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Introduction. By R, C we denote the spaces of real and complex numbers,
respectively, and T denotes the unit circle in C, i.e.

T = {χ | χ ∈ C, |χ| = 1}.

If G is an abelian group and ϕ : G → R is additive, i.e.

ϕ(x + y) = ϕ(x) + ϕ(y) (x, y ∈ G),

then the function

f(x) = |ϕ(x)| (x ∈ G)(0.1)

satisfies

max{f(x + y), f(x− y)} = f(x) + f(y) (x, y ∈ G),(0.2)

min{f(x + y), f(x− y)} = |f(x) − f(y)| (x, y ∈ G).(0.3)

According to [4] the functions (0.1) are characterized by (0.2) (but not by
(0.3); in [3] a Pexider version of (0.2) has been studied).

Now we are looking for analogous results for the absolute value of complex
linear functionals. So let V be a complex vector space, let ϕ : V → C be
linear, and consider

f(x) = |ϕ(x)| (x ∈ V ).(0.4)

It is easily seen that f safisfies the functional equations

sup
χ∈T

f(x + χy) = f(x) + f(y) (x, y ∈ V ),(X)

inf
χ∈T

f(x + χy) = |f(x) − f(y)| (x, y ∈ V ),(Y)

where in fact the supremum in (X) is a maximum and the infimum in (Y) is
a minimum. Our main result is the following:
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Theorem 1. If V is a complex vector space, then each of the functional
equations (X), (Y) characterizes the functions f : V → R having the form
(0.4) with some linear functional ϕ : V → C.

The proof will be given in the next sections. We start with the one-dimension-
al case (V = C): We consider equation (X) in Section 1 (cf. Proposition 1)
and equation (Y) in Section 2 (cf. Proposition 2). Then, after some prepara-
tion in Section 3, we treat the general case in Section 4.

The final Section 5 is devoted to a characterization of the absolute value of
complex determinants; this is similar to [5], where the real case had been
treated by using the functional equation (0.2).

1. The one-dimensional case for equation (X).

Proposition 1. The solutions f : C → R of the functional equation

sup
χ∈T

f(z + χw) = f(z) + f(w) (z, w ∈ C)(1.1)

are the functions

f(z) = |cz| (z ∈ C),(1.2)

where c ∈ C.

Proof. From the Introduction we know that the functions (1.2) solve (1.1).
Now let f : C → R be a solution of (1.1). With z = w = 0 in (1.1) we get

f(0) = 0.

Then z = 0 in (1.1) gives sup
χ∈T

f(χw) = f(w), so f is constant on circles

around zero, and we can write

f(z) = f(|z|) (z ∈ C).(1.3)

For x ≥ 0 we get from (1.1), (1.3) that 2f(x) = sup
χ∈T

f(|1 + χ|x), so

2f(x) = sup f([0, 2x]) (x ≥ 0).

This shows f to be increasing with respect to x ≥ 0, i.e.

0 ≤ p ≤ q =⇒ f(p) ≤ f(q).(1.4)

Now we shall prove

f(x + y) = f(x) + f(y) (x, y ≥ 0).(1.5)

By (1.1) we have

f(x) + f(y) = sup
χ∈T

f(x + χy).(1.6)

2



Since |x + χy| ≤ x + y, we get (cf. (1.3), (1.4))

f(x + χy) = f(|x + χy|) ≤ f(x + y) = f(x + 1y) (χ ∈ T ),

therefore (1.5) follows from (1.6).

We have that f(x) (x ≥ 0) is an increasing solution of the Cauchy equation
(1.5), and by a result of Gaston Darboux (cf. e.g. [1]) we get f(x) = cx (with
some c ≥ 0); finally (cf. (1.3)) f(z) = c|z| = |cz| for all z ∈ C.

2. The one-dimensional case for equation (Y).

Proposition 2. The solutions f : C → R of

inf
χ∈T

f(z + χw) = |f(z) − f(w)| (z, w ∈ C)(2.1)

are the functions

f(z) = |cz| (z ∈ C),(2.2)

where c ∈ C.

Proof. 1. Again we know that the functions (2.2) solve (2.1). Conversely, let
f : C → R be a solution of (2.1). Starting as in the proof of Proposition 1,
we find f(0) = 0 and

f(z) = f(|z|) ≥ 0 (z ∈ C).(2.3)

Equation (2.1) also implies

f(z) − f(w) ≤ |f(z) − f(w)| ≤ f(z − w),

therefore f is subadditive, i.e.

f(z + w) ≤ f(z) + f(w) (z, w ∈ C).

From this and (2.3) we get for x ≥ 0 and χ ∈ T that

f(|1 + χ|x) = f(x + χx) ≤ f(x) + f(χx) = 2f(x),

and using sup
χ∈T

f(|1 + χ|x) = sup f([0, 2x]) we have

sup f([0, 2x]) ≤ 2f(x) (x ≥ 0).(2.4)

For 0 ≤ x ≤ t we have (cf. (2.1), (2.3))

|f(t) − f(x)| = inf
χ∈T

f(t + χx) = inf
χ∈T

f(|t + χx|) = inf f([t − x, t + x]).(2.5)

Observing that the interval [t − x, t + x] increases with x (and the infimum
decreases) leads to the following:

0 ≤ x ≤ y ≤ t =⇒ |f(t) − f(y)| ≤ |f(t) − f(x)|.(2.6)
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2. Without loss of generality we assume

f(z) �≡ 0,(2.7)

and we prove

lim
x∈R,x→∞

f(x) = ∞.(2.8)

If (2.8) does not hold, then there are numbers α, a1, a2, a3, . . . ≥ 0 such that

a1 < a2 < a3 < . . . → ∞
and f(an) → α (n → ∞). With x = an, t = an+1 in (2.6) we obtain

|f(an+1) − f(y)| ≤ |f(an+1) − f(an)| (an ≤ y ≤ an+1),

and from this we easily get f(y) arbitrarily close to α for all sufficiently large
real numbers y, i.e.

lim
x∈R,x→∞

f(x) = α.(2.9)

For 0 ≤ y ≤ x we have |x + χy| ≥ x − y (χ ∈ T ), and from (2.3) we get

f(x + χy) ≥ inf f([x − y,∞[) (χ ∈ T ).

Then (2.1) implies

|f(x) − f(y)| ≥ inf f([x − y,∞[) (0 ≤ y ≤ x).

With x → ∞, (2.9) gives

|α − f(y)| ≥ α (0 ≤ y),

and then y → ∞ gives α = 0. So we have (2.9) with α = 0, and then (2.4)
implies f(x) = 0 (x ≥ 0). This is contradictory to (2.3), (2.7), and hence
(2.8) is proven.

3. The function f(x) (x ≥ 0) is increasing, i.e.

0 ≤ x ≤ y =⇒ f(x) ≤ f(y).

In fact, if 0 ≤ x ≤ y, then because of (2.8) we can choose t ≥ y such that
f(t) ≥ max{f(x), f(y)}, and (2.6) yields f(x) ≤ f(y).

Now (2.5) can be rewritten as

f(t) − f(x) = f(t − x) (0 ≤ x ≤ t),

which is equivalent to the Cauchy equation

f(x + y) = f(x) + f(y) (x, y ≥ 0).

The end of the proof can be done as for Proposition 1.
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3. A general result on the absolute value of linear functionals.

Lemma 1. Let f : G → R be subadditive on an abelian group G, and suppose

f(−x) = f(x) (x ∈ G).

Then f(x0) = 0 implies

f(x + x0) = f(x) (x ∈ G).

Proof. Subadditivity of f means

f(x + y) ≤ f(x) + f(y) (x, y ∈ G).

Now, if f(x0) = 0, then also f(−x0) = 0, hence

f(x + x0) ≤ f(x) + f(x0) = f(x) = f(x + x0 − x0)

≤ f(x + x0) + f(−x0) = f(x + x0).

Theorem 2. Suppose Λ = R or Λ = C, and let V be a vector space over Λ.
A function f : V → R has the form

f(x) = |ϕ(x)| (x ∈ V )(3.1)

with a linear ϕ : V → Λ if and only if the following conditions are satisfied:

(P) f(x + y) ≤ f(x) + f(y) (x, y ∈ V ),

(Q) f(λx) = |λ|f(x) (λ ∈ Λ, x ∈ V ),

(R) if U is a two-dimensional subspace of V , then there is x0 ∈ U, x0 �= 0,
such that f(x0) = 0.

Proof. If (3.1) holds with a linear ϕ : V → Λ, then (P), (Q), (R) are easily
checked. Conversely, suppose f : V → R to satisfy (P), (Q), (R). We can
apply Lemma 1 to get

x, y ∈ V, f(y) = 0 =⇒ f(x + y) = f(x).(3.2)

Because of (P), (Q) the set

W = {x | x ∈ V, f(x) = 0}
is a subspace of V . From (R) it follows that W = V or codimV W = 1. In the
first case (3.1) holds with ϕ(x) ≡ 0. In the second case we take x0 ∈ V such
that f(x0) = 1. Then

V = Λx0 ⊕ W

(direct sum), and (Q), (3.2) imply

x = λx0 + y, y ∈ W =⇒ f(x) = |λ|.(3.3)
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Therefore (3.1) holds with ϕ(x) = λ, λ being taken from the decomposition
of x in (3.3).

4. Application to the equations (X), (Y). Here V is a complex vector
space, and we like to apply Theorem 2 (with Λ = C) to our functional
equations

sup
χ∈T

f(x + χy) = f(x) + f(y) (x, y ∈ V ),(X)

inf
χ∈T

f(x + χy) = |f(x) − f(y)| (x, y ∈ V ).(Y)

If f : V → R is a solution of (X) or (Y), then (Q) holds: To see this, fix
x ∈ V and replace x by zx, y by wx in the equation, where z, w ∈ C. Then
Proposition 1 or Proposition 2, respectively, yields f(λx) = |λ|f(x) (λ ∈ C).

For the solutions of (X) and of (Y) also (P) holds: For equation (X) this is
obvious, for equation (Y) the same reasoning as for the subadditivity of f in
the beginning of the proof of Proposition 2 works.

From (P), (Q) it follows that the solutions of (X), (Y) are convex, hence
continuous on finite-dimensional subspaces of V (endowed with their natural
topology), and so sup, inf in (X), (Y) are in fact max, min, respectively.

Now we like to show that the solutions of (X), (Y) also have property (R);
this finishes the proof of Theorem 1. We start with equation (Y), because
it is easier to handle: So let f : V → R solve (Y). To prove (R) let U be
a two-dimensional subspace of V . We take linearly independent x, y ∈ U . If
f(x) = 0 or f(y) = 0, we are done. If not, we may assume f(x) = f(y) (cf.
(Q)). Then by (Y) (the infimum being a minimum) there is a χ ∈ T such
that f(x + χy) = 0, and we can take x0 = x + χy.

For proving (R) for solutions of (X) we use the following simple lemma:

Lemma 2. Let K be a compact, convex set in the euclidean plane, and sup-
pose K to have interior points. Let Γ be a circle with maximal radius ρ con-
tained in K. Then Γ has at least two points in common with the boundary ∂K
of K.

Proof. There is at least one point P ∈ Γ ∩ ∂K. Suppose Γ ∩ ∂K = {P}, and
let M be the midpoint of Γ. Then it is possible to shift Γ a little bit in the
direction from P to M such that the shifted circle is contained in the interior
of K, and then there is a parallel circle Γ1 in K with a radius ρ1 > ρ. This
is in contradiction to the maximality of ρ.

Now let f : V → R solve (X). If (R) is not true, there is a two-dimensional
subspace U of V such that x ∈ U \ {0} implies f(x) �= 0. Because of (P),
(Q), the function f then is a norm on U . Identifying U with C2 and writing
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‖ · ‖ : C2 → [0,∞[ for this norm, (X) implies

max
χ∈T

‖x + χy‖ = ‖x‖ + ‖y‖ (x, y ∈ C2).(4.1)

For x, y �= 0 we can show that the maximum is attained in exactly one point
χ ∈ T . Namely, let us suppose

‖x + ε1y‖ = ‖x + ε2y‖ = ‖x‖ + ‖y‖
with some ε1, ε2 ∈ T . Then there is η ∈ T such that

2‖x‖ + 2‖y‖ = ‖x + ε1y‖ + ‖x + ε2y‖ = ‖x + ε1y + η(x + ε2y)‖ =

= ‖(1 + η)x + (ε1 + ηε2)y‖ ≤ |1 + η| · ‖x‖ + |ε1 + ηε2| · ‖y‖ ≤ 2‖x‖ + 2‖y‖,
where ≤ is equality if and only if η = 1 and ε1 = ε2.

In C2 we consider the set

S = {(1, λ) | λ ∈ C}.
The distance of two points (1, λ1), (1, λ2) is

‖(0, λ1 − λ2)‖ = |λ1 − λ2| · ‖(0, 1)‖,
and therefore S can be considered as a (real) euclidean plane. The circles Γ
in S have the form

Γ = {x + χy | χ ∈ T},(4.2)

where x ∈ S and y = (0, r) with some r > 0. We have (1, 0) ∈ S, therefore
S contains at least one point of norm β = ‖(1, 0)‖. If we choose γ > β, then
the set

K = S ∩ {u | u ∈ C2, ‖u‖ ≤ γ}
is a subset of the euclidean plane S having all the properties mentioned in
Lemma 2. According to that lemma, there is a circle (4.2) having two points
in common with ∂K = S ∩ {u | u ∈ C2, ‖u‖ = γ}. This means that for the
function ‖x + χy‖ (χ ∈ T ) the maximal value γ is attained for two different
χ1, χ2 ∈ T , in contradiction to the above discussion about the maximum
(4.1).

5. The absolute value of complex determinants. For Λ = R and Λ = C
the function

F (x1, . . . , xn) = | det(x1, . . . , xn)| (x1, . . . , xn ∈ Λn)(5.1)

can be characterized as

F : Λn × . . . × Λn → [0,∞[(5.2)
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such that:

(A) F (. . . , a, . . . , b, . . . ) = F (. . . , a + b, . . . , b, . . . ) = F (. . . , a, . . . , a + b, . . . ),

(B) F (. . . , λa, . . . ) = |λ|F (. . . , a, . . . ),

(C) F (e1, . . . , en) = 1.

Here

e1 =

⎛
⎜⎜⎜⎝

1
0
...
0

⎞
⎟⎟⎟⎠ , . . . , en =

⎛
⎜⎜⎜⎝

0
...
0
1

⎞
⎟⎟⎟⎠ .

Concerning this characterization, cf. e.g. [2] for the case Λ = R; it also holds
for Λ = C, the proof is not difficult. As a simple consequence we get:

Theorem 3. Suppose F : Λn × . . . × Λn → R, where Λ = R or Λ = C.
Then (5.1) holds if and only if (B), (C) and the following two conditions are
satisfied:

(D) F (. . . , a, . . . , a, . . . ) = 0,

(E) F (x1, . . . , xn) is subadditive in each variable.

Proof. 1. The function (5.1) fulfills the conditions (B), (C), (D), (E).

2. Conversely, suppose (B), (C), (D), (E) to hold. Because of (B), (E) we
have (5.2), and it is sufficient to prove (A). So let us show

F (a, b, x3, . . . , xn) = F (a + b, b, x3, . . . , xn);(5.3)

then (A) follows because (5.3) also will be true when permuting the argu-
ments. We define f : Λn → [0,∞[ as

f(x) = F (x, b, x3, . . . , xn) (x ∈ Λn).

Because of (E), this function is subadditive, from (D) we have f(b) = 0,
and from (B) we know f(−x) = f(x). By Lemma 1 in Section 3 we get
f(a + b) = f(a), and this is just (5.3).

Remark 1. Theorem 3 is very similar to the well known characterization of
the function

F (x1, . . . , xn) = det(x1, . . . , xn) (x1, . . . , xn ∈ Λn)

(Λ being an arbitrary field) by the properties (C), (D) and

(B′) F (. . . , λa, . . . ) = λF (. . . , a, . . . ),

(E′) F (x1, . . . , xn) is additive in each variable.
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Remark 2. The main result of [5] is Theorem 3 for the case Λ = R with (E)
replaced by the following condition:

(F) The functions f(x) = F (x1, . . . , xk−1, x, xk+1, . . . , xn) (x ∈ Rn) are
solutions of

max{f(x + y), f(x− y)} = f(x) + f(y) (x, y ∈ Rn).(5.4)

This result now is a simple consequence of our Theorem 3: Every solution of
(5.4) obviously is subadditive, hence (F) implies (E). It can be added that
(F) works in the same way if we replace (5.4) by the functional equation

(5.5) min{f(x + y), f(x− y)} = |f(x) − f(y)| (x, y ∈ Rn),

for its solutions f : Rn → R also are subadditive. According to the Introduc-
tion, the absolute values of additive functions on Rn are solutions of (5.5),
but (cf. [4]) they are not characterized by this functional equation.

Theorem 4. For F : Cn × . . . × Cn → R we have

F (x1, . . . , xn) = | det(x1, . . . , xn)|
if and only if (C), (D), and the following condition are fulfilled:

(G) The functions f(x) = F (x1, . . . , xk−1, x, xk+1, . . . , xn) (x ∈ Cn) solve at
least one of the functional equations

sup
χ∈T

f(x + χy) = f(x) + f(y) (x, y ∈ Cn),(5.6)

inf
χ∈T

f(x + χy) = |f(x) − f(y)| (x, y ∈ Cn).(5.7)

Proof. Because of Theorem 3 it is sufficient to show that (G) implies (B),
(E). This is true: the solutions of (5.6) and of (5.7) have the properties (P),
(Q) (Λ = C, V = Cn; cf. Section 4).

Acknowledgement. This research was supported by the Mathematics De-
partment of the Silesian University at Katowice (Iterative Functional Equa-
tions and Real Analysis Program). The paper had been written during the
second author’s stay at Katowice in August 2006; he gratefully acknowledges
the hospitality of the Mathematics Department.

References
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du module d’une fonction additive à l’aide d’une équation fonctionnelle.
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