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A PARALLEL IMPLEMENTATION OF A LATTICE BOLTZMANN METHOD
ON THE CLEARSPEED ADVANCET™ACCELERATOR BOARD

VINCENT HEUVELINE!, JAN-PHILIPP WEISS!

ABSTRACT. Coprocessor and multicore technologies represent the current main development
stream for compute server architectures in high performance computing. The primary challenge
relies on the ability to exploit the associated computing power for highly CPU time-consuming
applications in scientific computing. In this paper, we analyze specific methods adapted to the
ClearSpeed AdvanceTaccelerator board for the numerical solution of problems in computational
fluid dynamics (CFD) by means of the lattice Boltzmann method. In this context, the main
emphasis is given to the evaluation of this new technology with respect to sustained performance
and efficiency. The ClearSpeed AdvanceT™accelerator board is a PCI-X card equipped with
two CSX600 processors, where each one holds 96 processing element cores. Each processing
element handles 64-bit IEEE 754 floating point operations with double precision, which makes
it attractive for applications in numerical simulation. The considered parallelization paradigm
involves new concepts related to the distinction between poly and mono variables. As a model
problem for our examination of the ClearSpeed Advance™accelerator board, we consider the
simulation of fluid flow in a cuboid, known as lid driven cavity. An adequate parallel version of
the lattice Boltzmann method is applied. Lattice Boltzmann methods are known to be perfectly
suited for parallel architectures with high computing power due to the locality of the involved
interactions. However, in the considered application, the solution process relies on a huge amount
of data which needs to propagate along the underlying mesh. This fact, which is prototypical for
this type of problem, shows up the bottleneck of the current internal communication bandwidth
of the accelerator board.

1. INTRODUCTION

High performance computing (HPC) has reached a level of maturity and has become an integral
part of day-to-day research activities in a diversity of scientific disciplines. As generally known,
computing power alone does not guarantee an optimal throughput with respect to the scientific
results. In addition to hardware related topics, high performance computing relies on an inter-
disciplinary expertise that encompasses computer architecture, programming models, multilevel
parallelization, scalable software design, application software as well as scientific computing. The
emergence of new coprocessor and multicore technologies leads to new challenges in the develop-
ment of adequate numerical methods and software which can take advantage of the associated
tremendous compute power in scientific computing. The focus of this paper is the evaluation of
the ClearSpeed Advance™accelerator board for the solution of problems in computational fluid
dynamics (CFD) considering a lattice Boltzmann (LB) method (see e.g. [11, 2, 12] and references
therein). We examine the benefits and restrictions in that field of application and evaluate this
new coprocessor technology with respect to sustained performance and efficiency.

The ClearSpeed Advance™™accelerator board is a PCI-X card equipped with two CSX600 pro-
cessors. The ClearSpeed CSX600 chip is a radical example of energy-efficient multicore processor
design with 96 processing element cores running at 250 MHz. The ClearSpeed chip is a coprocessor
and depends on a general purpose processor for the host. Each processing element (PE) handles
64-bit floating point operations with double precision following the IEEE 754 standards. The result
is a chip that is dedicated to applications in scientific computing.

Many technologies support the data parallelism required to accelerate floating-point operations.
Graphics processing units (GPUs) have evolved into attractive hardware platforms to accelerate
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general purpose floating-point calculations. Focused on the demand of the gaming market, this
technology offers high floating-point processing performance and huge on-chip memory bandwidth
at comparatively low costs. GPUs provide however quasi-IEEE 32-bit single floating precision
which is not sufficient for many applications in numerical simulation. Furthermore, using GPUs
for scientific computing requires usually a reformulation of the underlying algorithms to the data-
stream based programming model. Field programmable gate arrays (FPGAs) offer a different
alternative to accelerate floating point applications. They rely on the design of specific integrated
circuits and are inexpensive. However, their current performance for double precision remains
limited. An exhaustive survey of currently existing technologies and projects related to coprocessor
and multicore platforms go beyond the scope of this paper. The quoted examples however show
that the available technologies have a high potential in HPC applications that are well matched to
their specifications.

In this paper, we analyze specific methods adapted to the ClearSpeed Advance™ accelerator board
for the solution of problems in computational fluid dynamics (CFD) by means of the lattice Boltz-
mann method. Lattice Boltzmann methods are numerical schemes for the discrete solution of
Navier-Stokes like equations. These methods rely on the description of particles on a mesoscopic
scale. Lattice Boltzmann methods are perfectly suited for parallelization since they do not involve
any global operation, not even solving matrix systems or performing matrix multiplications. All
interactions are strictly local.

This article is organized as follows. In Section 2, a short description of the architecture of the
ClearSpeed Advance™accelerator board is presented. Section 3 is dedicated to the paralleliza-
tion paradigm on the ClearSpeed board. A technical synopsis of lattice Boltzmann methods for
flow problems is depicted in Section 4. The developed parallel numerical scheme adapted to the
coprocessor board is outlined in Section 5. In Section 6, the proposed numerical schemes are val-
idated by means of numerical tests leading to an evaluation of the performance and efficiency of
the coprocessor board. An outlook and concluding remarks are the object of Section 7.

M

2. ARCHITECTURE

The ClearSpeed Advance™accelerator board is a PCI-X card equipped with two ClearSpeed
CSX600 coprocessors. A view of the board is shown in Figure 1. Almost every standalone com-
pute server or node of a cluster providing PCI slots can be extended by several of such boards.
Each CSX600 itself is endowed with 512 Mbytes of DDR2 DRAM local memory and 96 processing
element cores. ClearSpeed’s CSX600 is an embedded scalable power-efficient data-parallel copro-
cessor that handles 64-bit IEEE 754 conform floating point operations with double precision. It
is advertised to provide 25 GFLOPS of sustained double precision floating point performance for
Level 3 BLAS DGEMM matrix-matrix multiplication. The CSX600 processor dissipates an aver-
age of 10 Watts. It is a system-on-a-chip (SoC), based around the combination of ClearSpeed’s
multi-threaded array processor (MTAP).

The two CSX600s and a further FPGA as host interface are daisy-chained together via high speed
bridges. The FPGA provides an efficient memory architecture between the CSX600 processors and
the host’s memory system. The control unit dispatches instructions to the execution units. The
programmer only has to provide a single instruction stream. Each instruction is sent to one of the
execution units. One part of the execution unit is formed by the mono execution unit. The mono
execution unit has to process mono data, i.e. non-parallel data, and it has to handle the program
flow control (e.g. branching, thread-switching).

The 96 processing elements (PEs) form the poly execution unit, that has to treat poly data,
i.e. parallel data. It can be considered as a Single Instruction Multiple Data (SIMD) processor.
Each PE has its own local memory of 6 Kbytes and a dual 64-bit FPU. It is further endowed with
its own ALU, integer MAC, registers and I/O. The PEs operate at a clock speed of 250 MHz. The
aggregate bandwidth of all PEs is specified to be 96 Gbytes/s. In Figure 2, the control unit, the
mono execution unit, the poly execution unit and the in-between communication are depicted.
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FIGURE 1. ClearSpeed Advance™ accelerator PCI-X board.

Advance™board CSX600 processor Processing element

2 CSX600 processors 10 W max power consumption | 250 MHz clock speed
25 W max power consumption | 25 GFLOPS for DGEMM 6 KBytes local memory
50 GFLOPS for DGEMM 96 processing elements 1 Gbyte/s bandwidth

1 Gbyte memory 512 Mbytes memory

3.2 Gbyte/s external bandwidth | 96 Gbyte/s bandwidth

TABLE 1. Performance and features of the Advance™board; SDK release 2.23.

Mono Execution Unit
Control
Unit

Poly Execution Unit

PE0O PE1 PE2 PE3 PES3 PE94 PE95

FIGURE 2. Control unit, mono execution unit and poly execution unit.

For some applications, the ClearSpeed board operates at the standard math library level. The
Advance board works by offloading compute intensive math library routines called by applications
running on the host processor at the expense of additional communication. However, there’s no
control, which process or computation of the application is loaded onto the Advance™board.

When a call is made by an application to a ClearSpeed supported standard math library, it is
intercepted by CSXL, ClearSpeed’s accelerated math library, which calculates if the function call
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is worth off-loading. When it is, the CSXL transfers the required data to the board in order to
compute the function. The answer is calculated on the board and the results are read back into
host memory before returning to the application.

This offloading feature is restricted to some selected routines like DGEMM or fast Fourier transfor-
mation. Further routines are expected to succeed. Supported application softwares are MATLAB
and MATHEMATICA. Other specialized algorithms or routines have to be user coded by employing
ClearSpeed’s software development kit (SDK). The basic ingredient is ClearSpeed’s programming
language C™, which is an extension to ANSI C especially adapted to the architectural require-
ments. Standard libraries are optimized for the MTAP architecture. The provided debugger is
based on gdb. A macro assembler assembles the code generated by the compiler or hand-written
assembler source. The Linpack benchmark was used to pronounce the performance gain by using
several ClearSpeed Advance™boards in a cluster. Further information on the hardware and the
associated software can be found in the documentation [8, 9, 7]. A report on the acceleration of
the Intel MKL is provided in [5].

For our applications, the ClearSpeed board was built into a compute server with two 2.66 GHz Intel
Xeon 5150 Woodcrest dual-core processors. In the overall of this paper, the considered software
release is SDK 2.23.

3. THE PROGRAMMING CONCEPT

The adoption of the ClearSpeed Advance™accelerator board requires new parallel programming
concepts introduced by ClearSpeed’s programming language C™. Well-established programming
concepts like MPT [3] or OpenMP [1] are not supported. The main difference is the distinction
between poly and mono variables. The mono variables are held in the mono execution unit, the
poly variables are dedicated to the poly execution unit; confer Figure 2.

Variables in mono space are equivalent to common C variables with one instance dedicated to
sequential programming structure. Variables in poly space have an instance on each processing
element (PE). These variables enable parallel data processing. Like in classical C, data administra-
tion is handled via pointers. C pointers have to be seen as mono pointers to mono data. Additionally,
poly pointers to mono data are now considered, that is, there is a pointer variable on each PE that
holds the address of (different) mono variables, e.g. elements of an array in mono space; see Figure 3
for a visualization. Furthermore, mono pointers to poly data hold the address of a poly variable;
see Figure 4. These pointers have to be employed for the exchange of data between mono space
and poly space. Unfortunately, poly pointers to mono data do not allow for a direct dereferencing.
The library function memcpym2p has to be used for the data transfer instead. Data transfer from
poly to mono involves the library function memcpyp2m.

For an efficient program flow asynchronous communication is a vital ingredient. The overlap of
read and write processes renders a pronounced speed-up. In practice, manual double buffering
controlled by semaphores has to be performed. However, double buffering decreases the size of
available memory on the PEs by a factor of two.

Program control structures like loops or if-statements have to be divided into poly instructions
or mono instructions depending on the control variables. As in standard C, in mono loops, the mono
control variable decides whether the loop is performed or not and in a mono if-statement only one
of the branches is executed whereas the other one is skipped. In poly loops or poly conditionals, a
decision is taken, whether the corresponding PE is enabled or disabled. Disabled PEs do not take
part at the evaluation of the given instructions and stay idle. As a consequence, all of the branches
have to be run through, since some PEs may require execution. This means, that no poly branches
can be skipped. A loss in time performance is the result, especially if the PEs have to perform
different jobs. In our model problem, boundary nodes have to be treated in different ways than
fluid nodes. Different boundary situations like different geometries (surface, edges, corners,...) or
different boundary conditions require further differentiation. Disabled PEs have to wait for the
execution of code by the enabled PEs. This kind of sequential branching has to be seen as a
disadvantage in comparison to MPI methods. In poly loops, the loop is performed as long as the
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mono double d1,d2,...,d96;
mono double* poly p;

mono memory
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FIGURE 3. poly pointers to mono variables.

poly double d;
poly double* mono p;

mono memory

| | t

poly memory poly memory poly memory

FIGURE 4. mono pointers to poly variables.

loop condition is true on any of the PEs. This may result in inevitable idle time. Special attention
has to be taken to the fact, that mono code is always executed in poly conditionals or poly loops,
even if the branches are not met by any of the PEs. Unexpected side effects may happen.

4. LATTICE BOLTZMANN METHODS

Lattice Boltzmann (LB) methods allow to simulate the dynamics of particle distribution functions
in phase space. These techniques find their application, among others, in the simulation of kinetic
equations for fluids. In this paper, we consider a LB method for the numerical solution of the
instationary quasi-incompressible Navier-Stokes equations. An exhaustive derivation of LB schemes
can be found in [11, 2]. Our goal in this section is to introduce the associated concepts and define
the model problem considered in the sequel of this paper.



6 VINCENT HEUVELINE, JAN-PHILIPP WEISS

The derivation of the LB models relies on a statistical description of gases where the main object
of interest is the molecular probability distribution f(x,v,t) which depends on the position x, the
velocity v and time ¢. In LB models the velocity space is discretized, that is, the particles are only
allowed to move along certain directions in the spatial grid. For our test problem, we consider
the three-dimensional D3Q19 model with 19 velocities c;, ¢ = 0,..., 18, that are chosen to fit into
the regular cubic grid. Each grid node has 26 direct neighbors, where only the 8 neighbors along
the spatial diagonals are neglected. The velocity cg is chosen to be zero. Furthermore, in the
LB method the collision process between moving particles is simplified. The collision operator is
chosen as the BGK relaxation type term and it describes the deviation from an equilibrium state.
In each grid node, physics is described by 19 mesoscopic distribution functions, each one corre-
sponding to one of the discrete velocities. Macroscopic values, that is, the values of interest like
the density p or the fluid velocity v are gained by averaging in the velocity space, that is,

18
P = D 7o), (4.1)
=0

k 1 & k
u’(x) = —— ¢ [ (x), (4.2)
) 2

where fF(x) describes the discrete counterpart of the distribution function f(x,v,t). The upper
index k refers to the discrete time variable and the lower index i specifies the discrete velocity
variable. The discrete functions are defined and evaluated in the discrete grid points only. This
scheme is an explicit scheme, where the nonlinearity is fully included in the evaluation of the local
equilibrium distribution F,, defined by
9 3

Fi]feq(x) = wip"(x) (1 +3¢; - u¥(x) + §(Ci uf(x))? - §uk(x) : uk(x)> (4.3)
with the weights w; € {1/3,1/9,1/36}. The BGK lattice Boltzmann algorithm for the D3Q19
model can be written as

I x4 7es) = fFx) 4w (Flg(x) = fF(x))  fori=0,...,18,

i,eq
The relaxation parameter w is interpreted as the collision frequency. It depends on the viscosity
of the fluid. One lattice Boltzmann step can be split into the collision step

FEx) = fFx) +w (FF (%) — ff(x))  fori=0,...,18, (4.4)

1,€q

and the propagation step
(x4 7¢;) = fFx) fori=0,...,18. (4.5)

The collision step is strictly local. Only the distribution functions of the same node are encountered.
On the other hand, the propagation step does not involve any kind of computation. Only an
exchange and update of data takes place.

Lattice Boltzmann methods strongly depend on the scaling of mesh space h, time step 7 and the
relaxation parameter w. To attain the Navier-Stokes limit with prescribed viscosity, the coupling
7 ~ h? has to be chosen.

Special care has to be taken at the boundaries. Each node gets its information from the neighboring
nodes. At the boundaries, these neighboring nodes are partially missing. The inflow values are
undetermined and the macroscopic density and velocity cannot be determined for the computation
of the equilibrium function. In the case of solid walls, bounce-back boundary conditions are
commonly used to overcome this difficulty. The outflow values to non-existent neighbors are
directly used to assign the opponent inflow values. At parts of the boundary where the velocity
is prescribed, the corresponding equilibrium function is directly employed to assign the updated
distribution functions.

For the correct choice of the boundary conditions, lattice Boltzmann methods are known to be
second order accurate in space and first order accurate in time. Since an accurate approximation
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FI1GURE 5. Lid driven cavity for Re = 1000: (left) plot of the streamlines; (right)
main vortex.

is not in our scope - we only want to measure the performance of the method on this specific
architecture - we restrict ourselves to a simplified version of bounce-back boundary conditions at
the solid walls.

The problem considered is a three-dimensional viscous flow in a cavity. An incompressible fluid is
bounded by a cubic enclosure and the flow is driven by a uniform translation of the top surface.
Numerical methods are often tested and evaluated on this cavity flow due to the rich vortex
phenomena occurring at many scales depending on the Reynolds number Re (see [4] and references
therein). In the overall computation in this paper we assume Re = 1000. Plots of the fluid flow
are depicted in Figure 5.

5. ALGORITHMIC ASPECTS

5.1. The applied parallel concept. Lattice Boltzmann methods are perfectly suited for paral-
lelization. The algorithm does not involve any global operation, not even solving matrix systems
or performing matrix multiplications. All interactions are strictly local. In the collision step,
the updated distribution functions of one node are computed by involving only the distribution
functions of the same node. In the propagation step, each node has to exchange its distribution
functions with 18 of its 26 neighboring nodes. These facts naturally imply domain decomposition
methods for parallelization. Each PE is assigned to a number of nodes. In our case, we use an
allocation in layers into z-direction; see Figure 6. This partitioning is surely non-optimal in the
sense of minimizing interfaces. It allows however to simplify the treatment of the coupling between
the subdomains which is more convenient for the analysis of the performance results.

The first approach for the parallelization relies on the concepts considered for distributed memory
platforms. Each PE holds a layer in z-direction with approximately the same number of nodes.
Communication with other PEs has only to be done at the upper and lower boundaries of the
corresponding layer. Since all the PEs are aligned sequentially with respect to the underlying
geometry, each PE has to communicate with its direct neighbors. Hence, the swazzle routines of
ClearSpeed’s programming language C™ can be applied that allow for fast communication between
neighboring PEs. This kind of communication is indicated in Figure 2 by the arrows between
the PEs. Note that there is no possibility for direct communication and data exchange between
arbitrary PEs. In the non-neighboring case, data has to be exchanged via the mono domain.
With respect to this constraint, this distributed memory approach fails, since there is not enough
memory to hold enough data on the PEs. Each PE can only hold data for 40 nodes (40%¥19*8 bytes
< 6 Kbytes). This limited capacity is by far not enough for realistic simulations. In the case of
asynchronous communication with double buffering, only 20 nodes can be stored per PE.
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FIGURE 6. Partitioning of the computational domain: layers in z-direction.

The second approach is based on a shared memory interpretation. The whole data are stored
globally in the mono domain. Each PE is responsible for its own portion of data. For the collision
and propagation step the corresponding data are loaded onto the PEs in the poly domain, processed
and written back to the mono domain. As a consequence, additional time has to be spent for data
transfer from poly to mono and back in each time step.

Our test code involves only one of the CSX600 processors of the board. To integrate the host
processor or the second CSX600 processor, a common interface has to established by using assem-
bler code on both devices. All statements on the performance of the architecture in this article
apply to one CSX600 chip and its direct linkage to the operating system, employing ClearSpeed’s
programming language C" provided by the software development kit.

5.2. Implementation issues. For an insight to the chosen algorithm, we take a closer look to
some programming details. There are several ways to arrange the data. In the case of lattice
Boltzmann methods one has to treat four-dimensional data: three dimensions in space (z, y and
z) and one dimension in velocity, where the index ¢ ranges from 0 to 18. Since the outer mono
loops are coded in terms of the mono space variables z and y, we use the indexing f[z][y][2][i]. For
the domain decomposition in z-direction there are local z-dependencies on each PE. On the PEs,
we run a poly loop from zpg to zpp + Zpgsize, Where zpgsize + 1 is the thickness of the layer,
that has to be processed by the corresponding PE. For the data transfer from mono to poly, we
use poly pointers to mono data, that is, on each PE there is a pointer to f[z][y] + zpg, which then
represents a two-dimensional array.

When using static arrays, these arrays are de facto sequentially aligned one-dimensional arrays.
In order to access the elements, these pointers have to be dereferenced only once. In the case of
two-dimensional dynamic arrays, double dereferencing is necessary, which leads to further commu-
nication. Since a direct dereferencing of these poly to mono pointers is not possible, the library
function memcpym2p has to be called. In the collision step, the data of one node can be copied
in blocks. In the propagation step, the data of the neighboring nodes has to be made available
additionally. Hence, the immediate copying of a bulk of nodes is preferred, but the PEs cannot
hold more than 20 nodes at the same time. In a cuboid of 2 x 2 X 4 nodes, none of the nodes
can access all its neighbors within the same block. Since we end up with additional algorithmic
difficulties at the bulk’s boundary, we split collision and propagation step. As result, we have to
perform two global loops which gives a time loss by a factor of two. This has to be kept in mind
when measuring the performance.

Typically, more than 10° time steps have to be computed and more than 99.9% of the total
computing time is spent in the time loop. Each time step consists of the collision step and the
propagation step. The corresponding program flow of the time loop is depicted in Table 2.
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Time loop: ~ 106 steps

for (t =0; t < tpae; t =t + Atl)

Collision step:

~ 350 floating point ops per node

~ 10° nodes, 19 distribution functions per node
Propagation step:

no computations, 9 swaps per node

~ 10° nodes, 19 distribution functions per node

TABLE 2. Time loop with collision and propagation.

5.2.1. The collision step. In order to process the data in the collision step, we define a 2x19 array
in the poly domain for the 19 distribution functions of one single node. The first index with size
2 is chosen due to double buffering by active and background buffer.

In two outer mono loops we iterate along the grid in z- and y-direction. These loops are sup-
plemented by an inner poly loop in z-direction. On each PE, there is a poly pointer to mono
data, pointing to f[z][y][z]. In the interacting active and background processes, the 19 distribution
functions of one selected node are copied from the four-dimensional global mono array to the local
(double buffered) one-dimensional poly array, using the asynchronously working library function
async_memcpym2p. This transfer can be executed in blocks. In the next step, the data is processed
and prepared for propagation.

In the fluid nodes, the distribution functions are employed to determine the local density and
velocity with respect to (4.1) and (4.2). According to (4.3), the local equilibrium distribution is
computed. With the relaxation process in (4.4), the computational part is finished. The data are
written back to the mono domain via the asynchronous library function async_memcpyp2m. This
step includes a subtlety: the processed data are not written back to their origin; the values of ﬁ
are written to the storage space of the distribution functions belonging to the opponent discrete
velocities. This preparation of the data enables the propagation step to be performed with 9
additional swaps per node without an intermediate storage of the data. This process is described
in more detail in the documentation of the OpenLB project [6, 10]. The initiation and termination
of the read and write processes are controlled via semaphores.

The boundary nodes at the lid have to be treated in a slightly different way. The necessary distinc-
tion is realized via a poly if conditional. The affected PE has to perform different instructions.
Since both branches of the poly conditionals are performed sequentially, this ends up with a loss of
performance by a factor of approximately two. The only difference in the branches is the disabling
and enabling of the corresponding PEs. By a tricky application of the bounce-back boundary
conditions, the boundary nodes at the solid walls can be treated in the same way as the fluid
nodes.

In the following code fragment the described procedure is listed. For simplicity and facility of
inspection, we abandon asynchronous communication and double buffering. The distribution func-
tions are stored in the global array double f [max_x] [max_y] [max_z] [19]. The velocity boundary
values at the lid are provided by double u_O[max_x] [max_y]. The constants w;, ¢ = 0,...,18,
and the grid velocities ¢;, ¢ = 0,...,18, are stored in double weights[19]and int c[57].

mono int x,y,i; /* mono loop variables */

poly int z; /* poly loop variable */

mono doublex poly fpp; /* poly pointer to mono data */

poly double fp[19]; /* poly array for distribution functions of one node */

poly double f_eq; /* equilibrium distribution */
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poly double rho; /* density */
poly double ux,uy,uz; /* x,y,z-velocity */
poly double sq, c_u; /* auxiliary variables */

for(x=1;x<max_x-1;x++){ /* mono loop over fluid nodes* /
for(y=1;y<max_y-1;y++) { /* mono loop over fluid nodes */
for(z=z_PE; z<=z_PE+z_PE_size; z++) { /* local poly loop on each PE */
fpp=£f [x] [yl [z]; /* set poly pointer to mono data */
memcpym2p (fp, fpp, 19*sizeof(double)); /* copy data to poly */
rho = calc_rho(fp); /* calculate local density */
if (z<max_z-1) { /* poly conditional: fluid node */
ux = calc_ux(rho,fp); /* calculate local x-velocity */
uy = calc_uy(rho,fp); /* calculate local y-velocity */
uz = calc_uz(rho,fp); /* calculate local z-velocity */

}

else if(z==max_z-1) { /* poly conditional: 1id node */

ux = u_0[x][yl; /* set local x-velocity */
uy = 0.0;
uz = 0.0;

}
/* compute local equilibrium */
sq = 1.5 * (ux*ux + uy*uy + uz*xuz);
for(i=0;i<19;i++){
c_u = cl[i*3]*ux + c[i*3+1]*uy + c[i*3+2]*uz;
f_eq = rho * weight[i] * (1. + 3.%c_u +4.5%c_uxc_u - sq);
if (z<max_z-1) /* poly conditional: fluid node */
/* update distribution functions */
fpli] = fpli] + wx(f_eq - fpl[il);
}
memcpyp2m(fpp, fp, sizeof (double)); /* copy data */
memcpyp2m(fpp+1, f£p+10, 9*sizeof(double)); /* back to mono */
memcpyp2m (fpp+10, fp+l, 9*sizeof(double)); /* and swap */

In each fluid node, approximately 350 floating point operations have to be performed. The max-
imum number of fluid nodes that can be handled in the CSX600’s memory with 512 Mbytes are
3.5 x 10%. Hence, more than one billion floating point operations are required per time step. As-
suming the advertised performance of 25 GFLOPS, the computing time of the collision step would
last around 0.05 seconds. The practical result is around 1.75 seconds. Hence, more than 97% of
the time is spent in communication.

5.2.2. The propagation step. In the propagation step according to (4.5), there are no computations
involved. Parallelization does only come into play, when copying the data to the PEs and swapping
them in the write process to the mono domain. In this point, the available computing power plays
absolutely no role. As an alternative, one can think of swapping in a sequential loop in the mono
domain.

For each of the fluid nodes, 9 distribution functions have to be swapped with the neighbors in
selected directions. Then in total all distribution functions are swapped and the propagation step
is completed. We have to distinguish three different cases: fluid nodes, boundary nodes at the lid
and boundary nodes at the bottom. The remaining boundary nodes at the sides of the cuboid can
be treated in the same manner as the fluid nodes. Hence, we end up with three branches of the
poly if conditional, which results in a loss of performance by approximately a factor of three.
The main disadvantage in comparison to the collision step is, that the distribution functions of the
neighbors cannot be copied in blocks. This results in a further deterioration.
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Grid size 135 x 135 x 192 Grid size 190 x 190 x 96
Startup | Total | only Col. || Startup | Total | only Col.

Advance™board | 19.0s | 7494s 1844s 18.8s | 8289s 1740s
Woodcrest 1.1s 5396s 2842s 1.1s 5377s 2814s
Desktop 1.5s 5626s 3454s 1.4s 5955s 3716s
Laptop 2.2s 7686s 4912s 2.2s 7686s 4861s

TABLE 3. Computing times for 1000 time steps on different grids and machines.

6. NUMERICAL AND PERFORMANCE RESULTS

In this section, the results of the performance tests are presented. Since the memory on the
CSX600 processor is 512 Mbytes, the storage of approximately 3.5 x 10® grid points is possible.
We consider cuboids with 135 x 135 x 192 and 190 x 190 x 96 nodes (135%135%192*19*8 bytes < 512
Mbytes, 190%190*96*19*8 bytes < 512 Mbytes). In these settings, each PE has to treat 135%135%*2
or 190*190 nodes in each time step. For the evaluation of the performance of the parallel code,
the results are compared with a sequential implementation. The sequential code is tested on a
Dell 3.4 GHz Intel Pentium 4 dual-core Linux desktop, a Lenovo X60s 1.66 GHz Intel Centrino
Duo dual-core Linux laptop and the Woodcrest compute server with two 2.66 GHz Intel Xeon
5150 dual-core processors running Fedora Core 5. We either consider the total computing times,
as well as the computing times, when the propagation step is skipped and only the collision step is
performed. The latter case does not make sense from a computational point of view, but it allows
to focus on the more efficient part of the parallel implementation.

As fundamental result, the computing times of the parallel implementation on the ClearSpeed
Advance™board cannot compete with the sequential code versions, except for the case when
disregarding the propagation step. In Table 3, the corresponding results are listed.

As estimated in Section 5.2.1, the worse performance of the Advance™board has to be attributed
to the time-wasting streaming of data from the mono to the poly domain and back. Due to the
limited memory of 6 Kbytes on the PEs, there is no chance for an improvement. The asynchronous
communication via async_memcpym2p and async_memcpyp2m turns out to be the bottleneck of the
whole story. In the case of considering the collision step only, the computational power of the
Advance™board has a considerable impact. In this case, clear advantages can be gained.

The delays are pronounced in the propagation step, where a blockwise copy of the data of neigh-
boring nodes is impossible due to the position of data in the global array. A sequential execution
of the propagation step in the mono domain leads to further deteriorations of the performance.

In Table 4 we investigate the performance for different problem sizes. We find that only one
fourth of the total computing time is spent in the collision step, although this step involves all the
computations. In the propagation step, the same number of read and write processes have to be
performed. However, the data cannot be copied in blocks. This is the crucial point for performance
interference.

In a further test, we want to assess the internal speed-up of the Advance™board. For this reason,
only parts of the PEs of the CSX600 are enabled. In the extreme case, only one PE has to process
all data. The corresponding results on a grid of 50 x 50 x 192 nodes and 100 time steps are
displayed in Table 5. The speed-up is computed by the formula T'(1)/T(p), where T'(p) denotes
the computing time on p PEs. The efficiency T'(1)/(pT(p)) of this test is plotted in Figure 7.
The execution of sequential code in the mono domain is quite slow. The idea of performing the
propagation step without copying the data to the poly domain and writing back has to be dis-
carded. The computing time for 100 time steps on a grid of 50 x 50 x 96 nodes is extended to 1230
seconds, when implementing the propagation step in a sequential way. The full parallel version
only takes 57 seconds, whereas the sequential version on the Linux desktop takes 36 seconds.
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100 time steps 1000 time steps
Grid size Startup | Total | only Col. || Total | only Col.
20 x 20 x 192 0.5s 16s 4s 159s 34s
35 x 35 x 192 1.3s 50s 13s 496s 114s
50 x 50 x 192 2.6s 105s 26s 1016s 240s
75 X 75 x 192 9.9s 238s 61s 2300s 5565
100 x 100 x 192 | 10.4s 424s 109s 4102s 1002s
120 x 120 x 192 | 15.0s 611s 158s 5917s 1452s
135 x 135 x 192 | 19.0s T74s 201s 7494s 1844s

TABLE 4. Computing times on the Advance™board for different problem sizes.

Grid size 50 x 50 x 192
’ #PEs | Total \ Speedup \ only Col. \ Speedup

1| 8188s 1815s

2 | 4160s 1.97 910s 1.99
4 | 2058s 3.98 457s 3.97

8 | 1038s 7.89 231s 7.86
12 | 697s 11.75 155s 11.71
16 | 538s 15.22 118s 15.38
24 | 358s 22.87 81s 22.41
32| 274s 29.88 62s 29.27
48 | 189s 43.32 44s 41.25
64 | 147s 55.70 35s 51.85
96 | 105s 77.98 26s 69.81

TABLE 5. Internal speed-up on the Advance™board, 100 time steps.

Efficiency

24 81216 24 32 43 64 36
FE

FIGURE 7. Efficiency on the Advance™board.
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In the considered software release (SDK 2.23), there are no functions like scanf implemented for
data input. File handling via fstream, fopen or fprintf is not yet supported. The only possibility
left is output to the screen, which is accompanied with significant delays. Writing 4.6 x 105 double
values (i.e. all distribution functions on a 5 x 5 x 96 node grid) to a file by pipelining the screen
output takes approximately 43 seconds. On the Linux desktop, the same task is completed within
0.05 seconds. Furthermore, no routines for time measurement were available in the SDK. Hence, it
was a difficult task to rate the performance of the utilized routines and functions. The upcoming
software releases include a visual profiling tool that allows for a detailed performance analysis.

7. OUTLOOK

The ClearSpeed Advance™accelerator board is an innovative product, that makes high perfor-
mance computing available on standalone workstations and aims at improving the performance of
existing supercomputers. Despite the fact that not all functions and routines are implemented or
tuned to performance at the current stage, this emerging technology has reached a stable state
towards the use in numerical simulation.

The application of the ClearSpeed Advance™accelerator board to our test problem demonstrates
the promising capabilities of this technology in scientific computing. However, our examination
showed up some insufficiencies that should be fixed by future extensions in technical equipment
and programming support.

The major constraint is the limited memory space on the processing elements, that prevents from
working in a distributed memory sense. As a direct consequence, a huge amount of data has
to be streamed from the mono domain to the poly domain and back. Due to the unsatisfactory
performance of the data transfer, a large impact on the computing time has to be encountered.
Improvements in the bandwidth by means of software or hardware adjustments could be a remedy
to overcome the faced restrictions.

Another current handicap is related to the tedious linkage to the host processor or the secondary
CSX600 processor. Via assembler code for both devices a common interface has to be defined for
the exchange of data and communication. More user friendly solutions would be helpful.

Despite some deficiencies in the initial setup of the ClearSpeed Advance™ accelerator board, this
paper clearly shows the high potential of the underlying architecture and technology in the highly
CPU-time demanding area of flow simulation.

M
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