
Zur Erlangung des akademischen Grades eines
Doktors der Wirtschaftswissenschaften (Dr. rer. pol.)

von der Fakultät für Wirtschaftswissenschaften
der Universität Fridericiana zu Karlsruhe

genehmigte Dissertation.

Query-Based Multicontexts
for

Knowledge Base Browsing

Julien Tane
D.E.A

Tag der mündlichen Prüfung: 05. Februar 2007
Referent:

Prof. Dr. Rudi Studer, Universität Karlsruhe (TH)
Koreferent:

Prof. Dr. Gerd Stumme, Universität Kassel

2007 Karlsruhe

2

3

Abstract

The amount of accessible information is rising at a great pace. At
the same time, the need to grasp and understand information be-
comes even more crucial. To achieve this, it is important to improve
the interaction between users and data collections.

Querying and browsing are the two main kinds of interaction with
complex data. It is crucial to be able to combine them efficiently and
effectively. On the one hand, the purpose of querying is to return the
precise content of some part of a large data collection, but requires
some knowledge of the data model to query it. On the other hand,
browsing usually combines relational exploration with some sort of
topic or conceptual hierarchy, allowing the user to interact with the
data to refine or adapt the representation to his specific needs. How-
ever, current techniques cannot mix both approaches successfully to
offer an exploration paradigm capable of displaying complex relation-
ships in the data.

In this thesis, we propose a new approach to create and navi-
gate contextual views by integrating browsing and querying to ex-
plore complex data collections such as knowledge bases. Inspired by
existing techniques from the field of Formal Concept Analysis, we
introduce a new structure called Query-based multicontext. This
structure can be seen as the space of views over the data collection.
Each view is generated from a data source using a query-based in-
tensional representation of their content. We further define different
operators as well as a generic template mechanism which simplify
the view definition process. As a main application of the approach,
we designed and implemented a knowledge base browser relying on
different strategies to define pertinent views.

Finally, we evaluated our work in two manners. First, we dis-
cuss the benefits of our knowledge browsing approach with respect
to other approaches found in the literature. Then we compared the
performance of users on diverse visualisation tasks when using one
of three visualisation.

To Philipp and Jorge, for their patience...

0.1. ACKNOWLEDGEMENTS 5

0.1 Acknowledgements

After spending so much time at a weary task, fighting so many different negative
feelings such as frustration, disappointment, which sometimes lead you to the
road of depression, you really know then how important friends and colleagues
have been in the final success. The least I can do is to show my gratitude with
these few lines.

First of all I want to thank Philipp Cimiano and Jorge Gonzales for their
support at a turning point of my life as well as the many discussions and frustra-
tions which they had to endure. In particular, I want to tell my utmost respect
and gratitude to Philipp for the time, energy he needed in trying to keep me
focused.

I would like to express my extreme gratitude to Prof. Studer and Stumme for
offering me the possibility to begin and finish this thesis in the most comfortable
positions. Thanks to their wise guidance, the work atmosphere of their research
groups have been ideal for the work I had to do. Their calm, understanding and
professionalism have been exemplary during the whole time.

Thanks to Dr. Philipp Cimiano again and Dr. Pascal Hitzler for many cru-
cial comments and corrections which improved the quality of this thesis greatly.

I owe also many thanks to all the proof and comment readers of my thesis
or of parts of it: Philipp Cimiano, Prof. Studer, Prof. Stumme, Pascal Hitzler,
Daniel Oberle, Raphael Volz, as well as to my brother Pierre and my dear friend
Etienne Ailloud who read many pages of my dissertation and gave me a more
in dependant feedback.

My work would have not been such a pleasure, if my colleagues had not been
so fun to work with, not to mention their excellent work. I want to mention in
particular Christoph Schmitz, Siegfried Handschuh, Philipp Cimiano, Andreas
Hotho, Duc Thanh Tran and Prof. Stumme for their patience. A special thank
you goes to Christoph, with whom I cooperated closely for the PADLR project
and who made useful comments on the early idea behind this thesis.

A great thank to Boris Motik and Serhiy Yevtushenko, whose works have
served as a solid basis for much of my own work.

Once someone said: ’Go to a woman...’ when you need to pump up your con-
fidence. This has proved to be true for me to a point that I want to thank many
different women for their cares and words but also for their just being there. So
thanks to Saartje Brockmann, Sventje Dieter, Sofia Pinto, Julia Rothmann, Ju-
lia Dernbach, Juliane Päsch, Lotta Koch, Frederieke Layer, Jenny Ross, Sylvie,
Friede und die Swerge Königin.

A special ’thank you Saarjte’ goes to Saartje Brockmann for the right words
at a very crucial moment.

I must also thank my flat mates: Hartmut Aichert, Jens Pliester and Yimin
Wang for all their useful comments, their friendship and their tolerance.

My gratitude goes to Klaus Täger whose friendship and presence has meant
much to me during this time. For coming often to Karlsruhe and many great
discussions, I also thank Etienne. For somewhat useful comments on life, much
fun and many interesting discussions, thanks to Jochen and Toby.

Last but not least, since they were always there for me, I want to thank
my family, especially my mother and father, but also my brothers as well as
Karin Grankvist Tane who all know how to remind but also forgive me my
many shortcomings. Thanks to my uncle, aunts, cousins and cousines, who I

6

should have seen much more often than I did. A particular thanks to Florence
and Elise Tane for their wonderful little film.

Contents

0.1 Acknowledgements . 5

1 Introduction 17
1.1 Motivation . 18

1.1.1 A Scenario . 18
1.1.2 Formal Concept Analysis 21

1.2 Research Questions . 24
1.2.1 Contextualised Views . 24
1.2.2 Exploration Process . 24

1.3 Contribution . 26
1.4 Outline of the Thesis . 27

2 Preliminaries 29
2.1 Knowledge Representation and Applications 29

2.1.1 Aspects of Knowledge Representation 29
2.1.2 Application: Visualising the Semantic Web 33

2.2 Logical and Rules Paradigms . 37
2.2.1 Description Logics . 38
2.2.2 Datalog . 46

2.3 Formal Concept Analysis . 48
2.3.1 Basic FCA . 48
2.3.2 Context Operators . 51
2.3.3 Many-valued Contexts and Conceptual Scaling 53
2.3.4 Multicontexts . 57

2.4 Summary . 58

3 Query-Based Multicontexts 59
3.1 Intensional Context Representations 59
3.2 Query-based Multicontexts . 62

3.2.1 Definition: Query-based Multicontext 62
3.2.2 A Simple Example . 64
3.2.3 An SQL Example . 66

3.3 Operators . 68
3.3.1 Generic Query Operators 71
3.3.2 Typed Query Language 75
3.3.3 Context Index Operators 77

3.4 Semantic Query-Based Multicontext 86
3.4.1 Generic Ontology Model 86
3.4.2 Semantic Query Infrastructures 88

7

8 CONTENTS

3.5 Constructors . 91
3.5.1 Relation Constructors . 94
3.5.2 Hierarchy Constructor . 95
3.5.3 Instantiation Hierarchy Constructors 96
3.5.4 Subsumption/Instantiation Hierarchies Constructors . . . 97
3.5.5 The Join Relation Context Constructor 99
3.5.6 The CoRelation Constructor 101
3.5.7 Application-dependent Context Constructors 101

3.6 Summary . 105

4 Knowledge Base Exploration 107
4.1 Exploring Using Views . 107

4.1.1 Visualising the Information Space 107
4.1.2 Views for Knowledge Base Exploration 111
4.1.3 Scenario: Getting to Know AIFB 114

4.2 View Interaction . 121
4.2.1 Visualisation . 124
4.2.2 Selection . 128
4.2.3 Paradigm Comparison . 132

4.3 View Definition . 133
4.3.1 View Definition Strategies 133
4.3.2 Default Views . 136
4.3.3 View Parametrisation . 138
4.3.4 View Adaptation . 143

4.4 Summary . 147

5 Implementation 149
5.1 Architecture Overview . 149

5.1.1 The Main Components . 149
5.1.2 One Round Example . 152

5.2 QBMC Infrastructure . 153
5.2.1 Query Management Module 153
5.2.2 Context Index Management Module 156
5.2.3 Context Construction Engine 157

5.3 Context Infrastructure . 159
5.3.1 Query Evaluation and Query Results Storage 162
5.3.2 Context Storage . 164
5.3.3 Context Creation . 164
5.3.4 Lattice Generation . 168

5.4 Semantic Query Infrastructure Implementation 168
5.4.1 Methodology for Adapting Data Sources 168
5.4.2 Adapting KAON . 170
5.4.3 Adapting OWL Using KAON2 171

5.5 The Graphical User Interface . 173
5.5.1 Main Components . 174
5.5.2 Parametrisation using Direct Manipulation 179
5.5.3 The Lattice Panel . 183
5.5.4 Lattice Partitioning . 184

5.6 Underlying FCA Framework . 186
5.6.1 Alternatives . 189

CONTENTS 9

5.6.2 Concept Explorer . 190
5.7 Summary . 191

6 Evaluation 193
6.1 Comparison with other Approaches 193

6.1.1 ClusterMap . 193
6.1.2 Toscana Framework . 195
6.1.3 Docco Framework . 197
6.1.4 The Conceptual Email Manager 201

6.2 Visualisation Evaluation . 203
6.2.1 Description of the View Paradigms 204
6.2.2 Question Types . 206
6.2.3 Context of the Evaluation 208
6.2.4 Results . 210

6.3 Summary . 212

7 Discussion 213
7.1 Contributions . 213
7.2 Future Work . 214

7.2.1 Open Questions . 214
7.2.2 Other Applications . 217

7.3 Final Words . 218

A Ontology 229

10 CONTENTS

List of Figures

1.1 Diagram showing a browsing path for our researcher Mikko Malli. 19
1.2 The line diagram showing the concept lattice for the relation be-

tween researchers and the research topics text-mining, knowledge
discovery and data mining. 23

1.3 The knowledge exploration process. 25

2.1 The Semantic Web layer cake (source [Horrocks et al., 2005]). . . 34
2.2 An example of RDF graph together with a RDF schema stating

that Tim Berners-Lee is the author of a document with the title
Information Management: A Proposal. 35

2.3 A small example of a description logic knowledge base. 42
2.4 The concept lattice of the food and people context of Example 2. 51
2.5 Example of the constructors defined in [Ganter and Wille, 1999] 53
2.6 The formal concept lattice for the processor scale. 55
2.7 The formal concept lattice for the rating scale. 56
2.8 The nested line diagram for the computers embedding the rating

scale in the processor scale. 57

3.1 The model work flow . 61
3.2 The concept lattice corresponding to the context generated from

the context index p := (project,topic,isOnTopic). 65
3.3 The lattice for the SQL example using the Tables 3.3, 3.4 and 3.5. 68
3.4 Intuitive diagram for the union context index operator. 81
3.5 A schematic representation of the subsumption hierarchy, instan-

tiation hierarchy, subsumption/instantiation hierarchy constructor. 96
3.6 The lattice of the concept hierarchy. 96
3.7 The lattice of the instance hierarchy for the subconcepts of: Per-

son, Document, Research Group and Conference. 98
3.8 The lattice of the instance hierarchy for the concepts: Person,

Professor, PhDStudent, Assistant. 99
3.9 The lattice of the concept hierarchy for the instances: Rudi

Studer, York Sure, Julien Tane. 100
3.10 The lattice of the join between research topics and research groups

through the project. 102
3.11 The main idea behind the CoRelation constructor. X is the start

author and all the light-coloured nodes are in the resulting context.103
3.12 The concept lattice displaying the relation between the publica-

tion written by Julien Tane and his coauthors. 103

11

12 LIST OF FIGURES

3.13 The lattice for news filtering. 104

4.1 Diagram schematising the concept of Database Content Space
(source: [Boyle et al., 1993]). 108

4.2 Diverse abstract representations of some views. a) represents
an abstract representation of a view, b) is an example of simple
relation view, c) is a view resulting from a join constructor and
d) shows a view with a complex definition for the attribute set. . 113

4.3 The interaction process for a query-based multicontext browser. . 115
4.4 The start view presenting the main concepts of the knowledge base.115
4.5 The distribution of the research topics of the AIFB text-miners. 118
4.6 The distribution of the publications written by the text-mining

researchers. 119
4.7 The concept lattice of Andreas Hotho’s publications visualised

with authors as attributes. 119
4.8 The concept lattice of Andreas Hotho’s research topics and the

colleagues sharing them. 120
4.9 The tree displaying part of the subsumption-instance hierarchy

of the ontology. 124
4.10 The tree displaying the distribution of the projects carried out

by the research groups. 126
4.11 The graph displaying the distribution of the projects carried out

by the research groups. 127
4.12 The lattice displaying the distribution of projects carried out by

the research groups. 128
4.13 The selection settings panel. 132
4.14 An example of web formular to create a simple context of author

publications. 140
4.15 The wizard allowing the creation of the join. 142
4.16 The join relation indirectly indicating the research topics of AIFB

research groups by looking at which topic its members work on. . 144
4.17 The adapted view displaying the publications assigned to the Ef-

ficient Algorithm Group or to the Knowledge Management Group
and who were written by a Professor or an Assistant. 146

5.1 An overview of the architecture of the QBMC Browser. 150
5.2 The lattice of the join which shows which research topics are

dealt by some AIFB professors through one of the projects they
coordinate. The topics at the top are not coordinated through
some projects. 154

5.3 The class diagram for the implementation of the context infras-
tructure. 161

5.4 The layout of the main components of the query-based multicon-
text browser. 175

5.5 The main panels while exploring the different projects of the
AIFB research groups. 176

5.6 The context index panel for the context showing the research
topics for the projects of the Knowledge Management Chair. . . 177

LIST OF FIGURES 13

5.7 The constructor parametrisation panel with the parameters for
the view displaying the distribution of the research topics of the
projects carried out by the Knowledge Management Group. . . . 177

5.8 The constructor parametrisation panel with the parameters for
the view displaying the distribution of the research topics of the
projects carried out by the Knowledge Management Group. . . . 178

5.9 The projects of the Knowledge Management Group dealing with
text-mining displayed in the entity panel. 179

5.10 A panel to refine a query by dropping Person over the query
parameter inst({Publication}). 180

5.11 The wizard obtained when dropping the relations and on the
join context construction panel. 182

5.12 A panel to save parts of a formal concept of the lattice for the
context index (inst({Topic}),inst({Person}),< isWorkedOnBy >). . 184

5.13 A lattice with a partition of the top elements in two classes:
{Att1,Att3} and {Att4,Att5,Att6}). 185

5.14 The concept lattices of the the two classes {Att1,Att3} and {Att4,Att5,Att6}
of the partition of the lattice of Figure 5.13. 186

5.15 The concept lattice of a class of a partitioning from the concept
lattice of < workedAt >. 187

6.1 Job vacancies organised by economic sector. 194
6.2 The nested diagram of the lattice for comparing PC price with

type of case. 196
6.3 The zoomed diagram lattice of desktop computer. 198
6.4 The lattice for the query: Java “Formal Concept Analysis” “Con-

ceptual Graphs” in Docco. 199
6.5 The Mail-Sleuth user interface (source [Cole et al., 2003a]). . . . 202
6.6 The nested diagrams showing the project subject for the members

of the KVO Institute (source: [Cole et al., 2003a]). 202
6.7 The lattice showing the mail project topic relation of the KVO

work group. 203
6.8 The Graph view . 205
6.9 The Tree View . 206
6.10 The Lattice View . 206
6.11 Average Time in seconds needed to answer the three questions in

the three para–digms. 210

14 LIST OF FIGURES

List of Tables

1.1 Table representing the works–on–topic relation between text-mining
authors and their research topics. 22

1.2 The relation between the research topics text-mining, knowledge
discovery and data mining and researchers working on one of
these topics. 23

1.3 An intensional representation of a table. 24

2.1 Concept constructors . 40
2.2 Role constructors . 40
2.3 The semantics of the description logic A-box axioms. 41
2.4 The semantics of the description logic T-box axioms. 43
2.5 A simple example of a formal context 49
2.6 An example of many-valued context. 54

3.1 The context Kp for the context index p := (project,topic,isOnTopic). 65
3.2 The context Kp of the car sharing context index. 67
3.3 The vehicle table for the car sharing example. 69
3.4 The vehicle-location table for the car sharing example. 69
3.5 The location-position table for the car sharing example. 69
3.6 The table defining the operators symbols for the generic query

operators (q1, q2, q3, q4 ∈ L1 and q3 and q6 ∈2). 72
3.7 The datalog implementation of the query operators of table 3.6. . 75
3.8 Table stating the main use of the context index operators. 86
3.9 Definition of the query primitives of the query languages LC , LR

and LI for query infrastructure QKb. 92
3.10 Definition of the query primitives of the query languages LRi,LCI ,

LCR, LCC and LRR of query infrastructure QKb 93

4.1 The main phases of an interaction cycle of the knowledge base
exploration framework. 114

4.2 Techniques helping the visualisation. 123
4.3 Table summarising the advantages and disadvantages of the three

interaction paradigms for views. 133
4.4 Table recalling the diverse query definition paradigms (part A,

cited from [Shneiderman and Plaisant, 2005]). 134
4.5 Table recalling the diverse query definition paradigms (part B,

cited from [Shneiderman and Plaisant, 2005]). 135

15

16 LIST OF TABLES

4.6 The table recalling the diverse query definition paradigms (part
C, cited from [Shneiderman and Plaisant, 2005])). 136

5.1 Typical steps for the evaluation of queries in a database system
(adapted from [Vossen, 1994], Chapter 17, page 428). 155

5.2 The naive algorithm for the evaluation of a context index. 159
5.3 Features of the context operators implementations. 165
5.4 Features of the constructors implementations. 167
5.5 List of the methods of the main entities of KAON API 172
5.6 The algorithm used to compute queries with nominals. 174
5.7 A summary of the main possibilities for the creation of queries

using a drag-and-drop. 181
5.8 Calculate the partition of the top elements of the lattice. 188

6.1 Illustration of different types of queries which can be formulated
when using the Docco framework. 200

6.2 Confidence and t-values level of lattice-tree and lattice-graph time
comparisons. 211

Chapter 1

Introduction

In recent years, the amount of information available electronically has risen
tremendously. Coping with this information growth remains one of the great
research challenges for the computer science community. Search engines on
the Internet are quite successful at providing access to much of the available
knowledge, but their techniques remain limited to advanced indexing mecha-
nisms in which background knowledge only plays a minor part. Yet, semantic
technologies have matured in recent years with new advances concerning the ac-
quisition, organisation and storage of knowledge (see [Studer and Staab, 2003]).
Many application domains have recognised their benefits. For instance, the
crucial task of integrating vocabularies and taxonomies from diverse branches
of medicine, has led to tremendous efforts of standardisations in the field of
biomedical informatics (see [Smith and Ceusters, 2006]). One of the key el-
ements of these efforts is the use of ontologies, which have been defined in
[van Harmelen and Horrock, 2000] in the following terms:

An ontology is a consensual, shared and formal description of the
concepts that are important in a given domain.

In other words, ontologies describe knowledge of a domain such as bioin-
formatics (see [Rector, 2003]) using a formal structure capable of specifying
relations between the concepts of a domain. For example, the Galen1 ontology
captures clinical terminology and has been used in a number of applications
such as language generation, disambiguation, user interfaces or quality assur-
ance (see [Rector, 2003, Rector and Rogers, 2006]). The benefit of ontologies in
comparison to traditional schemas or vocabularies lies in their formal seman-
tics. The formal semantics ensure a stable interpretation of the meaning given
to an ontology as well as allow the deployment of supplementary services such
as inferencing, consistency checking, etc.

While reasoning about the knowledge is important, humans are also key
contributors and consumers of knowledge. It is therefore crucial to provide
them with means of interacting with this knowledge. Diverse approaches have
been proposed in the literature to achieve this goal (see [Fluit et al., 2002,
Hearst, 1999, Ahlberg et al., 1992, Furnas and Zacks, 1994]). Most approaches
either focus on interacting with the basic objects of the knowledge base (in-
stances and their relations) or on summarising the large amount of information

1See http://www.opengalen.org.

17

http://www.opengalen.org

18 CHAPTER 1. INTRODUCTION

available in the knowledge base. A third approach consists in focusing on specific
parts of the knowledge base. Yet, defining these parts is a non trivial process
and is the main topic of this thesis. Our purpose is to investigate the definition
and navigation of contextualised semantic views over knowledge bases. These
views may be seen as snapshots of specific parts of a knowledge base. Using our
formalisation of the concept of contextualised views, we present a new way of
exploring and interacting with knowledge bases. The novelty of our work lies
in the combination of knowledge base queries and Formal Concept Analysis, a
conceptual clustering theory.

Formal Concept Analysis is an expanding field of research dealing with the
relation between tabular data, called formal contexts (i.e. binary tables or
attribute-value tables) and specific order structures, called concept lattices. Con-
cept lattices possess interesting features for knowledge browsing and information
management in general.

While previous approaches using Formal Concept Analysis can also be seen
as contextualised views, our approach differs in that it introduces a way of defin-
ing and manipulating precisely the content of formal contexts. To achieve this,
we introduce a new structure: the Query-Based Multicontext. A Query-Based
Multicontext is a formal space consisting of all the formal contexts which can be
generated by querying a given data source. We show that it is possible to ma-
nipulate the elements of this space by manipulating intensional representations
called context indices. Each of these context indices represents a contextual
view. We describe how to create and manipulate the views in order to ex-
plore the knowledge base. Moreover, we describe the implementation of this
framework on top of a specific knowledge base framework.

Finally, before concluding this thesis, we present the evaluation we performed
in order to assess the benefits of our approach. We then use this evaluation as a
basis for discussing supplementary related work as well as some of the possible
extensions we consider relevant for our approach.

1.1 Motivation

To motivate the goals behind our work, we introduce a scenario about a re-
searcher who is interested in the research done at the AIFB institute.2 Then
we describe briefly Formal Concept Analysis in order to motivate its use in this
thesis.

1.1.1 A Scenario

Mikko is a researcher in the field of Formal Concept Analysis interested amongst
other things in text-mining and ontology-learning. He noticed that some persons
from the AIFB Institute work on topics relevant to his own interests and would
like to get an overview of their profiles and the projects they work on.

Mikko browses the AIFB portal. The AIFB portal offers a simple means of
learning more about the institute. His browsing pattern is illustrated by the
diagram in Figure 1.1. Starting from the AIFB main page, he follows the links
found in each page (the order of the visits is indicated by a number beside each
arrow). The dashed lines show that other choices would have been possible.

2See http://www.aifb.uni-karlsruhe.de.

http://www.aifb.uni-karlsruhe.de

1.1. MOTIVATION 19

Figure 1.1: Diagram showing a browsing path for our researcher Mikko Malli.

This kind of browsing is entity-centred. It displays one entity at a time
(one per page actually), displaying all its properties, for example relations to
other entities. Unfortunately, this makes it difficult for Mikko Malli to get an
overview of the relations between researchers, topics and projects. To get an
overall picture of the institute, Mikko needs to browse many pages to find out
what are the topics and projects AIFB researchers work on. At each page, he
must decide between diverse links or may backtrack to some of the pages he
has already read. For instance in Figure 1.1, when looking at Philipp Cimiano’s
page, Mikko may go on to Philipp Cimiano’s publications or go back to Julien
Tane’s page to continue to the Formal Concept Analysis page. He also needs
to remember some information he gathered at each page. While this browsing
approach allows him to get an idea of the relation between persons, projects and
research topics, it is time consuming and does not give a good overview of the
relationships between persons and topics for example. Fortunately, the portal
provides a downloadable knowledge base3 describing the research done at the
AIFB institute. Using this knowledge base, he hopes to get an overview more
quickly.

Exploring the Knowledge Base

The AIFB knowledge base contains information about many aspects of the
research at AIFB. The conceptual schema of this knowledge base is a research
oriented ontology used in other applications. Since this ontology is used in most
of the examples of this thesis, we describe it in more detail in Appendix A.4 The
following list gives an idea of the kind of information present in this knowledge

3See http://www.aifb.uni-karlsruhe.de/about.html.
4We refer the interested reader to the recent article: [Sure et al., 2005] on the design deci-

sions that underlie this ontology.

http://www.aifb.uni-karlsruhe.de/about.html

20 CHAPTER 1. INTRODUCTION

base:

• research groups: name, members, projects

• persons: name, telephone, fax, homepage, publications, research group

• publications: title, authors, publication, location, topics

• projects: name, financing institution, research groups carrying them out

• research topics: projects dealing with these topics, persons working on
these topics

It specifies, for example, that the PhD Student Julien Tane is a member of
the research group Knowledge Management. It also contains metadata over his
publications and states that he is interested in the research topic Formal Concept
Analysis.

The amount of information available from the knowledge base is large. It
contains metadata on more than 900 persons and even more publications. Most
of these persons are authors of several publications, some authors having more
than 100 publications, while others are only present because they coauthored
one publication with a person working at the institute.

Moreover, Mikko Malli’s prime interest is not the AIFB in general. He would
rather focus on the part of the knowledge base corresponding to his research
topic. Here are some questions which Mikko might have in mind:

1. Who worked or is working on research topics related to Formal Concept
Analysis at the institute?

2. What are the other topics these researchers work on?

3. Who published articles on a research topic relevant to my research?

4. What are or were the projects relevant to my interests?

5. Which researchers work together on which project for my field of research?

6. Which of these researchers published together, on which field of research?

These questions show that Mikko Malli wishes to focus on a part of the
knowledge base centred around Formal Concept Analysis. To achieve this, three
solutions come to his mind. The first would be to use a typical ontology browser
like Protege,5 but like the AIFB portal, these browsers use an entity centred
approach. Mikko would have to take a look at many entities individually and
follow their relationships to others in order to gather knowledge, while he is
mostly interested in relations between groups of entities, for example the text-
mining researchers and their projects or publications, etc.

The second alternative would be to use a graph-based ontology browsing
tool like the KAON OIModeller.6 Contrary to the previous approaches, using
a graph visualisation paradigm enables him to see the relations between diverse
individuals at the same time, but the graph is filled in a more or less ad hoc

5See http://protege.stanford.edu.
6See http://kaon.semanticweb.org.

http://protege.stanford.edu
http://kaon.semanticweb.org

1.1. MOTIVATION 21

manner, depending on the paths he follows and the particular elements he se-
lects. This means that he would have to concentrate on the next step instead
of the information presented. Moreover, this approach does not scale when the
size of the graph increases.

The third alternative is to query the knowledge base, but this solution has
major limitations. The first limitation is that he needs to know how to formulate
the corresponding queries. If he manages to formulate the queries, he needs a
way to visualise their results. Finally, he must be able to use part of the results
to formulate new queries.

From the drawbacks of these three alternatives, it is possible to extract the
basic requirements of a knowledge base browsing tool.

Contextualised Views of AIFB

The above six questions give an idea of the interests of Mikko. Each of these
questions can be seen as a conceptual representation of what should be displayed.
Each of these questions focuses on a certain context of interpretation; therefore
we call them contextualised views.7

While the answers of the first question build a set, which can be easily
displayed as a list, the answers of the second question form a relation between
two sets: the text-mining researchers and their research topics. This relation can
be presented to the user using some table equivalent to Table 1.1. Though the
table is still readable, it does not show the intrinsic structure of the relationship
between these two groups. This leads to the relevant research problem of finding
a pertinent way of displaying this binary relation. While for many purposes
a table like Table 1.1 may be suitable, this representation is not suitable to
give more insight on which of these researchers share certain research topics.
Research in the field of Formal Concept Analysis has shown that the diagram
of concept lattices can be used for this purpose (see [Eklund et al., 2004]). This
is what we show in the following paragraph.

1.1.2 Formal Concept Analysis

Formal Concept Analysis is a field of applied mathematics and computer science
introduced by Rudolf Wille in 1982 (see [Wille, 1982]). Its goal is to investi-
gate the relations between data tables called formal contexts and ordered struc-
tures, called concept lattices. While tables are frequently used to represent and
store data, concept lattices have been used in fields as diverse as software en-
gineering, data mining, ontology learning, conceptual exploration and psychol-
ogy (see [Huchard et al., 2002, Hotho and Stumme, 2002, Cimiano et al., 2003,
Wille, 1997, Borg, 1992]).

In Formal Concept Analysis, binary relations are usually called formal con-
texts and correspond to some cross table as shown in Table 1.2. The rows of
the table are usually called objects and the columns attributes. For instance,
Table 1.2 represents the works-on-topic relation between researchers as objects
and three attributes: knowledge discovery, text-mining and data mining.

7The term view has been chosen because of the similarity of the notion with the well-
known notion of views in database terminology, where views are table which are generated
using queries over the database.

22 CHAPTER 1. INTRODUCTION

Table 1.1: Table representing the works–on–topic relation between text-mining
authors and their research topics.
Researcher Research Topics
Andreas Hotho knowledge discovery, text-mining, knowledge portal,

data mining, knowledge management, ontology engi-
neering, semantic web, Scalable Data Mining, business
engineering

Julien Tane knowledge discovery, text-mining, ontology-based KM
systems, knowledge systems, Formal Concept Analysis

Stefan Bloehdorn knowledge discovery, text-mining, knowledge represen-
tation and reasoning, machine learning, multimedia
systems

Steffen Staab artificial intelligence, knowledge discovery, text-mining,
knowledge portal, ontology-based KM systems, knowl-
edge systems, data mining, knowledge management,
ontology engineering, semantic web, development of
KM systems, information extraction, ontology learning,
semantic annotation, knowledge representation and
reasoning, agent systems, constraint programming, E-
learning, e-business, hypermedia systems, KM method-
ology, modelling, semantic web infrastructure

Alexander Mädche knowledge discovery, text-mining, knowledge portal,
artificial intelligence, data mining, Ontology Engineer-
ing, knowledge representation languages, development
of KM systems, information extraction, ontology learn-
ing, semantic annotation, knowledge representation
and reasoning

Stefan Klink text-mining, knowledge portal, Digital libraries, Se-
mantic web Services, office information systems, virtual
university

Interestingly, the theory of Formal Concept Analysis states that for any
given formal context, a new structure called a concept lattice can be generated
which contains exactly the same information. The concept lattice of the formal
context found in Table 1.2 is displayed using the diagram on the left8 of Figure
1.2. Using this diagram, it is possible to visualise the relationship between these
researchers and the three research topics selected. Each node stands for a set
of researchers and a set of research topics. For example, the node labelled with
data mining represents the pair of sets:

• attributes: {knowledge discovery, data mining}

• objects: {Gerd Stumme, Jorge Gonzalez, Jens Hartmann, Ketut Ngurah Sud-
harma, Olivier Sandel, Alexander Mädche, Steffen Staab Andreas Hotho.}

We recalled at the top of Figure 1.2 the two crucial conventions necessary to
read the diagram. These conventions state that for any given node the elements

8The right part of the Figure displays meta information to help the reader in understanding
the diagram.

1.1. MOTIVATION 23

Table 1.2: The relation between the research topics text-mining, knowledge dis-
covery and data mining and researchers working on one of these topics.

person/topics knowledge discovery data mining text-mining

Alexander Mädche × × ×
Andreas Hotho × × ×
Steffen Staab × × ×
Julien Tane × ×
Stefan Bloehdorn × ×
Gerd Stumme × ×
Jorge Gonzalez × ×
Jens Hartmann × ×
Ketut Ngurah Sudharma × ×
Philipp Cimiano ×
Stefan Klink ×
Rudi Studer ×

Figure 1.2: The line diagram showing the concept lattice for the relation between
researchers and the research topics text-mining, knowledge discovery and data
mining.

found in the grey labels of higher nodes are also in the attribute set of a node,
while the elements found in the white labels of lower nodes are also in the object
set of a node.

24 CHAPTER 1. INTRODUCTION

1.2 Research Questions

1.2.1 Contextualised Views

The scenario we presented shows that for some purposes it is useful to focus
on only some parts of the data available. In some way, this task can be seen
as contextualisation, i.e. choosing a context9 of interpretation of the data and
displaying the data in this context. The purpose of our work is to provide
methods and tools to perform such a task.

Consider the author relation between publications and their authors. In the
knowledge base, the amount of persons and publications present is too large
to be browsed in a sensible manner (the AIFB knowledge base contains more
than 900 authors and even more publications). Typically a knowledge base
offers a number of primitives to express specific parts of the knowledge base.
For example, it is possible to define a query10 retrieving PhD Students of the
Knowledge Management research group:

∃x, phdStudent(x)umemberOf(x,Knowledge Management)

In the same way, it is possible to restrict the search on publications of a certain
kind: conference paper, journal article which have been published in or before
a given year.

In general, it is useful to consider a view as a table of the form given in Table
1.3. This kind of table occurs very frequently and diverse paradigms have been
developed to display the information stored in them (see [Ziegler et al., 2002]).
However, in this thesis we mainly concentrate on the use of concept lattices
which we deem appropriate as visualisation paradigm in certain situations. The
next section discusses briefly the process necessary to explore the knowledge
base.

Table 1.3: An intensional representation of a table.

attributes: criteria used in the structuring
objects relation between objects and attributes

1.2.2 Exploration Process

In order to motivate our approach, we first consider a generic exploration process
consisting of four phases. This model is depicted in Figure 1.3. The user starts
with a goal or a task and some hypotheses in phase I. In phase II, he interacts
with the tool in order to communicate what he wants to see. In analogy to
the process of query definition, we call this phase view definition. The result of

9In this thesis, the word context can refer to different things such as a given formal context
or the context of use. To avoid confusions between the two, we prefer using formal context
when talking about the mathematical structure. At the places where the word context refers
to the situation or the environment, we use the expressions: situation’s context or context of
interpretation.

10This query uses a syntax adapted from first order logic. Capitalised words correspond to
concepts or relations, memberOf(x, Knowledge Management) denotes the elements memberOf
the group Knowledge Management and u is an operator denoting the intersection of the result
of the two sides.

1.2. RESEARCH QUESTIONS 25

Phase II is a request transformed into queries to the knowledge base in Phase
III, the view creation phase in order to create the corresponding view. Once
the answer to the queries has been computed, it is presented to the user to
be visualised. In the view interaction phase, Phase IV, the user analyses the
content of the view. This analysis may lead to new goals and hypotheses and a
new cycle of the browsing process may be entered.

Figure 1.3: The knowledge exploration process.

If we investigate in further details this model, a few questions arise:

• What kind of model is suitable for a contextualised view?

• What kind of knowledge representation and query languages can or should
be used?

• How does the user formulate his requests?

• How can or should the results of these requests be visualised?

The approach we propose in this thesis investigates possible answers to these
questions using a combination of ontologies and Formal Concept Analysis. We
focus particularly on Phases II, III and IV. Though we believe that Phase I
is crucial for specific applications,11 we discuss these aspects only briefly when
this has an impact on the design of the actual implementation.

11Some interesting ideas might be found for example in [Kuhlthau, 2005].

26 CHAPTER 1. INTRODUCTION

View Definition

In exploration approaches centred on entities, the choice of the next view is
determined by choosing the next entity to visualise among diverse alternatives.
The contextualised approach relies on the definition process of the next relevant
view to display. It is critical to study the diverse approaches which can be
used to create views. Moreover, since the view definition process is not the
primary goal, this process should not be too cumbersome for the user. This
means that the design of an exploration framework should find an appropriate
trade-off between the expressivity of the knowledge representation language and
the overall complexity of the definition process.

Another important requirement is that the exploration method must be
capable of reusing the elements selected in previous phases or cycles of the
browsing. To do this, we consider diverse alternatives for the selection process
during the exploration.

View Interaction

Once a view has been created, it must be displayed to the user. The choice of the
most appropriate view visualisation paradigm is not a trivial one, since diverse
aspects may play a role in the exploration process. Therefore, it is important to
investigate criteria which help decide which view paradigm is the most suitable
to support the user in visualising the content of the view presented to him.

1.3 Contribution

The requirements of the browsing approach presented in the previous section
lead us to develop a new framework combining ontology queries and Formal
Concept Analysis to browse knowledge bases. The contributions of this thesis to
achieve this goal can be split in two main parts: a contextualised view framework
for knowledge bases and a novel knowledge base browsing approach.

Contextualised Views On Knowledge Bases

We develop a new model allowing to construct complex contextualised views
by combining Formal Concept Analysis with queries on knowledge bases. We
define for that purpose a new structure called query-based multicontext. This
structure consists of formal contexts which can be used as input to traditional
Formal Concept Analysis algorithms. Each of these contexts is generated from
a surrogate representation12 which we call context index . Each context index
consists of a triple (q1, q2, q3) of three queries which must respect some basic
properties in order to be evaluated as a formal context of a query-based mul-
ticontext. Moreover, we define operators on context indices which correspond
to operators on formal contexts. In addition to the simplification they bring to
operate and combine diverse formal contexts, the context index operators play a
central role in the definition of constructors, which are kinds of high-level tem-
plates to ease the construction of formal contexts. Finally, as a proof of concept

12A surrogate is an object representing a more complex object and often used in their place
for manipulation purposes.

1.4. OUTLINE OF THE THESIS 27

of the possibility of manipulating context indices intensionally, we implemented
the query-based multicontext theory.

A Browsing Framework

The query-based multicontext theory is used to implement a knowledge browsing
framework for knowledge bases. This browsing paradigm uses formal contexts
as semantic views of parts of a knowledge base. Each view can be displayed
either as a graph, as a tree or as a lattice. Our browsing approach relies mainly
on three aspects: the query-based multicontext infrastructure, a methodology
for creating complex views based on constructors, and diverse paradigms to
present the information to the users. Part of the evaluation of our approach was
to compare the performance of users as well as their reactions when interacting
with the three different visualisation paradigms.

Finally, we also compare our approach to other Formal Concept Analysis
based approaches and study how their approach could be integrated in the
query-based multicontext browser.

1.4 Outline of the Thesis

This thesis is divided in seven chapters which we now outline.
Chapter 2 deals with the state-of-the-art and the necessary preliminaries

to understand the work presented in this thesis. We first discuss aspects of
knowledge representation as well as an application.

Chapter 3 presents the basic theory of the query-based multicontext. After
a general overview of the principle behind our approach, we introduce the basic
definition of query-based multicontexts, followed by some illustrative examples.
The basic structure is then extended using more expressive query infrastructures
as well as operators which allow for complex operations on formal contexts.
Finally, a high level template mechanism is presented which simplifies the role
of the user in user interaction.

An application of this theory to knowledge browsing is presented in Chapter
4. Notably, we first discuss the principle of browsing with user defined views.
We also address the important issues of view interaction and view definition.

Chapter 5 describes our implementation of the query-based multicontext.
Chapter 6 addresses the evaluation of our approach using two methods.

While the first one is a qualitative comparison with other approaches, the second
one presents a user evaluation we performed to compare three visualisation
paradigms for our views.

Finally, Chapter 7 concludes the thesis with a discussion of some open prob-
lems and future applications of the query-based multicontext theory.

28 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

Before introducing the results of our research in the next few chapters, we need
to introduce basic preliminaries which underlie either the theory we develop or
our design decisions. This chapter consists of three sections. The first section
discusses the main definitions and issues of knowledge representation and intro-
duces the Semantic Web as one possible domain of application of our results (see
Section 2.1.1). Then, we introduce the main logical and rule paradigm necessary
for the understanding of our approach (see Section 2.2). We finally present the
mathematical theory of Formal Concept Analysis which plays a central role in
the view mechanism we developed (see Section 2.3).

2.1 Knowledge Representation and Applications

In this thesis we introduce a new notion of contextualised semantic views capa-
ble of representing well-defined parts of a knowledge base. These views build
on existing knowledge representation approaches. Before introducing a given
knowledge representation paradigm in the next section, we first recall some of
the basic definitions as well as some important issues related to the field. The
second part of this section presents the vision of the Semantic Web which pro-
vides an interesting use case for our work.

2.1.1 Aspects of Knowledge Representation

Many definitions of knowledge, information and data have been proposed in the
literature and no real consensus has been reached over this issue due to the
heterogeneous requirements of possible applications. John Sowa discusses many
of the relevant issues in his book: Knowledge Representation: Logical, Philo-
sophical and Computational Foundations (see [Sowa, 2000], pages 51–123). In
this thesis, we mainly focus on knowledge bases. In particular, we investigate
knowledge bases using standardised ontology languages which are likely to gain
importance in the coming years, but a generic definition of the notion of knowl-
edge representation helps highlight the main features of these languages.

29

30 CHAPTER 2. PRELIMINARIES

Knowledge Representation

The representation of knowledge has played a great role in the development of
mankind. Since the hunt drawings on caves’ walls, not only the means of storing
and displaying knowledge have evolved, but the current computer technology
also enables the automation of many tasks requiring human knowledge. Since its
inception, the field of Artificial Intelligence has offered many approaches to fur-
ther enhance this capacity, some focusing on symbolic encodings of knowledge.
The rational behind the use of symbols is that symbols can be used to easily ma-
nipulate surrogates of entities in an abstract manner. While different approaches
have been proposed such as semantic networks, frames, etc, [Davis et al., 1993]1

gives a generic definition to the notion of knowledge representation paradigm.
A knowledge representation (hence KR) is:

1. most fundamentally a surrogate,

2. encoding a set of ontological commitments,

3. to serve as a medium of human expression,

4. while being a fragmentary theory of intelligent reasoning,

5. and a medium for pragmatically efficient computation.

To illustrate this definition, we use a scenario of a travel agency broker. Simi-
lar scenarios can be found in the literature (see for example [Tempich et al., 2004]).

Scenario 1 (Travel Agency Web Services) The company ACME is a tourist
agency reseller on the Internet which offers some special travel packages. From
the company’s web site, a client can select particular standard offers or customise
the offers to his wishes. To be able to provide up-to-date services, the company
ACME must be able to integrate the information from a number of other compa-
nies which provide specific services (typical examples of these service providers
may be hotels, car renting companies). Moreover, once the information has been
integrated in the knowledge base of the company, offers to specific client may be
required to satisfy a number of criteria (for example, the client may require to
know the number of beds in a hotel room).

As already mentioned, a knowledge representation is a surrogate, in other
words, it is designed to serve as a substitute for real world entities. In the
above scenario, the company manipulates information about the possible ser-
vices it provides to the users. The diverse manipulation tasks are performed on
a representation of knowledge.

When designing a knowledge representation, a number of assumptions about
the structure of the world must be made. A model of the domain must be
created which encodes these assumptions, and represents the commitments as
to how the world is modelled. Depending on the complexity of a domain, the
modelling primitives may be required to model the knowledge. For instance,
some domain may require only propositional languages, whereas others require
more expressive languages such as first-order logic or fuzzy logic, etc.

1John Sowa mentions this definition in the book cited above (see pages 134–141 of
[Sowa, 2000]).

2.1. KNOWLEDGE REPRESENTATION AND APPLICATIONS 31

A knowledge representation should also support human communication, that
is, humans should be able to understand and manipulate it. In order to integrate
the products from diverse providers, the name and nature of the products should
be easily understandable so as to ease their use by non-experts.

One of the purposes of using a knowledge representation is to enable the
inference of new facts from previous knowledge or to verify the consistency of
the knowledge. A knowledge representation should be adapted to the practical
situations where it is to be used.

This last criterion makes explicit that an appropriate trade-off between effi-
ciency and expressivity has to be found. While some applications might require
low response time, others might not require that queries terminate. This issue
is relevant for our thesis because the choice of the language used influences our
approach on two levels. From the querying point of view, we consider the com-
plexity of answering specific questions given a query infrastructure. From the
knowledge representation point of view, ontology languages like OWL focus on
the modelling of knowledge while ensuring certain computability properties. As
we recall in Chapter 2, Section 2.1.2, description logics restrict the modelling
primitives of the language to ensure decidability.

Ontologies and Knowledge Bases

The purpose of a knowledge representation as defined in the previous section is
to provide a language to describe a domain. From the introduction we recall
the definition of an ontology given in [van Harmelen and Horrock, 2000].

An ontology is a consensual, shared and formal description of the
concepts that are important in a given domain.

An ontology does not consists only of the concepts occurring in a domain,
it also includes relations between these concepts. For example, ontologies to
represent the knowledge about a field of research usually includes persons, pub-
lications and events, specifying that person are authors of publications and that
publications are presented at events.

The notion of domain is particularly relevant when considering a knowl-
edge exploration approach because the purpose of some users’ tasks stems from
specific aspects of the domain or of the application to consider.

Some authors do not make any distinction between an ontology and a knowl-
edge base. In this thesis, we make that distinction. We consider that an ontology
constitutes a general theory of a domain, whereas a knowledge base describes
particular circumstances pertaining to such a theory.

The distinction is however not strict. As noted in [de Bruijn and Fensel, 2005],
the literature presents different common layers of knowledge: top level ontolo-
gies, domain ontologies and application ontologies. Each level corresponds to a
degree of generality of the ontologies. Top level ontologies capture aspects of
knowledge which can be seen as independent of the domain. Domain ontologies
model valid knowledge for a certain domain, say medicine or the automobile
industry. Application ontologies capture specific knowledge for a specific ap-
plication. The AIFB ontology used throughout this thesis is an example of an
application ontology. The ontologies of the first two layers are usually meant
as more generic knowledge to be reused in application ontologies, but there is
no strict separation between these layers. For example, the AIFB knowledge

32 CHAPTER 2. PRELIMINARIES

base has been defined by extending an ontology designed to describe research
activities.

In other words, we use knowledge base as a synonym for application ontology.
This distinction is related to the distinction between Closed and Open World
Assumptions which have practical consequences in the algorithms used.

Traditional Knowledge Representation Assumptions

Databases have traditionally been the main mean of storing structured in-
formation in computers. In particular, the relational theory developed by
Codd in [Codd, 1970] relies on certain assumptions under which most industrial
databases (as well as traditional deductive databases approaches) are designed.
These assumptions are:

• Unique Name Assumption (UNA): there is a unique name for individuals,
so two different names refer to two different individuals

• Closed World Assumption (CWA): everything that is not explicit in the
current knowledge or cannot be inferred from it is considered false.

The Unique Name Assumption is particularly used in database theory be-
cause values can then be used as keys in the database. For example, two prod-
ucts of a given company should receive different serial numbers. Using this
assumption, an application can reasonably infer that the products are differ-
ent. In a more distributed setting, the uniqueness of a name for an entity is
difficult if not impossible to ensure. This topic has been extensively treated
in the database literature and can be traced back to Raymond Reiter’s article
[Reiter, 1980]).

The second assumption stems from the fact that it is sometimes realistic to
assume complete knowledge about the world. For example, the list of items of
a store can be listed completely. If the item of a given type is not returned by
a query, it can be reliably assumed that this item is not available. According to
the Closed World Assumption, if a fact is not contained in the knowledge base,
the negation of this information can be inferred. This means that true and false
assertions are not on an equal footing as the truth value “false” is preferred.
On the other hand, under the Open World Assumption, the truth value of a
statement can be either true, false or unknown. The literature abounds on
the topic of the possible definitions of the Closed World Assumption (see for
example [Grimm and Motik, 2005]).

Taxonomy of Knowledge Entities and Relations

For the purpose of our methodology, we were interested in the kind of entities
occurring in a knowledge base. From the diverse paradigms we investigated we
could draw a taxonomy of entity types . The purpose of this taxonomy is to
guide our design since it allows to abstract from the particular ontology and
have a more generic picture of our approach.

As starting point, we first determine the possible knowledge entity types
occurring in a knowledge base. From our study of different knowledge rep-
resentation paradigms, we retained the following type of entities: individuals,

2.1. KNOWLEDGE REPRESENTATION AND APPLICATIONS 33

categories, relation instances, relations and contexts. The main criteria we re-
tained from these entities is that it is relevant in some application to study,
compare or manipulate the properties of these entities.

We now describe these types of entities and illustrate them using an example.
These entities are surrogates and therefore represent some entities, group of
entities or some situations. They can be seen as names or identifiers representing
intensionally an element or a group of elements in the real world.

• Individuals (also called instances) represent atomic entities of the real
world. In the web service example introduced above, a product item is an
individual.

• Categories (also called classes, types, or concepts) represent groups of indi-
viduals assigned to this category according to some criteria. For example,
a product series or even the set of all product items is a category.

• Relation instances: represent a certain relation between instances. For
example, a computer is sold with a certain motherboard. A relation is
usually labelled by a predicate describing the specific relation. For exam-
ple, the predicate used in the previous example is isSoldWith.

• Relations represent sets of relation instances. For example, the relation
hasPart between computers and their building parts.

• Contexts represent situations. Typically a knowledge base in itself rep-
resents a context containing a number of statements all considered valid.
For example, a knowledge base may represent the status of the storage
room of a store at different moment. Each of these states represent a
number of statements valid in at the given moment. Some applications
may then need to refer to these states as the context of interpretation.

All these kinds of entities play a role in this thesis because they are the
elements to be visualised and manipulated and can be found in the knowledge
representation languages presented in the following section.

2.1.2 Application: Visualising the Semantic Web

One of the goals of this thesis is to present a new approach to knowledge ex-
ploration of knowledge bases. In particular, we focus on the visualisation of
knowledge bases used in the context of the Semantic Web which we describe in
detail in this section.

The Semantic Web Vision

The Semantic Web is an initiative pushed by the W3C aiming at creating a new
generation of the web where content is described semantically using some stan-
dard representation language that both machines and humans may understand
and manipulate. We introduce here the Semantic Web by first describing the
general architecture, then we present in more details crucial building blocks such
as RDF(S), OWL and rule languages. A more complete overview of the Seman-
tic Web can be found in the literature (see [Antoniou and van Harmelen, 2004,

34 CHAPTER 2. PRELIMINARIES

Figure 2.1: The Semantic Web layer cake (source [Horrocks et al., 2005]).

Studer and Staab, 2003, Fensel et al., 2003] for good entry points on the sub-
ject).

In the seminal article [Berners Lee et al., 2001], a basic idea of the inter-
dependence of the different layers of the Semantic Web have been introduced
as a diagram known as the Semantic Web layer cake. but with the evolution
of the research field this idea evolved. A diagram illustrating the stratifica-
tion of the layers is displayed in Figure 2.1. This particular version stems from
[Horrocks et al., 2005]. The lower levels of the architecture proposed rely on
diverse XML related standards like Unicode, URIs, XQuery or XML Schema
for data interchange. On top of these layers, the RDF Model provides a basic
graph model to describe data. This model serves as underlying model for the
RDF(S) and OWL ontology languages. These languages correspond to the RDF
Schema and Ontology layer of the diagram and are used to describe available
knowledge.

On top of the ontology layer, the rules layer allows to perform more com-
plex or less standard inferences using the knowledge available from an ontology.
In the same way, the proof and logic layer enhance the diverse capacities with
extended proof and inference capabilities. Finally, the trust layer offers mecha-
nisms to ensure the validity and origin of the data.

The Resource Description Framework

Designed in order to be compatible with XML technologies, the Resource De-
scription Framework (see [Klyne and Carroll (eds), 2004, Hayes (editor), 2004]),
henceforth RDF, is an assertional modelling language to express properties of
web resources using precise formal vocabularies. Contrary to XML documents
which require a tree structure, the model behind RDF is a graph and was de-
signed to simplify the integration of diverse sources of metadata. A RDF graph
can be seen as a set of statements also called triples due to their general form

2.1. KNOWLEDGE REPRESENTATION AND APPLICATIONS 35

(Subject, Predicate, Object). For example, a statement2

(ontoworldwiki:Julien Tane, foaf:member, aifb:WBS)

indicates that Julien Tane is a member of the group Knowledge Management.
ontoworldwiki:Julien Tane is an identifier for the person Julien Tane, the
URI foaf:member is a relation defined in the Friend of a Friend RDF Schema
and aifb:WBS is an identifier for the research group Knowledge Management.

RDF is designed to provide a basic foundation for more advanced declarative
languages. The RDF Schema standard, henceforth RDF(S) provides for example
both syntax and semantics for the definition of conceptual schemas and can be
used as a simple ontology language (see [Brickley and Guha (eds), 2004]). Using
RDF(S), named concepts and properties can be defined as well as the means to
express subsumption relations between concepts or between relations.

A simple example RDF graph together with a corresponding RDF schema
is displayed in Figure 2.2.

Figure 2.2: An example of RDF graph together with a RDF schema stating
that Tim Berners-Lee is the author of a document with the title Information
Management: A Proposal.

This simple graph in the box states that a document identified by a URI:
http://.../Proposal/ is a document. It specifies that its title is Information Man-
agement: A Proposal and that its author is a person named Tim Berners-Lee. At
the top of the figure, it is possible to see that eg:author is a property with do-
main eg:Document and range eg:Person. According to the semantics of RDF(S),
using this schema, it is possible to infer automatically that the proposal is also
an instance of the Class work and that Tim Berners-Lee is also an agent. If the
type of the author of the proposal had not been stated explicitly, an inference
engine for RDF(S) could have also inferred that Tim Berners-Lee is a person and
therefore an agent.

2In this statement, the strings ontoworldwiki, foaf and aifb are abbreviations for URLs.

36 CHAPTER 2. PRELIMINARIES

Supplementary properties of relations can also be specified. For instance,
a relation can be specified as being the inverse of another one or that it is
functional (i.e. if an indivual has a value for this relation, it is the only one).

Finally, RDF(S) also offers other powerful modelling primitives such as reifi-
cation and metamodelling. The former allows to make assertions on the state-
ments of an RDF graph. The latter allows to add supplementary properties to
redefine some aspects of the schema. In this thesis, we do not address these
issues.

Note that RDF and RDF(S) are relevant for our work since the first working
implementation of our framework uses KAON ontologies which correspond to
RDF(S) ontologies extended with modelling primitives adapted to lexical infor-
mation as well as some metamodelling primitives (see [E. Bozsak et al., 2002]).
We omit further description of these primitives since they are not central for
our purpose.

RDF(S) provides a simple ontology language which has already been used
in many applications. Yet, some domains and applications like medicine require
more complex primitives which are not covered by the RDF(S) standard (see
[Rector, 2003, Rector and Rogers, 2006]). To remedy this issue more expressive
ontology languages are required and the more expressive language OWL has
been developed.

OWL - The Web Ontology Language

The Web Ontology Language (OWL) provides both a syntax and corresponding
formal semantics to specify ontologies. It has been released as W3C recommen-
dation in April 2004 (see [MacGuiness and van Harmelen (eds), 2004]) and is
designed as an extension of RDF(S). Using these primitives, it is possible to
define classes in a constructive manner from other classes. We now give three
examples of such primitives, but others are given in Section 2.2.1. Our first
example is the possibility to use the set connectives such as intersection, union
and negation. The class carnivorous plant can be defined as the intersection
of the two classes carnivore and plant. Using the negation primitive, it is also
possible to define the class non-carnivorous plants. Unlike in RDF(S), it is also
possible to define classes using relations. For example, the class Father can be
defined as the individual having a relation hasChild with some other (possibly
unknown) individual. Finally, in OWL it is possible to state that a given class
consists of only a restricted list of individuals. For example, the 8 G8Members
can be listed exhaustively.

As mentioned in Section 2.1.1, different applications and domains may influ-
ence the choice of the knowledge representation primitives needed. Depending
on the application, there may be a trade-off between efficiency and decidabil-
ity of the reasoning. This requirement has been considered in the design of
the OWL ontology language. The OWL recommendation provides three in-
creasingly expressive sublanguages designed for use by specific communities of
implementers and users. These sublanguages are respectively called OWL Lite,
OWL DL and OWL Full.

• OWL Lite: OWL Lite restricts some of the more complex primitives in
order to simplify the ease of implementation.

• OWL DL: The features of the fragment were chosen to correspond closely

2.2. LOGICAL AND RULES PARADIGMS 37

to a highly expressive but decidable logical language called SHOIN (D).
This language belongs to a class of knowledge representation called de-
scription logics for which the ontology primitives are carefully selected in
order to ensure decidability of all possible inferences.

• OWL Full: OWL Full allows the unrestricted use of many modelling
primitives. However, this expressive power leads to undecidability of the
inference tasks in the general case.

Note also that OWL Full is seen as an extension of RDF, but OWL Lite
and OWL DL extend only a restricted subset of RDF. However, we abstract
from these issues here because we focus in this thesis on OWL DL since it is
the language which corresponds the most to our purpose.

Rule Languages

An ontology describes a state of knowledge shared by a community, but many
applications require the possibility to define complex inferences on this knowl-
edge which are not specified in the ontology. In [Battle et al., 2005], a number
of application scenarios are presented for a Semantic Web Service Language
based on a rule language. Among these applications, the authors mention ser-
vice discovery and policy rules for e-commerce. In the Semantic Web layer cake,
these issues are addressed using the rule layer, yet, the actual form of this layer
remains unclear because different kinds of rules are required depending on the
kind of inference needed.

The preferable place of the rule layer is still controversial. Some authors (for
example [Horrocks et al., 2005]) suggest that the rule layer should be defined
on top of the OWL language. Others (see for example [de Bruijn et al., 2005]
advocate that some of the assumptions used in OWL are not suitable for some
rule frameworks. In particular, they argue that the Open World Assumption
(see Section 2.1.1) used by OWL is not compatible with the traditional Closed
World Assumption found in most rule-based paradigms. Another approach for
the combination of rules and ontologies can be found in [Hitzler et al., 2005a].3

This approach corresponds to determining the intersection between the OWL
and the logic programming approaches to modelling. In 2005, the Rules Inter-
change Format4 working group has been created by W3C in order to increase
communication on this topic and develop standards for the exchange of rules
over the Internet.

Rules are relevant for our approach because they offer the possibility to
implement query languages on top of an ontology framework.

2.2 Logical and Rules Paradigms

In this section, we present two of the main theoretical frameworks necessary
for the development of our approach. We first introduce description logics by
defining the general syntax and semantics of languages of this family (see Section
2.2.1). Then, we present the syntax and semantics of the traditional deductive

3Information can also be found in [Hitzler et al., 2005b].
4See http://www.w3.org/2005/rules.

http://www.w3.org/2005/rules

38 CHAPTER 2. PRELIMINARIES

language Datalog which is closely related to the rule layer of the Semantic Web
architecture (see Section 2.2.2).

2.2.1 Description Logics

The extensive literature on knowledge representation proposes many approaches
to model knowledge. In this section, we introduce description logics as un-
derlying knowledge representation paradigm. Description logics offer a logical
language appropriate for the approach because description logics focus on de-
termining the trade-off between expressivity, efficiency and decidability.

Originally developed to create terminologies, description logics (henceforth
DLs) are logical formalisms for representing and reasoning about conceptual and
terminological knowledge (see [Nardi and Brachman, 2003]). In recent years,
their importance has been recognized as central for the research field of knowl-
edge representation and they have been used in a wide range of applications.
The motivations for using description logics can be diverse, but traditionally
description logics are used for applications requiring a trade-off between using
an expressive modelling language or using a language which has nice logical and
algorithmic properties. Using a sound and complete language garantees that all
inferences using this language are correct and that all correct inferences are be
found. From the algorithmic point of view, the inference engines should be able
to perform inferences efficiently.

In practice, this means that most description logics correspond to decidable
fragments of first order logic (i.e. they restrict the expressivity of the language
constructs used so that the truth value5 of statements of the language can be
determined in finite time).

A description logic knowledge base can be divided into two sets of assertions
(also called axioms) respectively called A-box and T-box. The first contains facts
about individuals, while the second provides a set of axioms considered true in
the given knowledge base. Both build upon a common vocabulary of concept and
role expressions. Using a combination from A-box and T-box axioms together
with the basic axioms of logic, it is possible to infer new knowledge from the
already specified knowledge.

Description logics are given model-theoretic semantics. A interpretation is
a mapping I which maps the elements of the language to sets and relations of a
set called domain of discourse. The axioms of a knowledge base put constraints
on the acceptable interpretation of a knowledge base. An interpretation which
satisfies the axioms of the knowledge base is then called a model of the knowledge
base.

Concept and Role Expressions

The vocabulary of a description logic language consists of concept expressions,
which denote sets of individuals and role expressions, which traditionally de-
note binary relations between individuals. Some description logic languages
accept n-ary relations (see [Calvanese et al., 1997]) but for the purpose of our
exposition we restrict ourselves to the binary case. In order to allow a highly
expressive language, description logics can leverage the use of constructors to

5Description logics usually assume the open world assumption, the possible truth values
are true, false and unknown.

2.2. LOGICAL AND RULES PARADIGMS 39

build more complex concept and role expressions from simpler ones. The most
simple expressions consist of the set NC of atomic concept names and the set
NR of atomic role names6 and provide the basic vocabulary. For instance,
PhDStudent is an atomic concept denoting the set of Ph.D students. Using the
constructors given in Tables 2.1 and 2.2, it is possible to build more complex
concepts and roles. For example, PhDStudent u Father is a complex concept ex-
pression representing the concept of PhD Students who are also fathers. These
notions are formalised in the following definition.

Definition 1 (Concept and Role Expressions) Let NI be the set of indi-
vidual names and let NC and NR be the sets of atomic concept names and
atomic role names, respectively.

A role expression is either

• an atomic role name, i.e. an element of NR, or

• an expression recursively constructed from simpler role and concept ex-
pressions using the role constructors found in Table 2.2.

A concept expression is either

• >,

• ⊥,

• an atomic concept name, i.e. an element of NC , or

• an expression recursively constructed from simpler role and concept ex-
pressions using the concept constructors found in Table 2.1.

An interpretation I = (∆I , .I) consists of a non empty domain ∆I and
an interpretation function .I called valuation which maps individual names to
elements of ∆I , atomic concept names to sets AI ⊆ ∆I , and atomic roles names
to relations P I ⊆ ∆I ×∆I . Tables 2.2 and 2.1 specify the semantics of concepts
and roles.

The concept and role constructor correspond to typical modelling operations.
The operators t, u and ¬ correspond to the typical set operations.

Using these concept and role expressions in an unrestricted manner leads to
intractability or undecidability. Therefore, many description logics only allow
certain combinations of constructors. For instance, ALC concept expressions
may not contain qualified number restrictions and nominals, thus ensuring the
tractability of most of the relevant tasks.

The A-box

The A-box (for assertional box) contains statements which either specify the
membership of an individual a to a concept C, or specify the existence of a rela-
tionship between individuals a and b. The syntax of these axioms are specified
in the following definition.

6Per convention, atomic concept names are capitalised as opposed to atomic role names,
which are not.

40 CHAPTER 2. PRELIMINARIES

Table 2.1: Concept constructors

Name Syntax Semantics
Top > ∆I

Bottom ⊥ ∅
Negation ¬C ∆I \ CI

Union C tD CI ∪DI

Intersection C uD CI ∩DI

Value restriction ∀R.C {x : ∀y : (x, y) ∈ RI → y ∈ CI}
Existential restriction ∃R.C {x : ∃y : (x, y) ∈ RI ∧ y ∈ CI}
Qualified at-most restriction ≤ n R.C {x :]{y|(x, y) ∈ RI ∧ y ∈ CI} ≤ n}
Qualified at-least restriction ≥ n R.C {x :]{y|(x, y) ∈ RI ∧ y ∈ CI} ≥ n}
Nominals {a, b, c...} {aI , bI , cI ...}

Note:]S is the number of elements in the set S.
a, b, . . . are elements of NI

C and D are concept expressions
R is a role expression

Table 2.2: Role constructors

Name Syntax Semantics
Intersection R u S RI ∩ SI

Union R t S RI ∪ SI

Complement ¬R (∆I ×∆I) \RI

Inverse R− {(b, a) ∈ ∆I ×∆I |(a, b) ∈ RI}
Composition R ◦ S RI ◦ SI

Transitive Closure R+
⋃

n≥1(R
I)n

Reflexive-transitive closure R∗ ⋃
n≥0(R

I)n

Role restriction R|C RI ∩ (∆I × CI)
Identity id(C) {(d, d)|d ∈ CI}

Note: a, b, . . . are elements of NI

C is a concept expression
R and S are role expressions

Definition 2 (A-box Axioms) An A-box axiom is an expression of one of
the following form:

C(a) R(a, b)
¬S(a, b)

a ≈ b a 6≈ b

where C is a concept expression, R and S are role expressions and a and b
are individual names.

The semantics of these axioms are given by the mapping given in the Table
2.3.

2.2. LOGICAL AND RULES PARADIGMS 41

A concept assertion is a statement C(a) for a concept expression C and an
individual a, while a role assertion is a statement of the form: R(a, b) for R
a role expression and a and b individuals. The axioms ¬S(a, b) specifies that
the a does not have any relation S with b. The axioms a ≈ b and a 6≈ b state
that the individual names a and b represent the same entity, respectively do not
represent the same entity.

Table 2.3: The semantics of the description logic A-box axioms.

Name Axiom Semantics of Axioms
concept instantiation C(a) a ∈ CI

role instantiation R(a, b) (a, b) ∈ RI

role refutation ¬R(a, b) (a, b) 6∈ RI

same individual a ≈ b aI = bI

different individual a 6≈ b aI 6= bI

To introduce description logics in a more intuitive manner, we illustrate
these definitions using an example knowledge base presented in Figure 2.3. The
A-box contains the following statements:

{Professor(Rudi Studer), PhDStudent(Julien Tane),

publication(Rudi Studer, Ontologies...IEEE 2003),

publication(Julien Tane, Query-Based Multicontext...),

InProceedings(Query-Based Multicontext...),

InProceedings(Ontologies...IEEE 2003),

isWorkedOnBy(Formal Concept Analysis, Julien Tane),

isSubTopicOf(Machine Learning, Computer Science),

isSubTopicOf(ILP, Machine Learning)}

(2.1)

This A-box contains assertions of the sort: PhDStudent(Julien Tane) to de-
note that Julien Tane is a PhD student or isWorkedOnBy(Formal Concept Analysis,
Julien Tane) to denote that the topic Formal Concept Analysis is worked on by
Julien Tane.

The T-box

The T-box (for terminological box) contains axioms which enable an inference
engine to draw new facts from the stated knowledge. There are mainly two
kinds of axioms.

The first kind establishes relationships between concepts or between roles.
For concept expressions C and D and roles R and S, axioms of the form: C v D,
R v S or C ≡ D state relationships between two concepts or two roles. For
example, the axiom PhDStudent v Person, states that all PhD students are also
persons. The second type of axiom states some important property of roles,
for example, Trans(isSubTopicOf) states that the role isSubTopic is transitive.
Using this axiom with the A-box axioms: isSubTopicOf(Machine Learning,
Computer Science) and isSubTopicOf(ILP, Machine Learning) an inference en-
gine supporting transitivity axioms would infer: isSubTopicOf(ILP, Computer
Science).

42 CHAPTER 2. PRELIMINARIES

F
igure

2.3:
A

sm
all

exam
ple

of
a

description
logic

know
ledge

base.

2.2. LOGICAL AND RULES PARADIGMS 43

Definition 3 (T-box Axioms) A T-box axiom is an expression of one of the
following forms:

C v D C ≡ D

R v S R ≡ S

Trans(S) Ref(R)
Sym(R) Irr(R)

where C and D are concept expressions and R and S role expressions.
The interpretation of these axioms is given in Table 2.4.

In Figure 2.3, a few named concept are given in the T-box at the top. They
are represented in boxes, wheras role names have been encircled. A line between
two named concepts with the v symbol can be interpreted as a T-box axiom:
C v D, for example in the figure: PhDStudent v Person. The same thing can
be said of publication v isAuthorOf.

Using T-box axioms, it is also possible to specify the domain and range of
a role. For example, the role isAuthorOf has Person as domain. This means
that an A-box statement isAuthorOf(Peter,Letter) implies that Peter is a Person.
The T-box axiom Author ≡ ∃isAuthorOf.Document means that all individuals of
Author have written at least a document, but also that all person having written
a document are authors, so Peter is not only a Person but also an Author.

Table 2.4: The semantics of the description logic T-box axioms.

Name Axiom Semantics of Axioms
concept subsumption C v D CI ⊆ DI

subrole subsumption R v S RI ⊆ SI

concept equivalence C ≡ D CI = DI

role equivalence R ≡ S RI = SI

transitivity Trans(R) (RI)+ ⊆ RI

reflexivity Ref(R) DiagI ⊆ RI

irreflexivity Irr(R) DiagI ∩RI = ∅
symmetry Sym(R) (R−)I = RI

It is well known that an unrestricted use of concept and role expressions
in T-box axioms leads to undecidability. To address these issues, some restric-
tions can be set either on the production rules for concept expressions and role
expressions or on the use of certain kinds of roles in concept expressions. For
example, the use of transitive roles with qualified number expressions leads to
undecidability (see [Horrocks and Sattler, 2004]). For this reason, the ontology
language OWL, which we present below disallows the use of roles subsuming
transitive roles.

Using the previous definition, we can now give a definition of knowledge
base:

Definition 4 (Knowledge Base) A knowledge base KB is defined as a tuple
KB=(KBT ,KBA), where KBT is a set of T-box axioms and KBA is a set of
A-box axioms.

44 CHAPTER 2. PRELIMINARIES

An interpretation I = (∆I , .I) consists of a non empty domain ∆I and an
interpretation function .I which maps individuals to elements of ∆I , atomic
concepts A to sets AI ⊆ ∆I , and atomic roles P to relations P I ⊆ ∆I ×∆I .

An interpretation I is a model of KB if it satisfies the axioms from Tables 2.3
and 2.4 when concept and role expressions are interpreted using the semantics
of Tables 2.1 and 2.2.

One of the purposes of a knowledge base is to store facts which can be used to
infer new knowledge. In description logics systems, the means of acquiring this
new knowledge is often characterised by the type of inference task necessary.

Definition 5 (Inference tasks) For a knowledge base KB, we define the fol-
lowing inference tasks.

• satisfiability: The knowledge base KB is satisfiable if and only if there is
a model I for KB.

• concept satisfiability: For a concept expression C, a concept is satisfiable
if and only if there is a model I for KB where CI is not empty.

• subsumption: For two concept expressions C and D, a concept C is sub-
sumed by a concept D, written KB |= C v D if and only if CI ⊆ DI is
true in all models of KB.

• concept equivalence: Two concepts C and D are equivalent, if KB |= C v
D and KB |= D v C.

• instance checking: An individual a is an instance of a concept C if and
only if aI ∈ CI .

• role checking: A role R relates individuals a and b with respect to KB if
and only if (aI , bI) ∈ RI .

It is worthwhile to note that all these tasks can be reduced to the satisfiability
task. Using such a reduction enables to obtain worst-case complexity results for
the other inference tasks.

Description Logics Examples

The choice of a description logic flavor is generally guided by the necessities
of the domain to be modelled. For example, the AIFB portal ontology uses
a description logic which lack constructs such as nominals or qualified number
expressions, whereas the medicine domain generally requires more expressive
constructs such as role composition.

In the next Chapter of this thesis we introduce a number of operators which
are closely related to some of the description logic constructors presented in
this section. In order to appreciate the relation between these operators and
the one presented here, we consider first the ALC description logic. This de-
scription logic can be described by presenting the production rules allowing the
construction of concepts.
ALCConcept Expression→ A|C tD|C uD|¬C|∃R.C|∀R.C
This means that concept can be constructed in ALC using boolean operator

on concepts (i.e. t, u, ¬) and the existential restriction ensuring that the

2.2. LOGICAL AND RULES PARADIGMS 45

members of a concept ∃R.C have a relation R with an individual instance of C,
whereas the concept ∀R.C is the concept consisting of all the instances which
have the property that if they possess a relation R then the elements they link
to through R are of type C. While the boolean operators and the existential
restriction are useful and very frequent for writing queries. The value restriction
is more useful to draw supplementary inferences than for querying purposes.

A number of constructs can be added to ALC to obtain an appropriate
language. The next important primitive are nominals and are usually denoted
using a O in the logic name. Nominals allow the definition of extensional sets
of elements. For example, the professors of the AIFB institute are all known.
Using nominals it is possible to define the concept:

AIFBProfessors ≡ {Prof. Oberweis, Prof. Schmeck, Prof. Seese,
Prof. Studer, Prof. Stucky}

For example, a hierarchy on roles can be added. This is usually denoted by
the use of H in the name. Just as for concept expressions, boolean operators
can be used on role constructors.

The definition given above corresponds to descriptions logics with binary
predicates, but a pertinent aspect to consider in our approach is the use of
more expressive logics, in order to capture the content of databases. Cer-
tain description logics have been specially designed to adapt easily to relational
databases. Notably, Calvanese et al. (see [Calvanese et al., 1997]) introduced
such a logic, the DLR description logic, which allows relations of arity greater
than two as well as other crucial operators relevant for the database context.
Our original approach in [Tane, 2005] introduced a query language very sim-
ilar to this description logic. Other approaches have also been suggested, for
example [Grädel, 1999] introduced a description logic based on the Guarded
Fragment of first order logic. However, we postpone further discussions to the
future work section (see Chapter 7) of this thesis.

The literature on description logics is extensive, covering a wide range of
issues from theoretical results to applications. We refer the interested reader to
the Description Logic Handbook, (see [Baader et al., 2003]) which covers most
of the state-of-the-art in the domain of description logics, in particular the
first chapter (see [Nardi and Brachman, 2003]) gives a good introduction to the
topic.

With the advances of research in the domain of description logics, a cooper-
ative effort from the research community is paving the way for the next version
of OWL DL. The purpose of this initiative is to extend the actual OWL DL
(which corresponds to the SHOIN (D) description logic) with features which
can be easily implemented in state-of-the-art inference engines. This new de-
scription logic would correspond to the SROIQ(D) description logic. It corre-
sponds to the description logic ALC together with the transivive and reflexive
axioms, and enhanced with the inverse role constructor .− (the I in the language
name indicates its presence), as well as qualified number expressions (indicated
by Q),7 “nominals” concept constructor and concrete domains (indicated us-
ing the D in between the parentheses). We omited concrete domains here.
The decidability and NExp-Time-completeness of this logic has been proved in
[Horrocks et al., 2006].

7There is a technical limitation on the use of complex roles in qualified number expression
in order to prevent loosing the decidability of the logic.

46 CHAPTER 2. PRELIMINARIES

2.2.2 Datalog

The interest in using logic in databases gave rise to the field of deductive
databases. For an overview of the issues in deductive databases, we greatly
recommend the so-called Alice-book (see [Abiteboul et al., 1995]) as well as
[Eiter et al., 1997].

In this thesis, we study the consequences of using different flavors of query
languages to see how well they could be integrated in our approach. For this,
we first consider their syntax.

Syntax

We now introduce the syntax of the diverse datalog flavors. We give a general
definition of the datalog syntax but other definitions can be found in the litera-
ture (see in particular [Eiter et al., 1997] though we were mainly inspired from
[Motik, 2006], as well as [Abiteboul et al., 1995]).

Definition 6 (Syntax) A first order signature Σ is a 4-tuple Σ := (P, σ,F ,V),
where P is a set of predicate names together with a mapping σ from P into the
set of non-negative integers denoting the arity of a predicate. F is a finite set
of constants and finally V is a countable set of variables.

We call a term8 over V ∪ F a tuple over V ∪ F . The mapping length maps
a term t to a non-negative integer n, so that n is the arity of t. We call ground
term a term where only constants appear.

An atom is an expression of the form p(t) where p is a predicate name (i.e.
p ∈ P) and t is a term. A ground atom p(t) is an atom where t is a ground
term. The negation of an atom is an expression of the form ∼A where A is an
atom. A literal is an atom or a negated atom.

A datalog rule is an expression of the form

A1 ∨ · · · ∨An ← l1, . . . , lm,

where n ≥ 0 and m ≥ 0 and A1, . . . , An is a sequence of atoms called the
head of the rule and l1, . . . lm is a sequence of positive or negative literals (i.e. an
atom or the negation of an atom) called the body of the rule. The set of atoms
of the head is denoted head(r), whereas the set of positive atoms (respectively
negative atoms) of the body is written body+(r) (respectively body+(r)).

Moreover a rule is safe if each variable occurring in the head also occurs in
the body.

A datalog program is a finite set of safe datalog rules.
A datalog program P is called stratified if there is a decomposition of the

set of predicates of P into disjoint sets P0, P1, . . . , Pr called strata so that for
every rule r, there is a stratum Pj, so that:

• all predicates of the head belong to Pj

• for all positive predicates of the body of r, there is a stratum Pi, such that
i ≤ j.

8This corresponds to terms as used in first order logic but in datalog only 0-ary function
symbols are allowed.

2.2. LOGICAL AND RULES PARADIGMS 47

• for all negative predicates of the body of r, there is a stratum Pi, such that
i < j.

In addition, it is useful to denominate the type of rules. We call a rule
positive if all l1, . . . lm are atoms, we call it disjunctive if the head contains
more than one atom. Finally, a non-disjunctive positive rule is called a Horn-
rule. A positive (respectively, Horn-) datalog program is a program consisting
only of positive (respectively, Horn-rules). A disjunctive program is a program
containing at least one disjunctive rule.

Semantics

Depending on the flavor of datalog used, different semantics can be given to a
datalog program: minimal, stable and perfect semantics (see [Eiter et al., 1997]).
The properties of these semantics are well known. In particular, the perfect and
stable model semantics are equivalent for the disjunction-free stratified data-
log. We focus here on the latter semantics for which we give the corresponding
definition.

Definition 7 (Semantics) The Herbrand universe HUP of a datalog program
P is the set of constants occurring in P . The ground instance of P over the
Herbrand Universe HUP , written ground(P,HUP) is the set of ground rules
obtained by replacing all variables of each rules of P with constants from HUP

in all possible ways while respecting variable bindings.
For a program P , the Herbrand base HBP of P is the set of all ground atoms

defined over predicates from P using only constants from HUP . An interpreta-
tion M of P is a subset of HBP . An interpretation M of P satisfies a ground
rule r: A1 ∨ · · · ∨ An ← l1, . . . , lm, if Mli for every literal li implies MAj for
at least one Aj. A model M is a model for a program P if M satisfies all the
ground rules of the ground instance ground(P,HUP) of P . Finally, a model is
minimal if no subset of M is a model of P . The semantics of P is defined as
the sets of all minimal models of P , denoted MM(P).

The Gelfond-Lifschitz transform of PM with respect to an interpretation M
is a set of ground rules obtained by removing from ground(P,HUP) all rules
containing a negative literal in the body and removing from the remaining rules
all negative literals.

A model M is said to be stable if M ∈ MM(PM). The semantics of a
disjunction-free stratified datalog program P are given by the unique stable model
of P.

Three supplementary theoretical results play also an important role when
the chosen datalog is restricted to stratified datalog. First of all the semantics
of stratified datalog programs are independent of the stratification chosen. The
second interesting result is that the traditional stable and perfect semantics
match in the stratified case. Finally, the model of a non-disjunctive datalog
program is unique (see [Eiter et al., 1997]).

Example

We illustrate the above definitions using an example.

48 CHAPTER 2. PRELIMINARIES

Example 1 (Datalog Examples) Consider a directed graph with labelled arcs
modelled as a database predicate graph.

The following datalog program returns the sets of pairs for which there is a
path in the graph from the first to second argument.

path(x, y)← graph(x, y, a).
path(x, y)← graph(x, y, a), path(y, z).

The Herbrand Universe in this case are the nodes and labels of the graph,
that is the constants occurring in the database graph. The minimal model of
this program corresponds to the transitive closure of the graph.

For some practical application, it is sometimes desirable to avoid some la-
bels. For example, suppose the graph models the network of a city. Some streets
may be under constructions and therefore should be avoided when looking for
a path. We introduce a new predicate street under construction. The follow-
ing program lists all the paths between to endpoints which avoid streets under
construction.

path(x, y)← graph(x, y, a),∼ street under construction(a).
path(x, z)← path(x, y), graph(y, z, a),∼ street under construction(a).

A stratification of this program could be for example
P0 = {street under construction}, P1 = {path, graph}.

Note that queries written in the stratified flavor of datalog can be evaluated
in polynomial time. Diverse implementations of these flavors exist; in partic-
ular, the Horn fragment. Disjunctive datalog has been implemented in several
systems such as dlv9 (see [Leone et al., 2002]).

Note that the unique name assumption and the closed world assumption
underlie the datalog paradigm.

2.3 Formal Concept Analysis

In Chapter 1, Section 1.1.2 we gave an informal introduction to the field of For-
mal Concept Analysis. We now present the necessary background to understand
the work in this thesis.

2.3.1 Basic FCA

We start by recalling the basic definitions of Formal Concept Analysis and illus-
trate them using simple examples. Unless stated otherwise, all the definitions
and theorems presented here are taken from [Ganter and Wille, 1999]. We al-
ready explained the intuituin behind formal contexts and the following definition
formalises this notion.

Definition 8 (Formal Context) A formal context K is a triple (G, M, I),
where G and M are sets and I is a binary relation between G and M , i.e.
I ⊆ G×M . Per convention, we call the set G the object set, while M is called
the attribute set. The relation I is called the incidence relation.

Two aspects should be noted about this definition. First, the definition
is symmetrical. The two sets G and M can be interchanged, as long as the

9See http://www.dbai.tuwien.ac.at/proj/dlv/.

http://www.dbai.tuwien.ac.at/proj/dlv/

2.3. FORMAL CONCEPT ANALYSIS 49

inverse relation I−1 is used instead of I (in other words, the arguments of I are
swapped). The second important aspect is that a formal context can be seen
as a binary relation between two sets. Observe that not every element of G
or M needs to appear in the set of pairs of the relation. This means that the
relation I is not enough to describe a formal context. This fact is illustrated in
the following example:

Table 2.5: A simple example of a formal context

Kp

It
al

ia
n

Sp
an

is
h

Fr
en

ch

In
di

an

T
ha

ila
nd

C
hi

ne
se

Ja
pa

ne
se

V
eg

et
ar

ia
n

Fa
st

fo
od

Paul × × × × ×
Maria × × × ×
Greg × × ×
Stefanie × × × ×
Julien × × × × ×
Karin × × × × ×
Mario

Example 2 (Person–Food Context) A couple wants to organise a dinner
with a group of friends. In order to satisfy their guests, they draw a table of the
food appreciated by these friends. Table 2.5 shows this table as a simple formal
context. The objects are persons who they plan to invite, while attributes are
the type of food they like to eat.

If the intersection of G and M is empty (i.e. G ∩M = ∅), then a formal
context could be seen as a bipartite graph (a graph with two distinct sets of
nodes10 with a relation between the two) and could be displayed as a graph.

We need to introduce two derivation operators.

Definition 9 (Derivation) For A ⊆ G and B ⊆ M , we introduce a new
notation: “.′” on subsets of G and M:

A′:= {m ∈M : ∀g ∈ A, (g,m) ∈ I}, and
B′:= {g ∈ G : ∀m ∈ B, (g,m) ∈ I}

The meaning of these notations can be interpreted as finding all the ele-
ments of the other set which are shared by a given subset of elements. In the
example given above, {Maria, Paul, Karin}′ = {Italian, Japanese} and {Italian,
Thai}′ = {Maria, Paul, Stefanie}. Note that these operators can be composed.
For example, let A be {Maria, Paul, Karin}, A′′ = {Maria, Paul, Karin, Greg,
Stefanie, Paul}. If neither Julien nor Mario are invited every one should be
satisfied.

10Of course in this case, the two sets of nodes are the object and attribute sets and the set
of edges consists of the pairs in I.

50 CHAPTER 2. PRELIMINARIES

Definition 10 (Formal concept) A formal concept of a formal context (G, M, I)
is a pair (A,B) with A ⊆ G, B ⊆ M , A′ = B and B′ = A. A is called the
extension of the formal concept, while B is called its intension.

Moreover, we denote by B(G, M, I) the set of all the formal concepts of
(G, M, I).

We define on the set B(G, M, I) a partial order11 ≤, such that for two formal
concepts (A1, B1) and (A2, B2) of the context (G, M, I):

(A1, B1)≤(A2, B2) :⇔ A1 ⊆ A2 (or equivalent B2 ⊆ B1).

Actually, the partial order we have just defined on B(G, M, I) has particu-
lar mathematical properties which makes its structure particularly suitable for
information visualisation.

Definition 11 (Complete Lattice) In a partially ordered set (L,≤), a lower
bound for a subset A of L is an element x ∈ L, such that ∀a ∈ A, x ≤ a, whereas
an upper bound for a subset A of L is an element x ∈ L, such that ∀a ∈ A,
x ≥ a. A complete lattice (L,≤) is a partially ordered set with the property
that for any subset A of elements of the lattice , there exists two elements of L,
respectively denoted by ∧A and ∨A, such that

•
∧

A is the largest lower bound.

•
∨

A is the smallest upper bound.

A concept lattice is called supremum dense if every element a of L there
is a subset A of L, so that a is the upper-bound of the elements of A, in
other words a =

∨
A. A concept lattice is called infinimum dense if every

element a of L there is a subset A of L, so that so that a is the lower-bound
of the elements of A, a =

∧
A.

The element of ∨A is also called the12 least upper-bound of A, while the
element of ∧A is called the greatest lower-bound of A.

From [Ganter and Wille, 1999], we now state the Fundamental Theorem of
Formal Concept Analysis:

Theorem 1 (Fundamental Theorem of Formal Concept Analysis) The
partially ordered set B(G, M, I) is a complete lattice, henceforth called the con-
cept lattice of (G, M, I). For a family ((At, Bt))t∈T of formal concepts of the
concept lattice B(G, M, I), the smallest upper bound and greatest lower bound
are of the following form:∧

t∈T (At, Bt) = (
⋂

t∈T At, (
⋃

t∈T Bt)′′)∨
t∈T (At, Bt) = ((

⋃
t∈T At)′′,

⋂
t∈T Bt)

Conversely, a complete lattice V is isomorphic to B(G, M, I), if and only
if there exists two mappings γ : G → V and µ : M → V such that γ(G) is
supremum dense in V, and µ(M) is infinimum dense in V and (g,m) ∈ I
is equivalent to γ(g) ≤ µ(m) for all g ∈ G and all m ∈ M . In particular,
V ∼= B(V, V,≤).

11A partial order relation is a reflexive, antisymmetric and transitive binary relation on a
set.

12The antisymmetry of the ≤ relation implies that if a least upper bound exists, it is unique.

2.3. FORMAL CONCEPT ANALYSIS 51

The Fundamental Theorem first states that B(G, M, I) is a complete lattice.
But, in order to discuss the properties of concept lattices, we need a way to
visualise them. In Order Theory, partial orders are usually displayed using
line diagrams. A line diagram is a diagram consisting of nodes representing
the elements of the ordered sets and edges representing the neighbouring13 �
relation of two elements for the order relation ≤.

In Figure 2.4, the line diagram of the concept lattice of the formal context
given in Example 2 is shown. This diagram visualises the persons who share
the same taste for food. For instance, it is possible to see that Japanese food is
eaten by everyone but Mario and that Italian, Thailandese and Spanish food cover
most of the people always leaving two persons out. One of these two persons is
Mario, who is either not satisfied by any of the food proposed or whose taste is
not known.

Lattices have the interesting property that for any set of formal concepts, it
is possible to find the greatest lower-bound and the lowest upper-bound.

Figure 2.4: The concept lattice of the food and people context of Example 2.

2.3.2 Context Operators

In this section, we introduce basic operators on formal contexts. Most of the
definitions we use here come from [Ganter and Wille, 1999]. The purpose of
context operators is to be able to combine or transform the formal contexts
to obtain new formal contexts. Some of these operators can be understood
as conceptual operations on the information contained in these contexts as we
explain after having introduced them.

In order to introduce certain operators, we need a supplementary notation
to ensure that unions are disjoint:

13For a partial order relation on S, the neighbouring (if it exists) consists of all the pairs
(a,b), such that ∀z ∈ S, if a < z and b comparable with z, then b ≤ z.

52 CHAPTER 2. PRELIMINARIES

Definition 12 (Disjoint Union Identifiers) Let T and T− be two disjoint
sets. Let t be an element of T ∪ T− and let A be a set. We define the t-marked

set
t

A in the following way:

t

A := {(t, a) : a ∈ A}

Let t ∈ T ∪ T− and let I be a binary relation over sets A and B, we define
the following sets:

t.

I := {(a, (t, b)) : (a, b) ∈ I}

.t

I := {((t, a), b) : (a, b) ∈ I}

We call them the right t-marked relation I and left t-marked relation I respec-
tively.

Note that these notations used in [Ganter and Wille, 1999] differ a little from
the one we introduced. Instead of using a “.”, we use an element of T ∪ T− to
distinguish sets of elements. Moreover, the notation simplifies part of the proof
given in Chapter 3, Section 3.3.3.

The following context operator definitions correspond to the one given in
[Ganter and Wille, 1999].

Definition 13 (Context Operators) Let K : (G, M, I) be a formal context,
then the following unary operators are defined:

• dual: Kd := (M,G, I−1).

• complement: Kc := (G, M, (G×M) \ I)

Let K1 : (G1,M1, I1) and K2 := (G2,M2, I2) be two formal contexts, then
the following operators are defined:

• if G1 = G2, the apposition: K1|K2 := (G1,
t

M1 ∪
t−

M2,
t.

I1 ∪
t−.

I2)

• if M1 = M2, the subposition: K1
K2

:= (
t

G1 ∪
t−

G2,M1,
.t

I1 ∪
.t−

I2)

• union: K1 ∪K2 := (G1 ∪G2,M1 ∪M2, I1 ∪ I2)

• intersection: K1 ∩K2 := (G1 ∩G2,M1 ∩M2, I1 ∩ I2)

The operators of the above definition are illustrated in Figure 2.5. The
dual operator inverses binary relations of the contexts and sets the objects as
attributes and attributes as objects. The concept lattice of the dual context
of a context K is the inversed order of the lattice of formal context K. The
complement operator complements the binary relation. The union operator
merges the information from both contexts, while the intersection operator only
keeps the information which is present in both context. Finally, the subposition
and apposition operators can be seen as disjoint merge operators.

2.3. FORMAL CONCEPT ANALYSIS 53

Figure 2.5: Example of the constructors defined in [Ganter and Wille, 1999]

Kp a b

1 ×
2 × ×

Kd
p

1 2

a × ×
b ×

Kc
p

a b

1 ×
2

Kp1
a b

1 ×
2 ×
3 × ×

Kp2
a b

1 × ×
2 ×

Kp1
Kp2

a b

(1,a) ×
(2,a) ×
(3,a) × ×
(1,b) × ×
(2,b) ×

Kp3
a b c

1 × ×
2 × ×

Kp4
b c d

1 × × ×
2 ×

Kp3 |Kp4
(a,a) (b,a) (c,a) (b,b) (c,b) (d,b)

1 × × × × ×
2 × × ×

Kp3 ∪Kp4
a b c d

1 × × × ×
2 × × ×

Kp3 ∪Kp4
b c

1 ×
2

2.3.3 Many-valued Contexts and Conceptual Scaling

While the basic Formal Concept Analysis theory focuses on the case of binary
contexts, the approach has also been extended to a more generic class of context:
the many-valued contexts. This kind of context is much closer to the model
used in relational databases and their relation has been studied in a number of
articles (see [Correia, 2002, Priss, 2005]). We first present their definition then
we introduce the notion of scaling. Using apriori models of the data, called
scales, many-valued contexts may be transformed as a one-valued context, and
can thus be visualised using a line diagram.

Many-valued Contexts

We give here again the definition of a many-valued context which can also be
found in [Ganter and Wille, 1999].

Definition 14 (Many-valued Context) Let G be a set of objects, M be a
set of attributes and W a set of possible values for these attributes, then a
many-valued context is a tuple K = (G, M, W, I) where I is a ternary relation
I ⊆ G×M ×W , with

(g,m, w) ∈ I, (g,m, v) ∈ I =⇒ w = v.

54 CHAPTER 2. PRELIMINARIES

(g,m, w) ∈ I means that the object g has attribute m with value w. We some-
times use the usual notation m(g)=w, where the attribute is seen as a partial
function from G to W.

We illustrate this definition using a simple example.

Example 3 (Many-Valued Context Example) In a computer magazine, it
is common to use a table like Table 2.6 to help the reader in comparing the
features of different computers. The rows of the table are the computers to
be compared. The columns of the table inform the reader about the company
producing it, the price and the processor clock rate.

Table 2.6: An example of many-valued context.
Model Company Price Processor User Rating
THX-39 THX 399 3 GHz + + ++
ASC-2 LLA 599 3,5 GHz ++
MLD-56 MLD 349 2,7 GHz + + +
XTL-22 KLT 350 2,5 GHz ++
XTL-25 KLT 379 3 GHz + + ++
...

Note that a many-valued context can be seen as a one-valued context directly,
by using a restructuration of the definition. Indeed, we can define the context
KN := (G, π2,3(I), I2) where π2,3 is the projection of I on the cross product of
M ×W and I2 is defined by I2 := {(g, (m,w)) ∈ G×M ×W : (g,m, w) ∈ I}.

Conceptual Scaling

While we saw that it is possible to transform a many-valued context into a
one-valued one, the traditional Formal Concept Analysis theory introduces the
notion of scales to allow the use of partial orders on the values of the many-
valued context. The following definition stems from [Ganter and Wille, 1999]
and formalises the notion of scale.

Definition 15 (Scale) A scale for the attribute m of a many-valued context
is a one-valued context Sm with m(G) ⊆ Gm, where Gm is the set of possible
values for the attribute m and m(G) is the set of actual values for the attribute
m.14 The objects of the scale are called scale values, while the attributes are
called scale attributes.

Using scales, a many-valued context can easily be transformed into a one-
valued one by replacing each attribute m of a many-valued context by the scale
attributes of the corresponding scale and each value w of the attribute m for an
object g by the corresponding line of the scale.

Figure 2.6 shows the scale for the attribute processor of the many-valued
context.

Figure 2.6 shows the scale for the attribute rating of the many-valued context.

14Some of the values of an attribute m may not occur as value for any element of G.

2.3. FORMAL CONCEPT ANALYSIS 55

Figure 2.6: The formal concept lattice for the processor scale.

Nested Line Diagrams

In addition to allowing the transformation of the many-valued contexts into one-
valued formal contexts, the scaling process is particularly adapted to a new kind
of line diagrams called nested line diagrams. The idea behind nested diagrams
is to simplify the visualisation of the line diagrams of contexts which can easily
be split in a set of formal contexts with disjoint attribute sets. Each of these
formal context can then be seen as a scale.

To understand this combination, it is best to use an example.

Example 4 (Scaled Many-Valued Context Example) In Figure 2.8, the
concept lattice of a scaled many-valued context of Example 3 is shown.

This lattice is read in the following way. The nested line diagram is composed
of two different lattice. The outer lattice which is in this case the processor scale.
and the inner lattice, here the rating scale. Each node of the outer lattice is

56 CHAPTER 2. PRELIMINARIES

Figure 2.7: The formal concept lattice for the rating scale.

replaced by a version of the inner lattice indicating the objects at their position
in the inner lattice. Both scales are read in the same manner as normal concept
lattices. This means that if an object occurs at some node of the inner lattice,
this object is found at the same position in the scale of Figure 2.7. And this
object is also at the same node of the outer lattice as it was in the scale on
Figure 2.6.

For example, the computer ASC-2 has the fastest processor but only a rating
of ++.

As the example shows, the resulting lattice combines information from both
scales, in that way it is possible to create different views on the data.

Nested line diagrams are extremely useful and powerful. In Chapter 6, Sec-
tion 6.1.2, an application which uses these techniques is compared to the ap-
proach we present in the next chapter.

2.3. FORMAL CONCEPT ANALYSIS 57

Figure 2.8: The nested line diagram for the computers embedding the rating
scale in the processor scale.

2.3.4 Multicontexts

For the sake of completeness, we present here the multicontexts as presented in
[Wille, 1996, Gast, 1996]. A multicontext can be seen as a network of formal
contexts, which sometimes share object and attribute sets. We introduce them
here because this model was one of the starting points of our investigations. The
limitations and the added value of this simple model guided us in our research.

The following definition formally describes multicontexts.

Definition 16 (Multicontext) A multicontext of signature σ : P → I2,
where I and P are non-empty sets, is defined as a pair (SI , RP) consisting of a
family SI := (Si)i∈I of sets and a family RP := (Rp)p∈P of binary relations
with RP ⊆ Si × Sj if σp = (i, j).

As suggested in [Wille, 1996, Gast, 1996], such a network of formal contexts
can be used to investigate the coherence of the data. Since we do not use this
notion in this thesis, we do not introduce the supplementary notations necessary

58 CHAPTER 2. PRELIMINARIES

to use multicontexts for this purpose. Little work has been published on the
topic of multicontexts, but it is worthwhile to note the master thesis of Petra
Gast (see [Gast, 1996]) where different aspects of multicontexts are investigated
and illustrated. Notably, she extended the notion of multicontexts to that of
many-valued multicontexts.

2.4 Summary

In this chapter, we introduced the necessary preliminaries to understand the ap-
proach proposed in this thesis. Notably we discussed the definition of knowledge
representation, as well as introduced the main kinds of knowledge representation
for knowledge bases. Then we recalled the basic methods and techniques used
in database theory which play a role in this thesis. Finally, we presented the
basic notions of Formal Concept Analysis which we use throughout this thesis.
The next chapter introduces the query-based multicontext theory, which deals
with the generation of contexts from a given data source.

Chapter 3

Query-Based Multicontexts

In this chapter we present a novel approach to model multicontexts. This ap-
proach is based on a new structure called Query-Based Multicontext. A query-
based multicontext can be seen as a formal space of all the formal contexts
which can be generated by querying a given data source. Each formal context
in this space is represented by an intensional representation based on queries. In
Chapter 4 we show that this intensional representation can be used for knowl-
edge browsing, and we argue in Chapter 7 that other application domains can
benefit from this approach.

This chapter addresses different topics concerning the query-based multicon-
text theory. In Section 3.1, we give an intuition of the ideas behind Query-Based
Multicontexts. Following this informal description, we give a formal definition
of the query-based multicontext in Section 3.2.1, which we further illustrate in
Sections 3.2.2 and 3.2.3 using two examples. In the following sections 3.3 and
3.4, we introduce various specialisations of query-based multicontexts by con-
sidering several kinds of query infrastructures. In particular, we consider query
infrastructures with the usual set operations, typed query infrastructures and
semantic query infrastructures. We also show in Section 3.3.3 that by using cer-
tain set operations it is possible to define useful operations on our intensional
representations of contexts. We also demonstrate how these operations corre-
spond to the commonly used context operations we introduced in Chapter 2,
Section 2.3.2.

The semantic query infrastructure which we introduce in Section 3.4 serves
as a basis for the later chapters of this thesis to provide a novel way of brows-
ing knowledge bases. To ease the browsing, two further issues are addressed in
the two last sections of this chapter. In Section 3.5, we introduce constructors
which are parametrisable templates to ease the definition of the intensional rep-
resentations of formal contexts. They play a fundamental role in our browsing
approach.

3.1 Intensional Context Representations

In Chapter 1, Section 1.1, we argued for the importance of being able to create
views. We defined views as a mechanism to focus on a specific aspect of a
knowledge base. We illustrated our point considering the publication-author

59

60 CHAPTER 3. QUERY-BASED MULTICONTEXTS

relation, which is too large to be visualised as a whole. In the next section, we
propose a model to create this kind of views using queries on the knowledge
base. Throughout this chapter, we introduce different extensions of this model,
which we illustrate and motivate through corresponding examples.

The novelty of our approach lies in the capability of carefully tailoring the
content of the concept lattice. In order to achieve this precise selection, we in-
troduce an intensional representation for contexts called a context index. Given
a data source and a context index, it is possible to generate a context contain-
ing only the data relevant for the user. For knowledge visualisation purposes, a
Formal Concept Analysis browsing tool can generate the concept lattice of this
context and visualise this lattice using a line diagram. The purpose is then to
help the user in defining context indices which either give an overview over the
data or which focus on well specified parts of the data. We show in Chapter
4 how to define and manipulate context indices for this purpose. Now that we
have set the goal, the first question to be answered is: what is an appropriate
intensional representation? Looking at the formal definition of a formal context
should help us in answering this question.

Formal contexts consist of three sets: an object set, an attribute set and a
relation1 between them. Each of these sets carries information potentially useful
to the user. In order to allow the user to manipulate the contexts using context
indices, we define a context index as a triple p := (q1, q2, q3) of queries which
are used to generate the formal context. For a given data source, these queries
can be evaluated using a function κ to create a context Kp.

p := (q1, q2, q3) −→ Kp := κ(p)

The function κ is a function which stands for the evaluation of these queries
and the combination of their results.

Context indices are useful because of their basic properties. We list here
these properties.

• symbolic: context indices are intensional representations of the result of
their evaluation,

• concise: a context index is usually a short string describing the content of
the context,

• operable: operations can be defined on queries and therefore on context
indices. These operations correspond to operations on the represented
objects or on the context, and

• generic: their meaning is intensionally defined by the queries, but their
evaluation depends on the data source used.

These properties make context indices useful at different levels for the design of
a Formal Concept Analysis application. We illustrate this by presenting the life
cycle of such an application.

The goal of our approach is to browse knowledge bases. The idea relies
on displaying the line diagram of lattices pertinent to the user. In order to
achieve this, the application sets on a life cycle with three phases: context
index definition, context generation and lattice generation. Figure 3.1 shows

1A relation is nothing else than a set of pairs.

3.1. INTENSIONAL CONTEXT REPRESENTATIONS 61

Figure 3.1: The model work flow

this life cycle. At the beginning of any given cycle, a context index is either
given or created. It is then evaluated to create a formal context which can
then be presented to user using some visualisation paradigm. For example, the
generated formal context can be displayed using the line diagram of its concept
lattice, thus preserving the complete information. The user can interact with
it to create a new context index, thus entering a new round of the life cycle
where the new context index is evaluated and another context is created, and
displayed in the form of a concept lattice.

Context indices play diverse roles in the phases of this life cycle as outlined
in Figure 3.1 and explained in further details in the following paragraphs.

In the context index definition phase, context indices are used as intensional
representations of contexts. The user can define a context index using query
operations, context operations or finally context index constructors. The latter
can be seen as high-level templates to be parametrised using queries in order to
create some complex context index.

During the context generation phase, context indices can be used to make
the evaluation of contexts more efficient and economical in resources.

Finally, in the lattice generation phase, context indices allow for the reuse
of previous lattices, and provide supplementary information which can be used
when generating and displaying lattices.

The overall goal of this chapter is to expose the theoretical background to the
query-based multicontexts. We start with a formal definition, illustrated by two
examples. Next, we introduce the generic query and context index operators
which allow to define, create and manipulate formal contexts in query-based
multicontexts. Then, we propose a further extension of query-based multicon-
texts, where the query languages used are based on ontologies. This extension
is used in the later chapters to create our browsing application. In addition to
this extension and the use of operators, we present a method to create context
indices based on the ideas of templates, which we call constructors. These con-

62 CHAPTER 3. QUERY-BASED MULTICONTEXTS

structors also serve in the next chapter to guide the user in the definition of the
concept lattices to be used for visualisation.

Now that we have given an outline of the ideas behind the query-based
multicontext, we can proceed by giving its formal definition.

3.2 Query-based Multicontexts

In this section, we first give a formal definition of the query-based multicontext.
Then we illustrate this definition with two examples. The first example intro-
duces the most simple kind of query-based multicontext, whereas the second one
presents a query-based multicontext on top of an SQL database. The definition
of query-based multicontexts used for knowledge bases is given in Section 3.4 of
this chapter.

3.2.1 Definition: Query-based Multicontext

A query-based multicontext is a formal space containing all the contexts which
can be generated by querying a given data source. In order to define this
space formally, we first define query infrastructures (see Definition 17), then we
introduce the structure used to represent formal contexts intensionally: context
indices (see Definition 18). A context index represents an intensional view of
the data contained in a context. These two definitions allow us to introduce the
query-based multicontexts as mathematical structure.

Query Infrastructures

We first introduce some preliminary definitions: given a set Σ, called alphabet,
a sequence of elements of Σ is called a word over Σ. Let Σ∗ be the set of finite
words over Σ. A subset L of Σ∗ is called a language L over the alphabet Σ, in
other words, a language is a set of finite words over Σ. In a similar manner, we
define Σ+ as the set of non empty sequence of elements of Σ. In this thesis, we
call certain languages2 query languages and we call their words queries. These
languages are defined in the following definition.

Definition 17 (Query Infrastructures) Let Ω be a set called universe. We
call a query infrastructure Q a pair (L1, L2) of query languages over some pos-
sibly disjoint alphabet. An instance Q of a query infrastructure (L1, L2), is a
5-tuple (L1, L2,Ω, eval1, eval2) where eval1 is a map from L1 into P(Ω) and
eval2 a map into P(Ω × Ω). The elements of L1 are called set queries, while
elements of L2 are called relation queries.

An instance of a query infrastructure is a structure to represent the necessary
elements to query a given data source (i.e. the data source schema plus the
data). For example, the AIFB knowledge base is a data source. The abstraction
query infrastructure corresponds to the data source schema shared by all the
instances of this query infrastructure, that is, the data sources themselves.

Since these data sources might have their own query language or means of
providing the data, it is important to prevent confusions in terms. Thus, we

2We use the term query language, when the purpose of its words is to represent or retrieve
data.

3.2. QUERY-BASED MULTICONTEXTS 63

call data source the actual data providing mechanism, and data source language
the language used to communicate with the data source.

The elements of L1 can be seen as monadic predicates (that is, unary predi-
cates), the elements of L2 can be seen binary predicates, whereas the evaluation
functions play a role similar to an interpretation in logic. We prefer the more
generic term query for two reasons.

First of all, though many query languages can be formulated in a logical
language, doing so would have greatly reduced the genericity of the query-based
multicontext definition we present next. Many query languages cannot be easily
formulated as a logical language. For example, one could think of using such
a language as CQL.3 We discuss briefly a similar topic in Chapter 6, Section
6.1.3.

Finally, the term query denotes perfectly their role in our approach. While
the purpose of formulas is usually to describe concisely some set of entities and
their relation independently of a specific interpretation, the goal of a query is
to find a narrow set of items in a large collection that satisfy a well-understood
information need ([Marchionini, 1995]). A query is a request for information
which is interpreted with respect to a given data source. The answer of the
query depends on this data source, but the intended meaning lies in the query
and some assumptions regarding its interpretation. In Section 3.3, we introduce
query operators with given semantic interpretations. It is assumed that all the
query answering mechanisms of the data sources respect these interpretations.

Query-Based Multicontexts

Using the query infrastructure we just introduced, we can formalise the idea of
a query-based multicontext:

Definition 18 (Query-Based Multicontext) Let Q = (L1, L2) be a query
infrastructure. We define P := L1 × L1 × L2 and call an element p of P a
context index. Let QΩ := (L1, L2,Ω, eval1, eval2) be an instance of the query
infrastructure Q.

For a context index p = (q1, q2, q3) ∈ P, we define its induced query-based
context as: Kp := (eval1(q1), eval1(q2), eval2(q3) ∩ (eval1(q1) × eval1(q2))). A
query-based multicontext for QΩ, denoted by QBMC(QΩ), is defined as the set
{Kp|p ∈ P}. We call the mapping from P in QBMC(QΩ) the context realisation
and we denote it by: κQΩ (or simply κ if it is clear from the context). So, for
all p ∈ P, κ(p) = Kp.

Before commenting on this definition, observe that we use certain conven-
tions throughout this thesis to denote queries from L1 and L2; queries q3, q6,
etc. denote elements of L2, while all the others denote queries of L1. Moreover,
to increase the readability, we sometimes use the vector notationq1

q2

q3


instead of (q1, q2, q3) when denoting a context index.

3CQL is a text-based language used to query the data collections of libraries. It has been
standardised by the Library of Congress (see http://www.loc.gov/standards/sru/cql/).

http://www.loc.gov/standards/sru/cql/

64 CHAPTER 3. QUERY-BASED MULTICONTEXTS

For a given instance of a query infrastructure, a context index fully specifies
a formal context. The object set of the formal context, respectively the at-
tribute set, contains the result of the evaluation of the first query, respectively
the second query. The incidence relation is defined as the pairs common to the
relation returned by the third query and to the cross product of the object set
with the attribute set. The idea behind this construction is that the relation
desired is only between the objects and attributes of the context. The relation
between other objects and attributes is not relevant at that point. In other
words, the only pairs of the relation which are kept are the pairs with a first
argument belonging to the object set and with a second argument belonging to
attribute set, thus building a formal context. For instance, if the goal of the
formal context is to display the relation between professors and their research
topics, then the pairs of the relation between PhD Students and research top-
ics are not relevant. The underlying database, however, might not make any
difference and return all the pairs.

From the definition, it is clear that a query based multicontext is fully de-
fined once an instance of a query infrastructure has been chosen. The actual
content of each context of the query-based multicontext is dependent on the
actual evaluation of the queries used to create it. query-based multicontexts
sharing the same query infrastructure (i.e. the same query languages) might
not return the same contexts. However, their answers might coincide for a part
of the languages. This distinction is therefore particularly interesting for the
integration of diverse data sources.

Now that we have provided the formal definition of the query-based multi-
context, the next couple of sections provide two examples: one showing a very
basic query-based multicontext, the other demonstrating a query-based multi-
context on top of an SQL database.

3.2.2 A Simple Example

To illustrate the ideas behind Query-Based Multicontexts, we start by present-
ing a type of query-based multicontext which is extremely restricted in expres-
sive power. This lack of expressivity is due to the absence of operators in the
language. Such a kind of query-based multicontext is called operator free.

Example 5 (Operator Free Query-Based Multicontext) As a base exam-
ple, we consider a simple database, containing projects and topics, and a relation
isOnTopic between them specifying to which research topic the project mainly
contributes.

Ω consists of a number of projects and research topics: Ω := {PADLR,
SEKT, SWAP, SWWS, Semantic Web, P2P, Web Services}

We can specify the languages L1 and L2 in the following way:

• L1 corresponds to class names:
L1 := {project, topic}

• L2 corresponds to relation names:
L2 := {isOnTopic}

L1 and L2 can be seen as languages. Using q1 := project, q2 := topic and q3 :=
isOnTopic, it is possible to define the context index p:= (project,topic,isOnTopic).
Now, we consider the following evaluation functions:

3.2. QUERY-BASED MULTICONTEXTS 65

• eval1

– eval1(q1) = eval1(project) = {PADLR, SEKT, SWAP, SWWS} ⊆ Ω

– eval1(q2) =eval1(topic) = {Semantic Web, P2P, Web Services} ⊆ Ω

• eval2

– eval2(q3) =eval2(isOnTopic) =
{(PADLR, Semantic Web), (SEKT, Semantic Web),
(SWAP, Semantic Web), (SWWS, Semantic Web), (PADLR, P2P),
(SWAP,P2P),(SWWS,Web Services)} ⊆ Ω× Ω

Table 3.2.2 presents the context Kp := κ(p), whereas Figure 3.2 shows the
lattice for this context.

Table 3.1: The context Kp for the context index p := (project,topic,isOnTopic).

Kp

Se
m

an
ti

c
W

eb

P
2P

W
eb

Se
rv

ic
es

PADLR × ×
SWAP × ×
SWWS × ×
SEKT ×

Figure 3.2: The concept lattice corresponding to the context generated from the
context index p := (project,topic,isOnTopic).

The preceding example is very simple. No operators were defined on the
languages L1 and L2. query-based multicontexts of these types are the most

66 CHAPTER 3. QUERY-BASED MULTICONTEXTS

generic instances of multicontexts in the sense of [Wille, 1996]. However, they
do not give any means of manipulating and refining the content of the contexts.
Often it can be useful to characterise more precisely the components of a formal
context. For example, it does not make sense to display the whole concept
lattice of authors/publications of the AIFB knowledge base as the resulting
lattice contains 1,021 formal concepts. A means of focusing on specific parts
of the data would hence be useful. In order to achieve this, we extend the
definition of query-based multicontexts by allowing the use of query operators
to specify smaller formal contexts. These query operators can then be used
in the definition of more meaningful context indices. To illustrate the role of
operators in the expressivity of formal contexts, we present an example of a
query-based multicontext on top of a database in the following section.

3.2.3 An SQL Example

This section introduces a more complex example of a query-based multicontext
based on relational databases. Relational databases are omnipresent in today’s
business world, and the visualisation of the data found in a database is a cru-
cial task of today’s manager. It is therefore useful to apply the query-based
multicontext approach to relational databases.

The specification of an instance of a query infrastructures fully defines a
query-based multicontext. We define ΩDB as the set of possible tuples of the
database.4 This means that for any given instance of a query infrastructure
on ΩDB , the evaluation of a query q1 belonging to L1 by eval1 returns a set
of tuples of the database, and the evaluation of a query q3 belonging to L2 by
eval2 returns a set of pairs of tuples. However, since traditional SQL database
management systems return relations, i.e. sets of tuples and do not return pairs
of tuples, this means that to implement a query infrastructure on a relational
database each of the database rows of a result of a relation query (i.e. belonging
to L2) must be split in a corresponding pair of tuples. To achieve this, the
assignment is performed using namespaces A and B which specify whether a
given argument belongs to the first component or the second.

Example 6 (Car Sharing) Suppose that database DB belongs to a car sharing
facility to offer the possibility for the user to choose their cars according to the
proximity. The database DB consists of three tables: vehicle, location-vehicle and
location-position. These tables have the following database schemas:

vehicle: vehicle category price
location-vehicle: location vehicle
location-position: location geographicalPosition
The first database table contains the available vehicles, their price and their

type, while the second contains the name of the location and the vehicle available
at that location. Finally, the last table gives the geographical position (as GPS
coordinates) of the locations.

From the web site of the car sharing agency, a member of the agency can
consult the cars suitable for his purpose by filling two parameters: the maxi-
mal hourly price of the car MAXIMAL PRICE, and the user’s start position
USER POSITION .5

4Two tuples are considered identical, if their respective components are equal.
5We abstract here from the method used to specify the value of this parameter.

3.2. QUERY-BASED MULTICONTEXTS 67

For example, the value of these parameters for a specific user could be
MAXIMAL PRICE=3.00 and
USER POSITION= (51.32194444444440,9.508611111111126)

Using the three following queries q1, q2 and q3, a context index (q1, q2, q3)
can be defined.

q1=’(SELECT vehicle AS A vehicle FROM Vehicle
WHERE category IN (catA, catB, catC)

AND price < MAXIMAL PRICE)’
q2=’(SELECT location AS B location,

distance(geographicalPosition, USER POSITION) AS B distance
FROM location-position
WHERE distance(geographicalPosition, USER POSITION) < 500)’

q3=’SELECT A.vehicle AS A vehicle , B.location AS B location,
distance(GeographicalPosition, USER POSITION) AS B distance
FROM vehicle A , location-vehicle B, location-position C
WHERE vehicle.vehicle= location-vehicle.vehicle

AND location-position.location= location-vehicle.location’

Table 3.2: The context Kp of the car sharing context index.

Kp

H
an

au
st

r
5,

60
m

H
ar

dy
st

r
16

,
70

m

E
sm

ac
hs

tr
24

,
90

m

B
er

m
an

ns
tr

14
5,

10
5m

L
ili

en
st

r
13

,
45

0m

Renault Twingo ×
Volkswagen Golf × ×
Volkswagen Combi × × ×
Ford Focus × × × ×

The function called distance takes two GPS coordinates as input and returns
the distance between the two points.

The realisation of this context index is a formal context with the following
content:

• objects: the vehicles of one of the three types A, B or C, whose price is
less than 3.00 euros.

• attributes: are pairs indicating the location and distance pairs situated at
less than 500 meters

• relation: the vehicles and locations together with their distances where the
vehicle column are equal and where the vehicle is present in the object set
and the pair (location,distance) in the attribute set.

68 CHAPTER 3. QUERY-BASED MULTICONTEXTS

Table 6 presents the context generated from the context index presented above
for the data found in Tables 3.3, 3.4 and 3.5. We show in Figure 3.3 the concept
lattice for this context.

Figure 3.3: The lattice for the SQL example using the Tables 3.3, 3.4 and 3.5.

This example shows that the use of more complex operators allows for the
definition of more interesting contexts. These formal contexts are more inter-
esting because they filter out many objects and attributes which are not needed
in a given context. The filtering is performed at two places. First of all in q1 the
cars are selected according to their categories and for their price. The second
filtering occurs in query q2 where only locations which are closer than 500m
are considered. Note also that the attributes are pairs (i.e. 2-tuples) whereas
objects are singletons (i.e. 1-tuples).

In the following section, we introduce diverse generic operators for any query
infrastructure. Using these operators, it is not only possible to define more
expressive formal contexts, but also typical and useful operators on context
indices. These context operators are typical in the sense that they correspond
to traditional context operators as defined in [Ganter and Wille, 1999].

The use of these query operators also allows for the definition of context index
operators. The goal of the following section is to introduce such operators on
the languages L1 and L2 in order to define meaningful context index operations,
i.e. operations on context indices which correspond to pertinent operations on
contexts.

3.3 Operators

In order to manipulate more effectively the formal contexts generated from
context indices, it is useful to define new operators. In this section, we deal
with two kinds of operators query operators and context index operators.

3.3. OPERATORS 69

Table 3.3: The vehicle table for the car sharing example.

Vehicle Category Price
Ford Focus A 1.35
Mercedes Transporter C 4.24
Renault Espace B 3.70
Renault Twingo A 1.20
Volkswagen Golf A 1.50
Volkswagen Combi B 2.25

Table 3.4: The vehicle-location table for the car sharing example.

Location Vehicle
Bergmannstr 145 Ford Focus
Esmachstr 24 Renault Twingo
Esmachstr 24 Renault Espace
Esmachstr 24 Volkswagen Combi
Esmachstr 24 Volkswagen Golf
Hanaustr 5 Renault Espace
Hanaustr 5 Ford Focus
Hanaustr 5 Renault Twingo
Hanaustr 5 Volkswagen Combi
Hanaustr 5 Volkswagen Combi
Hardystr 16 Mercedes Transporter
Hardystr 16 Volkswagen Golf
Hardystr 16 Volkswagen Combi
Hardystr 16 Ford Focus
Lilienstr 13 Renault Espace
Lilienstr 13 Ford Focus
Lilienstr 13 Mercedes Transporter

Table 3.5: The location-position table for the car sharing example.

Location GeographicalPosition
Bergmannstr 145 (51.32194444444455,9.508611111111129)
Esmachstr 24 (51.32194444444455,9.508611111111129)
Hanaustr 5 (51.32194444444445,9.508611111111125)
Hardystr 16 (51.32194444444435,9.508611111111123)
Lilienstr 13 (51.32194444444466,9.508611111111118)

We first present a specialisation of the query infrastructures defined in Sec-
tion 3.2.1 by considering generic query operators. For practical purposes, it is
also useful to introduce the new notion of typed query infrastructures.

At the end of this section, we also define operators on context indices which
allow the definition of new formal contexts from existing ones. We also show
that these operators on context indices correspond to the traditional context
operators as defined by Ganter and Wille in [Ganter and Wille, 1999].

70 CHAPTER 3. QUERY-BASED MULTICONTEXTS

Operator Definition

For the rest of this section, we need a formal definition of what we mean by an
operator for queries, respectively context indices. In the case of query languages,
we need an extended version in order to combine different query languages.

Definition 19 (Operators) Let A be a set, and n a natural number. An n-
ary operator ω on A is a mapping from An to A. For a query infrastructure
Q = (L1, L2) and two natural numbers k and j (possibly equal to zero) and for
i=1,2, a Li-query operator is a mapping from Lk

1 × Lj
2 into Li.

The domain Lk
1 × Lj

2 of the mapping is a way of formulating that the ar-
guments of a specific operator may be from L1 or L2. For example, we define
below a union operator on L1 × L1 returning queries of L1.

Purpose of Operators

The use of operators in query-based multicontext has several advantages. First,
using generic operators, it is possible to create more expressive contexts than in
an operator-free query-based multicontext. This is illustrated by the following
example.

Example 7 (Union and Intersection Operators) Let Ln1 and Ln2 be two
such operator-free languages so that Ln1 := {Journal article, Conference article,
Workshop article, Professor, Assistant, PhDStudent, Member of Group 1, Member
of Group 2 }, and Ln2:={isauthorOf}.

To add union and intersection operators to these languages, we only need to
define the semantics of these operators. The union ∪ of two queries is evaluated
as the union of their evaluations, and the intersection ∩ of queries is evaluated
as the elements common to the evaluations of these queries.

For example, the following context indices can be constructed:

1. p1:=(∪(PhDStudent, Assistant), ∪(Journal article, Conference article),
isAuthorOf)

2. p2:= (∩(∪(PhDStudent, Assistant), Member of Group 1),
∪(Workshop article, Conference article), isAuthorOf)

The context corresponding to the first context index contains in its object
set PhD Students and Assistants, in its attribute set only articles published in
a journal or in the proceedings of a conference. Note that professors have not
been selected for the objects of the first context. Writing the necessary opera-
tions in an operator-free language, would have required at least6 the definition of
four supplementary concepts corresponding to professor or assistant, professor Or
PhDStudent, assistant or PhD student and professor or PhD Student or assistant,
that is one for each of the possible combinations. The use of operators simplifies
the basic language because only the atomic concept and role names need to be
defined.

The second example shows how the two operators can be combined to express
even more complex element sets. The set of objects of the induced context Kp2

6The more elements Ln1 has, the more combinations exist. The number of combinations
grows exponentially with the size of Ln1.

3.3. OPERATORS 71

contains the PhD Students and the assistants who are also members of Group
1. Interestingly, the concept member of Group 1 corresponds to the individuals
which are member of Group 1, that is this concept is defined by the role the
instances play in relation to the Group 1.7

Constructing these two formal contexts using an operator-free query language
would have required finding more names for the supplementary queries, whereas
introducing operators simplifies the definition of the basic language.

The second advantage of the introduction of operators on queries or context
indices lies in the reuse of existing structures and techniques. On the one hand,
database literature offers a large amount of interesting optimisations, some of
which may be used to optimise the evaluation of the operators we define. On the
other hand, the evaluation of these operators may be transmitted to a database
or a knowledge base to be executed remotely. Data sources, such as database
management systems or knowledge bases usually have highly optimised algo-
rithms to evaluate certain type of queries more efficiently. It is therefore prefer-
able to let them perform the tasks for which they have been designed. Chapter
5, Section 5.3.1 discuss the implementation details regarding the delegation of
operators.

3.3.1 Generic Query Operators

We already presented informally two query operators, namely the union and
intersection, but for our purpose, other operators are needed. In this section, we
introduce operators that can be implemented on top of any query infrastructure.
For this reason we call them generic operators. All of these operators can
be easily defined using operators from the relational algebra (see for example
[Vossen, 1994] for an explanation of traditional relational algebra operators).
Some of these, like the union, intersection, cross product and difference (i.e. the
\-operator) are very frequently used. [Abiteboul et al., 1995] presents the main
complexity results regarding the different database language flavors.

Table 3.6 lists these operators and defines the sets and relations they return.
In the rest of this thesis, we consider that the languages L1 and L2 contain these
generic operators.

Let us now define the semantics of these operators. Table 3.6 defines some
useful generic query primitives, which we consider from now on contained in the
query languages L1 and L2. In order to simplify the table, we use the following
conventions: q1, q2 ∈ L1 and q3, q6 ∈ L2 and R is a binary relation over Ω, i.e.
R ⊆ Ω× Ω.

Note also that we disallow self reference of queries.
Note that except the disjoint union operators and indexed result operator,

all these operators can be implemented in a relational database. Note, however,
that the operator q+

3 and q+
3 (q1) cannot be implemented in a SQL92 database

since these databases cannot answer recursive queries.
The choice of these particular operators has been guided by different reasons.

Except the recursive operators q+
3 and q+

3 (q1), all operators are necessary for
our purpose because they play an important role in many context creation pro-
cess. The recursive operators are useful in the case of an RDF implementation,
because it can then be used to simulate the subumption hierarchy.

7It is a role since memberOf is a relation and Group 1 is an instance.

72 CHAPTER 3. QUERY-BASED MULTICONTEXTS

T
able

3.6:
T

he
table

defining
the

operators
sym

bols
for

the
generic

query
operators

(q
1 ,

q
2 ,

q
3 ,

q
4
∈

L
1

and
q
3

and
q
6
∈

2).
N

o
ta

tio
n

ev
a
lu

a
tio

n
M

ea
n
in

g
L

1
g
e
n

R
esu

lt
in

Ω
q
1
∩

q
2

ev
a
l1

(q
1
)∩

ev
a
l1

(q
2
)

in
tersectio

n
o
f
th

e
resu

lts
q
1
∪

q
2

ev
a
l1

(q
1
)∪

ev
a
l1

(q
2
)

u
n
io

n
o
f
th

e
resu

lts

tq
1

t

ev
a
l1

(q
1
)

in
d
ex

ed
resu

lt

q
1

t∪
q
2

t

ev
a
l1

(q
1
)∪

t −

ev
a
l1

(q
2
)

d
isjo

in
t

resu
lts

q
1 \

q
2

{
a
∈

Ω
:

a
∈

ev
a
l1

(q
1
)\

ev
a
l1

(q
2
)}

elem
en

ts
in

q
1

b
u
t

n
o
t

in
q
2

d
o
m

(q
3
)

{
a
∈

Ω
:

(a
,b)

∈
ev

a
l2

(q
3
)}

d
o
m

a
in

o
f
th

e
rela

tio
n

r
a
n
g
e(q

3
)

{
b
∈

Ω
:

(a
,b)

∈
ev

a
l1

(q
3
)}

ra
n
g
e

o
f
th

e
rela

tio
n

q
3
(q

1
)

{
b
∈

Ω
:
∃
a
∈

ev
a
l1

(q
1
)

a
n
d

(a
,b)

∈
ev

a
l2

(q
3
)}

elem
en

ts
rela

ted
th

ro
u
g
h

q
3

to
elem

en
ts

o
f

q
1

q −
1

3
(q

1
)

{
a
∈

Ω
:
∃
b
∈

ev
a
l1

(q
1
)

a
n
d

(a
,b)

∈
ev

a
l2

(q
3
)}

elem
en

ts
rela

ted
th

ro
u
g
h

th
e

in
v
erse

o
f

q
3

to
elem

en
ts

o
f

q
1

q
+3

(q
1
)

{
y
∈

Ω
:
∃
x
∈

ev
a
l1

(q
1
)

a
n
d

(x
,y

)
∈

ev
a
l2

(q
+3

)}
rea

ch
a
b
le

th
ro

u
g
h

q
3

fro
m

q
1

L
2
g
e
n

R
esu

lt
in

Ω
×

Ω
id

(q
1
)

{
(a

,a
)
∈

Ω
×

Ω
:

a
∈

ev
a
l1

(q
1
)}

id
en

tity
q
1
×

q
2

{
(a

,b)
∈

Ω
×

Ω
:

a
∈

ev
a
l1

(q
1
)∧

b
∈

ev
a
l1

(q
2
)}

cro
ss

p
ro

d
u
ct

q
3 \

q
6

{
(a

,b)
∈

Ω
×

Ω
:

(a
,b)

∈
ev

a
l2

(q
3
)\

ev
a
l2

(q
6
)}

p
a
irs

p
resen

t
in

q
3

b
u
t

n
o
t

q
6

q
c3

{
(a

,b)
∈

Ω
×

Ω
:(a

,b)
∈

ev
a
l2

(d
o
m

(q
3
)×

r
a
n
g
e(q

3
))\

ev
a
l2

(q
3
)}

co
m

p
lem

en
t

o
f
th

e
rela

tio
n

q
3

q
3
∩

q
6

ev
a
l2

(q
3
)∩

ev
a
l2

(q
6
)

in
tersectio

n
o
f
th

e
rela

tio
n
s

(i.e.
o
f
th

e
retu

rn
ed

p
a
irs)

q
3
∪

q
6

ev
a
l2

(q
3
)∪

ev
a
l2

(q
6
)

u
n
io

n
o
f
th

e
rela

tio
n
s

(i.e.
o
f
th

e
retu

rn
ed

p
a
irs)

q
3

t.
∪

q
6

t.

ev
a
l2

(q
3
)∪

t −
.

ev
a
l(q

6
)

m
a
k
e

ra
n
g
e

d
isjo

in
t

resu
lts

o
f
th

e
p
a
irs

q
3

.t∪
q
6

.t

ev
a
l2

(q
3
)∪

.t −

ev
a
l(q

6
)

m
a
k
e

d
o
m

a
in

d
isjo

in
t

resu
lts

o
f
th

e
p
a
irs

q −
1

3
{
(b,a

)
∈

Ω
×

Ω
:

(a
,b)

∈
ev

a
l(q

3
)}

d
u
a
l
(o

r
in

v
erse)

rela
tio

n
q
3

on
q
6

{
(a

,c)
∈

Ω
×

Ω
:
∃
b
∈

ev
a
l(r

a
n
g
e(q

3
)∩

d
o
m

(q
6
))

a
n
d

((a
,b)

∈
ev

a
l(q

3
)

a
n
d

(b,c)
∈

ev
a
l(q

6
))}

sim
p
le

jo
in

q
3

on
q
1

q
6

{
(a

,c)
∈

Ω
×

Ω
:
∃
b
∈

ev
a
l(q

1
)a

n
d
((a

,b)
∈

ev
a
l(q

3
)

a
n
d

(b,c)
∈

ev
a
l(q

6
))}

jo
in

w
ith

selectio
n

q
+3

{
(x

,y
)
∈

Ω
×

Ω
:
∃
x
1
,...,x

n
∈

Ω
,

x
R

x
1
R

...R
x

n
R

y
w

ith
R

=
ev

a
l(q

3
)}

tra
n
sitiv

e
clo

su
re

o
f
th

e
rela

tio
n

resu
ltin

g
fro

m
q
3

3.3. OPERATORS 73

To give an idea of the semantics of these operators, consider them as set and
graph operations. For the sake of understandability, we write that an element
belongs to a query if it belongs to the result of its evaluation. For example, we
say that x belongs to q1 ∩ q2 instead of writing x belongs to the result of the
evaluation of the query q1 ∩ q2.

An idea of the union and intersection operators has already been given in the
Example 7 of the previous section. The evaluation of “\” returns the elements
from the results of the first query which are not contained in the results of the
second one. The “dom” and “range” operators make a projection on the first,
respectively second component of the relation given as parameter. The operator
q−1
3 swaps the components of the pairs of the result of q3, such that if a pair

(a, b) belongs to the results of the evaluation of q3, the pair (b, a) belongs to
the result of the evaluation of q−1

3 . The operators q3(q1) return the elements b
that there is an element a belonging to q1 and a pair (a, b) belonging to q3. The
operator q−1

3 (q1) returns all the elements b such that there exists an element a
belonging to q1 (as above) and a pair (b, a) belonging to q3. The ×-operator
creates the cross product of the results of its parameters. The complementation
operators qc

3 returns the pairs which belong to the cross product of the set of
elements of the domain of q3 with the set of elements of the range of q3 and
which do not belong to the results of q3. The q+

3 -operator returns the pairs of
elements for which there is a path from one to the other, that is a sequence
of pairs of the results of q3, where two neighbouring elements are equal. The
operator q+

3 (q1) restricts itself to the elements of the second component of q3

reachable from an element of the result of q1 using a path in q+
3 .

Finally, the join operators: q3 on q6 and q3 onq1 q6 are similar to the join
operators found in databases. They return pairs of elements (a, c), so that a
belongs to the domain of q3 and c to the range of q6, and that there is a common
element b belonging both to the range q3 and to the domain of q6.

The following example demonstrates the usage of some of these operators.

Example 8 (Operator Example) A researcher is interested in the topics of
the publications of the PhD Students of group 1. The context index to represent
this can then be written as p = (q1, q2, q3),

where these three queries are defined as:

1. q1= PhDStudent ∩ Member of Group 1,

2. q2= q3(q1) and

3. q3= isAuthorOf onConference article hasTopic

The results of the evaluation of q1 contain only the elements shared by the
results of the queries PhDStudent and Member of Group 1. The results of q3 are
pairs (a, b) such that:

• a belongs to the domain of isAuthorOf,

• b belongs to the range of hasTopic

• there exists an element c of the results of Conference article so that:

– (a, c) is a pair in the result of isAuthorOf.

74 CHAPTER 3. QUERY-BASED MULTICONTEXTS

– (c, b) is a pair in the result of hasTopic

In other words, the result of q3 contains all the pairs (p, t) consisting of a
person p who published a conference article on a given topic t.

From the definition, we can see that q2 returns the elements of the range of
the result of q3, which have a first component which belongs to the results of q1.
In other words, the results of q2 are only the topics of the publications of at least
one of the PhD Student members of group 1.

As the example shows, is it possible to express precise and complex context
indices using these operators.

There are two further reasons to consider them as central to the query-based
multicontext theory. On the one hand, they allow the definition of context index
operators and constructors. The details for these aspects are presented in this
chapter, Sections 3.3.3 and 3.5. On the other hand, some of these operators are
very suitable for the interaction with a lattice.

Queries and Datalog

The query operators presented above have been given a semantics by giving a
mapping of the query terms to Ω and Ω × Ω directly. In this paragraph, we
introduce the datalog programs corresponding to these query operators. Since
the expressivity of the different flavors of datalog have been well studied in the
literature (we refer again to the Alice-book [Abiteboul et al., 1995]), the purpose
of this correspondence is to be able to determine the type of flavors needed to
implement a query-based multicontext infrastructure on top of a datalog engine.

To illustrate our purpose, we first consider the context index: p := (q1, q2, q3)
where the three queries are datalog programs: P1(x), P2(y) and P3(x, y) with
the respective rules’ heads: q1(x), q2(x), q3(x).

The evaluation of the context index can be rewritten:

(eval1(q1(x)), eval1(q2(x)), eval2(qr(x, y)))

where qr(x, y) is the head predicate of a new rule defined by
qr(x, y)← q1(x), q2(y), q3(x, y).

The evaluation of datalog queries and rules in general is a topic well studied
in the database literature. To map our generic query operators to datalog
program, for each query q of L1 or L2 we associate a datalog program Pq with a
single and unique head predicate pred-q1 of corresponding arity. The predicate
∼ applies to such a program and is interpreted as a negation as failure of the
head predicate of this program.

Following the convention used in Table 3.6, q1, q2 ∈ L1 and q3, q6 ∈ L2, Table
3.7 presents the implementation of the generic queries using the datalog syntax.
In the same way, to each query q3 in L2, we associate a datalog program Pq3

with a single goal predicate pred-q3 of arity 2. For the complement query, a
supplementary rule is needed.

It is important to note that the datalog programs resulting from this process
are stratified and non-disjunctive (see Definition 6 from Chapter 2, Section
2.2.2). The absence of disjunction is easily seen when noting that none of the
heads of these datalog rules contains more than one predicate. Moreover, the
programs are stratified since self-reference is not allowed in their construction.

3.3. OPERATORS 75

Table 3.7: The datalog implementation of the query operators of table 3.6.

Operator Datalog program
q1 ∩ q2 intersection-q1-q2(x) ← pred-q1(x), pred-q2(x).
q1 ∪ q2 union-q1-q2(x) ← pred-q1(x).

union-q1-q2(x) ← pred-q2(x).
q1 \ q2 q1-sub-q2(x) ← pred-q1(x), ∼pred-q2(x).
dom(q3) dom-q3(x) ← pred-q3(x,y).
range(q3) range-q3(y) ← pred-q3(x,y).
q3(q1) related-q3-q1(y) ← pred-q3(x,y), pred-q1(x).
q−1
3 (q1) invrelated-q3-q1(x) ← pred-q3(x,y), pred-q1(y).

q+
3 (q1) trans-q3(x,y) ← pred-q3(x,y).

trans-q3(x,z) ← trans-q3(x,y), pred-q3(y,z).
trans-q3-q1(y) ← pred-q1(x), trans-q3(x,y).

id(q1) id-q1(x,x)← pred-q1(x).
q1 × q2 cross-q1-q2(x,y)← pred-q1(x), pred-q2(y).
q3 \ q6 q3-sub-q6(x,y) ← pred-q3(x,y), ∼pred-q6(x,y).
qc
3 crossq3(x,y) ← dom-q3(x), range-q3(y).

complement-q3(x,y) ← crossq3(x,y), ∼pred-q3(x,y).
q3 ∩ q6 intersection-q3-q6(x,y) ← pred-q3(x,y), pred-q6(x,y).
q3 ∪ q6 union-q3-q6(x,y) ← pred-q3(x,y).

union-q3-q6(x,y) ← pred-q6(x,y).
q−1
3 inv-q3(x,y) ← pred-q3(y,x).

q3 on q6 join-q3-q6(x,y)← pred-q3(x,z), pred-q6(z,y).
q3 onq1 q6 join-q3-q1-q6(x,y)← pred-q1(z), pred-q3(x,z), pred-q6(z,y).
q+
3 trans-q3(x,y) ← pred-q3(x,y).

trans-q3(x,y) ← trans-q3(x,z), pred-q3(z,y).

The complexity results described in [Abiteboul et al., 1995] show that non
disjunctive stratified logic programs remain tractable.

We now consider a typed version of these operators.

3.3.2 Typed Query Language

In Section 3.4 of this chapter, we define an alternative kind of query infrastruc-
ture to query knowledge bases. In order to define it, we need to be able to type
the results of queries. If queries are typed, it is then possible to ensure what the
content of the evaluated context should be. For example, knowing whether the
elements of the contexts are instances or concepts is important when display-
ing, interacting or defining views. The colors and forms of some of the display
elements can be adapted depending on types. Finally, type information can
simplify the implementation of certain context creation algorithms. While we
focus in this thesis on the ontology based query infrastructure which we present
in Section 3.4, the definition given here provides a generic and useful way to
define typed query-based multicontexts.

Depending on the application, a different set of types may be used in a typed
query-based multicontext. For instance, in ontology-based applications, this set

76 CHAPTER 3. QUERY-BASED MULTICONTEXTS

might8 contain the types concept, relation, instance and relation instance. In
some cases, it is useful to consider the union of queries of different types, to
address this requirement, a special type λ is also introduced. For example, a
query returning both concepts and instances would have a return type λ.

We introduce the notion of typed query infrastructure in Definition 20. The
operators of this query infrastructure refine the generic operators presented in
Section 3.3.1, Table 3.6. These new operators are distinguished from the generic
ones using a subscript to denote the type of the result. For example, instead of
the query ∪, the new operators ∪t and ∪t1 return respectively sets of elements
of types t and t1.

First, let us define formally what we mean by a typed query infrastructure:

Definition 20 (Typed Query Infrastructure) Let Eλ be a set of identifiers
and let T be a non-empty set of elements called types. Let (Et)t∈T be a partition
of Eλ (i.e. Eλ =

⋃
t∈T Et and ∀t1, t2 ∈ T , with t1 6= t2, Et1 ∩ Et2 = ∅).

Moreover, let λ be the generic type. The set Tλ:= T ∪ {λ} is called the set of
types.

The following enumeration defines recursively families of typed query lan-
guages (Lt)t∈Tλ

and (Lt1t2)t1,t2∈Tλ
:

1. set construction operator: for t ∈ Tλ , n ≥ 1 , and i1, . . . , in ∈ Et, the
expression “{i1, . . . , in}” is a query belonging to Lt

2. typed set operators: for t ∈ Tλ, and q1, q2 ∈ Lt and for all operators
◦t ∈ {∪t,∩t, ∪̇t, \t}, the expression “q1 ◦t q2” is a query of Lt

3. cross-product operator: for t1, t2 ∈ Tλ, q1 ∈ Lt1 and q2 ∈ Lt2 ,

• q1 ×t q2 ∈ Lt1t2

4. relation operators: for t1, t2 ∈ Tλ, and q3, q6 ∈ Lt1t2 ,

• domt1(q3) ∈ Lt1

• ranget2(q3) ∈ Lt2

• q3 \t1t2 q6 ∈ Lt1t2

• qc
3 ∈ Lt1t2

• q−1
3 ∈ Lt2t1

• and if t1 = t2, then q+
3 ∈ Lt1t1

5. role operators: for t1, t2 ∈ Tλ, q1 ∈ Lt1 , q3 ∈ Lt1t2 , q6 ∈ Lt2t1 as well
as q9 ∈ Lt1t1

• q3(q1) ∈ Lt2

• q−1
6 (q1) ∈ Lt1

• q+
9 (q1) ∈ Lt2

6. join operators: for t1, t2 ∈ Tλ, q1 ∈ Lt2 , q3 ∈ Lt1t2 and q6 ∈ Lt2t3 ,

8As noted in Chapter 2, Section 2.1.1 contexts could also be used as elements useful
for manipulation. Unfortunately, considering the context as entities create some technical
difficulties we could not address satisfactorily...

3.3. OPERATORS 77

• q3 onq1 q6 ∈ Lt1t3

• q3 on q6 ∈ Lt1t3

We define the two query languages LT :=
⋃

t∈Tλ
Lt and LTT :=

⋃
t1,t2∈Tλ

Lt1t2 .
A typed query infrastructure for the type set T is a query infrastructure of the
form (LT ,LTT).

Example 9 We present here a small example which illustrates the use of typed
query-based multicontexts.

We want to browse documents. For this, we create a file system query-based
multicontext. Let the type set be defined as T := {F, D, L}. F stands for file,
D for directory and L for labels. The basic query language LD consists of three
operators:

• files ∈ LD,F which returns the binary relation between directories and the
files they contain,9

• subdirectories ∈ LD,D which lists the direct (subdirectory,superdirectory)
pairs, and

• labels ∈ LFL which lists the (file, label) pairs. Such a pair means that file
is tagged using the label label.

We now give a number of queries as examples.

1. {Formal Concept Analysis, Logic} ∈ LL

2. labels−1({Formal Concept Analysis, Logic}) ∈ LF

3. files−1(labels−1(Formal Concept Analysis, Logic)) ∈ LD

4. subdirectories−1(files−1(labels−1({Formal Concept Analysis, Logic})))+ ∈ LD

Query 1 is an example of the set construction operator and returns a set
of labels. Query 2 uses Query 1 which returns labels and returns the sets of
files tagged with one of these labels and Query 3 and Query 4 return a set of
directories. Note that there is no operators to obtain directly the labels of the
directories.

Note that the set construction operator is defined using newly created pred-
icate pred-set-x together with a set of ground atoms pred-set-x(i1), ... pred-set-
x(in).

We now see that these operators allow the definition of some interesting
context index operators.

3.3.3 Context Index Operators

Different context operators have been proposed throughout the Formal Concept
Analysis literature. In particular, the properties of some of these operators have
been studied in detail in [Ganter and Wille, 1999]. In Chapter 2, Section 2.3.2,
we recalled some of these operators: complementation, dual, apposition, sub-
position and direct sum. Some of these operators, for instance apposition, play

9A directory contains a file, but is not considered to contain the files of its subdirectories.

78 CHAPTER 3. QUERY-BASED MULTICONTEXTS

an important role in the conceptual models of Formal Concept Analysis appli-
cations [Stumme and Mädche, 2001, Hereth-Correira and Kaiser, 2004]. In this
section, we introduce context index operators so that the realisation function κ
of a given QBMC(Q) can be seen as a homomorphism from P to QBMC(Q).
Applications based on the query-based multicontext theory will be able to ma-
nipulate intensional representations of these context operators, profiting in this
way from the advantages mentioned earlier: greater expressivity, flexible (re-
mote, optimised or delegated) implementations.

Context Index Equivalence

Queries and context indices can be seen as strings representing their respective
evaluation intensionally. In many cases, different intensional representions may
be equivalent in the sense that they are known to represent the same result.
To study the properties of context index operators, we formalise the notions of
context index equality and context index equivalence in the following definition.

Definition 21 (Query and Context Index Equivalence) We define two
queries q1 and q2 are equivalent with respect to an instance Q of a query infras-
tructure, if eval1(q1) = eval1(q2). Query equivalence is denoted by q1 ∼Q q2.

For an instance Q of a query infrastructure Q, for p1 := (q1, q2, q3) and
p2 := (q4, q5, q6) in P, we say that context indices p1 and p2 are equivalent with
respect to Q, denoted by p1 ≡Q p2, if κ(p1) = κ(p2) is true. In other words, the
following equalities have to be valid:

1. q1 ∼Q q4

2. q2 ∼Q q5 and

3. (q1 × q2) ∩ q3 ∼Q (q4 × q5) ∩ q6.

We say that p1 equals p2, denoted by p1 = p2 if q1 = q4, q2 = q5 and q3 = q6.

These two relations are important because they are equivalence relations on
queries, respectively on context indices. Note that when the instance of query
infrastructure is clear, we may write the relations ∼Q and ≡Q as ∼ and ≡
respectively.

In order to simplify calculations, we introduce the functions ρ and ρQ:
ρ: P −→ L2:
p = (q1, q2, q3) 7→ ρ(p) = q3 ∩ (q1 × q2) and

ρQ: P −→ Ω× Ω
p = (q1, q2, q3) 7→ ρQ(p) = eval2(q3) ∩ eval2(q1 × q2)

ρ returns a query which returns exactly the incidence relation of the resulting
formal context, while ρ returns the incidence relation of the induced context for
a given instance of a query infrastructure:
This notation is also useful in the rest of this paragraph.

Lemma 1 The relation ∼Q is an equivalence relation on queries and ≡Q is an
equivalence relation on context indices.

3.3. OPERATORS 79

Proof

Since set equality is an equivalence relation, we can immediately conclude that
∼Q is an equivalence relation on queries.

We now need to prove that ≡Q is an equivalence relation on context indices.
The definition of ≡Q implies that it is an equivalence relation if and only if the
components satisfy the properties of an equivalence relation. While it is trivial
to see that these properties are valid for the two first components, the third one
is more complex.

So if p1 ≡ p1, ρQ(p1) = ρQ(p1). So ≡Q is reflexive.
For p1,p2 ∈ P, p1 ≡ p2 implies ρ(p1) ∼ ρ(p2). So ρQ(p1)=ρQ(p2). Therefore

≡Q is symmetric.
For p1, p2, p3 ∈ P, p1 ≡ p2 and p2 ≡ p3 imply ρ(p1) ∼ ρ(p2) and ρ(p2) ∼

ρ(p3). Since ∼ is transitive, then, ≡Q is transitive and thus an equivalence
relation. �

The equivalence relation ≡Q partitions the context index set P into a set of
equivalence classes P/Q. Two context indices belong to the same equivalence
class [p]Q if and only if their realisation maps to the same context. In the follow-
ing paragraph, we define context index operators which preserve the equivalence
relation ≡Q.

Definition 22 (Equivalence Preservation) Let Q be an instance of a query
infrastructure. A unary operator f on P preserves the equivalence relation ≡Q

if and only if ∀p1, p2 ∈ P, p1 ≡ p2 implies κ(f(p1)) = κ(f(p2)).
A binary operator g on P preserves the equivalence relation ≡Q, if and only

if ∀p1, p2, p3, p4 ∈ P, p1 ≡ p2, p3 ≡ p4 implies κ(g(p1, p3)) = κ(g(p2, p4)).
An operator which preserves the equivalence relation ≡Q can be also called

equivalence preserving for ≡Q.

Context Index Operators

We define the following context index operators:

Definition 23 For p1 := (q1, q2, q3) and p2 := (q4, q5, q6) in P, we define the
following operators:

• dual (or sometimes called transpose): pd
1 := (q2, q1, q

−1
3)

• complement: pc
1 := (q1, q2, (q1 × q2)\q3)

• apposition: if q1 ∼Q q4 then the apposition of p1 and p2 is defined by

p1|p2 = (q1, q2∪̇q5, q3

t.
∪ q6).

• subposition: if q2 ∼Q q5 then the subposition of p1 and p2 is defined by
p1
p2

= (q1∪̇q4, q2, q3

.t
∪ q6).

• union: p1 ∪ p2:=(q1 ∪ q4, q2 ∪ q5, ((q3 ∩ (q1 × q2)) ∪ (q6 ∩ (q4 × q5)))

• intersection: p1 ∩ p2:=(q1 ∩ q4, q2 ∩ q5, q3 ∩ q6).

80 CHAPTER 3. QUERY-BASED MULTICONTEXTS

Most of these operators are simple since they each correspond to some of the
formal context operators presented in Chapter 2, Section 2.3.2. We show in a
theorem in this section, that these operators can be used to manipulate formal
contexts by applying the context index operators instead of the formal context
operators.

To help the reader understand the proof of the theorem, we now describe
the goal operations performed by these operators. The dual operator first swaps
the object set and attribute set, then transposes the relation. The dual context
index of (Person, Publication, isAuthorOf) is (Publication, Person, isAuthorOf−1).
Using the complement operator on the same context instead creates (Person,
Publication, isAuthorOfc), that is, the object and attribute sets remain the same,
but a person is linked to a publication if and only if it is not linked to that
publication through isAuthorOf.

If the object sets are the same, then the apposition operator is best under-
stood as putting the two contexts side by side. If the attributes are seen as
criteria of classification, then apposition corresponds to adding criteria. Simi-
larly, the subposition operator can be seen as putting two contexts on top of
each other in such a way that it corresponds to the merging of two separate
views on the data. In Section 3.5, we show how the subposition is used to
create hierarchies combining instances with their classification hierarchy. The
union operator merges two contexts (i.e. the realised context corresponds to
the merging of the corresponding components of the formal contexts), while the
intersection operator only keeps the elements present in both contexts.

We illustrate this situation using Figure 3.4. Intuitively, the union of the
relations of the two contexts Kp1 and Kp2 corresponds to the plain colored space.
However, the union of the results of the relation q3 and q6 with the cross product
of (q1 ∪ q4) and (q2 ∪ q5) may contain pairs which do not belong to the relation
of the union of the incidence relations of the two contexts Kp1 and Kp2 . The
squares marked with an ∅ should be empty in the merged context. But query
q3 for example could return a pair (a, b) so that a ∈ eval1(q4)\eval1(q1) and
b ∈ eval1(q2). To avoid this, the union operator requires the supplementary
constraints: ∩(q1 × q4) and ∩(q2 × q5) ensuring that the acceptable pairs must
occur in the plain colored space of Figure 3.4.

We now introduce a theorem showing that these operators correspond to the
operators of [Ganter and Wille, 1999].

Theorem 2 (Basic Context Index Operator Properties) The context in-
dex operators introduced in Definition 23 are equivalence preserving for the
equivalence relation ≡Q. Moreover, these context index operators return the
formal context resulting from the context operator of the same name presented
in Chapter 2, Section 2.3.2 and which originate from [Ganter and Wille, 1999].

Moreover, the following properties can be proved:

1. pdd
1 ≡ p1

2. pcc
1 ≡ p1

3. pcd
1 ≡ pdc

1

3.3. OPERATORS 81

Figure 3.4: Intuitive diagram for the union context index operator.

Proof

In the following, we first prove that the results of each of these operator returns a
context index which when evaluated return the same result as the corresponding
operation on the results of the evaluation of the operands. The operators on
formal contexts were defined in Chapter 2, Section 2.3.2. Note that in most
proofs when we need to prove a statement of the form: κ(p1) = κ(p2), we
consider each argument separately. We first prove that the first two arguments
of these contexts are equal, then we prove the equality of the relations. The
first two proofs are exceptions, since the proofs are very simple.

• dual:

We need to prove: κ(pd
1) = κ(p1)d.

Recall that pd
1 = (q2, q1, q

−1
3). It is straightforward to see that the first

components get swapped.

κ(pd
1) = (eval1(q2), eval1(q1), eval2(q−1

3) ∩ eval2(q2 × q1))
= (eval1(q2), eval1(q1), eval2(q3)−1 ∩ eval2(q2 × q1))
= (eval1(q2), eval1(q1), eval2(q3)−1 ∩ (eval1(q2)× eval1(q1)))
= κ(p1)d

The incidence relations are also equal since for any sets A, B and any
relation I, ((A×B) ∩ I)−1 = ((B ×A) ∩ I−1).

82 CHAPTER 3. QUERY-BASED MULTICONTEXTS

Let p1 and p2 be two context indices so that p1 ≡ p2. We know that
κ(p1) = κ(p2), and κ(p1)d=κ(pd

1), but also κ(p1)d = κ(p2)d and finally
κ(p2)d = κ(p2)d. We can conclude that the dual operator is equivalence
preserving.

• complement:

We need to prove that Kc
p1

and Kpc
1

are equal.

κ(pc
1) = (eval1(q1), eval1(q2), eval2(q1 × q2\q3) ∩ eval2(q1 × q2))

= (eval1(q1), eval1(q2), (eval2(q1 × q2)\eval2(q3)) ∩ eval2(q1 × q2))

Since for all set A and B, (A\B)\A = A\B, the two contexts Kc
p1

and
Kpc

1
are equal.

To prove the equivalence preserving property of the complement operator,
we use the same technique as for the dual.

Let p1 and p2 be two context indices so that p1 ≡ p2. We know that
κ(p1) = κ(p2), and κ(p1)c=κ(pc

1), but also κ(p1)c = κ(p2)c and finally
κ(p2)c = κ(p2)c. We can conclude that the complement operator is equiv-
alence preserving.

• apposition: We need to prove: κ(p1|p2) = κ(p1)|κ(p2). We prove it
component wise. According to the definition, the apposition is defined
only if q1 ∼Q q4, so the first components of p1 and p2 are equivalent.
Moreover, all occurrences of q4 can be replaced by q1. Due to the definition

of the set disjunction
t
∪, the second components of both contexts are also

equal, i.e. eval1(q2

t
∪ q5) =

t

eval1(q2) ∪
t−

eval1(q5).

The third component is more complex. We have to prove:

ρQ(p1|p2) ?=
t.

ρQ(p1) ∪
t−.

ρQ(p2), i.e.

ρQ(p1|p2) ?= (
t.

eval2(q3) ∩ (eval1(q1)×
t

eval1(q2)))∪

((
t−.

eval2(q6) ∩ (eval1(q1))×
t−.

eval1(q5)))

ρQ(p1|p2) ?= (
t.

eval2(q3 ∩ (eval2(q1 × q2))) ∪ (
t−.

eval2(q6 ∩ (q1 × q5)))

We start with ρQ(p1|p2):

ρQ(p1|p2) = (eval2(q3

t.
∪ q6)) ∩ eval2(q1 × (q2

t
∪ q5))

= ((
t.

eval2(q3) ∪
t−.

eval2(q6)) ∩ eval2(q1 × (q2

t
∪ q5))

= ((
t.

eval2(q3) ∪
t−.

eval2(q6)) ∩ eval1(q1)× eval1(
t
q2 ∪

t−

q5))

Since A× (
t

B ∪
t−

C) = (A×
t

B)∪ (A×
t−

C) for any sets A, B and C, we obtain:

3.3. OPERATORS 83

ρQ(p1|p2) = (
t.

eval2(q3) ∪
t−.

eval2(q6))∩

((eval1(q1)×
t

eval1(q2)) ∪ (eval1(q1)×
t−

eval1(q5)))

ρQ(p1|p2) = (
t.

eval2(q3) ∪
t−.

eval2(q6)) ∩ (
t.

eval2(q1 × q2) ∪
t−.

eval2(q1 × q5))

ρQ(p1|p2) = (
t.

eval2(q3) ∩ (
t.

eval2(q1 × q2))) ∪ (
t−.

eval2(q6) ∩ (
t−.

eval2(q1 × q5)))

ρQ(p1|p2) = (
t.

eval2(q3 ∩ (eval2(q1 × q2))) ∪ (
t−.

eval2(q6 ∩ (q1 × q5)))

ρQ(p1|p2) = ρQ(p1)
t.
∪ ρQ(p2)

So for the third component, the evaluation of the apposed context relation
is equal to the disjoint union of the two contexts.

• subposition: The subposition operation is the dual operation of the ap-
position, the proof differs only in taking the first component instead of
the second.

• union: We must now demonstrate that each of the components of the
two contexts κ(p1 ∪ p2) and κ(p1) ∪ κ(p2) are equal.

It is clear that the first two components of both contexts are the union
of the results of the corresponding components from the two contexts.
We discussed using Figure 3.4 that the union operator must ensure the
abscence of all the pairs of elements which are absent of the two formal
contexts. In order to check this, we consider the different possible cases.
We consider pairs (a, b) ∈ Ω× Ω.

1. Let (a, b) ∈ eval2(q3), a ∈ eval1(q1) and b ∈ eval1(q2) then (a, b) ∈
Kp1 therefore (a, b) ∈ eval2(q3∩(q1×q2)) and also (a, b) ∈ ρQ(p1∪p2).

2. Similarly, for (a, b) such that (a, b) ∈ eval2(q6), a ∈ eval1(q4) and
b ∈ eval1(q5), the pair (a, b) belongs to both ρQ(p1∪p2) and ρQ(p1)∪
ρQ(p2).

3. Let (a, b) ∈ eval2(q3), a ∈ eval1(q4)\eval1(q1) then (a, b) 6∈ eval2(q3∩
(q1 × q2)) and from the definition of the union, we can also conclude
that (a, b) 6∈ ρQ(p1 ∪ p2) and that (a, b) 6∈ ρQ(p1) ∪ ρQ(p2). This
implies that (a, b) is neither in the incidence relation from Kp1 ∪Kp2

nor the one from Kp1∪p2 .

4. Similarly, for (a, b) such that a ∈ eval1(q1)\eval1(q4) and (a, b) ∈
eval2(q6), we can conclude that (a, b) neither in the incidence relation
from Kp1 ∪Kp2 nor the one from Kp1∪p2 .

5. If (a, b) 6∈ eval2(q1×q2)∪eval2(q4×q5), then (a, b) 6∈ ρQ(p1)∪ρQ(p2)
and (a, b) 6∈ ρQ(p1 ∪ p2).

Considered as a whole, these diverse cases imply that (a, b) ∈ ρQ(p1) ∪
ρQ(p2) if and only if (a, b) ∈ ρQ(p1∪p2). This enables us to conclude that
κ(p1 ∪ p2) = κ(p1) ∪ κ(p2).

• intersection: Since per definition eval1(q1 ∩ q4) = eval1(q1) ∩ eval1(q4),
the first two components are equivalent.

84 CHAPTER 3. QUERY-BASED MULTICONTEXTS

We now need to prove ρQ(p1 ∩ p2) = ρQ(p1) ∩ ρQ(p2). Let (a, b) be a
pair of ρQ(p1 ∩ p2). We must prove that it belongs to ρQ(p1) ∩ ρQ(p2).
Then: a ∈ eval1(q1) and a ∈ eval1(q4), b ∈ eval1(q2) and b ∈ eval1(q5).
So (a, b) ∈ eval1(q1) × eval1(q2) and (a, b) ∈ eval1(q4) × eval1(q5). And
of course, (a, b) ∈ eval2(q3) and (a, b) ∈ eval2(q6). Therefore both (a, b) ∈
eval2((q1×q2)∩q3) and (a, b) ∈ eval2((q4×q5)∩q6) are valid. This means
that ρQ(p1 ∩ p2) ⊆ ρQ(p1) ∩ ρQ(p2) is also true.

Let (a, b) be a pair of ρQ(p1) ∩ ρQ(p2). Then (a, b) ∈ eval2(q3 ∩ q6),
a ∈ eval1(q1∩q4) and b ∈ eval1(q2∩q5) are valid. The last two statements
imply that (a, b) ∈ eval2((q1 ∩ q4)× (q2 ∩ q5)). Finally, we can infer that
(a, b) ∈ eval2((q3 ∩ q6) ∩ ((q1 ∩ q4)× (q2 ∩ q5))).

In other words, (a, b) ∈ ρQ(p1 ∩ p2). Finally we can conclude that Kp1 ∩
Kp2 = Kp1∩p2 .

We have proved the first part of the theorem, and we turn to the second
part:

• To see that pdd
1 ≡ p1, we note that pd

1 = (q2, q1, q
−1
3), and obtain in the

same way pdd
1 = (q1, q2, (q−1

3)−1). The result of the operator .−1 on queries
of L2 swaps the components of the results. If the same operator is used
twice, then the components go back to their original positions. In other
words, pdd

1 ≡ (q2, q1, q3) = p1.

• The proof of the property: pcc
1 ≡ p1 is similar but more complex.

We have: pc
1 = (q1, q2, (q1 × q2) \ q3). Then

pcc
1 = (q1, q2, (q1 × q2) \ ((q1 × q2) \ q3)).

We need to prove pcc
1 ≡Q p1, in other words, we need to demonstrate:

κ(pcc
1) = κ(p1) (and not pcc

1 = p1 which is not true in general).

The first two components are equal. Moreover, we know that
eval2(q1 × q2) = (eval2(q3) ∩ eval2(q1 × q2)) ∪ (eval2((q1 × q2) \ q3) ∩
eval2(q1 × q2))
eval2(q1 × q2) = (eval2(q3) ∪ eval2((q1 × q2) \ q3)) ∩ eval2(q1 × q2)

Therefore, when evaluating the third component of pcc
1 , we obtain:

eval2((q1 × q2) \ ((q1 × q2) \ q3)) ∩ eval2(q1 × q2)=
(eval2(q1× q2)∩ eval2(q1× q2)) \ (eval2((q1× q2) \ q3)∩ eval2(q1× q2))

Since for a set A, A∩A = A, the first part is simplified, and for the second
part, we know that: eval2((q1 × q2) \ q3)= eval2(q1 × q2) \ eval2(q3)

Therefore: eval2((q1 × q2) \ ((q1 × q2) \ q3)) ∩ eval2(q1 × q2)=
eval2(q1×q2)\((eval2(q1×q2)∩eval2(q1×q2))\eval2(q3)∩eval2(q1×q2))

Again we use A ∩A = A:
eval2((q1 × q2) \ ((q1 × q2) \ q3)) ∩ eval2(q1 × q2)=

eval2(q1 × q2) \ ((eval2(q1 × q2)) \ (eval2(q3) ∩ eval2(q1 × q2)))
Since for any set A and B, the following equality is valid:10

A \ (A \B)= B ∩A. eval2((q1 × q2) \ ((q1 × q2) \ q3)) ∩ eval2(q1 × q2)=
eval2(q1 × q2) ∩ eval2(q3) ∩ eval2(q1 × q2)))

10It is easy to see using a Venn diagram for the two cases A ∩B = ∅ and A ∩B¬ = ∅.

3.3. OPERATORS 85

eval2((q1× q2)\ ((q1× q2)\ q3))∩ eval2(q1× q2)=eval2(q1× q2)∩ eval2(q3)

This last quality shows that pcc
1 ≡ (q1, q2, q3) = p1.

• Finally we need to prove: pcd
1 ≡ pdc

1 .

This means that we have to prove: κ(pcd
1) = κ(pdc

1).

κ(pcd
1) = κ(pc

1)
d = κ(p1)cd

Since for every context K, we know that Kcd = Kdc, we obtain:
κ(pcd

1) = κ(p1)dc = κ(pd
1)

c = κ(pdc
1)

So we can conclude pcd
1 ≡Q pdc

1 .

�

Advantages

The introduction of the context index operators has practical advantages. These
advantages are of three kinds:

• the language used to define the contexts is more expressive and corre-
sponds to usual tasks, for instance merging data from two views,

• the evaluation of these operators can be optimised, and

• new data structures can be coupled with the intensional description of
these operators.

During the context definition process, the use of operators can greatly ease
the work of the user. A typical example of this is given by the dual operator
(sometimes also called the transpose operator). The transposition of a context is
equivalent to taking the dual of the context. By applying the transpose operator
on a given context index, the user creates the transposition of a context he had
already defined. Since the basic definitions of Formal Concept Analysis are dual
(i.e. the role of the objects and attributes can be swapped), the lattice obtained
from the transposed context is the dual concept lattice.

The intensional description can also be used to support a better context
management system. For instance, the dual and complement contexts can be
implemented by using a facade mechanism (see [Gamma et al., 1995]) instead
of performing a new access to the data. For the dual context, attribute and
object sets swap and the relation is transposed, the complement operator is
implemented using a logical operator inverting the result of the relation of the
inverted context. In this case, only one of the two contexts needs to be kept in
memory.11 These approaches are described in Chapter 5, Section 5.3.3.

Even though it is possible to implement naively these operators, it might
be preferable in some cases to use databases and their related theory. From
database theory we know a great number of optimisation techniques. These
optimisation techniques can be used to implement the context index operators.

11Depending on the actual implementation of the context, the transposition might have an
effect on the performance of the lattice layout algorithm. We comment on this in the Section
on the operator implementation in Chapter 5, Section 5.3.3.

86 CHAPTER 3. QUERY-BASED MULTICONTEXTS

The intensional description can then be used to trigger an alternative optimisa-
tion process or to delegate the evaluation to remote implementations. Chapter
5, Section 5.3.3 describes how these operators can be evaluated using these
strategies.

Table 3.8: Table stating the main use of the context index operators.
Operator Use
dual transposition, inverse visualisation, lattice creation optimisa-

tion
complement complement context visualisation
apposition supplementary criteria, scaling
subposition partitioned subgroups
union merging
intersection focusing

3.4 Semantic Query-Based Multicontext

Until now the query-based multicontext model has been kept generic to allow
several extensions. One of the main goals of this thesis is to show that it is possi-
ble to develop a novel knowledge base exploration paradigm using a query-based
multicontext architecture. To achieve this goal, we introduce a new query infras-
tructure, the semantic query infrastructure, which provides the necessary query
operators to interact with a knowledge base. Before we describe our seman-
tic query language, we present the generic model for ontologies and knowledge
bases which is used to abstract from the actual knowledge base language of the
data sources.

3.4.1 Generic Ontology Model

In Chapter 2, Section 2.1.1, we introduced different knowledge representation
languages used in the context of the Semantic Web. In this section, we discuss
the model we follow to allow the visualisation of the content of a knowledge
base.

This model is designed as a generic way of integrating ontologies and as been
presented in a similar form in [E. Bozsak et al., 2002] though the notations have
been adapted to our purpose. It is based on a partition of the elements which
play a role in the modelling of the knowledge base. The partition we propose
corresponds to the distinction we presented in Chapter 2, Section 2.1.1 except
that we do not consider here the contextual relations. The use of contextual
relations is out of the scope of this thesis because their introduction generates
some issues which remain open problems. We discuss briefly this topic in the
future work section at the end of this thesis (see Chapter 7, Section 7.2.1).
In the following presentation, we only concentrate on the first four aspects we
described.

Just as the description logic ontologies are usually divided between a T-box
and an A-box, the model we propose here is divided into two layers: an onto-
logical layer and a fact layer. We begin our presentation by giving a definition
of the ontology layer.

3.4. SEMANTIC QUERY-BASED MULTICONTEXT 87

Ontology Layer

Definition 24 (Ontology Layer (see [E. Bozsak et al., 2002])) We define
an ontology as a tuple Onto = (C,≤C ,R,≤R, σ) where (C,≤C) and (R,≤R) are
partially ordered sets and where σ, called the signature function, is a mapping
from R to tuples over C, in other words σ : R −→ C+: r 7→ σ(r) = (c1, . . . , ci)
for some i ∈ N, i > 0.

The elements of C are called concepts, while the elements of R are called
relations.

Depending on the ontology language chosen, different kinds of elements are
allowed in C and R. For example, if the ontology language used is RDF(S),
the elements of C are the concept names occurring in the vocabulary of the
ontology. In an OWL ontology, the situation is more complex due to the use of
non atomic concepts and relations. For example, the more expressive descrip-
tion logic SHOIN (see Chapter 2, Section 2.2.1) allows building of concept
expressions using negation, union and intersection of concepts. Moreover, some
concepts may also be defined extensionally using nominals (i.e extensional list
of instances of this concept).

In order to ensure compatibility with different frameworks, we chose to keep
only named concepts, since query infrastructure provides to the user the pos-
sibility to create more complex queries using the operators of the query infras-
tructure of the query-based multicontext.

In Section 3.3, we introduced a number of operators on queries which are very
similar to the description logics operators. There are mainly two purpose to this
introduction. First, it allows us to abstract from the operators available in the
description logic. This means that we could implement our framework on top of
RDF(S) while enabling supplementary modelling primitives for querying such as
union, intersection or role composition and nominals. Note that the semantics
of some query operators are not identical with the semantics of the description
logics language. For instance, the transitive axiom used in description logic
and the transitive query operator do not correspond completely. Combining
the transitive axiom with existential axioms implies an infinite model, while the
computation of the transitive closure of a relation can be determined completely.

On the other hand, the use of the generic ontology model also implies that
to use the ontology framework of the data source efficiently, queries should be
mapped to expressive concepts of the knowledge base. In order to ensure this,
we consider that the concept set C and the relation set R correspond to the
named concept and named roles of the T − box. Note that qualified number
expressions, negation and value restriction are not expressible using the generic
query operators. These could be easily emulated by using new names for the
corresponding concepts and axioms of the form

≤ 45publication.Publication @ ExperiencedAuthor

Note that the difference operator \ corresponds to a negation by failure.
We believe that for the purpose of exploration the negation as failure is more
appropriate because it allows to focus on individuals which are not known to
have some property though they may potentially have one. Another alternative
would be to consider the classical negation in logic.

88 CHAPTER 3. QUERY-BASED MULTICONTEXTS

Fact Layer

The fact layer of our semantic infrastructure is straightforward in comparison to
the ontology layer. The choice of the elements is much more restricted since we
only allow two different types: instances and relation instances which naturally
correspond to the individuals and the pairs of individuals (a,b) of the domain
∆ of the interpretation (see Chapter 2, Section 2.2.1). However, it should be
noted that using the typed query infrastructure presented in Section 3.3.2 makes
it possible to further divide the sets of instances into individuals and concrete
objects. Since we did not introduce special query operators for concrete objects,
both the individuals and the concrete objects are seen as instances.

Definition 25 (Fact Base (see [E. Bozsak et al., 2002])) A fact base FB
for an ontology Onto := (C,≤C ,R,≤R, σ) is a tuple (IC , ιC , IR, ιR) so that:

• IC is a set of elements called instances,

• IR is a set of elements called relation instances,

• ιC is a mapping from C to P(IC),

• ιR is a mapping from R into P(I+
R) such that:

∀r ιR(r) ⊆
i=|σ(r)|

Π
i=1

ιC(π(i, σ(r)) where

– |σ(r)| is the length of the tuple σ(r) and

– for all tuples, π(i, t) returns the i-th component of t

Moreover the following conditions must be valid:
∀c, c2 ∈ C, c ≤C c2 ⇒ ιC(c) ⊆ ιC(c2), and
∀r, r2 ∈ R, r ≤R r2 ⇒ ιR(r) ⊆ ιR(r2).

We can now define what we mean by a knowledge base:

Definition 26 (Knowledge Base) A knowledge base is a pair KB = (O,FBO),
where O is an ontology and where FB is a fact base for the ontology O.

Using this generic ontology model, we define query infrastructures for knowl-
edge bases in the following section.

3.4.2 Semantic Query Infrastructures

One of the goals of this thesis is to show that the combination of knowledge bases
and a query-based multicontext based browser creates an interesting framework
to manipulate data. The details about the browsing mechanism are given in
Chapter 4. In this section, we deal with the language needed to combine knowl-
edge bases with query-based multicontexts.

In order to use knowledge bases with query-based multicontexts, we need
to define an ontology-based query infrastructure. This query infrastructure
may be implemented and deployed for different knowledge bases, each deployed
implementation is an instance of this query infrastructure as stated in Definition
17.

3.4. SEMANTIC QUERY-BASED MULTICONTEXT 89

In Chapter 2, Section 2.1.2, we presented an overview of some of the proposed
languages. The semantic query infrastructures we introduce in this chapter can
be seen as a new kind of semantic query language. There are two reasons be-
hind our choice of using our own language. First of all, each query language
restricts itself to certain primitives. Some primitives might not be useful in the
query-based multicontext, while others might be needed. Using our own query
language allows us to use the query-based multicontext with different query
languages and ontology frameworks. The second reason for creating a seman-
tic query language special for the query-based multicontext lies in the type of
queries which can be defined using the graphical user interface of our tool. Using
our own language allows us to reduce the size of the queries needed. In Chapter
5, Section 5.4.2 we describe a way to adapt existing ontology infrastructures to
the semantic query infrastructures defined in this section.

Definition 27 (Ontology Query Infrastructure) An ontology query infras-
tructure Qonto:=(LOnto1,LOnto2)12 is a typed query infrastructure with two type
elements:13 {C,R} (which stand respectively for concepts and relations). In ad-
dition to the typed generic operators, a number of supplementary operators are
defined.

The following query constructions can be used to create queries in LC (the
set of queries returning concepts):

• subconcepts(qC), which returns the subconcepts14 of qC

• superconcepts(qC), which returns the superconcepts of qC

• related(qC) returns the concepts which are related through some relation
to a concept of qC

• related(i, qR, qC) returns the concepts which are subsumed by the domain
of the signature of a relation of qR and for which the range of the relation
subsumes a concept in qC at the position i

The following query constructions can be used to create queries in LR (the set
of queries returning relations).

• subrelations(qR), which returns the subrelations of qR

• superrelations(qR), which returns the superrelations of qR

• relations(qC) the relations which have some concept of qC or some subcon-
cept of a concept of qC in their signature

• relations(qI1, qI2) the relations which have instances of qI1 in the domain
of their extensions and instance of qI2 in the range of thei evaluation

The following query constructions can be used to create queries in LCC (the
sets of queries returning pairs of concepts).

• subconcepts which returns the subconcepts/superconcept pairs of the con-
cept subsumption hierarchy

12LOnto1 is the L1 and LOnto2 is the L2 of the query-based multicontext definition.
13This means that LOnto1 = LC ∪ LR and LOnto2 = LCC ∪ LRR ∪ LCR ∪ LRC
14This return all the subconcepts, not only the direct subconcepts.

90 CHAPTER 3. QUERY-BASED MULTICONTEXTS

• concepts(qR, j, k) return the pairs of concepts at position j and k of the
signature of some relation of qR (sometimes abbreviated concepts(qR) for
j = 1 and k = 2)

The following query construction can be used to create queries in LRR (the
sets of queries returning pairs of relations).

• subrelation which the relation subsumption hierarchy

This query infrastructure only allows to browse the ontology model. There is
absolutely no possibility to access the instances. In order to query the fact base,
we finally introduce the knowledge base query infrastructure Qkb:=(LKb,LKbKb):

Definition 28 (Knowledge Base Query Infrastructure) A knowledge base
query infrastructure QKb:=(LKb,LKbKb) is an ontology query infrastructure,
with two supplementary type elements:15 {I,Ri} (which stand respectively for
instances and relation instances), and with supplementary operators:

The query language LCI has been extended with the following query construc-
tion: (the queries returning pairs (c, i) consisting of a concept c and an instance
i).

• instantiation which returns the pairs of the instantiation relation

The query language LC have been extended with the following query con-
struction:

• concepts(qI) which returns the concepts which have at least one instance
of qI .

The query language LI has been extended with the following query construc-
tions:

• inst(qC)(sometimes abbreviated I(qC)) which returns all the instances of
the concepts qC .

• role(j, qR,k, qC) (sometimes abbreviated role(qR,qC) for j = 1 and k = 2)
which returns the instances at position j of relation instances of qR where
at position k is an instance of concept qC .

LRi has been extended with the following query construction:

• relinstances(qR) which returns all the instances of the relations of qR.

LII has been extended with the following query construction:

• < qR >jk return the pairs of instances of some relation instance of qR at
positions j and k respectively.16

• < qR > return the pairs of instances of some relation instance of qR at
positions 1 and 2 respectively.17

15This means that LKb = LOnto1 ∪LI ∪LRi and LKbKb = LOnto2 ∪LCI ∪LCRi ∪LRI ∪
LRRi ∪ LII ∪ LRiRi ∪ LIRi ∪ LRiI ∪ LIC ∪ LIR ∪ LRiC ∪ LRiR.

16This notation is the generic method to obtain pairs of instances at position j and k of a
relation instance tuple.

17This construction is a specific case of the preceeding one, but it simplifies the notation
for relations having only two components.

3.5. CONSTRUCTORS 91

We can now define ontology query-based multicontexts and knowledge base
query-based multicontexts :

Definition 29 (Semantic Query Structures) We call semantic query in-
frastructure a query infrastructure which is either an ontology query infras-
tructure or a knowledge base query infrastructure.

We call a semantic query-based multicontext a query-based multicontext
where the underlying query infrastructure is an instance of a semantic query
infrastructure.

Moreover, the use of formulas in a first order logic language would have
required the introduction of variables. Some formalisms like description logics
as presented in Chapter 2, Section 2.2.1 also avoid variables. The syntax of the
query languages is directly inspired from these logics. The absence of variables
corresponds also to the unnamed notation paradigm of relational databases.

3.5 Constructors

While designing the theory of the query-based multicontext, we noticed that
defining useful context indices would be too cumbersome and unintuitive for
most users. In order to remedy this problem, we introduce the new notion of
constructors. Constructors ease tremendously the task of defining context in-
dices because they work as templates. Instead of defining all the three queries
required in a context index, a user only needs to fill in the parameters of a con-
structor and a new context index will be generated using this input. Moreover,
constructors also simplify the browsing because they usually represent common
conceptual constructions. We chose the term constructor by analogy to con-
structors in object-oriented programming, but it is often useful to think of them
in terms of macros or templates.

We define constructors formally in the following generic way:

Definition 30 (Constructor) For a given query-based multicontext QBMC(Q),
a constructor is a function whose values belong to the context index set P.

Each constructor is denoted using a constructor name. The important as-
pect of Definition 30 is that a constructor is any function whose range lies in P,
but which may depend on some parameters (i.e. the domain). Note that the
type of set used as domain of a constructor is left unspecified, though the con-
structors presented in this section are all defined on query languages, other kind
of arguments could be useful. In many cases, the parameters of the functions
are queries from Q.

Once you have set these parameters, the constructor can be evaluated by
the query-based multicontext infrastructure in order to create a complex context
index. This new context index can be used in exactly the same manner as any
other context index. The evaluation of a constructor is constructor specific.

In Chapter 4, Section 4.3 , we discuss diverse strategies to ease the construc-
tor parametrisation.

To illustrate this, consider a qr ∈ L2, then the constructor qr 7→ R(qr)
where R(qr) := (dom(qr), range(qr), qr) is the context index resulting from this
constructor. While this constructor is very simple and limited, it ensures the

92 CHAPTER 3. QUERY-BASED MULTICONTEXTS

T
able

3.9:
D

efinition
of

the
query

prim
itives

of
the

query
languages

L
C

,
L

R
and

L
I

for
query

infrastructure
Q

K
b .

N
otation

M
eaning

Q
uery

R
esult

N
otations

for
L

C
returns

(concept
nam

es)
R

esults:
C

oncept
Sets

su
b
con

cep
ts(q

C
)

all
subconcepts

of
elem

ents
of

q
C

{
d
∈
C

:
∃
c
∈

ev
a
l1 (q

C
),d
≤

C
c}

su
b
con

cep
ts(q

C
)

all
superconcepts

of
elem

ents
of

q
C

{
d
∈
C

:
∃
c
∈

ev
a
l1 (q

C
),d
≥

C
c}

con
cep

ts(q
I)

the
set

concepts
of

w
hich

the
instances

in
q
I

are
in-

stances
{
c
∈
C

:
∃
i∈

ev
a
l1 (q

I),i∈
ι(c)}

related(q
C

)
concepts

attached
to

som
e

concept
of

q
C

through
som

e
relation

{
e
∈
C

:
∃
m

,n
∈

N
,m
6=

n
,∃

c
∈

q
C

,∃
r
∈
R

,e
∈

π(n
,σ(r))∧

c
∈

π(m
,σ(r))}

related(j,q
R
,k

,q
C

)
concepts

at
the

position
j

ofa
relation

of
q
R
,and

w
here

a
concept

of
q
C

is
in

the
position

k
of

this
relation

{
d
∈
C

:
∃
c
∈

ev
a
l1 (q

C
),
∃
r
∈

ev
a
l2 (q

R
),c

=
π(k

,σ(r))∧
d

=
π(j,σ(r))}

N
otations

for
L

R
returns

(relation
nam

es):
R

esults:
R

elation
Sets

su
brelation

s(q
R
)

all
subrelations

of
elem

ents
of

q
R

{
s
∈
R

:
∃
r
∈

ev
a
l2 (q

R
),s
≤

R
r}

su
p
errelation

s(q
R
)

all
superrelations

of
elem

ents
of

q
R

{
s
∈
R

:
∃
r
∈

ev
a
l2 (q

R
),s
≥

R
r}

relation
s(q

C
)

relations
attached

to
a

concept
of

q
C

{
r
∈
R

:
∃
c
∈

ev
a
l1 (q

C
),∃

n
∈

N
,c
≤

C
π(n

,σ(r))}
relation

s(q
R
,j,q

C
)

the
set

of
relations

belonging
to

q
R

for
w

hich
there

is
a

concept
c

com
patible

w
ith

its
signature

{
r
∈
R

:
∃
c
∈

ev
a
l1 (q

C
),r

∈
ev

a
l2 (q

R
),c

≤
C

π(2,σ(r))}
relation

s(i,q
I
1 ,j,q

I
2)

relations
w

hich
have

in
their

extension
som

e
instance

pair
(i1 ,i2)

w
here

q
I
1

returns
i1

and
q
I
2

returns
i2

{
r
∈
R

:
∃
i1
∈

ev
a
l1 (q

I
1),
∃
i2
∈

ev
a
l1 (q

I
2),

r
∈

ev
a
l2 (q

R
),∃

w
∈

ι
R
(r),

i1
=

π(1,w
)
∧

i1
=

π(2,w
)}

N
otations

for
L

I
returns

(instance
nam

es):
R

esults:
Instance

Sets
in

st(q
C

)
the

set
of

instances
of

concepts
belonging

to
q
C

{
i∈
I

C
:

i∈
ι(ev

a
l2 (q

C
))}

in
stan

ces(j,q
R
,k

,q
C

)
set

of
instances

at
position

j
of

a
relation

instance
of

q
R

for
w

hich
at

position
k

som
e

instance
ofone

concept
of

q
C

is
found

{
i
∈
I

C
:
∃
c
∈

ev
a
l1 (q

C
),∃

r
∈

ev
a
l2 (q

R
),c

=
π(k

,σ(r))∧
∃
w
∈

ι
R
(r),i

=
π(j,w

)}

in
stan

ces(j,q
R
,k

,q
I)

set
of

instances
at

position
j

of
a

relation
instance

of
q
I

and
w

here
at

position
k

an
instance

of
q
i

is
set

q
R

{
i∈
I

C
:
∃
i1
∈

ev
a
l1 (q

I),∃
r
∈

ev
a
l2 (q

R
),∃

w
∈

ι
R
(r),

π(k
,w

)
=

i1
∧

π(j,w
)

=
i}

3.5. CONSTRUCTORS 93

T
ab

le
3.

10
:

D
efi

ni
ti

on
of

th
e

qu
er

y
pr

im
it

iv
es

of
th

e
qu

er
y

la
ng

ua
ge

s
L

R
i,
L

C
I
,
L

C
R
,
L

C
C

an
d

L
R

R
of

qu
er

y
in

fr
as

tr
uc

tu
re

Q
K

b

N
ot

at
io

n
M

ea
ni

ng
Q

ue
ry

R
es

ul
t

N
ot

at
io

ns
fo

r
L

R
i

re
tu

rn
s

(
re

la
ti

on
in

st
an

ce
s

na
m

es
):

R
es

ul
ts

:
re

la
ti

on
in

st
an

ce
se

ts
re

lin
st

an
ce

s(
q R

)
se

t
of

re
la

ti
on

in
st

an
ce

s
of

th
e

re
la

ti
on

s
re

-
su

lt
in

g
fr

om
q R

{i
∈
I R

:
∃r
∈

ev
a
l 1

(q
R
),

ι R
(i

)}

N
ot

at
io

ns
fo

r
L

I
I

re
tu

rn
s

pa
ir

s
of

in
st

an
ce

s
na

m
es

:
R

es
ul

ts
:

se
ts

of
pa

ir
s

of
in

st
an

ce
s

<
q R

>
j
k

th
e

se
ts

of
pa

ir
of

in
st

an
ce

s
ob

ta
in

ed
fr

om
ev

al
ua

ti
ng

ea
ch

re
la

ti
on

on
e

re
la

ti
on

of
q R

at
po

si
ti

on
j

an
d

k

{(
i 1

,i
2
)
∈
I C
×
I C

:
∃r
∈

ev
a
l(

q R
),
∃w
∈

ι R
(r

)
(i

1
,i

2
)

=
(π

(j
,w

),
π
(k

,w
))
}

<
q R

>
th

e
se

ts
of

pa
ir

of
in

st
an

ce
s

ob
ta

in
ed

fr
om

ev
al

ua
ti

ng
ea

ch
re

la
ti

on
on

e
re

la
ti

on
of

q R
at

po
si

ti
on

s
1

an
d

2

{(
i 1

,i
2
)
∈
I C
×
I C

:
∃r
∈

ev
a
l(

q R
),
∃w
∈

ι R
(r

)
(i

1
,i

2
)

=
(π

(1
,w

),
π
(2

,w
))
}

N
ot

at
io

ns
fo

r
L

I
C

re
tu

rn
s

pa
ir

s
of

in
st

an
ce

an
d

co
nc

ep
t

na
m

es
:

R
es

ul
ts

:
se

ts
of

pa
ir

s
of

th
e

fo
rm

(i
n-

st
an

ce
,c

on
ce

pt
)

IN
ST

A
N

T
IA

T
IO

N
th

e
in

st
an

ti
at

io
n

fu
nc

ti
on

fo
r

co
nc

ep
ts

g
ra

p
h
(ι

C
)

:=
{(

c,
i 1

)
∈
C×
I C

:
i 1
∈

ι C
(c

)}
N

ot
at

io
ns

fo
r

L
C

R
re

tu
rn

s
pa

ir
s

of
:

R
es

ul
ts

:
se

ts
of

pa
ir

s
(

)
C

O
N

C
E

P
T

-R
E

L
A

T
IO

N
S

th
e

re
la

ti
on

be
tw

ee
n

co
nc

ep
ts

an
d

re
la

ti
on

s
{(

c,
r)
∈
C
×
R

:
∃

i
∈

N
,c
≤

C
π
(i

,σ
(r

))
}

N
ot

at
io

ns
fo

r
L

C
C

re
tu

rn
s

pa
ir

s
of

co
nc

ep
t

na
m

es
:

R
es

ul
ts

:
se

ts
of

pa
ir

s
of

co
nc

ep
ts

su
b
co

n
ce

p
ts

th
e

gr
ap

h
of
≤

C
gr

ap
h(
≤

C
)

N
ot

at
io

ns
fo

r
L

R
R

re
tu

rn
s

pa
ir

s
of

re
la

ti
on

na
m

es
:

R
es

ul
ts

:
se

ts
of

pa
ir

s
of

re
la

ti
on

s
su

br
el

at
io

n
s

th
e

gr
ap

h
of
≤

R
gr

ap
h(
≤

R
)

94 CHAPTER 3. QUERY-BASED MULTICONTEXTS

construction of a correct context index. However, most interesting constructors
in practice generate more complex structures.

An important aspect to consider is that the generic definition of a context
index can also be seen as a constructor with three parameters: the object query,
attribute query and the relation query. This allows us to deal principally with
constructors instead of context indices.

In order to define some constructors, it is sometimes important to constrain
the types of the parameters which can be used. Therefore, the following defini-
tion specifies the notion of queries over a given subset of Ω.

Definition 31 (Query over a Set) Let A be a subset of Ω, i.e. A ⊆ Ω; we
call a query q ∈ L1, a query over the set A if eval(q1) ⊆ A.

We start the presentation of the main constructors by considering the rela-
tions constructors.

3.5.1 Relation Constructors

We already gave an informal idea of a relation constructor. But there are ac-
tually four relevant relation constructors depending on which arguments are
set.

Definition 32 (Relation Constructors) We call default relation construc-
tor the mapping R from L2 into P which maps q3 to the context index

R : L2 −→ P
(q3) 7→ (domain(q3), range(q3), q3)

We call relation constructor with domain the mapping Rd from L1×L2 into
P mapping (q1, q3) to the context index

Rd : L1 × L2 −→ P
(q1, q3) 7→ (q1, range(q3), q3)

In the same manner, the relation constructor with range18 is the mapping
Rr from L2 × L1 into P mapping (q2, q3) to the context index

Rr : L2 × L1 −→ P
(q3, q2) 7→ (domain(q3), q2, q3)

Finally, the fully specified relation constructor19 is the mapping Rdr from
L1 × L1 × L2 into P mapping (q2, q3) to the context index

Rdr : L1 × L1 × L2 −→ P
(q1, q2, q3) 7→ (q1, q2, q3)

To illustrate these constructors, we use the following example.
18The difference in order of the parameters allows to determine the constructor type from

the query types. The indices are obsolete in this case.
19The fully specified relation constructor corresponds actually to the generic definition of

a context index. We consider it as a constructor because it is also clear that every context
index can be created by parametrising the fully specified relation constructor.

3.5. CONSTRUCTORS 95

Example 10 (Relation Constructors) We start by using the default rela-
tion constructor on the publication relation,20 to build the following context in-
dex:

R(< publication >) :=

 dom(< publication >)
range(< publication >)

< publication >


Since the concept lattice obtained from this context index is very large, it is

sensible to concentrate on a smaller number of publications. For example, the
publications of the members of the PADLR project can be obtained by using the
query q1 := role(< member >, {PADLR}).

Rd(q1, < publication >) :=

role(< member >, {PADLR})
range(< publication >)

< publication >)


This can be further refined by requiring the publications to deal with text-

mining using the query q2 := related(< isOnTopic >, {text-mining}).

Rdr(q1, q2, < publication >) :=

 role(< member >, {PADLR})
role(< isOnTopic >, {text-mining})

< publication >)


3.5.2 Hierarchy Constructor

Since hierarchical relations are very common in practice, it is useful to have
a constructor which builds a context capable of representing the order rela-
tion between elements of a hierarchy. Since every partially ordered set can be
embedded in a minimal lattice,21 hierarchies can be quite naturally coded in
a formal context (see [Davey and Priestley, 1994, Ganter and Wille, 1999] for
more details on the Dedekind-MacNeille completion).

Definition 33 (Subsumption Hierarchy Constructor) Let qH be a query
over a partially ordered set (H,≤). We define the hierarchy-based context index
S(qH,≤) for (qH,≤) as

S(qH,≤) := (qH, qH,≤)

Figure 3.5 shows in a) a schematic representation of this first hierarchy
constructor. The other one are described later in this Section.

To illustrate the use of this constructor, we imagine a scenario on the web.

Example 11 A typical use of this kind of constructor is the display of a con-
cept hierarchy. For example, the concept lattice corresponding to the context
index S(subconcepts({Person, ResearchGroup, document, Conference}), ≤C) is
displayed in Figure 3.6. Here the query qH is subconcepts({Person, Research-
Group, Document, Conference}).

20We are interested in the concept lattice of the publication relation.
21Minimal in the sense that this lattice can be embedded in all the lattices into which the

partially ordered set can be embedded.

96 CHAPTER 3. QUERY-BASED MULTICONTEXTS

Figure 3.5: A schematic representation of the subsumption hierarchy, instanti-
ation hierarchy, subsumption/instantiation hierarchy constructor.

Figure 3.6: The lattice of the concept hierarchy.

3.5.3 Instantiation Hierarchy Constructors

Instantiation relations occur frequently in data under different forms. The most
typical example is the instance/concept relation present in the ontology. How-
ever, any tagging or labelling can be seen as a kind of instantiation relation.
For example, a book dealing with the Semantic Web can be seen as a document
instance of the topic Semantic Web. In order to capture notions similar to in-
stantiation, we give a generic definition of the notion of instantiation function.

Definition 34 (Instantiation Structure) For two subsets C and I of Ω a
function ι defined on C and with values in P(I) is called an instantiation func-
tion. (C, I, ι) is then called an instantiation structure. For a subset A ⊂ C,
ι(A) :=

⋃
a∈A ι(a), and for a subset B ⊂ I, ι(B) :=

⋃
{c ∈ C|ι(c)∩B 6= ∅}. For

3.5. CONSTRUCTORS 97

an instantiation structure, we call C the concept set, and I the instance set.

Though a particular instantiation function may apply to other elements than
concepts and instances, we use the term concept in this paragraph, (respectively
the term instance) to denote the elements of the range of an instantiation func-
tion (respectively the domain).22

We can now define two kinds of instantiation hierarchies depending on
whether the query is defined on the concept set or on the instance set:

Definition 35 (Instantiation Hierarchy Constructors) For an instantia-
tion structure (C, I, ι)) and for a query qC over the set C, we define the instance
hierarchy context index for concepts from qC as

C : L1 × L2 −→ P
(qC , ι) 7→ (ι(qC), qC , ι−1)

For an instantiation structure (C, I,ι) and for qI a query over the set I, we
define the concept hierarchy context index for the instances from qI as

I L1 × L2 −→ P
(qI , ι) 7→ (qI , ι(qI), ι−1)

In b) from Figure 3.5, a schematic representation of the instantiation hi-
erarchies is displayed. Note that all hierarchy constructors have concepts as
attributes.

Example 12 Figure 3.7 shows the lattice of the instantiation hierarchy for the
subconcepts of Person, Document, Research Group and Conference. Note that the
concepts Document and Publication are in the attribute contingent of the same
formal concept. This happens because there is no instance in the knowledge base
which is at the same time a Document but not a Publication. Due to the number
of objects in some of the nodes the object labels are not displayed. However,
in a user interface, the extensions of the nodes can be visualised through other
means.

3.5.4 Subsumption/Instantiation Hierarchies Constructors

The instantiation relation is usually coupled with a subsumption relation on
the concept set. But since not all instantiation structures are compatible with
the hierarchy on the concept set, some property formalising the compatibility
between subsumption hierarchy and instantiation hierarchy is needed. This is
the goal of the following definition.

Definition 36 (Instantiation Compatibility) Let (C, I, ι) be an instanti-
ation structure. An instantiation structure is compatible with the partial order
(C,≤) if and only if the following property is valid

∀c, c1 ∈ C, c ≤ c1 =⇒ ι(c) ⊆ ι(c1)

22For example, a topic hierarchy and the assignment of topics to documents is not a strict
instantiation relation, since documents are not topics.

98 CHAPTER 3. QUERY-BASED MULTICONTEXTS

Figure 3.7: The lattice of the instance hierarchy for the subconcepts of: Person,
Document, Research Group and Conference.

Using this notion of compatibility, we now define a constructor which com-
bines concept hierarchies with instantiation hierarchies. Again two kinds of
context indices are considered, depending on the type of query which is used as
a parameter.

Definition 37 (Subsumption/Instantiation Constructors) Let (C, I, ι)
be an instantiation structure compatible with the partially ordered set (C,≤).
Let qC ∈ L1 be a query on C, and qI ∈ L1 be a query on I. The subsump-
tion/instantiation context index for the concepts of qC is defined as

SI(qC ,≤, ι) := (qC

.t
∪q ι(qC), qC ,≤

.t
∪qι

−1) =
S(qC ,≤)
C(qC , ι)

and the instantiation/subsumption context index for the instances of qI is
defined as

IS(qI ,≤, ι) := (ι−1(qI)
.t
∪q qI , ι(qI),≤

.t
∪qι

−1) =
S(ι(qI),≤)

I(qI , ι)

As shown in the section c) from Figure 3.5, the subsumption/instantiation
hierarchies can be built using the results from the other hierarchy construc-
tors. Note that the set of concepts of both the subsumption and instantia-
tion hierarchies must be the same. The subsumption/instantiation constructor
can then be built by using the subposition operator on the subsumption con-
structor for the concepts in qC and the instance hierarchy constructor for the
concepts of qC . The instantiation/subsumption is also built using the instanti-
ation/subsumption on on the subsumption constructor for the parent concepts
of qI and the concept hierarchy constructor for the instance of qI .

The following example illustrates both instantiation/subsumption hierar-
chies.

Example 13 Figure 3.8 shows the lattice of the subsumption/instantiation hi-
erarchy for the concepts Person, Professor, PhDStudent, Assistant. This hierarchy
has the context index

3.5. CONSTRUCTORS 99

Figure 3.8: The lattice of the instance hierarchy for the concepts: Person, Pro-
fessor, PhDStudent, Assistant.

SI({Person, Professor, PhDStudent, Assistant},≤C , ιC)

Figure 3.9 shows the lattice of the instantiation/subsumption hierarchy for the
instances: Rudi Studer, York Sure, Julien Tane The context index of this
hierarchy is

IS({Rudi Studer, York Sure, Julien Tane},≤C , ιC)

3.5.5 The Join Relation Context Constructor

Another important constructor is the join. Informally a join is a relation which
is defined as the pairs of elements which are linked by the composition of two
relations. For example, the join of the two relations: isAuthorOf and isOnTopic
links authors of publications to the topics addressed in one of their publications.

100 CHAPTER 3. QUERY-BASED MULTICONTEXTS

Figure 3.9: The lattice of the concept hierarchy for the instances: Rudi Studer,
York Sure, Julien Tane.

Among the operators presented in Section 3.3.1, the two operators on and
onq1 enable the representation of the composition of relations. We see that the
former operator can be easily implemented from the latter one. Joins are central
operators for databases. A great amount of literature has been written on them.
Introducing the join operators could allow more efficient implementations of
the context construction if the data source is a relational database, because
relational databases are traditionally optimised for this type of operation.

Definition 38 (Join Relation Context Constructor) Let qA, qB, qC be
three queries in L1 and let qR1 and qR2 be queries in L2. The Join context in-
dex Join(qA, qR1 , qB , qR2 , qC) between qA and qC through qR1 and qR2 over qB

is defined as

Join : L1 × L2 × L1 × L2 × L1 −→ P
(qA, qR1 , qB , qR2 , qC) 7→ (qA, qC , qR1 onqB

qR2)

Of course, it is possible to generalise the notion of join context index, by
using more than two relation queries.

Example 14 (Join Relation Constructor Example) Figure 3.10 shows the
lattice of the join23

Join


inst({ResearchTopic})

< dealsWith >−1

inst({Project})
< carriedOutBy >

inst({ResearchGroup})


23We use the vector notation to enhance the readability of the parameters of the constructor.

3.5. CONSTRUCTORS 101

This join displays a relation between research topics and research groups built
from the join of the two relations dealsWith and carriedOutBy. Note that the
SWRC ontology (see Appendix A) does not contain any direct relation between
research topics and research groups.

3.5.6 The CoRelation Constructor

Our preliminary experience with a query-based multicontext for knowledge
browsing has quickly shown that a certain kind of context index had to be
frequently constructed. The purpose of the corresponding formal context is to
visualise the relation between a set of elements and the elements sharing some
property with one of these elements. This is best explained using an example.
Consider a set of selected authors, in particular consider the special case where
this set contains only one author: Julien Tane. Figure 3.11 is used to illustrate
this situation. It is possible to look at the list of publications of this author.
But, a researcher might be more interested in his coauthors. The CoRelation
constructor is a view designed to explore the shared relations of a group of
individuals.

This constructor takes two parameters: a set query and a relation query. In
the figure, the set query returns the author marked with an X while the relation
query returns all the pairs of the authorOf relation, that is all the pairs of nodes
linked to each other. The purpose of the CoRelation constructor is to consider
only the coauthors of the start authors.

The following definition formalises the intuitive idea of the CoRelation con-
structor.

Definition 39 (CoRelation Context Constructor) For a query q1 in L1

and a query q3 ∈ L2, the CoRelation constructor is defined by

CoR : L1 × L2 −→ P
(q1, q3) 7→ (q−1

3 (q3(q1)), q3(q1), q3)

Example 15 (CoRelation Example) In Figure 3.12, the lattice representing
the relation between Julien Tane together with his coauthors and his publications
is shown.

3.5.7 Application-dependent Context Constructors

In contrast to the well defined constructors, there is a class of constructors which
are extremely useful but have a purpose only in a well defined context. This
happens when some kind of context indices occurs frequently or plays an impor-
tant role in the visualisation process. It is then useful to define an application-
dependent constructor. For example, we introduce below a constructor capable
of structuring news items according to some personalisation criteria. A new
context index can then be generated every day by setting the set of daily news
items as objects.

102 CHAPTER 3. QUERY-BASED MULTICONTEXTS

F
igure

3.10:
T

he
lattice

of
the

join
betw

een
research

topics
and

research
groups

through
the

project.

3.5. CONSTRUCTORS 103

Figure 3.11: The main idea behind the CoRelation constructor. X is the start
author and all the light-coloured nodes are in the resulting context.

Figure 3.12: The concept lattice displaying the relation between the publication
written by Julien Tane and his coauthors.

Example 16 (Application-Dependent Constructor Example) Suppose
the query-based multicontext browser is used to classify news items.24 Each
news item is parsed to return two relations: topic and occurrence, where

• topic:25 a relation returning the pairs (n, t) where n is a news item and
t one of the topics attached to it

24An RSS feed could be for example used for this purpose (see http://www.webressource.

org/rss/1.0/spec for more information on RSS feeds) Note that RSS Feed are usually in
RDF which makes it easier to integrate into a knowledge base.

25Some RSS feeds annotate their items with topic informations.

http://www.webressource.org/rss/1.0/spec
http://www.webressource.org/rss/1.0/spec

104 CHAPTER 3. QUERY-BASED MULTICONTEXTS

Figure 3.13: The lattice for news filtering.

• occurrence:26 a relation returning the pairs (n, w) where n is a news text
and t one of the relevant27 words contained in the text (for instance: Se-
mantic Web, Ontology, Irak...).

This news reader needs some parametrisation. The first parameter needed
is the list of news item as input. The topics of the news items are retrieved
from the news item automatically. Finally, the user can choose a list of terms
of particular interest.

Using these input elements, a context index (q1,q2,q3) can be defined using
the following queries.

• q1 is the query returning the news items of the day.

• q2 is a query returning the union of the topics of the day and the preselected
terms.

• q3 is a query returning the pairs between these attributes and the news of
the day.

This application-dependent constructor can be written as

News = (qn, topic(qn)∪{Semantic Web, Ontology, Irak}, topic ∪ occurrence)

where qn is the query returning the set of news items taken as input, topic
a query representing the relation between news and their topics. Finally, occur-
rence is a query returning the relation between the news items and the terms
occurring in their text. Figure 3.13 shows the lattice created for this news filter-
ing mechanism.

To implement such a constructor, it is also often useful to implement some
application dependent operators. For example, the operators occurrence and

26Most RSS feeds contain some abstract about the news item.
27These words are picked out using an algorithm computing the most relevant words of a

text.

3.6. SUMMARY 105

topics which we introduced in the example, are implemented independently. An-
other example of an application dependent constructor can be found in Chapter
6, Section 6.2. The evaluation we present in that section was implemented
by presenting diverse concept lattices of predefined views. These views were
created using an application dependent constructor returning a certain context
index depending on the step of the evaluation.

3.6 Summary

In this chapter, we introduced a novel generic approach for dealing with multi-
contexts: the query-based multicontext theory. This theory relies on the intro-
duction of context indices which serve as intensional representations for formal
contexts and can be generated from a data source.

We showed that considering certain operators on queries allows to define
operations on context indices which correspond to commonly used operations
on contexts. Moreover, we presented several extensions of basic query-based
multicontexts, where the underlying query infrastructure can be typed or serve
to access knowledge bases.

In order to facilitate the interaction with context indices, we introduced
constructors, a template mechanism, to simplify the definition of interesting
context indices, thus easing the creation of relevant contexts.

Arrived at this point of our explanation, it is natural to ask how this theory
can be used. The following chapter introduces a new approach to the exploration
of knowledge bases.

106 CHAPTER 3. QUERY-BASED MULTICONTEXTS

Chapter 4

Knowledge Base
Exploration

We propose a novel approach for the exploration of a knowledge base relying on
a process allowing the user to define and visualise contextualised semantic views.
Using the theory developed in the previous chapter, we show how the notions of
constructors and context indices can be used in the definition process. Moreover,
we investigate the properties of three different paradigms for the visualisation
of the generated views, insisting in particular on the means of selecting relevant
individuals for the selection.

In the first section of this chapter, Section 4.1, we motivate the approach
by stating its purpose, principle and main issues. In Section 4.2, we cover the
issue of interacting with a view, in particular we discuss alternatives to selecting
elements. Finally, we discuss in Section 4.3 the main means of creating a view
using query definition and constructor parametrisation.

4.1 Exploring Using Views

In the last decade, the literature on information visualisation has increased
tremendously. An overview of these different paradigms can be found in diverse
publications related to the domain such as [Herman et al., 2000], [Chen, 2006],
[Frasincar et al., 2003] or in the Information Retrieval literature (see for exam-
ple [Hearst, 1999]). These paradigms also benefit from the more general user
interface design literature (see [Shneiderman and Plaisant, 2005] for an overview
of the research in the domain).

In this section, we first present the main goals of information visualisation
introducing a generic model from the literature. This leads us to a discussion of
the issues we had to address. Finally, we use the scenario presented in Chapter
1, Section 1.1.1 to illustrate the general principle of our approach.

4.1.1 Visualising the Information Space

The visualisation of information generally involves complex interaction between
users and the machine providing the visualisation. In order to describe our
approach, we refer to a generic model for information visualisation which has

107

108 CHAPTER 4. KNOWLEDGE BASE EXPLORATION

been first presented in [Boyle et al., 1993]. This model is built upon the notion
of an abstract space and offers many similarities with our approach since a
query-based multicontext can be seen as a kind of specialisation of the abstract
space model proposed in this model.

Information Space

To build a conceptual model of visualisation in databases, the notion of an
information space has been introduced in [Boyle et al., 1993]. It provides a
generic view of any exploratory process. Such an information space can be seen
as an all-encompassing space consisting of cognitive, presentation and database
components. The cognitive space consists of a mental model the user has of
the components of the system, the objective of the interaction, and the visual
perception. The presentation space contains data, constructs and methods that
allow to visualise the information. The purpose of the presentation space is to
reveal important or relevant features for the fulfilment of the user’s goals.

Figure 4.1: Diagram schematising the concept of Database Content Space
(source: [Boyle et al., 1993]).

Finally, the database space (see Figure 4.1 for a schematic view of this space)
consists of the content space consisting of all the information which can be
interpreted from the database together with the user’s interest space, that is,
all the structures that should be found or uncovered during an exploration
session. During a given session, only a part of the content space, the space
visited during the session is the session content space. Finally, the result space
consists of the areas of the content space relevant to the user, the uncovered
parts of the interest space.

Interaction Purpose

From the model presented above, it is difficult to address the cognitive aspects
in a satisfactory manner, yet it is possible to discuss the purpose of interaction

4.1. EXPLORING USING VIEWS 109

on the design of an exploration framework. The purpose of interaction sets
constraints on the nature of the user’s interest space.

A user may have different motivations to interact with a visualisation frame-
work. Considering the use and context of the interaction helps defining the basic
requirements for the implementation. The possible tasks a user might want to
perform have been studied in the literature. We refer here to the work found in
[Shneiderman, 1997a], where four main tasks have been proposed: open-ended
browsing, exploration of availability, specific fact-finding (known item search)
and extended fact-finding. We considered these four purposes, but we chose
other terms which suit better the purpose of exploring a knowledge base as op-
posed to the original terms which were chosen for discussing interactions with
the Web. Moreover, these four purposes are categorised in two more generic
classes.

• Exploration

– familiarising, i.e. trying to understand better the structure of the
knowledge base

– visualising, i.e. trying to discover interesting properties or configura-
tions

• Problem solving

– searching, i.e. trying to locate some elements satisfying certain cri-
teria

– exhaustive search, i.e. trying to locate all the elements satisfying
certain criteria

The two exploratory approaches are related to each other but their focus is
somewhat different. In the first case, the tool should provide an overview of the
content of the knowledge base. In the second case, the tool should emphasise
particular properties of the displayed entities.

The difference between searching and exhaustive search lies in the extent
of the recall or precision needed. Recall is a measure corresponding to the
ratio of the number of elements actually found or visualised over the number
of elements which should have been found or visualised. Precision is a measure
corresponding to the ratio of the number of elements which should have been
visualised over the total number of elements visualised. When searching, only
one relevant element is needed. For example, it is sufficient to find the phone
number of a person in one document and not all occurrences, that is, precision
plays a greater role. Whereas when selecting, the purpose is to find all or at
least most of the relevant elements. For instance, it is important for a travel
agency broker to find all or most of the holiday packages matching a given set
of criteria, in other words, in that case a high recall is important.

To illustrate these purposes, we recall the scenario from the introductory
chapter. Our researcher Mikko Malli wants to visualise the relationships between
researchers, their topics and their projects. This is typically an exploration task.

The focus of this thesis is not to investigate in detail the best strategies for
these different approaches. However, considering these different goals provides
a clearer picture of the elements of the knowledge base which are relevant to the
user and sets a number of constraints on the approach to be used. Note also that

110 CHAPTER 4. KNOWLEDGE BASE EXPLORATION

the extensive research on Information Retrieval has already provided a number
of effective solutions for some search problems. In the field of information
visualisation, a number of techniques have been developed which help users in
familiarising with a knowledge base. And some search tasks necessitate the use
of exploratory methods due to the difficulty of formulating the relevant queries.
Using a more exploratory approach, the user can gradually focus on the relevant
part of the knowledge base.

To achieve his goal a user must find its way through the content space.
An exploration framework should support the user by providing appropriate
strategies.

Exploration Strategies

An exploration process consists of a number of steps and is modelled as an
exploration path across the content space. A schematic representation of such
a path is presented in Figure 4.1, showing an hypothetical navigation in the
session’s content space. An effective exploration framework can then be seen as
having two main optimisation tasks. On the one hand, the steps in the path
should be chosen so that they maximise the visualisation of the user’s interest
space. On the other hand, at each step of the path, the framework should also
emphasise the most relevant aspects of the currently visualised space.

Depending on the user’s interest space, different strategies can be used. Ben
Shneiderman proposed in [Shneiderman, 1996] the following mantra

Overview first, zoom and filter, then details-on-demand.

and baptised it the Information Seeking Mantra. The goal of this mantra is to
help the designers of information seeking interfaces by stating the main stages
of the search process.

It means that a knowledge exploration tool should start with an overview
and offer means of zooming, that is, specifying more precisely the current fo-
cus of the exploration. Parallel to the process of zooming, irrelevant pieces of
information can be filtered out. Finally, once the correct focus is found, more
information about the elements can be requested. If the search space would
be metaphorically represented as a space where generic information is found at
the top, and the details are at the bottom, then the mantra suggests a grad-
ual vertical descent in the data space. Starting from the top where the most
generic information is found, the user progressively reduces the search space
using zooming and filtering until he can select the elements to be displayed in
details.

The different alternatives for the exploration strategies are extremely depen-
dent on the visualisation paradigms.

Alternative Visualisation Paradigms

An Entity-centred approach as presented in Chapter 1, Section 1.1 can only
display on a very fine granular level and does not display relationships between
groups of entities. The success of the information search is extremely dependent
on the path chosen. This has different consequences. The number of steps re-
quired to cover the user’s interest space is likely to be greater since every entity
visited implies one search step. Then, the chances of following useless paths

4.1. EXPLORING USING VIEWS 111

are greater, since there may not be any cues for the user that he is choosing
the right path. Finally, since entity centred approaches are usually based on a
neighbourhood principle, it might not be possible to relate to entities which do
not share a neighbourhood. For example, the publications of a researcher work-
ing on some project may not belong to the set of entities in the neighbourhood
of this project. Note that the context indices presented in Chapter 3 allow the
definition of the neighbourhood of entities.

A number of other visualisation paradigms present views of the data using
visualisation paradigms like hierarchies and graphs. These paradigms rely on
zooming and filtering as proposed by Shneiderman, but zooming is usually per-
formed in the sense of zooming a map or an image representing the data (see for
example [Shneiderman, 1992]). Filtering on the other hand is usually limited
to a number of fields (a traditional technique has been proposed by Shneider-
man in [Ahlberg et al., 1992]). Though our approach is compatible with these
paradigms, we use the contextualised view mechanism to specify the content of
the views.

In addition to the filtering and zooming mechanism available in these views,
our framework allows for another kind of zooming. Our approach can be seen as
a conceptual zooming approach but is actually better defined as a view definition
paradigm, since the interface supports the user in the definition of the data to
be displayed. We present in the next section the model for this exploration
framework.

4.1.2 Views for Knowledge Base Exploration

The approach we propose in this thesis relies on the use of views to visualise
the information accessible from a knowledge base. In order to understand their
utility, we discuss some important aspects.

Views: A Definition

We understand the term view in a sense close to the database terminology and
define it in the following terms.

Definition 40 (View) A view is a specific focus on a part of the content of
the data source defined using an intensional representation. A visualisation
paradigm provides a set of means for the user to visualise and interact with the
content of the view.

A query-based multicontext view is a formal context generated from a con-
text index defined using appropriate queries on an instance of a query infras-
tructure.

Note that the intensional representation may take different form: structural,
positional or semantic, etc. For example, in a geographical application, the view
may be defined as the entities which are located in a given region. Since context
indices are intensional representations of the generated, the generated formal
contexts from these context indices form views on the data.

At first, we implemented a simple knowledge exploration mechanism using
Formal Concept Analysis as one of the components of an E-Learning frame-
work. The limitations of this first approach led us to design the query-based
multicontext theory as underlying model for knowledge exploration.

112 CHAPTER 4. KNOWLEDGE BASE EXPLORATION

The Courseware Watchdog

The Courseware Watchdog1 is an ontology-based knowledge management ap-
plication designed for maintaining E-Learning resources. The goal of the appli-
cation was to discover, organise and explore collections of E Learning resources
obtained from the web or a peer-to-peer application. The retrieved resources
could then be organised by a semantic clustering mechanism. Finally, we de-
veloped a simple exploration framework combining Formal Concept Analysis
and ontologies which allowed the user to visualise the existing data. More de-
tails on the Courseware Watchdog can be found in diverse publications (see
[Tane et al., 2004, Tane et al., 2003, Schmitz et al., 2002]).

While other knowledge browsing approaches used graphs or trees to display
the knowledge base, the Courseware Watchdog used concept lattices as a display
paradigm. The concept lattices it displayed can be seen as simple views with
little expressivity. It could for example create lattices displaying hierarchies
of concepts, instance subsumption hierarchies for a set of instances and finally
concept lattices of ontology relations. By interacting with the interface, the user
could activate simple constructors to build the corresponding concept lattices.
For example, a user could browse a number of levels of the concept hierarchy or
display one of the relations defined on a given concept. While some of the views
created by the system could be useful, the absence of means to further focus on
parts of relations as well as elements of the domain were important limitations
to overcome.

These limitations were rooted in the lack of expressivity of the lattice defini-
tion process, itself limited by the lack of expressivity of the context infrastructure
which had strong similarities with the multicontexts introduced by Rudolf Wille
(see [Wille, 1996] or refer to Chapter 2, Section 2.3.4). In order to overcome
the lack of expressivity of the views, we looked at means of creating meaningful
contextualised semantic views.

More Expressive Views

In Figure 4.2, we show a schematic representation of different formal contexts.
a) represents the general case for formal contexts which represents a formal
context as consisting in a set of objects, a set of attributes and a relation between
them. The goal of defining expressive views implies finding a trade-off between
expressivity and complexity. On the one hand, an expressive view allows the
user to focus on his interest space. On the other hand, a complex definition
process has different limitations. First of all, if the exploration framework has
a steep learning curve, user would not use it. The second limitation lies in the
complexity of the specification process. Studies have shown (see [Hearst, 1999])
that users tend to prefer simple interfaces with immediate results. Finally, a
complex view definition process is likely to be error prone and increase the
session path with views not containing any relevant information.

Dealing with the trade-off between the expressivity of the views and the com-
plexity of their definition is one of the main issues in the design of a view-based
exploration framework. However, the lack of expressivity has other limitations.

b) shows a particular context as it may be found in a multicontext in Wille’s
sense or as used in the Courseware Watchdog. It only uses names for concepts

1See http://cwatchdog.sf.net.

http://cwatchdog.sf.net

4.1. EXPLORING USING VIEWS 113

Figure 4.2: Diverse abstract representations of some views. a) represents an
abstract representation of a view, b) is an example of simple relation view, c)
is a view resulting from a join constructor and d) shows a view with a complex
definition for the attribute set.

and relations but no operator. c) on the contrary defines the attributes using
operators. Finally d) is defined using a join constructor. The ontology does not
contain any relation between Topics and author. The context c) and d) could
not be constructed without query operators. In particular, it is important to
note the use of the nominal {text-mining}. Nominals play an important role
since they allow the representation of a selection of instances for which there is
no intensional definition. The last view d) is also interesting because it is based
on a constructor.

Requirements for View Exploration

The user’s final goal for the exploration is to obtain the relevant information
from the exploration, the closer the presented information is to the user’s in-
terest space the most likely this will happen. However, to achieve this goal
three issues must be addressed. First of all, the view displaying the data should
suit the purpose. The relevant elements should be emphasised appropriately.
The second issue is closely related to this issue since selection can be used
to communicate which entities should be more closely studied. The graphical
user interface should therefore provide the means of selecting relevant informa-
tion. Moreover, selection is a crucial step for the definition of new views. This
means that in order to improve the exploration of different views, the selec-
tion paradigm should provide appropriate methods of selection. Finally, while
for many purposes default methods of using selections can be used to define
new views, a powerful exploration framework should also provide more refined
methods of providing information.

114 CHAPTER 4. KNOWLEDGE BASE EXPLORATION

The Browsing Model

Before illustrating the exploration principle of our framework, we recall the
main steps involved from a user point of view. A cycle of interaction with the
framework can then be summarised using the following steps: view visualisation,
selection, view definition.

Table 4.1: The main phases of an interaction cycle of the knowledge base ex-
ploration framework.
Phase Description Example
Visualisation user interacts with the view

to find relevant information
the user must note the text-
mining researchers who work
on topic similar to his

Selection the user selects the relevant
information from the view

the user must select text-
mining or text-mining re-
searchers

View Definition the user performs specifies
the parameters of the view

the user must be able to
define the view displaying
the relations between text-
mining researchers and the
research topic they work on

In the first phase, the user first familiarises himself with the content of the
present view and may note which elements are relevant for further exploration.
In the second phase, the user selects the relevant elements. This selection may
consist in a single element, or in a set of relevant elements. In the third phase,
the user makes use of the elements previously selected in order to define the
next view. Once these steps have been performed, the framework constructs
the next view to be displayed. These phases are summarised and illustrated in
Table 4.1.

The phases introduced above emphasise the main difficulties and research
questions of our framework. They differ from the cycles presented earlier in this
thesis. In Chapter 1, Section 1.2.2, the cycle highlighted the general phases of
the whole framework whereas the three phases presented here emphasise the
steps the user must perform to visualise the next view. In Chapter 3, Section
3.1, the focus of the cycle was on the construction phase, which we described
all along Chapter 3.

Our next step is to introduce a scenario describing the main principle behind
our approach.

4.1.3 Scenario: Getting to Know AIFB

To illustrate the purpose of our approach, we return to the scenario presented
in the introductory chapter (see Chapter 1, Section 1.1.1), where a researcher
is interested in the AIFB publications by authors working on the topic of text-
mining. Such a user may have different purposes to use the tool. For example,
he might want to retrieve one or more specific publications or to retrieve all the
publications by certain authors. Another goal might be to visualise the publi-
cations of the authors interested in text-mining. In the latter case, a grouping

4.1. EXPLORING USING VIEWS 115

Figure 4.3: The interaction process for a query-based multicontext browser.

of the authors according to their common publications is useful.
To prevent a cumbersome description of the exact interaction at this stage,

we focus on diverse information the user may want to know and the way it is
displayed by our browsing framework. We assume here that our researcher is
provided with the relevant views through some actions he performs. The actual
description of the means to create a view is presented in Section 4.3. Moreover,
this scenario could be implemented in a web browser. A user would click on
a link to obtain a new predefined view. Yet, a static line diagram (i.e. the
user cannot improve manually the layout of the diagram) is unsuitable for this
task.2

Starting Point

Figure 4.4: The start view presenting the main concepts of the knowledge base.

As a starting point, the view displayed consists of the top concepts of the
ontology: Event, Organization, Person, Publication, Project, ResearchGroup, Re-
searchTopic. This view is shown in Figure 4.4. The user can then select the
centre of interest of the data he actually wishes to visualise. For example, a
person looking for certain publications would select the concept Publication and

2Since the current web technology are mature enough for this, it is to be expected that a
suitable interaction framework will eventually be developed. We performed some experiments
in this direction, but no working prototype has yet been implemented.

116 CHAPTER 4. KNOWLEDGE BASE EXPLORATION

start defining views using this concept. If the concept hierarchy is small, dis-
playing it as a whole may be feasible and would ease the selection of the most
relevant concepts. This is illustrated by the actions of Mikko Malli.

Since Mikko Malli is primarily interested in persons, he selects Person as a
concept of interest. He may obtain more details about this concept and display
the subsumption hierarchy view of the subconcepts of Person. He may wish to
study the distribution of instances among the subconcepts of Person and note
that there is just a few Professors and Assistants but that there is a large number
of PhDStudents as well as a large number of persons who are not instances of
any of the subconcepts of Person.

Text-Mining Researchers and their Research Topics

Since our researcher is mainly interested in the researchers working in the field of
text-mining, he first wants to find out the researchers who work on text-mining.
The query corresponding to this simple request is:

q1:=role(<isWorkedOnBy>−1,{text-mining})
The definition of such a query by the user can be performed in different ways

by the user. When selecting the instance text-mining, some menus points enable
him to create role queries with the relations which this instance has. Other
approaches are also possible, for example, the user may fill in the entries of a
form.

This query consists of two specific information which are both necessary to
answer the question. In an entity-centred approach, our researcher can look
for text-mining and then look at the values of the relation isWorkedOnBy. The
result of this query can be easily presented as a list:

• Alexander Maedche

• Andreas Hotho

• Julien Tane

• Stefan Bloehdorn

• Stefan Klink

• Steffen Staab

This list informs the user that these persons share an interest in text-mining,
but the user would like to have a better insight into their relationships. For
instance, Mikko could be interested in the research topics shared by the per-
sons working on text-mining. To visualise this kind of relations, our exploration
framework provides a useful type of view: the views based on the CoRelation
constructor (see Chapter 3, Section 3.5.6 for its formal definition). Using this
constructor, Mikko can generate the formal context consisting of the set of all
the researchers working on text-mining as attribute set, the set of all their re-
search topics as object set and the relation indicates which topics are worked
on by which researchers. Since the main focus are the research topics, this
context is transposed3 (i.e the object and attribute sets are swapped and the

3To simplify the explanation, the CoRelation context considered the start element to be
objects, but it is often useful to consider the dual of this constructor.

4.1. EXPLORING USING VIEWS 117

components of the pairs of the resulting relation) as denoted by the small d as
exponent. The final context index of this view is:

(CoR({text-mining},<isworkedOnBy>))d

One of the questions to be answered is which view paradigm should be used
to visualise this context: a lattice, a graph, a tree, or something else? The tree
paradigm does not allow to visualise easily which persons share research topics.
The graph approach allows to visualise how projects are shared, but unless
the research topics shared by persons are grouped together, it does not bring
forward that these topics are shared by certain researchers. Concept lattices
can be seen as a clustering structure which address this issue appropriately.

Figure 4.5 shows the concept lattice where research topics are grouped ac-
cording to the persons working on them (the edges at the bottom element have
been hidden, since the bottom element of the lattice does not contain any ob-
ject4).

In this example, the label of the lowest concept lattice node which contains
Steffen Staab and Alexander Mädche as object consists in seven elements. The
node contains actually 13 research topic. This means that the two researchers
share many research topics, yet it does not show the cooperation between these
persons. To show their cooperation, two other views can be interesting: the
shared projects and the shared publications. The latter is shown in Figure 4.6.

A few comments on this lattice are in order. First, no object label5 are
displayed in this diagram. While the number of elements per label in the first
view is limited6 (one line per box), in the second view the number of publications
for at least some of the nodes is larger than 100 items.7 If the view is displayed
using the graphical user interface (as opposed to the Figure 4.6 which is static),
several features allow the user to visualise dynamically the content of the nodes.
For example, a context menu can be used to list elements of the extent of a given
node.

A Researcher’s Publications and Topics

Our researcher is now interested in the publications of one of these text-mining
researchers: Andreas Hotho. He recognised the name and knows that the author
writes on topics relevant for his research. This researcher is the author of 46
publications. A clustering of the publications according to their authors is useful
here, since researchers cooperate often on more than one publication and shared
publications tend to cover different aspects of one research question. Such a
clustering is shown in Figure 4.7. The bottom element is not displayed, since
no publication was written by all the coauthors of Andreas Hotho.

Furthermore, our researcher could be interested in researchers working at
AIFB on the same topics as Andreas Hotho. Our researcher could be interested
in seeing a lattice like the one displayed in Figure 4.8. The attribute set of the
context of this lattice contains the research topics of Andreas Hotho, whereas

4In other words, there is no researcher working on all the topics.
5We recall that per convention the object labels are shown in white boxes whereas the

attribute labels are in grey boxes.
6Research do work on many research topics.
7Some researchers write a large number of publications.

118 CHAPTER 4. KNOWLEDGE BASE EXPLORATION

F
igure

4.5:
T

he
distribution

of
the

research
topics

of
the

A
IF

B
text-m

iners.

4.1. EXPLORING USING VIEWS 119

Figure 4.6: The distribution of the publications written by the text-mining
researchers.

Figure 4.7: The concept lattice of Andreas Hotho’s publications visualised with
authors as attributes.

the object set contains the persons who share at least one research topic with
Andreas Hotho.

We selected a few question which might interest our user. For each of these
questions, we give the corresponding context index.

1. What are the subelements of a given set of elements?

In particular, in the ontology model presented in Chapter 3, Section 3.4.1,
two kinds of hierarchies are present: the concept subsumption hierarchy
and the role subsumption hierarchy. For example, what are the subcon-
cepts of the concept Person? This information is available from the re-
alised context of the following context index:

S(subconcepts({Person}),subconcepts)

120 CHAPTER 4. KNOWLEDGE BASE EXPLORATION

Figure 4.8: The concept lattice of Andreas Hotho’s research topics and the
colleagues sharing them.

2. How are the instances of a group of concepts distributed among their sub-
concepts? The subsumption instance context index is an intensional rep-
resentation of the view required to answer this question. For example, the
context index

SI(subconcepts({Person}),subconcepts,instantiation)

can be evaluated, and the concept lattice used to visualise the distribution
of the instances of the concept Person among its subconcepts?

3. How is the distribution of a group of instances with respect to the concepts
they instantiate? For example, who are the persons affiliated to the Efficient
Algorithm research group and what is their position (i.e which subconcept
of Person do they instantiate) can be displayed using the line diagram of
the lattice of the following instance subsumption context index

IS(role(<affiliation>,{Efficient Algorithm}), subconcepts,instantiation)

4. How is the configuration of a given relation? It is often useful to see how
elements relate to each others. For example it is relevant to find the ele-
ments which share a greater number of elements or which share elements
with a greater amount of elements. For example, using the concept lattice
of the worksAtProject relation, it is possible to note which person partici-
pate in more projects. For this, it is interesting to study the distribution

4.2. VIEW INTERACTION 121

of researchers with respect to the projects they work on. The following
context index enables this formulation.

R(<worksAtProject>,dom(<worksAtProject>),range(<worksAtProject>))

5. Given a set of individuals, which are the individuals which share the most with
these? It is often relevant to see the other authors which published with
a given author and to note whether some groups can be recognised. For
example, it may be useful for a researcher to see who co-authored with
Andreas Hotho on which of his publications?

CoR({Andreas Hotho}, <publication>)

6. How is the distribution of elements across two composed relations? In some
situations, it is relevant to study the distribution of elements with re-
spect to composed relations. For example, the SWRC ontology does not
contain any direct relation between the organisations financing projects
and the research groups carrying them out. This can be visualised using
the concept lattice generated using the following parametrisation of a join
constructor.

J


inst({Organization})
< financedBy >−1

< carriedOutBy >
inst({Research Group})


4.2 View Interaction

Once a view has been generated from the data source, different visualisation
alternatives are possible. Among the diverse paradigms, we focus on three
visualisation paradigms which are particularly adapted to visualise the content
of a formal context. Each of these paradigms, the tree view, the graph view and
the lattice view, have advantages and drawbacks depending on the configuration
of the data and the underlying purpose of the interaction. We discuss in this
section two aspects which are particularly relevant for our approach and which
correspond to different ways of looking at the human-computer communication.
On the one hand, the purpose of a visualisation paradigm is to communicate
the relevant information to the user. On the other hand, the user must be able
to communicate his needs and intentions to the visualisation paradigm.

We start this section by discussing some preliminary aspects relevant for
the interaction with views. Then we describe the diverse view paradigms to
visualise a context index.

Visualisation Tasks

Ben Shneiderman investigates in [Shneiderman, 1996] different aspects of infor-
mation visualisation such as the different types of data to be visualised and the

122 CHAPTER 4. KNOWLEDGE BASE EXPLORATION

main tasks occurring during information visualisation. These visualisation tasks
are relevant in our approach since they also occur in our approach.

Each of these tasks plays a role in the visualisation of views, therefore we
recall here the seven tasks8 proposed in [Shneiderman, 1996].

1. Overview: Gain an overview of the entire collection.

2. Relate: View relationships among items.

3. History: Keep a history of actions to support undo, replay and progres-
sive refinement.

4. Focus: Focus on items of interest.

5. Filter: Filter out uninteresting items.

6. Details-on-demand: Select an item or group and get the details when
needed.

7. Extract: Allow extraction of sub-collections and the specification of query
parameters.

Note that some of these tasks may require some interaction from the user.
In particular, Tasks 3 to Tasks 7 can only be applied if the focus of the task
is supplied. Task 1 and Task 2 may also require interaction but may also be
more static. Finally, Task 7 is not an actual visualisation task but rather a task
necessary for the adaptation of the visualisation.

In [Shneiderman, 1996], the term zoom was used instead of focus for Task
4. Different techniques can be used to focus and zooming is only one of them.
Zooming can be seen as a method of focusing on relevant elements, but also as
a means of filtering irrelevant elements.

Task 7 plays a crucial role in our approach since an appropriate selection
mechanism is necessary for the query and view definition process.

Though a knowledge exploration framework should support all these tasks,
we do not deal with each of them in detail, especially since their study is ex-
tremely dependent on the implementation and usability of the tools used. We
focus particularly on the visualisation of relations as well as the extraction of
sub-collections and query parameters.

Visualisation and Interaction Assistant

While we discuss the features of three different visualisation paradigms, it is
important to recall the crucial roles played by a number of generic techniques
which assists the user in visualising the view. Typically the main purpose of
these techniques is to prevent the overloading of screen space and to minimise
the cognitive effort of the user, thus allowing him to concentrate on the most
relevant information. We summed this techniques in Table 4.2.

The first manner of enhancing the visualisation of a view is the use of a
preview mechanism. A preview mechanism consists in a mean of giving more
details about entities by displaying more information on the object when the
mouse moves over its representation or some selection is performed. There are

8We changed the order of the tasks to simplify their presentation.

4.2. VIEW INTERACTION 123

Table 4.2: Techniques helping the visualisation.

Technique Description

preview during interaction with the visualisation, supplementary information is
automatically provided by the interface.

zooming elements nearer to the selection are displayed more predominantly while
other less.

spanning the visualisation is seen through a movable window to display certain
zones of the data.

focusing the visualisation changes to show predominately some elements.
highlighting some elements are highlighted.
context menu a popup menu or window opens providing diverse action to visualise in-

formation.

diverse means of implementing such a preview mechanism. A first way is to
use tool tips which appear when the mouse lingers over an area of interest. An
other way is to use an auxiliary panel coupled with some partial selection by
the user. For example, a user clicking on the concept Person may see the list of
its instances in the auxiliary panel.

In order to reduce the screen space needed for visualisation, zooming and
spanning are traditional techniques. They usually allow the user to keep a
mental picture of the view. We understand here zooming only as the process
of magnifying the size of some part of the view. Spanning is performed by
displaying the visualisation through a window which can be moved to access
other part of the data. This is typically performed using scroll bars.

Another important technique is the implementation of means of focusing
and highlighting. Depending on the visualisation paradigm, different means of
focusing and highlighting may be used. The purpose of highlighting is to em-
phasise some aspect of the data, while focusing often results in some emphasis,
it may also result in a reorganisation of the layout of the view.

The techniques filtering and hiding consist in hiding or filtering out a number
of elements so as to emphasise the remaining elements. These techniques have
the same purpose as focusing and highlighting and are usually used together.

These techniques related to the well-known notion of Focus+Context (see
[Lamping et al., 1995]). This approach is based on the principle that one of the
entities to be visualised is currently focused upon. A number of other elements
corresponding to the current context of use are emphasised as long as they are
related to the focused entity. The user may then modify the visualisation by
either changing the focus, i.e. choosing another entity as central or switching
to another kind of context. A typical example of such a view is the bird’s eye
view which magnifies central elements while the elements which are less related
to central elements are depicted smaller, further from the centre of the picture
and may be greyed out (see [Lamping et al., 1995] for a typical example of
Focus+Context approach). The main purpose of the Focus+Context technique
is to be able to switch quickly both the focus and the context of exploration.

We also used context menus as a means of visualising the content of the
lattice. A context menu is a small window appearing at the request of the
user when selecting some entities. It provides a number of actions for the user
to select from. Typically, context menus are used for tasks such as filtering,
details-on-demand or the extraction of sub-collections or query parameters. For

124 CHAPTER 4. KNOWLEDGE BASE EXPLORATION

our purpose, we show in Section 4.3.2 that they provide a simple way of defining
views. The context menu can also be used to display supplementary information.
It can be displayed directly in the context menu,9 or trigger the display of further
information in an auxiliary panel. This is a simple mean of providing a support
for the details-on-demand task.

4.2.1 Visualisation

Different kinds of visualisation paradigms exist to display views. In the context
of this thesis, we investigate three paradigms based on three different kinds
of structures: trees, graphs and lattices. While the first two paradigms are
usual ways of displaying information to the user, the last one has shown to
be practical for certain purposes (see [Eklund et al., 2004, Cole et al., 2003b,
Hearst, 1999]). Each of these structures and corresponding paradigms have
their own advantages and limitations.

To study the visualisation paradigms, it is important to note that the views
of our framework can be grouped in two categories: hierarchies and relations.
While all views are relational to some extent (hierarchies are special kinds of
relations), the hierarchical views display in addition some kind of order between
its attributes (the order is coded in the context, see in Chapter 3, Section 3.5).

The Tree Paradigm

Figure 4.9: The tree displaying part of the subsumption-instance hierarchy of
the ontology.

9Using the context menu to display information is usually considered bad design.

4.2. VIEW INTERACTION 125

The tree visualisation paradigm is the simplest of the three paradigms used in
our browsing tool. It can be used to display hierarchies in an intuitive manner.
For example, Figure 4.9 shows the subsumption instance hierarchy for the AIFB
knowledge base. It can also be used to display binary relations. An example
of this is given in Figure 4.10. The view in this figure corresponds to the
carriedOutBy relation between projects and research groups. However, the tree
paradigm has the drawback that it does not illustrate the real structure of the
data because a branch of the tree only indicates the relation between one upper
element and the lower elements. In Figure 4.10, the projects of the diverse
research groups are shown. Yet, it is difficult to extract from the tree view
which projects are shared between research groups as well as which research
groups work on common projects. In some way, the complement question of the
sharing of properties can be seen as the elements not sharing properties. For
that purpose, the tree view is not suitable either.

The drawbacks of the tree structure for visualisation of the sharing of ele-
ments should be contrasted with the structured possibilities of the tree views.
A tree is able to display a large number of elements at the same time by putting
the emphasis on the relation of an element with a group of elements. This em-
phasis enables user to optimise the search for the properties of the properties
of a given element. This optimisation is further enhanced by the use of a sort-
ing mechanism for siblings10 in the tree. A user can pick an element easily by
browsing a sorted list of labels.

Though the tree view is not suitable for visualising shared properties, the
evaluation we present in Chapter 6, Section 6.2 shows that even for tasks where
the tree paradigm does not seem suitable, some users perform amazingly well
to solve the questions asked.

Another interesting property of trees is that they are also suitable to display
multiple relations. For example, the properties of a set of instances can be
displayed using a four-leveled tree with the instances as the children of the root
element (the root node is hidden), the relations as children of the instances and
the values as leaf.

A few simple heuristics can be used in order to check whether the tree view
paradigm is suitable. A very simple heuristic consists in checking whether the
data is a one-to-one mapping. In that case, the number of objects and attributes
is equal and the number of concepts in the lattice is equal to the number of
objects plus 2 (bottom and top and as many formal concepts as objects or
attributes). The other heuristic is to use an algorithm to partition the lattice.
Such an approach is shown in Chapter 5, Section 5.5.4.

If the structure resulting from the removal of the bottom element of the
lattice is a tree, the use of a line diagram to visualise the tree is often inappro-
priate. A tree panel may be more suitable, especially if the attribute contingent
are small11.

The literature on the visualisation of tree structure is extensive. While some
of the approaches use visualisation similar to the one presented in Figure 4.9,
many other means of displaying trees have been proposed for example some
use graphs, maps or circles. [Kosba, 2004] compares different tree visualisa-
tion paradigms. For its comparisons, the paper uses the InfoVis Contest 2003

10Siblings are elements sharing a father in the tree.
11If the attribute contingent are large, the line diagram of a tree may still be more appro-

priate.

126 CHAPTER 4. KNOWLEDGE BASE EXPLORATION

Figure 4.10: The tree displaying the distribution of the projects carried out by
the research groups.

dataset12 which deals with the visualisation and the comparison of trees.

The Graph Paradigm

The graph view paradigm displays the view by representing each object and
attribute as a node and each relation as an edge in the graph. For exam-
ple, the graph representing the carriedOutBy relation presented in the previ-
ous section (i.e. Section 4.2.1) is shown in Figure 4.11. Graphs structures
are frequently used to represent information (see for example, [Sowa, 1984,
Sowa, 2000, Munzner, 2000]). Graph visualisation is a field in itself and the
literature on the subject is quite extensive (many algorithms are described in
[Battista et al., 1999, Munzner, 2000]).

The graph view has some advantages:

• multiple relation displayed at the same time

• intuitive representation

• display of relations

• diverse layout strategies

Contrary to the tree paradigm, which is not suitable for complex structures,
the graph paradigm may visualise relations between sets of elements.

12The datasets and the results can be downloaded from http://www.cs.umd.edu/hcil/

iv03contest/datasets.html.

http://www.cs.umd.edu/hcil/iv03contest/datasets.html
http://www.cs.umd.edu/hcil/iv03contest/datasets.html

4.2. VIEW INTERACTION 127

Figure 4.11: The graph displaying the distribution of the projects carried out
by the research groups.

The Lattice Paradigm

The lattice view paradigm used in this thesis should actually be called con-
cept lattice view paradigm since the lattices displayed are the concept lat-
tices of the realised formal context of some context index. The traditional
technique to display partially ordered sets is to use a line diagram though
other techniques have also been proposed in the literature (see for example
[Carpineto and Romano, 2005]).

While a line diagram can be seen as a specialisation of a graph, the under-
lying assumptions and interaction features differ greatly from the more generic
graph approach.

The main common aspect with the graph is that both paradigms require
some appropriate layout algorithms to draw their structures. As in the case of
the graph, different approaches have been considered for the layout of the line
diagram (see [Cole, 2001a, Cole, 2001b]).

A closer approach is to consider the visualisation of partially ordered sets.
Line diagrams are useful for all partially ordered sets, yet we use concept lattices
to display information.

First of all, every partially ordered set can be embedded in a concept lattice
which is the smallest complete lattice for this set. This is called the Dedekind
MacNeille completion. For a parially ordered set (P,≤), the formal context
(P, P,≤) can be built and the formal concept for these contexts are all the pairs
(X, Y), where X is the set of all lower bounds of Y and Y is the set of all the
upper bounds of X. The size of this lattice can much larger than the size of the
original set.

Concept lattices offer a number of interesting properties which make them
more interesting to display information. An important feature of concept lattices
is that each node forms a cluster of objects and a cluster of attributes. This
means that it is easy to access a great number of elements by clicking on only
one element.

128 CHAPTER 4. KNOWLEDGE BASE EXPLORATION

In addition to representing clusters, the line diagram of a concept lattice also
provides supplementary information. First, the cluster indicate in a compact
manner which elements share properties (attributes can be seen as properties).
The graph also displays this information, but if many different kinds of relations
exist, the number of elements displayed explodes, and it cannot be visualised
properly.

For example, the lattice displayed in Figure 4.12 shows how the project
distribution of the different research groups. The labels for objects are not
displayed but they are easily accessed using a preview mechanism.

Using a concept lattice it is possible to visualise which objects share more
attribute than others (or the dual property, i.e. which attributes share more
objects). This information can be displayed using the size of the nodes, but the
place in the partial order gives also informations, since the highest objects share
all the object of the lower objects (as long as their are comparable) and will
have suplementary ones. In Figure 4.12, the size of the node gives an idea of the
extent of each node, i.e it indicates the number of projects of a research group
or the one it shares. The label gives the procentual distribution of research
projects for each node.

Figure 4.12: The lattice displaying the distribution of projects carried out by
the research groups.

4.2.2 Selection

As noted in Section 4.1.2, the exploratory approach is extremely dependent on
the means of specifying the next view to be visualised, in particular, the user
must be able to specify the elements which are used in the definition of this new
view. We discuss in the following paragraphs diverse means of selection which
can be used in the views.

It is important to note that the selections we consider in this section consist
each of a set of entity. These sets of entities may be typed in order to be able to
offer appropriate context menu operations. Moreover, in order to support the
user in the selection process, it is crucial to offer him the possibility to visualise
the current selection. The panel used to visualise this selection must also allow
direct manipulation.

4.2. VIEW INTERACTION 129

Selection Types

Before discussing the main selection types of the different visualisation paradigms,
we briefly introduce the main selection mechanisms. In both approaches, mainly
two methods can be used to selected entities. Using the first method, the user
can incrementally add entities to the selection. The second approach relies on
the topological properties of the corresponding view together with a feedback
mechanism based on the highlighting mechanism.

In all paradigms a number of entities are displayed on the screen. In the
tree paradigm, these entities are the are the nodes of the tree. In the graph,
edges can additionally be selected. The entities of the tree and graphs are
entities present in the knowledge base. On the contrary, the artifacts which can
be directly selected in the lattice paradigm are mainly formal concepts. Since
formal concepts cannot be directly used for the definition of queries, it is crucial
to provide a mean of selecting entities from them.

In all three approaches, these artifacts may be selected incrementally by
clicking on each artifact, or a more topological approach may be used.

Lattice-based Selection

One of the main reasons for using the line diagram of a concept lattice is that a
single click allows the selection of a great number of elements, since each node
represents at the same time a set of attributes and a set of objects. Moreover,
it is important to recall that the concept lattice structure has two interesting
properties:

1. The extent of the greatest lower bound of any set of formal concepts
coincides with the intersection of the extents of the elements of the set.

2. The intent of the smallest upper bound of any set of formal concepts
coincides with the intersection of the intents of the elements of the set
(dual property of 1).

These properties are direct interpretations of the fundamental theorem of
Formal Concept Analysis (see Chapter 2, Section 2.3.1, or the book by Ganter
and Wille [Ganter and Wille, 1999]). However, though these properties can be
useful, they are also the source of the complexity of the line diagram of con-
cept lattices. We assume that users are able to interact with this visualisation
mechanism. Moreover, we claim that power users, who understand the nature
of the lattice, can answer certain questions quickly and easily. A reason for this
is that different sets of elements can be selected from the concept lattice with
two simple clicks: the first one corresponding to mode selection and the second
one to node selection as explained in the following.

In order to give the user a more powerful selection mechanism, an advanced
user can choose from a set of selection modes. Depending on the current lattice
selection mode, the user selects a part of the currently displayed lattice which
suits his purpose. The interface offers eight lattice selection modes, which can
be divided into two groups: the entity selection modes and the concept selection
modes.

1. The four entity selection modes are:

130 CHAPTER 4. KNOWLEDGE BASE EXPLORATION

(a) Attributes: selects the attributes of the chosen formal concept,
(b) Objects: selects the objects of the chosen formal concept,
(c) Attribute contingent : selects the context attributes, which are in the

attribute contingent of the chosen formal concept (i.e. the attributes
belonging to this formal concept, but no formal concept above it.),
and

(d) Object contingent : selects the objects in the object contingent of the
chosen formal concept (i.e. objects belonging to the extent of this
formal concept but to none of the formal concepts below it).

2. The four concept selection modes are the following ones:

(a) Concepts: selects the chosen formal concept,
(b) Filter Concepts: selects the formal concepts belonging to the filter of

the chosen formal concept (the formal concepts that are higher than
the selected element in the lattice),

(c) Ideal Concepts: selects the formal concepts belonging to the ideal of
the chosen formal concept (the formal concepts that are lower than
the selected element in the lattice), and

(d) Neighbours:13 selects the neighbouring formal concepts to the chosen
formal concept.

While the elements selected in the first four selection modes are entities, i.e.
elements of the universe Ω, in the last four, the selected elements are formal
concepts, i.e. nodes of the lattice.

As their names indicate, the first two entity selection modes select objects
and attribute sets of a node. The meaning of the other selection modes might
be more difficult to grasp. The attribute contingent of a formal concept consists
of all the attributes shared by all the objects of the extent of the formal concept
but not shared by any smaller subset. The object contingent is the dual property
of the attribute contingent, in other words it contains all the objects shared by
all attributes of the formal concept but not shared by any subset of the intent.

The four formal concept selection nodes (i.e. the selection nodes in 2.), select
some subsets of the set of formal concepts and are based on structural aspects
of the lattice.

In this thesis, we focus on the use of the four entity selection modes, but
we mention the four formal concept selection modes because we refer to them
when dealing with future query-based multicontext browsing investigations in
Chapter 7 Section 7.2.1.

For example, if the user wants projects shared by the three research groups
Efficient Algorithm, Complexity Management and Business Information and Com-
munication Systems, he could select them by choosing the mode (usually the
default one) Objects and clicking on the node located at the crossing of the
descending paths from the nodes labelled Efficient Algorithm, Complexity Man-
agement and Business Information and Communication Systems (see Figure 4.12,
page 128).

Performing the same task using the tree view and graph view is much more
cumbersome.

13In our application we defined neighbours as the formal concepts which are the direct
neighbours in the lattice of this formal concepts.

4.2. VIEW INTERACTION 131

Tree-based Selection

The tree selection offers a precise and simple mean for selecting elements. This
selection paradigm also comes in two flavors depending on whether one or more
elements may be selected. In both cases, the user browses the elements of
the tree and may select one (or more in the multi-element mode) parent or
child appearing in the tree. This mean of selection may also be enhanced by
using sorting mechanisms for the display of the parents or of the children. For
example, the elements may be sorted alphabetically allowing a faster search for
the most relevant elements.

Graph-based Selection

The graph selection modes are mainly of two types. Both types correspond to
some notion of closeness. The first types may use neighbouring information on
the graph to highlight and select elements sharing properties. The second main
approach to selection in the graph is the use of the proximity of the elements
on the plane. Using the mouse to draw geometrical figures such as rectangles
and circles, the user may select all the elements located in the perimeter of the
figure. In some layout, the zones defined by these figures may contain elements
which should not have been picked and may have to be then removed from the
result of the selection. Observe that this second approach can be also easily
adapted to the tree and lattice view.

The Type Selection Mode

Whereas the lattice selection mode only considered elements of the lattice or
the context entities, the type selection mode lets the user restrict the type of
the selected elements to certain types. This mode can be useful in all the three
paradigm and is one of the benefits of using a typed infrastructure.

When browsing knowledge bases, the possible types of selections are:

• Concepts

• Instances

• Properties

• Property Instances

• or any combination of these basic types

The different mode settings can be set by the user before selecting elements.
For our example, a user interested in actual publications may select only in-
stances and set the filter accordingly. Figure 4.13 shows a small panel where
the user can set the modes he needs at the moment. The type selection mode
corresponds to the checked boxes, while the lattice selection mode is set using
the pull down menu in the middle. The button “Clear Selection” on the right
clears the selected elements from the current selection.

132 CHAPTER 4. KNOWLEDGE BASE EXPLORATION

Figure 4.13: The selection settings panel.

4.2.3 Paradigm Comparison

Now that we have introduced the three visualisation paradigms, we discuss their
respective differences, limitations and advantages. Table 4.3 summarises these
advantages and limitations which we discuss in the following paragraphs.

Intuitive Views

The notion of intuitivity is difficult to define. People often have to learn to use
tools. For example, the mouse is a tool most computer users use widely. But,
who ever taught new computer users notices quickly that some users require
some time to get acquainted to. This is also true when comparing visualisation
paradigms. We performed a preliminary14 evaluation which showed the need for
a basic training for the lattice approach, while the use of the graph approach
required to get acquainted with the possibilities of the paradigm. Without
preliminary training, the tree view tended to outperform the other paradigms.
We suppose that the reason for this is the omnipresence of the tree view as
interaction paradigm. Indeed, the tree view is well known due to its use in the
file managers of computers.

However, the final evaluation of the interaction presented in Chapter 6, Sec-
tion 6.2, showed that if users were required to undergo a brief training phase,
the lattice view could outperform the tree view on some tasks.

Screen Space

As observed in [Shneiderman and Plaisant, 2005], screen space is often a costly
resource, either because the computer screen is small in itself, or because some
other task must be performed in parallel with the use of the browsing paradigm.
In these cases, the tree paradigm is the most suitable since it requires lit-
tle space. In particular cases, such as the views presented in Figures 4.10,
4.11 and 4.12, the lattice view is as compact as the tree view. Some strate-
gies to minimize the size of the structure to be drawn has been presented in
[Aeschlimann and Schmid, 1992].

Structural Hints

In most applications, a tree view is well suited since it requires little space and
users are usually accustomed to it. However, the purpose of a visualisation
paradigm is often to help users notice some particular aspects of the data.
Some of the paradigms are more suitable for certain tasks than others. For
example, on the one hand, the lattice is more suitable for displaying shared
properties than the tree view or the graph view. This does of course not come
as a surprise, since the lattice structure reflects exactly this structural aspect.

14The evaluation was preliminary, because we noticed quickly that users using the lattice
and graph view required some basic training in order to perform as well as with the tree view.

4.3. VIEW DEFINITION 133

Table 4.3: Table summarising the advantages and disadvantages of the three
interaction paradigms for views.

Paradigm Tree Graph Lattice
User acquaintance high medium low
Intuitive yes yes no
Screen space restricted important important
Layout simple complex complex
Predictable yes not always not always
Multiple inheritance no yes yes
Multiple relations yes yes no
Outlier detection no yes yes
Shared elements no yes yes

On the other hand, the graph visualisation approach is more suitable to display
multiple relationships. The Conceptual Graphs of John Sowa (see [Sowa, 1984,
Sowa, 2000]) or UML diagrams (see [Knöpfel et al., 2006]) are good examples
of this.

Table 4.3 shows that the tree view has many advantages over the other
paradigms. But, it is not suitable to display some structural aspects of a view:
shared elements, multiple inheritance and multiple instantiation as well as out-
liers.

4.3 View Definition

We motivated in Section 4.1 the importance of the means of defining views for
our exploration approach. The purpose of this section is to investigate several
strategies for simplifying the definition of views. We first give an overview of
the possible strategies before developing each of them.

4.3.1 View Definition Strategies

The views which may be defined using the query-based multicontext theory may
vary from very simple ones (for example using a default relation constructor as
shown by Example 10 in Chapter 3, Section 3.5) to more complex ones involving
combinations of intersection, unions and role operators.

According to [Shneiderman and Plaisant, 2005],15 query definition methods
belong to one of the following approaches: command language, form fillin,16

menu selection, direct manipulation and natural language. The command lan-
guage approach consists in defining a textual language for defining queries.
In the form fillin approach, a user fills the parameters of a query template.
The direct manipulation approach is based on the idea of manipulating ob-
jects to perform diverse actions, for example drag and drop actions. Finally,
the natural language approach to query definition consists in letting user ex-
press their query in natural language. Tables 4.4, 4.5 and 4.6 (originating from
[Shneiderman and Plaisant, 2005]) summarise the advantages and drawbacks of
these methods. The above distinctions is especially important for our approach
since these methods can be used not only for query definition but also for view

15This taxonomy of query definition approach was first presented in [Shneiderman, 1997b].
16Note that the term used by Shneiderman is form fillin as opposed to form filling.

134 CHAPTER 4. KNOWLEDGE BASE EXPLORATION

Table 4.4: Table recalling the diverse query definition paradigms (part A, cited
from [Shneiderman and Plaisant, 2005]).

Method Advantages Disadvantages
Command language

• Flexible.

• Appeals to expert users.

• Supports the definition
of user-defined ”scripts”
or macros.

• Is suitable for interacting
with networked comput-
ers even with low band-
width.

• Retention of commands
is generally very poor.

• Learnability of com-
mands is very poor.

• Error rates are high.

• Error messages and as-
sistance are hard to pro-
vide because of the diver-
sity of possibilities plus
the complexity of map-
ping from tasks to inter-
face concepts and syn-
tax.

• Not suitable for non-
expert users.

definition. Each of these methods is suitable for a given situation. Therefore, we
implemented all but the natural language approach which could be integrated
with a query answering framework such as ORAKEL (see [Cimiano, 2004]).

In [Tane, 2005], [Tane, 2004] and [Tane et al., 2006], we used the form fillin
and menu selection to ease the knowledge exploration. These approaches are
described in Section 4.3.3 for the form fillin and in Chapter 5, Section 5.5.1. The
direct manipulation method has not been described yet and its way of working
is sketched in Section 4.3.3. The command language cannot really be seen as
a browsing approach, but remains a useful method of creating views and this
approach was used in the visualisation evaluation to create the necessary views.
We describe it in the next paragraph.

Command Language

The command language approach has been implemented on top of a SQL
database as a commandline tool for an early prototype of the query-based mul-
ticontext architecture. A user of the system could write in a file17 the three
queries of a context index and the corresponding context index was created.
This approach for view definition is more suitable for prototyping purposes,
batch applications. The logging of the context indices used in a navigation
session can also be used to keep track of the last view visualised.

We now show how the command language approach can be used to defined
complex views for applications.

Example 17 (Command Language Example) One of the early prototypes
of the query-based multicontext approach used files to create complex formal
context. In order to generate the formal context indicating the publications of
professors, the context index

17A text file has the advantage that the content can be easily edited, generated or even
exchanged.

4.3. VIEW DEFINITION 135

Table 4.5: Table recalling the diverse query definition paradigms (part B, cited
from [Shneiderman and Plaisant, 2005]).

Method Advantages Disadvantages
Form Fillin

• Simplifies data entry.

• Shortens learning in that
the fields are predefined
and need only be ’recog-
nised’.

• Guides the user via the pre-
defined rules.

• Consumes screen space.

• Usually sets the scene for
rigid formalisation of the
business processes.

Menu Selection

• Ideal for novice or intermit-
tent users.

• Can appeal to expert users
if display and selection
mechanisms are rapid and
if appropriate ”shortcuts”
are implemented.

• Affords exploration (users
can ”look around” in the
menus for the appropriate
command, unlike having to
remember the name of a
command and its spelling
when using command lan-
guage.)

• Structures decision mak-
ing.

• Allows easy support of er-
ror handling as the user’s
input does not have to be
parsed (as with command
language).

• Too many menus may lead
to information overload or
complexity of discouraging
proportions.

• May be slow for frequent
users.

• May not be suited for small
graphic displays.

R(<author>,role(<author>, {Publication}), inst({Professor}))

can be created using a file with one query per line as:

role(<author>, {Publication})
inst({Professor})
<author>

An application can generate the corresponding context as well as the realised
lattice.

The command language approach is particularly adapted for distributed
applications as well as for data mining purposes, where other tools can request
views from a server using the defined command language.

While the user may be able to simply define some views by selecting an action
from a menu, more expressive views require a more complex view definition

136 CHAPTER 4. KNOWLEDGE BASE EXPLORATION

Table 4.6: The table recalling the diverse query definition paradigms (part C,
cited from [Shneiderman and Plaisant, 2005])).

Method Advantages Disadvantages
Direct Manipulation

• Visually presents task
concepts.

• Easy to learn.

• Errors can be avoided
more easily.

• Encourages exploration.

• High subjective satisfac-
tion.

• May be more difficult to
program.

• Not suitable for small
graphic displays.

• Spatial and visual repre-
sentation is not always
preferable.

• Metaphors can be mis-
leading since the “the
essence of metaphor is
understanding and ex-
periencing one kind of
thing in terms of an-
other” (Lakoff and John-
son 1983: p. 5), which,
by definition, makes a
metaphor different from
what it represents or
points to.

• Compact notations may
better suit expert users.

Natural Language

• intuitive

• no formal language to
learn

• high expressivity

• no knowledge about
schema required

• low correctness

• ambiguity

• initial learning effort (ef-
fort at guessing the lim-
its of the system)

process. The goal of this section is to expose the important issues for the view
definition process. In the first part of this section, we present default views
which are views easily defined using some simple query as parameter. In the
second part of this section, we deal with more complex view definition strategies.
We also highlight some open issues which have not been implemented but would
greatly enhance the quality of the views created.

4.3.2 Default Views

Default views are very simple views which require very little or no parametri-
sation. Due to this minimal requirement, they are especially suitable for the
menu selection approach to view definition. In that case, the user can activate
the view by activating a button, a menu item or a link. If parametrisation is
required, it can be either hard coded (in the link or menu item’s action) or
directly inferred from the situation.

Default views usually take only one parameter or no parameters. This makes
them suitable for creating a browsing framework in a web browser. The idea

4.3. VIEW DEFINITION 137

of using default views was our starting point for our Formal Concept Analy-
sis browsing framework. It was first implemented in the Courseware Watch-
dog,18 which we briefly described in Section 4.1.2 (see also [Tane et al., 2004,
Tane et al., 2003, Schmitz et al., 2002]). Though the approach allowed to browse
the ontology to some extent, using exclusively the default views approach re-
strict the navigation process to very simple views. One of the reasons for this is
that some query operators or constructors require at least two parameters. This
is particularly true of the role query operator, though it is sometimes possible
to use information on the context to give default values to the query parameters

In our approach the main method to parametrised default views is the use
of a context menu on the elements of the visualisation. Depending on the kind
and number of elements selected, the actions proposed differ. As seen in Section
4.2.2, a number of entities may be selected in an entity or topological manner
in the tree and graph paradigms. In the lattice paradigm, the concept part
selection mechanism can be used to create selection based on criteria.

Most of the relevant default views in the context of a knowledge base explo-
ration framework are dependent on the type of element used to parametrise. We
first consider the case where the elements selected are elements of the knowledge
base, i.e. concepts, relations or instances. Then we discuss the use of context
operators.

Concept Views

From Chapter 3, Section 3.5, the constructors of Sections 3.5.2, 3.5.3 and 3.5.4
play an important role in browsing knowledge bases. The subsumption hierarchy
is usually a powerful means of grouping related elements. Most knowledge
representation frameworks contain at least one hierarchy primitive for classes
or concepts. Whereas in RDF(S) (see [Hayes (editor), 2004]) the subsumption
relations properties or classes can be given, more complex subsumption relations
can be specified in more expressive ontology languages. For example, the OWL
language allows to create concept definition using roles.

Relation Views

For a given set of relations, it is possible to display three different views: the
relation concept lattice, its inverse or the lattice of subrelation of this relation.
In other words, for a selection qr consisting of relations the three kinds of concept
lattices which can be built correspond to the following context indices:

• R(qr)

• R(q−1
r)

• S(qr,subrelation)

The first of the three relation default views builds the context index of the
default relation constructor (see Chapter 3, Section 3.5.1, page 94). The second
constructor applies the same relation constructor but the inverse operator .−1

is applied on the query qr. The third operator however builds the subsumption
hierarchy for the relations resulting from qr.

18See http://cwatchdog.sf.net.

http://cwatchdog.sf.net

138 CHAPTER 4. KNOWLEDGE BASE EXPLORATION

Instance Views

Though the other default views are often useful, default views are particularly
interesting when the selection is a set of instances. There are mainly two reasons
for this. The first reason for this is that one of the main purposes of visualisation
is to obtain some kind of model or categorisation of sets of instances. Most
importantly, two kinds of views are particularly relevant: concept categorisation
and role categorisation. The second reason is that once the user selected a
number of instances from the extent of a concept, he can use these two default
views to categorise the elements of this extent further.

Constructing Views Using Context Operators

Another possibility to easily construct views is to use context index operators
as defined in Chapter 3, Section 3.3.3. Since two of these operators: the dual
operator and the complement operators, require only one parameter, both can be
directly applied on the current context index. However, context index operators
can be used appropriately on two or more context indices.

For example, imagine two views defined using the following context indices
p1 and p2.

p1 :=

 role(< isWorkedOnBy >−1, {text-mining})
role(< isWorkedOnBy >, role(< isWorkedOnBy >−1, {text-mining}))

< isWorkedOnBy >



p2 :=

 role(< isWorkedOnBy >−1, {text-mining})
role(< carriedOutBy >, {Knowledge Management Group})

< worksAtProject >


If these two views are presented in a list (for example, a list showing the views

which have been previously defined), the user interface can offer the possibility
for the user to appose the two resulting contexts.19 This method is particularly
suitable to generate scales or the many-valued contexts presented in Chapter 2,
Section 2.3.3. The traditional technique of using nested line diagrams can then
be used for visualising of the resulting lattice.

4.3.3 View Parametrisation

Since default views lack expressive power due to their requirement for simplicity,
a methodology for defining more complex views is necessary. Our view definition
methodology is based on the use of the constructors which were introduced
and defined in Chapter 3, Section 3.5. In particular, we saw that the generic
definition of a context index can be seen as a constructor with three parameters:
the object query and attribute query and the relation query. This means that the
general view definition case can be seen as a special case of constructor definition.
The user of the framework can set the parameters of a given constructor and
trigger its evaluation. The result of this evaluation is a new view.

19The apposition operator can be used since the requirement that the object queries of these
context indices are equals, is satisfied.

4.3. VIEW DEFINITION 139

The process of view parametrisation can be implemented in two orthogonal
manners: view guided parametrisation or parameter oriented parametrisation.
Each of these parametrisation methods is useful in some situation. On the one
hand, view guided parametrisation corresponds to a process where the type
of view to be created guides the way the user can parametrise the view. We
present shortly an example where the user is guided in parametrising a join
constructor. On the other hand, parameter oriented parametrisation consists in
setting values to the parameters of a constructor independently of its nature.
This may be in some cases necessary because the guided process may restrict
the kind of query which can be used as parameter.

To give an example of the parametrisation process, the relation constructor
has three parameters. On the graphical interface, the user selects the relation
constructor. For each of the constructor parameters a corresponding button is
displayed on the user interface. The state of the buttons indicates the currently
selected parameter of this constructor (per default the first). The user may then
either select an action from the context menu of the selection, he may drag and
drop a selection to one of the parameters. This example illustrates that either
the menu selection or the direct manipulation approach may be used in the view
definition process.

Form Fillin

The purpose of form fillin is to help the user in setting up the parameters
of the context indices. It can be seen as a basic mean of parametrisation,
though it may be used in combination with default views approach by fixing a
number of parameters to be evaluated. The form fillin approach can also be used
together with other query definition approaches. In particular, our constructor
parametrisation can be seen as a process mixing direct manipulation and form
fillin.

The principle of form fillin is to present to the user a number of predefined
fields with clear meanings. Form fillin approaches are typical of library user
interfaces which allow users to set up the parameters of the search.

The small form presented in Figure 4.14 allows the user to define a lattice
of publications for a number of authors which interest him. The page is divided
into four parts. First a general explanation is given to the user of the diverse
possibilities.

The second part is an attribute section allowing him to either refine the type
Person (using the “refine Person” button) or write a number of author names
to be selected as attributes for the lattice. The names of the authors can also
be selected using the “browse Person” button.

The third part is the object section which allow the user to choose the
publication which interest him. As for the attribute type, the type of publication
can be refined. He can also specify words which can occur in the title of the
publications. He can also choose to set some topics or to browse the titles or
topics to set the query.

Finally the user can decide to edit the queries individually using specific
query pages. Using the entries given, corresponding queries can be defined, for
example a query qauthors as well as a query qtopics.

By pressing the “Create Lattice” button, the corresponding context is gen-
erated using the names of the authors to retrieve publications and organised

140 CHAPTER 4. KNOWLEDGE BASE EXPLORATION

Figure 4.14: An example of web formular to create a simple context of author
publications.

according to their authors. The publications retrieved can then be used to
restrict the set of publications to a number of desired topics.

The resulting context index is an application dependant constructor (see
Chapter 3, Section 3.5.7, page 101) for the principle behind this kind of con-
structors.

This application constructor is a mapping returning

R(qauthors,< publication >, role(< hasTopic >, qtopics))

if both queries qauthors and qtopics have been given and

R(qauthors,< publication >)

4.3. VIEW DEFINITION 141

if only the query qauthors and finally

R(< publication >, role(< hasTopic >, qtopics))

if only qtopics has been filled in the entries.
The example given shows that the form fillin approach is particularly inter-

esting in combination with an application dependent constructor. It is possible
to create customised forms which can be easily filled in order to display cus-
tomised views. These forms can also be intelligently designed by proposing
different completions and informations to help the user select the elements.

Direct Manipulation

Direct manipulation can be used in different ways to create queries and context
indices. The Drag-and-Drop action of the user is common to these different
methods. The semantics of a direct manipulation action depend on the elements
selected and the receiving area of the drop part of an action. A Drag-and-
Drop action is applied to selections. In our applications, most selections are
sets of elements. This enables the user to select more than one element in a
list of elements. For example, the researcher of our scenario may retrieve the
publications of a group of researchers and selects the ones which seem most
relevant for his research and drag and drop them on the target panel of the
interface.

In the parameter oriented parametrisation, the receiving part of the drag is
the parameter to be set, whereas in the view guided parametrisation, the user
drags the elements to a given constructor of the view he wishes to build.

Parameter Oriented Parametrisation

Parameter oriented parametrisation is the simplest mean of parametrisation.
After the user selected some elements, he can use this selection on one of the
parameters of a constructor. Depending on the type of the parameter, and on
whether this parameter has already been set, different result may occur. For
example, when dropping a set of relations on a relation parameter, the relations
can be added to the existing relations if it is not empty or a new relation query
can be created. If the parameter is not a relation query parameter, then the
interface suggest the domain or the range of the relation.

To illustrate this, we consider the CoRelation constructor presented in Chap-
ter 3, Section 3.5.6. It takes two parameters:

• a query returning the entities to start from (i.e. a query q1 ∈ L1), and

• a relation query.

The user selected a set of instances qI of the concept Person. For example,
the user selects {Julien Tane,Philipp Cimiano} and drags this selection on the
start entities parameter. The empty parameter is immediately set with qI . The
user then selects the concept Person and drags it to the relation query parameter.
There a popup window is opened suggesting a list of alternative relations which
have been obtained using the relations({Person}) query operator. This operator
returns the set of relations which have a concept or a subconcept of Person
in their signature. The user may then choose the relation isWorkedOnBy and

142 CHAPTER 4. KNOWLEDGE BASE EXPLORATION

set the parameter. Note that no check is performed, that this parameter is
not contradictory to the other parameter, only the parameter itself is taken in
consideration.

View Guided Parametrisation

View Guided parametrisation consists in offering guidance to the parametri-
sation of constructors. In Chapter 3, Section 3.5, we introduced a number
of constructors as well as a more generic definition of application dependent
constructors. We first explain the principle using an example with a join con-
structor.

Suppose a user is interested in visualising a view which needs to be defined
with the join constructor (see Chapter 3, Section 3.5.5). To simplify its con-
struction only two relation queries must be provided by the user, the underlying
queries are assigned default values which can later be refined by users.

The constructor definition from Chapter 3, Section 3.5, defines the join con-
structor with five parameters: two relation queries and three set queries. In our
implementation, only the two relation queries of these five queries are needed,
the other queries get default values, defined as follows:

• the object set query: the domain of the first relation

• the attribute set query: the range of the second relation

• the intersection of the range of the first relation with the domain of the
second relation

We now illustrate how the join constructor can be parametrised.

Figure 4.15: The wizard allowing the creation of the join.

Example 18 The user is interested in the research topics of the AIFB research
groups. There is no relation between the two concepts ResearchTopic and Re-
searchGroup. However, these two concepts can be linked together using the join
of two relations. To perform this, the user can select the two concepts and ask
for the join construction wizard. This new window proposes a number of alter-
native joins for the given input In the present case, there are four alternatives
which are presented to the user in the wizard shown in Figure 4.15. The distri-
bution of the research topics per research group according to the two relations:

4.3. VIEW DEFINITION 143

<isWorkedOnBy> - <affiliation> is shown in Figure 4.16. Note that by pressing
the next button the view oriented parametrisation continues, where the user can
refine the middle query of the join.

More details on these processes is given in Chapter 5, Section 5.5.2. We
present now another example of view guided parametrisation which is based on
an application dependent constructor for visualising publications.

Example 19 The researcher of our scenario may be interested in seeing the
publications organised per year. We define a new constructor which takes a
query returning the years as input, as well as a query returning persons and
returns a context classifying the publications of these authors according to the
years of publication:

Input:
qyears ∈ L1 a query returning a set of years (defined by the user)
qauthors ∈ L1 a query returning authors (given by the context of use)

For example the user could select the pertinent years from a list, while the
authors are selected by the topics they work on or the research group they are
affiliated to.

Using these queries as input, the following application dependent constructor
can be defined

(qyears,qauthors) 7→ R

 < publication >
role(< year >, qyear) ∩ role(< author >, qauthors)

qyears


The main difference between the default views presented in Section 4.3.2 and

this kind of view lies in the importance of the parametrisation. This parametri-
sation can be achieved in several manners.

4.3.4 View Adaptation

Frequently the view defined at first is not appropriate to be visualised directly
as a lattice due to the very large number of formal concepts. For example, a
lattice containing more than two or three hundred formal concepts is likely to
be unreadable. In such cases, it is desirable to allow the user to refine the view
definition so as to focus on a part of the data available in the view. There are
two strategies for achieving this purpose:

• changing the view in order to focus on specific parts of the view, or

• hiding (and even sometimes removing) unnecessary elements.

Modifying the View

A user may have different reasons to modify the definition of a view. For
example, a user looking at text-mining publications may want to focus more
particularly on a number of authors or add supplementary topics.

Changing the view can of course be done by going back and redefine the
view altogether. But once the view has been created, it is possible to guide the
user in modifying the view in order to reduce or adapt the view of interest. We
list here strategies which can be used for this purpose:

144 CHAPTER 4. KNOWLEDGE BASE EXPLORATION

F
igure

4.16:
T

he
join

relation
indirectly

indicating
the

research
topics

of
A

IF
B

research
groups

by
looking

at
w

hich
topic

its
m

em
bers

w
ork

on.

4.3. VIEW DEFINITION 145

• transposing the view (i.e. objects become attributes and attributes ob-
jects, and the relation is inversed)

• complementation: the relation is complemented

• changing the object and attribute set

– Removing elements
∗ choosing subconcepts (if the view was defined using concepts)
∗ restricting the parameters of the role queries
∗ removing instances
∗ adding an intersection argument (or create an intersection query

with supplementary argument)
∗ removing an argument of a disjunction or union query

– Adding elements
∗ choosing superconcepts (if the view was defined using concepts)
∗ extending the parameters of the role queries
∗ adding instances
∗ add disjunction operand (or create a disjunctive query using sup-

plementary operand)
∗ removing some intersection arguments from the query

• changing of the relation

– Removing elements
∗ increasing the minimum frequency threshold (per default 1)
∗ intersection with another relation

– Adding elements
∗ union with another relation
∗ decreasing the frequency threshold (1 is the minimum)

These strategies are relevant because they theoretically and practically im-
prove the usability of the view realisation and view visualisation processes.

We give here a simple example of some of these operations:

Example 20 Consider the view defined by the three following queries:

1. q1 := role(<publishes>−1,{Knowledge Management Group, Efficient Algo-
rithm Group})

2. q2 := inst({Person})

3. q3 := <author>

In the ontology used by the AIFB portal, the formal context of this view con-
tains 804 objects, 841 attributes and 848 formal concepts. This means that the
view cannot be visualised as a concept lattice. 20 To overcome the problem, the
user can either redefine the view or adapt the view. To redefine the view, the
user could replace the attribute query by a more specific query like
q′2 := role(<affiliation>, {Knowledge Management Group, Efficient Algorithm Group}).

He could also adapt the view in one of the following manners:
20The interface presents a message dialog informing the user to refine the context definition,

for example by choosing restricting one of the parameters.

146 CHAPTER 4. KNOWLEDGE BASE EXPLORATION

• choosing subconcepts: replace Person by Professor, Assistant in q2

• restricting the role query: choose only one of the research groups in q1

• removing21 instances: replace q2 by

q′′2 := inst({Person}) \ inst({PhDStudent})

The user decides to focus on the publications by only professors or assistants.
He chooses the first alternative. The resulting lattice is shown in Figure 4.17.
It is a much smaller than the preceding one and can be therefore more easily
visualised.22

Figure 4.17: The adapted view displaying the publications assigned to the Effi-
cient Algorithm Group or to the Knowledge Management Group and who were
written by a Professor or an Assistant.

Other view adaptations have also been envisioned which are closely related
to the interaction with the lattice. But their description and implementation is
postponed to future work.

Hiding Elements

The idea behind the views presented until now is that the context index of the
view describes the content of the view. If the actual view is actually difficult
to read, an interesting possibility consists in hiding irrelevant or less relevant
elements. By hiding elements, the readability of the view can be improved while
still avoiding its redefinition. Depending on the actual visualisation paradigm
different strategies can be used for this purpose.

In Chapter 5 Section 5.5.4, we present an algorithm to partition the set of
top elements of the lattice. This has the advantage that larger concept lattices

21This is an application of the \ operator on queries.
22Note that the two persons at the bottom at the lattice are not members of any of the two

research group. They also have not coauthored any publication with any of the members of
the two groups.

4.4. SUMMARY 147

can be displayed in a more meaningful way. It is possible to generate the context
index for the resulting classes of the partitions.

Other visualisation paradigm also enable the user to hide some elements.
The graph view paradigm (see Section 4.2.1), has a feature allowing users to
hide elements in order to improve the readability of the graph.

4.4 Summary

We discussed in this chapter different issues with respect to knowledge browsing
and presented the novel approach we designed to explore knowledge bases.

We first discussed the main issues regarding knowledge browsing paradigms
using views in Section 4.1. then we presented the corresponding browsing pro-
cess and illustrated it using a scenario.

In Section 4.2, we dealt with the different means of visualising a view. No-
tably, we considered three different display paradigms.

Finally, we investigated in Section 4.3 different aspects of the view definition
process. Notably, we identified different view definition methods and showed
the role played by the usual query definition strategies in this process.

148 CHAPTER 4. KNOWLEDGE BASE EXPLORATION

Chapter 5

Implementation

Chapter 3 and 4 dealt respectively with the underlying model and the user
interaction for the browsing framework we developed. In the present chapter, we
address the implementation issues of our framework. We first give an overview
of its architecture (see Section 5.1) and then we present in the next three sections
the main interacting components: the QBMC infrastructure (see Section 5.2),
the context infrastructure (see Section 5.3) and the implementation of a query-
based multicontext on top of the KAON API and KAON2 API (see Section
5.4). In the next section, we discuss technical details for the development of
the graphical user interface (see Section 5.5). Finally, in the last section of
this chapter (see Section 5.6), we discuss the choice of the underlying FCA
implementation.

5.1 Architecture Overview

We start the description of our implementation by giving a brief overview of the
architecture of our tool. Though the query-based multicontext infrastructure
has been designed as a generic framework adaptable for other kinds of appli-
cations, we present it here only for the purpose of exploring knowledge bases.
This section describes briefly the main modules of the query-based multicontext
browser and the interactions they have with each other.

The second part of this section illustrates the way the tool works by giving
a simple example of one iteration of the main cycle of the query-based multi-
context browser which we already exposed in Chapter 3, Section 3.1.

5.1.1 The Main Components

The query-based multicontext browser has been designed as a modular applica-
tion. The design of the query-based multicontext browser follows the principles
of the Model-View-Controller design pattern (see [Burbeck, 1992]). The mod-
els of the infrastructure are formal contexts, lattices and query results. The
views are the panels displaying these models and allowing interaction with the
infrastructure. Finally, the controllers are software components which man-
age and manipulate diverse resources such as query results and formal con-
texts. Controllers use context indices and queries not only to identify and

149

150 CHAPTER 5. IMPLEMENTATION

retrieve ressources but also as intensional representation to ease the manipu-
lation through the operations we defined in Chapter 3. As mandated by the
Model-View-Controller design pattern, the model and controller components
are mainly independent of the GUI of the application and could be used for
other purposes than knowledge exploration. We focus however in this chapter
on the infrastructure for exploration purposes; the interested reader can refer
to Chapter 7, Section 7.2.2 for further applications.

Figure 5.1 shows a functional view of the framework. It displays the main
relations between the three main modules of the application: the graphical user
interface, the QBMC infrastructure and the context infrastructure.

Overall the user interacts with the graphical user interface which transmits
user request using events with the QBMC infrastructure. The QBMC infras-
tructure manages the resources available in the context infrastructure, i.e. query
results, contexts and lattices. Finally, the context infrastructure contains the
structures manipulated by the controller. The rest of this section gives a general
overview of these components.

Figure 5.1: An overview of the architecture of the QBMC Browser.

The QBMC Controller

The QBMC controller module manages queries and context indices occurring
during the browsing process. This module is composed of three submodules:

• the query management submodule,

• the context indices management submodule, and

• the context construction engine.

These three submodules are described in Section 5.2. The first two modules
manage diverse intensional representations. The context indices management

5.1. ARCHITECTURE OVERVIEW 151

system stores the already evaluated context indices. These context indices are
composed of existing queries. These queries are managed by the query manage-
ment submodule.

The role of the context construction engine is to guide the construction of
the contexts either using available constructors or from context indices. It takes
care of the communication with the context infrastructure presented below to
build the contexts. It plays a role similar to a query planning module in a
database management system.

The Context Infrastructure

The role of the context infrastructure is to manage the construction and storage
of formal contexts. We address in Section 5.3 the structure of this module.
In particular we discuss the implementation aspects of creation, storage and
operators.

This module consists of four submodules:

• the query results submodule,

• the operators engine,

• the context storage, and

• the lattice module.

The first module stores the results of queries while the context storage mod-
ule stores the contexts. The operators engine takes care of the implementation
of some context operations, such as transposition, apposition or subposition so
that contexts can be stored as composite structures. Finally the lattice module
contains the current lattice of the application.

The Graphical Interface

In Chapter 4, we discussed the issues to be dealt with when developing a query-
based multicontext browser. We give in Section 5.5 more technical details on
the implementation of the graphical interface of our tool. Some of these aspects
have some impact on the usability of the interface but are not crucial for the
principle of the user interaction. In Section 5.6, we expose the reasons deter-
mining the choice of the Formal Concept Analysis infrastructure underlying our
implementation. Due to this design choice, we could not apply the query-based
multicontext approach to nested line diagrams (these diagrams were exposed
shortly in Chapter 2, Section 2.3.1).

The Knowledge Base Framework

The semantic query infrastructure presented in Chapter 3, Section 3.4.2 can
be implemented using different knowledge base frameworks. We describe in
Section 5.4 a methodology to implement a semantic query infrastructure using
an existing knowledge base framework and discuss the properties of two different
implementations.

152 CHAPTER 5. IMPLEMENTATION

The Underlying FCA Framework

Finally, there is still another important element which is implicit in Figure 5.1.
Since the QBMC browser uses usual Formal Concept Analysis structures such
as formal contexts and lattices, the description we give of our implementation
would be incomplete without a description of the underlying FCA framework.
We cover the different alternatives we had, and then expose the reason behind
the choice of a specific Formal Concept Analysis framework.

5.1.2 One Round Example

In order to give an intuition of how the query-based multicontext browser works,
we illustrate one round of the cycle we presented in Chapter 3, the instance of
query infrastructure used is based on the AIFB portal ontology.

We saw in Chapter 4, Section 4.1.3 that the subsumption hierarchy of the on-
tology is a good generic entry point for browsing the knowledge base. Therefore,
we assume that the current context index is S(≤C ({Root}),≤C).

The user selected a certain number of concepts which correspond to the
elements which interest him. The user is interested in the researchers who are
related to these topics through the projects they are working on. It is a typical
example of the join constructor (see Chapter 3, Section 3.5.5). The context
index corresponding to this task is the following:

p = J


inst({Topic})

< dealtWithIn >
inst({Project})
< hasMember >
inst({Person})


The first task of the user is to choose a constructor and parametrise it.

We presented in Chapter 4, Section 4.3.3 how to do this. The user selects
first the concepts: Person, Publication and Topic, then he chooses the relations
worksAtProject and hasTopic.

These three queries are stored by the query management module. The con-
structor is stored by the constructor management system. When the user presses
the button Construct on the context index construction panel, a construction
command is sent to the context construction module with p as parameter.

The context index p is then analysed. It can be evaluated by composing two
contexts composed with one another. These two context indices are:

p1 :=(inst({Topic}),inst({Project}),<dealtWithIn>)

p2 :=inst({Project}),inst({Person}), <hasMember>)

If the two composed contexts had already been calculated, it is more efficient
to compose them on the spot than performing the whole join again. This con-
struction is performed by checking for each object o of the context Kp2 whether
it is an attribute of Kp1 with non empty extent.1 For each element of the extent
of such an attribute o2 in Kp1 , its intent in the new binary relation contains the
intent of o2.

1This is even more efficient if the existing context is in its dual form, i.e the context binary
relation is represented as a set of object sets indexed by their attribute index.

5.2. QBMC INFRASTRUCTURE 153

Once the context has been evaluated, the event Current Context Changed
is sent from the current context model to the lattice model. This event triggers
the evaluation of the lattice on the new existing current context index.

Once the lattice model has been updated, it dispatches also an event Cur-
rent Lattice Modified. The lattice panel and other elements of the Graphical
User Interface are notified and update themselves, the line diagram of the con-
cept lattice is displayed. In order to appear under the form presented in Figure
5.2,2 the user must edit the diagram by moving the labels and nodes at more
readable places. The program helps the user in this process by preventing him
from breaking the lattice conventions, i.e the order of the concept lattice is
preserved.

5.2 QBMC Infrastructure

We already mentioned in the previous section that the QBMC infrastructure
module plays the role of the controller of a Model-View-Controller architec-
ture and that it was itself split into three submodules: the query management
module, the context index management module and the context construction
module.

Their role has also been briefly exposed. This section explains in detail
the way these constructors work as well as the dependencies between these
submodules.

5.2.1 Query Management Module

The management of queries is crucial in the context of the query-based multi-
context. Before we describe further the implementation, we comment briefly on
the requirements it should fulfill.

Requirements

This module plays an important role in the query-based multicontext architec-
ture. It serves as an interface to the evaluation of queries for the two other
submodules. We list here the properties the query management module should
have:

1. high performance: queries need to be evaluated quickly.

2. evaluation delegation strategies: if possible, the evaluation of queries
should be evaluated on the back-end.

3. capable of composing queries: it should be possible to use the results of
queries as input for others.

4. query equivalence test: the query infrastructure should be able to recog-
nize equivalent queries, in order to prevent a new evaluation.

5. efficient containment testing: containment testing should be as quick as
possible.

2The reader may be interested in comparing this lattice with the one found in Chapter 4,
Figure 4.16, page 144.

154 CHAPTER 5. IMPLEMENTATION

F
igure

5.2:
T

he
lattice

of
the

join
w

hich
show

s
w

hich
research

topics
are

dealt
by

som
e

A
IF

B
professors

through
one

of
the

projects
they

coordinate.
T

he
topics

at
the

top
are

not
coordinated

through
som

e
projects.

5.2. QBMC INFRASTRUCTURE 155

The performance of the evaluation should have the highest priority, in order
to ensure that the context are presented quickly to the user. The implemen-
tation must make a trade-off between performance and reliable testing of the
equivalence or containment relation between queries. Requirements (4) and (5)
should therefore be implemented in such a way that the test for (4) and (5)
never exceeds the time needed for the evaluation of the query itself.

The Query Evaluation Process

In [Vossen, 1994], Chapter 17, page 428, Gottfried Vossen describes the sequence
of the query evaluation process as well as the optimisation techniques which
occur at these different steps. In our implementation, we use the same kind of
order to evaluate queries. Table 5.1 gives an overview of the steps used during
the evaluation process:

Table 5.1: Typical steps for the evaluation of queries in a database system
(adapted from [Vossen, 1994], Chapter 17, page 428).

Structure used Activities at the given step
declarative query high level optimisation

↓ transform to a normalised form
logical algebra logical optimisation and high level query planning

↓ delegate to context infrastructure module
physical algebra physical optimisation and high level query planning

↓ delegate and compose evaluation
(query,query result) evaluation on the back-end or in main memory

The declarative query is the query as returned by the interface or from a
context index. Some high level optimisation techniques can be used at this step.
For example, empty strings, incorrectly typed queries or syntactically incorrect
queries return empty sets or empty relations.

The declarative form is transformed into a normal logical form. This trans-
formation is highly dependent on the language and the kinds of optimisation
which can be done on such queries. For the query language primitives which we
proposed in Sections 3.3 and 3.4.2, we mainly sort the element set definitions.
This prevents the costly checks which could occur when testing that large sets
are equal or contained in one another. Moreover, some interesting information
about the queries are gathered during this step, such that high level query plans
can be created.

Once the query plans have been created, a decision procedure picks the most
preferable one. The evaluation of the logical normalised representation is then
delegated to the context infrastructure module, which creates a query plan to
evaluate the query in the most efficient manner on the underlying instance of
the query infrastructure. Depending on the query and the instance of query
infrastructure concerned, this step may correspond to evaluating two steps such
as:

• translating the query infrastructure language into the one used by the
back-end of this instance of query infrastructure,

156 CHAPTER 5. IMPLEMENTATION

• use the results of already computed queries, and

• evaluate subqueries before using their results for the operators higher in
the query tree.

Query Languages

In order to implement this evaluation process, a formalisation of queries is nec-
essary. The queries presented in Sections 3.3 and 3.4 of Chapter 3 can be written
as trees in a term algebra. A query can be seen as a term in a Term Algebra
and can be stored as a tree having operators as internal nodes and identifiers
as leaves. In our approach, the identifiers correspond to the identifiers of the
typed QBMC presented in Chapter 3, Section 3.3.2. The different operators are
the operators found in the subsequent sections of Chapter 3, Section 3.3 and
Section 3.4.2.

In most cases, the query trees are just left as they are. The rewriting of
the queries for the actual data sources is executed in the context infrastructure
module.

Query Evaluation

In our architecture, the actual evaluation of queries is delegated to the Query
Evaluation and Storage module of the context infrastructure module. The im-
plementation of this module is described in Section 5.3.1.

The evaluation module maintains an up-to-date list of the query results
it stores. The equivalent list is kept in the query management module where
evaluated queries are stored with a pointer to their evaluations.3 The evaluation
of a query being dependent on the instance of the query infrastructrure in which
it has been evaluated, this pointer also includes information on the instance of
query infrastructure used.

In order to delegate complex queries and to be able to reuse the results,
the delegation of composed queries (i.e. the query consists of other queries,
for example the union of queries) is done by sending the composed query as a
block. The query plan establishes the order of the diverse evaluations of the
queries. This is particularly useful for the evaluation of context indices, where
some query results might occur more than once in the evaluation of an index.

5.2.2 Context Index Management Module

The context index management module has a role similar to the query man-
agement module. Instead of managing queries, it manages context indices. It
is also the interface needed to access contexts. The manipulation of context
indices corresponds to the manipulation of contexts.

Contrary to the query management module, however, this module does not
take care of the evaluation of context indices. This task is delegated to the
context construction engine. The evaluation of queries has been well studied in
the literature and the hope is to delegate most of the query evaluation to the
actual underlying instance of the query infrastructure.

3This means that this cached results should completely updated if the data changes.

5.2. QBMC INFRASTRUCTURE 157

Let us now describe how the context index management module works. For
this, we first discuss the structure used to code context indices. Then we deal
with the issue of its storage. Finally, we deal with the methods used for the
context index comparisons.

Context Index Definition

In our implementation, context indices are objects implementing the ContextIn-
dex interface (i.e. in the object oriented sense). The actual implementation of
a given ContextIndex may take diverse forms (i.e. diverse classes):

• the default context index implementation,

• one of the constructor context index implementations,

• one of the context index operator implementations.

Whereas the first of the three only implements the ContextIndex interface,
the implementation classes used for the other kinds depend on the constructor
and operators chosen. This offers the possibility to manipulate the context
indices using an API instead of string manipulations. In that way, it is also
possible to use keys to refer to given context indices. These keys can contain
specific information about the context indices. For instance, it is possible to
refer to another context index. A typical example would be operators such as
dual and complement operations which wrap the underlying context indices (in
the case of the dual: swapping objects and attributes while transposing the
relation can be done by wrapping the binary relation).

Context Index Storage

In order to use context indices efficiently, we define a storage mechanism which
allows to compare context indices quickly. For this, we use a sorted map struc-
ture called P where for any given context index, a context index key is created.
The keys are ordered along the following criteria in decreasing order:

1. type: either normal, operator, or constructor,

2. their parameters (the queries involved),

3. some supplementary properties.

Using these sorting parameters it is possible to check context indices which
are similar to the one looked for. This data structure is not only useful for
finding context indices in this module. This storage mechanism is designed
to allow the context index comparison algorithm and the context construction
module to test only a small number of context indices.

5.2.3 Context Construction Engine

The evaluation of a given context index is done in three phases: construction
plan generation, construction plan selection, construction plan execution. The
following paragraphs describe the role of these three phases in the evaluation of
a context index.

158 CHAPTER 5. IMPLEMENTATION

Construction Plan Generation

The first step in evaluating a context index is to compare the existing contexts
with the context index of the view we want to construct. This is done in order
to reuse existing contexts or parts of them.

Diverse cases can occur:

• The context index has never been evaluated.

• The context index has already been created and evaluated.

• Part of the context index has already been calculated.

The next step is using diverse strategies to generate construction plans.
Our current implementation considers only simple plans. But, the literature
of databases and information retrieval shows that a great number of optimi-
sation techniques could greatly improve the efficiency of the query answer-
ing by generating query plans optimised for certain kind of query infrastruc-
tures. Since the breadth of this topic goes beyond the scope of this the-
sis, we do not go into further detail, though we acknowledge some relevant
source of inspiration such as: [Abello et al., 2002, Garcia-Molina et al., 1999,
Baeza-Yates and Ribeiro Neto, 1999].

Construction Plan Selection

Once diverse evaluation strategies or plans have been suggested at the previous
phase, one strategy must be selected in order to evaluate the new context index.
The selection of the correct plan depends on the diverse resources available. For
example, if a larger context exists, then there is no need to reevaluate the context
from the back-end.

In the realised system, the selection of the construction relies on some heuris-
tics. For instance, the construction of the join is done by constructing the
two contexts and joining the relations. But other techniques are preferable.
Database literature presents a great number of evaluation techniques. Some of
these techniques necessitate to gather prior information about the data. Since
the ontology framework we used did not offer such means, the optimisation
methods were limited.

Construction Plan Execution

In order to execute the plan, a composite strategy4 is created, which evaluates
its parts and then construct the whole. For this, it necessitates some composite
data structures. These composite structures correspond to the context index
operators and constructors presented in the previous chapter. These structures
use references from the query and context index management modules in order
to point to the needed structures.

To conclude this section, note that the planning for the construction of
contexts using context index very efficiently has not yet fully investigated. In
our implementation, we considered only very simple approaches to ease the
evaluation.

4The word composite and strategy should be understood as references to the respective
design patterns (see [Gamma et al., 1995] for more information).

5.3. CONTEXT INFRASTRUCTURE 159

Table 5.2: The naive algorithm for the evaluation of a context index.
Input: an istance of a query infrastructure Q, a context index p := (q1, q2, q3) ∈

P
Output: the formal context for the context index p

Sq1 ← evaluate q1

Sq2 ← evaluate q2

Rq3 ← evaluate q3

compute Rp:= (Sq1 × Sq2) ∪Rq3

return (Sq1 , Sq2 , Rp)

5.3 Context Infrastructure

Formal contexts are one of the basic elements of any Formal Concept Analysis
based framework, their generation should be implemented as efficiently as pos-
sible. The use of queries to represent intensionally the formal contexts makes it
possible to optimise the creation process.

For every query infrastructure, it is possible to generate the formal context
of a given context index using the naive algorithm found in Algorithm 5.2.

In many cases, however, the efficiency of the construction of the context index
can be improved, namely by reusing existing contexts or by using optimisation
techniques.

Let us first describe the workflow for the evaluation of contexts. We saw
in Section 5.2.3 that the construction engine creates a plan for the evaluation
of a given context. This plan is then presented to the context infrastructure
for evaluation. As for the query evaluation process presented in 5.2.1, this is
the first step in the evaluation of the context. The plan organises the order of
evaluation of the diverse elements necessary for the construction of the whole
context. For example, the union of two contexts with context indices p1:=
(q1, q2, q3) and p2:= (q4, q5, q6) can have different plans:

Plan 1:

1. evaluate p1 (evaluate the first context index)

2. evaluate p2 (evaluate the second context index)

3. merge p1 and p2

Plan 2:

1. evaluate q1 ∪ q4 (evaluate the object queries)

2. evaluate q2 ∪ q5 (evaluate the attribute queries)

3. evaluate ((q1 × q2) ∩ q3) ∪ (q4 × q5) ∩ q6)

In general, it is not possible to tell which kind of evaluation is the best, but
note that in plan 1 the merging of the two contexts is done in the context
infrastructure module. The evaluation of the queries for the contexts κ(p1) and
κ(p2) can be delegated to the instance of the query infrastructure. If the number

160 CHAPTER 5. IMPLEMENTATION

of elements which are not in the intersection of the results of q1 and q4 is small
(i.e. only a few elements are not in eval1(q1∩q4)), then evaluating q1∪q4 on the
query infrastructure, instead of evaluating the two separately, greatly reduces
the amount of data to be transported.

In order to discuss the implementation of our architecture, we first give an
overview of the main data structures used in our implementation. We then
discuss important aspects of the evaluation and storage of query results. The
next step deals with the storage of contexts and present the data structures we
use to do that. In the following section, we comment on the lattice generation
step which has not really been investigated in this thesis, but we nonetheless
discuss the advantage and the use of context indices for the creation of lattices
and line diagrams. Finally, we discuss some supplementary aspects regarding
context containment.

Main Classes

Figure 5.3 shows the most important interfaces of the query-based multicontext
infrastructure. These classes are grouped into five main packages: contextindex,
queries, context, fcamodel and queryresult.

The contextindex module contains the classes and interfaces for representing
context indices. Since context indices represent intensional representation using
queries. There are mainly two kinds of context indices: constructor-based and
operator-based context indices. This reflects that operators combine context in-
dices which may already have been implemented, whereas constructors usually5

consist in an evaluation process of the queries which are used as parameters. All
context indices could be of course implemented using the fully specified relation
constructor (see Chapter 3, Section 3.5), since all context indices consists of
three queries: (q1, q2, q3). This module depends mainly on the queries package
which we now briefly describe.

The queries package is the package used to represent queries. Since there
are mainly two kinds of queries used in the query-based multicontext, the main
interfaces are the SetQuery and RelationQuery interfaces. These interfaces repre-
sent respectively queries representing sets and relation results. A suplementary
type of useful query which is needed to create selections and which is therefore
extremely useful for the creation of queries is the ElementSetQuery.

The context package contains the main formal context interface used by the
underlying FCA infrastructure as well as an interface for contexts generated
from context indices. The main interface ContextInterface implements the main
methods necessary for the creation of lattices from formal contexts. This mainly
consists in the objects, attributes and relation retrieval methods returning the
FCA elements required for these algorithms. The interface ContextIndexContext
extends the main interface by referencing the intensional representation of this
context: the context index. It allows an access to the underlying query results,
i.e the object set query results, the attribute set query result and the relation
query results. These accces methods allow the reuse of the results of the context
for operations that may be performed on parts of an existing instance of a
ContextIndexContext.

The fcamodel package contains some model element classes necessary for the

5The subsumption/instance constructor consists actually of a subposition of two contexts.

5.3. CONTEXT INFRASTRUCTURE 161

F
ig

ur
e

5.
3:

T
he

cl
as

s
di

ag
ra

m
fo

r
th

e
im

pl
em

en
ta

ti
on

of
th

e
co

nt
ex

t
in

fr
as

tr
uc

tu
re

.

162 CHAPTER 5. IMPLEMENTATION

implementation of the FCA algorithms. The three main classes of this package
are ContextEntity, ListSet and BinaryRelation. Instances of the first represent
the objects and attributes of the formal context. ListSet are lists which also
implement the interface java.util.Set. The indexation of the elements of the
list enables a faster access for the display of information on the elements of
the lattice. The instances of the last class, the BinaryRelation, represent binary
relation as used by the Formal Concept Analysis algorithms.

Finally the queryresult package contains the data structures for storing the
results of the queries. The main class QueryResult allows to retrieve generic
information such as the type of the result, the query used as well as the arity.
This interface is extented by the SetQueryResult and the RelationQueryResult.
The former returns sets or list as well as indicates the size of represented set.
The latter stores a binary relation. This binary relation can then be used by
the Formal Concept Analysis algorithms.

5.3.1 Query Evaluation and Query Results Storage

Since queries play a central role in our architecture, it is crucial to devise efficient
means of evaluation. Moreover, the evaluation of contexts is usually a complex
process where the results of the diverse queries interact greatly. One of the
main ideas behind the query-based multicontext infrastructure is to combine the
results of queries and operators. In order to achieve this goal, the underlying
context and query infrastructure should have data structures adapted to the
possible combinations. While context data structures are the topic of the next
section, we now discuss the query infrastructure details.

Queries and Query Operators

From the definition, a query infrastructure consists of two languages. Many
different implementations are possible for a given language pair, depending on
the kind of data source. For example, KAON has both an API for manipulating
entities and a query language. In addition to the normal API, the KAON2 in-
frastructure offers different ways of querying the knowledge stored: conjunctive
queries, DL-safe rules and SPARQL queries.

This heterogeneity of the datasources implies the necessity of mapping the
query-based multicontext query primitives on the primitives of the data source
language. We address here aspects corresponding to the generic implementa-
tions of the queries. In Section 5.4, we describe a methodology and an imple-
mentation for each of the semantic query infrastructures based on KAON and
KAON2.

The query-based multicontext queries store mainly two types of information:
the type and the arity of the result of the query.

Each of the types of the typed query infrastructures is associated with cer-
tain special query operators as defined in Chapter 3, Section 3.4.2. When the
query infrastructure is initialised, the implementing classes are registered by the
query evaluation manager with the supported types. The registered types are
accessible to the GUI and the QBMC architecture. During the query definition
process, only the queries with correct types are considered.

The arity of the result is important since it allows to differentiate between
set queries and relation queries. This information is in particular needed for the

5.3. CONTEXT INFRASTRUCTURE 163

creation of queries. The query creation methods require type and arity infor-
mation in order to help the user in creating meaningful queries. For example,
the creation of a query such as inst({Julien Tane}) should be prevented because
the query {Julien Tane} is not a concept query.

Storage of Query Results

The query results come in two types of implementations. These types correspond
to the type of query which has been evaluated.

The sets are stored using ListSets, which are implementations of Sets based
on lists. In our implementation, we sorted the sets in order to improve the effi-
ciency of accesses on these lists, since binary search can be performed efficiently
on sorted lists.

The results sets store a binary relation. The implementation of such a binary
relation is based on a list of bit sets. This is described in further detail in Section
5.6 which describes the underlying FCA infrastructure.

As we described the query management module, we saw that the query
evaluation module can cache a certain number of existing query results. Actually
in our implementation, we store only a reference to a small number of results,
but plans are to enable a better caching using these queries. The current purpose
is to minimise the storage so that if a query occurs more than once, its result is
not stored more than once.

Evaluation of Query Results

The evaluation of the query result is best done in the way presented in Section
5.2.1. The query is submitted to a series of transformations. These trans-
formations allow to compare it or its parts to the queries which have already
been evaluated and also regroups elements belonging together. Some actions or
heuristics can also be used to evaluate the query more efficiently. We give here
the list of transformations:

• {i1, ..., in} are sorted

• inst(q1)∪ inst(q2) −→ inst(q1 ∪ q2)

• role(< q3 >, q1) ∪ role(< q3 >, q2) −→ role(< q3 >, q1 ∪ q2)

• (inst(q1)\ inst(q2))\ inst(q4) −→ inst(q1)\ inst(q2 ∪ q4)

• q1 ∪ · · · ∪ qn −→
n⋃

i=1

qi

The possible optimisations of queries is extremely dependant on the capa-
bilities of the semantic query infrastructure. For example, if the union or in-
tersection operators cannot be performed on the data source, the generic query
infrastructure of the query-based multicontext performs these operations.

In order to ensure that the query-based multicontext is generic enough, all
the generic query operators presented in Section 3.3 have been implemented in
the query module.

164 CHAPTER 5. IMPLEMENTATION

5.3.2 Context Storage

Formal contexts in the query-based multicontext infrastructure are indexed us-
ing the context index which has been used for its generation. These formal
contexts must implement two different interfaces: the context interface of the
underlying infrastructure and the context index context interface which allows
the query-based multicontext to access the query results of the parts of the
generated formal context.

Context Interface

The current implementation of the formal contexts should be seen as an example
of facade (i.e a more complex data structure is hidden behind a simple generic
interface, see [Gamma et al., 1995]). Actually, the use of the facade enables the
use of the query results as a basic storage data structure, we can then use the
interfaces required by the underlying Formal Concept Analysis infrastructure,
since they are needed in order to perform the generation of the lattice. We
implemented this for two different6 underlying Formal Concept Analysis infras-
tructures, but we only describe the Concept Explorer implementation in Section
5.6, this is the only one for which the GUI can be used.

Context Index Context

The context index context interface is used in the query-based multicontext
infrastructure in order to manipulate and generate new formal contexts using the
results of existing formal contexts. In particular, it is used to implement different
operator-based constructions such as apposition, subposition, transposition or
complementation.

In such cases, the resulting formal context can be efficiently generated from
the existing contexts which were used as parameters to the operator-based con-
text. Complementation is implemented by using a simple gate inverting the
truth values of the relation. The apposition and subposition operators are im-
plemented using specific disjoint union query results for set and relation query
results. Finally, the transposition is performed on the binary relation returning
a new transposed binary relation.

5.3.3 Context Creation

One of the reasons to introduce context indices was to help the process of cre-
ating meaningful contexts. In this section, we address some issues about the
creation of contexts from a query-based multicontext infrastructure.

General Method

The method used to generate a formal context from a context index depends
on two aspects.

First, when some part of the context has already been computed (and is still
accessible), it should not be recomputed. This is particularly true of the formal
context being displayed to the user during the new context generation.

6We also did an implementation on top of the Toscana context infrastructure.

5.3. CONTEXT INFRASTRUCTURE 165

The second important information is whether it is possible to perform the
operations on the data source instead of the Query-Based Multicontext query
engine. In particular, it is also important to determine whether the context
index can be evaluated using datalog queries. This means that in the first
phase each of the queries necessary for the evaluation of the context index or
constructor is submitted to a test to check whether it can be implemented as a
datalog query.

This test takes into account the type of query. For example, for some engines,
it is not possible to use concepts or relations as constants of the datalog program.
A solution must therefore be found for these cases. In Section 5.4.1, we present
the technique which can be used in that case.

We use in this section the notations and the implementations of the generic
queries presented in Chapter 3, Section 3.3.1, that is, a predicate pred-qi is used
to evaluate a query qi.

If the context index or constructor cannot be evaluated using datalog queries,
then the evaluation is performed using queries from the QBMC query engine and
the results are merged in the context storage using the appropriate operators.

Context Operators

In this section, we describe the implementation of the diverse context operators
in the context of the query-based multicontext.

As we saw in Section 5.2.3, we presented a module creating a plan for the
evaluation of context indices. We saw that it gives a context evaluation plan to
the operator engine. Each step of the plan is performed.

For example, a plan for an apposition p1|p2 may be presented informally as:

• evaluate the object query for both contexts,

• evaluate each context individually but making sure the indices are the
same.

Such a plan requires data structures or control mechanisms ensuring that
the indices of the objects are the same, because the objects of the resulting
context is the same as the sets of objects of both contexts.

Table 5.3: Features of the context operators implementations.

Constructor Datalog Composite
dual × ×
complement × ×
union × ×
intersection × ×
apposition ×
subposition ×

Dual:
The dual operator is very simple, since it can be obtained by swapping the

variable from the interpretation of the program of any constructor.
dual(y,x)← pred-q1(x),pred-q2(y),pred-q3(x,y).

166 CHAPTER 5. IMPLEMENTATION

When the underlying context index has already been evaluated, the dual
context index can be simply evaluated by creating a new formal context, setting
the attributes of the old formal context as objects of the new, and the objects
of the old one as attributes of the new. Finally the binary relation is inverted.

Note that the binary relation can be inverted in two possible manners. First,
a new binary relation is created which is transposed. The second method is to
use a facade InverseBinaryRelation which implements the BinaryRelation
interface but accesses the data the opposite way. Depending on the BinaryRe-
lation implementation, this may be efficient or not. If the underlying relation
consists of lists of sets of attributes for all the objects, this is not likely to be ef-
ficient. However, if the underlying data structure is a graph, then the approach
may be interesting. Since our implementation uses ListsSets we used the first
of the two alternatives.

Complement:
The complement operator can be evaluated using the following rule:
complement(x,y)← pred-q1(x),pred-q2(y), complement-q3(x,y).

This rule uses the complement-q3 predicate presented in Chapter 3, Section
3.3.1. A rule that may be more efficient though we could not perform tests
flattens this query in the following way:

complement(x,y)←
pred-q1(x),dom-q3(x), range-q3(y), pred-q2(y), ∼pred-q3(x,y).

If the queries cannot be performed in datalog, or if the context index to be
complemented has already been computed, the two alternatives are possible just
as in the dual case. The first alternatives consists in complementing the binary
relation of the underlying context. The second alternative consists in setting a
facade on top of this relation which returns the opposite value of this binary
relation.

Both methods are possible though we have not tested which provides the
best results.

Union:
The union operator is trivial, since it can be implemented by simply evalu-

ating each of the queries in arguments of the resulting context index. This is
easily done using the following datalog rule.

union(x,y)← union-q1-q4(x),union-q3-q6(x,y),union-q2-q5(y).

If the context index or the constructor cannot be evaluated using datalog,
then the result is computed in the QBMC engine merging the results using an
union operator.

Intersection:
The intersection operator is as trivial as the union operator, since it can be

implemented by simply evaluating each of the queries in argument of the result-
ing context index. The intersection can then be evaluated using the following
datalog rule.

intersection(x,y)←
intersection-q1-q4(x),intersection-q2-q5(y),intersection-q3-q6(x,y).

If the context index or the constructor cannot be evaluated using datalog,
then the result is computed in the QBMC engine merging the results using the

5.3. CONTEXT INFRASTRUCTURE 167

intersection operator. The intersection operator checks stops its evaluation in
case it can be certain that the computed part is empty.

Constructors

Constructors are also evaluated using plans. There are usually two different
kinds of plans. The first kind is only accessible, if the query used to parametrise
the constructor can be evaluated using datalog, then the datalog plan is used.7

Otherwise, the other type of plan is used. In other word, the construction is
performed in the QBMC framework.

Table 5.4: Features of the constructors implementations.

Constructor Datalog Composite
Subsumption × ×
Instantiation × ×
Subsumption-Instantiation × ×
Join × ×
CoRelation × ×

Subsumption Constructor: S(q1, q3)
The predicate subelement must be the predicate obtained from the subsump-

tion hierarchy query.
subsumption(x,y)← pred-q1(x), pred-q1(y), subelement(x,y).

Note that if the logic language underlying the ontology does not contain any
complex names, it is possible to generate the hierarchy using the neighbouring
concept relation. This is in particular the case of RDF ontologies. The infor-
mation is typically available using the rdf:subConceptOf RDF property with a
statement like: x rdf:subConceptOf y. The subsumption can then be constructed
as:

subsumption(x,y)← pred-q1(x), pred-q1(y), subelement(x,y).
subelement(x,y)← subconceptOf(x,y).
subelement(x,y)← subconceptOf(x,z), subelement(z,y).

Instantiation Constructor: I(q1, q3)
The predicate instantiation-rel must return the instantiation relation be-

tween concepts and instances.
instantiation(x,y)← pred-q1(x),instantiation-rel(x,y).

With the instantiation constructor, the neighbouring relation can be used
in the same manner as for the subsumption constructor. Actually it uses the
subsumption constructor. In RDF, the instantiation is denoted using the rdf:type
RDF property with a statement like: x rdf:type y. The instantiation constructor
can then be constructed as:

instantiation(x,y)← pred-q1(x), rdftype(x,y).
instantiation(x,y)← pred-q1(x), rdftype(x,y), subsumption(x,y).

Subsumption-Instantiation Constructor: I(q1, q3)

7In our implementation, we actually use the datalog implementations of the data sources.

168 CHAPTER 5. IMPLEMENTATION

In Chapter 3, Section 3.5, we explained that subsumption-instantiation con-
structors can be constructed by the subposition of the results of a subsumption
constructor and an instantiation constructor. This implies that the two con-
struction given above may be used to compute the subsumption-instantiation
constructor.

Join Constructor: J(q1, q3, q2, q6, q4)
As we show in the following rule, the join constructor can be implemented

using the join query implementation for datalog which was presented in Chapter
3, Section 3.3.1.

join(x,y)← pred-q1(x),pred-q4(y),join-q3-q1-q6(x,y).

If the query used cannot be implemented in datalog, then the join constructor
can also be implemented by constructing two formal contexts from the context
indices:

• p1 := (q1, q2 ∩ q3(q1) ∩ q−1
6 (q4), q3) and

• p2 := (q2 ∩ q3(q1) ∩ q−1
6 (q4), q4, q6)

Note that the attribute query of p1 and the object query of p2 are equal.

CoRelation Constructor: CoR(q1,q3)
The CoRelation constructor is also easily implemented using the two follow-

ing datalog rules:
corelation(x,y)← pred-q1(x), pred-q3(x,y).
corelation(x,y)← pred-q1(z), pred-q3(z,y), pred-q3(x,y).

5.3.4 Lattice Generation

Until now, we have not used the context indices to improve the lattice gener-
ation. This is still on going work. We conjecture that using context indices
should help in improving the lattice generation task. The reason behind this
is that queries often correspond to blocks of data which are highly corelated.
Chapter 7, Section 7.2.1 discusses briefly this topic.

5.4 Semantic Query Infrastructure Implementa-
tion

In the previous section, we discussed the implementation of the QBMC using
some underlying Query Infrastructure. The present section focuses on the im-
plementation of semantic query infrastructures which were presented in Chapter
3, Section 3.4.2).

5.4.1 Methodology for Adapting Data Sources

The query and operator languages presented in Sections 3.3 and 3.4.2 allow
many possible underlying infrastructures. We first want to present the method-
ology used to create a query infrastructure suitable for a query-based multicon-
text.

5.4. SEMANTIC QUERY INFRASTRUCTURE IMPLEMENTATION 169

Main Steps

The method we use consists of the following steps:

• 1st Step: identify the possible types of elements of Ω (i.e the elements
which can be objects or attributes of a formal context),

• 2nd Step: identify the existing language operators of the underlying query
infrastructure,

• 3rd Step: define a wrapper for these operations or for specific combinations
of these operations,

• 4th Step: define or adapt existing query result data structures to the
specific data source results.

Step 1 is a crucial step because the kind of formal context which can be
created using a query-based multicontext depends much on which elements can
occur as entities of the context. Step 2 is a phase of analysis of the features of
the data source. Step 3 consists in the wrapping of the data source language as
a query infrastructure. For example, the union operation for concepts should be
wrapped so that the evaluation of a query qC ∪ qD ∈ LC , is mapped properly to
the corresponding union operation on the data source. The operations which do
not exist in the data source language but are needed in the query infrastructures
have to be implemented by the query evaluation module presented in Section
5.3.1. While Step 3 takes care of the more procedural aspects of implementing
the query infrastructure on top of the data source language, Step 4 deals with
the data structures needed for this. An important aspect of Step 4 is that it
is important to incorporate in the data structure a means of getting identifiers
and labels. Identifiers play an important role in our implementation. They
allow the checking of whether a given element is already in a set or not. It is
also crucial to implement a labelling mechanism since the labels are used in the
visualisation. It is therefore important to keep a mechanism to retrieve labels
for given elements.

Implementation Issue: Nominals

Nominal queries are frequently used in the query-based multicontext browser,
this requirement comes from the importance for users to select particular en-
tities. For example, from a list of research topics only two or three may be
relevant for the user. This means that queries based on this kind of queries
must be evaluated in the query infrastructure. While it is possible to evaluate
these queries by simply creating a number of queries and merging the result in
the query-based multicontext query result module (or performing an intersec-
tion of the results if the operator used is an intersection), it is more appropriate
to delegate the interpretation to the data source.

If the nominal query returns instances then the delegation to the data source
can often be performed by adding a new predicate and its instances to the data
source so that its evaluation returns the instances.8 The queries can then use
this predicate for calculation on the back-end.

8This may not be apriori possible in every knowledge base infrastructure.

170 CHAPTER 5. IMPLEMENTATION

Implementation Issue: Concept and Relation Queries

The second issue to take into account for the implementation of the query in-
frastructure is caused by the presence of queries returning sets of concepts or
relations. The problems occurring are similar to nominals, since they can be
solved using a brute force approach multiplying the queries to the knowledge
base by the number of concepts or relations that such a query returns. Depend-
ing on the available query primitives of the data source, certain optimisations
are possible. In particular, little optimisations are possible in the RDF(S) case
whereas the OWL ontology language provides useful operators. Furthermore,
data sources providing query languages returning concepts or relations greatly
simplify the implementation efforts.

In [Motik, 2006] and [Chen et al., 1993] metamodelling semantics are dis-
cussed in order to deal with statements dealing with groups of individuals.
Using these techniques as well as techniques from F-Logic to deal with concepts
would simplify the implementation.

Now that we discussed the general methodology as well as the main issues for
the implementation of the query infrastructure, we describe in the two following
sections the particular implementation of the semantic query infrastructure on
top of the two ontology framework KAON and KAON2.

5.4.2 Adapting KAON

Following the methodology mentioned above, we present the diverse steps fol-
lowed for the creation of the semantic query infrastructure on top of the KAON
ontology framework. We call this query infrastructure: KAON query infras-
tructure, or KAON infrastructure if it is clear from the context.

Elements

In the KAON framework, seven types of elements play an important role:
concepts, properties, property instances, instances, literals, lexical entries and
OImodels. It is possible to map the three types: C, R, Ri with the correspond-
ing entities of KAON model (see Section 3.4.2). Literals can be seen as values
of some attributes of an instance. In our approach and particularly in our im-
plementation, we did not make any distinction between instances and literals,
and literals are considered as instances and are therefore mapped to the seman-
tic query type: I. Lexical entries are kinds of instances which reference some
elements of the language in order to annotate these elements with language de-
pendent labels or documentation information. These were only used to provide
a label to instances. OImodels are the knowledge bases of the system. For
the time being, we did not consider OIModels as elements of the query-based
multicontext browser. However, models were used in the browsing mechanism
of the Courseware Watchdog that we briefly mentioned in Chapter 4, Section
4.1. This preliminary experience led us to conjecture that many applications
would benefit from their integration as a supplementary type in the query in-
frastructure. In Chapter 7, we comment briefly on this (see Chapter 7, Section
7.2.1).

5.4. SEMANTIC QUERY INFRASTRUCTURE IMPLEMENTATION 171

KAON API

The KAON Ontology framework consists of an API for accessing elements of the
framework as well as a query language to specify a query. Our implementation
of the KAON infrastructure uses both the API and KAON’s query possibilities.
Table 5.5 presents the functionalities of the KAON API.

While the KAON API does not provide any method for the usual set op-
erations such as union, intersection or difference, the KAON query language
provides them. But some operations could not be defined in the language.

For a more detailed description of the KAON framework, we refer to the
documentation of the query framework which can be found in [Motik, 2002].

Wrapping the KAON API and Query languages

The wrapping of the methods of the KAON API and of the operators of its
query language is a straight forward implementation. It uses loops over the sets
of elements or over the results of certain queries.

Note that we only make a limited use of the query language offered by
KAON, because not all the needed language primitives needed by the infras-
tructure could be defined using the KAON language.

Data Structures

We have performed little optimisation of the KAON semantic infrastructure.
The implementation used is mainly functional and does not use directly the
datalog engine of the KAON infrastructure. This means that all the evaluation
work of the generic query operators from Chapter 3 Section 3.3 is actually
performed by the QBMC engine and not by the KAON data source.

The implementation uses the KAON objects as underlying objects of the
KAON infrastructure. This allows to make direct calls on the methods of the
interface.

5.4.3 Adapting OWL Using KAON2

As for the implementation of the semantic query infrastructure for KAON, the
adaptation of KAON2 followed the step suggested in Section 5.4.1. The KAON2
ontology framework consists of an API for managing OWL knowledge bases.
This API provides a reasoner capable of reasoning in the SHIQ(D) description
logic. This means that nominals are not available when using the KAON2 API.
The KAON2 framework is based on a disjunctive datalog engine. This engine
provides efficient processing of a large number of A-box axioms.

Elements

To use the functionalities of KAON2, it is relevant to consider the potentially
relevant elements. The denomination follows closely the one used by the OWL
syntax (see [MacGuiness and van Harmelen (eds), 2004]).

In the KAON2 system (and OWL in general), the concept entities may take
two different forms: OWL classes or complex concept descriptions composed the

172 CHAPTER 5. IMPLEMENTATION

Concept methods
getPropertiesFromConcept Returns all properties starting from this concept
getAllPropertiesFromConcept Returns all properties (including inherited ones)

starting from this concept
getPropertiesToConcept Returns all properties pointing to this concept
getAllPropertiesToConcept Returns all properties (including inherited ones)

pointing to this concept
getSubConcepts Returns direct subconcepts of this concept
getAllSubConcepts Returns all subconcepts (inherited as well) of

this concept
getSuperConcepts Returns direct superconcepts of this concept
getAllSuperConcepts Returns all superconcepts (inherited as well) of

this concept
getInstances Returns the set of direct instances of this concept
getAllInstances Returns the set of all instances (even of subcon-

cepts) of a given concept in the pool
Instance methods
getPropertiesFromInstance Returns all property starting from this instance
getPropertiesToInstance Returns all properties pointing to this instance
getParentConcepts Returns the set of direct parents of this instance
getAllParentConcepts Returns the set of all parent concepts of a given

instance in the pool
getValuesFromInstance Returns all properties starting from this instance
getValuesToInstance Returns all properties pointing to this instance
Property methods
getSubproperties Returns the subproperties which are directly

subsumed by this property
getAllSubproperties Returns all the subproperties which are sub-

sumed by this property
getSuperproperties Returns the superproperties which subsume di-

rectly this property
getAllSuperproperties Returns all the superproperties which subsume

this property
getAllPropertyInstances Returns all the relation instances of this property
getDomainConcepts Returns the domain concepts of this property
getAllDomainConcepts Returns all the domain concepts of this property
getRangeConcepts Returns the range concepts of this property
getRangeConcepts Returns all the range concepts of this property
Property Instance methods
getProperty Returns the property from which this relation

instance is an instance of
getAllProperty Returns all the properties from which this rela-

tion is an instance of
getTargetValue Returns the value of this property
getSourceInstance Returns the instance which is the source of this

relation instance

Table 5.5: List of the methods of the main entities of KAON API

5.5. THE GRAPHICAL USER INTERFACE 173

diverse constructors presented in Chapter 2, Section 2.2.1. For example Person
is a named concept whereas

PhDStudent u ∃affiliated.{KnowledgeManagementGroup}

is a complex description. In the current version of the implementation, we did
not allow the user to manipulate complex concept descriptions. Two impor-
tant remarks should be done on their use. First, note that many of the query
operators we introduced allow to express these complex concepts. Second, com-
plex concept descriptions are particularly useful for representing a number of
queries and are therefore used when querying a KAON2 knowledge base. In
other words, mixing our complex descriptions and the one found in OWL would
have added much complexity. However, it is useful to map our complex queries
onto complex descriptions.

For the current implementation of the KAON2 query infrastructure, we used
the same strategy as in the KAON one, i.e. the instances in an OWL knowledge
base can be of two types: individuals and datatypes elements and we consider
both kinds as instances. Since the types of instances are considered together,
we also consider that object properties, and data properties are both properties.
Finally, object property members and data property members are also considered
together as relation instances.

The KAON2 API

The KAON2 API offers a number of possibilities to implement the semantic
query infrastructure presented in Chapter 3, Section 3.4.2. In particular, it offers
the possibility to use a rule mechanism to query the knowledge base. This means
that the most complex queries of our query infrastructure can be performed
using appropriate datalog programs. Moreover, another useful feature of the
KAON2 API is the capacity to add a number of statements which are considered
valid only when evaluating a particular query. This is then used for instance
nominals, for which a new predicate name is created which returns exactly these
instances and this new concept name is used in the final version of the query.

The construction uses the algorithm shown in Table 5.6:

Data Structure

A promising feature of the KAON2 query interface is the possibility to iterate
over the query. Though we have not yet finished the implementation of stream-
based query results, such an implementation is likely to reduce the amount of
processing to be performed.

5.5 The Graphical User Interface

In Chapter 4, we presented the principle behind the user interface. We now
discuss the issues concerning the implementation of the graphical user interface
of the query-based multicontext browser. We first describe the main panels with
which a user interacts to explore the knowledge base. Then we briefly describe
the mechanisms of parametrisation using direct manipulation through drag and
drop. Finally, we note the important aspects of visualisation using the concept
lattice for the visualisation of views.

174 CHAPTER 5. IMPLEMENTATION

Table 5.6: The algorithm used to compute queries with nominals.
Input: query q1

Output: the merged result set of the query
// initialise set of nominal predicates
N:=∅
// initialise mapping of nominal predicates extensions
M:= new Map
// Initialise result set or relation
R := ∅
// Collect nominals
if q1 contains nominal queries then

for all each occurrence of a nominal set {i1, . . . , in} do
create new nominal predicate pn

N := N ∪ {pn} create new nominal predicate
M := N ∪ (pn, {i1, . . . , in})

end for
end if
// Create templates for queries depending on nominals
if q1 contains a concept query qc or a relation query qr then

for all occurrence of nominal n in concept query qc do
create a query template temp(n, qc) replacing the occurrence of the con-
cept n

end for
// Create templates for queries depending on nominals
evaluate each concept parts or relation query parts independant of nominals
for all template queries do

for all bindings of depending queries do
create query q to evaluate
R ←− evaluate(q)

end for
end for

end if
return R

5.5.1 Main Components

The design of our framework required a minimal of four main components, two
auxilliary components and a number of wizards (specialised graphical elements
appearing in a supplementary window to inform the user or helping him to
perform specific complex actions).

The main components used in our implementations are

• the view panel,

• the context index panel,

• the constructor parametrisation panel, and

• the selection panel.

5.5. THE GRAPHICAL USER INTERFACE 175

The layout of these different components is shown in Figure 5.4, while Figure
5.5 gives a better idea of the general appearance of the GUI.

Figure 5.4: The layout of the main components of the query-based multicontext
browser.

We now describe briefly each component, starting with the visualisation
panel.

Visualisation Panel

The visualisation panel is the component used to display the current view.
In order to accommodate diverse visualisation paradigms, the view panel is a
tabbed panel, where each tab consists of the appropriate visualisation panel for
one of the three paradigms: graph, tree or lattice. A supplementary tab also
contains the detailed view of entities. It allows a user to see the properties of a
collection of elements. This is typically interesting to take a closer look at the
properties of the elements of the extent of a relevant formal concept.

The selection mechanisms described in Chapter 4, Section 4.2.2 have been
implemented for each of the visualisation paradigms. Using a context menu, the
selection can be added to the selection panel or used to add the selection to the
currently selected query of the constructor panel.

Context Index Panel

The purpose of context index panel is to present to the user the current context
index, that is the context index representing the content presented in the view

176 CHAPTER 5. IMPLEMENTATION

F
igure

5.5:
T

he
m

ain
panels

w
hile

exploring
the

different
projects

of
the

A
IF

B
research

groups.

5.5. THE GRAPHICAL USER INTERFACE 177

panel. Figure 5.6 shows the appearance of this context index for the context
index. A number of simple actions can be performed on the current context
index in order to define a new one. There are currently two types of actions:
the application of an operator such as transposition and the refining of the
current context index.

Figure 5.6: The context index panel for the context showing the research topics
for the projects of the Knowledge Management Chair.

Constructor Parametrisation Panel

The purpose of the constructor parametrisation panel or shorter constructor
panel, is to allow the user to define a new view by parametrising the current
constructor.

As shown in Figure 5.7, the constructor panel is composed of a button Con-
struct, a combo list and a number of buttons representing the parameters of the
current constructor. By pressing the button, a user may start the evaluation of
the resulting context index. Using the combo list (i.e. a widget used to display
a list as well as its unique currently element), a user may choose the type of
constructor he is currently interested in parametrising. Finally, the user may
press the parameters buttons to select one particular parameter as the current
one. The query used for this parameter is then displayed in the query panel.

Figure 5.7: The constructor parametrisation panel with the parameters for the
view displaying the distribution of the research topics of the projects carried
out by the Knowledge Management Group.

Selection Panel

Since selections are crucial in the query-based multicontext exploration frame-
work, the selection panel should be seen as one of the main interaction panels.
Once an element or a collection of elements have been selected from the view
panel, these elements appear in the selection panel.

To ease the interaction, the selection panel used in our implementation sep-
arates the selected elements per type. This separation has two main purposes.
The first one is to simplify the visualisation. User may more easily focus on
a given type of elements. The second purpose was to allow the use of type
oriented actions.

Figure 5.8 shows the selection panel with the three concepts: Person, Publi-
cation and ResearchTopic. The three concepts are on a dark background. The
darker elements are the ones on which actions are performed. Using the menu
Show Entities, the user can select these elements to be seen in the item proper-
ties panel. In the figure, it can be noted that the tab for Queries is not grayed
out, indicating that diverse preselected queries may also be selected. Using

178 CHAPTER 5. IMPLEMENTATION

these queries, the user may create more complex queries. For example, in order
to create the query returning the research topic of the persons working in the
PADLR project, the user first creates the query role(< memberOf >, {PADLR}),
then uses it together with the relation isWorkedOnBy to create the query:

role(< isWorkedOnBy >, role(< memberOf >, {PADLR}))

.

Figure 5.8: The constructor parametrisation panel with the parameters for the
view displaying the distribution of the research topics of the projects carried
out by the Knowledge Management Group.

Since entities are selected by types, it is possible to present to the user
actions which are appropriate for the user. For example, a user may retrieve
the subconcepts of the concept selected in the concept panel. A number of
default context index constructions (see Chapter 4, Section 4.3.2) can also be
proposed to the user if the type of the selected entities is known in advance.

The same principle applies to direct manipulation. Once a collection of
relation is dropped on a set query parameter, the type of its result is determined
in order to display the appropriate wizard. Using this wizard allows the user to
create more complex queries from the dropped query.

Supplementary Panels

Two further panels play an important role: the item property panel and the
query panel.

The first of the two is designed to give a detailed representation of a given
entity. We added a list containing a number of entities to be visualised so that
the user may study the properties of a list of elements one at a time. This
panel is shown in Figure 5.9. It displays the three projects of the Knowledge
Management Group which deal with text-mining. It was obtained from the extent
of the formal concept labeled with text-mining.

The query panel is a special panel displaying the properties of a given query.
This allow the user to perform a number of operations on the queries themselves.
For example, user can delete some parameters of queries. Direct manipulation
is also possible on the query panel. This panel is optional because most of its
functionalities can be provided by wizards.

5.5. THE GRAPHICAL USER INTERFACE 179

Figure 5.9: The projects of the Knowledge Management Group dealing with text-
mining displayed in the entity panel.

Moreover, different wizards are presented to the user at diverse stages of
the use of the framework. A wizard is a component designed to help the user
in completing a complex process by offering a number of clear, simple and
controlled steps to perform. Some of the means of parametrising the queries
and constructors rely heavily on appropriate wizards. Important wizards are
described in the next section dealing with the parametrisation issues.

5.5.2 Parametrisation using Direct Manipulation

Now that we presented the relevant panels, we can describe in more detail
the process of parametrising constructors. As explained in Chapter 4, Section
4.3.3, one of the main means of creating relevant views is the use of constructor
parametrisation. We also showed that there are two possible ways of parametris-
ing a constructor. Either the parametrisation is parameter oriented or it is
constructor-oriented.

For both types of parametrisation some selected elements are dropped on the
interface of the constructor parametrisation panel (see page 177). If the selection is
dropped over one of the query button, the parameter oriented approach is used,
whereas the constructor parametrisation is used if the selection is dropped on
the label of the constructor, in the Figure 5.7 the selection has to be dropped
over the name: RELATION.

Parameter-Oriented Parametrisation Wizards

As seen in Chapter 4 ,Section 4.3.3, this type of parametrisation only considers
the query on which the drag-and-drop operation is being performed. Depending
on a number of possibilities, different wizards are presented to the user. In our

180 CHAPTER 5. IMPLEMENTATION

implementation we used eight different parametrisation panels, depending on
three variables.

First, the arity of the parameter to be parametrised is taken into consid-
eration. A different kind of panel is presented to the user whether the query
represents a relation or a set.

Second, the type of the elements that are being dropped on the given pa-
rameter also influences the choice of the panel. These elements may be of one
the following predefined type: concept, instances, relation, relation instances.

In case the selected element is a query, the result type of this query is then
used. Finally, the last variable depends on whether this parameter has already
been parametrised, in other words, whether this parameter already contains a
query. In such a case, a choice between replacing this parameter, performing
an intersection of the present query with the one which will be created, or
performing the union of the results is given to the user.

We present in Table 5.7 a summary of the main possibilities for the creation
of queries using a drag-and-drop. The first column informs on the arity of
the query on which the drop action occurs. The second column tells the type
of elements which this query returns. The third columns specifies the type
of the elements which have been dropped. The fourth column specifies one
type of operation which can be performed on the input, for example the query
parentconcepts(qI) returns an instance query. The Operators which operators
can be used to combine the two queries of column 2 and 4. These operators are
typically ∪,∩, \. Finally, the last column indicates the result of the construction.

Note that the queries with role queries are somewhat more complex. They
require the selection of supplementary input. But this can be obtained from the
selection panel.

The panel shown in Figure 5.10 is presented to the user if he drops the
selection Person over the query parameter which was set to inst({Publication}).
The user can choose whether he wants to create an instance query or an element
set: {Person}. This new query can either replace or be combined with the
preceding query using the following operators. Under the information on the
current query, the user can choose one of the three alternatives: replace or
creating an union query, for example inst({Publication} ∪ inst({Person}.

Figure 5.10: A panel to refine a query by dropping Person over the query pa-
rameter inst({Publication}).

5.5. THE GRAPHICAL USER INTERFACE 181

T
ab

le
5.

7:
A

su
m

m
ar

y
of

th
e

m
ai

n
po

ss
ib

ili
ti

es
fo

r
th

e
cr

ea
ti

on
of

qu
er

ie
s

us
in

g
a

dr
ag

-a
nd

-d
ro

p.

ar
it
y

E
xi

st
in

g
Q

ue
ry

E
le

m
en

ts
ad

de
d

In
pu

t
tr

an
sf

or
m

O
pe

ra
to

rs
R

es
ul

t
1

C
on

ce
pt

:q
c

C
on

ce
pt

Se
t:

c 1
el

em
en

t
se

t
q c

1
∗

=
∪,
∩,
\

q c
∗

q c
1

1
C

on
ce

pt
:q

c
In

st
an

ce
Se

t:
i 1

p
ar

en
tc

on
ce

p
ts

(q
i 1

)
∗

=
∪,
∩,
\

q c
∗

p
ar

en
tc

on
ce

p
ts

(q
i 1

)
1

C
on

ce
pt

:q
c

R
el

at
io

n
Se

t:
r 1

d
om

ai
n
co

n
ce

p
ts

(q
r
1
)

∗
=
∪,
∩,
\

q c
∗

d
om

ai
n
co

n
ce

p
ts

(q
r
1
)

1
C

on
ce

pt
:q

c
R

el
at

io
n

Se
t:

r 1
ra

n
ge

co
n
ce

p
ts

(q
r
1
)

∗
=
∪,
∩,
\

q c
∗

ra
n
ge

co
n
ce

p
ts

(q
r
1
)

1
In

st
an

ce
:q

I
In

st
an

ce
Se

t:
i 1

el
em

en
t

se
t

(q
i 1

)
∗

=
∪,
∩,
\

q I
∗

q i
1

1
In

st
an

ce
:q

I
C

on
ce

pt
Se

t:
c 1

in
st

(q
c
1
)

∗
=
∪,
∩,
\

q I
∗

in
st

(q
c
1
)

1
In

st
an

ce
:q

I
R

el
at

io
n

Se
t:

r 1
ra

n
ge

(q
r
1
)

∗
=
∪,
∩,
\

q I
∗

ra
n
ge

(q
r
1
)

1
In

st
an

ce
:q

I
R

el
at

io
n

Se
t:

r 1
d
om

ai
n
(q

r
1
)

∗
=
∪,
∩,
\

q I
∗

d
om

ai
n
(q

r
1
)

1
In

st
an

ce
:q

I
R

el
at

io
n

Se
t:

r 1
ro

le
(q

r
1
,r
an

ge
(q

r
1
))

∗
=
∪,
∩,
\

q I
∗

ro
le

(q
r
1
,r

an
ge

(q
r
1
)

2
R

el
at

io
n:

q r
R

el
at

io
n

Se
t:

r 1
el

em
en

t
se

t
q r

1
∗

=
∪,
∩,
\

q r
∗

q r
1

2
R

el
at

io
n:

q r
C

on
ce

pt
Se

t:
c 1

re
la

te
d
(q

c
1
)

∗
=
∪,
∩,
\

q c
∗

re
la

te
d
(q

c
1
)

2
R

el
at

io
n:

q r
In

st
an

ce
Se

t:
i 1

re
la

te
d
(q

i 1
)

∗
=
∪,
∩,
\

q c
∗

re
la

te
d
(q

i 1
)

182 CHAPTER 5. IMPLEMENTATION

Constructor-Oriented Parametrisation Wizard

The constructor-oriented parametrisation mainly depends on the type of ele-
ments selected as well as the type of constructor to be parametrised. Since the
diverse subsumption and hierarchy constructors require little parametrisation,
no constructor wizard has been implemented.

For the relations constructors, this kind of parametrisation is extremely use-
ful because they usually require more information during the parametrisation
process. For example the join constructor necessitates at least two relation
queries to be parametrised. Moreover, though the relation constructor is capa-
ble of building the view with only a relation query, the concept lattice of such a
view maybe too large to be visualised, therefore a more refined parametrisation
is useful.

For the constructor oriented parametrisation, mainly two kinds of parametri-
sation are important.

The first kind consists in filling as many parameters as possible. A user
trying to parametrise the join constructor by dropping a selection containing
two relations may choose between eight alternatives as to which kind of join is
desired. The wizard displayed in Figure 5.11 is shown to the user to let him
select one of the possible joins.

Figure 5.11: The wizard obtained when dropping the relations and on the join
context construction panel.

Once he has chosen an alternative, he can keep refine the definition of this
join by using the next button. This corresponds to the other approach which
consists in a refinement process where each parameters is refined for constructing
a join approach. Given the selection used for the parametrisation, a number of
alternatives are proposed to the user. For example, if a set of instances is
dropped on a CoRelation constructor, the interface suggests setting these as the
start elements. In case of a positive answer, the interface suggests a number of
relevant relations for this set of instances from which he can select the one he
wishes to visualise.

5.5. THE GRAPHICAL USER INTERFACE 183

5.5.3 The Lattice Panel

Since visualisation and selection are two main task for the whole application,
the lattice panel plays a central role in the query-based multicontext browser.
This panel was implemented using the lattice panel of the Concept Explorer
which is described in Section 5.6.1. We added a number of features have been
added to the original panel (i.e. the one delivered with the Concept Explorer).

Context Menu Interaction

We added a context menu allowing the user to selection parts of the concept
lattice as well as to perform other actions on formal concepts such as saving the
elements in their extent or intent. The context menu allows users to select each
of the parts of the formal concepts (i.e. intent, extent, attribute contingent,
extent contingent) and apply different actions on them. Typical actions are cre-
ating queries using the elements, or adding the elements to the current selection
or visualising the elements in the entity panel. Finally, default constructors can
be employed on these elements to generate a new view. For example, if the
selected elements are concepts, the user can generate a subsumption/instance
hierarchy for this set of concepts.

Double Middle Click Selection

The second feature is a selection method based on a double middle click of the
mouse. This is used to select the part of the formal lattice on which the double
click has been performed. This method is one of the particular advantages of
using the line diagram of a concept lattice because it is a quick and intuitive way
of selecting a great amount of elements sharing common properties. This selec-
tion mechanism is coupled with the filtering mechanism presented in Chapter
4, Section 4.2.2.

Display Strategies

Among the important feature we added are new strategies or extensions of exist-
ing ones for displaying the concept lattice elements. One of the main adaptations
consists in hiding a number of irrelevant edges from the visualisation so that the
lattice diagram is easier to read. Another important adaptation is providing an
alternative algorithm for the layout lattice diagram. This alternative algorithm
allows to change from an object-based minimal intersection algorithm to one
based on attributes. This alternative implementation is a simple reimplemen-
tation of an existing display algorithm found in Concept Explorer.

Saving Models of Relations

We also implemented the possibility to save models of parts of the ontology by
using the selection possibilities of the query-based multicontext browser. The
user may select a formal concept with a label which interest him and save an
OWL mode. In Figure 5.12, the panel used to save parts of a formal concept of
a lattice with context index: (inst({Topic}),inst({Person}),< isWorkedOnBy >).
The user may select to save all objects (here topics) or all attributes (here

184 CHAPTER 5. IMPLEMENTATION

persons) or only the object contingent and attribute contingent of the formal
concept.

Figure 5.12: A panel to save parts of a formal concept of the lattice for the
context index (inst({Topic}),inst({Person}),< isWorkedOnBy >).

5.5.4 Lattice Partitioning

In this paragraph, we discuss an algorithm to partition the lattice top formal
concepts of the lattice. The fundamental idea is to partition the top elements
of the lattice in such a way, that the intersection of the extents of two formal
concepts belonging to two different partitions is equal to the extent of the bottom
element of the lattice.

The idea behind this algorithm is to be able to separate independent parts of
the lattice. This can be used in diverse manners. One of the main applications,
is that it allows the improvement of the lattice display.

Anticomplementation Relation

This can be formulated using the following definition:

Definition 41 (Lattice Separation Classes) Let L be a lattice (L, ∧,∨,⊥,>)
We define the anticomplementation relation as:

x ∼ y :⇐⇒ x ∧ y 6= ⊥

We define the antiseparation relation as the transitive closure of the anti-
complementation relation. It is an equivalence relation on L\{⊥,>} (it is clear
that the anticomplementation relation is reflexive and symmetric on L\{⊥,>}).

For x in L, we denote the equivalence class of x by [x]∼.

It should be noted that the idea comes from reading [Ganter and Kwuida, 2005]
on pseudo-com–plemented lattices. Unfortunately most of the lattices we en-
counter are not pseudo complemented. This means we cannot use the results
presented in the article.

5.5. THE GRAPHICAL USER INTERFACE 185

Figure 5.13: A lattice with a partition of the top elements in two classes:
{Att1,Att3} and {Att4,Att5,Att6}).

To illustrate this, consider the lattice presented in Figure 5.13. There are
two top elements partitions: {Att1,Att3} and {Att4,Att5,Att6}. Note also that
there is an attribute for the top concept and there is an object in the bottom
concept.

It is possible to use the partitioning to display the two parts of the lattice
separately as in Figure 5.14. This simplifies the visualisation of the larger lattices
which can be split into much smaller lattices. But it is important to note
that not every lattice can be partitioned in more easily displayed lattices. The
publication lattice for example cannot be split easily in useful lattices, because
there are only four classes in the partition. Three classes are extremly small
covering each one object, while the last one has more than thousand formal
concepts and covers 843 of the 846 objects. In comparison, the lattice of the
worksAtProject relation which contains 94 formal concepts, can be partitioned
in 12 classes. One of these classes is shown in Figure 5.15. It is much smaller,
and the other classes can be displayed in the same way.

Partitioning algorithm

We provide here a simple algorithm to perform this task in Algorithm 5.8.
As it can easily be seen the presented algorithm is greedy. The first part of
the algorithm are two simple checks. First of all, if the height of the lattice is
two or less, then the extents of the subelements of top are all disjoint pairwise
(the lattice is flat, so the top concepts are naturally partitionable). The second
criteria checks whether the sum of the size of the union of all the partitions is
larger than the size of the extent of the top elements (without the elements of
the contingent of top). The partitions are ordered by decreasing size, this means
that as soon as the sum of the size of the partitions equals the size of the extent

186 CHAPTER 5. IMPLEMENTATION

Figure 5.14: The concept lattices of the the two classes {Att1,Att3} and
{Att4,Att5,Att6} of the partition of the lattice of Figure 5.13.

of top minus the size of the contingent of top, the algorithm terminates.
Using this algorithm, it is possible to present the partitioned data to the

user, thus simplifying the structure of the display of large lattices. However,
this algorithm has not been used to for the visualisation evaluation in Chapter
6, Section 6.2.

5.6 Underlying FCA Framework

In order to build our browsing framework, we used an available open source
Formal Concept Analysis tool named Concept Explorer (sometimes also called
ConExp). We first examine the alternatives we had when choosing this tool as
a basis framework. Then we describe the main features already available in the
tool. Then we discuss how we use the code base of the Concept Explorer in
order to build our graphical interface.

Why reuse an Existing Framework?

We considered different kinds of underlying infrastructures for our tool. We
examined the advantages and disadvantages for these different infrastructures.
The results of our considerations can be summed up through the list of require-
ments that our tool infrastructure should have. Once we had created such a list,
we studied the positive and negative aspects of the three alternatives which we
discuss in the next paragraph.

5.6. UNDERLYING FCA FRAMEWORK 187

F
ig

ur
e

5.
15

:
T

he
co

nc
ep

t
la

tt
ic

e
of

a
cl

as
s

of
a

pa
rt

it
io

ni
ng

fr
om

th
e

co
nc

ep
t

la
tt

ic
e

of
<

w
or

ke
d
A
t
>

.

188 CHAPTER 5. IMPLEMENTATION

Table 5.8: Calculate the partition of the top elements of the lattice.
Input: formal concept lattice L
Output: a partition P of the top concepts

// Define functions:
function part(c) creates a partition object
function height(L):= length of the longest chain in L
function topsubconcepts(L):= return the top subconcepts of L
function extent(p):= Σc∈p|extent(c)|
// End of function definitions
P := ∅
for all c in topsubconcepts(L) do

P := P ∪ part({c})
end for
if height(L)= 2 then

return P
end if
sumpartition:= Σp∈P extent(p) - (|P | − 1) * |extent(bottom)|
if sumpartition = |extent(top)| - |contingent(top)| then

return P
end if
for all a pair (p1,p2) of partitions in P do

if |extent(p1) ∩ extent(p2)| > |extent(bottom)| then
p3 := merge(p1,p2)
P := P \ {p1, p2}
P := P ∪ p3

sumpartition = sumpartition + size(p3)- size(p2) -size(p1)
end if
if sumpartition = |extent(top)| - |contingent(top)| then

return P
end if

end for

We now list our requirements regarding the implementation of such an un-
derlying infrastructure:

• an open source framework

• a Java-based FCA framework and portability (most current RDF(S) and
OWL implementations provide a Java API),

• efficient context infrastructure,

• efficient lattice calculation,

• good and stable code base, and

• suitable for experimentation with labels and browsing.

5.6. UNDERLYING FCA FRAMEWORK 189

5.6.1 Alternatives

The list of requirement lead us to look at three solutions amongst the alterna-
tives we investigated:9

• building our own architecture,

• using the ToscanaJ architecture, or

• using the ConExp architecture.

Own Architecture

The implementation of the whole infrastructure from scratch has some inter-
esting aspects, it would have allowed a greater implementation freedom. But
reusing an existing infrastructure allowed to make sure the Formal Concept
Analysis framework was stable and the software engineering quality of the Con-
cet Explorer or ToscanaJ convinced us very early that reusing an existing frame-
work is a better alternative. Rebuilding the whole architecture would have
required much more skill and time than we could allow.

ToscanaJ

While we resolved our choice on the Concept Explorer, another framework had
many features which made it attractive as an underlying infrastructure for our
browser. This framework is actually a suite of tools called ToscanaJ.10 It con-
sists of three tools, namely, Toscana, Elba and Sienna. The tool suite was
a reimplementation in Java of an older framework called Toscana. Toscana
has been described in [Kollewe et al., 1994] and ToscanaJ was presented in
[Hereth-Correira and Kaiser, 2004]. It has many interesting features, such as
nested line diagrams (see Chapter 2, Section 2.3.3). The software engineering
quality of the ToscanaJ framework makes it also attractive as an underlying
Formal Concept Analysis framework. However, the ToscanaJ toolsuite was not
as developed as it is currently at the time of our choice and the workflow of
ToscanaJ using three different tools instead of one made it less suitable for our
purposes.

The Concept Explorer

The Concept Explorer11 is a tool developed by Serhiy Yevtushenko. It is a small
tool implementing many interesting functionalities of Formal Concept Analysis
frameworks such as:

• context editing,

• lattice drawing panel (using different layout algorithms),

9Early January 2005, a team from Montreal released another open source FCA alternative
framework: Galicia. Time and some design choices made it unsuitable to switch the already
implemented architecture to this platform. The tool can be found under sourceforge at:
http://galicia.sourceforge.net.

10The software can be downloaded at: http://www.sourceforge.net/project/toscanaj.
11The Concept Explorer can be downloaded from http://www.sourceforge.net/projects/

conexp.

http://galicia.sourceforge.net
http://www.sourceforge.net/project/toscanaj
http://www.sourceforge.net/projects/conexp
http://www.sourceforge.net/projects/conexp

190 CHAPTER 5. IMPLEMENTATION

• association rules framework, and

• attribute exploration.

The Concept Explorer offers a well designed architecture for experimenting
with Formal Concept Analysis algorithms with an efficient bitset implementa-
tion of binary relations. This was the main reason of our choice. The next
section gives more details about the tool.

5.6.2 Concept Explorer

We now describe in more details the main features of the Concept Explorer. We
address four topics which have consequences on our implementation.

Context

An important aspect of the Concept Explorer is the underlying context data
structure. which uses bitsets to code the lines of the contexts. Given an ordered
set A of elements, a bitset is a binary word which encodes the presence or absence
of an object at a given position in A. For example for the ordered set A := {Cat,
Dog, Fish}, 010 encodes the subset {Dog} of A. The use of bitsets allows for
an efficient implementation of set comparisons and has practical consequences
on the way the whole infrastructure is designed. The performance of context
algorithms is influenced by the form of the context since the use of bitsets implies
that object sets comparison can be performed more efficiently than attribute
sets. This means that it is sometimes better to use the transposed context and
then inverse the lattice.

Lattice Algorithms

For the generation of lattices, the Concept Explorer uses the commonly used
Next Closure algorithm (presented in [Ganter and Reuter, 1991]) which is per-
fectly adapted to bitset implementation of binary relations. A number of other
algorithms exist to compute the formal concepts (see for example, [Bordat, 1986,
Godin and Mili, 1993, Stumme et al., 2002]). Next closure is especially suitable
for the bit set implementation found in the Concept Explorer, but it might be
particularly interesting to experiment with other algorithms such as TITANIC
(see [Stumme et al., 2002]). This would require the introduction of some prim-
itive in the query languages used by the Query-Based Multicontext infrastruc-
ture.

Lattice Layout Algorithms Concept Explorer provides a number of lattice
layout algorithms: minimal intersection layout, Freese layout, chain decompo-
sition, force layout, layered layout. A description of some of these algorithms
can be found in [Cole, 2001b].

Decoration Settings Concept Explorer provides a number of line diagram
decoration options. For example, it is possible to change the size of the nodes or
the highlighting mechanism. All these techniques greatly enhance the browsing
experience and are implemented in most advanced Formal Concept Analysis

5.7. SUMMARY 191

tools. However Concept Explorer seemed at the time to offer the best possibil-
ities for experimentation of these settings.

5.7 Summary

In this chapter, we described the implementation of the query-based multicon-
text browser. We first presented an overview of the architecture.

We have shown in Section 5.3 the role played by queries, context indices
and constructors in the generation and composition of formal contexts. In par-
ticular, we saw how the QBMC context engine may use different strategies to
evaluate context indices, constructors and context index operators depending
on the particular elements of their definition. We described the method used to
implement our approach on an engine using datalog. Moreover, we presented
a solution in order to be able to use nominals and queries returning sets of
relations and concepts.

We also presented in Section 5.4 a methodology to adapt existing ontology
frameworks to our application. This methodology has been applied to two
different types of data source: KAON and KAON2.12

The basic GUI elements of our interface have been described in Section
5.5, where we also discussed the role played by Wizards in the context index
definition mechanism using direct manipulation.

Finally, we discussed in Section 5.6 the choice of the Formal Concept Analysis
infrastructure we used to implement our approach.

To conclude this description of our implementation, it is important to note
that the actual framework is still in a very primitive state. Much work should be
performed to have it fully functional for an enterprise. This is partly due to the
appearance of the user interface which is not very attractive. Though we tried
to create an intuitive interface, the learning curve is still a major drawback.
Though we try to guide the user with tool tips and or with a tutorial, the entry
level of the interface may remain too high for many users.

Many optimisations could still be performed. But the real bottleneck of
the application is the slow layout mechanism. Though the formal contexts are
usually created quite quickly, the layout of complex concept lattices remains
somewhat of a problem.

The next chapter discusses the evaluation of our approach.

12Since KAON is based on a RDF(S) ontology language, whereas KAON2 is based on a
language derived from description logics, their choice depends on the models of the data used
and whether some of the more complex primitives of OWL are needed for the exploration.

192 CHAPTER 5. IMPLEMENTATION

Chapter 6

Evaluation

The three preceeding chapters presented the theoretical background (Chapter
3), the user interaction (Chapter 4) and the implementation (Chapter 5) of the
query-based multicontext framework. We now turn to the evaluation of our
approach.

In this chapter, we first present a comparison of our approach with existing
ones in Section 6.1. In Section 6.2, we describe an evaluation we performed to
compare the performance of users on three different paradigms when visualising
generated views.

6.1 Comparison with other Approaches

In this section, we discuss the difference between our approach and other related
approaches. In particular, we focus on other knowledge or document browsing
approaches which are based on Formal Concept Analysis.

6.1.1 ClusterMap

A number of graphical approaches to visualisation have been proposed in the
literature. Many of these approaches are based on graphs since they are capable
of displaying many-to-many relations. In this section, we discuss a visualisation
technique for knowledge bases which has many similarities with the one we
propose.

Description of the Approach

Fluit et al (see [Fluit et al., 2003a, Fluit et al., 2003b]) introduced a novel graph-
based visualisation paradigm called Cluster Map and used it in an ontology-
based visualisation system named Spectacle. The purpose of this visualisa-
tion paradigm is to show the distribution of objects among a number of se-
lected classes from a hierarchy. It uses the spring-embedder algorithm from
[Eades, 1984]. An example of Cluster Map is found in Figure 6.1.1

This map shows available job vacancies classified by economic sector. It can
be read according to the following conventions:

1This example and others can be found in [Fluit et al., 2003a]. The corresponding software
can be downloaded from http://aduna-software.com/products/autofocus/download.html.

193

http://aduna-software.com/products/autofocus/download.html

194 CHAPTER 6. EVALUATION

• the labelled nodes represent the various economic sectors,

• the bubbles with the multiple spheres represent the job vacancies available,

• the numbers between braces in the labels indicate the number of total
vacancies available within the sector.

Using this visualisation paradigm, shared elements can be easily identified.
For example, it shows that the sectors IT and Technology share five vacancies
or that Finance & Administration and Creative Professions share one. Finally,
the interface of Spectacle offers a way of querying the ontology by selecting the
classes or terms to be displayed.

Figure 6.1: Job vacancies organised by economic sector.

Comparison

The ClusterMap approach has many similarities with our approach. The pur-
pose of this visualisation paradigm is to display the relation between two groups
of entities: objects and classes. It is similar to our notion of view, since the un-
derlying datamodel can also be seen as a formal context, where classes are
attributes. In other words, the formal contexts generated from context indices
could also be used as an underlying structure for a Cluster Map.

6.1. COMPARISON WITH OTHER APPROACHES 195

The difference between the Spectacle approach and the one we propose lies in
two aspects: the graph visualisation paradigm and the graph creation method-
ology. While our approach relies on the line diagrams of a concept lattice,
Spectacle uses graphs to display the intersections of diverse classes. Selecting
all the elements sharing diverse attributes is facilitated using the lattice view as
it can be done in one step while cluster maps would require to select one after
another all the possible intersections. A cluster map, however, may be more
intuitive to users at first.

We conclude this comparison by pointing on the necessity of further inves-
tigations. Both the query-based multicontext and the Spectacle approach rely
on some kind of user interaction to create relevant views to be displayed. The
techniques presented in this thesis could be useful to increase the expressivity
of Spectacle. In particular, the view model in Chapter 3 (in particular Sections
3.3.3, 3.4.2 and 3.5) is much more expressive than the one underlying Spectacle
which does not allow the use of complex concept constructions. Moreover, the
view definition methods presented in Chapter 4, Section 4.3.3 can be reused
for Spectacle. We believe that using some constructor parametrisation method
for creating ClusterMap would give the user more freedom of exploration and
better possibilities to the user to focus on particular groups than the current
Spectacle interface.

6.1.2 Toscana Framework

We now turn to one of the reference frameworks in Formal Concept Analysis,
Toscana and compare it with our approach.

Tool Description

The Toscana framework (and its latest implementation ToscanaJ) is based on
the idea of conceptual scaling as introduced in [Ganter and Wille, 1989] and
relies on a specific usage workflow to define appropriate scales.

The workflow is as follows. A knowledge engineer defines scales which can
be seen as logical views on the data. In order to enhance the visualisation of
these views, the line diagrams of these scales are edited.

Each of these scales takes the form of a lattice line diagram and addresses
a specific aspect. For example, to study the distribution of the price of 486/66
personal computers, one scale is a scale of the price of the computers. Another
scale can be the type of hard drive sold with the computer or the type of
case of this specific computer. Figure 6.2 shows the graphical user interface of
the ToscanaJ tool. In this particular case, the user can compare the relations
between two orthogonal views on the data using a nested-line diagram which
combines two scales. The first scale is an interordinal scale over the price of
486/66 personal computers, while the second one compares the type of cases for
the computers, e.g. whether the case is a tower or a desktop. This visualisation
allows to see that the price of most towers is mainly located between $2500 and
$4000, whereas the desktop cases are distributed over the whole price range.

Once the scales have been displayed, the extent of a node is computed by
means of queries over a database. Finally, a domain expert can combine dy-
namically the scales to discover relevant aspects or confirm hypotheses he has
about the data.

196 CHAPTER 6. EVALUATION

F
igure

6.2:
T

he
nested

diagram
of

the
lattice

for
com

paring
P

C
price

w
ith

type
of

case.

6.1. COMPARISON WITH OTHER APPROACHES 197

An important feature of the multiscale approach of the Toscana framework is
the zooming approach. The idea is that using the different views one gradually
restricts the object sets considered by each new scale. In the 486 PC example,
a user can restrict the object set to the one with case type Desktop and look
at their price distribution. Figure 6.3 shows the resulting view. In the lattice
in the left bottom corner, the Desktop node is selected, and in the view on the
right only Desktop computers are displayed.

Comparison

The scaling mechanism coupled with the zooming approach (with or without
the nested line diagrams) can help summarise certain configuration of the data
as was shown in a number of projects where Toscana has been used (see for
instance [Wille, 2005] for description of Toscana projects). For example, the
diagram in Figure 6.2 clearly shows the distribution of the diverse computer
case types among the diverse price ranges. Though our current implementation
of the query-based multicontext browser does not yet support nested line dia-
grams,2 our approach is compatible with the nested diagrams approach. The
main difference between the two approaches lies in the expressivity of the view
definition process. While it is possible to focus on specific groups of objects
using the zooming approach of the Toscana framework, our view mechanism
allows the creation of views which cannot be created using the Toscana frame-
work. Toscana views are based on a modelisation and categorisation of sets of
objects, for example, computers have been described according to their price,
their types or the processing speed of their CPU. In contrast, Query-Based Mul-
ticontext views allow to look at the groups of entities which are formed by the
relations they have with other entities. For example, using the Query-Based
Multicontext, it is possible to study the groups of persons who coauthored some
article.

6.1.3 Docco Framework

In this section, we compare our approach to the Docco3 application (for technical
details see [Becker and Cole, 2003]) which is a simple but useful personal search
tool.

Description of the Approach

Docco is a personal document management system capable of visualising the
results of keyword-like queries using concept lattices.

Users can submit queries like Java, “Formal Concept Analysis”, “Conceptual
Graphs” to the system and visualise how well the documents of the collection
match the requirements of the query. Figure 6.4 shows that 21 documents share
the strings “Formal Concept Analysis” and Java whereas only 4 contain all three
keywords. Note that “Conceptual Graphs” and “Formal Concept Analysis” are
taken as compound keywords and not as five different keywords. This is one of

2The underlying Formal Concept Analysis framework we used did not support nested
diagrams and we plan implementing.

3See http://tockit.sourceforge.ner/docco to download this application.

http://tockit.sourceforge.ner/docco

198 CHAPTER 6. EVALUATION

F
igure

6.3:
T

he
zoom

ed
diagram

lattice
of

desktop
com

puter.

6.1. COMPARISON WITH OTHER APPROACHES 199

the features of the indexing and query engine Lucene which is used as a back
end to Docco.

Figure 6.4: The lattice for the query: Java “Formal Concept Analysis” “Con-
ceptual Graphs” in Docco.

We now explain the principle behind this approach. Every query is then split
in literals, which can be seen as atomic propositions. For a given literal, the
underlying search engine Lucene returns the set of documents which match the
literal, i.e. a literal can be seen as a Boolean test on the document. For example,
the literal Java actually test whether the word Java occurs in a document. For
the purpose of our explanation, we call match the relation between literals and
documents indicating whether a document satisfies a literal. It can then be
used as incidence relation of a formal context. In other words, given the set L
of literals of the user query and a document collection D, Docco generates the
formal context (D,L,match) which can be displayed as a concept lattice.

Interestingly, the search engine Lucene4 provides other kinds of query prim-
itives. For instance, it is possible to specify that the keywords given should
occur in the title or some other field (for example documents keywords). Table
6.1 illustrates different query primitives used in Docco. Observe that the query
primitives used by the Lucene indexer are very similar to the CQL5 standard
used by the Library of Congress.

4More information on the Lucene search engine can be found at: http://lucene.apache.

org/java/docs/.
5See http://www.loc.gov/standards/sru/cql/.

http://lucene.apache.org/java/docs/
http://lucene.apache.org/java/docs/
http://www.loc.gov/standards/sru/cql/

200 CHAPTER 6. EVALUATION

Table 6.1: Illustration of different types of queries which can be formulated
when using the Docco framework.
Example Meaning
formal concept analysis finds the documents containing one of the three

words
“Semantic Web” AIFB finds the documents containing “Semantic Web” or

AIFB
ontology AND AIFB finds the documents containing both terms: ontol-

ogy and AIFB
title: “Semantic Web” looks for the document where Semantic or Web ap-

pears in the title

Comparison

Docco is an elegant and useful tool to search relevant documents using keywords.
Our approach is in fact inspired by the usage of queries in Docco. However,
the Docco approach remains limited to document search. It does not allow
the use of other kinds of objects or offering a treatment of other background
knowledge. Interestingly, it is easy to define a query infrastructure capable of
reimplementing the features of Docco. In that way, it can be said that the query-
based multicontext architecture is more expressive than the Docco framework.

The approach of Docco could be implemented on top of the query-based
multicontext infrastructure. To demonstrate this, the following default query
infrastructure could be used as a basis for a framework similar to the Docco
framework.

Definition 42 (Docco-like Query Infrastructure) Let Ωd be the set of doc-
uments accessible in the document collection. Let Lquery be the set of queries
in the syntax used by Docco. We call Ωl the set of literals of the Docco queries
Lquery. Let I be a set of Lucene indices with a map called docs from I to Ωd

which returns the documents of an index i ∈ I. We define Ω := Ωl ∪ Ωd, in
other words the element of the universe are either Docco query literals or doc-
uments. Then, we define the query language for documents: LI , it consists of
sets of indices, i.e. LI := {I|I ⊂ I}. Finally, the language L2 consists of pairs
consisting of a set of indices L2 := {(I, q) : q ∈ Lquery and I ⊂ I}.

Then the query infrastructure (Lquery ∪ LI , L2,Ω, eval1, eval2) corresponds
to the Docco infrastructure, where for I ∈ I, eval1(I) ⊂ Ωd, for q ∈ Lquery,
eval1(q) ⊂ Ωl and for (I, q) ∈ L2, eval2((I, q)) = {(d, l) : d ∈ docs(I) and d
satisfies l}

This approach can be extended to allow semantic indexing of corpora.

Example 21 For example, for a publication database, if publications are in-
dexed by year and by author, a query like ({2003, 2004, 2005}, title:” Watch-
dog” DLP ontology) would return the pairs of documents together with the literal
they match (i.e. one of title:” Watchdog”, DLP or ontology).

The context index ({Julien Tane, Rudi Studer }, title:” Watchdog” DLP
ontology, ({2003, 2004, 2005}, title:” Watchdog” DLP ontology)) would return
the context composed of the publications of Julien Tane or Rudi Studer as object

6.1. COMPARISON WITH OTHER APPROACHES 201

set, classified using the literals: title:” Watchdog”, DLP and ontology if their
publication year was one of 2003, 2004, 2005.

6.1.4 The Conceptual Email Manager

In this paragraph, we describe the Conceptual Email Manager and its follow-up
applications. Then we compare it to our approach.

Description of the Approach

The Conceptual Email Manager (exposed in [Cole and Stumme, 2000, Cole et al., 2003a]),
henceforth CEM, is somewhat similar to Docco in that the type of the objects
is fixed. Instead of focusing on documents, the CEM is a tool to organise and
interact with large mail collections. Figure 6.5 shows the appearance of a follow-
up implementation of the Conceptual Email Manager called Mail-Sleuth6 and
which is sold as a Microsoft Outlook plugin.

CEM extracts relevant terms (words or groups of words) from emails and
presents them to the user as descriptors of the emails. These descriptors are
then used as attributes of the scales. Some of these descriptors can be the
sender of the mail or some words occurring in the subject. The user can choose
to accept these descriptors or add some descriptors of his own. He can organise
the descriptors in scales. The CEM offers means of adapting the scales to the
users needs. For example, in Figure 6.5 the realised scale for the catchword
“Clients” is presented.

The CEM uses the same techniques as ToscanaJ for browsing: nested line
diagrams and zooming. However, it offers interesting approaches for the defini-
tion of the scales. Just like in most mail clients, the CEM lets the user organise
the mails into folders. But it introduces the concept of virtual folders (this ap-
proach is also present in many recent mail client interfaces, where you can save
searches or filters as folders).

Comparison

Like the two previous approaches, the CEM has a fixed type for the objects:
Mails. It uses interesting techniques to allow the users to adapt the hierarchies
of folders.

In [Cole et al., 2003a], the authors discuss the approach of the Conceptual
Email Manager as a knowledge discovery tool. They argue that it is possible to
see the interest of Richard Cole for the ECA project can be read from Figure
6.6. However, the nested diagram is quite complex. Using a join constructor,
it would be possible to see the correlation between persons and projects. To
illustrate this the realised context could then be shown as the lattice in Figure
6.7. It would summarise the project/sender relationship. Of course, this lattice
does not contain all the information contained in the nested diagram. For
example, many mails of these authors do not deal with any of the four projects
but it would make it clearer that Francois Modave did not send any mail on
any of the four problems. The join context would not inform on this status.

An interesting aspect of the CEM is that it allows the integration of the user
judgement for the classification of mails and for the construction of the scales.

6To download a free trial version of Mail-Sleuth, see http://www.mailsleuth.org.

http://www.mailsleuth.org

202 CHAPTER 6. EVALUATION

Figure 6.5: The Mail-Sleuth user interface (source [Cole et al., 2003a]).

Figure 6.6: The nested diagrams showing the project subject for the members
of the KVO Institute (source: [Cole et al., 2003a]).

6.2. VISUALISATION EVALUATION 203

Figure 6.7: The lattice showing the mail project topic relation of the KVO work
group.

In Section 7.2, we discuss future steps for the implementation of the approach
on top of the query-based multicontext.

6.2 Visualisation Evaluation

This section describes the evaluation we performed in order to compare the three
visualisation paradigms presented in Chapter 4, Section 4.2: the tree view, the
graph view and the lattice view displaying the line diagram. This evaluation was
presented in [Tane et al., 2006], and we describe it here in detail and summarise
the lessons learned from it.

Our comparison started with a preliminary evaluation to see how the differ-
ent testers reacted to the interface. While performing this preliminary evalua-
tion, we noticed quickly that users had difficulties answering the questions asked
using the lattice paradigm. We conjectured that these difficulties were due to
the lack of familiarity with this way of displaying information. To remedy to
this problem, we decided to give testers some training in the reading of the line
diagram. This training consisted of three questions with a growing complexity.
In addition, another training question allowed users to familiarise themselves
with the features of the graph view. We considered that testers were already
acquainted with the tree view since it is very frequently used in the design of
user interfaces (for example file browsers, etc.).

The evaluation consisted in answering three questions based on three differ-
ent views of an anonymised AIFB dataset.7 While the questions were identical

7The data has been anonymised in order to ensure that testers could not use their back-
ground knowledge to answer the questions.

204 CHAPTER 6. EVALUATION

for each user, the view paradigm presented to them in order to answer each
question differed. Moreover, every tester was asked to answer one question in
each of the different paradigms. To ensure that the data was distributed evenly,
questions and paradigms were combined equitably. Since most users were not
used to the view displaying a line diagram, a very short presentation on For-
mal Concept Analysis was given to them, thus making sure that each tester
understood the basic principle behind the visualisation.

Before describing the results of the evaluation, we introduce in the next
section the three view paradigms used to display a specific view.

6.2.1 Description of the View Paradigms

In Chapter 4, Section 4.2, we discussed the issues related to the visualisation
of information for the three chosen paradigms. While all the approaches can
be used to display other types of relations (for example hierarchical), the views
chosen for the evaluation were based on context indices representing binary re-
lations. The tree and graph view paradigms have been chosen as they represent
two usual ways of displaying information to the user. These paradigms are pos-
sible alternatives to visualise the content of a formal context. As discussed in
Chapter 4, Section 4.2, in some cases the tree and graph approaches have their
advantages. However, we were mainly interested in evaluating how well user
perform on some tasks using the lattice paradigm in comparison of the other
paradigms, especially since most users are not familiar with lattices.

Graph View

The Graph view used for the evaluation is adapted from a number of compo-
nents of the graph-based ontology browser of the KAON project.8 This browser
called OIModeller uses a spring-based graph layout algorithm which is a layout
technique simulating a set of objects linked by springs (see [Eades, 1984]). An
edge of the graph has an attraction value while each node have a repulsion level.
The layout algorithm tries to find a configuration for the nodes of the graph
such that an equibrium between repulsion and attraction can be found. This
means that the graph updates itself every time the configuration of the nodes
has been changed.

The graph panel has also some supplementary features to help the user in
visualising and interacting with its content. These supplementary features were
restricted to:

• hide nodes,

• pin down nodes,

• rotate,

• zoom, and

• fish eye view.

8See http://sf.net/projects/kaon.

http://sf.net/projects/kaon

6.2. VISUALISATION EVALUATION 205

In our evaluation, the graph view shows the relations between instances. For
the purpose of the evaluation, the components were adapted so that attributes
and objects of the realised context could be distinguished using their colour.
Figure 6.8 shows the graph for one of the realised contexts used in the prelim-
inary experiment. The graph view offered the possibility to hide nodes9 or to
pin them (i.e. preventing the layout algorithm to update the position of the
node).

For the purpose of the evaluation, three different means of selecting elements
for the result were implemented. First of all, double-clicking on a given node
added the corresponding element to the result set. Another way was to use one
the corresponding actions

• add a particular node to the result set, or

• adding all the currently selected elements in the graph

from a context menu. Finally, to create complex selection (i.e. with more than
one element) the user could either use a combination of the mouse and the
Control key or draw a rectangle over the elements to select.10

Figure 6.8: The Graph view

Tree View

The tree view is a representation paradigm most users are familiar with. In
the context of the evaluation process, we have only considered binary relations
between attributes and objects (hence the tree has only a height of two11).
Figure 6.9 shows the appearance of the tree view when used to display a relation
context index.

The tree view respected the traditional conventions used. Siblings in the tree
were sorted alphabetically and the usual multiple elements selection techniques
in tree view enabled the user to select elements for the answer set.

9Once a node was hidden, it could not be retrieved anymore.
10This is done in the traditional manner: selecting a point and dragging the mouse to some

other point. This creates a rectangle with the diagonal being the segment between the two
points and the sides are parallel to the edges of the screen.

11The root node does not carry any information and is therefore hidden.

206 CHAPTER 6. EVALUATION

Figure 6.9: The Tree View

Lattice View

The lattice view shows the line diagram of a certain context index. Different
types of interaction are possible. A user can select the elements of the extension
of a node using a double click with the middle button. He can also move
nodes and labels or display the objects and/or attributes in a specific panel (in
[Tane, 2005], we presented the diverse selection and interaction modes for the
lattice). Figure 6.10 shows the appearance of the lattice view.

Figure 6.10: The Lattice View

6.2.2 Question Types

Three types of questions were asked to the user as part of the evaluation. Each
of these types is explained in further detail in this section. To give a better idea
of the evaluation, we reproduce here the original wording of these questions
together with the corresponding context indices in exactly the same order as
they were presented to each tester. Note that the questions were on the screen
and phrases such as the panel above referred to the view visualised using one of
the three visualisation paradigms.

6.2. VISUALISATION EVALUATION 207

Conjunctive Queries

A conjunctive query is a query which has the goal of retrieving all the elements
which all satisfy a certain set of criteria.12 In the case of views, the goal is usually
to visualise the elements sharing some common properties. For example, given
a group of authors and their publications, the problem is to select a certain
subgroup of authors who published together. Another of typical query could be
to retrieve the projects share the research topics Formal Concept Analysis and
Text-Mining from a view displaying projects and their research topics. We made
the hypothesis for the evaluation that the lattice paradigm is the most suitable
to visualise this kind of questions.

In order to prove this we compared the time taken by the testers to answer
conjunctive queries. This was made under the assumption that if user could
answer the conjunctive queries using the lattice quickly they could certainly
visualise the conjunctive results.

Finally the question used in the evaluation was:

Question 1 Content: the research groups’ projects
The panel above displays the relation between the projects and research groups

of the Institute.
Task:
Please select the projects carried out by the two research groups ”Efficient

Algorithms” and ”Knowledge Management” at the same time.

Context Index: The corresponding context index of this view13 is:role(< isCarriedOutBy >, {Research Group})
inst({Research Group})

< isCarriedOutBy >


Finding Outliers

In many cases, it is relevant to visualise elements which do not share properties
with others. These elements can be seen as outliers. For example, looking at
the research topics of the publications of a conference, it may be relevant to the
user to note which topics seem to have not been treated by the authors of this
conference.

For the evaluation we used the following question:

Question 2 Content: Distribution of the publications of the text min-
ing researchers

This panels shows the persons working on the text mining field at the institute
as well as their publications.

Task:
Please select the publications of the author who did not share any publication

with any others of this group of authors.

12Since a conjunction of attributes corresponds to positive propositional query (i.e. without
negated literals), we can consider that the conjunctive queries involved are positive proposi-
tional queries

13This context index can easily be constructed by dropping the concept Research Group in
the relation parameter.

208 CHAPTER 6. EVALUATION

Context Index: The context used to generate the view14 of this question
is: role(< author >, role(< isWorkedOn >−1, {text-mining}))

role(< isWorkedOn >−1, {text mining})
< author >


The question contained a hint to ease the burden of the task in the tree

view. Indeed, the question mentions that there is only one author who did not
share any publication with any others. This would have forced the users to look
at all the publications in the view. As we show in Section 6.2.4, even with this
simplification, the tree view performed much worse than the other approaches.

Disjunctive Queries

Disjunctive queries are queries which have the goal of retrieving all the elements
which satisfy at least one of a given set of conjunctive queries. The need to re-
trieve objects responding to disjunctive sets of criteria is frequent. For example,
the authors of a given publication may have published other papers together
but not all in common. It is interesting to select publications shared by at least
two of these authors.

During the evaluation the following question has been asked to the test
participants.

Question 3 Content: SEKT project publications and members of the
Knowledge Management research group

The panel above displays the distribution of the publications of the SEKT
project among the members of the ”Knowledge Management” group.

Task:
Select all the publications where at least two of the following persons are

authors:

• Arthur Judson Brown

• Roger Wilson

• Arthur Lehning

Context Index: The context used to generate the view15 of this question
is:  role(< projectInfo >, {SEKT})

role(< memberOf >, {Knowledge Management Group})
< isAuthorOf >


6.2.3 Context of the Evaluation

We first describe the main hypothesis for the evaluation as well as the parameters
used in the evaluation.

14This context index is a simple example of the use of a Corelation constructor.
15This context index is more complex than the two others since each argument is chosen

independently of the others.

6.2. VISUALISATION EVALUATION 209

Hypothesis

The goal of our experiment is to compare the performance of the participants
of our test for different types of questions using the lattice compared to one of
the other paradigms. Due to the small amount of data, we used the T-test dis-
tribution (see [Rutsch, 1987]) to determine the significance of the difference in
testers’ performance. For each of these tests, we formulate the null-hypothesis
as:

The time needed by users to answer the given question does not differ in a
significant manner between the two paradigms (i.e. lattice and tree or lattice
and graphs).

Test Procedure

We now present the circumstances and procedure through which each tester
had to go. The evaluation occur ed over the course of a week. 18 academic test
users participated in the evaluation. Each of these test participants had to go
through the following process steps.

1. short presentation of the context of the evaluation

(a) short introduction of the three paradigms and their functionalities

(b) a crash course in the reading of concept lattices

2. 4 preliminary questions

(a) three lattice-based questions

(b) one graph-based question

3. three questions with different16 paradigms in the following order:

(a) a conjunctive query on a view with a small number of attributes

(b) an outlier query (small number of attributes but large number of
objects)

(c) a disjunctive query on a large view (many attributes and much larger
amount of objects)

For each question, the view was created while the test participant read the
question. As soon as he was ready to answer, the user had to press a button to
start. The test person could then interact with the view and try to answer the
question. Once he had selected all the elements he considered as the answer, he
could press the answer button.

16All tester answered three questions in three different paradigms. Three testers answered
first a question with a lattice first, then a graph, and finally a tree, while others had a tree
first, then a lattice and a graph. The six permutations occurred each three times.

210 CHAPTER 6. EVALUATION

6.2.4 Results

After the evaluation, we gathered the results of each test participant as well
as the time each of the participants took to achieve the tasks. Figure 6.11
shows the average time in seconds needed to answer the questions in the three
paradigms. Question 1 corresponds to the conjunctive query, Question 2 to the
outlier query and Question 3 to the disjunctive query.

Our goal was to show that the differences in performance times of the dif-
ferent users were not due to chance, in other words we wanted to invalidate the
Null-hypothesis. To do this, it is customary to compute the t-value of a given
pair of paradigms. The t-value depends on the means and variance of the values
of the list of results of the paradigms.

The following equation states the way our experiment was computed.

t =
xo − xl√

var(xo) + var(xl)/
√

5
(6.1)

where xo is the mean of the other paradigm and xl is the mean of the time
taken by users to perform the required tasks using the lattice paradigm. The
value 5 in the formula corresponds to the degrees of freedom of our experiment
minus 1. For our experiment, the degree of freedom was 6 since each question
with a given paradigm was asked six times to six different test persons.

Figure 6.11: Average Time in seconds needed to answer the three questions in
the three para–digms.

We also computed the precision and recall for each of the paradigms and
each query. However, with such a small dataset of tests, we think that it is
better to classify the few errors which occurred. These errors are of three types:

• task misunderstanding,

• search errors, and

• manipulation mistakes.

6.2. VISUALISATION EVALUATION 211

The only misunderstanding of the task occurred in the lattice view paradigm
while trying to answer the disjunctive query. The user misunderstood the task
and gave only a partial answer. However, when asked to reread the question
after the question had been answered, the test person could immediately give
the correct answer.

Search errors occurred a few times in the tree view. These errors can be
explained by the high number of comparison necessary when answering the
questions with this paradigm. For all the three questions, the extension for
a given attribute (i.e. the column of the context) contained between 4 to 60
elements. Though the elements were ordered alphabetically, a large number
of comparisons was necessary to answer the questions. All these comparisons
were cumbersome for the user. In two cases in question 1, the test participant
answered no to the question though the two research groups shared one common
project.

The manipulation mistakes occurred mainly on the graph view where ele-
ments not belonging to the correct answer were selected. The mistakes occurred
because the user needed to select a large amount of entities and the group selec-
tion mechanism from the graph view was used (see Section 6.2.1 for details on
the selection). A selection mistake occurred also in the lattice view, where the
user selected the attribute contingent of the node, while the correct answer was
the extent. However, the test person noticed his mistake and corrected it before
validating the answer. This shows that the distinction between the diverse parts
of a formal concept are not immediately understood by the users, thus resulting
in manipulation errors.

Interpretation of the Results

Diverse conclusions could be drawn from this evaluation. First, as shown in
Figure 6.11, the users performed in average better with the lattice paradigm
than with the other paradigms. The computed t-value results are shown in
Table 6.2. They show that the Null-hypothesis is rejected in all cases with a
chance of errors of maximal 10 %.

Moreover, this performance also proves that the training restricted to four
preliminary questions is enough for users to perform the tasks while without the
training users tended to be slower.

Table 6.2: Confidence and t-values level of lattice-tree and lattice-graph time
comparisons.

Question Tree Graph
Question 1 3.94 (α = 0.05) 3.69 (α = 0.05)
Question 2 1.99 (α = 0.10) 2.29 (α = 0.05)
Question 3 1.86 (α = 0.10) 2.27 (α = 0.05)

Another important result is that there were more errors using the two other
paradigms. This is mainly due to the cumbersome nature of the chosen tasks for
the tree and graph paradigms. In all views, the amount of interaction needed
to answer the questions with the lattice view was much smaller than with the
other paradigms. The evaluation confirms the intuition that users perform much

212 CHAPTER 6. EVALUATION

better with the lattice paradigm if the number of elements to select is large or
if the number of elements which need to examined in order to select an element
is large.

Note that for the diverse tasks to be performed, the performance of the
selection using the lattice could be greatly improved if an incremental high-
lighting mechanism had been available. Therefore, there seems to be still room
for improvement. But, other graph layout implementations may also increase
the performance of the user. Finally, it should be made clear that the question
asked are not representative of all the possible tasks occurring when visualis-
ing a view. However, for these kinds of tasks, the lattice approach seems more
advantageous.

6.3 Summary

To sum up the evaluations presented in this chapter, we first discussed the
similarities and differences between our approach for knowledge browsing and
others. In particular, we positioned our approach regarding the state-of-the-art
of Formal Concept Analysis knowledge explorations tools.

Finally, we also presented the results of an evaluation we performed in order
to see how well users coped with the concept lattice visualisation paradigm in
comparison with the tree and graph paradigms.

Chapter 7

Discussion

To conclude this thesis, we recall our contributions and outline open issues as
well as other potential applications of our approach.

7.1 Contributions

The work we presented in this thesis can be split up in three main contributions,
which we detail further in the course of this section. We first introduced a new
framework for contextualised semantic views. Then we used this framework as
underlying model for a novel approach to the exploration of knowledge bases.
Finally, we discussed the relevance of our approach in comparison with other
exploration methods.

A Contextualised Semantic View Framework

We introduced a theory for the definition and construction of contextualised
views to be generated from a query infrastructure. Central to this theory is
a new structure we called the Query-based Multicontext, which can be seen
as the formal space consisting of all the contextualised views which can be
generated from a data source. The purpose of this structure provides a generic
model for the definition, manipulation and generation of contextualised views
using appropriate intensional descriptions: context indices. To enable simple
operations on these descriptions, we first introduced a selection generic query
and context index operators which can be easily implemented for any query
infrastructure and query-based multicontext.

We also proposed an extension of this model allowing to generate views
from knowledge bases as used in the Semantic Web. To achieve this goal we
investigated the necessary query primitives required for the implementation of
a query-based multicontext over a knowledge base. We showed how these prim-
itives mostly correspond to primitives of the OWL-DL language. As a proof
of concept, we describe the infrastructure of such an ontology infrastructure on
top of two software components capable of providing knowledge bases: KAON
and KAON2.

Finally, we introduced a high-level template mechanism which is specially
adapted to simplify the view definition process presented in Chapter 4.

213

214 CHAPTER 7. DISCUSSION

A Semantic View Exploration Framework

Using our framework of contextualised semantic views, we have proposed a
novel approach for the exploration of knowledge bases. We have discussed the
advantages of our approach compared to an entity-centered approach using an
abstract model of information spaces. We investigated a number of important
issues which had to be addressed for the design of our approach. As mentioned
in Chapter 4, these issues correspond to specific phases of interaction with the
framework, namely the view visualisation, the elements selection and finally the
view definition.

Regarding the visualisation of views, we investigated the properties of three
visualisation paradigms based on different structural assumptions. We also stud-
ied the means of selecting elements using these three paradigms and described
how the line diagrams of concept lattices are particularly suitable for the selec-
tion of sets of entities for our approach.

Finally, we also investigated the crucial view definition process and proposed
different approaches to support it. In particular, we described a mechanism to
ease the definition of views based on the constructor mechanism we defined.

An Evaluation of Diverse Visualisation Paradigms

We evaluated our approach in two manners. First, we compared it with other
knowledge browsing approaches. Second, we performed a user evaluation com-
paring how well user perform on the different kinds of views on certain kind of
questions.

7.2 Future Work

Beyond the contributions of our thesis, we outline in this section some open
questions or relevant theoretical aspects which could not be addressed in this
work. We also discuss other application domains which could benefit from the
query-based multicontext approach.

7.2.1 Open Questions

The approach presented in this thesis is only a step in the development of the
query-based multicontext theory and its potential applications. In the following
paragraphs, we discuss different open issues and directions for the query-based
multicontext theory.

Investigations on Interaction

During the elaboration of our browsing framework, we noted that the interac-
tion with the lattice could be greatly improved. A number of aspects need to
be further investigated. In particular, the visualisation of large views remains
an unsolved problem. Our approach helps selecting the relevant information to
display with a lattice, but some views can still not be displayed in a completely
suitable manner. None of the visualisation paradigms proposed until now allows
users to cope with the size and/or the complexity of all the structures displayed.
Though the user can define more suitable views using the adaptation techniques

7.2. FUTURE WORK 215

described in Chapter 4, Section 4.3.4, the process remains complex. The query-
based multicontext approach provides a ground framework, but appropriate
interaction workflows should be designed carefully. The generic refinement ap-
proaches we proposed did not take into consideration the nature of the view nor
the type interaction.

Depending on the type of view, i.e. the constructor or operator used in
its definition and the visualisation paradigm chosen, a number of operations
depending on the situation could be proposed to the user. In particular, a
stronger use of the order relation underlying the lattice is likely to offer many
suitable means of refining views, but these means may not be suitable for all
users.

Since the content index specifies the type of elements of the objects or at-
tribute sets, this information may be used to offer type dependent means of
interaction with the view. In particular, it seems promising in the case of
the lattice paradigm,1 for which different highlighting and diagram decoration
strategies should be developed to reflect further intrinsic semantic properties of
the data.

We also mentioned in Chapter 4, Section 4.2.2 that other selection means
could also provide new ways of selecting elements in the lattice. We have not
investigated the possibilities of selecting sets of formal concepts instead of knowl-
edge base entities because of the difficulty of creating an intuitive interface using
these types of selections.

Nested Diagram Implementation

We also extended the query-based multicontext theory to many-valued multi-
contexts. However, we have not yet developed the corresponding extension for
our knowledge browsing approach. A number of design decisions have to be
taken in order to extend this theory. One of these decisions is related to the
choice of the appropriate scale to display to the user. Another question concerns
the appropriate data model for a nested diagram implementation.

Investigations on Informative Feedback

An important aspect to consider when developing an application is to provide
an informative feedback (see [Shneiderman and Plaisant, 2005]). In particular,
the graphical interface should provide useful hints helping the users in exploring
the knowledge base. In this thesis, we did not deal with this aspect. However,
we envision diverse supplementary additions to the framework.

We believe that using well known techniques from the field of Inductive Logic
Programming (hence ILP), would allow us to provide informative feedback to
a user. We recommend [Dzeroski and Lavrac, 2001] for a an overview of the
theory behind ILP as well as an idea of the state-of-the-art in this field.

To illustrate how methods from the field of ILP could be used by the query-
based multicontext browser, let us first recall that the goal of ILP is to find a
suitable logical description of a set of examples. Traditionally, this set of ex-
ample is separated into two disjoint sets E+ and E−, the sets of positive and
negative examples. In the context of the query-based multicontext browser,

1Similar techniques may also be used for other paradigms, but the hierarchical and clus-
tering nature of the lattice seems more appropriate to act on groups of elements.

216 CHAPTER 7. DISCUSSION

suppose a user selects a particular node in a lattice. The elements of the ex-
tension of the node could be used as positive examples, whereas the elements
in the extensions of concepts of the rest of the lattice could be taken as nega-
tive examples. An ILP program could then provide a logical description of the
positive examples. This logical description could be presented to the user as
supplementary feedback about the selected elements.

Extending the Semantic Query Infrastructure

The semantic query infrastructure introduced in Chapter 3, Section 3.4.2 was
limited to 4 types of objects: concepts, instances, relations and relation in-
stances. We mentioned in Chapter 5, Section 5.4.2 a possible extension of this
query infrastructure concerning contextualised information. Diverse approaches
may help in that aspect. First of all, OWL and RDF(S) documents on the web
are identified using URLs. These unique identifiers could serve to determine
the provenance of the information. The URLs could be used as contextualised
information by stating in which document a fact is stated. Moreover, the import
mechanisms creates an inclusion structures on the documents. The facts and
the import structure could be easily displayed using a subsumption/instance
constructor (see Chapter 3, Section 3.5). As a matter of fact, the Courseware
Watchdog (see [Tane et al., 2003, Tane et al., 2004]) implements a similar func-
tionality.

Another promising approach could rely on techniques similar to Named
Graphs (see [Carroll et al., 2005]), it would allow an even greater expressiv-
ity and flexibility for the query-based multicontext infrastructures. The main
idea behind Named Graphs is extremely similar in diverse manners to the ideas
behind the views of a query-based multicontext, i.e. Named Graphs offer the
possibility to name a subgraph of a given RDF graph. Using these names, it
is possible to define operations on these graphs. Moreover, a combination of
Named Graphs and the query-based multicontext framework is likely to provide
supplementary expressive power. We describe briefly a similar idea in the next
paragraph.

Query-Based Graphs

The discussion of Named-Graphs in the previous paragraph leads to another
interesting parallel with the present approach: replacing formal contexts by
graphs. Like formal contexts, graphs have been widely studied in the litera-
ture. We imagine that an approach to the query-based multicontext approach,
using graphs instead of lattices to display the information would also provide
interesting results.

Particularly for applications in the Web, an approach based on query-based
graphs seems promising. Imagine that the web pages are considered as the nodes
of the graph and that the links between them are considered as the edges of the
graphs and provided with a certain kind of annotation (the terms, concepts or
ontological annotation used in a certain window around the links). Using this
model, we conjecture that it would be possible to create a framework capable
of creating contextualised views of parts of the Web.

As discussed in Chapter 4, Section 4.2.1, the graph paradigm can be used
to display query-based multicontext views. Context indices are suitable for

7.2. FUTURE WORK 217

creating interesting graphs, but since edges can be labeled in a graph, the context
index model as presented in Chapter 3, 3.2.1 may not be appropriate without
any modification.

To adapt to graph-based views, the underlying model should also contain
names for edges. Binary formal contexts can be seen as a special case of a more
generic model where the pairs resulting from the relation query are named.
This model corresponds to the idea of many-valued multicontexts (see Chapter
2, Section 2.3.3). But the many-valued multicontexts are still not sufficient
to express arbitrary graphs since they require that the labels are functionally
dependent of the pair of entities selected. In addition to the adaptation of
the current indices, displaying information as a graph seems also to require
other kinds of constructor mechanisms as well as strategies for visualisation and
definition.

We envision further investigations in this direction, especially since we con-
jecture a few practical benefits for the Web context. Moreover, the literature
on graph theory is vast and many existing approaches seem relevant for these
investigations. In particular, we believe that many promising results could be
drawn from the study of graph grammars (see [Nagl, 1979]) and graph theory
in general.

Improve Formal Concept Analysis Algorithms

In our opinion, an interesting consequence of describing the content of a formal
context using queries is that it also provides structural information which could
be used to develop incremental algorithms for the context and lattice generation
phases as well as the layout phase. Such a generation algorithm would generate
a context or a lattice using known logical properties of the queries used.

7.2.2 Other Applications

As we developed the query-based multicontext theory, we also aimed at address-
ing two other kinds of application fields. Both of these application fields can be
seen as a part of a greater field, i.e. knowledge discovery, but we discuss them
separately because they require different approaches and techniques to address
their issues.

Query-Based Multicontext for Data Mining

In addition to the relevant research topics of optimising the query-based mul-
ticontext for navigating databases, our framework of semantic contextualised
views could be used in Data Mining applications. The goal of Data Mining is
to extract new relevant patterns out of large quantities of information usually
stored in databases. While knowledge bases usually offer a rich conceptual struc-
ture, Data Mining applications usually consider large amounts of data in a few
tables, that is, the conceptual schemas which are used are somewhat limited. It
is therefore an open issue to see how the query-based multicontext theory could
be used to address some of the issues occurring in Data Mining applications.

In recent years, the fields of Data Mining and Knowledge Discovery in
Databases (henceforth DM and KDD) have seen a great number of applica-
tions being developed (see [Maimon and Rokrach, 2005, Fayyad et al., 1996]).

218 CHAPTER 7. DISCUSSION

Techniques from the Formal Concept Analysis literature have proved useful
to solve some of the relevant problems (see for example [Stumme et al., 2002,
Valtchev et al., 2004, Stumme et al., 2004]). Since the query-based multicon-
text theory can be seen as an extension of traditional Formal Concept Analysis,
it seems promising to investigate how it could be used in these applications.

As one step in this direction, we propose the use of the query-based multicon-
text approach in conjunction with iceberg lattices algorithms. These algorithms
such as TITANIC presented in [Stumme et al., 2002, Stumme, 2004], compute
lattices representing the most frequent formal concepts of a given formal con-
text. The combination of the two approaches would provide a new framework
for the visualisation of data by using an appropriate query infrastructure to
focus on some part of the data. Instead of displaying the traditional concept
lattice, a user of such a framework could obtain an overview by specifying an ap-
propriate frequency threshold. Moreover, following an idea of Hannu Toivonen
(see [Toivonen, 1996]), it might be possible to replace the frequency counting
by some other criteria in the algorithms.

Another potential area of research for the query-based multicontext theory
is the development of application dependent query operators and constructors.
The use of appropriate feature extraction mechanisms as query operators is in
particular extremely relevant from that perspective. We believe that query-
based multicontexts related techniques could be used to mine association rules
on top of databases. [Tsur et al., 1998] described a technique called query flocks
which also seems to be a promising technique to be combined with the query-
based multicontext approach.

Query-Based Multicontext for Text Mining

In Chapter 6, Section 6.1.3 we presented the tool Docco. In our discussion,
we also showed that the Docco approach could be integrated in the query-
based multicontext approach. We believe that this integration would open new
possibilities for text-mining. However, such an approach would require the
definition of more expressive query infrastructures. In particular, we believe that
a combination of semantic markup in documents with traditional Information
Extraction would be required (see [Pazienza, 1999] for an overview of relevant
information extraction techniques).

Different approaches have been proposed for the automatic extraction of se-
mantic markup or the population of knowledge bases from text (see for example
[Cimiano, 2006, Ciravegna et al., 2004]). We believe that the use of a query-
based multicontext oriented approach could help in ensuring the correctness of
the extracted data as well as provide useful insights in the actual content of
document collections.

7.3 Final Words

The work presented all along this thesis opens new perspectives for the combina-
tion of Formal Concept Analysis-based applications with ontologies or databases.
Future extensions to more document and data mining oriented approaches also
seem promising and we hope that this work serves as a starting point for further
research.

Bibliography

[Abello et al., 2002] Abello, J., Pardalos, P. M., and Resende, M. G., editors
(2002). Handbook of Massive Data Sets. Kluwer Academic Publishers.

[Abiteboul et al., 1995] Abiteboul, S., Hull, R., and Vianu, V. (1995). Founda-
tions of Databases. Addison Wesley, Reading, Mass. U.S.A.

[Aeschlimann and Schmid, 1992] Aeschlimann, A. and Schmid, J. (1992).
Drawing orders using less ink. ORDER, 9:5–13.

[Ahlberg et al., 1992] Ahlberg, C., Williamson, C., and Shneiderman, B.
(1992). Dynamic queries for information exploration: An implementation and
evaluation. In Bauersfeld, P., Bennett, J., and Lynch, G., editors, Proceed-
ings of the ACM CHI 92 Human Factors in Computing Systems Conference,
pages 619–626, New York, U.S.A. ACM Press.

[Antoniou and van Harmelen, 2004] Antoniou, G. and van Harmelen, F. (2004).
A Semantic Web Primer. MIT Press, London, U.K.

[Baader et al., 2003] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and
Patel-Schneider, P. F., editors (2003). The Description Logic Handbook: The-
ory, Implementation, and Applications. Cambridge University Press, Cam-
bridge, U.K.

[Baeza-Yates and Ribeiro Neto, 1999] Baeza-Yates, R. and Ribeiro Neto, B.,
editors (1999). Modern Information Retrieval. ACM Press, New York, U.S.A.

[Battista et al., 1999] Battista, G. D., Eades, P., Tamassia, R., and Tollis, I. G.
(1999). Graph Drawing - Algorithms for the Visualization of Graphs. Prentice
Hall, Upper-Saddle River, NJ, U.S.A.

[Battle et al., 2005] Battle, S., Bernstein, A., Boley, H., Grosof, B.,
Gruninger, M., Hull, R., Kifer, M., Martin, D., McIlraith, S., McGuin-
ness, D., Su, J., and Tabet, S. (2005). Swsf application scenar-
ios. Found at http://www.daml.org/services/swsf/1.0/applications/
#service-discovery-example. Version 1.0.

[Becker and Cole, 2003] Becker, P. and Cole, R. J. (2003). Querying and
analysing document collections with formal concept analysis. In Proceedings
of the 8th Australasian Computing Symposium. Camberra, Australia.

[Berners Lee et al., 2001] Berners Lee, T., Hendler, J., and Lassila, O. (2001).
The Semantic Web: A new form of Web content that is meaningful to com-
puters will unleash a revolution of new possibilities. Scientific American.

219

http://www.daml.org/services/swsf/1.0/applications/#service-discovery-example
http://www.daml.org/services/swsf/1.0/applications/#service-discovery-example

220 BIBLIOGRAPHY

[Bordat, 1986] Bordat, J.-P. (1986). Calcul pratique du treillis de galois d’ une
correspondance. Math. Sci. Hum, 96:31–37.

[Borg, 1992] Borg, I. (1992). Grundlagen und Ergebnisse der Facettentheorie.
Number 13 in Methoden der Psychologie. Verlag Hans Huber, Bern.

[Boyle et al., 1993] Boyle, J., Eick, S. G., Hemmje, M., Keim, D. A., Lee, J. P.,
and Summer, E. (1993). Database issues for data visualization: Interaction,
user interfaces, and presentation. In Lee, J. P. and Grinstein, G. G., editors,
Database Issues for Data Visualization, IEEE Visualization ’93 Workshop,
number 871 in Lecture Notes in Computer Science, pages 25–34. Springer
Verlag, Berlin, Germany.

[Brickley and Guha (eds), 2004] Brickley, D. and Guha (eds), R. (2004). RDF
Vocabulary Description Language 1.0: RDF Schema. Available from http:
//www.w3.org/TR/2004/REC-rdf-schema-20040210/.

[Burbeck, 1992] Burbeck, S. (1992). Application programming in smalltalk-80:
How to use model-view-controller (mvc). University of Illinois in Urbana-
Champaign (UIUC) Smalltalk Archive. Available at: http://st-www.cs.
uiuc.edu/users/smarch/st-docs/mvc.html.

[Calvanese et al., 1997] Calvanese, D., DeGiacomo, G., and Lenzerini, M.
(1997). Conjunctive query containment in description logics with n-ary rela-
tions. In International Workshop on Description Logics, Paris, 1997, pages
5–9, Published electronically at http://www.lri.fr/∼mcr/ps/dl97.html.

[Carpineto and Romano, 2005] Carpineto, C. and Romano, G. (2005). Using
concept lattices for retrieval and mining. In Ganter, B., Stumme, G., and
Wille, R., editors, Formal Concept Analysis: Foundations and Applications,
number 3626 in Lecture Notes in Artificial Intelligence - State-of-the-Art Sur-
vey, pages 161–179. Springer.

[Carroll et al., 2005] Carroll, J. J., Bizer, C., Hayes, P., and Stickler, P. (2005).
Named graphs, provenance and trust. In WWW ’05: Proceedings of the 14th
international conference on World Wide Web, pages 613–622, New York, NY,
USA. ACM Press.

[Chen, 2006] Chen, C. (2006). Information Visualization. Springer Verlag, Lon-
don.

[Chen et al., 1993] Chen, W., Kifer, M., and Warren, D. S. (1993). A foun-
dation for higher-order logic programming. Journal of Logic Programming,
3(15):187–230.

[Cimiano, 2004] Cimiano, P. (2004). ORAKEL: A natural language interface
to an F-logic knowledge base. In Proceedings of the 9th International Confer-
ence on Applications of Natural Language to Information Systems, number
3136 in Lecture Notes in Computer Science, pages 401–406, Berlin, Germany.
Springer.

[Cimiano, 2006] Cimiano, P. (2006). Ontology Learning and Population from
Text: Algorithms, Evaluation and Applications. PhD thesis, Fakultät
Wirtschaftwissenscahften der Universität Fredericiana zu Karlsruhe.

http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html
http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html
http://www.lri.fr/~mcr/ps/dl97.html

BIBLIOGRAPHY 221

[Cimiano et al., 2003] Cimiano, P., Staab, S., and Tane, J. (2003). Deriving
Concept Hierarchies from Text by Smooth Formal Concept Analysis. In
Proceedings of the GI Workshop ”Lehren - Lernen - Wissen - Adaptivität”
(LLWA), Fachgruppe Maschinelles Lernen, Wissenentdeckung, Data Mining,
Karlsruhe, Germany.

[Ciravegna et al., 2004] Ciravegna, F., Chapman, S., Dingli, A., and Wilks, Y.
(2004). Learning to harvest information for the semantic web. In Proceedings
of the 1st European Semantic Web Symposium, Heraklion, Greece, May 10-12,
volume 3053 of Lecture Notes in Computer Science, pages 312–326. Springer.

[Codd, 1970] Codd, E. F. (1970). A relational model of data for large shared
data banks. Communications of the ACM, 16(6):377–387.

[Cole, 2001a] Cole, R. (2001a). Automatic layout of concept lattices using layer
diagrams and additive diagrams. In Oudshoorn, M., editor, 24th Australiasian
Computer Science Conference, Australian Computer Science Communica-
tions 1, IEEE Computer Society, pages 47–53.

[Cole and Stumme, 2000] Cole, R. and Stumme, G. (2000). CEM - a Concep-
tual Email Manager. In Ganter, B. and Mineau, G. W., editors, Proceedings
of the International Conference on Conceptual Structure 2000, volume 1867
of Lecture Notes in Artificial Intelligence, pages 438–452, Berlin, Germany.
Springer.

[Cole, 2001b] Cole, R. J. (2001b). Document Retrieval using Formal Concept
Analysis. PhD thesis, School of Information Technology, Griffith University.

[Cole et al., 2003a] Cole, R. J., Eklund, P., and Stumme, G. (2003a). Document
retrieval for email search and discovery using formal concept analysis. Journal
of Applied Artificial Intelligence (AAI), (17).

[Cole et al., 2003b] Cole, R. J., Eklund, P. W., and Stumme, G. (2003b). Doc-
ument retrieval for email search and discovery using formal concept analysis.
Journal of Applied Artificial Intelligence (AAI), 17(3):257–280.

[Correia, 2002] Correia, J. H. (2002). Relational scaling and databases. In Priss,
U., Corbett, D., and Angelova, G., editors, ICCS, volume 2393 of Lecture
Notes in Computer Science, pages 62–76. Springer.

[Davey and Priestley, 1994] Davey, B. A. and Priestley, H. A. (1994). Introduc-
tion to lattices and order. Cambridge Univ. Press, repr. edition.

[Davis et al., 1993] Davis, R., Shrobe, H., and Szolovits, P. (1993). What is a
knowledge representation? AI Magazine, 14(1):17–33.

[de Bruijn and Fensel, 2005] de Bruijn, J. and Fensel, D. (2005). Ontology def-
initions. In Bates, M. J., Maack, M. N., and Drake, M., editors, Encyclopedia
of Library and Information Science. Marcel Dekker, inc, Boca Raton, FL,
U.S.A.

[de Bruijn et al., 2005] de Bruijn, J., Polleres, A., Lara, R., and Fensel, D.
(2005). OWL DL vs. OWL Flight: Conceptual modeling and reasoning on
the semantic web. In Proceedings of the 14th International World Wide Web
Conference (WWW2005), pages 623–632, Chiba, Japan. ACM.

222 BIBLIOGRAPHY

[Dzeroski and Lavrac, 2001] Dzeroski, S. and Lavrac, N., editors (2001). Rela-
tional Data Mining. Springer, Heidelberg.

[E. Bozsak et al., 2002] E. Bozsak et al. (2002). KAON - Towards a large scale
Semantic Web. In Proceedings of the Third International Conference on E-
Commerce and Web Technologies (EC-Web). Springer Lecture Notes in Com-
puter Science.

[Eades, 1984] Eades, P. (1984). A heuristic for graph drawing. Congressus
Numerantium, 42:149–160.

[Eiter et al., 1997] Eiter, T., Gottlob, G., and Mannila, H. (1997). Disjunctive
datalog. ACM Transactions on Database Systems, 22:364–418.

[Eklund, 2004] Eklund, P. W., editor (2004). Concept Lattices, Second Interna-
tional Conference on Formal Concept Analysis, ICFCA 2004, Sydney, Aus-
tralia, February 23-26, 2004, Proceedings, volume 2961 of Lecture Notes in
Computer Science. Springer.

[Eklund et al., 2004] Eklund, P. W., Ducrou, J., and Brawn, P. (2004). Concept
Lattices for Information Visualization: Can Novices Read Line-Diagrams? In
[Eklund, 2004], pages 57–73.

[Fayyad et al., 1996] Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., and Uthu-
rusamy, R., editors (1996). Advances in Knowledge Discovery and Data Min-
ing. AAAI Press and MIT Press, Menlo Park and Cambridge, MA, USA.

[Fensel et al., 2003] Fensel, D., Hendler, J. A., Lieberman, H., and Wahlster,
W., editors (2003). Spinning the Semantic Web: Bringing the World Wide
Web to Its Full Potential [outcome of a Dagstuhl seminar]. MIT Press, Lon-
don, U.K.

[Fluit et al., 2003a] Fluit, C., Sabou, M., and van Harmelen, F. (2003a). Visu-
alising the Semantic Web, chapter Ontology-based Information Visualisation,
pages 36–48. Springer Verlag, London.

[Fluit et al., 2002] Fluit, C., ter Horst, H., and van der Meer, J. (2002). Onto-
knowledge: Visualization facility. Found at http://www.ontoknowledge.
org/downl/del13.pdf.

[Fluit et al., 2003b] Fluit, C., ter Horst, H., van der Meer, J., Sabou, M., and
Mika, P. (2003b). Toward the Semantic Web: Ontology Driven Knowledge
Management, chapter Spectacle, pages 145–159. Number 9. Wiley, Chich-
ester, England.

[Frasincar et al., 2003] Frasincar, F., Telea, A., and Houben, G.-J. (2003). Vi-
sualizing the Semantic Web: XML-based Internet and Information Visualiza-
tion, chapter Adapting graph visualization techniques for the visualization of
RDF data. Springer. Chapter 9.

[Furnas and Zacks, 1994] Furnas, G. and Zacks, J. (1994). Multitrees: Enrich-
ing and reusing hierarchical structure. In Human Factors in Computing Sys-
tems: Proceedings of the CHI’94 Conference, New York, U.S.A. ACM.

http://www.ontoknowledge.org/downl/del13.pdf
http://www.ontoknowledge.org/downl/del13.pdf

BIBLIOGRAPHY 223

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1995). Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA.

[Ganter and Kwuida, 2005] Ganter, B. and Kwuida, L. (2005). Which concept
lattices are pseudocomplemented? In Ganter, B. and Godin, R., editors,
ICFCA, volume 3403 of Lecture Notes in Computer Science, pages 408–416.
Springer.

[Ganter and Reuter, 1991] Ganter, B. and Reuter, K. (1991). Finding all closed
sets: A general approach. Order, (8):283–290.

[Ganter and Wille, 1989] Ganter, B. and Wille, R. (1989). Conceptual Scaling.
In Roberts, F. S., editor, Applications of combinatorics and graph theory to
the biological science, pages 139–167, New York. IMA Volumes in Mathemat-
ics and Its Applications.

[Ganter and Wille, 1999] Ganter, B. and Wille, R. (1999). Formal Concept
Analysis – Mathematical Foundations. Springer Verlag, Berlin – Heidelberg.

[Garcia-Molina et al., 1999] Garcia-Molina, H., Widom, J., and Ullman, J. D.
(1999). Database System Implementation. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA.

[Gast, 1996] Gast, P. (1996). Begriffliche Strukturen mehrwertiger Multikon-
texte. Master’s thesis, Technische Hochschule Darmstadt - Fachbereich Math-
ematik - Arbeitsgruppe Formale Begriffsanalyse, Darmstadt, Germany. Diplo-
marbeit.

[Godin and Mili, 1993] Godin, R. and Mili, H. (1993). Building and maintain-
ing analysis-level class hierarchies using Galois Lattices. In Proc. of OOP-
SLA’93,Washington (DC), U.S.A., pages 394–410, New York, U.S.A. Special
issue of ACM SIGPLAN Notices.

[Grädel, 1999] Grädel, E. (1999). The restraining power of guards. Journal of
Symbolic Logic, 64(4):1719–1742.

[Grimm and Motik, 2005] Grimm, S. and Motik, B. (2005). Closed
world reasoning in the semantic web through epistemic operators.
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-188/.
published electronically.

[Hayes (editor), 2004] Hayes (editor), P. (2004). RDF Semantics. Available
from http://www.w3.org/TR/rdf-mt/.

[Hearst, 1999] Hearst, M. (1999). Modern Information Retrieval,
chapter User Interfaces and Visualization, pages 257–323. In
[Baeza-Yates and Ribeiro Neto, 1999].

[Hereth-Correira and Kaiser, 2004] Hereth-Correira, J. and Kaiser, T. B.
(2004). A Mathematical Model for TOSCANA-Systems: Conceptual Data
Systems. In [Eklund, 2004], pages 39–46.

http://www.w3.org/TR/rdf-mt/

224 BIBLIOGRAPHY

[Herman et al., 2000] Herman, I., Melançon, G., and Marshall, M. S. (2000).
Graph visualization and navigation in information visualization: A survey.
IEEE Transactions on Visualization and Computer Graphics, 6(1):24–43.

[Hitzler et al., 2005a] Hitzler, P., Haase, P., Krötzsch, M., Sure, Y., and Studer,
R. (2005a). DLP isn’t so bad after all. In Grau, B. C., Horrocks, I., Parsia,
B., , and Patel-Schneider, P., editors, Proceedings of the Workshop OWL -
Experiences and Directions, Galway, Ireland.

[Hitzler et al., 2005b] Hitzler, P., Studer, R., and Sure, Y. (2005b). Descrip-
tion logic programs: A practical choice for the modelling of ontologies. In
1st Workshop on Formal Ontologies Meet Industry, FOMI’05, Verona, Italy,
June 2005.

[Horrocks et al., 2006] Horrocks, I., Kutz, O., and Sattler, U. (2006). The even
more irresistible SROIQ. In Proc. of the 10th Int. Conf. on the Principles
of Knowledge Representation and Reasoning (KR 2006), pages 57–67, Menlo
Park, California. AAAI Press.

[Horrocks et al., 2005] Horrocks, I., Parsia, B., Patel-Schneider, P., and
Hendler, J. (2005). Semantic web architecture: Stack or two towers? In
Fages, F. and Soliman, S., editors, Principles and Practice of Semantic Web
Reasoning (PPSWR 2005), number 3703 in Lecture Notes in Computer Sci-
ence, pages 37–41, Heidelberg. Springer.

[Horrocks and Sattler, 2004] Horrocks, I. and Sattler, U. (2004). Decidability
of SHIQ with complex role inclusion axioms. Artificial Intelligence, 160(1–
2):79–104.

[Hotho and Stumme, 2002] Hotho, A. and Stumme, G. (2002). Conceptual clus-
tering of text clusters. In Kkai, G. and (Eds.), J. Z., editors, Proc. Fachgrup-
pentreffen Maschinelles Lernen (FGML 2002), 7.-9.10.2002, Hannover, pages
37–45.

[Huchard et al., 2002] Huchard, M., Roume, C., and Valtchev, P. (2002). When
concepts point at other concepts: the case of UML diagram reconstruction.
In Liquiere, M., editor, ECAI2002 Workshop: Advances in Formal Concept
Analysis for Knowledge Discovery in Databases, pages 32–43, Lyon, France.

[Klyne and Carroll (eds), 2004] Klyne, G. and Carroll (eds), J. J. (2004). Re-
source Description Framework (RDF): Concepts and Abstract Syntax. Avail-
able from http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/.

[Knöpfel et al., 2006] Knöpfel, A., Gröne, B., and Tabeling, P. (2006). Funda-
mental modeling concepts. Wiley and Sons, Weinheim, Germany.

[Kollewe et al., 1994] Kollewe, W., Skorsky, M., Vogt, F., and Wille, R.
(1994). Begriffliche Wissensverarbeitung - Grundfragen und Aufgaben, chap-
ter TOSCANA - ein Werkzeug zur begrifflichen Analyse und Erkundung von
Daten, pages 267–288. B.I.-Wissenschaftsverlag, Mannheim.

[Kosba, 2004] Kosba, A. (2004). User experiments with tree visualization sys-
tems. In Proceedings of InfoVis 2004, IEEE Symposium on Information Vi-
sualization, pages 9–16, Austin, TX, USA.

http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

BIBLIOGRAPHY 225

[Kuhlthau, 2005] Kuhlthau, C. C. (2005). Theories of Information Behavior,
chapter Information Search Process. Information Today.

[Lamping et al., 1995] Lamping, J., Rao, R., and Pirolli, P. (1995). A fo-
cus+context technique based on hyperbolic geometry for visualizing large
hierarchies. In Proc. ACM Conf. Human Factors in Computing Systems,
CHI, pages 401–408. ACM.

[Leone et al., 2002] Leone, N., Pfeifer, G., Faber, W., Calimeri, F., Dell’Armi,
T., Eiter, T., Gottlob, G., Ianni, G., Ielpa, G., Koch, C., Perri, S., , and
Polleres, A. (2002). The dlv system. In Flesca, S., Greco, S., Ianni, G., , and
Leone, N., editors, Proceedings of the 8th European Conference on Artificial
Intelligence (JELIA), number 2424 in Lecture Notes in Computer Science,
pages 537–540, Heidelberg. Springer Verlag. System Description.

[MacGuiness and van Harmelen (eds), 2004] MacGuiness, D. L. and van
Harmelen (eds), F. (2004). OWL Web Ontology Language: Overview. Avail-
able from http://www.w3.org/TR/rdf-mt/.

[Maimon and Rokrach, 2005] Maimon, O. Z. and Rokrach, L., editors (2005).
Data Mining and Knowledge Discovery Handbook. Springer.

[Marchionini, 1995] Marchionini, G. (1995). Information seeking in electronic
environments. Cambridge University Press, Cambridge, U.K.

[Motik, 2002] Motik, B. (2002). KAON Developper Manual. FZI-
Forschungszentrum. Available at: http://sf.net/projects/kaon.

[Motik, 2006] Motik, B. (2006). Reasoning in description logics using resolution
and deductive databases. PhD thesis, Fakultät Wirtschaftwissenscahften der
Universität Fredericiana zu Karlsruhe.

[Munzner, 2000] Munzner, T. (2000). Interactive Visualization of Large Graphs
and Networks. PhD thesis, Stanford University. http://graphics.
stanford.edu/papers/munzner thesis/index.html.

[Nagl, 1979] Nagl, M. (1979). Graph-Grammatiken. Vieweg, Braunschweig,
Germany.

[Nardi and Brachman, 2003] Nardi, D. and Brachman, R. J. (2003). An Intro-
duction to Description Logics, chapter 1, pages 1–40. In [Baader et al., 2003].

[Pazienza, 1999] Pazienza, M. T., editor (1999). Information Extraction: To-
wards Scalable, Adaptable Systems. Springer, Berlin.

[Priss, 2005] Priss, U. (2005). Establishing connections between formal concept
analysis and relational databases. In Dau, F., Mugnier, M., and Stumme, G.,
editors, Common Semantics for Sharing Knowledge: Contributions to ICCS,
pages 132–145.

[Rector, 2003] Rector, A. (2003). Medical informatics, chapter 13, pages 406–
426. In [Baader et al., 2003].

http://www.w3.org/TR/rdf-mt/
http://sf.net/projects/kaon
http://graphics.stanford.edu/papers/munzner_thesis/index.html
http://graphics.stanford.edu/papers/munzner_thesis/index.html

226 BIBLIOGRAPHY

[Rector and Rogers, 2006] Rector, A. and Rogers, J. (2006). Ontological &
practical issues in using a description logic to represent medical concepts:
Experience from galen. School of Computer Science PrePrint, University of
Manchester: CSPP-35:1-35.

[Reiter, 1980] Reiter, R. (1980). Equality and domain closure in first order data
bases. J. ACM, (27):235–249.

[Rutsch, 1987] Rutsch, M. (1987). Statistik 2: Daten modellieren. Birkhäuser
Verlag, Basel.

[Schmitz et al., 2002] Schmitz, C., Staab, S., Studer, R., Stumme, G., and
Tane, J. (2002). Accessing distributed learning repositories through a course-
ware watchdog. In Proceedings of E-Learn 2002: World Conference on E-
Learning in Corporate, Government, Healthcare, and Higher Education, Oc-
tober 15-19 2002, Montreal, Canada, pages 909–915.

[Shneiderman, 1992] Shneiderman, B. (1992). Tree visualization with tree
maps. a 2-D space-filling approach. ACM Tramsactions on Graphics,
11(1):92–99.

[Shneiderman, 1996] Shneiderman, B. (1996). The Eyes Have It: A Task
by Data Type Taxonomy for Information Visualizations. In IEEE Visual
Languages, number UMCP-CSD CS-TR-3665, pages 336–343, College Park,
Maryland 20742, U.S.A.

[Shneiderman, 1997a] Shneiderman, B. (1997a). Designing information-
abundant web sites: issues and recommendations. Int. J. Hum.-Comput.
Stud., 47(1):5–29.

[Shneiderman, 1997b] Shneiderman, B. (1997b). Designing the User Interface:
Strategies for Effective Human-computer Interaction. Addison-Wesley, Read-
ing, MA.

[Shneiderman and Plaisant, 2005] Shneiderman, B. and Plaisant, C. (2005).
Designing the User Interface. Pearson/Addison-Wesley, 4. ed., internat. ed.
edition.

[Smith and Ceusters, 2006] Smith, B. and Ceusters, W. (2006). Computing,
Philosophy and Cognitive Science, chapter Ontology as the core Discipline of
Biomedical Informatics: Legacies of the Past and Recommendations for the
Furture Direction of Research. Cambridge Scholar Press. forthcoming.

[Sowa, 1984] Sowa, J. F. (1984). Conceptual Structures: Information Processing
in Mind and Machine. Addison-Wesley Publishing Company, Reading, MA.

[Sowa, 2000] Sowa, J. F. (2000). Knowldege Representation - Logical, Philosph-
ical and Computational Foundations. Brooks/Cole, Pacific Grove, CA, U.S.A.

[Studer and Staab, 2003] Studer, R. and Staab, S., editors (2003). Handbook
on Ontologies in Infornation Systems. Springer Verlag, Berlin.

[Stumme, 2004] Stumme, G. (2004). Iceberg Query Lattices for Datalog. In
ICCS, volume 3127 of Lecture Notes in Computer Science, pages 109–125.
Springer.

BIBLIOGRAPHY 227

[Stumme et al., 2004] Stumme, G., Cimiano, P., Hotho, A., and Tane, J. (2004).
Conceptual Knowledge Processing with Formal Concept Analysis and On-
tologies. In Ecklund, P., editor, Proceedings of the 2nd Intl. Conf. on Formal
Concept Analysis. LN 2961, Berlin, Germany. Springer Verlag.

[Stumme and Mädche, 2001] Stumme, G. and Mädche, A. (2001). FCA-Merge:
Bottom-up merging of ontologies. In In Proceedings of the 7th Intl. Conf. on
Artificial Intelligence (IJCAI ’01), Seattle, WA, pages 225–230.

[Stumme et al., 2002] Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., and
Lakhal, L. (2002). Computing iceberg concept lattices with TITANIC. Data
Knowl. Eng., 42(2):189–222.

[Sure et al., 2005] Sure, Y., Bloehdorn, S., Haase, P., Hartmann, J., and Oberle,
D. (2005). The SWRC Ontology - Semantic Web for Research Communities.
In Workshop on Building and Applying Ontologies for the Semantic Web
(BAOSW 2005) at the 12th Portuguese Conference on Artificial Intelligence
(EPIA 2005).

[Tane, 2004] Tane, J. (2004). Query Based Multicontext based browsing: a
technical report. Technical report, Research Unit Knowledge and Data Un-
derstanding. http://www.kde.cs.uni-kassel.de/tane/techreport.

[Tane, 2005] Tane, J. (2005). Using a Query-Based Multicontext For Knowl-
edge Base Browsing. In Formal Concept Analysis, Third International Conf.,
ICFCA 2005-Supplementary Volume, pages 62–78, Lens, France. IUT de
Lens, Universite d’Artois.

[Tane et al., 2006] Tane, J., Cimiano, P., and Hitzler, P. (2006). Query-Based
Multicontexts for Knowledge Base Browsing: An Evaluation. In Schärfe, H., ,
Hitzler, P., and Ohrstrom, P., editors, Conceptual Structures: Inspiration and
Application 14th International Conference on Conceptual Structures, ICCS
2006, Aalborg, Denmark, July 16-21, 2006, number 4068 in Lecture Notes in
Computer Science, Heidelberg. Springer.

[Tane et al., 2004] Tane, J., Schmitz, C., and Stumme, G. (Mai 2004). Semantic
Resource Management for the Web: An ELearning Application. In Proc. 13th
International World Wide Web Conference (WWW 2004).

[Tane et al., 2003] Tane, J., Schmitz, C., Stumme, G., Staab, S., and Studer,
R. (2003). The Courseware Watchdog: an Ontology-based tool for Finding
and Organizing Learning Material. In Klaus David, I. W., editor, Fachta-
gung Mobiles Lernen und Forschen, 6.11.2003, Universität Kassel, Kassel,
Germany. Kassel University Press.

[Tempich et al., 2004] Tempich, C., Ehrig, M., Fluit, C., Haase, P., Marti, E. L.,
Plechawski, M., and Staab, S. (2004). XAROP: A midterm report in intro-
ducing a decentralized semantics-based knowledge sharing application. In
Karagiannis, D. and Reimer, U., editors, Proceedings of the 5th Interna-
tional Conference on Practical Aspects of Knowledge Management (PAKM
2004), number 3336 in Lecture Notes in Computer Science, Vienna, Austria.
Springer.

228 BIBLIOGRAPHY

[Toivonen, 1996] Toivonen, H. (1996). Discovery of frequent patterns in large
data collections. PhD thesis, Department of Computer Science, University of
Helsinki. Report-A-1006-5.

[Tsur et al., 1998] Tsur, D., Ullman, J. D., Abiteboul, S., Clifton, C., Motwani,
R., Nestorov, S., and Rosenthal, A. (1998). Query flocks: a generalization
of association-rule mining. In SIGMOD ’98: Proceedings of the 1998 ACM
SIGMOD international conference on Management of data, pages 1–12, New
York, NY, USA. ACM Press.

[Valtchev et al., 2004] Valtchev, P., Missaoui, R., and Godin, R. (2004). For-
mal concept analysis for knowledge discovery and data mining: The new
challenges. In [Eklund, 2004], pages 352–371.

[van Harmelen and Horrock, 2000] van Harmelen, F. and Horrock, I. (2000).
Questions and answers on OIL: the ontology inference layer for the semantic
web. IEEE Intelligent Systems, 15(6):69–72.

[Vossen, 1994] Vossen, G. (1994). Datenmodelle, Datenbanksprachen und
Datenbank–Management–Systeme. Addison–Wesley, 2nd edition edition.

[Wille, 1982] Wille, R. (1982). Restructuring lattice theory: an approach based
on hierarchies of concepts. In Rival, I., editor, Ordered Sets: proceedings of
the NATO advanced study institute held at Banff, Canada Aug. 28 to Sept.
12, 1981, number 83 in NATO ASI Series, pages 445–470. Reidel. NATO
advanced study institutes series ; 83.

[Wille, 1996] Wille, R. (1996). Conceptual Structures of Multicontexts. In Con-
ceptual Structures: Knowledge Representation as Interlingua, Proceedings of
the 4th International Conference on Conceptual Structures, ICCS’96, volume
1115 of Lecture Notes, pages 23–39, Sydney, Australia. Springer Lecture Notes
in Computer Science.

[Wille, 1997] Wille, R. (1997). Conceptual Graphs and Formal Concept Analy-
sis. In Lukose, D., Delugach, H., Keeler, M., Searle, L., and Sowa, J., editors,
Conceptual Structures: Fulfilling Peirce’s Dream, Proceedings of the 5th In-
ternational Conference on Conceptual Structures, ICCS’97, volume 1257 of
Lecture Notes in Artificial Intelligence, pages 290–303, Seattle,WA, U.S.A.
Springer Lecture Notes in Computer Science.

[Wille, 2005] Wille, R. (2005). Conceptual knowledge processing in the field of
economics. In Formal Concept Analysis: Foundations and Applications, num-
ber 3626 in Lecture Notes in Artificial Intelligence, pages 226–249. Springer.

[Ziegler et al., 2002] Ziegler, J., Kunz, C., and Botsch, V. (2002). Matrix
browser - visualizing and exploring large networked information spaces. In
Conference on Human Factors in Computing Systems CHI ’02 extended ab-
stracts on Human factors in computing systems, pages 602–603, Minneapolis,
Minnesota, USA.

Appendix A

Ontology

http://swrc.ontoware.org/ontology

> v ∀citedBy.>
ResearchGroup v ∀head.Employee
ResearchGroup v ∀member.Employee
ResearchGroup v Organization

Article v ∀author.Person
Article v Publication

Unpublished v ∀author.Person
Unpublished v Publication

Exhibition v Event
ProjectReport v ∀describesProject.Project
ProjectReport v Report

Manager v Employee
Undergraduate v Student

Meeting v ∀participant.Person
Meeting v Event
Student v ∀studiesAt.University
Student v Person

TechnicalStaff v Employee
Misc v Publication

TechnicalReport v ∀organization.Organization
TechnicalReport v Report

InProceedings v ∀publisher.Organization
InProceedings v ∀organization.Organization
InProceedings v ∀editor.Person
InProceedings v ∀author.Person
InProceedings v Publication
MasterThesis v Thesis

ResearchProject v Project
Product v ∀developedBy.Organization

University v ∀student.Student
University v ∀hasParts.Department
University v Organization

229

230 APPENDIX A. ONTOLOGY

AdministrativeStaff v Employee
Manual v ∀organization.Organization
Manual v ∀author.Person
Manual v Publication

SoftwareProject v ∀product.Product
SoftwareProject v DevelopmentProject

Employee v ∀affiliation.Organization
Employee v Person

Lecture v ∀givenBy.Person
Lecture v Event

AssociateProfessor v FacultyMember
InCollection v ∀author.Person
InCollection v ∀publisher.Organization
InCollection v ∀editor.Person
InCollection v Publication

Workshop v Event
FacultyMember v AcademicStaff

Lecturer v AcademicStaff
Publication v ∀cite.Publication
Proceedings v ∀editor.Person
Proceedings v ∀publisher.Organization
Proceedings v ∀organization.Organization
Proceedings v Publication
PhDThesis v Thesis
Association v Organization

Institute v ∀hasParts.ResearchGroup
Institute v ∀cooperateWith.Institute
Institute v Organization

Graduate v Student
Project v ∀isAbout.ResearchTopic
Project v ∀financedBy.Organization
Project v ∀projectInfo.Publication
Project v ∀head.Employee
Project v ∀member.Person
Project v ∀carriedOutBy.Organization
Event v ∀atEvent.Event
Event v ∀hasPartEvent.Event

ResearchTopic v ∀dealtWithIn.Project
ResearchTopic v ∀isWorkedOnBy.AcademicStaff
ResearchTopic v Topic

Conference v Event
ProjectMeeting v Meeting
AcademicStaff v ∀headOf.Project
AcademicStaff v ∀headOfGroup.ResearchGroup
AcademicStaff v ∀publication.Publication
AcademicStaff v ∀organizerOrChairOf.Event
AcademicStaff v ∀memberOfPC.Event
AcademicStaff v ∀cooperateWith.AcademicStaff
AcademicStaff v ∀editor.Publication
AcademicStaff v ∀supervises.PhDStudent

231

AcademicStaff v ∀worksAtProject.Project
AcademicStaff v Employee

InBook v ∀editor.Person
InBook v ∀author.Person
InBook v ∀publisher.Organization
InBook v Publication
Report v ∀author.Person
Report v Publication

SoftwareComponent v Product
Organization v ∀develops.Product
Organization v ∀publishes.Publication
Organization v ∀carriesOut.Project
Organization v ∀finances.Project
Organization v ∀technicalReport.TechnicalReport
Organization v ∀employs.Person

Thesis v ∀author.Person
Thesis v ∀school.University
Thesis v Publication

Booklet v ∀author.Person
Booklet v Publication

Department v ∀hasParts.Institute
Department v Organization

AssistantProfessor v FacultyMember
Book v ∀publisher.Organization
Book v ∀editor.Person
Book v ∀author.Person
Book v Publication

FullProfessor v FacultyMember
DevelopmentProject v Project

Enterprise v Organization
PhDStudent v ∀publication.Publication
PhDStudent v ∀supervisor.AcademicStaff
PhDStudent v ∀worksAtProject.Project
PhDStudent v Graduate

cite ≡ citedBy−1

develops ≡ developedBy−1

carriesOut ≡ carriedOutBy−1

publisher ≡ publishes−1

citedBy ≡ cite−1

employs ≡ affiliation−1

supervisor ≡ supervises−1

headOfGroup ≡ head−1

projectInfo ≡ describesProject−1

hasPartEvent ≡ atEvent−1

	Dedication
	Acknowledgements
	Introduction
	Motivation
	A Scenario
	Formal Concept Analysis

	Research Questions
	Contextualised Views
	Exploration Process

	Contribution
	Outline of the Thesis

	Preliminaries
	Knowledge Representation and Applications
	Aspects of Knowledge Representation
	Application: Visualising the Semantic Web

	Logical and Rules Paradigms
	Description Logics
	Datalog

	Formal Concept Analysis
	Basic FCA
	Context Operators
	Many-valued Contexts and Conceptual Scaling
	Multicontexts

	Summary

	Query-Based Multicontexts
	Intensional Context Representations
	Query-based Multicontexts
	Definition: Query-based Multicontext
	A Simple Example
	An SQL Example

	Operators
	Generic Query Operators
	Typed Query Language
	Context Index Operators

	Semantic Query-Based Multicontext
	Generic Ontology Model
	Semantic Query Infrastructures

	Constructors
	Relation Constructors
	Hierarchy Constructor
	Instantiation Hierarchy Constructors
	Subsumption/Instantiation Hierarchies Constructors
	The Join Relation Context Constructor
	The CoRelation Constructor
	Application-dependent Context Constructors

	Summary

	Knowledge Base Exploration
	Exploring Using Views
	Visualising the Information Space
	Views for Knowledge Base Exploration
	Scenario: Getting to Know AIFB

	View Interaction
	Visualisation
	Selection
	Paradigm Comparison

	View Definition
	View Definition Strategies
	Default Views
	View Parametrisation
	View Adaptation

	Summary

	Implementation
	Architecture Overview
	The Main Components
	One Round Example

	QBMC Infrastructure
	Query Management Module
	Context Index Management Module
	Context Construction Engine

	Context Infrastructure
	Query Evaluation and Query Results Storage
	Context Storage
	Context Creation
	Lattice Generation

	Semantic Query Infrastructure Implementation
	Methodology for Adapting Data Sources
	Adapting KAON
	Adapting OWL Using KAON2

	The Graphical User Interface
	Main Components
	Parametrisation using Direct Manipulation
	The Lattice Panel
	Lattice Partitioning

	Underlying FCA Framework
	Alternatives
	Concept Explorer

	Summary

	Evaluation
	Comparison with other Approaches
	ClusterMap
	Toscana Framework
	Docco Framework
	The Conceptual Email Manager

	Visualisation Evaluation
	Description of the View Paradigms
	Question Types
	Context of the Evaluation
	Results

	Summary

	Discussion
	Contributions
	Future Work
	Open Questions
	Other Applications

	Final Words

	Ontology

