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Abstract— The experience of ubiquitous and seamless ac-
cess to heterogeneous mobile communication networks is one
of the core issues of today’s research. This comes along with
an increasing demand in bandwidth. However, bandwidth as
a natural resource is limited by technical constraints and, as
several measurements have shown, is currently used very in-
efficiently due to a static allocation. Consequently, we have
to consider spectrum allocation techniques and employ use-
ful applications for the detection of vacant frequency bands.
In this paper, we present a novel, swarm–behavior based ap-
proach for the detection of spectrum holes in cognitive wire-
less networks. It is based on the fact that several cogni-
tive radios form a cognitive network. This network is then
split up into several cognitive sub–networks that collaborate
among each other and scan the frequency range simultane-
ously. Thus, several vacant frequency bands can be found
and the overall processing time can be reduced. In addition,
fading effects due to multi–path propagation can be met in a
more efficient way.

I. INTRODUCTION

No one would question the fact that the demand for
bandwidth – or data rate capacity – is dramatically rising
in nower days and the near future. This can be seen with a
glimpse on the enormous improvements in communication
networks, e.g., the Internet. As a lot of frequency bands are
already allocated in a very unflexible way, namely by sell-
ing access rights exclusively to users, it is very difficult to
find free spectrum bands and to deploy new applications.
Moreover, this resource is further limited by fundamental
physical laws. However, measurements have shown that
large parts of the spectrum lie idle during significant time
periods. A fact that implies that spectrum is not really a
scarce resource, but that it is used very inefficiently. Hence,
new ways have to be found in order to allow a more dy-
namic and flexible allocation of frequency bands [1], [2].
One important issue in this context is the reliable detection
of other users or, in other words, the reliable detection of
spectrum holes. However, scanning the whole frequency
range would be too time–wasting and power–consuming
for a radio device.

This paper is organized as follows. Section II describes
an appropriate radio concept in order to achieve seam-
less services in heterogeneous communication scenarios.
In Section III a classification of spectrum is introduced
and common spectrum sensing methods are explained. A
novel, swarm–behavior based approach to the detection of
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spectrum holes in wireless networks is shown in Section
IV. Finally, Section V concludes the paper and summarizes
the results.

II. COGNITIVE RADIO CONCEPT

In future mobile communication systems users should
be able to enjoy seamless services in heterogeneous sce-
narios and ubiquitous access to networks wherever they are
and whenever they want. This requires interworking be-
tween different radio access technologies, a condition that
eventually demands for a smart radio resource manage-
ment scheme. This can only be achieved by applying ap-
propriate radio concepts. Such a concept of an intelligent
radio is Cognitive Radio (CR) or, in other words, a brain–
empowered radio [3]. The term CR was firstly coined
by J. Mitola III in 1999 [4] and established a perception
towards new sophisticated procedures in radio communi-
cations. A CR is aware of its environment and has the
ability to act accordingly to it due to its sensing, learn-
ing, and reasoning capabilities. In [3] three cognitive tasks
are described. These are radio–scene analysis, which in-
cludes the detection of spectrum holes, channel identifi-
cation, and transmit–power control and dynamic spectrum
management.

III. DETECTION OF SPECTRUM HOLES

A. Classification of Spectrum

In [3] a spectrum hole is defined as a frequency band
that is assigned to a primary user exclusively, but that is
not allocated by this user at a specific time and place. Fur-
thermore, spectrum can be classified into three types that
indicate the amount of interference in a specific band:

• Black spaces: These spaces are highly occupied by
local interferers.

• Grey spaces: These spaces are partially occupied.
• White spaces (spectrum holes): These spaces are free

of local interferers. The only interference is due to
ambient noise, e.g., thermal or impulsive noise.

This classification shows that black spaces are no proper
candidates for dynamic spectrum allocation. However,
grey spaces (to a certain amount) and white spaces can sup-
port dynamic allocation techniques. A crucial question at
this point is how the detection of signals in noise and the
previously described classification can be realized.

In Fig. 1 we see the spectrum occupation in the GSM
1800 downlink in a typical city of normal size from 19
o’clock to 20 o’clock. The different power levels on each
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Fig. 1. Spectrogram that shows spectrum occupation in the downlink of
a GSM 1800 system in a normal size city from 19 o’clock to 20 o’clock.

channel are represented through different color strengths
where black indicates a highly occupied band.

B. Interference Temperature

The Spectrum Policy Task Force of the Federal Commu-
nications Commission proposed to use the sum of natural
noise and interference noise in order to decide whether a
transmitter is allowed to become active [3], [5]. For this
purpose, a transmitter first has to measure the interference
temperature, TI , at the receiver. It is defined as follows:

TI(fc, B) =
PI(fc, B)
kBB

, (1)

where PI(fc, B) is the average interference power within
the bandwidth B around the center frequency fc and kB

denotes the Boltzmann constant which is 1.38 · 10−23 J/K.
The value of interference temperature describes the power
measured at a receiver per unit bandwidth. If it is below
a given threshold, the transmitter will be allowed to send.
If not, the transmitter will have to wait or simply change
the frequency band. This approach makes sense as mod-
ern wireless communication systems consist of noise–like
signals. Nevertheless, it is not really new.

C. Matched Filter

A matched filter can be characterized by the formula

h(t) = α · s(T − t), (2)

where s(t) is the transmit signal, T is the symbol rate, and
α is a factor that characterizes the amplitude. A matched
filter maximizes the signal–to–noise ratio at the receiver
[6]. Thus, it is the optimal choice for signal detection.
One drawback of a matched filter is that it requires a pri-
ori knowledge of the transmitted signal for demodulation.
This knowledge contains, e.g., the modulation scheme and
the order of modulation. Additionally, time synchroniza-
tion and even carrier synchronization are undispensable for
coherent demodulation. This means for a CDMA system
that the receiver must know the dedicated spreading codes
and synchronization channels [7].

D. Neyman–Pearson Criterion

A well–known signal detection technique from radar
systems is the Neyman–Pearson criterion. This criterion
maximizes the detection probability at a given false alarm
probability [8]. Consequently, both probabilities cannot
be maximized together since they depend on each other.
A proper value for the detection probability is 99.9 % or
even higher. However, such a high detection probability
is difficult to achieve as the false alarm probability would
be too high and degrade the overall system performance.
A solution would be to enlarge the detection time to re-
duce the false alarm probability, but the system through-
put would degrade. A diversity approach presented in [9]
significantly improves the system performance. Diversity
in this context means that not only one radio observes the
spectral resource within a system, but all radios. This col-
laborative approach even allows to reduce the sensitivity
requirements of each radio and to decrease the signal pro-
cessing complexity [10], [11].

E. Energy Detector

A sub–optimal method for signal detection is energy de-
tection that is known from radiometry [12]. After selecting
the carrier frequency and the bandwidth of interest, the de-
tected signal is squared and integrated in order to obtain
the signal energy E:

E =
∫ t

t−T

y2(τ) dτ (3)

Here, E is the energy of the input signal y(t) at any time
over the interval T in the past. The input signal y(t) con-
sists either of noise alone or a signal plus noise. Thus,
detection means the test of the following hypothesis:

H0 : y(t) = n(t) (4)

H1 : y(t) = s(t) + n(t) (5)

Afterwards, a free/used decision is made. Of course, pro-
cessing gain can be improved as the observation time is
increased. Another benefit of a longer observation time is
the fact that the noise level is decreased, thus increasing
the signal–to–noise ratio. In spite of these advantages, in-
cluding a simple implementation, the energy detector owns
some drawbacks. Since an energy detector is not able to
differentiate between pure noise (thermal and background)
and modulated signals, there is no possibility to cancel in-
terferers by using signal processing techniques [6], [7].

F. Cyclostationary based Detection

Due to the fact that modulated signals are normally
aligned with sine waves they bear some kind of period-
icity. This means that their statistics can be described by
cyclostationary processes, in spite of merely being station-
ary in nature. This cyclostationary can be exploited in the
receiver for parameter estimation (e.g., pulse timing). This
method allows the detection of specific modulated signals
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in an environments of other modulated signals and noise.
Normally, the analysis of stationary signals is based on
the autocorrelation function and the power spectral density.
However, the power spectral density is a one–dimensional
function of frequency. When cyclostationary behavior can
be exploited, a related function named spectral correlation
function can be expressed. In general, the spectral correla-
tion function is a complex–valued, two–dimensional func-
tion [7].

IV. SWARM INTELLIGENCE BASED SENSOR

NETWORKS

Nearly everyone has already wondered about flocks of
birds that fly around in apparent perfect harmony and how
those birds manage such a brilliant motion? The key-
word is swarm intelligence [13]. The formation of single
birds in a swarm helps everybody to take several advan-
tages, e.g., at foraging. Here, every bird looks for food
through the eyes of all the other birds. Thus, the proba-
bility of finding food is much higher. This example taken
from fauna motivates our cognitive approach to the detec-
tion of spectrum holes where each CR represents a single
individual of the group (network). Normally, sensor net-
works consist of relatively “dumb” sensors that send their
information to a centralized entity. This centralized entity
then performs explicit calculations. Our swarm–behavior
based approach exploits further cooperation and commu-
nication among each sensor, thus, increasing the overall
intelligence of the network.

Characteristics of swarm intelligence are, among others,
flexibility which means adaptiveness to the environment
and robustness against disturbances. In addition, there are
several advantages, e.g., scalability, adaptation, autonomy,
and parallelism [13], [14]. These advantages make swarm
intelligence very attractive for technical issues, e.g., wire-
less ad–hoc networks.

A. Collaborative Sub–networks

We propose a fusion of several in the immediate vicin-
ity located CRs to a cognitive network (swarm). The main
goal of such a fusion is the quest for proper resources in or-
der to built up communication abilities for the whole net-
work. Afterwards, the network will be divided into sev-
eral cognitive sub–networks each of them searching in a
different region of the time–frequency–power landscape
(Fig. 2). This approach is similar to the multipopulation
approach described in [15]. It is obvious that closely lo-
cated CRs should be merged into a cluster, thus, taking
advantage of the cellular structure of mobile communica-
tion systems. Additionally, the introduction of the cogni-
tive sub–network concept owns some outstanding benefits:

• Due to the fact that several sub–networks scan dif-
ferent parts of the whole frequency range, multiple
vacant bands can be found.

• As the cognitive sub–networks work simultaneously
the overall processing time can be reduced.

• Effects due to multi–path propagation can be met in a
more efficient way.

Fig. 2. Possible scenario description of some cognitive radios that group
to clusters and search spectrum holes in cooperation.

The search within a sub–network is based on either Par-
ticle Swarm Optimization (PSO) or Evolutionary Algo-
rithms (EAs) [15]. PSO is an iterative, population–based,
stochastic optimization technique that is inspired by the so-
cial behavior of animals. It shares many similarities with
EAs, however, in contrast to EAs, PSO has no evolution
components like reproduction or mutation. PSO consists
of a swarm of particles flying through the search space. As-
signed to our approach the swarm of particles stands for a
cognitive sub–network and the search space is presented by
the time–frequency–power landscape (fitness landscape)
where a small value of the fitness landscape indicates that
a specific frequency band is not allocated by any other user
yet. Each particle i owns a position, xi, and a velocity,
vi, that are iteratively updated. The movement through the
search space is attracted by two “best” values, namely the
personal best value, x̂i, (the best solution a particle has
achieved so far) and the local best value, x̂l, (the best solu-
tion of any particle in the neighborhood). If a particle takes
all the population in a swarm as its topological neighbors,
the best value is called global best, x̂g . At each iteration
the position and the velocity are updated accordingly to the
following equations:

xi = xi + vi (6)

vi = ψ[vi + c1r1(x̂i − xi) + c2r2(x̂l − xi)] (7)

The parameter ψ < 1 denotes an inertial constant that
slows down the particles, thus allowing a better explo-
ration. The constants c1 and c2 define the attraction to-
wards neighboring particles, whereas r1 and r2 are vectors
of uniformly distributed variables in the range [0, 1].

One remaining problem is a possible collision of dif-
ferent sub–networks even if they start their search in dif-
ferent areas of the search space. Under certain circum-
stances, it may happen that two sub–networks try to allo-
cate the same frequency band. To avoid this the principle
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of exclusion is introduced in [15]. Exclusion means that
if two sub–networks come too close each other (the dis-
tance between two sub–networks is the distance between
their global bests) they compete and the one with the lower
fitness will be re–initialized.

Most real–world problems are dynamic. This means in
our context that the frequency allocation will change in
time. In other words, the shape of our fitness landscape
will change. One possibility to consider this behavior is the
randomly reinitialization of all sub–networks everytime a
change of the landscape occurs. However, this approach is
too time–consuming and would reduce the probability for
a successful search. Hence, knowledge of former search
results should be somehow taken under consideration in
order to define a new starting point for searching.

B. Initialization Problem and Utilization Function

One of the most difficult issues that has to be solved is
the aspect of initialization. We have to bear in mind that
idle spectrum resources depend on frequency, time, and lo-
cation. As a consequence, initialization makes a great con-
tribution to the reliable and successful detection of spec-
trum holes. A reasonable initialization can, for example,
abbreviate the search period enormously. In contrast to
that, a bad initialization can lead to a situation in which
a communication cannot be set up properly within a pre-
defined waiting period. The crucial question that has to
be solved first can be expressed like this: How can we di-
vide a network consisting of several CRs into several sub–
networks such that the search for white spaces can be opti-
mized? For the sake of simplicity we will first concentrate
on the parameter frequency and ignore the factors time and
location. Consider a set M = {1, 2, . . . ,M} that consists
of M independent CRs. We now have to look for a proper
subset L of the power set of M, P(M), that suits best the
current frequency situation:

L ⊆ P(M) (8)

In addition, we assume that each CR can only belong to
one sub–network. If we express the elements of a proper
solution of (8) with l, this yields

li ∩ lj = ∅ ∀ li, lj ∈ L ∧ i �= j, (9)

which simply means that all sets of L must be disjoint. For
a first approach we take the spectral proximity between dif-
ferent CRs as similarity measure (a more precise descrip-
tion of this measure is given in section IV-C). To do so, a
kind of master for a particular sub–network has to be de-
fined. This is done by a radio device transmitting a beacon
that can be received by everyone in the near proximity and
which indicates that the sender claims to be the master.
However, at the moment we have no knowledge about the
optimal number of subsets, |L|, and the optimal number of
CRs in a subset, |li|.

To be able to evaluate solutions, we need a utilization
function u(k), k = 1, 2, . . . ,K, where k denotes a spe-

cific sub–network and K is the maximum number of sub–
networks. We define a set

Q(k) �
= {QoS(k,1),QoS(k,2), . . . ,QoS(k,N)}, N < M,

(10)
whose entries describe the difference between the required
Quality of Service (QoS) of each CR and the obtained one
within the k–th sub–network that consists of N cognitive
devices (the expression QoS contains parameters like data
rate, bandwidth, bit error rate, signal–to–noise ratio, . . .).
Thus, we get

QoS(k,n) =
(
QoS(k,n)

req − QoS(k,n)
obt

)+

∀ n = 1, . . . , N,
(11)

where
(
QoS(k,n)

req − QoS(k,n)
obt

)+

= QoS(k,n)
req − QoS(k,n)

obt

if QoS(k,n)
req > QoS(k,n)

obt and 0 otherwise. The utilization
function can then be defined as follows:

u(k) =
N∑

n=1

(
QoS(k,n)

req − QoS(k,n)
obt

)+

(12)

=
N∑

n=1

(
QoS(k,n)

req − QoS(k,n)
obt

)
(13)

·1
[(

QoS(k,n)
req − QoS(k,n)

obt

)
> 0

]
The overall aim is the minimization of u(k):

minu(k) ∀ k = 1, 2, . . . ,K (14)

The utilization function expresses the fact that a CR that
obtains more QoS than required will have no additional
benefits from it as it is not able to use the extra resources
adequately. This results in an overall benefit of each cogni-
tive sub–network and, consequently, in the overall benefit
of the whole network. However, as already indicated, this
is a very challenging task that is under research investiga-
tion at the moment.

C. Acceptance and Blocking Behavior

Other questions we are faced with are the following:
How can a CR that switches on be integrated into a consist-
ing sub–network? How does it know which sub–network
suits best in order to built up a reliable communication? To
answer these questions we have to bear in mind that CRs
that are already members of a sub–network should not suf-
fer from a new arriving device too much.

Let the difference between the frequency of the master
of the k–th sub–network, f (k)

mas, and the new CR, fCR, be

∆f (k) =
∣∣∣f (k)

mas − fCR

∣∣∣ , 1 ≤ k ≤ K. (15)

The users already attending a sub–network may suffer a
QoS degradation, ∆QoS(k), when a new user i enters [16]:

∆QoS(k) =
N∑

n=1

QoS(k,n) −
N∑

n=1,n�=i

Q̂oS
(k,n)

(16)
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Fig. 3. Schematic illustration of the analysis process of the proximity
set P(k), k = 1, 2, 3, where a new cognitive radio decides to join sub–
network 1.

∑N
n=1 QoS(k,n) describes the QoS before the new CR re-

quests and
∑N

n=1,n�=i Q̂oS
(k,n)

is the sum of the QoS for
all users but the new one after its attendance to the sub–
network. Now, we are able to define the proximity function

p(k) =
∆f (k)

1 −
(
∆QoS(k)/

∑N
n=1 QoS(k,n)

) , (17)

which indicates the similarity of a CR to the sub–network
k. The denominator is designed such that it adopts values
in [0, 1]. The proximity functions for the different K sub–
networks are stored in the proximity set

P(k) �
=

{
p(1), p(2), . . . , p(K)

}
, K < M. (18)

All a new CR now has to do is to find the minimal value of
this set:

min
1≤k≤K

P(k) (19)

For example, if p(1) < p(j), where 2 ≤ j ≤ K, then
the CR moves to the sub–network 1 if the QoS degrada-
tion for the other CRs is not too severe. A special case
occurs if ∆QoS(k)/

∑N
n=1 QoS(k,n) = 1, which indicates

that the QoS requirements in the k–th sub–network will
entirely break down. As a consequence, p(k) → ∞ and the
CR can never be a member of this sub–network. On the
other hand, if ∆QoS(k)/

∑N
n=1 QoS(k,n) = 0, the sub–

network will not suffer any QoS degradation when a new
CR enters. Hence, the only remaining factor describing the
proximity is ∆f (k). Another special case is the one where
∆f (k) = 0. This means indeed that p(k) turns to 0, but we
have to bear in mind that this situation might cause severe
interferences to the master device and should be avoided.
The whole process of acceptance is illustrated schemati-
cally in Fig. 3.

V. CONCLUDING REMARKS

In this paper we presented a cognitive, swarm–behavior
based approach to the detection of spectrum holes in wire-
less networks. After having introduced an appropriate
radio concept, we explored the idea of using the inter-
ference temperature as criterion for transmission. More-
over, an overview of common detection techniques includ-
ing matched filter, Neyman–Pearson criterion, energy de-
tector, and detection based on cyclostationary processes

was given. Our approach forms a network of CRs that is
split up into several sub–networks. Each sub–network then
searches for spectrum holes in a different area of the search
space. Due to this distribution the overall processing time
will be dramatically reduced. Another benefit is the ability
to discover multiple minima in the time–frequency–power
landscape. Furthermore, we faced the problem of initial-
ization and introduced a suitable utilization function to
evaluate the performance of the sub–networks. Finally, we
presented measures to describe the acceptance and block-
ing behavior.
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