space:

ξi
1 =




xi
1

yi
1

zi
1


 and ξi

2 =




xi
2

yi
2

zi
2


 ∀ i = 1 . . . N ,

a similarity transforming X1 into X2 is:

ξi
2 = t + m ·R∗ ξi

1 ∀ i = 1 . . . N (4.1)

with a translation vector t = (tx, ty, tz)T , a scale factor m and an orthonormal 3 × 3 rotation
matrix R∗. For minor rotations and scale factors close to 1, the equation can be linearised:

ξi
2 = ξi

1 + t + d · ξi
1 + R ξi

1 ∀ i = 1 . . . N (4.2)

with d = m − 1 and R = R∗ − I. The d·R ξi
1-term is neglected, because it is a product of two

small quantities. R comprises the differential rotation angles rx, ry and rz about the respective
axes:

R =




0 −rz ry

rz 0 −rx

−ry rx 0


 .

This transformation holds when the coordinates are time-invariant. However, as station coordi-
nates vary in time, the modelling of a linear movement is reasonable (cf. section 4.1). For this
purpose, (4.2) is differentiated with respect to time:

ξ̇
i

2 = ξ̇
i

1 + ṫ + ḋ ξi
1 + d·ξ̇i

1︸︷︷︸
≈0

+Ṙ ξi
1 + R ξ̇

i

1︸︷︷︸
≈0

∀ i = 1 . . . N . (4.3)



4.3 Realisation of a TRF 17

Terms of second order are neglected. Considering TRFs, d and R are of 10−5 level, and the

elements of ξ̇
i

1 are about 10 cm/a, which is why their products d·ξ̇i

1 and R ξ̇
i

1 have no significant
impact on the resulting coordinates (Altamimi et al., 2004b).

Combining (4.2) and (4.3), the transformation between two TRFs can be formulated in one
equation. With

X1 = (x1
1, y

1
1 , z

1
1 , ẋ1

1, ẏ
1
1, ż

1
1 , x2

1, . . . , ż
N
1 )T

X2 = (x1
2, y

1
2 , z

1
2 , ẋ1

2, ẏ
1
2, ż

1
2 , x2

2, . . . , ż
N
2 )T

θ = (tx, ty, tz, d, rx, ry, rz, ṫx, ṫy, ṫz, ḋ, ṙx, ṙy, ṙz)T

the transformation from X1 to X2 is given by:

X2 = X1 + Gθ . (4.4)

θ is the vector of the 14 transformation parameters, and G is a 6N × 14 matrix of the following
kind:

G =




...
...

...
...

...
...

...
...

...
...

...
...

...
...

1 0 0 xi
0 0 zi

0 −yi
0

0 1 0 yi
0 −zi

0 0 xi
0 0

0 0 1 zi
0 yi

0 −xi
0 0

1 0 0 xi
0 0 zi

0 −yi
0
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...
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...

...
...




. (4.5)

To each station i = 1 . . . N contained in X1 and X2 correspond six lines in G, reflecting the
relations (4.2) and (4.3). xi

0, yi
0 and zi

0 are approximate positions of station i.

4.3 Realisation of a TRF

There are two ways to realise a TRF (Altamimi et al., 2004b):

1. Realisation by Space Geodetic Techniques. As coordinates themselves are not observable di-
rectly, the establishment of a TRF is realised by observing them indirectly. Space geodetic
techniques (cf. section 4.3.1) provide geometrical relations between the particular stations
from which coordinate (and velocity) differences can be derived. Thus, a so-called solution
is obtained. As it consists of coordinates (and maybe velocities) of the concerned stations,
it defines an underlying TRF explicitly. Analysis centres collect observations from stations
all over the world to establish solutions.

2. Realisation by Combination. Combining several particular TRFs yields a combined frame
of superior quality that benefits from the particular features of the initial frames like ob-
servation period, network configuration or applied technique(s). The combination strategy
will be illustrated in detail in section 4.4.

4.3.1 Space Geodetic Techniques

Nowadays, there are mainly five techniques to be used for the realisation of TRFs. E. g. Schön

et al. (1999) classify them into kinematic and dynamic methods.
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Kinematic Methods

• Very Long Baseline Interferometry (VLBI). A continuous signal from an extragalactic
radio source is received by a set of radio telescopes. It is recorded collectively with a time
tag of an atomic frequency standard. Correlating the records from all involved telescopes
makes it feasible to determine the time delays of the signal’s arrival at the receiving
stations. As the sources are far away, it can be assumed that the signal reaches the earth
as a parallel wave-front. Thus, considering the speed of light and maintaining observations
of several radio sources by a network of telescopes, baseline vectors between the receiving
stations can be derived from the delays.

Dynamic Methods

• Satellite Laser Ranging (SLR). A laser impulse, emitted from a ground station, is reflected
by a satellite’s reflector and re-detected by the ground station. The signal propagation
delay corresponds to the distance from ground station to satellite. Observing satellites from
several stations enables the estimation of their orbit parameters and yields consequently
geometrical relations between the ground stations. From these, coordinate differences can
be derived.

• Lunar Laser Ranging (LLR). By analogy with SLR, a laser impulse from a terrestrial
station is sent to reflector assemblies on the moon. Returning photons of the original
pulse are detected, and the delay is registered.

• Global Positioning System (GPS). The US-American military forces maintain 24 or more
satellites in earth orbit that permanently broadcast microwave signals. These allow a re-
ceiver to determine its position relative to the satellites’ reference frame. Thus, coordinate
differences of the observing stations can be derived at a high level of precision.

• Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS). Radio signals
emitted by ground beacons on the earth’s surface are detected by certain satellites to
evaluate the Doppler frequency shift, which is due to the relative movement. Integrating
the derived relative velocities enables the derivation of distances between beacons and
satellites. In contrast to the other techniques, DORIS ground stations are distributed
evenly on the globe; there is no bias to the northern hemisphere. Hence, the resulting
reference frames are notably stable due to the favourable configuration.

4.3.2 Datum Definition

To express a solution in a coordinate frame, a TRF must be defined. As the observation
techniques provide only geometrical relations between the stations, no absolute coordinates can
be derived a priori. A datum definition is necessary.

By analogy with a geodetic network, the notion of degrees of freedom exists as well in the context
of TRFs. The observations by space geodetic techniques are capable of determining the shape
of the frame, whereas its absolute positioning is undefined or partly defined, respectively. There
are up to 14 degrees of freedom to dispose of. In terms of an implicit representation of a TRF
(cf. section 4.2) they correspond to the transformation parameters θ in (4.4).
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Origin (tx, ty, tz) The origin corresponds to a translation of the coordinate frame. Dynamic
techniques have access to the earth’s centre of mass (CoM), which is situated in a focal point
of the (artificial or natural) satellites’ orbital ellipses and defined as origin. For VLBI solutions,
the origin is arbitrarily fixed as the CoM is inaccessible.

The earth not being a rigid body, its CoM varies with time. As most of the analysis centres do
not explicitly include this effect in their models (Altamimi et al., 2002a), the CoM detected
by satellites is always an average position over the whole observation period (Altamimi et al.,
2004b).

Scale (d) The scale is defined by conventions, depending on physical parameters like the
speed of light and the geo-gravitational constant. Furthermore, some relativistic effects have to
be considered (McCarthy and Petit, 2003). Hence, all techniques are sensitive to the scale.

Orientation (rx, ry, rz) The orientation of a reference frame is defined arbitrarily or conven-
tionally, respectively. VLBI is the only technique capable to realise a conventional definition, for
it has access to kinematic CRFs, the orientation of which does not vary significantly. However,
it must be considered that even the orientation of a CRF has once been chosen arbitrarily.

Time evolution (ṫx, ṫy, ṫz, ḋ, ṙx, ṙy, ṙz) The rates of the seven parameters represent another
7 degrees of freedom. As the scale is defined conventionally by physical parameters (hence
observable by all techniques) and the origin is accessible by dynamic techniques, the rates of
translation and scale parameters can be completely defined by observations. (For VLBI solutions
the translation rate must be fixed arbitrarily.)

Since the orientation is not observable by any technique, there is no ”natural” way to establish
a datum for its rate. As an arbitrary definition would be rather inconvenient, some generally
accepted conventions have been found for this purpose. A most common one is the use of
the Tisserand system of mean axes (Altamimi et al., 2002a). To define the translation and
orientation rates, one can postulate the kinetic energy to be minimal, integrated for feasibility
reasons over the earth’s crust. This leads to null angular momentums:

∫∫

crust




x
y
z


×




ẋ
ẏ
ż


 dm = 0 . (4.6)

dm is the respective infinitesimal mass element. (4.6) is known as the condition of no net rotation
(NNR).

In spite of the clear definition, the approach is not easily practicable. For several reasons it
is not in accordance with physical reality. Furthermore, the integration requires knowledge
about the mass distribution and a continuous velocity field. Whereas the mass distribution is
based on assumptions, velocities are only known for discrete points on the earth’s crust or from
geophysical models (e. g. NUVEL-1A, see DeMets et al., 1994).

4.3.3 Constraints Handling

Geometric observables L gained by space geodetic techniques establish relations f(X) between
station coordinates and velocities X = (x1, y1, z1, ẋ1, ẏ1, ż1, x2, . . . , żN )T . They are linearised
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as specified in section 2 at X0 = (x1
0, y

1
0, z

1
0 , ẋ1

0, ẏ
1
0 , ż

1
0 , x2

0, . . . , ż
N
0 )T . X0 are approximate values.

Application of the Gauß-Markov model (2.2) yields the system of normal equations (2.7).

Due to the configuration of the problem, the normal equation matrix N is singular and hence not
invertible. Its rank deficiency corresponds to the datum defect, the dimension of which depends
on the involved techniques. To remedy this inconvenience, the following approaches could be
thought of:

1. Fixing of Coordinates. A certain number of coordinates are fixed to a given value (cf. e.
g. Schön et al., 1999, sect. 2.2.1). Thus, those coordinates are not estimable any more,
and all other coordinates are estimated with respect to the fixed ones. Although this is the
most obvious approach, its result always depends on the arbitrary choice of the coordinates
to be fixed. Furthermore, the covariance matrix of the estimates is singular, because no
stochastic information can be gained with respect to the fixed coordinates. Due to these
inconveniences, the approach is no longer relevant for TRFs nowadays.

The number of fixed coordinates must equal or exceed the datum defect. In case of
equality, the minimum amount of supplemental information is introduced to complete the
rank deficiency of the normal equation matrix. Whereas the geometry of the resulting
TRF is unique, its datum depends on the arbitrary choice of the fixed coordinates. If
more coordinates are fixed than necessary, not only the datum, but also the geometry is
affected.

2. Stochastic Constraints. Pseudo-observations lc of some parameters from x = X − X0 are
introduced with a certain variance:

D{lc} = Ccc . (4.7)

Commonly, the pseudo-observations are set to zero, which is equivalent to aligning the
new frame to the approximate values X0 taken from an old frame. This is maintained
for positions and velocities of a subset of stations. Dependent on the applied variances in
(4.7), Altamimi et al. (2002b) classify stochastic constraints into three categories:

• tight constraints: σ ≤ 10−10 m for positions and m/yr for velocities
• removable constraints: σ ≈ 10−5 m for positions and m/yr for velocities
• loose constraints: σ ≥ 1 m for positions and 10 cm/yr for velocities

3. Pseudo-Inverse. The pseudo-inverse (cf. e. g. Illner, 1985; Koch, 1997, ch. 153; Schön

et al., 1999, sect. 2.2.3) of the normal equation matrix is used to define the so-called
”inner datum”. It can be obtained by extending the functional model by some condition
equations that complete the rank deficiency of N without introducing any supplemental
information. Thus, the geometry defined by the observations is not distorted, and the
resulting parameters have minimum variance. However, this method yields singular co-
variance matrices of the estimated coordinates so that they could not be used easily for
subsequent combinations.

4. Minimum Constraints. Any set of constraints that introduces the minimum amount of
information to complete the rank deficiency of the normal equation matrix is called min-
imum constraints. These may be applied by fixing a number of coordinates that is equal
to the datum defect (1.), constraining an according number of coordinates stochastically
(2.) or choosing constraints that define the inner datum and yield the pseudo-inverse (3.).

Initially, the use of the pseudo-inverse appears to be the most favourable of all approaches,
because it does not depend on any arbitrary specification. However, the covariance ma-
trix of the estimated coordinates is singular. Sillard and Boucher (2001) propose an
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approach that likewise does not depend on any arbitrary specification and yields a regular
covariance matrix in the end, the norm of which is close to minimum: Instead of con-
straining coordinates, a transformation to a reference TRF is modelled, the parameters
of which are constrained stochastically. The according solution is not completely unique,
since variances (and covariances) for the constraints have to be specified.

When minimum constraints are addressed in the following, it is referred to the approach
of Sillard and Boucher (2001).

5. Internal (Intrinsic) Constraints (Altamimi et al., 2007). When a TRF results from
stacking a time series of individual frames, the transformation parameters θ of the indi-
vidual frames with respect to the referential frame X0 can be constrained in a way that
the time series of each particular transformation parameter has zero mean and no trend.

In today’s practice, basically the strategies 2 and 4 are pursued (Altamimi et al., 2004b).
They will be described in detail:

Stochastic Constraints To apply stochastic constraints, the parameter vector x is parti-
tioned as follows:

x =

(
x1

x2

)
(4.8)

with x1 subvector containing coordinates/velocities
that are not concerned by the constraints

x2 subvector containing coordinates/velocities
to which pseudo-observations are applied.

Involving the pseudo-observations lc, the Gauß-Markov model (2.2) is modified:

(
l
lc

)
+

(
v
vc

)
=

(
A1 A2

0 I

)(
x̂1

x̂2

)
. (4.9)

The original design matrix given by A =
(
A1 A2

)
is extended for the pseudo-observations,

where vc are the corresponding residuals. Least squares minimisation in accordance with (2.6)

(
vT vT

c

)(Cll 0
0 Ccc

)
−1(

v
vc

)
−→ min (4.10)

yields the normal equation system:
(
AT

1 C−1
ll A1 AT

1 C−1
ll A2

AT
2 C−1

ll A1 AT
2 C−1

ll A2 + C−1
cc

)(
x̂1

x̂2

)
=

(
AT

1 C−1
ll l

AT
2 C−1

ll l + C−1
cc lc

)
. (4.11)

If the constraints are chosen appropriately, the normal equation matrix is regular and identical
with the inverse of the covariance matrix of the parameters Ccc

x̂x̂ (cf. eq. (2.11)). Obviously, it
is decomposable into a part corresponding to the observations l and one corresponding to the
constraints lc:

(Ccc
x̂x̂)−1 = N + Nc =

(
AT

1 C−1
ll A1 AT

1 C−1
ll A2

AT
2 C−1

ll A1 AT
2 C−1

ll A2

)
+

(
0 0
0 C−1

cc

)
. (4.12)

The objective of a regular covariance matrix of the parameters is achieved by this approach.
Nevertheless, the network shape may be distorted by the arbitrarily chosen constraints. The
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distortion can be minimised by applying large variances to the constraints (→ loose constraints).
However, this yields an unrealistically high level of variance for the estimates, so that their
dispersion can only be interpreted relatively.

When combining TRFs (cf. section 4.4), a systematic distortion of the involved TRFs’ inner
geometry is desirable in no case. Therefore, Ccc (Nc, respectively) is conserved to be able
to ”remove” the constraints’ influence in preparation of a subsequent combination (hence the
appellation ”removable constraints” before). The removal from the covariance matrix can be
performed easily in accordance with (4.12):

(Cunc
x̂x̂ )− = N = (Ccc

x̂x̂)−1 − Nc . (4.13)

Minimum Constraints It has been pointed out that the application of stochastic constraints
produces certain inconveniences: Introducing supplementary information by choosing additional
constraints arbitrarily always influences the result systematically. The approach of minimum
constraints by Sillard and Boucher (2001) consists in completing the rank deficiency of the
normal equation matrix without introducing supplemental information.

Similar to free network adjustment, the datum is defined by aligning the inner solution to a set of
approximate coordinates (often coordinates of a network of superior order). Analogously, a TRF
given explicitly by X = (x1, y1, z1, ẋ1, ẏ1, ż1, x2, . . . , żN )T can be aligned to a datum-defining,
referential TRF XR = (x1

R, y1
R, z1

R, ẋ1
R, ẏ1

R, ż1
R, x2

R, . . . , żN
R )T .

Starting point of the derivation is the linear transformation from XR to X (cf. (4.4)):

X = XR + Gθ . (4.14)

As the problem is overdetermined, inconsistency parameters vx are introduced. Identifying the
difference ∆XR = X−XR as observations, an analogy to the Gauß-Markov model (2.2) appears
with the transformation parameters θ as unknowns:

∆XR + vx = G θ̂ . (4.15)

Minimising vT
x vx yields their estimates (cf. eq. (2.8)):

θ̂ = (GT G)−1GT ∆XR = B · ∆XR (4.16)

with B = (GT G)−1GT . It seems obvious that the datums of X and XR are identical if the
transformation parameters’ estimates θ̂ vanish:

θ̂ = B · ∆XR = 0 . (4.17)

To apply minimum constraints, these 14 equations or a subset of them, respectively, must hold.
Depending on the observation technique, the rank deficiency of the normal equation matrix is
generally less than 14. Thus, the matrix G is restricted to those columns that correspond to
the datum defect of the TRF; otherwise the constraints would not be of minimum type.

Observations by dynamic techniques for instance, define an origin in a focal point of the satel-
lites’ orbital ellipses. The scale is defined by the speed of light, considering the impact of the
atmospheric delay and other effects. Otherwise, no information is gained to determine the ori-
entation parameters (and their rates) in a non-arbitrary way. Hence, G would consist of the 6
columns corresponding to the rotation angles and their rates (Altamimi et al., 2004b).

In practice, due to lack of available coordinates in the referential frame XR, the alignment
can mostly be performed only with respect to a subset of stations, which both frames have in
common. Thus, the matrix G is constituted accordingly.
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The introduction of constraints into the Gauß-Markov model (2.2) proceeds by means of addi-
tional (pseudo-) observations lmc and inconsistency parameters vmc:

lmc + vmc = B · ∆̂XR (4.18)

with lmc = 0 and D{lmc} = Cmc. Cmc is a diagonal matrix containing small variances for each of
the transformation parameters concerned by the constraints (Altamimi et al., 2004b). Iden-
tifying finally the approximate values X0 in (2.1) and (4.5) by the coordinates (and velocities)
of the referential frame XR yields ∆XR ≡ x. The Gauß-Markov model (2.2) is extended:

(
l

lmc

)
+

(
v

vmc

)
=

(
A
B

)
x̂ . (4.19)

As no correlations are assumed between l and lmc, the normal equations are:

(
N + BTC−1

mcB
)
x̂ = n . (4.20)

The covariance matrix Cmc
x̂x̂ of the estimated parameters is obtained by analogy to (2.11), as-

suming P = C−1
ll :

Cmc
x̂x̂ =

(
N + BTC−1

mcB
)−1

. (4.21)

4.4 Combination of Terrestrial Reference Frames

Combining TRFs means introducing coordinates of two or more TRFs into an adjustment com-
putation yielding a so-called combined TRF. The data from the initial TRFs are considered as
observations. The combined TRF is a unique frame in which all observations can be expressed
most appropriately.

The combination approach is necessitated by the amount of available observation data, which is
too large to be handled within one single step of computation. The needs of computing time and
memory would largely exceed the potential of today’s machines. Thus, a hierarchical procedure
of two or more steps seems more convenient. Firstly, TRFs are estimated from a constricted
amount of input data referring to a limited observation period, a subset of stations or a certain
observation technique. Then, the combined frame is derived from all TRFs resulting from the
first step.

It is obvious that the combined frame is usually of superior quality, because it is based on a
larger amount of observation data. Thus, its precision is enhanced with respect to the initial
solutions. Furthermore, it takes advantage of the particular qualities of the input data. Either
the spatial or temporal coverage is augmented, or the strong points of the combined techniques
(e. g. sensitivity to datum definition parameters) are benefited from.

Strictly speaking, several solutions (cf. 4.3) may be represented in one initial TRF. However,
the case of more than one solution defined in the same frame is more of theoretical interest. In
practice, each particular solution defines its individual underlying reference frame.

4.4.1 The International Terrestrial Reference Frame

Considering the potential of combining TRFs, it suggests itself to establish a global frame
of highest quality. Therefore, the International Terrestrial Reference Frame (ITRF) is being
realised to serve as general reference for scientific applications.
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First efforts to realise a TRF were made with the project MERIT (Monitoring of Earth Rotation
and Intercomparison of Techniques) in 1978. It was launched by the International Astronomical
Union (IAU) to benefit from the measures provided by space geodetic techniques that became
more and more precise. The first global TRF combining data from multiple techniques was
established in 1984 when the Bureau International de l’Heure (BIH) released its first Terrestrial
System BTS84, followed by BTS85, BTS86 and BTS87 up to 1988 (Sillard, 1999; Altamimi

et al., 2002a).

When the BIH was replaced by the International Earth Rotation Service (IERS) in 1988, the
sequel of global reference frames was continued by the ITRF88. This first realisation of the
corresponding International Terrestrial Reference System (ITRS) comprised the positions of 158
stations at 96 sites (Sillard, 1999). It was followed by ITRF89, ITRF90, ITRF91, ITRF92,
ITRF93, ITRF94, ITRF96, ITRF97, ITRF2000 and ITRF2005. The latter was released in
October 2006 and contains 608 stations located at 338 sites (Altamimi et al., 2007).

In the course of time, ITRF methodology has been refined significantly. As ITRF88 was still
a reference frame of statical kind, (linear) velocities for the stations were introduced for the
first time with ITRF91. Until ITRF93 (inclusively), correlations between observations had
not been taken into account. ITRF96 was the first release where the covariance matrices of
the individual solutions were scaled by means of variance component estimation – yielding a
remarkable improvement in data quality for the combined frame (Sillard, 1999).

Until ITRF2000, the final combination step was based on various individual TRF solutions.
With ITRF2005, the combination process has become more hierarchically structured. Input
data are five homogeneous weekly or daily time series, one each for VLBI, SLR, GPS and
two for DORIS (there are two independent DORIS-solutions due to logistical reasons). The
time series are stacked to technique-specific long-term solutions in a first step, which are finally
combined in a second step (together with local ties at co-location sites). Another novelty is the
integrated estimation of earth orientation parameters with the ITRF.

With ITRF2005, the number of IERS combination centres has been augmented to three: Hith-
erto, combinations were performed exclusively by the IGN. Now, the Deutsches Geodätisches
Forschungsinstitut (DGFI, Munich) and the Natural Resources Canada (NRCan, Ottawa) have
joined to ensure competition and enable cross-validation (Altamimi et al., 2007).

4.4.2 Combination Model

The mathematical model for TRF combination, which is applied within the scope of this study, is
based upon CATREF software (Altamimi et al., 2004a). Whereas CATREF is a sophisticated
tool, only the very basics of its potentialities have been adopted to evaluate methods of variance
component estimation.

The combination algorithm requires the following input data:

• k solutions Li = (. . . xp
i , y

p
i , z

p
i , ẋp

i , ẏ
p
i , ż

p
i , . . . )T with referential epochs tpi , p ∈ Pi, and

regular covariance matrices σ2
i Qi = σ2

i P
−1
i ∀ i = 1 . . . k, each of them defining an individual

TRF. Pi is the set of the indices of all points concerned by solution i.

• approximate values X0 = (x1
0, y

1
0 , z

1
0 , ẋ1

0, ẏ
1
0, ż

1
0 , x2

0, . . . , ż
N
0 )T for all involved stations.

• For the application of minimum constraints to define the datum of the combined frame, a
solution in a referential frame XR = (. . . xp

R, yp
R, zp

R, ẋp
R, ẏp

R, żp
R, . . . )T , p ∈ PR is needed.

• an epoch t0 at which the combination is performed.



4.4 Combination of Terrestrial Reference Frames 25

• k epochs ti (i = 1 . . . k) at which the transformation parameters between each TRF i and
the combined frame are to be estimated.

• if required, t tie-vectors ltie,i of local surveys with covariance matrices Ctie,i ∀ i = 1 . . . t
(cf. section 4.4.4).

• if required, particular variances σ2
vel,i∀ i = 1 . . . v for v sets of constraints on velocities (cf.

section 4.4.5).

Output data:

• one solution X = (x1, y1, z1, ẋ1, ẏ1, ż1, x2, . . . , żN )T with its full covariance matrix, defining
explicitly the combined frame. All estimated positions and velocities refer to t0.

• transformation parameters θi = (txi , tyi , t
z
i , di, r

x
i , ry

i , rz
i , ṫ

x
i , ṫyi , ṫ

z
i , ḋi, ṙ

x
i , ṙy

i , ṙz
i )

T ∀ i = 1 . . . k
between each initial TRF i and the combined TRF, referring to ti.

The linearised relation between each point p of an initial frame i and its coordinates in the
combined frame is given by the following equations, derived from (4.2) and (4.3):




xp
i

yp
i

zp
i


 =



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yp

zp


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


ẋp

ẏp

żp


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
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
+ Ri
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
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
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


 (4.22)
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ẋp
i

ẏp
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
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
 . (4.23)

In matrix notation, this yields the following observation equations:




xp
i
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i

zp
i

ẋp
i

ẏp
i

żp
i




=

(
I (tpi − t0) · I
0 I

)



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yp

zp

ẋp

ẏp

żp




+

(
Ap (tpi − ti) ·Ap

0 Ap

)
θi (4.24)

with

Ap =




1 0 0 xp 0 zp −yp

0 1 0 yp −zp 0 xp

0 0 1 zp yp −xp 0


 . (4.25)

The equations for a complete solution i are denoted as follows:

Li = A1i X + A2i θi (4.26)

with

A1i =




...
...

. . . I (tpi − t0) · I . . .

. . . 0 I . . .
...

...




and A2i =




...
...

Ap (tpi − ti) ·Ap

0 Ap

...
...




.
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Finally, the entity of nsol observation equations referring to all initial solutions are established
by means of:

Lsol =




L1

L2
...

Lk


 , Asol =




A1

A2
...

Ak


 =




A11 A21 0 . . . 0
A12 0 A22 0

...
...

. . .

A1k 0 0 A2k


 and ϑ =




θ1

θ2
...

θk




yielding:

Lsol = Asol

(
X
ϑ

)
. (4.27)

Taking into account that this relation is based on the linearised similarity transformation (4.2),

it is inconsistent. Now,
(
XT

0 ,0T
)T

is chosen as reproducing point. As the transformation pa-
rameters ϑ between similarly aligned TRFs are small quantities, their linearisation at 0 seems
appropriate. Introducing ∆X = X − X0 and the residuals v, the Gauß-Markov model (2.2) is

obtained by setting A = Asol, L = Lsol and x =
(
∆XT ,ϑT

)T
:

l + v = lsol + vsol = Lsol −Asol

(
X0

0

)
+ vsol = Asol

(
∆̂X

ϑ̂

)
= Ax̂ . (4.28)

Here, A is made up by approximate values from X0.

The stochastic model is identical to (3.4) when σ2
i Qi are the covariance matrices of the individual

solutions to be combined (i = 1 . . . k):

Cll = Csol =




σ2
1Q1 0 · · · 0
0 σ2

2Q2 0
...

. . .
...

0 0 · · · σ2
kQk


 . (4.29)

Taking this into account, the components of the normal equation system (2.7) are computed as
follows:

N =




∑k
i=1 A1T

i PiA1i A1T
1 P1A21 A1T

2 P2A22 . . . A1T
k PkA2k

A2T
1 P1A11 A2T

1 P1A21 0 . . . 0

A2T
2 P2A12 0 A2T

2 P2A22 0
...

...
. . .

A2T
k PkA1k 0 0 A2T

k PkA2k




, (4.30)

n =




∑k
i=1 A1T

i Pili
A2T

1 P1l1
A2T

2 P2l2
...

A2T
k Pklk




. (4.31)

li is the ni × 1 component of l corresponding to the ith initial solution.
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4.4.3 Datum Definition

To carry out the combination, it is necessary that all initial solutions dispose of regular covari-
ance matrices. Furthermore, it is important to avoid the distortion of the combined frame by
constraints that have been applied before. Thus, it is recommended to change the datum of
the initial solutions afterwards with the objective to have minimum constraints applied to each
solution. ITRF combination, for instance, pursues the following strategy (Altamimi et al.,
2002a):

• For solutions with removable constraints, the constraints are removed from the covariance
matrix (cf. eq. (4.13)), and minimum constraints are added (cf. (4.21)):

(Cmc
x̂x̂ )−1 = (Cunc

x̂x̂ )−1 + BT C−1
mcB . (4.32)

In a second step, the parameters themselves are modified with respect to the change of
constraints:

Xmc = Cmc
x̂x̂

(
(Ccc

x̂x̂)−1X− NcX0

)
. (4.33)

Note that in this context X0 are the approximate values with which the constraints have
initially been applied. They contributed to the constitution of the matrix A2 in (4.9).

• The parameters of loosely constrained solutions can be considered not to be distorted
significantly by the constraints. However, the level of precision implied by the covariance
matrix is highly unrealistic and to be corrected in the following way:

Cmc
x̂x̂ = Ccc

x̂x̂ − Ccc
x̂x̂B

T
(
BCcc

x̂x̂B
T + Cmc

)−1
BCcc

x̂x̂ . (4.34)

• Solutions to which minimum constraints have already been applied are used as they are.

After that step, all individual solutions provide regular (or regularised) covariance matrices.
However, N in (4.30) always has a rank deficiency of 14, which is due to the lack of datum
definition for the combined frame. Basically, the approaches from section 4.3.3 can be applied
as well to the combination process. Here, two of them will be discussed in detail: the fixing of
parameters and the application of minimum constraints.

Fixing of Parameters By analogy to the fixing of coordinates in section 4.3.3, at least 14 of
the differential transformation parameters from ϑ are fixed to a given value, e. g. zero. These
parameters cannot be selected arbitrarily though, since not every configuration is capable of
remedying the rank deficiency of the normal equation matrix. Fixing e. g. 14 rotation parameters
would indeed reduce the deficiency, but not completely, since the datum with respect to scale
and translation of the combined frame would still be undefined.

The choice of the parameters to be fixed also depends on the desired datum. Fixing e. g. the
translation parameters and its rates of all SLR-solutions to zero would equate the combined
frame’s origin with the averaged origin of the SLR-solutions. Although this choice may have a
physical meaning, the datum definition by fixing parameters is, mathematically spoken, always
arbitrary.

Without loss of generality it will now be assumed that all 14 transformation parameters of TRF
k are fixed. This means that the part θk is removed from the parameter vector, because the
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concerned values are handled as known and do not need to be estimated any more. The design
matrix A changes as well (cf. (4.27)):

Afix =




A11 A21 0 · · · 0
A12 0 A22 0

...
...

. . .

A1k−1 0 0 A2k−1

A1k 0 0 · · · 0




. (4.35)

The resulting normal equation matrix is regular, and the Gauß-Markov model from section 2
can be applied directly.

Minimum Constraints If minimum constraints are applied, the functional model is a syn-
thesis of (4.28) and (4.19):

l + v =

(
lsol

lmc

)
+

(
vsol

vmc

)
=

(
Asol

Amc

)
x̂ = Ax̂ (4.36)

with Amc =
(
B 0

)
and x as defined in (4.28). The corresponding stochastic model is:

Cll =

(
Csol 0
0 Cmc

)
. (4.37)

The normal equations are (assuming P = C−1
ll ):

Nx̂ = ATPAx̂ =
(
AT

solC
−1
solAsol + AT

mcC
−1
mcAmc

)
x̂

= AT
solC

−1
sollsol + AT

mcC
−1
mclmc = ATPl = n . (4.38)

4.4.4 Local Surveys

If the individual solutions to be combined originate from different observation techniques, identi-
cal points are required. As the observing instruments (radio telescopes, lasers, GPS antennas, ...)
commonly dispose of different reference points, this requirement can only be fulfilled by means
of local surveys: Baseline vectors between the stations of a site are observed and introduced into
the combination. This can be realised by pursuing one of the two following strategies:

1. Introduction as observed baseline vector

2. Introduction as TRF

They will be outlined in the following:

Introduction as Observed Baseline Vector The tie vector itself is introduced as an ad-
ditional set of observations. If the ith tie links the stations p and q, the following observations
are made:

ltie,i =




xq

yq

zq


−




xp

yp

zp


+ ǫtie,i (4.39)
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with the corresponding errors ǫtie,i. If t tie vectors ltie = (lTtie,1, l
T
tie,2, . . . , l

T
tie,t)

T are to be
introduced, the functional model (4.28) is augmented by the following observation equations:

ltie + vtie = Atiex̂ (4.40)

with Atie =




. . .
Atie,i

. . .


 =




. . . . . . . . . . . . . . . . . . . .
· · · −I · · · I · · ·
. . . . . . . . . . . . . . . . . . . .


 , i = 1 . . . t .

The corresponding stochastic model comprises 3×3 covariance matrices Ctie,i for all tie vectors:

Ctie =




Ctie,1 0 · · · 0
0 Ctie,2 0
...

. . .

0 0 Ctie,t


 . (4.41)

The integration into the combination model proceeds by analogy to (4.36), (4.37) and(4.38).

Introduction as TRF The whole of the local tie vectors at a co-location site establish a
particular TRF that is introduced among the k initial TRF into the combination. These ”tie-
TRFs” comprise the positions of all stations at one site and no velocities. As their only purpose
is a representation of the tie-vectors, their datum may be defined arbitrarily.

The advantage of this approach is that solutions derived from space geodetic techniques and local
ties can be processed uniformly – except for one distinction: Tie-TRFs may dispose of very few
observations. If there are not more than two stations at a site, a tie-TRF would comprise only
6 observations. Hence, it would not be feasible to estimate all their transformation parameters.

Indeed, only the three translations tx, ty and tz are estimated. As to scale and orientation,
conformity with the combined frame is assumed. In other words, the remaining parameters are
”fixed” to zero, by what they theoretically could affect the datum definition of the combined
frame (cf. section 4.4.3). However, as the ties are local and dispose of very short baselines, the
differences in orientation and scale between the combined frame and the frames of local ties are
negligible.

The transformation parameters’ rates could not be estimated anyway, since tie-TRFs do not
contain any information about observed velocities.

4.4.5 Constraints on Velocities

Though mathematically possible, it is not likely that stations within the same sites have different
velocity vectors. To incorporate this knowledge into the combination model, the velocities of
the respective stations are constrained pairwisely to be identical. If the ith set of constraints
concerns the stations p and q, the following observations are added:

lvel,i =




ẋq

ẏq

żq


−




ẋp

ẏp

żp


 = 0 . (4.42)

If v velocity constraints lvel = (lTvel,1, l
T
vel,2, . . . , l

T
vel,v)

T are to be introduced, the functional model
(4.28) is augmented by the following observation equations:

lvel + vvel = Avelx̂ (4.43)
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with Avel =




. . .
Avel,i

. . .


 =




. . . . . . . . . . . . . . . . . . . .
· · · −I · · · I · · ·
. . . . . . . . . . . . . . . . . . . .


 , i = 1 . . . v .

The corresponding stochastic model attributes a particular variance σ2
vel,i to each constraint:

Cvel =




σ2
vel,1I 0 · · · 0

0 σ2
vel,2I 0

...
. . .

0 0 σ2
vel,vI


 . (4.44)

Once again, the integration into the model proceeds by analogy to (4.36), (4.37) and (4.38).
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5 Implementation

The combination algorithm from section 4.4.2 has been implemented in FORTRAN 90, reading
its input data from SINEX1 format. As TRF combinations often deal with a large amount of
data, some considerations have been made for economical memory management. Otherwise, de-
limiting the memory often is in conflict with optimising computation time. Hence, compromises
had to be made under the premise of performing identical computations several times.

The following subsections explain some computational steps in detail. An overview of the se-
quence of steps can be found in appendix D.

5.1 Constitution of the Normal Equation Matrix

Although the normal matrix N is of dimension u × u, its complete storage cannot be avoided.
The inversion routine needs access to the whole matrix at a time. To minimise the amount
of memory required beyond that, the normal matrix is constituted by computing its elements
directly without storing intermediate results.

Initially, neither the datum definition nor model extensions like local ties and velocity constraints
will be considered. (4.27) and (4.30) illustrate that the elements of the u×u matrix N are derived
from the matrices A=Asol and Pi (i = 1 . . . k). As to A (n × u), the matrix is not stored at
all, since more than 95 % of its elements are zeros; the required coefficients are computed on
demand. The weight matrices Pi (ni × ni) have to be stored, but only one at a time. More
precisely, the elements of N are computed in the following way:

N =

k∑

i=1

Ni =

k∑

i=1

AT
i PiAi . (5.1)

After N1 has been computed, P1 can be suspended from memory, and P2 is loaded. Then, the
coefficients of N2 are computed and added to those of N1. This procedure, being repeated k
times, yields the normal equation matrix N at its end. The computation of the vector n = ATPl
pursues the same scheme.

In a second step, local ties (if not introduced as TRFs) and velocity constraints are taken into
account (if necessary) by adding their contributions to the normal equation matrix:

∆Ntie = AT
tieC

−1
tieAtie =

t∑

i=1

AT
tie,iC

−1
tie,iAtie,i (5.2)

∆Nvel = AT
velC

−1
velAvel =

v∑

i=1

σ−2
vel,iA

T
vel,iAvel,i . (5.3)

Finally, N is regularised by means of datum definition (cf. section 5.2). Subsequently, its inver-
sion is performed by routines from the Linear Algebra Package (LAPACK2). As the matrix is
replaced congruently in memory by its inverse, no supplemental storage space is needed.

1Software INdependent EXchange format
2http://www.netlib.org/lapack/
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5.2 Datum Definition

The datum of the combined frame is determined by modifying the normal equation matrix N
and the right hand side vector n after they have been constituted as described in section 5.1.
Two methods have been realised: the fixing of parameters and the application of minimum
constraints.

Fixing of Parameters When parameters are fixed, the parameter vector’s number of compo-
nents would be reduced by the number of fixed parameters. Thus, the normal equation matrix
would change its dimensions as well. As this augments the effort of index-management in pro-
gramming practice, CATREF software applies a technique of fixing (transformation) parameters
(to zero) without changing the dimensions of the concerned vectors and matrices. This technique
has been adopted.

Assuming again (without loss of generality) that all 14 transformation parameters of TRF k are
fixed to zero (cf. section 4.4.3), N and n, initially constituted pursuant to (4.30) and (4.31), are
modified in the following way:

N′ =




∑k
i=1 A1T

i PiA1i A1T
1 P1A21 · · · A1T

k−1Pk−1A2k−1 0

A2T
1 P1A11 A2T

1 P1A21 0 0
...

. . .
...

A2T
k−1Pk−1A1k−1 0 A2T

k−1Pk−1A2k−1 0
0 0 · · · 0 I




=

(
AT

fixPAfix 0

0 I

)
(5.4)

n′ =




∑k
i=1 A1T

i Pili
A2T

1 P1l1
...

A2T
k−1Pk−1lk−1

0




=

(
AT

fixPl

0

)
. (5.5)

This is equivalent to constituting the normal equation system by means of Afix (see (4.35)) and
extending it afterwards by ones on the main diagonal and zeros elsewhere. Conveniently, the
procedure described above does not influence the parameters’ estimates when computing x̂ by
(2.8). Furthermore, the correct zero values are attributed to the fixed parameters.

However, before utilising the inverse of the normal equation matrix to estimate variance com-
ponents, it must be modified a second time to assure correct results (cf. appendix D):

N′−1 =

(
(AT

fixPAfix)−1 0

0 I

)
−→ (N′−1)′ =

(
(AT

fixPAfix)−1 0

0 0

)
. (5.6)

If there are no parameters to be fixed (and the datum is defined otherwise), the modifications
(5.4), (5.5) and (5.6) have no effect, and the identities N′ ≡ N, n′ ≡ n and (N′−1)′ ≡ N−1 hold.
Thus, no notational distinction has to be made in the following, regarding the method of datum
definition.
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Minimum Constraints Applying minimum constraints means modifying the normal equa-
tion matrix by adding the term AT

mcC
−1
mcAmc (cf. (4.38)). n does not need to be modified if the

referential coordinates XR are chosen as approximate values X0 for X (cf. section 4.3.3). Note
that the positions from XR have to be propagated to the epoch t0 of the combined frame before.
Otherwise, (4.17) would not hold rigorously.

If all 14 transformation parameters are concerned by the constraints, Cmc is always a 14 × 14
diagonal matrix of small variances, for which empirical values from CATREF software have been
adopted:

Cmc = 10−2 · diag
(
σ2

t σ2
t σ2

t σ2
d σ2

r σ2
r σ2

r σ2
ṫ

σ2
ṫ

σ2
ṫ

σ2
ḋ

σ2
ṙ σ2

ṙ σ2
ṙ

)
(5.7)

with σt = 1mm

σd = 1mm/R

σr = 1mrad · 1m/R

σṫ = 0, 1mm/yr

σ
ḋ

= 0, 1mm/yr/R

σṙ = 0, 1mrad/yr · 1m/R

and R = 6378 km .

5.3 Estimating the Variance of Unit Weight

The estimation of a global variance factor is performed additionally, based on the model of unit
weight (2.14). However, contrary to the variance components, it is not applied as scaling factor
during iteration. Of special interest is the case where V0 = 0 in (3.1). Then, any residual
inconsistency of the stochastic model is absorbed by the variance components σ̂2

i , and σ̂2
0 = 1

holds as soon as convergence is achieved.

To obtain mathematically rigorous results for σ̂2
0 , the computation of the overall redundancy (cf.

(2.21)) of the adjustment problem should consider the method of datum definition: The overall
number of observations n depends on the nsol (true) observations by initial solution as well as
on (pseudo-) observations relating to t local ties and v velocity constraints:

n = nsol + 3t + 3v . (5.8)

If the datum is defined by fixing f parameters, the number of parameters to be estimated
decreases by this value. Thus, the overall redundancy is:

r = n − (u − f) (5.9)

with the number u of all parameters, regardless if they are unknown or fixed. If the datum is
defined by introducing c supplemental pseudo-observations applying minimum constraints, their
number has to be added to the number of observations. It follows:

r = (n + c) − u . (5.10)

It is obvious that the redundancies calculated by (5.9) and (5.10) are identical if c = f holds.
This shows that the redundancy of the adjustment problem is independent of the method of
datum definition.
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Secondly, the weighted sum of squares of the residuals will be considered, as it contributes as
well to the estimation of the variance of unit weight by (2.20). If the datum is defined by fixing
parameters, its computation performs as usual:

vT Pv =
k∑

i=1

vT
i Pivi +

t∑

i=1

vT
tie,iC

−1
tie,ivtie,i +

v∑

i=1

σ−2
vel,iv

T
vel,ivvel,i . (5.11)

In the case of applied minimum constraints though, the residuals’ weighted sum of squares is:

vTPv =

k∑

i=1

vT
i Pivi +

t∑

i=1

vT
tie,iC

−1
tie,ivtie,i +

v∑

i=1

σ−2
vel,iv

T
vel,ivvel,i + vT

mcC
−1
mcvmc . (5.12)

The last term in (5.12) is numerically zero due to the configuration of the corresponding pseudo-
observations. Thus, neither r nor vT Pv depend on the method of datum definition.

It can be concluded that the estimate σ̂2
0 of the variance of unit weight, as calculated by (2.20),

is independent of the way the datum is defined.

5.4 Variance Component Estimation

Finally, four estimators, notably the Helmert Estimator (section 3.4), the estimation by degree
of freedom (section 3.5.1), the classical estimator (section 3.6.3) and Helmert’s simple estima-
tor (section 3.6.1) have been realised. The implementation of Kubik’s and Persson’s methods
(sections 3.6.2 and 3.6.4) have been abandoned for reasons that will be explained.

5.4.1 Helmert’s Estimator

Standard Model Initially, the most simple case of a combination will be considered, where
the datum is defined by fixing parameters, and neither local ties nor velocity constraints are
introduced. Then, the stochastic model is (3.4), and the coefficients of the equation system
(3.5) are calculated by (cf. (3.15) and (3.16)):

hij = tr
(
(N′−1)′AT

i PiAi(N
′−1)′AT

j PjAj

)
(5.13)

qi = vT
i Pivi . (5.14)

Especially the computation of hij is critical – with respect to both memory and computation
time. To economise time requirements, the computation of the coefficients involves the interme-
diary ni × nj matrices Uij ∀ i = 1 . . . k, j = i . . . k:

Uij = Ai(N
′−1)′AT

j = UT
ji (5.15)

hij = tr
(
UijPjU

T
ijPi

)
. (5.16)

During the computation, only four matrices must be hold in memory at a time, namely (N′−1)′,
Uij , Pi and Pj . Nevertheless, that the computation of hij is still of considerable complexity,
illustrates the following equation ∀ i = 1 . . . k, j = i + 1 . . . k:

hij =

ni∑

l=1

nj∑

m=1

[
pmmqllu

2
lm +

{
ni∑

s=l+1

2pmmqslulmusm

+

nj∑

r=m+1

(
2pmrqllulmulr +

ni∑

s=l+1

2pmrqsl(ulmusr + usmulr)

)}]
(5.17)
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with Uij = (ulm), Pi = (pls) and Pj = (qmr). For the computation of the diagonal elements hii

of H, it can be taken advantage of symmetry properties:

hii = ni +

ni∑

l=1

[
− 2pllull −

ni∑

s=l+1

4plsuls +

ni∑

m=1

{
pllpmmu2

lm +

ni∑

r=m+1

2pllpmrulmulr

+

ni∑

s=l+1

(
2plspmmulmums +

ni∑

r=m+1

2plspmr(ulmusr + ulrums)

)}]
(5.18)

with Uii = (ulm) and Pi = (pls). Obviously, the complexity of the computation of the k(k+1)
2

different coefficients of H is of order k2n4
i (assuming ni = nj ∀ i, j = 1 . . . k). For this considera-

tion, the constitution of Uij has been neglected, because A in majority consists of zero elements.
Hence, if variance components are calculated by Helmert’s method, (5.17) and (5.18) determine
the computing time of the entire combination.

Extended Model As the mathematical model is not always of standard kind, an example is
given where some model extensions have to be considered:

• k1 TRFs of space geodetic solutions are to be combined. For all TRFs, variance compo-
nents are to be estimated.

• k2 TRFs of local ties are considered. Their dispersion is fixed, and no variance components
are to be estimated.

• v > 0 pairs of stations are constrained to have the same velocity.

• The datum is defined by minimum constraints.

The mathematical model is (k1 + k2 = k):



lsol

lvel

lmc


+




vsol

vvel

vmc


 =




Asol

Avel

Amc


 x̂ (5.19)

Cll =




σ2
1Q1 · · · 0 0 · · · 0 0 0
...

. . .
... · · · ... 0 0

0 σ2
k1

Qk1
0 · · · 0 0 0

0 · · · 0 Qk1+1 0 0 0
... · · · ...

. . . 0 0
0 · · · 0 0 Qk 0 0
0 · · · 0 0 · · · 0 Cvel 0
0 · · · 0 0 · · · 0 0 Cmc




. (5.20)

As to the matrices Vi, (3.3) holds ∀ i = 1 . . . k1. The matrix V0 has the following form:

V0 =




0 · · · 0 0 · · · 0 0 0
...

. . .
...

... · · · ... 0 0
0 · · · 0 0 · · · 0 0 0
0 · · · 0 Qk1+1 0 0 0
... · · · ...

. . . 0 0
0 · · · 0 0 Qk 0 0
0 · · · 0 0 · · · 0 Cvel 0
0 · · · 0 0 · · · 0 0 Cmc




. (5.21)
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The components of the equation system (3.5) are calculated as follows (cf. (3.15), (3.16) and
(3.17)):

H = (hij) i, j = 1 . . . k1 (5.22)

q = (qi) i = 1 . . . k1 (5.23)

qi = vT
i Pivi − hi0 ∀ i = 1 . . . k1 (5.24)

hi0 =

k∑

j=k1+1

hij + hi,vel + hi,mc ∀ i = 1 . . . k1 (5.25)

hi,vel = tr
(
(N′−1)′AT

i PiAi(N
′−1)′AT

velC
−1
velAvel

)
∀ i = 1 . . . k1 (5.26)

hi,mc = tr
(
(N′−1)′AT

i PiAi(N
′−1)′AT

mcC
−1
mcAmc

)
∀ i = 1 . . . k1 (5.27)

hij = tr
(
(N′−1)′AT

i PiAi(N
′−1)′AT

j PjAj

)
∀ i = 1 . . . k1, j = 1 . . . k . (5.28)

Again, like in the standard model, intermediary matrices are used to economise the computa-
tion (cf. (5.15)). As to hi,vel, these coefficients can be decomposed further on (constraint-by-
constraint) so that their computation is of negligible complexity.

Results have shown that hi,mc is always numerically zero. This is no surprise, since the datum
definition should not affect the variance estimates. Consequently, no significant error is made
when these terms are neglected.

It can be concluded that the variance components estimated by Helmert’s method are indepen-
dent of the way the datum is defined – if no over-constraining is applied.

5.4.2 Estimation by Degree of Freedom

Standard Model The estimation of variance components by degree of freedom is much less
complex. Considering the standard model where the datum is defined by fixing parameters
and neither local ties nor velocity constraints are introduced, this is illustrated by the following
computation formula compared to (5.17) (cf. (3.32) and (3.33)):

ri,D = ni −
u∑

r=1

(
νrrnrr +

u∑

s=r+1

2νrsnrs

)
∀ i = 1 . . . k (5.29)

with (N′−1)′ = (νrs) and Ni = AT
i PiAi = (nrs). Ni is not stored temporarily, because its

coefficients appear only once in (5.29) and can be calculated on demand without inconvenience.
Thus, the inverse of the normal equation matrix and Pi are the only matrices that need to be
stored at a time. The complexity of the computation is of order ku2, when the calculation of
the elements nrs is neglected because of the high proportion of zero elements in A.

Extended Model Considering the extended model from the preceding section 5.4.1, the es-
timation by degree of freedom is quite simple. Variance components are estimated by means
of (3.32). The distinction with respect to the standard model is that the rescaling of weights
during the iteration is only performed for those data sets where variance components are to
be estimated, i. e. the first k1 TRFs corresponding to space geodetic solutions (cf. 5.20). In
other words: Only the variance components of these sets are updated by the estimates from the
preceding step. As to the TRFs representing local ties, constraints on velocities and minimum
constraints: These datasets are always introduced with the same weights and never rescaled
during iteration.
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As it holds for the Helmert estimator, the datum definition by minimum constraints has no im-
pact on the estimated variance components. This property results from the nature of minimum
constraints: They subsume the minimum amount of conditions to complete the rank deficiency
and eliminate the datum defect of the normal equation matrix (cf. section 4.3.3). As a con-
sequence, there is no contribution to the redundancy of the problem and hence the respective
residuals vmc vanish – as residuals of non-redundant observations generally do.

Considering that (3.32) is based on the decomposition of the weighted sum of squares of the
residuals and the redundancy (cf. section 3.5.1), to both of which minimum constraints do not
contribute, they do not affect the variance component estimation by degree of freedom.

5.4.3 Classical Estimator

The the computation formula for σ̂2
i,C (3.36) is applied basically in the same way as for the

estimation by degree of freedom (see section 5.4.2). Nevertheless, it would be appropriate
to ensure that the sum of the redundancy numbers ri,C equals the overall redundancy r (cf.
(3.37)). For this purpose, a combination model without local surveys and without constraints
on velocities is considered:

r =
k∑

i=1

ri,C =
k∑

i=1

(
ni − ui,C

)
. (5.30)

If the datum is defined by fixing f parameters, the overall redundancy is given by (5.9). (3.37)
can only be satisfied if the number of unknowns is decomposed in the following way (cf. (3.38)):

ui,C =
ni

n
(u − f) . (5.31)

Analogously, if the datum is defined by c minimum constraints and the overall redundancy is
given by (5.10), the decomposition performs as follows:

ui,C =
ni

n
(u − c) . (5.32)

With ui,C calculated by (5.31) or (5.32), respectively, (5.30) holds because of
∑k

i=1 ni = n (cf.
(5.9) and (5.10)).

5.4.4 Other Estimators

The implementation of Helmert’s simple estimator (3.34) can easily be realised. Although this
has been done, its results will not be discussed any further, since the approach is of a rather
rudimentary kind. It is more of historical interest and does not satisfy today’s requirements.

Considering the approaches of Kubik and Persson, it has proved that their estimators are not
suitable for the combination of TRFs. If uθ,i is the number of transformation parameters to be
estimated for the ith initial frame involved in a combination, it follows for Kubik’s estimator
with the total number N of points of the combined frame:

u = 6N +

k∑

i=1

uθ,i ∧ 6N ≥ ni ⇒ ri,K = ni − 6N −
k∑

i=1

uθ,i < 0

⇒ σ̂2
i,K =

vT
i Pivi

ri,K
< 0 . (5.33)
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As to Persson’s method (cf. (3.39), (3.41) and (3.42)), it follows:

ui,P = ni + uθ,i ⇒ ∆r =

k∑

i=1

(ni − ui,P ) − r = −
k∑

i=1

uθ,i − r < 0

⇒ ri,P = −uθ,i + wi · ∆r < 0

⇒ σ̂2
i,P =

vT
i Pivi

ri,P

< 0 . (5.34)

For classical problems like horizontal geodetic networks, both estimators might provide suitable
approximations of variance components. Yet they fail for combinations of TRFs.
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6 Numerical Tests

The implemented methods of variance component estimation have been applied to two funda-
mentally different kinds of combination, both of them playing an important role in the estab-
lishment of the ITRF (cf. section 4.4.1):

1. The following subsection deals with time series stacking. Time series are sequels of regular
(e. g. daily or weekly) solutions that contain only position coordinates and no velocities.
(Indeed, it would not make sense estimating velocities for a solution, the data of which
span a very short period of time.) Generally, no more than one observation technique is
involved in a time series.

2. The Combination of solutions of different techniques will be addressed in subsection 6.2.
This means combining solutions derived from different observation techniques, generally
containing station positions as well as velocities. As different techniques do not dispose of
identical reference points at co-location sites, local surveys need to be taken into account.
Furthermore, constraints on velocities are applied.

Three estimators will be considered within this section: Helmert’s method, the estimation by
degree of freedom and the classical estimator.

6.1 Time Series Stacking

Functional Model As it has been indicated before, solutions from time series lack of observed
velocities. This has a significant impact on the functional model when intending to compute a
combined frame:

• The estimation of station velocities in the combination is based exclusively on the observed
positions that evolve from epoch to epoch. Thus, a station’s velocity for the combined
frame is only estimable if its position is observed by at least two solutions. If a station
occurs in only one solution, no velocity can be derived.

• Whereas transformation parameters with respect to the combined frame can be estimated
for each solution, their derivatives are not estimable. This is obvious, since the TRFs of
the initial solutions are of statical kind due to lack of observed velocities.

Algebraically speaking, three modifications must be applied to the combination model (4.27) for
stacking of time series:

• There are no observation equations related to observed velocities.

• The parameter vector does not contain the velocities of those stations that are observed
not more than once.

• The parameter vector does not contain any time derivatives of the transformation param-
eters.

Data Subject of the following considerations will be a time series of 51 weekly SLR-solutions
”ILRSA” from the International Laser Ranging Service (ILRS). The solutions have been com-
puted by the Agenzia Spatiale Italiana (ASI), the primary ILRS combination centre. (That
is indicated by the appended letter ”A”.) The temporal coverage is nearly one year (January
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Figure 6.1: Observing stations in the ILRSA time series (2001) from weekly solutions.

to December 2001). Appendix E.1 provides an overview of the data sets in detail. Figure 6.1
visualises the geographical distribution of the comprised stations.

As the weekly solutions from ILRSA time series are loosely constrained, minimum constraints
are applied by CATREF software in a preprocessing step (cf. section 4.4.3).

Datum Definition To define the datum of the combined frame, two different methods have
been evaluated:

• Minimum constraints over a subset of eight stations with respect to the ITRF2000.

• Fixing of all seven transformation parameters of two arbitrarily chosen solutions.

As it has been pointed out in section 5.4, the method of datum definition does not influence the
estimation of variance components. Accordingly, both variants yield identical estimates, which
is why they will not be distinguished any further.

Convergence Variance components have been estimated for each of the 51 solutions and
reintroduced recursively as a priori values in the subsequent iteration step. Figure 6.2 illustrates
the convergence of the Helmert estimator for 10 selected solutions1, which are representative for
the whole set. The convergence behaviour of the estimation by degree of freedom and of the
classical estimator do not deviate significantly; the respective plots would be similar. Numerical
results can be found in table E.1.

The estimated variance of unit weight behaves as predicted in section 5.3. After the first step
of iteration, its square root is 7.02. It approaches 1.0 after the second and 1.00 after the third
step – converging to 1 irrespective of the applied estimator (cf. figure 6.3).

Starting with a priori values
√

ai = 1 ∀ i = 1 . . . k, convergence is achieved rather quickly. Tests
with values from 10−5 to 105 have shown that their choice has no significant impact – neither on

1They are flagged by an asterisk in table E.1.
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Figure 6.2: Time series stacking: Iteration of
variance components by Helmert’s method for 10
representatively selected solutions (cf. table E.1).
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Figure 6.3: Time series stacking: Estimated
variance of unit weight during iteration of vari-
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Figure 6.4: Time series stacking: Success of variance component estimation. Indicated is the number
ν of necessary iteration steps after which convergence is achieved by |(ŝi)ν − 1| < 10−1 ∀ i = 1 . . . k,
depending on the starting values (ai)1. The value −1 stands for the estimator’s failure.

the convergence nor on the estimated values (cf. figure 6.4). However, if the starting values are
too unrealistic, the estimation fails due to numerical instability of the normal equation matrix.
Furthermore, figure 6.4 confirms that the estimation by Helmert’s method always converges a
bit faster – as it was stated in section 3.5.2.

Quality Evaluation The dispersion of the variance components can be estimated by (3.13)
and may be an indicator for the number of necessary iteration steps. It would be desirable to
specify confidence intervals that have to enclose the variance components to an adequate degree
when convergence is achieved. Due to lack of information about the the applicable statistical
distribution, this is not feasible rigorously. Similarly, nothing can be stated about the dispersion
of the variance components’ square root σ̂i.

Nevertheless, to be able to interpret the dispersion measures of the variance components at
all, a sheer heuristic approach has been pursued in figure 6.6, which illustrates the convergence
behaviour exemplarily for three solutions. Error bars outline an interval that is defined by the
Helmert estimate plus and minus its standard deviation. The estimated standard deviations of
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all variance components are given in table E.1.

Unlike the parameters’ estimated dispersion, that of the variance components depends directly
on the approximate values ai and varies significantly during the first few iterations. It is biased
by inexact approximate values and cannot be considered as a reliable indicator before some
iterations have been made. Hence, only the confidence interval at the point of convergence
should be considered. It is visualised by a grey band in the figures.

Whereas the (Helmert) estimate for the 11th solution ranges within the band from the first
iteration on, it takes two iterations for the 8th and seven for the 33rd solution (see figure 6.6).
Indeed, considering all 51 solutions, the point where the respective estimate enters the heuristic
confidence interval differs distinctly.

Otherwise, for combination of terrestrial reference frames the most relevant issue is the sig-
nificance of the updates of estimated coordinates and velocities provided by a supplementary
iteration step. This is a most natural criterion to evaluate the number of necessary iteration
steps.

Figure 6.5 makes an attempt to analyse this criterion graphically. It visualises what has been
named ”normalised coordinate updates”: the elements of the vector ∆̂X of estimated updates for
positions and velocities (cf. (4.28)) in the νth iteration divided by their corresponding standard
deviation, the latter being evaluated at the reproducing point.

Obviously, most positions and velocities undergo no more significant updates from the fourth
iteration on. Merely a small number of values still change within the range of their standard
deviations. Consequently, three iterations could be considered sufficient for this particular com-
bination problem.

Examining the values in table E.1, it proves that most estimates σ̂i range between 2 and 5,
whereas some others adopt higher values up to 19.60. This result is not expected from a time
series of homogeneous data. Indeed, there are some outliers in the data that have a significant
impact on the variance components. It has been verified that the homogeneity of the estimates
is enhanced if the outlying stations are rejected from the respective solutions.

Comparison of Methods According to the expectations from section 3.5.2, the Helmert
estimator and the estimation by degree of freedom (which is a special case of Förstner’s method)
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Figure 6.5: Time series stacking: Updates of coordinates and velocities in iteration step ν, given in units
of the respective standard deviations.
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Figure 6.6: Time series stacking: Iteration of three exemplarily chosen variance components (solutions
8 (ilrsa010224), 11 (ilrsa010317) and 33 (ilrsa010818)) by three different methods, given in terms of
standard deviations and variances, respectively.
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yield identical results at the point of convergence. This is shown exemplarily for three initial
solutions in figure 6.6.

The variance components estimated by the classical estimator deviate slightly, because the
estimator is biased by construction (cf. section 3.6). It varies from solution to solution whether
the estimates are inside the heuristic confidence interval or not. Anyway, it turns out that the
bias is by far not significant considering the estimated positions and velocities.

Intending to evaluate the methods of variance component estimation with respect to the required
computation time, figure 6.6 may be misleading. Whereas Helmert’s estimator requires about
3.5 minutes for one single iteration, the other estimators manage one step in about a second (cf.
table 6.1). Regarding the computation formulas (3.32) and (3.36), one would expect that the
classical estimator performs notably faster than the estimation by degree of freedom. However,
the difference is negligible for a small amount of data.

Table 6.1: Required computation time for one iteration step, given in minutes and seconds. The compu-
tation has been performed by an AMD Opteron 248 processor (clock frequency: 2.2 GHz).

Section
Local ties Estimator
introduced Helmert Deg. of F. Classical

6.1 Time series stacking – 3:27.7 0:01.12 0:01.06

6.2.1 Combination of multiple techniques as TRF 2:23.4 0:02.33 0.02.29

6.2.3 Combination of multiple techniques as vectors 2:19.4 0:01.30 0.01.26

It can be concluded for the ILRSA time series that the Helmert estimator is by far too time
consuming, considering that the same results can be obtained by the degree of freedom method.
As the latter does not differ significantly from the classical estimator in terms of computation
time, the classical estimator’s simplicity does not outweigh the fact that its results are biased,
even though not significantly. Hence, the estimation by degree of freedom would be a most
appropriate choice.

Nevertheless, the degree of freedom method does not provide any stochastic information on the
estimates that can be obtained exclusively by Helmert’s method. An advisable proceeding in
this issue would be to iterate by degree of freedom until convergence is achieved and introduce
the estimates as a priori values afterwards. Then, the Helmert estimator needs to be applied
only once to yield an unbiased covariance matrix of the variance components.

6.2 Combination of Solutions of Different Techniques

As a second application, the methods of variance component estimation have been tested on
three combined solutions of GPS-, SLR- and VLBI-data, being combined another time to a
superior solution. The initial data sets, listed in table 6.2, are an extract of the data which the
ITRF2005 is based on. Figure 6.7 visualises the geographical distribution of the 45 (exclusively
co-located) sites. An overview is given by table E.3.

Since a station as a reference point is always attributed to one specific technique, none of the 101
concerned stations is observed twice. Hence, local ties are necessary to establish a link between
the three initial solutions. 56 tie-vectors have been used, subsumed in 46 SINEX-files2, one for
each site. Solely for the site No. 50103 at Tidbinbilla (Australia), two SINEX files are on hand,

2available at the ITRF homepage: http://itrf.ensg.ign.fr/
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Figure 6.7: Collocated sites in the combination of solutions of different techniques.

each corresponding to one single local tie. This might be due to independent adjustments of the
particular tie vectors.

Each SINEX file of local ties contains the positions of all stations within one site that are
concerned by the combination. Thus, it defines explicitly a (static) TRF representing the local
ties within the respective site. A covariance matrix is provided equally, whereas three types can
be distinguished (cf. figure 6.8).

Ideally, the full covariance information (type C) is available, originating directly from the adjust-
ment of local surveys. Practically, its availability is restricted merely to a subset of 15 sites. For
the remainder, covariance matrices have been constituted synthetically at the LAREG, yielding
type A or type B. To which degree of accuracy the resulting matrices represent physical reality,
however, cannot be quantified. An overview gives table E.4.

Additionally, the velocities within a site are constrained to be identical by 56 · 3 pseudo-
observations (cf. section 4.4.5). For 38 of the 56 sets of constraints, a standard deviation σvel,i

of 0.1mm/yr is assumed. As to the remainder, it is known that higher standard deviations (up
to 5mm/yr) yield more appropriate results. The empirical values originate from experience in
ITRF-combination at the LAREG.

This time, the datum is defined by fixing all 14 transformation parameters of the GPS-solution

Table 6.2: Initial solutions for the combination involving different techniques..

Technique Data Epoch Stations

GPS Jan 1996 - Jan 2006 45
SLR Dec 1992 -Dec 2005 24
VLBI Jul 1980 - Feb 2006 32

Total 101
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Figure 6.8: Types of covariance matrices for TRFs representing local tie vectors. The elements refer to
the Cartesian coordinates (x1, y1, z1, x2, y2, z2) of two stations within one site that are connected by a
local tie.

to zero. Consequently, the combined solution is expressed in the same frame as the initial
GPS-solution. (The respective transformation parameters are zero.)

Strictly speaking, this combination comprises 49 technically homogeneous initial solutions: three
derived from space geodetic observations and 46 representing local ties. The following subsec-
tions discuss different approaches to deal with local ties in variance component estimation: In
section 6.2.1 the attempt is made to estimate variance components for each individual data
set, including local ties. The approach of section 6.2.2 is to fix the weights of local ties and
to estimate variance components only for space geodetic solutions. Other approaches and their
adequateness are discussed in section 6.2.3.

6.2.1 Estimating Variance Components for Local Ties (Approaches I and II)

In a first attempt, 49 variance components are to be estimated: σ̂2
1 . . . σ̂2

3 for the space geodetic
solutions (GPS, SLR, VLBI) and σ̂2

4 . . . σ̂2
49 for the local ties. In the following, the convergence

behaviour of this approach will be exposed for two investigations, organised by the respectively
chosen a priori values ai:

I. Initially, a priori values ai = 1 are introduced for the variance components of all 49 initial
solutions. Here, the Helmert estimator fails completely, yielding negative estimates (cf. table
E.4, column I/H1).

For the estimation by degree of freedom, convergence is achieved, but rather slowly. Figure 6.9
illustrates the convergence behaviour of the GPS-, SLR- and VLBI-solutions and for 10 selected
local-tie-solutions3 . Most variance components have converged to a certain degree after about
15 iterations (which is relatively late). Figure 6.10 reveals though, that there are eight local-
tie-solutions4, for which convergence is never achieved. Their variance components fluctuate
erratically about values near zero (cf. table E.4, column I/D100).

The estimated variance of unit weight approaches 1.00 after the second iteration, converging to
0.96 from the third step on (cf. figure 6.11). Its deviation from one accounts for the velocity
constraints that are modelled by no variance component.

As to the classical estimator, its iteration is decidedly divergent, which is shown in figure 6.9.
The variance components fluctuate arbitrarily until zero estimates render the normal equation
matrix uninvertible in the 27th step of iteration.

It occurs that the estimation by degree of freedom is the only method to provide relatively
reasonable results – reasonable from a mathematical point of view. On the other hand, admitting

3They are flagged by an asterisk in the first column of table E.4.
4They are flagged by an asterisk in column I/D100 of table E.4.
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Figure 6.9: Iteration of variance components for the combination of solutions of different techniques,
estimating variance components for both space geodetic solutions and local ties. Plotted are the GPS-,
SLR- and VLBI-solutions (dashed) as well as 10 representatively selected local-tie-solutions (cf. table
E.4).
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variance components near zero for eight local-tie-solutions4 is equivalent to introducing the
corresponding local ties without any uncertainty. This is not in accordance with physical reality
though, since the tie vectors originate from imperfect measurements.

II. In a second approach, the variance components estimated before by the degree of freedom
method are introduced as a priori values for an iteration by Helmert’s method. For the eight
solutions that did not converge4, an initial value of

√
(ai)1 = 0.001 is assumed. Applied as

usual, the Helmert estimator fails again, yielding negative estimates.

A next attempt consists in fixing the variance components of the eight problematic solutions
to their initial value ai = 0.0012 as specified in section 5.4.1 (”extended model”). Thus, 41
variance components rest to be estimated, whereas eight are supposed to be definitely known.
Now, Helmert’s estimator succeeds instantly, reproducing the a priori values as estimates (cf.
table E.4, column II/H1). On the other hand, if the a priori values of the eight solutions in
question are set to 1, it fails from the beginning.

It should be emphasised that this approach is not justified for practical purposes, being rather
of theoretical interest. Firstly, it confirms once again that Helmert’s method and the estima-
tion by degree of freedom yield identical results at the reproducing point. Merely Helmert’s
estimator occurs to be more sensitive to starting values – and more susceptible to failure if the
mathematical model is not sufficiently adequate. (Here, the degree of freedom method has been
used to find suitable starting values for the Helmert estimator.)

Secondly, the estimation by Helmert’s method yields statistical information about the estimates
initially gained through estimation by degree of freedom (see table E.4, column II/H1/σ̂

2
i ).

For the space geodetic solutions (GPS, SLR, VLBI), the standard deviations of the variance
components are of a reasonable order of magnitude. As to the local-tie-solutions, their standard
deviations are partially about the same size as the estimates themselves. This underlines the
little significance of their estimation.

Discussion One weak point is probably the little supplemental redundancy introduced by the
local ties. Maximally, it may amount up to 3(N−1) per solution, depending on the number N
of comprised stations, which is 2, 3 or 4 (see table E.4). Practically, the respective redundancy
numbers are inferior, as there is also a contribution to the determination of the unknowns by
the local ties.

Figure 6.12 illustrates the repartitioning of redundancy between the local-tie-solutions during
the iteration. After the first step, the redundancy numbers range from 0.48 to 6.67. After some
more steps however, the local ties’ contribution to the overall redundancy has notably decreased,
and for the eight solutions mentioned above, the contribution is practically zero. This makes
the variance component estimation (3.32) unstable, and convergence cannot be achieved.

It may be conclusive that it is the poor redundancy of the local-tie-solutions that makes variance
component estimation unfeasible. This is confirmed by the coincidence that all of the eight
problematic solutions belong to the group of the smallest data sets, comprising only two stations.
Nevertheless, rejecting these ties does not help, because then other local-tie-solutions behave in
the same inconvenient way.

Another issue is the question, up to which degree the mathematical model is appropriate. An
obvious deficiency is the limited availability of full covariance matrices (type C) for the local-tie-
solutions. Probably, the performance of the estimation would improve if real and full covariance
information would be available for all sites. This could not been confirmed though.
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Figure 6.12: Behaviour of the redundancy numbers of the local-tie-solutions during iteration of variance
components for the combination of solutions of different techniques, estimating variance components for
both space geodetic solutions and local ties by the degree of freedom method. The values are sorted
descendingly.

Finally, the organisation of the combination process may be questioned. In the current example,
only one solution per technique is introduced into the combination, having been pre-combined
before. This is the current strategy of ITRF combination. With several solutions per technique
for the final combination, the overall redundancy would be enhanced, and probably better
variance component estimates could be expected. The latter strategy used to be pursued for
the ITRF2000 (Altamimi et al., 2002a).

6.2.2 Fixing Variance Components for Local Ties (Approach III)

As is has been pointed out, the failure of the estimations in the preceding subsection is closely
related with the poor redundancy of the data sets corresponding to local ties. As this is not
the case for the space geodetic solutions, the following approach consists in estimating variance
components for the space geodetic solutions and fixing the weights for all the local ties to their
a priori values ai (cf. section 5.4, ”extended model”). Here, empirical values have been used,
originating from the long lasting experience in ITRF combination at the LAREG (cf. table E.5,
column III/

√
(ai)1).

This time, both the Helmert estimator and the estimation by degree of freedom converge, yielding
identical results (cf. figure 6.13 and table E.5). But in contrast to the stacking of time series
(compare figure 6.2 – mind the scaling of the abscissa axis), the convergence speed is notably
slower, especially for the degree of freedom method. As to the classical estimator, convergence
is not achieved at all.

The slower convergence occurs as well for the estimated variance of unit weight, which is still
far from one after the second iteration (cf. figure 6.13). Due to the fixed weights for local ties
and constraints on velocities, it does not approach one at all, converging at 0.98.

Considering the numerical values of the variance components, it is important to understand
that they are not an indicator for the quality the respective techniques. They are merely scaling
factors, depending on the a priori cofactor matrices Qi. For quality evaluation, the entries of
these matrices have to be taken into consideration.

After all, even if reasonable variance components could be estimated by this approach, keep in
mind that they depend on the arbitrarily chosen weighting scheme for the local ties.
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Figure 6.13: Iteration of variance components for the combination of solutions of different techniques,
estimating variance components only for space geodetic solutions.
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Figure 6.14: Success of variance component estimation for the combination of solutions of different
techniques, estimating variance components only for space geodetic solutions. Indicated is the number
ν of necessary iteration steps after which convergence is achieved by |(ŝi)ν − 1| < 10−1 ∀ i = 1 . . . k,
depending on the starting values (ai)1. The value −1 stands for the estimator’s failure.
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As figure 6.14 points out, the estimators are more sensitive to starting values this time, the
Helmert Estimator more than the degree of freedom method. If the values differ too much
from the final estimates at the reproducing point, the estimation fails. That may be due to a
numerically not invertible equation system or – for the Helmert Estimator – negative estimates
σ̂2

i .

6.2.3 Other Approaches

In order to find a strategy to combine space geodetic solutions and local ties successfully, some
other approaches have been considered.

Introducing Local Ties as Vectors In all computations, the local-tie-vectors have been
introduced in terms of individual TRFs to reduce implementational effort. The benefit of this
approach is that local ties can be treated in exactly the same way as space geodetic solutions,
because the respective data sets do not differ conceptually. However, as this is not the most
natural proceeding, it has been investigated if it makes a difference for the variance component
estimation if the local ties are introduced directly as observed baseline vectors (cf. section 4.4.4).
It could be shown that it does not make a difference in terms of results. The gain in computation
time is not crucial (see table 6.1).

Aggregation of Local Ties As it has been pointed out, redundancy of the individual data
sets is an important issue for variance component estimation. Unfortunately, the datasets intro-
ducing local ties are small by construction, since measurement campaigns can never comprise
reference points from more than one site at a time. Hence, one might think of aggregating these
datasets to groups and estimate the variance components group-wise. Note that this proceeding
is not justified from a practical point of view, since the local ties are derived from completely
different sources and are, by nature, very heterogeneous. Furthermore, this approach would im-
pose a mutual weighting of the local-tie-solutions aggregated to a group; the estimated variance
components would always depend on the predefined arbitrary weighting within those groups,
which cannot be desirable.

Nevertheless, an experiment has been made to perform a combination where all local ties are
attributed to only one group. The internal weighting within this group has been defined by the
scheme of empirical values that has already been applied in the previous section and originates
from the long lasting experience in ITRF combination at the LAREG (see table E.5, column
III/

√
(ai)1). Table 6.3 shows the resulting variance components.

Table 6.3: Iterated variance components for the combination of three space geodetic solutions (GPS,
SLR, VLBI) with only one variance component comprising all 56 local ties. The indicated results are
produced by both the Helmert estimator and the degree of freedom method after the 100th step of
iteration.

Estimator GPS SLR VLBI Local Ties

σ̂i 7.02 5.98 2.13 42.82

Although stable results could be obtained, the variance components for space geodetic techniques
are not in accordance with those obtained in section 6.2.2 (cf. table E.5), the same mutual
weighting of local ties having been applied though. Strictly speaking, both approaches are not
optimal, because both are based on arbitrarily fixed weights.
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7 Conclusions

Initially, an overview of existing variance component estimators has been given, comprising six
different approaches: the statistically rigorous estimator of Helmert type, Förstner’s simplified
method and four approximate estimators.

In a next step, the estimators have been applied to the combination of TRFs. Adapting the
functional model, it turned out that two of the approximate methods are not applicable. Another
one, Helmert’s simple estimator, has been abandoned due to its oversimplified approach.

Finally, the three remaining estimators, i. e. the Helmert estimator, the estimation by degree of
freedom (which is a special case of Förstner’s method) and the ”classical” estimator, have been
investigated. As Helmert’s method is by far the most complex one and the others had been
implemented before in CATREF software, emphasis has been placed on Helmert’s approach.

Two methods of datum definition have been taken into consideration: the fixing of parameters
and the application of minimum constraints. It has turned out that the variance component
estimates do not depend on the way the datum is defined.

A primary objective of this study was to evaluate if TRF-combinations could benefit from the
Helmert estimator and its advantages. After all, Helmert’s method reveals a clear distinction
with regard to other estimators: It provides stochastic information about the estimates that
may help specifying the number of necessary iteration steps. Unfortunately, the interpretation
of the estimated standard deviations for the variance components is a delicate matter, since
nothing is known (yet) about the applicable statistical distribution. This relativises the benefit
of the dispersion estimates.

On the other hand, the Helmert estimator is by far the most complex one with respect to
computation time, which increases quadratically with the number and quartically with the
dimension of initial solutions. When it finishes a first iteration, other estimators have already
converged for a long time. Furthermore, it is more sensitive to starting values and fails if they
are too inaccurate. A mathematical model that is not in accordance with the data may provoke
failure as well, manifesting itself mostly in negative estimates.

Nevertheless, it has been confirmed that the estimation by degree of freedom always yields the
same final estimates as Helmert’s method. However, it does not provide stochastic information
about the estimates. As it is less susceptible and performs notably faster, it is preferable
for practical purposes. If stochastic information about the estimates is required, it would be
advisable to seek convergence by the degree of freedom method and to apply Helmert’s estimator
afterwards with the resulting estimates as reliable starting values.

The classical estimator may be a considerable alternative if the conformity of model and data
is good. This is the case for the combination of homogeneous data sets as in time series. The
estimates are slightly biased though, but not necessarily significantly. It is advisable to evaluate
from case to case if the gain in computation time outweighs the bias.

For the combination of solutions of different techniques, none of the considered estimators per-
forms well. The classical estimator fails, and the others do not converge rigorously. Merely if
the weighting scheme of the local ties is fixed, the estimation succeeds. The data originating
from many differently performed local surveys is of a relatively heterogeneous kind, though.
Thus, the provided statistical information is likely not qualified to establish a weighting scheme
unalteredly.

One of the main reasons for the failure of variance component estimation for the combination
of solutions of different techniques is probably an insufficient redundancy of the adjustment
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problem, affecting the reliability of the estimates. As it is not possible to enhance the redundancy
of local tie solutions, it might be imaginable that a combination of more than one solution per
observation technique at a time would yield more appropriate results. This is principally a
matter of combination strategy – organising the hierarchy of successive steps, starting from the
primary observable and yielding a combined global frame at its end.

Another issue is the lacking adequacy of the mathematical model. Hitherto, the stochastic
information submitted with local surveys is incomplete for the most part. The availability of full
covariance matrices for all local ties (if available one day) might be an important enhancement
to the conformity between mathematical model and reality, probably improving the performance
of variance component estimation.

Finally, none of the methods discussed can be considered adequate to estimate variance com-
ponents for the combination of solutions of different techniques. Hence, the most appropriate
choice is yet to specify the weighting factors based on experience, eventually inspired but not
determined by more or less rigorous estimators. Hence, there is still some work to be done in
this field.

Acknowledgements

The major part of this work has been carried out at the Laboratoire de Recherche en Géodésie
(LAREG) and supported by the Institut Géographique National (IGN, France).
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B List of Acronyms

ASI Agenzia Spaziale Italiana
AVN Allgemeine Vermessungsnachrichten
BADW Bayrische Akademie der Wissenschaften
BIH Bureau International de l’Heure
BTS BIH Terrestrial System
BIQUE Best Invariant Quadratic Unbiased Estimator
CATREF Combination and Analysis of Terrestrial Reference Frames
CoM Centre of Mass
CRF Celestial Reference Frame
CRS Celestial Reference System
DAAD Deutscher Akademischer Austauschdienst
DGFI Deutsches Geodätisches Forschungsinstitut
DGK Deutsche Geodätische Kommission
DOMES Directory of MERIT Sites
DORIS Doppler Orbitography and Radiopositioning integrated by Satellite
ENSG Ecole Nationale des Sciences Géographiques
FAF Federal Armed Forces
FORTRAN Formula Translator
GPS Global Positioning System
IAU International Astronomical Union
IERS International Earth Rotation and Reference Systems Service
IGN Institut Géographique National
ILRS International Laser Ranging Service
IQUE Invariant Quadratic Unbiased Estimator
ITRF International Terrestrial Reference Frame
LAREG Laboratoire de Recherche en Géodésie
LAPACK Linear Algebra Package
LLR Lunar Laser Ranging
LS-VCE Least Squares Variance Component Estimation
MERIT Monitoring of Earth Rotation and Intercomparison of Techniques
MINQUE Minimum Norm (Invariant) Quadratic Estimator
ML Maximum Likelihood
NNR No Net Rotation
NRCan National Resources Canada
PhD Doctor of Philosophy
QE Quadratic Estimator
QUE Quadratic Unbiased Estimator
SI Système International d’unités
SINEX Software Independent Exchange Format
SLR Satellite Laser Ranging
TH Technische Hochschule
TRF Terrestrial Reference Frame
TRS Terrestrial Reference System
VCE Variance Component Estimation
VLBI Very Long Baseline Interferometry
ZfV Zeitschrift für Vermessungswesen
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C List of Symbols

General conventions

Matrices are denoted by capital, bold characters.
(Column-) vectors are referenced by (mostly) lower case, bold characters.
Non-bold characters stand for scalars.

T Transpose of a matrix or vector
−1 Cayley inverse of a square matrix
− Generalised inverse of a square matrix

ˆ Estimated value
˙ Derivative with respect to time
′ Modification due to fixing of parameters

Operators

The following list subsumes some operators used in this study. The numbers related to each
operator indicate the pages where they are defined or appear for the first time, respectively.

D{·} Dispersion 3
E{·} Expectation 3
O{·} Landau symbol 3
det(·) Determinant 10
tr(·) Trace of a square matrix 4
∂(·) Partial differentiation 3

Specific symbols

The following list subsumes most symbols used in this study. The numbers related to each
symbol indicate the pages where they are defined or appear for the first time, respectively.

0 Matrix or vector of zeros 4
1 Matrix or vector of ones 7

A n × u design matrix 3
Ai ni×u component of A corresponding to the ith set of observations; in context

of stochastic constraints: partition of A corresponding to xi

8, 21

Afix n× (u−f) design matrix of the combination model when parameters are fixed 28
Amc c × u partition of the design matrix corresponding to minimum constraints 28
Ap 3 × 7 matrix defined in (4.25) 25
Asol nsol ×u partition of the design matrix corresponding to all (true) observations

from initial solutions
26

Atie 3t × u partition of the design matrix corresponding to all local-ties 29
Atie,i 3 × u partition of the design matrix corresponding to the ith local-tie-vector 29
Avel 3v × u partition of the design matrix corresponding to all velocity constraints 29
Avel,i 3 × u partition of the design matrix corresponding to the ith set of velocity

constraints
30
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A1i ni×6N partition of the design matrix comprising the derivatives of the obser-
vations from the ith solution with respect to station positions and velocities

25

A2i ni×uθ,i partition of the design matrix comprising the derivatives of the obser-
vations from the ith solution with respect to the transformation parameters
for the ith frame

25

B Coefficient matrix in the model of condition equations or 14 × 6N design
matrix of minimum constraints, respectively

10, 22

Ccc Covariance matrix of stochastic constraints 20
Cll n × n covariance matrix of the observations L (or l, respectively) 3
Cmc Covariance matrix of minimum constraints 23, 33
Csol nsol × nsol covariance matrix corresponding to all (true) observations from

initial solutions
26

Ctie 3t × 3t covariance matrix of all local ties 29
Ctie,i 3 × 3 covariance matrix of the ith local-tie-vector 25
Cvel 3v × 3v covariance matrix of all velocity constraints 30
Cvv n × n covariance matrix of the residuals v 4
Cww r × r covariance matrix of the misclosures w 10
Cx̂x̂ u × u covariance matrix of the estimated parameters x̂ 4
Ccc

x̂x̂ Covariance matrix of the stochastically constrained parameters 21
Cmc

x̂x̂ Covariance matrix of the minimally constrained parameters 23
Cunc

x̂x̂ Covariance matrix of the stochastically constrained parameters after removal
of the constraints’ contribution

22

D n × n symmetric matrix with a priori unknown coefficients 8
G 6N × 14 matrix defined in eq. (4.5) 17
H k × k coefficient matrix in the equation system for estimating variance com-

ponents by Helmert’s method
7

I Identity matrix 6
L n × 1 vector of observations 3
Li ni × 1 component of L corresponding to the ith set of observations 24
Lsol nsol × 1 vector of all (true) observations corresponding to the initial solutions 26
N u × u normal equation matrix 3
N Total number of points concerned by a set of coordinates or involved in a

combination, respectively
16, 24

Nc u × u contribution of the stochastic constraints to (Ccc
x̂x̂)−1 21

Ni u × u contribution of the ith solution to the normal equation matrix 31
P n × n weight matrix, the definition of which is contextual 3, 4, 5
Pi ni × ni weight matrix corresponding to the ith set of observations 6
Q n × n cumulated cofactor matrix of the observations in the stochastic model

of variance component estimation
5

Qi ni × ni cofactor matrix of the ith set of observations 6
Qll n × n cofactor matrix of the observations L (or l, respectively) 4
Qvv n × n cofactor matrix of the residuals v 4
Qx̂x̂ u × u cofactor matrix of the estimated parameters x̂ 4
R Linearised 3 × 3 rotation matrix 16
R∗ 3 × 3 rotation matrix 16
Ti n × n matrix, proportionally related with Vi (cf. eq. (3.11)) 7
Uij ni × nj matrix defined in eq. (5.15) 34
Vi n × n additive component of Cll modelling the impact of the ith variance

component
5

V0 n × n additive component of Cll that is not concerned by any variance com-
ponent

5
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W n × n matrix defined in eq. (3.9) 7
X u × 1 vector of unknown parameters; in context of TRFs: 6N × 1 vector of

coordinates and velocities of all points
3, 19

XR 6N × 1 vector of coordinates and velocities of points defined in the datum-
defining, referential TRF

22

Xi 6N × 1 vector of positions and velocities of points defined in TRF i 17
X0 u × 1 (or 6N × 1) vector of approximate values for X 3, 20
Xmc u × 1 vector of minimally constrained parameters 27

ai Approximate (a priori) value for the variance component si 7
c Number of pseudo-observations introduced for application of minimum con-

straints
33

d Differential scale factor 16
e Euler’s number 10
ei Unit vector nullifying all elements except for the ith one 8
f Multidimensional algebraic function 3
f Number of fixed parameters 33
hi0 Corrective coefficient in the equation system for estimating variance compo-

nents by Helmert’s method
7

hij ij-element of H 7
hi,mc Additive component of hi0 accounting for minimum constraints 36
hi,vel Additive component of hi0 accounting for constraints on velocities 36
k Number of variance components; number of initial solutions involved in a

combination of TRFs
5, 24

l n × 1 vector of abridged observations 3
lc Vector of pseudo-observations for stochastic constraints 20
li ni × 1 component of l corresponding to the ith set of observations 26
lmc 14 × 1 vector of pseudo-observations for application of minimum constraints 23
lsol nsol × 1 vector of all linearised (true) observations corresponding to the initial

solutions
26

ltie 3t × 1 vector of all local-ties 29
ltie,i ith local-tie-vector (3 × 1) 25
lvel 3v × 1 vector of pseudo-observations for all velocity constraints 29
lvel,i 3 × 1 vector of pseudo-observations for the ith set of velocity constraints 29
m Scale factor 16
n u×1 right hand side vector in the normal equation system of the Gauß-Markov

model
3

n Overall number of observations 3
ni Dimension of the ith set of observations 6
nsol Number of (true) observations from initial solutions 26
p k × 1 vector defining a linear function 7
pi ith element of p 8
q k × 1 right hand side vector in the equation system for estimating variance

components by Helmert’s method
7

qi ith element of q 7
r Overall redundancy; number of degrees of freedom 4
ri Redundancy number of observation i 4
ri,C Approximation of ri,D by means of the classical estimator 13
ri,D Redundancy number of the ith set of observations 11
ri,H Approximation of ri,D by means of Helmert’s simple estimator 12
ri,K Approximation of ri,D by Kubik’s method 13
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ri,P Approximation of ri,D by Persson’s method 13
rx Differential rotation angle for rotation about the x-axis 16
ry Differential rotation angle for rotation about the y-axis 16
rz Differential rotation angle for rotation about the z-axis 16
s k × 1 vector of variance components 5
si ith variance component 5
ŝi,F Förstner’s estimator of the ith variance component 11
t 3 × 1 vector of translations 16
t Number of local-tie-vectors 25
ti Epoch at which the transformation parameters between TRF i and the com-

bined frame are to be estimated
25

tpi Referential epoch for the position of point p in solution i 24
t0 Epoch at which a combination is performed 24
tx Translation in x 16
ty Translation in y 16
tz Translation in z 16
u Overall number of (unknown or fixed) parameters 3
ui,C Proportion of unknowns corresponding to the ith set of observations in the

model of the classical estimator
13

ui,K Proportion of unknowns corresponding to the ith set of observations in the
model of Kubik’s estimator

13

ui,P Proportion of unknowns corresponding to the ith set of observations in the
model of Persson’s estimator

13

uθ,i Number of transformation parameters to be estimated for the ith initial frame
involved in a combination

37

v n × 1 Vector of residuals 3
v Number of sets of constrained velocities 29
vc Residuals corresponding to lc 21
vi ni × 1 component of v, corresponding to the ith set of observations 8
vmc 14 × 1 vector of residuals corresponding to lmc 23
vsol nsol×1 vector of residuals corresponding to all (true) observations from initial

solutions
26

vtie 3t × 1 vector of residuals of all local ties 29
vvel 3v × 1 vector of residuals of all velocity constraints 29
vx 6N × 1 vector of residuals in the model (4.15) 22
w r × 1 vector of misclosures in the model of condition equations 10
x u × 1 vector of the abridged parameters 3
xi ith partition of x 21
xi

j x-coordinate of the ith point in set j 16

yi
j y-coordinate of the ith point in set j 16

zi
j z-coordinate of the ith point in set j 16

∆Ntie Contribution of the local ties to the normal equation matrix 31
∆Nvel Contribution of the velocity constraints to the normal equation matrix 31
∆X Difference X− X0 26
∆XR Difference X− XR 22
Λ n × u matrix of Lagrangian multipliers 9

δij Kronecker symbol. δij = 1 if i = j. δij = 0 otherwise. 8
ǫ n × 1 vector of errors 3
ǫ̃ n × 1 vector of predicted errors 3
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ǫtie,i 3 × 1 vector of errors corresponding to the ith local-tie-vector 28
θ 14 × 1 vector of transformation parameters 17
θi Transformation parameters between the ith initial TRF and the combined

frame, referring to ti

25

ϑ Transformation parameters between all initial TRFs and the combined frame
(concatenation of θi ∀ i = 1 . . . k)

26

λ k × 1 vector of Lagrangian multipliers 9
ν Sequential number of the current step of iteration 7

ξi
j 3 × 1 coordinate vector of the ith point in set j 16

σ Standard deviation 20
σ2

0 A priori variance factor; variance of unit weight 4
σ̂2

0 A posteriori variance factor; estimated variance of unit weight 4
σ2

i Variance component of the ith set of observations 6
σ̂2

i,D Estimate of σ2
i by degree of freedom 11

σ̂2
i,C Approximation of σ̂2

i by means of the classical estimator 13

σ̂2
i,H Approximation of σ̂2

i by means of Helmert’s simple estimator 12

σ̂2
i,K Approximation of σ̂2

i by Kubik’s method 13

σ̂2
i,P Approximation of σ̂2

i by Persson’s method 14

σ2
vel,i Variance of the ith set of velocity constraints 25
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D Flowchart of the Implementation

Loops Memory Computation Equations

∀ i = 1 . . . k

load Pi

N → N + AT
i PiAi (4.30), (5.1)

n → n + AT
i Pili (4.31)

suspend Pi

N → N + AT
tieC

−1
tieAtie

1 (5.2)

N → N + AT
velC

−1
velAvel

2 (5.3)

N → N + AT
mcC

−1
mcAmc

3 (4.38)

N → N′ 4 (5.4)

n → n′ 4 (5.5)

N′ → N′−1

x̂ = N′−1n′ (2.8)

N′−1 → (N′−1)′ 4 (5.6)

∀ i = 1 . . . k

vi = Aix̂ − li (2.9), (2.10)

Uii = Ai(N
′−1)′AT

i (5.15)

load Pi

vT
i Pivi

hii = tr(UiiPiUiiPi) (5.16), (5.18)

suspend Uii

∀ j = i + 1 . . . k

Uij = Ai(N
′−1)′AT

j (5.15)

load Pj

hij = tr(UijPjU
T
ijPi) (5.16), (5.17)

suspend Pj ,Uij

hi0 = hi0(Pi) (3.17)

suspend Pi

σ̂2
0 =

∑k
i=1

vT
i Pivi

r
(2.20), (2.21), (5.9) - (5.11)

ŝ = H−1q (3.5)

∀ i = 1 . . . k σ̂2
i,D =

vT
i Pivi

ri,D
(3.32), (5.29)

∀ i = 1 . . . k σ̂2
i,C =

v
T
i Pivi

ri,C
(3.36), (5.30) - (5.32)

∀ i = 1 . . . k σ̂2
i,H =

v
T
i Pivi

ni
(3.34)

1if local ties are introduced as observed baseline vectors
2if constraints on velocities are applied
3if minimum constraints are applied
4If no parameters are fixed, this transformation has no effect (cf. section 5.2).
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E Data

E.1 Time Series Stacking

Table E.1 provides an overview of the ILRSA solutions that have been used for the combination
in section 6.1. The column headers have the following meaning:

Sol. Name: Unique identifier of the solution, made up of ”ilrsa” and a referential date. Asterisks
designate the representative subset of solutions considered in figure 6.2.

Data Epoch: Period of days in which the primary observations have been made in 2001.

Pt.: Number of points (stations) comprised by the solution.

H1 | σ̂i: Variance components estimated by Helmert’s method after 1 iteration, given in terms
of standard deviations.

D1 | σ̂i: Variance components estimated by degree of freedom after 1 iteration, given in terms
of standard deviations.

C1 | σ̂i: Variance components estimated by the classical estimator after 1 iteration, given in
terms of standard deviations.

H20/D20 | σ̂i: Variance components estimated by Helmert’s method after 20 iterations, given
in terms of standard deviations. The estimation by degree of freedom yields an identical
result at this point of convergence.

C20 | σ̂i: Variance components estimated by the classical estimator after 20 iterations, given in
terms of standard deviations.

H20 | σ̂2
i : Variance components estimated by Helmert’s method after 20 iterations, this time

given in terms of variances. The variance’s respective standard deviation
√

D{σ̂2
i )} is

provided equally.
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Table E.1: ILRSA time series of weekly SLR-Solutions from 2001 and iterated variance components.

H1 D1 C1 H20/D20 C20 H20Sol. Name Data Epoch Pt.
σ̂i σ̂i σ̂i σ̂i σ̂i σ̂2

i

ilrsa010106 31 Deca - 7 Jan 18 4.83 5.12 4.93 5.72 5.67 32.66± 1.27
ilrsa010113 7 Jan - 14 Jan 21 3.32 4.25 4.03 4.36 3.95 19.03± 0.97
ilrsa010120* 14 Jan - 21 Jan 21 14.93 14.26 13.43 19.60 19.70 384.02± 3.84
ilrsa010127* 21 Jan - 28 Jan 18 10.11 10.01 9.82 4.59 4.46 21.03± 1.04
ilrsa010203 28 Jan - 4Feb 19 5.56 5.71 5.60 5.58 5.65 31.09± 1.18
ilrsa010210 4Feb - 11 Feb 21 2.86 3.27 3.27 2.91 2.75 8.45± 0.64
ilrsa010217 11 Feb - 18 Feb 21 3.88 4.21 4.15 3.91 3.84 15.27± 0.82
ilrsa010224 18 Feb - 25 Feb 17 2.98 3.34 3.31 3.26 3.19 10.64± 0.77
ilrsa010303 25 Feb - 4Mar 19 6.53 6.57 6.57 6.53 6.70 42.68± 1.34
ilrsa010310 4Mar - 11 Mar 20 3.19 3.39 3.43 3.17 3.18 10.05± 0.66
ilrsa010317* 11 Mar - 18 Mar 19 2.07 2.53 2.54 2.16 1.94 4.64± 0.52
ilrsa010324 18 Mar - 25 Mar 20 4.68 4.74 4.78 4.88 4.99 23.82± 0.98
ilrsa010331 25 Mar - 1Apr 21 5.07 5.15 5.20 4.34 4.45 18.79± 0.86
ilrsa010407 1Apr - 8Apr 20 3.95 4.10 4.15 3.54 3.61 12.52± 0.73
ilrsa010414 8Apr - 15 Apr 18 4.95 5.05 5.07 4.30 4.38 18.49± 0.93
ilrsa010421 15 Apr - 22 Apr 16 5.07 5.16 5.14 4.66 4.69 21.70± 1.06
ilrsa010428 22 Apr - 29 Apr 20 3.12 3.41 3.41 3.69 3.62 13.62± 0.77
ilrsa010505 29 Apr - 6May 18 2.13 2.43 2.42 3.04 2.86 9.21± 0.68
ilrsa010512* 6May - 13 May 20 4.98 5.11 5.16 6.27 6.35 39.35± 1.25
ilrsa010519 13 May - 20 May 22 5.49 5.69 5.70 7.36 7.36 54.12± 1.41
ilrsa010526 20 May - 27 May 23 7.75 7.80 7.98 8.81 8.97 77.53± 1.61
ilrsa010602 27 May - 3 Jun 23 12.38 12.12 12.04 13.96 14.23 195.00± 2.55
ilrsa010609 2 Jun - 10 Jun 19 10.83 10.77 10.62 12.22 12.04 149.29± 2.53
ilrsa010616* 10 Jun - 17 Jun 22 9.82 9.78 10.05 10.94 11.26 119.72± 2.02
ilrsa010623 17 Jun - 24 Jun 19 1.70 2.09 2.13 1.95 1.91 3.79± 0.43
ilrsa010630 23 Jun - 1 Jul 21 3.21 3.62 3.67 3.76 3.84 14.11± 0.75
ilrsa010707 1 Jul - 8 Jul 25 4.39 4.50 4.67 4.18 4.38 17.43± 0.73
ilrsa010714* 8 Jul - 15 Jul 25 18.22 17.66 17.77 16.26 17.10 264.24± 2.81
ilrsa010721 15 Jul - 22 Jul 23 9.83 9.80 10.08 9.12 9.56 83.14± 1.65
ilrsa010728* 22 Jul - 29 Jul 24 10.76 10.69 10.74 9.50 9.74 90.32± 1.72
ilrsa010804 29 Jul - 5Aug 21 11.07 10.98 11.20 9.80 10.21 95.95± 1.86
ilrsa010811 5Aug - 12 Aug 22 8.27 8.27 8.41 7.23 7.54 52.32± 1.35
ilrsa010818 11 Aug - 19 Aug 24 3.15 3.37 3.47 2.97 3.06 8.80± 0.55
ilrsa010825* 19 Aug - 26 Aug 28 4.25 4.40 4.54 4.10 4.30 16.79± 0.69
ilrsa010901 26 Aug - 2 Sep 25 5.46 5.58 5.67 4.26 4.39 18.15± 0.77
ilrsa010908 2 Sep - 9 Sep 22 3.62 3.85 3.93 3.23 3.30 10.41± 0.63
ilrsa010915 9 Sep - 16 Sep 26 3.19 3.51 3.51 2.46 2.33 6.05± 0.49
ilrsa010922 16 Sep - 23 Sep 26 2.97 3.37 3.42 2.38 2.20 5.66± 0.48
ilrsa010929 23 Sep - 30 Sep 26 3.41 3.77 3.81 2.89 2.77 8.36± 0.57
ilrsa011013 7Oct - 14 Oct 23 5.90 6.06 5.97 6.04 6.14 36.48± 1.15
ilrsa011020 14 Oct - 21 Oct 23 9.01 8.87 8.95 8.92 9.21 79.64± 1.63
ilrsa011027 21 Oct - 28 Oct 25 5.04 5.19 5.10 5.94 5.94 35.32± 1.10
ilrsa011103 28 Oct - 4Nov 22 3.05 3.44 3.41 3.76 3.63 14.11± 0.82
ilrsa011110 4Nov - 11 Nov 22 7.10 7.01 6.73 7.71 7.64 59.50± 1.52
ilrsa011117 11 Nov - 18 Nov 24 4.93 5.05 5.07 5.65 5.75 31.91± 1.05
ilrsa011124* 18 Nov - 25 Nov 21 6.37 6.38 6.20 7.55 7.57 56.96± 1.51
ilrsa011201 25 Nov - 2Dec 17 5.22 5.34 5.21 5.63 5.54 31.73± 1.28
ilrsa011208 2Dec - 9Dec 18 3.14 3.56 3.48 3.43 3.18 11.78± 0.84
ilrsa011215* 9Dec - 16 Dec 21 11.53 11.17 11.04 12.45 12.84 154.96± 2.39
ilrsa011222 16 Dec - 23 Dec 17 4.24 4.72 4.43 4.98 4.63 24.79± 1.22
ilrsa011229 23 Dec - 30 Dec 16 5.20 5.26 5.22 4.59 4.47 21.06± 1.06

Total / σ̂0 31 Deca - 30 Dec 37 7.02 7.02 7.02 1.00 1.00

aDecember 2000
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Table E.2: Stations comprised by the ILRSA time series in 2001. The last column indicates the number
of solutions that comprise the respective station.

Code DOMES Site Name Country ∼ λ ∼ ϕ # Sol.

7080 40442M006 Fort Davis USA 255.98◦ 30.68◦ 51
7090 50107M001 Yarragadee Australia 115.35◦ -29.05◦ 51
7840 13212S001 Herstmonceux UK 0.34◦ 50.87◦ 51
7105 40451M105 Washington USA 283.17◦ 39.02◦ 50
7501 30302M003 Hartebeeshoek South Africa 27.69◦ -25.89◦ 49
7237 21611S001 Changchun China 125.44◦ 43.79◦ 48
7835 10002S001 Grasse France 6.92◦ 43.75◦ 48
7845 10002S002 Grasse France 6.92◦ 43.75◦ 48
7839 11001S002 Graz Austria 15.49◦ 47.07◦ 47
7110 40497M001 Monument Peak USA 243.58◦ 32.89◦ 46
7849 50119S001 Mount Stromlo Australia 149.01◦ -35.32◦ 45
7832 20101S001 Riyadh Saudi Arabia 46.40◦ 24.91◦ 44
7838 21726S001 Simosato Japan 135.94◦ 33.58◦ 42
7210 40445M001 Haleakala USA 203.74◦ 20.71◦ 41
7810 14001S007 Zimmerwald Switzerland 7.47◦ 46.88◦ 39
7836 14106S009 Potsdam Germany 13.06◦ 52.38◦ 39
7811 12205S001 Borowiec Poland 17.07◦ 52.28◦ 38
7837 21605S001 Shanghai China 121.19◦ 31.10◦ 36
7403 42202M003 Arequipa Peru 288.51◦ -16.47◦ 32
1884 12302S002 Riga Latvia 24.06◦ 56.95◦ 30
8834 14201S018 Wettzell Germany 12.88◦ 49.14◦ 27
7249 21601S004 Beijing China 115.89◦ 39.61◦ 26
7820 21609S002 Kunming China 102.80◦ 25.03◦ 22
7806 10503S014 Metsahovi Finland 24.39◦ 60.22◦ 19
1893 12337S006 Katzively Ukraina 33.97◦ 44.39◦ 17
7339 21740M001 Tateyama Japan 139.85◦ 34.94◦ 15
7941 12734S008 Matera Italy 16.70◦ 40.65◦ 15
1873 12337S003 Simeis Ukraina 33.99◦ 44.41◦ 14
7824 13402S007 San Fernando Spain 353.79◦ 36.47◦ 14
7356 21613M003 Lhasa China 91.04◦ 29.63◦ 13
7124 92201M007 Tahiti French Polynesia 210.39◦ -17.58◦ 8
7355 21612M002 Urumqi China 87.71◦ 43.81◦ 5
1864 12340S002 Maidanak Uzbekistan 66.94◦ 38.68◦ 4
1868 12341S001 Komsomolsk-na-Amure Russia 136.74◦ 50.69◦ 2
7335 21701M002 Kashima Japan 140.66◦ 35.96◦ 2
1863 12340S001 Maidanak Uzbekistan 66.94◦ 38.69◦ 1
7548 12725S013 Cagliari Italy 8.97◦ 39.14◦ 1
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E.2 Combination of Solutions of Different Techniques

Table E.3: Sites involved in the combination of solutions of different techniques. The columns GPS,
SLR and VLBI indicate the number of hosted stations per technique.

Site GPS SLR VLBI Name Country ∼ λ ∼ ϕ

10002 1 2 Grasse France 6.92◦ 43.75◦

10317 1 1 Ny-Alesund Norway 11.87◦ 78.93◦

10402 1 1 Onsala Sweden 11.93◦ 57.40◦

11001 1 1 Graz Austria 15.49◦ 47.07◦

12205 1 1 Borowiec Poland 17.07◦ 52.28◦

12711 1 1 Medicina Italy 11.65◦ 44.52◦

12717 1 1 Noto Italy 14.99◦ 36.88◦

12734 1 1 1 Matera Italy 16.70◦ 40.65◦

13212 1 1 Herstmonceux UK 0.34◦ 50.87◦

13407 1 1 Madrid Spain 355.75◦ 40.43◦

13420 1 1 Yebes Spain 356.91◦ 40.52◦

14001 1 1 Zimmerwald Switzerland 7.47◦ 46.88◦

14106 1 1 Potsdam Germany 13.07◦ 52.38◦

14201 1 1 2 Wettzell Germany 12.88◦ 49.14◦

21601 1 1 Beijing China 115.89◦ 39.61◦

21605 1 1 1 Shanghai China 121.20◦ 31.10◦

21730 1 1 Tsukuba Japan 140.09◦ 36.11◦

30302 2 1 1 Hartebeeshoek South Africa 27.69◦ -25.89◦

40101 1 1 St. John’s Canada 307.32◦ 47.60◦

40104 1 1 Algonquin Canada 281.93◦ 45.96◦

40127 1 1 Yellowknife Canada 245.52◦ 62.48◦

40408 1 1 Fairbanks USA 212.50◦ 64.98◦

40424 1 2 Kauai USA 200.34◦ 22.13◦

40433 1 1 Quincy USA 239.06◦ 39.98◦

40440 1 1 Westford USA 288.51◦ 42.61◦

40442 1 1 1 Fort Davis USA 255.99◦ 30.68◦

40445 1 1 Haleakala USA 203.74◦ 20.71◦

40451 1 1 Washington USA 283.17◦ 39.02◦

40456 1 1 Pie Town USA 251.88◦ 34.30◦

40465 1 1 North Liberty USA 268.43◦ 41.77◦

40477 1 1 Mauna Kea USA 204.54◦ 19.80◦

40497 1 1 Monument Peak USA 243.58◦ 32.89◦

41602 1 1 Fortaleza Brazil 321.57◦ -3.88◦

41703 1 1 Easter Islands Chile 250.62◦ -27.15◦

41705 1 1 Santiago Chile 289.33◦ -33.15◦

41719 1 1 1 Concepcion Chile 286.97◦ -36.84◦

42202 1 1 Arequipa Peru 288.51◦ -16.47◦

43201 1 1 Sainte Croix USA 295.42◦ 17.76◦

50103 1 1 1 Tidbinbilla Australia 148.98◦ -35.40◦

50107 1 1 Yarragadee Australia 115.35◦ -29.05◦

50116 1 1 Hobart Australia 147.44◦ -42.80◦

50119 1 1 Mount Stromlo Australia 149.01◦ -35.32◦

66006 1 1 Syowa Antarctica 39.58◦ -69.01◦

66008 1 1 O’Higgins Antarctica 302.10◦ -63.32◦

92201 1 1 Tahiti French Polynesia 210.39◦ -17.58◦

45 24 32
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Table E.4: Iterated variance components for the combination of solutions of different techniques, esti-
mating variance components for both space geodetic solutions and local ties (approaches I and II).

I II
H1 D100 H1

Solution Qi Pt.
√

(ai)1 σ̂i σ̂i

√
(ai)1 σ̂i σ̂2

i

GPS* C 45 1.00 5.29 8.39 8.39 8.39 70.28± 1.36
SLR* C 24 1.00 4.58 5.26 5.26 5.26 27.62± 2.03
VLBI* C 32 1.00 4.63 1.75 1.75 1.75 3.10± 0.74

10002* C 3 1.00 6.21 4.53 4.53 4.53 20.56± 4.00
10317* B 2 1.00 0.98 0.00* 0.001 ( 0.001) ( 0.00± 0.00)
10402 A 2 1.00 2.10 1.43 1.43 1.43 2.05± 1.26
11001 A 2 1.00 0.76 0.82 0.82 0.82 0.67± 1.35
12205 A 2 1.00 4.04 2.76 2.76 2.76 7.65± 2.65
12711* C 2 1.00 4.26 8.06 8.06 8.06 64.83± 7.43
12717 C 2 1.00 —– 0.00* 0.001 ( 0.001) ( 0.00± 0.00)
12734 Ca 3 1.00 3.35 4.88 4.88 4.88 23.85± 3.72
13212 A 2 1.00 1.96 1.96 1.96 1.96 3.82± 1.82
13407 A 2 1.00 8.24 8.20 8.20 8.20 67.27± 7.55
13420 A 2 1.00 —– 1.17 1.17 1.17 1.36± 1.78
14001* A 2 1.00 1.98 0.26 0.26 0.26 0.07± 2.19
14106 A 2 1.00 0.09 0.00* 0.001 ( 0.001) ( 0.00± 0.00)
14201 C 4 1.00 2.73 3.21 3.21 3.21 10.32± 2.15
21601 A 2 1.00 4.51 4.86 4.86 4.86 23.61± 4.69
21605 C 3 1.00 12.17 25.80 25.80 25.80 665.28± 15.94
21730 A 2 1.00 —– 0.77 0.77 0.77 0.59± 1.00
30302 C 4 1.00 5.27 3.95 3.95 3.95 15.62± 2.73
40101 B 2 1.00 —– 0.69 0.69 0.69 0.47± 1.14
40104 A 2 1.00 0.50 0.27 0.27 0.27 0.07± 0.30
40127 A 2 1.00 —– 2.15 2.15 2.15 4.63± 1.95
40408* B 2 1.00 5.86 5.95 5.95 5.95 35.38± 5.31
40424 C 3 1.00 2.92 1.20 1.20 1.20 1.45± 1.01
40433 A 2 1.00 4.57 4.72 4.72 4.72 22.31± 4.63
40440 A 2 1.00 0.49 0.00* 0.001 ( 0.001) ( 0.00± 0.00)
40442 A 3 1.00 0.35 1.88 1.88 1.88 3.53± 1.17
40445 A 2 1.00 4.01 4.80 4.80 4.80 23.05± 4.39
40451* A 2 1.00 3.39 2.05 2.05 2.05 4.23± 1.91
40456 A 2 1.00 2.45 3.65 3.65 3.65 13.29± 3.05
40465 A 2 1.00 1.62 1.30 1.30 1.30 1.69± 1.24
40477* A 2 1.00 1.49 0.83 0.83 0.83 0.70± 0.97
40497 A 2 1.00 1.01 2.13 2.13 2.13 4.53± 2.17
41602 A 2 1.00 0.68 0.53 0.53 0.53 0.29± 0.49
41703 B 2 1.00 2.46 0.00* 0.001 ( 0.001) ( 0.00± 0.00)
41705 A 2 1.00 2.61 2.13 2.13 2.13 4.55± 2.46
41719* C 3 1.00 5.95 8.25 8.25 8.25 67.92± 8.70
42202 C 2 1.00 3.35 0.00* 0.001 ( 0.001) ( 0.00± 0.00)
43201 A 2 1.00 1.53 0.74 0.74 0.74 0.55± 0.94

50103/1b C 2 1.00 16.21 14.14 14.14 14.14 199.85± 11.74
50103/2c A 2 1.00 1.85 0.38 0.38 0.38 0.15± 1.06
50107 C 2 1.00 25.96 25.37 25.37 25.37 643.44± 22.67
50116 C 2 1.00 3.52 0.00* 0.001 ( 0.001) ( 0.00± 0.00)
50119* C 2 1.00 4.46 10.47 10.47 10.47 109.55± 11.49
66006* A 2 1.00 —– 4.41 4.41 4.41 19.25± 7.19
66008 A 2 1.00 0.77 0.70 0.70 0.70 0.49± 0.61
92201 C 2 1.00 2.24 0.00* 0.001 ( 0.001) ( 0.00± 0.00)

σ̂0 4.08 0.96 0.96

aGPS is not correlated with the other techniques.
bTie between GPS and SLR
cTie between GPS and VLBI
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Table E.5: Iterated variance components for the
combination of solutions of different techniques,
estimating variance components only for space
geodetic solutions (approach III).

III
H20/D20 H20

Solution
√

(ai)1 σ̂i σ̂2

i

GPS 1.00 7.67 58.90± 1.47
SLR 1.00 9.80 96.03± 3.03
VLBI 1.00 3.45 11.94± 1.09

10002 5.00 ( 5.00) ( 25.00± 0.00)
10317 1.00 ( 1.00) ( 1.00± 0.00)
10402 1.00 ( 1.00) ( 1.00± 0.00)
11001 1.00 ( 1.00) ( 1.00± 0.00)
12205 5.00 ( 5.00) ( 25.00± 0.00)
12711 3.00 ( 3.00) ( 9.00± 0.00)
12717 3.00 ( 3.00) ( 9.00± 0.00)
12734 3.00 ( 3.00) ( 9.00± 0.00)
13212 1.00 ( 1.00) ( 1.00± 0.00)
13407 3.80 ( 3.80) ( 14.44± 0.00)
13420 1.00 ( 1.00) ( 1.00± 0.00)
14001 3.00 ( 3.00) ( 9.00± 0.00)
14106 1.00 ( 1.00) ( 1.00± 0.00)
14201 200.00 (200.00) (40000.00± 0.00)
21601 3.00 ( 3.00) ( 9.00± 0.00)
21605 5.00 ( 5.00) ( 25.00± 0.00)
21730 1.00 ( 1.00) ( 1.00± 0.00)
30302 3.00 ( 3.00) ( 9.00± 0.00)
40101 3.00 ( 3.00) ( 9.00± 0.00)
40104 1.00 ( 1.00) ( 1.00± 0.00)
40127 1.00 ( 1.00) ( 1.00± 0.00)
40408 3.70 ( 3.70) ( 13.69± 0.00)
40424 5.00 ( 5.00) ( 25.00± 0.00)
40433 1.00 ( 1.00) ( 1.00± 0.00)
40440 2.00 ( 2.00) ( 4.00± 0.00)
40442 1.00 ( 1.00) ( 1.00± 0.00)
40445 1.00 ( 1.00) ( 1.00± 0.00)
40451 1.00 ( 1.00) ( 1.00± 0.00)
40456 3.00 ( 3.00) ( 9.00± 0.00)
40465 1.00 ( 1.00) ( 1.00± 0.00)
40477 1.00 ( 1.00) ( 1.00± 0.00)
40497 1.00 ( 1.00) ( 1.00± 0.00)
41602 1.00 ( 1.00) ( 1.00± 0.00)
41703 12.00 ( 12.00) ( 144.00± 0.00)
41705 1.00 ( 1.00) ( 1.00± 0.00)
41719 150.00 (150.00) (22500.00± 0.00)
42202 3.00 ( 3.00) ( 9.00± 0.00)
43201 1.00 ( 1.00) ( 1.00± 0.00)
50103/1 10.00 ( 10.00) ( 100.00± 0.00)
50103/2 1.00 ( 1.00) ( 1.00± 0.00)
50107 20.00 ( 20.00) ( 400.00± 0.00)
50116 3.00 ( 3.00) ( 9.00± 0.00)
50119 2.00 ( 2.00) ( 4.00± 0.00)
66006 30.00 ( 30.00) ( 900.00± 0.00)
66008 2.00 ( 2.00) ( 4.00± 0.00)
92201 1.00 ( 1.00) ( 1.00± 0.00)

σ̂0 0.96

Tables E.4 and E.5 list the initial solutions
related to the combination in section 6.2.1
and 6.2.2, respectively. The column headers
have the following meaning:

Solution: Initial solution, labelled by ob-
servation technique or site code, re-
spectively. Three solutions derived
from space geodetic observations are
followed by 46 local-tie-solutions. In
table E.4, asterisks designate the 10
representative solutions that have been
selected to be plotted in figure 6.9.

Qi: Type of the covariance matrix as spec-
ified in figure 6.8.

Pt.: Number of points (stations) comprised
by the solution.

I, II : Approaches in section 6.2.1, where the
variance components for the local-tie-
solutions are estimated.

III : Approach in section 6.2.2, where the
variance components for the local-tie-
solutions have been fixed to a priori
values.

√
(ai)1: A priori values for the variance

components (starting values for the it-
eration), given in terms of standard de-
viations.

Hν : Variance components estimated by
Helmert’s method after ν iterations,
given in terms of standard deviations
or variances, respectively. Missing val-
ues indicate that the estimation has
failed and yielded negative estimates
for the variances. If a variance com-
ponent has been fixed (as described in
section 5.4.1, extended model), the re-
spective value is bracketed.

Dν : Variance components estimated by
degree of freedom after ν iterations,
given in terms of standard deviations.
For the values flagged by an asterisk,
convergence is not achieved (cf. figure
6.10).
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