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Chapter 0

Introduction

Let A = A(Q) be the ring of adèles of the field of rational numbers and Af its
finite part. Further, for an integer n ≥ 3 let π and σ be cuspidal automorphic
representations of GLn(A) and GLn−1(A), respectively. Note, that for us an auto-
morphic representation of GLn(A) is a topological GLn(A)-module, whose subspace
of admissable vectors is an automorphic representation of the Hecke algebra H of
GLn(R) and On(R) (cf. [BJ], Section 4.6).

For such pairs (π, σ), Jacquet, Piatetski-Shapiro, and Shalika introduced an L-
function L(π, σ; s), that “would be” the L-function of an automorphic representation
π ⊗ σ of GLn(n−1)(A) (cf. [JPS4]). Here, the tensor product notation is in accor-
dance to the Langlands dictionary, whenever the automorphic representation π ⊗ σ
exists. L(π, σ; s) is defined as a certain Rankin-Selberg integral, which is an entire
function in s, and satisfies a functional equation of the expected type, interchanging
s and 1 − s. The family of those functions L(π, σ; s) for fixed π and varying σ
plays a key role in the converse theorems, whose goal is to describe an automorphic
representation π analytically by its Mellin transform (cf. [CP1]).

Having such a well-working theory of complex valued L-functions already, it is only
natural to try to step further. So for a fixed pair (π, σ) like before we are interested
in the package of twisted L-functions L(π⊗ χ, σ; s), where χ runs through all finite
Dirichlet characters. Let si with i = 1, 2, . . . be the critical values (cf. [Del])
of the variable s for the fixed pair (π, σ). We want to show that the function
χ 7→ L(π⊗χ, σ; si), after division by an appropriate period depending only on i and
the sign of χ, takes algebraic numbers as values. Furthermore, we want to control
the number fields containing those values.

In the cases n = 2, 3 those questions have been answered by Manin, Mazur,
Swinnerton-Dyer, and Schmidt, under suitable assumptions concerning the infin-
ity components (π∞, σ∞) and the components (πp, σp) at a fixed place p (cf. [Man],
[MS], [Schm1]). The basic requirement on the infinity components is, that there
indeed are critical values, or more specifically, that π∞ and σ∞ have non-trivial Lie
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Chapter 0. Introduction 5

algebra cohomology.

For general n results are known only for a certain class of cuspidal automorphic
representations: In [KMS], Kazhdan, Mazur, and Schmidt discuss the case of re-
presentations, that “occur in cohomology” with constant coefficients. In this case,
s = 1

2
is the only critical value. The authors fix a prime p throughout the whole

paper and assume, that both π and σ are unramified at p. Further they make
some simplifying assumptions on the nature of the twisting Dirichlet character χ, in
particular its conductor has to be a power f of p. They study the product

P∞(s) · L(π ⊗ χ, σ; s),

where P∞(s) is an entire function of which one knows that it can be written as an
integral depending only on the Whittaker models of the infinity parts π∞ and σ∞.
Since π and σ are cohomological, the function P∞(s) even is uniquely determined
by the number n. Kazhdan, Mazur, and Schmidt express the special value P∞(1

2
) ·

L(π ⊗ χ, σ; 1
2
) by relative modular symbols and show that this value is indeed an

algebraic number.

In this thesis, we generalise the results of [KMS] by allowing a larger class of co-
homological representations studied before by Mahnkopf (cf. [Mah]). The precise
definition of this class is given in section 1.1; roughly speaking, the cohomology
modules, in which our representations π and σ occur, may now have coefficients in
certain finite dimensional irreducible representations M̌µ,C of GLn(Q) resp. M̌ν,C of
GLn−1(Q). For the sake of coherence we show that the cohomological representations
in [KMS] are indeed just a special case of ours (cf. Lemma 1.1).

The main result is Theorem 1 below, which describes Pλ,∞(1
2
)·L(π⊗χ, σ; 1

2
) in terms

of algebraic numbers and values of a pairing Bλ on cohomology. Here, Pλ,∞(s) is a
modification of the entire function P∞(s) of [KMS], depending on an at first arbitrary
linear form λ on the tensor product of the coefficient systems of the cohomology
modules, in which π and σ occur. Explicitly, for n ≥ 3, under some assumptions on
the infinity components of the central characters ωπ of π and ωσ of σ, and the same
assumptions on the Dirichlet character χ like in [KMS] we get

Theorem 1

wp(1)vp(1)Pλ,∞

(
1

2

) n−1∏
i=1

G(χi
p)(1− p−1)

1− p−i
L(π ⊗ χ, σ;

1

2
)

=
∑

u

n−1∏
i=1

χ̃p(u
i
i) vol(K ′

uϕ−1 )Bλ((u
−1)ϕ−1

),

where u = up (with u` = 1 for all ` 6= p) is taken from a representative system for
Un(Zp) modulo Un(Zp)

ϕ with ϕ = diag(f−1, . . . , f−n).



6 Cohomological Representations and Twisted Rankin-Selberg Convolutions

Here, wp and vp are the p-components of certain Whittaker functions, χ̃p denotes
the continuation of χp to Zp by χ̃p(px) = 0 for all x ∈ Zp, and G(χp) denotes the
Gauß sum of χp (cf. Chapter 2). Finally, the K ′

uϕ−1 are certain compact subgroups

of GLn−1(Ẑ).

We prove the theorem in Chapter 3 by constructing the pairing Bλ carefully. In
Section 3.8 we show that we still have the freedom to choose Bλ in such a way
that Pλ,∞(1

2
) ·L(π⊗ χ, σ; 1

2
) is indeed an algebraic number. This works because Bλ

(and λ) may be chosen respecting a Q-structure, the Whittaker models of the finite
parts πf and σf are already defined over some number field by [Clo], and because of
the one-dimensionality of certain relative Lie algebra cohomology modules proved
in Corollary 1.5.

There is, however, a blemish to our result, since we cannot guarantee that Pλ,∞(1
2
)

does not vanish in general. In Chapter 4 we will study this problem for n = 3 and
will finally show

Theorem 2 Let n = 3 and assume the coefficient modules M̌µ,C and M̌ν,C to be
trivial. Then the period Pλ,∞(1

2
) in Theorem 1 does not vanish.

This result makes use of the fact, that different sets of submodules of the relative
Lie algebra cohomology can be used to prove Theorem 1. We can show that there
is one such set for which Pλ,∞(1

2
) does not vanish.

Finally, in Chapter 5 we will discuss, how Theorem 2 may be generalised to coho-
mological representations like in Chapter 1. We will see, that in those cases it will
be of interest to determine whether or not s = 1

2
is a critical value.

At this place I want to use the opportunity to thank all those, whose support helped
to bring this thesis into being. First and foremost, my gratitude goes to my thesis
advisor, Prof. Dr. Claus-Günther Schmidt. The many fruitful discussions with him
have been of great value for me. In particular, I wish to thank him for providing me
with the main ideas of Section 4.5. His understanding, encouraging and personal
guidance have provided a good basis for the present thesis. Also it is a pleasure for
me to thank PD Dr. Stefan Kühnlein, who patiently helped me in countless details
and thoroughly revised my work. His talent for translating problems into a language
I could understand was vital for my progressing. Furthermore, I want to thank Prof.
Laurent Clozel for supervising me during my research stay at the Université Paris-
Sud. His profound knowledge in the field of automorphic representations proved
very precious to me. Finally, I wish to thank Dr. Oliver Baues and Sebastian
Holzmann for helpful discussions about Lie algebra theory and the members of the
“Kaffeerunde” for everything, even for their odd sense of humor.



Chapter 1

Representations with non–vanishing cohomology

The first aim of this thesis is to generalise a theorem of Kazhdan, Mazur, and
Schmidt, Theorem 3.5 of [KMS], concerning the algebraicity of the critical values
of twisted Rankin-Selberg L-functions of pairs of automorphic representations of
GLn(A) resp. GLn−1(A). The representations they consider fulfil a special prop-
erty, namely, they occur in cohomology with constant coefficients (cf. [loc.cit.], p.
99). In this chapter we want to introduce a larger class of representations that con-
tains those cohomological ones. More precisely, we will study representations that
occur in cohomology with coefficients in certain finite dimensional representations
of GLn(Q). In Chapter 3 we will see that the algebraicity result still holds for those
new representations.

1.1 The coefficient systems

Let n ∈ N be a natural number. Throughout this thesis we write Zn for the centre
of GLn and set Kn,∞ = SOn(R)Zn(R)0, where by Zn(R)0 we mean the connected
component of the neutral element in Zn(R). We will always use small letters to
identify the respective Lie algebras gln, sln, son, zn, kn,∞, . . . of GLn(R), SLn(R),
SOn(R), Zn(R), Kn,∞, . . .

As we will prove in Section 1.4 being cohomological is a local property at infinity:

Lemma 1.1 An irreducible cuspidal automorphic representation π occurs in coho-
mology in the sense of [KMS] if and only if

H•
gK(gln, Kn,∞; π∞) 6= 0.

We want to generalise this notion. The idea is to consider irreducible cuspi-
dal automorphic representations π that occur in cohomology modules of the kind

7



8 Cohomological Representations and Twisted Rankin-Selberg Convolutions

H•
gK(gln, Kn,∞; π∞⊗M), where M is some finite dimensional rational representation

of GLn(R). The next step is to make precise how M may look like. In order to do
this, we follow the work of Mahnkopf (cf. Chapter 3 of [Mah]).

Let Bn = TnUn denote the group of upper triangular matrices in GLn. Here, Tn

resp. Un is the standard maximal torus in GLn resp. the unipotent radical of Bn.
Let X(Tn) be the set of algebraic characters ν : Tn → Gm of Tn. Then X+(Tn) resp.
X++(Tn) denotes the set of dominant resp. dominant regular weights in X(Tn). We
identify Zn with X(Tn) by sending µ = (µi) to t 7→

∏
i t

µi

i . For a weight µ ∈ X+(Tn)
we denote by (%µ,Mµ) the irreducible algebraic representation of GLn(Q) of highest
weight µ. Note, that by Satz 1 of [Kra], III.1.4, such a representation always exists,
and is unique up to equivalence. Since by [Clo], p. 122, the representation %µ :
GLn(Q)→ GL(Mµ) is defined over Q, we may assume that Mµ is a Q-vector space.
For any extension E/Q we set Mµ,E := Mµ ⊗ E.

With this new vocabulary get a more general notion of cohomological representations
as follows (cf. [Mah], 3.1.1):

Definition 1.2 The set of all irreducible cuspidal automorphic representations π of
GLn(A) satisfying

H•
gK(gln, Kn,∞; π∞ ⊗Mµ,C) 6= 0 (1.1)

for the relative Lie algebra cohomology is called Coh(GLn, µ). Here, π∞ is the infinity
component of π.

Lemma 1.1 now reads: Coh(GLn, 0) is the set of all representations that occur in
cohomology in the sense of [KMS]. In that case, µ = 0 is the dominant weight and
%µ is the trivial representation.

As a concluding remark in this section we should mention that as an effect of (1.1)
not every dominant weight occurs as maximal weight in the coefficient system of
a cohomological representation. More precisely, let us denote by µ̌ ∈ X+(Tn) the
dual weight of µ, i. e. µ̌ is the highest weight of the contragredient representation
(%̌µ, M̌µ). As before, for any extension E/Q we set M̌µ,E := M̌µ ⊗ E. Let further
WGLn = WGLn(Tn) be the Weyl group of GLn, and wGLn its longest element. We
view WGLn as subgroup of GLn as usual. Then we define X+

0 (Tn) resp. X++
0 (Tn) to

be the set of all dominant resp. dominant regular weights µ ∈ X(Tn) satisfying

µ+ wGLnµ = (wt(µ), . . . ,wt(µ)) (1.2)

for some wt(µ) ∈ Z, where the vector on the right side should be identified with a
weight in X(Tn) like above. We call wt(µ) the weight of the weight vector µ. Since
µ̌ = −wGLnµ (cf. [Kra], III.1.4), (1.2) amounts to saying that µ is self-contragredient
up to twist. In particular, (1.1) implies that µ ∈ X+

0 (Tn) for non-empty Coh(GLn, µ)
by Lemme 4.9 in [Clo].
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1.2 The action of the group of connected components

For later use we are interested in a submodule of H•
gK(gln, Kn,∞; π∞⊗Mµ,C) that is

one-dimensional as a C-vector space and easy to describe. In Corollary 1.5 we will see
that under minor assumptions H•

gK(gln, Kn,∞; π∞ ⊗Mµ,C)On(R) is a suitable choice.
In order to get there we study the action of the group π0(On) = On(R)/ SOn(R) of
connected components on cohomology. The results of this section are taken from
[Mah], 3.1.2.

If we put π0(GLn) = GLn(R)/GLn(R)0 and π0(Zn) = Zn/Z
0
n we see, that all three

groups are isomorphic to the multiplicative group {±1} of order 2, and all their
groups of characters are isomorphic to the group {1, sgn} of (complex) characters
of {±1}.

We embed π0(Zn) ↪→ Zn(R) via ±1 7→ ±1n, where 1n is the unit matrix of GLn(R),
hence we may restrict characters ω on Zn(R) or on Tn(R) to π0(Zn). For simplicity,
we write this ω|π0 . Moreover, the inclusion map On(R) ↪→ GLn(R) induces an
isomorphism π0(On) ∼= π0(GLn), hence we may identify π0(On) = π0(GLn). On
the other hand, the inclusion Zn(R) ↪→ GLn(R) induces an isomorphism π0(Zn) ∼=
π0(GLn) only if n is odd. Hence, in the case n is odd we may identify π0(Zn) =
π0(GLn) as well as their character groups. Furthermore we may embed π0(Zn) ↪→
GLn(R) via ±1 7→ ±1n and, again, restrict characters on GLn(R) to π0(Zn).

Let π ∈ Coh(GLn, µ̌) for a weight µ ∈ X+
0 (Tn). SOn(R) is a normal subgroup in

On(R), since it has index 2. We have an action of On(R) on

C•
gK(gln, Kn,∞; π∞ ⊗ M̌µ,C)

[BW], I.5.1
=

(
•∧

(gln/kn,∞)∗ ⊗ π∞ ⊗ M̌µ,C

)Kn,∞

via the GLn(R)-module structure of the factors. Note, that the results of section I.5
of [BW] hold in this case, although Kn,∞ is not compact. Since the action of SOn(R)
is trivial, we have even an action of the quotient π0(GLn) = On(R)/ SOn(R).

We want to determine the structure of our cohomology H•
gK(gln, Kn,∞; π∞ ⊗ M̌µ,C)

as a π0(GLn)-module. We set

π̂0(GLn, µ) =

{
{1, sgn} if n is even ,

{µ|π0(Zn)} = {sgnwt(µ)/2} if n is odd.

Using the identification π0(Zn) = π0(GLn) in the case n odd we may view π̂0(GLn, µ)
as a set of characters of π0(GLn). We note that π̂0(GLn, µ) = π̂0(GLn, µ̌),
since µ̌ = −wGLnµ. Lemme 3.14 in [Clo] (and its proof) then shows that
H•

gK(gln,On(R)Zn(R)0; ε∞ ⊗ π∞ ⊗ M̌µ,C) 6= 0 only if ε∞ ∈ ωπ|π0 π̂0(GLn, µ̌), where
ωπ is the central character of π. We set

m•
GLn

:= dimCH
•
gK(gln,On(R)Zn(R)0; ε∞ ⊗ π∞ ⊗ M̌µ,C),
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where ε∞ ∈ ωπ|π0 π̂0(GLn, µ̌). The formula in [loc.cit.] shows thatm•
GLn

only depends
on the rank of the group GLn. Since the restriction π∞|SLn(R) breaks into a direct
sum of two irreducible representations if n is even and remains irreducible if n is
odd, we thus obtain by [loc.cit.]

H•
gK(gln, Kn,∞; π∞ ⊗ M̌µ,C) ∼= m•

GLn

{
sgn⊕ id if n is even,

ωπ|π0 sgnwt(µ)/2 if n is odd,
(1.3)

as π0(GLn)-modules. Finally, if we set

bn =

{
n2

4
if n is even,

n2−1
4

if n is odd,

tn =

{
(n+1)2−1

4
− 1 if n is even,

(n+1)2

4
− 1 if n is odd,

we get from Lemme 3.14 in [Clo] that m•
GLn
6= 0 if and only if bn ≤ • ≤ tn and

mbn
GLn

= mtn
GLn

= 1.

1.3 A closer look on relative Lie algebra cohomology

In Chapter 3 we will need an explicit description of relative Lie algebra cohomology
in order to make good use of the fact, that a cuspidal automorphic representation
π lies in Coh(GLn, µ̌) for some regular weight µ. We provide such a description by
the following proposition, that seems to be well known to the experts but seems not
to be explicitly proved in the literature.

Proposition 1.3 It holds

H•
gK(gln, Kn,∞; π∞ ⊗ M̌µ,C) =

(
•∧

(sln/son)∗ ⊗ π∞ ⊗ M̌µ,C

)SOn(R)

.

Proof. Since Kn,∞ is connected, by section I.5 of [BW]1 we may write

H•
gK(gln, Kn,∞; π∞ ⊗ M̌µ,C) = H•

gk(gln, kn,∞; π∞ ⊗ M̌µ,C).

1Note, that since the central action is by a scalar, the Kn,∞-invariant submodules of π∞⊗M̌µ,C

are just the same as the SOn-invariant ones. Therefore, we may apply the results of [BW] on Kn,∞,
even if the latter is not compact. In the results we cite, the maximality of the compact subgroup
is never needed.
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Consider the complex

C•
gk(gln, kn,∞; π∞ ⊗ M̌µ,C)

[BW], I.1.2
= Homkn,∞(

•∧
gln/kn,∞, π∞ ⊗ M̌µ,C).

By Theorem I.5.3 of [loc. cit.], and since π ∈ Coh(GLn, µ̌), the central character
of π∞ equals the one of %µ, implying that π∞ ⊗ M̌µ,C has trivial central character.
Recall that π∞ and Mµ̌ both are irreducible representations of GLn(R). By the
triviality of the central character of π∞ ⊗ M̌µ,C the latter uniquely corresponds to
the tensor product of the irreducible representations of SL±

n (R) given by restriction.
We will identify the respective modules and denote them the same.

Because of kn,∞ = son ⊕ zn the vector spaces gln/kn,∞ and sln/son are identical, so
that we have

C•
gk(gln, kn,∞; π∞ ⊗ M̌µ,C) = Homson(

•∧
sln/son, π∞ ⊗ M̌µ,C)

= C•
gk(sln, son; π∞ ⊗ M̌µ,C),

whence
H•

gK(gln, Kn,∞; π∞ ⊗ M̌µ,C) = H•
gk(sln, son; π∞ ⊗ M̌µ,C).

Now, since SOn(R) is connected, all that is left to show is

H•
gk(sln, son; π∞ ⊗ M̌µ,C) = Homson(

•∧
sln/son, π∞ ⊗ M̌µ,C). (1.4)

But this follows directly from Proposition II.3.1 of [BW], we just have to verify
that we are allowed to use it. In order to do that we choose SLn(R) as connected,
reductive Lie group and SOn(R) as its maximal compact subgroup. We have to
guarantee that dπ∞(C) and d%̌µ,C(C) are scalar operators, where C is the Casimir
element of the envelopping algebra U(sln), and dπ∞ and d%̌µ,C are the respective
induced mappings on U(sln). By Schur’s Lemma (cf. [Kna2], Proposition 5.1), and
since C is in the centre of U(sln), it would suffice to show that π∞ and M̌µ,C are
irreducible SLn(R)-modules. Obviously, this does not hold in general, but since all
representations are irreducible as SL±

n (R)-modules, we may use

Lemma 1.4 Let % : SL±
n (R)→ GL(V ) be an irreducible SL±

n (R)-module and d% the
induced mapping on U(sln). Then there is a scalar r such that d%(C) = r · id.

By applying the lemma on π∞ and on M̌µ,C we may use Proposition II.3.1 of [BW]
now. Since π ∈ Coh(GLn, µ̌), we get dπ∞(C) = d%̌µ,C(C), and therefore (1.4). This
concludes the proof of Proposition 1.3. �

Proof of Lemma 1.4. If V is still irreducible as SLn(R)-module, there is nothing
to show. So assume that V decomposes into a direct sum of (irreducible) SLn(R)-
modules (%1, V1) and (%2, V2). Note, that since the index is 2 this is the only other
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case. If V1 and V2 are isomorphic, still there is nothing to show. So assume that V1

and V2 are not isomorphic as SLn(R)-modules. Choose g ∈ SL±
n (R) r SLn(R) and

v1 ∈ V1 with gv1 6∈ V1. Then gV1 is not contained in V1. Since for all h ∈ SLn(R)
we have

h(gV1) = (gg−1)h(gV1) = g(g−1hg)V1 = gV1, (1.5)

gV1 is a SLn(R)-module. Note, that SLn(R) is normal because of its index 2 in
SL±

n (R).

Since V1 6∼= V2, the only SLn(R)-submodules of V are 0, V1, V2, and V , so that gV1

is isomorphic to V2. Then (1.5) tells us how the module structures of V1 and V2 are
related: Clearly it is enough to proof g−1Cg = C to get d%1(C) = d%2(C).

We may write C =
∑

iXiX
∗
i , where the Xi resp. the X∗

i form a basis of sln, dual
to each other via the Killing form κ of sln. It holds

κ(g−1Xig, g
−1X∗

j g) = κ(Xi, X
∗
j ) ∀g ∈ SL±

n (R),

so that the basis formed by the g−1Xig and the one formed by the g−1X∗
i g are also

dual to each other. The lemma follows because of g−1Cg =
∑

i g
−1Xigg

−1X∗
i g and

the independence of the Casimir element of its basis. �

Now let π
(On)
∞ denote the space of On(R)-finite vectors in the representation space

of π∞. Note, that since M̌µ,C is of finite dimension, we have M̌
(On)
µ,C = M̌µ,C. Let

furtherHOn(R) = H+ andH− denote the respective (±1)-eigenspaces of any SOn(R)-
invariant module H. We get the following corollary, which will be useful in Section
3.6.

Corollary 1.5 (a) If n is even, then Hbn
gK(gln, Kn,∞; π∞ ⊗ M̌µ,C)ε is a one-

dimensional C-vector space for both ε ∈ {+,−}.
(b) If n is odd, then Hbn

gK(gln, Kn,∞; π∞ ⊗ M̌µ,C)ε is a one-dimensional C-vector

space, if sgn(ωπ(−1n)(−1)wt(µ)/2) = ε; the other one is trivial.

(c) Hbn
gK(gln, Kn,∞; π∞ ⊗ M̌µ,C)± =

(
bn∧

(sln/son)∗ ⊗ π(On)
∞ ⊗ M̌µ,C

)SOn(R)

±

Proof. By Proposition 1.3 we have

Hbn
gK(gln, Kn,∞; π∞ ⊗ M̌µ,C)On(R) =

(
bn∧

(sln/son)∗ ⊗ π∞ ⊗ M̌µ,C

)On(R)

[BW], I.5
=

(
bn∧

(sln/son)∗ ⊗ π(On)
∞ ⊗ M̌µ,C

)On(R)

.

Assertion (c) follows, since Hbn
gK(gln, Kn,∞; π∞⊗ M̌µ,C) is the direct sum of its (±1)-

eigenspaces. Assertions (a) and (b) result from (1.3). �
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1.4 Proof of Lemma 1.1

Let π = πf ⊗ π∞ be an irreducible cuspidal automorphic representation of GLn(A).
In the special case µ̌ = 0 of Section 1.3 we find

Hbn
gK(gln, Kn,∞; π∞) = Hbn

gk (sln, son; π∞).

On the one hand, assume that π occurs in (s-dimensional) cohomology with constant
coefficients in the sense of [KMS], p. 99. We want to show that π lies in Coh(GLn, 0)
by proving

Hbn
gk (sln, son; π∞) 6= 0

with the above. By p. 122 of [KMS] we have

H•
gk(sln, son; π∞)On(R)/ SOn(R) [BW], I.5

= H•
gK(sln,On; π(On)

∞ ) 6= 0.

So we have found a non-trivial summand of H•
gK(gln, Kn,∞; π∞), which proves the

first inclusion.

On the other hand, let π = πf ⊗ π∞ be in Coh(GLn, 0). Like in Section 1.3 we see
that π∞ has trivial central character, so that we may use Corollary 1.5 to get

C ∼= H•
gk(sln, son; π∞)On(R)/ SOn(R) [BW], I.5

= H•
gK(sln,On; π(On)

∞ ).

By p. 122 of [KMS] this gives us the second inclusion.

1.5 The Langlands parameter

We denote by L+
0 (GLn) the set of all pairs (w, l), where w ∈ Z and l = (l1, . . . , ln) ∈

Zn is a finite sequence satisfying l1 > · · · > lbn/2c > 0, li + ln+1−i = 0 for all
i ∈ {0, . . . , n}, and the purity condition

w + l ≡

{
1 mod (2), if n is even,

0 mod (2), if n is odd,
(1.6)

where we identify w with (w, . . . ,w). We note, that for n odd this immediately
implies w ≡ l ≡ 0 mod (2) since l(n+1)/2 = 0. If we let ΦGLn = Φ(GLn, Tn) denote
the set of roots of Tn in GLn and Φ+

GLn
the subset of positive roots determined by

the choice of Bn, we see, that the sets L+
0 (GLn) and X+

0 (Tn) are in bijection:

L+
0 (GLn) ←→ X+

0 (Tn) (1.7)

(w, l) 7→ µ =
w + l

2
− %n.
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Here,

%n =
1

2

∑
α∈Φ+

GLn

α = (
n− 1

2
,
n− 3

2
, . . . ,−n− 1

2
) ∈ X(GLn)⊗Z Q

is the half-sum of positive roots of GLn relative to Tn. Explicitly, we have

µ =


(

w+l1−(n−1)
2

, w+l2−(n−3)
2

, . . . , w−l1+(n−1)
2

)
, if n is even,(

w+l1−(n−1)
2

, w+l2−(n−3)
2

, . . . , w
2
, . . . , w−l1+(n−1)

2

)
, if n is odd.

In the inverse direction the parameter associated with a dominant, integral weight
µ reads (w, l), where w = µ1 + µn is the weight of µ and l = 2(µ+ %n)− w.

To any (w, l) ∈ L+
0 (GLn) we attach an induced representation of Langlands type:

we write Dl for the discrete series representation of GL2(R) of lowest weight l + 1
(cf. [Bum1], p. 216); we then set

J(w, l) :=

{
Ind

GLn(R)
Q(R) (| · |w/2

R ⊗Dl1 , . . . , | · |
w/2
R ⊗Dln/2

), if n is even,

Ind
GLn(R)
Q(R) (| · |w/2

R ⊗Dl1 , . . . , | · |
w/2
R ⊗Dl(n−1)/2

, | · |w/2
R ), if n is odd.

Here, Q ≤ GLn is the parabolic subgroup of type (2, . . . , 2) resp. (2, . . . , 2, 1).

Let (w, l) ∈ L+
0 (GLn) correspond to µ ∈ X+

0 (Tn) as in (1.7). By (3.6) of [Mah] any
π ∈ Coh(GLn, µ̌) has infinity component

π∞ ∼= sgnk⊗J(w, l), k ∈ Z/2Z. (1.8)

For later use (cf. Chapter 5) we remark that to each such representation π∞ there
is a corresponding representation πW

∞ of the Weil group WR of R via Langlands
correspondence. WR is the non-split extension of C× by Gal(C/R) ∼= Z/2Z given
by

WR = C× ∪ jC×,
where j2 = −1 and jzj−1 = z̄ for all z ∈ C×. Thus any representation of WR

is determined by how elements of the form z = reiθ and j act. There are exactly
three types of irreducible representations, which are given explicitly in Chapter 3 of
[Kna1]:

� The one-dimensional representations (+, t) with t ∈ C, which act via ϕ are
given by

ϕ(z) = |z|t and ϕ(j) = +1.

� The one-dimensional representations (−, t) with t ∈ C, which act via ϕ are
given by

ϕ(z) = |z|t and ϕ(j) = −1.
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� The two-dimensional representations (l, t), where l ≥ 1 is an integer and t ∈ C.
In those we may always choose a basis {u, u′} such that we have

ϕ(reiθ)u = r2teilθu, ϕ(reiθ)u′ = r2te−ilθu′, ϕ(j)u = u′, ϕ(j)u′ = (−1)lu,

where (l, t) acts via ϕ.

Using this notation we have

πW
∞ =

{
(l1,

w
2
)⊕ (l2,

w
2
)⊕ · · · ⊕ (ln/2,

w
2
), if n is even,

(l1,
w
2
)⊕ (l2,

w
2
)⊕ · · · ⊕ (l(n−1)/2,

w
2
)⊕ (sgnk, w

2
), if n is odd.

We will need to determine the tensor product of two such Weil group representations.
So let

σ∞ ∼= sgnk′ ⊗J(w′, l′), k′ ∈ Z/2Z

be a representation of GLm(R), notation being clear from the context. Analogously,
we get

σW
∞ =

{
(l′1,

w
2
′)⊕ (l′2,

w
2
′)⊕ · · · ⊕ (l′m/2,

w
2
′)⊕ (sgnk′ , w

2
′), if m is odd,

(l′1,
w
2
′)⊕ (l′2,

w
2
′)⊕ · · · ⊕ (l′(m−1)/2,

w
2
′), if m is even.

We want to calculate the tensor product of πW
∞ and σW

∞ . Therefore we have to
calculate the various tensor products of the building blocks. We distinguish three
cases:

� Let σ, σ′ be in {+,−}, and let t, t′ be in C. Obviously, we get

(σ, t)⊗ (σ′, t′) =

{
(+, t+ t′), if σ = σ′,

(−, t+ t′), if σ 6= σ′.

� Let l ≥ 1 be an integer, σ ∈ {+,−} and t, t′ in C. Let further {u, u′} be the
special basis from the definition of (l, t) and v an arbitrary element of (±, t′).
Then it is an easy calculation to show, that

(l, t)⊗ (σ, t′) = (l, t+ t′),

where an associated special basis is given by {u⊗ v, u′ ⊗ v}, if σ = +, and by
{u⊗ v,−u′ ⊗ v}, if σ = −.

� Let l, l′ ≥ 1 be integers, and let t, t′ be complex numbers. Let further be {u, u′}
and {v, v′} the respective special bases of (l, t) and (l′, t′). A quick calculation
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shows that u⊗v and u′⊗v′ span a two-dimensional representation of the type
(l + l′, t+ t′). Analogously,

(l − l′, t+ t′) with special basis {(−1)l′u⊗ v′, u′ ⊗ v} is well-defined for l > l′,
(l′ − l, t+ t′) with special basis {(−1)lu′ ⊗ v, u⊗ v′} is well-defined for l < l′.

In the case l = l′ the representation (l, t)⊗ (l′, t′) is not irreducible any more,
but splits into

(+, t+ t′) spanned by (−1)lu⊗ v′ + u′ ⊗ v,
(−, t+ t′) spanned by (−1)l−1u⊗ v′ + u′ ⊗ v.

We may subsume the results of this case by

(l, t)⊗ (l′, t′) =

{
(l + l′, t+ t′)⊕ (|l − l′|, t+ t′), if l 6= l′,

(l + l′, t+ t′)⊕ (+, t+ t′)⊕ (−, t+ t′), if l = l′.

We will only be interested in the case m = n− 1. There we get

Proposition 1.6 The tensor product πW
∞ ⊗ σW

∞ takes the value

n
2⊕

i=1

(li,
w + w′

2
)⊕

n
2⊕

i=1

n
2
−1⊕

j=1

[
(li + l′j,

w + w′

2
)⊕ (|li − l′j|,

w + w′

2
)

]
, if n is even,

n−1
2⊕

j=1

(l′j,
w + w′

2
)⊕

n−1
2⊕

i=1

n−1
2⊕

j=1

[
(li + l′j,

w + w′

2
)⊕ (|li − l′j|,

w + w′

2
)

]
, if n is odd,

where by (0, w+w′

2
) we denote (+, w+w′

2
)⊕ (−, w+w′

2
).2

1.6 Cohomology of locally symmetric spaces

We want to relate the results up to now to the cohomology of the orbifolds

Sn(K) = GLn(Q)\GLn(A)/KKn,∞,

where K is a compact open subgroup of GLn(Af ). Note, that if det(K) = Ẑ× we
have, by strong approximation, the isomorphism

GLn(Q)\GLn(A)/KKn,∞ ∼= ΓK\GLn(R)0/ SOn(R),

2Note, that in [Kna1] the integer l belonging to the representation (l, t) is at least 1, so that
there is no conflict of notation.
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where
ΓK := {γ ∈ GLn(Q)0 | γf ∈ K} ⊆ SLn(Z).

We set
S̃n := lim←−

K

Sn(K),

where K runs through all compact open subgroups of GLn(Af ). For any finite-
dimensional representation (%̌µ, M̌µ) we define the locally constant sheaf M̌µ = M̌µ,K

on Sn(K) by setting M̌µ,K(U) for any open U ⊆ Sn(K) to be the set of locally
constant functions f : pr−1(U)→ M̌µ satisfying

∀γ ∈ GLn(Q), z ∈ pr−1(U) : f(γz) = %̌µ(γ)(f(z)),

where pr : GLn(A)/KKn,∞ → Sn(K) is the natural projection. Analogously, we get
a locally constant sheaf on S̃n, noted M̌µ as well. Similarly, for any field extension
E/Q we denote by M̌µ,E = M̌µ,E,K the corresponding sheaf on Sn(K). Analogously
to the rational case, M̌µ,E denotes as well the respective sheaf on S̃n.

We then define the cohomology groups with coefficients in M̌µ,C,K (cf. [Clo], p. 121):

H•
? (S̃n, M̌µ,C) := lim−→

K

H•
? (Sn(K), M̌µ,C,K), ? ∈ { blank, c, cusp }.

These groups are modules under the canonical action of GLn(Af )× π0(GLn).

Viewed as a GLn(Af )-module, the cuspidal cohomology decomposes into a direct
sum of GLn(Af )-isotypic components:

H•
cusp(S̃n, M̌µ,C) =

⊕
π∈Coh(GLn,µ̌)

H•
cusp(S̃n, M̌µ,C)(πf ).

Since the actions of GLn(Af ) and π0(GLn) commute, the isotypical components are
stable under the action of π0(GLn). Since furthermore by [Clo], Lemme 3.15 (ii) we
have

H•
cusp(S̃n, M̌µ,C)(πf ) ∼= πf ⊗H•

gK(gln, Kn,∞; π∞ ⊗ M̌µ,C) (1.9)

and since GLn satisfies multiplicity one by [Sha], we obtain from (1.3) and the
definition of π̂0(GLn, µ)

H•
cusp(S̃n, M̌µ,C)(πf ) ∼=

⊕
π̄∞∈ ωπ |π0 π̂0(GLn,µ)

m•
GLn

(πf ⊗ π̄∞).

Note, that ωπ|π0 ∈ {id, sgn}. Altogether we find a decomposition into irreducible
GLn(Af )× π0(GLn)-modules:

H•
cusp(S̃n, M̌µ,C) ∼=

⊕
π∈Coh(GLn,µ̌)

⊕
π̄∞∈ ωπ |π0 π̂0(GLn,µ)

m•
GLn

(πf ⊗ π̄∞). (1.10)

Since mbn = 1, this decomposition is multiplicity free in degree bn.



Chapter 2

The Rankin-Selberg convolution

In this chapter we will introduce the Rankin-Selberg L-series, whose critical values
we want to study in Chapter 3. Starting from the Global Birch Lemma of [KMS]
we will give a first description of those values in terms of integrals over certain
Whittaker functions.

We fix a non-trivial character τ =
⊕

` τ` : Q\A→ C×, such that for all finite places
` the conductor of τ` equals Z`. We also denote by

τ(n) :=
n−1∏
i=1

τ(ni,i+1)

the induced (generic) character of Un(A). For any automorphic representation
π = πf ⊗ π∞ we write W (π, τ) for the Whittaker model of π with respect to τ .
This Whittaker space can be described as the restricted tensor product of the local
Whittaker spaces defined as in [JPS2] resp. [JPS1] in the infinite resp. finite case,
that is

W (π, τ) = W (π∞, τ∞)⊗
⊗
`-∞

′W (π`, τ`).

Hereby, we restrict in the following way: For any prime ` where π` is unramified
the subspace of GLn(Z`)-fixed elements in W (π`, τ`) is one-dimensional (cf. §4 in
[JPS3]). Its normalised generator w0

` is called the new vector of W (π`, τ`), normal-
isation being by w0

` (1n) = 1 (cf. (3.3) in [loc.cit.]). Now an element of W (π, τ)
is a tensor in

⊗
` W (π`, τ`), where all but finitely many factors are given by the

respective new vector. This is possible, since π` is unramified for all but finitely
many primes `.

Throughout this thesis, we will always assume that for every finite place ` the
respective additive character τ` has exponent 0, meaning that Z` is the biggest
broken ideal of Q` on which τ` is trivial. We may do so without loss of generality,
since by [JPS1] the Whittaker models for two additive characters τ` and τ ′` are
isomorphic.

18
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Now we fix a prime p, and two cuspidal automorphic representations π = πf ⊗ π∞
resp. σ = σf ⊗ σ∞ of GLn(A) resp. GLn−1(A) both unramified at p. Following
[JPS1] we now introduce the local Rankin-Selberg convolution for π and σ at some
fixed prime number ` 6= p: For each pair of Whittaker functions

(w`, v`) ∈ W (π`, τ`)×W (σ`, τ̄`)

the associated zeta integral

ψ`(w`, v`; s) :=

∫
Un−1(Q`)\GLn−1(Q`)

w`

(
g

1

)
· v`(g) · | det(g)|s−

1
2dg

converges for Re(s) large enough. These zeta integrals span a fractional ideal L of
the ring C[`s, `−s]. In that way the local L-function L(π`, σ`; s) is defined uniquely
by fixing a polynomial P (X) ∈ C[X], such that P (0) = 1 and P (`−s)−1 generates
L, and by setting

P (`−s)−1 =: L(π`, σ`; s).

Obviously, we have a linear map on the tensor product W (π`, τ`)⊗W (σ`, τ̄`) given
by

Ψ` :

{
W (π`, τ`)⊗W (σ`, τ̄`)→ C(`s),

w` ⊗ v` 7→ Ψ`(w` ⊗ v`; s) := ψ`(w`, v`; s).

Moreover, if π` and σ` are both unramified, by §3.2 in [KMS] the zeta integral for
the associated new vectors w0

` and v0
` represents the L-function

L(π`, σ`; s) = Ψ`(w
0
` ⊗ v0

` ; s).

From now on we will write in short t0` := w0
` ⊗ v0

` . Let S denote the set of primes `,
where π` or σ` is ramified. For any ` ∈ S there is a tensor t0` ∈ W (π`, τ`)⊗W (σ`, τ̄`)
such that we have

L(π`, σ`; s) = Ψ`(t
0
` ; s).

Note, that for general n such a vector does not need to be pure. In the case n = 3
however Riedel recently showed, that there is always a choice of a pure t0` (cf. [Rie]).

We will now consider pairs (w, v) of global Whittaker functions on GLn(A) and
GLn−1(A) given as products of local Whittaker functions w :=

∏
`w` and v :=

∏
` v`,

where we choose w` = w0
` and v` = v0

` for ` not contained in S ∪ {p}. For ` = p we
let wp and vp vary among all Whittaker functions which are right invariant under
the respective Iwahori subgroup In or In−1. Here, In consists of those matrices in
GLn(Zp) which are upper triangular modulo p. For ` ∈ S we will choose a tensor as
described above.

For any choice of w∞ ∈ W0(π∞, τ∞) and v∞ ∈ W0(σ∞, τ̄∞), for arbitrary w`, v` for
` ∈ S, for (w`, v`) = (w0

` , v
0
` ) for ` 6∈ S∪{p}, and for (wp, vp) like in the last paragraph
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we get global Whittaker functions (w, v) with associated automorphic forms (φ, ϕ).
Here, the 0 in the index means, that we consider the space of On(R)-finite resp.
On−1(R)-finite Whittaker functions (cf. [JPS2]). Like above we set

W0(π, τ) = W0(π∞, τ∞)⊗
⊗
`-∞

′W (π`, τ`).

The product of all local zeta integrals then becomes a Rankin-Selberg convolution
(cf. [JS])∏

`

ψ`(w`, v`; s) =

∫
GLn−1(Q)\GLn−1(A)

φ

(
g

1

)
· ϕ(g) · | det(g)|s−

1
2dg

for Re(s) � 0, admitting an analytic continuation to an entire function in s (cf.
[CP1], Prop. 6.1). This function only depends on the pure tensor w ⊗ v and can
be extended linearly to the algebraic tensor product of Whittaker spaces W0(π, τ)⊗
W0(σ, τ̄) by sending ∏

`

w` ⊗
∏

`

v` 7→
∏

`

Ψ`(w` ⊗ v`; s).

In particular we find (up to the infinity factor) the global L-function

L(π, σ; s) :=
∏

`

L(π`, σ`; s)

in the image of this map. For each choice of the pair (w∞, v∞) there is an entire
function P (s) such that

P (s) · L(π∞, σ∞; s) = Ψ`(w∞ ⊗ v∞; s),

and therefore

P (s) · L(π, σ; s) = Ψ`(w∞ ⊗ v∞; s) ·
∏
`-∞

Ψ`(t
0
` ; s).

Recall, that L(π∞, σ∞; s) is defined by the Weil group representation as in [JPS2].

Writing each t0` for ` ∈ S as a sum of pure tensors leads to a finite sum of (global)
pure tensors in W0(π, τ)⊗W0(σ, τ̄)∑

j

wj ⊗ vj = (w∞ ⊗ v∞) ·
∏
`-∞

t0` . (2.1)

We fix this explicit decomposition and in what follows our formulas will depend
on it. Separating finite and infinite parts we will sometimes write wj = w∞ · wj,f
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and vj = v∞ · vj,f . The associated automorphic forms φj and ϕj yield the integral
representation

P (s) · L(π, σ; s) =
∑

j

∫
φj

(
g

1

)
ϕj(g)| det(g)|s−

1
2dg.

We will in particular consider modified (wj, vj)’s and (φj, ϕj)’s, where at ` = p
the local component (w0

p, v
0
p) is replaced by an arbitrary pair (wp, vp) of Whittaker

functions invariant under the respective Iwahori subgroup.

We want to consider χ-twists of π for a finite idele class character χ =
∏

` χ` satis-
fying the properties3

(a) χ∞ = 1,

(b) χ, χ2, . . . , χn−1 have the same non-trivial conductor f = p-power.

Let χ̃p denote the continuation of χp to Zp by χ̃p(px) = 0 for all x ∈ Zp, and let
further G(χp) denote the Gauß sum of χp. Then it holds

Global Birch Lemma (Kazhdan, Mazur, Schmidt) For any choice of (w∞, v∞)
and any (wp, vp) right-invariant under the respective Iwahori subgroup the corre-
sponding triples (P, φj, ϕj) for all j satisfy

wp(1) · vp(1) · P (s) ·
n−1∏
i=1

G(χi
p)(1− p−1)

1− p−i
· L(π ⊗ χ, σ; s)

=
∑

u

n−1∏
i=1

χ̃p(u
i
i)
∑

j

∫
GLn−1(Q)\GLn−1(A)

φj(

(
g

1

)
ϕ−1uϕ)ϕj(g)χ(det g)| det g|s−

1
2dg,

where u = up (with u` = 1 for all ` 6= p) is taken from a representative system for
Un(Zp) modulo ϕUn(Zp)ϕ

−1 with ϕ = diag(f−1, . . . , f−n).

For a proof look at page 114 of [KMS]. In view of Chapter 3 we want to reformulate
the lemma such that the integrals on the right side of the formula do not involve the
character χ. Let f be a non-trivial power of our fixed prime p and Cf the inverse
image of the idele class group

Q×\Q× ·

(
R>0 ×

∏
` 6=p,∞

Z×
` × (1 + f 2(n−1))Zp

)
⊂ Q×\A×

3The first assumption ensures that P (s) will not change when passing from π to π ⊗ χ since
π∞ = (π⊗χ)∞. The work of Schmidt and Utz indicates that the second assumption on χ may be
omitted (cf. [Schm2] and [Utz]).
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under the determinant map

det : GLn−1(Q)\GLn−1(A)→ Q×\A×.

We decompose the domain of integration into finitely many shifts of Cf as follows.
Write

GLn−1(Q)\GLn−1(A) =
⋃̇

x
Cf diag(x, 1, . . . , 1),

where x runs over a representative system of (Z/f2(n−1)Z)× in Z×
p . Note, that this

shift only effects the p-component.

Corollary 2.1 Specialising to s = 1
2

we get

wp(1) · vp(1) · P
(

1

2

)
·

n−1∏
i=1

G(χi
p)(1− p−1)

1− p−i
· L(π ⊗ χ, σ;

1

2
)

=
p− 1

p
f 2(n−1)

∑
u

n−1∏
i=1

χ̃p(u
i
i)
∑

j

∫
Cf

φj(

(
g

1

)
ϕ−1uϕ)ϕj(g)dg.



Chapter 3

The algebraicity of the special L-value

From now on, let π ∈ Coh(GLn, µ̌) and σ ∈ Coh(GLn−1, ν̌) be two cohomologi-
cal representations like we introduced them in Chapter 1. Accordingly, we have
µ ∈ X+

0 (Tn) and ν ∈ X+
0 (Tn−1). Our aim is to show that we may choose a Whit-

taker function t∞ ∈ W0(π∞, τ∞) ⊗ W0(σ∞, τ̄∞) such that for these representations
the integrals on the right side of the equation in Corollary 2.1 up to a constant
factor are algebraic numbers (cf. Theorem 1). The idea is to make use of the non-
vanishing of cohomology for π and σ. We thus will be able to construct a pairing on
cohomology having the above-mentioned integrals as values. Since both representa-
tions are already defined over the algebraic numbers, and since this pairing respects
algebraicity by construction, this will prove the assertion. Note, that the results of
this chapter hold, no matter what the critical values of (π, σ) are. However, we keep
in mind the important case, where s = 1

2
is a critical value of (π, σ), or even the only

one (cf. Chapter 5 for a discussion of this point). The title of this chapter should
be viewed in that light.

3.1 A map of differential forms

We will begin not by constructing a pairing on cohomology but by finding a natural
pairing on differential forms instead. However, this cannot be done straight forward,
since belonging to π and σ we will get differentials on different symmetric spaces.
So the first thing we will have to do is to find a method that translates one type of
differentials into the other. In this and the next two sections we will thus construct
a chain map from the differential forms of the first type into those of the second one.

By [JPS3], Théorème (5.1) for n ≥ 3 the global representations π and σ have finite
parts πf and σf with new vectors wf resp. vf right-invariant under some open

compact subgroup K ⊆ GLn(Ẑ) resp. K ′ ⊆ GLn−1(Ẑ), such that the respective

23
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image under the determinant map is the full unit group Ẑ×, i. e.

det(K) = det(K ′) = Ẑ×.

We will assume n ≥ 3 from now on. Moreover, the canonical embedding

j : GLn−1 → GLn, g 7→
(
g

1

)
sends K ′ into K, since by Théorème (4.1) of [loc.cit.] wf is even right invariant

under j(GLn−1(Ẑ)), so we may choose K containing j(K ′). Recall that we defined
all of our additive characters τv to have exponent 0, what allows us to use those
results.

Separating finite and infinite parts of adelic elements we write g = (gf , g∞) for
g ∈ GLn(A) = GLn(Af )×GLn(R). We put

Xn := GLn(R)/On(R) = GLn(R)0/ SOn(R) = R>0 ×X 1
n

with
X 1

n := SLn(R)/ SOn(R) = SL±
n (R)/On(R) ⊆Xn

and
Γ := {γ ∈ GLn(Q)0 | γf ∈ K} ⊆ SLn(Z).

Then by the surjectivity of the determinant map we have the bijections

Γ\Xn
∼= GLn(Q)\GLn(A)/K ·On(R) (3.1)

and
Γ\X 1

n
∼= GLn(Q)\GLn(A)/K · SOn(R)Zn(R)0 1.6

= Sn(K). (3.2)

For a proof look in [Bum1], Prop. 3.3.1.4 The common dimension of Xn and Γ\Xn

is dn := n2+n
2

. The same argument applies to GLn−1 with a discrete subgroup
Γ′ ⊆ SLn−1(Z) attached to K ′. The embedding j : GLn−1 → GLn induces an
embedding of symmetric spaces

j : Xn−1 →Xn, g ·On−1(R) 7→
(
g

1

)
·On(R).

Moreover we can create a whole family of embeddings by composing j with left
translation by any element h ∈ GLn(R). Set

jh : Xn−1 →Xn, g ·On−1(R) 7→ h ·
(
g

1

)
·On(R).

4The proof is written down only for n = 2 but holds for general n.
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We are in particular interested in those embeddings jh which define maps of arith-
metic quotients. For any h ∈ GLn(Q) let

Γ′
h := {γ ∈ Γ′ | j(γ) ∈ h−1Γh}.

Then jh induces a proper mapping

j̄h : Γ′
h\Xn−1 → Γ\Xn, Γ′

hgOn−1(R) 7→ Γh

(
g

1

)
On(R).

We want to compose the maps jh with the projections p2 into the second component
of Xn = R>0 ×X 1

n , induced by the map

p2 : GLn(R)→ SL±
n (R), g 7→ g · | det(g)|−1/n.

Recall that the passage to quotients only effects the second component, i. e.

Γ\Xn = R>0 × Γ\X 1
n .

On arithmetic quotients we have the homotopy equivalence

p̄2 : Γ\Xn → Γ\X 1
n .

Of course the same arguments apply to n− 1 instead of n.

For each u ∈ Un(Q) the map

Ju := p̄2 ◦ j̄u :

{
Γ′

u\Xn−1 → Γ\X 1
n

Γ′
ugOn−1 7→ Γu

(
g

1

)
· | det(g)|−1/n On

is proper by [KMS], p. 102. We want to keep track of the effect of these maps Ju on
certain differential forms. We denote by lu left translation by u and we decompose
the map

p2 ◦ ju : GLn−1(R)→ SL±
n (R), g 7→ p2(u · j(g))

further into p2 ◦ ju = p2 ◦ lu ◦ j. Since det(u) = 1, the maps p2 and lu commute,
hence we have

p2 ◦ ju = lu ◦ p2 ◦ j.
We observe that p2 ◦ j is an injective Lie group homomorphism and hence the
induced map on invariant 1-forms is surjective. Specifically, letting ∗ denote dual
vector space, this induced mapping

δ(p2 ◦ j) : sl∗n → gl∗n−1

is given by the formula

δ(p2 ◦ j)(ω)(X) := ω(d(p2 ◦ j)(X)) (3.3)
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for X ∈ gln−1. Here d(p2 ◦ j) denotes the Lie algebra homomorphism gln−1 → sln
induced by p2 ◦ j. Since the pullback l∗u acts trivially on sl∗n we have

δ(p2 ◦ j) = δ(p2 ◦ ju) = (d(p2 ◦ ju))∗.

The map δ(p2 ◦ j) respects the Cartan decompositions

sln = son ⊕ ℘̃n and gln−1 = son−1 ⊕ ℘n−1 (= kn−1,∞ ⊕ ℘̃n−1) ,

where son denotes the set of skew symmetric n × n matrices and ℘n (resp. ℘̃n)
stands for the set of symmetric n × n matrices (resp. of trace equal to zero). In
particular we have

δ(p2 ◦ j)(℘̃∗n) = ℘∗n−1.

We can now describe the map of differential forms

J∗u : Ω•(Γ\X 1
n , M̌µ,C)→ Ω•(Γ′

u\Xn−1, M̌µ,C)

in terms of the complex defining the Lie algebra cohomology. Note, that since
M̌µ,C can be viewed as a GLn−1(R)-module via j, we can define a locally constant
sheaf on S̃n−1 just like in 1.6. We identify this sheaf with the one defined on S̃n

and name it M̌µ,C also. Since M̌µ,C can be viewed as a finite dimensional complex
linear representation of GLn(R) and therefore as one of any discrete subgroup Γn of
SL±

n (R), we may use Corollary VII.2.7 and VII.2.4 (5) of [BW] to get

Ω•(Γn\X 1
n , M̌µ,C) ∼=

(
•∧
℘̃∗n ⊗ C∞(Γn\ SL±

n (R), M̌µ,C)

)On(R)

. (3.4)

Here, we view the sheaf M̌µ,C over Sn(KΓn) as a sheaf over the arithmetic quotient
Γn\X 1

n via (3.2).

An analogous statement holds for an arbitrary discrete subgroup Γn−1 of
GLn−1(R), if we write M̌µ,C as well for the locally constant sheaf of M̌µ,C over

GLn−1(Q)\GLn−1(A)/KΓn−1 On−1(R)
(3.1)∼= Γn−1\Xn−1 that we get like in Section

1.6:

Ω•(Γn−1\Xn−1, M̌µ,C) ∼=

(
•∧
℘∗n−1 ⊗ C∞(Γn−1\GLn−1(R), M̌µ,C)

)On−1(R)

. (3.5)

We want to choose bases for ℘̃∗n and ℘∗n−1. Thereby the dimension of ℘∗n−1 is dn−1 =
n2−n

2
, and the one of ℘̃∗n is d̃n := dn − 1 = n2+n

2
− 1. By II.7 in [Hel] for any basis

{X1, . . . , Xd̃n
} of ℘̃n there is a basis {ω1, . . . , ωd̃n

} of left-invariant differential forms
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in ℘̃∗n given by ωi(Xj) := δij for all 1 ≤ i, j ≤ d̃n. Those forms are called Maurer-
Cartan forms. Now we fix such a basis {ω1, . . . , ωd̃n

} of Maurer-Cartan forms such
that

ω′i := δ(p2 ◦ j)(ωi) for i = 1, . . . , dn−1

is a basis of ℘∗n−1 and ω′i = 0 for i > dn−1. Then the ω′i for 1 ≤ i ≤ dn−1 are

Maurer-Cartan forms as well. For any set I = {i1, . . . , ir} ⊆ {1, . . . , d̃n} of pairwise
disjoint elements i1, . . . , ir we put ωI := ωi1 ∧ . . . ∧ ωir resp. ω′I := ω′i1 ∧ . . . ∧ ω

′
ir . It

holds

Lemma 3.1 Let r ∈ N. Given a differential form

η =
∑
|I|=r

ωIφI ∈ Ωr(Γ\X 1
n , M̌µ,C)

with φI ∈ C∞(Γ\ SL±
n (R), M̌µ,C) we have

J∗u(η) =
∑
|I|=r

ω′I(φI ◦ p2 ◦ ju) ∈ Ωr(Γ′
u\Xn−1, M̌µ,C).

Since Ju is proper we also get a map on differential forms with compact support

J∗u : Ω•
c(Γ\X 1

n , M̌µ,C)→ Ω•
c(Γ

′
u\Xn−1, M̌µ,C),

just by replacing C∞-functions by compactly supported C∞-functions in our de-
scription above. We will later need a version of J∗u on differential forms with certain
growth conditions (which we get just the same).

3.2 Growth conditions

The next thing is to make precise those growth conditions. Let φ be a function in
C∞(SL±

n (R), M̌µ,C). With an arbitrary norm | · | : M̌µ,C → R of M̌µ,C as a C-vector
space we can generalise the growth conditions described in [KMS], p. 119.

Choose a norm |·| of M̌µ,C. The function φ is of moderate growth or slowly increasing,
if there is a constant C and a positive integer m such that for all g ∈ SL±

n (R) we
have

|φ(g)| ≤ C · ||g||m,

where ||g|| := tr(tg · g)1/2. The function φ is fast decreasing, if for each integer m
there is a constant C = Cm such that this inequality holds for all g. Those concepts
are well-defined (i.e. independent of the norm | · |) since all norms on M̌µ,C are
equivalent, M̌µ,C being finite dimensional as a C-vector space.
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We will denote the compactly supported C∞-functions by C∞
c , the fast decreasing

ones by C∞
fd , and the ones of moderate growth by C∞

mg.

A differential form η =
∑

I ωIφI on Γ\X 1
n is of moderate growth (resp. fast

decreasing), if the φI have this property (cf. [Bor]). Following Borel we de-
note by Ω•

mg(Γ\X 1
n , M̌µ,C) (resp. Ω•

fd(Γ\X 1
n , M̌µ,C)) the complex of forms η ∈

Ω•(Γ\X 1
n , M̌µ,C) which together with their exterior de Rham differentials dη are

of moderate growth (resp. fast decreasing).

3.3 Integration along the fibre

In this section we want to find a map from the image of J∗u to differentials on
Γ′

u\X 1
n−1 such that the composition of this map and J∗u is a chain map of the de

Rham complex. In order to do this we will integrate along the fibre: We consider
the canonical projection

π : Γ′
u\Xn−1 = Γ′

u\X 1
n−1 ×R>0 → Γ′

u\X 1
n−1

onto the first component and consider the push-forward π∗ like in [BT], p. 37. We
will show that for n ≥ 3 the forms in

Ω•(Γ′
u\Xn−1, M̌µ,C) = Ω•(Γ′

u\X 1
n−1 ×R>0, M̌µ,C)

which are in the image J∗u(Ω•
fd(Γ\X 1

n , M̌µ,C)) can be integrated along the fibre, i. e.

Lemma 3.2 For n ≥ 3 the push-forward π∗ is a chain map lowering the degree of
forms by one, more precisely

π∗ : J∗u(Ω•
fd(Γ\X 1

n , M̌µ,C))→ Ω•−1
mg (Γ′

u\X 1
n−1, M̌µ,C).

Remark We need n ≥ 3 only for the identifications (3.1) and (3.2). The lemma
is true for n = 2 as well, if we view M̌µ,C as a sheaf over the respective arithmetic
quotients.

Proof. Let η =
∑

|I|=• ωIφI be an arbitrary differential in Ω•
fd(Γ\X 1

n , M̌µ,C). Then

we have J∗u(η) =
∑

|I|=• ω
′
I · (φI ◦ p2 ◦ ju).

We want to use the fact that φI is fast decreasing to show that for each N > 0 there
is a constant C(N) independent of g such that∣∣∣∣φI

(
u

(
g

1

)
· | det(g)|−

1
n

)∣∣∣∣ ≤ C(N) ·min{| det(g)|−N , | det(g)|N}. (3.6)
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By definition of fast decrease, there is a constant Cm such that |φI(g)| ≤ Cm||g||m
for all g ∈ G. In particular, we have∣∣∣∣φI

(
u

(
g

1

)
· | det(g)|−

1
n

)∣∣∣∣ ≤ Cm

∣∣∣∣∣∣∣∣u(g 1

)
· | det(g)|−

1
n

∣∣∣∣∣∣∣∣m .
Now, the norm ||x|| := (

∑
i,j

x2
ij)

1/2 on SL±
n satisfies ||x|| ≥ 1 and

||x|| · ||y−1||−1 ≤ ||x · y|| ≤ ||x|| · ||y||.

We use this information to find an estimate∣∣∣∣φI

(
u

(
g

1

)
· | det(g)|−

1
n

)∣∣∣∣ ≤ Cm

∣∣∣∣∣∣∣∣(g 1

)
· | det(g)|−

1
n

∣∣∣∣∣∣∣∣m
{
||u||m for m ≥ 0,

||u−1||−m for m < 0.

Put N := − m
n(n−1)

and

C(N) := Cm ·

{
||u||m for m ≥ 0,

||u−1||−m for m < 0.

Then we get the required inequality (3.6), because for any m < 0 we have∣∣∣∣∣∣∣∣(g 1

)
· | det(g)|−

1
n

∣∣∣∣∣∣∣∣m = | det(g)|−
m
n

(
1 +

∑
g2

ij

)m
2
.

Since
∑
g2

ij ≥ | det(g)|
2

n−1 , this implies for n ≥ 2

||. . . ||m ≤ | det(g)|−
m
n ·
(
1 + | det(g)|

2
n−1

)m
2

=
(
| det(g)|−

2
n + | det(g)|

2
n−1

− 2
n

)m
2

=
(
| det(g)|−

2
n + | det(g)|

2
n(n−1)

)m
2 ≤ min{| det(g)|−

m
n , | det(g)|

m
n(n−1)}

n≥2

≤ min{| det(g)|±N}.

For the last estimate we have to distinguish the two cases | det(g)| ≤ 1 and | det(g)| >
1.

Let t denote the global parameter of the factor R>0 in Γ′
u\Xn−1. Integration along

the fiber means that for each ω′I having the invariant differential dt
t

=: ω′dn−1
as a

wedge factor5 we must consider the integrals

∞∫
0

φI

(
u

(
ht

1

)
t

1−n
n

)
dt

t
=: φ̌I,u(h)

5In difference to [BT] we use the multiplicative Haar measure.



30 Cohomological Representations and Twisted Rankin-Selberg Convolutions

for h ∈ SL±
n−1(R). These integrals are absolutely convergent by (3.6). Moreover,

the resulting functions φ̌I,u are bounded, hence in particular, they are of moderate
growth. For ωdn−1 6∈ I we set φ̌I,u ≡ 0. The same proof as for compact supports
shows that integration along the fibre is a chain map lowering the degree of forms
by 1, i. e.

π∗ : J∗u(Ω•
fd(Γ\X 1

n , M̌µ,C))→ Ω•−1
mg (Γ′

u\X 1
n−1, M̌µ,C).

If we write, in abuse of notation, ω′Ir{dn−1} for the exterior product of the fitting

ω′i|X 1
n−1

, the image of π∗ can be described by

π∗J
∗
u(η) =

∑
|I|=•

φ̌I,uω
′
Ir{dn−1}.

Since
∧• ℘∗n−1 →

∧• ℘̃∗n−1 is surjective, those restricted differentials generate ℘̃∗n−1.

Note, that
d(π∗J

∗
u(η)) = π∗J

∗
u(dη)

has coefficient functions of moderate growth, since for η ∈ Ω•
fd the coefficient func-

tions of dη are by definition also fast decreasing. So the proof of the lemma is
complete. �

We thus have constructed a composed chain map

Ω•
fd(Γ\X 1

n , M̌µ,C)
J∗u→ im(J∗u)

π∗→ Ω•−1
mg (Γ′

u\X 1
n−1, M̌µ,C) (3.7)

similar to the Poincaré Lemma for forms with compact support (cf. [BT]).

Now let M̌µ,ν,C be the locally constant sheaf belonging to the tensor product M̌µ,C⊗
M̌ν,C. We want to construct a natural pairing

Bu : Ωbn
fd (Γ\X 1

n , M̌µ,C)× Ω
bn−1

fd (Γ′
u\X 1

n−1, M̌ν,C)→ Ω
d̃n−1

fd (Γ′
u\X 1

n−1, M̌µ,ν,C).

Note, that bn + bn−1 − 1 = d̃n−1 = dim(X 1
n−1). Because of (3.7) it suffices to find a

pairing

B̃u : Ωbn−1
mg (Γ′

u\X 1
n−1, M̌µ,C)× Ω

bn−1

fd (Γ′
u\X 1

n−1, M̌ν,C)→ Ω
d̃n−1

fd (Γ′
u\X 1

n−1, M̌µ,ν,C)

and to set Bu(η, η
′) := B̃u(π∗J

∗
u(η), η′).

3.4 A pairing on the differentials

We want to construct such a natural pairing B̃u now. In order to do this we need
to write down elements η̌ of Ωbn−1

mg (Γ′
u\X 1

n−1, M̌µ,C) and η′ of Ω
bn−1

fd (Γ′
u\X 1

n−1, M̌ν,C)
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quite explicitly the way suggested by (3.4). In the proof of Lemma 3.2 we saw that
the ω′i with i running from 1 to dn−1 − 1 = d̃n−1 form a basis of ℘̃∗n−1. We let Ǐ
and I ′ run through the subsets of this basis like above Lemma 3.1, and let m run
through a basis of Mµ and m′ through a basis of Mν .

Then we may write η̌ =
∑

|Ǐ|=bn−1 ω
′
Ǐ
φ̌Ǐ with

φ̌Ǐ =
∑
m

(φ̌Ǐ,m ⊗m) ∈ C∞
mg(Γ

′
u\ SL±

n−1(R),C)⊗ M̌µ,C = C∞
mg(Γ

′
u\ SL±

n−1(R), M̌µ,C)

and η′ =
∑

|I′|=bn−1
ω′I′ϕI′ with

ϕI′ =
∑
m′

(ϕI′,m′ ⊗m′) ∈ C∞
fd (Γ′

u\ SL±
n−1(R),C)⊗ M̌ν,C = C∞

fd (Γ′
u\ SL±

n−1(R), M̌ν,C).

Now consider the mapping given by

B̃u(η̌, η
′) :=

∑
(ω′

Ǐ
∧ ω′I′)

∑
m,m′

(
φ̌Ǐ,m · ϕI′,m′ ⊗ (m⊗m′)

)
,

where the first sum is over all pairs of subsets Ǐ and I ′ of {1, . . . , dn−1} fulfilling
|Ǐ| = bn − 1 and |I ′| = bn−1. It is well defined, since B̃u(η̌, η

′) is invariant under

On−1(R): The latter acts on
∧d̃n−1 ℘̃∗n−1 by action on the factors. So from the

invariance of ω′
Ǐ

and ω′I′ .
6 follows, that ω′

Ǐ
∧ ω′I′ is also invariant under On−1(R).

Using this we can show that

g.B̃u(η̌, η
′) = B̃u(g.η̌, g.η

′)

for all g in On−1(R). The assertion follows from the invariance of η̌ and η′.

A straight-forward calculation shows that B̃u is bilinear as a map of
C∞

mg(Γ
′
u\ SL±

n−1(R),C)-modules. From the definitions of moderate growth and fast

decrease we get that, if η′ is fast decreasing, the same is true for the image B̃u(η̌, η
′).

All in all B̃u has the properties we were searching for.

We want to use this formula for B̃u to describe Bu explicitly. So if we set η̌ := π∗J
∗
u(η)

with η =
∑

I φIωI like before, and if we write φ̌I,u =
∑

m φ̌I,u,m ⊗m, we get

Bu(η, η
′) = B̃u(π∗J

∗
u(η), η′) (3.8)

=
∑
|I|=bn

|I′|=bn−1

εI,I′

∑
m,m′

(
φ̌I,u,m · ϕI′,m′ ⊗ (m⊗m′)

)
ω′1 ∧ . . . ∧ ω′d̃n−1

,

where εI,I′ = ±1 if I ∪̇ I ′ = {1, . . . , dn−1} and εI,I′ = 0 otherwise. This is true, since
from the proof of Lemma 3.2 we know

π∗J
∗
u(η) =

∑
|I|=bn−1

φ̌I,uω
′
Ir{dn−1},

6The subgroup On−1(R) of SL±n−1(R) acts on ℘̃∗n−1 by conjugation.
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and since for all h ∈ SL±
n−1(R) we have

φ̌I,u(h) =

∞∫
0

φI

(
u

(
ht

1

)
t

1−n
n

)
dt

t

=

∞∫
0

∑
m

φI,m

(
u

(
ht

1

)
t

1−n
n

)
⊗m dt

t

=
∑
m

∞∫
0

φI,m

(
u

(
ht

1

)
t

1−n
n

)
⊗m dt

t

=
∑
m

∞∫
0

φI,m

(
u

(
ht

1

)
t

1−n
n

)
dt

t
⊗m

=
∑
m

(
φ̌I,u,m(h)⊗m

)
.

3.5 A cohomological pairing

By Theorem 5.2 of [Bor] the inclusion Ωc ↪→ Ωfd induces isomorphisms in cohomo-
logy. In particular, each fast decreasing cohomology class can be represented by a
form with compact support. This allows us to integrate over the values of Bu. By
§5 of [BT]7 we get an induced pairing

Bu : Hbn
c (Γ\X 1

n , M̌µ,C)×Hbn−1
c (Γ′\X 1

n−1, M̌ν,C)→ M̌µ,C ⊗ M̌ν,C

on cohomology. It is given by

Bu([η], [η
′]) :=

∫
Γ′u\X 1

n−1

Bu(η, p
∗
u(η

′)),

where pu : Γ′
u\X 1

n−1 → Γ′\X 1
n−1 is the natural projection. For simplicity we will

write η′ for p∗u(η
′).

7Bott and Tu work in the real case and with trivial coefficents, but the proof is the same in our
situation. Note, that integration and tensoring with elements of M̌µ,C ⊗ M̌ν,C commutes.
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With Section 3.4 we can describe the values of Bu more explicitly. Indeed we have∫
Γ′u\X 1

n−1

Bu(η, η
′)

(3.8)
=

∫
Γ′u\X 1

n−1

∑
I,I′

εI,I′

∑
m,m′

(
φ̌I,u,m · ϕI′,m′ ⊗ (m⊗m′)

)
ω′1 ∧ . . . ∧ ω′d̃n−1

=

∫
Γ′u\X 1

n−1

∑
I,I′

εI,I′

∑
m,m′

∞∫
0

φI,m

(
u

(
ht

1

)
t

1−n
n

)
dt

t
· ϕI′,m′(h)⊗ (m⊗m′)dh,

recognising that a left-invariant d̃n−1-form8 on X 1
n−1 uniquely corresponds to a left-

invariant measure dh on X 1
n−1 = SLn−1 / SOn−1 induced from a Haar measure on

SLn−1.

But then our differentials are invariant under On−1(R) by choice8 so that we can
integrate over Γ′

u\ SL±
n−1(R) instead of Γ′

u\X 1
n−1 = Γ′

u\ SL±
n−1(R)/On−1(R). The

measure dh is the push forward of a Haar measure dg of GLn−1(R) under the canon-
ical projection. Let us extend the functions φI,m and ϕI′,m′ in such a manner that
they have actions of the respective centres via the central characters ωπ resp. ωσ of
our representations π resp. σ. Then we get∫

Γ′u\GLn−1(R)

∑
I,I′

εI,I′

∑
m,m′

φI,m

(
u

(
g

1

))
· ϕI′,m′(g) · ωπ(| det(g)|−

1
n )

· ωσ(| det(g)|−
1

n−1 )⊗ (m⊗m′) dg.

Now, if we assume that ωπ(rn−1) = ωσ(rn) holds for all r ∈ R>0, we may therefore
ignore the central parts of their arguments and get the following simplification:

Bu([η], [η
′]) =

∫
Γ′u\GLn−1(R)

∑
I,I′

εI,I′

∑
m,m′

φI,m

(
u

(
g

1

))
· ϕI′,m′(g)⊗ (m⊗m′) dg.

3.6 The Whittaker model

Remember from Corollary 1.5, that for suitable ε ∈ {+,−}

Hbn
gK(gln, Kn,∞; W0(π∞, τ∞)⊗ M̌µ,C)ε =

(
bn∧
℘̃∗n ⊗W0(π∞, τ∞)⊗ M̌µ,C

)SOn(R)

ε

8The ω′i were defined as left-invariant differentials of ℘n−1 in Section 3.1
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is one-dimensional as a C-vector space. We choose a generator η∞. Using the known
bases of ℘̃∗n and M̌µ we can write

η∞ =
∑
|I|=bn

∑
m

w∞,I,mωI ⊗m

with Whittaker functions w∞,I,m ∈ W0(π∞, τ∞).

The Fourier transform F(π) : L2
0(GLn(Q)\GLn(A)) ⊃ Vπ

∼→ W (π, τ) (cf. [Mah],
1.2) induces a mapping F(π)coh on the spaces of (gln, Kn,∞)-cohomology, which
commutes with the action of π0(On) = π0(GLn). Composing F(π)coh with the
injection of W (πf , τf ) into Lie algebra cohomology given by

W (πf , τf ) ↪→ Hbn
gK(gln, Kn,∞; W (π, τ)⊗ M̌µ,C)ε

wf 7→ wf · η∞

we get

F̃(π) = (F(π)coh)−1 · η∞ : W (πf , τf )→ Hbn
gK(gln, Kn,∞;Vπ ⊗ M̌µ,C)ε.

The image of wf under F̃(π) is

η :=
∑
|I|=bn

∑
m

φI,mωI ⊗m,

where φI,m is the cusp form related to wfw∞,I,m by F(π). Analogously, for a gener-
ator η′∞ of the one-dimensional C-vector space

H
bn−1

gK (gln−1, Kn−1,∞; W0(σ∞, τ̄∞)⊗ M̌ν,C)ε′ (ε′ ∈ {+,−} suitable )

and some wf ∈ W (σf , τ̄f ) we can construct an injection

F̃(σ) = (F(σ)coh)−1 · η′∞ : W (σf , τ̄f ) ↪→ H
bn−1

gK (gln−1, Kn−1,∞;Vσ ⊗ M̌ν,C)ε′

mapping vf ∈ W (σf , τ̄f ) to

η′ :=
∑

|I′|=bn−1

∑
m′

ϕI′,m′ω′I′ ⊗m′,

where we use ω′I′ the same sense as in the proof of Lemma 3.2. The rest of the
notation should be clear.

Now remember from (2.1), that we may decompose an element of W0(π, τ)⊗W0(σ, τ̄)
into a finite sum

∑
j wj ⊗ vj of pure tensors. Evaluating our pairing Bu at the

corresponding ηj and η′j we get

Bu(ηj, η
′
j) =

∑
m,m′

∑
I,I′

εI,I′

∫
Γ′u\GLn−1(R)

φj,I,m(uj(g))ϕj,I′,m′(g)dg

⊗ (m⊗m′),
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where the cusp forms φj,I,m (belonging to wj,fw∞,I,m) and ϕj,I′,m′ (belonging to
vj,fv∞,I′,m′) are restricted to the infinity component. Note, that we are free to
choose w∞,I,m and v∞,I′,m′ independent of j.

We are summing up terms exactly like those on p. 123 of [KMS], and we can
apply the same arguments. In order to do this we need to introduce some notation:
We denote conjugation by ϕ := diag(f−1, . . . , f−n) by the superscript ϕ, so that if
g = (gij) ∈ GLn, then gϕ = ϕgϕ−1 = (f j−igij). We will interpret u ∈ Un(Q) as an
element of Un(Qp) and not embed Un(Q) diagonally into Un(A). From now on, we
will only consider elements u ∈ Un(Q), that also lie in Un(Zp)

ϕ−1 ⊂ Un(Qp). For
those we write

K ′
u := {k ∈ K ′ | uj(k)u−1 ∈ K}.

From [KMS] we get9

Bu(ηj, η
′
j) =

p−1
p
f 2(n−1)

vol(K ′
u)
·
∑
m,m′

∑
I,I′

εI,I′

∫
Cf

φj,I,m(j(g)u−1)ϕj,I′,m′(g)dg

⊗ (m⊗m′).

3.7 Main Theorem

Remember n ≥ 3. Assume that we have

ωπ(rn−1) = ωσ(rn) for all r ∈ R>0

for the central characters ωπ of π and ωσ of σ. Note, that these are local conditions
at infinity.

We will be interested in Bu(ηj, η
′
j) from the last section as a function of u. So if λ

is an (at first) arbitrary linear form on Mµ,C ⊗Mν,C, we set

Bλ(u) := λ ◦
∑

j

(
Bu(ηj, η

′
j)
)
.

Now we can express the integrals in the formula of Corollary 2.1 and thereby the
value at 1

2
of the Rankin-Selberg L-function in terms of the function Bλ(u). In

order to do this we define PI,I′,m,m′(s) to be the entire function belonging to the pair
(w∞,I,m, v∞,I′,m′) (cf. [KMS], 3.2) such that we have

Ψ(w∞,I,m ⊗ v∞,I′,m′ ; s) = PI,I′,m,m′(s) · L(π∞, σ∞; s), (3.9)

9Note, that in [KMS] the factor p−1
p f2(n−1) is actually missing in the cited formula on p. 123

and afterwards. However, this does obviously not change the statement substantially.
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and

Pλ,∞(s) :=
∑
I,I′

εI,I′

∑
m,m′

λ(m⊗m′)PI,I′,m,m′(s). (3.10)

Now let χ =
∏

` χ` be an idele class character satisfying

(a) χ∞ = 1,

(b) χ, χ2, . . . , χn−1 have the same non-trivial conductor f = p-power,

like in Chapter 2. Then it holds

Theorem 1

wp(1)vp(1)Pλ,∞

(
1

2

) n−1∏
i=1

G(χi
p)(1− p−1)

1− p−i
L(π ⊗ χ, σ;

1

2
)

=
∑

u

n−1∏
i=1

χ̃p(u
i
i) vol(K ′

uϕ−1 )Bλ((u
−1)ϕ−1

),

where u = up (with u` = 1 for all ` 6= p) is taken from a representative system for
Un(Zp) modulo Un(Zp)

ϕ with ϕ = diag(f−1, . . . , f−n).

Proof. This is straight forward. We have

wp(1)vp(1)Pλ,∞(
1

2
)

n−1∏
i=1

G(χi
p)(1− p−1)

1− p−i
L(π ⊗ χ, σ;

1

2
)

= wp(1)vp(1)
∑
I,I′

εI,I′

∑
m,m′

λ(m⊗m′)PI,I′,m,m′(
1

2
)

n−1∏
i=1

G(χi
p)(1− p−1)

1− p−i
L(π ⊗ χ, σ;

1

2
)

from the definition of Pλ,∞. Because of (3.9) we may use Corollary 2.1, the corollary
of the Global Birch Lemma, in this situation. We get

∑
I,I′

εI,I′

∑
m,m′

λ(m⊗m′)

[
p− 1

p
f 2(n−1)

∑
u

n−1∏
i=1

χ̃p(u
i
i)
∑

j

∫
Cf

φj,I,m(j(g)uϕ−1

)ϕj,I′,m′(g)dg

]
,

where u runs through a representative system like in the statement of the theorem.
A little rearrangement of terms yields

p− 1

p
f 2(n−1)

∑
u

n−1∏
i=1

χ̃p(u
i
i)
∑

j

∑
m,m′

[∑
I,I′

εI,I′

∫
Cf

φj,I,m(j(g)uϕ−1

)ϕj,I′,m′(g)dg

]
λ(m⊗m′),
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so that we just have to put in the definition of Bλ. Voilà∑
u

n−1∏
i=1

χ̃p(u
i
i) vol(K ′

uϕ−1 )Bλ((u
−1)ϕ−1

),

which proves the theorem. �

We do not know if Pλ,∞ is non-zero at s = 1
2

in general. However, in Chapter 4 we
will show this in the case n = 3 and for trivial coefficient systems.

3.8 Algebraicity

By [Sch1], Satz 1.10, the cuspidal cohomology classes restrict to zero on the border
of the Borel-Serre compactification of Sn(K), so that we get an injection of cuspidal
cohomology into cohomology with compact support:

H•
cusp(S̃n, M̌µ,C) ↪→ H•

c (S̃n, M̌µ,C).

The latter is a module under Aut(C/Q)×GLn(Af )×π0(GLn), where the actions of
the factors commute and the (image of the) cuspidal cohomology even is defined over
Q (cf. [Clo], Théorème 3.19). So this suggests that we try to choose the cuspidal
cohomology classes [η] and [η′] in such a way that the values of Bλ and therefore
the L-values at 1

2
are subject to good rationality conditions.

Let Q(πf ) denote the field of rationality of πf in the notation of §3.1 in [Clo], that
is the subfield of C fixed by the automorphisms α ∈ Aut(C/Q) fulfilling απf

∼= πf .
It is a field of definition by Proposition 3.1 of [loc.cit.], and in our case in fact a
number field by the Drinfel’d-Manin argument (cf. Proposition 3.16 in [loc.cit.]).
For the field of rationality Q(σf ) of σf the analogous statements hold.

If we denote by F := Q(πf , σf ) the smallest field that contains Q(πf ) and Q(σf ),
the global (finite) Whittaker spaces W (πf , τf ) and W (σf , τ̄f ) carry an F -structure,
whose underlying F -spaces we denote by WF (πf , τf ) resp. WF (σf , τ̄f ). Now since by
Corollary 1.5 the cohomology spaces

Hbn
gK(gln, Kn,∞; W0(π∞, τ∞)⊗ M̌µ,C)ε

and
H

bn−1

gK (gln−1, Kn−1,∞; W0(σ∞, τ̄∞)⊗ M̌ν,C)ε′

are one-dimensional, an immediate consequence is

Proposition 3.3 We can normalise the ∞-part η∞ by a non-trivial scalar factor
such that for any Whittaker function wf ∈ WF (πf , τf ) the cohomology class [η]
attached to wf · η∞ is F -rational, i. e.

[η] ∈ Hbn
cusp(Γ\X 1

n , M̌µ,F ) ⊆ Hbn
c (Γ\X 1

n , M̌µ,Q̄).
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An analogous normalisation of η′∞ yields

[η′] ∈ Hbn−1
cusp (Γ′\X 1

n−1, M̌ν,F ) ⊆ Hbn−1
c (Γ′\X 1

n−1, M̌ν,Q̄)

with the obvious notation.

The pairings Bu of cohomology spaces we considered in the sections before are
defined purely topologically and moreover with coefficients in an arbitrary subring
of C, in particular with coefficients in F . Furthermore we may choose the linear
form λ to be induced from a linear form on the Q-vector space Mµ or, slightly more
general, from a linear form on the F -vector space Mµ,F . By the definition of Bλ we
then have

Corollary 3.4 If the linear form λ is already defined over F , there is a choice of
good local tensors t0` of Whittaker functions for all ` 6= p such that for any ”Iwahori
fixed“ pair

(wp, vp) ∈ WF (πp, τp)
In ×WF (σp, τ̄p)

In−1

the formula in Theorem 1 holds for the associated pairing Bλ with values Bλ(u) in
the number field F .



Chapter 4

The non-vanishing of the fudge term

The algebraicity results of the last chapter have the one big flaw, that we can not
guarantee the period Pλ,∞(1

2
) not to vanish. The second aim of this thesis is to

improve this situation. So in this chapter we will study the case n = 3 and will
show, that for trivial coefficient systems M̌µ,C and M̌ν,C we have Pλ,∞(1

2
) 6= 0 indeed

(cf. Theorem 2), where we may assume λ to be the identity map. The general
assumptions from the last chapter still hold. Note, that in the case studied s = 1

2
is

the only critical value of (π, σ) (cf. Chapter 5).

A large portion of the proof works fine with general coefficient systems, so that we
will assume them to be trivial only when we need it. The idea of proof is to construct
a pairing on( 2∧

℘̃∗3 ⊗W0(π∞, τ∞)⊗ M̌µ,∞

)
×
(
℘̃∗2 ×W0(σ∞, τ̄∞)⊗ M̌ν,∞

)
,

whose image equals Pλ,∞(1
2
) · C if restricted to the one-dimensional cohomology

modules

H2
gK(gl3, K3,∞; π∞ ⊗ M̌µ,C)ε and H1

gK(gl2, K2,∞;σ∞ ⊗ M̌ν,C)ε′ .

This is done in Section 4.3. Here, we will need, that s = 1
2

is a critical value of the
pair (π, σ). It remains to show, that the restricted pairing is not trivial, thus has
an image isomorphic to C. In order to do this, we split it up into a pairing Bλ,∞ on
the infinite Whittaker spaces times the coefficient modules and a pairing B∧ on the
exterior powers.

In Section 4.2 we will study the SO3(R)-types resp. SO2(R)-types of W0(π∞, τ∞)⊗
M̌µ,C resp. W0(σ∞, τ̄∞) ⊗ M̌ν,C that contribute to cohomology. We will show, that
those are minimal as SO3(R)-types resp. SO2(R)-types. After proving some nice
properties of Bλ,∞ in Section 4.4, that hold for λ like in the first paragraph, we show
in Section 4.5, that under the assumption of trivial coefficient systems Bλ,∞ is not
trivial restricted to the cohomological types. Finally, we show in Section 4.6, that
B∧ ⊗Bλ,∞ is not trivial restricted to cohomology, which proves Theorem 2.

39
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4.1 Notation

In this section we want to get to know the modules we will be working with in this
chapter. Because of the small dimensions, everything is quite explicit.

so3-modules. We may write so3(C) := so3 ⊗ C = 〈H,E1, E−1〉C with

H =

 0 1 0
−1 0 0
0 0 0

 and E±1 =

 0 0 1
0 0 ±i
−1 ∓i 0

 ,

where we have [H,E±1] = ±iE±1 and [E1, E−1] = 2iH for the Lie brackets. The
standard torus is given by h3 = 〈H〉C. We define e1 to be the root given by e1(H) =
1.

From now on, we denote W0(π∞, τ∞)⊗ M̌µ,C by V . By [Mah], Proposition 6.1.3, the
SO3(R)-type of V supporting cohomology in

∧2 ℘̃3 is the irreducible representation
of so3(C) with highest weight 3e1 with respect to the standard torus, which we
denote by µ3. It occurs with multiplicity 1. The restriction µ3 7→ µ3|so3 defines a
bijection between irreducible (complex) representations of so3(C) and so3, and we
also denote by µ3 the restriction of µ3 to so3.

Now, in general, for k ∈ N0 let Dk denote the irreducible so3-module of highest
weight ke1. By [FH], §11.1 and §18.2, the irreducible so3-modules Dk are given by
the 2k-th symmetric power of the standard representation of sl2(C) on C2. By Claim
11.4 of [loc.cit.] as an so3-module Vµ3

∼= µ3 has a basis v−3, v−2, v−1, v0, v1, v2, v3 with

� E1 . va =

{
va+1 if a 6= 3

0 if a = 3

� E−1 . va = cava−1 with
a −3 −2 −1 0 1 2 3
ca 0 −6 −10 −12 −12 −10 −6

.

By [BW], Theorem I.5.3, and since π is cohomological, we know that both the central
and the infinitesimal character of V are trivial (cf. Footnote 1 in Section 1.3). Like
before, we mean the central character on K3,∞.

Furthermore, ℘̃3 is isomorphic to D2, so that by [FH], Claim 11.4, again it has a
basis Z−2, Z−1, Z0, Z1, Z2 fulfilling

� [E1, Za] =

{
Za+1 if a 6= 2

0 if a = 2
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� [E−1, Za] = daZa−1 with
a −2 −1 0 1 2
da 0 −4 −6 −6 −4

.

We normalise those basis vectors of ℘̃3 by putting

Z−2 =

 1 −i 0
−i −1 0
0 0 0

 , Z−1 = −2 ·

0 0 1
0 0 −i
1 −i 0

 , Z0 = −4 ·

1 0 0
0 1 0
0 0 −2

 ,

Z1 = 12 ·

0 0 1
0 0 i
1 i 0

 , Z2 = 24 ·

1 i 0
i −1 0
0 0 0

 .

so2-modules. Analogously, we may write so2(C) = so2 ⊗ C = C ·H, if we identify

H =

(
0 1
−1 0

)
with

 0 1 0
−1 0 0
0 0 0

 .

By embedding ℘2 into ℘̃3 via

X 7→
(
X 0
0 0

)
− 1

3
tr(X) ·

1 0 0
0 1 0
0 0 1


we identify ℘2 with 〈Z−2, Z0, Z2〉C, and ℘̃2 with 〈Z−2, Z2〉C. Here, the standard torus
h2 is all of so2(C). The root that sends H to 1 will be denoted with e1 as well.

From now on, we denote W0(σ∞, τ̄∞) ⊗ M̌ν,C by W . Like above, the SO2(R)-types
supporting cohomology in ℘̃2 are µ2 and µ−2, the irreducible representations of
so2(C) with highest weight 2e1 resp. −2e1. Again, the so2-modules obtained by
restriction are denoted the same. µ2 and µ−2 both occur with multiplicity 1, so that
we have Wµ2

∼= µ2 and Wµ−2
∼= µ−2. For the same reasons as for V , the central

character and the infinitesimal character of W are trivial.

For k ∈ Z let D ′
k denote the irreducible so2-module of weight ke1.

4.2 Minimal K-types

In this section we want to study µ±2 and µ3. From now on, when discussing both
cases simultanously we will simply talk of the cohomological K-types of V and W ,
respectively. We will show that the cohomological K-types are indeed the smallest
K-types of their respective representation. The fact that thus all smaller K-types
do not occur will be useful in Section 4.5.
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so2-modules. Let σ be in Coh(GL2, ν̌) for a dominant weight ν ∈ X+
0 (T2). We

are interested in the SO2(R)-types of W . By Lemma 6.1.1 of [Mah] the lowest
SO2(R)-types of σ∞ are isomorphic to D ′

ν1−ν2+2 resp. D ′
ν2−ν1−2 as so2-modules. On

the other hand Mν,C is of dimension ν1 − ν2 + 1 and decomposes into SO2(R)-types
D ′

ν1−ν2
,D ′

ν1−ν2−2, . . . ,D
′
ν2−ν1

(cf. Theorem 2.5.4 of [Bum1]). Because of the one-
dimensionality of irreducible so2-modules dualisation is easy to control, so that the
same is true for M̌ν,C. By the Clebsch-Gordon Formula for so2 we have

D ′
k ⊗D ′

l
∼= D ′

k+l

for two irreducible so2-modules D ′
k and D ′

l with highest weights k resp. l. Hence,
we have to study

(D ′
ν1−ν2+2 ⊕D ′

ν2−ν1−2)⊗ (D ′
ν1−ν2

⊕D ′
ν1−ν2−2 ⊕ · · · ⊕D ′

ν2−ν1
)

∼=
2(ν1−ν2+1)⊕

k=2

D ′
k ⊕

−2⊕
l=−2(ν1−ν2+1)

D ′
l .

Note, that like in Section 1.5 we have ν1 ≥ ν2. Altogether we see like in the proof of
Lemma 6.1.1 of [Mah] that the smallest SO2(R)-types of W are isomorphic to D ′

−2

and D ′
2 as so2-modules, and both occur with multiplicity one. Those are just µ−2

and µ2.

so3-modules. Let π be in Coh(GL3, µ̌) for a dominant weight µ ∈ X+
0 (T3). We

want to show, that the cohomological SO3(R)-type µ3 of V is indeed the smallest
SO3(R)-type. By Lemma 6.1.1 of [Mah] the lowest SO3(R)-type of π∞ is isomor-
phic to Dµ1−µ3+3 as an so3-module. We still need to study the SO3(R)-types of
M̌µ,C. Therefor we split up M̌µ,C into the irreducible highest weight representation
Γµ1−µ2,µ2−µ3 of SL3(C) and the power det−

w
2 of the determinant (cf. §15.5 of [FH]

and (1.2)). Note, that M̌µ,C and Γµ1−µ2,µ2−µ3 have the same SO3(R)-types, and
consider

Proposition 4.1 Let a, b ∈ N. Then the biggest SO3(R)-type of Γa,b is Da+b. It
occurs with multiplicity one.

Proof. Let Vs be the standard representation of so3(C) on C3. Then so3(C) acts on
the vector space Syma V̌s of homogeneous polynomials of degree a in the variables
X, Y, Z via

φa(g)P (

XY
Z

) =
d

dt
P (e−tg

XY
Z

)|t=0.
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The weights are given by all expressions of the kind (l1 − k1)e1 where we have
k0 + k1 + l1 = a with k0, k1, l1 ∈ N. The belonging weight vectors are given by
(X + iY )k1(X − iY )l1Zk0 . It is just a question of thorough bookkeeping to find

Syma V̌s
∼= Da ⊕Da−2 ⊕ · · · ⊕Da−2ba

2
c.

Analogously, we get

Syma Vs
∼= Da ⊕Da−2 ⊕ · · · ⊕Da−2ba

2
c.

By (13.5) of [FH] we have

Syma Vs ⊗ Symb V̌s =

min(a,b)⊕
i=0

Γa−i,b−i.

The assertion follows by the Clebsch-Gordon formula for so3 (cf. [Bou], VIII, §9)10.
�

So the biggest SO3(R)-type of M̌µ,C is Dµ1−µ3 . Again by the Clebsch-Gordon formula
we get that D3 is the smallest SO3(R)-type of V . It occurs with multiplicity one.

4.3 Splitting up the pairing

For the moment let n ≥ 3 be arbitrary again. Assume that s = 1
2

is a critical value
of the pair (π, σ). In order to show that the value Pλ,∞(1

2
) from Theorem 1 does not

vanish we study a pairing

B :

(
bn∧
℘̃∗n ⊗W0(π, τ)⊗ M̌µ,C

)
×

(
bn−1∧

℘̃∗n−1 ⊗W0(σ, τ̄)⊗ M̌ν,C

)
→ C

very similar to the pairing Bλ of Chapter 3 that takes the whole left side

wp(1)vp(1)Pλ,∞

(
1

2

) n−1∏
i=1

G(χi
p)(1− p−1)

1− p−i
L(π ⊗ χ, σ;

1

2
)

of the formula in the theorem as a value. We construct B as a tensor product of
three pairings. In this way we can split up B and study our non-vanishing problem
in the factors. Those are:

10Note, that our so3-module Dk relates to the sl2-module V (2k) in Bourbaki.
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The archimedean Rankin-Selberg pairing. We define a pairing

Bλ,∞ : (W0(π∞, τ∞)⊗ M̌µ,C)× (W0(σ∞, τ̄∞)⊗ M̌ν,C)→ C

on the infinite parts of the Whittaker spaces by setting

Bλ,∞(
∑
m

wm,∞ ⊗m,
∑
m′

vm′,∞ ⊗m′) =
∑
m,m′

Pwm,∞,vm′,∞

(
1

2

)
⊗ λ(m⊗m′).

Here, m and m′ run through bases of M̌µ,C resp. M̌ν,C like in Section 3.6, and it
holds

Ψ(wm,∞, vm′,∞; s) = Pwm,∞,vm′,∞
(s) · L(π∞, σ∞; s)

like in Chapter 2. We will call Bλ,∞ the archimedean Rankin-Selberg pairing.

The non-archimedean Rankin-Selberg pairing. On the finite parts of the Whit-
taker spaces we let

Bf : W0(πf , τf )×W0(σf , τ̄f )→ C

be the pairing given by

Bf (wf , vf ) =
∏
`-∞

ψ(w`, v`;
1

2
).

We will call Bf the non-archimedean Rankin-Selberg pairing.

The pairing on the exterior powers. A problem in defining a pairing with values
in C on the exterior powers of ℘̃n resp. ℘̃n−1 is to make the arguments compatible.
However, this is a problem we solved in Chapter 3: The differentials ωI with |I| = bn
generate

∧bn ℘̃∗n, and the differentials ω′I′ with |I ′| = bn−1 generate
∧bn−1 ℘̃∗n−1. Thus

a pairing of the sought-after type is given by

B∧ :

{∧bn ℘̃∗n ×
∧bn−1 ℘̃∗n−1 → C,

(ωI , ω
′
I′) 7→ εI,I′ .

We may now define B by putting

B(w,w′) :=
∑
I,I′

Bλ,∞(
∑
m

wI,m,∞⊗m,
∑
m′

vI′,m′,∞⊗m′) ·Bf (wI,f , vI′,f ) ·B∧(ωI , ω
′
I′),

where we have w =
∑

|I|=bn

∑
mwI,mωI ⊗m and w′ =

∑
|I′|=bn−1

∑
m′ vI′,m′ω′I′ ⊗m′.

The next thing now is to determine the relation between B and Bλ. In order to
do this we compare the special L-values L(π ⊗ χ, σ; 1

2
) with zeta-integrals like they
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occur as values of B. Let wj,I,m resp. vj,I′,m′ be the Whittaker functions belonging
to the automorphic forms φj,I,m resp. ϕj,I′,m′ from the proof of Theorem 1. From
Chapter 2 we already know the “good tensors” t0` for (π`, σ`) at an arbitrary prime
` 6= p fulfilling

t0` =
∑

j

wj,` ⊗ vj,`,

where j runs through a finite sum independently of `. Analogously, χ`(det) · t0` is a
“good tensor” for (π` ⊗ χ`, σ`). Like in the proof of the Global Birch Lemma (cf.
[KMS]) it follows

L(π` ⊗ χ`, σ`; s) = Ψ(χ`(det) · t0` ; s) for ` 6= p,∞.

At the place p we have
L(πp ⊗ χp, σp; s) = 1

by page 113 of [KMS]. On the other hand, if we put

wj,p,χp(g) = χp(det(g))
∑

u

n−1∏
i=1

χ̃(ui
i)wj,p(gu

ϕ−1

),

where the summation over u is taken over a representative system for Un(Zp) modulo
Un(Zp)

ϕ, we get

ψ(wj,p,χp , vj,p; s) = wj,p(1)vj,p(1)
n−1∏
i=1

G(χi
p)(1− p−1)

1− p−i

by Proposition 3.1 of [loc.cit.].

We still have to study L(π∞⊗χ∞, σ∞; s). Note, that this is the same as L(π∞, σ∞; s),
since we chose χ∞ to be trivial. The latter value can be calculated via Langlands cor-
respondence at infinity (cf. Chapter 5). As a product of Γ-values L(π∞⊗χ∞, σ∞; s)
has no zeroes, and since we assumed s = 1

2
to be a critical value L(π∞⊗ χ∞, σ∞; 1

2
)

is indeed a number in C×. So without loss of generality we may renormalise some
Whittakerfunctions and ignore the factor L(π∞ ⊗ χ∞, σ∞; 1

2
).

Now that we know the respective values of the zeta integrals and the local Rankin-
Selberg L-series at all places we use this information to find Whittaker functions
such that L(π ⊗ χ, σ; 1

2
) occurs as a factor in the associated value of B. If we set

wj,f,χ = wp,χp ·
∏

` 6=p,∞

χ`(det)wj,`

we may define

wj,χ =
∑
|I|=bn

∑
m

wj,f,χw∞,I,mωI ⊗m and vj =
∑

|I′|=bn−1

∑
m′

vj,fv∞,I′,m′ω′I′ ⊗m′.
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Compare with η and η′ in Section 3.6. By Proposition 3.1 of [KMS] and (3.10) we
get

B(wj,χ, vj) = Pλ,∞

(
1

2

)
·wp(1)vp(1)

n−1∏
i=1

G(χi
p)(1− p−1)

1− p−i
·
∏

` 6=p,∞

ψ(χ`(det)wj,`, vj,`;
1

2
).

All in all we have∑
j

B(wj,χ, vj) = wp(1)vp(1)Pλ,∞

(
1

2

) n−1∏
i=1

G(χi
p)(1− p−1)

1− p−i

∏
` 6=p,∞

Ψ(χ`(det) · t0` ;
1

2
)

= wp(1)vp(1)Pλ,∞

(
1

2

) n−1∏
i=1

G(χi
p)(1− p−1)

1− p−i
· L(π ⊗ χ, σ;

1

2
).

Like in the proof of the Global Birch Lemma we may express the values B(wj,χ, vj)
as a sum of u-shifts, where u runs through a representative system of Un(Zp) modulo
Un(Zp)

ϕ.

Remark Because of our choice of Whittaker functions the image of B∧ ⊗ Bλ,∞
restricted to the one-dimensional cohomology modules

Hbn
gK(gln, Kn,∞; W0(π∞, τ∞)⊗ M̌µ,C)On(R)

and
H

bn−1

gK (gln−1, Kn−1,∞; W0(σ∞, τ̄∞)⊗ M̌ν,C)On−1(R)

from Chapter 3 is spanned by Pλ,∞(1
2
).

To prove, that Pλ,∞(1
2
) does not vanish, it thus suffices to show that the restriction

of B∧⊗Bλ,∞ to cohomology is not trivial. In the case n = 3 and for trivial coefficient
systems this will be done in the following sections.

4.4 The archimedean Rankin-Selberg pairing

In this section we want to study a special case of the archimedean Rankin-Selberg
pairing Bλ,∞ we introduced in the last section.11 So from now on assume that the
GLn−1-module M̌µ,C contains the contragredient of M̌ν,C. The manifest linear form
λ : M̌µ,C⊗ M̌ν,C → C; m⊗m′ 7→ m′(m) is defined over F as well and is compatible
with the respective module structures, so that all results up to now still hold. If
we talk about this special case, we will omit the subscript λ and write B∞ for our
pairing. We show the following

11Note, that this case contains the case of trivial coefficient systems we will be studying from
Section 4.5 on.
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Proposition 4.2 The archimedean Rankin-Selberg pairing B∞ fulfils the following
properties:

(a) It is (gln−1,On−1(R))-invariant.

(b) B∞(V,W ) 6≡ 0.

Proof. We first show that the zeta integral ψ(w∞, v∞; 1
2
) is (gln−1,On−1(R))-invariant

as a function on the Whittaker models. Therefor we have to show its On−1(R)-
invariance12, i. e.

ψ(π∞(h)w∞, σ∞(h)v∞;
1

2
) = ψ(w∞, v∞;

1

2
)

for all h ∈ On−1(R), and its gln−1-equivariance, i. e.

ψ(dπ∞(X)w∞, v∞;
1

2
) + ψ(w∞, dσ∞(X)v∞;

1

2
) = 0

for allX ∈ gln−1. Here, dπ∞ and dσ∞ are the infinitesimal representations belonging
to the GLn−1(R)-representations π∞ resp. σ∞, that is for all X ∈ gln−1 we have

dπ∞(X)(w∞) =
d

dt
(π∞(exp(tX))w∞) |t=0

and

dσ∞(X)(v∞) =
d

dt
(σ∞(exp(tX))v∞) |t=0.

We consider the Rankin-Selberg zeta integral

ψ(w∞, v∞; s) =

∫
Un−1(R)\GLn−1(R)

w∞

(
g

1

)
v∞(g)| det(g)|s−

1
2dg

on W (π∞, τ∞) × W (σ∞, τ̄∞). The group GLn−1(R) acts on the tensor product of
Whittaker spaces via right translation, so that we have

ψ(π∞(h)w∞, σ∞(h)v∞; s) =

∫
Un−1(R)\GLn−1(R)

w∞

(
gh

1

)
v∞(gh)| det(g)|s−

1
2dg

for every h ∈ GLn−1(R). Now we change the integration variable from g to gh−1.
Because of the transitivity of the action on the quotient Un−1(R)\GLn−1(R) we get

ψ(π∞(h)w∞, σ∞(h)v∞; s) = | det(h)|
1
2
−s · ψ(w∞, v∞; s).

12Like in Chapter 3, we view π∞ as a GLn−1(R)-module via j.
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Evidently ψ(w∞, v∞; s) is SL±
n−1(R)-invariant, so that the On−1(R)-invariance of ψ

on the product W0(π∞, τ∞) × W0(σ∞, τ̄∞) of the On−1(R)-finite Whittaker spaces
follows.

In the special case s = 1
2
, the whole action of GLn−1(R) is trivial, meaning

ψ(π∞(h)w∞, σ∞(h)v∞;
1

2
) = ψ(w∞, v∞;

1

2
) ∀h ∈ GLn−1(R). (4.1)

We use this fact to prove the gln−1-equivariance of ψ(w∞, v∞; 1
2
). We have

ψ(dπ∞(X)w∞, v∞;
1

2
) =

∫
d

dt
w∞

(
g · exp(tX)

1

)∣∣∣∣
t=0

v∞(g)dg

=
d

dt

∫
w∞

(
g · exp(tX)

1

)
v∞(g)dg

∣∣∣∣
t=0

(4.1)
=

d

dt

∫
w∞

(
g

1

)
v∞(g · exp(−tX))dg

∣∣∣∣
t=0

=
d

d(−t)

∫
w∞

(
g

1

)
v∞(g · exp(tX))dg

∣∣∣∣
t=0

= −ψ(w∞, dσ∞(X)v∞;
1

2
),

where integration is always over Un−1(R)\GLn−1(R). All in all we find that
ψ(w∞, v∞; 1

2
) is (gln−1,On−1(R))-invariant. Since we have

ψ(w∞, v∞;
1

2
) = Pw∞,v∞

(
1

2

)
· L(π∞, σ∞;

1

2
),

and L(π∞, σ∞; 1
2
) does not depend on the choice of our Whittaker functions, the

same is true for Pw∞,v∞

(
1
2

)
.

Because of our choice of M̌µ,C and M̌ν,C we get for all h ∈ GLn−1(R), for allm ∈ M̌µ,C

and all m′ ∈ M̌ν,C that %ν(h)m
′ (%µ(

(
h

1

)
)m) = m′(m) by (4.1) of [Kna2]. So in our

case λ(m⊗m′) is invariant under the action of GLn−1(R), thus On−1(R)-invariant.
The gln−1-equivariance follows like above.

So up to now we identified B∞ as the tensor product of two (gln−1,On−1(R))-
invariant pairings. But then, in general, if we have two (gln−1,On−1(R))-invariant
pairings

〈·, ·〉W : W1 ×W2 → C and 〈·, ·〉M : M1 ×M2 → C

of (gln−1,On−1(R))-modules, the pairing

〈·, ·〉 : (W1 ⊗M1)× (W2 ⊗M2)→ C
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given by
〈w1 ⊗m1, w2 ⊗m2〉 := 〈w1, w2〉W · 〈m1,m2〉M

for all w1 ∈ W1, w2 ∈ W2, m1 ∈M1, m2 ∈M2 is (gln−1,On−1(R))-invariant as well.
In what concerns the On−1(R)-invariance, this is obvious. The gln−1-equivariance
follows from

〈X(w1 ⊗m1), w2 ⊗m2〉 = 〈Xw1 ⊗m1 + w1 ⊗Xm1, w2 ⊗m2〉
= 〈Xw1 ⊗m1, w2 ⊗m2〉+ 〈w1 ⊗Xm1, w2 ⊗m2〉
= 〈Xw1, w2〉W · 〈m1,m2〉M + 〈w1, w2〉W · 〈Xm1,m2〉M
= −〈w1, Xw2〉W · 〈m1,m2〉M − 〈w1, w2〉W · 〈m1, Xm2〉M
...

= −〈w1 ⊗m1, X(w2 ⊗m2)〉,

where w1, w2,m1,m2 are like above, and X ∈ gln−1 is arbitrary. Eventually, this
proves (a).

To show (b) it suffices to find Whittaker functions in V andW that B∞ does not send
to zero. Recall that we fixed bases of M̌µ,C and M̌ν,C in Chapter 3. Let m ∈ M̌µ,C

and m′ ∈ M̌ν,C be such basis vectors fulfilling λ(m ⊗ m′) 6= 0. By Theorem 1.2
of [CP2] we are able to choose Whittaker functions wm,∞ in W0(π∞, τ∞) and vm′,∞
in W0(σ∞, τ̄∞) such that Pwm,∞,vm′,∞

(
1
2

)
does not vanish. Hence, wm,∞ ⊗ m and

vm′,∞ ⊗m′ are suitable choices of elements of V and W such that B∞(V,W ) 6≡ 0,
so that we have showed the proposition. �

4.5 Reduction to the cohomological K-types

We return to the case n = 3 now. Further, we assume M̌µ,C and M̌ν,C to be trivial
from now on. In that way V and W are both irreducible. The main goal is to show
that B∞ restricted to the infinity parts of the cohomology modules on which Bλ

was defined in Chapter 3 does not vanish. In this section we start by showing the
following

Theorem 4.3 The pairing B∞ is not trivial on the K-types supporting the coho-
mology, that is

B∞(Vµ3 ,Wµ2) 6≡ 0 and B∞(Vµ3 ,Wµ−2) 6≡ 0.

Note, that the theorem holds for an arbitrary non-trivial (gl2,O2(R))-invariant pair-
ing on V ×W with values in C instead of the archimedean Rankin-Selberg pairing
B∞.
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Proof. Because of the gl2-equivariance of B∞ and the irreducibility of W as gl2-
module we get

B∞(V,W ) = B∞(V,Wµ2) = B∞(V,Wµ−2).

But then we assumed B∞(V,W ) 6= 0, so that the Theorem follows from Proposition
4.4 below, which we could prove the same for µ2 instead of µ−2. �

Proposition 4.4 B∞(V,Wµ2) = B∞(Vµ3 ,Wµ−2).

Proof. Let U(sl3) be the universal envelopping algebra of sl3, and let p : T(sl3) →
U(sl3) be the belonging projection, where T(sl3) is the tensor algebra. Since each
element of T(sl3) can be found as a representative of an element of p(

⊕∞
r=0

⊗r ℘̃3),
it holds

p(
∞⊕

r=0

r⊗
℘̃3) = U(sl3). (4.2)

This can be shown by proving that the left side contains a basis of sl3. But then,
℘̃3 is obviously contained, and we have

H =
1

48
i[Z−1, Z1], E1 =

1

48
[Z0, Z1], E−1 =

1

8
[Z−1, Z0].

From now on we write ℘̃r
3 for ⊗r℘̃3.

A direct implication of (4.2) is V =
∑

r≥0 ℘̃
r
3 . Vµ3 , where the dot denotes the action

of U(sl3) on V . Thus the proof of Propostion 4.4 is reduced to showing that

∀r ∈ N0 : B∞(℘̃r
3 . Vµ3 ,Wµ2) ⊆ B∞(Vµ3 ,Wµ2).

We will do this by induction on r, where we will need the cases r − 1 and r − 2 in
the step. Therefore we will start with r = 1 and r = 2.

Since W is irreducible as a gl2-module, it is generated by a single element w−2 of,
say, weight −2e1. Like in the proof of the theorem from the gl2-equivariance of B∞
follows

B∞(Vµ3 ,Wµ−2) = B∞(Vµ3 , w−2).

Now consider an arbitrary v ∈ Vµ3 . Since Vµ3 is the direct sum of its weight spaces
and because of the bilinearity of B∞ we may without loss of generality assume v to
have a weight wt(v). But then we have

wt(v)B∞(v, w−2) = B∞(H . v, w−2) = −B∞(v,H .w−2) = 2B∞(v, w−2),

so that B∞(v, w−2) = 0 if wt(v) 6= 2e1. So all we have to study is the 2e1 weight
space of Vµ3 .
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The case r = 1. By the Clebsch-Gordan Formula for so3 (cf. [Bou], VIII, §9) we
have

℘̃3 ⊗ Vµ3
∼= D2 ⊗D3

∼= D1 ⊕D2 ⊕D3 ⊕D4 ⊕D5.

Since D1 has no 2e1 weight space, the 2e1 weight space of ℘̃3⊗Vµ3 is four dimensional.
A set of generators is given by

Z0 ⊗ v2,

Z2 ⊗ v0,

Z2 ⊗ v0 − Z1 ⊗ v1 + Z0 ⊗ v2 − Z−1 ⊗ v3 ∈ (℘̃3 ⊗ Vµ3)D2 ,

E−1(Z2 ⊗ v1 − Z1 ⊗ v2 + Z0 ⊗ v3) ∈ (℘̃3 ⊗ Vµ3)D3 .

Recall from Section 4.2 that D3 is the smallest SO3(R)-type in V . On the one
hand, this is why Z2 . v0 − Z1 . v1 + Z0 . v2 − Z−1 . v3 ∈ (℘̃3 . Vµ3)D2 is zero. On the
other hand E−1(Z2 . v1 −Z1 . v2 +Z0 . v3) lies in the 2e1 weight space of (℘̃3 . Vµ3)D3 ,
which is isomorphic to D3, since the smallest K-type always occurs with multiplicity
one. But then we know that v2 is a basis of the 2e1 weight space of D3, so that
E−1(Z2 . v1 − Z1 . v2 + Z0 . v3) lies in C · v2. Thus it holds

(℘̃3 . Vµ3)2e1 ⊆ 〈Z0 . v2, Z2 . v0〉C + C · v2.

From the gl2-equivariance of B∞ it follows

B∞(Z0 . v, w) = B∞(v, Z0 . w) = 0 ∀v ∈ V,w ∈ W,
B∞(Z2 . v, w−2) = B∞(v, Z2 . w−2) = 0 ∀v ∈ V, (4.3)

where we have Z0 . w = 0 because of the triviality of the central character of W , and
Z2 . w−2 ∈ (℘̃2 .W )D ′

0
= 0 since D ′

2 is the minimal SO2(R)-type of W by Section 4.4.
So the C-vector space generated by Z0 . v2 and Z2 . v0 lies in the kernel of B∞(·, w−2),
which we denote by a. All in all, this proves the case r = 1.

The case r = 2. A set of generators of the 2e1 weight space of ℘̃2
3 . Vµ3 is given by

{ZiZj . vk | −2 ≤ i, j ≤ 2, −3 ≤ k ≤ 3, i+ j + k = 2}.

Like in the case r = 1 we will show that all those generators lie in a+C ·v2. By (4.3)
we already know this in the case that i or j is 0 or 2. So we only have to consider

{Z−2Z1 . v3, Z−1Z1 . v2, Z1Z−2 . v3, Z1Z−1 . v2, Z
2
1 . v0}.

Since from [Z1, Z−2] = −24E−1 and [Z1, Z−1] = 48iH we have [Z1, Z−2] . v3 ∈ C · v2

and [Z1, Z−1] . v2 ∈ C · v2, it even suffices to study

{Z−2Z1 . v3, Z1Z−1 . v2, Z
2
1 . v0}.
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By the Lemma of Schur we have κ(X, Y ) = 6 · tr(XY ) for the Killing form κ on so3.
From this we can calculate the Casimir operator C3 ∈ U(sl3) explicitly. It holds

C3 = − 1

12

(
2i ·H +H2 + E1E−1 −

1

48
· Z2

0 −
1

24
· Z−2Z2 +

1

24
· Z−1Z1

)
.

Since the infinitesimal character of V is trivial, C3 annihilates V , and we have

C3 . Vµ3 = 0.

Because of [Z−2, Z2] = −96i ·H and (4.3) it follows

Z−1Z1 . Vµ3 ⊆ a + C · v2, (4.4)

and even

Z−1Z1 . V ⊆ U(so3) + a + C · v2. (4.5)

Since D3 is the smallest SO3(R)-type of V , we have (℘̃3 . Vµ3)D1+D2 = 0, thus

Z2 . v−1 − Z1 . v0 + Z0 . v1 − Z−1 . v2 + Z−2 . v3 = 0,
Z2 . v0 − Z1 . v1 + Z0 . v2 − Z−1 . v3 = 0.

We apply E−1 on the latter equation. Using E−1Za = [E−1, Za] + ZaE−1 and the
known actions of E−1 on Vµ3 and ℘̃3, we get

Z2 . v−1 − Z1 . v0 + Z0 . v1 − Z−1 . v2 + Z−2 . v3 = 0,
−12Z2 . v−1 + 8Z1 . v0 − 4Z0 . v1 + 4Z−2 . v3 = 0.

(4.6)

Now, on the one hand we have

0 = (−12Z2 . v−1 + 8Z1 . v0 − 4Z0 . v1 + 4Z−2 . v3)

−4(Z2 . v−1 − Z1 . v0 + Z0 . v1 − Z−1 . v2 + Z−2 . v3)

= 4Z−1 . v2 − 8Z0 . v1 + 12Z1 . v0 − 16Z2 . v−1

= Z1(4Z−1 . v2 − 8Z0 . v1 + 12Z1 . v0 − 16Z2 . v−1),

from which we get

Z2
1 . v0 ∈ a + C · v2

by (4.3) and (4.4). On the other hand applying Z1 on the first equation in (4.6) we
find

Z1Z−2 . v3 = −Z1Z2 . v−1 + Z2
1 . v0 − Z1Z0 . v1 + Z1Z−1 . v2,

which lies in a+C ·v2 by the anteceding. This shows the assertion in the case r = 2.
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Induction. Now assume that r > 2 and for all t ≤ r − 1 we have

℘̃t
3 . Vµ3 ⊆ a + C · v2.

In order to show the same for t = r we have to consider terms like

Zk1 · · ·Zkr . vd ∈ ℘̃r
3 . Vµ3 ,

where k1, . . . , kr, d are natural numbers whose sum is 2, since we are still studying
the 2e1 weight space. From (4.3) we already know that

Z0℘̃
r−1
3 . Vµ3 + Z2℘̃

r−1
3 . Vµ3 ⊆ a,

leading to
℘̃r−1

3 Z0 . Vµ3 + ℘̃r−1
3 Z2 . Vµ3 ⊆ a + C · v2

because of [Zk, Zl] ∈ so3 and the induction hypothesis. Thus is suffices to study
terms of the form

Za
1Z

b
−1Z

c
−2 . vd,

where a, b, c are natural numbers whose sum equals r, and it holds a−b−2c+d = 0.

From (4.4) and the induction hypothesis we get that for all u ∈ ℘̃r−2
3 and all v ∈ Vµ3

the terms Z−1Z1u . v and Z1Z−1u . v lie in a + C · v2. Since [Zk, Zl] ∈ so3, it follows
that it suffices to study the case where a = 0 or b = 0. But then, the case a = 0
does not occur, since we would have b+ c = r ≥ 3 and −b− 2c+ d = 2. Note, that
d ≤ 3, since 3e1 is the highest weight in Vµ3 . So we only have to study terms like

Za
1Z

c
−2 . vd, (4.7)

where a > 0 and c are natural numbers whose sum equals r, and it holds a−2c+d =
0.

We still have (℘̃3 . Vµ3)D1+D2 = 0, and we want to get some relations in ℘̃3 . Vµ3 from
that. Therefore, we study bases of the D1- and the D2-part of ℘̃3⊗Vµ3 . The D1-part
has the highest weight vectors

Z2 ⊗ v−1 − Z1 ⊗ v0 + Z0 ⊗ v1 − Z−1 ⊗ v2 + Z−2 ⊗ v3 for 1e1,
E−1(Z2 ⊗ v−1 − Z1 ⊗ v0 + Z0 ⊗ v1 − Z−1 ⊗ v2 + Z−2 ⊗ v3) for 0e1,
E2
−1(Z2 ⊗ v−1 − Z1 ⊗ v0 + Z0 ⊗ v1 − Z−1 ⊗ v2 + Z−2 ⊗ v3) for −1e1.

The D2-part has the highest weight vectors

Z2 ⊗ v0 − Z1 ⊗ v1 + Z0 ⊗ v2 − Z−1 ⊗ v3 for 2e1,
E−1(Z2 ⊗ v0 − Z1 ⊗ v1 + Z0 ⊗ v2 − Z−1 ⊗ v3) for 1e1,
E2
−1(Z2 ⊗ v0 − Z1 ⊗ v1 + Z0 ⊗ v2 − Z−1 ⊗ v3) for 0e1,

E3
−1(Z2 ⊗ v0 − Z1 ⊗ v1 + Z0 ⊗ v2 − Z−1 ⊗ v3) for −1e1,

E4
−1(Z2 ⊗ v0 − Z1 ⊗ v1 + Z0 ⊗ v2 − Z−1 ⊗ v3) for −2e1.
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Like in (4.6) we get the relations

Z2 . v−1 − Z1 . v0 + Z0 . v1 − Z−1 . v2 + Z−2 . v3 = 0 for 1e1,
5Z2 . v−2 − 4Z1 . v−1 + 3Z0 . v0 − 5Z−1 . v1 + Z−2 . v2 = 0 for 0e1,
15Z2 . v−3 − 10Z1 . v−2 + 6Z0 . v−1 − 21Z−1 . v0 − 5Z−2 . v1 = 0 for −1e1

for the D1-part and

Z2 . v0 − Z1 . v1 + Z0 . v2 − Z−1 . v3 = 0 for 2e1,
3Z2 . v−1 − 2Z1 . v0 + Z0 . v1 − Z−2 . v3 = 0 for 1e1,
5Z2 . v−2 + Z−1 . v1 − Z−2 . v2 = 0 for 0e1,
15Z2 . v−3 + 10Z1 . v−2 + 6Z−1 . v0 − 3Z−2 . v1 = 0 for −1e1,
10Z1 . v−3 + 5Z0 . v−2 + 6Z−1 . v−1 − Z−2 . v0 = 0 for −2e1

for the D2-part. Applying (4.7) we get for an arbitrary u ∈ ℘̃r−1
3 :

uZ1 . v0 − uZ−2 . v3 ≡ 0 mod (a + C · v2) for 1e1,
−4uZ1 . v−1 + uZ−2 . v2 ≡ 0 mod (a + C · v2) for 0e1,
2uZ1 . v−2 + uZ−2 . v1 ≡ 0 mod (a + C · v2) for −1e1

(4.8)

and
uZ1 . v1 ≡ 0 mod (a + C · v2) for 2e1,
2uZ1 . v0 + uZ−2 . v3 ≡ 0 mod (a + C · v2) for 1e1,
uZ−2 . v2 ≡ 0 mod (a + C · v2) for 0e1,
10uZ1 . v−2 − 3uZ−2 . v1 ≡ 0 mod (a + C · v2) for −1e1,
10uZ1 . v−3 − uZ−2 . v0 ≡ 0 mod (a + C · v2) for −2e1.

(4.9)

Note, that we still keep track of the weight of the terms in ℘̃3⊗Vµ3 we started with.
We show that every term uZk . vd like above vanishes modulo a + C · v2. Therefore,
we distinguish the cases where k + d takes different values. From the case r = 1 we
already know that k + d only varies between −5 and 5. All in all we thus have to
consider eleven cases. Five of those follow directly from the antecedent:

� Weight −1e1. From (4.8) and (4.9) we get

uZ1 . v−2 ≡ uZ−2 . v1 ≡ 0 mod (a + C · v2).

Again, by (4.7) we are done in this case.

� Weight 0e1. From (4.8) and (4.9) we get

uZ−2 . v2 ≡ uZ1 . v1 ≡ 0 mod (a + C · v2).

By (4.7) we are done in this case.
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� Weight 1e1. From (4.8) and (4.9) we get

uZ1 . v0 ≡ uZ−2 . v3 ≡ 0 mod (a + C · v2).

Again, by (4.7) we are done in this case.

� Weight 2e1. From (4.9) we get

uZ1 . v1 ≡ 0 mod (a + C · v2).

Since k = −2 can not happen in this case and by (4.7) we are done.

� Weight 5e1. Neither k = −2 nor k = 1 can happen in this case. By (4.7) we
are done.

The rest can be reduced to those five cases as follows:

� Weight 3e1. Since k = −2 can not happen in this case and by (4.7) we only
have to show that uZ1 . v2 lies in a + C · v2. We know that u is of the form
Za

1Z
c
−2 with a + c = r − 1 ≥ 2 and a − 2c + 1 + 2 = 2. It follows a = 2c − 1

and c ≥ 1. We use this information to study uZ1 . v2 modulo a + C · v2:

uZ1 . v2 ≡ Za+1
1 Zc

−2 . v2 ≡ (Za+1
1 Zc−1

−2 )Z−2 . v2.

Since we already studied the case of weight 0e1, we are done.

� Weight 4e1. Since k = −2 can not happen in this case and by (4.7) we only
have to show that uZ1 . v3 lies in a + C · v2. We know that u is of the form
Za

1Z
c
−2 with a+ c = r− 1 ≥ 2 and a− 2c+1+3 = 2. It follows a = 2c− 2 and

3c ≥ 4, thus c ≥ 2. We use this information to study uZ1 . v3 modulo a+C ·v2:

uZ1 . v3 ≡ Za+1
1 Zc

−2 . v3 ≡ (Za+1
1 Zc−1

−2 )Z−2 . v3.

Since we already studied the case of weight 1e1, we are done.

� Weight −2e1. Because of (4.7) we only have to study uZ−2 . v0 and uZ1 . v−3;
because of (4.9) it even suffices to show that uZ−2 . v0 lies in a+C ·v2. Without
loss of generality let therefor u be of the form Za

1Z
c
−2 with a + c = r − 1 ≥ 2

and a − 2c − 2 + 0 = 2. Then we have a = 4 + 2c ≥ 4, so that we have with
the case of weight 1e1

uZ−2 . v0 = Za
1Z

c+1
−2 . v0 ≡ (Za−1

1 Zc+1
−2 )Z1 . v0 ≡ 0 mod (a + C · v2).

� Weight −3e1. Again by (4.7), we only have to consider uZ−2 . v−1. Without
loss of generality let u = Za

1Z
c
−2 with a+ c = r− 1 ≥ 2 and a− 2c− 2− 1 = 2.

Then it holds a = 5 + 2c ≥ 5. It follows with the case of weight 0e1

uZ−2 . v−1 ≡ (Za−1
1 Zc+1

−2 )Z1 . v−1 ≡ 0 mod (a + C · v2).



56 Cohomological Representations and Twisted Rankin-Selberg Convolutions

� Weight −4e1. By (4.7), the only interesting terms are of the form uZ−2 . v−2.
Without loss of generality let u = Za

1Z
c
−2 with a+ c = r− 1 ≥ 2 and a− 2c−

2− 2 = 2, so that a = 6 + 2c ≥ 6. It follows with the case of weight −1e1

uZ−2 . v−2 = (Za−1
1 Zc+1

−2 )Z1 . v−2 ≡ 0 mod (a + C · v2).

� Weight −5e1. We only have to study uZ−2 . v−3. For u = Za
1Z

c
−2 with a+ c =

r − 1 ≥ 2 and a − 2c − 2 − 3 = 2 we have a = 7 + 2c ≥ 7, so that it follows
with the case of weight −2e1

uZ−2 . v−3 = (Za−1
1 Zc+1

−2 )Z1 . v−3 ≡ 0 mod (a + C · v2).

All in all, this proves Proposition 4.4. �

4.6 Reduction to cohomology

We still want to show that for n = 3 the value Pλ,∞(1
2
) in Theorem 1 does not

vanish. Up to now we showed that B∞ does not vanish on the cohomological K-
types. Recalling the remark in Section 4.3 we want to prove, that B∧⊗B∞ restricted
to cohomology is still nontrivial. Like in Section 3.6 we may write(

2∧
℘̃∗3 ⊗ Vµ3

)SO3(R)

ε

resp.

(
℘̃∗2 ⊗ (Wµ−2 ⊕Wµ2)

)SO2(R)

ε′

for the respective cohomology spaces. This invites us to do the proof in two steps.
At first we show

Proposition 4.5 (B∧ ⊗B∞)(
(∧2 ℘̃∗3 ⊗ Vµ3

)so3
,
(
℘̃∗2 ⊗ (Wµ−2 ⊕Wµ2)

)so2) 6≡ 0.

Proof. A basis of the so3-module
∧2 ℘̃3 is given by

5Z1 ∧ Z2,
5Z0 ∧ Z2,
3Z−1 ∧ Z2 + 2Z0 ∧ Z1, Z0 ∧ Z1 − Z−1 ∧ Z2,
2Z−1 ∧ Z1 + Z−2 ∧ Z2, Z−1 ∧ Z1 − 2Z−2 ∧ Z2,
Z−1 ∧ Z0 + Z−2 ∧ Z1, 3Z−1 ∧ Z0 − 2Z−2 ∧ Z1,
Z−2 ∧ Z0,
Z−2 ∧ Z−1,

(4.10)

whence
∧2 ℘̃3 is isomorphic to D1 ⊕ D3 as an so3-module. The same is true for

its dual
∧2 ℘̃∗3, since ℘̃3

∼= D2 is self-contragredient as an so3-module. To show the
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latter, let H,E1, E−1 act on ℘̃∗3 with the basis {(−1)aZ∗
a | Z∗

a(Zb) = δab ∀a, b ∈
{−2,−1, 0, 1, 2}} and compare the results with the values in Section 4.1. Note, that
(−1)aZ∗

a has weight −ae1. The cohomological SO3(R)-type µ3 of V is isomorphic
to D3. So by the Clebsch-Gordon formula (cf. [Bou], VIII, §9) we get

2∧
℘̃∗3 ⊗ Vµ3

∼= (D1 ⊕D3)⊗D3

∼= (D2 ⊕D3 ⊕D4)⊕ (D0 ⊕D1 ⊕D2 ⊕D3 ⊕D4 ⊕D5 ⊕D6).

The so3-invariant vectors are just the D0-part by definition, so that it follows(
2∧
℘̃∗3 ⊗ Vµ3

)so3

=

(
2∧
℘̃∗3 ⊗ Vµ3

)
D0

∼= D0.

If we choose basis vectors v′−3, v
′
−2, v

′
−1, v

′
0, v

′
1, v

′
2, v

′
3 of

(∧2 ℘̃∗3
)

D3

∼= D3 such that the

weight of each v′a is ae1, a generator of
(∧2 ℘̃∗3 ⊗ Vµ3

)
D0

is given by
∑3

a=−3 v
′
−a⊗ va.

Now consider the two cohomological SO2(R)-types Wµ−2
∼= D ′

−2 and Wµ2
∼= D ′

2. The
so2-types of ℘̃2 are 〈Z2〉C ∼= D ′

2 and 〈Z−2〉C ∼= D ′
−2, so that we have ℘̃2

∼= D ′
−2⊕D ′

2.
Since ℘̃2 is self-contragredient with H.Z∗

−2 = 2iZ∗
−2 and H.Z∗

2 = −2iZ∗
2 , the same is

true for ℘̃∗2. We get

℘̃∗2 ⊗Wµ−2
∼= (D ′

−2 ⊕D ′
2)⊗D ′

−2
∼= D ′

−4 ⊕D ′
0

and
℘̃∗2 ⊗Wµ2

∼= (D ′
−2 ⊕D ′

2)⊗D ′
2
∼= D ′

0 ⊕D ′
4,

so that in both cases it follows(
℘̃∗2 ⊗Wµ±2

)so2 ∼= D ′
0.

Now let w−2 and w2 denote basis vectors of Wµ−2 resp. Wµ2 , and choose a basis
{w′

−2, w
′
2} of ℘̃∗2 such that w′

−2 has weight −2e1 and w′
2 has weight 2e1. Then a basis

of
(
℘̃∗2 ⊗Wµ−2

)so2 resp. (℘̃∗2 ⊗Wµ2)
so2 is given by w′

2 ⊗ w−2 resp. w′
−2 ⊗ w2.

We still have to show that the restriction of B∧ ⊗ B∞ is not trivial. From Section
4.5 we know that B∞(va, w−2) vanishes for a 6= 2. But then by Theorem 4.3 we
have 0 6≡ B∞(Vµ3 ,Wµ2) = B∞(Vµ3 , w−2), so that B∞(v2, w−2) 6= 0. Analogously,
B∞(v−2, w2) 6= 0 and B∞(va, w2) = 0 for a 6= −2. We showed for all α, β, γ ∈ C

(B∧ ⊗B∞)(α ·
3∑

a=−3

v′−a ⊗ va, β · w′
−2 ⊗ w2 + γ · w′

2 ⊗ w−2)

= αγ ·B∧(v′−2, w
′
2)B∞(v2, w−2) + αβ ·B∧(v′2, w

′
−2)B∞(v−2, w2),

(4.11)

where the values of B∞ do not vanish. So we reduced the proof to showing

B∧(v′2, w
′
−2) 6= 0 and B∧(v′−2, w

′
2) 6= 0.
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In order to do this we choose bases of
∧2 ℘̃∗3 and ℘̃∗2 consisting of Maurer-Cartan

forms like in Section 3.1. We set

ω1 := Z∗
−2, ω2 := Z∗

2 , ω3 := Z∗
0 , ω4 := Z∗

−1, ω5 := Z∗
1 .

Recalling the embedding of ℘2 into ℘̃3 from Section 4.1 we also put

ω′1 := Z∗
−2, ω

′
2 := Z∗

2 , ω
′
3 := Z∗

0 ,

where we define Z∗
b by Z∗

b (Za) = δab with a, b ∈ {−2, 0, 2} in analogy to the above.
It follows

δ(p2 ◦ j)(ωi) =

{
ω′i if i = 1, 2, 3,

0 if i = 4, 5

just like in Section 3.1.

Via (4.10) we can express v′−2, v
′
2 in terms of those Maurer-Cartan forms, and get

v′−2 = 5 ω3 ∧ ω2 and v′2 = ω1 ∧ ω3.

Further we may set
w′
−2 := ω′2 and w′

2 := ω′1.

So, following the definition of εI,I′ in Chapter 3 and taking into account that ω′3
corresponds to the differential d

dt
there, we find that B∧(v′2, w

′
−2) and B∧(v′−2, w

′
2) do

not vanish. �

It remains to study the action of the groups of connected components of the respec-
tive orthogonal groups. The case of π0(O3) is already described by Corollary 1.5:
For ε = sgn(ωπ(−1n)(−1)wt(µ)/2) = + we get(

2∧
℘̃∗3 ⊗ Vµ3

)SO3(R)

ε

=

(
2∧
℘̃∗3 ⊗ Vµ3

)so3

.

The case of π0(O2) is more interesting. If we set δ2 =
(

1 0
0 −1

)
we may write

O2(R) = 〈δ2〉n SO2(R) resp. O2(C) = 〈δ2〉n SO2(C).

By [Mah], p. 624, we know how δ2 acts on the weights of an arbitrary representation
of so2: Let τ be such a weight. Then we have

τ δ2(H) = τ(δ−1
2 Hδ2) = τ(

(
1 0
0 −1

)(
0 1
−1 0

)(
1 0
0 −1

)
) = τ(−H) = −τ(H).

Thus δ2 interchanges the two weights −2e1 and 2e1 both in ℘̃∗2 and W , whence by
[loc.cit.] it also interchanges the two so2-modules in

(
℘̃∗2 ⊗ (Wµ−2 ⊕Wµ2)

)so2 that
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are isomorphic to D ′
0. Without loss of generality we may assume that the basis

vectors w′
2 ⊗ w−2 and w′

−2 ⊗ w2 merge under the action of δ2. Then we get(
℘̃∗2 ⊗ (Wµ−2 ⊕Wµ2)

)SO2(R)

+

∼= 〈w′
2 ⊗ w−2 + w′

−2 ⊗ w2〉C.

and (
℘̃∗2 ⊗ (Wµ−2 ⊕Wµ2)

)SO2(R)

−

∼= 〈w′
2 ⊗ w−2 − w′

−2 ⊗ w2〉C.

But since the (B∧⊗B∞)-value in (4.11) can not be zero in the cases α = β = γ = 1
and α = β = −γ = 1 simultaneously by the above-mentioned, it follows that there
are ε, ε′ ∈ {+,−}, such that

(B∧ ⊗B∞)(

( 2∧
℘̃∗3 ⊗ Vµ3

)SO3(R)

ε

,

(
℘̃∗2 ⊗ (Wµ−2 ⊕Wµ2)

)SO2(R)

ε′
) 6≡ 0.

Recalling the remark in Section 4.3 we find

Theorem 2 Let n = 3 and assume the coefficient modules M̌µ,C and M̌ν,C to be
trivial. Then there is a choice of signs ε and ε′ in Section 3.6, such that the period
Pλ,∞(1

2
) in Theorem 1 does not vanish.



Chapter 5

Conclusion and further questions

In Chapters 3 and 4 we showed under certain conditions, that the function χ 7→
L(π ⊗ χ, σ; 1

2
), after division by an appropriate period depending only on n takes

algebraic numbers as values, like we hoped for. The most restricting conditions are:

� π has to be in Coh(GL3, µ) for some dominant weight µ ∈ X+
0 (T3),

� σ has to be in Coh(GL2, ν) for some dominant weight ν ∈ X+
0 (T2),

� the coefficient modules M̌µ,C and M̌ν,C are trivial.

How would one step further? While improvement at the first two points seems out of
reach with the brute force methods of Chapter 4, the last point seems less persistent:
We needed this assumption only in Section 4.5 and in Section 4.313, so that it seems
possible to replace it by conditions like

� viewed as a GL2-module, M̌µ,C has to contain the contragredient of M̌ν,C,

� s = 1
2

has to be a critical value of (π, σ).

As an obvious consequence the function χ 7→ L(π ⊗ χ, σ; 1
2
) from above would also

depend on the coefficient systems M̌µ and M̌ν , but still not on the character χ.
Summing up, a first question would be

Question 1 Is it possible to generalise the results of Chapter 4 to the bigger set of
representations like we described it above?

Assuming that it is, we should ask next, how restrictive those two new conditions
are. While the first one seems to be natural to this kind of problems, the second
one needs some discussion. In the following we will see, that in general s = 1

2
is

no critical value, although there are many examples, where it is. Finally we will
discuss, how to interpret our results in the case of arbitrary sets of critical values.

13when we assumed that s = 1
2 really was a critical value

60
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5.1 Critical values

In this section we want to study the critical values of pairs (π, σ) of cohomological
representations. Therefore we need to study L(π∞ ⊗ χ∞, σ∞; s).14 Since we chose
χ∞ to be trivial, this is the same as L(π∞, σ∞; s). The latter value can be calcu-
lated via Langlands correspondence at infinity as follows. Recalling the Langlands
classification we may associate to π∞ and σ∞ representations πW

∞ and σW
∞ of WR like

in Section 1.5. So if we write

π∞ ∼= sgnk⊗J(w, l), k ∈ Z/2Z

and
σ∞ ∼= sgnk′ ⊗J(w′, l′), k′ ∈ Z/2Z,

we can give a concrete formula for L(πW
∞⊗σW

∞ ; s) by (3.6) in [Kna1] and Proposition
1.6. Taking into account that that the L-functions in [loc.cit.] are defined slightly
different from those used by us, causing a shift by 1

2
in the formula, we find the

following expression for L(πW
∞ ⊗ σW

∞ ; s+ 1
2
):[ n

2∏
i=1

2(2π)−(s+
w+w′+li

2
) · Γ

(
s+ w+w′+li

2

)]
·
[ n

2∏
i=1

n
2
−1∏

j=1

l′
j
6=li

2(2π)−(s+
w+w′+li+l′j

2
)

· Γ
(
s+

w+w′+li+l′j
2

)
· 2(2π)−(s+

w+w′+|li−l′j |
2

) · Γ
(
s+

w+w′+|li−l′j |
2

)]
·
[ n

2∏
i=1

n
2
−1∏

j=1

l′
j
=li

2(2π)−(s+w+w′
2

+li)Γ
(
s+ w+w′

2
+ li
)
· π(s+w+w′

2
)/2 · Γ

(
s
2

+ w+w′

4

)
· π(s+w+w′

2
+1)/2 · Γ

(
s
2

+ w+w′

4
+ 1

2

)]
,

if n is even and[n−1
2∏

j=1

2(2π)−(s+
w+w′+l′j

2
) · Γ

(
s+

w+w′+l′j
2

)]
·
[n−1

2∏
i=1

n−1
2∏

j=1

l′
j
6=li

2(2π)−(s+
w+w′+li+l′j

2
)

· Γ
(
s+

w+w′+li+l′j
2

)
· 2(2π)−(s+

w+w′+|li−l′j |
2

) · Γ
(
s+

w+w′+|li−l′j |
2

)]
·
[n−1

2∏
i=1

n−1
2∏

j=1

l′
j
=li

2(2π)−(s+w+w′
2

+li)Γ
(
s+ w+w′

2
+ li
)
· π(s+w+w′

2
)/2 · Γ

(
s
2

+ w+w′

4

)
· π(s+w+w′

2
+1)/2 · Γ

(
s
2

+ w+w′

4
+ 1

2

)]
,

if n is odd. By definition we have (cf. [JPS2])

L(π∞, σ∞; s) = L(πW
∞ ⊗ σW

∞ ; s).

14We do this for general n, since the arguments are the same as in the case n = 3.
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Now by [Del] the critical values of (π, σ) are the numbers n+ 1
2

for those integers n
where neither L(πW

∞ ⊗ σW
∞ ; s) nor L((πW

∞ ⊗ σW
∞ )̌ ; 1− s) have a pole. Note, that we

can calculate L((πW
∞⊗σW

∞ )̌ ; 1−s) easily by (1.2). One the one hand, there are quite
a lot of pairs (π, σ) for which s = 1

2
is indeed a critical value. For example consider

pairs (π, σ) with w = −w′. In this case we get from (1.6) that li 6= l′j for all i and
j, and the formulae above simplify a lot. Obviously, there are plenty of choices for
the li and the l′j giving us what we want, in particular we may set w = w′ = 0 and
l = 2%n and l′ = 2%n−1, which is the case from [KMS] and from Chapter 4. On the
other hand, in general s = 1

2
does not need to be a critical value. Actually, quite a

lot of sets of critical values seem possible. So the natural question in this situation
is

Question 2 What are in general the critical values of a pair (π, σ) of cohomological
representations like in Chapters 3 and 4?

Here, the condition, that viewed as a GL2-module M̌µ,C has to contain the contra-
gredient of M̌ν,C, should give a relation between w and w′.

5.2 Pairs with arbitrary critical values

Obviously, our results from Chapter 3 are mainly interesting, if s = 1
2

is indeed a
critical value of the pair (π, σ). In Chapter 4 we even need this as an assumption.
But the question remains

Question 3 How can this work be generalised such that we can treat arbitrary15 sets
of critical values?

Note, that the value s = 1
2

plays a special role in this kind of problem, because of

the factor | det(g)|s− 1
2 in the definition of the zeta integral. In our special case we

could ignore this factor, which for instance helped to prove the gln−1-invariance in
Section 4.4. This is why simply copying the methods of this thesis to the case of
another critical value should not work. However, if s = 1

2
is indeed a critical value,

we should be able to use the algebraicity (modulo period) of L(π ⊗ χ, σ; 1
2
) to show

algebraicity (modulo period) of the values L(π ⊗ χ, σ; si) for all critical values si.
This has been done in the cases for small n that have already been studied in more
detail (cf. [Man] for instance).

15Which sets of critical values are of interest, clearly depends on Question 2.



Symbols

ωπ central character of π 9
ΦGLn set of roots of Tn in GLn 13
Φ+

GLn
set of positive roots of Tn in GLn relative to
Bn

13

χ finite idele class character 21
λ linear form on Mµ,C ⊗Mν,C 35
µ3 cohomological SO3(R)-type of V 40
µ±2 cohomological SO3(R)-types of W 41
Ω•

fd fast decreasing differentials 27
Ω•

mg differentials of moderate growth 27
π(K) K-finite vectors of π 12
π0(G) group of connected components of the group

G
9

%µ algebraic representation of GLn(Q) with high-
est weight µ

8

%n half-sum of positive roots of GLn 13
τ additive character of Q\A 18

1n unit matrix of GLn(R) 9

Bn group of upper triangular matrices in GLn 8
Bu pairing on differentials 30
Bu cohomological pairing 32

B̃u pairing on differentials 30
bn lower cohomological limit 10

Coh(GLn, µ) set of cohomological representations 8
C∞

c C∞-functions with compact support 27
C∞

fd fast decreasing C∞-functions 27
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C∞
mg C∞-functions of moderate growth 27

Dl discrete series representation of GL2(R) of
lowest weight l + 1

14

D ′
k irreducible so2-module of highest weight ke1 41

Dk irreducible so3-module of highest weight ke1 40

d̃n dimension of X 1
n , that is n2+n

2
− 1 26, 30

dπ∞ infinitesimal representation belonging to π∞ 47

dn dimension of Xn, that is n2+n
2

24, 26

F compositum of the fields of rationality of πf

and σf

37

f nontrivial p-power, conductor of χ 21

In Iwahori subgroup of GLn 19

j canonical embedding of GLn−1 in GLn 24

K open compact subgroup of GLn(Ẑ) or
GLn(Af )

16, 23

K ′ open compact subgroup of GLn−1(Ẑ) 23

L+
0 (GLn) set of possible Langlands classification data 13

Mµ algebraic representation of GLn(Q) with high-
est weight µ

8

M̌µ locally constant sheaf belonging to M̌µ = Mµ̌ 16

℘̃n symmetric n× n matrices of trace zero 26
℘n symmetric n× n matrices 26

Q(πf ) field of rationality of πf 37

Sn(K) locally symmetric space 16

Tn standard maximal torus in GLn 8
t0` tensor product w0

` ⊗ v0
` 19
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tn upper cohomological limit 10

Un unipotent radical in Bn 8
U(sl3) universal envelopping algebra of sl3 50

V short for W0(π∞, τ∞)⊗ M̌µ,C 40

W short for W0(σ∞, τ̄∞)⊗ M̌ν,C 41
WR Weil group of R 14
WGLn Weyl group of GLn 8
W (π, τ) Whittaker space of π with respect to τ 18
W (πv, τv) local Whittaker space of πv at v with respect

to τv

18

W0(π∞, τ∞) On(R)-finite vectors of W (π∞, τ∞) 19
wt(µ) weight of the weight vector µ 8
wGLn longest element of WGLn 8

X++(Tn) set of dominant regular weights in X(Tn) 8
Xn GLn(R)/On(R) 24
X 1

n SLn(R)/ SOn(R) 24
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