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Abstract

In this thesis we study two quantum dots, coupled by an exchange interaction, with
an emphasis on non-equilibrium physics. Both dots are assumed to be in the Coulomb
blockade regime, such that the number of particles on the dots is conserved. Assuming
a single electron on each quantum dot, the double quantum dot system is characterized
by an interplay between the spin-spin coupling of the dots with the leads, the so-called
Kondo interaction, and the spin-exchange coupling between the dots. We find that a
finite voltage on one quantum dot drives the other quantum dot out of equilibrium.
This behavior can be explained in a simple picture: Two coupled spins form singlet and
triplet states with an excitation gap given by the spin-spin interaction. In equilibrium it
is known that temperature determines the occupation of the states. Out of equilibrium
thermodynamic considerations no longer apply. The occupation of the quantum dot
states is then determined by a self-consistent equation, which includes the effects of a
finite voltage and the corresponding decoherence due to a finite current. If the voltage
provides sufficient energy to overcome the singlet-triplet gap, the occupation probability
of the ground state decreases and excited states become populated. Since the triplets
are current-carrying states and the singlet does not allow for transport in the lowest
approximation, the effect of the non-equilibrium distribution functions is visible in the
differential conductance. In the case of an antiferromagnetic exchange coupling between
the dots a large voltage on one quantum dot leads to a finite occupation of triplet states,
which can be probed by a current measurement in the other quantum dot. We expect
experiments to observe this transfer of non-equilibrium properties, if it is possible to
fabricate a double quantum dot device in a 4-terminal geometry.

In this thesis a setup exhibiting the explained non-equilibrium transfer is discussed.
From the Anderson impurity model an effective Kondo model is derived by a Schrieffer-
Wolff transformation, and it is explained why the current through the left and the right
quantum dot can be treated independently. The physics of the spin Kondo model is
calculated to lowest order perturbation theory in the coupling to the leads. Attention
has to be paid to the case of very small spin-spin interaction, but the main part of
this thesis deals with a large singlet-triplet gap. The magnetization, the polarization,
the current, and the T-matrix are calculated to 2nd order in perturbation theory. The
exchange coupling from the left to the right quantum dot leads to the above-mentioned
non-equilibrium transfer and a new quantity, the transconductance, is introduced to
measure this effect. Although the transconductance is observed already in 2nd order
perturbation theory, the effect originates indirectly through the voltage-dependent oc-
cupation probabilities. In current-current correlations the non-equilibrium transfer can
be observed directly. It is shown that the current cross-correlation between the current
through the left and right quantum dot is finite due to the decoherence and finite life
time of the quantum dot states. Although this calculation is performed to fourth order
in the coupling to the leads, the non-zero result is of second order. As is well-known
from the Kondo effect at low temperatures logarithmic divergences do not allow for a
perturbation expansion. New methods were developed and the non-equilibrium commu-
nity tries to find a consensus on which method is best suited to describe the Kondo effect
with a finite bias voltage. In this thesis two different approaches are presented, based on
the poor man’s scaling approach and on the flow equation approach. In non-equilibrium
all processes in the energy window opened by the voltage contribute to the transport
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properties. Therefore it is important to include the frequency of the incoming and out-
going particles of a scattering process into any scaling theory. This is incorporated in
both methods discussed here. They only differ in the way the decoherence, which plays
a major role in systems out of equilibrium, is included. We find in both approaches that
a finite voltage applied to one quantum dot drives an exchange coupled quantum dot
out of equilibrium. Whereas the first method is presented with results for the current,
the transconductance, and the T-matrix, the second method is on a Hamiltonian level
and the non-equilibrium transfer is discussed by its signatures in the flow of the coupling
functions. The transconductance is enhanced by the scaling procedure and therefore we
hope that it can be measured in experiments in the near future.
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Deutsche Zusammenfassung

In dieser Dissertation wird das Verhalten zweier gekoppelter Quantenpunkte untersucht,
die zum einen durch eine Austauschwechselwirkung gekoppelt sind und zum anderen
durch eine endliche Spannung aus ihrem Gleichgewichtszustand getrieben werden. Des
weiteren wird angenommen, dass sich beide Quantenpunkte im Bereich der Coulomb-
Blockade befinden, so dass die Anzahl der Teilchen auf den Quantenpunkten erhal-
ten ist. Es wird angenommen, dass jeder Quantenpunkt mit jeweils einem einzelnen
Elektron besetzt ist. Damit ist das Verhalten des Doppelquantenpunktsystems gepragt
durch ein Wechselspiel zwischen der Spin-Austausch-Wechselwirkung der beiden Quan-
tenpunkte und der Spin-Spin-Wechselwirkung jedes Quantenpunktes mit den Zuleitun-
gen, der sog. Kondo-Wechselwirkung.

Es zeigt sich, dass ein Quantenpunkt aus seinem Gleichgewichtszustand getrieben
wird, falls iiber den anderen Quantenpunkt eine endliche Spannung angelegt wird. Dieses
Verhalten kann in wenigen Worten verstandlich gemacht werden: Zwei gekoppelte Spins
bilden Singulett- und Triplett-Zusténde, die durch eine Anregungsenergie, gegeben durch
die Spin-Spin-Wechselwirkung, aufgespalten sind. Es ist bekannt, dass im thermischen
Gleichgewicht die Besetzung der Zustande durch die Temperatur gegeben ist. Dies
gilt nicht mehr fiir Systeme auflerhalb des Gleichgewichts. Die Besetzung der Quan-
tenpunktzustande ist daraufhin durch eine selbstkonsistente Gleichung bestimmt, die
den Beitrag einer endlichen Spannung und der entsprechenden Dekoharenz aufgrund
eines endlichen Stromflusses enthélt. Falls die Spannung genug Energie zur Verfiigung
stellt, um die Singulett-Triplett-Aufspaltung zu iiberbriicken, nimmt die Besetzung des
Grundzustandsniveaus ab und angeregte Zustdnde werden zunehmend besetzt. Da die
Triplett-Zustande stromtragend sind und der Singulett-Zustand in erster Naherung den
Stromkanal blockiert, lasst sich ein Effekt der Nichtgleichgewichtsbesetzung in der Mes-
sung der Leitfahigkeit beobachten. Falls die Austauschkopplung zwischen den beiden
Quantenpunkten antiferromagnetisch ist, kann eine starke Spannung an einem Quanten-
punkt zu einer endlichen Besetzung der Triplett-Zustande fiihren. Dies kann mit einer
Strommessung an dem anderen Quantenpunkt nachgewiesen werden. Wir erwarten, dass
diese Ubertragung von Nichtgleichgewichtseigenschaften in Experimenten zu beobachten
ist, falls es moglich ist, ein Doppelquantenpunktsystem in einer 4-Kontakt Geometrie
herzustellen.

In dieser Arbeit behandeln wir ein System, das die erklarte Nichtgleich-
gewichtsiibertragung zeigt. Ausgehend von einem Anderson-Storstellenmodell wird ein
effektives Kondomodell mittels einer Schrieffer-Wolff-Transformation hergeleitet und
es wird erortert, warum der Strom durch den linken Quantenpunkt und durch den
rechten Quantenpunkt als unabhéangig angenommen werden kann. Daraufhin wird
die Physik des Spin-Kondomodells mit Hilfe der Stérungstheorie in niedrigster Ord-
nung berechnet. Vorsicht ist geboten im Fall einer kleinen Spin-Spin-Wechselwirkung,
aber fiir den Hauptteil dieser Arbeit liegt der Schwerpunkt auf einer groflen Singulett-
Triplett-Aufspaltung. Die Magnetisierung, die Polarisierung, der Strom und die T-
Matrix werden in zweiter Ordnung Storungstheorie berechnet. Die Austauschkop-
plung zwischen dem linken und dem rechten Quantenpunkt fiithrt zu der erwahnten
Nichtgleichgewichtsiibertragung und eine neue Grofle, die sog. transconductance, wird
eingefithrt, um diesen Effekt zu messen. Die transconductance wird bereits in zweiter
Ordnung Storungstheorie beobachtet, aber der Effekt entsteht indirekt durch eine Span-
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nungsabhangigkeit der Besetzungszahlen. In den Strom-Strom-Korrelationen kann die
Nichtgleichgewichtsiibertragung direkt beobachtet werden. Es wird gezeigt, dass eine
Kreuzkorrelation zwischen dem Strom durch den linken und durch den rechten Quan-
tenpunkt aufgrund der Dekohérenz und der endlichen Lebenszeit der Quantenpunk-
tzustande existiert. Obwohl diese Rechnung in vierter Ordnung Storungstheorie in der
Ankopplung der Quantenpunkte an die Zuleitungen durchgefiihrt wird, ist das gefundene
Ergebnis effektiv von zweiter Ordnung.

Es ist allgemein bekannt, dass im Kondomodell logarithmische Divergenzen zu einem
Zusammenbruch der Storungstheorie bei niedrigen Temperaturen fithrt. Neue Metho-
den wurden entwickelt und es wird kontrovers diskutiert, welche Methode am besten
geeignet ist, um den Kondo-Effekt unter Beriicksichtigung einer endlichen Spannung zu
beschreiben. In dieser Doktorarbeit werden zwei verschiedene Ansatze vorgeschlagen,
aufbauend auf dem poor man’s scaling-Ansatz und der Flussgleichungsmethode. Im
Nichtgleichgewicht tragen alle Prozesse in einem Energiefenster, das durch die Spannung
geoffnet wird, bei. Aus diesem Grund ist es wichtig, die Frequenz der einfallenden und
auslaufenden Teilchen eines Wechselwirkungsereignisses in jede Renormierungstheorie
zu integrieren. Dies trifft auf beide hier behandelten Methoden zu. Der einzige Unter-
schied besteht in der Behandlung der Dekoharenz, die eine richtige Rolle in Systemen
auflerhalb des Gleichgewichts spielt. In beiden Ansédtzen wird beobachtet, dass ein
Quantenpunkt aus dem Gleichgewicht gebracht wird, wenn eine endliche Spannung
an einem gekoppelten Quantenpunkt angelegt wird. Mithilfe der ersten Methode, der
storungstheoretischen Renormierungsgruppe im Nichtgleichgewicht, werden Ergebnisse
fiir den Strom, die transconductance, und die T-Matrix gezeigt. Im Gegensatz dazu
basiert die zweite Methode auf einer Diagonalisierung des Hamiltonianoperators und die
Nichtgleichgewichtsiibertragung wird anhand ihrer Signaturen im Fluss der Kopplun-
gen diskutiert. Die transconductance wird durch die Reskalierung verstarkt und aus
diesem Grund besteht die Hoffnung, dass diese Grofle in naher Zukunft in Experimenten
gemessen werden kann.
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1 Introduction

The progress of experimental cooling techniques has made the study of physical phe-
nomena at cryogenic temperatures possible and lead to the discovery of new phenomena.
Many-particle effects like superconductivity or the Kondo effect are able to form only at
low temperatures. At large temperatures the physics is mostly determined by thermal
fluctuations, and only when the temperature is lowered sufficiently quantum effects can
become significant.

Improvement of fabrication techniques in the last few years facilitated the production
of two-, one-, and even zero-dimensional structures. In lower dimensions the screening
of electrons is less significant which opens up the possibility of strong correlations. In
recent years more and more emphasis has been put on the spin degree of freedom of
the electrons. To manipulate the spin rather than the charge degree of freedom, and
to construct circuits utilizing the spin of the electrons is the aim of the “spintronics”
community.

In this thesis we study in detail the properties of two coupled spins surrounded by
itinerant electrons in a quantum dot setup. The observation that alloys containing
transition metals can contain electrons with a large effective mass, the so-called heavy
fermions, is claimed to originate from a competing interaction between localized moments
and itinerant electrons. The two-spin setup is a first step towards an understanding of
this many-particle effect. In addition this setup shows interesting physical behavior on
its own. Strong correlations due to the Coulomb repulsion of the two electric charges
as well as the spin nature of the two localized electrons are important ingredients to
understand the physics of a double quantum dot setup.

Before we study in detail the system of two coupled quantum dots, a general intro-
duction to the physical background and experimental realizations of the Kondo effect in
and out of equilibrium is given.

1.1 Introduction to Kondo Physics

Most physical problems can be solved by an appropriate one-particle description. There
are a few problems arising from many-particle effects which need to be treated by special
methods, one of which is the Kondo effect. This effect was found by experimentalists
in the 1930s and received its name from the Japanese physicist Jun Kondo [I], who
was the first to explain its physics in 1964. The resistivity of a metal compound at
low temperatures depends on the type of the current-carrying particles. For itinerant
electrons it decreases with decreasing temperatures and saturates at a finite value pjp,,
determined by the potential scattering off embedded impurities, e.g. defects in the crystal
lattice. In some metals the resistivity shows an increase at low temperatures followed
by a saturation at even lower temperatures. This effect was found to scale with the
percentage of magnetic impurity atoms in the metallic compound. For a review of the
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Kondo problem we refer the reader to the book of A. C. Hewson [2]. Shorter but more
recent reviews can be found in Refs. [3, 4. B, [6].

After it had been explained how a local moment could form in a Fermi sea in the
so-called Anderson impurity model [7], it was the idea of J. Kondo that the spin of
the local moment S interacts antiferromagnetically with the spin of the conduction
electrons &, JS3. Using this effective Hamiltonian Kondo [T] showed that the resistivity
at low temperatures increases logarithmically, which indicates the range of validity of
the perturbative calculation. Perturbation theory breaks down since at some point the
coupling to the impurity is no longer a small parameter.

The energy level of the local moment is below the Fermi energy. Due to strong
correlations between two electrons, the so-called Coulomb energy U, the occupation with
a second electron is energetically suppressed. Therefore the impurity level is occupied
with a single electron and thus with a spin-1/2 moment. This model is commonly referred
to as the Anderson impurity model [f]. The Kondo Hamiltonian can be derived from
the Anderson model by a Schrieffer-Wolff transformation [8] as discussed in chapter
for a double quantum dot system. The Kondo interaction J can be expressed in terms
of the microscopic parameters of the Anderson impurity model. We refer the interested
reader to chapter B or Refs. [2, §].

At low temperatures infinitesimal excitations of electrons around the Fermi surface
lead to a series of elastic, coherent spin-flip scattering processes. A cloud of scattered
conduction electrons builds up in the vicinity of the impurity spin. In the local moment
density of states a narrow many-particle resonance of the width of the Kondo temper-
ature Tk, the so-called Abrikosov-Suhl or Kondo resonance, forms at the Fermi edge.
This resonance explains the increase of the resistivity since conduction electrons are
scattered more strongly with an increasing screening cloud. The Kondo temperature
becomes the dominant energy scale of the system, such that two different systems show
a universal behavior depending only on the ratio of the involved energies to Tx. The
perturbation theory approach breaks down if the interaction between the local moment
and the sea of conduction electrons becomes too strong. For even lower temperatures
the Kondo system reaches its ground state, a singlet formation of the conduction elec-
tron screening cloud with the spin of the local moment. The host metal featuring the
compensated impurity spin can thus be described by a Fermi liquid theory as discussed
by Nozieres [9].

The complexity of the Kondo problem led to the development of new methods to
describe the strong coupling regime of the model. A first approach to describe the
scaling to strong coupling was the “poor man’s scaling” approach by Anderson [I0)] in
1966. The perturbative renormalization group (RG) method as described in chapter
builds on the poor man’s scaling approach and therefore this method is discussed in
detail in chapter Bl Further developments for example of the numerical renormalization
group (NRG) by Wilson [II] in 1975 or the Fermi liquid description of Nozieres [9] in
1974 are not considered in this thesis and we refer the reader to the extended literature.
A good starting point therefore is the book by A. C. Hewson [2].

1.1.1 The Two Impurity Kondo Model

The Kondo effect in metals arises from local spin moments due to magnetic impurities
in a Fermi sea of itinerant electrons. In general these impurities are dilute in their host
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metal, but if they are only a few Fermi wavelengths apart new physics arises. Due to the
polarization of the surrounding electron background two impurities can interact via an
effective spin-spin interaction, denoted the Ruderman-Kittel-Kasuya-Yoshida (RKKY)
interaction. It has been claimed that a lattice of Kondo impurities can explain the
physics of heavy fermion compounds [4].

The interest in the physics of the two impurity model has not decayed up to recent
days, since the two impurity model is a necessary step towards a generalization of the
single impurity model towards a Kondo lattice. The main issues of the discussion of
the two impurity Kondo model are given here and further reading can be found in
Ref. [12, 13, 14, [15, (16, [17].

In the two impurity Kondo model, or more generally, in the so-called two impurity
Anderson model, there are two important energy scales: the Kondo temperature Tk and
the RKKY interaction K. The Kondo temperature is proportional to (|p.J|)*/? exp(1/p.J)
and the RKKY coupling K o (pJ)?, where p is the electron density of states [T4]. In
general the RKKY interaction depends on the distance between the two impurities in
units of the Fermi wavelength and due to Friedel oscillations the interaction changes the
sign from ferromagnetic to antiferromagnetic periodically, see e.g. [I8] for this derivation.

If the RKKY interaction is ferromagnetic and large compared to the Kondo tempera-
ture, the two spins form an effective spin 1 state [I6]. In contrast, for an antiferromag-
netic RKKY interaction in the case of K > Tk the two spins form a singlet state. The
Kondo interaction favors a singlet state between each impurity spin and the conduction
electrons if Tx > K. These two singlet formations compete with each other. It was
found, that for K/Tk = 2.2 there is a transition between the two different ground states
of two Kondo screened impurities or of an uncompensated singlet state, see e.g. Ref. [14].
If the two impurity Kondo model is seen as a toy model for the Kondo lattice the phase
with the uncompensated two impurity spin singlet corresponds to an antiferromagnetic
ground state.

The works on the two-impurity Kondo model reach from perturbative scaling meth-
ods [I2] over numerical methods in Refs. [I3, T4} 5] to conformal field theory [16]. In the
latter is was proven that the quantum critical point between the two competing phases
occurs depending of the type of particle-hole symmetry. Up to now consensus has not
been achieved as to whether the transition between the two competing ground states is
a quantum phase transition or a cross-over if potential scattering is present [17].

In this thesis the energy regime of the quantum phase transition is not discussed, but
it is the aim of future calculations to reduce the strength of the spin-spin interaction
K down to the Kondo scale Tx to be able to see signatures of this quantum phase
transition.

1.2 The Kondo Effect in Quantum Dots

Since the physics of the Kondo effect was predicted in single-electron transistors a lot
of effort has been put into the development of these microscopic circuits referred to as
quantum dots. In a very small confined region of only a few electrons the quantum
nature of electrons becomes important and the spin of the electron can give rise to
interesting phenomena like the Kondo effect. Since the first observation of the Kondo
effect in quantum dots in 1998 [T9, 20] the study of the Kondo effect has undergone a
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renaissance [6]. For introductory reading we refer to the original publications [T9, 20, 2T]
as well as to a few recent reviews [3, @ Bl 6] or the books [2, 22].

In general a quantum dot can be seen as an “artificial atom” or a single-electron
transistor. For example in semiconductor quantum dots [19, 20, 21] a two-dimensional
electron gas is depleted by an arrangement of gate barriers such that a zero-dimensional
region is produced. Transport through this so-called quantum dot takes place through
spin-conserving tunnel events. Therefore a quantum dot is well described by an Anderson
impurity model [7]. The first theoretical predictions that the Kondo effect should be
observable in those and similar structures were given in 1988 [23, 24]. As one of the first
realizations we would like to mention Ref. [25].

The Kondo effect is observable in the Coulomb blockade regime, which is similar to the
local moment phase explained before. The energy levels in the zero-dimensional system
are quantized due to the confinement and the Pauli principle of the electrons plays a
major role. In low dimensional systems the Coulomb repulsion between two electrons is
large, such that the highest energy level below the Fermi energy of the leads is occupied
by only one electron with an uncompensated spin. The energy of the level states can be
tuned by a gate potential and a source-drain voltage applied across can lead to a non-
equilibrium current. A contour plot of the conductance with respect to the gate voltage
and the source-drain voltage, referred to as the stability diagram, shows a diamond-like
structure. In the linear conductance a finite current is found only if an energy level is
on resonance with the Fermi surface. If the quantum dot is occupied by an odd number
of electrons, i.e. it is in the so-called Kondo regime, it shows a zero-bias anomaly. In
contrast to the Kondo effect in metallic compounds the Abrikosov-Suhl resonance, which
is energetically pinned to the Fermi surface, allows for an elastic transport through the
quantum dot, whereas it leads to an increased scattering for a magnetic impurity in an
otherwise pure metal. Therefore an increase in the conductivity of the quantum dot
is observed while the temperature is lowered. In a symmetric setup the conductivity
reaches a value of 2¢?/h, the so-called unitary limit. If the chemical potential in the
leads is shifted by a large voltage Kondo resonances build up at the two different Fermi
surfaces. If the two Fermi surfaces match the energy difference between two levels or an
internal structure in the quantum dot setup, inelastic tunneling processes are enhanced
by Kondo correlations. This is studied in detail in this thesis for the system of two
coupled quantum dots.

Quantum dots have a few advantages compared to traditional Kondo systems, as
listed for example in Ref. [6]. Among other things a single Kondo impurity and not
a statistical average is measured in quantum dots. In these mesoscopic systems most
of the parameters are tunable and different setups, e.g. double quantum dots, can be
fabricated. Additionally quantum dots provide the possibility to study transport out of
equilibrium.

In a quantum dot setup a fine-tuning of the tunneling strength is always necessary.
For a large Kondo temperature T the coupling to the leads should be chosen sufficiently
large, but the particles should also be confined to the quantum dot which sets an upper
limit to the magnitude of the coupling. In semiconductor quantum dots it is therefore
possible to achieve a Tk of the order of 0.1 — 1K [6]. The Kondo effect was also observed
in transport through molecules and nanowires, where a larger T can be achieved [6].
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1.2.1 Double Quantum Dot Systems

Experimental groups all over the world tried to produce a setup which could tune all the
parameters of two interacting spins in a double quantum dot setup to be able to study
the interesting physics emerging from the two-impurity Kondo model. A general review
about the state of experiments on double quantum dots in 2003 is given in Ref. [26]. It is
explained that the stability diagram for two quantum dots in series shows a honeycomb
lattice rather than the diamond structure of a single quantum dot.

The experiment which drew our attention to the setup of two coupled quantum dots
was published by the experimental group in Harvard in April 2004 [27]. Tt is claimed in
Ref. [27] that a "nonlocal spin control by suppressing and splitting Kondo resonances
in one quantum dot by changing the electron number and coupling of the other dot” is
achieved. In the last three years further experiments followed, for example the work of
the Delft group [28] and experiments at the NTT in Japan [29].

In the experimental setup from N. J. Craig et al. [27] the parameters measured were
an electron temperature of 85mK and a Coulomb charging energy of U = 800ueV. The
largest tunnel coupling I' = 27N (0)|¢|? is claimed to be of the same order of magnitude
as the level spacing A = 100peV within each quantum dot. From the full width at half
maximum Craig et al. claim to have a Kondo temperature of Tx ~ 0.6 K ~ 51ueV. The
splitting of the Kondo peak is measured to be 0.12meV, corresponding to the energy
2.2 Tk, where the quantum phase transition from the two-impurity Kondo model is
expected to be. In Ref. [27] it was observed that one of the quantum dots could be
tuned from a Kondo regime, showing a zero-bias peak, into a split peak if the coupling
to the other dot was increased by making the barrier between the dots more transparent.

Some theoretical works relating to the experiment [27] should be mentioned here.
Refs. [30, BI] discuss the physics of two quantum dots coupled by RKKY interaction
in order to explain the observed conductance characteristics. Among other things we
find in this thesis the same current characteristics as discussed in Refs. [30, B1], but in
a different energy regime than the approaches used therein.

In the following we neglect the discussion about the use of double quantum dots
for quantum computing since we are interested in inelastic and decoherent transport
processes. The aim of this thesis is to describe “Non-Equilibrium Electron Transport
through a Double Quantum Dot System”. The study of this subject was initiated by
the experiment of Craig et al. as mentioned before. The double quantum dot setup
considered here does not completely represent the experiment in [27], but it can be used
to give a quantitative description of the experimental results. Furthermore the double
quantum dot system discussed here illustrates the transfer of a non-equilibrium situation
on one quantum dot to another quantum dot mediated by a spin-spin interaction between
the dots. Before we give an outline of this thesis, we introduce very briefly a few
theoretical tools useful when dealing with physics out of equilibrium.

1.3 Theoretical Tools Out of Equilibrium

The most general definition one can give for non-equilibrium is that it is not equilibrium.
Consequently the rules of thermodynamics do not apply. In this thesis “non-equilibrium”
refers to a large voltage applied across a transport region otherwise in equilibrium. The
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transient behavior is neglected here and only the stationary state that establishes after
the transient is discussed.

In a typical transport setup two leads with different chemical potentials are connected
to a quantum mechanical system, e.g. a quantum dot. Even if the coupling between the
leads and the transport region is switched on adiabatically, the system does not return
to its initial state if the coupling is adiabatically switched off again. It is characteristic
for a non-equilibrium setup that the physics of the system is not described solely by
the ground state. As explained in detail in chapter Bl one calculational tool reverses
the time evolution after some interaction took place at time ¢ such that the system is
taken back to t) = —oo where the ground state was known. By doubling the time axis
also the space of the Green’s functions is doubled and these so-called contour-ordered
Green’s functions are important out of equilibrium. Whereas the fluctuation and the
dissipation of a system are correlated in equilibrium, such a theorem is not valid e.g. if
a finite voltage is applied. This is reflected in different determining equations for the
contour-ordered Green’s functions. We refer the reader to chapter B of this thesis for a
brief introduction or to the Refs. [22, B2, B3, 34].

As previously mentioned any perturbation theory approach fails to describe the Kondo
Hamiltonian at low temperatures. The Kondo resonance is a sharp resonance pinned to
the Fermi surface of the leads. In a double quantum dot system a whole range of energy
scales is present, e.g. a conduction electron band width of the order of eV whereas
the applied voltages are usually in the order of eV to meV. Anderson proposed in
1966 [10] the so-called “poor man’s scaling”, which integrates out processes to high-
energy states and incorporates their contributions into a change of the couplings in
the initial Hamiltonian. This scaling leads to an effective model at low energies. The
method is a perturbative renormalization group and therefore it does not describe e.g. the
ground state of the Kondo Hamiltonian, but its tendencies show that the Kondo singlet
is formed. In non-equilibrium the many-particle resonance builds up due to Kondo
correlations at the two different Fermi surfaces of the leads. Inelastic processes can
therefore be Kondo enhanced, such that it is necessary to include the incoming frequency
of a conduction electron in any theory.

In this thesis we discuss two different ways how to perform a perturbative renormal-
ization group out of equilibrium. In chapter Bl the method developed by A. Rosch et
al. [35, B6] is introduced and in chapter Bl the non-equilibrium flow equation method
of S. Kehrein [37, B8] is discussed. Another approach, based on the functional renor-
malization group [39, 40|, is shortly addressed in chapter B All these methods have in
common that the frequency dependence of the coupling vertex is important and in a
transport setup all processes in the energy window opened by the voltage contribute.
For non-equilibrium setups the role of the decoherence [41] is important. It is lively dis-
cussed in the physical community, how and to which degree decoherent effects influence
a transport setup. The details of the methods and their application to the setup of two
coupled quantum dots are discussed in the respective chapters.

1.4 Structure of this Thesis

This thesis consists of four almost independent parts. It was written such that the inter-
ested reader can jump to the chapter of interest without the background of a previous



1.4 Structure of this Thesis 7

section.

Chapter s a technical chapter. It explains the basic physics of two coupled spins in
a first part and afterwards the focus is put on finding an appropriate Hamiltonian. The
Schrieffer-Wolff transformation is introduced and it is shown how an effective Kondo
model can be derived from an Anderson impurity model. Chapter B introduces the
Hamiltonian of the double quantum dot system which is discussed in the remaining
thesis and it is shown that the transport through each of the quantum dots can be
treated independently.

A large part of the thesis is devoted to calculations in perturbation theory. In the first
part (chapter Bl) the Keldysh Green’s functions method is introduced. It is discussed
in detail why the lesser Green’s function in non-equilibrium has to be determined from
a self-consistent equation. The effect of a finite voltage and why it can be seen as
an effective temperature out of equilibrium is explained. Although the calculation is
included only in appendix [(] some explanations of why an off-diagonal Green’s function
arises and how it can be treated is found in chapter Bl

For readers not interested in the calculational method all results for the perturbation
theory treatment of a double quantum dot setup are summarized in chapter ll. Each
section in this chapter contains in a few lines the derivation of the physical quantity of
interest and explicit details of the calculations are given in appendix [Bl The discussion
includes the polarization, the magnetization, the current, the T-matrix, the noise, and
a current cross-correlation out of equilibrium. Special focus is put on the observation
that a non-equilibrium situation on one quantum dot can be transferred to a coupled
quantum dot by a finite spin-spin interaction.

In chapter Bl a schematic derivation of the perturbative RG method as introduced by
A. Rosch et al. [35, B6] is given. In non-equilibrium the poor man’s scaling approach
has to be generalized to include the effects of a finite voltage and a finite decoherence.
The self-consistent equation for the occupation probabilities also has to be taken into
account. Within the perturbative RG we show results for the polarization, the current,
and the T-matrix in the case of antiferromagnetic and ferromagnetic coupling between
the two quantum dots. The transfer of a non-equilibrium situation from one quantum
dot to another is found to be enhanced by the scaling of the Kondo couplings. This
provides the hope that the effect can be observed in experiments.

The thesis closes with chapter Bl on the generalization of the flow equation approach
to non-equilibrium by S. Kehrein [37,38]. This renormalization method is one of the few
scaling theories which is applicable out of equilibrium. The method is introduced and
some results are discussed. The flow equation method is a diagonalization scheme for the
Hamiltonian and not for physical observables like the poor man’s scaling, and therefore
the method can easily be generalized to two-loop order. To higher orders decoherence
mechanisms enter the scaling equations naturally. By contrast, the decoherence rates
had to be included by hand in chapter B

Conclusions regarding the different parts of the thesis are given in chapter [ We find
that a non-equilibrium situation is transferred from one quantum dot to another by a
spin-spin interaction. It is discussed in which physical quantities this can be observed
and why there is the hope that the effect can be measured in experiments.






2 Model of a Double Quantum Dot
System

Quantum dots allow for an isolation of a single spin-1/2 particle and interesting effects
in electric charge transport are observed. Generalizing this setup to two electrons on
two quantum dots additionally the spin interaction of the electrons can be studied.

In the following section we introduce a general Hamiltonian for a double quan-
tum dot and discuss within the framework of a Schrieffer-Wolff transformation how an
effective Hamiltonian can be derived for the description of spin properties which occur
at a lower energy scale than charge properties. We show that even the simple setup
introduced here leads to a spin-spin interaction between the two quantum dots.

2.1 Physics of Two Coupled Spins

Before we discuss the origin of the exchange interaction the physics of two coupled
quantum dots is discussed in detail. In this section we introduce the notations which
are used in the remaining thesis, discuss different operator structures and the relation
between product states and singlet-triplet states.

2.1.1 Product States and Singlet-Triplet States

For the following a setup of two localized spin states denoted by left (L) and right (R)
is assumed. Fach spin can be described by a state |o) where o = £1 refers to up/down
(7 / 1) spin orientation. The Hilbert space of the two spins is then described by the four
product states

D =1Dcl e, 2)=1Del Dr, B =10l Dr 14 =11zl D&

Since these are product states, it is easy to write down the eigenvalues of the single spin
operators

- 1
Salor)Llor)r = 5 Oa lor)LloRr) R,

- 3
S§|0L>L|0R>R =— |oL)L|oR) R,

4
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where o = L, R and h = 1 is assumed. The ladder operators St = \% (S:” + ZSy) and

—

ST = % (S:” — 253/) act as follows,

- - 1
St Mzle’)r =0, Sl Delo')r= ﬁ' T)rlo’) g,
- - 1
Sl ele’)r =0, SpIMelo’yr=—7=| rlo')r,

V2

and analogous for §j§
We assume that the two spins are coupled by a spin-spin or exchange interaction K

KS,Sp =K (5;5; + 5.8+ §L§R> .
As known from basic quantum mechanics the product states are thus no longer eigen-
states of the system. This leads to the definition of singlet and triplet states,

t) = [ el D, (2.10)
to) = %q 1ol La+ 1 Dzl D)., (2.1b)
) = | Dol D (2.10)
5 = %q el D=1 Dl e (2.1d)

The singlet |s) and the triplet |fo), both with a magnetic moment of 0, are no longer
product states, but one often refers to them as being entangled.

1 1
s)y=—=(|1)—12)), 1) =—=(lto) +19)),
|s) \/5(|>|>) 1) \/§(|0>|>)

1 1
[to) = NG (1) +12)), 2) = 7 (lto) —1s))

This is the reason why the study of two quantum dot systems has attracted a lot of
scientific interest (for a recent review see Ref. [26]). Not to mention there is also a large
interest in the entanglement and deentanglement of two states in the quantum computer
community.

The singlet and triplet states have the property

. 1 . 3
SLSr|ty) = Z|t«/>, SLSRr|s) = —Z|3>>

where v = —, 0, +. Thus the value of the exchange coupling K corresponds to the energy
of the exmtatlon gap between singlet and triplet states.
The square total spin moment, S+ =S, + 5 Rr, can be rewritten by

S? =52 +2 8.5k + S,
and we find
_)Z 1 _)Z
Silty) =~ 2 L1292 Sils) =
5;-21-|t7> =2 [ty), 5-24-|5> =
It follows directly that the triplet is a spin 1 (S(S+1) = 2) with three different magnetic

moments v € {+,0,—} and the singlet has spin 0. Both are bosonic particles states,
since they are composed of two electrons. They are eigenstates of S, and SpSkg.
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2.1.2 Singlet-Triplet Representation

Instead of the spin operators S; and Sy we introduce bosonic operators s, ti, tf) and
¢! which create a singlet or triplet state out of the vacuum [l Since it is not possible to
use common perturbation theory for spin operators, the pseudo particle representation
is a nice workaround to be able to do a systemic expansion in a small parameter and use
Wick’s theorem. By defining these four different states the Hilbert space is enlarged by
physically forbidden states. These states, e.g. containing 2 singlet states or a singlet and
a triplet state at the same time, have to be projected out. To find physical results we
have to enforce that the sum of the occupation probability of all pseudo particle states,
ns + Ny, + ny +ny_ = 1, equals one. Therefore we use a method usually referred to as
the Abrikosov pseudofermion representation 2] in the notation of P. Coleman [43].
In order to fulfill the constraint,

Q=sts +tlt, +tlt,+11t =1, (2.2)

we introduce a Langragian parameter in form of a chemical potential A\ in the Hamilto-
nian

o, = H+ Q.

Every physical quantity O has to be calculated in the limit of this chemical potential A
going to infinity by the rule

(0)g—1 = lim <QO>A,
A—oo (@)
where (...), is the grandcanonical average with respect to the Hamiltonian H). Since
(Q) scales with e=#* every physical process with one factor e #* survives the projection
while every process containing for example twice this factor, (e7#*)2, is projected out
for A — oo. Later on this observation is often used to argue that some terms from an
expansion need not to be calculated because they will be projected out in the final step
of a physical projection.
The impurity spin S,, can be written in the singlet-triplet representation by (see for
example Ref. [44])

(2.3)

S: =1 (tiu — 't sty +ths ) : (2.4a)

S; =1 (tgt, b+ stt —ths ) , (2.4D)

S; =4 (thte + ety — st +ils ), (2.4¢)
and

sz =1 (t1t+ — it — sty — tgs) : (2.5a)

Sho= 4 (tht—+thtg — st +4ls), (2.5b)

Sp =4 (thte +tLty +st, —tls). (2.5¢)

!The pseudo particles are chosen bosonic here, but they can also be chosen fermionic without changing
the outcome of the calculation.
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In analogy to a spin-1/2 representation we use the notation

| .
S, ==t (Ta> t,
2 ol oy Y

with a 4x4 matrix 7:7/7 for v,v" € {s,ty,to,t_} rather than a Pauli matrix 7, for a
spin-1/2. The “pseudo Pauli matrices” are defined by

001 0 0 001
. 010 0 ., /=Nt 1010
TL_1000 ’ TL_<L)_ 0 0011’ (2.6)
000 —1 0 000
and
00 -1 0 000 —1
S 010 0 , N 101 0
Te=1_100 ol T5:<R>: 000 1 (2.7)
000 —1 000 0

As mentioned before the singlet and triplet states are eigenstates of the total spin
S+ = S, + Sg and the correlation S;Sk. In the singlet-triplet representation we find,

2 2 3 1 1 1,
SLSR:_ZST5+—tgtO+ e

4 4T
N 1
(SL+SR) :Ztig—ztit,,

. L\ 2
RS
v
Please note that the ladder operators of the total spin,
g g\ i
(§L + 53)7 =ttt 1,

contain only processes between triplet states. In contrast to the singlet with total spin
0 the triplet states have a total spin 1 and thus three different magnetic moments S5 =
{0, £1}. Consequently the total spin acts only on the triplet states and the singlet state is
conserved. This leads for example to a suppression of the current in the antiferromagnetic
case and is discussed in detail later on. It is shown in the next section, that any process
involving a singlet state is a transition from a singlet to a triplet or vice versa with an
energy cost of the excitation gap K.

2.1.3 Inelastic Processes

In the previous section it was demonstrated, that the singlet and triplets are eigenstates
of the total spin S+ =S+ SR and the spin-spin interaction S1.Sk. The two spins can
also interact via the spin difference S_ =5, — Sk and the vector product 22(5 L xS R)
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The singlet and triplet states are not eigenstates of those operators and consequently a
representation of S_ and 2i(Sy, x Sg) in the singlet-triplet basis destroys a state e.g. a
singlet and creates a triplet state or vice versa.

From Egs. (Z4)) and ([Z3) we find immediately
<§L — §R>Z = s't, + t(T)s,
(gL — §R)+ = sTt_ — tls,
(5.-80) = —slt, +1's

Not directly from the definition of singlet-triplet states but also straightforwardly one
can derive

21 (gL X §R> = 25;;5_;;5 — 25_;;5; = tgs — STtO,

- -\t - - .
2 (S x Sr) " =251 85 - 2875k = —s't_ L,
2 (§L X 53)_ — 2525, —28;5% = st +tls.

These processes show a change of the total spin from 0 to 1 in contrast to §+ and
S1.Sk which do not change the total spin. Please note that the operator structure is
antihermitian [2i(S, x Sg)]f = —2i(S, x Sg).

The combinations (S, — Sg) + 2i(SL, x Sg)

S, —8r) +2i (5, x 5r) = 2ts, (2.8a)
(8.~ i)+ 2i (1 x )

( ) = -als, (2.8b)
S —Sr) +2i(S; x Sk) = 2ts, (2.8¢)
(81~ 5n) (( )

5 % *R)Z — 2t (2.8d)

- N - S\t

(SL — SR) — 2 SL X SR) = 28Tt_, (286)
) = —osft,, (2.8f)
appear quite often for a setup with two spins (see for example Ref. [45]).

Egs. (Z8) become important when we compare the results from the flow equation
method to the results of the perturbative RG. Since the flow equation is a calculation
on the Hamiltonian basis it does not need to represent the spins in a singlet-triplet basis
like the perturbative RG which is derived from Green’s functions.

The singlet-triplet representation is used since it diagonalizes the Hamiltonian and
therefore perturbation theory using Wick’s Theorem is possible. The Kondo coupling
addresses only the spin S;, and Sk and not the singlet and triplet states. If the excitation
gap K between the singlet s and the triplet ¢ is of the order of their level broadening,
such that the two states have a finite overlap, then the product basis rather than the
singlet-triplet basis provides diagonality in the Hamiltonian. As is discussed later on,
this implies the need of a degenerate perturbation theory.
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We want to point out one important property of the system. The interaction between
the conduction electron spin and the impurity spin leads to the Kondo effect via res-
onant spin flip processes. Elastic transport processes are usually available through a
non spin-flip interaction S#5%. For example the impurity spin S7 in the singlet-triplet
representation is given by % (sTtO + tgs + 151754r — tit,). If the ground state is one of the

triplets, ¢, or t_, then the operation gf does not cost any energy. A process like sft,
is accompanied by a change of the total spin of the double quantum dot system and
costs an energy of K. This simple argument indicates, that there is no transport at
zero temperature as long as the voltage does not support sufficient energy for a spin-flip
from the singlet to a triplet state. At finite temperature thermodynamically generated
excitations of higher-lying states may contribute to a finite transport current even for
small voltages.

2.2 Schrieffer-Wolff Transformation

In this section an Anderson model of two quantum dots which are capacitively coupled
is introduced and an effective Hamiltonian is derived for the lower energy physics where
the number of electrons on each dot is conserved. This Schrieffer-Wolff transformation
produces new coupling constants like the Kondo coupling, a potential scattering, and a
spin exchange interaction special to the chosen setup. This section intents to provide the
reader with an insight into the underlying physics of the double quantum dot system,
which we discuss in the remaining parts of the thesis. Especially deviations from this
model for example a leakage over the double quantum dot are derived.

After introducing the Hamiltonian of a model system in section EZZ1] we explain the
idea behind the Schrieffer-Wolff transformation in section ZZ2 Following up on the
definitions of the generators of the transformation we first derive the effective Hamilto-
nian in second order (section ZZ4l) followed by a derivation of the third order leakage
in section 221

2.2.1 Model of the Double Quantum Dot System

The most general case we consider, is the set of two quantum dots as depicted in Fig. EXT1
The setup consists of two quantum dots denoted by left (L) and right (R). Each dot
itself is described by an Anderson model

1
Hy = ol dy, + 5UaTaoNa, (2.9)

where a = L, R. The fermionic operator d!_/d,, creates/annihilates an electron with
spin ¢ on the quantum dot «. One electron can be placed at the energy ¢, < 0, but an
additional electron is subject to a Coulomb repulsion and has to pay the energy U, if it
occupies the same dot.

We assume that the dots are close in space such that there is additionally a Coulomb
repulsion Uy between electrons in the left dot and electrons in the right dot,

Hcap = ULRZnLonRo/- (210)

o0’
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Figure 2.1: Basic model for a double quantum dot system: a left (L) and a right (R) quantum
dot connected to four leads denoted by 1,2,3 and 4. A hopping between the quantum dots is
allowed and it is assumed that the hopping between lead 1,2 (3,4) and the right (left) quantum
dot is negligible (dashed lines).

This Hamiltonian is often referred to as capacitively coupled quantum dots (see
e.g. Ref. 6, 47]). In an atom or molecule with degenerate levels it is known from
Hunds rule that electrons prefer to align their spin parallel

Hyuwa = —Ju (npingy +npngy) - (2.11)

The Hund coupling Jy is mainly introduced to allow for a distinction between different
spin configurations in the calculation.

Since the dots are assumed to be in close proximity we have to allow for hopping
between them,

Hip =3 (tondhodyo + trodhodn,) (2.12)

lea

but the hopping parameter ¢, is assumed to be small. Since the Hamiltonian has to
be hermitian, the relation ¢, , = t}% holds and it is usually assumed that ¢,z and tgy,
are identical.

To measure a current and therefore properties of the quantum dots, the left and right
quantum dots are contacted by four leads which we denote by n = 1,2, 3,4. We describe
the leads by a kinetic term

1
H, = N Z enkaclbkacnka’ (213)

nko

where N is the number of band states. The fermionic operator cL,w /Coro Creates/an-

nihilates an electron in the lead n with momentum k and spin o. Each lead can be at
a different potential €, = €1 — p1,. For most of the calculations we assume that the
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density of states is constant N'(e) = N(0)O(D — |e|), where N'(0) = 1/2D and the half
bandwidth D is the largest energy scale of the system. This is motivated by experiments
using GaAs quantum dots, where the leads are an electron gas in two dimensions.

The coupling between the leads and the quantum dots is given by a hopping Hamil-
tonian,

H,, = %Z (tnadgacnka + tanCILkada(,> , (2.14)
nko
for n = 1,2,3,4. Please note that the spin is conserved during a hopping process. Due
to hermiticity ¢,, = I, and it is assumed that these two couplings are identical. As the
hopping between the dots ¢z also the hopping parameters t,,, to the leads are assumed
to be small.

Experimentally double quantum dots are realized for example by a sophisticated setup
of tunnel barriers. We assume that the hopping between leads and dots t,, is of the
same order as the hopping between the dots ¢,z themselves and thus small. Therefore
we separate the Hamiltonian into an uncoupled part,

HO = Hn+HL+HR+Hcap+HHunda (215)
and a coupling part,

Hint = HLR"_HLn_'_HRm (216>

which provides a perturbation to Hy.

This is a simple example for a double quantum dot setup. A similar setup but including
a strong tp is discussed in Ref. 46, 47]. We present the derivation of an effective low-
energy Hamiltonian to justify the assumptions that we use in the course of this thesis.

Although the model is treated as general as possible, we will later concentrate on the
special case of t;3 =ty = tg = tge = 0. This assumption is equivalent to neglecting all
dashed coupling lines in Fig. X1l It provides an interesting setup since the leads 1 and
2 then only probe the left quantum dot and the leads 3 and 4 are coupled to the right
quantum dot solely. In section we derive to third order in the hopping energies a
so-called leakage from the left leads over the quantum dot system to the right leads and
it is shown that the leakage is negligibly small or vanishes completely in a symmetric
setup.

2.2.2 ldea behind the Schrieffer-Wolff Transformation

A finite current through the quantum dot is found for example if the number of electrons
on the double quantum dot system changes. This so-called sequential tunneling takes
place at large energy scales proportional to the charging energy. Here we concentrate
on the case of cotunneling with a fixed number of electrons, which occurs at low energy
scales.

The idea of a Schrieffer-Wolff transformation is to apply a unitary transformation H =
¢S He S to the Hamiltonian H to produce an effective Hamiltonian H approximated

by

A~ H 4 [iS, H) + 3 [i5, 15, H] + % 108, 16, [iS, H[] + - ...
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Using the separation H = Hy + Hj,; the rotation can be written by

1
H ~ Hy+ Hin + [iS, Ho| + [iS, Hint] + 5 4.5, [1.S, Ho|]
1 1
+ 3 [iS, [iS, Hin]] + 3l [S, [iS, [iS, Hol]] + - - .. (2.17)
Thus a sophisticated generator S can be found such that the condition,
Hiy + [iS, Ho) = 0, (2.18)

is fulfilled. If Hj, is of the order of ¢, then all processes to order ¢ vanish in the
transformation. Consequently S is of the order of ¢ and the expansion of ¢* in the small
quantity ¢ is justified. By inserting Eq. (ZI8) in Eq. (ZID) we find

1 1
H ~Hy+ Hint — Hint + [0S, Hint) — 5 [0S, Hint) + B (3.5, [iS, Hing)]

|
— 5 ['LS, [ZS, Hint]] “+ ...

1 1
%HO + 5 [ZS, Hint] -+ g [ZS, [ZS, Hint]] + ...

After the rotation the lowest order process in the effective Hamiltonian H is of the order
of 2. This procedure is commonly referred to as Schrieffer-Wolff transformation [§].
The idea presented here will furthermore be utilized for the method of flow equations
(see chapter Bl or Ref. [38]). Therefore the Hamiltonian is rotated to an energy-diagonal
representation with a series of infinitesimal unitary transformations which cancel out a
perturbation term like explained above.

If the hopping ¢ is small, we can neglect higher orders and therefore find an effective
model for further considerations. Nevertheless the third order contribution is also cal-
culated to show that the leakage which is created initially in 3rd order can be neglected.

The low-energy physics we consider does not allow for a change in the particle number.
This has to be enforced additionally. Thus in a next step we have to project onto the
particle state of interest

N 1 1
Heg = PHP ~ PHyP + 5P [iSS, Huw P + 5P [i, [iS. Hu)| P + ... (2.19)

The specific form of the projection P will be defined later on. A few useful relations for
the calculation of the commutators are given in appendix [ATTl

2.2.3 Generators of the Transformation

In order to perform the Schrieffer-Wolff transformation we have to find a generator S
that fulfills

HLR + HLn + HRn + [ZS, HO] =0.

Since the latter condition is linear, we can make a separation in S = Srr + Sr. + Sgn
as to cancel term by term,

HLR + [iSLRv HO] = 07

Heun + [iSon, H)) =0 for «={L,R}.
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Please note, that the operator (iS) has to be antihermitian such that [iS, Hp| is hermi-
tian. The next two subsections are devoted to the two different generators Siz and S,
respectively.

Generator S

To cancel the hopping Hyr between the two different quantum dots we propose a gen-
erator

SLR = ZZ (tLREA‘LR(U)dI{UdLU — tRLEA‘LR(O')dEJdRO) s (220)
where
A 1
FErr(c) = —— (1 —nz5) (1 — ngs)
€Loc — €Ro
1 (1 - i)
— Nrz) MR
€ro — €ro + Urr — Ug bo) e
" 1 (1 - o)
Nrs — NRs
€ro — €ro + Urp — Urr g fir
1
+ NrsNRres- (221)

€re — €roe + U — Ug

(1SLr) is antihermitian as required. Please note, that in the first term of Sp g the inverse
energy term Ey (o) is Jimplicitly multiplied by ng, (1 — nr,) and in the second term by
nre (1 —ngy). Since ELR( ) is an operator, it is important that it acts after ngdLa

We choose this convention since the expression can now be interpreted as the gain of
hopping t1 g at the cost of an intermediate state defined by the combination of occupation
operators with an energy difference to the initial state as defined in the corresponding
denominator.

It has to be proven that [iSpr, Hy)]| = —Hpr. The proof is shown for one example in

appendix [A.T.2

Generator S,

Similarly it has to be shown for the generator S,,, that —i[S,,, Ho] = Han. The lengthy
proof is left out here. The interested reader can look up how it should work in ap-
pendix [AXT.2 or for example the corresponding chapter in Ref. [22]. The generator S,
is given by

S =i 3 (tanBr(0)cltalas — aa Br(0) s, ) (2.22)

nko
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where
A 1
Eo(0) = c (1 = naz) (1 — nao) (1 — nag)
€ao —
1
+ 1—na§ Nao l—n%
Gaa+ULR—JH—C( ) ( )
1
+ ——— (1 —naz) (1 — nas) Nas
an+ULR_C( )| )
(1= )
— Naz ) Nac Nas
an+2ULR_C
1
————Naz (1 — Nar) (1 — Naw
+€o¢a+Ua_Cn ( " )( " )
" : (1 = )
Noz Nao — Nag
eaa+Ua+ULR_C
" . (1 = o)
Naz — Nao ) Nas
EQJ—FUO{—'—ULR—FJH—C
1

+ U U Cnag Nao Nas, (2.23)
with « = L/R and @ = R/L, respectively. The energy change ¢ of the conduction
electron is given with respect to the Fermi energy. Usually the Coulomb energy U, is
the largest energy scale and the energy of the involved conduction electron ( is neglected
in comparison with it.

Having found the right generators of the transformation we can calculate the effective
interaction to higher orders in the hopping parameters t,, and ¢, g.

2.2.4 Effective Hamiltonian in 2nd Order

With the correct choice of generators, the Schrieffer-Wolff transformation provides a
cancellation to linear order of the hopping in and out of the quantum dots and instead
an effective interaction %z [S, Hiyg) of second order in the hopping. We now focus on
processes which conserve the particle number on the quantum dot. After the projection
we find that the two terms,

P [SLr, Han]| P = P [San, HLr) P = 0,

can be neglected since H,, always changes the number of electrons on the dot.

Still the model does not constrict properties of the double quantum dot system itself.
There can still be from 0 to 4 electrons present and there are many interesting regimes
in this setup. We refer the interested reader for example to Ref. [48] and [49]. We
limit ourselves to a double quantum dot system with two electrons, especially with one
electron on each quantum dot, since this setup models the situation of two interacting
Kondo impurities.

In total there are two electrons in the double quantum dot system and we neglect the
higher lying singlet if both electrons are in one quantum dot (see Ref. [A8]). Out of these
four states, the two with same spin direction are additionally shifted in energy by the
Hund coupling Jg. After the calculation Jy is set to zero and it is assumed that all four
states have the same energy.
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L + .

R 41\7 R R R
Figure 2.2: When there is only one electron allowed on each of the quantum dots, these are
the four possible spin states of the double quantum dot system.

The states with two electrons on one quantum dot with an energy of 2¢, + U, for
either « = L or R have to be energetically unfavorable in comparison to a state with
one electron on each quantum dot and an energy of €, + eg + Urg. We can always tune
the double quantum dot setup into this limit by choosing

UL,UR > ULR-

This is physically the most reasonable assumption since Upr < U, corresponds to a
Coulomb interaction for two electron on different quantum dots that is smaller than the
energy cost if they are placed on the same.

Furthermore we demand that the number of electrons on each quantum dot remains
unchanged, and consequently the contributions from

P [SLna HRm] P="P [SRn7 HLm] P=0

can be discarded as well.

Finally the effective Hamiltonian consists of one term which deals only with the inter-
actions on the double quantum dot system [Spr, Hrg] and a term including interactions
with the leads. These are summarized in the commutator [Sa,, Hum] for @ = L, R.

Effective interaction from [S;r, H R]

The interaction between the two quantum dots is described by strong repulsions
Up,Ug,Urr and a small hopping ¢y r. In this limit we can do a perturbation calculation
in ty g and find the effective correlation from the term [Spr, Hyr] in the Schrieffer-Wolff
transformation. By contrast, if t;,z would be large and a perturbation in it is not pos-
sible, then one would have to diagonalize Hy g and H; + Hg to find new hybridized
eigenstates, see e.g. Refs. [46, @7]. In the following it is assumed that the hopping ¢, g is
small which corresponds to the experimental situation where a tunnel barrier separates
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the two dots. Then [Spgr, Hygr| contains three different terms,

[Str, Hrg] =i [Z (tLRELR(U)dEodLU - tRLELR<O->dEodR0> )

(e

Z (tLRdj%a’ dLU’ + tRLdEJ’dRa’)]

o—l

=iy {(tLR)2 [ELR(0)> d}w,dw] dizydy,

oo’

— (trs)” | Bun(o). ]y dpy | dlodg, | (2:24)

+i 3 2 atpn EL ()5, (d;,odRU - d}adw) (2.25)
+Z Z tLRtRL { [ELR(O'), dza’dRa’:| dj%adLa

_ [ELR(U), d}%,dw} d}adR(,} , (2.26)

differing by their physical content.

Eq. (Z24) involves two particle excitations and contributes only if there is already a
doubly occupied state either in the left or in the right quantum dot.

Eq. (2223) is spin conserving and proportional to the difference in occupation number
on the left and right quantum dot.

Eq. (226]) conserves the number of electrons on each quantum dot, but the spin
quantum number is not conserved. This term leads to spin-flip processes and therefore
to an effective spin-spin interaction.

At this stage one should remember that the considerations here are limited to two-
particle physics — one electron in the left quantum dot and one electron in the right
quantum dot. An immediate consequence of this is that any contribution of Eq. (224
is projected out in this configuration space and only Eq. [ZZ0) and (Z28) contribute.
Obviously a hopping process which does not change the spin state is not possible for the
two states with identical spin direction. Thus the only contribution of Eq. (Z2H) arises
from the projection ny,(1 — nyz)ngs(1 — ng,) for o =7, ]. After performing the spin
summation of the term

? Z 2tLRtRLELR(U)5aa’ (R — Nio)

1
=1 2t t o 1— ol Yol 1— o
Zzg: LRURL (ELU—6R0+UL—ULRnR (1 =npgs) nrz (1 = nio)

1 (1= sz s (1= )
— Nio — Nrsg) NMRrs (L — NPRs )
€re — €re + Urr — Ug B Fo/ T f

we find a first contribution to the new effective Hamiltonian H =

1. 1
él [SLR, HLR] = éK (nLTan -+ nLlnRT) + ... (227)
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where

K < 2t rtRL _ 2tLRrtRL )
€0 —€ro + UL —Urr €10 —€po + Up —Ur /)

Before we discuss Eq. (2227) in further detail, we study Eq. (Z28) in the configuration
subspace.

v Z tLRtRL { [ELR(J)7 dTLO',dRO'/:| dEUdLU - [ELR<U)7 dJIr%O"dLJ’] dTLUdRO'}

(2.28)

1 1
= ZZ §KdEEdREdJIr?odLJ - §KdEEdLEdEUdRU'
This provides another contribution to the Hamiltonian H

1 1
5 1Sun Hunl = S (dydyy dlydiy + dyydydlydy ) (2.29)

which in contrast to Eq. (227 is a spin-flip term.
To combine the two parts effective spin operators for the two quantum dots are intro-

duced,

. 1
Sa = 5 (Mar = nay)
1 - - 1
+ = — x 1 SY = —F= T
S \/5 (SQ—I—ZSQ) ﬁdaTdal’
1 - - 1
T = — T _38Y) = — T
S, \/5 <Sa ZSa) ﬂdaldaT'

Furthermore we can use the constraint, that there is only one electron on each quantum
dot, to represent the occupation numbers n,, by spin operators,

Nat +No| = 1,

1 1
= M = 5 + S, Mol =3~ SZ. (2.30)

Finally the combination of Eq. (227) and [(Z29) gives

1 e |

52 [SLRuHLR] :KSLSR— ZK (231)
Please note that so far this is only valid for two of the four states in the configuration

space. Taking a closer look at the two states with the same spin direction on the left

and right quantum dot we find

- = 1 1 1 1
(KSLSR— ZK) |O'>L|O'>R =K (50' 50’+0+0- Z) |O'>L‘O'>R = 0,

such that the expression does not have an influence on those states. The expression in
Eq. (237)) is thus the general result for the effective low-energy interaction between the
two dots.
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To understand this result from physical arguments we study the virtual processes. In
Fig. one such exchange process is illustrated. With an energy of ¢,z an electron
can be excited to a doubly occupied state in one quantum dot which costs the energy
er, — €g + Up — Upg. Please note, that this process is only possible if the two spins in
the two quantum dots are antiparallel. Another hopping process of energy tg; results
in the original state or in a state where both spins are flipped. We will later on refer to

Figure 2.3: Illustration of the effective spin-spin interaction via an intermediate excited state.
The second process can lead to a spin flip or can leave the system in the initial state.

this exchange interaction as a spin-spin interaction.

The Hund rule coupling does not play a role in the expression for K since only the
states with spin T and | are shifted in energy by the spin-spin interaction. Please
note that applying a magnetic field does not change the interaction since the difference
€L, — €r, Of the initial and intermediate state is of the same spin species and a shift by
%UB cancels out.

Effective Interaction from [S;,,, H;,,] and [Sk,, Hgrn)

In the previous section we found that the Schrieffer-Wolff transformation produces in 2nd
order an exchange interaction between the spins of the two quantum dots. Due to the
similar coupling Hamiltonians we expect that the two terms [Sp,., Hrm] and [Skrn, Hrm)
lead similarly to an effective spin-spin interaction between the electron on the quantum
dot and electrons in the leads.

The commutator [Syn, Ham] for o = L, R is given by,

[Soma Ham = [N Z ( nkodao - tnCVE ( )diw nka) )
nko
AT Z (amcmk/ hateVed +tmadlo’cmk’o’>] :
mk/ !

We separate the particle-conserving contributions

tantma N2 Z Z [ nko-dao'j dao’cmklol]

nka mk’o’

Z Z [E aa nko’ :rnk/o/dao/i| )

nko mk’c’
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from the non—particle—conserving contributions

tantam N2 Z Z [ nko oo Cink’gldcw’:|

nka mk’c’

T
na mao N2 Z Z |: ao nka’daa’cmk’a’] '

nko mk'c’
The latter can be directly neglected due to the projection P into the two-particle sub-

space since it does not conserve the number of electrons on the quantum dot system.
We find similar to the commutator [Spr, Hrr| a spin conserving contribution

= LSS fanta ) { e iotaldoot = OrtoDmmborrhyrtlog + e}, (2.32)

nko mk'c’

and a spin-flip contribution

—Z Z { ant [ alo )7dloi| Coror o

nko mk’c’
~tnatamChr | Ba(0), dup |l } (2.33)

First we concentrate on the contribution from Eq. (Z32). The term with
1/N?3" .., Ok is of order 1/N where N is the number of states in the leads, and is
negligible small in the thermodynamic limit N — oo in comparison with all other
terms. Thus it is neglected in the following. The terms in E,,, which are compatible
with the pro jection to the two particle subspace, lead to a contribution to the interacting
Hamﬂtoman i [San, Ham) of the form

_émz Z CrkoCmk o

nko mk'c’
tantma
Nao (1 — Naz) Nag (1 — Nas
{an+ULR—JH—C ( ) ( )
tont
— 2 e (1= nag) (1 = Nay) N
€aoc + ULr — ¢ ( )( )
— Nag ) Nag Nas \1 — Naz
6a0+Ua+ULR_C
tont
+ an e 1 —nae) Nag (1 — Ngy) Nas ¢ + h.c. 2.34
€a0+Ua+ULR+JH_§( ) ( ) } ( )

To bring this expression into a short form spin operators for the conduction electrons

are introduced,
" 1 1,
Sum = 353 D D Chkr 3 0o (2.35)
k'k oo

Thus we can reformulate

1
T _ T
CnktCmirr = 2 E :anocmk’o + S

g

C]L C = 1 CJr C — S
nkl~mk’| — 2 nko-mk'c nm?
o
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to separate the potential scattering from the spin interaction part. By performing the
sum in Eq. (Z34)) over spin indices rigorously many different coupling terms are created.
A sketch of this calculation is given in appendix In the following the Hund
coupling Jy = 0 is set to zero and we neglect the spin dependence of the bare energy
levels €., = €4, which is justified for zero or negligibly small magnetic field.

Then the commutator %z [San, Hom| gives

:%E:%mﬁwﬁ+ha

3T 0 3 Vel 4

mno kk’
where
Ztantma Qtantmoz
anm — - y (236)
ea_'_Ua_'_ULR_C ea_'_ULR_C
1 tantma tcmtma
Venm = — = + . 2.37
2<€a+Ua+ULR_C €a+ULR_<) ( )

Additionally there is a contribution from the spin flip part in Eq. (233)). Leaving out
the actual calculation we state the result

tomtmoc
) oo ]-_ oo
ZZ{QHFULR—JH—C” ( o)

tantma
— (1 — Naos ) Nas
€a + ULR - C ( )
tomtma (1 )
- Nao \1 — Nas
€a + Uoz + ULR - C
tant
- L 1 — Nao ) Nac CT C /—dT 7d —+ h.C.
€a+Ua+ULR+JH_C< ) }nkomka ac oo

Using again the spin representation of the operators we find a contribution to the inter-
acting Hamiltonian H, again in the case of Jg = 0,

% Z Janm (840 Se + SpmSa) + h.c..

Summary of Effective Hamiltonian

Collecting all terms from the two previous sections we find the new effective Hamiltonian
H = HQ + Hint with HO = HL + HR + Hcap + HHund and

_ L1
Hi = K555 — K

+ Z Janngnm + Z Jan‘S_:Rgnm

nm

nm ' 1
T Z m Z Vanchacmk’a + Z m Z VR"mchacmk’m

nmo kK’ nmo kK
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where it is assumed that t,, = t,,. With this assumption h.c. and the sum over m,n
cancels the prefactor of 1/2.

The coupling strengths are given in terms of the initial hopping matrix elements t,,
and t; g and the interaction energies Upg and U,,

e+ U+ U — ¢ €a+Upp—C’
chm = — 3 + )
2 €a+Ua+ULR_< ea_'_ULR_C
o 2trRrtRL B 2t RURL

e, —er+ UL —Urr e, —ep+ULr —Ur

A discussion of these terms follows in section

Please note, that the spin-spin interaction J,,,, is proportional to 2, . Thus in the
case of interest when t;3 = t;4 = 0 there exists no coupling between the spin in the
left quantum dot and the right leads. The same applies for the right quantum dot and
the left leads in the case of tg; = tgo = 0. Since this independent spin control is an
interesting setup, it should be checked if a leakage exists in higher order and how strong
its influence could be.

2.2.5 Contributions from 3rd Order

So far all terms of higher order than t? were neglected using the assumption that the
hopping is small. In this section we study the so-called leakage, which denotes a coupling
between the leads connected to the left quantum dot to the leads connected to the right.
Such a term is created to 3rd order in the coupling ¢ and the aim of this section is to
compare its magnitude to the other terms from 2nd order.

The 3rd order contribution is given by

1, .
g [ZS, [ZS, Hint]]
2
i
=3 Str + Sin + Skn, [Str + Stm + Sem, Hor + Hr, + Hpry] -

Since the system is projected onto a double quantum dot system with 2 electrons in
total and a fixed number of one electron on each quantum dot, a few terms can be
neglected. For example all commutators contributing to the 2nd order in the Schrieffer-
Wolff transformation are projected out in the 3rd order term, since they conserve the
particle number only in a 2nd order process,

2

1
Pg [SLR + SLn + SRn7 [SLR7 HLR] + [Sama ch]] P =0.

Thus 9 terms are projected out while there are 18 which could potentially be important.
Fortunately even more processes are projected out,
2
?
P§ [Strs [Ser, Hrw + Hpy| + [Som + Sem, Hrr]] P =0,
2
?
’Pg [SLn + SRna [SLmv HRI/] + [SRmv HLVH P =0,

P— [San, [Sers Haw] + [Sam, Hrg]] P =0, for o= L,R,

w|
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since they do not conserve the electron number on the quantum dots. Finally we have
to take into account only the following contributions

1. .. 72

3 [0S, [iS, Hin]] =3 [SLRy [SLm, Hro] + [Srm, Hiol|

Z'2

+§ [SLns [Sers Hry| + [Srm, HLR]]

Z'2

+§ [Skn, [SLr, Hrw] + [Spms HLg]] -

Thus any contribution to third order in the coupling is of the type t,.trrtrm and corre-
sponds to a “leakage” from the left to the right leads. In general we expect two different
types of processes as depicted in Fig.Z4l In one process (left panel) an electron is trans-

P~ PH. o
DL DLt
< Prg
q | 2%a

left leads to an electron in one of the right leads over the double quantum dot system. The
two types of processes are discussed in the text.

¢

(
g:>
>

I e

ferred from a left electrode m to a right electrode n over virtual three-particle states. In
this type of leakage an electron from one of the leads hops onto the dot. It is obvious that
the same process can take place over virtual one-electron states when the first process
is a hopping out of one dot into one of the leads. It is observed later that the path of
the particle and the hole cancel each other in a symmetric setup. This type of leakage
is possible for any state of the double quantum dot system and it can leave the original
state unchanged or lead to a spin-flip like shown in Fig. ZZ41 (left panel).

The other type of process involves first a virtual state inside the double quantum dot
system as depicted in the right panel of Fig. Z4l This process is only possible in the
case of antiparallel oriented spins. Two interaction processes with the leads lead to a
non-zero leakage, but the two processes with the leads are uncorrelated and independent
of the spin orientation. It is found later on that also in this type of leakage two paths
cancel each other in a symmetric setup such that the contribution vanishes completely.

The calculation of the leakage is shown in appendix In the derivation of leakage
terms we focus on the derivation of a spin interaction similar to a Kondo coupling J,,,,
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in second order, but with one electron created in the left leads and one destroyed in the
right leads or vice versa. In appendix an indirect Kondo coupling of the left leads
to the right leads via the double quantum dot S,5,, where m € {1,2} and n € {3,4}
is calculated. There are further types of couplings created to third order. Nevertheless
we focus on the magnitude to which the leakage contributes to the coupling part of the
effective Hamiltonian.

In order to compare this term with the 2nd order contributions analytically we con-
centrate on the special case of two identical quantum dots, i.e. ¢, = eg = € and
U, = Ugr = U. Summarizing thus the calculation to third order we find a contribu-
tion to the Hamiltonian

leakage G— =+
Jnm Sa Spm

of the order of

2

leakage
T 8 :gtmLtLRtRn
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€+U+ULR—C<€+U+ULR—C €+2ULR—C)} (2.38)

This term gives rise to an interaction which moves an electron from a left lead to a right
lead or vice versa over the double quantum dot system even if t;3 =t 4 =tg =t =0
is assumed. In the next section the importance of this term compared to the other
interactions is discussed.

2.3 Effective Hamiltonian and Discussion

We derived an effective Hamiltonian for the low energy properties of the double quantum
dot system as illustrated in Fig. Il In the new interaction Hamiltonian Hiy the number
of particles on the quantum dot is conserved and the interaction takes place only via a
spin-spin interaction or a potential scattering. Using a Schrieffer-Wolff transformation
we derived a Kondo model from the Anderson model. In the following it is assumed
that the Hund coupling Jg = 0 does not split up the four spin states of the double
quantum dot system and that the bare energy levels are not spin dependent €,, = €,.
Furthermore it is assumed that the two quantum dots are identical,

€[, — €ER — € and UL:UR:U.

With these assumptions it is possible to discuss the spin exchange interaction, the Kondo
coupling J and the leakage coupling quantitatively.
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2.3.1 Spin Exchange Interaction
The spin exchange interaction in the symmetric setup is given by

tLRURL
K=4——"
U—Ugt

Since we are in the regime where Upr < U the interaction is positive and therefore the
two quantum dot spins align antiferromagnetically.

This can be understood from a simple argument as already depicted in Fig. Two
parallel oriented spins are fixed on each quantum dot since hopping is forbidden from
the Pauli principle. Two antiparallel oriented spins can have a virtual transition to the
other quantum dot thus gaining the kinetic energy t;r while the virtual doubly occupied
state costs the energy U — Ugr. Through this process the two states can lower their
energy.

Please note that in a lot of experiments the spin exchange interaction is observed
to be ferromagnetic. It is not aim of this thesis to generalize the model such that it is
additionally capable of describing ferromagnetism. Usually the quantum dots are further
apart such that there is no direct hopping, but the interaction is mediated by an electron
bath. In experiments this can be for example a larger (metallic) quantum dot like in [27]
or a nanowire like in [29]. The intermediate region leads to an RKKY interaction between
the two quantum dots, which can be ferromagnetic or antiferromagnetic depending on
the distance. For an explanation of the RKKY interaction see for example Ref. [I§].

In this thesis we want to discuss the properties of a double quantum dot system
coupled to a set of leads. It was shown that even a simple hopping and capacitative
coupling between the two dots leads to an exchange interaction. The presence of a spin-
spin interaction is assumed from now on without further mentioning where it comes
from and how it is created.

2.3.2 Particle-Hole Symmetry

The interactions of the quantum dots with the leads in the symmetric setup are given

by

1 1
Jnm :2tntm - ’
<6+U—|—ULR—C €+ULR_C)

Vi = — .t < L + ! )
e 2nm €+U+ULR_C €+ULR_C .

In an experimental setup the level energy e can be tuned by a gate voltage. This has the
advantage that this parameter can be chosen such that the potential scattering vanishes.
Then the paths of a particle and a hole have the same energy and cancel each other.
The particle-hole symmetric energy of the quantum dot,

epy = —U/2 — Upp,

depends on the capacitance Upg. Inserting the energy epy in the expression for the
couplings we find

JMN — 4t t,, /U and VI =0,
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where the intermediate energy ( of a conduction electron is neglected in comparison
with the energy scale of the Coulomb repulsion. The Kondo coupling JH does not
depend on Upg in contrast to the exchange interaction K. Later on it is assumed that
the spin exchange interaction is sufficiently large such that the two spins are locked into
singlet and triplet states while the coupling to the leads is still treated perturbatively.
This is not justified from this simple model, but as mentioned before there are several
mechanisms which can create a spin-spin interaction. Since the results of this model are
comparable to experimental results it is justified to assume that the spin-spin interaction
locks the double quantum dot into singlet and triplet states while the spin-spin coupling
to the leads is just a small perturbation, which leads to a finite current through either
the left or the right quantum dot.

2.3.3 Discussion of the Leakage

For the remaining thesis it is further assumed that there is no tunneling from the left to
the right leads and vice versa. Therefore the leakage term in the effective Hamiltonian
has to be small. For the symmetric setup of two identical quantum dots in the particle-
hole symmetric case we find

PH,leakage __
Jrm =0,

such that all paths cancel each other. This can be understood from Fig. 24k For each
particle traveling from the left to the right lead there is a hole which takes the opposite
way with the same energy cost in a particle-hole symmetric setup. Similarly a process
involving an excited singlet state costs the same energy on the left quantum dot as on
the right quantum dot in the case of left-right symmetry. In the calculation we find that
the phases of the two processes are of opposite sign and therefore the paths cancel each
other.

In a not particle-hole symmetric case the leakage is given in Eq. ([Z38). For two
asymmetric quantum dots J'°¥8¢ has to be derived along the lines of the calculation in
appendix [AZ2 We find numerically for typical values of a quantum dot experimentﬁ that
the leakage is an order of magnitude smaller than the Kondo coupling since it is of the
order of t3 and t is assumed to be a small parameter. Thus it can be claimed that there
is no leakage from a left lead to a right lead, especially in the preferred particle-hole
symmetric case.

2.4 Summary and Outlook

In this section we introduced the double quantum dot setup, which is studied in the
remaining part of the thesis. Two quantum dots are occupied by one electron each and
coupled via a spin-spin interaction K. The origin of the spin-spin interaction is for
example an exchange interaction or an RKKY interaction as discussed in section Z3
Both dots are coupled to two leads which allow for an electronic transport. We
proved that for two identical quantum dots in the particle-hole symmetric case there
is no leakage from the left to the right leads and argued that away from particle-hole

2This numerical comparison is not explicitly shown here.
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symmetry the leakage is still small. Thus we can treat the current through the left and
the current through the right quantum dot independently.

For a strong spin-spin interaction the two electrons on the left and right quantum
dot are entangled. In section 21l we introduced singlet-triplet states and pseudo bosons,
which create those states out of the vacuum. Using the pseudo-particle-representation
common perturbation theory is possible.

Some physical insights have been gained from this introductory chapter. For example
we learned that the interaction between the leads and for example the left quantum
dot is via an interaction with the spin S; and not via an interaction with the singlet-
triplet states. We introduced a representation for the spin S; and S in the singlet-
triplet representation. An important observation is, that we do not find a singlet-singlet
interaction. A singlet can only interact with the cost of K to a triplet state. Thus if we
have for example a singlet ground state we do not expect any non-zero current until an
energy scale like the voltage or the temperature provides sufficient energy to overcome
the singlet-triplet excitation gap K.

We also like to mention at this point that the singlet-triplet representation is only valid
if the spin-spin interaction is strong. The singlet and triplet states are in competition
with product states if the gap K and the broadening of the resonance I' become of the
same order of magnitude. This problem is addressed in chapter Bl and appendix [(] is
devoted to perturbation theory in the case of degenerate states.

After setting up a model, deriving an effective Hamiltonian and introducing the frame-
work of singlet-triplet states we now proceed and discuss the physics of the double
quantum dot system. Therefore we start with the lowest order approach - perturbation
theory to 2nd order - although it is known that it fails in the Kondo regime, it gives
some insight into physical behavior and a first quantitative description of the physics of
a double quantum dot system at high temperatures.
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3 Perturbation Theory — Part I:
Method

In this chapter we discuss in detail the physics of a double quantum dot system in lowest
order perturbation theory. Some ideas of perturbation theory in non-equilibrium were
already given in the introduction in section [[3. Since this method is a well-known
concept we mention here only some of the most important definitions and refer the
reader to the literature on the subject.

After having introduced the principles of perturbation theory out of equilibrium we
define the Hamiltonian of the double quantum dot system of interest. In section the
Green’s functions of the system are defined and their lowest order expression is written
down. Building on the first two sections we calculate the perturbative correction to the
double quantum dot system when the coupling to the leads is small. The result of the
self energy from section is then used in the Dyson equation for the retarded Green’s
function in section B4l The major impact of a finite self energy is reflected in a finite
life time of the pseudo particles, i.e. a finite level broadening I'. Even more significant is
the effect of a finite self energy on the lesser Green’s function. It is discussed in detail in
section that this leads to a quantum Boltzmann equation for the occupation prob-
ability of the double quantum dot states. Some complications in solving this equation
are mentioned. For a discussion of results we refer the reader to chapter Ml

3.1 Introduction

Perturbation theory is closely related to the interaction picture in quantum mechanics.
It is assumed that there is a part Hy of the Hamiltonian which can be solved exactly
and a perturbation or interacting part Hj,, which is coupled to the system H, by a small
quantity. The idea is to treat H;,; approximately by performing a series expansion in this
small quantity. In this thesis we calculate e.g. the current properties, thus the double
quantum dot setup and the leads are treated exactly and we perform a perturbation
expansion in the coupling from the dots to the leads which allows for transport. An
introduction to perturbation theory and further references can be found for example in
the books Refs. [33, 22, 34].

In order to apply perturbation theory we have to choose a physical observable that
should be described approximately. As mentioned before this can be the current or in
general the Green’s function for a single particle. There are different types of Green’s
functions, for example the retarded Green’s function

G'(t,t) = —i0t —t) ({f(t), F1(t)}).

The retarded Green’s function G (t,t") describes the dynamics of a fermion f which is
created at time ¢/, interacts with the system until it is taken out again at time ¢. In the

33
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interaction picture the time evolution of the ground state |®g) of Hy at t = —oo to the
interacting state at time ¢ is described by |¥(¢)) = S(t, —00)|®g), where the S-matrix is
given by

t

S(t,tl) :ﬂ exXp —’i/dtlHint<t1)

t/

T; stands for the time-ordering of the operators on the time axis, such that the latest
time stands to the left. For a detailed derivation please see Ref. [33]. In the interaction
picture the time evolution of the states is determined only by the interaction Hamiltonian
Hing(1).

The expectation value of the retarded Green’s function G" can be expressed in terms of
the ground state at ¢ = oo by including 7S (00, —o0) in the expression for the Green’s
function [ Usually it is assumed that the perturbation is switched on adiabatically at
some time and switched off again in the far future. The assumption that the ground
state of the system is the same at ¢ = —oo before switching on and at t = 400 after
switching off the interaction fails sometimes. Especially in the case of a finite voltage it is
immediately obvious that the particles which have been transported from one lead to the
other do not flow back if the coupling is switched off. In this situation a perturbation
theory which originates from Keldysh [50] and Kadanoff & Baym [5I] applies. The
notation used in the following goes back to a review article of Rammer & Smith [32].
The way this introductory section is structured is closely related to some chapters of the
book by Haug & Jauho [34].

N
/
------------------------------- > ¢

4
2 N

Figure 3.1: Picture of the Keldysh contour, where the time evolution is taken back to infinity
t — —oo. The upper contour is usually denoted by 1 and the lower with opposite time direction
by 2.

Keldysh doubled the time axes as illustrated in Fig. Bl The system is prepared in a
known initial state. After switching on the coupling adiabatically, the interaction of a
particle with the system is probed and afterwards the time is taken back on the contour
2 to the far past where the initial state is known. Using this trick the Green’s function is
in general a 2 x 2 matrix in the indices 1 and 2. In a short notation the Green’s function
matrix is written as G(7,7') = —i(T,.f(7)fT(7)), where 7 is a time on the contour and
T, refers to the time-ordering along the contour. After the projection onto one of the
contours 7 is replaced by t since then it refers to a physical time.

! This is a sloppy formulation, but we present only the rough idea of perturbation theory. The interested
reader should consult Ref. [33] for a rigorous derivation.
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In the Keldysh language it is distinguished between four different Green’s functions

Gt ) =Gt t) = —i <Tt (t,)>
GQQ(t, t/) Gf(t t ) < ( ) T(t,)>
G (1,1) = G2 (1,1) = =i (fOS(1)
GP(t.1) = G=(t,t) = i {f1(1) (1))

where the upper sign is for fermions and the lower for bosons. The time-ordered Green’s
function G*(t,t’) is the same as in usual perturbation theory. T} is the time-ordering
on contour 1 as defined before, such that the latest time stands to the left. The anti-
time-ordered Green’s function G* is time-ordered on contour 2. These two functions are
related by [G¥(t,t')]! = G(t,t'). The lesser Green’s function G<(t,t') has a fixed order
of operators. It is proportional to the occupation number G=<(t,¢) = d+in. The greater
Green’s function G~ (¢,t') at ' =t can be interpreted as the occupation of a hole state.
The four Green’s functions are not independent. They are related by

G (t, ) + G2 (t, 1) = G<(t, ') + G~ (t,1)).
Sometimes also the Keldysh Green’s function G¥(¢,t') is used which is defined by
GE(t,t') = G<(t, V) + G (L, 1)).

The time-ordered, anti-time-ordered, and also Keldysh Green’s functions are not con-
sidered in the following, rather relations to the retarded and advanced Green’s function
are used,

G (t,t) = G"(t,t') + G=(t, 1),
G*(t,t') = G=(t,t') — G“(t, 1),

where the retarded and the advanced Green’s function are defined like in equilibrium
perturbation theory

G'(t,t) = —iO(t —t)({f(t), f1(t)}) = Ot = ) (G (t,¢') = G=(t,1)),
Ge(t,t) =0 = ){{f (1), f1()}) = Ot 1) (G=(t,t) = G (1.1)).
It follows immediately that
G'(t, ') — G(t, 1) = G~ (t,t') — G=(t, 1),

and the spectral function A = i(G" — G*) = 2iIm[G"] can be expressed as well by the
difference of the greater and lesser Green’s function. As illustrated in e.g. Ref. [34], B2]
the relation,

G (w) = —e G (),

holds in equilibrium, where the density matrix is determined by e#. It follows directly
from this equation that

G (W) (1 +ePC ) = —e P (G (w) — G*(w))

. 1
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Thus in equilibrium the lesser Green’s function G< and the spectral function A or more
generally the retarded Green’s function G" are related by what it usually referred to as
a fluctuation-dissipation theorem. We use the ansatz of the lesser Green’s function to be
a product of a distribution function and the spectral function in the rest of the thesis.
For further reading we refer to Refs. [34] B2].

For a finite voltage or another non-equilibrium situation we find that the retarded
and lesser Green’s function are no longer related by a fluctuation-dissipation theorem.
Thus both have to be calculated by different determining equations. As included in the
name the only information we have about a non-equilibrium state is, that it is not in
equilibrium. Thermodynamic properties like the magnetization are now determined by
the voltage V' (and decoherence rate I') instead of by the temperature 7.

After having introduced the Green’s function, which is treated perturbatively, we now
explain very shortly the principles of perturbation theory. More thorough explanations
can be found in introductory books like Refs. [33, 22, B4]. As already mentioned the time
evolution in the interaction picture is carried by the S-matrix, which in non-equilibrium
is time-ordered by 7. on the Keldysh contow]. The expansion of the exponential gives
a series in Hiy,

S.=T,exp {—i/dﬁHmt(ﬁ)}

C

2
~ Tc |:1 —’i/dTlHint(Tl) + ( Z) /dTl /dTQHint(Tl)Hint(Tg) + ...

2

The first term is the non-interacting result, the second term is the first order correction
and so on and so forth. This expansion provides the perturbation series to any order of
the interaction Hamiltonian H;,.

In the model of a double quantum dot system the small parameter in the perturbative
expansion is the coupling to the leads. Perturbation theory is used to calculate the
Green’s functions of the system, the current, the T-matrix and current-current correla-
tions. To perform this calculation the concepts of Wick’s theorem and the self energy
have to be introduced, although a derivation or closer explanation is avoided due to
length reasons.

Wick’s theorem allows to reduce all higher-order Green’s function with more than 2
operators to the single-particle Green’s functions as introduced before. Wick’s theorem
is only valid for example if the non-interacting Hamiltonian Hy is quadraticE Since these
conditions are fulfilled for the Hamiltonian chosen for the double quantum dot system
Wick’s theorem is applicable.

If one performs the expansion in the interacting Hamiltonian as described above,
one would find a series of various contributions conveniently represented by Feynman
diagrams. As illustrated in Fig. some diagrams appear repeatedly. Consequently the
Green’s function can be written in a self-consistent equation, which includes an infinite
order of the so-called self energy Y. The self energy X is a collection of all irreducible

2This calculation contains a lot of technical pitfalls and needs a careful derivation. We refer the
interested reader to the review [32] for further reading.
3See one of the references [33, 22] for further details.
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Figure 3.2: Diagrammatic illustration of the Dyson equation.

diagrams in the perturbation expansion. The Dyson equation,
G(r,7) = GO(r, 1) + /dﬁ /dTQ GO (1, 7)%(ry, 72)G (70, '),

is illustrated in Fig. B2 The diagrams which enter the self energy 3 can be determined
by calculating the expansion series and identifying the irreducible diagrams in the cor-
responding order of perturbation theory. Please see section for a typical derivation
and Refs. |33, 22, 34] for further reading.

For example the calculation of the self energy contains products of Keldysh Green’s
functions and the lesser or retarded part of these products has to be determined. For
this purpose one either has to sum over all possible contour diagrams (see for example
section EE6) or use the so-called Langreth rules of analytical continuation.

We will use repeatedly the Langreth rules for A(r,7") = B(r,7")C(7', 1),

AP (8, 8) = B> (4,8)C7/< (¢, 1),
At = B=(t,t")CV (' t) + B"(t,t)C<(', 1),

and A(t,7") = B(r,7)C(1,7),

AP (t,8) = B> (4,8) O/ (¢, 1),
A" (t,t') = BS(t,t)C"(t',t) + B"(t,t)C=(¢',t) + B"(t,¢')C"(t', t).

All these rules are derived in Ref. [34] or can be calculated straightforwardly.
A further combination that arises frequently is A(r,7') = [ dnB(r,7)C(m,7') and
can be written as

AS(t 1) = / dty (BT (£, 1) C= (b, ) + B<(£,£)C (11, 1)),
AT (t,t) = /dtlBT(t,tl)Cr(tl,t’).

In future calculations we always refer to this section and the rules written down here.

As already mentioned in the introduction [l a Kondo coupling is accompanied by
a failure of perturbation theory. For low temperatures a many-body effect with the
leads produces a term in higher order perturbation theory that diverges logarithmically.
Special treatment is therefore necessary to understand the physics at low temperatures.
Renormalization methods for non-equilibrium situations are discussed in chapters Bl and
0l Nevertheless, at finite temperatures or in the case of another finite energy scale in
the system, the perturbation theory is valid. In any case it provides a first qualitative
insight into the physics of the double quantum dot system at hand.
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3.2 Notations and Definitions

In this section we introduce the basic notation used in this chapter and for the rest of
the thesis. After introducing the Hamiltonian and the model system, we summarize
the ansatz for the Green’s functions and write down their Oth order expressions. We
comment on some conservation rules and how they can be used to simplify parts of the
calculations in appendix [Bl

3.2.1 Hamiltonian of the Double Quantum Dot System

As already explained in the introduction the system of two Kondo impurities exhibits
interesting physics. After the experimental breakthrough in producing quantum dots the
study of two coupled quantum dots has found renewed interest, as well in the connection
of quantum phase transitions as in the context of quantum computing. Here we study a
double quantum dot which is in neither of these regimes, but focus on strongly coupled
dots and the influence of decoherence on the system for large applied voltages.

In the following the setup of two coupled quantum dots is used as motivated in sec-
tion

H :HO + Hint7
HO - Z Ekcjzkacnka + Z E’Ytjryt'y + )‘Q’ (31)
n,k,o o]
Hint = Z JmngL §mn + JmngR gmna (32)
m,n=1,2 m,n=3,4
Q=s's +thty+tlt, +tlt . (3.3)

lead 3

Figure 3.3: Double quantum dot system: Two Kondo impurities denoted L, R each connected
to two leads 1,2 and 3,4, respectively, and coupled to each other by a not further defined spin
exchange interaction K.

The operator c,, creates a conduction electron in the lead n with spin ¢ and mo-
mentum k. To describe the coupled double quantum dots singlet and triplet states are
used. The bosonic operator ¢ (1) destroys (creates) a singlet or triplet state. The
states are ordered by t, € {s,t4,%p,t_}. The corresponding eigenenergies including a
finite magnetic field —B (S} + S}) are

3 1

1 1
ESZ—ZK, €t+:ZK_Ba Et():ZKa €t7:ZK+B'
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To enforce that only one state is occupied at a time (Q = 1), we use the Abrikosov
pseudo fermion representation [42] as introduced in section

The perturbative part of the Hamiltonian H;,; contains the spin-spin interaction be-
tween the impurity spin and the spin of the conduction electrons defined by

- 1 -
Smn = 5 Z Cjnk’a’Talgcnko' (34)

/ !
k,k' 0,0

For m # n the operators s,,, are tunneling operators and the corresponding interaction
Jmn 1s responsible for the electronic transport. If a finite voltage is applied to two of the
leads, e.g. 1 and 2, then a current can flow over the quantum dot due to processes given
in the interaction Hamiltonian Hj,, Eq. (B2), to orders of the coupling .J,,,,,. The spin
of the left or right quantum dot is defined by

— 1 —
S, ==t <Ta) ¢,
277 iy Y

where a = L, R and the pseudo Pauli matrices as defined in Eqs. £8) and 1) in
section .11

Please note, that the quantum dot spin S,, interacts due to the definition in Eq. (B4)
with the sum over momentum states in the leadsH Tt is therefore convenient to use the
momentum integrated conduction electron Green’s function.

Please note, that the leads 1,2 and 3,4 are decoupled from each other. There is
no current flowing over the double quantum dot system, but only through each of the
quantum dots. The only connection between the two dots is the spin-spin interaction
K. As has been shown the leakage over the two quantum dots is negligibly small in the
case of two close-by quantum dots even if a hopping between the dots is allowed. Please
see section in the previous chapter for more details.

3.2.2 Green’s Functions

We define the Green’s function for the conduction electrons by

Gt (7,7') = =T, (T)hi (7))

In the following calculations it is assumed, that the leads are in equilibrium and the
influence of a magnetic field on the conduction electrons is neglected.ﬁ We explicitly take
into account a chemical potential y = pgteV /2 which corresponds to the thermodynamic
chemical potential g ~ er and an additional shift due to the applied voltage. We will
occasionally refer to V' as an energy such that a factor of e is implied but not explicitly
written.

Since the pseudo-particles interact with electrons of all momentum k, usually the
momentum integrated expression for the conduction electron Green’s function is used.
The band structure is assumed to be constant N(¢) = N(0)O(D — |e|) as illustrated in
Fig. B4 The band cutoff D is assumed to be the largest energy scale of the system.
The spectral function is given by

A(e) = 2eN(0)0(D — e]).
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>w

-D D

Figure 3.4: Illustration of the constant density of states N(w) = N(0)©(D — |w|).

Normalization of A(w) fixes N(0) to the value N(0) = 1/2D. The real part of the
retarded or advanced Green’s function is given by

Re> Gi(w)=>"P ! :/deN(O)@(D—|e|)P L _ NoymZ2=¥

n )
W — € w—¢€ D+ w

Since typical frequencies of the system are much smaller than the band cutoff, w < D,
the real part Re[G"™/?] is neglected in the following.

The ansatz used throughout the thesis for the conduction electron Green’s functions
are

Zk: Grr(w) = if (w = pn)27N(0)0 (D — |wl]), (3.5a)
; Gop(w) = —i(l = f(w = p))27N(0)© (D — |w]), (3.5b)
Imzk:c;;k(w) = —irN(0)O (D — |w]), (3.5¢)
Im;sz(w) = N (0)0 (D — |w|), (3.5d)

where 1, is the chemical potential of lead n.

The double quantum dot is driven into a non-equilibrium state by the applied voltage.
It is the purpose of this work to calculate the effect of an arbitrary voltage applied to
the transport region. The contour-ordered Green’s functions for the double quantum
dot system are defined by

G (7, 7) = —i(Tot (T)t, (7).

Please note, that the singlet and triplet states s,t.,%y,f_ are chosen bosonic. We ex-
plicitly write down ~ and 7 since the calculation shows, that between the singlet s and
the triplet ty, both with magnetic moment 0, the average in higher order perturbation
theory does not vanish <5Tt0) # 0. For a small level splitting between the singlet and
the triplet there exists an ambiguity to the product states as discussed in section 211 In
a self-consistent calculation those effects have to be taken into account very carefully.

4In the following a prefactor 1/N? is neglected.
°In realistic setups the g-factor in the leads is negligible small, see discussion in Ref. [52.
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Rewriting the Green’s functions G, (w) for all possible v,~" in form of the matrix G,

Gss(w) 0 Gsto(w) 0
0 Gror. (W) 0 0

Gtos (w) 0 Gtoto (w) 0 ’
0 0 0 Gt_t_ (u))

G(w) = (3.6)

allows us later to express e.g. the self energy in a short and descriptive way.
Since the pseudo particles for the singlet and triplet states are bosonic the Oth order
ansatz is given by

(GP)" (W) = —in A, (W), (3.7a)
(GO)7 (W) = =il +ny)Ay(w), (3.7h)

0)\"/a o 1
(GE{)) (W) = ot (3.7¢)
A (w) = 216(w — ¢y). (3.7d)

It is assumed in the following that the lesser Green’s function G<(w) can be written
as the product of the spectral function A(w) and an in general frequency-dependent
occupation function n(w). Since the spectral function is strongly peaked, it is further
assumed that the occupation is just a number with the value n, = n,(w,).

In this section we introduced the Hamiltonian for the double quantum dot system
which is discussed in the remaining part of the thesis. We defined the Green’s functions
for the conduction electrons and the pseudo particles in the uncoupled case. If the
interaction with the leads is switched on, the Green’s functions for the double quantum
dot system change as is discussed in the following. Some additional information on the
matrix Green’s function from sum rule considerations are given in appendix Bl

3.3 Self Energy Calculation of the Pseudo Particles

Now corrections to the isolated double quantum dot system are calculated as we turn
on the coupling J to the leads and consequently drive a current through the system if
the leads are at different chemical potentials. The perturbation theory in the Kondo
coupling J is valid as long as J is small such that the order O(N + 1) contributions
can be neglected in comparison with the O(N) contribution. It is known from Kondo
physics that perturbation theory fails at low temperatures, but it provides a first insight
into the double quantum dot setup and is correct at higher temperatures.
The Dyson equation,

G(r,7) =GO, ') + /dT1 /dng(O)(T, 1) (71, 72)G (72, T'),

determines the influence of the self energy > on the Green’s function G. The Green’s
function G is the unperturbed Green’s function of the isolated double quantum dot
system. The contour-ordered Green’s function were defined in Eqs. (B). Please note,
that the Dyson equation as written down here is a matrix equation for the matrix Green’s
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function and the matrix self energy,

S 0 By O
0 Y 0 0

Sis 0 Siry O
0 0 0 %,

5= (3.8)

In the next section it is shown, tht the self energy is not diagonal but block diagonal
with respect to the s-ty and t,-t_ sectors.

The first correction XM to the unperturbed result originates from the first order
expansion in the interaction Hamiltonian,

/ dr (Tt (7) Higg (1)L, (7).

Since the conduction electron contribution can be separated from the pseudo boson part,
this expectation value only is non-zero if (s,,,(71)) # 0. The expectation value

(Smn(T1)) = <Cink’o’(Tl)TJ/Uana(Tl)> = Tjoém,nnnkm

is proportional to n,x; — Nk . If the occupation number of the conduction electrons is
not spin dependent, then Tr[77,] = 0. The influence of the magnetic field on the leads
is neglected in this calculation here. Consequently, the first order in the perturbation
expansion does not contribute to the self energy. The first finite contribution is thus of
2nd order.

3.3.1 Calculation of 2nd Order Self Energy

In order to calculate the second order self energy Eﬁ?

tation value

,, we have to calculate the expec-

(Tet(7) Hing (71) Hint (72) 8], (7))
L, i j di Gj /
=) Zi/ng’s‘]mn‘]]]\/[N<tﬂ/(T)S (r)S (m)th, (7))

<Cjnk’a’ (7-1 ) Crko (Tl ) C;Wp’s’ (T2 ) CNps (7-2 )) ’

where the sum is over all variables, that appear at least twice (Einstein summation
convention) and the whole expression is integrated over the contour-times | dr and
fc dry. Since the leads 1,2 and 3,4 are decoupled, no contribution from (SpSg) is found.
For the perturbation calculation the indices ¢ and j in the Kondo couplings J;,,, and
J1;n are of no importance. They are dragged along only since they become important
in the context of perturbative RG, see chapter Bl

One should not forget that when calculating the self energy factor of 3(—4)* from the
perturbative expansion has to be included. The contraction of the conduction electrons
is straightforward and leads to

1, 1, 5 . . -1 . . /
5 (=)’ 1 Tor0To0 Tinn S 2 Gl (71, 72) G (T2, 71) (1, (1) S (1) S (1)1, (7).



3.3 Self Energy Calculation of the Pseudo Particles 43

We introduce a useful abbreviation for the conduction electron loop, which is similar to
the spin susceptibility

X;Lm(TlaTQ) = ZGnk’(TlaTQ)Gmk(7—27Tl)- (39)

1
_7)2
()2 2

This quantity is calculated and discussed in detail in appendix

Since Wick’s theorem applies we find by inserting the pseudo particle representation
into the expression for the self energy

11 .
_51_6 Té o ia Jrlnnjrjzm m(Tlv 7-2)
X (Gwl (T, Tl)TV 1 Gy (Tl,TQ)TJ, Gy (12, 7")
+GW§ (7, Tz)T’ié“/zG“/?”Yi (72, Tl)Tv wG’Ylv“f (71, />) .

Since the summation is over all internal variables, the second contribution is identical to
the first one as can be seen using the variable shift 71 <> 75, 7 <> j, m <> n, and ¢/ < 0.

The self energy 3 can now be extracted from

21 /dTl/dT2 mt(Tl)Hint(Tz)tL(T/»

= /dﬁ /dTQG%%(T, 1)y o (T1,72) Gy oy (T2, ),

where
Z .7
2717“/2(7-177-2 _51_6 mn nm To'o O’O’X (7-177-2>

TZ Gw,vé (7'1, 7_2)ij . (310)

MM Y5Y2

To second order perturbation theory in the Kondo couplings J, diagrams like the one
shown in Fig. enter the self energy.

Figure 3.5: Typical diagram which enters the self energy in second order perturbation theory.
Solid lines: conduction electron Green’s functions; dashed lines: pseudo particles of the double
quantum dot system.

In the summation over all lead indices it has to be distinguished between the left and
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the right side:

YL(Tla 7_2) - Z 2Janannka(7—17 TZ)Gmk’J’ (7_27 7_1)

m,n=1,2

- Z 2Jannm X:Ln<7-177-2)7 (311>

m,n=1,2

YR<7-17 7-2) = Z 2Janannko<Tlu 7-2>Gmk:/a/ (T27 7-1)

m,n=3,4

= Z 2Jannm XSI(TDTQ)- (312)

m,n=3,4

The following relations for a« = L, R are useful in the calculation,

1
XZ(T277'1) = W ZGnk/(T%Tl)Gmk(TlaTQ) = X,T(T1,T2)
k.

and Ya(TQ,Tl) = Ya(TlaTQ)'

With this abbreviations and making use of the matrix representation for the self energy
>) and the Green’s function G, the general result for the second order self energy gives

11 . . . o
Y(m,7) = —51—67';/07ja, Z Yo (1, 1) TG (11, 12)T2. (3.13)
a=L,R

After performing the spin summation and using Tr[7'77] = 24, ; the self energy simplifies
to

1 ~ .
2(7'1,7'2) = _1_6 Ya(Tl,TQ)Tag(Tl,TQ)Ta,

where TGT is short for T+ G T- +T- GT++T*G T>.

3.3.2 Results for the 2nd Order Self Energy

The result in Eq. (BI3) is as general as possible. It is valid for any Kondo system
coupled to leads if one replaces the pseudo Pauli matrices T by the corresponding spin
representation for the interacting system, e.g. for a spin-1/2 system by the usual Pauli
matrices T' = 7. For the double quantum dot system of interest, we use the spin matrices
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as defined in section X1l The following self energies are found

1

Buu(11,7) = 5 (Gl (1, ) + Gorey (1, ) + G o (m, )
(Yo(71, 72) + Yr(71, 72))] (3.14)
S (71, 72) = —1—16 [(Gus(m,7) + Gy, (11,7) + Gy (m1y 7))
(Vi(r1,7) + Ya(r, 7)) (3.15)
St (71,7) = —1—16 [(Gasla ) + G (11, 79) + G (11,7)

(Yo (11, 72) + Yr(71,72))
— (Gt (11, 72) + Gios(m1,72)) (Y(T1, 72) — YR(71,72))],  (3.16)

Yt (11, 72) = _1_16 [(Gss<7-17 7o) + Gioto (71, 72) + Gy (11, 72))
(Yo (11, 72) + Yr(71,72))
+ (Gt (11, T2) + Gros (11, 72)) (Yi(71,72) — Yr(T1,72))],  (3.17)
and

Sl ) = =15 (G-t (1) = Govy () (Va(11,7) = Y, m)
+Gis(11,72) (Yo (11, 72) + Yr(T1,72))], (3.18)

Ztos(TlaTQ) = _1_16 [(Gt,t,(ﬁ,ﬁ) - Gt+t+(7_177_2)) (YL(7'1,7'2) - YR(7'1,7'2))
+Gst0(7_177_2) (YL(Tl,TQ) +YR(7'1,7'2))] . (319)

There exists an off-diagonal self energy contribution in second order. As a consequence
there also exists an off-diagonal Green’s function Ggg = Gé?zggGﬁgzo. Before the im-
portance and consequences of the off-diagonal self energy is discussed, a few remarks are
given about the actual calculation and it is commented on some usual assumptions,

In the following we only need the lesser self energy < and the spectral weight I'. The
broadening I', gives a finite life time of the pseudo particle ¢, and is also proportional
to the rate of tunneling out of the singlet or triplet state. The lesser self energy X5 is
important in the context of the quantum Boltzmann equation discussed in section
and can be interpreted as the sum of all rates that end in the state ¢,.

Time-translational invariance is assumed and that all quantities have reached a sta-
tionary state such that they depend only on the time difference t — t'.

After Fourier transformation all quantities depend only on one frequency w and we
find

(X)) (w) = = 27N (0) g (w + ptn — fom) [w + ptn — i), (3.20)
Y7 (w) =(=2m) [(9%1 + 932) 2wnp(w)
42912921 ((w + eV)np(w + eVy) + (w — eVi)np(w —eVy))],  (3.21)

YR< (w) =(=2m) [(932,3 + 924) 2wnp(w)
+2934943 (W + eVr)np(w + eVr) + (w — eVr)np(w — eVR))],  (3.22)
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where g, = N(0)Jp, is the dimensionless Kondo coupling and ng(z) = 1/(exp|x/T]| —
1) is the Bose distribution function. For a derivation of these quantities please see
appendix B2 The relation X (71, 72) = X (79, 71) for the time arguments translates
to

(X5)° (w) = (X717 (—w), (3.23)

Y. (w) =Y (—w). (3.24)
The function Y ~(w) for @ = L, R is related to Y,~(—w) by
Y (~w) = Y5 (w) + (—27)2¢2w, (3.25)

« «

where the following abbreviations are introduced also for later

497 = 911 + 935 + 2012921, (3.26)
A9k = 933 + Gia + 2934913, (3.27)
Jan = 497 + 495 (3.28)

With these definitions and relations we can now write down the Fourier transform of
the lesser self energy X< and the broadening I'. We find with the Langreth rules from
section B

S (w) o / ;l—;fg<(w —OTY<(e) = / — TG ()TY < (w — ¢), (3.29)
—iT(w) = 7 (w) — Z%(w) = 2" (w) — Z4(w)
~ / g—; TG (T (0 — )~ TG~ ()Y (w0~ )]

- / ;l_; [f (G<(€) —iA()) TY <(—w +€) = TG<(e)TY < (w — e)]
~ i / ;l—;fA(e)fY<(e — W)+ O, (3.30)

Due to the constraint, Eq. (B3], the terms in I" which are proportional to the lesser
Green’s function G< are neglected. To extract physical quantities we have to project
observables onto the physical Hilbert space. Since G< is already proportional to e,
the combination with any physical quantity e.g. with n in the quantum Boltzmann
equation is projected out, see section 2l or [42]. To simplify the calculation this term
is neglected already during the calculation.

3.3.3 Discussion of the Off-Diagonal Self Energy >,

The self energy, Eq. (B13), of a double quantum dot state is determined by the excitation
of an intermediate state by means of a particle-hole pair in the leads (see also Fig. BHl).
The intermediate state decays to the initial state when the electron-hole pair recombines.
If the broadening is larger than the splitting between different levels, it can happen that
the recombination of the electron-hole pair leaves the system in a different state. This
is general for every system with two nearly degenerate energy levels and one or more
additional levels which are allowed as intermediate states. Or more generally: if there
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are more spin and orbital degrees of freedom in the impurity structure than there are in
the electron leads, the off-diagonal contributions can be finite.
For example for the double quantum dot system we find a non-zero self energy >,

from Eq. BI]),

1
16 [Gt08<7—177—2) (YL(ThTz) + YR<7—177'2))

+ (Gi_v_(11,72) = Gepr, (11, 72)) (Yi(11,72) — Yr(71,72))] -

The off-diagonal contribution is created by the term (Gy_;_ — Gy, )(Yr — Yg) because
Gy,s does not exist in lowest order. Consequently the self energy is non-zero if the
symmetry of the setup is broken due to a finite magnetic field ¢, # ¢_ (spin symmetry
broken) and due to a left-right asymmetry Y, # Y. The left-right symmetry is broken
if the coupling to the left lead Jy, is not identical to the coupling to the right lead Jg,
see therefore the definition of Y7, and Yy in Eqs. (B2Z]) and ([B22).

This can be understood from a simple argument: Starting from a singlet state the

+/—
e
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S

Z]sto (7-1 ) 7-2) =
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S
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Figure 3.6: Illustration of the symmetries in the off-diagonal self energy. There are two different
paths with different signs which can lead from the singlet to the triplet ¢g. Green/left sign for
interaction with left leads. Red/right sign for interaction with right leads.

interaction part of the Hamiltonian allows the transition to an intermediate/excited
state by changing the spin of either the left or the right quantum dot. Changing the left
spin of a singlet state

_ 1
Slsh=+—glt-) Sfls) ==zt

1 it

/2 +
creates an intermediate state with SZ, # 0 and the two triplet states ¢, and t_ arise
with a different sign, as illustrated in Fig. B8 If the excited triplets decay back into the
singlet the same sign appears and cancels out finally. By contrast, if they decay into the
Sg. = 0 triplet the sign remains the same. This is the reason why the off-diagonal self
energy >, vanishes for zero magnetic field. In that case the two paths are identical but
with opposite phase and destructive interference leads to a cancellation.

The observed symmetry with respect to left and right leads can be understood along
the same line of argument. If the spin state of the right quantum dot is changed starting
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from a singlet state, we find

Sale) = ——si- +lts

Thus if the coupling to the left and the right leads is identical and the creation of an
electron-hole pair in the leads costs the same amount of energy, then these two path
interfere with each other destructively.

), Sgls) = )-

Please note that these two symmetrical points are special to the double quantum dot
setup discussed here. Off-diagonal contributions can always appear as soon as there are
two levels close in energy and one or more intermediate states available. The double
quantum dot setup studied here is known to show a quantum phase transition at small
values of the singlet-triplet gap K as discussed in chapter [ Additionally it is known
for example from conformal field theory (see e.g. Ref. [I6]) that the operator S, — Sk
destroys this property. It is also obvious that for a finite magnetic field the system can
no longer form a Kondo singlet. These two broken symmetries are thus well-known in
the community working with double quantum dots.

In this section we derived and discussed the second order self energy of a double
quantum dot system coupled to leads by the small parameter J. We showed that in a
setup where there are more spin and orbital degrees of freedom in the quantum dot than
degrees of freedom in the leads, off-diagonal entries in the self energy are found to higher
orders in perturbation theory. Now the influence of this self energy is studied, first on
the retarded Green’s function in section B4 and then on the lesser Green’s function for
a finite voltage in section B3l

3.4 Retarded Green’s Function

The retarded Green’s function has to fulfill the Dyson equation

1

G =G +GYG o G =[G t-]", (3.31)

with the self energy X" given in the previous section. The real part of the self energy
Re[X"] shifts the energy of the level and the imaginary part iIm[X"] is a measure for the
finite life time of the pseudo particle states due to an interaction with the leads. The
imaginary part of the retarded self energy is often also referred to as the broadening
of the level I' = 2Im[¥"]. The advanced Green’s function G* is the conjugate of the
retarded Green’s function G" = [G?]T. It contains the same physics and therefore the
discussion here is limited to the retarded Green’s function.
We find for the retarded Green’s function matrix,

1

(G =% =

(w—wy — X5 ) /det 0 sto/det 0
0 G;+t+( ) 0
o Jdet 0 (W—w—>)/det 0o |0 632

0 0 Gy, (w)
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where

T
Ztos’

det = (w — Wy — ngoto) (Ww—ws—X0) =37

sto
((U) = (w — Wiy — Z:iti)il :

(3.33)
G;iti
There are now two different cases, which are discussed in the following: the off-diagonal
self energy 37, = 0 or X[, # 0.

sto

3.4.1 Special Case: >, =0

Sto

In the case of zero magnetic field B = 0 or symmetric coupling J;, = Jg, the self
energy M7, = 0 is zero as discussed in section B33 It follows immediately, that the
off-diagonal retarded Green’s function G7; = 0 vanishes and is not created to all orders
of perturbation theory, i.e. no off-diagonals complications appear in the calculation. The
diagonal retarded Green’s functions can be expressed for v = {s,t,,ty,t_} as

1
Cw—w, il )2

G (W)

The shift of the real part of the retarded self energy Re[¥"] is usually neglected. Since
it is quadratic in the small property J? it is only a small correction to the actual level
energy w. which is of the order of O(J°). Though the shift can be important in some
special cases (see Ref. [53]), it is not important in the parameter space discussed in this
thesis.

Additionally in most of the calculations here the influence of a retarded self energy on
the broadening of the level is neglected. It is assumed that all other physical properties
change on a larger energy scale than the broadening I'. Effectively the broadening is
treated infinitesimally small such that the spectral function is a d-function,

Gl (w)="P +imd(w — w.y).

W — Wy

Due to this “on-shell” assumption most of the calculations simplify, for example integral
equation turn into linear equations. The real part of the retarded Green’s function is
usually neglected.

In the perturbative RG in chapter Bl we include the broadening again, since the physics
of a finite lifetime destroys the Kondo effect. For the 2nd order perturbation theory in
this chapter, the broadening is of the order g2,. All other physical quantities change
on a much larger energy scale and thus the effect of a finite retarded self energy on the
diagonal Green’s functions is often neglected. In section there is a small remark on
how a finite broadening I' influences the outcome of a current calculation.

3.4.2 Finite Off-Diagonal Self Energy X[, # 0

If both the left-right symmetry J;, # Jr and the spin symmetry B # 0 are broken, we
find a non-zero off-diagonal self energy 3, . Since the Dyson equation for the retarded
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Green’s function can be solved exactly, Eq. (B31]), this is not a principle problem. From
Eq. (B32) the solution for the retarded Green’s function is given by

= Yty (W)
W e @) @ e @) S @mew O

GT‘

sto

In comparison with the diagonal Green’s function this is not a Lorentzian, but a more
complex frequency dependent function. It can be written as the difference between two
Lorentzians as illustrated in appendix [(l Note that the spectral weight on resonance at
Ws OF wy, is finite. For example at w = w, we find for the off-diagonal retarded Green’s
function

Egto (ws)

G" )
ng(ws) (K + Z;‘oto (ws)) - tho (ws)zgos(ws)

sto (WS) =

This value is suppressed by a large K such that the off-diagonal components only be-
come important at vanishingly small singlet-triplet gap K. A detailed calculation of
the retarded Green’s function in the case of K = 0 and for finite K can be found in
appendix and [CT2 respectively. For the calculations in the main part of the
thesis, two remarks are in place. First, there exists an off-diagonal retarded Green’s
function G7, if there are more spin or orbital degrees on freedom in the transport re-
gion, e.g. in a double quantum dot setup, than in the leads. Second, the off-diagonal
retarded Green’s function is of the order X7, /K. It can be neglected in the case of a
large singlet-triplet splitting and vanishes in the case of left-right symmetry J;, = Jg or
magnetic field B = 0.

3.5 Lesser Green’s Function and the Quantum
Boltzmann Equation

In an equilibrium situation the lesser Green’s function would be connected to the spectral
function via a fluctuation-dissipation theorem as discussed in section Bl The thermo-
dynamic result is shown in section B5.l In a non-equilibrium case, for example with a
finite applied voltage, the lesser Green’s function has to be determined independently.
The dynamics of the system is no longer described by e®. Most of this section is de-
voted to this non-equilibrium effect. In section we derive the determining equation
for G< and emphasize why it is a self-consistent equation. Although the self energy
corrections are of 2nd order in the coupling J, they give rise to a Oth order correction
to G<. The results are discussed in chapter E

3.5.1 In Equilibrium

In equilibrium the system is not coupled to the leads and there is no transport through
the dots. The occupation of the singlet and triplet states is determined assuming that
the double quantum dot system is coupled to a thermal bath. We find in the canonical
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representation
oK/T
" T T4 eB/T 4 BIT 4 KT’
effyB/T
Uz

" T 11 BT 4 o BIT § oK/

Although the singlet and triplet states are bosonic particles, their occupation is not given
by the Bose distribution function. The occupation numbers contain the information that
in the antiferromagnetic case K > 0 the singlet is the ground state. If K < 0 and B > 0,
the triplet ¢, is the ground state, and in the special case of B = 0 the three triplets
form a degenerate ground state.

The occupation numbers ng and n;, are not observables which can be measured in
experiment, but correlation functions like the polarization <§ L§ r) or the magnetization
M = (S7 + §%) are measurable observables.

3.5.2 Derivation of the Quantum Boltzmann Equation

If a finite voltage V' is applied to the setup, the dynamics is no longer described by the

temperature T, see Refs. [52, b4]. A determining equation for the occupation number n

is derived from the Dyson equation for the lesser Green’s function G<. This equation is

called the quantum Boltzmann equation most of the time but sometimes also referred

to as the quantum kinetic equation. To 2nd order this equation is identical to the rate

or master equation where the transition rates are determined from Fermi’s golden rule.
The Dyson equation for the lesser Green’s function G<,

Gyt G< =Y"'G< +X°G°, (3.35)
can be rewritten as

[Gal _ Zr] G< = n< e

= (G GT=357G"
Further on a symmetrized version is used. Starting from

G< [Go_l _ Za} — " %<

= GG =G"%T,
the difference of the two latter equations is taken, which gives

(GG -G (GY) ' =u<G -G x . (3.36)

By taking this difference the transient behavior is disregarded and only information on
the stationary state is obtained, which is the limit here considered (see also Ref. [34]).

If off-diagonal contributions are neglected in Eq. (B36]) we have to solve the following
equations

(@) = (E7],, (@) G5 (W) = 5, (w) [6° = G7],, (@) (3.37)

Y

= G5 (w) = = Ay (w).
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Using the ansatz G35, = —in,(w)A,,(w) the expression ([E37) corresponds to a self-
consistent equation for the occupation number n.(w) = i35 (w) /T, (w) [B2]. In general
n. is a frequency dependent function, but it is assumed that it deviates from the value on
resonance on a larger energy scale than the energy scale on which the spectral function
A, changes. Usually the spectral function is approximated by a J-distribution. Conse-
quently the occupation number is described by the constant value n, = n,(w,) at the
resonance w = w,. dince Eq. B37) is an equation for the distribution function of the
pseudo particle states, it is plausible why it is called the quantum Boltzmann equation.

Eq. (B30 is a self-consistent equation for the occupation numbers, or probability dis-
tributions, of the singlet and triplet states. The dependence on the occupation number
enters through the lesser self energy 5 which is an integral over the lesser Green’s
functions G,f, .+ see Eq. (B29). Although the rates I',, are calculated to 2nd order per-
turbation theory the effect on the occupation number from the self-consistent equation
is a Oth order effect.

The off-diagonal lesser Green’s function is defined by

GS () = —i <tg(t')s(t)> .

The function G35, is zero for the unperturbed system in contrast to the diagonal Green’s

functions for example G = —in, 2m0(w — w,), but G, is created to second order

in the perturbation theory. Still it cannot be neglected like the retarded off-diagonal
Green’s function. The calculation of the non-equilibrium distribution functions with
the quantum Boltzmann equation has to be self-consistent in second order. Thus the
off-diagonal terms contribute to the same amount as the rates of diagonal terms do, and
both are Oth order in the coupling J to the leads.

Including the off-diagonal elements the quantum Boltzmann equation becomes a com-
plex structure. We write down the equation ([B38) for G, explicitly with the frequency
dependence

(G"),, (W) G5, (W) — G(w) (GY) g (W) + (G7) e (W) Gy (W) — Gy (@) (G, (W)
=35 (W) Go (W) — GLy(w) £5, (W) + £5, (w) Gy () — Gy () Sy ().

The equation mixes G (w) with the singlet G5, (w) and triplet G, (w) components.
Additionally the spectral weight is distributed at different frequencies. In the discussion
of the retarded Green’s function we found that the off-diagonal Green’s function has a
complicated frequency dependence. The self energy in the quantum Boltzmann equation
is given by a convolution of the Green’s functions with a contribution from the leads.
In principle the quantum Boltzmann equation for the off-diagonal Green’s function
can be solved if one finds a correct ansatz for G, and if one manages to solve the integral
equation. Here we suggest a different approach. As explained in detail in appendix [(J we
perform a transformation of the singlet-triplet basis and solve the quantum Boltzmann
equation in a new basis. Since the calculation contains a lot of details, it is included in
the appendix. Here only the main ideas of the calculation in chapter [C] are presented.

3.5.3 Idea behind the Degenerate Perturbation Theory

The problem of the self-consistent quantum Boltzmann equation in the limit of small
exchange interaction K is the frequency-dependence. In case the off-diagonals can be
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neglected, the ansatz that the spectral function is strongly peaked can be used, i.e. the
occupation number is calculated on resonance only. We want to be able to make the
same ansatz in the case when there are non-zero off-diagonal Green’s functions.

In a first step we therefore transform the retarded Green’s function matrix G" by
U=1G"U to a diagonal retarded Green’s function matrix g”’. The transformation gives
two new retarded Green’s functions at the two frequencies w; and ws. These Green’s
functions G and G are orthonormal since they are eigenvectors of the retarded Green’s
function matrix. The quantum Boltzmann equation can be thus treated independently
at the two frequencies w; and wy. The retarded Green’s functions G7,, G}, , and G7;
consist of sums or differences of G and G5. The explicit calculation can be found in
appendix [CT2 Tt is found that in the case of K = 0 the new eigenstates of the system
after the rotation correspond to the product basis as introduced in section EZIl This
is obvious from a simple physical argument: if there is no spin-spin interaction K, the
product states describe the system exactly. The singlet s and the triplet ¢, are not pure
states in this case. On the other hand if K # 0 the singlet and triplet states rather than
the product states are pure states, since they provide an eigenbasis to K S1.Sk. The idea
behind the rotation is to get rid of the corresponding entanglement and find the correct
eigenbasis for the Hamiltonian depending on the strength of K. Please note, that the
rotation is only important if K becomes of the order of the broadening I'.

The advanced Green’s function is rotated differently. From the sum rule consideration
(G2, T = Gy, the rotation is in principle given by U*. This is discussed in more detail

in section IC. 1.4

In non-equilibrium it is necessary to solve the quantum Boltzmann equation. There-
fore we rotate the retarded and the advanced Green’s function in Eq. (B36) correspond-
ingly. This produces a transformed lesser Green’s function G< and also a rotated self
energy ©<. Details of this calculation are found in appendix 0222 In the transformed
self energy the rotation can be included into the pseudo Pauli matrices T. With the
diagonal retarded Green’s function in the eigenspace the quantum Boltzmann equation
can be written again as a linear equation and the self-consistent set of equations for
the occupation numbers can be solved in the rotated basis. The initial lesser Green’s
functions G, Gy, and Gy, are found by a back-transformation. In the case of K =0
as discussed in section the occupation of the singlet and triplet states are given
as the sum or difference of the occupation numbers of the product states. The more
general case of finite K is discussed in appendix [C22 To simplify the calculation we
utilize the results from section [BJl How to create an ansatz for the transformed lesser
Green’s function is described in the appendix in section [C22

Finally the reader should be reminded that the transformation is necessary only in the
limit when K is of the order of the broadening I'. If the spin-spin interaction is stronger
and the singlet-triplet gap has opened sufficiently, then the off-diagonal self energy can
be neglected in the quantum Boltzmann equation.

For the parameter regimes discussed in the remaining part of this thesis the off-
diagonal elements are neglected and the interested reader is referred to the chapter [(in
the appendix.
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3.6 Summary and Outlook

In part I of the topic perturbation theory we discussed the basic concepts of perturbation
theory out of equilibrium. Physical observables and results of the quantum Boltzmann
equation are discussed in part II in chapter Hl.

In section Bl the most important concepts of perturbation theory in non-equilibrium
were mentioned. If a finite voltage is applied to the double quantum dot system, the
lesser and the retarded Green’s function do not obey a fluctuation-dissipation theorem
as in equilibrium. They have to be determined independently by solving two different
Dyson equations. Section B4 is devoted to the retarded Green’s function. Its Dyson
equation can be solved exactly, but since the retarded self energy is a 2nd order correction
to the unperturbed result, the effect of a finite retarded self energy is usually neglected.
In chapter B this is reconsidered and we discuss the effect of a finite imaginary part of
the retarded self energy, because it leads to a finite life time of the pseudo particle states
and therefore to decoherence effects.

The lesser Green’s function obeys a self-consistent equation as derived in section
The rates to 2nd order in perturbation theory contribute to Oth order in the perturbative
expansion. It is assumed that the lesser Green’s function G<(w) = —inA(w) can be
written by a product of the spectral function, as determined from the imaginary part
of the retarded Green’s function, and an occupation number, which obeys the self-
consistent quantum Boltzmann equation. The solution for the occupation numbers and
a discussion of the results follows in section EIl.



4 Perturbation Theory — Part Il:
Results

After having introduced the calculational method in chapter Bl we continue with dis-
cussions of the results in chapter @l The voltage-dependent occupation numbers and
related thermodynamic properties are studied in section EEIl As a physical observable
which is easily accessible in experiment the current through one of the quantum dots is
discussed in section By tuning the parameters of the double quantum dot system
we show interesting effects that appear only out of equilibrium, for example the so-called
transconductance. Since it is a quantity that is comparable to the impurity density of
states of an Anderson model, the T-matrix of the conduction electrons is discussed in
section Performing the same calculation within the framework of perturbative RG
in chapter Bl opens the possibility to compare the results with NRG calculations. So far it
was assumed that the spin-spin interaction between the two quantum dot spins is antifer-
romagnetic, because this case shows interesting physics due to competing ground states
as discussed in chapter [ Results for the ferromagnetic case are shown in section B4
and the difference to the antiferromagnetic setup is discussed.

Motivated by the observation that there is a communication between the left and
the right quantum dot in non-equilibrium, we study current-current correlations: In
section the noise is introduced and results of the current-current correlation in one
lead are shown. In section we prove that the cross-correlation between the current
in the left and the current in the right lead is non-zero.

4.1 Polarization and Magnetization

The occupation numbers for the singlet and triplet states are not physical observables,
but they determine the voltage dependence of thermodynamic quantities like the polar-
ization p and the magnetization M. We discuss results for B = 0 in section LTl and
for finite magnetic field in section EET.2

In this chapter the contributions from the off-diagonal self energy ¥, = ¥ are
neglected. This approximation is exact for symmetrically coupled quantum dots even
if the magnetic field is non-zero. It fails in the case of asymmetric coupling J;, # Jg
and finite magnetic field B # 0. This failure is shown at the end of this section and as
discussed in the previous chapter a resolution to this problem is presented in appendix [C}

As discussed in section we have to solve the set of equations (B31),

Lo (wy)ny =155, (wy),

for v € {s,ty,to,t_}. To derive this equation the ansatz G5 = —in,A,(w) was used
and it was assumed that the frequency dependence is dominated by a strongly peaked
spectral function A,(w). The self-consistency of the equation is hidden in X3 which

55
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explicitly depends on the occupation numbers n,. The system of the four equations
for v € {s,t,,to,t_} is underdetermined. In order to find a non-trivial solution for the
occupation numbers we need additionally the constraint

Ng + g, + gy + 1. = 1.

Taking this constraint into account we find voltage-dependent solutions for the states of
the double quantum dot system n,, ny, ,ny and n,_. The calculation and the solutions
are given in detail in appendix

We restrict ourselves to the case of degenerate triplet states in the next section. This
case is studied in great detail, since the calculations in the framework of the perturbative
RG in section B, and of the flow equation method in chapter B do not include a finite
magnetic field either.

4.1.1 Polarization in the Case of Vanishing Magnetic Field B =0

In the case of B = 0 all triplet states are degenerate and n,, = ny,, = n,_ = n;. The
following system of equation has to be solved,

YL<+R(_K)”5 = YL>+R(K)nt>
ng + 3n; =1,

and the solution can be written down immediately. We find for the occupation numbers,

Yir(FK)
YL<+R(_K) + 3YL<+R(K) ’
where Y5 p(w) = Y~ (w) + Y (w). The derivation of Y, is shown in appendix B2 The

function Y,~(w) for @« = L, R depends on the voltage V,, and on the coupling to the left

or right leads, as given in Eqs. (B21]) or (B:22)) respectively.
Since the pseudo particles do not correspond to a physical observable, rather the
polarization p is discussed, which is a measure for the spin-spin correlation,

= = 3 3

Ns/t =

(SLSR) = 1 (ns —ny) = —ZP-
The polarization p = ng — n, is given by
_ _ YR R(EK) - YR R(K) Yiir(K)
pP=Ng— Ny = 2 = =1-4 — = ) (4.1)
Y r(=K) + 3Y5 p(K) Y r(=K) + 3Y5 p(K)
For voltage V;, = 0 we find
1—e KT 1

= 1+36—K/T_1_4 eKIT {3

In Fig. Tl we illustrate the difference between the voltage dependence of the polarization

p (Fig. h.1(a))) and the temperature dependence (Fig. 4.1(b)).
In an equilibrium setup with V;, = Vz = 0 the exponential factor e=%/7 is asympto-

tically 1 in the limit of 7> K. The polarization decreases in this limit as

b=ns —ny

K/

p o — (1 — e_K/T)
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Figure 4.1: Dependence of the polarization p on the voltage eV, /K (left panel) for T/K = 0.001
and on the temperature (right panel) for eV, /K = 0. Both plots use Vg = 0, B = 0 and small
coupling gr, = gr = 0.1.

to the value 0 if the singlet and triplet states are equilibrated and both have an occupa-
tion probability of 1/4. For even larger temperatures, 7' > K, the behavior goes over
to a 1/7T Curie-like decay, which is obvious from a further expansion of the exponential
px(1—-14+K/T+...)/4~ K/AT.

By contrast in the finite voltage case the quantity Y5, = Y~ + Y5 for Vi = 0 is
given by

Y r(£K) = (911 + 92 + 4gk) 2(EK)np(£K)
+ 2912921 [((£K + eVp)ng(£K + eVy) + (2K — eV )ng(£K —eV)] .
Assuming that the temperature is the smallest energy scale in the system and using the
approximation ng(z) = e ~ 0 for x > 0 and np(xr) ~ —1 for z < 0, we find for
Vi>K>0
YL<+R(K) =~ 2912921 (GVL — K),
YL<+R(_K) ~ 2 (9%1 + 9%2 + 4912'%) K+ 2g12921(eVy, + K)

Inserting into the expression for the polarization we find in the large voltage limit

(497 + 49%) K
(497 +49%) K +2- 2912921 (eV — K)

P X

The dependence of p on the voltage is thus algebraic. This is in contrast to the depen-
dence on the temperature T" which is exponential. For very large voltages V;, > K the
polarization falls off like

D~ 9311
4g12921€V7,

This behavior is similar to a Curie law, but with an effective temperature of
(g912921/9%;)eVr. Tt is important to notice that the effect of a finite voltage on the



58 Perturbation Theory — Part II: Results

0.8

0.6

04

3= (...

0.2

s

)

]
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|
1
1
1
{

2 -1 0 1 2 2 1 0 1 2
€ €
(a) Kernel for V' = 0 and the two different tem- (b) Kernel for T/K = 0.001 and the two differ-
peratures T/K = 0.001 and T/K = 0.5. ent voltages V =0 and eV/K = 1.5.

Figure 4.2: Kernel f(e+ K —eV/2)(1 — f(e+€V/2)) at K =1 for two different temperatures
T/K in the left panel and for different voltages eV/K in the right panel.

polarization is of Oth order in the perturbative expansion to orders of the coupling g to
the leads.

To illustrate where the difference from the equilibrium to the non-equilibrium result
originates from, we have to refer to an analytical detail in the calculation. As already
discussed in the derivation of the self energy (section B3) the 2nd order contribution
originates from an electron-hole pair which is created and recombined in the leads during
two interaction processes. The function Y;5p(w) contains this contribution from the
leads. As can be seen from the derivation in appendix Y =(w) is proportional to the
convolution

D

/def(e+w—um) (1= fle— ).

-D

where the chemical potential is fi,,,,, = eV, /2 in the leads m,n and o = L, R. The
kernel of this integral is sketched in Fig. The integral is non-zero if the distribution
of the electron f(e+ w — p,,) overlaps with the distribution of the hole (1 — f(e — u,)).
The frequency w in Y, (w) takes the values w = £K in Eq. () for the polarization.
For w = —K the distribution f of the electron and (1 — f) of the hole have a finite
overlap. The observed dependencies therefore arise from the contribution of w = K. In
this case the temperature 7" or the voltage V' have to be large to provide a finite overlap
(see in Fig. L2). The temperature enters the exponential and smoothens the step in the
Fermi distribution function. The voltage shifts the onset of (1 — f) and the offset of f,
respectively. This explains the exponential and algebraic dependence of the polarization
on the temperature and voltage, respectively.

In Fig. it is shown that the polarization p does not only depend on the voltage V7,
applied to the left quantum dot, but that also the voltage Vi affects the non-equilibrium
distribution of the double quantum dot system. If the voltage Vi reaches the threshold
eVr &= K, a finite current through the right quantum dot leads to an occupation of
the excited triplet states via decoherent processes. Thus the value of the polarization
p(eVr, < K) deviates from the value 1. Since we chose a symmetric setup the value for
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Figure 4.3: Dependence of the polarization p = ns — ny on the voltage eV /K if the voltage
Vg applied to the right quantum dot is varied. The plots for eVi/K = 0.0,0.5,1.0 lie on top
of each other. The other parameters are g;, = gr = 0.1, T/K = 0.001, and B = 0.

eVr/K = 1.5 and Vi, = 0 is the same as for eV, /K = 1.5 and Vz = 0 as can be seen in
Fig.

The voltage is sometimes interpreted as an effective temperature. As in thermody-
namic considerations the finite occupation of excited states is possible if sufficient energy
is provided to overcome the gap. While in thermodynamics this process is described by
the Boltzmann factor e’ here it is described by the quantum Boltzmann equation in
non-equilibrium. The transition rates between the pseudo particle states play an impor-
tant role in this context and the finite life times of the states is induced by a current
driven through the system. The decoherence rates I' are proportional to the coupling
g? to the leads, the singlet-triplet gap K and the finite voltages V;, and V5 in left and
right leads, respectively. Although the rates are of 2nd order in the coupling, the effect
on the occupation number is of Oth order. The decrease of p seen in Fig. is clearly
not proportional to g% ~ 0.01, rather the polarization falls off like 1/V7.

This discussion is general for every microscopic system where a finite voltage is ap-
plied [52, 54]. Consequently we find the same behavior even if we apply a finite magnetic
field to the quantum dot system.

4.1.2 Polarization and Magnetization for Finite Magnetic Field
B#0

In the case of finite magnetic field the solutions of the non-equilibrium distribution
functions, n,, ne, ,ny, and n,_, are given in appendix [B3 In the symmetric case, when
the coupling J;, to the left leads is identical to the coupling Jgr to the right leads, we
can perform the calculation without any assumptionsﬂ We show in Fig. how the
occupation numbers of the singlet and triplet states depend on the voltage for a finite
magnetic field B/K = 0.5. The singlet remains the ground state of the system but
the triplet ¢, is already occupied for eV, = K — B. Then sequentially the triplet ¢, at
eV, = K and t_ at eV, = K + B become occupied when increasing V7.

If there is a magnetic field B # 0, the magnetization is finite. The magnetization M

If the left-right symmetry is conserved, the off-diagonal entries of the self energy Y4, = 3,5 = 0 are
exactly zero.
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is defined byﬁ,
M = <§z + g}%) == 'I’Lt+ — Nyt_.

For a finite magnetic field the polarization p is redefined according to section 21 by

p= —§(§L§R> =ng — % (e, + ng + 1)

1 1
0.8; 0.8;
0.6; 0.6;
0.4; 0.4;
0-2; 0.2;

il il
(a) Non-equilibrium occupation numbers vs. (b) Polarization and magnetization vs. voltage.

voltage.

Figure 4.4: Non-equilibrium occupation numbers, the polarization p and the magnetization M
dependent on the voltage for vanishing temperature 7/K = 0.001, small coupling g;, = gr =
0.1, finite magnetic field B/K = 0.5, and Vi = 0.

Then it has to be distinguished between three different cases: magnetic field B lesser,
greater or identical to the spin-spin interaction K.

For two coupled quantum dots with a strong spin-spin interaction K > B, the singlet
is the ground state and the polarization p has the value 1. If the magnetic field B > K
is stronger than the spin-spin interaction K then the triplet ¢, is the ground state and
the polarization is —1/3 as can be seen in Fig. L3 The transition between these two
cases happens at K = B when the singlet s and triplet £, are degenerate and both
are occupied with a probability 1/2. The polarization is then +1/3. The transitions
between the three values of p = 1,1/3, —1/3 happen on a scale set by the temperature.
A finite voltage provides the energy to occupy excited states. In the large voltage limit
the system tends to equilibrate in the sense that all states become populated with the
same probability. As can be seen from Fig. and Fig. EEA the polarization always
increases or decreases like 1/V7, to 0.

Similar statements hold for the magnetization of the system. It reaches the first non-
zero value at B = K when the triplet £, becomes the ground state of the system. From
the value of 0 in Fig. it changes over the value of 0.5 to 1 in Fig. EEJ in a energy
window which is determined by the temperature. The voltage provides sufficient energy
to occupy the excited triplet ¢_ and consequently the magnetization M tends to 0 like
1/V.

2This definition is related to the total magnetization Mot = 2(S7 + S%) = 2M. The factor of 2 is left
out due to convenience.
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Figure 4.5: Polarization and magnetization for magnetic field B = K and degenerate ground
state (left panel), and for magnetic field B = 2K and a triplet ground state (right panel).

4.1.3 Magnetization in the Case of Spin-Spin Interaction K =0

The approximation that the off-diagonal self energy contributions can be neglected, fails
in the case of small spin-spin interaction K < I'. This failure is illustrated here in the

case of K = 0.
In the case of K = 0 we find that the occupation for the singlet s and triplet ¢, are
identical, ny = ny,. Thus the following system of coupled equations has to be solved,
2V p(EB) . = 2Y5 g (FB)ns,
2ng +ng, +ny. =1

The solution is
Y r(B)Y g(—=B)
PR
(YL<+R<B) + YL<+R<_B))

o (DY
t —_— .
. Y r(B) + Y g(—B)

The magnetization of the left quantum dot is thus given by
M; = 2<Sz> =Ty, — Ny
2 2
_ (YL<+R(B)) - (YL<+R(_B)) Yiir(B) = Y5 p(=B) (4.2)

(Y5 r(B) + Y,-i”,%(—B))2  Y5R(B) + Y5 R(=B)

The magnetization My, of the left quantum dot should be decoupled from the right side
when K = 0. The solution of M, in Eq. (£2) depends on Y5 (+£B) and consequently on
the voltage Vi and the coupling of the right quantum dot to the leads 3 and 4. Thus the
calculation fails since the magnetization of a quantum dot depends on the properties of
another quantum dot which is decoupled.

The result for the magnetization My for K = 0 in Eq. ([2) is not wrong in the
case of conserved spin symmetry or conserved left-right symmetry. In those cases the
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off-diagonal self energy >, is identical to 0 as discussed in section B33l In the case of
B = 0 the magnetization is M = 0 as expected, since for B = K = 0 all pseudo states
are occupied by the same probability of i. In the case of Y, = Yk, Y1, g can be rewritten
by 2Y7. Then the result Eq. (£2)) is identical to the result for a single quantum dot with
a finite magnetic field see Ref. [52].

For a finite magnetic field and for asymmetric coupling of the quantum dots to the
left and right leads care must be taken regarding the off-diagonal contributions. How to
include the off-diagonal contributions in the quantum Boltzmann equation was already
discussed in section and is described in detail in appendix

In section EET] we showed that the pseudo particle occupation numbers depend on the
voltage applied to the quantum dot system to Oth order in the perturbation expansion.
The non-equilibrium situation also affects thermodynamic quantities like the polarization
and magnetization of the double quantum dot system. Instead of a Curie 1/7T-law these
observables decrease like 1/V for large voltages. Due to a finite current the states in the
double quantum dot system are subject to decoherent processes.

4.2 Non-Equilibrium Current

The magnetization M and the polarization p are physical observables, but they are
not easily accessible in experiments. By contrast the current can be measured directly.
We discuss the differential conductance dI/dV in detail in this section. This quantity
gives a measure of the level distribution in a mesoscopic device and is therefore studied
extensively. In experiments of double quantum dot setups, e.g. Ref. [27, 29], the applied
voltages are of the order or larger than internal energy scales of the mesoscopic system.
To describe the experimental results it is therefore necessary to include non-equilibrium
effects into the calculation.

We discuss the current and related derivatives for vanishing magnetic field B = 0
(section LZZ) and finite magnetic field B # 0 (section EEZ3). The calculation of the
current expression in section ELZ]] follows along the lines of Refs. [, b, B7], see also
Ref. [34].

4.2.1 Derivation of the Non-Equilibrium Current

The current through the left quantum dot is defined by the charge of an electron times
the change in the charge carrier density of for example the first lead,

d 1
[L = —62 %nlo = —ez E [Z C-Il.kUClko,H]
o o k
.€ = =
= Zﬁ [J12SL512 - J215L321} .

Defining the correlation function

Dua(r,7') = —i <TCSL<T)§12<T')> , (4.3)
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the current becomes proportional to the real part of Dy,

e
In=—+ (J12D35(t, ) — Jor[Day]*(t, 1))
e dw .
== —2—J12 / — Re [DE(W)] s if J12 == ng. (44)
h 27

In Oth order Dgg) does not contribute since the expectation value of <c{k,a,%ﬁ,/ac%a> is
zero. The lowest order contribution originates from

DW(r,7) = (—i)? / dr <TC§L(T)HM(71)§12(T')> .

Wick’s theorem applied to the conduction electron part implies, that there are only
the following three terms,

DY) (r,7) = (—i)zjzl/dﬁ (T.S7(1)SL (11)s3,(11)s75(7"))

+ (TS5 (7)SE (m)sau(m) s ()
+(TSE(T)SE(m) 5 (m)sia(7))]

The lowest order diagram for the current has the form given in Fig. (Ef). As is obvious

Figure 4.6: First order diagram for the correlation function Dy (Eq. (3)), which determines
the current. Solid line: conduction electrons, dashed line: singlet-triplet states.

from the expression for Dg) and the diagram, it is effectively the conduction electron spin
susceptibility (7.5 (71)12(7')) and the quantum dot spin susceptibility (7,5, (7)SL (1))
which enter the formula for the current.

After applying Wick’s theorem we find

1 R
DY(r,7) :—Jm/dTlT;,aTj 1T,

16 a0’ Y'Y vim
1
1

T Z G2ko(7—/7 T1>G1k’o’ (7'17 7'/)

L
(=)

The spin susceptibility of the conduction electrons is defined asE,

G“/w’(Tlv T)G’Y’Yi (7—7 7_1)'

1
XQI(Tl, T/) = W Z le/ (Tl, TI)G2k<TI, 7'1),

kK

3Please compare to the definition of X in Eq. (3X) on page
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where the spin index is neglected since the conduction electrons are independent of the
spin state. For a derivation and discussion of this conduction electron spin susceptibility
we refer to the appendix B2l Since the change of the particles number is calculated in
the first lead, the indices m and n are restricted to 1 and 2. Furthermore we define the
spin susceptibility for the double quantum dot system (DQD),

o'o'oo’!

Xpqp (7, 71) ZT/ 7 T G,ﬂﬂ/(Tl,T)Tﬂf/,yGWi (1,7) =2Tr [fgfg] , (4.5)

where the sum is over all indices (Einstein summation convention). The sum over all
indices is equivalent to the trace of the matrix product.
Using these notations we can rewrite the correlation function as

1
Dﬁ) (1,7') = — 1—6J21 /dTlxDQD<T, Tl)X21<7'1,T/).

To derive the current we need the greater component, which can be extracted using the
Langreth rules given in section B.],

1 a
D7, (t, 1) = —1—6JQ1 / dt, (X]SQD(t, t) (X3)” (t, ) + Xpap(t, t) (X3) (tl,t’)).

Only D~ (t,t') at t' = t enters the expression for the current. To simplify the calculation
we perform a Fourier transformation and transform back at a later stage. In frequency
space we thus find

D) = 16 (Xbap(®) (X2)” @) + Xpap(e) (X2)" @) (46)

Similar to the rules for single particle Green’s functions, there are also relations be-
tween the susceptibilities. For the conduction electron spin susceptibility we find the
relation

(X)) (W)~ —= (X3)7 (W) + % (X3)™ (). (4.7)
This is closely related to G* & 3iA = —1(G” —G<), since A = i(G"—G*) = i(G” —G~)
and consequently —iA = G~ —G<. A proof of this relation can be found in appendix B2
Since the current is proportional to the real part of the correlation function Di,(w), the
real part of the conduction electron Green’s functions can be neglected.

A similar relation holds for Xqp,

DO | —

ban (@) = 5 X5an () ~ 5 XSan(e). (4.9

The derivation of Eq. () can be found in appendix B4l
Using Eq. () and Eq. (X)) the expression for Di,(w) in Eq. ([EH) simplifies to

D) =~ Iny (Xap(@) (1) (@)~ Xan(e) (X2)” (#))

Inserting further Di,(w) into the expression for the current, Eq. (), we find

I = %/dwi]uijm <X]§QD((“}) (X21)<( ) — XDQD( w) (X%)> (W)> :
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The next step is to calculate the spin susceptibility of the double quantum dot system
within the singlet-triplet representation.

If the contributions of ¥, and ;s are neglected no off-diagonal terms appear. The
well-known ansatz for the lesser Green’s functions G5 (w) = —in,A,(w) is used, where
the spectral function A,(w) = i (G}(w) — G4(w)) = 2m6(w — e,y)g is assumed to be
strongly peaked. Since all other physical quantities change on a larger energy scale
we can neglect the finite width and assume a d-function rather than a Lorentz peak.
Directly related to this sharp structure of the spectral function A,(w) is the assumption
that the occupation number n, can be assumed to be frequency independent since it
does not change rapidly within the width of the spectral function. The value of the
occupation number itself has to be calculated from a quantum Boltzmann equation as
explained in section ET1

The calculation of the spin susceptibility of the double quantum dot system is now
straightforward. Later on we refer back to the derivation here when it appears in fur-
ther calculations. Note that a contribution from G< x G< is projected out since it is
proportional to e 2" and is thus neglected in the following.

Xap@) = Y mhrhy [ 5T [GOT'GP e+ )T
=~ Y iy [ SEGHATS, (Gl +w) - Gile+ ) T,
= Z i / (—0)2mny6 (€ — €y) T2 (—i)276 (e + w — €) Tyjy,

:—2271'5 (W— €y + €)7oy T T Ly T

O-U O'O' ’y’y’

and analogously we get

Xan(w) = 3 1hoily [ 55 (Gle- >_G;-;,< ) T\, GS(T,

== 270 (w — €& + €) oy T Tir T

To'oToo! ¥y

We find explicitly that the symmetry X5op(w) = X5op(—w) is fulfilled. This result is
only valid if the spectral function is assumed to be a d-function. A finite broadening will
be discussed later.

The corresponding expression for the current is thus

I, =2m7 ( Tyo7i, T y) (nglTialTiy/)
/dw (_ny (X2)™ (@) +ny (X2)7 (w)) S(w—e +er). (4.9)

The expression in Eq. (9 is generalized to calculate the current using the perturbative

RG method in chapter B

“Here a factor of h is understood such that the frequency w has the unit of an energy, hw.
5In section we show one result of the current including a finite decoherence rate I'.
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The conduction electron spin susceptibility X1 is calculated in appendix and
inserted into Eq. (£9)). After a summation over all indices the result is

pe 1 ;
I, =(27)° h16g12g21 aaTaa T ‘/Tv]v’

((67/ — €y — €VL) ng (67/ — €y — GVL) — (67/ — €y + GVL) ng (67/ — €y + GVL)) s

where g refers to the dimensionless coupling g = N(0).J and the voltage is defined by

GVL = U1 — M2. (410)

The current is antisymmetric with respect to the voltage. Using the relation ng(z) =
1 coth(36z) — 3, we define the function Fj(z,V),

F3(x,V) = %(az —eV)coth (z —eV) — %(:c +eV) coth (x + eV, (4.11)

which reflects the antisymmetry since F3(x, —V') = —F3(x, V). This leads immediately
to the conclusion that the current vanishes if the voltage is zero, F3(z,V = 0) = 0. The
same symmetry arguments apply to the first argument of the function Fs(z, V)

Fy(—z,V) = —Fy(z,V),  F5(0,V) = F3(z,0) = 0.

Using the function F3(z, V') the current can be written in the final form,

IL 116(277') Zglgggl oo ool T T,\jm/ (GVL + F3(€,y/ — €, VL)) . (412)
Since this current expression is general, any setup of quantum dots with the correspond-
ing pseudo-spin matrix T can be calculated in this framework. The only assumptions
entering the result of the current in Eq. (EEI2) are, that the Green’s functions G, = G,
are diagonal and the ansatz for the lesser Green’s function, G<(w) = —inA(w), applies.

4.2.2 Discussion of the Current for Vanishing Magnetic Field B =0

In the case of vanishing magnetic field B = 0 all triplet states are degenerate, n;, =
ny_ = ny,. = ny. The energy eigenvalues of the states are given by wy, = w;, = w;_ = iK
and w, = —%K . After summation of the conduction electron and quantum dot indices
in Eq. (I2) the current I, through the left quantum dot is given by

IL = %(277-)2%912921 [36VL -3 (nt — TLS) F3 (K, VL)] . (413)
The first term in Eq. (EI3) is linear in the voltage and the second term is a function
proportional to the polarization p = ng, — n,.

In Fig. the current I, versus the voltage eV /K applied to the left quantum
dot is shown at low temperatures 7/K = 0.001 and a small coupling g;, = gr = 0.1. If
not stated differently the couplings to the leads are assumed to be identical g;; = goo =
gi12 = go1 = g and ¢33 = gaqa = g34 = Guz = gr. The result is shown only for V; > 0
since the current for V; < 0 is given according to I(—Vz) = —I (V7). In the case of
an antiferromagnetic coupling K > 0 between the two quantum dots, the singlet is the
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Figure 4.7: Current I [e/h], differential conductance dIy,/dVy[e?/h] and the second derivative
of the current dQIL/dVL2 versus voltage eV /K for B = Vg = 0, g, = gr = 0.1 and small
temperature T'/K = 0.001. The right panel includes the result for dIy/dVy, if the physics of
the quantum Boltzmann equation (QBE) is ignored.

ground state of the system. The ferromagnetic case and its different physics is discussed
separately in section EE4l As already mentioned in chapter £l there is no current through
the quantum dot if the singlet is the ground state. Any process involves a transition to
a triplet state. This is only possible if the energy gap can be overcome by an energy
of the system like a temperature or a voltage of the order of the singlet-triplet gap.
This argument is valid in the particle-hole symmetric case if potential scattering is not
present (see section Z2). Otherwise the current would have a finite slope and would not
be suppressed for voltages below the singlet-triplet gap.

The threshold behavior is more pronounced in the differential conductance dI/dVy,.
As it is obvious from Fig. the conductance displays the level structure of the
mesoscopic system which is attached to the leads. The differential conductance is sym-
metric with respect to the voltage and we show only the positive voltage axis. Contrary
to the common expectation the maximum is not at eV, = K. In non-equilibrium the
voltage at the inflection point corresponds to the value of the energy gap. Alternatively
the level splitting can be determined from the second derivate of the current as illus-
trated in Fig. [.7(D)] In the same panel we also illustrate the effect of the self-consistent
calculation of the occupation numbers. If the quantum Boltzmann equation is ignored,
the differential conductance has a step rather than a cusp at eV, = K. As was shown
in Ref. [62] the voltage-dependent occupation probabilities are necessary to describe
experimental results.

In Fig. the influence of the temperature on the differential conductance is illus-
trated. We observe that the width of the cusp becomes broader for higher temperatures,
since there are electron excitations present within an energy of 27" around the Fermi
edge. In Fig. the effect of different couplings to the leads is illustrated. The

derivation of the Kondo model from an underlying Anderson model implies
JiaJa1 = (4t1t2/U)2 = Ji1Jao,

with the expression derived for J,,, in section in the particle-hole symmetric case.
Therefore the parameters in Fig. go beyond the Anderson model. We define a
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Figure 4.8: Differential conductance dIy,/dVy[e?/h] vs. voltage eV}, /K for B = Vi = 0. In the
left panel different values of the temperature 7/K = 0.001,0.01,0.1 are shown and the coupling
g, = gr = 0.1 is kept constant. In the right panel the temperature is constant 7/K = 0.001
and we vary the Kondo coupling to the leads, while the transport coupling gi2 = go1 = g is
kept constant to the value 0.1.
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Figure 4.9: Differential conductance dIy/dVy vs. eV /K for finite, but small temperature
T/K = 0.001 in comparison with a calculation including the finite level broadening I' of the
pseudo particles. The other parameters are B = Vi =0, g1, = gg = 0.1.

diagonal Kondo coupling g; = ¢g11 = g22 and a transport Kondo coupling g; = g12 = go1.
It is obvious from Eq. (EI3)) that the transport is governed by the coupling ¢;. In
Fig. the coupling gq is changed while g; is kept constant. The cusp at eV = K
is enhanced if g, = 2¢g4 and lowered if g4 = 2¢g; compared to the symmetric case g5 = g;.
Apart from that the structure of the peak does not change. This observation originates
in the dependence of the non-equilibrium occupation on the ratio gq/g:.

In Fig. it is taken into account that the singlet and triplet states gain a finite life
time due to the interaction with the leads. This hybridization is reflected in a finite
broadening I'. The effect of a finite decoherence due to the non-equilibrium situation
is discussed in more detail in chapter Here we only illustrate that the physics is
dominated by I' instead of by the temperature T, if I' > T". In this limit the spectral
function A(w) is approximated by a Lorentzian 1/7 T'/((w — €,)? + I'?) instead of a
d-function in the convolution with X2. The calculation is given in appendix In
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(coth(Bz/2) — 1) we define the broadened ni(z) = 3(é(x) — 1),

1
2

() 1 ( . <x+2T> +arct (x—QT))
¢(x) = — | arctan arctan
T T T
2T 1 xz+ 2T x—2T
+ —— | arctan — arctan
T T T

- %% (In [(z +27)* + T + In [(z — 2T)* + T?]) .

analogy to np(x) =
where

This expression is valid for T" < x,I', since the derivation makes use of the expansion
of zng(x) at T < x. In Fig. £ we show a comparison of the result of the conductance
if the broadening is neglected and if a finite I' of the order of g?K = 0.01 is taken
into account. Please note that the resonance is broadened and additionally the shape
changes.

The effect of a finite decoherence can also be studied indirectly via the effect of a finite
voltage Vg applied to the right quantum dot on the current through the left quantum
dot. In Fig. it is shown that as soon as the voltage Vg reaches the threshold
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Figure 4.10: Dependence of the differential conductance dIj,/dVg on the voltage eVy /K if the
voltage Vg applied to the right quantum dot is varied. The plots for eVg/K = 0.0,0.5 and 1.0
lie on top of each other. Further parameters are g;, = gg = 0.1, T/K = 0.001, and B = 0.

eVr > K, triplet states become occupied. The non-equilibrium situation on the right
quantum dot is transferred by the spin-spin interaction K to the left quantum dot and
a finite conductance dI;/dVy is observed even in the linear regime eV, < K.

In Fig. 1Tl we study the differential dependence of the current through the left quan-
tum dot on the voltage applied to the right quantum dot. The current I}, depends on Vy
via the polarization p = ny — n;. In the inset of Fig. EETT] we plot the rescaled quantity
(K/eVy)dI,/dVg. This so-called transconductance does not dependent on the voltage
V1, or the spin-spin interaction K, as long as V, is below the threshold eV} < K.

From the expression for the current in Eq. ({EI3) we can derive an expression for the
transconductance,

dl, 3 9 € dp
— = —(27)° = —— | F3(K
A 8( ) hg12921( dVR) 3(K, V)
3 € 2912921 2934943 o dr
= Z(27)*= Fy(K — (K 4.14
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Figure 4.11: Transconductance dIj/dVg[e?/h] vs. eVg/K for various values of eVy/K =

0.01,0.1,0.5 and g, = gr = 0.1, B =0 and T/K = 0.001. Inset: transconductance rescaled
with a factor of K/eVy,.

since

9 2931943 d
— (K, V,
292, K dVg 1(K, Va),

dp 5 1 d
Y n(K) = 4p?
< dVR) p2gHK v r+r(K) =4p

and where Fi(K,Vg5) = (K + eVg)npg(K + eVg) + (K — eVg)np(K — eVg).

The increase of dI;,/dVg at the voltage eVr = K originates from d/dVgF; (K, Vg) and
the decrease in Fig. 1Tl is then due to p?. Both effects are closely related to the non-
equilibrium occupation number of the pseudo particle states. The transconductance is a
capacitive effect which becomes obvious from the combination of the couplings to the left
and right leads. If we assume that all couplings are derived from an underlying Anderson
model such that gi12901 = g11920 and additionally g3 = go2 = ¢ (and analogously for
the leads 3 and 4), the expression for dI;,/dVy is proportional to

/()

The transconductance (K/eVr)dI;/dVpg is thus finite and reaches its largest value if the
couplings ¢g; and gr are identical.

As a last point in this section it should be mentioned, that although the current
through the left quantum dot can be tuned by a voltage applied to the right quantum
dot, the chosen setup of a double quantum dot system can not be used as a switch. This
conclusion is proven in appendix [B.4l

4.2.3 Current in the Case of a Finite Magnetic Field B # 0

If the coupling is left-right-symmetric, the off-diagonals are exactly zeroll Performing
the same steps to calculate the current as in the case for zero magnetic field, we can
derive an expression for the current in finite magnetic field B.

In the antisymmetric case J;, # Jr the off-diagonal contributions can only be neglected for K > T.
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Evaluating the spin product T};/,Yn,yijv, in Eq. (EEI2) we obtain

1 e
I, = §(2W)2E912921 [3eV — (nt+ —n )F3(B,Vy) — (nt+ —ns)F3 (K + B, V)
- (nto - ns)F?: (Ka VL) - (nt, - TLS)F;J, (K — B, VL) ] . (415)

This result is only valid in the regime where off-diagonal contributions are negligible.
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ferent values of B/K.

Figure 4.12: In the left panel we show the differential conductance dIy/dVy vs. eV /K for
finite values of the magnetic field B/K = 0.0,0.5,1.0,2.0 at low temperature 7//K = 0.001,
Vr =0 and g1, = gr = 0.1. In the right panel the dependence of the current on the magnetic
field B is shown at eV, /K = 0.1 and same set of parameters as in left panel.

In Fig. we show the differential conductance for finite magnetic field B. As in
the calculation of the magnetization in section the current shows different physical
behavior for B < K, B= K, and B > K. A degenerate ground state e.g. for B = K as
well as a triplet ground state show a finite current in the linear regime eV, < K. From
Fig. it is obvious that the crossover between singlet and triplet ground states
happens on the energy scale given by the temperature T'I] The differential conductance
can thus be used to analyze the energy spectrum of an unknown sample, since the series
of peaks is linked to the level structure of the transport region, see therefore also the
discussion in Refs. [31, B0].

In the limit of K — 0 the current in Eq. ({ETH) depends on the total magnetization
My, = 2(S7 45 %) rather than on M, = 2(S7) solely. Consequently the current depends
on the voltage Vg although the two quantum dots are decoupled, see therefore the
discussion in section The assumption that the off-diagonal contributions can be
neglected fails in the limit K — 0. It is explained in appendix [C] how the current can
be calculated in that special case.

In this section we derived the expression for the current through one of the quantum
dots. The differential conductance dI/dV shows the same qualitative behavior as the
results of various experiments (e.g. Ref. [27, 29]). The shape of the resonance is affected
by the non-equilibrium occupation numbers. Besides the temperate T' the broadening
of the cusp depends on the broadening I'. A finite voltage Vx applied to the right

7 As discussed in Ref. 5] the differential conductance at B = K is Kondo enhanced.
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quantum dot creates a non-equilibrium situation for the whole quantum dot system.
This effect can be probed by the transconductance (K/eVy)dI;/dVg, which illustrates
that the current I, through the left quantum dot can be tuned by the voltage Vx.
Without solving the quantum Boltzmann equation this effect would not be present and
it originates exclusively from the decoherence of singlet and triplet states due to a large
voltage.

4.3 T-Matrix

So far we discussed mainly the properties of the double quantum dot system. In this
section we focus on the scattering of conduction electrons off the Kondo impurities. A
useful quantity in scattering problems is the so-called T-matrix or reducible self energy
of the conduction electron Green’s function (see e.g. Ref. [2, B8, B9]). It is defined by
the perturbative expansion of the conduction electron Green’s function,

G" = Gy + GI"GY,.
By writing the expansion one can derive a self-consistent equation for the T-matrix,

T = Hipy + HintGoHint + Hint GoHint Go Hint, + - - -
= Hin + Hin GoT. (4.16)

It was shown e.g. in Ref. [59] for a quantum dot subject to a magnetic field, that
the T-matrix links the Anderson model for the double quantum dot system, that was
discussed in section 22, to the Kondo model studied in chapters Bl and @l The low
frequency part of the d-level density of states (DOS) in the Anderson model can be
identified with the T-matrix by

Ag(w, T, K) = —%Im IN(O)T"(w, T, K)]. (4.17)

This relation is imperfect in the case of 2nd order perturbation theory, but the T-matrix
is discussed again in the context of perturbative RG in chapter B With the knowledge of
the spectral function the linear response conductance can be calculated as (see Ref. [58])

dI e? of
G = W Voo = E;/du)Ado«d) <_8_w) .

Since we already derived the differential conductance for a finite voltage in the previous
section, the comparison of the T-matrix from the Kondo model with the spectral function
of the Anderson model is the main issue of this section.

4.3.1 Calculation of the T-Matrix

In second order perturbation theory the T-matrix or reducible self energy is identical to
the irreducible self energy of the conduction electron Green’s function. On the Keldysh
contour the Green’s function is defined as

Gt (7, 7) = =T, (T)hi (7))
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In the following we concentrate on the case of vanishing magnetic field, B = 0. The first
order of perturbation theory does not contribute in this case since it is proportional to
(Sr). The leading contribution originates from 2nd order perturbation theory,

%(—i)?’ / dry / A75(T o, (7) Hin (71) Hina (72) L0 (7).

In the following we consider only one of the left leads (n = 1, 2). Since the calculation
is similar to the derivation of the self energy it is not shown here. After applying Wick’s
theorem we can extract the expression for the T-matrix in 2nd order perturbation theory,

Tn(Tl,TQ) = —JZ J] i /TJ Gmk/U/(Tl,TQ)<SE(7'1)S£(TQ)>. (418)

4nm mnoa oo

The corresponding diagram is illustrated in Fig. 13 Eq. (EI8) can be rewritten by

Figure 4.13: Typical diagram which determines the T-matrix to second order perturbation
theory. Solid lines: conduction electron Green’s functions; dashed lines: pseudo particles of
the double quantum dot system.

introducing the spin susceptibility for the double quantum dot system (DQD),

1

Tn<7—17 T2) = _E

JnmImn G ot (7'177'2)XDQD<7'277'1>7 (4.19)
where Xpqp for the singlet-triplet states is given by

Z i J
XDQD T2, 7—1 O'O'/TO' O’G 72, Tl)T’Y/’YG'V(Tl’ TQ)T’Y’Yl'

This is identical to the definition in Eq. (f3) in section 22l By using the Langreth rules
from section Bl we find the expression for the retarded T-matrix,

1
— Jomdmn (G=(t1,t2) XPop (t2, t1) + G" (t1, 12) X 5p (2, 1)) -

After Fourier transformation the frequency dependent T-matrix is given by the convo-
lution

1 de
T7(0) = =g I [ 5 (6% @) Xap(e) + G(e + ) X5ap(e)

By inserting the usual ansatz for the conduction electron Green’s functions and the
results of Xpqgp as known from previous sections we find

1 1
——Im [N(O)T;(w)] 16gnmgmn oo gc T’é ’nyi'y

[flw+ ey =€ — pm) (ny = nyr) = ny]. (4.20)
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This result is generally valid for any setup of quantum dots. In the case of two coupled
quantum dots the pseudo Pauli matrices from Eq. (Z6]) in section Z1] are inserted and
thus we obtain

= - §Zgnmgmn [1 + (ns - nt) (f(w + K — Nm) - f(w - K — ,um))] . (4.21)

The T-matrix is symmetric with respect to the frequency, 7" (—w) = T"(w), which can
be seen by rewriting the difference of the two Fermi distribution functions as 2f(z) =

(1 — tanh(fBz/2)).

4.3.2 Discussion of Results for the T-Matrix

In the case of antiferromagnetic spin-spin interaction K > 0 the singlet is the ground
state. In Fig. EET41 it is observed that the T-matrix is zero until the frequency w reaches
the value K. Since T"(w) is symmetric in w only the values for w > 0 are shown. In
Fig. BET4 the effect of an increasing temperature is illustrated, when the Fermi function
becomes smeared over the energy scale of 27. Thermodynamically excited states con-
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Figure 4.14: T-matrix —1/7Im[N(0)T" (w)] of one of the left leads at g;, = gr = 0.1, V, =
Vg = 0, and different temperatures T/K.

tribute and the T-matrix at low frequencies has a finite value. The shape of this curve is
due to Eq. (EIM) identical to the low frequency spectrum of the d-level density of states
in the Anderson model. The step-like behavior corresponds to the gap due to singlet
and triplet states, but the peak structure due to a Kondo enhancement is not observed
since the calculation is only to lowest (2nd) order perturbation theory.

A finite voltage provides a non-equilibrium situation (see Fig. EETH). We distinguish
between a direct effect and an indirect effect. If the T-matrix is studied in one of the
left leads and a finite voltage V is applied to the left leads, the T-matrix is directly
effected by V. If a finite voltage Vg is applied to the right leads, the T-matrix shows
an indirect dependence on Vx. In both cases an effect is observed which is different
to the temperature broadening as illustrated in Fig. EET4. In Fig. the chemical
potential in lead n = 1 is shifted by +eV7 /2. With increasing voltage two steps appear
at w = K F eV /2. Since the chemical potential in lead 1 is p; = €V /2, we expect
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Figure 4.15: T-matrix of one of the left leads in 2nd order perturbation theory for different
values of the voltage eV, /K (and Vi = 0) in the left panel and voltage eVr/K (and Vi, = 0)
in the right panel. The plots for eVr/K = 0.0,0.5, and 1.0 lie on top of each other. Further
parameters of the system are g;, = ggp = 0.1, T/K = 0.001 and B = 0.

the singlet-triplet splitting to vanish at an energy of eV, = 2K such that the value of
the T-matrix at w = 0 is non-zero. A typical feature of a non-equilibrium situation is
the voltage-dependent occupation numbers. This effect can be observed in Fig. .
Since the triplet states become occupied as soon as the voltage reaches the threshold
eV, = K, the zero-frequency value of Im[T"] is finite already before eV}, reaches the
value 2K.

The effect of non-equilibrium occupation numbers also manifests itself in the plot
of the T-matrix of one of the left leads while changing the voltage Vg applied to the
right leads. In Fig. the resonance does not split like in the case with finite V7,
but we observe the effect of non-equilibrium occupation numbers as soon as Vg reaches
the threshold K. The T-matrix at frequencies w < K is finite and therefore deviates
from the equilibrium value. As for the transconductance in the previous section this
increase is only observable if the quantum Boltzmann equation is taken into account.
The decoherent processes due to a finite current in the system provide the basis for this
physical behavior.

In this section the T-matrix was calculated and the effect of a finite voltage on its
behavior was shown. The results discussed here are limited to the case where K > 0,
i.e. when the singlet is the ground state of the double quantum dot system.

4.4 Ferromagnetic Spin-Spin Coupling

So far the spin-spin interaction K between the left and right quantum dot spins was
assumed to be antiferromagnetic. In the low temperature limit the singlet ground state
is then in competition with the Kondo singlet of a quantum dot spin and the spin of
the leads. Since this competition gives rise to interesting physics the ferromagnetic
case coupling was ignored so far. Experiments observe both parallel and anti-parallel
orientation of quantum dot spinﬁ. Therefore we shortly address this case as well and

8How a ferromagnetic interaction can arise is discussed in section
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show the differences to the antiferromagnetic case, and how these two cases can be
distinguished in an experiment.

In the case of a ferromagnetic coupling between the two quantum dots, the triplets are
the ground state of the system. They are threefold degenerate, but split up in a finite
magnetic field such that the triplet ¢, with both spins in the direction of the magnetic
field B is the ground state.
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Figure 4.16: For ferromagnetic spin-spin coupling, K < 0, the occupation numbers and the
differential conductance dIy,/dVy, behave different than the antiferromagnetic case. Parameters
of the plots are Vg =0, g, = gr = 0.1, T'/| K| = 0.001.

For antiferromagnetic coupling and B/K = 0.5 the level distributions was shown in
Fig. on page B0. There the singlet was the ground state and ¢, the first excited
state, with a gap of K — B. In the ferromagnetic case in Fig. the triplet ¢, is
the ground state and the first excited state is the triplet ¢y, separated by the energy B.
In agreement with the antiferromagnetic case the occupations of the singlet and triplet
states tend towards equilibration and fall off algebraicly with 1/V for large values of the
voltage.

In the antiferromagnetic case in Fig. on page [[1] transport is suppressed in the
linear voltage regime for eV, < K. Since the singlet is the ground state, all transport
channels are blocked due to a finite excitation energy to a triplet state. In the ferro-
magnetic case with zero magnetic field, the ground state is three-fold degenerate and we
find a finite current flowing even in the linear regime. In an experimental setup of two
coupled quantum dots one can therefore read out from the linear conductance regime if
the coupling is ferromagnetic or antiferromagnetic, see also discussion in Refs. [30, BT].

Applying a magnetic field to the double quantum dot lifts the degeneracy of the
triplet ground state. The level structure of the transport region can be measured by
the differential conductance as illustrated in Fig. ET6. Note that the triplet ¢, does
not block the transport in contrast to a singlet ground state, since elastic tunneling is
allowed fl

A similar behavior can be observed in the T-matrix in the case of ferromagnetic
coupling K < 0, as can be seen in Fig. ET7 for B = 0. We find a finite value at w =0

9An elastic transport process involves gi x tlt L
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and a step at w = |K|. The double quantum dot system is a two-level structure with an
energy gap of K both in the case of a singlet and in the case of a threefold degenerate
triplet ground state. In Fig. EET1 it can be seen that the excited singlet state becomes
populated for eV}, > | K|, but the effect is less significant than in the antiferromagnetic
case. There is also a finite transconductance in the ferromagnetic setup, but with the
same argument as before the effect is less pronounced if three triplet states loose some
weight to one singlet state than vice versa.

K>0

eVy /|K| = 0.0 |
eVL/|K| =05
eVy/|K| =1.0 _|
- eVL/|K| =15
o eVp/|K| =20 |

0 : 1 (,U/’K’ 2

Figure 4.17: T-matrix —1/7Im[N(0)T" (w)] of one of the left leads for different values of the
voltage eVp /|K|. For comparison the T-matrix for V;, = 0 and K > 0 is added to the graph.
Parameters is this plot are g;, = gr = 0.1, T/|K| = 0.001 and Vg = B = 0.

4.5 Non-Equilibrium Shot Noise

In this section we study the fluctuation of the current through one of the quantum dots.
The current was studied in detail in section More information on the nature of the
transport and on the correlation between particles carrying the current can be found in
the noise spectrum. After defining the noise and introducing the notations which are
used in that community, we calculate the shot noise in 2nd order perturbation theory
in section The introduction is kept short and most of the explanations to the
physical background of the noise are given in section accompanied with results.
Shown here are only a few results and a sorrow investigation of the whole parameter
space will be the aim of future work. The introduction in section EE5.1l is based mainly
on Refs. [60] and [61].

4.5.1 Introduction to Shot Noise

The current measured in experiment is the average value of a dynamic observable that
fluctuates due to finite temperatures and the stochastic nature of electron transport.

The noise in general is defined as the fluctuations of the current around its average
valu

SI(t) = I(t) — (I(t)), (4.22)
S(t — ') = (SI()SI() + SI()SI(1)) = (L)L) + I(t)I(t)) — 2(I(0)2.  (4.23)

10P]ease note that there are different definitions for this quantity, which differ by factors of 2.
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Often S(t — t') is referred to as the current-current correlation function and its Fourier
transform S(w) is denoted the noise spectrum. As for the current we discuss only the
stationary state, and the frequency dependent noise is determined by

smoz/da—weMt”sa—w. (4.24)

The noise at zero temperature T" = 0 is commonly referred to as the shot noise. Its finite
value is a consequence of the stochastic nature of the electron transport (fluctuation in
the occupation number).

The noise provides information about the correlation between individual transport
processes, which can not be accessed in a current measurement.

A finite temperature provides a source of noise. Fluctuations of the average occupation
number for electrons are given by f(1 — f), where f is the Fermi distribution function.
The equilibrium current (V' = 0) is proportional to the change of the electron occupation
number. The thermal noise, also denoted the Nyquist-Johnson noise, is related to the
conductance G = I/V via a fluctuation-dissipation theorem

S(w) = 4kgT G for hw < kgT.

Only the shot noise provides new information about the transport process, but it has to
be studied in a non-equilibrium situation with a finite applied voltage.

If successive, elementary transport processes are uncorrelated, such that the electrons
are transmitted randomly and independent with a small transmission rate T' < 1, then
the shot noise is related to the current by

S = 2e(I).

This relation was found in 1918 by W. Schottky. It follows straightforward assuming
that the arrival of particles obeys a Poisson statistics.

In connection with the Schottky noise the Fano factor, defined as

S
F = 2e () (4.25)
is often discussed. In the case of uncorrelated and rare transport events, the Fano factor
is 1 and the shot noise is referred to as Poissonian. If F' > 1 then the shot noise is
super-poissonian, and if F' < 1 it is called subpoissonian.

Electrons experience a repulsion by the Pauli principle, which leads in general to
subpoissonian values of the Fano factor. This is derived from scattering theory in a
semi-classical approach and phenomena like cotunneling are not included in this theory.
There are a few cases where correlations can enhance the noise (see Ref. [62, [63]). This
is discussed in detail in the results, section L3, and the physical explanations are given
correspondingly.

Additionally it is observed in experiments that the noise at low frequencies generally
depends inversely on the frequency f. The reviews Ref. [60), G1] claim that to this point
the physics of the so-called 1/ f-noise is not fully understood.

In the next section the shot noise spectrum S(w) is calculated to lowest order in
perturbation theory. The derivation is kept short and more emphasis is put on the
discussion of the results given in section
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4.5.2 Calculation of Shot Noise

In this section the noise in the left lead of the double quantum dot setup is calculated.
Therefore we study the current-current correlation as defined in Eq. (f223) and generalize
it to the Keldysh space to be able to treat non-equilibrium situations,

Sp(r, 7)) =TI (7). (7).

Since the noise calculation is performed only to 2nd order in the coupling, the term
(I(0))* does not appear since the current is finite only in 2nd or higher orders. For the
rest of the calculation we are interested only in the noise power,

S7(w) = / dt 6 S7 (t,0),

and pay special attention to the shot noise S(0) at frequency w = 0.

The noise in transport through the right quantum dot follows analogously and we
treat only Sy (w) since we also only discussed the current through the left quantum dot
in section

The current I, through the left quantum dot is defined by

I(7) = z% (J12§L(7)§12(7) . J21§L(7)§21(7)) .

It is antisymmetric in the leads 1 and 2 and therefore antisymmetric with respect to the
voltage V, since uy = —po = eV, /2. The noise on the other hand is symmetric in the
voltage since it is quadratic in the current.

The lowest order expectation value of the current (/(0))¢ is zero. Contrary the
product of two current operators in the definition of the noise is finite,

Sp(r, 7)) = (i%>2 (T, <J12§L(T)§12(T) - J21§L(7')§21(7')>
(1250 (7)502(7) = T Su(7)3 (7))

Since the derivation of the noise is similar to the calculation of the current, we state the
result immediately. The calculation is given in appendix We find the result

o )? e2 iy .
(2r) —JioJn Ty T, [(X§)< (6 — €y — hw) + (X))~ (e — ey — hw)] :

8 h
(4.26)

Sp(w) =

where T are the pseudo Pauli matrices of the singlet-triplet states and X" the conduction
electron spin susceptibilities as defined in appendix
The result in Eq. (fE20) is similar to the expression for the current as is obvious from
the lowest order diagram as illustrated in Fig. ET8. In contrast to the current there is no
integration over an internal time. This has the consequence that the noise is symmetric
in the voltage while the current in antisymmetric. This is seen when the summation
over the pseudo particle indices is performed explicitly,
. (27)2 €2
SL<C()): 3 ﬁglgggl [ns (fg(K—B—hbd)‘i‘fg([("‘B—hW)‘i‘fé(K-hW))
+nt+ (fg(—K + B — hw) + fg(B — hw) + fg(—h&)))
+Tlt0 (fg(—K — hw) + JTQ(B — hw) + JTQ(—B — hw))

1y (Fo(=K — B — hw) + Fo( =B — Tw) + Fo(—hw))] ,




80 Perturbation Theory — Part II: Results

Figure 4.18: Diagram for the lowest order contribution to the shot noise S(7,7’) in perturbation
theory. Solid line: conduction electrons, dashed line: singlet-triplet states.

where
fQ(.T) = ’nB<SL’ + GVL)(SL’ + €VL) + nB(:c — GVL)(SL’ — €VL).

The function F»(z) is symmetric in the voltage,
1 1 1 1
Fo(x) = 5(1’ + eVy) coth (55(1’ + eVL)) + 5(1’ — eV}) coth <§ﬁ(x — eVL)) —z,

and for V, = 0 it reduces to the finite value 2zng(x) = z(coth(fz/2) — 1). This
temperature dependent value is related to the thermal noise. From the definition of the
noise in Eq. [E23)) the noise Si(w) consists of the sum of the greater S7 (w) and lesser
component St (w) in non-equilibrium.
In the case of a vanishing magnetic field, B = 0, the noise is given by
21)?2 €2
( 8) %9129213 [ns (Fo( K — hw) + Fo(K + hw))
+ny (JTQ(—K - hw) + JTQ(—K + hw))

SL((U) =

Eq. (EZ7) is discussed in detail in the next section.

4.5.3 Discussion of Results for the Shot Noise

The noise is defined in terms of the current-current correlation. If the singlet is the
ground state of the double quantum dot system, there is no current flowing through
neither the left quantum dot nor the right quantum dot. Consequently we expect the
noise to show no signal until the voltage V}, reaches the threshold K and excited triplet
states allow for a transport through the left quantum dot.

This behavior is indeed observed in Fig. for B = 0. As long as the singlet is
the ground state the noise is zero and becomes finite at the energy scale of the voltage
where the first triplet state is occupied. If the magnetic field B is larger than the spin-
spin interaction K the triplet ¢, is the ground state of the system. In that case a finite
current is flowing and the noise has a finite value as also seen in Fig. .

As can be seen from Fig the noise shows a similar behavior to the current in
section 2 The Fano factol shows the characteristic thermal divergence coth(8V/2) at
small voltages. The noise is most often Poissonian, but close to the transitions between

LA preliminary calculation of the Fano factor can be found in appendix [B.5.11
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(a) Noise Si(w = 0) vs. eV, /K for different val- (b) Noise Sp(w = 0) vs. eV, /K for different val-
ues of B/K. ues of eV /K.

Figure 4.19: Noise S7(w = 0)[e®/h] vs. eV} /K for finite values of the magnetic field B/K =
0.0,0.5,1.0,2.0 and Vg = 0 in left panel, and dependence of Sz (w = 0) on the voltage eVy /K
for different values of the voltage Vx applied to the right quantum dot and B = 0 in the right
panel. The plots for eVr/K = 0.0,0.5, and 1.0 lie on top of each other. Further parameters
are g;, = gr = 0.1, and T'/K = 0.001.

two pseudo particle states we observe a super-poissonian value. In analogy to Ref. [62, 63]
we interpret this result as the existence of two states with finite life time. For example if
the singlet state is occupied the current is 0 and if the triplet ¢, is occupied the current
is finite. The measured current jumps between these two states with a time indirect
proportional to the life time of the states. At low frequencies w — 0 this enhances the
noise power.

Again we observe that a non-equilibrium situation on one quantum dot has an impact
on the transport through the other quantum dot. In Fig. we show the noise
Sp(w = 0) for different values of the voltage Vi applied to the right quantum dot. The
transconductance effect becomes visible as soon as the voltage reaches the threshold
eVr = K. Thus triplet states become populated and a current can flow. A finite current
leads to a finite noise as observed in Fig. for eVgp/K = 1.5.

The results given here are preliminary. Thus the calculation and interpretation of
the effect of a finite voltage applied to either the left or right quantum dot and the
corresponding Fano factor is the aim of future work. The study of the interplay between
finite frequency noise and a finite voltage could also provide new insights into the physics
of the transport through a double quantum dot system.

4.6 Current Cross-Correlation

It was observed in the previous calculations that the current flowing through the right
quantum dot is correlated to the current through the left quantum dot and vice versa.
In the calculation of the left current I, the voltage Vi on the right quantum dot enters
via the non-equilibrium occupation number. The non-equilibrium occupation number is
a 0th order contribution and the lowest contribution to the current is of 2nd order in the
coupling to the leads. Thus this current cross-correlation is so far observed indirectly.
Now we study directly the correlation between the current through the left quantum dot
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I, and the current through the right quantum dot Iz. Therefore the following correlation
function is investigated

D(r,7") = (T.I(7)Ir(T")), (4.28)

where the currents are given by

I.(7) = z% (J12§L<T)§12<7) — les}(T)gm(T)) ,
Ip(r) = (J34§R(T’)§34(7’) _ J43§R(T’)§43(7’)) .

€
71—

h

Since (Sp,) = 0 for m # n, both the Oth and the 1st order do not contribute to D(r, 7').
Please note that the current I, for « = L, R is antisymmetric in the applied voltage V,
and therefore D is antisymmetric in V;, and Vg. The 2nd order term,

D(z)(T, ) = (—22) /CdTl/CdTg (T I (7)Hine (11) Hine (72) Ir(7")), (4.29)

gives a finite contribution to the current cross-correlation. Since the current is already
linear in the coupling to the leads the expression in Eq. ([E29)) is 4th order in the Kondo
coupling J.

4.6.1 Derivation of the Current Cross-Correlation

In the correlation function D we find that only the following terms contribute,

D(2)(T, 7'/) = (_;)2 (%)22/657'1/de {<Tc§ZL<7) ﬁil (Tl) ﬁﬁ(ﬁ)gg‘%(%)
: - J21§2i1<7)) Jmngrri;n(Tl)]
) (J34§31(7'/) - J43§4§(7-/))} >

where the sum goes over all indices. By changing the summation indices, it can be shown
that the second term is identical to the first term. This cancels the prefactor of % from
the perturbative expansion.

Conduction Electron Contribution

We define two different conduction electron contributions, one for the left quantum dot

Xo(7,71) = <Tc [(J12§32<7) - J215_’31<T)) Jmnsilmn<7-1)]>
1 . .
= _J12J217_ﬂ/ T, (GZk‘U(Ta Tl)le’J’(Tla 7_) - le’a’(Ta Tl)GQka(Tlv 7_)) ) (4'30)

4 o0 o0
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and one for the right quantum dot,

XR(T/a Ty) = <Tc [JMNSg\Q/[N(T?) (J34=§?;z4(7'l) - J43§i3(7'l))]>

1 o

= 1731 7070 (Gaps (7', 72) Gl (72, ') = G (77, 72) Gags (72, 7)) - (4:31)
Both terms are polarization bubbles and the calculation is given in appendix [B:2l Please
note the special asymmetry of these bubbles,

xo(m, 1) = —x5(m1,7), (4.32)
Xr(T' 1) = —xr(1, ), (4.33)

which reflects the antisymmetry with respect to the voltage eV, = pu1 — ps and eV =

M3 — Ha.
Thus the correlation function can be expressed by

DO(r,7) = (2r7) / dn, / dr (TS} (1)} (1) SE (1) Sh() ) xa (7, 7)XR(T 7).
(4.34)

The physics of a coupled double quantum dot system manifests itself in a finite expec-
tation value of the left and right impurity spins in Eq. 34).

Double Quantum Dot Contribution

The conduction electrons of the left and the right leads are decoupled, thus the only
mediation of a current cross-correlation is via the spin-spin interaction K. We calculate

(T.53,(1)S} (1) S (r2) Sh(r') (4.35)

in the singlet-triplet representation. Eq. ([3H) is explicitly written down in ap-
pendix

In general Eq. ([33) gives 24 different contributions without taking the pseudo par-
ticle constraint into account. The projection mechanism as explained in section 1]
projects out all diagrams with a product of two or more occupation numbers, since
they correspond to unphysical states. Using this projection all diagrams with two in-
dependent pseudo particle loops can be neglected. The singlet-triplet states are pseudo
bosonic states and the setup allows only for transitions between them; it is not possible
to create two singlet and triplet states in the double quantum dot system and thus two
independent loops are unphysical. For example the contribution from (I),(/g) 3 does
not have to be taken into account since it consists of two independent diagrams.

After the projection six different diagrams remain which contribute to the current
cross-correlation. We divide them into two groups:

e two “vertex”, or “virtual interaction”, diagrams (see section ELG.2])

e four “self energy” diagrams (see section EEG.3)

12Tn contrast, the product of (I1)g=1(Ir)g=1 is finite since the projection already took place.
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We will furthermore simplify the calculation by assuming, that either the spin
symmetry (B = 0) or the left-right symmetry (g, = gg) is fulfilled, such that all
pseudo particle Green’s functions are diagonal. It is also assumed that the pseudo
particle Green’s functions can be represented by the ansatz G5(w) = injA,(w) and
Gl (w) — G (w) = —iA,(w), where A, (w) = 276 (w — €,).

For a shorter notation the function d(7,7’) is introduced which corresponds to the
correlation function without the prefactor,

en 2
D(r,7) = — (QWE) d(r, 7).
Before performing the spin index summation, the Green’s function structure on the
Keldysh contour is worked out. In the following the lesser correlation function,

D<(t,t') = D*(t, 1),

is studied. This implies that 7 — ¢ is on the upper contour (1) and 7" — ¢’ is on the
lower contour (2). The two contour times 73 and 75 can be either on the upper or lower
contour, and all four possibilities have to be taken into account. Note that a vertex on
the lower contour (2) is accompanied by a minus sign.

Since it is easier to do the calculation with retarded and advanced Green’s functions
than with time-ordered and anti-time-ordered Green’s functions the following equalities
are utilized (compare section B.1I),

GH(t, V) =G (t,t") +G<(t, 1), (4.36)
G®(t,t) = G=(t,t) — G*(t,1). (4.37)

Furthermore we use that the system of four Keldysh Green’s functions is over-determined
and express the greater Green’s function G~ in terms of the lesser Green’s function G<,

G (t,t) = G™(t,t') = G=(t,t') + G"(t,t') — G*(t,1). (4.38)

Please note, that the pseudo particle constraint allows only for one lesser Green’s
function in the whole expression. A product of two lesser Green’s functions is imme-
diately proportional to e~2°* and will be projected out in any calculation of a physical
observable (see section 2] for an explanation of the pseudo particle projection A2, 43]).

4.6.2 Contributions from the “Vertex” Diagrams

The two diagrams, which are denoted as “vertex” diagrams, are summarized in Fig. 200
An electron-hole pair in the left leads, x.(7,7), travels between the times 7 and 1,
while another electron-hole pair in the right leads, xr(7’, 72) propagates independently
between times 7/ and 75. The current cross-correlation is finite due to a closed loop of
four singlet-triplet scattering processes with the leads. In the “vertex” diagram such a
series of processes consists of a pseudo particle interacting with the left leads, then the
right leads, again with a left lead and finally with the right leads.

We call these diagrams “vertex” diagrams, since they contain the structure of a vertex

correction, which is illustrated in Fig. 4.21(a). The diagram in Fig. EE20lis produced when
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Figure 4.20: Diagrams for the so-called “vertex” contributions to the current cross-correlation.
Solid lines: conduction electrons, dashed line: singlet and triplet states.
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(a) Diagram for a vertex correction. (b) Diagram for effective or “vir-
tual” spin-spin interaction.

Figure 4.21: Schematic diagrams for a vertex contribution (left panel) and for an effective
interaction (right panel). Dashed lines represent pseudo particles and solid lines stand for
conduction electrons.

the external legs of a renormalized vertex are closed with an additional pure interaction
vertex at a fourth time.

Alternatively one could also interpret the diagrams in Fig. as a “virtual” inter-
action ngL or §R§R mediated over the conduction electrons in the respective leads.
A combination of two “virtual” interactions of the type of Fig. produces the
current cross-correlation diagrams in Fig. 20

There are two different “vertex” diagrams as illustrated in Fig. The full calcu-
lation can be found in appendix [BX6.21 Here we show only the result of one of the two
“vertex” diagrams d, since the other one gives a similar but time-reserved expression.

From one “vertex” diagram we find the following contribution to the current cross-
correlation

-5 (), o () (12), (%),
/ G @+ -6+ DEL @G — & T )R(w+ & — )

G+ w6 + )TN E — e +w)XaE — e
+ UG (@ + [w— €6y + ey XS (W — 6+ e )XR (-0 + 6, —w) }.

Note that each of the three terms has the residual of the retarded or advanced Green’s
function on the same half plane. The integration can thus be closed over the other half
plane and the integral is zero if we assume that x; and xr do not have residuals[d The
contribution from d, to the current cross-correlation is negligibly small.

The purpose of calculating a current cross-correlation was to find a direct coupling
between the current through the left quantum dot and the current through the right
quantum dot. In previous sections we found that there is e.g. a finite transconductance

13See therefore also discussion of vertex diagrams in Ref. [&1].
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due to the decoherence of the pseudo particle states, which is created by a finite current
in a finite voltage situation. The “vertex” diagram contribution to the current cross-
correlation was discussed to be negligible. This could be understood from the structure
of the interaction, see Fig. 20 A pseudo particle which interacts with an electron-hole
pair in the left leads at time 7, creates another electron-hole pair in the right leads at
time 75 before an interaction and recombination of the left electron-hole pair takes place
at time 7. Finally the electron hole-pair in the right leads recombines with the initial
and final pseudo particle. No decoherent processes took place in this series of events.

Although a vertex is usually associated with decoherence, the process explained here
is not sufficient to find a non-zero current cross-correlation in lowest order. We expect
diagrams in higher order perturbation theory to have a finite contribution.

4.6.3 Contributions from the “Self Energy” Diagrams

Since the first two diagrams were shown to give only a negligible contribution to the
current cross-correlation we concentrate now on the remaining contributions. The dia-
grams in Fig. E22, denoted as “self energy” diagrams, consist of two different types with
each a time-reversed partner. In contrast to the “vertex” diagrams a pseudo particle
creates and recombines with an electron hole pair e.g. in the left leads in the course of
two interaction processes before an interaction with the right leads takes place. These
diagrams are therefore more promising to give a finite contribution for the decoherent
correlation effect we want to describe. It is observed that every diagram shows a combi-

T1 T2 T T2 1 T2 1 T2
L < — e _
N Ve N Ve
N Ve N Ve
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T T T T T T T T
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Figure 4.22: Diagrams for the so-called ”self energy” contributions to the current cross-
correlation. Solid lines: conduction electrons; dashed lines: double quantum dot states.

nation of x,(7,7;)G(7,7;). The “self energy” like structure S is defined for the left and
right leads, respectively, by

(S£) oy (1,71) = i (f£>v/v G (1, m) (TE) xo(7,71), (4.39)
1

M
(Sw)y (7372) = 7 (Th) | Gole's72) (TH) Xl 72). (4.40)
g9 972

The function S, for @ = L, R is strictly speaking not a self energy. The diagram
looks similar, but S, contains only electron-hole pairs in two different leads, e.g. 1 and
2 for a = L, and no processes within the same lead. In addition, the function S, is
antisymmetric with respect to the voltage V,, or an exchange of the lead indices 1 and

2, which originates from the antisymmetry of x, (see Eqs. ([E32) and ([33)).
As every function in Keldysh space the function S, fulfills for example S — S5 =

S — &8¢, Tt is important to notice that

1. .
Sy (tity) = 1 TG=(ti, t;) T x5 (ti, t5)
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Figure 4.23: Diagram of the “self energy” like structure S.

is proportional to the lesser Green’s function and therefore proportional to e #* in the
pseudo particle constraint.

The result of the current cross-correlation D is given by the sum of all diagrams in
Fig. E2Z2 The calculation can be found in appendix [BX6.3. In the result we distinguish
between two different kind of contributions, dyy and d,. In dyy all terms that cancel each
other at zero frequency w = 0 are collected,

B5(0) = [ o AISH@+w) - SH @)

~ [S1(@ +w) - S1(@)] 6@ +w)
x [SP(@) - SP(@ +w)] 67(@))

In d, there are only two contributions from the “self energy” diagrams, which are finite
in the case of w =0,

&:w) = [ 5o {-SP@ +0G%(@ + ) @) @)
=S @) (@ + w)SE (@ +w)G* (@) }
~ [ ST @ +0)0"@ + S @0
+SL(@)F"(@ + w) SR (@ +w)G* (@)} -
It should be noticed that these two finite contributions originate solely from the two
right diagrams in Fig. 222

Finally we can write down the result for the current cross-correlation D(w) in the zero
frequency limi,

62

D¥(w —0) =~ / ATy [S5(0)G°(0)S3(0)G" (@) + {L < RY]. (4.41)

Please note that this is a general result that can be applied to any quantum dot setup
with a pseudo Pauli matrix. For the rest of this section Eq. (A1) is worked out in the
case of two coupled quantum dots.

4The result is corrected by a factor of A since the frequency w is treated implicitly as an energy Aw.
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4.6.4 Calculation of D<(w = 0)

If the ansatz G, = —in, A, (w) is used and S; ~ S], — S¢ is approximated due to the
pseudo-particle projection, we find the two expressions

~ e ~ i
(S)5m, @) = 71 (T5) | mxi@—e) (T3)
Yy st
1 /. o
Sr). (& s—'(T]) Sle, — & (T”)
( R)g Y2 (U)) 4Z R 79 XR(EQ CU) R 72

For the explicit calculation of x, we refer to section In frequency space the expres-
sion gives,

XE ((I}) = —2%%912921 (TLB((:) + GVL)(LD -+ GVL) - TLB((:) - GVL)((:) - GVL)) s (442)
Ya(@) = _z%gg4g43 (n5(@ + Vi) (@ + Vi) — np(@ — eVi) (@ — eVi)),  (4.43)

where eV, = p; — po and eVr = pus — py. The factor of 2 originates from the spin
summation and the dimensionless couplings g = N(0)J is used. The Bose distribution
function np(z) = 1/(e=#* — 1) is singular at = 0, but the product xnpg(z) is finite and
in the limit of /T < 1 it can be approximated by

0 if x > 2T
anp(z) =T — 3z if |z| < 2T . (4.44)
|| if = < =2T

Consequently x7 (@ — ¢,) in 87 (@) provides an upper cutoff and x3(e, — @) in Sp (@)
provides a lower cutoff for the integration over the frequency @ in Eq. (EZT]). The cutoff
is determined by system parameters like the voltages V; and Vg, the singlet-triplet
gap K, the temperature T', and in general the magnetic field B. In the following it is
assumed, that there is no magnetic field B = 0. Thus the self energy, and hence also
the function §, is a diagonal matrix.

In this case the trace in Eq. (EZ1]) can be carried out and yields

23

e
D<(w == 0) == ﬁ16

/ 4o 35 (@ — €)G2@) XR(ee — )GL(@)
+57(@)G (@)sz(0)G; (@)
+{L R}, (4.45)
where
57(@0) = neXT (@ — €5) + 2 X T (0 — €),
sp(@0) = xRles — @) + 2xR(6 — @).

For the derivation of this expression we used that the spectral function A,(w) is a -
function in the calculation of Sy and Sg. This implies, that the pseudo particle Green’s
functions were so far used in the lowest, unperturbed order.

&
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Oth order retarded Green’s functions

If we attempt to calculate the integral in Eq. (E4H) with the unperturbed pseudo par-

ticle Green’s functions G'/*(©) = 1/(& — €, % in), we encounter a divergence. 7 is an

infinitesimally small convergence factor. The limit n — 0 sends the width of the pseudo

particle resonance to zero. Thus the spectral function is a d-function and the life time

of the particles is infinite. Without a coupling to the leads this assumption is justified.
The product G7(w)G4(w), can be expressed by the spectral function A,(w) by

1 1 1 2in 1
Gr ~ Ga ~) — —- = 5 = _A . .
H(@)G(D) W—etinw—e,—in  2in(@—¢€)+n* 2n )

The limit of the life time 1/5 to infinity has to be taken after the integration over
@ of the spectral function A,(®) in Eq. ([EZ4H). Consequently the expression for the
current cross-correlation diverges. We suspect that this problem is correlated with the
discussions in Ref. 63, 62]. A related work which derives cross-correlations in a three-
terminal setup can be found in Ref. [64]. It is the aim of future work to study the current
cross-correlation in more detail, especially also for finite frequencies w # 0.

2nd order retarded Green’s functions

It is therefore important to include the finite life time of the pseudo particle states
into the calculation. If a finite broadening of the retarded and advanced self energy is
assumed, e.g. from the second order self energy, we find

_ 1 (
S Yr(@) - 24(@)

Gl (@)G(w) GL(@) = G5(@)) = == 4,(®),

where the broadening due to the leads is given by I', (@) = (X! (0) — ¥9(w)) and the
spectral function A (@) is thus a Lorentzian of width I',. A broadening is always present
for finite temperatures and finite voltages.

As in all previous calculations it is assumed, that the broadening of the spectral
function is smaller than other system parameters, e.g. the singlet-triplet energy gap K,
and that all the other functions vary on a slower energy scale than the spectral function.
Then we can approximate the Lorentzian inside the integration by a d-function.

Using these considerations in Eq. (43) we find the result for the current cross-
correlation in the zero-frequency limit,

(o o) — 2n 3 [0 XEO) +me G RGO) + xa(-K))
h1 Ly(e)
Xz (=K)xR(K)
[s(es)

Including the hybridization of the double quantum dot states with the leads, a finite
current cross-correlation exists.

+3nt

+{L < RY|. (4.46)

4.6.5 Discussion of Results for the Current Cross-Correlation

The current cross-correlation was calculated in Eq. (fE45) to fourth order in perturbation
theory. It was found that the expression diverges if the life time of the particles is
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assumed to be infinite and thus a finite broadening I' of the spectral function was included
in the calculation, Eq. ([@46). Since I' is calculated to 2nd order in the perturbation
theory, the result of the current cross-correlation in Eq. (46 is effectively of 2nd order
in the perturbation theory

In Fig. 24 it is shown that there is a non-zero current cross-correlation. Since the
current Ir(Vg = 0) = 0 is always zero, we find in the case of Vg = 0 a trivial result
(I 1g) = 0 for all V7. As long as the voltage Vz > 0 applied to the right quantum dot
is below the threshold eV < K, the current cross-correlation D<(w = 0) also shows a
threshold behavior. After either the voltage Vi or the voltage V7, reaches the threshold,
there is enough energy in the system to populate triplet states. A finite occupation of
triplet states opens the possibility to have a current through both quantum dots, and
the current cross-correlation (I /g) becomes finite, see Fig. 241
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Figure 4.24: Dependence of the current cross-correlation D<(w = 0) on the voltage eV, /K if
the voltage eVr/K applied to the right quantum dot is varied. D<(w =0) =0 for Vg =0 as
explained in the text. Further parameters are g;, = gr = 0.1, T/K = 0.001, and B = 0.

In the previous section we observed a correlation between the current in the left
quantum dot and the voltage applied to the right (see discussion of the transconductance
in section L2), mediated by the voltage-dependence of the non-equilibrium occupation
numbers. The purpose of this section was to find a quantity which shows the correlation
directly. Strikingly we did not find a direct correlation between the current through the
left and the right quantum dot. The result as it is shown in Fig. EE24] is non-zero due to
a finite life time of the pseudo particle states. As in the case of the transconductance
the decoherence is the driving force out of equilibrium. The same transition rates are
involved in the self-consistent equation for the non-equilibrium distribution functions
and in the finite life time for the singlet and triplet states in the calculation of D<(w =
0). Both diI;/dVk and (I;Ig) are non-zero in 2nd order perturbation theory and both
are strongly connected to a non-equilibrium situation, where a voltage larger than a
threshold is applied.

4.7 Summary and Outlook

This chapter was devoted to results for selected physical properties of a double quantum
dot setup in lowest order perturbation theory. As will be discussed in the following

15Schematically one can say: xr. - xr/T x g2 - ¢?/g? x g°.
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chapters the perturbation theory fails at low temperatures and new methods to cope
with this problem are introduced. Some of the physical insights we achieved from the
discussion in this chapter are included in the approaches further on.

The most important finding from non-equilibrium perturbation theory is the depen-
dence of the singlet and triplet occupation numbers on the current through, or the
voltage across, the double quantum dot system. This dependence originates from finite
decoherence rates due to a hybridization with the leads, but since the 2nd order rates
are used in a self-consistent equation the effect on the occupation probability is to Oth
order in the perturbative expansion. A finite voltage can, like a finite temperature, pro-
vide the energy to excite states above the ground state. Thermodynamic properties like
the polarization or magnetization (see section EI) fall off inversely proportional to the
voltage V', similar to a Curie-law with an effective temperature.

This has an immediate effect on the current characteristic. For two antiferromagnet-
ically coupled quantum dots the ground state is a singlet and as explained before (see
section X1 or EE2) all transport channels are blocked due to a finite excitation gap to
the triplet states. A finite voltage applied to the left or right quantum dot can provide
sufficient energy to occupy the excited triplet states and thus allow a finite current. We
discussed in detail in section 22 the quantity (K /eVy)dI;/dVg, referred to as transcon-
ductance. The transconductance is non-zero in a non-equilibrium situation solely due
to the discussed non-equilibrium distribution functions. Since the current is a quantity
which is easily accessible in experiments, there is the possibility that by a measurement
of the transconductance also the voltage-dependence of the level distributions can be
probed.

In this chapter also the T-matrix as in the scattering problem for conduction electrons
was discussed and we found an effect similar to the transconductance. We studied the
case of a ferromagnetic coupling between the two quantum dots and found a different
current characteristic than for an antiferromagnetic coupling. This allows to distinguish
between the ferro- and antiferromagnetic case in an experiment and the magnitude of the
singlet-triplet gap can be read off from the peak structure in the differential conductance.
It was discussed that the transconductance is less significant in the ferromagnetic case,
since the triplet ground state does not block the transport like the singlet ground state
in the antiferromagnetic case.

Finally we studied certain current-current correlations. The shot noise, i.e. the current-
current correlation (I,11), as found in section is Poissonian, i.e. proportional to the
current since the tunneling events which lead to the transport are uncorrelated. Conse-
quently we can observe the same effect in the noise as found in the current. More thor-
ough investigations are needed to understand the result of the current cross-correlation
in section We find that (I Ig) is finite if one of the voltages eV} or eVy is larger
than the threshold K. Although the calculation is done to 4th order perturbation the-
ory, the result is effectively proportional to 2nd order in the coupling J. Therefore the
observation of a finite current cross-correlation is, as the transconductance, an indirect
effect, which originates from the finite life time of the singlet and triplet states due to a
hybridization with the leads. To measure the noise in experiment is difficult because of
the small values of the order of e3/h. We hope that the current cross-correlation is more
easily accessible in experiments since it involves two current measurements and not the
measurement of fluctuations around the mean value of the current.
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The appearance of a non-zero transconductance is by now well understood and using
the perturbative RG method it was published in Ref. [65]. By contrast the interpretation
of the noise and the current cross-correlation needs more thorough investigations, but
the preliminary results shown here are promising. It is the aim of future work to study
these quantities also at finite frequencies w # 0. Recently a new experimental setup was
presented and current cross-correlation were measured for a double quantum dot system
at the charge degeneracy point [66] [67]. Since this setup is similar to the model studied
here we hope that the measurement of a current cross-correlation will soon be realized
in experiments.

In conclusion, we found for several physical quantities that the spin-spin interaction
K in a double quantum dot setup can transfer a non-equilibrium situation from one
quantum dot to another quantum dot, which is not subject to a large voltage.
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The perturbative treatment of the Kondo model fails at low temperatures. The physical
concept of a perturbative renormalization group (RG) theory is explained in section Bl
We spend some time on motivating the origin of the renormalization group (RG) equation
out of equilibrium in section The difference to equilibrium properties is discussed
and the frequency dependent flow of the couplings is derived in section B3l

The non-equilibrium occupation numbers were shown to play an important role in
the perturbation theory (chapters Bl and Hl) and are discussed in the framework of per-
turbative RG in section B4l An emphasis is put on the effect of a finite decoherence
that appears due to a finite voltage across or a finite current through one quantum dot.
As an example of a measurable quantity the current is discussed in section and we
show that the transconductance is not only non-zero but also enhanced by the scaling.
To compare the result of the rescaled T-matrix with the result from numerical renor-
malization group (NRG) is an ongoing project. A discussion of this subject is found in
section Finally the case of ferromagnetic coupling between the two quantum dots
is discussed in section B and it is illustrated why this case reaches the limits of the
perturbative RG out of equilibrium.

5.1 Introduction

The enhancement of the resistivity found in some metals with magnetic impurities was
first explained by Jun Kondo [I] using perturbation theory. The T-Matrix (see sec-
tion EE3), which can be used to calculate transport, shows a logarithmic enhancement at
low temperatures. This logarithmic behavior is one of the major features of the Kondo
interaction Hiy = JS§ between the impurity spin and the conduction electron spin,
but the divergence is not physical. Due to a factor of In(D/T') the contribution from
3rd order perturbation theory becomes larger than the 2nd order at low temperatures
indicating the break-down of perturbation theory. By contrast experiments show, that
after a logarithmic increase the resistivity saturates again at even lower temperatures
below the so-called Kondo temperature Tx. This behavior can not be explained using
perturbation theory.

By now the physical background of the Kondo divergence is well established. The spin
of the conduction electrons § scatters with the impurity spin S. The resistivity increases
at lower temperatures when the impurity spin becomes localized. Due to a series of
coherent scattering processes a screening cloud forms around the impurity which can
be seen as a sharp resonance of the density of states at the Fermi energy, the so-called
Abrikosov-Suhl resonance. At zero temperature the impurity spin is completely screened
and the system can be described by an effective Fermi liquid theory with a spin-singlet
ground state as found by Nozieres [9]. A lot of work has been done on the Kondo model
and new methods were developed, which are now also used for other condensed matter
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or particle physics problems as discussed in the introduction, section [l

One of the first attempts to go beyond perturbation theory was an approach from
Anderson [T0] called the “poor man’s scaling”. This method was recently generalized to
the non-equilibrium problem of transport at a finite bias voltage by A. Rosch et al. [35].

The poor man’s scaling method uses the separation of energy scales in the system.
The spin-scattering processes at low temperatures take place in a small energy window
around the Fermi surface. By contrast, the energy of the electrons available for scat-
tering processes reaches from the lower cutoff —D to the upper cutoff D, where D is
orders of magnitudes larger than other system parameters like the temperatureﬂ The
scaling procedure integrates out scattering to high-lying energy states and includes the
changes into renormalized couplings, as illustrated in Fig. Bl By further decreasing

D
™\ D —AD
€EF €EF
D ~_ 7 —-D+ AD

Figure 5.1: Schematic scaling step in poor man’s scaling.

the band cutoff in infinitesimal steps, an effective model for the physics at low energies
is generated. This effective model in poor man’s scaling is of the same form as the
initial Hamiltonian Hj,, but the value of the coupling J is renormalized. This scaling
is described by a flow equation for the coupling J(D) depending on the change of the
band cutoff D. For the Kondo model of a single impurity in a metallic host the flow
equation is, as derived in Ref. [2],

oJ(D)
olnD

= —2N(0) (J(D))*.

If the cutoff is reduced from Dy to some cutoff D < Dy, the coupling flows according to

N(0)J(D) = 1 _ N(0)J(Dy)

N T 2In - 14+2N(0)J (Do) In £

Since the band cutoff is lowered, the ratio D/Dy < 1 is smaller than one such that the
logarithm In(D/Dy) < 0 has a negative sign. For antiferromagnetic coupling J > 0 the
denominator is zero at the energy scale denoted as the Kondo temperature Tk, where

1
Ty = Dye OO0,

ITypical values of the bandwidth are D ~ 1eV and temperatures of T = 4K ~ 0.3 meV.
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The cutoff-dependent coupling J(D) diverges logarithmically at the energy scale of Tk,

The poor man’s scaling is a perturbative method since the change of the coupling is
calculated by a perturbative series. The perturbative RG is valid only as long as T' > T
It can be seen as an infinite summation of the leading logarithmic order diagrams, i.e. the
“parquet” diagrams see Ref. [2]. Thus the Kondo temperature Ty depends exponentially
on the coupling. This non-analytical dependence can not be described by standard
perturbation theory.

A finite temperature or another energy of the system can cut off the flow of the
coupling J(D) even before D is reduced to the Kondo temperature. For example in a
magnetic field the energy levels of the spin are split up by the Zeeman effect. Resonant
spin flip processes are thus no longer possible since a spin flip costs the energy B. The
spin-flip coupling at the Fermi energy is no longer logarithmically divergent. The flow
of this coupling is therefore cut off and prevented to flow to strong-coupling. On the
contrary the coupling at a finite frequency of w = B is logarithmically divergent and the
physical system contains information on finite energy scales away from the ground state
Fermi energy.

In the case of a finite bias voltage and thus different chemical potentials a similar
argument applies. In this case the Kondo resonance builds up at the two Fermi surfaces
and the couplings at the finite frequencies w = +eV//2 diverge logarithmically. Taking
into account the frequency dependence of coupling functions, allows us to calculate
non-equilibrium properties for example the non-equilibrium current through a Kondo
impurity. A finite voltage and therefore a finite current leads to a finite decoherence as
discussed already in the previous chapters. To capture all effects of non-equilibrium the
decoherence has to be taken into account as an additional energy scale of the system. It
is important that the occupation probabilities of the impurity states are dependent on
the transition rates and obey a quantum Boltzmann equation as discussed in section B.5.
In the following it is discussed how the perturbative RG method introduced by A. Rosch
et al. [35, B6] includes these effects.

5.2 RG Equations

We consider the double quantum dot system as introduced in chapters Bl and Bl Tak-
ing into account the frequency dependence of the coupling functions, the interacting
Hamiltonian is rewritten as

1 = . ! ! /
Hint - Z Z (Ta> Al FJ/JJ’:LZ?:”J‘/C/:Tj 7 7wctjr‘/t"/cjnkt/a/ana7
where the sum is over all indices (Einstein summation convention). For the coupling J
the convention is used, that the index of the incoming energy is written to the left, and
the outgoing to the right, as illustrated in Fig. B2 A conduction electron in the lead
n with momentum £ and spin ¢, which comes in with a frequency w,, interacts with
a pseudo particle of the double quantum dot system with index v € {s,t,, %, t_}, and
frequency w,. After the scattering event a conduction electron with momentum &’ and
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nko, w. mk'c’ wl.

77("}'7 Y 5 Wryt

. .. . k smk’o’ w!
Figure 5.2: Schematic illustration of the pure vertex V' @/ @ e
YWY 7w—y/

spin ¢’ leaves with an energy of w.. in the lead m while the double quantum dot system
is left in the pseudo particle state 7' with frequency w,. The energy is conserved such
that the energy of the two incoming particles is equal to the energy of the two outgoing
particles, w. + wy, = w, + wy. The interaction is local in time and thus takes place on
the same time contour. In case the time is on the anti-time ordered contour (2), the
interaction gains a minus sign.

The vertex V flows as the cutoff is reduced. The initial condition for V) is given by the
initial Hamiltonian,

. VA 1 -
nko,we;mk’ o’ \wi, o _ = =

V“/,wy;“/,w,yl (D = DO) - 4N(O)Jmn (Ta)ﬂ/v To'o-
The interaction always takes place either on the left quantum dot n,m = 1,2 or on the
right quantum dot m,n = 3,4. An interaction from a left lead with the right quantum
dot is not allowed and will hence not be generated in the poor man’s scaling approach.

5.2.1 Derivation of the Scaling Equations

For the derivation of the scaling equations in the poor man’s scaling approach the steps
of P.W. Anderson in Ref. [68] are followed and generalized to non-equilibrium. Anderson
described the poor man’s scaling as a technique “to eliminate successively the higher
energy regions in favor of an effective interaction” [68].

The idea is to scale down the band cutoff D and change the coupling correspondingly
such that physical quantities do not change their value. As a typical physical quantity
the T-matrix is studied. As derived in section the T-matrix obeys a self-consistent
equation of the type,

T = Hyy + Hip GOT. (5.1)

We introduce a projection Pap on the states with the energy (D — AD) in the vicinity
of the upper or lower band edge +D, respectively. Then we find by resubstituting
T = Hip + Hiyg PapGOT + Hiyi (1 — Pap)GOT into the equation (B1) for 7,

T =Hip + Hine PapG® Hiy
+ (Hipg + Hing PApG O Hip ) (1 — Pap)GOT + Hyy PapGO Hypy PApGOT
== ~int + [:[int<1 - PAD)G(O)T7
where ﬁint = Hy + AHjy and
AH, = Hy PapGY Hypy. (5.2)
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This is the idea of renormalization: by using a new cutoff (D — AD) the T-matrix is
calculated self-consistently as in Eq. (B&1]), but with a coupling H,.. which incorporates
the contribution of the states in the energy regime [D — AD, D] and [-D,—D + AD)|.
To derive the effective interaction in Eq. (B2) a term which is proportional to (AD)? is
neglected. This is justified since the renormalization step can be made arbitrarily small.

In the case of a finite voltage and non-equilibrium Green’s functions this approach
has to be modified. The interaction Hamiltonian Hi,; o< J ga?alg c;rnk,a/cnko describes a
spin scattering from a conduction electron state k to a state k’. We define the projection
Pap that projects the conduction electron state into the energy regimes [D — AD, D]
and [—D,—D + AD].

In the perturbation theory expansion in the Keldysh language (section Bl) we find an
expression for the T-matrix (compare section FL3]) from an expansion of the conduction
electron Green’s function,

ot () i (Vb () + 6o (1)) | [ i) el ()

+ {Caro () <_2?2 { / dry / dTQHim(ﬁ)Hmt(@)] (™)) A+

Translating the idea of scaling from Ref. [68] to this expression we aim at writing the
whole series with an effective interaction Hamiltonian Hiy(71) in the projected subspace.
Inserting Hiyy = [Pap + (1 — Pap)|Hin[Pap + (1 — Pap)] we find, that Hiy

/cdﬁ]:fint(ﬁ) — /dn(l — Pap)Hint(71)(1 — Pap)

[

—1
45 [ [ dn(t = Pap) () PanHin ()1~ Pap).

reproduces a first order contribution in the perturbative series with an effective inter-
action Hi. Again AD is assumed to be small such that scattering within the energy
window [D — AD, D] and [—D, —D + AD] can be neglected. In general the poor man’s
scaling is a perturbative expansion in the interaction Hamiltonian Hj,, but higher orders
are usually not taken into account. In the following we calculate the expansion for an
effective Hamiltonian H,; by

Hint<Tl> - Hint(ﬁ) = —% int(Tl)Hint(Tz)- (5-3)

Instead of the projection of particles to the band edges, the change of the Hamiltonian
AHi (D) = Hyye — lflint is calculated for the full bandwidth and afterwards the change
of i/2H;n(71) Hine (72) is determined by a derivation with respect to the cutoff DB If the
derivative D9/OD = 0/01In D of Eq. (E3) is taken, we find a scaling equation for the
cutoff dependent Hamiltonian

OHw(D) _ 0 [i

811’1D = 8—D §Hint(7_1)Hint(7—2) . (54)

2In other words, the minus sign from —i/2 is cancelled since the band cutoff is reduced: (D—AD)—D =
—AD.
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The cutoff D is reduced in infinitesimal steps until an energy scale D* is reached which
cuts off the flow and the Hamiltonian Hi,(D*) provides an effective model for the physics
on this low energy scale. The first correction Hin(71)Hint(72) to the interacting Hamil-
tonian Hiy (D) for the double quantum dot system is now studied in detail.

The poor man’s scaling is a renormalization group treatment to lowest order. The
summation of the leading logarithmic order diagrams is also referred to as one-loop order.
In chapter [ the flow equation method to two-loop order is discussed and although this
scaling method is differently structured than the perturbative RG a discussion of the
physical content of higher order diagrams is given there.

5.2.2 Generating the Scaling Equations

In the following derivation we focus on the coupling of the left quantum dot to the leads.
The derivation here explains how the RG equations in Ref. [36] arise. Currently we are
working on a rigorous derivation of the scaling equations and here only the cornerstones
of the calculation are given. A rigorous derivation can be produced along the lines of
functional RG (e.g. Ref. [0, BY]).

To calculate the correction to the vertex in second order we have to contract one
conduction electron line and one pseudo particle line in Hiy(71) Hing(72). As mentioned
before only the renormalization of the vertices which exist before the rescaling steps are
taken into account. On the Keldysh contour the interaction can take place either on the
first contour or on the second contour, where the interaction on the anti-time-ordered
axis gains a minus sign. In the following it is assumed, that the times 71 and 7, are on
the first contour, since the calculation for the second contour follows analogously.

In the following equations the notation «y is used for v,w, and n stands for nko,w,

etc. We find for i/2Hy (11) Hing (72),

1
9 216" 7m T2is
x (1, (70) (b () (72) ) t(72) + £ (1) {Ha ()Mh (7)) £, (7))

% (oo (71) (ot (1)l (72) ) €4n(72) F €l (72) (on(72) i (7)) (7))

1 : S\ (=) ;
= Hing(11) Hing (72) = L gm, g (Ta> | Torg (Ta) Tors
Y171

The contraction leads to the two different diagrams illustrated in Fig. The factor
of 1/2 from the perturbative expansion cancels since each diagram appears twice.

nko, w, mk'c’| wl, -
* ! ! /
vqs,w nko, w. mk'c’, w.,
s s
s s
” NS o \\ ” NS o \\
s . s .
1, Wy / , Wy /
7, Wy T Wy s Wy v Wy
(a) “Cooper” contribution. (b) “Peierls” contribution.

Figure 5.3: Illustration of the two diagrams which lead to Kondo physics. Left diagram is
referred to as the “ Cooper” contribution and right diagram as the “Peierls” contribution.
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As mentioned before 7, and 7, are assumed to be on the first Keldysh contour. In the
following only the frequency dependence of the vertices is discussed. In frequency space
the interaction Hamiltonian is renormalized by the term

vim v (i ‘ i =\ } 11 11 *
i —6Jm T (TQ)W 7, <Ta)m bl eno G () G (07)

+i —GJ;; i (Ta)w i (Ta>m Al Gl w)GIL (). (5.5)

The first term corresponds to the diagram in Fig. [5.3(a)|, where both Green’s functions
point in the same direction. This part is from now on referred to as the “Cooper”
contribution, since both particles travel in the same direction in time. The second term
corresponds to the diagram in Fig. [5.3(b). Here the Green’s functions propagate in
opposite directions. This diagram is denoted the “Peierls” contribution.

Eq. (BH) needs to be integrated over the internal frequencies. Due to the energy
conservation on the two pure vertices the frequency w* is fixed, but its value is different
for the Cooper and the Peierls contribution. In the following sections these two different
terms are discussed.

Calculation of the Cooper Contribution

The contribution of the Cooper diagram (Fig. [5.3(a)|or first term in Eq. (B)) is defined
by

vqs

vqs dw *
Cre = / —L G (wy) G s (W), (5.6)

where w* is determined by the energy conservation at one of the two pure vertices,
e.g. the vertex of the incoming particles gives w* = w. + w, — w,. The time-ordered
Green’s function G'' = G< + G" can be expressed in terms of the lesser and retarded
Green’s functions. In general the convolution of (G} Gy, + Gy G+ GGy + GrGY )
has to be calculated. Nevertheless for the scaling equation only the terms that are
dependent on the cutoff D contribute. To leading order we therefore neglect all terms
besides the contribution from Re[G]] Gy, ,. The correction to the interaction vertex
is thus real. In higher orders imaginary parts have to be accounted for, but they are
neglected in this framework. The perturbative RG method is thus consistent only to

leading logarithmic order and it is valid only above the Kondo temperature Tk.

A short side remark is added here about the possible contributions of the off-diagonal
retarded Green’s functions G7, and G7j , as found in section B.4 Both are of the order
I'/ K and therefore they can be neglected to leading logarithmic order if K is finite. For
the scaling equations, it is not important to take into account off-diagonal components.
Only to 0th order, like in the calculation of the non-equilibrium distribution functions,
they can not be neglected. It is assumed in the calculation here, that the retarded Green’s
functions are diagonal and all off-diagonal self energy contributions can be neglected.
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The Cooper term in Eq. (&28) is given to leading logarithmic order by

vqgs . dw T
Ot = i [ G2 RelG ()G e+ oy — )

1 1 T
~——N ——tanh ( — D —
2 <0)/dwac—xtan (QT)@( [=1)
1 I 1
x
— __N - tanh (X
2 <0)/dwac—xtan <2T)’
D

where Awe = wetwsy — i, — €, and T = w* — 1, = Wetwy —wy — 1. Only £ tanh(w*/2T),
the asymmetric part of the Fermi function f(w*) = (1 — tanh(w*/27))/2 in G}, (w*) =
if(w*)A(w*), is taken into account since the other terms do not contribute to leading
logarithmic order. The spectral function of the conduction electron Green’s function
A(w*) = 21O(D — |w*|) is assumed to have a sharp cutoff at the two band edges D and
—D.

The derive the cutoff dependence for the renormalization flow of the interaction Hamil-
tonian the derivative D9/0D of Eq. (B2H) is taken. The incoming and outgoing operators

- \? . - \J .
ti/tﬂ,clw/cm and the spin structure due to (Ta> " Tor (T a) 77 are assumed to be in-

gl
dependent of the cutoff. The cutoff dependence of the Cooper contribution is therefore
determined by

0 yqs,u}*;mk/U/,wéJnko',wc;yqs,w*Cl/qs
dlnD n,wn;'y’,wwl YW 31M,Wn n
— _EN«))D ”qsvw*,:DJr“”;mk/ol’wéJnkUdeVQSM*ZD'FMV 1 _
2 n,wn ;Y W YW 31,Wn ch — D

_qugsw*=—D+ppsmk’c’ we ynko,weivqow*=—D4p <_1)
nwn;Y Wy Vw1 Wy Awe+ D |’

where tanh(x/27") is approximated by sign(z) since the temperature 7" is assumed to
be negligibly small compared to every other energy scale of the system. So far the
calculation is equivalent to the calculation of Anderson [I0)]. In the original paper on
poor man’s scaling the frequency Awe is neglected in comparison to the cutoff D, since
the cutoff is the largest energy scale of the system.

During the renormalization the cutoff D is sent to zero. As long as D > Aw¢ the
ratio,

D

———~—1 for D>A
Awe — D or B> ave,

can be approximated by —1. At some energy scale the cutoff D is reduced below Awe.
Since the ratio,

D

~0 f D<A
Ave — D or < Awge,

is then negligibly small, the flow of the coupling is stopped by the energy scale Awg,
which is given by internal energies scales of the system. In the following the ratio
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D/(Awe — D) is approximated by a step function,

D

-~ -0(D - |A .
D~ —6(D -~ |awc)

The absolute value of Aw¢ is taken such that this assumption is also valid for the ratio
—D/(D+ Awc). The approximation of a step-like behavior fails if the cutoff D and Awce
are of the same order of magnitude. A more rigorous derivation of the cutoff function
O(D — |Awc|) is needed to deal with this energy regime of the flow, e.g. in functional
RG or in the flow equation method (see chapter B).

The Cooper contribution to the RG equation thus gives

0 vgs,w*;mk’o’ w, Jnkg WeiVqs,w™ Cves
811’1D nwniY, Wy YW 3M,Wn n
1 v
. qs, )\D—l—uy,mk o' Wi, tnko,we;vgs, )\D—i—uy
_éN(O)G(D - |(Uc + Wy — Uy — 677|) E ‘]77 WY W J,y Woys ncwn (57)

A==1

The cutoff D is reduced to 0 and therefore AD — 0 in Eq. (B7) is approximated by zero.
This is valid under the assumption that the frequency dependence of the O-function
is stronger than the frequency dependence of the coupling functions. Then Eq. (&)
simplifies to

0 vqs,w*smk’o’ Wi, ko we;vqgs,w* Cuqs
GIn D monnwyr eniman
o Vqsnu'Vamk g 7wl, nko,we;vqs,p
_N<0>@< - ‘wc + Wy = fy — 677|) nwn3Y War CJ’y,w«,mc,wn " (58>

Calculation of the Peierls Contribution

The same derivation has now to be done for the Peierls contribution of the scaling
equation (BH). In contrast to the Cooper contribution the two intermediate particles
in the Peierls contribution propagate in different directions in time as illustrated in
Fig. b.3(b)l The Peierls contribution is given by

vqs

vqs dw *
an _ / nGll Gll ( )

where w* = w,. + w, — w4 in this case.
Analogous to the derivation of the Cooper contribution we find

vqgs dw T
P = / —1 Re (G ( )]qus(wc + wy — wy)

Q

D
1 T
-D

where Awp = wy — we + 1, — €,. Since a hole is involved in the Peierls contribution,
the conduction energy w,. enters with a different sign in Awp compared to Awe in the
Cooper contribution.
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With the same assumptions as used in the derivation of Eq. (B) we obtain

0 nko,we;vgs,w* Jrgs,w* ;mk’o’,wéPuqs
Oln D~ mwnY Wy VW iMwn n
1

_ —N(O)@(D _ |w’y/ — we + 1y — €n|) Z Jnka,wc;uqs,AD-l-Mu Juqs,)\D—f—ul,;mk/a/,w":. (59)

5 n,wn;'\/,ww/ YW iM,Wn
A==+1

In the limit of D — 0 and if the frequency dependence of the coupling function is
neglected, Eq. (B9) simplifies to

a nko,we;vqs,w™ JVQS#U* ;mk/a/,wépuqs
Oln D~ mwnwy Yy Wn n
. nko,we;vqs, iy Jrgs,py,mk’ o’ w!
—_— N(O)@(D - |(,L),Y/ —_— wc _'_ ,u/y - 677|)J777Wn§'y/7w4{/ J’Yvw'y;7]7/7wn C. (510)

Summary and General RG Equation

Using the result of Eq. (1) and (£9) in Eq. (&0) the RG equation for the general vertex
V is given by

. ! ! !
nko,we;mk’ o’ \wl,

avmww/,w / 1
alnl; ) Z Z

A=+1n,v,s

!

vqs$;AD+psmk’ o’ wl, nko,we;vqs, \D+pi,
X (Vn,wn;'y/,w,yl @‘WC‘FW"/_NV_GMV%W“/???W?;

_ ynkoweivgs, \D+uy vqs,\D+p,;mk’ o’ w!,
nvw’fﬂﬂ/“w’yl @IWWI _wC+M”_€"| YWy 31,Wn ‘ ’ (511)

where we introduced the notation ©, = (D — |z|). The general vertex is defined by

okl o ! 1 - ol sl
VI = e (1) MO
Eq. (BT0)) is the generalization of Eq. (6) in the paper of A. Rosch et al. [36].

The expression (BITl) can be applied to every Kondo model with a number of leads
and some level structure of the Kondo dot if the interaction can be written as a general
vertex V. To derive the scaling equation for a specific problem, the first step is to perform
the spin product of the conduction electron spin. One has to be careful since the spin
matrices appear in a different order in the Cooper and the Peierls contributions. The
RG equations are specialized to e.g. the double quantum dot system when the pseudo
Pauli-matrices T are inserted in Eq. (EIT).

A finite current through a quantum dot system leads to fluctuations in the occupation
probabilities and the impurity states gain a finite life time. Since the Kondo effect is
sensitive to the coherence of scattering processes, the broadening I' has to be included
in the RG flow to compensate for the fact that the flow of the running couplings, if not
stopped by a system parameter before, is stopped at the energy scale of the dephasing
I'. This mechanism including self energy and vertex corrections has been discussed in
detail in Ref. [AT]. Here it is only motivated how an additional cutoff arises in the poor
man’s scaling framework. The real part of the retarded Green’s function with a finite
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width I leads to a Cooper contribution C;%* of

0 1 0 Awc —x T
vgs Z el
JnD " 2NOPSE | R — o+ 2 (2T>
D
1 AU)C - D 1 ch + D
— _-N(0)D “N(0)D .
NP Ao T NP R T D )

If Aw. £+ D > T'/2 the decoherence does not play a role and we find the step-like cutoff
as discussed before, whereas in the case of Aw. + D < I'/2 we find

0 (Awe)? + D?

CP=xNO)—————— K 1

oD " O —Fmr— <
The finite life time of the pseudo particle states provides an additional cutoff in the RG
scheme. Since the decoherence is large in the case of a finite voltage, this additional
cutoff is important in a non-equilibrium calculation. In the following we redefine the
cutoff function O, as

0,=06 (D - m) . (5.12)

The decoherence provides also an additional cutoff in equilibrium if the coupling diverges
at a finite frequency, e.g. the singlet-triplet gap K. A detailed discussion of this and
to which leading order the decoherence enters the scaling equations can be found in

Ref. [41].

5.2.3 Calculation and Assumptions for the RG Equations of the
Double Quantum Dot System

The derivation of the RG equations for the double quantum dot system is shown for
one coupling as an example in appendix [DJl For a spin-flip process where the double
quantum dot state changes from the triplet ¢, to the singlet s the spin of the involved
conduction electron changes correspondingly from | to 7. The flow of this coupling is
given by

nk | weimk! 1,0,
by ey 5w 1 ( valw*mk/ 1w, nklweivglw®

dln D 9

= gt+,wt+;s,ws 4gt+,wt+;t+,wt+ Wetwt  —Hy —Wt
+ nkl weivql,w* VQTM*;mk"T,wé@
gt+,wt+;s,ws gt+,wt+;t+,wt+ Ws—WetHy —Wt .

vql,w*smk'Twi, nklwerqglw*

+gto,wt0;s,ws gt+,wt+ sto,wey - Wetwt | —Hy —We
nkl7wC;Vql7W* VqlvuJ*;mk/T?wcl:
+gto,wt0;s,ws t+,wt+;to,wt0 Ws—Wwet My —Wty ) - (5]‘3)

In general the coupling vertex has four different frequencies, one for each incoming and
each outgoing leg. It is assumed that the pseudo particle energies can be approximated
by their values on resonance, i.e. on-shell. This approximation is justified since the
broadening of the spectral weight is much smaller than other physical quantities of the
system, especially in comparison with the band width of the conduction electron density
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of states. If the frequencies of the double quantum dot states are assumed to be on
resonance, we can rewrite

nko,we;mk’o’ \wl, nko,weymk’o’ wl,
bWty 58,Ws gt+,4K B;s, —§K

After assuming the pseudo particle energies to be on-shell the vertex thus only depends
on two frequencies. The energy conservation on the vertex determines one of these two
frequencies and it is assumed in the following, that the frequency of a vertex is always

. . . nkowe;mk’o’ w
given by the incoming frequency, i.e. w, in te LK Bis.- § =

in the coupling function w, — w and W), — w. + Wg — wt+ =w+ K — B. In the following
the coupling function is written as

For this example we replace

nkowe;mk!o’ w!, nko;mk’o’
1 3 7 Gty (w)
t4,7K—B;s,—3 K +5

With these assumptions the RG equation (3] simplifies to
nlym?]
agt+ ;8 ( ) _ 1 (gyl mT<w>gnl 1/1( )
dln D S Ut Bitt o
+ar N (W) g (W + K — B)Ou_yy+ k-5

_'_gZ)T;smT (w B)QZ} Z)T (CU)@LU*}Lny
P @)l @+ K)Ou )

(w

The derivation of this scaling equation is shown in detail in appendix [D.Jl In general
one can derive all scaling equations analogously, even in the case of a finite magnetic
field B, but we restrict ourselves to the discussion of the case B = 0. The study of a
finite magnetic field applied to a double quantum dot setup is the aim of future work.

It was observed in chapter Bl that the self energy can have off-diagonal contributions
in the limit of K < I'. Nevertheless, the leading logarithmic order as discussed above
originates from a convolution of a conduction electron Green’s function with the retarded
Green’s function for the double quantum dot system. As discussed in section B4 the
off-diagonal retarded Green’s function is proportional to I'/K and I' o g? &< 1/In* can
thus be neglected to leading logarithmic order. As discussed in section the quantum
Boltzmann equation is difficult to solve in the case of vanishing K. It is not the scope
of this thesis to discuss this subject further. In future work one would have to rederive
the scaling equations in the rotated subspace as explained in chapter [(din the appendix
to avoid the problems mentioned there.

5.2.4 RG Equations of the Double Quantum Dot System

In the case of zero magnetic field B = 0 the three triplet states are degenerate. As
discussed previously the complications due to off-diagonal contributions do not appear.
We assume further a symmetric Kondo setup such that the spin conserving J? and
the spin-flip J* couplings are not distinct. This assumption is justified since the spin
symmetry is conserved in zero magnetic field.
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Consequently there are only three different RG equations,

89"87” w0 1 vm nv
8tT<D> ~ 9 (2915 (W) g1t (W) Ow—p,

+20 (W) g™ (W + K)Oupu 1)
ag?m w 1 vm v
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The chemical potential is defined by j1/2 = £eV7/2 for the leads 1 and 2 on the left
side and p34 = +eVg/2 for the leads 3 and 4 on the right side. A summation over the
internal lead index v is implicitly understood. Please note, that these RG equations are
only valid to leading logarithmic order.

Further Assumptions

The dependence on the frequency appears in the coupling function g(w) and in the cutoff
function ©,. At the initial cutoff Dy the couplings are not frequency dependent and
the flow is the same for every frequency w. If the band cutoff D is reduced below some
energy scale like the exchange interaction K then the flow of the coupling function is
stopped for certain frequencies while the flow for other frequencies continues. Below this
energy scale the coupling function is not a constant but explicitly frequency dependent.
In the following it is assumed, that the frequency dependence of the coupling function
is negligible in comparison to the strong frequency dependence of the ©-function. The
approximation,

f(Aw)B(D — [Aw]) — f(0)O(D — [Aw]),

is used and it is assumed, that the frequency argument of the couplings functions is
determined by the corresponding ©-function.

Using these assumptions the RG equations of the double quantum dot system in the
case of zero magnetic field are

Igis" (W) o
atlﬁ = — 5 (297 (1) 98 (1) Oy,
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These RG equations are similar to the scaling equations for the Kondo effect in a
singlet-triplet setup [45] and for the double quantum dot considerations in Refs. [46),
69]. However, none of these works includes the frequency dependence of the coupling
functions.

Symmetry Relations

Due to the hermiticity of the Hamiltonian symmetry arguments between the three coup-
ling functions have to hold,

9" (w) = g (w), (5.15a)
9i" (W) = 915" (w — K), (5.15b)
g (w) = gt (w+ K). (5.15¢)

Consequently there are only two independent coupling functions, because the coupling
g™ can be represented by the coupling ¢7}" with different frequency argument or vice
versa.

5.3 Flow of the Couplings

The RG equations for a system of two coupled quantum dots are given in Eq. (EI4).
In the following we concentrate on the couplings to the left quantum dot. A detailed
derivation of the flow of the couplings is given in appendix assuming that V, = 0.
The general case can be worked out straightforwardly in the same manner. In this
section the physical content of the scaling equations is addressed. It is assumed that
K > T and the temperature T' is negligibly small compared to the decoherence rate I'.
One has to distinguish between three different energy regimes for the flowing cutoff D:
Dy>D>K, K>D>T,and I' > D. These originate from the two different cut off
regimes in Eq. (BI4)), ©(D — |K|) and ©(D — |T']).

5.3.1 Flow in the Energy Regime Dy > D > K

The cutoff Dy is the largest energy scale of the system. The initial couplings at D = Dy
are frequency independent and until the scale D* = K no frequency dependence is
created by the flow, and thus the frequency argument of the coupling functions can be
neglected. All ©-functions have the value one in the regime Dy > D > K and the RG
equations (.14 in that regime are given by

_agnsm 1 vm  nv nv _vm

8hiD = ) (291" 91" + 2913 95" (5.16)
agnm 1 vm ny ny vm I

811?D - 9 (95" 918 + 9ot 9" + 295" 9i1”) - (5.17)

The coupling g, is related to gis by the symmetry relation ¢7}"(w) = ¢/ (w — K).
In this regime the frequency dependence can be neglected and consequently it follows
that g2/ = g/2*. The couplings g1}, = ¢22,, denoted the diagonal coupling g%, obey

s
a different scaling equation than the couplings g}f{/ = gi}y,, defined as the transport

coupling g’ .
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The equations for the couplings ¢, ¢'., g¢ and gf, can be decoupled by defining
symmetrized couplings as

g = (g0 £ gh) + (9% £ L),
9= = (95 £ 94) — (9% £ gLy)-

Then the equations for the four different couplings g have the same form,

891[ - +)2
D (93)"- (5.18)

Eq. (BEI8) is the typical flow of a Kondo coupling. The solution for the differential

equation (BIX) is

1
+

g1 (D) = )
* =5 + 10 (D/Dy)

gi(

This expression diverges if the cutoff D is reduced to the energy scale Ty, where
Tx = Dy o~ 1/9% (Do)

Altogether there are four different energy scales on which the four different couplings g
become divergent. The largest energy scale determines the breakdown of the perturba-
tion. From the definitions of gT it is obvious, that g is the largest coupling, since it is
the sum of four couplings. Therefore the Kondo temperature is determined by the initial
value of g7 (D = Dy). In appendix the general case of different initial couplings is
discussed. The discussion here is limited to the special case of symmetric couplings,

(D) = g(D) = 6 (D) = g4(D) = gty() = L2
where
) 1
P (DT

Tx = Dy e~ 1/49(Do)

Since the double quantum dot system has four degrees of freedom due to the singlet and
triplet states and the diagonal and transport processes, the Kondo temperature is given
by Dge~!/49pap) instead of Dye~/(291ap) as in a setup with only one quantum dot.

5.3.2 Flow in the Energy Regime K > D > T

When the cutoff is reduced below the energy scale of K, the frequency dependence of
the coupling plays a role. In the RG equations Eq. (214 either ©(D — vw? +T') or
O(D — /(w £ K)?+T) cuts off the flow.
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In the regime K > D > T" and for V;, = 0 the RG equations (BI4) are given by

8ggm(w) B 1 . -
OlmD 2 (29:5™(0) gz (0)O.,
20 (= K)gii" (0)Ouxc) (5.19)
aggm(w) B 1 . -
JdlnD - _2 (QSt (O)Qts (_K)@w—f—K
+95 (K) g, (0)Oy k¢

+29;"(0)g:”(0)0.,) - (5.20)

In Egs. (EI9) and (B20) the triplet-triplet coupling g (w) appears on the right hand
side only with the frequency w = 0. As in the regime Dy > D > K the diagonal
gi(w =0) = gl (w = 0) = g2*(w = 0) and the transport coupling g,(w = 0) = g2 (w =
0) = g2'(w = 0) obey each an RG equation. As before their flow equations are coupled,
but can be decoupled by using the sum and difference g = g2 + ¢,, respectively,

dg;;(w=0,D)
OlnD

= (gi(w=0,D))".

Since we assumed symmetric coupling, ¢%,(w = 0,D* = K) = gi(w = 0, D* = K), the
coupling g, (w =0, D* = K) = 0 is initially zero and is not created during the flow. The
solution of the differential equation for g;; is

+
94(0,D) = D\’
In ()
where
. o[ K I T
T* — D* —1/g;(w:O7D:D ) — K 2ln(TK) — K — T LK
¢ ¢ K/Tx K
and D* = K is the energy scale where the flow of the coupling functions becomes

frequency dependent.
We find for the flow of the triplet-triplet coupling in the regime K > D > T,

1
I (2]

On the right hand side of equations (BI9) and (B20) only the couplings ¢;2"(w = 0)
and ¢;""(w = —K) appear, since ¢/ (w = 0) = g/"(w = —K) and ¢/"(w = K) =
g™ (w = 0). The flow of ¢/ (w = 0,D) and g/ (w = —K, D) is dependent on the
flow of g(0, D). The transport and the diagonal couplings are defined analogous to the
triplet-triplet couplings. From the initial condition at D* = K it follows immediately
that g, (w, D) = g&(w, D) — gl,(w, D) = 0 and these couplings are not created during
the flow.

Thus only the flow of g/ (w = 0,D) = ¢g&(w = 0,D) + g',(w = 0,D) and g;’(w =
—K,D) = gi(w=—K,D)+ g!,(w = —K, D) has to be calculated, for example

gi(WZO,D):g;(w:O,D):

dg5(w=0,D) . 1
oD~ 9elw=0Dlms
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This differential equation is solved straightforwardly and we find

In D*/T* 1
Hw=0,D)=g'(w=0,D* = .
gts(w ) ) gts(w ) ) 1nD/T* lIl (%)
The coupling gfs/ t(w = —K, D) has the same initial value and obeys the same scaling
equation. Thus it also flows like
giw=—K.D)= 7.
In (%)

The couplings g;-(w = 0, D), g;t(w = —K, D) and g;; (w = 0, D) follow the identical flow.
Assuming that all coupling functions start with the same initial value, also in the regime
of K > D > T the frequency dependent couplings at w = 0, + K flow to the same value,
ngls/t(w =0, D) = g;is/t(w =K, D) = gi/t(w =0, D) = m

1
- 2(InD/Tx +In K/Tk)

5.3.3 Flow in the Energy Regime D < T’

If the band width D is reduced below the lowest energy scale of the system, none of the
couplings flows any more. The couplings scale to a constant value given by the energy
scale I'. The decoherence destroys an infinite series of coherent scattering events that
could lead to the strong-coupling behavior of the Kondo couplings. If the band cutoff
D is reduced to 0, the coupling functions converge to the value

1

gfs(w:O,D—>0) :gfs(w: _KvDH()) :gft<07D_>0) = 9

5.3.4 lllustration of the Flow of the Couplings

The flow of the coupling functions is illustrated in Fig. .4l for the parameters of the
double quantum dot system used in this thesis. The discussion of the parameters follows
in section

An apparent frequency dependence of the coupling functions is observed in Fig. B4l
For a large band cutoff D > K the coupling functions follow the same flow at every
frequency, but at later stages of the flow the peak structure becomes pronounced. In g4
and g;s there are two resonances, which are shifted by the energy K with respect to each
other. This confirms the symmetry relation of Eq. (BIH). As discussed in the previous
section the peaks flow with the same logarithmic dependence. There are satellite peaks
in g4, which are less pronounced than the peak in ¢;, at finite frequency. The parameters
are chosen with a large decoherence I' such that the flow of the couplings stops at g < 1.
Therefore the calculation of the current or other physical quantities in second order is
justified.

Fig. Bl illustrates the flow of characteristic values chosen for the double quantum dot
setup considered here. It is found in chapter [ that the scaling in the flow equation
method shows a similar behavior. After the development of the perturbative RG by
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Figure 5.4: Flow of the frequency-dependent couplings gs:(w), gis(w), and gy (w) for the dif-
ferent values of the cutoff D = 1000, 100,10,1,0.1,0.01,0.001. The flow of the coupling stops
when the energy scale of the decoherence is reached. The parameters 1/In(K/Tk) = 0.2,
T/Tx =0.1, B=V, =Vr =0, and go = 0.0165 result in a decoherence rate I = 0.0063.

A. Rosch et al. [35, B6], the method was applied to other setups as well, here should be
mentioned only a few like the singlet-triplet Kondo effect [48], a electrostatically coupled
double quantum dot setup in Ref. [70] and the application to the two-channel Kondo
model [53].

5.4 Polarization

A detailed discussion of the polarization, p = n, — ny, is found in section BTl where
this thermodynamic quantity was shown to depend on the finite voltage to Oth order
in a perturbative expansion of the coupling J to the leads. The quantum Boltzmann
equation is equivalent to a rate equation of the form

Fsatns = Ftﬂsnta

where I',_,; is the rate for a transition from a singlet state to a triplet state and analogous
for I';_.,. In 2nd order perturbation theory these rates are equivalent to the expressions
derived from Fermi’s golden rule. The rate I's_.; corresponds to the broadening I'ss(ws)/3
of the singlet state in the notation used in chapters Bl and Hl.

Thus the finite life time of the singlet state 1/T'ss(ws) is responsible both for a broad-
ening of the singlet resonance and for a non-equilibrium occupation probability of the
singlet level. In this section it is discussed how to take both effects into account.

In the following the effect of a finite magnetic field is not addressed. As was discussed
in chapter Bl contributions from off-diagonal singlet-triplet Green’s functions and self
energies can not be neglected for a double quantum dot system with finite magnetic
field B # 0 and left-right asymmetry g, # gg. Since these off-diagonal contributions
additionally are important only in the case of K < I', this small parameter space is left
out of discussion in this part of the thesis.

5.4.1 Self Energy > and Spectral Weight I

A non-zero self energy of the pseudo particles has two consequences. On the one hand
the retarded self energy shifts the resonance by the value of the real part of ReX" and
on the other hand it leads to a broadening I' = i (3~ — ¥<) = 2{Im¥" of the spectral
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function. The pseudo particles gain a finite life time due to interactions with the leads.
Resonant processes only take place within a time 1/I'. The Kondo effect itself arises
due to resonant spin-flip processes and is destroyed by a finite life time of the pseudo
particle states. The broadening I' has to be included into perturbative RG in order
to compensate for the fact that the flow of the running couplings, if not stopped by a
system parameter before, is stopped by the decoherence rate I'H Since the broadening
I' provides a cutoff for the flow of the coupling functions and the coupling functions
enter the derivation of the broadening I', the flow of the couplings has to be calculated
self-consistently. In the routine used here this is done by a few iterative steps until
convergence is reached.

On the other hand the lesser self energy plays a major role in a non-equilibrium
situation due to a large applied voltage. In this case the lesser and retarded Green’s
function do no longer fulfill a fluctuation-dissipation theorem as in equilibrium and have
to be calculated independently. The lesser Green’s functions are derived from a quantum
Boltzmann equation, see section for a more detailed discussion. The concepts of the
non-equilibrium perturbation theory in chapters Bl and @ are here generalized to the
perturbative renormalization group.

In perturbative RG the contour-ordered self energy is given by

1 ! ! /
. nkowe;mk'o’ we ymk! o’ Wlinkowe
Zvim (7_17 7_2) T 16 V1 ,W~g 5] Wt V2,Wg371,Wyy
~i i n R =
TU’JT"/i’Yle(Tl’ TQ)G"/I (7_1’ TQ)T’YI’YQTUU' ’ (521)

One has to distinguish between the lesser self energy X<, which enters the quantum
Boltzmann equation, and the broadening I" = (X~ — 3<) that provides a finite life time
of the double quantum dot states. In the following only the diagonal parts of the self
energy are taken into account. As discussed in the beginning of this section the rates
[" enter as well the retarded Green’s functions as the quantum Boltzmann equation in
non-equilibrium. Using this information derived in chapter Bl the calculation of the lesser
self energy X< is redundant.

With the assumptions for the coupling functions g(w) as discussed in section the
spectral weight I" is given by

[yy(w) =i (E%@“)) - E%(w))
1 de nko;mk’o’ mk’o’;nko
~ 16 %‘]’Y’%“/ (6/)‘]'7;7’ 7 (6/ tw—¢)

(XY (w— )7, T, Ay (e)TV, 7

ooty v'y'ool
The definition and the derivation of the conduction electron spin susceptibility, X", is
found in section The function X' allows only processes within an energy window

according to the chosen frequency of the involved physical processes and also determines
the energy of the conduction electrons in the particle-hole loop. This is seen from the

3Compare to the definition of the cutoff in Eq. (&I2).
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definition,
n\> dG, < /
(Xm) (w - 6) = - % nkU( )Gmk)/ /(6 +w— 6)
/
= —27TN(0>2/ de’ ferm[e — w + fin, pn](€'),
where

ferm[a, b](w) = (1 = f(w —a)) f(w —b),
/ de' = /de’@(D — [€NO(D — |€ +w —€]).

The function ferm[a, b](w) equals zero if a > b. In the case a < b and for zero tem-

bl(w)

ferm[a
1

Figure 5.5: Tllustration of the function ferm|a, b)(w) for a < b.

perature 7' = 0, ferm|a, b](w) is equivalent to a box of height one between a and b as
illustrated in Fig. A finite voltage V shifts the chemical potentials in the leads fi, ,,
to £eV/2. If the energy transfer between the state 7' (= €) and v (= w) takes place
in the window opened by the voltage, then this process contributes to the self energy.
This behavior was already discussed in the context of the voltage-dependence of the
polarization in section Tl

It is straightforward to simplify the expression for I' using the approximation, that the
w-dependence in the integration limits +D + w can be neglected, since the band cutoff
is larger than any other energy scale of the system. We thus find that the broadening I"
in perturbative RG is given by

I, (w) = de/ de' g"k(’ smk'o 7 (¢ )g:?s,g mka(e/ +w—c¢€)
fermle — w + fim, i) (€') Torg Ty Ay ()T 7.

Remark about the Numerical Calculation

As illustrated in Fig. the function ferm[a,b] is a box of the height one between
a and b. Rather than a convolution with the function ferm the Kondo couplings are
approximated by their average in the interval from a to b

nko;mk’o /( /) mk/o/;nko(‘E/ +w— E) 1 nkoymk’c’ mk’o/;nko(a b)

9y i h— g'y Y el
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where

b

nkoymk’c’ _mk'c’inko o 1 nkosmk'c’ ;1\ mk'c'inko ;1

Gy Gy (a,b) = / de gy (€ )g,m, (€ + ey —€y).
a

Accordingly we approximate

1 b
ferm[a, b] ~ ; / de'ferm|a, b](€').

The incoming frequency w — €, and the intermediate frequency € — e, are approxi-
mated by the energy of the pseudo particle states on resonance. Using the average of
the coupling functions the integrals in the spectral weight I' can be separated,

Hn
1 nko;mk’o’ mk'c’inko
F’Y’Y(G’Y) = _1_6 / dE/ g’y/;,\/ (6/)97;7/ <€I + 6\/ — 6\//)

6"// *E-y‘i’/»lm

/de ferm(e — €, + fim, fin] i’aféy’Aw’(e)fifngo/- (5.22)
The approximation that the pseudo particle frequency can be taken on resonance is used
again in the expression (22) and it is assumed that I, (w) is calculated on resonance
w = €,. The broadening of A, is neglected in the integration over the coupling functions,
but it enters the convolution with fermle — ey + ftm, ftn].

The expression for I'.,(e,) in Eq. (22) has to be calculated self-consistently. The
spectral weight I determines the life time of the pseudo particles and therefore prevents
the flow to strong-coupling since the Kondo resonance is destroyed by a non-zero deco-
herence. The broadening of the spectral function A, (w) = 7T/((w — €,)? + (['/2)?) is in
comparison with the perturbation theory calculation in chapter Hl not neglected and as
shown later the broadening I' determines the width of the resonances. Finally, the rate
[ determines the non-equilibrium distribution function of the singlet and triplet states
in a self-consistent equation.

5.4.2 Discussion of the Chosen Parameter Set

If not stated differently the following parameter set is used throughout this chapter

Dy = 1000,
Ty = Doe /149
T =0.1 Tk,

1/In(K/Tk) = 0.2,
VL =Vr=B=0.
In Fig. 28 we show the different energy scales of the system. It is found in a renormal-

ization group treatment of the Kondo model, that the energy scale Tk determines the
physics of the whole system. All energy scale are thus given in units of Tx. The Kondo
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Figure 5.6: Energy comparison and voltage dependence of the decoherence rates I's_¢, I't_q,
and T';_,; for typical parameters of the system 1/In(K/Tx) = 0.2, T = 01Tk, g1, = gr =
0.0165 and Vi = B = 0. Explanations are given in the text.

temperature Tk was calculated in the previous section. The band cutoff Dy is assumed
to be of the order of 1000meV motivated by experimental values. The coupling ¢, is
chosen such that the system does not flow to strong-coupling before the reduced band
cutoff D reaches the energy scale of the decoherence I'. Since there is a finite decoherence
present in the system the temperature is chosen below the Kondo temperature and is
thus negligibly small. On the other hand the singlet-triplet gap K has then to be large.

For an antiferromagnetic coupling the ground state of the system is a singlet. The rate
I's_.; is the largest decoherence rate in Fig. since the phase space of the singlet states
is larger than of the triplet states. Since there are no singlet-singlet processes allowed
in the double quantum dot setup, every process includes a transition from a singlet to
a triplet state. Thus the rate I',_,; is involved in all physical process. A singlet-triplet
transition is allowed for voltages eV} above the threshold K. At this energy scale the
other rates, I'; s and I';_,;, are comparable or larger than the Kondo temperature. In the
following calculations of the current and the T-matrix it is thus assumed that all physical
quantities are cut off by the rate I';_;, which is justified in the case of antiferromagnetic
coupling. In section B the ferromagnetic case is discussed and different decoherence
rates of singlet and triplet processes are taken into account.

An applied voltage leads to a finite current. Transport processes lead to an increase of
the decoherence rates with increasing voltage. Since these decoherence rates also enter
the quantum Boltzmann equations, they are responsible for a non-equilibrium occupation
number. The voltage dependence of I' therefore leads to the voltage dependence of
thermodynamic properties like the polarization.

Here we only discussed the self energy as a source of decoherence, although in general
there are further sources like vertex renormalizations (see Ref. [41]). The vertex correc-
tions can be treated in higher orders or other scaling methods, but are left out in the
discussion here.

5.4.3 Discussion of the Polarization

Since no magnetic field is applied, the magnetization equals zero. Nevertheless thermo-
dynamic properties of the double quantum dot system can be studied in the spin-spin
correlation (S;Sg). The spin-spin correlation is proportional to the difference in the
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occupation of singlet and triplet states,

= = 3
<SLSR> = Z (nt — ns) .
Therefore this quantity indicates deviations from the singlet ground state, as discussed
in detail in section E1l
In the following we discuss the properties of the polarization p using perturbative RG
instead of perturbation theory. The polarization,

p(T7 Ka VLa VR) =Ng — Ny,

depends on the temperature 7', the exchange interaction K, and the two different volt-
ages V7 and Vg applied to the left and the right quantum dots, respectively.

In Fig. B the dependence of p on the voltage Vi, applied to the left quantum dot is
shown. The voltage applied to the right quantum dot is assumed to be zero, Vg = 0. The
value of p at V;, = 0 is close to one, which is the thermodynamic value from equilibrium
physics. A special feature of the non-equilibrium situation is the dependence of p on the
voltage. Assoon as the voltage reaches a value of the order of the exchange interaction K
the channel for singlet-triplet processes is opened, and the value of p deviates from 1. For
higher voltages not only the singlet is occupied but also triplet states are populated, as
illustrated in Fig. . For eV}, > K the polarization decreases inversely proportional

1

05
0.75 04— '\ -
i & L I/~ N\ i
L = \\\,
S 03 b
ST - E L i
— 1/ In(K/Tg) =0.2 =
L —- 1/In(K/Tg) = 0.15 ] 02|~ .
-— 1/In(K/Tx) = 0.1 KI | ]
025 * — 1/In(K/Tx) = 0.2
01 /) —- 1/1n(K/T£) =015 |
r b / -— 1/In(K/Tg)=0.1 |
0 | | I | | 0 . . | I | I |
0 05 1 15 2 25 0 05 1 15 2 25
BVL/K GVL/K
(a) Polarization p vs. voltage eV /K. (b) Derivative of the polarization —K dp/dVy,

vs. voltage eV /K.

Figure 5.7: Polarization p = ns — n; in dependence of eV, /K for different values of In(K/Tx)
when the temperature T'/Tx = 0.1 is negligibly small. The Kondo coupling on the left and
right side is assumed to be identical, g, = gr = 0.00165.

to the voltage V7, as discussed in detail in section L1l This threshold behavior is generic,
but in contrast to the perturbation theory calculation the polarization p in perturbative
RG depends on the value of the coupling K.

This is studied in Fig. |5.7(b)| where the derivative of p with respect to the voltage
is shown. The derivative dp/dV}, is inversely proportional to the spin-spin coupling K
such that Kdp/dVy is shown in Fig. for a better comparison. The derivative is
negative, since the polarization decreases. For large voltages the decrease is proportional
to 1/V7 since the polarization falls off like 1/V;. We find a pronounced feature at the
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threshold eV}, = K, where the polarization starts to deviate from the equilibrium value.
The width of the structure is given by the decoherence rate I'. It is observed that the
smaller the values of K the broader the resonance, since the coupling flows to larger
values. In this case the decoherence is larger since it is roughly proportional to ¢%K.
This explains the smearing of the threshold with increasing decoherence rate T'.

In Fig. the dependence of the polarization p on the two different voltages V;, and
Vg is shown. If the voltage eVy reaches the threshold K it has an influence on the

— eVp/K =0.0

L —=- eVR/K =0.3 4
-— eVp/K =0.6

0.25— -—- eVrp/K =0.9 —
eVp/K =1.2

L —-- eVgp/K =15 4

0 \ Lo !

1 15
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Figure 5.8: Polarization for a negligibly small temperature of T'/Tx = 0.1 and fixed interaction
1/In(K/Tk) = 0.2. The Kondo coupling on the left and right side is assumed to be identical,
gr, = gr = 0.0165. The voltage Vi applied to the right quantum dot is changed and the
behavior of p on the voltage eV /K is shown.

behavior of p with V. This threshold corresponds to the energy necessary for a spin-flip
process which in the double quantum dot system is always connected to a singlet-triplet
process. A finite value of Vi can provide the energy to populate the triplet states
in the same way as Vp does. Since we have assumed the Kondo temperature to be
the same on both quantum dots, the left-right symmetry is preserved and V; can be
interchanged by Vjy in all figures. Similar to the discussion in perturbation theory we
expect the voltage dependence of the polarization to influence the currents through the
two coupled quantum dots significantly.

5.5 Non-Equilibrium Current

In this section we discuss the current in perturbative RG as an example of a physical
quantity which can be measured in experiment. As was shown in Ref. [35] the pertur-
bative RG method is to leading logarithmic order comparable with experimental data
for a single Kondo impurity. After an expression for the current in derived we discuss in
detail the properties of the current through a double quantum dot system. An emphasis
is put on the transconductance, which was defined in section to measure the effect
of a voltage applied to the right quantum dot on the current through the left quantum
dot. Using the perturbative RG method it is shown that all resonances, also in the
transconductance, are enhanced by taking the scaling of the couplings into account.
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5.5.1 Calculation of the Non-Equilibrium Current

To derive the expression for the current in the perturbative RG approach we use the
result for the current to second order in perturbation theory in Eq. (EE9) in the previous
chapter. Including a few straightforward generalizations it is given by

e (1 A 1 o
I=(npS (ZN(O)JLHTU T 7) (ZN(O)JLM;U,T%,)

IR

(ny fe+w—pa) (L= fle = p2)) = nyfle—p2) (1 = fle+w—pm))), (5.23)

where X1 (w) = —27N(0)f(e +w — p1)(1 — f(€ — p2)) and the analogous expression for
X?(w) was inserted. The spectral functions are assumed to be Lorentzians rather than
o-functions to take into account the effect of a finite broadening. The convolution of
two Lorentzians gives another Lorentzian with a new width of I', +I'; and a modified
resonance position. This justifies the approximation that I';_,; can be used as an averaged
broadening, since any process involves a transition of a singlet to a triplet state in the
case of antiferromagnetic coupling K > 0.

The coupling constants are generalized to coupling functions or rather general vertices,
but this is straightforward in Eq. (23)). The replacements are given by

1 /
20,¢;10" je+w
(Z (0 )JL12T0/UT“/“/ - V%ww;%uw ’
1 - » /
- J 9 lo’e4+w;20,€
(4N<0)JL21TO'O'/T’Y’Y/ - Vy/,wﬂ//;ﬂ/,w,y >

where the first index in the vertex refers to the incoming and the second to the outgoing
particles of the interaction.
After some straightforward steps the current in the perturbative RG approach is given

by

e? 1 ;
I = (271')2%%7'0/07—'7 N Ny T,z,y/'rj ’
[ e [+ wfermlw + pn, )00, (50 (e + )
= Ayt wy)ferm[—w + p el (g5, (g L e+ w)| L (5.24)

The first part in Eq. (£24]) describes electrons flowing from lead 2 to lead 1. The second
term in Eq. (B24]) with the opposite sign diminishes the current by the flow from lead 1
to lead 2, such that the total current is the difference between these two parts. In order
to calculate the current numerically including the flowing coupling functions the same
approximations as for the calculation of the self energy are used.

Therefore the energy of the spectral function A, (w + w,/) is shifted to A,(w). Effec-
tively the integral limits, —D and D, would thus be shifted by w./, but it is assumed
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that w, is as smaller than the cutoff and therefore the shift is neglected,

h 1
Ig = (27)? ETU/UT’Y , ijy'Taa
/de/dey(w)ferm[—w + Wy + pa, p11](€)
9 (L (€ w0 — o) = {1 = 2}, (5.25)

It is also assumed that it is sufficient to use the average of the couplings in the window
opened by the function ferm similar to the approximations in the calculation of T
Therefore the two integrals can be calculated independently. This approximation is
justified since we are only interested in the leading logarithmic order.

Finally the current in the numerical routine is calculated by

h |
1= = (2m) > = = Ty T ny T, 73

M2
1o;20’ 20';10
[/ de € 9y wy, W (E)gv’,ww%ww (e+w-— wy/)]
w,

! W
{/ dwA,(w)ferm|[—w + wy + p2, ,ul]} — {1« 2}.

The results and the physical content of the current of a double quantum dot system are
discussed in the following section.

5.5.2 Current through a Double Quantum Dot System

The expression (B2H) is specialized to the double quantum dot system. Assuming all
triplets to be degenerate for zero magnetic field B = 0, the evaluation of the summation
over all spin degrees of freedom gives the current

2 1
I = %(271’)2§ /de{ 3nyferm[—K + pia, p1(€)g;2(€) g3 (e + K)

+ 3ngferm[K + pia, p1](€)g47 (€) g7 (e — K)
+ Gngfermpa, 1n](€) gy (€)gir (€)
—{1-2) ). (5.26)

The chemical potentials are shifted by a finite voltage, u; = +eVy/2 and py = —eV, /2.
The function ferm appears in Eq. (B26) with six different arguments. Only a few give
a finite contribution. In the following considerations the spin-spin coupling is assumed
to be antiferromagnetic K > 0. A discussion of the ferromagnetic case K < 0 follows in
section BE71 At V' = 0 the current is zero by symmetry. In the following we assume that
the voltage V' is in the linear regime, i.e. it is smaller than the singlet-triplet excitation
gap K such that the threshold or Kondo enhanced resonance is not reached.

Then ferm[us, 111] is proportional to the voltage Vi, or temperature T' in the case of
VI, = 0, but the temperature is assumed to be negligibly small. The functions ferm[py, o]
and ferm[K + puy, o] are identically zero, and also the contribution from ferm[K + ps, fi1]
vanishes as long as eV}, < K. The function ferm|[— K + p1, ps] is non-zero in the energy
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window between —K + eV} /2 and —eV/, /2. Finally the most important contribution

comes from ferm[— K + pig, p11] in the energy window between —K — eV, /2 and +€Vy /2.
Using the relations g3 (e+ K) = g;;"(¢) and g;';"'(€) = g¢;" (€) and neglecting a finite

broadening of the decoherence or the temperature, the current can be written by

, ; V/2 V/2 —V/2
2 2 2
L= @nigny [ deglo) vz [ aelgo) - [ de(gto)
—K-V/2 —V/2 —K+4V/2

(5.27)
It is observed that the current in the linear voltage regime is proportional to n;. If the
exchange interaction K is antiferromagnetic, the singlet is the ground state and there is

only a non-zero current below the threshold if there is a finite occupation of the triplet
states due to e.g. a large voltage eV > K applied to the right quantum dot.

5.5.3 Discussion of the Current Properties

0.05

0.04—

0.03—

I,

0.01—

(a) Current Iy, vs. voltage eV /K. (b) Differential conductance dI,/dVy, vs. voltage
€VL/K.

Figure 5.9: Current Iy [e?/h] characteristic for the left quantum dot and differential conduc-
tance dIy/dVyle?/h] from this curve for B = Vg = 0, g, = gr = 0.0165 and exchange
interaction of 1/In(K/Txk) = 0.2. The temperature is chosen to be small T'/Tx = 0.1 such
that the broadening originates only from the dephasing. For comparison the result of the 2nd
order perturbation theory (PT) is shown.

In Fig. 5.9(a)| we show a typical current characteristic for a double quantum dot
system in the case of zero magnetic field. The current is antisymmetric with respect to
the applied voltage, and thus only the positive voltage axis is shown. It is assumed that
there is no difference in the chemical potentials on the right side (Vz = 0). For a small
applied voltage the current is approximately zero and only thermodynamically excited
processes contribute to a small transport current. As soon as the voltage becomes of the
order of the exchange interaction K the current starts to increase, because the voltage
provides the energy for inelastic processes. This threshold behavior is better seen in
the derivative of the current. The dI/dV curve in Fig. [5.9(b)| shows a resonance close
to eV ~ K. Although eV, = K is the inflection point and not the maximum of the



120 Perturbative Renormalization Group

curve. As discussed in section the maximum in the 2nd derivative of the current
with respect to the voltage, d*I/dV}, is equivalent to the exchange coupling K.

As illustrated in Fig. the perturbative RG and the perturbation theory results
show certain differences. Both differential conductance dI,/dV;, curves show a resonance
around K, but the value of the differential conductance at the resonance is Kondo
enhanced in the perturbative RG approach. At the negligibly small temperature chosen
in Fig. the broadening originates only from decoherence processes in the singlet-
triplet channel and is not given by the temperature 7" as in the perturbation theory. It
can be shown, although not illustrated here, that including a finite broadening in the
current calculation and using a rescaled coupling constant fails to describe the current
characteristic found in perturbative RG. At a finite energy, e.g. w = K, the conduction
electrons can provide the energy for coherent spin-flip processes. The coupling flows
logarithmically at this certain frequency and thus the step in the differential conductance
is significantly enhanced. This confirms that the frequency dependence of the coupling
functions is important.

For temperatures larger than the Kondo temperature Tk the broadening is determined

by the temperature and not by the dephasing, as illustrated in Fig. [5.10(a)l A finite
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(a) Differential conductance vs. voltage for dif- (b) Differential conductance vs. voltage for dif-
ferent values of the temperature. ferent values of the coupling K.

Figure 5.10: Differential conductance dIj,/dVy[e?/h] through the left quantum dot for zero
magnetic field B = 0 and voltage Vg = 0. In the left panel the temperature is changed from
below the Kondo temperature T'/Tx = 0.1 to values above Tk while the interaction is kept
constant at 1/In(K/Tx) = 0.2. In the right panel different values of the exchange interaction
In(K/Tk) are shown, which are chosen such that the perturbative approach is still valid. The
temperature here is negligibly small T//Tx = 0.1.

temperature smears the Fermi surface of the conduction electrons and therefore destroys
the coherent scattering processes which lead to the Kondo divergence. The value at the
resonance is lower than the unitary value of 2¢*/h. For temperatures close to and below
the Kondo temperature Tk one expects a Kondo resonance to form, i.e. the resonance
reaches the unitary limit. The transport through the quantum dot destroys the coherence
which is important for the build-up of the Kondo effect and the behavior is determined
by the finite broadening I" of the double quantum dot levels. As observed in Fig. [p.10(a)|
the differential conductance dI;,/dV}, does not depend on the temperature of the system
for temperatures T' lower than I'.
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In Fig. the dependence of the differential conductance through the left quan-
tum dot on the voltage is shown for different strength of the interaction K/Tk. The
perturbative RG is a perturbative method, such that we are not able to calculate physi-
cal properties within the Kondo regime. The flow has to be cut off to keep the coupling
in the perturbative regime. For a double quantum dot setup there are three parameters
which provide a cutoff for the flow. First there is the temperature which is assumed to
be negligibly small, T/Tx = 0.1 in Fig. The applied voltage also cuts off the
flow indirectly through the mechanism of dephasing. Besides the voltage dependence of
the different broadenings I' it was shown in Fig. that the energy scale which cuts off
the flow is on average given by the decoherence rate I' = I's_;. Due to the finite phase
space ['_; is always larger than Tk, but for example I';_,; is only comparable to Ty at
eV ~ K, see also discussion in sections and b7l The exchange coupling K leads
to a level splitting of the singlet and triplet states and it also provides a cutoff. As dis-
cussed in section the couplings in a symmetric setup flow to the value of WK/T@

The effect of the cutoff by K is observed in Fig5.10(b)} For larger values of K the flow
is stopped at a smaller values of the coupling and the absolute value of dI/dV decreases
further below the unitary value 2¢2/h.

Transconductance

It was observed in the differential conductance that no transport takes place as long
as the voltage V7, is below the threshold given by the singlet-triplet excitation gap K.
For an antiferromagnetic exchange interaction the singlet is the ground state. There are
no spin-conserving processes which allow for a transport without changing the singlet
to a triplet state. Only if the voltage V7, provides sufficient energy, a finite dI;/dV}, is
observed. If triplet states are occupied for example due to a finite temperature, elastic
processes contribute to a small current signal even within the linear voltage regime.

In section it was observed that the polarization p = n, — n; deviates from
one if a sufficiently large voltage is applied to the right quantum dot. A finite voltage
provides the energy to populate triplet states. If triplet states are available for transport,
there is a finite current for small voltages Vy, as discussed in Eq. (27). In Fig. BT
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Figure 5.11: Differential current dIy/dVy versus eVy/K for an spin-spin interaction
1/In(K/Tk) = 0.2 while the voltage eVr/K is changed. The Kondo couplings on the left and
right side are assumed to be the identical to g;, = gr = 0.0165 and temperature T/Tx = 0.1
is chosen negligibly small.
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this effect is observed. As long as the voltage Vg across the right quantum dot is
smaller than the exchange interaction K, only an increase in the width of the resonance
due to a larger decoherence rate is observed. As soon as the voltage Vi reaches the
threshold, the dI; /dV} characteristic changes. This is a pure non-equilibrium effect and
originates from the Oth order correction of the occupation numbers due to the quantum
Boltzmann equation. A comparison of the zero bias value of dI;/dV; with the slope
of the polarization p with increasing voltage shows a good agreement, see Fig. .
A double quantum dot setup therefore provides the possibility to measure the voltage-
dependence of the double quantum dot states within a current measurement. Since
the current is more easily accessible in experiments than a correlation like (S}, Sg), this
provides an interesting experimental means.

An expression for the differential conductance dI;/dV}, is derived from the expression
for the current in Eq. (B221). In the linear regime of the voltage eV}, < K it is assumed
that the triplet occupation does not depend on V;, and thus dn;/dV;, = 0. Therefore we
find

%eﬁ; = WV%”% {(@207/2)" + (2~ K = V1/2))’

+ (970 (=V2/2)" + (97 (=K + Vi /2))"
2 (ai2(V2/2)) +2 (97 (Vi/2)) (5.28)

The voltage Vi enters through the occupation of the triplet states n, = i (1 —p). The
polarization p = ng — n; was discussed in detail in the previous section and also in
section B4l

In Fig. BT the differential conductance develops a zero-bias peak due to Kondo
correlations. This originates from the coupling gy in Eq. (B228). Since the triplet states
are degenerate for B = 0 and thus coherent spin-flip processes can take place, the
coupling gy at w = 0 diverges logarithmically as illustrated in Fig. B4l For large values
of the voltage eV > K there is a sufficient population of triplet states such that this
effect becomes visible.

We suggested in Ref. [65] to measure in experiment the so-called transconductance as
illustrated in Fig. T2 The transconductance (K/eVy)dI;,/dVy is defined as the renor-
malized derivative of the current I, through the left quantum dot with respect to the
voltage Vg applied to the right quantum dot. This quantity was already discussed in
detail in section EE2 and an analytical expression for it was given in Eq. (E14) to second
order in perturbation theory (O(2)). Whereas the differential conductance dI/dV}, at
zero bias voltage increases proportional to the occupation of triplet states and there-
fore the polarization p, the transconductance (K /eVy)dI;/dVg increases proportional to
Kdp/dVg. as illustrated in Fig. this slope shows a similarity to the behavior ob-
served in Fig. The peak is enhanced by the scaling of the couplings in perturbative
RG compared to the result in perturbation theory. In contrast to the second order result
the transconductance depends additionally on the strength of K, see therefore discussion
of the dependence of the differential conductance dI;/dV; on K. It was shown in sec-
tion that the transconductance to second order in perturbation theory is generic for
all voltages below the threshold. As illustrated in Fig. this is not valid using the
perturbative RG approach. The deviations in Fig. originate from the non-zero
decoherence rate. On one hand a different voltage also leads to a different decoherence.
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Figure 5.12: Transconductance (K/eVy)dIy/dVgr[e?/h] versus eVg/K for different coupling
strength In(K/Tk) and different voltages eV /K. The parameters are chosen g, = gg =
0.0165, T'=0.1Tk, and B = 0.

On the other hand this leads to a smearing of the threshold such that there is already a
occupations probability for triplet states in the vicinity of I' around the threshold.

The perturbative RG facilitates a comparison with experiments. There are already
some experimental setups, e.g. [27, 29], which provide the possibility to compare the
theoretical results for the differential conductance. As mentioned before a qualitative
comparison with experiment is possible such that we can describe the structure of the
split Kondo peak. Since the perturbative RG is limited to the weak-coupling regime we
are not able to discuss the transition from a Kondo screened quantum dot to a double
quantum dot singlet, see therefore the discussion in Refs. [30, B1]. We hope that a finite
transconductance will be observed in the near future.

5.6 T-Matrix

As explained in section the T-matrix in a Kondo model is equivalent to the low-
frequency limit of the density of states of the impurity level of a corresponding Anderson
impurity model. A calculation of the T-matrix using the perturbative RG approach
thus allows for a comparison with numerical methods like the NRG [59]. The numerical
RG can provide exact results in the strong-coupling limit, but the method is based on
ground state properties and can therefore not be generalized to non-equilibrium. The
comparison of the two methods is therefore interesting and an ongoing project exists
with Prof. Chung-Hou Chung [71] from the National Chiao-Tung University, Taiwan.

5.6.1 Calculation of the T-Matrix

In section an expression for the T-matrix to 2nd order in perturbation theory was
derived. This expression, Eq. ([E19), is generalized to coupling functions in the frame-
work of perturbative RG, similar to the expression for the current in the previous section.
Leaving out a few steps of the calculation we find the general expression for the T-matrix
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in perturbative RG,
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where it is assumed that the leads are in equilibrium such that their distribution is given
by the Fermi function f(w). The pseudo particle energies are assumed to be on-resonance
such that the general vertex V can be taken out of the integration in Eq. (2Z9). As
discussed in the previous sections the influence of a finite decoherence becomes important
out of equilibrium. Therefore the spectral function in Eq. (29) is not approximated by
a o-function.

The T-matrix is given by a convolution of the Fermi function with two spectral func-
tions of the pseudo particle states. The convolution of two Lorentzians in Eq. (B:29)
gives another Lorentzian with the resonance at e, — €, and a width given by the sum of
the broadenings. This justifies that the term I'y_; is used as an averaged broadening I"
in the numerical routine. The first part of the integral in Eq. (B29)) over the Lorentzian
equals one due to normalization. The second part of the integral is a convolution of
f(w) = 3(1 —tanh(w/27T')) with the Lorentzian of the width I". This convolution can be
approximated by a broadened Fermi-function,

1 w

frw) =3 (1 = %arctan (f)) . (5.30)

This expression is only valid for a negligibly small temperature 7. A derivation
of Eq. (B30) is found in appendix B2  The function fr(w) is proportional to
(—arctan(w/I")) where the width is determined by I' rather than to (—tanh(w/2T))
which is broadened by the temperature T'. The frequency dependence of I' is neglected,
since it is only important if the integration takes place over a large energy scale. A
discussion of a frequency dependent spectral width is given in appendix A of Ref. [52].

Using the definition of fr(w), Eq. (&30), the T-matrix can be written without an
integration,

/ . . /
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—lIm [N(0)T"(w)] )%
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1 1
B [ny + ny] + 2 [ny = ny] 2fr(w+ ey — € — ) — 1)
(5.31)
Eq. (B31) is generally valid for any setup of quantum dots, and the explicit properties
of the system are given by the structure of the general vertex V.

Explicit Formula

In order to calculate a specific expression for the T-matrix of a double quantum dot
system the summation over the corresponding vertices V is performed in equation (B3T]).
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If the magnetic field vanishes, B = 0, the triplet states are degenerated and the symmetry
in spin space is conserved. The sum over n, thus gives
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Using the hermiticity of the Hamiltonian (e.g. g2 (w — K) = ¢%/"(w)) this expression
simplifies to

3

g [ (™ (@))* + 1 (g™ (@) + 204 (97" (@))7]

Analogously to the previous calculation the sum over n. gives
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In the T-matrix a factor of 2 originates from the spin summation of the conduction
electron spin, Tr [77] = 2, and the factor of 3 originates from the three room coordinates
since for zero magnetic field the spin symmetry is conserved.

Consequently Eq. (B31]) gives

I [NO)T ()] = £ [ 6" @) Iy = ] el + K — p) = 1)
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e (5 0+ 5 @) + 2000
b (5 @@+ 5 ) ] (5.32)

5.6.2 Discussion of Results for the T-Matrix

The difference between the perturbation theory calculation to 2nd order and the per-
turbative RG is illustrated in Fig. p.13(a)| using the same set of parameters as used in
the current calculation. We observe two major differences, first of all the perturbative
RG calculation is non-zero for w = 0. This originates from a finite broadening since the
value is identical to zero if a different broadening, e.g. I' = T, is used. Additionally
the T-matrix in perturbative RG is logarithmically enhanced at the step and decreases
for larger values of w whereas in perturbation theory the step stays constant at a finite
value. If the broadening is given by the temperature, the value at w = 0 is zero and the
resonance is logarithmically enhanced as seen in Fig. For I' = T in Fig. 5.13(a)
also the cutoff of the flowing coupling functions is provided by the negligibly small tem-
perature. Thus the divergence of the coupling gy (w = K) is stopped at a later stage in
the flow compared to the flow with finite I'. For a comparison of perturbative RG with
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Figure 5.13: T-matrix —1/7Im[N(0)T" (w)] versus frequency w/K at temperature 7'/T, = 0.1,
voltages V7, = Vg = 0, and initial coupling g;, = gr = 0.0165. The difference between the
calculation to second order in perturbation theory (PT) and perturbative RG is illustrated
in the left panel for 1/In(K/Tk) = 0.2. For comparison a result is shown assuming that the
decoherence is given solely by the temperature. In the right panel the T-matrix 7" (w) is shown
for different values of the exchange interaction K/Tk.

NRG [1] it is therefore important to find the equivalent broadening schemes, since the
result depends significantly on the choice of T'.

In contrast to perturbation theory the T-matrix in perturbative RG also depends on
the exchange interaction K as shown in Fig. The flow is cut off at different en-
ergy scales dependent on the singlet-triplet gap and the decoherence rate. This explains
the difference between the different exchange interactions K /T, see also discussion of
the dependence of the current on different coupling strength.

The behavior of the T-matrix changes if we apply a finite voltage either across the
left or the right quantum dot. As discussed in section this leads to a direct or
an indirect effect. For a voltage applied across the left quantum dot it is observed in
Fig. that the step moves into the valley. Since in non-equilibrium the Kondo
coupling is enhanced at both Fermi edges, rather a peak than a step is found at the
energies w = K £ eV; /2. For a voltage above the threshold, eV, > K, triplet states
become populated and the value of the T-matrix at low frequencies increases.

In Fig. the T-matrix is plotted for equilibrium (Vz = 0) at the probed leads
and a finite shift of the chemical potential £V5/2 at the other leads. A non-equilibrium
situation on the right dot increases the population of triplet states. In perturbative
RG this leads to a small zero-bias peak due to Kondo enhanced processes from the
triplet-triplet coupling g at zero frequency as seen in Fig. [5.14(b)}

We found in the study of the T-matrix that interesting physical behavior arises if a
finite voltage is applied to a system of two coupled quantum dots. As in the discussion of
the previous section we found signatures in the T-matrix that a non-equilibrium situation
e.g. on the right quantum dot is transferred to the left quantum dot. Since the T-matrix
of the studied Kondo model is identical to the low-frequency spectral function of the
corresponding Anderson impurity model [59], this calculation provides the possibility
to compare the results of the perturbative RG with NRG. Such a comparison is an
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Figure 5.14: T-matrix —1/7Im[N(0)T" (w)] versus frequency w/K at 1/In(K/Tk) = 0.2, tem-
perature 7' = 0.17Tx, and B = 0. The chemical potentials of the left leads are shifted by
+eV7,/2 in the left panel while Vg = 0 and V3 is changed in the right panel while V;, = 0.

on-going project with Prof. Chung-Hou Chung. The perturbative RG can resolve the
resonances at finite frequencies and the NRG is able to describe the Kondo ground state
beyond the weak-coupling limit. In non-equilibrium further aspects become important
as for example the voltage-dependent occupation numbers and the finite life time of the
states. For a comparison between both methods it is important to find a consistent
broadening mechanism.

5.7 Ferromagnetic Spin-Spin Coupling

Throughout this chapter the magnetic field is assumed to be zero. In the case of fer-
romagnetic coupling the triplet ground state is therefore threefold degenerate. Conse-
quently there is a finite conductance in the linear voltage regime, since elastic cotunneling
between triplet states is not energetically suppressed. The voltage is assumed to be in
the linear regime, i.e. eV}, < |K|. In contrast to the antiferromagnetic coupling the term
ferm[K + o, pn] in Eq. (B220) gives a finite contribution while ferm|[—K + o, 1] does
not contribute.
For voltages eV, < | K| the current is given by

eV, /2
ng:(wag 2ny / de(gtlf(e))Z
eV /2
V)2 eV /2
. / de (9:2(0))” — . / de(g2(0) Y. (533)
—|K|—eVL/2 —|K|+eVi,/2

Including the scaling of the triplet-triplet coupling gy in perturbative RG a zero-bias
peak in the conductance is found, as is seen in the expression for the current in Eq. (E33).
If the flow of the coupling g is not stopped by a finite temperature or decoherence, gy
diverges to strong-coupling. Additionally we expect a transconductance effect from the
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terms proportional to ng in Eq. (B33)). The perturbative RG method provides reliable
results for the current if the Kondo couplings do not flow to strong-coupling. Both the
spin-spin interaction K and the temperature T have to be large to provide a cutoff in
the scaling equations.

0.02
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(a) Differential conductance dIy,/dVy vs. eVy /K] (b)  Transconductance (K/eVy)dIL/dVr
for different values of eVg /| K]|. vs. eVg/|K]| for different values of eVy, /| K].

Figure 5.15: Differential conductance dI;,/dV; and transconductance (K/eVr)dI/dVr
vs. eV /|K| and eVg/|K]|, respectively. The temperature 1/In(7/Tx) = 0.25 and the fer-
romagnetic spin-spin interaction 1/In(—K/Tx) = 0.15 are large.

The differential conductance di;,/dVy, in Fig. p.15(a)| shows a pronounced zero-bias
peak. In Fig. each coupling is cut off by the corresponding transition rate,
ie. gy by I'y_;. Please note, that this is different than the broadening scheme used
the antiferromagnetic case, where every process involved a singlet-triplet excitation and
therefore the decoherence rate I's_,; provided an average broadening. Therefore the
zero-bias peak and the satellite peaks have a different width in the ferromagnetic case.

The effect of a finite voltage Vg in Fig. is not as pronounced as for the antifer-
romagnetic case, see Fig. LTl Whereas the singlet is an off-state and does not allow for
an elastic transport processes, the threefold degenerate triplet states allow for a finite
current flow. For ferromagnetic coupling the singlet is the excited state, it becomes
populated due to a large voltage Vi on the right impurity. In contrast to Fig. BTl
we find that the zero-bias peak decreases initially. This behavior originates from an
enhanced decoherence due to a finite voltage applied to the right leads. Therefore the
transconductance is negative in the linear voltage regime, as illustrated in Fig. [5.15(b)|
It changes around eVi ~ K to a positive value. For eV > K all channels, singlet and
triplet states, contribute to the transport and thus the current [, is increased compared
to eVg < K where only the triplet states contribute. As in the antiferromagnetic case
this transconductance is only observable since the non-equilibrium occupation numbers
of the double quantum dot states are taken into account. In the ferromagnetic case the
increased decoherence due to a finite Vi additionally diminishes the zero-bias peak.

The T-matrix of two ferromagnetically coupled quantum dots is shown in Fig.
for different values of the voltage. Using perturbative RG the T-matrix shows a sharp
resonance at w = 0 in contrast to the perturbation theory calculations in section E4l
Since the T-matrix of a Kondo model can be identified with the spectral function of an
Anderson impurity model, see Ref. [59] or section 5.8, the resonance at w = 0 corresponds
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Figure 5.16: T-matrix —1/7Im[N(0)T" (w)] versus frequency w/|K]| for a ferromagnetic coup-
ling 1/In(—K/Tk) = 0.15, a large temperature 1/In(7"/Tx) = 0.25, Vg = B = 0 and three
different values of the voltages eV, /|K| = 0,0.6,1.2.

to a Kondo resonance at the Fermi surface. In the perturbative RG method it is not
possible to calculate T" for ferromagnetic coupling K < 0 at the point w = 0 in the case
of small K, T, Vg, and V. The numerical RG is able to calculate the spectral function
exactly beyond the perturbation approach used here. In contrast, NRG is not able to
capture a non-equilibrium situation where the perturbative RG provides reliable results.
Thus it is observed in Fig. for a finite voltage, that the resonance at w = 0 is split
and two resonances show up at the two Fermi surfaces +eV/7, /2. Also the resonance at
finite frequency is split. It is also observed that the decoherence is stronger for larger
voltages since the value of the T-matrix on resonance is smaller. In the antiferromagnetic
case an additional feature was observed if the voltage reaches the threshold eV, > | K].
Also in the ferromagnetic case the voltage thus provides the energy to populate the
excited singlet state. Since the ground state is already a three-fold degenerate triplet,
this effect is hardly visible in Fig.

In this section we discussed the case of ferromagnetically coupled quantum dots. Co-
herent spin-flip processes are possible for the three-fold degenerate triplet ground state
and thus a Kondo resonance builds up at zero-bias in the differential conductance or
at zero frequency in the T-matrix. The perturbative RG method provides only reliable
results if the triplet-triplet coupling stays in the weak-coupling regime. Thus the temper-
ature has to be chosen large since the voltage and the singlet-triplet gap do not provide
a cutoff for the triplet-triplet coupling. The transfer of a non-equilibrium situation from
e.g. the right quantum dot to the left is present, but less pronounced than in the case of
antiferromagnetic coupling. This parameter space is interesting in another aspect, since
it provides the possibility to compare the exact result from a numerical RG calculation
for example in equilibrium with the perturbative RG calculation which becomes valid
in the non-equilibrium regime when a finite voltage provides a decoherence to prevent
the system to flow to strong-coupling. As mentioned before this is an existing project
developed together with Prof. Chung-Hou Chung.
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5.8 Summary and Outlook

A perturbative expansion in the coupling to the leads fails for the Kondo model as
shown in 1964 by J. Kondo [T]. Therefore methods beyond the perturbation theory were
invented. In section Bl we discussed the poor man’s scaling [I0] and generalized the
approach to a non-equilibrium situation. In the poor man’s scaling approach scattering
processes involving energies at the band cutoff are integrated out. The reduction of the
band cutoff D leads to a scaling of the Kondo coupling. For the single-impurity Kondo
model the Kondo coupling ¢ = N(0)J flows to strong-coupling and the perturbative
renormalization approach is no longer valid. In a double quantum dot system further
energy scales like the singlet-triplet energy gap enter the flow of the couplings.

If a finite voltage is applied and a current flows through the system, the decoherence
originating from fluctuations due to transport processes becomes important. The ex-
istence of a finite decoherence rate is not element of the common poor man’s scaling.
It was included by A. Rosch et al. [35, B6] in the framework of a perturbative renor-
malization group. It is important that the coupling constants g are treated as coupling
functions ¢g(w) with a finite frequency argument. If a finite voltage is applied to the
leads, the Kondo resonance builds up at the two different Fermi edges. All coupling
functions g(w) in the energy range opened by the voltage enter the transport properties.
In section the RG equations and their frequency dependence are discussed in detail.

As mentioned in the previous chapters, the rate equation of the distribution proba-
bilities is important in non-equilibrium. The population of triplet states is possible if a
large enough voltage is applied e.g. to the right quantum dot. In section B4 a similar
behavior to the polarization p calculated to second order perturbation theory is observed,
but the behavior is qualitatively different since the decoherence I' takes over the role of
the temperature 7" in the chosen parameter regime. The non-equilibrium occupation of
triplet states leads to a finite current in the left quantum dot in the linear conductance
regime, since the triplet states do not block the transport channel in contrast to the
singlet ground state. This effect leads to a finite transconductance (K/eVy)dIL/dVpg,
which is found in section to be enhanced by the Kondo scaling in comparison to the
result from perturbation theory. Thus there will be hopefully soon experiments that
can confirm a finite transconductance and therefore measure the non-equilibrium distri-
bution function and the decoherence properties of a double quantum dot system. The
transconductance resonance is broadened by the decoherence and is therefore broader
compared to the one in perturbation theory.

The differential conductance dIy,/dV; shows a resonance around eVy, ~ K similar to
the perturbation theory result, but the finite spectral width I' broadens the resonance
and I' takes over the role of the temperature. For the shape of the differential con-
ductance the frequency dependence of the couplings is important. The current in the
antiferromagnetic case shows a split zero bias peak in contrast to the ferromagnetic case.
The value 2K, i.e. twice the singlet-triplet gap, is not given by the distance between the
maximum, but by the difference in the inflection points or the peaks in the second deriva-
tive of the current. We also studied the shot noise in the framework of perturbative RG.
The results are not shown here, since the Fano factor is mostly Poissonian and therefore
no new physics is found in this calculation.

Besides the current through one of the quantum dot, we also studied the T-matrix
for one of the left leads. The T-matrix is equivalent to the density of states for the
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impurity levels of the Anderson impurity model in the low frequency regime [59]. The
project on the T-matrix is closely related to the work of Prof. Chung-Hou Chung [7T]
and effort is put into a comparison of the perturbative RG with results from numerical
RG (NRG). The numerical RG can calculate the ground state properties of the Kondo
problem exactly, but fails in non-equilibrium when the properties of the system are
not determined solely by the ground state. The perturbative RG includes those non-
equilibrium properties but it is valid only for 7" > T%. Thus the comparison is especially
interesting in the case of ferromagnetic coupling between the two quantum dots where
the perturbative RG fails at low temperatures since the triplet-triplet coupling flows to
strong-coupling.
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6 The Flow Equation Method

In this chapter the flow equation method out of equilibrium [37), B8] is introduced. The
flow equation method is a scaling method which is able to include the frequency of the
incoming and outgoing particle in the procedure. This was discussed in the previous
chapter to be important for the calculation of transport phenomena.

Here only a brief introduction to the flow equation method is given. We refer the
reader to the book of S. Kehrein [38] which provides a nice introduction. The main
ideas and the basic equations for the flow equation approach are given in section Gl
The Hamiltonian of the double quantum dot system is introduced in section The
representation is slightly changed in comparison to the previous chapters since the flow
equation method can treat the spin operator exactly whereas the spin operators were
represented by singlet-triplet states in the perturbative treatment.

For the system of two coupled quantum dots the linear, second and third order contri-
butions to the flow equation are discussed. In section the linear order, also denoted
the kinetic order, is calculated and it is shown that the flow makes the energy pro-
cesses in the Hamiltonian successively energy-diagonal. To second or one-loop order in
the coupling the scaling equations show the characteristic Kondo scaling. Some com-
mon assumptions and approximations are discussed in section and results for the
different couplings of the double quantum dot system are shown. A further issue of
section is the flow equation method out of equilibrium and the comparison with the
non-equilibrium perturbative RG method [35, B6]. The third order or two-loop contri-
bution is a correction to the flow in second order, whereas in a non-equilibrium situation
it can dominate the lower order contributions. The different mechanisms of decoher-
ence and how they enter the flow equations are discussed in section B3 The results to
3rd order are preliminary, but it is already obvious that a non-equilibrium situation is
transferred from one quantum dot to a coupled quantum dot.

6.1 Introduction to the Flow Equation Method

6.1.1 The Idea of Renormalization

The concept of renormalization is used to derive an effective model on a low energy scale
for systems which have contributions from a large energy range. The poor man’s scaling
approach (see section B1]) by P. W. Anderson [I0)] succeeded in describing the physics of a
Kondo system. Therein scattering processes at the band cutoff, which is large compared
to energy scales at the Fermi energy, are integrated out and their contribution leads to
a change of the coupling (see Fig. Bl on page [@]). The coupling of a quantum dot with
the leads flows to strong-coupling and the Kondo impurity builds a many-particle state
with the surrounding electron cloud.

The poor man’s scaling approach eliminates high-energy states by integrating out
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degrees of freedom. By iteratively reducing the band cutoff D, also denoted ultraviolet
cutoff Arg in the following, we receive an effective Hamiltonian at a low energy scale and
a running coupling constant. By the successive integration of high-lying energy states a
lot of information on the Hilbert space gets lost and after some steps information of the
physics only in a reduced space around the Fermi energy is kept. This is illustrated in
Fig. for the renormalized energy space of an interaction involving an incoming &’
and outgoing k particle.

(a) Mlustration of poor man’s scaling in a 2D (b) Mlustration of the flow equation approach in
energy plot. a 2D energy plot.

Figure 6.1: Comparison of the two different renormalization schemes, poor man’s scaling and
flow equation approach, in a two-dimensional (2D) energy plot for an incoming particle k" that
scatters into an outgoing particle k.

On the contrary the flow equation method does not integrate out higher lying states,
but makes the interaction processes successively more energy-diagonal as illustrated
in Fig. 0.1(b)] After a series of infinitesimal steps the coupling Hamiltonian becomes
energy-diagonal by iteratively reducing the energy-diagonality parameter Ag,. The in-
formation on processes with a high energy transfer is lost during the scaling, whereas the
contributions of these scattering events are included in the energy-diagonal processes.
The phase space of the Hamiltonian is thus not reduced and a calculation of dynamical
quantities on all energy scales is possible.

This becomes important for the study of transport problems. As illustrated in Fig.
for a finite voltage it is important to include all processes in the energy regime provided
by the voltage, denoted as the voltage window. The flow equation method includes

Figure 6.2: During the flow the coupling Hamiltonian becomes energy-diagonal. Since the
information is kept on all energy scales, the flow equation method is applicable to transport
problems with a finite voltage.

by construction all processes in the energy window, which are energy-diagonal, and
therefore gives a first approximation to the problem of non-equilibrium transport. In
the next section we discuss the generating equations of the flow equation method and
discuss the physics of it on the example of a double quantum dot setup.
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6.1.2 The Flow Equation Approach

As illustrated in Fig. we like to find a transformation such that the Hamiltonian
becomes successively more energy-diagonal during the flow. A nice derivation is given
in Ref. [B8]. Thus only the main lines are discussed here.

Since the scaling should leave the energy spectrum unchanged, the transformation of
the Hamiltonian has to be unitary. The separation of energy scales is an important
ingredient for the scaling theory. Since the higher energy processes should not mix with
the low energy physics, the unitary transformation has to take infinitesimal steps.

We define a family of unitarily equivalent Hamiltonians H(B),

dH(B)
B

= [n(B), H(B)], (6.1)

where B is a not further defined flow parameter and the initial Hamiltonian is given by

since the Hamiltonian H(B) has to be hermitian. This provides a good consistency
check during the calculation.

The flow equation is similar to the idea of the Schrieffer-Wolff transformation as
discussed in section 222 Parts of the coupling Hamiltonian are eliminated by an
appropriate transformation. In the flow equation approach the transformation of the
Hamiltonian dH(B)/dB is carried out in infinitesimal steps. In contrast to the poor
man’s scaling we eliminate successively interaction matrix elements that couple states
with an energy transfer AE € [Ageq — 0Aseq, Afeg), rather than eliminating the states
within this energy window.

6.1.3 The Canonical Generator

The flow parameter B is given by the choice of the generator 7. As in the interaction
picture the Hamiltonian is separated into a diagonal part Hy and an interaction part
Hiy, which is not diagonal.

The so-called canonical generator is given by

n(B) = [Ho(B), Hint(B)] - (6.2)

It was suggested by F. Wegner. In the following the notation of Ref. [38]@ is used.
If the two conditions

Tv [Ho(B) Hip (B)] = 0

dHo(B)
dB

and Tr[ Hint(B)} =0

! Please see for references of the original papers therein.
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are fulfilled, it can be shown thatfl

d
@Tr [Hi(B)] <0.
Thus the Hamiltonian H(B) becomes successively more energy-diagonal during the flow.
This is the expected behavior of the flow equations, see section BTl
The canonical generator in Eq. (£2) is quadratic in the energy since it is a product
of two Hamiltonians. Consequently the flow parameter is inversely proportional to the
square of the energy. We define the energy cutoft

Ageq = B2,

The flow parameter B flows from 0 to oo, while the cutoff in the energy A, starts at
oo and flows to 0, where all energy processes are diagonal.

The canonical generator is linear in the interaction Hi,. Typically higher and higher
order interactions are generated during the flow. At some point there is the need to trun-
cate the series. Similar to the poor man’s scaling the flow equation approach is truncated
to some order in expansion series of the running coupling constant. In the Kondo model
the coupling J is assumed to be small and the solution of the flow equation is valid only
in the regime where the coupling J < 1. If Agq reaches the Kondo temperature, the
flow becomes uncontrolled and the coupling diverges, i.e. flows to strong-coupling.

As a last remark in this section it should be mentioned that the low energy physics
of the flow equation method and the poor man’s scaling approach are identical. There-
fore the conventional scaling is a limiting case of flow equation, as obvious from the

comparison of Fig. |6.1(b)| and Fig. [6.1(a)}

6.2 A Double Quantum Dot System

The same model of a double quantum dot system as discussed in the previous chapters
is now discussed using the flow equation approach. The two quantum dots L and R are
coupled each to two leads. The two quantum dots are both occupied by a spin-1/2 and
coupled via a spin-spin interaction K. A hopping between them is not allowed. In the
following it is assumed that the coupling K is antiferromagnetic.

The coupling of the quantum dot spins to the leads is assumed to be a Kondo spin-
spin interaction, denoted J¥. A derivation of this model is given in chapter Bl As
illustrated in Fig. and explained later in this section the quantum dots are assumed
to be coupled to a linear combination of the two left leads and two right leads, denoted
as L and R respectively. The initial Hamiltonian H,

HO - Z ZEkJ : Clt:jack;ja : _'_K §L§R7 (63)

j=L,R k,o

is diagonal since it does not change the particle number. Therefore the canonical gener-
ator can be applied in the framework of the flow equations method. The operators are

2The proof is given in Ref. [35].
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—) O

Figure 6.3: Geometry of the double quantum dot system; explanations are given in the text.

normal ordered, such that non-vanishing contractions, e.g. the occupation number, con-
tribute to the commutator of two normal-ordered operators. An introduction to normal
ordering can be found in Ref. [3§].

Each of the two quantum dots L or R is connected to the leads L or R, respectively.
The interacting Hamiltonian is given by

Lj o -
Hue = > > Ikt SiSuiu -

j=L,R Kk
Rj & -
+ DD i Sedwe)
j=L,R k'k
-+ Z ZQ?C% 221 (gL X §R> g(k’j)(kj) T
j=L,R k'k

As illustrated in Fig. B3 there could be a finite coupling between the left quantum
dot and the right leads J5& or vice versa. Even if the couplings J5Z and J do not
exist initially, we find that they are created during the flow. Additionally the coupling
(i, 1s created to lowest order in the flow and thus has to be taken into account in the
interaction Hamiltonian to every order.

We assume that the Kondo interaction is obtained from an Anderson impurity model.
For the two leads, e.g. 1 and 2 on the left side, the asymmetry 7, is defined by

911

rp = —, 6.4
t 922 (6.4)

and analogously for the right side: rr = ¢33/g4a. The interlead coupling fulfills the
relation,

9ia = g1 ga2. (6.5)

Using Eq. (6E4) and Eq. (&3) we introduce even and odd combinations of the lead
operators. The odd combination,

CLkU \/1+7‘L \/ 1+ rL Clko

decouples from the Hamiltonian if €1, = €21,. Thus the model can be simplified to a
double quantum dot system coupled only to the even combination of the leads,

_ 1 n rr
CLio = \| ——— Coko — Cipo-
Lk T3, O T3 7, G
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Figure 6.4: The even combination of the conduction electron leads contains information about
a finite voltage in the distribution of states.

In the following we refer to ¢pi, as crr, for the left side. The operator ¢, obeys the
usual Fermi statistics. The same applies analogously for the right side.

A finite voltage effects the distribution function of the electrons, as illustrated in
Fig. Due to a voltage the two chemical potentials in leads 1 and lead 2 are shifted
by p1/2 = £eVy /2, respectively. Consequently the distribution function of the even
combination is for zero temperature, T' = 0, given by

0 if e > eVy/2
np(e) = /(L+rp) if |e] < eVp/2 . (6.6)
1 if e < —eV/2

The distribution function enters the calculation later on via normal ordering of the
operators. The flow of the interaction has an influence on n only to higher orders in the
flow, thus it is assumed in the following that the leads are not affected by the flow fi
Current transport takes place through either the left or the right quantum dot. Due
to a strong spin-spin interaction the two quantum dots form singlet and triplet states.
As has been discussed in detail in section ELTl the operators <§L + §R> and <§L§R)

refer to elastic processes, because they do not change the spin state.
The singlet |s) = |S2,, = 0,5% = 0) and triplet states |to+) = |S2,, = 1,592, €

{—1, -0, 1}) are eigenstates of total spin moment S = (§L + 5’3). The scalar product

of the two spins,
~ = \2 - -\ 2 -, -,
2 (SL - SR> - (SL +SR) <
does also not change the spin state. Therefore the spin-spin interaction K §L§ R is a

diagonal part of the Hamiltonian H, and can not be treated as a perturbation Hjy.

The spin operator structures (gL — §R> and (§L X §R> do not conserve the spin,

3The first contribution to n originates from two-loop order and the feedback to the flow of the coupling
J is of order J4, see discussion in Ref. [35].
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such that we denote them as inelastic processes. It was shown in section 2] that
(gL — §R + 2i§L X §R) |0,0> — ‘1, {0, :|:}>,
(Si = S = 2iS1 x Se) [1.{0,£}) = [0.0).

These processes always involve a change from a triplet to a singlet state. Consequently
each process costs the energy of the singlet-triplet gap K and therefore those processes
are inelastic.

In the off-diagonal part of the Hamiltonian we rearrange the couplings according to
the discussed spin operator structures,

Hye =Y Y Ju™(B (SL + SR) S(k5) (k)

j=L,R Kk
+ 30 Y IEIB): (Sh - Sk) Soeiyn
j=L,R Kk
+ Z ZQ?@(B) 2 (§L X §R) Sk ) (ki) © - (6.7)
j=L,R Kk

There are three running couplings. Jp;" 7 is the elastic one, which allows for energy-
diagonal interaction processes of the double quantum dot system. Jg/ig’j and Qi, , include
processes from singlet to triplet states and consequently every interaction process costs
an energy of K.

The initial values are defined by

. 1 .
TB =0) = 3 (JAB =0+ JHB=0). (6.82)
. 1 , A
T B =0) = 5 (JAB=0) - JHB=0), (6.8D)
Qi(B=0) = 0. (6.8¢)

If we start from a setup with only the left(right) leads coupled to the left(right) quantum
dot, then the initial condition additionally enforces

Please note that the Hamiltonian has to be hermitian HT = H. This leads immediately
to some symmetries of the couplings,

T = R (6.9a)
J,f},f’j = Jo, (6.9b)
e = _Qkk/' (6.9¢)

The relation (£3d) is valid only if S; and Sy exchange, because then [i (g L x Sk =

—ieabcg’%gc = —1 <§L X §R)H Using the diagonal Hamiltonian Hy defined in Eq. (E3)
and the interaction Hamiltonian Hiy, Eq. (6), the flow equations are generated in the

following to linear, second and third order in the coupling of the quantum dots to the
leads, J;, in Hip.

4See also discussion in section Bl
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6.3 Linear Order and Generic Behavior

Since the non-interacting part of the Hamiltonian Hj is diagonal, we can use the canon-
ical generator of the flow equation in this double quantum dot setup. The definition of
n, Eq. (62), gives the generator

Z an/k Sthj) (ki) * Z Z%'k (SL X SR) SUCHICHRE (6.10)

ij=L,R k'k j=L,R Kk
where
nlj;'jk = (ew — 1) Jk/i + KQk/ka (6.11a)
771?’?9 = (ex — €x) Jk,‘"]]{; KQk’ka (6.11Db)
. , 1
fyi)/k = (Ek/ - €k) Q.]Z)/k _'_ §K (J]f;'i: Jk/k> (611C)

Some generic behavior can be drawn from this equations. The canonical generator has
the same operator structure as the interaction Hamiltonian Hj,; multiplied by an energy
which describes the transition between two states,

n o (energy) - coupling.

The energy transfer between two processes is for example the energy of two conduction
electrons, but it can also be the energy of the singlet-triplet gap K.
Please note that the generator has to be antihermitian. This implies

i ij
Mere = Mgk s

J J
Virke = Vighet -

The lowest order of flow equations is given by dH (B)/dB = [n(B), Hy]. For the double
quantum dot system this leads to a flow of the Hamiltonian H(B) of

dH
= DD (e — )iy SiSeno) ¢

ij=L,R k'k

_ Z Z €r — €)Yy ¢ 2 (SL X SR) DICHR

j=L.R k'k

-y Z ( ki — M) 2i (SL X SR) K3) (k)

j=L,R K'k

- Z ZK%% (SL - SR) S(k'j)(kj) - -

j=L.R k'k

Immediately the flow of the various couplings can be identified, for example the elastic
sum,j

coupling J,,,. " is given by

dJS}lm?j B 1 ; . sum,j
kfliB() ) (ex = ) (77,5/],?(3) + HSQ(B)) = — (ex — 6k)2 Tl (B).
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This is the typical generic behavior of flow equations to the lowest order using the
canonical generator n = [Hg, Hiy),

d coupling
dB

Therefore the linear order is also referred to as the kinetic term. The generic behavior
incorporates the expected behavior of the flow equation, since the coupling flows like

o —(energy)? - coupling.

T (B) = e Blev=a® pumd (g = ), (6.12)

For B — oo any process is exponentially suppressed if it is not diagonal in energy
€ = €. As obvious from Eq. (GI2) the flow parameter B is of the unit 1/¢. The
energy cutoff A, = B~1/2 describes the cutoff of the energy scale, e ((ew —er)/Area)?
Eq. (ET2) serves as a starting point for approximations in further calculations.

The flow for the inelastic couplings is not diagonal as Ji™ | but given by

de/lﬁ,j 1 ) ) )
BB = (e ) 5 (14B) - B)) - Ko (B).

dQ , ( ) . 1 . )
L — — (0 — @) Wa(B) — K5 (nfA(B) —nfi(B)) -

The couplings J, ,?,f 7 and Qfg, . are given by coupled differential equations. This motivates

the definition of new couplings which are the sum or difference of Jg,ig’j and Q{C/k We

define
P]g’k — 5 (Jg-};jv] + Qk/k> (613)
. it .

The new parameters refer the coupling of the lead electrons to (S, — Sg) £ 2i(S), x Sg),
i.e. to the transition between singlet and triplet states.

In the calculation of Jg}g’j and Q{C/ .. half of the values of K’k are given by the symmetry
relations of Eqs. (B3). For the couplings P,g,k and Mg,k the symmetry relations are
different,

i \T 1 dlff, diff,j
(Plg’k) ) ( W T Qkk/) - (Jk/k - k/k) Mg/k (6.15)
Thus all values of M7, can be extracted from a calculation of P/, due to Eq. (EIH). In

the following only the coupling Plf/k is discussed for brevity of expressions.
The two new couplings P/, and M}, fulfill two independent differential equations,

dP?, (B ,
WD) _ (o — e+ KV PL(B), (6.16)
dM?,, (B ,
% = — (& — & — K)* M}, (B). (6.17)

The symmetry PJ,, = Mj, is clearly visible in equation (BI6) and @T). It is also
obvious from those equations that a process proportional to the coupling Pj, involves
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a transition between a singlet and a triplet states and the energy difference in the lead
electrons, €, — €, has to provide the energy of the singlet-triplet gap K.

We can immediately write down the solution of the kinetic flow equation for P,z, e
Pl (B) = e*B(Ek/*EkJrK)QPIg‘/k(B =0), (6.18)
where the initial value is

(B =0) =5 (Ji(B=0)+ Q. (B =0)).

DO | =

For B — oo and ¢, = ¢, which corresponds to energy-diagonal processes, the coupling
is exponentially suppressed by the energy gap K of the singlet-triplet excitation. This
justifies the notation as an inelastic coupling.

The solutions for J&7(B) and Q1 (B) are given by the solution of P/, and we find

JHEI(B) =e~Blew=)"2 cosh (2K (e — e) B) e PK* JEH (B = 0)

+ e’B(ek/’ek)Qth (2K (ex — €x) B) e PK é’k(B =0), (6.19)
Qi/k(B) :e—B(Gk/—Ek)QQHh (2K (e} — €) B) o BE? ngili;f,j(B =0)
1 e~ Blew=e’9 cosh (2K (e — €) B) o BK? f;/k(B =0). (6.20)

From the lowest order contribution to the flow we find an exponential suppression
of off-diagonal energy processes. At early stages of the flow the off-diagonal matrix
elements in the interaction Hamiltonian are thus eliminated. At later stages of the flow
the feedback of higher order terms becomes important.

6.4 Second Order or One-Loop Result

Additionally to the contribution [n(B), Ho] we include [n(B), Hiw(B)] into the flow
dH(B)/dB of the Hamiltonian. The new term includes two interaction processes, one
from 7 and one from H;,. Therefore there is one intermediate process involved with a
conduction electron of the energy €,4,. This energy has to be integrated over the whole
band width from —D to +D. Thus it gives rise to e.g. the strong-coupling scaling of the
Kondo model. The left and the right side are decoupled to this order since no process
exists that leaves the left leads, interacts virtually with the right quantum dot, and
enters the left leads again.

In the following we write down only major steps of the calculation to explain the
underlying physics and leave out details of the calculation. After having calculated
N(B), Hint(B)] we sort the terms corresponding to the contributions in Hi(B). For
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example the coupling to the left quantum dot J,CL/% obeys the equation,

% = — (ek/ —€x) 77ka K’Yk/k
= >3 (wAIE — Tl (= 2n(u)
- z (Gt ) (st b))
+ = Z ’Yk/ Qm%k) (6:21)
and the coupling to the right quantum dot J ,52 flows like
d;l]gi = — (e — er) Mok + K7,
~ %Z (w5 = JEmi) (1 = 2n(v))
S ((w,z,vJ:,g - Q) + (it~ L))
+ = Z 7/« Qk/v%k) (622)

Both are renormalized to first loop order. If there is no spin-spin interaction K = 0 and
consequently Qk,k Y = 0, then all terms besides the first proportional to n,?,vJ:i
vanish in the flow equation of the couplings Jk],k The remaining term is the common
Kondo scaling of the left(right) quantum dot with the left(right) leads. Please compare
to the calculation in Ref. [3§].

The coupling Qi/k, which is created in linear order, continues to flow in first loop
order. The flow equation gives

7 A 1 A A
% = — (e — &) v — 3K (mid — %)

3 (b + ) = (o2 = 22
+ Z ((f}/k"v ok~ i/ﬂm) (Jlgv%k 771?] g )) (1 —2n(vj))
-7 Z (( Iz/v vk gc/vnvk) (Jk/v%k 77k' )) (1 = 2n(vj)).

The flow equations fulfill the symmetry relations of Eqgs. (), which provides a nice
check of the results.

6.4.1 Flow of the Coupling J\"

The interaction with the total spin moment is defined by Jip™/(B) = L(J7.(B) +
)

JH(B)). If we take the sum of the two equations for J.7(B) and J,(B) and insert
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the definition of the canonical generator 1 (see Eqs. (1)) we receive the flow equation

Eq. (EJ) in the appendix. Since the expression is lengthy the terms of order e~ 5 * are

left out in the following expression,

Wi B) _ (e — ) 1 (B)
S 2m) (e — ) — (e — ) S (B (B)
S (1 20(0) (s — o+ K) — (0 — i+ K)) PLy(BYP(B)
5300 - 20(0) (6 — 6+ ) — (0 — & — K)) PL(B)Miy(B)
(1 20(wg) (s e~ K) — (e — s+ K)) M, (B)P4(B)
(1 200) (@ — 0~ K) — (e — 1~ K)) M, (B)M, (B)
+.... (6.23)

The linear contribution —(ep — e;)2 5™/ (B) enforces an exponential damping of the

momentum dependent coupling J;,;"7 (B). Therefore the so-called diagonal parametriza-
tion, see also section 243 is introduced and the elastic coupling is written by

T (B) = e Blev—a)” (), (6.24)

The exponential behavior originates to linear order and the scaling of the second order

determines the flow of the coupling J5:™/(B), which in general depends on &’ and k.

In the diagonal parametrization it is further assumed that &’ = k, since the exponential
prefactor suppresses all other contributions of J;," J(B) in Eq. ([624).

Using the outcome of the calculation in linear order a similar expression is defined
for the diagonal parametrization of the coupling P}, (B). From Eq. (EI8) the inelastic

coupling,

P,f,k(B) — o Blew—er+K)’ %(B), (6.25)

is not diagonal in the energy, but each interaction process costs an energy of the singlet-
triplet gap K.
If we insert the diagonal parametrization, Eqs. (624]) and (E2H), into the flow equation

of the coupling J#™ each term is similar to

((ek’ — €+ aK) — (EU — €, + BK)) efB(Ek’7EU+O‘K)28*B(EU*61C+BK)2

:L d efB(Ek/7EU+QK)2€7B(E'U7€]’C+BK)2
2B de,

)

where o, 0 = 0,+1. The diagonal representation simplifies in this way the integration
> w =P [ deg, over the intermediate state v. The leads are modeled by a constant
density of states p(e) = p©O(D — |e|) centered around the Fermi energy er = 0, where
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the band width is 2D and the constant density of states p = 1/ 2DH The dispersion
relation € (k) is approximated by a linear dependence, which is a good approximation
in the vicinity of the Fermi energy. In the following the indices &', k and ¢ are assumed
to represent the energies €/, €, and ¢, correspondingly.

Assuming vanishing temperature 7" = 0 and vanishing voltage V' = 0 the integration
over the intermediate process gives

Z(l—Qn(vj))dL;f(ev) = /devp(1—2~1)%]0(6@)—1-/036@/)(1_Q'O)di%f<€v)

v -D

=—2p f(e, =0)+p fle, = —D) +p fle, = D).

This term is typical for the Kondo spin interaction. Due to the spin algebra and the
discontinuity at the Fermi surface the function f(e, = 0) does not cancel out, but
provides a finite contribution in the flow equations.

Using this knowledge we find the flow equation of the dimensionless coupling g5/ =

pJi"™ of the total spin moment,

dgm™i(B 1 » -
—B(er—ep)? ik ( ) _ _B(ek’)2e_B(_€k)2 ZI/HIL](B) sum,](B)

‘ B 3B° Ao (B) o
1 - - -
g (77T By (B) + e P L (B))

(efB(feHK)?%(B) n efB(ferK)zm%AB)) . (6.26)

neglecting additional terms which include the band cutoff and scale like e 2BD*  Ag
soon as the flow parameter B becomes of the order of 1/D? these boundary terms are
exponentially suppressed. In the following the flow is assumed to start at

By = — (6.27)

with an initial value J3w™(By). The flow of the coupling to the total spin momentum
is thus given solely by Eq. (626)) using the new initial condition.

6.4.2 Flow of the Coupling P/, (B)

We leave out all steps of the calculation that were already explained for g5y’ (B) and

write down only the result for dimensionless coupling pl,,.(B) = pP},.(B) for B > By =

5These conditions are fulfilled for example for a two-dimensional electron gas.
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1/D?,

Bl Arha(B)

1
dB 22

1 . e, 2 e P e e
+gpe NI e PCa L (B) i (B)

1 - . - .
~ 55 e_B(ek’_K)Qe_B(_e’“_K)Qmi,O(B) mi,.(B). (6.28)
In the diagonal representation Eq. (E2H) only the terms with € — ¢, + K = 0 are not

exponentially suppressed. In the following we discuss analytical and numerical results
of the two flow equations Eqs. (6.28) and (625).

6.4.3 Approximations and Results
Exact Solution

The exact solution of the Eqs. (E20) and (628) is given in Fig. and Fig. B8, re-
spectively. It is assumed that J** = J#& = 0 and thus the initial value of Jp,™’ is
identical to P, /2. In Fig. the energies k and k" are chosen to be a two-dimensional

Do DO DO

k' k' k'

0 k Dy 0 0 L Dy 0 0 L Dy

(a) B = By (b) BK*=0.1 (c) BK*=1.0

Figure 6.5: Flow of the coupling gzlf;n 7 exactly calculated, on a two-dimensional energy plot.

grid and the strength of the coupling is illustrated by a grey scale code, where light
corresponds to strong and dark to negligible coupling strength. For values of the flow
parameter B from By to 1/K? a diagonal structure emerges. The exponential envelope
originates from the linear order contribution to the flow equation. A substructure de-
velops on the energy-diagonal €, = € such that at ¢, = €x = 0 the coupling flows to a
higher value compared to a finite ¢, # 0. This substructure given by the one-loop order
terms is included in the discussion of the diagonal parametrization whereas the infrared
parametrization is focused on the value at zero energy.
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Dy Dy

54 k' k'

(a) B= By (b) BK? =0.1 (c) BK?=1.0
Figure 6.6: Flow of the coupling pi,k, exactly calculated, on a two-dimensional energy plot.

In Fig. B8 the same calculation as for elastic coupling J5i™ is shown for the inelastic

coupling P}, . Similarly a large range of the couplings in the &’-k space is suppressed
exponentially. In contrast to Fig. the energy values of €y — €, + K = 0 flow the
strongest. Any process involving the coupling P}, costs an energy of K.

Diagonal Parametrization

The assumptions used in the diagonal parametrization have already been written down
in Eqs. ([624) and E2Z5). For example the elastic coupling Ji™/ with an arbitrary value
of €, and ¢ is assumed to be exponentially suppressed by e~ Blew—e)® and its prefactor
given by the mean value (e — €;)/2 [38].

In Fig. Gt is shown how the flow of the coupling J;,," 7 and P,g,k evolves numerically
for different energies €. As in the exact solution, the starting value is the same for all

0.012 0.012

7j

sum.
ik

0.011

0.01 ‘ | ‘ 0.01

0 1 B
€k/K Ek/K

sum,j

(a) Flow of the coupling g;, . (b) Flow of the coupling 2 %

I and inelastic coupling 2 pik in the diagonal

Figure 6.7: Value of the elastic g;,™
parametrization vs. the energy ¢, for increasing values of the flow parameter BK? =
0.01,0.1,1.0, 10, 102, 103.

couplings at every energy. As the flow parameter increases a frequency structure starts to
develop. Please note that in Fig. the flow of the couplings without the exponential

prefactor is shown. In the flow of JP'™/ the two energies ¢, = 0 and ¢, = +K are
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pronounced. This scaling is similar to the behavior observed in Fig. B4l in the previous
section about perturbative RG. A comparison of the two methods is the scope of an
upcoming section. As discussed before the coupling is most interesting on the energy-
diagonal. For € = ¢, the coupling in diagonal parametrization is equivalent to the
general coupling,

g (B) = g™ (B)  if ew = e

The flow of the coupling pf;,kﬁ is shown only for values of ¢, = €;. Therefore the value
saturates as soon as the flow parameter reaches the energy scale B = 1/K?2. Afterwards
the flow does no longer evolve, but this should not be misunderstood such that the coup-
ling saturates. In Fig. only the prefactor of the diagonal parametrization is shown,
the inelastic coupling is additionally suppressed by the exponential prefactor of e~ BK?,
In contrast to other scaling methods the regime of B > 1/K? is not ill-defined. The flow
equation methods makes the Hamiltonian increasingly energy-diagonal. As illustrated

Figure 6.8: The flow equation method is sensible to energy scales. A coupling does no longer
flow if the energy-diagonalization reaches the value of the energy transfer of the corresponding
process. The scaling equation thus changes, see discussion in the text.

in Fig. at some stage inelastic processes are not included in the Hamiltonian and
only scattering on the energy-diagonal is taken into account. The scaling equation for
the coupling changes and it is shown in detail in one of the next sections that the flow
in 2nd order is negligibly small if a finite voltage is applied to the system. Thus third
order contributions have to be calculated which include decoherence mechanisms that
are important out of equilibrium. The subject of a finite temperature is not discussed
in this thesis and we refer the reader to the corresponding chapter in the book [38].

Infrared Parametrization

The flow of the coupling g}/ is determined by the exponential dependence on

e Blev—a)*  Ag discussed in the previous section only the couplings on the energy-
diagonal are not suppressed during the flow. The Hamiltonian for B — oo is energy-
diagonal. It was also observed that the couplings at the energy e = ¢ = 0 and
€ = €, = £K continue to flow while the flow saturates at other energy scales.

5The coupling pi, i in Fig. is multiplied by a factor of 2 such that it is directly comparable to the

sum,j

coupling g,
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In some cases it is sufficient to study the physics only at the zero energy scale, which

corresponds to the Fermi energy of the leads. For the coupling gggm’j the flow is given
by inserting €, = €, = 0 in the flow equation (626) and (628,

dgggm’j(B) 1 ( J 2 L opr2 (T 2
_ sum, B > 4 ( J B > , 2
~ 4B 9B Yoo ( ) + 236 poo( ) (6 9)
dpj (B) 1 j sum,j
—a5 ~ 23g (B (B), (6.30)

where we inserted p%o = méo. A A
‘The flow of the couplings in the infrared parametrization gy ™ (B) = g7 7 (B) and
Pho(B) = e BE*p) .(B) is shown in Fig. Whereas the coupling pj, saturates at a

0.012—

L — 97 7 (B)

= 29 p(B)

oo 11 Y T Y Y

Figure 6.9: Flow of the coupling g?;%m’j(B) and 2 p]}R(B) in the infrared parametrization.
constant value after the flow reached 1/K?, the coupling for g?}{,m’j continues to flow log-
arithmically. Notice that only the prefactor of the coupling p%o without the exponential
dependence by e BX * is shown. In the coupling g?j%m’j the exponential prefactor is equal
to unity.

At later stages of the flow, i.e. for B > By where Bx = 1/K?, the contribution of
the inelastic coupling is exponentially suppressed in the flow equation. For B > By the

differential equation for gin™ is solved by

dg?}l%mJ(B) 1 sum,j
A NS T J(B
dB 2B (gIR ( ))

1 1 1 B
= sum,j =~ “sum J — (=
9ir " (B)  gir ¥ (Bk) 2 Bk

sum,j . 1
9ir "~ (B) 10 (B./B)’ (6.31)
with a critical value of the flow parameter B, = By exp [Z/Q%m’j(BK)}. As long as
B < B, the ratio B./B > 1. Approaching the critical value, the coupling diverges
logarithmically.

This divergence is characteristic for the Kondo coupling between the quantum dots
and the leads. Instead of a spin-1/2 here a degenerate triplet state with spin-1 is studied

sum

and the elastic coupling g, 7 describes the flow of the total spin moment. The flow



150 The Flow Equation Method

parameter B, which has the unit 1/energy?, is translated to an energy cutoff by B =
1/A%_. Therefore we find,

feq-*

Afy = K exp [~1/g5™ (K)] ,

sum,j -
Yoo (B) - In (Afeq/Ac )7

feq

equivalently a divergent behavior if the energy cutoff is lowered below the critical value of
Af,; which corresponds to the Kondo temperature as discussed in the previous chapter.

The calculation is controlled as long as the coupling stays small during the flow. If
the flow parameter B reaches the critical value the couplings diverge. In the infrared
parametrization the flow equation approach is therefore equivalent to the poor man’s
scaling approach, since it covers the correct physics at the Fermi edge. The strong-
coupling in the Kondo problem does not exist if e.g. a finite voltage is applied to the
system as is discussed in the next section. The chemical potentials of the leads are shifted
by a finite voltage and therefore the infrared parametrization is no longer sufficient, since
it provides results only at the energy scale €, = ¢, = 0. As in the discussion of the previ-
ous chapter, the frequency dependence of the couplings is important in non-equilibrium
and the flow equation approach should be solved in the diagonal representation.

6.4.4 The Flow Equation Method Out of Equilibrium

The infrared parametrization fails if the double quantum dot setup is subject to a finite
voltage, since there are two Fermi surfaces present at +eV//2. For transport processes
all couplings in the energy window opened by the voltage contribute as illustrated in
Fig. B0, Two Kondo resonances evolve at the two Fermi surfaces, such that the elastic

Figure 6.10: If a finite voltage is applied, two Fermi surfaces at +eV//2 show strong-coupling
behavior. Important for transport quantities is the coupling averaged over the voltage window.

coupling gy 7 at the energies €, = € = +eV/2 flows to strong-coupling.

This can be seen from the flow equation Eq. (E23)) calculated including a finite voltage.
The voltage enters the flow equations via the step-like distribution function of the leads
as defined in Eq. (66). The integration over the intermediate state in non-equilibrium
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gives

(1= 20(0) - (e)

v
v

=V;/2 Vi/2 D
d r; d d
=(1-2 dep — 1—-2—2 dep — 1-— dep —
-2 [ do fro+ (1-2022) [ a0+ -0 [ o S0
b /2 v/2
T 1
~ 9 —Vi/2) —2 — V,/2).
A= Vif2) =2 fle= ~Vi/2

Since the couplings to the left and the right leads are independent of each other to this
order, the index j = L, R is not always written explicitly. Using this integration we find

the flow equation for the elastic coupling gi'+™’(B) in non-equilibrium,

)2 ng'fén’j (B)

e T =g
_ %%jrje—B(sk/—er/2)2e—B(er/Q—Ek)ngl/lJIrnJ(B) 2 (B)
+% 1 Ji r; o Blew+eVy/2)" o= Bl-eVi/2-er)” gumij By gsum( )
+% 11_]70] (e_B(Ek,_evj/zﬂx)zf/+ (B) + e~ Blew=eVi/ 2= d B))
(e 2=ty () 4 P20 T ()

1 “Blej+eVi /21 K)? ] “BlejteVi/2—K)? 7
= € TeVj , B € TeVj J/ B )
top1y (¢ pi_(B) +e mj,_(B)

(efB(fer/2fek+K)2E<B) 4 e—B(fer/Leka)Qmj_k(B)) : (6.32)

where v = % corresponds to the momentum with energy e, = £eV;/2.

In contrast to the perturbative RG in the previous section, where the derivation of
the RG equations is differently in the case of equilibrium and non-equilibrium, the flow
equation is the same in both cases and the difference enters only through a different
distribution function of the leads.

The flow of the elastic coupling g3/, 7 is illustrated in Fig. in the diagonal repre-
sentation for a voltage eV;/K = 0.25 smaller than the exchange interaction K. There-

fore the inelastic coupling pi/k(B) is not shown, since it is exponentially suppressed for
B > 1/K? even before the flow parameter B reaches 1/V? and the effects of a finite
voltage become important.

In comparison to Fig. the flow in Fig. shows a divergent coupling at six
different energy values. In second order these couplings flow to strong-coupling as soon
as B reaches the critical scale B.. The failure of the infrared parametrization is obvious
in Fig. since the coupling at the energy scale €, = ¢, = 0 saturates at a constant
value while strong-coupling divergences develop at e, = ¢, = £eV/;/2. This can also be
seen in the flow equation (632), where the coupling at the energy scale €, = ¢, = 0 is
exponentially suppressed by e=28(¢Vi/ 2%,
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Figure 6.11: Value of the elastic gzlfcm’j in the diagonal parametrization vs. the energy ¢ for
increasing values of the flow parameter BK? = 0.01,0.1,1.0, 10, 10%,103. The finite voltage is
chosen eV;/K = 0.25.

All processes within the energy window opened by the voltage contribute to transport
processes, as illustrated in Fig. BI0. It is an advantage of the flow equation that during
the flow the Hamiltonian becomes more energy-diagonal while the information on all
energy scales is kept, see also discussion in the introductory section of this chapter. In
contrast contributions from higher energy scales are integrated out in the standard poor
man’s scaling approach.

We define a transport coupling,

V/2
sum,j 1 sum,j
GmI(B) = - / dergs™ (B), (6.33)
-V/2

which is the average of all couplings in the voltage window.

In the following we discuss the scaling equation for the transport coupling assuming
that the flow parameter B already exceeded the scale 1/K? up to which the inelastic
couplings contribute. The flow parameter B is related to an energy cutoff Ay, = B~1/2,
During the flow only coupling processes with an energy transfer less than A, are in-
cluded in the interaction Hamiltonian.

If Afeq > V the transport coupling obeys the usual scaling equation of a Kondo
coupling,

sum,j
dgt sum,j) 2

dlnApq ~ (g

As mentioned previously the flow equations are not ill-defined if the energy cutoff Ageq
is reduced below the energy scale of the voltage. It is observed, that the flow equation
for the transport coupling changes. For an energy cutoff of Ay < V' it is given by

dgi"™ _  (gmiY? VT Areq g
dn Ageq ! 22 V

If the energy processes in the Hamiltonian are made energy-diagonal to a degree that
the energy difference between two scattering states does not exceed the voltage window,
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the coupling ¢;"™’ does no longer flow and its derivative is negligibly small. A higher

order contribution e.g. from two-loop order can now dominate the flow of the coupling
since the contribution from one-loop order vanishes. Before it is discussed in section
how decoherence effects can enter to third order in the coupling, the perturbative RG
method as introduced in chapter Bl is compared with the flow equation approach.

6.4.5 Comparison with Perturbative RG

The method of perturbative RG as introduced by A. Rosch et al. in Ref. [35, B6] was
discussed in detail in the previous chapter. The method generalizes the poor man’s
scaling approach to non-equilibrium by taking into account a frequency dependence of
the couplings. It also includes a voltage-dependence of the distribution functions which
becomes important if physical quantities like a non-equilibrium current is calculated. In
this section we compare the perturbative RG to the flow equation method to second
order. If a finite voltage is applied to a transport regime, decoherence effects play
a major role. They are included in the perturbative RG by a finite life time of the
quantum dot states 4] and in the flow equation method they enter in two-loop order.
Since the comparison of the two methods here is only to second order, the discussion
of how decoherence effects enter the different scaling equations is not subject of this
section.

As discussed in section EZT] a comparison between the singlet-triplet representation
used in the perturbative RG with the spin representation used in the flow equation
approach is possible in the following way: the elastic coupling gy, corresponds to the
triplet-triplet coupling g¢;}", the inelastic coupling pi,k corresponds to a singlet-triplet
transition ¢77". In the following we compare the elastic coupling g™ with g™ of only
one of the quantum dots, e.g. the left, such that j = L and m,n € {1,2} is assumed
implicitly.

A visual comparison of the flow of the coupling gy in Fig. B4 on page and g
in Fig. supports the equivalence of the two results. An analytical comparison of the
two different scaling equations in Eq. (i14d) and Eq. (E32) shows the similarities and
the differences of the two approaches.

The flow parameter B starts at By = 1/D? and flows to infinity whereas the energy
cutoff Ageq = B~1/2 reduced the energy transfer of a scattering from D to 0, such that
the Hamiltonian is energy-diagonal at later stages of the flow. The definition of the flow
parameter, 2BdB = —dIn A, explains the different signs in the two scaling equations.
The contributions from two different Fermi surfaces enters the flow equation method
by the two different steps in the non-equilibrium distribution function. The summation
over the internal energy ¢, corresponds to the summation over the lead index v in the
perturbative RG approach. Therefore the two scaling equations are the same besides a
different cutoff scheme.

The cutoff function ©(Arg—x) in perturbative RG is an approximation of the different
scaling behavior for the ratio between the involved energy = and the running cutoff Arg,
r < Apc and z > Age. The cutoff e~/ Aea)” in the flow equation approach in contrast
is exact for every value of x even in the intermediate regime. The two different cutoff
regimes are identical in the limits x < A and = > A as illustrated in Fig. BET2

In both methods the frequency dependence is crucial to describe the physics out of
equilibrium. Without decoherence effects both methods show strong-coupling behavior



154 The Flow Equation Method

1 T 1|\ T T
| —- 601 —a/Apa)
0.8 : R Y2 ) —
L | |
06 I _|
|
L I |
041 | -
L | |
|
02+ _|
|
| I -
0 | ' ST |
0 05 1 2 25 3

15
x/A

Figure 6.12: The flow equation uses a cutoff of e~(*/Aa)® in contrast to the cutoff ©(1—z/Arc)
in perturbative RG.

at special energies. The couplings diverge logarithmically. The perturbative RG and
the flow equation method in the diagonal parametrization are consistent to leading
logarithmic order. It is assumed that the frequency dependence of the cutoff function
dominates such that the frequency dependence of the coupling is neglected on the right
side of the scaling equations.

In non-equilibrium decoherence effects prevent the Kondo coupling to flow to strong-
coupling. This observation is included in the perturbative RG method by a finite life
time of the quantum dot states or by finite vertex corrections [A1]. In the flow equation
approach it was shown that the second order contributions become negligibly small if
the cutoff Ag is reduced below the voltage, such that contributions from higher orders
can dominate the flow. How decoherence terms enter the flow equations is now discussed
in detail.

6.5 Third Order or Two-Loop Contributions

It is the aim of this section to explain the origin of decoherence effects to two-loop order
in the flow equations. Two intermediate states contribute in the flow to the third order.
We discuss in the following the physical ingredient of the higher order contributions. For
the interested reader some steps of the calculation are given in appendix

The flow of the Hamiltonian is given by dH(B)/dB = [n(B),H(B)]. So far the
interaction Hamiltonian Hiy(B) as well as the generator n(B) = [Hy(B), Hin(B)] were
of linear order in the coupling. To create a flow to third order in the coupling to the
leads, we have to include interaction terms, which are created to second order in the

coupling, into an Hamiltonian Hi(ri).

6.5.1 Higher Order Contributions from 2nd Order

In the first-loop calculation new interaction terms are created. To second order in the
coupling J we find for example a potential scattering. Additionally the singlet-triplet
gap K is renormalized and a constant energy term arises. To study these couplings in
more detail will be the task of future investigations. For the rest of this thesis those
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couplings are neglected since the flow of the potential scattering or the coupling K does
not contribute to leading logarithmic orderﬂp

To describe decoherence effects we are interested in couplings involving four conduc-
tion electrons, since they describe an effective two-particle interaction mediated by the
quantum dot system. To calculate the third order or two-loop correction of Hi, we
include the second order couplings into the interacting Hamiltonian,

HEY = 3 33 Kipupwmen © 19 Senm X Spmem) :

i,jn=L,R K'k p'p

2) - . 5 o 3 = )
+ 2 22 PKipuntrmen 2 <5!i (k’j)(kj)) <5z' (p/n)(pm) :

i,j,n=L,R k'k p'p

+ > 2D DKunmiswmmn 2 (§L ﬁR) (S ki) Spmyemy) - (6.34)

js,n=L,R k'k p'p

For example the higher order term S L 1 S(0i)(kj)S(n)pn) © 1S created out of two inter-
action processes with the left spin, §L © S(kj)(kj) © and §L : S(p'n)(pn) &> as schematically
illustrated in Fig. B3 It can be interpreted as a two-particle interaction of conduction
electrons via the impurity spin. The setup of two coupled quantum dots shows a more

v B Lk
PN \\;/
7/ N
, — |
N T r
// \\ p’ /t\\ p
/ |
Figure 6.13: Hlustration of the higher order coupling : §L§(k’j)(kj)§(p’n)(pn) :, which is created
out of twice the Kondo coupling : ng(k’j)(kj) ;. Solid (dashed) lines refer to conduction

electrons (spin states).

complicated interaction structure than a single quantum dot. The calculation of the
flow equation to third order is straightforward, see Ref. [38], and some steps of it are
given in appendix [EL3.

6.5.2 Canonical Generator and Flow of the Coupling to 3rd Order

Since the interaction Hamiltonian has been changed by adding higher-order terms, Hi(ft),
the canonical generator 7 = [Hy, Hiy] has to be calculated correspondingly. The second
order term n® in the canonical generator ¥ = n + 7® is given in Eq. (EX) in the
appendix. It shows the same interaction structure as Hi(ri) in Eq. (E34).

The flow of the Hamiltonian is given by dH(B)/dB = [(B), H(B)], where the Hamil-
tonian is now defined by H = Hy + Hiy + Hi(ft). Contributions to third order in the

coupling originate from [n, H-(Z)] and [n®, Hy,]. Since K (1) (kj);(q'v) (qv) 15 generated to

int

"The potential scattering contributes only to order J#, see discussion in Ref. [35].



156 The Flow Equation Method

2nd order in the initial coupling J, ,’j . the term ), H (2)] is of fourth order in the coupling

int

and is therefore neglected in the followmg discussion. There is also a contribution of J3
to the flow of the couplings in H® . Since the effect of a J3 term in the flow of the initial

mt

couplings J is to forth order J* this contribution can thus be neglected to leading order.

We are interested in the contribution of the higher-order couplings in Hl(nt) to the
initial couplings in the Hamiltonian H;,. Therefore we define symmetric combinations
of the higher order couplings as they appear in the flow equations. The new definitions

take respect to the symmetry relations as discussed in appendix [E23. Using the notation
KHE = KE 4+ KB we find

a L+R L+R

(B ey eiystanan) = o) sty = Biam)amyste) i)
a L—R L—R

(B3 iy kstan)an) = By wpsan)an) — K@w)amo i)
s _(2) jrL+R (2) rL+R

B3) iy kpytamyan = Kinnanian T Kamaym i)
a _(2) prL-R @) LR

ED ey kisan@) = Eapwisan@) = Kgw)asw k)
s 3

(B2 iy eiriamyan =" Kwimisana) + K amsw i i),

where s denotes a symmetric and a an asymmetric combination of couplings with respect
to interchanging the index (¢'v)(qv) with (K'j) (k7).

So far all couplings are denoted by the energy (k'j)(kj); (¢'v)(qv). In the flow equa-
tions we also find contributions from the combination (£'5)(qj); (¢'7)(kj) and define

ke =% Kgojyaiian i+ Kigi) iyt ias)s
1 _(2) joL+R (2) j~L+R
ko = Kiivaintanten T B @ikt a):

As shown in the appendix, the coupling k§ = —kf and kg = —k{ are related, respectively.

The flow equations for the couplings k; to kg are shown in appendix Here only
the flow equations of the initial couplings in Hj, are discussed. After some lengthy but
straightforward algebra the flow equation of the elastic coupling g;/,"” to the total spin
is found to third order,

dglsgl’llf;nJ _
dB
[n(q'v)(1 = n(qu)) + n(qu)(1 — n(q'v))]

1 sum,v
{Z (e —€n+ g — €3 = (€g = €¢)) K Gyq
1
+ 1 (e —ex teg —€g— K — (e — e + K)) (ky — ki) pyy
1
+Z (e —€x+eg —€,+ K — (e, — €y — K)) (k3 + k3) qu'} : (6.35)
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The inelastic coupling which costs an energy of K is given by

dpjy _
dB
[n(q'v)(1 = n(qv)) + n(qu)(1 - n(q'v))]
1
{§ —egtew —ep+ K — (g —€g)) (ks + ki) 9o "
1
—1—1( — g+ e —ex — (6g — e + K)) (k] — 3k3) pyy
1 .
+15v’j <€q/ — € —+ €t — € — <€q — €y -+ K)) (2]€é —+ kﬁ)p;q,} . (636)

There is also a contribution from (n(q'v) —n(qv)) to the flow in third order. Since terms
including (n(q¢'v) — n(qr)) are only proportional to the phase space between ¢’ and g,
these terms are neglected, see discussion in Ref. [3§].

The newly generated couplings are illustrated in Fig. BI3 They correspond to an
interaction between two incoming particles &’ and p’ with the quantum dot spin resulting
in two outgoing particles k£ and p. The flow equation in third order contains the inte-
gration over two intermediate states ¢ and ¢’. Depending on which of the incoming or
outgoing particles of the two-particle coupling interacts with another particle-hole pair,
J;fz,, the third order contribution is a self energy or a vertex correction, as illustrated
in Fig. BET4 As discussed in detail in chapter [, these third order contributions stop
the flow to strong-coupling in the case of a finite voltage. Thus these terms are often
referred to as decoherence terms. There are different types of decoherence. The elastic

sum,j

coupling g,,. ” in Eq. @35]) has only contributions from an interaction structure like
(K'5)(kj); (¢'v)(qv) x (qv)(¢'v). As illustrated in Fig. [6.14(b)| this corresponds to a self
energy correction, i.e. due to hybridization with the leads the quantum dot spins gain
a finite life time. If this effect is sufficiently large, for example for a large voltage as
discussed in detail in section .54 the coupling g;/," 7 does no longer flow to strong-
coupling. By contrast, the inelastic coupling contains a combination of couplings with
(K'9)(q7); (d'9)(k7) x (¢j)(q'g). This is a vertex correction as illustrated in Fig. [6.14(a)}
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(a) Contribution of a vertex corrections. (b) Contribution of a self energy correction.

Figure 6.14: Two-loop contributions to the flow of the Kondo couplings. Left panel: contribu-
tion from kg or kg; right panel: contributions from k;-ks.

In general one has to solve the set of differential equations for gi'v™, pl., ki, ... ke.

For an analytical result we perform the calculation in two steps. First the couplings
k1 — ks are integrated over B and then the result is inserted into the differential equation

sum,j

for g, . It is assumed that the coupling depends only weakly on the flow parameter,
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since it diverges only logarithmically. The dependence of the coupling on B is neglected
in the integration over B and thus the result is only valid to leading logarithmic order.

Furthermore it is assumed that the frequency dependence of the coupling is dominated
by the exponential prefactors. That the diagonal representation is a good approximation
to the third order calculation has been shown for the Kondo model in Ref. [38]. The
proof for the double quantum dot setup is the aim of future work.

6.5.3 Discussion of the Flow to 3rd Order

The flow equation for the elastic coupling g5y is shown in Eq. () in the appendix.

Here we concentrate on the first term in the flow equation since the other terms are
proportional to e BK? To discuss the physical content of the third order contribution
in the flow equation we thus concentrate on the limit B > 1/K? where these further
contributions can be neglected. The full numerical solution is shown in Fig. BTH and
discussed at the end of this section.

For a discussion of the leading terms in the differential equation of g;,;" 7 it is useful
to define the function F(y),

F(y) = SyB \/\/; erf (\/ﬁ y)

The function F(y) is the result of the integration

l4 12
2
/qu/ /d€q<€q’ — €+ aK)2e—QB(eq/—5q+aK)

:F(l4—l1+0zK)—F(l4—l2+O[K)—F(lg—ll+OZK)+F(Z3-Z2+OZK),

—2By?
e “PY.

<2B>2

where o« = 0, £1. The function F(y) is symmetric in its argument F'(—y) = F(y).

In equilibrium the limits of the integration over the two intermediate energy states,
€, and €y, are given for temperature 7' = 0 by the Fermi energy ep = 0 and the band
cutoff £D,

O L - /dgq /d /d /dgq,.

-D —-D

In analogy to the calculation in second order all contributions of the band cutoff vanish
for B > 1/D?* and can thus be neglected by introducing a new initial value of the
coupling at By = 1/D?. The integration simplifies to

/deq/ /deq[n(qv)(l — n<q/v)) + n<q/v)(1 . n<qv))]< — €, + aK)2 —QB(e ,— eq+a[()
—2F(aK)+ O (e*Blﬂ) _

Consequently we find the flow equation of the elastic coupling gi'r™ in the limit

B> 1/K?

d Sl/lmd sum sum,v sum,v — 2
S 2BFO)g gy g O ().
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Using the definition of F(y) and inserting the result from one-loop order, the coupling
of the total spin to the leads j = L, R is given at ¢, = ¢» = 0 by

sum,j\ 2 1 sum,j sum.v \ 2
2 = WiR™) —gem (R ) (6.37)

Please note that this is only valid for B > 1/K? or Apq < K.

Eq. (637) is the same result as found for the Kondo coupling in poor man’s scaling,
see e.g. [2]. We find that the third order contribution is a correction to the flow in
second order in the coupling. It reduces the flow but the coupling still shows a strong-
coupling behavior. Fig. is the numerical solution for the flow of the elastic coupling
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Figure 6.15: Flow of the coupling g;, *~ to 2nd and 3rd order in the coupling to the leads.
The voltage Vi, = Vr = 0, K = 1 and the initial value of the coupling is gg = 0.1.

G 7 for € = €, = 0. The analytical behavior discussed above is valid for BK? > 1.
It is observed that in the calculation to 3rd order the increase of the coupling is less
pronounced, but the coupling still flows to strong-coupling, see therefore also Ref. [3§].

6.5.4 Flow Out of Equilibrium

In contrast to the linear and one-loop order there are two intermediate states involved
in a third order contribution. Therefore it is possible that the coupling of the leads to
the left quantum dot can have an influence on the right quantum dot. In analogy to the
transconductance in the previous chapters some preliminary results are presented which
show that a finite voltage applied to one quantum dot prevents the other quantum dot
to flow to strong-coupling since a finite decoherence is induced.

In non-equilibrium the occupation numbers are given according to Eq. (G.6). The
integration over the two intermediate states provides thus

/deq/ /deq[n(qv)(l —n(q'v)) +n(qv)(1 —n(qv))](ey — €, + aK)ze_QB(Eq'—EqWK)Q

1472
(1+17,)?

2r,

—9 v
(1+417y)?

FaK) + (F(aK +eV,) + F(aK — eV,)) + O (e—BDZ) ,

where a = 0, £1.
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If the voltage eV is larger than K, then the contribution from P,g,k and Mg,k are
already negligible when the flow enters the regime of the voltage. The coupling gy,
flows then according to

dglscl/llznﬂ 1+ Tg sum,j _sum,v _sum,v
7dB = ... 234<1 T TU)Q <O>gk2/k2 qq qq’'
R R AT el (e §
(14 71,)? aq aq

It was already discussed in detail in section that the infrared parametrization
is not applicable in the case of a finite voltage, since energy processes take place at
two different Fermi surfaces shifted by %eV;, /2 from the equilibrium Fermi energy. In
non-equilibrium it is more appropriate to study the transport coupling g;"™”’ defined
in Eq. (E33), which is an average over all energy processes contributing in the energy
window opened by the voltage. It was shown in section .44 that the flow of the coupling
to second order is negligibly small in the limit of B > 1/V?2. In this regime the 3rd order
contribution determines the flow of the coupling. Asillustrated in Fig. decoherent
processes lead to a stagnation and finally the coupling of the spin to the leads decreases
to zero. The physical meaning of this decrease is discussed in the outlook, section B.6

For example if a finite voltage V7, is applied to the left quantum dot, the transport
coupling of the total spin to the leads 7 = L, R is given by

dgtsumj 1 sum,j\ 2 \/E 1 1 sum,j sum,v |2 2 2,—2BV;
~ ( sum, ) S —, (gt ’ ) [1+rv+2rve “]
dB 2B V8BV; 4B (1+r1,)?
V. ﬁ 2r 7 2 — 2
W v sum, sum,v (f)( BK ) ) 6.38
1 AR+ TU)Qgt (gt ) + e ( )

In the limit B > 1/V? the right hand side of Eq. (E38) is dominated by the term that
flows proportional to 1/v/2B. The ansatz g = ¢g*/v/' 1+ v BI'? solves the differential

equation,

V2B (1+7;)?

where the decoherence rate I'; for the elastic coupling to the lead j = L, R is given by

T 2r;
I.=./=2 —=7 (g2 V.
J \/;(1+Tj)2 (g) V},

and the initial coupling ¢g* is determined by the flow of the coupling at the stage where
the term proportional to the voltage starts to dominate. This is obvious from a simple
argument: The decoherence rate I' provides a new energy scale of the system. It is of
the order of J2. Thus the third order term in the flow equation transfers to a linear
term,

dgi™™ o VivT 2 <—Sum,j>3
aB 4 ’

ag™ T,

~ J sum,j

dln Afeq - 2Afeq 9t
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(a) Flow of the coupling 5™ " for finite voltage (b) Flow of the coupling g5+ for finite voltage
VL and €L = eVL/2. VL and € = 0.

Figure 6.16: Flow in third order of the coupling gZ%m’L and gzllim’R for finite voltage eV, /K =5
in comparison with the flow in equilibrium V7, = 0. The initial value is g}, 7 = 0.1 and the
asymmetry is r;, = rgp = 1.

A term linear in the coupling dominates over a contribution to second order and thus the
physics of the system is described by the decoherence rate I' when the energy cutoff is
lowered sufficiently, Agq < I'. For a detailed discussion we refer the reader to Ref. [3§].

A numerical solution for the flow of the elastic coupling gzl,im’j in and out of equilib-
rium is given in Fig. An exact implementation of the flow equations is work in
progress, but the first preliminary results shown here already promise interesting physi-
cal behavior. For the coupling ¢it™" shown for the energy e, = eV;,/2 in Fig. an
increase is observed in the coupling independently if a finite voltage is applied or not.
As soon as the flow parameter B reaches 1/T'? the coupling gzl,;m’L saturates and for later
stages of the flow the value starts to decrease. This can be explained by an entanglement
of the impurity spin with the environment on the energy scale of the dephasing I', as is
discussed in section [6.8. This is the characteristic behavior of a Kondo coupling subject
to a finite voltage, see also discussion in Ref. [3§].

In the double quantum dot setup studied here the total spin moment couples to the
left leads, as illustrated in Fig. , and to the right leads. The flow of the coupling
g™ for ¢, = 0 is shown in Fig. It is expected that this coupling shows
strong-coupling behavior since there is no current through the right quantum dot. Due
to the summation over the two lead indices v in Eq. (E38) the voltage Vi enters the
flow equation of g,?,im’R . It is observed in the numerical solution, that the coupling to the
right leads is prevented to flow to strong-coupling if a large voltage is applied to the left
leads. It is the aim of future work to find an analytical expression for this phenomenon,
and discuss the whole parameter regime of the double quantum dot system. The two
quantum dots are coupled by a spin-spin interaction and it is assumed that no particle
transfer takes place. In Fig. [6.16(b)| it is illustrated that a decoherence due to current-
noise is transferred from one quantum dot to a coupled quantum dot. This effect was
discussed in details in the previous chapters of this thesis and has the direct consequence
that the transconductance (K/eVy)dI/dVE is finite.

In conclusion we found that a finite voltage prevents the Kondo coupling to show
strong-coupling behavior. The system is dominated by decoherence due to current-
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noise. The coherent spin-flip processes which lead to the Kondo effect are prohibited
due to a finite life time of the quantum dot spin states. In the flow equation for the
coupling of the total spin moment to the leads, Eq. (633), only self energy contributions
as illustrated in Fig. enter. Due to a hybridizaton with the leads the spin states
gain a finite life time and the coherence of scattering events is lost. In the flow equation
for the inelastic coupling, Eq. (BE38), there are also contributions from vertex corrections,
as illustrated in Fig. . For example the coupling of the left spin to the left leads,
JLE = ol 4 plL + PL, is a combination of the elastic and inelastic couplings. It will
be studied in future work how this coupling is influenced by the different mechanisms of
decoherence.

6.6 Summary and Outlook

This chapter was devoted to the flow equation method out of equilibrium. A brief
introduction to the method is given in section and for further reading we refer the
reader to the book of S. Kehrein [38]. The main purpose of this chapter was the discussion
of the scaling of the different couplings in a double quantum dot system. In section
the two different kinds of couplings between the double quantum dot system and the
leads were discussed: the elastic one, which interacts with the total magnetic moment
of the two spins, and the inelastic one, which involves a transition from a singlet to a
triplet state and therefore the energy difference of the singlet-triplet gap K has to be
provided by the incoming and outgoing conduction electrons.

To linear order in the coupling to the leads the flow equations for the couplings incor-
porate this behavior such that the elastic coupling Ji™ is proportional to e~ Blew —er)’
while the inelastic coupling Pj/k is exponentially suppressed for €, = €, due to the factor
e~ Blev—atK)? Tpe coupling Hamiltonian becomes successively energy-diagonal with in-
creasing flow parameter B or decreasing frequency cutoff Ay = B2 At later stages
of the flow higher order contributions become important, and as examples the second
(one-loop) and third (two-loop) order contributions are discussed here. In general the
flow equation method is exact, whereas in practice it is perturbative since new couplings
are created during the flow and the series has to be truncated. The flow equation method
keeps the information on all energy scales since the Hamiltonian becomes successively
energy-diagonal during the flow. In non-equilibrium all coupling contributions in the en-
ergy window opened by the voltage are important and thus the flow equation method is
applicable. One advantage of the energy-diagonalization procedure is that the derivation
of the flow equations is identical in and out of equilibrium.

Various approximations to solve the scaling equations to second order in the couplings
were discussed in section It is possible to solve the flow equations exactly in a numer-
ical framework as shown in section The diagonal parametrization approximates
e.g. the coupling J5%™ by a product of an exponential factor e~ 5 ~)* with an average

coupling J;," 7 where &' and k are determined by the energy conservation at the vertex,
€ = €. For the energy at the Fermi surface, i.e. the infrared parametrization, the flow
equation method and the poor man’s scaling approach give identical results. It is shown
in section that the coupling of the total spin to the leads diverges if the frequency
cutoff is reduced below a critical value. This strong-coupling behavior is characteristic
for a system with Kondo interactions.
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In chapter B the perturbative RG method was introduced since it is applicable to the
Kondo problem out of equilibrium. In section the two different non-equilibrium
scaling methods are compared. It is found that in the diagonal parametrization the
same approximations are used as in the perturbative RG. The two methods differ by the
energy cutoff mechanism, which is given by e~(*/A%a)” in the flow equation method and
by ©(1 — z/ARg) in the perturbative RG. Apart from that the way the decoherence is
included is quite different. Whereas a finite life time of the double quantum dot states is
included by hand in the cutoff scheme in chapter B, decoherence mechanisms enter the
flow equation method naturally to third order in the coupling.

The third order contributions to the scaling equations were discussed in section 5.
There are no imaginary contributions in the flow equations, thus the question arises
why this method can describe a finite life time of the quantum dot statesH Decoher-
ence mechanisms arise in this framework when including two-particle interactions of the
type S (Swk X Spp), which are created to second order in the coupling to the leads. To
understand how these terms lead to decoherence it is important to consider the scaling
equation both for the Hamiltonian as well as for the operators of the system. While the
Hamiltonian becomes successively more energy-diagonal, hence “simple”E the operator
structure can become complicated since any operator O is also transformed unitarily by
the same scaling equation as the Hamiltonian in Eq. (61),

dO(B)
—= = (), 0(BY),
where O(B = 0) = O. For example in the spin-1/2 Kondo model the spin of the Kondo
impurity shows a scaling behavior. As discussed in detail in Ref. [38] the spin S(B) is
given by

S(B) = h(B)S+i3_ 7un(B) (§ x gkk) .

It is found that the prefactor h(B) vanishes for B — oco. The spin S is then given by
the operator structure (g X Spir) and thus becomes entangled with the environment,
i.e. the spin Sy in the leads. In non-equilibrium the entanglement is present when the
frequency cutoff A is reduced below the energy scale of the decoherence rate I'. This
explains why the decoherence enters the scaling equations by the newly created couplings
to second order. When the spin in the Kondo coupling S Syp becomes entangled with

the environment, the Kondo interaction changes to (§ X §k/k) Sprp, Which is the coupling

taken into account to calculate the third order contribution in the flow equations. The
decoherence rate I' is a new energy scale of the system. Since this energy is proportional
to the phase space and of second order in the coupling, J2V, the third order contribution
is effectively of linear order: J3V ~ JI'. Therefore the third order contribution can
dominate the scaling behavior given otherwise by the second order term.

To study the flow of the spin operators using the flow equation method is a natural
extension of this work. First preliminary results for the decoherence of a double quantum
dot system were given in section O It was explained that there are two different

8The finite life time in perturbation theory originates from the imaginary part of the self energy.
9The energy-diagonality of the Hamiltonian H(B — oo) provides a tool to study the time evolution
of the Hamiltonian or observables, see also Ref. [35].
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decoherence mechanisms which prevent the elastic Kondo coupling to flow to strong-
coupling. An analytical discussion of the different contributions is the aim of future
work. By a numerical analysis we could show that a finite voltage applied to e.g. the
left quantum dot stops the flow of the coupling between the total spin and the left
leads. It is also observed that the flow of the coupling to the right leads does not show
strong-coupling behavior although the right leads are not subject to a large voltage. As
also observed in the previous chapters the spin-spin interaction between two coupled
quantum dots can transfer a non-equilibrium situation between the dots. In the flow
equation method this effect is observed to two-loop order when decoherence effects enter
the scaling equations. An experimental observable like the transconductance as discussed
in the previous sections is not calculated here since a new flow equation has to be solved
for every observable. The signatures of the non-equilibrium transfer that were found in
the scaling equations indicate that a finite transconductance can be found in a current
measurement, however this has to be verified explicitly in the future.



7 Conclusions

A quantum dot subject to a large voltage can drive a second, coupled dot out of equilib-
rium, although there is no particle exchange between the dots. We studied the effect of
a finite voltage applied to the system of two coupled quantum dots and found that this
non-equilibrium transfer manifests itself in different physical quantities. Before we dis-
cuss explicit examples the principle idea of the non-equilibrium mediation is explained.

In the Kondo model a quantum dot is described solely by its spin configuration. The
setup of two coupled quantum dots is connected to four leads to allow for a transport
through each of the dots independently. A finite voltage applied to the right quantum
dot drives a finite current through the dot. Repeated transport processes lead to a finite
life time of the spin state in this quantum dot. The occupation of the spin ground state
decays inversely proportional to the applied voltage for large voltages. The other (left)
quantum dot is coupled to the right quantum dot by a pure spin-spin interaction. For
an antiferromagnetic coupling of the spin system the ground state is a spin singlet. A
finite current applied to the right quantum dot leads to a decoherence of the spin state
on the right quantum dot as well as a decoherence of the coupled quantum dot system.
Even if the leads coupled to the left quantum dot are not subject to a finite voltage,
the non-equilibrium situation on the right side has an influence on the left quantum
dot. This can be observed in various physical quantities. It was the aim of this thesis
to discuss this effect and further the physical behavior of a double quantum dot system
out of equilibrium using perturbation theory and various scaling approaches.

7.1 Conclusions to “Model of a Double Quantum Dot
System”

We motivated the Kondo spin model for two coupled quantum dots by deriving an
effective model from a microscopic Hamiltonian of two Anderson impurities. We showed
that the two quantum dots can be coupled via an exchange interaction process and
discussed other mechanism which lead to a spin-spin coupling. Two coupled spin states
form singlet and triplet states and we introduced a pseudo particle representation, which
provides the means for performing perturbation calculations for a system of coupled
quantum dots. As an important detail it was shown in section EZ2 that the leakage
between leads attached to the left quantum dot and leads connected to the right quantum
dot can be neglected. For two identical quantum dots which are tuned to particle-
hole symmetry the leakage is even zero and the currents through the left and the right
quantum dot can be treated independently. Therefore we hope that the double quantum
dot setup we investigated here can soon be realized in experimental setups (similar setups
have already been discussed in Ref. [27, 29]). The magnitude of the parameters for the
double quantum dot system of interest depend on microscopic parameters, which could
be determined from experiments on these systems.
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7.2 Conclusions to “Perturbation Theory”

The well-known method of Green’s functions has to be generalized to non-equilibrium.
In the case of a finite voltage the retarded and the lesser Green’s functions fulfill two
independent Dyson equations. It was shown that the determining equation for the lesser
Green’s function leads to a self-consistent equation for the occupation number of the
double quantum dot states. A finite voltage influences the distribution functions to Oth
order in the perturbative expansion. Like an effective temperature a finite voltage can
provide the energy to occupy excited states. If the voltage reaches a threshold given
by the singlet-triplet gap, a finite current and therefore decoherent processes lead to a
finite occupation of triplet states, in case the two quantum dots are in a singlet ground
state due to an antiferromagnetic coupling. We studied the thermodynamic quantities
polarization <§ .S r) and magnetization 2<§ 7+ S %) as a function of voltage and observed
in both cases that the ground state becomes depopulated, if large voltages are applied
either across the left or the right quantum dot. The decay from the initial value is
inversely proportional to the applied voltage.

This can be measured in a current measurement. Since the singlet state blocks the
transport through a single quantum dot, the excitation of triplet states opens a channel
for transport. In section we studied in detail the so-called transconductance (see
Ref. [65]). The differential dependence of the current through the left quantum dot
in dependence on the voltage applied to the right quantum dot may be measured in
experiments and provides a proof of the voltage-dependence of the singlet and triplet
states and an indirect measure of the decoherence properties of the double quantum dot
system.

The transfer of the non-equilibrium situation on one quantum dot to another coupled
dot can also be seen in the T-matrix and the noise. It is even observed for ferromagnetic
coupling, but the effect is less pronounced. The calculation of the noise properties and
the current cross-correlation (I;Ig) is on-going work, but preliminary results showed
that the correlation between the current through the left and the current through the
right quantum dot is given solely by a finite life time of the double quantum dot states.

7.3 Conclusions to “Perturbative Renormalization
Group”

The perturbation theory fails to describe the physics of the Kondo model at low tem-
peratures. In chapter [ we introduced a recent generalization of poor man’s scaling,
the perturbative RG [35, B6], which is able to describe, for example current transport
for large applied voltages. While reducing the cutoff, the model can be mapped on an
effective Hamiltonian on a low energy scale. In non-equilibrium the frequency argument
of the coupling function cannot be neglected and the flow stops at the energy given by
the decoherence rate, if it is not stopped by an energy scale of the double quantum
dot. The rate equation for the level occupation probabilities is also taken into account
including the renormalized rates.

We discussed the method and the flow of the couplings in detail and showed in analogy
to the perturbation theory the results for the polarization and current. We found that
the effect of transconductance is enhanced by the scaling of the couplings [65]. This
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increases the possibility to measure in experiment the transfer of a non-equilibrium
situation from one quantum dot to another. As ongoing projects we also proposed the
calculation of the T-matrix in perturbative RG, with the aim to compare the results
with calculations of the spectral function in NRG. The special case of ferromagnetic
coupling was also discussed and some limitations of the perturbative RG approach were
shown.

7.4 Conclusions to “Flow Equation Method”

Although the perturbative RG incorporates all ingredients of a non-equilibrium scaling
theory, the important effect of a finite decoherence has to be inserted by hand. In
the last chapter of this thesis we therefore discussed the flow equation method out of
equilibrium [37, B8]. We applied this scaling approach to the setup of two coupled
quantum dots and found in lowest order that the couplings in the Hamiltonian flow
to strong-coupling. The flow equation method is also perturbative in the coupling of
the quantum dot to the leads, but in contrast to the perturbative RG higher orders
can be calculated straightforwardly. We showed explicitly that a decoherence scale
appears naturally in this approach. As in the other chapters we observed that due to
the finite voltage applied to the left quantum dot the couplings on the right side do
no longer flow to strong-coupling. Two antiferromagnetically coupled quantum dots
undergo a quantum phase transition from an uncompensated spin singlet to two Kondo
screened impurities for a small exchange coupling of the order of the Kondo temperature.
An intensive study of the parameter regime of this model is the aim of future work.
The perturbative RG approach fails already at couplings of one order of magnitude
larger than the Kondo temperature. The hope is that the regime of the quantum phase
transition can be approached, or signatures of it can be identified, using the flow equation
method.
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A Additional Calculations to Chapter

A.1 Calculation to 2nd order in the Hopping Parameter ¢

A.1.1 Important Commutators
For the following calculation we use repeatedly the following relations

[AB,C) = A{B,C} — {C, A} B,
[AB,C) = A[B,C] - [C, A] B,

and

[AB,CD] = A{B,C} D — C{D, A} B+ CA{B,D} - {C, A} BD,
[AB,CD] = A[B,C] D — C'[D,A| B+ CA[B, D] — [C, A] BD.

We will often encounter
[do, Naor| = 000 do, Mo, do] = =050 dy, 1 —nger,dy] = 6por dy,
and analogously
[di,ndg/] =5, di, [ndg/,di] —5 ,dl, [1 - ndo,,dj,} =6, d.
Immediately it follows
[dyy Mo Mz ] = 055 Ndo Ao + 00,00 Naz sy
Also useful are the facts
[Mdor Naor] =0 and  n3, = ngy

for fermions.

A.1.2 Check of the Generator S;p

It has to be proven that [iSLRr, Hy]| = —Hpr. Here we show only one example, namely for
the first term in Epg(0) contributing to Spr as ﬁ(l —n5)(1 — ngs)dh,_d, . Since

the intermediate state is occupied by only one electron, we can forget the contribution
from H.np and Hyyng and only have to calculate

1 [SLRa Hn] =0 and
{ [SLR7 Ha] = ZZ [tLRELR(a>dTRUdLU o tLRELR(U)dEJdRU7

€ao' Moo’ + éUanaa’naﬁ/} .
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For example in the case of a = R

ZZ [ELU - ERO'
= ZZtLR

R
+trr—2——(1—ns)(1 — ngs) [dkm nRa/nRa/] dro

1
(1 = nz)(1 = nps)dhyd,,, €RorMpe + §URnRo/nRE’}

(1= n15)(1 = 1) |dfegs o | dio
— €Ro

€Loc — €Ro
. —€Ro
= Z;tLRﬁ(l - nLE)(l - nRE)dJlr'%odLo
1
_ tLReLfYB;Ro (1= n15)(1 — npe )20 dhyd,,
. —€Ro
=1 ;tLRﬁ(l - nLE)(l - nRE)dJ][%ade

where one term cancels out since ngs(1 — ngry) = Ny — nf%g = 0 - a state cannot be
occupied and empty at the same time. The commutator with H; works similarly, but
provides a different sign

. tLR T 1
i ————(1—n15)(1 —ngz)dh d; ,ergnre + =Urnpenig
ZLLU_ERU( 1)1 = nig)dpydig, €roniy + SUnnromny,

oo’

=1 Z tLR (1—nzz)(1 - n%)dkadw

— €Ro
Consequently the first term results in
i[Spr, Ho) = ° Z trr(l = ns)(1 — npe)dl,dy, + . .

and together with all other terms finally ¢ [Spr, H,| cancels Hyg.

A.1.3 General Operator Structure to 2nd Order in the
Schrieffer-Wolff Transformation

In the section 2224 we found the general result for the interacting Hamiltonian from the
spin-conserving part of li [San, Ham] to be

_imz Z CrkoCmk!o

nko mk'c’
tomtmoz
Nao 1-— Noz ) Nao 1— Nag
{Eaa+ULR—JH—C ( ) ( )
tantma
— 7 Nac 1-— Naz 1— Nao ) Nag
€ac +ULr — ¢ ( )| )
tantma
+ (]- - naa) Noz Nao (1 - n%)

eaa+Ua+ULR_C

tant
+ an e 1 — Nao) Naz (1 — Ngy ) Nas ¢ + h.c.
6aa+Ua+ULR+JH_C< ) ( ) }
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For this expression we now evaluate the spin summation and after using some spin
relations we find some contributions to the potential scattering and the spin interaction
part. To simplify the expressions it is assumed that the energy level €., does not
dependent on the spin o of the electron on the dot. Thus we find,

%z’ [Sams Hom) = % DY (JoanmSomSi + hoc.)

m,n k,k’

+ % SN (TS + hec.)

1
45200 (Vahehuatinwo 57 + ).

m,n kk’

where the Kondo interactions are given by

J o tomtma + tomtma
e eaa+Ua+ULR+JH_§ €a0+Ua+ULR_C
tomtma tomtmoz
€ac TUr —Jg —C  €ao +Urr —(
Ja - tomtmoz tomtmoz
anm—eaa+Ua+ULR+JH_§ eaa+Ua+ULR_C
tantma tantma
- (A.2)

+ ;
€ao + U —Jo —C  €ao +Urr — ¢

and the potential scattering terms yield

e 4 €a0+Ua+ULR+JH_C eaa+Ua+ULR_C
toantma tantma
+ ) , (A.3)
€ac T Uk —Jug — (¢ €ao + ULr — ¢
VSS - tantma + tantma
anm €aoc tUa +Urp+Jy —C  €ao +Ua +Urr — ¢
toantma tantma
(A.4)

€ao TULr —Jn —C  €ao +ULr — ¢
Additionally we have the spin-flip part from Eq. (233).
=t Z {tcmtma |:Ea7 d:rxg/] ka/U/CLdeQJ - tnatamcjnklgl [Eom daa/] dggcnko} .

Leaving out the actual calculation we write down the result of the spin-flip scattering
contribution

% > Janm ($5Sa + SpmSd) + hec.
+ Y T (S SE = S0 SESE) + hec,
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where
Jr o =V5Es (A.5)

Collecting all terms we find the new Hamiltonian H = Hy + Hiy + Hyuna With Hy =
HL+HR+Hcap+HJH and

- 1
Hing :KSLSR - ZK
—+ Z Janngnm + Z JangRgnm

b S S Vit + 1z 3 30 S Vel ot

o kK o kK

_ E R Jz = E L Oz ==
HJH - JanSRSnm + JanSLSnm
nm nm

+ > Thm (55 S% = $0mSESR) + Y Thm (S50 S2 ST — $unSHST)
+D°D° D (Vimn + Vitam) chio oS5 S5

o k'

if we assume t,,, = t,, to be real, since then h.c. provides just a factor of 2.

Please note, that if Ji = 0 all couplings in H,, are zero and

7 B 2tantom 2tantam
M o+ Us+ Uk — ¢ €ao+Urp — ¢
1 tantam tcmtam
Vomm = 3 ( + ) 5
2 eaa+Ua+ULR_C €a0+ULR_C
K 2t RtRL B 2t RtRL

e, —er+Ur—Ur e, —eg+U,—Urr’

These coupling are used in the the main text of this thesis.

A.2 Calculation of the 3rd Order Contribution to the
Leakage

From a calculational point of view we can state that to third order we only get contri-
butions from the following terms, omitting the summation over all intermediate indices

Za ]‘/N2 an’a’ ka”a”
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1 A .
SimLtLRtRn { [ELR<O-)dJIr%UdLU7 [ER<O-I)CLk’U’dRU/7 dTLJ”ka”U”:| :|

3
+ ER<O-I)CLk’U’dRU/7 [EALR(O-)dJIr’?odLo7 dTLU”ka”U”] :|

— [Br(0") el [En(0")d] g dipia] |}
—%tnLtLRtRm [ Bun(0)dly . [B(0)d) .l

4 [Bul0)d} sy [Brn(o)dhy g i |

+ EL(OJ)dLo’an’ 2 [ER( ) Jrrnk” ”dRUH?dRadLU }}
+%tnRtRLth { [ELR(a)dTLOdRJ, [ER( Vel ,,dw}

+ _ER<UI)d;%o'an'a/v [ELR( )dLadRo7 Contrgn Lo }

1 . .
—gtmRtRLth { [ELR(O)dEUdROW |:EL( )C k/ /dLO—/,dRO_//ka// //]
4 [ B0k o, B ) ]

+ [EL(<7 /)CLk/o'dLa’a [ER(U ”)d;zo//cmk”a”v dLadRaH } .

}

| ]
(B0l opgrs [ B0Vl rgndion, dloid, ||}

}

]

For the moment we concentrate on the first term in the series proportional to
tmrtortrn. First of all the conduction electron term is filtered out by repeated use

of

Conk' o //an/ / 5m n(sk’ k”500 - C;rzk’a’cmk”a"

~ an/a/cmk”o” .

The 04 contribution is neglected since it is of the order of 1/N (summation over only
one momentum) in comparison with all order terms. This assumption was already used
in the calculation of the 2nd order contribution.

As an example the first term proportional to t,,1.t;rtr, is shown,

1 A N R

stmitntin { [Bon(@)dly dyys Er(0")drod)p + dl Bn(o/)dn |
+ER(U,)dR0’ oY + G- ER(O/)CLk/g/dRJ’} CILk/U/ka//O'H

where &= [ELR( )dt, dLJ,dTLJN] - [E (o ")dTLU,,,dEOdLJ] .

Extracting term by term we can write down the result

1

gtmLtLRtRn {01 dTLgdLa” dj%dRo' — C2 dTLa”dLodEUdRU/

+c3 dEEdLE”d;}g/ drs — C4 dLa” dLoder’%_/ d]r} C;rzk’a/ Conkrr o
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where

1 1 1
c1 = +
! €L—€R+UL—ULR(€R+ULR—C €R+2ULR—C)

1 1 1
+ + ,
€R+ULR—C<€L—€R+UL—ULR 6L+UL—C)

1 1 1
Co = + ,
? €R+ULR—C<€L—ER €L+ULR—C)

1 1 1
= —+ ,
“s €R+UR+ULR_C<€L_ER+UL_UR 5L+UL+ULR_C)

1 1 1
Cy = +
4 €L_€R+ULR_UR(€R+UR_C €R+UR+ULR_§>

1 1 1
+ + :
€R+UR+ULR—C<€L—€R+ULR—UR €L+2ULR—C)

Please note that the expressions are simplified by assuming Jy = 0 and that the bare
energy levels are not spin-dependent €,, = €,.

The couplings ¢; and ¢4 start or result in the state |0)|7)r allowing only antiparallel
spin pairs on the double quantum dot. By contrast the couplings ¢; and ¢3 do not depend
on the spin. These two different kinds of leakage were already illustrated in Fig. 24

To compare this result to the 2nd order contributions we concentrate on one spe-
cial spin interaction 5, and find for ¢/ =T and ¢” =] a contribution to the effective

Hamiltonian H of

1

gtmLtLRtRni (c1 — o+ 3 — cq) (

—

7 +57).

There is a bunch of other couplings which are created to third order like (5 1 X S R) Spm

and also potential scattering terms. Nevertheless here we do not discuss the general
case, but find out to which magnitude the leakage contributes to the coupling part of
the effective Hamiltonian. Therefore we focus on the indirect Kondo coupling of the
left leads to the right leads via the double quantum dot §a§nm where m € {1,2} and
n € {3,4}.

Since the summation is over all possible lead indices m and n the term proportional
to t,rtrrtrm contributes to the same amount as the one discussed before. The general
minus sign cancels out by the different order of the lead electron creation and annihilation
operator. Leaving out details of the calculation we find

1
gtmLtLRtRn {kldTLadLE”dJ}r%dRo/ + deTLa”dLodJIr?odRol

+k3dEEdL5/’ d;—fﬁ’d% + k4d11.10'”dL0d125’ dRE} Cibk:/a/cmk”a”’
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where

1 1 1
k= N
! €L—€R+UL—ULR<€L+UL—C €L+UL+ULR—§>

1 1 1
+ - 9
€L+UL+ULR—C<€L—€R+UL—ULR €R+2ULR—§)

1 < 1 1 )
T e+ Umn—C\er—en en+Ur—C)’

1 1 1
ks = _
3 €L+UL+ULR_C<ER+UR+ULR_C GL—ER—FUL—UR)’

1 1 1
hy = — 4
! €L—€R+ULR—UR<€L+ULR—C €L+2ULR—C)

1 1 1
+ - .
€L+ULR—C<€R+UR—C €L—€R+ULR—UR>

In this example of a spin flip we find that a hopping from the left leads to the right

leads is of the order
1 1 2 a\ ot
gtmLtLRtRni (Cl + /{71 — Cy + kz + c3 + kg —C4 + k4) (SL + SR) Spm-

The other two terms contributing with t,gtrrtr, and t,.gtrrtr, can be calculated
as well and give an analogous result to the two mentioned terms with the replacement
L «— R and (EL—ER+ULR—UR) <—><€L—€R+UL—ULR).

In order to compare this term with the 2nd order contributions we concentrate on the
special case of two identical quantum dots. With ¢, = eg = ¢ and Uy, = Ur = U we find
first of all that the two divergent terms 1/(e;, — eg) and 1/(e;, — eg + U, — Ug) cancel
each other and finally

1
§(C1+k31—02+k2+03+k3—04+k4)

1 1 1 1 1
= + + +
U_ULR<€+ULR_C €+2ULR_C €+U—C €+U+ULR—§>

1 1 1
+ +
€+ULR_C<U_ULR 6‘|‘U—§>

1 1 1
+ _
E—FU—l—ULR—C(U_ULR 5+2ULR_C)

1 2 1 2
+<e+U+ULR—g‘) _<e+ULR—§) '

Additionally to the left-right symmetry it is assumed that the couplings t; g = tgp
are identical without a phase. Consequently the other two terms contributing with
tortrrtom and t,rtrrtr, can be taken into account by multiplying the upper result
with a factor 2. The leakage coupling J,lfﬁbkage =c1+ ki —cygt+kyt+cgt+ ks —cy+ kyis
discussed in detail in the section 220l
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B Explicit Calculations Referring to
Chapters 3 and

B.1 Relations for the Matrix Green’s Function from
Sum Rule Considerations

We find the following sum rules for a general Green’s function G/,

e = (i) =i [ 22(Gr0) - G50) = [ Fal). B

Thus a diagonal spectral function A, (w) has a total weight of 1 whereas an off-diagonal
spectral function A, (w) has a total weight of 0. As shown later on the off-diagonal
spectral function is non-zero, but contains some negative contributions which make the
total weight vanish.

Furthermore we find

(a0 = [—i@(t) < [tv(t), tL(O)} >]T
— i0(t) < [tv,(—t), tL(O)]> =G (1)
= [wa/ (WHT - Gf/'y(w)
= Re{G’ ,(w)} =Re{G% (v)},
Im {G",(w)} = —Im {Gg,v(w)} . (B.2)

For the diagonal part this reveals no new information, but for the off-diagonal we find
Asto (w) = At08<w)7 (B?’)

i.e. the spectral functions for sty and tys are identical. The spectral function matrix
obeys AT = A such that A is symmetric. Please note that this is a general statement
from a conservation rule. This statement still holds if we perform a perturbation theory
and thus it is used frequently in the course of the calculation.

In non-equilibrium the lesser Green’s function contains different information than the
retarded Green’s function and thus we also consider

(G, = [—i <tfy,(0)tv(t)>]T — <tL(O)t,Y,(—t)> — G5 (~t)
= [Gfﬂ/(“})}T = =G5, ()
= Re {G5, (w)} = —Re {G5, (w)},
Im {G5,(w)} = Im {G;W(w)} . (B.4)
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The real part of a diagonal lesser Green’s function is exactly zero and the imaginary
part contains the physical information. For the off-diagonal lesser Green’s function we
can not make such a statement. Whereas these relations can be used to make an ansatz
for the lesser off-diagonal Green’s function, see appendix

B.2 Conduction Electron Spin Susceptibility

The conduction electron spin susceptibility is defined by Eq. (B9,

X7 (11, 7m2) = Z Gt (71, 72) G (T2, 1)

( kk/

It corresponds to an electron-hole pair which is created in the leads m and n. Therefore
it contributes to the self energy in second order. Due to a finite self energy the double
quantum dot states gain a finite life time. The broadening originates in a hybridization
of the system with the leads.

The conduction electron spin susceptibility enters the current through the combination
X1 — X? and thus also the current cross-correlation. The noise is proportional to current
fluctuations which are proportional to f(1—f), i.e. X?+X}. Therefore it is often claimed
that the decoherence in non-equilibrium is due to current-noise.

Useful for the calculation are the relations

(@) (1= f() = nsle — ) () — F()),
/ dx (f(x +a) — f(z)) = —a,

(e o]

where f(z) is the Fermi function and ng(x) is the Bose function in equilibrium. Fur-
thermore we find
1 1
np(z) = 5 (coth (éﬁx) - 1) )

o) = % (1 ~ tanh (%ﬁx)) |

The different contributions from X" on the contour are given by the Langreth rules
in section B.1l,

(XS (4 1) = =Y G (8,1) G, (1,1),

k,E

(X == G ()G (2 1),

kK’

(X (41) = =Y (G (1) G (1) + G (1,8 G (1)),

kK

(X" (1) = =Y (G (1) Grpo (8 8) + G (1. 4) Gy (81))

kK

We use the ansatz for the momentum integrated conduction electron Green’s function
as given in Eq. in section B2
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We calculate X™ in Fourier space. For example (X™)” (w) is given by

D

@?V@OZ—%N@V[D%ﬂPWWUfJ@+W—MM)

= 2N (O n(= s = 1) [ de(f(et 0= ) = fle= )

[e.9]

~ =21 N(0)*np(—w + Lt — fin) / de’ (f(€' +w = pun + pn) = f(€))

—00

— 20N (025 (—w + i — ) [~ + i — ]

Therefore it is assumed that the band cutoff D is the largest energy scale in the system
such that the integration limits can be sent to infinity and a frequency in those limits
can be neglected.

For (X)* (w) we find

(X?V@OZ—%NWV/D%ﬂ6+w—MJH—f@—Mﬂ

= —27rN(0)2nB(w—um+un)/Dde (fle = pn) — fle+w — tm))

~ =21 N(0)*np(w — fm + fin) /_Oo de' (f(€' —w + pm — pn) — f(€))

— 2N (0)n(w — fir+ 1) [0 = f + 1]

Note that the symmetry is fulfilled,
(X)) (w) = (A7) (~w). (B.5)

The result for (X™)" (w) is also shown here,

(X?Y@Oz—ﬂwa/:ddﬂe—mﬂ—f&+w—ﬂw)

D

z_mwm{[”&mﬂa—w+ﬂm—um—f&w

— —TN(0) [ fim + ]

Analogous we find
(X" (W) = 7N(0)* [w = ptn + pa]

The contributions of the leads to the self energy are given by Eqs. (B11]) and (BI2)

YL<T177—2) = Z 2Jannm XqT(TlaTQ)u

m,n=1,2

YR<T17T2) = Z 2Jannm X:Ln(7-177-2)-

m,n=3,4
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After Fourier transformation we find

Vi (w) =(—2m) [(9%1 + 932) 2wnp(w)

+2912g21 ((w —+ GVL)HB(W -+ €VL) + (w — €VL)HB<(U — GVL))] , (B6)
Vi (w) =(—2m) [(935 + g34) 2wnp(w)
+2934943 (W + eVr)np(w + eVr) + (w — eVr)np(w — eVR))] . (B.7)

Due to (X")® (w) = (X™)” (—w) the following relation holds,

n

Y. (w) =Y (—w).

Since 1 4+ ng(z) = —np(—x) the function Y <(w) is related to Y<(—w) by

Y (—w) = Y5 (w) + (—27)2¢2w.

a

B.2.1 Relation between (X})" and —1 (X3)” (w) + 1 (X3)" (w)

For the conduction electron spin susceptibility we find the relation

(X3)” (W) + = (X2)" (w). (B.8)
This is closely related to G* ~ 3iAd = —3(G” —G<), since A = i(G"—G*) = i(G~ - G%)

and consequently —iA = G~ — G<. We will now prove this correlation. From the
Langreth rules we find

(X21)> (w) = (_12)2 ;l_;_ 1>k’<€+w>G2<k<€)7
()7 (@) = =z | oG+ )Ga(0)
()" ) = 5 [ 5 (Gle + )G3(0) + Glple+ )G5(0).

To prove Eq. (BR) we calculate
(62)7 ) = — [ dedmN(O) (1 = e+ = ) F (e~ p2)0(D — |)D — e )
= 20N [ defle— ) (1 e o), (5.9
and analogous

(X3)" (w) = — /dG?WN(O)Qf(E +w— 1) (1= fle—p2)) O(D — |e))O(D — [e + w)
_ _2WN(0)2/ defle+w— ) (1= e+ ). (B.10)

-D
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Here we already made the first assumption that w is always much smaller than the
band cutoftf D, w < D, and therefore w can be neglected in the limits of the integral.
Furthermore we have

de

Re (X2)* () =~ [ 5

o [2miN(0) f(€ + w — p1)O(D — e + w|)(—im) N(0)O(D — [e])
+irN(0)O(D — |e + w|)2miN (0) f(e — p2)O(D — |e])]
= —wN(0>2/d€ [fle+w—pm) = flw—p)].

And finally,

Re (X1)" (@) = ~aN(0)* [ delf(e+w ) = Flw - )
— {0y / de (e +w — ) (L~ flw — 12)) — F(w — 1) (1= f(w+ € — )]

()" @) -5 ()" @)

N | —

the relation Eq. (B) is proved. Since we only include Re[X] this expression is exact.
Actually we would not have needed any assumption for this prove, but now we already
have the required equations for later use.

B.2.2 Broadening of the Spin Susceptibility

The Bose function ng(z) = 1/(e* — 1) is singular at = = 0, but the product zng(z) is
finite and in the limit of x/T < 1 it can be approximated by

0 if © > 2T
znp(z) =T — 3z if |z| < 2T .
lz| if » < 2T

Using this expression for xng(z) we find for small temperatures

A a+2T
1 T 1 T 1
/ dx (a —x)np(a—x) :/ dx (x —a+2T)

A ma?+ 2 99T Ta2+ 122

A1T
+/ dr————=(z — a).

sor TP+ 17

This can be integrated and provides

1 2T\ 1 a— 2T 27T\ 1 a+ 2T
= —a 1 — — ) —arctan + 1+ — ) —arctan
2 a ) m T a ) w T
I'1l I'1l
———1 — 2T +1?%) — ——1 2T)? + I
a27rn((a ) + ) a2ﬁn((a+ ) + )

2 arctan (%) + 2L In (A2 + F2)} )

T a 2w
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For a finite I' this result diverges for A — oo. The spectral function falls off too slowly
such that the linear part of zng(x) gives an increasingly important contribution at
T — 0.

In all physical quantities like in the current in Eq. (), a difference of two contribu-
tions enters, e.g. (X3)” (w) — (X3)™ (w). Thus the divergent part of the integral cancels
out and the problem of the divergence is solved.

Finally we can write in short notation

A1oT -
Adx;m(a —x)ng(a —z) = ang(a)

which is of course only valid if there is a difference of two of those terms. The broadened
Bose distribution n%(a) is defined analogous to np(z) = 1(coth(B8z/2) — 1),

nh(a) = 5 (&la) ~ 1),

(a) 1 ( . <a+2T> et (a—ZT))
¢(a) = — [ arctan arctan
T T T
2T 1 a+ 2T a—2T
+ —— [ arctan — arctan
a T T T

_ 2_1;% (In[(a+2T)* +T?] +1n[(a — 27)* +1?]),

which corresponds to the expansion of coth(a/27T) for I' — 0 and simplifies to
2 2T
¢(a) = — arctan <2> ———In [\/ a’ + Fﬂ
T r T a

in the case of zero temperature T" = 0.

B.2.3 Broadening of the Fermi Function

Now we study how the Fermi function changes if it is convoluted with a spectral function
including a finite broadening, e.g. in the calculation of the T-matrix. Using 2f(w) —1 =
—tanh(w/2T) at low temperatures

- /deli tanh[(w + € — ) /2T

me2 + 12
—2T—w+pm 2T —wpm D
1 T 1 T w+e—punm 1 T
= de——— — de— — de———.
me2 + 12 me2 + 12 2T me2+ 12
—D —2T—w+pm 2T —w+pm

We assume that the temperature is negligible small and therefore the central integration
vanishes. Thus we find

1 =27 — 1 2T — 2 —
~ = arctan WA pm + — arctan A -wit ~ —Z arctan | 2= Hm )
T T T T T T
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Thus instead of a (—tanh) with the width of the temperature 7' we have a broader
function of (— arctan) and we define a broadened Fermi-function with the broadening I"

o= 3 (1~ 2 3)

2 w
—Zarctan (=) =2 1
= —_arctan (F) fr(w)

B.3 Occupation Numbers without Off-Diagonal
Contributions

Assuming that the spectral function can be approximated as a d-function the calculation
of the self energy from Eq. (B29) is simple and we find

1

(ntoYL<+R(Ws — Wry) + 1y YL<+R(WS —wi, )+ YL<+R(WS - WL)) )

i
Yo (W) T (”sYL<+R(Wto —ws) + e Yy p(wyy — wey ) + 1 Y7 plw