
 

 

 

 

 
 

A Convergenze Analysis Of The  
Newton-Type Regularization CG-Reginn With 

Application To Impedance Tomography  

A. Lechleiter 
A. Rieder  

Preprint Nr. 07/01 

 
 
 

UNIVERSITÄT  KARLSRUHE 

Institut für Wissenschaftliches Rechnen  

und Mathematische Modellbildung zW RM M  

76128 Karlsruhe 



Anschriften der Verfasser:

Dipl.-Math. Armin Lechleiter
Graduiertenkolleg 1294: Analysis, Simulation und Design nanotechnologischer
Prozesse
Universität Karlsruhe (TH)
D-76128 Karlsruhe

Prof. Dr. Andreas Rieder
Institut für Angewandte und Numerische Mathematik und
Institut für Wissenschaftliches Rechnen und Mathematische Modellbildung
Universität Karlsruhe
D-76128 Karlsruhe



A CONVERGENCE ANALYSIS OF THE

NEWTON-TYPE REGULARIZATION CG-REGINN WITH

APPLICATION TO IMPEDANCE TOMOGRAPHY

ARMIN LECHLEITER† AND ANDREAS RIEDER‡

Abstract. The Newton-type regularization CG-REGINN is an efficient tool for sta-
bly solving nonlinear ill-posed problems. In this paper a new convergence analysis for
a slightly modified version of CG-REGINN is given, extending previous results by Hanke
[Numer. Funct. Anal. Optimiz. 18, 971-993, 1997] and the second author [SIAM Nu-

mer. Anal. 43, 604-622, 2005]. Some numerical experiments from electrical impedance
tomography illustrate the algorithm.

Key words. Nonlinear ill-posed problems, inexact Newton iteration, conjugate gra-
dients, electrical impedance tomography.
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1. Introduction. During the last 15 years a broad variety of Newton-
like methods for regularizing nonlinear ill-posed problems have been sug-
gested and analyzed, see, e.g., [1, 8, 12] for an overview. So different
the methods are, they almost all rely on needful assumptions restricting
the nonlinearity, especially when a posteriori stopping rules are employed.
The weakest of these assumptions currently is the tangential cone condi-
tion which was presumably introduced by Scherzer in [14]. An operator
F : D(F ) ⊂ X → Y satisfies the tangential cone condition if

‖F (v)−F (w)−F ′(w)(v−w)‖Y ≤ ω‖F (w)−F (v)‖Y for one ω < 1 (1.1)

locally about a point in D(F ), the domain of definition of F . Here, F ′ is the
Fréchet derivative of F and X as well as Y always denote Hilbert spaces.

In this paper we consider the Newton-type regularization CG-REGINN and
give a novel convergence analysis under (1.1). We complement and improve
on previous results of Hanke [4] who investigated a slightly different version
of CG-REGINN, also assuming the tangential cone condition. CG-REGINN’s
ability for tackling severely ill-posed problems arising in electrical impedance
tomography was demonstrated in [9].

Now we will set the stage for introducing CG-REGINN later in Section 3.
We want to find a stable approximate solution of the nonlinear ill-posed
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2 A. LECHLEITER AND A. RIEDER

equation
F (x) = yδ (1.2)

where the right hand side yδ is a noisy version of the exact but unknown
data y = F (x+) satisfying

‖y − yδ‖Y ≤ δ. (1.3)

The non-negative noise level δ is assumed to be known. All Newton-type al-
gorithms for solving (1.2) update the actual iterate xn by adding a correction
step sN

n obtained from solving a linearization of (1.2):

xn+1 = xn + sN
n , n ∈ N0, (1.4)

with an initial guess x0. For obvious reasons we like to have sN
n as close as

possible to the exact Newton step

se
n = x+ − xn.

Assuming F to be continuously Fréchet differentiable with derivative F ′ :
D(F ) → L(X,Y ) the exact Newton step satisfies the linear equation

F ′(xn)se
n = y − F (xn) − E(x+, xn) =: bn (1.5)

where E(v,w) := F (v) − F (w) − F ′(w)(v − w) is the linearization error. In
the sequel we will use the notation

An = F ′(xn) and A = F ′(x+).

Of course, the above right hand side bn is not available, however, a perturbed
version is known:

bε
n := yδ − F (xn) with ‖bn − bε

n‖Y ≤ δ + ‖E(x+, xn)‖Y . (1.6)

Therefore, the correction step sN
n is determined as a stable approximate

solution of
Ans = bε

n. (1.7)

The various Newton-type regularizations for (1.2) differ in how they solve
(1.7) and how they stop the Newton iteration (1.4).

Algorithm CG-REGINN applies the method of conjugate gradients (CG) to
(1.7) which is terminated as soon as the relative residual falls below a certain
tolerance. This termination criterion is typical for inexact Newton methods
giving CG-REGINN its name: REGularization by INexact Newton methods.
The corresponding outer Newton iteration (1.4) is stopped by a discrepany
principle. See Figure 3.1 below for algorithmic details.

We proceed our paper in Section 2 by recalling and proving well-known
and less well-known properties of the CG-method which we will rely on later
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in our convergence analysis of CG-REGINN. In Section 3 we explain all details
of CG-REGINN and give a formulation in pseudo code. Our new convergence
results are presented in Section 4 followed by a discussion of some conse-
quences. Finally, Section 5 completes the paper with numerical illustrations
from electrical impedance tomography where (1.1) is satisfied. In two ap-
pendices we collect results which are needed but do not fit comfortably in
the body of the text.

2. Preliminaries about the CG-method. Let T ∈ L(X,Y ) and 0 6=
g ∈ Y . The method of conjugate gradients (CG) is an iteration for solving
the normal equation T ∗Tf = T ∗g. Starting with f0 ∈ X the CG-method
produces a sequence {fm}m∈N0

with the following minimization property

‖g − Tfm‖Y = min
{
‖g − Tf‖Y

∣∣ f ∈ X, f − f0 ∈ Um

}
, m ≥ 1,

where Um is the m-th Krylov space,

Um := span
{
T ∗r0, (T ∗T )T ∗r0, (T ∗T )2T ∗r0, . . . , (T ∗T )m−1T ∗r0

}
⊂ N(T )⊥

with r0 := g−Tf0. Here, N(T )⊥ denotes the orthogonal complement of the
null space N(T ) of T . Since

〈g − Tfm, Tu〉Y = 0 for all u ∈ Um, (2.1)

see formula (5.19) in [12], we have that

〈g − Tfm, T fm〉Y = 0 for all m ∈ N0

provided f0 = 0 which we assume throughout.
(2.2)

Therefore,

‖g − Tfm‖2
Y = ‖g‖2

Y − ‖Tfm‖2
Y < ‖g‖2

Y as fm ∈ N(T )⊥ \ {0}. (2.3)

Introducing

η2
m := 1 − ‖Tfm‖2

Y

‖g‖2
Y

< 1 (2.4)

the above equation reads

‖g − Tfm‖Y = ηm‖g‖Y .

Lemma 2.1. We have that ηm ≤ ηm−1 ≤ η1 < 1 for all m ≥ 2.
Proof. The assertion follows immediately from

‖Tfm−1‖Y ≤ ‖Tfm‖Y ≤ ‖g‖Y (2.5)

which we will prove now. By

‖g − Tfm‖2
Y = ‖g‖2

Y − ‖Tfm‖2
Y and ‖g − Tfm−1‖2

Y = ‖g‖2
Y − ‖Tfm−1‖2

Y
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and
‖g − Tfm‖2

Y ≤ ‖g − Tfm−1‖2
Y

we directly find (2.5).

Lemma 2.2. We have that

lim
m→∞

η2
m = 1 −

‖P
R(T )g‖2

Y

‖g‖2
Y

=
‖PR(T )⊥g‖2

Y

‖g‖2
Y

where PM : Y → Y is the orthogonal projection onto the subspace M ⊂ Y .
Proof. It is a well-known property of the CG-iteration that

lim
m→∞

Tfm = P
R(A)g

whenever f0 ∈ N(T )⊥, see, e.g., page 135 ff. in [12].

To formulate and to prove the following results we need to recall further
facts of the CG-iteration. The m-th iterate fm can be computed from the
previous one by

fm = fm−1 + αmpm where αm =
‖T ∗(g − Tfm)‖2

X

‖Tpm‖2
Y

.

Also the search direction pm obeys a recursion

pm+1 = T ∗(g − Tfm) + βmpm with βm =
‖T ∗(g − Tfm)‖2

X

‖T ∗(g − Tfm−1)‖2
X

. (2.6)

As soon as T ∗(g − Tfm) = 0 holds true the CG-sequence is finite: fm = fk

for all k ≥ m. Accordingly,

mT := sup{m ∈ N |T ∗(g − Tfm−1) 6= 0}

is called the ultimate termination index of the CG-method (mT = ∞ is
allowed and the supremum of the empty set is understood as zero).

Remark 2.3. The ultimate termination index is finite if and only if the
right hand side g can be decomposed into g = g0 + g1 where g0 ∈ R(T )⊥

and g1 is a finite superposition of eigenvectors of TT ∗, see, e.g., Hanke [4,
Sec. 2] or [12, Satz 5.3.4].

Corollary 2.4. For µ ∈
]
‖PR(T )⊥g‖Y /‖g‖Y , 1

]
there is an m∗ ∈ N

such that
‖g − Tfm‖Y ≤ µ‖g‖Y for all m ≥ m∗.

Moreover, m∗ ≤ mT.
Proof. In view of Lemma 2.2 we only need to verify the second assertion.

For mT = ∞ nothing has to be shown. Now, let mT < ∞. Then, fmT
=
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T+g where T+ is the Moore-Penrose inverse of T . Since ‖TfmT
− g‖Y =

‖PR(T )⊥g‖Y < µ‖g‖Y we have m∗ ≤ mT.

The step length αm, 1 ≤ m ≤ mT, is determined to minimize the strictly
convex parabola

Ψm(λ) := ‖g − T (fm−1 + λ pm)‖2
Y

= ‖g − Tfm−1‖2
Y + 2λ〈g − Tfm−1, T pm〉Y + λ2‖Tpm‖2

Y ,
(2.7)

that is,
Ψ′

m(αm) = 0 and Ψ′′
m(λ) > 0, λ ∈ R. (2.8)

The search directions are T ∗T -orthogonal and span the Krylov space:

〈T ∗Tpk, pm〉X = δk,m ‖Tpk‖2
Y and Um = span

{
p1, . . . , pm

}
(2.9)

for k, m ∈ {1, . . . ,mT}.

Lemma 2.5. Let m ∈ {1, . . . ,mT} and λ ∈ [0, αm]. Then,

‖T (fm−1 + λ pm)‖Y ≤ ‖g‖Y .

Moreover, equality can only hold for m = mT and λ = αmT
.

Proof. We consider the function

ϕ(λ) := ‖T (fm−1 + λ pm)‖2
Y

= ‖Tfm−1‖2
Y + 2λ〈Tfm−1, T pm〉Y + λ2‖Tpm‖2

Y .

Since fm−1 =
∑m−1

i=1 αip
i we find 〈Tfm−1, T pm〉Y = 0 by the orthogonal-

ity (2.9). Hence, ϕ is strictly increasing on [0,∞[ and the claimed esti-
mate follows from ϕ(αm) = ‖Tfm‖2

Y ≤ ‖g‖2
Y , see (2.5). Now assume that

ϕ(λ) = ‖g‖2
Y . The strict monotonicity of ϕ implies that λ = αm. Therefore,

‖Tfm‖2
Y = ‖g‖2

Y and ‖g − Tfm‖2
Y = 0 by (2.3).

The following theorem is essentially a re-formulation to our needs of The-
orem 3.1 of Hanke [6]. Its rather technical proof is presented in Appendix A.

Theorem 2.6. For g ∈ Y and f ∈ X define γ(f) := ‖g − Tf‖Y /‖g‖Y .
Let µ ≥ max

{√
γ(f), ‖PR(T )⊥g‖Y /‖g‖Y

}
and set fm−1,λ := fm−1 +λpm for

λ ∈ ]0, αm].∗

If ‖g − Tfm−1,λ‖Y ≥ µ‖g‖Y
† then

‖fm−1,λ − f‖X < ‖fm−1 − f‖X , m ∈ {1, . . . ,mT}.

∗Observe: fm−1,αm
= fm.

†In particular, m − 1 < mT, see Corollary 2.4.
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3. Definition of CG-REGINN. Algorithm CG-REGINN was briefly ex-
plained in the introduction. Now we give its details in Figure 3.1.

A few comments are in order. The repeat-loop implements the CG-
iteration applied to (1.7). It terminates when the relative linear resid-
ual ‖bε

n − Ansn,m‖Y /‖bε
n‖Y is smaller or equal to the user-chosen tolerance

µn < 1. If µn is not too small we indeed have termination.

Lemma 3.1. The repeat-loop of CG-REGINN terminates for any toler-
ance

µn ∈
]‖PR(F ′(xn))⊥(yδ − F (xn))‖Y

‖yδ − F (xn)‖Y
, 1
]
.

Furthermore, mn ≤ mT.
Proof. By Corollary 2.4 we know that the repeat-loop terminates for

µn ∈
]‖PR(An)⊥bε

n‖Y

‖bε
n‖Y

, 1
]

and that mn ≤ mT.

The while-loop realizes the Newton iteration. It stops as soon as the
discrepancy principle is satisfied, that is, when the nonlinear residual ‖bε

n‖Y

is less than Rδ where R > 1. Under reasonable assumptions the while-loop
terminates as we will prove later (Theorem 4.2).

Our version of CG-REGINN differs a little from its original definition [4, 13]
in an additional backtracking step: In the else-branch of the if-statement
the full CG-step sn,mn is reduced to meet ‖An(sn,mn−1 + λ? pm) − bε

n‖Y =
µn‖bε

n‖Y where λ? < αm. Since all tolerances {µn} are bounded from below
by µmin backtracking guarantees that the residual of the Newton step sN

n

satisfies ‖AnsN
n − bε

n‖Y ≥ µmin‖bε
n‖Y which, in turn, makes Theorem 2.6

applicable yielding a monotone error reduction (Theorem 4.2).
The following lemma gives first evidence why CG-REGINN might work.

Lemma 3.2. Any direction sn,m computed by CG-REGINN in its repeat-
loop is a descent direction for ϕ(·) = 1

2‖yδ − F (·)‖2
Y . More precisely,

〈∇ϕ(xn), sn,m〉X = −2θ2
n,m ϕ(xn) < 0, 1 ≤ m ≤ mT,

where θn,m = ‖Ansn,m‖Y /‖bε
n‖Y ∈ ]0, 1]. Further,

〈∇ϕ(xn), sn,m〉X ≥ 〈∇ϕ(xn), sn,m+1〉X ≥ −
∥∥P

R(An)
bε
n

∥∥2

Y
.

Proof. By ∇ϕ(·) = −F ′(·)∗
(
yδ − F (·)

)
we find that

〈∇ϕ(xn), sn,m〉X = −〈bε
n, Ansn,m〉Y

(2.2)
= −‖Ansn,m‖2

Y = −θ2
n,m‖bε

n‖2
Y .

Due to Lemma 2.5 θn,m is in ]0, 1]. The monotonicity result follows from
(2.5).
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CG-REGINN(x,R, {µn}, µmin)
%µmin is a lower bound for {µn}
n := 0; x0 := x;

while ‖bε
n‖Y ≥ Rδ do

{ m := 0; sn,0 := 0; r0 = bε
n; p1 := d0 := A∗

nbε
n;

repeat

m := m + 1;

qm := Anpm; αm := ‖dm−1‖2
X/‖qm‖2

Y ;

sn,m := sn,m−1 + αmpm;

rm := rm−1 − αmqm;

dm := A∗
nrm; βm := ‖dm‖2

X/‖dm−1‖2
X ;

pm+1 := dm + βmpm;

until ‖rm‖Y ≤ µn‖bε
n‖Y

mn := m;

if µmin‖bε
n‖Y ≤ ‖rmn‖Y

sN
n := sn,mn ;

else

λ? := αmn

(
1 −

√
1 +

µ2
n‖bε

n‖2
Y − ‖rmn−1‖2

Y

αmn‖dmn−1‖2
X

)
;

%λ? is determined from ‖An(sn,mn−1 + λ? pmn) − bε
n‖Y = µn‖bε

n‖Y

%note that λ? < αmn

sN
n := sn,mn−1 + λ? pmn ;

endif

xn+1 := xn + sN
n ;

n := n + 1;
}
x := xn;

Figure 3.1: CG-REGINN with backtracking.

4. A local convergence analysis for CG-REGINN. Throughout we
work with the following bound for the linearization error:

‖E(v,w)‖Y ≤ L ‖F ′(w)(v − w)‖Y for one L < 1

and for all v,w ∈ Bρ(x
+) ⊂ D(F ).

(4.1)

Here, Bρ(x
+) is the ball of radius ρ > 0 centered about x+. From (4.1) we

derive that

‖E(v,w)‖Y ≤ ω ‖F (w) − F (v)‖Y where ω =
L

1 − L
> L (4.2)
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which is identical to the tangential cone condition (1.1). Note that ω < 1
whenever L < 1/2.

Remark 4.1. Actually, (4.1) and (4.2) are equivalent in the following
sense: (4.2) for one ω < 1 implies (4.1) with L = ω

1−ω
. Here, L < 1

whenever ω < 1/2.

By (1.6) and (4.2) we can further bound the noise in bε
n for xn ∈ Bρ(x

+):

‖bn − bε
n‖Y ≤ δ + ω‖y − F (xn)‖Y ≤ (1 + ω)δ + ω‖bε

n‖Y .

As long as ‖bε
n‖Y ≥ Rδ we accordingly have

‖bn − bε
n‖Y

‖bε
n‖Y

≤ 1 + ω

R
+ ω. (4.3)

Theorem 4.2. Assume (4.1) to hold true for L < 1 so small that there
exists a Λ ∈ ]L, 1] with

(Λ − L)2 >
L

1 − L
= ω.‡ (4.4)

Further, choose

R >
1 + ω

(Λ − L)2 − ω
>

1 + ω

1 − ω
(4.5)

yielding

µmin :=

√
ω +

1 + ω

R
< 1. (4.6)

Restrict all tolerances {µn} to [µmin,Λ − L] and start CG-REGINN with x0 ∈
Bρ(x

+).
Then, there exist an N(δ) such that all iterates {x1, . . . , xN(δ)} of CG-REGINN
are well defined and stay in Bρ(x

+). We even have a strictly monotone error
reduction:

‖x+ − xn‖X < ‖x+ − xn−1‖X , n = 1, . . . , N(δ). (4.7)

Moreover, only the final iterate satisfies the discrepancy principle, that is,

‖yδ − F (xN(δ))‖Y < Rδ ≤ ‖yδ − F (xn)‖Y , n = 0, . . . , N(δ) − 1, (4.8)

and the nonlinear residuals decrease linearly at an estimated rate

‖yδ − F (xn+1)‖Y

‖yδ − F (xn)‖Y
≤ µn + θnL ≤ Λ, n = 0, . . . , N(δ) − 1, (4.9)

where θn = ‖AnsN
n ‖Y /‖bε

n‖Y ≤ 1.

‡In particular, L < 1/2.
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Proof. Before we start with the proof let us discuss our assumptions
on L, ω, Λ and R. Condition (4.4) guarantees that the denominator of the
lower bound on R is positive. The lower bound on R and the right condition
in (4.4) are needed to make [µmin,Λ−L] a well-defined non-empty interval.

We will argue inductively. Therefore assume the iterates x1, . . . , xn to
be well defined in Bρ(x

+). If ‖bε
n‖Y < Rδ CG-REGINN will be stopped with

N(δ) = n. Otherwise, ‖bε
n‖Y ≥ Rδ and µn ∈ [µmin,Λ − L] will provide a

new Newton step:

‖PR(An)⊥bε
n‖Y

‖bε
n‖Y

=
‖PR(An)⊥(bε

n − bn)‖Y

‖bε
n‖Y

(4.3)

≤ 1 + ω

R
+ ω = µ2

min < µmin.

By Lemma 3.1 the Newton step sN
n and hence xn+1 = xn + sN

n ∈ X are
well defined. It remains to verify the strictly monotone error reduction.
Here we will benefit from Theorem 2.6. Please note that we do not need
to distinguish the cases sN

n = sn,mn and sN
n = sn,mn−1 + λ?pmn because

Theorem 2.6 covers both cases.
We apply Theorem 2.6 with g = bε

n, T = An, f = se
n = x+ − xn,

and fm−1 = sn,m−1, m = 1, . . . ,mn and fmn−1,λ = sn,mn−1 + λ pmn where
λ is either αmn or λ?. Hence, ‖fm−1 − f‖X = ‖x+ − (xn + sn,m−1)‖X ,
m = 1, . . . ,mn, especially, ‖f0 − f‖X = ‖x+ − xn‖X , and ‖fmn−1,λ − f‖X =
‖x+ − xn+1‖X . Further,

γ(f) = γ(se
n) =

‖bε
n − Anse

n‖Y

‖bε
n‖Y

=
‖bε

n − bn‖Y

‖bε
n‖Y

(4.3)

≤ µ2
min.

Since ‖g − Tfm−1‖Y = ‖bε
n − Ansn,m−1‖Y ≥ µmin‖bε

n‖Y , m = 1, . . . ,mn,
and ‖g − Tfmn−1,λ‖Y = ‖bε

n − An(sn,mn−1 + λpmn)‖Y ≥ µmin‖bε
n‖Y with

µ2
min ≥ γ(f) we have by repeatedly applying Theorem 2.6 that

‖x+ − xn+1‖X = ‖fmn−1,λ − f‖X

< ‖fmn−1 − f‖X < ‖fmn−2 − f‖X

< · · · < ‖f0 − f‖X = ‖x+ − xn‖X .

Finally, we prove the reduction rate. Since xn+1, xn ∈ Bρ(x
+) the bound

(4.1) can be used to estimate

∥∥bε
n+1

∥∥
Y

=
∥∥bε

n − AnsN
n + E(xn+1, xn)

∥∥
Y
≤ µn

∥∥bε
n

∥∥
Y

+ L
∥∥AnsN

n

∥∥
Y

.

The rate (4.9) follows from Lemma 2.5 which implies that ‖AnsN
n ‖Y =

θn‖bε
n‖Y with θn ≤ 1 (Again, Lemma 2.5 covers sN

n = sn,mn as well as
sN
n = sn,mn−1 + λ?pmn). Now, the inductive step is complete.

Corollary 4.3. Adopt all assumptions and notations of Theorem 4.2.
Additionally let F be weakly sequentially closed and let {δj}j∈N be a positive
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zero sequence.
Then, any subsequence of {xN(δj )}j∈N contains a subsequence which con-

verges weakly to a solution of F (x) = y.
Proof. Any subsequence of the bounded family {xN(δj)}j∈N ⊂ Bρ(x

+) is
bounded and, therefore, has a weakly convergent subsequence. Let ξ be its
weak limit. Since

‖y − F (xN(δj ))‖Y

(4.8)
< (R + 1)δj (4.10)

the images under F of the convergent subsequence converge (weakly) to y.
Due to the weak closedness of F we have that y = F (ξ).

The whole family {xN(δj )}j∈N converges weakly to x+ if x+ is the unique
solution of F (x) = y in Bρ(x

+). This follows, for instance, from Proposi-
tion 10.13 (2) in [17]. However, under the assumptions of Theorem 4.2, the
latter can only happen if N(A), the null space of A = F ′(x+), is trivial. In
fact, if 0 6= v ∈ N(A) then

‖F (x+ + tv) − y‖Y = ‖F (x+ + tv) − F (x+)‖Y

(4.1)

≤ (L + 1) |t| ‖Av‖Y = 0

for any t ∈ [0, ρ/‖v‖X ].
On the other hand, if N(A) is trivial we even have a norm convergence.

Corollary 4.4. Under the assumptions of Theorem 4.2 we have that

‖x+ − xN(δ)‖A <
1 + R

1 − L
δ

where ‖ · ‖A = ‖A · ‖Y is a semi-norm in general.
Proof. From (4.1) we obtain that

‖x+ − xN(δ)‖A ≤ 1

1 − L
‖y − F (xN(δ))‖Y

which, in view of (4.10), implies the assertion.

The above corollary yields norm convergence whenever N(A) = {0}. In
general, this norm is weaker than the standard norm in X. Under an as-
sumption a little bit stronger than (4.1) convergence in X of {xN(δ)}0<δ≤δmax

to x+ has been shown in [13]. Further, convergence rates have been given.
We close this chapter with further comments.

Remark 4.5. We emphasize that the factors θn are virtually smaller
than 1, so that the rate (4.9) is smaller than µn + L. Only in rare situa-
tions, which practically do not occur, some of the factors θn will be equal
to 1 (Lemma 2.5 and Remark 2.3).



CONVERGENCE ANALYSIS FOR CG-REGINN 11

Remark 4.6. Some nonlinear ill-posed problems from real-life appli-
cations satisfy slightly stronger versions of (4.1) or (4.2) where L or ω
are replaced by C‖v − w‖X , see, e.g., Hanke [5, Sec. 3] for an example
from groundwater filtration or [10] for an example from impedance tomog-
raphy. Also nonlinear mappings between finite dimensional spaces satisfy
the stronger version of (4.2) locally about a point where the derivative is
injective and Lipschitz continuous, see Appendix B.

In view of (4.7) we expect in this situation the reduction rate (4.9) to
approach µn as the Newton iteration progresses.

Remark 4.7. Hanke [6] investigated a Newton-CG algorithm similar
to CG-REGINN. Two features differ: CG-REGINN allows an adaptive strategy
for the selection of the tolerances {µn} (see [11, Sec. 6] for more details)
and the backtracking step (not needed by Hanke at the price of more restric-
tive assumptions. For instance, R and the fixed tolerance µ are coupled via
Rµ2 > 2). While we have been able to prove reduction rates for the nonlin-
ear residuals under (4.2), Hanke only obtained convergence without rates.
Hanke’s proof of convergence in the noise-free situation applies, with minor
changes, to CG-REGINN with backtracking as well. Observe that (4.9) even
holds for δ = 0 where µmin =

√
ω is allowed by letting R approach infinity.

Remark 4.8. A stronger assumption than (4.1) is

‖E(v,w)‖Y ≤ L̃ ‖F ′(w)(v − w)‖1+κ
Y for one κ > 0

and for all v,w ∈ Bρ(x
+) ⊂ D(F ).

(4.11)

Here, L̃ is allowed to be arbitrarily large. If ρ is sufficiently small we have
(4.1) with

L := 2κρκ L̃ max
u∈Bρ(x+)

‖F ′(u)‖κ < 1.

Now, let ρ be so small that all assumptions of Theorem 4.2 apply with L as
above. Additionally, choose x0 ∈ Bρ(x

+) satisfying ‖yδ − F (x0)‖κ
Y ≤ L/L̃.§

Then, all assertions of Theorem 4.2 remain valid with the stronger rate

‖yδ − F (xn+1)‖Y

‖yδ − F (xn)‖Y
≤ µn + θ1+κ

n Λκn L ≤ Λ, n = 0, . . . , N(δ) − 1. (4.12)

We only need to verify the rate. We have

∥∥bε
n+1

∥∥
Y

=
∥∥bε

n − AnsN
n + E(xn+1, xn)

∥∥
Y

(4.11)

≤ µn

∥∥bε
n

∥∥
Y

+ L̃
∥∥AnsN

n

∥∥1+κ

Y

≤
(
µn + L̃θ1+κ

n

∥∥bε
n

∥∥κ

Y

) ∥∥bε
n

∥∥
Y

§This bound implicitly forces ‖F (x+) − yδ‖κ
Y < L/eL.
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which inductively implies (4.12).

Remark 4.9. Both bounds (4.1) and (4.11) for the linearization error
may be derived from the following affine contravariant Lipschitz condition:

∥∥(F ′(v) − F ′(w)
)
(v − w)

∥∥
Y
≤ Lκ ‖F ′(w)(v − w)‖1+κ

Y

for one κ ∈ [0, 1] and for all v, w ∈ Bρ(x
+)

(4.13)

where Lκ > 0 is the Lipschitz constant and in case κ = 0 we require L0 < 1.
Indeed,

‖E(v,w)‖Y =
∥∥∥
∫ 1

0

(
F ′
(
w + t(v − w)

)
− F ′(w)

)
(v − w) dt

∥∥∥
Y

≤ Lκ

1 + κ
‖F ′(w)(v − w)‖1+κ

Y .

For a general discussion of the importance of affine contravariance for New-
ton-like algorithms we refer to Section 1.2.2 in the book [3] by Deuflhard. In
particular, Section 4.2 of that book treats Gauß-Newton methods for (well-
posed) finite dimensional least squares problems under (4.13) with κ = 1

and restricted to v,w ∈ D(F ) where v − w ∈ N
(
F ′(w)

)⊥
.

Remark 4.10. For linear problems CG-REGINN does not reduce to stan-
dard CG but to CG with restart. Theorem 4.2 holds under L = ω = 0, so
that R > 1/Λ2 and µmin =

√
1/R. The restart guarantees strictly monotone

error decrease until the discrepancy principle is satisfied. This feature is not
met by standard CG. In contrary, standard CG is known to diverge rapidly
if not stopped very close to its optimal stopping point. One likely misses the
optimal stopping point when underestimating the noise.
Please note that CG with restart and stopped by the discrepancy principle
is a regularization scheme of optimal order. This fact follows by results
from [13].
With Λ close to 1 we may choose R close to 1 yielding µmin close to 1. In
this situation CG-REGINN is likely to perform only one CG-step per outer
iteration and therefore agrees with the nonlinear gradient descent considered
by Scherzer [15].
Conclusion: For linear problems CG-REGINN with backtracking is a regular-
ization scheme blending standard CG and steepest descent, thus combining
the numerical efficiency of the former method with the strictly monotone
error decrease of the latter one.

5. A numerical example from electrical impedance tomogra-

phy. In the final section we illustrate the performance of CG-REGINN by
solving the inverse problem of electrical impedance tomography (EIT). In
EIT one tries to recover the electric conductivity of an object by applying
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electric currents at the boundary of the object and measuring the result-
ing voltages also on the boundary. In formulating the corresponding inverse
problem mathematically we will be brief and refer to [9] for the mathematics
as well as implementation details and for further original references.

Let B ⊂ R
2 be the domain of interest with electric conductivity σ. As-

sume that we use p (disjoint) electrodes E1, . . . , Ep ⊂ ∂B to apply currents
and measure voltages. The so-called complete electrode model gives rise to
the following forward problem of impedance tomography: Given a current
vector I ∈ R

p
� := {v ∈ R

p|∑p
j=1 vj = 0} and positive contact impedances

z1, . . . , zp find a voltage potential u ∈ H1(B) and a set of electrode voltages
U ∈ R

p
� such that

−∇
(
σ∇u

)
= 0 in B, (5.1a)

u + zj σ ν∇u = Uj on Ej, (5.1b)
∫

Ej

σ ν∇udS = Ij for j = 1, . . . p, (5.1c)

σ ν∇u = 0 on ∂B \ ∪p
j=1Ej . (5.1d)

The conditions I ∈ R
p
� and U ∈ R

p
� can be interpreted as conservation

of charge and grounding the potential, respectively. Both restrictions are
necessary to guarantee existence and uniqueness of a weak solution (u,U) ∈
H1(B) ⊕ R

p
� of (5.1) for a positive conductivity σ ∈ L∞(B) bounded away

from zero, see Somersalo et al. [16].

Let us briefly explain the complete electrode model. The domain B is
assumed to have no electric sources or drains. Hence, the electric flux σ∇u is
divergence free which yields (5.1a). In a medical application the conductivity
between skin and electrodes may be increased by dermal moisture. This
effect of contact impedance is taken into account by the Robin boundary
condition (5.1b). The equations in (5.1c) model the electrodes as perfect
conductors: the total electric flux over an electrode agrees with the electric
current on that electrode. As there is no flux over the boundary of B in-
between electrodes we have the Neumann boundary condition (5.1d).

The nonlinear forward operator Fp describing the EIT-problem is given
by

Fp : D(Fp) ⊂ L∞(B) → R
p
�, σ 7→ U,

with domain of definition D(Fp) =
{
σ ∈ L∞(B)

∣∣σ ≥ c0

}
for some positive

constant c0. Note that Fp depends on I and z1, . . . , zp. The forward operator
is Fréchet differentiable where F ′

p(σ)η is determined as a weak solution of
an elliptic problem akin to (5.1), see Kaipio et al. [7, Theorem 2.3].

At present we do not know whether Fp satisfies the tangential cone con-
dition (1.1), however, in the limit case of infinite many electrodes of in-



14 A. LECHLEITER AND A. RIEDER

finitesimal width¶ the ‘limit operator’ satisfies a slightly stronger version of
(1.1) between suitable Hilbert spaces, see [10].

For our practical computations we restrict B to a regular polygonal
domain with 2p corners where every second side of the boundary polygon
serves as electrode. Further, we only search for conductivities σ ∈ A :=
S4 ∩ D(Fp) where S4 denotes the space of piecewise constant functions
over the triangulation 4 of B. Finally, we discretize the weak formulation
of (5.1) by conforming piecewise linear finite elements with respect to a
regular triangulation of B with mesh size h. In applying ` different current
patterns Ii, i = 1, . . . , `, we have the nonlinear mapping

Fp,h : A ⊂ S4 → (Rp
�)

`, σ 7→ (U1
h , . . . , U `

h),

where U i
h is the voltage potential induced by Ii.

If p is sufficiently large and h is sufficiently small then the Jacobian
F ′

p,h(σ) : R
dimS4 → R

p` is injective, see [10]. Note that the restriction

dim S4 ≤ p ` (5.2)

is necessary for injectivity.
According to Appendix B the injectivity of F ′

p,h(σ+) together with its
Lipschitz continuity

‖F ′
p,h(σ) − F ′

p,h(ς)‖ . ‖σ − ς‖,

see again [10], implies the tangential cone condition

‖Fp,h(σ) − Fp,h(ς) − F ′
p,h(ς)(σ − ς)‖ . ‖σ − ς‖ ‖Fp,h(σ) − Fp,h(ς)‖ (5.3)

in a ball about σ+ (As Fp,h maps between finite-dimensional spaces we do
not need to specify norms). Hence, our convergence result for CG-REGINN in
Theorem 4.2 applies to Fp,h in a sufficiently small ball about σ+, provided
the number of electrodes p is large enough and the mesh size h is small
enough.

Figure 5.1 shows the CG-REGINN iterates for reconstructing a smooth
conductivity distribution attaining values above and below the background
conductivity 1 which serves as starting guess. We worked with p = 32
electrodes and applied the ` = p − 1 linear independent current patterns
I1 = (1,−1, 0, . . . , 0)t, I2 = (0, 1,−1, 0, . . . , 0)t, . . . , Ip−1 = (−1, 0, . . . , 0, 1)t.
The number of independent degrees of freedom provided by these data is
p(p−1)/2, see, e.g., Cheney et al. [2, Sec. 5]. In choosing S4 with dimS4 =
446 we do not try to recover more degrees of freedom than possible and also
meet the bound (5.2).

¶With the phrase ‘limit case of infinite many electrodes’ we refer to the situation where
the Neumann-to-Dirichlet mapping corresponding to σ is known.
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Fig. 5.1. Reconstruction of a smooth conductivity distribution by CG-REGINN. The

EIT-system has 32 electrodes with contact impedances zj = 0.25, j = 1, . . . , 32, see (5.1b),
and 31 linear independent current patterns have been applied. The number on top of the

reconstructions denotes the iteration number. Two graphs visualize the evolutions of the

relative reconstruction errors and of the tolerances as the iteration progresses.
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For our numerical computations we perturbed the simulated voltages
(U1

h , . . . , Up−1
h ) ∈ R

p×p−1 artificially by noise of a relative magnitude of 1%
measured in the Frobenius norm. The tolerances {µn} are adapted dy-
namically as explained in [11], see also [9]. In view of (5.3) and (4.6) a
theoretically supported choice for the minimal tolerance µmin would be a
number slightly larger than

√
1/R (≈ 0.8165 for R = 1.5 in our exper-

iment). However, we started with a µ0 = 0.7 <
√

1/R and we did not
implement backtracking. Nevertheless CG-REGINN worked just fine with a
strongly monotone error decrease, see Figure 5.1. Hence, Theorem 4.2 seems
not to tell the whole convergence story of CG-REGINN.

Appendix A. Proof of Theorem 2.6. We follow the arguments of
Hanke [6, Proof of Theorem 3.1] with necessary changes.

First, we introduce an alternative representation of the search direc-
tions (2.6): There is a polynomial wm ∈ Πm with wm(0) > 0 such that

pm = T ∗wm(TT ∗)g,

see, e.g, Hanke [4, formula (2.7)].

A straightforward calculation reveals that

‖f − fm−1‖2
X − ‖f − fm−1,λ‖2

X

= λ 〈g − Tfm−1, wm(TT ∗)g〉Y + λ 〈g − Tfm−1,λ, wm(TT ∗)g〉Y
− 2λ 〈g − Tf,wm(TT ∗)g〉Y .

To proceed we rewrite wm as wm(t) = wm(0)+tq(t) where q ∈ Πm−1. Hence,
wm(TT ∗)g = wm(0)g + Tu with u = T ∗q(TT ∗)g ∈ Um−1. Applying (2.1)
and (2.2) we obtain

〈g − Tfm−1, wm(TT ∗)g〉Y = wm(0)〈g − Tfm−1, g〉Y + 〈g − Tfm−1, Tu〉Y
= wm(0)‖g − Tfm−1‖2

Y .

Analogously,

〈g−Tfm−1,λ, wm(TT ∗)g〉Y = wm(0)〈g−Tfm−1,λ, g〉Y + 〈g−Tfm−1,λ, Tu〉Y .

Here, things are little bit more involved. We first investigate the right-most
term:

〈g − Tfm−1,λ, Tu〉Y = 〈g − Tfm−1, Tu〉Y︸ ︷︷ ︸
=0 by (2.1)

−λ 〈Tpm, Tu〉Y︸ ︷︷ ︸
=0 by (2.9)

= 0.
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Now we will verify that

Φm(λ) := 〈g−Tfm−1,λ, g〉Y ≥ ‖g−Tfm−1,λ‖2
Y = Ψm(λ)

for λ ∈ [0, αm]. The graph of Ψm is a strict convex
parabola with vertex (αm, ‖g −Tfm‖2

Y ), see (2.7) and
(2.8). The graph of the linear function Φm connects
(0, ‖g − Tfm−1‖2

Y ) with the vertex (αm, ‖g − Tfm‖2
Y ).

Therefore, Φm(λ) ≥ Ψm(λ), λ ∈ [0, αm], see figure on
the right. Finally we conclude that

Ψm

Φm

λαm

〈g − Tfm−1,λ, wm(TT ∗)g〉Y ≥ wm(0)‖g − Tfm−1,λ‖2
Y

and

‖f − fm−1‖2
X − ‖f − fm−1,λ‖2

X ≥ λwm(0)
(
‖g − Tfm−1‖2

Y + ‖g − Tfm−1,λ‖2
Y

− 2 ‖g − Tf‖Y
‖wm(TT ∗)g‖Y

wm(0)

)
.

The normalized polynomial wm/wm(0) is denoted p
[2]
m by Hanke [4]. By his

Theorem 3.2 we have

‖wm(TT ∗)g‖Y

wm(0)
<

‖w0(TT ∗)g‖Y

w0(0)
= ‖g‖Y .

Our assumptions together with µ‖g‖Y ≤ ‖g − Tfm−1,λ‖Y ≤ ‖g − Tfm−1‖Y ,
λ ∈ ]0, αm], yield

‖fm−1 − f‖2
X − ‖fm−1,λ − f‖2

X > 2λwm(0)‖g‖2
Y

(
µ2 − γ(f)

)
≥ 0

which completes the proof of Theorem 2.6.

Appendix B. Tangential cone condition in finite dimensional

spaces. Let F : D(F ) ⊂ R
n → R

m, n ≤ m, be a differentiable mapping.
We will show that there is a ρ > 0 such that

‖F (v) − F (w) − F ′(w)(v − w)‖ . ‖v − w‖α‖F (v) − F (w)‖
for all v,w ∈ Bρ(x

+)
(B.1)

whenever F ′(x+) has a trivial null space and F ′ is Hölder continuous of
order α, that is,

‖F ′(x) − F ′(y)‖ ≤ L‖x − y‖α for all v,w ∈ Br(x
+)

for one r > 0 and one L > 0.
We prove (B.1) only for the Euclidean norm. Then, (B.1) holds true for

any norm by norm equivalence. By the Hölder continuity of F ′ there is a
r1 ∈ ]0, r] such that

‖(F ′(v)∗F ′(v))−1‖ ≤ 2‖(F ′(x+)∗F ′(x+))−1‖ =: M for all v ∈ Br1
(x+).
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For E(v,w) := F (v) − F (w) − F ′(w)(v − w) we have that

‖E(v,w)‖ =
∥∥∥
∫ 1

0

(
F ′(w + t(v − w)) − F ′(w)

)
(v − w) dt

∥∥∥

≤ L

1 + α
‖v − w‖1+α for all v,w ∈ Br(x

+).

We proceed with

‖F (v) − F (w)‖2 = ‖E(v,w) + F ′(w)(v − w)‖2

= ‖F ′(w)(v − w)‖2 + ‖E(v,w)‖2

+ 2〈E(v,w), F ′(w)(v − w)〉
≥ M−1 ‖v − w‖2 + 2〈E(v,w), F ′(w)(v − w)〉

≥ M−1 ‖v − w‖2 − 2L

1 + α
K‖v − w‖2+α

where K = supu∈Br1 (x+) ‖F ′(u)‖. There exists a r2 ∈ ]0, r1] such that

M−1 − 2L

1 + α
K‖v − w‖α ≥ M−1/2 for all v,w ∈ Br2

(x+).

Hence,

‖F (v) − F (w)‖ ≥ 1√
2M

‖v − w‖ for all v,w ∈ Br2
(x+).

Finally,

‖E(v,w)‖ ≤ L

1 + α
‖v − w‖1+α ≤ L

√
2M

1 + α
‖v − w‖α ‖F (v) − F (w)‖

which is (B.1) with ρ = r2.
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