
 

 

 

 

 
 

Robust estimates for the approximation  
of the dynamic consolidation problem 

M. Sauter 
C. Wieners 

Preprint Nr. 07/04 

 
 
 

UNIVERSITÄT  KARLSRUHE 

Institut für Wissenschaftliches Rechnen  

und Mathematische Modellbildung zW RM M  

76128 Karlsruhe 



Anschriften der Verfasser:

Dipl.-Math. techn. Martin Sauter
Institut für Angewandte und Numerische Mathematik
Universität Karlsruhe
D-76128 Karlsruhe

Prof. Dr. Christian Wieners
Institut für Angewandte und Numerische Mathematik
Universität Karlsruhe
D-76128 Karlsruhe



Robust estimates for the approximation

of the dynamic consolidation problem

Martin Sauter and Christian Wieners

Abstract. We consider stable discretizations in time and space for the linear dynamic consoli-
dation problem describing the wave propagation in a porous solid skeleton which is fully saturated
with an incompressible �uid. Introducing the hydrostatic pressure, the �ow problem is described
by Darcy's law. In particular, we discuss the case of nearly impermeable solids which requires
inf-sup stable discretizations in space for the limiting saddle point problem. Together with an
(implicit) Newmark discretization in time we derive convergence estimates for the fully discrete
scheme which are robust with respect to the coupling parameter of �uid and solid.

1. Introduction

We consider the following system of partial di�erential equations

ρ ü(t)− div
(
σ(t)− p(t)I

)
= ρ b(t) , (1a)

div
(
u̇(t)− κ∇p(t)

)
= 0 , (1b)

in [0, T ]×Ω ⊂ R×Rd extending Biot's quasi-static consolidation problem by an inertial term (the
classical quasi-static model is obtained by neglecting the acceleration term). The consolidation
problem describes the dynamics of a system composed of a materially incompressible porous solid
which is saturated by an incompressible viscous pore �uid. After imposing a constitutive equation
relating the Cauchy stress and the solid displacement, the primary variables are the displacement
vector of the solid skeleton u and the hydrostatic pressure p. In the above equations, we already
inserted Darcy's law, describing the di�erence of the pore �uid velocity and the skeleton velocity (the
seepage velocity w), which is obtained by w(t) = −κ∇p(t). Here, κ is the hydraulic conductivity.
Phenomenological, the second equation corresponds to the conservation of �uid content where
div u̇ represents the additional �uid content due to the dilation of the structure. The �rst equation
describes the conservation of momentum. Thereby, σ(t) − p(t)I is the e�ective stress, which is
decomposed into the Cauchy stress σ(t) of the solid structure and the additional stress due to the
�uid pressure given by −p(t)I. Finally, b(t) denotes the volume forces (e. g., gravity forces).

The qualitative analysis of (1) is well established and a governing framework for the consolidation
problem is now given by the the system of poro-elasticity. We refer to [23] and the references
therein for a recent survey article on related problems and links to other applications, e.g. thermo-
elasticity. It also addresses extensions in regard to plastic deformations of the solid skeleton. Finite
element approximations of the quasi-static problem have been considered by various authors, see
e.g. [12, 14] and the references therein. Approximations of a di�erent fully dynamic consolidation
problem have been considered by Santos et. al. [18, 19].

In this work, we focus our attention on the behavior of the system for varying κ = k
η > 0 and κ

might as well be tensor-valued. In the above relation, k represents the permeability of the pores
and η the viscosity of the �uid. Of particular interest is the behavior for very small κ. This can
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be interpreted in two ways: either the pores are almost impermeable or the �uid is highly viscous.
Freely spoken, both cases imply that the �uid does no longer �ow through the porous solid, and the
two-phase problem reduces to a single-phase problem for the displacement of the solid-�uid mixture.
Then, p can be interpreted as the Lagrange multiplier of the constraint div u̇ = 0. However, we do
not consider the case of vanishing κ.

In particular, we aim for robust discretizations in time and space for the full problem. Therefore, we
combine two methods which are robust for its own: in time, the Newmark scheme is applied (which
is unconditionally stable for a suitable choice of parameters) and in space an inf-sup stable saddle
point discretization provides robust estimates. Our main result in Section 5 proves convergence
estimates in space and time independent of κ and without mesh-dependent restrictions on ∆t.
Numerically, this was already observed in [21].

Here, we restrict ourselves to the basic linear model. The full numerical analysis of convergence
in time and space for nonlinear models is more involved, see, e. g., [4] for a �rst order method in
time applied to a dynamic model in �nite elasticity. The extension of the numerical analysis to
other nonlinear applications, e. g., models in poro-plasticity, is not done so far (see [6, 25] and the
references therein for numerical simulations).

The paper is organized as follows. We start with a precise formulation of the dynamic consolidation
model, and we review the main properties of the problem. Then, in Section 3 the Newmark scheme
is introduced, its properties and some variants are discussed. In Section 4, based on an inf-sup
stable discretization in space, a robust semi-discrete estimate is derived, and �nally, in Section 5
estimates for the full discretization are considered. We close with some remarks on discrete energy
conservation properties of the scheme.

2. The continuous problem

In this section we brie�y recall the full equations of the consolidation problem, and we summarize
the basic analytical properties. It does not contain new results; it serves for the clear de�nition of
the problem and for the introduction of the notation.

2.1. Equations and boundary conditions. We assume that [0, T ] ⊂ R is a �nite time interval
and Ω ⊂ Rd is a bounded domain with Lipschitz boundary Γ = ∂Ω. We consider disjoint boundary
decompositions Γ = Γc∪Γt corresponding to Dirichlet (clamped) and Neumann (traction) boundary
conditions for the solid, and for the pressure Γ = Γd∪Γf , corresponding to Dirichlet (drainage) and
Neumann (f lux) boundary conditions. We assume that the Dirichlet parts have positive measure
measd−1(Γc),measd−1(Γd). Depending on the boundary, we use the spaces X = {w ∈ H1(Ω, Rd) :
w = 0 on Γc} for the displacements and Q = {q ∈ H1(Ω) : q = 0 on Γd} for the pressure.
Furthermore, de�ne H = L2(Ω, Rd) and H = L2(Ω, R).

In Ω, the following data are given: a density distribution ρ ∈ L∞(Ω, R) with ρ(x) ≥ ρ0 > 0 a.e. in Ω,
a permeability tensor κ ∈ L∞(Ω, Rd×d) which is uniformly positive de�nite, i. e., ξT κ(x)ξ ≥ κ0|ξ|2
for ξ ∈ Rd, and a volume force b ∈ L2(0, T ;H).

Finally, the system (1) needs to be closed by a constitutive equation describing the stress-strain
relation. In the following, we only consider the linear and isotropic case where the relation between
the Cauchy stress σ and the linearized Green-St. Venant strain ε(u) = 1

2(∇u +∇uT ) is given by
Hooke's law

σ(t) = C : ε(u(t)) = 2µ ε(u(t)) + λ tr ε(u(t))I . (2)

Here, C denotes the fourth order elasticity tensor and µ and λ are the Lamé constants.
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Now, the full system is given by the di�erential equations and the boundary conditions

ρ ü(t)− div
(
σ(t)− p(t)I

)
− ρ b(t) = 0 in Ω , (3a)

div
(
u̇(t)− κ∇p(t)

)
= 0 in Ω , (3b)

p(t) = 0 on Γd , (3c)

κ∇p(t) · n = 0 on Γf , (3d)

u(t) = 0 on Γc , (3e)(
σ(t)− p(t)I

)
n = 0 on Γt , (3f)

subject to initial values

u(0) = u0 and u̇(0) = v0. (4)

2.2. Norms and operators. We de�ne the following bilinear forms and operators:

A : X → X ′ , 〈Au,w〉X′×X = a(u,w) :=
∫

Ω
ε(u) : C : ε(w) dx ,

B : X → Q′ , 〈Bu, p〉Q′×Q = b(u, p) := −
∫

Ω
p div u dx ,

B′ : Q → X ′ , 〈B′p, u〉X′×X = b(u, p) ,

Cκ : Q → Q′ , 〈Cκp, q〉Q′×Q = cκ(p, q) :=
∫

Ω
(κ∇p) · ∇q dx ,

M : H → H ′ , 〈Mu,w〉H′×H = m(u,w) :=
∫

Ω
ρ u ·w dx .

The bilinear form a(·, ·) de�nes an inner product on X due to Korn's second inequality. Since a(·, ·)
is symmetric, the operator A is self-adjoint. We de�ne a norm on X by setting

‖u‖X =
√

a(u,u) .

Similarly, the operator Cκ is self-adjoint and de�nes an inner product on Q, but the associated
norm is not appropriate in our context since this would result in parameter dependent estimates.
Therefore, we de�ne the parameter dependent norm

‖p‖Q =
√
‖p‖2

κ + ‖p‖2
S , (5)

with ‖p‖κ =
√

cκ(p, p) and ‖p‖S = ‖A−1B′p‖X , which now allows for the robust estimate

sup
06=u∈X

b(u, p)
‖u‖X

= ‖B′p‖X′ = ‖A−1B′p‖X ≤ ‖p‖Q . (6)

Finally, we use the weighted norm ‖u‖H =
√

m(u,u) on H. Note that for u ∈ X, we can estimate

‖u‖H ≤ Cρ ‖u‖X

2.3. Weak formulation. The �nite element discretization of (3) is based on the weak formulation:
�nd u ∈ C2(0, T ;V ) and p(t) ∈ Q such that

m(ü(t),w) + a(u(t),w) + b(w, p(t)) = m(b(t),w) w ∈ X , (7a)

b(u̇(t), q)− cκ(p(t), q) = 0 q ∈ Q . (7b)

Using the introduced notation, this can be rewritten as an operator equation in X ′ ×Q′:

M ü(t) + Au(t) + B′p(t) = `(t) , (8a)

Bu̇(t)− Cκp(t) = 0 , (8b)

where `(t) ∈ X ′ is de�ned by 〈`(t),w〉 =
∫
Ω ρ b(t) ·w dx.
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2.4. Existence and uniqueness of a solution. Eliminating the pressure in (8) by the second
equation gives p(t) = C−1

κ Bu̇(t), and substitution into the �rst equation yields the wave equation
with damping

M ü(t) + Dκu̇(t) + Au(t) = `(t) , (9)

where Dκ = B′C−1
κ B : X −→ X ′. Since Cκ is strongly monotone, so is the inverse C−1

κ and
consequently, also Dκ is monotone: 〈Dκv,v〉 ≥ 0. Standard analysis applies to this problem (see,
e. g., [22, Prop. I.6.1] for a proof in a modi�ed setting with homogeneous right-hand side).

Theorem 1. For ` ∈ C0(0, T ;X ′) the second order di�erential equation (9) with initial values (4)
has a unique solution u ∈ C2(0, T ;H) ∩ C1(0, T ;X).

As a consequence, we obtain p ∈ C1(0, T ;Q). In case of smooth right-hand sides and initial values,
higher regularity can be studied, cf. [7, Sect. 7.2.3].

Note that the operator Dκ is not bounded independently of κ, so that the pressure elimination is
not suitable for a robust discretization.

2.5. Monotonicity. Introducing the velocity v(t) = u̇(t) we consider an extended system. We
de�ne the product space

W = X ×X ×Q

and the operatorsA,B : W −→W ′ by A[u,v, p] = (−Av, Au+B′p,−Bv+Cκp) and by B[u,v, p] =
(Au,Mv, 0), and the linear form L ∈ W ′ by L(t)[u,v, p] = 〈`(t),v〉.
Together with Av(t) = Au̇(t) this rewrites (8) as an implicit evolution equation W ′

∂t

(
Bw(t)

)
+Aw(t) = L(t) , Bw(0) = (Au0,Mv0, 0) , (10)

for w(t) := (u(t),v(t), p(t)).

Lemma 2. The operators A and B are monotone.

Proof. This follows from 〈Bw,w〉 = a(u,u) + (v,v)H ≥ 0 and

〈Aw,w〉 = cκ(p, p)− b(v, p) + b(v, p) + a(u,v)− a(v,u) = cκ(p, p) ≥ 0,

due to the symmetry of a(·, ·) and the positivity of cκ(·, ·). �

Note that B is singular, so that this has the structure of a di�erential algebraic equation. Thus,
the application of semi-group theory requires a suitable factorization technique [22, Ch. IV].
This technique is applied in [24], where existence and uniqueness of a closely related system is
investigated. In the following, monotonicity plays a major role in the estimates.

2.6. Energy estimates. The kinetic and potential energy of the wave equation

Ewave(u,v) = 1
2
m(v,v) + 1

2
a(u,u)

is extended by the damping term, which de�nes the free energy by

E
(
u, p, t

)
= Ewave(u(t), u̇(t)) +

∫ t

0
cκ(p(s), p(s)) ds ,

and the external work is given by

Eext
(
v, t

)
=

∫ t

0
〈`(s),v(s)〉 ds .

The initial energy is denoted by E0 = Ewave(u0,v0).
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Theorem 3. Assume b ∈ L2(0, T ;H), and let (u, p) ∈ H1(0, T ;X)× L2(0, T ;Q) be a solution of
(7) for initial values (u0,v0) ∈ X ×X. Then we have energy conservation in the form

E(u, p, t) = E0 + Eext(u̇, t), t ∈ [0, T ] . (11a)

and an a priori estimate

E(u, p, t) ≤ C(T )
(
E0 + ‖b‖2

L2(0,T ;H)

)
, (11b)

where C(T ) is a constant only depending on time T .

Proof. Inserting w = u̇(t) and q = p(t) in (7) yields b(u̇(t), p(t)) = cκ(p(t), p(t)) and

m(ü(t), u̇(t)) + a(u(t), u̇(t)) + cκ(p(t), p(t)) = 〈`(t), u̇(t)〉 .

This gives (11a) by

Ewave(u(t),v(t))− Ewave(u(0),v(0)) =
∫ t

0

(
m(ü(s), u̇(s)) + a(u(s), u̇(s))

)
ds

=
∫ t

0

(
〈`(s), u̇(s)〉 − cκ(p(s), p(s))

)
ds .

We obtain from Young's inequality

Eext(u̇, t) =
∫ t

0
m(b(s),v(s)) ds ≤

∫ t

0
‖b(s)‖H‖u̇(s)‖H ds

≤ 1
2

∫ t

0
‖b(s)‖2

H ds + 1
2

∫ t

0
‖u̇(s)‖2

H ds ,

which gives

E(u, p, t) ≤ E0 + 1
2

∫ t

0
‖b(s)‖2

H ds +
∫ t

0
E(u, p, s) ds .

Then, (11b) is directly obtained from Gronwall's Lemma [11, Lem. A.4.12]. �

As an immediate consequence in case of vanishing external work (` ≡ 0), it follows that energy is
conserved (i. e., E(u, p, t) ≡ E0), and the wave energy is dissipative in the form

∂

∂t
Ewave(u(t), u̇(t)) = −cκ(p(t), p(t)) ≤ 0 . (12)

2.7. Lagrange principle. Finally, we introduce the corresponding Lagrange principle. For the
generalized coordinates q = (u, p) de�ne the Lagrangian by

L(q, q̇, t) =1
2
〈M u̇(t), u̇(t)〉 − 1

2
〈Au(t),u(t)〉+

∫ t

0
〈Cκp(s), p(s)〉 ds− 〈Bu(t), p(t)〉+ 〈`(t), u̇(t)〉 .

The corresponding Euler-Lagrange equation (obtained by the �rst variation of the action integral)
∂

∂t

∂L

∂q̇
=

∂L

∂q
yields the equation (8) in integrated form

M ü(t) + Au(t) + B′p(t) = `(t) ,

Bu(t)−
∫ t

0
Cκp(s) ds = 0 .
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3. Discretization in time

In many cases physical restrictions require very small time steps for hyperbolic equations, and then
explicit time stepping methods a favorable. Here, we consider applications in solid mechanics where
in particular stability requirements would lead�in case of �ne meshes�to unrealistic small time
steps. Thus, one aims for time discretizations which are unconditionally stable. This can be easily
obtained by enlarging the system by an equation for the velocity and the application of stable
implicit Runge-Kutta schemes. However, the realization of such schemes is numerically expensive,
and therefore in many cases Newmark schemes are applied: their realization has the same structure
as implicit schemes for the quasi-static case, and it is quite easy to extend quasi-static applications
to the full dynamic problem.

3.1. The Newmark scheme. We consider the Newmark discretization in time for the system
(7), see [17, Ch. 6.5]. Therefore, let 0 = t0 < t1 < t2 < · · · tN = T be a time series, and let
∆tn = tn − tn−1 be the time increment. Set `n = `(tn).
Starting with u0 = u0 and v0 = v0 we compute for n = 0, 1, 2, ..., N the acceleration vector an,
the velocity vector vn, the displacement vector un, and the pressure pn satisfying

m(an,w) + a(un,w) + b(w, pn) = 〈`n,w〉 , w ∈ X , (13a)

b(vn, q)− cκ(pn, q) = 0 , q ∈ Q , (13b)

and for n > 0

vn = vn−1 +
∆tn
2

(
an + an−1

)
, (14a)

un = un−1 + ∆tnvn−1 +
(∆tn)2

4

(
an + an−1

)
. (14b)

Algorithmically, one can solve a saddle point problem for (un, pn)

4
(∆tn)2

m(un,w) + a(un,w) + b(w, pn) = 〈rn,w〉 , w ∈ X ,

b(un, q)− ∆tn
2

cκ(pn, q) = 〈rn, q〉 , q ∈ Q ,

with

〈rn,w〉 = 〈`n,w〉+
4

(∆tn)2
m(un−1,w) +

4
∆tn

m(vn−1,w) + m(an−1,w) , w ∈ X ,

〈rn, q〉 = b(un−1, q) +
∆tn
2

b(vn−1, q) , q ∈ Q ,

and then recover vn and an from

vn =
2

∆tn

(
un − un−1

)
− vn−1 , (17a)

an =
4

(∆tn)2
(
un − un−1

)
− 4

∆tn
vn−1 − an−1 . (17b)

3.2. The Newmark discretization as a Nyström method. For the system

u̇(t) = v(t) , v̇(t) = a(t, u, u̇) ,

an s-stage Nyström method is given by

ki = a
(
tn−1 + ci∆tn, un−1 + ci∆tnvn−1 + (∆tn)2

s∑
j=1

aijkj , vn−1 + ∆tn

s∑
j=1

aijkj

)
,

un = un−1 + ∆tnvn−1 + (∆tn)2
s∑

i=1

biki , vn = vn−1 + ∆tn

s∑
i=1

biki .
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Following [9, Ch. II.14], a Nyström method is equivalent to a Runge-Kutta method, if the coe�-
cients aij and bj ful�ll the relations

aij =
s∑

k=1

aikakj , bi =
∑
k=1

= bkaki . (18)

The Newmark method as it is de�ned above is a Nyström method (s = 2 stages) with

c =
[
0
1

]
, a =

[
0 0
1
4

1
4

]
, a =

[
0 0
1
2

1
2

]
, b =

[
1
4
1
4

]
, b =

[
1
2
1
2

]
.

A short computation evaluating (18) shows that this corresponds to the trapezoidal rule. This
equivalence is useful for characterizing the Newmark method since all properties can be traced
back to the trapezoidal rule. In particular, we can directly conclude that the Newmark method is
A-stable and second order accurate.

The trapezoidal rule is symmetric in the sense of [8, Ch. 5], since the coe�cients aij , bi ful�ll

as+1−i,s+1−j + aij = bj for all 1 ≤ i, j ≤ s .

Moreover, in the context of linear problems, the concepts of symmetry and symplecticity coincide [8,
Ch. VI.4.2], and hence, quadratic invariants are conserved. In particular�in regard to the linear
dynamic consolidation problem�this implies the energy conservation by the Newmark method.
This fact is also re�ected in the close relationship of the trapezoidal rule with the midpoint rule.
For linear problems, both methods are equivalent, and since the midpoint rule is symplectic, so
is the trapezoidal rule for linear problems. The trapezoidal rule is also referred to as conjugate
symplectic to the midpoint rule [20, Ch. 14.3], since it is the result of a change of variables in the
midpoint rule.

Remark 4. The general form of the Newmark method, as given in [17, Ch. 6.5], is parameterized
by β and γ such that

vn = vn−1 + ∆tn

(
γan +

(1
2
− γ

)
an−1

)
,

un = un−1 + ∆tnvn−1 + (∆tn)2
(
βan +

(1
4
− β

)
an−1

)
.

The equivalent Nyström method is given by

c =
[
0
1

]
, a =

[
0 0

1
2 − β β

]
, a =

[
0 0

1− γ γ

]
, b =

[
1
2 − β

β

]
, b =

[
1− γ

γ

]
.

Suitable combinations of the parameters allow for controllable stability properties, and certain meth-
ods are retained in the general formulation, e.g. for γ = 1

4 and β = 0, the leap-frog (or Störmer-
Verlet) algorithm is recovered.
Since our fully discrete estimate in the next section is restricted to the basic Newmark scheme
(γ = 1

2 , β = 1
4), we do not analyse the variants here.

Remark 5. In the engineering literature, the Newmark method can be traced back to [15]. Based on
the Newmark method, further extensions were proposed: the HHT-α method of Hilber et. al. [10]
and the WBZ-α method of Wood et. al. [26] were combined to the generalized-α method by Chung
and Hulbert [5], yielding a four parameter method allowing for adjustable numerical dissipation
while retaining second order accuracy and unconditional stability in the linear regime. As special
cases, the trapezoidal rule and the midpoint rule are recovered.

4. Discretization in space

Since we aim for robust estimates with respect to κ, a full control of the acceleration and the
pressure is required. This is obtained by employing an inf-sup stable �nite element discretization.
Then, in order to prepare the structure of the proof for the full estimate in the next section, we
consider a semidiscrete estimate.
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Note that for the wave equation both, semi-discrete and fully discrete estimates for the displace-
ments, are considered in [13, Th. 13.2], but for a robust estimate with respect to κ (based on the
inf-sup stability) substantial extentions are required.

4.1. The elliptic projection in space. Let h ∈ (0, h0) be a discretization parameter and let
Xh ×Qh ⊂ X ×Q be a stable �nite element discretization such that

sup
uh∈Xh

b(uh, ph)
‖uh‖X

≥ β sup
u∈X

b(u, ph)
‖u‖X

, ph ∈ Qh , (19)

where β is independent of the discretization parameter h. In particular, (6) implies

sup
uh∈Xh

b(uh, ph)
‖uh‖X

≤ 1
β
‖ph‖Q, ph ∈ Qh . (20)

For the discrete system, standard theory for linear ODE's apply, see [1, Th. II.9.5]:

Theorem 6. For ` ∈ Ck(0, T ;X ′) the second order semidiscrete equation

m(üh(t),wh) + a(uh(t),wh) + b(wh, ph(t)) = 〈`(t),wh〉 wh ∈ Xh , (21a)

b(u̇(t), qh)− cκ(ph(t), qh) = 0 qh ∈ Qh , (21b)

with initial values

(uh(0), u̇h(0)) = (uh,0,vh,0) ∈ Xh ×Xh ,

has a unique solution (uh, ph) ∈ Ck+2(0, T ;Xh)× Ck+1(0, T ;Qh).

For the semidiscrete analysis we introduce a coupled elliptic projection

(Ih, Jh) : X ×Q −→ Xh ×Qh

by solving the saddle point problem

a(Ih(u, p),wh) + b(wh, Jh(u, p)) = a(u,wh) + b(wh, p) wh ∈ Xh , (22a)

b(Ih(u, p), qh)− cκ(Jh(u, p), qh) = b(u, qh)− cκ(p, qh) qh ∈ Qh . (22b)

Elaborate stability investigations related with such saddle point problems have been performed in
the context of penalized saddle point problems. In particular, we obtain quasi-optimal estimates
uniformly in κ, see [2, 3].

Theorem 7. A constant C > 0 depending only on β exists such that

‖u− Ih(u, p)‖X + ‖p− Jh(u, p)‖Q ≤ C inf
(wh,qh)∈Xh×Qh

(
‖u−wh‖X + ‖p− qh‖Q

)
.

Moreover, if u ∈ H2(Ω, R3) and p ∈ H2(Ω), and if the mesh is su�ciently regular, we have

‖u− Ih(u, p)‖X + ‖p− Jh(u, p)‖Q ≤ C(u, p) h ,

with C(u, p) independent of κ.

4.2. A semidiscrete estimate in space. The elliptic projection allows for decompositions

u(t)− uh(t) = %u(t) + θu(t) , %u(t) = u(t)− Ih(u(t), p(t)) , θu(t) = Ih(u(t), p(t))− uh(t) ,

p(t)− ph(t) = %p(t) + θp(t) , %p(t) = p(t)− Jh(u(t), p(t)) , θp(t) = Jh(u(t), p(t))− ph(t) ,

where �rst terms will we estimated by Theorem 7; the second term (in discrete spaces) is estimated
in Theorem 8 below.

Temporal derivatives are de�ned accordingly, e. g., θ̇u(t) = Ih(u̇(t), ṗ(t))− u̇h(t).

Theorem 8. If u ∈ H3(0, T, X) and p ∈ H3(0, T ;Q), the estimate

‖θp(t)‖2
Q + ‖θ̈u(t)‖2

H + ‖θ̇u(t)‖2
X + ‖θu(t)‖2

X

. ‖θ̈u(0)‖2
H + ‖θ̇u(0)‖2

X + ‖θu(0)‖2
X + ‖θp(0)‖2

Q + ‖%p(t)‖2
Q + ‖%u‖2

H3(0,t;X)

holds, where the constant contained in . is independent of κ.
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Proof. The construction of the projection implies

a(%u(t),wh) + b(wh, %p(t)) = 0, wh ∈ Xh , (23a)

b(%u(t), qh)− cκ(%p(t), qh) = 0, qh ∈ Qh , (23b)

and b(%̇u(t), qh)− cκ(%̇p(t), qh) = 0. Subtracting (7) and (21) and inserting (23) gives

m(θ̈u(t),wh) + a(θu(t),wh) + b(wh, θp(t)) + m(%̈u(t),wh) = 0 wh ∈ Xh, (24a)

b(θ̇u(t), qh)− cκ(θp(t), qh) + b(%̇u(t)− %u(t), qh) = 0 qh ∈ Qh . (24b)

Choosing wh = θ̇u(t) and qh = θp(t) in (24) yields together

m(θ̈u(t), θ̇u(t)) + a(θu(t), θ̇u(t)) + cκ(θp(t), θp(t)) = −m(%̈u(t), θ̇u(t)) + b(%̇u(t)− %u(t), θp(t)) ,

and integrating results in

‖θ̇u(t)‖2
H + ‖θu(t)‖2

X + 2
∫ t

0
‖θp(s)‖2

κ ds

= ‖θ̇u(0)‖2
H + ‖θu(0)‖2

X + 2
∫ t

0
b(%̇u(s)− %u(t), θp(s)) ds− 2

∫ t

0
m(%̈u(s), θ̇u(s)) ds

≤ C1(u, p) +
∫ t

0
‖θp(s)‖2

S ds +
∫ t

0
‖θ̇u(s)‖2

H ds , (25)

with C1(u, p) = ‖θ̇u(0)‖2
H + ‖θu(0)‖2

X +
∫ t

0
‖%̇u(s)− %u(s)‖2

X ds +
∫ t

0
‖%̈u(s)‖2

H ds.

Di�erentiating (23) and (24) in time analogously yields

‖θ̈u(t)‖2
H + ‖θ̇u(t)‖2

X + 2
∫ t

0
‖θ̇p(s)‖2

κ ds

= ‖θ̈u(0)‖2
H + ‖θ̇u(0)‖2

X + 2
∫ t

0
b(%̈u(s)− %̇u(s), θ̇p(s)) ds− 2

∫ t

0
m(∂3

t %u(s), θ̈u(s)) ds .

Using integration by parts and Young's inequality, we insert the estimate∫ t

0
b(%̈u(s)− %̇u(s), θ̇p(s)) ds

= b(%̈u(t)− %̇u(t), θp(t))− b(%̈u(0)− %̇u(0), θp(0))−
∫ t

0
b(∂3

t %u(s), θp(s)) ds

≤ 1
2η
‖%̈u(t)− %̇u(t)‖2

X +
η

2
‖θp(t)‖2

S +
1
2
‖%̈u(0)− %̇u(0)‖2

X +
1
2
‖θp(0)‖2

S

+
1
2

∫ t

0
‖∂3

t %u(s)‖2
X ds +

1
2

∫ t

0
‖θp(s)‖2

S ds ,

which gives together

‖θ̈u(t)‖2
H + ‖θ̇u(t)‖2

X ≤ η‖θp(t)‖2
S + C2(u, p) +

∫ t

0
‖θp(s)‖2

S ds +
∫ t

0
‖θ̈u(s)‖2

H ds , (26)

with

C2(u, p) = ‖θ̈u(0)‖2
H + ‖θ̇u(0)‖2

X +
1
η
‖%̈u(t)− %̇u(t)‖2

X + ‖%̈u(0)− %̇u(0)‖2
X + ‖θp(0)‖2

S

+
∫ t

0
‖∂3

t %u(s)‖2
X ds +

∫ t

0
‖∂3

t %u(s)‖2
H ds .

Estimating b(wh, θp(t)) in (24a) gives

‖θp(t)‖S ≤ Cρ

(
‖θ̈u(t)‖H + ‖%̈u(t)‖H

)
+ ‖θu(t)‖X , (27)

and choosing qh = θp(t) in (24b) results in

‖θp(t)‖2
κ ≤ ‖θp(t)‖2

S + ‖θ̇u(t)‖2
X + ‖%̇u(t)− %u(t)‖2

X . (28)
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Together we obtain

‖θp(t)‖2
Q ≤ 3C2

ρ

(
‖θ̈u(t)‖2

H + ‖%̈u(t)‖2
H

)
+ 3‖θu(t)‖2

X + ‖θ̇u(t)‖2
X + ‖%̇u(t)− %u(t)‖2

X ,

and inserting (25) and (26) and choosing η > 0 su�ciently small combines to

‖θp(t)‖2
Q + ‖θ̈u(t)‖2

H + ‖θ̇u(t)‖2
X + ‖θu(t)‖2

X

. C3(u, p) +
∫ t

0

(
‖θp(s)‖2

S + ‖θ̈u(s)‖2
H ds + ‖θ̇u(s)‖2

H

)
ds ,

with C3(u, p) = C1(u, p) + C2(u, p) + ‖%̇u(t) − %u(t)‖2
X + ‖%̈u(t)‖2

H . Now, applying Gronwall's
lemma [11, Lem. A.4.12] and Sobolev's embedding theorem [7, Th. 5.9.2] give the assertion. �

Corollary 9. If u ∈ H3(0, T, H2(Ω, R3)) and p ∈ H3(0, T ;H2(Ω)), we have in case of exact
initial values

‖ü(t)− üh(t)‖H + ‖u̇(t)− u̇h(t)‖X + ‖u(t)− uh(t)‖X + ‖p(t)− ph(t)‖Q . C(u) h .

Proof. The desired estimate is obtained from

‖ü(t)− üh(t)‖2
H + ‖u̇(t)− u̇h(t)‖2

X + ‖u(t)− uh(t)‖2
X + ‖p(t)− ph(t)‖2

Q

≤ ‖θ̈u(t)‖2
H + ‖θ̇u(t)‖2

X + ‖θu(t)‖2
X + ‖θp(t)‖2

Q

+ ‖%̈u(t)‖2
H + ‖%̇u(t)‖2

X + ‖%u(t)‖2
X + ‖%p(t)‖2

Q

and inserting Theorem 7 for the estimate of the interpolation error. �

5. Convergence in space and time

5.1. The Newmark discretization as a �nite di�erence method. For simplicity, we restrict
ourselves to the case of uniform time step size ∆tn ≡ ∆t.

Furthermore, let ∆wn = wn − wn−1 and ∆2wn = ∆(∆wn) = wn − 2wn−1 + wn−2 be the

�rst and second �nite di�erence, let ∂∆tw
n = (∆t)−1∆wn and ∂k

∆tw
n = ∂∆t(∂k−1

∆t wn) be the

di�erence quotients in time, and we introducing the averaged values {wn} = 1
2(wn + wn−1) and

{{wn}} = 1
2({wn}+ {wn−1}) = 1

4(wn + 2wn−1 + wn−2).
For time-continuous quantities, the above operators have to be interpreted as evaluations at times
t = tn, e.g. {u(tn)} = 1

2

(
u(tn) + u(tn−1)

)
.

The fully discrete scheme is de�ned as follows: for given initial values u0
h,v0

h ∈ Xh compute
approximations un

h,vn
h,an

h ∈ Xh and pn
h ∈ Qh satisfying

m(an
h,wh) + a(un

h,wh) + b(wh, pn
h) = 〈`n,wh〉 wh ∈ Xh , (29a)

b(vn
h, qh)− cκ(pn

h, qh) = 0 qh ∈ Qh , (29b)

for n = 0, 1, 2, ..., N , and for n > 0 (according to (17))

vn
h =

2
∆tn

∆un
h − vn−1

h , an
h =

4
(∆tn)2

∆un
h −

4
∆tn

vn−1
h − an−1

h , (30)

For n > 1, we observe the identities {vn
h} = ∂∆tu

n
h and {{an

h}} = ∂2
∆tu

n
h = {∂∆tv

n
h} .

In analogy to Sect. 4.2 we de�ne

%n
u := u(tn)− Ih(u(tn), p(tn)) ∈ X , θn

u := Ih(u(tn), p(tn))− un
h ∈ Xh ,

%n
p := p(tn)− Jh(u(tn), p(tn)) ∈ Q , θn

p := Jh(u(tn), p(tn))− pn
h ∈ Qh ,

and we set

ξn
u := u(tn)− un

h = %n
u + θn

u , ξn
p := p(tn)− pn

h = %n
p + θn

p .

The corresponding quantities for the velocities and the acceleration are denoted by %n
v, θn

v, ξn
v and

%n
a, θn

a, ξn
a, respectively.
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The estimate in the fully discrete case follows the lines of the semi-discrete estimate, where the
Gronwall Lemma is replaced by the discrete version [16, Lemma 1.4.2], and the integration by
parts is also replaced by a discrete counterpart.

Lemma 10. Assume C0 > 0, and that the sequence (an) is non-negative. If the sequence (φn)

satis�es φ0 ≤ C0 and φn ≤ C0 +
n−1∑
i=0

aiφi for n ≥ 1, then φn ≤ C0 exp
( n−1∑

i=0

ai

)
holds.

Lemma 11. We have for an arbitrary bilinear form B(·, ·) and sequences un, vn

B({un}, ∂∆tv
n) = −B(∂∆tu

n, {vn}) + ∂∆tB(un,vn) ,

If additionally, the bilinear form is symmetric we have

2∆t B({un}, ∂∆tu
n) = B(un,un)−B(un−1,un−1) . (31)

Proof. It holds

B({un}, ∂∆tv
n) + B(∂∆tu

n, {vn})

=
1

2∆t

(
B(un + un−1,vn − vn−1) + B(un − un−1,vn + vn−1)

)
=

1
2∆t

(
2 B(un,vn)− 2 B(un−1,vn−1)

)
= ∂∆tB(un,vn) .

The second statement immediately follows. �

The error in space will be estimated in terms of %n
u.

Lemma 12. We have for n > 1

∆t ‖{∂∆t%
n
u}‖2

X . ‖%̇u‖2
L2(tn−2,tn,X) ≤ 2∆t ‖%̇u‖2

L∞(tn−2,tn,X) , (32a)

∆t ‖∂2
∆t%

n
u‖2

X . ‖%̈u‖2
L2(tn−2,tn,X) ≤ 2∆t ‖%̈u‖2

L∞(tn−2,tn,X) , (32b)

and for n > 2

∆t ‖{∂2
∆t%

n
u}‖2

X . ‖%̈u‖2
L2(tn−3,tn,X) ≤ 3∆t ‖%̈u‖2

L∞(tn−3,tn,X) , (32c)

∆t ‖∂3
∆t%

n
u‖2

X . ‖∂3
t %u‖2

L2(tn−3,tn,X) . (32d)

Moreover, it holds for n > 1

∆t ‖{{%n
u}}‖2

X . ‖%u‖2
L2(tn−2,tn,X) + (∆t)4‖%̈u‖2

L2(tn−2,tn,X) . (32e)

Proof. We only show (32a) since the others follow similarly. Taylor expansions gives

%n
u = %n−1

u +
∫ tn

tn−1

%̇u(s) ds , and %n−2
u = %n−1

u −
∫ tn−1

tn−2

%̇u(s) ds ,

and hence {∂∆t%
n
u} = (2∆t)−1

∫ tn
tn−2

%̇u(s) ds . Applying ‖ · ‖2
X and Hölder's inequality gives

‖{∂∆t%
n
u}‖2

X = (2∆t)−2
∥∥∥∫ tn

tn−2

%̇u(s) ds
∥∥∥2

X

≤ (2∆t)−2

∫ tn

tn−2

12 ds

∫ tn

tn−2

‖%̇u(s)‖2
X ds = (2∆t)−1‖%̇u‖2

L2(tn−2,tn,X) ,

which is the �rst assertion. The estimate (32e) is the achieved by using the error estimate of the
trapezoidal quadrature rule. �
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Summing up suitable quantities (as they will be used in the proof of the following theorem), for

Sk := ‖∂2
∆t%

k
u‖2

H + ‖{∂∆t%
k
u}‖2

X + ‖{{%k
u}}‖2

X + ‖∂2
∆t%

k−1
u ‖2

H + ‖{∂∆t%
k−1
u }‖2

X

+ ‖∂3
∆t%

k
u‖2

H + ‖{{%k−1
u }}‖2

X + ‖∂3
∆t%

k
u‖2

X + ‖{∂2
∆t%

k
u}‖2

X

(33a)

this Lemma immediately gives the bound

∆t

n∑
k=3

Sk . (1 + (∆t)4)‖%u‖2
H3(0,tn;X) . (33b)

The error in time is estimated by comparison with �nite di�erences in the following Lemma.

Lemma 13. We have for n > 1

{{ξn
a}} = ∂2

∆tξ
n
u + δn

1 with ∆t ‖δn
1‖2

H ≤ C(∆t)4‖∂4
t u‖2

L2(tn−2,tn;H) , (34a)

{{ξn
v}} = {∂∆tξ

n
u}+ δn

2 with ∆t ‖δn
2‖2

X ≤ C(∆t)4‖∂3
t u‖2

L2(tn−2,tn;X) , (34b)

{∂∆tξ
n
v} = ∂2

∆tξ
n
u + δn

3 with ‖δn
3‖2

X ≤ C(∆t)4‖∂4
t u‖2

L∞(tn−2,tn;X) , (34c)

and for n > 2

{{∂∆tξ
n
a}} = ∂3

∆tξ
n
u + δn

4 with ∆t ‖δn
4‖2

H ≤ C(∆t)4‖∂5
t u‖2

L2(tn−3,tn;H) , (34d)

{∂2
∆tξ

n
v} = ∂3

∆tξ
n
u + δn

5 with ∆t ‖δn
5‖2

X ≤ C(∆t)4‖∂5
t u‖2

L2(tn−3,tn;X) . (34e)

Proof. Again, we only show the �rst estimate since the others may be obtained likewise. By
Taylor expansion, we �nd that

{{ü(tn)}} = ∂2
∆tu(tn) +

∫ tn

tn−1

(tn − s)
(1

4
− 1

6(∆t)2
(tn − s)2

)
∂4

t u(s) ds

+
∫ tn−1

tn−2

(s− tn−2)
(1

4
− 1

6(∆t)2
(s− tn−2)2

)
∂4

t u(s) ds ,

and inserting {{an
h}} = ∂2

∆tu
n
h gives together with Hölder's inequality

‖δn
1‖2

H = ‖{{ü(tn)}} − ∂2
∆tu(tn)‖2

H

≤ 2
∥∥∥∫ tn

tn−1

(tn − s)
(1

4
− 1

6(∆t)2
(tn − s)2

)
∂4

t u(s) ds
∥∥∥2

H

+2
∥∥∥∫ tn−1

tn−2

(s− tn−2)
(1

4
− 1

6(∆t)2
(s− tn−2)2

)
∂4

t u(s) ds
∥∥∥2

H

≤ 2
∫ tn

tn−1

(
(tn − s)

(1
4
− 1

6(∆t)2
(tn − s)2

))2

ds

∫ tn

tn−1

‖∂4
t u(s)‖2

H ds

+2
∫ tn−1

tn−2

(
(s− tn−2)

(1
4
− 1

6(∆t)2
(s− tn−2)2

))2

ds

∫ tn−1

tn−2

∂4
t ‖u(s)‖2

H ds

=
41

2520
(∆t)3‖∂4

t u‖2
L2(tn−2,tn;H) .

�

Again, we summarize for later use: the term

T k := ‖δk
1‖2

H + ‖δk
2‖2

X + ‖δk−1
1 ‖2

H + ‖δk−1
2 ‖2

X + ‖δk
4‖2

H + ‖δk
5‖2

X , (35a)

can be estimated by

∆t

n∑
k=3

T k . (∆t)4‖u‖2
H5(0,tn;X) . (35b)
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5.2. A fully discrete estimate in time and space. Having �nished the preparations, we
present a fully discrete estimate. As indicated, the approach is akin to the spatially discrete
estimate of the last section.

Theorem 14. If u ∈ H5(0, T, X) and p ∈ H3(0, T ;Q), the estimate

‖∂2
∆tθ

n
u‖2

H + ‖{∂∆tθ
n
u}‖2

X + ‖{{θn
u}}‖2

X + ‖{{θn
p }}‖2

Q

. C(u0
h,u1

h, p1
h) + (∆t)4‖u‖2

H5(0,T ;X) + ‖%u‖2
H3(0,T ;X)

holds with constants independent of κ, ∆t, and h.

Proof. The construction of the projection (22a) implies

a(%n
u,wh) + b(wh, %n

p ) = 0 wh ∈ Xh , (36a)

b(%n
u, qh)− cκ(%n

p , qh) = 0 qh ∈ Qh . (36b)

Subtracting (7) for t = tn and inserting (29) gives

m(θn
a,wh) + a(θn

u,wh) + b(wh, θn
p ) + m(%n

a,wh) = 0 , wh ∈ Xh, (37a)

b(θn
v, qh)− cκ(θn

p , qh) + b(%n
v − %n

u, qh) = 0 , qh ∈ Qh . (37b)

Averaging and inserting wh = {∂∆tθ
n
u} and qh = {{θn

p }} in (37), for n > 1, together yields

m({{θn
a + %n

a}}, {∂∆tθ
n
u}) + a({{θn

u}}, {∂∆tθ
n
u}) + cκ({{θn

p }}, {{θn
p }})

= b({{θn
v + %n

v − %n
u}} − {∂∆tθ

n
u}, {{θn

p }}) ,

and inserting (34) gives

m(∂2
∆tθ

n
u, {∂∆tθ

n
u}) + a({{θn

u}}, {∂∆tθ
n
u}) + cκ({{θn

p }}, {{θn
p }})

= m(∂2
∆t%

n
u + δn

1 , {∂∆tθ
n
u}) + b({∂∆t%

n
u}+ δn

2 − {{%n
u}}, {{θn

p }})
≤ ‖∂2

∆t%
n
u + δn

1‖H‖{∂∆tθ
n
u}‖H + ‖{∂∆t%

n
u}+ δn

2 − {{%n
u}}‖X‖{{θn

p }}‖S

≤ 1
2η1

(
‖∂2

∆t%
n
u + δn

1‖2
H + ‖{∂∆t%

n
u}+ δn

2 − {{%n
u}}‖2

X

)
+

η1

2

(
‖{∂∆tθ

n
u}‖2

H + ‖{{θn
p }}‖2

S

)
,

where η1 ∈ (0, 1) will be �xed later. From (31) we obtain

‖∂∆tθ
n
u‖2

H + ‖{θn
u}‖2

X

= ‖∂∆tθ
n−1
u ‖2

H + ‖{θn−1
u }‖2

X + 2∆t
(
m(∂2

∆tθ
n
u, {∂∆tθ

n
u}) + a({{θn

u}}, ∂∆t{θn
u})

)
≤ ‖∂∆tθ

n−1
u ‖2

H + ‖{θn−1
u }‖2

X +
∆t

η1

(
‖∂2

∆t%
n
u + δn

1‖2
H + ‖{∂∆t%

n
u}+ δn

2 − {{%n
u}}‖2

X

)
+ η1∆t

(
‖{∂∆tθ

n
u}‖2

H + ‖{{θn
p }}‖2

S

)
.

Summing up and using (33) and (35) gives

‖∂∆tθ
n
u‖2

H + ‖{θn
u}‖2

X ≤ C1 +
∆t

η1

n∑
k=3

(Sk + T k) + ∆t

n−1∑
k=2

(
‖{∂∆tθ

k
u}‖2

H + ‖{{θk
p}}‖2

S

)
+ η1∆t

(
‖{∂∆tθ

n
u}‖2

H + ‖{{θn
p }}‖2

S

)
, (38)

with C1 = ‖∂∆tθ
1
u‖2

H + ‖{θ1
u}‖2

X .

Again using (37), we obtain for n > 2

m({{∂∆tθ
n
a}},wh) + a({{∂∆tθ

n
u}},wh) + b(wh, {{∂∆tθ

n
p }}) + m({{∂∆t%

n
a}},wh) = 0 ,

b({{∂∆tθ
n
v}}, qh)− cκ({{∂∆tθ

n
p }}, qh) + b({{∂∆t%

n
v − ∂∆t%

n
u}}, qh) = 0 ,

and inserting wh = {∂2
∆tθ

n
u} and qh = {{∂∆tθ

n
p }} gives

m({{∂∆tξ
n
a}}, {∂2

∆tθ
n
u}) + a({{∂∆tθ

n
u}}, {∂2

∆tθ
n
u}) + b({∂2

∆tθ
n
u}, {{∂∆tθ

n
p }}) = 0 ,

b({{∂∆tθ
n
v}}, {{∂∆tθ

n
p }})− cκ({{∂∆tθ

n
p }}, {{∂∆tθ

n
p }}) + b({{∂∆t%

n
v − ∂∆t%

n
u}}, {{∂∆tθ

n
p }}) = 0 ,
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and we obtain

m({{∂∆tξ
n
a}}, {∂2

∆tθ
n
u}) + a({{∂∆tθ

n
u}}, {∂2

∆tθ
n
u}) + cκ({{∂∆tθ

n
p }}, {{∂∆tθ

n
p }})

= b(∂∆t{{ξn
v − %n

u}} − {∂2
∆tθ

n
u}, {{∂∆tθ

n
p }}) .

Inserting (34) and using Lemma 11 gives

m(∂3
∆tξ

n
u + δn

4 , {∂2
∆tθ

n
u}) + a({{∂∆tθ

n
u}}, {∂2

∆tθ
n
u}) + cκ({{∂∆tθ

n
p }}, {{∂∆tθ

n
p }})

= b(∂∆t{{ξn
v}} − ∂∆t{{%n

u}} − {∂2
∆tξ

n
u}+ {∂2

∆t%
n
u}, ∂∆t{{θn

p }})
= −b(∂2

∆t{ξn
v} − ∂2

∆t{%n
u} − ∂3

∆tξ
n
u + ∂3

∆t%
n
u, {{{θn

p }}})
+ ∂∆tb(∂∆t{ξn

v} − ∂∆t{%n
u} − ∂2

∆tξ
n
u + ∂2

∆t%
n
u, {{θn

p }})
= −b(δn

5 + ∂3
∆t%

n
u − {∂2

∆t%
n
u}, {{{θn

p }}}) + ∂∆tb(δn
3 + ∂2

∆t%
n
u − {∂∆t%

n
u}, {{θn

p }}) .

Now we set ηn
1 = ∂3

∆t%
n
u + δn

4 , ηn
2 = δn

5 + ∂3
∆t%

n
u − {∂2

∆t%
n
u} , ηn

3 = δn
3 + ∂2

∆t%
n
u − {∂∆t%

n
u}. From

(31) we obtain

‖∂2
∆tθ

n
u‖2

H + ‖{∂∆tθ
n
u}‖2

X = ‖∂2
∆tθ

n−1
u ‖2

H + ‖{∂∆tθ
n−1
u }‖2

X

+ 2∆t
(
m(∂3

∆tθ
n
u, {∂2

∆tθ
n
u}) + a({{∂∆tθ

n
u}}, ∂2

∆t{θn
u})

)
≤ ‖∂2

∆tθ
n−1
u ‖2

H + ‖{∂∆tθ
n−1
u }‖2

X + 2∆t ‖ηn
1‖H‖{∂2

∆tθ
n
u}‖H

+ 2∆t b(ηn
2 , {{{θn

p }}}) + 2∆t ∂∆tb(ηn
3 , {{θn

p }}) .

Summing up and using ‖{{{θn
p }}}‖S ≤ 1

2‖{{θ
n−1
p }}‖S + 1

2‖{{θ
n
p }}‖S gives

‖∂2
∆tθ

n
u‖2

H + ‖{∂∆tθ
n
u}‖2

X

≤ ‖∂2
∆tθ

2
u‖2

H + ‖{∂∆tθ
2
u}‖2

X + 2∆t

n∑
k=3

(
‖ηk

1‖H‖{∂2
∆tθ

k
u}‖H + ‖ηk

2‖X‖{{{θk
p}}}‖S

)
+ 2 b(ηn

3 , {{θn
p }})− 2 b(η2

3, {{θ2
p}})

≤ C2 +
∆t

η2

n∑
k=3

(Sk + T k) +
1
η 3

‖ηn
3‖2

X + ∆t

n−1∑
k=3

(
‖∂2

∆tθ
k
u‖2

H + ‖{{θk
p}}‖2

S

)
+ η2∆t

(
‖∂2

∆tθ
n
u‖2

H + ‖{{θn
p }}‖2

S

)
+ η3‖{{θn

p }}‖2
S , (39)

with C2 = ‖∂2
∆tθ

2
u‖2

H + ‖{∂∆tθ
2
u}‖2

X + ‖η2
3‖2

X + ‖{{θ2
p}}‖2

S . Estimating b(wh, θn
p ) in (37a) gives

‖{{θn
p }}‖S ≤ Cρ‖{{ξn

a}}‖H + ‖{{θu}}‖X ,

and choosing qh = {{θn
p }} in (37b) results in

‖{{θn
p }}‖2

κ ≤ ‖{{θn
p }}‖2

S + ‖{{ξn
v}}‖2

X + ‖{{%n
u}}‖2

X .

Together we obtain

‖{{θn
p }}‖2

Q . ‖∂2
∆tθ

n
u‖2

H + ‖{∂∆tθ
n
u}‖2

X + ‖{{θn
u}}‖2

X + Sn + Tn . (40)

and combining (38), (39), (40) and choosing η1, η2, η3 ∈ (0, 1) su�ciently small, we obtain

‖{{θn
p }}‖2

Q + ‖∂2
∆tθ

n
u‖2

H + ‖{∂∆tθ
n
u}‖2

X + ‖{{θn
u}}‖2

X

. C1 + C2 + ‖ηn
3‖2

X + ∆t

n∑
k=3

(
T k + Sk

)
+ ∆t

n−1∑
k=3

(
‖{{θn

p }}‖2
Q + ‖∂2

∆tθ
n
u‖2

H + ‖{∂∆tθ
n
u}‖2

X + ‖{{θn
u}}‖2

X

)
.

Now, we estimate ‖ηn
3‖2

X by Lemmata 12 and 13 and by Sobolev's embedding theorem [7, Th. 5.9.2]

‖ηn
3‖2

X . (∆t)4‖u‖2
W 4,∞(0,T ;X) + ‖%u‖2

W 2,∞(0,T ;X) . (∆t)4‖u‖2
H5(0,T ;X) + ‖%u‖2

H3(0,T ;X)
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Together with (33) and (35) follows

‖{{θn
p }}‖2

Q + ‖∂2
∆tθ

n
u‖2

H + ‖{∂∆tθ
n
u}‖2

X + ‖{{θn
u}}‖2

X

. C1 + C2 + (∆t)4‖u‖2
H5(0,T ;X) + ‖%u‖2

H3(0,T ;X)

+ ∆t

n−1∑
k=3

(
‖{{θn

p }}‖2
Q + ‖∂2

∆tθ
n
u‖2

H + ‖{∂∆tθ
n
u}‖2

X + ‖{{θn
u}}‖2

X

)
.

Finally, applying the discrete Gronwall's lemma (Lemma 10) gives for tn ≤ T

‖{{θn
p }}‖2

Q + ‖∂2
∆tθ

n
u‖2

H + ‖{∂∆tθ
n
u}‖2

X + ‖{{θn
u}}‖2

X . C3 + (∆t)4‖u‖2
H5(0,T ;X) + ‖%u‖2

H3(0,T ;X) ,

with a larger constant depending on exp(T ) and C3 = C1 + C2. �

Together with Theorem 7 and Lemma 12, the �nal estimate follows.

Corollary 15. If u ∈ H3(0, T, H2(Ω, R3))∩H5(0, T ;X) and p ∈ H3(0, T ;H2(Ω, R)∩Q) we have
in case of su�ciently accurate initial values and su�ciently accurate �rst steps

‖{{ü(tn)− an
h}}‖H + ‖{{u̇(tn)− vn

h}}‖X + ‖{{u(tn)− un
h}}‖X + ‖{{p(tn)− pn

h}}‖Q

≤ C(u, p)
(
h + (∆t)2

)
with C(u, p) independent of κ, ∆t and h.

5.3. A discrete energy estimate. Lemma 11 directly yields the time-discrete analog to (11)
and (12). For this purpose, we de�ne for n ≥ 0

En
wave,h(un

h,vn
h) =

1
2
m(vn

h,vn
h) +

1
2
a(un

h,vn
h) , (41a)

En
h (un

h,vn
h, pn

h) = En
wave,h(un

h,vn
h) + ∆t

n∑
i=1

cκ({pi
h}, {pi

h}) . (41b)

Let un
h,vn

h,an
h ∈ Xh and pn

h ∈ Qh be a solution of (29) with homogeneous right-hand side ` ≡ 0
and initial values (u0

h,v0
h) ∈ Xh ×Xh. Then, for n > 0, we have energy conservation in the form

En
h (un

h,vn
h, pn

h) = E0
wave,h(u0

h,v0
h) .

∂∆tEn
wave,h(u0

h,v0
h) = −cκ({pn

h}, {pn
h}) ≤ 0 .

In particular, in the undamped case κ = 0, energy would be conserved exactly.

A discrete interpretation of the Lagrange principle in Sect. 2.7 is not obvious.
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