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Chapter 1

Introduction

Since the last ten years there is a growing interest in nanophysics and nanoscience in
general. The attention to this field is strongly encouraged by the ongoing miniaturization
in the microelectronics industry. At the time of writing, an impressive number of more
than a billion transistors on a chip with an area of less than 0.346 µm2 can be realized
industrially (see Fig. 1.1). Such devices involve transistor gate lengths of less than 35 nm.
At such length scales we approach the extent of molecular systems. Nanophysics takes
these developments to the absolute limit: the size of atoms and molecules. This means
that we are dealing with atomic dimensions that are characterized by the Bohr radius of
around 0.529 Å.

Physical laws at the atomic scale may differ substantially from those of the macroscopic
world. Taking the example of the conduction properties, which are in the focus of the
present work, the familiar Ohm’s law, from which we learn that the resistance of a conductor
is proportional to its length, breaks down [1]. The reason for this is that the distance that an
electron travels between two scattering events is typically large compared with the atomic
scale. Thus, electrons traverse an atomic-sized conductor ballistically, and the resistance
becomes independent of length. Research in the field of nanoscience helps to understand,
what modified physical properties may be met at the smallest scales.

At the nanometer scale the composition of materials plays an essential role. Often
phenomena are non-generic and the rich variety of chemistry enters. By the very nature of
this research the boundaries between the field of physics of small objects and chemistry are
fading, making nanoscience a truly interdisciplinary research activity, where also aspects
of materials science enter. Despite its complexity, the study of systems with atomic dimen-
sions is attractive from another point of view. The fact that only few atoms are needed to
describe the relevant device region makes possible a microscopic theoretical modeling, and
a direct comparison between theory and experiment.

In order to investigate systems of atomic size experimental techniques for their charac-
terization and manipulation are needed. Perhaps the most important tool in this respect is
the scanning tunneling microscope (STM), developed by Binnig and Rohrer, for which they
were awarded the Nobel prize in 1986 [2]. The STM is a very versatile tool. In its normal
mode the topography and electronic properties of a metal or semiconductor surface can be
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8 Introduction

Figure 1.1: Dye photo of an Intel 45 nm shuttle test chip
including 153 Mbit SRAM and logic test circuits. More than
1 billion transistors are on this chip with an area of 0.346 µm2

(http://www.intel.com).

studied with atomic resolution. Soon it became evident that the STM could also be used
to modify samples on the atomic scale [3, 4, 5, 6, 7]. Furthermore the first metallic contact
of atomic dimension was realized with an STM by indenting its tip into a metal surface
[8]. Also nowadays the STM technique is frequently used to measure the conductance of
atomic-sized contacts [9, 10, 11, 12, 13, 14, 15]. (See also Ref. [1] for related publications.)

Another very important technique for measuring the conduction properties of atomic-
sized contacts is the mechanically controllable break junction (MCBJ) [16, 17, 18, 1]. As
shown in the left panel of Fig. 1.2 a substrate is bent by means of a pushing rod. In this
way a metallic wire, glued onto this substrate, can gently be broken with a sub-Ångström
control over its elongation.

In order to investigate the conduction properties of metallic contacts, the conductance
of an MCBJ can be measured simultaneously to its opening. An opening curve for the
conductance, as depicted in the right panel of Fig. 1.2, is then obtained. Shortly before
rupture of the junction, single atom contacts or even short atomic chain configurations can
be studied [21, 22, 13]. The conductance curves in the right panel of Fig. 1.2 differ from
one contact realization to the other. In order to obtain typical values of the conductance, a
large number of such curves is assembled into a conductance histogram [11, 23, 24]. These
histograms often show a peak structure, which is specific to the investigated metal (see
also Figs. 2.1 and 2.2).

While the STM and MCBJ technique were initially used to measure the conductance
of metallic contacts, recently they find application in the field of molecular electronics.
The field of molecular electronics tries to understand the electronic transport properties
of molecular structures. The visionary idea behind this activity is to use molecules as
electronically active components in logic circuits.

Conductance measurements on molecular films, performed by Mann and Kuhn [25],
date back to 1971. Since that time the aforementioned enhanced control at the atomic scale
led to the measurement of conduction properties of single organic molecules [26, 27]. In
these measurements, carried out by H.B. Weber et al. at the Institut für Nanotechnologie
(INT), Forschungszentrum Karlsruhe (FZK), a metal contact is broken with the MCBJ
technique. After rupture a droplet with a solution containing molecules is inserted into
the junction. When the electrodes are approaching each other from large distances, the
system eventually locks into a stable behavior, which allows the recording of several current-
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Figure 1.2: A typical break junction setup [19] is shown to the left. With the help of a
pushing rod, controlled by a piezo voltage, a nanolithographically prefabricated wire can
gently be broken. In this way the stretching of the nanowire, which is glued onto the
flexible substrate, can be controlled at a sub-Ångström resolution. If the conductance is
measured simultaneously to the bending of the substrate, conductance traces, as shown to
the right, can be measured for different metals [20].

voltage (I-V) characteristics. This stable configuration is interpreted as a metal-molecule-
metal (MMM) junction [26]. However, to contact a few organic molecules or even single
molecules still remains a difficult task with many unknown features, just to mention the
actual geometry of the MMM junction. Due to the importance of microscopic details,
I-V characteristics commonly vary from one contact realization to the other. Therefore
statistical measurements of single molecule junctions, similar to conductance histograms
in metallic contacts, are another major step, in order to obtain reproducible data on the
conduction properties of single-molecule junctions. Only recently Xu et al. [28] could
present the statistical measurement of single-molecule junctions by means of the STM
technique (see Fig. 1.3).

One essential task of molecular electronics is to understand the electron transport
through a single molecule electrically wired to two electrodes. This requires knowledge
about how the conductance is influenced by the device geometry, the electrode-molecule
interfaces, and the chemical nature of the molecule [29]. As the precise device geometry
is difficult to control, one may hope that due to the possibilities of molecular synthesis,
relative differences in electron transport can be observed that depend on the intrinsic
properties of the contacted molecule. Such differences in the chemical nature of a molecule
may be caused by its side groups or its length.

Of central importance for the electrical conduction are delocalized electrons. In organic
molecules the electrons of a conjugated system do not belong to a single atom, but they
are shared by a group of atoms. For this reason Tour proposed thiophene ethynylene
oligomers, which are conjugated linear molecules with an alternation of double and triple
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Figure 1.3: (A) Decreasing conductance of a gold contact formed between a gold STM tip
and a gold substrate as the tip is pulled away from the substrate. (B) A corresponding
conductance histogram is constructed from 1000 conductance curves as shown in (A). (C)
When the contact displayed in (A) is completely broken, corresponding to the collapse
of the last conductance plateau, a new series of conductance steps appears if molecules,
such as bipyridine, are present in the solution. These steps are due to the formation of a
stable molecular junction between the tip and the substrate electrodes. (D) A conductance
histogram obtained from 1000 measurements, as displayed in (C), exhibits peaks near 1×,
2×, and 3 × 0.01G0 that are ascribed to one, two, and three molecules, respectively. (E
and F) In the absence of molecules, no such steps or peaks are observed within the same
conductance range [28].

bonds [30], as a prototype of a molecular wire. Due to this proposal such wires are often
called ”Tour wires”. Generally, molecules with an extended π-system are of interest as
organic conducting materials, as required for the visionary build-up of completely organic
molecular electronics. In synthesizing such extended π-conjugated systems, the problem
of a conjugation saturation is encountered that arises from an effective conjugated length
(ECL) [31]. The ECL defines the extent of π-conjugated systems, in which the electronic
delocalization is limited and at which point the optical, electrochemical or other physical
properties reach a saturation level that is common with the analogous polymer [32]. A
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Figure 1.4: Rigid and giant molecular-size porphyrin arrays with extensively π-conjugated
electron systems and a low HOMO-LUMO gap [31]. They may be used as conducting
molecular wires in molecular-scale electronic devices.

straightforward synthetic strategy for maximizing the π-overlap and for avoiding a finite
ECL may be to hold the π-system coplanar by means of appropriately chosen side groups.
Recently it has been shown that in this manner fully conjugated porphyrin tapes with
electronic bands that reach into the infrared can be synthesized (see Fig. 1.4) [31]. Such
wires exhibit extremely low gaps between the highest occupied and lowest unoccupied
molecular orbital (HOMO and LUMO), they are rigid and of giant molecular size. In
addition they are stable in air and easy to manipulate so that conducting molecular wires
for molecular-scale electronic devices seem to be realizable.

The chances that the research in the area of nanophysics, especially molecular electron-
ics, leads to a large-scale fabrication of atomically engineered circuits that are replacing
present day silicon technology should not be seen over-optimistically. Many barriers still
need to be taken, including the long-term stability at room temperature and the time re-
quired for fabrication and design of giga-component circuits. However, there is no doubt
that we should go ahead. While the allure of computing with molecules may perhaps
never come true, many fundamental advances will be made on that way. The continuously
improving control at the atomic scale serves as an example for such advances. Rephrasing
R. P. Feynman’s words, one might say that it is important to know ”how much room is
left at the bottom” [33].
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Outline of this thesis Having given an introduction to the field of nanoscience, in
particular the study of metallic atomic-sized contacts and molecular electronics, let us
come to the outline of this thesis. Our work is concerned with physical properties of
systems of atomic or molecular dimensions. In particular we are interested in conduction
properties of atomic-sized contacts, which may either be purely metallic or consist of a
molecule that bridges two metallic electrodes. From a methodological point of view the
work is split into two main parts.

In the first part we will address mechanical and electrical properties of metallic nanowires
(Chaps. 2 and 3). In Chap. 2 our focus is the theoretical understanding of conductance
histograms, and we will try to explain their metal-specific peak structure. These investiga-
tions were carried out in collaboration with M. Dreher and Prof. P. Nielaba at Universität
Konstanz. Subsequently we will study signatures of electron-vibration coupling on the
conductance of gold atomic chains in Chap. 3. In both aforementioned studies a valence-
electron tight-binding (TB) model is employed.

In the second part of the thesis we will analyze the conduction properties of metallic
atomic contacts and organic molecules based on an ab-initio density functional theory
(DFT) approach to quantum transport. This approach has been developed in this thesis
and is presented in Chap. 4. The method is based on the implementation of DFT in the
quantum chemistry package TURBOMOLE, developed by Prof. R. Ahlrichs at Universität
Karlsruhe. Indeed this part of the work is a clear manifestation of the interdisciplinary
research activities in the field of molecular electronics mentioned above, bringing together
physics and chemistry. The subsequent analysis of metallic atomic contacts of gold and
aluminum in Chap. 5 is rather meant as a test of the ab-initio transport scheme. Our
main goal is the study of conduction properties of organic molecules, presented in the final
Chap. 6. In that chapter the conductance of different series of oligophenylene molecules is
studied. The main part of these molecules has been synthesized in the group of M. Mayor
at INT, FZK as presented in the PhD thesis of M. Elbing [34]. For these molecules we will
explore the importance of the conjugated π-system on the conductance. We will establish
a clear relation between the molecule’s internal structure and its conduction properties.
Besides a study of the length dependence of the conductance and the influence of varied
bonding positions, we will present a comparison with experimental data of Ref. [34].

Every chapter of this thesis will include a short introduction as well as a short summary.
Finally a complete summary of all our results can be found following Chap. 6. Method-
ological details necessary for a thorough understanding of this thesis have been relegated
to the extensive appendices. The appendices relevant for each chapter will be pointed out
in the respective introduction. At the end of this thesis the complete list of abbreviations
used throughout the different chapters is added for a quick reference.



Chapter 2

Metallic nanowires:

Electrical and mechanical properties

and the theoretical analysis of

conductance histograms

In this chapter we will analyze the electrical and mechanical properties of atomic-sized
contacts. The ultimate goal of the work in this chapter is to provide a better theoreti-
cal understanding of conductance histograms. Such histograms are a collection of many
conductance curves and show a peak structure characteristic of the type of metal under
investigation. Despite the enormous progress in the understanding of electronic transport
in metallic nanowires, the origin of this peak structure is still a basic open problem. In or-
der to analyze conductance histograms theoretically, extensive simulations of the breaking
of nanocontacts are required as well as conductance calculations for systems, consisting
of many hundred atoms. While the nanowire dynamics have been simulated by Markus
Dreher in the Konstanz Computer Simulation Group of Prof. P. Nielaba at Universität
Konstanz, the work in Karlsruhe concentrated on the development of an efficient compu-
tation scheme for their electron transport properties. From this effort two publications
emerged. The first studies the conductance histograms of Au [35] and the second one
the conductance histograms of Ag, Pt, and Ni [36]. The presentation below is a detailed
discussion of these results.

After an Introduction 2.1, we present the details of our method for simulating the
stretching of atomic wires and show how the conductance is subsequently computed in
Sec. 2.2. Further technical details on the simulations can be found in the chapters D
and E of the appendix. Studies of Ag, Au, Pt, Al, and Ni contacts follow in Secs. 2.4–
2.7, respectively. In each of these sections we first discuss representative examples of
the stretching processes of the nanocontacts, along with a comparison with experimental
results in the case of Au. We then turn to the statistical analysis of the whole set of
simulations for the different metals. This includes a discussion of the histograms of both
the minimum cross-section (MCS) and the conductance as well as an analysis of the mean
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14 Metallic nanowires: electrical and mechanical properties

channel transmissions. Section 2.8 is devoted to the discussion of the mechanical properties
of the different metals. We summarize the main conclusion of this work in Sec. 2.9.

While the results up to Sec. 2.9 have been obtained for bulk electrode Green’s functions,
we have subsequently implemented surface electrode Green’s functions (see Chap. D),
whose treatment is more involved. Their use should improve the quality of our results.
Therefore we discuss in Sec. 2.10 the changes that arise, when the bulk Green’s functions
in the electrodes are replaced by surface Green’s functions.

2.1 Introduction

The transport properties and mechanical characteristics of metallic atomic-scale wires have
been the subject of numerous studies over the past ten years [1]. The analysis of these
nanocontacts is nowadays possible due to experimental techniques such as the scanning
tunneling microscope [9, 10] and mechanically controlled break junctions [18]. In both cases
a metallic contact is stretched with a precision of a few picometers by use of piezoelectric
elements, thus providing very detailed information about the formation and breaking of
nanowires. A typical break junction setup is shown in Fig. 1.2.

The relative simplicity of the nanowires makes them ideal systems to perform exten-
sive comparisons with microscopic theories. Such comparisons have made it possible, in
particular, to elucidate the nature of the electrical conduction. The conduction in such
systems is usually described in terms of the Landauer formula, according to which the low-
temperature linear conductance of nonmagnetic contacts can be written as G = G0

∑
n Tn,

where the sum runs over all the available conduction channels, Tn is the transmission for the
nth channel, and G0 = 2e2/h is the quantum of conductance (see Chap. C and Eq. (C.10)).
As was shown in Ref. [19], the set of transmission coefficients is amenable to measurement
in the case of superconducting materials. Using this possibility it has been established
that the number of channels in a one-atom contact is determined by the number of valence
electrons of the central atom, and the transmission of each channel is fixed by the local
atomic environment [37, 38, 39].

The experiments show that in the stretching processes in which these metallic wires
are formed, the conductance evolves in a steplike manner which changes from realization
to realization. In order to investigate the typical values of the conductance, different
authors introduced conductance histograms, constructed from a large number of individual
conductance curves [11, 23, 24]. These histograms often show a peak structure, which is
specific to the corresponding metal. In Figs. 2.1 and 2.2, we show experimentally measured
conductance histogram for the metals Ag, Au, and Cu (Fig. 2.1) and Al, Pt, and Ni
(Fig. 2.2). From Fig. 2.1, for instance, it is visible that for noble metals like Au and Ag,
the conductance has a certain preference to adopt multiples of G0. However, for a large
variety of metals (see the histograms for Pt and Ni in Fig. 2.2), the peaks do not appear at
multiples of G0 (for a detailed discussion of the conductance histograms, see Sec. V D in
Ref. [1]). It has become clear that the peak structure in the conductance histograms must
be related to the interplay between electronic and mechanical properties. This interplay



2.1 Introduction 15

Figure 2.1: Experimentally measured conductance histograms for the noble metals Ag, Au,
and Cu [20].

was nicely illustrated in the first simultaneous measurement of the conductance and strain
force [40], but the precise origin of the differences between the various classes of metals
remains to be understood. The solution of this basic open problem is precisely the central
goal of the present work.

The analysis of the characteristic peaks of the conductance histograms of alkali and
noble metals at relatively high temperatures has revealed the existence of exceptionally
stable radii arising from electronic shell effects for thin wires and atomic shell effects for
thicker wires [41, 42, 43, 44, 45]. Stable nanowires with thicknesses of several atoms could
also be observed in transmission electron images [46, 47, 48, 49]. Commonly, the connec-
tion between the peaks in the conductance histograms and the radius of the contacts is
established using semiclassical arguments based on the Sharvin formula or slight variations
of it [50]

G = G0

[(
kFR

2

)2

− kFR

2
+ ...

]
, (2.1)

where kF is the Fermi wave vector and R is the radius of the wire.1 Using this type of
formula, it was suggested in Ref. [52] that peaks found in the histogram of the MCS of
Al contacts would directly translate into peaks in the conductance histograms. In other
words, it was suggested that the conductance peaks would just be a manifestation of the
existence of certain particularly stable contacts.

1Hard wall boundaries are assumed in this formula, and the inclusion of a work function alters the
prefactor of the second term in Eq. (2.1) as explained in Ref. [51]. This effect is usually not taken into
account.
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Figure 2.2: Experimentally measured conductance histograms for the metals Al, Pt, and
Ni [20].

From the theory side, analyses of the conductance histograms are scarce in the litera-
ture. Mostly single stretching events have been investigated at various levels of sophistica-
tion [53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64]. The analysis of conductance histograms,
however, involves the statistical exploration of many different stretching events. Most such
research is based on free-electron models, where particular nanowire dynamics are chosen
[65], but there are practically no fully atomistic investigations of the conductance his-
tograms. Three such studies have just recently appeared, where Hasmy et al. [66] studied
Al contacts and Dreher et al. [35] and Pauly et al. [36] investigated atomic Ag, Au, Pt,
and Ni contacts.

In order to elucidate the origin of the peak structure in the conductance histograms
of metallic atomic-sized contacts, we will present a theoretical analysis of the conductance
histogram for several metals with varying electronic structures. In particular, we study
the cases of Ag and Au, two noble metals, Pt, a transition metal, and Ni, a ferromagnetic
metal. We shall also briefly comment on our study of Al (an sp-like metal). Our theoreti-
cal approach is based on a combination of classical molecular dynamics (MD) simulations
to describe the contact formation and a tight-binding (TB) model supplemented with a
local charge neutrality condition for the atomistic computation of the conductance. The
use of ab-initio methods is presently prohibited by the size of our nanocontacts consisting
of several hundred atoms, in addition to the large number of configurations that need to
be analyzed. The classical MD simulations in combination with the TB model allow us
to obtain detailed information on the mechanical and electrical properties such as contact
geometries, strain forces, the minimum cross-section (MCS), the conductance, the num-
ber and evolution of individual conductance channels, and, in the case of ferromagnetic
contacts, the spin polarization of the current.

Concerning Ag and Au, we find a sharp peak in the conductance histogram at 1G0.
This peak is due to the formation of single-atom contacts and dimers in the last stages of
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the breaking of the wires in combination with the fact that the transport in these noble
metals is dominated by the s orbitals around the Fermi energy. With single-atom contacts

we will refer throughout this chapter to junctions with a single atom in the narrowest
constriction, in short a one-atom chain, while dimer means an atomic chain consisting of
two atoms. For Au, also longer atomic chains contribute to the peak at 1G0. In the case
of Pt, the first peak is broadened and shifted to a higher conductance value (above 1G0).
This is due to the fact that in this transition metal the d orbitals play a fundamental
role in the transport, providing extra conduction channels, as compared to Ag and Au.
For Ni wires, we see that the d orbitals contribute to the electrical conduction for the
minority-spin component, providing several partially open channels even in the last stages
of the stretching process. As a consequence, we do not observe any type of conductance
quantization. With respect to the polarization of the current, we find that there is a
crossover from large negative values for thick contacts to positive values in the tunneling
regime, right after the rupture of the contact.

From a more general point of view, the ensemble of our results allows us to conclude that
the differences in the peak structure of the conductance histograms of metallic nanocontacts
can be traced back to the following two ingredients. First, due to the different electronic
structure of the various classes of metals, different atomic orbitals contribute to the trans-
port. These orbitals determine in turn the number of conducting channels and therefore
the conductance values. Thus, for similar structures a contact of a multivalent metal will
have in general a higher conductance than one of a noble metal. Second, the different
mechanical properties give rise to the formation of certain characteristic structures, which
are finally reflected in the histograms. For instance, the formation of monoatomic chains
in Au or Pt is responsible for the pronounced last conductance peak.

2.2 Theoretical approach

The goal of this study is the theoretical description of the mechanical and electrical prop-
erties of metallic nanojunctions as presented in [35, 36]. In order to analyze ferromagnetic
Ni contacts, we present the spin-dependent formalism [36].

Our theoretical method is based on a combination of classical MD simulations for the
determination of the geometric structure and mechanical properties of the nanowires and
conductance calculations within a TB model. We proceed to explain these two types of
calculations in the next subsections.

2.2.1 Geometric structure

The breaking of metallic nanocontacts is simulated by means of classical MD simulations.
Forces and energies are calculated using semiempirical potentials derived from effective-
medium theory (EMT) [67, 68]. These potentials have been shown to describe experimental
bulk and surface properties [69] and have in addition successfully been used for simulating
nanowires by Jacobsen et. al. [59, 61, 62, 70, 71].
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Transmission electron microscopy shows that in the last stage of the stretching process,
nanocontacts of Au are crystalline and atom rearrangements take place in such a way that
one of the crystal directions [100], [110] or [111] lies in stretching direction of the wire,
independent of the initial crystal orientation [46]. For this reason we choose as our starting
configuration for the contacts a perfect fcc lattice of 112 atoms of length 2.65 nm (Au), 2.65
nm (Ag), 2.55 nm (Pt), 2.64 nm (Al), and 2.29 nm (Ni) oriented along the [001] direction
(z direction) with a cross-section of eight atoms. This wire is attached at both ends to two
slabs that are kept fixed, each consisting of 288 atoms. After equilibration, the stretching
process is simulated by separating both slabs symmetrically by a fixed distance in every
time step (∆t = 1.4 fs). Different time evolutions of the nanocontacts are obtained by
providing the 112 wire atoms with random starting velocities. The stretching velocity of 2
m/s is much bigger than in the experiment, but it is small compared with the speed of sound
in the investigated materials (of more than 2790 m/s). Thus the wire can reequilibrate
between successive instabilities, while collective relaxation processes may be suppressed
[55, 57]. The Newtonian equations of motion of the wire atoms are integrated via the
velocity Verlet algorithm [72] with a time step of ∆t. In all our calculations we assume an
average temperature of 4.2 K, which is maintained in the simulations by means of a Nosé-
Hoover thermostat [72]. We use periodic boundary conditions for the slabs in z direction
and the minimum image convention for the slabs perpendicular to the z direction [73].
Before the stretching process, every atom of the wire gets a randomly chosen velocity and
the wire is equilibrated for about 0.7 ns with periodic boundary conditions perpendicular
to the z direction.

In order to test whether the conductance changes are correlated with atomic rear-
rangements in the nanocontact, we calculate the radius of the MCS perpendicular to the
stretching direction as defined by Bratkovsky et al. [56]. For this purpose, every atom is
represented by a sphere with the volume of the elementary cell in the fcc lattice. For a given
configuration a slice with a width of about the interlayer distance2 is taken perpendicular
to the stretching direction. From the volume of the atomic spheres overlapping with the
slice, the radius of a cylinder which would fill the same volume in that slice is computed.
The procedure is repeated along the whole nanocontact and the smallest radius is taken
as the radius of the MCS of a given configuration.

Finally, during the stretching process, every 1.4 ps a configuration is recorded and the
strain force of the nanocontact is computed following Finbow et al. [74]. Every 5.6 ps the
corresponding conductance is calculated using the method described below.

2.2.2 Conductance

We compute the conductance within the Landauer approach (see also Chap. C). In order to
calculate the electronic structure of our atomic contacts a TB model is employed, which has
been successful in describing the important qualitative features in the transport through
metallic nanojunctions [37, 39]. This model is based on the following Hamiltonian written

2The width of the slice is a0/2 for the [001]-direction, where a0 is the lattice constant.
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in a nonorthogonal local basis

Ĥ =
∑

iα,jβ,σ

Hiα,jβ,σd̂
+
iα,σd̂jβ,σ, (2.2)

where i and j run over the atomic sites, α and β denote different atomic orbitals, and
Hiα,jβ,σ are the on-site (i = j) or hopping (i 6= j) elements, which are spin-dependent
(σ =↑, ↓) in the case of ferromagnetic metals such as Ni. Additionally, we need the overlap
integrals Siα,jβ of orbitals at different atomic positions.3 We obtain the quantities Hiα,jβ,σ

and Siα,jβ from a parameterization that is designed to accurately reproduce the band
structure of bulk materials [75, 76, 77, 79, 78].4 The atomic basis is formed by nine valence
orbitals, namely, the s, p, and d orbitals which give rise to the main bands around the
Fermi energy. In this parameterization both the hoppings and the overlaps to a neighboring
atom depend on the interatomic positions, which allows us to apply this parameterization
in combination with the MD simulations. The overlap and hopping elements have a cutoff
radius that encloses up to 5 (Au), 9 (Ag, Pt, and Al), or 12 (Ni) nearest-neighbor shells.
The left (L) and right (R) electrodes are constructed such that all the hopping elements
from the 112 wire atoms, which we will call the central part or center of our contact (C), to
the electrodes are taken into account. This means that the electrodes in the conductance
calculation are constituted of [001] layers containing even more than the 288 slab atoms
used in the structure calculations (for details see Sec. E.3). Note that with the word
electrode we will refer, throughout this chapter, to the fixed slab atoms (or the extended
[001] layers used in the conductance calculations).

The local environment in the neck region is very different from that in the bulk material
for which the TB parameters have been developed. This can cause large deviations from the
approximate local charge neutrality that typical metallic elements must exhibit. Within
the TB approximation we correct this effect by imposing a local charge neutrality condition
on the atoms in the central part of the nanowire through a self-consistent variation of the
Hamiltonian. This self-consistent procedure requires the computation of the electronic
density matrix ̺CC , which is obtained by integrating the Green’s function of the center up
to the Fermi energy (for details see Sec. E.2)

̺CC = −1

π

∫ EF

−∞
Im

[
∑

σ

Gr
CC,σ (E)

]
dE. (2.3)

In this expression Gr
CC,σ is the retarded Green’s function of the central part of the contact

Gr
CC,σ (E) =

[
(E + iη)SCC −HCC,σ − Σr

L,σ − Σr
R,σ

]−1
, (2.4)

3Note that the overlap elements Siα,jβ are spin independent for all the metals studied in this work. In
principle, the formulation of the employed TB parameterization allows a spin dependence of the overlap
integrals for ferromagnetic metals [75, 76, 77], but for the parameters used for Ni [78, 79], they are
identical for the different spin components. This is expected, because the elements of the overlap matrix
Siα,jβ should just be integrals over some (real) basis functions φ with orbital indices α and β at atomic

positions ~Ri and ~Rj (Siα,jβ =
∫
φα

(
~r − ~Ri

)
φβ

(
~r − ~Rj

)
d3r).

4We use the parameter files au par 99, ag par, al par, pt par, and ni ferro par [77]. Note that for Au
and Ni there are different parameterizations (au par 99 or au par and ni ferro par, ni para par, or ni par).
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where σ stands for the spin component, SCC is the overlap matrix of the center, HCC,σ

is the Hamiltonian, and ΣX,σ (with X = L or R) are the self-energies that describe the
coupling of the center to the electrodes. They are given by

Σr
X,σ (E) = (HCX,σ − ESCX) grXX,σ (HXC,σ −ESXC) , (2.5)

with the unperturbed retarded electrode Green’s function grXX,σ and the overlap (hopping)
matrices from the center to the electrodes SCX (HCX,σ). The unperturbed electrode Green’s
functions are assumed to be bulk Green’s functions in all our calculations. (See Sec. 2.10
for a discussion of the influence of this approximation.) The charge on the atom i is then
determined using a Mulliken population analysis

Ni =
∑

α

(̺CCSCC)iα,iα , (2.6)

where only the contributions of the central part to the atomic charge are considered. The
new Hamiltonian matrix elements Hiα,jβ,σ are obtained from the original ones H

(0)
iα,jβ,σ as

[80]

Hiα,jβ,σ = H
(0)
iα,jβ,σ + Siα,jβ

φi + φj
2

. (2.7)

The shifts φi are determined such that no atom deviates from the charge neutrality by
more than 0.02 electron charges (|Ni −Natom| < 0.02, and Natom stands for the electronic
charge of the respective charge-neutral metal atom). Note that there is one shift parameter
per central atom, also in the case of ferromagnetic metals.5

The low-temperature linear conductance is then computed using a Green’s function
formalism (see Chap. C for details), finally resulting in the Landauer formula

Gσ =
e2

h

∑

n

T σn (EF ) (2.8)

with the Fermi energy EF and the transmission T σn of the nth transmission eigenchannel.
The conductance is then given as the sum over the different spin contributions

G =
∑

σ

Gσ, (2.9)

which has the form
G = G0T (EF ) = G0

∑

n

Tn(EF ) (2.10)

5It should be mentioned that there is a slight inconsistency in our data concerning the implementation
of the shift. While for Ag, Pt, and Ni the shift has been implemented as given in Eq. (2.7), we used a shift

of the diagonal elements only, according to Hiα,iα,σ = H
(0)
iα,iα,σ +φi for Au and Al (see also Ref. [35]). The

reason for this inconsistency is that first we implemented the shift for the diagonal elements of Hiα,iβ,σ.
Only thereafter we became aware of the fact that for a uniform shift Eq. (2.7) gives a more meaningful
limit by shifting all eigenvalues of the system uniformly (see Ref. [80] and Sec. E.2 for details). In Sec. E.2
we show, however, that the shift of only the diagonal elements and the use of Eq. (2.7) yield very similar
results.
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for the spin independent case. As explained in the Introduction, G0 = 2e2/h is the quantum
of conductance, and T is the total transmission.

To investigate the influence of a small bias voltage, we have computed for Ag and Pt
the transmission T (E) in an energy interval of width 2∆ = 100 meV around EF .6 The
averaged conductance

〈G〉 = G0 〈T 〉 = G0
1

2∆

∫ EF +∆

EF−∆

T (E)dE, (2.11)

can then be compared to the conductance G = G0T (EF ) (see Eq. (2.10)). This pro-
vides information on the nonlinearity of current-voltage (I-V) characteristics, although the
formulas we use are, strictly speaking, only valid for the zero-bias situation.

2.2.3 Local density of states

To gain some insight into the electronic states relevant for the transport through our
nanowires, we shall also compute the local density of states (LDOS) projected onto partic-
ular atoms. The computation of the LDOS requires the evaluation of the Green’s function
of the central part of the nanowire GCC,σ (see Eq. (2.4)). From GCC,σ we construct the
LDOS via a Löwdin transformation [81]. The LDOS for a particular orbital α of atom i is
then given by7

LDOSiα,σ(E) = −1

π
Im
[
S

1/2
CCG

r
CC,σ(E)S

1/2
CC

]
iα,iα

. (2.12)

In the case of the nonferromagnetic metals the LDOS will be given only for one spin
component, because of the spin degeneracy.

2.3 Silver atomic contacts

We start the analysis of our results with the discussion of Ag nanowires. Ag is, like Cu
and Au, a noble metal with a single s valence electron. Different experiments have shown
that the conductance of Ag contacts exhibits a tendency towards quantized values in the
last stages of the wire formation [82, 20, 83]. In fact, the most dominant feature in the
experimental low-temperature conductance histogram is a pronounced peak at 1G0 (see
Fig. 2.1) [82, 20].

2.3.1 Evolution of individual silver contacts

Let us first describe some typical examples of the breaking of Ag nanowires. In Fig. 2.3 we
show the formation of a single-atom contact. In addition to the strain force we display the

6The averaged transmission 〈T 〉 (see Eq. (2.11)) is determined as a sum over T (E) on 11 equally spaced
points in the energy interval [EF − ∆, EF + ∆] around the Fermi energy (∆ = 50 meV).

7For plots of the LDOS of an atom a broadening of η = 10−3 Ry = 0.0136 eV is used in GCC,σ (see
Eq. (2.4)), while for transport the broadening is chosen to be η = 10−8 Ry = 1.36 × 10−7 eV.
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Figure 2.3: Formation of a single-atom
contact for Ag (4.2 K, [001] direction).
The upper panel shows the strain force
as a function of the elongation of the
contact. In the lower panel the conduc-
tance G, the averaged conductance 〈G〉,
the MCS radius, and the channel trans-
missions are displayed. Vertical lines
separate regions with different numbers
of open channels ranging from 8 to 1.
Above and below these graphs snapshots
of the stretching process are shown.

conductance G, the averaged conductance 〈G〉 (see Eq. (2.11)), the MCS radius, and the
channel transmissions. Let us point out that we consider a channel as being closed if its
transmission is below 0.01.8 As one can see, after an initial evolution up to an elongation
of 0.2 nm (region with eight conduction channels), which is similar for all the 50 Ag
contacts studied, the conductance starts decreasing in a steplike manner which changes
from realization to realization. The jumps in the conductance usually occur at plastic
deformations of the contact, i.e., when bonds break and sudden atomic rearrangements
take place. Such sudden rearrangements are visible as a break-in of the strain force. The
elastic stages, in which the atomic bonds are being stretched, are characterized by a linear
increase of the strain force. In this case the conductance exhibits well-defined plateaus (see,
for instance, the region with three channels, which occurs for elongations between 0.7 and

8For the division of a conductance trace into regions with different numbers of open conduction channels
we use a criterion of T σ

n < 0.01 to consider the nth channel to be closed. This division is only approximate:
Due to fluctuations in the geometry, a channel transmission may fall temporarily below 0.01 but reenter
later on. Often (especially in the metals Pt, Al, and Ni) many open conduction channels are present and,
in order not to overload our pictures, we need to combine several channel-closing events into one.
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0.83 nm). In the last stages of the breaking of the contact, displayed in Fig. 2.3, a stable
single-atom contact is formed. In this region the conductance is mainly dominated by a
single channel, although a second one is still visible (see two-channel region or elongations
between 0.86 and 0.95 nm). Subsequently a dimer structure is formed, which survives for
a short period of time, after which the contact finally breaks. In this region only a single
transmission channel is observed.

It is worth noticing that there is practically no difference between the conductance G
and the averaged conductance 〈G〉 (see Eq. (2.11)), demonstrating that the transmission
as a function of the energy is rather flat around the Fermi energy (in the window −∆ ≤
E −EF ≤ ∆). This can be seen explicitly in Fig. 2.5, which we shall discuss later in more
detail. The flat transmission T (E) is expected for a noble metal such as Ag because its
DOS around EF is mainly dominated by the contributions of the s and p bands, which are
rather broad and vary slowly with energy (see also Fig. E.3).

Another example of a breaking curve for Ag is depicted in Fig. 2.4.In the beginning
the conductance evolves similar to the contact discussed above (see Fig. 2.3). This time
a stable dimer is finally formed. Prior to the formation of the dimer structure, which
sustains a single transmission channel (see one-channel region or elongations from 1.06 to
1.19 nm), there also appears a single-atom contact, where two channels are still visible
(see two-channel region or elongations from 0.97 to 1.06 nm), in analogy to what will be
found for Au later (see Fig. 2.13). We observe for both configurations a single dominant
transmission channel and a conductance of around 1G0. This result is consistent with
first-principles calculations, where it has been shown for selected ideal contact geometries
that the transmission of Ag chains is around 1G0 and the conductance is carried by a single
transmission channel [84, 85].

Due to the appearance of a stable dimer structure there is now a long and flat last
plateau before rupture in Fig. 2.4. Our simulations show that this type of dimer is the
most common structure in the last stages of the contact formation.

A certain peculiarity can be observed if one has a closer look at the region with six
open channels. Here, the conductance first drops abruptly and then increases again in
the region with five open channels. Notice that this increase is accompanied by a steady
decrease of the MCS. This type of reentrance of the conductance, which is often observed
experimentally, cannot be explained in terms of semiclassical arguments, which are based
on Eq. (2.1). According to this formula the conductance should be a monotonous function
of the MCS, which, however, is not always the case. Such break-ins of the conductance
have already been observed before in simpler TB calculations [56].

In order to explain the existence of a single channel in the final stages of breaking,
we have plotted in Fig. 2.5 the LDOS of an atom in the narrowest part of the junction
as a function of the energy together with the transmission. We have chosen a dimer
configuration at an elongation of 1.16 nm, right before the rupture of the contact displayed
in Fig. 2.4. The transmission around the Fermi energy is made up of a single channel,
exhibiting only a tiny variation in the energy window −∆ ≤ E − EF ≤ ∆. In the LDOS
there are two dominant contributions, one coming from the s orbital, as expected, and the
other one from the pz orbital. Therefore, the transmission channel is expected to consist



24 Metallic nanowires: electrical and mechanical properties

0 0.2 0.4 0.6 0.8 1 1.2
elongation (nm)

0

1

2

3

4

co
nd

uc
ta

nc
e 

(G
0)

ra
d.

 o
f t

he
 m

in
. c

ro
ss

-s
ec

tio
n 

(Å
)

G
<G>
MCS

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

fo
rc

e 
(n

N
)

(2)(3)(4)(5)(6)(7)(8) (1)

Figure 2.4: Formation of a dimer config-
uration for Ag (4.2 K, [001] direction).
The upper panel shows the strain force
as a function of the elongation of the
contact. In the lower panel the conduc-
tance G, the averaged conductance 〈G〉,
the MCS radius and the channel trans-
missions are displayed. Vertical lines
separate regions with different numbers
of open channels ranging from 8 to 1.
Above and below these graphs snapshots
of the stretching process are shown.

mainly of these two contributions, the other orbitals being of minor importance. As found
before [39, 80], the s and pz orbitals are then forming a radially isotropic transmission
channel along the transport direction. If we denote by lz the projection of the angular
momentum onto the z axis (transport direction), this channel has the quantum number
lz = 0.

2.3.2 Statistical analysis of silver contacts

In Fig. 2.6 our MCS histogram as well as the computed conductance histogram are dis-
played.The histograms are obtained by collecting the results of the stretching of 50 Ag
contacts oriented along the [001] direction at 4.2 K, as described in Sec. 2.2. In the case
of the MCS histogram, the most remarkable feature is the appearance of very pronounced
peaks, which indicate the existence of particularly stable contact radii. For the purpose of
correlating these peaks with the structure in the conductance histogram, we have marked
the regions around the peaks in the MCS histogram with different pattern styles. In the
conductance histogram we indicate the counts for conductances belonging to a certain MCS
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Figure 2.5: Ag contact of Fig. 2.4 at an
elongation of 1.16 nm. The total trans-
mission T is plotted as a function of the
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from the different transmission channels
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region with the same pattern style, in order to establish the correlation between geometric
structure and features in the conductance histogram.

With respect to the conductance histogram, our main result is the appearance of a
pronounced peak at 1G0, in accordance with the experimental results [86, 20, 83] (see
Fig. 2.1). This peak mainly stems from the contributions of contacts with MCS radii in the
first (dimers) and second (single-atom contacts) region of the MCS histogram. Therefore,
we can conclude that the peak at 1G0 is a consequence or manifestation of the formation
of single-atom contacts and dimers in the last stages of the breaking of the Ag wires.

It is also important to stress that the contributions to the conductance histogram
coming from the different regions of the MCS histogram clearly overlap. This means in
practice that the MCS radius is not the only ingredient that determines the conductance,
as one would conclude from semiclassical arguments (see Eq. (2.1)). In other words, the
peak structure in the MCS histogram is not simply translated into a peak structure in the
low-temperature conductance histogram, as suggested in Ref. [52].

At this stage, a word of caution is pertinent. In break junction experiments, contacts are
opened and closed repeatedly, and the breaking processes start with a conductance as large
as 100G0 [45]. Compared to this value, our simulations start with a very small conductance
of around 4G0. Additionally, all the contacts are oriented along the [001] direction, which
can be expected to have an influence on the structure of the conductance histogram. Even
for rather thick contacts it has been shown experimentally that prefabricated wires cause
a different peak structure in the conductance histograms [87].

The last three peaks of the MCS histogram (labeled 10, 11, and 12 in Fig. 2.6) are
mainly dominated by the (arbitrarily) selected [001] starting configuration. It is interesting
to observe that the MCS region labeled with a 10 has a large weight at conductances
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Figure 2.6: MCS histogram (left panel) and conductance histogram (right panel) for Ag
(4.2 K, [001] direction, 50 contacts). In the MCS histogram different regions of frequently
occurring radii have been marked with different pattern styles. The patterns in the con-
ductance histogram indicate the number of counts for conductances belonging to the cor-
responding region of the MCS histogram. For better reference in the text, some regions in
the MCS and conductance histogram have additionally been labeled with numbers. In the
inset of the right panel the conductance histogram is displayed in the relevant region in a
smoothed version by averaging over six nearest-neighbor points.

of somewhat above 2G0, although it should be expected to have contributions for large
conductances because of its high MCS. The break-in of the conductance in Fig. 2.4 at
the transition from the six- to five-channel region is an example showing the origin of
the large weight of this MCS region. This observation illustrates that even conductance
regions down to 2G0 are distorted due to the small size of our contacts. While we can be
sure about the first peak in the conductance histogram at 1G0, all the higher peaks would
require the study of bigger contacts with even more atoms in the central region.

It is important to remark that out of 50 simulations we have only observed the formation
of three short chains with three, four, and five atoms in each case. This is in strong contrast
to the case of Au, where chains are encountered much more frequently and with more chain
atoms (see Sec. 2.4.1). Short atomic Ag chains of up to three atoms have also been observed
in experiments [20, 83].

Another important piece of information can be obtained from the analysis of the mean
channel transmission (averaged over all contacts) as a function of the conductance, which
is shown in Fig. 2.7.9 Here, one can see that the conductance region below 1G0 is largely

9The mean channel transmission 〈T σ
n 〉 as a function of the conductance is determined as follows: For

all simulated contacts of a certain metal we consider the breaking curve of the conductance and all the
channel transmissions T σ

n . (For the nonferromagnetic contacts we will suppress the spin index σ.) Next
we concentrate on a fixed conductance G = G↑ +G↓ (within a bin-width of 0.04G0). We obtain the mean
channel transmission 〈T σ

n 〉 of the nth channel as the mean value over all the corresponding individual

channel transmissions T σ
n,j for this fixed conductance (〈T σ

n 〉 =
∑N

j=1 T
σ
n,j/N , where N is the number of

values present in the average). The error of the mean channel transmission (as given in Figs. 2.15, 2.7,

2.21, and 2.27) is computed as the mean quadratic error σ̃ =
√∑

j

(
T σ

n,j − 〈T σ
n 〉
)2
/ (N − 1) of the values
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Figure 2.7: Mean value of the transmis-
sion coefficient 〈Tn〉 as a function of the
conductance for Ag (4.2 K, [001] direc-
tion, 50 contacts). The error bars indi-
cate the standard deviation σ̃.

dominated by a single channel. Above 1G0 a sharp onset of the second transmission channel
can be observed, the third channel increasing more continuously. At 2G0 again an onset
of the fourth and fifth channel is visible.

2.4 Gold atomic contacts

As another example of a noble metal with a single s valence electron we will analyze
the conductance of Au nanowires. As for Ag different experiments have shown that the
conductance of Au contacts exhibits a tendency towards quantized values in the last stages
of the wire formation [82, 20, 87, 89]. Again the most dominant feature in the experimental
low-temperature conductance histogram is a pronounced peak at 1G0 [82, 20] (see also
Fig. 2.1).

2.4.1 Evolution of individual gold contacts

In this section we discuss in detail some of the typical features that we observe in single
realizations of the Au contacts. In particular, we discuss the formation of both single-atom
contacts and chains.

In Fig. 2.8 we show the formation of a dimer configuration. In order to give the
complete picture of this process we have depicted the forces, the conductance, the radius
of the MCS, and the transmissions of the different conduction channels. In this example
the conductance evolves during the elongation process from a value close to 5G0 at the
starting point to 1G0 in the last stages before breaking. The decrease of the conductance
follows closely the evolution of the MCS. This correlation is particularly pronounced in
the last stages when the contact has one or two atoms in the narrowest part. However,

T σ
n,j, also called standard deviation [88]. (Note that in Ref. [36] we give the mean error of the arithmetic

mean χ = 0.8σ̃/
√
N , resulting in smaller error bars.)
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Figure 2.8: Formation of a dimer
configuration for Au (4.2 K, [001] di-
rection). The upper panel shows the
strain force as a function of the elon-
gation of the contact. In the lower
panel the conductance G, the MCS
radius, and the channel transmis-
sions are displayed. Vertical lines
separate regions with different num-
bers of open channels ranging from 8
to 1. Below these graphs snapshots
of the stretching process are shown.

it is worth stressing that the conductance does not always follow the MCS. We made this
observation for Ag before and see here another example in the elongation region between
0.75 and 1.0 nm. Sometimes there appear jumps in the conductance in regions where the
MCS evolves smoothly. We interpret this fact as rearrangements of atoms away from the
narrowest part of the wire. This interpretation is confirmed by the analysis of the forces,
as we explain in the next paragraph.

As shown in the upper panel of Fig. 2.8, one can see in the forces a series of regions where
they increase linearly and regions with abrupt jumps. As for Ag the first ones correspond
to situations where the structure remains essentially unchanged (elastic stages), and the
latter correspond to the breaking of bonds and subsequent sudden atomic rearrangements
(plastic stages). Such evolutions of the forces have been measured for Au contacts at room
temperature with the help of an atomic-force microscope [90]. The order of magnitude
of the forces in Fig. 2.8 is in good agreement with this experiment. Notice that also in
the cases where the jumps in the conductance are not correlated to abrupt changes in the
MCS, one observes jumps in the forces. This indicates that plastic deformations in regions
away from the narrowest part of the wire have also an influence on the conductance. Thus
we see that in the determination of the conductance the MCS is an important ingredient,
but it is by no means the only one.

Another interesting feature in Fig. 2.8 is the last conductance plateau. At these elon-
gations the MCS corresponds to a contact with the cross-section of one atom. The config-
uration present is a dimer of gold atoms. Such dimer configurations are the most common
geometries that we find in the last stages of the contact breaking. Notice also that in
the last plateau, which is marked by a linear increase of the forces, the conductance is
close to 1G0 and it is clearly dominated by a single conduction channel. As explained in
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Refs. [37, 39, 38], this is due to the fact that the number of channels is controlled by the
valence electrons in the narrowest part of the contact. In the case of Au the main contribu-
tion to the DOS at the Fermi energy comes from the single s valence orbital. This implies
that in the dimer configuration of Fig. 2.8, there is only one possible path (conduction
channel) which proceeds mainly through the s orbitals. It is also important to emphasize
that during the elongation of the contact we observe that the channels disappear one by
one in agreement with the experimental results reported in Ref. [38]. This will be discussed
in more detail below, when we compare our results to the experimental measurements. We
attribute the successive closing of the channels to the fact that in the stretching process
the Au atoms leave the narrowest part one by one, and every Au atom contributes to the
transport with one orbital, which in turn can give rise to one conduction channel.10

On occasion we observe that the Au contact does not break as in the configura-
tion of Fig. 2.8, but continues to form chains of several atoms. This is illustrated in
Fig. 2.9.Experimental evidence of the formation of Au chains was first reported indepen-
dently by two groups [21, 22]. The formation of chains had already been suggested by
different computer simulations before [59, 61, 74]. In the last ten years there has been an
intense activity in this topic. Thus, for instance, there are now several experiments con-
firming the existence of gold chains [91, 47, 92], and the forces during the formation of a
Au chain have been measured [70]. From the theoretical side, many authors have analyzed
the formation, stability, and conductance of Au chains [93, 64, 80, 94, 95, 96, 97].11

In our simulations for the [001] direction we have observed 11 chains out of 50 stretching
processes with different lengths: nine chains ranging from 3 to 6 atoms and three chains of
10, 12, and 14 atoms. Experimentally chains up to eight Au atoms have been reported [22].
The mechanism of the chain formation has been explained by Bahn and Jacobsen [71] in
terms of many-body effects in metals. The main idea is that in certain metallic systems the
binding energy per neighboring atom may increase as the number of neighbors decreases.
Here, we want to illustrate how a chain is formed in real time. We show in Fig. 2.10 five
snapshots of the dynamics of the nanocontact of Fig. 2.9. At 0.0 ps a contact is shown with
a typical dimer structure in the middle. The atom number 2 has four nearest neighbors and
the atom 1 only three. Due to the many-body interactions the bond between the atoms
2 and 3 breaks. After about 26.6 ps another bond breaks and the atom 2 moves into the
chain. The atom 4 is now in a similar situation as the atom 2 was in the beginning, and
the previous process can be repeated again.

Turning now to the transport properties of the chains, we see in Fig. 2.9 that during
the chain formation the conductance ranges from 0.6G0 to 1.1G0, exhibiting a long flat
plateau close to 1G0. With respect to the conductance value, this is in good agreement
with experiment [98]. We observe that the conductance is mainly dominated by a single
conduction channel. As in the case of the dimer contact shown before (see Fig. 2.8), the
single dominant transmission channel is a consequence of the fact that Au is a monovalent

10For the MCS of the starting configuration with eight atoms one observes eight open conduction chan-
nels.

11For a more complete list of references, see Sec. XI in Ref. [1].
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Figure 2.9: Formation of a six-atom
chain for Au (4.2 K, [001] direction).
The upper panel shows the strain
force as a function of the elongation
of the contact. In the lower panel
the conductance G, the MCS radius,
and the channel transmissions are
displayed. Vertical lines separate re-
gions with different numbers of open
channels ranging from 8 to 1. Be-
low these graphs snapshots of the
stretching process are shown.

metal. At the end of the stretching process, when the chain is made up of four or more
atoms, we typically observe the appearance of a second channel and sometimes even a
third one (see Fig. 2.9). Our analysis shows that these additional channels are due to the
contribution of the d orbitals [96]. With respect to the fluctuations of the conductance
during the formation of the chains, we want to stress that they are not an artifact of
our conductance calculations, but they are clearly related to fluctuations in the contact
geometry. In Fig. 2.9 one can see that the structure in the conductance during the chain
formation is accompanied by abrupt changes in the force values, i.e., by plastic deformations
that correspond to the incorporation of additional atoms into the chain. We have calculated
the conductance for all the configurations every 5.6 ps, including contact structures that
could be unstable. In the experiment the stretching velocity is several orders of magnitude
smaller and such unstable configurations should be averaged out.

2.4.2 Comparison with experimental results

In this section we show experimental results obtained following the technique of Refs. [38,
99, 100], where part of the experimental data has been presented. It is possible to ex-
tract the full information of the individual transmission coefficients in experiments. This
is done by inducing proximity superconductivity in a Au contact and analyzing the su-
perconducting I-V characteristics [101, 102]. We refer the reader to Ref. [100] for further
details.

Fig. 2.11 shows the conductance and the transmission coefficients of a Au contact as a
function of the elongation at 100 mK.12We can see how the channels disappear one by one

12The absolute value of the electrode distance is arbitrary, only relative distances could be measured.
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Figure 2.10: Snapshots of the chain formation for the contact displayed in Fig. 2.9. At
an initial time of 0.0 ps the atom number 1 has three nearest neighbors and atom 2 has
four neighbors. At 1.4 ps the bond between atoms 2 and 3 breaks. At 25.2 ps atom 2 is
only connected to two atoms of the electrode. At 26.6 ps another bond breaks, and atom 2
moves into the chain. Atom 4 is now in a similar position as atom 2 was in the beginning
and the process can repeat again.

as the contact is being stretched. Notice that there is a very long plateau of about 1 nm
of length, which corresponds to the formation of a chain. In this plateau the conductance
changes between 0.3G0 and 0.9G0 and it is dominated by a single channel. Notice also
the abrupt changes of the conductance, which are most likely due to incorporations of new
atoms into the chain.

In Fig. 2.12 we show another experimental conductance curve.As can be seen, there is a
long plateau (about 0.7 nm of length), where the conductance is close to 1G0. Naively, one
would expect the conductance to be dominated by a single conduction channel. However,
the analysis reveals the presence of two channels, and only in the very last stages it reduces
to one channel. In the two channel regime of the experiment in Fig. 2.12 the second channel
has a transmission mainly below 0.2 and the total conductance is slightly below 1G0.

In our simulations we typically observe two open transmission channels in the last stages
for geometries in which there are two atoms in the narrowest part displaced with respect
to each other (see Fig. 2.13(a)). If there is only a single atom, the second channel gives
only a small contribution to the conductance (see Fig. 2.13(b)). As soon as we observe a
dimer (see Fig. 2.13(c)), the conductance is largely dominated by a single channel. Our
analysis of the character of the channels suggests that for a single central atom like in
Fig. 2.13(b) the second channel is due to direct tunneling between the electrodes. In the
dimer configuration the distance between the electrodes is considerably larger, which leads
to the disappearance of the second channel. The current then flows only through the s
orbitals of the central atoms.

In the bottom panel of Fig. 2.11 all the highest measured transmission coefficients (circles) at each elec-
trode distance are connected with straight lines, then the second highest transmission coefficients at each
electrode distance are connected, and so on. The mapping of single transmission coefficients to certain
transmission channels cannot be measured experimentally.
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ductance (top panel) of a Au sam-
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(bottom panel) as a function of
the electrode distance. The verti-
cal lines define regions with differ-
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Figure 2.12: Same as Fig. 2.11.
The vertical lines define regions with
different numbers of transmission
channels ranging from 8 to 1.

2.4.3 Statistical analysis of gold contacts

In order to study the origin of the characteristic peak structure in the conductance his-
togram for Au, we have collected the data of the conductance calculations for the stretching
of 50 Au contacts oriented along the [001] direction at 4.2 K. The results are displayed in
the conductance histogram of Fig. 2.14 (right panel). As one can see, the conductance his-
togram has a pronounced peak close to 1G0 and two further maxima above 2G0 and 3G0.
In order to make a connection between the peak structure in the conductance histogram
and the contact geometry, we show in the left panel of Fig. 2.14 the MCS histogram.

Clearly, the peak in the conductance histogram close to 1G0 is due to the contribution
of contacts with the MCS of an atom, i.e., single-atom contacts, dimers, or chains of atoms.
Concerning the peak structure above 2G0 and 3G0 it should be pointed out that we are
simulating very thin contacts with a cross-section of only eight atoms. As visible in Figs. 2.8
and 2.9 a characteristic evolution of the conductance does only start below 3G0. Similarly
to Ag a comparison with the experiment in this region is hampered.

Keeping the limitation of our thin geometries in mind, we want to point out that,
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Figure 2.13: Transmission of the sec-
ond channel during the last stages of
the breaking of a typical Au contact
(4.2 K, [001] direction). The trans-
mission of the first channel is about
0.7G0 (not shown).

again, we do not observe a simple direct correlation between the MCS and the conductance
histogram. The MCS regions overlap in the conductance histogram. And in addition the
peaks of the MCS histogram, except for the first, are not reflected in the conductance
histogram. The reason for this is that beside the MCS also the geometry of the narrowest
part and the disorder in the contact play an important role. This means in practice that
contacts with different radii can have similar values of the conductance. In particular this is
true for small contacts such as the ones that we analyze here. Of course, the situation could
be different for larger contacts, where semi-classical arguments are believed to provide a
good description.

Another important piece of information can be obtained by analyzing the individual
transmission coefficients. Fig. 2.15 shows the mean value of the channel transmissions 〈Tn〉
as a function of the total conductance for the conductance histogram of Fig. 2.14. Notice
that below 1G0 the conductance is clearly dominated by a single channel. In particular, for
a total conductance of 1G0 the second channel gives only a contribution of about 0.04G0.
This is due to the fact that this region corresponds mainly to dimer configurations or
chains of atoms, where all the current proceeds through the s orbital of Au, as explained
in Sec. 2.4.1.

In the two channel regime of the experiment in Fig. 2.12 the second channel has a
transmission mostly below 0.2G0 and the total conductance is slightly below 1G0. Similar
values are obtained in the simulations. For example, in Fig. 2.15 we observe at a total
mean conductance of about 1.1G0 a mean transmission of the second channel of about
0.16G0, while the third channel, with a mean transmission below 0.03G0, plays a negligible
role. For higher conductance values the channels are not completely open, which explains
the absence of conductance quantization in our conductance histogram (see Fig. 2.14).

The results for the transmission coefficient 〈Tn〉 for Ag and Au can be related to the
experimental observation on noble metals made by Ludoph et al. [86, 82], namely, the
principle of the “saturation of channel transmission”. This principle says that there is
“a strong tendency for the channels contributing to the conductance of atomic-size Au
contacts to be fully transmitting, with the exception of one, which carries the remaining
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Figure 2.14: MCS histogram (left panel) and conductance histogram (right panel) for
Au (4.2 K, [001] direction, 50 contacts). In the MCS histogram different regions of fre-
quently occurring radii have been marked with different pattern styles. The patterns in
the conductance histogram indicate the number of counts for conductances belonging to
the corresponding region of the MCS histogram. In the inset of the right panel the con-
ductance histogram is displayed in the relevant region in a smoothed version by averaging
over six nearest-neighbor points.

fractional conductance” [86]. This tendency of the channels to open one by one is evident
for the first channel from Figs. 2.7 and 2.15 and also experimentally the first peak in
the conductance histogram for Ag and Au fulfills this principle best [82]. Concerning the
higher conductances the finite size of our contacts plays an increasingly restrictive role, but
we are well in line with the statement (made for Au, Ag, and Cu) that “particularly the
second peaks in the histograms are also determined by other statistical (probably atomic)
properties of the contact” [82].

2.5 Platinum atomic contacts

Now we turn to the analysis of Pt contacts. Pt is a transition metal with 10 valence
electrons in the partially occupied 5d and 6s orbitals. The experiments reported so far
show that in the case of Pt the last conductance plateau lies typically above 1G0. The
conductance histogram is dominated by the presence of a broad peak centered around 1.5G0

[12, 20, 103] (see Fig. 2.2). Another remarkable feature of Pt contacts is the appearance
of monoatomic chains (with up to six atoms), which have a conductance ranging from
around 1.5G0 to 1.0G0 as the length increases [104, 98]. Moreover, complex oscillations of
the conductance as a function of the number of chain atoms are superimposed on top of
such a decay. Their origin has been explained in terms of a nearly half-filled s band and
the additional conduction channels provided by the almost full d bands [105].
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2.5.1 Evolution of individual platinum contacts

In Fig. 2.16 a typical example of the formation of a dimer configuration is shown. As before,
in addition to the strain force, we display the conductance, the averaged conductance, the
MCS radius, and the channel transmissions. The initial evolution is quite similar for all
the 50 Pt contacts analyzed here. In this region, which corresponds to elongations below
0.17 nm, we observe between 11 and 10 open conduction channels. After this region, and
as in the case of Ag and Au contacts, the conductance evolves in a series of jumps which
coincide with plastic deformations (see the positions of break-ins in the sawtooth shape
of the strain force). However, in contrast to the noble metals Ag and Au, now we find
strong conductance fluctuations during the different elastic plateaus. The stretching of the
contact of Fig. 2.16 ends with the formation of a dimer, which sustains three open channels
and has a conductance above 1G0 (see the region with elongations between 1.12 and 1.22
nm). This is again in contrast to the Ag and Au junctions discussed above, where only a
single dominant channel is observed in the final stages before rupture.

On the other hand, the comparison between the conductance G and the averaged
conductance 〈G〉 shows certain deviations (see for instance the region with four channels).
This fact indicates that for Pt there is a much stronger variation of the transmission as a
function of the energy around the Fermi energy, as compared with Ag and Au. This is in
agreement with the experimental finding of nonlinear I-V characteristics for Pt as opposed
to linear ones for a noble metal such as Au [106].

The clear differences between the Pt and the noble metal contacts can be traced back
to the difference in their electronic structure, as we now proceed to illustrate. We show
in Fig. 2.17 the LDOS for an atom in the narrowest part of the junction as a function
of the energy together with the transmission. We have chosen a dimer configuration at
an elongation of 1.18 nm just before the rupture of the contact of Fig. 2.16. Notice the
presence of a much more pronounced structure in the transmission around the Fermi energy
as compared to Fig. 2.5, which can be attributed to the contribution of d states. This fact
naturally explains the deviation between the conductance G and the averaged conductance
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Figure 2.16: Formation of a dimer con-
figuration for Pt (4.2 K, [001] direction).
The upper panel shows the strain force
as a function of the elongation of the
contact. In the lower panel the conduc-
tance G, the averaged conductance 〈G〉,
the MCS radius, and the channel trans-
missions are displayed. Vertical lines
separate regions with different numbers
of open channels ranging from 11 to 3.
Above and below these graphs snapshots
of the stretching process are shown.

〈G〉 (see Fig. 2.16). At the same time, the partially occupied d orbitals are also responsible
for the larger number of open transmission channels (three in the dimer region of Fig. 2.16),
as they provide additional paths for electron transfer between the two electrodes [12].

From Fig. 2.17 it is evident that d states play a major role for the conductance in Pt
contacts. The strong fluctuations of the conductance during the elastic stages of stretching,
as observed in Fig. 2.16, point out a high sensitivity of these d states to the atomic config-
urations. Ultimately, the sensitivity of d states to atomic configurations can be attributed
to the spatial anisotropy of the d orbitals as compared to the spatially isotropic s orbitals,
which are mainly responsible for the conductance in Ag contacts.

Now we proceed to discuss the formation of chains in Pt contacts. In the last stages of
our simulations we often observe the formation of special structures, namely linear chains
of several atoms similarly to what we find for Au (see Sec. 2.4.1). In Fig. 2.18 we show
the evolution of a Pt contact, which features a five-atom chain before rupture. As for
the contact discussed previously, substantial fluctuations in the conductance are visible
even during the elastic stages, demonstrating again the sensitivity of d orbitals to atomic
positions. The conductance during the formation of the chain is mainly dominated by two
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Figure 2.17: Pt contact of Fig. 2.16 at an
elongation of 1.18 nm. The total trans-
mission T is plotted as a function of the
energy together with the contributions
from the different transmission channels
Tn. Additionally the LDOS is given for
an atom in the narrowest part of the con-
tact, where the different orbital contri-
butions have been itemized. Above the
figure the narrowest part of the Pt con-
tact is displayed in a magnified fashion
and the atom is indicated, for which the
LDOS is shown.

channels, but also a third one is contributing slightly. The first two channels can be of
nearly the same magnitude (see elongations above 1.1 nm). After the dimer has formed, the
transmission fluctuates around 1G0. Compared with Ag, the conductance can, however,
also be higher than 1G0 due to the presence of a second and a third open channel. The
conductance of the last plateau is slightly below the typical experimental value of 1.5G0

[20, 106], and we will come back to this point later.

During the formation of the chain (see three-channel region or elongations above 0.8
nm), the strain force exhibits a clear sawtooth behavior. The abrupt jumps in the force
after the long elastic stages signal the incorporation of a new atom into the chain. Such
incorporations happen at elongations of 0.79 nm (dimer), 1.00 nm (three-atom chain), 1.05
nm (four-atom chain), and 1.27 nm (five-atom chain). Additional jumps at 0.83, 1.11, and
1.33 nm are due to bond breakings at the chain ends. Note that the incorporation of a new
atom into an atomic chain does not always require long stretching distances of the order
of the nearest-neighbor distance. Because of metastabilities depending on the geometry of
the junction, they may actually be much shorter, as can be inferred from the transition
from the three-atom chain to the four-atom chain.

In order to explore changes in the electronic structure and their influence on the trans-
mission for the evolution from a dimer to a long atomic chain, we analyze these two kinds
of structures now in more detail. In Fig. 2.19 we plot the transmission and LDOS as a
function of the energy, considering as example the contact of Fig. 2.18. As can be seen in
Fig. 2.19(a), for the case of the dimer the main contributions to the LDOS at the Fermi
energy come from the s, dyz, dzx, and d3r2−z2 orbitals. This is similar to the dimer structure
investigated previously (see Fig. 2.17), where the d orbitals contribute significantly to the
LDOS. While the energy dependence of the transmission looks qualitatively similar, the
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Figure 2.18: Formation of a five-atom
chain for Pt (4.2 K, [001] direction). The
upper panel shows the strain force as a
function of the elongation of the contact.
In the lower panel the conductance G,
the averaged conductance 〈G〉, the MCS
radius, and the channel transmissions are
displayed. Vertical lines separate regions
with different numbers of open channels
ranging from 11 to 3. Above and below
these graphs snapshots of the stretching
process are shown.

LDOS changes dramatically when a long chain is forming (see Fig. 2.19(b)). We observe
a pinning of the s and d3r2−z2 states at the Fermi energy, where the s state is close to half
filling corresponding to an electronic 5d96s1 configuration of the Pt atom. (Notice also the
change in scale for the LDOS when going from Fig. 2.19(a) to Fig. 2.19(b).) Comparing
the energy dependence of the transmission channels and the LDOS in Fig. 2.19(b), we can
infer that the first channel is a linear combination of s, pz and d3r2−z2 orbitals (lz = 0),
while the second and third seem to be dominated by dyz and dzx orbital contributions
(lz = ±1). These findings are perfectly in line with Ref. [105].

It is also noteworthy that when the d states have decayed 1 eV above the Fermi energy
and the s contribution dominates in the LDOS, only a single channel is observed in the
transmission for both the dimer and the chain configuration (see Figs. 2.17 and 2.19). This
would correspond exactly to the situation described above for Ag wires, and demonstrates
that the differences between these two metallic contacts (Ag and Pt) are mainly due to
the different positions of their Fermi energy.
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Figure 2.19: Pt contact of Fig. 2.18 at an elongation of 0.95 nm, when the contact is
forming a dimer (a) and at an elongation of 1.44 nm, when the contact is forming a five-
atom chain (b). In each case the total transmission T is plotted as a function of the energy
together with the contributions from the different transmission channels Tn. Additionally
the LDOS is given for an atom in the narrowest part of the contact, where the different
orbital contributions have been itemized. Above each figure the narrowest part of the Pt
contact is displayed in a magnified fashion and the atom is indicated, for which the LDOS
is shown.

2.5.2 Statistical analysis of platinum contacts

Putting together the results for the 50 Pt contacts simulated, we obtain the histograms
for the MCS and conductance shown in Fig. 2.20. The MCS histogram exhibits a very
pronounced peak at radii corresponding to dimer contacts and chains of atoms. Out of 50
breaking events we obtain 18 chains, 17 chains ranging from 5 to 11 atoms and one with
up to 19 atoms. The tendency of Pt to form atomic chains is consistent with experiments
[20, 104], but the ratio of chain formation is obviously higher. This could partly be due
to the thinness of the contacts that we investigate. There exists experimental evidence
for the formation of chains with lengths up to six atoms [20], while longer chains become
more and more unlikely. Therefore our chains with more than eight atoms seem somewhat
artificial.

In the conductance histogram the low-lying MCS peak for dimers and atomic chains
gives rise to a very broad peak in the conductance histogram. The position of this peak is
centered around 1G0 rather than 1.5G0, as in the experiment [20, 107]. If we exclude the
longest chains (chains with more than eight atoms), we obtain a conductance histogram
with a very broad peak at 1.15G0 (see the inset in Fig. 2.20).

Experimentally it has been shown that the peak at 1.5G0 shifts to 1.8G0 for higher
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Figure 2.20: MCS histogram (left panel) and conductance histogram (right panel) for
Pt (4.2 K, [001] direction, 50 contacts). In the MCS histogram different regions of fre-
quently occurring radii have been marked with different pattern styles. The patterns in
the conductance histogram indicate the number of counts for conductances belonging to
the corresponding region of the MCS histogram. In the inset of the right panel the con-
ductance histogram is displayed in the relevant region in a smoothed version by averaging
over six nearest-neighbor points for all contacts (solid) and contacts with up to eight atoms
in the chain (dotted).

bias voltages [107]. This has been attributed to a structural transition, where atomic
chains are replaced by single-atom contacts. Thus, the conductance of dimers and chains
should be around 1.5G0 and the conductance of single-atom contacts around 1.8G0. In
Fig. 2 of Ref. [98] Smit et al. reported a decrease in the average conductance from 1.5G0 to
around 1G0 for increasing chain lengths. This demonstrates that our broad distribution of
conductances around 1G0 in the conductance histogram (see Fig. 2.20) is not unreasonable,
although the transmission for dimers and short chains seems to be underestimated. A
recent DFT study investigated ideal Pt chains consisting of two to five atoms in the [001]
direction [108]. Conductances between 2G0 and 1G0 were obtained with a trend towards
1G0 for longer chains in agreement with the experiment. The structure of the chains,
which in our case is linear, was zigzaglike. This could be another explanation for the lower
transmissions in our study.13

Although the peak position in the conductance histogram in Fig. 2.20 is lower than in
the experiments, we want to point out the strong qualitative differences in comparison to
Ag and Au. While the first two MCS peaks in the Ag and Au histogram (see Figs. 2.6 and
2.14) are narrowly peaked around conductance values of 1G0, this is not the case for Pt.
Instead, the first two peaks cover a range of conductance values from as low as 0.1G0 up to

13Further investigations are needed to find out, why the transmission of dimers and short chains is
rather 1G0 than 1.5G0. Possible reasons could lie in the structural properties such as, for example, the
high disorder of our thin contacts or linear instead of zigzag chains. The approximation of surface Green’s
functions by bulk Green’s functions in the electrodes has been checked to have little influence on the
transmission when chains have formed (see Sec. 2.10). Potentially the low transmission for dimers and
short chains could also indicate limitations for the use of the Pt TB parameters in conductance calculations.
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Figure 2.21: Mean value of the transmis-
sion coefficient 〈Tn〉 as a function of the
conductance for Pt (4.2 K, [001] direc-
tion, 50 contacts). The error bars indi-
cate the standard deviation σ̃.

2G0 and are very broad. This is again due to the contribution of the d orbitals at the Fermi
energy, which leads to a higher number of open channels in the case of Pt, as explained in
Sec. 2.5.1. Let us recall that for Ag and Au there is a single dominant transmission channel
(and a small second one), while for Pt there are usually three channels in the last stages
before breaking, and the second channel can be comparable in magnitude to the first. As
explained above, the extraordinary width of the first peak in the conductance histogram
for Pt can be attributed to the sensitivity of d states to the atomic configuration of the
contact.

This qualitative difference in the number of conduction channels is illustrated in Fig. 2.21,
where we show the mean value of the transmission coefficients as a function of the con-
ductance. Notice that as compared with the case of Ag and Au (see Figs. 2.7 and 2.15),
there are contributions from the second and third channel already present for conductances
below 1G0. For conductances of 1.5G0 there are four or five channels on average.

In conclusion, the different behavior of Ag, Au, and Pt contacts stems from the different
electronic states present at the Fermi energy. While for noble metals such as Au and Ag it is
located in the s band, its position is shifted downwards into the d bands for Pt. Therefore,
in the latter case there are in general more open channels contributing to the conductance.
This confirms the statements of Scheer et al. [38] that the number of transmission channels
is determined by the chemical valence.

2.6 Aluminum atomic contacts

Al is an example of the so-called p-valent metals [20]. In the crystalline form there are
three valence electrons occupying partly the 3s and 3p bands around the Fermi energy.
In this respect, Al has a very different electronic structure as compared to Au, Ag, or Pt
(e.g., see Fig. E.3), and in this section we study how this electronic structure is reflected
in the conductance of Al atomic wires. Due to the technical problems detailed below, this
analysis will be considerably shorter than for the other metals.
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The experimental studies of the conductance of Al atomic-sized contacts have shown
several peculiar features [109, 19, 110, 39, 20]. For instance, Scheer et al. [19], making use
of superconducting current-voltage characteristics to extract the transmission coefficients,
showed that usually three conduction channels contribute to the transport, although the
conductance of the last plateau is typically below 1G0. This was explained in Ref. [37]
in terms of the contribution of the p orbitals to the transport. Exploiting conductance
fluctuations, the presence of several conduction channels for conductances above 0.5G0

could subsequently be confirmed by another independent experimental technique [82]. As
an additional peculiarity, Al is one of the few multivalent metals which exhibits several
pronounced peaks in the conductance histograms at low temperatures [110]. The first
peak appears at around 0.8G0 and the next ones at 1.9G0, 3.2G0, and 4.5G0 (see Fig. 2.2).
Furthermore, the conductance plateaus in Al have a positive slope upon stretching [109, 19],
which is quite unique.

Again we simulated 50 breaking events. Although we always observe in the last stage
of the nanocontacts either a single-atom contact (36 times), a dimer (13 times), or in one
case a four-atom chain, the single-atom contacts and dimers are often very short-lived con-
figurations and less stable than the corresponding Ag and Pt structures. We attribute this
to shortcomings in the semiempirical potential employed for Al in this work. Previously it
has been shown that this potential cannot reproduce adequately the mechanical properties
of an infinite Al chain [111]. This underestimation of the stability of thin wires is quite ap-
parent in our simulations, where the contacts break effectively at conductances well above
1.5G0 and with several atoms present in the MCS. This technical problem hindered the
proper analysis of the statistical properties of Al contacts.

In Fig. 2.22 we show the evolution of a contact that effectively breaks at a conductance
of 4G0. The dimer configuration occurring in the final stages is very short-lived and only
appears to be an intermediate state (see the three-channel region).

However, we could recover a few sensible examples. One of the formations of a rela-
tively stable dimer is displayed in Fig. 2.23. A region of three transmitting channels can
be observed shortly before contact rupture, and the conductance of the dimer configura-
tion is close to 1G0, which agrees nicely with the observations of Scheer et al. [19]. The
origin of these three channels is, as explained in Ref. [37], the contribution of the partly
occupied sp-hybridized valence orbitals of Al to the transport. Before this region, a nice
plateau around 2G0 is visible. Both features agree well with the peaks in the experimental
conductance histogram for Al close to 0.8G0 and 1.9G0 [110, 20]. More importantly, our
results reproduce the peculiar positive slopes of the last plateaus of the stretching curves,
in compliance with Refs. [109, 19, 39, 63].

2.7 Nickel atomic contacts

During the last few years a lot of attention has been devoted to the analysis of contacts
of magnetic materials [112, 113, 114, 115, 116, 117, 118]. (For a more complete list of
references see Refs. [1, 118].) In these nanowires the spin degeneracy is lifted, which
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Figure 2.22: Formation of a short-lived
dimer configuration for Al (4.2 K, [001]
direction). The upper panel shows the
strain force as a function of the elonga-
tion of the contact. In the lower panel
the conductance G, the MCS radius and
the channel transmissions are displayed.
Vertical lines separate regions with dif-
ferent numbers of open channels ranging
from 17 to 3. Above and below these
graphs snapshots of the stretching pro-
cess are shown.

can potentially lead to interesting spin-related phenomena in the transport properties.
For instance, different groups have reported the observation of half-integer conductance
quantization either induced by a small magnetic field [114] or even in the absence of a
field [116, 117]. These observations are quite striking since such quantization requires
simultaneously the existence of a fully spin-polarized current and perfectly open conduction
channels.14 With our present understanding of the conduction in these metallic junctions,
it is hard to believe that these criteria can be met, in particular, in the ferromagnetic
transition metals (Ni, Co and Fe). As a matter of fact, in a more recent study by Untiedt
et al. [118], carried out at low temperatures and under cryogenic vacuum conditions, the
complete absence of quantization in atomic contacts of Ni, Co, and Fe has been reported,
even in the presence of a magnetic field as high as 5 T. Several recent model calculations
support these findings [119, 120, 121, 122].

In this section we address the issue of the conductance quantization and the spin po-
larization of the current with a thorough analysis of Ni contacts. As described in Sec. 2.2.2
we apply our method to a Hamiltonian with spin-dependent matrix elements [78, 79].

14More generally, the half-integer conductance quantization could also arise from a perfectly polarized
current, where the channel transmissions of the transmitted spin-component add up to 1.
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Figure 2.23: Formation of a dimer con-
figuration for Al (4.2 K, [001] direction).
The upper panel shows the strain force
as a function of the elongation of the
contact. In the lower panel the conduc-
tance G, the MCS radius, and the chan-
nel transmissions are displayed. Vertical
lines separate regions with different num-
bers of open channels ranging from 17 to
3. Above and below these graphs snap-
shots of the stretching process are shown.

2.7.1 Evolution of individual nickel contacts

In Fig. 2.24 we show the evolution of the conductance during the formation of a Ni dimer
structure, which is the most common geometry in the last stages of the breaking process.
In addition to the evolution of the conductance and transmission eigenchannels for both
spin components separately, we have plotted the MCS radius, strain force, spin polarization
of the current, and contact configurations. The spin polarization of the current P , shown
in the inset of the lower panel, is defined as

P =
G↑ −G↓

G↑ +G↓ × 100%, (2.13)

where Gσ is the conductance of the spin component σ (see Eq. (2.8)). Here, spin up (σ =↑)
means majority spins and spin down (σ =↓) minority spins. Notice that in the last stages
of the stretching the conductance is dominated by a single channel for the majority spin,
while for the minority spin there are still up to four open channels. In the final stages (see
regions with three or one open channel(s) for G↑) the conductance for the majority spin lies
below 1.2e2/h, while for the minority spin it is close to 2e2/h, adding up to a conductance
of around 1.2–1.6G0.

With respect to the evolution of the spin polarization of the current, in the beginning
of the stretching process it takes a value of around −40%, i.e., the conductance of the
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Figure 2.24: Formation of a dimer
configuration for Ni (4.2 K, [001] di-
rection). The upper panel shows the
strain force as a function of the elon-
gation of the contact. In the lower
two panels the conductance Gσ, the
MCS radius, and the channel trans-
missions are displayed for the re-
spective spin component σ. Verti-
cal lines separate regions with differ-
ent numbers of open channels rang-
ing from 7 to 1 and 18 to 4, respec-
tively. An inset shows the evolution
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below these graphs snapshots of the
stretching process are shown.

minority-spin component outweighs that of the majority-spin component. This is expected
from the bulk DOS of Ni (see Fig. E.3). For this transition metal the Fermi level lies right
in the d band for the minority spin, while for the majority spin one is at the edge of the
d band and the s and p bands contribute comparatively more strongly to the DOS. For
this reason, there is a larger number of conduction channels for minority-spin component.
The value of P is indeed quite close to the value of the spin polarization of the bulk DOS
at the Fermi energy, which in our model is equal to −40.5%. As the contact geometry
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starts changing, the spin polarization of the current begins to fluctuate. It increases even
to values above 0%, but keeps a tendency towards negative values, until it starts increasing
to over +80% in the tunneling regime, when the contact is broken.

Let us now try to gain further insight into these findings. We show in Fig. 2.25 the
transmission as a function of the energy together with the LDOS for an atom in the
narrowest part of the constriction portrayed in the upper part of the figure.It can be
observed that the Fermi energy, as in bulk, is located just at the edge of the d states for the
majority-spin component, while it is inside the d states for the minority-spin component.
The majority-spin component therefore exhibits a single transmission channel, behaving
similar to a noble metal (see the results for Au and Ag in Sec. 2.4 and 2.3), while there are
several open channels for the minority-spin component as in the case of a transition metal
(see the results for Pt in Sec. 2.5).

Concerning the spin polarization of the current, the large DOS at EF for the minority-
spin component usually gives rise to a higher number of open channels for the minority-spin
component than for the majority-spin component, which in turn leads to a negative spin
polarization of the current. However, this argument is just qualitative, because the actual
transmission of the channels cannot simply be predicted from the LDOS. The conductance
depends also on the overlap of the relevant orbitals and on nonlocal properties like the
disorder in the contact region. As a counter example, Fig. 2.24 shows that also intervals
of positive P can be found, although the DOS of the minority-spin component is usually
higher than for the majority-spin component. This is particularly dramatic in the tunneling
regime at the end of the breaking process, where, for instance, in Fig. 2.24 we see that a
value of P = +80% is reached. Such a reversal of the spin polarization is due to the fact
that the couplings between the d orbitals of the two Ni tips decrease faster with distance
than the corresponding s orbitals. As will be discuss further below, the result is typically
a reduction of the minority-spin conductance and therefore a positive value of P .

We would like to point out that the contribution of the minority-spin component to the
conductance is very sensitive to changes in the configuration. As is evident from Fig. 2.24,
the minority spin shows stronger fluctuations than the majority spin as a function of the
elongation. Again, this is a consequence of the fact that the minority-spin contribution
is dominated by the d orbitals, which are anisotropic and therefore more susceptible to
disorder than the s states responsible for the conductance of the majority spins. The
sensitivity to atomic configurations is in agreement with the findings for Ag and Pt as
discussed above, where stronger fluctuations of the conductance are seen for the transition
metal Pt, as compared with the noble metal Ag.

2.7.2 Statistical analysis of nickel contacts

For the Ni contacts we did not observe the formation of any chain in the 50 simulated
stretching processes. As a consequence, only a small first peak is visible in the MCS
histogram (see Fig. 2.26). This peak originates from the dimer configurations, which usually
form before the contacts break. In the conductance histogram there is a shoulder at around
1.3G0. Part of this first peak is buried under the subsequent conductance peak with its
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Figure 2.25: Ni contact of Fig. 2.24
at an elongation of 0.83 nm. The
transmission is plotted as a function
of the energy together with the con-
tributions from the different trans-
mission channels T σn for the respec-
tive spin component σ. Addition-
ally the LDOS is given for each spin
component for an atom in the nar-
rowest part of the contact, where the
different orbital contributions have
been itemized. Above the figure the
narrowest part of the Ni contact is
displayed in a magnified fashion and
the atom is indicated, for which the
LDOS is shown.

maximum at 2.5G0. This second very broad peak is mainly influenced by the starting
configuration, which means that the small size of our contacts might hide part of the peak
structure in the conductance histogram. According to the MCS regions contributing to
the shoulder in the Ni conductance histogram, the first peak is mainly composed of thick
contacts (with MCS radii of around 2 Å). This also explains the large broadening of the
histogram peak, since for thick contacts, there is more configurational variability.

Concerning the comparison with measurements, the shoulder at 1.3G0 in our results
is in agreement with the experimental conductance histogram, where a particularly broad
peak between 1.1G0 and 1.6G0 is observed [118]. Our calculations indicate that this peak
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Figure 2.26: MCS histogram (left panel) and conductance histogram (right panel) for
Ni (4.2 K, [001] direction, 50 contacts). In the MCS histogram different regions of fre-
quently occurring radii have been marked with different pattern styles. The patterns in
the conductance histogram indicate the number of counts for conductances belonging to
the corresponding region of the MCS histogram. In the inset of the lower panel the con-
ductance histogram is displayed in the relevant region in a smoothed version by averaging
over six nearest-neighbor points.

contains contributions from high MCS regions. The remarkable width of the first peak in
the experimental conductance histogram is then explained by the configurational variabil-
ity of thick contacts in conjunction with the contribution of configurationally sensitive d
states to the conductance of the minority-spin component. However, this interpretation
requires further discussion. Usually the first peak in the experimental conductance his-
tograms is believed to arise from single-atom contacts and dimers [38]. With respect to
the problems encountered for Al (see Sec. 2.6), it may be that the employed EMT po-
tential for Ni underestimates the stability of single-atom and dimer configurations in a
similar manner. In contrast to our MCS histogram, Garćıa-Mochales et al. [123] obtain a
decreasing peak height for higher MCS radii.15 Although their results are obtained with a
slightly different approach and for thicker contacts, their findings support the conjecture
of a possible underestimation of the stability of single-atom contacts and dimers in our
calculations. As a consequence the contribution of such configurations to the first peak
in the conductance histogram may be too low. In addition, as mentioned above, this first
peak in the conductance histogram is not well separated from contributions with a high
MCS, which are influenced by our starting configuration. Simulations of thicker contacts
and more sophisticated calculations of the contact geometry may be needed to clarify the
robustness of our findings.

With regard to the mean channel transmission of the spin-components as a function of

15Note that in Fig. 4 of Ref. [123] the MCS histograms are plotted with counts vs. area and not counts
vs. MCS radius as in our case. For a circular area A = πr2 this means that according to dA = 2πrdr for
a constant dA the MCS radius sampling dr needs to decrease for growing r. However, in our calculations
dr is fixed, to that the MCS histogram of Ref. [123] is not directly comparable to ours in Fig. 2.26.
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Figure 2.27: Mean value of the transmission coefficient 〈T σn 〉 for the respective spin com-
ponent σ as a function of the conductance for Ni (4.2 K, [001] direction, 50 contacts). The
error bars indicate the standard deviation σ̃.

the conductance, the minority-spin component exhibits more transmission channels than
the majority-spin component (see Fig. 2.27). This further illustrates our previous argu-
ment, where we explained that the majority-spin component possesses an Ag-like character,
while the minority-spin component behaves more Pt-like. Note also that the first channel
for the majority-spin component opens up remarkably slowly compared with Ag or Au (see
Figs. 2.7 and 2.15).

Now we want to address the question of how the spin polarization of the current is
influenced by configurational changes. For this purpose, we show in Fig. 2.28 the spin
polarization P as a function of the conductance for all the 50 simulated breaking events.16As
already observed in the simulation of a single breaking event (see Fig. 2.24), the spin
polarization of all the contacts starts at a value of −40%, when the contact is close to
its starting configuration. As explained above, this value for the spin polarization of the
current coincides rather well with the polarization of the bulk DOS at the Fermi energy
(see Fig. E.3). As the contact is stretched, also the diversity of geometrical configurations
increases and the spin polarization values are widely spread, ranging from around −60
to 20%. There is a tendency towards negative spin polarizations, as can be observed
in the inset of Fig. 2.28. The average spin polarization varies between −30 and −10%
for conductances above 0.6G0. As described in the previous subsection, these variations
arise from the high sensitivity of the minority-spin conductance to atomic positions, as
compared to the less sensitive majority-spin conductance. The trend towards negative P
values can be explained by the higher number of states present at the Fermi energy for the
minority-spin component as opposed to the majority-spin component.

In the region of conductances below 0.6G0 the number of points is comparatively lower,
which explains the partly bigger error bars. Nevertheless, the number of realizations is still

16Note that bins (where a bin-width of 0.04G0 has been used) containing only a single data point are
discarded in the inset of Fig. 2.28. The reason is that the calculation of the standard deviation σ̃ requires
at least two data points.
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Figure 2.28: Spin polarization of the
current P as a function of the con-
ductance. All the data points for the
spin polarization are plotted in the
graph, while in the inset their arith-
metic mean and the corresponding
standard deviation σ̃ are displayed.

enough to see the spreading of P values over an even wider interval than in the contact
regime, together with an average tendency towards positive values. We attribute this
trend of reversed spin polarizations to the faster radial decay of the hoppings between the
d orbitals that dominate the minority-spin contribution to the conductance, as compared
with the s orbitals that dominate the majority-spin contribution. The faster decay with
distance overcomes in the tunneling regime the effect of the higher DOS of the d states
versus the s states.

2.8 Mechanical properties of metallic atomic contacts

Experimentally it is possible to measure simultaneously the conductance and the strain
force during the breaking of nanowires [40]. Special attention has been devoted to the
force in the very last stage of the stretching process [70]. For this reason, we present in this
section a detailed analysis of this breaking force for the different metals discussed above.
In addition, the exotic atomic chain structures will be investigated further.

Using the 50 contacts that we have simulated for the different metals, we construct
histograms of the breaking force in the following way: We consider the last 30 recorded
atomic configurations before the point of rupture of the contact. Out of them the 20 highest
values of the strain force are assembled in a force histogram, combining the data from all
50 contacts.17 The breaking force histograms obtained for the different metals are shown

17The choice of the 20 highest force values out of the last 30 recorded geometries before the point of
rupture for each of the 50 simulated contacts can be justified as follows: To obtain enough statistics on
the breaking force, and because of the evident fluctuations in the strain force (see Fig 2.4, for example)
several geometries before breaking of a wire need to be considered in the breaking force histogram. This
is why we take into account 30 recorded geometries before the point of rupture. However, the very tiny
strain forces directly before and at the point of rupture (which is signaled by a negligible MCS radius of
less than 0.3 Å) will produce artificial peaks at small force values. For this reason we select the 20 highest
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Figure 2.29: Histogram of the force
needed to break atomic contacts of the
metals Ag, Au, Pt, and Ni. For ev-
ery contact the highest 20 force values
of the last 30 recorded geometries before
the point of rupture are gathered. The
force data for 50 contacts of the respec-
tive metal are assembled in the respective
histograms. Solid lines indicate the aver-
age breaking force as calculated from the
respective histogram, while dashed lines
correspond to the bulk breaking forces
(see Table 2.1).

in Fig. 2.29. For all elements, except for Ni, a clear maximum is visible in the center of a
broad distribution of force values. We will address later, why Ni forms an exception in our
simulations.

It is elucidating to compare the values of the breaking force obtained in the simulations
with the corresponding forces in bulk. For this purpose, we use the “universal” binding
energy function, suggested in Ref. [124], to get a rough estimate for the breaking force
expected for a bulk bond (see Sec. E.4 in the Appendix for details).

Values for the breaking forces are put together in Table 2.1.The expression for the
breaking force in Eq. (E.24) needs to be considered as a rough estimate of the force nec-
essary to break a bulklike bond. Concerning a comparison of this bulk estimate and the
EMT results, it should be recalled that the EMT employed in the MD simulations consid-
ers by construction the experimentally verified increase of atomic bonding energies for low
coordination [67]. Breaking forces for low-coordinated chains have been shown to be two
to three times larger than bulklike bonds and bond breaking may take place at distances
well before the inflection point of the bulk estimate [71] (see also Appendix E.4). Another
difference is that the forces listed under “bulk” are estimates for breaking force of a sin-
gle bond. This is not necessarily the case for the result called “EMT” (effective-medium
theory). The EMT results are based on the stretching of the nanocontacts in our MD
simulations. If the contact breaks while more than one atom resides in the MCS, several
atomic bonds might be contributing to the breaking force of the contacts. This implies
that the resulting force could be higher than the breaking force for a single bond.

For elements with a large peak in the MCS histogram at single-atom radii, like for the
elements Au and Pt, which form chains, usually the contacts break after the formation
of a dimer or atomic chain. As a consequence, for Ag, Au, and Pt single atomic bonds
are probed in the EMT results. For all these elements, the force estimated from bulk

strain forces from the set of the 30 strain force values. (We have checked that our results are not altered
qualitatively, when we select the 25 highest or only the 15 highest strain force values.) This is done for
each of the 50 simulated contacts, and the data is assembled in the histogram of the breaking force.
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metal Ag Au Pt Ni

EMT 0.60 ± 0.16 0.81 ± 0.20 1.12 ± 0.27 1.66 ± 0.55
bulk 0.57 0.85 1.31 0.89

Table 2.1: Breaking forces in nN for the metals Ag, Au, Pt, and Ni. The values in the
column labeled “EMT” (effective-medium theory) are the average breaking force together
with its standard deviation σ̃ as obtained from the force histograms in Fig. 2.29, and “bulk”
refers to the force necessary to break a bulklike bond according to Eq. (E.24).

considerations agrees surprisingly well with the EMT results. For Ni, however, there is
a discrepancy between the breaking force determined with EMT and the bulk prediction.
We attribute this to the fact that its MCS histogram does not display a pronounced peak
for dimer structures (see Fig. 2.26), indicating that Ni dimers are less stable than dimers
of the other investigated metals (Ag, Au, and Pt). On account of this the breaking force
typically contains contributions from more than a single atomic bond, and is therefore
higher than the force of the bulk estimate. The contributions of several bonds also explain
the broad distribution without a clear maximum for Ni in Fig. 2.29.

The absolute values of our breaking forces in Table 2.1 need not be quantitative, as the
investigations of Rubio-Bollinger et al. [70] show. While our EMT-breaking force for Au
coincides well with their value of “around 1 nN”, they found that DFT calculations are in
better agreement with the experimentally measured breaking force of 1.5 nN.

Coinciding with the DFT-simulations by Bahn et al. [71] the ordering of breaking force
strengths for the different metals as predicted by the bulk estimate is FAg < FAu < FNi <
FPt, where Fx is the breaking force for the material x. The EMT results modify this
ordering slightly by interchanging Pt and Ni.

Before we conclude, we want to investigate the appearance and structural properties
of the peculiar atomic chain structures in more detail. The general mechanism behind
the chain formation during a stretching process is an increase in bond strength between
low-coordinated atoms [125, 71, 70, 35]. Independent of the metal under investigation,
we observed that contacts, in which an atomic chain has formed, always break because of
a bond rupture at the chain ends. The higher bond strength for low-coordinated atoms
explains this phenomenon. Namely, the terminal atoms in the chain are connected with
the thicker part of the contact, and possess a higher coordination number than the other
chain atoms. As a consequence the bonds at the chain ends are weaker than the bonds in
the interior of the chain [71].

We want to illustrate the mechanical properties of an atomic chain considering as
example the Pt contact of Fig. 2.18. In Fig. 2.30 we plot the atomic displacements for
this Pt contact projected onto the stretching direction (z axis) in the final elastic stage for
elongations of Li = 1.37 nm and Lf = 1.49 nm. The z-projected displacement is defined
as dz,j = Rz,j(Lf ) −Rz,j(Li), where Rz,j is the z-component of atom j, and Lf (Li) is the
final (initial) elongation. (Additionally we add an offset to dz,j, such that the fourth layer
in the lower electrode has zero displacement.) Due to the low coordination of the chain
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Figure 2.30: The atomic displacements for the Pt contact of Fig. 2.18 are shown in the last
elastic stage before rupture (change in coordinates between initial and final elongations
of Li = 1.37 nm and Lf = 1.49 nm). On the abscissa the displacement of each atom
is plotted, while on the ordinate the positions of the atoms can be seen at the end of
the elastic stage (elongation Lf). To the right the final configuration is displayed. The
atomic displacements and positions have both been projected onto the stretching direction
(z axis).

atoms and the associated higher bond strength as compared to interatomic bonds of the
other atoms in the central part of the nanowire, the chain is expected to be particularly
stable. For this reason the chain atoms should stay close to each other in a displacement
plot during an elastic stage of stretching. Instead, most of the displacement should take
place in the regions of more highly coordinated atoms in the central part of the nanowire.
Exactly this is visible in Fig. 2.30. Note that a similar analysis has been performed by
Rubio-Bollinger et al. [70] for a Au chain.

Finally, we want to comment on experimental results of Ref. [104]. There, Smit et

al. compare the tendency of formation of atomic chains for the neighboring 4d and 5d
elements, namely, Rh, Pd, and Ag compared to Ir, Pt, and Au. They find a higher
occurrence of chains for the 5d elements as compared to 4d elements, and explain this by a
competition between s and d bonding. From their data we extract an enhancement factor
of chain formation of 3.28 for Au compared to Ag.18 Taking the ratio between the content
of the first MCS peak in the histograms, which corresponds to dimers and atomic chains,
for Ag and Au normalized by the complete area of the MCS histograms (see Figs. 2.14
and 2.6), we obtain a value of 3.09, in good agreement with their experiments. Bahn
et al. [71] pointed out that the chain formation depends sensitively on the initial atomic
configuration. In general we believe that chain formation in our thin geometries might
be enhanced compared to experimental conditions. Nevertheless the chain enhancement
factor, as it is a relative measure, might be robust.

18In Fig. 4 of Ref. [104] a fraction of long plateaus is given for Au and Ag respectively. Taking the ratio
between the P1.5-values for Au and Ag, an enhancement of chains by a factor of P1.5(Au)/P1.5(Ag) ≈
0.59/0.18 = 3.28 is found for Au compared to Ag.
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2.9 Conclusions

In summary, we have analyzed the mechanical and electrical properties of Au, Ag, Pt,
and Ni nanojunctions. Using a combination of classical MD simulations and transport
calculations based on a TB model supplemented with a local charge neutrality condition,
we have studied the origin of the experimentally observed characteristic features in the
conductance histograms of these metals. The ensemble of our results indicates that the
peak structure of the low-temperature conductance histograms originates from an artful
interplay between the mechanical properties and the electronic structure of the atomic-sized
contacts.

In the case of Au and Ag wires, we observe a first peak in the conductance histogram
at 1G0, resulting from single-atom contacts and dimers in good agreement with experi-
ments [20]. For Au also long atomic chains contribute strongly to this first peak. In the
last stages of the stretching process the transport is dominated by a single conduction
channel, which arises mainly from the contribution of the 5s orbitals for Ag and the 6s
orbitals for Au. Regarding the Au contacts our transmission channel analysis is in good
agreement with experimental observations. The simulations indicate a small contribution
of the second channel to the total conductance in single-atom contacts, i.e., if only a single
atom is coupled to the electrodes. This finding can explain the number of channels of the
experimental opening curve. Concerning contact geometries for Ag we find practically no
formation of monoatomic chains, as opposed to Au. To be precise, for Ag the chain forma-
tion is found to be suppressed by a factor of 3 compared to Au, which is again consistent
with the experimental observations [104].

In the case of Pt contacts, the first peak in the conductance histogram is mainly due to
single-atom contacts and long atomic chains. However, it also contains some contributions
from contacts with larger MCS radii. The peak is rather broad and centered around 1.15G0,
which is somewhat below the experimental value of 1.5G0 [20, 103]. The differences in
width and value of this conductance peak, as compared with Au and Ag, can be attributed
to the key contribution of the 5d orbitals to the transport. First, the d orbitals provide
additional conduction channels, and commonly there are three open transmission channels
in the final stages of the Pt contacts. Second, these additional channels naturally give rise
to higher conductance values. Third, caused by their spatial anisotropy the d orbitals are
very sensitive to changes in the contact geometry, which results in a large width of the
histogram features.

With respect to Al the statistical analysis of the contacts was hindered due to short-
comings in the employed EMT potential. However, for a sensible example a region of three
transmitting channels is observed shortly before contact rupture, and the conductance of
the dimer configuration is close to 1G0, which agrees nicely with experimental observa-
tions [19]. These three channels originate from the contribution of the partly occupied
sp-hybridized valence electrons of Al to the transport. In addition, our results reproduce
the peculiar positive slopes of the last plateaus of the stretching curves [109, 19, 37, 63].

In the case of ferromagnetic Ni, we have shown that the contacts behave, roughly
speaking, as a mixture of a noble metal (such as Ag) and a transition metal (such as Pt).
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While the 4s orbitals play the main role for the transport of the majority-spin electrons,
the conduction of the minority-spin electrons is controlled by the partially occupied 3d
orbitals. This follows from the position of the Fermi energy. While the minority spins are
dominated by d states the contribution of s states is enhanced for the majority spins. In
the conductance histogram we obtain a shoulder at 1.3G0, whose large width can again
be attributed to the extreme sensitivity of the d orbitals to atomic configurations. On the
other hand, we find that the spin polarization of the current in the Ni contacts is generally
negative, increasing and fluctuating as the contacts narrow down and become disordered.
In particular, large positive values are possible in the tunneling regime, right after the
rupture of the wires. Once more, this behavior can be traced back to the fact that the d
orbitals play a key role in the conductance of the minority-spin component.

The mechanical properties of our nanocontacts have been analyzed in detail with respect
to breaking forces and the peculiar atomic chains. Concerning the breaking forces a simple
estimate for the maximal force per bulk bond matches well the simulation results for Ag, Au
and Pt. However, Ni shows deviations from the bulk estimate and an extraordinarily broad
distribution of breaking force values, which we attribute to the generally larger thickness of
the contacts at the breaking point, meaning that the breaking force contains contributions
of several atomic bonds. Contacts with an atomic chain configuration were observed to
always tear apart due to a bond rupture at the chain ends in agreement with previous
simulations [125]. Pt atomic chains were illustrated to exhibit an enhanced stability as
compared to the remaining atoms in thicker parts of the nanowire. In our simulations the
most typical geometry in the last stages of the breaking are dimer configurations where
two Au atoms are facing each other.

Another important observation is that, although we obtain for every metal a sequence
of peaks in the minimum cross-section histogram, these peaks are smeared out in the con-
ductance histograms. This indicates that not only the narrowest part of the constriction
determines the conductance, but also the atomic configuration close to the narrowest part
plays a role. This finding challenges the direct translation of peak positions in the conduc-
tance histogram into contact radii via the Sharvin formula. However, we should also point
out the limitations of our modeling, in particular the small number of atoms present in
the junctions. Classical molecular dynamics simulations might better describe atomic shell
effects in thick junctions than electronic shell effects necessary for a reliable description of
thin wires [126]. For this reason simulations of contacts with thick cross-sections are highly
desirable. Moreover, let us remind that we have focused our analysis on low temperatures
(4.2 K), where the atoms do not have enough kinetic energy to explore the low-energy
configurations. Both the small number of atoms and the low temperature may cause an
enhanced atomic disorder of the contacts in the stretching process.

The effects of higher temperatures, different crystallographic orientations of the con-
tacts, a finite stiffness of the electrodes [59, 61] instead of the investigated infinitely rigid
leads, or other protocols of the stretching process with different annealing, heating and
relaxation times have not been addressed in our studies. A first-principles description of
thick contacts, in which both the mechanics and the electronic structure of the contacts
are treated at a higher level of accuracy and on an equal footing, should be a major goal
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for the theory in the future. Experiments in which, simultaneously to the recording of a
conductance histogram, also the contact geometries are observed, could help to validate
the correlation between conductance peaks and stable wire radii.
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2.10 Surface versus bulk electrode Green’s functions

The results in the previous Secs. 2.4–2.7 have been obtained with bulk electrode Green’s
functions (see Sec. 2.2). One may justify their use by arguing that the electrodes are just
reservoirs, whose precise structure is not known, due to atomic disorder, for example. For
this reason it is possible to describe them on a convenient level of sophistication and can
improve their description if needed [127, 128]. Bulk Green’s functions may constitute a
reasonable approximation and the important characteristics of the system under investiga-
tion should be determined by the central part of the contact, which needs to be described
properly. However, surface Green’s functions are a more proper way of constructing the
electrode Green’s functions gXX in the self-energies ΣX (see Eq. (2.5)), because electrodes
consitute a semi-infinite system as compared to the infinite crystal assumed in the con-
struction of bulk Green’s functions (see Chap. D for details on the construction of bulk
and surface Green’s functions). In addition to this the current is a nonlocal property
and therefore the conductance will depend on the electrode description. For these reasons
we wanted to overcome the approximation of bulk Green’s functions and investigate the
changes occurring, when we replace them by surface Green’s functions. The results will
be presented below. It should be mentioned that the major part of these results has been
obtained after the publication of Ref. [36]. The numerical effort arising, when the electrode
Green’s functions are modeled as surface Green’s functions, is even more demanding than
when bulk Green’s functions are being used.19

To anticipate the result of this section, it turns out that the conductance values are
changed primarily for thick cross-section wires. These changes are, however, not relevant
for the conductance histogram, as the results for thick wires are dominated by the chosen
starting configuration (ideal fcc contact). Only for Ni there seems to be a systematic
underestimation of the conductance of the majority spin component when bulk Green’s
functions are used to model the electrodes. This causes an increase of the spin polarization
P to more positive values, while the shape of the spin polarization as a function of the total
conductance remains rather unchanged. Nevertheless, apart from the systematic deviations
detected for the spin polarization, all our conclusions remain unchanged.

We will concentrate on the materials Ag, Pt, and Ni. For each of these metals we
will show a comparison of the results as obtained with surface and bulk electrode Green’s
functions. More concrete, we will compare (a) the evolution of the conductance for a
stretching process and (b) the corresponding conductance histograms. With respect to Ni
we will show in addition the changes in the spin polarization of the current as a function
of the total conductance.

In Fig. 2.31 the breaking curve for the contact from Fig. 2.4 can be seen in the left
panel, while in the right panel the conductance histogram is displayed as obtained for sur-

19The computation of surface Green’s functions took so much time in the determination of a charge
neutral Hamiltonian that it turned out to be necessary to compute all the surface Green’s functions once,
store them, and just read them at need. This procedure requires 15 GB hard disk space for unformatted
Fortran data files per spin component. For Ni this resulted in a total of 30 GB of disk space per stretched
contact.
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Figure 2.31: Comparison of results for surface and bulk electrode Green’s functions in the
case of Ag. To the left a comparison of the conductance curves for the contact of Fig. 2.4
is shown. To the right the conductance histogram of Ag, corresponding to Fig. 2.6, is
depicted for surface electrode Green’s functions. In the inset a direct comparison of the
conductance histograms, as obtained for surface and bulk electrode Green’s functions, is
displayed in a smoothed version by averaging over six nearest-neighbor points.

face electrode Green’s functions. The comparison of the breaking curves shows that the
deviations of the conductance are biggest at small elongations, i.e., when the wire is close to
its starting configuration, and the contact has a large cross-section. In general the conduc-
tance, as obtained with surface electrode Green’s functions, exhibits a tendency towards
a higher value. We explain this tendency by a reduced interface resistance between the
central system and the electrode. Nevertheless the shape of the total conductance exhibits
the same features, as for example the drops at around 0.2 and 0.34 nm. When comparing
the conductance histograms (see the inset of Fig. 2.31), one observes that deviations mainly
arise for high conductances, while the peak at 1G0 remains unchanged. The conductance
histogram seems to be ”stretched” to higher conductance values. This shows again that
mainly thick MCS wires are affected by the choice of the electrode Green’s functions.

Focussing on the peak belonging to the MCS region 10 in the conductance histogram,
it is visible that this peak shifts towards conductance values of around 2.7G0, while it was
located at around 2.2G0 previously (see Fig. 2.6). As argued before (see the discussion of
Fig. 2.6), the peak position is due to such break-ins as visible for elongations between 0.34
and 0.47 nm in the left panel of Fig. 2.31. This argument can be confirmed by noticing
that for the surface Green’s functions the break-in is centered around a conductance of
2.7G0, in agreement with the new peak position in the conductance histogram in Fig. 2.31.

Let us now come to Pt. From Fig. 2.32 it can be inferred that the surface Green’s
functions have a similar influence on the results for Pt as they had on the results for Ag.
Again we observe that the conductance for the surface and the bulk electrode Green’s
functions during the stretching of the contact only deviates in the beginning, while after-
wards the differences between both are small (see the left panel of Fig. 2.32). Also the
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Figure 2.32: Comparison of results for surface and bulk electrode Green’s functions in the
case of Pt. To the left a comparison of the conductance curves for the contact of Fig. 2.18
is shown. To the right the conductance histogram of Pt, corresponding to Fig. 2.20, is
depicted for surface electrode Green’s functions. In the inset a direct comparison of the
conductance histograms, as obtained for surface and bulk electrode Green’s functions, is
displayed in a smoothed version by averaging over six nearest-neighbor points.

trend towards higher conductance values is visible for the results obtained from the surface
electrode Green’s functions. As for Ag, the conductance histograms differ mainly for high
conductance values (see the right panel of Fig. 2.32).

Concerning Ni, there seems to be a systematic increase of the conductance for the ma-
jority spins, while the minority-spin component shows only slight initial deviations between
the bulk and surface electrode Green’s function results (see Fig. 2.33). This increase of the
conductance for the majority-spin component is in agreement with the observations made
above for Ag and Pt, where a trend towards more positive total conductances was observed.
As a result of the increase of the conductance for the majority-spin component and a mainly
unchanged conductance of the minority-spin component, the spin polarization increases as
well (see the inset in the right panel of Fig. 2.33). Now it is on average positive, as soon
as the contact evolves in a characteristic fashion (elongations above 2.5 nm). The jump
to a largely positive spin polarization in the tunneling regime, however, persists. In the
conductance histogram the trend towards higher conductance values is evident again (see
the left panel in Fig. 2.34). The conductance histogram for the surface Green’s function
with its first peak ranging from 1.2G0 to 1.8G0 possesses a striking similarity to the ex-
perimental histogram (see Fig. 2.2) [20, 118]. However, this similarity might be deceiving
due to possible shortcomings in the employed EMT potential. As explained above (see the
discussion of Fig. 2.26), the strong contribution of the high MCS regions as compared to
single-atom contacts and dimer configurations seems to be in contradiction to the common
wisdom that the first peak in the conductance histogram is due to single-atom contacts,
dimers, and – depending on the investigated material – chain configurations. Looking at
the spin polarization (see the left panel in Fig. 2.34), there is a systematic deviation from
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Figure 2.33: Comparison of results for surface and bulk electrode Green’s functions in the
case of Ni for the contact of Fig. 2.24. The different spin components σ are displayed in the
left (σ =↑) and the right (σ =↓) panel. In the inset of the right panel a direct comparison
of the spin polarization, as obtained for surface and bulk electrode Green’s functions, is
plotted.

the results of bulk Green’s functions. The trend observed in Fig. 2.33 is clearly visible,
namely the spin polarization is shifted to higher values by around 10%. The shape of
the spin polarization as a function of the total conductance nevertheless stays the same,
including the on average positive spin polarization in the tunneling regime.

To summarize, we have seen that the conductance is usually increased, when surface
Green’s functions are used instead of bulk Green’s functions in the electrode description.
We attribute this to a reduced interface resistance between the central system and the
electrodes. The increase in the conductance affects mainly wires with large cross-sections.
The first peaks in the conductance histograms remain unaffected for Ag and Pt. Only for Ni
a clearer first broad peak arises. For the Ni contacts we observe a systematic enhancement
of the conductance for the majority spins, while the minority spins stay rather unaffected.
This causes a roughly constant increase in the spin polarization of the current with a
constant shift of around 10% with respect to the results as obtained with bulk electrode
Green’s functions. Except for this slight modification in the spin polarization of the current
for Ni, the use of surface Greens functions does not change the statements made in the
Conclusions (see Sec. 2.9).

With regard to future investigations, especially with respect to investigations of wires
with more atoms and bigger cross-sections (as proposed in the Conclusions (see Sec. 2.9)),
the results of this paragraph recommend the use of surface Green’s functions in the elec-
trode description of quantum transport.
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Figure 2.34: Comparison of results for surface and bulk electrode Green’s functions in the
case of Ni. To the left the conductance histogram of Ni, corresponding to Fig. 2.26, is
shown for surface Green’s functions. In the inset a direct comparison of the conductance
histograms, as obtained for surface and bulk electrode Green’s functions, is displayed in
a smoothed version by averaging over six nearest-neighbor points. In the right panel, the
spin polarization of the current as a function of the conductance is shown. All the data
points of the spin polarization for surface electrode Green’s functions can be found in the
inset, while the main figure contains a direct comparison between the average value of the
spin polarizations for bulk and surface electrode Green’s functions. Error bars correspond
to the standard deviation σ̃ introduced before (see Sec. 2.3).
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Chapter 3

Electron-vibration interaction in

transport through atomic gold wires

In this chapter we will shortly discuss the effects of electron-vibration coupling on the
conductance of atomic gold wires. This work, as published in Ref. [129], has mainly been
carried out by J. K. Viljas, and we will only shortly state the main results without going
into the details. The interested reader is referred to the appendices of the aforementioned
reference.

From the theoretical side the consideration of the influence of electron-vibration cou-
pling on charge transport is an extension to the standard Landauer theory (see discussion
of Eq. (C.6) in Chap. C). In addition to the elastic current, inelastic corrections due to
vibrations need to be taken into account. From the experimental side there exist mainly
two methods to detect signatures of inelastic effects on the electric current. The first is
the point contact spectroscopy (PCS) and the second is the inelastic electron tunneling
spectroscopy (IETS) [103]. Both methods are in principle very similar. In the PCS the
differential conductance G(V ) = dI/dV is measured as a function of the dc bias voltage.
The electrons in the contact are accelerated to an excess energy of eV . When this energy
reaches that of the main phonon modes of the metal, inelastic scattering results in an en-
hanced probability for the electrons to scatter back through the contact, which is seen as
a drop in G(V ). Opposed to this decrease of the current for PCS, an increase is observed
in IETS.

Using PCS Agräıt et al. [13] observed the onset of dissipation in atomic gold wires.
Later Smit et al. [103] showed that PCS may be applied to reveal otherwise unaccessible
information on configurations of molecules in atomic point contacts, namely hydrogen in
platinum junctions. According to their analysis hydrogen is present in these contacts
in molecular form as H2 and not, as perhaps expected from the catalytic properties of
platinum, in a dissociated form.

Both experiments show that important additional information about nanoscale systems
may be gained from the signatures of electron-vibration interaction on the electric charge
current. A theoretical model for the description of the experiment by Agräıt et al. [13] is
the subject of this chapter.

63
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3.1 Introduction

In recent experiments, the conductance-voltage (I-V) characteristics G(V ) of gold wires
formed by the STM technique were measured [13]. It was observed that the conductance
often has a very pronounced single drop from G0 at a critical voltage Vph = 10 − 20
mV, marking the onset of a dissipative process. The size of the drop was on the order of
0.5%−2.0% of G0. It was also found that stretching of the wire typically leads to an increase
in the step, and to a decrease in the critical voltage Vph. Based on simple arguments for
infinite single-orbital tight-binding (TB) chains, these findings were interpreted as a sign
of the excitation of vibrational modes in the wire: only a single longitudinal mode with
twice the Fermi wave vector can be excited, since this corresponds to the momentum which
must be transferred from an electron to the vibrations in a single backscattering process.
Although the validity of such arguments for a wire of finite length (of typically less than 10
atoms) can be questioned, the interpretation was backed up by first-principles calculations
[130, 131]. The authors of Ref. [130] emphasize the importance of so-called alternating
bond length (ABL) modes, and in particular the longitudinal mode of highest frequency.
We also want to refer to the very recent ab initio study of the same authors in Ref. [132],
where beside other systems the inelastic transport in gold wires is studied in more detail.

Below we aim at discussing possible answers to basic physical questions such as: When
exactly does the electron-vibration coupling lead to a drop and when to an increase in
the conductance? Why does there appear to be just a single drop in the experiments of
Ref. [13], although the momentum conservation is not exact? What determines the height
and width of this drop?

As mentioned above we concentrate on studying the I-V characteristics of gold wires.
We use a Slater-Koster [133] type TB approach, where the parameters are taken from the
non-orthogonal parameterization of Papaconstantopoulos and coworkers [134, 75, 135, 77].
The use of such a parameterization [136, 137, 80] makes the modeling of atomic wires
computationally less intensive as compared with full ab-initio methods. The approach is
still microscopic in that it takes into account the symmetries of the atomic s, p, and d
valence orbitals, which, via hybridization, form the conduction channels. It is also general
enough to allow one to model everything within the same framework: we use the parameters
to compute the total energy of the wire, and thus to optimize the geometry. After this, the
normal modes of oscillation and the electron-vibration coupling constants can be computed.
Finally, we calculate the transport properties using the nonequilibrium Green’s function
(NEGF) approach. Our implementation is very similar to that of Ref. [80], and the present
work is, in essence, an extension of that to inelastic transport. Beside the full ab-initio

calculations [130, 132], the effect of electron-vibration interactions on transport through
molecular wires has recently been studied by some simple single-level models [138, 139, 140].
The TB approach stands somewhere in between these two extremes.

We compute the conductance to lowest nontrivial order in the electron-vibration cou-
pling constant. With our simple, self-contained method of optimizing the geometry, we
obtain vibrational frequencies which are of the correct order of magnitude, usually to within
a factor of two. We study how the conductance drops due to the electron-vibration cou-
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L RC

Figure 3.1: Geometry A, without “pyramids”. A zigzag wire with Nch = 6 atoms is shown.

pling and find a good overall agreement with the experiments of Ref. [13]. As observed in
the earlier calculations [130], we find that the highest-frequency longitudinal modes usu-
ally couple most strongly, although there seems to be no fundamental reason for a bias
toward the “ABL” modes. In contrast to previous theoretical results, the conductance
drop is usually found to occur in two or more consecutive steps which are due to several
close-lying longitudinal vibrational modes. Thus we find the “mode selectivity” to be only
very approximate. However, the steps can be made to merge into a single one, when we
introduce a large enough phenomenological broadening to the vibrational modes, such that
the experimentally observed step widths of ∼ 5 meV are accounted for.

The next sections are structured in the following way. In Sec. 3.2 we start by defining
the problem, and discussing the electron-vibration coupling. In Sec. 3.3 we briefly discuss
the calculation of the vibrational modes and the electron-vibration coupling constants,
as well as our methods of computing the transport. After this, Sec. 3.4 introduces the
important wide-band approximation to the full formalism. In Sec. 3.5 the signatures of
vibrations in the conductance of atomic gold chains will be described. We end with the
conclusions in Sec. 3.6. For most technical details we refer to the appendices of Ref. [129].

3.2 Definition of the problem

To model transport through atomic wires, we consider two idealized geometries, shown in
Figs. 3.1 and 3.2. We call these geometry A and geometry B, respectively. Both involve a
gold chain of Nch atoms suspended between two gold leads. As the leads, we simply use
semi-infinite “bars”, where the repeat unit consists of two layers, with 12 and 13 atoms
respectively, mimicking an infinite fcc [001] surface, where the z axis is always chosen
parallel to the axis of the wire. The particular choice for the leads should not be very
important, as long as they are infinite in one direction, and wider than the contact region.
In geometry B, the chain connects to small clusters of atoms or “pyramids” on the surfaces
(in our case consisting of 9 atoms), making it perhaps the more realistic one of the two.
For technical reasons, the geometry is divided into three parts, the semi-infinite left (L)
and right (R) leads, and the “central cluster” (C), which also includes the pyramids if any.
These parts are indicated in the figures.



66 Electron-vibration interaction in transport through atomic gold wires

RCL

Figure 3.2: Geometry B, with “pyramids” and a linear wire of Nch = 3 atoms.

Our objective is to model the effect of vibrations (or “phonons”) of the wire on the
transport, when a voltage is applied over the contact. Within a TB picture, the system of
electrons coupled to vibrational modes is described by the Hamiltonian

Ĥ = Ĥe + Ĥvib + Ĥe−vib,

where

Ĥe =
∑

ij

d̂+
i Hij d̂j

Ĥvib =
∑

α

~ωαb̂
+
α b̂α (3.1)

Ĥe−vib =
∑

ij

∑

α

d̂+
i λ

α
ijd̂j(b̂

+
α + b̂α).

Here ωα are the vibrational frequencies, Hij = 〈i|H|j〉 are the matrix elements of the
equilibrium single-electron Hamiltonian H in the atomic-orbital basis {|i〉}, and λαij are the
electron-vibration coupling constants. The index i denotes collectively the atomic sites and
orbitals, and α runs from 1 to 3Nvib, where Nvib is the number of atoms in the system that
are allowed to vibrate. The creation and annihilation operators for vibrational modes b̂+α ,̂bα
satisfy the bosonic commutation relation [̂bα, b̂

+
β ] = δαβ. The electronic basis is in general

non-orthogonal, with overlap matrix elements Sij = 〈i|j〉. Thus the anticommutator for

electron operators d̂+
i ,d̂i is given by {d̂i, d̂+

j } = (S−1)ij (see Eq. B.9).
The matrices H , S, and λα are all symmetric in our case. In the spd TB model, the

matrix elements Hij and Sij are obtained directly from the parameterization [77]. These
can also be used to calculate the vibrational frequencies ωα and the coupling constants λα,
as we shall now describe.

3.3 Methods

The solution of the inelastic transport problem involves a few rather separate sub-problems:
the optimization of the geometry and evaluation of the vibrational modes, estimation of
the electron-vibration coupling constants, and finally the calculation of the transport. The
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technical details have been worked out in Ref. [129]. We will only give a brief description of
each of these steps as far as needed to understand the final results. Our basic approach is to
solve for the elastic transmission problem exactly, and then to take the electron-vibration
coupling into account in a slightly modified version of lowest-order perturbation theory.
Other works have considered the so-called self-consistent Born approximation [130, 140],
where some of the terms in the perturbation expansions are effectively summed to infinite
order. However, this is not essential for describing the basic physics which is involved in
the present problem.

3.3.1 Vibrational modes and the electron-vibration coupling con-

stants

The calculation of the vibrational modes requires knowledge of the total (ground-state)

energy of the system as a function E(~Rk) of the ionic coordinates ~Rk with k = 1, . . . , Nvib.

This energy must be minimized to find the equilibrium configuration ~R
(0)
k . Now consider

small displacements ~Qk = ~Rk − ~R
(0)
k around the equilibrium. The Hamiltonian describing

the oscillations of the ions around ~R
(0)
k is given by

Hion =
1

2

∑

kµ

MkQ̇
2
kµ +

1

2

∑

kµ,lν

Hkµ,lνQkµQlν ,

where Mk are the ionic masses, µ, ν = x, y, z denote cartesian components of vectors
and H is the Hessian matrix (Hkµ,lν = ∂2E/∂Rkµ∂Rlν). This can be diagonalized by

the transformation Qkµ =
∑3Nvib

α=1 Akµ,αqα, where qα are the normal coordinates. Thus, we
obtainHion = 1

2

∑
α(q̇

2
α+ω2

αq
2
α), where ωα (α = 1, . . . , 3Nvib) are the vibrational frequencies.

The transformation matrix A is normalized according to ATMA = 1, M being the mass
matrix. In our case M is simply a scalar giving the mass of a gold atom. Upon using the
canonical quantization prescription qα = (~/2ωα)

1/2 (b+α + bα), q̇α = i (~ωα/2)1/2 (b+α − bα),
one finally obtains Ĥvib in Eq. (3.1).

The electron-vibration interaction may be derived as follows [141, 142]. Assume that
the electronic single-particle Hamiltonian H is a function of the ionic coordinates, denoted
collectively as ~R. Then we may expand H(~R(0) + ~Q) ≈ H(~R(0)) +

∑
k
~Qk · ~∇kH| ~Q=0.

Defining Ĥ ′
e =

∑
ij d̂

+
i 〈i|H(~R(0) + ~Q)|j〉d̂j, inserting the expansion, and using the canonical

quantization for qα again, one finds Ĥ ′
e = Ĥe + Ĥe−vib [cf. Eq. (3.1)], where H ≡ H(~R(0)),

and the electron-vibration coupling constants are given by

λαij = λ0

(
~

2ωα

)1/2∑

kµ

Mkµ
ij Akµ,α, (3.2)

where Mkµ
ij = 〈i|∇kµH| ~Q=0|j〉. In Eq. (3.2) we have added a dimensionless factor λ0 to

describe the strength of the coupling — in the physical case λ0 = 1.
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3.3.2 Propagator formalism

The use of a local basis allows one to partition the electronic Hamiltonian and the overlap
matrices into parts according to the division in L, C and R regions:

H =




HLL HLC HLR

HCL HCC HCR

HRL HRC HRR


 , S =




SLL SLC SLR
SCL SCC SCR
SRL SRC SRR


 .

Although the dimension of the problem is infinite, its single-particle nature allows for very
effective methods of solution, as long as we may assume that YRL = Y T

LR = 0 (Y = H or
S), which we shall do. We shall use the NEGF method. In this method, one can restrict
the problem to the C part only by introducing energy-dependent lead self-energies which
take into account the presence of the semi-infinite L and R leads in an exact way (see the
formalism presented in Sec. C.4).

The quantity from which all elastic transport properties may be extracted, is the re-
tarded Green’s function of the C part in the absence of electron-vibration coupling. We
call it G̃r, and it may be written as G̃r(E) = (E+SCC −HCC − Σr

L − Σr
R)

−1
. The lead

self-energy Σr
L is given by Σr

L = tCLg
r
LLtLC , and ΓL = i (Σr

L − Σa
L), where we define

tCL = HCL − ESCL. The matrix grLL(E) = ((E + iγL/2)SLL −HLL)
−1 is the lead (sur-

face) Green’s function, where γL = 0+. Similar equations hold for Σr
R. The lead Green’s

functions grLL and grRR are “surface” Green’s functions for the semi-infinite leads. The
electron-vibration interaction gives rise to further self-energies, as will be discussed below.

The vibrational modes should in principle be treated in an analogous way, by introduc-
ing lead self-energies for their propagators. However, here we restrict the modes strictly
to the wire of Nch atoms within the C region (i.e. Nvib = Nch) and use the corresponding
normal-mode basis for them. Thus the number of modes which we have to consider is
3Nch, and their “lead coupling” is taken into account only in a phenomenological way.
For further details on the propagator technique, including the expressions for the phonon
propagators and all self-energy diagrams, we refer to Ref. [129].

3.3.3 Calculation of current

The most important physical observable, which we are interested in, is the electric (charge)
current through the atomic wire, when a voltage V is applied. We denote eV = µL − µR,
where µL,R are the L and R side electrochemical potentials, and e > 0 is the absolute value
of electron charge. We also define fL,R(E) = f(E − µL,R), where f(E) = 1/[exp(βE) + 1]
is the Fermi function, and β = 1/kBT is the inverse temperature.

It can be shown that the current flowing through the interface from L to C (C to R)
in the stationary state is given by (see Eq. C.4)

IΩ = ±2e

~

∫
dE

2π
Tr[G<

CΩ(E)tΩC(E) − tCΩ(E)G<
ΩC(E)], (3.3)
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where Ω = L (R) is chosen with the upper (lower) sign, and the factor 2 accounts for spin
degeneracy. The Green’s functions G< are defined as in Sec. A.3.2. Developing Eq. (3.3)
further, it is convenient to split it into two parts: IL,R = Iel + IL,Rinel , where

Iel =
2e

~

∫
dE

2π
Tr[GrΓRG

aΓL](fL − fR)

IL,Rinel = ∓2e

~
i

∫
dE

2π
Tr{GaΓL,RG

r[(fL,R − 1)Σ<
e−vib − fL,RΣ>

e−vib]}. (3.4)

Here we define the full retarded and advanced Green’s functionsGr,a, whereGr = (E+SCC−
HCC − Σr

L − Σr
R − Σr

e−vib)
−1 and Ga = (Gr)+. The new self-energies Σr

e−vib and Σ<,>
e−vib are

due to the electron-vibration interaction. Since they vanish in the absence of λα, we call
the IL,Rinel part an “inelastic” current, while Iel is the “elastic” part [140].

If we do lowest-order perturbation theory with respect to λα, we may expand Gr =
G̃r+G̃rΣr

e−vibG̃
r+· · · . In this way the elastic current is split into two parts as Iel = I0

el+δIel,
where δIel is an “elastic correction”. We find

I0
el =

2e

~

∫
dE

2π
Tr[G̃rΓRG̃

aΓL](fL − fR)

δIel =
4e

~

∫
dE

2π
Re{Tr[ΓLG̃

rΣr
e−vibG̃

rΓRG̃
a]}(fL − fR) (3.5)

IL,Rinel = ∓2e

~
i

∫
dE

2π
Tr{G̃aΓL,RG̃

r[(fL,R − 1)Σ<
e−vib − fL,RΣ>

e−vib]}

For these expressions the current conservation IL = IR = I can be proven [129].
Besides the charge current, other interesting observables would be the heat current

(or power dissipation) [130], the current noise [143], and possibly the spin current in case
of magnetic materials. We only consider the charge current here, as it is the only one
which can easily be measured. More specifically, we shall be interested in the differential
conductance G(V ) = dI/dV and its derivative, since these quantities reveal the signatures
of the vibrational-mode coupling most clearly.

3.4 Wide-band limit

Even in the case of the perturbative current formulas [Eqs. (3.5)], the expressions will
involve double energy integrals which can be very cumbersome to evaluate. However,
the existence of different energy scales in the problem allows us to make an important
simplification.

The energies of the vibrational modes are on the order of 10 meV, so that we are only
interested in the differential conductance for voltages up to V ≈ 40 mV, at most. Together
with the temperature T ≈ 4.2 K, this determines the width of the energy window around
the Fermi energy EF which is important for transport. However, for the atomic wires
which we are considering, the electronic density of states (DOS) tends to vary at much
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larger energy scales ∼ 1 eV around EF . Thus, to a good approximation, we may neglect
this energy dependence, and simply evaluate all the electronic Green’s functions at EF .
This approximation is often called the “wide-band limit” (WBL).

In the WBL approximation, the expressions for the current (Eqs. (3.5)) may be sim-
plified considerably, since some of the energy integrals may be done analytically. In order
to understand the results in the following, we need to state that in the expressions for the
current the vibrational DOS ρα appears together with the mode distribution Nα. We ap-
proximate ρα here by using the imaginary part of drα, the unperturbed phonon propagator.
It then acquires the form

ρα(ǫ) =
1

π

η/2

(ǫ− ~ωα)2 + η2/4
− 1

π

η/2

(ǫ+ ~ωα)2 + η2/4
, (3.6)

where we take η as a finite phenomenological parameter, describing the effect of coupling
the vibrational modes to an external bath. This bath is provided by the leads [140].
However, we are neglecting any renormalizations of the bare frequencies ωα, so that the
main purpose of η here is to broaden the vibrational DOS. As in the expression for ρα the
bath-coupling parameter η also enters the voltage-dependent mode distribution function

Nα(E) =
1

2

ImΠ<
α (E) − n(E)ηE/~ωα

ImΠr
α(E) − ηE/2~ωα

(3.7)

where n(ǫ) = 1/[exp(βǫ)− 1] is the Bose distribution, and ImΠ<
α and ImΠr

α are imaginary
parts of the phonon polarizations (see Ref. [129]).

In the expression for the distribution function, the limit η → 0+ corresponds to the case
where the vibrational modes are uncoupled from leads. Supposing that one also wishes to
take the phonon polarizations to zero, which is formally accomplished by taking λ0 → 0
(see Eq. (3.2)), one discovers that these two limits do not commute.

If we take first the limit η → 0, then the result actually becomes independent of λ0,
since Πr

α,Π
<
α ∝ λ2

0 and the λ2
0-factors cancel. A physical interpretation can be described

as follows. If the vibrational modes are not coupled to any external bath, then even
an infinitesimally small coupling constant can eventually lead to a stationary state with
a strongly nonequilibrium mode occupation. Here emission and absorption of phonons
are in balance, and hence there is no net energy transfer between the electrons and the
vibrations. Following Ref. [130], we call this the externally undamped limit. In this case
the voltage-dependence of Nα(eV ) shows a sharp kink at V = ~ωα/e, and a subsequent
linear increase [130].

In the opposite case, where λ0 → 0 first, the expression becomes independent of η, and
we recover the Bose distribution n(E). This corresponds to the limit where the vibrational
modes are strongly damped by coupling to a heat bath which is in equilibrium. This is
the externally damped limit. However, for a finite λα this limit can only be reached with a
large enough finite η. Thus the externally damped limit should also imply a considerable
broadening of the vibrational modes.
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ddda /2 a /2
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Figure 3.3: Dimensions of the unoptimized geometry with Nch = 4. The fcc lattice constant
a0 is a0 = 4.08 Å. Only the coordinates of the Nch chain atoms are optimized.

3.5 Signatures of vibrations in the conductance of

atomic gold chains

In this section we describe a TB approach to the problem of electron-vibration coupling in
atomic gold wires. We use the nine-orbital spd parameterization of Papaconstantopoulos et

al. [134, 75, 135, 77]. This type of spd TB approach is known to reproduce very well some
nontrivial ab-initio results, like the numbers of conduction channels and the formation of
zigzag Au chains [96, 64, 35]. Thus we can be confident that the method gives at least
good order-of-magnitude estimates for all of the quantities which we shall be interested in.

However, since the parameters are extracted from first-principles bulk calculations,
they cannot be exactly correct for atomic point contacts, where the important atoms of
the structure are significantly less coordinated than in bulk. It has thus become customary
in the method to “correct” the parameters in the central cluster in order to satisfy local
charge neutrality as was explained in Sec. 2.2.2. Doing this typically brings the central
cluster levels better in resonance with the lead orbitals.1

3.5.1 Geometry optimization and vibrational modes

We consider two types of ideal geometries, the ”A” and ”B” ones, shown in Figs. 3.1 and 3.2,
respectively. As mentioned, the leads are assumed to be of fcc type with the [001] axis in the
transport (or z) direction. Before geometry optimization, the chain atoms are positioned
as described in Fig. 3.3. The “length of the wire” Lch is defined as Lch = a0 + d(Nch − 1),
where Nch is the number of atoms in the chain, d the distance between them, and a0 = 4.08
Åis the equilibrium lattice constant of the bulk fcc lattice. We only optimize the geometry
of the Nch chain atoms – also in geometry B which has the ”pyramids”. Thus, although
the interatomic distances change slightly from those of Fig. 3.3, Lch remains fixed.

To estimate the total energy E(~Rk), we simply take a cluster which includes the wire
and some atoms from the leads, solve for the electronic eigenstates ǫα, and then occupy
the states according to charge neutrality. This energy, as a function of the 3Nch wire
coordinates, is then optimized with standard library routines. As shown previously [96], it
is often energetically favorable for the gold chains to exist in a zigzag-like pattern instead

1The results of this chapter are generated using finite lead broadenings γL,R ≈ 1.0 eV. The limit
γL,R → 0+ can in principle be taken without affecting the results in any essential way.
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of a linear one. Only after a sufficient amount of stretching (i.e., with a larger d) does the
linear configuration become stable, after which it remains linear until the wire breaks. We
find that the maximum d at breaking is, depending on the geometry, typically something
between 2.70–2.85 Å.

After the geometry is optimized, the energy function is used to compute the Hessian
matrix H. The eigenvalues kα (α = 1, . . . , 3Nch) are all positive, and the vibrational
frequencies are simply given by ωα =

√
kα/M . With both geometries, A and B, we obtain

quite similar vibrational frequencies and modes. For a linear wire, the modes can be
classified as longitudinal or transverse in character. The highest-frequency modes are then
always longitudinal ones, and the highest of them is of the ABL type [130].

3.5.2 Elastic transmission

Perhaps the most characteristic experimental property of gold chains is that they appear
to have a conductance very close to the quantum of conductance G0. In the present TB
method there is usually only a single open channel, which consists of s, pz, and d3z2−r2
orbitals. Sometimes, a small contribution is seen arising from a second channel, involving
the other p and d orbitals. The transmission around EF varies between 0.7 . T0 . 1.0.
The present method is known to reproduce experimental conductance histograms rather
well [35] (see also the discussion in Sec. 2.4). In particular, the conductance peak somewhat
below G = 1G0 is a very robust feature.

3.5.3 Longitudinal and transverse modes

Let us first discuss the basic observations using a simple example, namely, a linear chain
of four atoms in geometry A. A schematic illustration of the vibrational modes is shown
in Fig. 3.4 for d = 2.62 Å. There are four longitudinal modes and eight transverse modes.
However, due to the fourfold rotational symmetry of the geometry around the axis of the
wire, the transverse modes are all doubly degenerate. The zero-bias conductance is due to
two partially open channels. The main contribution (about 98% of G0) is due to a channel
(C1) formed from s, pz, and d3z2−r2 orbitals, which have the symmetry of the geometry.
In addition, there is a small (less than 1% of G0) contribution from a second, doubly
degenerate channel (C2), which consists of dxz, dyz, px, and py orbitals, which have a lower
symmetry. Thanks to the symmetry of the C1 channel, only longitudinal modes have a
finite coupling constant in its subspace (λαC1,C1

). In the subspace of the C2 channel, also
the transverse modes have a finite coupling (λαC2,C2

). Thus we might expect that also the
transverse modes give a small signal in the current.

Figure 3.5 shows an analysis of the contribution from the different modes to the differ-
ential conductance G(V ) = dI/dV . We divide this conductance into three parts according
to the three current contributions: G(V ) = G0T0 + δGinel(V )+ δGec(V ). Here G0 = 2e2/h,
δGinel = dIinel/dV , and δGec = dδIec/dV . It is seen that δGinel gives always positive
contributions to the conductance steps, while δGec gives negative ones. As expected, we
find that there is a finite step in both δGinel and δGec due to all of the vibrational modes,
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Figure 3.4: A sketch of the vibrational eigenmodes of a linear four-atom gold wire, with
energies corresponding to d = 2.62 Åin geometry A. The longitudinal modes (L) are all
nondegenerate, whereas the transverse modes (T) are all doubly degenerate.

also the transverse ones, although the latter are quite small. However, the contributions
of δGinel and δGec for the transverse modes almost perfectly cancel each other, such that
only steps due to the longitudinal modes are seen in the total G(V ). This cancellation is
apparently due to the exact fourfold rotation symmetry, and the mirror symmetry with
respect to the plane cutting the wire in the middle. In less symmetric geometries the
transverse modes can also give finite contributions to G(V ).

In the case of zigzag wires, the distinction between longitudinal and transverse modes
does not really exist, and all modes are always seen as steps in G(V ). An example of this
is shown below.

Thus, we find that the conductance features depend in an intricate way on the symme-
tries of the geometry, the symmetries of the vibrational modes, the coupling constants, as
well as the symmetries of the electronic states which are relevant at the Fermi energy.

3.5.4 Conductance curves of linear gold wires

Here we discuss in more detail, how our I-V curves for linear wires look like. Figure 3.6
shows an example for geometry B with a wire of Nch = 11 atoms. The left-hand panels are
calculated at T = 4.2 K and with a small η, such that they are more or less in the externally
undamped regime. The right-hand panels show two examples of the experimental results
for a wire of approximately 7 atoms taken at the temperature T = 4.2 K [13]. Comparing
these to the theoretical curves on the left-hand side, one immediately notices that if the
conductance drop is to be due to a single mode, then the ∼ 5 meV width of the peak in
the experimental dG/dV cannot be explained by temperature alone [130]. On the other
hand, the energy distance between the vibrational modes is rather large & kBT , so that
at T = 4.2 K a peak consisting of several sub-peaks can in general easily be recognized.
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Figure 3.5: Decomposition of the conductance G(V ) into G0T0, an “inelastic” contribution
δGinel, and an “elastic correction” δGec for a four-atom wire in geometry A. The geometry
and the labels (a)–(h) correspond to those of Fig. 3.4. Other parameters are T = 0.01 K,
η = 0.002 meV. The solid step-like curve shows δGinel, and the dashed one shows δGec.
The increases of δGinel due to transverse modes are exactly canceled by decreases in δGec.
The inset shows the elastic transmission (dashed line), and the total conductance G(V )
(solid line). In G(V ) only drops due to longitudinal modes are seen.

For example, the highest-frequency peak in Fig. 3.6 actually consists of two peaks, and it
is still not wide enough.

Thus we conclude that in the experiment there are probably other broadening mecha-
nisms at play besides temperature. In the right panels of Fig. 3.6 we use the parameter η
to broaden the peaks. In the latter, the system is already in the externally damped regime,
with very little local heating: in addition to the broadening, the damping is signified by a
smaller slope after the drop. The peaks due to individual modes are smoothed out to form
a single one, with a width comparable to that seen in experiments. In this way, it is possible
to obtain a rather good quantitative correspondence between theory and experiment.

3.6 Conclusions

We have studied the onset of dissipation by excitation of vibrational modes in atomic gold
wires, using a tight-binding model. In doing so we investigated two different geometries,
which yield qualitatively similar results and find a reasonable agreement with experiments.

Our results for the linear chains agree rather well with experiments and previous ab-

initio calculations, apart from the incomplete “mode selectivity”. In this context, we have
pointed out the importance of taking into account the broadening of vibrational modes
due to their coupling to the leads, especially in the limit where the vibrational mode
distribution is assumed to be strongly damped. We derived equations in the wide-band
limit, which take this into account in a phenomenological manner. The wide-band limit
combined with the lowest-order perturbation approach appears to provide a sufficiently
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Figure 3.6: Comparison between theory and experiment for Nch = 11 in geometry B. All
results are at T = 4.2 K. The solid and dashed curves correspond to theoretical results for
d = 2.64 Åand d = 2.78 Å, respectively. On the left-hand panels η = 0.002 meV, whereas
on the right-hand panels the curves have been broadened with a bath-coupling η = 5.0
meV. The experimental results L1 (+) and L4 (×) correspond to the notation and results
of Fig. 1(d) of Ref. [13] with V > 0. They are obtained for a 7-atom chain at T = 4.2 K.

good description of the phenomenology of electron-vibration interaction in atomic wires.
To make further progress, more detailed calculations of the lead-coupling of the vibrational
modes are needed.

Studying different materials (Pt and Ir) with this same method would be straightfor-
ward in principle. However, it seems that the parameters available for these materials
are not very good for geometry optimizations of the wires. This is because the overlap
matrices easily lose their positive definiteness when the validity range of the parameteri-
zation is exceeded.2 Thus, as already implied in Ref. [80], one should probably use more
general ab-initio methods, or at least parameters which have been specifically fit to work
for chain geometries with a large span of interatomic distances. Currently an extension of
the DFT transport method, presented in Chap. 4, is envisaged to include also the effects
of electron-phonon coupling.

2With the gold parameters au par 99 [77], such problems never appeared.
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Chapter 4

Ab-initio density functional approach

to molecular electronics

Advances in the experimental techniques for manipulating and contacting individual mole-
cules, and the prospect of simple organic molecules as basic building blocks in electronically
active devices have recently intensified the interest in electron transport at the nanoscale
[144, 145, 21, 146, 26, 103, 28]. It is clear that from the theoretical side a systematic
understanding is required in order to support the experimental efforts and to stimulate
further technological advances. In order to do so an accurate modeling of the structural,
electronic, and transport properties is required. Microscopic approaches are needed to
account correctly for the quantum-mechanical phenomena affecting the physical properties
at the nanoscale.

In today’s physics and chemistry electronic structure calculations are an important tool
for investigating new materials and molecules. An essential factor for the success of these
techniques is the development of first-principles methods that allow the reliable modeling of
a wide range of systems, without introducing system dependent parameters. It is natural
that quantum transport theories, aiming at a realistic description of nanoscale devices
in the field of molecular electronics, will rely on the established approaches developed
over the recent years in the fields of theoretical physics and quantum chemistry. While in
early attempts semiempirical extended-Hückel parameters were used to model the quantum
transport [147, 148], soon self-consistent schemes like the Hartree-Fock level of description
were employed [149]. Nowadays most models are based on density functional theory (DFT)
[150, 151, 152, 128, 153, 154, 155, 63, 156, 157, 158, 159]. For an overview on the atomistic
theory of transport in nanostructures we recommend the review by Peccia et al. [160].

The description of quantum transport from first principles is very challenging. Most
electronic structure calculations are limited in two aspects: (i) the geometry is either
restricted to finite or to periodic systems, (ii) the electronic system must be in equilibrium.
If a molecule is, however, contacted by two metallic electrodes a method is needed to treat
an infinite, nonperiodic system. The whole system – electrodes and the molecule1 – should

1Indeed we mean the central part of the system, often referred to as the extended molecule.
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be treated at the same level of theory in a consistent basis set. In addition a finite bias
voltage may be applied to the electrodes. In this case the electronic subsystem of the
molecule is not in equilibrium [152].

The requirements (i) and (ii) are not easy to fulfill, and within the aforementioned
references there exist large differences in the level of sophistication. Often the electrodes
are treated only approximately or the developed program is not capable of handling finite
bias voltages. Thus for example, Xue et al. [150] use electrode parameters obtained from
a tight-binding parameterization as given elsewhere [161], Palacios et al. [128] use Bethe
lattices to model the electronic reservoirs, and Evers et al. [162] approximate the electrode
description by using bulk instead of surface Green’s functions. In the approaches by Xue
and Palacios a minimal basis set is employed for the description of the electrode atoms.
Other more accurate programs [155, 154] currently do not have the ability to treat the
nonequilibrium finite bias situation that allows the computation of current-voltage (I-V)
characteristics. Very complete implementations of the above requirements are presented in
Refs. [152, 159]. The program of Ref. [152] is even commercially available under the name
TRANSIESTA, and that of Ref. [159], called SMEAGOL, offers the possibility to treat
magnetic structures. Both of the last two references are based on the electronic structure
program SIESTA.

Generally it can be observed that there are two approaches concerning the practical
implementations. One comes from the field of quantum chemistry and is based on packages
like GAUSSIAN [150, 128, 163] or TURBOMOLE [162]. When using this approach the
electrodes are usually described in an approximate fashion. The presently most advanced
quantum transport packages are based on DFT programs, such as SIESTA, that can treat
periodic systems. The central system is then described as a long supercell such that the
electron density has converged to the bulk value in the electrodes [152]. In this way, no
mismatch problems arise, when the electrode surface Green’s functions are constructed
from bulk parameters, and are finally coupled to the central system. Instead, the quan-
tum chemistry approach suffers from surface effects. But apparently also the SIESTA-like
approaches have their drawbacks. The supercell involved in a description of the central sys-
tem is rather limited in its transverse dimensions. This hinders the description of molecules
with a large lateral extent. In addition the convergence of transport results with respect
to the transverse dimension has, to the best of our knowledge, not yet been shown for
the supercell approach, and also the finite bias situation is only described approximately.
Instead of a solution of the Poisson equation in real space one commonly solves the elec-
trostatic problem in reciprocal space, even though the finite bias situation clearly breaks
the translational symmetry in the transport direction. So there does not yet seem to ex-
ist a completely satisfactory solution to all the challenges that the ab-initio modeling of
quantum transport poses. We will come back to some of these complications in the course
of this chapter.

On the one hand these details may be very important in order to determine, what
DFT really predicts with respect to the conduction properties of molecules, for example.
On the other hand one may, from a more general point of view, perhaps say that they
are minor points. In DFT-based transport methods not only the total electron density is
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used, but the Kohn-Sham (KS) wave functions are taken as single-particle wave functions,
when calculating the electronic current [152]. In this sense DFT is a bona fide approach to
quantum transport. Due to its meanfield-like structure DFT cannot capture pronounced
many-body effects. For this reason new methods have been proposed very recently that
shall improve the description of the open system quantum many body-problem [164, 165].
But also from the DFT side there are further developments, where time-dependent DFT
is applied to quantum transport [166, 167, 168, 169, 170, 171].

Concerning our work let us mention that we use the quantum chemistry approach,
namely the software package TURBOMOLE. As could be anticipated by the analysis of
the literature (see above), the electrode description turned out to be the most difficult part
due to the lack of periodic boundary conditions that facilitate the solid state description of
the infinite metallic electrodes. Our basic ideas to describe the electrodes follow Ref. [153].
However, compared to that work we could make progress in some essential points, as will be
outlined in the course of this chapter. Our present implementation of quantum transport
is only able to describe the equilibrium zero bias situation. It is based on the separate
calculation of an electrode and a contact cluster. From this fact an uncertainty concerning
the position of the Fermi energy arises. A self-consistent treatment of the electrodes plus
the central system could help to eliminate this uncertainty. Such a procedure has been tried
without success, and we will give the reasons for the problems encountered. However, due
to TURBOMOLE’s ability to compute very large atomic clusters, we arrived at a transport
scheme, where the electrodes are described at the same level of sophistication as the central
system. In particular we use the same nonorthogonal basis set for both of them. For
this reason the aforementioned uncertainty can, in principle, be eliminated by computing
large enough cental systems. Indeed we show for metallic Au and Al systems that our
method yields converged results perfectly in line with experimental expectations. Also the
direct comparison between our method and the DFT-based studies of other theoretical
approaches, i.e., TRANSIESTA, turns out to be very satisfactory. In this sense we have
developed a quantum transport description that is equivalent to other transport methods.
It has the additional advantage that it can be applied to systems with large transverse
dimensions.

We want to mention that another implementation of a transport code based on TUR-
BOMOLE was published in the course of our studies [162]. However, due to the shortness
of the presentation in Ref. [162], uncertainties about the details of the employed method
remain. (In particular Ref. 28 of Ref. [162] has to the best of our knowledge not yet been
published.) Contrary to the method proposed in paragraph III.A of Ref. [162] the group
of F. Evers currently makes use of ”absorbing boundary conditions” in the electrode de-
scription [172].2 These circumstances justify the development of our own methodology in
order to describe the electron transport with the help of TURBOMOLE.

Let us give the outline of this chapter. First we will give an introduction to the funda-
mentals of DFT in Sec. 4.1. Second, Sec. 4.2 will present the implementation scheme for

2With the language of Ref. [172] ”absorbing boundary conditions” refer to energy independent, purely
imaginary electrode self energies.
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quantum transport within TURBOMOLE, as developed in this thesis. Thereafter we will
explain the major steps of the electrode description in Sec. 4.3, and come to unsuccessful
studies of the electronic structure of open quantum systems in Sec. 4.4. In Sec. 4.5 we
show a comparison between results of our method and that of Ref. [152] for a three-atom
Au chain, before we end with the Conclusions in Sec. 4.6. The presentation given below
involves details that can be found in Chaps. B, C, D, and F of the Appendix.

4.1 Electronic structure calculation in density func-

tional theory

The goal of DFT is the approximate solution of the time-independent (non-relativistic)
Schrödinger equation

ĤΨµ(~x1, ..., ~xN , ~R1, ..., ~RM) = EµΨµ(~x1, ..., ~xN , ~R1, ..., ~RM) (4.1)

with the Hamiltonian

Ĥ = − ~2
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(4.2)
Here, A and B run over the M nuclei, while i and j denote the N electrons in the sys-
tem, me is the electron mass, e = |e| is the elementary charge, ε0 the electric constant,

and rpq = |~rp − ~rq| (Rpq =
∣∣∣~Rp − ~Rq

∣∣∣) is the distance between the particles p and q. The

first two terms in this expression describe the kinetic energy of the electrons and nuclei,
respectively, and MA is the mass of nucleus A. The remaining three terms define the poten-
tial part of the Hamiltonian and represent the attractive electrostatic interaction between
the nuclei and the electrons and the repulsive potential due to the electron-electron and
nucleus-nucleus interaction. Eµ is the energy of the states, described by the wave func-

tion Ψµ(~x1, ..., ~xN , ~R1, ..., ~RM) of the µth state of the system. The wave function depends
on 3N spatial coordinates {~ri} and N spin coordinates {si} of the electrons, which are

collectively termed {~xi}, and the 3M spatial coordinates
{
~Ri

}
of the nuclei. As usual,

the wave functions Ψµ contain all the information that can possibly be known about the
quantum system at hand. The presentation in the following is almost completely based on
Ref. [173].

In order to solve the basic electronic Schrödinger problem of Eq. (4.1) the Born-
Oppenheimer approximation is made, leading to a separation of electronic and nuclear
degrees of freedom. One arrives at the electronic Schrödinger equation

Ĥelψ = Eelψ

where ψ depends on the electronic coordinates, while the nuclear coordinates enter only
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parametrically and the electronic Hamiltonian has been defined as

Ĥel = − ~2

2me
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∇2
µ −
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A=1

ZAe
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4πε0rµA
+
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µ=1

N∑

ν>µ

e2

4πε0rµν
= T̂ + V̂Ne + V̂ee. (4.3)

The total energy
Etot = Eel + Enuc (4.4)

is then given as the sum of the electronic energy Eel and the nuclear repulsion term

Enuc =

M∑

A=1

M∑

B>A

ZAZBe
2

4πε0RAB
. (4.5)

The attractive potential exerted on the electrons by the nuclei, obtained as the expectation
value of V̂Ne in Eq. (4.3), is often termed the external potential Vext. From now on we will
only consider the electronic problem as described by Eqs. (4.3)–(4.5).

From a wave function ψ the electron density ρ, central to DFT, is obtained as

ρ(~r) = N

∫
· · ·
∫

|ψ(~x1, ~x2, ..., ~xn)|2 ds1d
4x2 · · ·d4xN .

ρ determines the probability of finding any of the N electrons within the volume element
d3r with arbitrary spin s, while the state of the other N − 1 electrons (both in space and
spin) is arbitrary. The electron density is normalized to the number of electrons N in the
system (

∫
d3rρ = N).

4.1.1 Hohenberg-Kohn theorems

DFT, as we know it today, was born in 1964 when a landmark paper by Hohenberg and
Kohn appeared in Physical Review [174]. The theorems proven in this report represent the
major theoretical pillars, on which all modern DFTs are erected.

The first Hohenberg-Kohn theorem provides the proof that the electron density in
fact uniquely determines the Hamiltonian operator and thus all properties of the system.
Quoting directly from Ref. [174] this theorem states that ”the external potential Vext(~r)
is (to within a constant) a unique functional of ρ(~r); since, in turn Vext(~r) fixes Ĥ we see
that the full many particle ground state is a unique functional of ρ(~r)”.

More pictorially we can summarize this as

ρ0 ⇒
{
N,ZA, ~RA

}
⇒ Ĥel ⇒ ψ0 ⇒ E0 (and all other properties)

By this we mean that once the ground state density ρ0 is known, this determines the total
number N of electrons, the charges ZAe of the nuclei, and their spatial coordinates ~RA.
This information in turn fixes Vext, meaning that the Hamiltonian Ĥel can be constructed.
Once the electronic Hamiltonian is known all information about the system is in our hand
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and we can – at least in principle – determine the ground state wave function ψ0, the
ground state energy E0, and all other properties of the system.

Since the complete ground state energy is a functional of the ground state electron
density, so must be its individual components, thus we can write (see Eq. (4.3))

E0[ρ0] = T [ρ0] + Eee[ρ0] + ENe[ρ0].

It is convenient at this point to separate this energy expression into those parts that
depend on the actual system, i.e., the potential energy due to the nuclei-electron attraction
ENe[ρ0] =

∫
d3rρ0(~r)VNe, and those which are universal in the sense that their form is

independent ofN , RA and ZA, namely T [ρ0] and Eee[ρ0]. Collecting the system independent
parts into the Hohenberg-Kohn functional

F [ρ] = T [ρ] + Eee[ρ] (4.6)

the energy is given as

E0[ρ0] =

∫
d3rρ0(~r)VNe + F [ρ0].

Up to now we have established that the ground state density is in principle sufficient to
obtain all properties of interest. But how can we be sure that a certain density is really the
ground state density that we are looking for? A formal prescription, for how this problem
should be tackled, has been given through the second Hohenberg-Kohn theorem [174]. It
states that the functional E[ρ] that delivers the ground energy of the system delivers the
lowest energy E0, if and only if the input density ρ̃ is the true ground state density ρ0.
More formally this means that the following inequality holds

E0 = E[ρ0] < E[ρ̃],

where the electron densities all fulfill the boundary conditions ρ̃(~r) ≥ 0 and
∫
d3rρ̃(~r) = N .

4.1.2 Kohn-Sham approach

Let us now show how the Hohenberg-Kohn theorems are put to work. The approach we
are discussing has its origin in the second major paper of modern DFT [175]. In this paper
Kohn and Sham suggested an avenue for how the hitherto unknown universal functional
F [ρ] can be approached. At the center of this idea is the insight that most of the problems
with direct density functionals, like the Thomas-Fermi method, are connected to the way
the kinetic energy is determined. In order to alleviate the situation and by realizing that
orbital based approaches such as the Hartree-Fock method perform much better in this
respect, Kohn and Sham introduced the concept of a noninteracting reference system built
from a set of orbitals (i.e., one electron functions) such that the major part of the kinetic
energy can be computed to good accuracy. The remainder is merged with the non-classical
contributions to the electron-electron repulsion – which are also unknown but usually fairly
small. By this method as much information as possible is computed exactly, leaving only
a small part of the total energy to be determined by an approximate functional.
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It is customary to separate the universal functional F [ρ] of Eq. (4.6) into individual
contributions of the kinetic energy T [ρ], the classical Coulomb interaction

J [ρ] =
e2

8πε0

∫ ∫
ρ(~r1)ρ(~r2)

r12
d3r1d

3r2

and the non-classical contributions to the Coulomb interaction

Encl[ρ] = Eee[ρ] − J [ρ].

The functionals T [ρ] and Encl[ρ] are unknown and the finding of explicit expressions for
them constitutes the essential challenge in DFT. It turns out that a functional for T [ρ] is
particularly difficult to find.

Kohn and Sham found out that a more accurate way to determine the kinetic energy
is by defining a noninteracting reference system with a Hamiltonian

ĤS = − ~2

2me

N∑

µ=1

∇2
i +

N∑

µ=1

VS(~rµ) (4.7)

and an effective local potential VS(~r). The wave functions in this noninteracting reference
system are given as Slater determinants constructed from Kohn-Sham (KS) orbitals ϕµ in
analogy to the Hartree Fock method. The orbitals ϕµ are determined by

f̂KSϕµ = εµϕµ (4.8)

with the KS operator

f̂KS = − ~2

2me
∇2 + VS(~r). (4.9)

The connection of this artificial system to the one we are really interested in is now estab-
lished by choosing the effective potential VS such that the density of the noninteractring
reference system exactly equals the ground state density of our target system of interacting
electrons

ρS(~r) =

N∑

µ=1

1/2∑

si=−1/2

|ϕµ(~r, s)|2 = ρ0(~r).

In this way the functional F [ρ] is brought into the form

F [ρ] = TS[ρ] + J [ρ] + EXC [ρ]

where

TS = − ~2

2me

N∑

µ=1

〈ϕµ| ∇2 |ϕµ〉

and EXC , the so called exchange-correlation energy, is defined as

EXC [ρ] = (T [ρ] − TS[ρ]) + (Eee[ρ] − J [ρ]) = TC [ρ] + Encl[ρ].
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The residual part of the true kinetic energy TC , which is not recovered by TS, is simply
added to the non-classical electrostatic contributions. The exchange correlation energy
EXC is the functional, which contains everything that is unknown. It is a kind of a
junkyard, where everything is stowed away that we do not know how to handle exactly.
In spite of its name EXC contains not only the non-classical effects of self-interaction
correction, exchange and correlation, which are contributions to the potential energy of
the system, but also a portion belonging to the kinetic energy.

Finally the total energy is

E[ρ] = TS[ρ] + J [ρ] + EXC [ρ] + ENe[ρ]

and VS of Eqs. (4.7) and (4.9) can be shown to be

VS(~r1) =
e2

4πε0

∫
ρ(~r2)

r12
d3r2 + VXC(~r1) −

e2

4πε0

M∑

A=1

ZA
r1A

. (4.10)

The exchange-correlation potential VXC = δEXC/δρ is the functional derivative of EXC .
Up to this point the KS approach is exact. Unfortunately the explicit form of EXC and
thus VXC is unknown and the approximations enter, when we decide on an explicit form
for them. The central goal of research in DFT is to find better and better approximations
to EXC and VXC .

4.1.3 Basic machinery of density functional theory

In this paragraph we turn to the practical problem, of how the strategies of DFT, devel-
oped so far, can be mapped onto computational schemes. First we will discuss the linear
combination of atomic orbitals (LCAO) ansatz, which is by far the most dominant way to
make the iterative self-consistent field procedure for solving the one-electron KS equations
computationally accessible. Next we will say, how the basis sets used in TURBOMOLE
look like, before we end with a particularly efficient way on how to compute the Coulomb
term, known as RI-J approximation or density fitting.

4.1.3.1 LCAO ansatz in the Kohn-Sham equations

The KS approach to DFT, developed so far, requires the solution of Eqs. (4.8), (4.9), and
(4.10). These KS equations represent a complicated system of coupled integro-differential
equations and we need to find a computationally efficient way of solving them. At the end
of this process we obtain as solutions the KS molecular orbitals (MOs) {ϕµ}, which yield
the ground state density associated with the particular choice of VXC .

A frequently used strategy in order to solve the KS equations is the LCAO expansion
of the KS MOs

ϕµ =

L∑

i=1

ciµφi (4.11)
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within a set of L basis functions {φi}. In real applications L is finite, and it is of crucial
importance to choose the basis set {φi} such that the LCAO provides an approximation
of the exact KS orbitals as accurate as possible. By using the LCAO ansatz in the KS
equations the originally highly nonlinear optimization problem has been simplified into a
linear one, with the coefficients {ciµ} being the only variables.

With the LCAO ansatz applied to Eq. (4.8), we finally arrive at the matrix equation

FKS(C)C = SCε (4.12)

with the KS Fock matrix

FKS
ij =

∫
φi(~r1) ˆfKSφj(~r1)d

3r1, (4.13)

the overlap matrix

Sij =

∫
φi(~r1)φj(~r1)d

3r1,

the expansion coefficient matrix

Ciµ = ciµ

and the matrix of eigenenergies

εµν = δµνεµ.

Notice that, in case of real basis functions, all the matrices just defined are symmetric. In
Eq. (4.12) we have written FKS = FKS(C) because the KS matrix depends nonlinearly on
the expansion coefficients ciµ. An iterative solution of Eq. (4.12) is possible in analogy to
the Hartree-Fock theory.

The different terms appearing in the KS Fock matrix are

FKS
ij = hij + Jij + V XC

ij

with the single-particle integrals

hij =

∫
φi(~r1)

[
− ~2

2me

∇2 −
M∑

A=1

ZAe
2

4πε0riA

]
φj(~r1)d

3r1, (4.14)

the Coulomb part

Jij =
L∑

m=1

L∑

n=1

Pmn

∫ ∫
φi(~r1)φj(~r1)

1

r12
φm(~r2)φn(~r2)d

3r1d
3r2, (4.15)

and the exchange correlation part

V XC
ij =

∫
φi(~r1)VXC(~r1)φj(~r1)d

3r1. (4.16)
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In Eq. (4.15) the density matrix

Pij =
N∑

µ=1

ciµcjµ

has been defined, from which we obtain

ρ(~r) =

N∑

µ=1

|ϕµ(~r)|2 =

L∑

i=1

L∑

j=1

φi(~r)Pijφj(~r).

Note that the Coulomb part Jij is particularly expensive to evaluate as it involves four-
center-two-electron integrals.

4.1.3.2 Basis sets

As mentioned before one tries to use the most efficient and accurate functions possible in
the LCAO expansion of Eq. (4.11) in the sense that the expansion will require the fewest
possible terms for an accurate representation of the KS MOs ϕµ. From these considerations
one may try to use Slater type orbitals (STOs) of the form

φSTO = ℵrn−1e−αrYlm

with a normalization constant ℵ, the principal quantum number n, the orbital exponent
α, and spherical harmonics Ylm. This choice is physically natural as the simple exponen-
tials φSTO mimic the exact eigenfunctions of the hydrogen atom. However, many-center
integrals, as needed in Eqs. (4.14)–(4.16), are notoriously difficult to evaluate.

On the other hand there exist very efficient integration schemes for Gaussian type
orbitals (GTOs) [81] of the form

φGTO = ℵxmypzqe−αr2 . (4.17)

Again ℵ is a normalization constant. The orbital exponent α determines how compact
(large α) or diffuse (small α) the resulting function is. L = m + p + q is used to classify
the GTO as s function (L = 0), p function (L = 1), d function (L = 2), etc..

In an attempt to approximate the STO basis set as closely as possible, one uses con-
tracted GTO basis sets in which n primitive Gaussian functions as in Eq. (4.17) are summed
up in a fixed linear combination to give one contracted Gaussian function (CGF)

φCGF
i =

n∑

a=1

daiφ
GTO
a .

with appropriate expansion coefficients dai. Such CGF basis functions are used in TUR-
BOMOLE.

Concerning the classification of the CGFs and GTOs one should note that for L > 1
the number of cartesian GTO functions exceeds the number of 2l+ 1 physical functions of
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angular momentum l. For example, among the six cartesian functions with L = 2 one is
spherically symmetric and is therefore not a d orbital but an s orbital. One can distinguish
between cartesian atomic orbitals of the form of Eq. (4.17) or transform to a spherical
atomic orbital (SAO) representation, where the angular symmetry is that of the spherical
harmonics combined linearly to get a basis set of real angular functions (see Eqs. (F.5) and
(F.7)). If we talk about s, p and d orbitals we will always refer to this SAO representation.

4.1.3.3 Calculation of the Coulomb term

As pointed out before the coulomb term Jij in Eq. (4.15) is particularly difficult to evaluate
as it involves four-center-two-electron integrals. In order to reduce the effort to compute
this term the electron density can be expanded in an auxiliary basis set

ρ(~r) ≈ ρ̃(~r) =

K∑

κ=1

cκωκ(~r). (4.18)

This leads to an approximated Coulomb term

J̃ij =
K∑

κ=1

cκ

∫ ∫
φi(~r1)φj(~r1)ωκ(~r2)

r12
d3r1d

3r2,

which can be handled more efficiently, as it involves only three-center-two-electron inte-
grals. This technique has been implemented into different ab-initio programs, in particular
TURBOMOLE, where it has the name ”RI-J”, or Gaussian, where it is called ”density
fitting” due to Eq. (4.18).

The RI-J approximation speeds up calculations roughly by a factor of 10 compared to
standard DFT and is equally accurate. In our studies we exclusively rely on the RI-DFT
method of TURBOMOLE as implemented in the module ridft [176, 177].

4.2 Molecular electronics – the system and its de-

scription

In this paragraph we want to present the basic problems that need to be solved, when
one tries to describe the phase-coherent electron transport in a nanoscale system from first
principles. By first principles we mean a theory with a minimal number of free parameters.
Such an ab-initio description of electron transport is of high interest in the field of molecular
electronics.

The quantum chemistry software TURBOMOLE, in particular its DFT implementation
in the module ridft, has been developed to deal with finite systems, such as molecules or
big metal clusters.3 In contrast in quantum transport a molecule is, for example, coupled

3For a detailed list of options used with TURBOMOLE in our calculations and the proper citation of
this method we refer the reader to Sec. F.4.
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center rightleft

extended molecule electrodeelectrode

Figure 4.1: Transition from a finite system, as displayed to the left, to an infinite system
on the right. For the system on the right a partitioning is indicated. The system is divided
into a left part (L), a center (C), and a right part (R). The parts L and R are semi-infinite
electrodes. The central part C is often called the extended molecule. (The word extended
arises from the fact that usually some metal atoms are included in C.)

to semi-infinite metallic electrodes. Thus the challenges encountered are (i) an ab-initio
description of the electronic structure of an infinite system and (ii) the calculation of
the transport through the determined electronic states. Within the quantum chemistry
approach a practicable strategy to make this transition from a finite to an infinite system
has been developed at the beginning of this century [149, 150, 178, 127, 153]. In Fig. 4.1
we give a sketch of this strategy. A finite system has been computed as sketched in the
left panel. We need to make the transition to a system as indicated on the right, where
the finite clusters of metal atoms are replaced by semi-infinite electrodes. The contact
is divided into the left (L) and right (R) electrodes and the center (C), central part, or
extended molecule.

Now we want to calculate the electric charge current within the Green’s functions
formalism (see Chap. C and Sec. B.3.1). As for the TB models presented in the preceeding
chapters, the use of a local basis allows for a partitioning of the electronic Hamiltonian
and overlap matrices into parts according to the division into L, C, and R regions:

H =




HLL HLC HLR

HCL HCC HCR

HRL HRC HRR


 , S =




SLL SLC SLR
SCL SCC SCR
SRL SRC SRR


 .

Although the dimension of the problem is infinite due to the L and R regions, its single-
particle nature allows for very effective methods of solution, as long as we may assume that
YRL = Y T

LR = 0 (Y = H or S). This can always be achieved by choosing a large enough
central region. We shall use the method of nonequilibrium Green’s functions (NEGF) in
order to compute the electrical current as worked out in the Appendices (see in particular
Sec. B.3.1). In this method, one can restrict the problem to the C part only by introducing
energy-dependent lead self-energies which, take into account the presence of the semi-
infinite L and R leads in an exact way.

The quantity of central importance is the retarded Green’s function of the C part

Gr
CC =

(
E+SCC −HCC − Σr

L(E) − Σr
R(E)

)−1
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with the self-energies

Σr
X(E) = (HCX − ESCX)grXX(HXC − ESXC) (4.19)

and the electrode Green’s functions

grXX = (E+SXX −HXX)−1

where X = L or R (see Eqs. (B.26) and (B.27)) and E+ = E + i0+. The self-energies
ΣX of Eq. (4.19) describe the effect of the coupling of C to semi-infinite electrodes. Their
construction will be the major concern of this whole chapter. The self-energies require two
ingredients, namely (a) the coupling matrices SCX and HCX and (b) the electrode Green’s
function grXX .

Once Σr
X and Gr

CC have been constructed the transmission T (E) can be computed as

T (E) = Tr [ΓLG
r
CCΓRG

a
CC ] = Tr

[
t+t
]
, (4.20)

where we have introduced the scattering matrix

ΓX = (HCX − ESCX) i (grXX − gaXX) (HXC − ESXC) = i (Σr
X − Σa

X) = −2Im [Σr
X ] (4.21)

and the transmission matrix4

t(E) =
√

ΓLG
a
CC

√
ΓR. (4.22)

The zero-bias, zero temperature conductance G is then obtained as

G = G0T (EF ) = G0Tr
[
t+t
]

= G0

∑

n

Tn(EF ), (4.23)

where G0 = 2e2/h is the unit of conductance (see Eqs. (C.7), (B.42), (C.8), and (C.10)).
For the Hamiltonian H we will use the matrix elements of the KS Fock operator of

Eq. (4.13). As discussed in the introduction it is a bona fide assumption that we can use
the KS orbitals as single-particle wave functions, when calculating the electronic current
[152]. The validity of this assumption is under debate, and we will not discuss this any
further [162, 166, 165].

Let us now address the question of how we can obtain the self-energies Σr
X . We will

follow the ideas of Damle et al. [153]. However, in the construction of the electrode Green’s
functions as proposed in that reference, we encountered major problems. We will discuss
them in detail later. But let us state already now that the use of just nearest neighbor
couplings in the construction of electrode Green’s functions as suggested in Ref. [153] does
not work for reasons of overlap definiteness problems, at least not in nonorthogonal basis
sets. Even an analytical model (see Sec. 4.3.1) shows these problems clearly. This is

4The positive definiteness of ΓX , necessary for the possibility to take the square root of this matrix, is
proven in Sec. C.2.
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center rightleft

extended molecule electrodeelectrode

Figure 4.2: The extended molecule coupled to surface Green’s functions. A finite system
consisting of the blue-shaded atoms plus the center is cut into L, C, and R parts. From
the blue atoms the coupling matrix elements SCX and HCX (X = L or R) are extracted.
The blue atoms are replaced by atoms embedded into semi-infinite surfaces displayed in
grey.

likely to be the reason, why in that particular paper, despite the compelling concepts, the
authors finally resorted to energy independent self-energies evaluated at the Fermi energy
(Σr

X(E) = Σr
X(EF )).

As seen in Eq. (4.19) we need the coupling matrices SCX and HCX . In order to obtain
them, we compute a large contact with metallic clusters on either side, which are as large
as possible (see the contact system on the left side of Fig. 4.1). Then the finite contact
cluster with overlap and Hamiltonian matrices Scontact and Hcontact is partitioned into the
L, C, and R regions. As the matrix elements for the complete finite system L + C + R
are known, the couplings SCX = ScontactCX and HCX = Hcontact

CX can be extracted from this
calculation [153]. (Of course we set SCC = ScontactCC and HCC = Hcontact

CC .)

As a next step the electrode Green’s functions grXX of Eq. (4.19) needs to be constructed.
As proposed in Ref. [153] we use parameters extracted from finite metal clusters that are
calculated with the same basis set as the metal atoms of the contact system. In doing so
we obtain electrode parameters at the same level of theory as those of the central system.
From them we construct electrode Green’s functions as explained in Chaps. D and F.
Having constructed the electrode Green’s functions, we couple them via the previously
determined couplings to the central system.

In Fig. 4.2 we illustrate this procedure. The contact system consists of the center plus
the blue atoms in the left and right electrodes. The coupling matrices SCX and HCX are
obtained as the matrix elements connecting the center to the blue atoms. Next the finite
L and R parts are replaced by the grey-shaded semiinfinite surface. We then determine a
surface Green’s function grXX from bulk parameters S0j and H0j (see the explanations in
Sec. D.2). The atoms in blue will be replaced by surface atoms, as described by the matrix
elements of the surface Green’s function grXX .

It is obvious in this procedure that (i) for too few blue atoms in the region L or
R not all relevant couplings to the surface are included, (ii) there may be a mismatch
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problem between the bulk parameters used to construct the surface Green’s function and
the couplings HCX due to surface effects.

Indeed in Gaussian basis sets the overlaps between atoms are very big and fall off slowly
with distance. Let us consider a simple s orbital function

φGTO
s (~r − ~Rj) =

(
2α

π

)3/4

e−α|~r−~Rj|2 (4.24)

(see Eq. (4.17)) with a typical minimal exponent of α = 0.05/b20 where b0 is the Bohr radius
b0 = 0.52918 Å. Then the overlap element between two atoms a distance d apart is given
by

S(d) =

∫ ∞

−∞
d3rφGTO

s (~r − ~d)φGTO
s (~r) = e−αd

2/2. (4.25)

A decay of the overlap to 10−10 – a typical TURBOMOLE cutoff – requires a distance
d = 16.06 Å. In an fcc geometry oriented along the [100], [110] or [111] direction with
interlayer distances of dn,n+1 = a/2, dn,n+1 = a/

√
8 , and dn,n+1 = a/

√
3 this means that

7, 11, and 6 layers are coupled due to the overlap S(d) for Au with a lattice constant
of a0 = 4.08 Å. For this reason it is at present not possible for us to come to the real
DFT limit of description by including such a big number of surface atoms (blue-shaded
atoms in Fig. 4.2) that all electrode atoms are coupled to the central system, namely more
than 6 layers of electrode atoms.5 DFT programs capable of treating periodic boundary
conditions (PBCs), seem to perform better in this respect. Very long supercells can be
computed with them and the metalicity of the systems does not appear to be problematic
in these cases [151, 152]. As the atoms at the end of the supercell are surrounded again by
other atoms one can also get rid of surface effects at the outer layers and avoid coupling
mismatch problems, when surface Green’s functions constructed by bulk parameters are
coupled to the central system [151, 152]. In Fig. 4.3 we display this situation, when PBCs
are used (see also Fig. 5 of Ref. [152]).

Let us, however, mention as positive points that for the blue-shaded atoms in Fig. 4.2
we have included all connections to central atoms and not just a few, as it is also done
in the literature [179]. In addition our central systems are not limited in their transverse
extend, whereas the supercell approach of Fig. 4.3 cannot easily cope with such systems.
For large transverse sizes of the center a strongly increasing number of electrode atoms
need to be computed.

The only point to decide about in our method is, how to divide the system into the
L, C, and R regions. Otherwise there are no free parameters. In this sense our method
fulfills the criterion of being an ab-initio theory without adjustable fit parameters.

To end this section, we summarize the complete method pictorially in Fig. 4.4. The

5Going one step further and seeing things from the correctness of the coupling elements HCX , the
couplings require correct onsite energies of the atoms in X . That means that also they should be saturated
with all atoms coupled to them, implying a doubling of the previously mentioned layer numbers in the
blue-shaded region of Fig. 4.2. Thus more than 12 electrode layers might be needed to converge to the
DFT limit.
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L C R

Figure 4.3: System as computed by use of PBCs. The effective DFT potentials in the
regions L and R are very well at bulk values, because of the surrounding atoms due to the
three dimensional PBCs.

picture already includes the construction of the electrode parameters S0j and H0j, needed
to determine the surface electrode Green’s functions grXX (see the explanations in Sec. D.2).
The electrode description will be the subject of the next section.

4.3 Electronic structure of the electrodes

In this section we will explain the construction of the parameters S0j , H0j , and Horth
0j intro-

duced in Fig. 4.4 (procedure 1 and 2). For this purpose we will explain, how the electrode
clusters are constructed, from which we extract the electrode parameters. In particular we
will present a size requirement that needs to be fulfilled, if meaningful parameters are to
be obtained for an electrode Green’s function construction in a nonorthogonal basis set.
Next we will discuss, how we impose the fcc space group on the Hamiltonian. In this thesis
we consider only electrode materials with an fcc crystal structure, namely Au and Al. For
this reason it is sufficient to concentrate on the fcc space group symmetry.

4.3.1 Constructing electrode clusters and size requirements

Our aim is the construction of bulk parameters. Ideally we would now perform a solid state
calculation with periodic boundary conditions and obtain a solid state Hamiltonian directly.
Unfortunately this possibility does not exist in TURBOMOLE. However, TURBOMOLE is
specialized on the calculation of large systems. In particular good results could be obtained
with the functional BP-86 for large metal clusters [180, 181, 182, 183].

Therefore we set out to construct bulk parameters from clusters. As we will work
exclusively with metals that exhibit an fcc structure in their crystalline form, we construct

spherical fcc clusters, henceforth called fcc balls, {~R
∣∣∣~R =

∑3
l=1 il~a

std
l ∧ R ≤ Rball } with the

fcc standard primitive lattice vectors ~astd1 = (0, a0/2, a0/2)T , ~astd2 = (a0/2, 0, a0/2)T , and
~astd3 = (a0/2, a0/2, 0)T , the lattice constant a0, and a radius Rball.

6 We did not relax these

6We will usually use the vector of integer indices i = (i1, i2, i3)
T

to characterize the vector ~R =∑3
l=1 il~al = ~Ri.
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Figure 4.4: Pictorial representation of the quantum transport method developed in this
work. Procedure 1 is a construction of electrode Green’s function consistently in a
nonorthogonal basis set. Procedure 2 uses orthogonal parameters and involves some un-
controlled basis set manipulation.
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Figure 4.5: Discrete Fourier transformation for a simple s orbital model. In black (indicated
with ⋆ symbols) the overlap S(d) from a central atom to all its nearest neighbors is given.
It is a simple Gaussian and a Fourier transformation gives back a Gaussian. In case that
too few overlap elements have been extracted in direct space (red curve or symbols �), the
overlap in k space becomes negative at certain k values. This behavior needs to be avoided
as any physical overlap matrix needs to be positive definite.

structures and set the lattice constant to its literature value [184, 77]. The idea behind
the choice of fcc balls is that the atom at the origin 0 is surrounded by a large number of
nearest neighbor shells. Increasing the radius Rball should finally lead to a central atom
that possesses an electronic structure close to an atom in a crystal. From these clusters
we want to extract the overlap and Hamiltonian parameters Sball0j and Hball

0j , connecting
the central atom to all the other atoms of the fcc ball. These parameters will serve as
an approximation for bulk that is of an increasing accuracy for increased cluster sizes. It
is suggested in Ref. [153] that a cluster with nearest (at most second nearest) neighbor
interaction is sufficient for the construction of reasonable bulk parameters. We will show
now that this is not the case, at least not in a nonorthogonal basis.

What happens to the overlap matrix, when we want to extract parameters from a
finite cluster? Let us for this reason study a simple s orbital model as introduced before
(see Eq. (4.24) and (4.25)). It has been shown that the overlap between two s orbitals a
distance d apart is just a simple Gaussian function S(d) = exp(−αd2/2) with an orbital
exponent α. Our cluster shall be a one-dimensional chain with atoms at equally spaced
positions and Born-von-Kármán PBCs (see Chap. D). The overlap from a central atom,
located in the middle of the chain, to its nearest neighbors will then drop off exponentially
(see Fig. 4.5). The discrete Fourier transform will again result in a Gaussian with purely
positive values S(k). If, however, only few overlap matrix elements are taken into account,
corresponding to the situation sketched in red, a rough sin(k)/k-behavior results and S(k)
becomes negative at certain values in k space. This indicates an unphysical behavior,
because overlap matrices need to be positive definite in real space [81] and this cannot be
changed by a unitary transformation like the Fourier transformation.7 As Gaussian basis

7The fact that the overlap in k space is positive definite can be seen with the help of the con-
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functions have very long tails this implies that the electrode clusters need to be, depending
simply on the basis chosen, of very large radius Rball.

Of course in a quantum chemistry basis set the situation is not as simple as just dis-
cussed, because higher angular momentum functions such as p and d orbitals appear in
these basis sets. The basis function with the smallest orbital exponent αmin will finally
determine the large-distance behavior. The positive definiteness of the overlap is easily
analyzed for very large fcc balls. This will give information on how large the fcc balls
need to be in order to obtain a physically meaningful overlap behavior from the extracted
parameters. For this reason we construct

Sk = S(~kk) =
∑

j

S(~0, ~Rj)e
−i~kk

~Rj =
∑

j

S0je
−i~kk

~Rj

according to Eq. (D.14). Next we diagonalize it with respect to the orbital dimensions,
which have been dropped, and determine the minimum eigenvalue over all k. Thus we
define the quantity

ξ = min
k

(eigval(S(~kk)α,β) (4.26)

with orbtial indices α and β. ξ should be positive, otherwise the fcc ball was not big
enough, and we should try to increase Rball. (Note that ξ depends somewhat on the period
assumed in the Born-von-Kármán PBCs.)

We concentrate now on the basis sets relevant for this work, namely the standard basis
sets al SVP, au SVP, the additional basis sets al SVP-wsp-opt, and au SVP-wsp, where the
most diffuse basis functions are eliminated, and al hw-min (see Sec. F.4). Investigations
will be made at a periodicity length of Ni = 16 (see Eq. (D.8)), and the fcc balls were
constructed using a lattice constant a0 = 4.05 Åfor Al and a0 = 4.08 Åfor Au. For these
basis sets we plot in Fig. 4.6 the behavior of ξ as a function of the nearest neighbor shell.
It is clearly visible in this figure that ξ is positive for a single atom (0 nearest neighbor
shells), but negative for small fcc balls. With increasing nearest neighbor shell number ξ
approaches 0 from below or becomes even positive at some stage. As expected, those basis
sets with diffuse functions (such as au SVP) need more nearest neighbors for recovering the
positive definiteness ξ of the k space overlap than the basis sets, where these functions are
dropped (such as au SVP-wsp). For these basis sets we also determined, as given in Table
4.1, the number of nearest neighbor shells and total atom number of the fcc ball necessary
to arrive at a positive ξ and for ξ to converge to a fixed value.8 Note the extremely large
number of atoms necessary to obtain a converged ξ in the SVP basis sets. This outlines the
importance of overlap contributions and confirms the common statement that Gaussian
basis functions possess long tails.

volution theorem. We work in three dimensions, and writing S(~y) =
∫
d3xφ(~x)φ(~x − ~y), we get

S(~k) =
∫
d3ye−i~k·~yS(~y) =

∣∣∣φ(~k)
∣∣∣
2

≥ 0.
8For all elements in Table 4.1 the values ”nn shells” and Natoms in the row ”ξ converged” are due to

the TURBOMOLE cutoffs for the overlap matrix elements, except for al SVP-wsp-opt. There, the cutoff
of the basis set is at ”nn shells ” 13, corresponding to a total number of atoms Natoms of 321.
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Figure 4.6: The positive definiteness measure ξ is plotted for the metals Al and Au as a
function of the nearest neighbor shell for various basis sets (see the legends). Details on
the basis sets are given in Sec. F.4, the periodicity length is Ni = 16 (see Eq. (D.8)), and
the fcc balls are constructed with a lattice constant a0 = 4.05 Åfor Al and a0 = 4.08 Åfor
Au.

It is at the moment not possible for us, to calculate clusters of more than 555 atoms
in the basis sets al SVP and al SVP-wsp-opt, 683 in the basis set al hw-min, and 429
atoms in the basis sets au SVP and au SVP-wsp. Comparing to the data listed in Table
4.1, the al SVP-wsp-opt, the al hw-min, and the au SVP-wsp basis sets correspond to ”ξ
converged” electrode clusters. For al SVP we have reached the region of positive k space
overlap, but for au SVP negative eigenvalues of the k space overlap need to be tolerated
to some extend.

In Figs. 4.7 and 4.8 we show the relevant electrode fcc balls studied in this work. The
small clusters may be used for checks regarding the convergence of certain properties such
as the bulk DOS. By switching to another basis set, the basis set dependence of the results
can be checked. For the HOMO energies of the biggest clusters we get −4.261 eV for Al555
in the basis al SVP, −4.039 eV for Al555 in the basis al SVP-wsp, −5.487 eV for Al683 in
the basis al hw-min, −5.013 eV for Au429 in the basis au SVP, −3.891 eV for Au429 in the
basis au SVP-wsp. Due to the cutting out of the most diffuse basis functions the electronic
structure may differ substantially in the basis sets of SVP-wsp quality. Also for al hw-min
the HOMO is at a very different position as compared to the al SVP results. It would of
course be desirable to improve the basis set quality instead of reducing it by cutting out
the diffuse basis functions. With respect to the data of Table 4.1 the positive definiteness
property would require the study of even bigger fcc balls well beyond our present computer9

resources.10

9We used Opteron 64bit architectures with a main memory of up to 16 GB.
10These problems should also arise in the study of solids in Gaussian basis sets even if PBCs are available.

The smallest orbital exponents of the basis functions need to be increased in studies of solids with Gaussian
basis sets, as seems to be the case in studies with the program CRYSTAL [185, 186, 187, 188, 189, 190].
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ξ > 0 ξ converged
basis set nn shells Natoms nn shells Natoms

al SVP 17 459 25 791
al SVP-wsp-opt 3 43 11 225

al hw-min 6 87 19 555
au SVP 24 767 28 959

au SVP-wsp 4 55 10 201

Table 4.1: Number of nearest neighbor shells (nn shells) needed for ξ to become positive
and to converge to a constant value. The total number of atoms (Natoms) of these fcc balls
is also indicated. As in Fig. 4.6, the periodicity length is Ni = 16 (see Eq. (D.8)) and the
fcc balls were constructed with a lattice constant a0 = 4.05 Å(Al) and a0 = 4.08 Å(Au).

From the clusters shown in Figs. 4.7 and 4.8 we extract the parameters from the center
at position 0 to the neighboring atoms at position j yielding the matrix elements Sball0α,jβ

and Hball
0α,jβ where α and β stand for the basis functions of the atoms at 0 and j. We

choose the elements from the center to the surrounding atoms because the center has the
highest number of nearest neighbors. We will, for reasons of brevity, often suppress the
orbital indices and write Sball0j and Hball

0j , which are then matrices with appropriate orbital
dimensions.

If orthogonal parameters shall be extracted according to procedure 2 of Fig. 4.4, we
orthogonalize the basis via a Löwdin orthogonalization with the full cluster overlap Sball

[81]. In this way we come to the Hamiltonian Horth,ball =
(
Sball

)−1/2
Hball

(
Sball

)−1/2
from

which we can extract the orthogonal parameters Horth,ball
0j from the center to all its nearest

neighbors.
The matrix elements S0,j, H0,j, and Horth

0j as employed in the construction of surface
(or bulk) Green’s functions need to be conform with the fcc space group of the crystal. In
the following paragraphs we will study how we come to such parameters.

4.3.2 Imposing the fcc space group on the electrode Hamiltonian

With the help of Eq. (F.11) we can generate parameters Y0,j (Y = S, H , or Horth) that obey
the fcc space group (Oh, T~R). As the fcc ball clusters possess Oh point group symmetry (see
Figs. 4.7 and 4.8), this symmetry is also contained in the elements Sball0j andHball

0j .11 It seems

that also Horth,ball
0j fulfills this Oh symmetry within the numerical error. Concerning the

translational symmetry this is necessarily fulfilled for S0,j because the overlap only depends
on the relative distance between two atoms. However, the elements of the Fock operator
are computed self-consistently and surface effects are included in their calculation. For this
reason the translational symmetry needs to be imposed (see Fig. F.4). We observe generally
that the deviations ∆Y0j = max(

∣∣Y0j − Y ball
0j

∣∣) between the symmetrized parameters Y0j

11Indeed we exploit this point group symmetry in TURBOMOLE to accelerate the computation. The
effort decreases with the order of the group, which is NG = 48 for Oh.
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Al321 Al429 Al555
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*

Figure 4.7: Fcc balls for the metal Al. All clusters, except the biggest marked with a star,
were computed in the basis sets al SVP, al SVP-wsp-opt, and al hw-min. Al683 could only
be computed in the basis set al hw-min.

and the parameters of the original unsymmetrized Y ball
0j decrease with increasing cluster

size (Y = H or Horth).12 In Table 4.2 we list these deviations for the different clusters of
Figs. 4.7 and 4.8. The clear trend of decaying ∆Y0j with cluster size of the fcc ball can be
observed.

We summarize the steps of procedure 1 that works with nonorthogonal parameters and
procedure 2 that works with orthogonal parameters (see Fig. 4.4):

• procedure 1:

{
Sballi,j ;Hball

i,j

} extract
=⇒

{
S0,j;H

ball
0,j

} impose fcc symmetry
=⇒ {S0,j ;H0,j}

The overlap and Hamiltonian parameters S0j and H0j are in the standard orientation
of the fcc lattice. In order to use them for a computation of the surface Green’s
functions of the left and right electrodes grLL and grRR a transformation to the lattice
orientation of the corresponding electrode may be required. This gives the set of
parameters S

(X)
0j and H

(X)
0j with X = L or R. The self-energy is then given by

Eq. (4.19), where the Green’s functions grXX are surface electrode Green’s functions

12For S0j the differences ∆S0j are less than 10−14, independent of the cluster size.
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Au13 Au141

Au201 Au225

Au55

Au429

Figure 4.8: Fcc balls for the metal Au. All clusters were computed in the basis sets au
SVP and au SVP-wsp-opt.

(constructed as explained in Sec. D.2).13 Their computation is described in Sec. D.1.
In this way we have constructed a self-energy consistently in a nonorthogonal basis
set. We call this recipe procedure 1.

• procedure 2:

{
Sballi,j ;Hball

i,j

} Lwdin orthogonalization
=⇒

{1i,j ;Horth,ball
i,j

}
extract
=⇒

{10,j ;H
orth,ball
0,j

}

impose fcc symmetry
=⇒

{10,j ;H
orth
0,j

}

In this way we arrive at the parameters Horth
0j . From these parameters we can then

construct, after appropriate rotations, the parameters Horth,(X) and orthogonal sur-
face or bulk Green’s functions. In order to construct a self-energy in a nonorthogonal
basis from these orthogonal Green’s functions we need to orthogonalize the coupling
elements to the electrodes. We do this by a Löwdin transformation with the overlap
matrices ScontactXX of the contact system to get

Σr
X(E) = (HCX −ESCX)S

−1/2
XX gorth,rXX S

−1/2
XX (HXC − ESXC).

We call this recipe procedure 2.
It should be clear this procedure, which works with orthogonal parameters as com-
pared to the nonorthogonal ones in procedure 1, contains an uncontrolled approxima-
tion, namely the transformation to an orthogonal basis set. The Löwdin transforma-
tions depend on the concrete overlap structure and thus cluster geometry. Therefore

13For testing purposes, also bulk Green’s functions may be chosen for gr
XX (see also the discussion in

Sec. 5.1.5).
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Al

al SVP al SVP-wsp al hw-dz
Natoms ∆H0j ∆Horth

0j ∆H0j ∆Horth
0j ∆H0j ∆Horth

0j

13 2E-2 4E-2 2E-3 8E-3 7E-3 8E-3
55 9E-4 3E-2 3E-4 2E-3 3E-4 9E-4
141 6E-4 7E-3 2E-4 6E-4 5E-4 4E-4
321 4E-4 5E-3 2E-4 2E-4 3E-4 3E-4
429 2E-4 3E-3 5E-5 4E-5 6E-4 3E-3
555 2E-4 3E-3 7E-5 7E-5 2E-4 2E-4
683 – – – – 8E-5 1E-4

Au

au SVP au SVP-wsp –
Natoms ∆H0j ∆Horth

0j ∆H0j ∆Horth
0j – –

13 3E-2 9E-2 3E-3 4E-2 – –
55 3E-3 3E-1 6E-4 3E-2 – –
141 4E-4 3E-1 3E-4 1E-2 – –
201 5E-4 8E-2 8E-5 7E-3 – –
225 9E-4 8E-2 6E-4 7E-3 – –
429 5E-4 4E-2 4E-5 3E-3 – –

Table 4.2: Comparison of deviations ∆Y0j = max(
∣∣Y0j − Y ball

0j

∣∣) between parameters Y0j in
fcc symmetry and the unsymmetrized parameters Y ball

0j for different basis sets and cluster
sizes. Given is the lowest upper bound to the error. The errors have been determined in
the set of rational numbers of the form n× 10−m with n ∈ [1, ..., 9] and m ∈ Z.

the multiplication with
(
Sball

)−1/2
in the orthogonalization of Horth,ball uses differ-

ent orthogonal orbitals than the orthogonalization of the contact couplings, which
involves a multiplication with S

−1/2
XX .

We want to point out that an unexpectedly slow radial decay is observed for the Hamilto-
nian Horth

0j . To demonstrate this, we analyze the fcc ball Au429 in the basis sets au SVP
and au SVP-wsp. We divide the cluster into its nearest neighbor shells and plot for every
shell the maximum absolute value max(|Y0j |) (with Y = S, H and Horth). The plot is
shown in Fig. 4.9. While the maximum absolute values of the overlap and Hamiltonian
elements S0j and H0j start to decay similarly and roughly exponentially from a certain
nearest neighbor shell on, this is different for Horth

0j . It can be observed that after an initial
decay Horth

0j seems to stay constant. This shows that a Löwdin orthogonalization changes
the radial dependence of the Hamiltonian matrix elements strongly.

The identification of the Hamiltonian elements of two orthogonal basis sets that have
been generated by Löwdin transformations with different overlap structures should be
avoided because such basis set identifications result in uncontrolled errors. This points out
that procedure 1, working consistently in a nonorthogonal basis set, should be preferred to



4.3 Electronic structure of the electrodes 101

0 1 2 3 4 5 6 7 8 9 10 11 12 13 1415 16 17
nearest neighbor shell

0.0001

0.01

1

100

m
ax

(|
Y 0j

|)

S
H (H)

H
orth

 (H)

au SVP

0 1 2 3 4 5 6 7 8 9 10 11 12 13 1415 16 17
nearest neighbor shell

1e-21

1e-18

1e-15

1e-12

1e-09

1e-06

0.001

1

1000

m
ax

(|
Y 0j

|)

S
H (H)

H
orth

 (H)

au SVP-wsp

Figure 4.9: Maximum absolute value max(|Y0j |) (with Y = S, H and Horth) as a function
of the nearest neighbor shells. The parameters are obtained from fcc balls Au429 in the
basis sets au SVP and au SVP-wsp.

procedure 2. Unfortunately procedure 1 might not be applicable, if the positive definiteness
ξ of the overlap is difficult to achieve for practical limitations of the cluster size (see
Eq. (4.26) and Table 4.1).

4.3.3 Convergence of bulk densities of states

The bulk DOS can be used as a measure for the convergence to a good solid state descrip-
tion. For large enough systems we observe the equivalence of the DOS construction with
respect to the three different orthogonal Hamiltonians Horth

k , which are constructed either
via procedure 2 or by use of Eqs. (D.18) and (D.19) for the nonorthogonal parameters of
procedure 1. If the positive definiteness property is not completely fulfilled due to a too
small cluster size, as it is the case for the SVP basis sets, then the construction of the
DOS from the orthogonal parameters is of a higher quality than that resulting from the
nonorthogonal constructions (Eqs. (D.18) and (D.19)). For this reason we show in Fig. 4.10
the DOS as obtained with parameters constructed via procedure 2 and as extracted from
different Al and Au fcc balls of Figs. 4.7 and 4.8. The basis sets employed are al SVP and
au SVP, the number of k points is 323, and the broadening for Al is η = 0.02 H, while for
Au it is η = 0.01 H. These parameters will also be used for the electrode broadening in
conductance calculations.14 We observe both for Al and Au that the bulk DOS seems well
converged with respect to the fcc balls’ size. In the figure also the Fermi energy is indicated.
It is set roughly into the middle of the HOMO and LUMO energy of the biggest cluster
calculated. For Al we get EF = −4.25 eV (al SVP), EF = −4.02 eV (al SVP-wsp-opt) and
EF = −5.46 eV (al hw-min), and for Au EF = −5.00 eV (au SVP) or EF = −3.87 eV (au
SVP-wsp).

14As explained in Sec. D.1.1 we choose the broadening conveniently so that the DOS looks smooth for
a certain number of employed k points.
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Figure 4.10: Bulk DOS for Al and Au in the basis sets al SVP and au SVP for some
selected clusters of Figs. 4.7 and 4.8. The broadening parameter η is 0.02 and 0.01 H for
Al and Au, respectively. The number of k points involved in the construction is 323.

4.4 Self-consistent calculation of the electronic struc-

ture of infinite systems

In the present scheme displayed in Fig. 4.4 we perform two separate calculations of finite
systems. The parameters extracted are ”put together” and we compute the conductance.
There arises some uncertainty about the position of the Fermi energy EF . In principle a
Fermi energy does not even exist for finite systems and we should talk about HOMO and
LUMO levels. Due to the finiteness of the two separate systems their HOMO and LUMO
levels will be separated by a certain gap and their HOMO and LUMO positions will not
be the same. So where should be the Fermi energy needed in a conductance calculation?
Currently we set this energy to an energy in the HOMO-LUMO gap of the fcc ball, which
is very metallic. The Fermi energy in our formalism is just the point, where we read off
the conductance in a transmission curve, and it enters at no other point.

In order to eliminate the uncertainty of the position of EF completely, it has been
proposed that fully self-consistent DFT calculations of the infinite coupled system should
be carried out [151, 150, 152, 127, 153, 128, 191, 192]. In this way the electronic structure
is computed for the coupled system, and also the nonequilibrium situation of a bias applied
over a junction can be analyzed. It is thus highly desirable to develop such a scheme and
in particular references [150, 127, 128, 153, 191] suggest that this should also be possible
for the quantum chemistry approach. All our attempts were, however, unsuccessful and we
will show in short why. Analysing Refs. [150, 127, 128, 153, 191] we want to point out that
in all of them approximations in the electrode description (or the coupling of the central
system to the electrodes) are made. In Ref. [153] one finally resorts to energy independent
self-energies, whereas Refs. [150, 127, 128, 191] all describe their electrodes in a minimal
basis tight-binding model with an orthogonal basis set. Already from this orthogonal basis
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Figure 4.11: Sketch of schemes for the determination of the electronic structure of a finite
system (left panel) and an infinite system (right panel) [153]. For the isolated system,
the density matrix is constructed by occupying the states of the Hamiltonian HCC from
the lowest to the highest energy, where N levels are occupied according to the number
of electrons in the system. For an infinite system the nonequilibrium Green’s function
(NEGF) formalism is employed. In the construction of the density matrix ̺CC the self-
energies ΣX and chemical potentials µX (X = L or R) of the electrodes enter.

set an uncontrolled approximation results. In this sense these latter references on the
quantum chemistry approach do not appear to be real first principles calculations due to
the semiempirical parameters employed in the electrode description.

Another class of references [151, 152, 192, 159], including the commercially available
code TRANSIESTA, uses software with the capability of PBCs. Recently these groups
work very successfully, and we believe that only with PBCs, that offer the possibility to
eliminate surface effects, a real ab-initio description of the molecular junctions is possible.
Let us now argue, how we come to this point of view.

4.4.1 The self-consistent scheme

There is a nice pictorial representation in Ref. [153] of the way, in which the electronic
structure of finite systems is determined in conventional DFT, and how this procedure
should be changed for infinite systems. We show the idea in Fig. 4.11. On the left the
scheme for isolated systems can be seen. We start with a guess of the overlap and Hamil-
tonian (or KS Fock operator) SCC and HCC of a finite system, called C. Next we construct
the density matrix ̺CC , and iterate until convergence is achieved. In the Green’s func-
tion formalism this scheme is analogous. We get SCC and a guess for HCC , construct the
retarded Green’s function Gr

CC(E) = (E+SCC −HCC)
−1

. The density matrix ̺CC is de-
termined as the integral over the imaginary part of Gr

CC up to an energy, where the system
is charge neutral (this corresponds to the occupation of the lowest eigenvalues in order to
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construct ̺CC), so that

̺
(new)
CC = −1

π

∫ EN

−∞
dEIm [Gr

CC(E)] (4.27)

with the equation N = Tr
[
̺

(new)
CC SCC

]
for the determination of EN . As explained in

Sec. B.3.3 (see in particular Eq. (B.48) and Fig. (B.2)) this integration can be carried out
in the complex plane in order to save integration points, if this is convenient [150, 152, 127].

We implemented the above scheme for an isolated system, and there was no problem
to converge the system to an energy close to that determined by TURBOMOLE. Here we
used a simple density mixing of the form ̺

(n+1)
CC = (1 − g) ̺

(n)
CC + g̺

(new)
CC and a damping

constant g. Hence, for isolated systems there are no problems.
Let us now come to the infinite system in equilibrium. Here the self-energies are added

and Gr
CC becomes

Gr
CC = (ESCC −HCC − Σr

L − Σr
R)−1

Again Eq. (4.27) is used to determine ̺CC . This density matrix is then given back to the
quantum chemistry routine that shall determine the Hamiltonian. A first question arises
here on the role of EN . There are charge contributions from the outside that one might need
to include (NC =

∑
X=L,C,R Tr [̺CXSXC ]). Indeed we found out that the numerical routine

becomes unstable, if electrode charge contributions are included, because TURBOMOLE
will then compute with a density matrix ̺CC of slightly different charge N = Tr [̺CCSCC ],
depending on the iteration. The problem is that TURBOMOLE has only information
about the finite system C in the construction of HCC and not about the system LCR.
Therefore EN should be fixed to the charge of the central system.

Thinking further about this point there appear more problems. The system C is em-
bedded into the system LCR. A calculation of the complete LCR system will use basis
functions of L and R to describe states in C, more so due to the long tail of Gaussian
basis functions. The construction of HCC from the density ̺CC will make a severe basis set
superposition error. But even more severe should be the effect of neglected contributions of
the L and R regions to the Kohn-Sham Fock operator of system C, especially the Coulomb
terms. It is a well known fact from the implementation of PBCs with Gaussian basis sets
that these electrostatic contributions from far away atoms are very important and that
their accurate determination plays a crucial role in a proper convergence of an total energy
calculation [193, 185, 189]. Due to the finiteness of our systems and the fact that the step
̺CC → HCC involves only the system C these contributions are completely neglected if no
special precautions are taken. The TRANSIESTA community seems to be aware of these
problems. They state that the calculation of their ”density matrix correct part” needs a
”Hamiltonian correct part” in a bigger region containing the ”density matrix correct part”
[152].

Assume we had PBCs as sketched in Fig. 4.3. After a computation of ̺CC the DFT
procedure will compute HCC with PBCs applied. The missing contributions to the Hamil-
tonian are then included (at least approximately), because the PBC makes the system be
surrounded by other atoms. This explains, why PBC software should be more appropri-
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Figure 4.12: Al test system for checking the self-consistent procedure for the calculation
of the electronic structure. As usual, the system is divided into parts L, C, and R. As
shown, the region C may be subdivided into further regions C1, C2, and C3.

ate for self-consistent calculations of infinite systems than software, where these boundary
conditions are missing.

4.4.2 A minimal test system

We want to illustrate the problems mentioned previously at a simple test system. For
this purpose we calculate a large LCR system in TURBOMOLE. As test system we
used a pyramid of Al atoms with the basis set al hw-min, displayed in Fig. 4.12. So
we know the complete DFT Hamiltonian for the LCR system and all its parts when we
choose a concrete partitioning into regions L, C, and R. In this way we know, how the
Hamiltonian of the system C embedded into the finite system LCR looks like. By using
grXX = (ESXX −HXX)−1 of the finite clusters (X = L and R) we can construct the exact
self-energies Σr

X = (HCX − ESCX) grXX (HXC − ESXC). The self-consistent procedure ap-
plied to the system C coupled via the exact self-energies Σr

X of the finite L and R regions
should not change the Hamiltonian HCC .

Our findings are in contrast to this. When we carry out the integration scheme, the
energies of the C part of the system start increasing by several Hartree (several ten eV)!
Let us point out that from the technical side we checked all our routines carefully. In
addition a contour integration of the previous kind has already been implemented by us in
the context of the TB models (see Eq. (2.3)), where we developed an adaptive integration
scheme of the closed Newton-Cotes form (see Sec. E.2). Within the TB formalism no
problem related to the charge neutrality loop ever appeared in the sense that we could not
converge a system. Due to the well tested routines, their modular structure directly usable
in the DFT formalism, and careful checks, we can virtually exclude any error.

Due to the remark of Ref. [152], where it is stated that a ”density correct region”
requires a larger ”Hamiltonian correct region” in which the density correct region is con-
tained, we started subdividing the central system C further into subregions C1, C2, and
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C3. The idea was to fix the Hamiltonian of the regions C1 and C3, because in these re-
gions the error due to the neglect of contributions of the L and R regions to the KS DFT
Hamiltonian should be more severe than for region C2. But even with fixed Hamiltonian
contributions HC1C1 and HC3C3 we obtained a final total energy more than 10 H= 272 eV
above the starting point of −137.394 H. In this sense the fixing of parts C1 and C3 did not
help solving the problems encountered before.

In conlusion, these results show that substantial errors are made if the step HCC → ̺CC
in Fig. 4.11 is done for the infinite system by including self-energies without properly
accounting for contributions to the KS Hamiltonian from atoms outside of the central
system C in the step ̺CC → HCC . The accurate inclusion of electrostatic terms is known to
be crucial in the calculation of infinite systems [193, 185, 189]. An approximate accounting
for them seems possible, when software with the capability of PBCs is used.

For these reasons the self-consistent determination of the electronic structure of the
infinite system, namely a contact region coupled to semi-infinite electrodes on both sides,
is currently hindered due to the missing ability to use periodic boundary conditions in
TURBOMOLE. Therefore, it will unfortunately not be possible in this work to compute
device characteristics out of equilibrium.15

Nevertheless, we will show that due to TURBOMOLE’s ability to compute clusters
consisting of many atoms even our present transport scheme yields very satisfactory results.
Indeed we will demonstrate in Chap. 5 at the example of metallic atomic contacts that
our results exhibit some kind of convergence. In addition they are completely in line with
experimental observations and the results of previous DFT based theoretical studies. In
this sense the self-consistent determination of the electronic structure of the infinite system
does not appear to be urgently required for the determination of the conductance.

4.5 Evaluation of the method

In the previous section we outlined a problem of our present scheme, namely that the
electronic density of the infinite system is not computed self-consistently. In contrast our
method calculates separate electrode and contact parameters and puts them together to
determine the transmission curve (see Fig. 4.4). This causes some uncertainty about the
position of the Fermi energy. For large enough contact and electrode fcc ball clusters their
HOMO and LUMO levels should converge to a common value so that the self-consistent
determination of the Fermi energy may not be needed. In practice of course it may be
difficult to reach this limit due to computer hardware limitations.

We will demonstrate now that, despite the technical problems detailed above, our
method yields results that are in perfect agreement with experiments and other more
established quantum transport methods. For this purpose we show a direct comparison

15Also from the point of view of avoiding surface effects and parameter mismatch problems in the
self-energy construction, periodic boundary conditions, as shown in Fig. 4.3, are highly desirable for the
implementation of a quantum transport scheme.
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Figure 4.13: Comparison between results of Ref. [152] (left panel) and those obtained with
the method developed in this work (right panel). In both cases the atomic contact consists
of a three-atom chain with very similar interatomic distances and electrodes oriented in
the [111] direction.

with results of the commercially available TRANSIESTA program [152]. As test system
we choose a three atom Au chain and an electrode oriented in the [111] direction.

Different experiments have shown that the conductance of Au contacts exhibits a ten-
dency towards integer values in the last stages of the wire formation [82, 20, 87, 89]. As
discussed in Sec. 2.4, the most dominant feature in the experimental low-temperature con-
ductance histogram is a pronounced peak at 1G0, which is due to single atom contacts
or chains of atoms (see Fig. 2.1) [82, 20]. On the theoretical side this result has been
confirmed in various DFT calculations [152, 84, 85].

In Fig. 4.13 we show now the comparison between our result and those of Ref. [152]
(see Fig. 9d therein). We use procedure 1 with surface Green’s functions (see Fig. 4.4).
The fcc ball used is a Au429 cluster with a HOMO energy of −5.01 eV and we set the Fermi
energy to EF = −5.00 eV. The contact calculation involves an Au contact of 77 atoms as
shown in the right lower part of the figure. Also indicated is the partitioning into the left,
central and right regions. For reasons of better comparison with Ref. [152] we shifted EF
to the origin. We observe that all the basic features in our transmission curve are the same
as in the TRANSIESTA calculation. After the d band with a high final peak there comes
in both cases a dip in the transmission. T (E) recovers after that, and a flat region with a
transmission of around 1 is visible. In both cases the conductance is close to 1G0 at the
Fermi energy EF . To be precise we obtain a transmission T (EF ) = 0.96G0.

We will come back to a more careful analysis of these results in Sec. 5.1. For the moment
let us conclude that the method developed in this work is very well compatible with the



108 Ab-initio density functional approach to molecular electronics

experimental expectations for the conductance of a Au atomic chain. Furthermore our
method compares favorably to the results of other ab-initio methods.

4.6 Conclusions

In this chapter we presented the details of a first-principles method to compute the electric
charge current in nanoscale systems. The method is based on the implementation of density
functional theory in the quantum chemistry package TURBOMOLE.

We developed two practical schemes, called procedures 1 and 2, by which we model the
electronic structure of an infinite system such as a molecule coupled to two semi-infinite
electrodes. The schemes differ slightly in the construction of the electrode self-energies. In
both cases the contact region and the electrodes are treated within the same basis set. The
contact and electrode description are performed using large atomic clusters. We showed,
how electrode parameters can be extracted from finite clusters involving a symmetrization
procedure. For these electrode parameter clusters we pointed out a size requirement aris-
ing from the physically required positive definiteness of extracted overlap matrix elements.
While procedure 1 works consistently in a nonorthogonal basis set, procedure 2 involves
an orthogonalization step in the electrode description that makes this scheme more ap-
proximate. Procedure 1 should therefore be preferred to procedure 2. However, one may
need to resort to procedure 2, if the positive definiteness requirement for the overlap in
the nonorthogonal basis cannot be fulfilled for reasons of practical computer hardware
limitations. For the electrode parameters extracted from finite fcc balls, we presented the
convergence of the bulk density of states with respect to the fcc ball’s cluster size.

Subsequently we commented on unsuccessful tests of the implementation of a self-
consistent procedure by which the electronic structure of a truly infinite system is calcu-
lated. We pointed out a deficiency in the naive application of the standard scheme by
which these calculations should be carried out. This deficiency is the neglect of contribu-
tions of atoms in the electrodes to the Hamiltonian of the central system, if no periodic
boundary conditions are used. As such periodic boundary conditions are currently not
available in TURBOMOLE we could not implement an ab-initio self-consistent procedure
for the determination of the electronic structure of an infinite system.

From the deficiency an uncertainty with respect to the position of the Fermi energy of
the central system results. It may be overcome by computing contact geometries comprising
a large number of electrode atoms. We demonstrated for a gold atomic contact that the
method in its present form (procedure 1 combined with surface Green’s functions) gives
results perfectly in line with experimental expectations. In addition our results compare
very well with results of more established transport methods that perform a self-consistent
calculation of the electronic structure of an infinite system. Within our method the only
”free parameter” is the partitioning of the contact system into a left, central, and right
region. For this reason we believe that the proposed procedure can be called an ab-initio
description of electron transport.



Chapter 5

Ab-initio calculations of the

transmission of metallic atomic

contacts

In the last chapter we presented a first-principles method for the prediction of conduction
properties of infinite systems. In Sec. 4.5 we already applied it to a Au contact, namely a
chain of three Au atoms, in order to validate the results of our method. Indeed they turned
out to be in line with experimental expectations and other theoretical studies present in
the literature. In this chapter we will explore further metallic atomic contacts, namely Au
and Al metallic contacts, which will serve as further test systems for our method. After
the study of these metallic test systems we will be in a position to apply our method in
the field of molecular electronics (see the following Chap. 6), the ultimate goal behind our
effort of developing an ab-initio approach to quantum transport.

In this chapter we will start out by discussing the conduction properties of Au systems,
in particular a Au four-atom chain, a three-atom chain, and a two-atom chain. For them
we will discuss the transmission, the channel decomposition of the transmission, and the
local density of states (LDOS) for the atoms in the narrowest part of the contact. Even
more important, we will demonstrate that our transmission curves converge, if contact
geometries are chosen large enough. In addition we will compare the performance of the
procedures 1 and 2 of Fig. 4.4, and investigate the differences in the transmission properties
arising from an exchange of surface by bulk electrode Green’s functions. Finally we will
discuss ideal Al contacts. We will follow basically the same agenda as for Au. This means
that we will look at the transmission, the channel decomposition of the transmission, the
local density of states (LDOS) for the atoms in the narrowest part of the contact, and show
again the convergence of the obtained transmission curves. Furthermore we will compare
the results of a high quality quantum chemistry basis to the predictions of a minimal basis
model.

In the subsequent sections we will use the basis sets au SVP for the description of Au,
and al SVP and al hw-min for Al. Electrode parameters will be taken from the biggest
fcc ball clusters computed (see Figs. 4.7 and 4.8), namely Al555 for al SVP, Al683 for al

109
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Figure 5.1: DOS for a bulk Au atom resolved in its orbital contributions. On the left the
DOS is shown in a region around EF , while the right panel displays a large energy interval.
As indicated the first peak in the right panel corresponds to the 5s orbitals, the second one
to the 5p orbitals, and only after that the electronic conduction band is visible, starting
mainly with d contributions.

hw-min, and Au429 for au SVP. As explained before we choose the Fermi energy to be in the
HOMO-LUMO (highest occupied/lowest unoccupied molecular orbital) gaps of these fcc
balls, resulting in EF = −4.25 eV (al SVP), EF = −5.46 eV (al hw-min), and EF = −5.00
eV (au SVP). In Chap. F.4 of the appendix the basis sets of relevance for the following
sections are described.

5.1 Conduction properties of gold atomic chains

In this section we want to study the conduction properties of Au contacts, in particular a
Au four-atom chain, a Au three-atom chain, and a Au two-atom chain. As mentioned in
Sec. 4.5 one expects a conductance of around 1G0 for these structures from experimental
measurements [82, 20, 87, 89] as well as from density functional theory (DFT) calculations
[152, 84, 85]. This value of the conductance should be due to a dominant single transmission
channel arising mainly from the s valence of the noble metal Au.

Let us first discuss the DOS for a bulk Au atom as visible in Fig. 5.1. The Fermi energy
EF for Au is located in a fairly structureless flat region of the DOS, located somewhat
above the d band (see the left panel of Fig. 5.1). From the atomic point of view Au has an
electronic configuration 5s25p65d106s1 and one might have expected a strong contribution
of the s orbitals at the Fermi energy. But also due to the higher multiplicity of the p and d
states the DOS at EF is dominated by their contributions. This signifies that in the bulk
metal a strong hybridization of all the states from valence orbitals takes place.

All the systems studied in this section have been analyzed with two different basis
sets, namely au SVP and au SVP-wsp. As stated before (see Secs. 4.3.1 and 4.8) the Fermi
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Au100−chain4 Au111−chain3 Au111−chain2

Figure 5.2: Au contact geometries as investigated further below. The geometry Au100-
chain4 is a four-atom Au chain with electrodes oriented in the [100] direction, Au111-chain3
is a three-atom Au chain with [111] electrodes, and Au111-chain2 is a two-atom Au chain
with [111] electrodes.

energy of Au429 in these two basis sets differs a lot. We obtain Fermi energies of EF = −5.00
eV (au SVP) and EF = −3.87 eV (au SVP-wsp). In the analysis of our data we found that
the conductances, as obtained in the basis set au SVP-wsp, deviated substantially from
1G0, in contrast to experimental observations. This is not unexpected because in the basis
set au SVP-wsp the most diffuse functions s and p functions are omitted. This should
result in a poor description of a metal with delocalized electrons. We will therefore only
discuss the results as obtained with au SVP.

5.1.1 Determination of contact geometries

The ideal behind the study of Au chains is to check the results of our method. In the
literature exists a consensus that the conductance of Au atomic chains is around 1G0 as
discussed above. However, finite size effects play a certain role, and also the experimental
values for the conductance of Au chains vary in a certain range around 1G0. Therefore
it is important to construct some reference geometries that have been studied with a
well established transport method. We choose to compare with results as obtained with
TRANSIESTA [152]. The geometries investigated by us are shown in Fig. 5.2. The four-
atom Au chain with [100] electrodes, called Au100-chain4, corresponds to a geometry given
in Ref. [130] (see Fig. 1b therein). The three atom Au chain Au111-chain3 is chosen in
analogy to Ref. [152] (see Fig. 9d therein). In addition, we studied a Au dimer contact,
where a two atom chain is present at the narrowest part of the contact.

Let us shortly state, how we determine these geometries, which shall all be oriented
along the z axis. For Au100-chain4 we construct two ideal Au [100] pyramids, with two
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atoms in between. The pyramids end with the layer consisting of 25 atoms. The distance
between the layers containing 4 atoms is set to 12.68 Å[130]. Then we relax the inner four
atoms in symmetry C1, keeping all other atoms fixed. After convergence we put the atoms
into a D4h symmetry, by slightly manipulating their positions. Furthermore we add two
more layers with 16 and 9 atoms on each side. This geometry consists now of 162 atoms.
Finally we perform a single point calculation exploiting the point group symmetry D4h.
For Au111-chain3 we proceed similarly. We start with two perfect Au [111] pyramids, set
the z distance between the Au layers with 3 atoms to 9.91 Å[152], and cut the pyramid off
at a layer with 10 atoms. Next we add one atom in the middle, relax the 3 chain atoms,
put them back into symmetric positons, add two layers on each side with 12 and 6 atoms,
and make a single point calculation in symmetry D3d. Au111-chain3 contains 77 atoms in
total. For the Au111-chain2 we did this a little bit different in the sense that we relaxed the
innermost eight atoms. The z distance between the first fixed layers with 6 atoms is 12.12
Å. Otherwise the steps are the same as for Au111-chain3. This contact was computed in
the point group symmetry C2h and consists of 76 atoms.

5.1.2 Four-atom gold chain

Let us now study the conduction properties of the contact Au100-chain4. There are many
different possibilities to partition the contact into the left (L), central (C), and right (R)
parts. We will refer to such partitionings as ”cuts”. It is clear that the cuts should be
done such that L and R are unconnected (SLC = 0 and HLC = 0), which is required
by the formalism by which we compute the conductance. This requires a large enough
C region. In addition it is sensible, if there are several layers in the L and R regions.
Otherwise a substantial mismatch problem due to surface effects will result. In such cases
the transmission as a function of the energy T (E) shows many artificial wiggles. We observe
that at minimum two layers in the L and R regions are necessary to obtain reasonable T (E)
curves. For two different cuts T (E) is plotted in Fig. 5.3 for the contact Au100-chain4. For
the two different cuts shown in the left panel T (E) is very much identical, indicating some
kind of robustness of our method and a convergence with respect to the size of C. The
transmissions at the Fermi energy are T (EF ) = 0.93 and 0.98 for cuts 1 and 2, respectively.
These values correspond well to the results of Ref. [130], where T (EF ) = 0.99.

Next we want to study the channel decomposition of T (E) at EF (see Fig. 5.4). There
is clearly a single channel at EF again in perfect agreement with experimental observations
[38] and previous theoretical studies [152, 84].

In general the electronic structure in the narrowest part should be responsible for the
conductance of an atomic point contact [38]. In order to gain more insight into the elec-
tronic structure of the Au chain we plot in the right panel of Fig. 5.4 the LDOS of the
atom indicated by an arrow in Fig. 5.3. As compared to the bulk DOS of Fig. 5.1 the con-
tributions of s orbitals are enhanced at EF signaling that the single transmission channel
should mainly be due to the s orbitals.1

1Note that the contribution of the s orbitals in the DOS is obtained by summing over all s basis
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Figure 5.3: The transmission as a function of the energy for the contact Au100-chain4.
Two different partitionings of the contat into the LCR parts are indicated by cut 1 and 2
to the left. The corresponding T (E) curves are displayed to the right.

5.1.3 Three-atom gold chain

Exactly the same analysis will now be carried out for the contact Au111-chain3, a three
atom Au chain. This system was already under investigation in Sec. 4.5, where we directly
compared our transmission curve to a study with TRANSIESTA. Now we will show more
details on this contact system. While the contact Au100-chain4 did not require a rotation
of the electrode parameters, the [111] electrode planes aligned with the z axis make such
a transformation necessary (see Sec. F.1). So from the methodological point of view the
system Au111-chain3 is more complicated than the geometry Au100-chain4.

In Fig. 5.5 the analysis of the three-atom chain Au111-chain3 is shown. Again we
observe a flat region in T (E) with transmissions close to 1. At the Fermi energy cuts 1
and 2 predict T (EF ) = 0.96 and 0.99, respectively. We see in the lower left of the figure
that the transmission at EF is dominated by a single transmission channel. The LDOS
indicates a dominant contribution of s orbitals. For the d states in the LDOS we observe
very sharp peak structures that are also reflected in the transmission. This phenomenon
is also apparent in Fig. 5.4.

5.1.4 Two-atom gold chain

Another system often discussed in the literature (see also Sec. 2.4) is a Au chain of two
atoms, also called a dimer configuration. Such a system, contact Au111-chain2, is displayed
in Fig. 5.6. Similar to the plots before we analyze the channel decomposition of T (E).
Again we observe a dominant channel. But T (E) is partly over 1 around EF , so that, as
compared to Au100-chain4 and Au111-chain3, the contribution of other channels becomes

functions, the p contribution is a summation over all p functions of the basis set and so on. For au SVP
we combine 6s, 3p, and 5d functions into the contributions s, p, and d, respectively.
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Figure 5.4: In the left panel T (E) is plotted for the contact Au100-chain4 partitioned with
cut 2. In addition to the total transmission also the transmission channel decomposition
of T (E) is shown, as indicated in the legend. To the right the LDOS of a Au atom in the
four atom chain is displayed (see the atom pointed at by the arrow in Fig. 5.3). The LDOS
is also resolved in the contributions of s, p, and d orbitals by summing over the respective
s, p, and d functions of the basis set.

already visible. We find that T (EF ) = 0.96. In the left panel of the figure we also depict
the LDOS for an atom in the narrowest part of the constriction (see the arrow in the
contact geometry in Fig. 5.6). Presumably due to the higher coordination number of the
atom, the structure of the d states has changed as compared to Figs. 5.4 and 5.5. Also the
p contributions are increased at EF , possibly indicating that the 6s1 electronic character
of the Au atom is diminished due to the high coordination number.

5.1.5 Role of the self-energies: orthogonal versus nonorthogonal

parameters and bulk versus surface Green’s functions

Before we switch to another metal, namely Al, let us compare the performance of the
procedures 1 and 2, as depicted in Fig. 4.4. We will refer to these two procedures as p1 and
p2 throughout this paragraph. In addition we will study the difference between the T (E)
curves obtained with surface or bulk Green’s functions. We show this comparison in Fig. 5.7
for the contacts Au100-chain4 and Au111-chain3 . For both these chain configurations we
compare the cuts 1 and 2 in the corresponding Figs. 5.3 and 5.5.

We can observe that all procedures produce qualitatively similar transmission curves
with an initial ”peaky” region from energies of −9 to −6 eV, corresponding to the d states
of Au. Also the increase of the transmission at −1 eV is a common feature in all plots.
However, there appear to be strong oscillations of T (E) around EF , depending on the
method chosen. The procedure performing best, in the sense that the transmission resides
on a stable plateau of T (E) ≈ 1 at EF , is the method p1, surface. This is the method
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Figure 5.5: In the upper right T (E) is shown for two different cuts of the contact Au111-
chain3. These cuts are indicated in the contact geometry to the left of these curves. In the
lower left panel the decomposition of the total transmission into transmission channels is
depicted for cut 1. To the lower right the LDOS of the central Au atom in the three-atom
chain is shown (see the atom pointed at by the arrow in the contact geometry). The LDOS
is resolved in its orbital contributions.

that we used up to now, namely nonorthogonal electrode parameters combined with surface
electrode Green’s functions. The results for Au111-chain3 show that the use of bulk Green’s
functions combined with nonorthogonal electrode parameters does not seem to be a good
approximation. Also the method p2, surface performs quite badly in this particular case.
Instead p2, bulk, the use of orthogonal electrode parameters combined with the use of bulk
Green’s functions seems to be a reasonable approximation.

There is a clear message from this analysis: Nonorthogonal electrode parameters should
be used with surface electrode Green’s functions, and there is no other method that per-
forms equally well.
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Figure 5.6: In the left panel T (E) is shown for the contact Au111-chain2 together with the
transmissions of the different transmission channels. The right panel diplays the LDOS of
an atom in the narrowest part of the contact (see the atom pointed at by the arrow in the
contact geometry). The LDOS is resolved in its orbital contributions.

5.2 Conductance of ideal aluminum atomic contacts

In this paragraph we want to investigate Al contacts. As it is visible from the bulk DOS in
Fig. 5.8 the electronic structure of Al is quite different to that of Au. While Au is a noble
metal with an s valence, the Al atom has an open p shell and the metal is considered as a
p-valent metal (see also Sec. 2.6).

For Al we will study an ideal fcc [111] pyramid consisting of 251 atoms. Ideal means
that none of the atoms have been relaxed. Instead the geometry is cut out of an fcc lattice
with the experimental lattice constant a = 4.05 Å. The calculations presented below are
therefore rather meant as a demonstration that our method is applicable to other metals
than Au. We want to point out that S. Wohlthat [194] studied the transport in atomic Al
contacts in the presence of gas molecules, based on the methods developed in this work.

In this section we will compare the results of the conductance for different basis sets.
These basis sets will be al SVP and al hw-min. From the biggest fcc balls calculated for
them we extract Fermi energies EF = −4.25 eV (al SVP) and EF = −5.46 eV (al hw-min).

5.2.1 Aluminum single-atom contact

Let us start with the discussion of the transmission in the basis set al SVP. The contact
considered, called Al111-251, is shown in Fig. 5.9 together with the total transmission, the
individual transmission channel contributions, and the LDOS of the atom in the narrowest
part of the contact. From the plot of T (E) it is obvious that the transmission channel
structure has changed a lot compared to Au. Now there are three transmission channels
at EF that contribute to the total conductance. Due to the D3d symmetry of the contact
structure two of the channels are exactly degenerate and T2 lies directly on top of T3. These
additional channel contributions, as compared to the single dominant channel in the Au
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Figure 5.7: Comparison of the T (E) curves as predicted by procedure 1 (p1) and 2 (p2)
of Fig. 4.4. In addition the results with surface electrode Green’s function (surface) are
compared to bulk electrode Green’s functions (bulk). In the upper panel this comparison
is shown for the Au four-atom chain of Fig. 5.3, while the lower two panels are for the Au
three atom chain of Fig. 5.5. The left and right panels in each row correspond to the cuts
1 and 2 of the corresponding Figs. 5.3 and 5.5.

chains, can mainly be attributed to the p orbitals. Also the LDOS in the narrowest part
shows the clear dominance of these p contributions. The existence of three conduction
channels is perfectly in line with the experimental observations of Scheer et al. [19, 38].
For the transmission we get T (EF ) = 1.88.

5.2.2 Basis set dependence of the transmission

Finally we want to explore, how our results vary when the basis set is changed. In partic-
ular, often minimal basis sets are used for the description of the electrodes in the field of
molecular electronics [163, 128]. For this purpose we consider, beside the basis al SVP, the
minimal basis al hw-min. For three different cuts we show in Fig. 5.10 the T (E) curves
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Figure 5.8: DOS for a bulk Al atom resolved in its orbital contributions. On the left the
DOS is shown in a region around EF , while the right panel displays a large energy interval.
As indicated, the first peak in the right panel corresponds to the 2s orbitals, the second one
to the 2p orbitals, and only after that the electronic conduction band is visible, starting
mainly with s and p contributions.

for the two different basis sets. Up to the Fermi energy EF (which is quite different for
these two basis sets) there are no big differences visible between the curves for the different
cuts. The results for the basis set al SVP look very robust with respect to the cut, even
above EF . Unfortunately just at the Fermi level some differences between the three cuts
arise and T (EF ) = 2.36 (cut 1), 1.88 (cut 2), and 2.23 (cut 3). For Al hw-min the visual
impression is a stronger sensitivity of the T (E) curves to the cut. However, directly at
EF the deviations between the different transmission curves are not much bigger than for
the, from a quantum chemical point of view, much more elaborate basis set al SVP. For al
hw-min we get T (EF ) = 1.76, 2.18, and 2.45. Above EF the transmission differs strongly
for the minimal basis set. It is interesting to observe that the results for the minimal basis
set are – at least in this case – very close the predictions of the much more sophisticated
basis set al SVP.

5.3 Conclusions

In this chapter we used metallic atomic contacts to test the ab-initio transport scheme as
developed in Chap. 4. The different metals studied were Au and Al.

For Au we found that our results coincide with experimental observations of a con-
ductance close to 1G0, where we studied a two-, a three-, and a four-atom Au chain with
varied electrode lattice orientations. In addition, the results for the three- and four-atom
Au chains could be compared to other DFT based approaches to quantum transport, and
were in close agreement. Concerning the methodology, there were usually at least two
different partitionings of the system that led to similar transmission curves, demonstrat-
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Figure 5.9: In the left panel the transmission T (E) for an Al-pyramid with planes oriented
along the [111] direction is displayed. We call this contact Al111-251. The transmission
eigenchannels are shown for the cut indicated in the picture of the contact geometry. The
right panel shows the LDOS of the atom in the narrowest part of the contact.

ing the robustness or convergence of our results with respect to the predicted conduction
properties. Furthermore, we investigated the different transport schemes as proposed in
Fig. 4.4. While procedure 1 employs nonorthogonal electrode parameters, procedure 2 uses
orthogonal ones (see also Sec. 4.3). For them, in turn, we studied the changes resulting
from a replacement of surface by bulk Green’s function. We saw that the nonorthogonal
electrode parameters combined with surface Green’s functions indeed perform best.

Next we investigated an ideal Al single atom contact. In this case the transmission
channel structure changed compared to Au. But again the finding of three open transmis-
sion channels is in agreement with experimental results. Also for Al we could demonstrate
a reasonable robustness of our results with respect to the partitioning.

In conclusion we have shown that our quantum transport method is applicable to
different electrode materials. Moreover it possesses a certain predictive power. These
successful tests open up the possibility to apply our method in the field of molecular
electronics (see the following Chap. 6).
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Figure 5.10: Comparison between the basis sets al SVP and al hw-min. In the left panel
T (E) is plotted for different cuts using the basis set al SVP, while on the right the same is
done for the minimal basis set al hw-min.



Chapter 6

Molecular electronics with organic

molecules

In this chapter the conduction properties of different series of oligophenylene molecules will
be analyzed theoretically. The main part of the molecules studied here has been synthesized
in the group of M. Mayor at the Institut für Nanotechnologie (INT), Forschungszentrum
Karlsruhe (FZK) (see PhD thesis of M. Elbing [34]). Oligophenylene molecules consist of
phenyl rings as basic building blocks, and several of these rings with varied side groups
make up the complete molecule. The basic idea persued in the chemical synthesis at the
INT was to study the importance of the conjugated π-electron system for the conductance
as well as the behavior of the conductance with respect to the number of phenyl ring units.
Partly, the conductance has been measured for the molecules in the groups of H.B. Weber
at the INT or the group of M. Rampi at Universita di Ferrara, Italy, which offers to us the
possibility to compare our results to experimental ones [34]. Very recently we were informed
that the conductance measurements on the molecules of Ref. [34] have been redone in an
improved way at the IBM Research Laboratories in Zürich, Switzerland [195]. At present
we are looking forward to the comparison between the results of our theory and these new
experimental results. In a recent paper Venkataraman et al. [196] published experimental
data for molecules very similar to the ones investigated in this work. Only the bonding
group is altered, and terminal sulfur endgroups are replaced with amines.

In the first part of this chapter, Sec. 6.1, we will give a survey of the molecules analyzed
in this work. Their different properties will both be discussed for the free molecules and
molecules in contact to Au electrodes. In Sec. 6.2 we study the length dependence of the
conductance for three different families of oligophenylenes. These three families differ in
their side groups and allow either a large extent of the π-electron system or force it to be
broken. In addition, variations of the electron transport properties for different bonding
positions will be explored. A simple analytic wire model will help to understand better the
length dependence of the conductance as well as the influence of molecular orbitals on the
transport. Furthermore the profound influence of the electrode coupling on the energetic
structure of the metal-molecule-metal (MMM) system is demonstrated. We conclude with
Sec. 6.3. In that section we start out with the investigation of a family of planar biphenyl

121
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molecules. Next we compare part of our results to the experiment. We show that from
the theoretical side strong variations of the conduction properties of molecules can be due
to different bonding positions, but also changed intermolecular conformations. After this
we investigate in a more conceptual study the influence of ring tilts on the conductance.
For this purpose we force the phenyl rings of biphenyl molecules to adopt a certain tilt
angle and study both the conductance and the total energy as a function of the tilt angle.
Considering the different tilting positions as a thermally occupied configurational space,
we calculate the temperature behavior of the conductance and find qualitative differences
with respect to the molecules studied.

6.1 Oligophenylenes

We will now present the complete series of molecules investigated. First these molecules are
studied in isolation in Sec. 6.1.1. Ultimately, we want to contact them and determine their
electrical conduction properties. For this reason we need to determine the geometrical
structure of the molecule connected to Au electrodes. Results on this can be found in
Sec. 6.1.2.

6.1.1 Oligophenylenes in isolation

In this work we have investigated the molecules displayed in Fig. 6.1.1 All of them are
oligophenylene molecules where the different rings are connected at the para positions. The
family of rings R1–R4 represents the basic structure. R1–R4 are simple phenyl rings with
one, two, three, and four ring units. Starting from these basic structures side groups may
be introduced in the ortho positions with respect to the ring connecting carbon atoms.
If the H atom in the ortho position is replaced by a single methyl group we come to the
molecules S2–S4. The series of molecules D2–D4 emerges if both H atoms in the ortho
position are substituted by a methyl group. In the additional biphenyl molecules B1–B3
the two phenyl rings are connected via an alkyl-bridge of the form C1H2, C2H2, or C2H4,
respectively.

The idea behind introducing different side groups to the molecules becomes immediately
obvious from Fig. 6.1. By means of them the tilt angle between adjacent phenyl ring units
can be controlled. For the molecules R2–R4 there is an interplay between conjugation and
steric repulsion of the H atoms in the ortho position. While the conjugation tends to make
the geometry planar, the H atoms in the ortho position prevent this [197], resulting in tilt
angles of 33◦–37◦ (see Table 6.1). The steric repulsion may be increased by introducing
methyl groups in ortho position. For the S series this leads to inter-ring tilt angles of
72◦–90◦, depending on whether the relaxation of the molecules is started with the two

1All structures are fully relaxed as obtained at the level of density functional theory (DFT). We use
TURBOMOLE V5.7 with the standard basis set SVP, the functional BP-86 and the options RI, scfconv
6 and gcart 4. See Sec. F.4 for further TURBOMOLE specific details. As these options are the same
throughout this chapter, we will not mention them again.
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S4

D3D2

S3

R2R1 R3 R4

S2

D4

B3B2B1

Figure 6.1: Different families of
oligophenylene molecules as investi-
gated in this work. The first family
R1–R4 consists of phenyl rings of up to
four units connected via the C atoms in
the para position. In the series S2–S4
one of the two H atoms in the ortho
position has been replaced by a methyl
group, while in the series D2–D4 both
H atoms are replaced by methyl groups.
Finally the series of molecules B1–B3
consists of biphenyl molecules whose
rings are connected by alkyl bridges.

methyl side groups touching each other (resulting in ring tilt angles close to 90◦) or not
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molecule EHOMO(eV) ELUMO (eV) ∆ (eV) |ϕ1| (◦) |ϕ2| (◦) |ϕ3| (◦) d(C − C) (Å)

R1 −6.266 −1.125 5.141 – – – 2.812

R2 −5.684 −1.830 3.854 36.39 – – 7.175

R3 −5.441 −2.218 3.313 35.39 35.81 – 11.538

R4 −5.312 −2.295 3.017 34.82 33.44 35.16 15.901

S2 −5.913 −1.177 4.736 89.96 – – 7.154

S3 −5.681 −1.245 4.436 89.06 84.78 – 11.497

S4 −5.652 −1.225 4.427 88.99 89.79 85.37 15.837

D2 −5.786 −1.088 4.698 89.97 – – 7.147

D3 −5.447 −1.056 4.391 89.20 89.11 – 11.497

D4 −5.401 −1.103 4.298 89.91 88.94 88.74 15.844

B1 −5.430 −1.813 3.617 0.02 – – 6.965

B2 −5.425 −2.087 3.338 0.24 – – 7.169

B3 −5.423 −1.885 3.538 20.40 – – 7.161

Table 6.1: Energetic and structural data for the organic molecules displayed in Fig. 6.1.
The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital
(LUMO) energies are given together with the resulting HOMO-LUMO gap ∆ = ELUMO −
EHOMO. The angles |ϕi| ∈ [0◦, ..., 90◦] correspond to the tilt angles between the different
phenyl units. In addition the distance d(C − C) between the terminal carbon atoms is
specified.

(which may lead to angles as low as 72◦). In Table 6.1 we concentrate on molecules of
family S with tilt angles above 84◦. (We will come back to the analysis of molecules with
smaller ring tilt angles in Sec. 6.3.2). Having observed that the ring tilts for the molecules
S2–S4 may vary by up to 20◦ we decided to study in addition the structures D2–D4, which
were not synthesized in Ref. [34]. By introducing a second methyl group in the ortho
position, the molecule is stiffened further, and the variations in ring tilt angles are reduced
to 2◦. We obtain tilt angles between 88◦–90◦.2 Additionally the molecules B1–B3 have
been synthesized in Ref. [34].3 By means of the alkyl bridge the ring tilts can be controlled,
resulting in inter-ring tilts of 0◦, 0◦, and 20◦ for B1, B2, and B3, respectively.

We believe that for molecular electronics it is crucial to work with molecular structures,
whose geometry is fixed to the best extent possible. Due to stress in the contacts and
the heating due to the electrical current, the molecule is most likely not in its equilibrium
configuration. In the case of small rotational barriers for phenyl ring tilts the angle between
adjacent phenyl units may differ substantially from the equilibrium tilt angles. If the

2At the time when we started to study the series D2-D4 we were not sure, whether the chemical
synthesis of these molecules may not be hampered for practical reasons. But in Ref. [196] the molecule D2
has been synthesized (with amino end groups), so that we believe that the complete series D2–D4 can be
synthesized as well (with sulfur end groups).

3Note that we changed the order of the molecules with respect to Ref. [34]. B2 and B3 of this work
correspond to the molecules B3 and B2 in Ref. [34].
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Figure 6.2: Evolution of the HOMO-LUMO gap for the species R1–R4, S2–S4, and D2–D4
according to Fig. 6.1 and Table 6.1. Plotted are the energies of the HOMO and LUMO
states EHOMO and ELUMO on an absolute scale. (The upper curves, closer to the vacuum
level at 0 eV, correspond to ELUMO, while the lower ones are EHOMO.)

conductance depends decisively on this angle, it is of paramount importance to make the
molecule as inflexible as possible. In this sense the molecules R2–R4 do not seem to be
very adequate for the study in molecular electronics due to a missing control of inter-
ring fixation. The series of molecules D2–D4 seems indeed better suited for the study in
molecular electronics than S2–S4 in the sense that their structure allows less flexibility with
respect to inter-ring tilts. This gives rise to the conjecture that experimental measurements
of the conductance of molecules D2–D4 should show a better reproducibility than those of
S2–S4. The family B fulfills the criterion of a good control over the extent of the conjugated
π-system, because rigid ring connectors stabilize them. The variations in the inter-ring tilt
angles observed in Table 6.1 for the different series of molecules motivated us to study
the height of rotational barriers and the dependence of the transport on the inter-ring tilt
angles (see Sec. 6.3).

In order to illustrate the evolution of the HOMO-LUMO gap ∆ = ELUMO − EHOMO

with respect to the molecular length, we plot in Fig. 6.2 the highest occupied molecular
orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies as a function
of the terminal carbon atom distance for the series R1–R4, S2–S4, and D2–D4. It can be
seen that ∆ is reduced for R1–R4 most strongly, where both the HOMO and LUMO levels
come closer to each other. For the series S2–S4 and D2–D4 the LUMO level remains fixed
at a value corresponding to the LUMO level of R1 and only the HOMO moves up. Just
from the inspection of the gap energies, the molecules R2–R4 should be better conductors
than S2–S4 or D2–D4.

It would be interesting to know the effective conjugated length (ECL) for the different
series of molecules. The ECL defines the extent of π-conjugated systems, in which the
electronic delocalization is limited [32]. From Fig. 6.2 it is apparent that such an analysis
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would require the study of longer molecules with more than four ring units, because the
distance, at which the HOMO-LUMO gap saturates, has not yet been reached.

6.1.2 Oligophenylenes in a gold contact

The aim of this work is the study of molecular electronics, or more specifically the analysis
of conduction properties of organic molecules coupled to metallic electrodes. In this chapter
the electrodes will be Au electrodes, which are frequently used in experiments due to the
chemical inertness of noble metals. Experimentally the contact between the molecule and
the Au electrodes is most often established by covalent S-Au bonds. For this purpose
acetate-protected thiol-functionalized molecules are prepared that split off their acetate
protection group upon contact to Au. A covalent S-Au bond will then connect the molecule
to the electrode at both sides [26, 27]. All the molecules presented in Ref. [34] have therefore
been prepared with acetyl-protected sulfur functionalities on both ends.

When a molecule is present in a break junction, the length between the metallic elec-
trodes is a free parameter. It may be that the molecule is stretched or squeezed depending
on this external control parameter. For this reason it is necessary to think of a protocol,
on how to set the electrode length appropriately in the theoretical determination of a con-
tact structure. We intend to prepare a junction with the least external influence on the
molecule, because we are interested in how the molecular properties translate into conduc-
tion properties. In this study we are not interested in the conduction through, for example,
strongly distorted molecular structures due to the break junction’s external length control.

There are different possibilities on how the molecule is connected to the electrodes. In
Ref. [198] different bonding situations of S-C6H5 on a Au29 cluster have been studied. The
two-fold bonding position was the most stable one, but also other bonding positions were
found to be stable, namely a bond to a single Au tip atom or a bond of S to three Au
atoms. For a contact realization in the real world one can only speculate, which bonding
situation between Au and S will actually be realized, because the equilibrium structure
need not be present in the MMM junction due to the influence of external stress or the
heat dissipated in the molecule as a result of an electrical current.

We decided to analyze two particular bonding situations, namely the ”hollow” bonding
situation and the ”top” bonding situation. In the hollow situation the molecule’s S atom
is connected symmetrically to three surface Au atoms, while in the top situation it is bond
to only a single tip surface Au atom. We decided to simulate Au electrodes, oriented along
the [111] direction, where the [111] direction shall coincide with the z axis. In order to
determine the length of our break junction, we followed the protocols given in Fig. 6.3.
For the complete series of molecules of Fig. 6.1 we determined the fully relaxed structures
of molecules with an S-Au group at the terminal carbon atoms.4 In a next step we set
up a Au [111] pyramid with Au bulk distances including (excluding) a tip Au atom in the
case of the hollow (top) bonding situation, corresponding to a Au19 (Au20) cluster. These

4We do not list the precise data for these molecules here, because the structural data, namely tilt angles
and terminal carbon distances are very similar to the data listed in Table 6.1.
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Figure 6.3: Protocols followed in the construction of geometries for the ”hollow” (left panel)
and ”top” (right panel) bonding situations.

pyramids are then fully relaxed, while the last two layers are kept fixed at the Au bulk
bond distance as required for a later computation of electron transport for these structures
(see the description of the electrode construction in Sec. D.2).

In agreement with Ref. [198] we observe stable hollow and top bonding situations on
these clusters, where the molecule stands up in the hollow situation (meaning that the
terminal carbon-sulfur axis stands in a right angle to the Au [111] planes) and in the top
situation there is a tilt angle of 104.55◦ between the tip Au atom, the sulfur atom and the
terminal carbon. From the relaxed pyramids we extract the distance dz(Au − S) = 6.20
Åbetween the lowest Au layer and the sulfur atom projected onto the z axis for the hollow
geometry, while for the top geometry we do the same for the z projected distance between
the lowest Au layer and the tip Au atom, and get dz(Au − Au) = 6.80 Å. For the hollow and
top geometry the total length Lz of our junction is set to Lz = 2dz(Au − S) + dmol(S − S)
or Lz = 2dz(Au − Au) + dmol(Au − Au) for the top and hollow geometries, respectively.
With dmol we refer to the distances as obtained for the molecule with a S-Au termination.
Finally a Au [111] double pyramid is generated, where the distances of the terminal Au
layers are Lz apart. The molecule is placed appropriately into the junction as exemplified
for the molecule S2 in Fig. 6.3. Keeping Lz fixed together with the Au-Au-distances of the
last two layers on both sides, the interior of the contact is fully relaxed.

Equipped with the previously described protocol for the determination of Au-molecule-
Au junctions, we compute contacts for the complete series of molecules given in Fig. 6.1
for the hollow and top bonding configurations. The geometries as obtained for hollow and
top bonding positions are displayed in Figs. 6.4 and 6.5, respectively. We will refer to the
Au-molecule-Au clusters as Au-h-Z or Au-t-Z where Au shall symbolize the presence of Au
clusters, h (t) stands for hollow (top) and Z is a particular molecule, e.g. Z=S2.5 The most
important energetic data and structural properties of these junctions are listed in Tables
6.2 and 6.3 for the hollow bonding position, and in Tables 6.4 and 6.5 for the top bonding
positions.

5We want to note here that the relaxation of one of the structures Au-h-Z or Au-t-Z took something
between two weeks and a month on fast personal computers with more then 2 GHz of processor speed.
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Au−h−B1 Au−h−B2 Au−h−B3

Au−h−D2 Au−h−D3 Au−h−D4

Au−h−S4Au−h−S3Au−h−S2

Au−h−R2Au−h−R1 Au−h−R3 Au−h−R4

Figure 6.4: Different families of
oligophenylene molecules covalently
bond to Au19 clusters with the last
two layers oriented along the [111]
crystallographic axis. The molecule is
connected to the Au electrodes at both
sides with a symmetric covalent bond
of a sulfur atom to three Au atoms, a
bonding situation which we refer to as
the hollow position. The contacts are
labeled Au-h-Z, where Au stands for
the Au clusters, h indicates the hollow
position, and Z can be a particular
molecule (Z=R1–R4, S2–S4, D2–D4, or
B1–B3).
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Au−t−B1 Au−t−B2 Au−t−B3

Au−t−D2 Au−t−D3 Au−t−D4

Au−t−S4Au−t−S3Au−t−S2

Au−t−R2Au−t−R1 Au−t−R3 Au−t−R4

Figure 6.5: Different families of
oligophenylene molecules covalently
bond to Au20 clusters with the last two
layers oriented along the [111] crystallo-
graphic axis. The molecule is connected
to the Au electrodes at both sides with
a single covalent bond of a sulfur atom
to the tip Au atom, a bonding situation
which we refer to as the top position.
These contacts are labeled Au-t-Z,
where Au stands for the Au clusters, t
indicates the top position and Z can be
a particular molecule (Z=R1–R4, S2–S4,
D2–D4, or B1–B3).
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molecule EHOMO(eV) ELUMO(eV) ELUMO+1(eV) ∆(eV) ∆1 (eV)

Au-h-R1 −5.725 −4.306 −4.289 1.419 0.017
Au-h-R2 −5.680 −4.254 −4.254 1.426 0.000
Au-h-R3 −5.629 −4.227 −4.227 1.402 0.000
Au-h-R4 −5.573 −4.209 −4.209 1.364 0.000

Au-h-S2 −5.737 −4.236 −4.235 1.501 0.001
Au-h-S3 −5.693 −4.201 −4.201 1.492 0.000
Au-h-S4 −5.670 −4.181 −4.181 1.489 0.000

Au-h-D2 −5.717 −4.222 −4.221 1.495 0.001
Au-h-D3 −5.655 −4.181 −4.180 1.474 0.001
Au-h-D4 −5.629 −4.157 −4.157 1.472 0.000

Au-h-B1 −5.608 −4.251 −4.238 1.357 0.013
Au-h-B2 −5.683 −4.256 −4.255 1.427 0.001
Au-h-B3 −5.618 −4.242 −4.241 1.376 0.001

Table 6.2: Energetic data for the organic molecules displayed in Fig. 6.4 bond to Au clusters
in the hollow position (contact geometries Au-h-Z). The HOMO, LUMO, and LUMO+1
energies are given together with the resulting HOMO-LUMO gap ∆ = ELUMO − EHOMO

and the energy difference ∆1 = ELUMO+1 −ELUMO.

molecule |ϕ1| (◦) |ϕ2| (◦) |ϕ3| (◦) d(C − C) (Å)

Au-h-R1 – – – 2.808
Au-h-R2 33.82 – – 7.174
Au-h-R3 34.51 34.31 – 11.519
Au-h-R4 34.05 33.57 34.13 15.882

Au-h-S2 89.28 – – 7.153
Au-h-S3 84.95 88.73 – 11.487
Au-h-S4 85.11 89.00 87.91 15.817

Au-h-D2 89.66 – – 7.146
Au-h-D3 89.51 89.42 – 11.485
Au-h-D4 89.07 89.37 89.67 15.820

Au-h-B1 0.07 – – 6.945
Au-h-B2 0.18 – – 7.163
Au-h-B3 19.78 – – 7.157

Table 6.3: Structural data for the organic molecules displayed in Fig. 6.4 bond to Au
clusters in the hollow position (contact geometries Au-h-Z). The angles |ϕi| ∈ [0◦, ..., 90◦]
correspond to the tilt angles between the different phenyl units. In addition the distance
d(C − C) between the terminal carbon atoms is specified.
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molecule EHOMO(eV) ELUMO(eV) ELUMO+1(eV) ∆(eV) ∆1 (eV)

Au-t-R1 −5.569 −5.256 −4.264 0.313 0.992
Au-t-R2 −5.444 −5.246 −4.234 0.198 1.012
Au-t-R3* −5.365 −5.194 −4.226 0.171 0.968
Au-t-R4 −5.226 −5.155 −4.154 0.071 1.001

Au-t-S2 −5.412 −5.311 −4.212 0.101 1.099
Au-t-S3 −5.290 −5.280 −4.207 0.010 1.073
Au-t-S4* −5.216 −5.199 −4.177 0.017 1.022

Au-t-D2 −5.336 −5.295 −4.213 0.041 1.082
Au-t-D3* −5.219 −5.212 −4.163 0.007 1.049
Au-t-D4 −5.167 −5.166 −4.153 0.001 1.013

Au-t-B1 −5.435 −5.216 −4.208 0.219 1.008
Au-t-B2 −5.446 −5.243 −4.213 0.203 1.030
Au-t-B3 −5.426 −5.208 −4.221 0.218 0.987

Table 6.4: Energetic data for the organic molecules displayed in Fig. 6.5 bond to Au clus-
ters in the top position (contact geometries Au-t-Z). The HOMO, LUMO, and LUMO+1
energies are given together with the resulting HOMO-LUMO gap ∆ = ELUMO − EHOMO

and the energy difference ∆1 = ELUMO+1 − ELUMO. For the molecules marked with *
negative HOMO-LUMO gaps occurred in standard closed shell calculations of −0.166 eV
for Au-t-R3, −0.001 eV for Au-t-S4, and −0.008 eV for Au-t-D3. As explained in the text
we have chosen a fractional occupation number of 1 electron in the previously inverted
HOMO and LUMO levels. Therefore for Au-t-Z* the HOMO is actually the singly oc-
cupied HOMO−1-level, the LUMO is the singly occupied HOMO, and LUMO+1 is the
actual LUMO.

All calculations in this chapter are based on closed shell calculations with doubly oc-
cupied shells. While in the hollow bonding position convergence was very unproblematic,
some contacts did not converge in the self-consistent field (SCF) runs. A higher orbital shift
was then used and the geometries converged again without problems.6 For some molecules
the Au-t-Z structures exhibited, however, negative HOMO-LUMO gaps. This was the case
for Au-t-R3 (∆ = −0.166 eV), Au-t-S4 (∆ = −0.001 eV), and Au-t-D3 (∆ = −0.008
eV). For this reason we decided to recompute the structure of these molecules with a frac-
tional occupation number of one electron in the previously inverted HOMO and LUMO
levels. For these new occupations we relaxed the structures, and we shall refer to them as
Au-t-Z*. In doing so no further inversions of electronic levels occurred. Concerning the
changes on the conductance data presented later, we want to state here, that there are only
marginal differences visible between the transmission curves of Au-t-S4 and Au-t-S4* and
also Au-t-D3 and Au-t-D3* as suggested by the very small level inversion. For Au-t-R3

6TURBOMOLE option $scforbitalshift automatic 0.5, instead of the default option $scforbitalshift
automatic 0.1.
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molecule |ϕ1| (◦) |ϕ2| (◦) |ϕ3| (◦) d(C − C) (Å)

Au-t-R1 – – – 2.846
Au-t-R2 19.99 – – 7.189
Au-t-R3 28.84 30.76 – 11.515
Au-t-R4 28.94 31.36 30.41 15.836

Au-t-S2 55.70 – – 7.137
Au-t-S3 81.32 83.29 – 11.469
Au-t-S4 79.86 88.05 87.19 15.770

Au-t-D2 79.62 – – 7.136
Au-t-D3 89.54 89.23 – 11.456
Au-t-D4 88.10 89.18 89.04 15.761

Au-t-B1 0.15 – – 6.962
Au-t-B2 0.87 – – 7.162
Au-t-B3 17.85 – – 7.158

Table 6.5: Structural data for the organic molecules displayed in Fig. 6.5 bond to Au
clusters in the top position (contact geometries Au-t-Z). The angles |ϕi| ∈ [0◦, ..., 90◦]
correspond to the tilt angles between the different phenyl units. In addition the distance
d(C − C) between the terminal carbon atoms is specified.

and Au-t-R3* bigger differences are visible, because here molecular orbitals change their
energetic positions more strongly (around 0.1 eV near the HOMO and LUMO levels) as
compared to the previous two cases. So in conclusion only the molecule Au-t-R3 seems
somewhat difficult to treat, concerning its electronic structure in the top position.7 In
the following we will replace the three junctions Au-t-R3, Au-t-S4, and Au-t-D4 by the
junctions Au-t-R3*, Au-t-S4*, and Au-t-D4*. For reasons of brevity, and as already done
in Fig. 6.5 and Table 6.5, we refer to Au-t-Z* as Au-t-Z (Z=R3, S4, D3) from now on.

There are some important differences, when one compares the data of the hollow and top
bonding positions. It is apparent from Tables 6.2 and 6.4 that the HOMO levels are shifted
upwards by up to 0.4 eV, when going from the hollow to the top bonding configuration.
In addition there is a HOMO-LUMO gap ∆ of around 1.5 eV for the hollow geometry and
the energetic difference between the LUMO and LUMO+1 level ∆1 = ELUMO+1 − ELUMO

is negligible. In contrast there exists a LUMO state slightly above the HOMO for the top
geometry, causing ∆ to be small in this case. The electronic gap shows up for the transition
from the LUMO to the LUMO+1 level. Now the gap ∆1 is around 1 eV. Concerning the
gap energies ∆ + ∆1 = ELUMO+1 − EHOMO for the hollow and top geometries, this sum is
bigger for the hollow geometry than for the top geometry, suggesting a better conducting
behavior for the junctions Au-t-Z than Au-h-Z, as will also be observed later.8

7Of course open shell calculations could cure the problem of negative HOMO-LUMO gaps without the
need to resort to fractional occupation numbers. But all calculations in this work used the closed shell
formalism so that we considered this solution most consistent.

8Notice that due to the position of the LUMO level below the Fermi energy of Au (EF = −5.0 eV),
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As regards the geometrical structure, the Au-t-Z geometries corresponds to junctions
under a higher internal stress then the Au-h-Z contacts. The reason is that the S atom tries
to be positioned right on top of the pyramid as visible in Fig. 6.3. As the Au electrodes
are placed opposite to each other the tilt angle between the Au-S-C bond between the
top Au tip atom and the molecule’s sulfur and terminal carbon atom does not allow the
axis of the Au-S axis to stand perpendicular to the Au [111] planes (see Fig. 6.5). This
demonstrates the existence of internal stress in these structures.9 The internal stress may
now cause molecules to deflect from their equilibrium structure, if they are not stiff enough.
This is clearly visible for the molecule Au-t-S2, for which we determine an inter-ring tilt
angle of only 55.70◦ (see Table 6.5) instead of 89.96◦ for the isolated S2 (see Table 6.1). In
contrast the tilt angle for the nearly stressfree Au-h-S2 configuration is close to the angle
for the isolated S2, namely 89.28◦ (see Table 6.5). Also for S3 we could observe similarly
strong deviations from equilibrium tilt angles in the top geometry. For an isolated S3
system (not shown in the Tables), relaxed from a different starting position than the S3
molecule depicted in Fig. 6.1, we obtain tilt angles |ϕ1| and |ϕ2| of 72.10◦ and 73.65◦.
These angles remain more or less unchanged in the hollow geometry, taking values 70.62◦

and 69.98◦. For the top geometry, however, the tilt angles of 55.11◦ and 66.11◦ deviate
strongly with respect to those of the isolated S3 variant. Thus the clear message to any
experimentalist in the field of molecular electronics is that, in order to obtain reproducible
results in conductance measurements, the employed molecules should be designed such that
configurational changes due to external stress, as caused by the electrodes, are minimal.
We will come back to this issue in Sec. 6.3.

From the study of Au and Al metallic contacts, as presented in Chap. 5, we know that
two layers in the left and right electrode, as present in the Au-h-Z and Au-t-Z geometries of
Figs. 6.4 and 6.5, are just the minimum number of layers needed to get meaningful results
for the transmission. For this reason we tried to add more layers to the Au pyramids.
Unfortunately these attempts turned out to be unsuccessful. The Au-h-Z geometries with
increased numbers of Au cluster atoms did not converge anymore in DFT’s SCF loop, a
purely TURBOMOLE-related problem. For this reason we will present in the following the
results for the conductance with two electrode layers in the left and right electrode. We
do not have the possibility to check a convergence of the transmission results with respect
to different ”cuts”, as it was done in Chap. 5. Nevertheless the results in the following
sections give a physically consistent picture and show good agreement with the results of
other theory groups, wherever such a comparison is possible. This justifies the confidence
in our studies in spite of the relatively small Au electrode clusters employed in the Au-h-Z
and Au-t-Z geometries.

results on the conduction properties for the top position need to be considered with reservations. More
atoms in the Au clusters are needed to confirm their validity.

9This stress also gives a rational for the inverted HOMO-LUMO gaps, occurring in particular for the
long molecules. The longer the molecule the more is the S atom away from its preferred position on top
of the Au tip. As these structures are no real equilibrium geometries of a free standing Au-molecule-Au
system, but correspond to relaxed structures under the constraint of two fixed electrode layers and a fixed
length of the complete junction, this may cause problems with the DFT’s SCF procedure.
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Figure 6.6: Sketch of a DBA system.

For the construction of the electrode Green’s functions gXX for the last two layers on
both sides of the Au-h-Z and Au-t-Z contacts we use the same procedure as in Sec. 5.1.
The electrode parameters stem from a Au429 cluster, with a Fermi energy of EF = −5.00
eV. Let us point out again that the Fermi energy merely serves to read off the conductance
when the transmission is plotted as a function of the energy. It has no influence on the
shape of the transmission curve itself.

6.2 Length-dependent conductance

In this section we will study the length dependence of the conductance for different families
of organic molecules. A large amount of work has been devoted to the study of this subject,
both experimentally [199, 200, 201, 202, 28, 203, 196] and theoretically [204, 205, 147, 30,
206, 179, 207, 208, 209], just to mention a few of them. While the references quoted look
at the electrical conduction properties of organic molecules more from the physicist’s point
of view in terms of current, resistance and conductance, this topic is intimately related to
the established field of electron transfer in chemistry. In chemistry one characterizes the
electron transfer rather in terms of transfer rates than in terms of conductance. Again a
vast amount of experimental and theoretical work, probably even more than in the young
field of molecular electronics, exists on this subject [210, 211, 212, 213]. In particular
we recommend the review articles of Salomon et al. [214], which is written more from a
physicist’s point of view, Refs. [215, 216], which adopt the chemist’s perspective, and the
review by Adams et al. [203] that brings together the fields of chemistry and physics.

In essence two different characterizations of electron transport through molecules exist,
namely as (i) an incoherent sequential transfer process or as (ii) a coherent tunneling
process [213, 203]. In a donor-bridge-acceptor system (DBA) as displayed in Fig. 6.6 the
electron transfer reaction reads

DBA→
{
D+B−A
DB+A−

}
→ D+BA− (6.1)

where the intermediate states are either D+B−A or DB+A−. In MMM junctions the
electrodes correspond to the donor (D) and acceptor (A), while the molecule constitutes
the bridge (B).
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In the first case of sequential electron transfer the electron (or hole) resides on the
bridge and the intermediate states D+B−A or DB+A− are rather real than virtual. The
distance dependence of this electron transfer is ohmic, which means that the conductance is
inversely proportional to the length L of the bridge G ∝ L−1. Instead in the second mech-
anism of quantum tunneling the intermediate states are not populated. In the chemistry
community this kind of transfer process is called superexchange mechanism. Depending
on the actual energetic situation in the DBA system the length dependence of the conduc-
tance for the superexchange mechanism is either (a) exponential, if there are no molecular
orbitals present at the injection energy of the tunneling electron, (b) oscillatory, if there
are levels present at the injection energy, or (c) it may be inversely proportional to the
squared distance in special cases [205].

In reality electron transport will be a mixture of the sequential and superexchange
mechanism. We will only consider the superexchange mechanism in this work. The reason
is that we assume that the molecule is rather short, shorter than the energy relaxation
length (see Chap. C), and strongly coupled to metallic electrodes. In such a case the
charge carriers (electrons) will not reside on the molecule for a long time, and the picture
of quantum tunneling applies. The transport can then be described as an elastic and
coherent process.

Organic molecules usually possess a gap at the Fermi energy so that the distance depen-
dence of the conductance can be expected to be exponential [147] (see Fig. 6.7) according
to situation (a) of the superexchange mechanism.10 Using the text book formula for the
tunneling through a rectangular potential barrier one gets the exponential decay law for
the conductance

G/G0 ∝ e−γL (6.2)

with the length L of the molecule and the attenuation factor γ [217]

γ =
√

8m (V0 −EI) /~2. (6.3)

In the attenuation factor γ the energy EI is the energy of the injected electron and V0 > EI
is the energetic height of the potential barrier (see Fig. 6.7). The energy of the injected
electrons is the Fermi energy EI = EF . Following Ref. [147] V0 − EI will be chosen to be
∆/2 for analytic estimates of γ. This corresponds to the situation, when the Fermi energy
is in the middle of the electronic gap of the molecule. This situation is sketched in Fig. 6.7.

6.2.1 Length dependence of the conductance for oligophenylene

molecules

We will now present an analysis of the length dependence of the conductance for the
families of molecules R, S, and D. In doing so we will study both the hollow and top
bonding positions (see Figs. 6.4 and 6.5).

In Fig. 6.8 the transmission of the molecules of the series R, S, and D is displayed.

10See also Table 6.1 where molecules all exhibit HOMO-LUMO gaps between 3 and 5 eV.
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Figure 6.7: In the left panel a schematic diagram shows the molecular energy levels and
the Fermi energy EF in the electrodes. The right panel depicts the tunneling through an
energetically forbidden region of length L. Also indicated is the effective height V0 −EI of
the potential well as measured from the energy EI of the injected electron.

In all transmission curves a gap is opening up around the Fermi energy EF . This gap
is smallest for the molecules of series R (around 3 eV) and is increased for molecules of
series S and D. Generally the conductance decreases within each family of molecules with
increasing numbers of phenyl rings irrespective of the bonding position. The molecules
of series R are the best conductors. Strikingly the conductance for R4 is higher than
that of S2 and D2. In S2 and D2 the conjugated π-system is broken due to methyl side
groups. This shows the extreme impact of the extent of the conjugated π-electron system
for the conduction properties of organic molecules. An additional observation in Fig. 6.8
is that the transmissions of the molecules of series S and D behave similarly. This is
more obvious for the hollow position. The discrepancies noticeable, especially between
the transmission curves for S2 and D2 in the top bonding position, can be explained as
arising from differences in tilt angles between the S and D molecules (see Table 6.5). These
differences can be attributed to the internal stress in the junctions Au-t-Z (see Sec. 6.1.2).

In Table 6.6 we list the precise data for the conductance read off from the transmission
curves at a value of EF = −5.00 eV. With respect to the different bonding positions, it can
be observed that the conductances increase by an order of magnitude, when going from the
hollow to the top position. With the data from Tables 6.2 and 6.4 this phenomenon can
be explained by a shift of the HOMO level to higher energies in the top bonding position.
In addition to this shift of around 0.4 eV there resides an additional LUMO level above
the HOMO and is only around 0.1 eV away from it. The electronic gap of roughly 1 eV is
observed between the levels of the LUMO and LUMO+1. This is in contrast to the hollow
configuration, where an electronic gap of 1.5 eV is present directly between the HOMO
and LUMO levels. The combined effect of the shift of the HOMO levels to higher energies
and the by around 0.5 eV reduced electronic gap can explain, why the contacts Au-t-Z
exhibit a better conducting behavior than the contacts Au-h-Z.

We will see later that the experimentally measured conductance seems to agree better
with the results for the hollow position than with those of the top position (see in particular
Fig. 6.14 and its discussion). The changes between the two bonding configurations may
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Figure 6.8: Transmission as a function of energy for the molecules of series R, S, and D.
The transmission curves for both the hollow (Au-h-Z) and top (Au-t-Z) bonding positions
are shown as a function of the energy.

eventually point out a fundamental problem in the use of DFT for the computation of the
conductance. It should, however, be taken into account that also in the experiments the
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conductance (G0)
molecules hollow top

R1 4.04 × 10−2 1.49 × 10−1

R2 9.24 × 10−3 5.89 × 10−2

R3 2.85 × 10−3 3.42 × 10−2

R4 1.00 × 10−3 1.45 × 10−2

S2 1.92 × 10−4 1.19 × 10−2

S3 1.08 × 10−5 1.50 × 10−4

S4 1.18 × 10−7 3.30 × 10−6

D2 1.20 × 10−4 2.00 × 10−3

D3 9.59 × 10−6 1.16 × 10−4

D4 3.36 × 10−8 8.94 × 10−8

Table 6.6: Conductance of molecules R1–R4, S2–S4, and D2–D4 as read off from the curves
in Fig. 6.8 at a Fermi energy EF = −5.0 eV.

γ (Å−1)
molecules hollow top

R 0.28 0.18
S 0.85 0.95
D 0.94 1.16

Table 6.7: Attenuation factor γ for the length dependence of the conductance (see Eq. (6.2))
as determined from the least-squares fits of Fig. 6.9.

measured conductance changes from one contact realization to the other, which indicates
that details of the molecule-metal bonding play a crucial role for the conduction properties
(see also the discussion in Sec. 6.3.2).

In order to analyze the length dependence of the conductance we have plotted in Fig. 6.9
the conductance as a function of the length of the molecules of the families R, S, and D for
the two bonding positions. The length of the molecules has been measured as the distance
between the carbon atoms bonded to the terminal sulfur functions of each molecule. In
addition to the data points least-squares fits, according to the expected exponential length
dependence of Eq. (6.2), have been plotted. The attenuation factors γ, as determined from
these slopes, are listed in Table 6.7.

As discussed before, Fig. 6.9 demonstrates that the conductance for the top position
is generally higher than for the hollow position. However, the length dependence within a
family of molecules compares well between hollow and top bonding positions, meaning that
their least-squares fits run approximately parallel to each other. The molecules of series R
are the best conductors, since the conductance decays slowest for them. The attenuation
factors for molecules of series S and D are bigger by at least a factor of 3 as compared to
R.
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Figure 6.9: Length dependence of the conductance for the different families of molecules
R, S, and D. In addition to the data from Table 6.6 least-squares fits are shown according
to the exponential decay law of Eq. (6.2).

Comparisons to experimental results are presently difficult. We are not aware of a
study of precisely the dithiolated oligophenylenes of the series R, S, or D. Oligophenylene
thiolate self-assembled monolayers have, however, been measured in Ref. [202]. In the
oligophenylene thiolate molecules of series R, the second terminal sulfur is replaced by a
hydrogen atom, resulting in a bad contact to one side. Attenuation factors of γ = 0.35–0.50
Å−1 have been measured experimentally [202]. A subsequent theoretical study for these
thiolate molecules reports γ = 0.5 Å−1 [206]. Or attenuation factors of γ = 0.28 or 0.18
Å−1 for the hollow and top geometries of molecules in series R are somewhat lower than
these values, presumably due to the different bonding situation at one end of the molecule.
Nevertheless we note a reasonable agreement with the experimental data of Ref. [202].
From the theory side Kondo et al. [179] studied exactly the series R with up to five rings
in a DFT approach. They obtained – although with a less accurate electrode model – an
attenuation factor of γ = 0.256 Å−1, well in line with our findings.

With the help of Eq. (6.3) a simple estimate of the attenuation factor is possible. From
Table 6.1 we can extract that the molecules of series R exhibit HOMO-LUMO gaps ∆
of around 3 eV, while for the series S and D ∆ is around 4.5 eV. Assuming the mid-gap
situation as explained in the context of Eq. (6.3) we obtain with V0 − EI = ∆/2 the
attenuation factors γ = 1.25 Å−1 (∆ = 3 eV) and γ = 1.54 Å−1 (∆ = 4.5 eV). Although
a very rough estimate, these values are close to the attenuation factors of the families
S and D. The attenuation factor of the molecules R, instead, is drastically lower. This
difference in attenuation factors cannot simply be explained by the smaller electronic gap
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of the molecules R. Again this observation points out the significance of the conjugated
π-electron system for the conductance in organic molecules. The better the delocalization
of electrons is, the better will the molecule be conducting, and the smaller will be the decay
of the conductance with distance.

6.2.2 The role of molecular orbitals in the regime of exponential

conductance decay

In the field of molecular electronics an attempt is often made to quantify the importance of
a particular molecular orbital for the conductance of a MMM junction [163, 179]. One tries
to make a statement, for example, whether the HOMO plays a more important role for the
conductance than the LUMO. In order to clarify the importance of a particular orbital of
a molecular wire we will analyze in this chapter the conductance of a homogeneous wire
model as established in Refs. [218, 204, 205].

We start from the Hamiltonian for the homogeneous wire with nearest neighbor inter-
action

H =




ε −t 0 · · · 0

−t ε
...

0
. . . 0

... ε −t
0 · · · 0 −t ε



, (6.4)

where ε is the onsite element and t is the nearest neighbor coupling. All matrices will be
assumed to be of dimension N ×N in the following. Each onsite element shall effectively
describe a certain site (atom) of a homogeneous wire. Like in the sketch of the DBA system
in Fig. 6.6 the N sites describe the units of a molecular bridge between two electrodes. In
an orthogonal basis the inverse Green’s function is

G−1(E) = E1−




ε+ Σ −t 0 · · · 0

−t ε
...

0
. . . 0

... ε −t
0 · · · 0 −t ε+ Σ




with some scalar self-energies Σ that are, for reasons of simplicity, assumed to be equal for
both the left and the right side and energy independent. For a single orbital model the
conductance is given by (see Eqs. C.7 and C.10) [205]

G = G0Γ
2 |G1N(EF )|2 . (6.5)

In this expression G0 is the unit of conductance, Γ = −2Im [Σ] is the transfer rate and G1N
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is the propagator between site 1 and N of the wire.11 From simple determinantal rules
[218, 204] it can be shown that

G1N =
tN−1

D1N −D2NΣ −D1(N−1)Σ +D2(N−1)Σ2
.

In this expression Dpq refers to the determinant of the matrix g−1(E) = E1−H obtained
by taking out rows and columns only in the range from p to q. Thus D1N = det [g−1(E)]
is the determinant of g−1(E) and by definition Dpq = 1 for p = q = 0 and Dpq = 0 if either
p or q are negative. With the help of the explicit form of the Chebyshev polynomial of the
second kind

UN(x) =
1

2

(
x+

√
x2 − 1

)N+1 −
(
x−

√
x2 − 1

)N+1

√
x2 − 1

(6.6)

we can write

G1N(EF ) =
g1N

1 − 2 (Σ/t)UN−1(x)/UN (x) + (Σ/t)2 UN−2(x)/UN(x)
(6.7)

with the argument x = (EF − ε) /2t and the propagator

g1N(x) =
1

tUN (x)
(6.8)

of the uncoupled system without self-energies.
Let us now look at the behavior of the conductance for increasing chain lengths N →

∞. According to Eq. (6.5) we need to study the behavior of G1N in Eq. (6.7). We
will study the off-resonant situation |x| ≫ 1. For large x the Chebyshev polynomial
in Eq. (6.6) is approximately UN (x) ≈ (2x)N . The denominator in Eq. (6.7) is then
d = 1 − Σ/tx+ (Σ/2tx)2 and does not depend on the length of the wire. As x is assumed
to be big, we approximate the denominator by d = 1, and get G1N ≈ g1N . The distance
dependence of G1N is completely characterized by the distance dependence of g1N belonging
to the homogeneous wire of the uncoupled system. Exploiting Eq. (6.8) we get

G1N → t−1 (2x)−N for |x| ≫ 1 and N → ∞, (6.9)

and the conductance in Eq. (6.5) becomes

G→ G0 (Γ/t)2 (2x)−2N .

This shows that an exponential length dependence of the conductance is observed for a
homogeneous wire in the offresonant situation |x| ≫ 1, caused by the exponential length
dependence of the propagator g1N .

11Note that in order not to confuse the conductance G with the Green’s functions G(E) we will keep
the energy argument of the Green’s function. The propagator G1N can, however, not be confused with G
and we drop its energy argument.
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In order to quantify the role of certain molecular orbitals of the wire on the conductance
we adopt now a different point of view in terms of the spectral representation of the
propagator G1N . In the previous discussion we have seen that in the limit of long wire
lengths the length dependence of G1N is the same as that of the uncoupled homogeneous
wire g1N . For this reason we will, in the following, concentrate on systems described by
the Hamiltonian of Eq. (6.4). This means that we will neglect the role of self-energies in
the following.

For a homogeneous wire with a Hamiltonian, as given in Eq. (6.4), the eigenvalues

eµ = ε− 2t cos(
π

N + 1
µ)

and eigenvectors

v(n)
µ = ±

√
2

N + 1
sin(

πn

N + 1
µ)

are known analytically [208]. By v
(n)
µ we mean the nth component of the eigenvector with

eigenvalue eµ. Equipped with these relations the propagator g1N can be written

g1N(EF ) =

N∑

µ=1

2

N + 1

sin( π
N+1

µ) sin( πN
N+1

µ)

EF −
(
ε− 2t cos( π

N+1
µ)
) (6.10)

=

N∑

µ=1

1

N + 1

sin( π
N+1

µ) sin( πN
N+1

µ)

t
(
x+ cos( π

N+1
µ)
) ,

where we can now see the role of the different molecular orbitals explicitly as compared to
the equivalent expression in Eq. (6.8).

For the length dependence to be exponential, we need to be in the off-resonant situation
as above (|x| = |(EF − ε) /2t| ≫ 1). The exponential length dependence of g1N , as seen
from the point of view of the spectral representation in Eq. (6.10), needs to arise from
the summation over different orbitals. The reason is that for |x| ≫ 1 the denominator is
roughly (N + 1) tx. For the summation over the numerator alone the relation

∑

µ

sin(
π

N + 1
µ) sin(

πN

N + 1
µ) =

∑

µ

{
cos(π

N − 1

N + 1
µ) − (−1)µ

}
= 0 for N > 1

holds. As a crude approximation for very large |x| we get

g1N ≈ 1

N + 1

1

tx

∑

µ

sin(
π

N + 1
µ) sin(

πN

N + 1
µ) = 0 for N > 1. (6.11)

It is thus difficult to observe the exponential length dependence of g1N from the spectral
representation, Eq. (6.10), due to the oscillations in the numerator and denominator. We
interpret Eq. (6.11) such that the exponential decay of g1N in the off-resonant situation
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(outside the energy interval ε ± 2t) can only arise from a destructive interference of all

molecular orbitals of the wire.
This interpretation can be made more explicit by considering the length dependence as

predicted by Eq. (6.10) for a particular orbital. We consider the contributions of levels at
three different energies, namely µ1 = 1, µ2 = (N + 1) /2, and µ3 = N . All other molecular
orbitals will be neglected in the summation over µ in Eq. (6.10). In this way we get

g
(µ1)
1N → 1

N + 1

(
π

N+1

) (
π

N+1

)

tx
=

π2

(N + 1)
3

tx

g
(µ2)
1N → 1

(N + 1) tx

g
(µ3)
1N → 1

N + 1

(
π

N+1

) (
π

N+1

)

tx
=

π2

(N + 1)
3

tx

where g
(µi)
1N stands for the contribution of the orbital µi to the propagator. It is apparent

that the propagator exhibits a power law dependence, when particular orbital levels of the
homogeneous wire are considered. This is in contrast to the correct exponential length
dependence of Eq. (6.4).

In conclusion the spectral representation, where the molecular orbitals are explicitly
visible, does not appear to be particularly suited for observing the exponential length
dependence of the conductance for systems with a gap in the electronic states. In this
off-resonant situation the exponential decay of the conductance appears to arise from a
destructive interference of all molecular orbitals. The consideration of just a particular
molecular orbital, e.g. the HOMO or LUMO level, cannot explain the exponential decay,
but only results in a power law dependence of the conductance.

6.2.3 Influence of the electrode coupling on the molecular or-

bitals of isolated systems

In this paragraph we will analyze, how the charge transfer properties and the electronic
structure of the isolated Au-molecule-Au junction translate to the conduction properties
and LDOS of this junction, when the junction is coupled to semi-infinite electrodes at both
ends. We will refer to the uncoupled cluster as the isolated system, while the system with
semi-infinite electrodes attached to both ends will be called the coupled system. In the
following, we will concentrate on the example of the contact Au-h-S2. All ideas illustrated
here have been checked to be equally valid for all other junctions.

A lot of work in the field of chemistry has been devoted to intermolecular charge
transfer. Commonly a DBA system is studied with an electron transfer reaction as given
in Eq. (6.1). In order to make theoretical predictions on the charge transfer rate an
electronic transition matrix element, also often called effective electronic coupling element,
is needed as discussed in Refs. [210, 219, 218, 204, 205, 220, 203]. As reasoned in these
references the electronic transition matrix element for an electron to go from the donor site
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D to the acceptor site A in the superexchange mechanism is approximately proportional
to the propagator gDA.

In order to study the transition probability of an electron to cross a molecule, we will
consider the Frobenius norm of the propagator gDA, namely

F (E) =
∑

i∈A,j∈D

∣∣grij(E)
∣∣2 = TrD

[
grDA (grDA)+] (6.12)

In this formula the summations i ∈ A (j ∈ D) mean that we sum over all orbitals of atoms
in region A (D).

As illustrated in the left panel of Fig. 6.10 we consider the gold electrode clusters to
be the donor (D) and acceptor (A) regions. To the right the plot of F (E) is shown. The
Frobenius norm exhibits clear peaks at energies that coincide with the molecular orbital
(MO) energies of the system. Only with few exceptions most molecular orbital energies
are degenerate, where two or more MOs have the same energy. For the peaks of F (E)
selected in Fig. 6.10 there are two degenerate MOs for each peak position, and the shape
of the wave function associated with one of them is depicted above, the other one below
the plot.

The exact correspondence between molecular orbital energies and peaks in F (E) is
readily explained by recalling the spectral representation of a Green’s function. With
Eq. (B.20) we can write

grij(E) =
∑

µ

ciµcjµ
E + iη − εµ

(6.13)

where the summation runs over all molecular orbitals µ with eigenvalues εµ, η is a small
broadening parameter, and the coefficients ciµ are the solutions to the generalized eigen-
value problem Eq. (B.21). If the coefficients ciµ or cjµ with i ∈ A and j ∈ D are not all
zero for a certain MO, which is unlikely to occur, then at the energy E = εµ there occurs
a singularity in gDA and consequently also in F (E). (Finite peak heights in Fig. 6.10 are
therefore an artefact of a finite broadening η and a finite number of energy points.) De-
pending on the weight of the molecular orbital in both A and D one may perhaps expect
peaks of high or low magnitude. However we can note that the peak heights of wavefunc-
tions, seemingly localized on one side of the electrode (see the peaks at energies of −6.38
and −3.40 eV), are of equal height as the wave functions corresponding to delocalized wave
functions (see the peaks at energies of HOMO and LUMO level at −5.74 and −4.24 eV).
Commonly our experience tells us that if low enough isovalues are chosen, when plotting
the wave function of a particular MO, the wave function appears to be delocalized over
the entire system. This was at least true for all molecular orbitals in the vicinity of the
HOMO or LUMO level, which we inspected.

When looking at the plot of F (E) another remarkable feature is the gap visible in the
center. This gap resembles the gap in the transmission curve of the coupled system Au-h-
S2 in Fig. 6.8. We will now investigate the connection between the transmission and the
electronic structure of the isolated system, represented by the Frobenius norm.
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Figure 6.10: In the left panel the partitioning of the uncoupled contact Au-h-S2 into a DBA
system is shown. To the right the Frobenius norm F (E) of the propagator gDA between the
donor (D) and acceptor (A) regions is displayed. Also indicated are the molecular orbitals,
to which the peaks can be attributed, as visible above and below the plot. All molecular
orbital wave functions have been plotted with the same contour isovalue of ±0.01, where
red corresponds to the positive and blue to the negative sign. A broadening parameter of
η = 10−8 H= 2.7 × 10−7 eV has been used for the Green’s function grDA in this plot.

In Fig. 6.11 we display the transmission of the coupled system Au-h-S2 and the LDOS
for three different regions in the central part of the contact. The three regions contain
different numbers of atoms. The first one comprises only carbon and hydrogen atoms of
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Figure 6.11: Comparison of the transmission and the LDOS for the coupled junction Au-
h-S2. To the left the three different regions are indicated for which the LDOS has been
computed according to Eq. (B.38). The first one contains the atoms of the center with
the bonding sulfur excluded, the second region adds the two sulfur atoms, and in the third
region three additional gold atoms on each side are included. To the right the LDOS is
overlayed with the transmission T , which has been multiplied by a factor of 100.

the molecule, while in the second region the terminal sulfur atoms are added. The region
number III contains the additional three gold atoms on each side of the contact. In each
case the LDOS has been computed with the help of Eq. (B.38).

It becomes obvious from Fig. 6.11 that the transmission follows all the features that the
LDOS of regions I and II exhibits. Both the LDOS of regions I and II possess a gap in their
center. When the Au atoms are included in the LDOS, the gap is closed. This observation
is indeed not surprising, because the Au atoms are directly coupled to semi-infinite Au
electrodes with a continuous DOS without gaps at the Fermi energy.

Now we may compare the transmission of Fig. 6.11 to the Frobenius norm in Fig. 6.10,
which can be interpreted as being proportional to the energy-dependent transition prob-
ability for electrons to go from D to A [220, 203].12 While F (E) = TrD

[
gDAg

+
DA

]
(see

Eq. (6.12)) contains only the bare propagators, the transmission T (E) = Tr [ΓLG
r
CCΓRG

a
CC ]

(see Eq. (C.7)) is weighted by the transition rates ΓL and ΓR and the Green’s function GCC

contains additional self-energy terms ΣL and ΣR in the denominator (see Eq. (B.26)). In
the comparison of T (E) with F (E) we observe that the peak structure in the transmission
has vanished. More interestingly the level structure seems to have changed drastically.
Thus the gap in T (E) appears to be between −6.4 and −2.1 eV, while in F (E) the HOMO
and LUMO level at positions of −5.74 and −4.24 eV border the gap. We interpret this
fact as a strong modification of the electronic structure due to the coupling of semi-infinite
electrodes to the contact. The level shifts seem to be of magnitudes up to 2 eV. This
stresses the importance of the construction of accurate self-energies Σ (see Sec. 4.2).

12Note that F (E) is by no means bounded and that this analogy is for this reason somewhat vague.
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conductance (G0)
molecule hollow top

R2 9.24 × 10−3 5.89 × 10−2

B1 1.71 × 10−2 7.07 × 10−2

B2 1.07 × 10−2 7.20 × 10−2

B3 1.38 × 10−2 8.22 × 10−2

Table 6.8: Conductance of different biphenyl molecules in the hollow and top bonding
position (EF = −5.00 eV).

Indeed the strong modification of the electronic structure is not too surprising. As
visible in Fig. 6.11 the last two blue-shaded atomic layers are replaced by surface Green’s
functions. This means that 32 out of 38 atoms of the Au clusters are replaced, explaining
a strong change in the properties of the isolated system Au-h-S2. While the finite system
still exhibits a gap in the electronic structure, the incorporated surface Green’s functions
possess a continuous DOS without a gap at the Fermi energy. The vanishing of the gap in
the DOS is visible from the LDOS of region III in Fig. 6.11. We conclude by stating that,
with respect to these observations, an interpretation of the properties of the fully coupled
system in terms of the level structure of the isolated system appears to be hampered.

6.3 Tailoring the conductance by controlling the de-

gree of electronic conjugation

In this section, we will first present the analysis of electron transport through biphenyl
junctions of series R and B (see Figs. 6.4 and 6.5). Then we will address the question, how
molecular structures look like in an experimental realization of a junction. We will observe
that many different conformations may be present, depending on the molecule contacted.
Additionally we will compare our results to experimental ones of Ref. [34]. Finally, we will
address in a more conceptual study the influence of varied inter-ring tilt angles in three
different biphenyl junctions. We will show, how the total energy and conductance depends
on this tilt angle. Considering the ring tilts as the most important degree of freedom,
we will study the temperature dependence of the conductance and obtain qualitatively
different temperature behaviors for the three different biphenyl systems investigated.

6.3.1 Conductance of biphenyl derivatives

This paragraph is devoted to the study of biphenyl molecules with a high degree of elec-
tronic conjugation. Besides the molecule R2 this includes the molecules of series B (B1–
B3), which has not been discussed yet. In Fig. 6.12 we display the transmission of these
molecules for both the hollow and top position (see Figs. 6.4 and 6.5). The precise values of
the conductance are listed in Table 6.8 As visible in the figure all molecules feature quan-
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Figure 6.12: Transmission of biphenyl junctions with an extended π-electron system. The
curves displayed correspond to R2 and B1–B3. As indicated in the legend, solid lines corre-
spond to the hollow geometries Au-h-Z (see Fig. 6.4), while broken lines are for geometries
Au-t-Z (see Fig. 6.5) in the top bonding position.

titatively similar transmission curves. There are, however, substantial differences between
the hollow and top bonding position. Between these two conformations a difference in the
conductance of up to one order of magnitude can be read off from Table 6.8, similar to
what has been observed before (see Table 6.6). From the tilt angles given in Tables 6.3 and
6.5 one might have expected that the conductances of the various molecules are ordered as
GR2 < GB3 < GB1 ≈ GB2, because the tilt angles between the phenyl rings increase (and
the extent of the conjugated π-system reduces) in this sequence. Of course this simple rea-
soning neglects the effect of the side groups. The ordering that we can read off from Table
6.8 is GR2 < GB2 < GB3 < GB1 for the hollow geometries and GR2 < GB1 < GB2 < GB3

for the top bonding. The expectation that R2 is the worst conductor in this set of four
molecules is fulfilled. However, B3 is a better conductor than B2. We are not sure, whether
our method is precise enough to resolve the differences in the conductance of the molecules
B1, B2, and B3 correctly. Let us conclude by stating that the conductances of the molecules
R2, and B1–B3 are very similar. This coincides with intuitive expectations, because all
these molecules possess a similarly extended conjugated π-electron system.

6.3.2 Geometric configurations of contacted molecules

Let us now compare the results of our method to experimental results of Ref. [34]. We
start with the single phenyl ring R1. This molecule has a long history in the young field
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of molecular electronics. It was one of the first molecules, for which it was claimed that
single molecule measurements have been performed [221]. To date many more experimental
[222, 34] as well as theoretical studies [150, 223, 162, 179] have been carried out, of which
we list here only a small part.

In Fig. 6.13 we compare the predictions of our method for the differential conductance
of the molecule R1 to experimental results by Elbing et al. [34] and Xiao et al. [222].At
zero bias the conductance G can be read off. Strictly speaking, we can only give a value
for this zero bias conductance. In order to obtain a dI/dV -curve that can be compared
with experimental data, we use the simple model by W. Tian et al. [224]. In this model
one starts from Eq. (C.6) generalized to finite bias

I =
2e

h

∫ ∞

−∞
dET (E, V ) [f(E − µL) − f(E − µR)] .

We assume that the electrochemical potentials in the two contacts can be written

µL = EF + νeV

and
µR = EF − (1 − ν) eV.

The free parameter ν describes, how the electrostatic potential difference is divided between
the left and right electrode. Neglecting the voltage dependence of the transmission and
considering low temperatures, we arrive at an expression for the conductance

G =
dI

dV
≈ G0 [νT (µL) + (1 − ν) T (µR)] .

It is immediately obvious that for ν = 0 the conductance G has the same shape as the
original transmission T (E), while it is mirrored with respect to V = 0 for ν = 1. The value
ν = 0.5 corresponds to a symmetric average of the transmission with respect to the Fermi
energy at any bias voltage V .

For R1 we compute a conductance of G = 4.04 × 10−2G0 and G = 1.49 × 10−1G0

for the hollow and top bonding positions, respectively. We observe that the transmission
for the hollow geometry is a factor of around 4 smaller than the transmission for the top
geometry. The experimental measurements both show transmissions below the results of
the hollow geometry. In order to compare better to experimental results, we reproduce
only the results for the hollow position in Fig. 6.13. Comparing to the results of Ref. [34]
the overestimation of the conductance G could lead to despair. The dI/dV -curve of the
experiments is hardly visible at the bottom of the right panel. However, the measurements
of Xiao et al. [222] stand in strong contrast to the results of Ref. [34]. In the former
reference a conductance of 0.011G0 is obtained in statistical measurements that suggest
results of better reproducibility. In Ref. [34] the following comments are made on the
measurements of the conductance of molecule R1, namely (i) that ”only asymmetric I-V
curves have been measured”, (ii) that the measurements on molecule R1 ”turned out to be
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Figure 6.13: Comparsion of experimental measurements and theoretical predictions for the
conductance of benzenedithiol, called R1 in this work. The experimental data refers to
results by Elbing et al. [34] and Xiao et al. [222]. In the left panel the original data of
Ref. [34] is reproduced. In the right panel the comparison between the theoretical data as
obtained with the method developed in this work and the experiments is displayed.

rather challenging, which can probably be attributed to the short length of the molecule”.
With respect to the second point it seems that the molecule R1 is not the right one to
make a conclusive comparison between theory and experiment. In addition to experimental
uncertainties we want to mention that, also theoretically, the calculation of the conductance
of R1 are more problematic than for longer molecules. We still observe elements in the
Hamiltonian (overlap) matrices HLR (SLR) of up to 2 × 10−7 H (1.4 × 10−7) in absolute
values. Thus longer electrode cluster are required in order to completely separate the left
and right electrode from each other, as assumed in the formalism for the calculation of the
conductance.13

The next molecule that we compare to experimental data is the molecule S2. For S2
our method yields conductances of 1.92 × 10−4G0 and 1.19 × 10−2G0 for the hollow and
top positions. This means that there are roughly two orders of magnitude difference in the
prediction for both bonding situations, with the value for the top position substantially
above the result for the hollow position. The comparison to the experimental results of
Ref. [34] is shown in Fig. 6.14. Again we suppressed the results for the top position in
the figure, which seem to overestimate the conductance of the molecule S2 by a factor of

13Note that although such elements seem small, there are many of them. In such cases we often observe
that the conductance is not going down to zero outside the energy bands but, unphysically, remains finite.
Although the main features of a transmission curve are usually well reproduced, a slight overestimation of
the conductance results from this fact.
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Figure 6.14: Comparsion of experimental measurements and theoretical predictions for
the conductance of the molecule S2. The experimental data refers to results by Elbing et

al. [34], the theoretical data is obtained by means of the method developed in this work.
To the left the original data of Ref. [34] is reproduced, while on the right a comparsion of
our theoretical results with this data is shown.

60. The difference between the experimental data and our zero bias conductance in the
hollow bonding position is, however, only a factor of 2. The dI/dV -curve for the symmetric
voltage division (ν = 0.5) is much closer to the experiment than the asymmetric curve for
ν = 1. This confirms the statement made in Ref. [224] that in experiments typical values
of ν are around 0.5. We want to point out that the measurements on molecule S2 could
be performed more reliably as compared to R1 [34].

Results for the molecules S3 and S4 are also presented in Ref. [34]. However the
conductance is so small that it was not possible to extract the data with such an accuracy
that it could have been compared on a logarithmic scale to our results. Therefore we stop
this comparison here and look forward to systematic measurements of the molecules S2–S4
at the IBM Research Laboratories in Zürich, Switzerland [195].

Before we come to a conclusion on the comparison between our DFT conductance
results and the experiments let us return to an observation made in the beginning, namely
that tilt angles for certain molecules of the S family can deviate from the 90◦ tilt angle.
The tilt angle depends on the initial configuration at the start of the relaxation.14 But
more important is the internal stress in the contact geometry, when the molecule is bonded
to Au (see for example Au-t-S2 in Table 6.5). For this reason we relaxed molecules S2 and

14If in the beginning methyl groups of adjacent rings are at an angle of less than 90◦ from each other
the relaxation usually increases this angle to something close to 90◦. If instead hydrogen atoms are at an
angle of less than 90◦ to the methyl groups, relaxed geometries exhibit angles of less than 90◦ due to the
smaller steric repulsion of the hydrogen atom.
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molecule |ϕ1| (◦) |ϕ2| (◦)

S2 89.96◦ –
S2’ 83.70◦ –

Au-h-S2 89.28 –
Au-h-S2’ 80.06 –
Au-t-S2 55.70 –
Au-t-S2’ 49.69 –

S3 89.06 84.78
S3’ 72.10 73.65

Au-h-S3 84.95 88.73
Au-h-S3’ 70.62 69.98
Au-t-S3 81.36 83.29
Au-t-S3’ 55.11 66.11

Table 6.9: Ring tilt angles for differ-
ent minimum energy configurations of
the molecules S2 and S3. While S2 and
S3 are obtained from starting configu-
rations, where both methyl groups have
an angle of less than 90◦, the primed
molecules result from a starting config-
uration, where this angle is smaller than
90◦ for a methyl group and a hydrogen
atom on adjacent phenyl rings. Tilt an-
gles are generally smaller for the primed
structures.

S3 in the top and hollow geometries with different starting geometries. In the first case
the methyl groups of all adjacent rings were at an angle of less than 90◦, while in the
second case at every connection between two rings a hydrogen atom was at an angle of
less than 90◦ to a methyl group. The first case corresponds to the molecules S2 and S3
discussed up to now, while the two new molecules will be called S2’ and S3’. The tilt
angles of the isolated molecules S2, S3 and their primed variants together with the data for
the structures in contact with gold clusters can found in Table 6.9. Generally the primed
molecules possess smaller inter-ring tilt angles due to the reduced steric repulsion. It is
clear from the data of Table 6.9 that the molecules S2’ and S3’ should be better conductors
than S2 and S3 due to an increased overlap of the electronic π-system. Their conductance
properties for the top and hollow geometries can be seen in Fig. 6.15. The expectations
concerning the better conducting behavior of S2’ and S3’ are completely fulfilled. The
fact that the molecules S2’ and S3’ are minimum energy configurations suggests that in
experiments several conformations of the molecules may be present. The assignment of a
unique conductance to ”the molecule” S2 or S3 is thus impossible. Taking this into account
the good agreement between the experimental dI/dV -curve for molecule S2 and our result
should be seen in the right light. For a molecule in conformation S2’ the overestimation of
the conductance, even for the hollow position, increases from a factor of 2 to a factor of 6.

In agreement with Ref. [162] we thus observe that, generally speaking, the conduc-
tance of the molecular contacts seems to be overestimated by the DFT-based methods.
While this effect is very dramatic for the top bonding position, we see, however, a much
better agreement for the hollow bonding situation with very reasonable agreement for the
reproducibly measurable molecule S2.15 While this relativizes the statement of Evers et

al. [162] that DFT often overestimates the molecular conductance by orders of magnitude,

15As observed in the discussion of the junctions Au-t-Z (see discussion of Table 6.4), the data for the top
bonding position requires further analysis due to the position of the LUMO level well below EF = −5.0
eV.
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Figure 6.15: Transmission curves for the different molecules S2 and S2’ (left panel) and S3
and S3’ (right panel). The primed molecules have smaller tilt angles than the unprimed
molecules (see Table 6.9). The precise values for the conductance are 1.92 × 10−4G0 for
Au-h-S2, 5.83 × 10−4G0 for Au-h-S2’, 1.19 × 10−2G0 for Au-t-S2, 2.86 × 10−2G0 for Au-
t-S2’, 1.08 × 10−5G0 for Au-h-S3, 9.06 × 10−5G0 for Au-t-S3’, 1.50 × 10−4G0 for Au-t-S3,
3.38 × 10−3G0 for Au-t-S3’.

we agree that the observed discrepancies, especially in the top bonding position, require
further investigations.

The studies presented in this section point out that the reproducibility of conductance
measurements in experiments depends crucially on the molecules chosen. For too short
molecules reproducible measurements are hampered, as observed here at the example of
molecule R1 with very contradictory results in Refs. [222] and [34]. Also conformational
changes of the molecular geometry can play a decisive role as illustrated at the example
of the two and three ring molecules S2 and S3. For them the tilt angles between different
rings could differ, depending on the initial geometry in the search for the minimum energy
configurations. Physically this indicates that in a real junction the molecules may adopt
different geometries, depending on the actual realization of the contacting process. The
configurational changes are observed to cause big changes in the conductance. In order to
improve a comparison between predictions of theoretical and experimental results, such un-
controllable configurational variations of the molecular geometry should best be prevented
by use of appropriate side groups in future experiments.

6.3.3 Controlling the degree of electronic conjugation

Until now we have already seen many examples for the importance of the extent of the
delocalized π-system for the electron transport through molecules. All structures studied so
far have been minimum-energy configurations. In this paragraph we will force the rings to
adopt other tilt angles, keeping the rest of the structure frozen. In this way we can analyze
the dependence of the conductance on continously varying angles. We will do so for the
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Figure 6.16: In the first row equilibrium structures of the molecules R2, S2, and D2 (from
left to right) are displayed. Faintly overlayed on each plot are geometries with ring tilts
±30◦ away from the equilibrium structure. In each case only the orientation of the phenyl
ring unit in the front of the image is changed, while that of the ring in the back of the
image is kept fixed. Below these plots the energy landscape E(ϕ) for otherwise frozen
structures of the molecules R2, S2, and D2 with respect to varied angles ϕ of their phenyl
rings is shown. This landscape is resolved in steps of ∆ϕ = 1◦. For the molecules S2 and
D2 the main panel displays E(ϕ) for the two important energetic minima, while the inset
shows the complete energy landscape. Note the different scales of energies on the y axes.

molecules R2, S2, and D2. Ultimately the temperature dependence of the conductance for
these three kind of molecules will be studied.

As a first step we start out by analyzing the energy landscape for ring tilts E(ϕ) of the
isolated molecules, where ϕ is the inter-ring tilt angle. In Fig. 6.16 the molecules R2, S2,
and D2 can be seen in their equilibrium position. Faintly overlayed are structures with tilt
angles ±30◦ away from the equilibrium structure. Also shown are the energy landscapes
E(ϕ), namely the total energy as a function of ϕ. While the curves for the molecules S2
and D2 exhibit energetic minima approximately at right tilt angles of 90◦ and 270◦,16 for
R2 there are four minima at 37◦, 141◦, 217◦, and 321◦.17 In principle one would expect a

16To be precise, within the resolution of ∆ϕ = 1◦ we find the local minima of S2 at 91◦ and 267◦ and a
central local maximum at 171◦. The energy difference between these two local minima and the maximum
at ϕ = 171◦ is ∆E = 2.4 eV. For D2 the minima are located at ϕ = 90◦ and 270◦.

17Local maxima for R2 are located at angles ϕ of 91◦, 178◦, 271◦, and 358◦. Energetic differences
between the local minimum at ϕ = 37◦ (and equivalently 217◦) and the maxima at 90◦ (or 270◦) and 178◦

(or 358◦) are ∆E = 0.12 eV and ∆E = 0.09 eV. The differences for the local minimum at ϕ = 141◦ (and
equivalently 321◦) and the maxima at 90◦ (or 270◦) and 178◦ (or 358◦) are ∆E = 0.10 eV and ∆E = 0.07
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Figure 6.17: Equilibrium structures of the contact configurations Au-h-R2, Au-h-S2, and
Au-h-D2 from left to right. Faintly overlayed on each plot are geometries with ring tilts
±30◦ away from the equilibrium structure. In each case only the orientation of the phenyl
ring unit in the front of the image is changed, while the rest of the structure remains
unchanged.

periodicity of 90◦ for E(ϕ) for molecule R2. Due to slight distortions of atoms out of the
phenyl ring planes (mainly the ortho hydrogen atoms at the ring connecting carbons) there
are deviations from this behavior. Instead the curve is only periodic after 180◦. Similar
deviations from an expected 180◦ periodicity in the total energy landscape of molecules S2
and D2 are mainly due to analogous distortions of the methyl side groups. It should be
noted that the energy axes in all plots have quite different scales.

In principle theses energy landscapes provide information on the existence of atropi-
somers, i.e., rotational isomers. In Ref. [34] such rotational isomers have been observed
for terphenyl and quaterphenyl compounds. In NMR (nuclear magnetic resonance) mea-
surements the coalescence temperature TC was determined to be around 325 K.18 In terms
of energies this translates to an approximate energy difference of 0.028 eV between the
maximum and minimum in E(ϕ) for the compound S2. Instead we observe an energy dif-
ference of around 2.5 eV. This substantial overestimation stems from the frozen structure
of the molecule, where side groups have no possibility to avoid each other by, for example,
elongated bond distances of the ring connecting carbons. While this is unrealistic, these
calculations were done in order to get a rough idea, about which angles may be accessible
to the molecules R2, S2, and D2. In a molecular junction the length of the molecule may
actually be fixed due to the external boundary conditions set by the electrodes, and the
situation may correspond better to the frozen molecular structure as simulated here.

Let us now come to the discussion of the conductance as a function of the tilt angle.
For this purpose we studied the hollow bonding configurations Au-h-R2, Au-h-S2, and
Au-h-D2 shown in Fig. 6.17. Due to the simulations of the energy landscape E(ϕ) of the
isolated molecules R2, S2, and D2 just discussed (see Fig. 6.16), we decided to explore
the tilt angle intervals of ϕ ∈ [0◦, ..., 360◦] for Au-h-R2, ϕ ∈ [60◦, ..., 300◦] for Au-h-S2,

eV.
18The coalescence temperature is that temperature, for which only one isomer can be measured in the

NMR spectra, suggesting that the phenyl rings are rotating so fast that the isomers cannot be distinguished
anymore on the NMR time-scale [34]. This means that the energetic barrier between the two configurations
has largely been overcome by the thermal energy EC = kBTC with the Boltzmann constant kB.
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and ϕ ∈ [60◦, ..., 120◦] for Au-h-D2. In each case the angular resolution was ∆ϕ = 2◦.
The results for the total energy as a function of the tilt angle E(ϕ) together with the
conductance G(ϕ) are shown in Fig. 6.18. As for the isolated molecules (see Fig. 6.16)
E(ϕ) exhibits deviations from expected mirror symmetries at 90◦ for Au-h-R2 and at 180◦

for Au-h-S2. The reason are again small distortions of the ortho-positioned side groups,
which stand slightly away from the ring planes. The presence of the pyramidal gold clusters
is an additional factor, why the rotational potentials of Au-h-R2 and Au-h-S2 are not mirror
symmetric with respect to 180◦.

Concerning the total energy curve for Au-h-D2, there is a minimum at 90◦, and the
conductance at this point is 1.20 × 10−4G0. For Au-h-S2 the total energy E(ϕ) exhibits
two minima at 94◦ and 268◦ connected by a local maximum at 174◦. The energy difference
between the minima and this maximum is ∆E = 2.2 eV. In the minima the conductance
is 2.24 × 10−4G0 and 2.18 × 10−4G0 for ϕ = 94◦ and 268◦, respectively. For Au-h-D2
and Au-h-S2 the minimum energy configurations coincide with minima of the conductance
curves. This is different for the contact Au-h-R2. Analogously to the isolated molecule, this
junction exhibits four minima at angles of ϕ = 34◦, 144◦, 214◦, and 324◦ and four maxima at
ϕ = 90◦, 178◦, 270◦, and 358◦. These local extrema are not visible in the conductance curve
G(ϕ), which possesses only two maxima at 0◦ and 180◦ and two minima at 90◦ and 270◦.
In the maxima the conductance is 1.38× 10−2G0 and in the minima 2.01 × 10−4G0. Thus
an ”on-off” ratio of around 70 is obtained, when switching from the planar configurations
to the minimum π-overlap geometry.

Especially the results for molecule R2 show the importance of the extent of the con-
jugated π-electron system for the conduction properties of biphenyl molecules. While in
the planar geometry the p orbitals perpendicular to the phenyl ring plane overlap to a
large degree, the overlap of these p orbitals will be strongly reduced, when ϕ = 90◦. The
coupling of the p orbitals perpendicular to the phenyl ring planes should be the dominant
intermolecular coupling element for the transport. One observes that it is proportional to
cos(ϕ) (see the sketch in Fig. 6.19). This angular dependence can quickly be derived by
noting that the wave function of those p orbitals is proportional to cos(φ) in the plane
perpendicular to the transport direction, where cylinder coordinates are assumed and the
angle φ is measured in the x-y plane around the z axis. The effective coupling element
between the two rings rotated by an angle ϕ is then proportional to

∫ 2π

0

dφ cos(φ) cos(φ− ϕ) = π cos(ϕ).

This coupling element will appear in the transition amplitude or propagator GCC in the
trace expression for the current (see Eq. (C.7)). As in turn the propagator appears twice
in this expression, the conductance can be expected to be proportional to cos2(ϕ) [196].

For this reason we show in Fig. 6.18 a fit to the conductance curve G(ϕ) of molecule
R2 to a function of the form α + β cos2(ϕ). From a least-squares fit we obtain the fit
parameters α = 5.95 × 10−5G0 and β = 1.35 × 10−2G0. The agreement between G(ϕ)
and the fitted curve appears to be very convincing with both curves falling nearly on
top of each other. This demonstrates that the p orbital coupling is indeed the dominant
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Figure 6.18: Total energy E and conductance G as a function of the tilt angle ϕ between
adjacent rings of the molecules R2, S2, and D2. The geometries correspond to those
displayed in Fig. 6.17. A fit to the conductance curve of molecule R2 with a function of
the form α+ β cos2(ϕ) is presented as indicated in the legend. From a least-squares fit we
obtain the fit parameters α = 5.95 × 10−5G0 and β = 1.35 × 10−2G0.

mechanism that determines the conduction properties of the molecule R2. However some
slight deviations at the extrema of G(ϕ) are observable. Actually the small offset coefficient
α = 5.95 × 10−5G0 indicates an important point. If G would indeed be proportional to



158 Molecular electronics with organic molecules

ϕ x

y

1

2
Figure 6.19: The planes of two phenyl rings,
called 1 and 2, are tilted by an angle ϕ with
respect to each other. The p orbitals that
stand perpendicular to the ring plane are in-
dicated. Their overlap will give rise to an ef-
fective coupling element that is proportional
to cos(ϕ) as explained in the text.

cos2(ϕ), an infinite on-off ratio would be the result, because in the minima of G the
conductance would vanish. This is not the case in our simulations, where an on-off ratio of
around 70 is observed as discussed above. At the point of complete π-orbital decoupling
some other coupling elements, presumably σ couplings, prevent a complete blockade of the
electron transport.

Finally we analyze the behavior of the conductance with respect to temperature. As
proposed by Troisi et al. [225] in the context of conformational molecular rectifiers, we ther-
mally average the conductance over different tilt angles ϕ in order to get the temperature
dependent conductance19

Ḡ(T ) =

∑
iG(ϕi)e

−E(ϕi)/kBT

∑
i e

−E(ϕi)/kBT
. (6.14)

In this expression T is the temperature and kB is Boltzmann’s constant. The thermal
average is based on the energy and conductance landscapes E(ϕ) and G(ϕ) of the Au-
molecule-Au contacts as shown in Fig. 6.16.

In Fig. 6.20 the behavior of Ḡ for the molecules R2, S2, and D2 is shown for tempera-
tures between 0 and 400 K. The temperature behavior exhibits main qualitative differences
between the different molecules. While for R2 we observe a decrease of Ḡ with increas-
ing temperature, this trend is reversed for S2 and D2. For them the thermally averaged
conductance increases for elevated temperatures. The reason for these phenomena can
be explained via Fig. 6.18. The equilibrium configurations for S2 and D2 correspond to
conformations with minimal conductances. Elevated temperatures give access to confor-
mations with reduced tilt angles and increased conductance values. This causes Ḡ to
increase. Opposed to this, the molecule R2 with an equilibrium tilt angle of 37◦ is already
a good conductor. An increased temperature therefore reduces the conductance on average,
because conformations with increased inter-ring tilt angles will contribute to the average.

19Due to our numerical grid with a finite ∆ϕ this average is written as a discrete sum and not as an
integral.
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Figure 6.20: Behavior of the conductance Ḡ(T ) for the molecules R2, S2, and D2 for
temperatures T between 0 and 400 K.

Of course it should be kept in mind that the calculations in Fig. 6.20 take only thermal
averages over different tilt angles into account. Altough definitely an important degree
of freedom, there may be reconfigurations that have a larger impact on the temperature
behavior of the conductance, e.g., a change of the bonding position from top to hollow.
Ramachandran et al. [226] explain their measured stochastic on-off switching of thiolated
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molecules at 333 K by the mobility of molecules tethered to gold via thiol linkage. From
this point of view the study of the temperature dependence of the thermally averaged
conductance may be considered to be conceptual.

The measurement of the dependence of the conductance on tilt angles between phenyl
rings is experimentally most likely best performed by synthesizing molecules with side
groups that fix the tilt angles to a predefined value. This is exactly the concept behind the
synthesis of the molecules of the series R, S, D, and B. The concept has successfully been
realized in the work of Venkataraman et al. [196]. Further studies of this kind with more
continuous variations of tilt angles may help to demonstrate in more detail the influence
of the extent of a delocalized π-electron system on the conductance.

6.4 Conclusions

In this section we have studied the conduction properties of organic molecules bond to Au
electrodes. The molecules all belonged to the family of oligophenylenes and carried sulfur
functionalities at their ends that established covalent bonds to the Au electrodes on both
sides. Their investigation was motivated by recent research activities at the INT, FZK
[34].

The idea behind the study of different families of oligophenylene molecules was to
provide a deeper theoretical insight into the importance of the conjugated π-electron system
for the conduction properties of single molecules. For this reason we analyzed the length
dependence of the conductance for three different families of oligophenylenes (R, S, and
D). While the first family (R) exhibited an extended delocalized π-electron system, methyl
groups hindered the electronic delocalization in the other two families (S and D). Within
each family the number of phenyl ring units was varied between one and four. In agreement
with previous experimental and theoretical studies of similar molecules, we observed an
exponential decay of the conductance for an increased number of phenyl rings.

The attenuation factors for the family R agreed well with previous experimental and
theoretical studies. Compared to the other series S and D, where the conjugated π-electron
system was completely broken due to two methyl side groups, the attenuation factor for
the molecules of series R turned out to be substantially lower. (These side groups forced
adjacent phenyl rings to stand at almost 90◦ to each other for families S and D.) This
demonstrates that the intuitive expectation is correct that molecules with a conjugated
π-electron system of large extent are better conductors than those, for which the electron
delocalization is hindered.

In addition we investigated two kinds of bonding situations, which we called hollow and
top. By and large the attenuation factors turned out to be independent of the bonding
situation. However, the absolute values of the conductance were roughly an order of
magnitude higher in the top than in the hollow position.

In order to gain more insight into the length dependence of the conductance, we studied
analytically a single orbital wire model. We could show that the exponential decay of the
conductance with length can only be explained as a complex interference of all molecular
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orbitals of the wire.
After the analysis of the length dependence we studied the family B of planar biphenyl

molecules. They showed a very similar conductance that was rather independent of the
alkyl-bridges employed to stabilize the conjugated π-system.

We continued with a comparison between experimental and theoretical results, demon-
strating that reproducible experimental data is needed for a judgment of the correctness of
a theoretical description. Particular molecules, namely a single thiolated phenyl ring may
just be too short for reproducible conductance measurements. For a biphenyl molecule
of the S series, which could be measured reproducibly in the experiments, we obtain a
fair agreement with the experiment. In the hollow configuration our results deviate from
the experimental ones by a factor of 2–6, while for the top position the conductance is
substantially overestimated by a factor of 60. We demonstrated that the actual geometry
of the molecule connected to Au electrodes may deviate substantially from the equilibrium
structure of the isolated molecule with regard to tilt angles between adjacent phenyl rings.
These tilt angles were demonstrated to be a very important ingredient in the determination
of the molecule’s electronic transport properties. We concluded that a reproducible mea-
surement of the conductance of molecules requires an appropriate design of the molecules.
This design needs to insure that the molecule is hindered to adopt different internal con-
formations when contacted by metallic electrodes. In the case of the oligophenylenes this
can be achieved by use of appropriate side groups.

Finally we investigated in a more conceptual study the effect of forced ring tilts for three
different biphenyl molecules in the hollow configuration. For the simple biphenyl molecule
we obtain a cos2 dependence of the conductance with respect to the tilt angle, as predicted
in previous studies and recently confirmed experimentally. Remarkably, the conductance is
never fully suppressed, but differs by two orders of magnitude between the minimum and
maximum conductance for the planar and perpendicular ring configurations, respectively.
From the tilt angle dependence of the total energy and the conductance we determined
the temperature dependence of the conductance for three different biphenyl molecules, and
found qualitative differences. While for the molecules of families S and D with a broken
π-system the conductance increases, the opposite is observed for the conjugated molecule
of series R.

In summary our results are a further demonstration of the elaborate interplay between
geometric configuration and transport properties. By an appropriate chemical design of
the geometric structure of a molecule it is indeed possible to tailor the conductance of
metal-molecule-metal junctions.
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Summary

The present work is concerned with the theoretical description of systems at the nanoscale.
In particular the electric charge current through atomic-sized metallic contacts and organic
molecules, bridging two metallic electrodes, is in the focus of our research.

In the first part of this work a valence electron tight-binding approach is used to study
metallic atomic contacts. We addressed the question, on how the characteristic peak struc-
ture, as observed in the conductance histograms of different classes of metals, can be ex-
plained. Combining classical molecular dynamics simulations performed at the Universität
Konstanz with a tight-binding model for the conductance, we studied two noble metals,
namely silver and gold, a transition metal, platinum, and nickel, a ferromagnetic metal.
With the help of an extensive statistical analysis of fifty stretching events for contacts of
the respective metal we could illustrate that the differences in the peak structure of the
conductance histograms arise from the very different electronic structure of the analyzed
metals as well as their different mechanical properties. These mechanical properties may
lead to the formation of special structures, such as monoatomic chains for the metals gold
and platinum. For nickel we could demonstrate, how the polarization of the current evolves
on average from negative values in thick contacts to even positive values in the tunneling
regime after rupture of the contact. Moreover we analyzed the forces before rupture of a
contact using breaking force histograms.

Next we explored the effect of electron-vibration coupling on the conductance in atomic
gold wires. While the formalism applied in the analysis of conductance histograms was
based on the elastic current alone, the determination of the signature of vibrations on
the conductance required the inclusion of inelastic corrections. We treated the electron-
vibration coupling to the first nontrivial order, and found that this lowest-order perturba-
tion approach provides a sufficient description of the phenomenology of electron-vibration
interactions in atomic wires.

In the second part of the thesis we developed an ab-initio method for predicting the
conduction properties of atomic-sized contacts. This method is based on density functional
theory as implemented in the quantum chemistry package TURBOMOLE. For develop-
ing this method, we had to overcome a major obstacle. The description of the metallic
electrodes turned out to be problematic due the lack of periodic boundary conditions in
TURBOMOLE that would allow a solid state description. We decided to extract electrode
parameters from finite clusters instead. Due to the long tails of Gaussian basis functions
it turned out that extremely large cluster sizes are required to achieve a meaningful elec-
trode description within the nonorthogonal Gaussian basis sets used by TURBOMOLE.
By means of a measure for the positive definiteness of the overlap matrix, we could give a
criterion, on how big the clusters need to be, in order to extract electrode parameters that
yield physically relevant results. Due to TURBOMOLE’s ability to compute very large
metal clusters it was finally possible to fulfill this criterion, so that the central contact sys-
tem and the electrodes can be described on an equal footing within the same nonorthogonal
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basis set.
At the example of gold and aluminum metallic atomic contacts we demonstrated a

kind of convergence of our transmission curves. In addition we showed that our method
agrees with the present literature and reproduces the results of other established theoretical
methods in the field of molecular electronics.

Subsequently we applied our ab-initio method in studies of organic molecules. In-
spired by recent activities in the group of M. Mayor at the Institut für Nanotechnologie,
Forschungszentrum Karlsruhe [34], we analyzed different series of oligophenylene molecules.
In these molecules the conjugated π-electron system was either stabilized or broken by
means of side groups. In this way the degree of the electron delocalization was controlled.
We explored the conductance as a function of the number of phenyl ring units for three
different series of such oligophenylene molecules, which consist of one to four ring units.
We found an exponential decrease of the conductance for all of them, however with a much
lower damping for the molecules with an extended π-system. In addition we studied differ-
ent bonding positions and showed that, while the absolute value of the conductance may
differ substantially (roughly by an order of magnitude), the attenuation factors are by and
large unaffected.

We compared our results to experimental data and found out that the conductance
for the hollow bonding position seems to be in better compliance with experiments than
those of the top position. We pointed out that the sensible comparison between theory
and experiment requires the measurement of molecules with an appropriately designed
geometric structure. This design should aim at a stabilization of the molecule’s internal
structure, such that its configuration cannot deviate from the equilibrium structure of the
isolated molecule, when the molecule is brought into contact with metallic electrodes.

Furthermore we analyzed the dependence of the conductance on enforced interphenyl-
ring tilts for three different biphenyl molecules. The observed functional dependence of
the conductance on the tilt angle agrees well with predictions of a simple effective π-
electron coupling model. Treating the tilt angle as a classical variable, we determined the
temperature dependence of the conductance. Qualitative differences could be observed
between the three different biphenyl molecules analyzed.

The concept of molecular electronics envisages the use of single molecules as smallest
building blocks in electronic circuitry, hopefully leading to further miniaturization and re-
duced production costs in the chip industry. However, the use of individual molecules as
electronically active components requires the possibility to tailor their conduction prop-
erties at will. Correlations between the geometric structure and the electron transport
behavior of a molecule may serve as a basic design principle to achieve this goal. Our
analysis of oligophenylene molecules is a further confirmation that such correlations exist,
and tailor-made molecular electronic circuitry may indeed be possible.



Appendix A

Contour-ordered Green’s functions

and Keldysh formalism

This appendix is devoted to the study of Green’s functions, in particular contour-ordered
single-particle Green’s functions as they appear in the context of the Keldysh formalism
[227]. By now, there exists excellent literature devoted to the powerful Keldysh Green’s
function technique [228, 229, 230, 231]. As this formalism, however, constitutes the fun-
damental tool of this thesis and is employed for the computation of transport and other
physical quantities like densities of states etc., this appendix on the Keldysh nonequilib-
rium Green’s functions is included for reasons of completeness. The presentation of the
formalism given here follows closely the review by Rammer et al. [228] and Appendix A of
the PhD thesis by J.C. Cuevas [232].

In his original paper Keldysh developed a diagrammatic technique for calculating
Green’s functions for particles in a statistical system which, under the action of an ex-
ternal field, deviates to an arbitrary extent from the state of thermodynamic equilibrium
[227]. This technique has the advantage that it is completely analogous to the usual Feyn-
man technique in field theory, with the only difference that the number of Green’s functions
appearing in it is increased. Since its invention it has found applications in numerous fields
of physical research like superconductivity, Fermi liquid theory, surface physics, but also
in nuclear and particle physics and optics (see Refs. [228, 229] for a survey of the litera-
ture). The particular application we are interested in is electron transport (see for instance
Refs. [233, 234, 235, 236, 152]).

This chapter is organized as follows: In Sec. A.1, we recall the different pictures of
time-evolution as known in quantum mechanics due to their importance for the perturba-
tive expansion of Green’s functions. In Sec. A.2 equilibrium Green’s functions and their
properties will be studied, before, in Sec. A.3, we come to the concept of nonequilibrium
contour-ordered Green’s functions, in particular the Keldysh formalism. The concepts en-
countered in the study of nonequilibrium situations will appear as a natural generalization
of the equilibrium theory.
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A.1 Different pictures of time evolution

In quantum mechanics there exist mainly three equivalent pictures for the time evolution
of a quantum system. They differ in the way that states |ψ(t)〉 and measurement operators
Ô(t) of a quantum mechanical system evolve with time. The three different pictures of time
evolution can be summarized as follows [237, 217, 229], where all pictures shall coincide at
time t0:

Schrödinger picture: The states |ΨS(t)〉 = ÛH(t, t0) |ΨS(t0)〉 are time-dependent, while
the operator OS is constant (except for its own explicit time dependence d

dt
ÔS =

∂
∂t
ÔS). The time evolution operator ÛH(t, t0) from time t0 to t obeys the differential

equation i~ d
dt
ÛH(t, t0) = ĤÛH(t, t0).

Heisenberg picture: The states |ΨH〉 = |ΨS(t0)〉 are constant (i~ d
dt
|ΨH(t)〉 = 0), while

the operator ÔH(t) = Û+
H (t, t0)ÔS(t)ÛH(t, t0) evolves with time. The time evo-

lution operator ÛH(t, t0) is defined as in the Schrödinger picture (i~ d
dt
ÛH(t, t0) =

ĤÛH(t, t0)).

Interaction picture: The states |ΨI(t)〉 = ÛI(t, t0) |ΨI(t0)〉 evolve with time as deter-
mined by the time-evolution operator in the interaction picture, which is ÛI(t, t0) =
Û+
H0

(t, t0)ÛH(t, t0). Here we used that |ΨI(t0)〉 = |ΨS(t0)〉. The operators of the

Schrödinger and interaction picture are related by ÔI(t) = Û+
H0

(t, t0)ÔS(t)ÛH0(t, t0).

The behavior of ÛI(t, t0) – as will be discussed further below – is controlled by
the ”complicated” (possibly time-dependent) interaction part Ĥ ′ of the Hamiltonian
Ĥ = Ĥ0 + Ĥ ′ (i~ d

dt
ÛI(t, t0) = Ĥ ′

I(t)ÛI(t, t0) and Ĥ ′
I(t) = Û+

H0
(t, t0)Ĥ

′ÛH0(t, t0) is Ĥ ′

in the interaction picture). The time evolution operators ÛH(t, t0) and ÛH0(t, t0) are
defined as in the Schrödinger picture (i~ d

dt
ÛH(t, t0) = ĤÛH(t, t0) and i~ d

dt
ÛH0(t, t0) =

Ĥ0ÛH0(t, t0)).

Which picture for the time evolution is chosen in a description of a quantum mechanical
system is a matter of convenience and the intended application. In the context of per-
turbation theory, the interaction picture turns out to be the most useful representation.
Below, the form of the time evolution operator appropriate for a perturbative treatment
will be given.

Generally a time evolution operator ÛH(t, t0), obeying the differential equation

i~
d

dt
ÛH(t, t0) = Ĥ(t)ÛH(t, t0),

may be expressed in different ways depending on the time-dependence of Ĥ(t). For (i) a
time-independent Hamiltonian ( d

dt
Ĥ = 0)

ÛH(t, t0) = exp

(
− i

~
Ĥ(t− t0)

)
,
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for (ii) time-dependent Ĥ = Ĥ(t) with a Hamiltonian that commutes for different times

(
[
Ĥ(ti), Ĥ(tj)

]
= 0 for arbitrary ti and tj)

ÛH(t, t0) = exp

(
− i

~

∫ t

t0

dt′Ĥ(t′)

)
,

whereas for (iii) time-dependent Ĥ = Ĥ(t), where the commutator of the Hamiltonian at

different times does not vanish for all times (
[
Ĥ(ti), Ĥ(tj)

]
6= 0 for some ti and tj)

ÛH(t, t0) =
∞∑

n=0

(−i
~

)n ∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tn−1

t0

dtnĤ(t1)Ĥ(t2) · · · Ĥ(tn). (A.1)

Here the zeroth term is the unit operator [238, 237, 141]. This series is sometimes known
as Dyson series. With the introduction of the time ordering operator T , which acts on a
group of operators and arranges the operators with the earliest time to the right, Eq. (A.1)
many then formally be written as [238, 141]

ÛH(t, t0) = T exp

(
− i

~

∫ t

t0

dt′Ĥ(t′)

)
.

Note that for all the time evolution operators defined above ÛX(t, t0) (with X = H , H0

or I) the following relations are fulfilled, namely the group property

ÛX(t1, t2)ÛX(t2, t3) = ÛX(t1, t3), (A.2)

the boundary condition
ÛX(t1, t1) = 1, (A.3)

and the unitarity
Û+
X (t, t0) = Û−1

X (t, t0) = ÛX(t0, t). (A.4)

In order to obtain an expression for the time evolution operator in the interaction
picture, we assume a Hamiltonian of the form Ĥ = Ĥ0 + Ĥ ′(t). Ĥ0 shall be the ”sim-
ple” time-independent part of the Hamiltonian for a certain system, while Ĥ ′(t) may
contain complicated time-dependent interaction parts. With the definitions above, the
time-evolution operator in the interaction picture is given by1

ÛI(t, t0) = Û+
H0

(t, t0)ÛH(t, t0) = ÛH0(t0, t)ÛH(t, t0) (A.5)

and obeys the differential equation

i~
d

dt
ÛI(t, t0) = Ĥ ′

I(t)ÛI(t, t0), (A.6)

1Exploiting the time independence of Ĥ0 this may be written more explicitly as ÛI(t, t0) =

exp
(

i
~
Ĥ0(t− t0)

)
ÛH(t, t0).
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where Ĥ ′
I(t) = Û+

H0
(t, t0)Ĥ

′(t)ÛH0(t, t0) is Ĥ ′(t) in the interaction picture. This means that

ÛI is only changing with time due to the presence of Ĥ ′(t), suggesting that the interaction
picture is the appropriate one for a perturbative treatment of the interaction part Ĥ ′(t).

In the most general case of a time-dependent Ĥ ′
I(t) with a noncommuting Hamilto-

nian for different times the time-evolution operator in the interaction picture may now be
brought into the form

ÛI(t, t0) = T exp

(
− i

~

∫ t

t0

dt′Ĥ ′
I(t

′)

)
. (A.7)

A.2 Equilibrium Green’s functions at zero and finite

temperature

In classical physics Green’s functions are used as a powerful method for solving inhomo-
geneous differential equations. The Green’s functions obey a certain differential equation
with a singular inhomogeneity. Similarly one can introduce Green’s functions in many-
body physics, which, because of their construction, obey a wave equation with a singular
inhomogeneity. These Green’s functions turn out to provide a very powerful technique for
evaluating properties of many-body systems both in thermal equilibrium and in nonequi-
librium situations. The usefulness of the Green’s functions stems from the possibility to
extract experimentally relevant properties from their knowledge. Their definitions allow a
systematic perturbation theory. In this paragraph we will start by describing briefly the
equilibrium Green’s function formalism both for zero and finite temperature, before the
concept will be generalized and unified in the context of contour-ordered nonequilibrium
Green’s functions (see Sec. A.3).

A.2.1 Definitions and relations

Commonly, the different equilibrium Green’s functions are defined as [228, 229]

Gc(~x1, t1; ~x2, t2) = −i
〈
T
(
ψ̂K(~x1, t1)ψ̂

+
K(~x2, t2)

)〉
(A.8)

Gr(~x1, t1; ~x2, t2) = −iΘ(t1 − t2)
〈{

ψ̂K(~x1, t1), ψ̂
+
K(~x2, t2)

}〉
(A.9)

Ga(~x1, t1; ~x2, t2) = iΘ(t2 − t1)
〈{

ψ̂K(~x1, t1), ψ̂
+
K(~x2, t2)

}〉
(A.10)

G<(~x1, t1; ~x2, t2) = i
〈
ψ̂+
K(~x2, t2)ψ̂K(~x1, t1)

〉
(A.11)

G>(~x1, t1; ~x2, t2) = −i
〈
ψ̂K(~x1, t1)ψ̂

+
K(~x2, t2)

〉
(A.12)

The Green’s functions Gc, Gr, Ga, G<, and G> are called the causal, retarded, advanced,
lesser, and greater Green’s functions. The operators ψ̂K(~x, t) and ψ̂+

K(~x, t) are the field
operators in the Heisenberg picture. As we are dealing with many-particle states and
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statistical ensembles, we have defined the grand canonical Hamiltonian of the system K̂ =
Ĥ − µN̂ [238]. This means that single-particle energies are measured with respect to the
chemical potential.2 All the equations for the time evolution in Sec. A.1 are valid for Ĥ
replaced by K̂. Especially

ψ̂K(~x, t) = Û+
K(t, t0)ψ̂(~x, t0)ÛK(t, t0) ψ̂+

K(~x, t) = Û+
K(t, t0)ψ̂

+(~x, t0)ÛK(t, t0)

where ψ̂(~x, t0) and ψ̂+(~x, t0) are the field operators at time t0

ψ̂(~x, t0) =
∑

n

φn(~x, t0)ĉn(t0) ψ̂+(~x, t0) =
∑

n

φ∗
n(~x, t0)ĉ

+
n (t0). (A.13)

The operators ĉn(t0) (ĉ+n (t0)) act in the abstract occupation-number Hilbert space and
annihilate (create) a particle in a state n. The wavefunctions φn(~x, t0) form a complete set
of single-particle eigenfunctions for the Hamiltonian K̂(t0) with quantum labels n, where
n may comprise for example momentum and spin quantum numbers. In the definition of
the Green’s functions Gr and Ga (see Eqs. (A.9) and (A.10)), and throughout this work,{
Â, B̂

}
(
[
Â, B̂

]
) shall be the anticommutator (commutator) of the operators Â and B̂.

The step function Θ(x) appearing in Gr and Ga, is defined as3

Θ(x) =

{
1 x > 0
0 x < 0

. (A.14)

As introduced in the previous chapter and needed in the definition of Gc (see Eq. (A.8))
T is the time ordering operator, which arranges the operators with the earliest time to
the right, when acting on a group of operators. More generally the T product of several
operators orders them from right to left in ascending time order and adds a factor (−1)P ,
where P is the number of interchanges of fermion operators from the originally given order.
For two operator this means explicitly

T
(
ψ̂K(1)ψ̂+

K(2)
)

= Θ(t1 − t2)ψ̂K(1)ψ̂+
K(2) − Θ(t2 − t1)ψ̂

+
K(2)ψ̂K(1)

=

{
ψ̂K(1)ψ̂+

K(2) t1 > t2
−ψ̂+

K(2)ψ̂K(1) t1 < t2
,

where we used the short-hand notation 1 = (~x1, t1). The negative sign in this def-
inition for the case t1 < t2 arises from the anticommutator relation for fermion cre-

ation and annihilation operators. These are
{
ψ̂(~x1, t0), ψ̂

+(~x2, t0)
}

= δ(~x1 − ~x2) and

2We assume in the following that the particle number (fermion number) is conserved in time, so that[
Ĥ, N̂

]
= 0. The same shall be true for all the individual components of the Hamiltonian Ĥ like for

example Ĥ0 or Ĥ ′.
3The step function Θ(x) is not defined for x = 0, which implies that Gc, Gr, and Ga are not defined

for equal times (see Eqs. (A.8), (A.9), and (A.10)).
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{
ψ̂(~x1, t0), ψ̂(~x2, t0)

}
=
{
ψ̂+(~x1, t0), ψ̂

+(~x2, t0)
}

= 0 for the field operators at time t0

and follow from the corresponding relations between the annihilators cn(t0) and creators
c+n (t0) of states with quantum numbers n (

{
ĉn(t0), ĉ

+
n′(t0)

}
= δn,n′ and {ĉn(t0), ĉn′(t0)} ={

ĉ+n (t0), ĉ
+
n′(t0)

}
= 0) together with the completeness of the basis functions φn(~x, t0)

(
∑

n φ
∗
n(~x1, t0)φn(~x2, t0) = δ(~x1 − ~x2)).

4

The brackets 〈〉 in Eqs. (A.8)–(A.12) shall signify the quantum mechanical average. For
(i) zero temperature (T = 0) this is the average over the interacting many-particle ground
state |Ψ0〉. The causal Green’s function is then given as

Gc(1, 2) = −i 〈Ψ0| T
(
ψ̂K(1)ψ̂+

K(2)
)
|Ψ0〉 / 〈Ψ0| Ψ0〉 . (A.15)

For (ii) finite temperature (T > 0) the average 〈〉 shall signify the statistical average in the
grand canonical ensemble with the density matrix

ˆ̺ =
exp(−βK̂)

Tr
[
exp(−βK̂)

] =
exp(−βK̂)

Z
= exp(β(Ω − K̂)), (A.16)

where the grand canonical partition function Z = exp(−βΩ) has been introduced. Thus
for finite temperature Gc is given as

Gc(1, 2) = −iTr
[
ˆ̺T
(
ψ̂K(1)ψ̂+

K(2)
)]
. (A.17)

Directly from the definition of the Green’s functions, some relations between them
follow, for example

Gr(1, 2) = Θ(t1 − t2) (G>(1, 2) −G<(1, 2)) (A.18)

Ga(1, 2) = −Θ(t2 − t1) (G>(1, 2) −G<(1, 2)) (A.19)

Gr(1, 2) −Ga(1, 2) = G>(1, 2) −G<(1, 2) (A.20)

Gc(1, 2) = Θ(t1 − t2)G
>(1, 2) + Θ(t2 − t1)G

<(1, 2) (A.21)

Despite of the connections between the various Green’s functions, each has its own advan-
tages [229] (as will become obvious further below):

1. Gc has a systematic perturbative expansion.

2. Gr,a have a handy analytic structure with poles only in one half-plane. They contain
information about spectral properties, densities of states, and scattering rates and
are well-suited for calculating a physical response.

3. G<,> are directly linked to observables and kinetic properties such as particle densities
or currents.

4Note that the time ordering operator T is not defined for equal times. Instead, one needs to think
about how t1 and t2 need to approach each other, such that the physically relevant limit is obtained.
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Roughly speaking the Green’s functions describe the propagation of holes and particles
in a system. For example the probability amplitude in the many-particle ground state
to create a particle at space point 2 = (~x2, t2) and to find it later at space point 1 =
(~x1, t1) is 〈Ψ0| ψ̂K(1)ψ̂+

K(2) |Ψ0〉 / 〈Ψ0| Ψ0〉, whereas 〈Ψ0| ψ̂+
K(1)ψ̂K(2) |Ψ0〉 / 〈Ψ0| Ψ0〉 is the

propability amplitude for the same process with the hole generated first.
The direct connection of the Green’s functions to physical observables will be illustrated

at two examples, namely the electron density and the current operator [238, 230]. The
operator for the electron density is

ˆ̺(~x, t) = ψ̂+(~x, t)ψ̂(~x, t). (A.22)

Therefore the electron density in a quantum system is obtained as5

̺(~x, t) = 〈 ˆ̺(~x, t)〉 = −iG<(~x, t; ~x, t) = −iGc(~x, t; ~x, t+). (A.23)

Another example is the current operator

~̂j(~x, t) =
i

2m

((
∇ψ̂+(~x, t)

)
ψ̂(~x, t) − ψ̂+(~x, t)

(
∇ψ̂(~x, t)

))
, (A.24)

which may be expressed in terms of Green’s functions as

~̂j(~x, t) =
i

2m
lim
~x′→~x

〈
(∇~x′ −∇~x) ψ̂

+(~x′, t)ψ̂(~x, t)
〉

(A.25)

=
1

2m
lim
~x′→~x

G<(~x′, t; ~x, t).

The aforementioned direct relation of G<,> to physically observable quantities becomes
apparent from these examples.

Looking at the equation of motion, it can be noticed that Gc, Gr, and Ga all obey
the same differential equation, however with different boundary conditions [239]. Denoting
Gα(1, 2) = γα

ψ̂(~x1);ψ̂+(~x2)
(t1, t2) (α = c, a, or r) the equation of motion is

i~
∂

∂t1
γα
ψ̂(~x1);ψ̂+(~x2)

(t1, t2) = ~δ(t1 − t2)
〈{
ψ̂K(1), ψ̂+

K(2)
}〉

+ γα[ψ̂(~x1),K̂];ψ̂+(~x2)
(t1, t2) (A.26)

with the following boundary conditions for the different Green’s functions

Gr(1, 2) = 0 for t1 < t2,

Ga(1, 2) = 0 for t1 > t2,

Gc(1, 2) =

{
G<(1, 2) for t1 < t2,
G>(1, 2) for t1 > t2.

.

The Green’s function γα
[ψ̂,K̂];ψ̂+(~x2)

(t1, t2) appearing in Eq. (A.26) is a new Green’s function

because
[
ψ̂K(1), K̂

]
is itself an operator. Generally it is a so-called n-particle Green’s

5The notation t+ (t−) means a time infinitesimally bigger (smaller) than t (t± = limε→0 t± ε).
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function, which means that it contains more field operators than the original single-particle
Green’s function Gα(1, 2). Also for this n-particle Green’s function an equation of motion
may be written down, with further n-particle Green’s functions emerging. This procedure
may lead to an infinite chain of equations of motion, which needs to be truncated at
some point to obtain an approximate solution. However, in this work we will only use
effective single-particle Hamiltonians, and consequently no other Green’s functions than
the single-particle Green’s functions need to be discussed.

For a Hamiltonian without an explicit time dependence the Green’s functions are ho-
mogeneous functions of time, namely they depend only on time differences

∂K̂

∂t
= 0 ⇒ Gα(1, 2) = Gα(~x1, ~x2, t1 − t2). (A.27)

Here Gα may stand for any of the Green’s functions introduced above (α = c, r, a, <,
and >; see Eqs. (A.8)–(A.12)). The statement of Eq. (A.27) can be proved by showing

that the correlation functions
〈
ψ̂K(1)ψ̂+

K(2)
〉

or
〈
ψ̂+
K(2)ψ̂K(1)

〉
depend only on the time

difference [239]. Denoting Â(t) = ψ̂K(~x, t) and B̂(t) = ψ̂+
K(~x, t) it follows that

Tr
[
eβ(Ω−K̂)Â(t)B̂(t′)

]
= Tr

[
eβ(Ω−K̂)eiK̂(t−t0)/~Â(t0)e

−iK̂(t−t′)/~B̂(t0)e
−iK̂(t′−t0)/~

]

= Tr
[
eβ(Ω−K̂)eiK̂(t−t′)/~Â(t0)e

−iK̂(t−t′)/~B̂(t0)
]

= Tr
[
eβ(Ω−K̂)Â(t− t′ + t0)B̂(t0)

]
. (A.28)

This means that 〈
Â(t)B̂(t′)

〉
=
〈
Â(t− t′ + t0)B̂(t0)

〉
(A.29)

and thus depends only on the time difference. With a similar proof for
〈
B̂(t′)Â(t)

〉
=

〈
B̂(t0)Â(t− t′ + t0)

〉
this finally demonstrates the translational invariance of Gα with

respect to its time arguments.

For time independent Hamiltonians Gα may thus be diagonalized via a Fourier trans-
formation

Gα(~x1, ~x2, E) =

∫ ∞

−∞

d(t1 − t2)

~
Gα(~x1, ~x2, t1 − t2) exp

(
i

~
E (t1 − t2)

)

Gα(~x1, ~x2, t1 − t2) =

∫ ∞

−∞

dE

2π
Gα(~x1, ~x2, E) exp

(
− i

~
E (t1 − t2)

)
.

In this way Eq. (A.26) becomes an an algebraic equation

Eγα
ψ̂(~x1);ψ̂+(~x2)

(E) =
〈{

ψ̂K(~x1, t0), ψ̂
+
K(~x2, t0)

}〉
+ γα[ψ̂(~x1),K̂];ψ̂+(~x2)

(E). (A.30)
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We define now the spectral function ρ(~x1, ~x2, E) as

ρ(~x1, ~x2, E) =
i

2π
(Gr(~x1, ~x2, E) −Ga(~x1, ~x2, E)) =

i

2π
(G>(~x1, ~x2, E) −G<(~x1, ~x2, E)) .

(A.31)
Due to the equal-time anticommutation rule, this function has the property

∫ ∞

−∞
dEρ(~x1, ~x2, E) =

∫
d(t1 − t2)δ(t1 − t2)

〈{
ψ̂K(~x1, t0), ψ̂

+
K(~x2, t0)

}〉
= δ(~x1 − ~x2).

(A.32)
Written explicitly the spectral density is found to be

ρ(~x1, ~x2, E) =
∑

n,m

〈En| ψ̂+
K(~x1, t0) |Em〉 〈Em| ψ̂K(~x2, t0) |En〉 (A.33)

·eβ(Ω−En+µNn)
(
eβE + 1

)
δ(E − (En −Em − µ))

With the help of the representation of the step function

Θ(t− t′) =
i

2π

∫ ∞

−∞
dx

exp(−ix(t − t′))

x+ i0+

the retarded and advanced Green’s function can be brought into their spectral representa-
tion, also known as Lehmann representation [239]

G
r
a(~x1, ~x2, E) =

∫ ∞

−∞
dE ′ ρ(~x1, ~x2, E

′)

E ± i0+ − E ′ . (A.34)

As ρ(~x, ~x, E) is purely real, the following relations hold

Gr(~x, ~x, E) = (Ga(~x, ~x, E))∗ (A.35)

and

ρ(~x, ~x, E) = ∓1

π
Im
[
G

r
a(~x, ~x, E)

]
. (A.36)

Eq. (A.36) may be obtained by applying Eq. (A.35) in the definition of ρ (see Eq. (A.31))
or by using the Dirac-identity

1

x− x0 ± i0+
= P 1

x− x0
∓ iπδ(x− x0), (A.37)

in which P stands for the Cauchy principle value. Note that while generally ρ(~x, ~x, E) is
purely real,6 for the offdiagonal elements of ρ(~x1, ~x2, E) with ~x1 6= ~x2 this need not be the
case. Otherwise the given relations also hold for the off diagonal elements.

6This is the case, because the density ρ in Eq. (A.31) may be written ρ(~x1, ~x2, E) =
1
2π

〈{
ψ̂K(~x, t0), ψ̂

+
K(~x, t0)

}〉
and

{
ψ̂K(~x1, t0), ψ̂

+
K(~x2, t0)

}
is a hermitian operator for ~x1 = ~x2.
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Similar expressions as for the spectral function ρ(~x1, ~x2, E) in Eq. (A.33) for G< and
G> yield a relation between these two Green’s function components in energy space [229]

G>(~x1, ~x2, E) = −eβEG<(~x1, ~x2, E), (A.38)

from which the fluctuation-dissipation theorem can be derived. With the introduction of

the Fermi function f(E) =
(
eβE + 1

)−1
one obtains

G<(~x1, ~x2, E) = 2πif(E)ρ(~x1, ~x2, E) (A.39)

G>(~x1, ~x2, E) = −2πi (1 − f(E)) ρ(~x1, ~x2, E). (A.40)

The fluctuation-dissipation theorem (see Eq. (A.39)) establishes a connection between the
correlation function G> and the dissipative part ρ. The spectral function ρ is called dissi-
pative part, because – as explained above – ρ is related to the imaginary part of Gr. As
Gr determines decays in the time domain, it describes the dissipation. The fluctuation-
dissipation theorem states that the hole propagation is proportional to the spectral density
times the propability of creating a hole. The companion relation, Eq. (A.40), expresses
the fact that the particle propagation is proportional to the spectral density times the
probability of creating a particle [229].

A more elegant derivation of Eqs. (A.39) and (A.40) may be done as follows: Denoting,
as before, Â(t) = ψ̂K(~x, t) and B̂(t) = ψ̂+

K(~x, t) and using the cyclic invariance of the trace
Tr, it follows that

Tr
[
eβ(Ω−K̂)Â(t)B̂(t′)

]
= eβΩTr

[
B̂(t′)e−βK̂Â(t)

]
(A.41)

= eβΩTr
[
e−βK̂eβK̂B̂(t′)e−βK̂Â(t)

]

= Tr
[
eβ(Ω−K̂)B̂(t′ − iβ~)Â(t)

]
,

which means that 〈
Â(t)B̂(t′)

〉
=
〈
B̂(t′ − iβ~)Â(t)

〉
. (A.42)

Using Eq. (A.20) one may write

Gr(1, 2) −Ga(1, 2) = G>(1, 2) −G<(1, 2) = G>(1, 2) +G>((t1 − iβ~, ~x1) , 2).

A Fourier transformation yields

−2πiρ(~x1, ~x2, E) =

∫ ∞

−∞

d(t1 − t2)

~
(G>(~x1, ~x2, t1 − t2) +G>(~x1, ~x2, t1 − t2 − iβ~)) e

i
~
E(t1−t2)

= G>(~x1, ~x2, E)
(
1 + e−βE

)

= G>(~x1, ~x2, E) (1 − f(E))−1 ,

which is just Eq. (A.40). The analogous expression

Gr(1, 2) −Ga(1, 2) = −G<(1, (t2 − iβ~, ~x2)) −G<(1, 2)
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yields

−2πiρ(~x1, ~x2, E) = −G<(~x1, ~x2, E)
(
1 + eβE

)
= −G<(~x1, ~x2, E)f(E)−1,

which is Eq. (A.39).

A.2.2 Perturbation theory

In order to evaluate the Green’s functions introduced in Eqs. (A.8)–(A.12) for a nontrivial
many-body problem, perturbation theory is the general method of attack. The system
of interest is supposed to have a time-independent Hamiltonian K̂ = K̂0 + Ĥi. In this
expression K̂0 = Ĥ0 − µN̂ shall be the simple, exactly solvable non-interacting part of
the Hamiltonian, while Ĥi is the complicated interaction part, which shall be treated
perturbatively. We want to sketch the procedure only briefly, so that the generalizing ideas
in the context of contour-ordered nonequilibrium Green’s functions can be appreciated. For
more extensive explanations the following books may be consulted [238, 229, 141, 239], for
example. First the procedure for zero temperature T = 0 will be presented, before we
will come to the ideas, how to treat finite temperatures T > 0, known as the Matsubara
technique.

Perturbation theory at zero temperature The perturbation theory is most easily
carried out in the interaction picture, where the various terms are enumerated systemati-
cally with the help of Wick’s theorem [240, 238]. For T = 0 the Green’s function consists
of a matrix element of Heisenberg operators in the interacting ground state. This form is
inconvenient for perturbation theory, where it turns out, that Gc (see Eq. (A.15)) has a
systematic perturbative expansion. With the help of the Gell-Mann and Low theorem the
ground state of the interacting system |Ψ0〉 is then expressed in terms of the noninteract-
ing ground state |Φ0〉. For this purpose the interaction is switched on adiabatically, when
coming from t at −∞ and going over to t0. After that point the interaction is switched off
again. This means that a Hamiltonian of the form

K̂ = K̂0 + Ĥie
−ε|t−t0| (A.43)

is considered, where ε → 0. At t = t0 the system is the fully interacting quantum system,
while at ±∞ it is just the noninteracting system (see Fig. A.1). The procedure of adiabati-
cally switching on (and off) an interaction represents a mathematical device that generates
exact eigenstates of the interacting system from those of the non-interacting system. The
Gell-Mann and Low theorem states that if |Φ0〉 is an eigenstate of the noninteracting system
(K̂0 |Φ0〉 = E0 |Φ0〉) the state

∣∣∣Ψ̃0

〉
=

|Ψ0〉
〈Φ0| Ψ0〉

= lim
ε→0

ÛI(t0,−∞) |Φ0〉
〈Φ0| ÛI(t0,−∞) |Φ0〉

= lim
ε→0

ÛI(t0,∞) |Φ0〉
〈Φ0| ÛI(t0,∞) |Φ0〉

is an eigenstate of the interacting system (K̂
∣∣∣Ψ̃0

〉
= E

∣∣∣Ψ̃0

〉
). Here, ÛI is the time-

evolution operator in the interaction picture (see Eq. (A.7)) for the Hamiltonian in Eq. (A.43),
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t

∞0t−∞

i+HiK=KK=K 0
ε e+Hi0 +H0  e εK=K  (t−t  ) −  (t−t  )00

Figure A.1: Method of adiabatically switching on (and off) the interaction Ĥi in a Hamil-
tonian of the form K̂ = K̂0 + Ĥi.

which depends explicity on ε. This dependence has been suppressed. If |Φ0〉 is the nonin-

teracting ground state, the state
∣∣∣Ψ̃0

〉
obtained from the adiabatic switching on is usually

taken to be the ground state of the interacting system. However, this need not be true.
The Gell-Mann and Low theorem merely asserts that it is an eigenstate of the interacting
system.

Using the Gell-Mann and Low theorem the causal Green’s function can be written as

Gc(1, 2) = −i
〈Φ0|T

(
ÛI(∞,−∞)ψ̂I(1)ψ̂I

+
(2)
)
|Φ0〉

〈Φ0| ÛI(∞,−∞) |Φ0〉
,

where the ground state of the interacting many-body system has been expressed by the
ground-state of the noninteracting system. The subscript I means that the operators are
in the interaction picture. Expanding the numerator as well as the denominator with the
help of Wick’s theorem, the following result is finally obtained [238, 229]

Gc(1, 2) = −i
∞∑

n=0

(
− i

~

)n
1

n!

∫ ∞

−∞
dt1 · · ·

∫ ∞

−∞
dtn

· 〈Φ0|T
(
Ĥi;I(t1) · · · Ĥi;I(tn)ψ̂I(1)ψ̂+

I (2)
)
|Φ0〉connected . (A.44)

The index ”connected” means that no diagrams are contained in the summation, which
possess subunits that are not connected to the rest of the diagram by any lines. In Fig. A.2
the zeroth-order and the two connected first-order diagrams are displayed.

Perturbation theory at finite temperature At nonzero temperature (T > 0) one
must average not only over the ground state, but over all possible configurations of the
system, weighted with the density matrix (see Eq. (A.17)). In order to perform per-
turbation theory, it needs to be realized that the interaction Ĥi for a time-independent
Hamiltonian K̂ = K̂0 + Ĥi not only appears in the time evolution of the field operators
ψ̂K(1) and ψ̂+

K(1), but also in the density matrix ˆ̺ (see Eq. (A.16)). For T = 0 the ground-
state of the interacting system could be expressed via time-evolution operators in terms
of the noninteracting ground state. To arrive at a practicable perturbative expansion the
idea is that both in the field operators and the density matrix the Hamiltonian enters as
an exponential factor. So the factor β = 1/kT in ˆ̺ = exp(β(Ω − K̂)) can be considered
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1
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1
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c

1
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2

Figure A.2: The zeroth-order (a) and the two connected first-order diagrams (b and c) are
displayed, as occurring in the perturbative expansion of Gc(1, 2) (see Eq. (A.44)).

to be a complex time. This point of view will be adopted in the study of contour-ordered
Green’s functions in the following Sec. A.3. The Matsubara technique does the reverse and
treats the time as a complex temperature.

In the finite temperature formalism for any operator ÔS in the Schrödinger picture,
the (modified) interaction picture ÔI(τ) and the (modified) Heisenberg picture ÔK(τ) are
defined by the equations [238]

ÔI(τ) = eK̂0τ/~ÔSe
−K̂0τ/~

ÔK(τ) = eK̂τ/~ÔSe
−K̂τ/~.

These relations follow from the conventional Heisenberg picture by a replacement t = −iτ
in the time-evolution operator, which is also known as the Wick rotation. The two pictures
are related via

ÔK(τ) = Û(0, τ)ÔI(τ)Û(τ, 0),

where Û is defined by

Û(τ1, τ2) = eK̂0τ1/~e−K̂(τ1−τ2)/~e−K̂0τ2/~.

Note that Û is not unitary, but still satisfies the group property (see Eq. (A.2))

Û(τ1, τ3) = Û(τ1, τ2)Û(τ2, τ3)

and the boundary condition (see Eq. (A.3))

Û(τ, τ) = 1.

The single-particle temperature Green’s function is defined as

G(1, 2) = −Tr
[
ˆ̺Tτ

(
ψ̂K(1)ψ̂+

K(2)
)]



178 Contour-ordered Green’s functions and Keldysh formalism

where 1 = (~x1, τ1) and Tτ orders the operators according to their value of τ , with the
smallest to the right. Tτ also includes the signature factor (−1)P , where P is the number
of permutations of fermion operators needed to restore the original ordering. Exploiting the
cyclic invariance of the trace, it can be shown that G depends only on the time difference
τ1 − τ2. In addition G is antiperiodic in each time variable with period β~ in the range
0 ≤ τ1, τ2 ≤ β~, namely G(~x1, ~x2, τ1 − τ2 < 0) = −G(~x1, ~x2, τ1 − τ2 + β~). This periodicity
allows a Fourier expansion

G(~x1, ~x2, τ) =
1

β~

∑

n

e−iωnτG(~x1, ~x2, iωn)

G(~x1, ~x2, iωn) =

∫ β~

0

dτeiωnτG(~x1, ~x2, τ),

where ωn = (2n+ 1)π/β~ for fermions.

In order to perform a perturbation expansion of the temperature Green’s function the
interaction picture is used. A generalized version of Wick’s theorem is needed for evaluating
the ensemble average of operators. It relies on the detailed form of the statistical operator
e−βK̂0, where βK̂0 can be any single-particle operator [241], and thus differs from Wick’s
original theorem, which is an operator identity valid for arbitrary matrix elements. The
final result of the perturbation analysis is

G(1, 2) = −
Tr
[
e−βK̂0Tτ

(
Û(β~, 0)ψ̂I(1)ψ̂+

I (2)
)]

Tr
[
e−βK̂0Û(β~, 0)

]

= −
∞∑

n=0

(
−1

~

)n
1

n!

∫ β~

0

dτ1 · · ·
∫ β~

0

dτn

·Tr
[
eβ(Ω0−K̂0)Tτ

(
Ĥi;I(τ1) · · · Ĥi;I(τn)ψ̂I(1)ψ̂+

I (2)
)]

connected
. (A.45)

in analogy to what has been found for zero temperature (see Eq. (A.44)). Since the
algebraic structure of the finite-temperature Wick’s theorem is identical to that at zero-
temperature, the temperature Green’s function G has the same set of Feynman diagrams as
Gc at zero temperature. Note also that the finite-temperature formalism never needed the
assumption of the adiabatic switching on. This eleminates some uncertainty, because, as
stated above, it is not necessary that the ground state of the interacting system is obtained,
when the interaction is turned on starting from the ground state of the noninteracting
system. One might as well arrive at an excited state. Instead it has been show for the
Matsubara formalism that the limiting case T → 0 results in the ground state of the
interacting system [175, 239].

Once the finite temperature function G is known, the retarded and advanced functions
follow with an analytic continuation Gr

a(~x1, ~x2, ω) = G(~x1, ~x2, ω ± iη). See the following
books for further details [238, 141, 229, 239].
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A.3 Contour-ordered nonequilibrium Green’s functions

Although the techniques presented in Sec. A.2 are extremely powerful with regard to
the determination of thermodynamic properties, these approaches are evidently unable
to cope with kinetic problems, which are very important in condensed matter theory.
For example they cannot describe the response of a system to a time-dependent external
perturbation. However, there exists an elegant extension of the Green’s function technique
to nonequilibrium situations, which reduces to standard quantum field theory for systems
in equilibrium [227, 242].

The Hamiltonian considered in nonequilibrium is

K̂(t) = K̂ + V̂ (t)Θ(t− t0). (A.46)

The time-independent part of the Hamiltonian K̂ = K̂0 + Ĥi (where K̂0 = Ĥ0 − µN̂) is
split into two parts, namely the ”simple” part K̂0, for which Wick’s theorem applies, and
the ”complicated” part Ĥi, which contains many-body aspects and thus requires a special
treatment. The nonequilibrium part V̂ (t), arising, e.g., from an electric field or a light
excitation pulse, is assumed to vanish for t < t0.

Before the perturbation is turned on, the system is described by the thermal equilibrium
density matrix

ρ̂(K̂) =
e−βK̂

Tr
[
e−βK̂

] .

Note the use of the equilibrium density matrix ρ̂(K̂) instead of some time-dependent ρ̂, in
which the influence of V̂ (t) is included. Before the time t0 the physical system is assumed
to be in thermodynamic equilibrium with a reservoir. At t0 it is then disconnected from
the reservoir and exposed to a disturbance represented by the contribution V̂ (t) [228].
Physically this means that the thermodynamic degrees of freedom contained in K̂ do not
follow the rapid variations contained in V̂ (t). Other choices could be possible [229].

A.3.1 Contour-ordered Green’s functions and perturbation the-

ory

The equilibrium Green’s function methods cannot be applied to obtain the Green’s function
for a Hamiltonian with a time-dependent perturbation. The reason for this is the fact that
no state in the future may be identified with any of the states in the past. This is done
for example in the zero temperature formalism, where the initial state in the infinitely
remote past is related to a state in the infinitely remote future. Instead, the idea behind
the nonequilibrium technique is to refer only to the initial state of the system at t0.

As in equilibrium we define the correlation functions

G<(1, 2) = i
〈
ψ̂+
K(2)ψ̂K(1)

〉

G>(1, 2) = −i
〈
ψ̂K(1)ψ̂+

K(2)
〉
,
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t0

t0 t1 t2

t

Figure A.3: The ”closed time path” contour c.

where the brackets 〈〉 mean the statistical average
〈
ÔK(t)

〉
= Tr

[
ρ̂(K̂)ÔK(t)

]
and the

field operators are in the Heisenberg picture. The central quantity of the nonequilibrium
technique is the contour-ordered Green’s function

G(1, 2) = −i
〈
Tc

(
ψ̂K(1)ψ̂+

K(2)
)〉

, (A.47)

which possesses a simple perturbative expansion. The subscript c refers to a contour along
the real-time axis starting at t0 and passing through t1and t2 once. Such a contour is
displayed for the case t1 <c t2 in Fig. A.3, where t1 <c t2 (t1 >c t2) means that t1 is before
(after) t2 on the contour c. Tc is the time-ordering operator along the contour c. In terms
of the correlation functions the contour-ordered Green’s function is given by

G(1, 2) = Θc(t1 − t2)G
>(1, 2) + Θc(t2 − t1)G

<(1, 2),

where Θc(t1 − t2) =

{
1 t1 >c t2
0 t1 <c t2

.

To motivate, why a contour as displayed in Fig. A.3 is introduced, consider the expec-

tation value of an operator in the Heisenberg picture
〈
ÔK(t)

〉
= Tr

[
ρ̂(K̂)ÔK(t)

]
. In this

expression
ÔK(t) = û+

I (t, t0)ÔK;I(t)ûI(t, t0),

ÔK;I(t) is the operator ÔK(t) in the interaction picture with respect to K̂, and ûI(t, t0) =

T exp
(
− i

~

∫ t
t0
dt′V̂K;I(t

′)
)
. As in the equilibrium formalism T denotes the time-ordering

operator and V̂I;K(t′) is the perturbation in the interaction picture with respect to K̂. Thus
the transformation between the Heisenberg and the interaction picture can be expressed
as [228]

ÔK(t) = Tc

(
exp

(
− i

~

∫

c

dt′V̂K;I(t
′)

)
ÔK;I(t)

)

and the contour-ordering appears naturally as an elegant way of connecting these two
pictures.

For a perturbative expansion of the contour-ordered Green’s function G, or in other
words for Wick’s theorem to apply, one needs to (i) express the density matrix ρ̂(K̂) of the
interacting system K̂ in terms of the noninteracting density ρ̂(K̂0) and (ii) express the field
operators in terms of annihilation and creation operators of the noninteracting system.
The solution to problem (ii) can be achieved by changing from the Heisenberg picture to



A.3 Contour-ordered nonequilibrium Green’s functions 181
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h
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t0−iβ

Figure A.4: The ”interaction” contour ci.

the interaction picture in the time dependence of the field operators. In the interaction
picture the time evolution of the field operators is then due to the noninteracting system
K̂0. The solution to problem (i) can be obtained by formally considering temperatures
as imaginary times, as explained in the context of finite temperature Green’s functions
above. The appropriate time-evolution operator, connecting the Heisenberg picture and
the interaction picture with respect to the nonperturbative part K̂0, is

ŵ(t, t0) = T exp

(
− i

~

∫ t

t0

dt′ŴK0;I(t
′)

)
,

where ŴK0;I(t) is the interaction picture operator belonging to Ŵ (t) = Ĥi+ V̂ (t)Θ(t− t0).
Noting that Ŵ (t) = Ĥi for t < t0 and

e−βK̂ = e−βK̂0ŵ(t−0 − iβ, t−0 ),

the contour-ordered Green’s function G can be brought into a form, for which Wick’s
theorem applies

G(1, 2) = −i
Tr
[
e−βK̂0Tci

(
ŵciψ̂K0;I(1)ψ̂+

K0;I
(2)
)]

Tr
[
e−βK̂0Tci (ŵci)

] . (A.48)

The symbol ŵci stands for ŵci = exp
(
− i

~

∫
ci
dt′ŴK0;I(t

′)
)
, and the interaction contour ci

is displayed in Fig. A.4.
If one considers a system starting at T = 0 one might also think about adiabatically

switching on the interaction Hi, such that

K̂ = K̂0 + ĤiΘ(t0 − t)eε(t−t0) +
(
Ĥi + V̂ (t)

)
Θ(t− t0).

and choose the contour c′i depicted in Fig. A.5. In this case the contour-ordered Green’s
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Figure A.5: The ”interaction” contour c′i for T = 0.

function is

G(1, 2) = −i
〈Φ0|Tc′i

(
ŵc′iψ̂K0;I(1)ψ̂+

K0;I
(2)
)
|Φ0〉

〈Φ0|Tc′i
(
ŵc′i
)
|Φ0〉

. (A.49)

We are now in a position to apply Wick’s theorem to Eqs. (A.48) and (A.49), just
as in equilibrium, to get to a perturbation expansion for G. Again the denominator in
Eqs. (A.48) and (A.49) will cancel all the disconnected diagrams and thus only contribu-
tions due to connected diagrams of the numerator need to be considered, which results in
the following formula

G(1, 2) = −i
∞∑

n=0

(
− i

~

)n
1

n!

∫

c̃

dt1 · · ·
∫

c̃

dtn (A.50)

·
〈
Tc̃

(
ŴK0;I(t1) · · · ŴK0;I(tn)ψ̂K0;I(1)ψ̂+

K0;I
(2)
)〉

connected
.

where
〈
X̂
〉

= Tr
[
eβ(Ω0−K̂0)X̂

]
and c̃ = ci in the context of Eq. (A.48), whereas

〈
X̂
〉

=

〈Φ0| X̂ |Φ0〉 and c̃ = c′i in the context of Eq. (A.49).
The only difference between the nonequilibrium and the equilibrium formalism is the

appearance of the integration over a contour in the nonequilibrium situation, whereas in
the equilibrium theory an integration over the real time axis for T = 0 (see Eq. (A.44)) or
an inverse temperature interval for T > 0 (see Eq. (A.45)) was necessary. Consequently
the contour-ordered Green’s function is mapped onto its Feynman diagrams precisely as
in the equilibrium theory. It can be concluded, that equilibrium and nonequilibrium sta-
tistical mechanics are formally and structurally equivalent and that this equivalence is
demonstrated by introducing a contour ordering to play the role of the usual time ordering
[228].

A.3.2 The Keldysh formulation

With the theory described so far (see Eq. (A.48) and the contour ci in Fig. A.4) we can
describe exactly the temporal evolution of a system initially in thermodynamic equilibrium.
In the transport problems, relevant for this work, no transient effects are considered. For
this reason we let t0 in ci (see Fig. A.4) approach −∞. We assume that the Green’s function
falls off sufficiently rapidly as a function of the separation of its time arguments. Then, we
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Figure A.6: The Keldysh contour cK = c1 ∪ c2.

can also neglect the part on the contour ci from t0 to t0 − iβ~, which takes into account
initial correlations [228, 242, 229]. The contour ci therefore reduces to the contour c (see
Fig. A.3), both of which start and end at −∞ now. By use of the unitarity of the time
evolution operator the contour c can be extended beyond the largest time considered, and
the Keldysh contour ck is obtained, when the turning point of the contour c is approaching
∞ [227]. As depicted in Fig. A.6 the Keldysh contour cK consists of two parts: c1 extending
from −∞ to ∞ and c2 extending from ∞ to −∞.

It is more convenient to deal with Green’s functions defined on the real time axis than
on a contour. As G has two time arguments, which can be on the different parts of the
Keldysh contour c1 or c2, there are altogether 4 different Green’s functions with real time
arguments. They can be grouped into a 2 × 2-matrix form

G̃(1, 2) =

(
G11(1, 2) G12(1, 2)
G21(1, 2) G22(1, 2)

)
,

where Gij means that t1 is on ci and t2 on cj .
7 Writing out the different components, we

observe (see Eqs. (A.8), (A.11), and (A.12)) that

G11(1, 2) = −i
〈
T
(
ψ̂K(1)ψ̂+

K(2)
)〉

= Gc(1, 2) (A.51)

G12(1, 2) = i
〈
ψ̂+
K(2)ψ̂K(1)

〉
= G<(1, 2) (A.52)

G21(1, 2) = −i
〈
ψ̂K(1)ψ̂+

K(2)
〉

= G>(1, 2) (A.53)

G22(1, 2) = −i
〈
T̃
(
ψ̂K(1)ψ̂+

K(2)
)〉

. (A.54)

In Eq. (A.54) the anti-time-ordering operator T̃ has been introduced for G22, when both
components are on the lower contour c2. T̃ orders the operators from right to left in
descending order, or more explicitly for two field operators

T̃
(
ψ̂K(1)ψ̂+

K(2)
)

=

{
−ψ̂+

K(2)ψ̂K(1) t1 > t2
ψ̂K(1)ψ̂+

K(2) t1 < t2
.

As in the equilibrium formalism, the Green’s functions are not linearly independent. In
particular

G11(1, 2) = Θ(t1 − t2)G
>(1, 2) + Θ(t2 − t1)G

<(1, 2) (A.55)

G22(1, 2) = Θ(t1 − t2)G
<(1, 2) + Θ(t2 − t1)G

>(1, 2) (A.56)

G11(1, 2) +G22(1, 2) = G12(1, 2) +G21(1, 2), (A.57)

7Note, that if transient effects are considered, one needs to employ a 3 × 3-matrix formalism [242].
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where Eq. (A.57) directly follows from Eqs. (A.55) and (A.56). By performing a rotation
in Keldysh space, it is possible to remove part of the redundancy. Besides the retarded and
advanced Green’s functions Ga and Gr, defined as in the equilibrium case (see Eqs. (A.9),
(A.10), and (A.18), (A.19))

Gr(1, 2) = Θ(t1 − t2) (G>(1, 2) −G<(1, 2)) (A.58)

Ga(1, 2) = −Θ(t2 − t1) (G>(1, 2) −G<(1, 2)) , (A.59)

the Keldysh Green’s function

GK(1, 2) = −i
〈[
ψ̂K(1), ψ̂+

K(2)
]〉

= G>(1, 2) +G<(1, 2)

is encountered.
Following Larkin and Ovchinnikov [243, 228, 230], a slightly modified rotation in

Keldysh space will be used here as compared to Keldysh’s original work [227]. First a
transformation in Keldysh space is performed

Ǧ = σ3G̃ (A.60)

followed by a rotation
Ḡ = LǦL+, (A.61)

where

L =
σ0 − iσ2√

2
=

1√
2

(
1 −1
1 1

)
.

In these formulas the matrices σi (i = 0, 1, 2, 3) are the Pauli matrices8

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

With the help of the relations

Gr(1, 2) = G11(1, 2) −G12(1, 2) = G21(1, 2) −G22(1, 2) (A.62)

Ga(1, 2) = G11(1, 2) −G21(1, 2) = G12(1, 2) −G22(1, 2) (A.63)

GK(1, 2) = G12(1, 2) +G21(1, 2) = G11(1, 2) +G22(1, 2) (A.64)

(which are consistent with Eqs. (A.51)–(A.54)) we obtain a matrix representation for Ḡ
with an upper triangular matrix

Ḡ =

(
Gr GK

0 Ga

)
.

8Notice the useful property (σi)
2 = 1.
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For manipulations within the Keldysh formalism the inverse relations to Eqs. (A.62)–(A.64)
are helpful

G11(1, 2) =
(
Gr(1, 2) +Ga(1, 2) +GK(1, 2)

)
/2

G12(1, 2) =
(
−Gr(1, 2) +Ga(1, 2) +GK(1, 2)

)
/2

G21(1, 2) =
(
Gr(1, 2) −Ga(1, 2) +GK(1, 2)

)
/2

G22(1, 2) =
(
−Gr(1, 2) −Ga(1, 2) +GK(1, 2)

)
/2.

When the self-energy Σ is written in its matrix representation

Σ̃(1, 2) =

(
Σ11(1, 2) Σ12(1, 2)
Σ21(1, 2) Σ22(1, 2)

)

a similar relationship between the Σij as the one in Eq. (A.57) for the Gij is found. This
relation can be derived from the Dyson equation [238, 229, 230] of the contour-ordered
Green’s function

G(1, 1′) = g(1, 1′) +

∫

c

dt2

∫
d3x2

∫

c

dt3

∫
d3x3g(1, 2)Σ(2, 3)G(3, 1′). (A.65)

In this expression g is the unperturbed contour-ordered Green’s function and the self-
energy Σ is, similar to the equilibrium case, the sum over all topologically distinct proper
self-energy diagrams. In this integral, times ti are integrated along the contour c. In the
transformed and rotated matrix representation of the Dyson equation, times run only along
the real axis

Ḡ(1, 1′) = ḡ(1, 1′) +

∫ ∞

−∞
dt2

∫
d3x2

∫ ∞

−∞
dt3

∫
d3x3ḡ(1, 2)Σ̄(2, 3)Ḡ(3, 1′). (A.66)

The self-energy Σ̄ = LΣ̃σ3L
+ is transformed with σ3 from the right. Exploiting the upper

triangular form of the Green’s functions, it can be shown that

Σ11 + Σ22 = − (Σ12 + Σ21) . (A.67)

Exploiting this relation and by defining the retarded, advanced, and Keldysh self-energy
components

Σr(1, 2) = Σ11(1, 2) + Σ12(1, 2) = − (Σ21(1, 2) + Σ22(1, 2)) (A.68)

Σa(1, 2) = Σ11(1, 2) + Σ21(1, 2) = − (Σ12(1, 2) + Σ22(1, 2)) (A.69)

ΣK(1, 2) = Σ11(1, 2) + Σ22(1, 2) = − (Σ12(1, 2) + Σ21(1, 2)) (A.70)

the matrix representation of the self-energy Σ̄ is

Σ̄(1, 2) =

(
Σr ΣK

0 Σa

)
.
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For reasons of completeness we also state the inverse relations to Eqs. (A.68)-(A.70)

Σ11(1, 2) =
(
Σr(1, 2) + Σa(1, 2) + ΣK(1, 2)

)
/2

Σ12(1, 2) =
(
Σr(1, 2) − Σa(1, 2) − ΣK(1, 2)

)
/2

Σ21(1, 2) =
(
−Σr(1, 2) + Σa(1, 2) − ΣK(1, 2)

)
/2

Σ22(1, 2) =
(
−Σr(1, 2) − Σa(1, 2) + ΣK(1, 2)

)
/2

Now it is easy to see that the following Dyson equations hold for the different Green’s
functions

Gr = gr + grΣrGr = gr +GrΣrgr (A.71)

Ga = ga + gaΣaGa = ga +GaΣaga (A.72)

GK = gK + grΣrGK + grΣKGa + gKΣaGa (A.73)

= gK +GrΣrgK +GrΣKga +GKΣaga

In these equations the integration over intermediate arguments is understood. This con-
vention is adopted for the rest of this section in order to simplify the notation. It should
be noted that the Dyson equation for the contour-ordered Green’s function G may also be
written with the unperturbed Green’s function to the right G = g +GΣg. From this rela-
tion the left-hand Dyson equation follows (as compared to the right-hand Dyson equation
(see Eq. (A.66)))

Ḡ = ḡ + ḠΣ̄ḡ (A.74)

and the second relations in Eqs. (A.71)–(A.73) are obtained.
By transforming Eqs. (A.66) and (A.74) one obtains an alternative form of the Dyson

equations [228]

[(
g−1 − Σ̄

)
G
]
(1, 2) = δ(1 − 2) (A.75)[

G
(
g−1 − Σ̄

)]
(1, 2) = δ(1 − 2), (A.76)

where the unperturbed inverse Green’s function is given by

g−1(1, 2) = [i~∂t1 −K0(~x1)] δ(1 − 2) (A.77)

and K0(~x1) is the onsite element of the noninteracting single-particle operator K̂0 (see
Eq. (A.46) and notice that K̂0 is an operator, which is diagonal in its space representation
〈~x1| K̂0 |~x2〉 = K0(~x1)δ(~x1 − ~x2)).

9

9Notice that, most conveniently, the self-energy in Eqs. (A.75) and (A.76) is split into two components,
namely the irregular and regular parts Σirreg and Σreg [242, 231]. Here the irregular part consists of all
single-particle contributions to the self-energy. Such contributions are local in time, so that the matrix
representation Σ̄irreg is diagonal, because self-energy components with times on different contour branches
vanish. This self-energy then transform in the same way and Σirreg may be added to g−1, yielding the
modified inverse Green’s function operator g−1

0 (1, 2) = [i~∂t1 −K0(x1)] δ(1 − 2) − Σirreg(1, 2) and the
relations

[(
g−1
0 − Σ̄reg

)
G
]
(1, 2) = δ(1 − 2). (See also the discussion in Sec. A.3.3.)
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Eqs. (A.71)–(A.73) form the complete set of equations that needs to be solved for each
concrete problem. The number of independent equations that need to be considered is
actually only two, because Ga and Gr are Hermitian conjugates [227]. While Gr and Ga

characterize dynamical properties and spectral densities, GK contains information about
the distribution function.

With the help of the Dyson equations (see Eqs. (A.71) and (A.72)) more detailed con-
nections between the self-energy components Σij as compared to the sum rule in Eq. (A.67)
can be derived [242]. These equations are10

Σ11(1, 2) =

{
−Σ21(1, 2) t1 > t2
−Σ12(1, 2) t1 < t2

Σ22(1, 2) =

{
−Σ12(1, 2) t1 > t2
−Σ21(1, 2) t1 < t2

As opposed to the relations for the Green’s function components Gij the self-energy com-
ponents Σij have an opposite sign in the mixed components Σ12 and Σ21, arising from the
time reversed contour integration on path c2 as compared to path c1 (see Fig. (A.6)).11

These differences in signs of the mixed self-energy components could already be noticed
in Eq. (A.67), where a negative sign appeared as compared to Eq. (A.57) for the Green’s
function components Gij . For this reason one defines

Σ< = −Σ12 (A.78)

Σ> = −Σ21 (A.79)

and obtains the relations

Σ11(1, 2) = Θ(t1 − t2)Σ
>(1, 2) + Θ(t2 − t1)Σ

<(1, 2) (A.80)

Σ22(1, 2) = Θ(t1 − t2)Σ
<(1, 2) + Θ(t2 − t1)Σ

>(1, 2) (A.81)

Σ11 + Σ22 = Σ< + Σ> (A.82)

10The derivation of these relations goes as follows: Starting from the Dyson equation for Gr (see
Eq. (A.71)) one can write it as

Gr(1, 1′) = gr(1, 1′) + gr(1, 2) (Σ11(2, 3) + Σ12(2, 3))Gr(3, 1′).

(As above an integration is understood over the dummy arguments 2 and 3.) From Eq. (A.58) it follows
that for t1 < t1′

0 = gr(1, 2) (Σ11(2, 3) + Σ12(2, 3))Gr(3, 1′).

For times (t1 < t2) ∨ (t3 < t1′) this equation is fulfilled due to the vanishing retarded Green’s functions
gr(1, 2) and Gr(3, 1′). Therefore times (t1 > t2) ∧ (t3 > t1′) together with the first assumption t1 < t1′

yield a relation between Σ11 and Σ12. One obtains that Σ11(2, 3) = −Σ12(2, 3) if t2 < t1 < t1′ < t3 or
more compactly t2 < t3. Using Eq. (A.67) one obtains Σ22(2, 3) = −Σ21(2, 3). An analogous procedure
for Ga(see Eq. (A.72)) yields Σ11(2, 3) = −Σ21(2, 3) and Σ22(2, 3) = −Σ12(2, 3) for t3 < t2.

11In Σ22 negative signs due to the integration path on c2 appear twice, such that they cancel and Σ22

behaves like G22 concerning the signs.
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in analogy to Eqs. (A.55)–(A.57). Equipped with these relations Σr, Σa and ΣK can be
expressed as

Σr(1, 2) = Θ(t1 − t2) (Σ>(1, 2) − Σ<(1, 2))

Σa(1, 2) = −Θ(t2 − t1) (Σ>(1, 2) − Σ<(1, 2))

ΣK(1, 2) = Σ<(1, 2) + Σ>(1, 2)

Below we will use the lesser (<) and greater (>) components of G and Σ instead of the 12-
and 21-components because of their completely analogous expressions (see Eqs. (A.55)–
(A.57) and Eqs. (A.80)–(A.82)), which allow the use of the Langreth rules [244, 229, 231].

Eq. (A.73) can be solved for GK . Exploiting the relation (1 +GrΣr) (1 − grΣr) = 1,
which follows from Eq. (A.71), the solution for GK is

GK = (1 +GrΣr) gK (1 + ΣaGa) +GrΣKGa. (A.83)

More frequently, especially in the context of the computation of electron transport, the
functions G< = G12 and G> = G21 are needed. For this reason the Dyson equation and
corresponding solution for these components is also given below. The former can simply
be obtained by taking the offdiagonal matrix elements in the expression

Ǧ = ǧ + L+ḡΣ̄ḠL.

This yields

G< = g< + g<ΣaGa + grΣrG< + grΣ<Ga (A.84)

= g< +G<Σaga +GrΣrg< +GrΣ<ga

G> = g> + g>ΣaGa + grΣrG> + grΣ>Ga (A.85)

= g> +G>Σaga +GrΣrg> +GrΣ>ga

with solutions very similar to Eq. (A.83)

G< = (1 +GrΣr) g< (1 + ΣaGa) +GrΣ<Ga (A.86)

G> = (1 +GrΣr) g> (1 + ΣaGa) +GrΣ>Ga. (A.87)

A.3.3 Feynman diagrams

In this last paragraph, the Feynman rules in Keldysh space shall be established. They will
be illustrated for the most simple example, namely the coupling to an external potential12

V̂K0;I(t) =

∫
d3xψ̂+

K0;I(~x, t)V (~x, t)ψ̂+
K0;I

(~x, t). (A.88)

12Here, V̂K0;I(t) is written in the interaction picture I and its time evolution is governed by the unper-

turbed Hamiltonian K̂0.



A.3 Contour-ordered nonequilibrium Green’s functions 189

Similar presentations can be found in Refs. [228, 232]. As we will mainly cope with such
single-particle perturbations in the calculations of the current, this example is, however,
relevant for the studies in this work.

To the standard Feynman rules the additional features brought about by the contour
need to be added. In Fig. A.7 the diagrammatic expansion of G is shown with the crosses
denoting the external potential. In order to discuss the Feyman rules, it is sufficient
to consider simple diagrams. The first order G(1) in the perturbation expansion of the
contour-ordered Green’s function G is obtained from Eq. (A.50)

G(1)(1, 1′) = −1

~

∫

cK

dt2

∫
d3x2

∫

cK

dt3

∫
d3x3g(1, 2)U(2, 3)g(3, 1′) (A.89)

= −1

~

∫

cK

dt2

∫
d3x2g(1, 2)V (2)g(2, 1′), (A.90)

where the time integration runs along the Keldysh contour cK (see Fig. A.6) and g = G(0)

is the unperturbed Green’s function. While in the first line of Eq. (A.89) a general two-
particle potential U has been used, the special shape of

U(1, 2) = V (1)δ(t1 − t2)δ(~x1 − ~x2) (A.91)

(see Eq. (A.88)) has been exploited in Eq. (A.90). Often such one-body external potentials
are treated separately from truly many-body interactions [241, 229, 231]. Danielewicz and
van Leeuwen [241, 231] call these single-particle contributions singular part of the self
energy Σ(1, 2) = Σδ(1)δ(1−2)+Θc(t1−t2)Σ>(1, 2)+Θc(t2−t1)Σ<(1, 2). It is immediately
clear, that due to the locality of U for single-particle terms (see Eq. (A.91)) such kinds
of self-energies are on the diagonal of Σ̃, because no contributions to Σ12 of Σ21 can arise
[242].

In Eq. (A.90) we first split the integration along the contour into integrations along the
real time axis ∫

cK

dt =

∫ ∞

−∞
dt+

∫ −∞

∞
dt =

∫ ∞

−∞
dt−

∫ ∞

−∞
dt

and second we use the matrix representation to write G(1) in its components in Keldysh
space (with indices that take the values 1 and 2)

G
(1)
ij (1, 1′) =

∫ ∞

−∞
dt2

∫
d3x2

∑

k,l

gik(1, 2)Vkl(2)glj(2, 1
′).

The perturbation
Vij(2) = V (2) (σ3)ij

gives a clear motivation for introducing the Green’s functions Ǧ transformed with σ3 (see
Eq. (A.60)). We have shown that the external potential in Keldysh space couples to
particles through σ3. Suppressing integrations over intermediate arguments, we can write

G̃(1)(1, 2) = g̃(1, 2)Ṽ (2)g̃(2, 1′). (A.92)
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Figure A.7: Perturbation expansion of the contour-ordered Green’s function G for an
external single-particle potential V̂ (t) (see Eq. (A.88)).

The diagrammatic expansion of G is the same as in equilibrium. The first-order term of
G in V , given in Eqs. (A.90) and (A.92), corresponds to the second diagram of the infinite
series shown in Fig. A.7. The Dyson equation for G is therefore

G̃ = g̃ + g̃Ṽ G̃

where the self-energy can be identified to be

Σ̃ = Ṽ = V σ3.

As mentioned above, it can be seen that this self-energy is diagonal, meaning that Σ12 =
Σ21 = 0 and Σ11(1, 2) = V (1)δ(1 − 2) = −Σ22. With the help of Eqs. (A.68) and (A.69)
this means that Σr(1, 2) = Σa(1, 2) = V (1)δ(1 − 2), while Σ< = Σ> = 0.

Therefore the self-energies Σ< = −Σ12 and Σ> = −Σ21 vanish for any single-particle
potential and will only be non-zero for true many-body interactions as for example electron-
electron or electron-phonon interactions. See Ref. [228, 230] for the Feynman rules in
Keldysh space for such more complicated interactions.



Appendix B

Nonorthogonal basis sets

In usual text books on quantum mechanics [237, 217] physical systems are described in
therms of orthonormal basis sets. They naturally arise, when quantum systems are rep-
resented in terms of eigenstates of some hermitian operator, like for example in terms of
energy or momentum eigenstates. In such cases the basis vectors belonging to different
eigenvalues are orthogonal, and if degeneracies should occur, the degenerate subspace can
again be orthogonalized by procedures like Gram-Schmidt.

In quantum chemistry efficient descriptions of the electronic structure of a system often
involve nonorthogonal, local basis sets. In particular, the technique of linear combination
of atomic orbitals (LCAO) [81, 173, 245] spans a basis of a Hilbert space by means of
atomic basis functions. These atomic basis functions are commonly located at the atomic
positions, in order to describe well the electrons, which are close to the positively charged
atomic nuclei. The LCAO technique finds wide applications for efficiency reasons, because
only a small number of such atomic basis functions may be needed to achieve a good
description of the electronic states, if they are chosen such that they resemble atomic
orbitals of the isolated atoms. However, the atomic basis functions of different atoms are
usually not orthogonal to each other so that one needs to work in a nonorthogonal basis.

While it has been proposed recently to describe quantum systems with nonorthogonal
basis states by means of embedding them into a ”new Hilbert space in which they are by def-
inition mutually orthogonal” [246, 247], a proper description of systems with a nonorthog-
onal basis is formulated in terms of a tensorial formalism [248, 249, 250, 251, 252, 253].
While in Refs. [248, 249] the tensor calculus is nicely demonstated in the three-dimensional
Euclidean space, Ref. [251] presents a more general formulation applicable also to the com-
plex domain and also considers second quantization. As the basis functions in chemistry
are constructed such that the atomic basis functions are real, the formalism presented by
Artacho et al. [251] will be simplified somewhat below, by restricting our discussion to the
real domain.

191
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B.1 Dual basis set and tensorial representations

Let us assume that our (one-particle) Hilbert space H1, associated with a given physical
system, is spanned by the basis {|φi〉}. (The set {|φi〉} may be the set of atomic basis
functions.) This basis will be called the covariant basis. There exists a unique set of
vectors {|φi〉}, called the contravariant basis set or dual basis, defined by its relation to
the covariant basis 〈

φi |φj〉 = 〈φi
∣∣φj
〉

= δij , (B.1)

where

δij = δji =

{
1 if i = j
0 if i 6= j

.

The co- and contravariant components of the metric tensor are defined by the transforma-
tion between the co- and contravariant basis sets

∣∣φi
〉

= gij |φj〉 and |φi〉 = gij
∣∣φj
〉
.

With this definition of the metric tensor its components can be obtained as

gij = 〈φi |φj〉 = Sij and gij =
〈
φi
∣∣φj
〉

=
(
S−1

)
ij
,

where the overlap matrix Sij = 〈φi |φj〉 has been introduced to show the connection to
quantum chemistry. As S = ST (where ST shall be the transposed overlap matrix), the
metric tensor is symmetric, which will be used below. For the metric tensor the relations

gijgjk = gijg
jk = δik

hold. For any tensor T̂ of order two there exist four different representations, namely a
covariant representation

T̂ =
∣∣φi
〉
Tij
〈
φj
∣∣ ,

two mixed representations
T̂ =

∣∣φi
〉
T j
i 〈φj|

T̂ = |φi〉 T ij
〈
φj
∣∣ ,

and a contravariant representation

T̂ = |φi〉 T ij 〈φj | .

In all these expressions the Einstein convention of summation over repeated indices has
been assumed. The coefficients Tij , T

i
j (T j

i ), and T ij are the covariant, mixed, and con-

travariant representation of the tensor T̂ in the contravariant, mixed and covariant basis.
All the different tensor components are connected by the corresponding metric tensors,
e.g.,

T j
i = Tilg

lj = gikT
kj = gikT

k
l g
lj.
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If one applies this formalism to represent the unity, then one obtains the different
representations

1̂ = |φi〉 δij
〈
φj
∣∣ =

∣∣φi
〉
gij
〈
φj
∣∣ = |φi〉 gij 〈φj| .

We also want to state the transformation of co- and contravariant tensor components in
case of a change of the basis [249]. Let us assume that two nonorthogonal basis sets {|φi〉}
and

{∣∣φi
〉}

with their corresponding dual basis sets {|φi〉} and
{∣∣∣φi

〉}
and metric tensors

gij = 〈φi |φj〉 = Sij and gij =
〈
φi
∣∣φj
〉

= Sij are given. The transformation between the

two basis sets shall be given by
∣∣φi
〉

= aji |φj〉 and |φi〉 = aji
∣∣φj
〉
, where the bar is at the

height of the index belonging to the basis
{∣∣φi

〉}
. It can then be shown that the following

relations hold

|φi〉 = aji
∣∣φj
〉
,
∣∣φi
〉

= aji |φj〉 with aki a
j
k = δji (B.2)

∣∣φj
〉

= aji

∣∣∣φi
〉
,
∣∣∣φj
〉

= aji
∣∣φi
〉

with aki a
j
k = δji .

From the requirement of the invariance of the tensor T̂ with respect to the change of basis
it follows that

T
mn

= amk T
klanl and Tmn = amk T

kl
anl (B.3)

Tmn = akmTkla
l
n and Tmn = akmT kla

l
n.

If the basis set
{∣∣φi

〉}
is orthogonal (

〈
φi
∣∣φj
〉

= δji ), then covariant, mixed, and
contravariant indices in this basis set do not need to be distinguished.1 This is why
one commonly avoids nonorthogonal basis sets and uses orthogonal ones instead, which
considerably simplifies the notation. Note that the generalization of these formulations in
the complex domain necessitates the introduction of an additional ”property of the indices”
[251]. In such a case proper and improper indices may exist. This additional complication
arises from the anticommutativity of the scalar product in a complex Hilbert space.

B.2 Second quantization

Starting from the basis set {|φi〉}, spanning the single-particle Hilbert space H1 and the
corresponding dual basis {|φi〉}, one may construct a basis and dual basis of the complete
Fock space F of a physical system. Here we will focus solely on fermionic systems. In
Ref. [251] also bosonic systems are studied.

Quoting from Ref. [251], the set {|Di
N〉} of all possible tensorial products of N one-

particle basis vectors, conveniently antisymmetrized, constitutes a complete basis of the

1From the definition of the dual basis Eq. (B.1) it follows that the dual basis is identical to the original
basis

{∣∣φi

〉}
with gij =

〈
φi

∣∣φj

〉
= δj

i . Hence no distinction between co- and contravariant indices needs
to be made.
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Hilbert space HN of N fermions. The Fock space F may then be constructed as the direct
sum of all N -particle Hilbert spaces

F = ⊕N≥0HN ,

where H0 is the one-dimensional space generated by the vacuum vector |0〉. If |0〉 is chosen
as the direct and dual basis of H0 then, the union

∪N≥0

{∣∣Di
N

〉}

will be a basis of F , nonorthogonal for vectors with the same number of particles and
orthogonal for the others.

The creation and annihilation operators in the Fock space F can be defined by their
action on the basis vectors. In standard occupation-number notation these definitions can
be written as

ĉi |ni〉 = (−1)
P

i (1 − ni) |ni + 1〉
ĉi |ni〉 = (−1)

P

i ni |ni − 1〉 ,

where
∑

i stands for the number of occupied one-particle states with indices smaller than
i. The creation and annihilation operators obey the following anticommutation relations

{ĉi, ĉj} =
{
ĉi, ĉj

}
= 0 (B.4){

ĉi, ĉj
}

= δij . (B.5)

As opposed to orthogonal basis sets ĉi and ĉi are not Hermitian conjugates of one another.
Instead the Hermitian conjugation of the creation (annihilation) operator in the covariant
basis results in the annihilation (creation) operator in the dual basis, i. e.,

(ĉi)
+
∣∣ni
〉

= (−1)
P

i ni
∣∣ni − 1

〉
(
ĉi
)+ ∣∣ni

〉
= (−1)

P

i (1 − ni)
∣∣ni + 1

〉
.

It can be shown [251] that

ĉi = gji
(
ĉj
)+

and
ĉi = gij (ĉj)

+ .

Clearly, different choices of creation and annihilation operators make different formulations
of the second quantization possible. The choice of ĉi and ĉi as creation and annihilation
operators has the advantage of the simple commutation rules of Eqs. (B.4) and (B.5).
However, the hermiticity relation between the creation and annihilation operators does
not hold then. Another choice, which will be adopted below is a description with (ĉi)

+
and

ĉi. This has the advantage that the hermiticity relation holds, but now the commutation
relation will look more complicated, as will be detailed below. The presented formalism
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renders any transformation between the different formulations of the second quantization
formally trivial. These transformations require the simple use of the appropriate metric
tensors.

We will now focus on one-particle operators. Most often we will use the representation,
in which the matrix elements are in covariant form and T̂ reads

T̂ = Tij
(
ĉi
)+
ĉi. (B.6)

For reasons of brevity we define

d̂i = ĉi and d̂+
i =

(
ĉi
)+
. (B.7)

This provides the possibility to write T̂ = Tijd̂
+
i d̂i, which looks more familiar to the usual

notation of a single-particle operator in second quantized form than Eq. (B.6). The anti-
commutation relations are now

{
d̂i, d̂j

}
=

{
d̂+
i , d̂

+
j

}
= 0 (B.8)

{
d̂i, d̂

+
j

}
= gij =

(
S−1

)
ij
. (B.9)

Finally we state the equation of motion for the operator d̂i, which may also be found
in Refs. [129, 194]. The corresponding equation for d̂+

i may be obtained by a hermitian

conjugation of the equation for d̂i. Starting from the Heisenberg equation of motion and a
single-particle Hamiltonian Ĥ = Hijd

+
i dj one obtains

i~
d

dt
d̂i =

[
d̂i, Ĥ

]
= H i

kd̂k = gilHlkd̂k

or slightly rewritten

i~
d

dt
gij d̂j = i~

d

dt
Sij d̂j = Hijd̂j .

Analogously one gets for d̂+
i by Hermitian conjugation

−i~ d
dt
d̂+
i Sij = d̂+

i Hij.

So the time derivatives of d̂i and d̂+
i are

i~
d

dt
d̂i =

(
∑

j

Hij − i~
∑

j 6=i
Sij

d

dt

)
d̂j (B.10)

−i~ d
dt
d̂+
i =

(
∑

j

Hij + i~
∑

j 6=i
Sij

d

dt

)
d̂+
i (B.11)

We also want to note, as another example, that the particle number operator N̂ in this
representation is

N̂ = ĉiĉ
i = d̂+

j Sjid̂i.
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B.3 Single-particle Green’s functions

In chapter A we have introduced Green’s functions as expectation values of field operators

ψ̂(1) and ψ̂+(1) that obey the following anticommutation relations
{
ψ̂(~x1, t0), ψ̂

+(~x2, t0)
}

=

δ(~x1 − ~x2) and
{
ψ̂(~x1, t0), ψ̂(~x2, t0)

}
=
{
ψ̂+(~x1, t0), ψ̂

+(~x2, t0)
}

= 0 (see Eqs. (A.8)–

(A.12), or Eq. (A.47)). These Heisenberg field operators may be expanded in terms of the
nonorthogonal basis states as ψ̂H(~x, t) =

∑
n αn(~x, t0)d̂n(t), where the αn(~x, t0) are space-

dependent expansion coefficients. This expansion leads to the definition of nonorthogonal
Green’s functions as expectation values of the d̂i(t) and d̂+

i (t) such as

Gr
ij = −iΘ(t1 − t2)

〈{
d̂i(t1), d̂

+
i (t2)

}〉
.

From the equation of motion (see Eq. (A.30))2 for the retarded, advanced and causal
Green’s function (α = r, a or c) it follows that

EGα
ij(E) =

(
S−1

)
ij

+
(
S−1

)
ik
HklG

α
lj(E)

or rewritten
(ES −H)ij G

α
jk(E) = 1ij. (B.12)

The matrix G−1
0 (E) = (ES −H) is thus the inverse operator for the Green’s functions

Gα(E). The components of G−1
0 (E) are the covariant matrix elements of S and H . Instead,

Gα
ij should better be written (Gα)ij, because it has been defined as the expectation value of

operators d̂i and d̂+
i , which possess contravariant transformation properties (see Eq. (B.7)).

A proper notation of Eq. (B.12) in the tensor formalism is thus

(ES −H)ij (Gα)jk (E) = δki . (B.13)

From Eq. (B.12) the contravariant components of the retarded and advanced Green’s func-
tions can be written

G
r
a(E) = [(E ± iη)S −H ]−1 (B.14)

with a small broadening η = 0+. This demonstrates that the inverse of the covariant
components of S andH results in the contravariant components of the retarded or advanced
Green’s function [250, 252]. Due to the overlap, which appears in the Eq. (B.14) we will
also refer to this Green’s function as the ”nonorthogonal” Green’s function G

r
a .

Another access to the Green’s functions is the Schrödinger equation

i~
d

dt
|ψ(t)〉 = Ĥ |ψ(t)〉

(with time-independent Ĥ). The Schrödinger equation can be solved easily, when the
energy eigenstates |ψi〉 are known, which fulfill the equation

Ĥ |ψµ〉 = εµ |ψµ〉 . (B.15)

2Use Eq. (A.30) with ψ̂ replaced by d̂ and recall the commutation relations Eq. (B.8)-(B.9).
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In this orthogonal basis (where no distinction between co- and contravariant components
needs to be made) the equation of motion (see Eq. (A.30))3 yields the matrix equation

(E ± iη − εµ)G
r
a
µν = δµν

or solved for G
r
a this is

G
r
a = [(E ± iη)1− ε]−1

where ε is the diagonal matrix of orbital eigenenergies. Other ways of representing G
r
a are

the operator form

G
r
a(E) =

∑

µ

|ψµ〉 〈ψµ|
E ± iη − εµ

(B.16)

or in real space

G
r
a(~x1, ~x2, E) =

∑

µ

ψµ(~x1)ψµ(~x2)

E ± iη − εµ
. (B.17)

Here and in the following, all basis functions are assumed to be real. Notice that Eq. (B.17)
is nothing else but the discrete spectral representation given in Eq. (A.34) with spectral
density

ρ(~x1, ~x2, E) =
∑

µ

δ(E − εµ)ψµ(~x1)ψµ(~x2). (B.18)

With the help of the Dirac identity, Eq. (A.37), we get from this last expression the result
stated in Eq. (A.36) that ρ(~x1, ~x2, E) = ∓Im

[
G

r
a(~x1, ~x2, E)

]
/π, where ρ(~x1, ~x2, E) fulfills

the integral property given in Eq. (A.32).
Expanding the |ψµ〉 in terms of the local atomic basis functions |φi〉 as

|ψµ〉 =
∑

i

ciµ |φi〉 (B.19)

the Green’s function in operator form becomes

Gα(E) =
∑

ij

|φi〉 (Gα(E))ij 〈φj| ,

which is
Gα(~x1, ~x2, E) =

∑

ij

(Gα(E))ij φi(~x1)φj(~x2).

in real space (α = a or r). The contravariant components
(
G

r
a

)ij
are

(
G

r
a(E)

)ij
=
∑

µ

ciµcjµ
(E ± iη) − εµ

(B.20)

3Use Eq. (A.30) with ψ̂ replaced by d̂ and replace all metric tensors with unity in the commutation
relations Eq. (B.8)–(B.9) (gij = gij = δj

i ), because the basis of energy eigenstates is orthonormal.
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Writing the energy eigenvalue problem of Eq. (B.21) in the local basis [81, 127] one obtains

∑

j

Hijcµj = εµ
∑

j

Sijcjµ (B.21)

with4

Sij = 〈φi |φj〉 =

∫
d3xφi (~x)φj (~x) (B.22)

and

Hij = 〈φi| Ĥ |φj〉 =

∫
d3xφi (~x)H(~x)φj (~x) . (B.23)

Exploiting the orthogonality relation between energy eigenstates

δµν = 〈ψµ |ψν〉 =
∑

ij

ciµSijcjν =
(
CSCT

)
µν
,

Eq. (B.13) for the Green’s functions [(E ± iη)S −H ]ij
(
G

r
a(E)

)jk
= δki is recovered. This

means that Eq. (B.20) is an explicit representation of the retarded and advanced nonorthog-
onal Green’s functions.

In quantum chemistry several ways are known, how to transform nonorthogonal basis
functions to orthogonalized ones. The most frequently adopted choice is the Löwdin-
orthogonalized set of basis functions. They originate from the set {|φi〉} with the metric
tensor gij = Sij by going over to the set

{∣∣φi
〉}

, where [81]

∣∣φi
〉

=
∑

j

(
S−1/2

)
ij
|φj〉 .

It is immediately obvious that
〈
φi
∣∣φi
〉

= δij. The use of S−1/2 is also called symmetric
orthogonalization, but other transformations leading to an orthogonal basis set are possible
[81]. In this basis no distinction between covariant, mixed and contravariant indices needs
to be made. With the help of Eqs. (B.2)–(B.3) it can be seen that the transformation aji
between the different coordinate systems is given by

aji =
(
S−1/2

)
ij
.

According to the requirement that aki a
j
k = δji and it follows that

aij =
(
S1/2

)
ij

Using that S = ST or S−1/2 =
(
S−1/2

)T
, the (covariant) Hamiltonian H in the Löwdin-

orthogonal basis sets reads
H = S−1/2HS−1/2,

4As before all basis functions are assumed to be real.
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center rightleft

extended molecule electrodeelectrode

Figure B.1: Molecular electronic device: A molecule is coupled via linking groups to semi-
infinite electrodes. The system can be separated into the three parts indicated, namely the
left electrode (L), the center (C), also called ”extended molecule”, and the right electrode
(R).

whereas the (contravariant) Green’s function is

G
r
a(E) = S1/2G

r
a(E)S1/2 =

[
(E ± iη)1−H

]−1

Thus the difference in the kind of tensorial components of H and G, namely co- and
contravariant, naturally explains their different transformational properties (with S−1/2

and S1/2), when going over from the nonorthogonal basis set to the orthogonal one.
From now on and throughout this work we will mostly use the usual lax notation, in

which all matrices appear to be covariant, because indices will be denoted as subscripts and
no more as superscripts. However, it simplifies the notation, because one does not need to
keep track of indices and can write Gr

CC instead of (Gr)CC for example. Generally, it should
be kept in mind that for an orthogonal basis, no distinction between the index notations
needs to be made. For a nonorthogonal basis, we will usually talk about covariant com-
ponents of the overlap Sij = 〈φi |φj〉 and the Hamiltonian Hij = 〈φi| Ĥ |φj〉, while Green’s

functions, defined as the inverse of covariant components G
r
a

ij(E) =
(
[(E ± iη)S −H ]−1)

ij
,

are contravariant components despite their index appearance. All quantities directly con-
nected to the Green’s functions are also contravariant components except if they are multi-
plied by overlap or better metric tensor contributions. Only in cases of need, we will come
back to the proper tensorial formulation. Unfortunately, the lax notation may then lead
to some ”confusion” in what we mean. But the careful reader should be able to trace back
the source for this ”confusion” with the help of the relations of this paragraph.

B.3.1 Perturbation theory for single-particle Green’s functions

Let us now consider the perturbation theory for a system which is split into three different
parts, as we encounter it in the context of molecular electronics (see Fig. B.1). If the center
is long enough, there should be no overlap elements in S or H between the left and the
right electrode (SLR = (SRL)T = 0 and HLR = (HRL)T = 0). Thus the (nonorthogonal)
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Green’s function5 will obey the matrix equation



E+SLL −HLL E+SLC −HLC 0
E+SCL −HCL E+SCC −HCC E+SCR −HCR

0 E+SRC −HRC E+SRR −HRR








Gr

LL Gr
LC Gr

LR

Gr
CL Gr

CC Gr
CR

Gr
RL Gr

RC Gr
RR



 =




ILL 0 0
0 ICC 0
0 0 IRR





(B.24)

Treating the system described by the overlap S and the Hamiltonian H perturbatively, the
offdiagonal components YLC = (YCL)

T and YCR = (YRC)T (Y = S or H) may be regarded
as the perturbations. The unperturbed Green’s functions are

grLL =
(
E+SLL −HLL

)−1

grCC =
(
E+SCC −HCC

)−1

grRR =
(
E+SRR −HRR

)−1

As opposed to standard perturbation theory, there is not only a perturbation in the Hamil-
tonian, but also in the overlap, such that the perturbations are

tCX(E) = HCX −ESCX = (tXC(E))T (B.25)

(with X = L or R) [250, 252]. (Notice that the limit η → 0 has been taken explicitly in
t.) In terms of the Keldysh formalism tCX(E) plays the role of the retarded and advanced
self-energies (see Sec. A.3.3).

In transport it turns out that the component Gr
CC is needed. Solving for it, one obtains

Gr
CC(E) =

(
E+SCC −HCC − Σr

L(E) − Σr
R(E)

)−1
(B.26)

Σr
X(E) =

(
HCX −E+SCX

)
grXX

(
HXC −E+SXC

)
= tCXg

r
XXtCX , (B.27)

where Σr
X(E) is the self-energy belonging to lead X (X = L or R), also called ”embedding

self-energy” [231], and grXX are the unperturbed electrode Green’s functions. The electrode
self-energies ΣX describe the influence of the respective electrodes on the central system.

The following interesting observation about the self-energies can now be made, namely
for E → ∞ they behave as

ΣX(E) → ESCX (SXX)−1 SXC for E → ∞. (B.28)

The interpretation of this behavior is that not only the Hamiltonian of the center is renor-
malized due to the coupling, but also the overlap. This is understandable if one recalls
that the perturbations tCX contain not only a perturbation in the Hamiltonian HCX , but
also in the overlap SCX .

Concerning the perturbation theory, the solution for Gr
CC in Eq. (B.26) is exact. This

means that Gr
CC contains all perturbative contributons tCX summed to infinite order.

5Let us concentrate on the retarded Green’s function Gr, but results are equally valid for Ga by making
the replacement E+ = E + iη → E− = E − iη.
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B.3.2 Density of states

In order to interpret the behavior of physical quantities like the conductance, it is inter-
esting to know, where energy eigenstates of a system are located. For example a localized
state may give no contribution to the conductance, while a state extending from the left to
the right electrode will lead to a substantial feature in the transmission. In this sense the
information about the energetics of a system may help to identify the conduction mech-
anisms, when the transmission is investigated as a function of energy. It is therefore of
interest to define quantities from Green’s functions such that this information can be ob-
tained. In this respect the spectral density ρ(~x1, ~x1, E) has been seen to be an important
quantity, because it contains information on the energy eigenstates of a particular system
(see Eqs. (A.33) and (B.18)). For this reason we will investigate the spectral density further
in this section.

In Eq. (A.32) the spectral density has been shown to fulfill an integral equation. We
will investigate now, how these integral equations are modified when co- and contravariant
components of the Green’s function are considered. Starting from the operator form in the
orthogonal basis of the energy eigenstates (see Eq. (B.16)) one observes for a nonorthogonal
basis |φi〉 with |ψµ〉 =

∑
i ciµ |φi〉 that

G
r
a

ij(E) = 〈φi|G
r
a(E) |φj〉 =

∑

µ

〈φi |ψµ〉 〈ψµ |φj〉
E ± iη − εµ

(
G

r
a(E)

)ij
=

〈
φi
∣∣Gr

a(E)
∣∣φj
〉

=
∑

µ

〈φi |ψµ〉 〈ψµ |φj〉
E ± iη − εµ

=
∑

µ

ciµcjµ
E ± iη − εµ

.

If we now exploit the Dirac identity (see Eq. (A.37)) we get

∓Im
[
G

r
a

ij(E)
]
/π =

∑

µ

〈φi |ψµ〉 δ(E − εµ) 〈ψµ |φj〉 (B.29)

∓Im
[(
G

r
a(E)

)ij]
/π =

∑

µ

〈
φi |ψµ〉 δ(E − εµ) 〈ψµ

∣∣φj
〉

(B.30)

An integration of the components of the Green’s functions over all energies gives

∓
∫ ∞

−∞

dE

π
Im
[
G

r
a

ij(E)
]

=
∑

µ

〈φi |ψµ〉 〈ψµ |φj〉 = gij = Sij (B.31)

∓
∫ ∞

−∞

dE

π
Im
[(
G

r
a(E)

)ij]
=

∑

µ

〈
φi |ψµ〉 〈ψµ

∣∣φj
〉

= gij =
(
S−1

)
ij

(B.32)

This shows that the components of the Green’s function get an ”overlap weight” in a
nonorthogonal basis.

For the central quantity in the computation of the transmission GCC (see Eq. (B.26),
which is actually a contravariant component, and we better write GCC = (ESCC −HCC)−1,
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this weight is ∓
∫∞
−∞

dE
π

Im
[
GCC(E)

]
= (S−1)CC . Using the structure of the overlap, where

SLR = (SRL)T = 0, it can be shown that

(
S−1

)
CC

=

(
SCC +

∑

X=L,R

SCX (SXX)−1 SXC

)−1

(B.33)

in a similar manner to the solution for GCC in Eq. (B.24) (see Eq. (B.26)).
This overlap weight is also obvious by looking at GCC (see Eq. (B.26)) in the limit

E → ∞ and recalling the asymptotic behavior of ΣX (see Eq. (B.28)), which leads to

GCC →
(
E

(
SCC +

∑

X=L,R

SCX (SXX)−1 SXC

))−1

for E → ∞.

This result shows that the energy dependent self-energy ΣX has an influence on the
overlap structure. The usual interpretation in the orthogonal case, where in ΣX(E) =
Re [ΣX(E)] + iIm [ΣX(E)] the real part of the self-energy (Re [ΣX(E)]) describes the shift
of the energies of the Hamiltonian and the imaginary part (Im [ΣX(E)]) provides a broad-
ening in the energy domain, is therefore more complicated in a nonorthogonal basis. The
renormalization of the overlap is due to the perturbation tCX (see Eq. (B.25)) that con-
tains an overlap contribution in addition to the energy-independent perturbation of the
Hamiltonian.

We want to note now some properties for the imaginary part of the contravariant
component of the Green’s function, visible in Eq. (B.30).6 One observes that the diagonal
components are positive

∓Im
[(
G

r
a(E)

)ii] ≥ 0 (B.34)

and ∓Im
[(
G

r
a(E)

)ij]
is positive definite. This is obvious by multiplying from both sides

with an arbitrary vector with components vi. It is immediately obvious that this can only
yield positive numbers

∓
∑

i,j

viIm
[(
G

r
a(E)

)ij]
vj =

∑

i,j,µ

vi
〈
φi |ψµ〉 δ(E − εµ) 〈ψµ

∣∣φj
〉
vj (B.35)

=
∑

µ

δ(E − εµ)

∣∣∣∣∣
∑

i

〈ψµ
∣∣φi
〉
vi

∣∣∣∣∣

2

≥ 0.

In order to get information on the energetic states of a system, we analyse the local
density of states (LDOS). For this purpose we plot

LDOSiα(E) = ∓1

π

(
S

1/2
CC Im

[(
G

r
a(E)

)CC]
S

1/2
CC

)

iα,iα
(B.36)

6Similar results hold for the covariant component (see Eq. (B.29)), but we will not need them in this
work.
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as a function of energy. The indices iα have replaced the index i from before (i → iα),
where i shall now indicate some atom at position i and α is the orbital or basis function

at that particular atom. As Im
[(
G

r
a(E)

)CC]
is positive definite, also this LDOSiα(E) is

positive definite. The positive definiteness of LDOSiα(E) is also a reason, why we choose
the symmetric Löwdin like orthogonalization of Eq. (B.36) instead of the equally possi-

ble Mulliken analysis, where L̃DOSiα(E) = ∓
(
Im
[(
G

r
a(E)

)CC]
SCC/π

)

iα,iα
. In terms

of the overlap weight, the property
∫∞
−∞ dELDOSiα(E) = 1 is only approximately ful-

filled. This is due to the fact, that we multiply with S
1/2
CC instead of

(
(S−1)

−1
CC

)1/2

=
(
SCC +

∑
X=L,R SCX (SXX)−1 SXC

)1/2

. This means that the self-energy contributions to

the overlap are neglected. However, one is usually interested in the LDOS of atoms in
the center of a system and not at the surface. As

∑
X=L,R SCX (SXX)−1 SXC constitutes a

surface correction, its neglect may be justified for atoms in the center of the contact. In
terms of charges Eq. (B.36) may be seen as an approximation to the Löwdin charge of the
atom i from basis function α

∫ EF

−∞
dELDOSiα(E) =

(
S

1/2
CC̺

CCS
1/2
CC

)
iα,iα

,

where again charges from outside the central system are neglected. (For a proof that the

electron density is connected with Im
[(
G

r
a(E)

)CC]
via ∓

∫ EF

−∞ dEIm
[(
G

r
a(E)

)CC]
= ̺CC

see Eq. (B.48) in the next section.)
The summation of LDOSiα(E) over all basis functions α is the LDOS of the atom i

LDOSi(E) =
∑

α

LDOSiα(E) = ∓1

π
Trα

[
S

1/2
CC Im

[(
G

r
a(E)

)CC]
S

1/2
CC

]
. (B.37)

By summing over a particular set of atoms Λ, we get the LDOS of the region Λ as

LDOSΛ(E) =
∑

i∈Λ

LDOSi(E). (B.38)

B.3.3 Electron density

In order to obtain a locally charge neutral Hamiltonian of a system or in order to do self-
consistent calculations of a cluster embedded into a semiinfinite system, it is necessary,
to compute the density matrix of the system under investigation (see Secs. 2.2.2, E.2 or
Refs. [127, 152]). As it has been noted before (see Eq. (A.23)), the electron density ̺(~r, t) is
directly connected to the lesser Green’s function via the relation ̺(~x, t) = −iG<(~x, t; ~x, t).
For the time-independent case this means that

̺(~x) =

∫
dE

2πi
G<(~x, ~x, E).
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The Keldysh formalism provides a means to compute G<(~x, t, ~x, t) (see Eq. (A.52)). It has
been noticed in Sec. A.3.3 that for our single-particle perturbations the lesser and greater
self-energies Σ< and Σ> vanish. From Eq. (A.86) we therefore find

G< = (1 +GrΣr) g< (1 + ΣaGa) (B.39)

One is usually only interested in the electron density of the central part of the system. By
expanding both ̺ and G< in a local basis set

̺(~x) =
∑

ij

̺ijφi(~x)φj(~x) =
∑

ij

∫
dE

2πi
G<
ij(E)φi(~x)φj(~x) =

∫
dE

2πi
G<(~x, ~x, E),

we obtain the following matrix formulation between the (contravariant) components of ̺
and G<

̺ij =

∫
dE

2πi
G<
ij(E)

Focussing on ̺CC we need to obtain an expression for G<
CC from Eq. (B.39) and want to

derive the final result that

G<
CC = iGr

CC (ΓLfL + ΓRfR)Ga
CC , (B.40)

where we have suppressed the energy dependence of all the arguments in this expression
and

fX = f(E − µX) =
(
eβ(E−µX) + 1

)−1
(B.41)

is the Fermi function in the lead X (X = L, R) measured with respect to the electrochem-
ical potential µX . In addition, ΓX is the scattering matrix defined as

ΓX = (HCX − ESCX) i (grXX − gaXX) (HXC − ESXC) = i (Σr
X − Σa

X) (B.42)

= −2Im [Σr] = 2πtCXρXXtXC

with the spectral function ρ defined as in Eq. (A.31).

The derivation of Eq. (B.40) will now be presented. Starting from Eq. (B.39) we note
that

G<
CC =

∑

W=L,C,R

(1 +GrΣr)CW g<WW (1 + ΣaGa)WC (B.43)

The term with W = C may be rephrased by noting that (1 +GrΣr)CC = Gr
CC (grCC)−1

and similarly (1 + ΣaGa)CC = (gaCC)−1Ga
CC from Eqs. (A.71) and (A.72). As g<CC is

the unperturbed lesser Green’s function of the center, it is an equilibrium Green’s func-
tion and Eq. (A.39) in combination with Eq. (A.31) can be applied in the form g<CC =
−fC (grCC − gaCC) , where fC is the Fermi or better occupation function of the unperturbed
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center. Taken together this gives

(1 +GrΣr)CC g
<
CC (1 + ΣaGa)CC = (1 +GrΣr)CC g

<
CC (1 + ΣaGa)CC

= −fCGr
CC (grCC)−1 (grCC − gaCC) (gaCC)−1Ga

CC

= −fCGr
CC

[
(gaCC)−1 − (grCC)−1]Ga

CC

= −fCGr
CC [(E − iη)SCC −HCC

−{(E + iη)SCC −HCC}]Ga
CC

= 2iηfCG
r
CCSCCG

a
CC

= 0 for η → 0

Now the rest terms with W = L or R in Eq. (B.43) need to be considered. For the self-
energies Σa = Σr we note that (see Sec. A.3.3) they have only components connecting C
and X (X = L or R), namely7

Σa
CX = Σr

CX = tCX = (Σa
XC)T = (Σr

XC)T . (B.44)

Therefore the relations (1 +GrΣr)CX = Gr
CCtCX and (1 + ΣaGa)XC = tXCG

a
CC hold, and

for g<XX we can again exploit Eq. (A.39) to obtain

G<
CC =

∑

X=L,R

(1 +GrΣr)CX g
<
XX (1 + ΣaGa)XC

= i
∑

X=L,R

fxG
r
CCtCX2πρXXtXCG

a
CC

= i
∑

X=L,R

fxG
r
CCΓXG

a
CC ,

which is identical to Eq. (B.40).
For reasons of completeness we state here also the result for G>

CC . The derivation is the
same as for G<

CC , but one uses Eq. (A.40) instead of Eq. (A.39) to express the unperturbed
g>WW components (W = L, C or R). The final result is

G>
CC = iGr

CC [ΓL (fL − 1) + ΓR (fR − 1)]Ga
CC (B.45)

Putting together Eqs. (B.40), (B.45), and (A.31) we get

2πρCC = Gr
CC (ΓL + ΓR)Ga

CC (B.46)

This result may also be derived more directly by noting that

Γ = ΓL + ΓR =
∑

X=L,R

i (Σr
X − Σa

X)

= i
[
(grCC)−1 − (Gr

CC)−1 −
{
(gaCC)−1 − (Ga

CC)−1}]

= i
[
(Ga

CC)−1 − (Gr
CC)−1]

7Note that the self-energies ΣX defined in Eq. (B.27) should not be confused with the self-energy ΣCX

defined here. The ΣCX are self-energies of the Keldysh formalism, whereas ΣX is a conveniently defined
self-energy expression relevant for the central cluster. As the number of subscripts differ for both of them,
no confusion should arise.
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Multiplying both sides with Ga
CC and Gr

CC and using Eq. (A.31) we come to the result of
Eq. (B.46).

Eq. (B.40) is valid for the general nonequilibrium situation, when µL 6= µR and fL and
fR differ. Therefore it can be used to obtain the density matrix for a system subject to
some external bias.

̺ij =

∫
dE

2πi
G<
ij(E) =

∫
dE

2π
Gr
CC(E) [ΓL(E)fL(E) + ΓR(E)fR(E)]Ga

CC(E)

However, when µL = µR further simplifications are possible

G<
CC = ifGr

CC (ΓL + ΓR)Ga
CC = if2πρCC = −2if Im [Gr

CC ] ,

where we denoted with f = fL = fR the common Fermi function of the contacts. For the
density matrix, the simplification implies that

̺ij =

∫
dE

2πi
G<
ij(E) =

∫
dEf(E − µ)

−Im
[
Gr
ij(E)

]

π
. (B.47)

For zero temperature the Fermi function vanishes for energies above the Fermi energy EF ,
which coincides with the electrochemical potential µ, (f(E) = 0 for E > µ = EF ) and we
get

̺ij =

∫ EF

−∞
dE

−Im
[
Gr
ij(E)

]

π
. (B.48)

This formula will be employed, when we want to obtain the ground state density as needed
for the construction of a charge neutral Hamiltonian in our tight-binding (TB) model or a
self-consistent determination of the ground state electron density in density functional the-
ory (DFT) for an embedded system. In our TB models, we set EF equal to the Fermi energy
of the contacts. Opposed to this in DFT we determine EF by a charge neutrality condition
of the central system, namely NC = Tr [(̺S)CC ] = Tr [̺CCSCC + ̺CLSLC + ̺CRSRC ]. In
this expression NC is the charge of the central system, which is analyzed in terms of a
Mulliken poplation analysis [81]. These issues will be discussed further in the separate
subsections.

With the help of Eq. (B.20) we generalize G
r
a(E) to be a function in the complex domain

by writing

G
r
a

ij(z) =
∑

µ

ciµcjµ
z − (εµ ∓ iη)

, (B.49)

which fulfills the equation
∑

k

[(z ± iη)S −H ]ikG
r
a

kj(z) = δij .

In chemistry the electron density is often presented in the form

̺(~x) =
∑

µ∈{occ. MOS}
|ψµ(~x)|2 =

∑

i,j

̺ijφi(~x)φj(~x),
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Re(z)

Im(z)

Figure B.2: Different possible integration contours γ1 and γ2 for obtaining the density
matrix according to Eq. (B.48). While γ1 runs along the real axis from EB to EF , γ2 is
a semicircle in the upper half of the complex plane with the same start and end points
as γ1. As Gr possesses only singularities below the real axis, indicated by the stars ✳,
the joint path γ1 ∪ −γ2 encloses no poles. For this reason ̺ij = −

∫
γ1
dzIm

[
Gr
ij(z)

]
/π =

−
∫
γ2
dzIm

[
Gr
ij(z)

]
/π. (With −γ2 we mean that we are running through the path γ2

in the opposite direction as compared to the direction indicated in the figure.) In any
practical integration EB is chosen to be somewhat below the lowest lying energy states of
the physical system considered.

where
̺ij =

∑

µ∈{occ. MOS}
ciµcjµ.

With µ ∈ {occ.MOS} we mean that µ is an occupied molecular orbital or, phrased
differently, a state with an energy below the Fermi energy (εµ ≤ EF ). This is an-
other access to Eq. (B.48), because with the Dirac identity (see Eq. (A.37)) one gets
−Im

[
Gr
ij(E)

]
/π =

∑
µ δ(E − εµ)ciµcjµ, so that the integration from −∞ to EF actually

includes the contributions of all occupied states.
If one integrates along a contour in the upper (lower) half plane, where no residues of

Gr (Ga) can be found, then it becomes obvious that the integral along the real axis from
−∞ to EF can be replaced by the integral over this conveniently chosen complex contour
(see Fig. B.2). This is of practical interest, because in this way the sharp features of the
poles of Gr (Ga) can be smoothed out and less integration points are needed [254, 127, 152].
In any practical implementation, the energy integration will start from somewhat below
the lowest energy states of the system considered, called EB (B for bottom).



208 Nonorthogonal basis sets



Appendix C

Landauer formula and current

operator

Macroscopic conductors are characterized by Ohm’s law, which establishes that the con-
ductance G of a given sample is directly proportional to its transverse area S and inversely
proportional to its length L, i.e.

G = σS/L,

where σ is the conductivity of the sample [1]. In this work we are interested in atomic-sized
conductors, which are a limiting case of mesoscopic systems. For such mesoscopic systems
quantum coherence plays a central role, and simple concepts such as Ohm’s law are now
longer applicable.

In mesoscopic systems one can identify different transport regimes according to the
relative size of various length scales. We will concentrate here on phase-coherent ballistic
transport, which is the full quantum limit. In this transport regime the following inequality
holds [1, 255]

b0 ≪ L < l . lφ . lin and W ∼ λF .

In the first inequality b0 is the Bohr radius, standing for the atomic scale, L is the size of
the mesoscopic region, l is the elastic mean free path, lφ is the phase-coherence length, and
lin is the energy relaxation length. In the second inequality W is the contact width, and
λF is the Fermi wavelength. (See Fig. C.1 for a schematic drawing of the system that we
have in mind and the different length scales involved.)

We consider electron transport at low temperatures. Therefore electrons with energies
at the Fermi level EF with a particle length scale λF are involved. The phase coherence
length lφ is the length scale over which quantum coherence is preserved. For quantum
effects to be observable it needs to be longer than our sample size L. The elastic mean free
path measures the distance between elastic collisions with static impurities. If the elastic
mean free path is longer than our sample size we reach the ballistic regime, in which the
electron momentum can be assumed to be constant and changes only due to scattering at
the boundaries of the sample. If no additional interactions are present (such as electron-
vibration coupling), the energy relaxation length lin shall also be bigger than L, so that

209
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right
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reservoir

µL

l, l , linφ

I

W
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RCL

interacting
scattering region

L

nanoscopic sample

Figure C.1: Schematic diagram of the experimental configuration for which the Landauer
formula for the current is derived. Two leads, characterized by chemical potentials µL and
µR, are connected to a mesoscopic scattering region. If µL > µR a current I will flow
from left to right as indicated in the figure. In addition different relevant length scales are
indicated. L is the sample length, l the mean free path, lφ the phase-coherence length, lin
the energy relaxation length, and W is the width of the contact.

the transport is elastic. This means that electrons preserve their energy in the scattering
events. Of course, the sample should be large on the atomic scale, characterized by the
Bohr radius of around b0 = 0.529 Å. If, in addition, the transverse dimension or width of
the sample at the narrowest point is on the order of the Fermi wavelength, we are in the
full quantum limit, which cannot simply be described by semiclassical arguments. This is
the situation we are concerned with.

In Sec. C.1 of this chapter we will derive the two-terminal Landauer formula for the
current through an interacting mesoscopic region [256]. This result will be of interest in
Chap. 3, where inelastic corrections to the current due to electron-vibration coupling are
studied. However, we will not discuss this general formula in this chapter. Instead it will
serve as an intermediate step, by which we obtain the result for the two-terminal Landauer
formula for the noninteracting case. We consider here the complications arising from a
nonorthogonal local basis. In this sense additional complications arise as compared to the
paper by Meir et al. [256], where the Landauer formula has been derived by means of the
Keldysh nonequilibrium Green’s function formalism for an orthogonal local basis. That
the complications are nontrivial is manifested in the appearance of a recent paper, where
the presentation of Meir et al. [256] has been generalized to a nonorthogonal basis by
Thygesen [253]. We will shortly comment on the different procedure chosen by Thygesen
as compared to ours in the end of this section.

In Sec. C.2 we will comment on general properties of the elastic current operator. The
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charge
border

q

rightleft

Figure C.2: In order to compute a current I, it is necessary to count charges. This requires
an unambiguous attribution of charges to a certain region. As indicated in the figure a
charge q is crossing the ”charge border” by making a transition from the left to the right.

discussion will cover topics such as the current conservation, the conservation of transmis-
sion eigenchannels Tn, which will be shown to uniquely characterize an atomic contact for
a certain energy of incident electrons, as well as the boundedness of the Tn between 0 and
1.

C.1 Two-terminal Landauer formula for the current

in nanocontacts

In this paragraph we derive the Landauer formula for the current through an interacting
mesoscopic region. We consider here the complications arising from a nonorthogonal local
basis. The current through a system requires a clear separation of device regions, so that
charges can be attributed to one of these regions. Only this allows a counting of electrons
as it is necessary for a definition of the current I. In Fig. C.2 a charge q crosses the ”charge
border” between the left and the right region, and the current I can be determined. The
attribution of charge to a certain subsystem is, however, ambiguous in a nonorthogonal ba-
sis, where different ways of assigning charges to certain regions exist [81], e.g. the Mulliken
or Löwdin population analysis. In this sense additional complications arise as compared
to the paper by Meir et al. [256], where the Landauer formula has been derived in the
Keldysh Green’s function formalism for an orthogonal basis set.

The presentation given below derives the current through an interacting region, as pre-
sented in Refs. [256, 253]. However, we will immediately concentrate on the noninteracting
case. We mainly follow Viljas et al. [129], but also refer to the more detailed derivation for
the current formula in the noninteracting case in Ref. [194].

The system that we have in mind is drawn schematically in Fig. C.1. A central scatter-
ing region, called C, is connected to left and right leads, called L and R respectively, which
consitute noninteracting reservoirs at electrochemical potentials µL and µR. We choose a
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Mulliken charge partitioning scheme [81] and get for the total charge Q and the subcharges
QW (W = L, C and R)

Q =
∑

W=L,C,R

QW =
∑

W=L,C,R

TrW [̺S] (C.1)

where TrW [̺S] =
∑

i∈W,j ̺ijSji. We want to compute the current at the interface from the
left electrode (L) into the center combined with the right electrode (C +R). The particle
currents of the L and C +R parts are

d

dt
Q̂L(t) = ĴL(t) and

d

dt
Q̂C+R(t) = ĴC+R(t).

In these expressions the charge operators

Q̂W =
∑

i∈W,j
d̂+
i Sij d̂j

and the particle current operators

ĴW = −ÎW/qe

have been introduced (W = L or C +R). The operator ÎW is the charge current operator
due to charges leaving or entering the region W . The particle currents JW are then given

as the expectation values of the particle current operators JW =
〈
ĴW

〉
and analogously

for the charges QW =
〈
Q̂W

〉
. As d

dt

(∑
W=L,C,R Q̂W

)
= 0, ĴC+R(t) = −ĴL(t). Exploiting

this, we get for the total charge current operator Î

Î = αÎL(t) + (1 − α) ÎC+R(t) = −qe
d

dt

(
αQ̂L(t) − (1 − α) Q̂C+R(t)

)
(C.2)

for an arbitrary α between 0 and 1 (0 ≤ α ≤ 1).1 This means that in order to get an
expression for the current, we need to take time derivatives of the charge. Now, we make
the specific choice of α = 1/2 and take the time derivatives

J =
〈
Ĵ
〉

=
d

dt

(〈
Q̂L

〉
(t) −

〈
Q̂C+R

〉
(t)
)
/2

=
d

dt

(
Tr [̺LLSLL] + Tr

[
̺L(C+R)S(C+R)L

]

−Tr
[
̺(C+R)LSL(C+R)

]
− Tr

[
̺(C+R)(C+R)S(C+R)(C+R)

])
/2

=
d

dt

(
Tr [̺LLSLL] − Tr

[
̺(C+R)(C+R)S(C+R)(C+R)

])

=
d

dt

(〈
Q̂′
L

〉
(t) −

〈
Q̂′
C+R

〉
(t)
)
/2.

1Here, the electron charge is qe = −e and e = 1.60219 ·10−19 C is the (absolute value) of the elementary
charge.
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In this expression we have introduced the new operators Q̂′
W =

∑
i,j∈W d̂+

i d̂jSji. This was
possible by observing that the difference of the nondiagonal components cancel

Tr
[
̺L(C+R)S(C+R)L

]
− Tr

[
̺(C+R)LSL(C+R)

]
= 0

for a symmetric density matrix (̺ = ̺T ) because

Tr
[
̺L(C+R)S(C+R)L

]
= Tr

[
SL(C+R)̺(C+R)L

]

= Tr
[
̺(C+R)LSL(C+R)

]
.

All density matrices considered in this work are real and symmetric due to the symmet-
ric overlap S and Hamiltonian H (see Eqs. (B.22), (B.23)) and Eq. (B.48), so that the
assumption ̺ = ̺T is always fulfilled.

For this reason we look at the symmetric choice α = 1/2 in Eq. (C.2) and can obtain
the current from

Î = −qe
d

dt

(
Q̂′
L(t) − Q̂′

C+R(t)
)
/2 = −qe

d

dt
(Q′

L (t)) . (C.3)

With the help of Eqs. (B.10) and (B.11) we get

d

dt

(
d̂+
j d̂j

)
= d̂+

j

∑

k 6=j

1

i~

(
Hjk − i~Sjk

d

dt

)
d̂k +

(
∑

k 6=j

1

i~

(
−Hkj − i~Skj

d

dt

)
d̂+
k

)
d̂j

and therefore

d

dt

(
Q̂′
L

)
= 1

i~

∑

j∈L,k∈(C+R)

(
d̂+
j

(
Hjk − i~Sjk

d

dt

)
d̂k +

((
−Hkj − i~Skj

d

dt

)
d̂+
k

)
d̂j

)

d

dt

(
Q̂′

(C+R)

)
= 1

i~

∑

j∈(C+R),k∈L

(
d̂+
j

(
Hjk − i~Sjk

d

dt

)
d̂k +

((
−Hkj − i~Skj

d

dt

)
d̂+
k

)
d̂j

)
.

Taken together and using that i
〈
d̂j(t2)d̂

+
k (t1)

〉
= G<

kj(t1,, t2) (see Eq. (A.52)) Eq. (C.3)

gives

2J(t) = 2
〈
Ĵ
〉

(t) =
∑

j∈L,k∈(C+R)

1

i~

(
Hjk − i~Sjk

d

dt

)〈
d̂+
j (t′)d̂k(t)

〉
∣∣∣∣∣∣
t′=t

−
∑

j∈(C+R),k∈L

1

i~

(
Hjk − i~Sjk

d

dt

)〈
d̂+
j (t′)d̂k(t)

〉
∣∣∣∣∣∣
t′=t

+ c.c.

= 2
1

~
Re








∑

j∈L,k∈(C+R)

−
∑

j∈(C+R),k∈L




(
Hjk − i~Sjk

d

dt

)
G<
kj(t, t

′)



 .
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Finally the expression for the current becomes2 [129]

I(t) =
2e

~
Tr

[(
HLC − i~SLC

d

dt

)
G<
CL(t, t

′) −
(
HCL − i~SCL

d

dt

)
G<
LC(t, t′)

]∣∣∣∣
t′=t

.

As we look at time independent Hamiltonians, all Green’s functions depend only on the
time difference (see Eq. (A.27)). In particular we are interested in the stationary current.
A Fourier transformation of

G<
ij(t, t

′) = G<
ij(t− t′) =

∫ ∞

−∞

dE

2π
e−iE(t−t′)/~G<

ij(E)

yields

I =
2e

h

∫
dETr [tLC(E)G<

CL(E) − tCL(E)G<
LC(E)] (C.4)

with tCX(E) defined as in Eq. (B.25).
We will now rewrite the term in the trace of Eq. (C.4), which can be accomplished with

the relations given in paragraph A.3.2 on Keldysh Green’s functions. From Eq. (A.84) we
get

G<
LC = g<LLtLCG

a
CC + grLLtLCG

<
CC

G<
CL = G<

CCtCLg
a
LL +Gr

CCtCLg
<
LL.

Put into Eq. (C.4) the current becomes

I =
2e

h

∫
dETr [tCL (gaLL − grLL) tLCG

<
CC + tCLg

<
LLtLC (Gr

CC −Ga
CC)]

=
2e

h

∫
dETr [iΓLG

<
CC + fLΓL2πρCC ] , (C.5)

where the definition of the scattering rate ΓX = tCXi (g
r
XX − gaXX) tXC (see Eq. (B.42))

has been used together with the definition of the spectral density ρ (see Eq. (A.31)). The
expression for I in the last line is the result for the charge current through an interacting
region [256, 253]. This general result will find an application in Chap. 3, where the effects
of electron-vibration interactions on the current are discussed.

We will now come to the current formula for the noninteracting case. If we use the rela-
tion between ρCC and the scattering rates 2πρCC = i (Gr

CC −Ga
CC) = (Gr

CC (ΓL + ΓR)Ga
CC)

(see Eqs. (A.31) and (B.46)) and the expression for G<
CC = iGr

CC (ΓLfL + ΓRfR)Ga
CC from

Eq. (B.40) in Eq. (C.5), we finally get

I =
2e

h

∫
dETr [−ΓLG

r
CC (ΓLfL + ΓRfR)Ga

CC + fLΓLG
r
CC (ΓL + ΓR)Ga

CC ] .

2Note that the additional factor of 2 arises from the summation over the degenerate spins.
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This gives the final expression for the stationary elastic current

I =
2e

h

∫
dET (E) (f(E − µL) − f(E − µR)) (C.6)

=
2e

h

∫
dETr [ΓLG

r
CCΓRG

a
CC ] (fL − fR) =

2e

h

∫
dETr

[
t+t
]
(fL − fR)

where we have defined the transmission

T (E) = Tr [ΓLG
r
CCΓRG

a
CC ] = Tr

[
t+t
]

(C.7)

and have introduced the transmission matrix3

t(E) =
√

ΓLG
a
CC

√
ΓR. (C.8)

In equilibrium the electrochemical potentials of the left and right electrode are equal
(µ = µL = µR) and Eq. (C.6) predicts a zero current. In case of a small deviation from this
equilibrium state, the linear response regime, the current is proportional to the applied
bias. Assuming that the electrochemical potentials satisfy eV = ∆µ = µL−µR, we obtain
the conductance [257]

G =
dI

dV

∣∣∣∣
V=0

=
2e2

h

∫
dE (−∂Ef)T (E). (C.9)

For low temperatures T ≈ 0, the Fermi function becomes a step function (see Eq. (A.14))

f(E − µ) = Θ(µ− E)

and
−∂Ef ≈ δ(E − µ) = δ(E −EF ).

Then Eq. (C.6) gives the low-bias, zero-temperature conductance

G =
2e2

h
T (EF ) = G0Tr

[
t+t
]

= G0

∑

n

Tn(EF ) (C.10)

with the quantum of conductance G0 = 2e2/h. In Eq. (C.10) we have introduced the
transmission Tn of the transmission eigenchannel n. The Tn are the eigenvalues of the
matrix t+t of Eq. (C.7) and are energy dependent.

That the derivation of the current formula is not trivial is demonstrated by the ap-
pearance of a recent paper, where the results of Meir et al. [256] for the electron transport
through an interacting region have been reformulated for nonorthogonal basis states {|φi〉}
by Thygesen [253]. Thygesen arrives at exactly the same expression for the current as we
do (see Eqs. (C.5) and (C.6)). He uses in his derivation the dual basis set in the center
of the system {|φi〉}. Due to the definition of the dual basis 〈φi |φj〉 = δji (see Eq. (B.1))

3The positive definiteness of ΓX , necessary for taking the square root of ΓX , will be proven in Sec. C.2.
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he gets rid of all overlap contributions in the perturbation between the leads and the cen-
ter. However, the construction of the dual basis for the center requires the knowledge of
the overlap structure of the complete system. This becomes clear when considering that
|φi〉 = gij |φj〉 = (S−1)ij |φj〉. Previously we have seen that (S−1)CC contains contribution

of the overlap from the left and right electrode (see Eq. (B.33)). The basis set {|φi〉} used
by Thygesen will therefore be highly nonlocal. Our derivation on the other hand is entirely
based on the covariant basis set {|φi〉}, which is consistently used in the left electrode,
the center, and the right electrode. Also in our case the question arises, how the current
operator would look like if we had for example not made the symmetric choice α = 1/2
in Eq. (C.2). However, we find our derivation more practical, in the sense that the con-
struction of the dual basis set in terms of basis functions is in reality very complicated,
because for strong overlap contributions the dual basis of the central system will involve
strong contributions of basis functions of the electrodes.

C.2 General properties of the elastic current operator

In this paragraph we will prove some general properties of the elastic current operator.
These will be the current conservation, meaning that the current is independent of the
charge border (see Fig. C.2), the conservation of the eigenvalues Tn of the current for a
fixed energy, and the boundedness of these eigenvalues Tn between 0 and 1.

Differing from the definition of the current operator in the local basis given above
(see Eq. (C.2)), we will now use the continuity equation for its definition. The continuity
equation relates the electron density operator ˆ̺ (see Eq. (A.22)) and the current density

operator ~̂j (see Eq. (A.24))

− d

dt
ˆ̺(~x, t) = ∇~̂j(~x, t). (C.11)

We can define the current operator Î as the integral over a charge border surface Ω (see
Fig. C.2)

Î = −qe
∫

Ω

d~S~̂j(~x, t). (C.12)

From this definition of the current operator, Î might appear to be a local operator. Its

expectation value I =
〈
Î
〉

should depend on the surface Ω, over which the current density

~̂j is integrated. Due to the continuity equation in the stationary case (see Eq. (C.11)),

however, the divergence of the current density vanishes (∇~̂j = 0) and the current operator
Î becomes independent of the surface Ω that divides the nanocontact into a left and a
right region. This is nothing else but the conservation of the total current I due to the
continuity equation.

We will now go on to demonstrate that not only the total current is conserved, but also
the transmission at every single energy. If we define the transport direction to be the z
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axis and choose surfaces Ω perpendicular to the z axis, we can parameterize the planes by
their z value (Ω = Ω(z)). In second quantization the current operator reads

Î(z) = −qeĴ(z) = −qe
∑

λ,λ′

Jλλ′(z)c
+
λ cλ′

Jλλ′(z) =

∫

Ω(z)

dxdyψ∗
λ(x, y, z)~̂j(x, y, z, t)ψλ′(x, y, z)

for some appropriately chosen states |ψλ〉 with quantum numbers λ.
We are interested in elastic currents. For this reason we choose the states |ψλ〉 to be

energy eigenstates. For such energy eigenstates the elastic current operator is diagonal
with respect to energy (Jλλ′(z) = Jλλ′(z)δEλ,Eλ′

). We will shown now that Jλλ′(z) does not
depend on z [255]. This conclusion follows from the continuity equation

〈ψλ|
d

dz
Ĵ |ψλ′〉 = 〈ψλ|

d

dt
Q̂ |ψλ′〉 = − i

~
〈ψλ|

[
Q̂, Ĥ

]
|ψλ′〉 (C.13)

= − i

~
(Eλ −Eλ′) 〈ψλ| Q̂ |ψλ′〉 = 0.

This expression vanishes, because Eλ = Eλ′ . This implies that Jλλ′(z) = Jλλ′ is indeed a
constant. Therefore a more specific representation of the charge transfer operator Ĵ is

Ĵ(z) =
∑

λ,λ′

δEλ,Eλ′
Jλλ′c

+
λ cλ′ ,

where the elements Jλλ′ do not depend on z. If we diagonalize Ĵ at a fixed energy E, we
get

Ĵ(z, E) =
∑

ν

δE,Eν
Jνc

+
ν cν .

The interpretation of this equation is that the elastic current I = −qe
〈
Ĵ
〉

possesses

eigenvalues −qeJν , which characterize it completely at a fixed energy. To every nonzero
transmission eigenvalue Tn at energy E there exists a corresponding Jn = 2

h
Tn, where the

energy Eν of the states |ψν〉 that diagonalize Ĵ is equal to the energy E (Eν = E). This
means that eigenstates of the current operator at energy E have a constant spectrum,
because the Jν are independent of z. The transmission eigenvalues may be probed in
any cut Ω(z). In particular the transmission eigenvalues at EF are real observables in
the sense that they are eigenstates of an operator, namely the elastic current operator,
and they can be measured by means of the subgap I-V characteristics of the nanocontacts
[19]. A certain contact is fully characterized by the energy dependent set of transmission
eigenvalues Tn(E).

Next, we want to proof that the spectrum of t+t is bounded between 0 and 1. It is not
difficult to see that every eigenvalue of t+t is positive (Tn ≥ 0 for Tn ∈ spec {t+t}). The
reason is that t+t is positive definite (~a+t+t~a = |t~a|2 ≥ 0), and therefore also all eigenvalues
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need to be positive. In order to express the transmission T (E) in terms of t+t with t(E) =√
ΓLG

a
CC

√
ΓR (see Eqs. (C.7) and (C.8)) the square root of scattering rate matrix ΓX

needs to exist. From Eq. (B.42) we note that ΓX = 2πtCXρXXtXC = −2tCXIm [grXX ] tXC
is real and symmetric. For this reason it is possible to diagonalize ΓX by means of an
orthogonal transformation. Recalling that by grXX we actually mean the contravariant
component (gr)XX , we can apply the proof for Eq. (B.35), which says in our lax index
notation that −Im [grXX ] is positive definite. For this reason also ΓX is positive definite

(~a+ΓX~a =
(
~a+tCX

√
2
)
(−Im [grXX ])

(√
2tXC~a

)
= ~b+ (−Im [grXX ])~b ≥ 0 with ~b =

√
2tXC~a)

and all its eigenvalues are positive. To summarize, the positive definiteness of the real
and symmetric scattering matrices guarantees that we can write the transmission in terms
of the transmission matrix t as t+t. The spectrum Tn of t+t is therefore positive and all
eigenvalues Tn are real due to the hermiticity of t+t.

Next we will give a direct proof that for all n the transmission eigenvalues Tn are less
than one (Tn ≤ 1). We write down Eq. (B.46) in the form

0 = −2πρCC +Gr
CCΓLG

a
CC +Gr

CCΓRG
a
CC

Now, we multiply from the left and the right with
√

ΓL and add the unity on both sides1CC = 1CC −
√

ΓL2πρCC
√

ΓL +
√

ΓLG
r
CCΓLG

a
CC

√
ΓL +

√
ΓLG

r
CCΓRG

a
CC

√
ΓL

= 1CC −
√

ΓLi (G
r
CC −Ga

CC)
√

ΓL +
√

ΓLG
r
CCΓLG

a
CC

√
ΓL + t+t,

where the definitions of ρ and t have been used (see Eqs. (A.31) and (C.8)). This can be
brought into the final form 1CC = r+r + t+t (C.14)

with the reflection matrix
r = 1CC + i

√
ΓLG

a
CC

√
ΓL (C.15)

As proven before, the square root of ΓL exists. For any vector ~a we get the inequality
|~a|2 = |r~a|2 + |t~a|2 ≥ |t~a|2 so that the eigenvalues Tn of t+t need to be bounded by one. As
an ”add on” of this proof, we obtain an explicit form for the reflection matrix r.

It should be noted that both the transmission matrix t and the reflection matrix r can
be transformed with arbitrary unitary transformations

t̃ = U1tU2 and r̃ = U1rU2 (C.16)

which still leaves Eq. (C.14) unchanged, because1CC = U+
1 U1 = U+

1 r
+U+

2 U2rU1 + U+
1 t

+U+
2 U2tU1 = r̃+r̃ + t̃+t̃.

As a consequence there exist many different transmission and reflection matrices t and r,
which are all connected by transformations of Eq. (C.16) and their particular form is not
unique.



Appendix D

Electrode Green’s functions

In this chapter the details on the construction of the electrode Green’s functions gXX will
be given as they appear in the self-energies

ΣX(E) = (HCX −ESCX) gXX (HXC −ESXC)

and as they are needed for the construction of the Green’s function of the central system
GCC (see Eqs. (B.26) and (B.27)). There are two kinds of Green’s functions that we have
used within this work for the construction of the electrode Green’s functions, namely bulk
and surface Green’s functions. In the theoretical analysis of stretching curves of metallic
nanowires and conductance histograms in Sec. 2 (as published in Refs. [35, 36]) we used
bulk electrode Green’s functions, although we repeated part of the analysis with surface
electrode Green’s functions (see Sec. 2.10). In the ab-initio study of the conductance based
on density functional theory (DFT) we obtained all our results by use of surface electrode
Green’s functions (see Secs. 5 and 6), and bulk electrode Green’s functions have only been
used for illustrative purposes (see the discussion in Sec. 5.1.5).

In the context of conductance calculations surface electrode Green’s functions should
be preferred to bulk electrode Green’s functions. The reason is that the electrodes are
semi-infinite systems, instead of infinite ones assumed in the construction of bulk Green’s
functions. The knowledge about the construction of bulk Green’s functions may, however,
be very useful. For example the density of states (DOS) of a crystal can be extracted
from the bulk Green’s function. In this way we can learn something about the electronic
structure of a certain material. Additional information may be gained from the DOS by
resolving its different orbital contributions or determining the crystal’s Fermi energy from
it (see, e.g., Fig. E.3).

In this chapter we will first present the construction of bulk Green’s functions in
Sec. D.1. In this context we will also discuss how to obtain the bulk DOS (see Sec. D.1.1).
Finally we will present the more complicated computation of surface Green’s functions in
Sec. D.2.

219
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D.1 Construction of bulk Green’s functions

In this paragraph, we want to compute the bulk Green’s function of a crystal. In order to
accomplish this task we assume the crystal’s atoms to be arranged in a regular array, the
Bravais lattice. A Bravais lattice consists of all points with position vectors ~Rn of the form

~Rn = n1~a1 + n2~a2 + n3~a3,

where ~a1, ~a2 , and ~a3 are any three vectors not all in the same plane, and n1, n2, and n3

range through all integral values (ni ∈ Z). Thus the point ~Rn =
∑

i ni~ai is reached by
moving ni steps of length ai into the direction of ~ai for i = 1, 2, and 3 [184]. Here, the

subscript n at ~Rn shall indicate the index tuple n = (n1, n2, n3) . The vectors ~ai are called

primitive vectors and are said to span the direct lattice
{
~Rn

}
.

We want to emphasize right from the start that the description of a crystal as an
array of atoms arranged in a perfect Bravais is an idealization. A perfect crystal consists
of an infinite number of atoms while any real system is made up of a finite number of
atoms and possesses surfaces. Furthermore real solids are never absolutely pure, there is
a certain temperature-dependent probability of finding missing or misplaced atoms, and
atoms continually undergo thermal vibrations about their equilibrium positions. All these
effects destroy the perfect translational symmetry present in a crystal described as a Bravais
lattice. A practical approach, however, is to assume a perfectly translationally invariant
crystal (implying a perfectly periodic effective one-electron potential U(~r)) and treating
all the imperfections mentioned above as small perturbations [184, 258].

In order to model a perfectly translationally invariant system with a finite number of
atoms one employs periodic boundary conditions (PBCs), also called ”Born-von-Kármán”
boundary conditions. It is convenient to work in a lattice commensurate with a primitive
cell of the underlying Bravais lattice. All physically relevant functions f(~r) of the crystal
(such as electronic wave functions ψ(~r) or the effective one-electron potential U(~r)) need
to fulfill the generalized PBCs

f(~r) = f(~r +Ni~ai) i = 1, 2, 3, (D.1)

where the ~ai are the three primitive vectors of the Bravais lattice and the Ni are integers
of order N1/3, where N = N1N2N3 is the total number of primitive cells in the crystal.
We concentrate now on functions fn = f(~Rn) defined at the lattice positions ~Rn. For such
functions and their Fourier transforms the following relations hold if PBCs are assumed

f(~k) =
∑

n

f(~Rn)e
−i~k· ~Rn (D.2)

f(~Rn) =
1

N

∑

n

f(~k)ei
~k·~Rn . (D.3)

From Eq. (D.1) it follows that

Ni
~k · ~ai = 2πqiNi = 2πli, (D.4)
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where li is an integer (li ∈ Z) and where we have set

~k =
3∑

i=1

ki~bi. (D.5)

The vectors
~bi = π

∑

jk

εijk
~aj × ~ak

~a1 · (~a2 × ~a3)

(i = 1, 2, and 3) are the primitive vectors of the reciprocal lattice spanned by the ~ai with
the totally antisymmetric tensor

εijk =






1 (i, j, k) = (1, 2, 3) and cyclic
−1 (i, j, k) = (1, 3, 2) and cyclic
0 else

.

The vectors ~bi are defined by the relation

~ai ·~bj = 2πδij. (D.6)

Notice that, except for a factor 2π, the reciprocal lattice vectors ~bi are the contravariant
basis set with respect to the covariant basis spanned by the vectors ~ai (see Eq. (B.1)).
From Eq. (D.4) it follows that

ki =
li
Ni
. (D.7)

It is sufficient to limit ~k to the first Brillouin zone (or the primitive cell of the reciprocal

lattice), because the addition of a reciprocal lattice vector ~Gm =
∑

imi
~bi to ~k will not

alter anything in Eqs. (D.2) and (D.3) ( exp(−i ~G · ~Rn) = 1). This means that the indices
li can be restricted to the set

li ∈M ; M =

{
−Ni

2
, . . . ,

Ni

2
− 1

}
. (D.8)

Also other choices for each index li are possible such as li ∈ M ′; M ′ = {1, . . . , Ni} [258].

Set M can be transformed into the set M ′ by adding the reciprocal vector ~bi to one half
of the indices of M , namely to li ∈ {−Ni/2, . . . , 0}. Altogether this means that there are

N different discrete vectors ~k, which are specified by the index tuple l = (l1, l2, l3) and we

will write from now on ~kl in the same way as we did for ~Rn. In our implementations we
choose the index set M (see Eq. (D.8)) as will be explained later.

For ~kl and ~km in the first Brillouin zone the following relations hold

1

N

∑

n

ei(
~kl−~km)·~Rn = δ~kl,~km

(D.9)

1

N

∑

l

ei
~kl·(~Rm−~Rn) = δ~Rm, ~Rn

. (D.10)
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They can be proven easily by writing ~Rn =
∑

i ni~ai and ~kl =
∑

i
li
Ni

~bi. If we exploit

Eq. (D.6) and the identities e2πil = 1 and
∑N

n=1 a
n = a

(
1 − aN

)
/ (1 − a) we get

1

N

∑

p

ei(
~km−~kn)·~Rp =

3∏

i=1

1

Ni

Ni∑

pi=1

e2πi(mi−ni)pi/Ni =

{
1 if mi = ni for all i
0 if mi 6= ni for one i

.

Instead of the index set M ′ we used the equivalent set M . This proves Eq. (D.9) and
Eq. (D.10) can be obtained in the same way.

Let us now assume that a set of parameters Y0α,jβ is available to us, where Y can either
be the overlap S or the Hamiltonian H , 0 and j stand for the index of the Bravais lattice
cell at point ~R0 = ~0 and ~Rj =

∑
i ji~ai, and α and β are the orbitals or basis functions for

atoms in the Bravais lattice cell at position 0 and j, respectively. Such a set of parameters
describes a translationally invariant system completely, because for such a system only the
relative distance matters. Therefore every element Ymα,nβ can be brought into the form
Y0α,jβ with j = n−m, because

Y0α,jβ = Y0α,(n−m)β = Ymα,nβ for j = n−m. (D.11)

If we construct the Green’s function for a translationally invariant system, the Green’s
function G needs to be translationally invariant as well. This can be seen from the basic
definition of G (see Eq. (B.13)), namely

δi,r =
∑

q

[(E + iη)S −H ]0,qG
r
q+i,r =

∑

q

[(E + iη)S −H ]0,q G
r
q+i+l,r+l = δi+l,r+l. (D.12)

From this relation it can be seen that Gr only depends on the difference in its index
arguments, because Gr

q+i,r and Gr
q+i+l,r+l obey the same equations.

According to Eq. (D.12) a Fourier transformation of the overlap S0,j and the Hamilto-
nian H0,j to k-space will allow the determination of the Green’s function by an inversion

for every ~k point separately. A Fourier back transformation to direct space finally yields
the bulk Green’s function. In formulas this recipe will be given now.

We assume that a set of parameters Y0,j (with Y = S or H) is given to us. These matrix

elements will be centered around the origin ~R0 = ~0 and will decay with the distance
∣∣∣~Rj

∣∣∣.
For this reason we choose a lattice ~Rn = n1~a1 + n2~a2 + n3~a3, where the indices ni run
symmetrically around the origin (ni ∈M = {−Ni/2, . . . , Ni/2 − 1}) and the Ni are chosen
large enough. (The conditions that need to be fulfilled by the Ni will be addressed further
below.) Then we Fourier transform1 the elements Y0,j (see Eq. (D.2))

Yk,α,β =
(
Y (~kk)

)

α,β
=
∑

j

(
Y (0, ~Rj)

)

α,β
e−i

~kk· ~Rj =
∑

j

Y0α,jβe
−i~kk·~Rj (D.13)

1All discrete Fourier transformations of this work have been carried out with the numerical routines of
the fftw-package 3.0, dated April 2003. This package is available at http://www.fftw.org. For historical rea-
sons in our implementation we first perform a backward transformation (keyword: FFTW BACKWARD)
to go to k-space and then a forward transformation (keyword: FFTW FORWARD) to go back to direct
space. This corresponds to a different sign convention of the exponents in the Fourier transformation in
Eqs. (D.2) and (D.3).



D.1 Construction of bulk Green’s functions 223

or in a more compact form, when we suppress orbital indices

Yk = Y (~kk) =
∑

j

Y (0, ~Rj)e
−i~kk· ~Rj =

∑

j

Y0,je
−i~kk·~Rj . (D.14)

The bulk Green’s function in k-space is diagonal and can be determined via

[(E + iη)Sk −Hk]G
r
k(E) = 1 or Gr

k(E) = [(E + iη)Sk −Hk]
−1 . (D.15)

A Fourier back transformation of Gr
k to direct space yields the bulk Green’s function

Gr
0,j(E) =

∑

k

Gk(E)ei
~kk· ~Rj (D.16)

from which, via the translational symmetry (see Eq. (D.11)), any other matrix element
Gr
m,n(E) can be obtained.

Now to the conditions that the Ni need to fulfill. The periodic boundary condi-
tions imply a finite period in direct space. Explicitly this means that Y0,j = Y (~0, ~Rj) =

Y (~0, ~Rj + ~RJ ) = Y0,j+J where J = (J1, J2, J3) = (m1N1, m2N2, m3N3) (with mi ∈ Z). This
periodicity is not wanted, because the matrix elements Y0,j should decay for increasing∣∣∣~Rj

∣∣∣, whereas now for instance Y0,0 = Y0,J . In order to avoid unphysical results, the period

of the lattice in each direction needs to be chosen large enough for the system under consid-
eration. The first condition is of course, that (i) the parallelepiped ~Rn = n1~a1 +n2~a2 +n3~a3

with ni ∈M centered around ~R0 = ~0 should at least be big enough, so that all the elements
Y0,j can be taken into account in the Fourier transformation Eq. (D.14) (see Fig. D.1 for
a sketch of this situation in two dimensions). The second condition is that (ii) no matrix
element Gr

m,n = Gr
0,j with j = n − m is needed in the construction of the bulk Green’s

function gXX with an index ji /∈ M . In advance the Ni need to be chosen large enough
to meet these two conditions. Of course a convergence of the results with respect to the
employed period Ni or in other words the k-point number should be made.

In order to show, how the conditions (i) and (ii) can be taken care of, we write ~Rj =

j1~a1 + j2~a2 + j3~a3 = A~j with A = (~a1,~a2,~a3). Then we can determine the maximum

integer index, needed to run over all points in a sphere with radius
∣∣∣~R
∣∣∣, by noting that

~R2
j = ~jTATA~j ≥ λmin(A

TA)~j2 (where λmin(A
TA) is the smallest eigenvalue of ATA) .

Therefore an index Ni/2 =
⌈√

R2/λmin(ATA)
⌉

(where ⌈x⌉ means the next integer n ≥ x)

is a sufficient choice for insuring that all lattice atoms ~Rj inside a sphere of radius R are

present. If the matrix elements Y0,j vanish for all
∣∣∣~Rj

∣∣∣ ≥ R, then this choice of the Ni fulfills

condition (i). Concerning condition (ii), the maximum index ji needed in the construction
of gXX can be determined by running over differences of position vectors in the electrode
X. The maximum index needed in the construction of the electrode Green’s function is
then given as max(|ni|), where ~n = A−1 ~Rn and ~Rn is a difference vector of two electrode
atoms. Note that for this reason (and similarly in the construction of the surface Green’s
functions), all electrode positions need to coincide with positions of the Bravais lattice.
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1a1N →

2a2N a2
→

a1
→

→

Figure D.1: A finite crystal made up of N = N1 × N2 primitive cells with lattice vectors
~a1 and ~a2 is repeated periodically in space. In the middle all points ~Rn = n1~a1 +n2~a2 with
n ∈ M (see Eq. (D.8)) are indicated. The period of the finite crystal is N1~a1 and N2~a2

as shown in the figure. Circles around the origin of each cell sketch the maximum radius
of the elements Y0,j (Y = S or H). The period Ni needs to be chosen large enough to

accommodate all elements Y0,j in the lattice of one crystal cell ~Rn.

For the special case of an fcc lattice the standard lattice vectors are

~astd1 =
a0

2
(~e2 + ~e3) ~astd2 =

a0

2
(~e1 + ~e3) ~astd3 =

a0

2
(~e1 + ~e2) (D.17)

with the lattice constant a0 and the cartesian unit vectors ~ei [184]. As will be explained
further below, the actual ~ai may be rotations thereof (~ai = R~astdi with an appropriate
proper rotation R). We find for an fcc lattice with these primitive lattice vectors that
λmin(A

TA) = a2/4 and therefore an index Ni/2 =
⌈

2R
a

⌉
is a sufficient choice for insuring

that all lattice atoms ~Rj inside a sphere of radius R are present. If the matrix elements Y0,j

vanish for all
∣∣∣~Rj

∣∣∣ ≥ R, then this choice of the Ni fulfills condition (i). Notice that with

the choice of the (nonorthogonal) lattice vectors ~ai (see also Eq. (D.17)) only one atom is
in the primitive cell of the fcc lattice. Thus the crystal structure can be described by a
monatomic Bravais lattice [184].

The formalism as presented above is not restricted to an fcc lattice, but can easily be
adapted to describe more complicated crystal structures, such as hcp. To tackle such a
problem, PBCs need to be assumed on a Bravais lattice with a nontrivial basis describing
several atoms per unit cell [184]. In essence this just increases the number of orbitals
for the elements Y0j where 0 and j are more generally – and as used above – indices of
the primitive cell (and not simply the atom). We investigated Zn systems with an hcp
structure for which this complication arises [259]. In that work our formalism, presented
above, has been applied for the first time and bulk Green’s functions were used to describe
the electrode Green’s function gXX . From now on, however, we will only consider the
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special case of crystal structures like fcc that can be described by a monatomic Bravais
lattice. Then the indices 0α and jβ of Y0α,jβ directly refer to the orbitals α and β at atomic

positions at ~R0 and ~Rj , respectively, and we will use the indices 0α and jβ from now on
in this more special meaning.

Throughout this work we concentrate on fcc lattices. If bulk electrode Green’s functions
gXX are be constructed via G0α,jβ (see Eq. (D.16)), in turn obtained from parameters
Y0α,jβ, it is important that the index j as well as the orbital indices α and β refer to
the electrode lattice with primitive lattice vectors ~ai. If the parameters Y0α,jβ have instead
been determined with respect to the standard lattice vectors ~astdi of Eq. (D.17), appropriate
transformations of both the positional index and the orbital indices to the coordinate
system of the ~ai are necessary. How such transformations can be performed is described
in Sec. F.1.

If the crystal lattice of the left electrode has the same lattice vectors ~ai as the lattice
on the right, a substantial amount of time can be saved by calculating the elements G0,j

only once. These matrix elements can then be used for the construction of both the left
and right electrode Green’s functions gLL and gRR simultaneously. If, however, the left and
right electrode lattices do not possess the same lattice vectors ~ai, then their fcc lattices need
to be connected by an appropriate rotation R. Let’s suppose the bulk Green’s function
elements G0,j for the right electrode have been computed. In order to obtain the Green’s
function elements for the left electrode, the G0,j need to be transformed appropriately,
before the left Green’s function can be computed (see Sec. F.1). At present, however, we
implemented the separate construction of the Green’s function elements of the left and
right electode, which should be less efficient.

As only a finite number of k-points is actually used in any numerical construction of a
bulk Green’s function, the broadening η employed in the computation ofGk (see Eq. (D.15))
needs to be finite. The more k-points are used, the smaller can this broadening be. This
balance between the broadening and the number of employed k-points will be illustrated
at the example of the bulk DOS in the following paragraph (see Fig. D.2).

D.1.1 Density of states for a bulk atom

In order to gain some insight into the electronic structure of a solid, the DOS is a valuable
quantity. As discussed in Secs. A.2, B.3, and B.3.2 (see Eqs. (A.31), (A.32), (A.36), (B.32))
the imaginary part of the Green’s function contains information about available energetic
states of a physical system. Eq. (B.32) shows, however, that the Green’s functions contain
an overlap weight, which one needs to get rid of, in order to achieve that the energy integral
over a certain atomic orbital equals 1.

From Eq. (B.32)

−
∫ ∞

−∞

dE

π
Im [Gr(E)] = −

∫ ∞

−∞

dE

π
Im
[
((E + iη)S −H)−1] = S−1

it becomes obvious that the overlap weight can be eliminated in several ways. The two
possibilities that we want to concentrate on are a multiplication from the right (or left)
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with the overlap S

−
∫ ∞

−∞

dE

π
Im [Gr(E)]S = −

∫ ∞

−∞

dE

π
Im
[(

(E + iη)1− S−1H
)−1
]

= 1
or a symmetric multiplication from both sides with the square root of the overlap2 S1/2

−
∫ ∞

−∞

dE

π
S1/2Im [Gr(E)]S1/2 = −

∫ ∞

−∞

dE

π
Im
[(

(E + iη)1− S−1/2HS−1/2
)−1
]

= 1.
These two possibilities correspond to a Mulliken or Löwdin analysis, respectively.

By means of the recipe for determining the bulk Green’s function, the bulk DOS can
be constructed by (i) a Fourier transformation of Y0,j (Y = S or H) to the reciprocal space
(see Eq. (D.14)), (ii) a construction of an orthogonal Hamiltonian3

Horth
k = HkS

−1
k (D.18)

or
Horth
k = S

−1/2
k HkS

−1/2
k , (D.19)

next (iii) the determination of

Gorth,r
k =

(
(E + iη)1k −Horth

k

)−1
(D.20)

(see Eq. (D.15)), and (iv) a subsequent Fourier back transformation (see Eq. (D.16)). The
extraction of the element Gorth,r

0,0 (E) gives the contribution of the orbital α to the DOS

DOSα(E) = −1

π
Im

[(
Gorth,r

0,0 (E)
)

α,α

]
. (D.21)

The total DOS of a bulk atom is the sum over all orbital contributions of that atom

DOS(E) =
∑

α

DOSα(E) = −1

π
Tr

[
Im

[(
Gorth,r

0,0 (E)
)
α,α

]]
. (D.22)

In case that we start directly from an orthogonal Hamiltonian Horth
0,j in direct space,

it is just necessary to transform it to k-space in order to obtain the orthogonal Green’s
function Gorth,r

k via Eq. (D.20). Step (iv) is identical.
Let us now demonstrate the remark made at the end of Sec. D.1 that there is a con-

nection between the broadening η and the number of k-points used for the construction of
the bulk Green’s function. We will show at the example of the bulk DOS of Al that more
k-points allow the choice of smaller broadenings. In Fig. D.2 the DOS of Al is plotted
for various broadenings and k-point numbers. In the left panel of that figure the DOS is

2Note that S1/2 needs to exist, because S is a positive definite matrix [81]. The proof uses that

Sij =
∫
d3rφi(~r)φj(~r) from real basis functions φi(~r). Then ~dTS~d =

∫
d3r (

∑
i φi(~r)di)

2 ≥ 0 for an

arbitrary (real) vector ~d. Thus the eigenvalues of any overlap matrix are all positive. If s is the diagonal
matrix of eigenvalues of S (with si ≥ 0), we can write S = UsUT with an orthogonal matrix U (because
ST = S). Any power γ of S (as for instance the square root) is obtained as Sγ = UsγUT .

3Note that the Fourier transformation of the identity 1 in real space is 1 in the k-space.
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Figure D.2: DOS as obtained for Al. The parameters Y0,j employed in these calculations
stem from an Al cluster of 683 atoms described within the al hw-min basis set and the
functional BP-86 (see Sec. F.4 for details). The orthogonal Hamiltonian has been obtained
from a symmetric orthogonalization (see Eq. (D.19)). In the left figure the DOS is shown
for different k-point numbers of N = 163, 323, and 643 at a small broadening η = 0.005 H =
0.14 eV. The figure to the right shows again the DOS, but this time for a bigger broadening
of η = 0.02 H = 0.54 eV and N = 323 and 643 k-points. For reasons of comparison also the
DOS for the smaller broadening of η = 0.005 H is shown with N = 643. In both figures the
Fermi energy EF = −5.46 eV is indicated as it is obtained from the HOMO and LUMO
of the Al683 cluster.

shown for different numbers of total k-points4 N = 163, 323, and 643 for a fixed broad-
ening η = 0.005 H = 0.14 eV. Obviously there are many wiggles present at the selected
broadening and a total k-point number of N = 163. For N = 323 many of the wiggles have
decreased in amplitude, and for N = 643 they are only faintly visible. Commonly we use
Ni = 32 in our calculations. For this reason we choose a bigger broadening in order to get
rid of artifical features in the DOS. In the right panel of Fig. D.2 we show the bulk DOS
for a broadening of η = 0.02 H= 0.54 eV as we employ it for the conductance calculations
in Al contacts (see Sec. 5.2). We see that for the increased broadening η = 0.02 H the
DOS for N = 323 has already converged with respect to the number of k-points and no
difference is visible as compared to the curve with η = 0.02 H and N = 643. The trade-off
is that, with respect to a smaller broadening, the features in the DOS are somewhat more
blurred, as is visible in the comparison to the DOS curve at a k-point number of N = 643

and a broadening of η = 0.005 H.

By integrating up the DOS, the Fermi energy EF can be determined. As indicated
in Fig. D.2 we get EF = −5.46 eV as the energy from the highest occupied molecular
orbital (HOMO) and lowest unoccupied molecular orbtial (LUMO) of the Al683 cluster (see

4The number of primitive cells Ni (i = 1, 2, and 3) along each direction of the underlying fcc lattice
with Bravais lattice vectors ~ai (see Eq. (D.17)) is the same for all three directions (N1 = N2 = N3), so

that the total number of k-point is N =
∏3

i=1Ni = N3
1 .
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discussion in Secs. 4.3.1 and 4.3.3), from which the parameters for the DOS calculation
stem. The integration of the DOS curves for η = 0.02 H at N = 323 and 643 both yield
EF = −5.63 ± 0.03 eV, while for η = 0.005 H and N = 643 we get EF = −5.55 ± 0.03 eV.
As EF is somewhat dependent on the broadening chosen, we prefer to obtain the Fermi
energy from the HOMO and LUMO energies of the big atomic clusters computed to obtain
the bulk parameters for our DFT calculations. For the TB parameterization presented in
Sec. E.1 there is, however, no other way than to obtain EF from an integration of the bulk
DOS.

D.1.2 Special k-points

If we consider the case of an infinite crystal in the thermodynamic limit (Ni → ∞, N =∏3
i=1Ni → ∞, V → ∞, and N/V = const.) then, the k-points become infinitely dense

in the first Brillouin zone (see Eqs. (D.5), (D.7), and (D.8)). In this case, the summation
over k-points in Eq. (D.3) becomes an integral. More specifically we can write in the
thermodynamic limit for the Green’s function in Eq. (D.16)

Gr
0,j(E) =

∑

k

Gk(E)ei
~kk· ~Rj =

V

(2π)3

∫

1.BZ

d3kGk(E)ei
~kk· ~Rj , (D.23)

where 1.BZ stands for the first Brillouin zone, and we used the fact that Nd3k/V1.BZ is
the number of k-points present in the infinitesimal volume d3k. By exploiting that V1.BZ =∣∣∣~b1 ·

(
~b2 ×~b3

)∣∣∣ = (2π)3 / |~a1 · (~a2 × ~a3)| = (2π)3N/V we finally arrive at Eq. (D.23) [258,

184].
Techniques have been developed to evaluate integrals over the first Brillouin zone as

given in Eq. (D.23). Especially, in Ref. [260] it has been shown that such integrals can be
determined in an efficient and accurate way by evaluating the integrand at sets of special
k-points in the 1.BZ. Sets of such special k-points were already given in that Ref., but
Monkhorst et al. [261] developed a more systematic approach for generating them. When
special k-points are used in an integration, it is, however, very important that the integrand
meets two conditions. First it needs to be periodic in k-space, and second the integrated
function needs to possess the complete symmetry of the direct lattice.

Concerning Gk(E)ei
~kk· ~Rj , the condition of periodicity in k-space is met. (See the discus-

sion in the context of Eq. (D.8), from which it follows that exp(i~kk · ~Rj), f(~k) in Eq. (D.21)
and therefore also Gk (see Eq. (D.15)) are invariant with respect to additions of reciprocal

lattice vectors ~G to their argument ~k.) The second condition of complete lattice symmetry
is, however, more restrictive. We will show now that this requirement is only fulfilled for
~Rj = 0. In Eq. (D.12) it has been demonstrated that the translational invariance of Y0,j

(Y = S or H) carries over to G0,j . The same is true for point group operations Ti (where
Ti is a rotation or pseudo-rotation and i ranges over all operations of the point group of
the underlying space group) [262]. Thus if Y is invariant with respect to Ti (Y = T−1

i Y Ti)
then we get 1 = [(E + iη)S −H ]Gr = T−1

i 1Ti = [(E + iη)S −H ]T−1
i GrTi,
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which tells us that, because Gr = T−1
i GrTi, all the point group symmetries of Y are valid

for G. Taken together with the translational invariance of G we see that the elements
G0,j obey the same symmetries as the Y0,j, namely the elements G0,j for a set of js are
connected via the space group of the Bravais lattice. Let us now look at the integrand

Gke
i~kk· ~Rj in Eq. (D.23). For Gk it follows from Eq. (D.2) that

Gk = G(~kk) =
∑

j

G0,je
−i~kk·~Rj . (D.24)

Therefore Gk is lattice symmetric, because in the sum over elements G0,j the application of
a Ti changes the order of the summation, but as all j appear in the summation, we still get
Gk = T−1

i GkTi. However, the phase factor exp(i~kk · ~Rj) is obviously not lattice symmetric

if ~Rj 6= 0. Therefore the two requirements on the integrand Gk(E)ei
~kk· ~Rj in Eq. (D.23)

are only met for ~Rj = 0. Nevertheless, this observation has an interesting consequence for
the DOS. According to Eqs. (D.21) and (D.22) the computation of the DOS requires the
knowledge of (the imaginary part of) the onsite elements G0,0 only.

To summarize, special k-points can be used to compute the DOS or, more generally,
onsite elements of the Green’s function by carrying out the k-space integral

Gr
0,0(E) =

∑

k

Gk(E) =
V

(2π)3

∫

1.BZ

d3kGr
k(E). (D.25)

The set of special k-points lies in an irreducible part of the first Brillouin zone. A high
symmetry of the Bravais lattice may therefore lead to an accurate integration with few
k-points. Explicitly, the integral is then approximated as

Gr
0,0(E) =

V

(2π)3

∫

1.BZ

d3kGr
k(E) ≈

Nk∑

i=1

ωiG
r(~ki, E),

where ~ki is a point in the set of special k-points, ωi is its weight and Nk it the total number
of special k-points. This set of points can be improved systematically if needed [261].5

D.2 Construction of surface Green’s functions

In this paragraph the construction of surface Green’s functions will be described. Sur-
face Green’s functions are of relevance in the calculation of the transmission properties
of atomic contacts. They are Green’s functions of a semi-infinite system such as an elec-
trode. In other words the electrode Green’s function gXX should be modeled as a surface
Green’s function. Unfortunately, the construction of surface Green’s functions is usually

5All other elements Gr
0,j with j 6= 0 cannot be obtained from an integration with special ~k-points. For

obtaining them, a practical way is the assumption of Born-von-Kármán periodic boundary conditions in
a finite crystal as explained above.
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more time-consuming than the construction of bulk Green’s functions. Therefore, the use
of bulk Green’s functions in the determination of conductances of atomic contacts may be
necessary, if the system size is very big, and time is becoming an important factor. The
approximation of electrode Green’s functions by bulk Green’s functions should reproduce
correctly the general trends. This approximation has been made for the break junctions
studied in Chap. 2, where the conductance histograms of different metals are studied.
One should, however, be aware that the use of bulk Green’s functions constitutes an un-
controlled approximation. For this reason the effort has been undertaken to implement
surface Green’s functions. The results of Chap. 2 have partly been reinvestigated with
surface Green’s functions (see Sec. 2.10). No qualitative changes have been detected, but
quantitatively the modeling of the electrodes by surface Green’s functions instead of bulk
Green’s functions changes the results. In our DFT transport method we use the improved
electrode description with surface Green’s functions (see Secs. 5 and 6).

The computation of surface Green’s function in this work uses the decimation technique
of Guinea et al. [263]. The derivation of the equations will be given below, as the decimation
formulas are needed in a slightly more general form in this work. The generalization
concerns the use of a nonorthogonal basis, a coupling which is farther than second layer, and
the use of Green’s function matrices instead of vectors (see Eq. (6) and the Eqs. following
it in Ref. [263]). We want to thank Michael Häfner for discussions on surface Green’s
functions, which were very helpful, when we decided to describe the electrode Green’s
functions by means of surface Green’s functions.

We will construct the surface Green’s function from bulk parameters. At first this
may appear odd, because in any self-consistent procedure, surface parameters should differ
from bulk parameters. However, if the planes partitioning the system into the left (L),
central (C), and right (R) part are defined such that the wire cross-sections at the left
and right side are big, surface effects can be neglected for most of the atoms in the L
and R part of the system. Then the construction of a surface Green’s function from bulk
parameters corresponds closely to the actual situation in the contact (see Fig. D.3). In
any real transport calculation in this work it is of course difficult to construct a center
large enough to actually achieve that a large number of atoms can be described by bulk
parameters.

For the construction of surface Green’s functions we need to distinguish between the
left and the right surface. First we will treat the right surface. In addition, and opposed to
bulk Green’s functions, where all directions are equivalent, the transport direction, which
shall be perpendicular to the surface plane, plays now a different role than the transverse
directions spanning the surface plane. The x and y axis (transverse directions) shall be in
the surface plane, while the z axis shall be perpendicular to the surface plane (see Fig. D.4).

With a rotation of the set of the standard fcc lattice vectors (see Eq. (D.17)) we will be
able to describe the electrode lattice with the primitive lattice vectors ~ai (~ai = R~astdi with
an appropriate proper rotation R, where ~astdi are the primitive lattice vectors of Eq. (D.17)
in the standard notation). From these ~ai we construct new vectors, depending on the kind
of surface present (e.g., [100], [110], or [111]), where two are located in the surface plane,
we call them ~c1 and ~c2, and one is oriented along the positive z direction, ~c3. (In Sec. F.3
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left right

center

Figure D.3: Sketch of a contact as possibly present at a microscopic level in molecular
electronics. If the central system called ”center” in the figure is chosen large enough, the
main part of atoms in the atomic layers in the left and right electrode are very similar to
bulk atoms with the exception of a few atoms located at surfaces.

further details are given on how the vectors ~ci are chosen for the particular surface.) As
before we will assume that a parameter set Ymα,nβ = Y0α,jβ (Y = S or H and j = n−m) is
available to us (see Eq. (D.11)) and that the parameters obey the space group symmetry
of the the Bravais lattice. The matrix elements Ymα,nβ shall have the orientation of the
electrode lattice (and a possible transformation has already been performed in oder to
orientate them properly (see Sec. F.1)).6 As before the indices m = (m1, m2, m3) and
n = (n1, n2, n3) are a three-dimensional vector tuple standing for the integer indices in

the spatial vectors ~Rm =
∑

imi~ai and ~Rn =
∑

i ni~ai (see explanations in the context of
Eq. (D.11)). From these indices we go over to matrix elements with indices referring to
the ~ci, namely

Ymα,nβ → Yt1p1α,t2p2β,

where t1 = (t11, t12) and t2 = (t21, t22) are two-dimensional index tuples in the surface
plane and p1 and p2 are one-dimensional index-tuples, describing the location in the plane
perpendicular to the surface. More specifically we have the relation

~Rm =

3∑

i=1

mi~ai =

2∑

i=1

t1i~ci + p1~c3 = ~Rt1,p1,

from which the surface index tuple (t1, p1) is obtained from the bulk index m as

(t1, p1) = C−1Am

with the matrices A = (~a1,~a2,~a3) and C = (~c1,~c2,~c3). Due to the translational invariance
of the parameters Ymα,nβ (see Eq. (D.11)) we can choose one of the transverse indices to

6In the notation of Fig. 4.4 we are dealing with the parameters Y
(X)
0α,jβ with X = L or R.
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z

y

x

Figure D.4: Choice of the x, y and
z axis in the construction of a sur-
face Green’s function. The x and
y axis are located inside the surface
layers and correspond to the trans-
verse directions. The z axis is ori-
ented perpendicular to the surface
layers along the transport direction.
The surface planes can be enumer-
ated along the z axis.

be in the origin
Yt1p1α,t2p2β = Y0p1α,(t2−t1)p2β.

As explained in the context of bulk Green’s functions (see Sec. D.1), we go over to k-space
in the transverse direction by assuming PBCs in the surface plane. We choose a period of
N1 and N2 lattice vectors along the directions of ~c1 and ~c2. Again care needs to be taken
that these Ni are large enough to cover the full range of the hoppings Y0p1α,(t2−t1)p2β in the
transverse direction and that none of the indices needed in the surface Green’s function
gXX requires a longer period Ni (see the conditions (i) and (ii) in Sec. D.1). Then a
two-dimensional Fourier transformation is possible

Yκ,p1α,p2β =
∑

j1,j2

Y0p1α,jp2βe
−i~κκ·~rj

with the two-dimensional direct space vector ~rj =
∑2

i=1 ji~ci and the two-dimensional k-

space vector ~κκ =
∑2

i=1 κi
~di, where the ~di are the corresponding reciprocal lattice vectors

of the ~ci and κ = (κ1, κ2). If needed, the parameters in direct space can be recovered by a
Fourier back transformation

Y0p1α,jp2β =
1

N

∑

j1,j2

Yκ,p1α,p2βe
i~κκ·~rj

with N =
∏2

i=1Ni. From now on, all equations will be given after the two-dimensional
Fourier transformation to k-space has been performed. We will suppress the k-space index
κ. Also the orbital indices α and β will be suppressed if convenient, but we will keep the
longitudinal layer index along ~c3 so that we write

Yκ,p1α,p2β = Yp1,p2.
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In order to construct the surface Green’s function we start from the general definition
of the Green’s function

[(E + iη)S −H ]Gr = 1
with an infinitesimal broadening η > 0 (see Eq. (B.13)). More explicitly in terms of surface
layers this can be written as

[(E + iη)Sm,m −Hm,m]Gr
m,l +

∑

n 6=m
[(E + iη)Sm,n −Hm,n]G

r
n,l = δm,l, (D.26)

where the sum over n runs over all the layers, which are coupled to layer m. For the
electrode Green’s function of the right layer, we need all the elements of Gr

m,l for which
m, l ∈ {0, nl}. Here nl is the number of layers (in the longitudinal direction as described
by the index pi) that needs to be considered in the construction of the surface Green’s
function. This number is determined as the maximum of two integers, namely either nl is
the last layer (counting from 0) in the contact geometry to which the center is still coupled
or nl is chosen such that there is no coupling from layer 0 to the layer nl + 1 due to the
electrode parameters Yp1,p2.

With the help of the relations

Ymα,nβ = Y0α,(n−m)β

due to translational symmetry and

Ymα,nβ = Y ∗
nβ,mα = Y ∗

0β,−(n−m)α = (Y +
0,−(n−m))α,β

due to hermiticity, Eq. (D.26) can be brought into the form

WGr
0 + τ1G

r
1 = 1 (D.27)

τ2G
r
m−1 +WGm + τ1G

r
m+1 = 0 form ≥ 1. (D.28)

with the Green’s function matrices

Gr
m =




Gr
m(nl+1),0 Gr

m(nl+1),1 · · · Gr
m(nl+1),nl

Gr
m(nl+1)+1,0 Gr

m(nl+1)+1,1 · · · Gr
m(nl+1)+1,nl

...
...

. . .
...

Gr
m(nl+1)+nl,0

Gr
m(nl+1)+nl,1

· · · Gr
m(nl+1)+nl,nl


 (D.29)

and the coupling matrices

W =




(E + iη)S0,0 −H0,0 (E + iη)S0,1 −H0,1 · · · (E + iη)S0,nl
−H0,nl

(E + iη)S+
0,1 −H+

0,1 (E + iη)S0,0 −H0,0 · · · (E + iη)S0,nl−1 −H0,nl−1
...

...
. . .

...
(E + iη)S+

0,nl
−H+

0,nl
(E + iη)S+

0,nl−1 −H+
0,nl−1 · · · (E + iη)S0,0 −H0,0




(D.30)
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τ1 =




0 0 · · · 0
(E + iη)S0,nl

−H0,nl
0 · · · 0

...
...

. . .
...

(E + iη)S0,1 −H0,1 (E + iη)S0,2 −H0,2 · · · 0


 (D.31)

τ2 =




0 · · · (E + iη)S+
0,2 −H+

0,2 (E + iη)S+
0,1 −H+

0,1
...

. . .
...

...
0 · · · 0 (E + iη)S+

0,nl
−H+

0,nl

0 · · · 0 0


 . (D.32)

Note that τ2 is the Hermitian conjugate of τ1 except for the energy argument E+ iη, which
remains unchanged. This is important, because in the numerical computation of Green’s
function η is finite. The zeros in τ1 and τ2 arise, because by construction the coupling
between layers does not reach further than nl + 1 layers.

Now the decimation scheme can be applied by first eliminating the Greens functions Gr
1,

Gr
3, G

r
5, G

r
7,. . . and in the next step the Green’s functions Gr

2, G
r
6, G

r
10, G

r
14,. . . as described

in Ref. [263]. Finally the following iterative equations are obtained (see Eqs. (14) and (15)
of Ref. [263])

W
(n)
sR = W

(n−1)
sR − τ

(n−1)
1

(
W

(n−1)
b

)−1

τ
(n−1)
2 (D.33)

W
(n)
b = W

(n−1)
b − τ

(p−1)
1

(
W

(n−1)
b

)−1

τ
(n−1)
2 − τ

(n−1)
2

(
W

(n−1)
b

)−1

τ
(n−1)
1 (D.34)

τ
(n)
1 = −τ (n−1)

1

(
W

(n−1)
b

)−1

τ
(n−1)
1 (D.35)

τ
(n)
2 = −τ (n−1)

2

(
W

(n−1)
b

)−1

τ
(n−1)
2 , (D.36)

where n stands for the nth iterative step and the matrices of the 0th step areW
(0)
b = W

(0)
sR =

W , τ
(0)
1 = τ1, and τ

(0)
2 = τ2. Note that the minus sign in the renormalization of τ1 and τ2

is not necessary and has been dropped in our implementation. This is possible, because in
the iterative equations there always appears a multiplication of two τs in the construction
of W

(n)
s or W

(n)
b , which cancels their signs. In the iterative procedure the couplings τ

(n)
1

and τ
(n)
2 describe the couplings between the superlayers 0 and 2, 2 and 4, and so on for

n = 1, between 0 and 4, 4 and 8 and so on for n = 2, and generally between superlayers
with an index difference of 2n after n steps (see Fig. D.5). Therefore the couplings τ

(n)
1

and τ
(n)
2 can be expected to decrease rapidly as a function of the number of iterative steps

n. If τ
(n)
1 and τ

(n)
2 are negligible after ν steps, Eqs. (D.27) and (D.28) yield

W
(ν)
sR G

r
0 = 1 (D.37)

W
(ν)
b Gr

(2ν) = 0. (D.38)

The surface Green’s function of the right side is then the solution of Eq. (D.37) for Gr
0

Gr
sR =

(
W (ν)
s

)−1
. (D.39)
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Figure D.5: Au electrode oriented along the [111] direction. In the illustration, each
superlayer consists of 3 crystal layers, as indicated at the top of the figure, with indices
running from 0 to 5. In the nth step of the iterative process Green’s functions of the
superlayers 2n−1 (2i− 1) with i ∈ N are eliminated, as shown below. The renormalized

couplings τ
(n)
1 and τ

(n)
2 of Eqs. (D.31) and (D.32) describe the couplings between superlayers

with an index difference of 2n.

The decimation also provides the bulk Green’s function, which is

Gr
bR =

(
W

(ν)
b

)−1

. (D.40)

This last relation becomes clear, when one writes down the decimation procedure for a layer
deep inside the solid state, so that no surface is reached before the coupling matrices τ

(n)
1

and τ
(n)
2 have decayed to negligible values. This is by construction the case for superlayer

2ν and the inversion of W
(ν)
b yields the bulk Green’s function. Eq. (D.40) is another

possibility to construct the bulk Green’s function as compared to the technique of a Fourier
transformation in three dimensions described before (see Sec. D.1). Results obtained in
these two ways are in excellent agreement, if the number of k-points in both constructions
is chosen large enough. (Usually a direct space period Ni ≥ 16 is sufficient.)

For the left side another surface Green’s function is needed. So the decimation needs to
be carried out for the left side as well. The equations can be brought into a form equivalent
to Eqs. (D.27) and (D.28)

τ2G
r
−1 +WGr

0 = 1 (D.41)

τ2G
r
m−1 +WGr

m + τ1G
r
m+1 = 0 form ≤ −1. (D.42)

The Green’s function matrices are now

Gr
m =




Gr
m(nl+1)−nl,−nl

· · · Gr
m(nl+1)−nl,−1 Gr

m(nl+1)+1,0
...

. . .
...

...
Gr
m(nl+1)−1,−nl

· · · Gr
m(nl+1)−1,−1 Gr

m(nl+1)−1,0

Gr
m(nl+1),−nl

· · · Gr
m(nl+1),−1 Gr

m(nl+1),0


 . (D.43)
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Note that the indexing in Gr
m has changed in the sense that the surface layer 0 is now in

the lower right corner of Gr
m, while in Eq. (D.29) it was in the upper left corner. The form

of the matrices W , τ1 and τ2 (see Eqs. (D.30), (D.31), and (D.32)) remains unchanged.
Finally, the iterative equations for the left surface Green’s function are the former

Eqs. (D.34), (D.35), and (D.36) plus the additional relation

W
(n)
sL = W

(n−1)
sL − τ

(n−1)
2

(
W

(n−1)
b

)−1

τ
(n−1)
1 . (D.44)

In this way Eq. (D.33) for W
(n)
sR has been replaced by Eq. (D.44) for W

(n)
sL . Again n stands

for the nth iterative step and W
(0)
sL = W . If τ

(n)
1 and τ

(n)
2 are negligible after ν steps,

Eqs. (D.41) and (D.42) yield

W
(ν)
sL G

r
0 = 1 (D.45)

W
(ν)
b Gr

(2ν) = 0. (D.46)

The left surface Green’s function is then the solution of Eq. (D.45) for Gr
0

Gr
sL =

(
W (ν)
s

)−1
(D.47)

and the left bulk Green’s function is

Gr
bL =

(
W

(ν)
b

)−1

. (D.48)

As pointed out before, it should be noted here that the indexing of the layers for the left
side Green’s function in the transport direction has changed in going from Eqs. (D.39) and
(D.40) to Eqs. (D.47) and (D.48) (see Eqs. (D.29) and (D.43)).

If for example the crystallographic direction of the left side differs from that of the
right side ([100] surfaces for the right side and [111] surfaces for the left) or the lattice
orientation of the left electrode is different from that of the right side, then the matrices
W , τ1 and τ2 differ between left and right. In such cases the matrices W , τ1, and τ2 need to
be constructed separately, and the decimation has to be carried out for the left and right
side independently. A lot of time can be saved, however, if the layers of the left and right
side are planes of the same crystallographic direction, e.g., [111] planes, and if they are
oriented in the same way, which means that they possess the same lattice vectors ~ci . Then
W , τ1, and τ2 need to be constructed only once and Eqs. (D.33), (D.34), (D.35), (D.36),
and (D.44) can all be solved simultaneously. The time saved is mainly the construction
of Wb, which is needed both for WsL and WsR, and that the iterative procedure with a
convergence criterion for the decay of τ

(n)
1 and τ

(n)
2 is carried out only once. In case that

the left and right electrode are only oriented along the same crystallographic direction but
with a possible rotation between their lattice vectors, it should be possible to obtain their
surface Green’s functions by appropriate rotational transformations of the Green’s function
of one of the two surfaces (see Sec. F.1). Presently, however, we implemented the separate
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Figure D.6: Comparsion of the onsite elements of a bulk and surface Green’s function. For
the topmost atom of a [100] surface atom and an atom embedded in a crystal (bulk) we
plot the real and imaginary parts of the sum over all onsite elements of Ga

0α,0β (Re [G(E)] =

Re
[∑

αG
a
0α,0α(E)

]
and Im [G(E)] = Im

[∑
αG

a
0α,0α(E)

]
). The total number of k-points

used is N = 323, the broadening is η = 0.02 H, and the Fermi energy of EF = −5.46 eV
corresponds to the Al683 cluster, from which the parameters for this calculation have been
extracted (see discussion in Secs. 4.3.1 and 4.3.3).

construction of the Green’s function elements of the left and right electrode, which is less
efficient, but also less error-prone.

For the convergence criterion of the decimation we have chosen in our implementation
that

∑

i,j

∣∣∣∣∣

(
τ

(n−1)
1

(
W

(n−1)
b

)−1

τ
(n−1)
2

)

i,j

∣∣∣∣∣ < ε.

In this way we have a direct control, on how much the inverse surface or bulk Green’s
function is still modified (see Eqs. (D.33), (D.34), and (D.44)). A smallness parameter
ε = 10−6H turned out to be sufficient for the broadenings η of around 0.01 H, as used in
the calculations for Au in the SVP basis set (see Secs. 5.1 and 6). In other calculations
we employed an even stricter convergence criterion. In the construction of surface Green’s
functions for Al contacts (see Sec. 5.2) we used ε = 10−8 H and in Sec. 2.10 we used
ε = 10−8 Ry.

To conclude the presentation of the construction of electrode Green’s functions we
present in Fig. D.6 a comparison between surface and bulk Green’s functions for Al. For
this purpose we have plotted the real and imaginary part of the sum over all onsite el-
ements of Ga

0α,0β (Re [G(E)] = Re
[∑

αG
a
0α,0α(E)

]
and Im [G(E)] = Im

[∑
αG

a
0α,0α(E)

]
).

We compare the Green’s function inside the crystal, described by a bulk Green’s function,
with an atom in the topmost plane of a [100] surface. Both Green’s functions show a
qualitatively similar behavior, although quantitatively differences can be observed espe-
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cially in the imaginary parts of the Green’s functions. It is also nicely visible from the
plot, how the real part shows a slowly decaying behavior for |E| → ∞, where a behavior
Re [G(E)] → c/E is expected (with a certain prefactor c). Instead, the imaginary part of
the Green’s function is only non-zero within the range of energy states of the Al crystal.



Appendix E

Metallic nanowires – methodological

details

In Chap. 2 we analyzed the electrical and mechanical properties of metallic nanocontacts.
The ultimate goal was the description of the characteristic peaks in low-temperature con-
ductance histograms of different classes of metals. In this chapter we will now present
more of the technical details behind that work. For this purpose we will present in Sec. E.1
the tight-binding (TB) parameterization introduced by Mehl and Papaconstantopoulos
[75, 76], which we use as a starting point for the description of the electronic structure
of our metallic nanocontacts. Subsequently, we present the modification of these TB pa-
rameters by the requirement of local charge neutrality in the central part of our wires (see
Sec. E.2). We will then continue with Sec. E.3, where we show explicitly, how we efficiently
construct our electrode geometry in the transport calculations such that all relevant atoms
are included and the effort in the calculation of the conductance becomes minimal. At the
end of this chapter a derivation for the force needed to break a bulklike bond in a metal is
presented in Sec. E.4.

E.1 Tight-binding parameterization

In order to compute the conductance of an atomic contact, we need a description of its elec-
tronic structure. We accomplish this task by resorting to a TB parameterization developed
by Papaconstantopoulos et al. [75, 76, 77, 79, 78]. This parameterization uses an analytic
set of two-center integrals [133, 264], nonorthogonal TB parameters, and onsite parame-
ters that change with the local environment. The method is a total energy TB method,
in which the parameters were fit to the total energies and band structures obtained from
first-principles calculations. The method has been demonstrated to well produce structural
energy differences, elastic constants, phonon frequencies, vacancy formation energies, and
surface energies for both transition metals and noble metals [75].

Density functional theory (DFT) tells us that the total energy of a system of electrons

239
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moving in a solid can be written in the form

E [n(~x)] =
∑

i

f(εi − µ)εi + F [n(~x)] , (E.1)

where the Kohn-Sham (KS) ansatz for the kinetic energy has been used. In Eq. (E.1) n(~x)
is the electron density, εi is the KS eigenvalue of the ith electronic state, µ is the chemical
potential, and the sum runs over all electronic states of the system. The function f(ε−µ)
is chosen to have the form of a Fermi function f(z) = (exp(βz) + 1) (with β = (kT )−1). In
the functional F [n(~x)] the remaining part of the DFT total energy is contained, which are
the ion-ion interaction energy, the parts of the Hartree and exchange-correlation energy not
included in the eigenvalue sum, and the corrections for double counting in the eigenvalue
sums [75].

As explained in Ref. [76], the KS method allows for an arbitrary shift in the KS poten-
tial, which leaves the noninteracting kinetic energy, the total energy, the KS wave functions
and the electron density n(~x) unchanged. If this shift is defined to be

V0 = F [n(~x)] /Ne,

where Ne is the number of electrons in the system, then the eigenvalues εi are shifted by
an amount V0, to the new values

ε′i = εi + V0.

The total energy then becomes

E [n(~x)] =
∑

i

f(ε′i − µ′)ε′i, (E.2)

where µ′ = µ+ V0 is the shifted chemical potential.
Due to the basic theorems of DFT (see Sec. 4.1), the shifted eigenvalues ε′i can be

considered to be a function of the crystal structure, including volume, primitive lattice
vectors, and internal parameters. A TB method that reproduces the ε′i over a range of
structures will then solve the total-energy problem of Eq. (E.1) or Eq. (E.2) without resort
to an additional term.

As explained before (see Sec. 2.2.2), the TB model is based on the following Hamiltonian
written in a nonorthogonal local basis

Ĥ =
∑

iα,jβ,σ

Hiα,jβ,σd̂
+
iα,σd̂jβ,σ, (E.3)

where i and j run over the atomic sites, α and β denote different atomic orbitals, and
Hiα,jβ,σ are the onsite (i = j) or hopping (i 6= j) elements, which are spin-dependent
(σ =↑, ↓) in the case of ferromagnetic metals such as Ni. Additionally, we need the overlap
integrals Siα,jβ of orbitals at different atomic positions. The two-center Slater-Koster (SK)
formulation of TB with a nonorthogonal basis set divides the problem into the calculation of
three types of integrals: (i) onsite parameters Hiα,iβ,σ, which represent the energy required
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to place an electron in a specific orbital, (ii) Hamiltonian parameters, which represent the
matrix elements for electrons hopping from one site to the other (Hiα,jβ,σwith i 6= j), and
(iii) overlap parameters that describe the mixing between the nonorthogonal orbitals on
neighboring sites. The eigenvalues ε′i can be determined, once the parameters have been
evaluated for a given structure. The Hiα,jβ,σ and Siα,jβ are given simple algebraic forms
with parameters chosen to reproduce first-principles results over a wide range of structures.

The Hamiltonian parameters must be sensitive to the local environment around each
atom. In the current parameterization the influence of the local environment is only ac-
counted for by the onsite parameters Hiα,iβ,σ. For this purpose a ”density” associated to
atom i is defined as

̺i =
∑

i6=j
qj̃ exp(−λ2

ĩj̃
Rij)Fc(Rij) (E.4)

where ĩ (j̃) denotes the type of atom at position ~Ri (~Rj), λ is a parameter which depends
on the kind of atom, qj̃ is an effective charge for atoms of type j̃, and Rij is the distance

between the atoms i and j (Rij =
∣∣∣~Ri − ~Rj

∣∣∣).1 For monatomic systems the charge is taken

to be qj̃ = 1 and λĩj̃ is just a constant λ. Fc(Rij) is a smooth cutoff function

Fc(R) =

{
(1 + exp([R −Rc + 5ℓ] /ℓ))−1 if R ≤ Rc

0 if R > 0
(E.5)

which is used to effectively zero all interactions more than the cuttoff radius Rc apart.2

Typically, the cutoff radius is around Rc = 16.5a0 = 8.73 Åand includes more than 5
nearest neighbor shells (see also Sec. 2.2.2).

As an additional approximation the onsite parameters are assumed to be orthogonal
Hiα,iβ,σ = δαβ (and Siα,iβ,σ = δαβ). They are parameterized as

Hiα,iα,σ = aiα,σ + biα,σ̺
2/3
i + ciα,σ̺

4/3
i + diα,σ̺

2
i (E.6)

where α = s, p, t2g, or eg and ̺i is given by Eq. (E.4). The orbitals t2g and eg arise from
d states, where the crystal field in cubic crystals splits the d states at the Γ point of the
Brillouin zone into states with t2g (dxy, dyz, and dxz) and eg (x2−y2 and 3z2−r2) symmetry.
Notice that only orbitals in the energy range of interest, namely close to the Fermi energy,
are considered in this approach. Depending on the valence of the considered material, the
s, p, and d states may correspond to different valence orbitals, e.g., 5d, 6s, and 6p, for Au
or 4p, 5s, and 5d for Ag. Strictly speaking, however, no precise main quantum number can
be assigned to the angular orbital functions due to the employed fitting procedure.3

1Notice the error in Eq. (7) of Ref. [75], where λ1
ĩj̃

has been written instead of λ2
ĩj̃

. That this is indeed

an error has been confirmed to us by email correspondence with M.J. Mehl, and in all other papers (see
for example Ref. [76]) the formula is correctly denoted with λ2

ĩj̃
.

2The cutoff function in the form of Eq. (E.5) is given at http://cst-www.nrl.navy.mil/bind/notes.html.
3For example is is not clear, whether the 6p states for Au are not actually better called 5p states and

similarly for Ag. (See also Fig. E.3 for a plot of the energetic contributions of the different orbitals to the
density of states.)
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Hamiltonian Hiα,iβ,σ and overlap parameters Siα,iβ for atoms i and j at different po-
sitions (i 6= j) are obtained from the two-center SK approximation (see Table E.1). The
interaction matrix elements Pγ for the overlap and Hamiltonian are assumed to have the
same functional form

Pγ(R) =
(
eγ + fγR+ f̄γR

2
)
exp(−gγR)Fc(R), (E.7)

where γ indicates the type of interaction (e.g., ssσ, pdπ, ddδ, etc., where σ, π, and δ
refer to the component of angular momentum around the axis between the atoms i and j
[133, 264]), R is the distance between the atoms i and j, and Fc(R) is given by Eq. (E.5).
Notice that all Hamiltonian and overlap elements given in Table E.1 are functions of the
relative positions of the atoms, as it is expected for a translationally invariant crystal.

Counting the number of free parameters (per spin component σ) needed to completely
specify the TB parameterization presented above, this results in an impressive number
of 97 free parameters. This number originates as follows: There are 4 different onsite
parameters Hiα,iα,σ for the different orbitals (α = s, p, t2g, and eg), and each requires 4
different parameters (aiα,σ, biα,σ, ciα,σ, and diα,σ in Eq. (E.6)), which gives 16 constants.
On top of this, λ needs to be specified (see Eq. (E.4)). In Eq. (E.7) there are 10 different
interactions γ and each requires 4 parameters, both for the Hamiltonian and the overlap,
giving another set of 80 free parameters. In total this results in 97 free parameters.4

These free parameters are determined by fitting the electronic band structure and total
energies, as obtained by the TB model, to first principles calculations [75, 76]. Addition-
ally there are some restrictions in this fitting procedure, namely the functions Pγ(R) are
required to decay steadily, and the overlap is forced to be positive definite.

E.1.1 Example derivation of a Slater-Koster-integral

In order to be sure about the correctness of our implementation, we derived all the two-
center integrals listed in Table E.1. For the purpose of illustrating, how these integrals
are obtained, we will give here a sketch of their formal origin. First we will demonstrate,
how to come to an integral not listed in Table E.1. Next we will derive the form of the
Hamiltonian element Hix,jyz(~Rj − ~Ri) as given in Table E.1. As already done in Table E.1,
we will henceforth suppress the angular momentum quantum number l of the orbital index
and write α = ν, instead of lν . Therefore px becomes x and dyz is yz, for example.

In case that an integral is needed, which is not listed in Table E.1 such as Hiyz,jyz(~Rj −
~Ri), we start from the analog Hamiltonian element given in Table E.1. This analog Hamil-

tonian element is Hixy,jxy(~Rj − ~Ri), because it is between d states of the same symmetry

as Hiyz,jyz(~Rj − ~Ri). As can be seen from change in orbital indices in the replacement
Hixy,jxy → Hiyz,jyz the role of x, y, and z in Hixy,jxy is now played by y, z, and x in
Hiyz,jyz. For this reason it is sufficient to make the replacement n→ l, l → m, and m→ n
in order to arrive get

Hiyz,jyz(~Rj− ~Ri) = 3m2n2Pddσ(Rij)+
(
m2 + n2 − 4m2n2

)
Pddπ(Rij)+

(
l2 +m2n2

)
Pddδ(Rij).

4Considering the cutoff radius Rc and the screening length in addition, this sums up to 99 fit parameters.
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His,js = Pssσ

His,jx = lPspσ

Hix,jx = l2Pppσ +
`

1 − l2
´

Pppπ

Hix,jy = lmPppσ − lmPppπ

Hix,jz = lnPppσ − lnPppπ

His,jxy =
√

3lmPsdσ

His,jx2
−y2 = 1

2

√
3

`

l2 −m2
´

Psdσ

His,j3z2
−r2 =

`

n2 − 1
2

`

l2 +m2
´´

Psdσ

Hix,jxy =
√

3l2mPpdσ +m
`

1 − 2l2
´

Ppdπ

Hix,jyz =
√

3lmnPpdσ − 2lmnPpdπ

Hix,jzx =
√

3l2nPpdσ + n
`

1 − 2l2
´

Ppdπ

Hix,jx2
−y2 = 1

2

√
3l

`

l2 −m2
´

Ppdσ + l
`

1 − l2 +m2
´

Ppdπ

Hiy,jx2
−y2 = 1

2

√
3m

`

l2 −m2
´

Ppdσ − l
`

1 + l2 −m2
´

Ppdπ

Hiz,jx2
−y2 = 1

2

√
3n

`

l2 −m2
´

Ppdσ − n
`

l2 −m2
´

Ppdπ

Hix,j3z2
−r2 = l

`

n2 − 1
2

`

l2 +m2
´´

Ppdσ −
√

3ln2Ppdπ

Hiy,j3z2
−r2 = m

`

n2 − 1
2

`

l2 +m2
´´

Ppdσ −
√

3mn2Ppdπ

Hiz,j3z2
−r2 = n

`

n2 − 1
2

`

l2 +m2
´´

Ppdσ +
√

3n
`

l2 +m2
´

Ppdπ

Hixy,jxy = 3l2m2Pddσ +
`

l2 +m2 − 4l2m2
´

Pddπ +
`

n2 + l2m2
´

Pddδ

Hixy,jyz = 3lm2nPddσ + ln
`

1 − 4m2
´

Pddπ + lm
`

n2 − 1
´

Pddδ

Hixy,jzx = 3l2mnPddσ +mn
`

1 − 4l2
´

Pddπ +mn
`

l2 − 1
´

Pddδ

Hixy,jx2
−y2 = 3

2
lm

`

l2 −m2
´

Pddσ + 2lm
`

m2 − l2
´

Pddπ + 1
2
lm

`

l2 −m2
´

Pddδ

Hiyz,jx2
−y2 = 3

2
mn

`

l2 −m2
´

Pddσ −mn
`

1 + 2
`

l2 −m2
´´

Pddπ +mn
`

1 + 1
2

`

l2 −m2
´´

Pddδ

Hizx,jx2
−y2 = 3

2
nl

`

l2 −m2
´

Pddσ + nl
`

1 − 2
`

l2 −m2
´´

Pddπ − nl
`

1 − 1
2

`

l2 −m2
´´

Pddδ

Hixy,j3z2
−r2 =

√
3lm

`

n2 − 1
2

`

l2 +m2
´´

Pddσ − 2
√

3lmn2Pddπ + 1
2

√
3lm

`

1 + n2
´

Pddδ

Hiyz,j3z2
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√
3mn

`
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2

`
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´´

Pddσ +
√

3mn
`
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´

Pddπ − 1
2

√
3mn
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´

Pddδ
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√
3ln
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n2 − 1
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`

l2 +m2
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Pddσ +
√

3ln
`

l2 +m2 − n2
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Pddπ(Rij ) − 1
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√
3ln

`

l2 +m2
´

Pddδ

Hix2
−y2,jx2

−y2 = 3
4

`

l2 −m2
´2
Pddσ +

“

l2 +m2 −
`

l2 −m2
´2

”

Pddπ +
“

n2 + 1
4

`

l2 −m2
´2

”

Pddδ
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2

√
3

`

l2 −m2
´ `

n2 − 1
2

`
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Pddσ +
√

3n2
`

m2 − l2
´

Pddπ + 1
4

√
3

`

1 + n2
´ `

l2 −m2
´

Pddδ

Hi3z2
−r2,j3z2

−r2 =
`
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2

`

l2 +m2
´´2

Pddσ +
√

3n2
`

l2 +m2
´

Pddπ + 3
4

`
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´2
Pddδ(Rij )

Table E.1: Hamiltonian and overlap elements for a crystal in terms of two-center integrals (see Ref. [133]).

Only the Hamiltonian elements Hiα,iβ,σ are given, and the spinindex σ has been suppressed. The overlap

elements Siα,iβ are identical in their form, and only the interaction integrals Pγ need to be replaced by

different polynomials (see Eq. (E.7)). All integrals Hiα,iβ,σ can be expressed as functions of the directional

cosines l = (Rx,j −Rx,i) /Rij , m = (Ry,j −Ry,i) /Rij , and n = (Rz,j −Rz,i) /Rij . (Here Rq,j is the

cartesian compontent q of the vector ~Rj and Rij =
∣∣∣~Rj − ~Ri

∣∣∣ is the distance between the atoms i and

j.) Notice that the matrix elements Hiα,iβ,σ = Hiα,iβ,σ(~Rj − ~Ri) are functions of the relative position of

the atoms i and j, while the integrals Pγ = Pγ(Rij) are functions of their distance only. Other matrix

elements are found by permuting the indices and appropriately interchanging the directional cosines. The

spin index σ should not be confused with the σ which specifies the type of integral (for example Pssσ),

where it refers to the component of angular momentum around the axis between the atoms i and j.
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For other integrals, the derivations is the same.

Next we want to derive the algebraic of the Hamiltonian element Hix,jyz(~Rj− ~Ri). First

we notice that the integrals in Table E.1 only depend on the relative distance ~Rj − ~Ri. For

this reason, we set the origin into the position of atom i (~Ri = 0) and consider the matrix

element H0x,jyz(~Rj). It is possible to find a new coordinate system K ′ in which the rotated

vector ~R′
j is located on the z axis. The old coordinate system K is connected with the new

one by means of two subsequent rotations

~R′
j = (0, 0, Rj)

T = Dz(ψ)Dx(ϕ)~Rj.

In this expression Dz(ψ) (Dx(ϕ)) is a rotation around the z axis (x axis) with an angle ψ
(ϕ). We observe that




x
y
z


 = Dz(ψ)Dx(ϕ)




x′

y′

z′


 =




x′ cos(ψ) − y′ sin(ψ) cos(ϕ) + z′ sin(ψ) sin(ϕ)
x′ sin(ψ) + y′ cos(ψ) cos(ϕ) − z′ cos(ψ) sin(ϕ)

y′ sin(ϕ) + z′ cos(ϕ)




(E.8)
In terms of the direction cosines l = x/r, m = y/r, and n = z/r this relation tells that for
~R′
j = (0, 0, Rj)

T we get l = sin(ψ) sin(ϕ), m = − cos(ψ) sin(ϕ), and n = cos(ϕ).

Next we consider the integrals between p and d orbitals that may arise if ~Rj is aligned

along the positive z direction ~Rj = (0, 0, Rj)
T , meaning that l = m = 0 and n = 1.

Many Hamiltonian elements Hiα,jβ(~Rj − ~Ri) (where α is a p orbital and β a d orbital)
vanish. The nonvanishing ones can be used to define the basic Hamiltonian integrals Pγ of
Eq. (E.7). As sketched in Fig. E.1, there are only two nonvanishing Hamiltonian elements,

namely H0x,jzx(~Rj), H0y,jyz(~Rj), and H0z,j3z2−r2(~Rj). The first two are identical and define
Ppdπ(Rj) , whereas the last one defines Ppdσ(Rj). As explained before, σ and π refer to the
component of angular momentum around the axis between the atoms i and j.

Equipped with this knowledge, it is now straightforward to derive the expression for
the Hamiltonian matrix element

H0x,jyz(~Rj) =

∫
d3rψx(~r)Hψyz(~r − ~Rj).

The orbital functions ψα, where α is a p or d state, can be written as

ψx (~r) = f1 (r) x

ψy (~r) = f1 (r) y

ψz (~r) = f1 (r) z
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Figure E.1: Two-center Hamiltonian elements H0α,jβ(~Rj) for the orbitals α = x and (a)
β = xy, (b) β = yz, (c) β = zx, (d) β = x2 − y2, and (e) β = 3z2 − r2, whereas in (f)
α = z and β = 3z2 − r2. Due to the choice l = m = 0 and n = 1 in the situation sketched,
the Hamiltonian elements H0α,jβ are equal to the basic interaction integrals Pγ for the

nonvanishing integrals (H0α,jβ(~Rj) = Pγ(Rj)). Only the integrals H0x,jzx(~Rj) = Ppdπ(Rj),

H0y,jyz(~Rj) = Ppdπ(Rj), and H0z,j3z2−r2(~Rj) = Ppdσ(Rj) are nonzero and the others vanish
for symmetry reasons, as is immediately obvious from the picture.

and

ψxy (~r) = f2 (r)xy

ψyz (~r) = f2 (r) yz

ψzx (~r) = f2 (r) zx

ψx2−y2 (~r) = f2 (r)
(x2 − y2)

2

ψ3z2−r2 (~r) = f2 (r)
(3z2 − r2)

2
√

3

where f1(r) and f2(r) are arbitrary functions of the radius r only. The basis functions ψx
and ψyz can be then be expressed in the coordinate system K ′ by use of Eq. (E.8) as

ψx(~r) = f1(r
′) (x′ cos(ψ) − y′ sin(ψ) cos(ϕ) + z′ sin(ψ) sin(ϕ))

ψyz(~r) = f2(r
′) (x′ sin(ψ) + y′ cos(ψ) cos(ϕ) − z′ cos(ψ) sin(ϕ)) (y′ sin(ϕ) + z′ cos(ϕ))

If one uses this form of the basis functions together with the relations for the directional
cosines l = sin(ψ) sin(ϕ), m = − cos(ψ) sin(ϕ), and n = cos(ϕ) given above, and identifies
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Figure E.2: Comparison of conductance
traces for the contact shown in Fig. 2.18.
The traces are obtained with bulk electrode
Green’s functions. The curve labeled ”bulk
cn” is the conductance together with the
corresponding channel decomposition (solid
lines) as presented in Fig. 2.18. The short-
cut ”cn” shall indicate, that the local charge
neutrality has been imposed (see Sec. 2.2.2).
In contrast, the curve labeled ”bulk nn” is the
conductance together with the corresponding
channel decomposition (broken lines) as ob-
tained, if the unmodified TB parameters are
used as presented in Sec. E.1. The shortcut
”nn” stands for ”no local charge neutrality”
and shall indicate, that the unmodified TB
parameters have been used.

the different integrals according to Fig. E.1, one readily obtains

H0x,jyz(~Rj) =
√

3lmnPpdσ(Rj) − 2lmnPpdπ(Rj),

as given in Table E.1.

E.2 Local charge neutrality condition

If the TB parameters are used in conductance calculations of atomic contacts without
modifications, it turns out that they yield unphysical results. This is illustrated in Fig. E.2.
Here, the conductance is plotted together with its decomposition into different transmission
channel contributions during the stretching of the Pt contact shown in Fig. 2.18. Two
different cases are compared, namely first the conductance as obtained with the local
charge neutrality imposed, labeled ”cn” for local charge neutrality (see Sec. 2.2.2) and
second that conductance without local charge neutrality, labeled ”nn” for no local charge
neutrality. In the nn case, the TB parameters are used as presented in Sec. E.1 without
modification.5 From Fig. E.2 it is evident that, as soon as the characteristic contact
evolution sets in at an elongation of around 0.2 nm, the conductance of the charge neutral
case differs strongly from the conductance as obtained with the original TB parameters.
In addition the conductance in the chain configuration never surmounts 1G0 in the nn
case, and there is only one open conduction channel. The conductance histogram of Pt
possesses a peak at around 1.5G0 [20] (see Fig. 2.2), and there is strong experimental

5Note that we have included the electrode atoms in the calculation of the onsite levels of the central
system (see Eqs. (E.4) and (E.6)).
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and theoretical evidence that dimer and chain configurations exhibit a conductance above
1G0 [12, 20, 106, 107, 98, 105, 108], which requires the presence of more than a single
conduction channel for these configurations. In this sense, the unmodified application of
the TB parameters of Refs. [75, 76, 77] in the field of electron transport fails to describe
the physics in an obvious way.

The reason for this problem can be seen in the fact that the local environment in the
neck region of our contacts is very different from that in the bulk material, for which the
TB parameters have been developed. This can cause large deviations from the approximate
local charge neutrality that typical metallic elements must exhibit. A modification of the
TB parameters is therefore justified, in which a local charge neutrality condition is imposed
on the atoms in the central part of the nanowire through a self-consistent variation of the
Hamiltonian. In this way the atomic levels align properly. As explained in Sec. 2.2.2, this
self-consistent procedure requires the computation of the electronic density matrix ̺CC ,
which is obtained by integrating the Green’s function of the center up to the Fermi energy
EF (for details see also Eq. B.48)

̺CC = −1

π

∫ EF

−∞
Im

[
∑

σ

Gr
CC,σ (E)

]
dE. (E.9)

In this expression Gr
CC,σ is the retarded Green’s function of the central part of the contact

Gr
CC,σ (E) =

[
(E + iηC)SCC −HCC,σ − Σr

L,σ − Σr
R,σ

]−1
, (E.10)

where σ stands for the spin component, SCC is the overlap matrix of the center, HCC,σ

is the Hamiltonian, and ΣX,σ (with X = L or R) are the self-energies that describe the
coupling of the center to the electrodes. They are given by

Σr
X,σ (E) = (HCX,σ − ESCX) grXX,σ(E) (HXC,σ −ESXC) (E.11)

with the unperturbed, retarded electrode Green’s function grXX,σ and the hopping (overlap)
matrices between the center and the electrodes HCX,σ (SCX). In the following we will give
more details about the way, in which this integration is performed and how the local charge
neutrality is achieved.

First, we note that in Eq. (E.9) the Fermi energy of the respective metal under inves-
tigation is required. For this purpose, we construct first the bulk density of states (DOS)
(see Sec. D.1.1 for details of this construction). In Fig. E.3 the bulk DOS is plotted for
the different metals investigated in this work. While in the main panel the DOS is plotted
resolved in its orbital contributions (the s, p, and d states), the inset of each figure shows
the total DOS, which is the sum of the different orbital contributions. As explained in
Sec. D.1.1 there exists a balance between the broadening parameter η, used in the con-
struction of the bulk DOS, and the number of k-points, which is 323 in the plots of Fig. E.3.
It is visible, how the total DOS is getting less ”peaky” if the broadening η is reduced as
indicated in the insets. For all our calculations with the TB parameters, we have chosen
a constant broadening of η = 0.02 Ry = 0.272 eV in the electrodes, in order to simulate
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Figure E.3: DOS of a bulk atom for the metals Ag, Au, Al, Pt, and Ni. For Ni both spin components are

displayed, while for the other metals the DOS is plotted for one of the degenerate spin components. In the

main part of the figures the DOS for the different materials is plotted resolved in its orbital contributions

for a broadening parameter η = 0.02 Ry = 0.272 eV. In addition, the inset of each figure shows the total

DOS as the sum of all orbital contributions for broadenings of η = 0.05, 0.02, and 0.01 Ry. Furthermore

the Fermi energy is indicated, as obtained by integrating the total DOS to the valence charge of the neutral

atom, which is 5.5, 5.5, 1.5, and 5 per spin component for Ag, Au, Al, and Pt in this valence orbital TB

model. For Ni the two spin components need to be added before the integration, where the total valence

charge is 10 for the Ni atom. In every plot the number of k-points has been chosen to be 323. The lattice

constants assumed in the plot are the same as given in Table E.2.
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a continuous DOS with a characteristic structure but no artificial peaks, due to the finite
number of k-points employed. From the plot of the DOS we obtain the Fermi energy via an
integration to the number of valence charges provided by each atom. This Fermi energy is
indicated in the legends. It is in all cases positive, which indicates that it is not of physical
relevance, but only a reference point for our calculations.6

Let us shortly interrupt the discussion on the details of the charge neutrality and
discuss the DOS of the various metals shown in Fig. E.3. For the noble metals Ag and Au
a dominance of the s contribution to the DOS can be noticed at the Fermi energy EF and
a rather flat total DOS. While the DOS of Pt looks similar to that of Au, EF is located at
the edge of the d states due to the single valence electron less for Pt as compared to Au. On
the other hand Al exhibits a very different DOS with respect to the aforementioned metals
which is due to the fact that for this p-valent metal the d states lie mainly above EF . The
total DOS looks rather parabolic from the band bottom up to the Fermi energy. For Ni
the DOS for the minority spin (σ =↓) shows similarities to Pt with strong contributions of
d states at EF , while for the majority component (σ =↑) the contribution of the d states
is reduced, corresponding to a situation more similar to Au.

In the necessary integration of Gr
CC in Eq. (E.9) we distinguish three different broaden-

ing parameters. As indicated in Eq. (E.10), there is a broadening ηC for the cental part of
the Green’s function. In addition, the electrode Green’s function grXX,σ needs a broadening
ηX . In principle the perturbations tCX = HCX,σ − ESCX could also be provided with a
broadening. There, however, we take the limit of zero broadening in order to obtain real
perturbations (see also Sec. B.3.1). As explained before, the broadening ηX is chosen to
be 0.02 Ry, in order to model a continuous DOS in the electrodes (see the plots of the
DOS in Fig. E.3). Obviously, a high η results in a smooth behavior of Im [G]. For this
reason it facilitates the integration in Eq. (E.9), if ηC is as large as possible. However,
the convergence with respect to conductance calculations needs to be checked, where ηC
is always chosen to be negligible, namely ηCC = 10−8 Ry. We will show below that in the
integration ηC = 10−4 Ry yields reasonably converged results for the conductance.

In order to use as few integration points as possible, it is advisable to choose an in-
tegration contour in the complex plane as explained in Sec. B.3.3. In the case of the TB
parameterization discussed here, we resort to a semicircular contour in the complex plane.
(Such a contour is displayed in Fig. E.7.) We have chosen the semicircle to begin on the
real energy axis at EB = −5 Ry, well below all energy levels of the valence electron descrip-
tion. Then, the radius of the semicircle in the upper half of the complex plane is chosen
such that it ends on the real energy axis at the energy EF , which is determined from an
integration of the bulk DOS. The integration can thus be written

̺CC = −1

π
Im

[∫

γ

dz
∑

σ

Gr
CC,σ (z)

]
(E.12)

6All energies in quantum chemistry are commonly measured with respect to the vacuum level and are
therefore negative for electronically stable systems.
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with the semicircular integration contour γ, the Green’s function

Gr
CC,σ (z) =

[
(z + iηC)SCC −HCC,σ − Σr

L,σ(z) − Σr
R,σ(z)

]−1
, (E.13)

and the self-energies

Σr
X,σ (z) = (HCX,σ − zSCX) grXX,σ(z + iηX) (HXC,σ − zSXC) , (E.14)

where we indicate the different broadening parameters ηC and ηX explicitly.
In case that the integration in Eq. (E.12) has been carried out and ̺CC has been

obtained, the charge of every atom in the central part of the system needs to be determined.
For this purpose, we employ the Mulliken population analysis7 [81] to obtain the charge
Ni for the atom i

Ni =
∑

α

(̺S)iα,iα. (E.15)

where α runs over all orbitals of the atom. In principle, Eq. (E.15) includes charge contri-
butions from both the center and the electrodes

Ni =
∑

α,j∈L
̺iα,jSj,iα +

∑

α,j∈C
̺iα,jSj,iα +

∑

α,j∈R
̺iα,jSj,iα, (E.16)

where j ∈ L, C, or R means that j refers to an orbital in the left, central, or right part
of the system. For simplicity j is restricted to C in our calculations, and charges in the
electrodes are neglected, resulting in

Ni =
∑

α

(̺CCSCC)iα,iα (E.17)

We want to point out that it is in principle possible to take into account the charge
contribution of the electrodes to the central system by use of the relation (see Eq. (A.71))

Gr
CX = Gr

CCtCXg
r
XX

The complete charge matrix NCC of the center is given by

NCC = −1

π

∑

W=L,C,R

Im

[∫

γ

dz
∑

σ

Gr
CW,σ (z)

]
SWC (E.18)

= −1

π
Im

[∫

γ

dz
∑

σ

Gr
CC,σ (z)

{
SCC +

∑

X=L,R

tCX.σg
r
XX,σ(z)SXC

}]

7The Mulliken population analysis Ni =
∑

α(̺S)iα,iα is preferred to the Löwdin analysis Ni =∑
α(S1/2̺S1/2)iα,iα, which would be more consistent with the LDOS calculation (see Eq. (2.12)) due

to efficiency reasons. First the square root of the overlap does not need to be computed in the Mul-
liken population analysis. But the main advantage is the saving of an additional matrix multiplication
required in every step of the iterative solution of the charge-neutrality condition, which requires that
|Ni −Natom| < 0.02 for every atom i of the central part of the nanowire.
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and
Ni =

∑

α

(NCC)iα,iα .

The integral in Eq. (E.18) is not more complicated to carry out than Eq. (E.12), because
all Green’s functions and other matrices are known. We have implemented this kind of
charge determination for testing purposes, although it results in a higher numerical effort
as compared to the use of Eq. (E.17). It turned out that this charge determination has
an influence on the conductance for thick contacts due to interface effects. But during
the stretching process, the narrowest part of the junction plays an increasingly important
role, so that finally the approximation, that only charge contributions from the center are
accounted for in Eq. (E.17), becomes unimportant.

Now, that ̺CC has been obtained via Eq. (E.12) and the charge Ni for every atom i in
the center is known from Eq. (E.17), we need to transform the deviation from the charge
neutrality Ni − Natom with the reference charge Natom of the neutral metal atom into a
change of the matrix elements of the Hamiltonian. We define the differential shift δφ

(n)
i of

the atom i in the nth loop of the self-consistent charge neutrality loop as

δφ
(n)
i = d(n) (Ni −Natom) , (E.19)

with a conversion factor d(n) < 1 Ry that may depend on the number of the actual iteration.
In our simulations we found that it is crucial to work with conversion factors d(n), which
decrease with the iteration number n. The use of big d(n)s in the first iterations may
accelerate the convergence to a charge neutral solution, but no solution may be found
without the use of decreasing d(n)s. The total shift in the nth iteration is then given as

φ
(n)
i = φ

(n−1)
i + δφ

(n)
i

and the Hamiltonian is modified according to the prescription

H
(n)
iα,jβ = H

(0)
iα,jβ + Siα,jβ

φ
(n)
i + φ

(n)
j

2
(E.20)

where Siα,jβ is the overlap matrix element between atom i with orbital α and atom j with

orbital β and H
(0)
iα,jβ is the original Hamiltonian element from the TB parameterization

explained in Sec. E.1. In this way a constant shift of all energies εµ → εµ +φ in the center

is insured for a uniform shift φ = φ
(n)
i of all atoms i [80] due to the Schrödinger equation∑

j Hijcµj = εµ
∑

j Sijcjµ (see Eq. (B.21)). The iterative procedure to determine a locally
charge neutral Hamiltonian is stopped, if the charge Ni of every atom i of the central part
of the nanowire differs from the reference charge Natom by less then 0.02 electron charges
(|Ni −Natom| < 0.02).

If the overlap matrix is assumed to be diagonal Siα,jβ = δijδαβ , one obtains a shift of
the diagonal elements only,8 namely

H
(n)
iα,iα = H

(0)
iα,iα + φ

(n)
i (E.21)

8Notice that Siα,jβ = δijδαβ is assumed in the TB parameterization for i = j (see Sec. E.1)
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Figure E.4: Determination of the influence of the kind of shift for obtaining the local
charge neutrality on the conductance. In the left panel the opening curve for the Ag
contact of Fig. 2.4 is plotted. The label ”overlap shift” means that the conductance is
determined from a charge neutral Hamiltonian obtained by shifts considering the overlap
(see Eq. (E.20)), while ”onsite shift” refers to the same procedure, where the overlap is
assumed to be diagonal (see Eq. (E.21)). In the right panel the same comparison is shown
for the Pt contact of Fig. 2.16.

Although in this case a uniform shift in the Hamiltonian does not result in a uniform
shift of all eigenvalues, this kind of shift may be more in line with the spirit of the TB
parameterization. There, the local environment is only considered to modify onsite energies
(see Eqs. (E.6) and (E.4)). This kind of a diagonal shift in Eq. (E.21) has been used for
Au in Ref. [35] and Al in Ref. [36], while for Ag, Pt and Ni we implemented the shift as
given in Eq. (E.20). For Ag and Pt we demonstrate in Fig. E.4 that these two kind of
shifts yield, however, similar results. Evidently, the conductance is not very sensitive to
whether Eq. (E.21) or Eq. (E.21) is used to implement the modifications needed to obtain
a charge neutral Hamiltonian. The same observations can be made for the conductance
histograms, which do not depend on the way the shift is implemented, as has been checked
for Ag and Pt.9

For the complex contour integration (see Eq. (E.12)) we need appropriate integration
points, in order to obtain the density matrix ̺CC in an accurate way. These integration

9The shifts of the Hamiltonian matrix elements Hiα,jβ may also be considered as arising due to local
changes of the spacial representation of an effective single-particle electronic Hamiltonian H(~r). The

elements Hiα,jβ =
∫
d3rψα

(
~r − ~Ri

)
H(~r)ψβ

(
~r − ~Rj

)
can then be recalculated after a local change of

H(~r) in a certain region around an atom l at position ~Rl. It is clear that the new Hamiltonian elements are
neither just a simple change of the diagonal elements as suggested by Eq. (E.21) nor the change as suggested
by Eq. (E.20). (A uniform shift H(~r) → H(~r) +H0 yields a modification Hiα,jβ → Hiα,jβ +H0Siα,jβ as
suggested by Eq. (E.20). However, here we are interested in nonuniform shifts restricted to some spacial
region.) Therefore the shifts suggested by Eq. (E.21) and Eq. (E.20) are only approximate ways to account
for a, in reality, more complicated modification of Hamiltonian matrix elements.
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Figure E.5: Comparison of the transmissions as obtained for charge neutral Hamiltonians,
determined with various broadening parameters ηC (see Eq. (E.13)) and error tolerances
ε = 10−2–10−6 in an adaptive integration scheme (see Eq. (E.12)). In the left panel,
ηC = 10−2–10−6 Ry is varied for a constant ε = 10−4, in the right panel ε = 10−2–10−6

is varied for a constant ηC = 10−4 Ry, and in the middle the contact geometry under
investigation is depicted. In this case the geometry is the starting geometry of all Ag
contacts. The electrode broadening was kept constant at ηX = 2 × 10−2 Ry, mimicing a
continuous electronic reservoir (see Eq. (E.14)).

points are determined by carrying out the local charge neutrality procedure for a certain
configuration of a previously chosen contact with an adaptive integration routine. We use
an adaptive integration scheme of the closed Newton-Cotes form [265], where a new point in
the middle of an integration interval is added, if a certain error criterion is met. This error
criterion is that the absolute value of the relative or absolute error in every matrix element
̺ij of ̺CC due to the new integration point, giving a contribution d̺ij, needs to be smaller
than ε ((|d̺ij| < ε |̺ij |) ∨ (|d̺ij | < ε)). If this adaptive integration is applied, it turns
out that configurations with a small minimum cross-section (MCS) generally require more
integration points than configurations with a large MCS. For this reason we decided to carry
out the adaptive integration always for two configurations of a selected contact for each
metal. The first configuration was chosen to be the starting configuration of the contact,
while the second configuration was either a dimer or chain configuration (see Figs. E.5 and
E.6 for the configurations chosen for Ag). During every iteration n in the charge neutrality
loop the integration points were written out. After the convergence to a charge neutral
Hamiltonian was achieved, we took the set union of all integration points needed in this
iterative process. The set union of integration points for the starting configuration always
turned out to be a subset of the chain or dimer configuration studied later. For different
dimer or chain configurations only few different or additional integration points were found.
Thus it seems to be a good approximation to determine the set of integration points only
once as the set union of integration point obtained in the charge neutrality loop for a certain
chain or dimer configuration using the adaptive integration scheme. This set of integration
points is then employed in a nonadaptive integration scheme in order to construct ̺CC ,
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Figure E.6: The same comparison as in Fig. E.5 now for a chain configuration of an Ag
contact.

when we need locally charge neutral Hamiltonians for the complete stretching process of
a contact. This is mandatory, because the adaptive integration turns out to be very time
consuming, and we cannot afford an adaptive integration for all the configurations, for
which we need to calculate the conductance in the stretching process of our nanowires. In
Fig. E.7 we show the integration point set used in the nonadaptive integration of the Ag
contacts. It is remarkable that the integration points are very dense, when the semicircular
integration contour γ approaches the real axis at the Fermi energy EF . This is expected,
because there are many states located at this position and the broadening of states becomes
minimal. Therefore the integration needs to resolve the details of the integrand, resulting
in a high number of required integration points.

As indicated in the caption of Fig. E.7 the broadening parameters ηC = 10−4 Ry,
ηX = 2 × 10−2 Ry (see Eqs. (E.13) and (E.14)), and a relative or absolute error tolerance
of ε = 10−4 have bee used to generate the integration points. Keeping the broadening
ηX in the electrodes constant, we demonstrate in Figs. E.5 and E.6 that ηC and ε are
sufficiently small in order to insure converged conductance results. It can be noted that
the conductance is very sensitive to changes in ηC . A broadening of ηC = 10−2 Ry, as used
in Ref. [266] for the integration, yields meaningless results, while for ηC = 10−4 Ry the
results do not differ any more from ηC = 10−5 or 10−6 Ry. The error criterion ε used in
the integration does not have a big influence on the accuracy of the conductance for big
MCS contacts (see Fig. E.5) but for a decreasing MCS an error criterion of ε ≤ 10−4 is
recommendable (see Fig. E.6).

Also for all other metals, namely Au, Al, Pt, and Ni, the parameters ηC = 10−4 Ry and
ε = 10−4 turned out to be sufficient for getting converged conductance results. The number
of integration points used in the conductance calculations of the stretching processes for
the metals Ag, Au, Al, Pt, and Ni, as determined from the adaptive integration, were 140,
149, 139, 165, and 156.
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Figure E.7: Integration contour γ, as chosen in
the determination of the density matrix ̺CC (see
Eq. (E.12)). The semicircular path γ is shown
as used for Ag. The lowest energy is located at
EB = −5 Ry= −68.03 eV, the Fermi energy of Ag
at EF = 0.36 Ry= 4.9 eV (see Fig. E.3). The inte-
gration points have been obtained as the set union
of points determined in an adaptive integration of
the Ag contact shown in Fig. E.6 with a broaden-
ing of ηC = 10−4 Ry in the center, of ηX = 2×10−2

Ry in the electrodes and an error tolerance of
ε = 10−4 (see explanations in the text). The total
number of integration points has been determined
to be 140 for Ag. It can clearly be seen, how
the adaptive integration routine chooses an ever
denser integration point mesh, when getting close
to EF .

E.3 Electrode geometry for electron transport calcu-

lations

In Sec. 2.2.2 we explained that the left (L) and right (R) electrodes are constructed such
that all the hopping elements from the 112 wire atoms, which we will call the central part
or center (C) of our contact, to the electrodes are taken into account. We want to explain
shortly, how this construction works.

In Fig. E.8 we display in the left panel the geometry, as used in the structure calculations
of the stretching process (see Sec. 2.2.1) with 112 wire atoms and 288 slab atoms. For the
conductance calculations we embed the 288 electrode atoms into [001] layers containing
1200 atoms each (see middle panel of Fig. E.8). These new electrode clusters have been
checked to be big enough so that all couplings from the 112 wire atoms to the electrode are
included at any time of the stretching process for all contacts of a particular metal. Due
to the huge number of atoms in this geometry, the matrix multiplications in the charge
neutrality loop or the computation of the conductance would become impracticable. A
tremendous reduction in the number of electrode atoms results, however, if the cutoff
radius Rc of the TB parameterization (see Sec. E.1) is exploited. When we consider for all
wire atoms only the electrode atoms less than Rc apart, we arrive at the geometry shown
in the right panel of Fig. E.8. In this particular example there are only 160 in the left and
right electrode, respectively.

It is possible to exploit the cutoff radius by implementing sparse matrix multiplications
(see Ref. [266]). In this case the atoms in the central part of the wire need to update the
number of neighbor atoms within Rc, whenever the geometry changes during the evolution
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Figure E.8: To the left the geometry is shown as used in the structure determination of
the molecular dynamics (MD) simulations. We consider an Ag contact. In the middle the
electrode atoms have been embedded into large [001] layers, designed to include all the
electrode atoms coupled to the central wire at any time of the stretching process for all
contacts of the particular metal. The rightmost figure shows the atoms really needed in
the computation of the conductance, namely all electrode atoms lying at most a cutoff

radius Rc away from one of the atoms of the central system (
∣∣∣~Ri − ~Rj

∣∣∣ < Rc, where i is

an electrode atom and there exists at least one atom j in the central part of the contact,
for which their distance is less than the cutoff radius Rc).

of a stretching process. This generates a large overhead of indices that need to be taken
care of. For this reason we decided not to exploit this feature. For contact geometries
consisting of more atoms than studied in this work, a sparse matrix multiplication should
be mandatory.

E.4 Estimate for the breaking force of a metallic bond

in a crystal

In this paragraph we give a short derivation of an estimate for the force needed to break a
bulklike bond in a fcc lattice (see Eq. (E.24)). The reasoning follows Ref. [70] (see Ref. 25
therein), where, however, no derivation is given.

The total energy of a crystal can approximately be written as EN(r) = NE(r), where
N is the number of atoms in the volume V of the considered crystal, E(r) = EcohE

∗(r∗)
is the energy of a single atom as a function of the Wigner-Seitz radius, Ecoh is the equi-
librium cohesive energy (or enthalpy of formation), and E∗(r∗) is the “universal” energy
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function E∗(r∗) = − (1 + r∗) exp (−r∗) [124]. The Wigner-Seitz radius r is defined as

r = (3/4πnA)1/3 with the atom density nA. Because nA = N/V = 4/a3 in a fcc crys-

tal, r is connected with the fcc lattice constant a via r = (3/16π)1/3 a. Additionally,
r∗ = (r − r0) /ℓ is the scaled Wigner-Seitz radius and r0 the equilibrium value of r. The
length scale ℓ is related to the bulk modulus B, and it can be shown [124] that

ℓ =

√
Ecoh

12πBr0
=

(
16π

3

) 1
6
√

Ecoh

12πBa0
(E.22)

with the equilibrium fcc-lattice constant a0.
Eq. (E.22) can be proven as follows. Due to its basic definition the bulk modulus is

given as

B = V0
∂2ĒN
∂V 2

∣∣∣∣
T,N,V=V0

= V0





∂2r

∂V 2

∂EN
∂r

∣∣∣∣
r=r0︸ ︷︷ ︸

=0

+

(
∂r

∂V

)2
∂2EN
∂r2

∣∣∣∣
r=r0




,

where we denoted ĒN (V ) = EN(r) and V0 = N4πr3
0/3 shall be the equilibrium volume of

the crystal [267]. The first term in the second line vanishes, because ∂EN/∂r|r=r0 = 0 in
the equilibrium position of the atoms. If we rewrite the derivative ∂r/∂V = r0/3V then
we finally get

B =
Ecoh

12πr0ℓ2
=

(
16π

3

)1/3
Ecoh

12πa0ℓ2
,

which is nothing else but Eq. (E.22).
An estimate for the maximal force F needed to break a bulklike bond may be obtained

at the the inflection point of EN(r) at a Wigner-Seitz radius rIP = r0+ℓ (where IP stands for

inflection point). If we use the relation r = (3/16π)1/3
√

2x between the Wigner-Seitz radius
and the fcc nearest-neighbor distance (or interatomic bond length) x, an approximate bond

length at rupture of xIP = (a0 + (16π/3)1/3 ℓ)/
√

2 is obtained. The absolute value of the
maximal force F per bond (where there are 6N bonds in a fcc lattice) is then given as

F =
1

6N

dẼN (x)

dx

∣∣∣∣∣
x=xIP

=

(
3

16π

) 1
3

√
2Ecoh

6 exp (1) ℓ
. (E.23)

(where ẼN(x) = EN (r)). This finally leads to the following maximal force per bond in a
fcc lattice:

F =

√
EcohBa0

8 exp (2)
. (E.24)

In order to obtain numerical values from Eq. (E.24), we employ the data listed in Table
E.2 for the three constants Ecoh, B, and a0.
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metal Ag Au Pt Ni

Ecoh (eV/atom) 2.95 3.81 5.84 4.44
B (1011 N/m2) 1.007 1.732 2.783 1.860

a0 (Å) 4.09 4.08 3.92 3.52

Table E.2: Numerical values for the constants Ecoh, B, and a0 as used in the computation
of the bulk breaking force in Table 2.1 according to Eq. (E.24). The data is taken from
Ref. [268] (see Tables 3.1, 3.3, and 1.3 therein).



Appendix F

Ab-initio quantum transport –

methodological details

To this chapter of the appendix we have deferred some details of the ab-initio description
of electron transport. In Sec. F.1 we derive the transformation properties of the electrode
parameters under rotations. Subsequently we explain how we impose the fcc space group
on the electrode parameters (see Sec. F.2), before we state in Sec. F.3, how we determine
the lattice vectors as needed in the construction of surface Green’s functions. The final
section of this work, Sec. F.4, is listing TURBOMOLE specific details. We will specify the
methods and programs employed and give information on special basis sets used for the
electrode description.

F.1 Transformation properties of electrode parame-

ters under rotations

The parameters Y0α,jβ (Y = S or H) have been extracted from an fcc ball under the
condition that they are conform with the fcc space group (see Fig. 4.4). We will refer to
this spherical fcc cluster henceforth as the fcc ball. The fcc ball has a certain orientation
given by the primitive lattice vectors ~aballi (i =1, 2, 3). For all calculations in this work the
vectors ~aballi , from which the lead cluster is constructed, agree with the standard primitive

fcc lattice vectors ~astdi of Eq. (D.17) ({~R
∣∣∣
∣∣∣~R
∣∣∣ ≤ Rball ∧ ~R =

∑3
l=1 il~a

ball
l } with ~aballi = ~astdi

and ~astd1 = (0, a0/2, a0/2)T , ~astd2 = (a0/2, 0, a0/2)T , and ~astd3 = (a0/2, a0/2, 0)T with the
lattice constant a0). This orientation does not need to coincide with the orientation of
the contact, through which the transport shall be computed. In Fig. F.1, for example,
a Au three-atom chain between Au [111] electrodes is displayed. The [111] direction has
been rotated such that it coincides with the z axis. This means that the electrodes of the
contact are constructed from a set of rotated lattice vectors, which we name ~a

(X)
i (i =1, 2,

3). Here X can be L or R standing for the left or right electrode.

In TURBOMOLE, basis functions are aligned along certain axes, e.g., the p functions

259
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z

Figure F.1: Au three-atom chain between [111] pyramids, where the [111] direction has
been rotated such that it coincides with the z axis.

px, py, and pz along the x, y, and z axis, respectively. In order to employ the parame-
ters Y0α,jβ in the computation of electrode Green’s functions gXX as needed to determine
the conductance of a particular system, it is usually necessary to transform them in an
appropriate way (see Fig. 4.4). This transformation includes a rotation of the atomic po-

sitions, such that the rotated vectors ~aballi coincide with the vectors ~a
(X)
i of the electrode

geometry (~a
(X)
i = R~aballi ). In addition, a transformation of the basis functions is required

to align the basis functions again with the cartesian axes. Fig. F.2 illustrates the necessity
of a transformation of the basis functions at the example of a py orbital.If we perform the
transformation of the parameters Y0α,jβ according to the rotation of the lattice, we go over

to the parameters Y
(X)
0α,jβ, where the positional index now refers to the vectors ~a

(X)
i and the

orbitals have been transformed in an adequate way. In the next paragraph we will show
mathematically, how the matrix elements Y0α,jβ transform under a rotation R.

F.1.1 Representation of rotations for s, p, and d basis functions

The parameters Y0α,jβ can be explicitly written as

Y0α,jβ = 〈0, α| Ŷ |j, β〉

= 〈0, α|
(∫

d3r |~r〉Y (~r) 〈~r|
)
|j, β〉

=

∫
d3rφα(~r)Y (~r)φβ(~r − ~Rj),

where we assume that Ŷ =
∫
d3r |~r〉Y (~r) 〈~r| is a single-particle operator that is diagonal in

the space representation 〈~r| Ŷ |~r′〉 = Y (~r)δ(~r− ~r′) and that all basis functions φα are real.
As all operators in tight-binding (TB), at the Hartree-Fock level, or in density functional
theory (DFT) are effective single particle operators, all operators in this work are of this
form.

Next we define for a transformation T , which takes ~r into ~r′ (~r′ = T~r), the linear
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Figure F.2: The atoms 1 and 2 are related via a rotation by the angle ϕ in the x-y plane.
A py orbital in the position 2 is aligned in y direction. If this py orbital is rotated into the
position 1, now called p′y, the orbital p′y becomes a linear combination of the orbitals px
and py in the basis of atom 1.

operator ÔT , which acts on a function ψ(~r), as [269]

ψ′(~r′) = ÔTψ(~r′) = ψ(~r) if ~r′ = T~r (F.1)

This definition can be brought into the more convenient form

ÔTψ(~r) = ψ(T−1~r)

The spherical basis functions s, p, d (and higher) form a complete set of 2l+ 1 linearly
independent basis function for angular momentum l = 0, 1, 2 (and higher). For every

angular momentum l a rotated basis function with angular momentum l at point ~R is
expressible as a linear combination of the unrotated basis functions of angular momentum
l at the same position, because the 2l + 1 basis functions span an invariant subspace. For
this reason we can write

ÔRψ
l
ν = ψlν(R

−1~r) =

2l+1∑

µ=1

ψlµD
l
µν(R), ν = 1, ..., 2l + 1 (F.2)

where R stands for a rotation, l is the angular momentum quantum number, and Dl
µν(R)

is the representation of the rotation in terms of functions with angular momentum l. For
a set of n functions (which can contain several s, p, and d functions) we can write less
specifically

ÔRψν = ψν(R
−1~r) =

n∑

µ=1

ψµDµν(R), ν = 1, ..., n.
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With regard to transformations of operators, it can be shown that Y ′(~r) = Y (R−1~r) =
ÔRY (~r)Ô−1

R , or Y ′(R~r) = Y (~r) [269]. Using this we can analyze, how the parameters Y0α,jβ

transform under a rotation R. Defining the transformed operator Y ′(~r) = ÔRY (~r)Ô−1
R , we

get

Y0α, ~Rjβ
=

∫
d3rφα(~r)Y (~r)φβ(~r − ~Rj)

=

∫
d3rφα(~r)Y

′(R~r)φβ(~r − ~Rj)

=

∫
d3rφα(R

−1~r)Y ′(~r)φβ(R
−1~r − ~Rj)

=

∫
d3rφα(R

−1~r)Y ′(~r)φβ(R
−1
(
~r − R~Rj

)
)

=

∫
d3rÔRφα(~r)Y

′(~r)ÔRφβ(~r − R~Rj)

=

∫
d3r
∑

µ

φµ(~r)D(R)µαY
′(~r)

∑

ν

φν(~r − R~Rj)D(R)νβ

=
∑

µ,ν

(
DT (R)

)
αµ

(∫
φµ(~r)Y

′(~r)φν(~r − R~Rj)

)
D(R)νβ

=
∑

µ,ν

(
DT (R)

)
αµ
Y ′
~0µ,R ~Rjν

D(R)νβ.

Thus, the final result is that the matrix elements Y0α,jβ are obtained from the rotated
matrix elements Y ′

~0α,j′β
by multiplying from both sides with the representation of the

rotation D(R) and using Y ′
0α,j′β at the position ~Rj′ = R ~Rj, or in short

Y~0α, ~Rjβ
=
∑

µ,ν

(
DT (R)

)
αµ
Y ′
~0µ,R ~Rjν

D(R)νβ, (F.3)

where the coordinate systems are connected by ~r′ = R~r.

In order to use this formula, the representation D(R) of the rotation R needs to be
obtained. In this work basis functions from s (l = 0) to d (l = 2) have been used. We give
the representations of the rotations for these functions below.

The angular momentum l is zero (l = 0) for s functions ψl=0(~r) , their multiplicity ν
is 1 (ν = 2l + 1 = 1), and they just depend on the radius ψ0(~r) = ψ0(r). Thus we have
ÔRψ

0(~r) = ψ0(R−1~r) = ψ0(r) = ψ0(~r), and trivially the transformation for s functions is
a scalar

D0(R) = 1 (F.4)

There are ν = 3 p functions. In TURBOMOLE the real combinations of the angular
momentum eigenfunctions Y m

l=1 are used. They appear in the order px, py, and pz, and can
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be written [245]

px(~r) = f1(r)x

py(~r) = f1(r)y (F.5)

pz(~r) = f1(r)z

with a certain radial dependence f1(r). Therefore the rotated functions are transformed
as 


p′x(~r)
p′y(~r)
p′z(~r)


 =




px(R
−1~r)

py(R
−1~r)

pz(R
−1~r)


 =




px(R
T~r)

py(R
T~r)

pz(R
T~r)


 = RT




px(~r)
py(~r)
pz(~r)


 .

Here the orthogonality of the rotations R−1 = RT has been used. Therefore ~p′T = ~pR and
from Eq. (F.2) it follows that the 3× 3 representation of the rotation R for the p functions
is

D1(R) = R (F.6)

For l = 2 there are ν = 5 d functions. As for the p functions TURBOMOLE uses the
real combinations of the angular momentum eigenfunctions Y m

l=2 in the order d3z2−r2, dxz,
dyz, dxy, and dx2−y2 , where

d3z2−r2 = f2(r)
(3z2 − r2)

2
√

3
dxz = f2(r)xz

dyz = f2(r)yz (F.7)

dxy = f2(r)xy

dx2−y2 = f2(r)
(x2 − y2)

2

with a certain radial dependence f2(r). The transformed d functions are then given as
~d′T = ~dTD2 (R) with the 5 × 5 representation of the rotation R for the d functions
D2(R) =

0

B

B

B

B

@

`

3R2
zz − 1

´

/2
√

3RzxRzz

√
3RzyRzz

√
3RzxRzy

√
3

`

R2
zx − R2

zy

´

/2√
3RxzRzz RxxRzz +RzxRxz RxyRzz +RxzRzy RxxRzy + RxyRzx RxxRzx − RxyRzy√
3RyzRzz RyxRzz +RzxRyz RyyRzz +RyzRzy RyxRzy + RyyRzx RyxRzx − RyyRzy√
3RxzRyz RxxRyz +RyxRxz RxyRyz +RyyRxz RxxRyy + RxyRyx RxxRyx − RxyRyy√

3
`

R2
xz − R2

yz

´

/2 RxxRxz − RyxRyz RxyRxz − RyyRyz RxxRxy −RyxRyy

`

R2
xx +R2

yy −R2
xy − R2

yx

´

/2

1

C

C

C

C

A

,

(F.8)

where the components of the rotation R have been written in the form

R =




Rxx Rxy Rxz

Ryx Ryy Ryz

Rzx Rzy Rzz




The use of Eq. (F.3) requires the transformation matrix D(R) appropriate for the linear
combination of atomic orbitals (LCAO) parameters Y0α, ~Rjβ

. Usually a quantum chemistry



264 Ab-initio quantum transport – methodological details

basis set consists of several s, p, and d functions. In TURBOMOLE the basis functions are
ordered according to their angular momentum number, so first come the s, then the p, and
finally the d functions (or higher angular momentum functions). The functions in a basis
set are all linearly independent. (The functions with the same angular momentum have
a different radial dependence.) Because of this linear independence the representation of
the rotation D(R) can be constructed by the process of addition of representations [269].
If there are n0 s functions, n1 p functions, and n2 d functions, we have

D(R) =

2∑

l=0

nlD
l(R).

As an example the representation of the rotation for 2 s, 1 p, and 2 d functions looks like

D(R) =




D0(R) 0 0 0 0
0 D0(R) 0 0 0
0 0 D1(R) 0 0
0 0 0 D2(R) 0
0 0 0 0 D2(R)



,

where Dl(R) is the representation of the rotation for the function with angular momentum
l (see Eqs. (F.4), (F.6), and (F.8)).

F.1.2 Obtaining electrode parameters for a certain contact ori-

entation

With the results of the previous section it is now simple to obtain the parameters Y
(X)
0α,jβ

needed for the construction of electrode propagators gXX in the contact geometry from
the fcc symmetric parameters Y0α,jβ of a fcc ball (see Fig. 4.4). We choose the primed
coordinate system in Eq. (F.3) to correspond to the fcc ball with primitive lattice vectors

~aballi and the unprimed coordinate system to correspond to the electrode lattice ~a
(X)
i of the

contact. According to Eqs. (F.1) and (F.3) we need the transformation T = R such that
~r′ = R~r or more concrete ~rball = R~r(X). We construct the rotation R from electrode X
(lattice vectors ~a

(X)
i ) to the lead cluster (lattice vectors ~aballi ) such that the index vector

j = (j1, j2, j3) is conserved
∑3

q=1 jq~a
ball
q = R

∑3
q=1 jq~a

(X)
q . This means that R takes the

electrode vectors into the vectors of the lead cluster (R~a
(X)
q = ~aballq ). The parameters Y

(X)
0α,jβ

for the electrode X can then be obtained via Eq. (F.3) from the parameters Y ball
0α,jβ, extraced

for the lead cluster, by

Y
(X)

0α,j(X)β
=
∑

µ,ν

(
DT (R)

)
αµ
Y ball

0µ,jballνD(R)νβ. (F.9)

If we set A(X) =
(
~a

(X)
1 ,~a

(X)
2 ,~a

(X)
3

)
and Aball =

(
~aball1 ,~aball2 ,~aball3

)
, the transformation R is

given as R = Aball
(
A(X)

)−1
.
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Making use of Eq. (F.9) the parameters Y ball
0µ,jballν

can be computed once for a certain
metal and can be adapted to any electrode orientation. In this way they can be used for
the transport calculation of a contact with electrodes of the same material as long as the
lattice constant is kept fixed.

F.2 Imposing the fcc space group symmetry

In this paragraph we will consider, how we can impose the fcc space groups on parameters
Y ball

0α,jβ (Y = S,H , or Horth) as extracted from an fcc ball (see Figs. 4.7 and 4.8). Due to the
finiteness of the clusters the translational symmetry is not exactly fulfilled and needs to
be imposed. In order to avoid numerical errors, we enforce also the point group symmetry
Oh in this process. Concerning the notation, we will call the original unsymmetrized
parameters of the fcc ball Y ball

0α,jβ. The parameters conform with the Oh point group, the

translational symmetry, and the fcc space group are Y Oh

0α,jβ, Y
trans
0α,jβ , and Y fcc

0α,jβ, respectively.

In the following paragraph and throughout this work we refer to the parameters Y fcc
0α,jβ also

simply as Y0α,jβ.

F.2.1 Oh point group symmetry

In paragraph F.1.1 we derived a relation, on how the parameters Y0α,jβ transform under a
rotation R of the coordinate system (see Eq. (F.3))

Y0α, ~Rjβ
=
∑

µ,ν

(
DT (R)

)
αµ
Y ′
~0µ,R ~Rjν

D(R)νβ

where Y ′(~r) = ÔRY (~r)Ô−1
R stands for the transformed operator, and the D(R) are the

representations of R in terms of the LCAO basis functions, in which Y has been expressed.
If a system possesses a certain symmetry and R is an element of this symmetry group

G, the operation Y ′(~r) = ÔRY (~r)Ô−1
R does not change the system and Y = Y ′. For this

reason a Hamiltonian with an imposed point group symmetry Y ps

0α, ~Rjβ
can be constructed

from unsymmetric parameters Y ball
0α, ~Rjβ

by averaging for a certain element of Y ps

0α, ~Rjβ
over all

Y ball
0α, ~Rjβ

, related to it by symmetry

Y ps

0α, ~Rjβ
=

1

NG

∑

R∈G

∑

µ,ν

(
DT (R)

)
αµ
Y ball
~0µ,R ~Rjν

D(R)νβ. (F.10)

For the special case of the Oh point group the operations in this group are [269, 262]

• the identity 1 (1 element)

• 3 rotations around 3 4-fold axes (9 elements)

• 2 rotations around 4 3-fold axes (8 elements)



266 Ab-initio quantum transport – methodological details

C3

C4

C2

Figure F.3: Selected symmetry operations of the octa-
hedral point group O [269]. Indicated are a two-fold
(C2), three-fold (C3), and four-fold axis (C4).

• 1 rotation around 6 2-fold axes (6 elements)

• inversion −1
The 24 proper rotations listed consitute the octahedral point group O (see Fig. F.3).
Combined with the inversion there are overall NG = 48 elements in the Oh point group. If
all the symmetry operations of the Oh point group are used in Eq. (F.10), we obtain the
Oh point group symmetric matrix elements Y Oh

0α, ~Rjβ
.

F.2.2 Translational symmetry

A translationally invariant Hamiltonian H trans should only depend on the difference of
atomic coordinates.1 The Hamiltonian matrix elements therefore obey the relation

H trans
iα,jβ = H trans

0α,(j−i)β = H trans
(j−i)β,0α = H trans

0β,−(j−i)α = H trans
jβ,iα

due to the hermiticity of the Hamilton operator and purely real matrix elements. This
relation is, however, not naturally fulfilled for parameters extracted from a finite cluster
after a self-consistent calculation, because the selfconsistency takes surface effects into
account (see Fig. F.4).The violation of the translational symmetry depends on the cluster
size. The bigger the finite cluster, the smaller should be the surface effects with respect
to the central atom of the cluster. Therefore also the violation decreases, and we have
observed this behavior when the difference in the parameters before and after imposing
the translational symmetry is compared for clusters with increasing radii (see also the
discussion of Table 4.2). Nevertheless for all the clusters accessible to us, we still need to
impose this symmetry. A translationally invariant Hamiltonian can be constructed via

H trans
0α,jβ =

1

2

(
Hball

0α,jβ +Hball
0β,−jα

)
(F.11)

or in terms of matrices of orbital indices

H trans
0,j =

1

2

(
Hball

0,j +
(
Hball

0,−j
)T)

Here Hball
0,j stands for the Hamiltonian extracted from the finite fcc ball.

1We consider here only a Hamiltonian because an overlap matrix depends only on relative distances
and thus the translational symmetry is always fulfilled.
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,jαY0 β

Y−j α,0β

,jαH0 β H−j α,0β≠ ballball

,jαS0 β S−j α,0β=ball ball

0

j

−j

Figure F.4: Illustration of the necessity to impose the translation symmetry on the hopping
elements Hball

0α,jβ. A spherical cluster is displayed. In blue-shaded areas surface effects are

important. While the overlap elements Sball0α,jβ, as extracted from a finite fcc ball, are

translationally symmetric, this is not the case for the Hamiltonian elements Hball
0α,jβ due the

self-consistent procedure that takes surface effects into account.

F.2.3 Fcc space group

The combined action of the Oh point group and the translational symmetry leads to the fcc
space group symmetry. With Eqs. (F.10) and (F.11) we get the fcc space group symmetric
parameters Y0α,jβ = Y fcc

0α,jβ according to the prescription

Y fcc
0α,jβ =

1

2NG

∑

R∈G

∑

µ,ν

{(
DT (R)

)
αµ
Y ball
~0µ,R ~Rjν

D (R)νβ +
(
DT (R)

)
βµ
Y ball
~0µ,−R ~Rjν

D (R)να

}

(F.12)

F.3 Determination of primitive lattice vectors for elec-

trodes

In order to calculate the electrode Green’s function gXX it is necessary that the parameters
Y0,j are in the coordinate system of the electrode X (with X = L or R). The parameters
Y0,j are calculated from the fcc ball, a spherical fcc cluster made up from standard fcc
lattice vectors ~astdi (see Eq. (D.17)). If the lattice of the left or right electrode deviates
from this standard fcc lattice, the lead electrode parameters Y0,j need to be transformed
appropriately as explained before. In order to carry out the required transformation, the
primitive vectors of the electrode geometry need to be determined. We assume here that the
electrodes of the contact geometry are made up of [100], [110], or [111] planes. The [100],
[110], or [111] direction shall be rotated such that it is pointing into the transport direction

(which is either along the x, y, or z axis). The determination of the electrode vectors ~a
(X)
i
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can be done unambiguously only if two layers in the transport direction are used. This
is necessary because of the [111] direction: While for the [100] and [110] directions the
layers are repeated as ABABAB... in the [111] direction the sequence is ABCABC.... Just
from the knowledge of layer A, it cannot be determined, whether B is the next layer or
C. Therefore it is necessary to work in a set of points that contains at least two different
layers along the transport direction. The following procedures are operating in this set of
points from two consecutive crystal layers.

F.3.1 Bulk Green’s functions from three-dimensional Fourier trans-

formation

For obtaining the primitive vectors, when bulk Green’s functions are constructed via a
three-dimensional Fourier transformation as described in Sec. D.1, we can proceed in the
following way: We determine a nearest neighbor ~p2 to the starting point ~p1. Next another
nearest neighbor ~p3 to ~p1 is searched such that (~p3 − ~p1) (~p2 − ~p1) = a2

0/4 with the lattice

constant a0. The primitive lattice vectors of the geometry are either ~a
(X)
1 = ~p2 − ~p1,

~a
(X)
2 = ~p3 − ~p1, and ~a

(X)
3 =

(
~a

(X)
1 + ~a

(X)
2

)
/3 + 4

(
~a

(X)
1 × ~a

(X)
2

)
/ (3a0) or ~a

(X)
1 = ~p3 − ~p1,

~a
(X)
2 = ~p2 − ~p1, and ~a

(X)
3 =

(
~a

(X)
1 + ~a

(X)
2

)
/3 + 4

(
~a

(X)
1 × ~a

(X)
2

)
/ (3a0). Which of these two

sets reproduces the geometry can be checked easily by multiplying a difference vector ~r =

~Rj − ~Ri of two atoms in the electrode of the contact with
(
A(X)

)−1
=
(
~a

(X)
1 ,~a

(X)
2 ,~a

(X)
3

)−1

and checking, whether all components of this vector are (close to) integer values. This
procedure works, because for a Bravais lattice there exists a vector of integers, such that

~r = A(X)~j and therefore ~j =
(
A(X)

)−1
~r are only integer values for the correct primitive

lattice vectors ~a
(X)
i .

F.3.2 Surface and bulk Green’s functions from decimation tech-

nique

If the Green’s functions are constructed by use of the decimation technique (see Sec. D.2),

the determination of the primitive lattice vectors ~a
(X)
i for the contact is slightly more

complicated. (Notice that, as described in Sec. D.2, both surface and bulk Green’s func-
tions can be obtained from the decimation technique.) Currently our program can treat
electrodes with [100], [110], or [111] surfaces which are displayed in Fig. F.5. These orien-
tations can be distinguished by the interlayer distance of consecutive planes n and n + 1,
namely dn,n+1 = a0/2 for the [100] direction, dn,n+1 = a0/

√
8 for the [110] direction and

dn,n+1 = a0/
√

3 for the [111] direction. We require two vectors ~c
(X)
1 and ~c

(X)
2 to be located

in the planes perpendicular to the transport direction. The transport direction, along the
normal vector ~n, shall be oriented into the z direction. The third vector ~c

(X)
3 goes one

plane forward from plane n to n+ 1 (and ~n~c
(X)
3 > 0 with ~n pointing from plane n to n+ 1

in the right electrode). The construction of the (nonorthogonal) vectors ~c
(X)
i , which are
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Figure F.5: Surfaces of Al oriented along the main crystallographic directions [100], [110],
and [111] in the left, middle, and right panel. Some atoms of the first atomic layer are
connected by dark solid lines. The atoms are located in the edges of the polygons.

required to form a right-handed coordinate system for i = 1 to 3 obviously needs to dis-
tinguish between the different orientations. Below we give the details of our procedure for
the determination of the plane vectors ~c

(X)
i and the primitive lattice vectors ~a

(X)
i following

from them.

[100]: The layer sequence is ABABAB.... The atoms in the layer are placed on a
quadratic lattice with an interatomic distance of the nearest neighbor distance
a0/

√
2 (see the [100] surface in Fig. F.5). The vectors ~c

(X)
1 and ~c

(X)
2 can be

chosen to be rectangular. We determine a point ~p1 and a nearest neighbor
~p2, both in layer n. Then we set ~c

(X)
1 = ~p2 − ~p1, ~c

(X)
2 = ~n × ~c

(X)
1 and the

vector connecting different planes is ~c
(X)
3 = 1

2

(
~c

(X)
1 − ~c

(X)
2

)
+ a0~n/2. A set of

right handed primitive vectors is obtained as ~a
(X)
1 = −~c(X)

2 , ~a
(X)
2 = ~c

(X)
3 , and

~a
(X)
3 = ~c

(X)
3 − ~c

(X)
1 .

[110]: The layers are stacked ABABAB... as for the [100] direction. Again the vectors

~c
(X)
1 and ~c

(X)
2 inside the plane can be chosen to be rectangular (see the [110]

surface in Fig. F.5). However, these two rectangular vectors possess different
length, namely a0/

√
2 and a0. So we search for a point ~p2 at one of these two dis-

tances from ~p1 in layer n. If we find a nearest neighbor we set ~c
(X)
2 = ~p2−~p1 and

~c
(X)
1 =

√
2
(
~c

(X)
2 × ~n

)
. If instead the point ~p2 is a lattice constant apart, then we

choose ~c
(X)
1 = ~p2 − ~p1 and ~c

(X)
2 =

(
~n× ~c

(X)
1

)
/
√

2. The remaining vector, con-

necting the different planes, can be constructed as ~c
(X)
3 = 1

2

(
~c

(X)
1 + ~c

(X)
2

)
+ a√

8
~n

and the primitive vectors are obtained from ~a
(X)
1 = ~c

(X)
3 − ~c

(X)
2 , ~a

(X)
2 = ~c

(X)
3 ,

and ~a
(X)
3 = 2~c

(X)
3 − ~c

(X)
1 − ~c

(X)
2 .

[111]: This direction is more complicated than the others, because the stacking is
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ABCABCA... (see the [111] surface in Fig. F.5). So it needs to be determined,
whether a layer B or C is following, if one is sitting on an atom in layer A and
looks into the transport direction. Therefore information on layer n and n+ 1
is required in contrast to the previously discussed [100] and [110] directions.
We determine a point ~p3 in layer n + 1 as a nearest neighbor of ~p1 in layer n
and get in this way the vector connecting different planes ~c

(X)
3 = ~p3 − ~p1. Next

another nearest neighbor ~p2 of ~p1 is searched, but this time in layer n. We set
~c
(X)
1 = ~p2 − ~p1 and generate ~c

(X)
2 by a rotation around the normal vector ~n (in

a right-handed sense) by π/3. Now successive π/3 rotations of ~c
(X)
1 and ~c

(X)
2

around ~n are carried out until both scalar products of ~c
(X)
1 and ~c

(X)
2 with ~c

(X)
3

are equal to a2
0/4 (~c

(X)
1 ~c

(X)
3 = a2

0/4 and ~c
(X)
2 ~c

(X)
3 = a2

0/4). The primitive vectors

are then ~acontact1 = ~c
(X)
3 − ~c

(X)
2 , ~a

(X)
2 = ~c

(X)
3 , and ~a

(X)
3 = ~c

(X)
3 − ~c

(X)
1 .

F.4 TURBOMOLE details

In this chapter we give details, which are specific to TURBOMOLE. First we will list,
which methods and modules of TURBOMOLE we used. Next we will provide information
on basis sets employed in the electrode description. Some of these basis sets have been
designed specifically for use in this work.

F.4.1 Programs and options used in TURBOMOLE

In our calculations we use TURBOMOLE V5.7 [270]. The calculations of the electronic
structure are all based on density functional theory (DFT), in particular on the RI-DFT
method as implemented in the module ”ridft” [176, 177]. The use of RI-DFT as compared
to conventional DFT calculations (as implemented in the module ”dscf”) gives a speedup
by a factor of around 10. Structure optimizations relied on the module ”relax” [271]. All
optimizations were started via ”jobex” with the option ”-gcart 4”.

We will provide now a detailed list of the options used by us in calculations with
TURBOMOLE. All options not specially mentioned below are the standard options of
”define” in TURBOMOLE V5.7.

In DFT we always used the generalized gradient approximation (GGA) functional BP-
86 [272, 133, 273, 274, 275]. All calculations were done in a closed shell occupation,
sometimes with a fractional occupation number. The various basis sets employed are
listed in the next section. All our major results were consistently computed in the SVP
TURBOMOLE standard basis sets [276]. If other basis sets were employed we always
resorted to the standard SVP auxiliary basis set [176, 177].

Single point calculations on very large clusters (such as the large electrode cluster calcu-
lations (see Sec. 4.3) of 429 atoms or more) were mostly done with the option ”$fermi”, i.e.,
the thermal smearing of occupation numbers [277]. Starting from a conveniently chosen
starting temperature, we cooled all the clusters down to temperatures of ”tmend=30.0”.
When ”$fermi” was set, we used bigger dampings of around 10.0. For such very large
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metallic systems we exploited the point group symmetries in order to speed up the calcu-
lations. This was of special importance in the computation of large electrode clusters (see
Sec. 4.3) of more than 400 atoms, since a speedup by roughly the order of the point group
is achieved. For very large systems we found it necessary to use the special option ”grid
5” or even ”grid 6”. This was mandatory for obtaining meaningful electron densities with
an integer electron number that was otherwise lost in the course of the SCF run.

We converged all calculations with the default option ”$scfconv 6”. Partly we resorted
to the option ”$marij”, the multipole accelerated RI-J. With this option we encountered
several problems, such as unrealistic energies with the default settings (precision param-
eter 10−6, maximum multipole moment 10, and threshold for multipole neglect 10−18) as
reported to the Quantum Chemistry group, in particular P. Nova and R. Ahlrichs. Drop-
ping the option or using more precise parameters (precision parameter 10−11, maximum
multipole moment 14, and threshold for multipole neglect 10−26), as pointed out to us by
P. Nova , helped to cure the problems.

While smaller systems were unproblematic to converge and problems could be overcome
with the option ”$scforbitalshift automatic 0.5”, the inclusion of more metal atoms (such
as for Au-h-Z in Chap. 6) was often not possible. This is most likely due to a too highly
metallic systems, i.e., too small HOMO-LUMO gaps. The convergence of the huge metal
contacts of Chap. 5 or the previously mentioned electrode clusters required the exploitation
of point group symmetries.

F.4.2 Basis sets for the electrode description

In the following we list the basis sets used for the electrode description in this work. For
Al they are given in Table F.2 and for Au in Table F.1. The SVP basis sets are listed
for completeness and correspond to the TURBOMOLE standard basis sets [276]. Some
non-standard basis sets with reduced overlap matrix elements have been constructed. This
means that the basis functions with minimal exponents, i.e., the most diffuse functions,
were left out. The two basis sets constructed in this way are ”au SVP-wsp” and ”al SVP-
wsp-opt”. The shortcut ”wsp” stands for ”without s and p”, because we dropped the most
diffuse s and p basis functions. These modified basis sets have been constructed such that
the (variational) restricted open shell Hartree Fock (ROHF) total energy of a single atom
does not differ by more than 40 meV from the value obtained by using the basis set of SVP
quality.

For Au in the basis au SVP we obtain a total ROHF energy of E = −134.7843224 H
and in the basis au SVP-wsp E = −134.7589204 H. This is an acceptable difference of 25.4
mH= 0.692 eV.

For the Al atom in the basis al SVP wet get E = −241.786870 H and for the cor-
responding basis with the dropped most diffuse s and p functions the total energy is
E = −241.592158 H. This results in an unacceptably high difference of 194.7 mH = 5.298
eV. Thus a reoptimization of the outer two s and p functions was necessary. Their new
exponents are therefore printed emphasized in Table F.2. Then we get E = 241.750278 H
for the optimized basis al SVP-wsp-opt and an energy difference of 36.6 mH= 0.9957 eV
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with respect to al SVP. We need to acknowledge the help of F. Furche, who recommended
the error criterion of 40 meV to us and performed the necessary reoptimization of outer
basis functions for the basis set al SVP-wsp-opt.

In addition to the SVP basis sets we list in Table F.2 a minimal basis for Al, which we
call al hw-min. It is constructed from the basis al hw-dz with 2s and 2p ([2s2p] {21/21})
functions by combining both outermost s and p functions. This leads to a basis set with
a single s and p function ([1s1p] {3/3}), called al hw-min from now on. The basis set al
hw-dz [278] is defined in TURBOMOLE and is only listed for reasons of completeness.
(The electronic core potential (ECP) ecp-10 can also be found there or in Ref. [278].)
The minimal basis al hw-min serves for ”quick and dirty” test calculations. From DFT
calculations of Al clusters of 555 atoms we obtained a HOMO energy of EHOMO = −5.48
eV, well below the HOMO of other basis sets such as al SVP with EHOMO = −4.26 eV, al
SVP-wsp-opt with EHOMO = −4.04 eV, and al hw-dz with EHOMO = −4.22 eV.
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au SVP {au def-SV(P)} au SVP-wsp

# au (7s6p5d) / [6s3p2d] {211111/411/41} # au (6s5p5d) / [5s2p2d] {21111/41/41}
2 s 2 s

20.115299000 -0.15910719389 20.115299000 -0.15910719389

12.193477000 0.79105526778 12.193477000 0.79105526778

1 s 1 s

6.0735294368 1.0000000000 6.0735294368 1.0000000000

1 s 1 s

1.3174451569 1.0000000000 1.3174451569 1.0000000000

1 s 1 s

0.58596768244 1.0000000000 0.58596768244 1.0000000000

1 s 1 s

0.13875427354 1.0000000000 0.13875427354 1.0000000000

1 s –

0.48876985527E-01 1.0000000000 – –

4 p 4 p

8.6096650000 0.50053018599 8.6096650000 0.50053018599

7.3353260000 -0.72681584494 7.3353260000 -0.72681584494

1.6575296365 0.57315511417 1.6575296365 0.57315511417

0.78159310216 0.49579068859 0.78159310216 0.49579068859

1 p 1 p

0.32384840661 1.0000000000 0.32384840661 1.0000000000

1 p –

0.54000000000E-01 1.0000000000 – –

4 d 4 d

4.1439490000 -0.37099566643 4.1439490000 -0.37099566643

3.5682570000 0.40197233762 3.5682570000 0.40197233762

1.2345757130 0.46001988624 1.2345757130 0.46001988624

0.48190232338 0.46152130958 0.48190232338 0.46152130958

1 d 1 d

0.16490636769 1.0000000000 0.16490636769 1.0000000000

Table F.1: Au basis sets as used in this work. Official names of the TURBOMOLE basis
sets are given in curly brackets.
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al SVP {al def-SV(P)} al SVP-wsp-opt

# al (10s7p1d) / [4s3p1d] {5311/511/1} # al (9s6p1d) / [3s2p1d] {531/51/1}
5 s 5 s

5887.5727030 0.13483347987E-02 5887.5727030 0.13483347987E-02

885.61225996 0.10071576809E-01 885.61225996 0.10071576809E-01

201.13604899 0.45132454056E-01 201.13604899 0.45132454056E-01

56.284974674 0.11461268043 56.284974674 0.11461268043

17.229551243 0.10159608943 17.229551243 0.10159608943

3 s 3 s

29.340249922 0.69347454208E-01 29.340249922 0.69347454208E-01

3.0439630420 -0.42528117679 3.0439630420 -0.42528117679

1.1285539518 -0.41449832210 1.1285539518 -0.41449832210

1s 1s

0.14234175160 1.0000000000 0.10860263042 1.0000000000

1 s –

0.54400192313E-01 1.0000000000 – –

5 p 5 p

145.11918809 0.63963373134E-02 145.11918809 0.63963373134E-02

33.717894833 0.44189359965E-01 33.717894833 0.44189359965E-01

10.369863083 0.15581575993 10.369863083 0.15581575993

3.5135616036 0.28635286951 3.5135616036 0.28635286951

1.1980050273 0.22921423248 1.1980050273 0.22921423248

1 p 1 p

0.26583005913 1.0000000000 0.11855759602 1.0000000000

1 p –

0.71003361994E-01 1.0000000000 – –

1 d 1 d

0.30000000000 1.0000000000 0.30000000000 1.0000000000

al hw-dz {al ecp-10 dz hay & wadt} al hw-min

# al (2s1s2p1p) / [2s2p] {21/21} # al (3s3p) / [1s1p] {3/3}
2 s 3 s

0.96150000000 -0.24840700000 0.96150000000 -0.24840700000

0.18190000000 0.61056400000 0.18190000000 0.61056400000

1s 0.65650000000E-01 0.54439000000

0.65650000000E-01 0.54439000000

2p 3 p

1.9280000000 -0.33757000000E-01 1.9280000000 -0.33757000000E-01

1p 0.20130000000 0.48144700000

0.20130000000 0.48144700000 0.58040000000E-01 0.62819800000

0.58040000000E-01 0.62819800000

Table F.2: Al basis sets as used in this work. The basis set al hw-dz is only listed for
reasons of completeness. Official names of the TURBOMOLE basis sets are given in curly
brackets.
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[13] N. Agräıt, C. Untiedt, G. Rubio-Bollinger, and S. Vieira, Phys. Rev. Lett. 88, 216803
(2002).
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[108] V. M. Garćıa-Suárez, A. R. Rocha, S. W. Bailey, C. J. Lambert, S. Sanvito, and
J. Ferrer, Phys. Rev. Lett. 95, 256804 (2005).

[109] J. M. Krans, C. J. Muller, I. K. Yanson, T. C. M. Govaert, R. Hesper, and J. M. van
Ruitenbeek, Phys. Rev. B 48, 14721 (1993).

[110] A. I. Yanson and J. M. van Ruitenbeek, Phys. Rev. Lett. 79, 2157 (1997).

[111] T. Kitamura and Y. Umeno, Modelling Simul. Mater. Sci. Eng. 11, 127 (2003).
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[178] J. J. Palacios, A. J. Pérez-Jiménez, E. Louis, and J. A. Vergés, Phys. Rev. B 64,
115411 (2001).

[179] M. Kondo, T. Tada, and K. Yoshizawa, J. Phys. Chem. A 108, 9143 (2004).

[180] R. Ahlrichs and S. D. Elliott, Phys. Chem. Chem. Phys. 1, 13 (1999).

[181] F. Furche, R. Ahlrichs, P. Weis, C. Jacob, S. Gilb, T. Bierweiler, and M. M. Kappes,
J. Chem. Phys. 117, 6982 (2002).
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and H. v. Höhneysen, Chem. Phys. 281, 113 (2002).

[199] L. A. Bumm, J. J. Arnold, T. D. Dunbar, D. L. Allara, and P. S. Weiss,
J. Phys. Chem. B 103, 8122 (1999).

[200] S. Creager, C. J. Yu, C. Bamdad, S. O’Connor, T. MacLean, E. Lam, Y. Chong,
G. T. Olsen, J. Luo, M. Gozin, and J. F. Kayyem, J. Am. Chem. Soc. 121, 1059
(1999).

[201] T. Ishida, W. Mizutani, Y. Aya, H. Ogiso, S. Sasaki, and H. Tokumoto,
J. Phys. Chem. B 106, 5886 (2002).

[202] D. J. Wold, R. Haag, M. A. Rampi, and C. D. Frisbie, J. Phys. Chem. B 106, 2813
(2002).

[203] D. M. Adams, L. Brus, C. E. D. Chidsey, S. Creager, C. Creutz, C. R. Kagan, P. V.
Kamat, M. Lieberman, S. Lindsay, R. A. Marcus, R. M. Metzger, M. E. Michel-
Beyerle, J. R. Miller, M. D. Newton, D. R. Rolison, O. Sankey, K. S. Schanze,
J. Yardley, and X. Zhu, J. Phys. Chem. B 107, 6668 (2003).

[204] V. Mujica, M. Kemp, and M. A. Ratner, J. Chem. Phys. 101, 6849 (1994).

[205] V. Mujica, M. Kemp, and M. A. Ratner, J. Chem. Phys. 101, 6856 (1994).

[206] C.-C. Kaun, B. Larade, and H. Guo, Phys. Rev. B 67, 121411(R) (2003).

[207] W. Su, J. Jiang, and Y. Luo, Chem. Phys. Lett. 412, 406 (2005).

[208] Y. Asai and H. Fukuyama, Phys. Rev. B 72, 085431 (2005).

[209] K.-H. Müller, Phys. Rev. B 73, 045403 (2006).

[210] H. M. McConnell, J. Chem. Phys. 35, 508 (1961).

[211] S. B. Sachs, S. P. Dudek, R. P. Hsung, L. R. Sita, J. F. Smalley, M. D. Newton,
S. W. Feldberg, and C. E. D. Chidsey, J. Am. Chem. Soc. 119, 10563 (1997).

[212] W. B. Davis, W. A. Svec, M. A. Ratner, and M. R. Wasielewski, Nature 396, 60
(1998).

[213] Y. A. Berlin and M. A. Ratner, Rad. Phys. Chem. 74, 124 (2005).



286 BIBLIOGRAPHY

[214] A. Salomon, D. Cahen, S. Lindsay, J. Tomfohr, V. B. Engelkes, and C. D. Frisbie,
Adv. Mater. 15, 1881 (2003).

[215] J.-P. Launay, Chem. Soc. Rev. 30, 386 (2001).

[216] M. N. Paddon-Row, Aust. J. Chem. 56, 729 (2003).

[217] C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantenmechanik (deGruyter, Berlin,
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Abbreviations
ABL alternating bond length

CGF contracted Gaussian function

DBA donor bridge acceptor

DFT density functional theory

DOS density of states

ECL effective conjugated length

ECP electronic core potential

EMT effective medium theory

FZK Forschungszentrum Karlsruhe

GGA generalized gradient approximation

GTO Gaussian type orbtial

HOMO highest occupied molecular orbital

I-V current-voltage

IETS inelastic electron tunneling spectroscopy

INT Institut für Nanotechnologie

KS Kohn-Sham

LDOS local density of states

LUMO lowest unoccupied molecular orbital

MCBJ mechanically controllable break junction

MCS minimum cross-section

MD molecular dynamics

MMM metal-molecule-metal

MO molecular orbital

NEGF nonequilibrium Green’s functions

NMR nuclear magnetic resonance

PBC periodic boundary condition

PCS point contact spectroscopy

ROHF restricted open shell Hartree Fock

SCF self-consistent field

STM scanning tunneling microscope

STO Slater type orbtial

TB tight-binding

WBL wide-band limit
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