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1 Introduction

Writing about unconventional superconductivity, one is obliged to review the long and
successful history of research on this topic. Ironically though, the first and best under-
stood unconventional ”superconductor”is neither a (solid state) superconductor nor was
called unconventional.

The discovery of the superfluid phases in the rare isotope 3He in 1972 by David M.
Lee, Douglas D. Osheroff and Robert C. Richardson [1] was starting point of remarkable
theoretical and experimental investigations [2–7]. The research on the superfluid state
of 3He is still ongoing with progress even relevant beyond condensed matter physics [8].

The fermionic nature of 3He atoms, and thus the formation of Cooper pairs, pro-
vides a system similar to the conventional solid state superconductors. On the other
hand important differences where observed. The order parameter shows a momentum
dependence with p-wave symmetry and the neutral atoms condense in a spin triplet
state.

With superconductivity in the heavy fermion compounds CeCu2Si2and UPt3 a new
class of superconducting materials was found. [9,10]. Soon it became obvious that these
alloys where the first candidates for unconventional pairing in a solid state systems,
even with a triplet order parameter [10]. In this context also the term ”unconven-
tional”superconductivity was introduced, defined as breaking in addition to the local
gauge invariance at least one additional symmetry of the system.

But of probably the utmost significance was another family of superconductors. Bed-
norz and Müller [11] reported 1986 that the doped antiferromagnet La2−xBaxCuO4 was
superconducting up to the unusual high temperature of 35K. Subsequent research on
related systems yield a whole group of cuprate superconductors. With YBa2Cu3O7−x

and Bi2Sr2CanCun+1O2n+6+δ providing technological important members, because their
critical temperature Tc is high enough to access superconductivity with liquid nitrogen.
The theoretical understanding of the pairing mechanism of the high-temperature super-
conductors (HTSC) is still incomplete, thus the symmetry of the order parameter gives
important insights. For the hole-doped cuprates mentioned above d-wave symmetry
seems to be well established by now, while in the case of the electron-doped compounds
like Nd2−xCexCuO4−δ or Pr2−xCexCuO4−δ contradictory experimental findings are not
yet completely resolved.

In recent years Sr2RuO4 attracted a lot of attention [12]. Strontium ruthenate is
isostructural to the HTSC but without copper. In contrast to the cuprates it shows
triplet pairing and a p-wave order parameter like in 3He was proposed [13].
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2 1 Introduction

In this thesis we will address different systems and superconductors, but always inho-
mogeneities will play a crucial role. As will be explained, in unconventional supercon-
ductors Anderson’s theorem is not valid any more and also non-magnetic scattering sites
are pair breaking, and can give rise to bound states and low energy quasiparticle states.
In these systems also scattering on boundaries can locally suppress superconductivity,
making fully selfconsistent calculations and spatially resolved calculation necessary even
to get correct qualitative results.

While this sensitivity makes the numerical description more burdensome, it also pro-
vides new possibilities. The exact behavior of superconductors at inhomogeneities is
strongly connected to the symmetry of the order parameter. This enables to test the
order parameter, and thus microscopic theories which propose different symmetries, by
studying, e.g., the surface properties. As will become obvious later, this way one can
not only gain information about the absolute value of the order parameter like in angle-
resolved photo emission spectroscopy (ARPES) but also extract information about the
momentum dependence of the phase.

Vice versa in case of known order parameters, information and understanding of tech-
nological relevant interfaces like grain boundary junctions can be obtained.

In the first chapter we briefly introduce the basic theoretically concepts used through-
out this thesis. The quasiclassical theory of superconductivity is an excellent tool to de-
scribe inhomogeneous superconducting systems. It can be interpreted as a generalization
of Landau’s Fermi liquid theory to the superconducting state, allowing the self-consistent
determination of the order parameter including impurities and other pair-breaking mech-
anism. The transport equations for the quasiclassical Green’s functions are well suited
for numerical evaluations of static and dynamical properties at arbitrary temperature.
In case of weak perturbations varying on large scales, systems far from equilibrium are
well described. And also strong perturbations like interfaces, which are beyond the
quasiclassical approximation, can be included by using proper boundary conditions.

Having introduced the basic tools, we apply them to the simple case of homogeneous
systems in equilibrium. Basic thermodynamic properties like the order parameter and
specific heat are calculated and differences between conventional s-wave and unconven-
tional superconductors discussed.

With chapter 3 we will turn to the first specific system, Sr2RuO4. Still bulk properties
are on the focus. For two different proposed models the influence of impurities on the
specific heat and spin susceptibility will be studied. Zhitomirsky and Rice [14] discussed
multiband superconductivity with an active band and induced pairing on a passive band,
which gives rise to an order parameter with line nodes as possible mechanism. We
will adopt this model taking into account also impurities and compare our results with
experimental data.

Point contact measurements in the group of Von Löhneysen [15] investigated the
superconducting gap function of Sr2RuO4. The obtained conductance spectra strongly
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support a p-wave order parameter. But the observed enhancement current reveals an
unusual temperature dependence. To account for this dependence, a different model was
introduced by Laube et al. [16]. The authors showed that a low lying boson mode, which
effectively can be described as impurities with a temperature dependent scattering rate,
would consistently fit the experimental findings. Also for this model, with a p-wave
order parameter, the specific heat will be investigated. Within the calculations the
method is extended to Eliashberg strong coupling theory to consistently describe the
low temperature limit.

The following two chapters are devoted to the high-temperature superconductors. In
these compounds the underlying pairing mechanism giving rise to the unexpected high
critical temperature is still under debate. Fundamental to verify the different theories
is the knowledge of symmetry of the order parameter. Many different experiments have
been performed to extract this information but unfortunately most observables are phase
insensitive. A direct and elegant way to access information about the phase are systems
involving Josephson junctions. Since the Josephson current through a weak link is
dependent on the phase difference across the interface, elaborate geometries with several
junctions allow phase sensitive tests of the order parameter [17]. With the pioneering
corner junction experiment by Wollman et al. [18] and tricrystal ring by Tsuei et al.
[19, 20] demonstrated d-wave symmetry in the hole-doped cuprates. Many experiments
based on the same idea where performed and the so called ”π-junctions”have interesting
applications on their own. But also the conductance of weak links like point-contacts
and tunneling junctions is sensitive to the momentum dependence of the phase. At
first glance only observing the local density of states (LDOS), these experiments are
measuring a quantity which at inhomogeneities is strongly affected by a momentum
dependent phase of the order parameter.

Scanning-tunneling microscopy and spectroscopy (STM/STS) measurements on (110)
interfaces and measurements on misaligned grain boundary junctions exhibit a striking
zero bias conduction peak (ZBCP). It has been shown [21] that an interface, for which
the sign of the order parameter changes along a given trajectory, will always support a
bound state at the Fermi energy. This zero energy bound state (ZEBS) is a consequence
of intrinsic Andreev reflection at the interface. A d-wave order parameter with sign
changes is in accordance with this observation and can also explain the absence of the
ZBCP in STM measurements on (100) surfaces. While in clean systems the bound
state should be strictly at zero energy, in experiments a broad conduction peak was
observed. We will study the broadening of the bound state at an interface by bulk
impurity scattering. The broadening of bound states due to unitary scattering will
be shown to be substantially weaker than in the Born limit. We study various model
geometries and calculate the temperature dependence of the Josephson critical current
in the presence of these impurity-broadened bound states.

While impurity scattering can well account the broadening of the bound state, bulk
impurities will also lead to significant suppression of superconductivity and a reduced



4 1 Introduction

critical temperature. The experimentally observed strongly broadened ZBCP is bet-
ter accounted for by a disordered interface. We will introduce a model of an layer
with enhanced impurity scattering at the surface which is capable to explain the strong
broadening without a reduction of the critical temperature.

Magnetic field experiments are an essential way to distinguish a ZBCP due to Andreev
bound states from other mechanisms. In a magnetic field, applied along the crystal ĉ-
axis, induced Meissner screening currents shift the bound states to finite energy, leading
to a splitting of the ZBCP. This splitting has been reproducible seen in some experi-
ments, while others cannot reproduce it. We will show that in an applied field, magnetic
and potential scatterer will affect the ZEBS differently and the conflicting experimental
observations are compatible with d-wave origin of the ZBCP taking into account different
surface disorder.

The d-wave symmetry of the order parameter for hole-doped cuprate superconductors
is well established by now. In case of electron-doped compounds the situation is still un-
clear. In the early days, s-wave seemed to be well founded. Based on s-wave symmetry in
the electron-doped compounds, the diffing findings in STM measurements on and hole-
doped HTSC could be used to support the d-wave and Andreev bound state picture in
the latter. Later experiments supported d-wave pairing also in the electron-doped com-
pounds posing the question why no ZBCP has been observed. The argumentation that
impurity scattering is responsible will be tested by explicit calculation of the differential
conductance for different pairing symmetries, including magnetic as well as potential
impurities. We will demonstrate that d-wave symmetry and impurities are incompatible
with the experiments. Calculations with s-wave and anisotropic s-wave, on the other
hand, can fit the data even quantitatively.

In chapter 5 we will drop the restriction to the tunneling limit. In contacts with
high transparency Andreev reflection and multiple Andreev reflection (MAR) dominate
the transport characteristics. We present a self-consistent theory of current-voltage
characteristics of d-wave/d-wave contacts at arbitrary transparency and in particular
address the problem of the observation of subharmonic gap structure (SGS) in cuprate
junctions. Our analysis shows that the SGS is possible also in d-wave superconductors
and the existence of bound states within the gap results in an even-odd effect in the
SGS. Elastic scattering mechanisms like impurities or surface roughness may suppress
the SGS. In the presence of a magnetic field the Doppler shift of the Andreev bound
states leads to a splitting of the SGS, which is an unambiguous fingerprint of d-wave
superconductivity.

The final chapter 6 will not deal with unconventional superconductors. But also in
systems with conventional BCS superconductors, unconventional pairing correlations can
become crucial. Despite the fact, that ferromagnetism destroys singlet pair correlations
on a short length scale, for superconductor-ferromagnet heterostructures the possibility
of Josephson currents has been proposed and experimentally verified [22]. In this case,
the coupling through the ferromagnetic layer is mediated by a long range proximity



5

effect of triplet correlations. To render this possible, the singlet pair amplitudes in
the BCS superconductor must be transformed to triplet correlations when entering the
ferromagnet. This transformation involves spin rotation and spin flip processes. While
spin rotation is automatically present when these two systems are coupled, the physical
origin of the spin flip processes is unclear. We will investigate a microscopic model
of magnetic impurities close to the boundary and calculate the S-matrix describing the
coupling. As will be shown, magnetic impurities in combination with a broken rotational
spin symmetry will result in the necessary processes.
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2 Quasiclassical theory in a nutshell

Before turning to unconventional superconductivity and the specific systems advertised
in the introduction, a general introduction in the methods and concepts used within this
thesis should be provided. Standard quantum field theory methods are a powerful tool
to address superconducting systems [23, 24], but the computational effort especially in
inhomogeneous and out-of-equilibrium systems is a critical drawback. A Fermi liquid
description, the quasiclassical theory of superconductivity, proved to be perfectly suited
not only for these tasks. The quasiclassical transport equations derived independently
by Eilenberger [25] and Larkin and Ovchinnikov [26] for equilibrium systems have been
generalized to nonequilibrium situations by Eliashberg [27] and Larkin and Ovchinnikov
[28] [29], making the quasiclassical theory one of the most successful tools to describe
superconducting systems.

In the following pages only a very condensed overview of basic ideas, notations and
equations is given, adverting that derivations and exhaustive treatments are available in
excellent reviews [30–32] and of course the cited original papers.

2.1 Quasiclassical Green’s functions

With the description of strongly interacting fermionic systems by a distribution of quasi-
particles, Landau formulated a non-perturbative theory of strongly interacting fermions.
However, the validity is determined by the smallness of key parameters. The relevant
energy scales like temperature, Debye energy and frequencies of external perturbations
have to be much smaller than the Fermi energy. The dynamic and spatial evolution of
the quasiparticle distribution function is given by the quasiclassical Landau-Boltzmann
equation under the assumption, that intrinsic length scales like the mean free path and
thermal coherence length are large and external perturbations smooth on the scale of
the Fermi wavelength. If the scales characterizing the superconducting state, i.e. order
parameter and superconducting coherence length, also fulfill this requirement, a gener-
alization including the BCS pairing interaction can be formulated:

The central object of the quasiclassical theory of superconductivity is the quasiclassical

7



8 2 Quasiclassical theory in a nutshell

or ξ-integrated 1 Green’s function 2

ǧ(pF ,R; ε, t) =
1

a

∫
dξpτ̂3Ǧ(p,R; ε, t) (2.1)

a is the quasiparticle weight and ξp = vF (p − pF ). The 2x2 Keldysh matrix ǧ has the
form

ǧ(pF ,R; ε, t) =

(
ĝR ĝK

0 ĝA

)
(2.2)

with the retarded ĝR(pF ,R; ε, t), the advanced ĝA(pF ,R; ε, t) and the Keldysh Green’s
functions ĝK(pF ,R; ε, t) being in general 4x4-Nambu matrices in spin and particle hole
space 3. In the following τ̂i will always denote Pauli matrices in particle-hole space and
σ̂i in spin space.

The evolution of the propagator ǧ(pF ,R; ε, t) is given by the transport-like Eilenberger
equation

[ε̌− σ̂mf − σ̌i − v̂ext, ǧ]⊗ + i~vF∇ǧ = 0, (2.3)

which, to determine the quasiclassical propagator ǧ uniquely, has to be accompanied
with a normalization condition

ǧ ⊗ ǧ = −π21̌ . (2.4)

For the sake of readability not all definitions and notations like the non-commutative
product ⊗ will be given here, but are addressed in the appendices A and B.

The energy ε̌, mean field self-energy σ̌mf , impurity and phonon scattering self-energy
σ̌i = σ̌imp + σ̌ph and the external potential v̌ext have the Keldysh structure

ε̌ =

(
ετ̂3 0
0 ετ̂3

)
σ̌mf =

(
σ̂mf 0
0 σ̂mf

)
σ̌i =

(
σ̂R

i σ̂K
i

0 σ̂A
i

)
v̌ext =

(
v̂ext 0
0 v̂ext

)
(2.5)

The external potential v̂ext contains the vector potential A and the scalar potential φ
in the form (e = −|e|)4.

v̂ext = −e
c
vF Aτ̂3 + eφ1̂. (2.6)

1The ξ-integration is in fact non-trivial, the caveats are addressed, e.g., in [30] and [33]
2In the literature sometimes the full propagator Ǧ is defined with an additional factor τ̂3, and the

definition of the quasiclassical propagator changes accordingly.
3In case of spin-singlet superconductivity, the formulation can be reduced to 2x2 Nambu matrices. The

connection to the formulation given here is explained in appendix B
4This convention (sadly often not mentioned explicitly) is chosen in most of the cited publications,

therfore we adopt it to avoid unnecessary confusion. While we try to be consistent in notation,
nevertheless eV will be the standard energy unit defined with e = |e|
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In some cases it is convenient to decompose the matrices in spin space explicitly in
terms of Pauli matrices. This way, e.g., the mean field self-energy can be written as

σ̂mf =

(
ν + νσ (∆ + ∆σ)iσ̂2

(∆̃ + ∆̃σ∗)iσ̂2 ν̃ + ν̃σ∗

)
(2.7)

where the parameters with and without twiddle are connected by symmetries as ex-
plained below.

In addition to the self-energies given by the Landau parameters As and Aa

νmf (pF ,R; t) =

∫
dε

4πi

〈
As(pF ,pF

′)gK(pF ,R; ε, t)
〉

pF
′ (2.8)

νmf (pF ,R; t) =

∫
dε

4πi

〈
Aa(pF ,pF

′)gK(pF ,R; ε, t)
〉
pF

′ , (2.9)

in the superconducting state singlet V s and triplet V t pairing interactions are giving rise
to the offdiagonal terms

∆(pF ,R; t) =

∫
dε

4πi

〈
V s(pF ,pF

′)fK(pF
′,R; ε, t)

〉
pF

′ (2.10)

∆(pF ,R; t) =

∫
dε

4πi

〈
V t(pF ,pF

′)fK(pF
′,R; ε, t)

〉
pF

′ . (2.11)

Scattering on dilute impurity potentials enters the theory by a impurity self-energy
which can be calculated in t-matrix approximation

σ̌imp(pF ,R; ε, t) = nimpť(pF ,pF ;R; ε, t) (2.12)

ť(pF ,pF
′) = ǔ(pF ,pF

′) +NF

〈
ǔ(pF ,pF

′′) ⊗ ǧ(pF
′′) ⊗ ť(pF

′′,pF
′)
〉
pF

′′ . (2.13)

The impurities are characterized by their concentration nimp and the potential û =
up + usσ̂ with the Coulomb potential up) and spin exchange scattering us on randomly
oriented classical moments.

Redundancy in the Nambu notation gives rise to symmetries (Appendix B) making
the parametrization

ĝR,A =

(
gR,A fR,A

f̃R,A g̃R,A

)
ĝK =

(
gK fK

−f̃K −g̃K

)
(2.14)

convenient, where the twiddle (̃ ) denotes conjugation defined as

X̃(pF ,R; ε, t) = X(−pF ,R;−ε, t)∗. (2.15)
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Knowing the quasiclassical propagator, important properties like the momentum re-
solved local density of states

N(pF ,R; ε) = − 1

4π
tr4
[
τ̂3Im

[
ĝR(pF ,R; ε)

]]
(2.16)

and the current density

j(R, t) = eNF

∫
dε

8πi

〈
vF tr4

[
τ̂3ĝ

K(pF ,R; ε, t)
]〉

pF
(2.17)

are directly available.

2.1.1 Boundary conditions

While it seems that all the low energy physics can be well described within the quasi-
classical theory, a mayor complicacy should not be concealed. As noted in the begin-
ning, the validity of the method requires that everything is smooth on the atomic scale.
Boundaries and interfaces, which are crucial in heterostructures and systems like tun-
nel junctions and point contacts, are usually strong inhomogeneities on a short length
scale and thus beyond the quasiclassical approach. Pretending to be perfectly suited
for inhomogeneous systems but not addressing central inhomogeneities sounds like an
antagonism. But as in WKB in quantum mechanics, the solution are boundary con-
ditions. The Eilenberger equation (2.3) describes propagation on classical trajectories
parametrized by spatial coordinates R and the momentum on the Fermi surface pF .
By laborious work on a microscopic level it is possible to determine conditions which
relate propagators on “incoming” to propagators on “outgoing” trajectories at the inho-
mogeneity [34–40]. Applying these boundary conditions in addition to the Eilenberger
equation allows also a selfcontained quasiclassical treatment of these problems.

2.2 Equilibrium

In thermal equilibrium the formulation simplifies significantly. The Keldysh propagator
is given by the retarded and advanced Green’s function by

ĝK = (ĝR − ĝA) tanh

(
ε

2kBT

)
(2.18)

and since the quantities are time independent, the product ⊗ is reducing to a simple
matrix product.

Furthermore it is possible to formulate the theory in terms of Matsubara Green’s
functions. These propagators are defined on the imaginary energy axis for discrete
Matsubara energies εn (fermions) or ωn (bosons) given by

εn = (2n+ 1)πkBT ωn = 2nπkBT, n ∈ Z . (2.19)
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The retarded and advanced Green’s functions are connected with the Matsubara
Green’s functions by analytical continuation

ĝR,A(pF ,R; ε) = ĝM (pF ,R; εn)
∣∣
iεn→ε±i0+ (2.20)

As the full Keldysh propagator the Matsubara propagator fulfills the Eilenberger equa-
tion which now reads

[
iεnτ̂3 − σ̂(pF ,R; εn) − v̂(pF ,R), ĝM (pF ,R; εn)

]
⊗ + ivF∇ĝM (pF ,R; εn) = 0 . (2.21)

For compact notation, here σ̂ contains all self-energies.
The observables can then be calculated by replcaing ĝK → ĝM and

∫
dε
4πi → kBT

∑
εn

in the original Keldysh formulas.
This way the order parameter is expressed as

∆(pF ,R) = kBT
∑

εn

〈
V (pF ,pF

′)fM (pF
′,R, εn)

〉
pF

′ (2.22)

and the current density can be calculated by

j(R) = 2eNF kBT
∑

εn

〈
vF (pF )gM (pF ,R; εn)

〉
pF

) . (2.23)

2.3 Order parameter

Characterizing the central quantity of the superconducting state, the order parameter
∆, at first the pairing interaction is expanded in orthogonal basis functions

V (pF ,pF
′) =

∑

Γ

VΓ

dΓ∑

ν

YΓν(pF )Y∗
Γν(pF

′). (2.24)

In a crystal YΓν are the basis functions from irreduzible representations of the point group
of the crystal lattice symmetry. The largest attractive interaction VΓ > 0 will determine
the transition temperature Tc and the corresponding symmetry of the dominant order
parameter ∆(pF ).

Expanding the Eilenberger equation in orders of ∆, one notes that the equation for
the offdiagonal self-energy is logarithmic divergent. But fortunately the dependence on
a cut-off energy ωc and the unknown coupling parameter VΓ can be removed in favour
of an experimental observable, the critical bulk temperature Tc:

Using the solution of the homogeneous Eilenberger equation

fM(pF ; εn) =
π∆(pF )√

|∆(pF )|2 + εn2
(2.25)
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Eq.(2.22) is a self-consistency equation for the order parameter which close to the tran-
sition temperature Tc can be linearized giving the BCS relation

1

〈|YΓ|2〉 VΓ
= 2πTc

ωc∑

εn>0

1

|εn|
= Ψ

(
1

2
+

ωc

2πTc

)
− Ψ

(
1

2

)
≈ ln

(
2γωc

πTc

)
. (2.26)

The divergency is then addressed by using a standard trick of subtracting and adding
the divergent term

2πT

ωc∑

εn>0

1

|εn|
= Ψ

(
1

2
+

ωc

2πT

)
− Ψ

(
1

2

)
≈ ln

(
2γωc

πT

)
, (2.27)

which combined with Eq. (2.26) leads to the self-consistency equation (∆(pF ) = ∆ΓYΓ(pF ))

∆Γ log

(
T

Tc

)〈
|YΓ|2

〉
= πT

ωc∑

εn

〈
Y∗

Γ(pF
′)

[
∆(pF

′)√
|∆(pF

′)|2 + εn2
− ∆(pF

′)

|εn|

]〉

pF
′

(2.28)

for the bulk order parameter, and the general self-energy

∆Γ(R) =
kBT

∑
εn

〈
Y∗

Γ(pF
′)fM(pF

′,R; εn)
〉
pF

′

〈|YΓ|2〉
(
ln T

Tc
+
∑

n>0
1

n−0.5

) . (2.29)

For the sake of completeness, the Keldysh expression

∆Γ(R) =

∫ Ec

−Ec

dε
4πi

〈
Y∗

Γ(pF
′)fK(pF

′; ε)
〉
pF

′

〈|YΓ|2〉
(
ln T

Tc
+
∫ Ec

−Ec

dε
2ε tanh ε

2T

) (2.30)

can be obtained along the same lines.

2.4 Bulk properties and thermodynamics

While in general the Eilenberger equation can only be solved numerically, in the clean
homogeneous (bulk) case it is possible to obtain analytical solutions in a straightforward
manner. To provide a basis for the later discussion, an overview of the basic thermo-
dynamic bulk properties of conventional and unconventional superconductors should be
at hand. Assuming a cylindrical Fermi surface (as the case in the HTSC), the s-wave
(∆(pF ) = ∆) case and d-wave (∆(pF ) = ∆cos(2φ)) as examples of an unconventional
order parameter with nodes on the Fermi surface will be compared.
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2.4.1 Density of states

Carrying out the Fermi surface average of equation (2.16)

N(ε) = − 1

π

〈
Im
[
gR(ε,pF )

]〉
pF

(2.31)

the total density of states is gained.

In the s-wave case due to the isotropic order parameter quasiparticle states are gapped

N s(ε) =
ε√

ε2 − |∆|2
θ(ε− |∆|) (2.32)

with a square root divergency at the gap edge.

The nodes in the spectral gap of a d-wave order parameter allow states at all energies,
the corresponding DOS can be expressed as [41]

Nd(ε) =





2
π

ε
∆K

(
ε
∆

)
ε ≤ ∆

2
πK

(
∆
ε

)
ε > ∆

(2.33)

K(x) are complete elliptic integrals of the first kind [42].

It is important to note, that for low energies ε � ∆ the density increases linearly
N(ε) ≈ ε

∆ as expected for a gap with line-nodes (point-nodes) in 3D (2D). This linear
dependence will govern many of the low temperature properties, as the discussion in the
next paragraphs will show.

2.4.2 Specific heat

The general calculation of the specific heat within the quasi-classical formalism turns
out to be in many cases specifically difficult. To express the specific heat in terms
of quasiclassical propagators might pose problems not found in the other observables
mentioned before. To study this property and get aware of the obstacles one has to go
back to the full (non-quasiclassical) propagators.

The starting point to calculate the specific heat

C = −T ∂
2Ω

∂T 2
= T

∂S

∂T
(2.34)

in a self-consistent quantum field formulation is the Luttinger-Ward functional [43] for
the free energy, first generalized to superfluid systems by De Dominicis and Martin [44,45]

Ω(Σ̂, Ĝ; V̂ ) = −Tr
[
Σ̂Ĝ+ ln

(
τ̂3(−Ĝ−1

0 + Σ̂ + V̂ )
)]

+ Φ
[
Ĝ
]

(2.35)
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Figure 2.1: Bulk density of states for s-wave and d-wave superconductors

with
Ĝ−1

0 = iεn − ξτ̂3

Ĝ0 is the free electron Green’s function, V̂ are external potentials like impurities, and
Σ̂ is the self-energy. The functional Φ

[
Ĝ
]

is generating all skeleton self-energy diagrams
as given below. In this short notation, indices and variables are omitted, products are
Nambu matrix products together with folding in internal variables, and Tr[. . . ] is defined
as

Tr[. . . ] = T
∑

εn

∫
d3p

(2π)3

∫
d3R

1

2
tr4[. . . ] (2.36)

The functional is stationary with respect to variations of Σ̂ and Ĝ giving

δΩ

δĜ
= 0 −→ Σ̂ =

δΦ

δĜ
the self-energy (2.37)

δΩ

δΣ̂
= 0 −→ Ĝ =

(
Ĝ−1

0 − Σ̂ − V̂
)−1

and Dyson equation. (2.38)

Doing the ξ-integration to obtain an expression in terms of quasiclassical quantities
turns out to be non-trivial. In general ξ is an operator, and the operator logarithm
cannot be integrated by simple means and technical tricks are needed 5. In the simple

5These tricks like diffentiating and reintegrating are dangerous and have to be applied carefully, e.g.,
not to cross branch-cuts or miss boundary terms.
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homogeneous case discussed now, these complications are absent and the only problems
are divergencies which are cured by subtracting the normal state ΩN(T ) and absorbing
infinite constants in ΩN (T = 0). The free energy is then given by

ΩS(T ) − ΩN (T ) = NF
|∆Γ|2
VΓ

− 2πNF kBT
∑

εn

(〈√
εn2 + |∆(pF )|2

〉
− |εn|

)
(2.39)

and, using the above mentioned methods to cure the divergencies, it can be written as

ΩS(T ) − ΩN (T ) =NF log

(
T

Tc

)〈
|∆(pF |2

〉

− 2πNF kBT
∑

εn

(〈√
εn2 + |∆(pF )|2

〉
− |εn| −

〈|∆(pF )|2〉
2|εn|

).

(2.40)

In the low temperature limit, T � Tc, it is posssible to derive an equation for the
specific heat particularly suited for analytic treatment. The entropy of independent
fermions

S = −2kB

∑

k

[1 − f(Ek)] ln[1 − f(Ek)] + f(Ek) ln f(Ek) (2.41)

can also be derived for the superconducting state using the partition function. With the
approximation of a constant order parameter at low temperatures and consequently a
temperature independent density of states, the specific heat

C = 2kB

∫
dεN(ε)(βε)2

(
−df(ε)

dε

)
(T � Tc) (2.42)

is determined by the low energy density of states. With the Fermi distribution function
f(ε) = (1 + exp(ε/kBT ))−1.

The normal state specific heat can be instantaneously read off to be

CN

T
=

2

3
π2NFkB

2 ≡ γS . (2.43)

In the s-wave superconducting state, the density of states are fully gapped, as expected
the specific heat shows activated behaviour

Cs
S(T )

γST
=

3
√

2

π3/2

(
∆

kBT

)5/2

exp
[
− ∆

kBT

]
(2.44)

while the linear low energy DOS in the d-wave case manifests in

Cd
S(T )

γST
=

3

π2
9 ζ(3)

kBT

∆
. (2.45)

Equation (2.42) shows apparently, that if the low energy DOS grows potentially as
N(ε) ∝ εn, the specific heat over temperature C/T ∝ T n follows the same power law.
In Figure 2.2 the specific heat is plotted over the whole temperature range.
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Figure 2.2: Specific heat for s-wave and
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Figure 2.3: Electron spin susceptibility for
s-wave and d-wave superconductors as
function of reduced temperature

2.4.3 Spin susceptibility

Investigation of the electron spin susceptibility is a powerful way to distinguish singlet
and triplet superconductivity.

In singlet superconductors the total spin of a Cooper pair is zero, thus quasiparticles
of the condensate cannot contribute to the magnetic moment. As effect below Tc the
spin susceptibility of the electrons is reduced

χS

χN
= 1 − πkBT

∑

εn

〈
|∆(pF )|2

(
εn2 + |∆(pF )|2

)3/2

〉
(2.46)

=
1

kBT

∫ ∞

−∞
dεN(ε)

(
−df(ε)

dε

)
(2.47)

vanishing at zero temperature (χN = 2µ2
eNF ), while in triplet superconductors it will

not change for T < Tc. Like the specific heat, the spin suszeptibility drops exponentially
as T → 0

χs
S(T )

χN
=

√
2π∆

kBT
exp
[
− ∆

kBT

]
T � Tc (2.48)

for s-wave and shows power-law dependence

χd
S(T )

χN
= 2 log 2

kBTc

∆

T

Tc
T � Tc (2.49)

for d-wave superconductors as shown in Figure 2.3.
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2.4.4 Nuclear spin relaxation

In the end the relaxation rate of nuclear spins defined as R = (T1T )−1 is connected to
the density of states in a similar way

RS

RN
=

1

kBT

∫ ∞

−∞
dεN(ε)2

(
1 +

〈∆〉2
ε2

)(
−df(ε)

dε

)
. (2.50)

2.4.5 Impurity scattering

In this subsection we will study the influence of impurities on the superconducting prop-
erties of conventional s-wave and unconventional d-wave superconductors. For simplicity
the scattering potentials will be assumed to be momentum independent but can never-
theless be of arbitrary strength. As explained before the self-energy is obtained via the
the solution of the t-matrix equation (2.13). In equilibrium and s-wave scattering, it
reduces to a simple matrix equation,

t̂(εn) = û+ û 〈ĝ(pF , εn)〉pF
t̂(εn) û = up + ûsσ̂ (2.51)

omitting obvious arguments from now on.

The self-energies will be characterized by the elastic scattering time τ , entering the
mean free path l = vF τ , and the potential strength σ as

1

2τp/s
= nimp

πNFu
2
p/s

1 + (πNFup/s)2
σp/s =

(πNFup/s)
2

1 + (πNFup/s)2
. (2.52)

In terms of the scattering phase shift δ the potential u is given by πNFu = tan δ and all
expressions can be changed to this parametrization by the simple replacement σ = sin2 δ.
Often only the two limiting cases, the weak scattering Born limit ( πNFu � 1, σ →
0, δ → 0) or strong unitary scattering ( πNFu→ ∞, σ → 1, δ → π/2), are examined, to
obtain these limits from the general equations given here is straightforward.

Potential scatterer

At first let us address pure potential impurities without any spin flip û = up. By inverting
the t-matrix equation the impurity self-energy is given as

σ̂imp =
1

2τ

cτ̂0 + 〈ĝ〉 /π
1 − σp − σp 〈ĝ〉2 /π2

c =

√
1 − σp

σp
(2.53)

The diagonal term cτ̂0 is shifting the chemical potential and will not enter in the char-
acteristic superconducting properties. It is thus ignored in the further discussion.
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The limiting values are found to be

σ̂imp =
1

2τ

〈ĝ〉
π

in Born, and σ̂imp =
−1

2τ

〈ĝ〉π
〈ĝ〉2

in unitary limit. (2.54)

It is important to note, that for an s-wave order parameter the self-energies renormalize
energy εn and order parameter ∆ the same way, effectively dropping out, a fact known
as Anderson theorem.

Analyzing the effect of impurities on the transition temperature Tc, again the propaga-
tor now including the self-energies is linearized in the order parameter, and the attained
equation for the impurity self-energy can be explicitly solved. The linearized Green’s
function

ĝM ≈ −iπ sign(εn)τ̂3 +
π∆̂

|εn| + 1
2τ

+
1

2τ

π〈∆̂〉
|εn|

(
|εn| + 1

2τ

) (2.55)

is now entering the selfconsistency equation (2.22) and the critical temperature is given
by

log

(
Tc,0

Tc

)
= ψ

(
1

2
+

1

4τπkBTc

)
− ψ

(
1

2

)
+

|〈Y〉|2
〈|Y|2〉

[
ψ

(
1

2
+

1

4τπkBTc

)
− ψ

(
1

2

)]

(2.56)
with Tc,0 being the critical temperature for clean systems. In contrast to the s-wave
case (Y = 1), where as expected the transition temperature is unaffected by potential
scattering, in d-wave superconductors 〈Y〉 = 0 the impurities are pair breaking (inde-
pendend of scattering strength), reducing the crititical temperature. A fact which is
true not only for d-wave but all order parameters with vanishing Fermi surface average
〈∆̂〉 = 0.

Paramagnetic scatterer

Analzing the effect of spin-flip scattering we will use a model of classical spins introduced
by Shiba [46]. In the time reversal symmetry breaking potential

û =
1

2
JSα̂ = usα α̂ =

(
σ̂ 0
0 σ̂∗

)
(2.57)

S denotes the spin operator of the localized moment and α is the electron spin operator
in 4x4 Nambu representation. The limit of classical impurity spins is takeb by sending
J → 0 and |S| → ∞, keeping J |S| finite. Again inverting the t-matrix equation and
assuming no net magnetization (〈S〉 = 0) one finds the impurity self-energy

σ̂imp =
1

2τs

−
(
1 − σ + σ 〈ĝ〉2 /π2

)
〈ĝ〉 /π + (2 − 2σ) 〈ĝ3〉 /π(

1 − σ + σ 〈ĝ〉2 /π2
)2 − 4σ(1 − σ) 〈ĝ3〉2 /π2

(2.58)
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with the limits

σ̂imp =
1

2τ

2〈ĝ3〉 − 〈ĝ〉
π

(Born) and σ̂imp =
−1

2τ

〈ĝ〉π
〈ĝ〉2 (unitary limit). (2.59)

This result exhibits some interesting properties. At first, if the Fermi surface average of
the offdiagonal elements is vanishing, like for a d-wave order parameter, the self-energy
is

σ̂imp =
1

2τ

〈ĝ3〉/π
1 − σ − σ〈ĝ3〉2/π2

(2.60)

as for potential scatterers. The two different scattering mechanisms are indistinguishable
in this case. Secondly due to the broken time reversal symmetry, impurities become
also relevant in the conventional s-wave case. But this situation weakens with growing
impurity strength, vanishing in the unitary limit where the potential result is regained.

Turning to the ramifacation on the transition temperature the solution for the lin-
earized propagator is now

ĝM ≈ −iπ sign(εn)τ̂3 +
π∆̂

|εn| + 1
2τ

− 1 − 2σ

2τ

π〈∆̂〉(
|εn| + 1

2τ

) (
|εn| + 2−2σ

2τ

) (2.61)

leading to the dependence of the critical temperature

log

(
Tc,0

Tc

)
= ψ

(
1

2
+

1

4τπkBTc

)
− ψ

(
1

2

)

− |〈Y〉|2
〈|Y|2〉

[
ψ

(
1

2
+

1

4τπkBTc

)
− ψ

(
1

2
+

1 − σ

2τπkBTc

)]. (2.62)

In conclusion the transition temperature is given by a universal dependence [47]

log

(
Tc

Tc,0

)
= ψ

(
1

2

)
− ψ

(
1

2
+

α

2πkBTc

)
(2.63)

depicted in Figure 2.4 with a pair breaking parameter α which depends on impurity type
and order parameter.

Scattering on impurities does not only reduce the transition temperature, also the
density of states are affected. Weak scatterer induce states below the band edge, in high
concentration leading to gapless superconductivity [47]. In unconventional superconduc-
tors bound states on strong impurity sites can be found, giving rise to impurity bands
and the possibility of a finite residual density of states at zero energy [48–51].
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3 Specific heat of Sr2RuO4

3.1 Unconventional superconductivity

In the discussion of the superconducting state of novel superconducting materials, the
order parameter is usually analyzed according to symmetry considerations. In this con-
siderations the term “unconventional”, as used within this thesis, was introduced in
literature. A order parameter is defined to be unconventional if it breaks in addition
to the gauge invariance at least one additional symmetry of the system. These possibly
broken symmetries include time reversal, spin rotational and the crystal symmetry. As
sketched in Fig. 3.1 an anisotropic order parameter, even with nodes, is not necessary
unconventional. Furthermore an unconventional order parameter might nevertheless
give rise to an isotropic spectral gap. A p-wave order parameter like, kx + iky in two
dimensions, is unconventional, breaking gauge, lattice and time reversal symmetry but
the gap is isotropic. In a solid, due to the crystal field, the angular momentum is not

+

+

+ +

+

+

−−

Figure 3.1: Anisotropic vs. unconventional order parameter. The anisotropic s-wave
parameter in the left panels the symmetry of the 2d square lattice. I the panel
unconventional d-wave order parameter is breaking the rotational symmetry
of the crystal lattice.

a good quantum number anymore. Instead of spherical harmonics, the order parame-
ter is given in terms of basis functions obeying the crystal symmetry. Nonetheless the
naming scheme s-wave, p-wave, d-wave is still common, classifying the order parameter
according to it’s rotational symmetry. The basis functions can be interpreted as linear
combinations of spherical harmonics with the according angular momentum L.

In this context the name “s-wave” is special. It is frequently used for any conventional
order parameters, only breaking the gauge symmetry. In these cases terms like “extended

21
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s-wave” or “anisotropic s-wave” are used to indicate anisotropy.

3.1.1 Triplet superconductivity

The Pauli principle requires the pair amplitude

Fαβ(r, t; r′, t′) =
〈
ψα(r, t)ψβ(r′, t′)

〉
(3.1)

to be odd under the exchange α↔β, r↔r ′ in the equal time limit (t = t′). If, like in
conventional superconductors, the condensate forms a singlet state, the pair amplitude
is an even function in momentum. In terms of spherical harmonics these even pairity
states correspond to even angular momentum quantum numbers L = 0, 2, . . . .

Like in 3He triplet pairing is also possible. In this case the pair amplitude is even in
spin and odd in momentum (L = 1, 3 . . . ).

A third possibility is realized in superconductor-ferromagnet heterostructures as dis-
cussed in chapter 6. If the equal time limit of the pair amplitude is vanishing, the Pauli
principle is also fulfilled. This is the case if the correlation function is odd in frequency.
A triplet state with even orbital symmetry might form, which in case of s-wave symmetry
is unaffected by non-magnetic disorder.

Working on 3He Balian and Werthammer [52] introduced a convenient notation char-
acterising the order parameter.

In Nambu notation the order parameter is a matrix in spin space of the form

∆ =

(
∆↑↑ ∆↑↓
∆↓↑ ∆↓↓

)
. (3.2)

This matrix can alway be written in terms of Pauli matrices as

∆(k) = (d0(k) + d(k)σ)iσ̂2 =

(
−dx + idy dz + d0

dz − d0 dx + idy

)
. (3.3)

Using this parametrization, a singlet order parameter ∆↑↑ = ∆↓↓ = 0 and ∆↑↓ =
−∆↓↑ = ∆s ,is characterized by a scalar d0(k) which is odd in momentum. Triplet su-
perconductors are described by a “d-vector”. A name which is unfortunate and shouldn’t
be confused with d-wave superconductivity. The energy spectrum is determined by the
d-vector in the form

Ek =
√
ε2k + dd∗ ± |d × d∗| (3.4)

and states for which |d×d∗| = 0 are called “unitary”. In this case ∆̂∆̂† is proportional
to the unit matrix and the magnitude is given by dd∗ = |∆(k)|2. In the non-unitary case
two different energy gaps emerge, by which one can even be equal to zero. Throughout
this thesis only unitary order parameter will be discussed. For these the d-vector has
a direct physical meaning: The direction of d in spin space defines the normal to the
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plane in which the electrons are equally spin paired with respect to all quantization axis
in the plane, it’s magnitude is proportional to the order parameter.

To set some examples for this parametrization the B-phase (or BW-state named after
Balian and Werthammer) of 3He has an order parameter

∆̂ = ∆0

(
−k̂x + i ∗ k̂y k̂z

k̂z k̂x + ik̂y

)
(3.5)

which in terms of the d-vector is given by d(k) = eiφ∆k̂. In the A-phase, the ABM-state
(Anderson Brinkman Morel)

∆̂ = ∆0

(
k̂x + ik̂y 0

0 k̂x + ik̂y

)
(3.6)

is given by d(k) = ∆0d̂(k̂ · m̂ + ik̂ · n̂), where m̂ and n̂ are orthogonal vectors in real
space.

3.2 Sr2RuO4

Superconductivity in the compound Sr2RuO4 was discovered in 1994 by Maeno et al.
[53]. A discovery particularly interesting because Sr2RuO4 is a layered perovskite oxide
and thus isostructural to the high-Tc materials. There the CuO2 planes are believed
to be crucial in the mechanism of high-temperature superconductivity. In Sr2RuO4

the copper is replaced by ruthenate, therefore a comparison of this ruthenium oxide
with the cuprates could give additional insight in understanding the high temperature
superconductors. And the low Tc of 1.5K in Sr2RuO4 is a first indication of important
differences. But the compound is also interesting by itself, because soon after discovery
an unconventional order parameter with triplet pairing was proposed [13]. This time
reversal symmetry (TRS) breaking order parameter would be similar to the A phase of
superfluid 3He but realized in a solid state system.

Comprehensive reviews of the Fermi liquid and superconducting properties of Sr2RuO4

are given by Bergemann et al. [54] and Mackenzie and Maeno [12]. In the following
section we will give a very brief summary of the properties relevant for the further
discussions.

3.2.1 Basic properties

Early experimental works based on the de-Haas-van-Alphen effect [55] find three Fermi
surfaces denoted by α, β and γ-bands, as predicted by band structure calculations [56–58]
based on the local-density approximation (LDA).

These three Fermi surfaces are weekly corrugated cylindrical sheets and as also shown
by newer ARPES measurements [59] one is hole-like (α) and two are electron-like (β and
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γ). In Figure 3.2 the Fermi surfaces as given by the tight binding parametrization of
Ref. 60 are shown.

γ

Γ

M X
α

β

M

ΓM

Figure 3.2: Fermi surface of Sr2RuO4 as obtained from tight binding parameterization

In contrast to the cuprates (which in the undoped state are Mott insulators), stoi-
chiometric Sr2RuO4 is a conductor and can be well described within the Landau Fermi
liquid theory [54]. E.g., the normal state specific heat [61] shows the expected CV /T ∝
γel + βphT

2 temperature dependence.

As in the HTSC the resistivity of Sr2RuO4 single crystals exhibit a strong anisotropy
with a ratio of interplane (ρc) to intraplane (ρab) resistivity of the order 1000 [53,62–65].
But again it obeys the T 2 power-law dependence as expected for a Fermi liquid.

The effective quasiparticle masses are significantly enhanced pointing to strong electron-
electron interactions. Due to the similarities of these enhancements to the values found
in 3He and other evidence like the ferromagnetism of the three dimensional analogue
SrRuO3, Rice and Sigrist [13] early proposed triplet pairing. Knight shift measure-
ments [66] as well as measurements of the magnetic susceptibility [67] support this
prediction. Furthermore muon spin relaxation (µSR) experiments [68] suggest a time-
reversal symmetry breaking superconducting state.

Finally the strong dependence of superconductivity on non-magnetic disorder [69, 70]
is a further indication of unconventional pairing.

3.3 Specific heat in the multiband model

While all the cited experiments allow the conclusion of unconventional triplet pairing in
Sr2RuO4 the exact symmetry is still an open question. Mostly discussed is an p-wave
order parameter ∆ = ẑ(kx ± iky) an two-dimensional anlogue of the ABM-state in 3He.
This order parameter would result in an isotropic spectral gap without nodes and thus in
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thermally activated (exponential) low-temperature dependence of the specific heat like
in conventional s-wave superconductors.

Early measurements [71] on samples with a reduced Tc of 0.8 − 1.14K exhibit a high
residual specific heat, and an unusual small specific heat jump at Tc. The high density
of states at the Fermi level was attributed to non-magnetic impurities in the unitary
limit or passive non-superconducting bands. The poor quality of the samples and the
measurement only down to 0.3K prevented a conclusive interpretation.

Later measurements by the same authors [72] on high quality samples and tempera-
tures down to 0.1K show a linear low temperature dependence of C/T and extrapolate to
a low γ0, which suggests that it vanishes in the clean limit. With ∆C/γNTc,0 = 0.74±0.01
neither the specific heat jump at Tc nor the linear dependence are in accordance with
an isotropic spectral gap where a value of ∆C = 1.43γNTc,0 would be expected. Fur-
thermore the low residual specific heat observed rules out non-superconducting bands.

Further evidence for an order parameter with line nodes are the power-law dependences
observed in nuclear spin-lattice relaxation experiments [73], thermal conductivity mea-
surements [74, 75], in measurements of the penetration depth [74] and of the electronic
ultrasound attenuation [76].

Since vertical gap nodes are not supported by experiments [75,77,78] and energetically
not favorable, Zhitomirsky and Rice proposed a model giving rise to horizontal line nodes
of the order parameter [14]: Different pair coupling strength (which is probable looking at
the different mass enhancements) on the bands result in varying transition temperatures.
A dominant active band becoming superconducting can then by interband scattering (or
interband proximity effect) induce superconductivity on the passive bands. Additional
to in-plane scattering the authors are taking into account interlayer contributions to the
coupling. Their analysis showed that a p-wave order parameter (kx + iky) can induce
a gap on the passive bands with horizontal nodes of the form (kx + iky) cos(kz + iky).
In a weak coupling analysis of the specific heat they show that for a range of coupling
parameters the experimental curve for the clean data [72] is reproduced.

In the following we will adopt this model and study the influence of impurities on the
specific heat. As in Ref. 14 we assume, that the interband coupling of α and β bands
are very strong and an effective two-band model can be applied. The total density
of states is accordingly assumed to be distributed on the two bands as NF,0 : NF,1 =
NF,γ : (NF,α + NF,β) = 0.57 : 043. In our analysis we will not vary the coupling
parameters independently, but as explained below, construct the coupling in such a way,
that always only one phase transition occurs, as the experiments suggest.

3.3.1 n-band model

The quasiclassical weak-coupling self-consistency equation can be generalized to a Fermi
surface with several sheets, with n conduction bands denoted in the following by index
α and β. The gap equation with inter- and intraband coupling can be formulated in
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matrix form as

∆α(pF ) =
∑

β

∫ εc

−εc

dε

4πi
NF,β

〈
Vαβ(pF ,pF

′)fK
β (ε,pF

′)
〉
pF

′ (3.7)

where the matrix V̂ is the generalized coupling parameter. The diagonal elements of
V̂ are intraband, off-diagonal interband coupling. NF,α is the Fermi-surface density of
states on band α and we assume an isotropic DOS on all bands.

The total density of states is distributed on the different bands α as partial density of
states nα =

NF,α

NF
and the total density of states is given by NF =

∑
αNF,α.

To solve Eq.(3.7) the coupling parameter and cutoff energies have again to be expressed
in terms of the critical temperature. As a first step the interaction is decomposed and
diagonalized as

NF

∑

β

√
nα

〈
Vαβ(pF ,pF

′)
√
nβ Y(i)

β (pF
′)
〉

pF
′
= λ(i)Y(i)

α (pF ) (3.8)

with eigenvalues λ(i)and orthonormal eigenvectors Y (i)

∑

β

〈
Y(i)

β (pF )Y(j)
β (pF )∗

〉
pF

= δij . (3.9)

In terms of the eigenvectors Y (i) the order parameter is now given by

√
nα∆α(pF ) =

∑

i

λ(i)Y(i)
α (pF )

∑

β

∫
dε

4πi

〈
Y(i)

β (pF
′)∗

√
nβ f

K
β (pF

′; ε)
〉

pF
′
. (3.10)

To proceed we define

∆(i) =
∑

α

√
nα

〈
Y(i)

α (pF )∗∆α(pF )
〉

pF

(3.11)

f (i)(ε) =
∑

α

√
nα

〈
Y(i)

α (pF )∗fK
α (pF ; ε)

〉
pF

(3.12)

and gap equation for the new order parameters ∆(i) is then given by

∆(i) = λ(i)

∫ εc

−εc

dε

4πi
f (i)(ε) . (3.13)

The largest eigenvalue (chosen to be λ(0)) and the cutoff energy εc can now be eliminated
in favor of the superconducting transition temperature Tc.
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The original anisotropic order parameters on the bands can be obtained by

√
nα∆α(pF ) =

∑

i

Y(i)
α (pF )∆(i) . (3.14)

We use a model system with two bands and assume that no subdominant coupling is
present (λ(1) = 0). Accordingly the subdominant order parameter is vanishing ∆(0). In
this case, the gaps on the two Fermi sheets are simply given by

∆0(pF ) =
Y(0)

0 (pF )√
n0

∆(0) ∆1(pF ) =
Y(0)

1 (pF )√
n1

∆(0) . (3.15)

The active band is assumed to obey p-wave symmetry while while the interband coupling
has horizontal line nodes.

The interband coupling strength is parameterized by the ratio of the maximum gaps
on both bands near Tc

∆1

∆0
= α(pF )

√
n0

n1
(3.16)

and assuming line nodes, the coupling parameter α has the form

α(pF ) = α0

√
2 cos

(pz

2

)
. (3.17)

At full length the eigenvectors characterizing the interactions are chosen as

(
Y(0)

0

Y(0)
1

)
=

(px + ipy)√
1 + |α0|2

(
1

α0

√
2 cos(kz/2)

)
(3.18)

(3.19)
(
Y(1)

0

Y(1)
1

)
=

(px + ipy)√
1 + |α0|2

(
α∗

0

√
2 cos(pz/2)
−1

)
. (3.20)

The coupling Vα,β obtained this way almost reproduces the one of Zhithomirsky and
Rice [14], just in our case the diagonal and off-diagonal elements are not independent.

Having obtained the order parameters on the bands, the specific heat of the is calcu-
lated by

(3.21)

3.3.2 Thermodynamic properties

To study the thermodynamic properties of Sr2RuO4 the model described above is used.
In addition intraband scattering on impurities is included in t-matrix approximation. At
first the density of states is investigated.
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In Fig. 3.3 the DOS for a clean case is shown, and the coupling strength α0 is varied.
Without coupling α0 = 0 the passive band is normal resulting in a finite density of states
at all energies. On the active band the DOS is gapped with ∆0 = 1.76Tc,0 as expected.
Turning on the coupling, superconductivity is induced also in the normal band. Due to
the symmetry of the coupling the order parameter on the passive band has line nodes
which result in a linear increasing of the DOS at low energies. The position of the
logarithmic divergence due to the induced order parameter is given by the interaction
parameter α0. In the active band the additional coupling increases the size of the gap.

The influence of impurities on the DOS is given in the next Figure. In Fig. 3.4 for
fixed α0 = 0.25 and scattering rate Γ = 0.25Tc,0 the impurity strength is varied. For
weak scattering, σ = 0, the gap-like structures are strongly washed out, but the residual
DOS at zero energy is low. With increasing impurity strength the influence on the gap
divergence is reduced, on the other hand low energy states are induced as impurity band.

To extract the relevant parameters the residual density of states (RDOS) is analyzed.
In the experiment of Ishida et al. [73] a RDOS of Nres = 0.6N0 was observed in samples
with a transition temperature of Tc = 0.7K. In Fig. 3.5 the residual density of states
for different coupling parameters and impurity strength are displayed as function of the
scattering rate. The experimental value and the according scattering rate given by Tc

are indicated by dashed lines. The values obtained in Born limit are much lower, the
ones in unitary limit considerably higher than the experimental value independent of
the coupling strength. The comparison indicates an intermediate scattering strength of
σ ≈ 0.5 and a coupling parameter of α0 ≈ 0.3.
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Figure 3.5: Residual density of states for different couplings and impurity strength

Turning to the specific heat in the clean case (Fig. 3.6) the dependence on the coupling
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Figure 3.6: Specific heat of the clean system. The experimental values of NishiZaki et
al. [79] are included.

parameter is examined. Without coupling the specific heat saturates at a finite value at
low temperature as a consequence of the normal passive band. With interband coupling
the passive band is superconducting, but due to the line nodes C/T is increasing linearly
at low temperatures. The precise temperature dependence is coupling dependent. The
best agreement with experiment is found for α0 = 0.3 consistent with the value extracted
before.

With the same parameters also the nuclear spin relaxation rate can be calculated. In
Fig. 3.7 we show the spin relaxation rate as obtained for two different scattering rates.
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The scattering rates correspond to the critical temperatures Tc of the two samples in the
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Figure 3.7: Nuclear spin relaxation rate for fixed interband coupling and two different
impurity scattering rates as extracted from experiment.

nuclear spin relaxation experiment of Ishida et al. [73]. Having fixed the coupling α and
impurity scattering strength σ before, the calculations are without any free parameter.
The experimental observed crossover from a cubic temperature dependence 1/T1 ∝ T 3

in the clean sample, to a linear behaviour in low Tc samples is reproduced.

3.4 p-wave model with boson mode

Point contact measurements in the group of von Löhneysen [15] investigated the su-
perconducting gap function and conductance spectra of Sr2RuO4. In the paper, the
conductance spectra could be well fitted by calculations assuming a p-wave order pa-
rameter kx+iky. But the observed enhancement current reveals an unusual temperature
dependence. A p-wave scenario alone does not account for the experimental findings.
Using a model including a low-energy boson mode,Laube et al. [16] could obtain an
excellent agreement with the experimental data.

In a unconventional superconductor, a Millis et al. [80] showed, an Einstein mode
characterized by a spectral weight

AB(ω) =
π

2
JωBδ(ω − ωB) (3.22)
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in good approximation can be ed by a temperature dependend pair breaking parameter

Γin(T ) = πJBωB coth(
ωB

2T
) . (3.23)

The pair breaking is increasing with temperature, changing the usual temperature de-
pendence of the order parameter. Since with this model the temperature dependence of
the enhancement current could be consistently explained, an investigation of the specific
heat for the same model is crucial.

Like the authors of [16], we assume a single band with p-wave pairing kx + iky. Pair
breaking due to the boson mode is included as self-energy calculated in self-consistent
Born approximation,i.e., σ̂in = Γin(T ) 〈ĝ(ε,p)〉pF

. In the calculation it is assumed, that
the boson spectrum does not change with the superconducting transition.

The result for the specific heat are shown in Fig. 3.8. The boson mode does not change
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Figure 3.8: Specific heat including a pair breaking boson mode. The coupling strength
is given by J , the energy of the mode by ωp.

the activated behavior in the superconducting state, however a clear dip given by the
boson energy is observable. In the calculation only the difference of superconducting
free energy to the free energy in the normal state can be obtained. The low temperature
structure is attributed to an enhanced specific heat in the normal state, coupling to the
boson mode. An important quantity is the jump of the specific heat at the superconduct-
ing transition. Due to the temperature dependence of the pairbreaking parameter the
zero temperature order parameter given in units of the critical temperature ∆(T = 0)/Tc

is increasing. As consequence, the jump at the transition is increasing with increasing
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coupling to the boson mode. In experiment a jump of ∆C/γNTc,0 = 0.74 ± 0.01 was
observed, while ∆C = 1.43γNTc,0 would be expected for a fully gapped p-wave order
parameter. Including the boson mode the size of the jump is even increasing, clearly
deviating from the experimental result.

3.4.1 Boson mode in strong coupling calculation

In the previous calculation of the specific heat, we used the approximation of an in-
elasstic scatterer. An approximation which is well founded for temperatures much larger
than the boson frequency. Calculating the low temperature specific heat down to zero
temperature, this range of validity was clearly exceeded. To exclude the possibility of
anomalies due to the approximation, the boson mode should be included in a full strong
coupling calculation. Following the lines of Bergmann et al. [81] the coupling to the
boson field is renormalizing the frequency as

ω̃(n) = ωn + πT
∑

m

λ(ωn − ωm)
ω̃(m)

[ω̃2(m) + ∆2]1/2
(3.24)

λ(ωn − ωm) = 2

∫ ∞

0
dω

ωα2F (ω)

ω2 + (ωn − ωm)2
, (3.25)

and the free energy including the boson field can be written as

ΩN − ΩS

N0
=2πT

∑

n

ωn

( ω̃(n)

[ω̃2(n) + ∆2]1/2
− signωn

)

+ π2T 2
∑

n,m

[( ω̃(n)

[ω̃2(n) + ∆2]1/2

ω̃(m)

[ω̃2(m) + ∆2]1/2
− sign(ωnωm)

)
λ(ωn − ωm)

+
∆

[ω̃2(n) + ∆2]1/2

∆

[ω̃2(m) + ∆2]1/2
λ(ωn − ωm)

]

.

(3.26)

Here we used the fact, that the boson mode due to the different symmetry does not
contribute to the pairing. Therfor the offdiagonal self-energy ∆ is not a function of
energy as in usual strong coupling calculations. Using the aforementioned stationary
conditions and thereby given expressions for the self-energies, the free energy can be
expressed by

ΩN − ΩS

N0
= 2πT

∑

n>0

(
2
{
[ω̃2(n) + ∆2]1/2 − ω̃(n) − 1

2

∆2

[ω̃2(n) + ∆2]1/2

}

− [ω̃(n) − ω̃0(n)]
{ ω̃(n)

[ω̃2(n) + ∆2]1/2
− 1
})

. (3.27)
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Figure 3.9: Comparison of the specific heat within the inelastic scatter approximation
and full strong coupling calculation

This expression is especially well suited for numerical calculations. In Fig. 3.9 results
for a fixed coupling and boson frequency are shown. The exact calculation approves the
qualitative results of the approximated computation. In the approximation the reduction
of the critical temperature is overestimated, while the contributions of the phonon mode
to the specific heat are underestimated. In the limit T → 0 the approximation shows
little deviations from the analytically expected (CS −CN )/γT = −1, a deviation which
is cured by the strong coupling analysis.





4 Tunneling spectroscopy on cuprate

superconductors

The unexpected discovery of superconductivity in the doped Mott insulator La2−xBaxCuO4

(LBCO) with an unusually high critical temperature of 35K introduced a whole new class
of superconducting compounds, the cuprates. All materials of this class are copper based
antiferromagnetic insulators in the undoped state and share a similar crystal structure.
Superconductivity is attained by doping, at which one has to distinguish two subclasses:
electron-doped and hole-doped alloys. The doping dependence is depicted in the phe-
nomenological phase diagram sketched in Fig. 4.1.
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Figure 4.1: Phase diagram of electron- and hole-doped high-temperature superconduc-
tors exemplarily shown for Nd2−xCexCuO4−δ and La2−xSrxCuO4 [82]. The
antiferromagnetic (AF) and superconducting (SC) phases are drawn.

The original LBCO, as well as the technologically most popular and best known com-
pounds Bi2Sr2CanCun+1O2n+6+δ and YBa2Cu3O7−x, are hole-doped. Their insulating

35
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antiferromagnetic phase is restricted close to half filling and superconductivity is ob-
served in a broad range of doping. On the “opposite side” of the phase diagram, for
the electron-doped cuprates like Nd2−xCexCuO4−δ and Pr2−xCexCuO4−δ the antiferro-
magnetic phase is dominant and superconductivity is only found in a narrow doping
range. A fact not only making sample preparation and studies on doping dependence a
challenge, but also pointing to the possibility of subtle differences. A possibility which
strongly supported, e.g., by Nernst experiments [83] on the vortex phase in both classes
of HTSC.

Before turning to the electron-doped materials and the controversial discussion of the
order parameter symmetry there, we will first investigate some properties of the hole-
doped class.

4.1 Hole-doped cuprates

After a lot of discussion about the nature of the order parameter in the high-Tc mate-
rials, a number of experiments have made it virtually certain that hole-doped cuprates
like YBa2Cu3O7−x (YBCO) are superconductors whose order parameter has a d-wave
symmetry. A fact especially established by phase-sensitive experiments [18, 19] that
investigated superconducting quantum interference devices or ring structures contain-
ing junctions either between YBCO and ordinary superconductors, or between different
domains of YBCO.

4.1.1 Broadening of Andreev bound states

As explained in unconventional superconductors like those with a d-wave symmetry,
the order parameter is sensitive to scattering from non-magnetic impurities and sur-
face roughness. The order parameter also has a non-trivial structure close to surfaces
and interfaces. Surfaces and interfaces can be pair-breaking, i.e., the order parame-
ter is suppressed on a length scale given by the coherence length as shown, e.g., in
Fig. 4.2. Andreev reflection processes of quasi-particle excitations from the spatial pro-
file of the order parameter, combined with conventional (and/or Andreev) reflection from
the surface (interface) can result under certain conditions in surface (interface) bound
states [84, 85]. In particular, it has been shown [21] that an interface for which the sign
of the order parameter changes along a given trajectory will always support a bound
state at the Fermi energy. A mathematically equivalent situation arises if we consider a
specular reflecting wall [84, 86–88] for which the sign of the order parameter is different
for incoming and outgoing quasiparticles, i.e., there will also be a bound state.

These bound states lead to a qualitative change of the Josephson current through a
tunnel junction as has been found in Refs. [89–91]. It was shown that the temper-
ature dependence of the critical current is dramatically different from the standard
Ambegaokar-Baratoff prediction. The critical current may increase substantially at
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Figure 4.2: Suppression of a d-wave order at a specular reflecting surface. The order
parameter profile is given for different surface misorientations.

low temperatures [89] or even change sign, i.e., the junction may change its nature
from an ordinary junction to a π-junction characterized by a current-phase relation
I = Ic sin(φ + π) = −Ic sin(φ). The authors of Ref. 89 also considered the influence
of surface roughness on this phenomenon and showed that it gets weaker because of a
broadening of the bound states. In this section, we want to discuss how scattering from
bulk impurities changes the bound states and, as a consequence, the Josephson critical
current [92].

Using the quasiclassical theory we include bulk impurities in the standard way by
using an impurity self-energy. The self-energy is calculated in the selfconsistent t-matrix
approximation, and we concentrate on two limits, viz., the limits of Born scattering
(weak scattering, scattering phase shift δ0 � 1) and unitary scattering (strong scattering,
δ0 → π/2).

We calculate the angle-resolved density of states and the Josephson critical current
in the presence of impurity-broadened bound states. By numerical calculation we find
that bulk impurities will cut off the zero-temperature divergences in the critical current
predicted for clean systems. We also develop an analytical understanding of these results
and give analytical expressions for small scattering rates. Surprisingly, we find that the
bound states are more sensitive to Born scatterers than to unitary scatterers at a given
scattering rate.
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Formalism and model assumptions

In the following we consider the system shown in Fig. 4.3, consisting of a junction
between two dx2−y2 superconductors. The order parameter on side i, (i = l, r) is rotated
by an angle αi with respect to the surface normal. The junction is assumed to be
weakly transparent and will be modeled as a tunnel junction. We assume that the
superconductors contain a small concentration of impurities, and we would like to study
the influence of these impurities on the quasiparticle bound states formed at the junction
[21, 89].

y

x

α
l α

r

Figure 4.3: Geometry of the model system: a tunnel junction between two misoriented
dx2−y2 superconductors

In unconventional superconductors, the order parameter is spatially inhomogeneous
close to obstacles like surfaces or interfaces. The quasiclassical formalism of supercon-
ductivity [25,26,93] is ideally suited for calculating the structure of the order parameter
in a self-consistent way.

The pairing interaction in the dx2−y2 channel is defined by

V (pF ,pF
′) = λ cos(2φ − 2αi) cos(2φ′ − 2αi) , (4.1)

where i = l, r, and φ is the azimuthal angle between pF and the surface normal n̂. The
amplitude of the pairing interaction is denoted by λ which will be eliminated in favor of
the critical temperature Tc in our calculations.

The self-energy σ̂ describes impurity scattering, and we consider two limits, viz.,
weak scattering (scattering phase shift δ0 � 1), which will be treated in the Born
approximation, and unitary scattering (δ0 → π/2). For an isotropic point-like impurity
potential, the off-diagonal components of the self-energy vanish for order parameters
transforming according to non-trivial representations of the point symmetry group of
the crystal. This is the case for the d-wave order parameter studied here. The self-
energy is then characterized by a single scalar function. In the Born limit the self-energy
is given by

σimp(R; εn) =
Γb

π
〈g(R,pF ; εn)〉 , Γb =

1

2τ
, (4.2)
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where τ denotes the elastic scattering time in the normal metal, whereas in the unitary
limit

σimp(R; εn) = −Γu
π

〈g(R,pF ; εn)〉 , Γu =
ni

πNF
. (4.3)

Here, ni is the concentration of impurities, and NF is the (normal) density of states at
the Fermi energy.

In the framework of the quasiclassical formalism, interfaces are taken into account by
Zaitsev’s boundary conditions [35]. The properties of the barrier are characterized by
the transmission probability D(pF ).

In the limit of zero transparency (illustrated in Fig. 4.4) the boundary conditions
reduce to ĝ(pF,in, 0

+) = ĝ(pF,out, 0
+). We will assume specular reflection.
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Figure 4.4: Geometry of incoming and outgoing quasiparticle trajectories for a nontrans-
parent interface.

We are interested in the Josephson current through the system shown in Fig. 4.3. In
first order in the transparency this can be expressed as

jc =
eN l

F

2π
T
∑

εn

〈
vl
F⊥

(pl
F,in)D(pl

F,in)
[
f l(pl

F,in; εn)f̃ r(pr
F,out; εn)

− f̃ l(pl
F,in; εn)f r(pr

F,out; εn)
]〉

pl
F,in

, (4.4)

where the Green’s functions have to be evaluated at the interface for real order param-
eters, as if they would not have complex phases. In the results, we will eliminate the
transparency and express it through the normal-state resistance of the junction which
is given by (again in first order of the transparency)

R−1
N = e2AN l

F

〈
vl
F⊥

(pl
F,in)D(pl

F,in)
〉

pl
F,in

. (4.5)
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In the calculation, we will assume the model directional dependence of the transparency
for a δ-potential in the tunneling limit: D(φ) = D0 cos(φ)2.

Results for Born and unitary limit

A surface of an unconventional superconductor may support a bound state at the Fermi
energy [21, 84–89, 94, 95]. We reproduce this phenomenon by a self-consistent solution
of a real-time version of the Eilenberger equation taking into account bulk impurity
scattering. Figure 4.5 shows the angle-resolved local density of states (taken at the
surface) obtained in the Born limit for the geometry shown in Fig. 4.4. The bound
states present in a clean system can be seen to be broadened by impurity scattering.
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Figure 4.5: Local density of states calculated for a misorientation angle of α = 15◦ at a
scattering rate of Γb = 0.1Tc,0 in Born approximation. The temperature is
T = 0.01Tc,0. Inset: The same for a low scattering rate Γb = 0.001Tc,0.

In order to estimate the dependence of the height of the zero-energy peak in the
density of states on the relaxation time in the Born limit, we proceed analogously to
the analytical consideration developed in Ref. [94], based on the Eilenberger equations.
In particular, the residue of the Green’s function for midgap states were analytically
calculated there in the clean limit. Due to the presence of impurities the pole of the
retarded Green’s function at zero energy moves into the complex plane, although its
midgap value at the surface g(x = 0,pF ; ε = 0) ≡ g(pF , 0) is still large in the case of a
sufficiently large relaxation time. Under this condition we obtain the following integral
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equation for g(pF , 0):

2π2|vx|τ = −g(pF,in, 0) ×
∞∫

0

dx

〈
g(pF

′, 0) exp

[
−

x∫

0

dx′
2|∆(pF

′, x′)|
|v′x|

]〉

pF
′

×
(

exp

[
−

x∫

0

dx′
2|∆(pF,in, x

′)|
|vx|

]
+ exp

[
−

x∫

0

dx′
2|∆(pF,out, x

′)|
|vx|

])
. (4.6)

The order parameter can be factorized in the form ∆(pF , x) = ∆0ψ(pF , x). Here
ψ(pF , x) is a dimensionless normalized function of the momentum direction and the
distance from the surface (|ψ(pF , x)| ≤ 1), while ∆0 is the maximum value of the bulk
order parameter depending upon temperature and impurity concentration. The spa-
tial dependence of ψ(pF , x) reduces to a dependence upon dimensionless coordinate
X = ∆0x/vF . Introducing the dimensionless variables X,X ′ into Eq. (4.6), we see that
the propagator has the form g(pF , 0) = −i

√
τ∆0ḡ(pF , 0), where ḡ(pF , 0) does not con-

tain τ and ∆0. Hence, the height of the peak in the density of states is proportional
to

√
τ∆0. By considering a generalization of the integral equation (4.6) to nonzero (al-

though sufficiently small) values of the energy, one can show analytically that the shift
of the pole position from its zero value is proportional to

√
∆0/τ . Thus, introducing

the dimensionless quantity Ωn = εn
√
τ/∆0, we can represent the contribution of the

midgap states to the Green’s function as g(x = 0,pF ; εn) = −i
√
τ∆0ḡ(pF ,Ωn).

The relative strength of the influence of impurities on bound states in the Born and
in the unitary limits can be understood qualitatively by looking at Eqs. (4.2) and (4.3).
In the absence of bound states, the Green’s function g(R,pF ; εn) is usually quite small
(compared to the normal-state value) for sufficiently small εn. In this case, according to
Eqs. (4.2) and (4.3), the self-energy function for unitary scatterers can be significantly
greater than the one in the Born limit. By contrast, if there are bound states on (or
quite close to) the Fermi surface, then the corresponding large pole-like term in the
expression for g(R,pF ; εn) essentially rises with decreasing temperature. This leads to
the inverse situation, that is to small values of the self-energy for unitary scatterers as
compared to the Born limit for the same values of the scattering rates. An analogous
conclusion can be drawn for the retarded propagator and the self-energy function taken
at energies close to some bound state, even if it is not at the Fermi surface. Since the
pole-like term decreases with increasing Γ, the above consideration, in general, does not
work for sufficiently large values of Γb, Γu. Our numerical calculations justify the above
conclusion: in the presence of unitary scatterers, for sufficiently small values of Γu, the
bound states are broadened much more weakly than in the Born limit. In contrast to
the Born limit, the dependence of the propagator on the parameter ∆0/Γu does not
reduce to a power-law behavior in the unitary limit, so that simple scaling estimates
are not fruitful in this limit. However, some rough qualitative estimates can be done in
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the unitary limit as well, in particular, by considering the simplest model d-wave order
parameter, whose momentum direction dependence reduces to ∆0 (for 0 < φ < π/2
and π < φ < 3π/2) and to −∆0 (for π/2 < φ < π and 3π/2 < φ < 2π). Then for
small enough Γu we find the propagator g(x = 0,pF ; εn = 0) to be proportional to√

Γu/∆0 exp(A∆0/Γu) with some numerical factor A of the order of unity.
We will now concentrate on the temperature and impurity dependencies of the Joseph-

son critical current. Two typical and experimentally relevant geometries will be stud-
ied: the “symmetric” junction for which αl = αr, and the “mirror” junction for which
αl = −αr.

In contrast to surface roughness, bulk impurities not only broaden the bound states
but also change the maximum of the bulk pair potential and the critical temperature from
their clean-system values ∆0,0 and Tc,0. This can be seen in the lower panel of Fig. 4.6,
where the finite scattering rate leads to a renormalized value of Tc. Figure 4.6 shows
the critical current for the symmetric geometry in Born approximation. The anomalous
temperature dependence discussed in Ref. 89 is still visible, but bulk impurities cut off
the divergence at zero temperature.
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Figure 4.6: Temperature dependence of the critical current for the symmetric junction,
i.e., αl = αr, and different misorientation angles α. Impurity scattering
is parametrized by the scattering rate Γb using the Born approximation,
Eq. (4.2). Inset: Critical current for misorientation α = 45◦ and fixed tem-
perature T = 0.005Tc,0 as a function of the scattering rate.

We obtain an analytical estimate of the Josephson critical current in the zero-temperature
limit from Eq. (4.4), taking into account the large low-energy values of the quanti-
ties fL(R), which are associated with g the same way as in the clean limit [89, 94]:
f(x = 0,pF ; εn) = −f̃(x = 0,pF ; εn) = −isign(vx∆∞ (pF )) g(x = 0,pF ; εn). Proceeding
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analogously to Ref. 89 for the symmetric (mirror) junction and introducing Ω as a new
integration variable, we get

jc = ±eN
l
F

2π2
∆

3/2
0 τ1/2

∞∫

−∞

dΩ
〈
D(pl

F,in)vl
x(pl

F,in)ḡ2(X = 0,pl
F,in; Ω)

〉
p l

F,in

. (4.7)

The plus (minus) sign corresponds here to the symmetric (mirror) junction.

Thus, in the Born limit and under the condition ∆0τ � 1 the critical current turns

out to be proportional to ∆
3/2
0 τ1/2.
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Figure 4.7: Critical current as a function of temperature for the symmetric junction in
the unitary limit. Inset: Critical current for misorientation α = 45◦ and
fixed temperature T = 0.01Tc,0 as a function of the scattering rate.

In the unitary limit, shown in Fig. 4.7, we find that the bound states are remarkably
stable to impurity scattering, according to our conclusion made above. For sufficiently
large values of Γu (when Γu/Tc,0 is of the order of unity), however, the influence can be
substantial as can be seen in the inset of Fig. 4.7.

Figures 4.8 and 4.9 show the corresponding results for the mirror junction. As in
Ref. 89, the critical current changes sign, i.e., the junction changes character (for some
misorientation angles) and becomes a π-junction at low temperatures. Bulk impurity
scattering weakens this tendency.

At this point, we would like to comment on the range of validity of the Born and
unitary approximation. The Born approximation for impurity scattering in supercon-
ductors is valid if the characteristic parameter tan(δ0)〈g〉/π � 1. The unitary limit holds
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Figure 4.8: Temperature dependence of the critical current for the mirror junction, i.e.,
αl = −αr for two scattering rates Γb in Born approximation.

under the opposite condition tan(δ0)〈g〉/π � 1. Even if the impurities in the normal
metal are Born impurities (δ0 � 1), the large value of the averaged propagator 〈g〉 may
therefore lead to a situation in which the Born approximation cannot be applied to study
Andreev bound states in superconductors. As a result, the region of applicability of the
Born approximation is greatly reduced (and the region of applicability of the unitary
limit expanded) for the systems studied here. Using the Born approximation beyond
that region can lead to overestimating the effect of impurities on Andreev bound states.

The stability of the bound states with respect to impurity scattering in the unitary
limit has consequences for one of the models used to describe rough surfaces, viz., the
thin dirty layer model [89, 93, 96–98] In this model, a thin dirty layer containing Born
impurities near the surface (or around the interface) is used to mimic a rough surface.
The degree of roughness is measured by the ratio ρ0 = d/l, where d is the thickness of
the layer, and l the mean free path in the layer. For a given scattering rate and impurity
concentration the self-energy (that enters the equation for the dirty layer) at the bound-
state energy value will be significantly less in the unitary limit than for Born scatterers.
Accordingly, the broadening of bound states by roughness can be significantly different
in those two limits for the same value of the roughness parameter ρ0 � 1 (in the rough
limit ρ0 � 1 bound states will be wiped out in both cases). As a consequence, a dirty
layer with unitary scatterers will influence the bound states and the Josephson critical
current less strongly than in the Born limit (for the same value of the scattering rate).
This is another example that shows that the choice of the most suitable model for surface
and interface roughness for a given experimental situation is still open.

In conclusion, quasiparticle scattering by bulk impurities as well as surface rough-
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Figure 4.9: Critical current as a function of temperature for the mirror junction and
scattering in the unitary limit.

ness results in the broadening of surface (interface) quasiparticle bound states in tunnel
junctions of d-wave superconductors. We have studied this broadening due to bulk im-
purities and shown that scatterers can essentially reduce the height of the peak in the
density of states and the low-temperature anomaly in the Josephson critical current.
We have shown that bound states are more sensitive to Born scatterers than to unitary
scatterers at a given value of the scattering rate. Thus, unitary scatterers would be less
detrimental than Born scatterers to the observability of the low-temperature anomalies
in the Josephson critical current caused by bound states.
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4.1.2 Magnetic field dependence

As explained in the previous section there is a growing consensus that the Zero-Bias
Conductance Peak (ZBCP) seen in ab-plane tunneling on YBCO is a direct consequence
of a dx2−y2 order parameter [99, 100] (and references therein). Applying an external
magnetic field along the crystal ĉ-axis induces Meissner screening currents in the ab-
plane. The currents shift the quasiparticle energy, ε→ ε− vF · ps along a trajectory vF

by the projection of vF on the superfluid momentum ps = ~

2∇χ− e
cA.

in
p

H x
p

out

pS

Sj

y

A test for the d-wave origin of the ZBCP is that this energy shift vF ·ps shows up as a
field dependent splitting of the ZBCP on a magnetic scale given by the thermodynamical
critical field, Ho = Φo/πξoλL, which for YBCO is ∼ 1 Tesla [101]. This splitting has
reproducibly been seen in experiments [99, 102] where others do not reproduce it [100].

In the following we will show, by direct calculation of the low-bias conductance, that
experiments not showing a split of the ZBCP vs. field, still are compatible with the
d-wave origin of the ZBCP when effects of surface disorder is taken into account.

The typical measured ZBCP show a considerable broadening, roughly 25% of the gap
∆, compared to the ideal δ-peak predicted by theory [21]. To account for this broadening
one can consider the effect of elastic impurity scattering either as a distribution of bulk
impurities [92] like in the last section or as a diffusive surface layer [103]. Both models
yield if the impurities are Born scatterers a ZBCP broadening ∼

√
Γ∆, where Γ = 1/2τ

is the pair-breaking parameter. This estimate agrees with measurements of the ZBCP
on He+ ion irradiated thin YBCO films [104]. In addition to the impurity induced
broadening there is a split ∼

√
Γ∆ of the ZBCP away from zero energy [92]. As shown

in 4.1.1 in the strong scattering limit only an exponentially small broadening of the zero
bias structure occurs [92, 103].

Again using the quasiclassical theory the order parameter profile in the surface region
is calculated self consistently together with the superfluid momentum ps. We apply the
diffusion layer model to describe the surface region in a d-wave superconductor. In short,
the diffusion layer model (Fig. 4.10) assumes increased disorder in a narrow region close
to the interface. The layer width is typically on the order of 5ξo and is characterized



4.1 Hole-doped cuprates 47

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������

������
������
������

������
������
���������������
���������������������������������������������������������������������������������

������������������������������������������������������������������������������������������

n(x)

density

x=0 x=x

n(0)

Impurity

L

Figure 4.10: The diffusion layer model: Disorder is increased in a narrow region close to
the interface

by its minimal mean free path right at the surface. The presence of local impurity
scattering gives an energy dependent renormalization of the quasiparticle energy and
of the order parameter. The details of the impurity renormalization is in the impurity
t-matrix which depends on the (isotropic) impurity potential û = up1̂ + us · σ̂. The two
entering impurity potentials up and us scatter either by potential scattering (up) or by
spin exchange with randomly oriented classical moments (us). In the Born limit, on
which we will concentrate, the equilibrium impurity self-energy reads

σ̂imp =
1

2τ

(
〈g〉τ̂3 ±

1

2
〈f + f̃〉iτ̂2 ±

1

2
〈f − f̃〉τ̂1

)
(4.8)

for either purely potential (+) or purely spin-exchange (−) scattering impurities. For
a d-wave order parameter the Fermi-surface averages 〈· · · 〉 of the anomalous Green’s
functions f and f̃ vanish by symmetry. This leads to the t-matrices being the same for
the potential-scattering model and for the spin-exchange model.

With applied magnetic field the presence of a superfluid momentum breaks the sym-
metry that made 〈f〉 and 〈f̃〉 zero. In particular, in absence of surface disorder the
average 〈f − f̃〉 is non-zero in vicinity of the surface as soon as a superfluid momentum
is present. 〈f− f̃〉 being non-zero is a surface effect and is most pronounced for a crystal
cut along the (110) crystal direction. The magnitude of 〈f − f̃〉 is comparable to the
average 〈g〉, which in the low-energy range ε � ∆ is dominated by the surface bound
state and hence ∼ 1/ε. How 〈f − f̃〉 couples back to the surface spectra when surface
disorder is introduced depends sensitively on the impurity type and must be studied by
a direct calculation of the angle resolved surface density of states N(φ,Rs; ε).

In Figure 4.11 we display the field evolution of the angle resolved DOS N(φ,Rs; ε)
at an angle of incidence of 45o to the surface normal both for a potential scattering
and a magnetic scattering surface model. The minimal mean free path in Fig. 4.11
characterizing the surface disorder is 5ξo. As seen the details of the two sets of spectra
differs considerably. At small applied fields, H ≤ 0.05Ho, we see a redistribution of
spectral weight within impurity broadening of the peak structure that differs significantly
between the two impurity types. For the potential scattering model there is a distinct
change in the spectra as weight is shifted from negative to positive energy giving a very
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Figure 4.11: Trajectory resolved density of states on a trajectory with vF · ps > 0 for
different magnetic fields. Left graph: Potential scatterers, right graph:
magnetic scatterers. The applied magnetic field is normalized to Ho. (Ho =
Φo/πξoλL, with ξo the coherence length and λL the penetration depth).
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sharp feature just above zero energy. For the magnetic scattering model this shifting
of weight is also present but much less pronounced as seen in Fig. 4.11. As the field
is increased the Doppler shift exceeds the impurity induced width of the peak, i.e.,
|vF · ps| >

√
Γ∆, and for both impurity types the peak in the spectra evolves with field

as vF · ps. Nonetheless there is still a difference in the peak broadening. The magnetic
impurity model show a very broad peak and also a considerable spectral weight stays
put at zero bias for all fields. In case of potential scatterers the peak at vF ·ps is sharper
and show a satellite peak at −vF · ps. In addition the spectral weight at zero bias is
decreased with increasing field.

Turning to conductance data, the different impurity models translate into distinctly
different field dependencies of the ZBCPs as shown in Figure 4.12. In the case of po-
tential scatterers the field dependence manifests in clearly split ZBCP which evolves as
Ho(φc) = Ho/ sinφc, where φc is the limiting angle of a phenomenological tunneling
cone. This is contrasted by an unsplit ZBCP for the magnetic scatterers. Even though
the angle resolved DOS show a Doppler shifted peak, the angle averaged DOS, i.e,. the
conductance, picks up its main contribution from the spectral weight left at zero bias.
This results in a central peak at all fields. The spectral weight ”melts”to higher bias as
the field is increased.

−2 −1 0 1
eV / ∆0

dI
 / 

dV

−1 0 1 2
eV / ∆0

H/H0=0

H/H0=0.05

H/H0=0.1

H/H0=0.15

H/H0=0.2

Figure 4.12: Tunneling differential conductance for different magnetic fields. Left graph:
Potential scatterers, right graph: magnetic scatterers

Comparing these two sets of calculated conductances with the measured ones [99,
100, 102] there is an agreement between the potential scattering surface layer and NIS-
junction realized in Refs. [99, 102] while the magnetic scattering surface layer and the
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grain-boundary junctions in Ref. [100] show the same field dependence.
In conclusion, we report a consistent way to understand discrepancies seen in experi-

ments of the field evolution of the ZBCP.

4.2 Electron-doped cuprates

In the case of the hole-doped cuprates a dominant d-wave order parameter is by now
well established, and almost all experimental findings can be explained in a consistent
way. For the electron-doped compounds the situation is by far less settled. Since the
these materials are less on the focus, at first a more extensive review of the contradictory
experimental observation will be given.

4.2.1 Experimental backdrop

First investigations by Wu et al. [105] on Nd2−xCexCuO4−δ (NCCO) thin films and
single crystals suggested an s-wave order parameter. The in-plane penetration depth λ
and surface resistance Rs were measured on samples with a critical temperature of about
Tc ≈ 21 − 22K down to 4 K. Both observables displayed a clear activated temperature
dependence and could be fitted to exponential laws with 2∆/kBTc = 4.1. And not
only at low temperatures but up to Tc the behavior could be fitted by a conventional
BCS-description. Potential temperature laws as expected for an d-wave order parameter
could not be fitted to their data. A result which was confirmed by Andreone et al. [106]
and Anlage et al. [107] investigating the same quantities albeit with some quantitative
differences in, e.g., the size of the gap. A fact which could be attributed to different
sample quality.

However as pointed out by Cooper [108] the measurement of the low-temperature
penetration depth could be affected by paramagnetism of the Nd3+ ions. Taking into
account changes of the magnetic susceptibility due to the magnetic moments of Nd3+

a power-law behavior of the corrected penetration depth might still be possible. And
indeed Alff et al. observed an increase of the penetration depth with decreasing tem-
perature below 4K in NCCO [109] which is in agreement with Coopers suggestion. In
their penetration depth measurements on NCCO and Pr2−xCexCuO4−δ (PCCO), the
anomalous low-temperature dependence of NCCO could be explained by the magnetic
moments of the Nd3+ ions. And correcting the data, the results of NCCO coincide with
the ones on PCCO which does not have magnetic moments and thus no anomaly was
observed or expected. But in contrast to the proposal of Cooper they claim that the
temperature dependence of the penetration depth is still consistent with an isotropic s-
wave order parameter, and their data could be fitted with ∆λab(T ) ∝

√
∆/T exp−∆/kBT

and ∆0 = 3meV at least from 2K up to 13K.
Tunneling experiments as powerful tool to gain an insight on the symmetry of the

order parameter have been introduced in the last section. As explained, since a sign
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change of an unconventional order parameter on the Fermi surface can lead to zero
energy bound states (ZEBS), these experiments can also give information on the phase.
An observation of a zero bias conductance peak (ZBCP) would be a clear indication of
an unconventional order parameter, although, as other mechanism could also lead to a
ZBCP [110], the origin in superconductivity has to be carefully etablished.

First Low Temperature Scanning Tunneling Microscopy/Spectroscopy (LTSTM/S)
results have been reported by Alff et al. [111,112]. In Ref. 111 the authors report about
LTSTS experiments on (110) oriented YBCO thin films and NCCO single crystals at 4.2
K. In the case of YBCO at 51 equidistant points pronounced ZBCP were observed as
expected in the case of a d-wave order parameter. The data for NCCO in contrary show
no sign of a ZBCP, instead a clear gapped structure was observed with a gap of about
4.5 meV, and the structure could be fitted assuming an BCS density of states with a
life-time broadening of about half the gap. In the subsequent paper [112] in addition
data for (100) are shown. For (100) in YBCO a gap-like structure was observed, at single
measurement points also small ZBCPs are observable. This confirms the d-wave picture
of YBCO, where (on specular reflecting) (100) boundaries no ZBCP is expected. The
ZBCPs where seen at points where the surface gets rougher as seen in the topographic
image. In NCCO no ZBCP could be observed (as in the (110) and (001) direction), and a
gap of about 5meV (2∆0/kBTc ≈ 6.6) is found. Different points only vary in the strength
of the gap-like structure which can be explained by the surface roughness. In conclusion
these measurements clearly contradict a d-wave symmetry of the order parameter in
NCCO. In a later publication by Kashiwaya et al. [113] STM measurements on NCCO
confirmed the results while other STM/STS measurements by Hayaashi et al. [114] on
NCCO report the existence of ZBCP also in NCCO. Surprisingly there they usually
observe the ordinary gap structure in (110) direction and often a ZBCP along the (100)
direction. Once they observe a ZBCP it is reproducible irrespective of fixing or shifting
the tip position. Unfortunately no temperature or magnetic field dependence of the
ZBCP is shown, therefore a different mechanism for the ZBCP can not be ruled out. In
retrospect it is interesting to note, that in the early experiments the clear differences of
electron- and hole-doped compounds was used to fortify the d-wave order parameter in
the hole-doped cuprates, because the s-wave pairing in NCCO seemed to be established.

Tunneling spectra measurements on bicrystal grain-boundary junctions (GBJs) [100,
109, 115, 116] support this result. In Ref. 116 tunneling spectra of YBCO, BSCCO,
LSCO and NCCO are shown. Grain boundary junctions the hole-doped LSCO films
with a critical temperature of about 24K show a reduced DOS below the gap voltage
and a pronounced ZBCP. The ZBCP reduces with rising temperature and vanishes at Tc

as expected for an d-wave order parameter. In the other hole-doped materials BSCCO
and YBCO (optimal and underdoped) the same can be observed.

The results for NCCO GBJs exhibit a striking different behavior. The DOS is en-
hanced to about 110% at the gap voltage and reduced to about 40% at zero voltage and
no ZBCP is observable. Results which were reproduced in PCCO [117] but quantitatively
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attributed to an anisotropic s-wave order parameter ∆(θ) = | cos(2θ)| in contradiction
to the penetration depth results on the same samples.

The circumstances suddenly changed when three publications reported at the same
time about strong indications of an d-wave order parameter:

In reinvestigations of the penetration depths of PCCO by Prozorov et al. [118] down
to low temperatures of T ≈ 0.5K below 1.8 K samples exhibit a quadratic behavior
with temperature. One sample shows a linear variation extending from 1.8 to 4.2 K
while the other stays quadratic. These results suggest a d-wave order parameter with
unitary impurities. As shown by Hirschfeld et al. [119] [120], in case of strong scatterers
a crossover from a quadratic to a linear temperature dependence at a temperature T ? ≈
6 ln(2)γ ≈ 0.83(Γ∆0)

1/2 is expected. The two different experimental observations can
therefore be explained by different scattering rates in the two samples. In the same
publication also penetration depth measurements on NCCO are reported. As in the
measurements of Alff et al. an upturn of the penetration depth below 4K is observed.
But the data can be fitted to a linear dependence, whereas a fit of the low temperature
region to an activated behavior was only successful with an unreasonable low gap of
∆(0) = 1.3meV and clearly deviates at higher temperatures.

In an accompanying paper by Kokales et al. [121] measurements of the penetration
depth, as well as the surface resistance on the same samples of NCCO and PCCO are
reported. In NCCO the upturn of the penetration depth is observable at about 3.8 K.
The PCCO sample shows a quadratic behavior. As the authors remark the data could
also be ”forced”to fit an activated behavior but with unreasonable high penetration
depth and again a too low gap.

Most telling Tsuei et al. performed a phase-sensitive tricrystal experiment [122] on
NCCO and PCCO like in the hole-doped superconductors [123]. The observation of a
spontaneous half flux quantum in frustrated and no flux in other geometries strongly
suggest a dominant d-wave order parameter. It should be noted this experiment is
especially remarkable since these kind of investigations in the electron-doped are much
more involved than in the hole-doped materials. Here it is difficult to produce grain
boundaries with sufficient large critical currents and the spontaneous vortex with a total
flux of half a flux quantum cannot be demonstrated as easy (and impressive) as in hole-
doped materials: Due to the small critical currents the flux cannot be constrained by
a small ring. Instead the total flux through the whole sample has to be measured and
integrated.

Assuming an d-wave order parameter the absence of the ZBCP in the tunneling ex-
periments is sometimes attributed to impurity scattering. And indeed in the d-wave
superconductor YBCO the reduction and disappearance of the ZBCP with disorder by
ion-irradiation could be demonstrated [104]. But analyzing this study carefully, at the
same time the ZBCP is suppressed also all gap like features are broadened and vanish.
An observation advising to reinvestigate the tunneling results theoretically including im-
purity scattering, to test the consistence of the experiments with the different suggested
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order parameters.

4.2.2 Theoretical investigations

To investigate the possibility of the different order parameter symmetries in the light of
the experimental tunneling results, we use the surface model introduced in the last chap-
ter. Local surface disorder is modeled as a layer of magnetic or non-magnetic impurities
at the surface with a linear decreasing concentration, and in addition a homogeneous
distribution of bulk impurities is included. The surface layer is given by a linear decreas-
ing density and characterized by its depth, the scattering rate at the interface (x = 0)
and the type and strength of the impurity potentials.

s-wave order parameter

To start with the originally discussed order parameter, the results as expected by our
calculations for an s-wave symmetry are analyzed. As discussed in the introductory the-
oretical chapter 2 the superconducting properties in case of an isotropic order parameter
are unaffected by potential scattering, Anderson’s theorem is valid. Not recapitulating
the old well known results on pure conventional superconductors we will immediately
turn to the presence of magnetic scatterers. Having a look at the surface density of
states shown in Fig. 4.13 for different scattering rates of magnetic impurities in the
surface layer, one observes that the original sharp square root divergence at the gap
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Figure 4.13: Density of states and conductivity for an s-wave order parameter for differ-
ent scattering rates 1/2τ of magnetic impurities. The scattering rates are
given in units of Tc,0.
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edge is drastically washed out. At higher scattering rates the gap like features are al-
most washed out and a finite residual density of states at zero is growing with impurity
concentration until no signs of superconductivity are observable any more. A result ex-
pected remembering the well known contributions on gapless superconductivity [47]. A
subtle difference should not be forgotten. In our case the dominant effects are by the
small surface layer. Thus the bulk order parameter and therefore also the position of
the gap edge is almost unaffected by scattering. Turning to the tunneling differential
conductance as measured in experiment: Our results are given in Fig. 4.14 including the
experimental data [117, 124].
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Figure 4.14: Tunneling differential conductance for an s-wave order parameter in the
presence of magnetic impurities close to the surface. The scattering rate
1/2τ is given in Units of Tc. For comparison, the experimental data of
Ref. [117, 124] are included.

As shown there, the experimental findings are in agreement with an s-wave order
parameter, if magnetic surface disorder is assumed. While the qualitative features are
almost perfectly reproduced, a caveat should not be hidden. The large value of the (bulk)
gap is not in agreement with BCS theory and had to be taken from experiment as fit
parameter. The fit requires a fairly strong scattering rate, resulting in a gapless density
of states. But the penetration depth measurements on the samples clearly exhibit a
activated temperature dependence. Calculations of the penetration depth of Fogelström
[125] for the same parameters are given in Fig. 4.15. Since the order parameter is only
suppressed in a small vicinity of the surface (as shown in the inset) the penetration depth
of these strong class II superconductors are only marginally affected by the presence of
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surface disorder. In all cases a clear activated behavior is expected, as observed in the
experiment.
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Figure 4.15: Penetration depth for an s-wave order parameter and surface impurities
(Fogelstroem [125]). The penetration depth still shows an activated behav-
ior

Anisotropic s-wave

In some publications the tunneling results have been interpreted as signs of an anisotropic
s-wave order parameter ∆(pF ) = ∆0| cos(2φ)|. For such an anisotropic order parameter
symmetry both magnetic and potential (isotropic) are affecting the properties but in a
quite different way as we show in Fig. 4.16 giving the surface density of states. While
potential scattering will reduce the position of the gaplike structures saturating at an
averaged value, at the same time a spectral gap is opened at low energies. Magnetic
impurities on the other hand are again pairbreaking like in the previously discussed case.

This is well reflected in the tunneling conductance as shown in Fig. 4.17. Potential
impurities will open a gap, giving for high concentration almost a dI/dV as expected
for conventional BCS superconductors. A result clearly deviating from all experimen-
tal findings. The controlled implatation of potential scatterers would offer a way to
distinguish d-wave from anisotropic s-wave superconductivity. [120]

In contrast, the result with magnetic surface disorder and an anisotropic s-wave order
reproduces the experimental data.
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Figure 4.16: Density of states for an anisotropic s-wave order parameter, with magnetic
and potential impurities. Potential impurities will open a spectral gap [120]
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d-wave

Finally turning to the d-wave order parameter as suggested by, e.g., the tricrystal ex-
periment. As discussed before for this unconventional order parameter, potential and
magnetic impurities will (in the absence of an external applied magnetic field) have the
same influence on the superconducting properties. Therefore, we will not distinguish the
impurity types in the following discussion. In Fig. 4.18 the density of states for different
misorientations and two impurity configurations is given. For sufficiently large misorien-
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Figure 4.18: Density of states for a d-wave order parameter and different misorientation
of the order parameter to the surface

tation a well pronounced ZEBS is seen which gets broadened with bulk impurities but is
still a distinguishable feature. Exploring the tunneling conductance (Fig. 4.19) including
not only the PCCO data but also ones on the hole-doped LSCO [116] the difference is
more than obvious. While the LSCO data are fairly well described within our model,
there is no way to make the PCCO data agree with theory. They are best described by
a α = 0◦ misoriented junction, which is far from the experimental setup and even then
the gap-like features are much more pronounced than expected by theory. Postulating a
d-wave order parameter and using the misorientation of the experimental setup, there is
no way to get agreement. Impurities can annihilate the ZBCP but only in configurations
where at the same time all signs of superconductivity are lost.
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Figure 4.19: Tunneling conductance for a d-wave order parameter with different bulk
scattering rates. In the left panel experimental data on the hole-doped
compound LSCO are included, in the right, the data on PCCO.

4.2.3 Conclusions

As our results show, an isotropic as well as an anisotropic s-wave order parameter are in
agreement with the experimental tunneling data on grain boundary junctions of electron-
doped cuprates, premising magnetic surface disorder. A disorder which was, even with
the same parameters, used in the last section to explain the magnetic field dependence
of tunneling spectra in hole-doped cuprates.

In contrast the experimental results cannot be explained even qualitatively within a
d-wave picture, even if impurity scattering is taken into account. A different tunneling
mechanism compared to the hole-doped cuprates which might aid seems to be causeless.

A surprising solution to the puzzle of experiments supporting an s-wave order pa-
rameter and others, like the distinctive tricrystal experiment of Kirtley et al., endorsing
d-wave symmetry might be given by recent observations:

Point contact spectroscopy data by Biswas et al. [126] and penetration depth measure-
ments of Skinta et al. [127] show strong evidence for a transition of the order parameter
symmetry with doping. As they report, underdoped samples show d-wave optimally
doped and overdoped samples s-wave symmetry. The possibility, that different nomi-
nally optimally doped samples in fact have a different order parameter would be a nat-
ural explanation. Especially noting, that no inconsistencies have been reported between
different measurements on the same samples.

A change of the order parameter with doping would of course be interesting in the
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context of the question about the pairing mechanism.





5 Sub-harmonic gap structure in d-wave

superconductors

In the previous chapter the description of interfaces was restricted to the tunneling
limit doing transport calculations in first order in the interface transparency only. A
restriction which will be dropped in the following and the method generalized to weak
links with arbitrary transparency. As explained below, in the case of high transparency
constrictions a novel transport mechanisms becomes important. Andreev reflections give
rise to an enhancement of the current in S-c-N junctions , and for S-c-S junctions multiple
Andreev reflections (MARs) will manifest in a subharmonic gap structure (SGS).

Early in the discussion about the order parameter symmetry of the cuprates, Dev-
ereaux and Fulde suggested that the Andreev scattering in SNS contacts could be used
to identify the symmetry of the order parameter [128]. Based on their analysis the SGS
revealed in different experiments in YBCO contacts were interpreted as an evidence of
the existence of a well-defined nonvanishing gap [129, 130]. After more detailed but
non-self-consistent analysis, different authors have concluded that the SGS are weak in
d-wave superconductors, since averaging over the anisotropic gap washes out prominent
features [131, 132].

However, there are also more recent experimental reports of SGS in YBCO edge
Josephson junctions [133, 134], and even in the c-axis tunneling of different cuprate
contacts [135]. Auerbach and Altman proposed an alternative interpretation of the
appearance of pronounced SGS in Ref. 134, suggesting that this structure is an indication
of magnon tunneling that can be explained in the context of the SO(5) theory [136].

Since self-consistency proved to be crucial in the case of tunneling junctions, and
certainly will be in the more general case, we reinvestigate the question of SGS in d-
wave junctions applying the quasiclassical Green’s function technique to weak links of
arbitrary transparency. This allows us not only to treat the problem self-consistently
including also the effect of impurities, but moreover to study the behavior in an external
applied magnetic field.

5.1 Multiple Andreev reflection

In the tunneling limit discussed up to now, the only process transferring charge across
a barrier except the Josephson current is tunneling of quasiparticles on one side to
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unoccupied quasiparticle states on the other side. Thus currents are expected to start
off at voltages exceeding the spectral gaps on both sides.

Allowing for higher order processes in the transparency, a new process described by
Andreev [137] in the context of studies of thermal transport will provide transport even
at voltages smaller than the superconducting gap. In simple terms as sketched in Fig. 5.1,
an incoming quasiparticle with momentum k and spin σ can not enter the supercon-
ductor as quasiparticle due to the absence of available quasiparticle states. Nevertheless
accombined with a quasiparticle of opposite spin and momentum it can enter the con-
densate leaving an empty quasiparticle state. In this process effectively a quasi-hole
with (−k,−σ) is retro-reflected and a charge of 2e transferred. With an applied bias
voltage, due to energy conservation, back in the normal conductor the hole effectively
has “gained” an additional energy eV , which will become important later.
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Figure 5.1: Cartoon of an Andreev reflection with applied voltage

In the present context of charge transport, Artemenko et al. [138, 139] observed that
the current at high voltages is displaced compared to the normal state by a finite excess
current which is dependent on the magnitude of the gap but not the voltage. And as
Zaitsev [140] showed for transport through a constriction between normal- and super-
conductor not only current can flow for subgap voltages, the low voltage conductance is
enhanced compared to the normal state. Andreev reflection spectroscopy by itself is a
powerful tool for order parameter spectroscopy. Intensely used to study the electronic
excitation spectrum, size of the gap and order parameter symmetry in all materials
exhibiting unconventional superconducting properties [141].

Blonder, Tinkham and Klapwijk (BTK) extended the description [142] to systems
including a finite barrier potential using Bogoliubov equations. Giving a full and intuitive
description of the problem. In the same year the same authors (but in different order,
usually cited as KBT) attributed the observation of subharmonic gap structures in the
current of S-c-S junctions to multiple Andreev reflections [143]. These clear structures
at 2∆/n, where n = 2, 3, . . . were observed early in several experiments [144–146]. The
simple explanation is as follows: if both sides of the constriction are superconducting
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Andreev reflections are possible at both superconductors. Since at each reflection an
energy of eV is gained, with a voltage V at the interface a cascade of n = 2∆/eV
Andreev reflections will take place until the gap edge is reached and a quasiparticle
channel becomes available. Thereby n charges are transferred, as visualized in Fig. 5.2.
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Figure 5.2: Sketch of multiple Andreev reflection in s-wave superconductors. New trans-
port channels open at voltages 2∆/n

Subsequent microscopic calculation by Arnold [147] , investigations in the scattering
formalism [148, 149] and Hamiltonian approach [150] completed the understanding.

At first glance the probability of n multiple Andreev reflections is proportional Dn.
Therefore, at lower transparency the contribution of higher order processes is reduced.
one finds that while the onset of a new channel is dominant, at the same voltages the
higher order processes might encounter resonances making them more important than
the simple picture suggests. This is best displayed in studies about of the full counting
statistics [151, 152] of the system.

On the experimental side, measurements on well controllable break junction contacts
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[153–155] complemented the picture confirming the theoretical predictions.

5.2 Subharmonic gap structure

It is obvious that for a d-wave order parameter with varying gaps in momentum space
including nodes, the SGS will change significantly in comparison to the s-wave case with
just one well defined energy gap. Furthermore the possibility of an ZEBS (or midgap
state (MGS) as called in a couple of papers concerning the present subject) will have
a drastic impact on the structure, as explained in earlier works [131, 132, 156–158] We
consider a voltage biased contact, consisting of two dx2−y2 superconductors separated by
a single interface of arbitrary transparency. The order parameter on side i, i = l, r might
be rotated (or misoriented) by an angle αi with respect to the surface normal, and the
junction type will be denoted by the relative crystal orientations as dαl−αr . There are

y

x

α
L α

R

Figure 5.3: Design of the junction. The misorientation of the order parameters is de-
scribed by the angles αl and αr. The transmittance of the interface can vary
from tunneling limit to perfect transparency.

several experimental realizations of the misoriented system, among which the bicrystal
grain-boundary junctions are ideal examples [100, 116]. The calculations of the current
follows the lines of Ref. 39 and the reader is referred to this work for all technical details.

In the case of a constant bias voltage V , one can show that the current oscillates
in time with all the harmonics of the Josephson frequency, i.e., I(t) =

∑
m Ime

imφ(t),
where φ(t) = φ0 + (2eV/~)t is the time-dependent superconducting phase difference.
Here, we concentrate ourselves on the analysis of the dc current, denoted from now
on as I. Furthermore, we assume that the interface conserves the momentum of the
quasiclassical trajectories, which allows us to write the current as a sum over independent

trajectory contributions: I = 1
2

∫ π/2
−π/2

dpF I(pF ) cos(pF ), where pF defines the Fermi
surface position. For the angular dependence of the transmission coefficient we use the
expression D(pF ) = D cos2(pF )/[1−D sin2(pF )], resulting from a δ-like potential. Here
D is the transmission for the trajectory perpendicular to the interface.

At first we will analyze the simple case of a symmetric d0-d0 junction in the clean limit.
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In this case, the order parameter is constant up to the surface, and there are no bound
states for any trajectory. The I-V characteristics of a single trajectory, I(pF ), coincide
with those of isotropic s-wave superconductors, and exhibit a pronounced SGS at eV =
2∆(pF )/n. Since the different trajectories see different gaps, the relevant question is
whether the SGS survives after averaging. The answer is given in Fig. 5.4, where both
the current and differential conductance are shown for different transmissions.
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Figure 5.4: d0-d0 contact in the clean case: (a) I-V characteristics for different transmis-
sions, from bottom to top D = 0.1, 0.2, 0.4, 0.6, 0.8, 0.95, 1.0. (b) Differential
conductance normalized by the normal state conductance GN . The dotted
vertical lines indicate eV = 2∆/n.

Due to fact, that for this misorientation the order parameter stays constant selfcon-
sistency does not affect the result. Consequently the I-V characteristic reproduces the
earlier results of Ref. [131] and, as stated there the characteristics are “partially washed
out”. Approving this point, it is consequentially to investigate the differential conduc-
tance. And there one can clearly see a SGS at eV = 2∆/n, although it is more rounded
than in the s-wave case. It should be noticed also that the SGS are better defined as
minima in the conductance at the subharmonic voltages, i.e., as maxima in the differ-
ential resistance. At this point a natural question arises: why is the maximum gap the
energy scale revealed in the SGS? The idea is that the jump of the current at the open-
ing of a new MAR scales with the gap of the corresponding trajectory. Therefore, the
trajectories with the largest gaps dominate the contribution to the SGS.

Let us now consider the case of a dπ/4-d−π/4 junction. In this case, assuming specular
quasiparticle scattering at the interface, an Andreev bound state forms at zero energy
for every trajectory [21]. This implies that the surface acts as a pair-breaker [86,159] and
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the gap is depressed in the vicinity of the interface, vanishing exactly at the barrier. This
order-parameter profile induces the appearance of new bound states at the gap edges
for some trajectories [160], which are also visible in the momentum averaged density of
states, as shown in Fig. 5.5.
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Figure 5.5: Comparison of selfconsistent and non-self-consistent results for the momen-
tum averaged density of states in case of α = π/4 misorientation.

There it is also shown that these gap singularities are not present in the non-self-
consistent calculation. This fact has important consequences in the I-V characteristics.
As is shown in Ref. 39 and sketched in Fig. 5.6, assuming an constant order parameter
the most prominent feature of the I-Vs is the appearance of SGS at eV = ∆/n, instead
of eV = 2∆/n as in conventional superconductors.

Its origin can be understood as follows. Inside the gap the current is dominated by
multiple Andreev reflections (MAR). In this case there are two types of MAR processes:
(a) those which connect the bound states with the gap edges and (b) the usual ones
connecting the gap edges. The first ones give rise to the SGS at eV = ∆/n, while
the second type could give rise to the series eV = 2∆/n. However, for the non-self-
consistent calculation the DOS at the gap edges is rather small (see Fig. 5.5), and thus,
at the opening of this second type of processes their probability is small.
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Figure 5.6: Multiple Andreev reflections in d-wave superconductor with a zero energy
bound state (non-self-consistent). New transport channels open at voltages
∆/n
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Figure 5.7: dπ/4-d−π/4 contact in the clean case: (a) I-V characteristics for the same
transmissions as in Fig. 5.4a. (b) Differential conductance.

In the self-consistent case the main consequence of the presence of the gap singularities
is the recovery of the odd terms in the SGS series eV = 2∆/n. The odd terms appear
now due to the enhancement of the probability of the MARs connecting the gap edges.
However, the bound states at the gap edges do not appear for every trajectory, which
weakens the SGS due to these processes. In this sense, in Fig. 5.7 one can clearly see a
difference between the even and odd maxima of the conductance. This even-odd effect
was reported in Ref. 134. This result show clearly the relevance of the self-consistency,
even in the ideal clean case.

In d-wave superconductors the order parameter is very sensitive to scattering from
nonmagnetic impurities and surface roughness. In particular, it is known that these
elastic scattering mechanisms provide an intrinsic broadening for the zero-energy bound
states (ZEBS) [92, 161]. For the case of Born scatterers this broadening is ∝

√
Γ∆,

where Γ = 1/2τ is the effective pair-breaking parameter locally at the surface. This is
illustrated in Fig. 5.8 for the case of bulk impurities.
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Figure 5.8: Broadening of the Andreev bound states and the gap like structure
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The natural question now is: what is the influence of the broadening of the ZEBS on
the SGS? In Fig. 5.9 we show the differential conductance of a dπ/4-d−π/4 junction for
different values of the bulk-impurity scattering rate. Notice that as the elastic scattering
rate increases the SGS disappears, which can be understood as follows: the increase of
density of states in the gap region enhances the probability of single-quasiparticle pro-
cesses, producing the subsequent reduction of the probability of the Andreev processes,
which in turn leads to the suppression of the SGS.
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Figure 5.9: Differential conductance for a dπ/4-d−π/4 contact for different values of the
bulk-impurity scattering rate Γ. Transmission rates are given in (d)

Probably the clearest signature of d-wave superconductivity in the SGS is its evolution
with magnetic field. It is known that a magnetic field perpendicular to the ab-plane,
H = Hẑ, leads to a Doppler shift in the continuum excitations given by vf · ps, where
the condensate momentum is ps = −(e/c)A(x)ŷ, with A the self-consistently determined
vector potential [101]. As shown in Fig. 5.10, this means that the Andreev bound states
are shifted to an energy which, in the limit of a large ratio λ/ξ0, can be estimated to
be εb(pF ) = (e/c)vFHλ sinpF , λ being the ab-plane penetration depth. We shall use a
natural field scale set by a screening current of the order the bulk critical current, H0 =
c∆/evFλ, which is of the order of a Tesla [101]. As can be seen in Fig. 5.11, the screening
currents flow parallel to the interface and in opposite directions in both electrodes, which
means that the trajectory resolved DOS of the left and right superconductors are shifted
by 2εb(pF ) relative to each other.
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This shift modifies the threshold voltages of MARs starting and ending in different
electrodes, leading to the splitting of the peaks with an odd order n in the SGS. On the
contrary, since the magnetic field produces a rigid shift of the spectrum, the threshold
voltages of those MARs starting and ending in the same electrode are not modified. This
means that the positions of the peaks with an even order n in the SGS remain unchanged.
This fact gives rise to a rich SGS in the trajectory resolved current, which consists in
conductance peaks at the following voltage positions: (a) [2∆(pF ) ± 2εb(pF )]/n, with n
odd, due to MARs connecting the gap edges of the left and right electrodes (the signs
± correspond to electron and hole processes), (b) [∆(pF ) ± 2εb(pF )]/n, with n odd,
due to MARs connecting the bound states and the gap edges of different electrodes, (c)
2∆(pF )/n, with n even, due to MARs connecting the gap edges of the same electrode,
(d) ∆(pF )/n, with n even, due to MARs connecting the bound states and the gap edges
of the same electrode. Finally, there is also structure at eV = 2εb(pF )/n, with n odd,
due to MARs connecting the bound states.

After doing the angle average most of these features are still clearly visible. This
is illustrated in Fig. 5.12 where we show the differential conductance of a dπ/4-d−π/4

junction with transmission D = 0.4 for different values of the magnetic field. Starting at
large voltages, the weak structure seen at 2∆ splits with applied field. Around eV = ∆
there are both type (b) and type (c) processes leading to a maximum at eV = ∆,
unaffected by the applied field, as well as a field-shift of the dip just above ∆. The
field dependence of the differential conductance is most clearly resolved at larger biases,
eV ≥ ∆/2, as the marks of the various processes begin to overlap at small bias. What is
important to note is that it is still the bulk maximum gap that gives the characteristic
energy scale for the SGS. The effect of the Doppler shift on the SGS or the differential
conductance is only prominent in junctions with a sizable misorientation. For junctions
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close to the d0-d0 case, the main contribution to the SGS comes from trajectories close
to perpendicular incidence, i.e., with sinpF ∼ 0 and thus having a vanishing Doppler
shift.
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Figure 5.12: Differential conductance of a clean dπ/4-d−π/4 junction with D = 0.4 and
different values of the magnetic field. The curves has been vertically dis-
placed for clarity and dotted lines have been added to guide the eye.

In summary, we have presented a self-consistent analysis of the I-V characteristics
of d-wave/d-wave contacts at high transparencies. We have shown that it is possible
to observe SGS for all crystal misorientations. We predict that the presence of bound
states inside the gap gives rise to two new qualitative effects in the SGS: (a) an even-odd
effect, and (b) a very peculiar splitting in an external magnetic field. These features are
unique hallmarks of the d-wave scenario, and we hope that our analysis will trigger off
a more detailed experimental study of the SGS in cuprate Josephson junctions.
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In the previous chapters, unconventional superconductivity was generated by pairing in-
teractions with unconventional symmetry. But unconventional pairing correlations can
also become crucial in systems involving only conventional s-wave superconductors. In
heterostructures with ferromagnetic layers, superconductivity and long-range Joseph-
son effects at first sight seem to be an antagonism. Singlet correlations are decaying
fast in the superconductor on a short length scale

√
TC/h given by the exchange field

h. Nevertheless, even in a half-metal pairing correlations with equal-spin pairing are
possible. But equal-spin and thus triplet pairing usually involves pairing with an un-
conventional symmetry in momentum space. As shown in chapter 2 this kind of pairing
is very sensitive to any kind of disorder. A long-range proximity effect in impure sam-
ples seems to be unlikely. A new non-trivial possibility of triplet pairing, which was
originally proposed in the discussion of 3He, is odd-frequency superconductivity. Triplet
correlation functions even in momentum, but odd in frequency would also comply with
the Pauli principle. These correlations with s-wave symmetry are unaffected by poten-
tial impurities and would survive in magnetic systems. A long range proximity effect
and Josephson current in S/F/S heterostructures can be mediated. Superconductor-
ferromagnet heterostructures and effects like odd frequency triplet superconductivity
have been subject of many theoretical and experimental investigations, discussed, e.g.,
in a review by Bergeret et al. [22].

The group of Klapwijk reported the observation of a Josephson current through the
strong ferromagnet CrO2 [162]. A theoretical description of such a system, involving a
half-metal, has been given earlier by Eschrig et al. [163]. In this work, the boundary
between superconductor and half-metal has been described by a phenomenological S-
matrix. Some processes described by this S-Matrix, e.g., spin-flips, are crucial for the
appearance of triplet correlations in the half metal. In this chapter we will give a simple
microscopic model of an interface including magnetic impurities and derive an S-matrix,
motivating the original ansatz.

6.1 Spin mixing

A Josephson effect in S/F/S heterostructures requires two independent processes at the
interface: spin-mixing (or spin rotation) and spin-flip scattering, necessary to induce an
equal-spin pairing component in the half-metal. As shown by Tokuyasu et al. [164], spin
mixing is a robust feature of any interface to a strong ferromagnet. The spin mixing

73
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angle θ defines a phase difference between waves of opposite spin, reflected at a spin-
active interface. E.g., a wave | ↑〉k, is reflected as | ↑〉−k = eiθ/2| ↑〉k and | ↓〉k as
| ↓〉−k = e−iθ/2| ↓〉k. In case of a singlet superconductor, the pair amplitude

f ∝ | ↑〉k| ↓〉−k − | ↓〉k| ↑〉−k (6.1)

by reflection transforms to

f ∝ eiθ| ↑〉k| ↓〉−k − ε−iθ| ↓〉k| ↑〉−k, (6.2)

which is a spin singlet-triplet mixture and the first step to equal-spin pairing.
The spin-mixing process can be understood as electrons virtually entering the classical

forbidden half-metal, experiencing a spin rotation by the field in the boundary region.
A process which is easily understood by a simple calculation: Assuming a barrier u =
V0δ(x) between a normal conductor and a half-metal the wave functions in the normal
conductor are given by

ψN,↑(x) = A↑e
ikx +B↑e

−ikx ψN,↓(x) = A↓e
ikx +B↓e

−ikx (6.3)

while in the half-metal one component (spin down) is classical forbidden and exponen-
tially decaying

ψHM,↑(x) = C↑e
iq↑x +D↑e

−iq↑x ψHM,↓(x) = C↓e
−q↓x . (6.4)

Matching the wave functions it is straightforward to extract the S-matrix



ψN,↑,out

ψN,↓,out

ψHM,↑,out


 =




2κ+i(k−q↑)
−2κ+i(k+q↑)

0
2i
√

kq↑
−2κ+i(k+q↑)

0
2κ+q↓+ik
−2κ−q↓+ik 0

i2
√

kq↑
−2κ+i(k+q↑)

0
2κ+i(q↑−k)
−2κ+i(k+q↑)






ψN,↑,in
ψN,↓,in
ψHM,↑,in


 (6.5)

with κ = mV0

~2k .

6.2 CrO2

In the Delft experiments by Keizer et al., CrO2 was used as strong ferromagnet. The half-
metal ferromagnet, due to band splitting, is metallic for one spin component (spin-up),
but insulating for the other one (spin-down). The spin polarization has been demon-
strated to be close to 100%. CrO2 is well known and used in industry for decades, e.g.,
for magnetic tapes. But it should be stressed, that in the experiment, epitaxially grown
thin single crystal films were used. While in macroscopic samples the magnetization of
CrO2 is well understood and has a uniaxial magnetic anisotropy, the situation for films
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is not yet resolved. In their samples, Keizer et al. demonstrated a biaxial magnetic
anisotropy by measurements of the critical Josephson current [162] and the planar Hall
effect [165]. The directions of the two easy-axes for the film were identified as 30◦, 150◦,
210◦ and 330◦ to the crystal ĉ-axis. A fact which might turn out to be crucial. With a
magnetization along one easy-axis, the presence of a second non-orthogonal easy-axis is
breaking the spin-rotation symmetry. A fact which might be the reason for the occur-
rence of the unusual triplet correlations in this material [166]. On the same lines, the
broken symmetry will be crucial in our model.

6.3 Interface model

Modeling the contact region, we assume magnetic impurities in the superconductor close
to the interface. Due to the magnetic asymmetry we assume that the magnetic moments
are preferably oriented in direction of an easy-axis of the CrO2. Thereby the orientation
of mis-aligned magnetic moments is most probable in the direction of the second easy-
axis, close to the direction of magnetization of the bulk ferromagnet. The impurity is
modeled as classical spin with an impurity potential û = JSσ, as before using the Shiba
scheme of sending the spin S to infinity while keeping JS constant. Calculating the
scattering on a single impurity in t-matrix approximation, it is possible to obtain the
according S-matrix. The S-matrix is connected with the on-shell t-matrix by

Skk′ = δ(k − k′) − 2πiδ(E(k) −E(k′))tkk′ . (6.6)

Solving the t-matrix equation, the S-matrix for a single impurity is given by

Ŝ =
1 − J2|S|2G2

0 − 2πiJ2|S|2G2
0 − 2πJSσ

1 − J2S2G2
0

. (6.7)

6.4 S-matrix average

Averaging over impurity configurations turns out to be non-trivial. Usual averaging
schemes like using a density matrix and tracing out the impurity degree of freedom
are resulting in non-unitary, and thus non-physical S-matrices. Furthermore, in doing
spatial averaging one is missing multiple scattering effects, again resulting in a non-
unitary S-matrix. For simplicity we will assume a homogeneously “smeared” distribution
of impurities by doing a 1-D calculation. The averaging of impurity orientations is done
in a more sophisticated way, guaranteeing, by construction, the unitarity of the final
S-matrix. As depicted in Fig. 6.1 we are introducing a “beam-splitter” distributing
incoming waves according to a weight on subsequent S-matrices.
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BS BS

S2

S1

Figure 6.1: Sketch of the averaging scheme. The two S-matrices S1 and S2 are coupled
by weighting beam-splitters (BS).

The S-matrix for the beam-splitter is chosen to be neutral (no additional phase shifts)
and has the form

Ŝ =

(
0 α̂T

α̂ α̂α̂T − 1̂

)
. (6.8)

In the simple case of two S-matrices, it is given by

Ŝ =




0
√
ρ

√
1 − ρ√

ρ −(1 − ρ)
√
ρ
√

1 − ρ√
1 − ρ

√
ρ
√

1 − ρ −ρ


 , (6.9)

but the scheme can easily be extended to an arbitrary or even number continuous S-
matrices. The scheme does not only guarantee unitarity of the averaged S-matrix, it
accounts for all multiple reflection processes between the different scatterers.

In case of only two S-matrices, the total averaged S-matrix is given by

S = ρS1[1+ρS2 +(1−ρ)S1]
−1(1+S2)+(1−ρ)S2[1+ρS2 +(1−ρ)S1]

−1(1+S1) . (6.10)

6.4.1 The interface S-matrix

To model the whole interface, the general S-matrix for a spin-active interface parame-
terized by

Ŝ =




r↑↑e
i(φ+ θ

2
) 0 d↑↑e

i(θ↑↑+ θ
4
+α+φ

2
)

0 ei(φ−
θ
2
) 0

d↑↑e
i(−θ↑↑+ θ

4
+α+φ

2
) 0 −r↑↑eiα


 (6.11)

is put into series with the impurity S-matrices as depicted in Fig. 6.2.

Averaging scattering on magnetic moments, mis-aligned by an angle α, with an S-
matrix given by Eq. (6.7) and absence of any scattering on impurities, the final S-matrix
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BS

1

SI

BS

SB

SB

Figure 6.2: Sketch of the averaged boundary S-matrix. The impurity S-matrix (SI) and
the purely transmitting S-matrix (1) are in parallel, each one is in series with
a boundary S-matrix (SB).

is obtained as

S11 = − γ2ρ2[eiθ(4 − t2) + 8ei
θ
2 + (4 + t2)] + 2iγρ sin(α

2 )[eiθ(t2 − 4) − 4ei θ
2 ] + eiθ(t2 − 4)

γ2ρ2[eiθ(4 − t2) + 8ei
θ
2 + (4 + t2)] + iγρ sin(α

2 )[eiθ(t2 − 4) + (4 + t2)] + ei
θ
2 (4 + t2)

S12 =
γρ cos(α

2 )(1 + ei
θ
2 )[ei

θ
2 (4 − t2) + (4 + t2)]

γ2ρ2[eiθ(4 − t2) + 8ei
θ
2 + (4 + t2)] + iγρ sin(α

2 )[eiθ(t2 − 4) + (4 + t2)] + ei
θ
2 (4 + t2)

S13 =
−4te

i
4
(θ+4θ↑↑)[γρ sin(α

2 )(ei
θ
2 + 1) − iei θ

2 ]

γ2ρ2[eiθ(4 − t2) + 8ei
θ
2 + (4 + t2)] + iγρ sin(α

2 )[eiθ(t2 − 4) + (4 + t2)] + ei
θ
2 (4 + t2)

S21 = −S12

S22 =
−4γ2ρ2[eiθ + 2ei

θ
2 − t2(eiθ − 1)] − 2iγρ sin(α

2 )[4ei
θ
2 + (4 + t2)] − t2

γ2ρ2[eiθ(4 − t2) + 8ei
θ
2 + (4 + t2)] + iγρ sin(α

2 )[eiθ(t2 − 4) + (4 + t2)] + ei
θ
2 (4 + t2)

S23 =
−4γρ cos(α

2 )te
i
4
(4α+θ)(1 + ei

θ
2 )

γ2ρ2[eiθ(4 − t2) + 8ei
θ
2 + (4 + t2)] + iγρ sin(α

2 )[eiθ(t2 − 4) + (4 + t2)] + ei
θ
2 (4 + t2)

S31 = e2iαS13

S32 = −e2iαS23

S33 = −γ
2ρ2[eiθ(4 + t2) + 8ei

θ
2 + (4 + t2)] − iγρ sin(α

2 )[eiθ(4 + t2) + (t2 − 4)] + ei θ
2 (4 − t2)

γ2ρ2[eiθ(4 − t2) + 8ei
θ
2 + (4 + t2)] + iγρ sin(α

2 )[eiθ(t2 − 4) + (4 + t2)] + ei
θ
2 (4 + t2)

.

(6.12)

Obviously the found S-matrix has all the necessary components for a singlet - triplet
conversion: Spin mixing and spin-flip terms.

Using the S-matrix for boundary conditions in the quasiclassical Green’s function tech-
nique, it is convenient to choose a parametrization which extracts the spin-independent
phases. Having a look at the boundary conditions of Millis et al. [36] channel-independent
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phases only enter in the evaluation of the drone amplitudes but drop out of the boundary
conditions of the quasiclassical Green’s functions. Thus extracting these phases without
physical relevance makes it easier to identify the n2 − 4 relevant parameters.

In the discussion of the of half-metal/superconductor heterostructures, Eschrig et
al. [167] used the parametrization

Ŝ =

(
rS tSF

tFS −rF

)
=




r↑↑e
i
2
ϑ r↑↓e

i(ϑ↑↑−ϑ↓↑) d↑↑e
i(ϑ↑↑+ϑ

4
)

r↓↑e
i(ϑ↑↑−ϑ↓↑) r↓↓e

− i
2
ϑ d↓↑e

i(ϑ↓↑−ϑ
4
)

d↑↑e
−i(ϑ↑↑−ϑ

4
) d↓↑e

−i(ϑ↓↑+ϑ
4
) −r↑↑


 (6.13)

which can be connected with the transmission amplitudes by

r↑↑ = 1 − t2↑↑/2W (6.14)

r↓↓ = 1 − t2↓,↑/2W (6.15)

r↑↓ = r↓↑ = −t↑↑t↓↑/2W (6.16)

r↑↑ = 1 − (t2↑↑ + t2↓↑)/2W (6.17)

d↑↑ = t↑↑/W (6.18)

d↓↑ = t↓↑/W (6.19)

W = 1 + (t2↑↑ + t2↓↑)/4 (6.20)

The five real parameters characterizing the S-matrix are t↑↑, t↓↑, ϑ, ϑ↑↑, ϑ↓↑. Here, ϑ is
the spin rotation angle.

For un-coupled systems one has the freedom to choose the spin quantization axis in
each system separately. While for the half-metal the direction of the magnetization is
a natural choice, in the superconductor no distinguished orientation exists. It is there-
fore possible to choose the quantization axis in a way, that the boundary condition and
expressions for observables like the supercurrent simplify. In comparison with micro-
scopically derived S matrices one has to be aware of the fact that the quantization axis
on both sides of the boundary might be (and usually are) chosen differently and ap-
ply the necessary transformations to adjust them accordingly. A tedious task which is
usually beyond analytic computation. A numerical transformation and the extraction
of relevant parameters of the S-matrix derived in this chapter is given in the diploma
thesis of Gero Bergner [168].



7 Conclusions

This thesis was devoted to unconventional superconductors and in particular to the influ-
ence of inhomogeneities on the properties of these compounds. Using the quasiclassical
theory of superconductivity we investigated a broad range of properties and materials.
After a brief introduction to the quasiclassical theory and the basic results at first we
addressed Sr2RuO4.

Strontium ruthenate attracted a lot of attention in recent years not only because of
the structural similarity to the high-temperature superconductors. An unconventional
triplet order parameter was proposed and many experiments support this suggestion.
Nevertheless, the exact symmetry is still subject of discussions. Thermodynamic prop-
erties like the specific heat show (in clean samples) a linear temperature dependence.
Pointing towards an order parameter with line nodes. This contradicts the original pro-
posal of a p-wave order parameter kx + iky. In-plane measurements do not show traces
of vertical gap nodes leading to a proposal of Zhitomirsky and Rice [14] of an interband
proximity effect giving rise to an order parameter with horizontal line nodes. The band
structure of Sr2RuO4 provides three conduction bands, making multi-band superconduc-
tivity like in MgB2 [169, 170] an attractive idea. Early experiments of, e.g., the specific
heat suggested a high residual density of states, interpreted as normal conductivity in
a part of the bands. Later in samples of improved quality the specific heat vanishes
linearly with temperature T → 0, pointing towards superconductivity in all bands. In
their model, Zhitomirsky and Rice assumed one active band with an attractive pairing
interaction coupled to the other bands. Due to this coupling also in these bands super-
conductivity is induced, and the form of the coupling will yield an order parameter with
horizontal line nodes varying as cos(kz/2). In the first part of chapter 3 we adopted
this model including inhomogeneities in the form of potential impurities. In a fully
self-consistent calculation solving the impurity problem in t-matrix approximation we
investigated basic thermodynamic properties. Measurements of the nuclear spin relax-
ation rate in samples with a reduced transition temperature provide information about
the impurity scattering rate and the residual density of states. Calculating this property
for different interband coupling parameters and impurity strengths as function of the
scattering rate and by comparison with the experimental results it is possible to extract
estimates of the coupling parameter and the scattering phase shift. As we showed, to
agree with experiment the scattering has to be in an intermediate range and neither in
unitary nor in Born limit. After this we calculated the specific heat as function of the
temperature for different coupling parameters in the clean case. A expected the qualita-
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tive low temperature behaviour is strongly connected to the coupling: For low coupling
the specific heat seems to saturate before dropping again being zero at T → 0 and also
strong coupling results in a crossover from linear to exponential growth at intermediate
temperatures. But taking the coupling parameter extracted from the NQR experiment,
a linear dependence is found and the experimental results can be fitted in a broad tem-
perature range only showing deviations in the behavior close to the critical temperature.
Using the same parameters we calculated the spin relaxation rate. For impurity scatter-
ing rates as given by the measured critical temperature Tc, the experimental observed
crossover from linear to a T 3 law in the spin relaxation rate was reproduced.

Measurements of the excess current in point contacts by Laube et al. [16] exhibited an
unusual temperature dependence. A temperature dependence which is also not expected
in case of an unconventional order parameter. A possible explanation, a low lying boson
mode effectively acting as scattering centers with a temperature dependent scattering
rate, was proposed by the authors and could fit the data. In the second part of chapter 3.4
we studied the specific heat for this new model. We assumed a single band p-wave order
parameter (as originally proposed) including the boson mode. At first we were using
the simplified effective model, as derived by Millis et al. [80]. This description is well
suited for temperatures larger than the boson mode. The obtained specific heat shows
an activated low temperature behavior due to the spectral gap, and an additional dip at
the boson frequency. Since the property calculated is the difference of specific heat in the
superconducting and the normal state, this dip is most likely a rise in the normal state,
absent in the superconducting state. To exclude anomalies caused by the approximation
in the effective model, we extended the calculations to a strong coupling calculation
taking into account the exact frequency dependence of the electron-phonon self-energies.
The Eliashberg like calculation is non-local in energy but, in contrast to the usual strong
coupling formalism, the order parameter is still energy independent. The s-wave phonon
coupling does not contribute to the p-wave pairing. The results of the full calculation
deviate surprisingly little from the ones obtained before. Concluding this section, the
model used to explain the excess current cannot attribute for the experimentally obtained
specific heat. It would be valuable to re-investigate the problem to find a consistent
explanation.

The next chapter 4 was devoted to new materials and new kind of inhomogeneities.
The symmetry of the order parameter in the high-temperature superconductors is a
central question. At first it should be noted, that this family of superconductors in fact
consists of two different classes, electron- and hole-doped compounds. Being similar but,
as already the phase diagram exhibits, also distinct. In the hole-doped cuprates a dx2−y2

order parameter is now well established by countless and partially even phase sensitive
experiments, giving a consistent answer. The order parameter is not only sensitive to
scattering on impurities, scattering on walls and junctions can also be pair-breaking.
This suppression and the resulting spatially varying order parameter leads to Andreev
bound states at the surfaces. These are formed by normal reflection at the interface
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and Andreev reflection at the order parameter profile. It is known that a change in
the sign of the order parameter along such a trajectory will result in a bound state
strictly at zero energy. In Sec. 4.1.1 we studied the influence of bulk impurities on these
Andreev bound states and the implications on transport properties like the Josephson
critical current. We could show that quasiparticle scattering by impurities results in the
broadening of these surface quasiparticle bound states. Scatterers can essentially reduce
the height of the peak in the density of states. A reduction which will also depress the
low-temperature anomaly in the Josephson critical current expected in tunnel junctions
of d-wave superconductors. We have shown that bound states are more sensitive to weak
(Born) scatterers, than to strong (unitary) impurities at a given value of the scattering
rate. While Born scatterers yield a broadening ∝

√
Γ∆, where Γ = 1/2τ is the effective

pair breaking parameter, in the unitary limit the bound states are remarkably stable to
impurity scattering.

In the next section 4.1.2, we investigated the magnetic field dependence of the Andreev
bound states (ABS). Tunneling spectroscopy experiments on grain boundary junction
did not show a splitting of the ABS as expected by theory and observed in other tun-
neling experiments. Nevertheless, spectral weight was shifted to higher energies. To
explain this discrepancy we studied the local density of states with an applied magnetic
field, again including (surface) impurities. Without magnetic field, for an unconven-
tional order parameter, magnetic and potential scatterers behave identical. This is no
longer true in case of an applied magnetic field. With the broken symmetry potential
impurities become less effective, while magnetic scatterers will still significantly broaden
the bound states. Turning to the differential conductance, we could show that in case of
potential impurities the splitting will be present, while in case of magnetic scatterers it
is not observable. This is a reasonable explanation for the different observations in the
tunneling experiments, especially accounting for the fact that the nature of the tunneling
barriers in the conflicting experiments was substantially different.

The final section 4.2 of chapter 4 focused on the electron-doped cuprates. While
in the hole-doped compounds a d-wave order parameter is well established by now, in
the electron-doped cuprates the order parameter symmetry is still under debate. Early
experiments convincingly concluded that in these materials the superconducting state is
of conventional s-wave pairing. A more recent phase-sensitive experiment [122] observed
d-wave symmetry and was followed by several supporting investigations. Within the
discussion the absence of the expected zero bias anomaly due to Andreev bound states is
often attributed to impurity scattering. We performed fully self-consistent calculations
of the surface density of states and the tunneling conductance. Including the effects
of impurity scattering, we compared our results for several discussed order parameter
symmetries with the experimental findings. As our results show, an isotropic as well as
an anisotropic s-wave order parameter are in agreement with the experimental tunneling
data on grain boundary junctions. The necessary assumption is surface disorder with
magnetic impurities. This assumption and the parameters used are the same as used in
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the previous section to explain the magnetic field dependence observed in grain-boundary
junctions of hole-doped cuprates. In contrast, our results contradict the d-wave picture.
Albeit taking impurities into account, our results for a d-wave order parameter can
not even qualitatively explain the experimentally observed conductance spectra. The
contradiction to the phase sensitive experiments is puzzling, but might be explained by
recent experiments [126, 127] indicating a doping dependence of the order parameter
symmetry.

In chapter 5 we addressed the question of the observability of subharmonic gap struc-
ture in d-wave superconductors. We presented a self-consistent theory of the current-
voltage characteristics of d-wave/d-wave contacts at arbitrary transparency. In partic-
ular, we addressed the open problem of the observation of subharmonic gap structure
(SGS) in cuprate junctions. Our analysis showed that SGS is possible in d-wave super-
conductors. The existence of bound states within the gap results in a peculiar even-odd
effect in the SGS. In the maxima of the conductance at eV = 2∆/n one can clearly see
a difference between even and odd n. Elastic scattering mechanisms, like impurities or
surface roughness, may suppress the SGS. As could be demonstrated, in the presence of
a magnetic field the Doppler shift of the Andreev bound states leads to a splitting of the
SGS, which would be an unambiguous fingerprint of d-wave superconductivity.

Subject of the last chapter 6 were heterostructures incorporating only conventional
BCS superconductors. Also in superconductor-ferromagnet heterostructures pairing cor-
relations with an unconventional symmetry are expected. While singlet correlations de-
cay in the ferromagnet on a short length scale, triplet correlations can give rise to a
long range proximity effect and Josephson critical currents. A necessity for the occur-
rence of such triplet correlations are spin-flip processes in the boundary. In combination
with spin-rotation, they make a conversion of the singlet pairing functions in the BCS
superconductor to triplet correlations in the ferromagnet possible. In this chapter we
motivated the occurrence of such spin-flip terms. Within a simple model of magnetic
scatterers close to the surface, we calculated the boundary S-matrix. A crucial point of
the model is the breaking of rotational symmetry. It is motivated by the fact that in ex-
periment the used CrO2 films exhibited two non-orthogonal easy axes of magnetization.
We accounted for this fact assuming a preferred orientations of the misaligned magnetic
moments. We could show that in our model the resulting boundary S-matrix contains
the necessary spin-flip terms.

In conclusion in this thesis we covered a number of different systems and physical
properties. The conjoint question was the impact of inhomogeneities on systems with
unconventional superconducting correlations.



A Notation

The non-commutative product ⊗ is defined as
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which in equilibrium reduce to simple matrix products. The commutator

[
Â, B̂

]
⊗ = Â⊗ B̂ − B̂ ⊗ Â (A.3)

is accordingly determined with the non-commutative product.
The Fermi surface average 〈. . .〉pF

is defined

〈. . .〉pF
=

1

NF

∫
d2pF

(2π~)3|vF (pF )| . . . , (A.4)

NF is the total density of states at the Fermi surface in the normal state

NF =

∫
d2pF

(2π~)3|vF (pF )| (A.5)

and vF (pF ) the normal state Fermi velocity on the Fermi surface at pF

vF (pF ) =
∂ξ(p)

∂p

∣∣∣
p=pF

. (A.6)

Obviously in general the Fermi velocity vF (pF ) needn’t be directed in the same di-
rection as pF . But in the case of cylindrical or spherical Fermi surfaces this is the case
and the Fermi surface average simplifies to an angular average. E.g., in (quasi) 2d it is
simply given by

〈. . .〉pF
=

∫
dφ

2π
. . . . (A.7)
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B Propagators

Since in the literature different definitions and conventions are used, the exact definitions
used in this thesis should be given. Full Green’s functions and self-energies will be
denoted by capital Ĝ, Σ̂, the quasiclassical counterparts with lowercase ĝ, σ̂. The hat ˆ
denotes 4x4 matrices in Nambu and spin space.

B.1 Definitions

In the following l, l′ denote the 4 dimensional Nambu indices in spin and particle-hole
space. The full propagators are defined by

ĜR(x, t;x′, t′)ll′ = −iθ(t− t′)
〈{
ψl(x, t), ψ

†
l′(x

′, t′)
}〉

(B.1)

ĜA(x, t;x′, t′)ll′ = iθ(t′ − t)
〈{
ψl(x, t), ψ

†
l′(x

′, t′)
}〉

(B.2)

ĜK(x, t;x′, t′)ll′ = −i
〈[
ψl(x, t), ψ

†
l′(x

′, t′)
]〉

(B.3)

ĜM (x, x′; τ)ll′ = −
〈
Tτ

(
ψl(x,−iτ)ψ†

l′(x
′, 0)

)〉
(B.4)

with creation (ψ†) and destruction (ψ) operators defined in Nambu space as

ψ1 = ψ↑, ψ2 = ψ↓, ψ3 = ψ†
↑, ψ4 = ψ†

↓ . (B.5)

In the unperturbed homogeneous case, assuming an unitary order parameter, the
equilibrium propagators of the superconducting state are given by:

ĜM (p; εn) =
−ξpτ̂3 − iεn + ∆̂(p)

ξ2p + εn2 + |∆̂(p)|2
(B.6)

ĜR,A(p; ε) =
ξpτ̂3 + ε+ ∆̂(p)

(ε± iδ)2 − ξ2p − |∆̂(p)|2
(B.7)

ĜK(p; ε) =
[
ĜR(p; ε) − ĜA(p; ε)

]
tanh

(
ε

2kBT

)
. (B.8)

The undressed phonon propagator is

D0(k, ωn) = − ω2
0(k)

ωn
2 + ω2

0(k)
, ωn = 2nπT . (B.9)
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Again assuming a homogeneous system in equilibrium and an unitary order parameter
the unperturbed quasiclassical propagators are given by:

ĝR,A
0 (pF ,R; ε, t) = −π ετ̂3 − ∆̂0(pF )√

|∆̂0(pF )0|2 − (ε± iδ)2
(B.10)

ĝK
0 (pF ,R; ε, t) = −2πi tanh

( ε

2T

)
Im


 1√

|∆̂0(pF )|2 − (ε+ iδ)2


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(B.11)

ĝM
0 (pF ,R; εn, t) = −π iεnτ̂3 − ∆̂0(pF )√

|∆̂0(pF )|2 + εn2

(B.12)

In equilibrium the quasiclassical normal state propagators are given by the simple
expressions

ĝM
0 (pF ,R; εn) = −iπ sign(εn)τ̂3 (B.13)

ĝR,A
0 (pF ,R; ε, t) = ∓iπτ̂3 (B.14)

ĝK
0 (pF ,R; ε, t) = −2πi tanh(ε/2T )τ̂3 . (B.15)

B.2 Symmetries

The introduced notation in Nambu space incloses redundant information. This re-
dunancy is reflected in additional symmetries of the Nambu matrices:

X̂M (pF ,R; εn)
†

= τ̂3X̂
M (pF ,R;−εn)τ̂3 (B.16)

X̂R(pF ,R; ε, t)
†

= τ̂3X̂
A(pF ,R; ε, t)τ̂3 (B.17)

X̂K(pF ,R; ε, t)
†

= −τ̂3X̂K(pF ,R; ε, t)τ̂3 (B.18)

and

X̂M (pF ,R; εn)
tr

= τ̂2X̂
M (−pF ,R;−εn)τ̂2 (B.19)

X̂R(pF ,R; ε, t)
tr

= τ̂2X̂
A(−pF ,R;−ε, t)τ̂2 (B.20)

X̂K(pF ,R; ε, t)
tr

= τ̂2X̂
K(−pF ,R;−ε, t)τ̂2 (B.21)



Sometimes it is useful to parametrize the 4x4 Nambu matrices in a form which explic-
itly exhibits the structure in spin space. In terms of scalars a, b and vectors a, b with σ

being a vector of Pauli matrices all1 Nambu matrices can be written in the form

X̂ =

(
a+ aσ (b+ bσ)iσ̂2

iσ̂2 (̃b+ b̃σ) ã− σ̂2 ãσσ̂2

)
. (B.22)

The conjugation (˜) of the form

x̃(pF ,R; ε, t) = x(−pF ,R;−ε, t)∗ (B.23)

is assuring that the matrix fulfills the symmetry condition given above.

1Exluding Keldysh matrices which, to allow a consistent definition of the “conjugation”, have to be

parameterized with different signs as: X̂K =

„
a + aσ (b + bσ)iσ̂2

−iσ̂2 (eb + b̃σ) −(ã − σ̂2 ãσσ̂2 )

«
.





C Riccati parameterization

The numerical solution of the Eilenberger equation (2.3) proves to be in many cases
non-trivial. The transport equation is unstable to spurious unphysical solutions.

Using a special parameterization of the Green’s functions, as in the most general case
given by Eschrig [37], the numerical effort is significantly reduced. The Green’s func-
tions can be parameterized by 2x2 spin matrix coherence functions γ, γ̃ and distribution
functions xK , x̃K in the form

ĝR,A = ∓iπN̂R,A ⊗
(

(1 + γR,A ⊗ γ̃R,A) 2γR,A

−2γ̃R,A −(1 + γ̃R,A ⊗ γR,A)

)
(C.1)

ĝK = −2πiN̂R ⊗
(

(xK − γR ⊗ x̃K ⊗ γ̃A) −(γR ⊗ x̃K − xK ⊗ γA)
−(γ̃R ⊗ xK − x̃K ⊗ γ̃A) (x̃K − γ̃R ⊗ xK ⊗ γA)

)
⊗ N̂A (C.2)

N̂R,A =

(
(1 − γR,A ⊗ γ̃R,A)−1 0

0 (1 − γ̃R,A ⊗ γR,A)−1

)
, (C.3)

and the transport equation for the 2x2 matrix functions are

i~vF ∇γR,A = γR,A ⊗ ∆̃R,A ⊗ γR,A + ΣR,A ⊗ γR,A − γR,A ⊗ Σ̃R,A + 2εγR,A − ∆R,A

(C.4)

i~vF ∇γ̃R,A = γ̃R,A ⊗ ∆R,A ⊗ γ̃R,A + Σ̃R,A ⊗ γ̃R,A − ˜γR,A ⊗ ΣR,A − 2εγ̃R,A − ∆̃R,A

(C.5)

i~(vF ∇ + ∂t)x
K =(γR ⊗ ∆̃R + ΣR) ⊗ xK + xK ⊗ (∆A ⊗ γ̃A − ΣA) − γR ⊗ Σ̃K ⊗ γ̃A

+ ∆K ⊗ γ̃A + γR ⊗ ∆̃K − ΣK

(C.6)

i~(vF ∇ + ∂t)x̃
K =(γ̃R ⊗ ∆R + Σ̃R) ⊗ x̃K + x̃K ⊗ (∆̃A ⊗ γA − Σ̃A) − γ̃R ⊗ ΣK ⊗ γA

+ ∆̃K ⊗ γA + γ̃R ⊗ ∆K − Σ̃K
.

(C.7)

These Riccati-type differential equations are numerical stable 1 and provide an efficient

1In fact these are stiff differential equations, but stable using the correct quadrature scheme, i.e., to
integrate along the quasiclassical trajectories in the right directions.
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way to treat inhomogeneous and non-equilibrium systems.
In equilibrium the distribution function is given by

x̂eq = (1 − γRγ̃A) tanh
ε

2T
, (C.8)

and, in the simple case of a homogeneous superconductor in equilibrium, the coherence
functions are given by 2

γR,A
hom =

−∆R,A

εR,A ±
√

(εR,A)2 + ∆R,A∆̃R,A

(C.9)

γ̃R,A
hom =

∆̃R,A

εR,A ±
√

(εR,A)2 + ∆̃R,A∆R,A

(C.10)

(εR,A = ε ± i0+). In the presence of homogeneous perturbations, like scattering on a
homogeneous distribution of impurities, the expression is still valid, but ε, ∆ and ∆̃ are
renormalized by the corresponding self-energies.

2The general notation might be misleading. In case of an unitary order parameter ∆∆̃ is proportional
to the unit matrix in spin space, and ∆∆̃ = −|∆|2
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[4] D. Vollhard and P. Wölfle, The Superfluid Phases of 3He (Taylor & Francis, Lon-
don, 1990).

[5] A. J. Leggett, Rev. Mod. Phys. 47, 331 (1975).

[6] A. J. Leggett, Rev. Mod. Phys. 71, S318 (1999).

[7] A. J. Leggett, Rev. Mod. Phys. 76, 999 (2004).

[8] G. E. Volovik, The Universe in a Helium Droplet (Oxford University Press, New
York, 2003).

[9] G. R. Stewart, Rev. Mod. Phys. 56, 755 (1984).

[10] M. Sigrist and K. Ueda, Rev. Mod. Phys. 63, 239 (1991).

[11] J. G. Bednorz and K. A. Müller, Z. Phys. B 64, 189 (1986).

[12] A. P. Mackenzie and Y. Maeno, Rev. Mod. Phys. 75, 657 (2003).

[13] T. M. Rice and M. Sigrist, J. Phys. Condens. Matter 7, L643 (1995).

[14] M. Zhitomirsky and T. Rice, Phys. Rev. Lett. 87, 057001 (2001).

[15] F. Laube et al., Phys. Rev. Lett. 84, 1595 (2000).

[16] F. Laube et al., Phys. Rev. B 69, 014516 (2004).

[17] D. J. Van Harlingen, Rev. Mod. Phys. 67, 515 (1995).

[18] D. A. Wollman et al., Phys. Rev. Lett. 71, 2134 (1993).

[19] C. C. Tsuei et al., Phys. Rev. Lett. 73, 593 (1994).

91



[20] J. R. Kirtley et al., Nature 373, 225 (1995).

[21] C.-R. Hu, Phys. Rev. Lett. 72, 1526 (1994).

[22] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Rev. Mod. Phys. 77, 1321 (2005).

[23] A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods of Quantum Field

Theory in Statistical Physics (Prentice-Hall, Englewood Cliffs, NJ, 1963).

[24] J. R. Schrieffer, Theory of Superconductivity (Addison-Wesley, Reading, MA,
1964).

[25] G. Eilenberger, Z. Phys. 214, 195 (1968).

[26] A. I. Larkin and Y. N. Ovchinnikov, Sov. Phys. JETP 28, 1200 (1969), [Zh. Eksp.
Teor. Fiz (1968)].

[27] G. Eliashberg, Sov. Phys. JETP 28, 668 (1972).

[28] A. I. Larkin and Y. N. Ovchinnikov, Sov. Phys. JETP 41, 960 (1975).

[29] A. Larkin and Y. Ovchinnikov, Sov. Phys. JETP 46, 155 (1977).

[30] J. Serene and D. Rainer, Physics Reports 101, 221 (1983).

[31] J. Rammer and H. Smith, Rev. Mod. Phys. 58, 323 (1986).

[32] W. Belzig et al., Superlattices and Microstructures 25, 1251 (1999).

[33] A. I. Shelankov, J. Low Temp. Phys. 60, 29 (1985).

[34] L. Buchholtz and D. Rainer., Zeitschrift für Physik B 35, 151 (1979).

[35] A. V. Zaitsev, Sov. Phys. JETP 59, 1015 (1984).

[36] A. Millis, D. Rainer, and J. A. Sauls, Phys. Rev. B 38, 4504 (1988).

[37] M. Eschrig, Phys. Rev. B 61, 9061 (2000).

[38] M. Fogelström, Phys. Rev. B 62, 11812 (2000).

[39] J. C. Cuevas and M. Fogelström, Phys. Rev. B 64, 104502 (2001).

[40] M. Eschrig et al., Adv. in Sol. State Phys. 44, 533 (2004).

[41] H. Won and K. Maki, Phys. Rev. B 49, 1397 (1994).

[42] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products (Aca-
demic Press, New York, 1980).



[43] J. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 (1960).

[44] C. D. Dominicis and P. C. Martin, J. Math. Phys. 5, 14 (1964).

[45] C. D. Dominicis and P. C. Martin, J. Math. Phys. 5, 31 (1964).

[46] H. Shiba, Progress of Theoretical Physics 40, 435 (1968).

[47] K. Maki, in Superconductivity, edited by R. D. Parks (Marcel Dekker, New York,
1969), Vol. 2.

[48] P. Hirschfeld, D. Vollhardt, and P. Wölfle, Solid State Comm. 59, 111 (1986).
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