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Chapter 1

Introduction

In modern industrial production networks and their external environment, complex deci-

sion situations need to be resolved with respect to their potential impact on the society

in a wide variety of circumstances. Usually, various scientific expert groups are involved

with heterogeneous technical background knowledge in different disciplines. Know-how

from economic, ecological, engineering and natural sciences must be brought together,

taking into account political and socio-psychological factors. For instance, political deci-

sions must be justified and communicated to the public. Similarly, the rationale behind

entrepreneurial or managerial decisions needs to be explained to the employees but also

to the shareholders of a company. Thus, the way in which a decision is communicated is

of particular importance. Risk communication and participatory approaches for decision

making have gained increasing importance, in particular in societal and political areas

such as risk governance or emergency management after extreme events – both man-

made and natural [for recent reviews see, e.g. Beierle and Cayford, 2002; Renn, 2004;

Geldermann et al., 2007].

The frequency of the occurrence of extreme events has increased considerably in recent

years – on a global scale, but also in Germany. However, neither are we well prepared on

a civil level nor on an industrial or economic level to cope with the consequences of unex-

pected emergencies. Because of the global interlacement, the hierarchical structure and

the dynamic evolution of industrial supply chain networks, the tracking of consequences

of disasters becomes a highly complex issue.



2 Chapter 1. Introduction

1.1 Decision Support for Industrial Risk Management

The complexity of contemporary production systems and an increased environmental

vulnerability indicate that current problems with industrial risk management require a

rethinking of safety management [Bernold, 1989; UNISDR, 2002]. In order to handle

potential risks to and emanating from the industry and consequently to mankind as well

as the environment, an integrated approach to risk management and industrial environ-

mental policy is needed. Consequently, risk management in industry is related to major

accident hazards [Seveso II Directive 96/82/EC], to occupational health and safety [ATEX

Directive 94/9/EC] and to the environment [IPPC Directive 96/61/EC].

1.1.1 Industrial Risks

A production company, complete industrial production systems or the society in general

are exposed to various different types of risk every day. However, when using the term risk,

it should be noted that there is a wide variety of different definitions of risk in literature.

The exact meaning depends to a large extent on who defines, i.e. on the discipline in

which it is used. In the financial sector for instance, the word is mainly used in terms of

investment and credit risk, being regulated by law since 1998 in Germany [cf. KonTraG,

1998] and since 2006 in Europe [cf. Directive 2006/48/EC; Directive 2006/49/EC]1.

In the area of natural disasters, risk is often defined as being influenced by the probability

or frequency of occurrence and the extent of loss (often the product of both) [cf. e.g.

Helm, 1996; Smith, 1996]. While the probability or frequency of occurrence is often also

described by or contained in the term hazard, the extent of loss is often expressed as a

combination of the elements at risk and the vulnerability [cf. e.g. Granger et al., 1999]

or the exposure and the vulnerability [cf. e.g. Crichton, 1999]. Consequently, the total

risk can be said to depend on three elements: hazard (or probability), vulnerability and

exposure (or elements at risk) [cf. e.g. Blong, 1996; Crichton, 1999; Granger et al., 1999].

In industry, the word risk is usually used in more technical terms in relation to technical

failures in the operating procedure [cf. e.g. Hahn and Laßmann, 1999]. Failures in in-

dustrial operating procedures and the potentially arising emergency situations, however,

can differ in many ways. Concerning their causes for instance, they may originate from

the production process itself (or rather from losing control over the production process,

i.e. the situation is internally induced or man-made) or may be induced externally, for

1 The directives 2006/48/EC and 2006/49/EC can be regarded as the European implementation of the
BASEL II accord.
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Chapter 1.1. Decision Support for Industrial Risk Management 3

instance by a natural disaster (i.e. the situation is externally or naturally induced). This

is illustrated in Figure 1.1. The respective dimensions of the emergency situations’ impact

may differ considerably, too. Nevertheless, the dimensions are not immediately related

to the causes, which means that the resulting consequences for the society and the envi-

ronment can be very similar for internally and externally induced industrial emergencies.

While emergency situations, in general, can differ substantially as regards their causes

and the dimension of their respective impacts, as just mentioned, they share some com-

mon characteristics, such as the sudden onset or the necessity for a coherent and effective

management of the crisis [Geldermann et al., 2007].
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Figure 1.1: Framework of Industrial Risk Management

Furthermore, Figure 1.1 indicates that emergencies in industrial systems may be caused by

a terrorist attack, a discussion which has recently gained much attention [cf. e.g. Esquivié

and Wybo, 2003; Kincaid et al., 2003; Werner and Lechtenbörger, 2004; Richardson et al.,

2006; Flaherty, 2007]. An emergency situation caused by an act of terrorism can of

course not be called naturally induced but since it constitutes an external impact on an

industrial system, it is shown in one “category” with natural disasters. However, the

focus of this thesis shall not be on modelling the consequences of an external event on

industrial systems, which is why the category of external influences on industrial systems

is illustrated with dashed lines in Figure 1.1. Rather, emphasis is placed on providing

Uncertainty Handling in Multi-Attribute Decision Support for Industrial Risk Management



4 Chapter 1. Introduction

support for the evaluation of countermeasure and remediation strategies in the aftermath

of an industrial emergency. Thereby, special focus is put on analysing the consequences

of industrial emergencies and alternative countermeasure and remediation strategies for

the society and the environment (including agricultural land). In order to support a

structured analysis, methods from the area of operations research will be applied. General

links between the fields of operations research and environmental policy have for instance

been discussed by Rentz [2004]. However, the knowledge acquired by such analyses can

also be used for countermeasure planning purposes, for instance in emergency exercises,

and can thus contribute to an improved emergency preparedness and risk awareness. The

latter is also important with respect to spatial planning in the context of disaster risk

reduction, a discussion that has recently gained increasing attention [cf. e.g. UNISDR,

2002; Kötter, 2003; Werner et al., 2004; Merz et al., 2007].

1.1.2 Multi-Criteria Aspects of Industrial Risk Management

Risks to people and the environment emerging from industrial production or the use and

disposal of chemical substances are addressed in various initiatives. For instance, the

“Toxic Substances Control Act” [cf. TSCA 15 U.S.C. S/S 2601 et seq. 1976] regulates

production, import and use of chemicals potentially posing an environmental or human-

health hazard in the United States. Accordingly, the new European chemicals regulation

(REACH2 [cf. Directive 2006/121/EC; Regulation (EC) No 1907/2006]) is aimed at im-

proving the protection of human health and the environment in Europe. Besides the

registration of chemical substances produced or imported into the EU and the identifica-

tion of appropriate risk management measures, a basic principle of REACH is to put more

responsibility for managing the risks from chemicals on the industry itself and to provide

safety information which shall be passed through the supply chain. However, special at-

tention must be paid when the individual production processes are coupled and when the

time and length scales of the production processes within the supply chain are strongly

disparate. The modelling of such processes necessitates integrated, multidisciplinary and

multiscale approaches [cf. Charpentier, 2005]. The same holds for the management of the

risks emerging from such processes at different time and length scales.

Besides acknowledging different time and length scales of industrial processes and risks,

the handling of industrial risks, especially in the remediation or recovery phase of an

emergency, involves the evaluation of various, at least partially conflicting objectives.

2 REACH: “Registration, Evaluation and Authorisation of Chemicals”, adopted in December 2006 and
entering into force on 1 June 2007.
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Perhaps most importantly, health and safety aspects, the environmental impact and the

technical feasibility need to be considered besides the purely economic factors. An explicit

examination of the trade-offs between these conflicting objectives plays an important role

in providing a profound understanding of a decision situation.

Furthermore, as indicated in Figure 1.1, different levels of vulnerability need to be explored

and knowledge from diverse scientific disciplines and methodologies must be brought to-

gether for an integrated evaluation of industrial risks.3 Approaches from Multi-Criteria

Decision Analysis (MCDA) can help to consider various incommensurable levels of infor-

mation – quantitative as well as qualitative – and to take into account the (subjective)

preferences of the responsible decision makers and thus contribute to transparency and

traceability of decision making processes [Belton and Stewart, 2002; Geldermann et al.,

2007].

Additionally, with the increasing demand from the media and the public for information

and justification from authorities, methods are required to assess how decisions are taken

[Wybo, 2006]. Providing a basis for participatory processes and group decisions, MCDA

seeks to facilitate the communication with the public and the media and can be helpful in

forming an audit trail and in enhancing public confidence and understanding in relation

to complex group decisions [cf. Bose et al., 1997; Belton and Stewart, 2002; Bertsch et al.,

2007b].

1.1.3 Uncertainties in Decision Processes

In practice, decision processes are usually affected by different sources of uncertainty. On

the one hand, when evaluating alternative countermeasure and remediation strategies in

the aftermath of an industrial emergency, the consequences of these alternative strategies

with respect to the considered objectives/criteria can often not be determined determin-

istically. Such uncertainties, which eventually affect the input data of a decision model,

may for instance be due to model approximations, measurements or inherent randomness.

On the other hand, the subjective preferences of the responsible decision makers, which

are explicitly taken into account in MCDA, constitute a major source of uncertainty –

which is introduced during the decision process. Additionally, uncertainties may result

from the fact that models are ultimately only simplifications of reality [cf. e.g. French

3 The respective parts of the application ranges of the research disciplines covering the external influences
on industrial systems are, again, illustrated by means of dashed lines in Figure 1.1 since these parts
are not focussed on within this thesis.
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and Niculae, 2005] but such uncertainties are usually difficult to quantify and can also be

regarded as inherent to any model.

The presence of one or several types of uncertainty, however, influences the results of a

decision model. Consequently, appropriate methods are required which allow to inves-

tigate the impact of the different sources of uncertainty on the results of the analysis.

In particular, in order to be able to explore the robustness of decision processes, it is

important to analyse which uncertainties are most relevant in terms of the results.

A demanding task in the context of complex production systems is the propagation of

uncertainties through complex model chains. Especially, attention must be paid when

encountered with nonlinear models within the model chain.

1.1.4 Risks in the Energy Sector

Energy supply is a very important part of critical infrastructure. An area-wide, secure

electricity supply is essential for the functioning of a modern society [Ebeling and Böhmer,

2005]. However, critical infrastructure, such as energy transmission networks, can be

severely damaged, destroyed or disrupted by technical failure (accidents), human failure

(negligence), natural disasters, criminal activity or acts of terrorism [cf. e.g. Green Paper

COM (2005) 576 final, of the European Commission] leading to supply interruptions which

may have a severe impact on industry and economy as well as the society as a whole.

Thus, crisis situations in the energy sector constitute a special challenge in comparison

to emergency preparedness and management in many other areas which often involve

contingency plans or checklists that have been prepared in advance and are more or less

regularly utilised in emergency exercises.

Within the energy sector, risk management is especially relevant in nuclear power gen-

eration – inter alia because of the resulting severe and far-reaching consequences of a

potential emergency. Furthermore, besides the fact that an increased awareness of the

possibility of technical failure of industrial systems and an improved preparedness to deal

with the risks and to cope with emergencies, are desirable in general, risk management

and emergency planning are very important in nuclear power generation due to the fact

that a large part of electricity is generated by nuclear energy – in Europe as well as

world-wide.

World-wide, 437 nuclear power plant units with an installed electric net capacity of about

390 GW are in operation (status of December 2006) and 29 units with an approximate

capacity of 25 GW are under construction [Nuclear Power World Report 2006]. The
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global net electricity generation from nuclear energy amounts to about 2 738 TWh in

2004, the total production since 1951 amounts to 51 375 TWh. The cumulative operating

experience amounts to 11 500 years by the end of 2004.4 Focussing on Europe, as of

January 2006, there are a total of 204 nuclear power units with an installed net electric

capacity of 171.99 GWe in operation and eight units with 7.93 GWe are under construction

in four countries. In the countries of the European Union (EU-25), 32 % of electricity was

generated by nuclear energy in 2006. Here, France holds the top position in electricity from

nuclear energy with a share of 78 % followed by Lithuania (70 %), the Slovak Republic

(57 %), Belgium (54 %) and Sweden (48 %). In Germany, where seven nuclear power

plants of the top ten for world-wide electricity generation are located in 2006, electricity

from nuclear energy has a share of 26 %. In addition, results of a model developed for

France [cf. Fleury, 2005] show that the share of electricity from nuclear energy will remain

similarly high at least until 2020 and that, under certain assumptions, the nuclear power

plants decommissioned in the period 2020–2030 (assuming a life-time of 40 years for the

existing nuclear power plants in France) will be replaced by new ones in order to satisfy

the increasing energy demand.

Summarising, there are two major groups of reasons for which risk management, emer-

gency preparedness and countermeasure planning are relevant topics in nuclear power

generation. Firstly, although the frequency of occurrence of an emergency with a re-

lease of radioactive material is considered to be low, the consequences can be severe and

far-reaching. Secondly, the security of electricity supply has recently attracted much at-

tention [de Nooij et al., 2003]. Due to the substantial share of power generation from

nuclear energy, these topics are not only relevant from the perspective of radiation pro-

tection. Concerning the first group of reasons, devising a contingency plan for nuclear

emergencies that covers all imaginable eventualities is an impossible task. Hence, a flex-

ible decision support system providing reliable information and guidance is needed in

order to support those who are faced with the difficult job of managing such an emer-

gency. In particular, the evaluation of long-term remediation strategies after a nuclear

or radiological accident can benefit from operationally applicable multi-criteria methods

and evaluation techniques to guide and support the responsible decision makers in the

decision making process (see Figure 1.2).

In the immediate response phase, reliable information from powerful information systems

is very important to enable decision makers to take fast decisions. In the remediation or

recovery phase, the situation is more complex. Since the public acceptance of decisions in

the late phase is essential for a successful implementation of the remediation strategies,

4 See e.g. http://www.kernenergie.de as well as http://world-nuclear.org.

Uncertainty Handling in Multi-Attribute Decision Support for Industrial Risk Management



8 Chapter 1. Introduction

t

Early Phase: Emergency Actions

- Fast Decisions

- Reliable Information

Late Phase: Remediation

- Complex Decisions and 
Conflicting Objectives

- Communication, 
Acceptance and 
Transparency

Information 
Systems

Stakeholder 
Involvement

Emergency

MCDA 

t

Early Phase: Emergency Actions

- Fast Decisions

- Reliable Information

Late Phase: Remediation

- Complex Decisions and 
Conflicting Objectives

- Communication, 
Acceptance and 
Transparency

Information 
Systems

Stakeholder 
Involvement

Emergency

MCDA 

Figure 1.2: Decision Support in Different Phases of an Emergency

the affected stakeholders should not only be involved in the decision process but should

also be considered as decision makers. It should be emphasised at this point that, in

practice, decisions in the context of risk and emergency management are usually taken by

groups of decision makers rather than by a single decision maker. Consequently, decision

makers are referred to in plural throughout the whole thesis.

1.2 Objectives and Structure of the Thesis

Managing the risks emerging from today’s complex and globally interlaced production

networks has become increasingly important in the light of a rising number of emergen-

cies and extreme events. The resolution of complex decision situations after a potential

emergency involves the consideration of various criteria. A key challenge arises from the

fact that, on the one hand, decision processes in practice are usually subject to different

sources of uncertainty and that, on the other hand, especially on a political level, the way

in which a decision is communicated is highly relevant, i.e. methods are needed to explain

the rationale behind a decision.

Consequently, the main objective of this thesis is to develop an approach for an inte-

grated uncertainty handling in decision support for industrial risk management. Rather

than analysing the (economic) impact of industrial emergencies to the industry itself, i.e.

assessing the occurring direct and indirect losses, the focus of this thesis is on analysing

Uncertainty Handling in Multi-Attribute Decision Support for Industrial Risk Management
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the impact on the society and the environment arising from such emergency situations

and on providing support for the evaluation of alternative remediation strategies in the

aftermath of an emergency using methods from the field of operations research. Thereby,

special emphasis will be placed on appropriate graphical illustrations in order to support

the tangibility of the results. In order to address these objectives, this thesis is structured

as follows:

Providing the basis for the evaluation of various conflicting objectives and consequently

for the resolution of complex decision situations, a general introduction into multi-criteria

decision analysis is given in Chapter 2. After pointing out fundamental differences between

MCDA and cost benefit analysis, an overview of multi-attribute value theory and multi-

attribute utility theory is provided. The chapter is completed by a brief outline of Bayesian

decision analysis and by a short summary of the relevance of the described methods.

The focus of Chapter 3 is the development of new approaches for uncertainty handling in

MCDA. Firstly, an extensive classification of different types of uncertainty that may affect

a decision is given. Secondly, simulation-based approaches to handle the different types of

uncertainty are described with a special focus on visualising the impact of the occurring

uncertainties on the results of the respective decision models. Chapter 3 is concluded by

proposing approaches for a combined consideration of different types of uncertainty and

by shortly summarising the added value of the described and developed methods.

Results of multi-criteria decision support for industrial risk management are presented

for a case study in the area of emergency and remediation management in nuclear power

generation in Chapter 4. The case study constitutes a major part of this research and

demonstrates the features of the preceding chapters. After describing the general back-

ground of the case study, the different components of the real-time online decision support

system for nuclear emergency management (RODOS) are introduced. Subsequently, the

course of action as well as main results of a stakeholder workshop are described, in which

the applicability of RODOS and MCDA to support a decision making process in the

aftermath of a hypothetically assumed accident scenario at a nuclear power plant was

demonstrated. Special emphasis within Chapter 4 is placed on the application of the de-

veloped and implemented approaches for uncertainty handling in MCDA in the context of

the case study. Again, the value of visualisation techniques to support the communication

of the effect of the different types of uncertainty on the achieved results is pointed out.

In Chapter 5, the main aspects of the methods developed within this thesis are discussed

and the major contributions of this research are shown. This is pursued by a detailed

Uncertainty Handling in Multi-Attribute Decision Support for Industrial Risk Management
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discussion of the approaches, contrasting the advantages as well as the limitations. Ad-

ditionally, potential areas of future research are highlighted.

The most important findings as well as possibilities for future research concerning the

developed multi-criteria decision support approach for industrial risk management are

summarised in Chapter 6.

These six chapters are complemented by two appendices. While Appendix A provides

additional information on how the results of decision making processes can be explained

by generating natural language reports, detailed information on the uncertainties in the

underlying data set of the case study is compiled in Appendix B.

Uncertainty Handling in Multi-Attribute Decision Support for Industrial Risk Management



Chapter 2

Multi-Criteria Decision Analysis

Seeking to provide transparent and coherent support for the resolution of complex decision

situations and aiming at facilitating the communication between all involved parties, much

effort has been spent on the development of methods in the area of multi-criteria decision

analysis (MCDA). As an alternative analytical approach, cost benefit analysis (CBA,

cf. e.g. Brent [1996]; Pearce and Nash [1981]; Layard [1972] for a general introduction

to CBA and its use) is frequently used in government and industry for a quantitative

evaluation of risk related decisions [French et al., 2005]. The basic principle of CBA is

the expression of all benefits and disadvantages of a decision in monetary terms, i.e. the

value of a decision is determined by subtracting the net expected costs in monetary terms

from the net expected benefits, again, in monetary terms. Proponents of CBA often claim

that CBA is more objective than MCDA. However, this objectivity largely depends on

the question whether or not all prices or, more generally, all consequences of a decision

can be determined unambiguously. It should be noted that especially criteria such as the

environmental impacts, safety, (ecological) risk and human values related to a decision

cannot be easily condensed into a monetary value as required for CBA. For instance,

environmental concerns often involve ethical and moral considerations which might not be

related to any economic value [Linkov et al., 2004]. In addition, even if it were possible to

transform all criteria into a monetary unit, this approach would not always be desirable

since the stakeholders’ preferences would presumably be lost in such a process [Kiker

et al., 2005]. Hence, MCDA is strongly preferred for the context of this research since, by

explicitly acknowledging the subjectivity in decision making processes, it provides a clear,

transparent and traceable analysis as opposed to the illusory objectivity of CBA [French

et al., 2005]. Additionally, by providing a sound framework for sensitivity analysis, MCDA

offers valuable support for consensus finding within decision making groups.
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2.1 Purpose and Scope of MCDA

Various MCDA methods, based on different theoretical foundations, have been developed.

However, they all have in common that they evolved as a response to the inability of people

to analyse multiple streams of unalike information in a structured way [cf. e.g. Linkov

et al., 2004; Kiker et al., 2005] and that they are aimed at reducing incomparabilities

between alternatives which would remain according to the “natural” dominance relation.

According to this classical dominance definition, an alternative is said to dominate another

if it is better on one criterion and at least as good as the other on all other criteria. If one

alternative is better with respect to one criterion and another one is better with respect to

another criterion, these two alternatives are incomparable [Brans and Mareschal, 2005].

Moreover, alternatives that are not dominated by any other alternative are called efficient

[cf. also Koopmans, 1951]. The aim of MCDA methods is to reduce the incomparabilities

by explicitly incorporating preferential information of the decision maker(s) [Brans and

Mareschal, 2005; Treitz, 2006]. In general, two different types of preferential information

can be distinguished:

1. Preferential information on the importance of differences of the performance scores

of the different alternatives with respect to one criterion, i.e. comparisons within a

criterion or intra-criteria preferential information.

2. Preferential information on the relative importance of the different criteria, i.e.

comparisons between the criteria or inter-criteria preferential information.

In general, MCDA approaches can be subdivided into two classes: Multi-Objective De-

cision Making (MODM) approaches and Multi-Attribute Decision Making (MADM) ap-

proaches. While MODM methods are applied to continuous optimisation problems where

several goals shall be optimised simultaneously, multi-attribute decision models have been

successfully applied to support decision processes in many different contexts where the

most preferable option was to be chosen from a (discrete) set of decision alternatives. The

latter can be helpful for decision making in industrial risk management since the set of

decision options is usually discrete in this context.

Within the field of MADM methods, the so-called “classical” approaches, such as multi-

attribute value or multi-attribute utility theory (MAVT or MAUT) for instance, can be

distinguished from outranking approaches such as e.g. PROMETHEE [Brans et al., 1984;

Brans and Vincke, 1985] or ELECTRE [Roy and Bouyssou, 1993; Roy, 1996; Figueira

et al., 2005]. In MAVT/MAUT as well as in outranking approaches, inter-criteria pref-

erences are modelled by weighting factors. The main difference is in the modelling of
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the intra-criteria preferences. While the preference functions in outranking approaches

are based on (relative) comparisons of the performances of the decision alternatives, the

value functions in MAVT/MAUT are applied to the absolute performance scores of the

alternatives.5 The second basic difference is that MAVT/MAUT are fully compensatory

approaches while outranking approaches also provide partial rankings, i.e. the incompa-

rabilities are only partially resolved.

In practice, MADM problems can show various characteristics [cf. e.g. Belton and Stewart,

2002]. For instance, they can be classified according to the following properties:

� Number of decision makers: There may be a single person being responsible

for a decision or there may be groups of different sizes where the different group

members may have similar or very different goals, responsibilities and interests.

While multi-attribute decision support can help a single decision maker to identify

a decision directly in a transparent way, the main focus of using MADM methods

in larger groups is the facilitation of consensus finding.

� Presence of a moderator/facilitator: This point is closely interconnected with

the previous one. The individual steps within a MADM process are often carried

out in a moderated/facilitated discussion, especially in larger groups of decision

makers. However, single decision makers or smaller groups, who are experienced in

applying MADM methods, may also want to carry out the decision making process

by themselves. Nevertheless, since it is likely that decision making in industrial risk

management involves rather large groups of decision makers, it is assumed in the

following that there is a moderator/facilitator who guides the group through the

MADM process.

� Underlying data: The input data of a decision model may be deterministic or

may be subject to uncertainty. In practice, a decision making process is often

affected by different types of uncertainty. The occurring uncertainties can be clas-

sified in several different ways [cf. for instance Gering, 2005; Bertsch et al., 2005;

French, 1995; Morgan and Henrion, 1990]. According to their respective source, a

distinction can be made between “data uncertainties” (uncertainties of the input

data of a decision model), “parameter uncertainties” (uncertainties related to the

subjective (preference) parameters of a MCDA model) and “model uncertainties”

(uncertainties resulting from the fact that models are ultimately only simplifica-

5 These different “schools of thought” are often discussed controversially in literature. However, they
all have their (context-dependent) strengths and weaknesses [cf. Stewart and Losa, 2003] and such a
discussion shall not be the focus of this research.
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tions/approximations of reality [cf. French and Niculae, 2005]), where the latter are

usually difficult to quantify and can also be regarded as inherent to the nature of

any model. The presence of one or several types of uncertainty, however, should

influence the choice of an appropriate MADM method. The topic of uncertainty

handling in MADM will be dealt with in Section 2.3 as well as Chapter 3.

� Time-frame of a decision: Decisions may be operational, tactical or strategic, i.e.

their time horizon may vary between hours or days and several years. Additionally,

decisions may be taken at one single point or may be nested in a series of decisions

which are related to each other. In the latter case, up-to-date data – if available –

would be included for each new decision. The static or dynamic/sequential character

of decision problems should be reflected by the decision support methods. However,

in the following it is mostly assumed that the decisions can be taken at a single

point.

In the following, the MAVT and MAUT approaches are described in more detail. Addi-

tionally, as one family of approaches within utility theory, the Bayesian decision paradigm

is briefly outlined. MAVT and MAUT seem to be suitable to support decision making

in industrial risk management because of their simple and transparent nature [cf. e.g.

Papamichail, 2000]. Furthermore, they have already proved to suit for application in the

context of emergency management [Geldermann et al., 2007; Hämäläinen et al., 2000;

French, 1996]. Additionally, e.g. as far as radiation related risk management is concerned,

the International Commission on Radiological Protection (ICRP) recommends MAVT in

radiation protection [ICRP, 1989]. While in MAVT it is assumed that the underlying

data of the decision analysis is deterministic, MAUT provides a formal framework for the

modelling and handling of uncertainties. However, the algorithms associated with MAUT

are much more complex which makes their applicability in practice problematic.

2.2 Multi-Attribute Value Theory

In the following it is assumed that the most preferable decision alternative is to be chosen

from a (discrete) set of different alternatives. Thereby, the alternatives shall be evaluated

with respect to different criteria. In order to support decision makers to find a solution

to such a multi-criteria decision problem, multi-attribute value theory (MAVT) provides

methods to structure and analyse such problems by means of an attribute tree (i.e. a

hierarchy of criteria) and to elicit the relative importance of the criteria in such a tree
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[Geldermann et al., 2007]. In an attribute tree the overall goal is divided hierarchically

into lower level objectives (criteria) and – on the lowest level – measurable attributes.

The essential interactive steps in a MAVT analysis (see Figure 2.1) include firstly the

structuring of the problem into an attribute tree and secondly the elicitation of the relative

importance of the criteria. Subsequently, the elicited information is aggregated in order

to obtain a ranking of the considered decision alternatives. An attribute tree allows to

represent and evaluate the decision makers’ priorities by an overall value score and break

it down under different criteria as well as to study the sensitivity to changes in the weights.

Problem 
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Preference 
Elicitation

Aggregation
Sensitivity 
Analysis

Decision / 
Recommendation

Problem 
Structuring

Preference 
Elicitation

Aggregation
Sensitivity 
Analysis

Decision / 
Recommendation

Problem 
Structuring

Preference 
Elicitation

Aggregation
Sensitivity 
Analysis

Decision / 
Recommendation

Figure 2.1: Key Phases of MAVT [adapted from Belton and Stewart, 2002]

2.2.1 Steps in a MAVT Analysis

Within this thesis, the general notion for MAVT is as follows: m denotes the number

of different alternatives which shall be evaluated with respect to a total of n attributes.

Furthermore, a general decision alternative is denoted by a and si(a) is the score of

alternative a with respect to attribute i (where 1 ≤ i ≤ n). Specific decision alternatives

will be denoted by Altj (where 1 ≤ j ≤ m). In order to describe the basic steps of MAVT,

it is assumed that the task of a team of decision makers is to evaluate the four alternatives

Alt1 −Alt4 with respect to the four attributes A1, A2, A3, A4 (i.e. m = 4 and n = 4). This

example will be referred to throughout chapters 2 and 3.

For instance, assuming that a choice is to be made between different countermeasure or

remediation alternatives (Alt1−Alt4) in the aftermath of an industrial emergency, various

attributes (A1 −A4) need to be taken into account. Besides the purely economic factors,

it may be important to consider human health and safety aspects, the environmental

impact and the technical feasibility related to a decision. However, the relevance of

different attributes and criteria affecting a decision – quantitative as well as qualitative

– and how they can be taken into account respectively will be dealt with in detail in the

context of the case study in Chapter 4.
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2.2.1.1 Problem Structuring

The process of problem structuring is concerned with appropriately formulating rather

than solving a problem [Belton and Stewart, 2002]. It is a very important part of a MAVT

analysis since it gives a better understanding of both, the problem and the values affecting

a decision, and also serves as a basis for further analyses and as a common language for

communication [Rosenhead and Mingers, 2001; Shaw et al., 2004]. In addition to identi-

fying and specifying objectives (criteria) and attributes as well as decision alternatives,

the aim of problem structuring is the hierarchical modelling of the criteria. Various tech-

niques exist to stimulate the processes of identifying and selecting decision criteria and

alternatives. However, the focus in this chapter is on the hierarchical modelling with the

aim of constructing an attribute tree (see Figure 2.2) which can either be achieved by

using a top-down or a bottom-up approach. The top-down approach can be referred to as

strategic, starting with the determination of the most general objective (the overall ob-

jective or overall goal) which is subsequently successively divided into sub-objectives and

– on the lowest level – measurable attributes. The bottom-up approach can be referred

to as rather tactical, starting with listing all meaningful differences between the deci-

sion alternatives (identification of measurable attributes in which the performance of the

alternatives differs) which are then combined and structured into higher level objectives.

If decision makers have a clear understanding of their objectives, a top-down approach

is usually appropriate. Otherwise, a bottom-up approach might be more applicable. In

practice, a combination of both approaches is often used. While structuring the objectives

hierarchically, it should be checked that an objective is reasonably divided into lower-

level objectives (i.e. the division clarifies the meaning of the upper-level objective and

the relation between them is hierarchical) and that there are no unnecessary cross-links

between a set of lower-level objectives and upper-level objectives (i.e. the set of lower-level

objectives should be unique to the upper-level objective) [von Winterfeldt and Edwards,

1986; Keeney, 1992]. Furthermore, it should be checked that the set of objectives is

exhaustive and non-redundant as well as essential (i.e. each of the alternatives included

in the decision context can influence the degree to which the objectives are achieved) and

controllable (i.e. all the decision alternatives that can influence the degree to which the

objectives are achieved are included in the decision context, which may be difficult to

achieve).

Finally, after an attribute tree has been constructed, it is worthwhile to check that it

satisfies the following properties [Keeney and Raiffa, 1976]:
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Figure 2.2: Example of an Attribute Tree (Hierarchy of Criteria)

� Completeness: All relevant objectives should be included in the hierarchy and

the set of attributes completely defines the degree to which the overall objective is

achieved.

� Operationality: Attributes should be meaningful and assessable.

� Decomposability: Attributes should be judgementally independent, that is, it

should be possible to analyse one attribute at time.

� Non-redundancy: The set of attributes should be non-redundant to avoid double

counting of the consequences.

� Minimum size: The set of attributes should be minimal.

As indicated before, besides structuring problems hierarchically, the aim of constructing

an attribute tree is to break down the (strategic) objectives into measurable attributes.

This means that for each attribute tree, a corresponding table can be compiled which

contains the scores si(a) of every single alternative a with respect to each attribute i

(1 ≤ i ≤ n). This table is called decision table. Table 1 shows an exemplar decision table

which corresponds to the attribute tree shown in Figure 2.2.
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Table 2.1: Decision Table Corresponding to the Attribute Tree in Figure 2.2

Alternatives /

Attributes [Units]

Alt1 Alt2 Alt3 Alt4

A1 [U1] s1(Alt1) s1(Alt2) s1(Alt3) s1(Alt4)

A2 [U2] s2(Alt1) s2(Alt2) s2(Alt3) s2(Alt4)

A3 [U3] s3(Alt1) s3(Alt2) s3(Alt3) s3(Alt4)

A4 [U4] s4(Alt1) s4(Alt2) s4(Alt3) s4(Alt4)

2.2.1.2 Preference Elicitation

After structuring an MADM problem into an attribute tree, it is necessary to construct a

model that represents the preferences and value judgements of the decision makers. Such

a preference model essentially consists of two components [Belton and Stewart, 2002;

French, 2000]:

1. A model that scores each alternative against each individual attribute, enabling the

comparison of different units (of the different attributes) on a common scale (i.e. a

model for the intra-criteria preferences).

2. A model that allows comparisons amongst the different criteria which, in a subse-

quent step, enables to obtain an overall ranking of the alternatives (i.e. a model for

the inter-criteria preferences).

The first component concerns the attributes. Let again a denote a decision alternative

and si(a) the score of alternative a with respect to attribute i (1 ≤ i ≤ n). As indicated

in Table 2.1, the scores si(a) of the alternatives may be measured in different units for

the different attributes. Thus, before the alternatives can be compared to each other with

respect to more than one attribute at the same time, all scores need to be mapped to a

common (fictitious) scale ranging from 0 to 1 by a value function. For this, we first set

xi = si(a). Then, a value function (an intra-criteria preference function) can be defined

for each attribute i by

vi :

{
R → [0, 1]

xi 7→ vi(xi)
(2.1)

such that the “best” and “worst” possible outcomes correspond to 1 and 0 respectively.

In general, many different value functions in the form of Equation 2.1 can be constructed.

For instance, a linear value function for an attribute with increasing preferences can be

defined by
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vi(xi) =
xi − xi

min

xi
max − xi

min

, (2.2)

where xi
min = min

a
{si(a)}, xi

max = max
a

{si(a)} and “increasing preferences” means that

a higher score xi corresponds to a higher value vi(xi). Similarly, a linear value function

for an attribute with decreasing preferences (where a higher score corresponds to a lower

value) can be defined by

vi(xi) =
xi

max − xi

xi
max − xi

min

. (2.3)
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Figure 2.3: Linear Value Functions

Figure 2.3 shows linear value functions that correspond to the functions given in Equa-

tion 2.2 and 2.3 respectively. Of course, value functions do not necessarily need to be

linear. In general, they can have any form that represents the preferences of the decision

makers, as long as they are continuous. Often, exponential value functions may repre-

sent the preferences better than linear ones. For instance, for monotonically increasing

or decreasing preferences, an exponential value function can be defined by the common

one-parameter representation [cf. e.g. Kirkwood, 1997], where ρi defines the curvature of

the value function of attribute i (see also Figure 2.4):

vi(xi) =




1−e
−∆xi

ρi

1−e
−xi

max−xi
min

ρi

, ρi �= ±∞

∆xi

xi
max−xi

min
, otherwise

(2.4)

with

∆xi =

{
xi − xi

min for increasing preferences ,

xi
max − xi for decreasing preferences .

(2.5)
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Figure 2.4: Exponential Value Functions

The determination of the form of the value functions is an important step within the

preference elicitation. In many cases, if the differences between the outcomes of the al-

ternatives are relatively small, the assumption of linear value functions can be justified.

However, attention must be paid when outliers (of the performance scores of the alterna-

tives with respect to the considered attribute) occur.

The second component of a preference model (cf. the beginning of this section) concerns

the elicitation of the relative importance between the criteria and thus concerns all criteria

(objectives) that are further subdivided into lower level criteria and attributes. These

inter-criteria preferences are modelled by weights on each level in an attribute tree. The

weight of each attribute can be obtained by multiplying the weights of the criteria on each

level along the path in the attribute tree that corresponds to the attribute. The weighting

vector w = (w1, ..., wn) summarises the weights of all attributes. It is important to ensure

that the wi satisfy the constraint

n∑
i=1

wi
!
= 1, wi ≥ 0 for all i , (2.6)

i.e. they are normed. Weights can be elicited by different weighting procedures. The

simplest way is to assign them directly by point allocation (DIRECT weighting). Al-

ternatively, in the SWING procedure [cf. e.g. von Winterfeldt and Edwards, 1986], 100

points are first given to the most important attribute. Then, less points are given to

the other attributes depending on the relative importance of their ranges. The SMART

method is similar, but the procedure starts from the least important attribute keeping it

as the reference [von Winterfeldt and Edwards, 1986; Edwards, 1977]. In SMARTER, the
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weights are elicited directly from the ranking of the alternatives [Edwards and Barron,

1994; Barron and Barret, 1996]. The Analytic Hierarchy Process (AHP) [cf. Saaty, 1980]

has a fixed (pairwise) comparison procedure which includes redundancy and thus allows

the estimation of the consistency of the statements, too. When the questions in the weight

elicitation refer to value differences then the results from an AHP procedure can be shown

to correspond with those of MAVT analysis [Salo and Hämäläinen, 1997]. A more detailed

overview on the common weighting methods based on relative comparisons can be found

in Belton and Stewart [2002]; Pöyhönen et al. [2001]; Weber and Borcherding [1993]. The

different weighting methods can also be used in combination within one model.

2.2.1.3 Aggregation

The elicitation and modelling of preferential information is followed by aggregating the

performance scores with respect to the individual criteria/attributes to an overall perfor-

mance score taking into account the afore assigned weights wi and value functions vi. The

most widely used approach for this is the additive aggregation rule which evaluates the

overall value v(a) of an alternative a as

v(a) =
n∑

i=1

wivi(xi), (2.7)

where, again, xi = si(a). The reason why this form is so commonly used is that it

is comparatively easily explained to and understood by decision makers with various

backgrounds and fields of expertise [Belton and Stewart, 2002].

However, certain properties of the preference structures are necessary for the use of the

additive aggregation of the single-attribute value functions, namely the attributes need

to be mutually preferentially independent [Keeney and Raiffa, 1976]. An attribute A1 is

called preferentially independent of an attribute A2 if the preferences for certain outcomes

(consequences) with respect to A1 do not depend on the level of the outcomes with respect

to attribute A2 [cf. e.g. Keeney and Raiffa, 1976; French, 1986; Clemen and Reilly, 2001].

Mutual preferential independence additionally involves the independence of attribute A2 of

A1. A set A of more than two attributes (e.g. A = {A1, ..., A4} as in the example described

at the beginning of Section 2.2.1) is said to be mutually preferentially independent if for

all possible decompositions6 (X, Y ) of A, X is preferentially independent of Y [cf. e.g.

French, 1986].

From a methodological point of view, the above described properties are necessary con-

ditions for the use of additive aggregation. Thus, it is advisable to verify whether or not

6 A decomposition (X, Y ) of A satisfies: X, Y ⊆ A, X ∩ Y = ∅ and X ∪ Y = A.
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the attributes in an attribute tree fulfill these properties before continuing the analysis. If

there is serious doubt about the assumptions, it is recommended to return to the problem

structuring phase [Belton and Stewart, 2002].

Besides the additive aggregation rule, other aggregation methods exist which necessitate

different properties of the preference structures. For instance, the use of a multiplicative

form is also common [Kirkwood, 1992]. However, this is not dealt with in detail here.

Because of the clearness of use and the consequential transparency, additive aggregation

is preferred for the context of this research.
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Figure 2.5: Performance Scores for the Example Illustrated as a Stacked-Bar Chart

After applying an aggregation rule, the performance scores can be visualised, for instance

as a stacked-bar chart as shown in Figure 2.5 for the example described at the beginning

of Section 2.2.1. Such a chart can not only illustrate the overall performance scores, but

also the contributions of the individual criteria/attributes.

2.2.1.4 Sensitivity Analysis

Since the determination of the preference parameters in a MAVT analysis is always sub-

jective, sensitivity analyses play an important role in decision making [cf. e.g. Belton and

Vickers, 1990; Belton and Stewart, 2002]. By allowing the exploration of the robustness of

results to variations of the preferential parameters [cf. e.g. Saltelli et al., 2000], sensitivity

analyses can be especially valuable for groups of decision makers to investigate whether

or not differences in their value judgements do matter in terms of the results [Belton and

Vickers, 1990; French, 2003]. Inter alia, the motivations behind sensitivity analyses are

[French, 2003]:
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� to support the elicitation of judgemental inputs to an analysis,

� to guide the making of decisions,

� to explore and build consensus,

� to build understanding about a given problem.

The most commonly used sensitivity analysis technique allows an examination of the

effects (on the ranking) when the weight of a criterion is varied. Figure 2.6 for example,

shows a sensitivity analysis graph for the example at the beginning of Section 2.2.1.

0

1

0 0,2 0,4 0,6 0,8 1

P
er

fo
rm

an
ce

 S
co

re

Alt1

Alt2

Alt3

Alt4

wi

Legend

0

1

0 0,2 0,4 0,6 0,8 1

P
er

fo
rm

an
ce

 S
co

re

Alt1

Alt2

Alt3

Alt4

wi

Legend

Figure 2.6: Sensitivity Analysis Graph for the Considered Example

The lines in the graph, each associated with one alternative, show the overall scores of

the (associated) alternatives when the weight of a chosen criterion is varied from 0 % to

100 % and the black vertical line represents the status quo. The sensitivity analysis in

Figure 2.6 shows that the decision is relatively robust against weight changes. However,

if a sensitivity analysis shows that the ranking of alternatives is very sensitive to changes

of a weight, the decision makers should carefully check if the weighting accurately reflects

their preferences [cf. e.g. Belton and Vickers, 1990].

In addition to a sensitivity analysis as in Figure 2.6, spider diagrams can be used for the

visual comparison of several alternatives with respect to the different criteria [Vetschera,

1994b]. Figure 2.7 shows a spider diagram for the considered example. The single-

attribute performance scores (on a [0, 1] scale) with respect to the individual attributes are

shown on the axes where each axis is associated with one attribute and the outer boundary

of each axis corresponds to the single-attribute performance score 1 while the origin

corresponds to 0. Each alternative is represented by a line forming a polygonal traverse
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which connects the single-attribute values, i.e. the performance scores of an alternative

relative to the individual attributes [cf. Treitz, 2006].

Attribute 1

Attribute 2

Attribute 3

Attribute 4
0

0,5

1

Alt1

Alt2

Alt3

Alt4

Legend
Attribute 1

Attribute 2

Attribute 3

Attribute 4
0

0,5

1

Alt1

Alt2

Alt3

Alt4

Legend

Figure 2.7: Spider Diagram for the Considered Example

A spider diagram such as in Figure 2.7 shows the performances of the different alternatives

with respect to the different attributes but does not provide any information about the

the weights of the attributes. In order to integrate information about the inter-criteria

preference into a spider diagram, one possibility is to let the angles between the axes

represent the attributes’ weights (see Figure 2.8).

Rather than presenting precise values, the purpose of a spider diagram is to provide

a holistic, overall impression of the decision problem [Vetschera, 1994b; Treitz, 2006].

However, the general overview becomes increasingly confusing with a growing number of

criteria/attributes or alternatives. An aggregation of the attribute values is inevitable in

such cases. Moreover, factor-analytic techniques can be helpful (cf. Section 3.3) [Timm,

2002; Hodgkin et al., 2005; Treitz, 2006].

2.2.2 Interpretation of MAVT as a Weighted Norm

It should be noted that in the aggregation step, all multi-criteria methods have in common

that, in a way, they all make use of a (weighted) norm. Presuming that an MADM
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Figure 2.8: Illustration of a Spider Diagram Incorporating Weights

problem has been structured into an attribute tree and that the value functions have

been determined for all attributes, an alternative Altk can be drawn in a coordinate

system using the values vi(Altk) (where vi(Altk) := vi(si(Altk))). This is illustrated in

Figure 2.9 for n = 3 attributes. Moreover, Figure 2.9 exemplarily shows two further

fictitious alternatives which can be helpful to facilitate the interpretation:

� The IDEAL alternative, achieving theoretically “best” performance regarding all

criteria (where ∀i : vi(IDEAL) = 1).

� The NADIR alternative, showing theoretically “worst” performance with respect to

all criteria (where ∀i : vi(NADIR) = 0).

The concept of the IDEAL and NADIR alternatives is also well known for outranking ap-

proaches [cf. e.g. Munda, 1996]. The value of these two practically usually unattainable

points particularly lies in the fact that decision makers can assess the quality of an alter-

native based on its relative position compared to the IDEAL or NADIR points [Treitz,

2006].

While Figure 2.9 already gives an impression of the performance of the different alterna-

tives, the impact of the weighting factors is not yet visible. Moreover, it is not straightfor-

ward possible to read off the overall performance scores or relative performance differences
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Figure 2.9: Exemplar Illustration of Different Alternatives in R
3

between the alternatives (e.g. between Altk and Alth in Figure 2.9). For this, it is first

necessary to carry out the aggregation step. Mathematically, the aggregation step can be

compared to defining and using a general weighted p-norm:

‖ � ‖p
w :




R
n → [0, 1]

x �→
(

n∑
i=1

wi � |xi|p
) 1

p

.
(2.8)

For instance, the additive aggregation (cf. Equation 2.7) corresponds to a weighted 1-norm

(also known as “Manhattan norm”):

v(a) = ‖a‖1
w =

n∑
i=1

wi � |vi(si(a))| =
n∑

i=1

wi � vi(si(a)) . (2.9)

The second equality in Equation 2.9 results from the definition of the value function (i.e.

each vi maps values from R to [0, 1], cf. Equation 2.1).

Figure 2.10 illustrates the so-called indifference surface for this norm allowing to assess

trade-offs and compensation ratios. Mathematically, all points within an indifference sur-

face (all points within the hatched area) are equally acceptable (show the same overall

performance). In general, well balanced alternatives are preferred to “extreme” alterna-

tives by using the 1-norm and the highest overall performance score can only be obtained

by an alternative showing the best possible performance with respect to each individual

criterion. Besides the 1-norm, other norms are also in use for aggregation purposes. For

instance, the use of a 2-norm for performance evaluation has been proposed by Treitz

et al. [2004] in the context of process design. Moreover, such a norm is often used in the

outranking approach TOPSIS [Hwang and Yoon, 1981]. Finally, it should be emphasised

that, while the R
n and the indifference surface corresponding to a norm are continuous,
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Figure 2.10: Exemplar Illustration of the 1-Norm in R3

only discrete decision alternatives within the continuous space are considered (as usual in

multi-attribute decision making).
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2.3 Multi-Attribute Utility Theory

The methods described in the last chapter, assume that the underlying data of the decision

analysis is deterministic. Since a decision making process is often affected by different

types of uncertainty in practice, the purpose of this chapter is to introduce multi-attribute

utility theory (MAUT) [cf. Keeney and Raiffa, 1976] which provides a formal framework for

the modelling and handling of uncertainties, particularly of the input data, by introducing

utility functions which can be used to reflect the risk attitude of the decision makers.

Historically, Daniel Bernoulli was perhaps the first to introduce the concept of utility

[cf. Bernoulli, 1738]. He pointed out that a rationally acting individual would use the

expected utility rather than the expected value related to a game before deciding how

much he or she was prepared to pay in order to participate in that game. Much later,

von Neumann and Morgenstern [1947] developed their expected utility theory [cf. also

Savage, 1954] to model the rational choices between alternatives under risk. Smidts [1997]

emphasises that the utility models of Bernoulli and of von Neumann and Morgenstern are

fundamentally different in that the value function in the former model is measured under

riskless conditions and encodes the strength of preference for different outcomes while

the utility function in the latter is determined by means of lotteries without explicitly

referring to intensity of satisfaction [cf. e.g. Fishburn, 1989; Smidts, 1997; Papamichail,

2000]. Additionally, the curvature of the utility function represents the risk attitude

in the latter model while to Bernoulli, the decreasing marginal value of outcomes is an

explanation for the risk aversion of decision makers [Smidts, 1997]. In general, a utility

function is used to measure the utility (to decision makers) related to an outcome rather

than its value. An essential property of a utility function is that it preserves preferences

for outcomes while its expectation preserves the preferences among gambles for such

outcomes [Barron et al., 1984].

However, there are certain parallels between the concept of utility functions and that of

value functions. Just as a value function, a utility function encodes the preferences of the

decision makers, i.e. the value judgements about the relative worth of the consequences

of the different alternatives [cf. French, 2000]. The difference is that these consequences

are not assumed to be deterministic. In MAUT, the uncertain consequences, being in-

fluenced by unknown external “random” factors [cf. e.g. Belton and Stewart, 2002] are

usually described by means of probability distributions instead of deterministic values. A

problematic aspect in this context is that at least these probability distributions need to

be known [cf. e.g. O’Hagan and Oakley, 2004].
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2.3.1 Steps in a MAUT Analysis

In principle, a MAUT analysis follows the same key steps as a MAVT analysis (cf. Section

2.2.1). Nevertheless, differences occur in each of these steps. They are described in the

following along with the main similarities.

2.3.1.1 Problem Structuring

The problem structuring process in MAUT is almost identical to that in MAVT. The

main aim is the construction of an attribute tree for the decision problem. The difference,

however, is in the decision table corresponding to the attribute tree. The data in this

table is no longer deterministic but given by probability distributions. For discrete finite

distributions, the deterministic decision table is simply replaced by a set of decision tables

each of which can be related to a scenario, i.e. certain parameter settings/assumptions

for the external environment.

2.3.1.2 Preference Elicitation

As regards the inter-criteria preferences, there are no differences which would be relevant

for the purposes of this research. Concerning the intra-criteria preferences, the differences

and parallels between value and utility functions have already shortly been addressed. The

differences and similarities or, more generally, the relationships between value and utility

functions have been discussed by many authors [cf. inter alia Belton and Stewart, 2002;

French, 2000; Papamichail, 2000; Smidts, 1997; Kirkwood, 1992; French, 1986; Barron

et al., 1984; Dyer and Sarin, 1982; Keeney and Raiffa, 1976]. However, the utility function

u is often defined as a transformation of the value function v:

u = T (v) . (2.10)

The form of the transformation function T reflects the risk attitude of the decision mak-

ers, i.e. whether they are risk averse, risk neutral or risk prone. In general, the published

approaches differ in the following ways: They either define single-attribute utility func-

tions ui(xi) for all attributes i which are subsequently aggregated or they define the utility

function as a transformation of the aggregated value function. Following the latter and

letting x = (x1, ..., xn) denote the consequence vector of an alternative a with respect to

the n attributes, a utility function can for instance be defined by [cf. e.g. Papamichail,

2000]

u(x) = T (v(x)) = 1 − e−
v(x)

κ = 1 − e−
∑n

i=1 wivi(xi)

κ (2.11)
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with κ > 0. Equation 2.11 indicates that the problem of assessing a multi-attribute

utility function can be broken down into two stages (subproblems): defining a value

function for each attribute and subsequently assessing a “composite” utility function

(i.e. the risk attitude is expressed with respect to the overall goal or identically with

respect to all attributes) [Papamichail, 2000]. The distinction between value and utility

functions and the transformation of the former into the latter can help to simplify the

process of assessing the functions [Barron et al., 1984]. For instance, value functions

can be determined comparatively easily using common simple techniques as proposed by

[Edwards, 1977]. The value functions can then be aggregated using the additive rule and

transformed into a utility function. Additionally, a decomposition of the utility function

assessment into two steps can help to separate the elicitation of trade-offs from that of

risk attitude [French and Geldermann, 2005].

The parameter κ in Equation 2.11 determines the shape of a utility function and repre-

sents the risk attitude of the decision makers (see Figure 2.11). For κ > 0, Equation 2.11

represents a constantly risk averse utility function. The function is shaped concavely. Al-

ternatively, a linear function can be used representing risk neutrality. Risk proneness can

be represented by a convex utility function. For the purposes of industrial risk manage-

ment it is often assumed that decision makers are rather risk averse [cf. e.g. Papamichail,

2000], even though Hämäläinen et al. [1998] have reported different results for Finland in

the context of nuclear emergency management.
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Figure 2.11: The Relation Between the Shape of a Utility Function and Attitude to Risk

There are well-documented approaches concerning the assessment of the parameter κ [cf.

e.g. Keeney and Raiffa, 1976; Clemen and Reilly, 2001]. They are usually introduced in

terms of gambles and preferences over lotteries. The most common way to elicit the risk
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attitude is based on determining the certainty equivalent of a lottery, i.e. an amount (of

money) such that a decision maker is indifferent between taking this amount for certain

and playing the lottery. A problematic aspect in this context is the dependency of the

risk attitude on the framing of the decision context. For instance, it could be observed

that decision makers are rather risk averse when an issue is framed in positive terms and,

contrarily, that they tend to be risk prone when an issue is framed in negative terms [cf. for

instance Tversky and Kahneman, 1981; Kahneman et al., 1982; Tversky and Kahneman,

1986].

Mathematically, the risk aversion in a point x (i.e. the local risk aversion in this point)

corresponding to a utility function u can be “measured” by

r(x) = −u′′(x)

u′(x)
, (2.12)

assuming that u is twice differentiable [cf. e.g. Pratt et al., 1964; French, 1986]. Further-

more, from Equation 2.12 and Figure 2.11 it can be derived that

if ∀x : r(x)




> 0, ⇒ risk averseness ,

= 0, ⇒ risk neutrality ,

< 0, ⇒ risk proneness .

(2.13)

However, if a utility function such as in Equation 2.11 is to be scaled from zero to one,

this can for instance be achieved by dividing u by (1 − e−1/κ).

2.3.1.3 Aggregation

As indicated in Section 2.3.1.2, two basic principles of assessing and using utility func-

tions can be distinguished within MAUT. Firstly, single-attribute utility functions can

be defined for all attributes. Subsequently, these utility functions need to be aggregated.

Secondly, the (additively) aggregated value of an alternative can be transformed using a

composite utility function (as expressed, for instance, by Equation 2.11).

Concerning the first approach, a number of different methods can be used in the aggre-

gation step assuming that a utility function has been assessed for each attribute. As

in MAVT, the most commonly used approaches are the additive and the multiplicative

aggregation rules. Again, an advantage of the additive rule is its transparency and com-

prehensibility. However, the required properties of the preference structure in order to be

able to use the additive rule in MAUT are slightly different from those in MAVT. Mutual

preferential independence is a necessary but not a sufficient condition [cf. e.g. Clemen

and Reilly, 2001], i.e. stronger independence conditions are needed for preferences under

uncertainty.
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Utility independence is a stronger condition than preferential independence. An attribute

A1 is called utility independent of an attribute A2 if the preferences for uncertain outcomes

(consequences) with respect to A1 are independent of the value of attribute A2 [cf. e.g.

Keeney and Raiffa, 1976; French, 1986; Clemen and Reilly, 2001]. If A2 is also utility

independent of A1, then the two attributes are called mutually utility independent. A set

A of more than two attributes (e.g. A = {A1, ..., A4} as in the example described at the

beginning of Section 2.2.1) is said to be mutually utility independent if for all possible

decompositions (X, Y ) of A (cf. Section 2.2.1.3 for the properties of a decomposition), X is

utility independent of Y . Even though utility independence and preferential independence

seem to be very similar, Keeney and Raiffa [1976] for instance, discuss an example where

attributes are preferentially independent but not utility independent.

In order to be able to model preferences accurately using a purely additive aggregation

method, additive independence is required – an even stronger condition than utility inde-

pendence. According to Keeney and Raiffa [1976], two attributes A1 and A2 are additively

independent if the pairwise preference comparison of any two lotteries defined by two joint

probability distributions on A1 × A2 depends only on their marginal probability distri-

butions. Hence, the difference between additive independence and utility independence

is that, for the former, changes in lotteries concerning one attribute do not affect the

preferences for lotteries in the other attribute while, for the latter, changes in sure levels

concerning one attribute do not affect the preferences for lotteries in the other attribute

[cf. e.g. Clemen and Reilly, 2001]. Consequently, when assessing uncertain consequences

for two attributes, it is sufficient to look at one attribute at a time (regardless of the

uncertain consequences of the other attribute). It should be noted that in contrast to the

other described independence conditions, additive independence is a reflexive property by

definition. Analogously as for utility and preferential independence, a set A of more than

two attributes (e.g. A = {A1, ..., A4} in the considered example) is said to be additively

independent if for all possible decompositions (X, Y ) of A, X is additively independent

of Y [cf. e.g. French, 1986].

Assuming that the preferences are additively independent and that a utility function has

been determined for each of the n attributes, the total utility u of an alternative a can be

evaluated as

u(x) =
n∑

i=1

wiui(xi), (2.14)

with xi = si(a) (cf. Equation 2.7) and where, again, x = (x1, ..., xn) is the consequence

vector of the alternative a.
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Additive independence is quite a strong condition for a preference structure whose fulfil-

ment in practice is often questionable [von Winterfeldt and Edwards, 1986]. Nevertheless,

the additive aggregation model may provide a good and useful approximation for many

practical decision situations [Clemen and Reilly, 2001]. However, it is still important to

bear the independence conditions in mind during the problem structuring process.

Concerning the second way of assessing and using utility functions (cf. the beginning

of this section), a composite utility function can be used to transform the (additively)

aggregated value of each alternative. Since the determination of utility functions involves

many questions about lotteries [cf. e.g. Hämäläinen et al., 1998] in order to elicit the risk

attitude of the decision makers, this second approach seems to be advantageous since

the problem of utility function assessment is decomposed into the easier subproblems of

assessing value functions and only one (composite) utility function (cf. Equation 2.11).

Descriptions on how decision makers can derive utility functions from value functions

taking their risk attitude into account can for instance be found in Keeney and Raiffa

[1976]; Krzysztofowicz [1983]. However, being equivalent to the multiplicative aggregation

of utility functions (since the sum is in the exponent in Equation 2.11) as studied, for

instance, by Keeney and Raiffa [1976], the exponential utility transform 2.11 requires

mutual utility independence [cf. Papamichail, 2000].

Generalising Equation 2.11, [Keeney and Raiffa, 1976] have proved that u must have one

of the following forms, given that mutual preferential independence holds and that at

least one attribute is utility independent of the others:

u(x) ∼




−e−cv(x) , c > 0 ,

v(x) ,

ecv(x) , c < 0 .

(2.15)

If the utility is to be scaled from zero to one, this can, again, be achieved by dividing the

utility u in Equation 2.15 by (1 − e−c).

An aggregated utility function, such as in Equation 2.11, measures the utilities of the

uncertain consequences xi. Thus, the ranking of the alternatives is based on calculating

their expected utilities E [u(x)], i.e. the most preferred alternative is the one with the

highest expected utility. Assuming that the probability distribution of the real-valued

consequence vector x = (x1, ..., xn) is known and that its density is f , then the expected

utility of an alternative can be calculated by

E [u(x)] =

∫
Rn

u(x) � f(x) dx . (2.16)
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When calculating the expectation of the exponential utility function u, it should be noticed

that this expectation has the same functional form as the so called moment generating

function. In general, the moment generating function of a random variable X is defined

as

g(t) = E[etX ] , (2.17)

introducing the new parameter t [cf. e.g. Grinstead and Snell, 1997]. The kth moment of

X can be calculated as the kth derivative of g for t = 0 (where e.g. the first moment is

the expectation and the second moment is the variance of X). However, for a number

of well-known probability distributions, the respective moment generating functions are

very helpful to calculate the expected utilities.

For instance, if X is normally distributed with mean µ and standard deviation σ, it can

be shown [cf. e.g. Grinstead and Snell, 1997] that

E[etX ] = etµ+ σ2

2
t2 . (2.18)

For a negative exponent as in Equation 2.11 it can be derived [cf. e.g. Keeney and Raiffa,

1976] that

E[e−tX ] = e−(tµ−σ2

2
t2) . (2.19)

Setting X =
∑n

i=1 wivi(xi), it follows that

µ =
n∑

i=1

wiµi , (2.20)

where µi denotes the mean of vi(xi) and

σ2 = wT Cw , (2.21)

where w denotes the weighting vector and C the covariance matrix (of the vi(xi)). Hence,

setting t = 1
κ
, it can be followed for a utility function u as in Equation 2.11 that [cf.

Papamichail, 2000; Papamichail and French, 2000]

E [u(x)] = 1 − e−(
∑n

i=1 wiµi
κ

−wT Cw
2κ2 ) . (2.22)

After calculating the expected utilities, they can be visualised. The total expected utilities

can, for instance, be displayed in a bar chart (see Figure 2.12). Illustrating the results

in the form of a stacked-bar chart, similar as in MAVT, is not straightforwardly possible

since the information about the contributions of the individual criteria is only available

in the exponent.
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Figure 2.12: Expected Utilities for the Considered Example Illustrated as a Bar Chart

However, since exponentiation is a monotonic operation, it is suggested by Papamichail

and French [2000] that it is sufficient to evaluate the alternatives according to

n∑
i=1

wiµi − wTCw

2κ
(2.23)

instead of Equation 2.22. This means that an alternative can be evaluated by subtracting

the term depending on the associated covariance matrix from a linear function. It is

discussed by Papamichail [2000] that Equation 2.23 simplifies the assessment process

since it does not explicitly require to deal with probability distributions. Additionally,

it should be emphasised that, in the event that all alternatives are subject to the same

uncertainty, they can simply be ranked according to the first term since the second term

would be identical for all alternatives.

Examining the second term in Equation 2.23 which is quadratic in w in more detail, it

can be expected that it takes high values if the weights on the attributes with a high

covariance are high. Thus, alternatives showing a high covariance on the attributes with

high weights will be ranked comparatively lower since a larger number is subtracted from

the first term.

However, in the above equations 2.17–2.23 it is assumed that the underlying data is nor-

mally distributed. In practical applications such an assumption cannot always be justified.

Especially, when uncertainties are observed empirically, discrete probability distributions

may provide much better approximations than continuous ones [cf. e.g. Collender and

Chalfant, 1986]. In this case, the integral in Equation 2.16 is replaced by a sum. If all

empirically determined realisations of a random variable X are equally probable (or if no
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other information is available), a discrete uniform distribution can provide an adequate

approximation. In general, the discrete uniform distribution is a discrete probability dis-

tribution that can be characterised by the property that all realisations of a finite set

of possible realisations are equally probable. Thus, if the discrete random variable X is

uniformly distributed and the set of possible outcomes is {x1, ..., xν}, i.e. its cardinality

is ν, the probability of each outcome (realisation) for X is 1
ν
. The moment generating

function for X is then given by [cf. e.g. Grinstead and Snell, 1997]

g(t) = E
[
etX
]

=
1

ν

ν∑
h=1

etxh

. (2.24)

Again, X is not a common univariate random variable but is to be replaced by X =∑n
i=1 wivi(xi). Each realisation xh of X (1 ≤ h ≤ ν) can be obtained by

∑n
i=1 wivi(x

h
i ),

where for each alternative a, xh
i is the hth realisation of the consequence with respect to

the ith attribute. Setting t = 1
κ
, again, it follows for the utility function u of 2.11 together

with Equation 2.7 that

E [u(x)] = 1 − 1

ν

(
ν∑

j=1

e−
1
κ

∑n
i=1 wivi(xh

i )

)
= 1 − 1

ν

(
ν∑

j=1

e−
1
κ

vh(a)

)
. (2.25)

A similar function has been proposed by Collender and Chalfant [1986] where it is called

“empirical moment generating function”. One of the main differences between this func-

tion and that of Equation 2.22 is that Equation 2.25 cannot explicitly be decomposed into

a linear function and a quadratic term. Consequently, no covariance matrix needs to be

calculated explicitly.

2.3.1.4 Sensitivity Analysis

As in MAVT, the determination of preference parameters is always subjective in MAUT

and thus, the motivations to perform sensitivity analyses are generally the same (cf. Sec-

tion 2.2.1.4). In fact, when introducing utility functions, there is an additional subjective

parameter to be analysed by sensitivity analyses: the risk attitude parameter κ. However,

the focus of this section is first on differences or similarities between weight sensitivity

analyses in MAVT and MAUT and, subsequently, a sensitivity analysis approach for κ is

discussed.

In principle, the ways in which a sensitivity analysis can be visualised are the same as

in MAVT. A major difference is that the lines in the graph, which are associated with

the different alternatives, do not necessarily need to be linear. Especially, concerning the
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quadratic term in equations 2.23 and 2.22, if a normal distribution can be assumed, the

lines can take parabolic shapes. This means that it is possible that the lines associated

with two alternatives intersect twice in the diagram (such as the lines corresponding to

Alt1 and Alt2 in Figure 2.13) which constitutes a new challenge for sensitivity analysis in

multi-attribute decision making. However, the main question is the same as in MAVT: if

a sensitivity analysis shows that the ranking of alternatives is very sensitive to changes of

a weight, the decision makers should carefully check if the weighting accurately reflects

their preferences.
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Figure 2.13: Weight Sensitivity Analysis in MAUT for the Considered Example

As mentioned above, the determination of the parameter κ, representing the risk attitude

of the decision makers, is subjective, too. Hence, it is also important to carry out a

sensitivity analysis with respect to κ [cf. e.g. Keeney and Raiffa, 1976]. One possibility is

to examine the expected utility of the different alternatives when varying the parameter

κ within a certain interval. For instance, Figure 2.14 illustrates such a sensitivity analysis

for κ in the interval [0, 1].

If the ranking of the alternatives remains the same for all examined values of κ, the results

can be regarded as robust. However, the vertical dashed line at κ = 0, 55 in Figure 2.14

indicates that, for values of κ above this point, Alt1 has the highest expected utility,

while for values below, Alt3 has the highest expected utility. Thus, if the decision makers

determined a value for κ close to this line, it is advisable to check if the determined

value really accurately represents their risk attitude. Figure 2.14 also indicates that Alt1

and Alt3 dominate the two other alternatives which means that the decision problem is

reduced to the choice between Alt1 and Alt3.
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Figure 2.14: Risk Attitude Sensitivity Analysis in MAUT for the Considered Example

2.3.2 Bayesian Decision Analysis

As a formal framework to probabilistically deal with uncertainty in decision making, util-

ity theory has been introduced above. Within this framework, the uncertain consequences

are described by means of probabilities. However, a problematic aspect in this context,

as mentioned above, is that at least the probability distributions need to be known or

assessable in an adequate way [cf. O’Hagan and Oakley, 2004]. While, for the classi-

cal approaches within utility theory, it is assumed that these probability distributions

can be assessed objectively, the Bayesian paradigm is based upon the view that decision

makers should be able to incorporate their subjective beliefs and experiences when as-

sessing probability distributions, i.e. they should be allowed to define and use subjective

probabilities.

The conceptual framework of Bayesian decision analysis was laid down by Savage [1954].

Since then, it has developed into a sophisticated methodology aimed at providing support

for decision making under uncertainty. The uncertain consequences of different alterna-

tives are determined as interactions of the alternatives with an unknown “state of the

world” [cf. e.g. French, 2000]:

alternative ⊕ state −→ consequence , (2.26)

where the ⊕ in Equation 2.26 is meant to indicate the interaction which is usually non-

additive.

In principle, the steps within Bayesian decision analysis are the same as those described

in sections 2.2 and 2.3, i.e. problem structuring, preference elicitation, aggregation and
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sensitivity analysis.7 As indicated above, however, the main methodological difference is

the following: While the “usual” utility theory, as described in Section 2.3.1, provides

methods to cope with uncertain consequences by calculating expected utilities based on

known, objective probability distributions, Bayesian decision analysis is based on obtain-

ing the uncertain consequences on the foundation of the subjective beliefs of the decision

makers about the unknown state of the world and it provides support for decision making

under uncertainty by calculating subjective expected utilities. This difference particu-

larly concerns the elicitation phase in which, besides determining the usual preference

parameters, subjective probability distributions representing the decision makers’ beliefs

and knowledge need to be assessed. Thus, according to the Bayesian paradigm, deci-

sions are taken on grounds of knowledge and beliefs about data and facts rather than

on grounds of the data and facts themselves. Therefore, knowledge can be regarded as

context-dependent and having knowledge means having understanding, experience and

expertise [French et al., 2007].

In statistics, the above two different approaches are also known as the frequentist and the

Bayesian approach. In the frequentist sense, probability is objective and defined as the

long-term relative frequency of occurrence of an ideally infinitely repeatable experiment.

From the Bayesian point of view, probability is subjective. Detailed discussions on the

distinction between both can for instance be found in French [1986]; Fienberg [2006].

In general, for two events B and D, Bayes’ theorem says

P (D|B) =
P (B|D) �P (D)

P (B)

∝ P (B|D) �P (D) , (2.27)

where P (B|D) is the conditional probability of event B under the assumption that event

D has happened and ∝ stands for “is proportional to”. In other words, the a posteriori

probability of D, knowing that B has happened, is the a priori probability of D multiplied

by the conditional probability of B assuming that D has happened, also known as the

likelihood. The proportionality in Equation 2.27 is generally obtained in such a way that

P ( � |B) sums (or integrates) to 1.

The following nomenclature will help to link Equation 2.27 to utility theory [cf. e.g. French

and Smith, 1997; French and Rı́os-Insua, 2000]: Let Θ denote the set of all possible states

of the world and let θ ∈ Θ denote an unknown state. Furthermore, let a denote a single

decision alternative (action) and x(a, θ) the uncertain consequence of applying a when

7 Even though some authors [such as Savage, 1954] do not see any value in sensitivity analysis within
the Bayesian framework, the role of analysing the sensitivity of probabilities and utilities in Bayesian
decision analysis has for instance been clearly pointed out by French [2003].
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the state of the world is θ (where x is usually multi-attributed). Then, according to the

Bayesian paradigm, the decision makers encode their beliefs and preferences through two

functions:

� a subjective (prior) probability distribution PΘ( � ) representing the beliefs about the

unknown state of the world;

� a utility function u(x), for instance in the form of Equation 2.11, representing the

preferences.

Assuming that a decision is to be taken after having made an observation Y = y (in

general, an outcome of some experiment that depends on θ), Bayes’ theorem is used to

update the prior knowledge or belief PΘ( � ) in the light of this observation to obtain the

posterior probability distribution [cf. e.g. French and Smith, 1997]:

PΘ(θ|y) ∝ PY (y|θ)PΘ(θ) . (2.28)

This means that the knowledge of the world can be continuously updated by observations.

Subsequently, it is possible to aggregate the preferences (utilities) and probabilities (be-

liefs) by determining the subjective expected utility of an alternative a as [cf. e.g. French,

2003]

Eθ [u(x)| y] = Eθ [u (x(a, θ))| y] =

∫
Θ

u (x(a, θ)) fθ(θ|y)dθ , (2.29)

where fθ is the density function, E [ � | y] is the conditional expectation having observed

Y = y and, again, the integral is replaced by a sum for discrete distributions. Then,

following the Bayesian paradigm, the alternative with the maximal subjective expected

utility is the one to be chosen.

Figure 2.15 summarises the main elements of a Bayesian decision process as described

above, combining elements from the fields of decision analysis, consequence modelling as

well as statistical inference and forecasting. More detailed descriptions and discussions

of Bayesian decision analysis can for instance be found in Berger [1985]; French [1986];

Dorfman [1997]; French and Smith [1997]; French and Ŕıos-Insua [2000]; Fienberg [2006].
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Figure 2.15: Process of Bayesian Decision Making [adapted from French, 2003]

2.4 Summary

Complex decision situations in industrial risk management require the consideration of

different, usually conflicting criteria. Providing the basis for the evaluation of such con-

flicting criteria, a general introduction into MCDA has been given. It has been argued

that MCDA is strongly preferred to cost benefit analysis because of its transparent nature

which, inter alia, results from the explicit recognition of subjectivity in decision making

processes.

Within the field of MCDA, the MAVT and MAUT approaches have been described in

detail since they have already proved to be suitable to support decision making in in-

dustrial risk management in consequence of their operational applicability. Furthermore,

the ICRP recommends MAVT in the context of nuclear emergency management. While

MAVT provides a transparent framework for deterministic decision analyses, MAUT offers

a formal possibility for the modelling and handling of uncertainties arising in a decision

process. In addition to the classical MAVT and MAUT approaches, the Bayesian deci-

sion paradigm has been outlined, as one family of approaches within utility theory. In
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contrast to the classical approaches within utility theory, Bayesian decision analysis is

based upon the view that probabilities are subjective, seeking to facilitate the process of

assessing probability distributions. Fundamental approaches for sensitivity analysis, al-

lowing to analyse the robustness of the results with respect to variations of the subjective

parameters, have been described for the MAVT as well as for the MAUT methods.

The application of the described methods is demonstrated in the context of the case study

in Chapter 4. Furthermore, the described approaches can be applied in other contexts to

support decision makers in resolving complex decision situations. For instance, MCDA

can be used to criteria such as risk exposure into account in site selection decisions of

expanding companies as shortly sketched at the beginning of Section 2.2.1. However, while

MAUT offers a way to formally treat the uncertainty arising in a decision making process,

it should be noted that the uncertainty is contained implicitly in the results and usually

cannot be visualised explicitly in order to support the communication of the impact of

the uncertainties on the results. The simulation based approaches for uncertainty analysis

introduced in Chapter 3 are aimed at overcoming this drawback.
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Chapter 3

Simulation-Based Uncertainty

Analysis

The focus of this chapter is on approaches for uncertainty handling in multi-attribute de-

cision analysis, particularly on new simulation-based approaches which will be motivated

below. While the prime purpose of Chapter 2 was a general introduction into MCDA, it

also became apparent that a decision analysis process, in practice as well as in theory, may

be subject to various types of uncertainty. A formal framework to deal with uncertainty

in MCDA probabilistically has been introduced in Section 2.3 and it was mentioned that,

within this framework, two schools of thought can be distinguished [cf. e.g. French, 1986;

Morgan and Henrion, 1990; Basson, 2004]:

� The frequentist school, according to which probability is objective, i.e. it is un-

derstood as the long-run frequency of occurrence and its estimation requires the

gathering of empirical data.

� The Bayesian school, according to which probability is subjective, i.e. persons may

be able to assess a probability based on their knowledge, experience and beliefs,

even when there is insufficient empirical data. Or, contrariwise, even in the pres-

ence of empirical data it might not be possible to assess a probability distribution

objectively.

While the advantages and drawbacks of the frequentist as opposed to the Bayesian ap-

proaches are discussed controversially in literature [cf. e.g. Savage, 1954; Edwards, 1972;

Kahneman et al., 1982; French, 1986; Paté-Cornell, 1996; Gilboa et al., 2007], the ap-

proaches have in common that the uncertainty is treated in terms of probability. However,
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even though the probabilistic treatment of uncertainty is the most widely used formal-

ism for the quantification of uncertainty [cf. e.g. Morgan and Henrion, 1990; Bedford and

Cooke, 2001], a large problem is that there are types of uncertainty for which it is diffi-

cult or impossible to assess a probability – even a subjective one [cf. e.g. O’Hagan and

Oakley, 2004; Basson, 2004]. This means that it is likely that, by attempting to describe

uncertainty by means of a probability distribution, new uncertainty is introduced which

would make the value of modelling uncertainty at all questionable.

Different types of uncertainty need to be treated in different ways [cf. e.g. Morgan and

Henrion, 1990; Helton, 1993, 1996; Bedford and Cooke, 2001]. Thus, a classification of

uncertainties that may arise in a decision making process and corresponding ways of

treatment is very important [cf. e.g. Basson, 2004]. However, there are many different

ways to classify the occurring uncertainties. But, even though the classification itself is

subject to uncertainty, it provides several advantages including [cf. e.g. Bonano, 1995]

� Consistent propagation of uncertainties into the results of an analysis resulting in

more transparent decision making;

� Simpler identification of the most significant uncertainties;

� Easier possibility to include new developments in treating specific uncertainties into

the decision making approach.

This is especially important in the context of industrial risk management since the arising

uncertainties can have a substantial impact on the outcome of a decision making process.

An adequate categorisation of the uncertainties and the assignment of appropriate ways of

treating the uncertainties within the different categories respectively is needed to support

decision makers in coping with the uncertainties. In order to increase the robustness

and reliability of decision making in risk management, it is important to support the

communication of the impact of the uncertainties on the results of the analysis.

3.1 Classification and Treatment of Uncertainties

In the field of risk analysis, uncertainties are often divided into two categories [cf. e.g.

Helton, 1993; Paté-Cornell, 1996; Helton, 1996; Bedford and Cooke, 2001; Basson, 2004]:

� Aleatory uncertainties, arising because the system under study can behave in many

different (most likely unpredictable) ways
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� Epistemic uncertainties, arising from a lack of knowledge about the system under

study

While aleatory uncertainty is a property of the observed system, epistemic uncertainty

“belongs” to its observer (and his or her knowledge). Thus, epistemic uncertainty can be

seen as theoretically reducible in contrast to the irreducible aleatory uncertainty.

Another categorisation has for instance been proposed by Morgan and Henrion [1990]

for the area of policy analysis. They distinguish, inter alia, the following sources of

uncertainty:

� Empirical quantities

� Decision variables

� Value parameters

� Model domain parameters

� Defined constants and index variables (which are said to be certain by definition)

Within the group of empirical quantities, they further investigate the potential sources

from which these uncertainties may arise, including:

� Statistical variation

� Subjective judgement and systematic errors

� Linguistic imprecision

� Variability (over time and/or space)

� Inherent randomness and unpredictability

� Approximation

In the above list of the sources of empirical uncertainties, Morgan and Henrion [1990] do

not explicitly differentiate between aleatory and epistemic uncertainties but it is argued

that uncertainties originating from inherent randomness and unpredictability are unlikely

to be reducible whereas the uncertainties arising from the other sources may, at least in

theory, be reducible. In this way, the two attempts to categorise uncertainties are linked

with each other. Though, by explicitly considering model and value parameters, the cate-

gorisation of Morgan and Henrion [1990] can be said to go beyond the distinction between
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aleatory and epistemic uncertainties. Additionally, they consider uncertainty about the

form or structure of a model which, according to them, can have a substantial impact

on the results on the one hand but, on the other, is difficult to quantify and analyse.

However, an exact distinction between their categories “uncertainties about model do-

main parameters”, “uncertainties about model structure” and “uncertainties arising from

approximation” does not seem to be straightforward. Rather, the uncertainties occurring

as a result of approximation can be regarded as being directly linked to the model struc-

ture since a model can always only be an approximate version of the real-world system

under consideration [French and Niculae, 2005]. Even though models are often iteratively

refined until they describe a certain part of the real world sufficiently well8, the refinement

cannot be an infinite process in practice [French, 1995]. Thus, these uncertainties can be

seen as inherent to all models.

There are many other approaches to classify uncertainties. For instance, French [1995]

and later also Mustajoki et al. [2006] proposed to group the uncertainties according to

the different steps of the modelling process in which they can occur:

� Constructing the model

– Uncertainty about what can happen and what can be done

– Uncertainty in consequence of ambiguity in terminology

– Uncertainty about related decisions

� Exploring the model

– Physical randomness and lack of knowledge

– Uncertainty about current beliefs and preferences as well as their future evo-

lution

– Accuracy of calculations

� Interpreting the model results

– Uncertainty about the choice of a model

– Uncertainty about the depth to which the analysis should be conducted

Based on the classification suggested by Bonano [1995], a differentiation between technical

and valuation uncertainties is described in Basson [2004]. There are obviously many

relations and overlappings between the above described classification approaches and they

8 Such models are also called requisite decision models [e.g. in Phillips, 1984].
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all have their context-dependent strengths and weaknesses. However, from the point of

view of MADM, a distinction can be made between uncertainties

� in the alternatives’ values with respect to the different attributes, i.e. uncertainties

in the input data of an MADM model;

� of the subjective parameters of a decision model, i.e. the uncertainties introduced

during the multi-attribute evaluation of a set of alternatives [cf. also Basson, 2004];

� related to the structure of the MADM model.

The first group will be reflected in uncertainties in the data of the decision table which

is why they will be referred to as data uncertainties in this thesis [cf. also Gering, 2005;

Bertsch et al., 2005]. The second group concerns the (subjective) preference parameters of

an MADM model. They are denoted parameter uncertainties or preferential uncertainties

within this thesis [cf. also Bertsch et al., 2006a, 2007a]. Uncertainties of this second group

can be further subdivided into uncertainties associated with the intra-criteria and inter-

criteria preference parameters (cf. Section 2.2.1.2). Uncertainties of the third group are

referred to as model uncertainties in this thesis. It has already been mentioned that

the uncertainties of the third group are difficult to quantify and can be regarded as

inherent to any model [French and Niculae, 2005]. They are thus not quantitatively

analysed within this thesis. However, the impact of model uncertainties on decision

making in industrial risk management could be explored by using different attribute trees

(i.e. choosing different sets of decision criteria) or, more generally, different MADM models

in a series of stakeholder workshops and by subsequently comparing the respective results.

Figure 3.1 shows one potential overall classification scheme for uncertainties arising in an

MADM process which summarises the most relevant aspects for the purposes of this thesis.

The classification into data, parameter and model uncertainties does not take account

of the respective origins of the uncertainties, especially within the group of data uncer-

tainties. This is because the focus of this Chapter is on describing methods that allow to

investigate what the occurring uncertainties mean for the decision and which uncertainties

are most relevant. Aspects of information quality and individual sources of uncertainty

will be considered in conjunction with the case study in Chapter 4. For the case study

in the context of emergency management in the nuclear power generation sector, the

modelling of empirical uncertainties and their propagation through a chain of models is

described in detail in sections 4.2.2 and 4.5. The effect they can finally have on the results

of a decision making process is shown in Section 4.6.
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Figure 3.1: Classification of Uncertainties [adapted from Basson, 2004]

Concerning appropriate approaches of treatment corresponding to the different classes

of uncertainty, Morgan and Henrion [1990] emphasise that, within their categorisation,

uncertainty of empirical quantities is the only type of uncertainty which may be appropri-

ately modelled by probability distributions on the grounds that empirical quantities are

the only quantities which can have a true in contrast to a good or appropriate value. For

preferential uncertainties, a probabilistic treatment is strongly disadvised since this may

hide the impact of the uncertainties on the results. Instead, it is proposed to treat them

parametrically (i.e. repeating the analysis for a range of possible values of the preference

parameters) providing more insight into the situation.

The choice of an approach for uncertainty handling in multi-attribute decision making

should depend on the particular decision context [Basson, 2004]. Besides the model nature

(e.g. linear / non-linear) and the type(s) of uncertainty, relevant factors include the time

needed to acquire profound knowledge about the approach or the easiness in explaining

the approach to other parties (e.g. stakeholder groups).

In Monte Carlo simulation [cf. e.g. Fishman, 1996; Frey and Nießen, 2001, for a rigorous

introduction], a random value is drawn for each input variable or parameter according

Uncertainty Handling in Multi-Attribute Decision Support for Industrial Risk Management



Chapter 3.1. Classification and Treatment of Uncertainties 49

to some distribution. It should be noted that, in this context, distribution does not

necessarily mean a continuous well-explored probability distribution. If no exact infor-

mation about the distribution type of some model input is available, the use of empirical

distributions or, if information about a range of values is available, the use of uniform

distributions is often more advisable. The set of randomly sampled values, one for each

input, then defines a scenario. However, random sampling is not the only way to de-

fine scenarios. It is also common to incorporate expert knowledge or subjective beliefs

into the process of creating plausible scenarios (plausible futures). The latter approach

(the “manual Monte Carlo method”) is called scenario analysis rather than Monte Carlo

analysis but the distinction between the two is not always clear-cut. In both cases, the

scenarios are subsequently used as parallel model input, i.e. the process is repeated (or

carried out in parallel) for each scenario. Monte Carlo Simulation provides a number of

desirable properties concerning the handling of uncertainties in decision making [Morgan

and Henrion, 1990; Helton, 1993]. These include inter alia:

� Possibility to sample the full range of all input data and parameters and to subse-

quently use all points as model input

� Capability of propagating uncertainties through a sequence (or chain) of models

(including non-linear ones)

� Conceptually simple, often used, easy to understand/explain, operationally appli-

cable and straightforwardly implementable

Perhaps not the only, but the major disadvantage of Monte Carlo Simulation is the

large number of required model evaluations. This fact can constitute a computational

limitation (or simply a time constraint) but within the scope of the application to the

case study (cf. Chapter 4), such limitations did not occur. According to Basson [2004],

when using Monte Carlo methods in practice, factors to be considered are for instance

the choice of a sampling technique, the sample size and possible correlations between the

model input. All these factors are strongly context-dependent. Concerning the choice

of a sampling method, an increasingly widely used and recommended approach is “Latin

Hypercube sampling”9 [Iman et al., 1980; Morgan and Henrion, 1990; Helton and Davis,

2002]. However, it should be emphasised that the focus in this chapter is on describing

methods that allow to investigate the ranges in which the results can vary in consequence

9 To generate samples with this technique, each distribution is divided up into equiprobable intervals.
Subsequently the sampling itself is carried out within these intervals according to the probability
distribution, resulting in more uniformly spread values than strict random sampling.
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of the variations of input data and parameters rather than comparing the use of different

sampling techniques.

Yet another approach to address uncertainty in multi-criteria methods is carried out by

fuzzy approaches [cf. e.g. Zadeh, 1965; Bellman and Zadeh, 1970; van Laarhoven and

Pedrycz, 1983; Buckley, 1985; Boender et al., 1989; van de Walle and de Baets, 1995;

de Baets et al., 1995; Carlsson and Fullér, 1996; Ribeiro, 1996; Geldermann, 1999; Gel-

dermann et al., 2000]. Instead of describing the uncertainty probabilistically, a possibility

theory [cf. Zadeh, 1978] has been developed within the fuzzy framework and for the un-

certainty itself, terms such as fuzziness or imprecision are often used. In fuzzy set theory,

imprecisions arising in a decision process can for instance be grouped into the classes

“intrinsic imprecision”, “relational imprecision” and “informational imprecision” [cf. e.g.

Rommelfanger, 1994; Oder, 1994]. In the context of emission reduction strategies for

energy systems, Oder [1994] further distinguishes different sources, besides linguistic am-

biguity, from which the informational imprecisions may arise. These include measurement,

time, place (or location) as well as the environment [cf. also Geyer-Schulz, 1986].

The use of fuzzy approaches as opposed to, for instance, probabilistic approaches is dis-

cussed controversially in literature. But such a discussion shall not be the focus of this

thesis. However, the ranking of the alternatives using fuzzy approaches is usually based

on defuzzfied values. It should be emphasised that the methods proposed in this thesis

are aimed at communicating and visualising the ranges in which the results can vary due

to the uncertainties in contrast to the results that would remain after a procedure such

as the defuzzification (or after calculating expectation values in the case of probabilistic

approaches).

Thus, Monte Carlo analysis is used for uncertainty handling within this thesis, providing

an appropriate framework to address the different types of uncertainty in MADM (e.g.

data and preferential uncertainties) in an understandable and transparent way. Moreover,

Monte Carlo simulation has shown to be operationally applicable in the context of the

case study and a combined consideration of the different types of uncertainty is easily

possible. Further fields, in which Monte Carlo simulation has already been successfully

applied include, for instance, uncertainty handling in time and motion studies in the sector

of vehicle refinishing [cf. Schollenberger, 2006] or treatment of data as well as preferential

uncertainties in multi-criteria decision support for production process design [cf. Treitz,

2006]. It should be noted that the use of Monte Carlo simulation for uncertainty handling

does not contradict the opinion of Morgan and Henrion [1990] that, besides empirical

uncertainties, it is advisable to treat the occurring uncertainties parametrically rather than

probabilistically. But since it would be very time-consuming to investigate all reasonable
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parameter combinations one at a time [cf. e.g. Butler et al., 1997], Monte Carlo simulation

is applied to speed up the process. Thus, the approaches elaborated within this chapter,

especially those in Section 3.3, can be described as “Parametric Monte Carlo Techniques”.

Having motivated the use of Monte Carlo techniques above, a Monte Carlo based ap-

proach to handle data uncertainties is introduced in Section 3.2. Subsequently, Section

3.3 deals with new Monte Carlo methods to cope with preferential uncertainties. Two

ways allowing a simultaneous consideration of the effects of data and preferential uncer-

tainties are described in Section 3.4. Equivalent approaches for a combined analysis of

these two types of uncertainty and their respective impacts on the MADM results have

not been mentioned in literature so far. A short methodic summary is given in Section

3.5.

3.2 Data Uncertainty

Data uncertainties, as described above, may arise in consequence of the uncertain evo-

lution of the environment, form or parameters of potential upstream models, empirical

uncertainties (aleatory as well as epistemic) or measurement uncertainties. The uncer-

tainties of the data in a decision table can thus have many different reasons/sources.

Consequently, a merely probabilistic treatment, as it could be done for empirical, espe-

cially aleatory, uncertainties is problematic as discussed before.

3.2.1 Modelling and Propagation of Data Uncertainties

When handling the data uncertainties by means of Monte Carlo simulation, as proposed

in this thesis, several scenarios are treated in parallel. The scenarios are either obtained

by randomly sampling values for each input according to some distribution or they may

be available ready for use in the event that the sampling step had already been carried

out before running a potential upstream model. In both cases, an adequate and reliable

uncertainty assessment is required before the actual sampling. In the event that informa-

tion is only available on the range of an input value but not on the specific distribution

within the range, a uniform distribution can provide an appropriate approximation. If

different (discrete) observations (or measurements) of one input value exist, they may also

be represented in terms of a discrete probability distribution. Alternatively, the different

scenarios can be defined as plausible futures using expert knowledge and experience.
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In any case, the scenarios are used as parallel model inputs. If the sampling is carried out

before an upstream model, the samples are used as input data for multiple parallel runs

of this model, leading to multiple results for the consequences of the different decision

alternatives. Hence, by using Monte Carlo simulation, uncertainties can be easily prop-

agated through large model chains, including complex upstream or downstream models.

The importance of this property of Monte Carlo simulation for decision support in risk

management is described in detail in the context of the case study in Chapter 4. The

subsequent multi-attribute decision analysis is not based on one (deterministic) decision

table but on a set of decision tables where each table corresponds to one sample (realisa-

tion/scenario). The different decision tables are simultaneously evaluated, i.e. the MADM

process is carried out in parallel for each scenario.

3.2.2 Visualisation of Data Uncertainties

In general, there are many different ways to visualise the results of a multi-attribute

decision analysis [cf. e.g. Vetschera, 1994b,a; Hodgkin et al., 2005]. The focus in this

section, however, is on visualising results under data uncertainty. In contrast to the

approaches, which are based on calculating expected utilities (cf. Section 2.3), the main

intention within this section is aimed at explicitly illustrating the spread of the results,

i.e. the ranges in which the results can vary in consequence of the uncertain data in the

decision table. A challenge in this context is that providing too much information about

the uncertainties may easily cause an information overload which needs to be avoided.

An easy and understandable way to represent the uncertainty in decision analysis results

is to simply illustrate the overall performance score for each alternative in each scenario.

Assuming that there are ten possible scenarios (decision tables) or that ten possible re-

alisations could be observed for the example described at the beginning of Section 2.2.1,

such a visualisation of uncertainties is shown in Figure 3.2.

The advantage of such an illustration is that it is immediately possible to read off the

percentage (of scenarios) at which an alternative receives the highest overall performance

score. While in the left diagram of Figure 3.2, the results are simply sorted by the

scenarios, they are sorted by alternative Alt4 in the right diagram. With the latter

illustration it is often easier to acquire a rapid overview. Furthermore, information about

the exact percentage at which an alternative is ranked first can more clearly be read off

from the right diagram. For instance, Alt4 comes off best in 80 % of the scenarios for

the considered example. Alternatively, the ranking of the alternatives could be visualised

separately for each scenario by means of a stacked-bar chart as in Figure 2.5 (page 22).
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Figure 3.2: Representation of Uncertainties in Results by Showing Results for all Scenarios

(Left); Same Results Sorted by Alt4 (Right)

A drawback of both procedures, however, is that they quickly result in an information

overload when the number of scenarios increases.

In order to avoid such an overload, it is advisable not to visualise all simultaneously cal-

culated results. Here, the notion of quantiles10 is helpful. The α-quantile of a distribution

of a random variable X is for instance defined as the value x such that

P (X ≤ x) ≥ α , (3.1)

where P denotes the probability [cf. e.g. Henze, 2006].

Transferring the concept of quantiles to the problem of illustrating the uncertainty ranges,

the results of the scenarios corresponding to the 5 %- and 95 %-quantiles (of the overall

performance score) can be shown alongside the results of the most probable scenario

(cf. Figure 3.3) [Bertsch et al., 2005; Geldermann et al., 2006]. For a given alternative

this means, for instance, that the probability that the overall performance score of this

alternative in a (randomly picked) scenario is smaller than the score in the scenario

corresponding to the 95 %-quantile is at least 95 %. The 5 %- and 95 %-quantile scenarios

can also be referred to as worst case and best case scenarios respectively.

10Alternatively, the notions percentile or fractile are used in literature.
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Figure 3.3: Representation of Uncertainties in Results by Means of a Stacked-Bar Chart

An illustration as in Figure 3.3 can provide important information for the decision makers.

Similar to the results under certainty, a stacked-bar chart not only illustrates the uncer-

tainty ranges of the overall goal but also indicates which of the considered attributes are

subject to uncertainties and shows the uncertainty ranges of the individual attributes as

well as their contribution to the uncertainties in the overall ranking. Furthermore, taking

uncertainties into account in the decision making process allows to graphically analyse

whether or not the considered alternatives are distinguishable from each other [cf. Basson,

2004].

An exact percentage at which an alternative receives the highest overall performance

score cannot be read off from an illustration as in Figure 3.3 but the representation

still sheds light on whether or not there are alternatives which are dominated by others.

Another advantage of using the 5 %- and 95 %-quantiles instead of showing the results

of all scenarios including the absolute minimum and maximum scores respectively is that

potential outliers are usually eliminated. Not treating the outliers adequately may result

in “squeezing” the rest of the data (when being mapped to a [0, 1] scale by a value function)

and consequently in reducing the discriminating power of the attribute [Mavrotas and

Trifillis, 2006].

In both representations (Figure 3.2 and Figure 3.3), the most important question is if the

ranking (or at least the alternative with the highest performance score) remains the same

for the different scenarios [Bertsch et al., 2005]. If it does, the results can be regarded

as robust. Otherwise, it is important to investigate the reasons for the changes in the

ranking, i.e. to relate the uncertainty in the results to the uncertainty in the input data.
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3.2.3 Principal Component Analysis (PCA)

An additional way of visualising uncertainties in the results of MADM problems is pro-

vided by Principal Component Analysis (PCA) [cf. e.g. Timm, 2002; Härdle and Simar,

2003]. Since decision problems are usually characterised by a multiplicity of variables re-

sulting in high-dimensional (often strongly correlated) data sets, appropriate multivariate

statistical techniques, such as PCA, are needed for a graphical illustration of such data

sets.

In general, principal component analysis is aimed at projecting high dimensional data

onto a lower dimensional space, most commonly a two-dimensional plane, with minimal

loss of information.11 The axes of the target space of the transformation, the principal

components, are linear combinations of the axes of the original data space which are

composed in such a way that the principal components are uncorrelated (i.e. they are

orthogonal to each other). Thus, by applying PCA, the number of correlated variables is

reduced and, since the minimal loss of information corresponds to a maximum preservation

of variance, the (uncorrelated) principal components successively describe a maximum of

variance (information) [Timm, 2002; Härdle and Simar, 2003].

It should be noted that, in a first step, PCA is simply a rotation of the coordinate system

and that both, the original data space as well as the target space are n-dimensional. In a

second step, the desired reduction of dimension is attained by only using a subset of the

target coordinate system, often by only using the first two principal components.

3.2.3.1 Basics of Principal Component Analysis in MADM

The application of multivariate statistical techniques to support the visualisation of

MADM problems and results has been proposed by Stewart [1981]. In view of the re-

duction in dimension and, at the same time, the preservation of as much information as

possible, PCA is powerful in providing a rapid overview of the results of multi-attribute

decision analyses [cf. e.g. Hodgkin et al., 2005; Basson and Petrie, 2007]. Additionally,

similarities and dissimilarities of the different decision alternatives can be easily identified.

In order to apply PCA in MAVT, let V denote the matrix of the single-attribute perfor-

mance scores of the different alternatives, i.e. each row of V corresponds to an alternative

and contains values out of [0, 1] representing the performance scores with respect to the

individual attributes. Then, let µ(V ) denote a matrix whose rows are all identical and

where the kth element within each row is the mean of the kth column of V . µ(V ) is

11In linear algebra, the procedure is also known as Principal Axis Transformation.
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needed for centring purposes, i.e. µ(V ) is subtracted from V which does not affect the

variance but the values of V − µ(V ) are centred around zero and consequently the values

in the PCA plane will later be centred around the origin. In order to perform a PCA,

the eigenvalues and eigenvectors of the covariance matrix Σ = cov(V − µ(V )) need to be

calculated.12 Since the covariance matrix Σ is symmetric, a “spectral decomposition”

Σ = ΓΛΓT (3.2)

exists according to the spectral theorem [cf. e.g. Beutelspacher, 1995], where the matrix Γ

contains the eigenvectors γ1, ..., γn of Σ as columns and Λ is a diagonal matrix consisting

of the eigenvalues λ1, ..., λn of Σ. Starting from Equation 3.2, it can furthermore be

shown that the eigenvalue λi equals the variance of the jth principal component yj for the

transformation

Y = (V − µ(V ))Γ , (3.3)

where the vector yj is the jth column of the matrix Y [cf. e.g. Härdle and Simar, 2003].

Hence, for a maximum preservation of variance, the eigenvectors are sorted according to

the magnitude of the corresponding eigenvalues (starting with the highest). Letting Γ̂

denote the matrix of the sorted eigenvectors, the principal component transformation is

given by

Y = (V − µ(V ))Γ̂ . (3.4)

The yj resulting from the transformation in Equation 3.4 are linear combinations of the

axes of the original data space. The 1st principal component yj is the linear combination

with the largest variance and the 2nd principal component, which is orthogonal to the 1st,

represents the largest part of the remaining total variance. By projecting the alternatives

from the R
n onto the plane of the 1st and 2nd principal component, the dimension is

reduced while preserving the maximum information in the R
2.

Hence, the sorted eigenvalues are a measure for the ratio of the total variance, represented

by the principal components. It can thus be calculated how much variance (information)

is represented by the 1st and 2nd principal component. In general, the relative proportion

12For the outranking method PROMETHEE, for instance, this is much easier: Here, the matrix M of the
single criterion net flows is “automatically” centred and in consequence of the inherent structure of M ,
its covariance matrix can be obtained as M ′M . The PCA plane has a special name in PROMETHEE,
it is called the GAIA plane (Geometric Analysis for Interactive Aid) [cf. e.g. Brans and Mareschal,
2005].
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of the variance represented by the first q principal components in comparison to the total

variance can be measured as [cf. e.g. Härdle and Simar, 2003]

δq =

q∑
i=1

λi

n∑
i=1

λi

; q ≤ n . (3.5)

In practice, more than 60 % or even 80 % of the total variance is often represented by the

first two principal components [cf. e.g. Brans and Mareschal, 2005]. However, the ratio yet

depends on the number of alternatives and attributes under consideration and it should

be noted that there are many cases where less information is represented by the first two

components. In such cases it is questionable whether or not the visual representation in

the PCA plane is meaningful for the decision problem [cf. e.g. Basson, 2004].

In addition to the total variance ratio, the correlation of the new principal axes and the

axes of the original data space may be of interest. In general, the correlation between two

variables X and Y is defined as

χXY =
cov(X, Y )√

V ar(X)V ar(Y )
. (3.6)

Consequently, letting xi denote the variable corresponding to the ith attribute, the cor-

relation between the jth principal component yj and the ith attribute can be measured

as

χxiyj
=

γijλj

(σiiλj)1/2
= γij

(
λj

σii

)1/2

, (3.7)

where σii is the ith diagonal element of the covariance matrix Σ (i.e. the variance of

xi) and γij is the ith component of the jth eigenvector [cf. e.g. Härdle and Simar, 2003].

Equation 3.7 can be used to investigate how well the axis corresponding to the ith attribute

is represented by the PCA. The decision makers can use this information to explore

the representativeness of the 1st and 2nd principal component with respect to the ith

attribute.13

3.2.3.2 Interpretation of the PCA Plane

The alternatives are plotted as triangles in the PCA plane and the unit vectors of the axes

of the original data space (the attributes) are displayed as straight lines emanating from

the origin (cf. Figure 3.4). The alternative vectors are usually longer than one. Thus, the

13Note that
∑n

j=1 χxiyj = 1.
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triangles corresponding to the alternatives are projected relatively far away from the origin

for a growing number of attributes and, consequently, the attributes appear comparatively

small which makes the interpretation more difficult. Therefore, the alternative vectors can

optionally be normalised. In this case, the end points of the unit vectors of the alternatives

are projected onto the plane and the projections of the alternatives thus move towards

the origin. Thereby, the relative positions amongst the projections remain unchanged

and the meaning is thus not affected. Since the performance scores are centred before

PCA is applied, as explained in Section 3.2.3.1, the centre of the alternatives is located

in the origin of the projection plane, i.e. an imaginary alternative with exactly average

performance with respect to all attributes would be projected onto the new origin [Belton

and Stewart, 2002].
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Figure 3.4: Alternatives and Attributes Evenly Spread in the PCA Plane

Alternatives projected close together in the PCA plane show similar characteristics and,

correspondingly, strongly differing alternatives are usually projected distant from each

other [Treitz, 2006]. Alternatives plotted in the direction of an attribute show good

performance with respect to the attribute. Concerning the projections of the attributes,

their length is a measure of the influence of the respective attribute on the decision

problem, i.e. a long projection of the unit vector of an attribute on the plane corresponds

to an attribute which is important in differentiating between the different alternatives

and vice versa. Additionally, attributes whose projections approximately point in the

same direction are positively correlated, while negatively correlated attributes have rather

opposite orientations in the plane. Orthogonal attributes, however, imply independence

of the attributes as regards their impact [cf. e.g. Brans and Mareschal, 1994].
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Moreover, the PCA plane can lay open the representativeness of the selected attributes

and the independence of the attributes concerning the considered alternatives can be

investigated. In Figure 3.4 for instance, the attributes’ projections point in all direc-

tions while in Figure 3.5 there are no attributes pointing in the direction of alternative

Alt2 indicating that the solution space is not adequately represented by the considered

attributes.
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Figure 3.5: Alternatives and Attributes Unevenly Spread in the PCA Plane

However, it should be emphasised that the PCA plane provides an unweighted represen-

tation of the decision problem under consideration. Thus, while it provides a valuable

overview of the performance of the alternatives relative to the different attributes and

shows similarities or dissimilarities between alternatives, an aggregated ranking of the

alternatives cannot be read off immediately from this illustration. For the latter, the

so-called decision axis π, i.e. the projection of the normed weighting vector w, is usually

displayed in the PCA plane in addition to the alternatives and attributes (see Figures 3.4

and 3.5). π points in the direction of the preferred alternatives according to the prefer-

ences of the decision makers, i.e. for different weights, π points in different directions and

possibly different alternatives are preferred. While the normed weighting vector w always

has the same length by definition, the length of its projection may of course change.14

An aggregated ranking can be obtained by projecting the alternatives orthogonally on

the weighting vector (in the n-dimensional original data space) and by subsequently de-

14In studies in which PROMETHEE is used for instance, it is stated that the position of π determines
the decision power [cf. e.g. Brans and Mareschal, 2005; Treitz, 2006]: In cases where w is comparatively
flat in relation to the plane and therefore π is relatively long, alternatives projected far from the origin
in the direction of π can usually be considered as well performing. If w is almost orthogonal to the
plane, however, π is rather short. This can imply strongly conflicting objectives potentially resulting
in difficulties in the determination of a preferred alternative.
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termining the order of the respective perpendiculars on w. This is exemplarily shown in

Figure 3.6, where the alternatives in the original data space, illustrated as small points,

and the corresponding projections of the alternatives in the PCA plane, illustrated as

slightly larger triangles, are labeled identically for reasons of clarity.
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Figure 3.6: Projections of the Alternatives on the PCA Plane and on the Weighting Vector

Then, by “projecting these projections” onto the PCA plane, the aggregated ranking can

also be visualised in the R
2. It is obtained by determining the order of the intersections

of the projected projections with the decision axis [−π, +π] (see Figure 3.7). The perfor-

mance score of an alternative equals the distance between the respective intersection and

the origin on π.

In addition to the alternatives under consideration, it can be helpful to further consider

the two fictitious alternatives IDEAL and NADIR in the PCA plane, which have already

been introduced in Section 2.2.2. As pointed out in Section 2.2.2, these two practically

unattainable points can provide valuable support in assessing the quality of the alter-

natives based on their relative positions in comparison to these points, i.e. alternatives

projected close to the IDEAL, have high performance scores, while alternatives projected

near the NADIR do not correspond to the preferences of the decision makers. The pro-

jections of the IDEAL and NADIR alternatives intersect the decision axis in π and −π

respectively (in the axis’ ends, see Figure 3.7).
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Figure 3.7: Visualisation of an Aggregated Ranking in the PCA Plane

3.2.3.3 PCA for the visualisation of data uncertainties

The value of PCA for the visualisation of data uncertainties is rooted in the possibility

of its straightforward combination with Monte Carlo simulation. Assuming that the

uncertainties of the data in the decision table have been modelled and propagated by

means of Monte Carlo analysis, several points in the original data space, instead of only

one, correspond to each alternative. More precisely, if ν denotes the number of (observed

or sampled) scenarios, each alternative is represented by a cloud of ν points each of which

is projected onto the PCA plane resulting in a scatter plot of triangles (cf. Figure 3.8).

π

A1

A3

A4

A2

Alt1

Alt4

Alt2

Alt3

π

A1

A3

A4

A2

Alt1

Alt4

Alt2

Alt3

Figure 3.8: Representation of Data Uncertainty in the PCA Plane: Clearly Distinguishable

Scatter Plots
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This combination of PCA and Monte Carlo analysis provides a good graphic overview on

the effect of the data uncertainties and allows to carry out a distinguishability analysis

[cf. Basson, 2004; Basson and Petrie, 2007]. The distinguishability of alternatives can be

explored graphically in the PCA plane, i.e. it is possible to explore whether or not the

different alternatives can be evaluated meaningfully based on the considered attributes

and the uncertainties afflicted with the data in the decision table. The complete set of

points in the plane corresponding to one alternative represents the range of variation due

to the underlying data uncertainty. For instance, in Figure 3.9, the alternatives Alt1 and

Alt4 are not clearly distinguishable as a result of the uncertainties.
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Figure 3.9: Representation of Data Uncertainty in the PCA Plane: Scatter Plots are not Clearly

Distinguishable

In addition, an analytical evaluation of the distinguishability of the alternatives based on

the calculation of a so-called distinguishability index (DI) has been suggested by Basson

[2004]; Basson and Petrie [2007]. However, it should be noted that, while distinguisha-

bility of alternatives in the PCA plane implicates distinguishability of alternatives in the

original data space, the situation is different for indistinguishability. Alternatives being

indistinguishable in the plane do not necessarily imply that they are indistinguishable in

the original data space. Before such conclusions can be drawn, additional analyses in the

high-dimensional data set are necessary.

3.3 Parameter Uncertainty

In Section 3.2, Monte Carlo based methods have been introduced that allow to explore the

effect of data uncertainties on the results of an MADM process. Some authors, however,

argue that in practice it can often be observed that the impact of the data uncertainties
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is negligible, i.e. a common deterministic decision analysis will often lead to the same

results as the more complex methods which are capable to cope with uncertainties [cf.

e.g. von Winterfeldt and Edwards, 1986; Kirkwood, 1992; Papamichail, 2000; Papamichail

and French, 2000]. Nevertheless, data uncertainties may of course cause changes in the

ranking of the alternatives and the question whether or not they do, certainly depends on

the individual context and the magnitude of the uncertainties. While the impact of data

uncertainties in the context of a concrete case study will be investigated in Chapter 4, the

particular focus of this section is the introduction of operationally applicable approaches

for examining the effect of the preferential uncertainties (within certain boundaries), i.e.

the uncertainties of the parameters introduced during the evaluation process.

While methods such as SWING and SMART [cf. Edwards, 1977; von Winterfeldt and

Edwards, 1986] seek to support decision makers (or their advisers) in eliciting appropri-

ate weights for the different criteria by allowing the assignment of weight ratios instead

of direct weights, the most difficult problem is often the determination of precise weights

or precise weight ratios. Experiences gained from conducting scenario-focused decision

making workshops15 and also training courses on the use of decision analysis, have shown

that decision makers (or their advisers) do in general appreciate the benefits from apply-

ing MCDA but that they need more guidance. They were often unsure about an exact

quantification of the modelled preferences due to the inherent degree of subjectivity con-

tained within the preferential parameters [cf. e.g. Geldermann et al., 1999; Belton and

Stewart, 1999; Bertsch et al., 2006a]. Hence, an appropriate handling of the preferential

uncertainties is of particular importance.

The problem of preferential uncertainties is closely interconnected with the field of group

decision processes [cf. e.g. Salo, 1995; Zhang, 2004]. It is suggested to allow the assignment

of ranges (intervals) for the preference parameters instead of precise values since this could

facilitate the preference elicitation process (for single decision makers but, in particular,

also for groups). Furthermore, it should be noted that preferences may certainly vary

according to value systems that are influenced by culture which, in particular, has to be

accounted for when decision groups involve persons with different cultural backgrounds.

Using approaches for sensitivity analysis that allow to find out whether or not the variation

of certain weights has an impact on the ranking of the alternatives, disagreements which do

not affect the results can be eliminated from debate and the group can focus on discussing

the differences that do matter in terms of the results [French, 2003; Bertsch et al., 2006a].

15For instance, a series of such workshops has been organised across Europe within the European research
project EVATECH (“Information Requirements and Countermeasure Evaluation Techniques in Nuclear
Emergency Management”, see: http://cordis.europa.eu/fp5-euratom/src/index.htm)
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Sensitivity analyses, in general, are very helpful to examine the impact of variations of

the preference parameters. The most frequently applied sensitivity analysis technique

for multi-criteria problems, which simply allows an examination of the robustness of the

choice of an alternative with respect to changes of the weight of a criterion, has been

described as the fourth elementary step in a MAVT analysis in Section 2.2.1.4. Such

one-dimensional sensitivity analyses are very helpful since they allow an assessment of

the robustness of a decision and thus provide a deeper insight into the decision situation.

However, a major drawback is that the procedure is limited to varying the weight of one

criterion at a time. Consequently, the aim is the elaboration of an approach that allows to

analyse the variation of several parameters at a time. While in Section 3.3.1 and Section

3.3.2, approaches to treat uncertainties in the inter-criteria and intra-criteria preference

parameters will be described respectively, the main emphasis of this section is aimed at

introducing an approach for investigating simultaneous variations of all parameters. For

both, the inter-criteria as well as the intra-criteria preferences, intervals can be used to

replace the precise parameters. Subsequently, since it would be very time-consuming to

investigate all reasonable parameter combinations one at a time [cf. e.g. Butler et al.,

1997], Monte Carlo simulation can be applied to draw samples within the intervals and

to perform a multi-dimensional sensitivity analysis in order to explore the effect of the

“preferential uncertainties” within the afore assigned intervals.

The problem of preferential uncertainties, however, is not new. It has been addressed by

many researchers and practitioners in the field of decision analysis. For instance, the use of

mathematical programming techniques to explore the sensitivity of multi-criteria decisions

when simultaneously varying different decision parameters is proposed by Rı́os-Insua and

French [1991]; Proll et al. [1993]. Saaty and Vargas [1987] propose the use of interval

judgments in the comparison matrix of the analytic hierarchy process (AHP [cf. Saaty,

1980]). In “Preference Programming”, the interval judgments within AHP are interpreted

as linear constraints and a series of linear programming problems is solved [Arbel, 1989;

Salo and Hämäläinen, 1995]. Mustajoki et al. [2005] discuss “interval SMART/SWING”,

an approach that generalises the SMART and SWING methods by allowing the choice

of an arbitrary attribute as reference attribute and by allowing interval judgments for

the weight ratios. Chevalier and Téno [1996] use interval calculation techniques to model

inaccurate data in the context of life cycle assessment (LCA). Lahdelma and Salminen

[2001] and also Mavrotas and Trifillis [2006] propose to explore the weight space (i.e.

describing the valuations which would make each alternative the most preferred one) when

preference information is afflicted with uncertainties, missing or only partially available.

Morgan and Henrion [1990] distinguish between probabilistic and parametric treatment

of uncertainty. For preferential uncertainties, parametric sensitivity analyses [cf. also
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Dinkelbach, 1969] are strongly preferred on the grounds that treating the uncertainties

probabilistically may hide the impact of the uncertainties on the results while treating

them parametrically potentially provides more insight into the situation. The use of

simulation techniques for sensitivity analyses has for instance been proposed by Butler

et al. [1997]; Mateos et al. [2006]. For outranking approaches, such as PROMETHEE for

instance, the problem of preferential uncertainties is e.g. dealt with in Mareschal [1998];

Hyde et al. [2003]; Zhang [2004]; Treitz [2006].

As indicated above, many different methods to handle preferential uncertainties have pre-

viously been proposed in literature. However, an equivalent sensitivity analysis approach

for the value functions including an investigation of their domains’ boundaries and the

simultaneous consideration of varying the different preferential parameters, as described

later in this section, has not been mentioned in the existing literature so far. While a

framework for multi-dimensional sensitivity analysis based on mathematical programming

has already been proposed by Ŕıos-Insua and French [1991], an operationally applicable

implementation has not been presented at that time. The rapid technological develop-

ment in the area of information systems since the early 1990’s now allows to close this

gap. Thus, one aim within this thesis is the implementation of the proposed Monte Carlo

approach in a usable tool. Furthermore, a large part of the existing literature is focussed

on the theoretical foundations of the approaches and the presented examples are often of

artificial nature. As it will be demonstrated in Chapter 4, large emphasis is placed on

applying the presented approach to a case study in the context of industrial risk man-

agement and on supporting the communication of results by providing comprehensible

visualisations throughout the decision making process.

3.3.1 Multi-Dimensional Inter-Criteria Sensitivity Analysis

A multi-dimensional approach is introduced to allow the consideration of simultaneous

variations of the weights within a decision model and to facilitate the weight elicitation

process by allowing the assignment of intervals instead of discrete weights. It should be

emphasised that this approach is not aimed at substituting but at complementing the

one-dimensional sensitivity analysis. Assuming, again, that n attributes are considered

(n ∈ N), this means that instead of assigning one exact weight wi to each attribute i

(i ∈ {1, ..., n}), it is sufficient to assign an interval I(wi) by determining a lower (wl
i) and

an upper (wu
i ) bound:

I(wi) =
[
wl

i, w
u
i

]
. (3.8)
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In groups, the intervals could for instance be obtained by permitting each group member

to define his or her weights individually and then defining the intervals as the superset

of the individual weights. Alternatively, the group members could be permitted to use

intervals, too, and the group interval could be obtained by using the superset of the

individual intervals. However, the uncertainties of the inter-criteria preferences for all n

attributes can then be described by the n-dimensional interval

Cw =

n∏
i=1

I(wi) =
[
wl

1, w
u
1

]× ... × [wl
n, w

u
n

]
, (3.9)

which can also be regarded as a generalised cuboid. However, not all points within Cw

represent valid weight combinations since they do not necessarily fulfill the constraint that

the sum of the weights of all attributes is equal to one. This constraint is represented by

the hypersurface

H =

{
w ∈ R

n : wi ≥ 0,

n∑
i=1

wi = 1

}
. (3.10)
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Figure 3.10: Intersection of the Weight Intervals and the (Hyper-)Surface Representing the Valid

Weights in 3D

Hence, the intersection Cw ∩ H is the set of valid weight combinations within the n-

dimensional weighting interval. Thus, this is the basic set for the Monte Carlo Simulation

(see below). For n = 3 the set Cw∩H can be illustrated as the hatched area in Figure 3.10.

For higher dimensions, such a graphic illustration is not directly possible. However, the

method can nevertheless be applied for any dimension. The set Cw ∩ H of valid weight
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combinations is also called weight space in literature [cf. e.g. Lahdelma and Salminen,

2001; Hodgkin et al., 2005; Mavrotas and Trifillis, 2006].

It is important to choose the weight intervals and thus Cw in such a way that Cw∩H �= ∅.
It is of course possible to construct intervals that result in Cw ∩ H = ∅. A procedure

providing usable results for such parameter input would necessitate scaling up or down

the input and would thus result in weights lying outside the afore assigned intervals (at

least for some weights). Rather than considering such procedures, it is argued that, in

practice, there should always be a facilitator who guides the decision making group in

order to avoid the occurrence of such problems, to ensure that Cw ∩H �= ∅ and to explain

the difficulty to the members of the group of decision makers if necessary. For instance, a

comparison of the ranges of the assigned weight intervals and the ranges of the actually

drawn weights can provide the basis for a consistency check. The latter will be picked up

again in more detail in Chapter 4.

Monte Carlo simulation can then be used to draw multiple samples of valid weight com-

binations, where “valid” means that the samples are drawn under the constraint that

the sum of the weights of all attributes must be equal to 1. Uniform distributions of

the weights within the assigned intervals are presumed for the analyses carried out, if no

other information is available. On the one hand, this assumption was made for reasons of

simplicity. But on the other hand, the most important (and most understandable) part

in a practical application, is to illustrate the spread of the results (the ranges in which

the results can vary) and not the probabilistic structure inside the spread [Bertsch et al.,

2007c]. Thus, when drawing the samples, all elements of the set Cw ∩ H are considered

to be equiprobable.

While the restriction of the simulation space to the set Cw ∩ H , as illustrated in Figure

3.10, is conceptually simple, the question arises how this problem can be tackled com-

putationally. Because of its straightforward implementability and its computation rate

in practical applications, an approximate procedure as illustrated in Figure 3.11 is pro-

posed. This procedure allows the sum of the attributes’ weights to vary within the interval

[1 − ε, 1 + ε] whose size is determined by the accuracy factor ε (ε > 0).

The accuracy factor ε certainly influences the computation rate. However, it could be ob-

served in practical case studies that setting ε = 10−3 or ε = 10−4, for instance, gives good

results in combination with an acceptable computation rate. Concerning the influence

on the calculation speed, the same holds for the desired sample size τ . Here, practical

experiences have shown that setting τ = 1000 or τ = 10000 usually leads to sufficiently

good results, i.e. a graphical comparison has shown that the drawn samples provide a
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Figure 3.11: Proposed Procedure to Ensure that the Sum of the Weights is Equal to 1

good representation of the full range of the theoretical distribution. Once the samples

are drawn, the approach is in principal straightforward and furthermore computationally

easily feasible, i.e. the analysis is carried out in parallel for all samples.

As mentioned above, uniform distributions are used for the sampling of the weights wi

within the respective intervals I(wi). It should be noted that it can thus be concluded

that the resulting weight combinations, sampled according to the proposed procedure, are

also uniformly distributed (in Cw ∩ H). However, such a conclusion cannot be drawn for

arbitrary distributions.

3.3.2 Multi-Dimensional Intra-Criteria Sensitivity Analysis

Besides the elicitation of the inter-criteria preferences, i.e. the weights, the determination

of the intra-criteria preferences, i.e. value functions’ shapes, is a difficult task in practice.

Thus, it is important to provide methods that allow to investigate the impact of vary-

ing the shape(s) of the value function(s) within certain intervals [cf. also Bertsch et al.,

2007a]. In comparison to exploring the impact of simultaneously varying the weights, the

Uncertainty Handling in Multi-Attribute Decision Support for Industrial Risk Management



Chapter 3.3. Parameter Uncertainty 69

procedure is much simpler for value functions since there is no constraint such as that

their sum needs to be equal to 1 as for the weights.

In addition to varying the value functions’ shapes it is also interesting to investigate the

effect of varying their domains’ boundaries. In practice, the boundaries are often defined

by the minimum and maximum scores actually achieved by the different alternatives (with

respect to the considered attributes). By following this approach, theoretically possible

better or worse outcomes are neglected. However, the estimation of reasonable values for

these theoretically possible boundaries is a difficult task. Thus, in order to support a

decision making team in coping with this task, it is suggested to analyse whether or not

the variation of the boundaries has an impact on the results.

Bearing the definition of an exponential value function (cf. Equation 2.4 on page 19) in

mind, this means that the modelling of the uncertainties of the intra-criteria preferences

concerns the parameters ρi (see Section 3.3.2.1) as well as xi
min and xi

max (see Section

3.3.2.2). Both procedures are very similar. In both cases, Monte Carlo simulation can be

used to draw the samples.

3.3.2.1 Varying the Value Functions’ Shapes

In the following, the impact of varying the parameters ρi (i.e. varying the shape(s) of the

value function(s)) shall be analysed. For high positive and high negative values of a ρi, the

exponential expression in Equation 2.4 almost equals a linear value function. For small

positive values of ρi, the value function becomes concave (which means that differences

between the scores are perceived to be more important in the lower half of the scale) and

for small negative ρi, the function becomes convex (implying that differences between the

scores are perceived to be more important in the upper half of the scale respectively).

However, let now ρ = (ρ1, ..., ρn) denote the vector of the value functions’ shape parame-

ters. In order to explore the effect of simultaneously varying the value functions’ shapes,

it is proposed to assign an interval I(ρi) to each attribute i by determining a lower (ρl
i)

and an upper (ρu
i ) bound instead of assigning a discrete value ρi:

I(ρi) =
[
ρl

i, ρ
u
i

]
. (3.11)

The uncertainties with respect to the value functions’ shapes can then be described by

the n-dimensional interval

Cρ =

n∏
i=1

I(ρi) =
[
ρl

1, ρ
u
1

]× ... × [ρl
n, ρu

n

]
. (3.12)
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Figure 3.12: Value Function Shapes for Different Values of the Parameter ρi and Illustrative

Visualisation of an Interval I(ρi)

For an increasing value function, the exemplar interval I(ρi) = [0.2, 10] is illustrated as

the grey area in Figure 3.12. Monte Carlo simulation can be used to draw samples of the

vector ρ. Because of the exponential function in the definition of the value function (cf.

Equation (2.4) on page 19), it is not advisable to simply presume a uniform distribution

of the elements of the set Cρ. For instance, there is not much difference in the curvature

of the value functions corresponding to the parameters ρi = 5 and ρi = 10, whereas the

difference is much larger for the functions corresponding to ρi = 0.2 and ρi = 0.3. Thus, a

logarithmic transformation is performed at first and then, it is assumed that the elements

of the transformed set can be considered to be equiprobable.

3.3.2.2 Varying the Value Functions’ Domains

Besides varying the value functions’ shapes, the effect of varying their domains’ boundaries

shall also be investigated [cf. also Bertsch et al., 2007a]. The procedure is very similar to

the one described in the last section. Instead of varying the parameters ρi, the boundaries

xi
min and/or xi

max are varied within their lower (e.g. xi,l
max) and upper (e.g. xi,u

max) bounds

(see Figure 3.13):

I(xi
max) =

[
xi,l

max, x
i,u
max

]
. (3.13)

These uncertainties can thus be described by the n-dimensional interval

Cxmax =

n∏
i=1

I(xi
max) =

[
x1,l

max, x
1,u
max

]× ... × [xn,l
max, x

n,u
max

]
. (3.14)

The intervals I(xi
min) and Cxmin

can be defined analogously. However, the upper bounds

xi,u
min of the intervals of the lower boundaries and the lower bounds xi,l

max of the intervals of
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Figure 3.13: Value Function Shapes for Different Values of the Parameter xi
max

the upper boundaries of the value functions’ domains should be chosen in such a way that

they correspond to the minimum and the maximum of the occurring scores respectively.

This is important to ensure that the actually occurring scores cannot exceed the domains’

boundaries.

3.3.3 Visualisation of Parameter Uncertainties

After presenting new methods for the modelling of preferential uncertainties in Sections

3.3.1 and 3.3.2, multi-dimensional sensitivity analyses can be performed for one or several

preference parameter(s) from the set {w, ρ, xmin, xmax}, where each of the parameters is n-

dimensional (and n is still the number of considered attributes). In practice, the parameter

xmin is often equal to zero for at least some of the considered attributes in which case it

is not varied since negative values would not make sense [Bertsch et al., 2007c]. However,

comprehensible illustrations are very important to support the communication of the

results of the multi-dimensional sensitivity analyses. Thus, the aim within this section is

to propose understandable visualisations whose explanatory power goes beyond the often

used box plots which are for instance used in the decision support tool GMAA.16 Figure

3.14 shows possible results for the example described at the beginning of Section 2.2.1 for

τ = 1000 samples of the (n-dimensional) random quadruple (w, ρ, xmin, xmax).

As for the data uncertainties, taking preferential uncertainties into account allows to

examine whether or not the considered alternatives are distinguishable from each other

(from a preferential perspective). The left diagram shows the spread (the minimum, the

maximum and the mean) of the overall performance scores as a result of the preferential

16GMAA: “Generic Multi-Attribute Analysis”, see http://www.dia.fi.upm.es/∼ajimenez/GMAA as well
as Rı́os-Insua et al. [2003]; Jiménez et al. [2005]; Mateos et al. [2006].
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Figure 3.14: Possible Results for the Considered Example when Varying the Quadruple

(w, ρ, xmin, xmax)

uncertainties. Figure 3.14 shows that Alternative 1, Alternative 2 and Alternative 4 are

not clearly distinguishable from each other in this example. But the results in the left

diagram do show that, even in the “worst cases”, Alternative 2 and Alternative 4 have a

higher performance score than the Alternative 3 in the “best case” which means that the

latter is dominated by Alternative 2 and Alternative 4.

While the left diagram provides a good overview on the impact of the uncertainties of

the preferential information, it is not possible to read off information about the relative

frequency of the performance scores of the different alternatives (i.e. performance scores

at the lower and upper bound of the shown ranges will usually occur less frequently

than those in the middle of the ranges). However, such information is provided in the

right diagram. The illustration by means of plotting the performance scores versus the

cumulative percentage has also been proposed by Butler et al. [1997]. This visualisation

is favoured over a box plot since more proper information of the complete distribution of

the results is provided.

It is important to note that the performance scores of the different alternatives at an

imaginary “perpendicular cut” through the diagram of the cumulative percentage do not

necessarily belong to only one parameter combination. Thus, information about the ex-

act percentage at which a certain alternative is ranked first cannot be read off from this

diagram immediately. This means, for instance, that it cannot be concluded from the

right diagram of Figure 3.14 that Alternative 4 receives the highest overall performance

score for all drawn parameter combinations. However, an illustration as in Figure 3.15

(where Alternative 4 is visualised as in Figure 3.14 but the other alternatives are sorted in

such a way that their scores at an imaginary “perpendicular cut” do belong to the same
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parameter combination) or an analytical evaluation can be helpful to provide such accu-

rate information. For the considered example, Alternative 4 is ranked first for 86.5 %,

Alternative 2 for 13 % and Alternative 1 for 0.5 % of the drawn weight combinations.

Additionally, a visualisation as in Figure 3.15 can provide insight into potential correla-

tions between the different alternatives. For example, Figure 3.15 indicates a correlation

between Alternative 4 and Alternative 2.

Alternative 4

Alternative 2

Alternative 1

Alternative 3

Alternative 4

Alternative 2

Alternative 1

Alternative 3

Alternative 4

Alternative 2

Alternative 1

Alternative 3

Figure 3.15: Possible Results Sorted by Alternative 4

In addition, a backwards calculation can help to investigate the origin of potential differ-

ences in the results (see Figure 3.16). Beyond the information provided in Figure 3.14 and

Figure 3.15 it would for instance be very helpful for a decision making team to explore

which preference parameter combinations result in Alternative 2 and which combinations

result in Alternative 4 as the alternative with the highest performance score. For the

weights, Figure 3.16 provides such information in an easily understandable way. The

upper diagram shows all drawn weight combinations (i.e. the complete weight space).

The lower diagram only shows those weight combinations for which Alternative 2 has

the highest overall performance score. While the intervals in both diagrams seem to be

more or less the same for almost all attributes, differences can be seen for Attribute 2.

While the interval assigned to Attribute 2 allows the weight to vary between 0.05 and

0.2, the weights of Attribute 2 for which Alternative 2 turns out to be the most preferred

alternative are not higher than 0.08. Such information can be very valuable for groups so

that their discussion can focus on the most important preference parameters in terms of

their respective impact on the results.
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Figure 3.16: Backwards Calculation

3.3.4 Principal Component Analysis (PCA) for Parameter Un-

certainties

For the visualisation of MADM results under data uncertainty, PCA has been described as

a powerful method to provide a fast overview of the impact of the underlying uncertainties

(cf. Section 3.2.3). Thus, beyond the visualisation techniques for preferential uncertainties

introduced in Section 3.3.3, the use of PCA for visualising the impact of the uncertainties

of the preference parameters is described in this section, eventually also providing the

basis for a combined consideration of data and parameter uncertainties in the PCA plane

(cf. Section 3.4.2). While Section 3.3.4.1 deals with the projection of the uncertainties

with respect to the inter-criteria preferences onto the PCA plane, the projection of the

intra-criteria preferential uncertainties is described in Section 3.3.4.2.

3.3.4.1 Projecting the Weight Space onto the PCA Plane

It should be noted that the basic principle of projecting alternatives and attributes from

an n-dimensional space onto a plane by PCA, as described in Section 3.2.3.1, remains

unchanged. In Section 3.2.3.2, however, the decision axis π, i.e. the projection of the

normed weighting vector onto the PCA plane, has been introduced. The aim of this section

is to link the concept of π to the procedure allowing to simultaneously vary the weights (cf.

Section 3.3.1). Each (sampled) valid weight combination of the set Cw ∩ H represents a
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different (normed) weighting vector w. Projecting each of the τ weighting vectors onto the

plane would result in τ different decision axes π which cannot be simultaneously visualised

without causing confusion. But the endpoints of the weighting vectors, representing the

set Cw ∩H (i.e. the weight space), can be projected onto the plane and the convex hull of

the projections can be illustrated. The projection of the weight space or, more precisely,

its convex hull will be denoted by Ω in the following. Ω surrounds the endpoint of π

and marks the range in which π can move when varying the weights within the defined

interval limits (see Figure 3.17).17
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Alt1

Alt4

Alt2
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Ω
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A4

A2

Alt1

Alt4

Alt2
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Figure 3.17: Projected Weight Space Ω in the PCA Plane

It should be noted that the position of Ω relative to the origin in the plane gives a general

impression of the magnitude of the impact of the inter-criteria preferential uncertainties.

In the event that Ω is situated in the plane as in Figure 3.17, not including the origin,

it can be argued that all valid weight combinations point at least in a similar direction.

Consequently, the alternatives lying in this direction will in general be preferred. In

the event that Ω is located centrally in the plane, including the origin, π – representing

the valid weight combinations – can point in any direction. Thus, for each direction of π,

different alternatives will be preferred resulting in a more difficult decision problem. More

detailed discussions on so-called “hard” and “soft” problems can for instance be found in

Brans and Mareschal [1995]; Treitz [2006].

17Projecting the convex hull of all valid weighting vectors on the PCA plane is well known for the
outranking method PROMETHEE, too. There, the generated convex polygon on the plane is called
the PROMETHEE VI Area or sometimes also the Human Brain (HB), as it visualises the preference
perceptions of the decision makers [Brans and Mareschal, 1995]. However, problems concerning the
calculation speed for the determination of this convex hull, as reported by Treitz [2006] for instance,
could not be observed using the procedure of Figure 3.11 since the drawn samples representing the
weight space only need to be projected onto the plane.
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However, an exact determination of the effects of simultaneously varying the weights

within their intervals based on the projected weight space Ω and the decision axis π is

problematic. For this, insights as offered by the backwards calculation (see Figure 3.16)

need to be made available in the PCA plane. This means that a possibility should be

provided to partly project the weight space, i.e. to only project those weight combinations

onto the plane for which a certain alternative is the most preferred. Such a so-called

preference region18 [cf. e.g. Hodgkin et al., 2005] can be denoted by Ωj in the plane,

where j ∈ {1, ..., m} denotes the index of the most preferred alternative (as Ω4 in Figure

3.18 denotes the projection of the weights for which Alternative 4 is most preferred).

Hodgkin et al. [2005] describe a way to show a preference region in a triangular plot.

In the context of this thesis, the projection of such a preference region is displayed in

the PCA plane together with the complete projected weight space in order to provide an

overall overview (see Figure 3.18).
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Figure 3.18: A Preference Region within Ω in the PCA Plane

3.3.4.2 Intra-Criteria Preferential Uncertainties in the PCA Plane

As described in Section 3.2.3.1, the projection by PCA is based on the matrix V of the

single-attribute performance scores of the different alternatives, i.e. the original values of

the decision table have already been transformed, each on a [0, 1] scale, by the correspond-

ing value functions. Thus, a variation of the intra-criteria preference parameters affects

the matrix V and consequently also the position of the alternatives’ projections in the

plane. This effect of the intra-criteria preferential uncertainties shall also be visualised

in the PCA plane. In principle, the procedure is similar to that described for the data

uncertainties in Section 3.2.3.3. While in Section 3.2.3.3, the performance scores of the

18The notion stability interval is also used in literature [cf. e.g. Zhang, 2004; Treitz, 2006].
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alternatives for each of the ν scenarios were projected onto the plane, the alternatives’

scores for each of the τ samples are now projected and illustrated. In order to distin-

guish between data and parameter uncertainties in the PCA plane, the alternatives are

now plotted as points instead of triangles in the plane or, more precisely, each alternative

is now represented by a cloud of points in the plane (see Figure 3.19). The spread of

points in the plane corresponding to one alternative represents the range of variation in

consequence of the underlying intra-criteria uncertainty.
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Figure 3.19: Combined Illustration of all Preferential Uncertainties in the PCA Plane

Similar to the scatter plots for the data uncertainties (see Figures 3.8 and 3.9), Figure 3.19

provides a graphical facility to explore whether or not the alternatives are distinguishable

from each other in the light of the underlying parameter uncertainties. As for the methods

introduced in Section 3.3.2, a separate investigation of the impact of varying the value

functions’ shapes and that of varying their domains’ boundaries can provide further insight

into the relevance of each of the parameters concerning the corresponding effect on the

results. Altogether, showing the projected weight space Ω in addition to the intra-criteria

scatter plots, Figure 3.19 provides a holistic impression of the impact of the complete

preferential uncertainty on the MADM results.

3.4 Combined Consideration of Data and Parameter

Uncertainties

When motivating the use of Monte Carlo analysis for uncertainty handling in MADM in

Section 3.1, one point that has been stressed was the straightforward possibility to simul-

taneously consider the different types of uncertainty in an understandable and transparent
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way. Section 3.4.1 deals with the incorporation of the simulation based approaches for

preferential uncertainty handling, described in Section 3.3, into the framework of MAUT

(cf. Section 2.3). In Section 3.4.2, an illustration for the simultaneous consideration of

data and parameter uncertainties in the PCA plane is introduced.

3.4.1 Integration of the Simulation Based Approaches for Pa-

rameter Uncertainties into MAUT

In Section 2.3, approaches for data uncertainty handling have been introduced which

are based on calculating expected utilities – in the Bayesian case subjective expected

utilities. In contrast to the methods described in Section 3.2, these methods are not

aimed at explicitly illustrating the range in which the results can vary in consequence of

the data uncertainties since, after the aggregation into an expected utility, all information

about the uncertainties is (implicitly) included in this utility.

However, this section is aimed at introducing a sensitivity analysis concept for the methods

presented in Section 2.3 allowing to investigate the robustness of MAUT results with

respect to parameter variations [cf. e.g. Ŕıos-Insua and Ruggeri, 2000]. Thus, the multi-

dimensional sensitivity analyses introduced in Section 3.3 shall now be integrated into

MAUT, i.e. the preference parameters – especially the weights – in equations 2.22 and

2.25 will be simultaneously varied allowing to investigate the corresponding impact on

the expected utilities and thus allowing to consider data and parameter uncertainties

at the same time. In addition, the impact of the risk attitude, encoded in κ, will be

explored. In particular, it seems to be important to analyse the impact of the weights

on the expected utility calculated according to Equation 2.22 which includes a quadratic

term of the weighting vector w.

The procedure is very similar to the one described in Section 3.3. The samples of the

preference parameters are generated exactly as proposed in Sections 3.3.1 and 3.3.2. Each

of the τ samples is then processed in parallel and the expected utilities are calculated

according to either Equation 2.22 or 2.25. Since an illustration of the results as in Figure

3.15 seems to be very powerful concerning the insight that it provides, such a visualisation

is also suggested for the combined consideration of data and parameter uncertainties. The

analysis can then be repeated for different values of κ in order to analyse the sensitivity

with respect to the risk attitude. Figure 3.20 shows the results of such an analysis when

the weights are varied. However, varying the value function parameters in addition (or

instead) is straightforwardly possible, too. In general, the expected utilities in the right

diagram are much smaller than those in the left which is understandable, bearing Equation
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2.25 in mind according to which the utilities have been obtained. However, besides the

general altitude of the utilities, there are no differences between the left and the right

diagram, i.e. there are no changes in the ranking in consequence of varying κ. In both

cases, the exemplar results show Alternative 4 to be the most preferred alternative for

100 % of the drawn weight combinations.

Alternative 4Alternative 2

Alternative 1Alternative 3
Alternative 4Alternative 2

Alternative 1Alternative 3

Alternative 4Alternative 2

Alternative 1Alternative 3
Alternative 4Alternative 2

Alternative 1Alternative 3

Figure 3.20: Expected Utilities Sorted by Alternative 4 for κ = 0.25 (left) and κ = 1 (right)

As mentioned above, it is especially important to analyse the impact of varying the

weights when an expected utility of the form of Equation 2.22 is used, i.e. when the data

is normally distributed. It has been described in Section 2.3.1.3 that, in consequence of the

monotonicity of exponentiation, Equation 2.22 can be reduced to the simplified evaluation

rule in Equation 2.23. The second term of Equation 2.23 (wT Cw
2κ

) is particularly interesting

since it is quadratic in w. Additionally containing the covariance matrix C and the risk

attitude κ, this term basically includes all information about the uncertainties and will

thus be called uncertainty factor henceforth. Figure 3.21 shows exemplar results of the

uncertainty factor for two different values of κ presuming that the data in the example

described at the beginning of Section 2.2.1 is normally distributed.

However, as already indicated in Section 2.3.1.3 it becomes apparent from Equation 2.23

that, besides the value of κ, the interaction of the weighting vector w and the covariance

matrix C plays an important role in determining the magnitude of the uncertainty factor.

It can be expected that the uncertainty factor is large if the weights on the attributes

with a high covariance are high. In order to gain further insight into this interaction of

w and C, it is proposed to compute the covariance matrix on the one hand and, on the

other hand, to perform a slightly modified backwards calculation in comparison to the

one described in Section 3.3.3. Instead of examining which parameter combinations lead

to which preferred alternative, it is now suggested to analyse which weight combinations
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Figure 3.21: Uncertainty Factor for Different Values of κ (Left: κ = 0.25, Right: κ = 1)

result in a high uncertainty factor. For instance, Figure 3.22 shows the weights related to

the highest 5 % of the uncertainty factor of Alternative 4 of the example in comparison

to the total weight ranges.
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Figure 3.22: Weight Space Exploration for Uncertainty Factor

A comparison of the covariance matrix C and the results from a visualisation as in Figure

3.22 can give valuable insights into the robustness of the expected utility calculations.

For instance, Figure 3.22 shows for Alternative 4 in the example that the weights drawn

for attribute A4, which can be associated with the highest 5 % of the uncertainty factor,

are all in the upper third of the complete weight range assigned to A4. Accordingly,

the highest value of the covariance matrix corresponding to Alternative 4 is the variance

of attribute A4. Hence, for normally distributed data, a procedure has been elaborated
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in order to determine whether or not the underlying uncertainty can significantly affect

the expected utilities. Since several alternatives are compared by this procedure, the

alternative index j (j ∈ {1, ..., m}) is included into Equation 2.23:

n∑
i=1

wiµi,j − wT Cjw

2κ
. (3.15)

Then, the procedure can be summarised by the following six steps:

1. Determine, for each alternative j, the covariance matrix Cj, the mean performance

score Mj =
n∑

i=1

wiµi,j and the uncertainty factor Uj =
wT Cjw

2κ
.

2. Determine Mjmax =
m

max
j=1

{Mj} and Mjsecond
=

m
max

j=1

j �=jmax

{Mj}.

3. Select the covariance matrices Cjmax and Cjsecond
for the two alternatives jmax and

jsecond, i.e. the alternatives with the highest and second highest mean performance

score.

4. Determine ∆M = Mjmax − Mjsecond
and ∆U = Ujmax − Ujsecond

.

5. Check if a sample k ∈ {1, ..., τ} exists with

(wk)T Cjmaxw
k

2κ
− (wk)T Cjsecond

wk

2κ
> ∆M , (3.16)

⇐⇒ ∆U > ∆M , (3.17)

where wk denotes the kth sampled weighting vector.

6. Store and visualise (for example as in Figure 3.22) all samples k for which equations

3.16 and 3.17 become true. If such samples exist, the weight intervals and the

assessed risk attitude κ should be re-examined. If such samples do not exist, the

underlying uncertainties will not affect the results for the determined risk attitude

and preference parameter intervals. This means, that in such cases, it is sufficient

to calculate the mean performance scores.

The above procedure has been described to analyse if changes in the ranking of the

alternatives with the highest and second highest performance score can occur. However,

if the decision makers are interested in rank reversals of other alternatives besides those

with the two highest scores, the procedure can be applied analogously. It should be

stressed, however, that the fact that no preference parameter samples exist which fulfil

Equation 3.16 or Equation 3.17 does not automatically imply that evaluating each of the

ν scenarios deterministically, gives the same results.
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3.4.2 Combined Consideration of Data and Parameter Uncer-

tainties in the PCA Plane

The combined exploration of the impact of data and parameter uncertainties in the PCA

plane is very similar to the simultaneous consideration of intra-criteria and inter-criteria

preferential uncertainties in the PCA plane as described in Section 3.3.4.2. While Sec-

tion 3.4.1 dealt with the incorporation of the Monte Carlo based approaches to handle

preference parameter uncertainties (cf. Section 3.3) into the concept of utility theory (cf.

Section 2.3), where the ranges in which the results can vary due to the uncertainties are

usually not explicitly illustrated, this section is aimed at combining the methods described

in Sections 3.2 and 3.3, in particular those of the Sections 3.2.3 and 3.3.4. This means

that, in contrast to the previous section, the approach described in this section seeks to

explicitly visualise the spread of the results due to the different types of uncertainty.

While the uncertainties of the inter-criteria preference parameters can be visualised in the

PCA plane in the form of the projected weight space Ω, the uncertainties of the intra-

criteria preference parameters and the data uncertainties both affect the values in the

matrix V of the alternatives’ single-attribute performance scores upon which the PCA

projections are based. Influencing the position of the alternatives’ projections in the

plane, the latter two types of uncertainty are visualised as scatter plots. Simultaneously

considering data and parameter uncertainties instead of considering each type individually

means that each of the τ drawn parameter combinations is associated with each of the ν

scenarios resulting in ν � τ projections per alternative. As for the data uncertainties (cf.

Section 3.2.3.3), they are shown in the form of triangles in the plane (see Figure 3.23).
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Figure 3.23: Combined Consideration of Data and Parameter Uncertainties in the PCA Plane
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Again, the spread of the projections corresponding to an alternative represents the range

of variation and it is possible to graphically explore whether or not the alternatives are

distinguishable from each other in the light of the underlying uncertainty. As a result of

the higher number of projections per alternative when simultaneously considering data

and parameter uncertainties, it is likely that the spread of each alternative increases

and thus, that the distinguishability decreases accordingly. Showing the projected weight

space Ω as well as the scatter plots, representing the data and the intra-criteria preferential

uncertainties, Figure 3.23 provides an overall overview of the impact of the different types

of uncertainty on the MADM results.

3.5 Summary

Decision making processes in the context of industrial risk management are subject to

various sources of uncertainty. Starting from a structured uncertainty classification, new

simulation based methods have been elaborated and introduced seeking to provide oper-

ationally applicable decision support in the light of different types of uncertainty. The

approaches for uncertainty handling have been presented with a special focus on visual-

isation techniques and are aimed at explicitly illustrating the spread, i.e. the ranges in

which the MADM results can vary in consequence of the uncertainties.

Since, as described in Section 2.1, one of the basic principles of MCDA is the explicit

recognition of subjectivity in decision making processes, sophisticated sensitivity analysis

approaches are important to investigate the impact of variations of the many subjective

preference parameters. In particular, the approaches for multi-dimensional sensitivity

analysis (cf. Section 3.3) can contribute to facilitate the preference elicitation and con-

sensus building in decision making groups. It is likely that different members of a group

argue for different preference parameters. The proposed methods can provide valuable

insights into the robustness of a decision which is especially important for industrial risk

management. Furthermore, they allow to explore trade-offs between conflicting objec-

tives. The results of the different analyses lead to a deeper understanding of decision

problems.

The added value of the described methods is particularly to be seen in the framework

for value function sensitivity analysis, i.e. the analysis of the intra-criteria preferential

uncertainties – including an investigation of the impact of varying the boundaries of the

value functions’ domains and furthermore in the approaches for simultaneously consid-

ering different types of uncertainty. The introduced approaches to perform backwards
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calculations are especially valuable in order to link the uncertainties in the MADM re-

sults to the uncertainties in the MADM input data and parameters. Consequently, the

decision makers are able to evaluate the influence of the chosen preference parameters

and to investigate the sensitivity in the light of uncertainty. Allowing the assignment of

intervals for the preference parameters seems to provide a more adequate model of human

preferences than sharply defined values.

The case study in the next chapter (Chapter 4) shows the application of MCDA and

the various simulation based approaches for uncertainty handling and visualisation. The

methods described above have been implemented in a software prototype in MATLAB19

within this thesis in order to demonstrate their respective functionalities in the context of

the case study. It should be noted, however, that the described approaches are universally

applicable and can be applied in a straightforward way in any context where multi-criteria

decision analysis is used to support decision makers or their advisers in resolving complex

decisions.

19For further information see: http://www.mathworks.com
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Chapter 4

Decision Support for Nuclear

Emergency and Remediation

Management

An important and challenging area within the field of industrial risk management is

nuclear emergency and remediation management involving various stakeholder and expert

groups with diverse background knowledge in the decision making process. Know-how

from economic, ecological, engineering and natural sciences must be brought together,

taking into account political and socio-psychological factors resulting in a typical MCDA

problem. Thus, the focus of this chapter is the application of the newly developed methods

described in Chapter 2 and Chapter 3 to a hypothetical case study from nuclear emergency

and remediation management.

Before the actual application, the general background of the case study is described in

Section 4.1 and the different components of the decision support system RODOS are

introduced in Section 4.2. Subsequently, the hypothetical case study, which was used

within a moderated decision making workshop in Germany in order to discuss agricultural

countermeasure and remediation alternatives, is presented in Section 4.3. The course

of action as well as the main results of the corresponding workshop are illustrated in

Section 4.4. After describing how the uncertainties of the input data and the preference

parameters can be modelled for the case study (Section 4.5), special focus within Section

4.6 is put on the application of the new approaches for uncertainty handling to the case

study. The main results of the case study are discussed and summarised in Section 4.7.
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4.1 Background and General Setting

One of the major observations following the nuclear accident from Chernobyl in 1986

was that decision making needs to be harmonised between and in individual countries

[Ehrhardt et al., 1993; Ehrhardt and Weiss, 2000; French, 2000; Raskob et al., 2005a].

Initiatives emerged to overcome this problem and the development of a common Deci-

sion Support System (DSS), suitable to be applied in the whole of Europe, became one

of the major tasks in the area of radiation protection of the European Commission’s

Framework Programmes. The development, starting in 1989 and involving more than

40 research institutions and national emergency management organisations in over 20

European countries, resulted in the RODOS20 system which provides consistent and com-

prehensive decision support at different levels in the event of a nuclear or radiological

emergency in Europe.

In order to test the applicability of RODOS, a series of moderated stakeholder workshops

was organised across Europe.21 These workshops were inter alia aimed at familiarising

the responsible persons with the capabilities of the system and at gathering feedback in

order to ensure that the developments meet the requirements of the potential users [cf. e.g.

Geldermann et al., 2005; Sinkko et al., 2005]. In these workshops, moderation techniques

[cf. e.g. Seifert, 2002] were applied in combination with MCDA.

In the following, fundamentals about events at nuclear installations are introduced, pro-

viding the basis for classifying such events according to their severity. Subsequently, sim-

ilarities between moderation methods and MCDA are pointed out followed by describing

their application within the workshops.

4.1.1 Events at Nuclear Installations

Nuclear power plants have multi-level safety devices and, in addition, there are pre-

planned safety procedures in order to prevent the occurrence of a nuclear accident with

large-scale radiological consequences. Nevertheless, incidents and accidents did occur in

the past. So far, the accident in Chernobyl in 1986 had the most serious consequences,

20RODOS: Real-time Online Decision Support System for Nuclear Emergency Management (see:
http://www.rodos.fzk.de)

21Within the EVATECH project (“Information Requirements and Countermeasure Evaluation Tech-
niques in Nuclear Emergency Management”), a total of nine workshops were organised in Belgium,
Denmark, Finland, Germany, Poland, the Slovak Republic and the UK.
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116 000 people were evacuated and additional 220 000 people were relocated in the follow-

ing years [UNSCEAR, 2000].

For the characterisation and classification of events at nuclear power plants, an “Interna-

tional Nuclear Event Scale (INES)” (cf. Table 4.1) was designed by an international group

of experts convened jointly in 1989 by the International Atomic Energy Agency (IAEA)

and the Nuclear Energy Agency (NEA) of the Organisation for Economic Co-operation

and Development (OECD). By using consistent terms to communicate the safety signif-

icance of events, the scale can facilitate a common understanding amongst the nuclear

community, the media and the public and can thus also contribute to safety improvements.

It is successfully being used in over 60 countries [IAEA, 1999].

Table 4.1: The International Nuclear Event Scale (INES) [cf. IAEA, 1999]

Level – Descriptor Examples

7 – Major accident Chernobyl, Soviet Union (now Ukraine), 1986

6 – Serious accident Kyshtym reprocessing plant, Soviet Union (now

Russia), 1957

Accident
5 – Accident with off-site

risk

Windscale (now Sellafield), UK, 1957

Three mile island (Harrisburg), USA, 1979

4 – Accident without sig-

nificant off-site risk

Windscale reprocessing plant (now Sellafield), UK,

1973

Saint-Laurent, France, 1980

Buenos Aires, Argentina, 1983

3 – Serious incident Vandellos, Spain, 1989

Incident 2 – Incident

1 – Anomaly (*)

Deviation 0 – No safety significance

(*): The majority of reported events are found to be below Level 3. No specific examples of

these events are given here. Countries in which the scale is used usually provide information

on events at the lower levels individually [For Germany for instance, cf. e.g. Lindauer, 2005;

Borst et al., 2006, as well as http://www.bfs.de/kerntechnik/ereignisse/berichte].

4.1.2 Moderated Workshops

Decisions in the context of emergency and remediation management involve many parties

who usually have different views, responsibilities and interests [Hämäläinen et al., 2000;

Sinkko, 2004; Carter, 2005; French and Geldermann, 2005; Geldermann et al., 2005, 2007].
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Priorities must be set and a consensus must be found for the different parties involved in

the decision making process. Decision makers (DMs) are those responsible for the decision.

Stakeholders share, or perceive that they share, the impacts arising from a decision and

therefore they claim that their perceptions should be taken into account. Experts provide

economic, engineering, scientific, environmental and other professional advice. Analysts

are concerned with the synthesis of the DMs’ and stakeholders’ value judgments and the

experts’ advice [Belton and Stewart, 2002]. In addition, they guide and assist the DMs

and are experienced in applying MCDA.

The stakeholder workshops, organised across Europe, can also be seen as emergency ex-

ercises, which are important since the identification of responsibilities and authorities is

vital to implementing a rapid response in emergency and remediation management [Gel-

dermann et al., 2007]. In these workshops, moderation techniques [cf. e.g. Seifert, 2002]

have been applied in combination with MCDA, i.e. the decision making process and, in

particular, the processes of problem structuring and preference elicitation were guided by

a moderator/facilitator whose responsibility is to lead the discussion and to introduce the

individual work steps. This aspect is very important in multi-stakeholder settings in order

to reduce potentially arising tensions. Furthermore, moderators steer the group with ques-

tions as the work continues and manage the interactions with and between participants.

Without actively interfering into the discussion, their task is to resolve disagreements and

to foster consensus building [cf. e.g. Geldermann and Rentz, 2004].

MCDA, as a tool, can be very helpful in structuring such moderated discussions. Addi-

tionally, the comprehensive possibilities of visualising results as well as sensitivity analyses

constitute a valuable benefit for a moderator and eventually also for the group respon-

sible for the decision. The close relation between the phases of moderation and those of

multi-criteria decision analysis is visualised in Figure 4.1.
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Figure 4.1: Steps of a Moderation Cycle and of Multi-Criteria Decision Analysis [adapted from

Geldermann and Rentz, 2004]

4.2 RODOS

The real-time online decision support system RODOS is designed to provide consistent

and comprehensive decision support at different levels in the event of a nuclear or radiolog-

ical emergency in Europe. The support offered by RODOS ranges from largely descriptive

reports, such as maps of the predicted, possible and, later, actual contamination patterns

and dose distributions, to a detailed evaluation of the benefits and drawbacks of various

countermeasure or remediation strategies and their ranking according to the societal pref-

erences as perceived by the decision makers [Ehrhardt et al., 1993; Ehrhardt and Weiss,

2000; French et al., 2000; Raskob et al., 2005a]. Models and databases within RODOS

contain extensive information about site and plant characteristics of the different nuclear

power stations in Europe and the geographical, climatic and environmental variations.

Its operational application requires online coupling to radiological and meteorological

real-time measurements and meteorological forecasts from national weather services. The
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main users of the system are those responsible for emergency management at the local,

regional, national and supra-national levels.

4.2.1 The Conceptual Structure

RODOS is intended to support decision making throughout all phases of emergency man-

agement – from the early phase through to medium-term and long-term countermeasure

or remediation strategies implemented weeks, months or years after an accident. Figure

4.2 shows its conceptual structure which comprises three subsystems: The “Analysing

Subsystem (ASY)”, the “Countermeasure Subsystem (CSY)” and the “Evaluation Sub-

system (ESY)”.
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Figure 4.2: The Conceptual Structure of RODOS [cf. e.g. Ehrhardt and Weiss, 2000; French

et al., 2000]

Basis of any decision is the analysis of the radiological situation which comprises the

estimation of contamination levels in the environment. This can be either based on

simulation models for the dispersion of radionuclides in the atmosphere, hydrosphere

and the food chain or rely on monitoring results from fixed stations or mobile teams

[cf. e.g. Bertsch et al., 2006b]. Thus, the ASY consists of a model chain starting with

models for calculating the atmospheric dispersion in the near and far range, followed by

a model for calculating the deposition to soil and plants, and finally food chain and dose

models for simulating the transfer of radionuclides from the deposition into foods, as well

as resulting radiation exposure. If needed a hydrological model chain (considering run-

off of radionuclides from watersheds, transport in river systems, behaviour in lakes and

reservoirs) can be inserted in between the deposition model and the food chain and dose
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models [Bertsch et al., 2005; Gering, 2005]. The prediction of the radioactive dispersion

through the various pathways and thus the prediction of the radiation exposure of the

population during and after a nuclear event is an important part within nuclear emergency

management.

In the early phase, emergency management involves decisions on measures of disaster

response, such as evacuation, sheltering or distribution of stable iodine tablets. Such

measures are usually limited to areas within a few tens of kilometers of the nuclear acci-

dent. Since decisions on whether or not to implement such measures depend to a great

extent on the spread of the radioactive plume and the estimated contamination levels,

emergency management in the early phase is closely related to the predictions of the

ASY (see Figure 4.2). In the longer term, more complex decisions on decontamination

and remediation strategies, restricted access measures (e.g. relocation) and agricultural

countermeasures are required [cf. e.g. Bertsch et al., 2006b; Geldermann et al., 2007].

Many parties with different viewpoints are involved and many conflicting objectives must

be resolved. Priorities must be set, and perhaps most importantly, a consensus must

be found for the various perspectives of the many stakeholder groups. Both, the early

and later phase emergency management are part of the calculations of the CSY (Coun-

termeasure Subsystem). However, due to the higher complexity in the later phase, the

ESY (Evaluation Subsystem) was developed to support the evaluation of the alternative

countermeasure and remediation strategies, whose potential benefits and drawbacks are

quantified by the CSY (see Figure 4.2).

4.2.2 Data Assimilation and Uncertainties in RODOS

The model predictions of RODOS play an important role for the rapid assessment and

prognosis of the possible (radiological) consequences in nuclear emergency management

[Rojas-Palma et al., 2003; Raskob et al., 2005b]. The predictions concerning the atmo-

spheric dispersion are based on a Gaussian model in RODOS [cf. e.g. S. Thykier-Nielsen

and S. Deme and E. Láng, 1995; T. Mikkelsen and S. Thykier-Nielsen and P. Astrup

and J. M. Santabárbara and J. H. Sørensen and A. Rasmussen and L. Robertson and

A. Ullerstig and S. Deme and R. Martens and J. G. Bartzis and J. Päsler-Sauer, 1997;

Mikkelsen et al., 1998]. Besides the Gaussian approach, several other models for me-

teorological dispersion calculations are discussed in literature [cf. e.g. Sennewald, 1996].

However, all model predictions are inherently afflicted with uncertainties. Radiological

observations, such as dose rate measurements, can be used to improve the model predic-

tions. The process of combining model predictions and measurements is usually referred
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to as data assimilation [cf. e.g. Ghil and Malanotte-Rizzoli, 1991; Tilmes, 1999; Wergen,

2002; Rojas-Palma et al., 2003; Gering, 2005]. In this way, data assimilation techniques

can contribute to a smooth transition from pure model predictions (in the pre-release

phase) to a real situation (in the post-release phases) [cf. e.g. Rojas-Palma et al., 2003;

Raskob et al., 2005b].

Especially, at the beginning of the post-release phase, when more and more measurements

are available but “gaps” still need to be filled with results from models, data assimilation

is a very important tool to provide a consistent analysis of the radiological situation

[Raskob et al., 2005a]. In this period, analysing the radiological situation purely relying

on atmospheric dispersion calculations is no longer sufficient as a basis for decision making.

Decisions will be mainly based on measurements in this phase but simulation models are

nevertheless required to estimate the evolution of the contamination in future (i.e. for

an “extrapolation into the future”). This is particularly important for inhabited areas,

in which safe living conditions must be established and thus decontamination might be

necessary, and in agricultural areas where production of clean food needs to be assured

[Raskob et al., 2005a].

In RODOS, data assimilation is based on Kalman filtering. The Kalman filter is a recur-

sive, linear, minimum mean-squared error estimator which was introduced in the 1960’s

by Kalman [1960] for application in linear systems. For nonlinear systems, extensions

such as the extended Kalman filter have for instance been proposed [cf. Gelb, 1974]. The

data assimilation based on the recursive algorithm of the Kalman filter consists of two

steps, a prediction step and a correction step, where in the correction step, the predictions

are linearly combined with measurements [cf. e.g. Rojas-Palma et al., 2003; Gering, 2005].

Kalman filters have been extensively applied in fields such as the navigation of aeroplanes

and spacecrafts as well as in meteorology.

One of the main challenges for an operational application of the Kalman filter is the

topic of uncertainty modelling and propagation [cf. Rojas-Palma et al., 2003]. The en-

semble Kalman filter, a Monte Carlo version of the Kalman filter originally introduced

for assimilation purposes in oceanography by [Evensen, 1994], provides a framework for

representing uncertainties by ensembles of possible sets of input data as well as model

parameters according to their respective probability distributions [cf. Gering, 2005]. Con-

sequently, the data assimilation modules within the RODOS model chain are based on

the ensemble Kalman filter [cf. Rojas-Palma et al., 2003].

Beyond the general conceptual structure of RODOS (Figure 4.2), Figure 4.3 shows the

model chain within RODOS, especially within the ASY, in more detail including three
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data assimilation modules. In addition, it is indicated that input data of RODOS is

subject to uncertainties and that uncertainties due to model imperfectness and parameter

uncertainties are introduced in each of the three subsystems. The uncertainty propagation

is based on Monte Carlo analysis, i.e. the uncertainties are propagated from upstream to

downstream models by ensembles.
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Figure 4.3: Data Assimilation and Uncertainties in the RODOS Model Chain [adapted from

Rojas-Palma et al., 2003]

It should be noted that, from a theoretical point of view, the conceptual framework of

Bayesian decision analysis (cf. Section 2.3.2) provides a sound basis capable to address

all requirements with respect to uncertainty handling and data assimilation in a coherent

manner [cf. e.g. Caminada et al., 2000; French, 2003]. Combining, inter alia, elements from

the fields of consequence modelling and statistical inference and forecasting (see Figure

2.15 on page 41), Bayesian decision analysis is inherently in accordance with the principles

of data assimilation. A problematic aspect of Bayesian decision analysis, however, is that

the uncertainty is treated probabilistically and that, as mentioned already, the assessment

of probabilities (including subjective ones) can be difficult or impossible in practice [cf.

e.g. O’Hagan and Oakley, 2004; Basson, 2004].
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4.2.3 Economic Consequence Modelling in RODOS

The model for economic consequence assessment in RODOS is very elementary. It gives a

rough overview of the incurring direct costs by calculating unit costs of decontamination

techniques in inhabited areas [cf. Schieber and Benhamou, 1999a] as well as agricultural

countermeasures [cf. Schieber and Benhamou, 1999b]. Concerning the decontamination

techniques, the total cost of each technique is evaluated on the basis of the following

parameters which are stored separately in a data base, in order to facilitate their update

[cf. Schieber and Benhamou, 1999a]:

� Unit cost of manpower (e/man-hour)

� Unit cost of consumable (e/km2)

� Unit cost of equipment (or investment) (e/km2)

For the determination of the costs of the consumables, purchase prices need to be es-

timated and regularly updated, for instance for diesel, water, sand or electricity. The

consumable needs (e.g. kg, litres or kWh needed for decontaminating a contaminated sur-

face of 1 km2) as well as the manpower needs (necessary man hours for decontaminating

a contaminated surface of 1 km2) have been elicited in various expert interviews. The

costs of equipment include – inter alia – hiring fees for plants or lorries. The costs of

waste disposal, including the transport of waste, are not included in the current model

for decontamination techniques in inhabited areas.

Data concerning the costs of the agricultural countermeasures considered in RODOS have

mostly been collected via European statistic data bases published by EUROSTAT22. In

cases, in which the relevant data were not officially available on a European level, private

firms and experts, who accepted to communicate their own data and knowledge, have

been interviewed directly [cf. Schieber and Benhamou, 1999b].

In general, food production losses need to be evaluated for all the agricultural counter-

measures considered in RODOS, since the loss of production applies to all of them when

a banning of food is necessary. Schieber and Benhamou [1999b] assume that the loss due

to not selling the products is an appropriate indicator for the production losses. Conse-

quently, they evaluate the unit cost of the food production losses (in e/kg) through the

average selling price of the food under concern.

Another cost element that applies to all countermeasures is the cost of food disposal

since it is necessary to dispose the amount of food exceeding the intervention levels [cf.

22cf. e.g. Eurostat [2002] and the references therein and see: http://ec.europa.eu/eurostat
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Schieber and Benhamou, 1999b]. However, it is difficult to suggest a general procedure

to determine the cost of disposal of contaminated food since such costs depend, to a large

extent, on the available technical facilities. For instance, there is a notable difference

between burning and putrefying radiologically contaminated agricultural waste.

Other countermeasures, for which the unit costs are modelled in RODOS, include the

processing of food aiming at a decrease of the concentration of radioactivity, the storage

of food, removal of animals from contaminated pasture and substitution of contaminated

with clean feed, adding of sorbents to the feed and the treatment of soils with ameliorants

to improve their quality and reduce the uptake of radionuclides by plants. Concerning the

storage of food, a difference is made between loose and pallet storage (both at ambient

temperature), refrigerated storage and freezing storage. However, all of the above unit

costs are calculated in e/kg. In addition, the costs for the decontamination of pasture

and farmland can be calculated by RODOS (in e/km2). As the costs of decontamina-

tion techniques in inhabited areas, the latter are calculated on the basis of unit costs of

manpower, consumables and equipment.

It should be noted, however, that the calculation of costs, as described above, requires

regular updating since salaries as well as selling and purchasing prices are highly time-

variant. In addition, they are country specific and thus need to be customised for each

individual country.

Moreover, it should be stressed that the above method can only provide a very course

estimation of the costs for conducting countermeasures as well as costs related to food pro-

duction losses. Costs associated with the damage to human health and the environment

induced by a nuclear emergency cannot be assessed using this approach. Furthermore,

the method does not reflect costs in relation to the damage caused within industrial pro-

duction networks (i.e. indirect costs). Moreover, economies of scale are not considered

at all. The suitability of the cost model within RODOS for a profound economic impact

assessment of a nuclear emergency is thus very limited.

In order to improve the assessment of economic consequences within RODOS, a quanti-

tative approach for the modelling of the direct as well as the indirect losses is needed.23

van der Veen and Logtmeijer [2005] for instance, discuss the application of approaches

such as input-output analysis, being standard in economics, to compute the effects of an

emergency for the economy as a whole. Furthermore, recent overviews of methods for

23The Institute for Industrial Production (IIP) is involved in the “Asset Estimation Group” of the Center
for Disaster Management and Risk Reduction Technology (CEDIM), whose current work is focussed
on the estimation of direct losses, while future work will concentrate on the development of approaches
for the assessment of indirect losses in industry.
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both types of losses can e.g. be found in Cochrane [2004]; van der Veen [2004]; Merz et al.

[2007].

4.2.4 Web-HIPRE

The multi-criteria decision support tool Web-HIPRE24 has recently been integrated into

RODOS as the evaluation subsystem. As a web-based Java applet, Web-HIPRE is si-

multaneously accessible from different places and is thus suitable to allow geographically

dispersed groups of decision makers to share their knowledge (for instance, in the form

of a decision model). Furthermore, it can be used on any computer with a Java enabled

web browser without the need of being installed beforehand. The underlying theory is

multi-attribute value theory (MAVT). In principle, Web-HIPRE provides user-friendly

support for all key steps of a MAVT analysis as described Section 2.2.1.

Besides the basic steps of MAVT, the new evaluation subsystem within RODOS provides

“background information” for the alternative countermeasure and remediation strategies

(see Figure 4.4). Data sheets are linked to the different strategies and can be accessed di-

rectly in Web-HIPRE. These data sheets have been developed as a part of the handbooks,

which were developed for decision support within the STRATEGY25 and FARMING26

projects (FP 5) and further refined in the EURANOS27 project (FP 6) [cf. e.g. Nisbet

et al., 2006; Brown et al., 2007].

In this context, “background information” does not only denote a detailed description

of the general objective(s), benefit(s) and target group(s) or area(s) of a measure but

also information on (legal) constraints, feasibility aspects, cost estimations and other

effects such as the social impact related to a measure. For instance, Figure 4.4 shows

an extract of the data sheet with background information on the alternative “Proc”

standing for “processing of milk” (after an accidental release of radionuclides). Such

information on preconditions and implications as well as side effects of performing a

measure enhances the understanding of what exactly is meant by the decision alternatives.

Moreover, the availability of detailed information for the various countermeasure and

24Web-HIPRE: “HIerarchical PREference analysis on the World Wide Web” [cf. Hämäläinen and Mus-
tajoki, 1998; Mustajoki and Hämäläinen, 2000], see: http://www.hipre.hut.fi

25STRATEGY: “Sustainable restoration and long-term management of contaminated rural, urban, and
industrial ecosystems”, see: http://cordis.europa.eu/fp5-euratom/src/index.htm

26FARMING: “Food and agriculture restoration management involving networked groups”, see:
http://cordis.europa.eu/fp5-euratom/src/index.htm

27EURANOS: “European approach to nuclear and radiological emergency management and rehabilitation
strategies”, see: http://www.euranos.fzk.de
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.....

Figure 4.4: Access to Background Information in Web-HIPRE [cf. Bertsch et al., 2006b]

remediation strategies facilitates the communication with different stakeholder groups,

the mass media and the public [cf. e.g. Renn, 2001].

4.2.5 The Explanation Module

After ranking the alternative countermeasure or remediation strategies, it is possible to

generate explanation reports that justify this ranking. Explanation facilities contribute

to positive user attitudes and improve user performance [Gregor and Benbasat, 1999].

They have proved to be useful to users, experienced professionals as well as novices [Mao

and Benbasat, 2000; Arnold et al., 2006]. They influence user perceptions such as trust,

confidence and satisfaction and increase levels of acceptance and learning [Dhaliwal and

Benbasat, 1996].

An Explanation Module has thus been developed to justify the advice of the evaluation

subsystem of RODOS and to increase the trust and confidence of the DMs in the results of

the system [Papamichail, 2000; Papamichail and French, 2003]. In practice, the executive

DMs do usually not operate the system themselves, but by generating an audit trail the

Explanation Module seeks to help the emergency management team, advising the DMs,

in communicating the results in an understandable way. The Explanation Module adds

transparency to the ranking process, by generating two reports:
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� A “Comparative Report” that interprets the evaluation results and compares two

strategies by discussing how well a strategy rates with respect to the evaluation

criteria, outlines arguments for and against each strategy, examines how much better

a strategy is over another and highlights factors that differentiate between two

strategies.

� A “Sensitivity Analysis Report” that interprets sensitivity analysis graphs, illus-

trates the effect of changing the weight of an attribute in the ranking of alternative

strategies and discusses the robustness of the results.

The input of the Explanation Module comprises qualitative data in the form of an at-

tribute tree as well as quantitative data in the form of a decision table (containing the

scores of the alternative strategies) or in the form of values of decision parameters (such

as the weights). The Explanation Module then applies natural language techniques [cf.

Reiter and Dale, 2000] and statistical methods [cf. Klein, 1994] to generate understandable

reports in English. The natural language generation process involves three stages:

1. Content determination which involves what type of report to generate (i.e. compar-

ative report or sensitivity analysis report) and what type of explanations to convey

to the users.

2. Discourse planning which involves establishing the structure of the report i.e. struc-

turing messages in a coherent way by choosing an appropriate text plan (cf. Ap-

pendix A).

3. Sentence generation which involves selecting text-based templates and filling in

qualitative and quantitative values to produce explanations in natural language

form in order to convey messages.

The explanations can help the DMs to concentrate on those aspects that are significant

in the decision making process and therefore considerably reduce the time needed for

parameter assessment [cf. e.g. Geldermann et al., 2007]. Further details about the gener-

ation of explanations as well as exemplar reports are given in Appendix A as well as in

[Papamichail and French, 2003].

Figure 4.5 summarises the preference elicitation and evaluation processes in RODOS and

Web-HIPRE. These processes are interactive and it is possible to iteratively correct the

decision parameters in the case that the decision makers’ preferences and value judgments

are not accurately represented by the model. Contributing to the generation of an audit
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trail for the decision making process and to an enhancement of the confidence in the

results of the decision analysis, Web-HIPRE including the explanation module seeks to

improve the acceptability of the RODOS system as a whole [cf. e.g. Geldermann et al.,

2007].
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Figure 4.5: The Process of Preference Elicitation and Evaluation in RODOS and Web-HIPRE

[adapted from French, 2000; Bertsch et al., 2006b]

It should be noted that the explanation module has been developed for deterministic

multi-attribute decision analyses. This means that it is adjusted to the features of stan-

dard decision support as provided, for instance, by Web-HIPRE. Taking account of dif-

ferent types of uncertainty leads to additional information in the results which, so far,

is not explained by the existing explanation facilities. Consequently, there is a need to

add understandable explanations about the impact of the occurring uncertainties in or-

der to increase the usability and acceptance of the more complex approaches that take

uncertainties into consideration. This constitutes a challenging future research possibility

in this area. Exemplarily, an extension of the explanation module towards explaining

the results of multi-dimensional sensitivity analyses, i.e. an extension of the sensitivity

analysis report, is proposed in Appendix A.
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4.3 A Hypothetical Case Study

The hypothetical case study introduced in the following originally provided the basis to

discuss agricultural countermeasure and remediation strategies within a moderated deci-

sion making workshop in Germany. The course of action of the workshop is described in

Section 4.4. The data for this hypothetical case study was generated with the RODOS

system. A low to intermediate contamination of a larger area with important food pro-

duction (such as milk) was assumed to be caused by a serious accident at a nuclear power

plant which triggered the immediate shutdown of the reactor. Starting four hours after

the accident, radioactive material was released into the atmosphere over a period of three

hours. Further emissions were not expected according to the plant operators. Another

three hours later and thenceforward, all air monitoring stations in Germany reported

normal levels of radioactivity in the atmosphere.

The historical weather conditions which were used for this hypothetical scenario indi-

cated that the radioactive cloud mainly passed agricultural areas. Due to south-westerly

winds, the radioactive cloud was blown in a north-easterly direction. Radioactive material

from the cloud deposited onto the ground. While the cloud passed, heavy precipitation

and even thunderstorms were observed resulting in local inhomogeneities of the ground

contamination.

It was assumed that about 50 % of the plant inventory of radioactive noble gases and

about 0.1 % of the plant inventory of iodine I-131 and radioactive aerosols were released

during the accident (the iodine fully in elementary form). In the near range (up to 1 km

from the nuclear power plant) the dose rate reached up to 1 000 µSv/h (micro Sievert28 per

hour), 200 µSv/h at a distance of 10 km and 50 µSv/h 25 km away. In all other affected

areas at distances larger than 25 km the dose rate varied between 0.01 and 50 µSv/h,

corresponding to ground concentrations of 1 to 3 000 kBq/m2 (kilo Becquerel29 per square

meter) for iodine I-131 (see Figure 4.6) and aerosols and 0.1 to 300 kBq/m2 for caesium

Cs-137 (see Figure 4.7), when taking into account the actual nuclide spectrum [cf. e.g.

Raskob et al., 2005a; Bertsch et al., 2006b; Geldermann et al., 2007].

With a physical half-life of 8 days, iodine I-131 is commonly used as reference nuclide

for decisions on countermeasures in the short term (within the first week). In the longer

28Sievert (symbol Sv) is a unit of equivalent dose or effective dose (of radiation), and thus depends on the
biological effects of radiation as opposed to the physical aspects, characterised by the absorbed dose
(which is measured in gray).

29Becquerel (symbol Bq) is a unit of radioactivity, defined as the activity of a quantity of radioactive
material in which one nucleus decays per second and is thus equivalent to s−1.
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Figure 4.6: Ground Contamination for Iodine I-131 in the Surrounding Area of the Nuclear

Power Plant

term, caesium Cs-137 with a physical half-life of 30.23 years is often used as reference

nuclide. While Figure 4.6 illustrates the ground contamination situation for iodine I-131

(as calculated by the ASY of RODOS) in the surrounding area of the nuclear power plant,

Figure 4.7 shows the ground contamination for caesium Cs-137 for the accident scenario

assumed within the case study.

Since the main focus of the workshop was the discussion of agricultural measures in the

medium and long term rather than the discussion of emergency actions, it was assumed,

after an analysis and forecast of the radiological situation, that the following immedi-

ate and early countermeasures (implemented before the radioactive release started) were

initiated (see Figure 4.6 or Figure 4.7 for the location of the different zones):

� Evacuation of inhabitants from the central zone.

Uncertainty Handling in Multi-Attribute Decision Support for Industrial Risk Management



102 Chapter 4. Decision Support for Nuclear Emergency and Remediation Management

Ground contamination (C-137)
20000m
1cm = 10486m

Ground contamination
Bq/m2

3.00e+05
1.00e+05
3.00e+04
1.00e+04
3000.00
1000.00
300.00
0.00

The concentric circles in the map divide the affected area into a central zone (Z), 
the intermediate zones (M1 - M12) and the outer zones (A1 - A12), where the 
radii of the zones are 2, 10 and 25 km respectively.

The intermediate and outer zones are again divided into sectors of 30°, 
numbered clockwise from 1 to 12, starting with sector 1 which is located 
symmetrically around the twelve o'clock position.

Ground contamination (C-137)
20000m
1cm = 10486m

Ground contamination
Bq/m2

3.00e+05
1.00e+05
3.00e+04
1.00e+04
3000.00
1000.00
300.00
0.00

The concentric circles in the map divide the affected area into a central zone (Z), 
the intermediate zones (M1 - M12) and the outer zones (A1 - A12), where the 
radii of the zones are 2, 10 and 25 km respectively.

The intermediate and outer zones are again divided into sectors of 30°, 
numbered clockwise from 1 to 12, starting with sector 1 which is located 
symmetrically around the twelve o'clock position.

Figure 4.7: Ground Contamination for Caesium Cs-137 in the Surrounding Area of the Nuclear

Power Plant

� Sheltering of inhabitants in the intermediate zones M1, M2, M3 and outer zones

A1, A2, A3, until the morning after the accident.

� Distribution of iodine tablets to children in the intermediate zones M1, M2, and

M3.

With respect to agriculture and food, the inhabitants in the affected districts received the

following recommendations:

� Cover and/or close green houses and nurseries.

� Cover agricultural areas with vegetables, fruit and herbs.

� Cover open storages for animal feed and foodstuffs.

� Close animal stables and reduce ventilation.
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The calculations for the potential countermeasure and remediation strategies were based

on maximum permitted levels of radioactive contamination in foodstuffs and feedingstuffs

that may be placed on the market following a nuclear accident or any other case of

radiological emergency [cf. Regulation (Euratom) No 3954/87; Regulation (Euratom) No

944/89; Regulation (Euratom) No 770/90]. The countermeasures were calculated in those

areas where the predicted contamination would exceed these limits.

4.4 A Moderated Workshop

A series of moderated decision making workshops focussing on the evaluation of counter-

measure and remediation strategies in the event of a nuclear emergency with a release

of radionuclides was organised across Europe. These workshops were inter alia aimed at

investigating the applicability of the RODOS system with its various components and

at familiarising the responsible persons with the MCDA tools and methods [Geldermann

et al., 2005; Raskob et al., 2005a; Sinkko et al., 2005; Geldermann et al., 2007]. Another

intention was to ensure that the developments meet the requirements of the potential

users. Two workshops were organised in Germany, of which one was focussed on dis-

cussing agricultural countermeasure and remediation strategies30. As mentioned above,

the hypothetical case study introduced in Section 4.3 provided the basis for the discussion

within the workshop. The group of participants included officials and politicians of re-

gional, state and federal authorities as well as expert advisers for radiation protection and

a number of stakeholder groups [cf. Bertsch et al., 2006b]. The decision making process

within the workshop and, in particular, the process of preference elicitation was guided

by a moderator/facilitator.

At the beginning of the workshop, the case study was introduced to the participants. The

subsequent analysis and discussion focussed on the following eight countermeasure and

remediation strategies for milk:

� No Action: No Action

� Disp: Disposal (of the produced milk)

� Proc: Processing (of milk)

� Stor: Storage

30The workshops in Germany were organised in collaboration with the Federal Office for Radiation
Protection (BfS) in Freiburg, Germany.
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� Rmov,T=0: Removal of cows from contaminated pastures at time T=0 feeding

with uncontaminated feed

� Rmov,T>0: Removal of cows from contaminated pastures after two days (T>0),

feeding with uncontaminated feed

� Rduc,T=0: Reduction of contaminated feed and substitution with uncontaminated

or less contaminated feed

� AddS+Proc: Adding of sorbents to the food to reduce the activity concentration

(of milk and meat) and subsequent processing

The strategy “No Action” is often considered for comparison purposes. However, under

certain circumstances it can also be considered as an actual option. As the name suggests,

“Disposal” does, in contrast to the subsequent strategies, not aim at reducing the activity

concentration in milk in any way but simply at the disposal of the contaminated milk

whose activity concentration exceeds the intervention levels.

The aim of the strategy “Processing” is to produce milk products with activity concentra-

tions less than intervention levels from contaminated liquid milk which would subsequently

be suitable for human consumption. Processing raw milk into butter or cheese may be

used to reduce the activity concentrations of long-lived radionuclides such as caesium Cs-

137 and strontium Sr-90 (i.e. starting with milk with activity concentrations in excess of

the intervention levels, an activity concentration in the end product below these levels can

be obtained). For short-lived radionuclides, such as iodine I-131, “Processing” may well

be combined with a period of “Storage” because the activity concentration may quickly

fall below the intervention levels due to the short physical half-life. Another aim of com-

bining the strategies “Processing” and “Storage” can be the conversion of contaminated

milk into a more stable end product for storage and subsequent disposal, additionally

offering the responsible authorities more time to plan disposal options. For instance, a

straightforward option is the processing of liquid milk into whole milk powder. However,

it should be noted that “Processing” may nevertheless produce contaminated by-products

[cf. Nisbet et al., 2006].

The “Removal” and “Reduction” strategies provide animals with less or uncontaminated

feedstuffs. Target animals may be those grazing contaminated pastures or already housed

animals which otherwise would be receiving contaminated food. Livestock may be housed

in stables (“Removal”) or fenced in enclosures to prevent grazing of contaminated pas-

ture. The animals are then given nutritionally balanced diets comprising uncontaminated

and/or less contaminated feed, i.e. the animals’ uptake of radionuclides through ingestion
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is stopped or at least reduced. The final animal products thus have activity concentrations

below the intervention levels [cf. Nisbet et al., 2006].

The strategy “Adding of sorbents and subsequent processing” is aimed at binding radio-

caesium by adding special sorbents, such as ammonium iron hexacyanoferrate (AFCF,

also called “Giese-salt”), to the animals’ food. These sorbents reduce the gut uptake

of radiocaesium by ruminants in agricultural and semi-natural environments. As for the

“Processing”, “Storage”, “Removal” and “Reduction” strategies, the aim of this combined

strategy is to decrease the activity concentration in the final animal products below the

intervention levels [cf. Nisbet et al., 2006].

4.4.1 Problem Structuring

The accident scenario of the hypothetical case study was analysed and structured in a

moderated discussion. At first, the workshop participants determined the relevant decision

attributes from the list of available attributes in RODOS. Additional important attributes

which are not provided by RODOS were identified by the experts and stakeholders on the

regional, state and federal level via card inquiry. The selected attributes, their respective

denotations and the units in which they can be measured are compiled in Table 4.2.

The attributes which are measured on a 0–100 scale were estimated by the attending

stakeholders and experts. It should be noted that the cost modelling functionality of

RODOS, as described in Section 4.2.3, was not available at the time of the workshop,

which is why the attribute costs is estimated on a 0–100 scale. However, this should not

be seen as a drawback since the group of participants was able to provide good estimates

as a result of their expertise and experience.

Collecting, structuring and assorting of information during the discussion provided deeper

insight into the core of the problems under scrutiny and lead to a shared understanding

amongst all participants [Bertsch et al., 2006b; Geldermann et al., 2007]. The structuring

and modelling process of the decision problem resulted in an attribute tree (a hierarchy

of criteria) which shows the overall goal “total utility” (of performing a countermeasure

strategy) as the top criterion being split up into the criteria “radiological effectiveness”,

“resources”, “impact” and “acceptance”, each of which is split up again (see Figure 4.8).

The higher level criteria, which were used to structure the selected attributes into a hierar-

chy of criteria (such as “resources” and “impact”), as well as their respective denotations

are compiled in Table 4.3. Since they represent aggregated performance scores (on a 0–1

scale), no units are shown for the criteria in Table 4.3.
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Table 4.2: Selected Decision Attributes and their Respective Meanings

Abbrevation Meaning Unit

avoided ind. dose adults avoided individual dose (adults – 1 year) [mSv]

avoided ind. dose children avoided individual dose (children – 1 year) [mSv]

avoided collective dose avoided collective dose [manSv]

received collective dose received collective dose [manSv]

max. ind. worker dose maximum individual dose received by worker [mSv]

collective worker dose collective dose received by workers [manSv]

no. of workers necessary number of workers needed to conduct a mea-

sure

[#]

supplies supplies (e.g. (agricultural) machinery) required to

conduct a measure

[0 − 100]

total food above total amount of food above the limit [kg]

food above yr-1 amount of food above the limit after 1 year [kg]

size of aff. area size of affected area [km2]

costs costs to conduct a measure [0 − 100]

public acceptance of a decision by the public [0 − 100]

affected prod. acceptance of a decision by the affected producers (e.g.

agriculturists)

[0 − 100]

trade and ind. acceptance of a decision by the trade and industry [0 − 100]

Table 4.3: Higher Level Criteria and their Respective Meanings

Abbrevation Meaning

total utility total utility of a measure (with respect to milk)

rad. effectiveness radiological effectiveness

population radiological effectiveness with respect to the population

worker radiological effectiveness with respect to the worker(s)

resources necessary resources to conduct a measure

impact impact of a measure

acceptance acceptance of a decision

The consequences of the eight considered strategies with respect to the selected attributes

are shown in Table 4.4 (page 113) and Table 4.5 (page 114). While Table 4.4 contains

the values of the attributes whose consequences can be directly calculated by RODOS,

the values of the attributes listed in Table 4.5 are those estimated by the attending

stakeholders and experts. As indicated above, a fictitious scale ranging from 0 to 100 is
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Figure 4.8: Attribute Tree for the Hypothetical Case Study

assumed for the latter, where 100 corresponds to the highest value (resp. utility) and 0

to the lowest. The data in Table 4.4 and Table 4.5 constitute the basis of the subsequent

decision analysis within the workshop.

4.4.2 Preference Elicitation

At first, the weighting of the criteria of the attribute tree was carried out. The following

inter-criteria preferences (weights) were elicited in a group discussion using direct and

SWING weighting, where mostly qualitative results are reported since the aim of the

workshop was the creation of awareness:

“radiological effectiveness” vs. “resources” vs. “impact” vs. “acceptance”:

While formulating priorities in the workshop using the SWING method, the acceptance

of a measure was given the highest rating (100 points). This choice was based on the

premise that acceptance by the public, affected individuals and business have the highest

relevance with respect to the specific decision, since together they form the critical foun-

dation upon which future developments are built. The actual effects of a measure were
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given the second highest rating, based on the magnitude of the decision (size of affected

area) and the consequences of the measure (amount of waste above the threshold, cost

etc.). The radiological effectiveness was weighted only lightly in fourth place since it only

plays a superficial role for agricultural measures.

“population” vs. “worker”: The maximum dose for the population is determined

by estimating the intake of radioactivity through contaminated food. In this case the

radiation dose for the workers is insignificant and additional exposure resulting from

future measures is very low.

“avoided individual dose (adults – 1 year)” vs. “avoided individual dose (chil-

dren – 1 year)” vs. “avoided collective dose” vs. “received collective dose”:

The different dose values are calculated based on the foodstuff milk under the assumption

of 100 % local production and consumption. Since milk with contamination above a cer-

tain intervention limit is banned from the market, the maximum dose values calculated

here are highly unlikely. Consequently the comparison of these values between measures

with respect to radiological effectiveness can only be regarded as an indicator. As a result,

the avoided collective dose for one year is the most important in the evaluation of the

SWING method followed by the avoided individual dose for children within one year. The

remaining doses receive only a minor weighting.

“max. individual dose received by worker” vs. “collective dose received by

worker”: In contrast to the calculated dose values for the population, the calculated

dose values for the workers are directly related to the actual execution of the measure and

thus contribute to the radiation exposure. This would indicate a strong weighting for the

individual dose. However, since no significant radiation exposure during the implemen-

tation of the measure is expected, the maximum individual dose received by the worker

and the collective dose are presumed equal.

“No. of workers” vs. “supplies”: The two attributes “no. of workers” and “supplies”

are required to estimate the required resources of a measure. They receive approximately

the same weighting with slightly more importance assigned to the number of workers.

In essence both are equally significant for judging the measure, but they have different

dimensions of a required resource.

“total food above” vs. “food above yr-1” vs. “size of area” vs. “costs”: The

weighting within “impact” in order of importance was: size of area, total food above,

cost and food above yr-1. Measures affecting agriculture are influenced to a very large

degree by the size of the area involved. The less land involved, the easier decision making

usually is. The total amount of waste produced also carries substantial importance due
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to its effects on judging the feasibility of a measure and on the criteria costs. Due to the

long time period and the need for quick acceptance, the “food above the limit” values

after one year plays only a minor role.

“public” vs. “affected producers” vs. “trade and industry”: The highest weight

within the category “acceptance” was given to the public, followed by industry and those

affected by the measures. This ranking reflects the fact that the measures affect only

a small area, with industry playing a larger role due to cooperation requirements. The

public’s large role is explained by the need for overall trust and consequently acceptance

of future measures.

Subsequently, the value functions and their respective shapes were defined for each in-

dividual attribute using both linear and exponential functions. After the completion of

the preference elicitation, the question was raised for discussion whether a fixed attribute

tree, containing information about an initial set of relevant decision attributes and criteria

as well as feasible countermeasure strategies identified by stakeholders and experts, was

desirable or whether an attribute tree should always by developed spontaneously in the

event of an emergency.

The selection and structuring of relevant strategies and attributes to be included in an

attribute tree is a crucial part of the decision making process. The participants of the

workshop noted that they need more guidance in order to cope with this task. Fur-

thermore, they claimed that this can be a very time-consuming process which would be

particularly problematic in real emergency situations involving stress etc. An approach

to overcome this problem is the elaboration of a limited initial attribute tree, that can be

“suggested” by the decision support system to have a starting point for the discussion.

Other attributes, not included in such an initial tree but perceived to be relevant by the

decision makers, could then be inserted into the tree in a second step.

The approach of using a limited initial tree as starting point in a MCDA cycle is discussed

controversially. Besides the advantages as regards the guidance and ease in the problem

structuring process provided by a limited initial tree and also the saving of time, a major

drawback is seen in the influence of the (pre-defined) limited initial tree on the decision

making process and the decision makers who should, from a purely methodological point

of view, create a context-dependent attribute tree for the specific decision situation (under

guidance of a moderator/facilitator). However, the use of pre-defined weights is strongly

disadvised. The weights usually have a crucial impact on the final ranking of the strate-

gies. In addition, the experiences from the workshops have shown that the elicitation of
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preferences, in the presence of a moderator/facilitator, is usually not as time-consuming

as the problem structuring process when creating an attribute tree from scratch.

4.4.3 Selected Results

Following the preference elicitation, the aggregation and sensitivity analyses can be carried

out and illustrated. The following illustrations have been generated with the MATLAB

prototype which has been implemented within this thesis. The aggregated ranking in

Figure 4.9 shows that “Rmov,T=0” is the most preferred alternative followed by “Disp”.

While “acceptance” provides a large contribution to the good overall performance of both

of these alternatives, “impact” is the most important factor in differentiating between

them. Since the weights assigned to “radiological effectiveness” and “resources” are com-

paratively small, the differences in the overall scores which would provide reasons to

favor “Disp” over “Rmov,T=0”, do not have a large effect on the results of the analysis

[Geldermann et al., 2007].
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Figure 4.9: Results of Decision Analysis Illustrated as a Stacked-Bar Chart

In addition, a sensitivity analysis on “acceptance” (see Figure 4.10) allows the examination

of the robustness of the choice of an alternative relative to changes of the weight assigned

to “acceptance”. Moreover, the sensitivity analysis graph shows the range of weights for

“acceptance” for which an alternative is the most preferred. For the assumptions made

within the workshop, the weight for “acceptance” can be changed by approximately 15 %
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without changing the optimality of “Rmov,T=0”. For a further reduction of the weight,

“Proc” turns out to be the best choice.

Figure 4.10: Sensitivity Analysis on the Weight of “acceptance”

Furthermore, Figure 4.11 shows the sensitivity of the ranking with respect to changes of

the weight of “impact”. The graph shows that the weight of “impact” can be increased

arbitrarily without changing the optimality of “Rmov,T=0” but it can only be decreased

by approximately 5 % without effectuating changes in the ranking. For a smaller weight,

“Disp” receives the highest overall performance score.

Figure 4.11: Sensitivity Analysis on the Weight of “impact”

Finally, the explanation module can be used to generate comparative reports as well

as sensitivity analysis reports to provide the results of the decision analysis in natural
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language format. An extract of a comparative report for “Rmov,T=0” and “Disp” is

shown in Figure 4.12, allowing to gain a deeper insight into the factors differentiating

between the two alternatives [cf. e.g. Raskob et al., 2005a]. A further comparative report

as well as a sensitivity analysis report for the case study can be found in Appendix A.

Figure 4.12: Extract of a Comparative Report
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Table 4.4: Decision Table – Part 1 – Values Directly Calculated by RODOS

No

Action

Disp Proc Stor Rmov,

T=0

Rmov,

T>0

Rduc,

T=0

AddS+

Proc

avoided

ind. ad.

[mSv]

0 3.80E+0 1.28E-2 4.13E-5 7.18E-3 9.99E-4 3.51E-4 5.55E-1

avoided

ind. chi.

[mSv]

0 4.32E+1 2.71E-2 7.13E-4 1.01E-1 1.36E-2 5.14E-3 1.06E+0

avoided

collect.

[manSv]

0 1.86E+4 1.57E+3 1.24E+2 3.37E+3 2.75E+2 6.83E+2 8.02E+3

collective

dose

[manSv]

1.90E+4 3.33E+2 1.74E+4 1.89E+4 1.56E+4 1.87E+4 1.83E+4 1.10E+4

max. ind.

work.

[mSv]

0 0 0 0 3.09E-3 1.87E-3 1.93E-3 0

collect.

worker

[manSv]

0 0 0 0 2.25E+0 3.42E-1 3.43E-1 0

no. of

workers

[#]

0 0 0 0 435 329 329 0

total food

above [kg]

1.50E+8 1.50E+8 1.17E+7 1.49E+8 1.07E+8 1.34E+8 1.46E+8 1.09E+7

food

above

yr-1 [kg]

3.41E+5 3.41E+5 1.21E+4 2.33E+5 2.33E+5 2.33E+5 2.33E+5 1.13E+4

size of aff.

area [km2]

2.57E+3 2.57E+3 9.11E+2 2.57E+3 6.36E+2 2.56E+3 2.44E+3 9.11E+2
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Table 4.5: Decision Table – Part 2 – Values Estimated by Experts and Stakeholders (On a

Fictitious 0–100 Scale)

No

Action

Disp Proc Stor Rmov,

T=0

Rmov,

T>0

Rduc,

T=0

AddS+

Proc

supplies 0 10 10 20 40 40 30 80

costs 90 100 20 50 20 20 20 35

public 0 100 5 15 80 80 30 5

affected

prod.

0 20 70 60 100 100 80 50

trade and

ind.

0 40 5 50 80 80 60 5
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4.5 Uncertainty Modelling for the Case Study

It has been pointed out before that results of any numerical model, such as the models

within the RODOS model chain, are always afflicted with some uncertainty, which can

be attributed to the uncertainty of the input data, to uncertain model parameters or to

the general imperfection of the numerical model in describing physical processes. This

makes the decision analysis more complex in comparison to the process as carried out in

the workshop and described in Section 4.4. In order to cope with this task, the Monte

Carlo approaches introduced in Chapter 3, allowing to consistently model, propagate and

visualise different types of uncertainty in a decision making process, will be applied and

demonstrated on the basis of the hypothetical case study. While the modelling of the

uncertainties of the input data and their propagation through the RODOS model chain

is described in Section 4.5.1, the modelling of the preferential uncertainties, introduced

during the decision making process, is carried out in Section 4.5.2.

4.5.1 Data Uncertainty Modelling

The uncertainty in the input data can be considered by assigning probability distributions

to the uncertain quantities. The uncertainties in the results are then assessed by propagat-

ing these probability distributions through the model. Uncertainties are also propagated

in the model chain by feeding downstream models (i.e. models requiring input data pro-

duced by other models running earlier in the model chain) with resulting uncertainties

of upstream models (i.e. models providing data as input to other models running later in

the model chain). The main source of uncertainty for atmospheric dispersion modelling

is the input data, here primarily the source term data, the effective release height and

the wind field data [Bertsch et al., 2005; Gering, 2005]. Dispersion parameters and plume

rise parameters also contribute to the uncertainty of dispersion results, but typically to a

lower extent.

In this research, the uncertainty modelling of the input data exemplarily concentrates

on two key variables for the dispersion model: source term and wind direction. A log-

normal distribution is assigned to the source term, i.e. the quantity of released radioactive

material, since a deviation of an order of magnitude is considered to be equiprobable

in both directions. A normal distribution is assigned to the mean wind direction with

a standard deviation of 30� [cf. Gering, 2005]. Propagating these initial uncertainties

through the models of the RODOS model chain is a major challenge, especially for such

high-dimensional, non-linear models. But a Monte Carlo approach, in which probability
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distributions of variables are approximated by ensembles of values sampled according to

the probability distributions, is suitable to cope with this task. This means, that multiple

results (forming an ensemble) are calculated with the dispersion model, each based on

one sampled value for the source term and one for the mean wind direction as input data.

The values sampled for the source term and the mean wind direction – relative to the

deterministic values described in Section 4.4 – are listed in Table 4.6 for 10 samples as

used for this research.31

The multiple results from the atmospheric dispersion model are transferred to the next

model in the RODOS model chain, the deposition model, which calculates multiple results

each based on one possible input from the dispersion model. The influence of parameter

uncertainties in the ASY, for instance in the deposition model, is considered similarly by

sampling multiple sets of model parameters according to pre-defined probability distri-

butions, e.g. for the deposition time (air–soil) or the transfer rates (soil–plants as well

as plants–animals), and applying one parameter set after the other when calculating the

multiple model results. In a similar way, the multiple results are propagated through the

food chain and dose model and the countermeasure simulation model, but without con-

sideration of additional uncertainties arising from parameter uncertainties within these

models.

Table 4.6: Sampled Values for Mean Wind Direction and Source Term Relative to Deterministic

Values

Sample Deviation of mean wind direction Deviation of source term from

No. from deterministic mean wind deterministic source term

direction

1 +
−0� × 1.0

2 +
−0� × 0.01

3 +30� × 1.0

4 +
−0� × 100

5 -29� × 0.02

6 -40� × 0.007

7 +6� × 5.1

8 -24� × 0.9

9 +48� × 488

10 -4� × 1.2

31In terms of a Monte Carlo simulation, 10 samples are not representative. However, in view of the high
computational effort of the RODOS simulations, a sample size of 10 is nevertheless considered to be
appropriate to exemplarily demonstrate the developed concept.
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The multiple Monte Carlo runs of the ASY and CSY models lead to multiple results for

the consequences of the countermeasures. Thus, the multi-attribute decision analysis is

not based on one (deterministic) decision table but on a set of decision tables where each

table corresponds to one sample (realisation/scenario) which are simultaneously evaluated.

The complete set of decision tables can be found in Appendix B. Since the entries of

Table 4.5 were assessed by the workshop participants and not calculated by RODOS, a

justifiable uncertainty modelling would necessitate more workshops where the participants

are explicitly asked to assess (possibly different) values for each scenario. Hence, within

this research, these values remain deterministic and thus unchanged for the ten scenarios.

While from a theoretical point of view, probability is a unique way to represent uncer-

tainty, the propagation of probability distributions through a complex model chain, such

as in RODOS, is a highly challenging task in practice [O’Hagan and Oakley, 2004]. The

original probability distributions of the high-dimensional input data (in this research,

exemplarily the source term and the mean wind direction) are subject to a number of

nonlinear transformations when being propagated through the model chain. In general,

Monte Carlo simulation is an adequate method for such problems but it is nevertheless

hardly possible to make a statement about the probability distributions of the simulated

consequences in the decision table or about their relation to the original probability dis-

tributions of the input data. Statistical tests, however, allow to analyse whether the data

in the set of decision tables follow certain probability distributions. For instance, the W

test introduced by Shapiro and Wilk [1965] allows to test a set of data for normality. The

procedure of the W test and its application to the set of decision tables of the case study

is described in Appendix B. It shows that the hypothesis of normality can be rejected

for most of the consequences. Taking the logarithm of the data and subsequently apply-

ing the test (i.e. investigating whether the data is log-normally distributed) leads to less

rejections of the hypothesis but the hypothesis is still rejected for many consequences.

Hence, it cannot be significantly concluded that the data in the set of decision tables are

normally or log-normally distributed. Consequently, the corresponding expected utility

calculations (cf. Section 2.3) will not be based on Equation 2.22, which presupposes nor-

mal distributions, but rather on Equation 2.25, which calculates the expected utility for a

discrete empirical distribution. However, except for the procedure described at the end of

Section 3.4.1, the methods introduced in Chapter 3 do not presume normally distributed

data and are thus entirely applied to the data of the case study.
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4.5.2 Preferential Uncertainty Modelling

The preferential uncertainties are modelled by replacing the deterministic preference pa-

rameters with intervals. Firstly, parameter intervals seem to model human preferences

more realistically than discrete values. Secondly, if a decision is not to be taken by a

single person but by a group, it will be easier for that group to agree on common pa-

rameter intervals than on discrete values. It will easily be possible to find out whether

or not the variation of certain preference parameters has an impact on the ranking of the

alternatives. Thus, disagreements which do not affect the results can be eliminated from

debate and the group can focus on discussing the differences that do matter in terms of

the results [French, 2003]. For the hypothetical case study, the capability of the methods

introduced in Section 3.3 is demonstrated for the n-dimensional triplet (w, ρ, xmax) (where

n is the number of considered attributes). The parameter xmin is not varied since, in the

case study, xmin is equal to zero for almost all considered attributes and negative values

do not make sense.

4.5.2.1 Modelling Inter-Criteria Preferential Uncertainties

Concerning the inter-criteria preference parameters, instead of assigning precise weights

to the attributes, it is sufficient to assign intervals. These intervals may differ in size

if appropriate. For the case study, weight intervals between 10 % and 20 % around the

discrete weights, which were used in the workshop, have been assigned. The exemplar

intervals (as used within this thesis) are compiled in Table 4.7. These intervals can also

be seen as representations of the linguistic imprecisions associated with the qualitative

weight elicitation results described in Section 4.4.2.

It should be emphasised that it is important to choose the weight intervals in such a way

that Cw ∩ H �= ∅ (cf. Section 3.3.1). For instance, a comparison of the ranges of the

assigned weight intervals and the ranges of the actually drawn weights (i.e. a comparison

of Table 4.7 and the first diagram in Figure 4.23 on page 131) can provide the basis for

such a consistency check.
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Table 4.7: Assigned Weight Intervals

1st Level Criteria 2nd Level Criteria 3rd Level Criteria

[Weight interval] [Weight interval] [Weight interval]

rad. effectiveness population avoided ind. dose adults

[0.10 − 0.25] [0.80 − 0.95] [0.05 − 0.20]

avoided ind. dose children

[0.15 − 0.30]

avoided collective dose

[0.40 − 0.55]

received collective dose

[0.05 − 0.20]

worker max. ind. worker dose

[0.05 − 0.20] [0.40 − 0.60]

collective worker dose

[0.40 − 0.60]

resources no. of workers

[0.15 − 0.30] [0.45 − 0.60]

supplies

[0.40 − 0.55]

impact total food above

[0.25 − 0.45] [0.25 − 0.40]

food above yr-1

[0.05 − 0.15]

size of aff. area

[0.35 − 0.50]

costs

[0.15 − 0.25]

acceptance public

[0.30 − 0.50] [0.40 − 0.55]

affected prod.

[0.20 − 0.30]

trade and ind.

[0.25 − 0.35]
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4.5.2.2 Modelling Intra-Criteria Preferential Uncertainties

In order to support a group of decision makers in determining the shape(s) of the value

function(s), they are allowed to assign intervals for the parameters ρi (which define the

shapes) instead of precise values. To demonstrate the method, the parameters ρi for the

15 attributes are all varied between 0.5 and 10 for increasing preferences (or −10 and

−0.5 for decreasing preferences respectively).

In addition to the value functions’ curvatures, their domains’ boundaries are varied. The

upper boundaries of the value functions’ domains are varied in an interval between the

maximum of the occurring scores and the value augmented by 20 %.

4.6 Results for the Case Study

Besides the multi-attribute decision analysis, as carried out in the workshop and described

in Section 4.4, additional analyses and graphical illustrations can provide an improved

understanding of the importance of the different factors affecting a decision. Thus, in a

first step, additional visualisations for the deterministic data and parameters, as used in

the workshop, are presented in Section 4.6.1. Furthermore, sophisticated approaches for

uncertainty handling, as introduced in Chapter 2.3 and Chapter 3, allow to gain a deeper

insight into the robustness of decisions in the context of the case study. Consequently, the

main focus of this section is on showing understandable visualisations of the uncertainties

in the MADM results. While in Section 4.6.2, such visualisations are shown for data

uncertainties whose modelling is described in Section 4.5.1, Section 4.6.3 deals with the

visualisation of the uncertainties of the preference parameters as modelled in Section 4.5.2.

Finally, Section 4.6.4 shows the results of a combined consideration of data and parameter

uncertainties for the case study.

4.6.1 Visualisation of Results for Deterministic Values

As mentioned above, additional visualisation techniques for the deterministic results of

the case study will be presented in this subsection with the objective of providing a

deeper understanding of the importance of the different factors that affect a decision. For

instance, a spider diagram can be used for the visual comparison of several alternatives

with respect to the different attributes. Figure 4.13 shows the single-attribute performance

scores of the eight alternatives with respect to the individual attributes considered in the

case study. Each axis in the diagram corresponds to one attribute and the alternatives
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are represented by lines forming a polygonal traverse. Rather than presenting precise

values, Figure 4.13 provides an overall impression of the decision problem. For the case

study, the spider diagram shows for instance that the alternative “Disp” shows a very

good performance with respect to the dose attributes (including worker doses) as well as

the attributes “no. of workers” and “supplies” while “Rmov,T=0” performs better with

respect to attributes such as “acceptance by affected producers”, “acceptance by trade

and industry” or “size of affected area”.

Figure 4.13: Spider Diagram for the Case Study

Since the general overview provided by spider diagrams becomes increasingly confusing

with a growing number of attributes or alternatives, factor-analytic techniques, such as

principal component analysis (PCA), can be helpful in providing a condensed impression

of decision problems. Figure 4.14 shows the results projected on the PCA plane for the

case study. The alternatives are plotted as triangles and the attributes are displayed as

straight lines emanating from the origin.

In general, alternatives projected close together in the plane show similar characteris-

tics. For instance, Figure 4.14 shows that the alternatives “Rmov,T=0”, “Rmov,T>0”

and “Rduc,T=0” possess similar properties. Furthermore, the alternatives “Proc” and

“AddS+Proc” are plotted close to each other. However, the different groups of alter-

natives, show disparate characteristics. Additionally, the PCA diagram shows that the
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alternatives “Rmov,T=0”, “Rmov,T>0” and “Rduc,T=0” show good performance with

respect to the attributes grouped under the criteria “impact” and “acceptance” (in the

attribute tree) while “Disp” for instance performs better with respect to the attributes

grouped under the criteria “radiological effectiveness” and “resources”.

no. of workers

public

trade and ind.

affected prod.

costs

size of 
aff. area

food above
yr-1

supplies

collective
worker dose

max. ind.
worker dose

no. of workers

public

trade and ind.

affected prod.

costs

size of 
aff. area

food above
yr-1

supplies

collective
worker dose

max. ind.
worker dose

Figure 4.14: PCA Plane for the Case Study

Concerning the projections of the attributes, their length is a measure of the influence

of the respective attribute on the decision problem, as described in Section 3.2.3. This

means, for instance, that the PCA diagram implies that the attributes “public accep-

tance”, “acceptance by trade and industry” or “acceptance by the affected producers”

have a higher influence on the results than the attributes “max. individual worker dose”

or “food above yr-1”. Moreover, the PCA plane of the case study shows that the selected

attributes can be said to be representative for the decision problem since they point in

all directions within the plane. Furthermore, the relative proportion of the variance rep-

resented in the PCA plane in comparison to the total variance can be calculated. Figure

4.14 shows that 81.25 % of the variance are preserved which is a very good result for a

projection from a 15-dimensional on a 2-dimensional space.

While a PCA diagram provides a valuable overview of the performance of the alternatives

relative to the different attributes, the information is usually represented unweighted.

Thus, the decision axis π (the projection of the normed weighting vector w) is displayed

in the diagram in Figure 4.14 in addition to the alternatives and attributes. In general,

π points in the direction of the preferred alternatives according to the preferences of the
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decision makers. However, an exact aggregated ranking in the PCA plane can be obtained

by projecting the alternatives orthogonally on the weighting vector (in the 15-dimensional

original data space of the attributes) and by subsequently determining the order of the

respective perpendiculars on w. The “projections of these projections” are shown as

dashed lines in Figure 4.14. The intersections of these dashed lines with the decision axis

[−π, +π] allow to read off the ranking of the alternatives.

In addition to the eight considered alternatives, the two fictitious alternatives IDEAL and

NADIR are displayed in Figure 4.14. These two points can provide valuable support in

assessing the quality of the alternatives based on their relative positions in comparison

to these points, i.e. alternatives projected close to the IDEAL, have high performance

scores, while alternatives projected near the NADIR do not correspond to the preferences

of the decision makers. The projections of the IDEAL and NADIR alternatives intersect

the decision axis in −π and π respectively (in the axis’ ends).

Beyond the deterministic illustrations presented in Figure 4.13 and Figure 4.14, visualisa-

tions of the effect of the different types of uncertainty on the results of the case study are

shown in the following. Starting from results of investigating the impact of data uncer-

tainties (Section 4.5.1) and parameter uncertainties (Section 4.6.3) individually, results of

a combined consideration of both types of uncertainty are presented in Section 4.6.4.

4.6.2 Results Taking Data Uncertainties into Account

As described in Section 2.3 and Section 3.2, there are different possibilities to illustrate

the impact of data uncertainties on MADM results. One simple way to illustrate the

results including data uncertainties is to visualise the expected utilities in the form of

a bar chart. Figure 4.15 shows such a bar chart for κ = 0.5 (the risk attitude factor).

As mentioned before, since there is no substantive evidence that the underlying data is

normally distributed, the discrete empirical function of Equation 2.25 (page 36) is used

for the calculation of the expected utilities.

In comparison to the deterministic results, the alternatives “Rmov,T=0” and “Disp”

turn out to be almost equally preferable, followed by “Rmov,T>0”, “Proc” and “Stor”.

In general, it can be noted that the alternatives’ scores are closer together than in the

deterministic case, i.e. it is more difficult to differentiate between the different alternatives.

While the uncertainties in the results due to the uncertain input data are implicitly

included in Figure 4.15, a drawback of the representation is that the ranges in which the

results can vary in consequence of the underlying uncertainty are not visible.
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Figure 4.15: Expected Utilities for κ = 0.5 Visualised as Bar Chart

As described in Section 2.3, two types of sensitivity analyses can be shown besides the

expected utilities. Firstly, the sensitivity of the expected utilities with respect to the

parameter κ, reflecting the risk attitude, needs to be analysed. This is shown in Figure

4.16. While in general, the expected utilities decrease when κ increases, no rank reversals

are observable when varying κ.

κκ

Figure 4.16: Sensitivity of Expected Utilities with Respect to κ

Secondly, it is important to analyse the sensitivity of the expected utilities with respect

to weight changes. For instance, Figure 4.17 shows a sensitivity analysis for the weight

of the criterion “acceptance”. In contrast to the “standard sensitivity analysis” carried

out in Section 4.4, the alternatives are not represented by straight lines but by curves.
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However, these curves do not intersect twice for the case study, which is generally possible

as described in Section 2.3.

wacceptancewacceptance

Figure 4.17: Sensitivity of Expected Utilities with Respect to the Weight of “acceptance” (for

κ = 0.5)

Figure 4.17 shows that the alternatives “Rmov,T=0” and “Disp” perform more or less

equally well for the current weight of acceptance (approximately 38 %). For a higher

weight, “Rmov,T=0” receives the highest expected utility, for a weight between approx-

imately 25 % and 38 %, “Disp” turns out to be the most preferred alternative and for a

weight smaller than 25 %, “Proc” receives the highest expected utility. In addition, the

dashed vertical lines in Figure 4.17 show the limits of the weight interval assigned to the

criterion “acceptance” (cf. Table 4.7) which allows to investigate whether or not changes

in the ranking occur when varying the weight of “acceptance” within these limits. While

the performance scores of “Rmov,T=0” and “Disp” are very similar, Figure 4.17 does

show that these two alternatives dominate the others within the assigned weight limits.

The simulation based approach to simultaneously vary this weight and the weights of the

other criteria within the respective intervals is demonstrated in Section 4.6.3.

While Figure 4.15 provides an aggregated overview, it disguises the fact that changes in the

ranking can occur in consequence of the underlying data uncertainty, i.e. that different

alternatives may be most preferable in the different scenarios. Figure 4.18 shows the

overall performance scores of all alternatives in all scenarios, sorted in ascending order

of the performance score of “Rmov,T=0”. While Figure 4.15 shows a slightly higher

expected utility for “Disp” in comparison to “Rmov,T=0”, Figure 4.18 shows that, when

carrying out deterministic analyses for each scenario in parallel, “Rmov,T=0” receives

the highest score in five, “Disp” in four and “Rmov,T>0” in one of the ten scenarios.
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Figure 4.18: Overall Performance Scores for the Different Scenarios

Thus, since the ranking of the alternatives can obviously change as a result of the under-

lying uncertainty, the focus of the rest of the section is on visualisation techniques that

are aimed at explicitly illustrating and communicating the uncertainties associated with

the results of the decision analysis while seeking to not cause an information overload.

In addition to the information provided by Figure 4.18, it would be supportive to obtain

information about the respective contributions of the individual criteria to the results and

to the uncertainties in the results. In order to achieve this goal, an illustration by means

of a stacked-bar chart, as proposed in Section 3.2, can be useful (see Figure 4.19).

Figure 4.19: Visualisation of Uncertainties in Results Using a Stacked-Bar Chart
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In order to illustrate the uncertainty ranges, the simultaneously calculated results are not

all visualised but the results of the scenarios corresponding to the 5 %- and 95 %-quantiles

(of the overall performance score) are shown alongside the results of the most probable

scenario in Figure 4.19. As stated in Section 3.2, these scenarios will be referred to as

worst case and best case scenarios respectively.

Figure 4.19 contains important information for the decision makers. Using a stacked-bar

chart for the visualisation of the results does not only allow to investigate the uncertainty

ranges of the overall goal but also to explore which of the considered criteria are subject

to uncertainties and shows the uncertainty ranges of the individual criteria as well as

their contribution to the uncertainties in the overall ranking. Furthermore, the proposed

stacked-bar chart allows to analyse the distinguishability of the alternatives. For the con-

sidered case study, it is hard to distinguish between the alternatives “Disp”, “Rmov,T=0”

and “Rmov,T>0” in consequence of their very similar performance scores.

In addition to Figure 4.19, the application of PCA provides a good overview on the effect

of the data uncertainties and allows to graphically explore the distinguishability of the

alternatives in the PCA plane (see Figure 4.20). Such a visualisation allows to explore

whether or not the different alternatives can be evaluated meaningfully based on the

considered attributes and the uncertainties afflicted with the data in the decision tables

of the different scenarios.

no. of workers

public

trade and ind.

affected prod.

costs

size of 
aff. area

supplies

collective
worker dose

max. ind.
worker dose

food above
yr-1

no. of workers

public

trade and ind.

affected prod.

costs

size of 
aff. area

supplies

collective
worker dose

max. ind.
worker dose

food above
yr-1

Figure 4.20: PCA Visualising the Uncertainty of the Data in the Different Scenarios
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The range of variation of an alternative due to the underlying data uncertainty is rep-

resented by the complete set of points in the plane corresponding to this alternative.

For instance, Figure 4.20 shows that the alternatives “Rmov,T=0”, “Rmov,T>0” and

“Rduc,T=0” are not clearly distinguishable as a result of the uncertainties. Furthermore,

the sets of points corresponding to the alternatives “Proc” and “AddS+Proc” overlap to

a large extent. However, considering the overlapping alternatives as groups of alternatives

respectively, it can be said that the different groups are clearly distinguishable from each

other.

4.6.3 Results Taking Preferential Uncertainties into Account

Besides analysing the impact of data uncertainties on the decision analysis’ results, it is

very important to investigate the stability of the results with respect to variations of the

subjective preference parameters. Especially in the late phase of a nuclear emergency, the

integration of reliable measurements into the model calculations can reduce the magni-

tude of the data uncertainties. However, the uncertainties associated with the preference

parameters can nevertheless have a substantial impact on the results.

While classical one-dimensional sensitivity analyses, as described in Section 4.4, can help

to assess the robustness of a decision with respect to weight changes, the major drawback

of the procedure is that it is limited to varying one weight at a time. The focus of this

section is on considering the impact of simultaneous variations of the inter-criteria as well

as the intra-criteria preference parameters in the context of the case study by allowing

the assignment of parameter intervals instead of precise parameters.

Concerning the inter-criteria preference parameters, results for 1000 samples (of w) are

shown in Figure 4.21. The left diagram shows the spread of the overall performance scores

as a results of the preferential uncertainties. Using intervals for preference modelling, most

of the alternatives in the case study are not clearly distinguishable from each other. But

the results in the left diagram do show that, even in the “worst cases”, the alternatives

“Rmov,T=0” and “Disp” have a higher performance score than the alternative “No Ac-

tion” in the “best case” which means that the latter option is dominated by the first two.

While the left diagram provides a good overview on the impact of the uncertainties of the

inter-criteria preferential information, it is not possible to read off information about the

relative frequency of the performance scores of the different alternatives (i.e. performance

scores at the lower and upper bound of the shown ranges will usually occur less frequently

than those in the middle of the ranges). However, such information is provided in the

right diagram. As already stated in Section 3.3, the illustration by means of plotting the
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performance scores versus the cumulative percentage has also been proposed by Butler

et al. [1997]. This visualisation provides detailed information of the complete distribution

of the results.
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Figure 4.21: Impact of Inter-Criteria Preferential Uncertainties on the Results

It is important to note that the performance scores of the different alternatives at an

imaginary “perpendicular cut” through the diagram of the cumulative percentages (right

diagram in Figure 4.21) do not necessarily belong to only one weight combination. Thus,

information about the exact percentage at which a certain alternative is ranked first can-

not be read off from this diagram immediately. This means, for instance, that it cannot

be concluded from the right diagram in Figure 4.21 that the alternative “Rmov,T=0” re-

ceives the highest overall performance score for all drawn weight combinations. However,

an illustration as in Figure 4.22 (where “Rmov,T=0” is visualised as in Figure 4.21 but

the other strategies are sorted in such a way that their scores at an imaginary “perpendic-

ular cut” do belong to the same weight combination) or an analytical evaluation can be

helpful to provide such accurate information. For the considered case study, “Rmov,T=0”

is ranked first for 63 % of the drawn weight combinations while the alternatives “Disp”

and “Proc” receive the highest overall performance score for 34 % and 3 % of the pa-

rameters samples respectively. Additionally, a visualisation as in Figure 4.22 can provide

insight into potential correlations between the different alternatives. For example, Fig-

ure 4.22 indicates a correlation between the alternatives “Rmov,T=0”, “Rmov,T>0” and

“Rduc,T=0”. This observation is in accordance with the PCA plot in Figure 4.14.

Furthermore, a “backwards calculation” can help to investigate the origin of potential dif-

ferences in the results (see Figure 4.23). In addition to the information provided in Figures

4.21 and 4.22, an exploration which weight combinations result in which preferred alterna-
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Figure 4.22: Impact of Inter-Criteria Preferential Uncertainties on the Results Sorted in As-

cending Order of “Rmov,T=0”

tive is helpful for a decision making group. Figure 4.23 offers such information in an easily

understandable way. The upper diagram shows the range of all drawn weight combina-

tions. The second diagram only shows those weight combinations for which “Rmov,T=0”

has the highest overall performance score. While the third diagram shows the weight in-

tervals for which “Disp” turns out to be the most preferred alternative, the fourth diagram

shows those intervals for which “Proc” becomes most preferred.

While the intervals in the diagrams seem to be more or less the same for many attributes,

differences between the first and the second diagram can be seen for the attribute “no. of

workers”. While the assigned interval approximately allows the weight to vary between

0.08 and 0.18, the weight of “no. of workers” for which “Rmov,T=0” turns out to be the

most preferred alternative is not higher than 0.12 (indicated by the loop in the second

diagram). Differences between the first and the third diagram can be detected for the

attribute “size of affected area”. Weight combinations for which “Disp” receives the

highest overall performance score do not exceed a weight of 0.18 on “size of affected

area” as indicated by the loop in the third diagram. Comparing the first and the fourth

diagram, differences can be observed for the attributes “total food above”, “size of affected

area”, “acceptance by public”, “acceptance by trade and industry” as well as “avoided

collective dose” (see the five loops in the fourth diagram). Especially, the weight intervals

corresponding to the acceptance by the public and by trade and industry and resulting in

“Proc” as the most preferred alternative are only small sections at the lower boundaries

of the total weight ranges of the respective attributes. However, while the information

offered by Figures 4.21 and 4.22 is useful for a group of decision makers to reduce the

set of reasonable alternatives, the information offered by Figure 4.23 can be very helpful

to the group when choosing an alternative from the reduced set by providing support to
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Figure 4.23: Backwards Calculation Concerning Inter-Criteria Preference Parameters

focus on the most important weight parameters in terms of their respective impacts on

the results.

Concerning the intra-criteria preference parameters, similar results can be generated and

visualised. The resulting scores for 1000 samples of (ρ, xmax) are shown in Figure 4.24

(as mentioned above, xmin is not varied in this case study since xmin is equal to zero for
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almost all considered attributes and negative values do not make sense). Again, the left

diagram shows the spread of the overall performance scores as a result of the preferential

uncertainties. Most of the alternatives are not clearly distinguishable from each other.

But the left diagram does show that, even in the “best case”, the alternative “No Action”

has a lower performance score than all other alternatives in the “worst cases” which

means that the alternative “No Action” is dominated by the others. Furthermore, the

left diagram shows for example that the alternative “Rmov,T=0” has the “highest worst

performance score”, i.e. following a maximin strategy [cf. e.g. Bamberg and Coenenberg,

1994; Laux, 2005], the decision makers would choose this alternative. Contrarily, following

a maximax strategy, they would prefer the alternative “Proc”. In addition to the good

general overview of the impact of the intra-criteria preferential uncertainties provided

by the left diagram, the right diagram offers information about the relative frequency

of the performance scores of the different alternatives. Providing detailed information

about the complete distribution of the results, the performance scores are again plotted

against the cumulative percentage as proposed by Butler et al. [1997]. An additional

analytical evaluation shows that, for variations of the intra-criteria preference parameters,

the alternative “Rmov,T=0” is only ranked first for 40 %, while “Disp” and “Proc” receive

the highest score for 53 % and 7 % of the drawn parameter combinations respectively.
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Figure 4.24: Impact of Intra-Criteria Preferential Uncertainties on the Results

As for the inter-criteria preference parameters, a “backwards calculation” can help to

investigate which intra-criteria parameter combinations result in which preferred alterna-

tive. Figure 4.25 visualises such a backwards calculation. The upper diagram shows the

intervals of all drawn samples of the value function parameter ρ. The second diagram

only shows those parameter combinations for which “Rmov,T=0” has the highest over-
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Figure 4.25: Backwards Calculation Concerning Intra-Criteria Preference Parameters

all performance score. While the third diagram shows the parameter intervals for which

“Disp” turns out to be the most preferred alternative, the fourth diagram shows those

intervals for which “Proc” becomes most preferred.

The intervals in the diagrams seem to be more or less the same for many attributes.

Small differences between the first and the second diagram can be seen for the attributes

“food above yr-1”, “costs” and “max. individual worker dose”. While the assigned inter-
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vals allow ρi to vary between -10.0 and -0.5 for each of the attributes, the ρi for which

“Rmov,T=0” turns out to be the most preferred alternative is not smaller than approxi-

mately -7.0 for these three attributes (indicated by the loops in the second diagram). For

decreasing preferences, negative ρi close to zero represent strongly curved convex value

functions. Thus, the second diagram in Figure 4.25 implies that such curved convex value

functions for the attributes “food above yr-1”, “costs” and “max. individual worker dose”

lead to high performance scores of “Rmov,T=0” while for rather linear value functions

for these attributes, “Rmov,T=0” does not turn out to be the most preferred alterna-

tive. Similar conclusions for the alternative “Disp” can be drawn from comparing the

first and the third diagram. Comparing the first and the fourth diagram, differences can

be observed for the attributes “no. of workers”, “supplies”, “total food above”, “costs”,

“acceptance by public”, “acceptance by trade and industry” as well as “max. individual

worker dose” (see the seven loops in the fourth diagram). Especially, the intervals corre-

sponding to the attributes “total food above” and “acceptance by public” are very small

and close to zero implying that only very strong curvatures of the corresponding value

functions lead to “Proc” being the most preferred alternative. Again, the information of-

fered by such a backwards calculation can help a group of decision makers to focus on the

most important intra-criteria preference parameters in terms of their respective impacts

on the results.

Considering the inter-criteria and intra-criteria preferential uncertainties simultaneously,

increases the indistinguishability of the alternatives (from a preferential perspective). The

results for 1000 samples of the random triplet (w, ρ, xmax) are shown in Figure 4.26.
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Figure 4.26: Impact of all Preferential Uncertainties on the Results
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The left diagram in Figure 4.26 shows the spread of the overall performance scores as a

result of the complete preferential uncertainty. In this case, no dominated or dominating

alternatives can be observed. In addition, plotting the overall performance scores against

the cumulative percentage, the right diagram illustrates the relative frequency of the

performance scores of the different alternatives.

Figure 4.27 shows the same results sorted by “Rmov,T=0”, i.e. “Rmov,T=0” is visualised

as in Figure 4.26 but the other strategies are sorted in such a way that their scores at

an imaginary “perpendicular cut” through the diagram do belong to the same parameter

combination. Hence, Figure 4.27 provides information about the percentage at which an

alternative is ranked first. Alternatively, the results can be evaluated analytically. When

varying all preference parameters simultaneously within the afore assigned intervals (cf.

Section 4.5.2), the alternative “Rmov,T=0” is only ranked first for 25 %, while “Disp” and

“Proc” receive the highest score for 52 % and 23 % of the drawn parameter combinations

respectively.

Figure 4.27: Impact of all Preferential Uncertainties on the Results Sorted in Ascending Order

of “Rmov,T=0”

In addition, Figure 4.27 provides insight into potential correlations between the differ-

ent alternatives. Similar to the observation when varying the inter-criteria preferential

parameters only, a correlation between the alternatives “Rmov,T=0”, “Rmov,T>0” and

“Rduc,T=0” can for instance be detected. This result can also be observed in the PCA

plot in Figure 4.28. Furthermore, in addition to the above visualisations, Figure 4.28

provides an alternative overview on the effect of the preferential uncertainties and allows

to graphically explore the distinguishability of the alternatives in the PCA plane from a

preferential perspective.

The range of variation of an alternative due to the intra-criteria preferential uncertainty

is represented by the complete set of points in the plane corresponding to this alternative.
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Consequently, Figure 4.28 allows to explore whether or not the different alternatives can be

evaluated meaningfully based on the considered attributes and the uncertainties afflicted

with the intra-criteria preference parameters. For instance, Figure 4.28 shows that the

alternatives “Rmov,T=0”, “Rmov,T>0” and “Rduc,T=0” are not clearly distinguishable

as a result of the intra-criteria uncertainties. Furthermore, the sets of points corresponding

to the alternatives “Proc” and “AddS+Proc” overlap to a small extent as well as those

corresponding to the alternatives “Disp” and “Stor”.
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Figure 4.28: Complete Overview of the Impact of Preferential Uncertainties in the PCA Plane

However, considering the overlapping alternatives as groups of alternatives respectively,

it can be said that the different groups are clearly distinguishable from each other. In ad-

dition to the intra-criteria preferential uncertainties (i.e. the uncertainties associated with

the shapes and domains’ boundaries of the value functions), the weight space is projected

onto the PCA plane as illustrated in Figure 4.28. The projection of the complete weight

space or, more precisely, its convex hull Ω, marks the range in which the projection π of

the weighting vector can move when varying the weights within the defined weight interval

limits. The position of Ω relative to the origin in the plane gives a general impression of

the magnitude of the impact of the inter-criteria preferential uncertainties. In this case

study, Ω does not include the origin, implying that all valid weight combinations point at

least in a similar direction. Consequently, the alternatives lying in this direction, such as

“Rmov,T=0” for instance, perform well in general.
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As argued in Section 3.3.4 already, an exact determination of the effects of varying the

weights within their intervals based on the projected weight space Ω and the decision

axis π is problematic. Thus, the results of the backwards calculation (see Figure 4.23)

are additionally made available in the PCA plane, i.e. besides the complete weight space,

the weight combinations for which a certain alternative is the most preferred can be

projected separately onto the plane. For instance, the preference region of the alternative

“Rmov,T=0”, denoted ΩRmov,T=0, is shown in Figure 4.28.

4.6.4 Combined Analysis of Data and Parameter Uncertainties

in the Context of the Case Study

As pointed out in Section 3.1, a large advantage of using Monte Carlo analysis for uncer-

tainty handling in MADM is the straightforward possibility to simultaneously consider

different types of uncertainty in an understandable and transparent way. From a method-

ological perspective, two possibilities to simultaneously consider and visualise data and

parameter uncertainties have been introduced in Section 3.4: Firstly, the incorporation of

the simulation based approaches for preferential uncertainty handling into the framework

of utility theory and, secondly, the simultaneous analysis of data and parameter uncer-

tainties in the PCA plane. Both approaches will be demonstrated in the context of the

case study.

For the integration of the multi-dimensional sensitivity analysis approaches into expected

utility theory, the newly introduced visualisations shown in Figures 4.22 and 4.27, provid-

ing insight into potential correlations between the different alternatives, have been chosen.

In Figure 4.29, the expected utilities are plotted against the cumulative percentage for

κ = 0.5 (where κ is the risk attitude factor). While in the left diagram, the results are

sorted by “Rmov,T=0”, the results in the right diagram are sorted by “Disp”, i.e. the

other strategies are sorted in such a way that their scores at an imaginary “perpendicular

cut” do belong to the same parameter combination (in both diagrams). An analytical

evaluation based on the information provided in Figure 4.29 indicates that the alternative

“Rmov,T=0” achieves the highest expected utility for 25 %, while “Disp” achieves the

highest expected utility for 75 % of the drawn parameter combinations.

While in Figure 4.29, the effect of the data uncertainties on the results is only implicitly

represented (the data uncertainties are incorporated in the expected utilities), the aim

of simultaneously considering data and parameter uncertainties in the PCA plane is to

explicitly illustrate the ranges in which the results can vary due to the different types

of uncertainty. As pointed out in Section 3.4.2 already, the combined exploration of
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Rmov,T=0 DispRmov,T=0 Disp

Figure 4.29: Expected Utilities Versus Cumulative Percentage Sorted by “Rmov,T=0” (Left) and

“Disp” (Right)

the impact of data and parameter uncertainties in the PCA plane is very similar to the

simultaneous consideration of intra-criteria and inter-criteria preferential uncertainties in

the PCA plane.

While the uncertainties of the inter-criteria preference parameters are visualised in the

PCA plane in the form of the projected weight space Ω, the uncertainties of the intra-

criteria preference parameters and the data uncertainties both affect the position of the

alternatives’ projections in the plane. The latter two types of uncertainty are both vi-

sualised as scatter plots. Simultaneously considering data and parameter uncertainties

instead of considering each type individually means that each of the τ = 1 000 drawn

parameter combinations is associated with each of the ν = 10 scenarios resulting in

ν � τ = 10 000 projections per alternative. As for the data uncertainties (cf. Section 4.6.2),

they are shown in the form of triangles in the plane (see Figure 4.30).

Again, the spread of the projections corresponding to a certain alternative represents the

range of variation and it can be graphically explored whether or not the different alter-

natives are distinguishable from each other in the light of the underlying uncertainty. In

consequence of the occurring interferences between the effects of the data and the param-

eter uncertainties when being simultaneously considered, the spread of each alternative

is larger than the corresponding spread when considering data and parameter uncertain-

ties separately (cf. Figures 4.20 and 4.28). The distinguishability decreases accordingly.

For example, Figure 4.30 shows that the alternatives “Rmov,T=0”, “Rmov,T>0” and

“Rduc,T=0” are no longer distinguishable as a result of the uncertainties. Furthermore,

the projections corresponding to the alternatives “Proc” and “AddS+Proc” as well as

those corresponding to the alternatives “Disp” and “Stor” are not clearly distinguishable.

The different groups of alternatives, however, are still distinguishable from each other.
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Figure 4.30: Combined Illustration of the Impact of Data and Parameter Uncertainties in the

PCA Plane

Showing the projected weight space Ω as well as the scatter plots, representing the data

and the intra-criteria preferential uncertainties, the PCA plane in Figure 4.30 provides a

complete graphical impression of the impact of the different types of uncertainty on the

MADM results.

4.7 Summarising Discussion of the Case Study

The developed and implemented multi-attribute decision support methods have been ap-

plied to an exemplar case study in the context of industrial risk management. Within the

large field of industrial risk management, nuclear emergency and remediation manage-

ment is an important and challenging area. Besides the resulting severe and far-reaching

consequences of a potential emergency, risk management and emergency planning are

very relevant in nuclear power generation due to the fact that a large part of electricity

is generated from nuclear energy – in Europe as well as world-wide. Energy supply is a

very important part of critical infrastructure and an area-wide, secure electricity supply

is essential for the functioning of a modern society. Thus, crisis situations in the energy

sector constitute a special challenge in comparison to emergency preparedness and man-
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agement in many other areas which often involve contingency plans or checklists that can

been prepared in advance and used in emergency exercises.

For an integrated approach to industrial risk management, multidisciplinary and multi-

scale approaches are needed taking various, at least partially conflicting objectives into

account. Besides the purely economic factors, health and safety aspects, the environmen-

tal impact and the technical feasibility need to be considered for example. Additionally,

decision situations in the event of a nuclear or radiological emergency involve different

stakeholder and expert groups with diverse background knowledge and different views,

responsibilities and interests. With the rising demand for information by the mass media

and the public, methods are needed to assess how such decision situations are resolved [cf.

Renn, 2001; Wybo, 2006]. Contributing to transparency and traceability of decisions and

allowing to take political and socio-psychological aspects into account, multi-attribute de-

cision analysis contributes to improve the communication and justification of the results

of decision making processes and can be helpful in forming an audit trail. Such a decision

analytical approach to industrial risk management is essential in addition to the eco-

nomic and technical modelling in order to enhance public confidence and understanding

in relation to the corresponding decision processes.

The uncertainties occurring in the context of the case study require an adequate modelling

and visualisation. The applicability of the newly developed and implemented approaches

for uncertainty handling in multi-attribute decision support has been demonstrated on

the basis of the case study. Especially the presented multi-dimensional sensitivity analysis

approach can contribute to facilitate the consensus building within a group. It is likely

that different members of a group argue for different preference parameters. The described

methods can provide valuable insights into the robustness of a decision and also allow to

explore trade-offs between conflicting objectives (such as radiological effectiveness and

resources for instance).

From the uncertainty analyses carried out for the case study, it can be concluded that

either the alternative “Disposal” or the alternative “Rmov,T=0” is ranked first. The

proposed approach to multi-dimensional sensitivity analysis allows to explore which pa-

rameter constellations result in which of these two alternatives as the most preferred.

The knowledge acquired by conducting such comprehensive uncertainty analyses in the

context of the case study can also be used for countermeasure planning purposes, and can

consequently contribute to an improved emergency preparedness. In particular, concern-

ing the planning of long-term measures, the time horizon for their implementation may
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vary between a few months and several years. In this way, the developed methods provide

valuable support for strategic planning in relation to industrial risk management.

Some points need further discussion. For instance, a “deterministic uncertainty analy-

sis” (i.e. basically, carrying out deterministic evaluations for the different scenarios and

subsequently comparing the results), as carried out in Section 4.6.2 and illustrated in

Figure 4.18, shows that the alternative “Rmov,T=0” receives the highest score in five,

“Disp” in four and “Rmov,T>0” in one of the ten scenarios. Contrariwise, calculating

the expected utilities results in a slightly higher expected utility for “Disp” in comparison

to “Rmov,T=0” (see Figure 4.15 in Section 4.6.2). Kirkwood [1992], for instance, argues

that deterministic uncertainty analysis approaches tend to overestimate the impact of the

uncertainties. However, it is important to note that the possibility that changes in the

ranking are possible in consequence of the underlying uncertainties, is often disguised by

expected utility based approaches. In practical applications it is thus important to analyse

if the underlying uncertainties have a significant effect on the results. Especially, the effect

of the uncertainties introduced during the multi-attribute analysis (i.e. the uncertainties

of the preference parameters) is often substantial.

However, concerning the countermeasure and remediation strategies considered within

the case study, discussions evolved within the workshop, whether or not such measures

are acceptable and implementable at all, i.e. whether or not it is possible to bring food

to the market in which the contamination has been reduced below the respective inter-

vention level by carrying out one of the discussed measures. The answer to this question

certainly depends on the availability of non-contaminated food and thus on the dimen-

sion of the emergency. But since the acceptance of consuming contaminated food at all,

even lowly contaminated food (below the intervention level), is assumed to be very low

in general, a rethinking recently began. Especially for regionally bordered events, the

different stakeholders and experts in the workshop estimate that non-contaminated food

from non-affected areas will be made available instead of bringing lowly contaminated

food to the market. Consequently, discussions recently emerged, for instance in Germany,

on shifting the decision context from deciding between different agricultural countermea-

sure and remediation strategies towards deciding between different waste disposal options

[cf. e.g. Kaulard et al., 2006]. However, this decision situation is not less challenging and

MADA can again be used to design transparent decision making processes in this context.
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Chapter 5

Conclusions and Outlook

The complexity of contemporary industrial, economic, environmental and social infras-

tructure networks requires an integrated, multidisciplinary and multiscale approach to

industrial risk management, i.e. many scientific disciplines need to be involved in a com-

prehensive analysis of industrial risks. However, these various disciplines have developed

their risk and vulnerability models mostly independently from each other so far.

The combination of various scientific approaches leads to an enriched insight into a re-

alistic modelling, taking the needs of real world decision making and disaster resilience

into account. One approach that provides an integrated picture of decision situations in

industrial risk management by allowing to simultaneously consider technical, economic,

environmental as well as socio-psychological and political factors is multi-criteria decision

analysis.

In this thesis, a concept has been developed to support the resolution of complex decision

situations which occur when handling the risks arising from emergency situations in the

nuclear power generation sector. The focus of this section is to derive conclusions and

to point out how the findings can be extended and transfered to other industrial systems

and emergencies. Additionally, possibilities for methodological extensions of the proposed

and applied multi-criteria approach are identified.

5.1 Conclusions for Industrial Risk Management

Failures in industrial operating procedures and the potentially arising emergency situa-

tions can differ in many ways. For instance, concerning their causes, they may be induced

internally (i.e. they emanate from the production process itself or rather from losing con-
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trol over the production process) or externally (i.e. they emanate for instance from a

natural disaster). The respective dimensions of the emergency situations’ impact on the

economy, the environment and the society as a whole may differ considerably, too.

Since today’s industrial systems are characterised by a continuous interchange of infor-

mation, goods or services amongst the systems’ components (i.e. they are tightly coupled)

and by unfamiliar or unplanned interactions between the various components, which may

not immediately be visible or comprehensible, such systems confront us with the problem

of “managing the unexpected” in the event of a technical failure due to the unpredictable

nature of the interactions. The occurrence of an emergency within a system may not only

affect the industrial system itself, but also the community in which it is embedded, for

instance by causing economic losses, environmental damages or disruptions of electricity

and water supply. Consequently, the risk arising from such an emergency can be regarded

as affecting multiple members, parts or components of the system and propagating quickly

among the individual parts or components of the network.

In order to support a structured analysis of risk in such complex systems, methods from

the area of operations research have been applied. While the application of operations

research methods is standard in the area of production planning, they have not yet been

well adapted to planning problems in the context of unexpected events. Recently, their

application in the context of managing risks in supply chains is for instance addressed in

Vahrenkamp and Siepermann [2007] but the discussion is primarily focussed on exercise

and merchandising risk. Special emphasis within this thesis has been placed on providing

support for the evaluation of countermeasure and remediation strategies in the aftermath

of an unexpected event in an industrial system. Thereby, special focus has been put on

analysing the consequences of a nuclear or radiological emergency and different counter-

measure and remediation strategies for the society and the environment in the light of

various types of uncertainty.

The knowledge acquired by such analyses enables a better understanding of industrial

risks. This leads to a better understanding of strategic countermeasure planning problems

and can thus contribute to an improved risk awareness and emergency preparedness.

The consequence assessment constitutes an important part of any planning problem in the

context of emergency preparedness. Within the scope of nuclear emergency management,

the RODOS system can be used to assess the consequences of different countermeasure

and remediation strategies. In view of the high efforts for the development of a system such

as RODOS, the question arises, in which other contexts such a decision support system

can be used to support the resolution of complex decision situations. Besides internally-
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induced emergencies at nuclear power plants, nuclear or radiological emergencies due to

acts of terrorism – may they pertain to a nuclear power plant or to a “dirty bomb” – are

recently discussed. In both cases, RODOS is straightforwardly applicable.

Furthermore, non-nuclear emergency situations may require coherent and structured deci-

sion support. Both, natural or other industrial emergencies can have a significant impact

on the environment as well as the society and may thus necessitate the implementation

of countermeasure or remediation strategies. While in RODOS, a Gaussian model is

used to calculate the atmospheric dispersion of the radioactivity, several other approaches

for meteorological dispersion modelling are discussed in literature [cf. e.g. Sennewald,

1996]. However, thinking about accidents in chemical industry for instance (such as

Seveso (1976), Bhopal (1984), Schweizerhalle/Basel (1986) or Jilin/Harbin (2005)), the

availability of model forecasts concerning the dispersion/propagation of gas or water pol-

lutions is very important in order to be able to implement adequate emergency actions –

at least in areas at a certain distance from the accident site. Moreover, information about

potentially affected areas, as provided by RODOS for nuclear or radiological events, sup-

ports decisions on where to implement which countermeasures.

In analogy to nuclear or radiological emergencies, the protection of human lives and

health has the highest priority in the early phase after any industrial emergency. In the

long term, however, when discussing the efficiency of different remediation strategies, the

decision situations become more complex, in nuclear as well as in non-nuclear emergencies.

Consequently, methods are needed that support a transparent resolution of such complex

decision situations.

5.2 Conclusions Concerning the Multi-Criteria Ap-

proach

Besides providing geographic information about the areas being impacted in the event of

an industrial emergency, a major challenge in the context of industrial risk management

is the evaluation of different countermeasure and remediation strategies taking into ac-

count their respective strengths and weaknesses according to their technical, economic,

environmental and socio-psychological performance. However, there will usually not be

one single alternative performing best with respect to all relevant decision criteria. Thus,

incomparabilities occur, i.e. one alternative may be better with respect to one criterion

while another one may be better with respect to another criterion. Multi-attribute deci-

sion analysis (MADA) aims at reducing such incomparabilities by explicitly incorporating
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preferential information of the responsible decision makers. In this way, MADA helps to

compile a ranking of the different alternatives. Additionally, MADA is suitable to sum-

marise the findings of the various disciplines involved in industrial risk management and

to incorporate the respective results in common guidelines and recommendations.

Furthermore, contributing to transparency and traceability of decisions, MADA is helpful

to satisfy the increasing demand for information by the mass media and the public. The

communication and justification of the results of decision making processes is an important

part of any decision support system in the context of industrial risk management, since,

without such trust building components, the corresponding decisions are likely not be

accepted by the general public.

In this thesis, multi-attribute value and utility theory (MAVT/MAUT) have been used

to support the evaluation of different countermeasure and remediation strategies in the

context of handling the risks emerging from technical failures in industry. Reasons for

choosing MAVT/MAUT include their transparent nature and the already proved success-

ful application in the context of emergency management. Additionally, the International

Commission on Radiological Protection (ICRP) recommends the use of MAVT in the

context of radiation protection.

Since decision making processes in industrial risk management are subject to various dif-

ferent types of uncertainty, a framework to classify and handle the arising uncertainties

has been elaborated. This framework reflects the various sources of uncertainty and their

respective implications for the risk management process. Providing an appropriate frame-

work to address the different occurring types of uncertainty (e.g. data and preferential un-

certainties) in an understandable and transparent way, a decision making approach based

on Monte Carlo analysis has been proposed in this thesis. This approach is accompanied

by a number of graphical representations to support the visualisation and communication

of the ranges in which the results can vary in consequence of the underlying uncertainties.

Besides the comprehensive visualisation techniques proposed to support the communica-

tion of the MADM results, a valuable benefit of the developed multi-dimensional Monte

Carlo sensitivity analysis framework is the approach for backwards calculation. The

corresponding illustrations provide valuable insights into the robustness of decisions by

allowing to graphically explore which parameter combinations result in which preferred

alternative. These benefits are particularly helpful for consensus building within a group.
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5.3 Outlook

The proposed framework for decision support in industrial risk management can be en-

hanced and extended in several ways. For instance, in order to increase the usability and

acceptance of the developed framework for uncertainty handling, the explanation module

(cf. Section 4.2.5) needs to be extended, i.e. explanations about the uncertainties in the

results need to be added (cf. Appendix A). Furthermore, it should be emphasised that the

proposed methods are universally applicable and can thus be applied in any context where

MADA is used to support the resolution of a complex decision situation. For instance,

within the nuclear sector, the problem of nuclear waste management constitutes a typical

MCDA problem. Even though this has already been subject to a large number of research

studies [cf. e.g. Keeney, 1987; Merkhofer and Keeney, 1987; Keeney and von Winterfeldt,

1994; Taji et al., 2005; CoRWM, 2006], research potential does exist because the final

storage is yet an unsolved problem and the design of transparent decision processes under

participation of the public and thus the need of structured and understandable commu-

nication becomes increasingly relevant [McDaniels et al., 1999; Walker, 2000]. Moreover,

MCDA could for instance be used to support the choice between different power gener-

ation alternatives, which is likely to represent a problem of rising importance in future

since it affects the long-term development of the power generation mix within a country.

Two additional particularly important needs for future research are pointed out in detail

in the remainder of this section.

5.3.1 Sequential Decision Making

One of the essential tasks of decision makers before, during and after an emergency is the

spatial and temporal assignment of available resources to different operation areas. To

find solutions for such a complex task, information about early warning data, damages

and victims, available resources, etc., is needed as well as temporally varying information

about the evolution of the emergency situation.

While MADA constitutes a valuable contribution to the transparency of decision pro-

cesses, the existing methods are not able to reflect the sequential and iterative process of

decision making in real life. Decisions are usually not taken at one single point as it is

often assumed for reasons of simplicity. In reality, in the event of an industrial emergency,

decisions are rather nested in a series of decisions which are related to each other [French

and Ŕıos-Insua, 2000]. Moreover, up-to-date data – if available – would be included for

each new decision, such as the atmospheric dispersion of the radioactive plume in the
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context of the case study. This sequential character of decision problems is often rep-

resented by illustrations such as influence diagrams and decision trees (see Figure 5.1).

In such an influence diagram, the following labelling is often used [cf. e.g. Clemen and

Reilly, 2001]: Rectangles (or squares) represent decision nodes, ellipses (or circles) rep-

resent chance nodes and diamonds as well as rounded rectangles represent value nodes

which are sometimes also called consequence nodes. While rounded rectangles represent

values of individual attributes/criteria within an attribute tree (such as the attribute tree

of the case study in Figure 4.8), diamonds are used for the values of the overall goal. The

respective nodes are thus also called terminal nodes.
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Figure 5.1: Influence Diagram for Multiple Time Steps and Multiple Attributes

For instance, Alttk denotes a set of alternatives available at time step tk (with 1 ≤ k ≤ z) in

the influence diagram in Figure 5.1. The different available alternatives at each time step

will usually show different performances with respect to the different attributes A1, ..., An.

In addition, one or several chance nodes “CN” representing the uncertain environment,

e.g. meteorological conditions, can effect the outcome of one or several alternative(s) with

respect to one or several attribute(s). The values of the individual criteria can then be

weighted with the weights wtk
1 , ..., wtk

n , which may be time-variant, and finally the overall

value V is obtained which is to be maximised.

In the context of the case study discussed in Chapter 4, for example, decisions on whether

or not removing cows from contaminated pasture would be taken immediately whereas

decisions on the processing of milk would be discussed at a later date. This means that

the following concrete alternatives can for instance be assigned to the sets of alternatives
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Alttk in this context: Altt1 = {“No Action”, “Disp”, “Rmov,T=0”, “Rduc,T=0”}, Altt2

= {“No Action”, “Disp”, “Proc”, “Stor”, “Rmov,T>0”, “AddS+Proc”}.
The labelling used for influence diagrams can also be used for decision trees. An interesting

fact is that a decision tree corresponds to each influence diagram and can be derived from

it (but not the other way round). A decision tree that corresponds to the influence diagram

in Figure 5.1 is shown in Figure 5.2. While an influence diagram emphasises the influences

and the conditionality and provides a good overview and representation of the structure of

a decision problem, a decision tree clearly displays the temporal interrelationships between

the individual decisions and chance nodes (external influences and/or random events).

Both representations complement each other and provide a broad range of perspectives

concerning a sequential decision problem.

Altt1 CN

CN

CN

Altt2 
(Altt1)

Altt2(Altt1)

Altt2(Altt1) ∑=
k

k
t

tVV

∑=
k

k
t

tVV

∑=
k

k
t

tVV

∑=
k

k
t

tVV

∑=
k

k
t

tVV

.....
.....

CN

CN

CN

CN

CN

.....
.....

.....

.....

.....

.....

.....

Altt1 CN

CN

CN

Altt2 
(Altt1)

Altt2(Altt1)

Altt2(Altt1) ∑=
k

k
t

tVV

∑=
k

k
t

tVV

∑=
k

k
t

tVV

∑=
k

k
t

tVV

∑=
k

k
t

tVV

.....
.....

CN

CN

CN

CN

CN

.....
.....

.....

.....

.....

.....

.....

Altt1 CN

CN

CN

CN

CN

CN

Altt2 
(Altt1)

Altt2(Altt1)

Altt2(Altt1)

Altt2 
(Altt1)

Altt2(Altt1)

Altt2(Altt1) ∑=
k

k
t

tVV

∑=
k

k
t

tVV

∑=
k

k
t

tVV

∑=
k

k
t

tVV

∑=
k

k
t

tVV

.....
.....

∑=
k

k
t

tVV

∑=
k

k
t

tVV

∑=
k

k
t

tVV

∑=
k

k
t

tVV

∑=
k

k
t

tVV

.....
.....

CN

CN

CN

CN

CN

.....
.....

.....

.....

.....

.....

..... CN

CN

CN

CN

CN

.....
.....

CN

CN

CN

CN

CN

.....
.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

Figure 5.2: Decision Tree Corresponding to the Influence Diagram in Figure 5.1

Each decision node in the tree represents a MAVT analysis where the set of alternatives

can vary and not only depends on the time but also on the decisions taken at the previous

time steps. For example, the set Altt2 of available alternatives at time step t2 depends

on the decision taken at time step t1. In Figure 5.2, only one arrow starts from each

chance node. In a real emergency, it is hard to quantify any probabilities for arbitrary

chance nodes right from the beginning and to assign discrete probabilities to the arrows

in a justifiable way. Concerning the context of the case study, it is assumed that the

“chance factor” can be related to the data assimilation modules of RODOS. Taking into

account up-to-date monitoring data (e.g. measurement results) at each time step, the data
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assimilation modules improve the results of the calculations of the system. Thus, they

reflect the external influence on the decision making process at each time step.

A decision tree such as in Figure 5.2 can be resolved by the so-called “roll back” method

(also called backward recursion) which is based on Bellman’s principle of optimality [cf.

e.g. Bellman, 1957]. The aim is the determination of an optimal solution (an optimal

sequence of decisions, i.e. the path in the decision tree that leads to the highest total

value in the terminal node). Bellman’s principle of optimality says that each partial path

of an optimal path is again optimal concerning the starting node. Thus, it is possible

to reduce the resolution of a multi-level decision problem to the solution of a single-step

decision problem. Following this principle, one “moves backwards” through the decision

tree starting at the terminal node on the right side and ending at the root node on the left

side of the tree. The entire planning problem is divided into single-step decision problems

and “rolled up” from the back [cf. e.g. Laux, 2005].

A general advantage of decision trees is the straightforward possibility to conjointly con-

sider sequential aspects and uncertainties in decision problems through the chance nodes.

For instance, Göbelt [2001] makes use of this property, using decision trees to consider

uncertainties in continuous investment planning problems in the energy supply sector.

However, a problematic aspect for the application of decision trees in the context of the

case study is the (a priori) determination of the different time steps, i.e. decision phases,

and their respective lengths. An additional challenge is constituted by the high uncer-

tainty of the dynamically evolving external environment in reality and the corresponding

interdependencies within industrial systems, the economy and the society as a whole

which needs to be taken into account for a reliable consequence assessment. Furthermore,

decision trees rapidly become very large [French and Ŕıos-Insua, 2000]. The suitability

of such a concept for industrial risk management and the understandability for decision

makers in the event of a real emergency thus needs to be further investigated. It is often

noted that decision makers would never use decision analysis methods themselves anyway,

but even if they had advisers (decision analysis experts), it would be very complicated

to elicit the necessary information from the decision makers. More information on these

topics can for instance be found in Bellman [1957]; DeGroot [1970]; Berger [1985]; Oliver

and Smith [1990]; French and Rı́os-Insua [2000].
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5.3.2 Indirect Consequence Assessment and Cascading Effects

Modern industrial production, providing goods and services for society, implicates global,

hierarchically structured supply chain networks. The analysis of the vulnerability of such

complex networks when they are affected by internally or externally induced extreme

events constitutes a challenging task. A general estimation of the structural and the

functional vulnerability of different industry branches including their critical infrastruc-

tures as well as adequate models to simulate indirect losses as a function of the economic

vulnerability of supply chain networks do not yet exist.

As pointed out in Section 4.2.3, the model for economic consequence assessment in RO-

DOS is very elementary. It gives a course overview of the incurring direct costs by calcu-

lating unit costs of decontamination techniques in inhabited areas as well as agricultural

countermeasures while indirect costs are not considered at all. Consequently, the suit-

ability of the cost model within RODOS for a profound economic impact assessment of

an emergency is limited. In order to enhance the assessment of economic consequences

within RODOS, quantitative methods for the modelling of the direct as well as the indi-

rect losses are needed. For instance, a promising approach is proposed by van der Veen

and Logtmeijer [2005] who discuss the transfer of standard approaches in economics, such

as input-output analysis, to the area of analysing the effects of an emergency within

industrial production networks and the economy as a whole.

However, due to a lack of risk awareness, the industry is not well prepared to cope with

unexpected emergencies. The high complexity of investigating the vulnerability of in-

dustrial supply chain networks originates inter alia from the global interlacement, the

hierarchical structure and the dynamic evolution of the external environment. Classical

approaches of supply chain management are focused on the coordination of demand and

supply, but research of unexpected deviations from normal enterprise resource planning

has not yet been performed.

In order to be prepared for a disaster, the knowledge of the possibly affected industrial

assets and functions is important. For instance, besides the radiological consequences, a

nuclear emergency can cause disruptions of electricity supply. Even more severely, from

the perspective of the security of supply, a strong storm could cut down the electricity

supply in a whole region in Germany (as it happened in Westphalia in 2005). As a con-

sequence, both economy (for example industry branches heavily depending on electricity

like telecommunication or aluminium production companies and their subsequent busi-

ness partners) and society (e.g. people dependent on the functioning of normal processes

of supply like old or ill people) could be affected. Furthermore, the cold chain in the
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food industry could be disrupted resulting in putrefying foodstuffs, which then would

need to be disposed and/or processed. If the possible damage within the whole supply

chain network could be estimated, then acceptable expenses for risk mitigation could be

judged at the different levels of companies and economy/society. Likewise, insurances

could estimate the possible damage in a more appropriate way [cf. e.g. Merz et al., 2007;

Geldermann et al., 2008].
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Summary

The complexity of today’s industrial production networks constitutes a new challenge for

industrial risk and safety management. A single company, complete industrial production

systems as well as the society as a whole are exposed to various different types of risk

every day. In order to handle potential risks in industry and their respective impact on

mankind and the environment, an integrated approach to risk management and industrial

environmental policy is needed, since complex decision situations need to be resolved in

a wide variety of circumstances.

Understanding the risks emanating from technical failures in industrial operating proce-

dures and the potentially arising emergency situations is very important for a sustainable

development. Special attention must be paid when the individual production processes

are coupled and when their respective time and length scales within a production network

are strongly disparate. The modelling and handling of risks arising from such processes

necessitates integrated, interdisciplinary and multiscale approaches.

The complex decision situations which need to be resolved in the context of industrial

risk management require the consideration of various conflicting criteria. In particular,

aspects of health and safety, the technical feasibility and the environmental impact need to

be considered besides the purely economic factors. An explicit examination of the trade-

offs between these conflicting objectives plays an important role in providing a sound

understanding of a decision situation. Furthermore, different scientific expert groups are

usually involved with heterogeneous technical background knowledge in different disci-

plines. Know-how from economic, ecological, engineering and natural sciences must be

brought together, taking account of political as well as socio-psychological factors.
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Providing the basis for the evaluation of conflicting criteria and for bringing together

existing knowledge from different disciplines, Multi-Criteria Decision Analysis (MCDA)

is helpful to resolve the complexity of the occurring decision situations. Furthermore,

seeking to facilitate the communication of decisions and contributing to form an audit

trail, MCDA provides valuable support in explaining how decisions are taken, which is

important in the light of the rising demand from the mass media and the public for

information and justification from authorities.

Within the field of MCDA, the approaches Multi-Attribute Value Theory (MAVT) and

Multi-Attribute Utility Theory (MAUT) have been described in detail because of their

understandable nature and their suitability to support decision making in relation to

industrial risk management. Contributing to transparency and traceability of decision

making, MAVT provides a basis for participatory processes and group decisions in the

context of the case study.

In order to address the various types of uncertainty, which may arise in a decision making

process in industrial risk management, a framework for uncertainty handling has been

proposed. On the basis of a structured uncertainty classification, methods based on Monte

Carlo simulation can be used for a consistent modelling, propagation and visualisation of

the different types of uncertainty. Special focus has been put on approaches that allow

to explicitly illustrate the spread, i.e. the ranges in which the Multi-Attribute Decision

Making (MADM) results can vary in consequence of the uncertainties.

The added value of the developed methods particularly lies in the proposed framework

for multi-dimensional sensitivity analysis which allows to explore the robustness of the

MADM results with respect to simultaneous variations of the subjective preference param-

eters. Additionally, they contribute to facilitate the preference elicitation and consensus

building in decision making groups. The elaborated approaches provide valuable insights

into the robustness of decisions and also allow to investigate trade-offs between the dif-

ferent conflicting criteria. Thus, these different analyses lead to a deeper understanding

of decision problems. Especially, a comprehensive approach for value function sensitivity

analysis (i.e. the analysis of the intra-criteria preferential uncertainties), including an in-

vestigation of the impact of varying the boundaries of the value functions’ domains, has

not previously been mentioned in literature. Furthermore, the introduced approaches to

perform backwards calculations and the corresponding graphical visualisations are par-

ticularly valuable allowing to consistently and transparently link the uncertainties in the

results to the uncertainties in the MADM input data and parameters. Finally, the in-

tegration of the proposed multi-dimensional sensitivity analyses into the framework of
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expected utility theory allows, for the first time, to investigate the sensitivity of MAUT

results with respect to simultaneous variations of different decision parameters.

The developed methods have been implemented in a software prototype in MATLAB in

order to demonstrate their capabilities in the context of a case study from industrial risk

management. Within the large field of industrial risk management, nuclear emergency

and remediation management is an important and challenging area because, firstly, the

resulting consequences of a potential emergency are severe and far-reaching and, secondly,

electricity supply is a very relevant part of critical infrastructure. Since a large part of

electricity is generated by nuclear energy and an area-wide, secure electricity supply is es-

sential for the functioning of modern industrial production networks as well as the society

in general, the creation of awareness of the possibility of technical failure and an improved

preparedness to deal with the risks and to cope with emergencies are indispensable.

Multi-attribute decision analysis constitutes an important contribution to transparently

resolving complex decision situations in the context of the case study. The modelling

of the different types of uncertainty occurring in such decision situations has been dealt

with in detail. The developed Monte Carlo framework allows a consistent modelling of

the uncertainties of the empirical input data and their propagation through the model

chain of the Real-time Online Decision Support System for Nuclear Emergency Manage-

ment (RODOS). Additionally, the different types of uncertainty can be simultaneously

considered and visualised. In particular, the proposed sensitivity analyses provide valu-

able support in analysing the robustness of decisions in emergency management and also

allow to explore trade-offs between conflicting objectives such as, for instance, radiological

effectiveness and resources.

Finally, potential for future research has been pointed out. Especially, a methodological

extension of the decision making framework in order to reflect the sequential character

of decision problems in practice as well as an improvement of the models for economic

consequence assessment have been emphasised.

From applying the developed methods to the case study, it can be concluded that the

total set of decision alternatives could be significantly reduced by analysing the impact

of the data uncertainties. Subsequently, the multi-dimensional sensitivity analyses allow

to explore which parameter combinations result in which of the remaining alternatives

as the most preferred. The knowledge acquired by conducting such uncertainty analyses

within the scope of the case study can be transferred to strategic countermeasure planning

problems, and can consequently contribute to an improved risk awareness and emergency

preparedness.
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In this thesis, a framework has been developed for an integrated handling of risks ema-

nating from emergency situations arising from technical failures in industrial production.

Providing an integrated picture of decision situations by allowing the simultaneous consid-

eration of technical, economic, environmental as well as socio-psychological and political

aspects, the application of multi-criteria decision analysis has been demonstrated in the

scope of a case study from emergency and remediation management in the nuclear power

generation sector. Additionally, being suitable to integrate knowledge and experiences

from various scientific approaches, MCDA leads to an enriched insight into the mod-

elling of real world decision problems. A comprehensive uncertainty analysis, allowing

to simultaneously consider and visualise the various types of uncertainty that can arise

in any decision process, has not been mentioned in literature so far. Making use of the

new multi-dimensional sensitivity analysis techniques and of the combination of Monte

Carlo simulation and principal component analysis to support the visualisation, provides

a deeper understanding of the effects of the data and parameter uncertainties on the

overall results in the process of evaluating decision alternatives.
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J. Mustajoki and R. P. Hämäläinen. Web-HIPRE: Global Decision Support by Value Tree

and AHP Analysis. INFOR, 38(3):208–220, 2000.
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Appendix A

The Explanation Module

As described in Section 4.2.5, the language generation process of the explanation module

involves the three stages content determination, discourse planning and sentence genera-

tion [cf. Papamichail, 2000]. This process is graphically illustrated in Figure A.1.
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Figure A.1: The General Structure of the Explanation Module

Each of these steps is shortly described in the following (Sections A.1-A.3). Subsequently,

a possible extension of the existing language generation methods is proposed in Section

A.4. The aim of this extension is to explain the results of a multi-dimensional sensitivity

analysis and thus to increase the usability and acceptance of the new approaches for

uncertainty handling.
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A.1 Content Determination

In the content determination step, the users of the explanation module can decide whether

a comparative report or a sensitivity analysis report shall be generated. The aim of the

comparative report is to compare two alternatives to each other by determining how much

better one alternative is over another, by arguing for or against a choice, by identifying

whether or not an objective differentiates between two alternatives and by detecting the

most significant factors in the ranking of alternatives. A sensitivity analysis report ex-

plains the sensitivity analysis graph, i.e. it describes the effects of varying the weight of a

criterion on the MADM results.

A.2 Discourse Planning

Once the users have decided whether a comparative report or a sensitivity analysis report

shall be generated, the individual messages of the report need to be structured in a

coherent way. If a comparative report is to be generated, the users need to choose two

alternatives and one or several attribute(s) or objective(s) with respect to which the two

alternatives shall be compared. The content of the messages generated by the comparative

report depends on the type of the selected objective(s), i.e. their respective position in the

attribute tree. Explanations referring to the root node objective (such as “total utility”

in the attribute tree of the considered case study, see Figure 4.8 on page 107) are rather

general, while explanations referring to internal node objectives (such as “impact” in

Figure 4.8) and leaf node objectives (such as “total food above” in the case study) are

more detailed and specific [cf. e.g. Papamichail, 2000; Papamichail and French, 2003].

Thus, in the discourse planning step, different text plans are associated with the different

types of objectives (see Figure A.2). For the messages of the sensitivity analysis report

there is a fourth text plan (see Figure A.3). The general aim of discourse planning is to

organise and structure the messages in order to compose a coherent report according to

the respective text plan(s).
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Figure A.2: Text Plans for the Comparative Report
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Figure A.3: Text Plan for the Sensitivity Analysis Report
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A.3 Sentence Generation

In the sentence generation step, message templates are selected from the “template li-

brary”, where each leaf node of a text plan is associated with an individual message.

Subsequently, the templates are filled in according to the decision parameters following

the order given by the respective text plan. As indicated by Figure A.2 and Figure A.3,

fifteen different templates are used for the generation of explanations: ten for the com-

parative report and five for the sensitivity analysis report. In the order of appearance in

the text plans, the messages’ titles are: Comparison, Main Factors, Arguments, Differ-

entiation, Insight, Dominance, Main Reason, Importance, Quality, Score, Introduction,

Current Weight, Weight = 0, Weight = 100, Interpretation and Optimality. These mes-

sage templates can be grouped into the five categories Knowledge Representation, Model

Parameters, Statistical Comparisons, Reasoning and Sensitivity Analysis as follows:

� Knowledge Representation

Main Factors

� Model Parameters

Importance

Score

� Statistical Comparisons

Comparison

Quality

� Reasoning

Arguments

Differentiation

Insight

Dominance

Main Reason

� Sensitivity Analysis

Introduction

Current Weight

Weight = 0
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Weight = 100

Interpretation and Optimality

The structure of each of these templates and the generation of the corresponding messages

is described in detail in Papamichail [2000]; Papamichail and French [2003]; Geldermann

et al. [2007]. Exemplarily, the categories statistical comparisons and sensitivity analysis

are described in the following.

A.3.1 Statistical Comparisons

Statistical comparisons focus on determining those decision parameters that are significant

or important in the ranking of the alternatives. They are based on statistical interpreta-

tions of the decision model [cf. Klein, 1994]. Decision parameters that influence the final

ranking are attribute weights, performance scores of alternatives and absolute differences

between the alternatives’ scores. For instance, the template “Quality”, requiring one al-

ternative and one objective as input, is used to generate a message showing how good a

selected alternative is relative to the chosen objective [cf. Papamichail, 2000]:

<alternative> performs <semantic quantifier> on <objective> in the context

of all available alternatives.

A semantic quantifier (SQ) is a verbal expression (such as “substantially better”, “slightly

worse”, “significant” or “very good”, “neither very good nor very poor”, “very poor”) that

describes the quality of a parameter and can be determined in the following way. Given

an objective, the mean µ and the standard deviation σ of the scores of all available

alternatives relative to this objective can be calculated. Assuming that the score of an

alternative (e.g. “Rmov,T=0” in the case study) is s = 5 on a scale from 0 to 100, the

quality of the alternative can be described by mapping s (i.e. the score of the alternative)

to a discrete set of semantic quantifiers as follows (where λ is a positive user-defined

constant):

if




s > µ + λσ

µ − λσ ≤ s ≤ µ + λσ

s < µ − λσ


→ SQ =




“very good”

“neither very good nor very poor”

“very poor”


 (A.1)

In the context of the case study, a message generated by the explanation module can be:

Rmov,T=0 performs very poor on avoided collective dose in the context of

all available alternatives.
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Statistical explanations help decision makers to concentrate on those aspects that are

significant in the decision process [cf. Klein, 1994]. Therefore, they contribute to con-

siderably reduce the time needed for parameter assessment. An illustrative comparative

report for the alternatives “Rmov,T=0” and “Disp” in the case study is shown in Fig-

ure A.4, allowing to gain deeper insight into the factors differentiating between the two

alternatives.

Figure A.4: An Illustrative Comparative Report

A.3.2 Sensitivity Analysis

The messages generated for the sensitivity analysis report communicate information in the

form of text and tables. They are aimed at explaining the general purpose of a sensitivity

analysis and why it is valuable. Furthermore, they seek to interpret the sensitivity analysis

graph, i.e. the optimality of alternatives, when varying the weight of a chosen (sub-)

criterion, is discussed [Papamichail, 2000].
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In the following, the individual messages of a sensitivity analysis report will be shortly

described. The template for the message “Introduction”, mainly consisting of so-called

canned text, is:

This analysis examines how robust the choice of an alternative is to changes

of the weight of <objective>.

The message “Current Weight” includes additional information about the goal of a sen-

sitivity analysis. Subsequently, this message indicates the status quo, i.e. the current

weight of the chosen objective and a table that shows the overall scores of all alternatives

corresponding to this current weight. The associated template is:

The lines in the graph of the sensitivity analysis, each associated with one

alternative, show the weighted scores of the (associated) alternatives when

the weight of <objective> is varied from 0 % to 100 %. The vertical line at

<current weight of objective>% represents the status quo. The overall scores

of the alternatives are:

<table>

The messages “Weight = 0” and “Weight = 100” describe the situation of the overall scores

of the alternatives if the weight of <objective> was zero or one hundred respectively. In

other words, these two messages explain the situation at the left and the right border of

the sensitivity analysis graph.

The message “Interpretation and Optimality” involves two tasks:

� Firstly, it identifies the weight ranges of <objective> for which an alternative is

most preferred (relative to <objective>).

� Secondly, it indicates how much the weight of <objective> can be changed without

changing the optimality of the most preferred alternative for the current weight of

<objective>.

The aim of the two parts of the message “Interpretation and Optimality” is to help decision

makers focus on the most critical factors in the decision-making process. For instance, if

two or more decision makers disagree on the exact value of a weight of an objective, but

they do agree on a weight range for which only one alternative is the most preferred, they

can focus on other issues that might have more influence on the outcome of the decision

analysis [cf. e.g. Papamichail, 2000; Geldermann et al., 2007]. The template associated

with “Interpretation and Optimality” is:
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The ranges of the weights of <objective> for which an alternative is the most

preferred are:

<table>

The percentage on <objective> can be changed by as much as <calculated

weight>% without changing the optimality of <alternative>.

For the context of the case study, an illustrative sensitivity analysis report for the weight

of “impact” is shown in Figure A.5. The corresponding messages generated by the expla-

nation module provide an improved understanding of robustness of the MADM results

with respect to weight changes of the criterion “impact”.

Figure A.5: Extract of an Illustrative Sensitivity Analysis Report

As already mentioned in Section 4.2.5, the explanation module has been developed for

deterministic multi-attribute decision analyses. Taking account of different types of un-
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certainty leads to additional information in the results which, so far, is not explained by

the existing explanation facilities. Thus, there is a need to add understandable explana-

tions about the arising uncertainties. Exemplarily, an extension of the sensitivity analysis

report is proposed in the following section.

A.4 A Step Towards Explaining the Results of Multi-

Dimensional Sensitivity Analysis

In order to increase the usability and acceptance of the new approaches for uncertainty

handling developed within this thesis, understandable messages about the occurring un-

certainties and their respective impact on the results can be added to the explanation

module. The generation of messages to explain the uncertainties in MADM results consti-

tutes a challenging future research possibility which has not been mentioned in literature

so far. Thus, it is important to transfer the knowledge and experience obtained during

the development, implementation and use of the existing language generation methods to

the field of explaining uncertainties in MADM. An extension towards explaining multi-

dimensional sensitivity analyses is exemplarily proposed in the following.

The general process of generating reports, as illustrated in Figure A.1, remains unchanged

when explaining the uncertainties, i.e. it involves the three stages content determination,

discourse planning and sentence generation. Concerning the content determination, it is

assumed in this section, that a report explaining the multi-dimensional sensitivity analysis

shall be generated.

Multi-Dimensional 
Sensitivity Analysis

Combined Preferential 
Uncertainty Analysis

Inter-Criteria and 
Intra-Criteria Preferences

Introduction

Spread of Results

Cumulative Percentage 
sorted by <alternative>

Cumulative Percentage

Backwards Calculation

Spread of Results

Cumulative Percentage 
sorted by <alternative>

Cumulative Percentage

Multi-Dimensional 
Sensitivity Analysis

Combined Preferential 
Uncertainty Analysis

Inter-Criteria and 
Intra-Criteria Preferences

Introduction

Spread of Results

Cumulative Percentage 
sorted by <alternative>

Cumulative Percentage

Backwards Calculation

Spread of Results

Cumulative Percentage 
sorted by <alternative>

Cumulative Percentage

Figure A.6: Proposed Text Plan for a Multi-Dimensional Sensitivity Analysis Report
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The discourse planning step differs from that of the one-dimensional sensitivity analysis

since more than one diagram needs to interpreted. In order to organise and structure

the generation of messages explaining figures 4.21–4.27 in a coherent way, a text plan as

shown in Figure A.6 is proposed.

Each leaf node of the text plan shown in Figure A.6 can be associated with a message

template. Concerning the sentence generation of a multi-dimensional sensitivity analysis

report, templates need to selected from an extended “template library”. As indicated in

Figure A.6, five different templates are needed for the generation of the new explanations:

Introduction, Spread of Results, Cumulative Percentage, Cumulative Percentage sorted

by <alternative> and Backwards Calculation. For instance, the following template is

proposed for the message “Introduction” (purely consisting of canned text):

This analysis examines the robustness of the choice of an alternative with

respect to simultaneous variations of the inter-criteria and intra-criteria pref-

erence parameters within the afore assigned intervals. The aim is to identify

the most relevant preferential uncertainties, to explore their respective impact

on the results and to examine whether or not the alternatives are distinguish-

able from each other in the light of the preferential uncertainties.

The generation of the remaining messages is much more complex. For example, in order

to generate the message “Cumulative Percentage sorted by <alternative>”, the following

template, consisting of three main parts, is suggested:

The lines in the diagram of the multi-dimensional sensitivity analysis, each

associated with one alternative, show the overall performance scores of the

(associated) alternatives in ascending order of the score of <alternative>.

This means that the performance score of <alternative> is plotted versus the

cumulative percentage and the other alternatives are sorted in such a way that

their scores at an imaginary “perpendicular cut” through the diagram belong

to the same sampled parameter combination.

<alternative> is ranked first for <determined percentage>% of the drawn

parameter combinations.

Additionally, the diagram indicates a correlation between <alternative> and

<correlated alternative>.

It should be noted that the third part of the above template is only needed in the event

that a correlation is detected. However, in the context of the case study, a corresponding
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message generated by the explanation module in order to explain Figure 4.27 (see page

135) could be:

The lines in the diagram of the multi-dimensional sensitivity analysis, each

associated with one alternative, show the overall performance scores of the

(associated) alternatives in ascending order of the score of Rmov,T=0. This

means that the performance score of Rmov,T=0 is plotted versus the cu-

mulative percentage and the other alternatives are sorted in such a way that

their scores at an imaginary “perpendicular cut” through the diagram belong

to the same sampled parameter combination.

Rmov,T=0 is ranked first for 25 % of the drawn parameter combinations.

Additionally, the diagram indicates a correlation between Rmov,T=0,

Rmov,T>0 and Rduc,T=0.

Templates for the messages “Spread of Results”, “Cumulative Percentage” and “Back-

wards Calculation” can be defined analogously. Recapitulating, multi-dimensional sensi-

tivity analysis reports seek to help decision makers in concentrating on the most relevant

decision parameters and the most significant preferential uncertainties in terms of the

results. Consequently, they can contribute to facilitate the preference elicitation process

and offer valuable support for consensus finding within decision making groups.
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Appendix B

Additional Data and Statistical Tests

for the Case Study

The aim of this appendix is twofold: Firstly, the complete set of decision tables is presented

in Section B.1, containing detailed information about the underlying data uncertainty

in the case study. Secondly, a statistical procedure, allowing to test a set of data for

normality, is described and applied to the set of decision tables of the case study (Section

B.2).

B.1 Data Uncertainty Underlying the Calculations

of the Case Study

As already described in Section 4.5, when taking data uncertainties into account within

the scope of the case study, the multi-attribute decision analysis is not based on one

(deterministic) decision table but on a set of decision tables since the multiple Monte Carlo

runs of the ASY and CSY models within the RODOS system lead to multiple results for

the consequences of the countermeasures. The tables B.1–B.10 constitute the complete

set of decision tables, i.e. they represent the data uncertainty underlying the calculations

of the case study. However, the entries of Table 4.5 (see page 114) were assessed by

the workshop participants and not calculated by RODOS. Since a justifiable uncertainty

modelling for the latter would necessitate more workshops where the participants are

explicitly asked to assess values for each scenario, these values remain unchanged for the

ten scenarios within this research.
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Table B.1: Decision Table – Part 1 – Scenario 1

No

Action

Disp Proc Stor Rmov,

T=0

Rmov,

T>0

Rduc,

T=0

AddS+

Proc

avoided

ind. ad.

[mSv]

0 3.80E+0 1.28E-2 4.13E-5 7.18E-3 9.99E-4 3.51E-4 5.55E-1

avoided

ind. chi.

[mSv]

0 4.32E+1 2.71E-2 7.13E-4 1.01E-1 1.36E-2 5.14E-3 1.06E+0

avoided

collect.

[manSv]

0 1.86E+4 1.57E+3 1.24E+2 3.37E+3 2.75E+2 6.83E+2 8.02E+3

collective

dose

[manSv]

1.90E+4 3.33E+2 1.74E+4 1.89E+4 1.56E+4 1.87E+4 1.83E+4 1.10E+4

max. ind.

work.

[mSv]

0 0 0 0 3.09E-3 1.87E-3 1.93E-3 0

collect.

worker

[manSv]

0 0 0 0 2.25E+0 3.42E-1 3.43E-1 0

no. of

workers

[#]

0 0 0 0 435 329 329 0

total food

above [kg]

1.50E+8 1.50E+8 1.17E+7 1.49E+8 1.07E+8 1.34E+8 1.46E+8 1.09E+7

food

above

yr-1 [kg]

3.41E+5 3.41E+5 1.21E+4 2.33E+5 2.33E+5 2.33E+5 2.33E+5 1.13E+4

size of aff.

area [km2]

2.57E+3 2.57E+3 9.11E+2 2.57E+3 6.36E+2 2.56E+3 2.44E+3 9.11E+2
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Table B.2: Decision Table – Part 1 – Scenario 2

No

Action

Disp Proc Stor Rmov,

T=0

Rmov,

T>0

Rduc,

T=0

AddS+

Proc

avoided

ind. ad.

[mSv]

0 3.80E-2 1.12E-2 3.04E-5 9.66E-3 7.19E-4 2.53E-4 1.29E-2

avoided

ind. chi.

[mSv]

0 4.32E-1 2.40E-2 5.50E-4 1.40E-1 9.84E-3 3.74E-3 2.75E-2

avoided

collect.

[manSv]

0 1.59E+2 6.42E+1 5.42E+0 1.13E+2 8.83E+0 7.99E+0 8.20E+1

collective

dose

[manSv]

1.71E+2 1.24E+2 1.07E+2 1.66E+2 5.87E+1 1.63E+2 1.63E+2 8.94E+1

max. ind.

work.

[mSv]

0 0 0 0 4.26E-5 3.79E-5 2.62E-5 0

collect.

worker

[manSv]

0 0 0 0 2.48E-2 6.42E-3 5.06E-3 0

no. of

workers

[#]

0 0 0 0 213 165 165 0

total food

above [kg]

4.07E+6 4.07E+6 2.03E+5 3.92E+6 1.83E+6 3.30E+6 3.69E+6 1.96E+5

food

above

yr-1 [kg]

8.70E+3 8.70E+3 0 8.00E+3 8.01E+3 8.63E+3 8.63E+3 0

size of aff.

area [km2]

2.12E+2 2.12E+2 3.59E+1 2.12E+2 2.65E+1 1.87E+2 1.44E+2 3.59E+1
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Table B.3: Decision Table – Part 1 – Scenario 3

No

Action

Disp Proc Stor Rmov,

T=0

Rmov,

T>0

Rduc,

T=0

AddS+

Proc

avoided

ind. ad.

[mSv]

0 3.27E+0 1.37E-2 1.80E-5 4.69E-3 6.69E-4 2.18E-4 5.56E-1

avoided

ind. chi.

[mSv]

0 3.26E+1 3.14E-2 2.89E-4 4.95E-2 6.21E-3 2.29E-3 1.06E+0

avoided

collect.

[manSv]

0 1.67E+4 1.61E+3 1.06E+2 2.87E+3 2.43E+2 5.66E+2 7.72E+3

collective

dose

[manSv]

1.71E+4 3.50E+2 1.54E+4 1.70E+4 1.42E+4 1.68E+4 1.65E+4 9.34E+3

max. ind.

work.

[mSv]

0 0 0 0 4.53E-3 1.60E-3 1.75E-3 0

collect.

worker

[manSv]

0 0 0 0 2.70E+0 4.18E-1 4.68E-1 0

no. of

workers

[#]

0 0 0 0 478 390 411 0

total food

above [kg]

1.80E+8 1.80E+8 1.41E+7 1.79E+8 1.42E+8 1.62E+8 1.76E+8 1.28E+7

food

above

yr-1 [kg]

2.69E+5 2.69E+5 2.10E+4 2.14E+5 2.14E+5 2.14E+5 2.14E+5 2.02E+4

size of aff.

area [km2]

2.67E+3 2.67E+3 7.64E+2 2.67E+3 6.04E+2 2.53E+3 2.49E+3 7.64E+2
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Table B.4: Decision Table – Part 1 – Scenario 4

No

Action

Disp Proc Stor Rmov,

T=0

Rmov,

T>0

Rduc,

T=0

AddS+

Proc

avoided

ind. ad.

[mSv]

0 3.27E+2 1.42E-2 4.55E-5 3.88E-3 6.57E-4 2.30E-4 1.40E+2

avoided

ind. chi.

[mSv]

0 3.26E+3 3.12E-2 8.34E-4 4.04E-2 8.70E-3 3.31E-3 2.68E+2

avoided

collect.

[manSv]

0 1.85E+6 9.26E+3 2.19E+2 2.32E+5 4.68E+1 5.78E+4 7.99E+5

collective

dose

[manSv]

1.85E+6 5.82E+1 1.84E+6 1.85E+6 1.62E+6 1.85E+6 1.79E+6 1.05E+6

max. ind.

work.

[mSv]

0 0 0 0 3.97E-3 7.53E-4 8.24E-4 0

collect.

worker

[manSv]

0 0 0 0 3.97E-3 7.53E-4 8.24E-4 0

no. of

workers

[#]

0 0 0 0 110 91 97 0

total food

above [kg]

5.24E+9 5.24E+9 7.30E+8 5.24E+9 5.23E+9 5.24E+9 5.24E+9 7.00E+8

food

above

yr-1 [kg]

1.18E+6 1.18E+6 4.99E+5 1.17E+6 1.17E+6 1.17E+6 1.17E+6 4.54E+5

size of aff.

area [km2]

3.85E+3 3.85E+3 3.59E+3 3.85E+3 3.57E+3 3.85E+3 3.82E+3 3.59E+3
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Table B.5: Decision Table – Part 1 – Scenario 5

No

Action

Disp Proc Stor Rmov,

T=0

Rmov,

T>0

Rduc,

T=0

AddS+

Proc

avoided

ind. ad.

[mSv]

0 6.03E-2 8.46E-3 5.75E-5 1.56E-2 9.96E-4 3.49E-4 1.23E-2

avoided

ind. chi.

[mSv]

0 6.02E-1 1.84E-2 1.06E-3 2.19E-1 1.31E-2 5.00E-3 2.62E-2

avoided

collect.

[manSv]

0 5.08E+2 2.04E+2 1.18E+1 3.52E+2 2.46E+1 2.45E+1 2.67E+2

collective

dose

[manSv]

5.37E+2 2.95E+1 3.33E+2 5.25E+2 1.85E+2 5.12E+2 5.13E+2 2.70E+2

max. ind.

work.

[mSv]

0 0 0 0 1.10E-4 6.92E-5 7.60E-5 0

collect.

worker

[manSv]

0 0 0 0 8.75E-2 1.22E-2 1.73E-2 0

no. of

workers

[#]

0 0 0 0 225 114 132 0

total food

above [kg]

1.10E+7 1.10E+7 6.40E+5 1.09E+7 5.35E+6 9.51E+6 1.06E+7 6.21E+5

food

above

yr-1 [kg]

2.49E+4 2.49E+4 8.47E+1 2.46E+4 2.49E+4 2.49E+4 2.49E+4 8.47E+1

size of aff.

area [km2]

4.93E+2 4.93E+2 9.36E+1 4.93E+2 7.49E+1 4.93E+2 3.37E+2 9.36E+1
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Table B.6: Decision Table – Part 1 – Scenario 6

No

Action

Disp Proc Stor Rmov,

T=0

Rmov,

T>0

Rduc,

T=0

AddS+

Proc

avoided

ind. ad.

[mSv]

0 2.29E-2 8.09E-3 6.99E-5 6.21E-3 9.70E-4 3.37E-4 9.24E-3

avoided

ind. chi.

[mSv]

0 2.29E-1 1.75E-2 1.30E-3 8.69E-2 1.24E-2 4.70E-3 2.00E-2

avoided

collect.

[manSv]

0 2.28E+2 1.02E+2 6.51E+0 1.63E+2 1.50E+1 1.24E+1 1.26E+2

collective

dose

[manSv]

2.41E+2 1.24E+1 1.39E+2 2.34E+2 7.73E+1 2.26E+2 2.28E+2 1.15E+2

max. ind.

work.

[mSv]

0 0 0 0 4.40E-5 1.49E-5 1.15E-5 0

collect.

worker

[manSv]

0 0 0 0 3.54E-2 2.94E-3 3.52E-3 0

no. of

workers

[#]

0 0 0 0 159 87 93 0

total food

above [kg]

7.49E+6 7.49E+6 3.95E+5 7.45E+6 3.69E+6 7.08E+6 7.39E+6 3.81E+5

food

above

yr-1 [kg]

1.94E+4 1.94E+4 0 1.94E+4 1.94E+4 1.94E+4 1.94E+4 0

size of aff.

area [km2]

3.93E+2 3.93E+2 7.02E+1 3.93E+2 4.84E+1 3.93E+2 2.93E+2 7.02E+1
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Table B.7: Decision Table – Part 1 – Scenario 7

No

Action

Disp Proc Stor Rmov,

T=0

Rmov,

T>0

Rduc,

T=0

AddS+

Proc

avoided

ind. ad.

[mSv]

0 1.66E+1 1.42E-2 1.36E-5 4.51E-3 7.10E-4 2.30E-4 2.83E+0

avoided

ind. chi.

[mSv]

0 1.66E+2 3.27E-2 2.44E-4 4.90E-2 6.48E-3 2.37E-3 5.41E+0

avoided

collect.

[manSv]

0 8.42E+4 4.63E+3 2.60E+2 1.15E+4 4.94E+2 2.74E+3 3.75E+4

collective

dose

[manSv]

8.49E+4 6.95E+2 8.03E+4 8.46E+4 7.34E+4 8.44E+4 8.22E+4 4.74E+4

max. ind.

work.

[mSv]

0 0 0 0 3.91E-3 3.03E-3 3.30E-3 0

collect.

worker

[manSv]

0 0 0 0 1.79E+0 3.98E-1 4.33E-1 0

no. of

workers

[#]

0 0 0 0 370 297 303 0

total food

above [kg]

8.03E+8 8.03E+8 4.64E+7 8.03E+8 7.47E+8 7.75E+8 7.97E+8 3.95E+7

food

above

yr-1 [kg]

6.75E+5 6.75E+5 7.27E+4 5.62E+5 5.62E+5 5.62E+5 5.62E+5 6.28E+4

size of aff.

area [km2]

3.97E+3 3.97E+3 2.19E+3 3.97E+3 1.68E+3 3.97E+3 3.96E+3 2.19E+3
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Table B.8: Decision Table – Part 1 – Scenario 8

No

Action

Disp Proc Stor Rmov,

T=0

Rmov,

T>0

Rduc,

T=0

AddS+

Proc

avoided

ind. ad.

[mSv]

0 3.06E+0 1.26E-2 6.77E-5 1.15E-2 6.97E-4 2.28E-4 5.19E-1

avoided

ind. chi.

[mSv]

0 3.05E+1 2.80E-2 1.25E-3 1.61E-1 6.41E-3 2.37E-3 9.94E-1

avoided

collect.

[manSv]

0 2.24E+4 1.34E+3 6.96E+1 3.55E+3 3.85E+1 7.34E+2 9.71E+3

collective

dose

[manSv]

2.24E+4 5.13E+1 2.11E+4 2.24E+4 1.89E+4 2.24E+4 2.17E+4 1.27E+4

max. ind.

work.

[mSv]

0 0 0 0 6.83E-3 2.11E-4 2.32E-4 0

collect.

worker

[manSv]

0 0 0 0 1.21E+0 8.12E-2 9.10E-2 0

no. of

workers

[#]

0 0 0 0 218 120 130 0

total food

above [kg]

1.12E+8 1.12E+8 1.49E+7 1.12E+8 9.43E+7 1.10E+8 1.12E+8 1.32E+7

food

above

yr-1 [kg]

1.86E+5 1.86E+5 2.60E+4 1.80E+5 1.80E+5 1.80E+5 1.80E+5 2.40E+4

size of aff.

area [km2]

2.23E+3 2.23E+3 9.55E+2 2.23E+3 7.50E+2 2.20E+3 2.10E+3 9.55E+2
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Table B.9: Decision Table – Part 1 – Scenario 9

No

Action

Disp Proc Stor Rmov,

T=0

Rmov,

T>0

Rduc,

T=0

AddS+

Proc

avoided

ind. ad.

[mSv]

0 1.59E+3 1.43E-2 2.51E-5 4.49E-3 5.86E-4 1.90E-4 6.82E+2

avoided

ind. chi.

[mSv]

0 1.59E+4 3.23E-2 4.37E-4 6.46E-2 5.20E-3 1.91E-3 1.30E+3

avoided

collect.

[manSv]

0 5.00E+6 1.49E+3 2.35E+1 5.25E+5 2.70E+1 1.31E+5 2.41E+6

collective

dose

[manSv]

5.00E+6 3.31E+1 4.99E+6 5.00E+6 4.47E+6 5.00E+6 4.87E+6 2.58E+6

max. ind.

work.

[mSv]

0 0 0 0 4.65E-3 6.34E-4 6.93E-4 0

collect.

worker

[manSv]

0 0 0 0 1.15E-1 1.05E-2 1.14E-2 0

no. of

workers

[#]

0 0 0 0 96 60 60 0

total food

above [kg]

6.54E+9 6.54E+9 1.83E+9 6.54E+9 6.53E+9 6.54E+9 6.54E+9 1.77E+9

food

above

yr-1 [kg]

9.01E+5 9.01E+5 7.86E+5 8.90E+5 8.90E+5 8.90E+5 8.90E+5 6.24E+5

size of aff.

area [km2]

3.33E+3 3.33E+3 3.10E+3 3.33E+3 3.09E+3 3.33E+3 3.33E+3 3.10E+3
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Table B.10: Decision Table – Part 1 – Scenario 10

No

Action

Disp Proc Stor Rmov,

T=0

Rmov,

T>0

Rduc,

T=0

AddS+

Proc

avoided

ind. ad.

[mSv]

0 3.85E+0 1.40E-2 1.83E-5 8.22E-3 6.19E-4 2.00E-4 6.53E-1

avoided

ind. chi.

[mSv]

0 3.83E+1 3.20E-2 3.01E-4 1.15E-1 5.65E-3 2.08E-3 1.25E+0

avoided

collect.

[manSv]

0 2.21E+4 1.77E+3 1.60E+2 3.89E+3 1.82E+2 7.51E+2 9.88E+3

collective

dose

[manSv]

2.24E+4 2.46E+2 2.06E+4 2.22E+4 1.85E+4 2.22E+4 2.16E+4 1.25E+4

max. ind.

work.

[mSv]

0 0 0 0 4.61E-3 7.13E-4 7.77E-4 0

collect.

worker

[manSv]

0 0 0 0 1.99E+0 2.33E-1 2.52E-1 0

no. of

workers

[#]

0 0 0 0 407 304 308 0

total food

above [kg]

1.72E+8 1.72E+8 1.42E+7 1.71E+8 1.27E+8 1.61E+8 1.69E+8 1.29E+7

food

above

yr-1 [kg]

3.03E+5 3.03E+5 1.64E+4 2.81E+5 2.81E+5 2.81E+5 2.81E+5 1.58E+4

size of aff.

area [km2]

2.57E+3 2.57E+3 9.17E+2 2.57E+3 8.25E+2 2.54E+3 2.39E+3 9.17E+2
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B.2 A Statistical Test for the Data of the Case Study

The propagation of uncertainties through a complex model chain, such as in RODOS,

is a challenging task in practice [O’Hagan and Oakley, 2004]. When describing the un-

certainties by means of probability, the distributions of the high-dimensional input data

are subject to a number of nonlinear transformations while being propagated through the

model chain. In general, Monte Carlo simulation allows to consistently propagate uncer-

tainties of the input data through large model chains but it is nevertheless hardly possible

to make a statement about the probability distributions of the simulated consequences in

the decision table (or rather the set of decision tables). Thus, a statistical procedure is

described in the following: the W test introduced by Shapiro and Wilk [1965]. This pro-

cedure is suitable to analyse if the data in the set of decision tables presented in Section

B.1 is normally distributed. It has been chosen instead of the often used χ2 test [cf. e.g.

Roussas, 1973; Büning, 1991] since it performs considerably better for small sample sizes

[cf. R. B. D’Agostino and M. A. Stephens, 1986]. A major drawback concerning the W

test of Shapiro and Wilk [1965] is its high computational effort but since the sample size

in the case study is quite small, this drawback is negligible. While the procedure of the

test is described in Section B.2.1, its application to the data of the case study is presented

in Section B.2.2.

B.2.1 Procedure of the W Test

The W test consists in testing the null hypothesis that a vector of ordered random obser-

vations y = (y1, ..., yν) is a sample from a normal distribution with unknown mean µ and

unknown variance σ2. For this, let e = (e1, ..., eν) denote the vector of expected values

of standard normal order statistics and let V = (vkl) be the ν × ν covariance matrix

corresponding to e. This means that, if x1 ≤ ... ≤ xν denotes an ordered random sample

of size ν from a standard normal distribution (with mean 0 and variance 1), the expected

values of standard normal order statistics and the corresponding covariance matrix can

be obtained as follows [Shapiro and Wilk, 1965]:

ek = E(xk) (k = 1, ..., ν) , (B.1)

vkl = cov(xk, xl) (k, l = 1, ..., ν) . (B.2)
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The test statistic W , testing the random observations y for normality, is then defined by

W =

(
ν∑

k=1

akyk

)2

ν∑
k=1

(yk − ȳ)2
, (B.3)

where ȳ is the mean of the random observations (y1, ..., yν) and the coefficients a1, ..., aν

are given by

(a1, ..., aν) =
eV −1

(eV −1V −1eT )
1
2

. (B.4)

If y is normally distributed, the numerator and the denominator of W are both estimating

the same value (up to a constant): σ2. For non-normally distributed y, the numerator

and the denominator would in general not be estimating the same quantity [Shapiro and

Wilk, 1965].

It should be emphasised that the null hypothesis (that y is normally distributed) can

be rejected but not corroborated by the W test: small values of W are significant (i.e.

indicate non-normality) but large values do not indicate normality. However, for values of

ν between 2 and 50, the coefficients ai as well as different levels of significance are given

in Shapiro and Wilk [1965].

B.2.2 Application of the W Test to the Data of the Case Study

In order to calculate the test statistic W for the case study, let now Wij denote the test

statistic corresponding to the consequence of the jth alternative (1 ≤ j ≤ m) with respect

to the ith attribute (1 ≤ i ≤ n). The coefficients ai for ν = 10 are taken from Shapiro

and Wilk [1965]. The results are compiled in Table B.11.

According to Shapiro and Wilk [1965], the rejection of the hypothesis of normally dis-

tributed data is significant at the 5 % level if Wij < 0.842 (for ν = 10). This means that,

if Wij < 0.842, the probability of an error of the first kind (i.e. the hypothesis of normally

distributed data is rejected although it is true) is smaller than 5 %.

Table B.11 shows that the hypothesis of normality can be rejected for most of the conse-

quences (at the 5 % level). Taking the logarithm of the case study data and subsequently

applying the W test (i.e. investigating whether the data is log-normally distributed) leads

to less rejections of the hypothesis but the hypothesis can still be rejected for many con-

sequences. It can thus not be significantly concluded that the data in the set of decision

tables are normally or log-normally distributed. For a large part of the simulated conse-

Uncertainty Handling in Multi-Attribute Decision Support for Industrial Risk Management



202 Appendix B. Additional Data and Statistical Tests for the Case Study

Table B.11: Results for the Test Statistics Wij (All Values in the Table are Dimensionless)

Wij No

Action

Disp Proc Stor Rmov,

T=0

Rmov,

T>0

Rduc,

T=0

AddS+

Proc

avoided

ind. ad.

- 0.4643 0.7925 0.9112 0.8821 0.8083 0.8186 0.4609

avoided

ind. chi.

- 0.4644 0.8307 0.9042 0.9200 0.8612 0.8564 0.4609

avoided

collect.

- 0.5200 0.7195 0.8978 0.5382 0.7916 0.5370 0.5093

collective

dose

0.5201 0.3060 0.5191 0.5201 0.5177 0.5201 0.5196 0.5289

max. ind.

work.

- - - - 0.5415 0.2331 0.2608 -

collect.

worker

- - - - 0.8204 0.7826 0.7996 -

no. of

workers

- - - - 0.9065 0.8694 0.8857 -

total food

above

0.5828 0.5828 0.5281 0.5828 0.5802 0.5815 0.5825 0.5261

food

above

yr-1

0.8689 0.8689 0.5992 0.8315 0.8316 0.8313 0.8313 0.6020

size of aff.

area

0.8815 0.8815 0.8473 0.8815 0.8099 0.8850 0.8841 0.8473

quences in the decision tables, it can actually be significantly concluded that the values

are not normally or log-normally distributed.

Consequently, it is not advisable to apply methods presupposing normal or log-normal

distributions of the data. In the context of the case study, methods based on discrete

empirical distributions should be used instead, as demonstrated when calculating the

expected utilities (cf. Section 4.5 and Section 4.6).
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