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Abstract— A critical obstacle for ultra-wideband (UWB) com-
munications is conformity to restrictions set on the allowed
interference to other wireless devices. To this end UWB signals
have to comply with stringent constraints on their emitted power,
defined by the FCC spectral mask. Different UWB pulseshaper
designs have been studied to meet the spectral mask, out of which
an approach based on digital FIR filter design via semidefinite
programming has stood out. However, so far this approach has
assumed an ideal basic analog pulse to use piece-wise constant
constraints for the digital filter design. Since any practical analog
pulse does not have a flat spectrum, using piece-wise constant
constraints leads to considerable power loss. Avoiding such a
loss has motivated us to implement the exact constraints through
non-constant piece-wise continuous bounds. Relative to the design
assuming an ideal basic analog pulse, our design examples show
that the transmission power can be enhanced considerably while
obeying the spectral mask. Such an improvement comes with no
extra cost of implementation complexity.

Index Terms— Linear matrix inequalities, pulseshaper design,
semidefinite programming, spectral mask, ultra-wideband.

I. I NTRODUCTION

ULTRA-wideband (UWB) transmission is a fast emerging
technology with unique properties and has been a subject

of enormous research and development efforts in recent years.
It is a promising approach for high-speed short-range wireless
radio links, very precise localization and ranging, and ground
penetrating radar [1], [2], [3]. One target application is the
Wireless Personal Area Network (WPAN) where the long-term
goal is the abolition of all data wires [4].

Although there are several definitions for UWB, the Fed-
eral Communications Commission (FCC) published a widely
accepted definition that characterizes UWB only by its band-
width, independent of the employed modulation scheme [5]: A
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Universiẗat Karlsruhe (TH), Germany (email: jondral@int.uni-karlsruhe.de).

Digital Object Identifier 10.1109/JSTSP.2007.906566

UWB signal must either occupy an absolute 10 dB bandwidth
of 500 MHz or a relative bandwidth of 20% with respect to
the center frequency. Since such large unoccupied bandwidths
do not exist, UWB has to work as an overlay system that re-
occupies frequency bands that are already used by other radio
systems. Coexistence can be achieved because UWB spreads
its signal energy over a very large bandwidth which results in
an extremely low power spectral density (PSD). Due to this
very low PSD, UWB signals are hidden under the background
noise and therefore do not cause noteworthy interference to
other narrowband systems (narrowband compared to UWB).

The only authority which already admits UWB devices is
the FCC [5]. The main restriction is a spectral mask, which is
piece-wise constant as depicted in Fig. 1. For communication
handhelds the maximum PSD in the main frequency band
between 3.1 and 10.6 GHz is -41.3 dBm/MHz. This limits
the range of UWB devices to about 10 m for high data rates.
Thus,one of the fundamental challenges is the maximization
of the transmitted power while complying with the spectral
mask. If the spectral properties are not optimized, the output
power has to be lowered to fulfill the mask requirements in
every frequency band.

Since the ultra-short pulses used are generated with analog
components, e.g., the Gaussian Monocycle as depicted in
Fig. 1, their spectral shape is not easy to design. Replacing
the analog pulses with digital designs is prohibited by the
huge bandwidth and the resulting sampling rates. Using an
FIR prefilter before the analog pulse generators, the spectral
shape can be controlled, but due to the particular problem
formulation, designing the FIR filter coefficients to maximize
the resultant transmit power is not trivial. Traditional FIR
design algorithms like the Parks-McClellan algorithm [6] have
been used to approximate the FCC spectral mask [7], but the
reduction to linear-phase filters and an equi-ripple designdoes
not lead to an optimal solution in the sense of maximizing the
transmit power.

To find the optimal FIR filter coefficients, we need to
maximize the transmit power, while strictly enforcing the FCC
spectral mask. This optimum formulation can be implemented
via FIR filter design using semidefinite programming [8],
[9], which is a type of convex optimization [10]. Numerical
implementation can only handle a finite number of constraints,
therefore either the constraints were approximated with a finite
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Fig. 1. FCC spectral mask and PSD of the Gaussian Monocycle forτ = 0.15
ns andτ = 0.087 ns

set of samples or the problem was cast into the linear matrix
inequalities (LMI) framework [9]. The first approach is an
obvious approximation of the truly optimal solution, whilethe
second so far has only been used in conjunction with assuming
an ideal basic analog pulse (completely constant PSD), leading
to piece-wise constant constraints [11].

We are motivated to address the optimal pulseshaper design
in the semidefinite programming framework. To avoid the
power loss due to the piece-wise constant constraints, we
use non-constant piece-wise continuous bounds that suit the
optimal problem formulation, without having to use either of
the aforementioned simplifications. We use a modified Fourier
series expansion using non-orthogonal basis functions to ap-
proximate an arbitrary constraint. This way we can find the
(near-)optimal solution for arbitrary basic analog pulses, while
strictly enforcing the FCC spectral mask. We will give detailed
design examples, that show considerable improvement on the
transmit power relative to that of suboptimal approaches.

The rest of the paper is as follows. In Section II we
will go over the standard signal model of impulse radio and
describe the challenges of the pulseshaper design problem.
In Section III, we will reiterate some background of the LMI
formulation for FIR filter design and show how we implement
non-constant bounds. Design examples will be presented in
Section IV and last we will conclude in Section V.

We want to use the following notation. Bold lower and upper
case letters refer to vectors and matrices, respectively. The
matrix Ik will be the identity matrix ofk × k, and0n×k is
the matrix of all zeros, with dimensionn×k. The superscript
“T ” denotes the transpose, “H ” denotes the Hermitian, i.e.,
the complex conjugate transpose. The operatorvec(·) applied
on matrices will be a stacked vector of all matrix elements,
column by column, and the “∗” operator will denote linear
convolution. We useR and C to denote the sets of real and
complex numbers respectively.

II. SIGNAL MODEL AND PULSESHAPINGPROBLEM

A. Signal Model

Our signal model will be impulse radio (IR) with time
hopping (TH) and binary pulse amplitude modulation (PAM).
Ultra-short pulses are the building block of this transmission
scheme; the basic pulse on the channel isp(t), e.g., the
Gaussian Monocycle [12], with power

∫

p2(t) dt = ε. One
pulse is sent during each frame durationTf . Each data symbol
consists ofNf pulses, resulting in a total symbol length
Ts = NfTf . The signal model can be expressed as:

u(t) =
∑

k

bk

1
√

Nfε

Nf−1
∑

l=0

p(t − lTf − kTs − clTc), (1)

where bk are the PAM symbols{−1, 1} for each bit,Tc is
the chip period andcl are the user-specific TH codes, with
clTc < Tf ,∀l.

The PSD can be calculated in a standard fashion as [13]:

Φuu(f) =
1

TsNfε
|P (f)|2

∣

∣

∣

∣

Nf−1
∑

l=0

ej2π(−lTf−clTc)f

∣

∣

∣

∣

2

. (2)

When assuming the TH codecl to be integer-valued, indepen-
dent and uniformly distributed,Φuu(f) can be approximated
as [14], [15]:

Φuu(f) ≈
1

Tsε
|P (f)|2. (3)

Thus, the PSD of the basic pulsep(t) is crucial to the PSD of
the complete UWB signal. Therefore, it is necessary to select
a pulse with optimal spectral properties.

B. Pulseshaping Problem

The basic pulsesp(t) used in UWB systems are created
with analog RF components. Therefore, designing the pulse
to comply with some specific demands like the FCC spectral
mask is rather difficult (see Fig. 1). Basically only the pulse
duration and amplitude can be controlled which correspond
to the bandwidth and power in the PSD respectively. Differ-
ent digitally created pulse shapes have been suggested [16],
whereby those pulses have to be generated of digital samples.
Since the pulses need bandwidths of several GHz, sampling
nanosecond length pulses is highly demanding.

Using transmit filters to adapt to spectral constraints is also
difficult to implement, since analog filters with an enormous
bandwidth would have to be used. Instead, using an FIR filter
like approach [7], [11], each basic pulse is repeatedN times
with arbitrary amplitudes, created by the pulse generatorsused
already for modulation. This is equivalent to prefiltering the
signal before using the basic pulse as a transmit filter:

u(t) =
∑

k

bk

1
√

Nfε

Nf−1
∑

l=0

δ(t− lTf −kTs−clTc)∗p(t). (4)

Now let q(t) denote the analog pulses created by the usual
pulse generators which can be chosen based on hardware
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constraints. With prefiltering bywn, which will be design
parameters, the overall pulsep(t) becomes

p(t) =

N−1
∑

n=0

wnq(t − nT ) = w(t) ∗ q(t) (5)

wherebyw(t) =
∑N−1

n=0 wnδ(t−nT ). The PSD is accordingly

|P (f)|
2

= Φww(f) |Q(f)|
2
. (6)

Let S(f) denote the FCC spectral mask. The pulseshaping
problem can now be formulated as

max
wn

∫

|P (f)|2 df subject to|P (f)|2 ≤ S(f), ∀f (7)

i.e., maximizing the transmit power while adhering to all
spectral constraints. To solve this non-linear optimization
problem is not trivial. We will next look at some existing
approaches.

C. Existing Approaches

Existing approaches are based on FIR filter design, e.g., the
Parks McClellan algorithm can be used to optimize the set of
wn [7]. Even though these approaches can deliver good results,
optimality is not guaranteed, since the algorithm depends on
equi-ripple design and does not directly maximize the transmit
energy.

The prominent approach is to employ FIR filter design via
semidefinite programming. To use this approach the problem
formulation is changed to a linear problem as follows. Due
to optimizing over thewn, we only influenceΦww(f), which
can be calculated as

Φww(f) =

∣

∣

∣

∣

∣

N−1
∑

n=0

wnej2πnTf

∣

∣

∣

∣

∣

2

=

N−1
∑

n=−N+1

rnej2πnTf(8)

with r|n| =
∑N−1−n

k=0 wkwk+n being the non-periodic auto-
correlation sequence of thewn. Assuming realwn, we can
further simplify it to

Φww(f) = r0 + 2

N−1
∑

n=1

rn cos(2πnTf) = rTψN (f) (9)

where we define the vectors

r =







r0

...
rN−1






, ψN (f) = 2











1
2

cos[2πfT ]
...

cos[2π(N − 1)fT ]











.

(10)
The PSDΦww(f) will be periodic in the additional design

parameter1/T , therefore we choose the frequency rangeFp

to be [0, 1/2T ] since this is the interval in which we will be
able to affect the design. Outside this interval we will assume
|Q(f)|2 to be small enough to attenuate the periodic repetitions
of Φww(f). Accordingly T and q(t) will have to be chosen
jointly.
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Fig. 2. To formulate completely linear constraints, we useS(f)/|Q(f)|2

as upper bound.

Since the problem formulation in (7) is non-linear inwn,
to find a linear problem we will reformulate it with respect to
r

∫

Fp

|P (f)|2df =

∫

Fp

rTψN (f) |Q(f)|
2

df = rT c, (11)

wherec =
∫

Fp
ψN (f) |Q(f)|

2
df is the projection of|Q(f)|2

onto the basis functions.
Under the additional constraint thatrn are a valid autocor-

relation sequence, which is equivalent toΦww(f) ≥ 0, ∀f ,
we can write the linear optimization problem as,

max
r

rT c subject to0 ≤ rTψN (f) ≤
S(f)

|Q(f)|2
, f ∈ FP .

(12)
This leads to a new set of constraints, e.g., see Fig. 2 for a
Gaussian monocycle withτ = 0.087 ns. As stated before, this
formulation fits a typical FIR filter design problem, specifying
upper and lower bounds on the PSD. Since we are indifferent
as to the gain in individual parts of the spectrum, the lower
bound is not very demanding, but instead we maximize the
total energy within the frequency range of interest.

Since the optimization problem in (12) has an infinite
number of linear constraints, one approach is based on sam-
pling the constraints and introduces an additional relaxation
to ensure compliance for allf ∈ FP .

The approach we want to focus on is based on replacing
the infinitely many constraints with a finite size linear matrix
equation and limiting some of the optimization variables as
elements of semidefinite matrices [11]. This can be achieved
using a linear matrix inequality (LMI) formulation derived
for FIR filter design [9], but so far has only been used in
conjunction with approximating the basic analog pulse|Q(f)|2

as constant withinFP . The formulation does not depend on
an equi-ripple design and achieves globally optimal solutions
via convex optimization.
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The approximation of a constant basic analog pulse PSD
leads to a simplified problem formulation within the LMI
framework [9]. Assuming a constant PSD basic pulse, one
could use the following six constraints to follow the piece-
wise constant spectral maskS(f):

Φww(f) ≥ 0, f ∈ FP

Φww(f) ≤ −75.3 dB, f ∈ [0, 1.6] GHz

Φww(f) ≤ −53.3 dB, f ∈ [0, 1.9] GHz

Φww(f) ≤ −51.3 dB, f ∈ [0, 3.1] GHz

Φww(f) ≤ −41.3 dB, f ∈ FP

Φww(f) ≤ −51.3 dB, f ∈ [10.6, 1/2T ] GHz.

(13)

The filter design with the piece-wise constant constraints on
Φww(f) is solved in [11].

Even though there are pulses which have a somewhat
constant PSD in the spectrum of interest (see Fig. 1), this
does not hold for arbitrary analog pulses, e.g., dictated by
hardware constraints. We will later quantify the losses dueto
this simplification in the design, but in any case this does not
qualify as an optimal solution.

D. Proposed Solution

To achieve an optimal solution, arbitrary constraints on the
PSD will have to be implemented in the LMI formulation.
This way we will be able to provide optimal solutions for
arbitrary analog pulses. Naturally some pulses will have better
performance than others; and it seems likely that pulses close
to the constant PSD approximation will perform the best. In
any case, for any given analog pulse we will be able to supply
an optimal set of coefficientswn.

The LMI formulation in [9] provides piece-wise constant,
but also piece-wise trigonometric polynomial constraints. We
will use the latter to implement piece-wise continuous con-
straint functionsΓ(f), which enables us to enforce any con-
straints, as long as they have a finite number of discontinuities.
As will be clear later on, one set of new constraints would be:

Φww(f) ≥ 0, f ∈ FP

Φww(f) ≤ Γ1(f), f ∈ [0, 1.61] GHz

Φww(f) ≤ Γ2(f), f ∈ [0, 1.99] GHz

Φww(f) ≤ Γ3(f), f ∈ [0, 3.1] GHz

Φww(f) ≤ Γ4(f), f ∈ FP

Φww(f) ≤ Γ5(f), f ∈ [10.6, 1/2T ] GHz

(14)

where Γi(f) are non-constant. See e.g., Fig. 5 for the con-
straints due to a Gaussian Monocycle basic pulse withτ =
0.087 ns. The questions we address in this paper are:

1) How can we implement arbitrary non-constant bounds
as piece-wise trigonometric polynomials provided by the
LMI framework?

2) What upper bounds can we use and which ones lead to
the best performance?

III. T HE DESIGN PROCEDURE WITHNON-CONSTANT

UPPERBOUNDS

A. Review of Linear Matrix Inequalities

Linear matrix inequalities (LMI) are used in FIR filter
design to convert spectral constraints into linear constraints on
elements of positive semidefinite matrices. This way, the FIR
filter design problem can be effectively solved via semidefinite
programming.

Semidefinite programming is a form of convex optimization
[17], [10], which adds convex constraints to a linear formu-
lation. This can be solved efficiently and globally optimally
using interior-point methods, e.g. [18]. By defining part of
the optimization variables as elements of positive semidefinite
matrices, they are restricted to a convex space. In this way
many non-linear problems, e.g., quadratic optimization, can
be reduced to a linear problem with convex constraints (see
[17], [10] for more details).

To give an example of how spectral constraints can be con-
verted into an LMI, we will revisit the origin of semidefinite
programming in FIR filter design, which is the Positive-Real
lemma for FIR systems [8] later simplified in [19], [20] to the
following form:

Lemma 1

Φww(f) =

N−1
∑

n=−N+1

rnej2πnTf ≥ 0

⇔ ∃X ∈ C
N×N | X � 0 (15)

N−1−k
∑

i=0

[X]i,i+k = rk, k = 0, . . . , N − 1

whereX � 0 stands for the positive semidefinite property.
We see that the spectral constraint on the left of (15) are

converted to linear constraints on the elements of a positive
semidefinite matrix. (We also provide a short and simple proof
of (15) in the Appendix).

In the following we will briefly reiterate the LMI results
from [9], as needed for our problem formulation. We use
a simplified and applied version of the main result in [9,
Theorem 3], as suggested in the FIR filter design example
in [9].

Let Γ(f) denote a sum of trigonometric functions, as in a
Fourier series expansion,

Γ(f) =
N−1
∑

−N+1

γnej2πnfT = γTψN (f), (16)

whereγ := [γ−N+1, . . . , γN−1]
T . To implement trigonomet-

ric polynomial bounds of the form

Φww(f) ≤ Γ(f), f ∈

[

α

T
,
1 − α

T

]

, (17)

the following formulation can be used:
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rk =















γk − (g0 + d0h0 + 2d1h1), k = 0
γk − (gk + d−1hk+1 + d0hk + d1hk−1), 1 ≤ k ≤ N − 3
γk − (gN−2 + d0hN−2 + d1hN−3), k = N − 2
γk − (gN−1 + d1hN−2), k = N − 1

(19)

Lemma 2
N−1
∑

n=−N+1

rnej2πnfT ≤ Γ(f), f ∈

[

α

T
,
1 − α

T

]

⇔ ∃X ∈ R
N×N ,Z ∈ R

(N−1)×(N−1) | X,Z � 0, (18)
N−1−k

∑

i=0

[X]i,i+k = gk,

N−2−k
∑

i=0

[Z]i,i+k = hk

where the rn are in the linear relationship to the gn, hn and
γn given in (19)and the dn are chosen such that

1
∑

n=−1

dnej2πnTf = d0 + 2d1 cos(2πnTf) ≥ 0, (20)

for all f ∈
[

α
T

, 1−α
T

]

, e.g., d0 = 2 cos α and d1 = d−1 = −1.

For a complementary formulation where the bound in (18)
is defined onf ∈

[

0, α
T

]

∪
[

1−α
T

, 1
T

]

, we can interchange the
positive and negative intervals in (20) by usingd̃n = −dn.

B. Implementing Linear Matrix Inequalities for Non-Ideal
Analog Pulses

To implement non-constant constraints, we will use trigono-
metric polynomials. It might seem possible to use only one
constraint to represent the whole spectral mask. Although we
can choose the functionΓ(f) as the Fourier series expansion
of any spectral maskS(f) which might serve as a con-
straint, this approximation has well known limits. Especially
at discontinuities, which lead to the Gibbs Phenomenon, this
approximation can lead to problems. More specifically, if
the Gibbs Phenomenon leads to any negative value in an
upper bound, this would make no solution possible, since
Φww(f) ≥ 0 ∀f is an implicit constraint when working with
the autocorrelation coefficientsrn.

We propose to cut the constraints into “well-behaved”
sections, which will then serve as piece-wise continuous
upper bounds. However, when approximating only part of
S(f)/|Q(f)|2 the Fourier series expansion cannot be used
because the cosine functions arenot orthogonal on an arbitrary
interval [α, β]. Instead, minimizing the squared error for the
base function systemψN (f) on some particular interval,

min
γ

∫ β

α

∣

∣S(f) − γT
nψN (f)

∣

∣

2
df, (21)

leads to solving a linear equation system. This is equivalent
to orthogonalizing the autocorrelation matrix of the base
functions on this interval and comes out to:

γH

∫ β

α

ψN (f)ψN (f)T df =

∫ β

α

S(f)ψN (f)T df. (22)

This way, very good approximations of any piece-wise con-
tinuous function serving as an upper bound can be achieved.

As an example see Fig. 3, where the center section of
S(f)/|Q(f)|2 for τ = 0.087 ns is approximated.

To solve the optimal problem formulation in (12), we will
use six LMIs, as suggested in (14). This will make it possible
to enforce the non-constant constraints within the semidefinite
programming framework.

We summarize the steps in finding the solution to (12) with
constraints in (14) as follows:

1) Choose the basic pulseq(t) and design parameterT , fix
the FIR filter lengthN .

2) Define a positive definite matrixX0 for the PSD as-
sumption. This leads to the following linear formulation,

[

IN −F
]

[

r

vec(X0)

]

= 0N×1 (23)

where the matrixF is of dimension N × N2 and
characterizes the linear relationships given in (15).

3) Divide the constraints into piece-wise continuous sec-
tions i, i = 1, . . . , I; there will be one set of constraints
extending from the start ofFp and one from extend-
ing from the end. For each bounding functionsΓi(f),
determine theγi via (22).

4) Define two positive semidefinite matricesXi and Zi

for each piece-wise continuous constraint. Construct the
linear relationships as matrix equations from (19)

[

IN F G(α)
]





r

vec(Xi)
vec(Zi)



 = γi (24)
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whereF is the same as above andG is of dimensions
N × (N − 1)2 and depends onα via thedn.

5) We finally need to solve a standard linear problem

max
x

c̃T x subject toAx = b (25)

with convex constraints on the optimization variables:

x ∈ R
N × vec(X0) × vec(X1) × vec(Z1) × . . .

× vec(XI) × vec(ZI). (26)

The optimization variablesx therefore consist ofr ∈
R

N and the stacked (real) elements of all matricesXi,
Zi. The vector c̃ is c appended with zeros, andA,
b include the PSD assumption from (23) andI linear
constraints of type (24). We use the optimization pack-
age in [18], i.e., SeDuMi 1.1, to solve this optimization
problem.

IV. D ESIGN EXAMPLES

To compare different designs, we will use the the effective
power usage ratioη as the figure of merit, which is defined
as the ratio of achieved signal power to the maximum power
possible limited by the FCC spectral maskS(f) within the
frequency interval of interestFp:

η =

∫

Fp
|P (f)|2 df

∫

Fp
S(f) df

. (27)

Clearly 0 < η ≤ 1. The largerη, the better the performance.
For all design examples we will useT = 0.0333 ns and

accordinglyFp = [0, 15] GHz, the Gaussian Monocycleq(t)
has the following PSD

|Q(f)|2 ∝ f2 exp
[

−π(τf)2
]

(28)

where we change the parameterτ for two different design
examples. We divide the FCC maskS(f) into five sections
as described in (13) and (14) either using the constant basic
pulse PSD assumption or the new non-constant bounds.

A. Losses Due to Assuming the Basic Pulse Having a Constant
PSD

First we will assess the losses of using the piece-wise con-
stant bounds in (13). Assuming the pulse PSD (28) to be flat
over an area of easily 10 GHz is a very strong simplification,
even when using a pulse chosen to be as constant as possible
at the frequencies of interest (see|Q(f)|2 for τ = 0.087 ns in
Fig. 1). Nevertheless, assuming an ideal pulse with flat PSD,
we findΦww(f) that leads toηi

old in Table I. The actual PSD of
the pulse|P (f)|2 = Φww(f)|Q(f)|2 leads toηold in Table I.
Hence, the real pulse|Q(f)|2 leads to a considerable loss of
10 log10 ηi

old/ηold dB, as shown in Table I. These losses are
most noticeable whenη approaches unity for high lengths of
N , but they will be much higher if the basic pulseq(t) cannot
be freely chosen, e.g., due to hardware constraints, because any
other pulse would be even further from the constant spectrum
assumption. We will give a more drastic example later.

So a first evaluation of the simplification of constant basic
pulse PSD shows losses which increase with the optimality
of the solution. This is counter productive to the goal of an
optimal solution.
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Fig. 4. Losses due to non-ideal pulse ofτ = 0.087 ns

N 10 20 50
ηi

old 0.6342 0.8209 0.9299
ideal pulseτ = 0 ns -1.978 dB -0.857 dB -0.321 dB

ηold 0.5350 0.6694 0.7374
real pulseτ = 0.087 ns -2.716 dB -1.743 dB -1.323 dB

losses due to -18.5% -22.6% -26.0%
real pulse 0.738 dB 0.8857 dB 1.002 dB

TABLE I

PERFORMANCE ASSUMING AN IDEAL PULSE AND LOSSES DUE TO REAL

PULSEPSD

B. The Proposed Design With The Basic Pulse Having τ =
0.087 ns

Even when split up into piecewise-continuous intervals, to
get good approximations, the needed upper bounds cannot
have a too high derivative, since this can lead to difficulties
with the Fourier series expansion for smallN . When dividing
by the PSD of the Gaussian monocycle, the derivative can
become very high inΓ1(f) andΓ5(f), c.f., Fig. 2 and (14).

To avoid poor approximations,S(f)/|Q(f)|2 has to be
limited. This is most easily accomplished by cutting off values,
e.g., when values in an interval reach a certain multiple of the
smallest value. In Fig. 5 values were cut off when 6 dB above
the smallest value of their interval.

Fig. 6 shows a design example ofΦww(f). It can be seen
how Φww(f) approachesS(f)/|Q(f)|2 very well (results are
plotted for different values ofN ). Φww(f) would actually
be aboveS(f) before being multiplied with|Q(f)|2, but this
just shows the extent the allowed energy radiation had not been
exploited by assuming the Gaussian monocycle to be constant.

The exact PSD of the waveform|P (f)|2 is obtained after
multiplication with |Q(f)|2 (see Fig. 7). Due to using the
extended definition of the upper bounds, results after mul-
tiplication fit the FCC spectral mask very well. For larger
pulse train lengthN , results forη approach unity (seeηnew

in Tab. II).
The gain in signal power compared to the design of the
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Fig. 5. Adapted mask for pulse ofτ = 0.087 ns and approximations as
Γi(f) usingI = 5 intervals
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Fig. 6. Optimal design forτ = 0.087 ns

original linear pulseshaping problem is between 22% and 32%,
which is between0.8 dB and 1.2 dB. It should be pointed
out that this gain does not require any additional resourcesin
implementation. For the same pulse train lengthN , the gain
is achieved solely by using better coefficientswn.

C. The Proposed Design With The Basic Pulse Having τ =
0.15 ns

To give a more drastic example we look into a design where
the basic analog pulse cannot be optimally selected: assume
the shortest possible pulse isτ = 0.15 ns (see Fig. 1). This
leads to much higher performance losses under the constant
basic pulse PSD assumption, seeηold for τ = 0.15 ns in
Tab. III and Fig. 8, since this pulse is far from constant in
the important band between 3.1 and 10.6 GHz.
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Fig. 7. Optimal design forτ = 0.087 ns after multiplication with pulse
PSD

N 10 20 50
ηnew 0.7135 0.8230 0.9278

τ = 0.087 ns -1.491 dB -0.906 dB -0.325 dB
ηold 0.5350 0.6694 0.7374

τ = 0.087 ns -2.716 dB -1.743 dB -1.323 dB
gain due to +32.6% +21.3% +25.8%

non-constant bounds 1.225 dB 0.837 dB 0.998 dB

TABLE II

PERFORMANCE OF OPTIMIZATION WITH NON-CONSTANT PULSEPSD

(ηNEW)

The improved design using the non-constant upper bounds
can counter the larger part of these losses (seeηnew in Tab. III
and Fig. 9), but for higherN it approaches unity slowly. As
predicted, pulses farther away from the ideal pulse lead to
weaker performance, compared to designs using more ideal
pulses. This is because pulses farther away from the ideal
pulse lead to more challenging FIR filter designs, which in
turn will need a higher filter orderN to achieve the same
results.

Nonetheless, the formulation using non-constant constraints
delivers good results, outperforming the old design by about
3 dB.

N 10 20 50
ηnew 0.5588 0.6518 0.7352

τ = 0.15 ns -2.527 dB -1.859 dB -1.336 dB
ηold 0.2348 0.3205 0.3782

τ = 0.15 ns -6.293 dB -4.942 dB -4.222 dB
gain due to +138% +103% +94.4%

non-constant bounds 3.766 dB 3.083 dB 2.886 dB

TABLE III

PERFORMANCE OF OPTIMIZATION WITH DIFFERENT NON-CONSTANT

PULSEPSD (ηNEW)
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Fig. 8. Losses due to non-ideal pulse ofτ = 0.15 ns
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Fig. 9. Optimal design forτ = 0.15 ns

V. CONCLUSION

We have presented an implementation of semidefinite pro-
gramming based FIR filter design with non-constant con-
straints. To this end we took a closer look at existing lin-
ear matrix inequality formulation used for FIR filter design
via semidefinite programming and chose an implementation
accommodating non-constant bounding functions. We can
approximate any piece-wise continuous bounding function via
a modified Fourier series expansion using non-orthogonal basis
functions.

This implementation leads to an improved UWB pulse-
shaper design, rendering the assumption of a constant basic
analog pulse PSD unnecessary.

In our detailed design examples, we first analyze the loss
in performance incurred when using a real analog pulse, i.e.,
the Gaussian Monocycle, which we first chose to minimize

these losses. Then we show how the new improved design
counters these losses, gaining about 1 dB signal energy in
this best-case scenario, which is closest to the constant pulse
PSD assumption. Second using a pulse farther from the best-
case scenario the losses strongly increase, the improved design
shows increased signal energy of about 3 dB.

The gain in both cases is achieved without any extra
implementation complexity, since it uses the same filter length
N . The performance increase is only due to choosing better
filter coefficients.

APPENDIX

A SIMPLE PROOF OFLEMMA 1

By definition, a square Hermitian matrixX ∈ C
N×N is

positive semidefinite iff:

∀y ∈ C
N : yHXy ≥ 0. (29)

As a special case we can choose the followingy:

y = [1, e2πTf , . . . , e2π(N−1)Tf ]

⇒ yHXy =

N−1
∑

i=0

N−1
∑

k=0

[X]i,k ej2π(k−i)Tf . (30)

When sorting the summation by exponents, we get the left
side of (15) using the specified linear relationship betweenrn

and the elements ofX. Hence, the right-hand-side of (15) is
a sufficient condition.

To prove necessity, we look at the left side of (15) and state
that if rn satisfies this condition, we can always find awn,
e.g., using spectral factorization [21], leading to

N−1
∑

n=−N+1

rnej2πnTf =

∣

∣

∣

∣

N−1
∑

n=0

wnej2πnTf

∣

∣

∣

∣

2

=
∣

∣wHy
∣

∣

2

= yH
(

wwH
)

y

(31)

using the definition ofy from (30) andw = [wo, . . . , wN−1]
H .

This immediately proves (15) is a necessary condition, since
we have shown that there exists at least one satisfactoryX:
wwH a positive semidefinite matrix with diagonals that sum
to

∑N−1−n

k=0 wkwk+n = rn.

REFERENCES

[1] K. Siwiak and D. McKeown,Ultra-Wideband Radio Technology. John
Wiley & Sons, 2004.

[2] M. Ghavami, L. B. Michael, and R. Kohno,Ultra Wideband Signals and
Systems in Communication Engineering. John Wiley & Sons, 2004.

[3] M. G. Di Benedetto and G. Giancola,Understanding Ultra Wide Band
Radio Fundamentals. Prentice Hall PTR, 2004.

[4] S. Stroh, “Ultra-wideband: Multimedia unplugged,”IEEE Spectrum,
vol. 40, no. 9, pp. 23–27, Sept. 2003.

[5] Federal Communications Commission, “In the matter of revision of
part 15 of the commission’s rules regarding ultra-wideband transmission
systems, First Report and Order,” Apr. 2002.

[6] J. H. McClellan and T. W. Parks, “A unified approach to the design
of optimum FIR linear-phase digital filters,”IEEE Trans. Circuit and
Systems, vol. 20, no. 6, pp. 697–701, Nov. 1973.

[7] X. Luo, L. Yang, and G. B. Giannakis, “Designing optimal pulse-shapers
for UWB radios,” Journal of Communications and Networks, vol. 5,
no. 4, pp. 344–353, Dec. 2003.



BERGERet al.: IMPROVING THE UWB PULSESHAPER DESIGN 9

[8] S.-P. Wu, S. Boyd, and L. Vandenberghe, “FIR filter designvia semidefi-
nite programming and spectral factorization,” inProceedings of the 35th
Conference on Decision and Control, vol. 1. IEEE, Dec. 1996, pp.
271–276.

[9] T. N. Davidson, Z.-Q. Luo, and J. F. Sturm, “Linear matrix inequality
formulation of spectral mask constraints with applications to FIR filter
design,”IEEE Trans. Signal Processing, vol. 50, no. 11, pp. 2702–2715,
Nov. 2002.

[10] S. Boyd and L. Vandenberghe,Convex Optimization. Cambridge, U.K.:
Cambridge University Press, 2004.

[11] X. Wu, Z. Tian, T. N. Davidson, and G. B. Giannakis, “Optimal
waveform design for UWB radios,”IEEE Trans. Signal Processing,
vol. 54, no. 6, pp. 2009–2021, June 2006.

[12] L. Yang and G. B. Giannakis, “Ultra-wideband communications: An
idea whose time has come,”IEEE Trans. Signal Processing, vol. 21,
no. 6, pp. 26–54, Nov. 2004.

[13] J. G. Proakis,Digital Communications, 4th ed. New York: McGraw-
Hill, 2001.

[14] M. Z. Win, “Spectral density of random UWB signals,”IEEE Commun.
Lett., vol. 6, no. 12, pp. 526–528, Dec. 2002.

[15] ——, “A unified spectral analysis of generalized time-hopping spread-
spectrum signals in the presence of timing jitter,”IEEE J. Select. Areas
Commun., vol. 20, no. 9, pp. 1664–1676, Dec. 2002.

[16] B. Parr, B. L. Cho, K. Wallace, and Z. Ding, “A novel ultra-wideband
pulse design algorithm,”IEEE Commun. Lett., vol. 7, no. 5, pp. 219–
221, May 2003.

[17] L. Vandenberghe and S. Boyd, “Semidefinite programming,”SIAM
Review, vol. 31, no. 1, pp. 49–95, Mar. 1996.

[18] J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization
over symmetric cones,”Optimization Methods and Software, vol. 11-12,
pp. 625–653, 1999.

[19] T. N. Davidson and J. F. Sturm, “A primal positive real lemma for
FIR systems, with application to filter design and spectral factorization,”
Communications Research Laboratory, McMaster University, Hamilton,
Canada, Technical report, Feb. 2000.

[20] T. N. Davidson, Z.-Q. Luo, and K. M. Wong, “Design of orthogonal
pulse shapes for communications via semidefinite programming,”IEEE
Trans. Signal Processing, vol. 48, no. 5, pp. 1433–1445, May 2000.

[21] B. D. Anderson and K. L. Hitz, “Recursive algorithm for spectral
factorization,”IEEE Trans. on Circuits and Systems, vol. 21, no. 6, pp.
742–750, Nov. 1974.

PLACE
PHOTO
HERE

Christian R. Berger (S’05) received the Dipl.-Ing.
in electrical engineering in 2005, from the Univer-
sität Karlsruhe (TH), Germany. During this degree
he also spent a semester at the National University of
Singapore (NUS), where he took both undergraduate
and graduate courses in electrical engineering. He
is currently pursuing the Ph.D. degree in electri-
cal engineering at the University of Connecticut
(UCONN), Storrs.

His research interests lie in the areas of communi-
cations and signal processing, including distributed

estimation in wireless sensor networks, wireless positioning and synchroniza-
tion, underwater acoustic communications and networking.

PLACE
PHOTO
HERE

Michael Eisenacher received the Dipl.-Ing. from
the Technical University of Darmstadt, Germany in
2002 and the Ph.D. degree from the the Universität
Karlsruhe (TH), Germany in 2006 both in electrical
engineering.

He is currently with Continental Automotive Sys-
tems, Lindau, Germany, working on the development
of automotive radar sensors. His research interests
are signal processing for UWB systems and radar
sensors. He was involved in the miniWatt project,
funded by the German Ministry of Research and

Technology, and the integrated research project PULSERS (Pervasive Ultra-
Wideband Low Spectral Energy Radio Systems), funded by the European
Union IST programme. Mr. Eisenacher is an author of several conference and
journal papers.

PLACE
PHOTO
HERE

Shengli Zhou (M’03) received the B.S. degree
in 1995 and the M.Sc. degree in 1998, from the
University of Science and Technology of China
(USTC), Hefei, both in electrical engineering and
information science. He received his Ph.D. degree
in electrical engineering from the University of
Minnesota (UMN), Minneapolis, in 2002. He has
been an assistant professor with the Department of
Electrical and Computer Engineering at the Univer-
sity of Connecticut (UCONN), Storrs, since 2003.

His research interests lie in the areas of com-
munications and signal processing, including multi-user andmulti-carrier
communications, communications with feedback, wireless positioning and
synchronization, underwater acoustic communications and networking, and
cross-layer designs. He has served as an associate editor for IEEE Transactions
on Wireless Communications since 2005.

PLACE
PHOTO
HERE

Prof. Dr. rer.nat. Friedrich K. Jondral received
a Diploma in mathematics and a Doctoral degree
in natural sciences from the Technische Universität
Braunschweig, Germany, in 1975 and 1979, respec-
tively. During the winter semester 1977/78 he was a
visiting researcher to the Department of Mathemat-
ics, Nagoya University, Japan. From 1979 to 1992
Dr. Jondral was an employee of AEGTelefunken
(now European Aeronautic Defence and Space Com-
pany, EADS), Ulm, Germany, where he held various
research, development and management positions.

Since 1993 Dr. Jondral has been Full Professor and Head of theInstitut
für Nachrichtentechnik at the Universität Karlsruhe (TH), Germany. Here,
from 2000 to 2002, he served as the Dean of the Department of Electrical
Engineering and Information Technology. During a sabbatical in the summer
semester 2004, Dr. Jondral was a visiting faculty to the Mobile and Portable
Radio Research Group of Virginia Tech, Blacksburg, VA. His current research
interests are in the fields of ultra wideband communications, software defined
and cognitive radio, signal analysis, pattern recognition, network capacity
optimization and dynamic channel allocation.


