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Chapter 1

Introduction

In the 21st century, the credit market has witnessed several major defaults

including the defaults of Argentina and Enron. These two events had a wide

spread impact on businesses, and were treated as case studies on how an entity

approached default. As it is the case for many other default events, Argentina

and Enron had their unique path that led them to bankruptcy. Argentina was

affected negatively from the Russian default in 1998 and from the collapse

of Brazil’s exchange-rate-based stabilization program in 1999 (Zhang (2003)).

The country entered the year 2001 with many financial problems. The gov-

ernment could not reverse the ongoing situation in Argentina, and after the

increase of the severity of problems, the country announced default in Decem-

ber 2001. Unlike Argentina, the default of Enron was more of a surprise to

financial markets. The auditing scandal of Arthur Andersen came out, and

Enron’s financial health was questioned only about a period from October

to December 2001. When filed for Chapter 11 bankruptcy in December 2001,

the credit ratings have only just been reduced to below investment grade by

Moody’s and Standard & Poor’s (Longstaff, Mithal, and Neis (2005)).
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Introduction 2

What differentiates the defaults of Argentina and Enron from those in pre-

vious decades is the presence of an infant credit default swap market. These

defaults probably did not lead to more serious financial difficulties or any chain

reactions due to use of credit derivatives, which provide efficient allocation of

risks (Deutsche Bank Research (2004)). Credit default swaps belong to the

large family of credit derivatives, which are among the most successful finan-

cial innovations of the last decade. Recent practice in financial engineering has

focused on these new instruments, which is reflected in a rapidly expanding

market. Credit derivatives are contracts whose payoffs depend on the credit-

worthiness of corporate or sovereign entities. According to British Bankers’

Association’s Credit Derivatives Survey (2006), the global market is expected

to reach USD 33.1 trillion by the end of 2008. Among other over-the-counter

traded derivatives, such as interest rate, equity, and FX derivatives, the credit

derivatives market is one of the fastest expanding branches of instruments in

terms of volume (Bank for International Settlements (2005)).

Credit derivatives make risk management more efficient and flexible for fi-

nancial institutions. By reducing the aggregate risk in the economy, credit

derivatives may also diminish the chain effects of any individual defaults such

as Argentina and Enron. Banks have higher power to alleviate financial diffi-

culties, which results in a more stable banking sector. Moreover, the credit risk

which has been primarily overtaken by banks in the past, can now be distrib-

uted to other financial institutions such as hedge funds or insurance companies.

Therefore, risks are better allocated in the presence of credit derivatives. It is

necessary to understand how markets of credit derivatives operate and how

pricing can be accurately done. This study contributes in understanding some

of the issues raised with the introduction of these multi-dimensional instru-
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ments, including the functioning of its markets and pricing.

Alternative credit derivative products have been developed to satisfy the dif-

ferent needs of counterparties. The term “credit derivative” refers to a wide

variety of instruments that have a similar purpose but not necessarily the same

features. The basic choices comprise of credit default products, credit spread

products, and total return products. Credit default products are commonly

used to offset default risk, whereas credit spread products offset the whole

credit risk, i.e. the risk of increasing or decreasing spreads. The third type,

total return products, transfers both credit and market risk between counter-

parties. There are more advanced forms of credit derivatives, which include

credit-linked notes, basket credit derivatives, and asset-backed securities.

This study focuses on single-name credit default swaps (CDSs), which have a

33 per cent share in the expanding market, being the most frequently traded

type of credit derivatives (British Bankers’ Association (2006)). A credit de-

fault swap is a contract that provides insurance against the risk of default of a

specific entity. In this system, the buyer agrees to make periodic payments to

the seller in exchange for compensation in case of a predefined default by the

entity specified in the contract. Counterparties have to agree upon these pe-

riodic payments, the CDS premiums, which are a percentage of the contract’s

notional amount in basis points upon contract initialization. The seller pays

nothing, if default does not occur. If the specified entity defaults during the

lifetime of the CDS, there are two forms of settlement: In a “physical” settle-

ment, the buyer delivers the eligible bonds of the underlying defaulted entity

to the seller (these “deliverable obligations” might cover a set of bonds with

the same rank as the underlying bond), in exchange for the contract notional

amount. In a cash settlement, however, the buyer keeps the underlying bond,
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but is compensated for the loss. In either case, the buyer’s loss is fully covered.

An earlier British Bankers’ Association report shows that 86 per cent of the

transactions contain a physical settlement clause, whereas the rest are based

on cash settlements (British Bankers’ Association (2004)).

A Numerical Example for a CDS Contract:

An example on the mechanics of CDS would be as follows: Let us suppose,

e.g. on June 20, 2007, the insurance buyer agrees to enter into a 5-year CDS

contract with the seller, written on a bond of DaimlerChrysler AG, with a CDS

premium of 80 basis points, on a contract notional amount of USD 5 Million.

The buyer may or may not own the corporate bonds of DaimlerChrysler. Let

us assume the buyer owns 5,000 of underlying corporate bonds that mature on

April 15, 2012, each having a par value of USD 1,000, so that the buyer would

have fully covered protection against the loss (5,000 × 1,000). In exchange of

the protection, the buyer has to pay quarterly installments of approximately

1/4 × 80 basis points of the notional (depending on the actual days in a quar-

ter). In monetary terms, this corresponds to quarterly payments of 5,000,000

× 1/4 × 0.0080 = USD 10,000. The buyer will be paying this amount quarterly

for 5 years. If default does not happen, the seller pays nothing. If it happens

during the lifetime of the CDS, there can be either physical or cash settlement.

“Credit events” are default occurrences described in the Credit Derivatives

Definitions by the International Swaps and Derivatives Association (ISDA) in

1999 (revised in 2003). They include the bankruptcy, obligation acceleration,

obligation default, failure to pay, repudiation/moratorium, and restructuring
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of the underlying entity. All these instances require the seller to make the

full notional payment to the buyer of the CDS. The default of Argentina and

Chapter 11 filing for bankruptcy of Enron are examples of recent credit events.

Nevertheless, the lack of consensus on the definition of a credit event is still seen

as the major drawback of a CDS contract in practice. The British Bankers’

Association (2004) reveals that of the major problems incurred in the CDS

setting, the non-agreement on the nature of a credit event is ranked first. This

issue underscores the importance of standardization for further development

of the market.

A typical CDS contract possesses several other attributes. For instance, the

maturity of the contract describes the coverage of the insurance in terms of

years. The most common practice in the industry is to agree on a 5-year con-

tract, whereas liquid entities may have CDSs in the range from 1 to 10 years.

Another important contractual attribute is the rank of the underlying, which

can be either senior or subordinated. Due to the difference in priority of pay-

ments to debt holders, subordinated CDSs command a higher insurance pre-

mium than senior CDSs. A third aspect is the restructuring clause applicable

in the contract. The European and North American clauses differ in that North

American contracts limit the set of deliverable bonds in case of default, which

again should be reflected in CDS premiums (see Blanco, Brennan, and Marsh

(2005); Houweling and Vorst (2005)).

Another major issue is the counterparty risk inherent in CDS trades. Nev-

ertheless, this risk is reduced by the fact that trades are usually conducted

between dealers of major institutions with relatively high credit ratings. As a

consequence, the composition of market participants differs from that of the

corporate bond market. According to Blanco, Brennan, and Marsh (2005),
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this structural difference is one reason why the CDS market provides time-

lier price information than the bond market. In addition, two further aspects

work towards the lead effect in the price discovery process. First, short-sales

constraints in the bond market are not present in the CDS market, as CDS

contracts can be set up synthetically at any time. Moreover, the transfer of

credit risk can be done in relatively higher volumes in a single contract. Sec-

ond, the CDS market blends participants from different pools. Both aspects

make the CDS market the easiest place to trade credit risk.

This study analyzes the credit default swaps in two aspects: First, the markets

where credit default swaps are traded are discussed. In order to understand

the markets of CDSs, alternative trading venues are analyzed with one of

their most discriminating component, their liquidity. Until recently, the non-

intermediated over-the-counter market (OTC) and the intermediated inter-

dealer broker (IDB) market have been the alternatives. The analysis in Chapter

2 starts with describing the instrument, and continues by introducing the OTC

and the IDB markets. The differences in transparency, immediacy, and level

of trade execution are highlighted. As an alternative, how electronic broker-

age might replace voice brokerage in the long run is discussed. Current hybrid

market structures of brokers are given as an example for dual platforms. Af-

terwards, an empirical analysis is undertaken so as to look at the determinants

of liquidity in the brokered market. It has been shown that various contract

specifications are a determinant of the bid-ask spread. Finally, the liquidity in

OTC and IDB markets are compared, where it has been found out that the

higher transaction costs in the IDB market may account for the added value

of the brokerage services.

The second aspect, which is considered in the remaining of the study is how



Introduction 7

credit default swaps are correctly priced. This is a challenging issue: Recalling

the example of Argentina and Enron defaults, should the financial credit risk of

an entity be modeled as a continuous process which may eventually deteriorate

in time (case of Argentina) or as a surprise event which happens at short notice

(case of Enron)? The CDS prices of entities fully reflect the financial health,

as can be seen from Figures 1.1 and 1.2. Figure 1.1 depicts the CDS prices of

Argentina from an interdealer broker for the year 2001. The evolution of the

CDS price shows how the credit risk of the entity deteriorated over time. In

contrast, Figure 1.2 shows how the credit market did not expect a deterioration

of financial health until October 2001.

Price of the 5-Year CDS on Argentina Bonds
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Figure 1.1: Premiums of Argentina CDSs (bps) vs. Time

The field of credit risk modelling has been trying to give a robust answer to the

question of what the theoretically fair price of credit risk should be. Structural

models assume the asset value of the firm to follow a Brownian motion, and

this is in accordance from what we observe from the case of Argentina. There

is a continuous process, and the entity defaults as a result of gradually deteri-
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Price of the 5-Year CDS on Enron Bonds

0

500

1,000

1,500

2,000

2,500

3,000

Jan-01 Feb-01 Mar-01 Apr-01 May-01 Jun-01 Jul-01 Aug-01 Sep-01 Oct-01 Nov-01

Time

C
D

S
 P

r
e
m

iu
m

s 
(b

p
s)

Figure 1.2: Premiums of Enron CDSs (bps) vs. Time

orating credit quality. On the other hand, reduced-form models accommodate

surprise defaults, which we observe in the case of Enron. There is a jump prob-

ability modeled as a Poisson process. Unfortunately, neither the theory nor the

empirical studies have so far reached a consensus on which type of framework

better prices credit risk. Structural models have been criticized for their inaccu-

rate predictions, whereas intensity models have been thought to lack economic

intuition. Chapter 3 gives a brief overview on empirical studies with credit

risk. First, tests of structural models with bond prices are introduced, with

a further breakdown into exogenous and endogenous default barrier models.

Then, studies with reduced-form models are discussed. The chapter continues

with empirical studies with credit default swaps, both with those which models

are tested, and with those in which various features of CDSs are highlighted.

The main question in Chapter 3 has been which type of framework better prices

credit risk. The overview in Chapter 3 does not give a clear answer to this

question since alternative studies with different datasets have yielded mixed
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results. In order to give this answer, this study puts forward that in order to

compare the CDS pricing ability of different frameworks, the same procedures

have to be applied to the same dataset. For this purpose, Chapter 4 starts

from the basic structures of the structural and reduced-form frameworks, and

provides a basis of comparison. The most basic structure of a structural model

has been taken as the initial approach of Merton (1974). On the other hand,

the constant intensity setup of Jarrow and Turnbull (1995) has been selected

to represent the basic case of reduced-form models. A third approach has also

been brought to analysis. Support Vector Machines (SVM) method has shown

competitive empirical performance to traditional neural network approaches

in recent studies. So, the out-of-sample CDS price prediction performances of

three alternative approaches are tested. Structural models having the high-

est financial structure on one edge, and the reduced-form models having a

lower financial structure, could be then compared with the SVM method with

no financial structure at all. The analysis is carried out in two parts: First,

companies are divided in risk classes that ought to have the same risk charac-

teristics with the same rating, seniority, and currency. This “cross-sectional”

analysis looks at whether prices of CDSs of companies in a risk class are a

good indicator of the prices of CDSs of other companies in the same risk class.

The second analysis looks at individual time series of prices of companies. This

“time series” analysis hypothesizes that CDS prices are a good indicator of fu-

ture CDS prices, namely the one-day, five-day, and ten-day-ahead prices. The

three approaches are compared regarding these aspects, and out-of-sample pre-

diction errors are tabulated. The results indicate that although the intensity

model incorporates early default, the Merton model has competitive perfor-

mance in cross-sectional and time series analyzes. The SVM method has failed

in the cross-sectional setup, but has overperformed the financial models in the
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time series setup.

The setup in Chapter 4 accommodates the simplest versions of structural and

reduced-form models. In order to correctly price CDSs, a more comprehensive

setup can be built. Chapter 5 considers the state-of-the-art versions of struc-

tural and reduced-form models: By using leverage as a key credit risk variable,

the two frameworks are brought into close proximity. On the structural side,

the stochastic leverage model of Collin-Dufresne and Goldstein (2001) (CDG)

is tested. In this model, the interest rate process follows Vasicek (1977) dynam-

ics, and the asset value follows a geometric Brownian motion. Moreover, unique

for the CDG model, the leverage follows a stationary process. If the leverage

ratio of the firm is lower than a certain threshold, the firm issues new debt, and

would not issue if the ratio is above the target. In order to understand whether

the modeling structure makes a difference, this study contributes to the liter-

ature by developing a reduced-form model which is comparable to the CDG

model in pricing the CDSs. The intensity model that this study utilizes has an

adjusted discount rate as the affine sum of three variables: a constant, which

represents the systematic risk; the short rate, which also follows a Vasicek

process; and the log-leverage ratio, which follows exactly the same dynamics

as in the CDG model. This setup creates a fair comparison possibility between

the structural and reduced-form models in pricing CDSs. For the implemen-

tation, the interest rates which follow a Vasicek process are calibrated using a

Kalman filter. In contrast to Chapter 4 which uses only CDS prices for cali-

bration, bond prices, stock prices, and balance sheet information are utilized

in this section to estimate model parameters. Finally, a simulation is used to

generate paths of the leverage and interest rate processes in order to correctly

price credit default swaps. In-sample fit to bonds and out-of-sample fit to CDSs
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are presented as the main results of the chapter. The prediction errors are then

discussed in the light of structural and reduced-form model structures. It is

shown that the out-of-sample prediction results with both models are simi-

lar, with the intensity model slightly dominating the CDG model, possibly

due to more free parameters. Chapter 6 concludes with remarks and provides

implications for future research.



Chapter 2

Credit Default Swap Markets

Financial markets are born, they evolve and become extinct over time. New

necessities for products arise the need for a new market. After abundant liq-

uidity is established, markets are constructed where trades for new financial

products take place. The continuous growth of the market is maintained, if

the product satisfies the needs of the counterparties. After time, in such cases

where the product no longer meets the demands, it is of no surprise that the

market eventually becomes extinct.

Credit default swap markets also follow this path of market maturity. Obvi-

ously, being still in its infant stages, CDS markets are still developing. The

product has started to be traded in the early 1990s by direct over-the-counter

trades via phone or quotation. As the market expanded, interdealer brokers

emerged. Finally in 2007, Eurex initiated the first exchange-traded credit deriv-

ative products, which are based on the iTraxx Europe CDS index. Within this

structure, it is highly interesting to understand how these markets operate, and

how do individual venues contribute to the liquidity of trades. In this chapter,

12
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the basic over-the-counter and interdealer broker markets are contrasted and

hybrid structures of brokers are highlighted. Then, a dataset of CDS prices

is presented which will be further used in analyzing liquidity of these venues.

Overall, this section of the study serves for understanding one of the many

dimensions of the CDSs, the markets in which they are functioning.

2.1 Market Structures

2.1.1 The OTC and Interdealer Broker Market

Credit derivatives are most commonly traded on the over-the-counter (OTC)

market, where interdealer trades are accomplished via the use of different

matching technologies. Similar to other OTC derivatives, the most usual type

of trade is transacted directly between two dealers over the telephone. Since

the dealer has to search for a matching counterparty, this method is costly

and time consuming. Compared to on-exchange derivatives markets, this kind

of OTC market is opaque, non-anonymous, and highly fragmented. In recent

years, increasingly more trades have been conducted through interdealer bro-

kers (IDBs), who match buy- and sell-side dealers while offering some addi-

tional services beyond the pure matching function. The ISDA (2004) Opera-

tions Benchmarking Survey indicates that 34 per cent of the credit derivatives

trades are arranged by brokers. This relatively high market share suggests that

their services must provide some value to the dealers.

In other markets such as the government bond market, most of the interdealer

brokerage firms operate either on a fully automated electronic trading system

or a voice-based system. In a voice broking setting, although the brokers keep
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track of the quotes electronically, the dealers must still contact a broker over

the telephone to place an order or to have a trade executed. Such an interaction

between the dealer and the broker may provide information that may increase

the speed and probability of matching customer orders. This will help to con-

dition trades on a broader set of information which will improve the chance of

order execution. What a broker can do is to surmise if there is more size behind

the order than revealed and learn more about a dealer’s trading incentives and

true preferences. Meanwhile, the dealer can leave order contingencies with the

broker. Obviously, one of the most important assets of an IDB is the network

of dealers who are willing to offer liquidity. This hidden supply of liquidity is

sought by the broker in order to complete a client’s trade. Both electronic and

voice brokers preserve the anonymity of the dealer. However, by using a voice

broker, the dealer may opt to dispense with anonymity. This option has value

depending on market conditions and the dealer’s motivation for trading.

Because of this higher value added to the customer, it is not surprising that

voice brokers charge a higher commission fee in practice. Barclay, Hendershott,

and Kotz (2006) mention that for the US government bond IDB market, a

voice broker’s charge is roughly double the commission levied by electronic

brokers. This is an explicit trading cost for the customer, who has to weigh

this cost against the implicit cost incurred by any delay in trade execution.

While the first type of cost is known before the trade, the second type is only

ascertainable after a trade has been accomplished.
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2.1.2 Hybrid Market Model of CreditTrade

According to the recent study of Gündüz, Lüdecke, and Uhrig-Homburg (2007),

during the early years, when the market conditions were not yet ready for au-

tomation, the CDS brokerage market was only voice based. As the market

became more liquid, CreditTrade and other major IDBs adapted a different,

innovative strategy from IDBs operating in the FX or Treasury markets. By

integrating voice brokerage and electronic brokerage under one roof, Credit-

Trade and others could internalize the competition and gained revenues from

both matching technologies. In so doing, they succeeded in coping with poten-

tial competition from fully automated trading systems. These IDBs recognized

at an early stage of the market’s development that the fully automated trading

of CDSs would not be achievable in the near future. By complementing voice

brokerage, they could not only offer valuable intermediation services when nec-

essary, but also enhance their efficiency through electronic brokerage and reach

economies of scale. This market structure somewhat resembles an electronic

trading system with an integrated upstairs market1 run by the IDBs.

In CreditTrade’s market model, the electronic system functions as follows: The

firm offers a platform where dealers can enter quotes or hit existing quotes di-

rectly. This is a hit-and-take system where trades are triggered by dealers

without using the voice broker. The firm’s revenue is based on commissions

per trade and a membership fee is not charged. Voice brokers do not have

incentives to discourage customers from using the electronic platform, since

the company charges a slightly lower commission for interdealer trades accom-

plished via its electronic platform compared to those executed by the voice bro-

1Bessembinder and Venkataraman (2004)’s empirical results support the work of Gross-
man (1992), who suggests that an upstairs market serves as a pool for unexpressed large
orders.
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kers. Commission schedules are defined in terms of basis points that increase

with CDS premiums. The actual commission is computed as the product of

the notional, maturity, and basis points (with reference to the strike interval

of the premium), and is charged to both sides of the trade. Each client has a

different decreasing scheme of basis points with increasing volume, which en-

courages more transactions. After a trade is executed, the details of the trade

are processed, and a trade confirmation is sent to the buyers/sellers notify-

ing them of their counterparty. Finally, the sides initiate their own post-trade

processing, which is normally conducted by the Depository Trust and Clearing

Corporation (DTCC).

With this dual approach to CDS trading, the dealers are offered a choice be-

tween two trading venues that differ with respect to trading costs, level of

trade execution services, and market transparency. Unfortunately, electronic

brokerage data from CreditTrade that could be used for analyzing the determi-

nants of a dealer’s choice of trading venue is not available. Nevertheless, recent

literature allows us to derive a view of the market. As discussed before, the

higher commissions charged for voice broking are due to the services supplied

beyond the pure transactional service provided by the electronic trading sys-

tem. The extent to which voice broking is used will vary depending on trade

size, trade complexity, market conditions, and CDS features, such as currency.

While the larger and more complex trades may be left with the voice broker,

the electronic system can be used for simpler and smaller-sized transactions

in the most widely traded CDS currencies, USD and EUR. However, if the

volatility of the underlying market increases or the CDS market is exposed to

asymmetric information, then dealers will be less willing to have their orders

revealed on electronic quotation and will prefer trading via the voice broker.
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Under these market conditions the IDBs can offer greater liquidity because

their market provides access to a wide range of institutions that supply liq-

uidity. The two trading venues also offer a choice between different degrees of

market transparency. For instance, the voice brokerage system with less trans-

parency may be preferred by traders with private information. Uninformed

traders also stand to benefit by dealing through the voice brokers under condi-

tions of asymmetric information; the IDB is able to certify them as uninformed,

which results in trades at better prices. The next section presents a discussion

on the effects of increased automation and transparency through electronic

platforms.

2.1.3 Electronic Trading and Transparency in the CDS

Market

The outlook on the CDS market is towards automation of the full trade process.

Using Web-based technology, IDBs offer screen-based transaction services to

facilitate the execution of trades and to disseminate pre-trade information

via electronic platforms. However, none of the systems provides a forum for

automated trade execution. Compared to similar interdealer markets, such as

the FX market and the US Treasury bond market, which also rely on voice and

electronic IDBs, the OTC market for credit derivatives has reached a relatively

low level of automation for trade processes. Apart from trade execution, the

ISDA (2004) Survey reports significant improvements in the automation of

key functions for trading credit derivatives. For example, the auto-matching

of trades as a method of trade confirmation was used for the very first time in

2004 and managed to corral four per cent of all trades. Nevertheless, the survey
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reveals that there are still potential gains to be had from automation with

respect to improving the operational efficiency of the front office, where many

process frictions occur due to data problems (e.g. errors in trade data, missing

and/or untimely data). The more recent ISDA (2006) Survey indicates that

among other derivatives, the credit derivatives market will be subject to most

plans to increase automation in all trade phases. The rapid growth of volume

in the OTC derivatives market has led to an industry consensus on the need to

achieve “straight through processing” (STP), which means enabling the entire

process from trade initiation to settlement to be conducted electronically. In

January 2004, the ISDA issued a strategic plan calling for substantial industry

automation of all OTC derivatives products by the end of 2006. Meanwhile,

a number of firms offer valuable STP solutions to the industry for improving

the operational efficiency of the OTC credit derivatives market.2 Improved

reference data management in particular represents a major step towards the

achievement of STP.

The research on electronic platforms generally considers transparency to be

an important design feature of financial markets. The implementation of elec-

tronic platforms by interdealer brokers yields more transparent markets, in

which (anonymous) quotes can be tracked. Nevertheless, it is still debated in

the literature whether higher transparency will lead to fairer markets with

better liquidity and price discovery. The evidence on transparency as summa-

rized by O’Hara (1995) includes cases where increased transparency reduces

adverse selection costs so that dealers can spot other traders who are more

informed; this in turn reduces spreads. On the other hand, some studies put

forward that opaque markets may help to improve liquidity (Bloomfield and

2See i.e. http://www.finextra.com, “Creditex spin-off T-zero to provide STP for credit
derivatives”, published on July 29, 2005.
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O’Hara (2000)). Another argument is that under increased transparency, the

dealers in a quote-driven market would be less willing to reveal their strate-

gies, which would also lead to lower liquidity (Madhavan, Porter, and Weaver

(2005)). In addition, the model proposed by Madhavan (1996) predicts that

transparency can worsen price volatility. The tradeoff between accessing in-

formation and revealing identities is hard to separate. Therefore, institutional

traders would be at an advantage if they were able to reach fairer prices through

a transparent market while remaining anonymous (which is feasible in many

electronic interdealer brokerage platforms). Although there are no empirical

studies on electronic CDS markets, some studies analyze the effects of market

transparency in related markets, e.g. the bond market. Bessembinder, Maxwell,

and Venkataraman (2006) have investigated the introduction of the TRACE3

system and found that execution costs substantially decreased for bonds eligi-

ble for the electronic market.

Most of the evidence above is concerned with increased market transparency

for the public. However, the market for CDSs is still a closed shop in which

dealers are not willing to convey their quotes to outsiders. As in other mar-

kets, the vested interests of the dealers slow the train towards fully electronic

trading, because trading profits will erode as markets become more centralized

and more transparent. Hence, the discussion on market transparency is mostly

restricted to this shop gaining deeper insight into the market. Undoubtedly,

with the collection and distribution of quotes and prices, the market is becom-

ing more transparent, although the gains are limited to a countable number

of market participants. Obviously, one aim is to prevent outsiders who do not

3In July 2002, the National Association of Securities Dealers (NASD) began to re-
port transactions in around 500 bonds through Trade Reporting and Compliance Engine
(TRACE), which constituted a major step towards the market’s transparency.
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add value to the market from free riding on dealers’ quotations. To promote

further growth, closed shop trading should be reduced over time with an eye to

opening the market to a wider public. Eroding profits should then be compen-

sated for by the larger trading volume. An increase of market transparency and

liquidity can be expected from the listing of exchange-traded credit derivative

products based on the iTraxx Europe CDS index, which has been initiated by

Eurex in March 2007. The iTraxx index consists of the 125 most liquid single

name CDSs and was exclusively licensed to Eurex by the International Index

Company (IIC) in July 2005. However, the Eurex platform has so far been

unable to attract abundant liquidity. This could be most probably due to the

unwillingness of the “closed club” of dealers to give out their quotes explicitly,

as discussed before. In parallel to this, a short-term success of this platform is

not expected by market participants.4

2.2 Credit Default Swap Data

In order to understand the functioning and pricing in markets of credit default

swaps, daily indicative CDS bid-ask quotes are retrieved from CreditTrade,

an interdealer brokerage company. For the period between January 2001 and

January 2005, there are over 235,000 price quotes for liquid CDS contracts. The

full set of prices comes from voice broking, and the number of daily observations

rises from 70-80 in 2001 to around 300 in 2005. The dataset consists of 256

entities from a wide range of countries from Europe, the Middle East, and

North and Latin America. The underlying entities are mainly corporates or

banks, although CDSs written on sovereign entities also exist.

4Quoted from private communication with Eurex executive Ms. M. Dinc, 2007.
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In a CDS contract, the financial variable of interest is the CDS premium. Obvi-

ously, the CDS premiums should be driven by the credit risk of the underlying

entity; the higher the credit risk, the higher the CDS premium should be. This

credit risk reflected in the premiums has been subject to recent investigation

in the finance literature. Pricing of CDS will be analyzed in a subsequent chap-

ter. Figure 2.1 plots the CDS bid-ask midpoints as a function of credit quality.

As can be seen from the figure, the dataset is in line with the theoretical

hypothesis that the higher the risk of default, the higher the insurance fee.
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Figure 2.1: Average Bid-Ask Midpoints (bps) vs. Credit Quality (Moody’s
Ratings)

The descriptive statistics of the data set can be found in Table 2.1. It can

be observed that the number of observations increase from around 24,000 in

2001 to 76,000 in 2004, indicating an expanding market. One direct measure

for liquidity of the market is the size of the bid-ask spread, which shows the

tightness of orders to buy and sell. The bid-ask spread is observed to decrease

over time, attaining its lowest level in 2004.
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Table 2.1: Number of Observations and Bid-Ask Spreads across CDS Types
and Regions

2001 2002 2003 2004 Total
Type Region Curr. Obs Spread Obs Spread Obs Spread Obs Spread Obs Spread
Corp. Europe EUR 4409 21.38 26719 25.91 31890 13.21 33922 6.35 96940 14.68

Corp. N.America USD 8092 40.72 11749 44.81 15841 27.25 16286 17.10 51968 30.14

Bank Europe EUR 1917 9.90 10402 13.48 11262 8.00 11308 3.25 34889 8.20

Bank N.America USD 3646 13.17 4056 18.62 4000 11.42 3780 9.99 15482 13.37

Sov. Europe USD 777 2.86 1330 3.60 2530 2.80 2570 1.41 7207 2.46

Sov. E.Europe USD 1554 34.27 1746 25.10 3289 15.83 3341 10.82 9930 18.66

Sov. L.America USD 3369 77.70 4539 165.82 5252 72.21 5169 29.48 18329 84.35

Sov. Mid.East USD 259 143.20 158 118.39 253 61.58 257 22.46 927 83.22

Total/Average 24023 35.18 60699 37.14 74317 19.41 76633 10.00 235672 22.53

Moreover, for each subset of the credit ratings, seniority, maturity, region, and

currency, the average midpoints of the bid-ask quotes for the CDS premiums

were calculated. Table 2.2 shows the 5-year CDS premium midpoints with

respect to several subsets. Note that sovereign CDSs are all denominated in

USD, even for the European countries.

Table 2.2: Average Midpoints of 5 Year-CDS Premiums Across Ratings with
respect to Currency, Credit Type, Region, and Rank

Currency Credit Type Region Rank Avg. Midpoint (bps)

EUR Bank Europe Senior 24.96
EUR Corporate Europe Senior 95.67
EUR Bank Europe Subordinate 49.72

USD Bank N. America Senior 53.74
USD Corporate N. America Senior 119.84

USD Sovereign Europe Senior 9.16
USD Sovereign E.Europe Senior 119.17
USD Sovereign Middle East Senior 716.09
USD Sovereign L. America Senior 784.01

Table 2.3 presents the descriptive data on rating classes across different matu-

rities. The most liquid maturity is the 5-year CDS, followed by 10- and 3-year

CDSs.
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Table 2.3: Number of Observations and Bid-Ask Spreads across Ratings, Ranks
and Maturities

Moody’s Rank Maturity(Years)
Rating 3 5 10 Other Total

Obs Spread Obs Spread Obs Spread Obs Spread Obs Spread
Aaa Senior - - 3230 9.11 - - - - 3230 9.11
Aa Senior 767 8.07 25462 8.30 787 10.88 - - 27016 8.37
Aa Subord. - - 5457 8.90 - - - - 5457 8.90
A Senior 2534 9.93 55003 11.97 4649 9.25 717 38.73 62903 11.99
A Subord. - - 6663 10.19 - - - - 6663 10.19
Baa/Worse Sen/Sub 6821 47.21 62773 28.61 5546 46.65 5431 82.49 80571 35.06
Non-rated Sen/Sub 6529 32.73 31152 20.84 4299 29.08 7852 47.03 49832 27.23
Total/Average 16651 34.06 189740 18.24 15281 28.49 14000 60.36 235672 22.53

Interestingly, the EUR-denominated CDSs have lower average midpoints of

bid-ask quotes than their USD counterparts. This result holds even when look-

ing at the premiums within different rating classes, with the exception of Ba

(Table 2.4). A first attempt to explain this phenomenon (which is also present

in other datasets; see Houweling and Vorst (2005)) might come from looking

at the different specifications of deliverable bonds in case of restructuring. The

smaller the set of deliverable bonds, the lower the value of the “cheapest-to-

deliver option”, which reflects the extra premium for the buyer of CDS for the

privilege of being able to deliver any bond from a basket of available deliver-

able obligations. Recent literature has realized the reflection of this contractual

term into prices, which ought to be different in European and North American

markets (e.g. Jankowitsch, Pullirsch, and Veza (2006)). The Modified Modified

Restructuring (MMR), is the clause usually used in Europe, while Modified

Restructuring (MR) is the valid clause for North American entities. MR clause

is more restrictive and this reduces the value of the delivery option. Unfortu-

nately, this argument contradicts the observations gleaned from the dataset.

Since the deliverable bonds are limited for USD-denominated CDSs, which

leads to lower delivery option values, the CDS premiums should be lower.
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In the following chapters, more detailed analysis on regional features will be

carried on.

Table 2.4: Average Midpoints of Senior, 5-Year CDS Premiums with respect
to Rating and Currency

Rating EUR USD
(bps) (bps)

Investment Aaa 14.77 60.12
Grade Aa 22.18 40.25

A 52.81 62.67
Baa 107.83 121.49

Non-Investment Ba 361.61 242.69
Grade B 409.07 866.98

2.3 Empirical Evidence on Trading and

Liquidity of the CDS Market

Within the described brokerage setting, the liquidity in the CDS market is

analyzed in this section. In the first part, the determinants of liquidity in

the IDB market are the focal point. Later, a comparison of liquidity across

alternative trading venues is presented.

2.3.1 Liquidity of the IDB Market

Liquidity is one of the key attributes of financial markets and refers to differ-

ent dimensions, such as depth, tightness, resiliency, and immediacy. Measuring

liquidity is a complex task for which various instruments have been proposed

(see Schwartz and Francioni (2004), pp. 60-63). These are based on transaction
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costs (e.g. bid-ask spread, market impact, total cost of trading), trading vol-

ume (e.g. turnover, number of shares, number of transactions), and volatility

(e.g. price variance, resiliency, intraday mid-point returns). Most of the evi-

dence in the literature on liquidity is provided for stock markets. There are

also recent studies focusing on trading and liquidity in interdealer broker mar-

kets for government bonds using GovPX and CanPX data (Boni and Leach

(2004); Huang, Cai, and Wang (2002); D’Souza, Gaa, and Yang (2003)). How-

ever, relatively little is known about the liquidity of derivatives markets. The

few available studies concentrate on the effect of illiquidity on prices of cur-

rency options (Brenner, Eldor, and Hauser (2001)) or on interest rate options

(Deuskar, Gupta, and Subrahmanyam (2006)).

Concerning the CDS market, there are recent works claiming that the liquid-

ity of CDSs is relatively high compared to corporate bonds, since CDSs are

contracts but not securities. Recent literature has investigated the liquidity

premium in bond spreads (Janosi, Jarrow, and Yildirim (2002); Houweling,

Mentink, and Vorst (2005)), while credit default swaps are modeled to have no

liquidity premium due to several reasons. Longstaff, Mithal, and Neis (2005)

provide the most comprehensive discussion on the issue, noting that CDSs are

contracts that can be set up arbitrarily, while securities are fixed in supply.

This makes CDSs invulnerable to the “squeezing” effects applicable to bonds.

Furthermore, if liquidation is wanted, the counterparty simply enters into a

new CDS in the opposite direction. Finally, it is quite easy to sell and buy pro-

tection with CDSs, while it is difficult and costly to short bonds (Longstaff,

Mithal, and Neis (2005), pp. 2219-2220). Despite these reasons, which neglect

the presence of a liquidity premium in prices for modeling purposes, it should

be realized that these points show only a relative unimportance with respect
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to bonds. To the best of my knowledge, this study is the first to focus on the

determinants of CDS liquidity.

The analysis examines bid-ask quotes in the absence of trade data.5 Microstruc-

ture theory explains the bid-ask spreads by means of three components ac-

counting for the different costs that a dealer faces. Viewing the spreads as a

measure for the cost of transacting dates back to the work of Demsetz (1968).

According to this early study, the quoted spread should be a fair compensa-

tion for dealers who offer immediacy by supplying resources to the market.

Demsetz and others show that the spread depends on various proxies for trad-

ing activity, security risk, and competition. Secondly, the theoretical models of

dealer markets put forward that spreads should increase with inventory hold-

ing costs (Ho and Stoll (1983); Biais (1993)). Lastly, information-based models

of dealer markets imply an adverse selection part of the spread, which accounts

for the risk of trading with informed investors (Bagehot (1971); Copeland and

Galai (1983); Glosten and Milgrom (1985)). Easley, Kiefer, O’Hara, and Pa-

perman (1996) provide strong empirical evidence that the risk of trading with

an informed investor explains a large part of the variation in spreads of NYSE

traded stocks. In addition, Flood, Huisman, Koedijk, and Lyons (1999) argue

that these three components of the quoted spread can be extended by an addi-

tional search cost component to account for the asymmetries of counterparty

search.

The quoted spreads should be driven by economic forces that are implied by

the theoretical models of market microstructure, in a competitive CDS mar-

ket. The characteristics of CDS contracts can be used to proxy for the risks a

5Bid-ask spreads have obvious limitations. However, it is difficult to define a single mea-
sure that reflects all dimensions of liquidity, leaving the bid-ask spread as a good proxy for
analysis.
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CDS dealer faces and thus be reflected in the spread. For instance, the CDS’s

maturity, notional amount, and premium will drive inventory costs, because

these features indicate how much risk will be carried in the inventory. Thus, in

a panel regression, the absolute bid-ask spreads is regressed on several contract

features: The Moody’s rating, rank, currency, notional amount, restructuring6,

and maturity have been selected as explanatory variables. Intuitively, credit

risk proxied by ratings should be a determinant of absolute spreads. In an

empirical investigation by Odders-White and Ready (2006) for the stock mar-

ket, it is shown that poorer debt ratings are related to higher spreads due to

both higher adverse selection and trading costs. On the other hand, Acharya

and Johnson’s (2007) study, one of the few empirical studies to address CDSs,

finds no evidence that adverse selection affects prices or liquidity in the CDS

market. Even then the argument of higher trading costs remains, so it is ex-

pected that the spread would widen as the credit quality indicated by ratings

declines. Subordinated CDSs are also anticipated to be less liquid than senior

CDS and carry a higher absolute bid-ask spread. In addition, a higher notional

amount translates into a higher inventory cost and thus could also result in a

higher bid-ask spread. There is no prior expectation for the liquidity differences

regarding the currency and restructuring clauses of the contracts.

After extracting the data points with no rating or maturity information as well

as sovereign entities (due to few data points with mostly low credit quality),

169,009 data points remain within the period of January 2001 to January 2005.

For the whole sample the average bid-ask spread is 22 bid-ask midpoints (bps),

6The restructuring dummy has a value of “0” for the Old Restructuring (OR) clause
where minimum restrictions on delivery option are present: “1” for Modified Modified Re-
structuring (MMR), the valid clause for Europe after June 2003, which constrains the old
clause; and “2” for Modified Restructuring (MR), the valid clause for North American en-
tities. The latter is the most restrictive clause overall and reduces the value of the delivery
option.
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with a standard deviation of 68 bps. The absolute spread could be as high as

2000 bps, as it was the case for CDSs written on Enron just before its default

in 2001. The average bid-ask spread for the rating class Aaa is 9 bps, which

increases to 58 bps for the B class.

The results of the panel regression, in which the absolute bid-ask spread is re-

gressed on several independent variables, are reported in column (1) of Table

2.5. A low percentage of variation is explained (14.52 per cent) and a highly sig-

nificant intercept is present, indicating that there are missing variables. Unfor-

tunately, there is no volume data available from the IDB market, which would

be helpful for understanding liquidity. Nevertheless, all explanatory variables

are highly significant. Not surprisingly, the numerical value for the Moody’s

rating is the variable that contributes most to the explanatory power of the re-

gression, explaining 7.15 per cent of variation. One notch of deterioration with

respect to the rating increases the bid-ask spread by 3.98 bps on average. Cur-

rency and restructuring are other highly contributing variables. A move from

EUR to USD increases the bid-ask spread by 20.72 bps. It is possible that

currency may proxy for other undefined variables, such as settlement differ-

ences or the varying degrees of openness in different CDS market segments. In

keeping with the expectations, the significant and positive parameter estimate

for the notional amount indicates a move from 5 million notional to 10 million

notional contracts, causing the bid-ask spread to increase by 12.99 bps. This

coincides with an increasing inventory-holding cost component with higher no-

tional amounts. A closer analysis of the dataset reveals that this finding is also

related to a timing issue. The first two years in the dataset were dominated by

10 million notional contracts, and during this time the premiums were high. In

the last two years, the average premium declined, as the set was dominated by
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5 million notional contracts, and the CDS market was more liquid than during

the first two years.7 In order to investigate this timing issue, year dummies

have been introduced to the regression (column (2)). It is observed that the

absolute spread in the first two years (indicated by year dummies 1 and 2) are

about 19 bps points higher than the base year, 2004.

For further analysis, separate regressions for each rating group have been un-

dertaken. From columns (3)-(8) in Table 2.5, it can be seen that rank, currency,

and restructuring estimates are consistent across rating classes. While subor-

dinate absolute spreads are higher than that of senior CDSs, a move from EUR

to USD causes the spreads to widen, except for class B (column (8)). Simi-

larly, the restructuring variable coefficient is always negative; indicating that

restricting the deliverable obligations decreases the spreads. Finally, although

the percentage of variation explained seems to increase for low rating classes,

this is not monotonous. Nevertheless, the regressions on non-investment grade

CDS spreads (Ba and B) have a better R2 than investment grade CDS spreads,

on average.8

7Robustness checks executed by taking the log values of ratings and maturity lead to
similar results.

8In order to check for robustness, regressions with the relative bid-ask spread as the
dependent variable have been tested. The relative spreads are calculated by dividing the
absolute spread by the midpoint of the quotes. In the regression, this affects the seniority,
maturity, and rating variables. Due to the fact that subordinated CDSs have higher mid-
points that enter into this calculation than the senior CDSs, parameter estimates with a
reverse sign for the rank variable have been reached. The same is true for the rating variable
in regression (1) in Table 2.5, since the lower ratings simply indicate a higher midpoint divi-
sion. Similarly, these regressions had a negative estimate for the maturity variable, which is
most likely not because of changing absolute spreads but instead due to increasing midpoints
for higher maturities.



Credit Default Swap Markets 30

Table 2.5: Panel Regressions with Absolute IDB Spread as the Dependent
Variable

(1) (2) (3) (4) (5) (6) (7) (8)

Full Set Full Set Aaa Aa A Baa Ba B

Intercept -11.92 -19.58 7.07 2.57 5.12 3.43 474.90 364.79

t -25.28 -38.55 21.14 19.75 23.43 4.2 30.20 13.55

p <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Rank 3.99 3.99 Excluded 2.08 0.85 1.81 Excluded Excluded

t 12.84 12.90 40.43 7.09 1.47

p <0.0001 <0.0001 <0.0001 <0.0001 0.1411

Maturity -0.04 -0.04 Excluded 0.05 0.01 -0.01 -6.47 -5.75

t -7.39 -7.80 29.29 3.08 -0.69 -24.09 -12.83

p <0.0001 <0.0001 <0.0001 0.0021 0.4902 <0.0001 <0.0001

Currency 20.72 13.28 13.03 9.37 9.89 14.70 112.52 -216.24

t 52.12 30.58 23.01 89.40 48.69 17.10 26.61 -27.14

p <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Restructuring -7.12 -2.16 -3.64 -2.78 -2.09 -0.14 -78.14 Excluded

t -30.11 -8.16 -10.19 -45.34 -17.62 -0.26 -26.30

p <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.7926 <0.0001

Rating 3.98 4.06

t 122.18 124.83

p <0.0001 <0.0001

Amount 12.99

t 65.16
p <0.0001

YearDummy1 18.68 -2.08 2.59 7.70 40.37 311.78 536.13

t 56.84 -3.3 33.19 54.78 56.81 48.85 47.03

p <0.0001 0.0010 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

YearDummy2 19.64 0.84 4.65 10.32 27.10 68.93 503.92

t 71.54 2.72 70.85 81.27 48.97 29.19 66.89

p <0.0001 0.0066 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

YearDummy3 7.38 -0.38 1.56 3.92 8.66 39.36 280.51

t 34.36 -1.46 29.94 38.76 20.95 19.82 26.52

p <0.0001 0.1443 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

R-Square 0.1452 0.1537 0.3304 0.5521 0.2924 0.1196 0.5609 0.9456

Observations 169,009 169,009 3,230 32,473 62,720 63,577 5,813 1,196

Regression Equation for (1): IDBBAS = β0 + β1 Rank + β2 Maturity
+ β3 Currency + β4 Restructuring + β5 Rating + β6 Amount + ε.

Dependent Variable: IDBBAS is the CreditTrade daily closing CDS absolute bid-ask spread. Explanatory
Variables: Rank dummy, “0” for Senior, “1” for Subordinated contracts; Maturity, one of the values of
“12”, “36”, “60”, “84”, or “120”, in months; Currency dummy, “0” for EUR, “1” for USD denominated
contracts; Restructuring, having a value of “0” for Old Restructuring (OR) clause; “1” for Modified Modified
Restructuring (MMR); and “2” for Modified Restructuring (MR); Rating, a value between 1 and 16, “1”
corresponding to “Aaa”, and “16” to “B3”, assigned by Moody’s; Amount dummy, “0” for 5 million, “1” for
10 million notional amount contracts; Year Dummy1 for prices of 2001, Year Dummy2 for prices of 2002,
Year Dummy3 for prices of 2003, where 2004 is the base year. Rank, Maturity, Amount and Restructuring
variables were excluded in some regressions due to having single class.
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2.3.2 Differences of Liquidity across Trading Venues

It is well documented in the literature that market structure has impacts on

liquidity and trading costs (Stoll (2000)). In particular, bid-ask spreads may

differ in terms of size and composition with respect to the alternative trading

venues available in the CDS market. The early work of Garbade (1978) suggests

that joining an IDB reduces search costs, resulting in lower trading costs. More

recently Reiss and Werner (2005) pointed out that interdealer trades have two

important motives, the risk sharing of dealers, and information asymmetries

(Ho and Stoll (1983); Reiss and Werner (1998)). In their empirical investiga-

tion, they contrast interdealer trading on the London Stock Exchange (LSE)

by using stock prices from the non-intermediated OTC market and brokered

trading systems. They find that differences in liquidity across trading systems

on the LSE are mainly driven by problems of adverse selection. On the other

hand, Acharya and Johnson (2007) provide empirical evidence that adverse

selection does not affect liquidity in the CDS market. However, their study is

based on CDS benchmark products traded via an IDB. Hence, it is an open

question whether this result transfers to the direct OTC market.

Assume that IDB and direct OTC CDS markets are well integrated due to

the informational linkage. Then the asymmetric information component is the

same in both venues. Assume moreover that inventory costs are similar across

venues by virtue of their tendency to attract the same participants. According

to Garbade’s reasoning, this leaves only the trading cost differences between

IDBs and the direct OTC market. An important extension to Garbade’s argu-

ment should incorporate the additional services provided by IDBs. Although

search costs decrease by joining an IDB, if brokers offer additional services, the

trading cost component in bid-ask spreads should also reflect the premium for
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the added value of the brokerage function. Consider both search costs and the

added value of the brokerage function: If the latter were to dominate, it would

lead to IDB spreads being higher than the non-intermediated OTC market

spreads, which forms the first hypothesis:

H1: The quoted absolute bid-ask spread in the IDB market is higher than in

the direct, non-intermediated OTC market.

In order to analyze the spread differences in these markets, the monthly data of

direct OTC quotes were retrieved from Bloomberg in addition to the quotes of

CreditTrade presented in Section 2.2. The direct OTC dataset includes 12 mid-

month observations for more than 200 entities for the year 2004.9 In order to

match the bid and ask quotes for a given entity on a day with the IDB data, the

direct OTC quotes of multiple dealers are taken to reach a closing inside spread

for each day. This resulting dataset had 1,883 matching observations. Around

ninety per cent of the entities had 5-year contracts, whereas the remaining

entities were written on 1-, 3-, 7-, and 10-year maturity contracts. All quotes

belong to senior CDSs.

For testing the first hypothesis, Table 2.6 presents a significance test for the

differences between the absolute bid-ask spreads of the two markets. In keep-

ing with hypothesis H1, the difference of bid-ask spreads is highly significant,

with the IDB spread being higher than the OTC spread. This suggests that

the IDB spreads include a larger transaction cost component. Apparently, this

conclusion rests on the idea that the information and inventory components in

spreads are the same across the two venues. The asymmetric information and

inventory holding costs affect both markets similarly if the markets are inte-

grated and reflect the same information. This hypothesis of market integration

9In order to eliminate month-end effects, mid-month data are used.
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can be tested by analyzing the percentage of non-overlapping bid-ask spreads

and by also comparing the midpoints of the quotes. If both trading markets

are integrated in prices, then it can be indeed concluded that the extra spread

consists of only the trading costs incurred by the dealers who select the IDBs.

H2: Prices across IDB and direct OTC venues are the same, indicating well-

integrated markets.

Table 2.6: Significance of the Differences of the Absolute Bid-Ask Spreads of
Two Trading Venues

Mean Difference t-Statistic p-Value
IDBBAS - OTCBAS 3.19 23.30 <0.0001

Number of Observations 1,883

IDBBAS is the interdealer broker daily closing CDS absolute bid-ask spread
for the mid-month data, calculated by the absolute difference between ask and
bid prices. OTCBAS is the corresponding Bloomberg closing CDS absolute
bid-ask spread for the same entity and maturity, calculated similarly.

Table 2.7 presents whether the direct OTC and IDB quotes are nested, over-

lapping, or non-intersecting. Seven possible alternatives for the bid-ask spreads

are tabulated. The first three cases indicate when spreads are nested or equal.

The fourth and fifth are overlapping, with higher quotes given in one market.

The last two cases are the non-intersecting spreads, where an arbitrage pos-

sibility is present. As expected, most cases fall into the first five types. 9.02

per cent of the quotes denote arbitrage possibilities; a bid quote in one market

being higher than the ask quote in the other market. However, it is worth

noting that the indicative IDB quotes is compared with the inside direct OTC

closing quotes. It therefore stands to reason that these may not indicate ac-

tual arbitrage possibilities. Overall, these results suggest that the markets are
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integrated.

Table 2.7: Fragmentation of Direct OTC and IDB Markets
Case 1 Case 2 Case 3 Case 4

Cases Nested Cases Same Cases Nested Cases O verlapping

Case O TC Inside IDB O TC Matches IDB IDB Inside O TC IDB Ask Higher

Definition
IDB Ask >= OTC Ask >

OTC Bid >= IDB Bid

OTC Ask = IDB Ask >

OTC Bid = IDB Bid

OTC Ask >= IDB Ask >

IDB Bid >= OTC Bid

IDB Ask > OTC Ask >

IDB Bid > OTC Bid

No. of Obs 737 28 201 367

Percentage 39.14% 1.49% 10.67% 19.49%

Case 5 Case 6 Case 7 Total

Cases O verlapping Non-intersecting Non-intersecting

Case O TC Ask Higher IDB Spread Higher O TC Spread Higher

Definition OTC Ask > IDB Ask >

OTC Bid > IDB Bid

IDB Ask > IDB Bid >=

OTC Ask > OTC Bid

OTC Ask > OTC Bid >=

IDB Ask > IDB Bid

No. of Obs 380 98 72 1,883

Percentage 20.18% 5.20% 3.82% 100.00%

Additional support for the integrated structure of both markets is presented by

directly comparing the midpoints for the same dataset. Table 2.8 presents the

pricing differences of 1,883 pairs, which are taken to be the difference of direct

OTC and IDB midpoints. It indicates that the prices are not significantly dif-

ferent. In summary, results of these two tables support the second hypothesis,

which states that pricing is consistent across trading venues for the selected

list of companies. This finding can be attributed to two reasons: Firstly, CDS

trading mainly occurs between major institutions with good ratings, which

suggests that dealer base overlaps are present. Secondly, the datasets used for

the analysis are from a selection of major companies that have liquid contracts,

denominated in EUR or USD. This result indicates that the information and

inventory cost components of the two venues are the same. It also confirms

the results obtained by Acharya and Johnson (2007), who do not find evidence

of adverse selection with a similar dataset. In their study, Acharya and John-

son (2007) proxy the number of banking relationships as the measure of the

prevalence of non-public information in the market. The regressions they hold
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do not show a relation between the number of banks indicating the number of

informed players and liquidity.

Table 2.8: Comparison of the Midpoints of Direct OTC and Interdealer Broker
Quotes

Mean Difference t-Statistic p-Value
IDBMID - OTCMID 0.069 0.53 0.5962

Number of Observations 1,883

IDBMID and OTCMID represent the average of bid and ask quotes (mid-
points) of the interdealer broker and direct OTC markets (from Bloomberg),
respectively.

Given that the markets are well integrated, one question remains to be ad-

dressed: What causes the differences in trading costs, or in other words, under

which conditions are the additional services of a brokerage of value? Intuitively,

it could be expected that illiquid, riskier CDS trades are conveyed to IDBs.

This hypothesis would be in line with Barclay, Hendershott, and Kotz (2006)’s

findings in the US Treasury bond market. Their results distinguish between

on-the-run US Treasury securities that are traded by electronic IDBs with a

market share of 80 per cent and off-the-run securities where voice broking is

highly preferred (88 per cent). This is mostly because the intermediaries’ extra

effort is necessary for illiquid, complex, and larger-sized trades. The interme-

diaries’ ability to match complex trades is sometimes referred to as “market

color”. Although the authors compare the automated and intermediated bro-

kerage platforms, their results are relevant in that they indicate the necessity

of intermediation in case of illiquidity. Hence, in the following, it is analyzed

whether the spreads of the two markets are affected by the need of intermedi-

ation in cases of more complex trades. In the CDS market, a direct measure

of trade complexity is the credit quality of the underlying since the CDS pre-
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miums are an indication of credit risk. It is expected that the deterioration of

credit quality will widen the absolute bid-ask spreads, as well as the difference

between IDB and direct OTC spreads. The first part of the argument was

shown in the last section, while the second part forms the hypothesis below:

H3: The difference between the IDB and the direct OTC absolute spreads widens

with decreasing credit quality.

To test this hypothesis, the difference between absolute spreads is regressed on

the midpoint of the direct OTC quotes. The results in Table 2.9 indeed indicate

a high significance of credit quality, which means that the higher the midpoint,

the higher the spread difference between the IDB and the direct OTC mar-

ket.10 This suggests that riskier and more complex trades are conveyed to the

IDBs, and can be interpreted as that the dealers value the additional trans-

action services beyond pure trade execution. Nevertheless, the percentage of

variance explained is low, indicating missing variables. Obviously, one of these

can be competitiveness differences between the quotes posted in two venues.

IDB quotes can be less competitive than the direct OTC quotes, which actually

can be varying for different credit qualities. In fact, these results might indi-

cate that the more competitive direct OTC market may attract the high credit

quality CDS, leaving the IDBs the less liquid and less competitive quotes. Un-

fortunately, a variable to proxy for this factor could not be constructed. Being

still in its development stages, the CDS market does not provide volume data,

which would be a natural candidate for proxying competitiveness. Similarly,

the depth of quotes may be an important factor behind the liquidity differences.

The presence of depth information would lead to an improved understanding

of the overall picture concerning the liquidity in these two markets.11

10Significance is also reached when IDB midpoints are used as the explanatory variable.
11A similar analysis has been carried with relative spreads. Due to the fact that relative
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Table 2.9: Explaining the Difference of the Bid-Ask Spreads of Two Trading
Venues with Credit Quality

Dependent Variable: IDBBAS - OTCBAS

Parameter Estimate t-Statistic p-Value
Intercept 1.293 8.00 <0.0001
OTCMID 0.032 18.73 <0.0001

R2 0.157
Number of Observations 1,883

Regression Equation: IDBBAS - OTCBAS = β0 + β1 OTCMID + ε
IDBBAS is the interdealer broker daily closing CDS absolute bid-ask spread
for the mid-month data, calculated by the absolute difference between ask and
bid prices. OTCBAS is the corresponding Bloomberg closing CDS absolute bid-
ask spread for the same entity and maturity, calculated similarly. OTCMID is
the average of daily bid and ask quotes (midpoints) for Bloomberg data.

To summarize, in this section, evidence concerning the liquidity of intermedi-

ated versus non-intermediated markets has been provided. It has been noted

that the quoted bid-ask spread should account for adverse selection and inven-

tory holding costs, as well as the costs of any transactional service, including

search costs. The results show no significant difference in pricing across trading

venues, indicating a well-integrated CDS market. Apparently, the overlapping

of the set of dealers committed to both trading platforms might be a reason

for this outcome. Despite the fact that the CDS market has a countable num-

ber of dealers and brokerage firms, this study indicates that quotes are not

purely driven by market power but vary due to certain underlying economic

forces. The quoted spread is higher in the intermediated market, which has

been suggested to stand for the added value of the brokerage function. It is

noteworthy to mention that this is only one of the possible explanations for

spreads are computed by a division of the midpoints, the significance of credit quality is in
the opposite direction for Tables 2.6 and 2.9. This is most likely due to midpoints increasing
stronger than the absolute spreads for low credit quality entities.
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spread differences. Certainly, many factors come into picture considering trade

volumes, depths, trade complexities and credit qualities. These results provide

evidence for showing that brokerage has an effective place in the CDS market

despite the higher costs of liquidity. The value of intermediation will exist as

long as complex trades need special handling and explain why voice brokerage

still has an important share in many markets in spite of increasing competition

from electronic trading systems.



Chapter 3

Overview on Empirical Credit

Risk Pricing

3.1 Credit Risk Modeling -

Structural and Reduced-Form Models

In the last decade, credit risk modeling has received increasing attention within

academia and practice. The pricing of credit risky instruments, such as bonds

and credit default swaps, dates back to the 1970s. The introduction of the

Black and Scholes (1973) and Merton (1973) valuation framework eventually

led to the development of a new branch of finance. One of the extensions of this

framework was the pricing application of Merton (1974) for corporate bonds.

Merton made use of Black and Scholes (1973) and Merton (1973) equations

to reach a “risk structure” of zero-coupon bonds. The pathway they opened is

based on the central point that debt and equity can be interpreted as options

on the firm value of a corporation.

39
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Over time, different approaches to modeling credit risk have been developed,

resulting in two main branches of research in the current academic literature.

Following Merton’s (1974) idea, the structural approach is based on modeling

the evolution of issuer balance sheets. According to this approach, default oc-

curs when the value of assets fall below a certain level and the issuer is unable

or unwilling to meet its obligations. There have been various extensions of Mer-

ton (1974). Black and Cox (1976), Geske (1977), Leland (1994), Longstaff and

Schwartz (1995), Anderson and Sundaresan (1996) and Collin-Dufresne and

Goldstein (2001) are among the important contributions to the defaultable

claims framework. These models extended Merton’s (1974) approach, most

significantly in terms of (i) allowing default at any time during maturity, (ii)

endogenously deriving the level of the default barrier, and (iii) introducing

stochastic interest rates. Black and Cox (1976) have provided a closed form

solution for the “first-passage time” models. In addition, their study was im-

portant for its derivation of an endogenous default barrier, which has since been

extended by Leland (1994) and many others. Longstaff and Schwartz (1995)

carried the debate to include stochastic interest rates. A relatively more recent

model in Collin-Dufresne and Goldstein (2001) made use of stochastic interest

rates and further included a stationary leverage ratio.

In contrast to structural models, reduced-form models specify the default prob-

abilities exogenously. According to these models, default time is unpredictable

and is calculated by means of a default intensity function. Instead of rely-

ing upon the diffusion process inherent in structural models, reduced-form

approaches model the default time as the first occurrence of an event in a

jump process. The simplest type of reduced-form models is one in which the

default intensity is constant, as put forward by Jarrow and Turnbull (1995).
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Many variations of this model have been developed. Important contributions

among them include Jarrow, Lando, and Turnbull’s (1997) version with rating-

dependent intensities in a Markov chain setup, as well as the Cox processes

used by Lando (1998) and Duffie and Singleton (1999) for default intensity

modeling. A comprehensive review on both structural and reduced-form credit

risk models can be found in Uhrig-Homburg (2002).

With all these different approaches available, the question becomes: How well

do they represent a good benchmark for real prices? To date, there has been

no common agreement in academia or practice as to which model framework

better represents default risk. This is a crucial question for the pricing of credit

default swaps presented in the last chapter. It is still an open issue of what

type of method better prices CDSs. For this purpose, this chapter serves as

an overview on the empirical literature in credit risk. Firstly, studies with

structural and reduced-form pricing with bonds will be highlighted. Then,

empirical applications concerning credit default swaps as the instrument will

be discussed. It should be noted that only empirical studies with credit risk

modeling are focused on. This leaves aside many other studies with corporate

bonds where a structural or reduced-form model are not involved. Nevertheless,

recent studies with CDSs are included, regardless of involving a credit risk

model test or not. As a result, a broad overview of studies with CDSs will be

presented.
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3.2 Review on Empirical Studies in Credit Risk

3.2.1 Structural Models with Bonds as the Instrument

Structural models can be investigated in two main branches. Merton’s initial

idea defined the default barrier exogenously. Extensions of the Merton model

which kept this assumption include Kim, Ramaswamy, and Sundaresan (1993),

Longstaff and Schwartz (1995), Briys and de Varrenne (1997), Schöbel (1999)

and Collin-Dufresne and Goldstein (2001). An alternative to exogenously defin-

ing the default barrier is when the default is modeled as a decision by the firm.

In these models the barrier is endogenously determined as a result of the man-

agement decisions (e.g. Leland (1994), Leland and Toft (1996), Anderson and

Sundaresan (1996)).

Empirical studies with structural models differentiate most significantly in

terms of (i) type of bonds used, i.e. whether they include call features or not,

(ii) the estimation method for the parameters, most importantly the asset

value and volatility, and (iii) usage of riskless term structure and the inclusion

of stochastic interest rates into the model setup. With an emphasis on these

issues, a review on empirical studies based on the two types of structural

models will follow.

Studies on Structural Models with Exogenous Default

Empirical studies that apply the theoretical framework developed by Merton

(1974) have been scarce initially. This was mostly due to the availability of

reliable data. When earlier empirical studies that test structural models in

their ability to price corporate liabilities emerged, these works suffered from the
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applicable data problem. Prior to 1980s, most corporate bonds were callable,

making it hard to work because observed spreads included also a call premium.

Since it is arguable that on which proportion the observed spreads of corporate

bonds depend on default risk and call options, these early studies have biases

within.

The work of Jones, Mason, and Rosenfeld (1984) (henceforth JMR) is one of

these early studies that uses callable bonds as the instrument. In the study,

the monthly data of 27 firms between January 1975 and January 1981 were

used. A simple capital structure was the most important decision variable in

selecting these firms: As described by JMR, the firms had one class of stock,

no convertible bonds, a small number of debt issues, and no preferred stock.

They also had a small ratio of private debt and short term notes payable

to total capital, and they typically had rated publicly traded debt. Ogden’s

(1987) work is best comparable to JMR in terms of data used since Ogden

had a pre-condition of being callable and having a sinking fund while selecting

the 57 bonds between 1973-1985 period. Nevertheless, the approaches of JMR

and Ogden differ when JMR incorporate multiple issues of debt to the Merton

model while Ogden allows only one bond. Ogden selected data of firms with

simple capital structure and with primary market prices. Although Ogden

thinks that a simple capital structure restriction will bias the sample towards

smaller firms, he neglects this in favor of testing the ideal conditions of the

model.

Both studies utilize an extended version of the Merton (1974) model with

sinking fund provisions, callable debt, and - in the case of JMR - multiple

debt issues. Since the resulting partial differential equation is not analytically

solvable in both cases, numerical methods have to be applied. The two studies
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also have similarities in the estimation technique of the volatility σV of the

firm value V to reach σV :

σE = σV EV
V

E
, (3.1)

where σE is the volatility of the equity value E and EV is the partial derivative

of the equity value with respect to the asset value V .1 First, they estimate firm

values from market values of equity and market (for JMR) or book values of

debt (for Ogden), calculate the standard deviation of equity returns of the

firm, and estimate EV . Ogden handles the estimation of EV by first assuming

it to be equal to 1, then he uses Equation (3.1) for a revised estimate, whereas

JMR use a similar method. Finally, JMR and Ogden make use of Equation

(3.1) for an estimate of σV . Besides volatility data also interest rate data are

required. JMR comment that assuming a flat term structure for default-free

interest rates (which is similar to Merton’s original assumption) would cause

biased estimation. Thus, both JMR and Ogden make use of one year implied

forward interest rates estimated from government bond data retrieved from

the Wall Street Journal.

Both JMR and Ogden test Merton’s model in its ability to explain credit

spreads and reach the conclusion that the model computes lower spreads than

observed in the market. JMR compare their results with a “näıve” model that

only discounts the promised payments with the riskless rate. With an entire

sample of 305 coupon bond prices, JMR find an absolute percentage error in

predicting the risky bond prices with the Merton model of 8.5 per cent and a

percentage error of 4.5 per cent. Both error values are above 10 per cent for

non-investment grade bonds. These results are rather high in terms of percent-

age pricing errors. It came out that the Merton model has better predictions

1See Merton (1974) for derivation.
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than the näıve model for lower quality bonds, while the models give similar

results for higher qualities. Moreover, regression analyses reveal that variance

estimation errors affect pricing differences substantially. Observing the indis-

tinguishable results of the Merton model and the näıve model for investment

grade bonds, JMR conclude by suggesting that introducing stochastic interest

rates and taxes would improve the model’s performance.

Ogden’s experiences with the Merton model are also mixed. In his initial pro-

bit analysis for uncovering the relation between bond ratings and the Merton

model’s estimated risk measure (standard deviation, σ, and debt-to-firm value

ratio, D/V ) both variables have proven to be significant. A regression between

observed and model spreads shows that predicted spreads are on average 104

basis points lower than the observed spreads, which indicates a poor perfor-

mance. Ogden undertakes a second regression to understand the potential fac-

tors for the results, with firm size, rating grade, treasury yield, and slope of

the term structure being the independent variables. While there is no evidence

on the significance of bond rating, spread errors are negatively related to firm

size. Ogden treats this finding as a standing point in parallel to Fisher’s (1959)

liquidity hypothesis which puts forward that bonds of larger firms are more

liquid and have lower yields. Bond spreads should also be inversely related to

firm size, ceteris paribus. Since model spreads are invariant to firm size, the

spread errors are expected to be negatively related to firm size. Both term

structure variables are also significant which suggests stochastic interest rates

should be incorporated for better results.

It is interesting that both JMR and Ogden conclude their work by suggesting

the introduction of stochastic interest rates. Since Merton’s model does not

include stochasticity, this option has become available only in latter theoretical
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studies, particularly after the work by Longstaff and Schwartz (1995). As we

will see later, in recent empirical studies the presence of stochastic interest rates

is tested with Longstaff/Schwartz’s model, although it has not significantly

improved the pricing. Eom, Helwege, and Huang (2004) suggest that the reason

why JMR and Ogden necessitate stochastic interest rates is that the data they

use was an interval in which Treasury rates were volatile. It is possible that

subsequent studies such as Wei and Guo (1997) did not face the same necessity

while using only 1992 data, with non-callable bonds in their analysis.

One of the first empirical studies that investigate the risk structure of pure

discount bonds is Sarig and Warga (1989). The authors compare their findings

to the behavior suggested by Merton’s (1974) model but do not price the

liabilities using a model. For the period of February 1985 to September 1987,

data of 137 zero-coupon bonds of 42 companies were collected. In contrast to

JMR and Ogden, the authors have omitted the callable bonds from their list.

As a result credit spreads can be easily computed by subtracting the yield of a

zero-coupon government bond from the yield of a zero-coupon risky bond with

identical maturity. The resulting term structures of spreads were increasing for

investment grade bonds, humped shaped for bonds rated BB, and decreasing

for bonds rated B or C. Sarig/Warga comment that these findings match with

the theoretical results of Merton, if leverage (the debt-to-firm value ratio, d)

and rating are negatively correlated.

The importance of Sarig/Warga’s study lies in being among the first testing

implications of the Merton model with limited non-callable zero-coupon bonds

data. A direct test of Merton’s model based on zero-coupon bonds is Gemmill’s

(2002) work. In the study, zero-coupon bonds issued by closed end funds in UK

are used as the source of data between the period of February 1992 and April
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2001. Thus, Black/Scholes equations can be used to calculate model prices of

bonds. Parameter estimation is also fairly simple given this database: The firm

value, V , is proxied by market value of the closed end funds portfolio. Volatility

can therefore be estimated from the time series data of firm value.

Gemmill confirms some results obtained in previous studies: Calculated spreads

are lower than observed spreads for less riskier bonds and for bonds that are

closer to maturity, by using zero-coupon bonds of closed-end funds as the

dataset. Moreover, in parallel to Ogden he finds that observed spreads increase

when interest rates fall and term structure steepens. However, in contrast to

previous results, Merton’s model performs surprisingly well in explaining credit

spreads with an average of monthly deviations of around 6 per cent. Interest-

ingly, the resulting term structures of credit spreads are consistently upward

sloping although Merton’s model predict and Sarig/Warga empirically con-

firm downward-sloping term structures for risky bonds. Gemmill comments

that this could be possible if it is assumed that there will be a drift in leverage

over time. The sample of bonds issued by close-end funds may be expected to

have a leverage falling over time, causing the spread to fall on each bond as

it approaches maturity. Gemmill suggests that this observation supports the

argument of Collin-Dufresne and Goldstein (2001) who specify a target for

leverage that has influence on model spreads.

In the eminent work of Longstaff and Schwartz (1995), interest rate risk is

incorporated to the structural framework provided by Merton (1974). Thus,

the constant interest rate assumption is relaxed. Longstaff/Schwartz also follow

Black and Cox (1976) in allowing default earlier than maturity. In parallel to

the findings of Sarig/Warga, the model predicts an increasing term structure of

credit spreads for high quality bonds while low quality bonds show a humped
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shaped structure within their model. Recall that the original Merton model

is in the same spirit which predicted a hump shaped structure for debt-to-

firm value ratio being d < 1, and a decreasing structure for d > 1. In a first

empirical analysis based on Moody’s monthly yield averages for the period of

1977-1992, Longstaff/Schwartz find significant contribution of the correlation

between asset returns and interest rates for pricing corporate bonds, when

stochastic interest rates are introduced.

In their contribution to the literature, Wei and Guo (1997) compare the pricing

ability of the Merton (1974) and the Longstaff and Schwartz (1995) models

by utilizing Eurodollars as risky debt. Eurodollars are bank deposit liabilities

that are not subject to US regulations, but they are issued in US dollars.

Although they can be held anywhere outside US, the reason why they are

called Eurodollars is that they were originally most liquid in Europe. The

authors have chosen to work with Eurodollars since they are widely traded.

What Wei/Guo would specifically like to test is whether the stochastic interest

rates introduced with Longstaff/Schwartz’s model, have been an improvement

in the pricing ability over the Merton model. However, the authors only test

the fitting ability (in-sample) of the models rather than their predictive power.

In order to implement the model Wei/Guo perform two steps. In a first step

the term structures of risky and riskless interest rates are computed. For each

Thursday in 1992 Wei/Guo use the seven days, one month, three months, six

months and one year Eurodollar yield leading to a risky term structure con-

sisting of five data points at each date. In addition, they derive the riskless

term structure using T-bills ranging from seven days to one year. In a second

step, model parameters are estimated. The Merton model parameters (volatil-

ity, σ2
v ; debt-to-firm value ratio, d) are estimated from the risky bond prices
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by inverting the Black/Scholes formula. Because of the number of parameters

and the stochastic term structure, the Longstaff/Schwartz model’s estimation

occurs in two steps. First, the term structure parameters that follow a Vasicek

(1977) process are estimated by non-linear least squares fitting of Treasury

term structure. Secondly, the credit structure parameters are estimated by fit-

ting the risky Eurodollar term structure of interest rates using a grid search

method. At the end, estimates are available for in-sample credit term structure

construction for each week in 1992.

As the sum of squared errors for the weekly calculations of the Merton model

are smaller than for the Longstaff/Schwartz model, the Merton model can be

commented to fit the observed credit structure better. This seems to be aston-

ishing in the first place, since the Longstaff/Schwartz model with eight parame-

ters might be expected to be more flexible in fitting the observed credit spreads.

However, the Merton and the Longstaff/Schwartz models are non-nested and

hence have superior characteristics to each other. Still, both do not exactly

reach the shape of the observed credit structure. The credit structure of the Eu-

rodollars has N-shape; however, both the Merton and the Longstaff/Schwartz

models only reach a hump-shaped structure since an N-shaped structure can-

not be obtained within these models. According to Wei/Guo, the Merton model

has shown more reasonable fit over the Longstaff/Schwartz model since when

time to maturity approaches infinity the authors reach a hump-shaped credit

curve that converges to a constant. The Longstaff/Schwartz model converges

to zero on the same circumstance, which limits the ability of the model to fit

the credit term structure.

The Merton and Longstaff/Schwartz models are also objects of Lyden and

Saraniti’s (2000) work. They are the first to test these structural models using
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individual, non-callable corporate bonds. Using the database of Bridge Infor-

mation Systems they select a sample of 56 firms with publicly traded common

stock and a single outstanding bullet bond without embedded options within

the period from 1990 to 1999. So as to estimate the parameters, Lyden/Saraniti

first compute the firm value by adding total equity, book value of short term

and other liabilities, and the market value of the bond. For asset volatility, the

standard deviation of the time series of firm values is taken. The riskless rates

are estimated with the Vasicek (1977) model from Treasury yields and the his-

torical correlation between stock prices and the ten year on the run Treasury

yield is used to proxy the correlation between asset value and riskless interest

rates.

Consistent with previous work Lyden/Saraniti have reached the conclusion

that both the Merton and the Longstaff/Schwartz models underestimate yield

spreads with considerable difference. When testing the Merton model, the au-

thors account for different possible debt structures. The assumption of equal

priority given to all creditors in the event of default leads to the lowest mean

absolute error (83 basis points), which is of course still extremely high. The

corresponding mean error of 61 basis points documents the strong underpre-

diction of market spreads by the Merton model, part of which is doubtlessly

due to a liquidity premium. When regressing model errors on bond character-

istics they confirm the finding of JMR and Ogden that the model particularly

overprices longer term debt. Testing the Longstaff/Schwartz model in its abil-

ity to explain spreads occurs in two steps. First, Lyden/Saraniti introduce

early default before incorporating stochastic interest rates. They do this by

applying Longstaff/Schwartz model with zero volatility of risk-free rates and

assume a recovery rate as 47.7 per cent, as suggested by Altman and Kishore
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(1996). In the second step stochastic risk-free interest rates were introduced.

Interestingly neither allowing early default nor volatile interest rates improves

the model. Interest rates do have an impact, but bring accuracy problems.

The model results deteriorate even more when industry specific recovery rates

are incorporated. So, to rescue the model, the well-known problem of joint

hypothesis must serve, stating that the rejection could either be due to an in-

correct model or due to misestimated asset volatility. Overall, Lyden/Saraniti

conclude by commenting that the Merton model has better performance in

prediction than the Longstaff/Schwartz model - a result which confirms and

extends the in-sample result of Wei/Guo to out-of-sample prediction.

The most comprehensive empirical analysis of structural models using corpo-

rate bonds is the recent study of Eom, Helwege, and Huang (2004) (hence-

forth EHH). Their comparison of five corporate bond pricing structural mod-

els includes the work of Merton (1974), Geske (1977), Longstaff and Schwartz

(1995), Leland and Toft (1996), and Collin-Dufresne and Goldstein (2001)

and is the first work that tests the Geske, the Leland/Toft, and the Collin-

Dufresne/Goldstein models.2 Similar to Lyden/Saraniti, EHH concentrate on

corporate bonds with simple capital structures. Restricting the sample to un-

subordinated, non-callable bonds of non-financial and non-utility firms with

standard cash flows and long maturities as well as to firms that have at least

five years of stock price data and not more than five bonds, they end up with

182 bonds. They retrieve the 1986-1997 data of last trading day of each De-

cember from the Fixed Income Database. Bond maturities are mostly in the

range of 5-10 years, although bonds that have maturities from one year to 30

2The Geske (1977) and Leland and Toft (1996) models are endogenous-default models
that are analyzed in more detail in the next section. However, for the continuity of EHH
study, a partition was not found useful.
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years are present in the sample.

In order to estimate parameters for the structural models, EHH use various

techniques. Asset volatility is estimated from (i) historical equity volatility,

similar to JMR with Equation (3.1), (ii) 150-day future equity volatility, (iii) a

GARCH (1,1) model, and finally (iv) implied volatility using previous-month

bond prices. Unlike JMR, the firm value is computed by adding equity value

and the book value of total debt. The firm’s annual payout (dividends, bond

coupons, share repurchases) is adjusted in the models as well. For the one-

factor models of Merton, Geske and Leland/Toft, the risk-free rate is estimated

using the Nelson and Siegel (1987) model. In both Longstaff/Schwartz and

Collin-Dufresne/Goldstein models, interest rate dynamics are described by the

Vasicek (1977) model, thus the authors implement these two models using

Vasicek estimates for consistency. Moreover, in the Longstaff/Schwartz and the

Collin-Dufresne/Goldstein models, the required correlation coefficient between

asset returns and interest rates is proxied with the correlation between equity

returns and changes in interest rates as in Lyden/Saraniti. EHH fix the recovery

rate to 51.31 per cent following the literature on default recoveries. For all

models except the Geske model, EHH can make use of analytical or quasi-

analytical formulas to derive model prices for the coupon bond. The Merton

model is extended to coupon bonds by simply pricing the coupon bond as

portfolio of zero-coupon bonds each of which is priced using the standard

Merton model. The more accurate treatment of coupons within the Geske

model leading to a compound-option pricing problem is numerically solved

with binomial trees.

Based on historical volatilities EHH find that the extended Merton model

underpredicts spreads. Only with implied volatilities this result disappears.
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However, a comparison of the model results using implied volatilities from

the previous month’s bond prices with a simple random walk model implying

that the previous month’s spreads is the best estimate for the current spread,

leads to the conclusion that the random-walk model performs superior. Fur-

ther analysis with the extended Merton model reveals that the specific form of

the risk-free term structure (Nelson/Siegel or Vasicek) is not important, as the

authors try the Vasicek model as an alternative source for the risk-free rate.

The Geske model also underpredicts spreads while reaching closer values to

the actuals. Specifically, the Merton and the Geske models generate very high

spreads on bonds that are risky, and low spreads for the ones that are con-

sidered safe. In contrast, Leland/Toft’s model overpredicts spreads. Since this

overprediction of the model is closely related to the coupon-level, the authors

suggest that the assumption of a continuous coupon payment, which can be

basically interpreted as exercise of the option to continue operations, is respon-

sible for this result. The Longstaff/Schwartz model also reaches high spreads

for risky bonds but low spreads for safer bonds. Although the accuracy substan-

tially worsens EHH argue that stochastic interest rates are important because

spread estimates are sensitive to interest rate volatility estimates thereby al-

lowing an additional source of volatility. Finally the Collin-Dufresne/Goldstein

model overpredicts spreads on the average while helps to raise the spreads that

are considered safe by Longstaff/Schwartz. With these findings, EHH conclude

that the accepted argument in the literature which is that the structural mod-

els underpredict spreads consistently, is not correct. However, maintaining ac-

curacy in prediction is important. Because of this reason, EHH suggest that

raising the model spreads should not be seen as the central focus of further

theoretical studies with structural models, rather it should be raising them for

safer bonds while keeping them for riskier bonds.
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A novel approach to testing structural models have recently arisen from the

work of Schaefer and Strebulaev (2007). In their study the authors take a

different path, and instead of predicting bond spreads which are usually un-

derestimated by the Merton’s (1974) model, they choose to look at whether

the model can predict hedge ratios -of debt to equity- that are in line with

those observed empirically. They motivate their reasoning that the price of a

corporate bond can be thought to consist of a credit related component and

a non-credit related component as suggested by prior research (i.e. Collin-

Dufresne, Goldstein, and Martin (2001)). If structural models provide a good

estimate of the credit related component, they will simultaneously predict the

hedge ratios of actual prices while failing to explain their level. Therefore their

starting point is to hypothesize that if they find a model that provides reason-

able prediction of hedge ratios but a poor prediction of the price, they may

identify the reasons of model failure.

With a sample of 1,360 bonds between 1996 and 2003 that do not have any

embedded option-like features, Schaefer and Strebulaev (2007) first look at

the sensitivity of corporate debt to changes in firm value. After having shown

the significance of the sensitivities of corporate debt returns to the underlying

equity and riskless debt, they check whether the magnitudes of the sensitivities

are consistent with the Merton’s model. By pursuing a simulation, the authors

find that the Merton model simulated sensitivities are very close to actual

sensitivities from data, although the model underestimates the observed level

of credit spreads by more then 80 per cent. After calculating the asset volatility

form historical equity and bond returns, they finally show that the Merton

model provides reasonable predictions for hedge ratios but poor predictions

for the bond price. Therefore, the authors suggest that the poor performance
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of the structural models might arise from the influence of non-credit factors,

rather than not being able to capture credit exposure of debt. By checking other

possible determinants of the bond returns, they document that the returns are

affected by some factors (such as return on S&P 500 index, or changes in VIX

index of implied volatility of options) that are not related to credit exposure.

The authors therefore conclude the study by a further evidence in line with

Collin-Dufresne, Goldstein, and Martin (2001) who find a significant non-credit

component in credit spread.

Overall, it can be concluded that all tested structural models have difficulties

in accurately predicting corporate credit spreads. The various extensions of the

Merton model do not really do a better job. Surprisingly, the Longstaff/Schwartz

model performs even worse with the incorporation of stochastic interest rates.

While it is a common argument that models underpredict spreads for safe

bonds there is no consensus on the pricing of riskier bonds. JMR found lower

spreads for risky bonds with the Merton model whereas EHH have reached

too high spreads for riskier bonds with the Longstaff/Schwartz model. In any

degree of riskiness, the Leland/Toft model overpredicts spreads in the analysis

of EHH. It is noteworthy to mention that many regression results with the er-

rors indicate that longer term bonds have higher spread prediction errors. The

criticism towards structural models that claim a common poor fit to empirical

data therefore has solid examples. However, as the quality of data more and

more improves and also as the techniques to estimate parameters become more

powerful, one can have hope to implement structural models more successfully.

Moreover, further efforts should investigate the differences of credit related and

non-credit related components in the light of Schaefer and Strebulaev (2007)

and concentrate on the explainable parts with structural models.
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Studies on Structural Models with Endogenous Default

A renewed focus on structural models arises from the approach that endoge-

nously determines the default boundary. These studies analyze the impact of

firm’s financing decisions and make detailed assumptions about the default

event. Specifically, the firm has a management decision whether to continue

paying coupons on the debt or to declare bankruptcy. This type of studies was

initiated by Black and Cox (1976). Extensions of Black/Cox differ in the result-

ing default barrier, which is computed with optimization techniques. Uhrig-

Homburg (2002) provides an extensive review on different types of endogenous

models that extend the Black/Cox model with taxes, bankruptcy costs, and

debt renegotiation using game theoretic elements.

Anderson and Sundaresan (2000) is among the first empirical studies that tests

pricing ability of endogenous structural models. The purpose of their work is to

discriminate among different endogenous models and compare it to the results

of Merton. The two endogenous models they test are: (i) Leland (1994), which

extends Black and Cox (1976) with bankruptcy costs and tax advantage of

debt, and (ii) Anderson, Sundaresan, and Tychon (1996) (henceforth AST);

which is a special case of both (a)Anderson and Sundaresan (1996) in which a

game-theoretic model of the bankruptcy process is introduced, and (b) Mella-

Barral and Perraudin (1997), in which the firm can be liquidated at any time at

some given liquidation value. Throughout the study, perpetual coupon bonds

are considered.3

Anderson/Sundaresan have chosen to work with indices instead of specific bond

issues, because they think indices are more linked to economic factors than in-

3 Anderson, Sundaresan, and Tychon (1996) is the continuous time version of the discrete
model of Anderson and Sundaresan (1996).
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dividual bonds which have a stronger connection to firm-specific factors. The

monthly data of yield indices were collected for the time period from August

1970 to December 1996. This data constituted 30-year BBB rated bonds ac-

cording to the rating system of Standard and Poor’s. Similar to exogenous

structural models the estimation of leverage and asset volatility is required,

which is undertaken as follows: A leverage proxy, computed as monthly series,

is obtained from annual aggregated balance sheet data and market values of

equity. In contrast to previous work done in the literature, asset volatility is

taken to be simply a multiple of equity return volatility from S&P 500, which

is implicitly estimated by non-linear least squares from the bond yields along

with other parameters. This can be viewed as a relaxation of the technique

utilized by JMR and followers, given in Equation (3.1). In their effort to esti-

mate parameters, Anderson/Sundaresan built a formulation for the yields on

corporate bonds, Yt:

Yt = λ + Y (Lt, σEt, rt, a,K, θ, β) + ut (3.2)

and

ut = ρut−1 + ε (3.3)

where Yt is the observed market yield for corporate bonds. The additive con-

stant λ is included to capture a liquidity premium or some other effect that

is not captured by the model. Y (.) is the model-implied yield calculated from

Y = cP/B of the coupon bond with coupon c, principal P , and model value B

of the defaultable bond computed from Leland, AST, and a perpetual version

of Merton pricing formulas. As Equations (3.2) and (3.3) demonstrate, the yield

depends on Lt, the leverage proxy described above (which is estimated directly

from balance sheet information); σEt, the equity volatility (which is estimated
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from standard deviation of equity returns on the S&P 500); rt, the riskless rate

(proxied by moving averages of long-term Treasury yields); a, the equity/asset

volatility multiple; K, the fixed bankruptcy cost; θ, the proportional recovery

rate; β, the cash flow rate; and ρ, the autocorrelation coefficient. The constant

parameters, the liquidity constant, bankruptcy cost, recovery rate, cash flow

rate, and autocorrelation of residuals are estimated by the same nonlinear least

squares with the asset volatility multiple. Naturally, the bankruptcy cost, the

cash flow rate and the recovery rate are not present for the Merton model,

whereas AST model uses all of the above variables except the recovery rate.

For the Leland model, only a, λ, θ, and ρ are estimated and bankruptcy cost

and the cash flow rate are left out.

According to Anderson/Sundaresan, implied parameter estimates are more

plausible for the Leland and especially for the AST model compared to those

from the Merton model. Nevertheless, it should be noted that only the as-

set volatility multiple that enters the Merton’s model is estimated in-sample,

whereas the endogenous models have more parameters to be estimated. More-

over, the estimated parameters have a single constant value for the whole

estimation period, which is not on the same level of detail compared to weekly

estimation, such as in Wei/Guo. It is also worth mentioning that the recovery

rates estimated by the AST and the Leland models are over 90 per cent while

the literature agrees on a rate around 50 per cent (i.e. Altman and Kishore

(1996)).

The calculated spreads using the parameter estimates are compared to ob-

served BBB-rated bond spreads. For all models, observed spreads are more dis-

persed than in-sample calculated spreads. But, the endogenous models tested

have a better correlation with observed spreads than the Merton model. An-



Overview on Empirical Credit Risk Literature 59

derson/Sundaresan conclude that the endogenous determination of default

boundary has led to an improvement among structural models. Still, the re-

sults should be evaluated in the light of the parameter estimation process as

described above. Another comment to include would be that the results of

Anderson/Sundaresan show the estimate of liquidity constant is attributed to

nearly all of the spread computed with the Merton model, leaving the model

to account for only 4 bps. This raises the question of how much the models

actually contribute to explaining spreads.4 Finally, the fit of the models with

firm specific data remains untested.

In their attempt to use structural models to explain credit spreads, Ericsson

and Reneby (2004) have also chosen an endogenous model, a variation of the

Leland (1994) model. They argue that the better fit of reduced-form models5

in the literature arises from the estimation techniques used, rather than the

model structure. Their aim is to show that structural models can perform as

well when properly estimated. Using a maximum-likelihood method proposed

by Duan (1994) and shown support in Ericsson and Reneby (2005), they esti-

mate model parameters from a time series of stock prices and previous periods’

bonds prices to predict current bond prices and spreads. The required capital

structure information is retrieved from balance sheet data and as a proxy for

the constant risk-free rate an interpolated Treasury yields is chosen. Erics-

son/Reneby use a sample of 141 corporate bond issues that consists of nearly

5,600 dealer quotes. The out-of-sample, one month-ahead spread predictions

result in finding a mean error of only 2 bps. When longer horizon out-of-sample

prediction is applied, the average error increases to -18 per cent of the spread.

4Liquidity constant also constitutes a major portion of the explained spreads with the
Leland and AST models.

5See Section 3.2.2 for the empirical results obtained with reduced-form models.
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Comparing these results to prediction errors obtained with reduced-from mod-

els (specifically Duffee (1999) and Bakshi, Madan, and Zhang (2006)), the au-

thors conclude that incorporating bond prices information into the estimation

procedure of structural models provides valuable information and leads to a

performance that is well comparable to reduced-form models.

In one of the more recent studies, Teixeira (2007) tests three structural models

of default. These are the Merton (1974), Leland (1994), and Fan and Sun-

daresan (2000) models. The author uses 50 bonds of firms with simple capital

structures between 2001 and 2004. The sample is limited to US non-financial

firms that have no more than three bonds. Besides, only bullet, non-callable,

non-putable or non-convertible bonds are allowed, whereas floating rate bonds

and bonds with sinking fund provisions are excluded. The risk-free yield curve

is estimated by fitting the Nelson/Siegel model. For the necessary parameters

of asset value and asset volatility, the author solves the JMR equation and

the equity valuation equation specific for the model simultaneously using nu-

merical methods. This estimation method is an extension to JMR’s original

technique, first proposed by Ronn and Verma (1986). JMR’s single equation

is extended to solve two simultaneous equations for two unknowns, asset value

and volatility, where the second equation is simply used to view equity as the

call option on asset value. The results indicate that the fits of the models are

quite poor. The Merton model has a spread error of -193 bps and a relative

error of -78 per cent, whereas the Leland model has a spread error of 193 bps

and a relative error of -75 per cent. The study fails in generating risk-neutral

default probabilities close to actual probabilities as well. Merton and Leland

risk-neutral probabilities are 12.3 per cent and 10.5 per cent, whereas the ac-

tual probability lies in the range of 0.11 per cent given rating and maturity.
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Teixeira adds that the Fan/Sundaresan’s model delivers a better performance

with -62 per cent relative spread error. Nevertheless, in each of the three cases,

spreads are underestimated.

Although some of the studies of endogenous default models reach more promis-

ing results than previous studies of structural models, it is questionable whether

the endogenous default modeling itself is responsible for this improvement.6 In

contrast to most previous studies, the Anderson and Sundaresan (2000) and

Ericsson and Reneby (2004) use bond price information to estimate model pa-

rameters for their endogenous default models, which at least partly explains

better performance.

3.2.2 Reduced-Form Models with Bonds as the Instru-

ment

Within the last decades, a new path of modeling default has been opened in

credit risk analysis. This second approach is modeling default probabilities as

an exogenous variable represented by a default intensity. These type of models

remain silent about the cause of default, and model the unpredictable default

by a jump process. This constitutes the main difference between structural

and reduced-form models. Instead of a diffusing firm value term, there is the

default intensity as the parameter for a Poisson process. Extensions of the

constant intensity approach of Jarrow and Turnbull (1995) include Jarrow,

Lando, and Turnbull (1997), Lando (1998), Duffie and Singleton (1999), and

Das and Sundaram (2000).

6Davydenko and Strebulaev (2007) explicitly investigate the influence of strategic behav-
ior on corporate spreads and find that bond prices are affected by the possibility of debt
restructuring. Though strategic variables are statistically significant in explaining credit
spreads their economic significance is quite low.
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Empirical studies with reduced-form models differentiate most significantly in

terms of (i) their choice of the default intensity process, whether it is taken as

a constant or as a Cox process, (ii) whenever Cox processes are used, the selec-

tion of the state variables as an unobservable Vasicek or Cox/Ingersoll/Ross

process, or as an observable credit risk factor extracted from financial infor-

mation, (iii) the methods used in estimating the default intensity, and (iv)

the choice and estimation of the riskless term structure. Frühwirth and Sögner

(2006) is among the few studies that tested a constant intensity approach. Al-

though computationally tractable, a constant intensity translates into limited

real-life examples. In the real world, the default probability of corporations

change continuously. Duffee (1999) was among the first to see this at a rela-

tively early time point, who conducted research with state variables depending

on Cox/Ingersoll/Ross processes. Another contribution by him was incorpo-

rating Kalman filter into the estimation of the riskless and default intensity

processes. Although his work was one of the first in-depth empirical studies

with reduced-form models, a substantial attention to observable credit risk fac-

tors was not given until the work of Bakshi, Madan, and Zhang (2006). In their

work, Bakshi/Madan/Zhang investigate the effects of choosing various credit

risk factors from financial information of corporations, as the observable state

variable. Two other studies are also critical in this section: The study of Duffie,

Pedersen, and Singleton (2003) extends the analysis to multiple credit events

of sovereign bonds, whereas Tauren (1999) has the intention to describe the

dynamics of the spreads on their own. Overall, this section aims to show how

the empirical studies with reduced-form models have used bonds intensively

to explain credit risk premiums within.

In their contribution to the literature, Frühwirth and Sögner (2006) use daily
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prices of 51 German Mark or Euro denominated coupon bonds that do not have

sinking funds or embedded options between January 1999 and June 2000 to es-

timate a constant default intensity and test the Jarrow/Turnbull model. These

bonds are issued by banks and non-bank corporates which are rated as AA, A

or BBB by Standard and Poor’s during the period. In a three step procedure,

Frühwirth/Sögner first analyze with a simulation whether the joint estimation

of the default intensity and recovery rates is possible. The authors first calcu-

late riskless zero-coupon bond prices by using the Svensson (1994) parameter

estimates provided by the Deutsche Bundesbank. Then they estimate a con-

stant default intensity and a recovery rate jointly by minimizing the errors

between observed and the calculated bond prices with the Jarrow/Turnbull

model. However, the performed simulation study has proven the weak perfor-

mance of joint estimation. The estimates depend heavily on the initial values

and thus the results are not stable numerically. Instead, the study is continued

by estimating a constant default intensity keeping the recovery rate fixed at

50 per cent, following Altman and Kishore (1996) and Moody’s (2000).

Then in-sample results from bond prices are analyzed to discover whether (i)

cross-sectional estimation, using all bonds in a risk class, or (ii) separate es-

timation, using only one bond at a time among the total of 51, is a better

alternative for default intensity estimation. The initial estimation method of

the default intensity is by cross-sectional estimation within each rating class,

where it is observed that default intensities differ regardless of the rating of

bonds: As an example, the estimated intensity of banks rated A is lower than

safer bank bonds that are rated AA. Frühwirth/Sögner try to find determi-

nants of the default intensity by holding regressions on market and firm/bond

specific variables. The results are not in favor of cross-sectional estimation:
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The authors comment that intensities must be estimated separately since any

kind of classification by rating, industry or issuer ends in poorer results than

by bond basis. Frühwirth/Sögner therefore conclude that Jarrow/Turnbull’s

assumption of a constant default rate per issuer is not supported by their

analysis.

In a third step, optimal pooling intervals are determined such that out-of-

sample pricing errors are minimized. Frühwirth/Sögner incorporate a past

pooling time span up to 35 days, as well as using daily estimation. Utilizing

optimal pooling intervals, “ex-ante” pricing errors, which are the out-of-sample

testing results, show the mean absolute error between calculated and observed

price is 24 to 331 bps in cross-sectional estimation, while 10 to 31 bps for sep-

arate estimation. In conclusion, the authors suggest the inability of estimating

the default intensity and the recovery rate jointly can be used as a foundation

of credit risk models such as Duffie and Singleton (1999) where the recovery

rate is integrated into the default intensity. Their results suggest that focusing

on models where default intensity is autoregressive in structure and is a func-

tion of liquidity and the riskless term structure should be the goal of further

research.

Nevertheless, there are empirical literature already present partly at the direc-

tion they have pointed out. In his study, Duffee (1999) uses a model adapted

from the reduced-form approach of Duffie and Singleton (1997, 1999). Follow-

ing Pearson and Sun (1987), the interest rate process is assumed as the sum

of a constant and two factors that follow square-root stochastic processes. The

default intensity process is a single-factor square-root process plus two compo-

nents that include default-free interest rate factors. Therefore any correlation

between default intensities and riskless yields are targeted to be captured by
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the coefficients of the factors in the intensity process. Although incorporation

of riskless interest rate factors to the default intensity is a major contribution

of the study in the direction which Frühwirth/Sögner have mentioned, Duffee

further brings an innovative approach to the estimation process as well. The

author uses extended Kalman filter for the calibration of riskless and default-

able bonds. The model variables are estimated for the period from January

1985 through December 1995, with a total sample of 161 firms and around

40,000 prices. The estimation is undertaken first by estimating the two factors

for the interest rate process using Treasury yields, and then by separately es-

timating the instantaneous default intensity for each firm, given the estimates

of these factors. The estimates of the default intensities and yield spreads per

rating class are computed afterwards. Duffee’s in-sample results indicate a root

mean squared error of only 10 bps. Duffee argues that his model captures a

non-default component within spreads, even though his estimation process pro-

vided no information on liquidities. His model results also confirm the steeper

slope of low grade firm spreads with respect to the higher grade firm spreads.

In their contribution to reduced-form approaches, Bakshi, Madan, and Zhang

(2006) (BMZ henceforth) have followed Duffie/Singleton’s stochastic default

intensity framework. With an approach similar to Duffee, the risk-free factor is

included in computing default risk-adjusted discounting process. The adjusted

discounting factor is a sum of constant default factor, risk-free rate and a

distress factor. By such formulation, BMZ maintain economy-wide and firm-

specific variables to be presented simultaneously. The three factor model used

by BMZ has a two-factor interest rate process and a single factor for the

credit risk component. The long run mean of interest rates follows the Vasicek

process while the short rate is an extended Vasicek process that incorporates
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the long run mean. Instead of an unobservable default intensity process, BMZ

have chosen to work with an observable credit risk factor, which differentiates

their study from its counterparts. BMZ constructed several proxies for distress

factors and tested a group of different reduced-form models: leverage, book-to-

market ratio, profitability, lagged credit spread and normalized stock price by

money market account. Leverage is proxied as long term book value of debt

divided by firm value (the sum of long term debt and market capitalization of

common equity). Another proxy, the book-to-market ratio is defined as book

value of equity to market value of equity, while profitability is computed as

operating income divided by sales.

The data of BMZ consists of 93 firms and over 46,000 coupon bond prices be-

tween 1989 and 1998. BMZ first confirm by OLS regressions that cross-section

of yields depends on firm specific distress factors. While estimating the in-

terest rate parameters, they found out that the stochastic mean factor added

to the one-factor Vasicek model improved performance. The firm-specific de-

fault parameters are estimated similarly, by minimizing the root mean squared

pricing error. The in-sample fit shows the firm specific distress factors do not

contribute substantially over the interest rate model. BMZ attribute this to

their usage of low risk bonds as data set. Following, one-month out-of-sample

predictions were undertaken. By dividing absolute valuation error to the bond

price, the authors report absolute percentage pricing error, of which a maxi-

mum of 1.9 per cent is reached. Another error term is reported by BMZ by

calculating the absolute deviation of the calculated yield from the observed

yield: the absolute yield basis points error, which is between 27-33 bps for

different model types when all rating classes are pooled. Ericsson and Reneby

(2004) have pointed out the similarity of the out-of-sample prediction and their
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results with BMZ although they test a structural model: The errors in spreads

are comparable in amounts and similarly rise as credit quality worsens. Fi-

nally, BMZ run OLS regressions to analyze pricing errors, and try to explain

them with systematic factors such as industrial production growth rate, term

premium, and default premium. Overall, the work of BMZ extends the ini-

tial work of Duffee and constant intensity approach of Frühwirth/Sögner with

observed credit risk factors.

Duffie, Pedersen, and Singleton (2003) (DPS henceforth) extended the appli-

cation of reduced-form models to sovereign bonds. They undertake the study

for the special case of Russian default in 1998. Although sovereign default is a

political decision at the end, bonds of sovereigns have been priced using sim-

ilar models that are applicable to corporate bonds. Nevertheless, the authors

comment that structural models, that capture the default incentives and sol-

vency, will not be appropriate if empirical analysis should be undertaken. They

note that nearly all of the studies in the literature have used reduced-form ap-

proach for pricing sovereign bonds (Pages (2000), Düllmann and Windfuhr

(2000), Merrick (2001)).

In parallel to the literature, DPS apply Duffie and Singleton’s (1999) reduced-

form approach using weekly data between the period of February 1994 to

August 1998, which is just before the default of Russian short-term discount

bonds. DPS extend the Duffie/Singleton recovery-of-market value formulation

to allow multiple types of credit events, specifically for (i) default or repudi-

ation, (ii) restructuring and renegotiation, and (iii) regime switch of govern-

ment. However, DPS comment that adequate data with the Russian bonds is

not available to separate the credit event effects.
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For the riskless yield, the authors use US Dollar swap yields with LIBOR-

quality. The decision to use swap rates instead of Treasury yields was due that

they are disburdened by repo specials and tax advantages, and that they can

be reached on the basis of constant maturity. A two-factor affine model with

stochastic volatility is used for the term structure model for which a maximum

likelihood procedure is utilized to estimate its parameters. After reaching in-

sample fits for the pre-crisis and default periods of Russia, DPS price two

additional Russian bonds out-of-sample. A good fit is observed until August

1998, the credit event. Another observation is that the out-of-sample model

prices are significantly lower than Eurobond prices after the credit event. DPS

conclude that Russian yield spreads are affected from political events and that

they are also correlated with the oil prices and foreign currency reserves. The

extension of DPS to allow multiple types of credit events is one of the major

contributions of the study.

A similar line of research to the aim of pricing corporate liabilities has the

goal to explain credit spreads on their own. Although these two aims have

close links, they distinguish in the fact that the estimation of the risk-free rate

from government bonds is not taken into account for when the aim is directly

explaining credit spreads. In his contribution to literature, Tauren (1999) at-

tempts to focus directly on the spreads in a Duffie/Singleton framework. The

selection of the default intensity is therefore in parallel to Duffee (1999), Bak-

shi, Madan, and Zhang (2006), and Duffie, Pedersen, and Singleton (2003).

Focusing directly on spreads, Tauren formulates a stochastic differential equa-

tion for the expected loss rate, h(t)L(t). In doing this, Tauren assumes that the

expected loss rate and riskless rate are not correlated. 112 corporate bonds of

26 firms during the period of 1986 - 1994 are retrieved from Salomon Brothers
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for estimation purposes. The out-of-sample prediction data set consists of 22

corporate bonds from 8 companies. Tauren also collects the rating class yield

indices from Standard & Poor’s Bond Guides. The loss rate, L, is taken as

52 per cent as computed in Carty and Lieberman (1998) for senior unsecured

public debt.

The starting point of Tauren is to apply the methodology developed by Chan,

Karolyi, Longstaff, and Sanders (1992) (CKLS henceforth) to reduced-form

models. CKLS have estimated and compared different models of short-term

interest rate using Generalized Method of Moments (GMM). GMM brings

the ease that specifying the distribution of error terms is not required and

that autocorrelation and heteroscedasticity is allowed. To finalize the spread

dynamics formula, Tauren inserts a negative survivorship bias to the drift,

which produces an effect similar to mean reversion.

As the parameter estimates with CKLS model is reached the statistics show

that the model is misspecified. This leads Tauren to test robustness of CKLS

specification. One of the assumptions tested was the independence of riskless

rate and the spreads. Tauren points out that the bonds in the sample have

mostly call features, which may bring dependence on interest rates with call

premia. Results show that as long as mean reversion is included, CKLS model is

robust. A consequent subperiod analysis indicates that parameter estimates of

the two half-intervals are identical. Finally, the out-of-sample prediction results

show the mean-reversion included in CKLS model causes poorer performance.

Consistent with Duffee (1999), the results suggest that long-term levels of

spreads are higher for lower quality bonds than for higher quality bonds. The

author comments that repeating the study with the inclusion of non-investment

grade bonds would be a valuable effort.
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As can be observed from the studies mentioned in this section, reduced-form

modeling can involve various forms and techniques in application. Factors that

affect the prediction ability are therefore numerous, and it is difficult to dis-

criminate a model’s capability from each other. Constant default intensity

approach of Frühwirth and Sögner (2006) has shown the necessity of Cox

processes for better results. In using a Cox process, one major distinction

in application is whether the study uses observable distress factors for the

default intensity such as in Bakshi, Madan, and Zhang (2006) or the default

intensity is modeled as an unobservable process as in Duffee (1999). Applica-

tion of reduced-form modeling to sovereign bonds with multiple credit events

has also been accomplished with the study of Duffie, Pedersen, and Singleton

(2003). Overall, reduced-form models can be accepted as viable tools as long

as mathematical techniques support economical intuition.

3.2.3 Studies with Credit Default Swaps

Credit risk literature has recently started considering the expanding market of

credit default swaps as a basis of research. The development of empirical studies

has been parallel to the development of the market, as usable empirical data

has been available in adequate time series only recently. Being unconstrained

by liquidity effects, the price of a CDS is a pure measure of credit risk, and

therefore is an appropriate tool to be used in studies with credit risk modeling.

In the preceding sections, studies with bonds in which only credit risk models

are tested were examined. However, in the scope of this thesis, it is necessary to

understand the credit default swap as a product with its many dimensions. This

section reviews both the studies that directly apply credit risk models to CDSs

and those that empirically investigate the nature of CDS prices. Naturally,
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studies that test models may include regressions that analyze CDS features.

Nevertheless, the first part contains studies that focus their study on mainly

testing the models, whereas the second part includes studies which do not use

models at all.

Studies that Test Credit Risk Models with CDSs

As a complementary tool to bonds as the empirical data source, prices of

CDSs have been recently popular as datasets. For instance, the recent work

of Longstaff, Mithal, and Neis (2005) (LMN henceforth) differs from other

empirical papers on credit spreads by that they use the default intensities esti-

mated from credit default swap premiums to analyze corporate bond spreads.

In the first approach they use, they follow the no-arbitrage comparison in

which the premium of default swap equals the credit spread of bonds. This as-

sumption is thoroughly analyzed in Duffie (1999). Still, as investigated in the

work by Duffie and Liu (2001), this approach can produce a biased measure

of the default component. Therefore as a second approach, the authors gener-

ate a reduced-form model in the Duffie and Singleton (1997, 1999) framework.

A major contribution of their work is the analysis they have undertaken by

showing a non-default component is present in corporate bond spreads due to

illiquidity measures.

LMN start their investigation with a case study of the default of Enron and

then extend the analysis to 68 firms. Because of the problem of finding a

matching five-year bond available at each date of five-year CDSs, the authors

use a bracketing set approach. A set of bonds with maturities that bracket

the five-year time span of the credit default swap are used, instead of working

with a single Enron bond. When LMN compare the CDS premiums to the bond
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spreads, it is observed that the premium is 49 per cent of the total spread for

AAA/AA-rated bonds, 53 per cent for A-rated bonds, 68 per cent for BBB-

rated bonds and 84 per cent for bonds that are below investment grade. These

are significant differences in absolute terms. Then they estimate the default

intensity for each firm from the observed CDS premiums. In order to obtain

default component for each bond, they regress the time series of yield spreads

of each firm on the estimated default components for the firm. After comparing

the ratio of default component to observed credit spreads, they comment that

the “model independent approach”, which is directly comparing default swap

premiums to spreads, performs poorer results.

LMN put forward that the corporate spreads do not only consist of a default

component, but also a non-default component as well. At the final stage, they

investigate the characteristics of the non-default component in a cross-sectional

and a consequent time series analysis. For this reason, they regress the non-

default component of the spread on variables such as the coupon, the bid-ask

spread, the principal, the age, the maturity, the financial institution dummy

and the rating dummy for high investment grade bonds. It came out that the

average bid-ask spread is significantly related to the non-default component,

which signals that the size of the non-default component increases as liquidity

decreases. The principal is negatively related, which confirms that large issue

sizes that are more liquid have smaller non-default components. This argument

that liquidity risk is priced in bond spreads is consistent with Fisher’s (1959)

early work. The following time series analysis aims to explain market wide

measures of illiquidity, since the cross-sectional analysis better explains bond-

specific measures. Finally, overall liquidity proxies for the market such as flows

into money market funds are significant, as well.
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Similar to the work of LMN, a two step procedure is used by Houweling and

Vorst (2005) to analyze the default swap premiums and bond spreads. In the

first step, under a no-arbitrage argument the authors directly compare ob-

served bond spreads and observed default swap premiums. The next step is

introducing a reduced-form model and calculating model default swap premi-

ums. Their major contribution to the literature lies in suggesting swap or repo

rates as a better benchmark for risk-free rate rather than government yields.

Houweling/Vorst use bond data between January 1999 and January 2001 from

Reuters and Bloomberg. They use a sample of 1,131 fixed coupon, senior un-

secured, bullet bonds with 258,000 price quotes. Their default data set is

retrieved from commercial and investment banks, and internet trading ser-

vices (Creditex and CreditTrade) which comprises of 225 reference entities

and around 23,000 CDS prices. As a benchmark of the riskless curve, Trea-

sury, swap and repurchase agreement (repo) rates are used for comparison.

When Houweling/Vorst analyze the default swap data, it is observed that the

average premiums decrease with credit quality as expected, whereas no appar-

ent relation between maturity and premium could be found. In order to provide

a basis for comparing observed bond spreads and CDS premiums, matching

is done by either finding a bond that has a maturity discrepancy of at most

10 per cent from default swap maturity or by interpolating bond maturities.

Pricing errors are calculated when a pair is formed by subtracting bond bid

spreads from default swap ask quotes and vice versa. By doing so, similar sides

of the market are compared. The interpolation method has proven better re-

sults, and in absolute terms premiums deviate from the market values about

68 per cent for AAA rated bonds and 19 per cent for BBB rated bonds.

In the second step of the study in which a reduced-form model is introduced,
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the default intensity is modeled as a polynomial function of time to maturity.

In the case of constant default intensity model, the intensity increases with

credit rating, and this suggests the success of credit ratings in assessing cred-

itworthiness. It is also observed that the selected default free curve has an

effect on the level of the default intensity. By constructing pairs similar to the

approach described above, but this time using model default premium, new

pricing errors are reached.

It is important to underline the approach difference between LMN and Houwel-

ing/Vorst studies: Houweling/Vorst have calculated default swap premiums

from default intensities estimated from bond spreads. In contrary, LMN have

estimated the default intensities from observed default swap premiums to cal-

culate bond spreads. Moreover, Houweling/Vorst have not included an illiquid-

ity premium in their model, while LMN have undertaken an in-depth analy-

sis. The main result of Houweling/Vorst assesses that a reduced-form model

performs better than the first method which directly compares spreads and

premiums - a finding in parallel to LMN, but still there occurs an absolute

deviation of 20 per cent to 50 per cent. The best performance for investment

grade issuers among different default intensities and risk-free curves is by the

quadratic model that uses the repo curve. A typical conclusion is that govern-

ment curve should not be seen as the sole choice of riskless curve.

Another recent study that incorporates a liquidity component in both bond

and CDS spreads is the work of Bühler and Trapp (2005). Unlike previous

studies that assume perfect liquidity for CDS premiums, the authors point out

to the fact that bid-ask spreads of CDSs might be large enough to justify a

liquidity premium. Therefore the major contribution of the paper is to build a

reduced-form model for the CDS prices with an additional liquidity component.
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The study is designed so that bonds and CDSs of a given issuer have identical

default risks but different liquidity risks.

For a dataset of 37 bonds of 10 telecommunications companies between Au-

gust 2001 and May 2005, the authors assume a square-root process for the

default intensity as in the study of LMN, and the liquidity process also follows

a Brownian motion. Bühler/Trapp find that adding a CDS-specific liquidity

component causes positive credit and liquidity premiums in the bond market.

Moreover, as the default risk increases, the bond market’s liquidity dries up,

whereas the CDS market becomes more liquid. Through modeling liquidity

components in both CDS and bond markets, the authors are able to explain

both positive and negative values of the basis.

The LMN, Houweling/Vorst and Bühler/Trapp articles all study credit risk

with reduced-form models. A more recent study, Chen, Fabozzi, Pan, and

Sverdlove (2006), on the other hand, analyzes the sources of credit risk by

comparing the structural models of Merton (1974), Rabinovitch (1989), and

Longstaff and Schwartz (1995), with fixed and random recovery barrier mod-

els. The authors are inspired by the end result of Wei and Guo (1997) that

the Longstaff/Schwartz and the Merton model do not outperform each other

due to their non-nested constructions. Therefore, they try to build pairs of

models which are nested, in which one model is the special case of the other,

and look at what kind of constraint makes a difference. From the study of

Wei/Guo in Section 3.2.1, one can recall that the Merton model has a single

default and barrier, constant interest rates, and random recovery, whereas the

Longstaff/Schwartz model has a continuous default barrier, stochastic interest

rates, and fixed recovery. Since the models did not dominate each other, it was

not possible to determine whether random recovery in the Merton model or the
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stochastic recovery in Longstaff/Schwartz model plays a more important role.

With a CDS dataset of 3,496 trade observations between February 2000 and

April 2003, the authors find that fixed recovery barrier and Longstaff/Schwartz

model overestimate CDS spreads whereas the Merton, Rabinovitch and ran-

dom recovery barrier models underestimate them. Their results indicate ran-

dom recovery and stochastic interest rates are important assumptions, whereas

they did not find support for the continuous default assumption. Their findings

are consistent with the study of Wei/Guo.

An adjacent field of application which tests credit risk models is making use of

sovereign crisis information. CDS prices of sovereign entities or of corporates

that reside in these countries should show a clear demonstration of the crisis

during turbulent times. A study that analyzes credit default swaps during such

crisis times is Skinner and Diaz (2003) which uses the period of Asian crisis as

a case study to compare Jarrow and Turnbull (1995) and Duffie and Singleton

(1999) models. By choosing these two models recovery of treasury value and

recovery of market value assumptions will be analyzed respectively. A binomial

version of the models is utilized, and 31 default swaps between the period of

September 1997 and February 1999 are used. The sample is divided into two

sub-categories; the “crisis swaps” had a reference entity in Asian countries

while the “non-crisis swaps” did not.

The main contribution of Skinner/Diaz is the comparison of the expected

premium and the expected payment in case of default, for crisis and non-

crisis CDSs. The Duffie/Singleton model reaches greater values for the ex-

pected payment than the premium consistently for non-crisis CDSs while for

Jarrow/Turnbull model the groups are in balance. This is mostly because

higher default intensities are reached by the Jarrow/Turnbull model, there-
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fore calculated premiums and insurance payments are lower than those of

Duffie/Singleton. The results show in general that for non-crisis default swaps

the expected payment is larger than the expected premium, while for crisis de-

fault swaps, the situation is the contrary. The authors suggest that this may be

due to a moral hazard problem, and point out that the credit event definition

involves restructuring for their sample. The buyer of the insurance who can be

same as the owner of the underlying bond, may therefore effect the insurance

payments.

On the other hand, Zhang (2003) includes several features to his default swap

valuation framework while focusing on the specific case of what the market

expected before the Argentina default. The model is first to untie the default

probabilities from the recovery rate, allow correlation between underlying state

variables, and incorporate counterparty default risk, in one framework. Sim-

ilar to Duffee (1999) and Bakshi, Madan, and Zhang (2006) the hazard rate

is assumed to be linear in three state variables of economy. The data set con-

sists of mid market quotes from J.P. Morgan of 10 contracts on Argentinean

sovereign debt in a time span of January 1999 to December 2001. 149 weekly

observations therefore total to 1490 default swap quotes. It is noted that mean

absolute pricing errors of the model are within 10-20 bps while the performance

deteriorates as default on December 2001 is approached. It is an observation

that major rating agencies lagged the credit market in downgrading Argentina

debt, with their optimistic view during the period.

Studies that Empirically Investigate Features of CDSs

In addition to the studies that tested credit risk models by using CDSs, there is

a growing number of literature that investigate various features of this instru-
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ment. These studies fall mostly into one or more of the following categories:

(i)Studies that basically compared the bond spread with the CDS spread un-

der a no arbitrage comparison (Blanco, Brennan, and Marsh (2005); Hull, Pre-

descu, and White (2004)). As seen in the last section, this analysis is also a first

step towards understanding the relationship between bond and CDS spreads in

testing a credit risk model (Longstaff, Mithal, and Neis (2005); Houweling and

Vorst (2005)). (ii)Studies that have held regressions to understand the effects

of various features on CDS premiums (Skinner and Townend (2002); Cossin,

Hricko, Aunon-Nerin, and Huang (2002); Blanco, Brennan, and Marsh (2005)).

These studies tried to find a significance between the underlying features and

CDS prices. (iii)Studies that have undertaken an event study around certain

credit risk events and looked at how CDS premiums changed (Hull, Predescu,

and White (2004); Norden and Weber (2004)). In the studies taken for this

review, this event was the rating announcements. All these studies try to be a

part in the larger picture of how CDS features could be understood.

The first task of Blanco, Brennan, and Marsh (2005) (BBM henceforth) has

been to compare the pricing of credit default swaps and bond spreads. Their

results suggest that the no-arbitrage equivalence holds mostly, and that credit

default swaps form an upper bound for the price of credit risk, whereas bond

spreads are observed to construct a lower bound, due to the delivery option

present in CDS premiums and the repo cost for short selling the cash bond.

Another major attempt of BBM is to check which market is ahead in price

discovery. New information is valued in credit default swap market prices more

quickly than in bond prices hence the default swap market can be thought as

more liquid.

BBM use daily closing price credit default swap data from CreditTrade like
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Houweling/Vorst. They also use J.P. Morgan mid-market data for a confir-

mation of prices of CreditTrade. From Bloomberg, corporate bond data are

retrieved and interpolated to fit the default swap data. At the end, the sample

is left with 33 reference entities that default swap and bond data match. As

the proxy for the risk-free yield, government bonds and swap rates are used at

the first attempt.

Testing the no-arbitrage assumption, in average absolute terms CDS rates

are 46 basis points higher than corporate bond spreads for treasury rates as

the risk-free proxy and 15 basis points higher for swap rates as the proxy.

BBM comment that these results are well comparable to the study of Houwel-

ing/Vorst, who found similar results for AA and A-rated bonds. In the second

step, BBM aim to investigate the lead-lag relationships and the price discov-

ery. The authors use two alternative methods (Hasbrouck (1995), Gonzalo and

Granger (1995)) for measurement. The results suggest that CDS premiums

clearly lead bond spreads. When final regressions are run with CDS price and

bond spreads as the dependent variables, the price discovery leading of CDS

premiums is confirmed. Variables like interest rates, term structure, stock mar-

ket returns and stock market implied volatilities have a higher effect on bond

spreads than CDS premiums while it is the opposite for firm-specific variables

such as stock price returns and implied volatilities. Nevertheless, the adjusted

R2 is low (around 25 per cent) for the regressions, signaling the low percentage

of explanation of the dependent variables.

The regressions held by Blanco/Brennan/Marsh had its early examples in

Cossin, Hricko, Aunon-Nerin, and Huang (2002) (CHAH henceforth) and Skin-

ner and Townend (2002). Although CHAH have also utilized only 75 obser-

vations to implement Das and Sundaram’s (2000) reduced-form model, the
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major strength of their study lies in the regressions that aims to explain deter-

minants of CDS transaction prices in a cross-sectional study. The sample set

consists of 392 traded contracts during January 1998 to February 2000. Their

results show that the credit rating is highly significant as a factor of credit risk

explaining the 47 per cent of variance for US corporates. Structural variables

such as asset value volatility, leverage, and interest rate are also significant

and explain together the 31 per cent of the variance for US corporates. It is

also an important observation that US and non-US corporates show different

behaviors which suggest that the international markets are not homogeneous.

In another early empirical study with credit default swaps, Skinner and Tow-

nend (2002) suggest that CDSs can be examined as put options. They con-

struct a sample of only 29 sovereign CDS quotes between September 1997 and

February 1999. The authors subdivide their sample into Asian and non-Asian

subgroups, with the thought of capturing a difference due to Asian currency

crisis in the given period. When regressions are run, variables that affect the

prices of put options such as riskless rate, volatility, underlying asset yield,

and time to maturity came out to be significant in explaining CDS prices.

Their R2 is as high as 99.5 per cent when the full sample is tested. However,

using the analogy of put options, Skinner/Townend have hypothesized that

the CDS premium should increase with increasing maturity. In contrast, their

results are robust to a negative relationship. As a reason, they highlight that

the non-Asian swaps have an average maturity of 7 years with lower premiums,

while Asian swaps are on average 3 years and have higher premiums due to

Asian crisis. Their results suggest that in order to manage the risk traded in

a crisis environment, buyers of a CDS could look for decreased premiums by

entering into shorter term default swaps.
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In a different path of examining CDSs, Hull, Predescu, and White (2004)

(henceforth HPW) and Norden and Weber (2004) have analyzed the impact of

credit rating announcements with event studies. In the first part of their study

HPW adjust the no-arbitrage assumption following Duffie (1999) and Hull and

White (2000) by dividing the difference of risky and riskless yield with accrued

interest on par yield bond:

CDS Spread =
Risky Y ield − Riskless Y ield

1 + Accrued Interest
(3.4)

By using the data between January 1998 and May 2002 from GFI, 370 CDS

quotes were matched with corresponding bonds on the same day. The matching

was done by simply regressing the yields of bonds on a given CDS quote day on

the maturities of the bonds. The accrued interest in Equation (3.4) is assumed

as (Risky Y ield/4) as all bonds paid interest semiannually. HPW compare

the outcomes with Treasury rates and swap rates independently and reach the

conclusion that swap rates are a better proxy for the risk free rate, given the

no-arbitrage equation holds.

HPW then proceed with analyzing the effects of credit rating changes. The

CDS market possesses an anticipation towards negative outlooks, reviews for

downgrades and downgrades, while only reviews for downgrades provide in-

formation. On the other hand with a similar range of data, from July 1998

to December 2002, Norden/Weber find that both CDS and stock markets an-

ticipate downgrades and review for downgrades. This finding is robust for all

three big rating agencies: Standard & Poor’s, Moody’s and Fitch. The same

results do not hold for positive rating events.

All the above studies with credit default swaps have either looked at the no-
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arbitrage relationship between bond and CDS spreads, or applied reduced-form

models to correctly price a CDS. Alternatively, there have been studies that

looked at price discovery and lead-lag relationships, or studies that have run

regressions for the determinants of the CDS premiums. In any case, these

studies should be treated as preliminary since the market is only at an infant

stage. It is of no doubt that the number of empirical studies with CDSs will

grow, and continue its field of research jointly with other topics in credit risk.

3.3 Summary

Obviously, there are numerous empirical studies in the field of credit risk. Struc-

tural models have on average failed to generate reasonable spreads, whereas

alternative reduced-form formulations yielded different prediction results. Re-

cently, studies with CDSs have emerged, bringing a new dimension to credit

risk analysis. Still obviously, all the above studies have reached contradicting

results. To date, there has been no common agreement in academia or practice

as to which model framework (structural or reduced-form) better represents

default risk. One main reason for the lack of consensus is that these empirical

studies have provided controversial guidance in the validation process for the-

oretical models. The unevenness of the empirical studies can be attributed to

three factors:

(i) When testing a given model empirically, the usage of different datasets

produces widely varying prediction results. For instance, structural mod-

els were often criticized by early empirical studies as under-predicting

credit spreads (Jones, Mason, and Rosenfeld (1984); Ogden (1987); Ly-

den and Saraniti (2000)), whereas more recent studies utilizing the same
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models suggest that this is not a consistent occurrence (Eom, Helwege,

and Huang (2004)). It is unclear, however, whether this is due to the

models or the datasets used.

(ii) Even though the prediction performances of structural and reduced-form

models have been compared within each framework, there have been no

empirical studies across modeling structures in which the same dataset

and methodology were applied to both frameworks. For instance, al-

though Eom, Helwege, and Huang’s (2004) study is the most compre-

hensive study to date in which several structural models are compared

in one setting, it does not address the results acquired with reduced-form

approaches. Similarly, empirical studies conducted by Anderson and Sun-

daresan (2000) or Bakshi, Madan, and Zhang (2006) have approved a

special model setup without any basis of comparison across frameworks.

The only study that compares structural and reduced-form approaches

is the work of Arora, Bohn, and Zhu (2005). This study compares the

structural models of Merton and Vasicek/Kealhofer (the Moody’s KMV

approach) to a Hull/White type reduced-form model. Although the in-

tention is acceptable, the methodology undertaken by this study is poor.

The structural models are calibrated by stock prices whereas the reduced-

form model is calibrated with bond prices. Although all three models in

the end out-of-sample price CDSs, the methodology raises questions on

the fairness and validity of such a comparison.

(iii) Moreover, although the error results between the compared models might

turn out to be similar, the estimation technique and the sampling setup

for prediction highly influences the forecasting ability. As an example,

Ericsson and Reneby’s (2004) out-of-sample prediction results, obtained
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by using an extension of Leland’s (1994) endogenous structural model

and employing an innovative estimation technique in Duan (1994), seem

well comparable to Duffee’s (1999) in-sample results with a reduced-

form model utilizing Kalman filter estimation, both having a root mean

squared error of around 10 bps. Apparently, looking at the prediction

results alone would be misleading, since these do not express the detailed

aspects of both settings.

The presence of all these issues therefore necessitates that further efforts be

undertaken. Ideally, this would be accomplished by testing the structural and

reduced-form models via the application of the same methodology to the same

datasets, as will be presented in the following chapters.



Chapter 4

CDS Pricing with Basic

Framework Structures

In this chapter, a comparative study between the two basic forms of structural

and reduced-form frameworks is undertaken. This is in parallel to the work in

Gündüz, Uhrig-Homburg, and Seese (2006) and Gündüz and Uhrig-Homburg

(2007). In this first attempt to compare financial modeling frameworks in pric-

ing CDSs, the model of Merton (1974) has been chosen to work with, which

has the simplest form that a structural model can have. Meanwhile, the con-

stant default intensity as outlined by Jarrow and Turnbull (1995) is employed,

which can be regarded as the simplest form in the reduced-form framework.

Although there are many extensions that have developed on top of these struc-

tures, a comparison of the two basic models has been concentrated on initially.

This comparison would give a first indication on how structural and reduced-

form frameworks vary in their structures. The results of both approaches are

contrasted with the prediction results of a machine learning approach. The

analysis is therefore three-fold:

85
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(i) It applies the most financially structured models to a CDS dataset under

the hypothesis that default is triggered by the asset value of the firm

being below a certain threshold at maturity.

(ii) It applies the intensity-based Poisson jump process setting to the same

dataset under the hypothesis that default is defined as a surprise event

that can occur at any time during the lifetime.

(iii) It applies Support Vector Machines - a machine learning algorithm that

does not have an economically-backed structure at all - under the hy-

pothesis that whatever resides in the prices is the best source to train

the function for predictions.

4.1 The Three Models

4.1.1 The Merton Model

Firstly, the Merton’s (1974) model is applied to the CDS dataset. This model

allows default only at maturity, and does not incorporate a stochastic process

for the interest rate. In order to value a CDS, consider its two legs, the premium

and the protection leg. The premium leg is the fee as a percentage of the

contract amount that the buyer of the insurance has to pay to the seller until

maturity or default, whichever comes first. The protection leg is the single

payment that the seller of the contract is obliged to undertake in case of

default of the entity upon which the contract is written. In Merton’s setting,

the premium leg is nothing but the discounting of each fair premium stheo paid
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until maturity:

PremiumLeg = stheo

n∑

i=1

e−r(i)T (i) (4.1)

where T (i) is the time interval in yearly terms, and, as the usual practice is

quarterly paid premiums, T (1) is 0.25, T (2) is 0.5, and so on; the maturity

of the contract T (n) is 5 years. r(i) is the riskless interest rate for maturity

T (i) on the contract setup date. The protection leg constitutes the discounting

of the probability of default at maturity, multiplied with the non-recoverable

amount:

ProtectionLeg = (1 − ϕ)Φ(−d2)(e
−r(n)T (n)) (4.2)

where Φ(−d2) is the risk-neutral default probability in the Merton setting.

The recovery rate in case of default, ϕ also enters the protection leg. It might

have been a sound approach to estimate the recovery rate simultaneously with

the default intensity; however, as mentioned in Chapter 3, recent applications

undertaken by Houweling and Vorst (2005) and Frühwirth and Sögner (2006)

have shown the insensitivity of the results based upon the selection of this

variable. To simplify methods, the recovery rate can be fixed to a value obtained

in empirical studies based on historically defaulted bonds. Following the results

produced by Altman and Kishore (1996) and recent practice, for the senior

class a value of 0.5 has been used.1 As a last step, the theoretically fair CDS

premium is reached by equating the premium and protection legs at time zero:

stheo =
(1 − ϕ)Φ(−d2)(e

−r(n)T (n))∑n
i=1 e−r(i)T (i)

(4.3)

1Although the 0.5 figure is derived from the US market, recent efforts with European
data have also relied on this figure (Houweling and Vorst (2005); Frühwirth and Sögner
(2006)). Considering the fact that Basle 2 provisions accept a loss given default of 50 per
cent for bank loans independent of the country chosen, this is not an unrealistic assumption.
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This premium ensures that the CDS contract has zero value on initiation, which

in turn guarantees that the buyer and the seller are even under no-arbitrage

assumptions.

4.1.2 The Constant Default Intensity Model

The basic structure of a constant default intensity model was introduced by

Jarrow and Turnbull (1995). In contrast to more advanced intensity-based

models, the stochastic process driving the riskless term structure and the de-

fault process are assumed to be independent in the Jarrow/Turnbull setting.

While Jarrow/Turnbull assume a constant intensity under the real world mea-

sure, the intensity becomes time-varying when they turn to the risk-neutral

world. In this application, it has been started directly with a constant risk-

neutral intensity. Following Duffie and Singleton (2003), it can be shown that

the pricing of CDS is composed of a premium and protection leg as below:

PremiumLeg = stheo

n∑

i=1

e−(λ+r(i))T (i) (4.4)

ProtectionLeg = (1 − ϕ)
n∑

i=1

e−r(i)T (i)(e−λT (i−1) − e−λT (i)) (4.5)

where λ is the constant default intensity parameter. Equating these two legs

to extract the theoretically fair premium leads to:

stheo = (1 − ϕ)(eλ∆t − 1) (4.6)

when intervals T (i + 1) − T (i) = ∆t are constant between premiums. Thus,

in the case of quarterly payments, the interest rate parameters cancel out,
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and the constant intensity case is insensitive to interest rates. This is the most

significant difference in the constant intensity setting from the Merton model in

this application. A second important distinguishing feature is that the Merton

model allows default only at maturity, whereas the setup permits early default

in the intensity setting.

4.1.3 Support Vector Machines Regression (SVM)

In addition to comparing the two financial credit risk frameworks, a third alter-

native method is employed in this study. The recent developments in machine

learning have opened a new pathway for computing empirical predictions: Sup-

port Vector Machines (SVM) is an innovative technique for data classification

and regression. As an alternative to traditional neural network approaches,

SVM, whose fundamentals were developed by Vapnik (1995), have become

popular due to their promising empirical performance. Specifically, the SVM

regression method proposes alternative kernel functions to be used in mapping

into a high dimensional feature space. Literature on SVM regression appli-

cations on finance is sparse; there has been coverage especially on financial

time series forecasting (Cao and Tay (2001); Müller, Smola, Rätsch, Schölkopf,

Kohlmorgen, and Vapnik (1997)). To my knowledge, SVM has not been ap-

plied to credit derivatives pricing, and its results have accordingly not yet been

compared with financial methods.

SVM has proven to be a good alternative to traditional neural network appli-

cations: The problem of building architecture for neural networks is replaced

by the problem of choosing a suitable kernel for the SVM.2 In this study, the

2Without the use of kernels, the problem of non-linear machine construction would have
required two steps: First, a fixed non-linear mapping to transform the data into a “fea-
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results of the financial models are compared to SVM regression models with

linear, polynomial, Gaussian radial basis and exponential radial basis kernel

functions. These four fundamental kernel functions are described below. The

most basic kernel function is linear; it is simply the inner product of training

points u and test points v:

K(u, v) = 〈u, v〉 (4.7)

An alternative approach would be to analyze polynomial kernel function with

degree 2. This is a popular method for non-linear modeling:

K(u, v) = (〈u, v〉 + 1)2 (4.8)

The third type to have received significant attention in the literature is the

Gaussian radial basis function, which is:

K(u, v) = exp
(
− ‖ u − v ‖2

2σ2

)
(4.9)

where σ is taken to be 0.5 after observing fits of alternative parameter choices

used in the literature (Müller, Smola, Rätsch, Schölkopf, Kohlmorgen, and

Vapnik (1997); Gunn (1998); Cao and Tay (2001)). A final choice would be

exponential radial basis function, which is a similar alternative to Gaussian

RBF.

K(u, v) = exp
(
− ‖ u − v ‖

2σ2

)
(4.10)

ture” space where the analysis is easier, and then a linear machine to classify/regress it in
the feature space. Kernel theory stipulates that an inner product in feature space has an
equivalent kernel in input space; utilizing kernel functions therefore simplifies the algorithm.
There is no more need to think about the mapping and evaluation of the feature map, but
only about the inner products of test and training variables (for details see Cristianini and
Shawe-Taylor (2000); Gunn (1998)).
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A parameter value ζ, which allows slack in the system that permits the samples

to be on the wrong side of the decision boundary (a penalty parameter of the

error term), is also taken as 10, in all runs, after a search for the best-fitting

value. Similarly, the ε insensitive band has been set to 10E-4.

4.2 Results of the Cross-Sectional Design

In order to pursue a cross-sectional analysis within a specific set of CDS prices,

the dataset is divided into certain risk clusters that ought to exhibit identical

risk characteristics. Thus the main hypothesis of the cross-sectional study is

that within certain risk classes, the credit risk is priced the same. From the

described data in Section 2.2, specific risk clusters were focused on, namely the

contracts on Aa- and A-rated companies with 5-year maturity ranked senior,

since these risk classes provided the adequate number of data points. Although

the literature does not distinguish between North American and European

entities, this breakdown would allow to analyze regional characteristics. An

additional split according to the currency of the contract that the CDS is

written on was not necessary, because European and North American entities

had a natural breakdown into euros and US dollars, respectively.

Table 4.1 provides the average midpoints and spreads across ratings for the

CDSs that are focused upon in this chapter of the study. The midpoints for

AA-rated CDSs are lower than A-rated CDSs for both Europe and North

America, in line with the theory. North American CDSs are consistently higher

than their European counterparts in each of the risk classes and years. There

are also relatively less observations for North American CDSs than European

CDSs. The offer price minus the bid price for a given quote in the dataset
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has an average of 4.75 bps for the Aa-European class, whereas it is 6.81 bps

for A-European CDSs. A similar rise is observed for North American CDSs.

Notably, the average premiums and spreads are observed to steadily decrease

over time.

Table 4.1: Descriptive Statistics of CDS Dataset between December 2002-
December 2004. Midpoints of Bid-Ask Prices, Average Bid-Ask Spreads and
Number of Observations across Ratings and Regions for 5-year, Senior CDS.

2002 2003 2004 Total
Rating Region Mid Spread Obs Mid Spread Obs Mid Spread Obs Mid Spread Obs
Aa Europe 30.83 9.17 400 22.06 6.06 5119 14.46 3.17 5382 18.63 4.75 10901

Aa N.America 46.99 13.66 231 33.81 10.40 2374 26.45 10.03 2441 30.85 10.37 5046

A Europe 65.06 13.18 858 48.91 8.69 10081 33.43 4.17 9273 42.49 6.81 20212

A N. America 98.28 21.12 459 53.27 14.56 5493 34.82 9.96 5187 46.53 12.69 11139

Mid (bps): Average of the midpoint of each bid and offer price.
Spread (bps): Average of the difference of offer price - bid price.
Obs: Number of observations in the cluster.

In addition to the CDS dataset, riskless interest rates are required as a major

variable in models. In doing this, USD- and Euro-denominated contracts have

to be treated separately. The daily estimates of the Svensson (1994) model are

used as the rates for the European region. Deutsche Bundesbank has estimated

these parameters from government bonds, which is in detail explained in the

Monthly Report of Deutsche Bundesbank (1997) in October (pp. 61-66). For

the North American region, US Treasury Constant Maturity rates were linearly

interpolated for quarterly intervals. The data are directly available from the

corresponding web sites.3

4.2.1 Setting with the Merton’s Model

The cross-sectional/out-of-sample prediction methodology is to first estimate

the daily risk-neutral default probabilities for each firm in a “risk cluster” de-

3http://www.federalreserve.gov and http://www.bundesbank.de
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scribed above from the observed CDS premiums of the firms in the estimation

sample. Individual default probabilities (Φj(−d2)) were estimated for each firm

j each day using:

Φj(−d2) =
sobs

j

∑n
i=1 e−r(i)T (i)

(1 − ϕ)(e−r(n)T (n))
(4.11)

where sobs
j is the observed CDS premium for firm j. Afterwards, the Black/

Scholes parameter d2 was averaged across the full set of companies in the

estimation sample to reach a daily value. The estimation therefore results in an

aggregate default probability for each class and day.4 Figure 4.1 plots the daily

risk-neutral default probability estimates for the Aa-rated North American and

European CDSs. Interestingly, the North American CDSs have a higher default

probability throughout the time horizon, which justifies the inclusion of the

regional breakdown when setting up risk classes.

This daily value is used to predict the theoretical CDS premiums of a second

set of firms in the prediction sample. Given the specific set of companies in the

cluster (all with the same rating class, rank, currency and region), the division

of the estimation sample and prediction sample are taken to be around the

ratio of 2:1 - 4:1. Sample selection for estimation and prediction groups was

fully random in order to preclude any biases due to sample choice.

4Minimizing the sum of squared differences was a possible alternative, which would have
simply returned the default probability for the average of sobs on any given day. The results
from using this approach do not differ significantly.
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Figure 4.1: Default Probability Estimates with the Merton Model AA-rated
North American vs. European Contracts

4.2.2 Setting with the Constant Intensity Model

To ensure that the parameter estimates of the constant default intensity set-

ting are comparable to the Merton model, the firms in the estimation and

prediction samples are kept the same. Similar to the Merton setup, the default

intensity is estimated for each firm j each day from the first sample of firms

using Equation (4.6):

λj =
ln

(
sobs
j

(1−ϕ)
+ 1

)

∆t
(4.12)

Again, sobs
j is the observed CDS premium for firm j. Next, an average daily

default intensity for each risk class is obtained. This value is then plugged

into Equation (4.6) to predict the fair value of the firms’ CDS premium in the

prediction sample.
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At this point, it would be insightful to compare the estimates with a recent

study. Table 4.2 compares the average default intensities with the results of

Frühwirth and Sögner (2006), which is an application of the Jarrow and Turn-

bull model to European corporate/bank bonds. Our default intensity estimates

from CDS prices and a larger dataset extend the estimates of this study. More-

over, some of the inconsistencies of their results have been overcome in our

findings.5

Table 4.2: Comparison of Two Studies with Constant Default Intensity

European, This Study Frühwirth/Sögner
Senior Risk Class No. of Obs Intensity from CDS Intensity from Bonds

Aa-rated Banks 4584 0.0036 0.0041
Aa-rated Corporates 3037 0.0041 0.0085
A-rated Banks 3366 0.0069 0.0035
A-rated Corporates 11179 0.0090 0.0116

4.2.3 Prediction Results with Cross-Sectional Design

Before comparing the out-of-sample prediction quality, some insights on the

parameter estimates of the two modeling approaches can be provided. In order

to make the intensity estimates comparable to the estimates advanced in Mer-

ton’s model, the intensity estimates are used to calculate the 5-year risk-neutral

default probability:

PD(T ) = 1 − e−λT (4.13)

This enables the direct comparison of the default probability estimates for the

four risk classes. First, it is expected that the constant intensity model would

5The authors utilized a period between January 1999 and July 2000. In their estimates,
A-rated banks had a lower average intensity than Aa-rated banks, which should supposedly
be higher.
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yield lower default probability estimates than the Merton model, since it in-

corporates early default. Figure 4.2 provides the trajectories for the Aa-North

American risk class. Table 4.3 provides the means, deviations and the number

of days that the Merton default probability is higher than the 5-year estimate

obtained with the intensity model. It is observed that the means are close, and

except for a few weekly intervals, the Merton probability estimate is higher,

in line with the expectations. However, note that a higher default probability

does not directly translate into a higher CDS premium. In fact, although not

tabulated explicitly, the Merton model prediction for the premium is signifi-

cantly lower than the intensity prediction for three out of four risk classes. The

reason for this is that the default payment of ϕ is made available only at T in

the Merton setting, whereas in the intensity setting the same level of payment

can be made earlier.
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Figure 4.2: Default Probability Estimates with the Merton and the Constant
Intensity Models for Aa-rated North American Contracts

The out-of-sample prediction errors are summarized in Table 4.4. The results
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Table 4.3: 5-year Default Probability Estimates of the Merton and Intensity
Models

Mean PD Std Dev PD Obs Merton PD >
Intensity PD

(bps) (bps) (%)

Aa Europe 523 97.1%
Merton 197 67
Intensity 188 66

Aa N.America 524 100%
Merton 358 90
Intensity 328 83

A Europe 526 93.2%
Merton 422 148
Intensity 408 146

A N.America 524 100%
Merton 479 198
Intensity 452 196

Mean PD (bps): Average default probability in basis points.

Std Dev PD (bps): Standard deviation of the default probability in basis points.

Obs: Number of observation days.

Merton PD > Intensity PD (%): Percentage of the total sample where Merton default probability is higher

than 5-year constant intensity default probability.

indicate a low fit in basis points for all classes, while mean absolute percentage

errors (MAPE) are high. The best fit in terms of MAPE is around 23-25 per

cent. It can be observed that European/Euro-denominated CDSs have a better

fit than North American/USD-denominated CDSs.

A comparison of the prediction errors produced by the Merton and the constant

intensity models shows that the results are close. To test this observation statis-

tically, the difference between the absolute prediction errors has been focused

on in order to determine whether the models have predicted significantly differ-

ently. Table 4.5 summarizes the t-statistic results of the significance tests with

the Yule-Walker estimation method. By so doing, the autocorrelation adjusted

estimates of the time series for each rating class could be reached via backward
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Table 4.4: Out-of-sample Prediction Errors of the Merton and the Constant
Intensity Models in Cross-Sectional Design

Mean Mean Abs Mean Abs Total Total
Error Error Perc Error Sample Size Sample Size
(bps) (bps) (%) Estimation Prediction

Aa Europe

Merton -0.13 4.82 23.82% 7621 3135
Intensity 0.90 5.36 27.64% 7621 3135

Aa N.America

Merton 9.13 9.30 43.16% 3475 1571
Intensity 9.87 10.01 46.16% 3475 1571

A Europe

Merton -2.92 10.18 25.57% 14545 5393
Intensity 0.46 10.20 27.49% 14545 5393

A N.America

Merton 2.00 10.69 25.61% 9046 2093
Intensity 1.98 10.68 25.60% 9046 2093
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stheo is the theoretical CDS premium predicted by the Merton and Intensity models on day f , where F is

the number of available days in the time series. sobs is the observed CDS premium on day f for firm h,

where h = 1..H represents the number of firms in the prediction sample.

elimination of insignificant autoregressive lags. In one out of four classes, the

Merton model has lower average errors, while there is no statistical difference

in the remaining three. This result is rather surprising; by allowing default

only at maturity, the Merton model appears to be more restrictive. This may

be due to the treatment of default probability as a single parameter rather

than breaking it down into Black/Scholes parameters like asset value and as-

set volatility. Structural models have often been criticized for their weakness

of lacking a robust estimation process in these parameters, which hinders their

predictive performance. The cross-sectional results signify that in the absence

of an estimation process for the asset value and asset volatility parameters,
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Merton’s model can perform at least as well as a reduced-form model.

Table 4.5: Significance Tests for the Difference of Absolute Errors with the
Merton and the Constant Intensity Models in Cross-Sectional Design

Mean Difference t-statistic p-value

Aa Europe -0.54 -1.64 0.1011
Aa N. America -0.72 -4.68 <0.0001 ***
A Europe 0.02 0.04 0.9713
A N.America 0.01 0.41 0.6816

Mean Difference (bps): Difference of Absolute Errors for prediction (Merton - Intensity) computed per day

per firm for risk class. Absolute Error on day f , for firm h is | stheo
f

− sobs
f,h

|

*** Significance at 95 per cent level

4.2.4 Setting and Prediction Results with

SVM Regression Method

In order to design cross-sectional samples for SVM comparable to the Mer-

ton/Intensity setups, two datasets are required for training the SVM function,

plus two additional datasets for test input and test output. Therefore, the

firms in the estimation samples in the previous sections have also been se-

lected for training input, training output and test input samples. For instance,

if the estimation in the Merton/Intensity setups includes data from 23 firms

(as in AA-North America), then these 23 firms were divided into 3 groups; the

training input, the training output and the test input samples. Specifically, an

out-of-sample SVM prediction is maintained as follows: First, within each risk

class, the firms’ CDS premiums within each of the four samples (three estima-

tive and one predictive) are averaged to obtain a daily value. In order to train

the function, the daily average of the training input sample is mapped to the

average of the training output sample. Afterwards, the daily average of the pre-
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miums in the test input sample are used to predict a theoretical daily premium

based on the SVM function. Finally, the predicted value is compared to the

test output sample daily average values, so that the out-of-sample prediction

errors can be computed.

The results from the cross-sectional approach can be found in Table 4.6. It can

be observed that the SVM algorithm yields poor results in comparison to the

financial models in most cases. Some kernels produce results that are too inac-

curate to be considered an alternative, e.g. the polynomial kernel. Among all

kernels, the linear kernel has the best MAPE in three out of four risk classes. In

Table 4.7, the difference between the absolute errors of the Merton/Intensity

models and the best performing linear kernel SVM is tabulated. The financial

methods are a better predictor in two risk classes, whereas there is insignif-

icance in the remaining two. For the indecisive risk classes, the linear kernel

MAPE results come close to the financial methods, one being the A North

American class, which produces the best result of all. Due to the overall poor

fit of SVM kernels, the efforts with the full set of kernels is discontinued, and

instead the linear kernel is focused on in the rest of the study.6

6Alternative to the cross-sectional setup, a panel setting was analyzed as well. There are
2,650 data points in the training input and output sets from the data of five companies for
each set, respectively; 2,120 data points in test input and output sets were used from the
data of four companies for each set. This is a setting that is computationally more expensive,
and whose prediction results are inferior to those yielded by the cross-sectional design. The
results are therefore not presented.
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Table 4.6: Out-of-sample Prediction Errors of SVM Algorithms in Cross-
Sectional Design

Mean Mean Abs Mean Abs Total Total
Error Error Perc Error Sample Size Sample Size
(bps) (bps) (%) Estimation Prediction

Aa Europe

Linear -0.55 5.60 26.77% 7621 3135
Polynomial (Deg:2) -1.05 5.25 24.69% 7621 3135
Gaussian RBF -6.87 9.31 41.04% 7621 3135
Exponential RBF -7.21 9.45 42.57% 7621 3135

Aa N.America

Linear 3.14 17.75 81.18% 3475 1571
Polynomial (Deg:2) 49.85 157.68 657.85% 3475 1571
Gaussian RBF -3.33 15.72 68.55% 3475 1571
Exponential RBF -4.01 14.44 61.89% 3475 1571

A Europe

Linear 6.82 12.57 37.17% 14545 5393
Polynomial (Deg:2) 6.57 12.51 37.30% 14545 5393
Gaussian RBF -0.59 1.15 166.51% 14545 5393
Exponential RBF -9.51 18.22 41.49% 14545 5393

A N.America

Linear -9.70 12.07 23.11% 9046 2093
Polynomial (Deg:2) 152.67 152.67 310.13% 9046 2093
Gaussian RBF -17.10 18.02 35.06% 9046 2093
Exponential RBF -4.01 14.44 61.89% 9046 2093
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stheo is the theoretical CDS premium predicted by SVM algorithms on day f , where F is the number of

available days in the time series. sobs is the observed CDS premium on day f for firm h, where h = 1..H

represents the number of firms in the prediction (test output) sample.
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Table 4.7: Significance Tests for the Difference of Absolute Errors between the
Merton/Intensity models and Linear Kernel SVM in Cross-Sectional Design

Mean Difference t-statistic p-value

Aa Europe

Merton - SVM -0.85 -1.65 0.0998
Intensity - SVM -0.28 -0.60 0.5494

Aa N.America

Merton - SVM -8.46 -19.25 <0.0001 ***
Intensity - SVM -7.75 -24.29 <0.0001 ***

A Europe

Merton - SVM -2.32 -2.03 0.0426 ***
Intensity - SVM -2.30 -3.01 0.0026 ***

A N.America

Merton - SVM -0.49 -0.14 0.8897
Intensity - SVM -0.49 -0.14 0.8892

Mean Difference (bps): Difference of Absolute Errors for prediction (Merton - SVM) and (Intensity - SVM)

computed per day per firm. Absolute Error on day f , for firm h is | stheo
f

− sobs
f,h

|

*** Significance at 95 per cent level

4.3 Results of the Time Series Design

4.3.1 Credit Risk Models

As an alternative to cross-sectional estimation and prediction, the models are

analyzed in a time series design. This effort hypothesizes that every firm in

the sample has a constant default probability/intensity. In contrast to the

cross-sectional design, in which the daily default probabilities/intensities are

averaged, now the default probabilities/intensities are estimated from a fixed

interval, and one-, five-, and ten-day-ahead default probabilities/intensities are

predicted separately for each firm.

A rolling estimation and prediction is applied to both the Merton and intensity

settings. Frühwirth and Sögner (2006) analyzed the impact of the length of the
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estimation period on the prediction errors. Within a 5-25 day period, the 14-

day mark gave one of the best results. Parallel to these findings, the rolling

estimation period is set at 14 days. In order to estimate the default probabilities

and predict the CDS premium one day ahead, the approach below has been

adapted. First, default probabilities are estimated by minimizing the sum of

squared errors between the observed and theoretical CDS premiums:

Φ(−d̂2)t+14 = arg min
Φ(−d2)

t+13∑

k=t

(sobs
k − stheo

k (Φ(−d2)))
2 (4.14)

where sobs
k is the observed CDS premium on the kth day within the 14-day

period, and stheo
k is the theoretically fair price computed from Equation (4.3).

For each firm’s 14-day period, a default probability estimate is reached, and

this figure is plugged into Equation (4.3) to obtain a theoretically fair CDS

premium for the 15th day. By comparing the observed and theoretical CDS

premiums for one day ahead in a rolling procedure, out-of-sample prediction

error statistics are computed.

In Table 4.8, mean errors (ME), mean absolute errors (MAE) and mean ab-

solute percentage errors (MAPE) for the prediction process are given.7 As can

be observed from Table 4.8, MAEs and MAPEs are significantly lower in the

time series prediction in comparison to cross-sectioning. The Merton model

predicted the four datasets with a MAPE of around 6 per cent. Furthermore,

all the error statistics decline in increasing credit quality.

With the constant intensity model, a similar analysis is applied to the same

dataset. The sum of squared errors was minimized in 14-day periods to reach an

7Only consecutive 14-day periods of observation were used to ensure the continuity of
the time series. The estimation sample is simply 14 more for each firm in the risk class and
have not been explicitly tabulated.
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estimate of the default intensity, as can be seen in Equation (4.15), where stheo
k

corresponds to the theoretically fair price of the CDS premium from Equation

(4.6).

λ̂t+14 = arg min
λ

t+13∑

k=t

(sobs
k − stheo

k (λ))2 (4.15)

Again, Table 4.8 shows that a fit superior to cross-sectional estimation has

been reached. A similar pattern of decreasing errors with increasing credit

quality is also indicated by the figures. Moreover, the time series prediction

results of the Merton and intensity settings appear even closer than in the

cross-sectional setup. Nevertheless, a test for significance has revealed that the

intensity model outperformed its counterpart in three out of four risk classes in

absolute error terms. Panel A of Table 4.10 tabulates these results. Although

the mean difference of absolute errors is close, low standard deviation and large

sample size caused high significance.

A second step would be to look at further horizon out-of-sample results. In a

similar setup, 14-day time series are utilized to predict five-day- and ten-day-

ahead CDS premiums. These results can be found in Table 4.9. As expected,

the prediction quality deteriorates stepwise, to a MAPE of around 7-9 per cent

for five-day-ahead and to around 9-11 per cent for ten-day-ahead predictions.

When viewed side by side, the differences between the models become less

pronounced. The significance tests in Table 4.10 Panels B and C reveal that for

five-day-ahead prediction, the intensity model outperforms the Merton model

in only two cases now (Aa-Europe, A-Europe), and in one (A-North America),

the Merton model even provided smaller absolute errors. Turning to the ten-

day-ahead prediction, there is a balance between the Merton and intensity

models, with each proving superior for one class apiece (Aa-North America

and AA-Europe, respectively), and the two remaining classes are indifferent
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Table 4.8: One-Day-Ahead Out-of-sample Prediction Errors of the Merton
and the Constant Intensity Models in Time Series Design

Mean Mean Abs Mean Abs Total
Error Error Perc Error Sample Size
(bps) (bps) (%) Prediction

Aa Europe

Merton 0.30 1.06 5.71% 10373
Intensity 0.28 1.00 5.25% 10373

Aa N.America

Merton 0.33 1.56 5.30% 4850
Intensity 0.33 1.54 5.17% 4850

A Europe

Merton 0.49 2.78 6.15% 19200
Intensity 0.46 2.75 6.04% 19200

A N.America

Merton 0.93 2.97 6.61% 10672
Intensity 0.93 2.98 6.59% 10672
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stheo is the theoretical CDS premium predicted by the Merton and Intensity models on day f for firm h,

where f = 1..F is the number of available days for prediction (preceded by 14 consecutive days of CDS

premiums for estimation), with h = 1..H being the number of firms in the risk class. sobs is the observed

CDS premium on day f for firm h.

for the models. Again, these results have mostly arisen from a very small mean

difference, complemented by a very low standard error and large sample size.

Overall, the comparison shows that it is hard to distinguish between the Merton

and intensity model in a time series setup as well. Nevertheless, the errors are

much lower than in the cross-sectional analysis. This better fit in the time series

analysis over cross-sectioning signifies that credit risk may not be uniformly

priced in a given risk class. This result parallels the findings of Frühwirth and

Sögner (2006), who have applied the constant intensity model to out-of-sample

bond price prediction and concluded that any kind of cross-sectioning would
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Table 4.9: Five- and Ten-Day-Ahead Out-of-sample Prediction Errors of the
Merton and the Constant Intensity Models in Time Series Design

Panel A. Five-Day-Ahead Out-of-Sample Prediction Errors

Mean Mean Abs Mean Abs Total
Error Error Perc Error Sample Size
(bps) (bps) (%) Prediction

Aa Europe

Merton 0.47 1.39 7.51% 10270
Intensity 0.44 1.34 7.11% 10270

Aa N.America

Merton 0.50 2.09 7.13% 4798
Intensity 0.50 2.09 7.08% 4798

A Europe

Merton 0.76 3.73 8.32% 19004
Intensity 0.72 3.71 8.23% 19004

A N.America

Merton 1.41 4.00 9.02% 10567
Intensity 1.42 4.02 9.04% 10567

Panel B. Ten-Day-Ahead Out-of-Sample Prediction Errors

Mean Mean Abs Mean Abs Total
Error Error Perc Error Sample Size
(bps) (bps) (%) Prediction

Aa Europe

Merton 0.67 1.71 9.30% 10150
Intensity 0.64 1.67 8.96% 10150

Aa N.America

Merton 0.69 2.62 9.02% 4733
Intensity 0.70 2.61 9.00% 4733

A Europe

Merton 1.10 4.69 10.64% 18768
Intensity 1.05 4.67 10.54% 18768

A N.America

Merton 2.00 4.99 11.47% 10437
Intensity 2.01 5.01 11.51% 10437
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stheo is the theoretical CDS premium predicted by the Merton and Intensity models on day f for firm h,

where f = 1..F is the number of available days for prediction (preceded by 18(or 23) consecutive days, with

the first 14 consisting of the CDS premiums for estimation) and h = 1..H representing the number of firms

in the risk class. sobs is the observed CDS premium on day f for firm h.
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Table 4.10: Significance Tests for the Difference of One-Day-Ahead, Five-Day-
Ahead, and Ten-Day-Ahead Absolute Prediction Errors with the Merton and
the Constant Intensity Models in Time Series Design

Panel A. Significance Tests for the Difference of One-Day-Ahead
Absolute Prediction Errors

Mean Difference t-statistic p-value

Aa Europe 0.06 11.67 <0.0001 ***
Aa N.America 0.03 3.23 0.0012 ***
A Europe 0.03 5.09 <0.0001 ***
A N.America -0.01 -0.94 0.3488

Panel B. Significance Tests for the Difference of Five-Day-Ahead
Absolute Prediction Errors

Mean Difference t-statistic p-value

Aa Europe 0.05 8.45 <0.0001 ***
Aa N.America 0.01 1.28 0.2010
A Europe 0.02 3.32 0.0009 ***
A N.America -0.02 -2.49 0.0128 ***

Panel C. Significance Tests for the Difference of Ten-Day-Ahead
Absolute Prediction Errors

Mean Difference t-statistic p-value

Aa Europe 0.04 6.62 <0.0001 ***
Aa N.America 0.01 0.97 0.3297
A Europe -0.01 -0.96 0.3348
A N.America -0.02 -2.78 0.0054 ***

Mean Difference (bps): Difference of Absolute Errors for prediction (Merton - Intensity) computed per day

per firm. Absolute Error on day f , for firm h is | stheo
f

− sobs
f,h

|

*** Significance at 95 per cent level

provide poorer estimates than a bond-by-bond analysis.

4.3.2 SVM Regression Method

In the last step, the machine learning approach was compared to the financial

models in a time series setup. To this end, the concentration was given to the

linear kernel due to its overall best performance in the cross-sectional setting.
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In order to use an analogous setup with the same number of observations as

in the financial models, the time series of prices of each firm was divided into

estimation and prediction samples. A ratio of 3:1 for estimation and prediction

sample sizes was applied to each firm, which indicates that the first three quar-

ters of the time series was used to train the SVM function. With a rolling time

horizon in this estimation sample, the consecutive 14-day observations were

used as the training input dataset, whereas the observation on the following

day was used as the training output. After the function was trained, the un-

used last quarter of the time series was utilized for prediction. This time the

remaining consecutive 14-day observations were used as test input to predict

the observation on the following day as the test output. By virtue of such a

setup, the comparability of the out-of-sample design to the design used for the

financial models is ensured.

Interestingly, the results presented in Panel A of Table 4.11 are very promising.

For one-day-ahead prediction, the SVM method exhibited a surprisingly good

fit in terms of mean absolute percentage errors, which are around 2-3 per

cent. Similar to financial models, as the prediction horizon extends, this figure

worsens. Panels B and C present the five-day- and ten-day-ahead prediction

errors; these deteriorate to 4-6 per cent and 6-8 per cent, respectively. Again,

these figures indicate that the time series design achieved results superior to

those of the cross-sectional design for SVM as well.

Furthermore, in comparison to the financial model results with the same set-

ting, this time the SVM method also yielded very strong results. Each of the

one-day-, five-day- and ten- day-ahead prediction results signifies a better fit

than either of the financial models presented in Table 4.8. In all four risk classes,

SVM errors were significantly lower than both the Merton and intensity one-
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Table 4.11: One-Day-, Five-Day-, and Ten-Day-Ahead Out-of-sample Predic-
tion Errors with Linear Kernel SVM in Time Series Design

Panel A. One-Day-Ahead SVM Out-of-Sample Prediction Errors
Mean Mean Abs Mean Abs Total
Error Error Perc Error Sample Size
(bps) (bps) (%)

Aa Europe 0.09 0.32 2.48% 10373
Aa N.America 0.34 0.87 3.18% 4850
A Europe 0.005 0.90 2.32% 19200
A N.America -0.02 1.02 2.88% 10672

Panel B. Five-Day-Ahead SVM Out-of-Sample Prediction Errors
Mean Mean Abs Mean Abs Total
Error Error Perc Error Sample Size
(bps) (bps) (%)

Aa Europe 0.25 0.60 4.65% 10270
Aa N.America 0.62 1.38 5.14% 4798
A Europe 0.85 2.52 6.23% 19004
A N.America 0.35 1.96 5.84% 10567

Panel C. Ten-Day-Ahead SVM Out-of-Sample Prediction Errors
Mean Mean Abs Mean Abs Total
Error Error Perc Error Sample Size
(bps) (bps) (%)

Aa Europe 0.47 0.92 7.12% 10150
Aa N.America 0.99 1.86 7.15% 4733
A Europe 0.83 3.17 8.61% 18768
A N.America 0.97 2.73 8.68% 10437
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stheo is the theoretical CDS premium predicted by the SVM algorithm with a linear kernel on day f for firm

h, where f = 1..F is the number of available days for test output (approximately 1/4th of the full sample)

and h = 1..H representing the number of firms in the risk class. sobs is the observed CDS premium on day

f for firm h.
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day-ahead absolute prediction errors (Table 4.12).8 This result is interesting

and suggests that further work on the subject is warranted. However, it should

be kept in mind that the best performing case among different kernels has been

chosen, whereas structural and reduced-form models were presented in their

simplest forms. It therefore remains to be seen if these results would vary if

more sophisticated financial models were applied.

Table 4.12: Significance Tests for the Difference of One-Day-Ahead Absolute
Prediction Errors between the Merton/Intensity models and Linear Kernel
SVM in Time Series Design

Mean Difference t-statistic p-value

Aa Europe

Merton - SVM 0.31 4.36 <0.0001 ***
Intensity - SVM 0.21 2.85 0.0044 ***

Aa N.America

Merton - SVM 0.30 2.20 0.0277 ***
Intensity - SVM 0.26 1.88 0.0607 *

A Europe

Merton - SVM 0.91 3.56 0.0004 ***
Intensity - SVM 0.84 3.30 0.0010 ***

A N.America

Merton - SVM 0.91 7.58 <0.0001 ***
Intensity - SVM 0.88 7.31 <0.0001 ***

Mean Difference (bps): Difference of Absolute Errors for prediction (Merton - SVM) and (Intensity - SVM)

computed per day per firm. Absolute Error on day f , for firm h is | stheo
f

− sobs
f,h

|

*** Significance at 95 per cent level

* Significance at 90 per cent level

4.4 Summary

This chapter compared basic versions of structural (Merton) and reduced-form

(constant intensity) models as a first attempt. In this regard, four aspects of

8The five-day- and ten-day-ahead prediction errors are also significantly better than the
financial models, which have not been tabulated.
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the study stand out: First, while cross-sectional results indicated a better fit of

the Merton model in only one out of four cases, the one-day-ahead time series

analysis revealed the significance of lower absolute prediction errors with the

constant intensity model in three classes. Five-day- and ten-day-ahead pre-

dictions produced mixed results, signifying that one framework’s performance

does not significantly outperform the other. The most distinctive feature of the

models is the default timing, which revealed in the cross-sectional setup that

the Merton model estimated higher default probabilities on average, as the

constant intensity model allows early default. The second major feature is the

inclusion of interest rates in the Merton model, whereas the intensity model is

insensitive to this parameter. Despite these factors, the error results are rather

close. This could be attributable to treating the default probability in the Mer-

ton setting as the firm value variable on its own, rather than breaking it down

into Black/Scholes parameters, such as asset value and volatility. Therefore, it

has been decided to extend the results of this chapter with an analysis where

structural model parameters are estimated as well. This extension will inves-

tigate whether the differences in prediction power between frameworks arises

from this choice.

Secondly, estimation and out-of-sample prediction using solely CDS data was

unique to this study and requires special attention. The usage of CDS data

allowed to concentrate the prediction ability of credit models directly on the

default risk premiums that constitute the prices. Without the presence of liq-

uidity and other non-default premiums in CDS prices, the models could be ap-

plied to investigate the credit risk factors. Nevertheless, further efforts should

include bond and stock price data to extend the estimation process for both

modeling classes. The analysis in the next chapter will take this point into con-
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sideration and make use of bond, stock price, and balance sheet information

in the prediction of CDS prices.

Third, the results from this study confirm recent results in the literature

indicating that cross-sectioning is inferior to separate estimation. The high

prediction errors from cross-sectional analysis in comparison to lower errors

in the time series analysis revealed that credit risk is priced separately for

each individual firm, rather than the joint classification provided by rating

classes/regions. Taking this into consideration, the extension in the next chap-

ter will analyze credit risk on firm basis.

Fourth, although most of the cross-sectional predictions with SVM algorithms

have ended in poor results, it is important to underline that one-day-, five-

day-, and ten-day-ahead time series prediction results with the linear kernel

SVM have achieved significantly lower error figures than financial methods. A

thorough analysis for applying alternative kernel functions should be pursued

that investigates cross-sectional and time series mappings of the data. Never-

theless, for the sake of brevity, the analysis with SVM is ceased, and a focus

on financial models are given in the next chapter.

Overall, the results of this chapter will be extended in the next section by

applying different versions of structural and reduced-form models. Introducing

stochastic interest rates for structural models while modeling intensity to be

stochastically dependent on state variables for reduced-form models should

be the next step in the comparison of both frameworks. The next chapter will

therefore provide a comparison of more sophisticated models, using bond, stock

price and balance sheet data as the source of the empirical investigation.



Chapter 5

CDS Pricing with Advanced

Framework Structures

In this chapter, the analysis will be taken a step further, and more advanced

forms of structural and reduced-form models will be compared in their ability

to correctly price CDSs, by making use of additional bond, stock price, and

balance sheet data. Which components should the model setups accommodate?

Structural models have components that are rarely part of a reduced-form

framework. Only alternative is to make use of structural variables that are also

explanatory in an intensity setup. This leads to recalling possible structural

variables: The original Merton model included leverage and asset volatility as

key parameters. These have been extended to many others in more advanced

settings. Focusing on the initial key variables, the question that needs to be

answered is whether they are explanatory for CDS premiums as well. The

answer could be found in recent research: In Ericsson, Jacobs, and Oviedo

(2007), leverage alone explains 45 per cent of CDS premium levels, and together

with equity volatility and interest rates, this raises to 60 per cent. It is well

113
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known since the study of Collin-Dufresne, Goldstein, and Martin (2001) that

changes in leverage are significant in explaining change in bond spreads. These

findings suggest that leverage can be chosen as a key variable both in structural

and reduced-form models.

Given this choice, the model of Collin-Dufresne and Goldstein (2001) (hence-

forth CDG) with a stationary leverage ratio on the structural side and a best-

comparable intensity model with the leverage process as the state variable on

the reduced-form side seem to be a perfect match. This selection had a very

distinctive reason. The main aim is to construct a comparable model setup

with both frameworks, so that the fundamental model prediction capabilities

could be compared. How could this ideally be done? The CDG model incor-

porates stochastic interest rates and a leverage process as the second source of

uncertainty. Thus, a reduced-form model should be set up according to these

characteristics. Following this reason, the adjusted discount rate has been se-

lected to be an affine sum of the default intensity and the short rate as in Lando

(1998). First, the short rate is taken to be stochastic to keep the comparable

structure with the CDG setup. Second, the default intensity is assumed to be

the affine sum of a constant and a state variable, which this state variable

is nothing but the leverage process, exactly the same as in the CDG model.

This setup is therefore believed to accommodate a best comparable structure

between structural and reduced-form frameworks, enabling to understand the

impact of model structures in the prediction of credit default swap prices.
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5.1 Structural Approach -

Collin-Dufresne / Goldstein (2001) Model

5.1.1 The Model

Besides treating the interest rate process as a stochastic Ornstein-Uhlenbeck

process, the Collin-Dufresne and Goldstein (2001) model accommodates a sta-

tionary leverage ratio. With the typical asset value process following a geomet-

ric Brownian motion, the model setup includes a stochastic leverage process.

The steps that result in the structural defaultable claim pricing model of Collin-

Dufresne/Goldstein (CDG) would be as follows:

The dynamics of the short rate is a Vasicek (1977) process:

drt = κr(θr − rt)dt + σrdWQ
1 (5.1)

Here r is the risk-free interest rate, κr is the mean reversion rate, θr is the

long-run mean, σr is the volatility of the short rate, and WQ
1 is a Brownian

motion under the risk-neutral measure.1 The asset value follows a GBM with

dVt/Vt = (rt − δ)dt + σvdWQ
2 (5.2)

where δ is the payout ratio, σv is the asset volatility and WQ
2 is the Brownian

motion under the risk-neutral measure. Moreover, in the CDG setup, the loga-

rithm of the default threshold K, which can be taken as the total liabilities of

the firm, is considered to follow a stationary process. In the log-representation,

1For an in-depth description of risk-neutral and physical measures, see Björk (2004).
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with k = lnK and y = lnV , this stationary process is modeled as:

dkt = κl(yt − ν − kt)dt (5.3)

Here, κl is the mean-reversion rate of the leverage to its long-run mean and

ν is a buffer parameter for default distance of log-asset value to log-default

threshold. When kt is less than (yt − ν) the firm acts to increase kt, and vice

versa. Therefore, the firm issues new debt when leverage ratio falls below a

target level, and would not issue new debt to replace maturing debt when the

ratio is above the target. CDG define the log-threshold k as the logarithm of

book value of debt. In their paper they state that “even though the default

threshold need not be equal to the outstanding book value of debt, it seems

reasonable to assume both are related.”

It is noteworthy to mention that, CDG also make use of an extended version

of the above stationary leverage ratio formula in their study. The drift of the

log-default threshold can be taken as a decreasing function of the spot interest

rate, since debt issuances drop during high interest periods. This formulation

is consistent with the findings of Malitz (2000) for the high interest period of

early 1980s. The extended version of the formula in the CDG study is,

dkt = κl(yt − ν − φ(rt − θr) − kt)dt (5.4)

where φ is the sensitivity parameter to interest rates, and θr is the long-run

mean for short-term interest rates as defined before. In order to reduce the

complexity of the model, this study will implement the basic version where

the sensitivity of log-default threshold to interest rates is neglected.



CDS Pricing with Advanced Framework Structures 117

By defining log-leverage as,

lt = kt − yt = ln
K

V
(5.5)

the firm defaults at the first passage time of the firm value reaching the default

boundary, or equivalently, the log-leverage ratio l reaching zero. This idea is

in line with Black and Cox (1976) and Longstaff and Schwartz (1995) where

default happens the first time when the firm value reaches an exogenously spec-

ified boundary. The CDG Model is therefore an advanced form of structural

models, extending the basic idea of Merton (1974) with (i) stochastic interest

rates, (ii) first-passage time, and (iii) stationary leverage ratios.

From Ito’s Lemma, lt follows the one-factor Markov dynamics:

dlt = κl(θl(rt) − lt)dt − σvdWQ
2 (5.6)

where we have

θl(rt) =
δ + σ2

v

2
− r

κl

− ν = − r

κl

− ν̄ (5.7)

5.1.2 Pricing Corporate Debt

CDG assume a recovery-of-treasury payment, which is that a risky coupon

bond recovers a ϕ proportion of the otherwise identical riskless coupon bond.

The difference from the recovery-of-face value assumption is that instead of

the ϕ amount being received at the time of default, it is received at maturity.

Let vtheo(r0, l0, T ) be the theoretical price of a risky discount bond that matures

at T . Then with the recovery-of-treasury assumption, a transformation will be

necessary to switch from the expectation under risk-neutral measure EQ to
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the expectation under T -forward measure EFT .2

vtheo(r0, l0, T ) = EQ
(
e−

R T

0
r(s)ds · 1{τ>T} + e−

R τ

0
r(s)ds · ϕ · b(rτ , T ) · 1{τ≤T}

)

= EQ
(
e−

R T

0
r(s)ds ·

(
1{τ>T} + ϕ · 1{τ≤T}

))

= EQ
(
e−

R T

0
r(s)ds ·

(
1 − (1 − ϕ) · 1{τ≤T}

))

= b(r0, T ) · EFT
(
1 − (1 − ϕ) · 1{τ≤T}

)

= b(r0, T ) ·
(
1 − (1 − ϕ) · QFT (r0, l0, T )

)
(5.8)

where b(r0, T ) is the price of a riskless bond. It remains to determine QFT (r0, l0, T )

which is the time-0 probability of default occurring before maturity T , un-

der the T -forward measure (See Geman, El-Karoui, and Rochet (1995) and

Jamshidian (1989)). Similarly, considering a coupon-paying risky bond with

N coupons on payment dates tj, we have,

vtheo(r0, l0, T ) =
N∑

j=1

C · b(r0, tj) ·
(
1 − (1 − ϕcoup) · QFtj (r0, l0, tj)

)

+ b(r0, T ) ·
(
1 − (1 − ϕ) · QFT (r0, l0, T )

)
(5.9)

where C is the coupon fraction and ϕcoup is the recovery rate of coupons in

case of default. Generally, certain assumptions must hold in order to price each

coupon as a zero-coupon bond as in Equation (5.9). This is called the “portfolio

of zeroes” approach. However, since the pricing is under recovery-of-treasury

approach, there is no need to concern about the applicability. Additionally, in

practice, CDG note from Helwege and Turner (1999) who claim that future

coupon payments are of low priority, and are rarely recovered in default. There-

fore ϕcoup is set to 0, letting only the principal payment receive compensation

at default. The recovery rate on principal is fixed at 0.5, following the results

2See Björk (2004) for measure transformations.
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produced by Altman and Kishore (1996) and recent practice.

For the critical variable of QFT (r0, l0, T ), CDG follow Longstaff and Schwartz

(1995) and implement a version of Fortet’s (1943) implicit formula for the

first passage time density. Utilizing this framework, Eom, Helwege, and Huang

(2004) make use of the derivation of CDG and arrive at the below formulation

(pp. 537-539):

QFT (r0, l0, T ) =
n∑

i=1

q(ti−1/2; t0) (5.10)

In deriving this formula, t0 is set equal to 0 and the time is discretized into n

intervals as ti = iT/n,

for i = 1, 2, ..., n,

q(ti−1/2; t0) =
N(a(ti; t0)) −

∑i−1
j=1 q(tj−1/2; t0)N(b(ti; tj−1/2))

N(b(ti; ti−1/2))
(5.11)

The sum on the right hand-side of the equation becomes zero when i = 1. N

is the cdf of Normal distribution. a and b are defined as

a(ti; t0) = −M(ti, T |X0, r0)√
S(ti|Xtj)

(5.12)

b(ti; tj) = −M(ti, T |Xtj)√
S(ti|Xtj)

(5.13)

X = V/K is the inverse of the leverage ratio, where M and S are

M(t, T |X0, r0) = EFT

0 [lnXt] (5.14)

S(t|X0, r0) = varFT

0 [lnXt] (5.15)
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M(t, T |Xu) = M(t, T |X0, r0) − M(u, T |X0, r0)
covFT

0 [lnXt, lnXu]

S(u|X0, r0)
, u ǫ (t0, t)

(5.16)

S(t|Xu) = S(t|X0, r0) −
(covFT

0 [lnXt, lnXu])
2

S(u|X0, r0)
, u ǫ (t0, t) (5.17)

What remains is to have closed form solutions for EFT

0 [lnXt] and covFT

0 [lnXt, lnXu]

which are computed in Eom/Helwege/Huang (pp. 538-539).

EFT

0 [lnXt] = e−κlt
[
lnX0 + ν̄(eκlt − 1)

+
( 1

κl − κr

(e(κl−κr)t − 1)(r0 − θr +
σ2

r

κ2
r

− σ2
r

2κ2
r

e−κrT )

+
1

κl + κr

σ2
r

2κ2
r

e−κrT (e(κl+κr)t − 1) +
1

κl

(θr −
σ2

r

κ2
r

)(eκlt − 1)
)

−ρσvσr

κr

(eκlt − 1

κl

− eκrT e(κl+κr)t − 1

κl + κr

)]
(5.18)
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covFT

0 [lnXt, lnXu] = e−κl(t+u)
[ σ2

v

2κl

(e2κlu − 1)

+
ρσvσr

κl + κr

(e2κlu − 1

2κl

− e(κl−κr)u − 1

κl − κr

)

+
ρσvσr

κl + κr

(1 − e(κl−κr)t

κl − κr

+
e2κlu − 1

2κl

+e(κl+κr)u e(κl−κr)t − e(κl−κr)u

κl − κr

)

+
σ2

r

2κr

(
− (e(κl−κr)t − 1)(e(κl−κr)u − 1)

(κl − κr)2

− κr

κ2
l − κ2

r

e2κlu − 1

κl

+ (e(κl+κr)u − 1)
e(κl−κr)t − e(κl−κr)u

κ2
l − κ2

r

+
1

κ2
l − κ2

r

(1 − 2e(κl−κr)u + e2κlu)
)]

where

ν̄ = (ν − (δ + σ2
v/2)/κl) (5.19)

From these equations one can obtain QFT (r0, l0, T ) required for pricing the

bond.
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5.2 Reduced-Form Approach -

The Stochastic Leverage Model

5.2.1 The Model

In this attempt to compare the CDS price prediction ability of structural and

reduced-form models of default, it has been decided to make the modeling

structures of the approaches as close as possible. This would then enable us to

understand whether the model structure has an impact on prediction power. In

order to maintain this, it has been chosen to use the stochastic leverage compo-

nent in the CDG model, directly in the intensity setup. The below formulation

will explain the reduced-form setting in detail.

In an intensity model, the critical choice is the selection of the state variables

driving the credit risk. There have been many empirical studies with reduced-

form models that either estimated a stochastic process for the unobserved

intensity (Duffee (1999), Driessen (2005)), or made use of a credit risk factor

as part of the adjusted discount rate (Bakshi, Madan, and Zhang (2006)).

This study accommodates the second approach, where the leverage process

has been defined as the credit risk factor that drives the intensity. By letting

the stochastic leverage process to be the main driver of credit risk in both

models, it could be possible to have a basis of comparison.

5.2.2 Pricing Corporate Debt

In order to be comparable with the CDG model recovery assumption, it has

been chosen to work with Lando’s (1998) doubly stochastic model with recovery-
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of-treasury value. The theoretical default risky discount bond price vtheo(r0, l0, T )

that matures at T is:

vtheo(r0, l0, T ) = EQ
(
e−

R T

0
r(s)ds · 1{τ>T} + e−

R τ

0
r(s)ds · ϕ · b(rτ , T ) · 1{τ≤T}

)

= EQ
(
e
−

TR
0

r(s)ds(
1{τ>T} + ϕ · 1{τ≤T}

))

= EQ
(
e
−

TR
0

r(s)ds(
ϕ + (1 − ϕ)1{τ>T}

))

= ϕ · b(r0, T ) + (1 − ϕ) · EQ
(
e
−

TR
0

r(s)ds
1{τ>T}

)

= ϕ · b(r0, T ) + (1 − ϕ) · EQ
(
e
−

TR
0

R(s)ds)
(5.20)

Equation (5.20) is the reduced-form version of Equation (5.8). Notice that the

two equation series only differ in the last two lines. In deriving the formula,

there was a switch to the forward measure in the structural model. On the

other hand, the default probability is incorporated into the adjusted discount

rate in the Lando setting. Here, the important decision is how to formulate

the adjusted discount rate at the last part of Equation (5.20). In choosing the

adjusted discount rate setup, the classical Lando (1998) formulation could be

kept in mind. In his model, the adjusted discount rate is the sum of short rate

r and default intensity λ. Recalling the arguments of keeping the structural

and reduced-form models comparable, the following formulation is proposed.

R(t) = a + r(t) + c · l(t) (5.21)

With this setting, the Lando-type form is preserved, by letting a+ c · l(t) to be

equal to default intensity λ. The adjusted discount rate is the sum of the short

rate, and a credit risk component. This component consists of a constant part
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a and a stochastic part, c · l(t). Here, l(t) is nothing but the log-leverage ratio,

which has a process exactly the same as in the structural part (see Equation

(5.6)). The two stochastic differential equations parallel to the structural setup

are:

drt = κr(θr − rt)dt + σrdWQ
1 (5.22)

and

dlt = κl(θl(rt) − lt)dt − σvdWQ
2 (5.23)

where we have

θl(rt) =
δ + σ2

v

2
− r

κl

− ν = − r

κl

− ν̄ (5.24)

Let v be the defaultable bond price as in the last part of Equation (5.20) in

expectation brackets. One can interpret this as the price of a defaultable zero-

coupon bond with zero recovery. Following the property of affine structures

as discussed in Duffie and Singleton (2003), the closed form solution of the

expectation is,

v = EQ
t

(
e
−

TR
t

R(s)ds)
= eA(t,T )−B(t,T )rt−C(t,T )lt (5.25)

for which the following PDE can be derived:

∂v

∂t
+κr(θr−r)

∂v

∂r
+κl(θl(r)−l)

∂v

∂l
+

1

2
σ2

r

∂2v

∂r2
+

1

2
σ2

v

∂2v

∂l2
−ρσvσr

∂2v

∂r∂l
= (a+r+cl)v

(5.26)

where θl(r) is as in Equation (5.24). In doing this calculation, the boundary

conditions of A(T, T ) = 0, B(T, T ) = 0, and C(T, T ) = 0 are necessary. By

taking the partial derivatives of v in Equation (5.25) with respect to t, r, l and

second derivatives with respect to rr, ll, and rl and replacing into the PDE,
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the below closed form solution could be reached where,

C(t, T ) =
c

κl

(1 − e−κl(T−t)) (5.27)

B(t, T ) =
[
e−κr(T−t)

( c

κlκr

+
c

κl(κl − κr)
− 1

κr

)]

+
[ 1

κr

− c

κlκr

− c

κl

e−κl(T−t)

κl − κr

]
(5.28)

A(t, T ) = −a(T − t) − Ξ − Υ + Γ + Λ − Π (5.29)

with

θ̃l =
δ + σ2

v

2

κl

− ν (5.30)

W =
c

κrκl

+
c

κl(κl − κr)
− 1

κr

(5.31)

Z =
1

κr

− c

κlκr

(5.32)

Ξ = θ̃lc
[
(T − t) − 1 − e−κl(T−t)

κl

]
(5.33)

Υ = κrθr

[
W

1 − e−κr(T−t)

κr

+ Z(T − t) − c

κ2
l (κl − κr)

(
1 − e−κl(T−t)

)]
(5.34)

Γ =
σ2

vc
2

2κ2
l

[
(T − t) − 2(1 − e−κl(T−t))

κl

+
1 − e−2κl(T−t)

2κl

]
(5.35)
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Λ =
σ2

r

2

[W 2

2κr

(1 − e−2κr(T−t)) +
2WZ

κr

(1 − e−κr(T−t)) + Z2(T − t)

−2Wc(1 − e−(κl+κr)(T−t))

κl(κl − κr)(κl + κr)
− 2Zc(1 − e−κl(T−t))

κ2
l (κl − κr)

+
( c

κl(κl − κr)

)2 1 − e−2κl(T−t)

2κl

]
(5.36)

Π = ρσvσr

[Wc(1 − e−κr(T−t))

κlκr

+
Zc(T − t)

κl

− c2(1 − e−κl(T−t))

κ3
l (κl − κr)

−Wc(1 − e−(κl+κr)(T−t))

κl(κl + κr)
− Zc(1 − e−κl(T−t))

κ2
l

+
c2(1 − e−2κl(T−t))

2κ3
l (κl − κr)

]
(5.37)

5.3 Empirical Methodology and Results

The structural and reduced-form models are calibrated to corporate bond

prices, leverage ratios and US Treasury rates. For both of the models, the

interest rate process parameters (κr, θr, σr), the initial values of the lever-

age ratio and the short rate (l0, r0), the leverage process parameters (κl, θl),

and the correlation between the interest rate process and the asset value

process (ρ) enter similarly. Each of the models will use their theoretical bond

prices vtheo(r0, l0, T ) to estimate their unique asset volatility (σv) figure. In

the reduced-form setup, two additional constant parameters a and c are also

necessary. After calibration of the models to market prices, CDS prices can

be predicted out-of-sample, without making use of any information used prior.

This setup will allow to see how well the CDG and the reduced-form model

perform in correctly pricing CDSs. Utilizing bond, stock and balance sheet

information is a large step after the analysis provided in Chapter 4 with only
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using CDS data for prediction. However, it is necessary to take an advanced

step towards the assessment of more state-of-the-art types of models. The fol-

lowing section will introduce the datasets used in analysis.

5.3.1 Data

CDS Data

An extended version of the dataset described in Section 2.2 has been used

in this analysis. Time series of CDS prices were extended until the end of

December 2005. This was required in order to have enough observations. After

this extension, mid-month observations were selected for 5-year, senior CDSs,

for the period of January 2003 - December 2005 due to the matching with

bond and balance sheet data. The mid-month value is typically on the 15th of

each month. In case that the 15th is a non-working day, the next working day

is selected. The indicative bid and ask quotes are averaged to reach a daily

CDS premium, in the end attaining 36 mid-month observations for the three

year period. The credit quality of the issuers varies between Aa and Ba rated

by Moody’s. The lowest CDS midpoint of 9 bps is within the series of the

Aa-rated WAL-MART, whereas the highest midpoint is as much as 412.5 bps

for the Baa/Ba-rated HILTON.

Interest Rate Data

The 3-, 6-monthly, and 1, 2, 3, 5, 7, 10-yearly yields are retrieved for the

interest rate calibration process. Because the sample consists of US companies,

Constant Maturity Treasuries from the Federal Reserve Board have been used.
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These are historical series of on-the-run US Treasury yields that also have been

utilized in recent research. The series are actually the average yields on US

Treasury securities adjusted to a constant maturity. Yields are interpolated

by the US Treasury from the daily yield curve. This curve, which relates the

yield on a security to its time to maturity, is based on the closing market bid

yields on actively traded Treasury securities in the over-the-counter market.

This method therefore provides a yield for a 10-year maturity, for instance,

even if no outstanding security has exactly 10 years remaining to maturity. A

detailed explanation of how these series are constructed can be found on the

web page of Federal Reserve Board. The time span used to calibrate the model

is January 1998 to December 2005.

Corporate Bond Data

REUTERS was the main source for the bond dataset, which has been con-

structed after considering the removal of the bonds with the following proper-

ties:

• callable, putable, or convertible bonds

• perpetual bonds

• index-linked bonds

• floating rate notes

• foreign currency bonds (bonds should be in the same denomination as

the CDS)

• any rank else than senior unsecured bonds
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• financial companies’ bonds

Bonds with non-standard properties are excluded due to the necessity of in-

cluding intricate techniques in bond price calculations. Senior unsecured bonds

are utilized since CDSs have only these as deliverable obligations. Financial

companies are excluded due to having significantly different capital structure.

The time span of the bonds match the CDS dataset, being from 2003 to 2005.

Balance Sheet and Stock Market Data

Leverage values are constructed by dividing the total liabilities to the sum

of market value of equity and total liabilities. This approach has also been

followed by recent studies (see Eom, Helwege, and Huang (2004)). Quarterly

total liabilities figures were retrieved from REUTERS balance sheet pages,

while market value of equity (MVE) is the product of number of outstand-

ing shares times the closing stock price on a given day. MVE figures can be

retrieved daily, whereas total liabilities figures are available only quarterly. In

order to avoid loss of data, a method similar to Eom/Helwege/Huang has been

used. For the mid-month dates where bond and CDS data are available, the

leverage ratios are computed, by making use of the latest available quarterly li-

abilities figure from balance sheets. For a consecutive three month period after

the quarterly announcement, the leverage ratio is constructed from a constant

liabilities figure and an MVE figure unique for the day.

Since European companies are not obliged to report their balance sheets on a

quarterly basis, their leverage ratios could not be constructed without rough

interpolation and therefore only US companies were focused on. The remaining

dataset had 16 firms with 48 bonds. In Table 5.1, the descriptive statistics for
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the leverage ratio, total liabilities, and market capitalization can be found,

whereas in Table 5.2 below, the short list of the firms and their bonds used

in the study with details such as the issue date, maturity date and coupon

amount can be observed. In the last column the ratings given by Moody’s

during the observation period are presented.

Table 5.1: Descriptive Statistics for the Leverage Ratios

Firm Avg. Max. Min. Avg. Total Avg. Market
Lev. Lev. Lev. Liab. Capital.

Ratio(%) Ratio(%) Ratio(%) (Mil.USD) (Mil.USD)
CITIZENS 61.01 71.84 53.12 6,005 3,840
DEERE & CO 61.00 69.78 54.80 22,847 14,758
DELL 13.86 20.28 11.41 13,861 86,054
FEDERATED 66.88 78.55 48.22 9,434 4,728
HP 36.87 42.87 31.25 36,703 63,534
HILTON 47.08 60.37 37.85 5,960 6,880
IBM 4.00 4.62 3.34 5,960 144,175
INT.PAPER 57.47 61.81 52.67 24,479 18,173
MGM MIRAGE 69.01 79.79 42.60 9,577 4,870
MOTOROLA 35.05 51.87 22.77 18,515 36,940
NORDSTROM 50.65 71.36 21.87 2,865 3,477
NORFOLK 58.40 65.44 47.88 14,873 10,941
NORTHROP 58.43 84.87 44.70 18,135 13,650
TARGET 33.47 42.77 26.14 19,491 39,581
WAL-MART 22.53 29.32 17.50 64,975 224,869
WALT DISNEY 36.40 44.89 31.58 27,000 47,812

5.3.2 Estimation of the Parameters

Interest Rate Process Parameters

There can be alternative estimation techniques for calibrating the Vasicek

process in Equation (5.1). It has been chosen to work with the method of

Kalman filter, since it allows making use of cross-sectional and time series in-
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Table 5.2: Short List of Firms/Bonds Used in Analysis
Firm Bond ID Issue Date Maturity Date Coupon First Coup. Rating
CITIZENS 1 23/05/01 15/05/11 9.250 15/11/01 Baa2-Ba3
CITIZENS 2 11/03/02 15/08/08 7.625 15/08/02 Baa2-Ba3
CITIZENS 3 12/11/04 15/01/13 6.250 15/07/05 Baa2-Ba3
DEERE & CO 1 17/04/02 25/04/14 6.950 25/10/02 A3
DELL 1 27/04/98 15/04/08 6.550 15/10/98 A2-A3
FEDERATED 1 14/07/97 15/07/17 7.450 15/01/98 Baa1
FEDERATED 2 14/06/99 01/04/09 6.300 01/10/99 Baa1
FEDERATED 3 06/06/00 01/06/10 8.500 01/12/00 Baa1
FEDERATED 4 27/03/01 01/04/11 6.625 01/10/01 Baa1
HP 1 16/12/02 17/12/07 4.250 17/06/03 A3
HP 2 26/06/02 01/07/07 5.500 01/01/03 A3
HILTON 1 15/04/97 15/04/07 7.950 15/10/97 Baa3-Ba1
HILTON 2 22/12/97 15/12/09 7.200 15/06/98 Baa3-Ba1
HILTON 3 22/12/97 15/12/17 7.500 15/06/98 Baa3-Ba1
HILTON 4 11/05/01 15/05/08 7.625 15/11/01 Baa3-Ba1
HILTON 5 22/11/02 01/12/12 7.625 01/06/03 Baa3-Ba1
IBM 1 01/10/98 01/10/08 5.400 01/04/99 A1
IBM 2 03/12/98 01/12/08 5.400 01/06/99 A1
IBM 3 15/01/99 15/01/09 5.500 15/07/99 A1
IBM 4 22/01/99 22/01/09 5.390 22/07/99 A1
IBM 5 26/01/99 26/01/09 5.400 26/07/99 A1
IBM 6 01/08/02 15/08/07 4.200 15/02/03 A1
IBM 7 27/12/02 15/12/06 3.000 15/06/03 A1
IBM 8 30/01/03 15/01/09 3.500 15/07/03 A1
IBM 9 06/02/03 15/02/13 4.200 15/08/03 A1
IBM 10 01/02/05 01/02/08 3.800 01/08/05 A1
INT.PAPER 1 27/08/01 01/09/11 6.750 01/03/02 Baa2
MGM MIRAGE 1 15/09/00 15/09/10 8.500 15/03/01 Ba1-Ba2
MGM MIRAGE 2 17/09/03 01/10/09 6.000 01/04/04 Ba1-Ba2
MGM MIRAGE 3 27/02/04 27/02/14 5.875 27/08/04 Ba1-Ba2
MGM MIRAGE 4 23/03/04 27/02/14 5.875 27/08/04 Ba1-Ba2
MGM MIRAGE 5 30/11/04 01/09/12 6.750 01/03/05 Ba1-Ba2
MOTOROLA 1 14/01/02 01/11/11 8.000 01/05/02 Baa2-Baa3
MOTOROLA 2 13/11/00 15/11/10 7.625 15/05/01 Baa2-Baa3
NORDSTROM 1 20/01/99 15/01/09 5.625 15/07/99 Baa1
NORFOLK 1 26/04/99 15/04/09 6.200 15/10/99 Baa1
NORFOLK 2 23/05/00 15/05/10 8.625 15/11/00 Baa1
NORFOLK 3 06/02/01 15/02/11 6.750 15/08/01 Baa1
NORTHROP 1 14/04/00 15/10/09 8.000 15/04/00 Baa2-Baa3
NORTHROP 2 12/07/01 15/02/11 7.125 15/08/01 Baa2-Baa3
NORTHROP 3 16/08/04 16/11/06 4.079 16/11/04 Baa2-Baa3
TARGET 1 26/03/01 01/04/07 5.500 01/10/01 A2
TARGET 2 10/10/01 01/10/08 5.400 01/04/02 A2
TARGET 3 02/05/03 15/05/18 4.875 15/11/03 A2
WAL-MART 1 10/08/99 10/08/09 6.875 10/02/00 Aa2
WALT DISNEY 1 28/06/99 28/06/10 6.800 01/08/99 Baa1
WALT DISNEY 2 20/06/02 20/06/14 6.200 20/12/02 Baa1
WALT DISNEY 3 27/10/93 27/10/08 5.800 01/02/94 Baa1
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formation at the same time, and therefore is an appropriate tool for short rate

process estimation. The literature on Kalman filter estimation of the short

rate processes have mostly focused on Vasicek (1977) and Cox, Ingersoll, and

Ross (1985) processes due to their linear structure (i.e. Duan and Simonato

(1999); Geyer and Pichler (1999); Babbs and Nowman (1999); Chen and Scott

(2003)). A detailed explanation of the Kalman filter technique can be found

in Appendix A.

The method results in time series of the short rate rt, plus the Vasicek process

parameters κr, θr, σr, and the market price of risk parameter η. In Table 5.3,

the estimated values for the risk-neutral parameters can be found.

Table 5.3: Kalman Filter Estimates of the Interest Rate Process

Parameter Value
κr 0.247
θr 0.061
σr 0.012
η -0.205

The risk-neutral (under Q) and physical (under P ) processes of the short rate are:
dr = κr(θr − r)dt + σrdWQ and dr = κr(θ̃r − r)dt + σrdWP where θr = θ̃r − σrη

κr

The mean reversion rate is in accordance with the values found in the literature.

The same is true for the volatility parameter. The risk-neutral long-run mean is

relatively high at 6.1 per cent. This converts to a physical mean of 5.1 per cent.

Considering that the US interest rates varied between 1 and 6 per cent during

the observation period, this value is within feasible range. Further efforts with

the structural and reduced-form models described in the following sections

will use the short rate series and Vasicek parameter estimates generated by

the Kalman filter.
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Leverage Process Parameters and the Correlation Coefficient

For the leverage process parameters (κl, θl), the approach of Eom/Helwege/

Huang is followed (pp. 540-541). The authors use a regression method in order

to estimate κl and θl. First, notice that θl is a function of ν̄, where ν̄ has been

defined in Equation (5.7). Under the physical measure P ,

dVt/Vt = (µv − δ)dt + σvdW P (5.38)

and

dln(Vt/Kt) = [µv + κlν̄ − κl(ln(Vt/Kt)]dt + σvdW P (5.39)

where µv is a constant, and dW P is a standard Brownian motion under the

physical measure P . Let

αl = µv + κlν̄ (5.40)

A regression of the change in the log-leverage ratio against log-leverage ratio

lagged one period will generate parameter estimates α̂l and κ̂l:

ln(Vt/Kt) − ln(Vt−1/Kt−1) = β0 + β1ln(Vt−1/Kt−1) + ǫ (5.41)

As a result, β0 will be equal to the αl in Equation (5.40), and β1 will be equal

to −κl in Equation (5.39). In addition, the µ̂v can be estimated from the mean

return of the asset value over the prior 5 years. Then ν̄ can be estimated as

follows:

ˆ̄ν = (α̂l − µ̂v)/κ̂l (5.42)

In the implementation, monthly market leverage ratios are regressed on one

month lagged ratios for the period of 2001-2005.
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The correlation coefficient ρ arises from the presence of correlated Brownian

motions in the processes. The correlation between asset returns and the in-

terest rate process is estimated from correlation between equity returns and

changes in the interest rates. Over the 2001-2005 sample horizon, the correla-

tion between changes in the 3-monthly interest rates series and daily closing

stock returns is computed.

Asset Volatility and Reduced-Form Model Specific Parameters

From the target parameter set (κr, θr, σr, κl, ν̄, ρ, σv), the remaining variable is

the asset volatility, σv. It has been chosen to retrieve “bond-implied” volatility,

by making use of bond prices. By minimizing the sum of squared errors over

each observation day and each bond price, one can reach the implied asset

volatility for the structural CDG model:

min
σv

ObsDays∑

i=1

Bonds∑

j=1

(vtheo
i,j (lt, rt) − vobs

i,j )2 (5.43)

On the reduced-form side, there are two additional parameters to be estimated.

These are the adjusted short rate parameters a and c. It is an option to si-

multaneously estimate a and c from the minimization of sum of squared errors

formula, per firm:

min
σv ,a,c

ObsDays∑

i=1

Bonds∑

j=1

(vtheo
i,j (lt, rt) − vobs

i,j )2 (5.44)

Note that the number of free parameters used to calibrate the models to bond

prices differs across approaches. In CDG there is the asset volatility as the
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only free parameter, whereas in the intensity case there will be three para-

meters. The results will be analyzed taking into account the number of free

parameters.3

5.3.3 Estimation Results

Parameter Estimates from Bond and Stock Prices, and Balance

Sheet Information

As described in Section 5.3.2, the bond and stock prices, as well as the balance

sheet information are the source for the CDG and intensity model parameter

estimates, which will be used for the prediction of CDS prices at a latter

step. By inserting the interest rate process parameters, the estimated leverage

process parameters κl, ν̄, and the correlation coefficient ρ into the CDG and

intensity formula, the SSE method enables to pull out the asset volatility σv

from bond prices. In the intensity case, there are additionally the adjusted

discount rate parameters a and c. Firstly, the parameter estimates common in

both models can be found in Table 5.4.

The parameter estimates are mostly in a reasonable range. First, the mean-

reversion rate of the leverage κl, has a value around 5-10 per cent, although

very low figures as well as higher figures are also estimated from regressions.

These values fall in a consistent range with prior studies: To Fama and French

(2002) who reach a value around 7-10 per cent in their regression analysis and

to Shyam-Sunder and Myers (1999) who have a sample weighted towards large

3Although not documented, an alternative version of the intensity model has also been
tested in the runs. This model estimated the a and c parameters common to all firms,
instead of individual estimation. The out-of-sample prediction results were inferior to both
the firm-specific intensity setup and the CDG model.
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Table 5.4: Parameters Common to Both Models

Firm κl ν̄ ρ
CITIZENS 0.031 0.727 0.003
DEERE & CO 0.136 0.438 0.078
DELL 0.009 0.082 0.070
FEDERATED 0.061 0.216 0.133
HP 0.279 0.972 0.090
HILTON 0.105 0.567 0.176
IBM 0.052 2.795 0.049
INT.PAPER 0.197 0.595 0.119
MGM MIRAGE 0.169 0.282 0.137
MOTOROLA 0.030 1.024 0.048
NORDSTROM 0.002 -2.398 0.116
NORFOLK 0.030 0.432 0.094
NORTHROP 0.028 0.261 -0.086
TARGET 0.083 1.022 0.154
WAL-MART 0.027 1.053 0.120
WALT DISNEY 0.078 1.011 0.151

and financially conservative firms and reach a value around 40 per cent. The

correlation coefficient between the stock returns and change in interest rates is

comparable to the figure of Eom/Helwege/Huang who report that they have

relatively low correlation values all below 15 per cent. They also note that

the correlation variable has not been found to effect the spreads significantly.

Although there are no comparable figures for the value of ν̄ in the literature,

one can compute the long-run means and infer the soundness of these estimates.

The CDG model and the intensity model have their unique asset volatility

figures. For the CDG model, the asset volatilities which are inferred from

bond prices are between 15-40 per cent except a few outliers. These values

are compared to option-implied volatilities computed from at-the-money call

options with a maturity of June 2007 for all of the above listed companies. This

comparison reveals that option-implied volatilities are in the range of 15-35 per
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cent, indicating that the bond-implied figures are economically reasonable as

well. Nevertheless, there are significant outliers such as the values for IBM and

DELL. The estimated and option-implied volatilities for the CDG model can

be found in Table 5.5.

Table 5.5: CDG Model Estimation Figures

Firm σv σv θl θK/V

Estimated Option-implied
CITIZENS 0.213 0.226 -1.70 0.36
DEERE & CO 0.177 0.370 -0.66 0.58
DELL 0.594 0.312 -3.38 >1
FEDERATED 0.141 0.237 -0.71 0.58
HP 0.392 0.240 -1.08 0.45
HILTON 0.345 0.292 -0.85 0.75
IBM 0.913 0.173 -3.37 >1
INT.PAPER 0.240 0.192 -0.75 0.55
MGM MIRAGE 0.178 0.347 -0.46 0.68
MOTOROLA 0.350 0.237 -2.02 >1
NORDSTROM 0.147 0.320 -13.04 <0.01
NORFOLK 0.176 0.299 -1.42 0.40
NORTHROP 0.102 0.168 -1.33 0.32
TARGET 0.365 0.230 -1.38 0.48
WAL-MART 0.429 0.181 -1.13 0.41
WALT DISNEY 0.384 0.208 -1.39 0.64

In Table 5.5, the last two columns indicate the long-run mean of the log-

leverage process and the leverage itself by applying Ito’s lemma to log-leverage

process in Equation (5.6). In calculating the long-run mean of the log-leverage

from θl = −ν̄ − r/κl, the short rate r is assumed at a constant 3 per cent.

It can be observed that the long-run means are at a reasonable level. Except

three outliers, all long-run leverage ratios are between 0 and 1. The higher

figures for DELL and IBM arise from a very high asset volatility estimate and

a very low mean-reversion rate, which end up in a figure higher than one. For

the other companies, the value for the long-run mean of leverage falls close to



CDS Pricing with Advanced Framework Structures 138

Table 5.6: Intensity Model Parameter Estimates

Firm a c σv θK/V

CITIZENS 0.045 0.001 0.501 >1
DEERE & CO 0.034 0.033 0.014 0.52
DELL 0.020 0.001 0.828 >1
FEDERATED 0.043 0.043 0.211 0.71
HP 0.024 0.003 0.335 0.35
HILTON 0.165 0.158 0.001 0.43
IBM 0.022 0.002 0.112 0.03
INT.PAPER 0.024 0.001 0.987 >1
MGM MIRAGE 0.078 0.062 0.844 0.63
MOTOROLA 0.095 0.058 0.003 0.13
NORDSTROM 0.034 0.015 0.042 <0.01
NORFOLK 0.056 0.057 0.007 0.24
NORTHROP 0.036 0.025 0.247 0.26
TARGET 0.055 0.035 0.001 >1
WAL-MART 0.015 0.001 0.232 0.31
WALT DISNEY 0.106 0.071 0.356 0.56

the empirically used monthly leverage figures as well, which can be seen from

the values in Table 5.1.

Using bond prices as a source for the parameter estimation, the intensity model

described in Section 5.2.2 is also calibrated. The sum of squared errors method

in Equation (5.44) has yielded the results in Table 5.6. The interest rate process

parameters, the leverage process parameters κl, ν̄ and the correlation coefficient

ρ are estimated exactly the same as in the CDG model. From the intensity

model for bond prices, one can extract the asset volatility σv, and the intensity

parameters a and c.

In Table 5.6 the a and c figures convert mostly into reasonable values for the

default intensities. The next section will present a more detailed analysis of

how these figures transfer into default probabilities. Note also that the long-

run mean for the leverage figures calculated by equating the short rate r to 3
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per cent lie in a reasonable range. For instance, for IBM, the actual leverage

inputs are also in the range of 3-4 per cent. The model was able to capture

these successfully. Except four outliers which have long-run means above the

standards, all the long-run means are near the range of original input leverage

parameters.

In-Sample Fits to Bond Prices

To assess the estimation results, the in-sample fit to bond prices can be found,

in Table 5.7. In the table, the mean error (ME), the mean absolute error

(MAE), and the mean absolute percentage errors (MAPE) are computed. The

results indicate that there is a good fit to prices with rather low error figures.

A better fit is observed with the intensity model, also indicated by the signifi-

cance test. However, note that the intensity model has three free parameters in

estimation whereas the structural model has only one. The Akaike Information

Criterion (AIC) is an ideal measure in case there are free parameter differences

between the models whose fits are tested. But also after considering the free

parameters, the AIC values in the lower panel show that the intensity model

has a better (lower) value, and thus a better fit. Further analysis in Section

5.4 will show whether the better in-sample fit to bond prices carries over to an

out-of-sample fit to CDS prices.

Default Probabilities from Bond Prices

Before taking a step towards prediction of CDS prices, it might be insight-

ful to compute the default probabilities indicated by the parameter estimates.

With the structural model, the forward risk-neutral probability of default is



CDS Pricing with Advanced Framework Structures 140

Table 5.7: Structural and Intensity Models - In-Sample Fit to Bond Prices

Bonds Structural Intensity
Firm No. of No. of ME MAE MAPE ME MAE MAPE

Bonds Prices (pts) (pts) (%) (pts) (pts) (%)
CITIZENS 3 86 1.89 7.94 7.23% 0.06 3.75 3.41%
DEERE & CO 1 36 0.35 3.48 3.00% -0.24 3.04 2.63%
DELL 1 36 0.05 1.13 1.04% -0.02 1.01 0.92%
FEDERATED 4 144 1.12 3.96 3.47% -0.06 1.94 1.69%
HP 2 66 0.26 1.02 0.99% 0.00 0.82 0.79%
HILTON 5 180 -0.37 4.22 3.98% 0.01 2.00 1.88%
IBM 10 331 0.23 1.19 1.17% -0.01 1.03 1.01%
INT.PAPER 1 36 -0.05 2.51 2.28% -0.21 2.32 2.10%
MGM MIRAGE 5 119 1.53 4.99 4.89% -0.06 2.04 2.00%
MOTOROLA 2 72 0.47 2.57 2.23% -0.08 2.52 2.21%
NORDSTROM 1 36 2.45 3.38 3.21% -0.02 1.13 1.08%
NORFOLK 3 108 0.54 2.00 1.76% -0.06 1.46 1.28%
NORTHROP 3 89 3.62 4.85 4.25% 0.04 1.17 1.02%
TARGET 3 104 0.64 2.46 2.44% 0.12 1.48 1.46%
WAL-MART 1 36 0.05 1.75 1.55% -0.04 1.25 1.10%
WALT DISNEY 3 108 -0.07 2.21 2.06% -0.09 1.92 1.79%
Average 0.79 3.10 2.85% -0.04 1.80 1.65%

AIC 232.65 145.25

Significance Test Mean Difference t-statistic p-value

Difference of 1.34 20.27 0.000
Str. - Int.

“Mean Error (ME)” is the difference between the model and the observed bond price.
“Mean Absolute Error (MAE)” is the absolute value of the difference between the model
and the observed bond price.
“Mean Absolute Error (MAPE)” is the percentage value of the division of MAE by the
observed bond price.
“AIC” is the Akaike Information Criterion calculated from 2k + nln(RSS/n) where k is the
number of free parameters for the model, n is the number of observations, and RSS is the
residual sum of squares.
“Difference of Structural - Intensity” is the significance test between the difference of the
structural model mean absolute errors and the intensity model mean absolute errors per
firm per day.
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QFT (r0, l0, T ) mentioned in Equation (5.10). One can easily compute the 5-year

probability of default and compare it with the actual default probabilities for

the same rating class reported by Moody’s. Moody’s actual default rates cor-

respond to a period of 1970-2003. Model-implied 5-year default probabilities

are the average values of the full observation period (36 mid-month observa-

tions). Table 5.8 presents this comparison. Similar to the structural side, one

can look at default probabilities as a result of the estimation process with

the reduced-form setting as well. The default probability PD in the intensity

setting is:

PD = 1 − EQ
(
e
−

TR
0

λds)
(5.45)

Afterwards, the risk-neutral probability can be converted into the forward

probability easily. With this formulation, the 5-year model-implied default

probabilities with the intensity model can be found in the second column of

Table 5.8.

For both models, the default probability figures seem indistinguishable. One

model is not consistently higher or lower than its counterpart. Actually, the

model-implied default probabilities draw a clear picture. Although not strictly

monotonous, the higher the actual probability of default, the higher is the

model-implied probability. For example, the Ba rated companies are estimated

to have the highest PD’s, whereas the less riskier rating classes have signifi-

cantly lower values. The model-implied probability is the highest for CITI-

ZENS, HILTON, and MGM MIRAGE, which have the lowest ratings in the

sample. Another important point is that the risk-neutral probabilities are al-

ways higher than real world probabilities, in line with the theory and other

empirical findings.
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Table 5.8: Model-Implied and Actual Probabilities of Default

Firm Structural Intensity Rating Actual PD in
Model-implied Model-implied (Moody’s) Rating

5 year PD 5 year PD Class
CITIZENS 19.37% 20.11% Baa2-Ba3 2.16%-11.17%
DEERE & CO 9.46% 8.51% A3 0.54%
DELL 11.43% 8.93% A2-A3 0.54%
FEDERATED 12.21% 12.17% Baa1 2.16%
HP 10.35% 9.99% A3 0.54%
HILTON 24.79% 22.44% Ba1-Baa3 2.16%-11.17%
IBM 8.17% 7.43% A1 0.54%
INT.PAPER 13.04% 11.19% Baa2 2.16%
MGM MIRAGE 24.33% 22.14% Ba1-Ba2 11.17%
MOTOROLA 13.23% 14.97% Baa2-Baa3 2.16%
NORDSTROM 11.67% 11.13% Baa1 2.16%
NORFOLK 9.63% 11.73% Baa1 2.16%
NORTHROP 9.28% 10.57% Baa2-Baa3 2.16%
TARGET 10.07% 8.11% A2 0.54%
WAL-MART 8.18% 7.29% Aa2 0.24%
WALT DISNEY 14.53% 14.45% Baa1 2.16%

The observation that the model-implied probability increases with decreasing

credit quality can be also seen from Table 5.9. If the default probabilities

are averaged across companies with respect to rating classes, a clear stepwise

increase in the model-implied default probabilities in comparison to the rating

implied actual default probabilities can be observed. The applicable rating

class is taken as the rating at the beginning of the observation period (January

2003).
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Table 5.9: Model-Implied and Actual Probabilities of Default, Breakdown into
Rating Classes

Rating Structural Intensity Actual PD in
(Moody’s) Model-implied Model-implied Rating

5 year PD 5 year PD Class
Aa 8.18% 7.29% 0.24%
A 9.90% 8.59% 0.54%
Baa 12.87% 13.29% 2.16%
Ba 24.56% 22.29% 11.17%

5.4 Prediction of Credit Default Swap Prices

5.4.1 Prediction Methodology

The final aim with both types of models is to predict the prices of CDSs out-of-

sample. The fair price of a credit default swap (CDS) with recovery-of-treasury

assumption would be:

CDS(T ∗) =
EQ

(
e
−

τR
t

r(s)ds
(1 − ϕ · e

−
TR
τ

r(s)ds
) · 1{τ<T ∗}

)

EQ
( n∑

i=1

e
−

tiR
t

r(s)ds
· 1{τ>ti}

)
(5.46)

The denominator is the cumulation of n discount factors which are at time

points ti. The numerator gives the recovered amount in case of default prior

to the maturity (T ∗) of the CDS. The recovery leg (the numerator) has to be

equal to the premium leg (the denominator) under no-arbitrage assumptions,

which will yield the theoretically fair price of CDS(T ∗).

A simulation algorithm has been used in order to reach the fair price of a

credit default swap. Paths of the short rate and the leverage ratio are simulated
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where default occurred at the first time when the log-leverage is larger than

zero (leverage is greater than or equal to 1). For a typical 5-year horizon of the

maturity of the CDS, the simulation algorithm generates paths and at each

time point the log-leverage is checked for whether it has a value higher than

zero:

(i) At first step, the short rate is simulated using an Euler discretization of

the Vasicek process: Start with rt=r0, and generate rt+1 through

rt+1 = rt + κr(θr − rt)∆t + σr

√
∆tǫ1

t (5.47)

where ǫ1
t ∼ N(0, 1).

(ii) Substitute the simulated rt+1 into

θl(rt+1) = −ν̄ − rt+1

κl

(5.48)

(iii) Generate lt+1 through Euler discretization of the leverage process:

lt+1 = lt + κl(θl − lt)∆t − σv

√
∆t(ρǫ1

t +
√

1 − ρ2ǫ2
t ) (5.49)

Here, note that the Brownian motions of the two processes are correlated

with a factor of ρ and ǫ2
t ∼ N(0, 1).

a. If lt+1 < 0 (log leverage having a negative sign) then no default

occurs. The CDS premiums up to this time point are cumulated,

when a quarter is complete (typical quarterly payments is assumed).
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This accumulation constitutes the “Premium Leg” of a CDS.

PremLegi = PremLegi−1 +
(
e
−

tiP
0

rti
∆t)

(5.50)

Here, ti is the ith premium date. Simulation continues with step

(iv).

b. If lt+1 ≥ 0, default happens. Simulation is terminated and the re-

covery leg is computed to constitute the numerator of the fair price

of a CDS. τ = t + 1 and

RecLeg =
(
e
−

τP
0

rt∆t
(1 − ϕ · b(rτ , T − τ))

)
(5.51)

In addition, the accrued premium since the last premium payment

is calculated and added to the premium leg. In this implementation,

the recovered bond maturity (T ) is taken to be the longest dated

bond’s maturity. According to the intuition, with no recovery on

coupons, the longest available bond should be delivered in case the

“cheapest-to-deliver” option is available. Recall from earlier chap-

ters that the delivery option denotes the possibility of the buyer to

deliver the cheapest bonds available in case of default. By assuming

no recovery on coupons, the bond with longest maturity should be

the deliverable obligation.

(iv) Go back to step (i) to generate rt+2.

For simulating the fair price of a CDS in the reduced-form case, Euler dis-

cretizations for the short rate and leverage process as in Equations (5.47) and

(5.49) have been used. Following Schönbucher (2003), a uniform random vari-
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ate U is generated as the trigger level. Let γ be the default countdown process,

which is initiated by letting γ(0) = 1. Different from the CDG model described

above, step (iii) is replaced by:

(iii) Generate lt+1 through Euler discretization of the leverage process:

lt+1 = lt + κl(θl − lt)∆t − σv

√
∆t(ρǫ1

t +
√

1 − ρ2ǫ2
t ) (5.52)

Compute the associated default intensity as:

λ(t + 1) = a + clt+1 (5.53)

Then at each time step, the default countdown process is decreased by,

γ(t + 1) = γ(t)eλ(t+1)∆t (5.54)

a. If U < γ(t + 1) then no default occurs. Similar to the structural

side, the CDS premiums up to this quarter are cumulated, when a

quarter is complete. This is the premium leg of the CDS.

PremLegi = PremLegi−1 +
(
e
−

tiP
0

rti
∆t)

(5.55)

b. If U ≥ γ(t + 1), default happens and the recovery leg is computed.

RecLeg =
(
e
−

τP
0

rt∆t
(1 − ϕ · b(rτ , T − τ))

)
(5.56)

Accrued premiums are taken into account since the last premium

payment date, as well.
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5.4.2 CDS Prediction Results

In the final step, model implied CDS prices can be generated using the method-

ology described in Section 5.4.1. Once the parameter estimates are available,

it is straightforward to use the steps described in the mentioned section. This

out-of-sample prediction of CDS prices can be evaluated using deviations from

the observed prices. The mean errors (ME), the mean absolute errors (MAE),

and the mean absolute percentage errors (MAPE) can be computed to under-

stand the deviation from the market prices. In Table 5.10, the out-of-sample

prediction error figures for the CDG and the intensity model can be found.

The results indicate that both models have mostly underpredicted CDS pre-

miums with an average of 25 bps. The absolute errors for the structural and

reduced-form models are 33 and 30 bps respectively. At first sight, the struc-

tural model has a higher percentage error (49 per cent) than the intensity

model (37 per cent). Parallel to this, a comparison of the absolute errors of

two models indicate that the difference between the two models is statistically

significant, the intensity model yielding lower error figures. However, it should

not be forgotten that the intensity model had three free parameters for fitting

to bond prices while the structural model had only one. After checking the

Akaike Information Criterion values, it can be observed that the figures of the

two models are quite close, with the intensity model having a slightly bet-

ter (lower) value. Overall, it can be concluded that constructing comparable

approaches have yielded comparable results in pricing CDSs, as well.

The errors can further be analyzed by classifying to ratings and number of

bonds used in the estimation. The rating, which the company possesses at

the beginning of the observation period (January 2003) was taken as the ap-
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Table 5.10: CDG and Intensity Models - Out-of-Sample Fit to CDS Prices

CDG Intensity
Firm ME MAE MAPE ME MAE MAPE

(pts) (pts) (%) (pts) (pts) (%)
CITIZENS -126.19 130.91 58.47% -115.87 115.87 51.95%
DEERE & CO -2.69 7.52 26.80% -5.95 7.77 23.75%
DELL 17.94 19.33 113.91% 10.39 12.95 75.15%
FEDERATED -11.49 15.37 32.37% -12.41 16.93 29.25%
HP -4.52 8.16 22.59% -3.98 8.65 22.67%
HILTON -55.98 59.91 31.51% -84.41 84.58 50.02%
IBM -3.93 6.95 25.63% -3.49 7.36 25.58%
INT. PAPER -29.36 29.71 42.84% -32.68 32.98 46.89%
MGM MIRAGE -85.61 91.97 49.50% -88.07 88.50 43.61%
MOTOROLA -42.18 42.18 52.82% -40.81 40.81 43.53%
NORDSTROM -29.00 29.00 72.98% -13.50 13.85 27.55%
NORFOLK -4.84 10.33 30.91% -4.35 7.30 19.36%
NORTHROP -32.24 34.47 84.30% -9.59 10.22 21.99%
TARGET 8.94 10.01 47.38% -3.55 7.90 29.08%
WAL-MART -10.64 10.64 59.34% 3.16 5.38 35.54%
WALT DISNEY 0.48 13.81 29.94% 0.92 17.51 39.13%
Average -25.71 32.52 48.83% -25.26 29.91 36.56%

AIC 235.90 232.39

Significance Test Mean Difference t-statistic p-value

Difference of 2.61 3.03 0.003
CDG - Intensity

“Mean Error (ME)” is the difference between the model and the observed CDS price.
“Mean Absolute Error (MAE)” is the absolute value of the difference between the model
and the observed CDS price.
“Mean Absolute Error (MAPE)” is the percentage value of the division of MAE by the
observed CDS price.
“AIC” is the Akaike Information Criterion calculated from 2k + nln(RSS/n) where k is the
number of free parameters for the model, n is the number of observations, and RSS is the
residual sum of squares.
“Difference of Structural - Intensity” is the significance test between the difference of the
structural model mean absolute errors and the intensity model mean absolute errors per
firm per day.
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plicable class. Panel A of Table 5.11 shows that mean absolute errors almost

always increase as the rating worsens. This is reasonable, since the higher rated

companies have lower CDS premiums on average. Both models have difficulty

especially in reaching the high CDS premiums for low rated classes, where

almost always underprediction is observed. Although not monotonous for the

structural model, the intensity model’s underprediction continuously increases

as the credit rating worsens. Moreover, it is observed from the significance tests

that although the intensity model outperforms the structural model in better

rated CDSs, the structural model performs better in the pricing of Ba-rated

firms.

In Panel B of Table 5.11 the error figures are averaged with respect to the num-

ber of bonds used in the estimation. For both models, the lowest MAE figures

are with 1, 4, and 10 bonds. It can also be inferred that using a single bond in

estimation almost always results in a higher MAPE than using more bonds.

However, a trend depending on the number of bonds can not be observed for

either of the approaches. Significance tests indicate that the intensity model

performs better for 1 and 3 bonds, whereas the structural model is better for

5 bonds. Other cases do not show any significance.

These results are comparable to prior research results in two ways. First, the

testing of Collin-Dufresne and Goldstein model has few examples in the liter-

ature. Among them, the study of Eom, Helwege, and Huang (2004) (EHH),

which compares the CDG model with four other structural models, is the most

noteworthy one. EHH make use of bond data only, which is the major differ-

ence from this study. They find that the CDG model suffers from an accuracy

problem, where predicted bond spreads are either too small or incredibly large.

In particular, they note that a more accurate term structure model than Va-
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Table 5.11: Structural and Intensity Models - Out-of-Sample Fit, Breakdown
to Ratings and No. of Bonds Used in Estimation

Panel A Structural Intensity t-test Structural-Intensity
Rating ME MAE MAPE ME MAE MAPE Mean Diff. t-stat p-value

(pts) (pts) (%) (pts) (pts) (%)
Aa -10.64 10.64 59.34% 3.16 5.38 35.54% 5.25 4.77 0.000
A 3.15 10.39 47.26% -1.32 8.93 35.25% 1.47 2.13 0.034
Baa -34.35 38.22 50.58% -28.54 31.93 34.95% 6.29 5.23 0.000
Ba -70.80 75.94 40.50% -86.24 86.54 46.81% -10.60 -2.51 0.014

Panel B Structural Intensity t-test Structural-Intensity
No. of ME MAE MAPE ME MAE MAPE Mean Diff. t-stat p-value
Bonds (pts) (pts) (%) (pts) (pts) (%)
1 -10.75 19.24 63.17% -7.72 14.59 41.78% 4.65 4.77 0.000
2 -23.35 25.17 37.70% -22.40 24.73 33.10% 0.44 0.37 0.713
3 -30.77 39.91 50.20% -26.49 31.76 32.30% 8.15 5.10 0.000
4 -11.49 15.37 32.37% -12.41 16.93 29.25% -1.56 -0.50 0.624
5 -70.80 75.94 40.50% -86.24 86.54 46.81% -10.60 -2.51 0.014
10 -3.93 6.95 25.63% -3.49 7.36 25.58% -0.41 -0.61 0.548

“Mean Error (ME)” is the difference between the model and the observed CDS price.
“Mean Absolute Error (MAE)” is the absolute value of the difference between the model
and the observed CDS price.
“Mean Absolute Error (MAPE)” is the percentage value of the division of MAE by the
observed CDS price.

sicek’s model could be of use. As a result, they reach an percentage error of

out-of-sample spread prediction in the level of 269.78 per cent and an absolute

percentage error of spread prediction of 319.31 per cent. These results extend

the EHH study to the prediction of CDS prices, and on average yield a relative

mean absolute error of 48.83 per cent.

Secondly, the results can be compared with recent studies that predict CDS

prices using other types of structural and intensity models. For instance, Eric-
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sson, Reneby, and Wang (2006)’s CDS premium prediction mean errors, with

Leland (1994), Leland and Toft (1996) and Fan and Sundaresan (2000) are in

the range of 10 - 52 bps, whereas Arora, Bohn, and Zhu (2005) have reached 27

- 102 bps with the Merton (1974) model and -80 - 2 bps with Vasicek/Kealhofer

model.4 These results are well comparable with the mean error of -25.71 bps

and mean absolute error of 32.52 bps. The error figures signify that the CDS

price prediction ability of the structural model is competitive with respect to

other models used in the literature. On the other hand, Bakshi, Madan, and

Zhang’s (2006) observable credit risk factor approach in an intensity model has

yielded out-of-sample absolute bond yield prediction errors in a range of 26-49

bps when log-leverage is selected as the factor. These results extend Bakshi,

Madan, and Zhang’s (2006) results with bond prices to a CDS price prediction.

5.4.3 Robustness Check

The analysis in the last section showed that the prediction power of the mod-

els are close. At a further step, looking at whether significant differences in

approaches are revealed in a time out-of-sample analysis, can be insightful. In

order to check this, the estimation results from the full observation period were

used to compute the theoretical CDS prices of mid-month January 2006. By

doing this, it is ensured that the out-of-sample analysis does not include the

time horizon of estimation.

Table 5.12 shows the mean absolute errors and mean absolute percentage errors

for this time point. It is observed that the prediction power deteriorates - an

expected outcome with time out-of-sample analysis. The percentage errors

4See Crosbie and Bohn (2003), Kealhofer (2003a), Kealhofer (2003b), and Vasicek (1984)
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have increased to 79 and 47 per cent for January 2006. The significance tests

this time indicates indifference between the prediction power of the structural

and intensity models in terms of absolute errors, as can be seen from the lower

panel of the table. Once again, the results show that the two models do not

outperform one another.

Table 5.12: Structural and Intensity Models - Time Out-of-Sample Fit

Firm January 2006
Structural Intensity

MAE MAPE MAE MAPE
(bps) (%) (bps) (%)

CITIZENS 161.33 81.89% 109.76 55.71%
DEERE & CO 0.42 1.99% 1.35 6.45%
DELL 63.47 409.47% 21.55 139.00%
FEDERATED 4.38 10.43% 1.64 3.92%
HP 8.09 35.18% 7.62 33.15%
HILTON 59.06 46.51% 94.40 74.33%
IBM 5.65 33.25% 4.57 26.86%
INT. PAPER 41.31 57.37% 35.18 48.86%
MGM MIRAGE 120.74 73.17% 60.77 36.83%
MOTOROLA 14.30 59.57% 17.16 71.49%
NORDSTROM 29.14 88.31% 19.31 58.52%
NORFOLK 17.81 74.21% 8.12 33.84%
NORTHROP 16.92 76.92% 0.18 0.81%
TARGET 20.24 161.95% 6.44 51.49%
WAL-MART 4.91 37.80% 4.84 37.24%
WALT DISNEY 8.36 23.88% 23.43 66.94%
Average 36.01 79.49% 26.02 46.59%
Significance Test t-statistic p-value

Difference of 1.67 0.116
Structural - Intensity

“Mean Absolute Error (MAE)” is the absolute value of the difference between the model
and the observed CDS price.
“Mean Absolute Error (MAPE)” is the percentage value of the division of MAE by the
observed CDS price.
“Difference of Structural - Intensity” is the significance test between the difference of the
structural model mean absolute errors and the intensity model mean absolute errors per
firm.
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5.5 Summary

This chapter has provided a comparison of the pricing of CDSs by alternative

frameworks. On one hand, with a structural approach that has a stationary

leverage ratio, it has been aimed to extract credit information from bond, stock

and balance sheet information in order to correctly price CDSs. On the other

hand, it has been examined whether a comparable reduced-form model with

the leverage process as the state variable could better price a CDS. The re-

sults show that the overall out-of-sample prediction performance is equally well

with both models. The intensity model has yielded slightly better prediction

results possibly due to three free parameters. After incorporating this infor-

mation, the Akaike Information Criterion showed that the results with both

models are quite close, with the intensity model yielding slightly lower values.

Moreover, the time out-of-sample analysis indicated insignificance between the

prediction powers of the two models. Attributing the default intensity not as

an unobservable latent factor but instead as an observable credit risk fac-

tor, the leverage process, has yielded competitive results in comparison to the

structural model.

This analysis has been carried for the most liquid entities’ bond and CDS

prices. The CDSs utilized had a five-year maturity, which are the most liquidly

traded contracts. This should be taken into account when judging the results

that showed indifference between the two frameworks. It remains for future

research to look at the capability of the models to fit to the full term structure

of CDSs and bonds.

Other issues worth noting are the basis between bond and CDS prices, and

liquidity. As seen in the studies of Blanco, Brennan, and Marsh (2005) and
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Hull, Predescu, and White (2004) the no-arbitrage equality between CDS pre-

miums and bond spreads may not perfectly hold. This may be partly due to

liquidity. Recent studies such as Longstaff, Mithal, and Neis (2005) have in-

vestigated the bond and CDS price differences including a liquidity premium

in bond prices. However, in this analysis liquidity differences are not explic-

itly taken into account. Although it is interesting to check whether extensions

with liquidity yield better performance of the models on an absolute level, liq-

uidity should affect market prices in a way that enters both models similarly.

Therefore significant differences is not expected in relative terms.



Chapter 6

Conclusions

Credit default swaps are already a critical instrument for hedging and risk

transfer purposes in financial markets worldwide. The market volume is in-

creasingly expanding, which is a result of the product creating numerous fi-

nancial opportunities. Until the arrival of credit derivatives, risk management

in an asset portfolio was based on few broad activities. The traditional meth-

ods to safeguard against losses were to maintain a level of economic capital to

cover any unexpected losses on loans, and to limit the size of any loan to any

customer so as to maintain diversification of the portfolio risk. In the presence

of CDSs, credit risk can be managed or traded independently of the owner-

ship of the underlying asset. Properly functioning CDS markets are therefore

a major benefit for any institution that would like to hedge or transfer credit

risk.

This study has contributed in understanding how markets of CDSs function

and how a theoretically fair price could be reached. First, the direct OTC

and interdealer broker markets have been analyzed in depth. Markets were

155
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compared regarding one of their most crucial ingredients, their liquidity. Most

of the contractual variables were shown to be determinants of the bid-ask

spread of the brokered market. The two markets seem to be integrated in prices,

which leaves only the trading cost differences in the bid-ask spreads. Moreover,

the liquidity differences between the two market venues were attributed to the

added value provided by the brokers. These two alternatives have recently been

complemented by the first exchange traded credit derivatives by Eurex. These

are futures on CDS indices of the 125 most traded entities. With the inclusion

of exchanges into the trading arena, the market venues for CDS are likely to

attract more and more counterparties.

There are certain implications for further research concerning this first part of

the study. First, once they become liquid, the electronic platform data of the

interdealer brokers will be a unique source in understanding differences in mar-

ket venues. Then, it would be possible to look at three alternatives; the direct

conversations in the OTC market, the voice brokerage offered by IDBs and the

electronic platforms. Such a study would have implications on the effects of

transparency on liquidity. It remains an open question for further research on

how an open limit-order book in the CDS market would be different from other

markets. The first exchange-traded CDS indices have not yet reached abun-

dant liquidity in the Eurex system, as reported in different sources. Exchange

traded CDS data would be an indispensable source for looking at default corre-

lations. This analysis with single-name CDSs can be extended to basket-CDSs

with the inclusion of correlation.

The second part of the study deals with pricing CDSs in a theoretically fair way.

With the Basel II Capital Accord in effect, there has been increased attention

to credit risk modeling. The Basel II, being a revision of the original Basel Cap-
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ital Accord, has reformed the way how solvency requirements are computed.

During this process, credit risk models have been under focus, since financial

institutions are now allowed to make use of their own internal rating systems

for their risk exposure in credit contracts. This study provides an insight on

how these credit risk models can give guidance in reaching the theoretically

fair price of credit risk, in case they need to be applied for institutional use.

Structural models which are based on diffusion processes and reduced-form

models which depend on Poisson jump processes have been utilized in the

credit risk literature in various studies. Structural models have the strength

of being intuitive, however, they have yielded poor results in predicting credit

risky instrument prices. Reduced-form models, on the other hand, have reached

a relatively better performance, despite the fact that they have less economic

intuition. Due to natural differences, there could be no basis of comparison

between the prediction power of these frameworks, since they could take vari-

ous forms, and were applied to different datasets. One of the most important

contributions of the study is trying to build a comparable structure between

structural and reduced-form models. Up to date only Arora, Bohn, and Zhu

(2005) tried to pursue an empirical study that compares the two frameworks.

However, their study had limitations, such as that bond data was used to cal-

ibrate the intensity model (Hull/White) whereas equity price data was neces-

sary in calibrating the structural Merton and Vasicek/Kealhofer models. This

raises doubts with respect to the comparability of the two approaches.

The analysis in Chapter 4 provided a comparison on how basic framework

structures could price CDSs. The basic Merton model and the constant inten-

sity model have been compared in their ability to generate cross-sectional and

time series out-of-sample predictions. The Support Vector Machines (SVM)
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method has been included in this section to look at whether the absence of fi-

nancial structure affects prediction power. The results indicate that the Merton

and the constant intensity models show quite close performance. The cross-

sectional results demonstrated a better fit of the Merton model in one out

of four cases, whereas the one-day-ahead time series analysis revealed better

results for the constant intensity model in three classes. Five-day- and ten-

day-ahead predictions produced mixed results, showing that one framework’s

prediction power does not outperform the other. This result might be partly

attributable to not breaking down the default probability in the Merton model

into Black/Scholes parameters. The basic comparison study can be extended

by including the asset value process and the asset volatility for this version

of the Merton model. This has been the most significant difference from the

original model that is not used in the study.

The Support Vector Machines method has also implications on further work.

Although not suitable for cross-sectional analysis, the SVM Regression method

has proven to be a useful tool in time series settings. Alternative kernels should

be used until the most suitable fit has been reached in a given setup. A further

extension might include SVM in an advanced comparison analysis and use

bond prices, stock prices and balance sheet information as inputs for training

the SVM function. Alternatively, the SVM Classification method can be used

for preprocessing the data, where one can classify CDS entities into risk classes.

In Chapter 5, the analysis has been taken a step further. The simplistic Mer-

ton and constant intensity models were replaced by more advanced forms of

structural and reduced-form models. Inspired by the fact that leverage has

been an explanatory variable for CDS levels, it has been used as a key credit

factor in both frameworks. The structural Collin-Dufresne/Goldstein model,
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which contains a stationary leverage ratio has been compared to an analogous

intensity model, in order to determine whether the model structure has an

impact on prediction power. By creating this model pair, the study provides

an answer to the challenging question that which type of framework better

prices credit risk. Given comparable settings, they similarly price this risk.

Both models contained a 1-factor Vasicek model for the riskless interest rate

process, which was calibrated by a Kalman filter. This method has proven to

be a useful approach in estimating the term structure parameters. Once the

process involves an affine term structure model, Kalman filters can be applied

without any hesitation. Further, in the comparison of advanced model struc-

tures, this study has used exactly the same bond and stock price datasets to

calibrate the models in predicting CDS prices. In this way, the CDG model,

which models the evolution of the asset value, could be brought in close prox-

imity to an intensity model which takes into account Poisson processes. The

out-of-sample prediction performances by both models indicated that the in-

tensity model is slightly better than the CDG model, possibly due to more

free parameters. The Akaike Information Criterion that takes this into account

has yielded quite similar results with both models. The advanced comparison

study can be further extended with alternative setups. It is a task for further

research to maintain even better accuracy of predictions, and to find the best

performing structural and reduced-form models.

The implicit testing of credit risk models also has implications for bench-

marking purposes. The models that fit the observed prices best have not only

provided an accurate estimate for the fair price, but have also been used as a

benchmark for market participants in their actions. For equity and FX deriv-

atives, applying the Black/Scholes option pricing framework has been widely



Conclusion 160

accepted as the benchmark model. This price may be used for looking at

hedge ratios and arbitrage possibilities and treated as fundamental informa-

tion. Black/Scholes prices are well comparable to actual prices in the market,

and provide guidance in market actions. Although the results from this study

did not point out a specific credit risk model among others, a successful model

in future efforts can serve as a benchmark model in credit risk.
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Appendix A

Kalman Filter Estimation

In 1960, R.E. Kalman has published his famous article which describes a re-

cursive solution to the discrete-data linear filtering problem (Kalman (1960)).

Since then, the Kalman filter has been subject to extensive research and ap-

plications. The Kalman filter is a set of mathematical equations which enables

recursive computation to estimate the state of a process. The filter has been

proven to be very powerful and precise, and has been widely applied.

One of the application fields is the estimation of the unobserved short rate

series. Applying the filter to affine term-structure models, numerous studies

have aimed to estimate term-structure parameters. The affine term structure

models of Vasicek (1977) and Cox, Ingersoll, and Ross (1985) have received at-

tention in application of the Kalman filter with single or multi-factor variations.

These studies have mostly reached a good fit in estimating the term-structure

parameters in-sample. The procedure described below consists of estimating

process parameters and short rate time series of a single factor Vasicek model

using the Kalman filter.
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A.1 State-Space Formulation

In this section, the basic structure of a linear Kalman filter is described. Fol-

lowing, the application to term-structure models will be discussed.

Proposition 5.1 Suppose that there is an n-dimensional state vector xt =

[x1
t , ..., x

n
t ] corresponding to the number of factors and an m-dimensional vector

zt = [z1
t , ..., z

m
t ] corresponding to the number of cross-sectional measurement

observations. Then the following set of equations represent the time update

equation and the measurement equation of the Kalman filter, which should

have the form

xt = Axt + Bxt−1 + ωt−1, time update equation (A.1)

zt = Ct + Hxt + ςt, measurement equation (A.2)

The random variables ωt and ςt represent the process and measurement noise

respectively. They are assumed to be independent from each other and have

normal probability distributions,

ωt ∼ N(0, Q), (A.3)

ςt ∼ N(0, R) (A.4)

These equations constitute the backbone of the recursive estimation using the

Kalman filter. The below propositions describe the time update and measure-

ment update recursive equations for the filter.

Proposition 5.2: Time Update The filter computes the best prediction for
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xt based on information available until xt−1, which is described by Ft−1.

Time update projection:

x̂t|t−1 = E[xt|Ft−1] = A + Bx̂t−1, (A.5)

Update error covariance:

P̂t|t−1 = V ar[xt|Ft−1] = BP̂t−1B
′ + Qt (A.6)

Up to now only time has been incremented but no measurement has been taken.

The below proposition incorporates the effect of measurement equation to the

recursive solution of the filter. First the “Kalman gain” is computed which

determines the weight given to the new observation. Then new estimates of

the state and error covariance are derived.

Proposition 5.3: Measurement Update Including the contribution of the

measurement, the measurement update equations are as follows:

Computing the “Kalman gain”:

Kt = P̂t|t−1H
′
(
HP̂t|t−1H

′ + R
)−1

(A.7)

Update state after measurement zt:

x̂t = E[x̂t|Ft] = x̂t|t−1 + Kt(zt − E[zt|Ft−1]) (A.8)

Update error covariance after measurement:

P̂t = V ar[x̂t|Ft] = (I − KtH)P̂t|t−1 (A.9)
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After the Kalman recursions, finally a maximum likelihood estimator can be

used to estimate the parameters of the process desired.

Proposition 5.4: Maximum Likelihood Estimation The log-likelihood

function consists of the following elements:

̟t = zt − ẑt (A.10)

Gt = Cov[̟] = HP̂t|t−1H
′ + R (A.11)

The log-likelihood equation:

logL =
T∑

t=1

(Ntlog(2π)

2
− log|Gt|

2
− 1

2
̟

′

tG
−1
t ̟t

)
(A.12)

where T is the full range of the time series and Nt = dim(̟t).

In the end, the parameters that are contained in A,B,C and H are estimated

through the optimization of the maximum likelihood function.

A.2 Estimation of the Short Rate Process through

Kalman Filter

Given the above state-space formulation, the Kalman filter can be applied to

the estimation of the short rate process time series and parameter estimation.

Being a method that takes into consideration both time series and cross section

of yields, Kalman filtering is an appropriate tool in estimating the unobserved

short rate time series and process parameters. As described in the last section,

the Kalman filter makes use of measurement and update equations in order to
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iteratively find the best parameter estimates. Both the CDG model and the

intensity model derived contains the Vasicek process as the driving source for

the short rate as below:

drt = κr(θr − rt)dt + σrdWQ
1 (A.13)

where κr is the mean reversion rate, θr is the long-run mean, σr is the volatility

of the short rate, and WQ
1 is a Brownian motion under the risk-neutral measure.

The unobserved series of short rate and the parameters of this Vasicek process

will be estimated using the filter. For this purpose, the closed form solution

of the Vasicek bond pricing formula are used as the measurement equations,

whereas the transition process of the Vasicek equations are used as the time

update equations. The following sections describe the data and the results of

the estimation. Only the one-factor version of the Vasicek process is applied,

therefore, n, the number of factors described in Proposition 5.1 is only 1. Eight

yields at each time point are used as an observation for the Kalman filter, so

m described in the state space formulation is 8. Moreover the length of time

series, T , is 2188 days, spanning a period of over eight years.

A.3 Calibration of the Interest Rate Process

In the Vasicek setup, the closed-form bond pricing formula constitutes the

measurement equation, making use of the cross-sectional information of each

of the eight yields on a given day. The bond pricing formula of Vasicek is:

b(r0, T ) = eC(T )−H(T )r0 (A.14)
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where C(T ) and H(T ) correspond to the measurement equation vectors on a

given day, which are in the form:

H(T ) =
1

κr

(1 − e−κrT ), (A.15)

C(T ) =
(H(T ) − T )

(
κ2

r(θ̃r − σrη
κr

) − σ2
r

2

)

κ2
r

− σ2
rH

2(T )

4κr

(A.16)

Here, the η is the market price of risk parameter, and the θ̃r is the long run

mean under the physical probability measure. The risk-neutral long run mean

θr of the process is reached by:

θr = θ̃r −
σrη

κr

(A.17)

Moreover, the transition equations, which will comprise the time update equa-

tions, in the Vasicek setup are as follows:

A(t) = θ̃r(1 − e−κr∆t) (A.18)

B(t) = e−κr∆t (A.19)

Q(t) =
σ2

r

2κr

(1 − e−2κr∆t) (A.20)


