

Xi Chen

Requirements and concepts for future automotive electronic
architectures from the view of integrated safety

Requirements and concepts for
future automotive electronic
architectures from the view of
integrated safety

von
Xi Chen

Universitätsverlag Karlsruhe 2008
Print on Demand

ISBN: 978-3-86644-225-2

Impressum

Universitätsverlag Karlsruhe
c/o Universitätsbibliothek
Straße am Forum 2
D-76131 Karlsruhe
www.uvka.de

Dieses Werk ist unter folgender Creative Commons-Lizenz
lizenziert: http://creativecommons.org/licenses/by-nc-nd/2.0/de/

Dissertation, Universität Karlsruhe (TH)
Fakultät für Elektrotechnik und Informationstechnik, 2008

http://www.uvka.de
http://creativecommons.org/licenses/by-nc-nd/2.0/de/

Requirements and concepts for future

automotive electronic architectures from
the view of integrated safety

Zur Erlangung des akademischen Grades eines

DOKTOR-INGENIEURS
von der Fakultät für

Elektrotechnik und Informationstechnik
der Universität Fridericiana Karlsruhe (TH)

genehmigte
DISSERTATION

von

Diplom-Ingenieur Xi CHEN, M. Sc.

geboren in Wuhan

aus Schwäbisch Gmünd

Tag der mündlichen Prüfung: 07.02.2008

Hauptreferent: Prof. Dr.-Ing. K. D. Müller-Glaser

Korreferent: Prof. Dr.-Ing. G. Trommer

Karlsruhe, 09.01.2008

Acknowledgement

ix

Acknowledgement

The presented work here was written during my work as a research associate from 2004 to 2007
by DaimlerChrysler (today Daimler AG) Group Research and Advanced Engineering in the
department of Electric/Electronic Architecture.

I would like to sincerely express my gratitude to the supervisor of my dissertation, Mr. Prof. Dr.-Ing.
Müller-Glaser, for his continuous invaluable guidance, encouragement and support. His vision and
enthusiasm in advanced engineering research inspired and motivated me throughout my pursuit of
the degree. I appreciate his broad knowledge, originality and insight in many areas. Working with
him was a wonderful experience, and I have learned a lot from it. Many thanks to Professor Dr.-
Ing. Trommer for his second expertise on this thesis.

Many thanks to Mr. Dr. Hedenetz, as the team leader of E/E-architecture of safety electronics, he
supervised the technical work and gave me critical but very valuable comments on a draft of this
work. Special thanks to Ms. Dr. Lauer for her support and for providing resources to perform the
case study of this thesis. Acknowledgements here also to all my former colleagues in the
department REI/EC at Daimler, for their interest in my work and for the professional discussions on
this topic.

Also thanks to my project colleagues in WP1, WP2, WP4 and WP5 from EASIS industry
consortium. They offered me many useful instructions and professional discussions. I also want to
thank all my students, who helped me to build up the case study during their internship and master
thesis.

I am forever indebted to my parents, Jianwei Chen, Gengxin Chen and my grandmother, Shunying
Qing, for their great love, unselfish support, endless patience and strong encouragement through
my life, especially the 9 years study and work in Germany, and my girlfriend, Xi Yu, for her
patience and carefulness to read through my dissertation. I would dedicate all my achievements to
them who I love so much.

Danksagung

x

Danksagung

Die vorliegende Arbeit entstand während meiner Tätigkeit als Ingenieur von 2004 bis 2007 bei
DaimlerChrysler (heute Daimler AG) Group Research and Advanced Engineering in der Abteilung
der Elektronik/Elektrik Architektur.

Mein besonderer Dank gilt

Herrn Prof. Dr.-Ing. Müller-Glaser für die Betreuung dieser Arbeit sowie die Unterstützung und
Ermutigung zur Vollendung dieser Arbeit, seine Vision und Begeisterung in die Vorentwicklung und
Forschung hat mich während der Arbeit ständig motiviert.

Herrn Prof. Dr.-Ing. Trommer für die Übernahme des 1. Mitberichts,

Allen Kolleginnen und Kollegen bei der Daimler Abteilung REI/EC für die gute Zusammenarbeit
und hilfsbereite Unterstützung. Besonders möchte ich mich bei Herrn Dr. Hedenetz, als Teamleiter
der Fahrzeug E/E-Architektur der Sicherheitselektronik, für die technische Bereuung und
Korrekturlesen der Arbeit und Frau Dr. Lauer für die Unterstützung beim Aufbau des Validators
bedanken.

Den Kolleginnen und Kollegen von WP1, WP2, WP4 und WP5 im EASIS-Konsortium für die
erfolgreiche Zusammenarbeit und professionelle Diskussion. Den Studenten, die im Rahmen von
Studien- und Diplomarbeiten zum Gelingen dieser Arbeit beigetragen haben, damit die
vorgestellten Konzepte nicht nur Ideen blieben, sondern auch verwirklicht werden konnten,

Meinen Eltern Jianwei Chen, Gengxin Chen und meiner Großmutter Shunying Qing für ihre
langjährige Unterstützung, unerschöpfliche Geduld insbesondere während meiner gesamten
neunjährigen Studienzeit und Promotion in Deutschland, und meiner Freundin, Xu Yu, für ihre
Geduld und Sorgfältigkeit bei dem Korrekturlesen meiner Dissertation.

Xi Chen

Schwäbisch Gmünd, im Dezember 2007

Abbreviation list

xi

Abbreviation list

ABS Anti-lock Braking System

AC Aliveness Counter

ACC Adaptive Cruise Control

ADC Analog Digital Converter

API Application Programming Interface

ARC Arrival Rate Counter

AS Activation Status

ASAM Association for Standardization of Automation- and Measuring Systems

ASIC Application Specific Integrated Circuit

ASIL Automotive Safety Integrity Level

AUTOSAR Automotive Open System Architecture

BDHA Basic Design Hazard Analysis

BMS Battery Management System

BSW Basic Software

CAN Controller Area Network

CBC Common Body Controller

CCA Cycle Counter for Aliveness

CCAR Cycle Counter for Arrival Rate

CCF Common Cause Failures

CFC Control Flow Checking

CFG Control Flow Graph

CGW Central Gateway

CMF Common Mode Failures

COM Communication

CPU Central Processing Unit

CRC Cyclic Redundancy Check

DC Diagnostic Coverage

DLL Dynamic Link Library

DSC Digital Signal Controller

E/E Electric/Electronic

EASIS Electronic Architecture System Engineering for Integrated Safety Systems

Abbreviation list

xii

EAST-EEA Electronic Architecture and Software Technology – Electronic Embedded
Architecture

ECM Engine Control Module

ECU Electronic Control Unit

EDC Error Detection Code

EEP EASIS Engineering Process

EEPROM Electrically Erasable Programmable only memory

E-Gas Engine management system of gasoline and diesel engines

EMC Electronic Magnetic Compatibility

EMS Energy Management System

EPS Electronic Power Steering

ESP Electronic Stability Program

EU European Union

EUS Energy Uncoupling System

FAA Functional Analysis Architecture

FDA Functional Design Architecture

FHA FAA Hazard Analysis

FMEA Failure Mode and Effect Analysis

FMEDA Fault Mode and Effect Diagnosis Analysis

FMF Fault Management Framework

FOU Fail Operational Unit

FPGA Field Programmable Gate Array

FSM Fault State Manager

FSU Fail Silent Unit

FT Fault Tolerance

FTA Fault Tree Analysis

FTCom Fault Tolerant Communication

FTDMA Flexible Time Division Multiple Access

FTU Fault Treatment Unit

HA Hardware Architecture

HGA Hazard Graph Analysis

HiL Hardware in the Loop

HIS Deutsches Automobilkonsortium - Hersteller Initiative Software

Abbreviation list

xiii

HU Head Unit

HW Hardware

I/O Input/Output

IC Instrument Cluster

ID Identity

ISR Interrupt Service Routine

ISS Integrated Safety System(s)

ISS EP ISS Engineering Process

IT Information Technology

LIN Local Interconnect Network

MCU Micro Controller UNIT

MiL Model in the Loop

MMU Memory Management Unit

MPU Memory Protection Unit

N/A Not available or Not applicable

NA Not Applicable

NM Network Management

NVM Non volatile memory

OEM Original Equipment Manufacturer

OIL OSEK Implementation Language

ORC Occupant Restraint Controller

OS Operating System

OSEK, OSEK/VDX „Offene Systeme und deren Schnittstellen für die Elektronik im
Kraftfahrzeug“, Open Systems and the Corresponding Interfaces for
Automotive Electronics

PFC Program Flow Checking

PFH Probability of one dangerous Failure per Hour

PHA Preliminary Hazard Analysis

PWM Pulse Width Modulation

QoS Quality of Service

RAM Random Access Memory

RBTL Reversible Belt Tensioner Left

RBTR Reversible Belt Tensioner Right

Abbreviation list

xiv

RCP Rapid Control Prototyping

ROM Read-Only Memory

RTE Run Time Environment

RTI Real-Time Interface

RTOS Real-Time Operating System

SBC Sensotronic Brake Control

SC Sensor Cluster

SER Single Error Region

SFF Safe Failure Fraction

SIL/ASIL Safety Integrity Level / Automotive Safety Integrity Level

SOP Start of Production

SotA State of the art

SPC Suspension Controller

SRS Safety Requirements Specification

SSM Standard Software Module

SW Software

SW-C SoftWare Component

SW-Cs Software Components

SWM Steering Wheel Module

SW-Watchdog SoftWare Watchdog

TCM Transmission Control Module

TSIU Task State Indication Unit

TDMA Time division multiple access

UART Universal Asynchronous Receiver Transmitter

UML Unified Modeling Language

V&V Verification and Validation

VFB Virtual Functional Bus

WCET Worst Case Execution Time

WSM Wheel Steering Module

Abstract

xv

Abstract

Integrated Safety System, as one of the most promising technologies of the automotive safety
systems, integrates passive and active safety system, together with the interaction of cabin,
chassis and powertrain electronics cross the domain board and communication networks. It
provides the largest potential for future innovative safety applications. The development of ISS,
compared with the current in-vehicle safety systems, puts forward more challenging requirements
for the design, development, prototyping and validation process. In order to manage the complexity
and fulfill high dependability requirements, new architecture concepts, engineering process and
tool chains for the Integrated Safety Systems are required.

In this dissertation, requirements of future Integrated Safety Systems are identified firstly with a
delta-analysis. Based on these requirements, concepts of the electronic architecture for the
Integrated Safety Systems are developed as a cooperative approach of engineering process,
dependable hardware architecture and software platform. In this safety justified development
process, with the methodology of virtual front-loading, a distributed rapid prototyping based on the
principle of early integration and validation with advanced simulation environment is suggested.
The strict and well defined development steps specified here enables the correct-by-construction
for the development of ISS. Dependable hardware architecture for ISS is discussed in a top-down
methodology, starting with concepts to build up overall in-vehicle topology, guidelines to distribute
ISS-applications, design of communication systems and concepts of fault-tolerant ECU hardware
architecture are introduced. To conclude this topic, some of the most important use cases to the
concepts are demonstrated. Strategy of standardized software platform has been proven to be one
of the most effective levers to manage the complexity of future automotive software. Facing the
challenges of higher fault tolerance towards fail-operational and increasing density of application
software components on one ECU, dependability software services for the fault-tolerant
communication with redundancy, end-to-end CRC and Agreement Protocol, time partitioning and
space partitioning for the integration of applications, Fault management, fault treatment of dynamic
reconfiguration and gateway services are designed and integrated in a layered software topology.

For the practical evaluation and validation of the concepts introduced here, a hardware-in-the-loop
validator based on the Steer-by-Wire technologies was built up. On top of this validator, serial-near
ISS-applications are integrated and distributed on different ECUs. The dependable software and
hardware concepts are designed, prototyped and tested with fault injection on various platforms.
The ISS Engineering Process and the tool-chains for the prototyping have demonstrated their
viability for the development of complex ISS-applications during the validation process as well.

Zusammenfassung

xvi

Zusammenfassung

Motivation:

Integrierte Sicherheitssysteme versprechen aufgrund der Interaktion und Synergieeffekten von
Passiv- und Aktivsicherheitssystemen mit Innenraum, Fahrwerk und Antriebstrang, das größte
Potential für die Weiterentwicklung von zukünftigen Fahrzeugsicherheitselektroniken. Die
Entwicklung der integrierten Sicherheitssysteme, stellen im Vergleich zu den herkömmlichen
Fahrzeugsicherheitssystemen höhere Anforderungen an den Entwurfs-, Entwicklungs-,
Musteraufbau- und Validierungsprozess. Um die Komplexität und die höheren Anforderungen zu
beherrschen, sind neue Architekturkonzepte, Entwicklungsprozesse und Werkzeugkonzepte für
die integrierten Sicherheitssysteme notwendig.

Die Arbeit:

In der vorliegenden Arbeit werden die Anforderungen der zukünftigen integrierten
Sicherheitssysteme analysiert. Auf dieser Basis wurden Konzepte der Elektronikarchitektur der
integrierten Sicherheitssysteme ausgearbeitet, dabei wurde ein Ansatz gewählt, welcher den
Entwicklungsprozess, die Hardwarearchitektur und die Softwareplattform mit einschließt. In dem
sicherheitsgerechten Entwicklungsprozess, mit der Methodik der virtuellen Front-loading, wird ein
verteiltes „Rapid-Prototyping“ auf der Basis der Frühintegration und Validierung mit der
Simulationsumgebung vorgeschlagen. Die strikten und vordefinierten Entwicklungsschritte
ermöglichen die „correctness by construction“ (frühzeitige Konzeptabsicherung) bei der
Entwicklung der ISS. Verlässliche Hardwarearchitektur für ISS wurde nach dem „top-down“ Ansatz
entwickelt, beginnend mit dem Konzept zum Aufbau der Fahrzeugtopologie des
Kommunikationsnetzes, Richtlinien zur Verteilung und Abbildung der ISS-Applikationen, Entwurf
des Kommunikationssystems und Konzepte der fehlertoleranten ECU HW-Architektur werden
vorgestellt. Anschließend werden ein paar wichtige Fallstudien zu Demonstrationszwecken der
Konzepte erläutet. Die Strategie der standardisierten Softwareplattform ist eine der wichtigsten
Ansätze um die Komplexität der zukünftigen Automobilsoftware zu beherrschen. Um den
Herausforderungen der höheren Sicherheitsanforderungen der fail-operational Systeme und der
steigenden Dichte von Applikationssoftware auf einem Steuergerät gerecht zu werden, wurden
fehlertolerante Softwareservices zur Unterstützung der Redundanz, verlässliche Kommunikation,
Ende-zu-Ende Applikations-CRC Übereinstimmungsprotokoll, zeitliche und räumliche Auftrennung
bei der Applikationsintegration, Fehlermanagement und Fehlerbehandlung mit dynamischer
Rekonfiguration entworfen und in einer schichtenorientierten Softwarearchitektur integriert.

Validierung der Konzepte:

Zum praktischen Nachweis des erstellten Konzeptes wurde ein auf Steer-by-Wire basierender
Hardware-in-the-Loop Validator entwickelt. Auf oberster Ebene des Validators wurden die
seriennahen ISS-Applikationen integriert und auf verschiedenen ECU Plattformen verteilt. Die
davon abhängigen Software- und Hardwareanteile wurden entworfen, prototypisch implementiert
und mit Fehlerinjektion auf verschiedenen Plattformen getestet. Die Stärke des ISS-
Entwicklungsprozesses und der dazugehörenden Werkzeugkette wurde beim Prototyping und bei
der Validierung der komplexen ISS-Applikationen demonstriert.

Table of contents

xvii

Table of contents

Acknowledgement...ix

Danksagung...x

Abbreviation list...xi

Abstract..xv

Zusammenfassung ... xvi

Table of contents ... xvii

1 Introduction .. 1

1.1 Short introduction to future automotive safety systems.. 1

1.2 Motivation for the work ... 3

1.3 Overview of the dissertation ... 4

2 Basic concepts of dependability .. 7

2.1 Definition of dependability .. 7

2.2 Introduction to fault tolerance ... 10
2.2.1 Fault diagnosis/detection.. 10
2.2.2 Fault description .. 11
2.2.3 Fault treatment .. 14

3 State of the art: Automotive electronic architectures ... 17

3.1 Building blocks of automotive electronic architectures ... 17

3.2 Requirements for future automotive safety systems... 18

3.3 State of the art: Hardware architecture for automotive electronics................................... 20
3.3.1 Requirements for hardware of safety electronic systems ... 20
3.3.2 In-vehicle system topology ... 20
3.3.3 ECU hardware architecture .. 21
3.3.4 Automotive communication systems.. 27

3.4 State of the art: Software architecture for automotive electronics 31
3.4.1 Requirements for software in safety electronic systems... 31
3.4.2 ECU software architecture.. 32
3.4.3 Automotive software services ... 36
3.4.4 Conclusion for automotive software... 37

3.5 State of the art: Development process for automotive electronic systems....................... 38
3.5.1 Requirements for the development process of safety electronic systems 38
3.5.2 State of the art in development processes.. 38
3.5.3 Conclusion for development process ... 50

4 Assessment of state of the art approaches and conclusion for challenges 51

5 Introduction to EASIS project and EASIS approaches .. 53

6 Fault type and fault hypothesis for ISS .. 57

Table of contents

xviii

6.1 Fault hypothesis – a major design step .. 57

6.2 Fault hypothesis of hardware in ISS... 58

6.3 Fault hypothesis of software in ISS .. 62
6.3.1 Software timing faults... 63
6.3.2 Communication between SW-components... 63
6.3.3 Concurrent resource access ... 64

7 Engineering Process of Integrated Safety System .. 65

7.1 Introduction to the ISS Engineering Process.. 65

7.2 Development steps of ISS Engineering Process.. 70
7.2.1 Part 1: Initial of requirement engineering (specify preliminary requirements).......................... 71
7.2.2 Part 2: Development of Functional Analysis Architecture (FAA Model).................................. 73
7.2.3 Part 3: Development of hardware architecture .. 78
7.2.4 Part 4: Development of Functional Design Architecture (FDA) ... 79
7.2.5 Part 5: Refinement and validation of FDA model with SiL-test .. 84
7.2.6 Part 6: Hazard analysis and validation of FDA model with HiL-test 89
7.2.7 Association of ISS Engineering Process with ISO26262 .. 91

7.3 Tool chains for the development of ISS.. 96
7.3.1 Software tools ... 97
7.3.2 Hardware prototyping platforms .. 100

7.4 The ISS Engineering Process under challenges .. 101
7.4.1 View from side of OEM... 101
7.4.2 View from side of supplier... 103
7.4.3 Distributed cooperation between OEM and suppliers .. 104

8 Hardware architectures for the Integrated Safety System ... 105

8.1 Concepts of the system topologies... 105
8.1.1 Future frameworks and design guidelines of system topologies ... 106
8.1.2 Distribution of ISS applications to the system topology .. 108

8.2 Design concepts of the communication systems.. 111

8.3 Concepts of ECU hardware architectures .. 113
8.3.1 Dependable architecture driven by the safety integrity requirements................................... 113
8.3.2 Monitoring of sensor and actuator components .. 117
8.3.3 Memory protection... 118
8.3.4 Hardware watchdog monitoring... 119

8.4 Design use-cases of ISS hardware architectures... 120
8.4.1 Distribution of ISS applications to vehicle domains.. 120
8.4.2 ISS system topologies and communication systems ... 122
8.4.3 ECU hardware architecture for ISS.. 125

8.5 Conclusion of hardware architecture framework .. 126

9 Software platform for the Integrated Safety Systems .. 127

9.1 Trends of software platform – a benchmark with IT-industry.. 127

9.2 Concepts of dependability software architecture.. 128

Table of contents

xix

9.3 Concepts of the dependability software services ... 131
9.3.1 Dependability services for ISS communication ... 131
9.3.2 Dependability services for the integration of applications on one HW-platform..................... 146
9.3.3 Dependability services of fault treatment.. 162
9.3.4 Dependability software services for gateway .. 174

9.4 Configuration of dependability software services ... 175

9.5 Conclusion of the dependable software platform ... 177

10 Prototyping and validation of the concepts .. 179

10.1 Introduction to the architecture validator .. 179
10.1.1 Prototyping approaches and validation process .. 179
10.1.2 Architecture design of the validator .. 180

10.2 Validation of hardware architectures for ISS .. 182

10.3 Validation of dependability software platform and services.. 184
10.3.1 Prototyping and validation of Agreement Protocol ... 185
10.3.2 Prototyping and validation of Software Watchdog.. 187
10.3.3 Prototyping and validation of Fault Management Framework.. 189

10.4 Validation of the ISS Engineering Process... 191

10.5 Evaluation and optimization of the concepts .. 194

10.6 Experience and findings from the prototyping and validation ... 195

11 Conclusion of the results, discussion and outlook ... 197

11.1 Conclusion and implication of dependability architecture framework 197

11.2 Outlook for the future work ... 199

Appendix 1: Implementation details of the validator ... 200

Appendix 1.1 Validation of hardware architectures for ISS ... 201

Appendix 1.2 Validation of dependability software platform and services................................. 203
Appendix 1.2.1 Prototyping and validation of Agreement Protocol ... 203
Appendix 1.2.2 Prototyping and validation of Software Watchdog ... 205
Appendix 1.2.3 Prototyping and validation of Fault Management Framework 207

Appendix 2: Mathematic derivation of the communication overhead of agreement protocol........ 211

Appendix 3: Glossary.. 212
Application Software Component ... 212
Basic Software Module ... 212
Compositionality... 212
Software Configuration ... 212
Control Flow .. 212
Event .. 212
Fail-Degraded .. 212
Fail-Operational ... 213
Fail-Safe.. 213
Fail-Silent .. 213

Table of contents

xx

Fault Containment .. 213
Front Loading... 213
Redundancy .. 213

Appendix 4: List of figures... 214

Appendix 5: Literature index ... 218

Appendix 6: Author's biography .. 225

Appendix 7: Lebenslauf .. 226

Introduction

1

1 Introduction

1.1 Short introduction to future automotive safety systems

Nowadays safety and comfort are two of the most important requirements and innovation factors
for automotive OEMs and suppliers. In order to increase the safety of passengers within a vehicle
and for the surrounding environment, more and more electronic systems are used in the
automotive safety domain.

In the safety domain there are traditionally two safety systems: the active safety system and the
passive safety system.

The following components belong to passive safety components: airbags, collapsible zones,
bumpers and safety belts, etc. They help to reduce the negative effects of a traffic accident by
means of the physical absorption of crash energy. On the other hand, active safety components
include ABS, ESP, brake assistance and lane keeping/change assistance, which influence the
powertrain, drive train and chassis system directly, in order to avoid accidents. Current active
safety systems predominately directly influence the brake system only, while future active safety
systems will also integrate the steering and directional stability track-holding system.

The passive safety system has already reached a relatively mature standard, in which innovation
potential is almost exhausted and significant improvements are unlikely to be reached in the near
future. Future safety enhancements will mainly have to rely on active safety systems to avoid
accidents before they can occur and the so-called “Integrated Safety System” as a combination of
both active and passive safety systems, as well as other automotive domains. An overview of the
safety level reached and forecasted future development in the passive and active safety domains
[GDi02] is shown in Figure 1-1, in which the potential development of ISS is demonstrated as well.

High

Low

Safety
potential

Safety cell

Seat belt

Air bag

Passive
rollover
protection

Passive safety
Active safety
Integrated safety
Enabling
technologies for IS

1960 1970 1980 1990 2000 2010 2020 2030

Injure
avoiding

Telematics, cabin and other
Non-safety applications

Pre-Safe

Telematics, cabin and other
Non-safety applications

Pre-Safe

ESP

ABC

Environment recognition

ABS ETC

ACC

Road recognition

Collision avoidance

Figure 1-1: Development of active, passive and integrated safety electronic systems

Introduction

2

The European Commission’s transport policy has set new targets for 2010 with respect to road
safety, as shown in Figure 1-2, where a dramatic reduction in road fatalities is expected by 2010.
The traditional approach with isolated consideration for passive safety electronics, active safety
electronics and other automotive domains does not provide enough potential to reach the
ambitious aims of European Commission transport policy. The Integrated Safety System is the only
realistic approach to the targets set by EU [EUC01].

2000 2005 20xx2010

Airbag

ABS,ESP

Drive assistant systems

Pre-crash -systems

Today

Future
40 000

30 000

20 000

10 000

50% reduction of
road fatalities goal of
the eSafety program

road fatalities

Integrated Safety Systems

2000 2005 20xx2010

Airbag

ABS,ESP

Drive assistant systems

Pre-crash -systems

Today

Future
40 000

30 000

20 000

10 000

50% reduction of
road fatalities goal of
the eSafety program

road fatalities

Integrated Safety Systems

Figure 1-2: Targets set by EU of 50% reduction in the road fatalities before 2010

An Integrated Safety System is a composition of functions that enhance the level of safety not only
for the passengers but also for the environment such as pedestrian, which spreads across domain
borders, including passive safety components such as airbags, collapsible zones, bumpers, safety
belts, etc. and active safety functions such as ABS, ESP, brake assistance, lane change
assistance, etc.

The special aspects of ISS-applications compared with the traditional stand-alone safety relevant
system can be summarized as follows:

 An ISS-application can spread across domain boarders, e.g., the Pre Crash System closes
side windows / sunroof.

 An ISS-application can consist of functions from different domains with different safety
integrity levels and safety requirements.

 An ISS-application makes use of a plethora of components, which themselves are not
necessarily safety relevant (e.g. sliding roof / sunroof) in itself, thus, comfort components
may inherit a high safety level.

Introduction

3

With the interaction and integration of safety relevant / non-safety relevant applications from
different domains and data sharing from environment sensors and telematics domains, the same
data will not need to be measured in different domains, likewise, new applications can be created
by using data which is not available from the original domain. The main benefits of Integrated
Safety are listed as following:

 Information from all domains can be combined to provide a better view about the state of
the vehicle and its surroundings, thereby forming a better basis for decisions taken by
safety systems;

 The vehicle can be controlled in a more integrated way as control actions can be
coordinated across domains.

A good example of an ISS-Function, combining passive and active safety electronics is the Pre-
Safe system [ATZ05] from Mercedes-Benz (first introduced in the S-Class 2002), which detects an
unavoidable crash and makes preparations to reduce the severity of the accident. The activation
trigger for the Pre-Safe system is the velocity of brake pedal, vehicle velocity and plausibility of on-
board electronics. Measures taken by the Pre-Safe system include activation of a reversible belt
restraining system, adjusting of seat position and closing of side windows and sunroof.

1.2 Motivation for the work

As discussed in the subsection above, many potential innovations in safety electronics lie in the
integration of passive safety electronics, active safety electronics and other domains. By means of
sensor data fusion and information flow beyond domain borders, more new safety applications
could be designed. From a technical point of view, however, current safety systems are mainly
stand-alone systems with a limited degree of interdependency, which can not fulfill the
requirements of ISS. An integrated approach for vehicle safety systems, in particular the
cooperation between the passive and active safety domains, as well as cabin, chassis and
telematics domains, offers a solution to enable innovation and improve safety for both passengers
and the environment. This includes the combination of active and passive safety systems, where
actions will address all phases of a crash, including pre-crash and post-crash.

Dependability has always been the most important requirement for automotive safety relevant
applications. For customers, it is not important whether the safety applications are implemented in
traditional mechanics or with innovative electronics, but they do expect the new safety features to
be at least as reliable as traditional systems.

From a hardware perspective, a safety system with redundant backups is the state of the art
approach for a highly dependable system, while taking into consideration the difference in general
conditions, as opposed to those specific to the automotive industry. For the future development of
safety systems, however, the mechanical backup can disappear. That is to say, compared with the
current automotive safety systems, which are only fail-safe or fail-silent, future integrated safety
systems should be fail-operational or fail-degraded.

With the increasing number of ECUs and complexity both in hardware and software, it is a great
challenge to implement complex, distributed applications, with shorter development cycles while
still keeping the dependability of system at a high level. One solution is the standardization of the
ECU middleware based E/E-platform to increase the modularity of software components. This

Introduction

4

trend can now be observed in different consortiums of OEMs and suppliers. With the improvement
in reusability, the test depth of system components can be intensified and development time will be
shortened because of the unified interface. In the automotive safety domain, the standardized ECU
middleware should also support fault-tolerance mechanisms, due to the higher requirement for
dependability. A fault-tolerant middleware architecture, adapted to the specific requirements of the
automotive safety domain, is not available yet.

The development process for safety relevant electronic systems, compared with the general
development process of automotive electronic systems, has to be adapted due to the high
dependability requirements. An example of such safety measure is the introduction of preliminary
hazard and safety analysis, system hazard analysis and binding to the appreciate development
steps. With the derived safety integrity level from safety analysis, the development process for
software should be configured as required in industry safety norms. For the development of an
Integrated Safety System, the cooperation of sub-systems and their integration into the overall
system is of vital importance, because even if all the sub-systems appear to work, the whole
system can still fail. An early validation of the system specification is not yet fully supported by the
current development process.

1.3 Overview of the dissertation

This dissertation is organized as follows:

After a short overview of current and future automotive safety systems in Subsection 1.1,
motivation for the dissertation is explained in Subsection 1.2. Following an introduction to the basic
terms of dependability and fault tolerance in Chapter 2, the state of the art in overall automotive
electronic architecture, including an introduction to dependability, system topology, automotive
software, hardware and communication systems considering safety relevant systems, their current
and future requirements are explained in Chapter 3. The development process for generic
electronic systems, special concepts and methods for automotive safety systems and an
assessment of existing methods will be also introduced in this chapter as well.

In Chapter 4 the existing concepts, trends and current initial concepts in automotive electronic
architecture and dependable electronics will be evaluated. From the challenges of ISS and known
concepts, a delta analysis will be carried out. The problem is addressed from the different
viewpoints of hardware, network topology, communication networks, software with FT-middleware
and the development process.

In Chapter 5 EASIS (Electronic Architecture and System Engineering for Integrated Safety
Systems) project and the approach is briefly introduced. The research work of this dissertation took
place during the participation in this project.

As a basis of the design of dependability architecture framework, a dedicated for Integrated Safety
System configured faulty hypothesis and fault types was carried out. The result of the analysis is
specified in Chapter 6.

Introduction

5

Focus of the dissertation

Software
platform
for the

Integrated
Safety

Systems

Development process and tool chain
for the Integrated Safety Systems

State of the art and requirements and fault types
of the Integrated Safety Systems

Hardware
architectures

for the
Integrated

Safety
Systems

Validation and verification of the concepts

Chapter 8
Chapter 9
Chapter 8
Chapter 9

Chapter 7Chapter 7

Chapter 10Chapter 10

Chapter 3-6Chapter 3-6

Figure 1-3: Structure of the focus in the dissertation

As depicted in Figure 1-3, emphasis of the dissertation lies in the Chapter 7 to Chapter 9. Chapter
7 introduces ISS Engineering Process for the prototyping and development of Integrated Safety
System. The ISS Engineering Process takes the future development trends of safety hardware and
software architecture and safety norm into consideration, follows two main principles: virtual front-
loading and correct by construction approach.

Triggered by the quantitative requirements from safety norms, hardware architecture framework for
the Integrated Safety System of system topologies, ECU hardware architecture and design use-
cases are discussed in Chapter 8.

In Chapter 9, dependability software platform with dependability software services for ISS-
communication, integration of applications with safety integrity level, fault management and
gateway services are specified.

Prototyping and validation of the safety concepts proposed here are illustrated in Chapter 10.
Chapter 11 concludes the work with experiences gained in the design and development of the ISS
architecture framework and provides an outlook for future work. Last but not least, the appendixes
include more implementation details of the validator, mathematic derivation, glossary, list of
figures, literatures and author’s biography.

Introduction

6

Basic concepts of dependability

7

2 Basic concepts of dependability

2.1 Definition of dependability

Since there is no common definition of dependability in existing literatures and different norms, in
the following, a general definition of dependability is given with regard to the framework of this
dissertation.

Dependability: Dependability is defined as the trustworthiness of a computer system, such that
reliance can justifiably be placed on the service it delivers. This is a bundle of terms, as illustrated
in Figure 2-1.

Figure 2-1: The dependability tree [Lap95]

The characteristic attributes of dependability in Figure 2-1 are explained as follows:

 Availability is the readiness for correct service – “Uptime” as a percentage.

 Reliability is the continuity of correct service, thus how likely it is that the system can
complete a mission within a given duration.

 Safety is the absence of catastrophic consequences on the user(s) and environment. Two
term concerning safety, the safety integrity and safety integrity level are explained as
follows:

o Safety Integrity defines the probability of a safety-related system satisfactorily
performing the required safety functions under all the stated conditions within a
specified period of time.

Basic concepts of dependability

8

o Safety Integrity Level is used to describe different safety requirements. In the
industry norm IEC 61508 [IEC01], SIL is specified as discrete levels of safety
relevance, which require different approaches to be realized. Different safety
applications involved with the same sub-systems, can have different SILs.

 Confidentiality is the absence of unauthorized disclosure of information.

 Integrity is the absence of improper system state alterations (Note: security involves
malicious faults; confidentiality & integrity).

 Maintainability is the ability to undergo repairs and modifications.

The system dependability is a trade-off of the mentioned attributes here, e.g. the different
monitoring mechanisms can improve the system safety but not necessarily the availability and
maintainability since safest system is the system which doesn’t work at all.

The threats of dependability are listed as follows and their relationship to the system is illustrated in
Figure 2-2:

 Fault defines an abnormal condition that may cause a reduction in, or loss of, the capability
of a functional unit to perform a required function. As shown in Figure 2-2, fault is the cause
of a system failure.

 Error defines a discrepancy between a computed, observed or measured value or
condition and the true, specified or theoretically correct value or condition. An example of
an error is the occurrence of an incorrect bit caused by an equipment malfunction. Error is
a system state that causes failure.

 Failure defines the termination of the ability of a system or functional unit to perform a
required function. A failure in a sub-system can be a fault for a higher layer system. The
latency time from fault to system failure is labeled as t1, t2 and t3.

System

Fault Error Failure

Timet1 t2 t3

Figure 2-2: Difference between fault, error and failure

In case of failure, different strategies can be performed so as to avoid a hazard to the system, such
that it continues as fail-silent, fail-safe or fail-degraded. The definition of such terms and their
relationship are explained as follows:

The current semi X-by-Wire systems (e.g. SBC, EPS, E-Gas…) use a mechanical or directly
cabled backup system, which exhibits the “fail-safe” and “fail-silent” characteristic.

Basic concepts of dependability

9

 Fail-silent characterizes the property of a system or functional unit, where in the case of a
fault, the output interfaces are disabled in such a way that no further outputs are made.
Fail-silent is a special case of the fail-safe property.

 Fail-safe defines the property of a system or functional unit, where in case of a fault, the
system or functional unit transits to a safe state.

For the future automotive safety systems without mechanical backup (real X-by-Wire systems), it is
quite difficult or almost impossible to define a safe state for the vehicles on the road. Therefore,
they must have a significantly higher dependability, which should be at least as high as the
comparable mechanical system. This means that the vehicles should still offer a higher level of
safety to the passenger, even if one or more sub-systems should fail. Thus fail-degraded or fail-
operational systems are required.

 Fail-degraded defines the property of a system or functional unit, which has the ability to
continue with intended degraded operation at its output interfaces, despite the presence of
hardware or software faults, the “Limp home” functionality for ECU is an example of this
(reduce torque to ensure arrival at home or service station).

 Fail-operational describes the property of a system or functional unit, which can continue
normal operation at its output interfaces despite the presence of hardware or software
faults or errors, for example in the braking system.

Timet4t1 t2

Figure 2-3: Timing requirement of fault tolerance

The timing requirement of fault tolerance is depicted in Figure 2-3. For t ≤ t1 the whole system is in
a fault free state, t1 ≤ t < t2 is an abnormal system state, in which the fault detection should take
place when e.g. the monitoring threshold is exceeded. During the time period t2 ≤ t < t4 a
reconfiguration of the system as to the fault treatment should take place, in the time after t4 (t ≥ t4)
the whole system is in a reconfigured state and should exhibit a fail-safe fail-degraded or fail-
operational behavior. For the sake of fault tolerance, t4 – t1 should be smaller than t3 - t1 in Figure
2-2, so that no failure should happen.

A relationship between the different operational states of an ECU, such as failure, normal, fail-
operational and fail-safe (including fail-silent and fail-degraded) is illustrated in Figure 2-4.

Basic concepts of dependability

10

Normal

Failure

undetected fault

detected or masked
fault (fault handling)

not handled or
undetected fault

all faults recovered
(recovery handling) or
masked

cleared all faults

all undetected or
not handled faults
cleared

detected fault
(fault handling)

any
fault

fail-silent
fail-

operational fail-degraded

fail-safe

Normal

Failure

undetected fault

detected or masked
fault (fault handling)

not handled or
undetected fault

all faults recovered
(recovery handling) or
masked

cleared all faults

all undetected or
not handled faults
cleared

detected fault
(fault handling)

any
fault

fail-silent
fail-

operational fail-degraded

fail-safe

Figure 2-4: Relationship between different operational modes of an ECU

2.2 Introduction to fault tolerance

Various concepts are discussed in different literatures as to how to improve dependability, for
examples by means of fault-prevention, fault-recovery, fault-tolerance and fault-forecasting, etc.
Fault-tolerance is one of the most methodic of these concepts, which will be explained here in
detail [Ech90].

Fault-tolerance describes the ability of a functional unit to continue to perform a required function
in the presence of faults or errors. A fault tolerant system has to provide at least three activities:

 Fault diagnosis/detection

 Fault description

 Fault handling including fault isolation (damage assessment) and fault recovery

Fault tolerance removes the effects of the failure. With respect to dependability, this solution is
always the best, although it may be the most expensive. In the following sub chapters the three
activities/steps will be explained in detail.

2.2.1 Fault diagnosis/detection

One of the most important elements of fault-tolerance is fault diagnosis or fault detection. This
describes the ability of a system, to detect and localize a particular abnormal state or state
combination in a system or the environment, which has resulted in or will result in an error.

Fault diagnosis serves as the basic and the very first step, in order to avoid a fault in the global
system, because measures to restrict and avoid faults in the components and system can only be
carried out when unallowable states are detected.

As a conclusion, fault diagnosis can be divided into two steps. The first step is to detect the
existence of a fault. The second is to localize the fault, where the error arises. This is important, in
order to choose appropriate fault-handling mechanisms for the faulty part(s).

Basic concepts of dependability

11

2.2.2 Fault description

In order to implement an efficient approach for fault detection, it is necessary to be aware of the
potential faults. An appropriate monitoring mechanism can only be developed with the knowledge
of which kinds of faults can occur at which components.

For this reason, it is necessary to define a set of potential faults, by analysis of the system and
possible faults, which can be tailored in a top-down process to gain a so-called fault model. The
probability of the respective faults and their hazard to the system as a whole will then be analyzed.
Finally, the set of faults which can be tolerated, taking different constraints into consideration will
be defined.

2.2.2.1 Fault classes

It is necessary to categorize the different faults into appreciate fault classes by analyzing the
potential faults in the system. In this sub-chapter a number of basic fault classes will be specified.

There are three basic faults:

 System fault,

 Run time fault

 Other faults

System faults are faults which are embedded at the starting of the system due to conceptual
problems. Run time faults, which occur during the running time, are the second most common type
of fault. Run time faults can be caused by wearing faults, operating faults, coincident faults and
malicious faults.

The third category of faults is other faults, which do not originate from the system nature or
operational period, for example production faults or maintenance faults.

Faults can be divided further, according to their location:

 Faults in software

 Faults in hardware

 User operating faults

The final classification of faults is made according to the duration of the fault:

 Permanent faults: continuous until maintenance or other appreciate fault handling method
is carried out.

 Temporary faults: last only for short time and disappear after a while.

Table 2-1 shows, as a conclusion, the faults discussed in this sub-chapter and their relationship to
fault occasion, fault location and fault duration.

Basic concepts of dependability

12

Table 2-1: Fault classes [Ruh04]

Exclusively for distributed electronics, there are two main categories of faults [Cri91]:

 Non-specified behaviors during runtime
 Neglect of input signals and functionalities can be only restored after a restart

The first category can be divided into the following sub-categories:

 Omission fault
 Timing fault
 Response fault
 Byzantine fault

While the second category can be divided into following parts:

 Interval crash
 Partial-amnesia crash with partial history loss
 Amnesia crash with total history loss

In the following, the seven failure categories are specified in detail:

 Omission faults: Omission faults describe the situation when a required functionality is not
performed within a certain time. A typical example is the communication between two
ECUs. ECU1, according to the specification, should respond to ECU2 with a pre-defined
signal. Because of interference in the communication channel the message is, however,
lost or damaged. ECU2 can recognize faults by monitoring time out.

 Timing faults: In timing faults the required services are not delivered in the pre-defined time
window. Such failure occurs very often when the communication channel is overloaded or
the microprocessor is too busy.

 Response fault: when the required service can not be fulfilled as specified, for example
faulty response/control of actuator or non-specified state change.

 Byzantine fault: One of the most difficult faults to handle is Byzantine fault. In this fault one
“identical” message, from the point of view of the sender, will be sent out with different
content to several receivers, so that the receivers, which are supposed to process identical
information, have different input values. There are two different Byzantine faults: “Benign
Byzantine Fault” and “Malicious Byzantine Fault”. In a benign Byzantine fault a certain
number of receivers can receive an identical, valid value and the rest receive nothing at all.
With malicious Byzantine faults, different values will be received by the receivers.

 software hardware user permanent temporary
specification faults X X X
design fault X X X
implementation fault X X

system
fault

document fault X X X
wearing fault X
operation fault X X
interference fault X X
coincident fault X X

runtime
fault

deliberate fault X X
production fault X X X X other

faults maintenance fault X X X X

Basic concepts of dependability

13

 Pause crash: Pause crash is the crash with the lightest influence on the complete system,
in which the functionalities of electronics resume work as normal.

 Partial-amnesia crash with partial history loss: compared with pause crash, only one part of
the state information from before the crash remains for further operation, the rest are lost.
Every ECU has some kind of history, that is to say, information regarding past actions,
values and states. One example of partial data loss is a restarted ECU, which uses history
information to compare computed state with real environment. A concrete example is the
loss the last steering actuator angle of an EPS before the next ignition cycle.

 Amnesia crash with total history loss is unfortunately the most common case in automobile
electronics, in which a continuation from the previously computed results is impossible.

2.2.2.2 Fault propagation behavior

When one component in the system exhibits a faulty behavior, a so called Domino Effect could
occur, in which n to n+1 further components break down and this leads to a crash of the entire
system. Generally speaking, there are two categories of fault propagation:

 Vertical fault propagation

 Horizontal fault propagation

The basis for analysis of fault propagation is the layered architecture model (for example
[ISO7498-1]) of the electronics, a hierarchical architecture from hardware at the very bottom to the
software application at the very top, as shown in Figure 2-5.

Figure 2-5: Layered architecture model of electronics

Fault propagation, which only results in other faults at the same layer, is called horizontal fault
propagation. Fault propagation over the layer border is called vertical propagation.

Basic concepts of dependability

14

2.2.2.3 Fault model, fault hypothesis and fault types

A fault model is a model, which describes the structure of a system, including its components and
the fault possibilities (=malfunctions) of the individual components, in an at least qualitative way.

In the automobile industry there are various methods for analyzing the fault model:

 Dependability analysis

 Event Tree Analysis (ETA) und Fault Tree Analysis (FTA),

 Failure Mode and Effect Analysis (FMEA),

 Failure Mode, Effect and Diagnosis Analysis (FMEDA)

 Hazard analysis (HA)

A fault hypothesis denotes a claim about the set of faults (independent or related faults) and states
an assumption about their types defined by fault number, source and temporal behavior, which are
tolerated by a system within a certain time interval. [Kru98]

Detailed discussion concerning fault model analysis and fault types is not the main focus of this
dissertation. Results from the fault analysis will, however, be taken into consideration by the design
and reflected in the design phase of the ECU architecture and network topology.

2.2.3 Fault treatment

There are two main categories of fault treatment/handling concepts. The first is to exclude and
contain the faulty components of a system and to prevent a total crash of the system. The second
concept is to repair the faulty components, which implies fault detection, fault identification, fault
isolation and fault recovery with a set-up of strategies to recover from the failed situation, perhaps
in some degraded manner. A simple example of fault recovery could be the re-computation in an
alternative way (indirect) of data when the related sensor fails or a change in the actuator’s
management strategy when one of the actuators in the system is partially or totally broken.

Fault location, to establish which parts of the system have been affected by the failure, is the basic
step of both fault handling concepts. In order to localize the faults in a vehicle, they could be listed
and analyzed and then classified on a probabilistic basis to select appropriate fault containment or
fault recovery actions during the system requirements specification phase.

In the following two sub-chapters, the two fault handling concepts will be explained in detail.

2.2.3.1 Fault containment

As explained above, fault containment means deactivation and containment of faulty components,
however the faults themselves will not be removed. Through fault containment the potential
negative impact of faulty components on other components and system functionalities will be
suppressed. The faulty components can be determined by means of, deactivated and replaced at
the next maintenance. Fault region and fault containment region, as two of the most important
terms in fault containment, are defined as follows:

Basic concepts of dependability

15

 Fault region: A fault region is a set of components which are considered as either faultless
or faulty as a whole. Within a fault region fault locations are not distinguished. If a fault
region is faulty, its internal behavior is not of interest. Its external behavior, called
malfunction, does no longer satisfy the specification. Depending on the “design
philosophy”, fault regions range from very small to very large. Sometimes chips are taken
as fault regions in the hardware. Other examples are software layers or nodes as a whole.
However, in both cases the definition of fault region reflects the design strategy of a fault-
tolerant system in a comprehensive way.

 Fault containment region: For each malfunction a maximum set of affected components
can be claimed. The fault must be kept within this set, called fault containment region.
Typically this requires one of the following (or a combination of them):

o Encapsulation reduces or even avoids interaction, to make further fault propagation
impossible. Reducing the interaction may affect the exchanged values and/or the
timing. Generally, “fault-critical” interaction is replaced by “less-fault-critical” interaction.
Typically, this refers to the specification of interfaces.

o Fault detection makes the existence of a failure explicit. The components can then take
extra actions (such as passivation) and/or perform exception handling to some extent.
Alternatively, fault detection simply turns a non-detected failure into a detected one (for
a larger fault containment region).

For each malfunction, the set of affected components (outside the respective fault region) where
the fault can propagate to must be defined. Typically faults can only propagate via the paths of
interactions. Once the fault has propagated, the affected components become erroneous
themselves, and exhibit a malfunction, which must also be specified.

2.2.3.2 Fault tolerance

As stated in the above, the second category of fault handling is fault removal, where the fault can
be removed or fixed during run time, so that the local crash of a function or complete crash of the
system can be prevented.

There are three different methods for fault removal:

 Fault correction

 Backwards recovery

 Forwards recovery

Fault correction includes all the existing algorithms and methods, which can correct detected faults
without a state change in the applications.

The backwards recovery can bring the faulty components into a consistent, former fault-free state,
from which the whole system can continue working.

Compared with backwards recovery, forwards recovery brings the faulty component into a “future”
state, which is designed to be fault-free.

Basic concepts of dependability

16

State of the art: Automotive electronic architectures

17

3 State of the art: Automotive electronic architectures

After the brief introduction to dependability and fault tolerance above, the state of the art for
automotive electronic architectures, including network topology, hardware, software and
development process will be introduced in the following chapters, as one of the most important
concepts for improving system dependability.

The past few decades have witnessed an exponential increase in the number and sophistication of
electronic systems in vehicles. More than 70% of innovations (chips instead of metal) in
automotive industry [McK06] are now electronic and software related. Modern vehicles carry more
computation power than Apollo spaceship that flew to the moon. Many functions, such as
navigation, Infotainment or engine control can not be implemented at all without extensive use of
electronics. [Bro03]

In this chapter, firstly state of the art for automotive electronic architectures will be explained,
where emphases are placed on the existing hardware and software architecture for automotive
ECUs and the technologies, which can be used to implement highly dependable systems. After
that the communication systems and development process for automotive electronics especially for
safety relevant systems will be also explained.

3.1 Building blocks of automotive electronic architectures

Generally speaking there are two views when considering automotive electronic architectures:

 Hardware architecture: From a general point of view, hardware architecture includes the
following issues:

o ECU local structure of physical components such as processor, actuator, sensor,
internal communication, bus connection and hardware methods to guarantee higher
dependability, including hardware redundancy and monitoring strategy.

o In-vehicle network topology, how ECUs are connected via the communication
network in a vehicle.

o Communication system and protocol between the ECUs.

 Software architecture: A description, including specification of a standard software
components, a vertical interface between the layers, a horizontal interface in one layer and
functionalities of the respective software components.

Before going into detail about the state of the art for automotive electronic architectures and
requirements for future automotive safety systems, a few technical terms will be explained.

 Architecture: The general definition of architecture means the fundamental organization of
a system embodied in its components, their relationships to each other and the
environment, and the principles guiding its design and evolution. The term architecture here
denotes descriptions of automotive electronic systems on different abstraction levels, for
example abstraction from functional analysis or logical analysis.

State of the art: Automotive electronic architectures

18

 Architecture Framework: An architectural framework is an aid which can be used for
developing a broad range of different architectures, which includes

o parts of an overall system architecture into which variable components can fit

o a method for designing an information system in terms of a set of building blocks
and for showing how the building blocks fit together

o a set of references for supporting tools

o providing a common vocabulary

o a list of recommended standards

o compliant products that can be used to implement the building blocks

 Topology: The term topology originates from a branch of mathematics, meaning the study
of that property of geometric forms. The term network topology means the study of
networks in connection with non-metric geometrical properties by investigating the
interconnections between branches and nodes of networks.

Topology here means the interconnection of ECUs (nodes) in a vehicle with the various
communication networks and the E/E-architecture of the ECUs, including the hardware
architecture and software architecture.

3.2 Requirements for future automotive safety systems

Nowadays automotive electronic systems are implemented in a distributed manner. This means
that ECUs, sensors, actuator and networks from different suppliers are installed in various
positions in a vehicle, forming a real-time distributed system, while OEMs are responsible for the
system design and system integration/test of those ECUs. Theoretically the automotive electronic
system can be also implemented in a central manner. The following are reasons for this distributed
architecture:

 Traditionally, in the automobile industry a supply chain exists, in which the system supplier
provides the OEM with the system components ready for direct installation.

 The distributed system enables an ideal modular oriented assembly system for reasons of
packaging and cost.

 The dependability of the whole system can be improved by avoidance of “Single Point of
Failure” with the help of the principles of fail-safe or fail-operational. The local fault of a sub-
system can be tolerated so that the whole system should still work after the fault. The active
redundant systems as in the steering and brake systems can be only implemented in a
distributed manner.

 Additionally, a central architecture will introduce problems with cables and packaging, e.g.
the number and length and cables will become critical if one ECU is designed to connect
with all the other components.

The general requirements for automotive systems and specific requirements for future automotive
safety systems will be addressed subsequently.

Real time with short latency period: A constant and pre-known latency period is the most
important condition for a closed-loop control system. Here the latency period is defined as the

State of the art: Automotive electronic architectures

19

period of time from the time information is produced to the time that the information is consumed,
where the maximum latency period will be defined in “ms”-area according to the requirements of
the application.

Fault-detection: In a distributed system it is not only important to detect the local component
faults, but also faults from other nodes.

Fault-tolerant: Fault-detection alone is not enough for a safety relevant system. After the fault is
detected, appropriate treatment should be taken in real-time. The system should tolerate a certain,
pre-defined number of faults.

Redundant-determinisms: Active redundancy requires certain determinisms, such that the
internal partner should be synchronized to a global clock, so that the result can be provided in a
given time window. Here, a fault-tolerant communication channel with defined latency periods is
required.

Robust: In the automotive environment, electronic components are facing numerous interferences
such as high, varied temperatures, vibration, mechanical impact, dust and EMC-problems
(electromagnetic compatibility). Automotive electronics should be immune to these interruptions.

Composability: In the automotive industry, even if the sub-systems from suppliers are tested and
validated according to the pre-defined requirement specification and every sub-system is fault free,
it is still not guaranteed that the whole system will work. OEMs, as system integrator, are legally
responsible for the whole system working for the customer as promised.

In order to improve composability, the interface between the system components and the
responsibilities between the sub-suppliers, system suppliers and OEMs should be well defined at
the design phase. Mutual dependency should be minimized, in order to improve modularity.

Testability and Certification: With the increasing complexity and multiplied model varieties, both
in hardware and software, it is a challenge to test a modern automotive electronic system. In safety
electronics, every possible situation should be tested, which amounts to huge efforts in time and
cost. Test automation is the solution for a rapid and reproducible way to increase the depth of
automotive electronic tests in a shorter development cycle.

A large percent of source codes in modern automotive software are already generated
automatically, with the help of model based software engineering and a code generator. Both
development process and code generator should be certificated to the appropriate safety
requirements for the applications.

Maintenance and diagnosis: One of the basic requirements for automotive ECUs is the ability to
diagnose for both calibration and maintenance.

State of the art: Automotive electronic architectures

20

3.3 State of the art: Hardware architecture for automotive electronics

3.3.1 Requirements for hardware of safety electronic systems

According to the safety norm ISO26262-5 hardware development [ISO25], the hardware safety
requirements shall at least include:

 The hardware safety requirements to control external failures of the hardware item (i.e.
failure occurring outside of the limits of the hardware item under consideration), with their
relevant attributes (e.g. the functional behavior required for an ECU in case of an external
failure, such as an open-circuit in the input of the ECU),

 The hardware safety requirements to control internal failures of the hardware item, with
their relevant attributes (e.g. timing and detection abilities of a watchdog),

 The hardware safety requirements of monitoring mechanisms dedicated to indicate the
internal or external failures to the driver (e.g. watchdog with driver warning),

 The hardware safety requirements to avoid and control systematic failures (e.g. safety
critical timings in normal mode of operation).

As explained in Subsection 3.1, automotive electronic hardware architectures will be examined
from three different points of views: in-vehicle system topology, ECU hardware architectures and
communication systems between ECUs. While system topology defines a master plan of in-vehicle
ECUs, the ECU hardware architecture and communication system defines the detailed hardware
implementation and the communication pattern between them.

In the following subchapter, state of the art in these three areas will be explained.

3.3.2 In-vehicle system topology

An in-vehicle system topology shows the connection of ECUs in a vehicle, including:

 The number and types of ECUs

 The number and types of communication networks

 How the ECUs are connected with the communication network

In high-end vehicles, such as the Mercedes E-Class (BR211), the system topology for the
communication network is highly complex, with more than 50 ECUs, as shown in the 2-D network
topology in Figure 3-1. The ECUs in this case are traditionally divided into the following 4 vehicle
domains; cabin/body, chassis, powertrain and telematics, where the chassis and powertrain
domains are usually combined. The term vehicles domain was introduced for the connection of
ECUs with a close functional relationship and connection of ECUs which are spatial closely
located.

State of the art: Automotive electronic architectures

21

CAN Class B (83 1/3 kBit/s)CAN Class B (83 1/3 kBit/s)

Climate Control /Human
Machine Interface/

Body Electronic

Climate Control /Human
Machine Interface/

Body Electronic

LIN (10 kBit/s)

LIN-Sub
Bus

LIN-Sub
Bus

Motor/
Powertrain/

Chassis

Motor/
Powertrain/

Chassis

CAN Class C (500 kBit/s)

Audio/Video/
Navigation

Audio/Video/
Navigation

Optical Transmission

Motor-
Gateway

Engine Controller

Gear Controller

Transmission
Controller Module

Electronic Stability
Program

Air Suspension /
Active Body Control

Distronic

Kombi instrument

Automatic Headlamp
Leveling

Speech Dialog
System

Navigation

Cell-Phone

CD

Sound-System

Seat Control Module
Front Left

Roof Control Module

Door Module
Rear/Right

Signal detect and
Actuator Module Left

Central Locking
Systems Pump

Climate Automatic

Back Climate
Automatic

Tire Pressure Control

Keyless Go System Multifunction Control
Module

Seat Control Module
Rear

Parktronic
System

Outer Steering
Column Module

Seat Control Module
Front Right

Upper Human
Machine Interface

Signal detect and
Actuator Module Right

Door Control Module
Front Left Tür-SG vorne rechts

Door Control Module
Rear Right

Signal detect and
Actuator Module Rear

Multimedia-
Gateway

Window Lift

Exterior Mirror

Door Lamp

Key Field

Door Control Module
Front Right

CAN Class B (83 1/3 kBit/s)CAN Class B (83 1/3 kBit/s)

Climate Control /Human
Machine Interface/

Body Electronic

Climate Control /Human
Machine Interface/

Body Electronic

LIN (10 kBit/s)

LIN-Sub
Bus

LIN-Sub
Bus

LIN (10 kBit/s)LIN (10 kBit/s)

LIN-Sub
Bus

LIN-Sub
Bus

LIN-Sub
Bus

LIN-Sub
Bus

Motor/
Powertrain/

Chassis

Motor/
Powertrain/

Chassis

CAN Class C (500 kBit/s)

Audio/Video/
Navigation

Audio/Video/
Navigation

Optical TransmissionOptical Transmission

Motor-
Gateway

Engine Controller

Gear Controller

Transmission
Controller Module

Electronic Stability
Program

Air Suspension /
Active Body Control

Distronic

Kombi instrument

Automatic Headlamp
Leveling

Engine Controller

Gear Controller

Transmission
Controller Module

Electronic Stability
Program

Air Suspension /
Active Body Control

Distronic

Kombi instrument

Automatic Headlamp
Leveling

Speech Dialog
System

Navigation

Cell-Phone

CD

Sound-System

Seat Control Module
Front Left

Roof Control Module

Door Module
Rear/Right

Signal detect and
Actuator Module Left

Central Locking
Systems Pump

Climate Automatic

Back Climate
Automatic

Tire Pressure Control

Keyless Go System Multifunction Control
Module

Seat Control Module
Rear

Parktronic
System

Outer Steering
Column Module

Seat Control Module
Front Right

Upper Human
Machine Interface

Signal detect and
Actuator Module Right

Door Control Module
Front Left Tür-SG vorne rechts

Door Control Module
Rear Right

Signal detect and
Actuator Module Rear

Multimedia-
Gateway

Window Lift

Exterior Mirror

Door Lamp

Key Field

Door Control Module
Front Right

Window Lift

Exterior Mirror

Door Lamp

Key Field

Window Lift

Exterior Mirror

Door Lamp

Key Field

Window Lift

Exterior Mirror

Door Lamp

Key Field

Door Control Module
Front Right

Figure 3-1: ECU topology of Mercedes E-class BR211

Modern in-vehicle network topology is primarily influenced by the concept of distributed function.
Each electronic application is implemented on a single ECU as black-box. The ECUs are divided
into different vehicle domains, whilst still being connected by various communication networks.
With the dramatically increased number of applications in vehicles, the networking for electronic
modules (sensors, actuators and ECUs) is slowly approaching the limit of mastery.

Due to reasons of cost and the requirement to reduce complexity, the current trend is towards
fewer ECUs and with an increasing number of functions on each of them ([ElA04] and [ADL05]).
The degree of inter-connection between ECUs will be intensified. Highly dependable applications
also set new requirements for network topology, with regard to determinism and fault-tolerance.

3.3.3 ECU hardware architecture

3.3.3.1 Hardware architecture of general ECU

Generally speaking the ECU hardware can be divided into 5 main parts as shown in Figure 3-2:

 Power supply, 12 V from the in-vehicle battery

 RAM/ROM

 Interface to the communication system

 Sensors/actuators

 CPU

State of the art: Automotive electronic architectures

22

The other peripheries of an ECU include the analogue and digital interfaces to the sensors (A/D
Converter ADC) and power semiconductor to drive the actuators and connectors.

sensors actuators

CPU

communication controller

ADC Power
supply

power
semiconductor

RAM /
ROM

Figure 3-2: Hardware components of an ECU

Compared with domains such as chassis and powertrain, comfort and cabin electronics have fewer
requirements with regards to dependability. Thus the ECUs in these domains employ the single-
processor concept.

Single-Processor-ECU

The Single-Processor-ECU concept is realized with Central Processor Unit (CPU), which
calculates the result of a certain algorithm and communicates with external sensors and actuators
via different input and output ports. With the help of the communication driver every ECU can
communicate with each other. The redundant sensors are represented from S1 to Sn in small
ellipses and redundant actuators are represented in A1 to An (see Figure 3-2 und Figure 3-3).

Figure 3-3: Single-Processor ECU

This kind of ECU hardware architecture, also called 1oo1 (1 out of 1 as one-channel-structure), is
now most widely used in automotive electronics because of the relatively cheap material cost,
considering the enormous number of deployed units. Typically, the dependability of a Single-

State of the art: Automotive electronic architectures

23

Processor ECU can not meet the requirements of today’s active/passive safety domain and
powertrain applications due to the limited fault detection capability of a single CPU, which does not
have reference to a redundant unit.

3.3.3.2 Hardware architecture for safety relevant ECUs

Hardware architecture for safety relevant ECUs is characterized by high dependability, which
supports fault tolerance, error detection and error handling. The traditional approach for improving
hardware dependability is structural redundancy.

3.3.3.2.1 Dual-processor concept with fail-safe or fail-silent behavior

An ECU with the dual-processor concept can be implemented as fail-silent or fail-safe. The two
processors work in parallel. They use the same input values, monitor each other and compare
output results. Generally speaking there are two possible methods for realizing fail-silent or fail-
safe ECUs, using the dual-processor concept (see Figure 3-4):

 Single processor system with a monitoring processor

 Dual-Core system with two identical processors

In single processor systems with one monitor unit, the monitoring unit, a hardware “watchdog”, is
usually a cheaper processor or ASIC with lower performance than the main processor. The
monitoring unit runs parallel to the main processor and checks its plausibility as one channel
structure with diagnosis 1oo1D-system. In case of implausibility the monitoring processor can bring
the whole ECU to a safe state, for example by switching off the power supply.

Compared with single processor systems, Dual-Core systems are equipped with two identical
processors with the same functionalities, which communicate via internal communication systems
to compare results. The two processors communicate with an external ECU by means of a pre-
defined exclusive (2oo2-system) or shared communication driver (1oo2-system). Since the same
functionality can be processed on both units, a wider range of plausibility checks can be covered
and therefore faults can be detected. The practical hardware realization of dual-processor-ECUs
can also be different. One possibility is to realize the two processors on a common silicon chip to
save costs and packaging, with the disadvantage that they can be disrupted together, while the
other method is to implement the two processors in separate packages as two “independent
nodes”.

Figure 3-4: Dual-Processor ECU

State of the art: Automotive electronic architectures

24

The monitoring concept with a single-processor requires greater development efforts in
comparison with the Dual-Core system, as two different functional entities must be implemented
and tested. On the other hand, the single-processor-concept requires a processor with lower
performance and thus a lower cost, meaning that production expenses can be reduced. Which of
the two concepts will be chosen depends on the number of units to be produced and the safety
requirements of the application. An example of the dual-processor-ECU is the modern E-Gas
system or MK25 ESP-ECU [Con06] from Continental with fail-safe characteristics.

3.3.3.2.2 Fail-operational ECU (fault tolerant ECU)

The dependability realized by the dual-processor concept is fail-safe, the faulty function can return
to a safe state, but can no longer be employed. For applications in X-by-Wire systems or
applications in powertrain and chassis, there is no absolute safe state in many cases. Here, a fail-
operational system is required, which can tolerate faults and deliver the service in spite of them.
The general approach for progressing from a fail-safe system to a fail-operational system is to
raise the number of redundant processor units by means of simultaneous, mutual monitoring.
There is currently no real fault-tolerant automotive ECU in practice or in serial production.
However, from other domains, for example in the aerospace industry, and related literatures there
are a number of hardware topologies, which can realize a fault-operational ECU.

For the automotive industry only two of these will be considered, for reasons of complexity and
cost:

 Triple-processor (triplex) ECU

 Dual-duplex processor ECU

Triple-Processor (triplex) ECU

The Triple-Processor ECU works in the same way as a dual-processor ECU, but with 3 processing
units performing mutual comparison of data and state during data processing, instead of 2.
Usually, every processing unit has its own communication controller (2oo3-system) as shown in
Figure 3-5.

In order to reduce production costs, only 2 out of the 3 processing units are normally connected to
the sensors, actuators and external communication system. The third microprocessor receives the
data via the internal communication system from the other two processors and in case of
difference during comparison an agreement protocol 2 out 3 will be performed, as shown in Figure
3-6.

Figure 3-5: Triple-Processor ECU as a full 2oo3-system

State of the art: Automotive electronic architectures

25

CPU CPU

communication controller

CPU

ActuatorsSensors

Figure 3-6: Triple-Processor ECU

In the Triple-Processor ECU, even when one processor fails to work, the other two processors can
still perform fail-safe behavior, because they can still monitor each other and shut off the system in
case of inconsistency (under the situation that I/O and communication channels can be
redundantly controlled). The disadvantage of such a system is the greater effort required to
compare the input value, results of the processor, state, etc.

In order to simplify the agreement process between the processors, a hierarchical structure, similar
to the following system, can be employed.

Dual-Duplex-Processor ECU

Such hierarchical structure can be realized in a Dual-Duplex-Processor ECU. Initially, it appears to
be a simple duplicated dual-processor ECU with internal communication between them, which
informs the other about the state and data to compare. As shown in Figure 3-7, this initial variant is
fully symmetric. By duplication of single processor with a monitoring unit, the dual-duplex
architecture can be also built up as the second variant in Figure 3-7.

CPU CPU

communication controller

ActuatorsSensors

CPU CPU

communication controller

ActuatorsSensors

Figure 3-7: Two variant of Dual-Duplex-Processor ECU

State of the art: Automotive electronic architectures

26

3.3.3.2.3 Power supply for safety relevant ECUs

While dealing with safety critical functions and redundant fail-operational systems, it is important to
avoid any “Common Cause” of failures. One such typical failure cause is a power supply failure.
Although the topic of power supply management is not the focus of the work here, a few important
points will be explained.

A fault tolerant power supply, which is essential for fail-operational systems, also requires
redundancy within the power supply. Redundant power supply lines must be mutually insulated, in
such a way that a failure on one must not propagate to another. Power supply strategies shall
ensure fault isolation between the power supply of critical and non-critical parts in order to avoid
faulty propagation. The following characteristics of the power supply system are recommended for
safety relevant systems:

Power sources disconnection: disconnection of the power sources (storage units and power
generation system) must be foreseen.
EMS (Energy Management System): maintains and monitors Electrical Energy Balance and
ensures a proper state of charge to the storage systems (batteries)
BMS (Battery Monitoring System): accurate estimation (measurement) of the status of power
storage systems.
Fuse Boxes: proper protection shall be carefully studied for each load, with particular regard to the
fault isolation principle.
EUS (Energy Uncoupling System): is a component used to uncouple the Power Generator
supply bus and the redundant supply buses under certain failure conditions.

3.3.3.3 Conclusion for ECU hardware architecture

State of the art in automotive hardware architecture for non-safety critical application currently
remains single-processor unit with simple hardware watchdog and directly coupled actuators and
sensors. With the increasing requirements of highly dependable systems, especially for future X-
by-Wire applications, appreciate hardware architecture with redundant backup units is applied to
increase the fault-tolerance of the system. Existing concepts of fail-operational ECUs, however,
still need to be standardized and adapted for automotive applications.

State of the art: Automotive electronic architectures

27

3.3.4 Automotive communication systems

As shown in Figure 3-1, four different communication networks are used in the Mercedes E-Class.
However, such heterorganic communication networks are no longer simply the privilege of luxury
vehicles; modern, mid-range vehicles also employ several different communication networks.

3.3.4.1 Requirements for automotive communication systems

Before the various communication networks employed in modern vehicles are considered, it is
necessary to consider the requirements for automotive communication systems.

 For ECU communication, configurable synchronous and asynchronous data transfers are
both required.

 Many applications, especially safety relevant applications with control loops, require a
deterministic manner of data transfer with QoS.

QoS here means to the ability of a network element, such as an application, network node
or gateway component, to have some level of assurance that its traffic and service
requirements can be satisfied. Enabling QoS requires the cooperation of all network layers
from top-to-bottom, as well as every network element from end-to-end. There four key QoS
parameters:

o Latency (end-to-end time for a service, until the time service is delivered to the
application, including propagation delay through network as one part)

o Jitter (delay variation)

o Bandwidth

o Packet Loss

In time-triggered communication networks such as FlexRay, QoS is realized by static
communication scheduling. In event-triggered communication systems such as CAN,
important signals are sent periodically, but in particular non-periodic diagnosis messages,
is sent dynamically. In telematics applications, when concerning mobile communication
networks or IP-based networks, QoS is realized dynamically.

 Fault tolerance in communication: for the QoS, some kind of fault tolerant communication is
also needed, to ensure the data integrity when one bus fails to transfer data due to certain
physical failures.

 Scalable support for redundancy: redundant units such as actuators and sensors must also
be coupled with ECUs in the network. Moreover, when redundant processor units are
realized by separate packages, as independent nodes, the communication between the
redundant units is also provided by the communication network.

 Global time base: a global time base is of vital importance for a time-triggered system,
where the local time in each ECU is synchronized with the global time.

 Most safety relevant applications require deterministic behavior, including data transfer.
The state of the art for in-vehicle communication by means of CAN-bus is based on

State of the art: Automotive electronic architectures

28

arbitration, in which messages with different priorities compete with each other for bus
access. Each node can access the bus coincidentally, thus no peak data transfer rate can
be foreseen at the development phase. This means a deterministic data transfer with
deterministic bus load can not be guaranteed.

 The bus load in state of the art in-vehicle communication varies from a few Kbit/s to a few
hundred Kbit/s. The transfer rate, especially in the domains of powertrain and cabin, is
relative low. However, with the increasing complexity of applications and data fusion, the
future demand for a higher data transfer rate of up to 10 Mbit/s is a possibility.

 Compared with the communication networks in IT, in-vehicle bus communication has a
number of constraints to consider, including isolation, EMC (electromagnetic compatibility)
and assembly. Therefore, the communication network should support both optical and
electrical transfer mediums.

 The in-vehicle communication system should also provide support for an energy
management concept for a long run battery period.

3.3.4.2 State of the art in automotive communication systems

In this section, different in-vehicle communication busses, such as, CAN, ASRB, Byteflight and
FlexRay will be briefly introduced. Other in-vehicle communication networks such as LIN (Local
Interconnect Network), TTCAN (Time-triggered CAN [Har02]), MOST, IEEE-1394 are not the
current focus of the work and will be disregarded at this stage.

 The most widely applied automotive communication network is Controller Area Network
(CAN, [ISO11898] Part 1-3). CAN is an event-triggered communication network with a
transfer rate from approximately 20 Kbit/s to a maximum of 1 Mbit/s. Bus access for CAN
follows the arbitration concept based on the priority of each CAN-message. This implies
that when more than one node wants to access the bus medium simultaneously, only the
message with the highest priority can be sent. The messages with lower priority will be
withdrawn and sent at a later time, thus the time period to access the bus is not
deterministic, since a message with low priority can be withdrawn many times without
success and other CAN-messages could dominate the bus.

 Automotive Safety Restraints Bus (ASRB) (former Safe-by-Wire) [ASR04] is a sensor bus
for the automotive passenger restraint systems. The automotive passenger restraint
systems are controlled by a "Restraint Control Module" (RCM), which is connected to
peripheral devices.

 First published as “SI-bus” in 1999, the Byteflight bus [Gri00] was developed to connect
passive safety systems, such as airbag ECU and crash sensors. As a communication
schema, Byteflight uses the FTDMA – Flexible Time Division Multiple Access algorithm.
Compared with modern in-vehicle communication systems it provides a much higher
bandwidth owing to the fast physical layer (10 Mbit/s) and a star-topology. The total
intelligence is based on the so-called Star Net Coupler, which synchronizes the bus and
controls bus access. Messages in Byteflight are sent cyclically in Mini-Slotting algorithms.
The state of the art in Byteflight consists of plastic optical fiber, which is not suitable for
current automotive application (heat-resistance, torsional radius, etc).

State of the art: Automotive electronic architectures

29

 The development of FlexRay began in 1999 shortly after the development of Byteflight and
aimed to eliminate the disadvantages of Byteflight. FlexRay, ([Bel01] and [FxR02]) is the
state of the art for fault tolerant communication system. It fulfills the requirements for safety
relevant applications and future X-by-Wire systems. FlexRay provides two configurable
transfer modes, synchronous and asynchronous. Cyclical messages with real time
requirements can be transferred in the synchronous mode using a TDMA algorithm, while
event triggered messages or diagnostic messages can be transferred in the asynchronous
mode using an FTDMA algorithm, similar to Byteflight.

Due to the flexibility between the dynamic and static segments, FlexRay can be used as
purely time-triggered or mixed with an event-triggered communication system, as shown in
Figure 3-8.

Figure 3-8: FlexRay bus access and communication cycle

One of the most important new features of FlexRay is fault tolerance, not only with the fault
tolerant mechanism from the physical layer, for example CRC etc., but also directly from
the protocol layer, which enables a scalable redundant system with higher dependability. A
cycle counter is implemented in FlexRay which monitors the sequence of messages sent
and received. Moreover, end-to-end communication safeguarding and timeout monitoring
can also be implemented as extensions to the software.

FlexRay supports different network topologies with the following basic topologies:

o Point-to-point

o Passive bus

o Passive star

o Active star (capable of deactivation of faulty network branch or nodes [Ele04])

State of the art: Automotive electronic architectures

30

More complex topologies as depicted in Figure 3-9 are possible by combining the basic
topologies as follows

o Cascading of active stars

o Combining bus- and star-topologies to a hybrid topology

o Combining dual FlexRay channel facilities with the above topologies to: dual
busses, dual stars and dual hybrids

single channel system dual channel system mixed channel system

ECUs
Stars

Figure 3-9: FlexRay topologies

The star-structure, compared with the passive star (ground connection as in CAN) is an
active node. Physical failures, such as short-circuit, will be detected by the active star node
and recovered from by turning off the damaged branches. Failures in the time domain e.g.
by nodes jamming the bus as a “babbling idiot” FlexRay can prevent by the optional local or
central “Bus Guardian”.

The other characteristic of FlexRay (compared with Byteflight) are listed below:

o Redundant channel including bus monitoring

o Distributed time synchronization

o No intelligent Start Coupler as single point of failure

o Maximum of 2 star structures can form a daisy chaining

o Electronic physical layer with transfer rate of max. 10 Mbit/s

3.3.4.3 Conclusion for automotive communication systems

Current in-vehicle communication systems exhibit a high diversity in sub-networks, regarding
hardware, transfer velocities and communication protocols. CAN, as the most common in-vehicle
communication network, has established its place as a mature technology. In order to gain design
correctness and deterministic communication with a higher bandwidth, to master the complexity at
system integration, new communication networks, such as Byteflight and FlexRay have been
implemented. For future integrated safety applications, FlexRay is considered the most suitable
candidate for realizing fault-tolerant communications between distributed safety functions.

State of the art: Automotive electronic architectures

31

3.4 State of the art: Software architecture for automotive electronics

Besides the hardware architecture, the software architecture is one of the most important parts of
an automotive electronic system. Currently, a large number of ECU functionalities in vehicles are
implemented in software [McK06]; consequently according to a “post-modern” reliability theory
[Kop02], software has become a serious problem for the dependability of embedded system.

3.4.1 Requirements for software in safety electronic systems

The following lists some of the general requirements for software in automotive safety electronic
systems [SWR07]:

 Modern automotive software systems are highly complex and dynamic, for example every
engine ECU can have a specification with more than 3,100 pages, 7,500 variables, 4,900
parameters and 500 system constants. The management of different versions of software
modules on different ECU hardware alone has been a problem.

 The applications implemented in current software are mostly distributed systems with
functionalities, which are implemented over different domains, making use of the synergy-
effect for flow of information over domain borders.

 Compared with normal distributed systems, automotive software requires high real-time in
latency, jitter and other QoS parameters. Many safety relevant applications are time
triggered, thus requiring deterministic behavior both in the OS and SW-Cs, for example
deterministic execution time.

 Many error detection mechanisms are now implemented in software, e.g. CRC-check.
Different methods for the distribution of information concerning fault detection in real-time,
for example atomic, broadcasted and asymmetric, can be employed.

 Fault-masking in redundant systems requires determinism in software, the results of which
can be synchronized at the output ports of the processor units to make a unified decision
with the voting-protocol.

 Resource management: Compared with the IT-industry, the embedded system has limited
resources in terms of processor performance (run time of processor unit), memory
(RAM/ROM), and peripheries. Services for resource management should ensure that
higher level safety integrity systems always dispose of resources when resources are
shared with different units, across integrity levels.

 Individual monitoring of software components: To implement fault tolerance mechanisms
for safety relevant applications integrated on the same HW-platform, individual monitoring
mechanisms are necessary. They should be available in an OS or implemented by other
means, for example by checking whether the timing of a SW-C is within expected ranges or
whether all required SW-Cs for an application started correctly.

State of the art: Automotive electronic architectures

32

 Reliability and robustness of automotive software is another requirement for ECU software,
so that fault tolerance mechanisms can handle detected faults locally without propagation
to other SW-Components, for example mechanisms for regional fault containment to avoid
safe functions being contaminated by faulty functions.

 Composability of automotive software is of vital importance for system integration by OEM
and system suppliers. It must show a certain level of flexibility for the configuration, allowing
the user (developer) to specify certain fault-tolerance characteristics and provide the
requested properties. Different safety relevant applications (and even their sub-systems)
may have different safety integrity. It is important to partition the applications to manage the
complexity by the integration.

 The test and certification of automotive software according to the state of the art safety
norms is also an important issue, especially as the development time for automotive
software becomes ever shorter.

 Maintenance and diagnosis is an important part of the software life cycle, especially for
integrated applications involving more ECUs and fault-operational behavior. New diagnosis
mechanisms should be researched.

3.4.2 ECU software architecture

ECU software can be divided into two general categories:

 application software

 runtime environment

The application software includes parts of the software, which vehicle users (drivers and
passengers) can directly feel (for example ABS or seat adjustment).

Compared with the application software, the runtime environment is everything else in ECU
software, which provides services required for the application software (for example operating
system and basic software modules). The main task of a runtime environment is the abstraction of
underlying hardware, so that the application can be implemented more or less independently of the
ECU hardware details. This ensures that the application software can be easily transported and
integrated into another ECU.

In the following, a few main concepts from the trends of development in ECU software architecture
will be explained.

3.4.2.1 Concept of standard software components

The state of the art in automotive software is the standard software components (Standard Core).
The software components are modulated and the runtime environment is configured statically to
the time of development. The same standard software modules are used in all ECUs by an OEM.

State of the art: Automotive electronic architectures

33

Communication Services

Application

Watchdog Driver
EEPROM Driver

Flash Driver
Security Module

Flashloader
Runtime

Environment

Diagnostic
Module
Network

Layer
CAN Driver

O
SEK
N

M

CAN / LIN Hardware and Physical Layer

Diagnostic
Module
Network

Layer
CAN Driver

D
BKom

G
ate-

w
ay

O
SEK
N

M

LIN
 D

river

Application

Diagnostic
Function

ECU
Function

Standard
I/O

 Library
I/O

D
river

I/O

D
ecentral Pow

er
M

anagem
ent

O
SEK

 O
S

Figure 3-10: Software topology for Mercedes-Benz cabin ECU [Ruh04]

Figure 3-10 shows an example of an automotive software topology, which can be divided into two
parts. The part to the left of the dashed line is for flashing; to configure and load the functional
software onto the ECU by means of maintenance. The part to the right includes the application
software modules and runtime environment, on top of which is the application software with ECU
and diagnostic functions. Within these applications are the statically configured standard software
modules, which communicate with the hardware through the defined APIs, including the following
functionalities:

 Communication

 Diagnosis

 Parameterization of software

 Gateway

 Network management

3.4.2.2 Concepts of software platforms

Another possible concept for the software architecture in a distributed system is the “middleware“-
concept or software platform concept. Compared with the standard software concept, middleware
provides further abstraction for the underlying communication hardware and processor unit.

In the IT-industry, the current most popular concept in middleware is the “Common Object Request
Broker Architecture” (CORBA). All communication mechanisms in CORBA are based on the client-
server request-response concept.

A special version of middleware, modified for automotive use, was implemented in the project
TITUS [Ruh04]. Here, an extra software layer for the communication was defined. The client-server
concept can fulfill the requirements for event-triggered communication in a vehicle quite well.
However, many functions in the control loop require a cyclical signal and a highly dependable data
transfer considering time, in this case the client-server communication is less suitable.

State of the art: Automotive electronic architectures

34

Concept from EAST-EEA project

The EAST project (Electronics Architecture and Software Technologies) took place between mid
2001 and mid 2004, with the aim of developing a middleware based on modern standard software
modules (www.east-eea.net). It defined a standardized open software architecture framework, as
shown in Figure 3-11, which enables hardware-independent portability of software modules. At the
very bottom of this architecture framework, there is micro-controller with the attributes of CPU
power and memory size. Above it, Embedded Basic Software includes components such as
operating system, hardware drivers, communication functionality system, diagnosis, hardware
drivers and hardware abstraction layer. The Embedded Basic Software can not be seen directly by
customers, so it is not relevant for competition in the market. With the help of EAST-middleware,
different applications can be mapped onto one ECU.

This middleware offers services for transparent communication inside the classical vehicle
domains as well as for cross-domain communication. Subsequently, certain selected domain
oriented approaches for the body and powertrain domains and the concept for the implementation
of cross-domain services are described in the EAST-project.

Embedded Basic Software

Hardware

ApplicationApplication

ApplicationApplication

ApplicationApplication

ApplicationApplication

Middleware

Attributes:
CPU Power and memory size

Not relevant for differentiation in
market

Initiatives have different solutions in mind

Main level for differentiation

Embedded Basic Software

Hardware

ApplicationApplication

ApplicationApplication

ApplicationApplication

ApplicationApplication

Middleware

Attributes:
CPU Power and memory size

Not relevant for differentiation in
market

Initiatives have different solutions in mind

Main level for differentiation

Figure 3-11: EAST architecture framework

Concept of AUTOSAR software platform

The AUTOSAR project (Automotive Open System Architecture, www.autosar.org) [AUT07],
[ATO07] is a an alliance of OEMs and tier-1 automotive suppliers, who aim to develop and
establish an open industry standard for an automotive E/E architecture, which will serve as the
basic infrastructure for the management of functions within both future applications and standard
software modules.

A general ECU software architecture, defined in AUTOSAR, is shown in Figure 3-12, which is
similar in many features to the architecture framework defined in EAST.

http://www.autosar.org/

State of the art: Automotive electronic architectures

35

ECU-Hardware

AUTOSAR Runtime Environment (RTE)

Actuator
Software

Component

AUTOSAR
Interface

Application
Software

Component

Sensor
Software

Component

Application
Software

Component

..............

AUTOSAR
Software

Basic Software
Standardized

Interface

AUTOSAR
Interface

AUTOSAR
Interface

AUTOSAR
Interface

Microcontroller
Abstraction

Standardized
AUTOSAR
Interface

Services

Standardized
Interface

ECU
Abstraction

AUTOSAR
Interface

Standardized
Interface

Complex
Device
Drivers

AUTOSAR
Interface

Standardized
Interface

Communication

Standardized
Interface

Standardized
Interface

Operating
System

Standardized
Inteface

Figure 3-12: AUTOSAR architecture framework [SWA06]

In the AUTOSAR software architecture, SW-Cs of automotive functionality will be encapsulated by
the AUTOSAR interface, which ensures the connectivity of software elements surrounding the
AUTOSAR runtime environment.

AUTOSAR interfaces should not be considered as pieces of software dedicated to adapting any
software module to an AUTOSAR environment. Rather, they are an integral part of each software
module running in an AUTOSAR compliant electronic control unit.

In the place of EAST-middleware, an AUTOSAR-middleware called RTE (Runtime Environment) is
defined.

 At system design level the AUTOSAR RTE acts as a communication center for inter and
intra electronic control unit information exchange between architectural elements of layers
connected to the AUTOSAR RTE. All communication between AUTOSAR components has
to be compliant with the standardized AUTOSAR interface definitions. All other architectural
elements have to provide standardized interfaces that are primarily based on standards
which already exist.

 At implementation level the AUTOSAR RTE will be at least reduced to those
communication channels which establish communication between SW-components
allocated on different electronic control units.

 Different electronic control units will most likely run different AUTOSAR RTE. The
AUTOSAR RTE will therefore be assembled with the help of a generator tool by using
standard building blocks.

State of the art: Automotive electronic architectures

36

The software layer underlying AUTOSAR RTE is called “Basic Software”. It is a standardized
software layer, which provides services to the software components and is necessary for the
running of the functional part of the software. It does not fulfill any functional job itself and is
situated below the AUTOSAR Runtime Environment. The basic software could contain

 NVRAM management

 Transport layers for different communication technologies (e.g. CAN, LIN, etc.)

 Network management

 System services such as diagnostic protocols, etc.

Here it is to note that AUTOSAR partnership defined not only the software architecture. In
AUTOSAR, UML2.0, certain standardized notation, methodologies and guidelines were applied for
the design specification, where a significant effort is invested in the harmonization and unifying the
languages between European OEMs and suppliers. Hence, not only the software architecture but
also the developing language can be standardized and harmonized. The efficiency in the
cooperation between OEM and suppliers can be improved, e.g. the tracing between requirement
specification and design specification can be eased and misunderstanding can be reduced.

3.4.3 Automotive software services

Modern automotive software can already provide a large variety of services. In the following a short
overview of the software services is given:

 Communication services: Asynchronous and synchronous communication services
between applications running on the same or different ECUs.

 Resource management: The current ECU operating system OSEK OS 2.1 [OSK05] can
already provide some resource management considering the processor running time. All
tasks are assigned with a certain priority, statically in the development phase. OSEK, as a
pre-emptive real-time multitasking operating system can arrange the tasks so that the tasks
with higher priorities can receive processor time, without being blocked by the lower tasks.

 Network Management for energy: With the introduction of more and more ECUs with ever
higher performance, energy consumption has not only been a problem for high end
vehicles. Software services for network management ensure a synchronous start-up and
sleep of all ECUs, thus the life cycle of the battery can be longer.

 Function management: The OS also provides mechanisms for terminating functions in
other processes, in case of timing violation or demand from tasks with higher priorities.

 Memory management: Some basic access managements are provided by current
automotive software, where unauthenticated access of read/write in RAM/ROM is
prevented.

 Event Notification: with the flag – set und reset certain bits of state vectors. Task activation
and call-back-routine can be called in the operating system.

 Diagnosis of applications and automotive middleware: With defined error symptoms, some
run-time errors can be detected by the OS and an alarm will be sent. Further support for
fault-tolerant systems, however, is not available.

State of the art: Automotive electronic architectures

37

 Calibration services for automotive software: By means of assembling/flashing or
maintenance of ECUs, the software will be calibrated.

 Gateway services: As in the IT-industry, it is sometimes necessary to transport messages
and signals from one domain to another. Routing, modification and rearrangement of
signals are supported by current ECU software.

 Hardware abstraction: To improve transparency for sensors, actuators and micro-
processors in ECUs, hardware abstraction of a certain degree is provide by state of the art
ECU software.

3.4.4 Conclusion for automotive software

Automotive ECU software architecture exhibits a clear trend to the structure and abstraction of
hardware, where software will be implemented for the distribution of the functionalities and the
available communication drivers. This means that the mapping of ECU application software will be
more flexible. Compared with standardization and high level abstraction in the IT-industry, which
enables an unproblematic distribution and integration of software on any IBM compatible PC,
automotive software architecture still has more potential for standardization. For safety relevant
applications, especially for applications involving several ECUs across domain borders, there is
still no ECU software with fault-tolerant middleware, dependability software services and
deterministic behavior in automotive systems, which are all necessary for the integrated safety
concept.

The project EAST-EEA, which has already been completed and ongoing projects, such as
AUTOSAR, both demonstrate a clear effort on the part of automobile OEMs and suppliers towards
a common automotive electronic architecture with emphasis on a middleware concept. Through
the standardization of software applications and basic software services, the automotive software
quality and test depth can be improved. As state of the art, there are also concepts and prototypes
about dependability software services like FT-COM, OSEK-Time, HIS specification about
Protected OS, etc. But they are all more or less isolated solutions without an architecture
framework.

AUTOSAR, as a significant contribution towards in-vehicle embedded software platform, has the
aim to design an architecture framework for all the in-vehicle domains. The original aim of
AUTOSAR was to provide a common ECU electronic architecture framework for all automotive
domains. However, safety domain is not the topic of AUTOSAR phase 1. The safety relevant
applications implemented on ECUs in domains such as chassis and powertrain have their own
specific requirements for system dependability and fault-tolerance both in data communication,
software and hardware, redundancy management and diagnosis for applications spreading over a
few domains, etc.

For Integrated Safety Systems, a special architecture framework with hardware, software,
communication systems and a development process, taking into consideration the results of
EAST-EEA, HIS and compatibility with common automotive architectures, in particular AUTOSAR,
need to be defined.

State of the art: Automotive electronic architectures

38

3.5 State of the art: Development process for automotive electronic systems

In the above chapters, the automotive electronic architecture has been discussed, with emphasis
on safety systems mainly from the perspective of hardware and software architectures. Another
important topic in the architecture framework is the development process for automotive electronic
systems, because electronic architectures can not be separated from the development process. It
is application that drives new functions and functions create new requirements for the architecture
and innovations in the architecture. The new architectures then drive changes in the development
process.

3.5.1 Requirements for the development process of safety electronic systems

Before the technical details of different existing development processes and concepts are
explained, a special look at the requirements for the development of electronic safety systems is
meaningful.

 For safety relevant electronic systems, in the system analysis phase, safety specification
and risk management for safety systems should be carried out. A Safety Requirements
Specification (SRS), including a systematic, disciplined and quantifiable process for hazard
analysis should be initiated in the engineering phase, for example hazard analysis and risk
assessment including engineering risk management aspects of the vehicle, driver, and the
environment, can be included in the engineering phase.

 Compared to the hardware development, in which the required safety integrity can be
ensured by analyzing the probability of failure, the safety integrity involved in software
development is reflected exclusively in higher requirements made on the development
processes.

 With the increasing complexity of automotive electronic systems, the complexity of
requirement specifications is also increasing explosively. The version and modification
management of requirement specifications is a challenging theme. After a supplier provides
an OEM with the developed product, the electronic systems will be tested against its
specification. How to guarantee a traceable specification for system architecture and
already take the tests into consideration in the specification phase is an important topic.

 In the design phase and system implementation phase, another problem is how to correctly
transform specifications into design and design into source code.

 Early validation and verification is of vital importance for the development of safety relevant
systems to improve the quality and shorten the developing time.

3.5.2 State of the art in development processes

In the state of the art development process there are a number of models, which can be used to
structure and define the development stage. In the following, the most general development
process, the V-model, will be briefly introduced. The general development processes will be
tailored and modified for the development of automotive electronic systems with regard to the
special requirements for automotive safety electronic systems.

State of the art: Automotive electronic architectures

39

3.5.2.1 V-Model

The development model, V-Model, is almost standard in the automotive industry. The principle of
the V-Model is the description of the relationship between development and test steps, as shown in
Figure 3-13. Every development step is referenced to the test step, which requires a lot effort
(almost 40%) in the last phase of development. This implies a disadvantage because design failure
can be only detected in the later phase of the development, which requires more time and
expense.

Requirements
Analysis

Implementation

Components
Test

System Test

Acceptance
Test Concept

Architecture

Implementation

System Design
and Components

Design

Figure 3-13: The V-Model

3.5.2.2 Development processes in automotive electronic systems

Based on the general engineering process, a specific development process for automotive
electronic systems is generated and adapted for the requirements of the automobile industry.

3.5.2.2.1 Model and simulation based development process

The model based development process (sometimes also called simulation based development
process) is realized on the basis of the Spiral Model, in which a sub-system will be developed
iteratively. It will be tested in a pure software environment with the help of simulation tools and the
functionalities of the application to be developed (the “software in the loop” test). The
implementation of software on a particular hardware platform will only be initiated after a
successful test of the functionalities with the help of models. In many cases, a code-generator will
be used in the implementation of models, as shown in Figure 3-14 [Ruh04].

Model based design

adaption of
parameters

system test

test

Automatic
generation of C-Code

implementation

func. simulation
animationdesign

global simulation
(virtual integration)

Figure 3-14: Model based development process [Ruh04]

State of the art: Automotive electronic architectures

40

Different development environments/tool chains for the model based development process
currently exist. The most widely used simulation tool, especially in automotive electronic systems,
is Matlab/Simulink. All these tools or tool chains have one common aspect; the
functions/application will be verified using a simulation tool, with less consideration for the
underlying hardware. In this way the conception decisions, for example mapping of functions onto
the ECU and topology in the later development phase, can be evaluated in the early phase

3.5.2.2.2 Phase oriented development process

The automotive industry currently develops products in several design phases that are mainly
driven by the requirements of the mechanical engineering process. This overall design process is
often called the lifecycle engineering process. This lifecycle engineering process includes different
management milestones (for example engineering start, styling/package freeze, release and start
of production). During this process, the vehicle manufacturer produces simulation models and
development car versions for different purpose (mules, varying versions of prototypes). The goal of
these vehicles is to test the different components of the car. This testing includes (depending on
the prototype version) component development, vehicle integration, and performance evaluation.
Traditionally, the testing process steps are based on the requirements for the mechanical parts (for
example engine, chassis); however, the testing of automotive electronics requires more and more
attention.

To allow for vehicle development at the OEM with the most adequate electronic parts, the
development process at the supplier has to be adapted to the manufacturer’s process. Therefore,
the building blocks according to the V model are performed not only once, but several times. The
hardware result of each pass of the V cycle is called a sample (for example A-Sample, AB-Sample,
B-Sample, C-Sample and D-Sample as depicted in Figure 3-15). These samples are implemented
in different development stages of vehicle manufacturing. A-Samples here are defined as
functional models with limited suitability for driving with constraints. There is no requirement
demanding the existence of safety functions. B-Samples are samples with suitability for driving
guaranteeing sufficient operational safety for first trials in the test bed an in the vehicle. The
reliability of parts is dimensioned for driving operation on a test area. Safety functions are
completely implemented. The C-Samples are ECUs built by production tools with constraints close-
to-production. All requirements for function, reliability and interference resistance shall be complied
with. The reliability of parts is dimensioned for driving operation on the road. The D-Samples are
ECUs built by production tools with production constraints. The electronic control units are
completely applicable.

State of the art: Automotive electronic architectures

41

Figure 3-15: Basic V-style process model integrated in lifecycle engineering process

3.5.2.2.3 The development process for fault tolerant electronics according to Hedenetz

For the development of safety relevant systems, Dr. Hedenetz [Hed01] has modified the process
described above and adapted it to safety relevant systems (as shown in Figure 3-16).

Hedenetz divided the development phase into global design and local design. In global design the
whole system is considered, while in local design the details and relationships between the OEMs
and suppliers are considered. In the development process of Hedenetz, simulation process is the
coupled as a central part of the development, where the constraints of high dependable systems
are taken into consideration.

Figure 3-16: Development process according to [Hed01]

State of the art: Automotive electronic architectures

42

3.5.2.2.4 The development process for safety electronics according to Benz

Benz [Ben04] introduced a “Double-V-Model” for the development of automotive safety relevant
electronic systems, as shown in Figure 3-17. With the help of two separate but inter-connected V-
models, one for the traditional V-model, the other for the safety, the additional requirements in
quality and system dependability can be fulfilled. The system safety in the development process
must be given more attention compared with the existing process. Safety is a characteristic of the
whole system and should be considered in each component, thus both V-Processes should be of
equal important as “functional safety co-design”, while the term “functional safety” is defined as
following: Safety that a vehicle function does not cause any intolerable endangering states
resulting from specification-, implementation or realization errors and failures while operation
period reasonably foreseeable operational/users errors and reasonably foreseeable misuse.

In the Safety-V, parallel to the functional design, a functional hazard analysis will be performed, the
potential impact of the safety function on its environment, including vehicle, driver and other traffic
users will be analyzed and an appreciate safety level given. At the system design stage, with the
help of the system safety assessment, different system architectures will be evaluated from the
point of view of safely integrity. The implementation and verification/validation phase will be also
evaluated as proof of fulfillment of the safety requirements.

Safety Function

Figure 3-17: “Double-V-Model” according to [Ben04]

3.5.2.3 Safety norms in automotive industry

As have mentioned in Subsection 1.1, one of the most important factors for innovation of
automotive electronics is the increasing requirements of customers for more safety and comfort,
another import triggering factor is the ever strict requirements of industry norm, regulations and law
makers about product liability, safety and emission to environment, etc.

In the following, state of the art of safety norms used in automotive industry will be briefly
explained, since they play a significant roll in the appropriate steps in the development process.

State of the art: Automotive electronic architectures

43

3.5.2.3.1 Automotive SPICE

The Automotive Special Interest Group of the Procurement Forum is developing guidance on
applying SPICE processes to the assessment of automotive software suppliers based on
CMMI/ISO 15504 [ISO15]. A number of European automotive OEMs are already requiring that
their software suppliers be subject to SPICE audits, and the intention of Automotive SPICE is to
produce a common assessment framework that is acceptable to all the OEMs. Thus, if a supplier
has been assessed according to Automotive SPICE and found to have a certain capability level,
this is then acceptable to any OEMs, who require a supplier with a capability up to that level.

3.5.2.3.2 Automobile MISRA Guidelines

MISRA Guidelines (ISO TR 15497), better known as “Development Guidelines for Vehicle Based
Software” was developed in the early 1990s by a UK-based consortium of automotive companies
representing vehicle manufacturers, the supply chain and researchers. The guidelines were written
against the background of the development that was taking place on IEC 61508 and
acknowledged that, while the track record of the automotive industry in respect of embedded
software was good, a recognized industry position on embedded software development for safety-
related vehicle control systems was needed.

The notable approaches in the MISRA Guidelines are:

 The emphasis on safety activities lies in the development lifecycle.

 The use of “controllability” to classify hazards. This is a different approach from IEC 61508,
although a similar process is used by the aviation industry.

 The use of (safety) integrity levels to classify systems and/or functions according to the
level of risk mitigation required.

Although the MISRA Guidelines have been in use worldwide in the 10 years since their publication,
a number of issues can be identified:

 There is no formal mapping for IEC 61508, despite many of the underlying principles being
present.

 They do not explicitly address recent technology developments such as model-based
development and automatic code generation.

3.5.2.3.3 IEC 61508

The international standard IEC 61508 relating to the functional safety of electrical, electronic and
programmable electronic systems (E/E/PE) is now, also in the automotive sector, the generally
recognized and most state-of-the-art basis for the development of safety-related systems. [IEC01]

Since IEC 61508 origins from the industry sector of process automation, it was developed against
the model of “equipment under control”, for example an industrial process in a chemical plant; and
of the safety functions that need to be applied to that equipment. These safety functions may be
part of the control system for that equipment, or they may form a dedicated protection system.

State of the art: Automotive electronic architectures

44

IEC 61508 sets requirements for the reliability of the safety functions, which is known as safety
integrity. In practice, safety integrity is classified into discrete Safety Integrity Levels. Hazard
analysis is used to identify the safety functions that are needed, and the SIL of the system that
performs them can be determined by classifying the severity of the hazards. The SIL indicates the
reliability that must be achieved – where this can be calculated, for example, for electronic
hardware; or the degree of rigor that must be achieved in the design and implementation measures
in order to gain adequate confidence in the system. The definition of SIL in IEC61508 is shown in
Table 3-1, where the SILs are specified with two categories of threshold, one for the probability of
failure to perform its designed function on demand (dimensionless, for low demand system such as
airbag), the other for Probability of one dangerous Failure per Hour (PFH) (for system with high
demand rate such as steering/braking system)

Safety Integrity Level
(SIL)

Low demand mode of operation
(Average probability of failure to
perform its designed function on

demand)

High demand or continuous
mode of operation, PFH

(Probability of one dangerous
failure per hour)

1 ≥ 10-2 – <10-1 ≥ 10-6 – <10-5

2 ≥ 10-3 – <10-2 ≥ 10-7 – <10-6

3 ≥ 10-4 – <10-3 ≥ 10-8 – <10-7

4 ≥ 10-5 – <10-4 ≥ 10-9 – <10-8

Table 3-1: SIL definition in IEC 61508 [IEC01] (Part1 Subsection 7.629, pp. 76)

Another important feature for the classification of SIL is the definition of Diagnostic Coverage (DC)
and Safe Failure Fraction (SFF) as shown in Figure 3-18.

Diagnostic Coverage;
∑
∑=

D

DDDC
λ
λ

Safe Failure Fraction:
∑∑∑

∑∑
∑∑

∑∑
∑∑
∑∑

++

+

+

+
==

+

+
=

DDDUS

DDS

DS

DS

DS

DDS DC
SFF

λλλ
λλ

λλ
λλ

λλ
λλ *

State of the art: Automotive electronic architectures

45

 testsdiagnostic by the undetected are that failure safe ofprobility total:
 testsdiagnostic by the detected are that failure safe ofprobility total:

 testsdignostic by the undetected are that failure dangerous ofprobility total:
 testsdignostic by the detected are that failure dangerous ofprobility total:

failures safe ofy probabilit total:
failuredangerousofprobabiltytotal:

SU

SD

DU

DD

s

D

λ
λ
λ
λ
λ
λ

Figure 3-18: Calculation of Safe Failure Fraction according to IEC61508

As shown in Table 3-2, depending on the number of to be tolerated faults, different classification of
SIL required a certain threshold of SFF to be reached. Thus SFF is a key parameter for the safety
case.

Number of faults to be tolerated Safe Failure Fraction

0 1 2

< 60% Not considered SIL1 SIL2

60% - 90% SIL1 SIL2 SIL3

90% - 99% SIL2 SIL3 SIL4

>= 99% SIL3 SIL4 SIL4

Table 3-2: Mapping of SIL to the SFF according to IEC61508

As defined in Figure 3-18, it can be easily proved that DCSFF ≥ , thus DC is an important factor to
improve SFF. That is to say, if we can provide the DC of a system is for example, higher than 90%,
the SFF of the system is then higher than 90%, which is require for a SIL2-application.

Safety lifecycle as an important term was also introduced in IEC61508, which means the
necessary activities involved in the implementation of safety-related systems, occurring during a
period of time starts at the concept phase of a project and finishes when all the systems are no
longer available for use [IEC04].

IEC 61508 is already being used as the standard to apply to automotive safety systems. The IEC
61508 “frequently asked questions” [IECFAQ] suggests “automobile indicator lights, anti-lock
braking and engine-management systems” as examples of safety-related systems. However there
are a number of issues with the direct application of the standard in the automotive domain:

1. The term “functional safety” in IEC 61508 only refers to the safety of the equipment under
control and its control system. In many automotive systems, the manufacturer needs to be
concerned with the safety of the system due to its control functions, not only the “safety”
functions.

State of the art: Automotive electronic architectures

46

2. Many of the techniques and measures recommended in IEC 61508 are very specific to the
industrial process control sector.

3. The model of validation in the standard does not align with the automotive industry
practices of prototype development and testing.

4. Design and testing of embedded systems are not treated sufficiently.

5. OEM and supplier relations are not described in the IEC 61508 at all.

There are many useful techniques and concepts in IEC 61508, and the importance of this standard
can not be underestimated. Nevertheless, further significant work is needed to adapt it to the
automotive domain.

3.5.2.3.4 ISO WD 26262 from FAKRA working group

For the constraints of IEC61508 mentioned in Subsection 3.5.2.3.3, there are now two European
initiatives to implement automotive version and interpretations of IEC 61508. In Germany it is the
DIN FAKRA committee AA13 and in France the BNA 0315B committee. The collaboration between
the work forces of FAKRA, BNA and MISRA enables an integration and harmonization of the
results into a new ISO standard ISO/WD 26262 (Working Draft, official release not expected before
2009) for the automotive functional safety.

This international standard [ISO24]:

 adopts a customer risk-based approach for the determination of the risks;

 provides a specific automotive analysis method to identify the safety integrity level of each
undesirable effect (means for a vehicle function, identification of the consequences of one
or some failures, leading or possibly leading to a customer claim, or a damage to the
environment, up to significant damage or harm);

 uses automotive safety integrity levels (ASIL) for specifying the target level of safety
integrity for the safety concept to be implemented by the E/E safety related systems;

 provides requirements for the whole lifecycle of E/E (engineering, production, operation,
maintenance, decommissioning) necessary to achieve the required functional safety for E/E
which are linked to the automotive safety integrity levels.

State of the art: Automotive electronic architectures

47

In this subsection the ongoing activities in FAKRA working group and main issues in the initial draft
of ISO WD26262 will be briefly explained:

 The draft structure of ISO 26262 covers, as shown in Figure 3-19, the whole automotive life
cycle, which consists of the following parts, under the general title “Road Vehicles -
Functional Safety”:

o Part 1: Terms and abbreviation [ISO21]

o Part 2: Management of functional safety [ISO22]

o Part 3: Concept phase including system definition, hazard analysis and risk
evaluation and safety concept [ISO23]

o Part 4: Product development System [ISO24]

o Part 5: Product development: Hardware [ISO25]

o Part 6: Product development: Software [ISO26]

o Part 7: Production and operation [ISO27]

o Part 8: Supporting processes [ISO28]

3. Concept Phase

2. Management of Functional Safety
2.4 Management during Complete Safety Lifecycle 2.5 Safety Management during Development

7. Production and Operation

6.4 Initiating SW Development
6.5 SW Safety Requirements
Specification
6.6 SW Architecture and Design
6.7 SW Implementation
6.8 SW Unit Test
6.9 SW Integration and Test
6.10 SW Safety Validation

5.4 HW -Requirements Analysis
5.5 HW-Architecture Design

5.6 Quantitative Requirements for
Random HW Failures
5.7 Measures for Avoidance and
Control of Systematic HW
Failures

5.9 Qualification of Parts and
Components

C
or

e
Pr

oc
es

se
s

2.6 Safety Management Activities after SOP

3.5 Initiation of Safety Lifecycle
(Modification and Derivates)

1. Glossary

9. Annexes

8. Supporting Processes
8.4 Interfaces within Distributed Developments
8.5 Overall Management of Safety Requirements

8.7 Change Management
8.8 Safety Analysis
8.9 Analysis of CCF, CMF, Cascading Failures

8.10 Verification Activities

8.12 Overall Quality Management
8.11 Documentation

8.14 Qualification of Software Libraries
8.15 Proven in Use Argumentation

3.4 Item Definition

3.6 Hazard Analysis and Risk
Assessment

3.7 Functional Safety
Concept

7.5 Operation, Service and
Decommissioning

7.4 Production

8.6 Configuration Management
8.13 Qualification of Software Tools

4. Product Development System

4.4 Initiation of Product
Development System

4.5 System Design

4.6 Integration

4.7 Safety Validation

4.8 Functional Safety Assessment

4.9 Product Release

6. Product Development Software5. Product Development Hardware

5.10 Overall Requirements for
HW-SW Interface

5.8 Safety HW Integration and
Verification

Figure 3-19: Overall framework of the safety lifecycle in ISO26262 [IEC01]

State of the art: Automotive electronic architectures

48

The overall framework of ISO 26262 considering the product safety lifecycle with the detailed
activities in each phase is depicted in Figure 3-19, in which the shaded V-areas indicate important
relations between various parts.

Initiation of product development
system4.4 Initiation of product development
system4.4

Specification of technical safety
concept4.5 Specification of technical safety
concept4.5

Integration4.7 Integration4.7

Safety validation4.8 Safety validation4.8

Functional safety assessment4.9 Functional safety assessment4.9

Product release4.10 Product release4.10

System design4.6 System design4.6

Part 4: Product development system

Part 6: Product development softwarePart 5: Product development hardware

Figure 3-20: Reference phase model for the development of a safety-related item

The reference phase model of ISO26262, which is integrated in ISS Engineering Process in
Chapter 7, is shown in Figure 3-20.

 Definition of ASIL: An important aspect in the activities of FAKRA is the derivation of
functional safety integrity level, where the controllability of the hazard (controllability by the
driver) is considered, where R = Risk is defined as

R = S x f where S = Severity of damage; f = Frequency of occurrence

And the frequency of occurrence f will be calculated by the formula:

f = E x C x r where E = Exposition [-], C = Controllability [-] and r = Failure Rate

According to the risk level, the safety integrity level scale devised in ISO26262 has four
levels {ASIL A, ASIL B, ASIL C, ASIL D}.

State of the art: Automotive electronic architectures

49

Figure 3-21 shows a preliminary mapping between the IEC 61508 and ISO/WD 26262
scales. The mapping of ASIL-C can be chosen to the SIL-2 and SIL-3, while ASIL-D is only
mapped to SIL-3 with PFH of 10-8/h to 10-7/h, that is to say, SIL-3 is further classified into
ASIL-C and ASIL-D in automotive industry, while ASIL-D application should have a PFH <
10-8/h, so that it can fulfill the ISO-requirement anyway. In the following of this dissertation,
ASIL will be used instead of SIL.

ASIL-D

DIN EN 61508 SILDIN EN 61508 SIL ISO/WD 26262 ASILISO/WD 26262 ASIL

10-5/h

10-6/h

10-7/h

10-8/h
10-9/h

10-8/h

--

ASIL-CASIL-C 10-7/h

--
SIL-1SIL-1

SIL-4SIL-4

ASIL-AASIL-A

SIL-3SIL-3

SIL-2SIL-2 ASIL-BASIL-B

Figure 3-21: Preliminary mapping of safety scales between IEC 61508 and ISO 26262

 Safety Life Cycle: The safety life cycle in IEC61508 is not designed for vehicle as
“consumer goods“ but originated from process and automation industry, e.g. validation after
installation etc. In consequence typical automotive test processes before SOP are not
considered as for example HiL-tests, fleet tests and user oriented on-road tests. The
activities of past SOP such as operation, maintenance and decommissioning are missing
as well. The draft structure of ISO26262 is grouped into three large phases:

o Concept phase

o Vehicle development and production

o Post SOP phase

 Thus the whole safety life cycle of vehicles is considered.

State of the art: Automotive electronic architectures

50

3.5.3 Conclusion for development process

The current development processes for automotive electronics tend to correspond to an iteration
and adaptation of V-model. The simulation and model based development process reflects the
trend towards increasing requirements for an early design validation, in order to avoid additional
cost and time delays in case of system modification in late phases.

The development of safety relevant systems requires a dependability-justified process. Concepts
of Hedenetz and Benz reflect this trend, in which safety analysis during the development of safety
electronics with fault-tolerant mechanisms and consideration of safety aspects through the product
life cycle, are integrated into the V-model. According to the state of the art in the safety norms,
especially the future safety norms ISO/WD26262, dedicated safety steps should be carried out
according to the automotive safety levels.

The trend for automotive safety electronics is heading towards freely distributed applications with
high dependability, using standardized, configurable, fault-tolerant software and hardware
architecture. These new requirements of integrated safety electronics cannot be fully supported by
the existing solutions of development process.

Assessment of state of the art approaches and conclusion for challenges

51

4 Assessment of state of the art approaches and conclusion for challenges

In the chapters above, a general overview of the state of the art for automotive electronic
architectures has been given. Current concepts and solutions for hardware architecture, software
architecture and development processes of automotive electronics, taking dependability
requirements into consideration, have also been introduced. In this chapter the assessment of
different approaches from state of the art against new requirement and challenges of future
automotive safety electronics (the so-called gap-analysis or delta-analysis) will be concluded.

 Challenges in higher dependability despite of increasing system complexity

There are already many automotive safety relevant applications based on distributed ECUs. In
these applications, sub-functions or signals, which have previously been considered non-safety
relevant, could become safety relevant for ISS. For example, the seat adjustment in the Pre-
Safe system, the trail light control from the cabin for the brake assistant function and telematics
function for calling medical rescue in the after-crash system can become also safety relevant in
ISS.

Compared with state of the art safety relevant systems in vehicles, the Integrated Safety
System is characterized by an even higher complexity, in which the implementation focus shifts
from traditional mechanics and hardware to SW intensive systems. The timing of the
cooperation between the distributed applications, which is relatively easy on one ECU, is
undertaken by means of a communication network in ISS beyond domain borders. Thus an
automotive ECU topology with fault tolerant communication, which supports the requirements
of ISS in a cost effective manner is needed.

In future ISS-applications, X-by-Wire (steering, braking and engine control applications) without
mechanical backup will be included. The higher dependability requirements for this (the ISS
systems should be at least as reliable as traditional mechanical system, thus from fail-
silent/fail-safe to fail-operational) can be only implemented with fault-tolerance characteristics.

As a summary, current E/E-architectures are unable to handle the required system complexity
with higher safety requirements introduced by the ISS.

 Challenges in the hardware architecture of automotive safety electronics

With regard to ECU hardware architecture, a more and more complex in-vehicle network
topology with different communication sub-networks is evolving, operating with different
velocities and protocols, interconnecting ECUs and different automotive domains via gateways.
With the introduction of new applications, there is a clear trend towards synergy effects by
means of data fusion and more and more data flowing over domain borders. Safety relevant
applications over domain borders, however, require deterministic behavior. QoS in
communication is needed in both data integrity and timing. FlexRay, as the first truly fault-
tolerant time triggered communication bus, will most probably be chosen for safety relevant
communication.

Assessment of state of the art approaches and conclusion for challenges

52

Owing to the rapidly increasing complexity of automotive electronic systems, the existing
solutions in automotive electronic architectures have almost reached their limits, especially with
regard to safety relevant functions and different degrees of fault tolerance (fail-silent, fail-safe,
fail-degraded and fail-operational).

Concepts for fail-operational ECUs with triplex or dual-duplex processors have already been
given. However, these concepts must be adapted to the specific requirements for automotive
applications, for example the optimization of complexity. The concepts for fault-tolerant ECUs
should also be standardized and unitized with regard to the different requirements of safety
integrity levels, to reduce development time and costs.

 Challenges in the software architecture of automotive safety electronics

In the ECU software architecture, there is a clear trend towards standardization and
implementation of standard underlying software architecture (middleware), for the transparency
of hardware implementation and application development, which will certainly improve the
testability and dependability of ECU-software.

In the development of ECU software for safety relevant applications, the same trend is also
apparent. Although software concepts concerning fault-tolerant mechanisms in ECUs already
exist, there is no real fault-tolerant middleware architecture with standard dependability
software modules to support common fault tolerance services (HW-transparent fault tolerance).
As well as the basic standard software modules, some standardized software modules to
provide common safety services shall also be defined. The different safety integrity level of
distributed functions, implemented on several ECUs, requires configurable and fault tolerant
software architectures to guarantee sufficient dependability while managing the system
complexity and development effort. Fault model, especially in ECU software and containment
region in software architectures are further important issues.

 Challenges in the development process of automotive electronics of Integrated Safety System

As previously mentioned, in the state of the art, traditional development processes and current
simulation-based development processes have reached their limits in terms of managing the
complexity and providing a full guarantee of the dependability requirement.

The new requirements in ISS with regard to distributed development and system integration
should also be embedded or reflected during the whole development process, in which the
safety requirements can be traced and validated. A certain safety integrity level should be
supported during the system integration and validation phases.

In a development process, which fulfill both future safety norms (ISO/WD26262) and manages
the challenges of ISS, standardized dependability services in both ECU software and hardware
architectures should be reflected during the life cycle of the Integrated Safety System.

Introduction to EASIS project and EASIS approaches

53

5 Introduction to EASIS project and EASIS approaches

The EU project EASIS (Electronic Architecture and System Engineering for Integrated Safety
Systems) (see www.easis.org) was initiated in the year 2004 and finished in the first quarter of
2007. In the form of an industry partnership, EASIS is composed of 7 European OEMs, 8 system
suppliers, 4 tool producers and other research institutes. EASIS is pursuing the goal of providing
enabling technologies for the introduction of integrated safety systems, by developing an open and
standardized dependable in-vehicle fault tolerant electronic architecture framework (reference
model in both dependable software and hardware platforms) and a standardized systems
engineering approach for integrated safety systems with a dependable E/E-platform.

This modular E/E architecture consists of two main branches: i) Software platform; and ii)
Hardware platform. The software branch defines a common platform for software-based
functionality, upon which future applications can be built, and the hardware branch defines a cost-
effective on-board electronic hardware infrastructure. In this project, requirements and needs
concerning ISS have been collected which constitute the basis for the definition activities for the
two branches mentioned above [TRA06].

The EASIS work group on the software architecture designed a standard software platform for the
execution of ISS, satisfying both ISS and external requirements, such as standards and hardware
architecture. It will provide a basis for future in-vehicle electronic systems and include principles for
software topology, an interface between hardware and software, basic fault tolerance and
diagnosis mechanisms and inter- and intra-domain gateway services. The main composition of
layers and functional areas of the software platform will be explained in the Subsection 9.2 in
details.

A hardware architecture, which supports the high ISS demands regarding dependability,
computational power, high speed, accurate information exchange and the software layers, will also
be produced. This architecture must be scalable for standardized usage in both safety and non-
safety applications, able to adapt to different domains and vehicle classes, capable of handling
various sensors and actuators, have well-defined, standardized interfaces, support fault tolerance,
error detection and error handling and have optimized costs and reliability.

Achieving system dependability will be much challenging for integrated safety systems than for
traditional safety-critical automotive subsystems due to higher content of safety-critical software,
higher complexity, and higher interaction of subsystems from different suppliers. The state of the
art of automotive dependability methodology has to improve significantly to cope with these
challenges. EASIS will provide guidelines for all major dependability-related activities. These
guidelines are structured with the help of a simple dependability activity framework as shown in
Figure 5-1.

The introduction of ISS will increase the networking needs not only for signals. Different ISS
functions may work in the car thus making functional coordination and arbitration necessary.
Connecting the vehicle to surrounding information infrastructures may influence the hard real-time
chassis or powertrain control systems even more. All in all, the well understood basic-function-
control-loop is transformed into an ISS-control-loop, see Figure 5-2. ISS-control-loop design
requires new development processes and supporting tool chains, which the work on processes
and tools will provide. A software specific systems engineering process (EASIS Engineering
Process, EEP) suitable for the automotive industry, will be defined, integrating the results of
system dependability, and a tool chain recommendation produced.

http://www.easis.org/

Introduction to EASIS project and EASIS approaches

54

Figure 5-1: Framework of dependability activities

Implementation

Components
Test

System TestSystem Design
& Components

Design

ISS Function
(“outer loop”)

Basic Function
(“inner loop”)

Acceptance
Test

Requirements
Analysis

Figure 5-2: V-model indicating inner and outer loop

In the following sections the different work packages of EASIS-project will be briefly explained.

WP1: Software Platform

The primary drivers during development of the software platform are the main dependability
attributes of safety, reliability, availability and security. Based on this, the work on dependability in
the software platform is performed addressing the following three aspects: i) detection and

Introduction to EASIS project and EASIS approaches

55

handling of faulty and erroneous states, i.e., fault tolerance aspects. ii) management of information
concerning the state of the system, e.g., fault codes and internal fault information; and iii)
consistency and integrity of data over the telematics link. Based on these three aspects
dependability services are provided by the EASIS software platform.

WP2: Hardware Platform

The work on the hardware architecture focused on the following four aspects: i) logic system
architecture composed of multiple ECUs; ii) communication networks connecting the ECUs; iii)
internal ECU hardware architecture; and iv) power supply network. Based on these aspects, topics
as Gateway, system topology, building blocks Network technologies, ECU hardware architecture
and power supply were covered.

The hardware platform and software platform have been defined to closely integrate with each
other, such that the services provided to the application components of ISS will have access to a
wide selection of services.

WP3: System Dependability

The goal of the work package “system dependability” is to support the system engineering of
integrated safety systems by providing guidelines for all major dependability-related activities in
system development. The EASIS guidelines are structured with the help of a simple framework of
dependability-related activities in system development and focus on the following three aspects: i)
a comprehensive approach for the establishment of dependability requirements based on hazard
identification, hazard classification and hazard occurrence analysis; ii) verification and validation of
complex distributed control systems; and iii) means for demonstrating that safety was sufficiently
considered in system development (safety case construction).

WP4: Processes and Tools

The work on processes and tools is focused on the following three aspects: i) systems engineering
processes for ISS and their functional software components; ii) tool chains supporting the
engineering processes; and iii) certification and test activities. Based on these aspects, an analysis
of requirements (collected within EASIS and from other projects) was conducted that revealed new
challenges for the development process that arise with the introduction of ISS: The shift from
traditional hardware to software intensive systems, leads to a composition of safety functions
within the vehicle that may be distributed across different ECUs. In case of diverging or conflicting
signals or requests to actuators, the coordination / arbitration of different ISS functions will be a
challenge, while requirements of system dependability will increase.

Introduction to EASIS project and EASIS approaches

56

WP5: Validation

Key concepts and methodologies were validated in this work-package in order to show the
applicability of these approaches to provide solutions to the problems and requirements identified
concerning the development of integrated safety systems. For this purpose, two main validator set
ups will be created:

 The main principles defined in the software platform and the hardware platform will be
integrated into a validator resembling an automotive electronic system, including a
telematics gateway, automotive sensors and actuators and several ECUs, all connected in
a FlexRay network. In this validator, the feasibility and validity of the main principles of the
software and hardware platforms are demonstrated.

 A safe speed function for use in commercial vehicles, automatically reducing truck speed to
the maximum safe level for the road, by limiting engine torque and, if necessary, applying
brake torque, will be created.

Concepts and designs in this dissertation were developed during my work as work-task leader in
WP1, WP2, WP4 and WP5 of EASIS project, while the focus of the work lies in the work-tasks of
software architecture, dependability software services, EASIS engineering process, tool chains
and validation of concepts and methodologies.

Fault type and fault hypothesis for ISS

57

6 Fault type and fault hypothesis for ISS

As written in Subsection 2.2.2.3, although fault model and faulty types analysis is not the focus this
dissertation, the dependability requirements of a system are determined by its fault type definition
and fault hypothesis. As mentioned in Subsection 1.1 and Chapter 4, future automotive Integrated
Safety System, are facing quite a few new challenges. Thus we need to define a complete fault
types and fault hypothesis for the ISS, which are mapped the development concepts of ISS in
hardware, software design and development process.

The following subsections start with the introduction and motivation for fault hypothesis, the
hardware and software.

6.1 Fault hypothesis – a major design step

A fault hypothesis states the assumption about the types and number of errors that a fault tolerant
system must tolerate. It can be considered as a set of errors
as { }toleratedbetoerrornglesiaiseeEFH |= .

And with systemf denoting the functionality of a system S depending on a fault e .

⎩
⎨
⎧ −

=
erroneous

freeerror
eSf sxstem :),(

A fault tolerant system S is than defined as:

tolerantfaultisSsystemthe

freeerroreSf
Ee

system

FH

⇒

−=
∈∀

),(

If the number of faults occurring in the real world exceeds the number assumed in the fault
hypothesis, the assumption coverage will be low. Otherwise if the number of faults occurring in the
real world is smaller than the number assumed in the fault hypothesis, the assumption coverage
will be high. Even the best and most detailed fault model is useless if its fault hypothesis coverage
is low.

A fault hypothesis can be used as a major design parameter for the system design and validation:

 Motivation for the design of fault tolerance algorithms: Without a precise fault hypothesis it
is not known which fault classes must be addressed during the system design. Each
introduced fault tolerance of self-checking mechanism has to be tailored according to the
statements which are made in the fault hypothesis.

 Foundation for the System validation: As we know, a dependable system could not
necessarily tolerate the faults, which it is not designed to tolerate, but it should be
guaranteed that faults considered in the design phase should be able to be tolerated
always. Thus the fault hypothesis is the key element for all kinds of validation techniques.
For instances, the fault hypothesis can work as the description of the setup for fault
injection experiments in an experimental validation. Different faults can result in the same
or alike system errors. If the error can be tolerated by the system, it is most possible that
the faults, which result in this error, can be also tolerated by the system.

Fault type and fault hypothesis for ISS

58

It is to note that an exact fault hypothesis regarding number, source and temporal behavior with
mathematic model are often not possible or realistic, esp. for the future software intensive
embedded systems, taking the time constraints of the development into consideration.

In the following subsections, a general approach for the definition of a fault hypothesis suggested
in will be used as a guideline [Kru98] :

 Partitioning o the system into SERs: A Single Error Region (SER) is a component of the
system. It is assumed that faults will appear independent to each other and do not
propagate to other SERs. The system can be partitioned into SERs by specifying these
components by functionality plus the corresponding error.

 Failure semantic: Based on the previous step the failure semantic of SERs is defined. The
failure semantic describes the behavior of a SER, in case of an error leading to a failure.

 Cause of failures: This step determines the maximum number of concurrently erroneous
SERs and the SER internal causes. Thus, this step determines the actual requirements for
the fault tolerance and self-checking mechanism of a SER.

6.2 Fault hypothesis of hardware in ISS

Starting from the fault hypothesis on a single ECU hardware structure, the fault hypothesis of
communication networks, gateways and the other main hardware parts of integrated safety system
will be defined in this subsection [DFP06].

D
riv

er

S
ig

na
l C

on
di

tio
ni

ng

Sensors ActuatorsCPU

Communication Interface

Supervisor

Communication

Sensor Faults
Actuator Faults

Communication Faults

internal
Power Supply

ex
te

rn
al

Po
w

er
 S

up
pl

y

Figure 6-1: Simplified fault hypothesis of a standard ECU

As depicted in Figure 6-1, a very simplified fault hypothesis of an ECU can be divided into five
categories:

1. Faults in the microprocessor/supervisor on the ECU

2. Faults by sensor coupling

Fault type and fault hypothesis for ISS

59

3. Faults by actuator coupling

4. Faults by the power supply

5. Faults by communications

The 1st category of faults is listed as following:

Microprocessor core and supervisor:
1. Calculation errors (e.g. hardware error, logic error)
2. Value errors (e.g. hardware error, memory/register corruption, EMI, SEU, etc.)
3. Program flow errors (e.g. hardware error)
4. Interrupt errors (sequence, frequency, delay, disregarding, etc.)
5. Algorithmic errors (= Compiler/Logic Synthesizer errors / design faults)
6. Timing errors (error group V is not fully orthogonal to the other error groups)
7. Synchronization lost between CPU and supervisor
8. Supervisor and CPU are getting different information from the extern environment
9. CPU and supervisor use different, but both valid, rules to judge the control.

RAM/ROM:
10. Errors in the RAM/ROM (memory cell defective)
11. Faulty RAM/ROM access (wrong memory address)
12. Faulty memory mapping (=Compiler or linker errors / design faults)
13. Memory overflow

I/O-Interface:
14. Interface errors (errors in ADC/digital IO/ ...)

The 2nd category of faults concerning sensor coupling:

1. The sensor delivers no value or an error signal.
2. The read value of the sensor is wrong.
3. The sensor delivers a value with a wrong timing.

The 3rd category of faults concerns actuator coupling:

1. The actuator is not driven.
2. The actuator is permanently driven (without controller command).
3. The actuator is not driven at the right time.
4. The actuator is not driven with the correct performance.

The 4th category of faults concerning power supply can be divided into:

1. Over voltage
2. Under voltage
3. Short circuit
4. Over current (due to erroneously activated actuators, defective components, etc.)
5. Leakage current too high
6. Brown out (slow decrease of the supply voltage below the minimum limit)
7. Start-up timing
8. Shutdown timing

Fault type and fault hypothesis for ISS

60

The 5th category of faults in the communication system between different nodes can be described
as message/signal faults between the nodes. Faults in data exchange between the software-
components within one node (intra-ECU communication) will be considered in the context of
software faults.

Faults in lower levels, e.g. physical faults on a communication bus or communication interface can
be mapped to the fault types listed below. At node level the following main faults will be relevant:

1. Data values of a received message are faulty (faulty data value)
2. The message is received later than a deadline (late message or message omission)
3. The message is received too early
4. The message can not be sent out in the given time window
5. The message can not be sent out

In distributed systems it is important to consider the fault propagation by distribution of message,
which may stretch over several nodes and domain border. The faults can be subdivided into
symmetric and asymmetric faults. The following main fault will be relevant:

6. All receiver of the message (in a special case only one receiver exists) regard the
message as faulty with respect to the same main fault type, which is one of the fault
types in 1 to 3.

7. All receivers of the message regard the message as faulty with respect to one of the
main fault types 1 to 3, which can be different for each receiver.

8. Some of the receivers get a correct message, while the others get a faulty message
with respect to one of the main fault types 1 to 3, which is the same for each receiver of
the faulty message.

9. Some of the receivers get a correct message, while the others get a faulty message
with respect to one of the main fault types 1 to 3, which can be different for each
receiver of the faulty message.

Remark: The asymmetric fault types (7 to 9) are special cases of the well known “Byzantine
General Problem” (as long as they are undetected), which is explained in details as following:

The replication of components, called structural redundancy, is very often a way to ensure that
these systems are free from single points of failure. However, the use of redundancies within an
electronic system introduces some undesirable effects.

Byzantine faults, also called as Generals Problem, was initially addressed by Lamport [LSP80] and
[LSP82] more than 24 years ago. It refers to totally arbitrary failures, where the node/message may
give contradictory information to different observers of the system, where Byzantine failure refers
to the loss of system service due to Byzantine faults. i.e., arbitrary behavior in both the value and
the time domain with inconsistent redundant values could be forwarded to different nodes.
Generally speaking, there are two kinds of Byzantine faults:

 Benign Byzantine fault: A faulty node sends a message to a set of nodes. One or more of
them do not receive a message at all.

 Malicious Byzantine fault: A faulty node sends a message to a set of nodes. One or more of
them do receive a message, but with a wrong value.

Fault type and fault hypothesis for ISS

61

In [SIV04], the Byzantine faults in embedded systems are revisited from a practitioner’s
perspective, where a few typical Byzantine faults are demonstrated.

 Digital signal that is stuck at “1/2” because of the physical nature of logic circuitry (some
internal faults in the transmitter) as shown in Figure 6-2.

1
0

1
0

send

1

0

1

0

rec1 sample

rec2 sample

time

Figure 6-2: Cause of Byzantine fault with “1/2” area threshold

Figure 6-3: Gate transfer function with “1/2” area

Figure 6-3 shows a logic gate’s transfer function for a common 3.3 volt logic circuit family. The
transfer function shown here has a much less step slope than a typical logic circuits in order to
show the 1/2-area.

 Byzantine faults may propagate through multiple stages of logic and still remain at an
ambiguous level. Thus even if the transferred data is protected with CRC (e.g.
Schrödinger’s CRC), each CRC bit affected by the ½ data bit can also be ½. As shown in
Figure 6-4, the resulting data received by a and b are different, but each copy has a correct
CRC for its data as shown in Figure 6-4. Thus CRC can not provide a guaranteed
protection against Byzantine fault propagation.

VCC =3.3v

VO
H

=2.4v

VO
L

=0.4v

Logical 1

Logical 0

“1/2” output

Logical “1/2”
range is more
than 1/3 of
the whole
area

Fault type and fault hypothesis for ISS

62

Figure 6-4: Byzantine Faults in Schrödinger’s CRC [SIV04]

In time triggered communication systems with a deterministic fault tolerant communication
protocol, Byzantine faults can not be excluded either. Firstly, because of EMC-problems and
random radioactive decay, bit-flips in register and RAM can be induced. The dominant Byzantine
faults are due to marginal transmission timing, that a message comes to the receiver at the margin
of the time cycle. In this case, for example, corruptions in the time-base could lead to the situation,
that a message transmitted slightly too early are accepted by the nodes with slightly fast clocks,
while nodes with slightly slow clocks will reject this message.

6.3 Fault hypothesis of software in ISS

While the focus of traditional fault hypothesis of in-vehicle electronics lies in the hardware
architecture of ECU, an important part of fault hypothesis of Integrated Safety Systems is software
relevant. Two main challenges by the development of ISS are the implementation of software
intensive system and integration of functions with different safety requirements on one ECU.

 The introduction of ISS requires by its natural consensus from different ECUs. This required
consensus can be low-level (e.g. time synchronization among the distributed nodes with
inter-communication) or at a higher level (e.g. a coordinated interaction of distributed
applications like distributed controlling of brake force in ESP or distributed fault tolerance
on several nodes in a coordinated manner).

 Taking the supply-chain of automotive industry, while the responsibility of tier1 suppliers is
shifting from components to the system solutions, the focus of OEMs are shifting to the
system integration. The integration of software components from different suppliers or even
products third-party pure software providers on the same ECU could inevitably introduce
more efforts of integration by OEMs. Although improved software requirement specification,
standardized software development process and software architecture with defined
interface can help to ease the problem, a specific fault hypothesis of software will surely
help in the validation and debugging phase of system integration.

As introduced in the state of the art in the Subsection 9.2 software architecture for the in-vehicle
electronics, an appropriate fault hypothesis of ECU software platform with layered standard
software services will be introduced as following.

Fault type and fault hypothesis for ISS

63

6.3.1 Software timing faults

As state of the art of automotive electronics, an OSEK-conform operating system with pre-emptive
scheduling is used, because it is assumed that not all tasks can be scheduled as periodic and that
event triggered tasks are still needed. In an operating system with pre-emptive scheduling,
according to a predefined scheduling algorithm (e.g. priorities) the scheduler shall execute the
parallel running schedulable entities, in which scheduling faults can take place:

1. Activation during running process of other entity: During execution of a schedulable entity, it
might be possible that other schedulable entities shall be activated. Due to the reason, that
parallel processing is not possible, one of the schedulable entities can not run.

2. Deadline/execution time budget violation: Deadline/execution time violation occurs, when a
scheduled entity can not fulfill its job within the predefined time budget.

3. A specific schedulable entity (e.g. non periodic task) is activated too often: During runtime a
schedulable entity might be activated several times in the same time window. This in
general leads to inconsistencies and errors, if that routine is not prepared to do so.

4. Maximal number of entity activation is reached: During runtime more schedulable entities
might be activated than the scheduler implemented on the ECU can manage, e.g. too many
tasks are scheduled and activated.

In general all these scheduling concerning the operating system faults can result in two final faults:
missed activation and missed termination of the OS-objects.

The scheduling faults are mainly considered to be faults, which shall be avoided during the design
and development phase of the system or functional unit, but this kind of faults can not be excluded
since there is no 100% fault free software. Thus the scheduling faults shall be handled (detected
and tolerated) by the dependability software platform in the runtime. Detailed fault hypothesis
considering timing faults in the runtime will be discussed in Subsection 9.3.2.3.2 in the
dependability software service of software watchdog.

6.3.2 Communication between SW-components

As mentioned in Chapter 3, a clear trend in the embedded systems, especially in the automotive
industry is the distributed control system. Distributed control system, by its natural, require
consensus and coordinated behavior among the constituent parts. The required consensus might
be low-level, (e.g. time synchronization among the distributed nodes) or at a higher level (e.g. in
form of coordinated distribution of brake force in ABS or ESP system).

Thus the communication link is a critical chain with strict dependable requirements. At level of
software-components the following main faults or errors concerning data exchange and
communication between software components on one ECU (intra-ECU communication) or on
different ECUs (inter-ECU communication) will be relevant: Except for the five fault types listed in
Subsection 6.2 about communication, API access fault is an additional fault to be considered here.

Fault type and fault hypothesis for ISS

64

6.3.3 Concurrent resource access

As assumed, different application SW-Cs (or redundant SW-C) can be integrated onto one ECU,
limited resource on ECU may be accessed concurrently by different entities. The resources here
can be CPU running time, SW-services, peripheral or other resources.

For peripheral access, one physical unit/peripheral device (like an actuator) is requested to be
controlled by two or more independent software-components. But in general it is assumed that a
specific physical device is controlled by only one software-component at a certain time. This
assumption does not exclude e.g. a possible configuration, that two different application SW-Cs
control an actuator. For example, one unit can "enable" the actuator and the other one can control
it. This means that the actuator works like an AND gate, which reduces the possibility of unwanted
control. Faults can occur here during a simultaneous access (timing and duration) of a peripheral
device in the control of peripheral drivers. The fault in concurrent resource access can mainly be
considered as a fault which has to be avoided during system design phase. A device that can be
accessed by several applications would have a guarding queue. Possible problems that can occur
during a simultaneous access of a peripheral device should be checked and minimized during
system design and integration.

Engineering Process of Integrated Safety System

65

7 Engineering Process of Integrated Safety System

As required by the safety norms in Subsection 3.5.2.3, development process according to the
appropriate safety integrity level is the most important lever to face the challenges summarized in
Chapter 4. In the following an Engineering Process for the development of future Integrated Safety
System will be discussed.

7.1 Introduction to the ISS Engineering Process

In the Subsection 3.5.2, state of the art in the development process for automotive safety
electronics and challenges introduced by development of new ISS-applications are introduced. The
analysis of the gap shows the necessity to improve today development processes. The widely
accepted safety norm IEC 61508 and its up-coming adaptation for the automotive industry, the
industry norm ISO/WD 26262 should be taken into consideration. At the same time the system
dependability should be improved by managing the complexity of ISS.

At the beginning of this chapter, an overview of the ISS Engineering Process as part of the global
development process is given in Figure 7-1.

Requirements
Analysis

Implementation

Components
Test

System Test

Acceptance
Test

Concept

Architecture

Implementation

System Design
& Components

Design
ISS
Engineering
Process
Steps

Figure 7-1: Overview of ISS Engineering Process with virtual front-loading

The complete development of ISS covers multiple phases from design to the serial production as
shown in Subsection 3.5.2.2.2 as a series of V-models. The ISS Engineering Process focuses on
the phases from A-sample to the B-sample, while keeping the consistent requirement engineering,
safety analysis and system validation with the following phases of C-sample and D-sample.

The basic of the ISS Engineering Process is the V-Model’97. In the ISS Engineering Process, the
intern V is extended with an extern V as the pink part shown in Figure 7-1. The extension of
external V is based on the EASIS Engineering Process (EEP) proposed in the EASIS project
[EAD41].

Compared with the EASIS EEP, the ISS Engineering Process integrates a consistent requirement
engineering phase, which covers from the requirement analysis including hazard analysis to the
component test and part of system test with fault injection. The requirements from ISO26262 are

Engineering Process of Integrated Safety System

66

joined together with the detailed development steps. The dependable software and hardware
architectures, defined in the Chapter 8 and Chapter 9 as a trend of platform strategy, are combined
in the ISS Engineering Process as well.

From the global view however, the emphases of the ISS Engineering Process are listed as
following:

 Virtual front-loading: Strict analysis and validation activities are commonplace in today's
automotive development processes. However, these activities are usually performed rather
later – when major design decisions have already been performed and the effort of
changes is relatively high. Moreover there is often simply insufficient time left to conduct
complete system test. According to a McKinsey survey [McK05], about half of automotive
electronics are tested in vehicle 18 months before SOP and only 6 months before SOP
does the level reach 90%. The ISS requires an even more decentralized development
process, a distributed rapid prototyping based on the principle of early integration and
validation with advanced simulation environment is one of the enabling technologies to
solve this problem. The physical integration of serial sensors and actuators with the
microcontroller in vehicles can take place in the late phase of product development;
however, a lot of safety features can be already covered and tested with virtual front-
loading.

 Correct-by-construction approach: correct-by-construction means that development
artifacts adhere to certain quality measures by following a strict development approach.
The correct by construction approach can reduce development costs by automating
development steps and reducing the analysis of the results. Furthermore, it can increase
the resulting quality in terms of non functional requirements like availability and safety of
systems. Thus it is a promising approach especially for the development of ISS.

Main benefits of using the ISS Engineering Process are:

 This process helps to handle the complexity by splitting up the system development into
manageable parts without losing overview (as a strict development approach for correct by
construction).

 This process supports the identification and further handling of safety related requirements
with enhanced end-to-end requirement tracing. On every development step, the necessary
safety activities are identified and triggered.

 The virtual frontloading of hazard analysis activities, model-in-the-loop, software-in-the-loop
and hardware-in-the-loop test support the early detection of (design) errors. Problems with
the overall concept (architecture) can be detected early. This offers the possibility to make
the adjustments on concept level, and not on implementation level.

 The process takes the current trends of standardization of dependable hardware and
software platform as well as safety norms into consideration.

Engineering Process of Integrated Safety System

67

Figure 7-2 shows in detail the domain of virtual front-loading in the ISS Engineering Process. It
begins with the requirement engineering. After the FAA (Functional Analysis Architecture) is
mapped to the hardware architecture, the FDA (Functional Design Architecture) model derived can
be validated with the rapid-prototyping. The virtual front-loading accompanies these steps and
checks the results against the stepwise improved and complemented requirements.

The correct by construction approach is implemented here with the exactly defined steps in the
EASIS Engineering Process as well the mapping and interconnection between the steps, which
improves the quality of the designed prototype. The virtual frontloading here, in return, can find out
more potential deficiencies of the design and enables a prompt and cost-effective re-engineering of
construction, which contributes to the correct by construction approach as well.

Figure 7-2: ISS Engineering Process with virtual front-loading in details

As depicted in Figure 7-2, the ISS Engineering Process can be divided into five main parts as
following:

Part 1: Initial of requirement engineering (specify preliminary requirements)

All requirements of the system function under development are collected, specified and structured.
Safety related requirements are analyzed from a system level point of view. At this step, it is not
necessary to make assumptions regarding the E/E architecture, as mainly the intended functional
behavior is considered and the possible malfunctions are analyzed.

Details on this process step are given in Subsection 7.2.1.

Part 2: Development of Functional Analysis Architecture

Based on the structured system requirements specification, the functional properties are modeled
using the Functional Analysis Architecture. In this process part, firstly the functional architecture is

Engineering Process of Integrated Safety System

68

defined (defining the building blocks) and the functional interchange mechanisms (timing and
dynamic behavior) are analyzed. Secondly, the functional behavior of the single building blocks is
modeled.

In this stage, the basic cooperation of the function under development with the other components
of the vehicle is analyzed. This minimizes the risk of late detection of basic incompatibilities
between the specified behaviors of the different functions in the vehicle. The FAA defines the
possible basic entities and interaction rules usable for the considerations on this abstraction level
(notation and semantics).

The FAA model as elaborated in this step is analyzed e.g. consistency, timing and formal
properties. The list of the identified FAA blocks can be used as basic input for dependability related
analysis (e.g. FMEA). Virtual front-loading with model based simulation of functional behavior is
used for validation as to the functional requirements. Following the dependability analysis, a first
Hazard Analysis is performed, possibly generating new requirements and an update to the list of
hazards. Details on this process step are given in Subsection 7.2.2

Part 3: Development of hardware architecture

With the FAA Model of the function system under consideration, it is possible to tentatively allocate
the defined function blocks to one or more hardware entities (hardware architecture with layout of
ECU units, sensors, actuators and communication network). Thus the Hardware Architecture (HA)
is integrated here as an input factor. This enables the analysis of the dependability requirements
that these hardware components have to fulfill, leading to a description of necessary redundancy
and of the possible failure modes. This will lead to a refinement of the hardware architecture, and
give a specification of failure reaction requirements. Details on this process step are given in
Subsection 7.2.3.

Part 4: Development of basic Functional Design Architecture

The hardware architecture gives the basis for the next analysis and modeling steps. First, the final
allocation or mapping of functional components (as defined in the FAA model) to the hardware
architecture is performed, while also taking the safety constraints into consideration. The software
platform for ISS including dependability software services and its impacts on the functional
architecture model are added to the design of the functional architecture. In other words, the whole
dependable software platform is integrated into the design.

Details on this process step are given in Subsection 7.2.4.

Part 5: Refinement of and validation of FDA model with SiL-test

The Basic FDA Model covers the behavior of the function under the assumption that no faults
(hardware, software or communication) occur. In Part 5, the handling of faults according to the
system fault model is integrated, giving a final FDA model including the safety concept of the
function system under development.

Details of these process steps are given in Subsection 7.2.5.

Engineering Process of Integrated Safety System

69

Part 6: Hazard analysis and validation of FDA model with HiL-test

Hazard analysis will be carried out for the complete FDA model with the new information. By
means of hardware-in-the-loop test with consistent evaluation cases on a hybrid-system of rapid-
prototyping platform, evaluation microcontroller and rest-bus simulation method, an end-to-end
tracing to the test specification and requirement specification can be guaranteed.

Details on this process step are given in Subsection 7.2.6.

The enabling steps for the development of ISS, along with safety relevant steps as extension of
EASIS Engineering Process, are listed as following:

 Enhanced requirement engineering phase with seamless process oriented mapping and
tracing of requirement specification (seeking “end-to-end” quality assurance).

 Using UML for the functional architecture design of the embedded system and the
specification of interface and specification of dynamic behavior.

 Front-loading with the virtual integration, taking the current trends of hardware architecture
and software platform standardization (results from Chapter 8 and Chapter 9) into
consideration (early model-in-the-loop and software-in-the-loop test).

 Mapping of app. SW-Cs to electronic architecture taking safety requirements into
consideration and a guideline for the mapping work.

 Application of dependable SW-platform and hardware platform in the system integration by
configuration of dependability services.

 Verification and validation with rest-bus-simulation and hardware-in-the-loop test and fault
injection based on fault hypothesis.

In the following chapters, the development processes with the appropriate tool (hardware and
software) are given step by step in details after the landscape of the whole development process is
shown. The notations and symbols used in the landscape of the ISS Engineering Process are
shown as following Figure 7-3.

Figure 7-3: Notation in the ISS Engineering Process

Engineering Process of Integrated Safety System

70

7.2 Development steps of ISS Engineering Process

Figure 7-4: Global view of ISS Engineering Process

Engineering Process of Integrated Safety System

71

An overview of ISS Engineering Process is depicted in Figure 7-4, which is subdivided into 7 parts
as the following subsections.

7.2.1 Part 1: Initial of requirement engineering (specify preliminary requirements)

Figure 7-5: Specify preliminary requirements

Process step 1.1: Capture natural language requirements

The visions of a new system including system requirements and system concept are firstly
collected in a requirement specification of natural language as depicted in Figure 7-5, where e.g. a
high-volume vehicle manufacturer targeting the mass market cost-consciously strives to carryover
concepts from previous projects. The next vehicle system concept is typically an adapted variant of
previous one.

Already in this initial step two issues should be considered [McK06]:

 Applying right level of specification granularity – If the granularity is too high, there is the
danger of misunderstanding. If too low, the efficiency can suffer.

 Deploy cross-functional feature specifications by setting up a cross-functional team to
work on the specifications.

The proposed tools are more non-formal tools like Word, Excel and state-transition diagrams.

Process step 1.2: Perform Preliminary Hazard Analysis (PHA)

Preliminary Hazard Analysis (PHA) is the first execution stage of a product project specific plan,
performed at the conceptualization stage of the ISS lifecycle. PHA does not require concrete
designs. PHA identifies potential hazards leading to unacceptable risk, and specifies
corresponding requirements to reduce the risk to within tolerable limit. As the ISS progresses

Engineering Process of Integrated Safety System

72

towards concretion and requirements flow down, the PHA may be iteratively applied to the
corresponding subsystems. PHA is iterated until residual risks are within tolerable limits.

Measures to perform the process step:
 Identify losses to be avoided & corresponding severity category
 Identify hazards based on previous experiences
 Identify hazards based on concept review
 Categorize hazards by severity

 Assess risk of malfunctions (see remark 1)
 Tabulate hazard-loss combinations & estimate risk level
 Establish tolerable risk targets
 Perform Hazard Graph Analysis (HGA)

While the results of such a Preliminary Hazard Analysis are defined as following:
 (General) list of losses to be avoided
 Database of hazard-loss combinations, corresponding risk level
 (General) preliminary hazard list, including

o Hazards from driver overload, based on workload and cognitive load model
o Hazards from driver confusion about mode
o Hazards with unacceptable risk levels

The proposed tools for the early stage of the PHA can be supported some form of templates,
questionnaires and tables, e.g. in Excel. The hazard graph, as mentioned above, can be integrated
with the state machine model.

Process step 1.3: Definition of risk mitigation requirements

This process step specifies requirements to reduce the risk of each hazard to within tolerable limit.
As mentioned above, the PHA is iterated until residual risks are within tolerable limits.

Measures to perform the process step:
 Identify requirements for risk mitigation

 Perform Hazard Graph Analysis

 Identify preliminary verification and validation (V&V) requirements

Results of the process step:

 Preliminary requirements and constraints for risk mitigation

 Additional hazards introduced due to risk mitigation measures

 Analysis of newly introduced hazards

1 According to ISO26262-3 [ISO23] Section 6 hazard analysis and risk assessment, Risk of malfunction = severity * probability. In this
context, “probability” is defined as “the probability that the vehicle is in a driving situation, in which the malfunction could cause a mishap
with the considered severity”. Example: A possible malfunction of a gearbox is that the car does not start driving when intended by the
driver. This is normally no problem, as a car that is standing is the safest. But if this malfunction happens when the car is standing on a
railroad crossing (for any reason), this is not safe at all. For this situation, this analysis step analyses what percentage of vehicle’s
lifetime that it is in such a particular situation.

Engineering Process of Integrated Safety System

73

 Identification of newly introduced hazards

 Conflicts with other requirements, including trade-off analysis and conflict resolution

 Preliminary requirements for verification and validation

 Hazard graph after applying risk mitigation requirements. The risk mitigation here means
both the reduction of the hazard probability and mitigation of the effects of hazards.

The proposed tools are again the templates, questionnaires and tables as used in step 1.2.

Process step 1.4: Specify structured system requirements

In this step the system safety requirements are integrated with the discovery of adverse
relationship (conflict) with other requirements, thus some kind of trade-off preliminary decision
should be carried out. The proposed tools for the requirements engineering including requirements
managements and tracing are DOORS and SysML [SML06].

7.2.2 Part 2: Development of Functional Analysis Architecture (FAA Model)

Figure 7-6: Safety integrated requirement specification and development of the FAA-
model

Engineering Process of Integrated Safety System

74

Process step 2.0: Improvement of requirement specification

This process step (as depicted in Figure 7-6) improves the system requirement specification by
further iteration of prioritization and categorization of the requirements according to different
constraints.

Measures to perform the process step:
 Prioritization of the requirement specifications

o The safety relevant requirement specifications, of course, should be given the
highest priority (e.g. the allocation of ASIL according to ISO26262). The ISS,
however, are mostly cross-functional integrated features. The system dependability
requirement should be split to the sub-functional safety requirements.

o Identify requirements for customer relevant features. In-vehicle electronics inject a
lot of innovation in automotive industry, but not all the features can be perceived by
the customers in proportion to the development efforts behind. With the introduction
of vehicle platform strategy, based on one vehicle platform esp. on the vehicle E/E-
platform, different vehicle variants according to the defined business model can be
configured. Thus for each vehicle model, the individual customer relevant
requirement specification should be selected and given a higher priority.

 Categorization of the requirement specifications

o The easiest way is to divide the requirements into functional and non-functional
requirements, where functional requirements specify what the developed software
should do e.g. data, function and interfaces and non-functional requirements specify
under which constraints the functional requirement should be fulfilled. The most
important requirements are mostly non-functional requirements, such as
performance, quality and requirements for the methods of realization,
implementation requirements and organization requirements.

o For the development of ISS, the emphasis will be put on the dependability (safety)
related requirements, which are mostly non-functional requirements. Here the
relevant dependencies between the system-components, the risk mitigation
requirements should be included in the dependability related requirements, e.g.
switch-off of ACC in case of sensor failure of ESP.

The result of this process step is an improved, prioritized and categorized requirement
specification, which is the most important milestone and basis for the requirement engineering
work. As a living document, the specification should be supplemented and traced during the whole
ISS Engineering Process.

As proposed, the tools DOORS and SysML will be used. One trend which should be mentioned
here is the so-called model based requirement engineering, in which the requirement
specifications are mapped to the model based functional design. With the tools of DOORS and
SysML, the structured requirement specification can be further linked and mapped to the
appropriate UML-design or model-blocks with Matlab/Simulink. Further on, they can be linked to
the V&V requirements and approaches,

Engineering Process of Integrated Safety System

75

Process step 2.1: Specify functional architecture

Specify functional architecture is a typical step of “divide and conquer”. The whole system is
decomposed according to domain-specific considerations. While ISS-applications are
characterized with inter-domain and inter-ECU distribution, the developer should not lose the
system overview and the interaction between the sub-components.

Process step 2.2: Specify dynamic behavior

Here a sequence of functions is defined. Eventually these must conform to the functional
architecture defined in step 2.1. By using UML2.0 or SysML, e.g. the standardized notation of
interface definition, the time sequence editors and use-case diagrams, the interaction between the
sub-systems can be defined.

Process step 2.3: Specify Function Behavior

While steps 2.1 and 2.2 mainly concentrate on the "outer" view of a functional architecture, this
step emphasizes the "inner" view as it cares for the implementation of the fine-grained functional
behavior. The development of embedded software by means of a model-based design is already
practiced in certain organizations in the automotive and other industrial domains. However, it is still
not state-of-practice, esp. for the safety relevant systems. With the introduction of improved model
based development tools, certified code generator and compiler, it can be foreseen that not only in
the rapid prototyping phase but also in the serial development of safety relevant systems, the
model based approach will be applied.

Process step 2.4: FAA Hazard Analysis (FHA)

FAA Hazard Analysis (FHA) extends and updates the results of PHA, through detailed analysis of
constituent subsystems and components of the vehicular system, to identify previously unidentified
hazards and to assess the associated risks.

Measures to perform the process step:
 Identify hazards and analyze their effects

 Identification of faults that can lead to the hazards, updates the hazard list and fault
types/hypothesis of the system

 Identify risk mitigation measures and design criteria

 Allocate Automotive Safety Integrity Level (ASIL) to the FAA components according to
ISO26262-3 - concept phase [ISO23]. With a qualitative analysis the safety integrity
requirement (quantitative requirement of PFH) can be mapped to FAA-model. As shown in
Figure 7-7, based on experience, the system PFH can be mapped to the FAA-components
of sensor/input data processing, communication, ECU computation and output to actuator.

Engineering Process of Integrated Safety System

76

Sensor/input Computation,
control-loop

Output/control
to actuator

Sensor/
input
30-40%

Computation,
control-loop
10-20%

Output/
control
to
actuator
45-55%

Communication
System 1%

 Output/control to actuator: 49% Computation and control-loop: 15%

 Communication system: 1% Sensor/input: 35%

Figure 7-7: Mapping of system-PFH to FAA-components

A plausible mapping example is shown as above with ASIL-D system PFH as 1*10-8, the PFH of
the communication system should not exceed the 1%*1*10-8 as 1*10-10. It demonstrates on one
side the possible weakest chain in the system, such as communication system. On the other side,
in order to improve the system PFH, one should concentrate on the system components as sensor
and actuator control.

Results of the process step:

 A supplemented list of hazards (with additional and refined hazards compared to PHA) and
mapping to the defined dependability specification in A4.3.

 Assessment and refinement of severity and risk level for each hazard

 Residual risk level of each identified hazard

 Additional and refined requirements for residual risk mitigation

 Additional and refined requirements for V&V, an initial mapping here should be performed
to the test specification of the identified hazards. IEC 61508-3 calls for a test specification
as the result of the functional step “Module Design” (ISS Engineering Process part 4). But
already in this very early phase, the software developers, who are responsible for
producing the test specification, and in particular the design of test cases, should make
thoughts of test specification and their mapping to the requirement specification [SMT06].

Engineering Process of Integrated Safety System

77

Process step 2.5: Validate FAA model

In this step an early validation of FAA model (a typical step of virtual front-loading) is carried out, in
which the functional behavior of one or more functional units must have been specified. For the
behavior description, an executable specification is given for each unit. The level of details in these
specifications might still vary, ranging from an abstract and coarse grain specification (e.g. a
simplified state-chart model) or a detail specification (i.e. definition) of the functional behavior. In
either case it is assumed that a commonly used modeling language with executable semantics is
used for the specification of the functional behavior, e.g. MATLAB/Simulink/Stateflow. This FAA
model is still regarded to be independent from an execution platform, i.e. it does not contain
mapping information resulting from mapping the model onto a specific aimed hardware platform.

In the validation process step a preliminary “model-in-the-loop” test can be carried out. It is
checked whether the FAA model conforms to the structured system requirements specification.
Therefore, a test model has to be derived from the requirements specification and fault
types/hypothesis. The test model might be specified in the same language as the functional
behavior. In this case the FAA model may be embedded in a test frame that has been triggered in
a test environment by the test model, e.g. by performing an offline simulation in
MATLAB/Simulink/Stateflow.

If the FAA model is given as a state-chart, formal verification techniques can also be employed. In
this case the test model contains assertions and the verification which are used to check whether
the FAA model fulfills these assertions.

If the FAA model reflects a control loop, also methods from control theory for stability analysis can
be used. In case of a linear system there are standard methods available. To some extent there
are also methods for non-linear systems, although these require additional effort.

The proposed tools for the validation of FAA models are DOORS (for specification of the system
requirements), DOORS, MATLAB/Simulink/Stateflow (for the test model), test automation tools on
the PC-platform (for the simulation engine and execution of tests) and dSpace Embedded Validator
(for formal verification).

As depicted in Figure 7-1, there are two important mappings, the mapping of Functional Safety
Concept (artifact A0) to the improved Requirement Specifications of A4 and the mapping of Test
Specification of A4* to the Requirement Specifications of A4. Since the FAA-model developed in
Part2 only contains the most elementary functionalities of ISS, the mapping here is only a first step
for a complete Functional Safety Concept required in [ISO23], which is living-document through out
the safety life-cycle. The technical safety concept here together with the Test Specification and test
results form the basic parts of safety cases, which serve as the proof of the safety integrity level.

Engineering Process of Integrated Safety System

78

7.2.3 Part 3: Development of hardware architecture

A7
(Conceptual)

HW Architecture
Description

A10

3.2

3.3
Identify

necessary HW
redundancy

A8

A9
Necessary HW
Redundancy
Description

A18

EASIS
dependable

HW-platform,
dependable
HW-module

3.1

Identify
HW Fault

Model

HW Fault
Model /

Detection and
Reaction

Description

HW Architecture Description
- taking Safety
Requirements into
considerations
(HW-redundancy,
communication network,
network topology of safety
domain)

Update Safety Req ./
Hazard List

A2A4A4*

mapping

A0

Functional
Safety Concept

mapping

Figure 7-8: Development steps for hardware architecture

Figure 7-8 shows the consideration of dependability aspects by the development of HW
Architecture Description (artifact A10). A system or hardware architecture represents one of
several system design alternatives that are generated to explore the design space and to find an
optimized solution. This optimum is mainly driven by the continuous system optimization, but for
the safety relevant applications, however, the same safety case (the same safety integrity) should
be provided despite of the optimization. Thus the hardware architecture should be mapped to the
Functional Safety Concept as well.

Engineering Process of Integrated Safety System

79

Process step 3.1: Design system hardware architecture

As introduced in Subsection 3.3.3, the hardware architecture describes the vehicles topology, bus
systems, ECUs, gateways as well as the employed sensors and actuators. The hardware
architecture has to fulfill the system requirements specification, which already contains
requirements to eliminate or mitigate hazards identified during early hazard analysis on system
level. The analysis functions (FAA components) are tentatively allocated to the hardware
architecture. This includes the functional devices of the FAA model that are mapped to the
hardware, guidelines for the definition of the hardware architecture and the distribution of the
functionality. The result is a conceptual hardware architecture description that can be analyzed and
iteratively refined until it complies with the safety requirements. Necessary hardware redundancy
identified during further design steps has to be incorporated into the hardware architecture. This
means that either the description has to be updated or a new hardware architecture has to be
chosen that is able to fulfill safety requirements but may not need the redundant parts. For
example, instead of two separated redundant sensors, one sensor with integrated redundancies on
one silicon-board with independent data paths could be selected.

Process step 3.2: Identify hardware fault model and risk mitigation measures

In order to identify possible hardware faults and to determine which faults may lead to which
system level fault modes, a hazard occurrence analysis with e.g. a qualitative Fault Tree Analysis
(FTA) has to be performed. The result of this activity is a starting point for the definition of error
detection mechanisms and an action that has to be taken in case of a detected error. Within this
step, since software related mechanisms are strongly connected with the fault-treatment, the
software mechanisms here are covered in step 5.1. The proposed tools are tools for FMEA und
FTA.

Process step 3.3: Identify necessary hardware redundancy

The application of dependable HW-architectures platform, e.g. redundancy concept with sensors
has an impact on the hardware architecture as well as on the software design. The hardware
architecture has to be iteratively refined for the redundancy. The hardware redundancy description
establishes a specification to incorporate typical ISS dependability software services, such as
voting and Agreement Protocol, into the functional architecture.

7.2.4 Part 4: Development of Functional Design Architecture (FDA)

1) As depicted in Figure 7-9, the Basic FDA Model (A11) is designed as the mapping of FAA to the
hardware with the basis software services needed as OS, gateway-service and communication
service, etc. No attention is paid here to the constraints of timing, bandwidth of communication
network, etc.

2) With the new information of “basic FDA model”, the hardware fault model is supplemented to the
system fault model based on the fault model defined here.

Engineering Process of Integrated Safety System

80

4.1

Simulink

4.2
Design of
Functional
Behavior

Simulink

Refine of
Functional
Interfaces

4.3

A6

FAA
Model

A4 4.0

A10

Mapping
information with
addtional basic

software services
needed (gateway
services, COM-

services)

A11a

Structured System
Requirements
Specification

HW
Architecture
Description

4.4

A11

Basic
FDA

model

4.5

Configuration of
RCP System

Update
Safety Req ./

classify
Hazard List

Allocation of
FAA to the HW

architecture
description

(network of functional
blocks)

A2

A4

4.4
b

Design of evaluation
cases according to

the fault model

Test specification
with evaluation

cases according
to the

hazard list

A4*

Consistence
tracking and

mapping of test
specifications to RS

A11'4.4c

Model-in-the-loop /
basic software-in-
the-loop test with
test specification

Evaluated
FDA (virtual
prototype)

Hazard analysis
of basic FDA-

model

Design of Sensor-
/Actuator Algorithms

4.4
a

Identifiy system
fault-model

(extension of HW-
fault model with
SW-fault model)

A18

System
fault model/
types

A8

HW Fault
Model /

Detection and
Reaction

Description

Simulink

A11
Basic
FDA

model

Hazard analysis
results (including

hazard list)

A4

Figure 7-9: Design and validation of Functional Architecture Model with virtual front-
loading

Here it is to note that one of the main differences between the FAA and the FDA is the level of
details. The FAA typically does not consider domain-specific software infrastructure (e.g.
diagnostics, state management and network management, etc.). The FDA with mapping on
hardware, on the other hand, should consider these aspects.

Process step 4.0: Allocation of FAA to the HW-architecture description

In this step, a first version of the FDA-model of the function under development is generated. The
basic idea of this process step is to combine the results of part 2 and part 3. The already existing
FAA-model, as a functional network designed from model based development, is allocated to the
HW-architecture description including safety requirements.

The model of application software (each can consist of more than one software component, e.g.
sub-systems implemented with MATLAB/Simulink) will be mapped to the HW-platform (real ECU,
µC or rapid prototyping hardware node), taking the system safety requirements and other
constraints into consideration. That is to say, by the mapping of application software models to the
rapid prototyping platform, esp. for the integration of ISS applications with different ASILs, safety
requirements with regards to the reliability, bus load (communication effort) between the function

Engineering Process of Integrated Safety System

81

models, communication delay between the functions integrated on the nodes, etc. should also be
considered for the first time here. As for some of the constraints, because no 100% accurate
prognoses can be made, a rough estimation is enough to define the first FAA-model.

There can be more than one mapping possibility of FAA-model to the nodes of rapid-prototyping-
platform. These mapping results should be assessed to the structured system requirements A4.
Mapping of FAA to HW-architecture also implies a first rough decision for HW/SW-partitioning.
While this is always a situation based case and there are no golden rules, a list of criterion is given
as following:

 End-to-end timing: Hard real-time requirements can be often only implemented with
hardware.

 Overall costs for the hardware and the software solution.

 Changeability during lifetime is easy to be implemented with a software solution. This is
nearly impossible in a hardware implementation (except for FPGA).

 Know how protection: It is more difficult to perform reverse engineering of a hardware
solution than of a software solution.

 Time for development: Algorithms can often easier and faster to implement in software than
in hardware. The software based solutions are esp. preferred for prototype.

 Verified legacy solutions: If a solution is already implemented in hardware or in software, it
is often beneficial to reuse it. However, even if a new solution would be more efficient, it is
sometimes difficult to replace it, since the old solution is established.

 Background and competences of the developing team. In real life the project members
have an influence on which selections are chosen for hardware/software partitioning.

Considering the correct-by-construction approach and reuse of prototyping here for the serial
development, constraints of cost should also be considered. A guideline for the mapping work
regarding the constraints is discussed in Subsection 9.3.2.

For the allocation of the FAA-model to the hardware architecture, there are in practice no mature
tools for the design work. Vector DaVinci supports the mapping of FAA-model to the hardware
architecture according to the principles of runnables defined in AUTOSAR as explained in
Subsection 9.3.2.3.2, while the expertise of considering the multiple constraints and trade-off
between them remains the responsibility of the developers. No intelligent and automatic mapping
support can be foreseen in the near-future.

Process step 4.1: Design of sensor-, actuator-algorithms (I/O incl. bus I/O)

Based on the chosen hardware (mapping to the hardware), the algorithms for evaluating the
respective sensors and actuators must be designed. The proposed tools are MATLAB/Simulink
extended by Real-Time block-sets (dSPACE) with bus-interface and INTECRIO including ASCET-
SD (ETAS).

Process step 4.2: Design of functional behavior

Engineering Process of Integrated Safety System

82

While the FAA provides a coarse description of the functions, this process step is charged with the
design of the algorithms that carry out the function. Moreover, additional issues such as calibration
and mode management must be taken into account. The proposed tools here are
MATLAB/Simulink and ASCET-SD.

Process step 4.3: Refinement of functional interfaces

Stemming from algorithm design, the requirements of the input values as to resolution,
minimum/maximum and error values, etc. are known. The same is true for the values provided as
output of the algorithm. Thus this process step is charged with the exact definition of the interfaces
in the value domain and to the dynamic behavior - also the timing domain. The proposed tools here
are TargetLink (dSPACE) and ASCET-SD.

Process step 4.4: Basic Design Hazard Analysis (BDHA)

Basic Design Hazard Analysis extends and updates the results of PHA and FAA Hazard Analysis,
through detailed analysis of constituent subsystems and components to identify previously
unidentified hazards and to assess the associated risks. The new components introduced by the
work in steps 4.0 – 4.3 have to be analyzed.

Measures to perform the process step:

 Identify hazards and analyze their effects

 Identify risk mitigation measures and design criteria

 Assess residual risk level

 Allocate ASIL to the FDA components, in step 2.4 the allocated ASIL to FAA will be verified
here with the additional mapping information to hardware.

Results of the process step:

 Enlarged list of hazards (with additional and refined hazards compared to PHA and FHA)

 Assessment and refinement of severity, probability and risk level for each hazard

 Residual risk level of each identified hazard

 Additional and refined requirements for residual risk mitigation

 Additional and refined requirements for V&V

Proposed tools are still tools for FMEA and FTA.

Process step 4.4a: Identify system fault-model

Step 4.4a is in fact a sub-step of step 4.4, with the complexity of ISS, the identification of system
fault model is outlined. In this step, the existing hardware fault-model from step 3.2 will be
reconsidered with the new knowledge from the FDA model. Generally speaking, the hardware
faults are mostly isolated faults except for the common mode fault as the power supply, while for
the ISS, the distribution and mapping of software to the hardware and communication between the

Engineering Process of Integrated Safety System

83

components, an integrated view of system wide fault model with software fault model as introduced
in Chapter 6 should be considered here.

Process step 4.4b: Design of evaluation cases according to the fault model

The mapping of improved fault model/fault types to the evaluation case and from the design of
evaluation cases to the test specification as well as front-loading of system test is a consistent
evaluation process in the ISS Engineering Process.

Due to the complexity of ISS, the design of evaluation cases should follow the same principle of
Fault Tree Analysis with the knowledge of FAA and FDA. Since the possibility of fault propagation
is amplified in ISS, the evaluation cases with fault injection on the remote node should be
considered here as an emphasis. One of the aims of designing such intelligent evaluation cases is
to find out the side effects, which are not foreseen in the design phase.

The mapping between items in the fault model to the test specification and later evaluation cases
is an n:m (n to m) mapping, which should be checked for the completeness. The tools suggested
here are again SysML and DOORS, which enable the mapping of model based evaluation cases to
the text based test specification.

Process step 4.4c: Model-in-the-loop/basic software-in-the-loop test with test specification

With the mapping information in the FDA-model, an initial separation of system model to the
hardware platform can be made. The communication between the separated models (the initial
nodes) can be emulated with the models of communication network using the appreciate block-
sets provided by the simulation tools. The environment and driver input can be emulated now more
realistically, since accuracy and hardware constraints like interface, specifications of input signals
from sensors and feedback from actuators can be included in the models step-by-step. With
evaluation cases by fault injection according to the fault model, not only the system functionality
but also the system dependability behavior in presence of faults can be evaluated as well.

In addition to the model-in-the-loop test, instead of using the simulation tools to emulate some of
the basic services in the models such as COM, TP-services or normal gateway services, these
basic software services as well the applications above can be compiled together. Here it is notable
that these general software services can be chosen independent from the aimed HW-platform or
the specific hardware are physically available. Both Matlab/Simulink and Vector CANoe or DaVinci
support the binding of compiled ECU-model e.g. Dynamic Link Library file (DLL-file) in the
simulation model. Thus a more near-praxis simulation and front-loading of design evaluation of risk
mitigation can be carried out.

Within the framework of model-based software development in conjunction with automatic code
generators, the test cases designed for the MiL-test can be also reused for the SiL test.

Process step 4.5/4.6: Configuration and validation of RCP system

As shown in Figure 7-10, the basic FDA model will be configured for the rapid prototyping process.
According to the certain tool chain and requirements from rapid prototyping hardware, prototyping

Engineering Process of Integrated Safety System

84

specific parameters, blocks configuration and environments will be integrated to the FDA-models.
One example here is the configuration of FlexRay scheduling for Rapid Control Prototyping (RCP)
using the DECOMSYS tool chain. The separation of communication mechanisms and scheduling
of communication table using DECOMSYS tools require that certain guideline of designs should be
followed.

In order to customize the FDA-model for the RCP, based on the validation results of RCP, certain
iterations should be carried out.

7.2.5 Part 5: Refinement and validation of FDA model with SiL-test

Dependable
SW-

Architecture
Framework

Non-
application

specific
Dependability
SW Services

RCP*;
formal

verification

4.5

RCP* = Rapid
Control Prototyping

RCP configured
Basic FDA Model

4.6

5.1

Necessary HW
Redundancy
Description

Structured System
Requirements
Specification

Integration of
Basic FDA with

EASIS
Dependable

SW Framework

System fault
model/fault types

Configuration of
RCP System

Validate RCP
configured

FDA Model

Figure 7-10: Refinement of FDA model with dependable SW-platform

Process step 5.1: Integration of Basic FDA with EASIS Dependable software Framework

In this step, based on the RCP configured basic FDA model as depicted in Figure 7-10, hardware
redundancy description and hardware fault detection mechanisms, appropriate dependability
software services from the dependable architecture framework as introduced in Chapter 9 are
chosen to support the fault detection and fault treatment mechanisms.

The application software, dependability software services and the basic software services will be
configured as specified in the dependable software architecture framework and integrated into a
first complete FDA model.

As depicted in Figure 7-11, details in process steps 5.1.1, 5.1.2, 5.1.3 and 5.1.4 are defined as
following.

Engineering Process of Integrated Safety System

85

Figure 7-11: Process step 5.1 under magnifying glass

Process step 5.1.1: Design of sensor/actuator related Diagnostics

In this step, based on the specified functional system description and the characteristic behavior of
the sensors/actuators in case of sensor/actuator faults, an appropriate diagnosis strategy is
defined for them. In EEP step 4.1, the basic handling of (virtual) sensors has been designed. In
step 5.1.1, the algorithms to detect the possible errors are integrated into the FDA model.

Process step 5.1.2: Design of application specific dependability measurements

The most plausibility checks are strongly connected with the design of applications. Based on the
specific application requirements and the hardware redundancy, appropriate dependability
software services will be configured to perform the plausibility check of the following entities:

 Sensor signals

 Received signals from communication system, esp. the plausibility of the signal
combination, e.g. based on the relationship among temperature, pressure and volume of
engine, some plausibility assertion of the sensor signals can be made.

 Intermediate calculation results

 Sent signals to the communication system and computed desired value to the actuator.

Process step 5.1.3: Design and integration of other non-application specific dependability
services

As introduced in Subsection 3.4.2.2, most dependability SW-services introduced here are
application independent and can be configured to the application safety requirements. Such
services as Agreement Protocol, fault-tolerant inter-ECU communication, Software Watchdog and
Fault Management Framework can be selected and configured for the specific needs of the
application with a reference to the dependability SW-architecture framework. According to ISO

Engineering Process of Integrated Safety System

86

norm 26262 part 6 [ISO26], the application of dep. SW-architecture framework, reuse and
configuration of dep. SW-services should be documented individually for each software
component.

Process step 5.1.4: Design of functional safety concept including dependability mechanism

Based on the concepts in A12 (sensor/actuator related diagnostics, fault-treat measurements),
A13 (different modes for fail-safe, fail-silent, fail-degraded and fail-operational, etc.) and A14 (other
dependability software services and integration concepts), fault tolerance mechanism of ISS-
applications are integrated in the FDA-model. The dependable software platform as well as the
ISS-applications should be optimized here for the rapid prototyping in another iteration as well.

Process step 5.2: Configuration and code generation for software-in-the-loop test

Figure 7-12: Validation of FDA-model with software-in-the-loop (SiL) test

In process step 4.4c, approaches of the model-in-the-loop-test and an initial software-in-the-loop
test are integrated in the ISS Engineering Process. Compare with 4.4c, step 5.2 in Figure 7-12 is
an extension with HW-specific features and system topology in FDA-model. In the software-in-the-
loop test here, the generic hardware drivers and emulation of bus communication etc. can be
substituted step-by-step with the µC or rapid-prototyping platform specific sensor/actuator related
I/O-drivers, bus-drivers or other hardware libraries.

By applying appropriate code-generators and hardware specific compilers, the object codes can be
generated and manual configured (e.g. additional check-point or break for the validation) for the
aim of software-in-the-loop test.

Engineering Process of Integrated Safety System

87

Process step 5.3: Software-in-the-loop test with test specification

As mentioned in process step 4.4c, there are simulation tools supporting the embedding of
compiled complete system model as a software based node. According to the availability of other
nodes and developing phase, each node in the system topology can be chosen as the following
seven variants:

1. Initial model, emulating very simple system behavior without any “intelligent” code
behind.

2. Enhanced model with models computing system behavior based on the inputs without
consideration of hardware constraints.

3. Software node with code generated from the enhanced model in variant 2, using
generic hardware drivers, code generator and compilers.

4. Complete model as an extension of the model from variant 3, with integration of
hardware specific issues like signals, timing and bus scheduling.

5. Software node with code generated from complete model in variant 4, using hardware
specific drivers and code generators as well as compilers.

6. Hardware node with external bypassing, that is to say, the extended/new function is
loaded to the rapid-prototyping platform, while the existing functions and I/Os are still
integrated on the original ECU.

7. Hardware node, with complete code from variant 6 (bypassing and original ECU)
loaded to the evaluation board or rapid-prototyping platform.

As depicted in Figure 7-13, in the different stages of development, from MiL, SiL to HiL, nodes are
substituted successively with the advanced variants, while a consistent reuse of test cases and
traced comparison of test results should be guaranteed.

Figure 7-13: Test in different stages

Engineering Process of Integrated Safety System

88

A complete system topology is made up of nodes and communication system. While the nodes in
the software-in-the-loop test environment can be one of the seven variants introduced here, the
communication system can be also chosen from the following three variants:

1. Bus-communication connector emulated by the model-based development tools. In this
case, no bus-scheduling, communication matrix or signal/frame lengths need to be
considered. Most of this kind of information remains unknown in this early phase of
development.

2. Emulated bus communication: Once the type of communication bus is chosen
according to the bandwidth, safety requirement, complexity and cost factors, with help
of rest-bus-simulation tools, the physical bus can be simulated with defined parameter
as transfer speed, timing and frame length, etc.

3. Rest-bus communication: When there is the need to test real bus communication, the
communication bus can be substituted piecewise with real communication bus. Once
one of the node or some the nodes are available in the advanced format (from the initial
model of variant 1 to the hardware nodes of variant 7), the nodes can be substituted
one by one with the advanced form. Thus the whole software-in-the-loop test bench is a
free-configurable hybrid system of SW-nodes and HW-nodes, which evolve towards the
hardware-in-the-loop test bench.

The advantages of the rest-bus simulation are significant for the distributed
development between OEMs and suppliers in both time domain and space domain.

 From the time domain: since traditional development cycle of a totally new modern
vehicle model is about 3 to 5 years, while the development cycles of microcontroller
are much shorter, most of the ECU or µC are not available or only available in form
of evaluation board at the early phase of development of in-vehicle electronics.

 From the space domain: The development of in-vehicle electronics is geographically
distributed as a cooperation of OEMs and suppliers. The front-loading of concept
evaluation and integration test should be carried out almost parallel to the coding
and implementation work on the side of suppliers. It is much simpler and quicker to
transmit software models in form of a virtual node, for example, over networks than
to ship evaluation boards.

In order to overcome the bottleneck from the time and space domain, the software-in-the-
loop test with the rest-bus simulation provides the proper approach for the cooperation
between OEMs and suppliers, while keeping the consistent test specification and
requirement tracing with the later phase of development.

The common approach of the suppliers, to show the OEM the compliance of software
quality assurance measures, is the software module test. In step 5.3 it is the first time that
software codes are generated and implemented, According to IEC 61508-3, the software
module test in form of SiL should be performed directly after software coding. This SiL-test
provides the first opportunity to detect any deviations between the specifications and the
software or to find any weak points in the software and to rectify the problems at an early
stage.

Engineering Process of Integrated Safety System

89

7.2.6 Part 6: Hazard analysis and validation of FDA model with HiL-test

Figure 7-14: Validation of FDA-model with hardware-in-the-loop test

The term “hardware-in-the-loop” (HiL) test is widely used in the automotive industry. The hardware-
in-the-loop test for the serial development usually refers to a large and sophisticated test bench
with all the serial ECUs, sensors and actuators connected with the real communication bus for the
preparation of in-vehicle test, in which the environment as on-road test is simulated as well.

The “hardware-in-the-loop” approach in Figure 7-14 refers to the test bench made up of rapid-
prototyping platforms and evaluation boards for the evaluation of FDA models.

Process step 6.0: Hazard analysis of complete FDA-model

Hazard analysis of complete FDA-model extends and updates the results of PHA in step 1.2 and
hazard analysis of FAA in step 2.4, through detailed analysis of constituent subsystems and
components of the vehicular system, to identify previously unidentified hazards and to assess the
associated risks. The new components introduced by the work in steps 5.x have to be analyzed.
Results from step 6 work as an update of safety requirements in A4, A 18 and A2. An iteration of
re-mapping and tracking between requirement specification and test specification should be
performed as well.

Engineering Process of Integrated Safety System

90

Process step 6.1: Update and configuration of evaluation cases for HiL

The evaluation cases from model-in-the-loop test and software-in-the-loop test of legacy can be
updated and reconfigured for the hardware-in-the-loop test. The benefits here are quite obvious, it
prevents the wheels from being reinvented while keeping the dependability requirements traced as
formal test. The evaluation results can be compared to gain more knowledge about the design.

Process step 6.2: Configuration of RCP system for the HiL-test

The RCP-system should be further configured to get ready for code generation of the hardware-in-
the-loop test, for example, according to certain system requirement, communication scheduling
might need to be separated from the model, some evaluation cases might be embedded in the
system model for the sack of test automation and fault injection.

Process step 6.3: Code generation and configuration for HiL

With consideration of hardware resource, requirement of evaluation/test cases, interface of
sensor/actuator/communication system, availability of hardware platform, cost and other
constraints, different rapid-prototyping platform can be chosen. With appropriate code generator
and tools, source code of the models as well as the evaluation case can be generated or
implemented and compiled for the hardware-in-the-loop test.

Process step 6.4: HiL-test with test specification

As discussed in step 5.3, with the substitution of the nodes from pre-variant in the early
development phase with the advanced variants, a seamless evolution of the software-in-the-loop
test to the hardware-in-the-loop test can be made with consistent reusable test specification and
test cases. In a complete HiL test-bench, the test environment is more realistic, the timing-
constraints can be checked under real-time condition (comparison with the safety requirements,
assumptions and previous testing results is possible) hardware faults according to the fault-types
definition can be injected directly to the system. The results of the evaluation results from the HiL-
test can be looped back to the FDA-model quickly.

For the ISS, as introduced in Process step 2.4: FAA Hazard Analysis (FHA), the allocated ASIL to
the components as well as to the system should be validated in the HiL-test bench as well. The
validation results from the iteration in A15 according to the test-specification A4* will be mapped
and integrated to the Functional Safety Concept in A0.

Engineering Process of Integrated Safety System

91

7.2.7 Association of ISS Engineering Process with ISO26262

As introduced in Subsection 3.5.2.3, the ISO norm 26262 (draft version) is currently the most
promising and future oriented safety norm in the automotive industry. Although the most important
measures suggested in ISO 26262 are integrated implicitly in ISS Engineering Process here, it is
necessary to map the safety steps from ISO 26262 to the ISS Engineering Process. Safety
systems, developed by ISS Engineering Process should prove their conformance to the ISO26262
finally, to show the evidence that all reasonable safety objectives are sufficiently met.

As note in Subsection 3.5.2.3.3 the ISO 26262 is divided into eight parts, due to the limited focus
of ISS Engineering Process (as shown in Figure 7-2), only the following parts of ISO 26262 are
associated directly with ISS Engineering Process: Part 2 Management of functional safety [ISO22],
Part 3 Concept Phase [ISO23], Part 4: Product development System [ISO24], Part 5: Product
development: Hardware [ISO25], Part 6: Product development: Software [ISO26] and Part 8:
Supporting processes [ISO28].

Association with ISO 26262 Part 2

As depicted in Figure 3-20, development reference phase 4.4 in ISO 26262 [ISO22] is the
initialization of product development. The mapping of this part is listed in Table 7-1.

ISO WD 26262 part 2: Management of
functional safety

ISS Engineering Process

Subsection 4.4.6 [ISO22], in the safety
management during the development process,
for all categories of safety relevant systems
(ASIL A, B, C and D), the safety responsibilities
of the persons, departments and organizations
responsible for each phase during development
should be defined.

In ISS Engineering Process notated in Figure
7-4, the dependability related process steps
should be ensured to be carried out the by a
safety manager, who is appointed by the
project manager to take the role for functional
safety management tasks.

Table 7-1: Mapping of ISO 26262 Part 2 to ISS Engineering Process

Engineering Process of Integrated Safety System

92

Association with ISO 26262 Part 3

The ISO26262-3 - Concept Phase [ISO23] includes three parts: system definition, hazard analysis
and risk evaluation and safety concept, which are mapped to ISS EP in Table 7-2.

ISO WD 26262 part 3: Concept phase ISS Engineering Process

Chapter 5 Initiation of the safety lifecycle, during
the system definition phase the safety lifecycle
should be initiated.

Because ISS Engineering Process is firstly
conceived for the design and prototyping of
innovative ISS-applications, the life cycle
here is generally considered as new
development.

Chapter 6.4.7, a safety goal (different ASIL
categories) should be assigned as an attribute
to the system, sub-system and components in
this process step.

The development phase of hazard analysis
and risk evaluation is mapped to the ISS
Engineering Process 1.2, 2.0, 2.4, 4.4 and
6.0, as a continuous assessment step of
system hazards according to the latest
knowledge about the system design.
Because the detailed risk analysis and
assessment is not the emphasis of this
dissertation, the detailed activities specified in
[ISO23] Chapter 6 are followed in ISS EP
without adaptation.

Chapter 7 Functional Safety Concept In the ISS Engineering Process Part1 and
Part2, the Functional Safety Concept is
mapped to different ISS-steps. In Part6, the
validation step is mapped to the Functional
Safety Concept as well.

Result from ISO26262 Part 3 (Subsection 7.2) is
the functional safety concept such as
architectural decisions and the concepts
including the warning and degradation concept
as well as the redundancy concept.

The design steps of fault detection and failure
mitigation specified in [ISO23] are all
considered in ISS Engineering Process 5.1,
while the design of driver warning is not in the
scope of this dissertation.

Subsection 7.4.3: Derivation of functional safety
concept is the allocation of ASIL requirements
(combination/decomposition) to the system/sub-
system/components.

ISS Engineering Process Step 2.0, 2.4 and
4.4. Based on the new knowledge from the
design step, the overall system safety
requirement (ASIL) can be decomposed to
the sub-system/components, thus the
dependability related RS in A4.3, as a living
document, should be continuously updated.
This decomposition of ASIL to the
components is one of most important criterion
of verification and validation for HiL-test in
step 6.4.

Table 7-2: Mapping of ISO 26262 Part 3 to ISS Engineering Process

Engineering Process of Integrated Safety System

93

Association with ISO 26262 Part 4

The ISO 26262-4 - Product Development System [ISO24] covers the reference phase “System
Design” as shown in Figure 3-20, which is mapped in ISS EP in Table 7-3.

ISO WD 26262 part 4: Product development
system

ISS Engineering Process

Chapter 6 System design, Subsection 6.3 The
prerequisite of this part is the system
requirements specification.

Product of ISS Engineering Process 2.0 as a
artifact A4

6.4.1 Process requirements: review of safety
concept, safety requirements specifications,
design specification

A4, A4* and mapping between them. In each
development phase of the FDA-model, the
appropriate design specifications will be
updated.

6.4.2 Requirements for architecture Integration of dependability architecture - ISS
EP step 3.3 and A18, ISS EP step 5.1 and
A17.

6.4.3 Avoidance of systematic faults, for all
ASILs, separation of safety related sub-systems
and other sub-systems, avoid impacts of
common cause failures.

6.4.3.6 Modular system design

Definition of system fault model and fault type
in ISS EP step 3.2, 4.4a and artifact A18.
Other non-functional RS as design
guidelines.

Application of dependable HW/SW-platform

6.4.4 Methods for detection and control of
random failures

Dependability services in hardware and
software in ISS EP.

6.4.6 System design partitioning into hardware
and software

Development approach from FAA to FDA by
mapping of FAA to hardware in ISS EP.

6.4.7 Verification of system design in System
design inspection, simulation, prototyping,
safety analyses

Virtual front-loading with RP and FMEA in
ISS EP.

6.4.8 System design documentation UML/SysML based design, FAA and FDA in
model-based approach.

Table 7-3: Mapping of ISO 26262 Part 4 to ISS Engineering Process

Engineering Process of Integrated Safety System

94

Association with ISO 26262 Part 5

The ISO 26262-5 - Product Development Hardware [ISO25] covers the reference phase 4.6 to 4.7
(depicted in Figure 3-20) of ISO reference model, which is mapped according to Table 7-4.

ISO WD 26262 part 5: Product development
Hardware

ISS Engineering Process

4 Hardware – Requirements analysis The hardware RS in ISS Engineering
Process 2.0 as a artifact A4

5 Hardware architecture design and
implemented measures for the control of
random hardware failures during operation.

6 Quantitative Requirements for random
hardware failures

ISS EP 3.2: Identify hardware fault model and
risk mitigation measures for systems of
ASILs, while the failure rate analysis of the
hardware is not the focus here. The detailed
activities specified in [ISO25] are followed
without adaptation.

7 Measures for prevention and control of
systematic hardware failures

Not covered by the ISS EP, such hardware
failures can not be tested by means of RP.

8 Safety hardware integration and verification

9 Qualification of parts and components, e.g.
compliance of electronic components with its
definition of safety

Not covered by the ISS EP

10 Overall Requirements for software hardware
interface: development of a SW/HW interface of
a microcontroller included in a technical safety
concept.

Partly covered by ISS EP, e.g., definition and
verification of timing constraints

Table 7-4: Mapping of ISO 26262 Part 5 to ISS Engineering Process

Association with ISO 26262 Part 6

The ISO 26262-6 - Product Development: Software [ISO26] is a parallel activity to the hardware
development in ISO reference model. The mapping of the activities there is specified in Table 7-5.

ISO WD 26262 part 6: Product development
Software

ISS Engineering Process

5 Software safety requirements specification
with suggested methods of natural language or
computer-aided specification tools or semi-
formal methods.

ISS EP step 1.1, 1.4, 2.0, 2.3, 2.5 and 4.6.
applied to all ASILs

6 Software architecture and design

Applied to all ASILs in ISS EP.

Engineering Process of Integrated Safety System

95

ISO WD 26262 part 6: Product development
Software

ISS Engineering Process

6.4.1/6.4.2 Choosing of design methods and
tools for non-functional requirements to software

ISS EP tool chains, e.g. documentation and
compute aided-designs

6.4.3/6.4.4/6.4.5/6.4.6 Hierarchic software
architecture, non-functional requirements to
software, guidelines for the modeling of
software

ISS EP 5.1, A16 and A17 application of
dependability layered SW-architecture,
Modeling of FAA and FDA with UML

6.4.7/6.4.8 Allocation of safety integrity level to
the SW-Cs and evidence of independence with
ISO26262-8 Annex Concept of the
independence of software components (draft)

Partly supported by ISS EP with the
introduction of design step of fault model/fault
region

6.4.9/6.4.10 Hazard analysis in software and
measures for detection and handling of errors

ISS EP 4.4, 5.1, A16 and A17 and iteration of
the steps

6.4.11-6.4.16 Individual specification and
verification of the SW-C/SW-architecture, e.g.
reuse or sourcing and configuration

ISS EP 5.1 (esp. 5.1.3), A16 and A17

7 Software implementation Applied to all ASILs, only partly covered
because ISS EP with focus on RP

8 Software unit test

9 Software integration test

Partly covered by ISS EP 4.4c, 6.4 and
following iteration steps, not all the testing
methods suggested in the norm are included

10 Software safety acceptance test

10.4.1 A software safety acceptance test shall
be planned.

Covered by ISS EP completely.

10.4.2 Appropriate test methods for the software
acceptance test shall be selected, e.g. interface,
HiL, HiL within ECU network and test in the test
vehicles

Partly covered by ISS EP until HiL-test with
ECU network

10.4.4 Test specification with test cases, tests
from the preceding test phases and their results
can be reused.

ISS EP follows this guideline exactly, with the
consistent test case of mapping and reuse

10.4.5 The software safety validation shall be
performed on the target system.

Not within the scope of ISS EP

Table 7-5: Mapping of ISO 26262 Part 6 to ISS Engineering Process

Engineering Process of Integrated Safety System

96

Association with ISO 26262 Part 8

The ISO 26262-8 Supporting Processes [ISO28] describes a broad scope of topics. The relevant
parts to the implementation ISS EP are listed as in Table 7-6:

ISO WD 26262 part 8: Supporting processes ISS Engineering Process

4 Interfaces within distributed developments ISS EP itself covers more technical issues
than the organizational topics; for discussions
here related to ISO 26262, see Subsection
7.4.

5 Overall management of safety requirements
such as communication, traceability (wherefrom,
whereto), documentation and administration

Traceability and documentation are
completely covered in ISS EP, while the other
topics are discussed in Subsection 7.4.

Table 7-6: Mapping of ISO 26262 Part 8 to ISS Engineering Process

7.3 Tool chains for the development of ISS

A suggestion of tool chain to support the development of ISS is given here, in which the tool chain
is categorized into software tools and hardware prototyping platforms.

Main categories of software tools:

 Tools to support requirements engineering process and requirement tracing as well as
design process.

 Tools for development environment of embedded software, model-based tools,
development environment and code generators.

 Tools to support interchange format global process, e.g. interface description and
communication scheduling.

 Tools to support mapping processes of FAA to FDA.

 Scheduling design of communication system, synchronization of tasks and communication.

 Tools for test automation and design of evaluation cases with fault injection in the SiL and
HiL test bench.

Main categories of hardware prototyping platforms:

 Rapid-prototyping platform of general purpose and Rapid-prototyping platform for special
purpose with specific hardware interfaces.

 Evaluation board from semiconductor producers.

Engineering Process of Integrated Safety System

97

7.3.1 Software tools

 Tools for requirements engineering as listed in Table 7-7 [EAD42]

o Gathering, categorization and documentation of the requirements

o Requirement tracing in design, implementation and test phase

o Change management of requirements to the design

Tool Vendor Features

Word, Excel Microsoft Capturing and structuring of requirements

DOORS Telelogic Support for requirements tracing

Requisite Pro Rational Full featured support for requirements engineering

CaliberRM Borland Full featured support for requirements engineering

IRqA TCPSI Full featured support for requirements engineering

ARTiSAN Studio ARTiSAN Software Requirements diagram with SysML

Table 7-7: Tools for requirements capture and analysis

 System Analysis and Design

o Identification of functions (in terms of their interfaces) as part of an overall functional
feature network (equipments and features of the E/E-architecture in plan).

o Definition of the vehicle E/E-architecture (i.e. number and types ECUs and
connecting bus systems including gateways).

o Mapping of functions to ECUs.

o Identification of the communication matrix (transmission of inter-ECU signals via bus
systems, mapping of signals to frames, mapping of frames to busses, assignment of
message priorities in case of event-triggered protocol, temporal scheduling of
frames in case of a time-triggered protocol like FlexRay).

o System level diagnosis, i.e. backward and forward error analysis.

o System level analysis, e.g. feasibility of the distribution or allocation is checked, i.e.,
whether the requirements of the application system are satisfied, e.g., memory and
processor capacity on the ECUs, capacity on the communication busses, and
overall timing requirements.

o Documentation of system design, test specification and verification results. By
application of the software tools, while following certain development guidelines, a
framework of such documentation can be generated automatically. Of course these
documents should be reviewed and updated manually finally.

Engineering Process of Integrated Safety System

98

The software tools here are listed in Table 7-8.

Tool Vendor Features

DaVinci Vector Informatik Widely featured system level design for automotive
software systems, software integration on single
ECUs, embedded software design according to
AUTOSAR principle

Preevision Aquintos Design and evaluation of in-vehicle E/E-architectures

INTECRIO ETAS Structured design of software components

DesignerPro DECOMSYS System level design with special focus on FlexRay as
a time-triggered bus system

RT-Builder TNI Software System level design with special focus on real-time
analysis

ARTiSAN Studio ARTiSAN Software Structured design of software components

Enterprise
Architect2

Sparx Systems Structured design of software components with
UML2.0

Table 7-8: Tools for systems analysis and design

 Function Analysis and Design

The tools listed in Table 7-9 are operated in a pure PC based environment. When the
correct interaction with a real-time environment shall be validated, the functional models
can be extended to operate on real signals of this environment.

Tool Vendor Features

MATLAB, Simulink,
Stateflow

Mathworks Graphical modeling and simulation of data and control
flow models, code generation for prototyping purpose

ASCET ETAS Graphical programming language for data and control
flow models

SCADE Esterel
Technologies

Graphical modeling of synchronous control systems

INTECRIO ETAS Rapid prototyping system supporting different models
of computation

Real-Time Interface dSPACE Block-set extension for MATLAB/Simulink to support
rapid control prototyping

MTest dSPACE Model based testing of MATLAB/Simulink models

Table 7-9: Function analysis and design

2 For reasons of simplicity only one representative for the large family of UML tools is mentioned here. These tools are similar in scope
and usually support UML 2.0 or derived UML profiles as SysML.

Engineering Process of Integrated Safety System

99

 Software Analysis and Design

The function design tools in Table 7-10 are usually accompanied by code generators,
which convert the abstract functional description carried out by means of the design tool to
source code. The latter can be further processed and compiled to ECU-ready executable
code. The usage of automatic code generators can further contribute to reliability and
safety aspects of ECU software. Also the manual coding of the control software, supporting
analysis tools e.g. for code coverage analysis or code style checking can also be used in
combination with code generators.

Tool Vendor Features

TargetLink dSPACE Production code generation, code coverage analysis
and target simulation

Real-time Workshop dSPACE Code generation for rapid prototyping platforms

Embedded Coder Mathworks Production code generation

ASCET ETAS Production code generation

CodeWarrior Motorola Development environment for the Freescale
microcontroller platform

Visual Studio Microsoft Development environment of C

Embedded Validator OSC Formal model checking

Polyspace Verifier Polyspace Code analysis

Table 7-10: Software analysis and design

 Tools in Table 7-11 are applied for the scheduling design of communication system,
synchronization of tasks and communication in the development of ISS.

Tool Vendor Features

DesignerPro and
SIMCOM

DCOMSYS Separation of functional design and communication
design, scheduling and configuration of FlexRay
[DSC05]

CANoe FlexRay
extension

Vector Informatik scheduling and configuration of FlexRay, rest-bus
simulation of FlexRay, gateway design

Table 7-11: Design of communication system with FlexRay

Engineering Process of Integrated Safety System

100

 Tools for test automation and design of evaluation cases with fault injection in the SiL and
HiL test bench are listed in Table 7-12.

Tool Vendor Features

ControlDesk dSpace Central module of dSpace experiment software to
manage and instrument the experiments with
integrated Simulink interface for offline management of
controller models and extended options for
automation.

ControlDesk failure
simulation

dSpace A software component of ControlDesk to drive
electrical failure simulation in the ECU cable harness,
Remote control of the failure insertion unit.

AutomationDesk dSpace Environment for test automation of calibration and
measurement tools as well as automatic test
generation.

CANoe Vector Informatik Rest-bus simulation with SiL-test

Table 7-12: Design of evaluation and test automation

After this brief list of software tools, another important point here worth mentioning is the
interaction between tools. Different tools offered by a single vendor are usually designed in such a
way that they can be combined and interact with each other to solve complex engineering tasks as
an integrated process. Beyond that, long standing partnerships between different companies have
been established in the past, which enables the interoperability of product offerings, e.g. the
interconnection between Matlab/dSpace tool chain and DECOMSYS tool chain.

In recent years research consortia and industry partnership have contributed to this by defining
standard to enable the interoperability of tools. Among these groups are ASAM, HIS and
AUTOSAR. Interoperability of tools can be accomplished by diverse technical means, such as (i)
run-time interaction of tools via well-defined APIs and (ii) definition of interchange formats to be
read/written by tools in the global process, e.g. interface description, communication scheduling
with common communication design framework with XML.

7.3.2 Hardware prototyping platforms

There are wide varieties of hardware prototyping platform in the automotive industry. Here, a short
overview about typical applied products is given:

Engineering Process of Integrated Safety System

101

 dSpace products

o MicroAutoBox hardware: real-time fast function prototyping platform with a wide
range of applications with CAN, LIN, and FlexRay interfaces.

o Simulator hardware: Hardware-in-the-loop simulators and simulator-specific
hardware for ECU testing.

o AutoBox and modular hardware: AUTOBOX is an expansion box to load modular
hardware with wide range of I/O boards and processor boards.

 Vector Informatik and TZM products

o Network interfaces to CAN, LIN, FlexRay and MOST

 DECOMSYS products

o DECOMSYS::BUSDOCTOR is a FlexRay monitoring node with measurement
features connected to the FlexRay bus and visualization of bus communication.

 Mathworks products

o xPC system: real-time rapid prototyping and hardware-in-the-loop simulation using
PC hardware

 Evaluation boards from various semiconductor producers

o Usually years before the serial microcontroller are available as mass product for the
automotive serial production, the semiconductor producers will provide evaluation
boards for OEMs and suppliers to test the main functionalities in the main-core and
interfaces of the future products. The experiences gathered with the prototyping can
be applied to the serial development directly.

7.4 The ISS Engineering Process under challenges

7.4.1 View from side of OEM

Similar to the development of in-vehicle electronics from other vehicle domains, the development
of ISS is typically distributed between several partners.

Before the project initialization phase, the OEM will usually have an assessment of suppliers.
According to ISO26262 [ISO28] 4.4.2, the key criteria here is the capability and experience of the
supplier in the development of systems with comparable ASIL. In the initiation phase, persons in
charge of safety issues (Safety Manager) should be assigned both for the OEM and suppliers.
During the whole product life cycle, OEM will require a consistent practice of the ISO26262 from
suppliers to their sub-suppliers as well as sub-contractors.

The OEM is usually responsible for the overall functionality of the vehicle, i.e. the OEM defines
which features and sub functions are installed in a vehicle platform or in a specific variant. Looking
at certification and homologation, the OEM is also responsible for the safety of the vehicle as a
whole and must be able to prove that the vehicle is “safe enough” to drive on the road. Thus OEMs

Engineering Process of Integrated Safety System

102

should have enough skills in system integration, architectures of embedded systems and making
strategic decision of employing new approaches for embedded systems.

Usually, the OEM does not develop all the system functions alone, but with the help of suppliers.
As shown in Figure 7-15, the OEM defines the components and the interfaces that he then gives to
suppliers for implementation. Another possibility to distribute workload is the splitting of work at
certain steps. E.g. it is possible that a vehicle function is developed on FAA level by the OEM. The
following steps are given to other parties for detailed development or for target integration.

The relationship between OEM and first-tier suppliers can be extended as a template for the
relationship between a 1.tier supplier and his (sub) suppliers, and so on.

System Design

Node 1

Design

Node 2

Design

Node 3

Design

Supplier A Supplier B Supplier C

OEM

Node n

Design

Supplier n

System Design

Node 1

Design

Node 2

Design

Node 3

Design

Supplier A Supplier B Supplier C

OEM

Node n

Design

Supplier n

Figure 7-15: OEM - Supplier Workflow

With the challenges mentioned in the Subsection 3.5.3, the development of an inter-domain and
inter-function ISS-application is characterized by an intensified distributed collaboration between
OEMs and suppliers.

By the development of ISS, the OEM should cooperate much more closely with suppliers. OEMs
(mostly high-end car-makers) add value by the integrating of different products from suppliers, thus
the OEM should work as the initiator for the system architecture.

As depicted in Figure 7-16, in the first step, driven by the customer perceivable innovations, the
features of the to-be-designed vehicle platform (as a basis of different vehicle model variants) are
designed. The features are grouped to systems and prioritized to focus the efforts.

In the second step, a feature and function network (FDA in ISS Engineering Process) is defined,
which is mapped to the third step hardware architecture to form the Functional Design
Architecture. The ISS Engineering Process mainly covers from step 1 to step 3. The mapping
process, disassembly and assembly of grouped and prioritized features to the functions in FAA,
from FAA to FDA is considered as the enabling transmission between the steps, where the
dependability aspects are considered with the ISS Engineering Process.

In the fourth step constraints, such as installation space in vehicles, cable harness (length, EMC),
will be considered for the installation in vehicles.

Engineering Process of Integrated Safety System

103

System 1

Feature 1

Feature 2

Feature n

System 2

Feature 1
Feature 2

Feature n

System 3

Feature 2
Feature 1

Feature n

Grouped and prioritized
features

Function

Function

Function

Function

Function

Function

Function

Feature and functional
Network (FAA)

ECU

ECU

ECU

ECU

ECU

Mapping to the
hardware (FDA)

Cable bind

Cable bind

Space

Space

Space

Space

Space

Installation in vehicle

Wiring
harness

ISS Engineering Process

Figure 7-16: OEM view in the design of electric/electronic architecture

If the OEMs are only a “lean” branded integrator, the system suppliers should drive the architecture
and provide integrated solution of the final vehicle with system know-how. In this case, however,
an obvious disadvantage can be foreseen. The automotive OEM has to expose his vehicle function
knowledge to the system supplier, who also supplies to the manufacturer’s competitors. It is quite
challenging to protect intellectual property in such an environment. Re-implementation of vehicle
functions results in design cycles of several weeks (outsourced engineering). Often, the function
that might return to the system integrator does not fully match the required behavior, resulting in
additional iterations because of misunderstandings.

7.4.2 View from side of supplier

On the suppliers’ side, a common approach is to gather the different requirement specifications
from different OEMs to the comparable systems. At the beginning, the requirements from OEMs
are gathered and merged together. By applying the design to cost principle, the requirements are
sorted and prioritized as a whole.

In the development of ISS, the system supplier (first-tier), is responsible for the development of the
system (more than one components) and must be able prove that the system meets all the
requirements incl. safety requirements.

Considering the sophisticated system design, it is reasonable to build up one lean system
architecture to integrate the most important functionalities, using standard dependability software
architecture and standard hardware modules. In this early phase, the majority of effort can be
focused on the design and validation of this lean prototypic platform instead of provision of

Engineering Process of Integrated Safety System

104

customer specific solution. The approach of applying platform with standard software and
hardware architecture enables an efficient and cost optimized configuration and extension to the
additional requirements of each OEM.

Thus the “wrappers” and too much customization parallel to the end phase of finishing the
validation of the lean-system can be reduced. Efforts of development teams can be transferred to
configure the customer specific features and fine calibration.

Particularly for the development of safety relevant systems, confirmation measures to the safety
goals according to ISO26262 [ISO28] 4.4.9 “safety assessment at supplier's premises” are more
penetrative to the supplier. Except for the review of FAA, FDA as well as the safety concept
suggested in ISS EP, supplier should provide “safety cases” as safety evidence of all ASILs.
Additional for ASIL-C, FTA, safety assessments and safety audits should be executed by the
supplier. For ASIL-D, common cause failures (CCF), common mode failures (CMF) should be
considered as well.

7.4.3 Distributed cooperation between OEM and suppliers

In the following, the two most important enabling levers for improving the distributed development
between OEM and suppliers are discussed:

Process:

By the development of ISS, the OEM should have a clear defined role and core competencies. The
OEM should agree with the suppliers on the interface in the cooperation and responsibilities.

One good practice is that the OEM involves suppliers in the early phase of system design. OEM’s
define high level architecture and standardization guidelines, but leave enough freedom for the
supplier to decide on the implementation approach as software libraries and modules for effective
reuse. The design guide, design approach, implementation experience, lesson learned and test
specification in the rapid-prototyping phase can be seamlessly transferred and reused in the serial
development and production. In the later phase, a well structured development model is applied to
let the supplier develop the specification further. The prioritized features and requirements are
traced together, while the supplier focuses on the component test and the OEM takes the role of
system integration and system dependability test. Here it is noteworthy that both OEM and supplier
should agree on the integration effort provided by both sides.

Architecture

The application of standardized dependable software architecture in ISS creates benefits for a
typical “win-win” business situation between OEMs and suppliers.

 OEM can share across better validated legacy platforms software with suppliers.

 The inter-domain interfaces in the ISS (e.g. engine – transmission) can be serviced better.

 The platform strategies create technical pre-conditions for business with “software options”

 It leaves room for improvements and innovation, because an ISS system based on platform
provides more flexibility for adaptation.

Hardware architectures for the Integrated Safety System

105

8 Hardware architectures for the Integrated Safety System

In this chapter concepts about the hardware architecture for the Integrated Safety System are
discussed as a framework from different aspects. Based on the ISS-requirements for the hardware
architecture as introduced in Subsection 3.3.1, the most important building-blocks of the hardware
architecture for ISS and its configurations are specified here. As introduced in Chapter 7 about ISS
Engineering Process, after the system design along with the technical safety concept [ISO23] is
created, the next step is the design of the hardware architecture according to the steps in ISS EP
Part 3 (Subsection 7.2.3). The emphasis of this chapter is focused to the design of hardware
architecture of highly safety relevant ASIL-C and ASIL-D applications (as defined in Subsection
3.5.2.3.4), while the hardware architecture for ASIL-A and ASIL-B is not considered in this chapter.

The structure of this chapter is organized as following:

As introduced in Subsection 3.3, the automotive hardware architecture refers here to the three
main views: system topology, communication systems and ECU architecture. In the following
subsections, the design of hardware architecture for ISS is discussed from these three aspects.
The last subsection here gives to each aspect a design use-case (based on dummy ASIL-D ISS
applications), which concludes the discussion as about the hardware architecture framework.

8.1 Concepts of the system topologies

Following the V-process and the discussion as shown in Figure 7-16, usually OEMs take the
responsibility to define the vehicle wide system topology and communication system, while the
system suppliers and sub-suppliers define the ECU local hardware architecture according to the
requirements of OEMs.

Generally speaking the definition and assessment of system topology for the in-vehicle electronics
is a sophisticated challenge, which is influenced by many constraints, like application real-time
requirement, cost, packaging, dependability, communication bandwidth, reuse of legacy system
(take-over parts), maintenance, platform strategy of different models, supplier strategy, etc. This
list of various constraints can be extended even much longer and much more detailed. What
makes it even complicated is the weight of each metric/constraint for each OEM is seldom the
same. It is even different for different product lines within one OEM.

For the discussion in this dissertation, since the cost-analysis and packaging issues are only
meaningful for the design of a certain vehicle product line and beyond the dependability discussion
here, the focus was chosen on the design of ISS hardware architecture in the early phase
according to functional and safety requirements of ISS-applications. The granularity was limited on
the definition of system topology from a high layer.

The approach here can be started with the question of which ISS-applications/features do we need
for a certain vehicle platform, which extensions are expected on this vehicle platform. The answer
of this question can contain the following parts:

Hardware architectures for the Integrated Safety System

106

1. A list of prioritized features or applications

2. To realize these functions, a list of certain components is needed e.g. sensors, actuators
and interfaces (also HMI)

3. Furthermore the applications can be broken up into functions, which are connected to each
other via interface for information exchange. (a very first functional network on the
application level)

While the answer to 1st and 3rd question is a rough FAA model (as shown in Figure 7-7), the
answers to the 2nd question is like a collection of “Lego”-modules, directly resulted from the
features. With the first answers to these questions, the design of system topologies can be started.

8.1.1 Future frameworks and design guidelines of system topologies

As shown in Subsection 3.3.2, the in-vehicle system topology is typically organized in different
domains, while the number of domains is mainly driven by the introduction of new features, which
can not be integrated into the traditional domains because of e.g. lack of communication
bandwidth, quality of services or management of domain complexity. On the other hand for the
cost reasons the legacy domains and communication systems are preferred for the reuse, but at
one point the needs of innovation and technical complexity to keep the legacy system running may
overwhelm the cost benefit of take-over.

One of the most important design criteria, regarding the choice of domains, is the technical
requirement of functions, in which safety is one of most critical technical requirements. To give an
example, for the ISS-applications distributed beyond the domain borders, in each domain at least
one gateway is needed for the inter-domain communication. In order to fulfill the functional
requirement e.g. QoS and safety requirements communication e.g. PFH, etc., one potential
approach is to use one high-speed communication network and connect all ECUs together. But on
the other side a high-speed communication link is more costly than a low speed link. Thus a hybrid
system with domains connected with gateway might be preferred.

In consideration of the ISS-Applications:

 Small and mid size cars have today two vehicle domains, body and powertrain. These two
domains will be equipped with more add-on telematics service and safety applications.

 Today’s high-end vehicles have three or four vehicle domains: body, powertrain, telematics
and an optional chassis-domain, while the future high end car can have five or six vehicle
domains, body, powertrain, telematics, chassis and optional HMI, environment sensing
and/or safety domain.

For the further discussion, three types of possible future architecture frameworks are given in the
following as vertexes. The future platform, however, can be a mixture of them [HWA06].

Figure 8-1 shows the backbone architecture, as a possible system topology for the high-end luxury
vehicle platform, where the time-triggered communication bus connects the traditional vehicle
domains and the chassis domain. Although the backbone bus and gateways between traditional
networks will introduce additional development effort, this future oriented hierarchical architecture
provides more potential for the cross domain communication regarding bandwidth and service
quality. If some future ISS-applications should require a fault-tolerant or fail-operational behavior

Hardware architectures for the Integrated Safety System

107

for the inter-domain communication, the backbone architecture with time-triggered communication
bus could provide the best preliminary condition.

Figure 8-1: Backbone architecture

The other end of backbone architecture is depicted in Figure 8-2, in which the communication
between the different sub-domains is provided by a single central gateway.

This solution requires a relative sophisticated gateway supporting a complex functionality to
service all the different bus systems (e.g. bus interfaces) and to perform the routing and
conversion tasks necessary. For the low-end vehicle, however, when not all the domains are
required (in the simplest case only the CAN-B for the cabin/body domain and CAN-C for the
chassis/powertrain domain), the central gateway architecture with simple CAN-routing is for sure a
cost effective architecture solution.

Figure 8-2: Central gateway architecture

A middle way solution is shown in Figure 8-3, where the sub-systems are provided by gateways
integrated into single ECUs in a relative loose but flexible architecture. Low end and effective
gateways (with 2 or maximal 3 bus-interfaces) are applied to connect the different domains.

Hardware architectures for the Integrated Safety System

108

Gateway

Gateway
Gateway

Gateway Gateway

Gateway Gateway

Gateway

Safety Bus
(optional)

Multimedia
COM system

Time-triggered
COM system

CAN Class C
bus

CAN Class B
bus LIN bus

Figure 8-3: Multi gateway architecture

8.1.2 Distribution of ISS applications to the system topology

The FDA-model specified in ISS EP is derived from the mapping of FAA-model to the hardware
system topology. The question how to distribute applications to the system topology is again highly
application specific and there exist no general rules, taking all the constraints and guidelines into
consideration. In the following, however, a few basic rules for the mapping and partitioning of ISS-
applications are discussed:

1. Safety functions with hard real-time requirements to react to external events (e.g. tight
control loops) must be placed on the ECUs, which are close to the event in the control loop,
e.g. actuator control functions have to be placed on the ECU directly connected to the
actuator.

2. Traditionally sensors are directly connected to the consumer of the information, usually to

the same ECU as the actuator, thus the same vehicle dynamic data is redundant measured
at different position of vehicles with appropriate resolutions and ranges for different
applications. With the introduction of ISS, however, as long as timing (bandwidth) and
safety requirement are fulfilled, the sensor can be displaced freely within the in-vehicle
network (e.g. steering angle sensor). With distribution of sensor information, redundant
sensors can be saved.

3. To keep the amount of data exchange, the network traffic under a reasonable limit, the

applications, processing large blocks of raw data, such as data from camera or radar,
should be mapped close to the source, e.g. by using intelligent sensors to provide
information ready-to-use to the communication system.

4. Distribution of vehicle dynamic data with sufficiently high resolution (e.g. velocity, engine

state, battery state and driver demand) can lead to new applications with sensor data
fusion and share. But as soon as the safety relevant data is sent from one ECU to the
other, the whole end-to-end data transmission path should inherit the highest safety
integrity among the applications, which use this communication path. The application of

Hardware architectures for the Integrated Safety System

109

time-triggered communication is one possible solution but it alone does not solve the
problem. Time triggered communication should be supported with other dependability
software services for ISS such as application CRC and Agreement Protocol, etc. In this
case event-triggered communication can be applied as well, if the communication can be
supplemented with other dependability mechanisms as discussed in Subsection 8.2.

5. High level control functions can be usually placed on any ECU, where the necessary

resources are available (processing power, memory and communication interfaces etc.),
without degradation of performance. That is to say, the high level control functions could be
freely shifted as long as software partitioning is guaranteed with e.g. the mechanisms
discussed in Subsection 9.3.2.

6. Basic safety functions, such as brake, steering control and airbag, must not be integrated

on the same ECU to avoid single point of failure. The approach of using fail-operational
nodes without mechanical back-up in this case is still not suitable due to the system
complexity in the near future.

7. For the same reasons, it is sometimes still necessary to keep the primary sensors of these

basic functions redundantly distributed on different nodes. The distribution of sensor values
via communication bus could make communication system as the weakest chain of the
whole system, e.g. distribution of ASIL-D signals with CAN alone is not dependable enough
for requirement of ASIL-D application. That is to say, if ASIL-D relevant signals should be
transferred via CAN, additional safety services e.g. application CRC as discussed in
Subsection 9.3.1 should be applied. In this case, the redundant sensors can be still applied,
so that the ASIL-D application is able to work in the stand-alone mode in case of total
communication failure.

8. For these redundant sensors mentioned in design rule 7, the state of the art situation is that

little or less plausibility check among the sensors is applied. Such redundant signals can be
used for plausibility check to gain more system safety, but the system availability might not
be improved. Thus the local primary sensor should have a higher weight in the voting
mechanism of plausibility check.

9. Reuse of legacy system (take-over parts) can be an important constraint by the distribution

of ISS applications. Analysis shows that the warranty cost alone of ECUs (the additional
development cost not considered at all) that have been significantly extended or
redesigned compared to the predecessor model are up to five times that of reused ECUs
[McK05]. Thus the cost/benefit-analysis of remapping should be carried out carefully.

10. If it is decided to integrate some of the safety functions on the same hardware, it is

preferable to integrate only functions from the same domain (e.g. chassis-domain) with very
tight communication/interaction on one ECU, because these functions usually have similar
safety integrity requirements. On one side, due to the similar safety requirements, the same
dependable hardware architecture can be applied. On the other side, the domain structure
can be maintained, which is important for architecture simplicity.

Hardware architectures for the Integrated Safety System

110

11. The component safety integrity level can be reduced by intelligent mapping of safety
functions of ISS to the hardware platform. This approach is illustrated with the following
example:
The safety relevant driver assistant function Adaptive Cruise Control (ACC) can be
designed that the ACC gives the ESP-system the braking command. If the braking
command will be 100% executed by ESP, the ACC should be developed as the same
ASIL-D application as ESP. Not only a 99% DC (Diagnostic Coverage) of ACC should be
verified but also the signal path from ACC to ESP should be kept as redundant as well. But
if we can develop a sub-function in ESP (according to the ASIL-C/ASIL-D requirements),
which limits the brake command from ACC, so that even the ACC gives a faulty command,
the vehicle can be still controlled by the driver and the following vehicles have enough
reaction time, the safety requirement of ACC can be now reduced to ASIL-A. From this
example, we can see, by intelligent design and distribution of safety relevant functions
(mapping of the limiting function to ESP instead of ACC-ECU), the safety requirement to
the component can be reduced.

12. For reasons of simplicity and reliability (e.g. signal latency), the communication path

between two functions that need to exchange information should be kept as short as
possible.

13. Distribution of redundancies of ISS-applications:

In order to meet the high dependability requirements of fail-safe and fail-operational, the
conventional approach is to make use of redundancy. Typical examples of redundancies
are separated power supplies, sensors, computation units, communication networks and
actuators against common mode faults.

The integration of several functions on one ECU increases the potential threat of losing
several safety functions at one time. Such threat can be reduced by the following two
approaches:

a. Integrate only “related” functions on one ECU, so in case of a failure only one branch of
the safety function tree is lost. This approach is best used if it is combined with a
smooth transition into the degraded mode, thus the driver has the chance to react to the
degraded driving behavior of the car.

b. Integrate functions on redundant ECUs, so that a single point of error does not lead to

any degradation. Redundant units, can resident on the same hardware node or on
remote nodes, which fulfill the same functionality in the system runtime or are activated
when the original unit fails to work. By using dynamic reconfiguration (see Subsection
9.3.3.2), the backup unit can be “switched” on.

Hardware architectures for the Integrated Safety System

111

8.2 Design concepts of the communication systems

As demonstrated in the Subsection 8.1.1 about the different system topologies for ISS, in the near
future there are basically two different in-vehicle communication systems, the event triggered
communication bus such as CAN and time-triggered communication bus such as FlexRay. As
mentioned in Subsection 3.3.4.2, although LIN and MOST can be applied in ISS, but they are not
designed for the safety relevant applications, thus they are not discussed here.

CAN, as now the most widely used in-vehicle communication network, has proved itself as a cost
effective and reliable bus system. The greatest constraint of CAN is the bandwidth and non-
determinism since it was originally developed for the comfort application of cabin electronics and
cyclic powertrain communication.

 As an event-triggered bus, CAN guarantees no worst-case transfer delay of messages,
esp. in the case when a large burst of event-triggered messages are sent onto the bus. For
the transfer of safety relevant messages like the battery status (voltage and key position),
light controlling signal on Cabin-CAN, etc., dedicated measures have to be taken to secure
the signal.

 CAN provides no time synchronization among the participants. A typical example problem
is shown as Figure 8-4, when redundant steering angle sensors are connected with CAN to
an ECU (consumer of the sensor signal). Since the redundant sensors can not be
synchronized to each other to start the measurement at the same time and the
transmission time over CAN could be slightly different, the result is that the measurements
and the sending of the signal via the CAN to the respective sensor node are not
synchronized but relocated with a certain time offset. Within this time offset the steering
wheel can be turned with such a large velocity of angle, that the difference between two
sensor signals overruns the safety relevant threshold.

Figure 8-4: Different sampling of two sensors

Hardware architectures for the Integrated Safety System

112

 The limited bandwidth of 100 Kbit/s to 500 Kbit/s can be a bottleneck for future Integrated
Safety Systems, which require deterministic communication with large volume of data
exchanged between the nodes within the same domain or beyond the domain border.

 CAN provide only limited fault tolerant mechanisms such as CAN CRC-15.

Despite of these disadvantages, CAN is also applied for the safety relevant applications. The
implementation of CAN for the specific application depends on the individual communication
requirements regarding the quality of service. Generally speaking, there are following methods:

1. Using additional frame sequence number to monitor the transfer of CAN-messages, so that
communication faults such as repeated or missing frames can be identified.

2. Using worst-case end-to-end transfer time (time-out monitoring) to monitor the message
transfer on the receiver side.

3. Using acknowledgement to confirm the successfully transferred message by e.g.
handshake protocol.

4. Using worst-case traffic simulation to limit the bus-load under 50% of the maximal
bandwidth to guarantee the quality of service and relatively predictable end-to-end delay
time. In some cases, the so-called “private CAN” – a dedicated short-range CAN is used to
connect ECU with intelligent sensor and actuator.

5. Redundant CAN-communication with duplicated physical transfer paths or redundant
messages on the same CAN. Here a typical trade-off between the performance and
dependency should be made, since the redundant messages should be synchronized and
compared on the receiver on cost of the real-time.

6. Use reliable control loop and fault detection filter to make the system more reliable against
communication fault.

7. Intelligent algorithms to tolerate the timing drift of CAN messages.

While the methods 1 to 5 are relative self-explained, the methods 6 will be discussed in (process
safety as discussed in the example of Subsection 9.3.1.3) as a software-based dependability
service, the method 7 is demonstrated here with a detailed example.

To solve the problem in Figure 8-4, some intelligent mechanisms as following can be applied. One
possible way is to synchronize the send/receive execution by trigger signal from receiver (time-
synchronization with event-triggered bus). Another possible approach is to check integral of
variation of sensor values)-(21 SSΔ over a defined time period. With the proper choose of

monitoring period T, the integral of sensor signal offset T∫)-(21 SSΔ (comparable with the integral
of white noise in the telecommunication within a sufficient long period of time) should be under a
limited threshold in faultless situation.

As introduced in Subsection 3.3.4.2, FlexRay, as a time-triggered protocol, is the in-vehicle
communication network with the highest dependability potential. In the coming two or three years,
more and more high-end cars from European OEMs will be running on road with FlexRay (the new

Hardware architectures for the Integrated Safety System

113

BMW X5 has been equipped with FlexRay for adaptive drive application in chassis since
December 2006). The trend from CAN to FlexRay is triggered by the two of most superior aspects:
bandwidth and dependability. FlexRay will find its way first in the safety relevant chassis
applications or as backbone to provide required large bandwidth in chassis domain. The substitute
of CAN-interfaces with FlexRay and to maintain a hybrid communication system of CAN and
FlexRay will require additional effort, but it can be foreseen in the near future this effort will be
compensated by the economy of scales.

As mentioned in the design rule 4 in Subsection 8.1.1, the safety feature of communication bus
provides only the physical data integrity between the communication controllers, however, it
provides no guarantee between the application-to-application data integrity service. The topic
about application-CRC to ensure the application to application communication will be discussed in
Subsection 9.3.1.3.

8.3 Concepts of ECU hardware architectures

Emphasis in this subsection is firstly the concrete design of dependable ECU architecture. In the
second part of this chapter, hardware architecture of microcontroller components to improve the
dependability will be discussed.

8.3.1 Dependable architecture driven by the safety integrity requirements

The decision for the dependable HW-architecture is mainly driven by the requirement of safety
integrity level of the system. While the fail-safe and fail-operational units (1oo1D-, 2oo2-, 2oo3-
and dual-duplex-system discussed in Subsection 3.3.3) are categorized according to the fault-
treatment strategy, in the praxis, the decision of hardware architecture is mainly determined by the
compliance with the required safety integrity level and the fulfillment of the system safety criterion.

That is to say, the desired safety level should be reached with the help of the dependable
hardware architecture and software dependability services. A quantitative safety case (e.g. SFF
and PFH) should be given to the applied dependable hardware architecture to support the decision
of hardware architecture (with e.g. FMEDA or quantitative FTA).

According to IEC61058 (see Table 3-2), SFF with at least 99% is required by ASIL-C and ASIL-D
safety application. Experience from praxis has shown that, if such a system should be built up with
one-channel system (e.g. 1oo1D system), considerable effort should be carried out to tolerate
hardware transient and permanent faults (e.g. CPU computation fault, data fault in RAM as
discussed in the hardware fault types in microprocessor core and supervisor of Subsection 6.2).
The monitoring of such hardware faults should be implemented with software monitoring (e.g.
software diversity of different algorithms). While the software diversity can not guarantee a 100%
fault detection as well, because some low-level hardware faults can influence the both independent
control algorithms (common cause). As a clear trend [µCI06], in the safety relevant automotive
applications, architecture with dual-core (the 2nd variant of Dual-Duplex-Processor ECU as shown
in Figure 3-7) has aroused the most future interest. In the following, further research of 2oo2D-
system and 1oo2D-system will be carried out.

Hardware architectures for the Integrated Safety System

114

CPU 1 communication
controller

monitoring unit 1

CPU 2 communication
controller

monitoring unit 2

Figure 8-5: Variant of Dual-Duplex-ECU as 2oo2D-system

It can be seen that the 2oo2D.system in the simplest case as shown in Figure 8-5, is a replication
of 1oo1D-structure without hardware diversity. Because the control of actuator over the
communication system is redundant and no influence from one channel to the other is allowed,
such a system can only guarantee an improved availability but not a high quality of system
diagnosis coverage. SFF with at least 99% is difficult to reach with real components and design
shown in Figure 8-5, because an unknown fault in any channel (e.g. HW-failure) can lead to a
safety relevant failure of the whole system.

CPU 1 communication
controller

monitoring unit 1

CPU 2 communication
controller

monitoring unit 2

00

00

Figure 8-6: 2oo2D-system with diversity in hardware

In order to reach the ASIL-D requirements with 2oo2D hardware architecture, the two 1oo1Ds
should be implemented with hardware diversities. According to [IEC02] Table A16, A17 and A19,
hardware diversity is recommended as highly effective to control the systematic fault (e.g.
hardware computation fault). Each subsystem should have DC of 90% as required by ASIL-B.
Mutual monitoring between the two CPUs should be implemented as well.

 As depicted in Figure 8-6, in this architecture for example, system 1 can be an ASIC
microcontroller while system 2 can apply FPGA technology. Here design diversity can be also

Hardware architectures for the Integrated Safety System

115

used, e.g. system 1 and system 2 are both ASIC but from different semiconductor producers.
Because of the hardware diversely, low level hardware near software should be implemented in a
diversity manner as well. The mutual monitoring and comparison of computation results are
depicted with red dashed lines, which can be realized with direct µC I/O or external communication
bus.

Figure 8-7: Variant of Dual-Duplex-ECU as 1oo2D-system

According to the safety norm IEC 61508-6 Annex B [IEC06] and IEC 61508-2 Subsection 7.4.3.1.6
[IEC02], the 1oo2D-system shown in Figure 8-7 with self-test is highly recommended for ASIL-C
and ASIL-D systems, which requires a high SFF of 99%. Compared with 2oo2D-system, 1oo2D-
system lets the monitoring units and CPUs communicate with each (as depicted with the red signal
paths). The dual-core CPUs compare the intermediate results and final results with mutual
agreement (signal path 00). Each CPU is not only monitored with local monitoring unit but can be
monitored as an option remotely (e.g. signal paths from monitoring unit 11 to CPU1 and 12 to
CPU2). If a remote fault is detected, such an additional signal path can be used to
passivate/deactivate the neighbored processor unit in order to keep the whole systems running in
a fail-degraded mode.

The signal paths here (00, 11, 12, 21 and 22) can be implemented with direct microcontroller I/O
interfaces or with the external bus-communication or as a hybrid communication system of both.
When the both CPUs are realized on the same silicon, the communication here can be
implemented with shared memory or internal communication bus. In case of inconsistence the
neighbored channel can be shut down. Thus the 1oo2D-system guarantees both high safety and
availability.

Hardware architectures for the Integrated Safety System

116

CPU 1Monitoring
Unit 1

Va Vb

A

B

B

Channel A

Channel B

CPU 2Monitoring
Unit 2

A

Figure 8-8: Implementation of Dual-Duplex-ECU as 1oo2D-system [HWAA06]

An implementation of Dual-Duplex-ECU as 1oo2D-system in praxis is shown in Figure 8-8, where
the fail-operation unit is made up of two fail-silent units. The communication within the fail-silent
unit (between the monitoring unit and main processor) is implemented on board. While the
communication between the two main processors and the possible remote monitoring of main
processor is implemented with dual-bus FlexRay communication. It is to mention here, the dual-
bus communication is only an option, which depends on the overall in-vehicle network architecture.
The single bus solution with end-to-end communication services in Subsection 9.3.1.3 can applied
as well, as long as the PFH of the communication system as 1*10-10 as discussed in 7.2.2 ISS EP
2.4 is fulfilled.

It is to mention that the 1oo2D-system can be implemented with two units on one silicon (dual-
core) or dual-processor (two separated CPU). Generally speaking the first approach of dual-core
may share more resources, e.g. integrity checking information such as counters, CRCs, program
flow information and memory management, etc. The intra-µC communication can be implemented
more easily.

As a summary, in order to reach the aimed the ASIL-D requirement, the following dependable
hardware architectures can be applied:

1. A 2oo2D systems with two 1oo1D (one channel) system as depicted in Figure 8-6.

2. A 1oo2D system with a dual-core system without diversities in software (as depicted in
Figure 8-7 with aimed SFF of 99%)

3. A 1oo1D system with diversity in computation units (e.g. integer and floating
computation unit) and intelligent software monitoring mechanisms of aimed SFF of
99%.

Innovative safety applications with ASIL-D requirement can be developed by the premium OEMs
with the 1st approach (redundant hardware of diversity concept). Such applications are seldom

Hardware architectures for the Integrated Safety System

117

provided as serial product and are usually only available as an optional feature with a limited
production volume. The short development cycle of the safety innovations with this hardware
architecture brings the competitive advantages needed by the premium OEMs. An example here is
the hardware architecture of the first generation of Active Front Steering System [Rei05], in which
the safety relevant functions (main function and monitoring unit) are computed on diverse
processors (MPU and NEC microcontroller) with mutual monitoring.

With the experience gained from such a pilot project and the requirement of continuous
optimization of the system, when this safety application is provided as serial equipment or even
considered by the middle-class OEMs, the safety architecture of the 2nd approach can be
considered. The systematic hardware and software fault should be managed by safety process in
the 2nd approach. The coincident common cause faults resulted from hardware or environment can
be managed by the dual-core hardware architecture. With dual-core architecture it is also easier to
analyze and proof functional safety. As long as the quantitative safety requirements to the SFF and
DC can be reached in the safety case, no diversity in software development is required. The
additional cost in hardware here can be compensated with the economy of scale production,
simplified assembling and maintenance, thus the second approach can be preferred for the safety
relevant systems by the premium OEMs for the volume production.

The 3rd approach is the simplest solution from the view of hardware architecture. From the
hardware side, HW-Watchdog, as discussed in Subsection 8.3.4 with enhanced features such as
intelligent algorithms to watch the program control flow and check the plausibility of computation
results should be applied. On side of software, significant effort is required to achieve system
dependability, e.g. each safety relevant signal should be monitored with diverse software
mechanisms as to the value and gradient, safety relevant functions should be computed on the
diverse computation unit (e.g. integer and floating) in one microcontroller. The ASIL-D safety
functions should be implemented with software diversity, e.g. C and model-based approach with
two independent development teams. The significant development effort in software is fortunately
not proportional to the production volume. Thus the third approach can be preferred for the safety
relevant systems by the volume OEMs.

8.3.2 Monitoring of sensor and actuator components

As discussed in Chapter 7 IEP Step 2.4 about mapping of system-PFH to FAA-components, about
75% to 90% system failures lie in the input (I/O, sensor and communication system with outside)
and output (control of actuator). The monitoring of ECU input and output provides a significant
potential to reduce the PFH of the whole system. However, the monitoring of sensors and
actuators is quite application specific/dependent and there are less platform independent
strategies. In the following, only a few examples from praxis are discussed.

The easiest approach is to use the redundant sensors to check the plausibility of the signals as
shown in Figure 3-3. Asymmetric redundancies can be also applied, in which low-priced sensor
(eventually with another principle of physical measurement) is used as a slave to monitor the main
sensor. The input of the sensor should be checked in the time and value domain (with
gradient/threshold check, message counter, CRC, etc). On the consumer side of the sensor
signals, ECU can compare the received signals with other input values to check the physical
plausibility of the sensor signals, e.g. the plausibility check of the gas pressure to its temperature.

Hardware architectures for the Integrated Safety System

118

By the monitoring of actuators we concentrate on the mechanisms of fault detection and
deactivation of actuator for the fail-silent strategies. An example is depicted in Figure 8-9, in which
microcontroller controls the electronic motor via power electronics. By monitoring different physical
parameters of power electronics as well as motor (e.g. position and rotation speed of the rotor,
voltages/current at power electronics and intern voltages/current at motor coil), microcontroller can
disable the actuator via different independent “enabling” links to power electronics. The enabling-
paths of actuator (to power electronics and directly to motors) should be implemented redundantly.
Only at a positive output of the AND-logic of all enabling-paths, the motor can be activated. The
different enabling paths should be checked at system initiation phase, the last operational mode
should be saved during shut-down phase as well. By measuring the key-parameters of motors
(rpm, coil current and voltage, rotor position, etc.), the microcontroller can calculate the expected
parameter of the actuator for the next monitoring cycle with a simulated motor-model. By
comparison of the current physical value with the results from the simulation model, the running
behavior of the motor can be monitored.

µC
Digital
I/O

Fault detection

enabling

Application
Idesired

Iactual
M

Power
Electronics

Fault detection

A/D
Input
/output

I Uactual

Udesired

enablingµC
Digital
I/O

Fault detection

enabling

Application
Idesired

Iactual
M

Power
Electronics

Fault detection

A/D
Input
/output

I Uactual

Udesired

enabling

Figure 8-9: Example of the actuator monitoring (electronic motor)

8.3.3 Memory protection

As a state of the art method to protect memory area from EMV or other coincident influences from
environment, there are following mechanisms to check the consistency of the memory area.

Invariable memory ranges

 CRC Signature: one word (8-bit CRC) and double word (16-bit CRC) signature are
recommended in IEC 61508 – 7 A3.4 [IEC07]. The effectiveness of the signature depends
on the width of the signature in relation to the block length of the information (pay-load) to
be protected (at least with a hamming-distance of 2 [DIN93]).

 Block replication: In order to prevent common cause failure, safety relevant data should be
saved redundantly in different areas of memory.

 In different phase of system states (e.g. start-up, operational mode and shut-down), the
phase specific data along with CRC should be saved (e.g. at the end of each phase or a
periodic test during the operation).

 In PROM, which contains executable code, all unused area of memory should be written
with a fail-safe data value, e.g. an illegal operation code, which triggers a fail-safe interrupt.

 For the aim of diagnostics and filter of non-systematic fault, all the fault detection in the
memory range should be recorded in a fault-detection counter.

Hardware architectures for the Integrated Safety System

119

 For each “write” operation to the memory, the written data should be read and compared
directly after the write operation.

variable memory ranges

 With Parity-bit for RAM only a limited DC can be reached.

 RAM monitoring with a modified Hamming code or detection of data failures with error-
detection-correction codes (EDC)

 Double RAM with hardware or software comparison and read/write test.

With the trend of increasing density of applications, how to prevent the undesired mutual influence
of application components is an important topic for the ISS-application. While the design and
software service to improve the system dependability will be discussed in Subsection 9.3.2, from
the hardware side, it should be guaranteed that no non-authorized or faulty application
components should allocate system resource assigned to the other applications. By means of
system resource the following objects are considered: memory space, CPU time and permission to
allocate system object like error-hook and interrupts. The protection of memory space brings new
requirement to the ECU hardware architecture to have an additional Memory Management Unit
(MMU) and Memory Protection Unit (MPU).

One of the preconditions for the memory protection is the memory portioning, so that each parallel
running application can be assigned to an individual memory area. In this way, each task can be
strictly controlled in the RAM memory that can be accessed. To avoid the waste of memory
resource, the allocated units should be divided small enough to fit the requirement of a normal task
of the automotive embedded system. The tasks themselves should be categorized as trusted task
or non-trusted task. Each of them has their own private memory areas, while non-trusted task can
not write or use call-back function to access the private area of other tasks. The memory protection
unit controls the position and range of addressable segments in memory and the read/write
operations allowed within addressable memory segments. Any illegal memory access can be
detected by the memory protection hardware, which then invokes the appropriate service routine to
handle the error.

By means of this, non-trusted tasks are the safe object, which are controlled under the OS all the
time, while the number of privileged trusted-objects should be limit as small as possible.

8.3.4 Hardware watchdog monitoring

The hardware watchdog ([GAN03] and [LAN97]) is the last line of defense when the code
collapses, in which hardware watchdog timer is the state of the art. The hardware watchdog timer
should be prompted periodically by the monitored object (writing a “service pulse”) to prevent a
hardware reset. The intention is to bring the system recovered from the hung state into normal
operation. Usually the hardware watchdog is a co-processor or external parallel running ASIC-chip
to the main processor.

Traditional hardware watchdog has a separated time base as the main CPU to monitor the
activities in an adaptive time window, such hardware watchdog has only a low diagnostic
coverage. By the so-called question/answer mechanism, the hardware watchdog can trigger/
challenge the main CPU to check if it works logically correctly. In this case the logical sequence of
program flow can be checked as well. By combination of these both mechanisms, the temporal and

Hardware architectures for the Integrated Safety System

120

logical monitoring of program sequences, a high diagnostic coverage can be reached. Thus such
an intelligent hardware watchdog is recommended by IEC61508-2 [IEC02] to improve the system
diagnostic coverage.

8.4 Design use-cases of ISS hardware architectures

In the following subsections, the distribution and mapping of ISS-applications to the system
topology is demonstrated with a few examples, following the design guideline proposed as above.

8.4.1 Distribution of ISS applications to vehicle domains

A near-future scenario of ISS-applications as specified in Subsection 1.1 is illustrated in Figure
8-10. This figure also describes the hierarchy of the different ISS-functions, starting from the
elementary physical sensors and actuation devices (bottom level) up to the high level integrated
application (top level, what the customer can experience as safety application).

Environment
and Maneuvering
area monitoring

Safe Distance
Safe Speed

Cooperative
Lane Keeping

Powertrain
Control

Integrated
Vehicle Control

Torque
Control

Haptic
Steering

Wheel
Feedback

Steer
Control

Brake
Pedal

Feedback

Brake
Control/
ABS/..

Lidar CameraRadar Rain Road
surface

Chassis
ControlData Fusion

Environmental
sensors

Area Monitoring
sensor domain

Environment
sensor

Chassis

High Level HMI:
Driver Workload
Driver Behavior

Advanced
Cruise
Control

Doors
window

roof

Seats
movm.

Belt
Pret.

Body
Control

Body

Collision
Mitigation

Telematics

GSM

Telematics

1 2 3 4 5 6 7 8 9 10 11

12

13 14 15

16 17

18 1920 21

22 23

24 25 26 27

GPS

28

Navigation,
Coop. driving

CAR
CAR

Comm.

29

30

Environment
and Maneuvering
area monitoring

Safe Distance
Safe Speed

Cooperative
Lane Keeping

Powertrain
Control

Integrated
Vehicle Control

Haptic
Acceler.
Feedback

Torque
Control

Haptic
Steering

Wheel
Feedback

Steer
Control

Brake
Pedal

Feedback

Brake
Control/
ABS/..

Lidar CameraRadar
Rain
/light

Road
surface

Chassis
ControlData Fusion

Environmental
sensors

Main Sensors Main Actuators

Area Monitoring
sensor domain

Environment
sensor

Powertrain Chassis

Environment information with value, time, and confident information

High Level HMI:
Driver Workload
Driver Behavior

Advanced
Adaptive Cruise

Control

Doors
window

roof

Seats
movm.

Belt
Pret.

Body
Control

Body

Collision
Mitigation

Telematics

GSM

Telematics

1 2 3 4 5 6 7 8 9 10 11

12

13 14 15

16 17

18 1920 21

22 23

24 25 26 27

GPS

28

Navigation,
Coop. driving

CAR
2CAR
Comm.

29

30

Figure 8-10: Examples of ISS application and mapping to the vehicle domains

Hardware architectures for the Integrated Safety System

121

Here we focus on two use-cases of ISS applications, the SafeLane and SafeSpeed. As highlighted
with red color in Figure 8-10, SafeLane is a lane keeping assistant application while SafeSpeed is
an ISS-application to automatically limit the vehicle speed to an externally commanded maximum
value. The present example ISS application can be mapped into the following four different vehicle
domains:

 Chassis Domain

The SafeLane function mainly uses camera information and steering wheel sensors as
environment information source. Additionally, it may use information coming from the
Adaptive Cruise Control for monitoring the road in front of the vehicle and from the chassis
units for understanding the vehicle dynamics. The function can provide haptic feedback
through direct actuation on the steering wheel.

Steer-by-wire can be applied here to cooperate with SafeLane, it performs the vehicle
steering function by means of reading the drivers demand (steering wheel sensors) and by
driving the appropriate actuators (wheel steering motor) of the steering system.

 Telematics Domain

SafeLane and SafeSpeed consider infrastructure information elements, such as road traffic,
digital road maps, precise vehicle positioning and local speed regulations.

 Powertrain Domain

SafeSpeed may interact with the powertrain and chassis domain by requesting a reduced
speed (reduce the engine torque and brake) or by providing a haptic warning to the driver
through the accelerator pedal.

 Body Domain

All the functions must interact with the driver via displays and acoustics for warnings and
information about operational modes. All the functions should provide an integrated
diagnostic system service.

In Figure 8-11, a possible mapping of ISS-Application SafeSpeed to the chassis and powertrain is
demonstrated. SafeSpeed uses both engine- and brake-control to adapt the vehicle speed to the
environment (e.g. telematics). Actually the distribution of ISS-application to vehicle domains is the
mapping to of FAA to the hardware architecture, which generates the first FDA-model. Following
the mapping rule in Subsection 8.1.2, the brake ECU and engine ECU are reused. At the first
glance, the introduction of SafeSpeed brings a new ECU (as the prototype ECU with MABX in
Figure 8-11), but for the serial development the SafeSpeed function can be integrated on an ECU
for Integrated Vehicle Dynamic Control or Brake Management ECU, which has the similar safety
integrity.

Hardware architectures for the Integrated Safety System

122

SafeSpeed

SSF main control

ISS coordination

SSF switch

Engine ECU
Other Torque

Requesting / Limiting
Functions

Cruise Control
Activation Logic

Brake ECU

ABS

ASR
SMR

Indication ECU
Display Control

Brake Light HWEngine HW Display HW

Comunication bus

GPS +
infrastructure

info … …

… hardwired switches
or sensors

DMCI Engine
Torque

Arbitration

Cruise Control
Governor

Brake Light
Arbitration

Brake Light
Activation Ret Applied

EBI

VSC

MABX

Figure 8-11: Distribution of SafeSpeed to the HW-architecture (FAA FDA)

8.4.2 ISS system topologies and communication systems

After the discussions above about concepts of communication system, ECU hardware
architectures and concepts about system topologies, esp. system design rules in Subsection 8.1.2,
a few concrete examples about vehicle system topologies of ISS are given as following:

CGWCGW

ESPESP

TCMTCM

ORCORC

ICIC

PT CAN

CBCCBC

ACCACC

SCSC

SPCSPC

ECMECM

EPSEPS

RBTRRBTR

RBTLRBTL

Chassis FlexRay

Cabin CAN

Diagnosis/OBD CAN

HUHU NAVINAVI

TELETELE

…
Telematic
MOST

…

…

A

SCCMSCCM

ACC Active Cruise Control
CBC Common Body Controller
CGW Central Gateway
ECM Engine Control Module
EPS Electronical Power Steering
ESP Electronic Stability Program
HU Head Unit
IC Instrument Cluster
NAVI Navigation System
ORC Occupant Restraint Controller
RBTL Reversible Belt Tensioner Left
RBTR Reversible Belt Tensioner Right
SC Sensor Cluster
SPC Suspension Controller
TCM Transmission Control Module
TELE Television

Figure 8-12: Exemplary system topology of future mid size car [HWAA06]

Hardware architectures for the Integrated Safety System

123

In-vehicle system topology shown in Figure 8-12 is a practical implementation of the central
gateway concept for the mid size cars shown in Figure 8-2. The integrated safety applications are
distributed among the ECUs, highlighted in yellow and connected with chassis FlexRay and
powertrain CAN. A single channel FlexRay is applied here to enable the time triggered
communication between the chassis nodes with a star topology with help of FlexRay active star
[Ele04]. The system topology here is mainly designed for ISS, which require the fail-silent/fail-safe
behavior with the mechanic back.

A good example here is a dummy “SafeSteering” ISS application. Compared with “SafeLane” as a
lane keeping assistant system, SafeSteering can increase vehicle stability by interference the
steering and vehicle dynamic actively. A practical example here is the superposition of an
additional actively controlled steering angle to the driver input as introduced in Audi Active
Dynamic Steering [ADS07]). In low speed area, it can provide the driver with park assistance
support as well. SafeSteering is an ASIL-D ISS-application without any comparable system from
the praxis, which is used here to demonstrate the dependable hardware architecture.

Braking
Management

Steering Angle Superposition

In-vehicle communication network

Steering Angle Control

HW Platform

Steering
Management

HW Platform

Figure 8-13: Communication and functional architecture of SafeSteering

As depicted in Figure 8-13, the SafeSteering is distributed between two main function units, the
Steering Management Unit (SMU, as an electronic steering system of semi steer-by-wire
technology with mechanical backup) and Braking Management Unit (BMU, as an enhanced
“ESP”). The SMU provides the BMU with current wheel steering position (based on the information
from actuator, e.g. rack position and rotor position of electronic motor), driver command in steering
wheel angle and steering torque. BMU can provide SMU with the suggested additional steering
recommendation with steering torque support or superposition angle according to the different
driving situations, e.g. parking and highway.

Theoretically the computation of superposition angle and assistant steering support can be
mapped to both SMU and BMU, since they are of the similar safety integrity of ASIL-D. The
communication between SMU and BMU can be implemented with CAN or FlexRay as long as the
ASIL-D requirement of communication is reached.

Compare the Figure 8-13 with Figure 8-12, the SMU is comparable with EPS, while the BMU, in
the simplest case, is an ESP. Following the design rule 1, since most of the vehicle dynamic data
needed are available on SMU, the computation of supposition angle can be mapped to ESP as
shown in Figure 8-12, while the result of superposition angle can be sent to SMU. By detection of
any safety relevant fault in SMU itself, the assistant steering moment /superposition angle of SMU
should be switched off completely with a reduced ramp. A mechanic steering system is available in

Hardware architectures for the Integrated Safety System

124

the fail-degraded situation, so that the driver can still control the vehicle. At the same time, the
communication from SMU to other systems (e.g. sending-out steering-wheel-angle to ESP) can be
passivated in fail-silent mode.

If the communication channel between BMU and SMU is implemented with CAN, a weak chain can
be identified in the end-to-end communication for the steering recommendation. In order to reduce
the safety requirement for CAN, as discussed in the rule 10, the superpositioned angle/additional
steering torque should be limited in range along with the process-safety discussed in Subsection
(Subsection 9.3.1.3), so that even when the signal is faulty, the vehicle steering can be still
controlled by the driver.

In case of a complete communication break down, SMU should be able to work in a stand alone
mode. For this reason, the steering wheel sensor and actuator are connected directly to the EPS in
Figure 8-12.

TCMTCM

PT CAN

CBCCBC ECMECM

Chassis FlexRay
Channel B/A

Cabin CAN

Diagnosis/OBD
CAN

HUHU

NAVINAVI TELETELE
…

Telematic
MOST

…

B

ESPESP B
ESPESP B

CMCM
AB

SWM
SWM
1

SWM
1

A
B

SWM
2

SWM
2

A
B

SWM
SWM
1

SWM
1

A
B

SWM
1

SWM
1

A
B

SWM
2

SWM
2

A
B

SWM
2

SWM
2

A
B

CAMCAMA CAMCAMA

ACCACCA ACCACCA

WSM
WSM

1
WSM

1
A
B

WSM
2

WSM
2

A
B

WSM
WSM

1
WSM

1
A
B

WSM
1

WSM
1

A
B

WSM
2

WSM
2

A
B

WSM
2

WSM
2

A
B

SCSC B
SCSC B

ORCORC B
ORCORC B

RBTLRBTLB
RBTLRBTLB

SPCSPC B
SPCSPC B

RBTRRBTRARBTRRBTRA

SWFSWFA
B

SWFSWFA
B

A

Backbone CAN

ICIC

MMI CAN

ACC Active Cruise Control
CAM Camera
CBC Common Body Controller
CM Central Module
ECM Engine Control Module
EPS Electronical Power Steering
ESP Electronic Stability Program
HU Head Unit
IC Instrument Cluster
NAVI Navigation System
ORC Occupant Restraint Controller
RBTL Reversible Belt Tensioner Left
RBTR Reversible Belt Tensioner Right
SC Sensor Cluster
SWF Steering Wheel Feedback
SPC Suspension Controller
SWM Steering Wheel Module
WSM Wheel Steering Module
TCM Transmission Control Module
TELE Television

Figure 8-14: Exemplary system topology of future large size car [HWAA06]

Figure 8-14 shows an example of system topology of future large size luxury vehicles with steer-
by-wire technology. Without the mechanic backup, the steering function here requires a fail-
operational behavior.

Take again the dummy “SafeSteering” as an example: now this ISS is distributed on four nodes,
SWM (Steering Wheel Module), ESP, CM (Central Module) and WSM (Wheel Steering Module),
which are connected with a dual-channel FlexRay. One possible mapping is to map the steering
management function to WSM, while the braking management function is mapped to ESP. The
advanced steering/braking assistance and recommendation can be mapped to CM.

Hardware architectures for the Integrated Safety System

125

Here, the nodes with the highest safety integrity are the CM, SWM (sensor) and WSM (actuator
ECU), because they are directly involved with Steer-by-Wire. These nodes are connected to both
FlexRay channel A and channel B (partly redundant FlexRay with active stars). While the other
less safety relevant nodes such as ESP, SC, ACC, CAM, etc. are only connected to single channel
FlexRay A or B with their relevant sensors and actuators.

In the CM, different integrated safety functions and other chassis functions can be merged (sensor
fusion) on one ECU to have an integrated vehicle dynamic control. The CM is responsible to give
the SMU and BMU (ESP) the additional steering recommendation and braking recommendation.

It is to note that here only the SWM and WSM are redundant in 1oo2D architecture and connected
with both FlexRay channels, while the CM is not redundant. In case of any problem with CM, the
basic electronic steering function is still available with SWM and WSM. The SWF (Steering Wheel
Feedback) is not implemented in a redundant architecture either, because the feedback force can
be still provided with mechanical spring force.

CBC (Common Body Control), IC (Instrument Cluster), ECM (Engine Control Module), CM and HU
(Head Unit) in Figure 8-14 are connected with a backbone CAN.

8.4.3 ECU hardware architecture for ISS

The hardware structure of SMU discussed in Figure 8-12 can be designed as a 1oo2D dual-core
system. Figure 8-15 depicts one of the possible hardware architectures (adapted from the
approach 2 as discussed in Subsection 8.3.1). The 1oo2D architecture is integrated on a dual-core
chip. The same data input will be provided to the both dual-core processor with an intended short
time delay, so that the comparing unit can compare the computation results from both CPUs step-
by-step. In case of computation fault, one of the enable-path of the actuator control will be
disabled.

Figure 8-15: Exemplary 1oo2D dual-core ECU architecture

Hardware architectures for the Integrated Safety System

126

Since the both cores are built on one silicon board, the access to the memory is controlled by the
MPU with the help of a bus matrix for the high-speed internal data exchange. In order to tolerate
common-mode faults, both processors have independent memory and power-supply. RAM and
ROM are cyclically checked with parity and CRC, etc. The redundant FlexRay controller to both
FlexRay channel A and channel B is only an option. Single channel FlexRay with one transceiver
can be applied as well as long as the safety requirement of system can be reached.

8.5 Conclusion of hardware architecture framework

Guided by the safety integrity requirements as a red line, the design of ISS hardware architecture
reflects again the distributed development between OEMs and suppliers.

OEM defines the overall system safety integrity requirement, topology and communication
networks for ISS, while taking the distribution ISS-application into consideration. A balanced
design considering different constraints and requirements (safety as the most important among all)
will make the system integration more effective and improve overall system dependability
significantly. The suggested system topologies and guidelines provide a framework for this
decision phase.

On the other side, suppliers should provide the safety concepts in the hardware architecture, which
fulfill the safety requirements from OEM. With the platform strategy and standardization, system
suppliers are more and more involved in the early design phase to contribute their know-how by
the definition of ECU architecture. Since the quantitative safety requirement is always a system
wide term, the optimization of hardware architecture (e.g. evolution of safety concept from
hardware diversity to dual-core) should be accompanied with intelligent software based
dependability services.

Software platform for the Integrated Safety Systems

127

9 Software platform for the Integrated Safety Systems

9.1 Trends of software platform – a benchmark with IT-industry

As mentioned in the state of the art about trends and challenges in the embedded in-vehicle
software architecture, there is a clear trend towards standardization of a common middleware.
From this point of view it is quite interesting to take a look in the history of IT-industry about the
development of operating system. Similar like the OS in embedded world, OS in IT provides a set
of functions needed and used by most applications and the necessary linkages to control a
computer's hardware [HOS07].

The early computers lack any form of operating system and first original operating systems on
computers go back to the early 1960s. Early operating systems were very diverse, with each OEM
producing one or more operating systems specific to their particular hardware. Every operating
system, even from the same OEM, could have radically different models of commands, operating
procedures, and such facilities as debugging environment (quite similar with automotive embedded
electronics now). Typically, each time the manufacturer brought out a new machine, there would
be a new operating system. This state of affairs continued until the 1960s when IBM developed the
System/360 series of machines which all used the same instruction architecture. With the rise of
minicomputers, the UNIX operating system was developed at AT&T Bell Laboratories in the 1970s,
which was conceptually the same across various hardware platforms. It was with the introduction
of 8-bit home computers and game consoles of 1980s that real operating system for private
customer was introduced. The decreasing cost of peripheries and processors made it practical to
provide user more complicated operating systems with enhanced features.

When we compare this history with the development of embedded in-vehicle software, some
similarities could be identified. The state of the art in the software platform in embedded in-vehicle
software is somehow unfortunately comparable to the situation of IT-industry in 1970’s. While a
common operating system (OSEK, etc.) already exists, it is still not applied in each vehicle
domains by each OEM. Each automotive OEM has his own adapted operating system, its own
standard software modules. Automotive tier-one-suppliers esp. system suppliers are providing their
ECUs along with their specific house-made software and hardware. The migration process of the
systems for another customer (OEMs) requires a lot of effort. The tier-two/three suppliers (e.g.
semiconductor and ECU hardware providers) are stilling developing the hardware along with their
own drivers and low basic software modules, which again have a poor reusability for the tier-one
suppliers and OEMs.

But why do we have this ca. twenty years’ distance to the development of IT-industry? On one side
the introduction of automotive electronics began only at the early of 1980’s (as depicted in Figure
1-1), on the other side, because automotive industry has been traditionally strongly shaped by the
mechanical engineering, which has quite different requirements and constraints compared with IT-
industry. Thus the embedded in-vehicle electronics can be only a slower-follower of IT-industry.

Based on this benchmark, a conclusion can be drawn that the same development as in the IT-
industry for the future development of embedded in-vehicle software will happen in the near future.
This evolution could be slower than IT despite of lesson learned from IT, however, with a quite
clear and steady similar direction as in IT.

http://en.wikipedia.org/wiki/System/360

Software platform for the Integrated Safety Systems

128

Taking the Moore’s Law and cost-awareness of automotive industry into consideration, the
hardware devices and peripheries are quickly becoming cheaper, while more and more functions
with will be implemented with software. Since ECU software platforms (including: hardware-drivers,
operating system and standard software modules) can not be experienced by the customers
directly, they are not really competition relevant for the OEMs, and neither for the Tier-1 suppliers.
Standardized open software architecture will help to fix software bugs, improve the maturity of
basic software modules and gain the experiences from integration of application software
components with the underlying software platform. For the safety relevant applications, as have
mentioned before, the same trend to have a software platform with dependability software services
will take place. The standard library of dependability software services can be commonly applied
by different OEMs and suppliers. This will surely contribute a lot to improve dependability of the
whole system.

9.2 Concepts of dependability software architecture

As introduced in Chapter 5, in the EU-funded industry partnership EASIS, the first for the
Integrated Safety System designed software architecture was developed. The software
architecture framework for ISS is illustrated as Figure 9-1.

Figure 9-1: EASIS layered software topology [SWP06]

In Figure 9-2, the EASIS software topology with an overview of embedded basic software modules
and dependability software services [HIL06] is given, where the software services with * on the
symbol of package are optional and configurable to the safety requirements of the applications.

Software platform for the Integrated Safety Systems

129

cd EASIS SW-Topology

OS (L3)

L1 Microcontroller Hardware

Device Drivers / Micro-controller Abstraction Layer (L2)

Application Layer (L5)

Common FT Services and abstractions (L3)

Common and domain specific and ISS interface (L4)

Basic Serv ices

+ Communication Services
+ Diagnosis and Calibration
+ Memory Services
+ Network Management
+ Transport Protocol
+ Operating System

(from L3 Common FT Services and abstractions)

Dev ice Driv ers

+ ECU Initialization and boot
+ HW Watchdog-driver
+ Memory-drivers
+ Network driver
+ Power management-drivers
+ I/O Driver

(from L2 Device Driver / Mircro-controller Abstraction Layer)

Software functional
component

Software functional
component

Software functional
component ...

ISS Dependability Services

+ Agreement Protocol Service
+ Dynamic conf. for fail degraded
+ Fault Management Framework
+ FT Dual Duplex Signal Processing
+ FT-Communication Service
+ Plausibil ity Check
+ Software Watchdog
+ Voter Services
+ Replicated Task Execution

(from L3 Common FT Services and abstractions)

ISS Software
functional

component A

ISS Software
functional

component B

ISS Gateway Serv ices

+ Data Exchange Services
+ Security Manager

(from L3 Common FT Services and abstractions)

*
*

Figure 9-2: EASIS software topology –software components and services [SWT06]

In the following the layered software architecture framework depicted as Figure 9-1 is specified in
details.

Layer 5 (Application Software): On the top of the EASIS layered architecture is the Application
Layer. This layer harbors all application software components that provide the “actual” functionality
that the system/ECU is to provide (i.e. the payload functionality). These functional components use
the common/domain interface to access data and other items contained in the platform. The
functional components can be domain-specific components, e.g., providing algorithms for
powertrain control, or they can be cross-domain ISS components. In the application layer, software
functional components with different dependability requirements can be integrated onto one ECU,
including non-safety relevant functional components.

Layer 4 (Application Interface): Between the Application Layer L5 and Service Abstraction Layer
L3 is the Common/Domain specific and ISS Interface Layer. It serves as application interface,
which contains an interface for the functional components of the upper layers and is therefore the
platform upon which all functional components are built. This is the ultimate abstraction layer of all
underlying layers. It is worthy to mention that layer L4 keeps conformance to the AUTOSAR
Runtime Environment (RTE) layer.

Layer 3 (Common Services and Abstractions): Layer 3 is the emphasis of EASIS work in
software architecture, as shown in the Figure 9-1, the services are divided into three categories,
the basic services, gateway services and ISS dependability software services (the blocks
highlighted in blue in Figure 9-1).

Software platform for the Integrated Safety Systems

130

 The first category comprises all basic software modules [BSW06], such as communication,
diagnostics, calibration, network management and memory management, etc. These are
gathered together as common services. All of these services are required to provide the
upper functional layers with the platform they need for their functionality, e.g., the
communication services provide abstract communication services and hide away all
specifics arising from the physical communication systems chosen.

 The second category here is gateway services [GTD06], which support the applications
distributed beyond network borders. The software services here, as well as ISS
dependability services, are optional and configurable according to the requirement of the
applications. The ISS gateway services consist of the services which are needed for safe
and secure inter-domain as well as intra-domain communication. These services are not
needed in non-gateway ECUs. In gateway ECUs some services like the Routing Service
are required in any case, while others are optional depending on the required safety and
security for the inter domain communication (e.g. Authentification Service and Firewall
Service).

 The third category, as the focus of this dissertation, is the ISS dependability software
services, which include different standardized software services to support safety relevant
applications, such as Agreement protocol, Fault-tolerant Communication Services (as an
add-on extension of common communication service), Resource Management and the
Software Watchdog. It is notable that although the dependability software services here are
categorized as parallel to the common software services, they are more like a configurable
software service library compared with the basic software services, and make use of the
API and services from the common software services.

Layer 2 (Microcontroller Abstraction and Device Driver): The Device Drivers and
Microcontroller Abstraction Layer is an integration of hardware near software services. This layer
provides the basic abstraction of the underlying hardware and the micro-controller and drivers of all
devices included in the hardware platform.

The abstraction provides access to registers, I/O-ports, interrupts, etc. and hides away all specifics
of the hardware and micro-controller. This interface does not provide any semantic information,
meaning that data is handled exclusively as binary data, without any interpretation of the meaning
of it. It also provides drivers such as network controllers, UARTs, digital I/O, AD/DA converters,
TPU-functions (e.g. PWM) and so on. These device drivers provide some basic semantic
information to the upper layers and may contain basic fault handling and other housekeeping
functionality.

Layer 1 (Microcontroller hardware): Microcontroller hardware is layered at the bottom of this
software architecture framework.

OS: In order to manage the execution of the software components included in the architecture, an
operating system (OS), compatible to OSEK and AUTOSAR OS is used here. For some of the
dependability services like Fault Management Framework, Software Watchdog and dynamic
configuration services, extension to AUTOSAR OS will be needed. The placement of the OS
between the L4 Interface Layer and L1 Microcontroller Hardware in the figure above is to indicate
that it can be only accessed by layers between. In order to support dependability software
services, an operating system with MPU (Memory Protection Unit) is about to be specified here in
Subsection 9.3.2.2.

Software platform for the Integrated Safety Systems

131

9.3 Concepts of the dependability software services

As stated in Subsection 1.1, two of the most distinguishing aspects of ISS are distribution of
application across domain boarders and integration of functions with different safety integrity
levels.

Specific for these two challenges brought by ISS, four types of dependability software services are
designed, prototyped and validated in this dissertation.

 Dependability services for ISS communication

 Dependability services for the integration of applications on one HW-platform

 Dependability services for fault treatment

 Dependability software services for the gateway services

9.3.1 Dependability services for ISS communication

The requirements of communication among ISS application components come from the design
regarding data exchange and relationship between the functions. As depicted in Figure 7-7 about
the ISS engineering process, if we take a close look at the mapping process from FAA to FDA as
depicted in Figure 9-3, the purple lines denotes the communication between application software
components in FAA-model. Such related application software components can be mapped to one
ECU or different ECUs or even ECUs belong to different networks.

Feature and
functional
Network (FAA)

Mapping to
the hardware
(FDA)

IS
S

 E
ngineering P

rocess
A Three components

SIL: Low
A Three components

SIL: Low
B Three main components

One backup component
SIL: High

C Three components, one of
which is triplicated
SIL: High

C Three components, one of
which is triplicated
SIL: High

ECU

ECU

ECU

ECU

ECU

ECU

GW
Network 1 Network 2

A1 A2 A3 B1 B2 B3a C1´ C1´´ C1´´´ C2 C3B3b

Figure 9-3: Mapping App.SW-Cs of different ASILs to the hardware topology

9.3.1.1 Categories of communication among ISS-application software components

As discussed in the mapping guidelines in Subsection 8.1.2 guideline 8, it is preferable to integrate
only functions of the similar ASIL on one ECU. In practice, however, it is still possible to have

Software platform for the Integrated Safety Systems

132

applications with high ASIL integrated with applications with low ASIL. In order to guarantee the
availability of the applications with high ASIL, it is also possible to allocate the replica of
applications with high ASIL to be integrated onto ECUs, which originally only host the applications
of low ASIL. The communication between the software components in this scenario is depicted as
following:

ECU1 ECU3

GW
ECU2

Network 1 Network 2

B1 B2 B3a B3bA1 A3A2

Figure 9-4: Example scenario of intra-ECU and inter-ECU communication

As denoted in Figure 9-4. ISS communication can be generally divided into intra-ECU
communication denoted with the dashed red line, and inter-ECU communication, blue lines, e.g.
ISS application B, highlighted in red, is made up of 3 software components B1, B2 and B3a, which
are mapped to ECU1. The replica of B3a, B3b is mapped to the ECU3, where the app. SW-C A2
and A3 of lower ASIL are resident. App. SW-C A1 of low ASIL is also mapped to ECU1.

The communication between the app. SW-Cs can divided into following categories:

1. Mutual communication between App.SW-C of high ASIL with App.SW-C of high ASIL

2. Mutual communication between App.SW-C of high ASIL with App.SW-C of low ASIL

3. Mutual communication between App.SW-C of low ASIL with App.SW-C of low ASIL

4. Communication from App.SW-C of low ASIL to App.SW-C of high ASIL

5. Communication from App.SW-C of high ASIL to App.SW-C of low ASIL

6. Communication between the redundancies of App.SW-C of high ASIL

Among these 6 categories of communication:

 The category 1 refers to the intra-ECU communication between B1 and B3a or inter-ECU
communication between B1 and B3b in Figure 8-4.

 The category 4 refers to the one way intra-ECU communication from A1 to B3a or inter-
ECU communication from A1 to B3b, which is only a special case of communication
category 2, where the App.SW-Cs of higher ASIL uses the information from App.SW-Cs of
low ASIL.

Software platform for the Integrated Safety Systems

133

 The category 6 is more or less a special case of category 1, since only the safety relevant
app. SW-Cs can have replica. In order to reach a voted/agreed result among the replica,
the replica should have the consistent inputs in the synchronized time window

An integrated solution for these will be discussed from Subsection 9.3.1.2 to Subsection
9.3.1.4, in which the discussed algorithms are mapped to the communication category 1, 2,
4 and 6.

 The category 3 and 5 are not safety relevant, since the consumer of the information is not
of high safety integrity, thus they will not be discussed in details here.

9.3.1.2 Redundant communication service

As introduced in the Chapter 3, Redundancy is a common approach to improve the dependency. In
case of communication, three types of redundancy may be used to achieve a fault tolerant
communication:

 Information redundancy: by information redundancy we mean redundancy of the
complete information (e.g. redundant information from different memory areas by
read/write) and abstract or footprint of the information (e.g. CRC).

Within a communication frame, Error detection mechanisms already present in most
protocols are a common form of information redundancy. Completely replicating a signal
within a frame is a possible solution for improving error detection or even performing error
correction, but as it does not protect against loss of frame it is not as efficient as the other
redundancy types.

 Time redundancy: the signal is replicated in different frames or the same frame is sent
multiple times.

 Structural redundancy: a signal is transmitted on multiple physical communication
channels.

In case of inter-ECU, the three categories of redundant communication are depicted in Figure 9-5.

Channel 1

Channel 2

CR
C

CR
C

CR
C

CR
C

XR

1

XR

2

XR

3

XR

4

Structural redundancy

Time redundancy

Information redundancy

t

Figure 9-5: Communication redundancy mechanisms

Software platform for the Integrated Safety Systems

134

The structure redundancy here fulfills the ASIL-D requirement of independent and redundant
communication paths. In comparison, the information redundancy and time redundancy are cost
effective, but require intelligent task scheduling, synchronization and plausibilisation of redundant
information. While the information redundancy within one frame can be read almost once, the time
redundancy can be a problem for the real-time control algorithms.

The redundant communication can be applied for the communication categories 1, 2 and 4 as
specified in Subsection 9.3.1.1

9.3.1.3 End-to-end communication service with application CRC

As have discussed in the Subsection 8.2, various algorithms are applied for the fault detection of
data transmission on the communication bus, but suppose that there should be some faults
between the transceiver and application SW-C, e.g. memory error and application coincident fault
in data read/write, such a fault can not be detected by the CRC in the communication protocol,
since the protocol CRC only ensures the data integrity from bus transceiver of the sender to
transceiver of the receiver. In Chapter 7 ISS EP Process Step 2.4, the mapping of system PFH to
the PFH of FAA-components brings even higher safety integrity requirement of 1*10-10, which can
not be guaranteed with the bus protocol alone.

Figure 9-6 shows the end-to-end communication scenario between two ECUs and the possible
communication fault model. Faults, occurred in the red high-lighted area can not be detected.

Figure 9-6: Reference model for end-to-end communication checksum

A detailed data flow from application SW-C to the transceiver is shown in Figure 9-7. On side of
receiver as depicted in Figure 9-8, the same data transmission path in the inverse direction is vice-
versa supposed.

Software platform for the Integrated Safety Systems

135

Figure 9-7: Data flow from application SW-C to transceiver (sender)

Figure 9-8: Data flow from transceiver to application SW-C (receiver)

Software platform for the Integrated Safety Systems

136

A detailed list of fault types is given in Table 9-13, in which each chain of data flow of application
SW-C to the transceiver can result an error, which is not detectable with protocol CRC.

Ref. Fault location Fault type Error

1. RAM of App. SW-C coincident bit-kipper Data error

2. DC fault model3 of data and address Data error

3. Dynamic cross-over of memory cell Data error

4. Faulty address by read/write operation Data error

5.
Program counter, Stack
pointer

DC fault model* Data error

6. Program control flow Not defined Data error

7. µC interrupt Cross-over von Interrupts Data error

8. CPU Address Not defined Data error

Table 9-13: Fault types of date flow from application SW-C to transceiver

Thus it is reasonable to put an application CRC in the earliest chain of data flow of the sender (or
the last chain on side of the receiver), as shown in the following Figure 9-9, so that faults in the
following chains of data transmission can be also detected with application CRC.

Figure 9-9: Date flow with application CRC on the sender

When decision is made to use application CRC, it is still needed to decide, which CRC-algorithm
should be applied for the implementation of the safety relevant application.

Let us go back to the dummy ISS application SafeSteering as discussed in Figure 8-13. In
SafeSteering, the additional wheel angle superposition is sent from BMU to SMU, and the both
applications are ASIL-D with PFH requirement of < 10-8. As discussed in ISS EP Step 2.4 Figure
7-7 about PFH proportion of communication system to the system PHF, the communication
channel between the two systems, as a system component, should be implemented with a PFH of
<= 1*10-8 * 1% = 1*10-10 /h (even higher than ASIL-D). That is to say, the possibility of a fault in the
communication channel, which could result in a system wide safety relevant failure, should be

3 DC (direct current) fault model includes: stuck-at faults, stuck-open, open or high impedance outputs and
short circuits [IEC02]

Software platform for the Integrated Safety Systems

137

smaller than 1*10-10 per hour. Based on the safety integrity of the application, a few questions
should be clarified before the design:

 What kind of system fault tolerant behavior is required here, fail-safe or fail-operational?

 Is it enough to detect the communication fault (fail-safe) or do we need to correct it (fail-
operational)?

 How sensible is the algorithms of control loop as to an undetected faulty input data? It is
common that not every faulty transmitted message could result in a faulty control output (also
called process safety).

In order to answer these questions, a system wide consideration should be carried out, e.g. the
plausibility monitoring of input values and the controllability of the driver in case of faulty output
should be considered in the tolerance of communication fault as well.

In SafeSteering, if CAN is used for the communication between Steering Management Unit and
Braking Management Unit, additional dependability software services are required for the ASIL-D
signals. Take the wheel steering position as an example: let us assume the pay-load of the
steering angle as p bits, which are sent out every ts s, while the total data transfer rate is v bits/s.

In order to describe the quality of physical transmission, term of Bit Error Rate (possibility of
corrupted received bits) is introduced. For the automotive communication system, an assumption is
made that the Bit Error Rate varies from 10−4 in case of an aggressive environment to 10−6 in the
case of a benign environment. According to an experience research about Bit Error Rate of CAN
[BER04], even under an aggressive environment the Bit Error Rate of CAN is only 2.6*10-7/h.

Three different integrity classes (I1, I2 and I3) are assigned in the industry norm [DIN93] to the
communication path, in which I1 has a hamming-distance of at least 2, while I2 and I3 has a
hamming-distance of at least 4. If we choose a relative conservative value of the Bit Error Rate of
1*10-4, as the same assumption from [DIN93], the probability of undetected error in the
communication channel (denoted as R) is 10-6 by I1, 10-10 byI2 and 10-14 by I3 ([DIN93] diagram 1
about data integrity class). Here it is to mention that, only the undetected communication error is
dangerous for the system (as dangerous failure undetected by the diagnostic test λDD).

As depicted in Figure 2-3 of Subsection 2.1, the latency time of fault tolerance t4 – t1 should be
smaller than t3 - t1, during this latency time, the number of faulty messages (process safety) we can
tolerate can be calculated as

⎥
⎦

⎥
⎢
⎣

⎢
=

st
tt

m 46 -

That is to say, only if m+1 successively faulty messages are undetected received and used by the
control algorithms, a system wide dangerous failure could happen. We assume the worst-case
here that each system failure will result in an uncontrollable safety relevant failure regardless of the
driving situation and driver controllability.

The possibility of a system safety relevant failure resulted from the communication failure can be
calculated as

⎥
⎦

⎥
⎢
⎣

⎢
==

st
tt

RmRPcom 46 -
^^

Software platform for the Integrated Safety Systems

138

In one hour, there are n bits sent to the receiver (n=3.6*103*v), let us take another worst-case
assumption that each undetected faulty bit can result in a undetected faulty message. Since only m
successive undetected message can result in a system failure, the number of system failure in one
hour can be calculated as

⎥
⎦

⎥
⎢
⎣

⎢
==

=

st
ttRPcomn

failuresystemofypossibilithouretransferatDataFH

46 -^*v*10^3*3.6*

___*_1*_

, which should be smaller than the Dangerous Failure per Hour (PFH) required by AISL-D
of 1*10-10. A further research of the formal above shows that the parameters ts, t6, and t4 are system
and application specific and can be less influenced by the application CRC. The decision of the
CRC algorithms, however, influences the value of R directly.

In the following the whole approach to determine the CRC-algorithms is demonstrated with the
SafeSteering, in which the parameter used are exemplary but not directly from the praxis.

Let us take high-speed CAN with 500 Kbit/s as v, system reconfiguration time t6 as 10 ms, t4 as 7
ms and steering angle superposition information is sent every 1 ms, during the reconfiguration time

t6 – t4 , we can tolerate 31/)710(
- 46 =−=⎥

⎦

⎥
⎢
⎣

⎢

st
tt

 faulty undetected messages, thus

3^*5^10*5*6^10*6.3-^*v*10^3*3.6 46 R
t

ttRFH
s

=⎥
⎦

⎥
⎢
⎣

⎢
=

and FH < 1*10-10

We could get that R should be smaller than 3.8*10-8. Again according to [DIN93] diagram 1, the
integrity class 2 and class 3 should be applied, in which a hamming distance of at least 4 is
required.

According to the Figure 2 and Table 3 in the paper of Koppman [Kop04], a hamming distance of 4
can be reached by 8 bits CRC as CRC8 and CRC0x97, 7 bits CRC as 0x5B and even 6 bits CRC
as 0x2C, etc. In the embedded system of automotive industry, the CRC-8 is a quite commonly
applied algorithm, thus the same algorithm can be applied for the application CRC with reuse of
legacy codes.

9.3.1.4 Agreement Protocol

As specified in Chapter 6 about fault hypothesis and fault types for ISS, the Byzantine General
problem are introduced.

A common approach to implement fault-tolerance in the safety relevant systems is the use of
structural redundancies, defined in [Ech90] as the expansion of the system by additional
components (software or hardware) to realize the same function redundantly. The structural
redundancies within an electronic system however, introduce some problems themselves.

As discussed in [Bes02] and [Ech90], different sources of undesirable non-determinism can be
identified. The simplest non-determinism is in value domain. For example, while measuring the
same dimension using redundant sensors, the measured values, which theoretically should be
identical, may exhibit slight deviations due to the physical nature of the sensors and are therefore

Software platform for the Integrated Safety Systems

139

non-deterministic. The use of these values leads to the computation of non-deterministic results,
which is not acceptable for safety-related applications. Inconsistency in the value domain for
structural redundancy can be solved by fault masking, which assumes the presence of a k-out-of-n
system (see Figure 9-10). This consists of n redundant components, at least k of which must be
non-faulty to ensure fault-tolerance.

Processor 1

Processor 2

Processor 3

Structural Redundancy

Input
Repli-
cation

Masker

e. g. majority decision

5

5

50

5

fau
lty

Input

Figure 9-10: Fault masking 2-out-of-3 system [Ech90]

Given the high requirements for reliability in some applications, the masker, which constitutes a
single point of failure, should also be replicated. Since additional communication is required to
reach a consistent decision among maskers, the overall messages overhead is increased
[CHS06].

The other form of non-determinism affects the time-domain and arises in the presence of a high
latency jitter in the communication system, so that neither the arrival time of redundant messages
nor their sequence in time can be predicted accurately. Such non-determinism in the time domain
can be solved by the synchronization of data transmission and simultaneous data processing on
redundant nodes. The introduction of a time-triggered in-vehicle communication system such as
FlexRay and a predicable ECU operating system to guarantee the time constraints, simplifies the
synchronization effort significantly.

Another form of non-determinism as the worst of all, is asymmetric fault (also known as the
Byzantine fault, as discussed in [Lam82], Subsection 6.2) can also occur due to software and
hardware coincident fault,

To ensure fault-tolerant communication even with Byzantine Faults, Lamport et al. provide different
algorithms to solve the problem in [Lam80], so that non-faulty components can reach agreement
on a value regardless of faults. These algorithms allow the non-faulty nodes to compute the same
interactive consistency vector (ICV) containing the private value of each non-faulty node. Once
interactive consistency is achieved, each non-faulty node can apply an averaging or filtering
function to the interactive consistency vector, according to the needs of the application. In the
following, a brief introduction to the different variants of Agreement Protocols as well as the
assessment to the dependability requirements in the automotive industry is given:

Software platform for the Integrated Safety Systems

140

Oral Messages Protocol

The notion of oral messages was introduced together with the Byzantine Generals problem
([EiK06], [Lam80], [FTD06]) and the definition of an oral message is embodied in the following
assumptions with regard to the communication system:

 Every sent message is correctly received.

 The sender of a message is known to the receiver.

 The absence of a message can be detected.

As depicted in Figure 9-11:

 P is the set of all nodes.

 V is the set of all values.

 A k-level scenario σ is a mapping from a non-empty string of length 1+≤ k over P to V,
thus summarizing the outcome of a k-phase exchange of messages. For example, let

rpppw ...21= . vw =)(σ is then interpreted as the value p2 tells p1 that p4 told p3… that pr

told pr-1 is pr’s private value.)(pσ simply designates the private value of node p and pσ is

the restriction of σ to the messages received by p in a scenario (i.e. only for wpw ′=)

In the following, the algorithm OM(m, n, σ) is described in terms of p's computation of the element
of the Interactive Consistency Vector ICV corresponding to each node q, for a given scenario σ ,
an arbitrary number of faulty nodes 0≥m and a total number of nodes 13 +≥ mn :

(1) If for some subset Q of P of size 2/)(mn +> and some value v, vpwqp =)(σ for each

string w over Q of length m≤ , p records v.

(2) Otherwise, q must be faulty. The algorithm OM (1−m , 1−n ,σ̂) is then recursively applied
with P replaced by }{qP − , and σ̂ defined by)()(ˆ pwqpw σσ = for each string w of length

m≤ over }{qP − . This recursive call delivers an ICV with 1−n elements, since the node q
is excluded. The i-th element corresponds to the value all non faulty nodes agree it has
been received by the i-th node p′ from q during the first phase (i.e.)(ˆ p′σ which is in fact

equal to)(qp′σ). If at least ⎣ ⎦2/)(mn + of the 1−n elements agree, then p records the

common value. Otherwise, p records nil.

The correctness of this algorithm as well as the necessity of 13 +≥ mn is proved in [Lam80].

Software platform for the Integrated Safety Systems

141

1. Phase

5

5

5

5
5

5

4
7

5 55

7 55

4 55

5

2. Phase

5

Majority Interactive
Consistency Vector

VB VC VD

Not relevant

5 VB VC VD

5 VB VC VD

VB VC VDVA

B B B

C C C

D D D

A A A

5

x

x
P

Faulty replication

Correct replication

P Non-faulty node

Faulty node

Figure 9-11: OM algorithm with n = 4 and m = 1

Signed Messages Protocol

Since oral messages can be easily forged by faulty nodes before being forwarded, reaching
agreement among non-faulty nodes with the help of the OM algorithm requires at least 13 += mn
nodes to tolerate m faulty ones and hence induces a significant communication overhead. By using
signed messages instead of oral messages, agreement can be reached for any number mn >
nodes and also requires 1+m communications phases.

As opposed to oral messages, a signed message from a node p including some data item d cannot
be forged, as this message holds an authenticator Ap[d] from p, allowing each receiver to check the
message integrity as well as the identity of the original sender. Since this authenticator cannot be
falsified, faulty nodes are no longer able to alter the content of a message before forwarding it
without being found out. Moreover, forwarded messages are additionally signed by the forwarding
node.

Let)(pv σ= for a node p (see the subsection above about Oral Message Protocol for the
definition of σ). p communicates this value to another node r by sending the message consisting
of the triple),,(vap , where a = Ap[v]. After receiving the message, r checks whether a = Ap[v]. If

the test is successful, r takes v as the value of)(pσ (i.e. vrp =)(σ) and forwards the message

[])),,(,),,(,(vapvapAr r to all other nodes except p; otherwise)(rpσ = nil.

More generally, if r receives a message of the form)...)),,(,...,,(,(2211 vapapap kk , where

[]vAa
kpk = and for 11 −≤≤ ki , [])),,(,...,,(11 vapapAa kkiipi i ++= , then vprp k =)...(1σ and r

forwards the message after signing it to every other node different than p1, p2… and pk; otherwise,
=)...(1 kprpσ nil.

Software platform for the Integrated Safety Systems

142

In the following, the signed messages algorithm SM (m, n, σ) is described in terms of the value a
non-faulty node p records for a given node q and a scenario σ . m designates the number of faulty
nodes (0≥m) and n the total number of nodes (mn >).

Let Spq be the set of all non-nil values)(pwqpσ , where w ranges over strings of distinct

elements with length m≤ over },{ qpP − . If Spq has exactly one element v, p records v for
q in its ICV; otherwise, q must be faulty and p records nil.

As proved in [Lam80], this algorithm allows the non-faulty nodes to compute the same ICV
containing the private value of each non-faulty node and nil for each faulty node. Although mn >
nodes are sufficient to allow non-faulty nodes to reach agreement in the presence of m faulty ones,
it makes more sense to use 12 +≥ mn nodes, since non-faulty nodes must be in majority. This
would enable a downstream masker using a majority decision to vote for the correct result.

As depicted in Figure 9-12, the ICV of each node is computed in the distribution protocol during the
communication phases. Before the first phase, each node initializes its ICV to nil values except for
its corresponding element where the node’s private value is recorded. The vector is then
actualized upon each communication phase as follows. When a message

)...)),,...(,(,(vapapap kkjjii is received by a node p and turns out to be valid, then

 If ICVp[k] = nil, then the value v is recorded for the k-th node, so that ICVp[k] = v.

 If ICVp[k] ≠ nil and ICVp[k] ≠ v, then a replication fault obviously occurred in the node pk and
ICVp[k] is set to faulty, so that any further values for pk are ignored. Nevertheless, valid
messages are always forwarded independently of the value of ICVp[k].

Figure 9-12: Time diagram of the Signed Message Protocol with 3 nodes

Software platform for the Integrated Safety Systems

143

Pendulum Protocol

Independently of whether faults actually occur, the previously presented protocols always induce a
worst-case communication overhead, since an interactive consistency vector is computed for all
nodes before a final result is decided. The pendulum protocol, which is introduced in [Ech90], aims
at reducing the communication overhead for the faultless scenario at the expense of fault detection
by computing a single agreed value. The name of the protocol comes from its algorithm which
executes in a way similar to a pendulum stroke over the nodes.

The pendulum consists of a main protocol, which is sufficient in the faultless case, and an auxiliary
protocol applied to deal with faults when these occur. Moreover, it requires the use of some
distance decision (i.e. interval decision or sphere decision) and thus the definition of δ as depicted
in Figure 9-13.

Figure 9-13: Pendulum Protocol for 3 nodes withδ = 2

Assessment of the agreement protocol variants

The following criteria were applied during the assessment of these three variants of protocols:

 Predictability: the algorithm behavior does not depend on run time events (e.g. the
occurrence of faults).

 Fault-detection: the algorithm includes mechanisms that enable the detection of
components providing faulty values.

 Fault-tolerance: agreement can be reached despite the presence of faults.

 Number of redundancies: the minimal number of redundancies required to tolerate m faulty
processing units.

 Minimal communication overhead: the minimal number of messages required to reach
agreement among n processing units, e.g. in the absence of faults.

 Maximum communication overhead: the maximal number of messages required to reach
agreement among n processing units, e.g. in the presence of faults.

Software platform for the Integrated Safety Systems

144

 Number of communication phases: the number of communication phases required to
tolerate m faulty processing units.

These criteria can be classified with respect to their priorities, as depicted in Table 9-14, which
categorizes the properties of the agreement protocols in three levels, Priority 1, Priority 2 and
Priority 3.

Priority 1 Priority 2 Priority 3

 Predictability
 Fault tolerance
 Fault detection

Number of
redundancies

 Minimal com. overhead
 Maximum com. overhead
 Number of com. phases

Table 9-14: Priorities of Criteria for the assessment of agreement protocols

Based on these criteria, the three agreement protocols are compared in Table 9-15, where n is the
total number of processing units and m the number of faulty units to be tolerated. The
mathematical derivation these results can be found in Appendix. 2

OM Algorithm SM Algorithm

Pendulum
Protocol

Predictability yes yes no

Fault tolerance yes yes yes

Fault detection yes yes no

Number of
redundancies

13 +m 12 +m 12 +m

Minimal com.
overhead 2

)1)1(()1(1

−
−−⋅−⋅ +

n
nnn m

)!2(
!...

)!2(
!

−−
++

− mn
n

n
n 1−n

Maximal com.
overhead 2

)1)1(()1(1

−
−−⋅−⋅ +

n
nnn m

)!2(
!...

)!2(
!

−−
++

− mn
n

n
n variable

Number of com.
phases

1+m 1+m variable

Table 9-15: Comparison of three agreement protocols [Appendix 2]

From the results of this comparison, the pendulum protocol does not seem to be adequate even if
it provides the lowest communication overhead in the faultless scenario. In fact, besides failing to
fulfill the predictability requirement, it does not provide 100% fault detection and could even lead to
the agreement on a faulty value. Moreover, the pendulum protocol is limited to applications
supporting only an interval or a sphere decision, which makes it less qualified for a standard
service implementation.

Software platform for the Integrated Safety Systems

145

Both the OM and the SM algorithms fulfill the most relevant requirements. Although the signing of
messages induces an additional computational overhead, the SM protocol is most appropriate in
the scope of this work, since it can guarantee fault-tolerance with less redundancies and a lower
communication overhead than the OM protocol.

Based on the safety requirements in automotive industry, the Agreement Protocol service is
embedded in the dependable software architecture specified in Subsection 9.2. As depicted in
Figure 9-14, the application using the AP service must provide an input value as the private value
of the node, the number of phases (depending on the number of faults to be tolerated), the
tolerance band and additional node information required for the signature mechanism. The data
exchanges are carried out using a fault-tolerant communication service via FlexRay.

FT-Communication Service

Common/Domain-specific and ISS interface

Agreement
Protocol Service

Agreed Value +
State Vector

Initial Value +
of phases +
Tolerance value +
Key Information

Communication
(send/recceive)

Figure 9-14: Interface to fault-tolerant communication and application

Figure 9-15: Assembly symbol in UML with Enterprise Architect

The “assembly” symbol of UML 2.0 used in Figure 9-14 is a connector between two components,
which denotes that one component provides the services that another component requires. As
shown in Figure 9-15 the assembly bridges a component’s required interface (Component1) with
the provided interface of another component (Component2).

9.3.1.5 Conclusion of ISS communication

As discussed in the subsections above, the ISS communication is characterized with the high
dependability requirement (ASIL-D communication with PFH of 10-10). Fault tolerance in each chain
of the communication channel even with the presence of Byzantine Faults is required for the future
ISS applications. The approaches presented in this subsection focus on the fault-tolerant
communication services, which are integrated in the software platform as dependability software

Software platform for the Integrated Safety Systems

146

services. In the praxis, the real implementation should be tailored, configured and supplemented
with application specific services such as identifier for the communication objects, aliveness
counter, error detection code, acknowledgement, etc. Under the requirement that safety integrity
level from the safety analysis should be met, a balanced communication concept considering
system complexity can be chosen.

9.3.2 Dependability services for the integration of applications on one HW-platform

As have mentioned in Subsection 9.1, there is the trend of increasing integration density of
applications on one HW-platform, in which the main challenges are as following:

1. Managing the complexity in the integration process of various functions on the same ECU
during the system development

2. Increasing the system overall dependability by the partitioning of applications, which have
different safety integrity levels

The first challenge is mainly considered in Chapter 7 with the help of ISS Engineering Process,
while the second topic should be solved in an integrated manner with a dependable architecture
framework.

9.3.2.1 Challenges and consideration from an integrated manner

As specified and required in [ISO26] Baseline 9, Chapter 6 Software design 6.4.10 and 6.4.11,
freedom of interference by software partitioning is one of the most important technologies for the
integration of applications with shared resources. The shared resources on ECU refer to
computation time, memory and communication. While the dependable communication is discussed
in Subsection 9.3.1, the partitioning topic here focuses in the computation time and memory.

The term of partitioning is meaningful when two different entities can influence each other by
means of interface or shared resource. Generally speaking, partitioning is a fault containment
technique which consists in precluding a failure in a partition to propagate (to control the additional
hazard) and to cause other partitions to fail, which can be divided into hardware partitioning and
software partitioning.

HW-partitioning is discussed in Chapter 8 by means of guideline to map applications to the HW-
Architecture and hardware design. Partitioning, when applied to software, the intent is to control
the additional hazard that is created when a software partition shares its or part of its resources
with other partitions (shared resource of memory, computation time and peripheral access, etc,).
Partitioning with clear interface definition and layered architecture is the topic of software design,
while partitioning in this chapter refers to the software partitioning with shared resource and
software partitioning is not intended to protect against failure of each software partition but against
their propagation.

Since we are talking about partitioning, it is necessary to define the software framework to be
partitioned with the help of dependable ECU software architecture as defined in Subsection 9.2.

Software platform for the Integrated Safety Systems

147

Basic services
ISS

dependability
services

ISS
gateway
services

ISS InterfaceBasic interface

Application 1

MicrocontrollerMicrocontroller

Application 2 Application 3 Application 4

Partition1 (ASIL-A) Partition2 (ASIL-B) Partition3 (ASIL-C) Partition4 (ASIL-D)

Trusted

Non-trustedTrusted

Trusted Non-
trusted

Trusted Non-trustedTrusted

Non-trustedNon-trustedNon-trustedNon-trusted

Figure 9-16: Software partitioning in the dependable software architecture

As depicted in Figure 9-16, on top of the dependable software architecture various application
software components with different safety integrity levels can be integrated. As mentioned in
Subsection 9.3.1.1, it can still happen, that ASIL-B functions are integrated with the ASIL-D
functions if they all belong to the same ASIL-D safety application, e.g. diagnostic function in the
SafeSteering application mentioned in Subsection 8.4.1. In this case, the functions with different
ASILs should be partitioned to suppress the mutual influence. For same reason, the underlying
software framework belong the interface layer (below EASIS SW-layer L4) could come from
difference sources (different suppliers) as well. They are not all standardized and developed to the
ASIL-D requirement, thus they should be partitioned to the trusted and non-trusted software
modules. As the emphasis of partition, the App.SW-Cs are generally considered as non-trusted.
Basic software services / drivers, OS, which have been used in many serial projects, are
considered as trusted object. Part of fully validated ISS-dependability and gateway services can be
identified as trusted-objects as well. Since the regulation of partition are completely or partly
deactivated for trusted object. The trusted objects, which have a higher flexibility than non-trusted
objects, can be the more dangerous for the system in case of error.

Software partitioning in this subsection encompasses space partitioning and time partitioning:

 Space partitioning addresses unauthorized data access and illegitimate commands of
peripherals assigned to other partitions, which is discussed in detailed in Subsection
9.3.2.2 [ISO26].

 Time partitioning that focuses on disturbance of the timing of events in other partitions
(scheduling, order of execution, etc.) is addressed as in Subsection 9.3.2.3.

Software platform for the Integrated Safety Systems

148

9.3.2.2 Space partitioning with protection services

When talking about space partitioning, it is necessary to define the objects on the ECU, which are
to be partitioned.

Following the ECU software development process, the next mapping step after Figure 9-3 is the
mapping of application runnables to the task on the ECU as depicted in Figure 9-17, where
runnables from one App.SW-C can be mapped to different ECUs, runnables from different
application SW-Cs can be mapped to the same task as well. In order to save resource esp.
computation time, state of the art approach is to pack the functions (runnables are defined in
Figure 9-17 as the atomic code sequences of App.SW-C), which are executed to the same time
cycle, together to one frame as a task. In an embedded OS, which is both compatible with time-
triggered and event-triggered scheduling, tasks could have different priorities, in which task with
lower priorities can be preempted by task of higher priorities. Usually the most important tasks are
assigned with the highest priority and executed with the highest frequency supported by the
microcontroller. Tasks with lower priority, which do not have the hard real-time requirements, can
be preempted to guarantee that, sufficient resource is available for tasks of higher priority.

Figure 9-17: Mapping of application to ECUs and runnables to tasks

Software platform for the Integrated Safety Systems

149

cd Data Model

OS-Application

- RESTARTTASK: TASK

SCHEDULETABLE

RESOURCE

ALARM

COUNTER

non-trusted OS-
Application

constraints
{non-priviliged mode}

trusted OS-
Application

constraints
{priviliged mode}

{XOR}

Hook
ShutdownHook

Hook
StartupHook

Hook
ErrorHook

TASK

- EXECUTIONBUDGET:
- COUNTLIMIT:
- TIMELIMIT:

ISR

- EXECUTIONBUDGET:
- COUNTLIMIT:
- TIMELIMIT:

MESSAGE

*

1

*1

*1

0..1

{ERRORHOOK = true}

1

0..1

{STARTUPHOOK = true}

1

0..1

{SHUTDOWNHOOK = true}

1

«realize» «realize»

* 1

* 1

* 1

* 1

OS-Application

Schedule
Table

Resource

Alarm

Counter

Shutdown
hook

Startup
hook

Error
hook

Task

ISR

Message

Trusted
Application

Nontrusted
Application

Figure 9-18: UML-model of objects in operating system

From view of operating system, all application SW-Cs, basic SW-Ms, dependability SW-Ms, etc.
are implemented in OS-objects as depicted in as in Figure 9-18, such as schedule, resource,
alarm, counter, hook, task, ISR and message etc. The most frequently used OS-objects are task,
alarm, counter and hook. The space partitioning should be built up based on these OS-objects with
help of system design, MMU/MPU and OS support. The OS-objects shown in Figure 9-18 can be
restructured into two classes [AOS06]:

1. Trusted OS-objects are allowed to run with monitoring or protection features disabled at
runtime. They may have unrestricted access to memory, the OS API, and need not have
their timing behavior enforced at runtime. They are allowed to run in privileged mode when
supported by the processor. In this sense, trusted OS-Applications are easy to use but
dangerous.

2. Non-Trusted OS-objects are not allowed to run with monitoring or protection features
disabled at runtime. They have restricted access to memory, restricted access to the OS
API and have their timing behavior enforced at runtime. They are not allowed to run in
privileged mode. Non-trusted applications are secured applications that they can not easily
disturb other applications.

Especially for the non-trusted OS-objects, the first step of space partitioning is that they should be
structured already in the design phase properly. This means, that they must be structured
according to their function and not e. g. according to their time-frequency. Runnables with high
priorities, which do not belong to the same function, should be structured to different tasks. If the
given functionality of OS-objects regarding data encapsulation is not used, the problem of
unintended writing in memory can of course not be solved. If it is used, an MMU enables protection

Software platform for the Integrated Safety Systems

150

even in case of programming errors that an application tries to write to the memory region of
another application. When a task intends to access a memory area by write operation, by
comparison of the task ID with a preconfigured task/memory allocation table, OS could trigger an
error hook if the task is not authorized to perform the operation. The memory partitioning could
consider the following rules:

 Each task is assigned with a memory area for all possible operation.

 For tasks, which belong to the same application, can be assigned with the application wide
shared memory area.

 Eventually part of memory area can be reserved for all applications for a free access.

 As the structuring of tasks is a purely static matter and current operating systems do not
allow dynamic reconfiguration in the task structure, the necessary activities have to be
carried out at design time and cannot be automated. The restructuring of tasks is another
example to improve the system dependability at expense of resource optimization.

So far in the space partitioning, only the direct data access by means of read/write operation is
discussed. As depicted in Figure 9-19, the indirect memory access to variable can happen with
function call of a runnable in task 2 in the 2nd situation. Because this runnable is originally allowed
to change the variable, no error will be reported. The allocation of runnables/functions and the
access to a certain driver interface should be also partitioned and protected as to the memory as
well. In order to prevent the scenario in Figure 9-19, the runnable will temporally lose the unlimited
authority as trusted object to the variable by inherit the status of “untrusted” from task1 when it is
called by task1.

Task 1 Task 2

Task 1 Task 2

Situation A

Situation B

Write variable

Call Runnable

variable
Write

Figure 9-19: Memory protection of indirect data access

9.3.2.3 Time partitioning with OS and Software Watchdog service

To face the challenges stated in Subsection 9.3.2.1, time partitioning to monitor individual
application software components is required to improve the overall system dependability [Tin03].
Time partitioning of application SW-Cs implies again an integrated approach by monitoring run-
time behavior from real time and logical control flow requirements. In the following subsections, the
designs for the time portioning will be discussed around these two aspects.

Software platform for the Integrated Safety Systems

151

9.3.2.3.1 Run-time monitoring with Operating System

From the point of view in the software architecture, operating system is the best suitable basic
software module to monitor the timing behavior of running entities.

 In the OSEK-compatible operating systems, as mentioned above, all the OS-objects are
static configured and structured, in another word, they are all known to the operating
system.

 Scheduling service is one of the basic services in the OSEK-compatible operating systems.
Time services for the scheduling can be directly applied for the time monitoring.

 As discussed in Subsection 9.3.2.2, for the space portioning service all the untrusted OS-
objects are associated with a look-up table in the OS for the space partition services. If this
table can be extended with the timing parameter, they can be monitored by the OS as well.

In the following, a few terms used to discuss the runtime monitoring in operating system will be
briefly explained:

Execution Time As depicted in Figure 9-20, the execution time refers to the time, an OS-object
spends in the RUNNING state (task state as defined in OSEK OS 2.1
[OSK05]) without entering the SUSPENDED or WAITING state. For ISRs it is
the time from the first to the last instruction. For Tasks/ISRs it excludes all
preemptions due to higher priority tasks/ISRs executing in preference. The
execution time includes the time spent in the error, pretask and posttask hooks
and the time spent making OS service calls.

Deadline monitoring of Task B

Deadline monitoring of Task A

Task A

Task B

Task A

Task B

Inter -arrival Rate

Task B

Task A

Task B

Task A

Task B

Response Time

Inter -arrival Rate

Task B

Execution Time

Deadline monitoring of Task B

Deadline monitoring of Task A

Task A

Task B

Task A

Task B

Inter -arrival Rate

Task B

Task A

Task B

Task A

Task B

Response Time

Inter -arrival Rate

Task B

Execution Time

Task A

Task B

Task A

Task B

Inter -arrival Rate

Task B

Task A

Task B

Task A

Task B

Response Time

Inter -arrival Rate

Task B

Execution Time

Figure 9-20: Definition of task execution time

Software platform for the Integrated Safety Systems

152

Execution Time
Budget

Maximum permitted execution time of an OS OS-object. Typically, this will be
the worst case execution time (WCET) of a Task/ISR. For tasks the WCET
budget counter is suspended if the task enters the WAITING or SUSPENDED
state, and continued after the task is in READY state again.

Protection Error Systematic error in the software of an OS-Application.

 Memory access violation: A protection error caused by access to an
address in a manner for which no access right exists.

 Timing fault: A protection error that violates the timing protection.

In Figure 9-20, the constraints of the traditional approach of deadline monitoring in OSEKtime
([OSK01] and [HRK00]) is shown. The task B could violate the deadline, because task A, was e.g.
executed too often and preempts the task B. In such a situation, the deadline monitoring based on
WCET of task A will not report any error, while the task B, which is running properly, will be
identified as faulty by the deadline monitoring. To solve such a problem, it is more reasonable to
monitor the task execution time according to the preconfigured execution time budget as defined
above to discover the real faulty task. Similar as designed in the OSEKtime, an OS interrupt can be
triggered to report the timing fault for further fault treatment.

9.3.2.3.2 Run-time monitoring with Software Watchdog

Again as depicted in Figure 9-20, with execution time monitoring, faulty tasks, which take too much
system resource of computation time can be detected. But as demonstrated in the example, if the
task A has a priority high enough, it can preempt/block other tasks with the same or lower priority.
Each time when the task A is executed, it fulfils its own requirement of task execution time, while
keeping other tasks fail to reach the deadline. The faulty task A, even if it is executed much more
often than normal, could stay undetected with task execution time monitoring. In the worst case,
task B with lower priority can theoretically never report error with execution time monitoring but
never finishes it job.

As discussed in Figure 9-17 of Subsection 9.3.2.2, tasks can be made up of runnables from
different applications. So far the granularity of fault detection on the layer of task is the deadline
monitoring and execution time monitoring, which are not fine enough for fault detection of
runnables. As two sides of a coin, we could use a dedicated dependability software service to
monitor the execution frequency of a runnable with aliveness indication to guarantee that the
runnable is still running but not executed too often. In order to reduce the complexity and save the
computation overhead, not all the runnables should be monitored, we can choose the runnables
from the critical program flow in the following aspects

 Input signals collection

 Preparation of input data signals

 Signal processing and evaluation/plausibilisation of the results

 Control of the actuators

Software platform for the Integrated Safety Systems

153

as the monitored objects. As mentioned above, usually these runnables are also mapped to tasks
with higher priority.

Time partitioning also includes the correct logical control flow of applications, which is highly
recommended in [ISO26] Table 6.5 for ASIL-D. As shown in Figure 9-21, in the faulty situation
runnable R2 is branched. In case of a permanent branch fault, the aliveness fault of R2 can be
detected by the aliveness monitoring of the runnable but it can be detected sooner with a runnable
control flow monitoring. The control flow error might be detected with the execution time monitoring
or deadline monitoring, but only to a much later time point.

R1

R2

R3

R4

Runnables are the smallest
schedulable/mappable
entities.

R1

R2

R3

R4

Runnables are the smallest
schedulable/mappable
entities.

R1

R2

R3

R4

Illegal branch

R1

R2

R3

R4

R1

R2

R3

R4

Illegal branch

Figure 9-21: Control flow check of runnables

In the field of control flow checking, a lot of research has been carried out in the IT-industry to
check the correctness of program flow. Most of the current methods of control flow checking are
based on assigning signatures to blocks as introduced in [Nah02]. Such a technique suffers from
high performance overhead and low flexibility with regard to modification of programs.

Software Watchdog here is supposed to ensure the real-time characteristics of the system as an
extension to the hardware watchdog mentioned in Chapter 8 to face the challenges of increasing
density of application SW-Cs. The following functionalities are planned to be implemented within
the framework of the SW-Watchdog service:

 Monitoring the heartbeat of individual runnables including aliveness and arrival rate
monitoring.

 Detecting control flow errors: control flow errors are unexpected changes in the sequence
of instructions executed by the main processor. Taking the complexity into consideration,
only the execution sequences of runnables are supervised by the SW-Watchdog.

 Gathering the detected error information from the two above mentioned services, compare
the number of the detected errors to the threshold and derivate error indication states of the
tasks and send them to fault treatment.

The interactions between the SW-Watchdog service and its runtime environment are specified as
following. The dependability software architecture specified in Subsection 9.2 represents the
environment, where the SW-Watchdog service is embedded and integrated. The major
information, such as heartbeats and execution information of runnables will be sent to the SW-

Software platform for the Integrated Safety Systems

154

Watchdog through Common/Domain-specific and ISS interface. And the error report from SW-
Watchdog to Fault Management Framework (FMF) will be specified by FMF standard interface

In the following the functional structure of SW-Watchdog is specified in three basic blocks:

 Heartbeat monitoring: With the help of the heartbeat indication routine, runnables send their
heartbeats to the SW-Watchdog. SW-watchdog supervises those heartbeats and checks if
runnables are executed frequently enough (aliveness monitoring) or if they are executed
too frequently (arrival rate monitoring).

 Control flow checking (CFC): The control flow checking service monitors the execution
sequence of runnables by comparing real executed successors with the possible successor
set of the predecessors.

 Task State Indication Unit (TSIU): To provide a proper tolerance of the errors detected in
the upper two blocks, they should be sent to the TSIU. And TSIU should compare the
number of the detected errors to the threshold and derivate error indication states of the
tasks and send them to FMF.

The Figure 9-22 shows the functional structure of the SW-Watchdog.

Figure 9-22: Different units constituting the SW-Watchdog service

Software platform for the Integrated Safety Systems

155

In the following sections the functionalities of SW-Watchdog will be introduced in more details.

Heartbeat Monitoring

In order to setup Heartbeat Monitoring the attributes of each monitored runnable must be provided
at the configuration phase. The attributes in this context means parameters, which describes the
boundary of the correct execution. There are five parameters required, as listed in Table 9-16.

Parameters Description

m Minimal number of expected heartbeats within n cycles

n Predefined number of monitoring cycles in the fault assumption for aliveness
monitoring

p Maximal number of expected heartbeats within q cycles

q Predefined number of monitoring cycles in the fault assumption for arrival rate
monitoring

runnableID ID of runnable.

Table 9-16: Parameters for runnable in Heartbeat Monitoring

After specifying the parameters of a runnable, on the side of SW-Watchdog some data resource
for the monitoring are required too, as listed in Table 9-17.

Data resource Description

AC Aliveness Counter, track the aliveness of monitored runnable

CCA Cycle Counter for Aliveness, record the monitored cycles of aliveness

ARC Arrival Rate Counter, track the arrival rate of monitored runnable

CCAR Cycle Counter for Arrival Rate, record the monitored cycles of arrival rate

Table 9-17: Data resource for runnable in Heartbeat Monitoring

The interactions between the current runnable and heartbeat monitoring are implemented through
heartbeats. Heartbeat will be sent, when the runnable is executed. After the heartbeat arrives in
heartbeat monitoring, the data resource, such as AC and ARC, will be updated or in other words
incremented by one.

On the other side Heartbeat Monitoring will update their own counters (e.g. CCA and CCAR) at the
beginning of each monitoring cycle. It must be ensured that the monitoring cycle is independent
from the cycle, of which aliveness is sent, and within one monitoring cycle all monitored runnables
will be checked against their predefined boundary. According to the fault assumption two services
must be implemented: Aliveness Monitoring and Arrival Rate Monitoring. Aliveness Monitoring

Software platform for the Integrated Safety Systems

156

checks, whether the runnable is out of its lower limit m, at the same time Arrival Rate Monitoring
checks the upper limit p of runnable. Once the faulty runnable is detected, the ID of the faulty
runnable will be reported to TSIU.

The last step of the monitoring is to decide, whether the counters (e.g. AC and CCA, ARC and
CCAR) are needed to be reset. At the Aliveness Monitoring AC and CCA will be reset, when the
predefined number of monitoring cycles has expired. Arrival Rate Monitoring is slightly different,
the ARC and CCAR should be reset at the end of each cycle, if a fault of the arrival rate monitoring
is determined at the end of this cycle. The following figures show how Aliveness Monitoring and
Arrival Rate Monitoring work.

ad Aliveness monitoring

Aliveness monitoring

Update CCA

1

Check the
aliveness

2

Report error to TSIU

End of
aliveness
monitoring

n(CCA) :=0;
n(AC):=0;

Start of the aliveness monitoring for
one runnable

End of the aliveness monitoring for
one runnable

AC: Aliveness Counter
CCA: Cycle Counter for Aliveness
n(AC): Value of Aliveness Counter
n(CCA): Value of Cycle Counter for Aliveness
m: Minimal number of expected heartbeats

within n cycles
n: Predefined number of monitoring cycles

in the fault assumption for aliveness
monitoring

[n(AC) >=m]

[n(AC) < m]
[n(CCA) != n]

[n(CCA) = n]

Figure 9-23: Activity diagram for Aliveness Monitoring

As demonstrated in Figure 9-23, after starting aliveness monitoring for one runnable, the CCA will
be incremented by one, then we will compare CCA with predefined number of monitoring cycle n
(see condition 1 depicted in Figure 9-23 as ◊1). If CCA is not equal n, aliveness monitoring for one
runnable will be ended. In the case that CCA and n are equal, we will check the aliveness counter
AC of the runnable (see condition 2 in Figure 9-23), whether it reached the minimal number of
expected heartbeat m. If the expected heartbeat is not reached, an aliveness monitoring error will
be reported to FMF. Before end of aliveness monitoring CCA and AC will be reset to zero.

Software platform for the Integrated Safety Systems

157

ad Arrival Rate Monitoring

Arrival rate monitoring

Update CCAR

3

Check the
arrival rate

Report error to
TSIU

End of arrival
rate

monitoirng

4

n(CCAR) := 0;
n(ARC) :=0;

ARC: Arrival Rate Counter
CCAR: Cycle Counter for Arrival Rate
n(ARC): Value of Arrival Rate Counter
n(CCAR): Value of Cycle Counter for Arrival Rate
p: Maximal number of expected heartbeats

within q cycles
q: Predefined number of monitoring cycles

in the fault assumption for arrival rate
monitoring

Start of the arrival rate monitoring for
one runnable

End of the arrival rate monitoring for
one runnable

[n(CCAR) != q]

[n(CCAR) =q]

[n(ARC) <= p][n(ARC) > p]

Figure 9-24: Activity diagram for Arrival Rate Monitoring

The design of Arrival Rate Monitoring is slightly different compared to the design of Aliveness
Monitoring, as depicted in Figure 9-24. The first step of Arrival Rate Monitoring is also to update
the cycle counter CCAR, but CCAR will not directly compare with predefined number of monitoring
cycle q. We will check first the arrival rate counter ARC, whether it is greater than the maximal
expected heartbeats p. In the case that ARC is greater than p, an error of arrival rate monitoring
will be reported to TSIU. In other case if ARC equals or is smaller than p, another comparison,
CCAR with predefined monitoring cycle q, will be carried out. If CCAR is equal to q, CCAR and
ARC will be reset to zero. Otherwise arrival rate monitoring will be ended.

To demonstrate the concept and algorithms of Heartbeat Monitoring, an example will be given
here. For a better overview, this example only demonstrates the supervision of one runnable.

For this runnable the fault assumption is:

 There are less than 2 heartbeats from the monitored runnable in 3 monitoring cycles, m=2,
n=3.

 There are more than 3 heartbeats from the monitored runnable within 2 monitoring cycles,
p=3, q=2.

Software platform for the Integrated Safety Systems

158

Therefore, the examination terms of the heartbeat monitoring are:

2)(≥ACn if 3)(=CCAn

3)(≤ARCn for all 2...1)(=CCARn

Figure 9-25: Example of Heartbeat Monitoring

In the simple example of heartbeat monitoring in Figure 9-25, it is assumed that all the counters
have the initial value 0 at the beginning of the selected monitoring period. The work of SW-
Watchdog in the following 9 cycles, is explained in detail:

 Cycle 1 to cycle 4, and cycle 8 to 9: There are no missing and unexpected heartbeats.

 Checking criterion fulfilled. AC and CCA are reset at each 3 cycles, while ARC and
CCAR are reset at each 2 cycles.

 Cycle 5: there is a missing heartbeat in this cycle, since the value of CCA has not yet
reached 3.

 No fault is detected and AC retains its current value.

 Cycle 6: There is only one heartbeat in cycle 4, 5 and 6. And the value of CCA reaches 3 at
the end of cycle 6.

 A fault in the aliveness monitoring is reported, because CCA reaches 3 while AC=1,
CCA and AC are reset at the end of cycle 6,

Software platform for the Integrated Safety Systems

159

 Cycle 2, 4 and 6: When CCAR reaches 2 (defined as q=2)

 CCAR and ARC are reset. The ARC are checked at each cycles (yellow arrows), while
the reset is only executed at each 2 cycles if no fault is found.

 Cycle 7: More than 3 aliveness indications are sent by the runnable.

 ARC is over 3 and a fault is detected. ARC and CCAR are reset to their initial value 0.

Control Flow Checking

Another service provided by SW-Watchdog is Control Flow Checking. In comparison to traditional
definition of Control Flow Checking in IT, which controls the correct execution of computer
programs, here we only focus on the correct execution sequence of runnables in critical tasks.
Before describing the internal mechanism of Control Flow Checking, some information about
runnables contained within the critical task, must be prepared at configuration phase, as listed in
Table 9-18.

Parameters Description

successorTable Table of runnable ID, which specify all possible successors belonged to
the critical runnable.

Table 9-18: Parameters for runnable in Control Flow Checking

For each safety-critical task, Control Flow Checking will provide a predecessor indicator to record
the last executed runnable of this task, so that the type of predecessor indicator must be the same
type as runnable ID. Once a critical runnable moves into the running state, it will notify SW-
Watchdog by using its service checkControlFlow. After that Control Flow Checking will examine
whether the current runnable belongs to the possible successor set of last executed runnable. If
the current runnable is not a possible successor, an error will be reported to Task State Indication
Unit by using the service reportError, as depicted in Figure 9-26. After checking the control flow the
predecessor indicator will be updated with the current runnable.

Software platform for the Integrated Safety Systems

160

sd Control Flow Checking

Control Flow
Checking

Runnable TSIU

checkControlFlow(runnableID)

predecessor:= getPredecessor(taskID)

successorTable:= getSuccessorTable(predecessor)

result:= hasSuccessor(runnableID, successorTable)

[not a possible successor]: reportError(CFC, runnableID)

setPredecessor(runnableID)

Figure 9-26: Sequence diagram for Control Flow Checking

Task State Indication Unit

The Task State Indication Unit must provide two vectors for each critical task, a condition vector
and an error indication vector. The condition vector contains predefined bounds for each sort of
error and it should be specified at the configuration phase. The error indication vectors are
designed to record the results reported by heartbeat monitoring and control flow checking of a
certain task. Each error indication vector contains three elements. The first element is the number
of detected aliveness errors. It is the sum of the aliveness errors detected by the aliveness
monitoring. Likewise, the second and third element should be the number of arrival rate errors and
control flow errors. The determination of error indication state of a task is based on comparisons of
condition vector with error indication vector. The two vectors are depicted in Table 9-19.

Name 1st element 2nd Element 3rd Element

conditionVector Max. errors of
Aliveness Monitoring

Max. errors of Arrival
Rate Monitoring

Max. errors of Control
Flow Checking

errorIndicationVector Errors of Aliveness
Monitoring

Errors of Arrival Rate
Monitoring

Errors of Control Flow
Checking

Table 9-19: Two vectors of TSIU

Once an error of one runnable in a task is reported, one element of error indication vector should
be incremented depended on the error type, then the error indication vector will be compared with

Software platform for the Integrated Safety Systems

161

the condition vector of the same task. As long as one element of indication vector is greater than
the one in condition vector, the error indication state of the task will be set to “faulty”, and the
faulty state will be sent to FMF by using service indicateTaskState. Since the state “faulty” is
already sent to the FMF, the error indication vector must be reset to zero, in order to record new
error for the following supervision, as depicted in Figure 9-27.

sd reportError (TSI)

Heartbeat Monitoring
or Control Flow

Checking

Task State
Indication Unit

(TSIU)

Fault
Management

Framework (FMF)

reportError(errorType, runnableID)

conditionVector:= getConditionVector(taskID)

errorIndicationVector:= getErrorIndicationVector(taskID)

updateEIV(errorType, errorIndicationVector)

[one element of EIV is greater than conditionVector]:
indicateTaskState(taskID, faulty)

[one element of EIV is greater than conditionVector]:
resetEIV(errorIndicationVector)

Figure 9-27: Sequence diagram for TSIU

Configuration of SW-Watchdog

In order to setup the SW-Watchdog a few parameters of SW-Watchdog must be specified at the
configuration phase. Based on their application scopes, they can be split mainly into three
categories.

 The first category contains the information about configuration of the Heartbeat Monitoring
for each monitored runnable. The parameters m and p give the low limit and upper limit of
heartbeats within predefined monitoring cycles (e.g. n and q), and this information should
be provided by application designer. Another basic information is runnableID, which is
unique in the whole system and consists of ID of the task, ID of the application and ID of
runnable it self. Thus the runnableID will not be given by the application designer; it should
be generated automatically by design tools.

 The second category contains the information about configuration of the Control Flow
Checking. For Control Flow Checking each critical runnable should have a successorTable,
which describes all the possible successors of the critical runnable. Since a runnable does
not know its successors, until the mapping process of runnable on the task is finished, this
information should also be generated automatically and provided by design tools.

Software platform for the Integrated Safety Systems

162

 The last category is configuration of Task State Indication Unit (TSIU). For each task the
conditionVector must be defined, which gives the bound of maximal tolerant faults. This
bound is mostly depending on specific application design and system requirement, thus this
parameter must be specified by the application designer.

As a summary to the Subsection 9.3.2.3, time partitioning services as OS with MPU, Protected
Application service and SW-Watchdog service will improve on one side the system dependability
with runtime monitoring. On the other side, from the view of a system integrator, they also
contribute to locate and analyze the error at the system integration of functions from different
suppliers, e.g. they can help OEM to determine the supplier that is actually responsible for the
malfunction.

9.3.3 Dependability services of fault treatment

In the last subsections we discussed quite a few dependability software services for the individual
monitoring and fault detection of application SW-Cs. Again with increasing intensity of application
SW-Cs, it is required to gather these fault detection information, to management and filter out the
safety relevant information. Thus an application wide system state can be pictured and an
application wide coordinated fault treatment can be carried out.

9.3.3.1 Fault Management Framework

Functional design

The FMF ([FMF06] and [EiK07]) was designed for fault detection and subsequent compensation or
recovery. This later aspect includes fault management (identify fault scenario) and fault treatment
(identify and conduct fault mitigation strategy). Further on, a logging service was integrated into the
FMF. All these aspects are described briefly in the following:

 Fault detection: Generally speaking, fault detection is often highly application specific,
however, generic fault detection services (e.g. Software Watchdog) can be provided by the
ISS framework. Here the task of the FMF is to handle faults and errors reported by the
Software Watchdog.

 Fault management: Similar to fault detection, fault management is often application specific
as well, but the FMF can offer some generic fault management mechanisms so that the
handling of faults can be separated from the nominal task and the application programmer
can concentrate on the application. Hereby the FMF provides general services allowing for
applications (as well as the dependable software platform in Subsection 9.2) to obtain a
consistent and global view of the fault state of the ECU as well as of individual applications
on the ECU. This information can be used for isolation and diagnosis purposes as well as
to make decisions on appropriate recovery strategies.

 Fault treatment: Based on predefined patterns from the application developers and system
integrators, the FMF can combine these local (or even distributed) fault detections to derive
a global view of the fault state of the ECU and the applications. Based on this global view,
recovery actions could be initiated according to predefined principles. The fault-treatment
measures are statically defined by the application developers and system integrators, since

Software platform for the Integrated Safety Systems

163

a deterministic fault tolerant behavior is desired for the safety applications. Such a design
brings also the constraints that only faults, which are considered in the fault hypothesis in
the design phase, can be treated during runtime, since the fault tolerant system can only
tolerate the faults which were considered in the design. Transient faults (e.g. transient
faults from EMV) should be filtered by the FMF when the application functionalities are not
affected.

 Logging service: It is also important to store appropriate information (“Logging”) concerning
the various faults and actions for later use in, e.g., workshops, so as to enable off-line
analysis leading to fault assessment and repair, and maybe even future prevention.

In order to achieve these functionalities as discussed above, the FMF was structured into four
functional units as can be seen from Figure 9-28 [FMF06].

Figure 9-28: Fault Management Framework Structure

9.3.3.1.1 Fault State Manager

FSM is the core of the FMF since it receives the error reported from the software component and
dispatches events to other units and software components. The FSM also manages the state of
each error: present, confirmed, memorized and any combination of the three. The FSM performs
error filtering, detection of error combinations, error event dispatching and distribution of error
information through its four sub units.

Software platform for the Integrated Safety Systems

164

Legend

FSM

Error ID map
SWCA

Event dispatcher
unit

Error instance 1

Error instance 2

Error instance 3

...

Combiner unit Filtering
unit

ID1

SWCB

ID2

ID3

ID4

ID5

...

ID1

ID2

ID3

ID4

ID5

ID1

ID2

Error produced by the SWC

Error consumed by the SWC

FSM processing unit

General error instance

Combined error instance

Communication
unit

Figure 9-29: FSM structure and ID mapping

As depicted in Figure 9-29, each SW-C could have two kinds of interactions with the FSM:

 They can report error status to the FSM, those errors are called produced errors

 They can read the status of error from the FSM, those errors are called consumed errors

The mapping between the errors IDs used by the SW-Cs and the error instances is defined in the
FSM configuration. This mapping allows reducing the coupling between SW-Cs, therefore enables
a more flexible software architecture.

1. The filtering unit handles the filtering algorithms (e.g. counter filter or sliding window based a
stability filter)

2. The combiner unit is responsible for managing combined error instances. When an error is
reported by a SW-C, the corresponding mechanism for combined errors is the evaluation of its
logical expression. The evaluation of combined errors must respect the following rules:

 A combined error has to be evaluated each time one of the error instances or its
reference is updated (e.g. consecutively to a report or time based filtering), and during
the same processing session.

 A combined error is evaluated only once per execution cycle.

The evaluation of a combined error instance also includes its update, so the first rule implies that
each time an error instance is updated, all combined errors, which depend on it directly or
indirectly, have to be evaluated during the same execution cycle. This means that any update can
trigger a chain of evaluation of combiner errors. The combiner handles those chained evaluations
as following:

 Each time when an error instance is updated outside the combiner, the combiner is
notified of the update and marks all the dependent combined errors as pending.

 At the end of an execution cycle, just before running the event manager, the combiner
is called / run to evaluate all the pending combined errors, clearing the pending flag at
each evaluation.

Software platform for the Integrated Safety Systems

165

3. The event dispatcher in FSM as shown in Figure 9-30 is responsible for dispatching error
events to SW-Cs and other FMF services. A given error event is linked to its consumers
through event handlers, which define the notification mechanisms to be used and its
parameters. There are three main types of event handler:

 Synchronous event handlers which treat the event in the same execution cycle the
event is detected. One example mechanism is a callback function which is called each
time the event is dispatched.

 Asynchronous event handlers which are notified of the event but do not treat it in an
error processing session. One example mechanism is to increase a counter to signal
that the event has occurred.

 Supervision event handler: this is a special synchronous event handler dedicated for
supervision, there can only be one such handler in the FSM event dispatcher. Its role is
to run the Supervision’s own scheduler which dispatches itself the events to its Fault
Treatment Units.

Similar as the combiner unit, the event dispatcher uses a delayed execution/dispatching
pattern:

 Each time the confirmed status of an error instance changes, the dispatcher is notified
of the event and it marks the event and its associated handlers as pending.

 At the end of a processing session the dispatcher will be executed, e.g. it notifies all
pending handlers and after that clears all the pending flags. In this way, event handlers
which are activated during a given session can be triggered in the correct order.

N
ot

ify
in

g
or

de
r

Figure 9-30: Event dispatcher example

4. The communication unit is responsible for distributing error information between the ECU local
FMFs for a system wide distributed fault treatment.

One of the aims of FMF is to manage the application wide coordinated fault treatment. Since
the application SW-C can be mapped to different ECUS, the FMF should be distributed as well
with each ECU runs its own local copy FMF. This means that there is no central fault
management ECU. The FMF provides a mechanism to distribute error information. The FMF
also allows the deployment of local and system fault treatment strategies through its
Supervision and Reconfiguration units.

Software platform for the Integrated Safety Systems

166

Figure 9-31: HW/SW mapping of the FMF

As depicted in Figure 9-31, there are two levels of communication in the FMF:

 Local level: communications between the SW-C and the local FMF

 System level: communications between different local FMFs

The two levels are kept separated, this means in particular that error information is never sent
by a SW-C to a remote FMF, and it should always go through the local FMF instead.

For its inter ECU communication, the FMF relies on the COM-services. The communication
requirements are divided in two categories:

 The requirements for error information distribution: the bandwidth requirements mostly
depend on the number of system level errors, the timing requirement for each error and
communication protocol used. For example the use of Agreement Protocol may require
a higher bandwidth.

 The requirements for system fault treatment strategies: the strategies are completely up
to the application / system designer and so are their communication requirements.

In order to avoid a modification on one ECU to impact the FMF instances on all the other
ECUs, error identification is always local to an identifier space. Each local FMF has its own
local identifier space to communicate with local SW-C, and there is one system identification
space as shown in Figure 9-31. The identifier spaces are kept separated, so that the error
identifiers of one space are not visible from the other space. The mapping between the
identifier spaces is defined by the local FMF configuration. A local FMF only has the visibility on
its local identifier space and the system identifier space, therefore it is not possible to map
directly two local identifier spaces, and they must be linked through the system identifier space.

To clearly differentiate the local identifier spaces from the system identifier space, the FMF
uses different error ID types:

 System level error identification: it is based on global identifiers which are used to
identify an error uniquely within the system. Contrary to the local IDs, global IDs are not
visible from the software component as they are defined internally in the FMF
configuration.

Software platform for the Integrated Safety Systems

167

 ECU level error identification: local identifiers are the only ones to be directly visible by
the software components. Those local identifiers enable the local FMF to identify errors
uniquely within the ECU.

9.3.3.1.2 Supervision Unit

The role of Supervision Unit is to supervise the execution of the fault treatment units. An FTU
(Fault Treatment Unit as depicted in Figure 9-32) can be a sub module of a SW-C, or a completely
standalone service, but it is managed / executed only by the Supervision Unit, and for that purpose
it must have a special interface. Contrary to other SW-Cs, the FTUs can access the FMF
reconfiguration services.

The entity responsible for managing the FTUs is the supervision scheduler. It processes error
events (from the FSM), system events (startup, timer, etc.) and dispatches them to the FTUs.

The last important entity of supervision is the reset manager. The reset manager allows the FTUs
to make a reset request or inhibit reset requests.

Figure 9-32: Overview of supervision

Supervision scheduler

The supervision scheduler has a similar role as the OS scheduler. The main difference is that
where the OS manages the execution of tasks, the supervision scheduler manages the execution
of the FTUs event handlers. Also the supervision scheduler forbids reentrancy. This centralization
of the execution of the FTUs allows having a better control over the coherency and determinism of
the integration of the different fault treatment strategies.

Software platform for the Integrated Safety Systems

168

Fault Treatment Unit

The FTUs implement the fault treatment strategies. An FTU is actually implemented by the
application programmer but it has specific characteristics which differentiate it from an App.SW-C.
First an FTU can access the reconfiguration services and the reset manager. Secondly an FTU
can only be executed through its event handlers and by the supervision scheduler. Even though
the content of an FTU is application dependant, FTUs can be divided in two categories:

 Local FTUs which only interact with SW-Cs and FTUs located on the same ECU.

 System FTUs which also interact with system FTUs located on other ECUs.

9.3.3.1.3 Reconfiguration Unit

The role of the Reconfiguration Unit is to provide mechanisms to reconfigure functions, runnables
and tasks of the ECU. Functions can be activated or deactivated while tasks can additionally be
restarted. The services provided by this unit can only be used directly by the Supervision Unit.
More details about reconfiguration can be found in Subsection 9.3.3.2.

9.3.3.1.4 Logging Unit

The logging unit is responsible for storing errors and freezing associated frame data in the non
volatile memory, which is especially useful for later fault removal and system recovery after the
ECU restart. The logging unit interacts with the following software services: the non volatile
memory manager, the diagnosis and calibration service.

9.3.3.2 Fault treatment with dynamic configuration

Compared with the IT-Industry, where the dynamic reconfiguration is already a common practice
for the system recovery and update, state of the art in the embedded in-vehicle electronics is still a
statically configured system. There are various reasons for that [DyR96]:

 As its name implies, embedded electronics are embedded together with the hardware.
Once a system is embedded, there might be no reason to change or update it.

 In the embedded system, resources such as processor power and memory are relative
limited.

 Safety relevant systems usually require hard real-time requirement. Reconfiguration,
instead, can require more than time than allowed.

 A deterministic behavior rather than a dynamic configuration is vital for the safety relevant
applications.

As have mentioned in Subsection 3.4.4, the same evolution in the IT-Industry will take place in the
automotive embedded electronic, where the reconfiguration will be a more and more important
topic. The motivation and scope of the dynamic reconfiguration in automotive electronics, however,
are quite different to the IT-industry:

Software platform for the Integrated Safety Systems

169

 Enabling technologies such as common software architecture, model-based software
design and component-based software services (esp. support from RTOS) are becoming
mature technologies.

 Product platform strategy: It is possible for an entire product line to use the same software
core, perhaps stored as a library in an EPROM. Based on the hardware configuration and
desired functionality, the software can easily be band-end configured for each individual
product model. This eliminates the need to develop and maintain separate software for
each different product, esp. for the automotive supplier, dynamic reconfiguration is
becoming more and more interesting to support different vehicle models on the same
platform of one OEM or even for different OEMs.

 More availability with dynamic reconfiguration and fail-degradation: State of the art in the in-
vehicle safety system is fail-safe and fail-silent. As introduced in Subsection 2.1,
dependability is a balance of different aspects. In order to improve the availability while
keeping the system safe as a trade-off, dynamic reconfiguration with fail-degradation is a
proven approach, esp. for semi-X-by-Wire application.

 Remote upgrades and maintenance: Compared with the life cycle of 4 to 8 years of
traditional pure mechanical vehicles, the life cycle of electronics of 1-3 years is much
shorter [McK05]. “Patches” can be downloaded / updated to the customer to fix the bugs
and introduce more features/extensions.

It is clear that only systems which consist of several components can be reconfigured; these
components can be hardware or software. Also it is clear that reconfiguration requires some kind
of redundancy, which is not an identical ECU in every case, but it can be any kind of hardware or
software unit that can, at least partly, take over the duty of the faulty unit.

A reconfiguration in software usually changes the flow of information between the components
and/or changes the purpose of components. With these actions the functional mapping is
redefined for some or all components. The aim of the reconfiguration is a system that consists only
of error-free components and that exhibits the maximum of functionality possible (fail-degradation).

Reconfiguration can be static or dynamic. Static reconfiguration appears in the development phase
of a system, dynamic reconfiguration occurs during runtime. The reconfiguration mentioned here
refers mainly to the dynamic reconfiguration in software, which contributes to the fault tolerance,
but does not address fault repairing. Dynamic reconfiguration defined in [IEC07] C3.13 “remapping
the logical architecture back onto the restricted resources left functioning” with “run-time
redundancy” is not recommended for ASIL-C and ASL-D applications according to [IEC03] Table
A.2 about software architecture design, thus dynamic reconfiguration with resource reallocation is
not in the scope of work here.

Software platform for the Integrated Safety Systems

170

Two types of events can trigger a dynamic reconfiguration for the fault tolerance:

1. The occurrence of a fault causing an error
2. The disappearance of an error in a component.

In the first case three actions have to take place:

 The fault has to be detected and confirmed.
 The fault has to be confined.
 The functionality has to be taken over by another component. If the functionality of the

erroneous component is not replaced completely then the system operates in a degraded
mode (graceful degradation). The functionality of the erroneous component can be taken
over by a redundant component or another component that changes its purpose for this
action.

The premise for the second case is that an error recovery has taken place. After the
disappearance of the error within the component two steps may occur:

 The component is reintegrated in the system.
 The component takes over its original functionality

The reintegration of repaired components could enhance the survival probability of the system
significantly.

In general, two technical implementations are possible:

 Redundant components: Two or more components with the same functionality are installed
in a cold- or hot-stand-by manner. When an error is detected in one component, this
component is disabled and one of the remaining components takes over its duty. Fail-silent
components disable themselves, non-fail-silent components must be disabled by a
supervisor. In a cold-standby system this supervisor is also responsible for activating the
redundant component.

 Components that can change their purpose (functional alternatives [SCK04]): In case of an
error in one component the functionality is relocated to another component. The component
that takes over the functionality does not execute its original function anymore. This is only
an appropriate solution for control components that are not connected to special hardware.
There are already prototypes in the telematics domain of the function relocation, e.g. when
the on-board display of navigation system fails to work, an enhanced audio navigation
assistant can be switched on to provide the driver a degraded navigation service. In an
automotive safety electronics, however, it will be a challenging task to undertake the
relocation in real-time. One example for these technical realizations could be that the
control of a SafeSteering can take over part of stabilizing functionalities by providing more
dynamic inference with steering when the braking management System goes to a degraded
mode due to an error.

After having discussed about the constraints and guidelines about dynamic reconfiguration, in the
following concrete functional design of dynamic reconfiguration will be given:

Software platform for the Integrated Safety Systems

171

The requirements of deterministic behavior and dynamic reconfiguration seem to be contradictive
at the first glance. But a closer look shows that a system that is reconfigured during runtime can
still be deterministic. The reason for this is that we have a fault hypothesis containing errors to be
tolerated. Thus we know which errors can occur and can therefore define statically how the FMF
should react to the errors. We can define e.g. several schedules or configurations which based on
the detected errors are switched on the fly (see Figure 9-33).

Figure 9-33: Mapping of Errors to Configurations

Based on the mapping concepts shown in Figure 9-33, dynamic reconfiguration can be divided into

 Function/runnable level: passivation or termination of faulty functions/runnables
 Task level: passivation or termination of faulty tasks
 Application level: passivation or termination of faulty application on the same ECUs or

applications distributed on remote ECUs.
 ECU level: hardware reset of ECUs.

In order to perform the above reconfigurations, the OSEK-compatible OS as specified in
Subsection 9.3.2.3.1 should be extended with the following functions:

Kill OS-
Application

The operating system frees all system objects, e.g. kill tasks, disable
counters and interrupts, etc., which are associated to the OS-Application.
OS-Application (refer to Subsection 9.3.2.3.1 for detailed information) and
internal variables are potentially left in an undefined state.

Kill OS-Object The OS terminates an OS-Object (e.g. task or ISR) and releases all its
held OSEK resources and re-enables all interrupts disabled by it.

Stop an OS-
Application

Activate a task in the OS-Application and allow this task to stop (in a
consistent manner) activities of the OS-Application.

(Re-) Start an
OS-Application

An OS-Application is restarted after the self-termination (or being killed by
the OS because of a protection error). If the OS activates the OS-
Application it uses the configured restart task.

Software platform for the Integrated Safety Systems

172

Function/runnable level reconfiguration

Function level reconfiguration is an indirect reconfiguration mechanism; it means that the FMF
does not act directly on the function but provides the information whether the function should be
activated or not. The term function is used here in an abstract way, it could be a runnable or any
other element which can be activated or deactivated. The function level reconfiguration keeps track
of certain events that have occurred which should prevent a function from being executed. For
example, if a sensor signal is missing or faulty a function using this value should not be executed.
The reconfiguration service will govern the status regarding whether a function is allowed to run or
not, but it is the responsibility of the application to check the status before calling the function. In
case the function is inhibited, the application may choose some backup strategy but this does not
concern the FMF.

To manage the inhibition status an inhibition mask is used where bit X indicates whether event X
has occurred or not. This mask is then compared with the inhibition conditions that have been
specified for the function. These describe which event combinations that should cause the function
to be inhibited. The reconfiguration service gets the event notices from the supervision.

To enable function level reconfiguration the following properties must be specified for each
function:

 Function/runnable ID

 IDs of the events that should result in an update of the inhibition status

 Inhibition conditions

Task level reconfiguration

For task level reconfiguration the FMF offers the following possibilities:

 Termination of faulty tasks (and chained task) with help of OS

 Deactivation/Activation of tasks (and chained task) with help of OS

 Restart of a task, i.e. the init-function of the task is called.

Task level reconfiguration is more powerful than function level reconfiguration and requires support
from the OS. Moreover, since deactivating/activating tasks has a strong impact on the system
behavior, it is required that all activation patterns and tasks are known beforehand in order to
enable a dependability analysis. That is, all fault management strategies involving task
reconfiguration must be specified off-line and it is only the supervision that is entitled to issue such
reconfiguration commands.

Termination of faulty task (e.g. tasks, which violate the space and time partitioning, which have a
hazard to other safety relevant tasks) refers to an immediate reconfiguration to kill the running task
with OS. The resulted error-hook reports the error to the OS. OS terminates the task with
KillTask<TaskId> to free all the resource allocated by the faulty task. In case that the output of the
faulty task is awaited by the following task, the so-called chained task, and the following task
should be deactivated as well.

Tasks may be either time-triggered or event-triggered. Time-triggered tasks are activated solely by
the OS based on timer interrupts. Event-triggered tasks are activated by having an external entity
(e.g., another task) calling ActivateTask(<TaskId>). The external entity can also be an interrupt

Software platform for the Integrated Safety Systems

173

routine, e.g., associated with a timer. The task type affects how the deactivation/activation is to be
implemented by the reconfiguration service.

Deactivation of a task means that following invocations of the task will be disabled. However, if the
task is currently running it will be allowed to finish compared with task termination. The
deactivation involves modifying the timers for the task (if it is time-triggered) or disabling the
events/calls that trigger the task (if it is event-triggered). For safety reasons a running task may not
be killed by any other entity than itself or the OS. This is why the task deactivation activity does not
involve killing the task. It might, however, be necessary to kill a task that has become corrupted
and is, for example, stealing processing capacity from other tasks. Activation of a task means that
the events or timers that trigger the task are enabled again. Activation may also require
(re)initialization of the task, that is, the init-function of the task is called.

Restart of a task means that its init-function is called. Thus, each task must register their init-
functions as callbacks with the FMF.

One critical point is if a task responsible for the acquisition of sensor signal or give the commands
to actuator is involved in the task level reconfiguration, or if the output of the task is could block
some other chained tasks, a fail-safe mechanism should be provided to avoid deadlock or failure
propagation. During the reconfiguration, some callback function can be triggered by the error-hook
to provide the “service-not-available” or “inactive” information for the chained task consumer of the
task output. Another possible mechanism is to provide the consumers of the task output with time
out mechanisms or signal counter to switch into the fail-safe mode. Since the measures here are
most application specific, no detailed discussion will be given in this thesis.

Although it is the supervision that issues the reconfiguration commands, the reconfiguration
service keeps track of the current state in a manner similar to functional level reconfiguration. This
enables applications (or the rest of the FMF) to check whether or not a task is active.

Application level reconfiguration

Strictly speaking, the application level reconfiguration does not differentiate from the task level
reconfiguration significantly. As depicted in Figure 9-31, application, distributed on different ECUs
can be reconfigured with distributed FMF on each node. The pre-conditions for the application
level reconfiguration are the synchronized configured fault-treatment on the different nodes, which
requires a time-triggered communication system for the synchronization the reconfiguration and
enough bandwidth to meet the real-time requirements. A concrete design and prototyping of the
application level reconfiguration will be shown in Subsection 10.3.1.

ECU level reconfiguration

Suppose that one or some of the most safety relevant applications on one ECU are identified as
faulty, in this case, a reconfiguration to fail-degradation and fail-safe will be executed immediately.
If there is the need to heal the faulty ECU in the same drive cycle, the most direct and simple way
is to restart ECU. Since there are quite a few fault handling strategies linked with the ECU reset,
the reset demands should be arbitrated and performed with a few pre-conditions and pre-reset
procedures.

In FMF, the reset manager is responsible for arbitrating the reset demands and calling the
necessary system/OS service to perform a reset. Note that the arbitration between requests has to

Software platform for the Integrated Safety Systems

174

be defined in the reset manager configuration. In order to guarantee a deterministic manner also in
reset, the arbitration should be carried out with preconfigured look-up table or state-machine.

The reset manager is also responsible for keeping track of the reason why a reset occurred. The
reset manager provides the following services:

 FMF_RMInit: This service is called by the supervision scheduler during start-up.

 FMF_RMShutdown: service is called by the supervision scheduler during shutdown. It
takes as parameter the shutdown reason passed to FMF_Shutdown.

 FMF_RMGetResetStatus: This service may be called by any FTU at the start-up phase to
determine the cause the shutdown.

 FMF_RMRequestReset: This service may be used by any FTU to request a reset of the
ECU, for example for fault correction or reconfiguration purposes. A parameter identifies
the request in order to allow the reset manager to perform arbitration between different
multiple and maybe conflicting requests.

 FMF_RMInhibitReset: This service may be used by any FTU to ask the reset manager to
inhibit resets requested through the FMF_RMRequestReset service. A parameter identifies
the enable/disable request in order to allow the reset manager to perform arbitration
between different multiple and maybe conflicting requests.

9.3.4 Dependability software services for gateway

Gateway, as mentioned in Subsection 3.3 and Chapter 8 about hardware architecture, is
commonly applied to connect different in-vehicle domains and external of vehicles. The general
definition of gateway is a functional unit that interconnects two computer networks with different
network architectures, for the ISS-safety systems, gateway is an ECU, which receives, process,
save or forward data from one protocol to the other. Typical examples are ECUs, which process
the sensor data and forward the signal to other in-vehicle network nodes or forwarding signals from
one in-vehicle communication network to the other, e.g. LIN to CAN, CAN to FlexRay, Cabin-CAN
to chassis/powertrain CAN, etc.

The ISS gateway services as depicted in Subsection 9.2 are summarized as following [GTS06]:

 Routing Service

 Network Address Translation: The Network Address Translation Service allows the
mapping of addresses from one domain to addresses of the other domain.

 Communication Service with security and integrity

 Firewall Service

o Authentication Service

o Cryptography Service

o Access Control List

As AUTOSAR provides basic inter-domain communication mechanisms, the AUTOSAR SW-
architecture, incl. the AUTOSAR PDU Router for the routing between different networks, is taken
as a basis for the gateway services discussed here.

Software platform for the Integrated Safety Systems

175

As stated in definition of dependability in Subsection 1.2, dependability includes aspect of safety,
integrity and confidentiality. Although gateway services are not the focus of this dissertation, in the
following, the dependability issues (as issue 3 and 4 of the list, bold font) of gateway will be
discussed briefly.

Communication service with security and integrity

Gateway dependable communication service here includes read, write (store) and forward of the
signals. By both processes of read and write, plausibility check as well as data integrity check (e.g.
with CRC) should be performed.

Signal routing includes usually unpack from original protocol, assemble/segmentation and pack in
the new protocol. There are two critical aspects here: timing requirement and data integrity. For the
end to end data transmission via gateway, the transmission time on the network is more or less
limited with network bandwidth, so that delay time on the gateway can become the bottle neck of
the overall delay. The layered software architecture should be optimized for the data processing
and forwarding. In order to guarantee the data integrity, end-to-end application CRC as specified in
Subsection 9.3.1.3 can be applied. In order to accelerate the process of data forwarding, the signal
frame CRC might not be checked again, since in case of any fault detection, the signal should be
still forwarded to the receiver with a flag for the fault identification. In order to protect the
information of assemble/segmentation, a CRC to the whole block of message can be added as a
signature of the gateway at the end of the pay-load.

Security in telematics gateway

One of the most important features of ISS-applications is the interconnection with telematics
service provider. As some ISS applications require communication with external agents through a
wireless link, like other vehicles for cooperative driving, or with the vehicles environment and
infrastructure for transmission of floating car data and reception of traffic information, the gateways
are needed to provide suited communication links. Security in telematics gateway is an important
step in the integration of telematics services for safety systems. As specified in the list, however,
the security issue here does not differentiate a lot from the security topic in the IT-industry, esp.
with the rapidly increasing computation power of embedded system.

9.4 Configuration of dependability software services

Interfaces between basic software services and dependability software services, which are
specified in the EASIS projects, are summarized and depicted in Figure 9-34. The dependability
software services discussed in this dissertation are:

 Dependability RTOS – Subsection 9.3.2.2 and 9.3.2.3.1

 Fault tolerant communication services – Subsection 9.3.1.2 and 9.3.1.3

 Agreement Protocol – Subsection 9.3.1.4

 Software Watchdog – Subsection 9.3.2.3.2

 Fault Management Framework – Subsection 9.3.3.1

 Dependability software services for gateway – Subsection 9.3.4

Software platform for the Integrated Safety Systems

176

cd Interfaces between basic/dependability/gateway serv ices

FT-Communication Service

+ FT-Extension COM

(from ISS Dependabil ity Services)

Agreement Protocol Serv ice

+ Class Diagram
+ Interaction Diagram
+ Statechart Diagram
+ Package Diagram
+ Timing Diagram

(from ISS Dependabil ity Services)

Diagnosis and Calibration

+ Package Diagram

(from Basic Services)

Network Management

(from Basic Services)

Non-v olatile Memory Serv ices

+ Package Diagram

(from Basic Services)

Software Watchdog

+ Activity Diagram
+ Interaction diagram

(from ISS Dependabil ity Services)

Fault Management Framework

+ Component Model
+ Counter-part of FMF for SW-Watchdog
+ Deployment model
+ Detailed Component Model
+ Dynamic Views

(from ISS Dependabil ity Services)

Network driv er

+ CAN
+ LIN
+ FlexRay-driver

(from Device Drivers)

Memory-driv ers

(from Device Drivers)

HW Watchdog-driv er

(from Device Drivers)

L4 Common and domain specific and ISS interface

(from Packages)

Operating System

+ Interaction diagram
+ Class diagram

(from Basic Services)

Data Exchange Serv ices

+ Routing Service
+ Protocol Converter Service
+ Tunneling Service
+ Network Address Translation

(from ISS Gateway Services)

Security Manager

+ Access Control List
+ Auditing Service
+ Authentication Service
+ Authorisation Service
+ Cryptography Service
+ Firewall Service
+ Remote Access Service
+ Secure Communication Service
+ Secure Storage Service

(from ISS Gateway Services)

receive
network
PDUs

Send
PDUs

Initial Value+# of
phases+Tolerance+Key

send network
PDUs

Memory access
service

send network
management
PDU

Memory access -
configuration -

protection

FMF standard
interface - error
report

Memory storage
service

Reconfiguration

µC reset

Task / App. reset
management

FMF standard
interface - error
report

send
PDUs

check permission
of connection

receive
network
management
PDU

receive
PDUs
from
Network
Driver

FMF standard
interface - error
report

Receive
PDUs

receive
PDUs

Runnable
Heartbeats/execution
information

FMF standard interface

Startup / Shutdown

send PDUs
from Data
Exchange
Services

Figure 9-34: Interface of basic, dependability and gateway software services

RTOS is needed for each embedded electronic, the extended features introduced here can be
categorized in different service classes as an add-on module to the core.

 Class 1: OSEK-compatible RTOS core with scheduling, basic resource management etc

 Class 2: Support for MMU and MPU (space partitioning)

 Class 3: Support for extended protected application services in time partitioning (execution
time monitoring)

 Class 4: support for Fault Management Framework in dynamic reconfiguration e.g.
termination, passivation of faulty tasks and task-groups

Software platform for the Integrated Safety Systems

177

 Class 5: Support of full space partitioning and time partitioning services (e.g. runnable-call,
periphery access protection, etc.)

It is to mention here that Class 2 is needed for the following two classes, while Class 3 and Class 4
are more or less independent from each other.

In a similar way the communication services can be divided into the different classes as well:

 Class 1: OSEK compatible COM with support to different in-vehicle networks

 Class 2: Fault tolerant COM with interface to application CRC

 Class 3: Support for redundancies and interfaces for additional fault tolerance mechanisms

 Class 4: Integrated fault tolerant communication services with Agreement Protocol

Class 1 and Class 2 are relative generic without preference for the communication networks, while
the Class 3 and Class 4 are only required by the certain safety application with additional support.

The two main services provided by Software Watchdog, Aliveness Monitoring and Control Flow
Checking, are also quite independent from each other. They can be configured to the needs of
applications, the monitoring objects and threshold/counter borders can be configured in the look-up
table.

The 4 sub-components of Fault Management Framework can be configured individually as well.
The configuration varies from the simplest case as a fault handler to the complex variant,
coordinated system wide reconfiguration with help of SW-Watchdog and OS. The reconfiguration
part is the most complex component, while the reconfiguration strategy, as highly application
dependent, could be chosen based on the framework defined here.

Dependability software services for gateway are only needed for gateway ECUs, the security issue
is of course only interesting for the links with external communication.

9.5 Conclusion of the dependable software platform

In this chapter, started with a benchmarking with IT-industry, a dependable software platform is
specified as an enable lever to improve the system dependability. Focused on the three aspects of
Integrated Safety System, the communication (including gateway), the integration of application on
one hardware platform and the fault treatment are discussed. Last but not least, the dependability
software services are classified in different classes for the configuration and integration.

Software platform for the Integrated Safety Systems

178

Prototyping and validation of the concepts

179

10 Prototyping and validation of the concepts

Before we can explore the prototyping and validation of the concepts for the future automotive
electronic architecture in detail, a brief overview of the development process, methodology of the
validation activities is given in the following subsection.

10.1 Introduction to the architecture validator

10.1.1 Prototyping approaches and validation process

As mentioned in Subsection 3.5.2, state of the art in the development of in-vehicle electronics is
the model and simulation based development process, in which a sub-system is developed and
tested in a pure software environment with the help of simulation tools (Model-in-the-Loop and
Software-in-the-Loop test). The implementation of software on a particular hardware platform will
only be initiated after a successful test of the functionalities with the help of simulation models.

Here this approach was adopted and extended – using rapid prototyping systems as real-time
execution platforms, which allow for short design cycles while evaluating effects of different
realization choices including the flexible variation of hardware setups.

Due to the networked architecture, the development process needed to cover system and node
level design as depicted in Figure 10-1. The tools used for early development and validation are
mainly MATLAB/Simulink together with Real-Time Interface Block-sets and experimentation tools,
which enabled the validation of the dependability software services on rapid prototyping platforms
with FlexRay interfaces from dSPACE [Eck06].

(DECOMSYS)

Functional Model
(MATLAB/Simulink)

1

Functional Model
mapped on System

Architecture

2

Virtual Prototype

3
Generated

/ hand-coded
C-Code

4

HIL with dSpace
Prototyping Platform

5

Validation test with
fault-injection

6

Tracing of consistent
test case and results

Figure 10-1: Tool chain and development process

Prototyping and validation of the concepts

180

As shown in Figure 10-1, after requirement analysis of the safety applications,

 The first step the system functional design is initiated by building and modeling the whole
system including the simulation environment with MATLAB/Simulink.

 The dependability software services are prototyped and simulated on a PC as a virtual
prototype in the second step.

 Based on the principle of fault injection, the virtual prototype is evaluated as a front-loading
in the third step.

 In the fourth step, based on the knowledge gained from the virtual prototype and other
automotive constraints such as resource and timing requirements, the virtual prototype of
the dependability software services and the modeled safety application will be mapped onto
tasks and scheduled on the system architecture. For the rapid-prototyping platform C-code
can be generated automatically. For the evaluation-board source-code can be manually
implemented with the development environment of the certain microcontroller.

 In the fifth step, source codes will then be compiled and loaded onto the rapid prototyping
platform using AutoBox or MicroAutoBox [Eck06] from dSPACE or evaluation-board.
Dependability software services and concepts are evaluated in the real hardware
environment and tested against the requirement specification, by injecting the faults which
are supposed to be tolerated by the dependable software platform. The consistent
evaluation cases and validation concept will be applied through the virtual prototype, rapid-
prototyping and on evaluation-board, thus the traceability of the testing results to the design
specification through different platforms and environments can be guaranteed.

10.1.2 Architecture design of the validator

As mentioned in Chapter 5, the validation of concepts in this dissertation took place in the EASIS
WT1.3 Prototypical Implementation [VAL06] and WP 5 – WT5.1 Architecture Validator [VAL06] and
WT 5.2 Process Validator (Commercial Vehicle validator). The EASIS architecture validator
[VAL06] is focused on the prototyping and validation of some of the most relevant properties of the
EASIS architecture both in hardware and software, including fault tolerant hardware, dependability
software services and telematics services etc.

The implemented EASIS architecture validator (as depicted in Figure 10-2) incorporates the
following components:

 Fault tolerant communication with dual-channel FlexRay network

 Fault tolerant ECUs with dual duplex architecture

 Dependability software services providing dependability software services, upon which
further applications can be built, including:

o Agreement Protocol

o Software Watchdog

o Fault Management Framework

o Dual-duplex fault tolerant signal processing

Prototyping and validation of the concepts

181

 Telematics gateway between internal buses (dual channel FlexRay inter-connected with
two active stars and CAN) and external Telematics network (TCP/IP) with protocol
conversion and security services.

Figure 10-2: System topology of EASIS architecture validator [AfS07]

The most important hardware nodes are the Sensor Node (steering wheel sensors), Actuator Node
(steering wheel force feedback actuator), Central Node, Spy Node and Telematics Gateway.

In order to show the behavior of EASIS architecture from the application’s point-of view, the EASIS
validator includes a safety-critical function (steer-by-wire) and three demonstrative integrated
safety applications:

 SafeLane – a lane departure warning system

 SafeSpeed – limitation of vehicle speed by an external commanded value and remote
monitoring using Internet browser.

 SafeLight – an enhanced adaptive lighting system with help of vehicle dynamic and
environment information.

The EASIS architecture validator also includes several interactive graphical interfaces to show, in
real time, the behavior of the EASIS architecture and its resilience in front of faults. It is possible to
inject faults (both hardware and software) on the system and monitor the system behavior
including a 3D vehicle dynamics simulation.

Prototyping and validation of the concepts

182

10.2 Validation of hardware architectures for ISS

In the following, the validation process and results of the most important safety concepts of
hardware architecture in Chapter 8 will be described.

System topology with backbone concept

In the three system topologies discussed in Subsection 8.1, we chose the backbone concept for
the validator, since the integrated safety applications based on the steer-by-wire technologies
require fault tolerant communication with high-bandwidth. Compared with the Figure 8-14, the
system topology of the validator is almost the right part with the dual-channel chassis FlexRay and
telematics gateway. As mentioned in Subsection 3.3.4.2, the active stars provide better fault
tolerance than the passive star topology of CAN due to the detection of short cuts and deactivation
of branches in the active star.

Result: The backbone concept with FlexRay enables integration of ISS-communication with large
mount of data transfer. The safety integrity requirement of communication system can be reached
without any additional safety concept.

Distribution of ISS-application to the HW-architecture

The three high level ISS-application as well as two basis functions of Steering Wheel Sensing and
Steering Wheel Feedback were mapped to the HW-architecture. The guidelines about portioning
and mapping of ISS-applications in Subsection 8.4.1 are considered here.

1. According to rule 1, the actuator control with steering wheel feedback is mapped to dual-
duplex ECUs directly connected with the electronic motor.

2. Since the ECUs for actuator control have also FlexRay interface, the sensor for vehicle
speed and steering wheel angle can be placed freely.

3. FlexRay transfer rate was configured to 5 Mbit/s, no limitation of bandwidth is needed to be
considered.

4. In the validator, the signals of speed and steering wheel angle are distributed with FlexRay.
Steering wheel angle, for example, is sensed redundantly in a dual-duplex manner. The
redundant signals are checked and voted for its plausibility in the value and time domain
before they are sent to the bus.

5. The high level application SafeLane and SafeSpeed are integrated together on the Central
Node, since they are of the same safety integrity level and the hardware platform AutoBox
provides enough resource for them. Dependability software services facing the challenges
of application integration were also mapped to the Central Node.

Design concept of communication networks

There are mainly 3 communication networks integrated in the validator: CAN and FlexRay are
mainly used for the vehicle dynamic control while Ethernet is applied to represent the telematics
communication from extern. CAN is applied for the coupling between physical sensors and sensor

Prototyping and validation of the concepts

183

node, and also monitoring/fault injection (see Subsection 10.3.3). While the latter use-case is not
safety relevant, safety concept mentioned in Subsection 8.2 is implemented to tolerate the timing
drift of sensors.

Result: Switches for fault injection were built into the validator to emulate DC fault model of the
network. FlexRay Scheduling requires a high amount of front-loaded design work, since all the
signals have their fixed place in the communication schedule. OEM, together with Teer-1 suppliers
should spend more effort in the system requirement engineering and design phase to fix the
communication matrix. This effort, however, is paid back upon the system integration, the FlexRay
communication was integrated almost like plug-in & play and works very reliable and.

Dual-duplex architecture

Dual-duplex architecture can be found both in the safety concepts of the actuator and sensor-
coupling in the validator as shown in Figure 10-3. The steering wheel angle is the one of the most
important inputs of steer-by-wire function. The sensing function, with the safety integrity of ASIL-D,
should be redundant and independent in the path of signal processing. Thus the two sensor node,
each connected with two physical steering angle sensors, can work completely independently in a
fail-operational mode. The exchange and voting of the angle is carried out with FlexRay.

The dual-duplex actuator has architecture of 1oo2D-system, with independent power supply and
communication path to both FlexRay channel A and channel B. The application software is
partitioned between the microcontroller and the DSC in such a way that the DSC practically acts as
an actuation co-processor, providing the management of the electric motor at low level, while the
main microcontroller handles the actual application software and provides interface to the rest of
the system and to the end user for calibration and diagnosis (for more details see Appendix 1).

Dual channel
FlexRay
Interface

Dual core:
microprocessor
and DSC

Redundant Power
Supply

Figure 10-3: Fail-safe unit of dual-duplex actuator ECU

Result: The dual-duplex architecture guarantees enough safety integrity, which is required for the
fail-operational behavior.

Prototyping and validation of the concepts

184

10.3 Validation of dependability software platform and services

The validation of the dependability software platform as shown in Subsection 9.2 is performed
during the design and integration of ISS-application with the underlying software platform. Design
of the software architecture on the Central Node, Sensor Node and Spy Node followed strictly the
layered architecture. The smooth integration of applications and dependability software services
from different consortium partners in very short period demonstrates the effectiveness of the
approach.

Based on the requirements and fault hypothesis in Chapter 6, fault injection is applied to validate
the dependability software services along with exemplary fault handling strategies from the praxis.
Before we will go into the details about the validation of each software services, the principle of
fault injection is given as following:

Typically fault injection can be divided into 3 main types ([Hed01] and [Ehr03]), physical fault
injection, software based fault injection and fault injection in simulation model. For the validation of
dependability software services, because physical fault injection (EMC, circuits stuck-open, open
or high impedance outputs) are inflexible and not versatile enough in cope of different fault types, it
was only applied in the validation phase for the validation on the communication and hardware
architecture. For the validation of dependability software services, software based fault injection
and fault injection in simulation model are intensively applied.

Following the basic theory of fault tolerance as shown in Subsection 2.2, there exist two basic
approaches: fault injection and error injection. Fault injection simulates software design faults by
targeting the code. Here the injection considers the syntax of the software to modify it in various
ways with the goal of replacing existing code with new code that is semantically different [Voa98].
This “code mutation” can be performed at the source code level before compilation if the source
code is available. Error injection, called “data-state mutation” in [Voa98], targets the state of the
program to simulate fault manifestations. Actual state injection can be performed by modifying the
data of a program using any of various available mechanisms.

The relationship between faults and errors is depicted in Figure 10-4. We can see that one fault
can result in several errors (common mode) and on the other hand several faults can cause the
same error (same syndrome). Generally speaking there exist much more faults than errors, e.g. a
time violation of a task may have many different reasons (e.g. corrupted scheduling table,
corrupted memory or bugs in the tasks).

As long as all the errors can be tolerated, all the faults in the fault hypothesis can be tolerated with
the dependability services as well. Here it is to mention that no 100% complete mapping between
all the possible faults and errors are needed to be identified. Another experience is that errors are
generally easier to be injected than faults, e.g. emulation of memory faults to influence the control
flow of runnables is more difficult to implement than the direct error injects in the control flow with
manipulation of program counter. Because of the reasons mentioned above, the validation of the
dependability software services in the following subsections is based mainly on the “error
injection”, strictly speaking.

Prototyping and validation of the concepts

185

Figure 10-4: Mapping between faults and errors

10.3.1 Prototyping and validation of Agreement Protocol

As discussed in Subsection 9.3.1.4, Signed Messages Protocol was chosen as a basic concept,
upon which an Agreement Protocol Service was designed and prototyped, while the following
requirements and constraints are considered:

Firstly, the Agreement Protocol Service executed on a node must deliver not only an agreed value,
but also a state vector, which includes the state of each participating node. This state is gained
from last agreement process from the point of view of the node that generated it. The state vector
could contain useful information in case of a failure to identify the faulty nodes in a system.

Moreover, the signature mechanism should not be as complex as for IT applications, since
efficiency and short execution times are required. Therefore a simpler and thus more efficient
signature mechanism was designed and integrated in the Agreement Protocol Service.

Usually, fault-tolerant applications have backup system states, which are applied when faulty
components or other abnormal states are detected. In this case, all the distributed safety
components of the application must be consistently informed of this change in order to take
synchronized and coordinated fault treatment measures. Therefore, the SafeLane application in
the EASIS validator has, besides the “operational mode”, a “faulty sensor mode” and a “failure
mode”. Since the application includes the central node and the two fail-safe sensor nodes. Each
fail-safe node is equipped with two physical steering wheel angle sensors [SWS03], thus they
implemented a fail-operational sensor node in a dual-duplex structure. The global application state
is computed from the single states of these nodes.

As shown in Figure 10-5, the Agreement Protocol Service was embedded and validated on the
three nodes (Central Node and two steering wheel sensor nodes) and is cyclically executed in
order to maintain consistency among them with respect to the global state information of
SafeLane. The private value of each node is its own state. The state of each node is determined,
as depicted in Figure 10-5, by a state machine as demonstrated in Figure 10-6, whose transitions
depend on local node information, as well as the global application state as an output of the
Agreement Protocol Service. The state information is exchanged between the nodes over FlexRay
which is not only reliable and deterministic, but also exhibits the required cyclic behavior. Upon the
execution of the agreement protocol, the non-faulty nodes consistently build a vector consisting of
the different nodes states. Based on this vector, each node consistently computes the global
application state by applying a specific decision function designed for the SafeLane application.

Prototyping and validation of the concepts

186

SafeLane
Agreement

Protocol
Service

Steering
Wheel
Sensor

SWS1 SWS2 SWS3 SWS4

CAN-Bus CAN-Bus

Central Node

Sensor Node 1 Sensor Node 2

Agreement
Protocol
Service

Agreement
Protocol
Service

Figure 10-5: Outline of system architecture for the validation of Agreement Protocol
Service

Hence, the use of the Agreement Protocol Service guarantees a reliable and deterministic global
state transition among the three nodes so that an agreed and safe state can be maintained for the
SafeLane application.

Figure 10-6: User interface for agreement protocol validation

Prototyping and validation of the concepts

187

The validation of Agreement Protocol follows the principle of fault injection according to the fault
types defined in the design phase. Different faults like FlexRay communication fault, Byzantine
Fault whereby inconsistent data is exchanged between the nodes and memory fault of inconsistent
data read, etc. are injected to the validator. The faults can be injected with hardware failure or
emulated with software using dSPACE ControlDesk. Figure 10-6 shows the user interface with the
state machines of each node implementing the agreement protocol changing in real time.

10.3.2 Prototyping and validation of Software Watchdog

The prototyping and validation of Software Watchdog follows the complete steps as shown in
Figure 10-1 from virtual prototype to evaluation-board, which is explained in depth as following:

Modeling, simulation and prototyping of the Software Watchdog

For the modeling of task dispatching and program flow of runnables in OSEK, Stateflow in
Matlab/Simulink was applied. Stateflow is a design and development tool used for modeling
complex system behavior based on finite state machines. Runnables are modeled with function-
call subsystems and triggered by events sent by Stateflow in a defined execution sequence. A
function-call subsystem is a block in Matlab/Simulink which can be invoked as a function by
another block. For instance, as illustrated in Figure 10-7, the application SafeSpeed can be divided
into three runnables: sensor value reading in GetSensorValue, the control algorithm in
SAFE_CC_process and setting of the actuator in Speed_process. These are triggered as function-
call subsystems by the Stateflow chart SafeSpeed, in which the execution sequence of runnables
is implemented. To indicate the aliveness of the runnables, further function-call subsystems to
simulate the glue code are also implemented, which report the execution of the runnables.

Figure 10-7: Modeling of runnables and program flow in SafeSpeed

The time-triggered behavior of the heartbeat monitoring unit and task state indication unit was
modeled with time counters. Thus, in order to simulate the mechanism of task scheduling with
different periods in the operating system, different time counters can be assigned to the Stateflow
charts. On the other hand, the program flow checking unit was modeled using an event-triggered
Stateflow chart.

Prototyping and validation of the concepts

188

Evaluation of the Software Watchdog in EASIS validator

The evaluation of the Software Watchdog is performed based on the fault/error definition in the
design phase. Since different faults can result in the same error, error injection is applied for the
evaluation of the design and prototyping of the Software Watchdog. Such an approach has the
advantage that the dependability requirements can be tested in a front-loading manner of system
development. The concept can be validated independently from the specific fault-types. Faults,
which are difficult to inject into the test bench or on-road test, can be relatively easily emulated with
errors.

Here again Stateflow is used to manipulate the execution frequency and sequence of runnables by
changing the timing parameter of runnables, manipulation of loop counters and building invalid
execution branches, etc. The experiment environment ControlDesk provides the possibility to
manipulate the data assigned to the timing parameter of runnables to the condition that determine
the invalid execution branches in the runtime. Therefore, it is used to trigger the error injection
during the execution of the applications and visualize the results as well.

By building different evaluation cases, the three chief functionalities of the Software Watchdog, i.e.
the detection of the aliveness error, the arrival rate error and the program flow error, are
successfully validated. The following screenshots demonstrate some of the evaluation cases
generated by injecting heartbeat or program flow errors. The x-axes of each plot in the diagram
indicate the time lapse, which has a scalar of 10ms. The y-axes indicate the value of the counter
and number of detected error. In order to inject heartbeat errors, a time scalar is connected to a
slider instrument to change the execution frequency, For example, Figure 10-8 shows the test with
an injected aliveness error. Similar test with arrival rate error and control flow error were performed
as well. The increase in the y-value in the last plot “AM Result” (Aliveness Monitoring Result)
indicates the detection of the errors.

Figure 10-8: Test with injected aliveness error

Figure 10-9 shows the case in which the real cause of the erroneous state is identified through the
collaboration of the units of the Software Watchdog. Here, the aliveness errors detected by the
heartbeat monitoring unit are actually caused by program flow errors, which are reported with the

Prototyping and validation of the concepts

189

plot “PFC Result” (Program Flow Checking Result). After the detection of three program flow errors
(which here is set as the threshold), the task state is set to “faulty”. Only one accumulated
aliveness error is reported.

Figure 10-9: Collaboration of fault detection units

10.3.3 Prototyping and validation of Fault Management Framework

As well as other dependability software services, in the first step the system functional design of
the FMF was initiated by building and modeling the whole system with Matlab/Simulink. The Fault
Management Framework was prototyped and simulated on a PC as a virtual prototype in the
second and third step. In the fourth step, based on the knowledge gained from the virtual prototype
and other automotive constraints such as memory and timing requirements, an actual
microcontroller was chosen here for the implementation and system validation. Individual hardware
specific C-codes were generated or hand-coded. This version was integrated and compiled with
the safety applications light control and other basic software modules, such as the operating
system OSEK OS with an extended task scheduler. In the fifth step, the FMF along with the
applications and environment were loaded onto the target platform and tested in a HIL. The
development environment CodeWarrior from Freescale [CoW05] was applied for the debugging,
compiling and linking. Thus, the virtual prototyping in MATLAB/Simulink eased the development of
the FMF functionalities on the target hardware. More details about the prototyping of the FMF can
be found in [FMF06] and [Spi07].

Validation with Fault Injection and Rest-bus-Simulation

The validation of the FMF followed the principle of fault injection. Generally speaking, fault injection
can be possible at different system components and it depends on the test object. In this case we
want to examine the designed functionality of the FMF. Therefore, one possibility would be to
insert faults right into the FMF, that is to say, fictive faults can be injected and reported to the FMF
to test the designed fault-treatment. On the other hand, the FMF works with application software

Prototyping and validation of the concepts

190

components and other dependability software services like the Software Watchdog mentioned
above, so we can inject the faults by real faults as well. That is to say, the faults are injected on
side of the application, which are detected by the Software Watchdog and then reported to the
FMF. This second approach is more appropriate because it takes also the interaction between the
FMF and other components into consideration.

In order to evaluate the fault management framework service, different evaluation cases must be
considered. The main cases of fault injection are depicted in Figure 10-10.

1. In the first case, the fault injection will take place at application level (as demonstrated in
Figure 10-10: faults are injected in light/rain sensors to result in the faults of light control).

2. In the second case, the Software Watchdog was applied to report errors to the FMF. Thus,
we manipulate the scheduling table (as an extension to the OS) in order to trigger errors
concerning runnables, which should then be detected by software watchdog and then
reported to the FMF.

ISS Services

ISS Drivers and
Microcontroller Abstraction

Application 1

Microcontroller

ISS Application Interface

Application 2 Application 3 …

Software
Watchdog

O
pe

ra
tin

g
Sy

st
em

Fault
Management
Framework

Heartbeat
information
of runnables

FMF
interface

FMF
interface
FMF
interface

reconfiguration

FMF
interfaceSc

he
du

le
r

Sc
he

du
le

r

Light/Rain
Sensor Fault Injection

Fault Injection
with manipulation
of task Period

Figure 10-10: Evaluation cases with fault injection for FMF

In order to trigger fault injection and to display the evaluation results, a simulation and diagnosis
tool (CANoe) was used, which was connected via a CAN card to the CAN interface of the
evaluation board. The structure is depicted in the Figure 10-11.

The evaluation microcontroller S12XF was connected to the FlexRay network to collect the vehicle
status information (speed, park, start…). A computer, running the tool CANoe, was linked to the
ECU via CAN bus for simulation and demonstration effects, but also for rest-bus simulation. The
graphical interface implemented with the CANoe panel editor was used to trigger fault injection on
the one hand and to display the actual status of the ISS services, e.g. faulty state of a runnable,
state of FMF and application sensors, etc.

Prototyping and validation of the concepts

191

CAN cardCAN

Application
“SafeLight”

FMF
SW-Watchdog

Trigger fault injection

Display test results

FlexRay card

CANoe

CAN cardCAN

Application
“SafeLight”

FMF
SW-Watchdog

Trigger fault injection

Display test results

FlexRay card

CANoe

Figure 10-11: Fault injection triggered with CANoe to FMF

The rest-bus simulation here enabled a smooth integration in the EASIS overall architecture
validator. The same test cases could be reused and traced in the fully networked Hardware-in-the-
Loop test bench.

10.4 Validation of the ISS Engineering Process

As stated in Subsection 7.1 the two most important concepts of EASIS Engineering Process are

 Virtual Frontloading (virtual integration with structured test) and

 Correct by construction approach

These two principles are validated during the participation in EASIS work-package of the validator.
Following the steps specified in the ISS Engineering Process, some of the most important
validation results are summarized as following:

Development of Functional Analysis Architecture

The FAA-model, using model-based specification is depicted in Figure 10-12. As a hardware
mapping and platform independent model, the FAA is validated with “model-in-the-loop” approach.
The hardware independent FAA-model enables a clear specification of interface and data model,
which can be easily transferred and further developed by the OEM and suppliers in a decentralized
manner. Based on the safety analysis (e.g. preliminary hazard analysis) and fault types, the
potential hazards of the system are simulated and injected into the simulation environment to the
FAA-model with virtual front-loading.

Prototyping and validation of the concepts

192

Figure 10-12: FAA-model of SafeSpeed

Development of basic Functional Design Architecture

By mapping the FAA-model to the HW-architecture and split the whole model to the subsystems,
we can get the FDA-model as shown in Figure 10-13. The FDA-model here can be further
supplement to the interfaces of basic software services. With the virtual integration of FDA with
these HW-platform independent basic software services, the FDA-model can be validated with the
“Software-in-the-loop”. The same fault injections from the last step are recycled. With the
suggested unified simulation environment and tool chains, the FDA-model can be exchanged
simultaneously to any time point of the development between the development partners without
any overhead customization. Moreover, software bugs and test scenario can be distributed and
reproduced easily. The ISS EP enables a significant improvement of the interaction of partners to
manage the complexity of ISS.

Prototyping and validation of the concepts

193

Figure 10-13: FDA-model of the SpeedControl in SafeSpeed

Refinement of and validation of FDA model with SiL-test

With the application of dependability architecture framework, the FDA can be integrated to the
layer software topology with the dependability software services. With the standardization of
dependability software services, distributed test of safety relevant requirements (to which, the
dependability services are designed for) can be carried out without costly shipment of special
equipment. In the following Figure 10-14, we can see the FlexRay scheduling requires a global
communication road-map at early development phase. Any changes of the scheduling will result in
a chained reaction to the scheduling and resynchronization between application tasks and
communication services on the other nodes. The consistent tool chain and standardized FT-Com
services enables an uncomplicated exchange and update between the partners.

Prototyping and validation of the concepts

194

Steering Wheel Sensor 1

Steering Wheel Sensor 2

Wheel Steering Actuator 2

Wheel Steering Actuator 2

Wheel Steering Feedback 1

Wheel Steering Feedback 2

Central Node

Engine

Brake / ESP

Gateway

Spy-Node

Steering Wheel Sensor 1

Steering Wheel Sensor 2

Wheel Steering Actuator 2

Wheel Steering Actuator 2

Wheel Steering Feedback 1

Wheel Steering Feedback 2

Central Node

Engine

Brake / ESP

Gateway

Spy-Node

Figure 10-14: FlexRay communication scheduling in the validator

Experience in setting up of the validator, using a hybrid system, made up of the nodes and
communication systems listed in ISS EP step 5.3, shows the flexibility and effectiveness the
approach. The counter-part (remote nodes in the ISS) can be simulated and virtual integrated in
the most cases. The definition of dependability architecture frameworks shortens the transition
time between different development phases and prototyping platforms, e.g. PC-based simulation
environment, RP to evaluation-board.

In all the integration and validation of total EASIS-validator was quite efficient. The physical
assembling and system test of the different nodes is almost plug-in and play, no iterative design
loop was required.

10.5 Evaluation and optimization of the concepts

Safety concepts proposed here are implemented with rapid-prototyping and serial near equipment,
while the validation follows the principle of fault injection. During this validation phase, faults were
injected into the system on hardware, application level as well as directly in the dependability
software services. All injected faults are proved to be detected by the system correctly and the
appropriated fault treatment strategies have been executed. However, it has to be noted, that only
fault scenarios identified and defined in advance by the developers could be handled. As the aim
of the work here is to validate the concepts, fault injection does not provide results about
quantitative fault detection coverage and test coverage. Since the ISS-applications here are not
directly from the serial projects, no confident performance benchmarking can be carried out.

As a summary, the results here with regard to hardware/software architecture and platform are
here shown to be functioning properly, and they are also identified as being pertinent for upcoming
Integrated Safety Systems. Therefore, services like those defined in the dependable platform have
to find their way into real-world platform. A step towards bringing the results closer to being
deployed in products will be to advocate the use of the results as input and inspiration for on-going
projects concerning automotive software platforms, such as AUTOSAR.

Prototyping and validation of the concepts

195

10.6 Experience and findings from the prototyping and validation

In all, most of the concepts suggested in this thesis, including ISS Engineering Process, fault-
tolerant hardware architecture and dependable software platform was prototyped and validated
during the EASIS work-packages of validator. The prototyping and validation process here is not
characterized with the traditional OEM/supplier (customer/vender) relationship, but with a more
decentralized peer-to-peer relationship as project partners. It was quite challenging to make a
master plan for the distributed development, such as to consolidate the design and prototyping
approach and to control and synchronized the distributed activities. The common prototyping
platforms as well as development environments despite of a few features (e.g. using interchange
format of communication scheduling to synchronize the changes, migration from virtual prototype
to the hardware platform) have contribute to the successful cooperation significantly.

Prototyping and validation of the concepts

196

Conclusion of the results, discussion and outlook

197

11 Conclusion of the results, discussion and outlook

Future Integrated Safety System exhibits an ever higher system complexity with the integration of
safety functions with different integrity levels. The dependability requirements as to the fault treat
behavior, triggered by the industry norms, increase from fail-safe/fail-silent to fail-operational.

In the dissertation presented here, with the analysis of the key aspects of ISS, the requirements of
future ISS are derived. With the assessment of these requirements with state of the art safety
electronics as well as the current trends of the in-vehicle electronics and safety norms, a delta
analysis for the concept development was carried out. To address these challenges and close the
gap, an integrated dependability architecture framework for the ISS was specified in the three main
levers: hardware, software and development process. As a conclusion the most important results
and their implication are concluded as following.

11.1 Conclusion and implication of dependability architecture framework

Development process

ISS-applications are characterized with intensified interaction between applications of different
safety integrity levels cross domain borders in a deterministic real-time manner. Thus it requires by
its nature a decentralized engineering process. In order to manage the complexity, the correctness
by construction approach is ensured with the fine specified ISS engineering steps. For a better
cooperation between the development partners towards higher system dependability, approach of
virtual front-loading is suggested. The engineering steps, virtual integration of FAA-model,
derivation of FDA-model with the mapping procedure, prototyping on different platforms are
supplemented with a systematic test methodic with consistent test cases through out the
engineering process. The dependability E/E-architecture framework, common simulation,
development and prototyping environment provide one of the most essential fundaments for the
safety justified engineering process between the involved partners.

Hardware

The hardware architecture framework is addressed with the three aspects system topology,
communication systems and ECU architecture. We tried to give a few vertexes and Lego-modules
to provide a framework with possible configurations to dependable hardware architecture. A few
use-cases are listed here to demonstrate the application of the hardware architecture framework.

The traditional work distribution is that OEM defines the system topology, communication systems
and its interfaces to ECU, while the suppliers define and implement the ECU HW-architecture. With
ISS, however, this distribution border is more and more unclear between the participants.
Triggered by the aimed safety integrity level as to the safety norms, taking the constraints as
development complexity into consideration, the hardware architecture framework should be worked
out and configured with a much intensified interaction and cooperation between the development
partners.

Conclusion of the results, discussion and outlook

198

Software

The dependability software platform was specified in a layered reference model after a short
benchmarking of automotive software with the evolution of IT. In order to design a hardware and
application transparent fault tolerance, dependability software services such as ISS-
communication service with redundancy, end-to-end CRC, Agreement Protocol, time partitioning
and space partitioning for the integration of applications, fault management, fault treatment of
dynamic reconfiguration and gateway services are introduced as an integrated manner and
merged in the dependability software platform as mentioned above. The explanation about
interaction and configuration of the dependability software services as a library concluded the
software architecture framework.

Implication on the business model

The reaction of technologies and business process is always in mutual directions. The way how
OEM and supplier should interact in the development of ISS must change in response to the E/E-
architecture framework defined here. Again a benchmarking with the development of IT-industry
shows a decentralized network in the development of ISS-application, with OEMs, suppliers and
the third-party companies (e.g. software vendors and companies specialized for integration and
test) can grant a more effective cooperation towards system with higher dependability. It brings
also a few chances and challenges to the business model as well:

 Decentralized structure requires more effort to manage

 New market opportunities for suppliers esp. software supplier and system integrator

 Responsibility and warranty by the integration of safety components from different partners

 Systems integration and test can be offered as an independent service

Conclusion of the results, discussion and outlook

199

11.2 Outlook for the future work

The concepts discussed in this dissertation provide potential for the further research, esp. taking
the fact into the consideration that automotive standards and architecture usually takes a long time
to establish, e.g. it took CAN 10 years to be introduced into the market and another 10 years to be
widely used. The dependable E/E-architecture and engineering process will take a considerable
time and adaptations to find their way in the real life.

The presented work in this thesis raises a few interesting topics for future research activities.

 Setting up a library of dependability services for the ISS-application from practice

 Further quantitative analysis of real-time performance of the dependability software
services

 As mentioned in the Subsection 10.6, based on the experiences and finding during the
validation, ISS Engineering Process and tool chain should be extended from the rapid
prototyping to the later product phase of the serial development. One interesting topic is the
safety analysis according to the special requirements of ISS.

 Further development of dynamic reconfiguration in the direction of service displacement

o Concept of dynamic reconfiguration of communication paths for service reallocation

o Resource reconfiguration, management and optimization for the service
displacement

In all, the dependable E/E-architecture framework combined with the ISS Engineering Process is a
promising approach for the development of future Integrated Safety Systems. Therefore, it has to
find the way into real-world platform since an architecture framework provides only a reference
model and guidelines for the practical solution. A step towards bringing the results closer to being
deployed in products will be to advocate the use of the results as input and inspiration for on-going
projects concerning automotive software platforms, such as the safety group in AUTOSAR
[AUT07].

Appendix 1: Implementation details of the validator

200

Appendix 1: Implementation details of the validator

In this chapter more details about the prototyping and validation of the safety concepts in this
dissertation will be given. In order to keep an overview of the work in the scope the chapter, more
details as to software implementation, simulation modes can be found the appropriate references
and EASIS deliverables.

In Figure AI-1, the EASIS validator presented at the end of 2006 on the conference “Intelligent
Transport System” in London with the most important nodes are shown.

Dual-Duplex
Actuator-Node

Dual-Duplex
Sensor-Node

Central
Node

Telematics
Geteway

Spy-node and
SafeLight application

Figure AI-1: EASIS validator demonstrated on ITS 2006 in London

Appendix 1: Implementation details of the validator

201

Appendix 1.1 Validation of hardware architectures for ISS

The dual-duplex 1oo2D ECU hardware architecture depicted in Subsection 8.3.1 Figure 8-8 is
made up of 2 FSU. The hardware architecture of each FSU is demonstrated in Figure AI-2.

Figure AI-2: FSU processor block diagram [HWV06]

This power supply of FSU has two independent battery inputs (Vb1 and Vb2) and generates the
different supply voltages for the FSU internal circuitry. This block also generates the reset signals,
which activates the logic devices once their supply voltages are stable, after the FSU has been
switched on. It also generates the sensor power supply, both for the synchronous motor Hall Effect
sensors and for the torque sensors. Feed-back on the status of these external supply lines is
provided to the logic core of the FSU for fault handling. Finally, this block also provides power to
the output stage, deriving it from one of the battery connections; should a failure occur on one of
the FSU power supply lines, a switch over to the other power supply can takes place.

The FSU core is made up of two units, namely a microcontroller managing the actual application
software, the interface to the rest of the system, whilst a second device, a digital signal processor,
acts as a slave to the former device, managing the interface to the output stage. The crosscheck
mechanism let each unit monitor the operation of the other and can make the FSU enter a fail-safe
state in case of fault. In this way, the processing core architecture of the FSU reflects the
architecture depicted in Figure 8-8 of Subsection 8.3.1.

The validation of dual-duplex hardware architecture was carried out also according to the principle
of fault injection. In the following a list of fault injection is given:

Appendix 1: Implementation details of the validator

202

Test
number

Test case Description Expected results

1. Fail-silent and
fail-operational
by internal FSU
fault

An internal simulated fault is
injected in one of the two
FSUs that belong to the fail-
operational unit.
The fault can be injected
through the activation of an
internal switch.

Fail-silent characteristics:
The faulty FSU detects the fault,
sends a diagnostic message on the
FlexRay network and switches itself
off.

Fail-operational characteristics:
The second FSU receives the
diagnostic message, detects the
fault of the other ECU and keeps the
system fully operative.

2. Fail-silent and
fail-operational
by
communication
fault

Both FlexRay channels of
one fail silent node are
disconnected.

Fail-silent characteristics:
The faulty FSU detects the loss of
communication with all the validator
nodes and switches itself off.

Fail-operational characteristics:
The second FSU does not receive
any diagnostic message, but detects
the communication loss with the
other FSU and keeps the system
fully operative.

3. Redundant
communication
with FlexRay

One of the two FlexRay
channels of both fail silent
nodes is disconnected.

The two fail-silent nodes detect the
line disconnection and send a
diagnostic message. Both the FSUs
are fully operative.

4. Redundant
power supply
by automatic
switch

The system is supplied by
line A. A fault is injected by
disconnecting line A on one
of the two fail silent FSUs.

The fail-silent FSU detects the fault
and sends a diagnostic message.
The switch is triggered. The two fail-
silent nodes are fully operative.

Table AI-1: Fault injection for the validation of the HW-Architecture

Appendix 1: Implementation details of the validator

203

Appendix 1.2 Validation of dependability software platform and services

As discussed in Subsection 10.3, the validation of dependability software platform and services are
carried out based on the fault/error injection in the ISS-Applications SafeLane, SafeSpeed,
SafeLight and the prototyping environment with a mixture of three fault injection methods as
introduced in Subsection 10.3 [TRV06].

Appendix 1.2.1 Prototyping and validation of Agreement Protocol

As discussed in Subsection 10.3.1, the validation of Agreement Protocol is based on the
coordinated state reconfiguration on the Central Node and the two Steering Wheel Sensor Nodes.
The validation is the following three scenarios:

 All nodes agrees on consistent state information
 One node doesn’t send any information / sends inconsistent information. The Agreement

Protocol has to guarantee the toleration of one fault.
 More than one node doesn’t send any information / sends inconsistent information. The

Agreement Protocol helps to switch to a safe state by delivering status feedback of the
agreement process.

The list of mechanisms of the Agreement Protocol service in the validator is given in the following
as sensor and actuator control.

Test

number
Test case Description Expected results

1. Single Node Fault
The Central Node fails to
receive one sensor signal

System detects single
faulty sensor, fully
operative

2. Double Node Fault
The Central Node fails to
receive both sensor
signals

System detects faulty
sensor input, fail-safe
mode

3. Single Byzantine Fault
One Sensor Node sends
inconsistent information

System detects faulty
sensor, fully operative

4. Double Byzantine Fault
Two Sensor Nodes send
inconsistent information

System detects faulty
sensor, fail-safe mode

Table AI-2: Test cases for the validation of Agreement Protocol

In the test cases 1 and 2, the communication between Central Node and Sensor Nodes are carried
out with Agreement Protocol, but they mainly test the system wide coordinated reconfiguration. In
the following, test cases 3 and 4, specially designed for Byzantine Fault are specified in details.

Appendix 1: Implementation details of the validator

204

Test Case 3 ─ Single Byzantine Fault

Figure AI-3 shows the System State when a Byzantine fault is injected in one Steering Wheel
Sensor node (the node sends different information to the other Steering Wheel Sensor node and to
the Central Node). The node tries to reinitialize (five attempts) and then fixes its state on faulty.
Central Node recognizes the situation, sets the flag of “Faulty Sensor Node” but since the other
Steering Wheel Sensor node is still working, complete steering function and SafeLane functions
are working.

Figure AI-3: Single Byzantine Fault

Test Case 4 ─ Double Byzantine Fault

Figure AI-4 demonstrates the System State when Byzantine faults are injected in both Steering
Wheel Sensor nodes (both nodes send different information to the other Steering Wheel Sensor
node and to the Central Node). Both Steering Wheel Sensor nodes try to reinitialize (five attempts)
and then fix their states on faulty. Central Node recognizes the situation, sets the flag of “Faulty”.
Therefore, SafeLane functions are disabled and steering function goes to the fail-safe mode.

Appendix 1: Implementation details of the validator

205

Figure AI-4: Double Byzantine Fault

Appendix 1.2.2 Prototyping and validation of Software Watchdog

As specified in Subsection 10.3.2, the SW-Watchdog has been tested on the Spy-Node in the
context of a simplified SafeLight application. The SW-Watchdog is integrated with the Fault
Management Framework. Complete test results on FMF validation are detailed in Appendix 1.2.3.
The SW-Watchdog is configured to monitor all the Runnables: (Aliveness Monitoring, Arrival Rate
Monitoring and Control Flow Checking).

The demonstrative application is composed of three tasks that manage nine runnables:

 Task T1 (execution period = 0200 ms) for Runnables R1, R2, R3, R4, R5, R6, R7

 Task T2 (execution period = 1000 ms) for Runnable R8

 Task T3 (execution period = 2000 ms) for Runnable R9

For each runnable of the demonstration application, three errors are defined: Aliveness Error,
Arrival Rate Error and Control Flow Error (e.g. Runnable R1 is associated with R1_Aliveness,
R1_Arrival_Rate and R1_Control_Flow errors). Using the HMI of the Control PC we can:

 Display in real time the current internal values of the heartbeat monitoring counters (AC,

CCA, ARC, CCAR) and the configured parameters (m, n, p, q)

 Display the last executed runnable of each task

Appendix 1: Implementation details of the validator

206

 Display in real time the current internal state of each error handled by the Fault State
Manager associated with the SW Watchdog

 Inject a set a predefined faults : deactivation of runnables, inversion of order of
execution of runnables, modification of the execution period of runnables

 Execute the scheduler cycle by cycle in order to see the evolution of the counters step
by step

Test Case 1 ─ Aliveness Monitoring

The SW-Watchdog monitors the aliveness of runnables. The execution period of the SW-
Watchdog defines the monitoring cycle. If the number of executions of a runnable (counted by the
Aliveness Counter AC) is lower than the configured limit (m), which is called by this runnable within
a certain monitoring period, an error will be detected. The monitoring period is defined in number of
monitoring cycles (counted with the Cycle Counter for Aliveness CCA).

In the configuration of test environment, the execution period of Runnable R8, which belongs to
Task T2, was set to1000ms. The monitoring cycle is 100ms. The fault assumption is “less than 10
executions of R8 during 10,000 ms”. So the minimum number of executions m is 10 and the
monitoring period for R8 is 10,000 ms = n*monitoring cycle = 100 * 100 ms. As depicted in Figure
AI-5, for the Aliveness checking of R8, the number of monitoring cycles n is chosen as 100.

Figure AI-5: Aliveness Monitoring without error

The fault Period T2 * 2 is injected. Now the execution period of R8 is 2000 ms instead of 1000 ms,
so R8 will be executed two times less than expected. After the monitoring period of 10,000 ms, R8
has been executed only 5 times (less than the low limit m = 10) and the error R8_Aliveness is
detected.

Appendix 1: Implementation details of the validator

207

Test Case 2 ─ Arrival Rate Monitoring

The SW-Watchdog monitors the arrival rate of runnables. If the number of executions of a runnable
(counted by the Arrival Rate Counter ARC) is higher than the configured limit (p), an error is
detected. The number of monitoring cycles is registered with the Cycle Counter for Arrival Rate
CCAR. Here, the monitoring period equals the monitoring cycle, which means that ARC is checked
at each monitoring cycle.

In the configuration of test environment, the execution period of runnable R8 in task T2 is 1000 ms,
while the monitoring cycle is 100 ms. The fault assumption is “more than 5 executions of R8 during
5000 ms”. So the maximum number of executions p is 5 during 5000 ms = q*monitoring cycle = 50
* 100 ms, so q is 50.

By the fault injection period T2 / 2 is set. Now the execution period of R8 is 500 ms instead of 1000
ms, thus R8 will be executed twice as often as expected. As the arrival rate checking is performed
at each monitoring cycle, after 2600 ms R8 has been executed 5 times and the error
R8_Arrival_Rate is detected.

Test Case 3 ─ Control Flow Checking

The SW-Watchdog with the function Control Flow Checking monitors the execution sequence of
the runnables inside a task. For task T1 the expected execution order is R1 R2 R3 R4 R5 R6 R7
R1 R2 R3 etc.

 Fault injection test case 1

The fault R3 disabled is injected; the following errors are detected by the SW-Watchdog:

o R4_Control_Flow (because R4 is not the successor of R2): after the monitoring period
for R3 (where the Aliveness checking is performed for R3), another error is detected

o R3_Aliveness (because R3 has not been executed)

 Fault injection test case 2

The fault “inverse R1 / R2” is injected; the following errors are detected by the SW-Watchdog:

o R1_Control_Flow (because R1 is not the successor of R2)

o R2_Control_Flow (because R2 is not the successor of R7)

o R3_Control_Flow (because R3 is not the successor of R1)

Appendix 1.2.3 Prototyping and validation of Fault Management Framework

The Fault Management Framework is tested on the Spy-Node in the prototyping environment as
for the SW-Watchdog. The test cases are organized in three scenarios.

1. Test of the Fault State Manager part

2. Test of the Supervision – Reconfiguration part

A synthesis test demonstrates an integration example of the Fault Management Framework with
the demonstration application:

3. Test of the Fault Management Framework

Appendix 1: Implementation details of the validator

208

The list of characteristics of the Fault Management Framework tested in the validator is given in
the following tables.

Test
number

Test Case Description Expected results

1 Off line configuration Demonstration of the Python tool to
generate configuration source files
for Fault State Manager software
component

Functional code
generated

2 Filtering mechanism
and error state
management

Demonstration of the filter counter,
demonstration of “No Error,
Present, Present & Confirmed, and
Confirmed states management”

Functional filter counter

3 Combined errors Demonstration of resilience to
logical errors combination

Functional code
generated

Table AI-3: Test cases for the Fault State Manager in FMF

Test
number

Test Case Description Expected results

4 Mode management by
dynamic
reconfiguration of fail-
degradation

Demonstration of call-back function
mechanism for supervision
integration, demonstration of
degraded mode

Functional call back
mechanism working

5 Dynamic
reconfiguration on the
task layer

Demonstration of disabling tasks
and scheduler reconfiguration,
demonstration of SW-Watchdog
reconfiguration

Functional
reconfigurable
scheduler working

6 Dynamic
reconfiguration with
ECU reset

Demonstration of reset capability Reset capability with
context-awareness

Table AI-4: Test cases Supervision – Reconfiguration in FMF

In the following the test cases 4, 5 and 6 will be specified in details:

Test Case 4 ─ Mode management by dynamic reconfiguration of fail-degradation

By association an error with a call back function, the Fault State Manager calls this function when
the error passes to the state “Confirmed”.

Appendix 1: Implementation details of the validator

209

This design mechanism is used to integrate the Fault State Manager and the Supervision and
Reconfiguration sub-components. The management of the demonstration application modes
(Normal mode, Degraded mode, Restarted mode, Fail safe mode) is realized in the Supervision
sub-component. For example as depicted in Figure AI-6, when the error STS_LAM_INDIC_FL
(open load detection on front left indicator lamp) is detected, the application passes in a ‘Degraded
mode’ (front left position lamp replaces front left indicator lamp for left turning indication).

Figure AI-6: Supervision Reconfiguration – Mode management

Test Case 5 ─ Dynamic reconfiguration on the task layer

In this SafeLight application, runnables correspond to elementary atomic treatments that are
executed periodically (e.g. Runnable R1 reads inputs, Runnable R2 manages blinking, …).
Runnables of the same period of the same safety integrity are grouped in a task (e.g. Task T1
200ms, Task T2 1000 ms, etc.) The tasks are organized functionally in configurations that
correspond to a set of tasks executed in a major stable state (e.g. Normal Configuration, Fail Safe
Configuration, etc.). A synchronous real-time scheduler manages the execution of all tasks of a
configuration with an elementary cycle of 100 ms. The current configuration can be switched. A
task of a configuration can be activated / deactivated.

Two types of reconfiguration of the execution flow have been tested:

 Deactivation of tasks. The tasks associated with the automatic lighting functions are
deactivated in case of sensor fault detection. As depicted in Figure AI-7, the deactivation of
task1 leads to the state transition of SafeLight to the fail-safe mode.

 Switch of configuration. The application switches in a “Fail Safe Configuration” in case of
non recoverable software fault.

Appendix 1: Implementation details of the validator

210

Figure AI-7: Supervision Reconfiguration – Scheduler

Test Case 5 ─ Dynamic reconfiguration with ECU reset

The supervision and reconfiguration unit in FMF can trigger an ECU reset. In this implementation,
the design solution was to use the internal hardware watchdog of the micro-controller of the ECU.
In the demonstration application, the ECU reset is used as a recovering strategy for some critical
software failures, e.g. a critical control flow error as depicted in Figure AI-8.

Figure AI-8: Supervision Reconfiguration – ECU Reset

Appendix 2: Mathematic derivation of the communication overhead of agreement protocol

211

Appendix 2: Mathematic derivation of the communication overhead of agreement protocol

Figure AII-1: Derivation of the communication overhead for the OM

Figure AII-2: Derivation of the communication overhead for the SM

Appendix 3: Glossary

212

Appendix 3: Glossary

A few terms used in this dissertation are explained here as a short summary. For more complete
and detailed glossary please refer to EASIS glossary [Glo07] and AUTOSAR glossary [Glo03].

Application Software Component

An Application Software Component is a specific Software Component realizing a defined
functionality of a set (one or more) of features, which consist out of 1..n (n>=1) functions (in terms
of C-Code functions) and 1..m (m>=1) executable runnables. In EASIS, Application Software
Components are resident in the most upper layer of EASIS software topology.

Basic Software Module

Basic Software Module provides the infrastructural (schematic dependent and schematic
independent) functionalities of an ECU. It consists of ECU Firmware and Standard Software.

Compositionality

Compositionality is given when the behavior of a software component or subsystem of a system
has to be independent of the overall system load and configuration. Notes: Compositionality is an
important property of deterministic systems. This property leads to a complete decoupling of
systems. Smooth subsystem integration without backlashes is then easily achievable.

Software Configuration

The configuration of software elements in a software system. Notes: A software element is a
clearly definable software part. A software configuration is a selected version of software modules,
software components, parameters and generator configurations. Calibration and variant coding
can be regarded as subset of software configuration.

Control Flow

The directed transmission of information between multiple entities, directly resulting in a state
change of the receiving entity. Notes: A state change could result in an activation of a schedulable
entity.

Event

The occurrence of a state change of a hardware or software entity or system or its environment.
Notes: (1) Examples of different types of events: Failure, exception, interrupt, hazardous event
mishap, loss event (2) Event is a specialization of Signal.

Fail-Degraded

Property of a system or functional unit, describes the ability of a system to continue with intended
degraded operation at its output interfaces despite the presence of hardware or software faults.
Notes: e.g. “Limp home” functionality for ECU (reduce torque to assure an arrival at home or
service station).

Appendix 3: Glossary

213

Fail-Operational

Property of a system or functional unit, describes the ability of a system or functional unit to
continue normal operation at its output interfaces despite the presence of hardware or software
faults. This is a characteristic of a unit that means that the system is designed in such a way, that it
can (without repair) fail once and remain fully operational without any limit of time, e.g. braking
system

Fail-Safe

Property of a system or functional unit. In case of a fault the system or functional unit transits to a
safe state. This is the behavior of a unit such that the outputs of the unit must be correct or
otherwise must be in any electrical or logical state that is supposed to lead the vehicle in an
intrinsic safe state.

Fail-Silent

Property of a system or functional unit. In case of a fault the output interfaces are disabled in a way
that no further outputs are made. This is the behavior of a unit such that the outputs of the unit
must be correct or otherwise must be ”silent” that is null or in any other electrical or logical state
that does not lead to any kind of actuation or interference with other parts of the system. This
applies either to the communication bus or to sensors and actuators directly connected to the unit.
This is a special case of fail safe. Fail-silent is a special case of the fail-safe property.

Fault Containment

As an arbitrary propagation of errors cannot be tolerated, fault containment regions, which restrict
errors to certain parts of the system, are needed. Methods for error containment are access-
restriction, consistency checking, physical isolation, and others.

Front Loading

During a standard product development process development and validation/verification workload
is steadily increasing over time until it reaches its maximum shortly before start-of-production. This
may lead to "fire-fighting" in some projects, where unexpected trouble occurs during validation. To
solve this issue, a maximum of validation and verification should be done in early phases of the
development process as early as possible

Redundancy

Existence of means, in addition to the means which would be sufficient, for a system or functional
unit to perform a required function.

Appendix 4: List of figures

214

Appendix 4: List of figures

Figure 1-1: Development of active, passive and integrated safety electronic systems..................... 1

Figure 1-2: Targets set by EU of 50% reduction in the road fatalities before 2010 2

Figure 1-3: Structure of the focus in the dissertation .. 5

Figure 2-1: The dependability tree [Lap95] ... 7

Figure 2-2: Difference between fault, error and failure ... 8

Figure 2-3: Timing requirement of fault tolerance ... 9

Figure 2-4: Relationship between different operational modes of an ECU 10

Figure 2-5: Layered architecture model of electronics.. 13

Figure 3-1: ECU topology of Mercedes E-class BR211.. 21

Figure 3-2: Hardware components of an ECU.. 22

Figure 3-3: Single-Processor ECU.. 22

Figure 3-4: Dual-Processor ECU .. 23

Figure 3-5: Triple-Processor ECU as a full 2oo3-system.. 24

Figure 3-6: Triple-Processor ECU... 25

Figure 3-7: Two variant of Dual-Duplex-Processor ECU .. 25

Figure 3-8: FlexRay bus access and communication cycle .. 29

Figure 3-9: FlexRay topologies ... 30

Figure 3-10: Software topology for Mercedes-Benz cabin ECU [Ruh04].. 33

Figure 3-11: EAST architecture framework... 34

Figure 3-12: AUTOSAR architecture framework [SWA06].. 35

Figure 3-13: The V-Model ... 39

Figure 3-14: Model based development process [Ruh04] .. 39

Figure 3-15: Basic V-style process model integrated in lifecycle engineering process 41

Figure 3-16: Development process according to [Hed01]... 41

Figure 3-17: “Double-V-Model” according to [Ben04] ... 42

Figure 3-18: Calculation of Safe Failure Fraction according to IEC61508...................................... 45

Figure 3-19: Overall framework of the safety lifecycle in ISO26262 [IEC01] 47

Figure 3-20: Reference phase model for the development of a safety-related item 48

Figure 3-21: Preliminary mapping of safety scales between IEC 61508 and ISO 26262 49

Figure 5-1: Framework of dependability activities... 54

Figure 5-2: V-model indicating inner and outer loop ... 54

Figure 6-1: Simplified fault hypothesis of a standard ECU ... 58

Appendix 4: List of figures

215

Figure 6-2: Cause of Byzantine fault with “1/2” area threshold... 61

Figure 6-3: Gate transfer function with “1/2” area ... 61

Figure 6-4: Byzantine Faults in Schrödinger’s CRC [SIV04]... 62

Figure 7-1: Overview of ISS Engineering Process with virtual front-loading................................... 65

Figure 7-2: ISS Engineering Process with virtual front-loading in details 67

Figure 7-3: Notation in the ISS Engineering Process ... 69

Figure 7-4: Global view of ISS Engineering Process .. 70

Figure 7-5: Specify preliminary requirements ... 71

Figure 7-6: Safety integrated requirement specification and development of the FAA-model 73

Figure 7-7: Mapping of system-PFH to FAA-components .. 76

Figure 7-8: Development steps for hardware architecture.. 78

Figure 7-9: Design and validation of Functional Architecture Model with virtual front-loading........ 80

Figure 7-10: Refinement of FDA model with dependable SW-platform .. 84

Figure 7-11: Process step 5.1 under magnifying glass... 85

Figure 7-12: Validation of FDA-model with software-in-the-loop (SiL) test 86

Figure 7-13: Test in different stages ... 87

Figure 7-14: Validation of FDA-model with hardware-in-the-loop test .. 89

Figure 7-15: OEM - Supplier Workflow ... 102

Figure 7-16: OEM view in the design of electric/electronic architecture 103

Figure 8-1: Backbone architecture.. 107

Figure 8-2: Central gateway architecture.. 107

Figure 8-3: Multi gateway architecture.. 108

Figure 8-4: Different sampling of two sensors .. 111

Figure 8-5: Variant of Dual-Duplex-ECU as 2oo2D-system.. 114

Figure 8-6: 2oo2D-system with diversity in hardware ... 114

Figure 8-7: Variant of Dual-Duplex-ECU as 1oo2D-system.. 115

Figure 8-8: Implementation of Dual-Duplex-ECU as 1oo2D-system [HWAA06]........................... 116

Figure 8-9: Example of the actuator monitoring (electronic motor) ... 118

Figure 8-10: Examples of ISS application and mapping to the vehicle domains 120

Figure 8-11: Distribution of SafeSpeed to the HW-architecture (FAA FDA)............................. 122

Figure 8-12: Exemplary system topology of future mid size car [HWAA06].................................. 122

Figure 8-13: Communication and functional architecture of SafeSteering.................................... 123

Figure 8-14: Exemplary system topology of future large size car [HWAA06] 124

Figure 8-15: Exemplary 1oo2D dual-core ECU architecture... 125

Appendix 4: List of figures

216

Figure 9-1: EASIS layered software topology [SWP06].. 128

Figure 9-2: EASIS software topology –software components and services [SWT06] 129

Figure 9-3: Mapping App.SW-Cs of different ASILs to the hardware topology............................. 131

Figure 9-4: Example scenario of intra-ECU and inter-ECU communication 132

Figure 9-5: Communication redundancy mechanisms.. 133

Figure 9-6: Reference model for end-to-end communication checksum 134

Figure 9-7: Data flow from application SW-C to transceiver (sender)... 135

Figure 9-8: Data flow from transceiver to application SW-C (receiver) ... 135

Figure 9-9: Date flow with application CRC on the sender ... 136

Figure 9-10: Fault masking 2-out-of-3 system [Ech90] ... 139

Figure 9-11: OM algorithm with n = 4 and m = 1 .. 141

Figure 9-12: Time diagram of the Signed Message Protocol with 3 nodes 142

Figure 9-13: Pendulum Protocol for 3 nodes withδ = 2 .. 143

Figure 9-14: Interface to fault-tolerant communication and application .. 145

Figure 9-15: Assembly symbol in UML with Enterprise Architect ... 145

Figure 9-16: Software partitioning in the dependable software architecture................................. 147

Figure 9-17: Mapping of application to ECUs and runnables to tasks .. 148

Figure 9-18: UML-model of objects in operating system .. 149

Figure 9-19: Memory protection of indirect data access ... 150

Figure 9-20: Definition of task execution time... 151

Figure 9-21: Control flow check of runnables ... 153

Figure 9-22: Different units constituting the SW-Watchdog service.. 154

Figure 9-23: Activity diagram for Aliveness Monitoring... 156

Figure 9-24: Activity diagram for Arrival Rate Monitoring ... 157

Figure 9-25: Example of Heartbeat Monitoring ... 158

Figure 9-26: Sequence diagram for Control Flow Checking ... 160

Figure 9-27: Sequence diagram for TSIU ... 161

Figure 9-28: Fault Management Framework Structure ... 163

Figure 9-29: FSM structure and ID mapping... 164

Figure 9-30: Event dispatcher example .. 165

Figure 9-31: HW/SW mapping of the FMF.. 166

Figure 9-32: Overview of supervision ... 167

Figure 9-33: Mapping of Errors to Configurations... 171

Figure 9-34: Interface of basic, dependability and gateway software services............................. 176

Appendix 4: List of figures

217

Figure 10-1: Tool chain and development process... 179

Figure 10-2: System topology of EASIS architecture validator [AfS07] .. 181

Figure 10-3: Fail-safe unit of dual-duplex actuator ECU... 183

Figure 10-4: Mapping between faults and errors .. 185

Figure 10-5: Outline of system architecture for the validation of Agreement Protocol Service..... 186

Figure 10-6: User interface for agreement protocol validation.. 186

Figure 10-7: Modeling of runnables and program flow in SafeSpeed... 187

Figure 10-8: Test with injected aliveness error ... 188

Figure 10-9: Collaboration of fault detection units .. 189

Figure 10-10: Evaluation cases with fault injection for FMF ... 190

Figure 10-11: Fault injection triggered with CANoe to FMF.. 191

Figure 10-12: FAA-model of SafeSpeed... 192

Figure 10-13: FDA-model of the SpeedControl in SafeSpeed.. 193

Figure 10-14: FlexRay communication scheduling in the validator... 194

Figure AI-1: EASIS validator demonstrated on ITS 2006 in London... 200

Figure AI-2: FSU processor block diagram [HWV06] ... 201

Figure AI-3: Single Byzantine Fault .. 204

Figure AI-4: Double Byzantine Fault ... 205

Figure AI-5: Aliveness Monitoring without error .. 206

Figure AI-6: Supervision Reconfiguration – Mode management .. 209

Figure AI-7: Supervision Reconfiguration – Scheduler ... 210

Figure AI-8: Supervision Reconfiguration – ECU Reset ... 210

Figure AII-1: Derivation of the communication overhead for the OM.. 211

Figure AII-2: Derivation of the communication overhead for the SM .. 211

Appendix 5: Literature index

218

Appendix 5: Literature index

[EUC01] EU, "White Paper - European transport policy for 2010, time to decide", European
Commission, Office for Official Publications of the European Communities,
Luxemburg, 2001, http://europa.eu.int

[ADS07] M. Lannoije, J. Dr. Schuller, et. al., "Entwurf und Realisierung des Funktions- und
Sicherheitskonzepts der Audi Dynamiklenkung", presented at Haus der Technik,
27. Conference "Elektronik im Kraftfahrzeug" (In-vehicle Electronics), Dresden,
Germany, 2007

[ADL05] W. Bernhardt, H. Erl, "Markt- und Technologiestudie Leistungselektronik
Automotive 2015", Arthur D Little GmbH - Consulting, 26. Sep. 2005

[AfS07] J. Stroop, X. Chen, et. al., "Architectures for Safety", January, 2007,
http://www.easis-online.org/wEnglish/img/pdf-files/dSPACENEWS2007-
1_Architectures_for_Safety_en_504

[AOS06] AUTOSAR, "AUTOSAR Specification of Operating System", 2006
http://www.autosar.org/download/AUTOSAR_SWS_OS.pdf

[ASM06] ASAM, "Association for Standardization of Automation and Measuring Systems",
2006, http://www.asam.net

[ASR04] ASRB, Automotive Safety Restraints Bus, 2004, http://www.electronic-
data.com/unternehmen/4257.asp

[ATZ05] ATZ/MTZ, "Aktive und passive Sicherheit," ATZ/MTZ extra S-Klasse BR221, pp.
118-125, 2005

[AUT07] AUTOSAR, "AUTOSAR - Automotive Open System Architecture", 2007,
www.autosar.org

[ATO07] AUTOSAR, “AUTOSAR – Technical Overview”, 2007,
http://www.autosar.org/download/AUTOSAR_TechnicalOverview.pdf

[Bel01] R. Belschner, et al., "FlexRay - The Communication System for Advanced
Automotive Control Systems", presented at SAE Technical Paper Series Nr.
2001-01-0679, Detroit, 2001

[Ben04] S. Benz, "Eine Entwicklungsmethodik für sicherheitsrelevante Elektroniksysteme
im Automobil", Dissertation in Institut für Technik der Informationsverarbeitung:
Universität Karlsruhe, 2004

[BER04] J. Ferreira, "An Experiment to Assess Bit Error Rate in CAN", presented at RTN
2004 - 3rd Int. Workshop on Real-Time Networks, 2004

[Bes02] A. Best, Echtle, K., "Standardverfahren und spezielle Ansätze zur Fehlertoleranz
von Steuergeräten in Automobilen", Projekt FeSTA, Daimler AG, Uni Essen,
2002

[Bro03] M. Broy, "Automotive Software and Systems Engineering", presented at 25th
International Conference on Software Engineering, 2003, pp. 719 - 720

http://europa.eu.int/
http://www.easis-online.org/wEnglish/img/pdf-files/dSPACENEWS2007-1_Architectures_for_Safety_en_504
http://www.easis-online.org/wEnglish/img/pdf-files/dSPACENEWS2007-1_Architectures_for_Safety_en_504
http://www.autosar.org/download/AUTOSAR_SWS_OS.pdf
http://www.asam.net/
http://www.electronic-data.com/unternehmen/4257.asp
http://www.electronic-data.com/unternehmen/4257.asp
http://www.autosar.org/
http://www.autosar.org/download/AUTOSAR_TechnicalOverview.pdf

Appendix 5: Literature index

219

[BSW06] EASIS, "Deliverable D1.2-2 - Basic services", EASIS Partnership, 2006
www.easis.org

[Gri00] R. Grießbacher, “Byteflight - neues Datenbussystem für sicherheitsrelevante
Anwendungen”, Automotive Electronics of ATZ/MTZ, 01/2000,
http://www.byteflight.com/presentations/atz_sonderausgabe.pdf

[CHS06] X. Chen, M. Limam, M. Wedel, et. al., "Concept and Integration of an Agreement
Protocol in a Dependable Software Platform for Automotive Integrated Safety
Systems", presented at Automotive - Safety & Security 2006, Stuttgart, Germany,
2006, http://www.easis-online.org/wEnglish/img/pdf-files/Paper_Automotive-
Safety&Security2006.pdf

[CoW05] Freescale, "CodeWarrior™ Development Studio for Freescale™ HCS12(X)
Microcontrollers, product information", 2005

[Con06] Conti Temic microelectronic GmbH 2006, Electronic Brake Systems MK25,
http://www.conti-
online.com/generator/www/de/en/cas/cas/themes/products/electronic_brake_and
_safety_systems/electronic_brake_systems/abs_tcs_esc/ebs_1003_en.html

[Cri91] Cristian, F. „Understanding Fault Tolerant Distributed Systems“, Communications
of the ACM, Ausgabe 34, Heft 2, 1991, pp. 56-78

[DFP06] EASIS, "Deliverable D1.2-13 - Description of fault types", EASIS Partnership,
2006, http://www.easis.org

[DIN93] DIN60870-5-1, "Norm Fernwirkeinrichtungen und -Systeme Teil 5:
Übertragungsprotokoll", 1993

[DSC05] Decomsys, "Simcom User Manual Version 2.2,
„DECOMSYS::SIMCOM<FlexRay> Matlab/Simulink blockset for FlexRay,
Generator User Manual Version 2.2.8, Designer User Manual Version 2.0.6,
Simsytem User Manual Version 2.2", Dependable Computer Systems GmbH,
Vienna 2005

[DyR96] D. B. Stewart, G. Arora, "Dynamically Reconfigurable Embedded Software - Does
It Make Sense?" presented at IEEE Intl. Conf. on Engineering of Complex
Computer Systems and Real Time Application Workshop, Montreal, Canada,
1996, pp. 217-220,

[EAD42] EASIS Deliverable D4.2 A Prototype Tool Interaction Software Layer

[EAD41] EASIS Deliverable D4.1 Appendix 1: EASIS Engineering Process

[EAST03] EAST-EEA Embedded Electronic Architecture “Glossary”, Version 6.1, ITEA
EAST-EEA Project, www.east-eea.net, Version 7.2, 2003

[Ech90] Echtle, K. „Fehlertoleranzverfahren“, Springer Verlag, Berlin [u.a.], 1990, ISBN 3-
540-52680-3

[Eck06] M. Eckmann, F. Mertens, "Close-to-Production Prototyping, Flexible and Cost-
efficient", in ATZ Elektronik, vol. 01/2006, 2006, pp. 22-27

www.easis.org
http://www.byteflight.com/presentations/atz_sonderausgabe.pdf
http://www.easis-online.org/wEnglish/img/pdf-files/Paper_Automotive-Safety&Security2006.pdf
http://www.easis-online.org/wEnglish/img/pdf-files/Paper_Automotive-Safety&Security2006.pdf
http://www.conti-online.com/generator/www/de/en/cas/cas/themes/products/electronic_brake_and_safety_systems/electronic_brake_systems/abs_tcs_esc/ebs_1003_en.html
http://www.conti-online.com/generator/www/de/en/cas/cas/themes/products/electronic_brake_and_safety_systems/electronic_brake_systems/abs_tcs_esc/ebs_1003_en.html
http://www.conti-online.com/generator/www/de/en/cas/cas/themes/products/electronic_brake_and_safety_systems/electronic_brake_systems/abs_tcs_esc/ebs_1003_en.html
www.east-eea.net

Appendix 5: Literature index

220

[Ehr03] J. Ehret, "Validation of Safety-Critical Distributed Real-Time Systems",
Dissertation in Electrical and Computer Engineering. Munich: Technische
Universität München, 2003

[EiK06] X. Chen, et. al., "A Dependable Software Platform for Automotive Integrated
Safety Systems", presented at Haus der Technik, 26. Conference "Elektronik im
Kraftfahrzeug" (In-vehicle Electronics), Dresden, Germany, 2006,
http://www.easis-online.org/wEnglish/img/pdf-
files/Paper_Elektronik_im_Fahrzeug.pdf

[EiK07] X. Chen, F. Salewski, et. al., "Concept and Prototyping of a Fault Management
Framework for Automotive Safety Relevant Systems", presented at Haus der
Technik, 27. Conference "Elektronik im Kraftfahrzeug" (In-vehicle Electronics),
Dresden, Germany, 2007, http://www.easis-online.org/wEnglish/img/pdf-
files/Paper_Elektronik_im_Fahrzeug_2007.pdf

[ElA04] Elektronik automotive, "Systemvernetzung: Künftig nur noch 20 Steuergeräte",
3/2004, vol. Heft 3, pp. 21, 2004

[Ele04] B. Elend, "FlexRay Netzwerk Topologie für sicherheitsrelevante Applikationen",
auto&elektronik, vol. 2/2004, pp. 44-46, 2004,
http://www.flexray.com/publications/Philips_FR_auto_elektronik02_2004.pdf

[FMF06] EASIS, "Deliverable D1.2-8 - Fault management framework", EASIS Partnership,
2006, http://www.easis-
online.org/wEnglish/download/Deliverables/EASIS_Deliverable_D1.2-8_V1.0.pdf

[FTD06] EASIS, "Deliverable D1.2-5 - Discussions and findings on Fault Tolerance",
EASIS Partnership, 2006, www.easis.org

[FTS06] EASIS, "Deliverable D1.2-3 - Fault Tolerance Services", EASIS Partnership,
2006, www.easis.org

[FxR02] H. Heinecke, A. Schedl, B. Hedenetz, "FlexRay - ein Kommunikationssystem für
das Automobil der Zukunft", Elektronik Automotive, pp. 36-45, Sep-2002

[GAN03] J. Ganssle, "Watching the Watchdog," embedded world, 2003

[GDi02] G. Leen, D. Heffernan: “Expanding Automotive Electronic Systems”, IEEE
Computer, pp. 5-6, January 2002

[Glo03] AUTOSAR, "AUTOSAR Glossary", 2003, www.autosar.org

[Glo07] EASIS, "EASIS Glossary", 2007 http://www.easis-
online.org/wEnglish/download/deliverables_WP0.shtml?navid=15

[GTD06] EASIS, "Deliverable D1.2-10 - Data exchange concepts for gateways", EASIS
Partnership, 2006, www.easis.org

[GTS06] EASIS, "Deliverable D1.2-12 - Security and firewall concepts for gateways",
EASIS Partnership, 2006, www.easis.org

[Har02] F. Hartwich, T. Führer, B. Müller and R. Hugel, Robert Bosch GmbH, "Integration
of Time Triggered CAN (TTCAN_TC)," SAE, 2002

http://www.easis-online.org/wEnglish/img/pdf-files/Paper_Elektronik_im_Fahrzeug.pdf
http://www.easis-online.org/wEnglish/img/pdf-files/Paper_Elektronik_im_Fahrzeug.pdf
http://www.easis-online.org/wEnglish/img/pdf-files/Paper_Elektronik_im_Fahrzeug_2007.pdf
http://www.easis-online.org/wEnglish/img/pdf-files/Paper_Elektronik_im_Fahrzeug_2007.pdf
http://www.flexray.com/publications/Philips_FR_auto_elektronik02_2004.pdf
http://www.easis-online.org/wEnglish/download/Deliverables/EASIS_Deliverable_D1.2-8_V1.0.pdf
http://www.easis-online.org/wEnglish/download/Deliverables/EASIS_Deliverable_D1.2-8_V1.0.pdf
www.easis.org
www.easis.org
www.autosar.org
http://www.easis-online.org/wEnglish/download/deliverables_WP0.shtml?navid=15
http://www.easis-online.org/wEnglish/download/deliverables_WP0.shtml?navid=15
www.easis.org
www.easis.org

Appendix 5: Literature index

221

[Hed01] Hedenetz, B. “Entwurf von verteilten fehlertoleranten Elektronikarchitekturen in
Kraftfahrzeugen”, Dissertation, Eberhard-Karls-Universität Tübingen, 2001

[HIL06] M. Hiller, X. Chen, et. al., "Dependability Services in the EASIS Software
Platform", presented at DSN 2006 Workshop on Architecting Dependable
Systems, 2006, http://www.easis-online.org/wEnglish/img/pdf-
files/wads_2006_easis.pdf

[HOS07] Wikipedia, "History of Operating System", 2007,
http://en.wikipedia.org/wiki/History_of_operating_systems

[HRK00] B. Hedenetz, J. Ruh, M. Kühlerwein, Th. Ringler, et. al., "OSEKtime - the new
fifth OSEK/VDX group: A Dependable Fault-Tolerant Real-Time Operating
System and Communication Layer for By-Wire Applications", presented at VDI
Baden-Baden, 2000, pp. 59

[HWA06] EASIS, "Deliverable D2.2 - Conceptual Hardware Architecture Specification",
EASIS Partnership, 2006, www.easis.org

[HWAA06] EASIS, "Appendix to Deliverable D2.2 - Conceptual Hardware Architecture
Specification", EASIS Partnership, 2006, www.easis.org

[HWV06] EASIS, "Deliverable D2.4 An ECU prototype with fault tolerance characteristics",
EASIS Partnership, 2006, www.easis.org

[IEC01] IEC61508, "Functional safety of electronical/electronic/programmable electronic
safety-related systems - Part 1: General requirements", 1998

[IEC02] IEC61508, "Functional safety of electronical/electronic/programmable electronic
safety-related systems - Part 2: Requirements for
electrical/electronic/programmable electronic safety-related systems", 1998

[IEC03] IEC61508, "Functional safety of electronical/electronic/programmable electronic
safety-related systems - Part 3: Software requirements", 1998

[IEC04] IEC61508, "Functional safety of electronical/electronic/programmable electronic
safety-related systems - Part 4: Definitions and abbreviations", 1998

[IEC05] IEC61508, "Functional safety of electronical/electronic/programmable electronic
safety-related systems - Part 5: Examples of methods for the determination of
safety integrity levels", 1998

[IEC06] IEC61508, "Functional safety of electronical/electronic/programmable electronic
safety-related systems - Part 6: Guidelines on the application of IEC 61508-2 and
IEC 61508-3", 1998

[IEC07] IEC61508, "Functional safety of electronical/electronic/programmable electronic
safety-related systems - Part 7: Overview of techniques and measures", 1998

[IECFAQ] IEC61508, "IEC 61508 FAQs", http://www.iec.ch/zone/fsafety/questions.htm

[ISO11898] International Organization for Standardization “ISO 11898: Road vehicles —
Controller area network (CAN)”, Geneva, 2003

[ISO15] CMMI/ISO 15504: Information technology - (Software) Process assessment -
Parts 1 to 5

http://www.easis-online.org/wEnglish/img/pdf-files/wads_2006_easis.pdf
http://www.easis-online.org/wEnglish/img/pdf-files/wads_2006_easis.pdf
http://en.wikipedia.org/wiki/History_of_operating_systems
www.easis.org
www.easis.org
www.easis.org
http://www.iec.ch/zone/fsafety/questions.htm

Appendix 5: Literature index

222

[ISO21] ISO/WD 26262-1, TC 22/SC3 N 035, Road vehicles – functional safety – part 1:
Glossary, 2005-12-22.

[ISO22] ISO/WD 26262-2, TC 22/SC3 N 007, Road vehicles – functional safety – part 2:
Management of functional safety, 2005-09-26

[ISO23] ISO/WD 26262-3, TC 22/SC3 N 008, Road vehicles – functional safety – part 3:
Concept phase, 2005-09-26

[ISO24] ISO/WD 26262-4, TC 22/SC3 N 009, Road vehicles – functional safety – part-4:
Product development system, 2005-09-25

[ISO25] ISO/WD 26262-5, TC 22/SC3 N 010, Road vehicles – functional safety – part 5:
Product development hardware, 2005-10-7

[ISO26] ISO/WD 26262-6, TC 22/SC3 N 011, Road vehicles – functional safety – part 6:
Product development software, 2005-09-19

[ISO27] ISO/WD 26262-7, TC 22/SC3 N 012, Road vehicles – functional safety – part 7:
Production and operation, 2005-09-16

[ISO28] ISO/WD 26262-8, TC 22/SC3 N 013, Road vehicles – functional safety – part 8:
Supporting processes, 2005-09-26

[ISO7498-1] International Organization for Standardization „ISO 7498-1: Information
Technology – Open System Interconnection – Basic Reference Model: The Basic
Model“, Standard, Geneva, 1994

[Kop02] P. Koopman, "Dependability for Embedded Systems", Lecture, Carnegie Mellon,
2002

[Kop04] P. Koopman, T. Chakravarty, "Cyclic Redundancy Code (CRC) Polynomial
Selection For Embedded Networks", presented at The International Conference
on Dependable Systems and Networks, DSN-2004, 2004

[Kru98] M. Krug, "Concept and Implementation of a Dependable Automotive Operating
System", Dissertation in Computer of Science: University of Tübingen, 1998, pp.
57, Chapter 5: Defining a Fault Hypothesis

[Lam80] L. Lamport; R.Shostak; M.Pease, "Reaching Agreement in the Presence of
Faults," Journal of the ACM, vol. 27, no. 2, pp. 228..234, Apr-1980.

[Lam82] L. Lamport, M. Pease, R. Shostak, "The Byzantine Generals Problem," ACM
Transactions on Programming Languages and Systems, vol. 4, pp. 382-401,
1982

[LAN97] D. Lantrip, "General Purpose Watchdog Timer Component for a Multitasking
System": embedded world, 1997, http://www.embedded.com/97/feat29704.htm

[Lap95] J.-C. Laprie, Dependability - its attributes, impairments and means, Predictably
Dependable Computing Systems, pp. 3-24, Springer-Verlag, 1995

[Lim05] M. Limam, " Conception and Implementation of an Agreement Protocol for Fault-
Tolerant Automotive Embedded Systems", Diploma thesis in Institut für
Automatisierungs- und Softwaretechnik: University of Stuttgart, 2005

http://www.embedded.com/97/feat29704.htm

Appendix 5: Literature index

223

[LIN2.0] LIN Consortium „LIN Specification Package“, Revision 2.0, Motorola, Munich,
2003

[LSP80] Lamport L.; Shostak R.; Pease M.: Reaching Agreement in the Presence of
Faults. In: Journal of the ACM, vol. 27, no. 2, pp. 228..234, April 1980

[LSP82] Lamport L.; Shostak R.; Pease M.: The Byzantine Generals Problem, In: ACM
Transactions on Programming Languages and Systems, vol. 4, no. 3, pp.
382..401, July 1982

[McK05] McKinsey&Company, "Automotive Electronics", McKinsey Automotive Electronics
Initiative, 2005

[McK06] Hoch, et. al., "The Race to Master Automotive Embedded Systems
Development", McKinsey&Company, 2006

[Nah02] O. Nahmsuk, P. Shirvani, E. McCluskey, "Control-Flow Checking by Software
Signatures," IEEE Transaction on Reliability, vol. 51, pp. 111-121, Mar-2002

[OSK01] OSEK, "OSEK/VDX Time-Triggered Operating System Specification 1.0", 2001
www.osek-vdx.org

[OSK05] OSEK, "OSEK/VDX Operating System Specification 2.2.3", ISO 17356-3:2005,
Road vehicles -- Open interface for embedded automotive applications -- Part 3:
OSEK/VDX Operating System (OS), 2005, www.osek-vdx.org

[Rei05] W. Reinelt, W. Klier, G. Reimann., "Systemsicherheit des Active Front Steering",
in Automatisierungstechnik, 53(1):36-43, 2005

[Ruh04] J. Ruh, "Entwurf von fehlertoleranten Steuergeräteapplikationen in
Kraftfahrzeugen unter Berücksichtigung moderner Entwicklungsmethodiken", in
Fakultät für Informatik der Eberhard-Karls-Universität Tübingen, 2004

[RWT02] RWTH Aachen, Lecture Notes “Fault Tolerant Computer Systems” Summer
semester 02, Lectures 9: Byzantine agreement, http://www-i4.informatik.rwth-
aachen.de/lufg/lvs/teaching/ss02/ftcs/index.html

[SCK04] C. Shelton, P. Charles, P. Koopman, "Improving System Dependability with
Functional Alternatives", presented at The International Conference on
Dependable Systems and Networks, DSN, 2004

[SIV04] H. Sivencrona, "On the Design and Validation of Fault Containment Regions in
Distributed Communication Systems", Dissertation in Department of Computer
Engineering. Göteborg, Sweden: Charmers University of Technology, 2004, pp.
165-185

[SMT06] M. Jörg, "Dynamic Software Module Tests - A Process Component for Better
Software Quality", in ATZ Elektronik, 2006, pp. 36

[Spi07] K. Spisic, "Concept and Implementation of a Fault Management Framework for a
dependable in-vehicle E/E-architecture", Diploma thesis in Lehrstuhl Informatik XI
Software für eingebettete Systeme: RWTH Aachen, 2007

[SWA06] AUTOSAR, "AUTOSAR Layered Software Architecture, v2.0", 2006
http://www.autosar.org/download/AUTOSAR_LayeredSoftwareArchitecture.pdf

www.osek-vdx.org
www.osek-vdx.org
http://www-i4.informatik.rwth-aachen.de/lufg/lvs/teaching/ss02/ftcs/index.html
http://www-i4.informatik.rwth-aachen.de/lufg/lvs/teaching/ss02/ftcs/index.html
http://www.autosar.org/download/AUTOSAR_LayeredSoftwareArchitecture.pdf

Appendix 5: Literature index

224

[SWI06] EASIS, "Deliverable D1.3 A prototypical implementation of the common software
platform", EASIS Partnership, 2006 www.easis.org

[SWP06] EASIS, "Deliverable D1.2-0 - Overall Description of the EASIS Software
Platform", EASIS Partnership, 2006, www.easis.org

[SWR07] EASIS, "Requirements Specification WP1 Software Architecture", EASIS
Consortium, 2007, www.easis.org

[SWS03] Bosch, "Steering Wheel Angle Sensor LWS3.6 Technical Customer
Documentations", 2003

[SWT06] EASIS, "Deliverable D1.2-1 - Software topology", EASIS Partnership, 2006,
www.easis.org

[SML06] M. Hause, A. Korff, "An Overview of SysML for Automotive Systems Engineers",
ATZ-Elektronik, Mar-2007, pp. 22-29, 2007

[Tin03] K. Tindell, F. Wolf, R. Ernst, "Safe Automotive Software Development, Chapter 2:
The need for a protected OS in high integrity automotive systems", presented at
Proceedings of the Design, Automation and Test in Europe Conference and
Exhibition (DATE’03), IEEE Computer Society, Munich, Germany, Mar-2003

[TMg02] T. Bertram, M. Torlo: Globale dynamische Fehlertoleranz – Systemverband als
Basis für sichere X-by-Wire-Systeme, ATZ Automobiltechnische Zeitschrift 104,
Nr. 11, 2002, 1008-1014

[TRA06] V. Lauer, et. al.,, "EASIS – Electronic Architecture and System Engineering for
Integrated Safety Systems", presented at Transport Research Arena Europe,
2006, http://www.easis-online.org/wEnglish/img/pdf-files/tra_2006_easis.pdf

[TRV06] EASIS, "Deliverable D5.3 - Functional Test Report of EASIS Architecture
Validator", EASIS Partnership, 2006, www.easis.org

[µCI06] P. Sundaram, J. G. D’Ambrosio, "Controller Integrity in Automotive Failsafe
System Architectures", presented at 2006 SAE World Congress, Detroit,
Michigan, Apr-2006

[VAL06] EASIS, "Specification of EASIS Validator with Telematics Gateway, WT5.1
Deliverable", EASIS Consortium, 2006, www.easis.org

[Voa98] J. M. Voas, G. McGraw, Software Fault Injection: Inoculating Programs Against
Errors: John Wiley & Sons, 1998

www.easis.org
www.easis.org
www.easis.org
www.easis.org
http://www.easis-online.org/wEnglish/img/pdf-files/tra_2006_easis.pdf
www.easis.org
www.easis.org

Appendix 6: Author's biography

225

Appendix 6: Author's biography

Xi Chen was born in Wuhan, Hubei Province, China, on March 11, 1978. After two years of study
in Applied Physics he came to Germany for his graduate study in 1998. He received his Diploma of
Electrical and Computer Engineering and Master of Science degree in Information Technology at
the University of Stuttgart in December 2003. In February 2004 he joined Daimler AG Group
Research and Advanced Engineering as a research associate in the department of
Electric/Electronic Architecture. In Spring 2004, he started pursuing his Ph.D. in the Faculty of
Electrical and Computer Engineering in the Institute für Technik der Informationsverarbeitung at
the University of Karlsruhe (TH). In February 2007 he joined ZF-Lenksysteme in Schwäbisch
Gmünd as a Safety Manager in the Central Development of Functional Safety.

http://www.uni-stuttgart.de/
http://www.itiv.uni-karlsruhe.de/
http://www.uni-karlsruhe.de/
http://www.zf-lenksysteme.com/

Appendix 7: Lebenslauf

226

Appendix 7: Lebenslauf

Persönliche Daten

Familienname: Chen

Vorname: Xi

Geburtsdatum: 11. März 1978

Geburtsort: Wuhan, China

Familienstand: ledig

E-Mail: xi.chen@gmx.de

Akademische Bildung

02/2004– 02/2008 Promotion am Institut für Technik der Informationsverarbeitung der
Universität Karlsruhe in der Zusammenarbeit mit der Zentralen Forschung
der Daimler AG

10/1999 – 12/2003 Doppelstudium in Elektrotechnik und Informationstechnologie an der
Universität Stuttgart mit den Abschlüssen Dipl.-Ing. und Master of Science

10/1998 – 10/1999 Intensiver Deutsch-Sprachkurs an der Universität Stuttgart
10/1996 – 10/1998 Vier Semester Physikstudium an der Central China Normal University
09/1984 – 07/1996 Schulbesuch in Wuhan, Erwerb der allgemeinen chinesischen

Hochschulreife
Berufserfahrung

Seit 02/2007 Teilprojektleiter für die Entwicklung der Automobilsicherheit in den
Kundenprojekten bei der ZF-Lenksysteme GmbH in Schwäbisch Gmünd

02/2004 – 01/2007 Projektarbeit während der Industriepromotion bei der Daimler AG
 Ingenieur in der Zentralen Forschung der Daimler AG -

Fahrzeugkomfortelektronik
 Teilprojektleiter im EU-Projekt EASIS - Elektronikarchitektur and

Entwicklungsprozess
 Mitarbeiter in der AUTOSAR-Konsortium - Arbeitsgruppe „Sicherheit“

05/2003 – 12/2003 Industriediplomarbeit bei der Daimler AG in Esslingen zum Thema
„Testautomatisierung der Steuergerätsoftware im Fahrzeug“

11/2002 – 03/2003 Industriepraktikum und Werkstudententätigkeit bei Sony International, Mobile
Multimedia Lab

03/1999 – 12/2003 Wissenschaftliche Hilfskraft beim
 Institut für elektrische und optische Nachrichtentechnik (INT)
 Institut für Plasmaforschung (IPF)
 Fraunhofer Institut für Arbeitswirtschaft und Organisation (IAO)

08/1999 – 04/2000 Werkstudenten- und Ferientätigkeit bei der Robert Bosch GmbH
Soziales Engagement

12/2005 – 01/2007 Doktorandensprecher der Daimler AG

Seit 09/2001 VDE-Mitglied der Hochschulgruppe und Young-Professional

mailto:xi.chen@gmx.de
http://www.itiv.uni-karlsruhe.de/
http://www.uni-karlsruhe.de/
http://www.daimler.com/
http://www.f-iei.uni-stuttgart.de/index.shtml
http://www.infotech.uni-stuttgart.de/
http://www.uni-stuttgart.de/
http://www.zf-lenksysteme.com/
http://www.easis.org/
http://www.autosar.org/
http://www.daimler.com/
http://www.stuttgart.sony.de/
http://www.uni-stuttgart.de/int/
http://www.ipf.uni-stuttgart.de/
http://www.iao.fhg.de/
http://www.iao.fhg.de/
http://www.bosch.de/
http://www.vde.com/

	Requirements and concepts for futureautomotive electronic architectures fromthe view of integrated safety
	Acknowledgement
	Danksagung
	Abbreviation list
	Abstract
	Zusammenfassung
	Table of contents
	1 Introduction
	1.1 Short introduction to future automotive safety systems
	1.2 Motivation for the work
	1.3 Overview of the dissertation

	2 Basic concepts of dependability
	2.1 Definition of dependability
	2.2 Introduction to fault tolerance
	2.2.1 Fault diagnosis/detection
	2.2.2 Fault description
	2.2.2.1 Fault classes
	2.2.2.2 Fault propagation behavior
	2.2.2.3 Fault model, fault hypothesis and fault types

	2.2.3 Fault treatment
	2.2.3.1 Fault containment
	2.2.3.2 Fault tolerance

	3 State of the art: Automotive electronic architectures
	3.1 Building blocks of automotive electronic architectures
	3.2 Requirements for future automotive safety systems
	3.3 State of the art: Hardware architecture for automotive electronics
	3.3.1 Requirements for hardware of safety electronic systems
	3.3.2 In-vehicle system topology
	3.3.3 ECU hardware architecture
	3.3.3.1 Hardware architecture of general ECU
	3.3.3.2 Hardware architecture for safety relevant ECUs
	3.3.3.2.1 Dual-processor concept with fail-safe or fail-silent behavior
	3.3.3.2.2 Fail-operational ECU (fault tolerant ECU)
	3.3.3.2.3 Power supply for safety relevant ECUs

	3.3.3.3 Conclusion for ECU hardware architecture

	3.3.4 Automotive communication systems
	3.3.4.1 Requirements for automotive communication systems
	3.3.4.2 State of the art in automotive communication systems
	3.3.4.3 Conclusion for automotive communication systems

	3.4 State of the art: Software architecture for automotive electronics
	3.4.1 Requirements for software in safety electronic systems
	3.4.2 ECU software architecture
	3.4.2.1 Concept of standard software components
	3.4.2.2 Concepts of software platforms

	3.4.3 Automotive software services
	3.4.4 Conclusion for automotive software

	3.5 State of the art: Development process for automotive electronic systems
	3.5.1 Requirements for the development process of safety electronic systems
	3.5.2 State of the art in development processes
	3.5.2.1 V-Model
	3.5.2.2 Development processes in automotive electronic systems
	3.5.2.2.1 Model and simulation based development process
	3.5.2.2.2 Phase oriented development process
	3.5.2.2.3 The development process for fault tolerant electronics according to Hedenetz
	3.5.2.2.4 The development process for safety electronics according to Benz

	3.5.2.3 Safety norms in automotive industry
	3.5.2.3.1 Automotive SPICE
	3.5.2.3.2 Automobile MISRA Guidelines
	3.5.2.3.3 IEC 61508
	3.5.2.3.4 ISO WD 26262 from FAKRA working group

	3.5.3 Conclusion for development process

	4 Assessment of state of the art approaches and conclusion for challenges
	5 Introduction to EASIS project and EASIS approaches
	6 Fault type and fault hypothesis for ISS
	6.1 Fault hypothesis – a major design step
	6.2 Fault hypothesis of hardware in ISS
	6.3 Fault hypothesis of software in ISS
	6.3.1 Software timing faults
	6.3.2 Communication between SW-components
	6.3.3 Concurrent resource access

	7 Engineering Process of Integrated Safety System
	7.1 Introduction to the ISS Engineering Process
	7.2 Development steps of ISS Engineering Process
	7.2.1 Part 1: Initial of requirement engineering (specify preliminary requirements)
	Process step 1.1: Capture natural language requirements
	Process step 1.2: Perform Preliminary Hazard Analysis (PHA)
	Process step 1.3: Definition of risk mitigation requirements
	Process step 1.4: Specify structured system requirements

	7.2.2 Part 2: Development of Functional Analysis Architecture (FAA Model)
	 Process step 2.0: Improvement of requirement specification
	 Process step 2.1: Specify functional architecture
	Process step 2.2: Specify dynamic behavior
	Process step 2.3: Specify Function Behavior
	Process step 2.4: FAA Hazard Analysis (FHA)
	Process step 2.5: Validate FAA model

	7.2.3 Part 3: Development of hardware architecture
	 Process step 3.1: Design system hardware architecture
	Process step 3.2: Identify hardware fault model and risk mitigation measures
	Process step 3.3: Identify necessary hardware redundancy

	7.2.4 Part 4: Development of Functional Design Architecture (FDA)
	Process step 4.0: Allocation of FAA to the HW-architecture description
	Process step 4.1: Design of sensor-, actuator-algorithms (I/O incl. bus I/O)
	Process step 4.2: Design of functional behavior
	Process step 4.3: Refinement of functional interfaces
	Process step 4.4: Basic Design Hazard Analysis (BDHA)
	Process step 4.4a: Identify system fault-model
	Process step 4.4b: Design of evaluation cases according to the fault model
	Process step 4.4c: Model-in-the-loop/basic software-in-the-loop test with test specification

	Process step 4.5/4.6: Configuration and validation of RCP system

	7.2.5 Part 5: Refinement and validation of FDA model with SiL-test
	Process step 5.1: Integration of Basic FDA with EASIS Dependable software Framework
	Process step 5.1.1: Design of sensor/actuator related Diagnostics
	Process step 5.1.2: Design of application specific dependability measurements
	Process step 5.1.3: Design and integration of other non-application specific dependability services
	Process step 5.1.4: Design of functional safety concept including dependability mechanism

	Process step 5.2: Configuration and code generation for software-in-the-loop test
	Process step 5.3: Software-in-the-loop test with test specification

	7.2.6 Part 6: Hazard analysis and validation of FDA model with HiL-test
	Process step 6.0: Hazard analysis of complete FDA-model
	Process step 6.1: Update and configuration of evaluation cases for HiL
	Process step 6.2: Configuration of RCP system for the HiL-test
	Process step 6.3: Code generation and configuration for HiL
	Process step 6.4: HiL-test with test specification

	7.2.7 Association of ISS Engineering Process with ISO26262
	Association with ISO 26262 Part 2
	 Association with ISO 26262 Part 3
	 Association with ISO 26262 Part 4
	 Association with ISO 26262 Part 5
	Association with ISO 26262 Part 6
	 Association with ISO 26262 Part 8

	7.3 Tool chains for the development of ISS
	7.3.1 Software tools
	7.3.2 Hardware prototyping platforms

	7.4 The ISS Engineering Process under challenges
	7.4.1 View from side of OEM
	7.4.2 View from side of supplier
	7.4.3 Distributed cooperation between OEM and suppliers

	8 Hardware architectures for the Integrated Safety System
	8.1 Concepts of the system topologies
	8.1.1 Future frameworks and design guidelines of system topologies
	8.1.2 Distribution of ISS applications to the system topology

	8.2 Design concepts of the communication systems
	8.3 Concepts of ECU hardware architectures
	8.3.1 Dependable architecture driven by the safety integrity requirements
	8.3.2 Monitoring of sensor and actuator components
	8.3.3 Memory protection
	8.3.4 Hardware watchdog monitoring

	8.4 Design use-cases of ISS hardware architectures
	8.4.1 Distribution of ISS applications to vehicle domains
	8.4.2 ISS system topologies and communication systems
	8.4.3 ECU hardware architecture for ISS

	8.5 Conclusion of hardware architecture framework

	9 Software platform for the Integrated Safety Systems
	9.1 Trends of software platform – a benchmark with IT-industry
	9.2 Concepts of dependability software architecture
	9.3 Concepts of the dependability software services
	9.3.1 Dependability services for ISS communication
	9.3.1.1 Categories of communication among ISS-application software components
	9.3.1.2 Redundant communication service
	9.3.1.3 End-to-end communication service with application CRC
	9.3.1.4 Agreement Protocol
	9.3.1.5 Conclusion of ISS communication

	9.3.2 Dependability services for the integration of applications on one HW-platform
	9.3.2.1 Challenges and consideration from an integrated manner
	9.3.2.2 Space partitioning with protection services
	9.3.2.3 Time partitioning with OS and Software Watchdog service
	9.3.2.3.1 Run-time monitoring with Operating System
	9.3.2.3.2 Run-time monitoring with Software Watchdog

	9.3.3 Dependability services of fault treatment
	9.3.3.1 Fault Management Framework
	9.3.3.1.1 Fault State Manager
	9.3.3.1.2 Supervision Unit
	9.3.3.1.3 Reconfiguration Unit
	9.3.3.1.4 Logging Unit

	9.3.3.2 Fault treatment with dynamic configuration

	9.3.4 Dependability software services for gateway

	9.4 Configuration of dependability software services
	9.5 Conclusion of the dependable software platform

	10 Prototyping and validation of the concepts
	10.1 Introduction to the architecture validator
	10.1.1 Prototyping approaches and validation process
	10.1.2 Architecture design of the validator

	10.2 Validation of hardware architectures for ISS
	10.3 Validation of dependability software platform and services
	10.3.1 Prototyping and validation of Agreement Protocol
	10.3.2 Prototyping and validation of Software Watchdog
	10.3.3 Prototyping and validation of Fault Management Framework

	10.4 Validation of the ISS Engineering Process
	10.5 Evaluation and optimization of the concepts
	10.6 Experience and findings from the prototyping and validation

	11 Conclusion of the results, discussion and outlook
	11.1 Conclusion and implication of dependability architecture framework
	11.2 Outlook for the future work

	Appendix 1: Implementation details of the validator
	 Appendix 1.1 Validation of hardware architectures for ISS
	 Appendix 1.2 Validation of dependability software platform and services
	Appendix 1.2.1 Prototyping and validation of Agreement Protocol
	Appendix 1.2.2 Prototyping and validation of Software Watchdog
	Appendix 1.2.3 Prototyping and validation of Fault Management Framework

	Appendix 2: Mathematic derivation of the communication overhead of agreement protocol
	Appendix 3: Glossary
	Appendix 4: List of figures
	Appendix 5: Literature index
	Appendix 6: Author's biography
	Appendix 7: Lebenslauf

