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Nonlinear solution methods for infinitesimal perfect plasticity

Christian Wieners

ABSTRACT. We review the classical return algorithm for incremental plasticity in the con-
text of nonlinear programming, and we discuss the algorithmic realization of the SQP
method for infinitesimal perfect plasticity. We show that the radial return corresponds to
an orthogonal projection onto the convex set of admissible stresses. Inserting this projection
into the equilibrium equation results in a semismooth equation which can be solved by a
generalized Newton method. Alternatively, an appropriate linearization of the projection
is equivalent to the SQP method, which is shown to be more robust as the classical radial
return. This is illustrated by a numerical comparison of both methods for a benchmark
problem.

1. Introduction

Concepts of convexr analysis play an important role in the mathematical research of infini-
tesimal plasticity, and fundamental results have been obtained (see, e. g., Temam [15]). On
the other hand, concepts of convex programming for discretized plasticity have not been con-
sidered systematically (only a few results are available, e. g., by Carstensen et al. [1] and
Christensen [3]).

The purpose of this paper is to provide a better understanding of known algorithms, the de-
velopment of new algorithms for incremental plasticity, and the presentation of the algorithms
in a unified framework by the consequent application of convex programming techniques.

The incremental problem in infinitesimal plasticity is commonly solved by the closest pro-
jection method (radial return), see, e. g., [13]. It was already observed in [1] that this
algorithm corresponds to a convex minimization problem for the displacements. Since in
the general case, the primal displacement solution is not unique, this minimization problem
cannot be strictly convex. Moreover, since the discrete primal solution in perfect plasticity is
mesh-dependent and robust estimates are available only in measure valued spaces, we cannot
expect mesh-independent convergence.

By duality, incremental plasticity can be reformulated as a constraint convex minimization
problem for the stresses which can be solved, e. g., by SQP methods. Since the dual problem
is uniformly convex, we may expect robust convergence.

Algorithmically, the main idea can be illustrated geometrically (cf. Figure 1 and Figure 2).
The incremental problem in plasticity solves three equations: the flow rule for the increment
of the plastic strain, the complementarity conditions for flow function and plastic multiplier,
and the equilibrium equation for the stress. The radial return (corresponding to an orthog-
onal projection) solves the flow rule and the complementarity conditions independently for
every material point, and this (nonlinear) material response is inserted into the equilibrium
equation. The SQP method (corresponding to an projection onto a half space containing
the convex set of admissible stresses) solves in every step only a linearized flow rule and lin-
earized complementarity conditions, and this linearized material response is inserted into the
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equilibrium equation. We show that this simplification (replacing the full nonlinear material
response with the linearization) leads to a substantial gain of efficiency.

The paper is organized as follows. Since the construction of SQP methods is quite technical,
we describe this method first in a general setting (Table 1), then for orthogonal projections
(Table 2), and finally for incremental plasticity (Table 3). We start in Section 2 with a
review on nonsmooth methods, recalling generalized Newton methods for Lipschitz functions
and SQP methods for constraint convex minimization problems in an abstract framework.
Next, we recall the well-known closest point projection onto the convex set of admissible
stresses, and we propose a SQP method for the evaluation of the projection. Then, we
explain the main idea for static plasticity in Section 4, before we consider the incremental
problem in infinitesimal plasticity in Section 5. There, we consider its dual formulation, and
an existence result is proved for the incremental solution (provided that a suitable Slater
condition is satisfied).

The main result is presented in Section 7 where we derive the classical projection method
and develop the new SQP method. Both algorithms are compared explicitly by a detailed
description of the algorithmic realization. They were implemented for the special case of
von Mises plasticity, and a numerical evaluation for a standard benchmark problem is finally
given.

For simplicity, we restrict ourselves to the classical Prandtl-Reuss model in infinitesimal per-
fect plasticity where plasticity is determined by a (possibly multi-dimensional) yield surface
and an associated flow rule. Moreover, we restrict ourselves to the discrete problem. The
dependence on discretization parameters is studied only experimentally (see Table 6). The
analysis of these methods with respect to mesh-independence is beyond the scope of this
work; this would require the investigation of the proposed algorithms in function spaces as it
is done for control problems, e. g., by Hintermiiller et. al. [6, 7].

2. Nonsmooth methods

We shortly review two classes of well established methods in nonlinear programming: a
generalized Newton method for nonsmooth functions, and the SQP method for constraint
problems. For more details on these methods see, e. g., [4, 10].

Generalized Newton methods. Let X be a finite dimensional space and f: X — X be a
Lipschitz continuous function. Then, f is almost everywhere differentiable, and for x,v € X
the directional derivatives

. 1

Df(xz;v) = hmsup—(f(y—i—tv) — f(y))
t]0,y—x t

exist. The convex hull 0f(z) = conv{Df(z;v): v € X} builds the generalized Jacobian as

it is introduced by Clarke (see, e. g., [8] for the definition and for properties of generalized

derivatives). The corresponding generalized Newton method for the equation f(z) = 0 reads

as follows: starting with 2° € X, find Az* such that

0€ flzF 1)+ af(z*H Ak, k=1,2,3,..

and set ¥ = 2%~1 4+ Az*. A realization of this method requires a choice Cy € df(2*~1) such
that the linear problem CpAxz* = —f(2*~1) has a solution (see, e. g., [8] for the analysis of
generalized Newton methods for Lipschitz equations).

Convex minimization. For the special case that f = DF is the derivative of a convex
potential F': X — R, any minimizer z € X of F(-) solves the equation f(z) = 0, and a
suitably damped Newton iteration generates a monotonically nonincreasing sequence of F'(-)
since all C' € Jf(x) are positive semi-definite (see, e. g., [11] for global convergence in the
uniformly convex case).
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Convex constraint minimization. Now, we consider an additional constraint: find a
minimizer x € X of F(-) subject to g(z) < 0, where g: X — R is a convex smooth function.
If the admissible set is not empty, a minimizer of the constraint problem exists. If, in addition,
a strictly admissible element & € X with ¢g(Z) < 0 exists, a Lagrange parameter y > 0 exists
such that (x,y) is a critical point of the Lagrange functional L(z,y) = F'(z) + y g(z), which
is characterized by the KKT-system

The corresponding Lagrange-Newton method considers the Lipschitz continuous problem

0= f(x) +yDg(z) ,
0 = max{0,g(z)} .

A generalized Newton step for this system reads as follows: for given (z*~! ¢*~1) find
(Az*, Ay*) such that

0 € f@")+y T Dg(" ) +0f (" A2" +y T D" AT + Ayt Dyg(a*TT)
0 € max{0,g(z* 1)} + dmax{0, g(z* 1)} Dg(zF"1)Azk

where
{0} g(z*~1) <0,
dmax{0,g(z" 1)} =< conv{0, ¢ (zF1)} g(zF=1) =0,
{g'(=*")} g(z*=1) > 0.

The SQP method. Since the Lagrange-Newton method does not necessarily fulfill the
complementary conditions y > 0 and yg(z) = 0, we use the corresponding SQP method.
This is obtained by replacing the generalized Newton iteration by a sequence of quadratic
minimization problems with linearized constraints. Therefore, the generalized Newton step
for the Lagrange system is modified to

0= f(z" Y + " IDg(z" 1) + CrAZ® + D% g (¥ 1) Ak + AyFDg(z*1) ,  (1a)
o(e* 1) + Dgle* )Azk <0, 4F >0, yH(g*) + Dyle*)As) = 0 (1b)

with some Cj, € 0f(z*~1). Introducing the quadratic and linear functionals
1
Fk(AIE) _ f(a:k_l) Az + §A$ (Ck+yk_1D29(l‘k_1))A:E
ge(Az) = g(* 1) + Dg(zF"HAzx ,
and using Dg(zF~1) = Dgp(Az"), the system (1) has the form

0 = DF(Az*) + y*Dgi(Az")
g (A% <0, yF >0, yrg(AF)=0.

This is the KKT-system of a quadratic program: find a minimizer Az* of Fj(-) subject to
gr(-) < 0. Successively solving (1) for £ = 1,2,3,... results in the SQP method which is
summarized in Table 1. For the application of these methods to plasticity in the following
sections, we will specify X, F, f and g.
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SQP0) Start with 2 € X and y° > 0. Set k = 1.

SQP1) Find Az* € X and y* € R solving

0 = DFp(Az*) + y* Dgy (a5 ~1)
ge(AzF) <0, y* >0, yFge(Ak) =0,

where Fj(Az) = f(zF71) - Az + Az - (Cy + y* 1 D?g(2"1)) Ax,
Cr € 0f(z*1), and gp(Az) = g(zF=1) + Dg(zF 1) Ax.
Set zF = zF =1 4+ AzF.

SQP3) If f(2*) + y*Dg(2*) and max{0, g(z*)} are small enough, stop.
SQP4) Set k:=k+ 1 and go to SQP1).

Table 1: SQP method for the approximation of a critical point (z,y) € X x Rx>g of the
Lagrange functional L(z,y) = f(x) + yg(z). The algorithm can be extended by a suitable
damping strategy which guarantees global convergence in the convex case [14, 2].

3. The closest point projection

Before we study the full equations of plasticity, we discuss the equations for the strain—stress
relation independently in every material point. Here, every strain tensor € € Sym(d) is
identified with its linear elastic trial stress 8 = C : €. In this paper, we restrict ourselves to
material models where the incremental material response depends solely on 6.

Preliminaries. Let Sym(d) = {7 € R%*?: 77 = 7} be the set of symmetric matrices. The
elastic material properties (in the infinitesimal model) are defined by the Hookian tensor
C: Sym(d) — Sym(d) defined by C : € = 2ue + Atrace(e)l, depending on the Lamé
constants A, u > 0. On Sym(d), the Hookian tensor is positive definite, and the corresponding
inner product and the associated energy are denoted by

e(o,7)=0c:C 1.7, E(U):ie(a,a) :
The inelastic material behavior is modeled by a convex function
¢: Sym(d) — R"

determining the convex set of admissible stresses K = {o € Sym(d): ¢(o) < 0}. We assume
that ¢ is smooth for & # 0 and ¢(0) < 0. In the case of single surface plasticity we have
r = 1, and for r > 1, the admissible set K is the intersection obtained from the convex
constraints ¢;(o) <0fori=1,...,7.

The convex projection. Let Px: Sym(d) — K be the orthogonal projection onto the
convex set of admissible stresses with respect to the inner product e(,-).

LEMMA 1. For given 6 € Sym(d) the projection o = Pk (0) € K is uniquely determined by
the solution (o,7) € Sym(d) x R of the KKT-system

0=0—-6+~-C:D¢(o), (2a)
¢(e) <0, v-¢(d)=0, 7=0. (2b)

PROOF. The projection is characterized by the constraint minimization problem

o € Sym(d): E(o — 6) = min subject to ¢(o) <0 .
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Since E(-) is uniformly convex and the problem is strictly admissible (by the assumption
#(0) < 0), a unique minimizer o and a Lagrange parameter v > 0 exist such that (o,7) is a
saddle point of the Lagrange functional

L(o,v) = E(c —0) + - ¢(0)
which is characterized by the corresponding KKT-system (2). O
The convex potential. The corresponding convex potentials are denoted by

¢k(0)=E(0 - Px(9)), ¢x(8)=E@®)—E(0—Px(8)), 6 € Sym(d) .

These potentials will be used in Lemma 5 below to formulate the primal minimization prob-
lem. Note that we have by [5, Lem. 8.6]

Dyk(0)[n] =e(0 — Px(0),n),  6,n € Sym(d) . (3)
LEMMA 2. The functional Yk (-) is convez, nonnegative, and we have

Proor. The orthogonal projection Pk is uniquely characterized by
e(6 — Px(0),n — Px(9)) <0, 0 € Sym(d), ne K. (5)

Inserting (3) gives DYk (0)[n] = e(0,n) — Dk (0)[n] = e(Pk(0),n), and we obtain from (5)
for 6,m € Sym(d)

Yk (0) — vk (n) — DYk (n)[0 —n
= e(Pk(0),0) — E(Pk(0)) — e(Px(n),n) + E(Pk(n)) — e(Px(n),0 —n)
¢(Px(0) — Pk(n),0 — Pk(0)) + E(Pk(0) — Px(n)) > E(Px(8) — Px(n)) -

Thus, DYk (n)[0 —n] < Yk (0) — Yk (n), i. e., DYk is monotone and therefore ¢k is convex.
Finally, since 0 € K we have Yk (0) = E(0) — E(6 — Px(0)) > E() — E(6 —0)=0. O

& &

The SQP method and linearized projections. Starting with ¢ = 6 and 1" = 0, the
projection can be computed by the SQP method, i. e., in every iteration step we have to
solve the corresponding KKT system

0=0c"1-0+~"1.C:Dp(c")

+ Aok 44571 C: D p(e"Y) : Aok + Ay C: Do(aF )

or(e™) <0, A -g(e*) =0, >0,
where ¢p(a) = ¢p(a* 1)+ Dp(a*1) : (0 — ¥ 1) is the linearized flow rule. The new iterates
are given by 0% = "1 + Ao* and ¥ = ~F~1 4 A~K.

The key observation for the construction of the new algorithm in Section 7.3 below is that
the SQP step can be interpreted geometrically as the projection onto the half-space defined
by the linearized flow rule

K, = {r € Sym(d): ¢(r) < 0} S K

with respect to a suitable adapted metric. Therefore, rearranging the first equation and
defining Gy, = id +4*~1 - C : D%2¢(a*~1) gives

0=GCGp:0"—0—+1.C:D?*p(c" V) : 6" L +4F.C: Dp(c*7}).
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Since ¢ is convex, D?¢(a*~1) is positive semi-definite, and Gy can be inverted. Introducing
Cr,=G;':C, Gk G, ': : (0—*71.C: D*¢(o*71) : *~1) and using Doy (%) = Dg(a*~1)
rewrites the SQP step in the form
0=oc"_6" —i—’yk -Cy : quk(ak) , (6a)
de(0F) <0, F* - gp(a®) =0, >0, (6b)
Analogously to Lemma 1 we observe that % = P,(0%) where P,: Sym(d) — K, is the

orthogonal projection with respect to ex(o,7) = o : (C,;l : 7. Note that Cy, is the algorithmic
tangent modulus [13, Chap. 3.3.2 and Chap. 5.2.4].

Again, successively solving (6) for £ = 1, 2,3, ... results in the SQP method for the evaluation
of the projection, see Table 2.

PRO) Set 0 =0 and v’ = 0. Set k = 1.
PR1) Find o* and +* solving
0=0"— 06"+ Cp: Diy(a")
op(0*) <0, A*-gp(e*) =0, A~ >0,
(o

where ¢p.(0) = ¢(o" ') + Dp(a*!) : (6 — oF71),
G = id++*"1.C: D2¢(a* ) and Cr=G;':C, and
0" =G, ': (0 -+ C: D2(ok 1) : oF 7).

PR3) Ifo — 0+~ -C: D¢(o) and max{0, p(c*)} are small enough, stop.

PR4) Set k:=k+ 1 and go to PR1).

Table 2: SQP method for the approximation of the projection o = Pk(0) for a given trial
stress @ € Sym(d). In simple cases (r = 1 and von Mises flow rule) the algorithm stops after
one iteration step.

Example: J2 plasticity. Let » = 1 and let ¢(o) = |dev(o)| — Ky be the von Mises flow
rule, where dev(o) = o — & trace(o)I. This gives
dev(o) 9 dev(n) dev(o) : dev(n) dev(o)
D = D : —

/7) = [dev(o)]” Y9N = Tiev(o)] [dev(e)2 [dev(e)]’
and C : D¢(o) = 2uD¢(a), C : D?¢(o) = 2uD?*¢(a), D*¢(o) : o = 0. Moreover, direct
computation yields

. -1 o 2pqfdev(o)]
id +2uyD%*é(o = id— De¢(o) .
(id+2myD%(e)) i+ Tdes (o] 24(@)
Thus, for given o*~! and v*~! we obtain
2uy" dev(e" Dy
0" =6 - D .0
2 T+ [dov(oF D] A7)
and
dev(0*
PUOY) = 0 = 2umax(0.0,(0) SUEL Lt =m0, 009} (7
In this special example, the projection Pk is obtained in a single iteration step, i. e.,
dev(0
Fiel) = 0= 2umax{0.0(0)} 7 = max{0.0(6)) )

see [13, Chap. 3.3.1].
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4. The main principle in computational plasticity

Before we proceed with Prandtl-Reuss plasticity, we illustrate the standard approach in com-
putational plasticity for the simple Hencky model of static infinitesimal plasticity. Therefore,
let 'V be a finite element space of the displacements u (determining the linearized strains
e(u) = sym(Du) € Sym(d)), let ¥ be the stress space and let Xk be the convex set of
stresses which are pointwise admissible in K C Sym(d).

For a given load functional ¢, the problem of static infinitesimal plasticity can be stated as
follows: find a minimizer o € ¥k of the dual energy

(o) = / E(o)dx
Q

subject to the linear constraint

/ o : g(du) dx = {(éu), jueV.

Q

The corresponding Lagrange functional is given by

L(o,u,v) =E(o) + / v plo)dx — / o:e(u)dx+{(u) .

Q Q

and every minimizer of the dual problem is characterized by the KKT-system

0=C"':0—¢c(u)+v- D¢(o), (9a)

¢(e) <0, 7-¢(o) =0, 7v=0, (9b)

0= / o :eg(du) dx — £(du), due V(o) . (9c)
Q

Applying Lemma 1 to (9a) and (9b) gives o = Pk (C : €(u)), and inserting into (9¢) yields
the nonlinear variational problem for the displacement u € V

/ Pk (C: e(u)) : e(0u) dx = £(6u), jue V.
Q

This illustrates the main principle in nearly all methods in computational plasticity. We aim
for developing a new class of solution methods with better mathematical properties.

5. Infinitesimal quasi-static perfect plasticity

We define the full equations of quasi-static plasticity, combining the global equilibrium equa-
tions in €2, and the local pointwise equations for the stress-strain relation and the associated
flow rule determined by the yield function ¢.

Data. Let Q C R? (d = 2,3) be the reference configuration, and let Tp UT'x = 95 be a
decomposition of the boundary. We fix a time interval [0, 7).

The problem depends on the following data: a prescribed displacement vector
up: I'p x [0,7] — R?

for the essential boundary conditions on I'p and a load functional
L(t,ou) = / b(t) - dudx +/ ty(t) - duda
Q Tn

depending on body force densities and traction force densities

b: O x[0,7] — R?  ty: Ty x[0,7] — R?.
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The equations of infinitesimal plasticity. We want to determine displacements
u: Q% [0,7] — R?,
stresses
o:Qx[0,T] — Sym(d) ,
plastic strains
gp: @ x[0,T] — Sym(d) ,
and a plastic multiplier
A Qx[0,T] —R"
satisfying the essential boundary conditions
u(x,t) = up(x,t), (x,t) €eT'p x[0,T],
the constitutive relation
o(x,t) =C: <s(u)(x,t) ~ sp(x,t)), (x,1) € Q x [0,T]
the equilibrium equations

—dive(x,t) = b(x,t), (x,t) € 2 x[0,T7],
ox,t)n(x) = ty(x,t), (x,t) € 'y x [0,T]

(where n(x) denotes the outer unit normal vector on 0f2), the flow rule
d
asp(xat) = )‘(Xat) : D¢(U(Xat)) ) (X7 t) € x [O’T] ) (10)

and the complementary conditions (Karush-Kuhn-Tucker)

Ax,t) - ¢(o(x,t) =0, A(x,t) >0, ¢(o(x,t) <0, (x,t) €Qx[0,T]. (11)

6. Discrete infinitesimal plasticity

The discrete model is constructed in two steps. First, we introduce a spatial discretization
based on finite elements for the displacements and Gauss point values for stresses and internal
parameters. Then, the fully discrete model is obtained by a backward Euler method in time.

Discretization in space. Let V C C%1(Q2,R) be a finite element space spanned by nodal
basis functions. Let

V(up) ={v e V:v(x) =up(x) for x € D},
where D C I'p is the set of all nodal points on I'p.

Let & C Q) be quadrature points and let wg be corresponding quadrature weights such that

/Qs(v) e(w)dx =) wee(v)(€) :e(w)(§), v,weV.

gcE

Weset A={pu: 2 — R’} and ¥ = {r: E — Sym(d)}. Let e: V — X be given by
e(v)(€) = sym (Dv(&)). For given u € V this defines C : e(u) € 3. In our notation, the
integral is used also for the finite sums

/Qazsdx = nga(f):s(é).

gcE
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The semi-discrete equations of infinitesimal plasticity. The semi-discrete problem
which is discrete in space and continuous in time reads as follows: determine displacements
u: 0,7] — V
stresses
o:0,T] — X,
plastic strains
gp: [0,T)] — X,
and a plastic multiplier
A [0,T] — A
satisfying the essential boundary conditions
u(t) € V(up(t)) , te0,T],
the constitutive relation
o(€,) =C: (s@)E D) ~ (&), (61 €EX[0,T]
(using o (&,t) := o(t)(€) for o(t) € ), the equilibrium equation in weak form

/a(t):s(éu)dx — Ut bu),  te[o,T], SueV(0),
Q

the flow rule

G elen) = Men) Doolet) . (€0 eZx[0T].

and the complementary conditions (Karush-Kuhn-Tucker)

A& 1) - ¢(a(é,1) =0, AE&t) >0, ¢(o(&1) <0, (&) ex[0,T].
Discretization in time. The model of incremental infinitesimal plasticity is obtained by a
decomposition

O=to<ti < - <tny=T

of the time interval and the application of the backward Euler scheme: for n = 1,2, 3, ... the
next increment depends on the material history described by sg_l (starting with sg = 0),
the new load ¢,(éu) = #(t,,0u) and the new Dirichlet boundary values u, = up(t,). We
compute the displacement u” € V(u},) satisfying the essential boundary conditions, the
stress 0" € X, the plastic strain €, € ¥, and the plastic multiplier A" € A satisfying the
constitutive relation

o"(€) = C: (e(u")() — p(e)),  E€E, (12)

the equilibrium equation
/ o":e(du)dx = {,(0u), due V(o) , (13)
Q
the discretized flow rule

L (e3(©) - 7(©) = N(€) - Dole™(E) . e,

tn - tn—l

and the complementary conditions

N'(€) - ¢(a"(€)) =0, N'(€) 20, ¢(0"(€) <0, E€E.

Since the problem is rate-independent, rescaling of the time parameter does not affect the
model. Thus, we define 4" = (t,, — t,—1)A\" € A, i. e., the flow rule has the form

ey (&) =€, (&) +1"(€) - Do(o™(§)), E€E. (14)
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Together with (12) and (13), we can state the fully discrete problem in infinitesimal perfect
plasticity: for given sg_l € X find 6" € ¥, u" € V(u},) and " € A such that the
equilibrium equation, the flow rule and the complementary conditions are satisfied

(FR,)  0"(€) =C: (s(u")(&) — 5 '(€) = 1"(€)- Dé(o"(€)),  €€8,  (15a)

(CCa)  6(0"(€) <0, 7"(€)-6(0"(€) =0, +"(6)>0, £€E, (15b)

(EE,) / o™ e(du)dx = £p(5u),  du e V(o). (15¢)
Q

For the next time step, &) is determined by the discretized flow rule (14).

The discrete dual problem in incremental plasticity. We study the dual minimization
problem for a fixed time step from ¢, 1 to ¢, and for given 52*1 € 3. In order to incor-
porate the Dirichlet boundary conditions into the Lagrange parameter, we reformulate the
equilibrium equation (15¢) in the equivalent form

/ o" :eg(0u)dx — / (o"n) - duda = {,,(ou), dueV(up) . (16)
Q I'p
The corresponding incremental dual energy is defined by
Enlo) = / E(oc—C: sg_l) dx — / (on)-upda . (17)
Q I'p

Then, the dual convex minimization problem reads as follows: find a minimizer o € X of the
dual energy &,(-) subject to the pointwise convex constraint o(§) € K for £ € E and the
linear constraint (16).

THEOREM 3. Assume that o strictly admissible stress state ™" € X exists, i. e.,
o(t"(€)) <0, E€E, (18a)
/ 7" e(du)dx = £,(éu), due V(o) . (18b)
Q
Then, problem (15) has a solution (o™, u™,y") € L xV(ul,)) x A. Moreover, o™ is the unique
minimizer of the dual convex minimization problem.
PROOF. Since £7(-) is uniformly convex and since 7% is pointwise in K and satisfies (16),
the admissible set is not empty and therefore a unique solution o” of the incremental dual
problem exists. Moreover, since 7" is strictly admissible (i. e., the Slater condition is fulfilled),
Lagrange multipliers (u”,7") € V(u},) x A with 4 > 0 exist, such that (o”,u",7") €
3 x V(ul)) x A is a saddle point of the Lagrange functional

L"(o,u,7) :5"(0)+/§27-¢(o’)dx—/ﬂa:s(u)dx+/ (on)-uda+ l,(u) .

T'p

Thus, (o™, u",~") is a critical point of the Lagrange functional: we have

p

DoL" (o, u,y)[do] = / o:C!:dodx — / e" 1 do dx
Q Q

+/ ~v-Do(o) : 50’dx—/5a ce(u)dx
Q Q
and DsL" (o™, u™,+")[do] = 0 for all 6o € X is equivalent to

C:o"(€) — ey (&) +1"(€) - Do(a"(§)) —e(u")(§) =0, E€E.

Together with the admissibility in K and the equilibrium equation (16), this shows that (15)
is equivalent to the KKT-system of the incremental dual minimization problem. O
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7. Algorithms in computational plasticity

We discuss two classes of nonlinear solution methods for the discrete incremental prob-
lem (15):

a) The equations (FR,,) and (CC,,) describe the orthogonal projection of a suitably de-
fined trial stress onto the admissible set of stresses. Inserting this projection into the
equilibrium equation (EE,,) results in a nonlinear variational problem for the displace-
ments which is solved by a generalized Newton method. Within every iteration step, the
stress and the plastic parameter are defined by the local solution of (FR,) and (CC,)
independently for each integration point.

This is the standard return algorithm in computational plasticity, often referred to as
Radial Return or Closest Point Projection (see, e. g., [13]).

b) Linearizing the flow rule results in the KKT-system of a quadratic minimization problem.
This defines the SQP method. The iterates solve the equilibrium equation together with
linearizations (FR,, ;) and (CC,, ;) of flow the rule and the complementary condition.
The iteration stops if (FR,,) and (CC,,) are satisfied up to sufficient accuracy.

REMARK 4. In the special case of J2 plasticity with von Mises flow rule further variants are
possible since the projection can be evaluated directly by (8). Eliminating (15b) in (15) yields

FR,)  o(6) = C: (cw)(€) - () — max{0. 6(0™)}Do(o™(€)), €€ E. (19
(EE/) / o" : e(du)dx = £,(5u),  Su e V(o). (19b)
Q

The application of a generalized Newton method directly to the system (19) is studied by
Christensen [3].

7.1. The projection method. Defining the trial stress
0,(u) =C: (e(u) — sg_l) (20)
rewrites (15a) and (15b) in the form

0=0"—0,(u")—~"-C:D¢(c"), (21a)
Pp(e") <0, "-¢(e™) =0, " >0. (21b)

Lemma 1 ensures that equation (21) can be solved independently for every integration point
& € E defining the projection

0" = Pg(0,(u")) . (22)

Inserting (20) and (22) into the equilibrium equation (15c) yields the nonlinear variational
problem for the incremental problem in plasticity: for given sg_l, find u" € V(ul)) such that

/Q Pi(C: (e(u™) — el 1)) : e(6u) dx = Lo[du],  Sue V(o) . (23)

LEMMA 5. The incremental energy functional
T (u) = /QqﬁK (Gn(u)) dx — £y [u], u € V(up) (24)

is conver. Moreover, if a strictly admissible stress ™" € X satisfying (18) exists, the functional
(24) has a minimizer u" € V(ul,)) which solves the variational equation (23).

Note that in general the primal solution is not unique.
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PROOF. The convexity of Zi""(-) follows from Lemma 2. Moreover, (4) gives

D<¢K(9n(u")))[6u] = Dy (0,(u™) [DO,(u")[6ul]
= ¢(Pk(0,(u")),C:e(bu)) = Px(0,(u")) : e(0u)

and therefore

DI (u)[ou] = [ Px(C: (e(u) — 8;,“1)) ce(du)dx — £, [0u] .
Q

If the assumptions of Theorem 3 are satisfied, a solution (o, ", u") of (15) exists. Moreover,
by (21) the primal solution u™ solves equation (23). Thus, u” is a critical point of Z*"(-),
and since Z;"(-) is convex, it is a minimizer. O

We apply a generalized Newton iteration to find a minimizer of Tiner(.) by computing a critical
point of F,, = DZ™" (i. e., by solving the equation F,(u™) = 0). For a given start iterate
u™? € V(u}), find increments Au™* € V(0) and damping parameters s™* € (0, 1] with

0 € F(u™* 1) + 0F, (v HAurk,  uk = uF L p smFAuE B =1,2,3, ..

such that the sequence Zi**'(u™") is decreasing.

Choosing the consistent tangent C™* € 9( Pk (8,,(u™*1))) = 9Pk (6, (u™ 1)) : C leads to
a realization of the Newton step in the form

/ e(Au™") : C¥F : g(du) dx = £,[6u] — / Pk (Hn(u”’kfl)) ce(du)dx . (25)
Q Q

Example: J2 plasticity. For ¢(o) = |dev(o)| — Ky we obtain from (8)
dev(0) : dev(7) dev(0)
| dev(0)] | dev(0)]
dev(r)  dev():dev(r) dev(6) >
| dev(0)| |dev(0)] |dev(6)|?

0Pk (0)[r] = 7 —0max{0,dev(0)| — Ko}

~ max{0, | dev(8)| — KO}(

7.2. The Lagrange-Newton method. Alternatively one can consider a nonlinear itera-
tion for the full KKT-system (15), where the inequality ¢(o) < 0 is replaced by the non-
smooth equality max {0, ¢(o)} = 0: find (¢™,7",u") € £ x A x V(u}})) with

F' (", 4", u") =0,
where
o—C: (e(u) —ept —v-Do(o))

]:”(O',fy,u) = max {O,gb(a)}
Joo el]dx — 4, ]

A corresponding generalized Newton iteration

Ao.n,k
0e Fn (o_n,k—l,,yn,k—l, un,k—l) + 9F" (o_n,k—l’ ,yn,lc—l’ un,k—l) A"}/n’k
Aun,k

can be defined by a suitable active set strategy (using the techniques proposed in [6]), al-
though in general 9F™ (a"vk_l,ynvk_l, u"’k_l) is not regular.

The algorithmic realization has the same structure as the projection method with the same
formula for the consistent linearization and a modified right-hand side. Since this approach
in general does not fulfill the complementary conditions (15b), we consider the corresponding
SQP method.
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7.3. The linearized projection method. The SQP method is obtained by inserting the
linearized complementary conditions into the Lagrange-Newton iteration: for a given iterate
(" 14" u"l) € B x A x V(u?) define the linearized flow rule

On k(@) = $(@™71) + Do(a™ ) 1 (0 — o) (26)
and consider the following system: find (Ao™, Ay", Au™) € 3 x A x V(0) with

0=g™1_C: (e(u"’k_l) —enl gl qu(o-"’k_l)

+ A0 — € (s(AumF) = Ay Do(o™ET) — L D26 (0 F ) s Ag™E),
Gni(0™F) <0, "7 g p(a™F) =0, 4P >0,
0= /Q ok g(u) dx — £, (6u) + /Q Ac" :e(fu)dx,  due V(0)

with (6™,7",u”) = (6" 1, 4"~ u" 1) + (Ao™, Ay"?, Au™). This can be rewritten as

(FR,x) O0=o"F—C: (s(u"’k) —ept—y"h . Dg (o™ 1) (28a)
_,.Yn,kfl i D2¢(0,n,k71) . (o,n,k _ o,n,kfl)) ,
(Ccn,k) ¢n,k (o'n,k) < 07 7n7k : an,k (o'n,k) = 07 7n7k > 07 (28b)
(EE,, k) / o™k e(du) dx = £,(5u), due V(o) . (28c¢)
Q

The standard return algorithm can be adapted to this system as follows. Since ¢ is convex,
D2?¢ is positive semi-definite and therefore Chi = (id +ymkE=1.C Dng(o-””l“_l))_1 :Cis
well-defined. Introducing the modified trial stress

en,k(u) — Cn,k . (s(u) _ E;—l + ’)/n’k_l . D2¢(o_n,k—1) : o_n,k—l)
and using Dg(a™ 1) = D¢, x(o™F) rewrites (28a) and (28b) in the form
0=o"F— 0n7k(un’k) — vn’k -Cpp D¢n7k(0"’k), (29a)
Ong(0™F) <0, " dup(a™r) =0, 4™ >0. (29Db)

Again, Lemma 1 guarantees that equation (29) can be solved independently for every inte-
gration point & € E. We have

G'n’k = Pn7k (Hnyk(u"’k)) y (30)
where P, ;,: Sym(d) — K,, 1, is the orthogonal projection onto the half-space
K, ={7€Sym(d): ¢, x(T) <0} DK

with respect to the inner product e, (o, T) = o : (Cn,k)_1 : 7. The associated energy
is denoted by E, (o) = %en,k(a,a), and the corresponding convex potential is given by
wn,k(a) = En,k(a) - En,k(a - Pn,k(a'))

Now inserting (30) into the equilibrium equation (28c) yields a nonlinear variational problem
for the SQP step: for given iterates (o™*~1 4"*~1) find u™* € V(u})) such that

/ P (0ni(u™)) : e(Gu) dx = £[5u],  Su e V(o). (31)
Q
LEMMA 6. The primal energy functional for the linearized projection step

1 = [ vna(uatw) dx - fful. e Viap) (32)

is convex. Moreover, if a strictly admissible stress satisfying (18) ezists, the functional (32)
has a minimizer wF € V(u?) which solves the variational equation (31).
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PROOF. The quadratic dual energy functional for the linearized projection step is given by

Eni(o) :/QE"”“ (0' —Cpk: (5271 — Rl D2 (™R U"’kil)) dx _/1‘ (on)-u’da,
D

and the SQP step can be formulated as follows: find a minimizer ™" of £, x(-) subject to the
constraints o (§) € K,, i, for £ € E and the equilibrium equation (16). Since K C K,, 1, this
minimization problem is also strictly admissible. Therefore, there exists a minimizer o™* of
Enk(+) and Lagrange parameters (7%, u™*) such that (o™* 4™ u™*) is a solution of the
corresponding KKT-system (28). Thus, u™* solves (31), and analogously to Lemma 5 we
can show that u™* is a critical point and therefore a minimizer of I;Lnfcr()

n,k

Moreover, since &, (-) is uniformly convex, the minimizer ™" is unique. O

The SQP method is now realized by the linearized projection algorithm: for suitable starting
iterates (o™°,~4™0), compute for k = 1,2,3, ... a minimizer u™* of I'""(-). Then, set

_ max {06 (@ni(u™t)}
"~ Dg(o™F 1) : Cppo : Dok 1)

R A ICIC VA (33)
together (™% u™k k) solve (28).

k

Since u™" is a critical point of F, ; = DIilncr, we use a generalized Newton method to

solve the nonlinear variational problem (31): for a given start iterate u™*° € V(u?) find
increments Au™®™ € V(0) and damping parameters s™*™ € (0, 1] with

0e ka(un,k,mfl) + 8Fn7k(un’k’m71)Aun,k7m,

7k7 — 7k7 -1 7k7 — i 7k7
and u™™" = u™HM 45 o Au™P for m = 1,2, 3, ... such that the sequence I;{j,cf(u” )
is decreasing.

The realization of the Newton step requires the choice of a consistent tangent C™F™ ¢
d(Px(6(u™Fm=1))) = 9Pk (8(u™*™ 1)) : C, 1 and results in a linear problem of the form

/ (AumFmY L CPEM L o(5u) dx = £, [5u] — / P (s (@™ 1)) s e(uydx . (34)
Q Q

Example: J2 plasticity. For ¢(o) = |dev(o)| — Ky we obtain from (7)

dev(0) : dev(T) dev(0)

8Pn,k(0)[7'] = 7 —0max{0,dev(0)| — Ko} [ dev(8))] | dev(0)] )

A short comparison. Algorithmically, the realization of the projection method (25) and
the realization of the SQP method via linearized projections (34) have the same structure
using different projections, trial stresses and consistent tangents, cf. Table 3.

Conceptually, both algorithms follow a different strategy. The projection method iterates
along admissible o™ = Py (Gn(u”’kfl)) € K until the equilibrium is reached (cf. Figure 1),
whereas the SQP method iterates along ™™ = P,k (0n7k(u"’kvm_1)) € K,, i, satisfying the
equilibrium equation until the admissible set is reached (cf. Figure 2).
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{fQ"' rel]dx = Kn[']}

Figure 1: Illustration of the projection method for €, = 0: find a displacement vector
u € V such that the orthogonal projection onto K of the trial stress 0 yields the admissible
stress o in the intersection of the convex set K and the affine space of stress states satisfying
the equilibrium condition (for this illustration we identify the displacements u with their
associated trial stress 6(u)).

VX

{Joo : el]dx = tn]]}

Figure 2: Illustration of the SQP method for €, = 0: in every SQP step, find a displacement
u™* such that the orthogonal projection onto the half-space K, ;. defined by the linearized
linearized flow rule ¢, ; satisfies the equilibrium equation.
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Projection method

Linearized projection method (SQP)

P0) Set e) =0, n = 1.

P1) Set u™? = u"1.

Then, set the Dirichlet boundary values
ud(x) = up(x), x€D.
Set k= 1.

P2) Compute the trial stress,
the orthogonal projection

b= P(8, (w1

and " evaluate the residual

Ry, k[6u] = "(6u) — [, o™ : e(6u) dx.
P3) If || R, k|| is not small enough,

go to P5).
P4) Set u® = un,k’ o" = n,k’ ,.Yn — ,yn,k’

el =ep~l 44" Do(a™).
Set n:=n+ 1 and go to P1).

P5) Compute

C™*F € 9Pk (0, (u™* 1)) : C
and compute Au™* such that
e(Au™*) : CVF : g(du) dx = R, x[0u].
Determine a suitable damping factor
s™F € (0,1], set

uvk = uvk—l gk Aynik

Set k :=k + 1 and go to P2).

Jae

S0) Set e) =6 =0,7"=0,n=1.

S1) Set u™? = w7, o™V = on !,

,yn,O — ,.Ynfl
Then, set the Dirichlet boundary values

u?(x) = up(x), x€D.
Set k= 1.

S2) Set u™*0 = u™*~1 and set m = 1.

S3) Compute the trial stress,
the linearized projection
o.n,k,m — Pn,k(en,k(un’k’m_l))

knm - evaluate the residual

Joo™mm : e(du) dx.

S4) If ||R,, i m | is not small enough,
go to S8).

and y
Ry, jom[0u] = £7(6u) —

S5) Set u™k = unhm, gk = gnkm and
fynvk — ,yn,k,m‘

S6) If the norm of

ok _C - (s(un,k)_sz—l_vn,k . D¢(0n,k))

is not small enough, set k := k+ 1, and
go to S2).

S7) Set u” = u™*, o" = g™k A" = 4k,

e ="l 44" Dg(a™).
Set n:=n+ 1 and go to S1).

S8) Compute
CvEm € 0P, k(0,1 (WwFm=1)) 1 C,
and compute Au™*™ such that
Joe(Aumkm) . Ckm: g(fu)dx = Ry, j, m[0u].

Determine a suitable damping factor
smkm e (0,1], set
un,k,m — un,k,m—l +sn,k,mAun,k,m

Set m :=m+ 1 and go to S3).

Table 3: Comparison of the algorithmic steps for the projection method and the SQP method
using linearized projections. For the SQP method, the additional step S6) is required to con-
trol the convergence of the flow rule. On the other hand, the nonlinear quadratic minimization
problems of the SQP steps are simpler than the fully nonlinear problem in incremental plas-
ticity. The realization of a specific model requires only formulae for the (linearized) trial
stress, projection and consistent tangent (see Table 4 for J2 plasticity).
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Projection method: compute (9"’]‘“,77"7’““,7””’“,0’"7’“,@"7’§ with fixed C, Pk
en,k _ Bn(un,kfl) —C - (s(un,kfl) _ Enfl)

p
nk dev(G”’k)
T Tdev(e®)
vE = max{0, | dev(™F)| — Ko}
o™t = P(0") = 0™ — 2y

cvk — ¢ 2 Sgn(,)/n,k) nn,k‘ ® nn,k B QH’Yn,k <dev —T[n’k ® nn,’?)
| dev(6™F)]

SQP method: compute 8% ymkm grkm Cnkm with modified M k» Crkes Pk

_ dev(g™F )
Mk = ’ dev(o.n,kfl)’
2,U/7n’k_1
Cop = C—2 ((dev - )
nk /’L2Iu,yn,k—1 + | dev(a-n,k;—l)| eV =Mk ® Mo,k

en,k,m _ Bnk(un,k,mfl) _ ka . (E(un,k,mfl) _ E}T)L*l)
A= a0, 6(8"5™) 4, 07
o_n,k,m _ Pmk(en,k,m) _ Bn,k,m . QIu,yn,k,mnmk
ka’m = Cn,k —2p Sgn(’}/Mk’m) Mo,k ® Mo,k

Table 4: Collection of the formulae for the evaluation of (linearized) trial stress, projection and
consistent tangent for J2 plasticity. Here we use the signum function defined by sgn(v) =0
for v = 0 and sgn(y) =1 for v > 0.

8. Numerical experiment

We study the performance of the two algorithms for a benchmark problem in infinitesimal
perfect plasticity (see [9]). The computations are realized in the finite element code M-+
[16] supporting parallel multigrid methods.

For the benchmark problem we use the following material parameters: the elastic properties
are determined by the Poisson ratio v = 0.29 and Young modulus E = 206900.00[N /mm?]
defining the Lamé parameters p = E/(2(1 +v)) and A = Ev/((1 + v)(1 — 2v)). Plasticity
is determined by the yield stress Ky = 450.00[N/ mm2]. Geometry and boundary conditions
are illustrated in Figure 3: the reference domain Q = (0,10) x (0,10) \ B1(10,0) describes a
quarter of a rectangle with a circular hole. The Dirichlet data arising by symmetry are given
by

u1(10,a:2) =0, x9€ (1, 10), UQ(l'l, 0) =0, =€ (0,9) ,
10
and a load functional depending linearly on ¢t > 0 is given by 4(¢,v) = 100 t/ v(x1,10) dz;.

0
Within a plane strain assumption, the displacements are embedded into 3-d by the extension
u3 = 0 and all material computations are performed in 3-d.

First, we study the nonlinear convergence behavior for a single time step (Table 5). We
observe that the standard projection method converges quadratically in the final iterations
but the iteration starts quite slow since global convergence requires strong damping. The
SQP method also shows quadratic convergence but here the global convergence properties are
better. Again, the generalized Newton method for the linearized projection method in every
SQP step converges quadratically in the final iterations, and again global convergence for the
quadratic sub-problems requires strong damping but less damping than the full projection
method. Of course, the nonlinear problems in the substeps do not need to be solved exactly.
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Figure 3: Geometric configuration and boundary conditions (left), deformed configuration for
t = 4.7 (center), and distribution of the equivalent plastic strain (right) for the benchmark
problem.

In an inexact SQP variant, the accuracy requirements for the linearized projection steps can
be reduced without affecting the overall SQP convergence.

The next Table (Table 6) studies the dependence on the discretization level. In all cases,
the generalized Newton methods for the nonlinear variational problems (23) and (31) are
globally convergent (provided a suitable damping strategy is applied) but the number of
required steps to obtain a prescribed accuracy is increasing with the number of unknowns.
Locally, we observe quadratic convergence close to the solution. This is the expected behavior
if the active set of the convex pointwise constraint is (more or less) identified. Altogether,
this numerical experiment reflects the fact that the primal displacement approximation in
H' is not well-posed: stable a priori estimates are available only in the space of bounded
deformations, resulting in mesh-dependent discrete estimates [12].

On the other hand, the SQP method (and its inexact variant) shows mesh-independent
quadratic convergence. Although no formal proof is given for this observation, this is the
expected behavior since the the dual stress approximation in Lo is well-posed and therefore
mesh-independent a priori bounds are available.

Projection method SQP method inexact SQP method
(FR) (CC) (BE) | (FR)  (CC) (BB)| (FR) _ (CC)  (EE)
€ € 24.76562 | 115.12502 5.093109 € 115.11406  5.093016  0.144698
€ € 17.87826 | 43.03050 0.797243 € 43.02698 0.797055 0.048011
€ € 13.17991 0.78454 0.074983 € 0.78515 0.074975 0.022294
€ € 9.66825 0.00294  0.000073 € 0.00293 0.000072  0.000012
€ € 6.38058 € € € € € €
€ € 4.38372
€ € 3.32549 t, = 4.6, At, = 0.3
5 € 0.66842 e<10710
€ € 0.00188 16384 quadrilateral cells, bilinear finite elements
€ € €

Table 5: Comparison of the convergence behavior of the projection method, the SQP method,
and an inexact version of the SQP method for one time step. For the numerical test, the defect
of the equations (15a), (15b), (15¢) in the Euklidian norm is reduced to e < 107!°. Note that
this is far more accurate than the discretization error of the finite element approximation.
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cells dof Projection method SQP method inexact SQP method
4096 8450 9 Newton steps | 5 SQP steps (18 substeps) | 5 SQP steps (10 sub.)
16384 33282 | 10 Newton steps | 5 SQP steps (21 substeps) | 5 SQP steps (14 sub.)
65536 | 132098 | 17 Newton steps | 5 SQP steps (23 substeps) | 5 SQP steps (16 sub.)
) ( )

) ( )

262144 | 526338 | 31 Newton steps | 5 SQP steps (31 substeps) | 5 SQP steps (22 sub.
1048576 | 2101250 | 56 Newton steps | 5 SQP steps (42 substeps) | 5 SQP steps (31 sub.

P~ N~ A~

Table 6: Iteration count depending on the discretization level for the projection method,
the SQP method, and an inexact version of the SQP method for one time step at t, = 4.6
and At, = 0.3. The number of substeps counts the number of generalized Newton steps
for all SQP steps. Since the numerical expense is dominated by the linear solver within the
generalized Newton step, the overall computing time is proportional to the number of Newton
steps or total number of substeps in the SQP iteration, respectively.

Conclusion. Although convex programming provides a better understanding of computa-
tional plasticity, in many applications there is no need for new solution methods; the well-
established projection method is often superior to other methods. On the other hand, this
method is not stable, and close to the limit load (even for regularized models with small
regularization parameters) the method may deteriorate.

The major advantage of SQP methods is the large flexibility (e. g., using augmented La-
grangians) which allows to enhance and stabilize the method to far more general (and even
nonconvex) plasticity models, in particular to multi-yield plasticity or finite plasticity, where
the realization of the projection method is not straight-forward. This will be studied in future
work.
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