Semiempirische Berechnung von Tensoren der chemischen Verschiebung zur Interpretation der NMR-Spektren von Biomolekülen

Zur Erlangung des akademischen Grades eines

DOKTORS DER NATURWISSENSCHAFTEN

(Dr. rer. nat.)

der Fakultät für Chemie und Biowissenschaften der Universität Karlsruhe (TH)

angenommene

DISSERTATION

von

Licenciado Marco Willi Klipfel

aus Kenzingen

Dekan: Prof. Dr. Holger Puchta Referent: Prof. Dr. Anne S. Ulrich Korreferent: Prof. Dr. Willem M. Klopper Tag der mündlichen Prüfung: 25.10.2007

INHALTSVERZEICHNIS

In	halts	verzeichnis 1				
Ab	okürz	zungsverzeichnis 3				
1	Ein	leitung 5				
	1.1	Zielstellungen7				
2	The	eoretische Grundlagen 9				
	2.1	Die SCF-Methode				
	2.2	Der Basissatz – eine subtile Näherung11				
	2.3	Die Elektronenkorrelation13				
	2.4	Die Møller-Plesset Störungstheorie 14				
	2.5	Von kernmagnetischer Resonanz und chemischer Verschiebung17 2.5.1 Quantenmechanische Beschreibung der magnetischen Abschirmung 20				
	2.6 pola	6 Berechnung der chemischen Verschiebung mit der Bindungs- blarisationstheorie				
3	Me	Methodenoptimierung 24				
	3.1	Wahl der quantenmechanischen Methode 24				
	3.2	Der geeignete Basissatz25				
	3.3 Abs	Symmetrieoperationen und deren Einfluss auf die magnetische chirmung				
4	Par	ametrisierungen von COSMOS-NMR 30				
	4.1	 ¹⁹F Parametrisierung				
	4.2	 ¹⁵N Parametrisierung				
		4.2.2 ¹⁵ N mit Koordinationszahl 2				
	4.3	³¹ P Parametrisierung				
5	Any	wendungen 45				

		5.1.1 1,4-Difluorbenzol5.1.2 4-4'-Difluordiphenyl	45
	5.2	Fluortryptophan	47
	5.3	MD Simulation mit ¹ H- ¹⁵ N und ² H-Kopplungen als Randbedingung	53
	5.4	Zusammenfassung 5F-Trp ¹³ gA	58
	5.5	¹⁵ N chemische Verschiebung	59
6	Zus	ammenfassung	62
7	Ref	erenzen	65
	Anl	nang	69

ABKÜRZUNGSVERZEICHNIS

5F-Trp ¹³ gA	5-Fluortryptophan an Position 13 in Gramicidin A (Molekül A und B)
BPT	Bindungspolarisationstheorie
CGTO	Contracted Gaussian Typ Orbitals
CSD	Cambridge Structural Database
CV	Chemische Verschiebung
DFT	Dichtefunktionaltheorie
DL-Trp	D-Tryptophan-L-Tryptophan
DMPC	1,2-Dimyristoyl-3-phosphatidylcholin
E(exakt, nicht relativ	<i>exakte</i> , nicht relativistische Energie
E _(HF)	Hartree-Fock-Energie
E _(korr)	Korrelationsenergie
ELS	Elektrostatik
gA	Gramicidin A
GIAO	Gauge-Including Atomic Orbital
GTO	Gaussian Typ Orbitals
HF	Hartree-Fock
IGLO	Individual Gauge for Localized Orbitals
LCAO-MO	Linear Combination of Atomic Orbitals to Molecular Orbitals
LORG	Local Origin/localized Orbitals
MD	Moleküldynamik
MOs	Molecular Orbitals
MP	Møller Plesset
MP2	Møller Plesset 2. Ordnung
MP3	Møller Plesset 3. Ordnung
MP4	Møller Plesset 4. Ordnung
NMR	Nuclear Magnetic Resonance
QZVPP	Quadruple Zeta Valence Plus Polarisation
RF	Radiofrequenz
RI	Resolution of the Identity
SCF	Self Consistent Field
STO	Slater Typ Orbital
TZVPP	Triple Zeta Valence Plus Polarisation

1 EINLEITUNG

Gemeinsam mit Theorie und Experiment bildet die computergestützte Analyse und Simulation die dritte tragende Säule der Wissenschaften. Immer häufiger werden Simulationen an Computern zur Vorhersage von Eigenschaften gemacht. In allen Sparten der Wissenschaften ist die computergestützte Analyse oder Simulation vertreten, von der Raumfahrt über Klima- und Wetterprognosen bis hin zu Kernfusionsimulationen. Sehr dazu beigetragen hat die rasante Entwicklung der Computerleistung. 1940 lag diese bei 1 Flop pro Sekunde, 2005 durchbrachen Großrechner die Leistung von 100 TeraFlop pro Sekunde (1 TeraFlop = 1×10^{12} Flop).

In vielen Sparten ist die computerunterstützte Chemie eine wichtige Ergänzung zur experimentellen Chemie geworden, so kennt man z.B. Kohlenstoff-Lithium-Verbindungen besser von Berechnungen her als vom Experiment¹.

Ein großes Anwendungsgebiet von computergestützten Simulationen in der Chemie ist die Bestimmung der räumlichen Struktur von Molekülen (Molecular Modelling). Die dreidimensionale Molekularstruktur liefert den Ausgangspunkt für das Verstehen vieler physikalischer und chemischer Eigenschaften. Der räumliche Aufbau von Peptiden und Proteinen ist verantwortlich für deren biologische Funktion und daher ist die Bestimmung ihrer dreidimensionalen Struktur von zentraler Bedeutung.

Verschiedene Methoden des computerunterstützten Molecular Modelling und Simulationsmethoden haben sich als etablierte Untersuchungsverfahren in der Chemie entwickelt. Diese sind für die Interpretation und Auswertung der experimentellen Resultate verschiedenster Spektroskopie- und Analysemethoden der Zusammenhänge zwischen Struktur und Eigenschaft sehr hilfreich. Aufgrund der fortgeschrittenen Entwicklung der Rechnertechnik und der Vielfalt an benutzerfreundlicher Software bilden diese ein unentbehrliches Instrument.

Das Molecular Modelling stellt nicht etwa eine einheitliche Methode dar, sondern kombiniert vielmehr verschiedene theoretische Ansätze mit jeweils verschiedenen Stärken und Schwächen. Oft ergeben sich aus einer geeigneten Kombination unterschiedlicher Methoden entscheidende Vorteile. Die Kenntnis der Schwächen oder Limitierungen der einzelnen Methoden ist entscheidend für den Erfolg als solches im kombinierten Einsatz der Methoden. Die Methoden des Molecular Modelling reichen von rein klassischen Ansätzen bis zu hoch komplexen quantenchemischen Rechenverfahren.

Für die Berechnung von Moleküleigenschaften stellt die theoretische Chemie drei unterschiedliche Verfahren zur Verfügung:

- *ab-initio* Methoden: Hartree-Fock (HF) und post Hartree-Fock Methoden
- semiempirische Methoden
- empirische Methoden

Die ersten beiden Modelle basieren auf quantenchemischen Ansätzen, wobei die Schrödingergleichung der zentrale Ausgangspunkt für diese Methoden darstellt. Post Hartree-Fock Methoden unterscheiden sich im wesentlichen von den *ab-initio* Methoden durch die Berücksichtigung der Elektronenkorrelation – die explizite Elektron-Elektron-Wechselwirkung. Bei *ab-initio* Methoden wie HF bewegen sich die Elektronen in einem gemittelten Potenzial aller Elektronen und dadurch wird die korrelierte Bewegung der Elektronen nicht erfasst².

Der Rechenaufwand bei quantenchemischen *ab-initio* und post Hartree-Fock Verfahren kann sehr groß werden. Diese Methoden eignen sich somit nur für einfache Probleme bis einigen Hundert Atomen. Semiempirische Rechenmethoden zeichnen sich durch zeitsparende Näherungen unter Einbeziehen empirischer Parameter aus, die sonst aus der Wellenfunktion des Systems berechnet werden müssten (z.B. Potenziale und Energiematrixelemente, etc.). Diese Parameter können aus experimentellen Daten sowie aus anderen theoretischen Berechnungen stammen. Diese Methoden sind deutlich weniger rechenintensiv als *ab-initio* Methoden. Die Qualität einer halbempirischen Methode hängt von der Genauigkeit und Gültigkeit der empirischen Parameter ab. Je nach Methode und der zu berechnenden Eigenschaft kann man bis zu mehreren Tausend Atomen große Systeme berechnen.

Empirische Methoden der Molekülberechnung gehen nicht von der quantenchemischen Wellenfunktion aus, sondern basieren auf rein klassischer Mechanik. Die Struktur von

Molekülen wird vereinfacht in Form von Federn verbundener Massenpunkte interpretiert. Dadurch sind empirische Methoden deutlich weniger rechenintensiv, wodurch immer größere Systeme wie z.B. Proteinkomplexe oder Zellmembranausschnitte berechenbar werden.

In dieser Arbeit wurde ein Gramicidin A (gA) Dimer in einem modellierten Phospholipidmembranausschnitt behandelt. Ausführliche Untersuchungen wurden an diesem System mit experimentellen^{3,4,5} sowie theoretischen^{6,7} Ansätzen durchgeführt. Daher war eine Vielzahl von experimentellen Ergebnissen vorhanden, die mit theoretischen Vorhersagen verglichen werden konnten. Somit war dieses System ein idealer Prototyp für die Anwendung der neu etablierten Methode dieser Arbeit. Das gA ist ein membranständiges Polypeptid, zusammengesetzt aus zwei identischen β-Helix-Molekülen mit jeweils 15 hydrophoben Aminosäuren mit alternierender L-D-Konfiguration. Dieser transmembrane Homodimer kann einen Ionenkanal durch die Zellmembrane bilden^{8,9,10}. Den Tryptophanseitenketten von gA kommt dabei eine wichtige Rolle in der Verankerung und Ausrichtung des Dimers^{10,4,11} in der Zellmembrane und in der Konduktivität^{12,13} des Ionenkanals zu. Die Kenntnis über die Anordnung der Indolringsysteme der Tryptophanseitenketten in gA stellte daher eine interessante Fragestellung dar.

1.1 Zielstellungen

In dieser Promotionsarbeit sollen Parametrisierungen der semiempirischen Bindungspolarisationstheorie¹⁴ Methode (BPT) erstellt werden, mit denen Tensoren der ¹⁹F, ¹⁵N, und ³¹P chemischen Verschiebungen in großen Systemen berechnet werden können. Diese BPT-Methode¹⁴ ist in der COSMOS Software¹⁵ integriert.

Ziel dieser Parametrisierungen ist, die Möglichkeit schneller Berechnungen der Tensoren der chemischen Verschiebung an großen Biomolekülen und kristallinen Strukturen mit einer Genauigkeit von sehr aufwändigen *ab-initio* Rechnungen zu ermöglichen. Damit werden auch Moleküldynamik (MD) Simulationen möglich, bei denen in jedem Zeitschritt (normalerweise 0.5 - 2 fs) der komplette Tensor der chemischen Verschiebung berechnet werden kann. Die Verwendung eines Pseudopotenzials der chemischen Verschiebung, z.

B. aus experimentellen NMR-Daten, ermöglicht auch eine Strukturverfeinerung von existierenden Strukturen.

In der ersten Phase dieser Arbeit sollen die Tensoren der chemischen Verschiebung von Modellmolekülen auf sehr exaktem quantenchemischen Niveau berechnet werden. Anschließend sollen aus diesen *ab-initio*-berechneten Molekülen und Tensoren der chemischen Verschiebung die bindungsspezifischen Parameter für die semiempirische BPT-Methode¹⁴ bestimmt werden.

Eine entsprechende Referenzierung der Parameter von magnetischer Abschirmung zur chemischen Verschiebung soll erstellt werden. Damit wird ein direkter Vergleich der Berechnungen zu experimentellen Werten ermöglicht.

An ausgewählten Beispielen werden die bestimmten Parameter ihre Konsistenz beweisen.

2 THEORETISCHE GRUNDLAGEN

Die quantenmechanische Beschreibung von Moleküleigenschaften ist auf nichtrelativistischer Schrödingergleichung basierenden Methoden nur für einfache Systeme, die keine Schweratome enthalten, in guter Näherung möglich. In diesem Kapitel werden die unterschiedlichen Näherungen und Ansätze beschrieben, die bei der Durchführung dieser Promotionsarbeit verwendet wurden.

2.1 Die SCF-Methode

Im weiteren Verlauf dieser Arbeit werden ausschließlich Systeme mit geschlossenen Schalen behandelt, und es wird die Born-Oppenheimer-Näherung¹⁶ vorausgesetzt, bzw. die Atomkerne werden als festgehalten betrachtet.

Als Startpunkt für die meisten quantenchemischen *ab-initio* Methoden dient die stationäre Schrödingergleichung 2.1, mit dem Hamiltonoperator \hat{H} , der Wellenfunktion Ψ und dem Energieeigenwert E. Der Hamiltonoperator \hat{H} eines Moleküls besteht jeweils aus den Termen der Elektronen und Atomkerne mit den dazugehörigen Termen der kinetischen Energie (\hat{T}) und Termen der potenziellen Energie (\hat{U}).

$$\hat{H}|\Psi\rangle = E|\Psi\rangle \tag{2.1}$$

$$\hat{H} = \hat{T}_{ele} + \hat{U}_{nuc,nuc} + \hat{U}_{ele,ele} + \hat{U}_{ele,nuc}$$

$$\tag{2.2}$$

Die Terme der potenziellen Energie (\hat{U}) beinhalten die Coulomb-Abstoßung ($\hat{U}_{nuc,nuc}$) der Atomkerne, die Coulomb-Abstoßung der Elektronen ($\hat{U}_{ele,ele}$) und die Coulomb-Anziehung zwischen Atomkernen und Elektronen ($\hat{U}_{ele,nuc}$). Die analytische Behandlung der Gleichung 2.1 ist nur für einfachste Systeme möglich, wie z.B. das Wasserstoffatom. Fast alle anderen Systeme müssen numerisch behandelt werden. Hierfür muss das System vereinfacht werden, durch Näherungen und Modelle. In Mehrelektronensystemen dient als Ausgangspunkt die Hartree-Fock-Näherung¹⁷ (HF), auf der letztendlich alle in dieser Arbeit verwendeten Methoden basieren. Die Gesamtwellenfunktion Ψ wird hier als Produkt aus Einelektronenwellenfunktionen ψ (Molekülorbitale, MOs) dargestellt. Diese Molekülorbitale erstrecken sich über das ganze Molekül und sind Funktion der Koordinaten (r_i) eines Elektrons. Der Elektronenspin wird durch eine Spinkoordinate (s_i) in der Wellenfunktion berücksichtigt. Da der Spin im klassischen Hamiltonoperator nicht auftritt, lassen sich die Spinorbitale ψ (r_i, s_i) als ein Produkt aus einer Raumfunktion ϕ (r_i) und einer Spinfunktion ξ (s_i) formulieren.

$$\psi(r_i, s_i) = \varphi(r_i)\xi(s_i) \tag{2.3}$$

Die Spinvariable kann dabei nur die Werte +1/2 und -1/2 annehmen. Nach dem Pauli-Prinzip darf jedes Orbital nur mit zwei Elektronen besetzt werden, die einen entgegen gesetzten Spin aufweisen müssen. Jedes Spinorbital kann demnach nur mit einem Elektron besetzt werden. Die Darstellung der Gesamtwellenfunktion erfolgt über die als einzelnen Slaterdeterminante Verknüpfung der Molekülorbitale. Die Vielteilchengleichung aus N Elektronen reduziert sich auf N Einteilchengleichungen, deren Lösung einfacher sind. Bei diesem Separationsansatz wird der exakte Ausdruck der Coulomb-Abstoßung im Hamiltonoperator, der die Bewegung des i-ten Elektrons mit der Bewegung aller anderen Elektronen koppelt, durch ein gemitteltes Potenzial erstetzt.

Die elektronische N-Teilchen-Grundzustandswellenfunktion Ψ wird gemäß dem Pauli-Prinzip durch ein antisymmetrisiertes Produkt aus N Einteilchenwellenfunktionen ψ ersetzt. Damit werden die Energieerwartungswerte mit dem exakten nichtrelativistischen elektronischen Hamiltonoperator gebildet.

$$\Psi(1,2,...n) = \frac{1}{\sqrt{n!}} \begin{vmatrix} \psi_1(1) & \psi_2(1) & \cdots & \psi_n(1) \\ \psi_1(2) & \psi_2(2) & \cdots & \psi_n(2) \\ \psi_1(3) & \psi_2(3) & \cdots & \psi_n(3) \\ \psi_1(n) & \psi_2(n) & \cdots & \psi_n(n) \end{vmatrix}$$
(2.4)

Die Molekülorbitale ψ lassen sich durch eine Linearkombination eines Satzes ϕ von Basisfunktionen beschreiben. Bei der Linear Combination of Atomic Orbitals to Molecular Orbitals (LCAO-MO) werden die Atomorbitale ϕ_k der Atome verwendet.

$$\Psi_i = \sum_{k=1}^N c_{ki} \phi_k \tag{2.5}$$

Diese Linearkombinationskoeffizienten c_{ki} lassen sich in der Hartree-Fock-Roothaan'schen Gleichung in einer Matrixform darstellen. Die Diagonalisierung der Fock-Matrix liefert dann neue Koeffizienten, die zu einer Absenkung der Gesamtenergie führen, die wiederum im nächsten Zyklus der Diagonalisierung verwendet werden. Auf diese Weise werden sukzessiv "bessere" Koeffizienten bestimmt, bis das Ergebnis zweier aufeinander folgenden Iterationsschritten innerhalb einer gegebenen Toleranz identisch ist. Bei dieser SCF-Methode (Self Consistent Field)¹⁸ wird allerdings näherungsweise die Kenntnis von Startkoeffizienten zur Lösung der Gleichung vorausgesetzt, welche üblicherweise aus der Extended–Hückel Theorie¹⁹ verwendet werden.

2.2 Der Basissatz – eine subtile Näherung

Ab-initio Methoden versuchen Informationen aus der Schrödingergleichung abzuleiten, wobei in die Berechnung nur allgemeine Naturkonstanten eingehen sollen. Eine gemeinsame Näherung haben aber im Wesentlichen alle *ab-initio* Methoden – die Einführung des Basissatzes. Theoretisch bräuchte man unendlich viele Atomorbitale um ein Molekülorbital genau zu beschreiben. Wenn aber ein endlicher Basissatz verwendet wird, werden nur die Komponenten der Molekülorbitale dargestellt, die auch durch den Basissatz definiert sind. Daher ergibt sich: je kleiner der gewählte Basissatz ist desto kleiner ist auch die Beschreibung der MO's. Der Rechenaufwand solcher Methoden skaliert mindestens mit der 4. Potenz, der Anzahl der Basisfunktionen. Daher ist die Wahl des Basissatzes außerordentlich wichtig um eine Gewährleistung der Rechengenauigkeit bei angemessenem Aufwand zu garantieren^{20,21}. Die Auswahl stellt daher immer einen Kompromiss zwischen Genauigkeit des Ergebnisses und dem Rechenaufwand dar.

In der Praxis verwendet man heutzutage meistens Gaußfunktionen²² (GTO) als Basisfunktionen. Diese bieten, im Gegensatz zu den sogenannten Slaterfunktionen²³ (STO), welche eine einfache exponentielle Abhängigkeit im Radialteil haben, den Vorteil, dass sich die Zweielektronenintegrale der Coulomb- und Austauschwechselwirkung sehr viel schneller berechnen lassen als mit Slaterfunktionen. Um das abweichende Verhalten der Gaußfunktionen bezüglich des Radialteils ($exp(-\alpha r^2)$ statt $exp(-\alpha r)$) zu verbessern, wird eine Linearkombination von Gaußfunktionen, sogenannte primitive Gaußfunktionen verwendet. Die Entwicklungskoeffizienten werden so gewählt dass sich die Superposition dieser Funktionen einer Slaterfunktion maximal nähert. Das heißt, die in Gleichung 2.5 eingeführten Basisfunktionen ϕ_k ergeben folgende primitive Gaußfunktion:

$$\phi_k^{GTO}(x, y, z) = N x^{n_x} y^{n_y} z^{n_z} e^{(-\alpha(x^2 + y^2 + z^2))}$$
(2.6)

Die Winkelabhängigkeit und damit der Drehimpuls werden durch $k = n_x + n_y + n_z$ bestimmt. N ist ein Normierungsfaktor. Eine kontrahierte Gaußfunktion (CGTO), ergibt sich durch Linearkombination von primitiven Gaußfunktionen.

$$\phi^{CGTO}(x, y, z) = \sum_{k=1}^{K} c_k \phi_k^{GTO}(x, y, z)$$
(2.7)

Die Güte eines Basissatzes korreliert mit zwei Faktoren. Zum einen mit der Anzahl der verwendeten primitiven Gaußfunktionen pro kontrahierte Funktion, zum anderen mit der Anzahl der Kontraktionen pro Hauptquantenzahl. Ein Minimalbasissatz, der auch als single-zeta bezeichnet wird, besteht aus einer kontrahierten Basisfunktion pro Schale, die wiederum aus einer oder mehreren primitiven Gaußfunktionen besteht. Der Begriff "zeta" kommt daher, dass der Exponent der STO Basisfunktionen vielmals mit dem griechischen Buchstaben ζ beschrieben wird. Verwendet man mehr als eine Kontraktion zur Darstellung einer Schale, spricht man von double-zeta, triple-zeta, usw. Basissätzen.

Die Berücksichtigung von Funktionen mit größeren Nebenquantenzahlen, als das Atom in Wirklichkeit besitzt, führt uns zu den Polarisationsbasissätzen. Diese ermöglichen z.B. eine Verbesserung in der Beschreibung von Wasserstoffbrücken sowie anisotroper Moleküleigenschaften. Diffuse Funktionen ergänzen den Basissatz bei Berechnung angeregter Zustände im Molekül oder Ion, die dazu dienen, eine relativ große räumliche Ausdehnung und somit Beweglichkeit der Elektronen zu ermöglichen.

2.3 Die Elektronenkorrelation

*"What are the electrons really doing in molecules?*²²⁴ (Robert S. Mulliken). Diese Frage konnte im Rahmen des Hartree-Fock-Verfahrens nicht erklärt werden. Der exakte Ausdruck für die Elektron-Elektron Wechselwirkung wird ja durch ein gemitteltes Potenzial vereinfacht. Selbst bei einem kompletten (unendlichen) Basissatz vernachlässigt man aufgrund des Einteilchenansatzes die korrelierte Bewegung der Elektronen. Bei Lösung der HF-Gleichungen wird man deshalb immer an ein oberes Limit zur exakten Lösung der nichtrelativistischen Schrödingergleichung für die Grundzustandsenergie stoßen. Ungefähr 99 % der Gesamtenergie ist mit dieser Approximation erfassbar. Die Differenz zwischen Hartree-Fock-Energie, $E_{(HF)}$ und der exakten nicht relativistischen Energie, $E_{(exakt, nicht relativ.)}$ ist als Korrelationsenergie, $E_{(korr)}$ definiert, (Gleichung 2.8). Abbildung 2.1. zeigt ein Energiediagramm für die unterschiedlichen Verfahren. Doch auch wenn die $E_{(korr)}$ nur einen Bruchteil der Gesamtenergie ausmacht, ist für eine zuverlässige Voraussage von chemisch relevanten Größen eine präzise Behandlung der Elektronenkorrelation²⁵ über das gemittelte Potenzial hinaus erforderlich.

$$E_{korr} = E_{exakt \ nicht \ relativistisch} - E_{HF}$$
(2.8)

Abbildung 2.1: Schematische Darstellung der berechenbaren Energielimits mit unterschiedlichen Rechenverfahren.

Die sogenannten "Post-Hartree-Fock" Verfahren versuchen die Korrelationsenergie teilweise zu berechnen um eine genauere Beschreibung der Wellenfunktion zu ermöglichen. Dabei kann man die Beschreibung in zwei Klassen einteilen. Bei der dynamischen Korrelation wird die Wechselwirkung zweier räumlich benachbarter Elektronen beschrieben, während die statische Korrelation eine relativ große räumliche Trennung der Elektronenpaare beschreibt. Der erste Fall findet sich in allen Systemen und wird neben dem Konfigurationswechselwirkungsverfahren^{26,27,28,29} hauptsächlich mit einem störungs-theoretischen Ansatz behandelt. Bei der statischen Korrelation spielen die Multikonfigurationsansätze³⁰ eine große Rolle.

In dem nächsten Punkt wird ein Überblick über den störungstheoretischen Ansatz der Møller-Plesset³¹ Methode (MP) erläutert, die, im Gegensatz zu den HF und Konfigurationswechselwirkungsverfahren, nicht auf dem Variationsprinzip beruht. Das bedeutet, dass die $E_{(exakt, nicht relativ.)}$ unterschritten werden kann.

2.4 Die Møller-Plesset Störungstheorie

Einer der weiterführenden Ansätze, der eine Behandlung des in der HF-Näherung vernachlässigten Problems der Elektronenkorrelation ermöglicht, ist die zeitunabhängige Störungstheorie. Die Ursprungsidee stammt von Erwin Schrödinger³², zusammen mit Arbeiten von Rayleigh³³ wurde sie als Rayleigh-Schrödinger Störungstheorie bekannt. Møller und Plesset³¹ veröffentlichten 1934 diese Theorie auf ein N-Elektronen System angewandt.

Dieses Verfahren zur Berechnung der Korrelationsenergie beruht auf einer Aufteilung des Hamiltonoperators \hat{H} in einen ungestörten Anteil $\hat{H}^{(0)}$ und eine Störung \hat{U} .

$$\hat{H} = \hat{H}^{(0)} + \hat{U}$$
(2.9)

Dieser Ansatz behält seine Gültigkeit solange der Störungsbeitrag gering gegenüber der Lösung der ungestörten Wellenfunktion ist, d. h. wenn HF keine "ordentliche" Lösung zu dem Problem findet, kann mit MP auch keine Verbesserung des Ergebnisses erzielt werden.

$$\hat{H}^{(0)} |\Psi^{(0)}\rangle = E^{(0)} |\Psi^{(0)}\rangle \tag{2.10}$$

Die Lösung der ungestörten zeitunabhängigen Schrödingergleichung wird als bekannt vorausgesetzt. Da der Störungsbeitrag \hat{U} klein gegenüber dem Operator $\hat{H}^{(0)}$ ist, lässt sich die Energie *E* und die Eigenfunktion $|\Psi\rangle$ von \hat{H} aus der Gleichung 2.11 in eine Reihe entwickeln.

$$\hat{H}|\Psi\rangle = E|\Psi\rangle \tag{2.11}$$

$$E = E^{(0)} + E^{(1)} + E^{(2)} + \dots$$
(2.12)

$$\left|\Psi\right\rangle = \left|\Psi^{(0)}\right\rangle + \left|\Psi^{(1)}\right\rangle + \left|\Psi^{(2)}\right\rangle + \dots$$
(2.13)

Die Störenergien $E^{(i)}$ erhält man durch Einsetzen von Gleichung 2.13 in Gleichung 2.11 unter Berücksichtigung von Gleichung 2.9.

$$E^{(1)} = \left\langle \Psi^{(0)} \middle| \hat{U} \middle| \Psi^{(0)} \right\rangle \tag{2.14}$$

$$E^{(2)} = \left\langle \Psi^{(0)} \middle| \hat{U} \middle| \Psi^{(1)} \right\rangle \tag{2.15}$$

$$E^{(3)} = \left\langle \Psi^{(0)} \middle| \hat{U} \middle| \Psi^{(2)} \right\rangle$$

$$\vdots$$
(2.16)

Für eine störungstheoretische Korrektur von dem Hartree-Fock-Verfahren nach MP nimmt man als ungestörten Operator den Fockoperator \hat{F} .

$$\hat{F} = \sum_{i=1}^{N} \hat{h}(r_i) + \hat{U}^{HF}$$
(2.17)

Demnach ergibt die Differenz zwischen dem exakten Hamiltonoperator \hat{H} und dem Fockoperator \hat{F} den Störoperator \hat{U} .

$$\hat{U} = \hat{H} - \hat{F} = \sum_{i < j}^{N} \frac{1}{\hat{r}_{ij}} - \sum_{i}^{N} \left(\hat{J}_{i} - \hat{K}_{i} \right)$$
(2.18)

Dabei stellt \hat{J} den Coulomboperator und \hat{K} den Austauschoperator dar.

Dieser Ansatz der Zerlegung liefert erst für $E^{(2)}$ eine Korrektur zur HF-Energie, da die HF-Methode die erste Korrektur schon enthält.

$$E_{HF} = E^{(0)} + E^{(1)} \tag{2.19}$$

Die Ordnung der Reihenentwicklung aus Gleichung 2.12 wird durch den Term angegeben, nach dem man die Reihe abbricht. So spricht man von dem Møller-Plesset-Verfahren zweiter Ordnung (MP2), wenn man die Reihe nach dem zweiten Term abbricht. Rechnungen bis sechster Ordnung werden durchgeführt, aber der Rechenaufwand in diesem Fall skaliert mit der neunten Potenz der Anzahl der Basisfunktionen³⁴ und wird daher fast nicht praktiziert, da die Verbesserung der Rechengenauigkeit sehr gering ist. Von den störungstheoretischen Methoden ist die MP2 Methode die am meisten verwendete, ~ 80 - 90 %³⁴ der Korrelationsenergie wird mit dieser Methodik erfasst. 90 - 95 % und 95 - 98 % der Korrelationsenergie wird mit der MP3 bzw. MP4 Methode beschrieben.

Im Rahmen dieser Arbeit wurden Berechnungen nach der MP2 Theorie durchgeführt. An dieser Stelle sei noch angemerkt, dass hier nur die Grundidee der MP2 Methode erläutert wurde. Eine ausführliche Beschreibung der MP2 Methodik für die Berechnung der chemischen Verschiebungen und Implementierung in dem Softwarepaket TURBOMOLE³⁵ wurde von Kollwitz *et al.*³⁶ veröffentlicht.

2.5 Von kernmagnetischer Resonanz und chemischer Verschiebung

Die kernmagnetische Resonanzspektroskopie (Nuclear Magnetic Resonance – NMR) ist eines der wichtigsten Analyseverfahren zur Strukturaufklärung von organischen Molekülen und Biomolekülen. Ausgangspunkt für die NMR ist die Existenz des Kernspins, ein quantisierter Eigendrehimpuls des Atomkerns. 1922, noch vor der Entdeckung des Spins, demonstrierten Stern und Gerlach³⁷ wie sich ein Strahl aus neutralen Silberatomen in einem sehr inhomogenen Magnetfeld in zwei Anteile aufspaltete, was auf die quantisierten magnetischen Momente schließen ließ. Kurz darauf führte Pauli³⁸ die neue Quantenzahl s ein, die zu der Aufspaltung in 2s + 1 = 2 Zustände im Magnetfeld führt. 1930 wurde durch Gerlach der Kernspin nachgewiesen. Purcell³⁹ und Bloch⁴⁰ gelang der Nachweis der magnetischen Resonanz in kondensierter Materie. Bloch⁴¹ erarbeitete außerdem wichtige theoretische Grundlagen der NMR. 1950 wurde die Entdeckung der chemischen Verschiebung (CV), und somit die Möglichkeit zur Untersuchung der chemischen Bindung, veröffentlicht^{42,43,44}.

In den Anfängen der NMR waren nur eindimensionale Spektroskopiemethoden bekannt, das erste Experiment in einer zweiten Dimension wurde 1974 von Ernst aufgenommen (Nobelpreis 1991 *"für seine bahnbrechenden Beiträge zur Entwicklung der Methode hochauflösender kernmagnetischer Resonanz-Spektroskopie*"⁴⁵). Danach folgte eine Vielfalt von Fortschritten welche die NMR Spektroskopie auf die eine oder andere Weise bereicherten, angefangen von supraleitenden NMR-Magneten bis hin zu multidimensionalen Experimenten.

Ein Atomkern setzt sich aus Protonen und Neutronen zusammen, die beide einen Spin besitzen. Der Kernspin ergibt sich demnach aus der Summe aller im Kern vorhandenen Spins. Ist dieser Kernspin ungleich Null, so besitzt der Atomkern ein magnetisches Moment $\vec{\mu}$. Es treten Wechselwirkungen mit dem externen \hat{H}_{ext} , in unserem Fall NMR-Magnetfeld, und internen Magnetfeldern \hat{H}_{int} auf. Diese können mit dem Kernspin-Hamiltonoperator beschrieben werden.

$$\hat{H} = \hat{H}_{ext} + \hat{H}_{int} \tag{2.20}$$

Wird ein äußeres statisches Magnetfeld \vec{B}_0 angelegt, hebt sich die Energieentartung bezüglich der Magnetquantenzahl auf, und es erfolgt eine Aufspaltung der Kernenergieniveaus. Diese Wechselwirkung zwischen Kernspins und externem Magnetfeld bezeichnet man in Analogie zum Elektron als Kern-Zeeman-Aufspaltung. Normalerweise ist das äußere Magnetfeld in z-Richtung ausgelegt, und folglich definiert man den Kernspin-Hamiltonoperator für die Zeeman-Aufspaltung als:

$$\hat{H}_{ext} = \hat{H}_z + \hat{H}_{RF} = \begin{cases} \hat{H}_z = -\hbar\gamma B_z \hat{I}_z \\ \hat{H}_{RF} = -\gamma B_1 \hbar (\hat{I}_x \cos(\omega t + \xi) + \hat{I}_y \sin(\omega t + \xi)) \end{cases}$$
(2.21)

Dabei ist γ das gyromagnetische Verhältnis eines Kerns, $\vec{B}_0 = \{0, 0, B_Z\}$, B_1 dass durch Radiofrequenz (RF) erzeugte Magnetfeld, ξ ein Phasenfaktor und \hat{I} der Kernspinoperator in der jeweiligen Achsenrichtung. Das Produkt aus dem externen Magnetfeld B₀ und dem gyromagnetischen Verhältnis γ ergibt die kernspezifische Lamorfrequenz $\omega = -\gamma B_0$.

Die Information zur Strukturaufklärung wird allerdings nicht über die Zeeman-Wechselwirkung gewonnen, sondern über Wechselwirkungen der Kerne mit internen Magnetfeldern. Dabei spielt die chemische Verschiebung, die Dipol- und J-Kopplung, und bei Kernen mit Spin größer als ¹/₂ die Quadrupol-Kopplung eine wichtige Rolle.

Der zweite Term von Gleichung 2.20 resultiert aus den atomaren und molekularen Beiträgen, Gleichung 2.22.

$$\hat{H}_{\rm int} = \hat{H}_{MS} + \hat{H}_D + \hat{H}_J + \hat{H}_Q \tag{2.22}$$

 \hat{H}_{MS} ist der Hamiltonoperator der magnetischen Abschirmung, \hat{H}_D der direkten Dipol-Dipol-, \hat{H}_J der indirekten Dipol-Dipol- und \hat{H}_Q der Quadrupol-Kopplung.

Die direkte Dipol-Dipol-Kopplung beschreibt direkte Wechselwirkungen zwischen den Kernspins infolge magnetischer Wechselwirkung der Dipole. Die indirekte Dipol-Dipol-Kopplung zwischen Kernspins hingegen beschreibt Wechselwirkungen die durch Bindungselektronen vermittelt werden. Die Quadrupol-Kopplung beschreibt die Wechselwirkung der Kernspins (> als ½) mit den Tensoren der elektrischen Feldgradienten am Kernort.

$$\hat{H}_{MS} = \sigma \vec{B} \gamma \hbar \hat{I}_z = \sigma \vec{B} \hat{\mu}_z \tag{2.23}$$

Unter Annahme von $\vec{B}_0 = \{0, 0, B_Z\}$ kann Gleichung 2.23 wie folgt geschrieben werden:

$$\hat{H}_{MS} = \omega \hbar \hat{I}_z \tag{2.24}$$

$$\omega = \gamma B_z \left(\sigma_{iso} + \frac{\Delta \sigma}{3} \left((3\cos^2(\theta) - 1) - \eta_\sigma \sin^2(\theta) \cos(2\varphi) \right) \right)$$
(2.25)

 θ und ϕ sind Polarwinkel des Hauptachsensystems. Die Parameter für die isotrope Abschirmung σ_{iso} , Anisotropie $\Delta \sigma$ und Asymmetrie η_{σ} werden aus den Tensorhauptwerten σ_{11} , σ_{22} und σ_{33} gewonnen.

$$\sigma_{iso} = \frac{1}{3} (\sigma_{11} + \sigma_{22} + \sigma_{33})$$
(2.26)

$$\Delta \sigma = \sigma_{33} - \frac{1}{2} \left(\sigma_{11} + \sigma_{22} \right) \tag{2.27}$$

$$\eta_{\sigma} = \frac{\sigma_{22} - \sigma_{11}}{\sigma_{33} - \sigma_{iso}} \tag{2.28}$$

Hierbei kommt folgende Konvention⁴⁶ $|\sigma_{33} - \sigma_{iso}| \ge |\sigma_{11} - \sigma_{iso}| \ge |\sigma_{22} - \sigma_{iso}|$ zur Geltung. In der NMR Spektroskopie ist anstelle der magnetischen Abschirmung σ die chemische Verschiebung δ in Bezug auf eine Referenzsubstanz gebräuchlich.

$$\delta_{(ppm)} = 10^6 \frac{\upsilon - \upsilon_{ref}}{\upsilon_{ref}} = \frac{\sigma_{ref} - \sigma}{1 - \sigma_{ref}} \approx \sigma_{ref} - \sigma \qquad \left|\sigma_{ref}\right| << 1$$
(2.29)

2.5.1 Quantenmechanische Beschreibung der magnetischen Abschirmung

An dieser Stelle soll eine kurze Einführung in die theoretische Berechnung der kernmagnetischen Abschirmung dargestellt werden. Seit Anfang der 80er Jahre sind quantenchemische Routineberechnungen der magnetischen Abschirmung mit relativ zuverlässigen Resultaten möglich. Man berechnet zu diesem Zweck die Störungsenergie bis zur 2. Ordnung (wie in Gleichung 2.15), wobei in den Störoperator die Vektorpotenziale \vec{A}_B des äußeren Magnetfelds und \vec{A}_{μ} des magnetischen Kerndipols eingehen. Da aber nicht die exakte Wellenfunktion Ψ_0 des Grundzustands sondern die Hartree-Fock Wellenfunktion eingeht, kommt man zu gekoppelten Störgleichungen. Diese so genannte gekoppelte Hartree-Fock-Störungstheorie wurde von Stevens *et al.*⁴⁷ entwickelt. Anfangs bestand das Problem der Abhängigkeit der molekularen Berechnungen vom Ursprung des Vektorpotenzials, **A**, welches im Hamiltonoperator zur Beschreibung des Magnetfelds **B** eingeführt wurde. Diese Abhängigkeit konnte nur durch Verwendung sehr großer Basissätze gemildert werden, was zu einem enormen Rechenaufwand führte und dadurch nur für sehr kleine Moleküle möglich war.

Eine der ersten Methoden zur Berechnung der chemischen Verschiebung, die das Problem der Ursprungsabhängigkeit befriedigend löste, war die IGLO-Methode (individual gauge for localized orbitals), entwickelt von Kutzelnigg und Schindler⁴⁸, und wenig später entwickelten Hansen und Bournan⁴⁹ die LORG-Methode (local origin/localized orbitals). Ditchfield⁵⁰ implementierte erstmals den GIAO (gauge-including atomic orbital)-Ansatz von London⁵¹ für quantenchemische Berechnungen der chemischen Verschiebung. Hier tritt für jedes AO eine Verschiebung seines Ursprungs gegenüber dem Ursprung des Vektorpotenzials von A auf. Diese Verschiebung wird beschrieben durch den Operator \hat{T}^{52} der endlichen Verschiebung, und dieser führt bei jedem Orbital zu einem komplexen Phasenfaktor. Die so entstandenen Funktionen bezeichnet man als GIAOs.

$$\widehat{T}(\mathbf{R})\Psi(\mathbf{r}) = \exp\left\{-\frac{ie}{\hbar}\mathbf{R}\mathbf{A}\right\}\Psi(\mathbf{r}-\mathbf{R})$$
(2.30)

Der Operator \hat{T} verschiebt die AOs vom Ursprung des Vektorpotenzials entlang des Vektors **R** an den Kernort. Dabei ist **r** der Positionsvektor des Elektrons und *e* seine Ladung.

Mit den Arbeiten von Pulay *et al.*⁵³ setzte sich diese Methode gegenüber den Anderen durch und fungiert mittlerweile als Standard für die Berechnung der magnetischen Abschirmung auf quantenchemischen Niveau. Die Effizienz der Methode wurde weitgehend verbessert^{53,54}, so dass auch die kernmagnetische Abschirmung größerer Moleküle berechenbar wurde.

2.6 Berechnung der chemischen Verschiebung mit der Bindungspolarisationstheorie

Ein großer Nachteil aller *ab-initio* Verfahren zur Berechnung der magnetischen Abschirmung ist der Rechenaufwand. Grundsätzlich sind diese sehr rechenintensiv und daher nur für kleinere Moleküle möglich, also für den NMR-Spektroskopiker meist uninteressant. Der experimentell arbeitende Spektroskopiker verwendet überwiegend Inkrementsysteme zur Bestimmung der chemischen Verschiebung, die rein konnektive Strukturinformationen enthalten und daher konformative Strukturänderungen nicht wahrnehmen können.

Die Bindungspolarisationstheorie-Methode¹⁴ (BPT) verwendet einen quantenchemischen Formalismus zur Berechnung der chemischen Verschiebung, der die Begrenzung der Molekülgröße der *ab-initio* Methoden zum Einem, und die ungenauen empirischen Inkrementverfahren zum Anderen überwunden hat. Die BPT ermöglicht nicht nur die Berechnung des isotropen Mittelwertes, sondern auch die Berechnung des kompletten Tensores der chemischen Verschiebung. Als Standbein der BPT-Methode erweist sich Gleichung 2.31.

$$\delta = \left\langle \Psi_P \left| \hat{O} \right| \Psi_P \right\rangle = 2 \sum_{x}^{x \in A} \sum_{i}^{i \in x} \left(\delta_i^0 + A_i^{pol} \left\langle i \right| \hat{V} \left| i^* \right\rangle \right)$$
(2.31)

Somit ergibt sich die chemische Verschiebung eines Kerns δ , als Erwartungswert der Gleichung 2.31, zusammengesetzt aus Term δ_i^0 , der chemischen Verschiebung einer isolierten Bindung ohne Bindungspolarisation und dem Anstiegskoeffizienten A_i^{pol} , entsprechend der chemischen Verschiebung hervorgerufen durch Bindungspolarisation⁵⁵. $|i\rangle$ beschreibt das Bond-Orbital einer Bindung, analog dazu die entsprechende Antibindung $|i^*\rangle$. Die semiempirische BPT kann mit dem COSMOS Kraftfeld^{56,57} zusammen arbeiten, indem für alle Bindungen Bond-Orbitale bestimmt werden, die Einfluss auf die Bindungspolarisationsenergie \hat{V} haben.

Die Bindungspolarisationsenergie \hat{V} wird im Kontext der BPT wie folgt definiert:

$$V_{ab} = \sum_{x \in B}^{N_B} q_x \times \left\{ \left\langle \chi_a \middle| \frac{1}{\bar{R}_{ax} - \bar{r}} \middle| \chi_a \right\rangle - \left\langle \chi_b \middle| \frac{1}{\bar{R}_{bx} - \bar{r}} \middle| \chi_b \right\rangle \right\}$$
(2.32)

Dabei ist q_x die Punktladung an Position \vec{R} , χ das Bond-Orbital der Nachbarn *a* und *b*, und \vec{r} die Elektronenkoordinate. Die Summe läuft über alle Partialladungen des Teilsystems B.

Eine ausführliche Ableitung der Methode kann man z.B. in Sternberg *et al.*^{55, 58} finden. Die Tensoren der chemischen Verschiebung können gemäß Gleichung 2.33 berechnet werden.

$$\sigma_{\alpha\beta} = \left\langle \Psi_P \middle| \hat{O}_{\alpha\beta} \middle| \Psi_P \right\rangle = 2 \sum_{x}^{x \in A} \sum_{i}^{i \in x} D^i_{\alpha\alpha'} D^i_{\beta\beta'} \left(\left(\delta^0_i \right)_{\alpha'\beta'} + \left(A^{pol}_i \right)_{\alpha'\beta'} \left\langle i \middle| \hat{V} \middle| i^* \right\rangle \right)$$
(2.33)

Die Matrixelemente für die Koordinatentransformation vom Bindungssystem zum Laborsystem sind durch $D_{\alpha\alpha'}$ und $D_{\beta\beta'}$ dargestellt. Damit werden δ^0 und A^{pol} selbst zu Tensoren.

In der semiempirischen BPT-Methode werden die Terme δ^0 und A^{pol} anhand von externen Daten kalibriert und als Parameter in die Methode aufgenommen. Dieses Verfahren wurde zur Berechnung von ¹³C-NMR Tensoren erfolgreich durchgeführt^{58, 59}.Vorteilhaft an dieser Methode ist die Rechengeschwindigkeit gegenüber zeitaufwändigen *ab-initio* Methoden für die Berechnung der chemischen Verschiebung. Integriert in ein Kraftfeld lässt sich z.B. die chemische Verschiebung während einer MD Simulation berechnen. Aus der Differenz von experimentellen NMR-Daten und den berechneten Werten lassen sich wiederum Kräfte herleiten, die als "Pseudokräfte" für Strukturaufklärungen eingesetzt werden können⁶⁰.

In dieser Arbeit wurden die Geradenparameter δ^0 und A^{pol} aus Gleichung 2.33 für die Berechnung der Tensoren der ¹⁹F, ¹⁵N, ³¹P und ¹H (vom Typ ¹H_a gebunden am C_a einer Aminosäure und ¹H_N gebunden am Rückgrat-Stickstoff einer Aminosäure) chemischen Verschiebung bestimmt. Die beiden letzten Parametrisierungen wurden im Anhang beschrieben.

Anders als bei der ¹³C-Parametrisierung wurde hier erstmals die Bestimmung der Parameter mit Hilfe von guantenchemisch berechneten Strukturen realisiert. Der Grund dafür dass als war. Ausgangspunkt für die Parametrisierung, eine mit Neutronenbeugungsmethode bestimmte experimentelle Molekülstruktur mit dem kompletten Tensor der chemischen Verschiebung erforderlich gewesen wäre, aber nicht vorhanden war. Solche Strukturen waren nur vereinzelt vorhanden. Deshalb stellte sich die Parametrisierung mittels ab-initio Strukturen als einziger Zugang für die Bestimmung dieser bindungsspezifischen Parameter dar.

3 METHODENOPTIMIERUNG

In diesem Kapitel meiner Arbeit sollen die unterschiedlichen Variablen analysiert werden, die die magnetische Abschirmung in theoretischen Berechnungen beeinflussen (können). Folgende Variablen wurden dabei untersucht:

- Die quantenchemische Methode für die Berechnung der magnetischen Abschirmung der Testmoleküle
- Der Basissatz
- Symmetrieoperationen, die zur Beschleunigung der Rechnung führen

Schrittweise wurde der Einfluss dieser Faktoren auf die magnetische Abschirmung, und somit auf die Parametrisierung, untersucht. Es wurde ein optimal auf das Problem zugeschnittenes Protokoll erstellt, welches dann für die ¹⁹F, ¹⁵N, und ³¹P Parametrisierungen der Testmoleküle verwendet wurde.

3.1 Wahl der quantenmechanischen Methode

Das Hartree-Fock Verfahren wurde nicht als mögliche Methode für die Berechnung der magnetischen Abschirmung in Erwägung gezogen, da die Elektronenkorrelation in dieser Methode nicht berücksichtigt wird. Daher wird die magnetische Suszeptibilität der Elektronen, die den jeweiligen Kern umgeben, in der Rechnung nur annähernd widergespiegelt.

Die Dichtefunktionaltheorie-Methode⁶¹ (DFT) ist ein post Hartree-Fock Verfahren, welches alle Grundzustandseigenschaften, anderes als bei HF und MP2 Methoden, durch die eindeutige ortsabhängige Elektronendichte $\rho(\mathbf{r})$ bestimmt. Diese Elektronenkorrelations-Methode hat, gegenüber MP2. den Vorteil dass der Rechenaufwand günstiger ausfällt. Allerdings ist die Genauigkeit der Rechnungen auf MP2 Niveau in den meisten Fällen besser als DFT Verfahren, wie es in Arbeiten von Gauss⁶² und Cheesemann *et al.*⁶³ diskutiert wird.

In dieser Arbeit wurde das Softwarepaket TURBOMOLE V.5.7³⁵ in einer AIX 5.2 bzw. AIX 5.3 Umgebung⁶⁴ verwendet. Von enormem Vorteil erwies sich die Implementierung der "Resolution of the identity⁴⁶⁵ RI Näherung für das MP2 Verfahren in dem Softwarepaket. Diese Näherung ermöglichte eine Beschleunigung um einen Faktor 10 bei Geometrieoptimierungen mit TZVPP Basissatz. Dadurch wurde es möglich eine größere Anzahl von Eichstrukturen zu berechnen, als in der gleichen Zeit ohne RI Näherung. Die Genauigkeit dieser Näherung wurde in verschiedenen Arbeiten von Weigend *et al.*^{66,67} ausgiebig untersucht und dokumentiert. Testberechnungen ergaben eine Abweichung der Tensorkomponenten beider Ansätze von maximal 1 ppm für ¹⁹F und ¹⁵N.

3.2 Der geeignete Basissatz

Die Qualität, mit denen quantenchemische Verfahren die Eigenschaften, in diesem Fall die magnetische Abschirmung, von Molekülen berechnen können, korreliert größtenteils mit dem gewählten Basissatz der Rechnung. Es kann durchaus der Fall eintreten, dass eine sehr aufwändige Rechenmethode eine Eigenschaft nur annähernd beschreibt, weil ein zu "kleiner" Basissatz gewählt wurde. Anderseits kann ein zu großer Basissatz eine Rechnung unnötig erschweren, ohne eine Verbesserung der Eigenschaften zu erzielen.

Für Tabelle 3.1 wurde mit dem MP2 Verfahren exemplarisch die Tensoren der magnetischen Abschirmung für zwei Modellmoleküle mit unterschiedlichen Basissätzen berechnet um die Auswirkungen auf die Tensoren der chemischen Verschiebung sowie Festplattenanforderungen und Zeitverbrauch offen zu legen. Zuerst wurde eine RI-MP2 Geometrieoptimierung mit einer empfohlenen⁶⁸ Konvergenzschwelle für die Ein-Elektron Dichte von 1.d-7 durchgeführt, anschließend wurde die magnetische Abschirmung berechnet. Für das Testmolekül Fluorbenzol wurde eine C_{2v} Symmetrie berücksichtigt. Die Symmetrieoperationen und deren Einfluss auf das Ergebnis werden später noch in 3.3 behandelt.

Tabelle 3.1: Auswirkung verschiedener Basissätze mit MP2 auf den Tensor der ¹⁹F magnetischen Abschirmung von Fluorbenzol und den ¹⁵N Tensor von N-Acetyl-Glycin-N-Methylamid. Festplattenanforderung sowie CPU-Zeit der magnetischen Abschirmung für die Rechnungen sind ebenso tabelliert.

Basis- Satz	CPU-Zeit CV- Rechnung	Festplatten- Anforderung CV-Rechnung	σ_{11}	σ_{22}	σ ₃₃	σ_{iso}	Aniso.	
¹⁹ F magnetische Abschirmung von Fluorbenzol								
SVP	7 min	430 MB	284.4	338.7	404.5	324.5	92.9	
TZVP	20 min	987 MB	271.0	347.5	369.0	329.2	87.3	
TZVPP	3.75 h	6136 MB	259.5	334.5	373.8	322.6	94.6	
QZVPP	41.25 h	43673 MB	260.8	329.5	372.6	320.8	90.0	
¹⁵ N magnetische Abschirmung von N-Acetyl-Glycin-N-Methylamid								
SVP	38 min	2398 MB	86.3	172.0	269.0	175.8	139.8	
TZVP	4.5 h	8133 MB	67.6	156.4	258.7	160.9	146.6	
TZVPP	34 h	46269 MB	61.9	159.0	256.7	159.2	146.2	
QZVPP	1014 h*	289033 MB	54.8	156.8	252.5	154.7	149.8	

* Rechnung wurde in max. 10 Fragmente gesplittet und parallel gerechnet. Die Summe aller Fragmentrechenzeiten und späteres Zusammenfügen ergibt die aufgelistete Rechenzeit.

Anordnung Tensorkomponenten: $\sigma_{11} < \sigma_{22} < \sigma_{33}$, in ppm.

Einen drastischen Anstieg an Festplatten- und Zeitressourcen wurden mit zunehmend größerem Basissatz verzeichnet. Vergleicht man die Extreme für Fluorbenzol, so wurde die Rechnung 350-mal zeitaufwändiger und die temporären Festplattenressourcen 100-fach größer. Ähnlich fiel auch das Ergebnis für ¹⁵N aus, wobei die Rechnung mit QZVPP Basissatz ca. 300 GB Festplattenplatz anforderte und mehr als 40 Tage für die Berechnung der magnetischen Abschirmung benötigte. Aufgrund dieser enormen Rechenzeit, die in der heutigen Computerchemie für viele Methoden noch ein Engpass darstellt, wurde der QZVPP Basissatz für die Berechnung der Testmoleküle als nicht angemessen klassifiziert.

Mit dem TZVPP Basissatz hingegen wurde die Rechnung um einen Faktor 25 schneller bei einer Differenz von maximal 4-5 ppm auf die Tensorkomponenten gegenüber dem QZVPP Basissatz. Daher wurde der TZVPP Basissatz als angemessene Kompromisslösung zwischen Rechenzeit ↔ Genauigkeit angesehen.

3.3 Symmetrieoperationen und deren Einfluss auf die magnetische Abschirmung

Die Molekülsymmetrie erwies sich als ein sehr wichtiger Punkt in den Berechnungen. Allein durch die richtig gewählte Punktgruppe konnte der Rechenaufwand bis auf ein Zehntel der Originalrechenzeit verkürzt werden. War ein Testmolekül symmetrisch, so wurde durch passende Symmetrieoperationen nur einer der symmetrischen Teile in die Berechnung aufgenommen.

In Abbildung 3.1 sind drei mögliche Punktgruppen für 1,2,4,5-Tetrafluorbenzol dargestellt. Bei **A** wurde keine Symmetrieoperation durchgeführt, und die Rechenzeit für die magnetische Abschirmung betrug mehr als 26 Stunden. Bei **B** wurde das Molekül durch eine einfache C_i Punktgruppen-Symmetrieoperation auf die Hälfte der Originalstruktur reduziert und quantenmechanisch berechnet. Gegenüber dem ersten Fall wurde hier eine Zeiteinsparung von einem Faktor 3 erzielt. Noch effizienter wurde die Berechnung mit einer D_{2h} Symmetrieoperation, eine Diedergruppensymmetrie mit horizontaler Spiegelebene. Hier wurde nur ein Viertel des Ausgangsmoleküls berechnet und die Eigenschaften des restlichen Teils wurden anschließend durch Symmetrie wieder erzeugt. Auch hier fiel die Rechenzeit fast um einen Faktor 8 kürzer aus.

Abbildung 3.1: Mögliche Berechnungen an 1,2,4,5-Tetrafluorbenzol. A: ohne Punktgruppe (C_1); B: mit C_i Symmetrie und C: mit D_{2h} Symmetrie. Der jeweils berechnete Teil ist hervorgehoben.

Tabelle 3.2 zeigt den Mittelwert der ¹⁹F magnetischer Abschirmung für verschiedene Symmetrieoperationen an 1,2,4,5 Tetrafluorbenzol sowie der benötigte Festplattenspeicher und die CPU-Zeit der Rechnung. Daraus lässt sich eindeutig schließen, dass die Symmetrieoperationen keine Abweichungen auf die Tensoren der magnetischen Abschirmung bewirkten.

Tabelle 3.2: Vergleich der ¹⁹F magnetischen Abschirmung von 1,2,4,5-Tetrafluorbenzol auf MP2/TZVPP Niveau berechnet mit Rücksicht auf unterschiedliche Symmetrieoperationen. Festplattenanforderung sowie CPU-Zeit für die Rechnungen der magnetischen Abschirmung sind ebenso tabelliert.

Symmetrie	Festplatten Anforderung CV-Rechnung	CPU-Zeit für CV-Rechnung	σ _{iso} in ppm
D_{2h}	7310 MB	3 h 2 min	351.23
Ci	14696 MB	8 h 33 min	351.23
C ₁	27638 MB	26 h 10 min	351.23

Die Einstellungen der Symmetrieoperationen mit TURBOMOLE konnten einfacherweise über den Befehl *desy* während der Inputerzeugung mit dem Skript *define* vorgenommen werden.

Zeitsparende Symmetrieoperationen ergaben sich für fast alle Eichmoleküle der ¹⁹F Parametrisierung. Für die Parametrisierungen der anderen Kerne wurden hingegen ausschließlich Biomoleküle und phosphathaltige Moleküle verwendet, die keine Symmetrieelemente aufwiesen.

4 PARAMETRISIERUNGEN VON COSMOS-NMR

In diesem Kapitel werden die Ergebnisse der Parametrisierungen dieser Promotionsarbeit schrittweise vorgestellt und diskutiert. Zuerst wurde die Parametrisierung für den Fluorkern durchgeführt, da seine einfache Bindungsstruktur einen leichten Einstieg in die Methodik ermöglichte. Dies ist notwendig für die spätere ¹⁵N Parametrisierung, wo eine größere Anzahl von Parametern und Datenmengen verwaltet werden mussten. Nach abgeschlossener ¹⁵N Parametrisierung wurde aus den vorhandenen Testmolekülen eine Parametrisierung für ¹H_α und ¹H_N in Aminosäuren erstellt. Die Korrelationen und bindungsspezifischen Parameter dieser Parametrisierung befinden sich im Anhang (Seite 70). Die letzte Parametrisierung dieser Promotionsarbeit wurde am Phosphorkern ³¹P durchgeführt.

4.1 ¹⁹F Parametrisierung

¹⁹F ist ein außerordentlich wichtiger Kern in NMR Untersuchungen. Dieses Element hat den großen Vorteil, dass es nicht in Lebewesen vorkommt und deshalb häufig als Markierung in Biomolekülen zum Einsatz kommt^{69,70,71,72,73,74}. Durch seine Größe ähnelt es sehr dem Proton und wird häufig als Protonersatz für selektive Markierungen verwendet. Darüber hinaus ist Fluor ein sehr empfindlicher Kern und weist eine natürliche Häufigkeit von 100% auf, was sich sehr positiv auf NMR Messungen auswirkt. All diese Eigenschaften führen dazu, dass dieser Kern häufig in der NMR verwendet wird.

Um die BPT-Methode für den ¹⁹F-Kern zu parametrisieren, waren folgende Schritte erforderlich. Zunächst wurde ein Satz Molekülmodelle erstellt, wobei die Auswahl nach folgenden Kriterien erfolgte:

- Bindungstyp sp²—F
- Bindungstyp sp³—F
- möglichst unterschiedliche Moleküle
- Vorliegen experimenteller Daten

Die gebräuchlichsten NMR Referenzsubstanzen wurden ebenso in die Auswahl aufgenommen. Abbildung 4.1 zeigt schematisch die parametrisierten Bindungstypen.

Abbildung 4.1: Schematische Darstellungen des ¹⁹F-Kerns. **A:** Das Fluor ist an einen aromatischen (sp^2) Kohlenstoff gebunden. **B:** Das Fluor als CF₃-Gruppe an einem aliphatischen Kohlenstoff (sp^3) .

In Abbildung 4.2 sind die verwendeten Testmoleküle dargestellt. Drei Fluor-substituierte Tryptophanderivate wurden in die Eichung einbezogen, da es sich um häufig verwendete Aminosäuren in NMR Untersuchungen an Peptiden handelt^{75,76}. Des Weiteren wurden Fluorbenzole mit unterschiedlichen Substituenten untersucht.

Abbildung 4.2: Molekülmodelle für die ¹⁹F Eichung des Bindungstyps F—C(sp²). Oben: 5,6-Fluortryptophan; 5-Fluortryptophan und 6-Fluortryptophan. Unten: Fluorbenzol; 1,3-Fluorbenzol; 1,2-Fluorbenzol, per-Fluorbenzol und 1-Chlorfluorbenzol.

Abbildung 4.3 zeigt die Molekülmodelle für die ¹⁹F Eichung des Bindungstyps F – $C(sp^3)$, wobei der Kohlenstoff an eine CF₃-Gruppe gebunden ist.

Abbildung 4.3: Molekülmodelle für die ¹⁹F Eichung des Bindungstyps F—C(sp²) Oben: Trifluorpropen, Trifluoressigsäure, Trifluorethan. Unten: Trifluormethyl-Benzol, 3-Trifluormethyl-Phenylalanine, 2-Trifluormethyl-Phenylalanine

Beide Molekülmodellsätze wurden einer Geometrieoptimierung RI-MP2 mit einem TZVPP Basissatz unterzogen. Mit optimierter Geometrie wurde im Anschluss der komplette Tensor der magnetischen Abschirmung der Strukturen auf MP2/TZVPP Niveau berechnet.

Nachdem die ¹⁹F Tensoren der optimierten Strukturen⁷⁷ vorlagen, mussten die bindungstypischen Parameter σ^0 und A^{pol} bestimmt werden. Dazu wurden die berechneten Tensoren in ein ikosaedrisches Koordinatensystem^{78,79} überführt, das dazu diente, dass alle sechs Tensorelemente physikalisch gleichwertig waren.

An BPT Gleichung 2.33 kann man sehen, dass die Tensorkomponenten $\sigma_{\alpha\beta}^{calc}$ der *ab-initio* Ergebnisse linear in die Gleichung eingehen (linker Term) und ein Satz linearer Gleichungen resultiert. Für ein Molekül erhält man folgenden Satz an Gleichungen (im Bindungskoordinatensystem).

$$\begin{pmatrix} \sigma_{11}^{calc} \\ \sigma_{22}^{calc} \\ \sigma_{33}^{calc} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & V_{pol} & 0 & 0 \\ 0 & 1 & 0 & 0 & V_{pol} & 0 \\ 0 & 0 & 1 & 0 & 0 & V_{pol} \end{pmatrix} \begin{pmatrix} \sigma_{F-C}^{11} \\ \sigma_{F-C}^{22} \\ \sigma_{F-C}^{33} \\ A_{F-C}^{11} \\ A_{F-C}^{22} \\ A_{F-C}^{33} \\ A_{F-C}^{33} \end{pmatrix}$$

$$(4.1)$$

$$\vec{\sigma}^{calc} = \mathbf{A}\vec{p}$$

Die Bindungspolarisationsintegrale V_{pol} können für jedes Molekül aus BPT-Atomladungen und Bond-Orbitalen berechnet werden. Für den Typ magnetischer Abschirmung F–C (sp³) wurde ein Satz von 90 Gleichungen zur Bestimmung der Parameter σ und A, und 54 Gleichungen für Typ F–C (sp²) erstellt. Die 6 bindungsspezifischen Parameter (Parametervektor \vec{p} in Gleichung 4.1) pro Bindungstyp wurden aus diesen Gleichungen mit dem kleinsten Fehlerquadrat Verfahren bestimmt.

$$\vec{p} = (A^T A)^{-1} A^T \vec{\sigma}^{calc} \tag{4.2}$$

Die Matrix muss einen Rang von 6 ausweisen um 6 signifikante Parameter bestimmen zu können.

Durch Lösung des überbestimmten Gleichungssystems wurden die Parameter schlussendlich bestimmt. Im Anhang befindet sich das verwendete Mathematica⁸⁰ Notebook der ¹⁹F Eichung (Seite 73).

Abbildung 4.4 zeigt die ¹⁹F-Korrelationskurve für den Bindungstyp F—C (sp²) von insgesamt 54 Tensorwerten von MP2/TZVPP zu BPT-berechneten Tensorelementen. Es ergab sich ein Korrelationskoeffizient von 0.998, mit einer Standardabweichung von 8.5 ppm.

Abbildung 4.4: Korrelation für die Parametrisierung der Bindung vom Typ F— $C(sp^2)$ zwischen MP2/TZVPP und BPT berechneten ¹⁹F Werten. R = 0.998 und SD = 8.5 ppm.

Abbildung 4.5: Korrelation für die Parametrisierung der Bindung vom Typ F— $C(sp^3)$ in CF₃ Gruppen zwischen MP2/TZVPP und BPT berechneten ¹⁹F Werten. R = 0.995 und SD = 13.0 ppm.

Daraus resultierten folgende bindungsspezifische Parameter für die Berechnung der ¹⁹F magnetischen Abschirmung:

Anteil mag.	Abschirmung is in ppm	olierter Kern	Anteil Bindungspolarisation in ppm/Hartree					
$\sigma^0_{\ xx}$	$\sigma^0_{\ yy}$	$\sigma^0_{\ zz}$	A ^{pol} _{xx}	${A^{pol}}_{yy}$	A^{pol}_{zz}			
Bindungstyp F — C (sp^2)								
289.901	416.213	329.775	1393.13	2110.83	-450.749			
Bindungstyp F — C (sp^3) in CF ₃ Gruppen								
222.956	280.622	358.016	841.926	295.185	267.109			

Diese Parameter wurden in der BPT-Methode, gemäß Gleichung 2.33, für die Berechnung der ¹⁹F Tensoren der magnetischen Abschirmung eingesetzt.

4.1.1 Von magnetischer Abschirmung zur chemischen Verschiebung

Die magnetische Abschirmung des Atomkerns ist die Auswirkung des vom Magnetfeld induzierten Stroms der Elektronen eines Atoms auf den Atomkern. Diese Werte werden bei quantenmechanischen Berechnungen bezüglich des "bloßen" Atomkerns angegeben, also als absolute Abschirmung. Bei NMR Experimenten wiederum wird die chemische Verschiebung bezüglich einer Referenzsubstanz angegeben. Für ¹⁹F ist das üblicherweise CFCl₃ oder C₆F₆. Deshalb musste eine Referenzierung der *ab-inito*-bestimmten Parameter bezüglich der experimentellen ¹⁹F-Werte durchgeführt werden.

Mit dem vorhandenen Parametersatz wurde für 7 fluorierte Kristallstrukturen mit experimentell bekannten ¹⁹F chemischen Verschiebungswerten die magnetische Abschirmung berechnet. Die Differenz aus BPT-Werten, bezüglich der absoluten Skala, und den experimentellen ¹⁹F NMR Werten⁸¹, referenziert auf CFCl₃ der jeweiligen Kristallstruktur, ergab den Referenzwert bezüglich der BPT-Berechnung. Abbildung 4.6 zeigt die Korrelation der experimentellen ¹⁹F δ_{iso} Werten gegenüber den BPT-bestimmten isotropen Abschirmkonstanten.

Abbildung 4.6: Bestimmung des Skalierungsfaktors für die ¹⁹F Parametrisierung. R = 0.86 und SD = 7.5 ppm.

Folgende Kristallstrukturen aus der Cambridge Structural Database, Version 5.27 wurden verwendet: 1,2,4,5-Tetrafluorbenzol (FACJAU), 1,2-Difluorbenzol (FACFOE), 1,4-Difluorbenzol (FACGEV), Fluorbenzol (FACFAQ), 4-4'-Difluorbiphenyl (ZZZAOS05), 3-Fluorbenzolsäure (PFBZAD10) und 1-Fluorbenzolsäure (FBENZA01). Der jeweilige Datenbank-Code ist in Klammern angegeben.

Die Extrapolation zur Ordinate, BPT=0 ppm, durch eine lineare Anpassung der Werte, ergab 212.6 ppm. Dieser Betrag repräsentierte den Verschiebungswert, der in den bestimmten Parametersatz integriert wurde, um ¹⁹F-BPT-Rechnungen auf die Referenzsubstanz CFCl₃ beziehen zu können. Damit wurde ein direkter Vergleich mit experimentellen ¹⁹F Tensoren ermöglicht.

4.2 ¹⁵N Parametrisierung

Das Stickstoffisotop mit Masse 15 ist in der NMR von außerordentlicher Wichtigkeit, da Stickstoff sich im Grundgerüst von Aminosäuren befindet, die essenzielle Bausteine für Peptide und Proteine sind. Das Isotop mit natürlicher Häufigkeit von 0.37 % wird entweder als selektive Markierung einzelner Positionen im Molekül oder ganzheitlich verwendet, was abhängig von der Art der Fragestellung ist. Die spektroskopischen Eigenschaften von ¹⁵N sind deutlich schlechter als für ¹⁹F-Kern, dennoch gibt es eine Vielzahl von NMR-Experimenten mit ¹⁵N als universelle und störungsfreie Markierung.

4.2.1 ¹⁵N in der Amid-Bindung

Schwerpunkt der ¹⁵N-Parametrisierung war der "Amid" Bindungstyp, charakteristisch für die Peptidbindung. Damit sollten Berechnungen von Tensoren der ¹⁵N-chemischen Verschiebung an Peptiden und anderen Biomolekülen ermöglicht werden. In dem Molekülmodellsatz der Parametrisierung wurden zum Einen Oligopeptide in α-helikaler und β-Faltblatt Konformation, sowie verschiedene N-acetyl-N-methlyamid Aminosäuren, und zum Anderem Nukleinsäurebasen aufgenommen. Das Strukturoptimierungsverfahren war analog zum Fluorkern, mit Geometrieoptimierung auf RI-MP2/TZVPP Niveau und anschließender Bestimmung der magnetischen Abschirmung mit MP2/TZVPP.

Abbildung 4.7: Schematische Darstellungen des ¹⁵N-Kerns. **A:** Der "Amid" Stickstoff. **B:** ¹⁵N mit Koordinationszahl 2.

In Abbildung 4.8 sind die unterschiedlichen Molekültypen dargestellt, wobei das Stickstoffatom grün symbolisiert ist. (**A**) Nukleinbasen, α -helikale (**B**) und β -faltbalttartige (**D**) Oligopeptide wurden in den Parametersatz aufgenommen, außerdem sämtliche Aminosäuren (**C**) in verschiedenen Konformationen. Insgesamt wurden 354 Tensorwerte in die Parametrisierung aufgenommen.

Abbildung 4.8: Beispiele der Molekülmodelle: **A**: Nukleinbase, **B**: α -Helix, **C**: terminalgeschützte Aminosäuren und **D**: β -Faltblatt Modelle.

Abbildung 4.9: Korrelation für die Parametrisierung der Bindung vom Typ Amid-Stickstoff (siehe Abbildung 4.7 A) zwischen MP2/TZVPP und BPT berechneten ¹⁵N Werten. R = 0.994 und SD = 9.5 ppm.

Daraus resultierten folgende bindungsspezifische Parameter für die Berechnung der ¹⁵N magnetischen Abschirmung:

Anteil mag. Abschirmung isolierter Kern in ppm		Anteil Bindungspolarisation in ppm/Hartree					
σ^0_{xx}	σ^{0}_{yy} σ^{0}_{zz}		A ^{pol} _{xx}	${\rm A}^{\rm pol}_{\ \ yy}$	A^{pol}_{zz}		
		Bindungst	ур N — Н				
147.203	123.794	141.027	215.973	327.562	50.1749		
Bindungstyp N — C (σ)							
176.435	78.8433	113.169	2987.1	1317.63	374.717		
		Bindungsty	$p N - C(\pi)$				
-657.83	-63.6845	-192.951	-3935.61	-1169.85	-1841.42		

4.2.1.1 Von magnetischer Abschirmung zur chemischen Verschiebung

Auch hier musste eine Referenzierung der kernmagnetischen Abschirmkonstanten zur chemischen Verschiebung durchgeführt werden. Im Gegensatz zur ¹H- und ¹³C-NMR hat sich in der ¹⁵N-Spektroskopie kein universeller Referenzstandard durchgesetzt. Es gibt vielmehr eine große Anzahl an verwendeten Referenzsubstanzen, meist experimentell bedingt. Flüssiges NH₃ bei 25°C wird von IUPAC⁸² als Referenzsubstanz für ¹⁵N-NMR empfohlen.

Für die ¹⁵N Skalierung wurden, ähnlich wie für ¹⁹F, die Abschirmkonstanten an experimentellen Werten geeicht. Allerdings wurden hier nicht Einkristall NMR-Daten sondern statistisch bestimmte NMR-Werte verwendet. Zhang *et al.*⁸³ bestimmte den statistischen ¹⁵N Mittelwert für alle natürlichen Aminosäuren in α -helikaler Konformation aus 8498 CV-Werten. Parallel dazu wurde mit COSMOS ein α -helikales Molekül der jeweiligen Aminosäure erstellt und die ¹⁵N magnetische Abschirmung mit den vorhandenen Parametern berechnet. Abbildung 4.10 zeigt für 18 verschiedene Aminosäuren die berechneten Abschirmkonstanten einer 25 Aminosäuren langen α -Helix.

Abbildung 4.10: BPT berechnete ¹⁵N Mittelwerte für α -helikale poly-X-Molekül (X=jeweilige Aminosäure). Die Horizontale markiert den äquilibrierten CV-Wert im mittleren Teil der Helix, der zur Referenzierung beitrug. Asparagin und Prolin wurden nicht berücksichtigt.

Die rote Horizontallinie signalisiert den charakteristischen CV-Mittelwert im mittleren Teil der Helix, der zur Referenzierung verwendet wurde. Die Differenz zwischen der magnetischen Abschirmung berechneter Werte und der chemischen Verschiebung experimenteller Herkunft ergab den Referenzwert von 274.4 ppm. Eine experimentell bestimmte absolute Abschirmung von 273.3 ± 0.1 ppm wurde von Gauss⁶² veröffentlicht.

4.2.2 ¹⁵N mit Koordinationszahl 2

Für ¹⁵N mit der Koordinationszahl 2 (gemäß der Abbildung 4.7 B) konnte in dieser Arbeit keine völlig überzeugende Korrelationskurve erstellt werden. Abbildung 4.12 zeigt die erreichte Korrelation von BPT zu MP2/TZVPP berechneten Tensoren der ¹⁵N magnetischen Abschirmung. Eine Standardabweichung von 22.4 ppm ergab die Parametrisierung, was für eine Verwendung im Kontext von BPT nicht ausreichend war. Eine mögliche Ursache für diese Abweichungen können strukturelle Unregelmäßigkeiten, wie unterschiedliche Bindungswinkel in Fünf- bzw. Sechsatomringssystemen sein. Dieses Verhalten kann man sehr gut bei Adenin (Abbildung 4.11) veranschaulichen.

Abbildung 4.11: Drei unterschiedliche Bindungswinkel für den gleichen BPT-¹⁵N-Typ in Adenin. Dadurch ergeben sich deutliche Unterschiede aus BPT-Sicht in den Stickstoff-lone pairs. (MP2-optimierte Struktur)

Daraus ergeben sich unterschiedliche Bewegungsmöglichkeiten für das freie Elektronenpaar am Stickstoff. Dieser Fall von beweglicher Elektronendichte wird in der BPT nicht speziell behandelt und kann deshalb in der Parametrisierung auch nicht korrekt widergespiegelt werden.

Abbildung 4.11: Korrelation für Parametrisierung der Bindung vom Typ N–C (konjugiert) (siehe Abbildung 4.7 B) zwischen MP2/TZVPP und BPT berechneten ¹⁵N Werten. R = 0.975 und SD = 22.4 ppm.

Die bindungsspezifischen Parameter ergaben folgende Werte:

Anteil mag. Abschirmung isolierter Kern in ppm			Anteil Bindungspolarisation in ppm/Hartree				
σ^0_{xx}	σ^{0}_{yy} σ^{0}_{zz}		A ^{pol} _{xx}	A ^{pol} yy	A ^{pol} zz		
Bindungstyp N — C (σ)							
187.918	187.918 -121.409 -41.6188		2032.16	274.327	1358.46		
Bindungstyp N — C (π)							
-359.723	529.069	-283.172	-3551.97	992.979	-4788.87		

4.3 ³¹P Parametrisierung

Wie bei ¹⁵N und ¹⁹F, kommt auch dem Phosphorkern eine wichtige Rolle in der biochemisch orientierten NMR zu. Eine ganze Sparte der Festkörper-NMR verwendet Phospholipide um membranständige Moleküle in Zellmembran-ähnlichen Lipiddoppelschichten zu untersuchen. Kenntnisse über den Tensor der ³¹P chemischen Verschiebung können verwendet werden um Aussagen über die Lage der Moleküle in der Membranumgebung oder Interaktionen mit den Phospholipiden zu machen.

Abbildung 4.12: Schematische Darstellung des Phosphorkerns als Phosphat gebunden. Die parametrisierte Bindung ergab somit 2 Parametersätze: P–O (σ) und P–O (π). Letzterer ist eine d-p-Orbital Wechselwirkung.

Für diese Parametrisierung wurde ein Satz verschiedener Phosphatmoleküle erstellt, deren Geometrie auf RI-MP2 Niveau mit einem verbesserten def2-TZVPP⁸⁴ Basissatz optimiert wurde. Die magnetische Abschirmung wurde mit derselben Genauigkeit bestimmt, MP2/def2-TZVPP. Insgesamt wurden 78 Tensorwerte für die Bestimmung der bindungsspezifischen Parameter verwendet. Eine Korrelation von BPT zu MP2/def2-TZVPP ³¹P Tensorwerten von R = 0.9978 mit einer SD = 8.8 ppm wurde erreicht, Abbildung 4.14.

Abbildung 4.13: Korrelationskurve zwischen BPT und MP2/def2-TZVPP ³¹P Werten von 78 Tensorkomponenten, R = 0.992 und SD = 1.6 ppm.

Anteil mag. Abschirmung isolierter Kern in ppm			Anteil Bindungspolarisation in ppm/Hartree				
σ^0_{xx}	σ^{0}_{yy} σ^{0}_{zz}		A ^{pol} _{xx}	A ^{pol} yy	A^{pol}_{zz}		
Bindungstyp P — O (σ)							
107.754	107.754 93.897 -168.829		192.773	271.075	140.127		
Bindungstyp P — O (π)							
-21.0726	-21.0726	349.674	-166.937	-122.264	-85.1755		

Daraus resultierten folgende bindungsspezifische Parameter für die Berechnung der ³¹P magnetischen Abschirmung:

In dieser Arbeit wurden die Parameter für die Berechnung der ³¹P magnetischen Abschirmung mit BPT bestimmt, jedoch wurde keine Referenzierung erstellt noch in den Anwendungen benutzt. Dieser Parametersatz wurde für die Verwendung in zukünftigen Projekten der Arbeitsgruppe erstellt.

5 ANWENDUNGEN

Erste Berechnungen der Tensoren der ¹⁹F chemische Verschiebungen wurden an fluorierten Kristallen durchgeführt. Als Quelle für experimentelle Strukturen diente die Cambridge Structural Database (CSD), wobei nur Kristallstrukturen verwendet wurden, von denen auch anisotrope ¹⁹F-NMR Daten vorlagen. Eine sehr vollständige und ausführliche Sammlung von NMR-Daten verschiedenen Kernen wurde von Duncan⁸¹ zusammengestellt.

Bei den Berechnungen an kristallinen Substanzen wurden 26 Nachbarelementarzellen einer zentralen Elementarzelle automatisch erzeugt. Auf diese Weise konnte im Kontext der BPT-Berechnung der Einfluss des Kristallgitters berücksichtigt werden.

5.1.1 1,4-Difluorbenzol

Fluorierte Benzolkristallstrukturen, unter anderem 1,4-Difluorobenzol (CSD-Code: FACGEV), wurden ausgiebig von Thalladi *et al.*⁸⁵ mit Röntgenbeugungsmethoden bestimmt. Abbildung 5.1 zeigt die räumliche Anordnung von 1,4-Difluorbenzol in der Elementarzelle, wobei die Elementarzelle aus 2 Molekülen besteht, die farblich in der Abbildung hervorgehoben wurden.

Abbildung 5.1: Elementarzelle von 1,4-Difluorbenzol. Monoklines Kristallsystem, Raumgruppe P2₁/c, ¹⁹F Tensorellipsoide der beiden Moleküle der Elementarzelle sind dargestellt.

Die Orientierung des ¹⁹F Tensorellipsoid ist durch Pfeile an den Hauptachsen symbolisiert. Die am meisten abgeschirmte Hauptachse ist die δ_{11} Komponente, senkrecht zur π -Bindungsebene des Ringssystems. Der andere Extremwert, die Komponente δ_{33} befindet sich in der schon erwähnten π -Bindungsebene. Die δ_{22} Komponente liegt, ausnahmslos bei allen untersuchten Fluoraromaten, in F—C Bindungsrichtung, der Winkel C—F— δ_{22} dabei beträgt 180° ± 3°.

Abbildung 5.2: Simulierte ¹⁹F Spektren für 1,4-Difluorbenzol Kristall. BPT Werte berechnet mit periodischen Randbedingungen. In rot synthetisches Spektrum aus experimentellen NMR Werten. $\delta_{iso} = \text{Tensor/3}: |\delta_{22} - \delta_{iso}| < |\delta_{11} - \delta_{iso}| < |\delta_{33} - \delta_{iso}|, \text{ in ppm.}$ * Duncan⁸¹. ¹⁹F Spektrum aus experimentellen Daten erzeugt.

Nicht nur die berechneten Tensorwerte stimmten mit den experimentellen Werten überein, sondern auch die Anisotropie des ¹⁹F Tensors ist im Einklang mit dem Experiment.

5.1.2 4-4'-Difluordiphenyl

Als weiteres Beispiel diente das 4-4'-Difluorbiphenyl-Kristall (CSD-Code: ZZZAOS05), bestimmt durch Lemee *et al.*⁸⁶

Abbildung 5.3: Elementarzelle von 4-4'-Difluorbiphenyl. Monoklines Kristallsystem, Raumgruppe P2₁/a, ¹⁹F Tensorellipsoiden der beiden Moleküle der Elementarzelle sind dargestellt.

Abbildung 5.4: Simulierte ¹⁹F Spektren für 4-4'-Difluorbiphenyl Kristall. BPT Werte berechnet mit periodischen Randbedingungen. In rot synthetisches Spektrum aus experimentellen NMR Werten.

 $\delta_{iso} = \text{Tensor/3:} |\delta_{22} - \delta_{iso}| < |\delta_{11} - \delta_{iso}| < |\delta_{33} - \delta_{iso}|$, in ppm. * Duncan⁸¹. ¹⁹F Spektrum aus experimentellen Daten erzeugt.

5.2 Fluortryptophan

Fluor-Tryptophanderivate werden häufig in NMR Untersuchungen verwendet um durch die Orientierung des Fluor-Tensors Rückschlüsse über die Orientierung des Ringsystems der Tryptophanseitenketten treffen zu können. Für vertrauenswürdige Aussagen sind Kenntnisse der Tensorhauptwerte, der Orientierung der Hauptachsen in Molekül und der Verschmälerung des Tensors durch Bewegung bei Raumtemperatur notwendig.

Wie man an Tabelle 5.1 sieht, besteht für die Kristallstruktur von 5F-DL-Trp eine große Abweichung der experimentellen Werte von Zhao *et al.*⁸⁷ zu den berechneten. Außerordentlich groß ist die Abweichung zum Experiment bei der Tensorkomponente δ_{11} mit 20 ppm, was zu einer größeren berechneten Breite führt. Um dieser Fragestellung auf den Grund zu gehen, wurden MD Simulationen im Kristallgitter bei 309 °K für 1 ns gemacht. In diesen Kristallsimulationen wurde die translationelle Symmetrie aufrechterhalten, nicht aber die Raumgruppensymmetrie. Das bedeutet, dass die Anzahl der Moleküle in allen Elementarzellen gleich ist, aber innerhalb einer Zelle die Symmetrie nicht aufrechterhalten wird. Die Ladungsverteilung und die Fluor CV-Tensoren wurden in Zeitintervallen von 0.5 fs berechnet unter Einfluss von 26 Nachbarzellen. Tabelle 5.1 zeigt, dass die Bewegung in dieser Zeitskala nur einen geringfügigen Einfluss auf die ¹⁹F Tensorkomponenten ausübt, da die Abweichung zum Experiment noch vorhanden ist. Daraus lässt sich schließen dass innerhalb von Kristallen treten Bewegungen auf, deren Korrelationszeiten weit oberhalb von 1 ns liegen und somit im Rahmen der durchgeführten MD-Simulationen nicht ausgemittelt werden können.

Molekül/System	δ_{iso}	δ_{11}	δ_{22}	δ ₃₃	$\Omega^{1)}$
5F-Trp <i>ab initio</i> CV isoliertes Molekül δ_{iso} aus BPT	-116.0	-54.5	-124.5	-169.1	114.6
5F-Trp Einzelmolekül aus Kristallstruktur ¹⁾ CV aus BPT	-116.5	-55.2	-124.3	-170.1	114.9
5F-DL-Trp Kristallstruktur ^{2,3)} CV aus BPT mit periodischem Kristallgitter	-119.4 -117.6	-59.1 -56.6	-123.1 -123.8	-176.0 -172.3	116.9 115.7
5F-DL-Trp Kristallstruktur ^{2.3)} CV aus BPT-MD mit period. Kristallgitter	-117.0 -117.0	-55.8 -56.1	-124.1 -123.7	-171.1 -171.4	115.3 115.3
5F-DL-Trp Kristallstruktur ²⁾ CV aus Einkristallexperiment ²⁾	-125.0	-76.4	-138.8	-160.0	83.6

Tabelle 5.1: Berechnungen für 5-Fluortryptophan und 5-Fluortryptophan¹³ in Gramicidin A^* mit verschiedenen Methoden und Fluorumgebungen.

5F- DL-Trp Pulver CV aus experimentellem Pulverspektrum ⁴⁾		-126.0	-74.2	-147.5	-156.2	82.0
5F-Trp ¹³ Gramicidin A Modell	gg ⁺	-117.5	-56.6	-123.9	-172.2	115.7
CV aus BPT für 4 dominante	gˈg	-116.6	-55.3	-124.3	-170.3	115.0
Seitenkettenkonformationen	$a g^+$	-110.5	-46.9	-127.0	-157.5	110.6
	a g ⁻	-117.8	-56.9	-123.7	-172.7	115.8
F-Trp ¹³ Gramicidin A in DMPC nur Trp Bewegung. CV aus BPT-MD		-121.5 -108.8	-66.0 -46.8	-123.4 -126.6	-175.0 -152.9	109.0 106.1
5F-Trp ¹³ Gramicidin A in DMPC CV aus experimentellen Pulverspektrum ⁵⁾		-126.0	-80.0	-141.5	-156.5	76.5

* gA mit ¹⁹Fluor an Position 5 ($C_{\varsigma 3}$) der Tryptophanseitenkette an 13 (Trp¹³).

Chemische Verschiebungen δ referenziert auf CFCl₃

 $\delta_{11} \geq \delta_{22} \geq \delta_{33}$

¹⁾ Breite definiert als $\Omega = |\delta_{33} - \delta_{11}|$ (Herzfeld-Berger Convention)

²⁾ Zhao *et al*.⁸⁷

³⁾ Zwei magnetisch unterschiedliche ¹⁹F in der Elementarzelle, bei experimenteller Analyse nicht unterscheidbar

⁴⁾ Graether *et al.*⁸⁸

⁵⁾ Grage *et al.*⁷⁵

Vergleiche der berechneten ¹⁹F Hauptwerte für 5-Fluortryptophan in unterschiedlichen Umgebungen zeigen meistens eine Abweichung von 10 ppm und 5 ppm für den Mittelwert. Die ersten beiden Zeilen zeigen einen Vergleich von *ab-initio* zu BPT-berechneten Werten. Um einen direkten Vergleich der Tensorgrößen zu ermöglichen, wurde der *ab-initio* Mittelwert dem BPT-Mittelwert gleichgesetzt. Die BPT Berechnung ergab nahezu dieselbe Breite, was die Effizienz der Methode demonstrierte. Die dritte Zeile beschreibt den Einfluss des Kristallgitters auf die chemische Verschiebung. Die Zeile darunter die chemische Verschiebung von 5F-DL-Trp Kristall nach der MD-Simulation. Eine nahezu identische Tensorbreite als für die statische Berechnung wurde bestimmt. Die fünfte und sechste Zeile beschreiben jeweils 2 experimentelle Zustände von 5F-Trp-Derivate.

5.2.1 Fluortryptophan Seitenketten im gA Kanal

Das Gramicidin A ist ein antimikrobielles membranständiges Pentadeka-Peptid aus zwei identischen β-Helix-Molekülen mit jeweils 15 hydrophoben Aminosäuren mit

alternierender L-D-Konfiguration. Diese wechselnde stereochemische Konfiguration der Aminosäuren ist für die Bildung einer β -Helix notwendig. Die Sequenz wurde 1965 von Sarges *et al.*⁸⁹ bestimmt:

HCO-L-Val¹-Gly²-L-Ala³-D-Leu⁴-L-Ala⁵-D-Val⁶-L-Val⁷-D-Val⁸-L-Trp⁹-D-Leu¹⁰-L-Trp¹¹-D-Leu¹²-L-Trp¹³-D-Leu¹⁴-L-Trp¹⁵-NHCH₂CH₂OH

Beide Monomere bilden einen Amin-zu-Amin Homodimer, der sich in Form eines Kanals ausrichtet. Die Anordnung der Tryptophanseitenketten spielt hier eine wichtige Rolle zur Ausrichtung des Kanals^{4,10,90,91} in der Zellmembrane und wird deshalb häufig mit Festkörper-NMR Experimenten untersucht. Dabei werden entsprechende Markierungen an diesen Tryptophanseitenketten angebracht um Rückschlüsse über die Bewegungen und Ausrichtungen der Seitenketten schließen zu können. Üblicherweise werden Protonen von Indolringen der Tryptophane durch ¹⁹F oder ²H ersetzt. Eine weitere Möglichkeit für Markierungen zur NMR Analyse sind die Amidstickstoffe entlang des Polypeptides. Diese können durch ¹⁵N Markierungen ersetzt werden. Durch die Orientierung des ¹⁵N Tensors bezüglich des externen Magnetfelds können Schlussfolgerungen über die Lage des markierten Kerns innerhalb der Peptidkette und somit auch auf dessen Konformation gezogen werden.

In dieser Arbeit wurden zwei MD Simulationen erstellt. Die erste MD Simulation (MD1) untersucht die Bewegungen der Seitenketten der Tryptophane an Position 13 (Trp¹³) und deren Einfluss auf den ¹⁹F Tensor an Position 5 des Trp¹³ Seitenketten in einem elektrostatischen DMPC Membranmodell. Eine weitere MD Simulation (MD2) wurde mit experimentellen ¹H-¹⁵N-Dipol- und ²H-Dipol-Kopplungen als Zielfunktion erstellt um die Bewegung der Trp¹³ Seitenketten und deren Einfluss auf den ¹⁹F Tensor unter "experimentellen" Bedingungen zu analysieren.

Als Startstruktur für die MD wurden die Koordinaten der PDB-Datei 1MAG.pdb von Ketchem *et al.*⁹⁰ verwendet. Diese Struktur wurde aus experimentellen NMR-Daten in DMPC Lipiddoppelschichten bestimmt. Die $H_{\varsigma3}$ Atome beider Trp¹³ im Dimer wurden durch Fluor ersetzt und ihre Positionen mit dem COSMOS-NMR Kraftfeld optimiert. Die wichtigsten Parameter der MD Simulationen sind in Tabelle 5.2 aufgelistet.

Parameter	MD 1	MD 2	
	5F-Trp ¹³ gA in DMPC	5F-Trp ¹³ Gramicidin A	
	Bewegung nur der Trp ¹³ Seitenketten		
Mittlere Temperatur	300.6 K	307.3 K	
MD Laufzeit	1 ns	5 ns	
Orientierende Randbedingungen	Nein	H-N Dipol-Kopplung am Peptidrückgrat	
		² H und H-N an Trp 9, 11, 13 und 15^{2}	
Gewicht Pseudokraft ΔP	keine	1 kHz	
Tensorausmittlung	Schnelle z-Rotation	keine	
Gedächtniszeit τ für Mittlung der Eigenschaften	400 ps	200 ps	
Zeitkonstante p für den exponentiellen Anstieg der Pseudokraft	keine	200 ps	
Gedächtniszeit ELS Kraft	100 ps	keine	

 Tabelle 5.2:
 Verwendete Parameter f

 Gramicidin A in MD1 und MD2.

Zieltemperatur 293 K, MD-Schrittweise von 0.5 fs. Bei MD2 wurden die Wasserstoffbrücken der Hauptkette gezwungen eine helikale Struktur beizubehalten.

²⁾ ¹H-¹⁵N Dipol-Kopplung von Ketchem *et al.*⁹⁰ und ²H Kopplungen von Koeppe *et al.*⁹¹

Für MD1 wurde ein DMPC Membranmodell aus 128 DMPC Molekülen erstellt die in einer Lipiddoppelschicht angeordnet wurden. Weiterhin wurde die Kopfgruppenregion der Phospholipidmembrane mit 3655 Wassermolekülen gesättigt. Für das äquilibrierte Membranmodell wurde die Ladungsverteilung aller Atome mit BPT berechnet. Danach wurde das 5F-Trp¹³ gA Dimer in die Membran eingebaut, mit der Kanalachse senkrecht zur Membranebene. Die Koordinaten des gA wurden im Membranmodell fixiert um eine Diffusion des Dimers innerhalb der Membrane zu unterbinden. Ausnahme waren die Positionen der 5F-Trp¹³ Seitenketten des Peptides, die sich entsprechend der elektrostatischen Wechselwirkungen mit der Lipidmembrane orientieren konnten. Auf diese Weise konnte der Einfluss auf den ¹⁹F Tensor bedingt durch innere Bewegungen und der Membranumgebung untersucht werden.

Abbildung 5.5: 5F-Trp¹³ gA Dimer im DMPC Membranmodell. Beide ¹⁹F Kerne in rot dargestellt.

Abbildung 5.6: Simulierte ¹⁹F Pulverspektren von 5F-Trp¹³ gA Modell. Oben: statisches Spektrum mit Seitenkette in (g⁻g⁺) Konformation. Blau und grün: Pulverspektren für ¹⁹F von MD1 nach 1 ns. Unterschiedliche Seitenkettenbewegungen (siehe Abbildung 5.7) der Trp¹³ ergaben unterschiedliche Pulverspektren. Rot: Synthetisches ¹⁹F Pulverspektrum aus experimentellen Daten. CV-Werte siehe Tabelle 5.1.

Durch Vergleich der simulierten Spektren aus Abbildung 5.6 lässt sich eine Verschmälerung der Spektren durch Bewebungsprozesse der Seitenketten erkennen. Allerdings war die Simulationszeit von 1 ns nicht ausreichend um eine Bewegungsausmittlung beider 5F-Trp¹³ Seitenketten zu erreichen, was in

unterschiedlichen Spektrenformen resultierte. Sichtbar wurde dies in der Winkelverteilung in Abbildung 5.7. Die Seitenkettenbewegung des 5F-Trp¹³ ist durch die Torsionswinkel χ_1 und χ_2 dominiert [Definition gemäß IUPAC-IUB⁹²: χ_1 (N-C_{α}-C_{β}-C_{γ}) und χ_2 (C_{α}-C_{β}-C_{γ}-C_{δ_1})]. Diese Diederwinkel wurden während der MD abgespeichert und in einer 2D-Grafik wiedergegeben. Für den Torsionswinkel χ_1 beider 5F-Trp¹³ ist eine Abweichung von ca. 20° während der ganzen MD vorhanden, was die unterschiedlichen ¹⁹F-Pulverspektren für den Endzustand der MD1 erklärt.

Abbildung 5.7: Verteilung der 5F-Trp¹³-Seitenkettentorsionswinkel χ_1 und χ_2 . Es wurden jeweils 4000 Punkte pro Molekül während der MD1 gespeichert.

5.3 MD Simulation mit ¹H-¹⁵N und ²H-Kopplungen als Randbedingung

Orientierende Randbedingungen ermöglichen die Ausrichtung von Molekülen in Membranen und anderen orientierten Proben⁹³. Für MD2 (MD Parameter siehe Tabelle 5.2) wurden für alle Ringsysteme der Tryptophanseitenketten experimentellen ²H Quadrupol- und, entlang des Peptidrückgrats ¹H-¹⁵N Dipol-Kopplungstensoren als Randbedingungen verwendet.

Abbildung 5.8: 5F Trp¹³ gA Modell von MD2. Links: 30 ¹H-¹⁵N-Dipol-Randbedingungen entlang des Peptids als Kugeln hervorgehoben. Rechts: Sicht durch den gA Kanal mit 38 ²H Quadrupol-Randbedingungen an den Tryptophanseitenketten durch größere Kugeln hervorgehoben.

Durch die gleichmäßige Verteilung der Randbedingungen entlang des gA Dimers, konnte eine Rotation des gesamten Kanals durch die Pseudokräfte erzwungen werden. Für die Randbedingungen wurden alle 6 Tensorwerte verwendet, wobei die Nicht-Diagonalelemente auf Null gesetzt wurden. In der 5 ns Simulation rotierte der Dimer um die z-Achse durch Pseudokräfte aus den Nullen der Nicht-Diagonalwerte der Tensoren. Diese Rotation bewirkte, dass sich die berechneten Nicht-Diagonalwerte zu Null ausmittelten und somit den vorgegebenen Randbedingungen gleich waren.

Abbildung 5.9: Korrelation berechneter und experimenteller (als Randbedingung) Dipol- und Quadrupol-Kopplungen. **A**: Linear Fit ¹H-¹⁵N Dipol-Kopplung, R = 0.997 und SD = 0.3 kHz. **B**: Linear Fit ²H Quadrupol-Kopplungen der Tryptophanseitenketten R = 1 und SD = 0.27 kHz.

Alle Randbedingungen wurden innerhalb des experimentellen Fehlers erfüllt. Die Nicht-Diagonalelemente der Tensoren waren unterhalb 1 kHz, was daraufhin deutet, dass eine komplette Ausmittlung durch Reorientierung des Kanals stattfand.

Die MD2 mit orientierenden Randbedingungen ist mit Simulationen von Bingham et al.⁷ vergleichbar in der Hinsicht, dass der Peptiddimer in Gasphase simuliert wurde. Da zusätzlich experimentelle NMR-Daten als Randbedingung in die Simulation einflossen, wurden Aspekte der Membranumgebung berücksichtigt. Der Vorteil von MD2 gegenüber konventionellen Simulationen mit Membranmolekülen ist, dass keine expliziten Membranmoleküle in die Rechnung eingebunden werden müssen. Dadurch ergibt sich eine geringere Simulationszeit als für Membransimulationen. Diese Simulationen wie z.B. von Woolf und Roux⁶ haben den Nachteil, dass die hohe Viskosität der Phospholipide eine schnelle Ausmittlung von Konformationen verhindert, was zu sehr hohen Simulationszeiten führt.

Im nächsten Schritt wurde der Einfluss der Orientierungen der Fluortryptophanseitenketten bezüglich des Peptidrückgrats auf die ¹⁹F-Spektren des 5F-Trp an Position 13 untersucht. Aus den sechs möglichen Kombinationen von (χ_1, χ_2) sind zwei $[(g^+g^+) und (g^+g^-)]$ durch die orientierenden Pseudokräfte unterdrückt und die restlichen vier Konformationen sind in vergleichbarer Häufigkeit vorhanden, Abbildung 5.10. Diese Anordnungen der

Tryptophanseitenketten wurde auch von Bombasaro *et al.*⁹⁴ mit unterschiedlichen *ab-initio* Methoden vorhergesagt.

Nomenklatur der Diederwinkel: $g^+: 0^\circ - 120$

a: 120° - 180°; -120°- (-180°) g⁻: -120° - 0°

Abbildung 5.10: Häufigkeit der Diederwinkel χ_1 und χ_2 (in °) von 5F-Trp¹³ gA aus einer 5 ns MD Simulation mit experimentellen NMR-Daten als orientierenden Randbedingungen.

In Abbildung 5.11 sind die BPT-berechneten ¹⁹F NMR Spektren für die vier bevorzugten Seitenkettenkonformationen der MD für 5F-Trp¹³ dargestellt. Parallel dazu wurde der ¹⁹F Tensor, unter Einfluss des gesamten gA Kanals aus allen Koordinatenschnappschüssen (10000) der MD Simulation berechnet (Abbildung 5.12). Diese Schnappschüsse beinhalten alle Seitenkettenorientierungen sowie die Bewegung des gesamten gA Kanals. Vergleicht man nun die statisch berechneten Spektren (Abbildung 5.11) mit dem Spektrum aus MD2 (Abbildung 5.12), stellt man fest, dass nur ein Spektrum (g⁻ g⁺) in den Bereich von -70 und -160 ppm passt. Allerdings tragen alle eingenommenen Orientierungen während der MD Simulation zur Spektrenlinienform bei.

Abbildung 5.11: Simulierte ¹⁹F Spektren für die 4 Winkelkombinationen in 5F-Trp¹³ (Abbildung 5.10). Die Kanalachse befindet sich orthogonal zum Magnetfeld und eine Rotationsverteilung entlang der Achse wird vorausgesetzt. Rechts davon, eine Hälfte des gA-Kanals mit 5F-Trp¹³ und der entsprechenden Orientierung des ¹⁹F Tensors.

Abbildung 5.12: Simuliertes ¹⁹F Pulverspektrum aus 10000 Koordinatenschnappschüssen der 5 ns MD Simulation mit orientierenden Randbedingungen. Die Kanalachse befindet sich orthogonal zum Magnetfeld und eine Rotationsverteilung entlang der Achse wird vorausgesetzt. Für jeden Schnappschuss wurde das ¹⁹F Spektrum berechnet und aufaddiert.

Die berechnete Linienform in Abbildung 5.12 überrascht auf den ersten Blick, denn sie ähnelt einem Pulverspektrum, da sich nahe der δ_{22} -Komponente des CV-Tensors ein Polstelle ausbildet. Selbst wenn die Wahrscheinlichkeit gering ist, dass die δ_{22} -Tensorhauptachse senkrecht zum Magnetfeld steht, ist ein pol-ähnlicher Beitrag vorhanden. Das kommt zustande, wenn sich die aromatische Indolebene nahezu senkrecht zum Magnetfeld ausrichtet. Aber man muss dazu sagen, dass dieses Spektrum einer Überlagerung statischer Spektren entspricht, ohne Rücksicht auf eine Ausmittlung durch schnelle Bewegungen bezüglich der NMR Zeitskala. Diese Bewegungen sind bei Raumtemperatur vorhanden und wurden in Abbildung 5.6 dargestellt.

Die Bewegung des gA Dimers kann in Abbildung 5.13 durch die Winkelverteilung θ veranschaulicht werden. θ ist der Winkel zwischen der Membrannormalen und dem Vektor der beide Schwerpunkte der Moleküle A und B im Dimer von Gramicidin A verbindet. Darin sieht man eindeutig, dass der gesamte gA Kanal um seine Längsachse eine Taumelbewegung von ca. 10° durchläuft, welche zusammen mit der Seitenkettenbewegung eine Verschmälerung des ¹⁹F-Tensors der 5F-Tryptophanseitenketten herbeiführt.

Abbildung 5.13: Winkelverteilung θ des gA Kanals, definiert durch den Vektor der Membrannormalen und dem Vektor, der die beiden Schwerpunkte der Moleküle A und B im gA Dimer verbindet.

5.4 Zusammenfassung 5F-Trp¹³ gA

In einer 1 ns MD wurde die Beweglichkeit der Fluortryptophanseitenketten¹³ in gA und deren Einfluss auf das ¹⁹F-Pulverspektrum untersucht. Es wurde gezeigt, dass Ausmittelungen über Bewegungen in NMR Experimenten eine große Auswirkung auf ¹⁹F-Pulverspektren haben. Um eine genaue Verteilung der Seitenketten- und Rückgratorientierungen quantifizieren zu können, wurde eine 5 ns MD Simulation mit orientierenden Randbedingungen durchgeführt. Diese orientierenden Randbedingungen

bewirkten eine Pseudokraft, die eine Reorientierung des gA Kanals und seiner Aminosäurenseitenketten verursachte, und zwar gemäß der experimentellen Dipol- und Quadrupol-Kopplungen. Vier Seitenkettenkonformationen an 5F-Trp¹³ trafen mit großer Häufigkeit auf: [(a g⁺), (a g⁻), (g⁺ g⁺) und (g⁻ g⁺)]. Die Superposition dieser vier Zustände ergab den experimentell gemessenen Mittelwert der Dipol- und Quadrupol-Kopplung. Daher ließe sich einerseits behaupten, dass verschiedene Verteilungen den gleichen Mittelwert ergeben können, genauso wie auch die gegenteilige Schlussfolgerung zuträfe, dass experimentelle Messungen der Koexistenz verschiedener Seitenkettenkonformationen nicht widersprechen.

5.5 ¹⁵N chemische Verschiebung

Die zz-Komponenten der Rückgrat-¹⁵N-Tensoren für den gA Kanal aus der PDB-Datei 1MAG.pdb wurden mit der BPT-Methode berechnet, und den experimentellen Werten aus Mai *et al.*⁹⁵ gegenüber gestellt, Abbildung 5.14. Das externe Magnetfeld war parallel zur Kanalachse ausgerichtet. Eine klare Tendenz ist zu sehen, wobei für Glycin und D-Leucin überaus große Abweichungen gegenüber dem Experiment berechnet wurden. Ein Grund dafür kann die starke Abhängigkeit der ¹⁵N-chemische Verschiebung von der Position der Aminosäure innerhalb des Peptids sein. Ein zweiter Grund der Abweichungen gehen von einem statischen Tensor aus, mit dem die Strukturbestimmungsmethoden gehen von einem statischen Tensor aus, mit dem die Struktur bestimmt werden soll. Als Ausgangspunkt für Strukturbestimmungen wird ein konstanter Winkel β_N angenommen, um die Lage der Tensorhauptachse δ_{33} festzulegen. An der oberen Grafik aus Abbildung 5.14. lassen sich eindeutige Unterschiede im Winkel β_N erkennen, was darauf hin deutet, dass die Annahme eines festen Winkels nicht korrekt ist. Sehr umfangreiche Untersuchungen des Amid-¹⁵N-Tensors und dessen Lage im Molekül wurden von Brender *at al.*⁹⁶ gemacht.

Abbildung 5.14: Links: Der Winkel β_N definiert durch H_N -N- δ_{33} . Rechts oben: BPT-berechneter Winkel β_N , Ausgangspunkt zur Bestimmung der Lage des ¹⁵N-Tensors in Molekül. Rechts unten: Auftragung aller ¹⁵N-Amid zz-Tensorwerte aus BPT und Experiment von Gramicidin A.

Aus den Schnappschüssen der MD2 (5 ns MD mit ¹H-¹⁵N- und ²H-Kopplungen als Randbedingungen) wurden die ¹⁵N-Tensoren der Amidstickstoffe entlang des gA Kanals berechnet und über die gesamte MD-Zeit gemittelt. In Abbildung 5.15 wurden die berechneten zz-Komponenten mit den experimentellen Werten verglichen.

Abbildung 5.15: zz-Komponenten der ¹⁵N-Tensoren aus gA. Berechnete NMR-Werte von MD2 über 5 ns gemittelt, experimentelle Daten von Mai *et al.*⁹⁵.

Für manche Aminosäuren wurde eine Verbesserung der berechneten ¹⁵N-Tensoren verzeichnet, aber teilweise wurde die Differenz der BPT- zu den experimentellen Werten größer als von der Startstruktur. Ein Grund dafür ist die Abhängigkeit des ¹⁵N-Tensors von zwei Winkeln bezüglich des Magnetfelds, um eine eindeutige Lage des Tensorellipsoids zu bestimmen. Die an den Amid-Stickstoff gebundenen rotationssymmetrischen ¹H-¹⁵N Dipol-Kopplungen, die als Randbedingungen während der MD fungierten, stimmten mit den vorgegebenen experimentellen Dipol-Kopplungen überein, konnten aber eine komplette Ausrichtung des nicht-rotationssymmetrischen ¹⁵N-Tensores nicht erreichen. Dazu wäre ein zweiter Anhaltspunkt der Tensororientierung in der Aminosäure als Randbedingung notwendig. In Frage käme an dieser Stelle die ¹⁵N-¹³C Dipolkopplung, die zu einer eindeutigen Orientierung des Amidtensors beitragen könnte.

6 ZUSAMMENFASSUNG

Die möglichst genaue Berechnung von Tensoren der chemischen Verschiebung ist ein wesentlicher Aspekt für die Strukturbestimmung von Molekülen mit NMR Daten. Verfahren, die experimentelle und theoretisch bestimmte chemische Verschiebungen kombinieren können, dienen in erster Linie dazu, für bekannte Struktursequenzen eine räumliche Anordnung vorher zu sagen.

In der vorliegenden Arbeit wird die semiempirische BPT-Methode verwendet. Diese Methode verwendet einen semiempirischen quantenchemischen Formalismus zur Berechnung der chemischen Verschiebung, der die Nachteile von *ab-initio* Methoden in der Limitierung der Größe des Systems einerseits, aber ungenauen empirischen Inkrementsystem andererseits überwunden hat. Ziel dieser Arbeit war es, Parametrisierungen der BPT-Methode zur Berechnung der chemischen Verschiebung für verschiedene Kerne erfolgreich durchzuführen. Ausgangspunkt für die Parametrisierungen der BPT-Methode waren Molekülstrukturen mit dem jeweiligen kompletten Tensor der chemischen Verschiebung. Diese wurden im Rahmen dieser Arbeit mit einer möglichst zuverlässigen quantenchemischen *ab-initio* Methode bestimmt. Zuvor wurde eine systematische Auswahl der "besten" Methode für die Anforderungen dieser Arbeit getroffen. Als passende Methode erwies sich das Møller-Plesset Verfahren 2. Ordnung, mit einem TZVPP Basissatz.

Für den ¹⁹F-Kern wurde eine C(sp²)-Parametrisierung erstellt mit insgesamt 54 berechneten Tensoren. Eine Korrelation von 0.998 und einer Standardabweichung von 8.5 ppm von BPT-berechneten zu MP2/TZVPP Tensorwerten wurde erreicht. Eine nicht ganz so gute Korrelation wurde für den Typ C (sp³) in CF₃ Gruppen bestimmt, mit R = 0.995 und Standardabweichung von 13.0 ppm. Anschließend wurde eine passende Referenzierung erstellt, um theoretische Berechnungen bezüglich einer absoluten Abschirmskala (σ) auf einer experimentell relevanten NMR Skala der chemischen Verschiebung (δ) beziehen zu können. So wurden BPT-Berechnungen mit CFCl₃ als Referenzsubstanz möglich und damit der direkte Vergleich zu experimentellen NMR-Daten.

Das Hauptaugenmerk dieser Arbeit galt der Parametrisierung der ¹⁵N chemischen Verschiebung in der Amidbindung von Peptiden und Proteinen. Es wurde dafür ein Satz Testmoleküle der Typen α -Helix, β -Faltblatt, "Diamid" Aminosäuren, Nukleobasen und Biomolekülen zusammengestellt. Alle Moleküle durchliefen anderen eine Geometrieoptimierung und anschließende CV-Berechnung. Insgesamt wurden 372 Tensorwerte auf MP2/TZVPP Niveau berechnet. Diese Parametrisierung der BPT-Werte ergab eine Korrelation zu MP2-berechneten Werten von 0.994 mit einer Standardabweichung von 9.5 ppm. Eine weitere Parametrisierung wurde für ¹⁵N mit Koordinationszahl 2 an 126 Tensorwerten durchgeführt und ergab einen R = 0.975 und Standardabweichung von 22.4 ppm. Ein Grund für die nicht völlig überzeugende Korrelation der BPT zu *ab-initio*-Werten sind unterschiedliche Bewegungsmöglichkeiten für das freie Elektronenpaar am Stickstoff, was in der BPT-Methode nicht explizit berücksichtigt wird. Eine Verbesserung der Korrelation konnte in dieser Arbeit nicht erreicht werden. Es wurde eine entsprechende Referenzierung der ¹⁵N kernmagnetischen Abschirmkonstanten auf die NMR-Standardreferenz NH₃ (flüssig bei 25°C) durchgeführt. Somit wurden BPT Rechnungen der chemischen Verschiebung mit der Referenzsubstanz flüssiges NH₃ (25°C) als 0 ppm ermöglicht.

Des Weiteren wurde eine Parametrisierung der chemischen Verschiebung von ³¹P in Phosphatgruppen durchgeführt. Dafür wurden 13 phosphathaltige Molekülmodelle geometrieoptimiert und deren kernmagnetische Abschirmkonstanten bestimmt. Für diese Parametrisierung wurde der verbesserte Basissatz def2-TZVPP auf MP2 Niveau verwendet. Eine Korrelation von BPT zu MP2/def2-TZVPP ³¹P-Tensorwerten von R = 0.9978 mit einer SD = 8.8 ppm wurde erreicht.

Erste ¹⁹F-Berechnungen mit BPT wurden an 1,4-Difluorobenzol- und 4-4'-Difluorbiphenyl-Kristallen durchgeführt. Um eine kristallartige Umgebung der Elementarzelle zu gewährleisten, wurden periodische Randbedingungen in die BPT-Rechnung eingeführt. Eine gute Übereinstimmung der berechneten Tensoren der ¹⁹F chemischen Verschiebung mit experimentellen NMR Daten ergab sich. Damit wurde mit einer semiempirischen Methode erstmals möglich einen ¹⁹F-Tensor explizit zu berechnen. Für eine weitere Anwendung wurde das Gramicidin A System ausgewählt. gA ist ein membranständiges Peptid, das für den Transport monovalenter Ionen durch die Zellmembran zuständig ist. Mehrere Strukturmodelle wurden bereits aus experimentell abgeleiteten NMR Daten veröffentlicht. Daher konnte auf experimentelle NMR Daten zurückgegriffen werden um diese mit den hier entwickelten theoretischen Methoden zu kombinieren. In dieser Arbeit wurden zwei MD Simulationen an einem Gramicidin A Modell vorgestellt, wobei Hauptaugenmerk das auf der Bewegung der Tryptophanseitenketten lag. Ziel der MD Simulation war, den Einfluss von Struktur und Bewegung auf die ¹⁹F Festkörper-NMR-Spektren von 5F-Trp¹³ zu untersuchen. Die MD Simulation von 5F-Trp¹³ gA in einem elektrostatischen DMPC Membran-Modell zeigte den Einfluss des Ringsystems der Tryptophanseitenketten auf den Tensor der ¹⁹Fchemischen Verschiebung. Eine Simulationszeit von 1 ns bewirkte eine Verschmälerung von 5-10 ppm der berechneten ¹⁹F-Tensoren, was die Mobilität der Trp¹³ Seitenketten anhand der Torsionswinkel χ_1 und χ_2 demonstrierte. Allerdings zeigte sich auch, dass die Zeit von 1 ns für eine mit dem Experiment vergleichbare Ausmittelung der Tensorwerte nicht ausreichend war.

Eine weitere MD Simulation des gesamten gA Dimers wurde mit experimentellen ¹H-¹⁵N-Dipol- und ²H-Quadrupol-Kopplungen als orientierende Randbedingungen durchgeführt. Daraus ergaben sich vier bevorzugte Konformationen der Trp¹³ Seitenketten mit vergleichbarer Häufigkeit. Durch Überlagerung dieser Zustände wurden die experimentellen Mittelwerte erhalten. Aus der gleichen Simulation wurden mit BPT die zz-Komponenten der Amid-¹⁵N-Tensoren entlang der Peptidkette berechnet. Es wurde keine völlig überzeugende Übereinstimmung mit den gemessenen ¹⁵N NMR-Werten erreicht, da die axialsymmetrischen ¹H-¹⁵N-Dipol-Kopplungen an dem Amid-Stickstoff nur eine Ausrichtung der H-N Bindung zur Magnetfeldrichtung bewirken, aber keine komplette Ausrichtung der asymmetrischen ¹⁵N Tensoren selbst.

Es konnte gezeigt werden, dass die mit BPT berechneten chemischen Verschiebungen eine den *ab-initio* Verfahren vergleichbare Güte bei extrem schneller Berechnungsmöglichkeit besitzen. Diese Arbeit soll als Grundlage für zukünftige Berechnungen der ¹⁹F, ¹⁵N und ³¹P chemischen Verschiebungen mit der Bindungspolarisationstheorie dienen.

7 **REFERENZEN**

- ² Einen Überblick der Methoden bekommt man in: F. Jensen; "Introduction to Computational Chemistry", Wiley, Chichester, 1999, 129.
- ³ S. L. Grage, J. Wang, T. A. Cross und A. S. Ulrich; Biophysical J., 2002, 83, 3336
- ⁴ W. Hu, K.-C. Lee und T. A. Cross; Biochemistry, 1993, **32**, 7035
- ⁵ A. Hing, S. Adams, D. F. Silbert und R. Norberg; Biochemistry, 1990, 29, 4144
- ⁶ T. B. Woolf und B. Roux; PNAS, 1994, **91**, 11631

⁷ N. C. Bingham, N. E. C. Smith, T. A. Cross, und D. D. Busath, Biopolymers (Peptide Sience), 2003, **71**, 593

- ⁸ F. M. Harold und J. R. Baarda; J. Bacteriol., 1967, 94, 53
- ⁹ A. S. Arseniev, I. L. Barsukov, V. F. Bystrov, A. L. Lomize und A. Ovchinnikov Yu; FEBS Lett., 1985, **186**, 168
- ¹⁰ J. A. Killian, Biochem. Biophys. Acta, 1992, **1113**, 391
- ¹¹ S. M. Pascal und T. A. Cross; J. Biomol. 1993, **3**, 495
- ¹² M. D. Becker, D. V. Greathouse, R. E. Koeppe I.I. und O. S. Andersen; Biochemistry, 1991, **30**, 8830
- ¹³ W. Hu und T. A. Cross; Biochemistry, 1994, **34**, 14147
- ¹⁴ U. Sternberg; Mol. Phys, 1988, **63**, 249
- ¹⁵ U. Sternberg, F.-Th. Koch und P. Losso; COSMOS-Software, Jena, Germany 2006
- ¹⁶ M. Born und R. Oppenheimer; Ann. Phys., 1927, 84, 457
- ¹⁷ D. R. Hartree; Proc. Cambridge Phil Soc., 1928, **24**, 111
- ¹⁸ D. R. Hartree; "Calculation of Atomic Structure"; Wiley-Verlag, New York 1957
- ¹⁹ R. Hoffmann; J. Chem. Phys, 1963, **39**, 1397
- ²⁰ D. Feller und E. R. Davidson; Rev. Comput. Chem., 1990, **1**, 1
- ²¹ T. Helgaker und P. R. Taylor; Modern Electronic Structure Theory, Part II, ed. D. Yarkony, World Scientific 1995, 727
- ²² W. J. Hehre und J. A. Pople; J. Chem. Phys., 1972, 56, 2257
- ²³ C. Slater; Phys. Rev.; 1930, **30**, 57
- ²⁴ H. Shull; THE NUCLEUS, 1960, **37**(8), 259
- ²⁵ Überblick der Elektronenkorrelationseffekte in: T. Helgaker, W. Klopper, A. Halkier, K. L. Bak, P. Jørgensen und J. Olsen, Quantum-Mechanical Prediction of Thermochemical Data, Edited by J. Cioslowski, Kluwer, Dordrecht, 2001.
- ²⁶ J. B. Foresman, M. Head-Gordon, J. A. Pople und M. J. Frisch; J. Chem. Phys., 1992, 96, 135

²⁷ J. B. Foresman und M. J. Frisch., "Exploring Chemistry with Electronic Structure Methods: A Guide to Using Gaussian". Gaussian, Inc. Pittsburg, 1996

²⁸ H. F. Schäfer III, "The Electronic Structure of Atoms and Molecules. A Survey of Rigorous Quantum Mechanical Results". Addison-Wesley Publ. Reading, Massachusetts, 1972

- ²⁹ R. Krishnan, H. B. Schlegel, und J. A. Pople; J. Chem. Phys., 1980, 72, 4654
- ³⁰ R. Shepard; Adv. Chem. Phys., 1987, **69**, 63
- ³¹ C. Møller und M. S. Plesset; Phys. Rev., 1934, **46**, 618
- ³² E. Schrödinger; "Annalen der Physik", 4. Folge, Band 80, 1926, 437
- ³³ J. W. S. Rayleigh; "Theory of Sound", 2. Ed. Folge 1, Macmillan, London, 1894, 115
- ³⁴ F. Jensen; "Introduction to Computational Chemistry", Wiley, Chichester, 1999, 129
- ³⁵ R. Ahlrichs, M. Bär, M. Häser, H. Horn und C. Kölmel, Chem. Phys. Letters, 1989, 162, 165
- ³⁶ M. Kollwitz und J. Gauss; Chem. Phys. Letters, 1996, 260, 639
- ³⁷ W. Gerlach und O. Stern; Ann. Phys. 1922, **74**, 673
- ³⁸ W. Pauli, Zeitschriften für Physik, 1925, **32**, 794
- ³⁹ E. M. Purcell, H. C. Torray und R. V. Pound; Phys Rev. 1946, **69**, 37
- ⁴⁰ F. Bloch, W. W. Hansen und M. Packard; Phys. Rev. 1946, **69**, 127
- ⁴¹ F. Bloch; Phys. Rec. 1946; **70**, 460
- ⁴² W. D. Knight; Phys. Rev. 1950, **77**, 736

¹ P. v. Schleyer; New Horizons in Quantum Chemistry, P. O. Löwin, A. Pullmann ed., Reidel, Dordrecht, 1983

- ⁴³ W. G. Proctor und F. C. Yu; Phys. Rev. 1950, 77, 717
- ⁴⁴ W. C. Dickinson; Phys. Rev. 1950, **77**, 738
- ⁴⁵ http://www.nobelpreis.org/chemie/ernst.htm
- ⁴⁶ J. Mason; Sol. Stat. Nucl. Magn. Reson. 1993, **2**, 285
- ⁴⁷ R. M. Stevens, R. M. Pitzer und W.N. Lipscomb; J. Chem. Phys., 1963, 2, 550
- ⁴⁸ W. Kutzelnigg; Isr. J.Chem., 1980, **19**, 193 M. Schindler und W. Kutzelnigg; J. Chem. Phys., 1982, **76**, 1919
- ⁴⁹ A. E. Hansen und T. D. Bouman; J. Chem. Phys., 1985, **82**, 5035
- ⁵⁰ R. Ditchfield; Mol. Phys. 1974, **27**, 789
- ⁵¹ F. London; J. Phys. Radium, 1937, **8**, 397
- ⁵² E. Brunner und U. Sternberg; Progress in Nuclear Magnetic Resonance Spectroscopy, 1998, **32**, 21
- ⁵³ K. Wolinski, H. F. Hilton und P. Pulay; J. Am. Chem. Soc., 1990, **112**, 8251
- ⁵⁴ M. Häser, R. Ahlrichs, H. P. Baron, P. Weis, und H. Horn; Theor. Chim. Acta, 1992, 83, 455
- ⁵⁵ U. Sternberg und W. Prieß; J. Mag. Res. 1993, **102**, 160
- ⁵⁶ M. Möllhoff und U. Sternberg; J. Mol. Mod, 2001, **7**, 90
- ⁵⁷ U. Sternberg, F.-Th. Koch, M. Bräuer, M. Kunert, und, E. Anders; J. Mol Model. 2001, 7, 54
- ⁵⁸ U. Sternberg und W. Prieß; J. Mag. Res. 1997, **125**, 8
- ⁵⁹ W. Prieß und U. Sternberg; J. Mol. Struc. THEOCHEM 2001, 544, 181
- ⁶⁰ Dissertation: Three dimensional Structure elucidation with the COSMOS-NMR force field, Raiker Witter, 2003, www.dissertation.de
- ⁶¹ P. C. Hohenberg und W. Kohn; Phys. Rev. 1964, **136**, 864
- ⁶² J. Gauss; Chem. Phys; 1993, **99**, 3629
- ⁶³ J. R. Cheeseman, G. W. Trucks, T. A. Keith und M. J. Frisch; J. Chem. Phys, 1997, **106**, 9201

⁶⁴ Es wurde ausschließlich auf dem AIX-Cluster am Institut für Wissenschaftliches Rechnen am Forschungszentrum Karlsruhe gerechnet.

- ⁶⁵ F. Weigend und M. Häser; Theor. Chem. Acc., 1997, **97**, 331
- ⁶⁶ F. Weigend, M. Häser, H. Patzelt und R. Ahlrichs; Chem. Phys. Letters, 1998, **294**, 143
- ⁶⁷ F. Weigend, A. Köhn und C. Hättig; J. Phys. Chem., 2002, **116**, 3175
- ⁶⁸ TURBOMOLE User's Manual V.5, http://www.cosmologic.de/data/DOK.pdf (Version 5.9)

⁶⁹ Z.-Y. Sun, A. Pratt und C. Ho; 1996, Biomedical Frontiers of Fluorine Chemistry. I. Ojima, J. R. M., J. T. Welch, editors. Biomedical Frontiers of Fluorine Chemistry, ACS Symposium Series, American Chemical Society. 296

⁷⁰ J. Feeney, J. E. McCormick, C. J. Bauer, B. Birdsall, C. M. Moody, B. A. Starkmann, D. Y. Young, P. Francis, R. H. Havlin, W. D. Arnold, und E. Oldfield; J. Am. Chem. Soc., 1996, **118**, 8700

⁷¹ A. S. Ulrich; High resolution ¹H and ¹⁹F solid state NMR in "Encyclopedia of Spectroscopy and Spectrometry" (Eds. J.Lindon, G.Tranter, J.Holmes), Academic Press 2000: 813

⁷² S.L.Grage, J.Salgado, U.H.N.Dürr, S.Afonin, R.W.Glaser und A.S.Ulrich; Solid state ¹⁹F-NMR of biomembranes in "Perspectives on Solid State NMR in Biology" (Eds. S.Kiihne, H.J.M.de Groot), Kluwers Academic Press: 83

- ⁷³ A. S. Ulrich; Solid state ¹⁹F-NMR methods for studying biomembranes, Prog. NMR Spectr. 2005, 46, 1
 ⁷⁴ A. S. Ulrich; Solid state ¹⁹F-NMR analysis of oriented biomembranes; Handbook of Modern Magnetic Resonance (eds. T.Asakura, H.Saito & I.Ando), Kluwer Academic Publishers;
- ⁷⁵ S. L. Grage, J. Wang, T. Cross und A. S. Ulrich; Biophysical J., 2002, **83**, 3336

⁷⁶ A. S. Ulrich; Prog. NMR Spectr., 2005, **46**, 1

⁷⁷ Die modellierte Struktur wurde mit COSMOS-Kraftfeld geometrieoptimiert und im Anschluss auf RI-MP2/TZVPP optimiert. Die optimierten Strukturen der Glutamin-Modelle sind aus: M. W. Klipfel, M. A. Zamora, A. M. Rodriguez, N. G. Fidanza, R. D. Enriz und I. G. Csizmadia, J. Phys. Chem. A., 2003, **107**, 5079 übernommen.

⁷⁸ D. W. Alderman, M. H. Sherwood und D. M. Grant; J. Mag. Reson. Serie A, 1992, **101**, 188

⁷⁹ Für die Parametrisierungen dieser Arbeit wurde ein erstelltes Mathematica Notebook von W. Priess als Grundlage verwendet. Ref: 59

⁸⁰ Mathematica5, Wolfram Research Inc.

⁸¹ T. M. Duncan; A compilation of chemical shift anisotropies; 1990, The Farragut Press, Madison

⁸² R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, R. Goodfellow und P. Ganger; *Pure Appl. Chem.*, 2001, Vol. **73**, No. 11, pp. 1795

- ⁸³ H. Zhang, S. Neal und D. S. Wishart; J. Biomol. NMR, 2003, 25, 173
- ⁸⁴ F. Weigend und R. Ahlrichs; Phys. Chem. Chem. Phys., 2005, 7, 3297

⁸⁵ V.R.Thalladi, H.-C.Weiss, D.Blaser, R.Boese, A.Nangia, G.R.Desiraju; J. Am. Chem. Soc., 1998, **120**, 8702

- ⁸⁶ M. H. Lemme, L. Toupet, Y. Delugeard, J. C. Messager und H. Cailleau; Acta Crystallogr. Sect. B : Struct. Sci., 1987, **43**, 466
- ⁸⁷ X. Zhao, J. S. DeVries, R. McDonald und B. Sykes ; J. Of ag. Reson., 2007, **187**, 88
- ⁸⁸ S. P. Graether, J. S. DeVries, R. McDonald, M. L. Rakovszky, B. D. Sykes; J. Magn. Res., 2006, **178**, 65
- ⁸⁹ R. Sarges und B. Witkop; J. Am. Chem. Soc., 1965, **87**, 2011
- ⁹⁰ R. R. Ketchem, W. Hu, and T. A. Cross; Science, 1993, **261**, 1457
- ⁹¹ R. E. Koeppe II, Haiyan Sun, P. C. A. van der Wel, E. M. Scherer, P. Pulay und D. V. Greathouse, J. Am. Chem. Soc., 2003, **125**, 12268
- ⁹² J. Mol. Biol. 1970, **52**, 1
- 93 U. Sternberg, R. Witter, und A. S. Ulrich; J. Biomol. NMR, 2007, 38, 23

⁹⁴ J.A. Bombasaro, A.M. Rodriguez und R.D. Enriz; Journal of Molecular Structure: THEOCHEM, 2005, **724**, 173

- ⁹⁵ W. Mai. W. Hu, C. Wang und T. A. Cross; Protein Science, 1993, **2**, 532
- ⁹⁶ J. Brender, D. M. Taylor und A. Ramamoorthy; J. Am. Chem. Soc., 2001, 123, 914

<u>Anhang</u>

Α	¹ H Parametrisierung	70
	${}^{1}H_{\alpha}$ Parametrisierung	70
	¹ H _N Parametrisierung	71
B	Mathematica Notebook für die Parametrisierung der BPT Methode Berechnung der ¹⁹ F-C(sp ²) chemischen Verschiebung	zur 73
	Für alle anderen Parametrisierungen der BPT Methode dieser Arbeit wur	den
	Tabellen mit Angabe der Molekülbezeichnung sowie CV-Werte MP2/TZVPP, BPT und die Differenz beider Methoden erstellt.	von
С	Lebenslauf	99
D	Wissenschaftlicher Werdegang	101
Ε	Ehrenwörtliche Erklärung	103
F	Danksagung	105

A ¹H PARAMETRISIERUNG

¹H ist der am häufigsten gemessene Kern in der NMR. Deshalb ist die schnelle Berechnung von ¹H-NMR für den Spektroskopiker von großem Interesse. Mit theoretisch berechneten ¹H Werten könnten Signale im gemessenen Spektrum experimentellen Werten zugeordnet werden, und eine Strukturaufklärung mit Hilfe der ¹H chemischen Verschiebung als Randbedingung wird möglich.

Das Hauptinteresse der ¹H-Parametrisierung galt aus biochemischer Sicht zwei Typen von Protonen, die in einer Aminosäure vorkommen. Das H_{α} , gebunden an das chirale Zentrum C_{α} einer Aminosäure, und das H_N am Stickstoff, der in der Peptidbindung involviert ist.

Abbildung 1: Schematische Darstellungen des ¹H-Kerns. A: H_{α} - am Kohlenstoff α . B: H_N – am Stickstoff der Peptidbindung.

1.1.1 ${}^{1}H_{\alpha}$ -Parametrisierung

Insgesamt wurde für die ${}^{1}H_{\alpha}$ -Parametrisierung 46 berechnete Tensoren aus MP2/TZVPP Niveau verwendet. Eine überraschend gute Korrelation der BPT-Tensoren zu den *ab-initio* Werten konnte erreicht werden, Abbildung 2.

Abbildung 2: Korrelationskurve von 276 ${}^{1}H_{\alpha}$ Tensorwerten ergab ein R von 0.995 mit einer Standardabweichung von 1.4 ppm.

Daraus resultierten folgende bindungsspezifische Parameter für die Berechnung der ${}^{1}H_{\alpha}$ magnetischen Abschirmung:

Anteil mag. Abschirmung isolierter Kern in ppm			Anteil Bindungspolarisation in ppm/Hartree			
σ^0_{xx} σ^0_{yy} σ^0_{zz}			A ^{pol} _{xx}	A ^{pol} yy	A^{pol}_{zz}	
Bindungstyp H_{α} — C						
27.5576 24.9134 30.7793		56.9518	-64.264	12.5664		

Zur Spektreninterpretation können die Tensorwerte herangezogen werden, jedoch ist die Streuung der Mittelwerte zu groß um davon Gebrauch zu machen.

1.1.2 ¹H_N Parametrisierung

Für ¹H an der Peptidbindung wurden 162 Tensorwerte in die Parametrisierung aufgenommen. Eine ähnlich gute Korrelation wie für H_{α} konnte erzielt werden. Die Standardabweichung beträgt hier 1.6 ppm und R-Wert von 0.992.

Abbildung 3: Korrelationskurve von 162 ${}^{1}H_{N}$ Tensorwerten ergab ein R von 0.992 mit einer Standardabweichung von 1.6 ppm.

Daraus resultierten folgende bindungsspezifische Parameter für die Berechnung der ${}^{1}H_{N}$ magnetischen Abschirmung:

Anteil mag. Abschirmung isolierter Kern in ppm			Anteil	Bindungspolar in ppm/Hartree	isation	
$\sigma^0_{\ xx}$	$\sigma^0_{\ yy}$	$\sigma^0_{\ zz}$	A ^{pol} _{xx}	A^{pol}_{yy}	A^{pol}_{zz}	
Bindungstyp H — N						
31.419	26.7558	29.1936	-124.472	-278.782	10.551	

Vergleicht man die ¹H-Tensorwerte für H_{α} und H_N , kann man erkennen das der Beitrag der Bindungspolarisation für H_N viel gewichtiger als für H_{α} ist, was im Einklang mit der höheren Polarisierbarkeit des Stickstoffs gegenüber dem Kohlenstoff ist.

Auch hier können die Tensorwerte zur Spektreninterpretation herangezogen werden, jedoch ist die Streuung der H_N -Mittelwerte zu groß um davon Gebrauch zu machen.

B - VERWENDETE MATHEMATICA NOTEBOOK FÜR DIE PARAMETRISIERUNG DER BPT METHODE ZUR BERECHNUNG DER¹⁹**F-CHEMISCHEN VERSCHIEBUNG** (SP²)

Initialisierung: Pakages laden, Definition der Transformationen

<<Statistics`LinearRegression`

```
t={{1/10*(5+Sqrt[5]),-(2/Sqrt[5]),0,1/10*(5-Sqrt[5]),0,0},
{1/10*(5+Sqrt[5]),2/Sqrt[5],0,1/10*(5-Sqrt[5]),0,0},
{0,0,0,1/10*(5+Sqrt[5]),-(2/Sqrt[5]),1/10*(5-Sqrt[5])},
{0,0,0,1/10*(5+Sqrt[5]),2/Sqrt[5],1/10*(5-Sqrt[5])},
{1/10*(5-Sqrt[5]),0,-(2/Sqrt[5]),0,0,1/10*(5+Sqrt[5])},
{1/10*(5-Sqrt[5]),0,2/Sqrt[5],0,0,1/10*(5+Sqrt[5])};
```

```
MatrixForm[t]
```

toico[x_]:=Table[N[t.x[[i]]], {i,Dimensions[x][[1]]}]
tokart[x_]:=Table[N[Inverse[t]].x[[i]], {i,Dimensions[x][[1]]}]

Einladen der Daten von MP2/TZVPP Rechnungen ¹⁹F-C(sp²)

```
data=<<CS_CALIB.TXT;
Dimensions[data]
{54, 7}
matrix = Table[Drop[data[[i]], 1], {i, 1, Dimensions[data][[1]]}];
MatrixForm[matrix];
cv = Table[data[[i, 1]], {i, 1, Dimensions[data][[1]]}];
Dimensions[matrix]
Dimensions[cv]
{54, 6}
{54}
```

Transformation ins icosaedrische System

```
matrix=Flatten[toico[Partition[matrix,6]],1];
MatrixForm[matrix];
cv=Flatten[toico[Partition[cv,6]]]
{a, sv, b} = SingularValues[matrix];
sv
{4.24267, 2.6833, 2.6833, 0.0684394, 0.0432849, 0.0432848}
{a, sv, b} = SingularValues[matrix1];
sv
{4.24267, 2.6833, 2.6833, 0.0684394, 0.0432849, 0.0432848}
x1 = PseudoInverse[matrix1].cv;
x = x1.kond
{289.901, 416.213, 329.775, 1393.13, 2110.83, -450.749}
cv=Flatten[tokart[Partition[cv,6]]];
matrix=Flatten[tokart[Partition[matrix,6]],1];
l = matrix.x;
```

reg = Regress[Transpose[{cv, 1}], {var}, var, IncludeConstant -> False]

${ParameterTable} \rightarrow var$	Estimate 0.998736	SE 0.00480565	TStat 207.82	PValue 5 0. '	, RSquared \rightarrow 0.998774,	AdjustedRSqu	ared \rightarrow 0.998751,
Fatinate/Verience . 74 (6047 MOUNT-bl	Model	DF 1	SumOfSq 3.22573×10⁵	MeanSq 3.22573×10 ⁶	FRatio 43191.3	PValue 0. ر
Estimatedvariance → 74.0	504/, ANUVAIADIE	:→ Error U Total	53 54	3958.29 3.22969×10 ⁶	74.6847		}
Sqrt[74.6847] 8.64203							
g1=Show[Plot[] >{RGBColor[1, le->{RGBColor Prolog->Point AspectRatio->	p,{p,-150,5 0,0],Thickr [0,0,1],Poi Size[0.01], 1,AxesStyle	500},PlotSt ness[0.01]] IntSize[0.0 e->{Thickne	yle-],Lis)17]}] ess[0.	tPlot[Tran , 005]}]	nspose[{cv,1}]	,PlotSty	

TableForm[Table [Join[{i}, Partition[cv, 6][[i]]], {i, 1, Dimensions[Partition[cv, 6]][[1]]}]]
TableForm[Table [Join[{i}, Partition[1, 6][[i]]], {i, 1, Dimensions[Partition[1, 6]][[1]]}]]
TableForm[Table [Join[{i}, Partition[cv - 1, 6][[i]]], {i, 1, Dimensions[Partition[cv - 1, 6]][[1]]}]]
TableForm[Transpose[{Table[i, {i, Dimensions[cv][[1]]}], cv, 1, 1 - cv}]]

1	327.133	311.965	-15.1678
2	0.967733	-1.64286	-2.61059
3	-36.263	-31.764	4.49896
4	373.463	386.425	12.9616
5	5.21485	7.84976	2.63491
6	301.729	295.813	-5.91637
7	333.879	315.911	-17.9678
8	-5.92347	-6.05897	-0.135495
9	-15.3388	-19.3488	-4.00996
10	428.853	415.972	-12.8814
11	10.1935	9.02936	-1.16414
12	307.369	305.569	-1.79952
13	305.167	291.944	-13.2226
14	-10.7892	-9.95413	0.835073
15	10.7916	1.29556	-9.49604
16	427.255	416.403	-10.8523
17	9.66361	8.33777	-1.32584
18	333.137	330.07	-3.06724
19	279.426	273.986	-5.44028
20	-14.1025	-16.5741	-2.47158
21	-1.55184	2.1018	3.65364
22	371.13	385.515	14.3853
23	-2.38583	-4.72305	-2.33722
24	348.074	336.158	-11.9161
25	259.515	264.375	4.85979
26	0.	0.	0.
27	0.	0.	0.
28	373.74	377.537	3.79692
29	0.	0.	0.
30	334.547	338.034	3.48686
31	317.043	320.193	3.15013
32	11.0774	12.9426	1.86523
33	0.	0.	0.

34	329.834	335.138	5.30395
35	0.	0.	0.
36	485.164	496.077	10.913
37	311.399	319.41	8.01087
38	0.	0.	0.
39	32.7188	26.184	-6.5348
40	376.773	393.065	16.2918
41	0.	0.	0.
42	272.793	289.931	17.1383
43	299.883	313.693	13.8097
44	-0.00114018	-0.000633447	0.000506733
45	22.5438	31.6963	9.15252
46	397.649	385.211	-12.4381
47	0.00091534	0.000881413	-0.0000339274
48	279.863	292.142	12.2789
49	303.037	297.309	-5.72829
50	0.	0.	0.
51	18.4879	18.6539	0.165995
52	434.682	411.669	-23.0127
53	0.	0.	0.
54	307.315	320.338	13.0234

LISTE ALLER ¹⁹F-C –MOLEKÜLE (IN CF₃-GRUPPEN) DER BPT-PARAMETRISIERUNG (sp³).

Nr.	MP2/TZVPP	BPT	MP2(TZVPP) - RPT	Bezeichnung Tensorkomponente
1	359 274	349 518	9 756	XX of F 1 TriEpropene
2	-7 931	8 176	-16 107	YY of F 1 TriFpropene
3	0.000	0.170	0.000	ZZ of F 1 TriEpropene
4	206 396	197 997	8 399	XY of F 1 TriEpropene
5	0.000	0	0.000	XZ of F 1 TriEpropene
6	309 536	271 717	37 810	VZ of F_1 TriEpropene
7	241 736	271.717	-10 243	XX of F 3 TriEpropene
8	42 912	44.066	-1.154	VV of F 3 TriEpropene
0	9.237	3 677	-1.134	77 of E 3 TriEpropana
10	265 742	250.092	15.650	XX of F 3 TriEpropene
10	61 882	230.092	10.012	X7 of F_3 TriEpropene
12	-01.882	-30.97	-10.912	XZ of F_3 TriEpropene
12	504.470 247.104	514.410 222 175	-9.940	$12 \text{ of } r_3 \text{ Thr propend}$
13	247.104	232.173	14.929	$XX \text{ of } F_2 \text{ CF3COOH}$
14	38.090	0.021	5.559	77 eff 2 CF3COOH
15	-0.020	-0.021	-0.005	ZZ 01 F_2 CF3COOH
10	520.808	327.707	-0.939	XY OF F_2 CF3COOH
1/	-0.019	-0.021	0.002	XZ OF F_2 CF3COOH
18	291.382	275.025	16.35/	YZ of F_2 CF3COOH
19	227.802	224.72	3.082	XX 01 F_3 CF3COOH
20	-23.343	-18.668	-4.6/5	Y Y of F_3 CF3COOH
21	52.764	38.443	14.321	ZZ of F_3 CF3COOH
22	292.729	294.543	-1.814	XY of F_3 CF3COOH
23	-27.374	-29.118	1.744	XZ of F_3 CF3COOH
24	324.179	321.463	2.716	YZ of F_3 CF3COOH
25	293.421	299.699	-6.278	XX of F TriFethane
26	52.897	38.246	14.651	YY of F TriFethane
27	-21.348	-28.564	7.216	ZZ of F TriFethane
28	227.137	215.128	12.009	XY of F TriFethane
29	-51.304	-37.063	-14.241	XZ of F TriFethane
30	292.563	298.321	-5.758	YZ of F TriFethane
31	293.421	299.366	-5.945	XX of F_1 TriFethane
32	52.897	38.393	14.504	YY of F_1 TriFethane
33	-21.348	-28.538	7.190	ZZ of F_1 TriFethane
34	227.137	214.339	12.798	XY of F_1 TriFethane
35	-51.304	-37.205	-14.099	XZ of F_1 TriFethane
36	292.563	297.991	-5.428	YZ of F_1 TriFethane
37	242.547	221.478	21.069	XX of F CF3Benzene
38	-61.614	-54.916	-6.698	YY of F CF3Benzene
39	1.242	1.433	-0.191	ZZ of F CF3Benzene
40	324.117	326.61	-2.493	XY of F CF3Benzene
41	-1.302	-1.313	0.011	XZ of F CF3Benzene
42	299.104	271.909	27.195	YZ of F CF3Benzene
43	228.583	218.946	9.637	XX of F_1 CF3Benzene
44	30.788	24.34	6.448	YY of F_1 CF3Benzene
45	-61.512	-44.646	-16.866	ZZ of F_1 CF3Benzene
46	267.175	286.501	-19.326	XY of F_1 CF3Benzene
47	-26.914	-25.082	-1.832	XZ of F_1 CF3Benzene
48	288.255	316.673	-28.418	YZ of F_1 CF3Benzene
49	229.658	219.132	10.526	XX of F_2 CF3Benzene
50	33.557	26.68	6.877	YY of F_2 CF3Benzene

51	58.765	43.628	15.137	ZZ of F 2 CF3Benzene
52	270.386	289.081	-18.695	XY of \overline{F} 2 CF3Benzene
53	28.430	26.396	2.034	XZ of F^2 CF3Benzene
54	287.966	313.79	-25.824	YZ of F^2 CF3Benzene
55	207.349	202.406	4.943	XX of F metha-CF3-PHE
56	-1.394	-6.877	5.483	YY of F metha-CF3-PHE
57	6.142	20.833	-14.691	ZZ of F metha-CF3-PHE
58	277.974	272.516	5.458	XY of F metha-CF3-PHE
59	15.174	11.694	3.480	XZ of F metha-CF3-PHE
60	353.181	345.824	7.357	YZ of F metha-CF3-PHE
61	292.737	274.876	17.861	XX of F 1 metha-CF3-PHE
62	-51.898	-51.546	-0.352	YY of F ¹ metha-CF3-PHE
63	40.592	48.446	-7.854	ZZ of F^{-1} metha-CF3-PHE
64	305.277	300.36	4.917	XY of \overline{F} 1 metha-CF3-PHE
65	5.441	0.038	5.403	XZ of F ¹ metha-CF3-PHE
66	238.544	246.727	-8.183	YZ of F ¹ metha-CF3-PHE
67	248.425	245.594	2.831	XX of \overline{F} 2 metha-CF3-PHE
68	67.031	46.315	20.716	YY of F ² metha-CF3-PHE
69	28.398	36.052	-7.654	ZZ of F^{2} metha-CF3-PHE
70	292.355	328.791	-36.436	XY of \overline{F} 2 metha-CF3-PHE
71	-22.761	-4.744	-18.017	XZ of F ² metha-CF3-PHE
72	221.930	248.234	-26.304	$YZ \text{ of } F^2 \text{ metha-}CF3-PHE$
73	242.699	221.906	20.793	XX of \overline{F} para-CF3-PHE
74	17.964	14.901	3.063	YY of F para-CF3-PHE
75	-57.170	-51.747	-5.423	ZZ of F para-CF3-PHE
76	278.156	269.645	8.511	XY of F para-CF3-PHE
77	10.271	0.13	10.141	XZ of F para-CF3-PHE
78	328.373	328.871	-0.498	YZ of F para-CF3-PHE
79	222.409	208.53	13.879	XX of F ¹ para-CF3-PHE
80	-41.594	-31.317	-10.277	YY of F ⁻¹ para-CF3-PHE
81	23.447	18.096	5.351	ZZ of F_1 para-CF3-PHE
82	331.842	332.924	-1.082	XY of F 1 para-CF3-PHE
83	-20.209	-22.829	2.620	XZ of F^{-1} para-CF3-PHE
84	268.752	280.35	-11.598	$YZ \text{ of } F^{-1} \text{ para-CF3-PHE}$
85	246.264	235.069	11.195	XX of \overline{F}^2 para-CF3-PHE
86	65.898	52.311	13.587	YY of F ² para-CF3-PHE
87	48.623	36.292	12.331	ZZ of F_2 para-CF3-PHE
88	253.065	294.524	-41.459	XY of $\overline{F_2}$ para-CF3-PHE
89	13.012	22.219	-9.207	XZ of F_2 para-CF3-PHE
90	266.169	293.171	-27.002	YZ of F_2 para-CF3-PHE

LISTE ALLER AMID-¹⁵N MOLEKÜLE DER BPT-PARAMETRISIERUNG

Nr.	MP2/TZVPP	BPT	MP2(TZVPP)	Bezeichnung Tensorkomponente
			- BPT	
1	223.212	226.587	-3.375	XX of N_1 α-Helix GLY
2	-18.378	-27.036	8.658	YY of N 1 α -Helix GLY
3	26.453	27.761	-1.308	ZZ of N 1α -Helix GLY
4	57.334	76.870	-19.536	XY of \overline{N} 1 α –Helix GLY
5	8.966	-7.839	16.805	XZ of N ^{-1} α -Helix GLY
6	178.387	193.451	-15.064	YZ of N ⁻ 1 α–Helix GLY
7	195.191	209.208	-14.017	XX of N^2 α -Helix GLY
8	-46.389	-32.983	-13.405	YY of N 2 α -Helix GLY
				—

9	-26.648	-36.495	9.847	ZZ of N 2 α -Helix GLY
10	77.480	85.549	-8.069	XY of \overline{N} 2 α -Helix GLY
11	-44.341	-31.980	-12.361	XZ of N 2α -Helix GLY
12	209.278	194.536	14.742	YZ of $N^2 \alpha$ -Helix GLY
13	196.502	170.086	26.416	XX of $N^{3} \alpha$ -Helix GLY
14	41.713	35.137	6.576	YY of $N_3 \alpha$ -Helix GLY
15	11.038	14.194	-3.156	ZZ of N $\overline{3} \alpha$ -Helix GLY
16	66.069	73.289	-7.220	XY of \overline{N} 3 α -Helix GLY
17	-25.819	-17.748	-8.071	XZ of N $\overline{3} \alpha$ -Helix GLY
18	208.662	229.719	-21.057	YZ of $N^{3} \alpha$ -Helix GLY
19	226.458	230.953	-4.495	XX of $N^{4} \alpha$ -Helix GLY
20	-26.951	-32.821	5.870	YY of $N^{4} \alpha$ -Helix GLY
21	25.203	28.488	-3.285	ZZ of N 4α -Helix GLY
22	128.196	128.010	0.186	XY of \overline{N} 4 α -Helix GLY
23	67.343	57.648	9.695	XZ of N 4 α -Helix GLY
24	148.203	145.049	3.154	YZ of $N^{4} \alpha$ -Helix GLY
25	223.025	226.609	-3.584	XX of N 1 α -Helix 1 GLY
26	-26.576	-27.909	1.333	YY of $N_1 \alpha$ -Helix 1 GLY
27	-18.134	-26.903	8.769	ZZ of N 1α -Helix 1 GLY
28	178.411	193.631	-15.220	XY of \overline{N} 1 α -Helix 1 GLY
29	-9.366	7.499	-16.865	XZ of N ^{-1} α -Helix ^{-1} GLY
30	57.322	76.921	-19.600	YZ of $N^{1} \alpha$ -Helix ¹ GLY
31	195.234	209.235	-14.001	XX of $N^2 \alpha$ -Helix 1 GLY
32	26.541	36.413	-9.872	YY of N 2 α -Helix 1 GLY
33	-46.387	-32.995	-13.392	ZZ of N 2α -Helix 1 GLY
34	209.287	194.440	14.847	XY of N 2 α -Helix 1 GLY
35	44.264	31.932	12.331	XZ of N 2 α -Helix 1 GLY
36	77.261	85.411	-8.151	YZ of $N^2 \alpha$ -Helix ¹ GLY
37	196.389	169.921	26.468	XX of \overline{N} 3 α -Helix 1 GLY
38	-11.077	-14.045	2.968	YY of $N_3 \alpha$ -Helix 1 GLY
39	41.977	35.400	6.577	ZZ of N $\overline{3} \alpha$ -Helix $\overline{1}$ GLY
40	208.875	229.774	-20.899	XY of \overline{N} 3 α -Helix 1 GLY
41	25.677	17.545	8.132	XZ of N 3 α -Helix 1 GLY
42	66.156	73.343	-7.187	YZ of $N_3 \alpha$ -Helix 1 GLY
43	226.810	230.943	-4.133	XX of $N_4 \alpha$ -Helix 1 GLY
44	-24.995	-28.348	3.353	YY of N 4 α -Helix 1 GLY
45	-27.086	-33.061	5.975	ZZ of N 4α -Helix 1 GLY
46	149.448	146.195	3.253	XY of N 4 α -Helix 1 GLY
47	-67.120	-57.434	-9.686	XZ of $N_4 \alpha$ -Helix 1 GLY
48	126.799	127.015	-0.216	YZ of $N_4 \alpha$ -Helix 1 GLY
49	171.087	172.277	-1.190	XX of NALA α_L Diamide 1
50	-45.473	-47.129	1.657	YY of N ALA $\alpha_{\rm L}$ Diamide 1
51	-54.955	-42.082	-12.872	ZZ of N ALA $\alpha_{\rm L}$ Diamide 1
52	57.585	66.084	-8.498	XY of N ALA $\alpha_{\rm L}$ Diamide 1
53	-5.881	-15.507	9.626	XZ of N ALA α_{I} Diamide 1
54	182.763	169.834	12.929	YZ of N ALA $\alpha_{\rm L}$ Diamide 1
55	90.255	85.016	5.239	XX of N 1 ALA α_{I} Diamide 1
56	-43.014	-37.153	-5.861	YY of N 1 ALA $\alpha_{\rm L}$ Diamide 1
57	-8.438	-6.948	-1.490	ZZ of N 1 ALA α_{I} Diamide 1
58	200.535	192.659	7.876	XY of N 1 ALA α_{I} Diamide 1
59	-14.219	-21.659	7.440	XZ of N 1 ALA α_{I} Diamide 1
60	233.883	236.875	-2.992	YZ of N 1 ALA α_{I} Diamide 1
61	222.994	216.805	6.189	XX of N ALA β_{I} Diamide 1

62	-17.631	-12.328	-5.303	YY of N ALA β_L Diamide 1
63	-1.872	-3.375	1.503	ZZ of N ALA $\beta_{\rm L}$ Diamide 1
64	142.728	146.408	-3.680	XY of N ALA $\beta_{\rm L}$ Diamide 1
65	-39.791	-40.573	0.782	XZ of N ALA $\beta_{\rm L}$ Diamide 1
66	61.148	53.789	7.359	YZ of N ALA β_{I} Diamide 1
67	204.954	209.912	-4.958	XX of N 1 ALA β_1 Diamide 1
68	31.155	32.299	-1.143	YY of N 1 ALA $\beta_{\rm I}$ Diamide 1
69	57.594	59.118	-1.524	ZZ of N 1 ALA $\beta_{\rm I}$ Diamide 1
70	185.585	185.789	-0.204	XY of N 1 ALA β_{I} Diamide 1
71	-14.012	-26.396	12.384	XZ of N 1 ALA β_{I} Diamide 1
72	119.591	109.072	10.519	YZ of N 1 ALA β_{I} Diamide 1
73	171.105	172.329	-1.224	XX of N ALA $\alpha_{\rm L}$ Diamide
74	-45.457	-47.111	1.654	YY of N ALA $\alpha_{\rm L}$ Diamide
75	-54.913	-41.998	-12.915	ZZ of N ALA α_{I} Diamide
76	57.468	65.966	-8.498	XY of N ALA $\alpha_{\rm I}$ Diamide
77	-5.819	-15.390	9.571	XZ of N ALA α_1 Diamide
78	182.780	169.886	12.894	YZ of N ALA α_1 Diamide
79	90.263	85.086	5.177	XX of N 1 ALA $\alpha_{\rm I}$ Diamide
80	-43.018	-37.174	-5.844	YY of N 1 ALA $\alpha_{\rm I}$ Diamide
81	-8.474	-6.998	-1.476	ZZ of N 1 ALA $\alpha_{\rm I}$ Diamide
82	200.529	192.641	7.888	XY of N 1 ALA $\alpha_{\rm L}$ Diamide
83	-14.224	-21.694	7.470	$XZ \text{ of } N = 1 \text{ ALA } \alpha_{I} \text{ Diamide}$
84	233.872	236.910	-3.038	YZ of N 1 ALA $\alpha_{\rm I}$ Diamide
85	222,988	216.845	6.143	XX of NALA $\beta_{\rm L}$ Diamide
86	-17.631	-12.331	-5.299	$YY \text{ of } N \text{ ALA } \beta_L \text{ Diamide}$
87	-1.858	-3.393	1.535	$ZZ \text{ of } N \text{ ALA } \beta_L \text{ Diamide}$
88	142.735	146.467	-3.732	$XY \text{ of } N \text{ ALA } \beta_L \text{ Diamide}$
89	-39 770	-40 541	0 771	$XZ \text{ of } N \text{ ALA } \beta_L \text{ Diamide}$
90	61.148	53.793	7.355	$YZ \text{ of } N \text{ ALA } \beta_L \text{ Diamide}$
91	204.955	209.905	-4.950	XX of N 1 ALA β_L Diamide
92	31.173	32.329	-1.155	YY of N 1 ALA β_L Diamide
93	57.599	59.136	-1.538	$ZZ \text{ of } N = 1 \text{ ALA } \beta_L \text{ Diamide}$
94	185 561	185 791	-0.230	$XY \text{ of } N = 1 \text{ ALA } \beta_L \text{ Diamide}$
95	-14 025	-26 385	12 360	$XZ \text{ of } N = 1 \text{ ALA } \beta_L = Diamide$
96	119 592	109 166	10 426	$YZ \text{ of } N = 1 \text{ ALA } \beta_L \text{ Diamide}$
97	165 473	176 446	-10 973	$XX \text{ of } N \text{ ALA } \gamma_{\text{L}} \text{ Diamide}$
98	-26 056	-35 538	9 482	$YY \text{ of } N \text{ ALA } \gamma_L \text{ Diamide}$
99	-61.461	-56.821	-4.640	$ZZ \text{ of } N \text{ ALA } y_{\text{L}} \text{ Diamide}$
100	64.737	96.151	-31.414	$XY \text{ of } N \text{ ALA } \gamma_{\text{L}}$ Diamide
101	-43.255	-41.399	-1.856	$XZ \text{ of } N \text{ ALA } y_{\text{L}}$ Diamide
102	157.624	164.271	-6.647	YZ of N ALA $\gamma_{\rm L}$ Diamide
103	100.331	105.764	-5.433	XX of N 1 ALA $\gamma_{\rm L}$ Diamide
104	47 296	55 914	-8 618	$YY \text{ of } N = 1 \text{ ALA } \gamma_{L}$ Diamide
105	-1.601	-2.422	0.822	$ZZ \text{ of } N = 1 \text{ ALA } v_{\text{L}} \text{ Diamide}$
106	153 286	154 832	-1.546	$XY \text{ of } N = 1 \text{ ALA } \gamma_{L}$ Diamide
107	9 786	10 245	-0.459	XZ of N = 1 AI A = W Diamide
108	235 372	239 726	-4 354	$VZ \text{ of } N = 1 \text{ ALA}_{TL} \text{ Diamide}$
109	193 594	193.476	0 118	$XX \text{ of } N \text{ ARG } \beta_{L}$ Diamide
110	-32.478	-32 055	-0.423	$YY \text{ of } N \text{ ARG } \beta_{L}$ Diamide
111	47 501	43 270	4 231	ZZ of N ARG B. Diamide
112	80 155	77 146	3 010	$XY \text{ of } N \text{ ARG } \beta_{\text{L}}$ Diamide
113	39 332	42 177	-2.845	$XZ \text{ of } N \text{ ARG } \beta_L \text{ Diamide}$
114	167 513	159 815	7 698	$YZ \text{ of } N \text{ ARG } \beta_{\text{L}}$ Diamide
	10,.010	107.010	1.070	12 01 11 110 pL_Diama

115	227.996	239.043	-11.047	XX of N 1 ARG β_{I} Diamide
116	6.206	9.204	-2.998	YY of N 1 ARG $\beta_{\rm I}$ Diamide
117	14.257	16.808	-2.551	ZZ of N 1 ARG $\beta_{\rm I}$ Diamide
118	154.874	150.507	4.367	XY of N 1 ARG $\beta_{\rm I}$ Diamide
119	68.218	64.019	4.199	XZ of N 1 ARG β_1 Diamide
120	113.342	127.715	-14.373	$YZ \text{ of } N = 1 \text{ ARG } \beta_1 \text{ Diamide}$
121	236.613	217.373	19.240	XX of N 3 β -Sheet 5 residues GLY
122	-59.779	-48.538	-11.241	YY of N 3 B-Sheet 5 residues GLY
123	1.671	1.028	0.643	ZZ of N = 3 B-Sheet 5 residues GLY
124	88,984	64.407	24.577	$XY \text{ of } N = 3 \beta$ -Sheet 5 residues GLY
125	-1.256	-1.332	0.076	XZ of N 3 B-Sheet 5 residues GLY
126	173 171	183 735	-10 564	VZ of N 3 B-Sheet 5 residues GLY
127	241.130	221.343	19.787	XX of N 2 β -Sheet 5 residues GLY
128	52 673	42 158	10 515	$YY \text{ of } N \ge \beta$ -Sheet 5 residues GLY
129	0.007	-0.187	0 194	77 of N 2 B-Sheet 5 residues GLV
130	83 201	60 946	22.255	$XY \text{ of } N = 2 \beta$ Sheet 5 residues GLY
131	0 488	0 509	-0.021	$XT \text{ of } N_2 \beta$ Sheet 5 residues GLY
132	172 993	184 713	-11 720	VZ of N 2 B-Sheet 5 residues GLV
133	242 362	227 597	14 765	XX of N 1 8-Sheet 5 residues GLV
134	-50 933	-48 269	-2 664	VV of N 1 B-Sheet 5 residues GLV
135	0 794	1 473	-0.679	77 of N 1 B-Sheet 5 residues GLV
136	91 664	79 407	12 257	XV of N 1 B-Sheet 5 residues GLV
137	1 221	1 374	-0.153	X7 of N_1 β-Sheet 5 residues GLY
138	184 105	189 494	-5 389	VZ of N_1 β-Sheet 5 residues GLY
139	242 655	221 565	21.090	XX of N 4 B-Sheet 5 residues GLV
140	50 617	41 974	8 642	$XX \text{ of } N_4 \beta$ -sheet 5 residues GL 1 VV of N 4 β -sheet 5 residues GL V
141	-3 283	-0.037	-3 245	$77 \text{ of N} 4 \beta\text{-Sheet 5 residues GLV}$
142	83 950	62 948	21 002	$XY \text{ of } N = 4 \beta$ -Sheet 5 residues GLY
143	3.166	4.128	-0.961	$XZ \text{ of } N \neq \beta$ Sheet 5 residues GLY
144	165.339	183.568	-18.229	YZ of N 4 B-Sheet 5 residues GLY
145	211 299	206 776	4 523	$XX \text{ of } N = 1 \text{ CYS} \beta_{1}$ Diamide
146	-15.867	-14.958	-0.909	$YY \text{ of } N = 1 \text{ CYS } \beta_L \text{ Diamide}$
147	-31.462	-31.671	0.209	$ZZ \text{ of } N = 1 \text{ CYS } \beta_L \text{ Diamide}$
148	135.511	137.932	-2.421	$XY \text{ of } N = 1 \text{ CYS} \beta_L$ Diamide
149	-43.106	-44.249	1.143	$XZ \text{ of } N = 1 \text{ CYS } \beta_L \text{ Diamide}$
150	77.373	65.672	11.701	$YZ \text{ of } N = 1 \text{ CYS } \beta_L = Diamide$
151	228 388	234 204	-5.816	XX of N CYS β_L Diamide
152	6.837	17.831	-10.994	YY of N CYS β_L Diamide
153	28.008	33.466	-5.458	$ZZ \text{ of } N CYS \beta_L$ Diamide
154	178.709	187.088	-8.379	$XY \text{ of } N CYS \beta_L \text{ Diamide}$
155	-23.725	-31.562	7.838	$XZ \text{ of } N \text{ CYS } \beta_L$ Diamide
156	90.412	86.084	4.328	YZ of N CYS $\beta_{\rm L}$ Diamide
157	190.927	188.776	2.151	XX of N GLY v_1 Diamide
158	-54.261	-64.401	10.140	$YY \text{ of } N \text{ GLY } \gamma_t$ Diamide
159	-23.852	-22.031	-1.821	$ZZ \text{ of } N \text{ GLY } \gamma_L$ Diamide
160	78 937	96 853	-17 916	$XY \text{ of } N \text{ GLY } \gamma_{L}$ Diamide
161	19 590	20.516	-0.926	$XZ \text{ of } N \text{ GLY } \gamma_L$ Diamide
162	190 271	193 305	-3 034	$YZ \text{ of } N \text{ GLY } y_L$ Diamide
163	73.592	74.260	-0.667	XX of N GLY $\alpha_{\rm T}$ Diamide
164	-22.543	-17.258	-5.285	YY of N GLY $\alpha_{\rm T}$ Diamide
165	14.305	12.357	1.948	ZZ of N GLY α_1 Diamide
166	204.812	192.863	11.949	XY of N GLY $\alpha_{\rm I}$ Diamide
167	6.273	-1.137	7.410	XZ of N GLY α_1 Diamide

168	240.918	243.387	-2.469	YZ of N GLY $\alpha_{\rm L}$ Diamide
169	252.594	231.334	21.260	XX of N GLY $\beta_{\rm I}$ Diamide
170	-0.254	-0.746	0.492	YY of N GLY $\beta_{\rm I}$ Diamide
171	-27.930	-24.696	-3.233	ZZ of N GLY $\beta_{\rm L}$ Diamide
172	159.068	184.141	-25.073	XY of N GLY $\beta_{\rm I}$ Diamide
173	-1.254	-1.715	0.461	XZ of N GLY β_1 Diamide
174	66.009	59.826	6.183	YZ of N GLY β_1 Diamide
175	215.197	210.828	4.369	XX of N 1 GLY $\beta_{\rm I}$ Diamide
176	0.518	-1.094	1.612	YY of N 1 GLY $\beta_{\rm L}$ Diamide
177	69.728	66.841	2.888	$ZZ \text{ of } N = 1 \text{ GLY } \beta_{L}$ Diamide
178	184.227	188.371	-4.144	XY of N 1 GLY $\beta_{\rm L}$ Diamide
179	2.215	1.503	0.712	$XZ \text{ of } N = 1 \text{ GLY } \beta_1$ Diamide
180	115.675	95.294	20.381	YZ of N 1 GLY $\beta_{\rm L}$ Diamide
181	195,109	198.173	-3.064	$XX \text{ of } N \text{ GLN } \beta_L$ Diamide
182	-17 144	-13 851	-3 294	$YY \text{ of } N \text{ GLN } \beta_L \text{ Diamide}$
183	-53 408	-56 253	2.845	$77 \text{ of } N \text{ GLN }_{\text{DL}}$ Diamide
184	153 499	159 679	-6 180	$XY \text{ of } N \text{ GLN} \beta_L$ Diamide
185	-21 102	-12.966	-8 137	$XT \text{ of } N \text{ GLN}_p_L$ Diamide
186	55 786	58 540	-2.755	$VZ \text{ of } N \text{ GLN}_{pl}$ Diamide
187	230 327	231 088	-0.761	$XX \text{ of } N = 1 \text{ GLN } \beta_L$ Diamide
188	11 247	6 688	4 559	$VV \text{ of } N = 1 \text{ GLN } \beta_L$ Diamide
189	20 393	17 913	2,479	$77 \text{ of } N_1 \text{ GLN } \beta_L$ Diamide
190	197 566	190 751	6 815	$XY \text{ of } N = 1 \text{ GLN}_{PL}$ Diamide
191	7 729	-0.603	8 332	$XT \text{ of } N_1 \text{ GLN } \beta_L$ Diamide
192	78 273	62 414	15 859	$VZ \text{ of } N = 1 \text{ GLN}_{PL}$ Diamide
193	96 929	117 937	-21.008	$XX \text{ of } N \text{ GL N} \neq \text{Diamide}$
194	-56 487	-44 344	-12 143	$VV \text{ of } N \text{ GLN}_{T_{L}}$ Diamide
195	-60 280	-68 623	8 343	$77 \text{ of N GLN}_{T_{L_{Dlamide}}}$
196	126 896	153 672	-26 776	$XY \text{ of } N \text{ GLN} $ γ_L Diamide
197	-8 077	-8 078	0.001	$XT of N GLN_{T_Diamide}$
198	162 502	188 889	-26 387	$VZ \text{ of } N \text{ GLN}_{T_{L_{i}}} Diamide$
199	224 839	227 837	-2.998	$XX \text{ of } N = 1 \text{ GLN } v_t$ Diamide
200	-12.002	-11 808	-0.195	$VV \text{ of } N = 1 \text{ GLN } v_t \text{ Diamide}$
201	-17 826	-14 639	-3 187	$77 \text{ of } N = 1 \text{ GLN}_{1}$ Diamide
202	177 070	182 627	-5 557	$XY \text{ of } N = 1 \text{ GLN } \gamma_{L}$ Diamide
203	41 935	43.534	-1 599	$XZ \text{ of } N = 1 \text{ GLN}_{1}$ Diamide
204	77 866	75 887	1 979	$VZ \text{ of } N = 1 \text{ GLN}_{T_{L_{1}}} Diamide$
205	214 666	198 416	16 250	$XX \text{ of } N \text{ GLN } \alpha_{\text{L}}$ Diamide
206	-55 356	-40 556	-14 800	$YY \text{ of } N \text{ GLN } \alpha_L \text{ Diamide}$
207	-12 940	-6 957	-5 983	$ZZ \text{ of } N \text{ GLN } \alpha_L \text{ Diamide}$
208	82.417	97.857	-15.439	XY of N GLN $\alpha_{\rm L}$ Diamide
209	49 489	54 595	-5 106	$XZ \text{ of } N \text{ GLN} \alpha_L$ Diamide
210	120 054	125 736	-5 682	$YZ \text{ of } N \text{ GLN } \alpha_L$ Diamide
211	209.800	214.520	-4.720	XX of N 1 GLN $\alpha_{\rm L}$ Diamide
212	-9.750	-8.392	-1.358	YY of N 1 GLN $\alpha_{\rm L}$ Diamide
213	50.007	54.680	-4.673	$ZZ \text{ of } N = 1 \text{ GLN } \alpha_L$ Diamide
214	187.390	178.417	8.973	XY of N 1 GLN $\alpha_{\rm L}$ Diamide
215	62.158	54.654	7.504	XZ of N 1 GLN $\alpha_{\rm L}$ Diamide
216	124.926	131.015	-6.089	YZ of N 1 GLN α_1 Diamide
217	201.910	207.291	-5.381	XX of N HIS Diamide
218	-24.196	-26.984	2.787	YY of N HIS Diamide
219	-48.663	-49.060	0.397	ZZ of N HIS_Diamide
220	153.256	168.548	-15.292	XY of N HIS_Diamide

001	16.006	10.044	1 0 1 7	
221	-16.896	-18.244	1.347	XZ of N HIS_Diamide
222	59.957	70.198	-10.241	YZ of N HIS_Diamide
223	200.428	204.581	-4.153	XX of N_1 HIS_Diamide
224	-28.321	-18.194	-10.128	YY of N 1 HIS Diamide
225	21.060	14.013	7.047	ZZ of N 1 HIS Diamide
226	147.060	141.880	5,180	XY of \overline{N} 1 HIS Diamide
227	-72.135	-78 755	6 620	XZ of N = 1 HIS Diamide
227	165 317	154 906	10.411	VZ of N_1 HIS_Diamide
220	105.517	122 417	5 104	VV of NE HIS Diamida
229	127.225	132.417	-3.194	XX of NE IIIS_Diamide
230	41.201	54.572	0.009	T I OI NE HIS_Diamide
231	55.208	53.024	2.185	ZZ of NE HIS_Diamide
232	51.6/8	66.941	-15.263	XY of NE HIS_Diamide
233	-46.188	-41.615	-4.573	XZ of NE HIS_Diamide
234	139.456	141.774	-2.318	YZ of NE HIS_Diamide
235	204.928	206.970	-2.042	XX of N Lysine
236	-40.913	-32.527	-8.386	YY of N Lysine
237	12.234	19.347	-7.113	ZZ of N Lysine
238	69.696	60.034	9.662	XY of N Lysine
239	-30.526	-33.069	2.543	XZ of N Lysine
240	158.613	156.781	1.832	YZ of N Lysine
241	167 602	166 845	0.757	XX of N = 1 Lysine
242	-18 140	-9 694	-8 446	VV of N 1 Lysine
242	-70.848	-82 106	2 258	77 of N = 1 Lysine
243	107 027	100 480	2.230	XV of N_1 Lysine
244	197.937	190.460	1.457	XI OIN_I Lyshie
245	-25.549	-27.008	1.439	XZ of N_1 Lysine
246	152.142	148.074	4.068	YZ of N_1 Lysine
247	187.618	194.720	-7.102	XX of N MET_ β_L _Diamide
248	-29.919	-23.497	-6.422	YY of N MET_ β_L _Diamide
249	37.587	33.229	4.358	ZZ of N MET_ β_L _Diamide
250	62.748	54.165	8.584	XY of N MET β_{I} Diamide
251	29.590	34.435	-4.845	XZ of N MET β_1 Diamide
252	178 328	168 571	9 7 5 7	$VZ \text{ of } N \text{ MET } \beta_{z}$ Diamide
252	232 184	231.870	0.314	VY of N 1 MET 9 Diamide
255	51 721	231.870	5.590	$XX \text{ of } N_1 \text{ MET}_p_L$ Diamide
234	51.721	40.132	5.589	Y Y of N_1 ME1_ β_L _Diamide
255	-/.846	-10.228	2.382	ZZ of N_1 ME1_ β_L _Diamide
256	112.199	112.549	-0.350	XY of N_1 MET_ β_L _Diamide
257	35.653	43.663	-8.010	XZ of N_1 MET_ β_L _Diamide
258	169.013	172.335	-3.322	YZ of N 1 MET β_L Diamide
259	222.562	212.957	9.605	XX of N ORN β_{I} Diamide
260	-16.023	-14.292	-1.732	YY of N ORN B. Diamide
261	-25 674	-20 700	-4 974	$77 \text{ of N ORN } \beta_{\text{L}}$ Diamide
261	18 157	20.700 45.647	2.810	$\Sigma \Sigma$ of N ORN β Diamide
202	40.437	15 200	2.010	$X I OI N OKN_{p_L}$ Diamide
263	-9.297	-15.309	6.012	XZ of N ORN_ β_L _Diamide
264	170.138	168.097	2.041	YZ of N ORN_ β_L _Diamide
265	220.359	216.850	3.509	XX of N_1 ORN_ β_L _Diamide
266	47.000	45.105	1.895	YY of N_1 ORN_ β_L _Diamide
267	-9.648	-5.288	-4.359	ZZ of N 1 ORN β_{I} Diamide
268	119.341	108.808	10.533	XY of N 1 ORN $\beta_{\rm r}$ Diamide
269	-56 331	-53 041	-3 291	$XZ \text{ of } N = 1 \text{ ORV } \beta_{-}$ Diamide
20)	170.018	183 256	2 2 2 2	$XZ \text{ of } N_1 \text{ ORN}_p \text{_Diamide}$
270	1/7.710	103.230	-3.330	$12.01 \text{ m}_1 \text{ UKm}_{\text{PL}}$ Diamide
2/1	119.3/1	134.118	-14./4/	XX of N PHE_ β_L _Diamide
272	-30.842	-25.987	-4.855	YY of N PHE_ β_L _Diamide
273	-48.794	-49.583	0.789	ZZ of N PHE_ β_L _Diamide
274	205.508	225.205	-19.697	XY of N PHE_ β_L Diamide
275	-20.239	-22.736	2.497	XZ of N PHE $\beta_{\rm T}$ Diamide

276	72.097	96.217	-24.119	YZ of N PHE β_1 Diamide
277	181.760	184.080	-2.320	XX of N 1 PHE $\beta_{\rm I}$ Diamide
278	-68 114	-68.060	-0.054	VV of N 1 PHF B. Diamide
279	39 271	41 453	-2 181	77 of N 1 PHE $\beta_{\rm L}$ Diamide
277	125 011	1/1 519	-2.101	XX of N_1 DUE 0 Dismide
200	25.104	141.310	-5.007	XY OIN_IPHE_pL_Diamide
281	25.104	30./31	-5.628	XZ of N_I PHE_ β_L _Diamide
282	168.749	1/1.650	-2.901	YZ of N_1 PHE_ β_L _Diamide
283	96.057	84.196	11.862	XX of N_2 PHE_ β_L _Diamide
284	45.658	47.318	-1.660	YY of N_2 PHE_ β_L _Diamide
285	4.509	5.292	-0.783	ZZ of N_2 PHE_ β_L _Diamide
286	229.795	211.499	18.296	XY of N_2 PHE_ β_L _Diamide
287	14.511	18.899	-4.388	XZ of N 2 PHE β_L Diamide
288	212.839	203.238	9.601	YZ of N 2 PHE β_L Diamide
289	210.879	202.147	8.732	XX of N SER Diamide
290	-39.975	-46.716	6.740	YY of N SER Diamide
291	-22.055	-25.040	2.985	ZZ of N SER Diamide
292	58.004	54.647	3.357	XY of N SER Diamide
293	-0.146	-9.363	9.217	XZ of N SER Diamide
294	167.931	157.309	10.622	YZ of N SER Diamide
295	69.972	66.366	3.605	XX of N 1 SER Diamide
296	-12.716	-1.179	-11.537	YY of N ¹ SER Diamide
297	-29.747	-27.739	-2.008	ZZ of N 1 SER Diamide
298	198.346	194.191	4.155	XY of \overline{N} 1 SER Diamide
299	3.131	-2.194	5.325	$XZ \text{ of N}^{-1} \text{ SER}^{-1}$ Diamide
300	232.954	232.367	0.587	YZ of N ¹ SER ^{Diamide}
301	74.347	67.837	6.510	XX of \overline{N} 3 ALA Tripeptide
302	-8.447	-16.320	7.873	YY of N ³ ALA Tripeptide
303	-16.737	-13.977	-2.760	ZZ of N 3 ALA Tripeptide
304	206.834	226.600	-19.766	XY of N 3 ALA Tripeptide
305	-15.994	-33.564	17.569	XZ of N ³ ALA Tripeptide
306	203.457	170.262	33.195	YZ of N ³ ALA Tripeptide
307	115.222	120.217	-4.995	XX of N 2 ALA Tripeptide
308	-34.245	-43.192	8.947	YY of N ² ALA Tripeptide
309	-81.273	-68.083	-13.190	ZZ of N 2 ALA Tripeptide
310	193.386	169.551	23.835	XY of N 2 ALA Tripeptide
311	-10.173	-5.660	-4.512	XZ of N ² ALA Tripeptide
312	119.893	109.825	10.068	YZ of N ² ALA Tripeptide
313	213.873	205.835	8.038	XX of N TYR Diamide
314	-44.462	-43.373	-1.090	YY of N TYR Diamide
315	-36.235	-27.541	-8.694	ZZ of N TYR Diamide
316	67.962	63.034	4.928	XY of N TYR Diamide
317	-14.260	-21.115	6.855	XZ of N TYR_Diamide
318	142.313	145.377	-3.064	YZ of N TYR_Diamide
319	122.121	128.143	-6.022	XX of N_1 TYR_Diamide
320	-40.734	-31.073	-9.660	YY of N_1 TYR_Diamide
321	-54.396	-52.892	-1.504	ZZ of N_1 TYR_Diamide
322	200.238	189.481	10.757	XY of N_1 TYR_Diamide
323	-44.207	-47.041	2.834	XZ of N_1 TYR_Diamide
324	196.168	199.370	-3.202	YZ of N_1 TYR_Diamide
325	72.450	84.094	-11.644	XX of N Adenine
326	51.547	53.058	-1.510	YY of N Adenine
327	0.312	-0.084	0.396	ZZ of N Adenine
328	88.808	62.405	26.403	XY of N Adenine
329	0.218	0.501	-0.283	XZ of N Adenine
330	174.518	165.071	9.447	YZ of N Adenine
331	126.543	127.810	-1.267	XX of N3 Guanine

332	2.081	0.516	1.565	YY of N3 Guanine
333	21.883	7.414	14.469	ZZ of N3 Guanine
334	171.216	169.490	1.726	XY of N3 Guanine
335	-12.490	-12.183	-0.308	XZ of N3 Guanine
336	30.844	23.145	7.699	YZ of N3 Guanine
337	91.413	102.011	-10.598	XX of N1 Imidazol
338	-5.000E-5	0	-5.000E-5	YY of N1 Imidazol
339	-56.629	-47.440	-9.189	ZZ of N1 Imidazol
340	194.861	191.378	3.483	XY of N1 Imidazol
341	1.200E-4	0	1.200E-4	XZ of N1 Imidazol
342	33.590	51.527	-17.937	YZ of N1 Imidazol
343	18.661	23.123	-4.462	XX of N1 Pyrrolidin
344	0.004	0.003	8.368E-4	YY of N1 Pyrrolidin
345	0.037	0.026	0.011	ZZ of N1 Pyrrolidin
346	200.410	199.996	0.414	XY of N1 Pyrrolidin
347	-8.160	-6.479	-1.681	XZ of N1 Pyrrolidin
348	123.628	139.028	-15.400	YZ of N1 Pyrrolidin
349	28.751	26.107	2.643	XX of N4 Coffein
350	0.001	0.016	-0.015	YY of N4 Coffein
351	-55.246	-40.383	-14.862	ZZ of N4 Coffein
352	184.250	197.983	-13.733	XY of N4 Coffein
353	-0.009	0.006	-0.015	XZ of N4 Coffein
354	79.039	67.949	11.090	YZ of N4 Coffein

LISTE ALLER ¹⁵N MOLEKÜLE (KOORDINATIONSZAHL 2) DER BPT-PARAMETRISIERUNG

Nr.	MP2/TZVPP	BPT	MP2(TZVPP) - BPT	Bezeichnung Tensorkomponente
1	-72.540	-21.698	-50.842	XX of N_1 Adenine
2	28.547	5.676	22.871	YY of N_1 Adenine
3	-2.668	-1.976	-0.692	ZZ of N_1 Adenine
4	-143.378	-174.404	31.026	XY of N_1 Adenine
5	-3.875	-0.455	-3.42	XZ of N_1 Adenine
6	258.148	253.602	4.546	YZ of N_1 Adenine
7	-134.130	-167.886	33.756	XX of N_2 Adenine
8	-26.351	-32.970	6.619	YY of N_2 Adenine
9	-1.550	-3.077	1.527	ZZ of N_2 Adenine
10	-79.755	-76.924	-2.831	XY of N_2 Adenine
11	0.380	1.339	-0.959	XZ of N_2 Adenine
12	280.266	280.583	-0.317	YZ of N_2 Adenine
13	-148.850	-163.463	14.613	XX of N_3 Adenine
14	-25.931	-21.072	-4.859	YY of N_3 Adenine
15	0.293	1.157	-0.864	ZZ of N_3 Adenine
16	-35.133	-84.692	49.559	XY of N_3 Adenine
17	1.766	2.126	-0.36	XZ of N_3 Adenine
18	262.566	251.957	10.609	YZ of N_3 Adenine
19	-97.537	-178.134	80.597	XX of N_2 Allopurinol
20	-0.051	-0.036	-0.015	YY of N_2 Allopurinol
21	36.605	45.068	-8.463	ZZ of N_2 Allopurinol
22	292.189	302.884	-10.695	XY of N_2 Allopurinol
23	-0.123	0.021	-0.144	XZ of N_2 Allopurinol
24	-61.792	-106.901	45.109	YZ of N_2 Allopurinol
25	-144.672	-151.821	7.149	XX of N3 Coffein

26	0.002	0.033	-0.031	YY of N3 Coffein
27	20.081	13.474	6.607	ZZ of N3 Coffein
28	240.959	252.952	-11.993	XY of N3 Coffein
29	-0.035	-0.020	-0.015	XZ of N3 Coffein
30	-27.136	-77.741	50.605	YZ of N3 Coffein
31	-54.833	-101.177	46.344	XX of N2 Benzoimidazol
32	-0.058	0.123	-0.181	YY of N2 Benzoimidazol
33	26.859	21,193	5.666	ZZ of N2 Benzoimidazol
34	246 788	244 706	2 082	XY of N2 Benzoimidazol
35	-0.029	-0.235	0 206	XZ of N2 Benzoimidazol
36	-163 690	-175 963	12 273	YZ of N2 Benzoimidazol
37	-42 318	19 107	-61 425	XX of N2 Cytosine
38	-35 610	-23 526	-12 084	VV of N2 Cytosine
30	-57.642	-63.628	5 986	77 of N2 Cytosine
40	-57.042	201 125	2 5 5 4	XV of N2 Cytosine
40	204.069	201.133	5.554	X7 of N2 Cytosine
41	10.070	3.960	10.09 54.707	XZ of N2 Cytosine
42	-/8.990	-24.289	-54./0/	YZ OI N2 Cytosine
43	-38./14	-64.908	26.194	XX of N4 Guanine
44	4.2/1	-2.740	7.011	Y Y of N4 Guanine
45	-11.538	-11.038	-0.5	ZZ of N4 Guanine
46	261.522	256.379	5.143	XY of N4 Guanine
47	-23.118	-22.129	-0.989	XZ of N4 Guanine
48	33.491	43.394	-9.903	YZ of N4 Guanine
49	-160.454	-167.194	6.74	XX of N2 Guanine
50	2.075	0.417	1.658	YY of N2 Guanine
51	51.527	29.702	21.825	ZZ of N2 Guanine
52	260.002	266.609	-6.607	XY of N2 Guanine
53	-25.634	-29.538	3.904	XZ of N2 Guanine
54	-67.261	-85.228	17.967	YZ of N2 Guanine
55	52.929	48.756	4.173	XX of ND HIS_Diamide
56	-30.250	-32.899	2.649	YY of ND HIS_Diamide
57	157.770	159.397	-1.627	ZZ of ND HIS_Diamide
58	-177.467	-166.938	-10.529	XY of ND HIS_Diamide
59	-11.974	-12.776	0.802	XZ of ND HIS Diamide
60	109.010	105.073	3.937	YZ of ND HIS_Diamide
61	-51.372	-88.874	37.502	XX of N3 Hypoxanthine
62	0.264	0.490	-0.226	YY of N3 Hypoxanthine
63	-20.968	-22.349	1.381	ZZ of N3 Hypoxanthine
64	259.164	269.665	-10.501	XY of N3 Hypoxanthine
65	-0.348	-0.141	-0.207	XZ of N3 Hypoxanthine
66	-183.602	-175.026	-8.576	YZ of N3 Hypoxanthine
67	-195.587	-191.915	-3.672	XX of N 3 Imidazol
68	-1.000E-5	0	-1E-5	YY of N^{3} Imidazol
69	-17.883	-5.190	-12.693	$ZZ \text{ of N } \overline{3} \text{ Imidazol}$
70	266.123	265.648	0.475	XY of \overline{N} 3 Imidazol
71	1.800E-4	0	1.8E-4	$XZ \text{ of } N^{3} \text{ Imidazol}$
72	-80 484	-91 992	11 508	YZ of N 3 Imidazol
73	-179.458	-127.334	-52.124	XX of N 2 CH3-Imidazolecarboxaldehvde
74	-0.842	-0.628	-0.214	YY of N ² CH3-Imidazolecarboxaldehyde
75	-53 797	-44 279	-9.518	ZZ of N 2 CH3-Imidazolecarboxaldehyde
76	242 671	246 794	-4 123	XY of N 2 CH3-Imidazolecarboxaldehyde
77	0.007	0 600	-0 593	XZ of N 2 CH3-Imidazolecarboxaldehyde
,, 78	-87 021	-95 572	8 551	YZ of N 2 CH3-Imidazolecarboxaldehyde
79	-72 324	-98 404	26.08	XX of N 1 Acetyl-Imidazolovrazine
80	-59 564	-14 416	-45 148	YY of N 1 Acetyl-Imidazolpyrazine
81	0 154	0.025	0 1 2 9	ZZ of N 1 Acetyl-Imidazolnyrazine
82	-179 801	-193 416	13 615	XY of N 1 Acetyl-Imidazolpyrazine
04	-1/9.001	-175.410	15.015	

83	0.509	0.611	-0.102	XZ of N 1 Acetyl-Imidazolpyrazine
84	254.500	264.426	-9.926	YZ of N ¹ Acetyl-Imidazolpyrazine
85	-278.668	-296.619	17.951	XX of N 3 Acetyl-Imidazolpyrazine
86	29.855	27.094	2.761	YY of N ³ Acetyl-Imidazolpyrazine
87	0.286	0.190	0.096	ZZ of N 3 Acetyl-Imidazolpyrazine
88	-118.570	-124.871	6.301	XY of N 3 Acetyl-Imidazolpyrazine
89	0.295	0.313	-0.018	XZ of N ³ Acetyl-Imidazolpyrazine
90	315.656	306.338	9.318	YZ of N ³ Acetyl-Imidazolpyrazine
91	-158.812	-123.183	-35.629	XX of N Pyrazin
92	-29.792	-27.355	-2.437	YY of N Pyrazin
93	10.906	9.902	1.004	ZZ of N Pyrazin
94	315.581	312.315	3.266	XY of N Pyrazin
95	-45.618	-41.724	-3.894	XZ of N Pyrazin
96	-342.099	-289.137	-52.962	YZ of N Pyrazin
97	-340.380	-277.673	-62.707	XX of N Pyridin
98	0	0	0	YY of N Pyridin
99	0	-3.098E-8	3.098E-8	ZZ of N Pyridin
100	312.084	303.236	8.848	XY of N Pyridin
101	0	0	0	XZ of N Pyridin
102	-154.175	-106.271	-47.904	YZ of N Pyridin
103	-205.177	-132.330	-72.847	XX of N Pirimidin
104	0	0	0	YY of N Pirimidin
105	62.906	66.225	-3.319	ZZ of N Pirimidin
106	299.144	297.715	1.429	XY of N Pirimidin
107	0	0	0	XZ of N Pirimidin
108	-231.344	-211.345	-19.999	YZ of N Pirimidin

LISTE ALLER ³¹P MOLEKÜLE (IN PHOSPHATGRUPPEN) DER BPT-PARAMETRISIERUNG

MP2/TZVPP	BPT	MP2(TZVPP)	Bezeichnung Tensorkomponente
		- BPT	
259.605	263.808	-4.203	XX P of AMP
-61.839	-68.74	6.901	YY P of AMP
-27.094	-33.769	6.675	ZZ P of AMP
431.232	421.705	9.527	XY P of AMP
62.944	59.94	3.004	XZ P of AMP
282.387	269.731	12.656	YZ P of AMP
262.008	258.567	3.441	XX P of MPHAC2
-0.76	-4.666	3.906	YY P of MPHAC2
18.106	17.74	0.366	ZZ P of MPHAC2
268.921	276.681	-7.76	XY P of MPHAC2
-69.088	-76.537	7.449	XZ P of MPHAC2
418.921	422.64	-3.719	YZ P of MPHAC2
399.061	395.108	3.953	XX P_1 of MPYPHAC1
-58.171	-57.873	-0.298	YY P_1 of MPYPHAC1
122.391	128.278	-5.887	ZZ P_1 of MPYPHAC1
272.553	275.686	-3.133	XY P_1 of MPYPHAC1
-33.092	-9.44	-23.652	XZ P_1 of MPYPHAC1
342.804	339.475	3.329	YZ P_1 of MPYPHAC1
340.068	344.382	-4.314	XX P of MPYPHAC1
101.777	92.849	8.928	YY P of MPYPHAC1
-55.649	-59.932	4.283	ZZ P of MPYPHAC1
357.768	340.639	17.129	XY P of MPYPHAC1
	MP2/TZVPP 259.605 -61.839 -27.094 431.232 62.944 282.387 262.008 -0.76 18.106 268.921 -69.088 418.921 399.061 -58.171 122.391 272.553 -33.092 342.804 340.068 101.777 -55.649 357.768	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

23	-71 3/0	-62 538	-8.811	X7 P of MPVPHAC1
23	305 /05	301 427	4.068	VZ P of MPVPHAC1
24	300.495	304 624	4.008	VY D of MDVDHAC
25	58 805	58 017	4.002	VV D of MDVDHAC
20	JO.095	128 202	-0.022	$\frac{1}{77} \text{ P}_{\text{of}} MDVDUAC$
27	-122.437	-128.202	3.743	ZZ P OI MP I PHAC
28	272.982	2/5.966	-2.984	XYPOI MPYPHAC
29	-33.493	-9.5/2	-23.921	XZ P of MPYPHAC
30	342.512	339.717	2.795	YZ P of MPYPHAC
31	341.044	345.712	-4.668	XX P_1 of MPYPHAC
32	-101.427	-92.602	-8.825	YYP_1 of MPYPHAC
33	56.133	60.266	-4.133	ZZ P_1 of MPYPHAC
34	356.151	339.182	16.969	XY P_1 of MPYPHAC
35	-71.257	-62.548	-8.709	XZ P_1 of MPYPHAC
36	305.864	301.57	4.294	YZ P_1 of MPYPHAC
37	261.293	255.589	5.704	XX P of DMPHAC2
38	14.298	4.056	10.242	YY P of DMPHAC2
39	1.945	2.984	-1.039	ZZ P of DMPHAC2
40	442.277	445.314	-3.037	XY P of DMPHAC2
41	-22.075	-24.307	2.232	XZ P of DMPHAC2
42	242.546	246.668	-4.122	YZ P of DMPHAC2
43	267.006	264.949	2.057	XX P of ETHPHAC
44	-19.074	-20.599	1.525	YY P of ETHPHAC
45	-14.868	-15.281	0.413	ZZ P of ETHPHAC
46	356.375	368.51	-12.135	XY P of ETHPHAC
47	96.54	102 766	-6 226	XZ P of ETHPHAC
48	325 755	326 299	-0 544	YZ P of ETHPHAC
49	269 145	279 108	-9.963	XX P of ISPRPHAC
50	-41 214	-52 833	11 619	VY P of ISPRPHAC
51	-18 266	-19 282	1 016	77 P of ISPRPHAC
52	442 798	442 034	0.764	XX P of ISPRPHAC
52	10 113	1/ 883	1 77	V7 D of ISDDDHAC
55	250.075	244 527	-4.77	VZ D of ISDDDHAC
55	250.075	244.337	5.538	VY D of MEODUAC
55	230.037	243.092	0.743	XX P of MEOPHAC
50 57	-10.184	-11.845	1.001	Y Y P OI MEOPHAC
51	2.303	-3.770	9.139	ZZ P OI MEOPHAC
58	250.888	262.921	-12.033	XY POI MEOPHAC
59	-40.996	-46.263	5.26/	XZ P of MEOPHAC
60	448.848	447.253	1.595	YZ P of MEOPHAC
61	524.073	498.431	25.642	XX P of POSAC2
62	-0.909	-4.839	3.93	YYP of POSAC2
63	-1.159	-3.091	1.932	ZZ P of POSAC2
64	235.411	249.629	-14.218	XY P of POSAC2
65	-0.029	-2.107	2.078	XZ P of POSAC2
66	235.266	253.497	-18.231	YZ P of POSAC2
67	323.847	329.545	-5.698	XX P of ADP reduced model
68	-27.166	-27.537	0.371	YY P of ADP reduced model
69	64.064	69.441	-5.377	ZZ P of ADP reduced model
70	243.103	241.593	1.51	XY P of ADP reduced model
71	-19.227	-13.118	-6.109	XZ P of ADP reduced model
72	419.52	426.838	-7.318	YZ P of ADP reduced model
73	418.332	416.296	2.036	XX P_1 of ADP reduced model
74	-96.618	-109.854	13.236	YY P_1 of ADP reduced model
75	-29.585	-22.355	-7.23	ZZ P 1 of ADP reduced model
76	284.007	297.322	-13.315	XY P 1 of ADP reduced model
77	1.035	-21.534	22.569	XZ P ¹ of ADP reduced model
78	282.021	285.04	-3.019	YZ P ¹ of ADP reduced model
				-

LISTE ALLER ${}^1\text{H}_{\alpha}$ MOLEKÜLE DER BPT-PARAMETRISIERUNG

Nr.	MP2/TZVPP	BPT	MP2(TZVPP) - BPT	Bezeichnung Tensorkomponente
1	26.888	27.214	-0.326	XX of HA Acetyl-ALA
2	0.555	-0.139	0.694	YY of HA Acetyl-ALA
3	0.525	-0.13	0.655	ZZ of HA Acetyl-ALA
4	24.451	25.346	-0.895	XY of HA Acetyl-ALA
5	-0.797	-0.478	-0.319	XZ of HA Acetyl-ALA
6	31.193	30.659	0.534	YZ of HA Acetyl-ALA
7	27.258	27.428	-0.17	XX of H1A Acetyl-GLY
8	4.294	2.733	1.561	YY of H1A Acetyl-GLY
9	-2.213	-1.739	-0.474	ZZ of H1A Acetyl-GLY
10	28.054	28.914	-0.86	XY of H1A Acetyl-GLY
11	-0.513	1.473	-1.986	XZ of H1A Acetyl-GLY
12	27.772	27.004	0.768	YZ of H1A Acetyl-GLY
13	27.3	27.477	-0.177	XX of H2A Acetyl-GLY
14	-4.296	-2.749	-1.547	YY of H2A Acetyl-GLY
15	-2.197	-1.728	-0.469	ZZ of H2A Acetyl-GLY
16	27.928	28.862	-0.934	XY of H2A Acetyl-GLY
17	0.492	-1.495	1.987	XZ of H2A Acetyl-GLY
18	27.775	27.007	0.768	YZ of H2A Acetyl-GLY
19	31.991	29.212	2.779	XX of H2A GLY_I α -Helix
20	-1.839	-0.831	-1.008	Y Y of H2A GLY_I α -Helix
21	2.278	2.176	0.102	ZZ of H2A GLY_1 α -Helix
22	28.37	28.766	-0.396	XY of H2A GLY_1 α -Helix
23	0.169	-1.143	1.312	XZ of H2A GLY_1 α-Helix
24	24.524	25.327	-0.803	YZ of H2A GLY_1 α-Helix
25	26.627	27.713	-1.086	XX of H1A GLY_2 α-Helix
26	0.256	1.32	-1.064	YY of H1A GLY_2 α-Helix
27	-4.67	-2.947	-1.723	ZZ of H1A GLY_2 α-Helix
28	27.937	28.205	-0.268	XY of H1A GLY_2 α-Helix
29	-0.46	-0.05	-0.41	XZ of H1A GLY_2 α-Helix
30	30.53	27.375	3.155	YZ of H1A GLY_2 α-Helix
31	28.882	26.828	2.054	XX of H1A GLY_3 α-Helix
32	0.809	0.992	-0.183	YY of H1A GLY_3 α-Helix
33	5.101	2.998	2.103	ZZ of H1A GLY_3 α-Helix
34	28.205	28.221	-0.016	XY of H1A GLY 3 α -Helix
35	-1.498	0.285	-1.783	XZ of H1A GLY 3 α-Helix
36	28.307	28.246	0.061	YZ of H1A GLY ⁻ 3 α-Helix
37	27.525	26.706	0.819	XX of H1A GLY 1 α-Helix
38	2.864	2.828	0.036	YY of H1A GLY ⁻¹ α-Helix
39	-2.866	-0.159	-2.707	ZZ of H1A GLY 1α -Helix
40	27.426	26.394	1.032	XY of H1A GLY 1 α -Helix
41	-0.139	-1.366	1.227	XZ of H1A GLY 1 α -Helix
42	28.385	30.258	-1.873	YZ of H1A GLY 1 α -Helix
43	26 382	29 673	-3 291	XX of H2A GLY a-Helix
44	-0 574	-0 114	-0.46	YY of H2A GLY a-Helix
45	2 653	1 813	0.84	$77 \text{ of } H2A \text{ GLY } \alpha$ -Helix
46	2.000	26 708	_0 426	$XY \text{ of } H2A \text{ GIV } \alpha_{-}Haliv$
47	20.202	20.700	-0.+20 0.185	$X7 \text{ of } H2A \text{ GIV} \alpha_{-}Haliv$
48	2.254	2.17)	2 0.105	$V7 \text{ of } H2\Lambda \text{ GLV} \propto Haliy$
0 0	27.000	20.703	2.703	YY of H2A CLV 2 ~ Haliw
47 50	20.301	23.023	0.938	AA UI $\Pi 2A$ UL I \Im \mathcal{U} -HellX
50	-4.004	-2.043	-1.301	1 1 01 H2A GL $1_3 \alpha$ -Helix

51	-1.423	-1.57	0.147	ZZ of H2A GLY 3α -Helix
52	27.668	28.601	-0.933	XY of H2A GLY 3 α -Helix
53	-0.667	0.469	-1.136	XZ of H2A GLY $\overline{3} \alpha$ -Helix
54	27.101	29.115	-2.014	YZ of H2A GLY 3α -Helix
55	32	29.218	2.782	XX of H1A GLY 1 α -Helix 4 residues
56	-2 281	-2.176	-0.105	YY of H1A GLY 1 α -Helix 4 residues
57	-1.832	-0.828	-1 004	$77 \text{ of H1A GLY 1} \alpha$ -Helix 4 residues
58	24 515	25 326	-0.811	$XV \text{ of } H1 \text{ GLV} 1 \alpha$ -Helix 4 residues
59	-0.17	1 143	_1 313	X7 of H1A GLV 1 a-Helix 4 residues
60	-0.17	28 762	-0.392	VZ of H1A GLV 1 a Helix 4 residues
61	26.57	20.702	-1.070	$VX \text{ of } H2A \text{ GLV} 2 \alpha$ Helix 4 residues
62	20.033	27.712	-1.079	XX of H2A CLY 2 & Helix 4 residues
63	4.073	2.949	1.720	77 of H2A CLV 2 or Holiy 4 residues
64	0.247	1.313	-1.008	ZZ of H2A GLY 2 α -Helix 4 residues
04 65	50.525	27.374	5.149	XY of H2A GLY 2 α -Helix 4 residues
05	0.459	0.054	0.405	XZ of H2A GLY $_2$ α -Helix 4 residues
00	27.942	28.207	-0.265	YZ of H2A GLY 2α -Helix 4 residues
6/	28.802	26.768	2.034	XX of HIA GLY_3 α -Helix 4 residues
68	-5.108	-2.985	-2.123	YY of HIA GLY_3 α -Helix 4 residues
69 70	0.813	0.977	-0.164	ZZ of H1A GLY_3 α -Helix 4 residues
70	28.354	28.294	0.06	XY of H1A GLY_3 α -Helix 4 residues
71	1.459	-0.312	1.771	XZ of H1A GLY_3 α -Helix 4 residues
72	28.227	28.233	-0.006	YZ of H1A GLY_3 α -Helix 4 residues
73	27.516	26.698	0.818	XX of H2A GLY_1 α -Helix 4 residues
74	2.862	0.157	2.705	YY of H2A GLY_1 α -Helix 4 residues
75	2.858	2.829	0.029	ZZ of H2A GLY_1 α -Helix 4 residues
76	28.381	30.262	-1.881	XY of H2A GLY_1 α -Helix 4 residues
77	0.139	1.364	-1.225	XZ of H2A GLY_1 α -Helix 4 residues
78	27.418	26.398	1.02	YZ of H2A GLY_1 α -Helix 4 residues
79	26.385	29.674	-3.289	XX of H1A GLY_2 α -Helix 4 residues
80	-2.64	-1.808	-0.832	YY of H1A GLY 2 α -Helix 4 residues
81	-0.566	-0.106	-0.46	ZZ of H1A GLY $\overline{2} \alpha$ -Helix 4 residues
82	29.853	26.952	2.901	XY of H1A GLY 2 α -Helix 4 residues
83	-2.937	-2.752	-0.185	XZ of H1A GLY 2α -Helix 4 residues
84	26.286	26.718	-0.432	YZ of H1A GLY 2α -Helix 4 residues
85	26.638	25.683	0.955	XX of H2A GLY 3 α -Helix 4 residues
86	1.434	1.605	-0.171	YY of H2A GLY 3 α -Helix 4 residues
87	-4.008	-2.661	-1.347	ZZ of H2A GLY 3 α -Helix 4 residues
88	27.068	29.088	-2.02	XY of H2A GLY 3 α -Helix 4 residues
89	0.704	-0.438	1.142	XZ of H2A GLY 3 α -Helix 4 residues
90	27.659	28.568	-0.909	YZ of H2A GLY 3 α -Helix 4 residues
91	28.332	27.224	1.108	XX of HA ARG Diamide
92	-1.544	-1.107	-0.437	YY of HA ARG Diamide
93	-0.81	-0.202	-0.608	ZZ of HA ARG Diamide
94	29.163	30.059	-0.896	XY of HA ARG Diamide
95	3.297	0.915	2.382	XZ of HA ARG Diamide
96	24.37	25.902	-1.532	YZ of HA ARG Diamide
97	29.315	27.029	2.286	XX of HA ARG
98	-3.116	-1.011	-2.105	YY of HA ARG
99	-1.867	-0.508	-1.359	ZZ of HA ARG
100	29.13	28.392	0.738	XY of HA ARG
101	1.494	2.17	-0.676	XZ of HA ARG
102	27.296	27.757	-0.461	YZ of HA ARG
103	28.09	26.836	1.254	XX of HA ARG Neutro
104	2.526	1.185	1.341	YY of HA ARG Neutro

105	1.817	0.553	1.264	ZZ of HA ARG Neutro
106	30.646	29.167	1.479	XY of HA ARG Neutro
107	0.889	1.621	-0.732	XZ of HA ARG Neutro
108	25.675	27.142	-1.467	YZ of HA ARG Neutro
109	30.177	27.424	2.753	XX of H1A GLY 3 β -Sheet 5 residues
110	1.833	1.522	0.311	YY of H1A GLY $^{3}\beta$ -Sheet 5 residues
111	-0.94	0.856	-1.796	ZZ of H1A GLY $\overline{3}\beta$ -Sheet 5 residues
112	26.159	27.059	-0.9	XY of H1A GLY 3 β-Sheet 5 residues
113	-4.175	-2.846	-1.329	XZ of H1A GLY $\overline{3}\beta$ -Sheet 5 residues
114	26.927	28.836	-1.909	YZ of H1A GLY $\overline{3}\beta$ -Sheet 5 residues
115	31.148	26.74	4.408	XX of H2A GLY 1β -Sheet 5 residues
116	2.709	1.543	1.166	YY of H2A GLY 1 β -Sheet 5 residues
117	-0.592	-0.994	0.402	ZZ of H2A GLY 1 β-Sheet 5 residues
118	29.523	29.641	-0.118	XY of H2A GLY 1 B-Sheet 5 residues
119	1.651	1.874	-0.223	XZ of H2A GLY 1 B-Sheet 5 residues
120	24.93	26.89	-1.96	YZ of H2A GLY 1 B-Sheet 5 residues
121	29.899	27.281	2.618	XX of H1A GLY 2 β -Sheet 5 residues
122	-2.042	-1.53	-0.512	YY of H1A GLY 2 β -Sheet 5 residues
123	-0.751	0.877	-1.628	ZZ of H1A GLY 2 β-Sheet 5 residues
124	26.197	26.997	-0.8	XY of H1A GLY 2 B-Sheet 5 residues
125	4 152	2 724	1 428	XZ of H1A GLY 2 β-Sheet 5 residues
126	27 516	29.036	-1.52	YZ of H1A GLY 2 β-Sheet 5 residues
127	29 949	27 481	2 468	XX of H2A GLY 3 β-Sheet 5 residues
128	1 741	1 475	0.266	YY of H2A GLY 3 β-Sheet 5 residues
129	1.048	-0.84	1 888	7Z of H2A GLY 3 β-Sheet 5 residues
130	25 973	26 831	-0.858	XY of H2A GLY 3 β-Sheet 5 residues
131	4 2 5 9	2.817	1 442	XZ of H2A GLY 3 B-Sheet 5 residues
132	27.47	29.008	-1 538	YZ of H2A GLY 3 β-Sheet 5 residues
132	29.632	27.000	2.357	XX of H1A GLY 4 β-Sheet 5 residues
134	-1.936	-1 469	-0.467	VV of H1A GLV 4 β-Sheet 5 residues
135	-0.895	0.955	-1.85	77 of H1A GLY 4 β-Sheet 5 residues
136	26 474	27 139	-0.665	XY of H1A GLY 4 β-Sheet 5 residues
137	4 284	27.139	1 512	X7 of H1A GLV 4 β-Sheet 5 residues
138	27 474	28 901	-1 427	VZ of H1A GLV 4 β-Sheet 5 residues
139	29.977	20.901	2 585	XX of H2A GLV 2 8-Sheet 5 residues
140	-1.845	-1 476	-0.369	VV of H2A GLV 2 β-Sheet 5 residues
141	0.766	-1.036	1.802	77 of H2A GLV 2 B-Sheet 5 residues
142	26 272	27 151	-0.879	$XV \text{ of } H2A \text{ GLV} 2\beta$ -Sheet 5 residues
142	-4 286	-2 874	-1 412	X7 of H2A GLV 2 B-Sheet 5 residues
144	27.059	2.074	-1 722	VZ of H2A GLV 2 B-Sheet 5 residues
145	29.684	20.701	2 408	XX of H2A GL V = 2 p-sheet 5 residues
146	-1 907	-1 454	-0.453	VV of H2A GLV 4 β-Sheet 5 residues
147	0.941	-0.94	1 881	77 of H2A GLV 4 B-Sheet 5 residues
148	26 39	27 083	-0.693	$XV \text{ of } H2A \text{ GLV } 4 \beta$ -Sheet 5 residues
140	-4 272	-2 753	-0.099	X7 of H2A GLV 4 β-Sheet 5 residues
150	27.655	28.953	-1 298	VZ of H2A GLV 4 B-Sheet 5 residues
150	27.055	20.755	1 262	XX of H1A GLV 1 B-Sheet 5 residues
151	0.378	0 744	-0.366	VV of H1A GLV 1 8-Sheet 5 residues
152	-1.064	0.744	-0.500	77 of H1A GLV 1 & Sheet 5 residues
155	-1.004	25 328	-1.017	XV of H1A CLV 1 & Sheet 5 residues
155	_20.172	_0.812	_1 107	$XT \text{ of } H1\Delta \text{ GIV} = 1$ B Sheet 5 residues
155	-2.003	-0.015	-1.192	VZ of H1A CLV 1 R Sheet 5 residues
150	21.011	20.224 26.60	1.0//	XX of HA CVS Diamide
157	20.920 _0 428	-0 360	2.238 _0.050	YY of HA CVS Diamide
150	-0.420	-0.509	-0.039	

159	1.985	0.259	1.726	ZZ of HA CYS Diamide
160	29.332	30.078	-0.746	XY of HA CYS Diamide
161	0.412	1.475	-1.063	XZ of HA CYS Diamide
162	25.141	26.414	-1.273	YZ of HA CYS Diamide
163	27.552	28.136	-0.584	XX of H2A GLY Diamide
164	-0.885	-1.139	0.254	YY of H2A GLY Diamide
165	-1	-1.574	0.574	ZZ of H2A GLY Diamide
166	27.662	30.211	-2.549	XY of H2A GLY Diamide
167	-3.214	-2.034	-1.18	XZ of H2A GLY Diamide
168	26.348	25.014	1.334	YZ of H2A GLY Diamide
169	28.602	26.756	1.846	XX of H1A GLY Diamide
170	1.562	1.182	0.38	YY of H1A GLY Diamide
171	-2.529	-1.608	-0.921	ZZ of H1A GLY Diamide
172	25.037	27.47	-2.433	XY of H1A GLY Diamide
173	2.96	2.391	0.569	XZ of H1A GLY Diamide
174	31.993	29.077	2.916	YZ of H1A GLY Diamide
175	28.781	26.957	1.824	XX of H2A GLY β_L Diamide
176	0.183	-1.298	1.481	YY of H2A GLY β_L Diamide
177	2.085	1.391	0.694	ZZ of H2A GLY β_L Diamide
178	27.997	28.918	-0.921	XY of H2A GLY β_L Diamide
179	4.156	2.636	1.52	XZ of H2A GLY β_L Diamide
180	27.033	27.437	-0.404	YZ of H2A GLY β_I Diamide
181	28.866	26.872	1.994	XX of H1A GLY B ₁ Diamide
182	-0.175	1 241	-1 416	YY of H1A GLY B ₁ Diamide
183	2,227	1 415	0.812	$77 \text{ of H1A GLY } \beta_{L}$ Diamide
184	28.136	28 895	-0.759	$XV \text{ of } H1A \text{ GLV } \beta_{L}$ Diamide
185	_1.24	-2.61	-1.63	XT of H1A GLV 8 Diamide
186	-+.2+ 27 222	27.541	0.300	VZ of H1A GLV 8 Diamida
187	27.232	27.341	-0.309	12 of HA GLN R Diamide
107	20.703	27.032	1.755	$XX \text{ of } HA \text{ GLN } \beta_L \text{ Diamide}$
100	0.040	-0.032	0.098	Y Y OI HA GLN p_L Diamide
109	1.909	0.049	1.20	ZZ of HA GLN β_L Diamide
190	27.948	29.015	-1.06/	XY of HA GLN β_L Diamide
191	0.931	2.416	-1.485	XZ of HA GLN β_L Diamide
192	26.942	27.151	-0.209	YZ of HA GLN β_L Diamide
193	27.903	27.02	0.883	XX of HA GLN γ_L Diamide
194	1.676	2.119	-0.443	YY of HA GLN γ_L Diamide
195	-1.772	-0.609	-1.163	ZZ of HA GLN γ_L Diamide
196	28.941	29.131	-0.19	XY of HA GLN γ_L Diamide
197	-0.338	-0.59	0.252	XZ of HA GLN γ_L Diamide
198	25.42	27.037	-1.617	YZ of HA GLN γ_L Diamide
199	29.856	27.151	2.705	XX of HA GLN α_L Diamide
200	2.571	1.771	0.8	YY of HA GLN α_L Diamide
201	-1.419	-0.442	-0.977	ZZ of HA GLN $\alpha_{\rm L}$ Diamide
202	27.368	29.08	-1.712	XY of HA GLN α_{I} Diamide
203	2.092	1.967	0.125	XZ of HA GLN α_1 Diamide
204	25 646	27.016	-1 37	YZ of HA GLN $\alpha_{\rm L}$ Diamide
205	26 482	27 168	-0.686	XX of HA HIS Diamide
206	-2.398	-0.539	-1.859	YY of HA HIS Diamide
207	-1.388	-0.445	-0.943	ZZ of HA HIS Diamide
208	26.107	25.555	0.552	XY of HA HIS Diamide
209	-1.039	0.804	-1.843	XZ of HA HIS Diamide
210	27.663	30.496	-2.833	YZ of HA HIS Diamide
211	26.156	27.134	-0.978	XX of HA LYS
212	-0.946	0.018	-0.964	YY of HA LYS
213	0.432	1.034	-0.602	ZZ of HA LYS

214	27.789	30.374	-2.585	XY of HA LYS
215	-0.284	-1.394	1.11	XZ of HA LYS
216	26 979	25 743	1 236	YZ of HA LYS
217	25 438	27 112	-1 674	XX of HA LYS (+)1
217	-0.315	0.335	-0.65	VV of HA I VS (+)1
210	-0.515	0.333	1 271	77 of HA I VS (+)1
219	-0.000	0.403	-1.2/1	ZZ OI HALLS(+)
220	28.01	29.907	-1.897	X I OI HALIS(+)I
221	0.073	-1.893	1.966	XZ of HA LYS (+)1
222	27.983	26.202	1.781	YZ of HA LYS (+)1
223	28.238	26.575	1.663	XX of HA MET Diamide
224	2.351	0.93	1.421	YY of HA MET Diamide
225	-1.573	-0.74	-0.833	ZZ of HA MET Diamide
226	23.386	27.29	-3.904	XY of HA MET Diamide
227	-1.366	-1.713	0.347	XZ of HA MET Diamide
228	29.94	29.307	0.633	YZ of HA MET Diamide
229	28.174	27.35	0.824	XX of HA ORN Diamide
230	-0.549	-1.1	0.551	YY of HA ORN Diamide
231	1.08	0.821	0.259	ZZ of HA ORN Diamide
232	26 577	29.058	-2 481	XX of HA ORN Diamide
232	-4.071	-1.8	-2.401	X7 of HA ORN Diamide
233	27.049	-1.0	-2.271	VZ of HA ORN Diamide
234	27.040	20.774	0.274	YV of UA DUE Diamide
235	28.263	25.515	2.748	XX OF HA PHE Diamide
236	-1.927	0.385	-2.312	Y Y OF HA PHE Diamide
237	-0.031	-0.244	0.213	ZZ of HA PHE Diamide
238	24.593	27.283	-2.69	XY of HA PHE Diamide
239	-0.706	-0.91	0.204	XZ of HA PHE Diamide
240	29.006	30.41	-1.404	YZ of HA PHE Diamide
241	25.374	26.692	-1.318	XX of HA PRO Diamide
242	-1.393	0.581	-1.974	YY of HA PRO Diamide
243	-1.432	0.227	-1.659	ZZ of HA PRO Diamide
244	31.144	30.457	0.687	XY of HA PRO Diamide
245	-0.924	-0.517	-0.407	XZ of HA PRO Diamide
246	26.612	26.024	0.588	YZ of HA PRO Diamide
247	27 907	27 604	0.303	XX of HA PRO
247	-2 849	-1 883	-0.966	VV of HA PRO
240	2.04)	-1.005	-0.500	77 of HA DDO
249	29.577	20.042	2.790	XX of UA DDO
250	28.377	29.042	-0.403	
251	-2.385	-0.070	-1./09	AZ OI HA PRO
252	27.419	26.49	0.929	YZ OF HA PRO
253	27.919	28.267	-0.348	XX of HA SER Diamide
254	-1.78	-0.689	-1.091	YY of HA SER Diamide
255	-1.356	-0.795	-0.561	ZZ of HA SER Diamide
256	27.903	30.684	-2.781	XY of HA SER Diamide
257	-1.345	-0.956	-0.389	XZ of HA SER Diamide
258	24.971	24.371	0.6	YZ of HA SER Diamide
259	27.119	26.982	0.137	XX of HA Tri-ALA
260	-1.736	-0.63	-1.106	YY of HA Tri -ALA
261	0.187	0.1	0.087	ZZ of HA Tri -ALA
262	25 766	25 962	-0 196	XY of HA Tri -ALA
2.63	-1 993	-1 377	-0.616	XZ of HA Tri -ALA
264	30.629	30.27	0.359	YZ of HA Tri -ALA
265	28.852	28 022	0.83	XX of HA TRP
205	20.032	1 677	1 105	
200	2.102 2.211	1.077	2 004	
207	2.014	-0.20	3.094 1 767	VV of UA TDD
208	27.8	29.30/	-1./0/	AI UI HAIKI VZ ofila TDD
209	-1.93	0.8/1	-2.801	AZ OI HA IKP
270	25.972	25.632	0.34	Y Z OI HA I KP

271	28.545	28.345	0.2	XX of HA Tyrosine
272	0.1	-0.32	0.42	YY of HA Tyrosine
273	-0.514	0.358	-0.872	ZZ of HA Tyrosine
274	29.017	30.494	-1.477	XY of HA Tyrosine
275	-0.6	-1.578	0.978	XZ of HA Tyrosine
276	24.982	24.48	0.502	YZ of HA Tyrosine

LISTE ALLER ¹H_N MOLEKÜLE DER BPT-PARAMETRISIERUNG

Nr.	MP2/TZVPP	BPT	MP2(TZVPP)	Bezeichnung Tensorkomponente
			- BPT	0
1	29.233	26.751	2.482	XX of H Acetyl-ALA
2	1.472	2.661	-1.189	YY of H Acetyl-ALA
3	1.741	2.241	-0.499	ZZ of H Acetyl-ALA
4	25.525	25.405	0.119	XY of H Acetyl-ALA
5	-3.122	-3.149	0.027	XZ of H Acetyl-ALA
6	25.040	26.919	-1.879	YZ of H Acetyl-ALA
7	28.543	29.394	-0.850	XX of H_1 Acetyl-ALA
8	0.064	0.028	0.036	YY of H_1 Acetyl-ALA
9	1.803	0.384	1.419	ZZ of H_1 Acetyl-ALA
10	18.654	18.863	-0.209	XY of H_1 Acetyl-ALA
11	0.038	-0.027	0.065	XZ of H_1 Acetyl-ALA
12	30.288	27.993	2.295	YZ of H_1 Acetyl-ALA
13	25.879	26.397	-0.517	XX of H GLY_1 α-Helix
14	-0.927	-0.284	-0.643	YY of H GLY_1 α-Helix
15	2.851	3.637	-0.786	ZZ of H GLY_1 α-Helix
16	30.961	29.371	1.590	XY of H GLY_1 α -Helix
17	0.331	0.266	0.064	XZ of H GLY_1 α-Helix
18	21.172	23.824	-2.652	YZ of H GLY_1 α-Helix
19	22.592	25.979	-3.387	XX of H GLY 2 α-Helix
20	2.494	2.749	-0.255	YY of H GLY 2α -Helix
21	-3.071	-3.115	0.044	ZZ of H GLY $\overline{2} \alpha$ -Helix
22	27.792	27.218	0.574	XY of H GLY 2 α -Helix
23	3.701	2.775	0.926	XZ of H GLY 2α -Helix
24	25.120	24.754	0.366	YZ of H GLY 2α -Helix
25	18.015	17.957	0.058	XX of H GLY $\overline{3} \alpha$ -Helix
26	-4.259	-3.955	-0.304	YY of H GLY 3 α -Helix
27	2.018	1.711	0.307	ZZ of H GLY 3α -Helix
28	30.343	27.527	2.816	XY of H GLY 3 α -Helix
29	2.916	1.942	0.974	XZ of H GLY 3α -Helix
30	24.185	26.804	-2.619	YZ of H GLY 3α -Helix
31	26.279	28.083	-1.804	XX of H GLY 4 α -Helix
32	-0.296	-0.342	0.046	YY of H GLY 4 α -Helix
33	-0.560	-0.075	-0.485	$ZZ \text{ of H GLY } 4 \alpha$ -Helix
34	27 398	24 814	2 583	$XY \text{ of H GLY} 4 \alpha$ -Helix
35	-9 070	-5 079	-3 991	$X7 \text{ of H GLY } 4 \alpha$ -Helix
36	21 200	23 883	-2 683	$VZ \text{ of } H \text{ GLV} 4 \alpha \text{-Helix}$
37	25.881	26.378	-0.498	$YY \text{ of } H \text{ GLV} 1 \alpha \text{ Helix} 4 \text{ residues}$
38	-2.853	-3 643	-0.498	VV of H GLV 1 or Holix 4 residues
30	-0.036	-0.280	-0.646	77 of H CI V 1 or Holiy 4 residues
37 40	-0.750	-0.209	-0.040	XX of ILCLY 1 or Units 4 residues
40 41	21.108	23.843	-2.0/5	At of H GLY 1 α -Helix 4 residues
41	-0.330	-0.2/1	-0.060	XZ of H GLY_1 α -Helix 4 residues

42	30.963	29.370	1.594	YZ of H GLY_1 α -Helix 4 residues
43	22.584	25.985	-3.401	XX of H GLY_2 α -Helix 4 residues
44	3.086	3.123	-0.036	YY of H GLY_2 α -Helix 4 residues
45	2.480	2.735	-0.255	ZZ of H GLY_2 α -Helix 4 residues
46	25.096	24.726	0.371	XY of H GLY_2 α -Helix 4 residues
47	-3.699	-2.772	-0.927	XZ of H GLY_2 α -Helix 4 residues
48	27.807	27.237	0.570	YZ of H GLY_2 α -Helix 4 residues
49	18.011	17.951	0.060	XX of H GLY_3 α -Helix 4 residues
50	-2.016	-1.686	-0.330	YY of H GLY_3 α -Helix 4 residues
51	-4.262	-3.950	-0.312	ZZ of H GLY_3 α -Helix 4 residues
52	24.180	26.817	-2.637	XY of H GLY_3 α -Helix 4 residues
53	-2.910	-1.925	-0.985	XZ of H GLY_3 α -Helix 4 residues
54	30.352	27.537	2.816	YZ of H GLY_3 α -Helix 4 residues
55	26.273	28.087	-1.814	XX of H GLY_4 α -Helix 4 residues
56	0.525	0.095	0.430	YY of H GLY_4 α -Helix 4 residues
57	-0.276	-0.357	0.082	ZZ of H GLY_4 α -Helix 4 residues
58	21.174	23.844	-2.670	XY of H GLY_4 α -Helix 4 residues
59	9.080	5.067	4.013	XZ of H GLY_4 α -Helix 4 residues
60	27.410	24.867	2.543	YZ of H GLY_4 α -Helix 4 residues
61	28.505	27.974	0.531	XX of H ALA_ α_L _Diamide_1
62	2.537	1.390	1.147	YY of H ALA α_{L} Diamide 1
63	-2.681	-2.146	-0.534	ZZ of H ALA $\alpha_{\rm L}$ Diamide 1
64	26.223	27.595	-1.372	XY of H ALA $\alpha_{\rm L}$ Diamide 1
65	2.701	3.151	-0.450	XZ of H ALA_ α_L _Diamide_1
66	25.388	23.747	1.641	YZ of H ALA α_L Diamide 1
67	29.242	27.161	2.080	XX of H ALA β_L Diamide 1
68	-1.471	-2.041	0.571	YY of H ALA β_L Diamide 1
69	-0.622	0.162	-0.783	ZZ of H ALA β_L Diamide 1
70	18.998	19.504	-0.507	XY of H ALA β_L Diamide 1
71	2.809	3.473	-0.664	XZ of H ALA β_L Diamide 1
72	26.699	28.175	-1.475	YZ of H ALA β_L Diamide 1
73	28.504	27.972	0.532	XX of H ALA α_L Diamide
74	2.536	1.389	1.146	YY of H ALA_ α_L _Diamide
75	-2.682	-2.149	-0.533	ZZ of H ALA $\alpha_{\rm L}$ Diamide
76	26.224	27.600	-1.376	XY of H ALA $\alpha_{\rm L}$ Diamide
77	2.697	3.148	-0.451	XZ of H ALA α_L Diamide
78	25.385	23.742	1.643	YZ of H ALA α_{L} Diamide
79	29.242	27.161	2.081	XX of H ALA β_L Diamide
80	-1.471	-2.042	0.570	YY of H ALA_ β_L _Diamide
81	-0.621	0.161	-0.783	ZZ of H ALA β_L Diamide
82	18.998	19.503	-0.506	XY of H ALA β_L Diamide
83	2.809	3.473	-0.664	XZ of H ALA_ β_L _Diamide
84	26.699	28.175	-1.476	YZ of H ALA β_L Diamide
85	27.811	25.825	1.986	XX of H ALA γ_L Diamide
86	3.399	2.823	0.575	YY of H ALA γ_L Diamide
87	-2.458	-2.708	0.251	ZZ of H ALA $\gamma_{\rm L}$ Diamide
88	25.254	26.517	-1.263	XY of H ALA γ_L Diamide
89	2.525	3.128	-0.603	XZ of H ALA_ γ_L _Diamide
90	26.289	25.973	0.316	YZ of H ALA $\gamma_{\rm L}$ Diamide
91	28.413	27.079	1.334	XX of H CYS_Diamide
92	-0.058	-1.483	1.425	YY of H CYS_Diamide
93	-1.377	0.261	-1.638	ZZ of H CYS_Diamide
94	17.420	18.895	-1.476	XY of H CYS_Diamide

95	2.923	3.502	-0.579	XZ of H CYS Diamide
96	27.531	28.369	-0.838	YZ of H CYS Diamide
97	27.176	27.590	-0.414	XX of H GLY_ Diamide
98	1.778	0.625	1.153	YY of H GLY_Diamide
99	-2.820	-2.980	0.160	ZZ of H GLY_Diamide
100	29.339	29.162	0.178	XY of H GLY_Diamide
101	2.067	1.128	0.939	XZ of H GLY_Diamide
102	22.843	23.414	-0.572	YZ of H GLY_Diamide
103	30.455	27.610	2.845	XX of H GLY_ β_L _Diamide
104	0.060	-0.336	0.396	YY of H GLY_ β_L _Diamide
105	-2.261	-0.533	-1.728	ZZ of H GLY β_L Diamide
106	17.498	17.948	-0.450	XY of H GLY $\beta_{\rm L}$ Diamide
107	-0.137	-0.263	0.125	XZ of H GLY $\beta_{\rm L}$ Diamide
108	27.821	29.377	-1.556	YZ of H GLY β_1 Diamide
109	27.906	26.430	1.477	XX of H GLN $\beta_{\rm L}$ Diamide
110	-0.590	-2.542	1.952	YY of H GLN $\beta_{\rm L}$ Diamide
111	-1 426	0 314	-1 740	$ZZ \text{ of } H \text{ GLN } \beta_L$ Diamide
112	16 760	17 929	-1 169	$XY \text{ of } H \text{ GLN}_{PL}$ Diamide
112	0 149	0.918	-0.769	XT of H GLN β_{-} Diamide
113	28 288	20.480	-0.707	XZ of H CLN ρ_L Diamide
114	28.288	29.400	-1.192	Y_{L} of H GLN_p _L _Diamide
115	20.201	23.329	2.931	XX of H GLN_Diamide
110	-1.039	-2.433	0.390	77 of H GLN Diamida
11/	-5.478	-5.015	-0.402	XX of H GLN Diamida
110	23.904	27.373	-1.071	X7 of H GLN Diamide
119	-5.524	-2.315	-1.009	XZ of H GLN Diamide
120	25.804	20.475	-0.011	XX of H HIS Diamide
121	20.009	0.184	-0.872	XX of H HIS Diamide
122	-2.194	-0.184	-2.010	77 of H HIS Diamide
123	23 283	20 323	2 960	XX of H HIS Diamide
124	4 056	4 557	-0.501	X7 of H HIS Diamide
125	25 941	27 244	-1.303	VZ of H HIS_Diamide
120	28.257	26.180	2 076	XX of H Lysine
127	1 262	-0.899	2.070	VV of H Lysine
120	1 490	3 563	-2 072	ZZ of H Lysine
130	28.001	29 106	-1.106	XY of H Lysine
131	1 344	1 148	0.196	XZ of H Lysine
132	25 241	24 745	0.496	YZ of H Lysine
133	26 099	25 808	0 291	XX of H MET Diamide
134	0.148	1.671	-1.522	YY of H MET Diamide
135	3.253	3.242	0.011	ZZ of H MET Diamide
136	25.692	27.352	-1.660	XY of H MET Diamide
137	-1.397	-4.075	2.678	XZ of H MET Diamide
138	23.778	21.879	1.900	YZ of H MET Diamide
139	27.472	26.857	0.615	XX of H ORN Diamide
140	0.218	0.339	-0.121	YY of H ORN Diamide
141	-3.534	-2.230	-1.304	ZZ of H ORN Diamide
142	26.127	28.445	-2.318	XY of H ORN Diamide
143	3.601	3.270	0.331	XZ of H ORN Diamide
144	20.827	19.197	1.630	YZ of H ORN Diamide
145	26.936	23.599	3.338	XX of H PHE Diamide
146	-3.007	0.016	-3.024	YY of H PHE Diamide
147	3.520	4.799	-1.278	ZZ of H PHE Diamide
148	28.052	28.258	-0.206	XY of H PHE Diamide
149	2.438	-0.105	2.543	XZ of H PHE Diamide
150	24.860	25.527	-0.667	YZ of H PHE_Diamide
				—

151	29.045	28.409	0.636	XX of H SER_Diamide
152	1.792	0.324	1.468	YY of H SER Diamide
153	-2.293	-1.210	-1.083	ZZ of H SER_Diamide
154	28.705	29.069	-0.364	XY of H SER_Diamide
155	1.496	1.736	-0.239	XZ of H SER_Diamide
156	22.930	20.994	1.936	YZ of H SER_Diamide
157	31.401	29.230	2.170	XX of H Tri_ALA
158	3.640	-0.985	4.625	YY of H Tri_ALA
159	-3.874	-1.028	-2.846	ZZ of H Tri_ALA
160	26.511	25.265	1.245	XY of H Tri_ALA
161	-5.020	-4.034	-0.986	XZ of H Tri_ALA
162	19.817	22.826	-3.008	YZ of H Tri_ALA

C - LEBENSLAUF

Persönliche Daten

Name	Marco Willi Klipfel
Geburtsdatum	26. Dezember 1976
Geburtsort	Kenzingen
Staatsangehörigkeit	deutsch

Schulbildung

1983-87	Grundschule in Seefelden und Britzingen, Deutschland
1987-89	"Alemannen" Realschule Müllheim/Baden, Deutschland
1990	Escuela Primaria in El Volcán, Argentinien
1991-95	Escuela Provincial Enseñanza Media Nº 7, El Volcán, Argentinien

<u>Studium</u>

1996	2 Semester Ingenieurwesen an der Universidad de Buenos Aires, Argentinien		
1997-2004	Chemiestudium: Licenciatura en Química an der Universidad		
	Nacional de San Luis, Argentinien.		
	Diplom unter Leitung von Prof. Dr. Ricardo D. Enriz.		
	Note: 10 "sobresaliente"		
10/2004-10/2007	Promotion unter Leitung von Frau Prof. Dr. Anne S. Ulrich am		
	Institut für Biologische Grenzflächen, Forschungszentrum Karlsruhe		
<u>Berufserfahrung</u>			
10/2002-05/2003	Gemeinschaftspraxis-Labormedizin, Bereich Mikrobiologie		
10/2004-10/2007	Assistent Vertiefungspraktikum "Gramicidin S & NMR" am Institut		
	für Organische Chemie, Lehrstuhl Biochemie, Universität Karlsruhe		

D - WISSENSCHAFTLICHER WERDEGANG

- A. M. Tarditi, M. W. Klipfel, A. M. Rodriguez, F. D. Suvire, G. A. Chasse, O. Farkas, A. Perczel, R. D. Enriz; An ab initio exploratory study of side chain conformations for selected backbone conformations of N-acetyl-L-glutamine-N-methylamide, *Journal of Molecular Structure (THEOCHEM)*, 545, 2001, 29-47
- M. W. Klipfel, M. A. Zamora, A. M. Rodriguez, N. G. Fidanza, R. D. Enriz, I. G. Csizmadia; Exploration of the Full Conformational Space of N-Acetyl-L-glutamine-N-methylamide. An ab initio and Density Functional Theory Study, *J. Phys. Chem. A*, 107, 2003, 5076-5091
- U. Sternberg, M. Klipfel, S. L. Grage, R. Witter and A. S. Ulrich; The Calculation of Fluorine Chemical Shift Tensors for the Interpretation of Biomolecular NMR Spectra, (in Vorbereitung)
- R. Witter, C. Li, F. Nozirov, U. Sternberg, M. Klipfel, P. Gor'kov, R. Heinzmann, T. A. Cross, R. Fu, A. S. Ulrich; Solid-state ¹⁵N-NMR investigations on the Trp₄₁ conformation contributing to the gating mechanism of the M2 proton channel of influenza A virus, (in Vorbereitung)

E - EHRENWÖRTLICHE ERKLÄRUNG

Hiermit erkläre ich ehrenwörtlich, dass ich die vorliegende Arbeit selbständig angefertigt habe und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt sowie die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht habe. Die Satzung der Universität Karlsruhe (TH) zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung wurde von mir beachtet.

Diese Arbeit wurde in gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegt.

Ort, Datum

Unterschrift

F - DANKSAGUNG

Während meiner Arbeit am FZK habe ich mit vielen Leuten zusammengearbeitet, diskutiert und eine sehr schöne Zeit verbracht. Einige davon haben meiner Arbeit beigetragen, andere haben mich wissenschaftlich unterstützt oder mich mit ihrer Freundschaft geehrt. Jch danke allen sehr dafür. An erster Stelle möchte ich mich bei Prof. Dr. Anne S. Ulrich für die

An erster Stelle mochte ich mich bei Prof. Dr. Anne S. Mirich für die Möglichkeit unter ihrer Leitung zu arbeiten herzlich bedanken. Meinem Betreuer Dr. habil. Ulrich Sternberg danke ich für die interessante Themenstellung sowie für die lehrreiche Zusammenarbeit und für die tägliche Unterstützung zum Fortschritt dieser Arbeit.

Dem ganzen Arbeitskreis BioNMR & Lehrstuhl Biochemie bin ich sehr zu Dank verpflichtet für ein sehr angenehmes Arbeitsklima, für die Unterstützung auf beruflicher sowie privater Ebene und für das tägliche Beisammensein zur Kaffeerunde.

Für die Unterstützung in jeglicher Hinsicht zu TURBOMOLE möchte ich mich bei Dr. Florian Weigend und Dr. Uwe Huniar ganz herzlich bedanken. Für die wertvolle Unterstützung in der AlX-Welt danke ich sehr Dr. Olaf Schneider und Frau Ludmilla Obholz.

Meiner Frau Natalia danke ich für die Geduld, das Verständnis und die Unterstützung, die wesentlich zum Gelingen dieser Arbeit beigetragen hat.

Danke!

- Marco -