
Universität Karlsruhe (TH)
Forschungsuniversität · gegründet 1825

Fakultät für Informatik
Institut für Programmstrukturen
und Datenorganisation
Lehrstuhl Prof. Goos

On Improvements of the Varró Benchmark
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ABSTRACT

In 2004 G. Varró, A. Schürr, and D. Varró proposed the first graph transformation benchmark
ever. Varró et al. also published results for tools like AGG, PROGRES, and Fujaba. While
repeating some of his measurements, we were not able to reproduce his figures and findings.
This paper reports our suggestions for improving the so-called Varró benchmark.

iii



iv



CONTENTS

1 Introduction and Problem 1

1.1 The Published Test Charts . . . . . . . . . . . . . . . . . . . . . 3
1.1.1 What has been Measured? . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 The STS Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 The Log Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.4 Incomplete Log Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.5 The Publications of Benchmark Results . . . . . . . . . . . . . . . . . 4

1.2 The Implementation of the Chronometry . . . . . . . . . . . . . . . 7
1.2.1 Time Measurement for Fujaba and AGG . . . . . . . . . . . . . . . . 7
1.2.2 Time Measurement for PROGRES . . . . . . . . . . . . . . . . . . . 7

1.3 Design of the Chronometry . . . . . . . . . . . . . . . . . . . . . 9
1.3.1 Timestamp Chronometry with printf Considered Harmful . . . . . . 9
1.3.2 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
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CHAPTER 1

INTRODUCTION AND PROBLEM

In 20041 the first graph transformation benchmark was proposed by G. Varró, A. Schürr,
and D. Varró [VSV05a]. Within a year G. and D. Varró et al. also published performance
figures for tools like AGG, PROGRES, and Fujaba in two articles [VFV05, VSV05b] as
well as on a web page [Var05]. This web page includes a detailed test chart. Additionally, the
source codes for the measurements of the contemplated tools are available there. We reused
some of the original figures of Varró in our own publications [GBG+06, Kro07]. We reprint
these results in Figure 1.1; Table 1.1 contains the details for Figure 1.1 as well as further
results. Figure 1.1 contains data points for an improved version of GrGen(SP) that was not
available for the ICGT 2006 proceedings [GBG+06], but was presented at the conference. We
measured AGG on our own (see section 1.1.4). Besides adding measurements for our tool
GrGen [BG07, Gei07] we rescaled Varró’s figures by a small correction factor2 to match the
original figures of Varró due to different hardware.

We recently tried to repeat some of the measurements of Varró et. al. [VFV05, VSV05b],
especially those for Fujaba, on our own. Surprisingly, we failed in reproducing his figures, at
least by orders of magnitude. This obviously cannot be explained by different hardware, since
we used roughly comparable computers. Therefore we examined the experimental design and
setup of Varró closely in order to explain the found discrepancies (see this chapter). Chapter 2
presents our results of the improved Varró benchmark.

1Depending on the publication dates you could also say 2005.
2To reuse Varró’s results we multiplied his figures by 0.68 which is the speed difference of both processors

according to the SPEC organization [Sta05]. Whether this is the correct factor or not, is beyond our scope.
It simply does not matter if its correct value is, e.g. 0.33 or 3.0, because we talk about several orders of
magnitude and even different complexity classes.
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Figure 1.1: Running times of STS mutex benchmark (multiplicity optimizations off, param-
eter passing off, simultaneous execution off; for parameter details see [VSV05a])

Table 1.1: Running times for several of the Varró benchmarks (in milliseconds)
Benchmark → STS ALAP ALAP simult. LTS
Tool ↓ 10 100 1000 10 100 1000 10 100 1000 1000,1
PROGRES 12 946 459,000 21 1,267 610,600 8 471 2,361 942,100
AGG 330 8,300 6,881,000 270 8,027 13,654,000 – – – > 107

Fujaba 40 305 4,927 32 203 2,821 20 69 344 3,875
VarróDB 4,697 19,825 593,500 893 14,088 596,800 153 537 3,130 593,200
GrGen(PSQL) 30 760 27,715 24 1,180 406,000 – – – 96,486
GrGen(SP) < 1 1 10 < 1 1 11 < 1 < 1 9 21
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1.1 The Published Test Charts

The webpage [Var05] of G. Varró contains several test charts (log files) consisting of the raw
data acquired during measurements. The structure of these log files is similar for all tools,
but unfortunately not identical. In this section, we’ll take a look at the structure of these log
files to give clues on how to interpret the data.

1.1.1 What has been Measured?

There are three different mutex benchmarks defined by Varró: STS (short transformation se-
quence), ALAP (as long as possible), and LTS (long transformation sequence). These bench-
marks can be modified to specifically test the impact of some optimizations: PP (parameter
passing between rule applications), par (parallel matching and execution of graph updates),
and one/many (indicating that multiplicity optimizations are on or off, respectively). Varró
suggests using only the following combinations: STSone, STSonePP, STSmany, STSmanyPP,
ALAP, ALAPpar, LTS (cf. [VSV05b]). Moreover his benchmarks have one (or two in case of
LTS) size parameters.

In the following list we give hints on abnormalities3 of the log files with respect to the
above classification (the next subsections elaborate on how to read these log files):

• AGG is neither capable of parallel rewriting nor has multiplicity optimizations, so these
benchmark variants are left out.

• The PROGRES log files for ALAP, ALAPpar, and LTS differ because they contain the
timestamps for the applications of the initial newRule, whereas the log files for AGG
and Fujaba only contain the “payload” rule applications.

• ALAPpar differs for Fujaba and PROGRES due to issues regarding different modes
of parallel rewriting of both tools.

• We do not consider the measurements for the Varró DB approach, because it is not a
publicly available tool.

1.1.2 The STS Benchmark

The STS benchmark is one of the mutex benchmarks used by Varró (cf. section 1.1.1). We
use this benchmark to illustrate our explanations. The STS benchmark of size n executes
the following sequence of rule applications:

• apply newRule n− 2-times

• apply mountRule once

• apply requestRule n-times

• repeat the following sequence of rule applications n-times:

– apply takeRule

– apply releaseRule

– apply giveRule

This can be concisely specified by the following graph rewrite sequence [BG07]:

newRule[n-2] & mountRule & requestRule[n] & (takeRule & releaseRule & giveRule)[n]

3These are not errors per se; this rather tries to prevent some potential misunderstandings.
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1.1.3 The Log Files

The log files for the three tools (AGG, Fujaba, and PROGRES) consist of three lines per
single rule application. The logs for the Java based tools (AGG and Fujaba) are prepared
with log4j [Fou06]. For the PROGRES tool — with its generated matcher in C code — Varró
used custom code for logging (see section 1.2.2). Listings 1.1, 1.2, and 1.3 are excerpts of a
run of the STSmany benchmark of size n = 10 for the discussed tools. Table 1.2 describes
the content of each column of the AGG (Listing 1.1) and Fujaba (Listing 1.2) log files,
while Table 1.3 does the analogous for PROGRES(Listing 1.3) log files. Different column
separators like “-”, “:”, and spaces are ignored for conciseness.

Please note, that even if you consider all log files for PROGRES, you will not find any zero
directly after the decimal point (like in 1110237924.096410) and sometimes the numbers after
the decimal point are less than 6 digits long. This is erroneous (described in section 1.2.2).

1.1.4 Incomplete Log Files

Some log files on Varró’s web page [Var05] are truncated, presumably due to prohibitive long
running time of the according benchmarks. Only AGG is affected. In the publications of the
benchmark results one can find corresponding interleaves [VFV05, VSV05b]. The authors
state that they aborted measurements with long running times. In the following we give a
list of all discontinued log or missing files:

• STSmany1000 for AGG (see Listing 1.4)

• STSmanyPP1000 for AGG

• ALAP1000 for AGG

• STSone10, STSone100, STSone1000, ALAPpar10, ALAPpar100, and ALAPpar1000 for
AGG are left out because AGG does not support the necessary features.

Due to these discontinued log files for AGG, we did our own measurements to get all data
points for AGG.

1.1.5 The Publications of Benchmark Results

There are two publications made by the original authors containing results of the Varró
benchmark [VFV05, VSV05b]. In this section we paraphrase our thoughts on how to relate
the figures presented there with the raw test charts and source code published on the web
site [Var05].
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Table 1.2: Description of a log file row for the Java-based tools
Column Example from Listing 1.1 Description

1 618 Time in milliseconds (ms, 10−3sec) since the first
log entry; this value is computed internally by log4j.

2 [main] Irrelevant. The name of the thread calling log4j.
This is main for all files.

3 DEBUG Irrelevant. The debug-level. This is DEBUG for all
files.

4 hu. ... .STSmany Irrelevant. The fully qualified name of the class
containing the method calling log4j.

5 giveRule The name of the current rule.
6 update The part of the rule application that has just

been completed: init (initialization code), pattern
matching (or pm for Fujaba), and update (update
the graph i.e. do the rewrite; clean-up code is in-
cluded).

7 1110566155307449000 The result of a call to the Java runtime library
System.nanoTime(). The result is not inter-
pretable in a straightforward manner (please see
section 1.2.1). Albeit other possibilities, in this case
this function counts the nanoseconds (ns, 10−9sec)
since the UNIX epoch, roughly speaking. The val-
ues of column one and this column are incommen-
surable by definition (cf. section 1.2.1).

Table 1.3: Description of a log file row for PROGRES
Column Example from Listing 1.3 Description

1 giveRule The name of the current rule.
2 update The part of the rule application that has just been

completed: init (initialization code), pm (pattern
matching), and update (update the graph i.e. do
the rewrite; clean-up code is included).

3 1110237924.983845 The seconds since the UNIX epoch. The numbers
after the decimal point should be the fractions of
the second with microsecond (µs, 10−6sec) reso-
lution (note the difference between resolution and
precision). Due to erroneous implementation this
is not true (see section 1.2.2).
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Listing 1.1: Excerpt (beginning and end) of the STSmany10 log file of AGG

1 0 [main] DEBUG hu.bme.cs.benchmark.mutex.agg.STSmany - newRule: init: 1110566154687070000

2 58 [main] DEBUG hu.bme.cs.benchmark.mutex.agg.STSmany - newRule: pattern matching: 1110566154747309000

3 105 [main] DEBUG hu.bme.cs.benchmark.mutex.agg.STSmany - newRule: update: 1110566154794235000

4 105 [main] DEBUG hu.bme.cs.benchmark.mutex.agg.STSmany - newRule: init: 1110566154794426000

5 ...

6 606 [main] DEBUG hu.bme.cs.benchmark.mutex.agg.STSmany - takeRule: init: 1110566155295635000

7 607 [main] DEBUG hu.bme.cs.benchmark.mutex.agg.STSmany - takeRule: pattern matching: 1110566155296755000

8 610 [main] DEBUG hu.bme.cs.benchmark.mutex.agg.STSmany - takeRule: update: 1110566155299266000

9 610 [main] DEBUG hu.bme.cs.benchmark.mutex.agg.STSmany - releaseRule: init: 1110566155299377000

10 613 [main] DEBUG hu.bme.cs.benchmark.mutex.agg.STSmany - releaseRule: pattern matching: 1110566155302524000

11 614 [main] DEBUG hu.bme.cs.benchmark.mutex.agg.STSmany - releaseRule: update: 1110566155303407000

12 614 [main] DEBUG hu.bme.cs.benchmark.mutex.agg.STSmany - giveRule: init: 1110566155303486000

13 617 [main] DEBUG hu.bme.cs.benchmark.mutex.agg.STSmany - giveRule: pattern matching: 1110566155306527000

14 618 [main] DEBUG hu.bme.cs.benchmark.mutex.agg.STSmany - giveRule: update: 1110566155307449000

Listing 1.2: Excerpt (beginning and end) of the STSmany10 log file of Fujaba

1 0 [main] DEBUG hu.bme.cs.benchmark.mutex.fujaba.STSmany - newRule: init: 1110559421066197000

2 19 [main] DEBUG many.Container - newRule: pm: 1110559421088969000

3 19 [main] DEBUG hu.bme.cs.benchmark.mutex.fujaba.STSmany - newRule: update: 1110559421089363000

4 19 [main] DEBUG hu.bme.cs.benchmark.mutex.fujaba.STSmany - newRule: init: 1110559421089512000

5 ...

6 55 [main] DEBUG hu.bme.cs.benchmark.mutex.fujaba.STSmany - takeRule: init: 1110559421125921000

7 56 [main] DEBUG many.Container - takeRule: pm: 1110559421126085000

8 56 [main] DEBUG hu.bme.cs.benchmark.mutex.fujaba.STSmany - takeRule: update: 1110559421126222000

9 56 [main] DEBUG hu.bme.cs.benchmark.mutex.fujaba.STSmany - releaseRule: init: 1110559421126327000

10 56 [main] DEBUG many.Container - releaseRule: pm: 1110559421126454000

11 56 [main] DEBUG hu.bme.cs.benchmark.mutex.fujaba.STSmany - releaseRule: update: 1110559421126591000

12 56 [main] DEBUG hu.bme.cs.benchmark.mutex.fujaba.STSmany - giveRule: init: 1110559421126693000

13 56 [main] DEBUG many.Container - giveRule: pm: 1110559421126825000

14 56 [main] DEBUG hu.bme.cs.benchmark.mutex.fujaba.STSmany - giveRule: update: 1110559421126946000

Listing 1.3: Excerpt (beginning and end) of the STSmany10 log file of PROGRES

1 newRule : init : 1110237924.964010

2 newRule : pm : 1110237924.965726

3 newRule : update : 1110237924.965878

4 newRule : init : 1110237924.965983

5 newRule : init : 1110237924.966637

6 ...

7 takeRule : init : 1110237924.983052

8 takeRule : pm : 1110237924.983293

9 takeRule : update : 1110237924.983380

10 releaseRule : init : 1110237924.983388

11 releaseRule : pm : 1110237924.983583

12 releaseRule : update : 1110237924.983653

13 giveRule : init : 1110237924.983660

14 giveRule : pm : 1110237924.983773

15 giveRule : update : 1110237924.983845

Listing 1.4: Excerpt (the end) of the truncated STSmany1000 log file of AGG

1 ...

2 556991 [main] DEBUG hu.bme.cs.benchmark.mutex.agg.STSmany - requestRule: pattern matching: 1110566742890247000

3 558757 [main] DEBUG hu.bme.cs.benchmark.mutex.agg.STSmany - requestRule: update: 1110566744656603000

4 558758 [main] DEBUG hu.bme.cs.benchmark.mutex.agg.STSmany - requestRule: init: 1110566744657621000

5 566944 [main] DEBUG hu.bme.cs.benchmark.mutex.agg.STSmany - requestRule: pattern matching: 1110566752843949000

6 569278 [main] DEBUG hu.bme.cs.benchmark.mutex.agg.STSmany - requestRule: update: 1110566755177695000

7 569279 [main] DEBUG hu.bme.cs.benchmark.mutex.agg.STSmany - requestRule: init: 1110566755178707000

8 573915 [main] DEBUG hu.bme.cs.benchmark.mutex.agg.STSmany - requestRule: pattern matching: 1110566759814578000
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1.2 The Implementation of the Chronometry

1.2.1 Time Measurement for Fujaba and AGG

The measurements for Fujaba and AGG use log4j. The log files contain three timestamps
for each rule application. Each timestamp is made after the according sub-step of the rule
application (init, pattern matching, and update) has been completed. The timestamps are
dumped to the console. It is unclear from the available log files and source code if the dump
was redirected to a file or has just been sent to the console (and has been put to a file from the
buffer of the console afterwards) or even both. This setup is arguable in general, especially
its basic design (see section 1.3).

For each row there are two times given. The first in column 1 and the second in column
7 (see section 1.1.3): Firstly, the time in milliseconds since the first log entry; this value
is computed internally by log4j. Secondly, the result of a call to the Java runtime library
System.nanoTime(). This value has a nanosecond resolution, but as stated by the documen-
tation of the method no precision whatsoever is guaranteed (see the quotation below). As
stated by the documentation System.nanoTime() “[. . . ] is not related to any other notion
of system or wall-clock time.”, so both timing methods yield incommensurable outputs. It is
unclear from the available log files and source code which time source has been used for the
publications [VFV05, VSV05b] (see also section 1.1.5).

Comment from G. Varró [Var07]: In the original measurements, the timestamp
dump was redirected to a file and the nanosecond values were used for the publi-
cations.

The following is quoted for the method nanoTime of the class System from the documentation
of the Java runtime library [Mic07]:

public stat ic long nanoTime ( )

Returns the current value of the most precise available system timer, in nanosec-
onds.

This method can only be used to measure elapsed time and is not related to
any other notion of system or wall-clock time. The value returned represents
nanoseconds since some fixed but arbitrary time (perhaps in the future, so values
may be negative). This method provides nanosecond precision, but not necessar-
ily nanosecond accuracy. No guarantees are made about how frequently values
change. Differences in successive calls that span greater than approximately 292
years (263 nanoseconds) will not accurately compute elapsed time due to numer-
ical overflow.

For example, to measure how long some code takes to execute:

long startTime = System . nanoTime ( ) ;
// . . . the code be ing measured . . .
long estimatedTime = System . nanoTime ( ) − startTime ;

Returns: The current value of the system timer, in nanoseconds.

Since: 1.5

1.2.2 Time Measurement for PROGRES

Listing 1.5 shows the unaltered routine from G. Varró’s webpage [Var05] which does the time
measurement for PROGRES. This routine and its usage is questionable for different reasons:
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Listing 1.5: Time measurement for PROGRES

1 #include <stdio.h>
2 #include <sys/time.h>
3 #include <time.h>
4 #include <unistd.h>
5

6 void print_time ()
7 {
8 struct timeval tv;
9 struct tm* ptm;

10 char time_string[40];
11 long milliseconds;
12

13 /* Obtain the time of day, and convert it to a tm struct. */

14 gettimeofday (&tv, NULL);
15 ptm = localtime (&tv.tv_sec);
16 /* Format the date and time, down to a single second. */

17 strftime (time_string, sizeof (time_string), "%Y-%m-%d %H%M%S", ptm);
18 /* Compute milliseconds from microseconds. */

19 milliseconds = tv.tv_usec / 1000;
20 /* Print the formatted time, in seconds, followed by a decimal point

21 and the milliseconds. */

22 // printf ("%s.%03ld\n", time_string, milliseconds);

23 printf ("%ld.%ld\n", tv.tv_sec, tv.tv_usec);
24 // printf ("%ld%ld\n", tv.tv_sec, tv.tv_usec);

25 // printf ("%ld.%ld\n", ts.tv_sec, ts.tv_nsec);

26 }

1. The computation in line 15, 17, and 19 is superfluous. The rather costly call to the
“string format date and time” routine will most certainly not be removed by any com-
piler optimizations. This forges the measurements more than necessary.

2. Line 23 is erroneous: The struct elements tv sec and tv usec both carry long4 values.
After the call to gettimeofday in line 14 the field tv.tv sec contains the seconds since
the epoch and tv usec contains the microseconds (µs) since the beginning of the last
second, i.e. 0 ≤ tv usec < 1, 000, 000 always holds. So for example, tv.tv sec = 12
and tv.tv usec = 9876 should be interpreted as 12.009876sec after the epoch and not
as 12.9876sec. Therefore the output of tv usec has to be padded with six “0”; line 23
specifies no padding at all. The correct code may look like:

printf ("%ld.%06ld\n", tv.tv_sec, tv.tv_usec);

Comment from G. Varró [Var07]: The published results handled the mi-
crosecond part in the same way as you mentioned, even if the printf code is
not correct. (There was a post processing phase which performed the correct
0 padding.)

3. The use of fine grained timestamp logging for performance evaluation is arguable in
principle (see section 1.3 for a detailed discussion).

4This is operating system dependent. For Suse Linux with kernel 2.6.11.4-21.17-smp on a 32-bit platform
this holds.
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1.3 Design of the Chronometry

In principle, there are four approaches to chronometry spanned by two independent features:
granularity and mode of accumulation.

The granularity of measurement can reach from “a single hardware instruction” over “an
inner loop” to whole programs. But obviously the finer the granularity is, the more invasive
the measurements are. If we want to study the “natural” timing behavior of a real-time-
system, it is obviously a bad idea to encapsulate every processor instruction with a costly call
to some debugging library. Not only will the program execute orders of magnitude slower
than without instrumentation, moreover, it will loose its specific performance characteristic:
E.g. the cache is full of code and data belonging to the measurement, not to the original
program. Also many compiler optimizations may not be applicable any more (inlining, re-
use of expressions, . . . ). Thus, fine granularity is always achieved at the cost of losing
the “natural” behavior; ultimately rendering the results useless. So, if we are interested in
“natural” behavior, the granularity has to be as coarse as possible.

The other dimension of chronometry is the mode of accumulation: We can either use
timestamps (before/after certain steps) or compute the elapsed time of a step directly (the
difference between two timestamps). There is obviously no difference between the timestamp
and the elapsed time approach for sufficient coarse granularity. The timestamp approach
seems to be good at very fine granularity though — with elapsed times near or even below
clock resolution. The elapsed time approach fails in such a situation. However, even if we are
at the brink of the clock resolution (between two consecutive timestamps) we can always use
bigger intervals leaving out some timestamps to calculate meaningful statistics. This seems
very convincing, logical, and theoretically sound, but it is plainly not true in practice! Why?

• Timestamps have to be stored somewhere. Usually they are printed to the console or
a file. Afterwards they can be post-processed to get the desired statistics.

• Storing the timestamps is costly. Moreover printing something to a console on any
operating system or graphical user interface is magnitudes slower than storing it to the
main memory.

• Consoles buffer the output with various strategies. At some point, every console (or
operating system) inescapably freezes the printing process if this process “dumps all-too
fast”.

• The same is true for file systems but the effect is less dramatic.

• Computing the timestamp (which usually involves calling the kernel) is a very expensive
operation. The running time of the payload can be hidden by this overhead.

Altogether, printing timestamps should not be used for granularities that dump several times
per second or more. The most “reasonable” and less intrusive way to get timing results is to
use high granularity and elapsed time mode. To this point the statements above — despite
being common wisdom — are unproven; the next section will close this gap.

1.3.1 Timestamp Chronometry with printf Considered Harmful

We have implemented the four approaches and additionally quiet variants (storing the data in
main memory instead of dumping it) of the two fine granularity approaches in small example
programs:

1. fine granularity, timestamp (FGTS, Listing A.1)

2. fine granularity, elapsed time (FGET, Listing A.2)
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Table 1.4: Running time (in microseconds) of the discussed chronometry approaches in com-
bination with different output medium and payloads (values of the step variable)

steps → 10 100 1,000 10,000 100,000 1,000,000

strategy ↓ medium → disk (on xterm)
CGET 319 2284 21,943 218,135 2,197,019 23,118,140
CGTS 382 2313 22,027 218,203 2,196,090 23,113,267
FGET 51,225 53,601 73,292 269,497 2,260,022 23,289,843
FGTS 64,767 66,974 94,388 367,841 3,016,865 25,383,131
QFGET 51,377 53,813 72,821 269,473 2,250,387 23,014,723
QFGTS 51,372 55,310 82,023 361,693 3,017,942 25,233,317

strategy ↓ medium → xterm
CGET 330 2,285 23,238 225,727 2,198,134 23,117,591
CGTS 377 2,308 23,339 219,583 2,196,862 23,093,594
FGET 51,214 55,051 73,988 321,182 2,273,723 23,167,904
FGTS 1,315,086 1,312,531 1,314,823 2,532,553 3,953,345 26,130,123
QFGET 51,836 53,940 73,771 270,665 2,252,275 23,010,462
QFGTS 52,815 56,602 83,364 356,344 3,012,283 25,215,074

strategy ↓ medium → KDE Konsole
CGET 319 2,296 23,283 224,675 2,202,347 23,303,268
CGTS 374 2,298 23,426 219,755 2,201,963 23,286,486
FGET 51,436 61,188 73,686 317,245 2,444,776 23,590,659
FGTS 776,981 779,903 806,244 1,179,087 4,028,748 26,452,178
QFGET 51,564 53,932 73,471 271,288 2,252,662 23,003,765
QFGTS 52,804 56,679 82,648 356,500 3,012,686 25,354,412

strategy ↓ medium → GNOME terminal
CGET 330 2,284 23,061 218,635 2,189,709 22,607,555
CGTS 364 2,306 23,237 219,333 2,188,023 22,596,380
FGET 51,459 53,408 72,853 2,631,577 5,056,676 25,718,893
FGTS 1,882,485 1,882,690 1,911,790 3,858,690 6,632,817 28,665,439
QFGET 51,754 53,808 73,730 270,245 2,248,306 22,928,958
QFGTS 52,545 56,688 82,552 355,797 3,005,662 25,057,223

ideal running time 231 2,311 23,118 231,181 2,311,814 23,118,140

3. coarse granularity, timestamp (CGTS, Listing A.3)

4. coarse granularity, elapsed time (CGET, Listing A.4)

5. quiet, fine granularity, timestamp (QFGTS, Listing A.5)

6. quiet, fine granularity, elapsed time (QFGET, Listing A.6)

The “payload” is a single loop accumulating a volatile variable:

for(j=0; j<steps; j++) cnt += j;

We can simulate different computation lengths (running times of the payload) by changing
the value of the steps variable. QFGTS (Listing A.5) gets the timestamps and stores them
in memory. After computing all payload the timestamps are printed. QFGET (Listing A.6)
is a special case of fine granularity, elapsed time which does no output at single (fine grained)
steps. It rather prints the sum of the accumulated differences at the end of the program.

We also want to test the influence of the output medium on the measuring error. Therefore
we use four different methods:

1. output to disk started on xterm, KDE Konsole, and GNOME terminal

2. output to xterm (and disk)

3. output to KDE Konsole (and disk)

4. output to GNOME terminal (and disk)

The complete source code of our measurements can be found in appendix A, and the resulting
raw test charts can be found on our web site www.grgen.net/chronometry. All measure-
ments were performed on our benchmark computer (see appendix B) and repeated 30 times.

www.grgen.net/chronometry
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Table 1.4 shows the median of the (internally measured) running time of the six example
programs. For the examples using timestamp chronometry (TS), we subtracted the first and
the last timestamp to get the running time. Just like the method used by Varró, this produces
an initial error, because the code executed before the fist timestamp is not measured. In case
of elapsed time chronometry (ET), the elapsed times for the fine granularity examples (FG)
are summarized to get the running time. We repeated each payload loop 15,000 times.

To get a clearer picture, we want to compute the running time of a single step of the
payload loop, i.e. something like cnt += j in combination with the overhead of the loop
such as computing j < steps, the conditional jump, and incrementing the loop variable
j++. Please note that the core of the payload cnt += j cannot be optimized away by any
optimizing compiler, because of the volatile definition of the global variable cnt.

Our most exact measurements (the CGTS and CGET with steps = 1,000,000) suggest
that the execution of the payload’s core statements needs 1.54ns. The Figures 1.2–1.11 show
the relative error of the running time of such a single step of the payload loop measured
by different approaches and setups. In every figure we marked the zone of no measurement
deviation (relative to 1.54ns) by a dotted red line. With 1.54ns per single payload loop
step we can calculate the theoretical running time of the different payloads. To relate the
steps-variable with the running time caused by the payload, we inserted the dashed blue
vertical lines representing 10ns, 1µs, and 100µs running time.

1.3.2 Interpretation

If there is no measurement deviation at all, we would see all data points on the red dotted line
in the Figures 1.2–1.11. Obviously this is not true. Particularly considering the logarithmic
scaled time (y)-axis, we can see measurement deviation of factors up to several hundreds of
thousands.

The measurement deviation can vary just by changing the kind of terminal (xterm,
GNOME terminal, or KDE Konsole; see appendix B) by at least a factor of two (see Fig-
ure 1.2, 1.3, and 1.4). Moreover, the characteristics of the increase of the measurement
deviation is different. However, using the hard disk and not the terminal for output, changes
the situation dramatically (FGTS/disk, see Figure 1.5): The measurement deviation reduces
to about 5,000 but this measurement is obviously still useless—at least for payloads below
100µs. Please note that Fujaba and GrGen can perform a single rewrite step much faster
than that; nevertheless Varró used this measurement setup. Some confusing test charts of
Varró even suggest that maybe some output to the console was made (repeating some of
Varró’s test on our machine showed a speedup by more then an order of magnitude).

Not performing any output (neither to disk nor to terminal) lowers the measurement
deviation even more (QFGTS/disk, see Figure 1.6). The FGET/xterm is almost as exact as
the disk variants of the FGTS examples. This suggests that ET is superior to TS because
it does not time the asynchronous output routines of the GUI/operating system. The same
supremacy of ET can be seen if we look at coarse grained chronometry (CGTS/disk vs.
CGET/disk). The CG chronometry, especially the CGET variants, have (in contrast to
all other variants) tolerable measurement deviations even if the payload is extremely small.
Using the CGET/disk-method, we can even measure payloads as fast as 10ns, if we repeat it
15,000 times, with a relative error below 50%. If we increase the number of repetitions, we
can even get below this relative error.

The influence of the kind of terminal even for steps = 1,000,000 is still measurable, but
not significant anymore. The data points below the red dotted 100% line in Figure 1.11 (not
possible in an ideal world) are due to reasons beyond the scope of this paper.
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1.3.3 Varró’s Analysis

A breakdown of the running time to single rule applications as shown by Varró et al. [VSV05b]
cannot be done naive. Fast graph rewrite tools such as Fujaba, GrGen, and GrGen.NET
need very little time (about 1µs) for a typical match and rewrite step of the STS benchmark.
A call to gettimeofday requires about the same time. So the running time of the graph
rewrite step is covered up by the overhead of the measurement. Without special counteractive
measures the generated figures are meaningless.

Note that on Linux, Java uses the gettimeofday system call for both System.nanoTime()
and the System.currentTimeMillis() method. Thus the results received for gettimeofday
and C apply to Java, too.
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Figure 1.2: FGTS/xterm: Running time of a single step of the payload loop measured with
fine granularity, timestamp chronometry, and with output on xterm and disk
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Figure 1.3: FGTS/GNOME: Running time of a single step of the payload loop measured
with fine granularity, timestamp chronometry, and with output on GNOME terminal and
disk
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Figure 1.4: FGTS/KDE: Running time of a single step of the payload loop measured with
fine granularity, timestamp chronometry, and with output on KDE Konsole and disk
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Figure 1.5: FGTS/disk (on xterm): Running time of a single step of the payload loop mea-
sured with fine granularity, timestamp chronometry, and with output on disk
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Figure 1.6: QFGTS/disk (on xterm): Running time of a single step of the payload loop
measured with quiet, fine granularity, timestamp chronometry, and with output on disk
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Figure 1.7: FGET/xterm: Running time of a single step of the payload loop measured with
fine granularity, elapsed time chronometry, and with output on xterm and disk
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Figure 1.8: CGTS/disk (on xterm): Running time of a single step of the payload loop
measured with coarse granularity, elapsed time chronometry, and with output on disk
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Figure 1.9: CGET/disk (on xterm): Running time of a single step of the payload loop
measured with coarse granularity, elapsed time chronometry, and with output on disk
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Figure 1.10: CGET/disk (on GNOME terminal): Running time of a single step of the payload
loop measured with coarse granularity, elapsed time chronometry, and with output on disk
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Figure 1.11: CGET/disk (on KDE Konsole): Running time of a single step of the payload
loop measured with coarse granularity, elapsed time chronometry, and with output on disk
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1.4 Design of Rules for Fujaba

While conducting benchmarks for Fujaba we noticed inconsistent running times. Fujaba
performed much better as we expected using the results of the Varró benchmark. Analyzing
the design of the rules and the meta-model of the STS benchmark we found two issues that
need improvement. To confirm our ideas we repeated the original benchmark and executed
our improved versions. The measurements in this section were executed 40-times on our
benchmark computer under Windows XP with Sun Java 1.6.0 01 (for more details on the
setup see appendix B).
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Figure 1.12: Running times of original and optimized rules of STSmany for Fujaba

1.4.1 Linear-time vs. Constant-time Matching

During the design of rules for Fujaba the user has to define starting points for the rule
patterns (left-hand side of the graph rewrite rules). Choosing an inappropriate starting
point can substantially raise the complexity of the matching process. In case of the Fujaba
implementation of the STS benchmark performed by Varró the rules takeRule, releaseRule,
and giveRule start with a process element instead of the single resource (see appendix A.2).
As these rules search for a specific process connected to the resource via an unique edge, up
to n different processes are examined per rule leading to a matching runtime complexity of
O(n). Using the resource as a starting point the matching runtime complexity is only O(1),
as the resource has only one outgoing edge of the according type and the rest of the pattern
can be matched in O(1), too.

Comment from G. Varró [Var07]: Modeling questions are always a highly sensi-
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Figure 1.13: Running times using models with different given multiplicities for Fujaba

tive topic, since a good (but hand-made and user defined) modeling can signifi-
cantly speed-up a given tool, which can make the comparison unfair. By defining
a starting point, the problem itself becomes simpler as Fujaba gets a hint where
to start. In case of other tools (AGG, PROGRES) the starting point should
be determined by the tool itself. (I guess your tool also belongs to this second
category.)

Figure 1.12 shows a comparison of the running times of the STSmany benchmark for Fujaba
between the original rules used by Varró and the new optimized rules. With this improvement
the requestRule remains the only rule with linear matching runtime complexity, causing a
quadratic runtime for the whole benchmark.

Remark: GrGen avoids this problem by automatically generating the whole
search plan. It considers the heuristically best starting points for the according
situation taking the actual host graph into account. Moreover it uses knowledge
about the last successful match enabling the search algorithm to heuristically
reduce the search-space. By guessing where no match will be found, it can cut
whole sub trees of the search-space. This is done in a conservative way, which
never endangers correctness but may result in considerable speedups. Using this
heuristics GrGen can even find a match for the requestRule in constant time
(see Figure 2.3).
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1.4.2 Underspecified Meta Model for STSone

The meta model should be designed to fit the structure of the problem as good as possible,
allowing problem specific optimizations. We adopted this guideline from the “Benchmarking
for Graph Transformation” paper by Varró et al [VSV05b]. A quote of the crucial statements
from this paper is given below:

Our general guideline for the comparison of tools was to use the standard services
available in the default distribution, fine-tuned according to the suggestions of
different tool developers. [...] In case of FUJABA, the models themselves were
slightly altered to provide better performance.

In case of the STSone benchmark the goal was to see, how multiplicity optimizations affect
the runtime performance. Despite the fact, that this benchmark uses only a single resource,
the model used by Varró for STSone and STSonePP for Fujaba supports multiple resources
and multiple incoming token, held by, and release edges per process, which only makes
sense with multiple resources. As Fujaba represents edges with a multiplicity greater than
one as HashSets and edges with a multiplicity of one as simple fields with the appropriate
type, restrictive multiplicities can greatly improve the performance.

Figure 1.13 shows a comparison of STSmany, STSone, and STSveryOne. The STSmany
benchmark uses no multiplicity optimizations, and the STSone benchmark contains the multi-
plicity optimizations used by Varró. The new STSveryOne benchmark is an improved version
of STSone only supporting a single resource and therefore only one incoming token, held by,
and release edge per process. All three benchmarks take advantage of the optimized rules
from section 1.4.1.

As expected, STSveryOne is much faster than STSmany and STSone. But STSone being
slower than STSmany was really unexpected. With the help of profilers we found out that
STSone was faster than STSmany for all rules but the requestRule. The requestRule is the
remaining rule with linear matching complexity and therefore, needs most of the running time
(96% for STSone with N = 10000). As this rule is nearly unaffected by the improved multi-
plicity information of STSone, only a very small speed up was expected. But in fact it needed
29% more running time as in STSmany. Further investigation showed that Sun’s HotSpot
compiler inlined other functions in STSone than in STSmany and that these functions were
less important to be inlined than those chosen for STSmany.



CHAPTER 2

IMPROVEMENTS AND RESULTS

In this chapter we present our suggestions for improving the Varró benchmark as well as new
resulting figures.

2.1 Improvements

• The running time should only be measured with coarse granularity, i.e. only the whole
benchmark at once.

• No output during the measurement and before the measurement (due to asynchronous
output) should be made.

• Choose appropriate starting points for rules in Fujaba to reduce the number of pro-
cessed graph elements. This can reduce the running time from linear to constant com-
plexity for several rules.

• In Fujaba the graph meta model should be restricted to allow only necessary connec-
tions. In case of the STSone benchmark the running time is divided by two.

• To reduce the influence of outliers the median should be used and therefore many
benchmark runs are needed.

• For fast tools with just-in-time compilation (JIT) little benchmark sizes are pointless,
unless the influence of the overhead for the JIT is reduced by performing a warm-up.
This preperatory step is only executed to force just-in-time compilation of the program
and is not included in the actual measurement of the running time.

2.2 Improved Results for Fujaba

With the considerations presented so far we can construct new figures for the Varró bench-
mark (particularly the STSmany variant). We only considered the Fujaba tool closely, since
it is the fastest tool besides the two faster GrGen-implementations. Figure 2.1 shows an
improved and extended version of the ICGT 2006 presentation. It is extended by two curves:
One showing the recently implemented GrGen.NET and the other one showing the im-
proved Fujaba version. All new measurements were performed on our benchmark computer
(see appendix B) and repeated 40 times.

To get a more realistic view for the fast tools, we need bigger problem sizes. By choosing
a double logarithmic scale we should be able to easily distinguish tools with linear runtime
(GrGen and GrGen.NET) and all other tools. But as you can see in Figure 2.2 the curves
for Fujaba and GrGen.NET look more like a super exponential function1; in case of Gr-
Gen.NET the long, almost constant, segment (size: 10–10000) is surprising. These anomalies

1Please keep in mind, that on log-log scale all polynomials are linear curves. Their degree is reflected by the
gradient. Different factors are reflected by different axis intercepts. Super polynomial functions are plotted
super linear.
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Figure 2.1: Running times of the STSmany benchmark for different graph rewrite systems

are caused by the just-in-time compilation of the Java and .NET runtime environments. For
Figure 2.3 we use a warm-up run: We let the tools perform a STSmany benchmark run of
size 1000 and afterwards (without exiting the program) perform the actual benchmark. To
reduce memory anomalies we force garbage collection in between the runs.

Now we can see that the running time of GrGen.NET is indeed linear and the running
time of Fujaba is quadratic2 (cf. section 1.4.1). The constant segment at the beginning of
the GrGen(SP), GrGen.NET and Fujaba curve is due to the timer resolution and the use
of the median.

2.3 Conclusion

We believe that Varró’s benchmark is a crucial step for the graph rewrite community towards
empirical foundations. By no means do we want to reduce the outstanding character of this
benchmark introduced by the Varró brothers.

This paper has suggested several improvements to the implementation and the measure-
ment setup of the Varró benchmark. The idea of the benchmark in principle is not ques-
tioned by us. Albeit we regard the numerical data presented in the well-known publications
[VFV05, VSV05b] to be flawed in several ways:

• The design of the chronometry is not suitable for fast tools.

• The rules and the meta model for Fujaba are not adequately tuned.

• The implementation of the chronometry for PROGRES is erroneous.

• The log files have inconsistent layout and content.

• The specification file, source code, and log files for Fujaba STSmany/one do not match.

• Tools with runtime environments featuring JIT compilation require special care.

We have shown improved figures for the Fujaba, GrGen, and the newly released Gr-
Gen.NET tools. Our suggestions address implementation and design flaws of the Varró
benchmark. We believe that this will strengthen the trust in the significance and objectivity
of this valuable benchmark.

2Please note, that the different gradients (double steepness) prove this statement.
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Figure 2.2: Running times of the STSmany benchmark for different graph rewrite systems
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PROGRES

GrGen(PSQL, GrShell)
Fujaba(improved)

GrGen(SP, GrShell)

GrGen.NET(Mono, direct)

size

time

1ms

10ms

100ms

1s

1min

1h

10 100 1000 10000 100000 1000000

Figure 2.3: Running times of the STSmany benchmark for different graph rewrite systems
with a warm-up run (n=1000) for Fujaba and GrGen.NET to reduce JIT overhead
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SOURCE CODE
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A.1 Timestamp Chronometry Considered Harmful

Listing A.1: fine granularity, timestamp
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <sys/time.h>
4 volatile int cnt;
5

6 int main(int argc, char *argv[]){
7 int i, j, rep, steps;
8 struct timeval tv;
9 rep = atoi(argv[1]);

10 steps = atoi(argv[2]);
11

12 for(i=0; i<rep; i++) {
13 for(j=0; j<steps; j++) cnt += j;
14 gettimeofday(&tv, NULL);
15 printf ("Lorem ipsum dolor sit amet: %ld.%06ld s\n", tv.tv_sec, tv.tv_usec);
16 }
17 exit(EXIT_SUCCESS);
18 }

Listing A.2: fine granularity, elapsed time
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <sys/time.h>
4 volatile int cnt;
5

6 int main(int argc, char *argv[]){
7 int i, j, rep, steps;
8 long long int runtime=0;
9 struct timeval tvb, tve;

10 rep = atoi(argv[1]);
11 steps = atoi(argv[2]);
12

13 for(i=0; i<rep; i++) {
14 gettimeofday(&tvb, NULL);
15 for(j=0; j<steps; j++) cnt += j;
16 gettimeofday(&tve, NULL);
17 runtime += tve.tv_sec*1000000ULL+tve.tv_usec - (tvb.tv_sec*1000000ULL+tvb.tv_usec);
18 printf ("Lorem ipsum dolor sit amet: %lld usec\n", runtime);
19 }
20 exit(EXIT_SUCCESS);
21 }
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Listing A.3: coarse granularity, timestamp
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <sys/time.h>
4 volatile int cnt;
5

6 int main(int argc, char *argv[]){
7 int i, j, rep, steps;
8 struct timeval tv;
9 rep = atoi(argv[1]);

10 steps = atoi(argv[2]);
11

12 gettimeofday(&tv, NULL);
13 printf ("Lorem ipsum dolor sit amet: %ld.%06ld s\n", tv.tv_sec, tv.tv_usec);
14 for(i=0; i<rep; i++) {
15 for(j=0; j<steps; j++) cnt += j;
16 }
17 gettimeofday(&tv, NULL);
18 printf ("Lorem ipsum dolor sit amet: %ld.%06ld s\n", tv.tv_sec, tv.tv_usec);
19 exit(EXIT_SUCCESS);
20 }

Listing A.4: coarse granularity, elapsed time
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <sys/time.h>
4 volatile int cnt;
5

6 int main(int argc, char *argv[]){
7 int i, j, rep, steps;
8 long long int runtime;
9 struct timeval tvb, tve;

10 rep = atoi(argv[1]);
11 steps = atoi(argv[2]);
12

13 gettimeofday(&tvb, NULL);
14 for(i=0; i<rep; i++)
15 for(j=0; j<steps; j++) cnt += j;
16 gettimeofday(&tve, NULL);
17 runtime = tve.tv_sec*1000000ULL+tve.tv_usec - (tvb.tv_sec*1000000ULL+tvb.tv_usec);
18 printf ("Lorem ipsum dolor sit amet: %lld usec\n", runtime);
19 exit(EXIT_SUCCESS);
20 }
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Listing A.5: quite, fine granularity, timestamp
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <sys/time.h>
4 volatile int cnt;
5

6 int main(int argc, char *argv[]){
7 int i, j, rep, steps;
8 struct timeval *tv;
9 rep = atoi(argv[1]);

10 steps = atoi(argv[2]);
11 tv = malloc(sizeof(*tv) * rep);
12

13 for(i=0; i<rep; i++) {
14 for(j=0; j<steps; j++) cnt += j;
15 gettimeofday(&tv[i], NULL);
16 }
17 for(i=0; i<rep; i++)
18 printf ("Lorem ipsum dolor sit amet: %ld.%06ld s\n", tv[i].tv_sec, tv[i].tv_usec);
19 exit(EXIT_SUCCESS);
20 }

Listing A.6: quiet, fine granularity, elapsed time
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <sys/time.h>
4 volatile int cnt;
5

6 int main(int argc, char *argv[]){
7 int i, j, rep, steps;
8 long long int runtime=0;
9 struct timeval tvb, tve;

10 rep = atoi(argv[1]);
11 steps = atoi(argv[2]);
12

13 for(i=0; i<rep; i++) {
14 gettimeofday(&tvb, NULL);
15 for(j=0; j<steps; j++) cnt += j;
16 gettimeofday(&tve, NULL);
17 runtime += tve.tv_sec*1000000ULL+tve.tv_usec - (tvb.tv_sec*1000000ULL+tvb.tv_usec);
18 }
19 printf ("Lorem ipsum dolor sit amet: %lld usec\n", runtime);
20 exit(EXIT_SUCCESS);
21 }
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Listing A.7: The script that does the measurements of chronometry.
1 APPS="cget cgts fget fgts qfget qfgts"
2 REPEATS=15000
3 STEPS="1 2 5 10 20 50 75 100 200 500 750 1000 2000 5000 7500 10000 20000 50000 75000 100000 

200000 500000 750000 1000000"
4 MEASUREMENTS=30
5

6 rm *.log aux $APPS
7

8 for app in $APPS ; do

9 gcc -O3 -falign-loops=15 ${app}.c -o ${app}
10 done

11

12 for kind in disk term ; do

13 for app in $APPS ; do

14 echo "steps;time" > ${kind}_${app}_${REPEATS}.csv
15 done

16 done

17

18 for (( iter=0 ; iter <= $MEASUREMENTS; iter = iter + 1)) ; do

19 for step in $STEPS ; do

20 for app in $APPS ; do

21 ./$app ${REPEATS} ${step} | tee term_${app}_${REPEATS}_${step}_${iter}.log
22 ./$app ${REPEATS} ${step} > disk_${app}_${REPEATS}_${step}_${iter}.log
23 done

24 done

25

26 for kind in disk term ; do

27 for step in $STEPS ; do

28 for app in $APPS ; do

29 echo -n "$step;" >> ${kind}_${app}_${REPEATS}.csv
30 done

31

32 for app in cgts fgts qfgts ; do

33 echo -n "(" > aux
34 tail -1 ${kind}_${app}_${REPEATS}_${step}_${iter}.log | awk ’{printf("%s",$6)}’

>> aux
35 echo -n " - " >> aux
36 head -1 ${kind}_${app}_${REPEATS}_${step}_${iter}.log | awk ’{printf("%s",$6)}’

>> aux
37 echo ")*1000000" >> aux
38 bc < aux >> ${kind}_${app}_${REPEATS}.csv
39 done

40

41 for app in cget qfget ; do

42 < ${kind}_${app}_${REPEATS}_${step}_${iter}.log awk ’{print $6}’ >>
${kind}_${app}_${REPEATS}.csv

43 done

44

45 tail -1 ${kind}_fget_${REPEATS}_${step}_${iter}.log | awk ’{print $6}’ >>
${kind}_fget_${REPEATS}.csv

46 done

47 done

48 done
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A.2 STSmany Improved

The following figures show storyboard representations of some STS benchmark rules gen-
erated with the Fujaba tool. We present the original and the improved versions of these
rules.
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Figure A.1: takeRule used by Varró
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Figure A.2: Improved takeRule
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Figure A.3: releaseRule used by Varró
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Container::giveRule (): Void
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Figure A.5: giveRule used by Varró
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Figure A.6: Improved giveRule
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Figure A.7: STSone model used by Varró
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Figure A.8: Improved STSone model. Please note the changed cardinalities of the resource-
Container, request, held by, and taken associations.



APPENDIX B

THE BENCHMARK COMPUTER

We use a single core, single threaded desktop personal computer to perform our benchmarks.
To compare the benchmark runs with older ones we used some seasoned hardware. This
chapter lists all relevant software and hardware components involved in the benchmark.

CPU

• AMD AthlonTM XP 3000+
• L1-Cache: 64 + 64 KiB (Data + Instructions)
• L2-Cache: 512 KiB with Core Frequency
• 2100 MHz
• FSB 400

Memory

• 2 × Infineon 512 MiB
• DDR 500 CL3

Motherboard

• Asus A7N8X-X

Graphics Card

• ATI/AMD Radeon 7000 OEM

Software/Linux

• Suse Linux 9.3
• Linux Kernel 2.6.11.4-21.17-default
• GNU C Library 2.3.4 (20050218)
• X Window System Version 6.8.2 (9. Feb. 2005)
• Mono 1.2.3.1
• Java 2 Runtime Environment, SE (build 1.5.0 04-b05)
• xterm 200-3
• GNOME 2.10.0
• KDE 3.4.0

Software/Windows

• Microsoft Windows R© XP, Version 5.1 (Build 2600.xpsp sp2 gdr.070227-2254: Ser-
vice Pack 2)

• Microsoft.NET Framework v2.0.50727
• JavaTM SE Runtime Environment (build 1.6.0 01-b06)
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