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Abstract— A critical obstacle for ultra-wideband (UWB) com- UWB signal must either occupy an absolute 10 dB bandwidth
munications is conformity to restrictions set on the allowed of 500 MHz or a relative bandwidth of 20% with respect to
interference to other wireless devices. To this end UWB signals the center frequency. Since such large unoccupied barfasvidt

have to comply with stringent constraints on their emitted power, .
defined by the FCC spectral mask. Different UWB pulseshaper do not exist, UWB has to work as an overlay system that re-

designs have been studied to meet the spectral mask, out of whichoccupies frequency bands that are already used by other radi
an approach based on digital FIR filter design via semidefinite systems. Coexistence can be achieved because UWB spreads
programming has stood out. However, so far this approach has jts signal energy over a very large bandwidth which resuits i
assumed an ideal basic analog pulse to use piece-wise constant, eyiremely low power spectral density (PSD). Due to this
constraints for the digital filter design. Since any practical analog low PSD. UWB si | hidd der the back d
pulse does not have a flat spectrum, using piece-wise constant\/ery ow ’ signals are hidaen unaer _e ackgroun
constraints leads to considerable power loss. Avoiding such anoise and therefore do not cause noteworthy interference to

loss has motivated us to implement the exact constraints through other narrowband systems (narrowband compared to UWB).

non-constant piece-wise continuous bounds. Relative to the dgs The only authority which already admits UWB devices is

assuming an ideal basic analog pulse, our design examples show . L S
that the transmission power can be enhanced considerably while th€ FCC [5]. The main restriction is a spectral mask, which is

obeying the spectral mask. Such an improvement comes with no piece-wise constant as depicted in Fig. 1. For communicatio

extra cost of implementation complexity. handhelds the maximum PSD in the main frequency band
Index Terms— Linear matrix inequalities, pulseshaper design, Petween 3.1 and 10.6 GHz is -41.3 dBm/MH_z. This limits
semidefinite programming, spectral mask, ultra-wideband. the range of UWB devices to about 10 m for high data rates.
Thus, one of the fundamental challenges is the maximization
. INTRODUCTION of the transmitted power while complying with the spectral

. If the spectral properties are not optimized, the output
wer has to be lowered to fulfill the mask requirements in
gvery frequency band.

LTRA-wideband (UWB) transmission is a fast emergin
technology with unique properties and has been a subj
of enormous research and development efforts in recensye
It is a promising approach for high-speed short-range e@=l Since the ultra-short pulses used are generated with analog
radio links, very precise localization and ranging, anduggb Ccomponents, e.g., the Gaussian Monocycle as depicted in
penetrating radar [1], [2], [3]. One target application et Fig. 1, their spectral shape is not easy to design. Replacing
Wireless Personal Area Network (WPAN) where the long-terfi€ analog pulses with digital designs is prohibited by the
goal is the abolition of all data wires [4]. huge bandwidth and the resulting sampling rates. Using an
Although there are several definitions for UWB, the Fed=IR prefilter before the analog pulse generators, the sgectr
eral Communications Commission (FCC) published a widefape can be controlled, but due to the particular problem
accepted definition that characterizes UWB only by its banfrmulation, designing the FIR filter coefficients to maxaei

Wldth, independent of the emp]oyed modulation scheme [5]“5]6 resultant transmit power is not trivial. TraditionalRFI
design algorithms like the Parks-McClellan algorithm [6}vh
Manuscript received December 5, 2006; revised Juni 13, 200€.work  heen ysed to approximate the FCC spectral mask [7] but the

of C. R. Berger and S. Zhou was supported in part by the Offichlafal ducti i h fil d i-riople desi
Research under Grant N00014-07-1-0429 and by Universit@afnecticut € uction to linear-phase filters and an equi-ripple desiges

Research Foundation under internal Grant 448485. Thisrpape presented Not lead to an optimal solution in the sense of maximizing the
in part at the 17th IEEE International Symposium on Persdnalbor and  transmit power

Mobile Radio Communications, Helsinki, Finland, Septembe0&0The ) P T ] o

associate editor coordinating the review of this manusaimd approving To find the optimal FIR filter coefficients, we need to
it for publication was Dr. Brian Sandler. maximize the transmit power, while strictly enforcing the®

C. R. Berger and S. Zhou are with the Department of Electrical a | k. Thi . f lati be i | d
Computer Engineering, University of Connecticut, 371 Felidfi Way U- spectral mask. IS optimum formulation can be implemente

2157, Storrs, Connecticut 06269, USA (email: crberger@eognn.edu; Via FIR filter design using semidefinite programming [8],

shengli@engr.uconn.edu). . - _ 9], which is a type of convex optimization [10]. Numerical
M. Eisenacher and F. Jondral are with the Institirt Nachrichtentechnik, . | . v handl fini b ; .

Universi@at Karlsruhe (TH), Germany (email: jondral@int.uni-kartsewde). Imp ementa_mon can only qn e afinite num_ ero co_ns_tsal_nt
Digital Object Identifier 10.1109/JSTSP.2007.906566 therefore either the constraints were approximated withitefi

1932-4553/$25.000) 2007 IEEE



2 IEEE JSTSP: PERFORMANCE LIMITS OF ULTRA-WIDEBAND SYSTEMS

Il. SIGNAL MODEL AND PULSESHAPINGPROBLEM
A. Sgnal Model

Our signal model will be impulse radio (IR) with time
hopping (TH) and binary pulse amplitude modulation (PAM).

w Ultra-short pulses are the building block of this transiioiss
= scheme; the basic pulse on the channebp(s), e.g., the
E ‘ ‘ Gaussian Monocycle [12], with powef p?(t)dt = . One
S g5 o[ 1= 0087 15 : . . pulse is sent during each frame duratibn Each data symbol
? — — —1=015ns \ consists of Ny pulses, resulting in a total symbol length
& -70 FCC indoor limit| \' 1 T, = N¢Ty. The signal model can be expressed as:
-75 : : : : \\ : 1 ;M
‘ ‘ \ u(t) = b t—1Ty — kT, — ¢/T,), 1
-80 . . s . . ; . \ J () Ek: k Nf{:‘ lz:; p( f l ) ( )
\
'850 5 10 15 where b, are the PAM symbolg—1, 1} for each bit, T, is
Frequency [GHz] th; chi; pslriod and; are the user-specific TH codes, with
Cile < Ly, Vi.

Fig. 1.d FCC spectral mask and PSD of the Gaussian Monocyctle f00.15 The PSD can be calculated in a standard fashion as [13]:
ns andr = 0.087 ns

Ny—1 2

Z d2m (=T —aTe)f | 2)

=0

1

— 2
= 7P

q)u,u (f)

set of samples or the problem was cast into the linear matrix
inequalities (LMI) framework [9]. The first approach is arWhen assuming the TH code to be integer-valued, indepen-
obvious approximation of the truly optimal solution, whitee dent and uniformly distributedd,,,(f) can be approximated
second so far has only been used in conjunction with assumamg[14], [15]:

?n |c_JeaI b§5|c analog pulse (completely constant PSD)irigad Dou(f) ~ 1 \P(f)]2. 3)

0 piece-wise constant constraints [11]. Tse

We are motivated to address the optimal pulseshaper desig{ys, the PSD of the basic pulsé) is crucial to the PSD of

in the semidefinite programming framework. To avoid thghe complete UWB signal. Therefore, it is necessary to select
pOWer IOSS due to the p|ece'W|Se constant ConStraIntS, w%l‘use with opt|ma| Spectra| properties_

use non-constant piece-wise continuous bounds that st th

optimal problem formulation, without having to use eithér o

the aforementioned simplifications. We use a modified FouriB. Pulseshaping Problem

series expansion using non-orthogonal basis functiongto a The basic pulseg(t) used in UWB systems are created

proximate an arbltr_ary constraint. Th|§ way we can fmd tr‘\ﬁith analog RF components. Therefore, designing the pulse
(near-Joptimal solution for arbitrary basic analog pulsesile to comply with some specific demands like the FCC spectral
strictly enforcing the FCC spectral mask. We will give ditdi ) i< rather difficult (see Fig. 1). Basically only the guls
de3|gn_examples, th_at show con3|derabl_e Improvement on %ation and amplitude can be controlled which correspond
transmit power relative to that of suboptimal approaches. to the bandwidth and power in the PSD respectively. Differ-

The rest of the paper is as follows. In Section Il went digitally created pulse shapes have been suggested [16]
will go over the standard signal model of impulse radio anghereby those pulses have to be generated of digital samples
describe the challenges of the pulseshaper design probl&@ince the pulses need bandwidths of several GHz, sampling
In Section Ill, we will reiterate some background of the LMhanosecond length pulses is highly demanding.
formulation for FIR filter design and show how we implement ysing transmit filters to adapt to spectral constraints s al
non-constant bounds. Design examples will be presentedifficult to implement, since analog filters with an enormous
Section IV and last we will conclude in Section V. bandwidth would have to be used. Instead, using an FIR filter

We want to use the following notation. Bold lower and uppdike approach [7], [11], each basic pulse is repeatedimes
case letters refer to vectors and matrices, respectivéig Twith arbitrary amplitudes, created by the pulse generatsesl
matrix I, will be the identity matrix ofk x k, and0,,., is already for modulation. This is equivalent to prefilteririge t
the matrix of all zeros, with dimensiom x k. The superscript signal before using the basic pulse as a transmit filter:
“T» denotes the transpose" denotes the Hermitian, i.e.,
the complex conjugate transpose. The operato(-) applied 1

()= b
k

on matrices will be a stacked vector of all matrix elements, V/Nye
column by column, and thex" operator will denote linear

convolution. We useR and C to denote the sets of real andNow let ¢(¢) denote the analog pulses created by the usual
complex numbers respectively. pulse generators which can be chosen based on hardware

> St —1Ty — kT —aT) +p(t). (4)
=0
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constraints. With prefiltering byw,,, which will be design -30 , ,
parameters, the overall pulgét) becomes _35
s ~40
p(t) = > wnq(t —nT) = w(t) *q(t) (5)
n=0 -45

wherebyw(t) = SN 1w, 6(t—nT). The PSD is accordingly ~50

IP()]? = @uu(F) Q)2 (6)

Let S(f) denote the FCC spectral mask. The pulseshapin
problem can now be formulated as

PSD [dBm/MHZz]
> &
o ol

7o b - - =5s()

wax [[POPF subjest oP(DP <50, vf ) | Q0P = 0.087ns |
| SMIQMI
i.e., maximizing the transmit power while adhering to all  -80 5 1'0 5

spectral constraints. To solve this non-linear optimati
problem is not trivial. We will next look at some existing

approaches. Fig. 2. To formulate completely linear constraints, we W&ef)/|Q(f)|?
as upper bound.

Frequency [GHZz]

C. Existing Approaches

Existing approaches are based on FIR filter design, e.g., thésince the problem formulation in (7) is non-linear un,,
Parks McClellan algorithm can be used to optimize the set &k find a linear problem we will reformulate it with respect to
w, [7]. Even though these approaches can deliver good results,
optimality is not guaranteed, since the algorithm depemus o
equi-ripple design and does not directly maximize the trahs /
energy. Fr

The prominent approach is to employ FIR filter design Vigherec — ff ¥ (f) |Q(f)|2 df is the projection of Q(f)[2
semidefinite programming. To use this approach the problgjRig the basls functions.

formulation is changed to a linear problem as follows. Due ey the additional constraint thag are a valid autocor-
to optimizing over thew,,, we only influenced,,., (f), which relation sequence, which is equivalent®q,, (f) > 0, Vf,
can be calculated as we can write the linear optimization problem as,

P(f)Pdf = /F (1) QU df =1Te,  (11)

2

N-1 4 N-1 . S(f)
Cuu(f) = |D wae® T = 3" 1 e?™7(@)  maxrTc subject tod < rTepy(f) < s, f€Fp.
n=0 n=—N-+1 r ‘Q(f)l (12)

with 7, = EkN:_Ol_" wrwesn being the non-periodic auto- This Igads to a new sgt of constraints, e.g., see Fig. 2 for a
correlation sequence of the,. Assuming reaks,, we can Gaussian monocycle with = 0.087 ns. As stated before, this

further simplify it to formulation fits a typical FIR filter design. problem, sp'ehi.igf
upper and lower bounds on the PSD. Since we are indifferent
N-1 " as to the gain in individual parts of the spectrum, the lower
Duu(f) = rmo+2) rucos2rnTf) =r"4x(f)(9) bound is not very demanding, but instead we maximize the
n=1 total energy within the frequency range of interest.
where we define the vectors Since the optimization problem in (12) has an infinite
1 number of linear constraints, one approach is based on sam-
r 2 pling the constraints and introduces an additional relarat
0 cos[2m fT) :
_ . —9 to ensure compliance for afi € Fp.
r= : ) ¢N(f) - . . . .
: The approach we want to focus on is based on replacing
N-1 cos[2m(N — 1) fT the infinitely many constraints with a finite size linear matr

(10) equation and limiting some of the optimization variables as

The PSD®,,,(f) will be periodic in the additional design elements of semidefinite matrices [11]. This can be achieved
parameterl /T, therefore we choose the frequency rae using a linear matrix inequality (LMI) formulation derived
to be[0,1/2T] since this is the interval in which we will be for FIR filter design [9], but so far has only been used in
able to affect the design. Outside this interval we will aseu conjunction with approximating the basic analog puigéf)|?
|Q(f)|? to be small enough to attenuate the periodic repetitioas constant withinFp. The formulation does not depend on
of ®,,.,(f). Accordingly T and ¢(¢) will have to be chosen an equi-ripple design and achieves globally optimal sohsi
jointly. via convex optimization.
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The approximation of a constant basic analog pulse PSDIII. THE DESIGN PROCEDURE WITHNON-CONSTANT
leads to a simplified problem formulation within the LMI UPPERBOUNDS
framework [9]. Assuming a constant PSD basic pulse, one
could use the following six constraints to follow the piece® Review of Linear Matrix Inequalities

wise constant spectral mask(f): Linear matrix inequalities (LMI) are used in FIR filter

design to convert spectral constraints into linear coimggan

Puwu(f) 20, feFp elements of positive semidefinite matrices. This way, the Fl
oy (f) < =753 dB, f € [0,1.6] GHz filter design problem can be effectively solved via semidtfin
Do (f) < —53.3 dB, f € [0,1.9] GHz programming.
®40(f) < —51.3 dB, f € [0,3.1] GHz (13) Semidefinite programming is a form of convex optimization
B (f) < —41.3 dB, f € Fp [17], [10], which adds convex constraints to a linear formu-

WwAS = ’ ’ lation. This can be solved efficiently and globally optingall
Py (f) < —51.3 dB, f € [10.6,1/2T]GHz using interior-point methods, e.g. [18]. By defining part of

) ) . . . . the optimization variables as elements of positive sermitefi

The filter design with the piece-wise constant constraims @,arices, they are restricted to a convex space. In this way
Py (f) Is solved in [11]. many non-linear problems, e.g., quadratic optimizatican ¢

Even though there are pulses which have a somewlt reduced to a linear problem with convex constraints (see
constant PSD in the spectrum of interest (see Fig. 1), tk['@]' [10] for more details).
does not hold for arbitrary analog pulses, e.g., dictatéd byTg give an example of how spectral constraints can be con-
hardware constraints. We will later quantify the losses tue yerteq into an LMI, we will revisit the origin of semidefinite
this simplification in the design, but in any case this does Ngrogramming in FIR filter design, which is the Positive-Real
qualify as an optimal solution. lemma for FIR systems [8] later simplified in [19], [20] to the

following form:

D. Proposed Solution
Lemma 1

To achieve an optimal solution, arbitrary constraints am th

PSD will have to be implemented in the LMI formulation. . = i2mnT
. . . . . D (f) = Z rpe’ >0
This way we will be able to provide optimal solutions for S
arbitrary analog pulses. Naturally some pulses will hawitebe HXM CNXN | X > 15
performance than others; and it seems likely that pulseseclo A € | X =0 (15)
to the constant PSD approximation will perform the best. In Nk
any case, for any given analog pulse we will be able to supply Z Xliih =1y k=0,...,N 1
an optimal set of coefficients,,. =0

The LMI formulation in [9] provides piece-wise constantyhereX = 0 stands for the positive semidefinite property.
but also piece-wise trigonometric polynomial constraiM®  \ye see that the spectral constraint on the left of (15) are
will use the latter to implement piece-wise continuous CoRgynyerted to linear constraints on the elements of a pesitiv

straint functions['(f), which enables us to enforce any congemidefinite matrix. (We also provide a short and simple froo
straints, as long as they have a finite number of discontasuit of (15) in the Appendix).

As will be clear later on, one set of new constraints would be: In the following we will briefly reiterate the LM results

Buu(f) >0, fEFp from [9]_,_ as needed for our problem formu_lation. We_,- use
a simplified and applied version of the main result in [9,
Py (f) <Tu(f), f €[0,1.61] GHz Theorem 3], as suggested in the FIR filter design example
Puw(f) < T2(f), f €[0,1.99] GHz 1y nIEl
., (f) <Ts(f), f€10,3.1]GHz (14) Let I'(f) denote a sum of trigonometric functions, as in a
By (f) <Tulf), f € Fp Fourier series expansion,
Do (f) <Ts(f), f € [10.6,1/2T] GHz N-1
F(f) = Z 'Vnej%me = PYT,I:DN(f)y (16)
whereT';(f) are non-constant. See e.g., Fig. 5 for the con- —N+1
straints due to a Gaussian Monocycle basic pulse with
0.087 ns. The questions we address in this paper are: where~y = [y_ni1,-..,7v—1]T. To implement trigonomet-

1) How can we implement arbitrary non-constant bounds ric polynomial bounds of the form

as piece-wise trigonometric polynomials provided by the
LMI framework? Py (f) <T(f), fE€ {
2) What upper bounds can we use and which ones lead to

the best performance? the following formulation can be used:

o 1—04]’ (17)

T T
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Y — (90 + doho + 2d1hy), k=0

S (9k + d—1his1 + dohi + dihg—1), 1<k<N-3 (19)
Y& — (gnN—2 + dohn—2 + dihn_3), k=N-2
Y& — (gn—1 + dihN_2), k=N-1

Lemma 2
N-—1

>

n=—N+1 :|
& IX e RVN Z e RV-DXIN-1 | X 7 >0,

a l—«

Tn6j27me < F(f), fe [T’ —

(18)

As an example see Fig. 3, where the center section of
S(£)/1Q(f)]? for T = 0.087 ns is approximated.

To solve the optimal problem formulation in (12), we will
use six LMIs, as suggested in (14). This will make it possible
to enforce the non-constant constraints within the sermefi

N-1-k N-2—k

Z (Xliitk = Gk, Z (Z]; itk = hi

1=0 =0
where the r,, are in the linear relationship to the g,,, h,, and 1)
v, given in (19)and the d,, are chosen such that
2)
1
Z dne?*™ 1] = dy + 2d, cos(2rnTf) > 0,

n=-—1

for all f € [2,

(20)

l—a
T

], eg.,dyp=2cosaandd, =d_; = —1.

For a complementary formulation where the bound in (18)
is defined onf € [0, #] U [172, 4], we can interchange the
positive and negative intervals in (20) by usidg = —d,,.

3)

B. Implementing Linear Matrix Inequalities for Non-ldeal
Analog Pulses

To implement non-constant constraints, we will use trigono
metric polynomials. It might seem possible to use only one
constraint to represent the whole spectral mask. Although w
can choose the functiofi( /) as the Fourier series expansion
of any spectral maskS(f) which might serve as a con-
straint, this approximation has well known limits. Espédgia
at discontinuities, which lead to the Gibbs Phenomenoss, thi
approximation can lead to problems. More specifically, if
the Gibbs Phenomenon leads to any negative value in an
upper bound, this would make no solution possible, sinc
D, (f) > 0V is an implicit constraint when working with
the autocorrelation coefficients,.

We propose to cut the constraints into “well-behaved’
sections, which will then serve as piece-wise continuou
upper bounds. However, when approximating only part o
S(f)/1Q(f)|? the Fourier series expansion cannot be use
because the cosine functions agt orthogonal on an arbitrary
interval [, 5]. Instead, minimizing the squared error for the
base function systerp 5 (f) on some particular interval,

PSD [dBm/MHZz]

'/5!Sf— T () df (21)
min [ [5(0) = wTwn(D[* df,

leads to solving a linear equation system. This is equivaler
to orthogonalizing the autocorrelation matrix of the base
functions on this interval and comes out to:

B8 B
i / D (Fon ()T df = / S(ey(HTd. (22)

programming framework.
We summarize the steps in finding the solution to (12) with
constraints in (14) as follows:

Choose the basic pulgé¢t) and design parametér, fix
the FIR filter length/V.

Define a positive definite matriX, for the PSD as-
sumption. This leads to the following linear formulation,

F |

where the matrixF is of dimension N x N2 and
characterizes the linear relationships given in (15).
Divide the constraints into piece-wise continuous sec-
tionsi, i = 1,...,I; there will be one set of constraints
extending from the start ofr, and one from extend-
ing from the end. For each bounding functiofig f),
determine they, via (22).

r

[ Iy (X (23)

) ] — 0w

4) Define two positive semidefinite matric@§; and Z;

for each piece-wise continuous constraint. Construct the
linear relationships as matrix equations from (19)

vee(X;)
vec(Z;)

[Iv F G(a) ] =v (@9

-30 T T

-35

-40

-45

5ol
55}
6o}
g5}

_70 -

SN |

—_—T0

_75 F

-80

10
Frequency [GHZz]

5 15

This way, very good approximations of any piece-wise COIFig. 3. Approximation ofS(f)/|Q(f)|2 in the center interval through an
tinuous function serving as an upper bound can be achieveeher bound functiod(f).
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whereF is the same as above aMél is of dimensions
N x (N —1)? and depends on via thed,,.
5) We finally need to solve a standard linear problem

max¢'x  subject toAx =b (25)

with convex constraints on the optimization variables:

x € RY x vec(Xg) x vec(Xy) x vec(Zy) X ...
x vec(Xy) x vec(Zy). (26)

The optimization variables therefore consist of €
RY and the stacked (real) elements of all matridgs
Z;. The vectorc is c appended with zeros, and,
b include the PSD assumption from (23) ahdinear
constraints of type (24). We use the optimization pack
age in [18], i.e., SeDuMi 1.1, to solve this optimization ,
problem. 5

PSD [dBm/MHZz]

Frequency [GHZz]

IV. DESIGN EXAMPLES

To compare different designs, we will use the the effectiv@g. 4. Losses due to non-ideal pulseof= 0.087 ns
power usage rati@) as the figure of merit, which is defined

as the ratio of achieved signal power to the maximum power N - 2242 0%‘;09 055299
. .. L nLId . . .
possible I|r_n|ted by the FCC spectral maskf) within the ideal pulsér = 0 ns | -1.978 dB  -0.857 dB  -0.321 dB
frequency interval of interesk,: Told 0.5350 0.6694 0.7374

P 2 real pulser = 0.087ns | -2.716 dB -1.743dB  -1.323 dB
. ff,, [P(HI” df 27 losses due to -18.5% -22.6% -26.0%
=T S d (27) real pulse 0738 dB 08857 dB  1.002 dB
Fp
TABLE |
Clearly 0 < n < 1. The largern, the better the performance.
For a” design examples we WI“ UsE — 0.0333 ns and PERFORMANCE ASSUMING AN IDEAL PULSE AND LOSSES DUE TO REAL
’ PULSEPSD

accordinglyF, = [0,15] GHz, the Gaussian Monocyclg)
has the following PSD

QUNI? o f2 exp [~m(7f)?] (28) _ , _
. _ B. The Proposed Design With The Basic Pulse Having 7 =
where we change the parameterfor two different design 0.087 ns
examples. We divide the FCC masKf) into five sections . . _ _ . .
as described in (13) and (14) either using the constant basi&ven when split up into piecewise-continuous intervals, to

pulse PSD assumption or the new non-constant bounds. 9et good approximations, the needed upper bounds cannot
have a too high derivative, since this can lead to difficaltie

A. Losses Dueto Assuming the Basic Pulse Having a Constant ~ with the Fourier series expansion for small When dividing
PSD by the PSD of the Gaussian monocycle, the derivative can

First we will assess the losses of using the piece-wise cdi:come very high i, (f) andI'5(f), c.f., Fig. 2 and (14).
stant bounds in (13). Assuming the pulse PSD (28) to be flatTo avoid poor approximationss(f)/|Q(f)[> has to be
over an area of easily 10 GHz is a very strong simplificatiofimited. This is most easily accomplished by cutting offues,
even when using a pulse chosen to be as constant as pos$iifle When values in an interval reach a certain multiplenef t
at the frequencies of interest (sgg(f)|? for 7 = 0.087 ns in smallest value. In Fig. 5 values were cut off when 6 dB above
Fig. 1). Nevertheless, assuming an ideal pulse with flat PStbe smallest value of their interval.
we find®,,,, (f) that leads tay’,, in Table I. The actual PSD of ~ Fig. 6 shows a design example &f,,,(f). It can be seen
the pulse|P(f)[2 = @, (f)|Q(f)|? leads ton.g in Table I. how @, (f) approaches(f)/|Q(f)|* very well (results are
Hence, the real pulsg)(f)|? leads to a considerable loss ofplotted for different values ofV). @, (f) would actually
101og1o nt1q/M01a dB, @s shown in Table I. These losses aree aboveS(f) before being multiplied withQ(£)|?, but this
most noticeable when approaches unity for high lengths ofjust shows the extent the allowed energy radiation had ret be
N, but they will be much higher if the basic pulgé) cannot exploited by assuming the Gaussian monocycle to be constant
be freely chosen, e.g., due to hardware constraints, beeays ~ The exact PSD of the waveforfi#(f)|? is obtained after
other pulse would be even further from the constant spectrunultiplication with |Q(f)|?> (see Fig. 7). Due to using the
assumption. We will give a more drastic example later. extended definition of the upper bounds, results after mul-

So a first evaluation of the simplification of constant basiiplication fit the FCC spectral mask very well. For larger
pulse PSD shows losses which increase with the optimaljylse train lengthV, results forn approach unity (se@new
of the solution. This is counter productive to the goal of aim Tab. II).
optimal solution. The gain in signal power compared to the design of the
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N N
I I
= =
S S
0 s}
p= k=]
o () o)
9 -55 2 r) 1 2
_60 L B
s
-65 ‘\\,r - . . . . 4
2
1 | S(/IQM)
_70 1 1 ' 1 1
0 5 10 15 5 10 15
Frequency [GHZz] Frequency [GHZz]
Fig. 5. Adapted mask for pulse of = 0.087 ns and approximations as Fig. 7. Optimal design forr = 0.087 ns after multiplication with pulse
T';(f) using = 5 intervals PSD
-30 T T N 10 20 50
Tnew 0.7135 0.8230 0.9278
=35} : : g : : b : : 1 7 =0.087 ns -1.491 dB  -0.906 dB  -0.325 dB
Tlold 0.5350 0.6694 0.7374
-40 7 = 0.087 ns 2716 dB  -1.743dB -1.323 dB
gain due to +32.6% +21.3% +25.8%
-45 non-constant bounds 1.225 dB  0.837 dB  0.998 dB
50 TABLE I

PERFORMANCE OF OPTIMIZATION WITH NONCONSTANT PULSEPSD
(UNEW)

PSD [dBm/MHz]
o
(83

N =10
. ' | E : ég 1 The improved design using the non-constant upper bounds
| - : , soio0E | 1 can counter the Iarge_r part of these losses f@g@m Tab. I
L : . and Fig. 9), but for highetV it approaches unity slowly. As
5 10 15 predicted, pulses farther away from the ideal pulse lead to
Frequency [GHz] weaker performance, compared to designs using more ideal
pulses. This is because pulses farther away from the ideal
Fig. 6. Optimal design forr = 0.087 ns pulse lead to more challenging FIR filter designs, which in
turn will need a higher filter ordeV to achieve the same
o _ _ results.
original linear pulseshaping problem is between 22% and,32% Nonetheless, the formulation using non-constant comggrai

which is betweer).8 dB and1.2 dB. It should be pointed __. . :
out that this gain does not require any additional resouru:esde“\/ers good results, outperforming the old design by &bou

implementation. For the same pulse train lengththe gain
is achieved solely by using better coefficients.

N 10 20 50
Tinew 0.5588 0.6518 0.7352

: : : _ T =0.15ns -2.527 dB  -1.859 dB  -1.336 dB
C. The Proposed Design With The Basic Pulse Having 7 = o 55345 59905 55780

0.15 ns 7 =0.15ns -6.293dB  -4.942dB  -4.222 dB
. . . . gain due to +138% +103% +94.4%

To give a more drastic example we look into a design where || © -t bound$ 3.766 dB  3.083 dB  2.886 dB

the basic analog pulse cannot be optimally selected: assume

h X . . TABLE IIl
the shortest possible pulse is= 0.15 ns (see Fig. 1). This

. PERFORMANCE OF OPTIMIZATION WITH DIFFERENT NONCONSTANT
leads to much higher performance losses under the constant

. . . PULSEPSD {new)

basic pulse PSD assumption, seg for 7 = 0.15 ns in
Tab. Il and Fig. 8, since this pulse is far from constant in
the important band between 3.1 and 10.6 GHz.
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V. CONCLUSION
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these losses. Then we show how the new improved design
counters these losses, gaining about 1 dB signal energy in
this best-case scenario, which is closest to the constdse pu
PSD assumption. Second using a pulse farther from the best-
case scenario the losses strongly increase, the improwighde
shows increased signal energy of about 3 dB.

The gain in both cases is achieved without any extra
implementation complexity, since it uses the same filtegtien
N. The performance increase is only due to choosing better
filter coefficients.

APPENDIX
A SIMPLE PROOF OFLEMMA 1

By definition, a square Hermitian matriX € CV*¥ is
positive semidefinite iff:

Vy e CV .y Xy > 0. (29)

As a special case we can choose the followyng

y = [1’ e27rTf’ . ’627r(N71)Tf]
N—-1N-1
=y Xy =Y > (X 2 FIT 0 (30)
1=0 k=0

When sorting the summation by exponents, we get the left
side of (15) using the specified linear relationship betwegn
and the elements dX. Hence, the right-hand-side of (15) is
a sufficient condition.

To prove necessity, we look at the left side of (15) and state
that if r,, satisfies this condition, we can always findug,
e.g., using spectral factorization [21], leading to

N—-1 N-1 2
Z ,r,nej27ran — Z wnej27ran
n=—N+1 n=0
(31)
= [w'y["
=y (ww'l)y

using the definition of from (30) andw = [w,, ..., wx_1].

This immediately proves (15) is a necessary condition,esinc

we have shown that there exists at least one satisfa&ory

ww! a positive semidefinite matrix with diagonals that sum
N—-1-n

0> o  WkWitn =Tyn. O
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