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Chapter 1

Introduction

The rapid development of fabrication techniques for nanosize structures, the routine avail-
ability of low temperatures, and ground-breaking advances in experiments have opened
entirely new perspectives on quantum effects in electron transport. Consequences of charge
quantization, coherence phenomena and quantum correlations have become observable and
give rise to continued fundamental research and new functionalities for technical applica-
tions. Theories with high predictive power accelerate the progress and in many cases
initiate a new path. Seemingly simple models often yield a rich and unexpected behavior
which fertilizes the search for novel physical effects.

Single-electron effects are an invaluable building block in the context of electron trans-
port through nanostructures. In contrast to the common diffusive description of a con-
tinuous charge flow in conventional electronics, single-electron devices resolve the charge
quantization. Electrons are transported in integer units and interact strongly if they are
confined to a small region. In an effective capacitive description the influence of the inter-
action can be linked to the charging energy associated to a single electron, EC := e2/2C,
with the capacitance C of the confining structure. Today, controlled fabrication of quan-
tum dots with capacitances of the order of 10−16 F and smaller are feasible. This implies
a strong dominance of charging effects already in the Kelvin regime.

Quantum dots have attracted a lot of attention in experiment as well as in theory. Due
to their well controlled separation from the environment and their broad range of tunability
they are regarded as ideal model systems to study quantum effects and the influence of
electron-electron interaction. The discrete energy spectrum of the confined semiconductor
host establishes a relation to artificial atoms and molecules and opens the horizon to an
interdisciplinary field. Moreover, the design of complex geometries which employ one or
several quantum dots of various kinds drives vivid branches of ongoing research.

The basic behavior of a single quantum dot which is weakly coupled to electronic reser-
voirs is often sufficiently described by a classical master equation if the temperature is
large compared to the coupling strength (yet small compared to the charging energy) and
the transport is dominated by incoherent sequential tunneling of electrons. In this regime
the tunnel rates can be calculated with simple Golden Rule arguments. This so-called
Orthodox Theory captures the fundamental influence of charging effects. In particular, it
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6 CHAPTER 1. INTRODUCTION

describes the appearance of the Coulomb blockade where sequential transport is exponen-
tially suppressed by the interaction.

However, the limitations of the scheme become apparent as soon as quantum fluctu-
ations, coherence effects and correlation phenomena start to play a decisive role for the
properties of a system. Specifically, two kinds of problems are encountered: The first
is the order of the perturbation expansion. In the crossover to the Coulomb blockade,
for instance, cotunneling processes start to dominate the transport. Here, electrons tun-
nel in a correlated fashion via a virtual state and may yield coherent contributions. For
stronger coupling (or lower temperature), quantum fluctuations lead to renormalization ef-
fects which modify the internal structure of the system and, thus, the transport. (For even
stronger coupling or lower temperature, in general, processes of arbitrary order have to be
taken into account. So-called resonant tunneling, or complicated many-particle correlated
states may give rise to a qualitatively new behavior, including so-called Kondo physics.)
These problems might be overcome to some (small) extent by incorporating higher orders
in the perturbation expansion in the tunneling, but a second problem of conceptual na-
ture remains: A coherent evolution of a general density matrix can not be described with
classical master equations.

In the systems considered in this thesis we have to deal with both problems. We use a
real-time transport theory to derive kinetic equations for the evolution of the full density
matrix of a system of two coherently coupled quantum dots. We are particularly con-
cerned with the behavior in general nonequilibrium situations and the effect of a strong
onsite Coulomb interaction. It turns out, that the coherent evolution of the driven system
induces quantum correlations between the electron spins on the spatially separated quan-
tum dots, which can be interpreted as the generation of entanglement. We study in detail
the precursors of this phenomenon and focus on the coherence signatures in the stationary
transport. A systematic expansion up to second order in the coupling strength allows us
to regard cotunneling as well as renormalization corrections and analyze how Coulomb
interaction affects the coherence of the transport.

To enter the field of electron tunneling through nanostructures we start with a brief
introduction of basic concepts in single-electron devices and the phenomenon of Coulomb
blockade (chapter 2). Via a capacitive description of a single-electron transistor we moti-
vate the prominent Anderson model for quantum dots. It will serve as a basis for the more
complex models discussed in this thesis. With an intuitive picture we contrast the usual
sequential tunneling processes with cotunneling and point out the importance of renormal-
ization corrections. Furthermore, the relevance of Aharonov-Bohm interferometry for the
identification of quantum coherence is explained.

The scheme of the Real-time Transport Theory presented in chapter 3 allows us to sys-
tematically analyze the evolution of the state of a quantum dot system coupled to electron
reservoirs. Coulomb interaction and nonequilibrium effects can be rigorously included and
transport properties can be studied in detail. We introduce the diagrammatic method for
an expansion in the tunnel-coupling strength of a quantum dot system to reservoirs. It
enables us to regard sequential tunneling, cotunneling and renormalization processes on
the same footing. Anticipating the coherently coupled multi-dot systems considered within
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this thesis we particularly emphasize the importance of offdiagonal contributions to the
kinetic equations for the determination of the coherent evolution of the density matrix.
At the end of chapter 3 we sketch some results for single quantum dots which serve as a
reference for the more complex setups.

A system of central concern and one of the main building blocks of this work consists
of two quantum dots with strong onsite Coulomb repulsion coherently coupled to a joint
reservoir. In chapter 4 we introduce the model and analyze the time evolution of the full
reduced density matrix. The most important result is that in nonequilibrium a coherent
evolution of the system can induce the generation of spin entanglement between electrons
on the spatially separated quantum dots. The underlying mechanism relies on the fact
that two electrons in the double-dot form a so-called Werner state with an enhanced
singlet probability if the system is charged from the common reservoir. We emphasize
that this is a decided nonequilibrium effect which does not require a finite singlet-triplet
energy splitting. In a second part we extend the setup with two additional leads and apply
a bias voltage to drive the system out of equilibrium. An enhanced probability for spin
entanglement is found in the steady state which underlines the dynamical nature of the
effect.

A crucial precursor for the generation of spin entanglement in nonequilibrium is the for-
mation of coherent superposition states with a single electron in the double dot. To study
the interplay of the coherent evolution of the state of the system with the coherence of
the transport we embed two quantum dots in an Aharonov-Bohm interferometer (chapter
5). The stationary density matrix becomes phase dependent which leads to interference
signatures in the current already in lowest order tunneling and linear response. We partic-
ularly focus on the question how a strong onsite Coulomb interaction affects the coherence
of the transport. In this context we suggest an intuitive interpretation of the offdiagonal
evolution of the density matrix and its influence on the Aharonov-Bohm signal. We pre-
dict clear asymmetries in the differential conductance which can be traced to the Coulomb
interaction on the dots. Cotunneling and renormalization effects are discussed, and we
identify unexpected conductance contributions which yield qualitative asymmetries.

In chapter 6 we analyze a setup with two spatially separated quantum dots which
allows the creation and detection of nonequilibrium spin entanglement. The two dots are
coupled coherently to a joint source electrode and to two independent drain reservoirs.
An additional joint reservoir closes an Aharonov-Bohm geometry and serves as a probe.
By applying a strong bias voltage electrons are driven from the source via the double
dot to the drains. Under certain conditions spin entanglement can be created between
the electrons in the spatially separated quantum dots which manifests itself in a strong
imbalance between singlet and triplet probabilities. We identify regimes in which this
imbalance can be detected by the suppression of Aharonov-Bohm oscillations in the probe.
The suggested scheme provides a proof of concept for the entanglement generation in
coherently coupled, nonequilibrium quantum dots.

Motivated by recent experiments we finally consider two capacitively coupled quantum
dots with independent reservoirs (chapter 7). We concentrate on the cotunneling contri-
bution to the conductance in the regime where lowest order tunneling is suppressed by
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the interaction between the dots. The effect of low-order quantum fluctuations on the
asymmetries of the signal is discussed.



Chapter 2

Basics of Single-Electron Tunneling

In nanostructures the quantum nature of electrons plays a dominant role, and under certain
conditions the transport of single electrons can be resolved. The confinement to very small
regions leads to a fundamental importance of the electron-electron interaction. This is
essential for the behavior of many nanoscale devices. In quantum dots an additional
quantization of the electron energies due to the finite size of the constriction can be observed
and employed.

2.1 Single-Electron Devices

One of the simplest single-electron devices we can think of is a thin potential barrier be-
tween two electrodes: a tunnel junction. Compared to a classical capacitance the insulating
layer has to be thin enough such that tunneling of electrons is possible. On the other hand,
in contrast to a classical ohmic resistor, charge can cross the barrier only in discrete units
of the elementary electron charge e ≈ 1.602 × 10−19 C. The quantized transport leads to
fundamentally new effects as compared to the conventional picture of diffusive transport.
The occurence of shot noise, for instance, is by definition a consequence of the discrete
current (for review see e.g. Refs. [20, 77]).

Small metallic islands or semiconductor quantum dots, which are among the favorite de-
vice components in nano- and mesoscopic electronics, can be realized by confining electrons
to small areas wich are coupled to the environment via tunnel junctions. They constitute
ideal model systems to study in a controlled way quantum effects and the influence of the
Coulomb interaction between the electrons on the transport. Especially semiconductor
quantum dots are often considered as tunable toy models for single atoms or molecules.
The former have the advantage that the transport properties can be modified in situ by
tuning the system’s parameters in an adequate geometry. In contrast to metallic islands,
which have a quasi continuous spectrum, semiconductor quantum dots show an energy
quantization already at a size of the order of 100 nm due to the large Fermi wavelength of
the electrons. The energy spectrum becomes discrete and can be associated to the shell
structure of atoms.
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10 CHAPTER 2. BASICS OF SINGLE-ELECTRON TUNNELING

Figure 2.1: Left picture: Examples of lateral realizations of a quantum dot with metallic gates
on top of a GaAs/AlGaAs heterostructure [2]. Right picture: Scanning electron micrograph of
one of the first realizations of vertical semiconductor quantum dots [1].

Quantum dots and metallic islands for nano-electronics have been realized in vertical
and lateral arrangements based on semiconductor heterostructures, with metallic grains
which are contacted e.g. with a scanning tunneling microscope, and ultimately even with
molecules. Due to their high degree of tunability lateral setups became very popular for
many research applications. Typical lateral quantum dots are realized with lithographically
patterned metallic gate electrodes on top of a two-dimensional electron gas (2DEG) which
is formed parallel to the surface of a GaAs/AlGaAs heterostructure, for instance. The gate
electrodes can be used to electrostatically deplete regions of the 2DEG underneath and to
define the geometry of the quantum dot. Furthermore, the tunnel coupling can be tuned
by the gate potentials and the energy levels can be shifted. Another often used technique is
based on etching a predefined gate geometry into the semiconductor plane. The Coulomb
energy of electrons in the confined areas can be characterized by a capacitance which
depends on the size of the dot. In recent experiments capacitances of the order of 10−16 F
and smaller have been documented.

2.2 Charging Effects and Coulomb Blockade

In this section we introduce basic concepts of charging effects in small metallic islands
and quantum dots. We focus on the so-called Coulomb blockade which is essential for the
considerations within this thesis. It results from a combination of charge quantization and
the fundamental importance of the Coulomb interaction between electrons confined to a
small region.

Let us consider a small island connected via tunnel junctions to a left and a right
reservoir. An additional gate electrode is coupled capacitively and can be used to tune the
electrochemical potential of the island. The tunnel junctions can be well characterized by
a capacitance and a resistance as sketched in the schematic diagram in Fig. 2.2. The total
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Figure 2.2: Capacitive models of the single-electron box and the single-electron transistor.

capacitance of the island, C := CL +CR +CG, introduces an energy scale which is defined
by the charging energy associated to a single electron

EC :=
e2

2C
. (2.1)

Hence, for n excess electrons on the island and an external charge of enx := CLVL+CRVR+
CGVG the Coulomb interaction is accounted for by the charging energy

Ech(n, nx) = EC (n− nx)
2 + c(nx) , (2.2)

where c(nx) does not depend on n and is not important for the following reasoning. As
function of the external charge, which can be tuned continuously by the gate voltage, the
charging energy can be represented by a parabola for each number n of electrons on the
island (compare left hand side of Fig. 2.3). For low temperature and small bias voltage,

EC � kBT, eV , (2.3)

the system can minimize its energy by changing the number of electrons on the island at
the degeneracy points given by Ech(n, nx) = Ech(n+ 1, nx) (or equivalently nx = n+ 1/2).
Thus, even for a continuous density of states the island is charged in a steplike fashion
with increasing gate voltage. This is the well-known Coulomb staircase of a single-electron
box which is equivalent to our island system if we disable one of the tunnel junctions or
consider the system simply in equilibrium, VL − VR = 0.

During a transport cycle from say the left to the right, in which an electron hops
from the left lead onto the island and off to the right reservoir (corresponding to the
classical picture of sequential tunneling), the number of electrons on the island has to
change. Consequently, transport can only occur near the degeneracy points where nx is
half-integer. The resulting periodic structure of the current or the conductance, sketched
on the right hand side of Fig. 2.3, is known as Coulomb oscillations. In the region between
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Figure 2.3: On the left hand side the charging energy is sketched as function of the gate voltage
for various numbers n of electrons on the island. The ground state of the system is indicated
by the solid line. On the right the corresponding Coulomb oscillations of the electron transport
through the island are illustrated.

two subsequent peaks, with a mutual distance corresponding to 2EC, we find the so-
called Coulomb blockade where the transport is suppressed. The possibility to control the
transport through the device in this manner by the gate voltage yields the notion of the
single-electron transistor.

2.3 Anderson Model

Additional to the classical concept of the charging energy which explains the appearance
of Coulomb oscillations we often might have a level-quantization due to the confinement of
electrons to very small regions. This especially applies to semiconductor quantum dots in
which the large Fermi wavelength promotes the quantization. In this case the total energy
of the dot with n electrons is given by

E(n, nx) = Ech(n, nx) +

n∑
i=1

ε̃j (2.4)

where the spin index of the electrons is absorbed in the index j (i.e. the energies have to
be counted repeatedly for spin degenerate levels). Denoting the level spacing by δε the
resulting difference between two subsequent resonances at the degeneracy points E(n, nx) =
E(n+ 1, nx) becomes 2EC + δε. In the remainder we restrict ourselves to the limiting case
of large level spacing, δε → ∞. (For small level spacing, δε → 0, the spectrum is quasi
continuous and describes a metallic island which is not considered.) Specifically, we express
the Hamiltonian H = Hres + Hdot + Ht for a single-level quantum dot tunnel-coupled to
a left and a right reservoir by the Anderson model [6]. The electrons in the decoupled,
noninteracting reservoirs are described by

Hres =
∑

r

∑
kσ

εrkσ a
†
rkσarkσ , (2.5)
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where a†rkσ and arkσ are creation and annihilation operators in the left and right reservoir,
r ∈ {L,R}, respectively. The energies εrkσ are labeled furthermore with the wave number
k and spin σ of the electrons. The decoupled quantum dot is modeled by

Hdot =
∑

σ

εσ c
†
σcσ + U c†↑c

†
↓c↓c↑ (2.6)

with the level energy εσ and the creation and annihilation operators c†σ and cσ. The
Coulomb interaction between the electrons on the dot is taken into account in the Hubbard
U which is closely related to the former charging energy by U = 2EC. Moreover, the
identification ε = ε̃ + EC (1 − nx)

2 shows the equivalence to the capacitive model. Thus,
the level energy ε can be tuned via the gate voltage. (Effectively, the level position may also
be influenced by the bias voltage though.) The quantum dot is coupled to the reservoirs
by the tunnel Hamiltonian

Ht =
∑

r

∑
kσ

(
trkσ c

†
σarkσ + h.c.

)
(2.7)

with the tunnel matrix elements trkσ. The spin of the electrons is conserved during a tun-
neling process and we usually even assume the tunnel matrix to be completely independent
of the spin, trkσ = trk.

The classical rate for electrons tunneling between the dot and the reservoirs can be
calculated with simple Golden Rule arguments which yields 2π γ = � Γr(ω)f±

r (ω) with the
coupling strength

Γr(ω) = 2π
∑

k

|trk|2 δ(ω − εrkσ) . (2.8)

The Fermi distributions of electrons (or holes) in reservoir r are denoted by f+
r (ω) :=

(exp[β(ω − μr)] + 1)−1 and f−
r (ω) := 1 − f+

r (ω) with the electrochemical potential μr =
−eVr. The positive index corresponds to a tunneling into the dot whereas the negative
one indicates a leaving electron. In general, the tunneling leads to a finite lifetime τ of
a dot state, and consequently, to a broadening Γ = �/τ of the level. If the tunneling is
independent of the energy we can identify Γ = ΓL + ΓR.

The model for the single-level quantum dot is simpel. Nevertheless, it already reveals
quite interesting features, especially if the Coulomb interaction plays a role (e.g. compare
the last sections of the next chapter). A rich variety of physical effects can be studied in
systems consisting of several levels or quantum dots. In general, there is a lot of freedom
to imagine sophisticated setups for one or the other purpose. However, the first step in
climbing the ladder of complexity is to consider two quantum dots or levels. The gain of
effects is enormous and some features may even raise ideas for new functional devices.
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Figure 2.4: Tunneling processes for the single-level quantum dot: sequential tunneling (left
sketch) is uncorrelated, the right sketch shows cotunneling via a virtual state.

2.4 Higher Order Tunneling and Renormalization Ef-

fects

The current through a driven quantum dot system is large if a dot level lies within the
transport window opened by the bias voltage. For weak coupling, Γ � kBT , sequential
tunneling dominates in this situation. Electrons enter the dot and leave it again (or vice
versa) one after the other in an uncorrelated manner (see also the left sketch in Fig. 2.4).
The differential conductance ∂I/∂V shows a peak as function of the gate voltage if the
bias voltage is small, eV � kBT,Γ. For a large but fixed bias the current increases if we
tune the dot level into the transport window, saturates, and decreases again if the level
leaves the window. In the differential conductance two peaks can be resolved, one for each
shoulder, if eV > kBT,Γ.

A pecularity of a system with two interacting levels which are asymmetrically coupled
is the possibility to observe a negative differential conductance. The entrance of a weaker
coupled second level into the transport window may suppress the tunneling via a first level
due to the interaction between them. Consequently, the current decreases with increasing
bias.

In the Coulomb blockade sequential tunneling is energetically forbidden and exponen-
tially suppressed. However, higher order processes such as cotunneling via a virtual state
are still possible (see e.g. the right sketch in Fig. 2.4). They give the leading contribution
to the current beside the resonance peak [7, 28, 29]. By definition, the cotunneling pro-
cesses in a single-level quantum dot are elastic, i.e. the energy is conserved. In contrast,
cotunneling in a metallic island is most probably inelastic because of the large number of
available states.

As mentioned, the tunneling between the reservoirs and the dot system modifies the
properties of the bare quantum dot. Quantum fluctuations may lead to a renormalization
of the energies and a broadening of the level(s) due to a finite lifetime. This becomes
more important for a slightly stronger coupling, Γ � kBT , when quantum fluctuations are
enhanced. As a consequence, the position and shape of the conductance peaks change.
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It is one of the virtues of the Real-Time Transport Theory introduced in the following
chapter which enables us to take these renormalization effects systematically into account.
Like cotunneling or higher order transport contributions they show up as correction terms
in the expansion for weak coupling.

In the case of strong coupling or very low temperature, kBT � Γ, the finite width
of the dot level due to its coupling to reservoirs can be resolved. In this regime higher
order tunneling is very important and resonant tunneling phenomena [8,30,31] and Kondo
physics are expected to occur. Especially for temperatures below the Kondo temperature,

TK ∼
√

ΓU

2
exp

(
π ε (ε+ U)

ΓU

)
, (2.9)

a complicated many-particle groundstate can be formed which gives rise to the Kondo
effect [9–16]. If the level of the dot lies well below the Fermi edge of the leads and the
onsite Coulomb repulsion U is large, the dot is predominantly occupied with a single spin
which acts as a magnetic impurity. For sufficiently strong tunnel coupling spin fluctuations
can lead to a correlated state of the localized spin and reservoir electrons. This, in turn,
can induce an increase of the density of states at the Fermi edge and an enhancement of
the conductance.

In the remainder of this thesis we are mainly concerned with lowest order tunneling,
cotunneling and renormalization effects in systems consisting of coherently coupled quan-
tum dots. Throughout the work we assume weak coupling and low temperatures but avoid
the regime of resonant tunneling and the Kondo effect.

2.5 Aharonov-Bohm Interferometry

Standard transport experiments are an obligatory tool for the investigation of systems on
the meso- and nanoscale. They yield a lot of information about the properties of quan-
tum dot systems and give hints for possible functionalizations. Many important quantum
effects have been observed with the help of typical signatures in the I-V characteristics.
Nevertheless, the influence on the phase of the electronic wave function during a transport
process is not accessible with these measurements. The phase information is yet of major
importance if we are aiming at quantum correlation effects, quantum information process-
ing, or simply if we operate a system in a regime in which quantum interference plays a
role.

In 1959 Y. Aharonov and D. Bohm [76] prepared the ground for quantum interferome-
try. They found that an electron wave function encircling an area threaded by a magnetic
field accumulates a phase depending on the enclosed magnetic flux. Thus, two partial
waves propagating through the arms of an Aharonov-Bohm interferometer undergo a mu-
tual phase shift which can be controlled via the magnetic flux threading the ring structure.
At the drain the waves interfere constructively or destructively depending on their phase
difference. To gather information about the phase of electrons tunneling through quantum
dots and especially for the investigation of the effect of the Coulomb interaction on the
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Figure 2.5: Pioneering experimental realizations of Aharonov-Bohm interferometers with one
[79] or two [41] embedded quantum dots.

coherence of the transport, quantum dots have been successfully embedded in Aharonov-
Bohm interferometers. After first theoretical works, e.g. [78], pioneering experiments with
one [79] and two quantum dots [41] in the arms of an Aharonov-Bohm ring have been
realized (compare also Fig. 2.5) (for further references see also chapter 5). Ideas to employ
Aharonov-Bohm oscillations to distinguish singlet and triplet states and detect entangle-
ment in double dot systems were first documented in Ref. [91].

In this thesis we will refer several times to quantum dots embedded in an Aharonov-
Bohm interferometer. In chapter 5 we investigate how the Coulomb interaction on quantum
dots affects the coherence of the transport, and the signatures in the interference pattern
of an Aharonov-Bohm interferometer are certainly a main topic. In chapter 4 we are
concerned with coherently coupled quantum dots for which Aharonov-Bohm experiments
like in Refs. [41,42] deliver a proof of realizability. Finally, in chapter 6 we use Aharonov-
Bohm oscillations to probe the stationary state of a hybrid system in nonequilibrium. Our
aim is to find signatures of entanglement in the transport.



Chapter 3

Real-Time Transport Theory

Many transport phenomena in single-electron devices can be understood within a scatter-
ing theory or with classical rate equations and Fermi’s Golden Rule, for example. Both
approaches allow for finite temperature and have a great range of applicability. The scatter-
ing approach [22–27], for instance, allows studies of coherent transport through mesoscopic
devices with arbitrary tunneling barriers but is restricted to systems with non-interacting
particles. Interacting systems, on the other hand, can be treated with classical master
equations and transfer rates calculated with Fermi’s Golden Rule. The so-called Orthodox
Theory is based on a perturbation expansion in the coupling parameter. It is justified if
the coupling to the reservoirs is very weak, i.e. the broadening of the spectral density of
the system due to tunneling has to be negligable. The lowest order perturbation theory
with Fermi’s Golden Rule is a well-known standard for incoherent transport. Coherent
processes are taken into account in the extension of the expansion to higher orders [28,29].

Nevertheless, the formalism relies on the calculation of classical probabilities with mas-
ter equations. It is convenient if the density matrix which describes the general mixed
state of the system remains in a diagonal form. The limit of the approach is reached if
the evolution of the off-diagonal terms is nontrivial and depends on important transport
parameters. In this case we would need to know the basis of the Hilbert space in which
the stationary density matrix appears to be diagonal for each set of parameter values. We
may set up and solve the master equations in this specific basis and calculate the transport
according to the formalism. However, the tricky task is to figure out the appropriate basis.
In general, the parametrization of the coordinate system is a complicated problem beyond
the accessibility of the rather classical approach.

It is therefore desirable to have a technique which is able to treat nonequilibrium
systems with arbitrary interaction and which captures the dynamics of the full density
matrix including the evolution of the off-diagonal terms. It should allow a complete and
consistent evaluation of all contributions up to a given order in the tunneling. In the
following we introduce a diagrammatic approach of the Real-time Transport Theory [30–35]
which meets the mentioned requirements and allows a systematic analysis of Coulomb
interaction phenomena in general nonequilibrium situations.

17
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3.1 Diagrammatic Expansion

Keeping in mind the problems we would like to address, namely electron transport through
quantum dot systems coupled to electron reservoirs, we choose the language for the intro-
duction to the technique accordingly. However, despite the rather specific presentation we
do not want to disguise the more general character of the method. The basic idea of the
approach is to integrate out the reservoir degrees of freedom and derive an exact kinetic
equation for the reduced density matrix of the quantum dot system. The kernel of the
integro-differential equation can be calculated in a diagrammatic perturbation expansion
in the tunneling.

In the following we will assume a general model Hamiltonian of the form

H = Hres +Hdots +Ht . (3.1)

The leads to which the quantum dot system is coupled via the tunnel Hamiltonian Ht are
assumed to be large, non-interacting reservoirs in local equilibrium. Typically, they can be
expressed by

Hres =
∑

r

∑
kσ

εrkσ a
†
rkσarkσ , (3.2)

where a†rkσ and arkσ are creation and annihilation operators of reservoir electrons with
energy εrkσ. The individual reservoirs are labeled by r, momenta and channels are summa-
rized in k and the physical spin of an electron is denoted by σ. The quantum dot system
can be modeled by

Hdots =
∑

i

[∑
σ

εiσ c
†
iσciσ +

∑
j

Uij c
†
i↑c

†
j↓cj↓ci↑

]
, (3.3)

where the energy levels are denoted by εiσ, and c†iσ and ciσ are the respective creation and
annihilation operators of electrons. Possible interactions between the single particles in
the dot system are summarized in the matrix Uij. In particular, in the case of single level
quantum dots, the diagonal of the interaction matrix describes the Coulomb interaction
between the electrons on each individual dot, whereas the interaction between the dots is
represented by the off-diagonal. The only term which couples the quantum dot system to
the reservoirs is given by the tunnel Hamiltonian

Ht =
∑

r

∑
kσi

(
trkiσ c

†
iσarkσ + h.c.

)
, (3.4)

with the tunnel matrix elements trkiσ which may depend in general on all quantum numbers
of the complete system.

Equivalently, we can condense the Hamiltonian of the dot system and the tunneling
term in the form

Hdots =
∑

χ

εχ|χ〉〈χ| and Ht =
∑

r

∑
kσ,χχ′

(trkσ,χ′χ arkσ |χ′〉〈χ| + h.c.) (3.5)
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with the eigenenergies εχ of the many-body states |χ〉 of the separated, interacting quantum
dot system.

We assume the reservoirs and especially the applied bias voltage between the reservoirs
to be independent of time, as well as the dot levels in which the gate voltage is absorbed.
(This is not a real restriction since by unitary transformations the time dependent part of
the gate or bias voltages can be mapped onto an effective time dependency of the tunneling
matrix as shown in Ref. [34].) At a time t0 we switch on the tunneling, i.e. Ht(t) vanishes
for times t prior to t0, and the dot system will be driven out of its static equilibrium. The
initial density matrix of the entire system factorizes ρ0 := ρ(t0) = ρeq

res(t0) ρdots(t0) into
the equilibrium density matrix of the reservoirs and the density matrix of the quantum
dot system. As mentioned above, we assume the reservoirs to be large enough such that
they stay in equilibrium even if we add or remove a few electrons. They can, therefore, be
described by a grandcanonical equilibrium density matrix

ρeq
res =

1

Zres

exp

(
−β(Hres −

∑
r

μrn̂r)

)
(3.6)

with fixed electrochemical potentials μr, the number operators n̂r :=
∑

kσ a
†
rkσarkσ, and

β := 1/(kBT ). The normalization condition tr ρeq
res = 1 determines the factor Zres.

In general, the diagrammatic approach to the Real-time Transport Theory provides a
scheme to calculate the time evolution of the statistical expectation value

〈A(t)〉 = tr (ρ0A(t)H) (3.7)

of a given operator A (here in the Heisenberg picture). For the diagrammatic expansion it
is convenient to change to the interaction picture

A(t)H = T̃ exp

(
−i

∫ t0

t

dt′Ht(t
′)I

)
A(t)I T exp

(
−i

∫ t

t0

dt′Ht(t
′)I

)
, (3.8)

where T and T̃ denote the time- and anti-time-ordering operators, respectively. Here
and in the following sections we set � to unity during the calculations, for the sake of
transparency. However, in the explicit expressions for the current and conductance of
the considered setups we include it again. The operators A and Ht are expressed in the
interaction picture

A(t)I = e(i(Hres+Hdots)(t−t0))A e(−i(Hres+Hdots)(t−t0)) . (3.9)

The time evolution forward in time from t0 to t, where the operator AI is acting, and
then backward from t to the initial time t0, can be represented by a closed time path, the
so-called Keldysh contour [36–38] which is depicted in Fig. 3.1. Formally, we can rewrite
the time integrals in the propagators as a single integral over the Keldysh contour

A(t)H = TK exp

(
−i

∫
K

dt′Ht(t
′)I

)
A(t)I , (3.10)
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Figure 3.1: Snapshot of the Keldysh contour for a term of fourth order in Ht before the
contraction.

where we also introduce the Keldysh time-ordering operator TK which orders all following
operators, including A(t)I, along the Keldysh contour. In particular, the operators are
rearranged during the integration such that A(t)I is always acting at the right time.

We can now expand the Keldysh propagator and obtain an expression for the expecta-
tion value

〈A(t)〉 = tr

⎡⎢⎣ρ0

∞∑
m=0

(−i)m

∫
K

dt′1

∫
K

dt′2 . . .
∫

K

dt′m
t′1≥t′2≥...≥t′m

TK (Ht(t
′
1)IHt(t

′
2)I . . . Ht(t

′
1)IA(t)I)

⎤⎥⎦
(3.11)

in which the integrations are already ordered with respect to the Keldysh contour (see also
Fig. 3.1) and all equivalent permutations are identified leading to a factor of m! in the
m-th term. Fig. 3.1, for example, depicts a snapshot of the diagrammatic representation
of the fourth order term in the tunnel Hamiltonian. Each operator is represented by a
vertex at the appropriate time on the contour. In the literature, vertices stemming from
the time evolution of the system itself, i.e. vertices from Ht, are called internal, whereas
vertices arising from external operators like A are called external.

In the next step we trace out the reservoir degrees of freedom. We remember that ρ0

factorizes, and we know that the propagators from the interaction picture appearing for
each operator can also be factorized because they do not include any coupling between the
reservoirs and the dot system. This means that the reservoirs and the dot system can be
traced independently.

By applying Wick’s theorem to the field operators of the non-interacting reservoirs we
can perform the trace by summing the contractions of all possible pairings of creation
and annihilation operators, regardless their origin (Ht or A). Each contraction can be
represented by an equilibrium distribution, i.e. in the case of electron reservoirs〈

a†rkσ(t)I ar′k′σ′(t′)I

〉
ρeq
res

= δrr′ δkk′ δσσ′ e−iεrkσ(t−t′)f+
r (εrkσ)〈

arkσ(t)I a
†
r′k′σ′(t

′)I

〉
ρeq
res

= δrr′ δkk′ δσσ′ e−iεrkσ(t−t′)f−
r (εrkσ) .

(3.12)
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Figure 3.2: Dyson-like equation for the reduced propagator Π with the irreducible kernel W.

Diagrammatically the contractions are depicted by directed tunneling lines connecting
the corresponding vertices (see e.g. Fig. 3.3). The detailed diagrammatic rules will be
introduced in section 3.5.

The creation and annihiliation operators of the dot system appear quadratically in the
interaction terms of the Hamiltonian and we can not apply Wick’s theorem as long as we
want to treat the interaction non-perturbatively. We stress that in the technique which
we have already started to introduce we are able to proceed without any restriction to the
interaction if we treat the dots’ operators explicitly.

3.2 Kinetic Equation

In this section we sketch the derivation (Refs. [34,35]) of a formally exact kinetic equation
for the reduced density operator p(t) := trres ρ(t) of the coupled quantum dot system
(trres denotes the trace over the reservoir degrees of freedom). In particular, we place
special emphasis on the off-diagonal elements which account for the evolution of coherent
superpositions of the many-body states.

The quantum statistical expectation values

pχ1
χ2

(t) :=
〈
|χ2〉〈χ1|(t)

〉
(3.13)

of the operators p̂χ1
χ2

:= |χ2〉〈χ1|, acting on the reduced many-body system, are identical to
the elements of the reduced density matrix,

〈χ1|p(t)|χ2〉 = tr
(
ρ(t) p̂χ1

χ2

)
= pχ1

χ2
(t) , (3.14)

in a given coordinate representation of the many-body Hilbert space. (The invariance of the
trace under cyclic permutations of the operators – especially the time evolution operators
– allows us to switch to the Heisenberg picture.)

We can express the propagation of the reduced density operator in time,

p(t) = Π(t, t′) · p(t′) , (3.15)
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Figure 3.3: Series of irreducible diagrams for the Kernel element W
χ1χ′

1

χ2χ′
2
.

with the help of the reduced propagator Π(t, t′) which is an operator acting on the space of
hermitian operators. It maps the density operator of the reduced system at time t′ onto the
density operator at time t. By construction it respects the trace, trdots (Π(t, t′) · p(t′)) =
trdots p(t′) = 1. In a coordinate representation we can write Eq. (3.15) for each element of
the reduced density matrix,

pχ1
χ2

(t) =
∑
χ′

1χ′
2

Π
χ1χ′

1

χ2χ′
2
(t, t′) pχ′

1

χ′
2
(t′) . (3.16)

The matrix element of the reduced propagator,

Π
χ1χ′

1

χ2χ′
2
(t, t′) := 〈χ′

2| trres ρ
eq
res TK exp

(
−i

∫
K

dt′′Ht(t
′′)
)
|χ2〉〈χ1|(t)I |χ′

1〉 , (3.17)

propagates from the state χ′
1 at time t′ along the Keldysh contour to the state χ1 at time

t and then backwards from state χ2 at time t to the state χ′
2 at time t′ (see also left part

of Fig. 3.2).
Setting A = |χ2〉〈χ1| in Eq. (3.11) we could start expanding and contracting the reser-

voir degrees of freedom and calculate the matrix elements of the reduced propagator by the
sum of (absolutely) all diagrams with the respective many-body states at the corners. But
fortunately, we have an alternative: we can rearrange the rather unpracticable sum such
that we collect only all irreducible diagrams in the kernel W(t, t′). A diagram is called
irreducible if any vertical cut crosses at least one tunneling line (see e.g. Fig. 3.3). The
reduced propagator can then be expressed in an iterative fashion in the style of a Dyson
equation (Fig. 3.2),

Π(t, t′) = Π(0)(t, t′) +

∫ t

t′
dt′′′
∫ t′′′

t′
dt′′ Π(0)(t, t′′′) · W(t′′′, t′′) · Π(t′′, t′) . (3.18)

The bare propagator Π(0)(t, t′) = exp(−iΔ (t − t′)) denotes the time evolution of the
isolated dot system due to Hdots forward and backward on the Keldysh contour and include
no contractions or tunneling lines (compare also Fig. 3.2). The energies of the many-body
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states are encoded in the operator Δ. In a coordinate representation we can write

Π
χ1χ′

1

χ2χ′
2
(t, t′) = Π(0)χ1χ′

1

χ2χ′
2
(t, t′) +

+
∑

χ′′′
1 χ′′′

2

∑
χ′′

1χ′′
2

∫ t

t′
dt′′′
∫ t′′′

t′
dt′′ Π(0)χ1χ′′′

1

χ2χ′′′
2
(t, t′′′)W χ′′′

1 χ′′
1

χ′′′
2 χ′′

2
(t′′′, t′′) Π

χ′′
1χ′

1

χ′′
2χ′

2
(t′′, t′) (3.19)

with the elements of the bare propagator, Π(0)χ1χ′
1

χ2χ′
2
(t, t′) := exp(−i(εχ1−εχ2)(t−t′)) δχ1χ′

1
δχ2χ′

2
,

and Δ
χ1χ′

1

χ2χ′
2

:= (εχ1 − εχ2) δχ1χ′
1
δχ2χ′

2
with the energy differences of the many-body states on

the diagonal. (Remark: For the sake of a simple coordinate-free representation we have
chosen the notation slightly different from the original literature.)

Starting from the initial time t′ = t0 we plug Eq. (3.18) into Eq. (3.15) and differentiate
with respect to the time t to arrive at the general and formally exact kinetic equation,

d

dt
p(t) + iΔ · p(t) =

∫ t

t0

dt′ W(t, t′) · p(t′) , (3.20)

which reads in coordinates

d

dt
pχ1

χ2
(t) + i(εχ1 − εχ2) p

χ1
χ2

(t) =
∑
χ′

1χ′
2

∫ t

t0

dt′W χ1χ′
1

χ2χ′
2
(t, t′) pχ′

1

χ′
2
(t′) . (3.21)

The second term on the left hand side leads to coherent oscillations of the off-diagonal
terms of the reduced density matrix in time. They govern the evolution in the absence of
tunneling and may be interpreted similar to a precession of a spin around its quantization
axis. The dissipative source term on the right hand side accounts for the effects caused
by tunneling and describes the dissemination of the probability amplitudes. It induces a
relaxation of the reduced density matrix of the uncoupled system to the coupled one. Due
to the convolution it is nonlocal in time and respects the full memory of the system. We
stress that, at this stage, no further assumptions concerning the properties of the reduced
density matrix, neither for the initial conditions nor for the evolution, are needed. The
general formula (3.21) describes the dynamics of the full reduced density matrix, including
all off-diagonal terms.

In the special case if all quantum numbers of the system are conserved during tunneling
the kinetic equations can be simplified considerably. Without loss of generality we can
choose the basis such that the density matrix of the initial system is diagonal. If all
quantum numbers are conserved during each tunneling event the density matrix remains
diagonal for all times. The off-diagonal terms, or their amplitudes, can not grow because
each element decouples completely from the rest of the system.

However, in the remainder of this work, we are concerned with effects which arise
from the fact that not all quantum numbers of the system are conserved. Thus, we are
particularly interested in the evolution of the off-diagonal terms of the density matrix. This
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Figure 3.4: Vertex-shifting yields a minus sign wich ensures probability conservation.

is especially important for coherently coupled quantum systems and marks a fundamental
extension to classical master-equation approaches.

Assuming an N -dimensional Hilbert space for the reduced many-body system, the den-
sity matrix describing its state has N × N real degrees of freedom (due to hermiticity).
Since, additional to the N2 kinetic equations, we have the condition of conservation (and
normalization) of the overall probability trdots p(t) =

∑
χ p

χ
χ(t) ≡ 1 we may ask if we are

confronted with an overdetermined set of equations? But a preview on the diagrammatic
rules given in section 3.5 proofs that the operator W and therefore Π does indeed respect
the trace. By shifting the rightmost vertex of a diagram from the upper to the lower prop-
agator, or vice versa, we get an additional minus sign (Fig. 3.4). (Obviously, this holds
only if the states at the ends where we shift the vertex are identical for the upper and lower
propagator.) Hence, the sum over symmetric end states of the selfenergy matrix elements

vanishes,
∑

χ′ W
χ′χ1

χ′χ2
= 0. This means, the probability conservation is automatically re-

spected by the kinetic equations which become, in turn, linearly dependent. To determine
the density matrix uniquely we have to take into account the probability normalization
explicitly.

Fortunately, in many cases the number of degrees of freedom can be decreased consid-
erably by conservation laws and symmetries of the system. In the following chapters we
leverage this fact and discuss it in detail.

3.3 Stationary Equations and Markov Approximation

In experiments stationary properties of quantum dot systems such as the conductance are
well accessible observables in transport measurements. Therefore, interesting phenomena
and new effects arising in complicated nano-scale structures are often investigated by the
signatures they leave in the current or the conductance. With one exception in chapter 4
we focus in this thesis on transport properties of driven quantum dot systems and their
nonequilibrium state in the stationary limit.

For times t − t0 much larger than the time scale on which the system relaxes due to
its coupling to the reservoirs the reduced density matrix approaches a time independent
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stationary state,

pst := lim
t→∞

p(t) = lim
t0→−∞

p(t = 0) . (3.22)

(The system is assumed to be invariant under time translation.) As long as there is no
further driven oscillation, e.g. of the Rabi-kind, also the coherent oscillations of the off-
diagonal terms will decay on this scale. For simplicity, we drop the stationary label in the
following and refer to the stationary density matrix if no explicit time argument is given
or stated otherwise.

We obtain the stationary equations from Eq. (3.20)

0 = −iΔ · p + W · p , (3.23)

where we define the Laplace transform W := limη↘0

∫ 0

−∞ dt′ exp(η t′)W(0, t′). The kernel
W can be calculated conveniently in the diagrammatic expansion in energy space.

For a well-defined perturbation expansion in the tunneling the stationary equations
have to be satisfied in each order

0 = −i(εχ1 − εχ2) p
(0)χ1

χ2
+
∑
χ′

1χ′
2

W (1)χ1χ′
1

χ2χ′
2
p(0)χ

′
1

χ′
2

(3.24a)

0 = −i(εχ1 − εχ2) p
(1)χ1

χ2
+
∑
χ′

1χ′
2

(
W (1)χ1χ′

1

χ2χ′
2
p(1)χ

′
1

χ′
2
+W (2)χ1χ′

1

χ2χ′
2
p(0)χ

′
1

χ′
2

)
(3.24b)

0 = −i(εχ1 − εχ2) p
(2)χ1

χ2
+
∑
χ′

1χ′
2

. . . (3.24c)

Here we count only every second order in the tunneling elements trkiσ because every pairwise
contraction leads to a prefactor quadratic in the tunneling elements. This is equivalent to
an expansion in the coupling strength

Γriσ(ω) := 2π
∑

k

|trkiσ|2 δ(ω − εrkσ) . (3.25)

The stationary equations (3.24) can be solved successively for the reduced density matrix
in each order in Γ.

If there is a unique solution for the stationary state of the system, it is independent of the
initial conditions of the time evolution. It may happen though, that a low order equation,
e.g. Eq. (3.24a), does not determine the corresponding order of the density matrix, here
p(0), uniquely, because the low order tunneling obeys some symmetry. Nevertheless, in
some cases the symmetry is broken by higher order tunneling processes and the (low
order) stationary density matrix can be determined uniquely if we take these into account
additionally.

We note, that for a potential difference between the reservoirs the stationary reduced
density matrix is, in general, not identical to the equilibrium one which we would get in
the absence of a bias voltage.
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If we are interested in the actual time evolution of the reduced density matrix the exact
kinetic equations (3.20) can be conveniently simplified with the Markov approximation.
The density matrix is assumed to have no memory, i.e. the kinetic equations become local
in time and very similar to the stationary equations (3.23),

d

dt
p(t) = −iΔ · p(t) + W · p(t) . (3.26)

We solve the kinetic equations in the Markov approximation in chapter 4 to follow the
evolution of the density matrix of a system of two coherently coupled quantum dots.

3.4 Tunneling Current

A lot of effort in studying quantum dot systems is directed towards the analysis of their
transport properties, especially the conductance. As already mentioned, the electrical
current is one of the best accessible quantities in experiments and it can tell us a lot about
the behavior of the electronic wave functions travelling through the system. On this track,
many prominent effects caused by the underlying quantum nature and many-body behavior
of quantum dot systems have been observed (e.g. Coulomb blockade, cotunneling, Kondo
effect, Aharonov-Bohm oscillations, etc.).

Starting from our general model Hamiltonian (3.1), we can relate the operator of the
tunneling current, flowing into reservoir r, to the time derivative of the particle number
operator of the respective reservoir,

Îr(t)I = e
d

dt
n̂r(t)I = − ie

�
[n̂r, H ](t)I . (3.27)

We further simplify the commutator and find an expression for the current operator

Îr(t)I =
ie

�

∑
kσi

(
trkiσ (c†iσakσr)(t)I − t∗rkiσ (a†kσrciσ)(t)I

)
, (3.28)

in which the constituents remind us of the terms of the tunneling Hamiltonian (3.4).
To calculate the expectation value of the current we can now apply the diagrammatic

technique introduced in section 3.1. Each term of the current operator in Eq. (3.28) gives
rise to an external vertex at time t with the same structure as the internal tunneling
vertices from Ht, Eq. (3.4). By attaching the external vertices to the upper or lower
propagator ((a†kσrciσ)(t)I to the upper and (c†iσakσr)(t)I to the lower, or vice versa), we take
advantage of this similarity by relating the rightmost irreducible part of the diagram to
the kernel W(t, t′) =

∑
r Wr+(t, t′) + Wr−(t, t′) and calculate the partial rates Wr±(t, t′)

correspondingly. For the expectation value of the current we obtain

Ir(t) = ±e
�

∫ t

t0

dt′
∑

χχ′
1χ′

2

Wr±
χχ′

1

χχ′
2
(t, t′) pχ′

1

χ′
2
(t′) . (3.29)
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Figure 3.5: Sketch of contributions to the partial rate Wr+
χχ′

1

χχ′
2
.

The diagrams contributing to Wr+ can be obtained by attaching the external vertices
of the form (a†kσrciσ)(t)I to the upper and (c†iσakσr)(t)I to the lower propagator. They
correspond to the diagrams of W in which the rightmost tunneling line belongs to reservoir
r and is outgoing if the rightmost vertex lies on the upper propagator, or incoming if the
vertex lies on the lower propagator. Schematically this is sketched in Fig. 3.5. (The
direction of the tunneling lines is defined such that an incoming or outgoing tunneling line
at a vertex indicates the creation or annihilation of an electronic state in the dot system,
respectively.) Vice versa, the diagrams contributing to Wr− can be obtained by attaching
vertices of the form (c†iσakσr)(t)I to the upper and (a†kσrciσ)(t)I to the lower propagator.

By construction, only diagrams with the same states at the ends at time t contribute
to the current in Eq. (3.29). A factor of −i appearing in the current operator (3.28) but
not in the expectation value (3.29) is already taken into account in the diagrammatic rules
(see section 3.5) and absorbed in the partial rates Wr±, similar to the factors from the
expansion in Eq. (3.11).

In Refs. [33, 34] the charge conservation law
∑

r Ir(t) = −e d
dt
〈n(t)〉 was proven for the

diagrammatic scheme, where the total charge of the quantum dot system is denoted by
−en. In the stationary limit, or in a general time independent situation this reduces to∑

r Ir = 0.

In combination with the kinetic equation (3.20) which determines the evolution of the
reduced density matrix p(t), the current formula (3.29) allows us to describe general time
dependent phenomena of the electron transport through the system. In the present form
it comprises all coherent processes including the coherent evolution of the system itself,
manifest in the progression of the off-diagonal terms of the reduced density matrix.

For systems invariant under time translation we can write the current formula in the
stationary limit

Ir := lim
t→∞

Ir(t) = ±e
�

∑
χχ′

1χ′
2

Wr±
χχ′

1

χχ′
2
p

χ′
1

χ′
2

(3.30)

where we defined the Laplace transform of the partial ratesWr±
χχ′

1

χχ′
2

:=
∫ 0

−∞ dt′Wr±
χχ′

1

χχ′
2
(0, t′),

similarly to the kernel W in the stationary equations (3.23). Again, we simplify the
notation such that we do not introduce a new label to indicate the stationary limit, but
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just drop the explicit time dependence.
Analogue to the systematic expansion of the stationary equations in the coupling

strength (Eqs. (3.24a) and (3.24b)) which allows us to successively determine the con-
tributions to the stationary density matrix, we expand the current in a perturbation series
in the tunneling. The first and second order terms read

I(1)
r =

e

�

∑
χχ′

1χ′
2

±W (1)
r±

χχ′
1

χχ′
2
p(0)χ

′
1

χ′
2
, (3.31a)

I(2)
r =

e

�

∑
χχ′

1χ′
2

(
±W (1)

r±
χχ′

1

χχ′
2
p(1)χ

′
1

χ′
2
±W

(2)
r±

χχ′
1

χχ′
2
p(0)χ

′
1

χ′
2

)
. (3.31b)

In some systems, e.g. a single quantum dot coupled to two reservoirs such that all
quantum numbers of the system are conserved during tunneling, the first order contribution
to the current is equivalent to the so-called sequential tunneling which can be calculated
within the orthodox theory with classical master equations and Fermi’s Golden Rule. If all
quantum numbers are conserved the off-diagonal elements of the density matrix decouple
completely from the diagonal and can be neglected. In other words, if we choose the basis
of our system such that the initial density matrix is diagonal, it will remain in a diagonal
form during its entire evolution. No superposition states will develop. In this case, the
equations for the density matrix as well as the current formula simplify considerably since
we can neglect all off-diagonal terms from the beginning.

The second order contribution to the current comprises different kinds of corrections.
These are renormalization terms which provide corrections for processes of lower order,
but also, in many respects much more important, higher order processes like the so-called
cotunneling in which an electron tunnels coherently via a virtual state, or two electrons
tunnel together in a correlated fashion.

It is important to note, that for a systematic calculation of the current in higher orders
of the coupling strength it is in general not sufficient to restrict ourselves to the lowest order

density matrix and second order partial rates, i.e. terms of the form W
(1)
r±

···
··· p

(1)···
···. It is even

not possible to distinguish these contributions clearly in a more physical sense, e.g. inter-

preting terms of the form W
(2)
r±

···
··· p

(0)···
··· as cotunneling and W

(1)
r±

···
··· p

(1)···
··· as renormalization

terms, or likewise.

3.5 Diagrammatic Rules

In the preceding sections we referred several times to the diagrammatic rules which we
present in the following. We adapt the scheme from the literature [34,35] to the structure
of our general Hamiltonian (3.1) and put special emphasis on the asymmetric diagrams
which are important for the evolution of the off-diagonal terms of the density matrix and
their coupling to the diagonal elements.

With regard to our aim to study the evolution of the reduced density matrix and the
electron transport through the system, we can restrict ourselves here to the diagrammatic
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expansion of the kernel W(t, t′) and the current rates
∑

χWr±
χχ′

1

χχ′
2
(t, t′). As discussed

before, we can therefore assume that all vertices from internal as well as external operators
which appear in the expansion (3.11) are of the form

∑
kσi trkiσ (c†iσakσr)(t)I or its hermitian

conjugate.
After integrating out the reservoir degrees of freedom, all vertices are connected in pairs

by directed tunneling lines. The latter represent transition terms going from time t′ to t.
They are denoted by γ+

ii′rσ(t − t′) if t′ > t and γ−ii′rσ(t − t′) if t′ < t with respect to the
Keldysh contour, where

γ±ii′rσ(t) =

∫ ∞

−∞
dω exp(−iωt) γ±ii′rσ(ω) (3.32)

can be calculated with

γ+
ii′rσ(ω) :=

∑
k

trkiσt
∗
rki′σ δ(ω − εrkσ) f+

r (ω) ,

γ−ii′rσ(ω) :=
∑

k

t∗rkiσtrki′σ δ(ω − εrkσ) f−
r (ω)

(3.33)

according to the contractions (3.12). If all quantum numbers, especially the dot or level
number i in our case, are conserved during tunneling, we can relate the transition terms
to the classical tunnel rates obtained from simple Golden Rule arguments, 2π γ±ii′rσ(ω) =
δii′ Γriσ(ω) f±

r (ω), with the coupling strength Γriσ(ω) and the Fermi functions f±
r (ω). But

as mentioned, we are especially interested in non-conserved quantum numbers and the co-
herence effects connected with them. Therefore, we stick to the general, more complicated
form.

The diagrammatic rules how to calculate all possible terms contributing to the kernel

W(t, t′) or the current rates
∑

χWr±
χχ′

1

χχ′
2
(t, t′) follow directly from the expansion (3.11).

We summarize here the general derivation from Refs. [34, 35] and adapt it to our specific
needs.

Rules in Time Space

T1) Find all terms of possible combinations of pairwise contractions. That means: Draw
all topologically different diagrams with directed tunneling lines connecting pairs of
vertices which contain lead electron operators. To each topological class assign all
possible many-body states χ, and the corresponding energy εχ to each line between
two vertices on the Keldysh contour. Furthermore, assign all possible combinations
of reservoir, spin and dot indices, (i, i′, r, σ), to each tunneling line.

T2) Each contour line between two vertices corresponds to a free propagation of the dot
system from t′ to t (t′ < t) on the Keldysh contour and yields a factor exp(−iεχ(t−t′)).
(In case the dots’ Hamiltonian was not diagonal in the states χ we have to assign a
state χ′ at t′ and a state χ at t to the free contour line and replace the exponential



30 CHAPTER 3. REAL-TIME TRANSPORT THEORY

factor by the matrix element 〈χ|Udots(t, t
′)|χ′〉 of the time evolution operator of the

bare dot system.)

T3) Each dot operator B of a vertex with an incoming state χ and an outgoing state χ′

on the Keldysh contour leads to a matrix element 〈χ′|B|χ〉. In our case, B is either
a creation or an annihilation operator of the dot system and the matrix element
〈χ′|B|χ〉 ∈ {0,+1,−1} due to the algebra of Fermi operators.

T4) A directed tunneling line with indices (i, i′, r, σ) running from t′ to t yields γ+
ii′rσ(t−t′)

if t′ > t and γ−ii′rσ(t− t′) if t′ < t with respect to the Keldysh contour.

T5) From the expansion of the time evolution with respect to Ht each diagram obtains
a factor of (−i)m with the total number m of internal vertices. Furthermore, each
crossing of tunneling lines indicates an odd number of transpositions of electron
operators and we get a prefactor of (−1)c, with the number c of crossings of tunneling
lines.

T6) Finally, integrate over all internal times along the Keldysh contour respecting their
order and sum over all remaining internal indices, i.e. reservoir, spin, and dot indices.

With this recipe we can calculate any element of the kernel W
χ1χ′

1

χ2χ′
2
(t, t′) by summing the

diagrams with the respective many-body states at the ends. Accordingly, we can calculate

the constituents Wr±
χχ′

1

χχ′
2
(t, t′) of the current rates by taking the appropriate part of the

sum of diagrams.

Rules in Energy Space

Alternatively to the ordering of all times and integrations along the Keldysh contour in rule
T6, we can order the times of all vertices along the real axis, irrespective on which branch
of the Keldysh contour they are, and label them by τi. The time integrations are then
performed on the real axis and each internal vertex on the backward propagator gives rise
to an additional minus sign. The ordering in real time segments is especially convenient
for the calculation of the stationary transport properties. As mentioned before, in this
case it proofs favorable to change to an energy representation via a Laplace transform. In
the stationary limit we send t0 → −∞ and set t = 0. Combining the exponentials from
γ±ii′rσ(t− t′) =

∫∞
−∞ dω exp(−iω(t− t′)) γ±ii′rσ(ω) and the free propagation exp(−iεχ(t− t′))

according to rule T2, we obtain expressions of the form

lim
η↘0

∫ 0

−∞
dτ1

∫ 0

τ1

dτ2 · · ·
∫ 0

τ
em−1

dτ
em eη τ1e−iE1(τ1−τ2)e−iE2(τ2−τ3) · · · e−iE

emτ
em =

= i em 1

E1 + iη
· 1

E2 + iη
· · · 1

E
em + iη

, (3.34)

where the energies Ei are given by the sum of all energies in the segment between τi and
τi+1 (see e.g. Fig. 3.6). The convergence factor exp(η τ1) with η ↘ 0 can be related to an
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Figure 3.6: A diagram with sketched time segments. The energy resolvent of the central block
is Ej = εχ′ + ω + ω′ − εχ.

adiabatic switching of the tunneling Ht by inserting unity factors, 1 = exp(−η τi) exp(η τi),
between the exponentials. (For a detailed discussion of the Laplace transform and the time
integration in case of several external vertices, see Ref. [35].) We can translate from the
rules in time space:

E1) Take all diagrams as generated according to rule T1 but additionally assign an energy
ω to each tunneling line.

E2) Each time segment between τi and τi+1, i ∈ {1, 2, . . . , m}, gives rise to a resolvent
1/(Ei +iη), where Ei is given by the sum of all leftgoing energies minus all rightgoing
energies (see e.g. Fig. 3.6). (Here, τm+1 = 0 corresponds to the rightmost vertex,
which is the external one.)

E3) The factors can be obtained according to rule T3.

E4) A directed tunneling line with indices (i, i′, r, σ) and energy ω yields γ+
ii′rσ(ω) if the

tunneling line is going backward, and γ−ii′rσ(ω) if the tunneling line is going forward
with respect to the closed time path.

E5) The total number b of internal vertices on the backward propagator gives a factor
(−1)b and the number of crossings c of tunneling lines an additional factor (−1)c, like
in time space. (Additional signs may emerge due to the matrix elements 〈χ′|B|χ〉 in
rule T3.)

E6) Finally, integrate over all energies of the tunneling lines, take the limit η ↘ 0, and
sum over all remaining internal indices, i.e. reservoir, spin, and dot indices.

For the calculation of W, or parts of it, in the stationary limit it is important that for
m vertices we have only m − 1 time-integrations. This is because W is defined such that
two vertices, the leftmost and the rightmost, are always at the very end of a propagator.
Hence, there are m − 1 resolvents, which gives a factor im−1. Together with (−i)m from
the expansion, taken into account in rule T5, there is a factor −i which remains. For
the current rates we have one internal vertex less because of the external vertex from the
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Figure 3.7: Explanatory sketch of an example for the mirror rule. The diagram on the right
shows the mirrored counterpart of the original on the left hand side.

current operator. The missing imaginary factor is compensated by including the i from
Eq. (3.28) into the definition of the current rates.

The diagrams running from the end state χ1 to χ′
1 on the upper branch and backwards

from χ′
2 to χ2 on the lower branch can directly be summed into matrix elements Σ

χ1χ′
1

χ2χ′
2

which are related to the kernel W by the definition Σ
χ1χ′

1

χ2χ′
2

:= iW
χ′

1χ1

χ′
2χ2

. While Σ allows

a better relation to a selfenergy (see e.g. Ref. [35]) the matrix elements W
χ′

1χ1

χ′
2χ2

(at least

the symmetric terms with χ1 = χ2 and χ′
1 = χ′

2) have the advantage that they can be
interpreted as transition rates. For a large number of complicated diagrams, however, the

summation of diagrams in Σ
χ1χ′

1

χ2χ′
2

can simplify the bookkeeping since all diagrams with the

respective end states can be summed directly without transposition.

3.5.1 Mirror Rule

An important symmetry which can be read directly from the diagrammatic recipe can be
summarized in the so-called mirror rule. It reduces the number of diagrams which we have
to determine by a factor of two and leads in many cases to a considerable simplification of
the integrals we actually have to calculate. The main statement of the rule is the following:
For any relevant diagram we find a counterpart which can be obtained from the original
by mirroring all vertices from the upper branch of the diagram to the lower one and vice
versa. Additionally we change the directions of all tunneling lines. (The direction of the
tunneling lines with respect to the contour remains.) For an explanatory sketch see Fig.
3.7. In some sense the procedure corresponds to a reversal of time. We first run against the
backward propagator and follow the forward propagator to its start. In energy space this is
equivalent to changing the signs of all energies. Thus, according to the diagrammatic rules,
each resolvent of the mirrored diagram is the negative complex conjugate of its original,

1

E + iη
−→ 1

−E + iη
= −

(
1

E + iη

)∗
. (3.35)

Additionally the indices of the transition functions change, γ±ii′rσ −→ γ±i′irσ =
(
γ±ii′rσ

)∗
.

Consequently the new diagram is given by (−1) em times the complex conjugate of the
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Figure 3.8: Sketch of a single-level quantum dot coupled to a left and a right reservoir.

original where m̃ is the number of resolvents.
This in mind we can economize the number of diagrams which we have to compute

and cut it down by one half. We gain even more for the symmetric kernels Σχχ′
χχ′ (or W χ′χ

χ′χ ,
respectively) correspondig to the diagonal elements of the density matrix: in many cases
the integrals become considerably simpler. Due to the symmetry between the end states of
the upper and lower branch the original diagram and its mirrored counterpart contribute
to the same kernel element. Thus, each pair can be combined to 2i times the imaginary
part of the value of the original diagram. That means, instead of two integrals, consisting
of a real and an imaginary part each, it is sufficient to compute only the imaginary part
of one of them if the transition functions γ±ii′rσ are real.

3.6 Single Quantum Dot

As a first application and test of the diagrammatic technique we sketch in this section the
formalism to determine the stationary density matrix and the stationary current through
a single quantum dot weakly coupled to two reservoirs (see Fig. 3.8). The single dot has
already been studied extensively in the literature, yet it has some fascinating features we
would like to point out. We consider two limiting cases: a quantum dot without interaction
between the electrons and a quantum dot with strong onsite Coulomb repulsion. We present
results for both of them with a focus on the second, interacting case. The examples may
serve as reference points to which we can compare the results for the more complicated
quantum dot systems in the remainder.

The Hamiltonian for the dot reads

Hdot =
∑

σ

ε c†σcσ + U c†↑c
†
↓c↓c↑ , (3.36)

the tunnel coupling is modeled by

Ht =
∑
krσ

(tr c
†
σakrσ + h.c.) , (3.37)

and the Hamiltonian for the reservoirs is defined byHres =
∑

rkσ εrk a
†
rkσarkσ. The Coulomb

interaction on the dot is denoted by U . As mentioned, we consider two simple limits, the
non-interacting case, U = 0, and, on the other hand, strong Coulomb repulsion, i.e. U is
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Figure 3.9: Topological classes of first order diagrams.

much larger than all other energy scales of the system and prohibits double occupancy of
the dot. The reservoirs and the dot level are assumed to be spin degenerate.

From Eq. (3.37) we can see that all quantum numbers of the system are conserved
during the tunneling and the reduced density matrix will evolve in a diagonal form if
we start diagonal initially. We can, therefore, neglect all off-diagonal terms from the
beginning which simplifies the consideration significantly. Furthermore, we assume the
tunneling independent of spin and energy such that the coupling is completely determined
by Γr = 2π |tr|2Nr with the density of states Nr of reservoir r ∈ {L,R}.

In the non-interacting case, U = 0, the problem can be solved exactly within an equa-
tions of motion approach for the Green’s function. For comparability we expand anyway
and contrast with the results for the interacting case which could equivalently be obtained
with Fermi’s Golden Rule.

The Hilbert space of the reduced system is spanned by four states and the reduced
density matrix is 4 × 4 with probabilities for the empty dot p0, the singly occupied dot
with spin up or spin down pσ, and the doubly occupied dot pσσ̄ on the diagonal. We
recognize, that in the non-interacting case the spin summation yields two identical copies
of the Hamiltonian for each spin (due to spin degeneracy and spin independent tunneling).
Hence, we can regard the system as the sum of two independent, identical, spinless systems.
For each of them the probabilities are denoted by p̃0 for the empty state and p̃1 for the
occupied state. The density matrix of the original system can trivially be regained by the
product of the two, p0 = p̃0 · p̃0, pσ = p̃0 · p̃1 and pσσ̄ = p̃1 · p̃1.

3.6.1 Lowest Order Transport

The first order diagrams needed to set up the kinetic equations can be grouped in eight
topological classes sketched in Fig. 3.9. Each explicit diagram consists of a topological
backbone, belonging to one of the eight classes, which is dressed with the corresponding
states at the ends, all possible intermediate states and the corresponding energies, and all
possible combinations of indices and energies for the tunneling lines. In the simple case of a
non-interacting dot, for example, there are only two explicit realizations of each topological
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class of first order diagrams. Each class has only one possible combination of the two end
states (dot empty or dot occupied) and has two possible tunneling indices, for tunneling
on the left or the right hand side. Furthermore, we only have to take into account the
coupling between diagonal terms (as concluded above). Hence, according to the mirror
rule, it suffices to calculate only the imaginary part of the four diagrams represented by
the first row in Fig. 3.9.

The solution of the stationary equations in lowest order tunneling yields

p̃
(0)
0 =

∑
r Γr (1 − fr(ε))

Γ
and p̃

(0)
1 =

∑
r Γr fr(ε)

Γ
(3.38)

with Γ =
∑

r Γr and the Fermi function fr(ε) := f+
r (ε). In equilibrium, i.e. for zero bias

voltage, the probabilities are governed by Boltzmann factors, p̃
(0)
0 |V =0 = (1 − f(ε)) and

p̃
(0)
1 |V =0 = f(ε), as expected. The lowest order current through the dot reads

I(1) = −2
e

�

ΓLΓR

Γ
(fL(ε) − fR(ε)) (3.39)

and we obtain the linear conductance,

G(1) :=
∂I(1)

∂V

∣∣∣∣
V =0

= −4π
e2

h

ΓLΓR

Γ
f ′(ε)|V =0 . (3.40)

For an interacting quantum dot we can not simplify the Hamiltonian like in the non-
interacting case, but for large U we can flatten one dimension of the Hilbert space since
double occupancy is prohibited. We now have to distinguish the two spin states of the
occupied dot in the diagrams. As a consequence, we have to take into account more
explicit realizations of the topological classes, but the simplification due to the mirror rule
still applies. The solution of the stationary equations yields

p
(0)
0 =

∑
r Γr (1 − fr(ε))∑
r Γr (1 + fr(ε))

and p(0)
σ =

∑
r Γr fr(ε)∑

r Γr (1 + fr(ε))
. (3.41)

In equilibrium the probabilities are again governed by Boltzmann factors,

p
(0)
0 |V =0 =

1 − f(ε)

1 + f(ε)
and p(0)

σ |V =0 =
f(ε)

1 + f(ε)
. (3.42)

We calculate the lowest order current with the diagrammatically obtained partial rates,

I(1) = −2
e

�

ΓLΓR∑
r Γr (1 + fr(ε))

(fL(ε) − fR(ε)) , (3.43)

which yields the linear conductance

G(1) = −4π
e2

h

ΓLΓR

Γ

f ′(ε)|V =0

1 + f(ε)|V =0
. (3.44)
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The linear conductance in the non-interacting case is particle-hole symmetric, i.e. it is
invariant under sign change of the dot energy ε. In contrast, the interaction induces an
asymmetry between the occupied side, ε < 0, and the unoccupied side, ε > 0, of the
conductance peak (see also Fig. 3.12) which manifests itself in the factor 1/(1 + f(ε)). To
motivate the asymmetry we sketch the possible processes which transport an electron.

For each sequential transport process the number of electrons on the dot has to change
by one. If the dot is empty we have two possibilities to charge it, either with spin up or
with spin down. If the dot is already occupied with one of the two spins, say σ, there is only
one possible process: the electron with spin σ leaves the dot. Summing the probabilities
for the conditions that these processes may occur and assuming spin degeneracy we obtain
2 p0 + pσ + pσ̄ = 2 (p0 + pσ). The factor

p
(0)
0 + p(0)

σ =
1∑

r Γr (1 + fr(ε))
(3.45)

coincides with the asymmetry in the current. For comparison: without interaction we
can restrict our consideration to the spinless system. The dot can be empty or occupied
to transport an electron and the probability to find the system in one of these states is
p̃0 + p̃1 = 1, always.

The asymmetry between particle- and hole-like processes in the interacting quantum dot
is already visible in the linear conductance, as discussed. Even more drastic consequences
can be observed for bias voltages beyond linear response. As long as the coupling to the left
and the right reservoirs is symmetric, the I-V curve is as well. This changes if we detune
the couplings to the reservoirs. For asymmetric coupling the current is not symmetric if we
switch the polarity of the bias, i.e. the transport through the interacting, asymmetrically
coupled quantum dot has a well-conducting and a poor-conducting direction.

In Fig. 3.10 we show a density plot of the differential conductance vs. the bias voltage,
and the position of the dot level with respect to the mean of the electro-chemical potentials
of the left and the right reservoir. On the vertical slice through eV/kBT = 0 we previsit
the linear conductance of Fig. 3.12 and recognize that the conductance peak is shifted off
the symmetry line to the unoccupied side. Furthermore, we see quite a strong asymmetry
between the conductance for leftgoing (eV/kBT < 0) and rightgoing electrons (eV/kBT >
0). This behavior becomes most obvious if we tune the dot level off the resonance at ε = 0.
In this regime we need a strong bias to drive the transport and the onset of the current for
each direction of the transport manifests itself in two well separated conductance peaks.
Apparently, the conductance for leftgoing electrons (eV/kBT < 0) is much weaker than for
rightgoing electrons (eV/kBT > 0).

By investigation of the probabilities for the occupation of the quantum dot we see that
for eV/kBT < 0 the electrons are pressed into the quantum dot where they retain because
the drain is comparably weakly coupled. The quantum dot is predominantly occupied
and the conductance is weak according to the argumentation above. For eV/kBT > 0 the
electrons run out of the dot to the left side and the recharging from the right is weak such
that the quantum dot is predominantly empty. In this case all electrons which overcome
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Figure 3.10: Differential conductance and slice of the probability to find the system empty
for an asymmetrically coupled, interacting quantum dot. The bias is applied symmetrically,
−μL = eV/2 = μR, and the dot level is measured with respect to the mean electro-chemical
potential. The coupling is chosen to be ΓL = 0.5 kBT for the left and ΓR = 0.1 kBT for the right
hand side. The two plots on the right display slices of the density plot and the corresponding
probability p0 for the empty dot at ε = −3 kBT and ε = +3 kBT .

the right barrier can directly leave the dot through the thin barrier to the left reservoir.
The probability to be repelled by some other electron in the dot is small.

3.6.2 Second Order Transport

The tunneling in lowest order gives the main contribution to the transport near the con-
ductance peaks where the dot level is close to resonance with the mean Fermi energy of the
leads. In the wider vicinity of the resonance the corresponding current decays exponen-
tially and vanishes in the Coulomb blockade. Equivalently to the real-time diagrammtic
technique, the transport through the considered single-level quantum dot in lowest order
can be calculated by Fermi’s Golden Rule within the orthodox theory. Here the processes
are often referred to as sequential tunneling, reflecting the incoherent, sequential hopping
of single electrons.

In higher orders the diagrammatic formalism displays its advantages, especially in the
interacting case, where e.g. the scattering approach finds its limitations. The real-time
diagrammatic technique enables us to perform a systematic expansion up to higher orders
in the tunneling. This includes all relevant processes such as cotunneling, but as well
corrections like renormalization and broadening of the dot level due to the finite coupling
to the leads.

Nevertheless, the price for a systematic expansion is that we have to deal with a quickly
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Figure 3.11: Condensed representatives of 128 topological classes of second order diagrams.
The directions of the tunneling lines are left out (which reduces the number of representatives
by a factor four) and structures which can be obtained by mirroring with respect to a horizontal
line are represented by only one original.

increasing number of diagrams which are complicated to evaluate. In second order we
already have 128 classes of diagrams which still have to be dressed with all corresponding
states, energies and tunneling indices. In Fig. 3.11 we sketched some representatives of
the topological classes. We left out all tunneling directions which reduces the number by a
factor four and merged all structures which can be obtained by mirroring with respect to
a horizontal line (another factor two). Each explicit second order diagram, dressed with
all states, energies, indices, etc. is given by a double integral shifted in the complex plane
(see e.g. appendix C). Fortunately, we often have some symmetries in the system which
help us to simplify the problem considerably (e.g. the mirror rule).

The second order perturbation expansion already comprises fully coherent transport
processes, the so-called cotunneling. It manifests itself in the current or conductance by
a term qualitatively different from the lower order. While the first order is exponentially
suppressed in the Coulomb blockade, the second order survives algebraically and dominates
the transport. For the non-interacting dot this can be easily seen in the contribution to
the current,

I(2) = −2
e

h
ΓLΓR

∂

∂ε
P

∫
dω

ω − ε
(fL(ω) − fR(ω)) , (3.46)
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where the symbol P
∫

dω
ω−ε

denotes a principal value integration in the vicinity of the pole at
ω = ε. By introducing a high energy cutoff D, larger than all other energy scales of the
system, except for a possibly even larger Coulomb interaction on the dot, the principal
value integral of a Fermi function and its derivatives can be calculated analytically with
the help of the Digamma or Psi function Ψ and its derivatives (compare appendix C).
Without interaction, the complete second order correction to the linear conductance decays
algebraically in the Coulomb blockade,

G(2) = −2
e2

h
ΓLΓR

∂2

∂ε2
P

∫
dω

ω − ε
f(ω)|V =0 . (3.47)

The interacting dot is slightly more complicated because renormalization terms emerge
in the second order contribution

I(2) = − 2
e

h

ΓLΓR (ΓL + ΓR)∑
r Γr (1 + fr)

(
(1 + fR)

∂

∂ε
P (fL, ε) − (1 + fL)

∂

∂ε
P (fR, ε)

)
−

− ∂I(1)

∂ε

1

2π
(ΓL P (fL, ε) + ΓR P (fR, ε)) . (3.48)

For better readability we dropped the explicit argument ε for all Fermi functions evaluated
at the dot’s energy and introduced the notation P (fr, ε) := P

∫
dω

ω−ε
fr(ω). The second,

exponentially decaying term can be directly identified with a renormalization of the level
position. It leads to a shift of the conductance peak towards lower energies. The first term
contains algebraically as well as exponentially decaying terms. In linear response, all terms
can be clearly arranged,

G(2) = G
(2)
1 +G

(2)
2 +G

(2)
3 , (3.49)

with the algebraically decaying term,

G
(2)
1 = −2

e2

h
ΓLΓR

∂2

∂ε2
P (f |V =0, ε) , (3.50)

which yields the main broadening of the conductance and the leading contribution in the
Coulomb blockade, the renormalization of the level position,

G
(2)
2 = −ΓL + ΓR

2π
P (f |V =0, ε)

∂G(1)

∂ε
, (3.51)

and a further exponentially decaying term,

G
(2)
3 = −G(1) ΓL + ΓR

2π

∂

∂ε
P (f |V =0, ε) , (3.52)

which in the literature [34, 35] is referred to as renormalization of the level broadening.
The notion of renormalization can be motivated by interpreting the conductance as

function G(ε̃, Γ̃) of the dot energy and its level width. The uncoupled quantum dot has a
sharp level at the eigenenergy ε. Due to the tunnel coupling, however, the lifetime of the
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Figure 3.12: Left: Linear conductance in first order in Γ (dashed line) for symmetric coupling
ΓL = ΓR and the sum of first and second order linear conductance for the specific case of Γ =
0.5 kBT (solid line). Right: Second order term of the linear conductance and its contributions
G(2) = G

(2)
1 + G

(2)
2 + G

(2)
3 . The cutoff was set to D = 103 kBT .

corresponding electronic state becomes finite which can be associated to a level broadening
Γ̃. Furthermore, the connection of the quantum dot to the reservoirs may lead to quantum
fluctuations which influence the eigenenergies of the reduced system as compared to the
separate quantum dot. We denote the modified dot energy of the coupled system formally
by ε̃, it depends on the coupling strength. A perturbation expansion of the conductance
in the vicinity of the very weakly coupled system yields

G(ε̃, Γ̃) ≈ G(ε,Γ) + (ε̃− ε)
∂G(ε,Γ)

∂ε
+ (Γ̃ − Γ)

∂G(ε,Γ)

∂Γ
+ . . . (3.53)

where the renormalization factors of the level position and the level width are indicated
by the corresponding lowest order perturbation corrections. By comparison to our result
for the linear conductance expanded in orders of the coupling strength (Eq. (3.49) et seq.)

we can identify the respective terms, G
(2)
1 , G

(2)
2 and G

(2)
3 , with the pure correction of the

conductance due to cotunneling (G
(2)
1 ) the correction due to the renormalization of the dot

energy (G
(2)
2 ) and the renormalization of the level width (G

(2)
3 ).

In Fig. 3.12 we plot the linear conductance of the interacting dot with the second order
correction, G(1) + G(2), for the specific case of Γ = 0.5 kBT and compare it to the first
order, G(1). Additionally, we show the three different contributions, G

(2)
1 , G

(2)
2 , and G

(2)
3 ,

to the second order term G(2). While the corrections G
(2)
2 and G

(2)
3 influence the position

and the shape of the peak only near the resonance, G
(2)
1 gives the dominant contribution

in the Coulomb blockade.

The renormalization of the level position leaves its trace already in the first correction
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to the probabilities

p
(1)
0 = − 2 (ΓL + ΓR)∑

r Γr (1 + fr(ε))

∑
r

Γr

2π

∂

∂ε
P (fr, ε) − ∂p

(0)
0

∂ε

∑
r

Γr

2π
P (fr, ε) (3.54a)

p(1)
σ =

ΓL + ΓR∑
r Γr (1 + fr(ε))

∑
r

Γr

2π

∂

∂ε
P (fr, ε) − ∂p

(0)
σ

∂ε

∑
r

Γr

2π
P (fr, ε). (3.54b)

(The property p
(1)
σ = −p(1)

0 /2 is satisfied and ensures the normalization condition trdot p =
p0 +2 pσ = 1.) The first terms in Eqs. (3.54a) and (3.54b) lead to algebraic tails away from
the resonance as we would expect from cotunneling corrections. In contrast, the second
terms decay exponentially and shift the probabilities as if the dot level was renormalized
to a lower energy.
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Chapter 4

Coherent Evolution of
Nonequilibrium Quantum Dot
Systems

An obvious extension of the well-understood single-level quantum dot is the introduction
of a second energy level in the system. The simplest step in such a bottom-up approach is
to introduce a second level in a single quantum dot attached to one or several reservoirs.
On the other hand, this would be one of the least flexible realizations of a two-level system.
Instead, we would like to climb the ladder half a step further.

By introducing the second level in a separate quantum dot which is coupled to the
same reservoir as the first one, we gain a lot of freedom for the investigation at a rather
low expense. In such a setup we can tune the couplings and the energy-levels separately
for each dot and the one- or two-level single quantum dots are included as limiting cases.

A crucial point is in the following that we assume the two dots to be coherently coupled
to a joint reservoir. This means, the distance between the two dots, measured through the
connection to the joint lead, has to be smaller than the phase coherence length of the
electrons in the system. In the remainder, we will call a reservoir a joint or common lead,
if and only if it connects two dots in this quantum-mechanically coherent sense. In contrast,
we treat reservoirs as separated, if the distance between the two dots is larger than the
phase coherence length of the electronic wave function. As consequence, an electron on one
dot would not feel the existence of the second dot (unless we introduce a direct interaction
between the two dots, which we actually do in chapter 7). In this case, we could treat the
system as combination of two independent copies of the well-known single-level quantum
dot. A somewhat related system to the coherently coupled double dot was considered by T.
V. Shahbazyan and M. E. Raikh [40]. They studied a coherent coupling of two impurities
via leads and the effects on the transport.

The advanced fabrication technology of nanoscale devices moves setups with two small
quantum dots which are weakly coupled to a joint lead (in the above-named sense) into the
range of experimental feasability. Such systems have already been realized in experiments
for the investigation of more complicated but related problems [41–43].

43
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Figure 4.1: Two quantum dots (u and d) are coupled to a joint electron reservoir (L).

In sections 4.4 and 4.6 we show that a setup of the mentioned kind gives rise to new
and interesting nonequilibrium physics which bears the potential for functionalization. We
explain how the combination of Coulomb interaction on the dots and the coupling to a joint
lead can be utilized in a nonequilibrium situation to generate spin entanglement between
the spatially separated quantum dots [44].

4.1 Quantum Dots Coupled to a Joint Reservoir

In this section we introduce the basic Hamiltonian that we use to model a system of two
single-level quantum dots coupled to a joint electron reservoir as depicted in Fig. 4.1. For
simple limiting cases we sketch a heuristic motivation for the results we expect from the
formally justified and more general calculation in section 4.2.

Based on the general Anderson-like Hamiltonian H = Hres +Hdots +Ht in section 3.1,
we specify the Hamiltonian for the two quantum dots up and down, i ∈ {u, d},

Hdots =
∑

i

[∑
σ

εi c
†
iσciσ + U c†i↑c

†
i↓ci↓ci↑

]
, (4.1)

and the tunneling between the left lead and the dot system

Ht = HtL =
∑
kσi

(
tLi c

†
iσaLkσ + h.c.

)
. (4.2)

The reservoir is represented by Hres =
∑

kσ εLk a
†
LkσaLkσ. Each dot contains a single,

spin-degenerate energy level εi, which can in general be detuned by Δε = εu − εd. For
transparency we focus in the following on a strong intradot Coulomb repulsion, U �
kBT, eV,Γ, which supresses double occupancy of each dot. This is a good approximation
as long as the quantum dots are small. Nevertheless, it is not a necessary restriction
because our analysis in the following sections can easily be generalized to a finite intradot
charging energy, which does not change the conclusions qualitatively. The tunneling is
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assumed to be independent of spin and energy and the tunneling strength is parametrized
by ΓLi = 2π t2LiNL for the upper (i = u) and the lower dot (i = d), respectively. The
density of states of the left reservoir is denoted by NL. (Without loss of generality we can
choose the gauge such that the tunneling amplitudes tLi ∈ �, as long as the geometry of
the setup is simply connected.)

The property of coherent coupling of both dots to the joint left reservoir is reflected in
the tunneling Hamiltonian (4.2) by the fact that the creation and annihilation operators
aLkσ and a†Lkσ for reservoir states do not carry a dot index i. A particle tunneling from the
reservoir to the dot system is annihilated in the lead and may either occupy a state in the
upper or the lower dot or, if there are no specific energy or tunneling restrictions, it may
also end up in a coherent superposition of both states. Vice versa, an electron leaving the
dot system and entering the reservoir forgets about where it came from. It just remembers
its spin.

The Hilbert space of the dot system is in general 16-dimensional. The prohibition of
double occupancy of each dot due to the strong Coulomb repulsion U flattens it to nine
dimensions which are spanned by the basis states |χu, χd〉, with χi ∈ {0, ↑, ↓} denoting the
occupation of dot i.

For degenerate levels, Δε = 0, the singly occupied subspace, in which only one electron
is in the dot system, is fourfold degenerate (spin and level symmetry). A finite level-
splitting, Δε �= 0, lifts one degeneracy of the isolated dot system. But on the other hand,
the tunnel coupling leads to a broadening of the dot levels of the order of ΓLi. Hence,
there is still a finite overlap of the energy levels as long as the level-splitting is smaller or
of the order of the averaged level-broadening Δε � ΓL := (ΓLu + ΓLd)/2. Similar to the
discussion of the distance between the two dots, it is the regime of small level splitting
which is the most interesting. For large detuning, Δε � ΓL, it is intuitively clear that we
can treat the system again as a combination of two independent single-level quantum dots.
The doubly occupied subspace, in which both dots are occupied with one electron each, is
always fourfold degenerate due to spin symmetry, independent of Δε.

For a discussion in more physical terms it proofs convenient to switch to a basis {|χ〉}
of the quantum dot system, which reflects the symmetries of the problem. The state of the
empty system we denote by |0〉 := |0, 0〉. The natural basis states for the doubly occupied
subspace, with one electron on each dot, are the spin singlet |S〉 := (| ↑, ↓〉 − | ↓, ↑〉)/√2
and the three triplet states |T+〉 := | ↑, ↑〉, |T0〉 := (| ↑, ↓〉+ | ↓, ↑〉)/√2 and |T−〉 := | ↓, ↓〉.

The singly occupied subspace, with only one electron in the double dot system, can be
characterized by the physical spin, σ, of the electron, as well as by an isospin defined in the
two-dimensional Hilbert space spanned by the two orbital levels. There are two natural
choices for the quantization axis for the isospin operator Iσ, suggested by the structure of
the Hamiltonian. The quantization axis n in which the eigenstates of Iσ · n are given by
|+〉Iσ·n := |σ, 0〉 and |−〉Iσ ·n := |0, σ〉 is motivated by the observation that the Hamiltonian
for the dots (4.1) is diagonal in this isospin basis. An alternative quantization axis m,
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defined by

|+〉Iσ·m :=
1√

t2Lu + t2Ld

(tLu |σ, 0〉 + tLd |0, σ〉) and

|−〉Iσ ·m :=
1√

t2Lu + t2Ld

(tLd |σ, 0〉 − tLu |0, σ〉) ,
(4.3)

reflects the structure of the tunnel Hamiltonian (4.2) and accounts for the fact that filling
the double dot with an electron, tunneling in from the left reservoir, generates the isospin
component |+〉Iσ·m, exclusively. Drawing an analogy to magnetism, this can be viewed as
if the left reservoir was a fully isospin-polarized lead with only |+〉Iσ ·m isospins available.

In general, the two quantization axes n and m are neither parallel nor orthogonal.
Explicitly, if we choose the coordinate system such that n = (0, 0, 1) we can deduce from
the definitions above:

m =

(
2 tLu tLd

t2Lu + t2Ld

, 0,
t2Lu − t2Ld

t2Lu + t2Ld

)
. (4.4)

Hence, we obtain for the coordinate independent relative orientation

n · m =
t2Lu − t2Ld

t2Lu + t2Ld

=
ΓLu − ΓLd

ΓLu + ΓLd

. (4.5)

The special case of orthogonal quantization axes is obtained by symmetric coupling, ΓLu =
ΓLd, of the upper and lower dot. The isospin eigenstates |+〉Iσ ·m := (|σ, 0〉+ |0, σ〉)/√2 and
|−〉Iσ ·m := (|σ, 0〉 − |0, σ〉)/√2 are then given by the symmetric and antisymmetric super-
positions of the dots’ orbital states. The limiting case of n and m parallel is represented
by a single quantum dot (the other dot is decoupled).

Let us focus for a moment on the idealized system with maximal symmetry between the
couplings, ΓLu = ΓLd, and the dot levels, Δε = 0. With some qualitative and rather naive
arguments we can pre-estimate to some degree what kind of behavior we might expect from
a detailed and strict analysis given in section 4.2. For ΓLu = ΓLd and Δε = 0 we can map
the first part of the Hamiltonian 4.1 for the double dot system onto a representation with
only symmetric and antisymmetric combinations of creation and annihilation operators of
dot states,

Hdots =
∑

σ

ε

2

(
b†sσbsσ + b†aσbaσ

)
+
∑

i

U c†i↑c
†
i↓ci↓ci↑ , (4.6)

with the annihilation operators for the symmetric, bsσ := (cuσ + cdσ)/
√

2, and the antisym-
metric superposition states, baσ := (cuσ − cdσ)/

√
2, and the creation operators accordingly.

Unfortunately, the interaction term becomes rather intransparent in the new represen-
tation, thus we just keep in mind that double occupancy of each dot is prohibited and
maintain the original notation. Mapping the tunnel Hamiltonian (4.2),

Ht =
∑
kσ

(√
2 tL akLσb

†
sσ + h.c.

)
, (4.7)
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where tL := (tLu+tLd)/2, it is obvious that the states of the left lead are only coupled to the
symmetric combination of the two quantum dots’ orbital states. The antisymmetric com-
bination is completely decoupled. This corresponds to the notion of the isospin quantized
in the direction of m, perpendicular to n. As already noted, charging the double dot from
the joint reservoir can, therefore, generate symmetric states exclusively. Vice versa, if we
assume the charged system in an initially antisymmetric state, the dots can not discharge
even if we push the dot level well above the Fermi energy of the lead.

We proceed along the same path and include also the transition to the doubly occupied
system into our consideration. Charging the dots with two electrons from the reservoir
yields the creation of two symmetric combinations b†sσb

†
sσ′ |0〉 = (|σσ′, 0〉+ |0, σσ′〉+ |σ, σ′〉−

|σ′, σ〉)/2. For strong Coulomb repulsion we project out the parts which involve double
occupancy of either dot (for σ = σ′ they vanish anyway because of the Pauli exclusion
principle). There is only a final state if σ and σ′ denote opposite spins, i.e. σ′ = σ̄, which
results in a spin singlet |S〉. To generate a triplet component with this procedure it is
necessary to apply at least one antisymmetric creation operator or, alternatively, start
from a singly occupied system with a finite |−〉Iσ ·m isospin component. Vice versa, for
ΓLu = ΓLd, a spin singlet state |S〉 in the doubly occupied subspace discharges to the
isospin eigenstate |+〉Iσ ·m ∝ bsσ̄|S〉 which, for its part, may discharge further to the empty
dot system, bsσ|+〉Iσ ·m = bsσb

†
sσ|0〉 = |0〉. If, for any reason, we have the system in a triplet

state, it may discharge to a singly occupied state, but this will have an isospin polarization,
|−〉Iσ ·m ∝ bsσ̄|T0〉 or bsσ|Tsgn σ〉, which can not empty, as discussed before. The system gets
stuck between the two possible singly occupied electron spin states with isospin |−〉Iσ ·m
and the three triplet states.

This simplified picture already advises us to be careful with off-diagonal terms in the
density matrix. Apparently, it is not only the probabilities but the entire spin-like struc-
ture of the singly occupied subspace, in our case, which might become important for the
evolution of the system’s state. Furthermore, we are inspired to look especially for effects
like an asymmetry between singlet and triplet states.

4.2 Evolution of the Density Matrix – Time Resolved

In this section we give a formally justified calculation of the kinetic equations for the
reduced density matrix of the double dot system with strong intradot Coulomb repulsion. It
is based on the real-time diagrammatic technique introduced in chapter 3 and assumes weak
tunnel coupling of the dots to the joint reservoir. In contrast to the heuristic motivation
in the preceding section, we extend the consideration also to more realistic situations and
allow asymmetric coupling, ΓLu �= ΓLd, and finite, yet small detuning, Δε � ΓL. Although
the general calculation for arbitrary Δε is straight forward, the equations become less
transparent and do not yield anything important for the investigation we are focused on.

The density matrix for the nine-dimensional Hilbert space is 9 × 9, but already with
particle number conservation we can reduce it to 33 elements, one for the empty system, 16
for the singly and 16 for the doubly occupied subspace. That means, the density operator
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decomposes into a direct product ρ = ρ0e⊗ρ1e⊗ρ2e of density operators ρ0e, ρ1e and ρ2e for
the empty, the singly and the doubly occupied subspaces, respectively. Furthermore, the
total Hamiltonian is invariant under rotations of the electron spin, i.e. spin is a conserved
quantum number during tunneling. Thus, we are left with eight elements for the singly
and six elements for the doubly occupied subspace. Taking also into account the spin
symmetry of the dot Hamiltonian we finally have to determine seven independent real
degrees of freedom of the reduced density matrix by solving the kinetic equations.

According to the basis introduced in the preceding section we write the probabilities to
find the system empty, p0, singly occupied, p1, and both dots occupied forming either a spin
singlet with probability pS, or a triplet state with pT. We summarize the probabilities in a
vector representation p = (p0, p1, pS, pT), where the notation for the three triplets pT/3 :=
pT− = pT0 = pT+ is justified by the spin symmetry of the Hamiltonian. The probability for
the singly occupied system comprises both dots with either spin, p1 :=

∑
iσ piσ. While the

empty and the doubly occupied subspaces are completely determined by the corresponding
probabilities, the probability for the singly occupied system has to be supplemented by the
quantum statistical expectation value of the isospin, I/2 = (Ix, Iy, Iz)/2 := 〈I↑〉 = 〈I↓〉,
which accounts for possible coherent superposition states in the singly occupied system.
The original structure of the singly occupied block of the reduced density matrix might be
regained by ρ1e = (p1/2�2 + Ix σx + Iy σy + Iz σz)/2 δσσ′ with the Pauli matrices σi acting
on the orbital degrees of freedom of the dot system and δσσ′ representing the unity in spin
space.

Remembering the two quantization axes n and m (see section 4.1), suggested by the
structure of the Hamiltonian, we can represent the kinetic equations in lowest order tun-
neling, i.e. first order in ΓL, in the Markov approximation,

d

dt
p = ΓL

⎛⎜⎜⎝
−4 fL 1 − fL 0 0
4 fL −1 − fL 2 − 2 fL 2 − 2 fL

0 fL/2 −2 + 2 fL 0
0 3 fL/2 0 −2 + 2 fL

⎞⎟⎟⎠p +

+ ΓL

⎛⎜⎜⎝
2 − 2 fL

−2 + 4 fL

fL

−3 fL

⎞⎟⎟⎠ (I · m) + 2 ΓL fL

⎛⎜⎜⎝
0
1
−1
0

⎞⎟⎟⎠ (I · n)(m · n) (4.8)

d

dt
I = ΓL

[
2 fL p0 +

(
fL − 1

2

)
p1 + (1 − fL) pS − (1 − fL) pT

]
m +

+ ΓL

[
fL

2
p1 − 2 (1 − fL) pS

]
n (m · n) − ΓL (1 + fL) I + Δε̃ (n × I) , (4.9)

where we abbreviated the Fermi distribution of the electrons in the left reservoir fL, eval-
uated at the mean dot energy ε := (εu + εd)/2. The level detuning Δε is complemented or
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renormalized to an effective detuning

Δε̃ = Δε+
ΓLu − ΓLd

2π
P

∫
dω

ω − ε
fL(ω)

≈ Δε− ΓLu − ΓLd

2π

[
ln

(
β D

2π

)
− ReΨ

(
1

2
+ i

β (ε− μL)

2π

)]
, (4.10)

where D is an high-energy cutoff provided by the minimum of either Coulomb interaction
U or bandwith of the leads, and Ψ is the digamma function (see also appendix C).

The first block of the equations for p looks similar to the classical master equations
which we could equivalently obtain by Fermi’s Golden Rule. But here we also have a
nontrivial influence of the isospin which accounts for the coupling to the evolution of the
off-diagonal terms in the density matrix. Let us concentrate on three main scenarios to
get an impression of the evolution of the density matrix depending on its initial state. We
compare

i. the completely symmetric setup, ΓLu = ΓLd and Δε = 0,

ii. symmetric coupling, ΓLu = ΓLd, but finite detuning Δε, and

iii. asymmetric coupling ΓLu �= ΓLd

for the initial states |0〉, |S〉 and |T〉. Each initial state is assumed to be in a nonequilibrium
situation, i.e. we tune the dot levels via the gate voltage such that the system is forced
to change its charge state. In particular, for the initial state |0〉 we pull the dot levels
well below the Fermi energy of the lead, −ε � kBT,ΓL, whereas for an initially doubly
occupied system, |S〉 or |T〉, we push them well above, ε� kBT,ΓL.

i. The kinetic equations (4.9) become most transparent for the completely symmetric
setup, ΓLu = ΓLd and Δε = 0. In this limit, the quantization axes n and m are
orthogonal, n · m = 0. The equation for the triplet |T〉,

d

dt
pT = 3 ΓL fL p|−〉I·m − 2 ΓL (1 − fL) pT , (4.11)

and the evolution of the expectation value p|−〉I·m :=
〈|−〉〈−|I·m

〉
=
(

p1

2
− I · m) of

the |−〉I·m eigenstate of the isospin quantized in the direction of m,

d

dt
p|−〉I·m = −3 ΓL fL p|−〉I·m + 2 ΓL (1 − fL) pT , (4.12)

decouple completely from all other equations. Furthermore, there is no isospin com-
ponent generated which is perpendicular to m. Conversely, if there was such a
component initially it would decay exponentially according to

d

dt
I⊥m = −ΓL (1 + fL) I⊥m . (4.13)
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Starting with an empty double dot system and charging it subsequently with two
electrons, the first electron can only occupy a |+〉I·m state because it is in general
exclusively p|+〉I·m :=

〈|+〉〈+|I·m
〉

=
(

p1

2
+ I · m) which couples to p0. With the next

incoming electron a spin singlet, |S〉, is formed. No triplet (or |−〉I·m) component can
be generated, although they are energetically degenerate to the singlet (or |+〉I·m)
component.

Vice versa, starting from an initially doubly occupied system, a singlet can be dis-
charged via a |+〉I·m state to the empty system. In contrast, an initial triplet state
may discharge to a |−〉I·m state which, for its part, can not empty further.

In realistic situations there are various mechanisms which weaken the blocking or
trapping effect for |−〉I·m and |T〉 states and lead to a relaxation via a finite coupling
of the expectation value p|−〉I·m and the triplet probability pT to other density matrix
elements. In the more quantitative analysis of the symmetric, asymmetric and de-
tuned setups in section 4.4 we also include in a phenomenologic way the coupling to
an external bath which mediates spin-flip processes or creates a phase difference be-
tween the dots’ states. An additional tunnel coupling to further reservoirs is discussed
in section 4.5.

ii. Compared to the completely symmetric setup, a finite detuning leads even for sym-
metric tunneling strengths to a finite coupling of p|−〉I·m and pT to other elements
of the density matrix. Although it is still only the |+〉I·m component which couples
directly to the empty system or the singlet, a precession of the isospin links the
|−〉I·m component and the triplet to the rest. The precession takes place in a plane
perpendicular to n and is initiated by the detuning Δε, as soon as the probability to
find the system singly occupied becomes finite. Thus, the expectation value p|−〉I·m
gains at the expense of p|+〉I·m , or vice versa. In the language of the kinetic equations
in the original basis, {|χu, χd〉 : χi ∈ {0, ↑, ↓}}, the precession translates to coherent
oscillations which become apparent in the off-diagonal terms of the density matrix.

iii. Asymmetric coupling induces rotations of the isospin which are in part similar to
the effect of finite detuning but go beyond. The many-particle renormalization term
in Δε̃, to which all possible states in the reservoir contribute, gives rise to a Δε-
like precession around the axis n. It reflects the fact, that the stronger coupled
level is further renormalized to lower energies than the weaker coupled one. As a
consequence, an effective energy difference is generated by the tunneling. In addition,
terms appear which lead to a rotation of the isospin out of the plane perpendicular
to n. Some of the terms even couple directly to the singlet (accounting for the
|S〉 −→ |−〉I·m discharging, for example). These rotations are evoked by the fact that
the quantization axes n and m are not orthogonal for ΓLu �= ΓLd. They act more
directly than the Δε-like precession and reflect the immediate response of the system
to asymmetric coupling.

We summarize the effects of rotations of the isospin described in ii and iii by sketching
qualitatively an interpretation of the charging process from the empty system to the doubly
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occupied one and, vice versa, the discharging process from doubly occupied to empty.
Charging the empty double dot with the first electron, the occupied state is a |+〉I·m
eigenstate of the isospin quantized in the direction of m (so far this is similar to i). In
contrast to the symmetric setup, the isospin starts to precess until it is charged with the
second electron. Depending on the progress of the precession and the statistical distribution
of |+〉I·m and |−〉I·m states, the second electron leads to the formation of a singlet or
rather a triplet state. As long as the system is quite close to the symmetric setup, i.e.
if the precession is slow compared to the inverse charging rate, we expect the singlet to
outbalance the triplet.

Now the other direction: The initially doubly occupied system can either be in a singlet
or in a triplet state. Discharging a triplet leads to a singly occupied state with polarization
|−〉I·m which starts to precess and empties little by little as the rotation progresses. For an
initial singlet we distinguish the two scenarios ii, with finite detuning Δε but symmetric
coupling, ΓLu = ΓLd, and iii, with asymmetric coupling, ΓLu �= ΓLd, and arbitrary detuning
Δε (but still small compared to Γ). In scenario ii the singlet discharges to a |+〉I·m state
and empties further in the usual way, equivalent to the perfectly symmetric setup in i.
In scenario iii the singlet discharges to a singly occupied state with a more complicated
isospin than just |+〉I·m. Anyway, it kicks the precession of the isospin and empties, even
if the process is presumably not as fast as in the symmetric setup.

Recapitulating, we remark that the isospin, or in other words, the off-diagonal of the
density matrix, is crucially important for the evolution of a system with two nonequilibrium
quantum dots which are coherently coupled to a joint reservoir and subject to an onsite
Coulomb interaction. In particular, it seems possible to create an imbalance between
singlet and triplet states, although they are energetically degenerate.

In contrast, if we do not allow the evolution of superposition states for some reason
(e.g. the dots are much further apart than the phase coherence length, the level detuning
is much larger than the level broadening, intermediate measurement or projection on a dot
takes place, etc.), i.e. if we neglect the isospin structure, the evolution of the singlet and
triplet is nicely balanced. The probability to find a singlet or one of the triplets is exactly
the same at any time and the system behaves as if it was a combination of two independent
copies of a single level quantum dot.

4.3 Werner States and Entanglement

The observation that it is possible to create an imbalance between singlet and triplet,
although they are energetically degenerate, is already fascinating in its own right. Yet,
it raises two important questions. Is the effect realizable in an experiment and how may
a measurement give evidence for the predicted behavior? And secondly, does the system
bear any potential for a functional device? While we enter into the discussion of the
first question in the next section by a quantitative analysis of the influence of asymmetric
tunnel coupling, detuning, finite spin-flip relaxation and dephasing on the singlet-triplet
asymmetry, we motivate in this section the functional potential of the system.
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Entanglement of quantum states is one of the most fascinating features of quantum me-
chanics and one of the cornerstones of quantum information processing [45,46]. Entangled
photons have already been used in various experiments in quantum communication and
cryptography [47]. For electrons in a solid-state environment recent progress can be linked
to the advancing fabrication technology for nano-scale devices [48, 49]. The availability of
an electron spin entangler would allow the implementation of quantum information schemes
with electron spins [50, 51]. There is a strong experimental evidence that the spin degree
of freedom of electrons in a semiconductor is very well protected from the environment.
Dephasing times approaching microseconds and phase coherent transport over distances
exceeding 100μm have been reported [52–54]. Therefore, electron spins are promising
candidates for carriers in quantum information processing devices. Several schemes have
been suggested for the production of spatially separated entangled electrons in solid state
systems. Many of them rely on extracting the entangled electrons of a Cooper pair from
a superconductor and separate them into two normal leads [55], Luttinger liquids [56, 57],
or to two leads via two quantum dots [58]. Others are based on separating the electrons
forming a spin singlet on a double quantum dot [59], using interference effects in a quantum
dot in the cotunneling regime [60], separating a pair of entangled electrons from a singlet
state by a triple quantum dot [61], or scattering off magnetic impurities [62].

In this section we summarize some basic facts about entanglement and introduce in
particular the notion of entanglement for mixed states, which builds the foundation for
the discussion of the generation of spin entanglement in nonequilibrium quantum dots
coherently coupled to a joint reservoir, presented in the following sections.

4.3.1 Separability and Bell Inequalitites

Let us assume a bipartite system with a Hilbert space H = HA ⊗HB as a direct product
of two qubit Hilbert spaces (i.e. two-level systems) HA and HB, respectively. In the spin
language, where the two possible projections of a qubit on a certain basis {|0〉i, |1〉i}, with
i ∈ {A,B}, are denoted by the spin degree of freedom, |0〉i = | ↑〉i and |1〉i = | ↓〉i, we
can write an arbitrary pure state of a single qubit in the form |ψ〉i = a | ↑〉i + b | ↓〉i,
a, b ∈ �, where |a|2 + |b|2 = 1 ensures normalization. More general, we can represent any
pure or mixed state of a part-system by a density operator ρi defined on the corresponding
Hilbert space Hi. In case of a pure state, |ψ〉i, the density operator is simply given by the
projector ρi = |ψ〉i〈ψ|i. A state of the bipartite system, pure or mixed, can be described
by a density operator ρ defined on the product space H = HA ⊗HB. It is called separable
if and only if it can be decomposed in a convex sum ρ =

∑
k pk ρAk ⊗ ρBk of product

states of the subsystems A and B, described by the operators ρAk, ρBk on HA and HB,
respectively [65, 66]. For a pure state |Ψ〉 with ρ = |Ψ〉〈Ψ| the notation simplifies and
the above definition implies that |Ψ〉 is separable iff |Ψ〉 = |ψ〉A ⊗ |ψ〉B, i.e. if |Ψ〉 can
be represented by a product of pure states of the two subsystems. A state in the Hilbert
space H is called entangled if and only if it is not separable. We note that the properties
entangled or separable are not affected by local unitary transformations U = UA ⊗ UB. In
turn, this means that any product state can not become entangled just by acting locally



4.3. WERNER STATES AND ENTANGLEMENT 53

on one or the other qubit, we rather have to introduce some nonlocal interaction between
the two qubits at some point. One of the most popular maximally entangled pure states
is a spin singlet

|S〉 =
1√
2
(| ↑〉A ⊗ | ↓〉B − | ↓〉A ⊗ | ↑〉B) (4.14)

which is equivalent to our former notation, |S〉 = (| ↑, ↓〉 − | ↓, ↑〉)/√2 with |σ, σ̃〉 :=
|σ〉A ⊗ |σ̃〉B. It is part of the basis of the four maximally entangled, so-called Bell states
{|ψ−〉, |ψ+〉, |φ−〉, |φ+〉} which consists of the singlet |ψ−〉 = |S〉 and the three triplets
|ψ+〉 = |T0〉 and |φ±〉 = (|T+〉 ± |T−〉)/

√
2. The spins of the subsystems A and B in

a maximally entangled state are maximally quantum mechanically correlated. A spin
measurement in either subsystem on the singlet state, for example, yields a spin up or a
spin down with equal probability. But the instant we perfom the measurement on one
subsystem, say A, with outcome σ, the state of subsystem B is immediately projected to
the opposite spin σ̄, which we will then detect with certainty.

The situation is similar for a mixed state described by a density matrix

ρclassic =
1

2
(| ↑〉〈↑ |A ⊗ | ↓〉〈↓ |B + | ↓〉〈↓ |A ⊗ | ↑〉〈↑ |B)

=
1

2
(| ↑, ↓〉〈↑, ↓ | + | ↓, ↑〉〈↓, ↑ |) . (4.15)

But in contrast to the quantum correlation which persists under local unitary transfor-
mations, the classical stochastic correlation of the mixed state decreases if we rotate the
basis.

A more quantitative test to distinguish quantum from classical correlation is provided by
the Bell inequalities [63], in which the correlations along different directions are compared.
The spin of A is measured in direction of a vector a and the spin of B in direction of a
vector b, the correlator Cab is then defined as the expectation value

Cab :=
〈
(a · σ)A ⊗ (b · σ)B

〉
= tr (ρ · (a · σ)A ⊗ (b · σ)B) (4.16)

with σ = (σx, σy, σz), the vector of Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (4.17)

The common Bell inequalities derived by Clauser, Horne, Shimony and Holt [64] is given
in the (CHSH) form by

tr ρB = Cab + Ca′b + Cab′ − Ca′b′ ≤ 2 (4.18)

with arbitrary vectors a, a′,b,b′ ∈ �3 and the Bell operator

B := a · σ ⊗ (b + b′) · σ + a′ · σ ⊗ (b − b′) · σ . (4.19)
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If the Bell inequalities are violated for some choice of the vectors a, a′,b,b′, the state of the
system described by ρ is not separable. Thus, it is entangled and is, beyond any classical
correlation, quantum correlated. Vice versa, separable states may be classically correlated,
which means that they may be correlated in a stochastic sense, but they always respect all
possible forms of Bell-type inequalities [68]. Thus, entanglement is a necessary condition
for the violation of the CHSH Bell inequalities, but it is not sufficient. In other words,
there exist mixed states that are entangled in the sense that they can not be decomposed
into a convex sum of product states, but tr ρB ≤ 2 holds for all sets of unit vectors.

4.3.2 Entanglement Measures for Pure States

It is obvious that not every quantum correlated state is maximally entangled, and it is,
therefore, desirable to quantify the degree to which a state is entangled. For pure states’
entanglement a convenient measure is the entropy of entanglement or the so-called entan-
glement of formation [72],

E(Ψ) := S(ρA) = S(ρB) . (4.20)

The notation for the system’s state, |Ψ〉 ∈ H , shall emphasize that it is a pure state,
described by ρ = |Ψ〉〈Ψ|, and ρA := trB ρ is the reduced density matrix of subsystem A,
obtained by tracing out the degrees of freedom of subsystem B. Similarly, ρB := trA ρ is a
partial trace over the degrees of freedom of subsystem A. The function

S(ρ) := −tr ρ log2 ρ (4.21)

denotes the von Neumann entropy. The values of E range from zero for a product state to
one for a maximally entangled state of two qubits.

In this special case, in which both subsystems contain only a single qubit, an often used
equivalent measure of entanglement is the so-called concurrence [72],

C := 2
√

det ρ . (4.22)

Similar to the entropy it ranges from zero to one. A relation of the concurrence to the Bell
inequalities, which are from an experimental point of view the most direct way to probe
entanglement, can be established by searching for the set of unit vectors, {a, a′,b,b′},
which maximizes the Bell parameter [70],

max
a,a′,b,b′

tr (ρB) = 2
√

1 + C2 . (4.23)

Hence, for any pure state we find an equivalence of the violation of the Bell inequalities
and a concurrence larger than zero,

max
a,a′,b,b′

tr (ρB) > 2 ⇐⇒ C > 0 . (4.24)
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4.3.3 Entanglement Measures for Mixed States

For mixed states it is more complicated to quantify the degree of entanglement. It is even
qualitatively more difficult to judge if a mixed state is entangled or not. It follows from
the spectral theorem for compact self-adjoint operators, that every mixed state can be
represented by a convex sum of pure states,

ρ =
∑

n

pn |Ψn〉〈Ψn| , (4.25)

but this representation is in general not unique, because the states |Ψn〉 need not be
orthogonal (maybe there is a degenerate subspace of dim > 1). Guided by the definition of
separability, we call the mixed state entangled if we can not find any decomposition into
pure product states, |Ψn〉 = |ψn〉A|ψn〉B. Corresponding to pure states, the entanglement
of formation for a mixed state is defined [72] as the minimum entanglement of all possible
mixtures of pure states which represent ρ in a decomposition,

E := min
{pn,|Ψn〉}

∑
n

pn E(Ψn) . (4.26)

The calculation of the entanglement of formation for a general bipartite mixed state
is more complicated than for a pure state, because we have to minimize over all possible
convex sum decompositions which are in general hard or even impossible to find. However,
in the case of two two-state systems, i.e. two entangled qubits, S. Hill and W. K. Wootters
[69, 71] derived an explicit expression for the entanglement of formation,

E(ρ) := h

(
1

2
(1 +

√
1 − C2)

)
, (4.27)

with the function h(x) := −x log2 x− (1 − x) log2(1 − x) and the concurrence

C(ρ) := max{0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4} . (4.28)

The eigenvalues λi of the matrix product ρ · (σy ⊗ σy) · ρ∗ · (σy ⊗ σy) are numbered in
decreasing order λ1 ≥ λ2 ≥ λ3 ≥ λ4. The entanglement of formation, E , is a strictly
monotonic function of the concurrence, C, with 0 ≤ C ≤ 1, so that both can be viewed as
equivalent measures of entanglement. If ρ describes a pure state, both definitions coincide
with the corresponding definitions originally introduced for pure states. Following from
the definition (4.26), the entanglement of formation and, equivalently, the concurrence is
zero for a separable state, whereas E > 0 or C > 0 indicate an entangled mixed state.

4.3.4 Werner States

A special class of mixed states of a bipartite system is given by states that are diago-
nal in the Bell basis {ψ−, ψ+, φ−, φ+}. In the theory of quantum information and, more
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specifically, in the discussion of entanglement purification from mixed states and quantum
error correction [72,73] the even more restricted family of spin-rotation invariant, so-called
Werner states [68] play an important role. Werner states can be parametrized in the form

W (F ) := F |S〉〈S| + 1 − F

3
(�4 − |S〉〈S|) , (4.29)

consisting of F parts pure singlet and (1 − F )/3 parts of each of the other Bell states or
triplets. Here, |S〉〈S| is the projector onto the singlet state, |S〉, which is equivalent to the
Bell state |ψ−〉. The parameter F is the so-called Werner- or singlet fidelity and ranges
from zero to one, 0 ≤ F ≤ 1. The concurrence of a Werner state is given by

C(W (F )) = max{0, 2F − 1} . (4.30)

Hence, it is entangled in the sense that it can not be decomposed into a convex sum of
product states if F > 1/2. On the other hand, R. F. Werner was the first who showed
that, although a mixed state like W (F ) with F > 1/2 is entangled, it does not necessarily
violate the Bell inequalities in the CHSH form [68]. In particular, it has been shown [74]
that the maximal CHSH-Bell parameter for Werner states is given by

max
a,a′,b,b′

tr (ρB) =
2
√

2

3
(2 C + 1) =

2
√

2

3
(4F − 1) . (4.31)

That means, in a range of 1 < F ≤ (3 +
√

2)/(4
√

2) the Werner fidelity F parametrizes
mixed states which are entangled without violating the Bell inequalities in the CHSH form.
But, nevertheless, Werner states with a fidelity F > 1/2 are entangled and there exist
entanglement purification protocols to destill arbitrarily entangled states, e.g. maximally
entangled pure singlets, from an ensemble of entangled mixed states [72, 73].

In the next section we will see in detail how two quantum dots with a strong on-
site Coulomb repulsion and a coherent coupling to a joint reservoir can be driven into a
nonequilibrium situation such that the mixed state of the doubly occupied system is a
Werner state with fidelity F > 1/2, indicating the generation of entanglement.

4.4 Generation of Spin Entanglement in Nonequilib-

rium – Part 1

Motivated by the possibility to create an imbalance between the singlet and triplet prob-
abilities in the driven double dot system, which we discussed formally in section 4.2, we
examine in this section quantitatively how robust the effect is under realistic conditions.
Furthermore, we suggest a measurement scheme which may give evidence for the predicted
behavior.

Focused on the observation that the mixed state of the doubly occupied quantum dot
system is a Werner state, we concentrate on the fact that the creation of a singlet probability
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outbalancing the probability for triplets by a certain amount can be viewed as generation
of spin entanglement between the electrons on the two spatially separated quantum dots.

A general state of the reduced system can be described by the two vectors p =
(p0, p1, pS, pT) and I = (Ix, Iy, Iz) summarizing all degrees of freedom if the symmetries
of the Hamiltonian, especially the spin symmetry, are taken into account. The doubly
occupied system is then completely determined by the singlet and triplet probabilities pS

and pT such that the block of the reduced density matrix for the doubly occupied subspace
has Werner form

ρ2e =
pS

pS + pT
|S〉〈S| + pT

3 (pS + pT)
(�4 − |S〉〈S|) , (4.32)

and the Werner parameter given by

F =
pS

pS + pT
. (4.33)

Recalling the property of entanglement of a Werner state if F > 1/2, we conclude that
we can consider our double dot system as an nonequilibrium entangler if we are able to
generate an imbalance between the singlet and triplet probabilities such that more than
every second doubly occupied state is a singlet, i.e. pS > pT. We note that in an equilibrium
situation the probabilities are governed by Boltzmann factors and in particular singlet and
triplets are equally distributed, pS = pT/3.

Let us reconsider the charging scheme from section 4.2, i.e. we are starting with an
initially empty system and pull the dot levels down quickly, well below the Fermi energy of
the lead. In the case of the perfectly symmetric setup, ΓLu = ΓLd and Δε = 0, the system
will be charged subsequently with two electrons forming a pure singlet state, because, as
we have seen in section 4.2, the evolution of the triplet decouples completely from the
probability of the empty system. Thus, we obtain a fidelity F = 1 and the electrons are
maximally entangled.

In realistic situations, however, various mechanisms will relax the imbalance between
the population of spin singlet and triplet states. In section 4.2 we already discussed qualita-
tively how the isospin rotation, induced by asymmetric coupling or finite detuning, affects
the imbalance between singlet and triplet probabilities. Here we analyze more quantita-
tively the influence on the ability to generate spin entanglement. In Fig. 4.2 we plot the
time evolution of the Werner fidelity in lowest order in the tunneling, corresponding to the
solution of the kinetic equations (4.9), and compare four different scenarios. The curve for
the symmetric setup shows the formation of the maximally entangled, pure singlet state
with F identical to unity. To mark a frame of accessibility of F > 1/2, we plot two further
curves for which we assumed quite strong asymmetries. One is calculated with a detuning
Δε of the order of the level broadening ΓL, the other with one order of magnitude between
the coupling strengths of the upper and lower dot. In both cases we still find a considerable
imbalance between singlet and triplet probabilities and a Werner fidelity well exceeding the
threshold of entanglement at one half.
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Figure 4.2: The evolution of the Werner fidelity. For the perfectly symmetric setup, Δε = 0,
ΓLu = ΓLd, in the absence of spin relaxation, ΓS→T = 0, curve i), we find F ≡ 1. The Werner
fidelity is reduced for either ii) nondegenerate dot energy levels, Δε = ΓL, iii) asymmetric coupling
ΓLd = 0.1ΓLu, iv) a finite spin relaxation rate ΓS→T = 0.2ΓL. The high-energy cutoff is set to
D = 100 kBT .

If we concentrate on the case of finite detuning but symmetric coupling of the two
levels, the triplet probability saturates at

pT =
3 Δε2 (Γ2

L − Δε2)

4 (4 Γ4
L − (Γ2

L + Δε2)2)
(4.34)

which scales with pT ≈
(

Δε
2ΓL

)2

for weak detuning. Schematically we can motivate that

with the kinetic equations (4.9) at hand: For ΓLu = ΓLd the quantization axes n and m are
perpendicular. The detuning Δε leads to a rotation of the isospin around n with a frequency
Δε. Hence, the isospin, which we would get for Δε = 0, rotates out of the m-direction, in
which the triplet was blocked, until a second electron enters the system. In average this
happens after a time 1/ΓL. The further the isospin is rotated away from the m-direction,
the higher the probability that an entering electron may generate a triplet. Because of
symmetry reasons, the lowest order correction due to a finite detuning has to be quadratic.
Thus, the scaling behavior of the triplet probability for weak detuning seems reasonable.
Remark: The asymptotic behavior (4.34) even holds for strong detuning Δε � ΓL, as
long as both dot levels are well below the Fermi energy of the lead, ε � −|Δε|,ΓL, kBT .
If the splitting is much larger than the level broadening of the dots, the isospin will be
polarized during the charging process, i.e. an electron enters either the upper or the lower
dot, depending on which energy is lower. The second electron then occupies the opposite



4.4. GENERATION OF ENTANGLEMENT IN NONEQUILIBRIUM – PART 1 59

dot. That way, neither superposition states of the upper and lower dot are formed nor
an imbalance between singlet and triplet. This is reflected in the limit of the asymptotic
behavior for strong detuning, pT ≈ 3/4, which is the equilibrium value.

Additionally to the curves which stem directly from the systematic derivation of the
kinetic equations (4.9) from the Hamiltonian of our system, we include a further curve for
which we extend the kinetic equations by a phenomenologic block which accounts for spin
flip processes and dephasing, mediated by a possible coupling to an external bath. We
introduce phenomenologic transition rates between singlet and triplets as well as between
the different triplets and summarize them in matrix form in the general basis {pS, pT0, pT±}
for the doubly occupied subspace,

M :=

⎛⎝−ΓS→T0 − 2 ΓS→T± ΓT0→S 2 ΓT±→S

ΓS→T0 −ΓT0→S − 2 ΓT0→T± 2 ΓT±→T0

ΓS→T± ΓT0→T± −ΓT±→S − ΓT±→T0

⎞⎠ . (4.35)

Spin flip processes induce transitions beween |S〉 and |T±〉, as well as between |T0〉 and
|T±〉, whereas ΓS→T0 and ΓT0→s account for the appearance of a relative phase between
| ↑, ↓〉 and | ↓, ↑〉 caused by dephasing. For the plot we specifically choose all rates to
be equal to preserve the spin symmetry apparent in the equivalence of the three triplet
probabilities in the kinetic equations (4.9) and in the form of the Werner state (4.29). We
simplify the basis again to {pS, pT} and obtain the matrix

MS↔T :=

(−ΓS→T ΓT→S/3
ΓS→T −ΓT→S/3

)
(4.36)

with the effective transition rate ΓS→T = ΓT→S/3 (which ensures probability conservation).
(A different choice of these parameters does not change the conclusions concerning the
perturbation of the singlet-triplet imbalance qualitatively, but we would have to generalize
the form of the doubly occupied mixed state. Instead of a Werner state with equal weights
for the three triplets, we would have to deal with a more general state which were still
diagonal in the singlet-triplet basis, {|S〉, |T0〉, |T+〉, |T−〉} (and in the Bell basis), but the
weights for the triplets were not necessarily equivalent.)

We incorporate the singlet-triplet relaxation in the kinetic equations and solve for
the reduced density matrix. In Fig. 4.2 we plot the corresponding curve which quickly
approaches the equilibrium between singlet and triplet at F = 1/4 (or pS = 1/4 and
pT = 3/4, respectively). The formation of an enhanced singlet probability or even a Werner
fidelity F > 1/2 therefore requires tunneling rates larger than the spin decoherence rate.
Reported values of T ∗

2 of the order of 10 ns [48,49] (at temperatures of the order of 100 mK)
correspond to a lower limit of the coupling strength ΓL of the order of μeV . For strong
tunnel coupling higher-order processes such as cotunneling become important. These are
neglected in our quantitative analysis but they do not change our prediction qualitatively.
In fact, for symmetric tunnel coupling the Hamiltonian acquires a block structure and the
Hilbert subspace containing the triplet states decouples completely from the one for the
empty dot. It is only for an assumed asymmetry in the system that higher order processes
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Figure 4.3: Time evolution of the total charge during the discharging of an initial singlet state
compared to an initial triplet state. The system is assumed to b perfectly symmetric, ΓLu = ΓLd,
Δε = 0. Starting from a singlet the system empties quickly, whereas it remains singly occupied
if we start from a triplet state.

induce a relaxation of the singlet-triplet imbalance. This equilibration takes place with a
comparably small rate if the dots are weakly coupled to the reservoir, ΓLu,ΓLd � kBT .
Hence, the corresponding time scale is much larger than the time scale for the formation
of the singlet state. (For a temperature of the order of 100 mK an upper bound of the
coupling strength might be of the order of 10μeV .)

To create and detect an enhanced spin-singlet fidelity and to measure the relaxation
time between singlet and triplet, we propose the following scheme that is similar to the
experiment performed in Ref. [48]. It is based on the observation that just like charging
the double dot predominantly yields singlet states, the converse process, the discharging,
is easy if the initial state is a spin singlet. An initial triplet state may get stuck in a
singly occupied state with an isospin component antiparallel to m (as discussed in detail
in section 4.2). The complete discharging of a triplet to an empty state, therefore, takes
on average a longer time than the transition from the singlet to the empty system. We
illustrate this for the ideal system in Fig. 4.3. The total charge of the double dot is plotted
versus the discharging time for an initial singlet and an initial triplet state, respectively.

The suggested measurement scheme consists of an entire cycle:

1. Prepare the system in an empty state.

2. Pull the dot levels down quickly (i.e. faster than the time scales for the relaxation
of the isospin polarization and the singlet-triplet transitions), well below the Fermi
energy of the lead. The double dot will be charged with two electrons which preferably
form a spin singlet state, as explained above.

3. Wait some given time tw. During this time the imbalance between singlet and triplet
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decays exponentially on a time scale given by the relaxation rate. The Werner fidelity
is reduced.

4. Now we start to analyze how the double dot is depleted. Depending on whether
the initial state is a singlet or a triplet, it is possible or impossible to extract both
electrons to the joint lead. We continue the scheme in the following way: Push the
dot levels up quickly (i.e. faster than the relaxation for the isospin polarization), well
above the Fermi energy of the lead.

5. Wait some time longer than 1/ΓL but shorter than the relaxation time of the isospin-
polarized state.

6. Measure the total charge on the double dot.

If the charge is zero, the doubly-occupied state was a spin singlet, whereas it was a triplet
if one electron remains in the system. The measurement of the total charge on the double
dot could be performed by a close-by quantum point contact. This does not introduce
an additional relaxation mechanism for either the isospin or the singlet and triplet states
because the quantum-point contact is only sensitive to the total charge.

4.5 Bias Voltage Driven Quantum Dots

An important building block for the conclusions in section 4.4 was the nonequilibrium
situation, in which the double dot system was driven by quickly moving the level positions
of the dots with respect to the Fermi energy of the reservoir. This way the system was forced
to change its charge state, which facilitated the generation of an isospin polarization and
an imbalance between singlet and triplet probabilities. In the present and in the following
section we extend the previous consideration to a driving by an applied bias voltage and
analyze the stationary state of the double dot. Based on the introduced model for two
quantum dots coherently coupled to one joint reservoir in section 4.1, we attach additional
leads to each of the dots as depicted in Fig. 4.4. This enables us to apply a bias voltage
between the joint left and the two independent right reservoirs.

Corresponding to the Hamiltonian in section 4.1 the system is modeled by H = Hres +
Hdots + Ht, consisting of the term for the leads, Hres =

∑
r

∑
kσ εrk a

†
rkσarkσ, with a joint

left (r = L) and two independent right reservoirs (r = Ru,Rd), the part for the double dot
system which is equivalent to Eq. (4.1), and the tunnel Hamiltonian

Ht =
∑

r

∑
kσi

(
tri c

†
iσarkσ + h.c.

)
. (4.37)

We assume that the upper right reservoir (r = Ru) couples exclusively to the upper dot
(i = u), whereas the lower right reservoir (r = Rd) couples exclusively to the lower dot
(i = d). Thus, the off-diagonal tunneling elements vanish, tRud = tRdu = 0, and we can
simplify the notation, tRi := tRii. In particular, there is no explicit coupling of electrons
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Figure 4.4: Two quantum dots (u and d) are coupled to a joint electron reservoir on the left
(L) and to two additional independent reservoirs (Ru and Rd) on the right.

from the right reservoirs to superposition states. Each level in one of the right leads couples
unambiguously to one corresponding dot level. This becomes more obvious if we rearrange
the tunnel Hamiltonian and write Ht = HtL + HtR with the coupling to the left reservoir
equivalent to Eq. (4.2),

HtL =
∑
kσ

[(
tLu c

†
uσ + tLd c

†
dσ

)
aLkσ + h.c.

]
, (4.38)

and the coupling to the additional right reservoirs,

HtR =
∑
kσi

[
tRi c

†
iσaRikσ + h.c.

]
, (4.39)

where the index i of the annihilation operators aRikσ (as well as the creation operators
a†Rikσ) for electron states in the right reservoirs explicitly indicates the upper (i = u) or
the lower dot (i = d).

As in Eq. (4.2), the tunneling is assumed to be independent of spin and energy. The
tunneling strength is parametrized by Γri = 2π t2riNr for the upper (i = u) and the lower
dot (i = d), respectively, and depends on the reservoir the electron tunnels to or from
(r ∈ {L,Ru,Rd}). The density of states of the respective reservoir is denoted by Nr.
(Since the geometry of the setup is simply connected we can choose the gauge such that
the tunneling amplitudes tri are real.) The leads serve again as equilibrium reservoirs
with spin degenerate energies εrk. Their electrochemical potentials μr are not necessarily
equivalent and allow for a finite potential difference between the left and the right side.

We choose the basis as explained in section 4.2 and express the degrees of freedom of the
reduced density matrix in a vector representation for the probabilities, p = (p0, p1, pS, pT),
and the isospin, I = (Ix, Iy, Iz). Applying the real-time diagrammatic technique, we set
up the kinetic equations governing the evolution of the reduced density matrix. Similar to
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Eqs. (4.9) we obtain

d

dt
p =

∑
ri

Γri

⎛⎜⎜⎝
−2 fr (1 − fr)/2 0 0
2 fr −(1 + fr)/2 1 − fr 1 − fr

0 fr/4 −1 + fr 0
0 3 fr/4 0 −1 + fr

⎞⎟⎟⎠p + ΓL

⎛⎜⎜⎝
2 − 2 fL

−2 + 4 fL

fL

−3 fL

⎞⎟⎟⎠ (I · m) +

+

⎛⎜⎜⎝
ΓRu (1 − fRu) − ΓRd (1 − fRd

)
−ΓRu (1 + 3 fRu) + ΓRd (1 + 3 fRd

)
−(ΓRu fRu − ΓRd fRd

)/2
−3 (ΓRu fRu − ΓRd fRd

)/2

⎞⎟⎟⎠ (I · n) + 2 ΓL fL

⎛⎜⎜⎝
0
1
−1
0

⎞⎟⎟⎠ (I · n)(m · n)

(4.40)

for the probabilities, where r ∈ {L,Ru,Rd}, i ∈ {u, d} and ΓL := (Γu + Γd)/2. The
quantization axes n and m are familiar from section 4.2, and we abbreviate the Fermi
distribution of the electrons in the left and the right reservoirs by fr → [1 + exp(β (ε −
μr))]

−1, evaluated at the mean dot energy ε := (εu + εd)/2. The equations for the isospin
read

d

dt
I = ΓL

[
2 fL p0 +

(
fL − 1

2

)
p1 + (1 − fL) pS − (1 − fL) pT

]
m +

+

[
ΓRu fRu p0 +

1

4
ΓRu (−1 + 3 fRu) p1 − 1

2
ΓRu (1 − fRu) (pS + pT)

]
n−

−
[
ΓRd fRd

p0 +
1

4
ΓRd (−1 + 3 fRd

) p1 − 1

2
ΓRd (1 − fRd

) (pS + pT)

]
n +

+ ΓL

[
fL

2
p1 − 2 (1 − fL) pS

]
n (m · n) −

∑
ri

Γri
1 + fr

2
I + Δε̃ (n× I) . (4.41)

The level detuning Δε is mapped onto a renormalized, effective detuning

Δε̃ = Δε+
ΓLu − ΓLd

2π
P

∫
dω

ω − ε
fL(ω) − 1

2π
P

∫
dω

ω − ε

(
ΓRu fRu(ω) − ΓRd fRd

(ω)
)
. (4.42)

To keep the discussion transparent we assume in the following symmetric couplings on
the left, ΓLu = ΓLd = ΓL, as well as on the right side, ΓRu = ΓRd =: ΓR, and degenerate
dot levels, Δε = 0. Furthermore, we take the electrochemical potentials for the two right
reservoirs to be equal μRu = μRd

=: μR. With these assumptions the kinetic equations
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simplify considerably,

d

dt
p =

∑
r=L,R

Γr

⎛⎜⎜⎝
−4 fr 1 − fr 0 0
4 fr −1 − fr 2 − 2 fr 2 − 2 fr

0 fr/2 −2 + 2 fr 0
0 3 fr/2 0 −2 + 2 fr

⎞⎟⎟⎠p + ΓL

⎛⎜⎜⎝
2 − 2 fL

−2 + 4 fL

fL

−3 fL

⎞⎟⎟⎠ (I · m)

d

dt
I = ΓL

[
2 fL p0 +

(
fL − 1

2

)
p1 + (1 − fL) pS − (1 − fL) pT

]
m−

∑
r=L,R

Γr (1 + fr) I .

(4.43)

We compare the kinetic equations (4.43) to Eqs. (4.9) and note that the generation
of an isospin polarization is governed solely by the coupling to the joint left reservoir.
The two independent right reservoirs couple to all isospin components in the same way.
Specifically, they contribute only to the decay of the isospin, and influence the evolution
of the probabilites in the same way classical rates do. That means, we can not expect any
isospin polarization or generation of a singlet-triplet imbalance by the independent right
reservoirs. Quite the contrary, the coupling to the right reservoirs seems to diminish the
effect induced by the coherent coupling to the joint left lead.

The generalization to asymmetric couplings on the left as well as on the right side and to
arbitrary electrochemical potentials for the upper and the lower right reservoir is straight-
forward. Similar to the consideration in section 4.4 such asymmetries lead to a rotation of
the isospin. However, the corresponding expressions (Eqs. 4.43) are less transparent and do
not enlighten the discussion of generation of spin entanglement in nonequilibrium quantum
dots, which we envisage in the next section. Nevertheless, asymmetries are always present
in an experimental situation and yield a perturbation of the predicted behavior. Therefore
it seems worthwhile to keep in mind the sources of possible distortions and render the
examination more precisely if required.

4.6 Generation of Spin Entanglement in Nonequilib-

rium – Part 2

Related to the discussion in section 4.4, in which we drove the double dot system into a
nonequilibrium situation by moving the dot levels with respect to the Fermi energy of the
reservoir, the additional leads on the right hand side enable us to drive the system by an
applied bias voltage. In the preceding section we set up the kinetic equations governing
the evolution of the reduced density matrix, and we have seen that an isospin polarization
can only emerge due to the coupling to the joint left reservoir. The leads on the right
hand side couple to all isospin components in the same way. In a magnetic analogue such
a situation is similar to a dot coupled to one ferromagnetic and one nonmagnetic lead, for
which, at large bias voltage, spin accumulation occurs.
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Figure 4.5: The stationary probabilities for the |+〉I·m and |−〉I·m state plotted vs. the bias
voltage for ε = 0 and different ratios of the coupling strengths, ΓR/ΓL = 2, 1, 0.5. The bias is
applied symmetrically, −μL = eV/2 = μRu = μRd

.

For the present model we solve the kinetic equations (4.40) and (4.41) in the stationary
limit, where we assume a vanishing detuning of the dot levels, Δε = 0, for simplicity.
Depending on the polarity of the bias voltage, a finite isospin is accumulated in the double
dot, as depicted in Fig. 4.5. We can interpret the curves in the following three scenarios:

i. For zero bias voltage the system is in equilibrium, and the probabilities to find a
|+〉I·m or a |−〉I·m state are equivalent. This indicates that no isospin direction is
preferred, there is no polarization.

ii. If the bias is applied such that the double dot is charged from the joint left and
discharged to the right leads, the isospin is polarized in the positive m direction,
and the probability to find the singly occupied system in a superposition state |+〉I·m
is high. On first sight, the modification for different relative couplings ΓL/ΓR looks
counterintuitive, we might have expected a strong polarization for a strong coupling
to the joint left reservoir. However, if we crank up ΓL with respect to ΓR, the
probability that two electrons are pressed into the double dot increases (compare also
the inset of Fig. 4.6). Therefore, the isospin polarization and the overall probability to
find the double dot singly occupied decreases for ΓL > ΓR, in favor of the generation
of singlet states. In the meanwhile the probability for |−〉I·m stays more or less
constant for different ratios ΓL/ΓR.

iii. If the bias is applied such that the double dot is discharged to the joint left and
charged from the right leads, the induced doubly occupied states (for strong bias)
are equally distributed between the singlet and the three triplets. As discussed in
section 4.1, the singlet empties easily via a |+〉I·m state to |0〉 during the discharging
to the joint left reservoir, whereas the triplets decay to a |−〉I·m state and might get
stuck. Therefore, we accumulate an isospin in negative m direction as leftover.
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Figure 4.6: The stationary Werner fidelity F vs. bias voltage for ε = 0 and different ratios
of the coupling strengths, ΓR/ΓL = 2, 1, 0.5. The bias is applied symmetrically, −μL = eV/2 =
μRu = μRd

. The inset shows the corresponding stationary overall probabilities pS + pT to find
the system doubly occupied.

The induced imbalance between singlet- and triplet-state probabilities are shown in
Fig. 4.6. Similar to the results in section 4.4 we find regimes with an enhanced singlet
probability, culminating in a Werner fidelity F > 1/2 which indicates the generation of
spin entanglement between the two spatially separated quantum dots. Hooked to the
scenarios sketched above we can distinguish

i. In equilibrium the Werner fidelity F = 1/4, as expected for equally distributed singlet
and triplet states.

ii. If we charge the double dot predominantly from the joint left reservoir the isospin
becomes polarized and the singlet probability increases. In this regime the Werner
fidelity saturates at

F =
3 ΓL + 2 ΓR

6 ΓL + 2 ΓR

(4.44)

which ranges from 1/2 for ΓL � ΓR to 1 for ΓL � ΓR. Unfortunately, at the same
time the Werner fidelity approaches 1 linearly for ΓL � ΓR, the overall probability
to find the quantum dot system doubly occupied vanishes quadratically according to
pS + pT ≈ 2 (ΓL/ΓR)2. Hence, there is a tradeoff between finding singlets dominating
over triplets and the probability to find a doubly occupied state at all (compare
the inset of Fig. 4.6). Nevertheless, for the considered specifications with reasonable
coupling to the left and right reservoirs, a Werner fidelity 1/2 < F < 1, indicating
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the generation of spin entanglement, is accessible for a (rather strong) bias voltage
applied such that the electrons enter the system from the joint left lead.

iii. If the bias voltage is applied in the opposite direction, triplets are more likely. The
system is charged from the right side, and the singlet and the three triplets are equally
distributed (F = 1/4). The singlet is easily discharged to the left reservoir, whereas
the discharging of the triplets yields |−〉I·m leftovers. As a consequence, the easy
decay of |+〉I·m leads to a lack of singlets, apparent in the Werner fidelity F < 1/4,
unless the recharging from the right reservoirs is strong and causes a saturation at
F = 1/4.

4.7 Chapter Summary

In this chapter we studied two spatially separated quantum dots with an onsite Coulomb
repulsion coherently coupled to a joint reservoir. We showed that a pair of entangled elec-
trons can be created by driving the system out of equilibrium. The offdiagonal evolution
of the reduced density matrix in a nonequilibrium situation indicates that electrons occupy
coherent superposition states of the double dot’s orbitals. In combination with a strong
Coulomb interaction which prevents double occupancy of each individual dot, two excess
electrons in the system form a so-called Werner state, a mixture of a singlet and three
equiprobable triplets. If the double dot is coherently charged from a joint reservoir the
singlet probability is enhanced, an imbalance is formed between the singlet and triplet
states. In the framework of the discussion of entanglement of mixed states this can be
related to the generation of spin-entanglement between the electrons on the spatially sep-
arated dots. The underlying mechanism is fundamentally different from those that rely on
a singlet-triplet energy splitting, where entanglement is generated by a relaxation of the
system to the spin-entangled ground state.

We suggested two schemes in which entanglement is a consequence of the coherent
coupling of two quantum dots to a joint lead in combination with a strong onsite Coulomb
interaction. In the first setup we studied the transient behavior after qickly pushing the
dot levels from above to below the Fermi energy of the lead and the system starts to charge
subsequently with two electrons. In the second setup we drive the system out of equilibrium
by applying a bias voltage between the leads in a fork-like geometry. Depending on the
polarity of the bias, we find in the steady state an enhanced probability of either the singlet
or the triplet states. In both systems a strong singlet overweight is feasible under certain
conditions. We emphasize that our proposal is based on a decided nonequilibrium effect
and, in particular, does not require a finite singlet-triplet splitting.

The spatial separation of the two dots is only limited by the phase-coherence length,
which can be several micrometer in typical semiconductor structures. Experimental real-
izations of quantum dots coherently coupled to a joint reservoir have already been demon-
strated, e.g. [41–43].

In our quantitative analysis we neglected higher-order processes such as cotunneling and
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Kondo-assisted tunneling, which become important for tunnel couplings Γ larger than kBT .
However, these do not change our predictions qualitatively. In fact, for symmetric tunnel
coupling, the Hamiltonian acquires a block structure and the Hilbert subspace containing
the triplet states decouples completely from the one for the emtpy double dot.



Chapter 5

Aharonov-Bohm Interferometry with
Quantum Dots

Quantum coherence is one of the fundamental building blocks in the physics of mesoscopic
systems and is often a key for the understanding of phenomena in nanosize devices. In
chapter 4 we discussed how a coupling of two quantum dots to a joint reservoir can lead
to the formation of quantum mechanically coherent states and subsequent correlations. A
naturally arising question is which effect coherent states and quantum correlations have on
the transport properties of the system? The problem if and to which extent the transport
through quantum dots is phase coherent is closely related but transcending. In the following
we try to tackle both questions on the same footing. We have seen that Coulomb interaction
on quantum dots plays a crucial role for the behavior of the system. Thus, we focus
especially on the issue how Coulomb interaction affects the coherence of the transport and
examine in detail possible signatures in the current or the conductance.

5.1 General Setup

In general, the current through a quantum dot does not provide any information about the
coherence of the transport. We rather have to study interference experiments to approach
this question. A convenient method is to embed quantum dots in an Aharonov-Bohm ring
structure [76] (compare also Fig. 5.1). Similar to a double-slit experiment an electron which
enters the interferometer splits into two partial waves propagating through the upper or the
lower arm, respectively. By encircling the magnetic flux Φ threading the ring, the partial
waves accumulate a mutual phase difference of ϕ = 2πΦ/Φ0 which leads to an interference
pattern at the drain. The periodicity is given by the flux quantum Φ0 = e/h.

Electrons are driven from say the left to the right reservoir by an applying a bias volt-
age across the Aharonov-Bohm interferometer. For (at least partially) coherent transport
through the quantum dots we expect manifestations of interference in the current, i.e.
periodic signatures depending on the magnetic flux. We can conclude that the transport
through the system is entirely coherent if the current at a given bias voltage can be com-

69
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Figure 5.1: Two quantum dots (u and d) embedded in an Aharonov-Bohm interferometer.

pletely blocked by tuning the magnetic flux, or in other words, if the interference pattern
displays fully destructive interference. This is a sufficient indicator for total coherence but
it is not a necessary one. In general, there are several mechanisms which can spoil fully
destructive interference:

i. Each arm of the Aharonov-Bohm interferometer can be imagined as bunch of trans-
mission channels with transmission probabilities Tσ(ω) for incoming electrons with
spin σ and energy ω. If there is a mismatch between the sets of transmission channels
of the upper and the lower arm, for example if the number of channels differs, we
can not expect destructive interference for the unmatching channels even though the
transport through each individual one is coherent.

ii. Provided a transmission channel, characterized by σ and ω, exists in both arms of the
interferometer, an asymmetry between the corresponding transmission probabilities
leads to a finite background even if the transport is fully coherent.

iii. A coupling of transmitted electrons to additional degrees of freedom can lead to
dephasing. If the coupling is uncorrelated for the upper and lower arm of the inter-
ferometer the coherence, and therefore the possibility for interference, is destroyed
(at least partially).

The first two mechanisms are qualitatively different from the third. They disturb the fully
destructive interference, although the actual coherence is not affected. By optimizing the
configuration of the setup, e.g. choose symmetric transmission probabilities for the upper
and the lower arm and care for equivalent transmission channels, the influence of them
can be minimized. In contrast, the third mechanism indeed destroys coherence. It is an
inherent effect of the properties of the system we probe.

To meet the demands for the reduction of the influence of the first two mechanisms
we consider in the following two nearly identical quantum dots embedded in an Aharonov-
Bohm interferometer (Fig. 5.1). Due to tunneling the dot levels broaden to a width given by
the coupling strength. If the dots are coupled equivalently to the reservoirs, the broadening
of both is the same. If the dot levels are additionally degenerate, they filter out the same
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fraction of incoming electrons in both arms, even at high temperature, high bias voltage
and arbitrary level position.

In many experimental works Aharonov-Bohm interferometers with one [79, 84, 86, 89,
90,99] or two quantum dots [41,42,103] have been realized, and a magnetic flux sensitivity
of the total current and interference effects have been observed. This indicates that the
current through quantum dots has at least phase coherent contributions. A fundamental
challenge and achievement of the experiments lies in the focus on setups in which the role
of electron-electron interaction is emphasized and investigated in a controlled way.

Our goal is to analyze in detail how Coulomb interaction on the dots can affect the
coherence of the transport. We proceed on a path initiated in Refs. [96, 98] and take into
account the full dynamics of the reduced density matrix, including all off-diagonal terms
in first and second order tunneling. Furthermore, we go beyond the linear response regime
and discuss nonequilibrium properties of the stationary state and the transport in the
interplay of interaction and coherence effects.

We model the system sketched in Fig. 5.1 with a Hamiltonian H = Hres +Hdots + Ht

consisting of the term for the leads,

Hres =
∑

r

∑
kσ

εrk a
†
rkσarkσ, (5.1)

with a joint left and right reservoir (r ∈ {L,R}), the familiar part for the double dot
system,

Hdots =
∑

i

[∑
σ

εi c
†
iσciσ + U c†i↑c

†
i↓ci↓ci↑

]
, (5.2)

comprising the quantum dots up and down, i ∈ {u, d}, with the onsite Coulomb repulsion
U , and the tunnel Hamiltonian Ht = HtL + HtR which couples the double dot system to
the reservoirs on the left and the right hand side. For reasons explained above we restrict
ourselves to a small detuning Δε := εu − εd which is at most of the order of the level
broadening implied by the tunneling, or, in the majority of cases, even to degenerate dot
energies Δε = 0. We define the mean of the spin degenerate dot energies by ε := (εu+εd)/2.
The phase which an electron accumulates while it is travelling through the ring is taken
into account by attaching phase factors to each tunnel barrier. The gauge invariance allows
us to choose a symmetric gauge, which proofs expedient for the bookkeeping, especially in
higher order tunneling. We write the coupling to the left reservoir specifically

HtL =
∑
kσ

[
tL

(
e−i ϕ

4 c†uσ + e+i ϕ
4 c†dσ

)
aLkσ + h.c.

]
(5.3)

and for the right reservoir correspondingly

HtR =
∑
kσ

[
tR

(
e+i ϕ

4 c†uσ + e−i ϕ
4 c†dσ

)
aRkσ + h.c.

]
, (5.4)

where tr ∈ �+. We emphasize that for the determination of the functions γ±ii′rσ in the
diagrammatic technique (compare Eq. (3.33) in section 3.5) it is not merely tr which has to



72 CHAPTER 5. AHARONOV-BOHM INTERFEROMETRY WITH QDS

be taken into account, but the entire tunnel matrix element. In case of the Aharonov-Bohm
interferometer it comprises in particular a phase factor which depends on the reservoir and
dot index.

For transparency and reasons explained above, we restrict ourselves to a symmetric
coupling strength of the upper and lower dot, but we explicitly allow for an asymmetry
between the left and the right reservoir. Furthermore, the tunneling is assumed to be
independent of spin and energy and we parametrize its strength by Γr = 2π t2r Nr. The
density of states of the respective reservoir is denoted by Nr. The reservoirs are assumed
to be large and in local equilibrium, with spin degenerate energies εrk. Their electrochem-
ical potentials μr are not necessarily equivalent and allow for a finite potential difference
between the left and the right hand side.

Our setup of an Aharonov-Bohm interferometer with embedded quantum dots can be
considered as a closed two terminal device in which each electron which enters the system
from the source reservoir is either transmitted to the drain or reflected back to the source.
There is no way to escape to the environment in an uncontrolled way like in an open
geometry (e.g. a usual double-slit experiment). Consequently, the Onsager relations yield a
symmetry in the linear conductance which is known as phase locking [25,77]. In particular,
the linear conductance G = ∂I/∂V |V =0 is symmetric under reversal of the magnetic flux
G(ϕ) = G(−ϕ). For higher bias voltage, i.e. if we are leaving the linear response regime,
the Onsager relations do not enforce this symmetry anymore. However, the idealized setup
with degenerate dot levels and equivalent couplings in the upper and the lower arm of the
ring possesses a mirror symmetry with respect to a horizontal axis. For this special case
the spatial symmetry implies

I(V, ϕ) = I(V,−ϕ) (5.5)

in general, and phase locking occurs even for high bias voltage. This is not necessarily
the case if we break the spatial symmetry, for instance by a finite detuning Δε, and drive
the system into a nonequilibrium situation beyond the validity of linear response. For
an Aharonov-Bohm interferometer containing a single quantum dot with onsite Coulomb
interaction this has been demonstrated explicitly in Refs. [82, 98].

5.2 Noninteracting Quantum Dots

As starting point for the discussion of quantum dots embedded in an Aharonov-Bohm
interferometer we set U = 0 and ignore the Coulomb interaction on the dots. For this
simple case we summarize some basic results and sketch properties of the transport in first
and second order in the coupling strength. The idea is to provide a reference to which we
can contrast the more complicated and multifarious behavior of the system in the presence
of strong Coulomb repulsion.

The Hilbert space of the reduced system has in general 24 = 16 dimensions. Each of the
dots can be empty, occupied with either spin, or both spins at the same time. Similar to the
discussion of the noninteracting single quantum dot in section 3.6, we can decompose the
Hamiltonian into two identical copies for each spin (if U = 0). Thus, the entire information
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of the system can be condensed into a four-dimensional, spinless Hilbert space in which
the states describe the empty system, one electron either on the upper or the lower dot,
and both dots occupied. All other states can be reconstructed by products of these.

In contrast to a single dot the reduced density matrix does not stay diagonal during
its evolution. According to the discussion of two quantum dots coupled to a joint lead in
chapter 4, the electrons may occupy coherent superposition states which, in the case of
an Aharonov-Bohm interferometer, may even be influenced by the phase induced by the
magnetic flux threading the ring. We would have a hard time trying to solve the problem
with a classical master-equation approach and Fermi’s Golden Rule, because we do not
know the basis in which the density matrix becomes diagonal at the instant of time we
are interested in. Instead, we have to follow the full dynamics, including all off-diagonal
terms.

According to the four dimensions of the Hilbert space, the reduced density matrix is
4× 4, but similar to the discussion in section 4.2, the density operator decomposes due to
particle number conservation into a direct product ρ = ρ0e ⊗ ρ1e ⊗ ρ2e of density operators
ρ0e, ρ1e and ρ2e for the empty, the singly and the doubly occupied subspaces, respectively.
The singly and doubly occupied subspaces are completely determined by the diagonal terms
or probabilities p0 and p2, respectively. The singly occupied subspace is spanned by the
states |1, 0〉 and |0, 1〉 representing the occupation of the upper or the lower dot. Besides
the corresponding diagonal probabilities pu and pd we have to respect the fact that the
dots are coupled to joint reservoirs on either side, which yields the possibility for coherent
superposition states, reflected in nonvanishing off-diagonal elements pu

d :=
〈|0, 1〉〈1, 0|〉 and

pd
u :=

〈|1, 0〉〈0, 1|〉.
We set up the kinetic equations for the reduced density matrix according to the di-

agrammatic rules in section 3.5. In first order we take into account all diagram classes
of the form depicted in Fig. 3.9. The solution of the equations in the stationary limit is
straightforward except for two cases: if the dot levels are degenerate (i.e. Δε = 0) and, at
the same time, either ϕ = 0 or the coupling to one of the reservoirs vanishes, the solution
is not unambiguously determinate. Fortunately, it is possible to solve the system in the
vicinity of these points and perform an analytical continuation. For brevity, we write the
lowest order solution of the stationary density matrix for Δε = 0 and linear response:

p
(0)
0 = (1− f)2 +O(V 2), p(0)

u = p
(0)
d = (1− f) f +O(V 2), p

(0)
2 = f 2 +O(V 2) (5.6)

for the probabilities on the diagonal, and

pu
d
(0) =

eV

2

ΓL e−i ϕ
2 − ΓR e+i ϕ

2

ΓL + ΓR
f ′ + O(V 2) and pd

u = (pu
d)

∗ (5.7)

for the off-diagonal elements, where the Fermi function f and its derivative f ′ are evaluated
at the dots’ energy ε. We note that in the linear response regime the density matrix is not
simply given by an equilibrium distribution. While the diagonal probabilities are actually
determined by their equilibrium values, the off-diagonals are not. The elements which
might appoint a designated direction in the singly occupied Hilbert subspace (even for
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Δε = 0), pu
d
(0) and pd

u
(0)

, vanish in equilibrium. However, they can give a finite contribution
to the transport in linear response (the corresponding current rates contain a term which
is constant in the bias voltage V ). Furthermore, these are the only elements which actually
depend on the phase ϕ. For finite detuning, Δε �= 0, or higher bias voltage, i.e. beyond
linear response, all matrix elements become phase dependent. This is an effect of the
coherent coupling to the joint reservoirs and possible quantum fluctuations between the
upper and the lower dot.

The total current through the device is given by

I(1) = −4
e

�

ΓLΓR

Γ

Δε2 + ΓLΓR sin2 ϕ

Δε2 + 4 ΓLΓR sin2(ϕ/2)
(fL − fR) (5.8)

which reduces to

I(1) = −2
e

�

ΓLΓR

Γ
(1 + cosϕ) (fL − fR) (5.9)

for Δε = 0. As usual we define the total coupling strength Γ := ΓL + ΓR and the Fermi
functions in the left, fL, and the right reservoir, fR, are evaluated at the mean dot energy
ε. We stress that even in lowest order in the coupling, which is often referred to as
sequential tunneling, the transport is sensitive to the magnetic flux threading the ring.
Moreover, complete destructive interference is feasible for a phase of odd multiples of π,
which indicates fully coherent transport. Inspection of the current rates yields that in
linear response the phase dependence originates solely from the off-diagonal terms. More
drastically speaking, without the possibility to occupy superposition states we would not
have any interference.

Heuristically we might draw a picture in which an electron from the left reservoir splits
into two partial waves. These enter the upper and the lower dot and form a superposition
state. As long as there is no dephasing during the delay of the partial waves until they
tunnel out to the right reservoir, they keep the information of their relative phase. If they
actually enter the right reservoir they circled a not simply-connected region which encloses
a magnetic flux. This gives rise to a relative phase ϕ, and the waves interfere with each
other. In our case there is no dephasing included in the model, such that an electron
sitting on one of the dots keeps its phase information for a much longer time than it takes
to complete two subsequent sequential tunneling processes.

One might argue that this picture contradicts the results for an Aharonov-Bohm in-
terferometer with just one embedded quantum dot. Also in that case interference signals
were found already in lowest order transport through the dot [96, 98]. However, it was
as well assumed that the tunneling processes through the dot and the reference arm were
correlated and there was no dephasing bath coupled to the system. If the partial wave
traveling through the reference arm is delayed, such that it has a finite overlap with the
wave tunneling (sequentially) through the dot, the stage is set for interference already in
lowest order. In case of an Aharonov-Bohm interferometer containing only one quantum
dot, the comparison of the current or conductance amplitudes for the entire system, and
the quantum dot and the reference arm taken apart is not that straightforward as in the
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Figure 5.2: The linear conductance G := dI/dV |V =0 is plotted in first and second order for
ΓL = ΓR = 0.3 kBT . The plots on the left show the maximal conductance for ϕ = n 2π, n ∈ �
versus the dot energy ε. On the right hand side the interference oscillations are plotted for a
fixed dot energy in comparison to the linear conductance of a single dot.

double-dot interferometer because the orders in the tunneling strength are kind of hard to
compare.

Comparison of Eq. (5.9) with the corresponding result for a single quantum dot (Eq.
(3.39)) shows that the maximal current, obtained for ϕ = n 2π where n is an integer, is
equal to the current through two quantum dots taken apart, i.e. it corresponds to the sum of
two independent channels. In particular, there is no additional factor two which we might
expect from constructive interference, familiar from the double-slit experiment (compare
also Fig. 5.2). Formally this puzzle can be solved (see e.g. Ref. [101]) by recognizing that
in the Hamiltonian for ϕ = n 2π, rewritten in terms of symmetric and antisymmetric com-
binations of dot operators, the antisymmetric superposition decouples completely, whereas
the coupling of the symmetric superposition is increased by a factor

√
2. Consequently,

we can map the system onto a single-level quantum dot with coupling strenghts 2 ΓL and
2 ΓR, twice as big as the original coupling strengths. Thus, in first order we gain just a
factor of two as compared to the original single dot. It is not until the second order where
a factor of four is feasible,

I(2) = −4
e

h
ΓLΓR (1 + cosϕ)

∂

∂ε
P

∫
dω

ω − ε
(fL(ω) − fR(ω)) (5.10)

(compare also to Eq. (3.46)). Remark: For the second order current in Eq. (5.10) we did
not set Δε = 0 explicitly. In the case of symmetrically chosen dot energies εu = ε+ Δε/2
and εd = ε−Δε/2 as defined above, the second order current becomes independent of the
small detuning Δε.

The transport through the system without interaction can actually be calculated ex-
actly. The electrical current is in general given by

I =
e

h

∑
σ

∫
dω Tσ(ω) (fL(ω) − fR(ω)) . (5.11)
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The transmission probability Tσ(ω), which we already met in section 5.1, in the discussion
of transmission channels, denotes the probability for an incoming electron with spin σ and
energy ω to be transmitted through the device. In the noninteracting case the transmission
probability can be calculated according to the Landauer-Büttiker or scattering formalism
[22–24] by the modulus squared of the total transmission amplitude for each spin channel
and given energy ω. On the other hand, it can be obtained in the tunneling picture with
single-particle (retarded) Green’s functions [39] which can be determined in equilibrium
with equations of motion, for example [101]. Both approaches have been proven to be
equivalent for an Aharonov-Bohm interferometer containing two noninteracting quantum
dots [101, 102] in the sense that they yield the same total transmission. Furthermore, it
turns out that for U = 0 phase locking appears even at finite bias voltage.

5.3 Quantum Dots with Interaction

The technological progress in confinement of electrons into small quantum dots and real-
izations of sophisticated experiments emphasizing the rich physics induced by interacting
electrons strengthen the desire for a theoretical formulation focusing on the effects of
electron-electron interaction and its influence on transport properties. From this point of
view, the virtue of the tunneling picture as compared to the scattering approach lies in
the fact that many-body effects, which enter the scene in the presence of Coulomb inter-
action on the quantum dots, can be included in a straightforward way. On the basis of the
Anderson-like model introduced in section 5.1 we study the stationary state and transport
properties of the weakly coupled double-dot Aharonov-Bohm interferometer in the case of
strong Coulomb repulsion on the dots by means of the real-time diagrammatic technique.
Regarding the evolution of the full reduced density matrix, including all off-diagonal terms,
we calculate the current in general nonequilibrium situations beyond linear response. A
systematic expansion in the coupling strength of the dots to the leads allows us to ex-
tend the calculation of lowest order tunneling to higher orders to include cotunneling and
renormalization effects.

5.3.1 Isospin

As mentioned, we choose for the interacting case a strong onsite Coulomb repulsion, U �
kBT, eV,ΓL,ΓR, which supresses double occupancy of each dot. This keeps the discussion
transparent and simplifies the bookkeeping considerably without undermining the relevant
physics. However, it is not a fundamental restriction and the generalization to arbitrary U is
straightforward. In contrast to the noninteracting case the Hamiltonian can not be mapped
onto a spinless system because of the coupling contained in the interaction term. Hence,
we have to treat the electron spins explicitly. Nevertheless, the invariance of the total
Hamiltonian under rotations in spin space implies an equivalence of elements of the reduced
density matrix which can be obtained by flipping all spins. This reduces the number of
independent density matrix elements which we actually have to calculate. Furthermore,
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the prohibition of double occupancy of each dot allows us to flatten immediately seven of
the generally sixteen dimensions of the Hilbert space of the double-dot system which is
then spanned by nine basis states |χu, χd〉 with χi ∈ {0, ↑, ↓} denoting the occupation of
dot i.

Instead of an examination in the original basis like in the noninteracting case, we
proceed with the introduction of an isospin and switch to a more physical basis {|χ〉} which
is tailored to describe the symmetries implied by the tunneling. Similar to section 4.1, the
state of the empty system is denoted by |0〉 := |0, 0〉. The doubly occupied subspace with
one electron on each dot is naturally spanned by the spin singlet |S〉 := (| ↑, ↓〉−| ↓, ↑〉)/√2
and the three triplet states |T+〉 := | ↑, ↑〉, |T0〉 := (| ↑, ↓〉+ | ↓, ↑〉)/√2 and |T−〉 := | ↓, ↓〉.
The corresponding probabilities which enter in the diagonal of the reduced density matrix
are denoted by p0 :=

〈|0〉〈0|〉, pS :=
〈|S〉〈S|〉 and pT/3 :=

〈|T0〉〈T0|
〉

=
〈|T±〉〈T±|

〉
, where

the spin symmetry of the Hamiltonian implies the equivalence of the three triplet states.
The structure of the singly occupied subspace can be described by an isospin Iσ for

each electron spin σ. It accounts for all possible rotations of orbital states, or in other
words: all possible superposition states, within the subspace spanned by |σ, 0〉 and |0, σ〉.
Additionally to the quantization axis n which is defined by the eigenstates of Iσ · n, given
by |+〉Iσ·n := |σ, 0〉 and |−〉Iσ ·n := |0, σ〉, there are two further quantization axes mL and
mR suggested by the structure of the tunnel Hamiltonians for the left and the right side,
Eqs. (5.3) and (5.4). The corresponding isospin eigenstates are given by

|+〉Iσ ·mL
:=

1√
2

(e−i ϕ
4 |σ, 0〉 + e+i ϕ

4 |0, σ〉) ,

|−〉Iσ ·mL
:=

1√
2

(e+i ϕ
4 |σ, 0〉 − e−i ϕ

4 |0, σ〉)
(5.12)

for the left, and for the right accordingly

|+〉Iσ ·mR
:=

1√
2

(e+i ϕ
4 |σ, 0〉 + e−i ϕ

4 |0, σ〉) ,

|−〉Iσ ·mR
:=

1√
2

(e−i ϕ
4 |σ, 0〉 − e+i ϕ

4 |0, σ〉) .
(5.13)

They reflect the formation of coherent superposition states and account for the accumu-
lation of a phase difference between the upper and the lower arm of the interferometer at
the same time. Electrons which enter the double-dot from the left reservoir generate an
isospin polarization in direction of mL, whereas electrons from the right are polarized in
mR-direction. Both axes are perpendicular to n and enclose an angle of ϕ, given by the
phase difference which is accumulated after encircling the magnetic flux threading the ring
once (compare also Fig. 5.3). For exemplification, we can choose our coordinate system
such that n = (0, 0, 1). In this representation the quantization axes are consequently given
by mL = (cos(ϕ/2), sin(ϕ/2), 0) and mR = (cos(ϕ/2),− sin(ϕ/2), 0).

Taking advantage of the symmetry of the Hamiltonian under rotations of the electron
spin, we summarize the isospin structure in the notion of the quantum statistical expec-
tation value I/2 = (Ix, Iy, Iz)/2 :=

〈
I↑
〉

=
〈
I↓
〉
, like in section 4.2. The singly occupied
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Figure 5.3: The quantization axes mL and mR are suggested by the symmetries of the tunnel
Hamiltonian for electrons entering the double-dot system from the left or the right reservoir.
They enclose an angle ϕ given by the magnetic flux threading the Aharonov-Bohm ring. For
symmetric coupling of the upper and lower dot to either side, mL and mR are perpendicular to
the axis n.

subspace is then sufficiently determined by the overall probability p1 to find one electron
in the double-dot system and the isospin I for the structure imposed by superpositions of
the dots’ orbital states.

5.3.2 Meir-Wingreen formula

For quantum dots without interaction we mentioned in section 5.2 the equivalence of the
total transmission probability Tσ(ω) from Eq. (5.11) in the tunneling picture and in the
scattering approach. In the presence of interaction, however, the scattering approach is
not applicable, and it has been shown, that the transmission probability or the current can
not in general be recast in terms of modulus squared transmission amplitudes. Moreover,
it seems that there is no direct physical meaning of the latter, e.g. in the sense of a
transmission probability for a specified channel. (Compare Ref. [39] and in particular for
quantum dot systems Refs. [96, 98].)

The tunneling picture turns out to be suitable for the incorporation of many-body
effects and the treatment of interacting systems. In a seminal paper Y. Meir and N. S.
Wingreen [39] derived a Landauer formula for the current through a region of interacting
electrons by using the nonequilibrium Keldysh formalism. Adapted to our model system,
which consists of two interacting quantum dots embedded in an Aharonov-Bohm ring
structure, the current can be written in the form

I =
ie

h

1

ΓL + ΓR

∫
dω tr

[
(ΓRΓL fL −ΓLΓR fR) · (G> −G<)+ (ΓRΓL −ΓLΓR) ·G<

]
(5.14)

where current conservation, IL + IR = 0, of electrons leaving or entering the left or the
right reservoir allows us to symmetrize, I := (ΓR IL − ΓL IR)/(ΓL + ΓR). For the sake of
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compactness we use a matrix notation for the tunnel coupling,

ΓL := ΓL

(
1 e+i ϕ

2

e−i ϕ
2 1

)
δσσ′ and ΓR := ΓR

(
1 e−i ϕ

2

e+i ϕ
2 1

)
δσσ′ , (5.15)

which reflects the spin conservation during tunneling (via the diagonal structure in spin
space), and the Green’s functions

G :=

(
G↑,↑ G↑,↓
G↓,↑ G↓,↓

)
with Gσ,σ′ :=

(
Guσ,uσ′ Guσ,dσ′

Gdσ,uσ′ Gdσ,dσ′

)
. (5.16)

The Keldysh Green’s functions of the dot system are defined according to Refs. [36, 37,
39], G<

iσ,jσ′(t) := i
〈
c†jσ′(0)ciσ(t)

〉
and G>

iσ,jσ′(t) := −i
〈
ciσ(t)c

†
jσ′(0)

〉
with the corresponding

Fourier transforms. To emphasize the complexity of the residual problem (the leads are
already assumed to be in local equilibrium) we remark, that all Green’s functions are

influenced by both dots. In particular, the diagonal Green’s functions, G≷
iσ,iσ, are not

simply given by the single dots’ Green’s functions. Instead, they have to be calculated in
the presence of the entire system. We perform the trace over the spin degrees of freedom
and the 2 × 2 matrices and obtain as general result

I = 4
e

h

ΓLΓR

ΓL + ΓR

∫
dω
[
(ImGr

uu + ImGr
dd) (fL − fR) +

+
i

2
cos

ϕ

2
(G>

ud −G<
ud +G>

du −G<
du) (fL − fR) +

+
1

2
sin

ϕ

2
((G>

ud −G<
ud) − (G>

du −G<
du)) (fL + fR) +

+ sin
ϕ

2
(G<

ud −G<
du)
]
, (5.17)

where we use the spin symmetry, G≷
ij := G≷

i↑,j↑ = G≷
i↓,j↓, and the relation of the greater

and lesser diagonal Green’s functions to the usual retarded Green’s functions or the corre-
sponding spectral densities, G>

ii −G<
ii = −2i ImGr

ii.
The correlators of the dot operators can be calculated systematically within the di-

agrammatic scheme in the real-time formulation. For the transport in lowest order in
the coupling we need the Green’s functions in zeroth order in Γ only. It turns out that
the off-diagonal greater and lesser Green’s functions in lowest order are determined by
the off-diagonal terms of the density matrix for each spin, multiplied with the free pro-
pagators between the creation and annihilation operators at times t0 = 0 and t. Af-
ter transformation into energy space we obtain G>

ud
(0) = G<

ud
(0) = 2πi puσ

dσ
(0) δ(ω − ε) and

G≷
du

(0)
= 2πi pdσ

uσ
(0)
δ(ω−ε), correspondingly. By way of exception we use here for a moment

the off-diagonal elements in the original basis puσ
dσ :=

〈|0, σ〉〈σ, 0|〉 and pdσ
uσ :=

〈|σ, 0〉〈0, σ|〉.
As consequence of the equivalence of the off-diagonal greater and lesser Green’s func-

tions in lowest order in the coupling strength Γ, the second and third term in the general
current formula, Eq. (5.17), vanish. The imaginary part of the retarded Green’s functions
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(or the spectral functions) in zeroth order is given by a product of a sum of diagonal el-
ements of the reduced density matrix, and the imaginary part of the resolvent stemming

from the free propagator, ImGr
ii

(0) = −π
(
p

(0)
0 + 3/4 p

(0)
1 + 1/3 p

(0)
T + 1/2 p

(0)
S

)
δ(ω − ε).

Applying the isospin notation we can express the lowest order current in the form

I(1) = 4π
e

h

ΓLΓR

ΓL + ΓR

[
− 2

(
p

(0)
0 +

3

4
p

(0)
1 +

1

3
p

(0)
T +

1

2
p

(0)
S

)
(fL − fR) −

− I(0) · (mL − mR)
]

(5.18)

where mL and mR denote the isospin directions of electrons entering from the left or the
right reservoir, and the respective Fermi functions are evaluated at the dots’ mean energy
ε.

In linear response only equilibrium values of the diagonal elements, and first order
terms (in V ) of the isospin enter the current formula or the linear conductance G(1) :=
∂I(1)/∂V |V =0, respectively. In equilibrium we expect the density matrix to be diagonal with
probabilities given by Boltzmann weights, all off-diagonal matrix elements are supposed to
vanish (we will verify this rigorously in the next subsection). Thus, the first term is given
by (

p
(0)
0 + 3/4 p

(0)
1 + 1/3 p

(0)
T + 1/2 p

(0)
S

) ∣∣∣
V =0

=
1

1 + f
, (5.19)

where the Fermi function is again evaluated at the dots’ mean energy ε. The resulting
contribution to the linear conductance represents the sum of two independent quantum
dot channels, e.g. the sum of the upper and the lower dot taken apart.

In contrast, the isospin in the second term of Eq. (5.18) contributes with a nonequi-
librium value even in linear response. Anticipating a part of the results of the following
section we give the solution of the kinetic equations for the isospin

I(0) · (mL −mR) = − eV f ′

(1 + f)3
sin2 ϕ

2
+ O(V 2) . (5.20)

Hence, the isospin, which accounts for the possibility to develop coherent superposition
states, induces a phase dependence of the transport even in lowest order tunneling and
linear response,

G(1) = −8π
e2

h

ΓLΓR

ΓL + ΓR

f ′

1 + f

(
1 − sin2(ϕ/2)

(1 + f)2

)
. (5.21)

For ϕ equal to an integer multiple of 2π the isospin contribution vanishes. The linear
conductance shows a maximum which resembles the conductance of the sum of the two
quantum dots taken apart, as mentioned (compare also the result for a single dot, Eq.
(3.44)). Like in first order in the noninteracting case, we do not get an additional factor
two from constructive interference. The maximal destructive interference is obtained at odd
multiples of π. In contrast to the noninteracting case, complete destructive interference is
not feasible. The factor 1/(1+ f)2 is always smaller than unity (or equal) and indicates an
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Figure 5.4: The first order linear conductance, G(1), is asymmetric with respect to ε = 0 due
to the particle-hole asymmetry of the interacting system (left plot). Furthermore, the coherent
contributions to the transport show a strong asymmetry between the occupied (ε < 0) and the
unoccupied side (ε > 0) of the conductance peak. In the regime in which the double dot is
predominantly occupied, the destructive interference is much weaker than for the empty system.
This indicates a relatively strong incoherent contribution to the transport through the occupied
system as compared to the empty one.

incoherent part of the transport which can not be suppressed by interference. Furthermore,
it induces an asymmetry of the interference signal between the occupied (ε < 0) and the
unoccupied side (ε > 0) of the conductance resonance, which is displayed in Fig. 5.4.
This kind of asymmetry was first predicted by J. König and Y. Gefen [96, 98] and has
been confirmed experimentally by K. Kobayashi and coworkers [99] in an Aharonov-Bohm
interferometer with a single embedded quantum dot.

Heuristically, the difference between the coherent contributions on either side of the
conductance resonance can be motivated with incoherent processes, e.g. spin-flip processes
[96, 98], which take place only if at least one of the dots is occupied.

Let us consider an incident electron with say spin up. An interference effect at the drain
is possible if the electron does not leave a trace in the setup which allows us to judge which
path the electron has taken. Specifically, a spin-flip, which might occur if one of the dots is
occupied with a spin down, destroys the coherence as well as a switching of the occupancy
of the upper and the lower dot. Even if one of the dots is occupied with a spin down
and remains the same (i.e. no spin-flip) it is possible to tell afterwards that the electron
traveled through the other dot and interference is not possible. In Fig. 5.5 we sketch
hopping processes which allow for interference because the path a transported electron
has taken is uncertain. The probability for one of these possibly interfering processes is
proportional to p0 + 1/2 p1 + 1/3 pT which, in lowest order tunneling and equilibrium, is
identical to the asymmetry factor 1/(1 + f)2.

In this framework it is intuitively clear that the coherence on the occupied side of the
conductance resonance is weaker than on the unoccupied side. If the double dot system is
basically empty, a major part of the transport is supported by processes of the first kind
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Figure 5.5: Hopping processes are sketched which allow for coherent transport of an incident
electron with spin up. The first part of each process is indicated by a solid line with index 1.
The subsequent part, completing the process, is indicated by a dashed line with index 2. Indices
a and b distinguish two possibly interfering paths which leave the respective initial state of the
double dot system unchanged. All processes which flip the spin of the transported electron or of
one of the dots can be considered as incoherent, as well as processes which switch the occupation
of the upper and the lower dot.

in Fig. 5.5, there are no incoherent processes possible (in the above named sense) which
start and end with an empty state. In contrast, if the system is predominantly occupied
with two electrons, a part of the transport is supported by coherent processes of the fourth
kind in Fig. 5.5, but additionally there is a strong incoherent contribution since there are
three further doubly occupied states (the singlet, the T0 and the spin-down triplets) which
the electron can not pass traceless.

(Remark: The same consideration for U = 0 yields a factor of one instead of an
asymmetry factor, which is consistent with our previous results of fully coherent transport.
Even if one of the dots is occupied with a spin down, a spin up electron can be transferred
through the same dot in the noninteracting case. Thus, a which-path argumentation
does not apply. On the occupied side of the conductance peak the dominating state
is occupied with four electrons, | ↑↓, ↑↓〉, and obviously allows for full interference of
transfered electrons. The respective hole-like processes are symmetric to their particle-like
counterparts on the unoccupied side of the resonance. Hence, the transport is equivalent
on both sides of the conductance peak.)

5.3.3 Stationary Equations for the Reduced Density Matrix –

Lowest Order Transport

The current formula (5.17) is convenient for transport calculations and one can extract
immediately what kind of Green’s functions play a role. The Green’s functions themselves
can be determined via the real-time diagrammatic technique by computing systematically
all contributions to the correlations of creation and annihilation operators. However, the
procedure explained in section 3.4 yields equivalent results, but, as a matter of taste, the
bookeeping displays some advantages, especially beyond linear response and if we extend
the consideration to higher order tunneling. To calculate the expectation value of the
stationary current through the system we determine the reduced density matrix up to a
given order via the solution of the kinetic equations in the stationary limit and perfom
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the trace with the current operator. A detailed comparison of the system’s state and its
transport properties allows us to find relations between evolved peculiarities of the density
matrix and signatures in the current or the conductance. Furthermore, with the kinetic
equations at hand we may even catch a glimpse of the dynamics of the system and get an
idea of the processes governing the evolution. Summarized, the named procedure promises
the yield of a more comprehensive insight and a better understanding of the behavior of
the considered system.

In lowest order the diagrammatic formulation is quite concise and transparent. We
have to regard eight topological classes of first order diagrams (see also Fig. 3.9 on page
34) to set up the kinetic equations governing the evolution of the reduced density matrix.
In combination with the nine possible basis states at the ends and between the vertices we
obtain 416 possible explicit realizations, where we already used particle conservation and
spin conservation during tunneling, i.e. we have to consider only density matrix elements
which are diagonal in the particle number and the total spin. In addition, the spin symme-
try of the system halves the number of diagrams we have to calculate and the symmetries
between upper and lower dot, left and right reservoir, and the mirror properties of the
diagrams imply further simplifications which we can use on the fly.

After summation of all diagrams in the appropriate element of the kernel the kinetic
equations become surprisingly simple. In the basis introduced above, collecting all proba-
bilities in the vector p = (p0, p1, pS, pT), we can write

d

dt
p =

∑
r=L,R

Γr

⎛⎜⎜⎝
−4 fr 1 − fr 0 0
4 fr −1 − fr 2 − 2 fr 2 − 2 fr

0 fr/2 −2 + 2 fr 0
0 3 fr/2 0 −2 + 2 fr

⎞⎟⎟⎠p +
∑

r=L,R

Γr

⎛⎜⎜⎝
2 − 2 fr

−2 + 4 fr

fr

−3 fr

⎞⎟⎟⎠ (I · mr)

d

dt
I =

∑
r=L,R

Γr

[
2 fr p0 +

(
fr − 1

2

)
p1 + (1 − fr) pS − (1 − fr) pT

]
mr −

−
∑

r=L,R

Γr (1 + fr) I + Δε (n× I) , (5.22)

with the quantization axes mr, r ∈ {L,R}, and n as explained above. As usual, we
abbreviate the Fermi distributions fr of the electrons in the left and the right reservoir,
evaluated at the mean dots’ energy ε and the electrochemical potential of the left or right
reservoir μr, respectively. The detuning Δε is assumed to be smaller or of the order of the
level broadening Γ.

Most of the time we do not spotlight the detuning, because as long as it stays among
the smallest energy scales of our system, Δε < ΓL,ΓR, it is of minor importance for the
quality of the coherence. So why do we take it into account at all and make the calculations
more complicated than necessary? The simple answer is: we would like to minimize the
risk to run into a singularity caused by an oversimplified symmetry of the idealized setup.
In a realistic situation there is always a small detuning. The cost of a bit more complexity
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during the calculation pays off if we are able to describe the properties of the system in
the vicinity of vanishing detuning and ensure a controlled behavior and an experimental
relevance of the effects we discuss. Indeed we find, that a detuning up to the order of the
level broadening gives a small correction, but does not change our results qualitatively,
as far as only the coherence is concerned. Actually, there is a symmetry broken if the
detuning is finite. As a consequence, the geometry of the setup does not yield the necessity
of phase locking beyond linear response. We place a discussion of this in a subsection on
its own and focus here on the coherence in general.

As a matter of principle, the form of the kinetic Eqs. (5.22) is very similar to Eqs. (4.9)
and (4.43). The setup consists of two quantum dots coupled to joint reservoirs on the left
and on the right hand side. Thus, we expect the isospin to play an important role for
the behavior of the system, as we have already anticipated in the preceding section. The
difference and extension of the Aharonov-Bohm ring structure compared to the fork-like
geometries in chapter 4 is the interplay of the two not necessarily parallel isospin directions
of electrons from the left and the right lead. A major advantage of the notion of the isospin
is the suggestion of quite an intuitive picture in analogy to magnetism. In this sense we can
view the left and the right lead as fully polarized in the respective isospin direction, i.e. in
the left resevoir there are exclusively isospins in mL and in the right reservoir exclusively
isospins in mR direction available. Thus, we expect a large transmission probability if the
isospins of source and drain are aligned, and a weak transmission if they are contrary. In
fact, this qualitative picture is supported by a rigorous calculation. The alignment of the
isospins is controlled via the magnetic flux or the induced phase, and a comparison to Eq.
(5.18) or (5.21), for example, yields the mentioned behavior. Fortunately, a closer look
reveals more complicated characteristics and a detailed analysis seems rewarding.

The full analytic solution of the kinetic equations in first order, Eqs. (5.22), is lengthy
and not very transparent. The yield of information that we can extract from the formulas
is limited. Thus, we give here only a simplified version for Δε = 0 and expand up to linear
order in the bias voltage. The lowest order probabilities read

p
(0)
0 =

(1 − f)2

(1 + f)2
− eV

ΓL − ΓR

ΓL + ΓR

f ′ f (3 − f − 2 f 2)

(1 + f)5
+ O(V 2) , (5.23a)

p
(0)
1 =

4 (1 − f) f

(1 + f)2
+ eV

ΓL − ΓR

ΓL + ΓR

2 f ′ f (1 − 4 f − 3 f 2)

(1 + f)5
+ O(V 2) , (5.23b)

p
(0)
S =

f 2

(1 + f)2
+ eV

ΓL − ΓR

ΓL + ΓR

f ′ f (1 + 3 f − f 3)

(1 − f) (1 + f)5
+ O(V 2) , (5.23c)

p
(0)
T =

3 f 2

(1 + f)2
+ eV

ΓL − ΓR

ΓL + ΓR

3 f ′ f 2 (1 − f − f 2)

(1 − f) (1 + f)5
+ O(V 2) . (5.23d)

Choosing the coordinate system like in the example in subsection 5.3.1 we can represent
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the isospin by its components

I(0)
x = eV

ΓL − ΓR

ΓL + ΓR

f ′ cos(ϕ/2)

(1 + f)3
+ O(V 2) , (5.24a)

I(0)
y = eV

f ′ sin(ϕ/2)

(1 + f)3
+ O(V 2) . (5.24b)

The I
(0)
z component vanishes in all orders of V .

For zero bias voltage we obtain, as expected, the equilibrium density matrix governed
by Boltzmann factors. The isospin of an individual electron, which is not driven, may point
in any direction and the quantum statistical expectation value averages to zero. Already in
first order in the bias voltage an isospin is accumulated and an imbalance between singlet
and triplet becomes apparent. Similar to the discussion in section 4.5, the bias drives the
electrons in a defined direction and leads under certain conditions to a favored isospin
polarization. The probability that two subsequent electrons from the same reservoir (and
the same isospin) form a singlet state rises. Nevertheless, the imbalance between singlet
and triplet probabilities does not affect the transport in lowest order in Γ neither in linear
response nor beyond. The first order current rates, with which the density matrix has to
be multiplied before taking the trace, is symmetric for singlet and triplet states. Hence,
the lowest order current depends only on the sum p

(0)
S + p

(0)
T (i.e. the overall probability

to find the system doubly occupied) and is not sensitive to any imbalance between singlet
and triplet.

In the coordinate representation of our choice we read directly from Eq. (5.18) that

the only isospin component which enters the first order current is the I
(0)
y component.

Employing the picture of the isospin-polarized leads we can interpret that as if on average
only the component of incoming isospins is transported which is parallel to the drain’s
polarization. The perpendicular component, represented by I

(0)
y , constitutes a measure for

the part of electrons which can not be transferred because of destructive interference. The
corresponding contribution to the transport diminishes the current supported by p

(0)
1 .

5.3.4 Singularities of the Stationary Equations

Like in the noninteracting case, the solution of the kinetic equations in the stationary
limit is in general straightforward, but there are a few regions in the parameter space in
which the first order equations can not determine the system unambiguously, even if we
additionally take into account the normalization condition, tr ρ = 1. One of these regions is
characterized by a complete symmetry of the upper and lower arm of the interferometer, i.e.
degenerate dot levels, Δε = 0, and, at the same time, no phase difference, ϕ = n 2π, n ∈ �.
In this case the isospin of electrons from the left and the right side are parallel, and the
isospin remains in the direction m := mL = mR, perpendicular to n, for all times. The
reduced Hilbert space decomposes into two decoupled parts, which we will emphasize in a
reformulated version of the kinetic equations (see Eqs. (5.27) on page 90). Consequently,
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the stationary state is not independent of the initial conditions in this regime and, therefore,
not unambiguously defined. We can circumvent this problem easily by introducing a small
coupling between the two parts of the Hilbert space. We solve the system, for instance, in
the vicinity of Δε = 0 and ϕ = n 2π and perform an analytic continuation.

Another ambiguity appears deep inside the occupied Coulomb Blockade, formally de-
signated by −ε � ΓL,ΓR, |μL|, |μR|, kBT . (On the unoccupied side, ε > 0, there is no
problem like this.) In the occupied blockade we have effectively two possible states, the
singlet and a triplet. (These are actually four states since the triplet is threefold, but
spin symmetry ensures equivalent probabilities for all triplets.) The doubly occupied state
generated by two electrons from the same reservoir is always a singlet,

(e±i ϕ
4 c†uσ′ + e∓i ϕ

4 c†dσ′)(e
±i ϕ

4 c†uσ + e∓i ϕ
4 c†dσ)|0〉 ∼ δσ′σ̄ |S〉 . (5.25)

This is exactly the argument which we used to motivate the formation of the singlet-triplet
imbalance in the fork-like systems in chapter 4. If the upper and lower dot are identical (i.e.
coupling and energy are equivalent) we necessarily need the second reservoir to generate a
triplet. In that sense a triplet is of a combined form, in which both reservoirs play a role.

Let us now assume that the system is initially in a singlet state and the dot energies
are well below the Fermi energy of the leads, −ε � ΓL,ΓR, |μL|, |μR|, kBT . In this regime
the system has no chance to relax if we only take into account first order tunneling. Thus,
the system remains in the singlet state for any time. The same applies to an initial
triplet. In the stationary limit, however, the density matrix should be independent of the
initial conditions if it is well defined. Hence, lowest order tunneling in the system under
consideration is not sufficient for a well defined stationary state deep in the occupied
Coulomb blockade. A simple analytical continuation like in the preceding case does not
yield a solution.

To get rid of this more fundamental problem we have to include higher order tunneling.
In our case, cotunneling through the doubly occupied state does the job. The initial state
can evolve and in the stationary limit the system relaxes to a uniform distribution of the
singlet and the three triplets. Technically we have to solve a combined set of equations of
first and second order,

0 =
d

dt

(
p
I

)
= (W(1) + W(2)) ·

(
p
I

)
. (5.26)

(The situation is similar to the treatment of a quantum dot coupled to ferromagnetic
leads in the Coulomb blockade in Ref. [106].) We obtain the reduced density matrix in

lowest order, determined by the equilibrium values p
(0)
S = 1/4 and p

(0)
T = 3/4, as long

as the modulus of the bias voltage is small compared to the absolute dot energy (−ε �
ΓL,ΓR, |μL|, |μR|, kBT ). However, for the extreme case, deep inside the Coulomb blockade
regime, there are much simpler schemes to describe the behavior of the system in an
adequate way, compare for instance Ref. [78].

Our goal is to address the transport regimes in the vicinity of the resonance, where first
order tunneling dominates, and the crossover to the Coulomb blockade, where cotunneling
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Figure 5.6: The sketch visualizes how the bias voltage is applied. We measure all energy levels
with respect to the mean Fermi energy of the leads εF. The bias is applied symmetrically such
that eV/kBT < 0 drives electrons from left to right and vice versa.

starts to play a major role. We do not concentrate on the behavior deep inside the Coulomb
blockade in the following, we just set the frame and make sure that the asymptotic behavior
is consistent.

5.3.5 Coherence Asymmetries in Strong Nonequilibrium

Because of symmetry reasons, the terms of the density matrix linear in V (Eqs. 5.23a et
seq.) have to be antisymmetric in the coupling to the left and the right lead if they depend
on the coupling at all (in our choice of the coordinate system, the y-component of the
isospin, for instance, which is responsible for a current contribution in linear response, Eq.
(5.21), is in first order in V independent of the coupling strength to the left and the right
reservoir (compare Eq. 5.24b)). For symmetric coupling the antisymmetric terms vanish
but they do not if the couplings to the left and the right lead are different. In the linear
conductance, Eq. (5.21), effects of asymmetric coupling do not become visible. As seen in
subsection 5.3.2 only equilibrium probabilities and a coupling-strength independent isospin
term enter the formula, thus there is only a symmetric overall factor of ΓLΓR/(ΓL + ΓR).

Nevertheless, beyond linear response we find a striking difference between the transport
through a symmetrically and an asymmetrically coupled system. While the differential con-
ductance of the symmetrically coupled system is by construction invariant under reversal
of the current which is driven by the bias voltage (at least for Δε = 0), the asymmetri-
cally coupled system does not have this property. (However, phase locking according to
Eq. (5.5) still holds as long as the detuning of the dots vanishes.) In Fig. 5.7 we give an
example how a difference between the couplings of source and drain becomes evident in the
transport properties of the system. Both plots show the first order differential conductance
dI(1)/dV versus bias voltage and phase. For the left plot the coupling to the left and the
right reservoir is equivalent, ΓL = ΓR. Phase locking is apparent for all voltages and the
transport is symmetric under reversal of the current. For the right plot we decreased the
coupling to the right reservoir, ΓR = 0.2 ΓL. Obviously, the interference becomes weak if
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Figure 5.7: The first order differential conductance dI(1)/dV is plotted versus the bias voltage
and the phase for a symmetrically and an asymmetrically coupled system at resonance, ε = 0. For
the symmetric setup (left plot) the coupling strength is ΓL = ΓR = 0.1 kBT . For the right plot we
assume an asymmetry in the coupling of ΓL = 0.1 kBT and ΓR = 0.2ΓL. The interference in the
asymmetric setup decreases considerably if electrons are pressed into the system (eV/kBT < 0).
(To clarify how the bias is applied Fig. 5.6 may help.)

the electrons are driven from the left to the right (eV/kBT < 0), whereas the oscillations
(depending on the phase ϕ) have a large amplitude if the electrons are driven from the
right to the left (eV/kBT > 0). There is even a hint for a phase switch (in the region
−3 > eV/kBT > −4). This indicates that the interference signal in the current first grows
if the driving is increased, but decreases under certain conditions if we crank up the voltage
further. The current averaged over a period of the oscillation is always monotonous and
saturates at high bias.

To gain an intuitive understanding of the behavior of the system we compare the
transport properties, especially the interference signal, with the stationary state of the
system. By applying the isospin picture we draw a physical interpretation which allows
us to predict qualitative pecularities, especially the effect of asymmetric coupling on the
interference signal. The latter is expected to be well accessible via experimental transport
investigations.

Let us first concentrate on the suppression of the coherence indicated by the comparably
small oscillations if the electrons are driven from the better coupled source to the worse
coupled drain. For comparison we plot in Fig. 5.8 the lowest order probabilities versus the
bias voltage for a fixed phase, and, in the lower plots, the phase dependence for a selected
driving. We contrast the results for the symmetric setup and the asymmetric setup to find
relevant differences connected to the suppressed coherence. We start with the focus on
the plots for ΓL = ΓR on the left hand side. As expected from the geometric symmetry
of the system all physical quantities, such as the probabilities and the conductance, are
invariant under reversal of the bias voltage. Nevertheless, an interesting feature is the
fact that the probability for the singlet state inreases with the voltage, whereas the triplet
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Figure 5.8: The zeroth order probabilities p(0) and p
(0)
2 = p

(0)
S + p

(0)
T are plotted versus the

bias voltage (upper plots) and the phase (lower plots) for symmetric (left plots) and asymmetric
coupling (rigth plots) at resonance, ε = 0. For asymmetric coupling we assume ΓR = 0.2ΓL. The
bias voltages for the phase dependent plots are selected such that dI(1)/dV (V1) = dI(1)/dV (V2),
V1 and V2 are indicated in the upper, voltage dependent plots by dotted lines.

probability decreases, i.e. a stationary imbalance between singlet and triplet is generated
in a nonequilibrium situation. This reminds us of the similar behavior in the fork system
with two quantum dots coupled to one joint source and two separate drains in sections
4.5 and 4.6. In contrast to the fork system, the quantum dots in the Aharonov-Bohm
interferometer are coupled to a joint source as well as to a joint drain, which leads to a phase
sensitivity of the imbalance between singlet and triplet. That means, in the Aharonov-
Bohm interferometer the phase is an additional parameter to control the difference between
singlet and triplet probabilities in a certain range. However, as argued above, the generated
imbalance can not affect the lowest order transport in any way.

The overall probability for the doubly occupied system decreases if we open the trans-
port window by increasing the voltage. At the same time the probability for the singly
occupied system rises. The occupation of the empty system at ε = 0 depends strongly
on the phase. While the other probabilities show on (phase) average the same qualitative
behavior as plotted for the fixed phase ϕ ≈ 0, the probability for the empty system actu-
ally decreases on average very slightly (at most 10% of its equilibrium value) but oscillates
strongly around the mean such that, depending on the actual phase, the probability for
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the empty system either increases or decreases with the driving.
The flux dependence of the probabilities in nonequilibrium is displayed in the lower

plots in Fig. 5.8. The singlet probability oscillates in phase with the probability to find the
system singly occupied, they become minimal for ϕ = n 2π. In contrast, the probabilities
for the empty system and the triplet become maximal for ϕ = n 2π. A quite interesting
detail is, that the only difference between the singlet and empty state probabilities is the
opposite phase. For ϕ = n 2π they are equivalent. From the kinetic equations (5.22) we
can read that all oscillations (as well as the imbalance between singlet and triplet) are
evoked by the isospin, i.e. they depend strongly on the structure of the singly occupied
state.

Employing the intuitive picture of aligned and misaligned isospins we draw two limiting
cases: ϕ = n 2π and ϕ = (2n+ 1) π. For each we compare the equilibrium with a nonequi-
librium situation. For ϕ = n 2π the isospin of electrons from the left lead is parallel to the
isospin of electrons from the right lead and the transport is not hindered by any antiparallel
component, or in other words, by any destructive interference. An electron with spin σ,
which enters an initially empty system occupies a |+〉Iσ ·m state, where m := mL = mR

for ϕ = n 2π. In the subsequent process the electron either leaves the double dot again,
returning the system to the empty state, or, with the same probability, a second electron
with the same isospin but opposite physical spin may enter the system, which leads to the
formation of a singlet state. In contrast, electrons with the same spin σ are blocked from
entering (for ϕ = 0, for instance, we obtain (c†uσ′+c

†
dσ′)(c†uσ+c†dσ)|0〉 ∼ (c†uσ′c

†
dσ−c†uσc

†
dσ′)|0〉).

The only way to generate a |−〉Iσ ·m state at ϕ = n 2π is to empty one of the triplets.
Once we have a |−〉Iσ ·m state, it can not decay further (similar to the discussion in section
4.1), neither can it lead to the formation of a singlet state. That means, the evolution of
triplets and |−〉Iσ ·m states decouples from the empty system, the |+〉Iσ·m states and the
singlet. This can also be seen directly from the kinetic equations (5.22) which we can
rewrite for ϕ = n 2π in the form

d

dt

⎛⎝ p0

p|+〉I·m
pS

⎞⎠ =
∑

r

Γr

⎛⎝−4 fr 2 − 2 fr 0
4 fr −2 + fr 2 − 2 fr

0 fr −2 + 2 fr

⎞⎠⎛⎝ p0

p|+〉I·m
pS

⎞⎠
d

dt

(
p|−〉I·m
pT

)
=
∑

r

Γr

(−3 fr 2 − 2 fr

3 fr −2 + 2 fr

)(
p|−〉I·m
pT

)
.

(5.27)

In particular, neither the singlet nor the empty state is affected by the triplets or the
|−〉Iσ ·m state for ϕ = n 2π. Furthermore, in the stationary limit the equations for the
empty state and the singlet are identical if the dot levels coincide with the mean Fermi
energy of the leads, ε = 0, the couplings of source and drain are equivalent, ΓL = ΓR, and
the bias voltage is applied symmetrically (in this case fsource = 1 − fdrain).

For ϕ �= n 2π the situation is sligthly more complicated since a decoupling of any kind is
not apparent. Furthermore, there exists a isospin component of electrons from the source
which is opposite to the isospin of electrons which can leave to the drain. Thus, a fraction
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of electrons interferes destructively at the drain and a part of the transport is blocked.
Similar to ϕ = n 2π, an electron with spin σ, which occupies an initially empty system,
forms a |+〉Iσ ·mL

state, where we assume the left reservoir to be the source (without loss of
generality). Again, the subsequent process either returns the system to the empty state or
forms a singlet. But in contrast to ϕ = n 2π, the probability to form a singlet is larger than
to return to the empty system because only the fraction of the isospin which is parallel to
the isospin of the drain can leave the dot. The antiparallel component is blocked, and a
finite probability for a singly occupied system remains. A complementing difference is the
fact, that for ϕ �= n 2π the |−〉Iσ ·mR

state, yielded by the decay of a triplet, is not equal to
|−〉Iσ ·mL

, but is a superposition of |+〉Iσ·mL
and |−〉Iσ ·mL

. Hence, it can not decay further
to the empty state, but the probability to form a singlet by the next electron entering from
the left becomes finite, and the singlet probability increases on cost of the triplet. A similar
discussion of the discharging of the singlet and a subsequent recharging process yields an
indirect coupling of the singlet to the triplet. The antiparallel component of the isospin
becomes largest for ϕ = (2n+1) π and therefore also the indirect crossover between singlet
and triplet has its maximum there. As a consequence, we can understand intuitively that
the probabilities for the empty system and the triplet become small for ϕ = (2n + 1) π
while the singlet probability increases.

Let us now turn to the case of asymmetric coupling and focus on the plots on the
right hand side of Fig. 5.8. It is obvious from the upper plot, that the probabilities
are not symmetric under reversal of the bias voltage any more. (Phase locking is still
present though.) If the voltage is applied such that the source is better coupled than the
drain electrons are pressed into the double dot system and accumulate. The probabilities
for double occupancy increase significantly, whereas the probability for single occupation
decreases, and the probability to find the system empty tends towards zero. The sensitivity
of the probabilities to the magnetic flux becomes negligible for high voltages in this regime.
In contrast, if the coupling of the source is worse than the coupling of the drain, the system
tends to empty, because electrons can leave the system easier than the refill process takes
place. As a consequence, the probabilities for the empty and the singly occupied system
increase, whereas the probability for double occupation decreases. The oscillations of the
probabilities are considerably stronger on the predominantly empty or singly occupied side
of the conductance peak than on the doubly occupied side.

A comparison of the probability as function of the bias voltage, its phase dependence
and, of course, the differential conductance as function of voltage and phase provokes the
conjecture that double occupancy leads to a suppression of coherence. This proposition
is consistent with our previous observations for the linear conductance depending on the
energy of the dots’ level and the phase, which we discussed in detail in subsection 5.3.2. It
can be backed up by a heuristic argumentation employing the isospin picture.

We have seen before, that transport processes which involve the empty and a singly
occupied state set the stage for isospin accumulation and an effective transport barrier
caused by interference. As soon as the isospin of electrons which enter from the source has
a component antiparallel to the isospin of electrons which can the system to the drain, an
isospin is accumulated in the system and the transfer of a fraction of incoming electrons
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Figure 5.9: The first order differential conductance dI(1)/dV is plotted for dot energies below
the mean Fermi energy of the leads, ε = −3 kBT . For the symmetric setup (left plot) the coupling
strength is ΓL = ΓR = 0.1 kBT . For the right plot we assume an asymmetry in the coupling of
ΓL = 0.1 kBT and ΓR = 0.2ΓL.

to the drain is blocked, interference takes place. Considering transport processes which
involve only singly and doubly occupied states the behavior is different. Let us assume
the system is occupied with two electrons. Since the doubly occupied subspace does not
have an isospin structure, one electron can always leave to the drain. The remaining singly
occupied state acquires an isospin complementary to the leaving electron. To complete the
cycle and return to the initial state we have to recharge the double dot with an electron
entering from the source. This is also always possible, no matter which isospin polarization
the singly occupied state has, as long as both electron spins are available. It might happen
though, that one electron spin is blocked from reentering, but the other spin will fill the
gap quickly. Hence, the simplest combinations of processes (in that sense the lowest order
processes) which model stationary transport are nearly independent of the phase if they
involve exclusively doubly and singly occupied states. From this simple argumentation
we conclude that an isospin blockade, i.e. interference, may occur for processes involving
the empty and the singly occupied state, but only rarely if exclusively singly and doubly
occupied states take part. (This argumentation does not hold if only one kind of electron
spin is available at the source, e.g. like in a ferromagnet. But in that case we are anyway
more or less back to the discussion of a spinless system which is equivalent to the double
dot without interaction. This does not show any asymmetries at all.)

On the same track we can motivate the difference in the amplitude of the probability
oscillations on the predominantly occupied side and on the rather unoccupied side of the
conductance peak. If the drain is better coupled than the source, electrons can potentially
leave the system much faster than the next electron can enter. This is the point where the
isospin blockade enters the game. If the isospin of the incoming electrons is nearly aligned
to the isospin of the outgoing ones, i.e. ϕ ≈ n 2π, the isospin filter is open. The electrons
can easily leave the system. In the contrary limit the isospin of the incoming electrons
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Figure 5.10: The zeroth order probabilities p(0) and p
(0)
2 = p

(0)
S + p

(0)
T are plotted versus the

bias voltage (upper plots) and the phase (lower plots) for dot energies below the mean Fermi
energy of the leads, ε = −3 kBT . The behavior of the symmetric setup is shown in the plots on
the left hand side. For the right plots we assume asymmetric coupling, ΓR = 0.2ΓL.

is antiparallel to the isospin of the outgoing electrons, i.e. ϕ = (2n + 1) π. The isospin
filter is closed. The electrons can not leave the system easily. In turn, the probability for
single occupation rises at cost of the empty system if we compare to ϕ = n 2π. Also the
chance that a subsequent electron leads to the formation of a singlet increases, and the
oscillation is passed to the doubly occupied states. If the source is better coupled than the
drain, electrons are pressed into the system faster than they can leave. The probability
for double occupancy grows. Consequently, most processes take place between single and
double occupation. In this regime the phase dependent isospin blockade does not play a
role. Thus, the probabilities are close to phase independent.

One of the main differences of the isospin structure in our system and the electron spin
in a quantum dot coupled to magnetic leads is visible here and plays a major role in our
argumentation. In both systems a spin or an isospin can be accumulated and the transport
may be blocked if the spins or isospins of source and drain are not aligned. In the magnetic
case the spin information is conserved even if two spins occupy the system. In contrast, the
isospin in our system exists exclusively in the singly occupied subspace. Doubly occupied
states (as well as the empty state) do not preserve this structure, the isospin gets sort
of initialized. Therefore, we are always careful to distinguish between the pictures of spin
polarized leads in the magnetic system and isospin polarized electrons which enter from the
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source or leave to the drain. The isospin is a convenient construction to describe a property
of the singly occupied state, namely the possibility for coherent superpositions. It can be
interpreted as a kind of latent and dynamic property of specified electrons but it is not
an inherent attribute of these. Furthermore, the interplay of isospin and physical electron
spin is crucially important as far as transitions between the singly and the doubly occupied
subspaces are concerned. In particular, the generation of a singlet-triplet imbalance is a
consequence of a combination of both structures.

In a second series of exemplary plots, shown in Figures 5.9 and 5.10, we tune the dot
energies off resonance, well below the mean Fermi energy of the leads. Close to equilibrium
the transport becomes exponentially small. It sets in for high voltages, when the energy
levels of the dots come into reach of the transport window opened by the bias. For equal
coupling to the left and the right lead we obtain a differential conductance which is sym-
metric under reversal of the driving. Depending on the phase, maxima of the conductance
are located at ϕ = n 2π, and destructive interference becomes strong for ϕ = (2n+ 1) π.

However, the transport for asymmetric coupling is by far more interesting. The induced
asymmetry between the two current directions, where either the source is better coupled
than the drain or vice versa, is much more pronounced than for the dots at resonance. Like
before, we find a strong suppression of the coherence, indicated by suppressed interference
oscillations, if the coupling of the source exceeds the coupling of the drain, and rather
strong oscillations if the drain is better coupled than the source. The obvious advantage of
the system tuned off resonance is, that the incoherent conductance peak for one transport
direction is clearly separated from the coherent conductance peak for the other transport
direction by a low-bias region where transport is small. From an experimental point of
view the feasibility of a measurement which can distinguish the two regimes is strongly
enhanced.

A comparison of the plots for the differential conductance and the behavior of the prob-
abilities shown in Fig. 5.10 corroborates our interpretation given above. The conjecture,
that an enhanced probability to find the system doubly occupied leads to a suppression
of coherence, is confirmed. As expected, the probabilities for the symmetrically coupled
system are invariant under reversal of the bias voltage (like the differential conductance).
Therefore, they are equivalent for both conductance peaks. The oscillations of the proba-
bilities are negligible as long as the probability for the empty state is vanishingly small. The
amplitude rises with increasing p0, as we would presume from our argumentation above.

The density matrix for unequal coupling is strongly asymmetric with respect to a rever-
sal of the bias voltage. At equilibrium the probabilities for the occupied system are already
at a high level because the dot energies are tuned well below the mean Fermi energy of
the leads. Driving the system out of equilibrium by an applied bias voltage decreases the
overall probability to find the system doubly occupied in favor of single occupation. If the
drain is better coupled than the source, the decrease is significant and the system even
starts to empty at high voltages because the recharging through the weak tunnel junction
to the source is comparably slow. The probabilities start to oscillate, resulting from an en-
abled isospin blockade. The coherent transport via singly occupied and empty states leads
to significant signatures of interference in the differential conductance (left conductance
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Figure 5.11: The first order differential conductance dI(1)/dV of the Aharonov-Bohm inter-
ferometer with dot energies below the mean Fermi energy of the leads, ε = −3 kBT , is compared
to the conductance of the two arms taken apart. Two slices, ϕ = 0 and ϕ = π, are picked from
the contour plot in Fig. 5.9 for asymmetric coupling, ΓL = 0.1 kBT and ΓR = 0.02 kBT .

peak in the right plot of Fig. 5.9). If, on the other hand, the source is better coupled than
the drain, the decrease of the overall probability for double occupancy is less pronounced.
Electrons can leave the system as soon as the dots’ levels are reached by the transport win-
dow spanned by the driving, but the recharging takes place quickly. The increase of the
empty-state probability is marginal even for high bias. In this regime the isospin blockade
is not important, and the diagonal elements of the density matrix are not very sensitive to
the magnetic flux. Incoherent processes involving singly and doubly occupied states dom-
inate the transport, such that the interference oscillations in the differential conductance
are only small (left conductance peak in the right plot of Fig. 5.9).

From Eq. (5.18) we see that the lowest order current in linear response becomes inde-
pendent of the isospin if mL and mR are parallely aligned, i.e. ϕ = n 2π. In that case the
current is identical to the current through the two arms of the interferometer taken apart.
The same conclusion is not valid beyond linear response, because the nonequilibrium den-
sity matrix does not decompose into a product of two independent quantum dots, not
even for ϕ = n 2π. Nevertheless, the presumption, that the conductance of the double-dot
system approaches the sum of the conductances of both arms of the interferometer taken
apart if the coherence is suppressed, seems to be valid. In Fig. 5.11 we plot two slices
of the differential conductance from the right plot in Fig. 5.9 for ϕ = 0 and ϕ = π and
compare them to the sum of the conductances of the two interometer’s arms taken apart.
The conductance peak for which the coherence is nearly suppressed corresponds pretty well
to the result for two independent channels.

5.3.6 Phase Switch in the Conductance Oscillations

Let us now follow the hint for the phase switch in the differential conductance of the
asymmetrically coupled system (right plot in Fig. 5.7 in the region −3 > eV/kBT > −4).
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Figure 5.12: The first order differential conductance dI(1)/dV is plotted for dot energies above
the mean Fermi energy of the leads, ε = +3 kBT . For the symmetric setup (left plot) the coupling
strength is ΓL = ΓR = 0.1 kBT . For the right plot we assume an asymmetry in the coupling of
ΓL = 0.1 kBT and ΓR = 0.2ΓL.

In the plots for the dot energies tuned off resonance well below the mean Fermi energy of
the leads (Fig. 5.9) there was no evidence for any phase switch. However, pushing the dots’
levels off resonance to the other side, well above the mean Fermi energy of the reservoirs, a
slight signature of a phase switch becomes visible even in the symmetrically coupled case.
For asymmetric coupling though, the phase switch in the differential conductance becomes
clear and obvious (compare Fig. 5.12).

How do we have to interpret this behavior? A phase switch in the differential conduc-
tance means, that the interference signal in the current has a vertex. Strictly speaking,
the amplitude of the current oscillations first increases with enhanced driving, reaches a
maximum at a certain bias, and decreases again if we crank up the voltage further. In other
words: The coherent part of the current increases with the bias up to a critical voltage
beyond which its contribution decreases again. Unfortunately, we can not rephrase the
critical value of the voltage in a transparent and physically intuitive manner. In general,
the threshold beyond which the transport becomes less coherent with increasing driving
even depends on the phase.

Nevertheless, a look at the stationary state (e.g. Fig. 5.13) may motivate and sub-
stantiate a physical interpretation. Proceeding along the path which we have already
started above, we would expect a transition from increasing to decreasing coherence at the
crossover from the transport dominated by processes involving only the empty and a singly
occupied state (strong coherence) to the transport predominantly carried by processes via
singly and doubly occupied states (weak coherence). We do not have a direct measure for
the occurence of processes involving certain states, but the behavior of the probabilities
of the density matrix may give us some support for the argumentation. In the vicinity
of a phase switch in the conductance we always find the probability for the empty state
decreasing with the driving, whereas the probability for double occupation is increasing
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Figure 5.13: The zeroth order probabilities p(0) and p
(0)
2 = p

(0)
S +p

(0)
T are plotted versus the bias

voltage (upper plots) and the phase (lower plots) for dot energies above the mean Fermi energy
of the leads, ε = +3 kBT . The left plots show the behavior of the symmetric setup, ΓL = ΓR. For
the right plots we assume asymmetric coupling, ΓR = 0.2ΓL.

and starting to play a dominant role.
A rigorous translation from the composition of the density matrix to the occurance

of transport processes is not possible, but we might argue that the current contributions
which involve only singly and doubly occupied states increase, while the contributions
which involve the empty system and a singly occupied state decrease, if the probability for
double occupation rises on cost of the probability to find the system empty. In combination
with the conjecture that double occupancy leads to a suppression of coherence we would
expect the appearance of a phase switch in the differential conductance.

5.3.7 Cotunneling – Reduced Density Matrix and Second Order

Transport

Already the lowest order shows partially coherent transport due to a good separation of
the double-dot setup from external dephasing sources. We discussed in detail how this
surprising observation can be related to the generation of coherent electronic states in the
system, and we exemplified predictions about experimentally well accessible signatures in
the conductance. For very weakly coupled quantum dots tuned close to the transport win-
dow opened by the bias voltage, ΓL,ΓR � kBT and |ε| < max{|eV/2|, kBT}, the truncation
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of the perturbation expansion after the lowest order is often a sufficiently good approxi-
mation. Towards the Coulomb blockade regime, however, the respective contributions to
the transport decay exponentially, whereas higher order terms decay only algebraically
with ε. Thus, there is a crossover at the shoulder of the resonance peaks beyond which
the transport is dominated by second order processes, the so-called cotunneling. Further-
more, if the coupling becomes stronger, higher order corrections modify the lowest order
conductance even at the resonance, quantum fluctuations start to play a role and lead to
renormalization effects. In this subsection we extend the preceding consideration and in-
clude systematically all second order contributions. This comprises cotunneling transport,
which dominates in the Coulomb blockade, as well as renormalization effects, which lead
to a modification of the position and form of the resonance but decay exponentially.

The stationary equations which we have to solve to determine the first corrections p(1)

and I(1) to the reduced density matrix have the form

0 = W(2) ·
(
p(0)

I(0)

)
+ (W − iΔ)(1) ·

(
p(1)

I(1)

)
(5.28)

where we count the orders in Γ and Δε simultaneously. That means, a first order term
may either be a product of first order in Γ and zeroth order in Δε, or vice versa. A
second order term may combine second order in Γ and zeroth oder in Δε, or first order
in Γ and first order in Δε, a product of zeroth order in Γ and second order in Δε can
not appear. In the preceding subsection we already calculated the kernel W in first order
in the coupling strength which we can (in part) recycle here. (Actually, for the matrix
(W − iΔ)(1), known from the first order equations, the evaluation of the diagrams for
Δε = 0 is sufficient. The second order matrix, W(2), however, contains also first order
diagrams with finite detuning.) As a reminder: the eight topological classes of first order
diagrams combined with the nine basis states of our Hilbert space gives us 416 possible
explicit realizations, where we already took into account particle conservation and spin
conservation during tunneling. With the spin symmetry of our system we are left with 208
diagrams which we have to calculate.

In second order in the coupling strength we have to regard 128 topological classes of
diagrams (for a compact representation see Fig. 3.11 on page 38). In combination with
the nine basis states at the ends and between the vertices we obtain in general 20448(!)
possible explicit realizations. Particle conservation and spin conservation during tunnel-
ing are already taken into account. The symmetry of the system under rotations of the
electron spin halves the number of diagrams we have to calculate (which does not mean
that we can ignore the spin within a diagram!). The symmetries between upper and
lower dot, left and right reservoir, and the mirror properties of the diagrams imply further
simplifications which make the problem treatable. Despite the comment that there is no
fundamental technical problem to push the diagrammatic perturbation expansion to higher
orders, sometimes the bookkeeping alone reaches a degree of complexity which demands
an efficient notation and, besides all convenient simplifications due to symmetries, built-in
redundancies which allow for checkups and easy debugging. On top of that, higher order
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diagrams represent high-dimensional integrals which are not always easy to treat (see also
appendix C.

In view of the large number of complicated diagrams the kinetic equations in second
order are already too extended to present in a transparent way. Nevertheless, an analytical
solution is feasible for low orders in the bias voltage. Since most parts of the corrections p(1)

and I(1) are already quite bulky in first order in the voltage, we write only the equilibrium
corrections for the probabilities (the isospin corrections follow lateron),

p
(1)
0 =

ΓL + ΓR

2π

[
−4 (1 − f)

(1 + f)2
P

∫
dω

ω − ε
f ′(ω) − ∂p

(0)
0

∂ε
P

∫
dω

ω − ε
f(ω)

]
+ O(V ) , (5.29a)

p
(1)
1 =

ΓL + ΓR

2π

[
4 (1 − 3 f)

(1 + f)2
P

∫
dω

ω − ε
f ′(ω) − ∂p

(0)
1

∂ε
P

∫
dω

ω − ε
f(ω)

]
+ O(V ) , (5.29b)

p
(1)
S =

ΓL + ΓR

2π

[
2 f

(1 + f)2
P

∫
dω

ω − ε
f ′(ω) − ∂p

(0)
S

∂ε
P

∫
dω

ω − ε
f(ω)

]
+ O(V ) , (5.29c)

p
(1)
T =

ΓL + ΓR

2π

[
6 f

(1 + f)2
P

∫
dω

ω − ε
f ′(ω) − ∂p

(0)
T

∂ε
P

∫
dω

ω − ε
f(ω)

]
+ O(V ) . (5.29d)

The Fermi functions without explicit arguments are, as usual, evaluated at the mean dot
energy ε. Each correction consists of a broadening term, which adds algebraic tails and
leads to a smoothing of the rather sharp exponential characteristics of p(0), and a term
which indicates a renormalization of the dots’ levels. The latter can be expressed by
the derivative of the corresponding lower order probability and the renormalization of the
energy. It decays exponentially but shifts the probabilities as functions of ε. This correction
reflects the influence of the coupling of the dots to the reservoirs and is due to quantum
fluctuations. In Fig. 5.14 we plot the equilibrium probabilities and illustrate the influence
of the first order corrections. Obviously, all probabilities are shifted systematically to
lower energies. Additionally, the curves are broadenend and smoothed. Intuitively, both
effects can be linked to a second order tunneling forth and back between reservoirs and
double dot system. We can imagine several possible equilibrium processes which neither
effectively transport electrons, i.e. they do not give a net current, nor they change the
charge or spin state enduringly. Nevertheless, during the process the state is changed for a
(virtually) short period of time which can lead to a finite modification of the corresponding
probabilities.

The systematic shift to lower energies can be motivated similar to a single dot. We
realize that for the empty system a tunneling forth and back of electrons of arbitrary
spin is possible for both dots, while for a system occupied with a single electron, say a
spin σ, it is only this spin which can leave to one of the reservoirs before the system is
recharged again. Thus, the number of processes which may lead to an enhancement of
the probability for single occupation at cost of the probability to find the system empty
exceeds the number of concurring processes which shift probability from the singly occupied
to the empty subspace. Consequently, we expect an increase of the probability to find the
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Figure 5.14: The influence of the first correction to the probabilities p and p2 = pS + pT are
plotted in equilibrium for ΓL = ΓR = 0.5 kBT . A renormalization of the dots’ levels to lower
energies (shifting of all probabilities) and a renormalization of the level broadening (smoothing
and expansion of the probabilities) are apparent.

system singly occupied at cost of the probability to find the system empty. The competition
between single- and double-occupation is more balanced, but if the system is predominantly
occupied with two electrons the renormalization tunneling leads as well to an increase of
the probability for single occupation at cost of the probability for double occupation.

As expected from the simple picture drawn above, the singlet-triplet imbalance vanishes
if there is no defined current direction, even if we take into account the first order correction
in Γ. Intuitively it is clear that a tunneling forth and back starting with an doubly occupied
state can not change the correlation between the upper and lower dot on average. The
operators

Oio := (e±i ϕ
4 c†uσ + e∓i ϕ

4 c†dσ)(e∓i ϕ
4 cuσ′ + e±i ϕ

4 cdσ′) , (5.30)

for instance, which represent a tunneling out and subsequent tunneling back into the double
dot, do not mix the singlet with the triplets, i.e. the singlet stays invariant. On the other
hand, the preferred intermediate (or virtual) state of a process which is composed of an
electron tunneling into the system and leaving again to a reservoir,

Ooi := (e±i ϕ
4 cuσ + e∓i ϕ

4 cdσ)(e∓i ϕ
4 c†uσ′ + e±i ϕ

4 c†dσ′) , (5.31)

depends on the initial singly occupied state, especially on its isospin polarization. In
equilibrium, however, all isospin directions in lowest order are equally distributed and
average to zero. Thus, there is no preference of either singlet or triplet correction.

Nevertheless, the first correction of the isospin does not vanish in equilibrium,

I(1)
x = 2

ΓL + ΓR

2π

cos(ϕ/2)

(1 + f)2
P

∫
dω

ω − ε
f ′(ω) + O(V ) , (5.32a)

I(1)
y = 2

ΓL − ΓR

2π

sin(ϕ/2)

(1 + f)2
P

∫
dω

ω − ε
f ′(ω) + O(V ) , (5.32b)
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except for the Iz component. The terms in Eqs. (5.32a) and (5.32b) (the coordinate
system is chosen like for Eqs. (5.24a), (5.24b)) represent broadening terms which decay
algebraically. Hence, beyond lowest order tunneling there is a favored isospin already in
equilibrium. That means, coherent superposition states are generated even if the electrons
are not driven in a particular direction. In our simple picture with electrons tunneling
forth and back between the reservoirs and the double dot system this can be motivated as
follows. Assume an electron occupying the double dot system in a localized state, either in
the upper or in the lower dot, as suggested by p(0) and I(0). It can leave the system to either
side. The subsequent recharging generates a superposition state with a preferred isospin in
mL or mR direction, respectively (this is reflected in the structure I(1) ∼ (ΓL mL+ΓR mR)).

As long as the couplings to the left and the right reservoir are equal, the tunneling forth
and back on both sides is balanced and we expect equivalent probabilities for |+〉Iσ·mL

and
|+〉Iσ·mR

, as well as for |−〉Iσ ·mL
and |−〉Iσ ·mR

states. Consequently, for our choice of the

coordinate system, the I
(1)
y component averages to zero. If one of the reservoirs is better

coupled than the other, the renormalization processes favor the better coupled side and the
probabilities for the respective superposition states are larger, the I

(1)
y component becomes

finite. However, none of the zero bias isospin corrections in first order show up in the
second order transport, it is not before the third order in which a contribution to the
current may appear.

For a finite bias voltage we find a noteworthy pecularity of the isospin correction I(1).
Already in first order in the voltage the stationary isospin is rotated out of the plane
perpendicular to n, although the coupling of the upper and lower dot is symmetric and the
dot levels are degenerate, Δε = 0. In our choice of the coordinate system this is apparent
in a non-vanishing Iz-component

I(1)
z = eV

2 sinϕ

π2

ΓLΓR

ΓL + ΓR

[
1

(1 + f)3
P

∫
dω′

ω′ − ε
P

∫
dω

ω − ω′ f
′′(ω) −

− f ′

(1 + f)4
P

∫
dω′

ω′ − ε
P

∫
dω

ω − ω′ f
′(ω)

]
+ O(V 2) . (5.33)

This quite surprising feature indicates an interference effect which is generated by directed
higher order tunneling. It leads to a phase dependent difference between the occupation
probabilities of the upper and the lower dot in a nonequilibrium situation (independent
of the detuning). The transport up to third order in Γ is not affected by this pecularity
neither in linear response nor beyond.

Actually, we can identify two effective fields which lead to the mentioned stationary
behavior of the isospin. They appear in the corresponding second order kinetic equations
in the form

d

dt
I = . . .+ (4 p0 − 2 p1 − 2 pS + pT) SI + BI × I . (5.34)

The second term, which is governed by the exchange field

BI := −2P

∫
dω′

ω′ − ε
P

∫
dω

ω − ω′

[
ΓL

2π
f ′

L(ω) +
ΓR

2π
f ′

R(ω)

] (
ΓL

2π
mL +

ΓR

2π
mR

)
, (5.35)
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leads to the exponentially decaying second term in the stationary solution for I
(1)
z (Eq.

(5.33)). The field BI acts similar to a finite detuning or, partially, like an asymmetric
coupling of the upper and the lower dot. It modifies the precession of the isospin and tilts
the axis. The direction of the latter is redefined depending on the coupling strenghts to
the left and the right reservoir and the phase induced by the magnetic flux threading the
Aharonov-Bohm ring.

The first term in the stationary solution for I
(1)
z in Eq. (5.33) decays only algebraically

in the Coulomb blockade. It originates from the first term in Eq. (5.34), which is governed
by a strange field

SI := −ΓLΓR

(2π)2
P

∫
dω′

ω′ − ε
P

∫
dω

ω − ω′
[
f ′

L(ω) − f ′
R(ω)

]
(mL ×mR) . (5.36)

In contrast to the exchange field BI, it is always parallel or antiparallel to the quantiza-
tion axis n (except for the special situation in which the isospins of the left and the right
reservoir are aligned, but in that case its influence, at least on the linear response term
of I

(1)
z , vanishes anyway). Neither its direction nor the amplitude is sensitive to an asym-

metry in the coupling. However, the strength of the field varies with the product of the
coupling strengths, ΓLΓR, and the magnetic flux. It vanishes for zero bias, i.e. it reflects
a pure nonequilibrium property of the system. Surprisingly, the field SI does not couple
to the isospin but to a combination of diagonal terms of the density matrix. Thus, it does
not contribute to a precession of any kind, which could be interpreted as a contribution
to a coherent oscillation, instead it leads to a more fundamental rotation of the isospin
polarization out of the plane perpendicular to n. An interesting detail is, that it couples
to the singlet and the triplet probabilities in a strongly asymmetric fashion.

However, as interesting as these effects are from a theoretical point of view, they do
not show up in the transport before the fourth order in the coupling strength. Thus, we
leave them for a later discussion and return our focus to the second order.

Despite the large number of diagrams, the calculation yields a surprisingly concise
equation for the second order linear conductance. Recalling the first order from Eq. (5.21),
we additionally include the detuning and utilize the resulting equation,

G(1) = −8π
e2

h

ΓLΓR

ΓL + ΓR

f ′

1 + f

Δε2 + 4 ΓLΓR

[
(1 + f)2 − sin2(ϕ/2)

]
sin2(ϕ/2)

Δε2 + 4 ΓLΓR (1 + f)2 sin2(ϕ/2)
, (5.37)

for a compact notation of parts of the second order correction.
The linear conductance in second order can be split into several constituents distin-

guished by their functional properties, G(2) = G
(2)
1 + G

(2)
2 + G

(2)
3 + G

(2)
4 . The first term

decays algebraically in the Coulomb blockade and gives the main contribution in the regime
in which cotunneling dominates the transport,

G
(2)
1 = −4

e2

h
ΓLΓR

(
1 +

cosϕ

(1 + f)2

)
P

∫
dω

ω − ε
f ′′(ω) . (5.38)

Compared to the analogous term for a single quantum dot (Eq. (3.50)), the maximal
contribution (for ϕ = n 2π) is larger than the corresponding sum of the two arms of the
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Aharonov-Bohm interferometer taken apart. Like in the noninteracting case it is the second
rather than the first order transport which gives evidence for constructive interference. As
a reminder: The first order linear conductance is at most as large as the sum of the two
arms taken apart and yields only indicators for destructive interference.

The second and third term, G
(2)
2 and G

(2)
3 , can be identified with renormalization terms.

They are closely related to the first order linear conductance and decay exponentially in the
Coulomb blockade. Their main impact is a shift and a quantitative modification of the first
order conductance, but they do not add a new qualitative behavior like the algebraically
decaying tails of G

(2)
1 . We can summarize the corresponding contributions by recycling the

expression for the first order linear conductance (Eq. (5.37)):

G
(2)
2 = −∂G

(1)

∂ε
P

∫
dω

ω − ε
γ(ω) and G

(2)
3 = −G(1) ∂

∂ε
P

∫
dω

ω − ε
γ(ω) (5.39)

with 2π γ := (ΓL + ΓR) f(ω). The correction due to a renormalization of the dots’ levels is

represented by G
(2)
2 , whereas G

(2)
3 reflects the renormalization of the level broadening.

The fourth term comprises all remaining contributions and can again be split into three
parts,

G
(2)
4 = −4

e2

h
ΓLΓR (C1 + C2 + C3)P

∫
dω

ω − ε

d

dω

[
f(ω)(1− f(ω))

]
, (5.40)

such thatG
(2)
4 = G

(2)
C1

+G
(2)
C2

+G
(2)
C3

. All three contributions are proportional to the derivative
of the principal value integral of a product of Fermi functions, and each is proportional to
an even power of sin2(ϕ/2), i.e. they do not influence the linear conductance if ϕ equals
an even multiple of π (corresponds to aligned isospins). In detail the diverse constituents
read

C1 =
Γ2

LΓ2
R(ΓL − ΓR)2

(ΓL + ΓR)2

f ′ (2 + f)

1 − f

16 sin6(ϕ/2)[
Δε2 + 4 ΓLΓR (1 + f)2 sin2(ϕ/2)

]2 , (5.41)

C2 = − Γ2
LΓ2

R

(ΓL + ΓR)2

Δε2 f ′

(1 − f)(1 + f)2

16
[
2 + f − 3 f sin2(ϕ/2)

]
sin4(ϕ/2)[

Δε2 + 4 ΓLΓR (1 + f)2 sin2(ϕ/2)
]2 , (5.42)

C3 =
Γ3

LΓ3
R

(ΓL + ΓR)2

128 f ′ sin8(ϕ/2)[
Δε2 + 4 ΓLΓR (1 + f)2 sin2(ϕ/2)

]2 , (5.43)

where the Fermi functions without explicit argument are evaluated at the mean dots’ energy
ε.

The first conductance contribution, generated by C1 and denoted by G
(2)
C1

, has very
peculiar characteristics. As function of the dots’ mean energy it decays algebraically on
the occupied side of the conductance resonance, like the cotunneling term G

(2)
1 , but it van-

ishes exponentially on the unoccupied side, like the first order term or its renormalization
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Figure 5.15: The linear conductance up to second order in the coupling strength and its
contributions are plotted for ΓL = ΓR = 0.3 kBT and Δε = 0. For the upper plots we assumed
ϕ = 0 and for the lower plots ϕ = π. The cutoff is D = 103 kBT .

corrections. Furthermore, it affects the linear conductance only if the coupling to the left
and the right reservoir is asymmetric. The second term, G

(2)
C2

, decays algebraically on both

sides of the conductance resonance and can be interpreted as a correction to G
(2)
1 due to

a finite detuning. It diminishes the absolute value of G
(2)
1 at ϕ = (2n + 1) π but leaves it

untouched at ϕ = n 2π, i.e. destructive interference is enhanced but constructive interfer-
ence is not affected by a finite detuning. The overall effect of the correction is tiny. For
reasonable parameters and a detuning comparable to the level width, the modification of
the amplitude of the oscillations is less than one percent. The third term, G

(2)
C3

, is the most
inconspicuous. It vanishes exponentially on both sides of the conductance resonance and
does not show very noticeable specifics.

In Fig. 5.15 we plot all contributions to the linear conductance up to second order for
vanishing detuning. The strong renormalization shift of the first order curve, G(1), to lower
energies, which is mainly due to the correction term G

(2)
2 , is clearly visible. The cotunneling

term, G
(2)
1 , adds its algebraically decaying tails. Additionally, it diminishes the first order

at the resonance and leads to a reduction of the oscillations at the conductance peak. We
can already estimate from a comparison of the conductance for ϕ = 0 and ϕ = π that the
oscillation on the unoccupied side of the resonance is a lot stronger than on the side on
which the double dot system is predominantly occupied.

The amplitude of the oscillations of the first and second order conductance contributions
and their sum as function of the level energies is specifically focused in Fig. 5.16. To keep
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Figure 5.16: The amplitudes of the linear conductance and its first and second order contri-
butions are plotted for ΓL = ΓR = 0.3 kBT and Δε = 0. The cutoff is D = 103 kBT .

track if the oscillations of the first and second order are in phase or in mutually opposite
phase we define the amplitude of the linear conductance A[G] := (G|ϕ=0−G|ϕ=π)/2 without
taking the absolute value. Obviously, the maximum of the oscillations is considerably
shifted to the unoccupied side of the averaged conductance resonance which is centered in
the vicinity of ε ≈ −0.75 kBT (compare Fig. 5.15). Furthermore, a closer look at the shape
of the amplitude function of G(1) + G(2) reveals quite a strong asymmetry with respect to
the maximum close to ε ≈ 0.55 kBT . In the Coulomb blockade on the unoccupied side
the amplitude approaches a multiple of the linear conductance of a single quantum dot,
G

(1)
dot +G

(2)
dot (compare also Eqs. (3.44) and (3.49) in section 3.6), but only a fraction on the

occupied side, A[G(1) +G(2)] −→ 2G
(2)
dot/(1 + f)2. (This holds for a symmetrically coupled

system, ΓL = ΓR. For asymmetric coupling there is an additional contribution from the
term G

(2)
C1

in the crossover regime between occupied side of the resonance and Coulomb
blockade. It suppresses the oscillations further, but the overall effect is less than a few
percent.) Specifically, for |ε| � ΓL,ΓR, kBT we expect the amplitude on the unoccupied
side to be approximately four times larger than on the occupied side, A[G(1) +G(2)](|ε|) ≈
4A[G(1) +G(2)](−|ε|).

In the preceding subsection 5.3.3 we discussed in detail how an asymmetry in the
coupling affects the state of the system and the signatures of coherence in the transport.
In lowest order in Γ we obtain significant characteristics only beyond linear response.
Taking into account higher order corrections, we have a conductance contribution in which
asymmetric coupling is recognizable already in linear response. To be specific, the term
G

(2)
C1

is finite only if ΓL �= ΓR. It induces an additional asymmetry between the two sides
of the conductance resonance. As mentioned, it decays algebraically on the occupied,
but exponentially on the unoccupied side of the peak. The phase of its oscillation is
opposite to the general cosine-like behavior and leads to a supression of the coherence at
the shoulder of the resonance and in the close occupied Coulomb blockade. In general, it
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Figure 5.17: The left plot shows the functions g of the coupling prefactors. As function of

the ratio of the couplings, the correction term G
(2)
C1

is non-monotonic and shows a maximum at

ΓR = (
√

5− 2) ΓL. The maximal influence of the correction term G
(2)
4 on the second order linear

conductance G(2) can be estimated from the right plot for ϕ = π, vanishing detuning, Δε = 0,
and asymmetric coupling, ΓL = 0.3 kBT and ΓR = 0.05ΓL. The cutoff is D = 103 kBT .

counteracts the interference contribution from the cotunneling term G
(2)
1 , except for the

unoccupied blockade where it vanishes exponentially. Hence, the asymmetry between the
coherent contributions on both sides of the conductance peak is enhanced qualitatively if
the coupling is asymmetric.

To get an idea about the origin of the G
(2)
C1

-term we trace it to the kinetic equations.
The first step back tells us that the hybrid algebraically-exponentially decaying term stems
exclusively from first order corrections of the reduced density matrix. For Δε = 0 we can
encircle the root further and find that only corrections of the singly occupied subspace play
a role. The singlet and the triplet contribution to the current contain also an algebraically
decaying term of that kind, but in the sum they cancel each other. It is only for Δε �= 0
where the sum of the relevant contributions from the doubly occupied subspace becomes
finite. After the second step back we find, that all respective terms of the first order
correction, which may lead to the algebraically-exponentially decaying hybrid, originate
from elements of the second order part of the kernel W(2) which couple only density matrix
elements of the doubly occupied subspace, namely singlet and triplet probabilities.

For a quantitative estimate of the impact of the hybrid G
(2)
C1

term we have to analyze its
energy dependence and also the dependence on the asymmetry of the coupling compared to
the other contributions. The linear conductance is, in general, invariant under permutation
of ΓL and ΓR due to the symmetries of the system. Hence, we can assume ΓL > ΓR ≥ 0
or ΓL = ΓR �= 0, without loss of generality. In second order we can then summarize all
coupling parameters in a prefactor of the form Γ2

L g(ΓR/ΓL) where the function g has to

be specified for each term contributing to the linear conductance. For G
(2)
1 as well as for

G
(2)
2 and G

(2)
3 , the function g is simply linear, i.e. g123(x) := x for x ∈ [0, 1]. The terms

comprised in G
(2)
4 (for vanishing detuning) are proportional to gC1(x) := x (1−x)2/(1+x)2
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and gC3(x) := x2/(1 + x)2. The corresponding curves are shown in Fig. 5.17. The term in
which we are mainly interested, gC1, is non-monotonic and has a maximum at ΓR/ΓL =√

5− 2. With increasing asymmetry in the coupling it rises slowly, reaches the maximum,
and approaches for even stronger asymmetries the linear coupling dependence of G

(2)
1 ,

G
(2)
2 and G

(2)
3 . Thus, we expect the maximal impact of G

(2)
C1

on G(2) for quite a strong
asymmetry in the coupling, where gC1 approaches g123 (and the conductance vanishes). In

the second plot in Fig. 5.17 we compare the full second order correction G(2) to the G
(2)
4

contribution for ΓR = 0.05 ΓL. We are basically concerned with the algebraic decay for
−ε > ΓL,ΓR, kBT where G

(2)
4 is essentially given by its G

(2)
C1

constituent. Obviously, the

corresponding correction to G
(2)
1 is unspectacularly small even for a strong asymmetry in

the coupling, although the qualitative behavior is kind of exceptional.
Anyway, deep inside the Coulomb blockade our standard procedure runs into a singu-

larity, and we have to solve combined equations of first and second order simultaneously
(Eq. (5.26)). The calculation is straightforward. In the limiting case −ε � ΓL,ΓR, kBT
we obtain the solution for the elements of the stationary density matrix in lowest and, in
most cases, also in first order in Γ. The probabilities read

p
(0)
0 + p

(1)
0 = 0 + O(V 2) , (5.44a)

p
(0)
1 + p

(1)
1 = −2

ΓL + ΓR

2π
P

∫
dω

ω − ε
f ′(ω) − eV

ΓL − ΓR

2π
P

∫
dω

ω − ε
f ′′(ω) + O(V 2) , (5.44b)

p
(0)
S =

1

4
+ O(V 2) , (5.44c)

p
(0)
T =

3

4
+ O(V 2) . (5.44d)

To determine the first correction of the singlet and triplet probabilities we would have
to take into account parts of the kernel in third order in the coupling strength, W(3).
Fortunately, it is only the lowest order terms of the doubly occupied subspace which enter
the current formula up to second order in this limit. The first order current rates which
are associated to the singlet and triplet contributions vanish for −ε � ΓL,ΓR, kBT . Thus,
the first order corrections of the probabilities drop out.

The solution for the stationary isospin is given by

I(0)
x + I(1)

x =
ΓL + ΓR

2π

cos(ϕ/2)

2
P

∫
dω

ω − ε
f ′(ω) +

eV

4

ΓL − ΓR

2π
P

∫
dω

ω − ε
f ′′(ω) + O(V 2) ,

(5.45a)

I(0)
y + I(1)

y =
ΓL − ΓR

2π

sin(ϕ/2)

2
P

∫
dω

ω − ε
f ′(ω) +

eV

4

ΓL − ΓR

2π
P

∫
dω

ω − ε
f ′′(ω) + O(V 2) ,

(5.45b)

I(0)
z + I(1)

z = eV
sinϕ

(2π)2

ΓLΓR

ΓL + ΓR
P

∫
dω′

ω′ − ε
P

∫
dω

ω − ω′ f
′′(ω) + O(V 2) , (5.45c)
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where we have choosen the coordinate system like in Fig. 5.3, as usual. The resulting linear
conductance,

G(1) +G(2) = −4
e2

h
ΓLΓR

(
1 +

cosϕ

4

)
P

∫
dω

ω − ε
f ′′(ω) , (5.46)

is identical to the limiting case of the cotunneling contribution G
(2)
1 . It coincides with

previous results of a rather phenomenological approach [78]. In particular, the algebraically

decaying tail of G
(2)
C1

does not play a role deep inside the Coulomb blockade. The relevant
terms in the correction of the density matrix from which the algebraic-exponential hybrid
originated are absent.

Due to the enormous amount of complicated second order diagrams, an analytical
solution of the kinetic equations for the reduced density matrix was only feasible in the
linear response regime. However, nonequilibrium effects enter via the isospin accumulation
already here. We supplement the results of a numerical approach in which all diagrams
are generated and computed automatically. This calculation can be extended to arbitrary
nonequilibrium situations and, at the same time, provides a check for the bookkeeping in
the analytical approach.

Beyond linear response the most apparent impacts of the second order correction to
the conductance are induced by the strong broadening due to cotunneling, and the renor-
malization of the dots’ levels. The latter leads to a shift of the conductance to lower
energies as already discussed in detail for linear response. Two exemplary plots of the first
order differential conductance and the differential conductance including all second order
corrections are displayed for comparison in Fig. 5.18 for a fixed magnetic flux.

The phase dependence of the differential conductance at the resonance is not changed
significantly by the second order correction (see also Fig. 5.19). Very close to the con-
ductance peaks the amplitude of the oscillations is sligthly diminished, but the specific
behavior at the shoulders is supported and continued with an algebraically decaying en-
velope. The discussed suppression of coherence by double occupancy is still feasible and
well visible at the conductance peaks for asymmetric coupling of the left and the right
reservoir. Besides the peaks, especially outside the current window opened by the bias
voltage, however, the transport in second order shows coherent oscillations even if the
system is predominantly doubly occupied. This can be read from the partial rates which
are necessary for the calculation of the current. While for the first order only the current
rates corresponding to the singly occupied subspace are phase dependent, which reflects
the mechanism of the isospin blockade, in second order also the current rates corresponding
to the empty and the doubly occupied subspace depend on the phase. Consequently, the
coherent contributions to the transport away from the resonance are more complex than
the isospin blockade at the resonance. They contain also correlated tunneling and the
coherent transfer of electrons via virtual states, i.e. actual cotunneling.

A major difficulty in the Aharonov-Bohm ring setup is to distinguish between the
different signatures of coherence in the current. The stationary state, which in general
depends on the phase and comprises the possibility for coherent superpositions and quan-
tum correlations (entanglement), is prepared at the same time as the stationary transport
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Figure 5.18: The first and second order differential conductance d(I(1) + I(2))/dV is plotted
on the right hand side versus bias voltage and the mean level energy of the dots for symmetric
coupling ΓL = ΓR = 0.3 kBT , ϕ ≈ 0 and vanishing detuning. The cutoff is D = 103 kBT .
For comparison we plot on the left hand side only the first order term dI(1)/dV . The overall
renormalization shift to lower energies is clearly visible. Furthermore, we see an asymmetry in the
broadening as function of the dots’ energy, which is a consequence of the Coulomb interaction.

establishes. The strong mutual cross-link between the state of the system and the flow of
electrons does not allow a reliable estimate of the current contribution of a certain fixed
state. For a proper modeling of the evolution and the properties in the stationary limit
we always have to consider the entire compound as a dynamical system. A possible setup
to gain more independence between the preparation of the steady state and the probed
current is introduced in the following chapter.

The plots in Fig. 5.19 give an exemplary overview and visualize how the oscillations
change for different polarities of the bias voltage. We have chosen similar parameters as
for the lowest order differential conductance in Figs. 5.7, 5.9 and 5.12 to allow for a better
comparison. The only difference is in the overall coupling strength: for the plots of the
first order differential conductance in Figs. 5.7, 5.9 and 5.12 the coupling strength is small
enough such that higher order corrections play a minor role. For the plots in Figs. 5.18
and 5.19 we increased the coupling slightly for an enhanced importance of the second
order correction. The most eye-catching difference to the first order plots is the increase or
decrease of the distance between the two conductance peaks for dot energies above or below
the mean Fermi energy of the leads, respectively. This is an effect of the renormalization
of the dot energy which is pointed out in Fig. 5.18.

5.4 Chapter Summary

In this chapter we focused on signatures of coherence in an Aharonov-Bohm interferometer
with two embedded quantum dots. We investigated the steady state and the stationary
transport through the system. All contributions of first and second order tunneling were
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Figure 5.19: The first and second order differential conductance d(I(1) +I(2))/dV is plotted for
dot energies above the mean Fermi energy of the leads, ε = +3 kBT (first row), at the resonance,
ε = 0 (center row), and below the mean Fermi energy of the leads, ε = −3 kBT (lower row). For
the symmetric setup (left column) the coupling strength is ΓL = ΓR = 0.3 kBT . For the right
column we assume an asymmetry in the coupling of ΓL = 0.3 kBT and ΓR = 0.2ΓL. The cutoff
is D = 103 kBT .
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systematically regarded, including renormalization corrections due to a finite coupling of
the dots to the reservoirs. A particular concern was to study how an onsite Coulomb
interaction affects the coherence of the transport through the dots.

We discussed in detail in which way interaction induced asymmetries in the interference
signal become well visible in an asymmetrically coupled setup in strong nonequilibrium.
Compared to numerous advanced experiments with similar setups the conditions to meet
the proper regimes are not very demanding. The experimental realization should be feasible
with nowadays technology. With the isospin picture we introduced an intuitive interpre-
tation of the relevant physical behavior and the signatures of coherence already in lowest
order transport.

Corresponding to the results for coherently coupled quantum dots the generation of a
singlet-triplet imbalance is feasible also in the biased Aharonov-Bohm setup. Additional to
the driving and the asymmetry in the coupling, the imbalance is sensitive to the Aharonov-
Bohm flux. This yields the opportunity to control the Werner fidelity in situ in a certain
range by the magnetic flux threading the ring. However, it is not possible to generate and
at the same time probe the entanglement in this geometry with the stationary transport
up to second order in the tunneling.

The analytical calculations reveal the rich flavor of properties induced by quantum
fluctuations and cotunneling in the considered interacting setup. Although many of the
(sometimes complex) pecularities give only negligible (or no) contributions to the second
order transport, they might be important for higher order corrections, e.g. in case of a
stronger coupling. However, fascinating by themselves, they may prove important pieces
for a deeper understanding of the underlying physics apart from low order transport.
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Chapter 6

Signatures of Entanglement in the
Transport

One of the most intriguing nonequilibrium effects within systems of coherently coupled
quantum dots we have encountered in this thesis is the possibility to generate spin en-
tanglement between electrons on two spatially separated quantum dots. In chapter 4 we
discussed this exciting feature in detail and proposed a scheme in which the entanglement
can be created and, in a second step, can be detected by a charge probe. The suggested
procedure (compare section 4.4) is based on time resolved manipulation and measurement,
which presumably is quite demanding to accomplish in an experimental realization. From
this point of view it is desirable to have some clear signatures in easily accessible stationary
observables like the transport.

6.1 Setup of a Hybrid System

In section 4.5 we discussed a fork system with two quantum dots coherently coupled to
a left reservoir and separate leads on the right hand side. We have seen that driving the
electrons by an applied bias voltage in a certain direction can lead to an imbalance between
singlet and triplet probabilities in the stationary state. Even a strong dominance of the
singlet over the triplet is feasible, with a Werner fidelity F > 1/2 indicating entanglement
between the spatially separated electrons on the upper and lower quantum dot. As nice as
the generation of entanglement works in this setup, the detection of the imbalance between
singlet and triplet in the transport is not that straightforward. The corresponding current
rates are identical for singlet and triplet states up to second order (and most probably
beyond). Thus, the current through the system depends on the overall probability to find
the system doubly occupied, but the deviation between singlet and triplet probabilities
does not enter.

This is different in the Aharonov-Bohm ring structure discussed in section 5.3. By
calculating the current rates in the diagrammatic formalism we find a mismatch between
the singlet and the triplet contributions to the second order transport, which depends on

113
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Figure 6.1: Two quantum dots (u and d) embedded in a fork-like structure with a joint
reservoir on the left hand side and two separate leads at the top and the bottom. The second
joint reservoir on the right hand side closes the Aharonov-Bohm subsystem and can act as a
probe for the state of the system.

the flux threading the ring. Specifically, the second order current rate in first order in the
bias voltage and for dot energies well below the Fermi energy of the leads, ε � −kBT ,
contains a term which is proportional to eV ΓLΓR (2 − cosϕ) P

∫
dω

ω−ε
f ′′(ω) for the singlet.

The respective triplet rate contains a term which oscillates contrariwise and is proportional
to eV ΓLΓR (2 + cosϕ) P

∫
dω

ω−ε
f ′′(ω). In lowest order in the coupling strength the current

rates are identical for singlet and triplets also in the Aharonov-Bohm setup.
We might conclude that there should be a clear signature of singlet vs. triplet overweight

in the interference pattern in second order transport through the Aharonov-Bohm ring
(similar to the detection scheme in Ref. [91]). Namely, we would expect a phase switch if
we traverse from the unentangled, F < 1/2, into the entangled regime, F > 1/2, or vice
versa. For F < 1/2 the triplet component dominates and contributes a (2 + cosϕ)-like
pattern, but for a singlet overweight, F > 1/2, we expect a (2 − cosϕ)-like behavior. At
F = 1/2 both interference contributions should cancel each other.

However, in general the driven system evolves into a dynamical equilibrium described
by a complicated mixed state. The latter comprises probabilities for the empty, the singly
and the doubly occupied double dot. Its stationary behavior depends strongly on the
parameters which determine the transport through the system. Conversely, the current
mirrors pecularities of the steady state (remember the role of coherent superposition states
for the oscillations in the lowest order transport). The state of the system and the observ-
able stationary transport reside in a mutual interplay. Thus, it is hard to resolve cause and
effect and distinguish between the influence of the properties of the state on the signatures
of the current and the evoked feedback. The steady state and the transport are always
strongly correlated if we juggle with the parameters of the setup. The conclusion that a



6.1. SETUP OF A HYBRID SYSTEM 115

phase switch in the current indicates the existence of entanglement is in general not valid
for the pure Aharonov-Bohm interferometer (we discussed counterexamples in chapter 5).
(In linear response, where analytical results are feasible even in second order, a singlet
triplet imbalance does not show up in the transport anyway.)

To gain a bit more independence between the preparation of the system’s state in a
nonequilibrium situation and the signatures in the transport, we suggest a hybrid system
of a fork-like structure and an Aharonov-Bohm ring as depicted in Fig. 6.1. Based on the
fork system with a joint left reservoir and separate upper and lower leads for the upper and
lower dot, respectively, we supplement a second joint reservoir on the right, which closes
the Aharonov-Bohm ring. The idea is to prepare a stationary state with a bias applied
between the joint left reservoir and the separate upper and lower leads. The Aharonov-
Bohm ring is used to probe the flux dependence of the transport supported by this state
by applying a small bias between the left and the right reservoir.

We model the system by a Hamiltonian H = Hres +Hdots +Ht consisting of a term for
the four leads

Hres =
∑

r

∑
kσ

εrk a
†
rkσarkσ (6.1)

with r ∈ {L,U,D,R}, the familiar part for the double dot system

Hdots =
∑

i

[∑
σ

εi c
†
iσciσ + U c†i↑c

†
i↓ci↓ci↑

]
, (6.2)

comprising the quantum dots up and down, i ∈ {u, d}, with the onsite Coulomb repulsion
U , and the tunnel Hamiltonian Ht = HtL +HU + HD + HtR. The tunneling between the
dots and the upper or lower reservoir is described by

HU =
∑
kσ

[
tU c

†
uσaUkσ + h.c.

]
(6.3)

for the upper dot and reservoir, and HD, respectively, for the lower pair. The coupling to
the joint leads on the left and the right side, and the phase an electron may accumulate
while traveling through the ring structure is reflected in

HtL =
∑
kσ

[
tL

(
e−i ϕ

4 c†uσ + e+i ϕ
4 c†dσ

)
aLkσ + h.c.

]
, (6.4)

and for the right reservoir correspondingly

HtR =
∑
kσ

[
tR

(
e+i ϕ

4 c†uσ + e−i ϕ
4 c†dσ

)
aRkσ + h.c.

]
. (6.5)

There is no direct coupling of the upper dot to the lower lead or vice versa. All tunneling
is taken to be independent of spin and energy. Furthermore, we choose a symmetric gauge
for the phase, and, without loss of generality, we can assume tr ∈ �+ for r ∈ {L,U,D,R}.
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The tunneling strength is parametrized by Γr = 2π t2r Nr where Nr denotes the density
of states in the respective reservoir. The leads are assumed to be in local equilibrium,
with spin degenerate energies εrk. Their electrochemical potentials μr are not necessarily
equivalent and allow for a potential difference between each pair of reservoirs.

However, for transparency we assume some symmetries between the upper and the
lower dot. Like depicted in the schematic diagram on the right hand side of Fig. 6.1, we
set the upper and the lower reservoir to the same potential, μU = μD =: μUD. Additionally,
we restrict ourselves to degenerate dot levels, εu − εd = 0, and assume symmetric coupling
strengths for the upper and the lower dot, ΓU = ΓD =: ΓUD. Nevertheless, we explicitly
allow for an asymmetry between the diverse couplings of each dot. This gives us enough
freedom to tune the system into the desired regime.

6.2 Preparation of Stationary Entangled States

For the specification of the kinetic equations governing the evolution of the reduced den-
sity matrix we choose the basis as introduced in subsection 5.3.1 for the Ahronov-Bohm
interferometer. We express the matrix elements again in a vector representation where the
probabilities are collected in p = (p0, p1, pS, pT), and the structure of the singly occupied
subspace is specified by the isospin I = (Ix, Iy, Iz). With the real-time diagrammatic tech-
nique we set up the kinetic equations for the hybrid system in lowest order in the coupling.
The equations look very similar to the corresponding equations for the bare Aharonov-
Bohm interferometer but comprise also the coupling of the upper and lower dot to the
separate leads,

d

dt
p =

∑
r=L,UD,R

Γr

⎛⎜⎜⎝
−4 fr 1 − fr 0 0
4 fr −1 − fr 2 − 2 fr 2 − 2 fr

0 fr/2 −2 + 2 fr 0
0 3 fr/2 0 −2 + 2 fr

⎞⎟⎟⎠p +
∑

r=L,R

Γr

⎛⎜⎜⎝
2 − 2 fr

−2 + 4 fr

fr

−3 fr

⎞⎟⎟⎠ (I · mr)

d

dt
I =

∑
r=L,R

Γr

[
2 fr p0 +

(
fr − 1

2

)
p1 + (1 − fr) pS − (1 − fr) pT

]
mr −

−
∑

r=L,UD,R

Γr (1 + fr) I + Δε (n× I) , (6.6)

with the quantization axes mr, r ∈ {L,R}, and n as introduced for the Aharonov-Bohm
interferometer in subsection 5.3.1. We abbreviate the Fermi distributions of the electrons
by fr which are meant to be evaluated at the dots’ mean energy ε. The index for the
respective reservoir, r ∈ {L,UD,R}, refers to the corresponding electrochemical potential
μr.

A general analytical solution of the kinetic equations in the stationary limit is feasible
but yields quite bulky results which we do not display here. Instead we set up a frame
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for the most interesting parameter regimes for our purpose and exemplify the results with
specific evaluations.

To generate and detect a singlet-triplet imbalance, the system parameters have to be
chosen specifically. As mentioned, we essentially want to use the fork subsystem to prepare
the double dot in a stationary state which should only be weakly influenced by the probe via
the joint right reservoir. Moreover, the change of the phase behavior of the probe current,
which we might expect due to a crossover from a large triplet probability to a dominating
singlet and from the consideration of the current rates for the bare Aharonov-Bohm setup,
is at least of second order in Γ. Thus, we meet the requirements of the first point with the
suggestion of the second and operate the system such that the transport from the joint left
source to the separate upper and lower drains is dominated by sequential tunneling, while
the Aharonov-Bohm ring is in the Coulomb blockade where second order processes prevail.
This is achieved by tuning the dots’ energy well below the Fermi energies of the left and
the right reservoir, and by applying only a small bias voltage across the Aharonov-Bohm
ring. In contrast, a large bias voltage between the left source and the upper and lower
drains allows for sequential transport. Furthermore, the tunnel coupling to the right lead
should be much weaker than the other ones, ΓR � ΓL,ΓUD, to ensure that the state of
the double dot is not affected by the measurement via the interferometer. In order to find
with large probability two excess electrons in the system, the rate for charging should be
much larger than for discharging, ΓL � ΓUD.

We are basically concerned with the comparison of two scenarios:

i. For vanishing bias voltage between the left and the upper/lower reservoirs the double
dot remains in equilibrium, and F = 1/4.

ii. By applying a high bias voltage between the left and the upper/lower reservoirs the
double dot is driven out of equilibrium and charged from the joint source electrode.
A singlet-triplet imbalance with F > 1/2 is generated.

From the fork system (sections 4.5 and 4.6, especially Fig. 4.6) we know that the Werner
fidelity is larger than 1/2 as soon as we charge the system from the joint reservoir and the
bias is strong enough. Furthermore, there is a tradeoff between strong singlet overweight as
compared to the triplet and the overall probability to find the system doubly occupied. For
our purpose, we slightly prefer a high probability for double occupancy. The components of
the mixed state corresponding to the empty system and occupation with a single electron
should be suppressed as far as possible, such that their influence on the signatures in the
transport from the left to the right reservoir is controllable and does not mask the effects
of the doubly occupied components inextricably.

In contrast to the conventions for the bare fork or the bare Aharonov-Bohm setup
(sections 4.5, 4.6 and chapter 5), where we measured dot energies and electrochemial
potentials with respect to the mean Fermi energy of the leads and applied the bias voltage
symmetrically, we rescale the reference energy as depicted in the circuit scheme in Fig. 6.1.
We ground the left reservoir (μL = 0) and distinguish the bias voltages eVR = μR between
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Figure 6.2: Schematic energy diagrams for the hybrid system are sketched. The adjustment
in the left figure yields scenario ii, the right diagram is supposed to be close to the equilibrium
situation (scenario i). The arrows indicate expected primary (solid line) and secondary (dashed
line) tunneling processes. (The secondary processes are important for the cotunneling transport
from the left to the right reservoir.)

the joint right reservoir and ground, and eVUD = μUD between the separate leads and the
left reservoir.

In Fig. 6.2 we sketch two energy diagrams which depict the two scenarios. The dot
energies are tuned well below the Fermi energies of the left and the right reservoir, −ε �
|eVR|, kBT,ΓL,ΓR such that sequential transport through the ring becomes small. In the
left scheme the bias voltage between the left source electrode and the separate upper and
lower drains is large enough to allow for sequential tunneling in the fork subsystem which
dominates the properties of the stationary state. In particular, electrons from the joint left
reservoir induce a high probability for a singlet state as long as the charging from the joint
right reservoir is weak due to a weak coupling. The latter ensures that the in principle
undesired current from the joint right reservoir to the separate leads is much smaller than
the current from the left to the upper and lower drain. This keeps the influence on the
state small. However, we should not close the barriers to the right reservoir to far, because
we still want to be able to probe the cotunneling current through the ring. For the scheme
on the right hand side we switch off the bias voltage in the fork subsystem. In equilibrium
singlet and triplets are uniformly distributed. This constitutes the reference to which we
compare the results for the nonequilibrium behavior.

The plots in Fig. 6.3 display an exemplary evaluation of the solutions for the stationary
probabilities and the Werner fidelity. We sweep from the left scenario in Fig. 6.2 to the
right one by changing the bias voltage in the fork subsystem, eVUD. Due to the cascading
coupling strength, ΓL > ΓUD > ΓR, we find a large probability for double occupancy and
a small influence of the probe which may introduce a phase dependence of the state. We
find a large Werner fidelity for the left scenario and equipartition of singlet and triplets in
equilibrium, as expected.

Unfortunately, we can not trust the solution in Fig. 6.3 unconditionally in the entire
range. For a small bias voltage or even switched polarity, ε � eVUD, the fork subsystem
enters the cotunneling regime. Here, a reliable solution of the kinetic equations requires
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Figure 6.3: The Werner fidelity and the lowest order probabilities for the hybrid system are
plotted versus the bias voltage in the fork subsystem. The dot energies are tuned well below the
Fermi energies of the left and the right reservoir, ε = −10 kBT . According to our argumentation,
the coupling strengths are chosen such that ΓL > ΓUD > ΓR. Specifically we set ΓL = 1 kBT ,
ΓUD = 0.1 kBT , ΓR = 0.01 kBT . Since the probabilities are in general phase dependent (due to
the coupling of the probe) we pick ϕ = 0 and ϕ = π for comparison. However, in this regime
the flux dependence of the state is nearly negligible and can not even be resolved properly in the
plots for the probabilities.

to take into account higher order tunneling rates. However, in equilibrium the solution is
correct. Therefore, we restrict ourselves in the following to the comparison of the behavior
close to equilibrium and in strong nonequilibrium where the solution is definitely valid (for
weak coupling).

6.3 Probing the Singlet-Triplet Imbalance in the Trans-

port

The transport properties of the stationary state are probed with the Aharonov-Bohm
interferometer. We are especially interested in signatures which can be related to a singlet-
triplet imbalance generated by the driven fork subsystem. We will see that scenarios i)
and ii) lead to significantly different interference signatures in the transport through the
Aharonov-Bohm ring. While the equilibrium case shows a strong flux dependence and large
amplitude of the Aharonov-Bohm oscillations, they are suppressed in the nonequilibrium
case, where the Werner fidelity approaches 1/2 if the double dot is predominantly occupied
with two electrons.

To operate the Aharonov-Bohm probe in the cotunneling regime, the dot levels are
tuned well below the Fermi energies of the left and the right reservoirs, −ε� |eVR|, kBT,ΓL,ΓR.
Thus, we focus on the dominating, algebraically decaying cotunneling contributions to the
transport. The exponentially decaying renormalization corrections to the first order terms
are of minor importance, and an exhaustive second order calculation within the real-time
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diagrammatic technique is not necessary. The strategy is modified such that we employ
the full solution of the kinetic equations for the stationary density matrix in lowest order
in the coupling strength, as already exemplified in Fig. 6.3, and determine the correspond-
ing second order transition rates for electrons tunneling to the right reservoir within an
orthodox perturbation approach. This way we can combine the advantage of taking into
account the comprehensive evolution of the density matrix, including all off-diagonal terms
within a full-fledged real-time theory, and a less complicated calculation of second order
transport within a standard perturbation expansion.

To demonstrate the difference between scenario i) and ii) we calculate the linear con-
ductance through the Aharonov-Bohm interferometer. The contribution to first order in
the coupling strength is evaluated within the diagrammatic technique. It turns out to be
small due to our choice of parameters (compare also Fig. 6.5). For a controlled calculation
of the dominant second-order contribution within an orthodox perturbation expansion we
have to choose a coordinate representation in which the stationary density matrix (ob-
tained from (6.6)) is diagonal, with probabilities pχ for many-body states |χ〉. In general,
this representation depends on various parameters of the hybrid system, especially on the
bias voltage between the left reservoir and the separate upper and lower lead, the dots’
energy, and the phase, for example.

Supposed we have found the proper basis, the stationary current from the left to the
right reservoir can be expressed by the current formula

ILR = −e
∑
χ1k1

∑
χ2k2

[Rχ2k2,χ1k1 pχ1 (1 − fRk2)fLk1 − Rχ1k1,χ2k2 pχ2 (1 − fLk1)fRk2] (6.7)

where we sum over all possible intitial and final states of the system. The transition rate
between a certain initial state |χi ki〉, in which the reduced system is in state χi and an
electron in the left reservoir is in state |ki〉, to a final state |χf kf〉, for the double dot in
state |χf〉 and an electron in state |kf〉 in the right reservoir, can be expressed in terms of
the transition matrix T ,

Rf,i =
2π

�
|〈χf kf |T |χi ki〉|2 δ(Ei −Ef) (6.8)

which satisfies Rf,i = Ri,f due to detailed balance. The tunneling amplitudes in our setup
do not depend on k. We write the sums over the states of the reservoirs in continuous
form,

ILR = −2π e

�

∫
dω

∫
dω′NLNR

∑
χ1,χ2

|〈χ2 k2|T |χ1 k1〉|2 pχ1 δ(ω − ω′)
[
fL(ω) − fR(ω′)

]
,

(6.9)
with the Fermi functions fL and fR of the left and the right reservoir, respectively, and a
potential difference of μR − μL = eVR.

This yields the linear conductance

GR =
∂ILR

∂VR

∣∣∣∣
VR=0

= −e
2

h

∫
dω S(ω) · pd f

′(ω) (6.10)
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with the vector pd comprising all probabilities of the diagonalized stationary density ma-
trix. The decoration with the index should prevent a confusion with the probability vector
p from the former section(s). In pd the isospin contribution is already included, but the
representation is only valid for the very special choice of coordinates in which the density
matrix is diagonal. The components of the transfer vector S are given by

Sχi
(ω) = (2π)2NLNR

∑
χf

|〈χf kf |T |χi ki〉|2 . (6.11)

For the second order transport between the left and the right reservoir we expand the
transition matrix up to first order in the tunneling amplitudes squared, similar to Refs.
[28, 29, 78],

〈χf kf |T |χi ki〉(1) =
∑

n

〈χf kf |Ht|n〉〈n|Ht|χi ki〉
ω − En

. (6.12)

The intermediate or virtual state |n〉 has the energy En which is either 0, ε or 2ε, depending
on whether |n〉 belongs to the empty, the singly or the doubly occupied subspace. We sum
over all possible final states in Eq. (6.11), i.e. specifically we do not restrict ouselves to any
subset of processes. We allow all transitions which are feasible with the given Hamiltonian

In our model the blocks of the density matrix for the empty and the doubly occupied
system are always diagonal in the basis states |0〉, |S〉, |T0〉 and |T±〉. The corresponding
second order current rates can directly be calculated. We obtain

S
(2)
0 (ω) =

2 ΓLΓR

(ω − ε)2
(1 + cosϕ) (6.13)

for the empty system. Its contribution to the transport is negligible for a vanishing proba-
bility p

(0)
0 (compare Fig. 6.3). The most relevant contributions are expected to come from

the doubly occupied system. We have to distinguish the rates starting from an initial
singlet state and from one of the triplets,

S
(2)
S (ω) =

ΓLΓR

4 (ω − ε)2
(2 − cosϕ) , (6.14)

S
(2)
T (ω) =

ΓLΓR

4 (ω − ε)2
(2 + cosϕ) . (6.15)

The three triplet terms are equivalent and simply denoted by ST. The flux dependence is
identical to the results obtained within the full real-time diagrammatic approach for the
bare Aharonov-Bohm interferometer. In particular, the singlet and triplet contributions
oscillate with opposite phase. We emphasize that these results rely on the degeneracy of
singlet and triplets. All four constitute equivalently possible final states of cotunneling
processes with an initially doubly occupied system. If there was a large singlet-triplet
energy splitting, transitions between singlet and triplet states would be suppressed and
S

(2)
S,T(ω) = 1/4 ΓLΓR/(ω − ε)2 (1 + cosϕ) without any distinction between the singlet and

triplet contributions.
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In contrast to the blocks for the empty and the doubly occupied system, the part of
the density matrix which describes the singly occupied subspace does evolve also in the
off-diagonal. This gave rise to the introduction of the isospin which marks a main source
for many coherence effects in the system. In particular, the imbalance between singlet
and triplet probabilities finds its root in the isospin polarization. To include the isospin
structure into the calculation of the second order transport the corresponding block of the
density matrix has to be diagonalized for each parameter set (or point in time). More
specifically, for the calculation of the second order current rates for Eq. (6.7) or (6.10) we
have to find the coordinate system in which the stationary isospin points in the ez-direction.
Since we do not know the orientation before we have solved the kinetic equations, we start
with an arbitrary coordinate system and rotate it afterwards until the isospin direction
coincides with the new ẽz. In the rotated basis the density matrix is diagonal and the
probabilities of the eigenstates |+〉I·ẽz and |−〉I·ẽz are given by

p|+〉I·ẽz
= p1/2 + |I| and p|−〉I·ẽz

= p1/2 − |I| , (6.16)

respectively. The current rates for the singly occupied system have to be calculated with
the eigenstates.

A convenient first coordinate system is given by the basis in which the Hamiltonian of
the double dot is diagonal. This is the canonical basis for the diagrammatic formalism.
In our specific case {|σ, 0〉, |0, σ〉} spans the singly occupied subspace. The corresponding
second order rates read

S
(2)
|σ,0〉(ω) = S

(2)
|0,σ〉(ω) =

2 ΓLΓR

(ω − ε)2
(3 − cosϕ) . (6.17)

The transfer vector S is obviously not linear in the initial states |χi〉 (compare Eq. (6.11)),
nevertheless, we obtain a simple relation for the second order rates,

S
(2)
α|a〉+β|b〉 = |α|2 S(2)

|a〉 + |β|2 S(2)
|b〉 +

+ 2 (2π)2NLNR Re

(
α β∗ ∑

χf

〈χf kf |T |a ki〉(1)
(〈χf kf |T |b ki〉(1)

)∗)
. (6.18)

Since we already know the quadratic terms in the canonical basis, it is only the mixed term
which remains to be determined:

(2π)2NLNR

∑
χf

〈χf kf |T |(σ, 0) ki〉(1)
(〈χf kf |T |(0, σ) ki〉(1)

)∗
= −i

8 ΓLΓR

(ω − ε)2
sin(ϕ/2) .

(6.19)
The eigenvectors of the singly occupied block of the reduced density matrix can be repre-
sented by

|+〉I·ẽz =
1√
2

∑
σ

(
|σ, 0〉 +

Ix + iIy
|Ix + iIy| |0, σ〉

)
,

|−〉I·ẽz =
1√
2

∑
σ

(
Ix − iIy
|Ix + iIy| |σ, 0〉 − |0, σ〉

)
.

(6.20)
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Hence, using Eq. (6.18) with the expressions in the canonical basis the corresponding
second order rates read

S
(2)
|+〉I·ẽz

(ω) =
ΓLΓR

(ω − ε)2

[
6 − 2 cosϕ+ 4

I

|I| · (mL −mR)

]
S

(2)
|−〉I·ẽz

(ω) =
ΓLΓR

(ω − ε)2

[
6 − 2 cosϕ− 4

I

|I| · (mL − mR)

]
.

(6.21)

The transfer vector S(2) plugged into the conductance equation (6.10) yields transport
terms analogue to those within a rigorous real-time diagrammatic approach up to second
order in the coupling strength. Accordingly, we interpret the integrals as principal value
integrals, which appear naturally within the diagrammatic technique,∫

dω
f ′(ω)

(ω − ε)2
∼ lim

η↘0
Re

∫
dω

f ′(ω)

(ω − ε+ iη)2
= P

∫
dω

ω − ε
f ′′(ω) . (6.22)

Gathering all cotunneling terms corresponding to the states where the dot system is empty,
occupied with a single electron with isospin I, or occupied with two electrons either in a
singlet or a triplet state, we find the second order contribution to the linear conductance

G
(2)
R = −e

2

h
g(ϕ) ΓLΓR P

∫
dω

ω − ε
f ′′(ω) . (6.23)

The Aharonov-Bohm flux dependence is included in the dimensionless conductance g(ϕ) =∑
χ gχ(ϕ), with

g0(ϕ) = 2 (1 + cosϕ) p
(0)
0 (ϕ) , (6.24a)

g1(ϕ) = 2 (3 − cosϕ) p
(0)
1 (ϕ) + 8 (mL − mR) · I(0) , (6.24b)

gS(ϕ) = (
1

2
− 1

4
cosϕ) p

(0)
S (ϕ) , (6.24c)

gT(ϕ) = (
1

2
+

1

4
cosϕ) p

(0)
T (ϕ) . (6.24d)

The flux sensitivity of the conductance is twofold. First, the phase factors from the
tunneling Hamiltonian are taken into account in the coherent summation of processes in
the cotunneling rates, Eq. (6.11). In particular, as discussed in [91], the phase dependence
of the contributions from an inital singlet and triplet state (Equations (6.24c) and (6.24d))
are shifted relativ to each other by π. The second kind of flux dependence results from the
stationary state of the system. In general nonequilibrium situations, the reduced density
matrix, represented by p0, p1, I, pS, and pT, is influenced by the Aharonov-Bohm probe
and becomes phase sensitive. This effect is weak for weak tunnel coupling ΓR � ΓL,ΓUD

where the state of the system is only weakly influenced by the Aharonov-Bohm probe. In
the limit ΓL � ΓUD � ΓR and the double dot charged from the left reservoir the isospin
points approximately in direction of mL such that g1(ϕ) ≈ 2 (3−cosϕ) p1−8 (1−cosϕ) |I|.
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Figure 6.4: The linear conductance of the Aharonov-Bohm subsystem up to second order in the
coupling strength is plotted versus the Aharonov-Bohm phase. The parameters are ΓL = 1 kBT ,
ΓUD = 0.1 kBT , ΓR = 0.01 kBT , ε = −10 kBT and |eVR| � kBT (equivalent to Fig. 6.3). For both,
a strong bias voltage between the left, and the upper and lower reservoirs, eVUD = −20 kBT (left
plot) and equilibrium (right plot), the ideal system (i) is compared to results for singlet-triplet
decay rates of (ii) ΓST = 0.5ΓUD and (iii) ΓST = 10ΓUD.

For low dot energies in an equilibrium situation, ε � μr, the double dot is mainly
occupied with two electrons with pT ≈ 3/4 and pS ≈ 1/4. As a consequence, there is a
good visibility of the Aharonov-Bohm oscillations in scenario i),

g(i)(ϕ) ≈ 1

2
+

1

8
cosϕ . (6.25)

In contrast, for large bias voltage (scenario ii)), the phase dependence is suppressed. To
see this, we expand the density matrix for a strong asymmetry in the coupling to the
left, and the upper and lower reservoirs, x = ΓUD/ΓL � 1, and obtain p0 = O(x2), p1 =
4x/3+O(x2), I ≈ x/3mL +O(x2), pS = 1/2−x/2+O(x2), and pT = 1/2−5x/6+O(x2).
Thus, the dimensionless conductance approaches

g(ii)(ϕ) ≈ 1

2
+

ΓUD

ΓL

(
14

3
− 29

12
cosϕ

)
. (6.26)

For strong asymmetry, ΓUD � ΓL, the oscillations of the singlet and triplet terms cancel
each other and the phase dependence of the conductance vanishes. This suppression of the
Aharonov-Bohm amplitude allows us to detect the singlet-triplet asymmetry generated in
the system.

The plots in Fig. 6.4 display the linear conductance up to second order in the coupling
strength based on a full solution of the stationary equations (6.6). If the system is close to
equilibrium, |eVUD| � kBT , the triplet probability is large (F ≈ 1/4), and the conductance
is dominated by a positive cosϕ kind of oscillation (compare Eq. (6.25)). In contrast, the
interference is suppressed if the system is driven into a singlet-triplet imbalance by charging
the double dot from the joint left lead, F ≈ 1/2.



6.3. PROBING THE SINGLET-TRIPLET IMBALANCE IN THE TRANSPORT 125

0

2E-5

4E-5

6E-5
G

R
 h

/e
2

Γ
ST

= 0 Γ
ST

= 0

0 0.5 1 1.5 2
ϕ/2π

0

2E-5

4E-5

6E-5

G
R
 h

/e
2

Γ
ST

= Γ
L

0 0.5 1 1.5 2
ϕ/2π

Γ
ST

= Γ
L

G
(1)

R

G
(2)

R,0

G
(2)

R,1

G
(2)

R,S

G
(2)

R,T

Figure 6.5: The individual contributions to the linear conductance are plotted with and without

singlet-triplet relaxation. The first order, G
(1)
R , and second order terms, G

(2)
R,χ, are specified for

equilibrium (right coloumn) and for strong bias voltage, eVUD = −20 kBT (left plots). The
parameters are again ΓL = 1 kBT , ΓUD = 0.1 kBT , ΓR = 0.01 kBT , ε = −10 kBT and |eVR| �
kBT .

A finite singlet-triplet relaxation reduces the imbalance between singlet and triplet
in the stationary state, and the Aharonov-Bohm oscillations are restored. To estimate
the influence of spin flip and dephasing we introduce phenomenological transition rates
between singlet and triplets like in Eq. (4.35) in section 4.4. For simplicity we choose all
rates equal to ΓST. To observe a significant suppression of the Aharonov-Bohm oscillations
a relaxation rate smaller than the current rate between source and drain is required, i.e.
ΓST < ΓUD in our case.

In Fig. 6.5 the first and second order conductance contributions are plotted individually.
The transport supported by the equilibrium state is dominated by the second order triplet
contribution and the Aharonov-Bohm oscillations are well visible. The singlet-triplet re-
laxation does not affect the behavior. If the electrons are strongly driven into the double
dot from the joint left reservoir, a singlet-triplet imbalance forms and the oscillations of
the singlet and triplet contributions cancel each other. A finite relaxation rate partially
destroys the imbalance and the cancelation. The conductance supported by the singly
occupied states becomes quite strong for a large bias voltage, however, its phase depen-
dence is weak since for strongly asymmetric coupling the isospin is parallel to mL with
|I| ≈ 1/4 p1 such that g1 ≈ 4 p1.

Remark: In the measurement scheme one has to be able to distinguish between the
conductance of the fork and the Aharonov-Bohm subsystem(s). In particular, the discus-
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sion and the displayed plots focused only on the linear conductance of the Aharonov-Bohm
ring as response to a bias voltage between the left and the joint right reservoirs. The cur-
rent between the separate leads and the right reservoir was only taken into account in the
determination of the stationary state and serves only for the preparation of the system.
Hence, in the measurement the unavoidable transport between the separate leads and the
joint right reservoir has to be filtered out. This problem can be solved by slowly sweep-
ing the voltages eVR and eVUD simultaneously (this procedure is indicated in the circuit
scheme in Fig. 6.1 by the wavy line). A determination of the responding conductances GR

and ∂IUD/∂VUD with a lock-in technique can be used to separate the influence of electrons
transferred between the separate and the joint right reservoirs.

6.4 Phase Switch in the Aharonov-Bohm signal and

Flux Sensitivity of the State

In order to spotlight effects which appear in the combined system if the coupling is not
tuned extremely asymmetrically we consider the opposite limiting case: symmetric coupling
of all reservoirs, ΓL = ΓUD = ΓR. We focus on two results. First, a phase switch in the
Aharonov-Bohm signal can be observed if the bias voltage between the joint left source
and the separate upper and lower drains is large enough for sequential tunneling in the fork
subsystem. The phase switch is a pure cotunneling effect in the Aharonov-Bohm ring. It
allows us to qualitatively estimate the dominance of cotunneling processes over sequential
tunneling. Second, a finite coupling of the joint right reservoir, which closes the Aharonov-
Bohm geometry, yields a phase dependent stationary state. In turn, the transport from
the left source electrode to the separate upper and lower drains becomes flux dependent
already in lowest order in the coupling strength.

In Fig. 6.6 we plot the diagonal terms of the density matrix versus the bias voltage in
the fork subsystem. Due to the comparatively strong coupling of the joint right reservoir
the stationary state of the system is strongly phase dependent. Moreover, in the regime
in which the low lying dot levels enter the transport window of the fork subsystem, i.e.
eVUD � ε, the probability to find the double dot singly occupied increases considerably. (In
the preceding section we tried to avoid that by choosing a strongly asymmetric coupling
in the fork subsystem, ΓL � ΓUD.) Hence, a dominant conductance contribution by g1 is
expected.

A pecularity of the symmetrically coupled setup is the bias independent ratio of singlet
and triplet probabilities for antiparallel isospin axes mL and mR, which becomes apparent
in the constant Werner fidelity for ϕ = π in Fig. 6.6. It can be understood in the isospin
picture. If the double dot is charged from the joint reservoirs (eVUD � ε) the isospin
polarizations in mL and mR direction are equiprobable since the joint left and the joint right
reservoir are coupled equivalently. However, both isospins are antiparallel for ϕ = π and
average to zero. Consequently the singlet-triplet imbalance vanishes because an essential
ingredient, a finite isospin polarization, is absent.
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Figure 6.6: The Werner fidelity and the lowest order probabilities for the hybrid system are
plotted versus the bias voltage in the fork subsystem. The dot energies are tuned well below the
Fermi energies of the left and the right reservoir, ε = −10 kBT . All coupling strengths are chosen
to be equivalent, ΓL = ΓUD = ΓR = 0.5 kBT . The phase dependence of the probabilities (due to
the coupling of the probe) is illustrated by picking ϕ = 0 and ϕ = π for comparison.

The increased probability to find only a single electron in the double dot if the bias
voltage is large enough leads to a remarkable feature in the linear conductance of the
Aharonov-Bohm subsystem. A phase switch can be observed in the second order transport
through the Aharonov-Bohm ring as function of the bias voltage between the left source
electrode and the separate upper and lower drains (compare Fig. 6.7). The phase switch
appears in the vicinity of the onset of the lowest order current in the fork subsystem and
allows us to distinguish the first and the second order transport in the Aharonov-Bohm
ring. The lowest order transport does not show any phase switch of this kind. That means
in particular, if a phase switch is observed in the interference pattern as function of the
bias voltage in the fork, we can be sure that the Aharonov-Bohm probe is operated in the
cotunneling regime.

Inspection of the individual conductance contributions in Fig. 6.7 reveals that the phase
switch can be related to a crossover from a triplet dominated transport to a prevailing
conductance contribution from the singly occupied system. As soon as the dots’ levels
enter the transport regime of the fork, the probability to find the double dot singly occupied
increases. Consequently, the corresponding conductance rises and starts to exceed all other
contributions. To understand its phase behavior and the influence of the isospin we focus
on Eq. (6.24b). For ϕ = n 2π and ϕ = (2n + 1)π the isospin does not enter the second
order conductance of the symmetric setup. Specifically, for ϕ = n 2π the quantization axes
mL and mR are parallel and mL − mR = 0. For ϕ = (2n + 1)π, on the other hand, the
expectation value of the isospin itself is zero in the symmetric setup, as dicussed above.
Thus, in both cases the isospin drops out of the dimensionless conductance term (6.24b)

which is then proportional to p
(0)
1 . A phase in between, n 2π < ϕ < (2n + 1)π, yields a

finite isospin correction to g1. Nevertheless, the general behavior is roughly proportional
to (3 − cosϕ) (the phase dependence of p

(0)
1 introduces a damping of minor importance).
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Figure 6.7: The linear conductance of the Aharonov-Bohm subsystem and its components
are plotted versus the phase. Left plot: in nonequilibrium, eVUD = −20 kBT , the double dot is
charged from the joint reservoirs. The electrons can leave the double easily to the separate upper
and lower drains. The probability to find the system singly occupied is large, thus, the conduc-
tance is dominated by the G

(2)
R,1 term (which is proportional to g1). Right plot: in equilibrium

the system is predominantly doubly occupied with a large triplet probability (F = 1/4) which
dominates the transport. The parameters are equivalent to Fig. 6.6 (ΓL = ΓUD = ΓR = 0.5 kBT ,
ε = −10 kBT , eVR � kBT ).

In contrast, the triplet contribution, which dominates the transport as long as the current
through the fork is weak, is roughly proportional to (2 + cosϕ) and oscillates contrariwise.
Hence, we find a phase switch in the second order conductance of the Aharonov-Bohm
subsystem at the crossover from the completely charged double dot to the singly occupied
system. This coincides with a bias voltage in the fork subsystem at the onset of sequential
transport.

A strong coupling of the second joint reservoir, which closes the Aharonov-Bohm geom-
etry, induces a phase dependence of the state of the system. This is manifest not only in
the isospin degree of freedom but also in the diagonal probabilities. The flux dependence of
the probabilities can be observed in the lowest order transport through the Ahronov-Bohm
ring or, even better, in the lowest order transport between the joint left and the separate
upper and lower reservoirs.

In chapter 5 we discussed in detail that an Aharonov-Bohm ring with two embedded
quantum dots can be subject to an isospin blockade which yields interference patterns
already in the transport in first order in the coupling strength. Therefore it is not very
surprising that also the lowest order linear conductance of the Aharonov-Bohm subsystem
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Figure 6.8: The first order differential conductance of the fork subsystem is plotted versus the
bias voltage. A comparison of the two curves for ϕ = 0 and ϕ = π reveals the sensitivity on the
magnetic flux threading the ring. The Aharonov-Bohm substructure leads to a phase dependence
of the stationary state which is observable in the transport through the fork. The parameters are
ΓL = ΓUD = ΓR = 0.5 kBT , ε = −7 kBT , eVR � kBT .

is sensitive to the phase. To distinguish between a bare isospin effect and the influence of
flux dependent probabilities we use the properties of the symmetrically coupled system. In
first order the isospin enters the conductance formula (as well as in second order) with a
term proportional to I(0) ·(mL−mR). (This can be derived with a lowest order perturbation
calculation for the transfer rates, similar to the scheme above, or it can be concluded from
the Meir-Wingreen formula [39]; compare also Eq. (5.18) on page 80). According to the
argumentation above, an isospin term of that form vanishes for the symmetric setup at
ϕ = n 2π and ϕ = (2n+1)π. Thus, the difference between the first order linear conductance
for ϕ = 0 and ϕ = π, displayed in the plots in Fig. 6.7, is exclusively due to the oscillation
induced by the phase dependent diagonal elements p

(0)
0 , p

(0)
1 , p

(0)
S , p

(0)
T . Nevertheless, in an

experiment it might be difficult to clearly separate the isospin contribution to the transport
(e.g. because of asymmetries in the setup, etc.).

The observation of phase dependent transport between a joint lead and the separate up-
per and lower reservoirs can give less ambiguous evidence for flux dependent probabilities.
As consequence of the influence of the Aharonov-Bohm ring on the state of the system, the
lowest order transport through the fork subsystem becomes flux sensitive. This interference
effect is solely due to the phase dependent diagonal probabilities of the stationary density
matrix. In order to sketch the phase dependence we plot the differential conductance of
the fork subsystem as function of the bias voltage for ϕ = 0 and ϕ = π in Fig. 6.8.
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Chapter 7

Capacitively Coupled Quantum Dots

Recently, very promising experimental realizations of an arrangement of two parallel quan-
tum dots with a strong capacitive coupling have been performed [107,108]. Similar systems
of interacting double-dots have attracted substantial interest in the past decade. Under
certain conditions the orbital structure of the wave functions can be expressed in terms of
a pseudospin. It has been predicted theoretically and observed experimentally that at low
temperature a Kondo correlated state of pseudospins might form. Moreover, the interplay
between quantum fluctuations of the spin and pseudospin degrees of freedom may give rise
to a SU(4) Kondo effect [109–111].

However, the investigation of interacting double-dot systems reveals many more aspects
of many-body physics and correlation effects beside the Kondo regime. Especially for
intermediate temperatures for which the Coulomb blockade is fully developed but the
Kondo effect is not yet important, or for weak to intermediate coupling of the dots to
the leads there is a lot of room beyond standard sequential tunneling. Current and noise
correlations of parallel quantum dots are, for instance, studied experimentally [112] and
theoretically [114].

In the following we focus on cotunneling and renormalization effects in the region
where first order tunneling is suppressed by the interaction between the two quantum
dots. We find asymmetries in the linear conductance which are provoked by the strong
onsite Coulomb repulsion due to the small size of the dots.

7.1 Setup and Model

Inspired by the experimental activities, especially Ref. [107, 108], we concentrate on two
parallel quantum dots with independent leads and capacitive interdot-coupling (see e.g.
Fig. 7.1). The model Hamiltonian H = Hres + Hdots + Ht comprises a part for the four
reservoirs, a term for the two dots which includes the interactions on each dot as well as
between them, and the tunnel Hamiltonian. As usual we assume the four independent
leads described by

Hres =
∑

r

∑
kσ

εrk a
†
rkσarkσ (7.1)
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Figure 7.1: The picture to the left shows a scanning electron micrograph of an experimental
setup of two capacitively coupled quantum dots [2, 107, 108]. On the right hand side the model
system is sketched schematically.

with r ∈ {Lu,Ld,Ru,Rd} to be large reservoirs in local equilibrium. Creation and annihi-
lation operators of the respective electrons with spin σ are denoted by a†rkσ and arkσ. The
double-dot system consists of two small quantum dots which are capacitively coupled. We
represent them by the term

Hdots =
∑

i

[∑
σ

εi c
†
iσciσ + U c†i↑c

†
i↓ci↓ci↑

]
+
∑
σσ′

Uud c
†
uσc

†
dσ′cdσ′cuσ (7.2)

where the upper and lower dot are distinguished by the index i ∈ {u, d} and the spin-
degenerate dot levels εi can be tuned via gate voltages. Due to the confinement of electrons
to the small size of the quantum dots we assume a large onsite Coulomb repulsion U such
that double occupancy of each level is suppressed. A central quantity for the experiment
and our considerations is the capacitive coupling between the two dots. It is accounted for
by the interaction term parametrized by Uud. The tunneling of electrons between dots and
reservoirs is summarized in the tunnel Hamiltonian

Ht =
∑
rkσi

[
tri c

†
iσarkσ + h.c.

]
. (7.3)

Since there is no direct coupling of the upper dot to a lower lead or vice versa, i.e. tLi,j =
0 = tRi,j for i �= j, we simplify the index notation and define tLi := tLi,i and tRi :=
tRi,i. Furthermore, we assume the tunneling independent of spin and energy. Hence, the
tunneling strengths can be parametrized by Γr = 2π |tr|2Nr where Nr denotes the density
of states of the respective reservoir r ∈ {Lu,Ld,Ru,Rd}.
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Figure 7.2: Sketch of the charge stability diagram for a double-dot system. By dark lines
we emphasize the part which is relevant if we concentrate only on a single level in each dot.
The energies can be tuned via the gate voltages Vgu and Vgd. The charge states of the dots
are indicated by tuples of the form (# of electrons on dot u,# of electrons on dot d). Along the
dashed line transport is suppressed due to the interaction between the upper and lower dot. Here,
as well as in the Coulomb blockade valleys between the conductance lines, charge transfer is only
possible by cotunneling and higher-order processes. If each dot contains more than a single level
the pattern is continued periodically and the well-known honeycomb lattice is formed.

7.2 Cotunneling Bridge in the Charge Stability Dia-

gram

The general structure of the Coulomb oscillation pattern which we expect from a system
of two interacting quantum dots is sketched in the charge stability diagram in Fig. 7.2. As
function of the dot levels or the corresponding gate voltages we obtain a honeycomb lattice
which is composed of Coulomb oscillations of the upper dot (indicated in the figure by the
more or less vertical solid lines) and Coulomb oscillations of the lower dot (indicated by
the nearly horizontal solid lines). Both conductance lines show a gap (indicated by the
dashed line) due to the interdot interaction which suppresses the transport through either
dot if the other dot is occupied with an excess electron. In the case of two single-level
quantum dots only the emphasized part of the diagram is relevant. The corresponding
charge states of the system are indicated tuples containing the number of excess electrons
of the upper and lower dot. (In a realistic situation the gate voltage which primarily
controls the electrostatic energy of one dot can not be shielded completely from the other
dot which is also affected. Consequently the conductance lines do not form a perpendicular
lattice. In the following theoretical discussion, however, we assume two independent dot
energies which results in a rectangular pattern.)
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Figure 7.3: Different kinds of cotunneling processes are sketched. On the right hand side
the tunneling of an electron leaving the upper dot is correlated with the tunneling of a second
electron onto the lower dot (a). In contrast, the cotunneling processes in figures b) and c) affect
only one of the dots at a time.

The solid lines forming the boundaries between the valleys of fixed charge states indicate
the regions in which first order transport is possible and a conductance peak develops. In
the Coulomb blockade valleys and in the interaction gap, indicated by the dashed line,
lowest order tunneling is exponentially suppressed. Nevertheless, cotunneling and higher
order processes give finite contributions in this regime and dominate the transport.

We concentrate on the second order corrections of the conductance. In particular we
are concerned with the cotunneling contributions in the conductance gap induced by the
interdot interaction. Additionally, we take into account all second order renormalization
terms which lead to modifications of the shape and position of the conductance peaks. In
general we can distinguish two kinds of cotunneling processes:

i. The first kind is represented by a correlated tunneling of electrons in the upper and
lower path, i.e. in both dots tunneling takes place at (nearly) the same time. In Fig.
7.3 this is depicted in sketch a). Each of these processes switches the charge state of
the double-dot from (1, 0) to (0, 1) or vice versa.

ii. The second kind is depicted in sketches b) and c) in Fig. 7.3. Here only a single dot is
affected by a tunneling process at a time. The charge state changes virtually during
the process but effectively it remains the same.

While the cotunneling of the second kind is in general not restricted to any region in
the charge stability diagram, it is more probable in the vicinity of the conductance peaks
though, the processes of the first kind can appear only at the common border of the
(1, 0) and (0, 1) Coulomb blockade cells (in general at the borders between (n + 1, n) and
(n, n+ 1)), i.e. in the conductance gap caused by the interdot interaction.

To calculate the transport through the double-dot system we employ the real-time di-
agrammatic technique. We perform an expansion in the coupling strength of the dots
to the leads up to second order and respect systematically all contributions, including
renormalization terms. Although an analytic solution of the stationary equations for the
reduced density matrix and the stationary transport is feasible in lowest order in the cou-
pling strength, the expressions are complicated and not very elucidating. Instead we use
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Figure 7.4: The linear conductance G(εu, εd) := dI/dV |V =0 of the entire double-dot system
is plotted in first order in the coupling strength (left plots) and up to second order (right plots)
as function of the dot energies εu and εd. The coupling strengths of the upper dot is chosen
symmetrically, ΓLu = ΓRu = 0.3 kBT , a bit weaker than the lower dot, ΓLd = ΓRd = 0.5 kBT .
The energy cutoff in the reservoirs is set to D = 100 kBT .

a combination of an analytical determination of the kernel W (compare section 3.3) and
the current rates (section 3.4) but solve the stationary equations numerically. A numer-
ical assistance is anyway inevitable for cotunneling and renormalization corrections. (A
fully numerical approach in which all diagrams are generated and calculated automatically
confirms the bookkeeping and yields identical results.)

In Fig. 7.4 we plot the linear conductance of the complete system as function of the
dot energies εu and εd. For comparison we show the first order contribution on the left
hand side and the first order inclusive the second order correction in the right plot. Beside
the broadening and the slight shift of the conductance peaks we find a well pronounced
cotunneling bridge which develops in the interaction gap.

For a more detailed view we plot a slice along on the degeneracy line εu = εd. The peaks
are shifted by the renormalization corrections and the algebraically decaying cotunneling
tails are clearly visible. In the interaction gap the conductance is considerably increased.
However, we find a strong asymmetry in the region between the two peaks.

An analysis of the second order terms for different sets of coupling strenghts reveals
a qualitative difference of the cotunneling tails at the shoulders of the conductance peaks
and the cotunneling bridge in the interaction gap. The former contributions for say the
lower dot are nearly independent of the coupling strength of the upper dot. In contrast,
the cotunneling bridge depends strongly on the coupling strength of both dots at the same
time as we would expect from processes like sketched in Fig. 7.3 a). A smaller coupling of
one of the dots results in a strong decrease of the conductance in the interaction gap for
both dots (this can be seen if we consider the conductances of both dots separately like
in the plots in Fig. 7.5, for instance). From a phenomenological point of view there is no
reason why the cotunneling of type a) depicted in Fig. 7.3 may yield an asymmetry, not
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Figure 7.5: The plots show the same data as in Fig. 7.4, but separated for the linear conductance
of the upper dot (upper plots) and the lower dot (lower plots). For comparison: The left plots
display sequential tunneling. Cotunneling and renormalization effects are regarded in the right
plots. The upper dot is slightly weaker coupled than the lower one. Thus, the cotunneling bridge
is slightly more pronounced on the scale of the conductance peak.
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Figure 7.6: Plot of the linear conductance along the degeneracy line, εu = εd, indicated by
the dashed diagonal in Fig. 7.4. Correlated tunneling dominates the transport in the interaction
gap. Renormalization effects lead to a strong asymmetry due to Coulomb repulsion on the dots.

even for asymmetric coupling.

In the vicinity of the conductance peaks, however, we have additional cotunneling
contributions by processes of the kind b) an c) of Fig. 7.3. From a comparison with the
corresponding terms for a single quantum dot (see subsection 3.6.2, especially Eq. (3.50)
and Fig.3.12) we might conclude that these should be symmetric to their centers at εi = εFi

and εi = εFi − Uud (where εFi denotes the mean Fermi energy of the upper or lower leads,
respectively). Nevertheless, they are not symmetric to the center of the conductance peaks.
As a consequence, the cotunneling on the unoccupied side of the conductance lines is more
pronounced than on the occupied side because the peak is shifted to lower energies by the
renormalization correction (a detailed discussion for a single dot can be found in subsection
3.6.2). Hence, the influence of the type b) and c) cotunneling contributions in the (1, 0)
and (0, 1) valleys is stronger near the border to the (1, 1) charge state than on the border
to the (0, 0) state. In general, this asymmetry can not be compensated by renormalization
corrections of the cotunneling which might appear earliest in third order in the coupling
strength. The first modification of the cotunneling bridge in the interaction gap where
processes of type a) dominate is expected not before the fourth order in Γ.

The experimental data [107,108,113] and Fig. 7.7 show a systematic asymmetry of the
conductance peaks’ shoulders. This is best visible for strongly coupled quantum dots in
which cotunneling and higher order terms are expected to play an important role. The
asymmetry coincides with our result of a strong cotunneling contribution on the high
energy side of the conductance peaks and a weaker cotunneling contribution on the low
energy side. Furthermore, from our model we obtain a behavior of the cotunneling bridge
which is roughly proportional to the product Γu Γd with Γi := ΓLi + ΓRi for i ∈ {u, d}
if processes of type a) (sketched in Fig. 7.3) dominate, i.e. apart from the cotunneling
through a single dot which is proportional to Γ2

i . That means by increasing the coupling
strength of both dots the conductance at the Coulomb peak grows linearly if it is dominated
by first order processes, whereas the cotunneling bridge increases quadratically (compare
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Figure 7.7: Plots of experimental data [2, 113] for the linear conductance of each dot. From
the upper to the lower plots the coupling strength of both dots is increased. The conductance in
the interaction gap grows faster than at the resonances.

also the experimental data in Fig. 7.7). If only the coupling of one of the dots is varied,
the influence on the cotunneling bridge is linear, but independent of the dot we probe. In
contrast, at the conductance peak only the transport of the varied quantum dot is affected.
This represents a simple test for the applicability of the considered model.

The computational procedure and our numerical implementation is capable of treating
arbitrary interaction between the dots and general nonequilibrium situations. The various
tunnel couplings can be varied independently in a wide range. However, the limits of
applicability are reached in case of strong coupling of the dots to the leads or for very low
temperature. In these cases higher order quantum fluctuations become important which
may even lead to Kondo physics.

In the experiments [107, 108] the tunnel coupling was quite strong compared to the
temperature. Although there was no clear evidence for a Kondo effect, some important
features of the measurements can not be explained with the calculation presented. Fur-
ther theoretical investigations, e.g. a renormalization group analysis, are under ongoing
discussion [115].



Chapter 8

Conclusions

Charging effects based on the quantization of the electronic charge play a fundamental role
in single-electron devices. At low temperatures and in nanoscale structures, like quantum
dots, they lead to well-known Coulomb blockade phenomena, which are observable in
pronounced signatures in transport experiments. In the limit of weak coupling of the
dot to the reservoirs these effects can be explained within a perturbation theory. Often
a classical master-equation description of sequential tunneling, with rates evaluated in a
lowest-order expansion, is already sufficient to capture the main behavior.

However, for stronger coupling or lower temperature quantum fluctuations and corre-
lated tunneling become important. Higher order processes such as cotunneling and renor-
malization effects start to play a role and give dominant contributions in some regimes. In
more complex geometries with directly or indirectly coupled quantum dots the quantum
nature of electrons may lead to a coherent evolution of the system’s state. This raises the
need for a theoretical description beyond classical master equations.

In this thesis we used a real-time transport theory to establish a comprehensive picture
of the nonequilibrium behavior of two coherently coupled quantum dots. The time evolu-
tion of the entire reduced density matrix, including all off-diagonal terms, was considered
within a diagrammatic expansion in the coupling strength. Particular emphasis was put on
the effect of strong Coulomb interaction on the dots. We found a surprising feature of the
double-dot system: in a nonequilibrium situation quantum correlations develop between
electrons on the spatially separated dots. If the system is occupied with two electrons a
so-called Werner state is formed which, out of equilibrium, shows an imbalance between
its singlet and triplet components. By coherently charging the double dot from a com-
mon reservoir the singlet probability is strongly enhanced, indicating the generation of
entanglement.

We concentrated on two schemes to investigate this effect. In a setup composed of two
quantum dots coherently coupled to one joint reservoir we studied the transient behavior
after quickly pushing the dot levels from above to below the Fermi energy of the lead. In
a second setup we additionally attached two separate leads to the dots. By applying a
bias voltage a current was driven from the joint source electrode via the double dot to the
separate drains. In both schemes we found a strongly enhanced singlet probability which
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can be linked to the generation of entanglement in nonequilibrium.
An important precursor for this phenomenon is a nontrivial evolution of the off-diagonal

elements of the reduced density matrix due to coherent tunneling. We suggested an in-
tuitive interpretation of the offdiagonal evolution by introducing an isospin variable. The
influence of the latter on the coherence of the transport was investigated in an Aharonov-
Bohm interferometer with embedded quantum dots. The appearance of a phase dependent
isospin blockade caused by an onsite Coulomb repulsion yields strong asymmetries in the
conductance oscillations. We predicted clear signatures of the isospin blockade in the
differential conductance for asymmetrically coupled quantum dots.

By a systematic expansion up to second order in the coupling strength we analytically
identified cotunneling terms and renormalization corrections. Moreover, we found unex-
pected conductance contributions due to exchange interactions, which lead to a qualitative
asymmetry between the occupied and the unoccupied side of a conductance peak if the
dots are coupled asymmetrically. The analytical calculation which is restricted to the linear
response regime was supplemented by a numerical approach in which all diagrams were
generated and computed automatically. The goal was the extension of first and second
order transport to arbitrary nonequilibrium situations.

Based on our results for entanglement generation in nonequilibrium, and Aharonov-
Bohm interferometry with quantum dots, we suggested a combined system which allows the
creation and detection of entanglement of spatially separated electron spins in a transport
experiment. The setup consists of two spatially separated quantum dots embedded in
a fork-like geometry which is supplemented by an Aharonov-Bohm ring. By applying a
strong bias voltage between a joint source electrode and separate drain reservoirs in the
fork subsystem a strong imbalance between singlet and triplet probabilities, indicating
entanglement, is created in the stationary state. We increased the overall probability to
find two excess electrons in the double dot by using an asymmetric coupling to source and
drain. In order to detect the singlet-triplet imbalance we applied an Aharonov-Bohm probe.
The obtained interference pattern depends on the state of the double dot. In particular,
the cotunneling transport through the Aharonov-Bohm ring is sensitive to an imbalance in
the singlet-triplet distribution. Compared to the equilibrium situation in which singlet and
triplets are uniformly distributed, an enhanced singlet probability leads to a suppression of
Aharonov-Bohm oscillations. The scheme might provide an experimental proof of concept
for the generation of entanglement in nonequilibrium.

Finally, motivated by a promising experiment with two capacitively coupled quantum
dots we systematically modeled the transport up to second order, including all cotunneling
and renormalization contributions. Our focus was on the enhanced conductance in the
interaction gap which in our model is due to correlated tunneling of electrons in both dots.
The onsite Coulomb interaction yields an asymmetry of the shoulders of the conductance
peaks.



Appendix A

Fork: Lowest Order Density Matrix

The stationary equations (4.43) of the fork system, considered in section 4.5, can be solved
analytically in lowest order in the coupling strength of the dots to the leads. In the following
we give the full expressions for arbitrary bias voltage. They have been evaluated for the
plots in section 4.6.

The probability to find the system empty is given by

p
(0)
0 =

1

D

[
− (1 − fL)2(2 − fR + fL − 2 fLfR) Γ3

L −
− 5 (1 − fL)(1 − fR)(1 − fLfR) Γ2

LΓR +

+ 2 (1 − fR)2(−2 + fL − fR + 2 fLfR) ΓLΓ2
R −

− (1 − fR)2(1 − f 2
R) Γ3

R

]
. (A.1)

The probabilities for the symmetric and antisymmetric superposition states read

p
(0)
|+〉I·m =

2

D

[
− (fL (2 − fR) − f 2

L (1 + fR) − f 3
L (1 − 2 fR)

)
Γ3

L −
− (fR + 2 fL (2 − 2 fR − f 2

R) − f 2
L (1 + 3 fR − 5 f 2

R)
)
Γ2

LΓR −
− (fR (2 − fR − f 2

R) + fL (2 − 3 fR − 3 f 2
R + 4 f 3

R)
)
ΓLΓ2

R −
− fR (1 − fR)2(1 + fR) Γ3

R

]
, (A.2)

p
(0)
|−〉I·m =

2

D

[
− (2 fR − 3 fLfR + f 2

L (1 − fR) − f 3
L (1 − 2 fR)

)
Γ3

L −
− (fR (5 − 2 fR) − 2 fLfR (2 + fR) + f 2

L (1 − 3 fR + 5 f 2
R)
)
Γ2

LΓR −
− (fR (4 − 3 fR − f 2

R) − fLfR (1 + 3 fR − 4 f 2
R)
)
ΓLΓ2

R +

+ (1 − fR)2(1 + fR) Γ3
R

]
. (A.3)

Finally, the doubly occupied subspace is determined by the probabilities to find two elec-
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trons in the double dot which either form a spin singlet or a triplet state,

p
(0)
S =

1

D

[
− (f 2

L (2 − fR) + f 3
L (1 − 2 fR)

)
Γ3

L −
− (f 2

R + fLfR (2 − fR) + f 2
L (2 + fR − 5 f 2

R)
)
Γ2

LΓR −
− (f 2

R + 2 fLfR (1 − 2 f 2
R)
)
ΓLΓ2

R −
− f 2

R (1 − f 2
R) Γ3

R

]
, (A.4)

p
(0)
T =

3

D

[
− (2 fLfR − f 2

LfR + f 3
L (1 − 2 fR)

)
Γ3

L −
− (f 2

R + fLfR (4 − fR) + f 2
LfR (1 − 5 fR)

)
Γ2

LΓR −
− (2 f 2

R + 2 fLfR (1 − 2 f 2
R)
)
ΓLΓ2

R −
− f 2

R (1 − f 2
R) Γ3

R

]
. (A.5)

The general denominator D is given by the determinant of a matrix which can be obtained
from the kernel W by exchanging one of the (necessarily) linear dependent rows by the
normalization condition tr ρ = 1,

D = − [2 + 3 fR + fL (1 − 2 fR) + f 2
L (2 − 5 fR) + f 3

L (1 − 2 fR)
]
Γ3

L −
− [5 + 7 fR + fL (3 − 2 fR − 7 f 2

R) + f 2
L (2 − 3 fR − 5 f 2

R)
]
Γ2

L ΓR −
− 2
[
(1 + fR)2(2 − fR) + fL (1 + fR)2(1 + 2 fR)

]
ΓL Γ2

R −
− (1 − fR)(1 + fR)3 Γ3

R . (A.6)



Appendix B

Aharonov-Bohm Interferometer:
Lowest Order Density Matrix

In lowest order in the coupling strength the stationary equations for the reduced density
matrix of the Aharonov-Bohm interferometer with two embedded quantum dots can be
solved analytically for arbitrary bias voltage. In second order in Γ we have to restrict
ourselves to the linear response regime to obtain analytical results, they are supplemented
by numerical calculations for strong nonequilibrium. In the following we give the analytical
expressions for p(0) and I(0), which were used for the lowest order plots in section 5.3 (the
dot levels are assumed to be degenerate, Δε = 0).

The diagonal terms comprised in p(0) are given by

p
(0)
0 =

1

D
((1 − fL) ΓL + (1 − fR) ΓR) ·

·
[
(1 − f 2

L) (−2 − fL + fR + 2 fLfR) Γ2
L + (1 − f 2

R) (−2 + fL − fR + 2 fLfR) Γ2
R −

− 4 (1 − fLfR)2 ΓLΓR − 2 (fL − fR)2 ΓLΓR cosϕ
]

(B.1)

p
(0)
1 =

4

D
((1 − fL) ΓL + (1 − fR) ΓR) ·

·
[
(1 + fL)2 (−fR − fL + 2 fLfR) Γ2

L + (1 + fR)2 (−fR − fL + 2 fLfR) Γ2
R

+ 2 (−1 + fLfR) (fL + fR + 2 fLfR) ΓLΓR + 2 (fL − fR)2 ΓLΓR cosϕ
]

(B.2)
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p
(0)
S =

1

D

(
(fL − fR) (ΓL + ΓR)

[− fL (1 + fL) Γ2
L + fR (1 + fR) Γ2

R + (fL − fR) ΓLΓR cosϕ
]

+ (fL ΓL + fR ΓR) ·
· [(1 + fL)2 (−fR − fL + 2 fLfR) Γ2

L + (1 + fR)2 (−fR − fL + 2 fLfR) Γ2
R −

− 2 (1 − fLfR) (fL + fR + 2 fLfR) ΓLΓR + 2 (fL − fR)2 ΓLΓR cosϕ
])

(B.3)

p
(0)
T =

3

D

(
(fL − fR) (ΓL + ΓR)

[
fL (1 + fL) Γ2

L − fR (1 + fR) Γ2
R − (fL − fR) ΓLΓR cosϕ

]
+ (fL ΓL + fR ΓR) ·
· [(1 + fL)2 (−fR − fL + 2 fLfR) Γ2

L + (1 + fR)2 (−fR − fL + 2 fLfR) Γ2
R −

− 2 (1 − fLfR) (fL + fR + 2 fLfR) ΓLΓR + 2 (fL − fR)2 ΓLΓR cosϕ
])

(B.4)

To represent the isospin components we choose the coordinate system like in the ex-
ample in subsection 5.3.1.

I(0)
x = − 2

D
(fL − fR) (ΓL + ΓR)

[
(1 − fL) ΓL + (1 − fR) ΓR

]
[
(1 + fL) ΓL − (1 + fR) ΓR

]
cos(ϕ/2) (B.5)

I(0)
y = − 1

D
(fL − fR) (ΓL + ΓR)

[
(1 − fL) ΓL + (1 − fR) ΓR

]
[
(1 + fL) ΓL + (1 + fR) ΓR

]
sin(ϕ/2) (B.6)

I(0)
z ≡ 0 (B.7)

The general denominator D is given by the determinant of a matrix which can be
obtained from the kernel W by exchanging one of the (necessarily) linear dependent rows
by the normalization condition tr ρ = 1,

D = − (1 + fL)
[
2 + fL (1 + fL)2 + fR (3 − 2 fL − 5 f 2

L + 2 f 4
L)
]
Γ3

L −
− (1 + fL)

[
3 (2 + fL) + fR (9 + fR) − fRfL (2 + 7 fR) + (1 + fR) (1 − 6 fR) f 2

L

]
Γ2

LΓR −
− (1 + fR)

[
3 (2 + fR) + fL (9 + fL) − fLfR (2 + 7 fL) + (1 + fL) (1 − 6 fL) f 2

R

]
ΓLΓ2

R −
− (1 + fR)

[
2 + fR (1 + fR)2 + fL (3 − 2 fR − 5 f 2

R + 2 f 4
R)
]
Γ3

R +

+ 2 (fL − fR)2
[
(2 + fL) ΓL + (2 + fR) ΓR

]
ΓLΓR cosϕ . (B.8)



Appendix C

Calculation of Second Order
Diagrams

Every integral of a second order diagram belongs to one of the following types:

I1 :=

∫∫ ∞

−∞
dω dω′ f τ

r (ω) f τ ′
r′ (ω

′)
(σω + Δ1 + iη)(σω + σ′ω′ + Δ12 + iη)(σ′ω′ + Δ2 + iη)

=

∫∫ ∞

−∞
dω dω′ f τ

r (σω) f τ ′
r′ (σ

′ω′)
(ω + Δ1 + iη)(ω + ω′ + Δ12 + iη)(ω′ + Δ2 + iη)

(C.1)

I2 :=

∫∫ ∞

−∞
dω dω′ f τ

r (ω) f τ ′
r′ (ω

′)
(σ′ω′ + Δ′

2 + iη)(σω + σ′ω′ + Δ12 + iη)(σ′ω′ + Δ2 + iη)

=

∫∫ ∞

−∞
dω dω′ f τ

r (σω) f τ ′
r′ (σ

′ω′)
(ω′ + Δ′

2 + iη)(ω + ω′ + Δ12 + iη)(ω′ + Δ2 + iη)
(C.2)

with σ, σ′, τ, τ ′ ∈ {+1,−1} and the Fermi functions

f τ
r (ω) := f τ (ω, μr) :=

{
f+(ω, μr) := (exp[β(ω − μr)] + 1)−1 for τ = +1

f−(ω, μr) := 1 − f+(ω, μr) for τ = −1
(C.3)

for which obviously f τ (ω, μr) = f+(τω, τμr). In the following we will also use the Bose
function b(x) := (exp[β(ω − μr)] − 1)−1 to rewrite a product of Fermi functions

f τ (ω, μ) f τ ′
(ω′, μ′) = δ−τ,τ ′ f τ(ω, μ) + ττ ′ f τ (ω, μ) +

+

⎧⎨⎩
τ ′

β

∂

∂ω
f τ (ω, μ) for ω − μ = ω′ − μ′

ττ ′ b(τ [(ω − μ) − (ω′ − μ′)]) (f τ (ω, μ)− f τ (ω′, μ′)) else .

(C.4)
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The idea is to put all relevant integral terms down to combinations (and maybe functionals)
of principal value integrals of the form

P

∫
dω

ω − ε
f τ

r (ω) = Re

(
−
∫

dω
f τ

r (ω)

ε− ω + iη

)
. (C.5)

and its derivatives. Since the integrand in Eq. C.5 does not decay quickly enough at the
boundaries we introduce a smooth cutoff function

Dr(ω) :=
D2

(ω − μr)2 +D2
(C.6)

with the cutoff energy D for an approximate calculation∫ ∞

−∞
dω

f τ
r (ω)

ε− ω + iη
≈
∫ ∞

−∞
dωDr(ω)

f τ
r (ω)

ε− ω + iη
=

= Dr(ε)

[
τ ψ

(
1

2
+
βD

2π

)
− τ Re

[
ψ

(
1

2
+

iβ(ε− μr)

2π

)]
+ π

ε− μr

2D
− iπ f τ

r (ε)

]
(C.7)

with the Digamma function ψ. For a large cutoff energy, D � ε, kBT, μr, we can approxi-
mate further

P

∫
dω

ω − ε
f τ

r (ω) ≈ −τ ln
β D

2π
+ τ Re

[
ψ

(
1

2
+

iβ(ε− μr)

2π

)]
. (C.8)

The derivatives can be calculated analogously

∂n

∂εn
P

∫
dω

ω − ε
f τ

r (ω) = Re

[(
iβ

2π

)n

ψ(n)

(
1

2
+

iβ(ε− μr)

2π

)]
(C.9)

for n > 0 with the polygamma functions ψ(n).
In general, integrals of type I1 and I2 consist of a real part and an imaginary part.

However, in many cases it is only the imaginary part which is important for the calculation
of the kernel. The elements W χχ′

χχ′ , for instance, which correspond to the diagonal terms of
the density matrix, contain only imaginary parts of diagrams, due to the mirror rule. If
the transition functions γ±ii′rσ are real, the imaginary part of the integrals is sufficient to

determine W χχ′
χχ′ .

An example in which the full integrals have to be taken into account is the Aharonov-
Bohm interferometer with embedded quantum dots. For this setup we necessarily have to
calculate kernels corresponding to offdiagonal terms of the density matrix. Furthermore,
the transition functions can not be gauged to be real. Thus, there are several convenient
simplifications which can not be applied a priori, but some of them help a lot during the
calculations.

However, it turns out that the real parts of all second order integrals can be expressed,
after some algebra, by a combination of terms which stem from integrals of delta functions
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and terms which can be reduced to the form of a polygamma function, a product of
polygamma functions or a principal value integral of a polygamma function (sometimes
additional Fermi functions enter the integrand or factors of logarithms might appear from
the cutoff).

In the following we give explicit representations of the usually more important imagi-
nary parts of the integrals I1 and I2. Two case can be distinguished for each of them,

1a) Δ1 + Δ2 = Δ12 2a) Δ2 = Δ′
2

1b) Δ1 + Δ2 �= Δ12 2b) Δ2 �= Δ′
2 .

(C.10)

The imaginary part of integral 1a) can be rewritten in the form

Im (I1a) = Im

[∫∫ ∞

−∞
dω dω′ f τ

r (σω) f τ ′
r′ (σ

′ω′)
(ω + ω′ + Δ12 + iη)2

(
1

ω + Δ1 + iη
+

1

ω′ + Δ2 + iη

)]
= Im

[∫∫ ∞

−∞
dω dω′ f

τ
r (σω) f τ ′

r′ (σ
′ω′)

(ω + Δ1 + iη)2

(
1

ω′ + Δ2 + iη
− 1

ω + ω′ + Δ12 + iη

)]
= · · ·
= π

[
− f τ ′

(−σ′Δ2, μr′)
∂

∂z

∣∣∣∣
z=0

P

∫
dω

ω + Δ1 − z
fστ (ω, σμr) −

− f τ (−σΔ1, μr)
∂

∂z

∣∣∣∣
z=0

P

∫
dω

ω + Δ2 − z
fσ′τ ′

(ω, σ′μr′) +

+
1 − σσ′ττ ′

2

∂

∂z

∣∣∣∣
z=0

P

∫
dω

ω + Δ1 − z
fστ (ω, σμr) −

−

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ′τ ′

β

∂2

∂z2

∣∣∣∣
z=0

P

∫
dω

ω + Δ1 − z
fστ (ω, σμr) for − Δ12 = σμr + σ′μr′

σσ′ττ ′ b(στ [−Δ12 − (σμr + σ′μr′)]) ·
·
[
∂

∂z

∣∣∣∣
z=0

P

∫
dω

ω + Δ1 − z
fστ (ω, σμr) −

− ∂

∂z

∣∣∣∣
z=0

P

∫
dω

ω − Δ2 − z
fστ (ω,−σ′μr′)

]
else

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(C.11)
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For the imaginary part of integral 1b) we obtain

Im (I1b) = Im

[ ∫∫ ∞

−∞
dω dω′ f

τ
r (σω) f τ ′

r′ (σ
′ω′)

Δ1 + Δ2 − Δ12
·

·
(

1

ω + Δ12 − Δ2 + iη
− 1

ω + Δ1 + iη

)(
1

ω′ + Δ2 + iη
− 1

ω + ω′ + Δ12 + i2η

)]
= · · ·
=

π

Δ1 + Δ2 − Δ12
·

·
[
f τ ′

(−σ′Δ2, μr′)

(
P

∫
dω

ω + Δ1
fστ (ω, σμr) − P

∫
dω

ω + Δ12 − Δ2
fστ (ω, σμr)

)
+

+ f τ (−σΔ1, μr)

(
P

∫
dω

ω + Δ2

fσ′τ ′
(ω, σ′μr′) − P

∫
dω

ω + Δ12 − Δ1

fσ′τ ′
(ω, σ′μr′)

)
+

+
1 − σσ′ττ ′

2

(
P

∫
dω

ω + Δ12 − Δ2
fστ (ω, σμr) − P

∫
dω

ω + Δ1
fστ (ω, σμr)

)
−

−

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ′τ ′

β

∂

∂z

∣∣∣∣
z=0

(
P

∫
dω

ω + Δ12 − Δ2 − z
fστ (ω, σμr) − P

∫
dω

ω + Δ1 − z
fστ (ω, σμr)

)
for − Δ12 = σμr + σ′μr′

σσ′ττ ′ b(στ [−Δ12 − (σμr + σ′μr′)]) ·
·
[(
P

∫
dω

ω + Δ12 − Δ2
fστ (ω, σμr) − P

∫
dω

ω + Δ1
fστ (ω, σμr)

)
−

−
(
P

∫
dω

ω − Δ2
fστ (ω,−σ′μr′) − P

∫
dω

ω − Δ12 + Δ1
fστ (ω,−σ′μr′)

)]
else

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(C.12)
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Similar for the imaginary part of integral 2a)

Im (I2a) = Im

[∫∫ ∞

−∞
dω dω′ f τ

r (σω) f τ ′
r′ (σ

′ω′)
1

(ω′ + Δ2 + iη)2

1

ω + ω′ + Δ12 + iη

]
= · · ·
= π

[
f τ (−σΔ2, μr)

∂

∂z

∣∣∣∣
z=0

P

∫
dω

ω + Δ12 − Δ2 − z
fσ′τ ′

(ω, σ′μr′) −

− ∂

∂z

∣∣∣∣
z=0

f τ (−σ(Δ2 − z), μr)P

∫
dω

ω + Δ12 − Δ2
fσ′τ ′

(ω, σ′μr′) −

− 1 − σσ′ττ ′

2

∂

∂z

∣∣∣∣
z=0

P

∫
dω

ω + Δ2 − z
fστ (ω, σμr) +

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ′τ ′

β

∂2

∂z2

∣∣∣∣
z=0

P

∫
dω

ω + Δ2 − z
fστ (ω, σμr) for − Δ12 = σμr + σ′μr′

σσ′ττ ′ b(στ [−Δ12 − (σμr + σ′μr′)]) ·
· ∂
∂z

∣∣∣∣
z=0

P

∫
dω

ω + Δ2 − z

(
fστ (ω, σμr) − fστ (ω + Δ12,−σ′μr′)

)
else

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(C.13)
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Finally we can rewrite the imaginary part of integral 2b)

Im (I2b) = Im

[ ∫∫ ∞

−∞
dω dω′ 1

Δ2 − Δ′
2

f τ
r (σω) f τ ′

r′ (σ
′ω′)

ω + ω′ + Δ12 + iη

(
1

ω′ + Δ′
2 + iη

− 1

ω′ + Δ2 + iη

)]
= · · ·
=

π

Δ2 + Δ′
2

·

·
[
−
{
f τ (−σΔ′

2, μr)P

∫
dω

ω + Δ12 − Δ′
2

fσ′τ ′
(ω, σ′μr′) −

− f τ (−σΔ2, μr)P

∫
dω

ω + Δ12 − Δ2

fσ′τ ′
(ω, σ′μr′)

}
−

− 1 − σσ′ττ ′

2

(
P

∫
dω

ω + Δ′
2

fστ (ω, σμr) − P

∫
dω

ω + Δ2
fστ (ω, σμr)

)
+

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ′τ ′

β

∂

∂z

∣∣∣∣
z=0

(
P

∫
dω

ω + Δ′
2 − z

fστ (ω, σμr) − P

∫
dω

ω + Δ2 − z
fστ (ω, σμr)

)
for − Δ12 = σμr + σ′μr′

σσ′ττ ′ b(στ [−Δ12 − (σμr + σ′μr′)]) ·
·
[(
P

∫
dω

ω + Δ′
2

fστ (ω, σμr) − P

∫
dω

ω + Δ2
fστ (ω, σμr)

)
−

−
(
P

∫
dω

ω + Δ′
2

fστ (ω + Δ12,−σ′μr′) − P

∫
dω

ω + Δ2
fστ (ω + Δ12,−σ′μr′)

)]
else

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(C.14)
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